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Unconditional Bases in Banach Spaces

A Schauder basis provides unique series representations x =
∑ 〈x, an〉xn

of each vector in a Banach space. However, conditionally convergent series
are delicate in many respects. For example, if x =

∑ 〈x, an〉xn converges
conditionally and (λn) is a bounded sequence of scalars, then the series∑
λn 〈x, an〉xn may not converge. Unconditionality is an important prop-

erty, and in many applications we greatly prefer a basis that is unconditional
over one that is conditional. Therefore we study unconditional bases in more
detail in this chapter.

6.1 Basic Properties and the Unconditional Basis
Constant

We can reformulate unconditionality of a basis as follows (see Exercise 6.1).

Lemma 6.1. Given a sequence {xn} in a Banach space X, the following two
statements are equivalent.

(a) {xn} is an unconditional basis for X.

(b) {xσ(n)} is a basis for X for every permutation σ of N.

In this case, if {an} is the sequence of coefficient functionals for {xn}, then
{aσ(n)} is the sequence of coefficient functionals for {xσ(n)}. ♦

By Lemma 4.18, topological isomorphisms preserve the property of being
a basis. The same is true of unconditional bases (see Exercise 6.2).

Lemma 6.2. (a) Unconditional bases are preserved by topological isomor-
phisms. That is, if {xn} is an unconditional basis for a Banach space X
and T : X → Y is a topological isomorphism, then {Txn} is an uncondi-
tional basis for Y.

(b) Bounded unconditional bases are likewise preserved by topological isomor-
phisms. ♦
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178 6 Unconditional Bases in Banach Spaces

Recall from Definition 4.19 that two bases {xn} and {yn} are equivalent
if there exists a topological isomorphism T such that Txn = yn for every n.
We will see in Section 7.2 that all bounded unconditional bases for a Hilbert
space are equivalent, and in fact they are equivalent to orthonormal bases.
Up to isomorphisms, the only other infinite-dimensional Banach spaces that
have a basis and in which all bounded unconditional bases are equivalent are
the sequence spaces c0 and ℓ1 [LP68], [LZ69].

Notation 6.3. We will associate three types of partial sum operators with
a given unconditional basis {xn} for a Banach space X. Let {an} be the
biorthogonal system to {xn}. First, to each finite set F ⊆ N we associate the
partial sum operator SF : X → X defined by

SF (x) =
∑

n∈F
〈x, an〉xn, x ∈ X.

Second, to each finite set F ⊆ N and each set of scalars E = {εn}n∈F satisfying
εn = ±1 for all n, we associate the operator SF,E : X → X defined by

SF,E(x) =
∑

n∈F
εn 〈x, an〉xn, x ∈ X.

Finally, to each finite set F ⊆ N and each collection of scalars Λ = {λn}n∈F
satisfying |λ| ≤ 1 for all n, we associate the operator SF,Λ : X → X defined
by

SF,Λ(x) =
∑

n∈F
λn 〈x, an〉xn, x ∈ X.

Note that while the operators SF are projections in the sense that S 2
F = SF ,

the operators SF,E and SF,Λ need not be projections in this sense. ♦
Applying Theorem 3.10, we obtain the following facts about unconditional

bases, where the suprema are implicitly taken over all F, E , Λ described in
Notation 6.3. The proof of this result is Exercise 6.3.

Theorem 6.4. If {xn} is an unconditional basis for a Banach space X, then
the following statements hold.

(a) The following three quantities are finite for each x ∈ X :

|||x||| = sup
F
‖SF (x)‖,

|||x|||E = sup
F,E
‖SF,E(x)‖,

|||x|||Λ = sup
F,Λ
‖SF,Λ(x)‖.

(b) The following three numbers are finite:

K = sup
F
‖SF‖, KE = sup

F,E
‖SF,E‖, KΛ = sup

F,Λ
‖SF,Λ‖.
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(c) ||| · ||| ≤ ||| · |||E ≤ 2 ||| · ||| and K ≤ KE ≤ 2K.
(d) If F = R then ||| · |||E = ||| · |||Λ and KE = KΛ.
(e) If F = C then ||| · |||E ≤ ||| · |||Λ ≤ 2 ||| · |||E and KE ≤ KΛ ≤ 2KE .

(f) ||| · |||, ||| · |||E , and ||| · |||Λ form norms on X, each equivalent to the initial
norm ‖ · ‖, with

‖ · ‖ ≤ ||| · ||| ≤ K ‖ · ‖,
‖ · ‖ ≤ ||| · |||E ≤ KE ‖ · ‖,
‖ · ‖ ≤ ||| · |||Λ ≤ KΛ ‖ · ‖. ♦

Notation 6.5. Given an unconditional basis {xn} for a Banach space X, we
will let the constants K, KE , and KΛ and the norms ||| · |||, ||| · |||E , and ||| · |||Λ
be as described in Theorem 6.4. ♦
Definition 6.6 (Unconditional Basis Constant). If {xn} is an uncondi-
tional basis for a Banach space X, then the number KE is called the uncondi-
tional basis constant for {xn}. ♦

Comparing the number K to the basis constant C from Definition 4.14,
we see that C ≤ K. In fact, if we let Cσ be the basis constant for the per-
muted basis {xσ(n)}, then K = sup Cσ, where we take the supremum over all

permutations σ of N.
The unconditional basis constant KE implicitly depends on the norm for

X, and changing the norm to some other equivalent norm may change the
value of the basis constant. For example, the unconditional basis constant
for {xn} with respect to the equivalent norm ||| · |||E is precisely 1 (compare
Theorem 4.15 for the analogous statement for the basis constant).

Exercises

6.1. Prove Lemma 6.1.

6.2. Prove Lemma 6.2.

6.3. Prove Theorem 6.4.

6.4. Let {xn} be an unconditional basis for a Banach spaceX, with associated
coefficient functionals {an}.

(a) Prove that {an} is an unconditional basic sequence in X∗.

(b) Show that if X is reflexive, then {an} is an unconditional basis for X∗.

6.5. Use Orlicz’s Theorem to prove that {e2πint}n∈Z cannot be an uncondi-
tional basis for Lp(T) when 1 ≤ p < 2. Argue by duality to show that it also
cannot be an unconditional basis when 2 < p <∞. (See Chapter 14 for proof
that {e2πint}n∈Z is a basis for Lp(T) when 1 < p <∞, but is not a basis for
L1(T) or C(T).)
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6.2 Characterizations of Unconditional Bases

The next result gives several equivalent formulations of unconditional bases.
We include the proofs of more implications than are strictly needed, in order
to illustrate some different approaches to the proof.

Theorem 6.7. Let {xn} be a complete sequence in a Banach space X such
that xn 6= 0 for every n. Then the following statements are equivalent.

(a) {xn} is an unconditional basis for X.

(b) ∃C1 ≥ 1, ∀ c1, . . . , cN , ∀ ε1, . . . , εN = ±1,

∥∥∥∥
N∑

n=1

εncnxn

∥∥∥∥ ≤ C1

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥. (6.1)

(c) ∃C2 ≥ 1, ∀ b1, . . . , bN , ∀ c1, . . . , cN ,

|b1| ≤ |c1|, . . . , |bN | ≤ |cN | =⇒
∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥ ≤ C2

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.

(d) ∃ 0 < C3 ≤ 1 ≤ C4 <∞, ∀ c1, . . . , cN ,

C3

∥∥∥∥
N∑

n=1

|cn|xn
∥∥∥∥ ≤

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ ≤ C4

∥∥∥∥
N∑

n=1

|cn|xn
∥∥∥∥.

(e) {xn} is a basis, and for each bounded sequence of scalars Λ = (λn) there
exists a continuous linear operator TΛ : X → X such that TΛ(xn) = λnxn
for all n ∈ N.

Further, in case these hold, the best constant C1 in equation (6.1) is the un-
conditional basis constant C1 = KE = supF,E ‖SF,E‖.

Proof. (a) ⇒ (b). Suppose that {xn} is an unconditional basis for X, with
coefficient functionals {an}. Choose any scalars c1, . . . , cN and any signs

ε1, . . . , εN = ±1, and set x =
∑N
n=1 cnxn. Then 〈x, an〉 = cn if n ≤ N,

while 〈x, an〉 = 0 if n > N. Therefore

N∑

n=1

εncnxn =
∑

n∈F
εn 〈x, an〉xn = SF,E(x),

where F = {1, . . . , N} and E = {ε1, . . . , εN}. By definition of ||| · |||E and by
Theorem 6.4(f), we therefore have

∥∥∥∥
N∑

n=1

εncnxn

∥∥∥∥ = ‖SF,E(x)‖ ≤ |||x|||E ≤ KE ‖x‖ = KE

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.
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Thus statement (b) holds with C1 = KE .

(b)⇒ (a). Suppose that statement (b) holds, and let σ be any permutation
of N. We must show that {xσ(n)} is a basis for X. By hypothesis, {xσ(n)} is
complete with every element nonzero. Therefore, by Theorem 5.17 it suffices
to show that there is a constant Cσ such that

∀N ≥M, ∀ cσ(1), . . . , cσ(N),

∥∥∥∥
M∑

n=1

cσ(n)xσ(n)

∥∥∥∥ ≤ Cσ

∥∥∥∥
N∑

n=1

cσ(n)xσ(n)

∥∥∥∥.

To this end, fix any N ≥ M and choose any scalars cσ(1), . . . , cσ(N). Define
cn = 0 for n /∈ {σ(1), . . . , σ(N)}. Let L = max{σ(1), . . . , σ(N)}, and define

εn = 1 and γn =

{
1, if n ∈ {σ(1), . . . , σ(M)},
−1, otherwise.

Then,

∥∥∥∥
M∑

n=1

cσ(n)xσ(n)

∥∥∥∥ =

∥∥∥∥
L∑

n=1

(
εn + γn

2

)
cnxn

∥∥∥∥

≤ 1

2

∥∥∥∥
L∑

n=1

εncnxn

∥∥∥∥ +
1

2

∥∥∥∥
L∑

n=1

γncnxn

∥∥∥∥

≤ C1

2

∥∥∥∥
L∑

n=1

cnxn

∥∥∥∥ +
C1

2

∥∥∥∥
L∑

n=1

cnxn

∥∥∥∥

= C1

∥∥∥∥
N∑

n=1

cσ(n)xσ(n)

∥∥∥∥.

This is the desired result, with Cσ = C1.

(a) ⇒ (c). Suppose that {xn} is an unconditional basis for X, with coeffi-
cient functionals {an}. Choose any scalars c1, . . . , cN and b1, . . . , bN such that

|bn| ≤ |cn| for every n. Define x =
∑N

n=1 cnxn, and note that cn = 〈x, an〉.
Let λn be such that bn = λncn. Since |bn| ≤ |cn| we can take |λn| ≤ 1 for
every n. Therefore, if we define F = {1, . . . , N} and Λ = {λ1, . . . , λN}, then

N∑

n=1

bnxn =
∑

n∈F
λncnxn =

∑

n∈F
λn 〈x, an〉xn = SF,Λ(x).

Hence

∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥ = ‖SF,Λ(x)‖ = |||x|||Λ ≤ KΛ ‖x‖ = KΛ
∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.
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Thus statement (c) holds with C2 = KΛ.
(b) ⇒ (c). Suppose that statement (b) holds. Choose any N > 0, and any

scalars bn, cn such that |bn| ≤ |cn| for each n = 1, . . . , N. Let |λn| ≤ 1 be
such that bn = λncn. Let αn = Re(λn) and βn = Im(λn). Since the αn are
real and satisfy |αn| ≤ 1, Carathéodory’s Theorem (Theorem 3.13) implies
that we can find scalars tm ≥ 0 and signs εnm = ±1, for m = 1, . . . , N + 1 and
n = 1, . . . , N, such that

N+1∑

m=1

tm = 1 and

N+1∑

m=1

εnm tm = αn for n = 1, . . . , N.

Hence,

∥∥∥∥
N∑

n=1

αncnxn

∥∥∥∥ =

∥∥∥∥
N∑

n=1

N+1∑

m=1

εnmtmcnxn

∥∥∥∥

=

∥∥∥∥
N+1∑

m=1

tm

N∑

n=1

εnmcnxn

∥∥∥∥

≤
N+1∑

m=1

tm

∥∥∥∥
N∑

n=1

εnmcnxn

∥∥∥∥

≤
N+1∑

m=1

tm C1

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥

= C1

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.

A similar formula holds for the imaginary parts βn (which are zero if F = R),
so

∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥ =

∥∥∥∥
N∑

n=1

λncnxn

∥∥∥∥

≤
∥∥∥∥
N∑

n=1

αncnxn

∥∥∥∥ +

∥∥∥∥
N∑

n=1

βncnxn

∥∥∥∥

≤ 2C1

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.

Therefore statement (c) holds with C2 = 2C1.

(c)⇒ (a). Suppose that statement (c) holds, and let σ be any permutation
of N. We must show that {xσ(n)} is a basis for X. By hypothesis, {xσ(n)} is
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complete inX and every element xσ(n) is nonzero. Therefore, by Theorem 5.17
it suffices to show that there is a constant Cσ such that

∀N ≥M, ∀ cσ(1), . . . , cσ(N),

∥∥∥∥
M∑

n=1

cσ(n)xσ(n)

∥∥∥∥ ≤ Cσ

∥∥∥∥
N∑

n=1

cσ(n)xσ(n)

∥∥∥∥.

To this end, fix any N ≥ M and choose any scalars cσ(1), . . . , cσ(N). Define
cn = 0 for n /∈ {σ(1), . . . , σ(N)}. Let L = max{σ(1), . . . , σ(N)} and define

λn =

{
1, if n ∈ {σ(1), . . . , σ(M)},
0, otherwise.

Then,

∥∥∥∥
M∑

n=1

cσ(n)xσ(n)

∥∥∥∥ =

∥∥∥∥
L∑

n=1

λncnxn

∥∥∥∥

≤ C2

∥∥∥∥
L∑

n=1

cnxn

∥∥∥∥

= C2

∥∥∥∥
N∑

n=1

cσ(n)xσ(n)

∥∥∥∥.

This is the desired result, with Cσ = C2.

(c) ⇒ (d). Assume that statement (c) holds, and choose any scalars
c1, . . . , cN . Let bn = |cn|. Then we have both |bn| ≤ |cn| and |cn| ≤ |bn|,
so statement (c) implies

∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥ ≤ C2

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ and

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ ≤ C2

∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥.

Therefore statement (d) holds with C3 = 1/C2 and C4 = C2.

(d)⇒ (c). Assume that statement (d) holds. Choose any scalars c1, . . . , cN
and any signs ε1, . . . , εN = ±1. Then, by statement (d),

∥∥∥∥
N∑

n=1

εncnxn

∥∥∥∥ ≤ C4

∥∥∥∥
N∑

n=1

|εncn|xn
∥∥∥∥ = C4

∥∥∥∥
N∑

n=1

|cn|xn
∥∥∥∥ ≤

C4

C3

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.

Hence statement (c) holds with C2 = C4/C3.

(a) ⇒ (e). Let {xn} be an unconditional basis for X, with coefficient
functionals {an}. Let (λn) be any bounded sequence of scalars, and let
M = sup |λn|. Fix any x ∈ X. Then the series x =

∑ 〈x, an〉xn converges un-
conditionally. Hence, by Theorem 3.10(f), the series TΛ(x) =

∑
λn 〈x, an〉xn

converges. Clearly TΛ : X → X defined in this way is linear, and we have
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‖TΛ(x)‖ = M

∥∥∥∥
∑

n

λn
M
〈x, an〉xn

∥∥∥∥ ≤ MKΛ
∥∥∥∥
∑

n

〈x, an〉xn
∥∥∥∥ = MKΛ ‖x‖.

Therefore TΛ is continuous. Finally, the biorthogonality of {xn} and {an}
ensures that TΛ(xn) = λnxn for every n.

(e)⇒ (a). Suppose that statement (e) holds. Since {xn} is a basis, there ex-
ists a biorthogonal sequence {an} ⊆ X∗ such that the series x =

∑ 〈x, an〉xn
converges and is the unique expansion of x in terms of the vectors xn.We must
show that this series converges unconditionally. Let Λ = (λn) be any sequence
of scalars such that |λn| ≤ 1 for every n. Then, by hypothesis, there exists a
continuous mapping TΛ : X → X such that TΛ(xn) = λnxn for every n. The
continuity of TΛ implies that

TΛ(x) = TΛ

(∑

n

〈x, an〉xn
)

=
∑

n

〈x, an〉TΛ(xn) =
∑

n

λn 〈x, an〉xn.

That is, the rightmost series on the line above converges for every choice of
bounded scalars, so Theorem 3.10(f) tells us that the series x =

∑ 〈x, an〉xn
converges unconditionally. ⊓⊔

Exercises

6.6. Let X be a real Banach space, and suppose that {xn} is an unconditional
basis for X with unconditional basis constant KE = 1. Given x =

∑
anxn and

y =
∑
bnyn in X, declare that x ≤ y if an ≤ bn for every n. Show that ≤ is a

partial order on X, and X is a Banach lattice in the sense of Definition 3.35.
Using the notation of that definition, show that x ∨ y =

∑
max{an, bn} xn,

x ∧ y =
∑

min{an, bn} xn, and |x| =∑ |an|xn.

6.7. Set F = R. The Haar system is an orthonormal basis for L2[0, 1], so by
Exercise 6.6 there is a partial ordering ≤ on L2[0, 1] induced by this uncondi-
tional basis. There is also the ordinary partial ordering ≤ on L2[0, 1] defined
by f ≤ g if f(t) ≤ g(t) for a.e. t. Do these two orderings coincide?

6.3 Conditionality of the Schauder System in C[0, 1]

We saw in Section 4.5 that the Schauder system is a basis for C[0, 1]. Now
we will show that this basis is conditional. We do this indirectly—we will
not explicitly construct an element of C[0, 1] whose basis representation con-
verges conditionally, but rather will use Theorem 6.7 to demonstrate that the
unconditional basis constant for the Schauder system must be infinite.

Using the notation of Section 4.3, the elements of the Schauder system
are the box function χ = χ

[0,1], the function ℓ(t) = t, and the dilated and
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Fig. 6.1. From top to bottom: The functions t1, t2, t3, and t4.

translated hat functions sn,k(t) = W (2nt−k), where W is the hat function of
height 1 supported on [0, 1]. We select a subsequence of the Schauder system
by defining:

t1 = s0,0
(
hat function on I1 =

[
0, 1
])
,

t2 = s1,0
(
hat function on I2 =

[
0, 1

2

])
,

t3 = s2,1
(
hat function on I3 =

[
1
4 ,

1
2

])
,

t4 = s3,2
(
hat function on I4 =

[
1
4 ,

3
8

])
,
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t5 = s4,5
(
hat function on I5 =

[
5
16 ,

3
8

])
,

t6 = s5,10
(
hat function on I6 =

[
5
16 ,

11
32

])
,

etc., where we alternate choosing the left or right half of IN−1 as the interval
IN on which the hat function tN is supported (see Figure 6.1).

Now consider the function gN =
∑N
n=1 tn. Our goal is not to show that gN

converges uniformly (in fact, it does not), but rather to compute its norm and

to compare this to the norm of hN =
∑N
n=1 (−1)n+1tn (see the illustration in

Figure 6.2).

1

2
1

-1

0

1

2

3

4

1

2
1

-1

0

1

2

3

4

Fig. 6.2. The functions g5 (left) and h5 (right).

The functions gN−1 and gN agree everywhere except on the interval IN .
Let µN be the midpoint of IN . The function gN−1 is linear on the interval IN ,
and gN achieves its global maximum at the midpoint µN . By construction,
for N ≥ 3 one endpoint of IN is µN−2 and the other is µN−1. Letting aN =
gN(µN ) be the global maximum of gN , we have

aN = 1 +
aN−1 + aN−2

2
.

By Exercise 6.8, aN increases without bound as N →∞.
On the other hand, a similar analysis of hN =

∑N
n=1 (−1)n+1tn shows that

we always have |hN (t)| ≤ 2 (Exercise 6.8), so bN = ‖hN‖∞ ≤ 2. Consequently
there can be no finite constant C such that

∥∥∥∥
N∑

n=1

tn

∥∥∥∥
∞

= aN ≤ CbN = C

∥∥∥∥
N∑

n=1

(−1)n+1tn

∥∥∥∥
∞
, N ∈ N.

Considering hypothesis (c) of Theorem 6.7, we conclude that the Schauder
system cannot be unconditional.



6.4 Conditionality of the Haar System in L1[0, 1] 187

Exercises

6.8. Show that aN →∞ and 0 ≤ bN ≤ 2 for each N.

6.4 Conditionality of the Haar System in L1[0, 1]

By Theorem 5.18, the Haar system is a basis for Lp[0, 1] for each 1 ≤ p <∞,
at least with respect to the ordering given in equation (5.9). We will show that
this basis is conditional when p = 1 by taking an indirect approach similar to
the one we used to prove that the Schauder system is conditional.

Set χ = χ
[0,1], and let ψn,k be as defined in Example 1.54. For this proof,

we only need to deal with the elements of the Haar system that are nonzero
at the origin. Normalizing so that each function has unit L1-norm, these are
the functions χ and

kn = 2n/2ψn,0 = 2n
(
χ

[0,2−n−1) − χ[2−n−1,2−n)

)
, n ≥ 0.

Fix N > 0 and define

fN = χ +

2N∑

n=0

kn.

Examining the graphs of the functions kn, we see that there is a great deal of
cancellation in this sum, leaving us with

fN = 22N+1 χ
[0,2−2N−1).

In particular, fN is a unit vector in L1[0, 1].
Now we form a “subseries” of the series defining fN . Specifically, we take

gN =

2N∑

n=0
n even

kn.

Looking at the graphs in Figure 6.3, we see that g0 = −1 on [12 , 1), g1 =

4− 1 = −3 on [18 ,
1
4 ), and g2 = 1 + 4− 16 = −11 on [ 1

32 ,
1
16 ). In general, since

kn is −1 only on an interval where each of k0, . . . , kn−1 are identically 1, we
see that

gN (x) =

(N−1∑

n=0

4n
)
− 4N = −2

3
4N − 1

3
, 1

2 4−N ≤ x < 4−N .

Therefore the L1-norm of gN on this particular interval is

∫ 4−N

1
2

4−N

|gN(t)| dt =

(
2

3
4N +

1

3

)
1

2
4−N ≥ 1

3
.
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However, gN = gN−1 on the interval [4−N , 1], so the total L1-norm of gN is
at least

‖gN‖L1 ≥
N∑

n=0

∫ 4−n

1
2

4−n

|gn(t)| dt ≥
N + 1

3
.

Since ‖fN‖L1 = 1 for every N, criterion (c) of Theorem 6.7 implies that the
Haar system cannot be an unconditional basis for L1[0, 1].
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Fig. 6.3. The functions g1 (top) and g2 (bottom).

The facts that the Schauder system is conditional in C[0, 1] and the Haar
system is conditional in L1[0, 1] are special cases of the deeper fact that these
two spaces contain no unconditional bases whatsoever! For proof, we refer to
[LT77], [Sin70].
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