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Gabor Bases and Frames

In this chapter we will consider the construction and properties of the class
of Gabor frames for the Hilbert space L2(R). The analysis and application
of Gabor systems is one part of the field of time-frequency analysis, which is
more broadly explored in Gröchenig’s text [Grö01].

In Chapter 10 we focused on systems of weighted exponentials {e2πinx}n∈Z

and systems of translates {g(x − k)}k∈Z. Each of these systems is generated
by applying a single type of operation (modulation or translation) to a single
generating function (ϕ or g). The resulting sequences have many applications,
but their closed spans can only be proper subspaces of L2(R). In contrast,
Gabor systems incorporate both modulations and translations, and can be
frames for all of L2(R).

Gabor systems were briefly introduced in Example 8.10 and are defined
precisely as follows.

Definition 11.1. A lattice Gabor system, or simply a Gabor system for short,
is a sequence in L2(R) of the form

G(g, a, b) = {e2πibnxg(x− ak)}k,n∈Z,

where g ∈ L2(R) and a, b > 0 are fixed. We call g the generator or the atom
of the system, and refer to a, b as the lattice parameters. ♦

More generally, an “irregular” Gabor system is a sequence of the form
G(g,Λ) =

{
e2πibxg(x − a)

}
(a,b)∈Λ

, where Λ is an arbitrary countable set of

points in R2. Lattice Gabor systems have many attractive features and appli-
cations, and are much easier to analyze than irregular Gabor systems, so we
focus on lattice systems for most of this chapter. For more details on irregular
Gabor systems, we refer to [Grö01] or the survey paper [Hei07].

We are especially interested in Gabor systems that form frames or Riesz
bases for L2(R). Naturally, if G(g, a, b) is a frame for L2(R), then we call it a
Gabor frame, and if it is a Riesz basis, then we call it a Gabor Riesz basis or
an exact Gabor frame.
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Gabor systems are named after Dennis Gabor (1900–1979), who was
awarded the Nobel prize for his invention of holography. In his paper [Gab46],
Gabor proposed using the Gabor system G(φ, 1, 1) generated by the Gaus-

sian function φ(x) = e−πx
2

. Von Neumann [vN32, p. 406] had earlier claimed
(without proof) that G(φ, 1, 1) is complete in L2(R), i.e., its finite linear span
is dense. Gabor conjectured (incorrectly, as we will see) that every function
in L2(R) could be represented in the form

f =
∑

k,n∈Z

ckn(f)MnTkφ (11.1)

for some scalars ckn(f); see [Gab46, Eq. 1.29]. This is one reason why general
families G(g, a, b) are named in his honor (see [Jan01] for additional historical
remarks and references).

Von Neumann’s claim of completeness was proved in [BBGK71], [Per71],
and [BGZ75]. However, completeness is a weak property and does not imply
the existence of expansions of the form given in equation (11.1). Reading a
bit extra into what von Neumann and Gabor actually wrote, possibly they
expected that G(φ, 1, 1) would be a Schauder basis or a Riesz basis for L2(R).
In fact, G(φ, 1, 1) is neither, as it is overcomplete in the sense that any single
element may be removed and still leave a complete system. In fact, the excess is
precisely 1, because this system becomes incomplete as soon as two elements
are removed. However, even with one element removed, the resulting exact
system forms neither a Schauder basis nor a Riesz basis; cf. [Fol89, p. 168]. In
fact, Janssen proved in [Jan81] that Gabor’s conjecture that each f ∈ L2(R)
has an expansion of the form in equation (11.1) is true, but he also showed
that the series converges only in the sense of tempered distributions—not in
the norm of L2—and the coefficients ckn grow with k and n (see also [LS99]).

Today we realize that there are no “good” Gabor Riesz bases G(g, a, b) for
L2(R). Indeed, the Balian–Low Theorem, which we mentioned in Chapter 8
and will consider in detail in Section 11.8, implies that only “badly behaved”
atoms g can generate Gabor Riesz bases. On the other hand, redundant Gabor
frames with nice generators do exist, and they provide us with useful tools for
many applications. We will study the construction and special properties of
Gabor frames in this chapter.

11.1 Time-Frequency Shifts

We recall the following operations on functions f : R→ C.

Translation: (Taf)(x) = f(x− a), a ∈ R.

Modulation: (Mbf)(x) = e2πibxf(x), b ∈ R.

Dilation: (Drf)(x) = r1/2f(rx), r > 0.
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Fig. 11.1. The Gaussian window φ(x) = e−πx2

and the real part of the time-
frequency shift M3T5φ.

We often think of the independent variable x ∈ R as representing time, and
hence refer to translation as a time shift. We call modulation a frequency shift,
and say that a composition of translation and modulation is a time-frequency
shift (see the illustration in Figure 11.1). Thus, a Gabor system G(g, a, b) is a
set of time-frequency shifts of the atom g:

G(g, a, b) =
{
MbnTakg

}
k,n∈Z

.

Unfortunately, the translation and modulation operators do not commute
in general. Being careful with the ordering of composition and evaluation, we
compute that

TaMbf(x) = (Ta(Mbf))(x)

= (Mbf)(x − a)

= e2πib(x−a)f(x− a)

= e−2πiab e2πibxf(x− a)

= e−2πiabMbTaf.

The pesky phase factor e−2πiab has modulus 1, but we only have e−2πiab = 1
when ab ∈ Z. Hence Mb and Ta only commute when the product ab is in-
teger. Even so, by Exercise 11.3, {MbnTakg}k,n∈Z is a frame if and only if
{TakMbng}k,n∈Z is a frame, so in this sense the ordering of Tak and Mbn is
not important in many circumstances. However, we must still be careful to
respect these phase factors in our calculations, as they do create significant
difficulties at times (as in Section 11.9).

The product ab of the lattice generators appears in many calculations
involving Gabor systems. It is usually the product ab that is important, rather
than the individual values of a and b, because by dilating g we can change
the value of a at the expense of a complementary change to b. This is made
precise in the next lemma.

Lemma 11.2. Fix g ∈ L2(R) and a, b ∈ R. Then given r > 0, G(g, a, b) is a
frame for L2(R) if and only if G(Drg, a/r, br) is a frame for L2(R).
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Proof. Using the dilation Drg(x) = r1/2g(rx), we have

Dr(MbnTakg)(x) = r1/2(MbnTakg)(rx)

= r1/2e2πibnrxg(rx − ak)

= r1/2e2πibnrxg(r(x − ak/r))
= MbnrTak/r(Drg)(x).

Thus G(Drg, a/r, br) is the image of G(g, a, b) under the dilation Dr. The
result then follows from the fact that Dr is a unitary mapping of L2(R) onto
itself. ⊓⊔

If G(g, a, b) is a Gabor frame, then its frame operator is

Sf =
∑

n∈Z

∑

k∈Z

〈f,MbnTakg〉MbnTakg.

The frame operator commutes with Mbn and Tak for k, n ∈ Z (Exercise 11.3).
A consequence of this is that S−1 also commutes with Mbn and Tak, so we have
S−1(MbnTakg) = MbnTak(S

−1g). Therefore the canonical dual of G(g, a, b) is
another Gabor frame.

Lemma 11.3. If G(g, a, b) is a Gabor frame for L2(R), then its canonical
dual frame is G(g̃, a, b) where g̃ = S−1g. ♦

To each Gabor system G(g, a, b) we will associate the a-periodic function
G0 defined by

G0(x) =
∑

k∈Z

|g(x− ak)|2 =
∑

k∈Z

|Takg(x)|2, x ∈ R.

Implicitly, G0 depends on g and a. Note that G0 is the a-periodization of |g|2
in the sense of Exercise 10.13, and by that exercise we have G0 ∈ L1[0, a] and

∫ a

0

G0(x) dx =

∫ ∞

−∞
|g(x)|2 dx = ‖g‖2L2. (11.2)

Exercises

11.1. Given g ∈ L2(R), show that {MbnTakg}k,n∈Z is a frame for L2(R) if
and only if {TakMbng}k,n∈Z is a frame, and in this case their frame operators
coincide.

11.2. (a) Use the fact that TaMb = e−2πiabMbTa to show that the set
{TaMb}a,b∈R of time-frequency shift operators is not closed under compo-
sitions, and hence does not form a group.
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(b) Define
H1 =

{
e2πitTaMb

}
a,b,t∈R

,

and show that H1 is a nonabelian group under composition of operators.

(c) Define
H2 = R3 =

{
(a, b, t)

}
a,b,t∈R

.

Show that H2 is a nonabelian group with respect to the operation

(a, b, t) ∗ (c, d, u) = (a+ c, b+ d, t+ u+ bc).

Show further that H2 is isomorphic to H1.

(d) Define

H3 =








1 b t
0 1 a
0 0 1






a,b,t∈R

.

Show that H3 is a nonabelian group with respect to multiplication of matrices,
and H3 is isomorphic to H1.

(e) Show that aZ× bZ×{0} = {(ak, bn, 0)}k,n∈Z is not a subgroup of H2,
but the countable subset aZ×bZ×abZ = {(ak, bn, abj)}k,n,j∈Z is a subgroup.

(f) As a set, H2 = R3, and hence has a natural topology. In fact, H2 is
an example of a locally compact group (LCG). Every LCG has associated left
and right Haar measures (and these are unique up to scalar multiples). Show
that the left Haar measure for H2 is da db dt, which means that for every
(c, d, u) ∈ H2 we have

∫∫∫
F
(
(c, d, u) ∗ (a, b, t)

)
da db dt =

∫∫∫
F (a, b, t) da db dt

for every integrable function F on H2 = R3. Show that the right Haar measure
is also da db dt. Thus, even though H2 is nonabelian, its left and Haar right
measures coincide (such an LCG is said to be unimodular).

Remark: The (isomorphic) groups H1, H2, H3 are called the Heisenberg
group. The properties of the Heisenberg group should be contrasted with those
of the affine group discussed in Exercise 12.2.

11.3. Let G(g, a, b) be a Gabor frame for L2(R).

(a) Show that the frame operator S commutes with Mbn and Tak for all
k, n ∈ Z, and use this to show that S−1 also commutes with Mbn and Tak.

(b) Show that the canonical dual frame of G(g, a, b) is the Gabor frame
G(g̃, a, b) where g̃ = S−1g.

(c) Suppose that G(g, a, b) is a frame for L2(R). Show that G(g, a, b) is a
Riesz basis if and only if 〈g, g̃ 〉 = 1.

(d) Show that the canonical Parseval frame of a lattice Gabor frame is
another lattice Gabor frame. Specifically, if G(g, a, b) is a frame for L2(R)
and we set g♯ = S−1/2g, where S is the frame operator, then G(g♯, a, b) is a
Parseval frame for L2(R).
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11.4. Fix g ∈ L2(R) and a, b > 0. Recall from equations (9.2) and (9.3) that
the Fourier transform interchanges translation with modulation. Use this to
show that

G(g, a, b) is a frame ⇐⇒ G(ĝ, b, a) is a frame.

11.2 Painless Nonorthogonal Expansions

The simplest example of a Gabor frame is

G(χ[0,1], 1, 1) =
{
e2πinx χ[k,k+1](x)

}
k,n∈Z

.

If we fix a particular k, then by Example 1.52 we know that the sequence{
e2πinx χ[k,k+1](x)

}
n∈Z

is an orthonormal basis for L2[k, k + 1]. Hence the

Gabor system G(χ[0,1], 1, 1) is simply the union of orthonormal bases for
L2[k, k + 1] over all k ∈ Z, and consequently G(χ[0,1], 1, 1) is an orthonor-
mal basis for L2(R).

Unfortunately, this Gabor system is not very useful in practice. The gener-
ator χ[0,1] is very well localized in the time domain in the sense that it is zero
outside of a finite interval. However, it is discontinuous, and this means that
the expansion of a smooth function in the orthonormal basis G(χ[0,1], 1, 1) will
not converge any faster than the expansion of a discontinuous function. From
another viewpoint, the problem with the function g = χ

[0,1] is that its Fourier
transform is a modulated sinc function:

ĝ(ξ) = e−πiξ
sinπξ

πξ
.

Thus ĝ decays only on the order of 1/|ξ| and is not even integrable. We want
to find Gabor frames generated by functions that are both smooth and well
localized.

We can try to create “better” Gabor systems by using a different atom g or
different lattice parameters a, b. If we stick to functions g that are compactly
supported in an interval of length 1/b, then it is quite easy to create Gabor
frames G(g, a, b) for L2(R), and we can even do so with smooth, compactly
supported generators if we choose a and b appropriately. This was first done
by Daubechies, Grossmann, and Meyer [DGM86], who referred to these as
Painless Nonorthogonal Expansions.

Theorem 11.4 (Painless Nonorthogonal Expansions). Fix a, b > 0 and
g ∈ L2(R).

(a) If 0 < ab ≤ 1 and supp(g) ⊆ [0, b−1], then G(g, a, b) is a frame for L2(R)
if and only if there exist constants A, B > 0 such that

Ab ≤
∑

k∈Z

|g(x− ak)|2 ≤ Bb a.e. (11.3)

In this case, A, B are frame bounds for G(g, a, b).
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(b) If 0 < ab < 1, then there exist g supported in [0, b−1] that satisfy equation
(11.3) and are as smooth as we like (even infinitely differentiable).

(c) If ab = 1, then any g that is supported in [0, b−1] and satisfies equation
(11.3) must be discontinuous.

(d) If ab > 1 and g is supported in [0, b−1], then equation (11.3) is not satisfied
and G(g, a, b) is incomplete in L2(R).

Proof. (a) Suppose that supp(g) ⊆ [0, b−1] and equation (11.3) holds. Ex-
ercise 8.4 tells us that in order to show that G(g, a, b) is a frame, we need
only establish that the frame bounds hold on a dense subset of L2(R). So,
let us consider functions f in the dense subspace Cc(R) (actually, continu-
ity is not needed here, we could just as well restrict our attention to func-
tions that are bounded and compactly supported). Since g ∈ L2(R) is sup-
ported within [0, b−1], the translated function Takg belongs to L2(Ik), where
Ik = [ak, ak + b−1]. Since f is bounded, the product f · Takg also belongs to
L2(Ik). Now, {e2πinx}n∈Z is an orthonormal basis for L2[0, 1], so by making
a change of variables it follows that

{b1/2ebn}n∈Z = {b1/2e2πibnx}n∈Z

is an orthonormal basis for L2(Ik). Applying the Plancherel Equality (and
keeping in mind that Takg is supported in Ik), we therefore have

∫ ∞

−∞
|f(x) g(x − ak)|2 dx =

∫ ak+b−1

ak

∣∣f(x)Takg(x)
∣∣2 dx

=
∥∥f · Takg

∥∥
L2(Ik)

=
∑

n∈Z

∣∣〈f · Takg, b1/2ebn
〉
L2(Ik)

∣∣2

= b
∑

n∈Z

∣∣∣∣
∫ ak+b−1

ak

f(x) g(x− ak) e−2πibnx dx

∣∣∣∣
2

= b
∑

n∈Z

∣∣∣∣
∫ ∞

−∞
f(x) e2πibnx g(x− ak) dx

∣∣∣∣
2

= b
∑

n∈Z

∣∣〈f, MbnTakg
〉∣∣2. (11.4)

Hence, using Tonelli’s Theorem to interchange the sum and integral,
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∑

k,n∈Z

∣∣〈f, MbnTakg
〉∣∣2 = b−1

∑

k∈Z

∫ ∞

−∞
|f(x) g(x − ak)|2 dx

= b−1

∫ ∞

−∞
|f(x)|2

∑

k∈Z

|g(x− ak)|2 dx (11.5)

≥
∫ ∞

−∞
|f(x)|2Adx = A ‖f‖2L2.

A similar computation shows that the upper frame bound estimate also holds
for f. Since Cc(R) is dense in L2(R), we conclude that G(g, a, b) is a frame
with frame bounds A, B.

We will improve on the converse implication in Theorem 11.6, so we omit
the proof here.

(b) Suppose that 0 < ab < 1, and let g be any continuous function such
that g(x) = 0 outside of [0, b−1] and g(x) > 0 on (0, b−1). For example, we
could let g be the hat function supported on [0, b−1]. Because a < b−1, it
follows that the a-periodic function G0(x) =

∑ |g(x−ak)|2 is continuous and
strictly positive at every point. Consequently, 0 < inf G0 ≤ supG0 < ∞, so
G(g, a, b) is a frame by part (a).

There are many functions g that satisfy these requirements and are more
smooth, even infinitely differentiable. For concrete examples, see Exercise 11.9.

(c) If ab = 1 then a = b−1. If supp(g) ⊆ [0, b−1] = [0, a] then Takg is
supported in [ka, (k + 1)a]. If g is continuous then g(0) = g(a) = 0. Since
the intervals [ka, (k + 1)a] overlap at at most one point, it follows that G0 is
continuous and G0(ka) = 0 for every k ∈ Z. Part (a) therefore implies that
G(g, a, b) cannot be a frame.

(d) If ab > 1 then a > b−1. Hence G0(x) =
∑ |g(x−ak)|2 is zero on [b−1, a],

so G(g, a, b) cannot be a frame. In fact, the function χ[b−1,a] is orthogonal to
every element of G(g, a, b), so this Gabor system is incomplete. ⊓⊔

Note that it is the product ab that is important in Theorem 11.4 because,
by Lemma 11.2, we can change the value of a at the expense of a complemen-
tary change to b. Also, by translating g we can replace [0, b−1] by any interval
of length b−1.

Here is a more constructive approach to the proof of Theorem 11.4(b).

Example 11.5. For simplicity, assume that 1
2 < ab < 1. Then for any given x,

the series G0(x) =
∑ |g(x−ak)|2 contains at most two nonzero terms. Define

a continuous function g supported on [0, b−1] by setting
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g(x)2 =





0, x < 0,

linear, x ∈ [0, b−1 − a],
1, x ∈ [b−1 − a, a],
linear, x ∈ [a, b−1],

0, x > b−1.

For this g we have G0(x) = 1 for every x ∈ R (see Figure 11.2). Hence
G(g, a, b) is a b−1-tight frame, and by rescaling we can make it a Parseval
frame if we wish. By using a smoother g, we can similarly create Parseval
Gabor frames with generators that are as smooth as we like (Exercise 11.10).
The construction becomes more complicated if ab < 1

2 because there are more
overlaps to consider, but the idea can be extended to any values of a, b with
0 < ab < 1. ♦

0 1 2 3 4 5 6 7
0

1

Fig. 11.2. Graphs of g(x)2 and g(x − a)2 from Example 11.5 using a = 3 and
b = 1/4.

We summarize some of the important points in the Painless Nonorthogonal
Expansions construction.

• If 0 < ab < 1 then we can construct nice atoms g (smooth and compactly
supported) such that G(g, a, b) is a frame or even a Parseval frame for
L2(R).

• If ab = 1 then there exist Gabor frames G(g, a, b) for L2(R), but all of the
frames constructed using the methods of this section have generators g
that are discontinuous.

• If ab > 1 then no Gabor system with supp(g) ⊆ [0, b−1] can be a frame for
L2(R), and in fact G(g, a, b) must be incomplete in this case.

Exercise 11.6 refines these observations further, yielding the following addi-
tional facts.

• If 0 < ab < 1 then the frames constructed in this section are redundant
(not exact).

• If ab = 1 then the frames constructed in this section are exact and hence
are Riesz bases for L2(R).
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In the following sections, we will see that the properties listed above apply
not only to the “Painless” constructions, but to all Gabor systems G(g, a, b).
The analysis will not be quite as painless and will require new insights, but we
will see that there are no “nice” Gabor Riesz bases G(g, a, b) at all, whereas
there are many “well-behaved” redundant Gabor frames. Although it lies out-
side the scope of this volume, we remark that the utility of redundant Gabor
frames extends far beyond the Hilbert space setting. Specifically, if G(g, a, b) is
a Gabor frame that is generated by a function g that has sufficient simultane-
ous concentration in both time and frequency, then G(g, a, b) will be a frame
not only for L2(R) but also for an entire range of associated function spaces
Mp,q
s (R) (1 ≤ p, q ≤ ∞, s ∈ R) known as modulation spaces. These spaces

quantify time-frequency concentration of functions (and distributions), and
arise naturally in problems that involve both time and frequency. We refer to
the text by Gröchenig [Grö01] for a beautiful development of this rich subject.

Exercises

11.5. Show that G(χ[0,1], 1, 1) is an orthonormal basis for L2(R). Also show
that G(χ[0,1], a, 1) is a frame for L2(R) if and only if 0 < a ≤ 1.

Remark: Amazingly, there is no known explicit characterization of the set
of points (a, b) such that G(χ[0,1], a, b) is a frame for L2(R), see [Jan03].

11.6. Assume that the hypotheses of part (a) of Theorem 11.4 are satisfied,
i.e., 0 < ab ≤ 1, supp(g) ⊆ [0, b−1], and equation (11.3) holds. Prove the
following statements about the frame G(g, a, b).

(a) The frame operator is pointwise multiplication by b−1G0, i.e., Sf =
b−1G0f for f ∈ L2(R).

(b) The canonical dual frame is G(g̃, a, b) where g̃ = bg/G0.

(c) If ab = 1 then G(g, a, b) is a Riesz basis for L2(R).

(d) If 0 < ab < 1 then G(g, a, b) is a redundant frame for L2(R).

11.7. Show that if g ∈ Cc(R) is not the zero function, then there exist some
a, b > 0 such that G(g, a, b) is a frame for L2(R).

11.8. Let g ∈ Cc(R) satisfy supp(g) = [0, b−1
0 ] and g(x) > 0 for x ∈ (0, b−1

0 ).
Show that G(g, a, b) is a frame for L2(R) for 0 < a < b−1

0 and 0 < b < b0.

11.9. This exercise will construct a compactly supported, infinitely differen-
tiable function on the real line. Define f(x) = e−1/x2 χ(0,∞)(x).

(a) Show that for every n ∈ N, there exists a polynomial pn of degree 3n
such that

f (n)(x) = pn(x
−1) e−x

−2
χ(0,∞)(x).

Conclude that f is infinitely differentiable, every derivative of f is bounded,
and f (n)(x) = 0 for every x ≤ 0 and n ≥ 0.
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(b) Show that if a < b, then g(x) = f(x− a) f(b− x) is infinitely differen-
tiable, is zero outside of (a, b), and is strictly positive on (a, b).

11.10. Let 0 < ab < 1 be fixed. By Exercise 11.9, there exists a function
f ∈ C∞

c (R) supported in [0, b−1] such that f > 0 on (0, b−1).

(a) Set F0(x) =
∑

k∈Z
|f(x− ak)|2 and show that g = f/F

1/2
0 is infinitely

differentiable, compactly supported, and satisfies
∑
k∈Z
|g(x − ak)|2 = 1 ev-

erywhere.

(b) Show that there exists a function g ∈ C∞
c (R) such that G(g, a, b) is a

Parseval frame for L2(R).

11.3 The Nyquist Density and Necessary Conditions for
Frame Bounds

Theorem 11.4, the Painless Nonorthogonal Expansions construction, gives nec-
essary and sufficient conditions for the existence of Gabor frames G(g, a, b)
when the atom g is supported in an interval of length 1/b. This equivalence
does not extend to general functions in L2(R). Still, the necessary part of the
theorem does extend, as follows.

Theorem 11.6. If g ∈ L2(R) and a, b > 0 are such that G(g, a, b) is a frame
for L2(R) with frame bounds A, B > 0, then we must have Ab ≤ G0 ≤ Bb a.e.,
i.e.,

Ab ≤
∑

k∈Z

|g(x− ak)|2 ≤ Bb a.e. (11.6)

In particular, g must be bounded.

Proof. The proof is similar to the proof of part (a) of Theorem 11.4. However,
now we do not know the support of g, so instead we restrict our attention to
functions f that are bounded and supported in an interval I of length 1/b.
In this case the product f · Takg belongs to L2(I). Since {b1/2ebn}n∈Z is an
orthonormal basis for L2(I), it follows, just as in equation (11.4), that

b
∑

n∈Z

∣∣〈f, MbnTakg
〉∣∣2 =

∫ ∞

−∞
|f(x) g(x− ak)|2 dx.

Applying the lower frame bound for G(g, a, b), we find that

∫ ∞

−∞
|f(x)|2G0(x) dx =

∑

k∈Z

∫ ∞

−∞
|f(x) g(x− ak)|2 dx

= b
∑

k,n∈Z

∣∣〈f, MbnTakg
〉∣∣2
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≥ bA ‖f‖2L2

= bA

∫ ∞

−∞
|f(x)|2 dx.

Thus, for every bounded f ∈ L2(I) we have
∫ ∞

−∞
|f(x)|2

(
G0(x)− bA

)
dx ≥ 0. (11.7)

Now, if G0(x) < bA on some subset E of I that has positive measure, then we
could take f = χE and obtain a contradiction to equation (11.7). Therefore we
must have G0 ≥ bA a.e. on I, and a similar calculation using the upper frame
bound gives G0 ≤ bB a.e. on I. Since I is an arbitrary interval of length 1/b
and since the real line can be covered by countably many translates of I, we
conclude that bA ≤ G0 ≤ bB a.e. on R. ⊓⊔

Combining Theorem 11.6 with Exercise 11.3 gives several interesting corol-
laries for Gabor frames. Note that the statements in the next corollary apply to
all Gabor frames G(g, a, b), not just those with compactly supported atoms g.

Corollary 11.7 (Density and Frame Bounds). Fix g ∈ L2(R) and a,
b > 0. If G(g, a, b) is a frame for L2(R) with frame bounds A, B, then the
following statements hold.

(a) Aab ≤ ‖g‖2L2 ≤ Bab.
(b) If G(g, a, b) is a Parseval frame, then ‖g‖2L2 = ab.

(c) 0 < ab ≤ 1.

(d) 〈g, g̃ 〉 = ab, where g̃ = S−1g is the generator of the canonical dual frame.

(e) G(g, a, b) is a Riesz basis if and only if ab = 〈g, g̃ 〉 = 1.

Proof. (a), (b) Integrating equation (11.6) over the interval [0, a], we have

Aab =

∫ a

0

Ab dx ≤
∫ a

0

∑

k∈Z

|g(x− ak)|2 dx ≤
∫ ∞

−∞
|g(x)|2 dx = ‖g‖2L2.

A similar calculation shows that ‖g‖2L2 ≤ Bab. If the frame is Parseval then
A = B = 1.

(c) By Exercise 11.3, if we set g♯ = S−1/2g then G(g♯, a, b) is a Parseval
frame. Part (b) therefore implies that ‖g♯‖2L2 = ab. On the other hand, the
elements of a Parseval frame can have at most unit norm (see Exercise 7.5),
so we must have ‖g♯‖2L2 ≤ 1. Hence ab ≤ 1.

(d) Combining ‖g♯‖2L2 = ab with the fact that S−1/2 is self-adjoint,

〈g, g̃ 〉 = 〈g, S−1/2S−1/2g〉 = 〈S−1/2g, S−1/2g〉 = ‖g♯‖2L2 = ab.

(e) This follows by combining part (d) with Corollary 8.23 (see also Exer-
cise 11.3). ⊓⊔
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Parts (a) and (b) of Corollary 11.7 were proved by Daubechies in her
seminal paper [Dau90]. The first proof of part (c) was given by Ramanathan
and Steger [RS95] as a special case of their results on irregular Gabor systems.
The simple proof of part (c) given here appears to have been first presented
by Balan [Bal98], but has been independently discovered several times.

Looking at parts (c) and (e) of Corollary 11.7 a little more closely, we see
that the value of ab separates Gabor frames into three categories:

• If ab > 1 then G(g, a, b) is not a frame.

• If G(g, a, b) is a frame and ab = 1 then it is a Riesz basis.

• If G(g, a, b) is a frame and 0 < ab < 1 then it is a redundant frame.

We saw in Section 11.2 that this trichotomy held for the Painless Nonorthog-
onal Expansions, and now we see that it holds for all Gabor systems. The
value 1/(ab) is called the density of the Gabor system G(g, a, b), because the
number of points of aZ × bZ that lie in a given ball in R2 is asymptotically
1/(ab) times the volume of the ball as the radius increases to infinity. We refer
to the density 1/(ab) = 1 as the critical density or the Nyquist density.

In fact, the trichotomy for the Painless Nonorthogonal Expansions was
even more pronounced. We proved in Theorem 11.4(d) that if ab > 1 and
g ∈ L2(R) is supported in [0, b−1] then G(g, a, b) is incomplete. In contrast,
Corollary 11.7 only tells us that G(g, a, b) cannot be a frame, which is a weaker
statement. Although it is more difficult to prove, it is true that if g is any
function in L2(R) and ab > 1 then G(g, a, b) must be incomplete in L2(R).
The first explicit proof of this fact was given by Baggett [Bag90], using the
representation theory of the discrete Heisenberg group. It was also proved by
Daubechies for the case that ab is rational [Dau90], and she also pointed out
that a proof for general ab > 1 can be inferred from results of Rieffel [Rie81]
on the coupling constants of C∗-algebras.

There is still a surprise left for us in the case ab > 1. Comparing Theorem
11.6 to Theorem 10.19 we see some suspiciously similar equations. Theorem
11.6 tells us that if G(g, a, b) = {MbnTakg}k,n∈Z is a Gabor frame for L2(R)
with frame bounds A, B, then

Ab ≤
∑

k∈Z

|g(x− ak)|2 ≤ Bb a.e.

After making the appropriate changes of variable (see Exercise 11.12), The-
orem 10.19 says that T (g) = {Takg}k∈Z is a Riesz basis for its closed span
with frame bounds A, B if and only if

Aa ≤
∑

k∈Z

|ĝ(ξ − k
a )|2 ≤ Ba a.e., (11.8)

where ĝ is the Fourier transform of g. Coordinating properly between g and

ĝ, a and 1
a , and b and 1

b , we find that there are Riesz sequences of translates

of g and ĝ associated with every Gabor frame, even redundant frames!
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Theorem 11.8. Assume G(g, a, b) is a frame for L2(R) with frame bounds
A, B, and let ĝ be the Fourier transform of g. Then the following statements
hold.

(a) Aa ≤∑n∈Z
|ĝ(ξ − bn)|2 ≤ Ba a.e.

(b) {Tn/bg}n∈Z is a Riesz sequence in L2(R) with frame bounds Aab, Bab (as
a frame for its closed span).

(c) {Tk/aĝ }k∈Z is a Riesz sequence in L2(R) with frame bounds Aab, Bab
(as a frame for its closed span).

Proof. (a) Suppose that G(g, a, b) is a frame. Exercise 11.4 shows that the
image of G(g, a, b) under the Fourier transform is G(ĝ, b, a). Since the Fourier
transform is unitary, G(ĝ, b, a) must be a frame with the same frame bounds as
G(g, a, b). Statement (a) then follows by applying Theorem 11.6 to G(ĝ, b, a).

(b) Write part (a) as

Aab

b
≤
∑

n∈Z

|ĝ(ξ − bn)|2 ≤ Bab

b
a.e.

Comparing this to equation (11.8), we see that {Tn/bg}n∈Z is a Riesz basis

for its closed span, and the frame bounds are Aab, Bab.

(c) This follows by applying part (b) to the frame G(ĝ, b, a). ⊓⊔
Thus, even if G(g, a, b) is a redundant frame (which cannot have a biorthog-

onal sequence), {Tn/bg}n∈Z is a Riesz sequence and therefore has a biorthog-
onal sequence! Although we will not prove it, Theorem 11.8 is actually only a
part of a result that seems very surprising (at least when first encountered).

Theorem 11.9 (Duality Principle). Given g ∈ L2(R) and a, b > 0, the
following statements are equivalent.

(a) G(g, a, b) = {MbnTakg}k,n∈Z is a frame for L2(R), with frame bounds
A, B.

(b) G(g, 1/b, 1/a) = {Mk/aTn/bg}k,n∈Z is a Riesz sequence in L2(R), with
frame bounds Aab, Bab (as a frame for its closed span). ♦
Thus, the property of being a frame with respect to the lattice aZ × bZ

is dual to the property of being a Riesz sequence with respect to the lattice
1
bZ × 1

aZ (which is called the adjoint lattice to aZ × bZ). In spirit, this is
similar to the fact that if the rows of a rectangular m × n matrix span Rn,
then its columns are linearly independent vectors in Rm, and conversely.

Independent and essentially simultaneous proofs of Theorem 11.9 were
published by Daubechies, H. Landau, and Z. Landau [DLL95], Janssen
[Jan95], and Ron and Shen [RS97], each with a completely different tech-
nique.

Theorem 11.9 gives us the following addition to the “trichotomy facts”
discussed previously.
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Corollary 11.10. If G(g, a, b) is a Riesz sequence in L2(R), then ab ≥ 1.

Proof. If G(g, a, b) is a Riesz sequence, then G(g, 1/b, 1/a) is a frame by The-

orem 11.9. Corollary 11.7 therefore implies that 1
b

1
a ≤ 1, so ab ≥ 1. ⊓⊔

For additional discussion and extensive references related to the material
of this section we refer to the survey paper [Hei07].

Exercises

11.11. Fix g ∈ L2(R) and a, b > 0.

(a) Show that G(g, a, b) is a Riesz basis for L2(R) if and only if it is a
frame and ab = 1.

(b) Show that G(g, a, b) is an orthonormal basis for L2(R) if and only if it
is a tight frame, ab = 1, and ‖g‖L2 = 1.

11.12. Given g ∈ L2(R), show that T (g) = {Tkg}k∈Z is a Riesz basis for its
closed span with frame bounds A, B if and only if equation (11.8) holds.

11.13. Suppose that G(g, a, b) is a frame for L2(R). Without appealing to
Theorem 11.9, show that {Mk/aĝ }n∈Z and {Mn/bĝ }n∈Z are Riesz sequences
in L2(R).

11.14. Assuming Theorem 11.9, show that G(g, a, b) is a tight frame for L2(R)
if and only if G(g, 1/b, 1/a) is an orthogonal sequence in L2(R).

11.4 Wiener Amalgam Spaces

Now we introduce a family of Banach spaces that will play an important role
in our further analysis of Gabor frames. While the Lp spaces are ubiquitous in
analysis, one of their limitations is that the Lp-norm is defined by a “global”
criterion alone. As the following example shows, we can rearrange functions in
many ways that do not change their Lp-norms but do change other properties.

Example 11.11. Recall that the box function χ[0,1) generates a Gabor system
G(χ[0,1), 1, 1) that is an orthonormal basis for L2(R). Although the box func-
tion has the disadvantage of being discontinuous, it at least has the advantage
of being well localized in time.

Now let us create a new function by dividing the interval [0, 1) into the
infinitely many pieces [0, 1

2 ), [ 12 ,
3
4 ), [ 34 ,

7
8 ), . . . and then “sending those pieces

off to infinity.” That is, we define

g = χ
[0, 1

2
) + T1χ[ 1

2
, 3
4
) + T2χ[ 3

4
, 7
8
) + · · · (11.9)

= χ
[0, 1

2
) + χ

[1+ 1
2
,1+ 3

4
) + χ

[2+ 3
4
,2+ 7

8
) + · · · . (11.10)
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Not only is this function discontinuous, but it does not decay at infinity. Even
so, it has exactly the same Lp-norm as χ[0,1), and because we translated the
“pieces” by integers it follows that G(g, 1, 1) is also an orthonormal basis for
G(g, 1, 1) (Exercise 11.16). However, we cannot distinguish between the well
localized function χ

[0,1) and the poorly localized function g by considering
their Lp-norms ‖χ[0,1)‖Lp and ‖g‖Lp. ♦

The amalgam spaces are determined by a norm which amalgamates, or
mixes, a local criterion for membership with a global criterion. Or, it may be
more precise to interpret the norm as giving a global criterion for a local prop-
erty of the function. Special cases were first introduced by Wiener [Wie26],
[Wie33]. A more general class of amalgams, named Wiener amalgam spaces,
was introduced and extensively studied by Feichtinger, with some of the main
papers being [FG85], [Fei87], [Fei90]. We refer to [Hei03] for an introductory
survey of amalgam spaces with references to the original papers. We will need
the following simple amalgams, which mix a local Lp criterion with a global
ℓq criterion.

Definition 11.12 (Wiener Amalgam Spaces). Given 1 ≤ p ≤ ∞ and
1 ≤ q <∞, the Wiener amalgam space W (Lp, ℓq) consists of those functions
f ∈ Lp(R) for which the norm

‖f‖W (Lp,ℓq) =

(∑

k∈Z

‖f · χ[k,k+1]‖qLp

)1/q

is finite. For q =∞ we substitute the ℓ∞-norm for the ℓq-norm above, i.e.,

‖f‖W (Lp,ℓ∞) = sup
k∈Z

‖f · χ[k,k+1]‖Lp .

We also define

W (C, ℓq) =
{
f ∈ W (L∞, ℓq) : f is continuous

}
,

and we impose the norm ‖ · ‖W (L∞,ℓq) on W (C, ℓq). ♦

Thus a function in W (Lp, ℓq) is locally an Lp function, and globally the
values ‖f · χ[k,k+1]‖Lp decay in an ℓq manner. The space W (L∞, ℓ2) made an
appearance earlier in this volume; see Lemma 10.24.

Note that W (Lp, ℓp) = Lp(R). By Exercise 11.15, W (Lp, ℓq) and W (C, ℓq)
are Banach spaces.

The space W (L∞, ℓ1) will be especially important to us in the coming
pages. A function g in this space is “locally bounded” and has an “ℓ1-type
decay” at infinity.

Here are some of the properties ofW (L∞, ℓ1). In particular, part (d) of this
result says that the intervals [k, k + 1] in the definition of the amalgam norm
can be replaced by intervals [ak, a(k+ 1)] in the sense of giving an equivalent
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norm on the space. The constants in this norm equivalence will be expressed
in terms of the numbers

Ca = max
{
1 + a, 2

}
.

Theorem 11.13. (a) W (L∞, ℓ1) is contained in Lp(R) for 1 ≤ p ≤ ∞, and
is dense in Lp(R) for 1 ≤ p <∞.

(b) W (L∞, ℓ1) is closed under translations, and for each b ∈ R we have

‖Tbf‖W (L∞,ℓ1) ≤ 2 ‖f‖W (L∞,ℓ1). (11.11)

(c) W (L∞, ℓ1) is an ideal in L∞(R) with respect to pointwise products, i.e.,

f ∈ L∞(R), g ∈ W (L∞, ℓ1) =⇒ fg ∈ W (L∞, ℓ1),

and
‖fg‖W (L∞,ℓ1) ≤ ‖f‖L∞ ‖g‖W (L∞,ℓ1). (11.12)

(d) Given a > 0,

|||f |||a =
∑

k∈Z

‖f · χ[ak,a(k+1)]‖L∞

is an equivalent norm for W (L∞, ℓ1), with

1

C1/a
|||f |||a ≤ ‖f‖W (L∞,ℓ1) ≤ Ca |||f |||a. (11.13)

Proof. We will prove the upper inequality in equation (11.13), and assign the
remainder of the proof as Exercise 11.17.

Fix a > 0, and define

Ik =
{
n ∈ Z : [k, k + 1] ∩ [an, a(n+ 1)] 6= ∅

}
,

Jn =
{
k ∈ Z : [k, k + 1] ∩ [an, a(n+ 1)] 6= ∅

}
.

If a ≥ 1 then |Jn| ≤ 1 + a, while if 0 < a ≤ 1 then |Jn| ≤ 2. Hence |Jn| ≤ Ca,
independently of n. Therefore

‖f‖W (L∞,ℓ1) =
∑

k∈Z

‖f · χ[k,k+1]‖L∞

≤
∑

k∈Z

∑

n∈Ik

‖f · χ[an,a(n+1)]‖L∞

=
∑

n∈Z

∑

k∈Jn

‖f · χ[an,a(n+1)]‖L∞

≤ Ca
∑

n∈Z

‖f · χ[an,a(n+1)]‖L∞ . ⊓⊔
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Rewording part of Theorem 11.13(d) gives us the following inequality.

Corollary 11.14. If f ∈ W (L∞, ℓ1) and a > 0, then

∑

k∈Z

‖Takf · χ[0,a]‖L∞ ≤ C1/a ‖f‖W (L∞,ℓ1).

Proof. We simply have to note that

∑

k∈Z

‖Takf · χ[0,a]‖L∞ =
∑

k∈Z

‖f · χ[ak,a(k+1)]‖L∞

and apply the lower inequality in equation (11.13). ⊓⊔

While the periodization of a generic function in L1(R) is integrable over
a period (Exercise 10.13), the periodization of a function g ∈ W (L∞, ℓ1) is
bounded.

Lemma 11.15. Fix a > 1. If g ∈W (L∞, ℓ1) then its a-periodization

ϕ(x) =
∑

n∈Z

g(x+ an) =
∑

n∈Z

Tang(x)

is a-periodic, bounded, and satisfies

‖ϕ‖L∞ =

∥∥∥∥
∑

n∈Z

Tang

∥∥∥∥
L∞

≤ C1/a ‖g‖W (L∞,ℓ1). (11.14)

Proof. The function ϕ is a-periodic and integrable by Exercise 10.13. Using
the periodicity, we therefore have

‖ϕ‖L∞ = ‖ϕ · χ[0,a]‖L∞ =

∥∥∥∥
∑

n∈Z

Tang · χ[0,a]

∥∥∥∥
L∞

≤ C1/a ‖g‖W (L∞,ℓ1),

where the final inequality comes from Corollary 11.14. ⊓⊔

Exercises

11.15. Prove that W (Lp, ℓq) is a Banach space for each p, q, and W (C, ℓq) is
a closed subspace of W (L∞, ℓq).

11.16. Let g be the function defined in Example 11.11. Show that G(g, 1, 1)
is an orthonormal basis for L2(R), but g /∈ W (L∞, ℓ1).

11.17. Complete the proof of Theorem 11.13.
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11.5 The Walnut Representation

The Painless Nonorthogonal Expansions give us many examples of Gabor
frames, but they are limited by the requirement that the atom g be supported
in an interval of length 1/b. This support assumption produces some “mirac-
ulous cancellations” that allow us to write the frame condition in very simple
terms. Indeed, equation (11.5) tells us that if g is supported in [0, b−1] then

∑

k,n∈Z

∣∣〈f, MbnTakg
〉∣∣2 = b−1

∫ ∞

−∞
|f(x)|2G0(x) dx.

While the left-hand side of this equation is quite complicated, involving both
time shifts of g and multiplications by complex exponentials e2πibnx, the right-
hand side is extremely simple, involving a single multiplication. Even the
function G0 is quite simple, being built purely out of translates of g:

G0(x) =
∑

k∈Z

|g(x− ak)|2 =
∑

k∈Z

|Takg(x)|2.

Upon closer examination, what lies behind the miraculous cancellations in
the Painless Nonorthogonal Expansions is the Plancherel Equality: g is sup-
ported in [0, b−1] and {b1/2e2πibnx}n∈Z is an orthonormal basis for L2[0, b−1].

If the support of g is not contained in a single interval of length b−1, then
the analysis of the frame condition becomes much more involved. The Walnut
Representation [Wal92] is a result of this analysis, and it provides a funda-
mental characterization of the frame operator for Gabor systems with a much
broader class of atoms g. The idea is simply that we break an arbitrary func-
tion g into pieces of length b−1, analyze each piece, and paste the pieces back
together. In the end we obtain a representation of the frame that is expressed
purely in terms of translation operators—no modulations! This representation
plays a fundamental role in time-frequency analysis, especially in the exten-
sion of the frame properties of Gabor systems from L2(R) to other function
spaces.

A forerunner of the Walnut Representation was used by Daubechies in her
paper [Dau90]. Walnut’s work appears in [Wal89], [Wal92], [Wal93], and some
of it is also summarized in the survey paper [HW89]. We will develop the
Walnut Representation in L2(R), and refer to the text [Grö01] for extensions
beyond the Hilbert space setting.

The delicate part of the proof of the Walnut Representation lies in pasting
the pieces back together. Here, it becomes necessary to place a mild restriction
on g. Specifically, we need g to lie in the Wiener amalgam space W (L∞, ℓ1).
This excludes functions that have extremely poor decay at infinity, like the
one given in equation (11.9), but still leaves us with a very large class of atoms
to choose from. Given this restriction, we can define a family of correlation
functions associated with g, of which G0 is only the first member.
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Definition 11.16. Given g ∈ W (L∞, ℓ1) and a, b > 0, we define associated
correlation functions Gn by

Gn(x) =
∑

k∈Z

g(x− ak) g(x− ak − n
b ), n ∈ Z. ♦

In particular, G0(x) =
∑
k∈Z
|g(x− ak)|2.

Note how both the usual lattice aZ× bZ and the adjoint lattice 1
bZ× 1

aZ
from the Duality Principle play a role in the definition of the correlation
functions!

It is often useful to write Gn in the forms

Gn =
∑

k∈Z

Takg · Tak+ n
b
ḡ =

∑

k∈Z

Tak
(
g · Tn

b
ḡ
)
. (11.15)

Thus Gn is the a-periodization of g · Tn
b
ḡ. Since g belongs to W (L∞, L1),

it is bounded, and therefore the product g · Tn
b
ḡ belongs to W (L∞, ℓ1) by

Theorem 11.13(c). Applying Lemma 11.15 to this function, we see that Gn
is well defined, a-periodic, and bounded. The next lemma shows that the
L∞-norms of the Gn are actually very well controlled.

Lemma 11.17. If g ∈W (L∞, ℓ1) then Gn ∈ L∞(R) and

∑

n∈Z

‖Gn‖L∞ ≤ 2C1/a Cb ‖g‖2W (L∞,ℓ1).

Proof. By Lemma 11.15, using the form of Gn given in equation (11.15) we
see that

‖Gn‖L∞ =

∥∥∥∥
∑

k∈Z

Tak
(
g · Tn

b
ḡ
)∥∥∥∥
L∞

≤ C1/a

∥∥g · Tn
b
ḡ
∥∥
W (L∞,ℓ1)

.

Since |ḡ| = |g|, we therefore have

∑

n∈Z

‖Gn‖L∞ ≤ C1/a

∑

n∈Z

∥∥g · Tn
b
g
∥∥
W (L∞,ℓ1)

= C1/a

∑

n∈Z

∑

k∈Z

∥∥g · χ[k,k+1] · Tn
b
g · χ[k,k+1]

∥∥
L∞

≤ C1/a

∑

k∈Z

‖g · χ[k,k+1]‖L∞

(∑

n∈Z

‖Tn
b
g · χ[k,k+1]‖L∞

)
.

The series in parentheses on the last line resembles the W (L∞, ℓ1) norm of
Tn

b
g, but it is not since the summation is over n instead of k. Instead, after

some work similar to that used in the proof of Theorem 11.13(d), we see that
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∑

n∈Z

‖Tn
b
g · χ[k,k+1]‖L∞ =

∑

n∈Z

‖g · χ[−n
b +k,−n

b +k+1]‖L∞

≤ 2Cb
∑

m∈Z

‖g · χ[m,m+1]‖L∞

= 2Cb ‖g‖W (L∞,ℓ1).

The main issue in the computation above is that an interval of the form
[m,m+ 1] intersects at most 2Cb intervals of the form [−nb + k,−nb + k + 1]
with n ∈ Z. Hence

∑

n∈Z

‖Gn‖L∞ ≤ 2C1/a Cb
∑

k∈Z

‖g · χ[k,k+1]‖L∞ ‖g‖W (L∞,ℓ1)

= 2C1/a Cb ‖g‖2W (L∞,ℓ1). ⊓⊔

Now we can derive the Walnut Representation. While not every function
in W (L∞, ℓ1) will generate a Gabor frame, the next theorem tells us that
G(g, a, b) will always be a Bessel sequence, no matter what values of a, b > 0
that we choose. Therefore G(g, a, b) has a well-defined frame operator that
maps L2(R) into itself, and the Walnut Representation realizes this frame
operator solely in terms of translations. A simple trick that we will employ
several times in the proof is to write

∑

n∈Z

∫ b−1

0

h
(
x− n

b

)
dx =

∫ ∞

−∞
h(x) dx =

∫ b−1

0

∑

n∈Z

h
(
x− n

b

)
dx.

This is valid for any function h ∈ L1(R).

Theorem 11.18 (Walnut Representation). Let g ∈ W (L∞, ℓ1) and a,
b > 0 be given. Then G(g, a, b) is a Bessel sequence, and its frame operator is
given by

Sf = b−1
∑

n∈Z

Tn
b
f ·Gn, f ∈ L2(R). (11.16)

Proof. Lemma 11.17 implies that the series

Lf = b−1
∑

n∈Z

Tn
b
·Gn

converges absolutely in L2(R) for each f ∈ L2(R). Moreover,

‖Lf‖ ≤ b−1
∑

n∈Z

‖Tn
b
f‖L2 ‖Gn‖L∞ ≤ B ‖f‖L2

where

B =
2

b
C1/a Cb ‖g‖2W (L∞,ℓ1).
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Hence L is a bounded operator on L2(R).
By Theorem 7.4, to show that G(g, a, b) is a Bessel sequence we only need

to establish that the Bessel bound holds on a dense subspace of L2(R). We
will show that B is a Bessel bound on the dense subspace Cc(R).

Fix f ∈ Cc(R) and k ∈ Z. Then f · Takḡ is bounded and compactly
supported, so its b−1-periodization

Fk(x) =
∑

j∈Z

f
(
x− j

b

)
g
(
x− ak − j

b

)

belongs to L2[0, b−1] (and in fact is bounded). Since Fk is b−1-periodic, we
have Fk

(
x− j

b

)
= Fk(x) for j ∈ Z.

Using the fact that {b1/2e2πibnx}n∈Z is an orthonormal basis for L2[0, b−1],
we compute that

∑

n∈Z

|〈f,MbnTakg〉|2

=
∑

n∈Z

∣∣∣∣
∫ ∞

−∞
f(x) e−2πibnx g(x− ak) dx

∣∣∣∣
2

=
∑

n∈Z

∣∣∣∣
∫ b−1

0

∑

j∈Z

f
(
x− j

b

)
e−2πibn

(
x− jb

)
g
(
x− ak − j

b

)
dx

∣∣∣∣
2

=
∑

n∈Z

∣∣∣∣
∫ b−1

0

∑

j∈Z

f
(
x− j

b

)
g
(
x− ak − j

b

)
e−2πibnx dx

∣∣∣∣
2

=
∑

n∈Z

∣∣〈Fk, ebn
〉
L2[0,b−1]

∣∣2

=
∥∥Fk

∥∥2

L2[0,b−1]

= b−1

∫ b−1

0

|Fk(x)|2 dx.

Assuming that we can interchange the integral and sum as indicated, and
using the fact that Fn is b−1-periodic, we therefore have

∑

k∈Z

∑

n∈Z

|〈f,MbnTakg〉|2

= b−1
∑

k∈Z

∫ b−1

0

Fk(x)Fk(x) dx

= b−1
∑

k∈Z

∫ b−1

0

∑

j∈Z

f
(
x− j

b

)
g
(
x− ak − j

b

)
Fk
(
x− j

b

)
dx
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= b−1
∑

k∈Z

∫ ∞

−∞
f(x) g(x− ak)Fk(x) dx

= b−1
∑

k∈Z

∫ ∞

−∞
f(x) g(x− ak)

∑

j∈Z

f
(
x− j

b

)
g
(
x− ak − j

b

)
dx

= b−1
∑

j∈Z

∫ ∞

−∞
f(x) f

(
x− j

b

) ∑

k∈Z

g(x− ak) g
(
x− ak − j

b

)
dx

= b−1
∑

j∈Z

∫ ∞

−∞
f(x) f

(
x− j

b

)
Gj(x) dx

=

〈
f, b−1

∑

j∈Z

T j
b
f ·Gj(x)

〉

L2(R)

=
〈
f, Lf

〉
.

The interchanges in order can be justified by using Fubini’s Theorem (Exercise
11.18). Since T is bounded, we conclude that G(g, a, b) is a Bessel sequence,
and

〈f, Sf〉 =
∑

k∈Z

∑

n∈Z

|〈f,MbnTakg〉|2

=
〈
f, Lf

〉

≤ ‖f‖L2 ‖Lf‖L2

≤ B ‖f‖2L2.

Hence the Bessel bound holds on Cc(R).
This also shows us that 〈f, Sf〉 = 〈f, Lf〉 for all f ∈ Cc(R). Since Cc(R)

is dense and both S and L are bounded, we conclude that 〈f, Sf〉 = 〈f, Lf〉
for all f ∈ L2(R). Since S is self-adjoint, Corollary 2.16 therefore implies that
S = L. ⊓⊔

We emphasize the contrast between the appearance of the Gabor frame
operator in its original form and in the Walnut Representation:

∑

k∈Z

∑

n∈Z

〈f,MbnTakg〉MbnTakg = Sf = b−1
∑

n∈Z

Tn
b
f ·Gn.

Aside from the fact that the Walnut Representation contains a single summa-
tion, it also contains no complex exponentials. If f and g are real valued then
every term on the right-hand side of the line above is real valued, while the
terms on the left-hand side need not be.

One of the consequences of Theorem 11.18 is that if g ∈ W (L∞, ℓ1) then
G(g, a, b) will be a frame for all small enough values of a and b [HW89,
Thm. 4.1.8].
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We end this section by mentioning another fundamental representation of
the Gabor frame operator. This is the Janssen Representation (also known
as the Dual Lattice Representation), which expresses the frame operator as
a superposition of time-frequency shift operators [Jan95], [DLL95]. The hy-
potheses required for the Janssen Representation are slightly different than
those of the Walnut Representation. Note the explicit role played by the ad-
joint lattice in this representation.

Theorem 11.19 (Janssen Representation). Let g ∈ L2(R) and a, b > 0
be given. If ∑

k∈Z

∑

n∈Z

∣∣〈g, M k
a
Tn

b
g
〉∣∣ < ∞, (11.17)

then

S =
1

ab

∑

k∈Z

∑

n∈Z

〈
g, M k

a
Tn

b
g
〉
M k

a
Tn

b
,

where the series converges absolutely in operator norm. ♦

Equation (11.17) is referred to as Condition A. It is close but not identi-
cal to the requirement that g belong to W (L∞, ℓ1). The Feichtinger algebra
S0, which equals the modulation space M1, is a smaller subspace on which
both conditions are satisfied simultaneously. The Feichtinger algebra has many
other useful properties, e.g., it is closed under both convolution and pointwise
products, and in most cases it is the class from which we should choose gen-
erators g for Gabor frames [Grö01].

Exercises

11.18. Justify the use of Fubini’s Theorem in the proof of Theorem 11.18.

11.19. This exercise gives a perturbation theorem for Gabor frames.

(a) Let g ∈ L2(R) and a, b > 0 be such that G(g, a, b) is a frame for L2(R).
Show that there exists a δ > 0 such that if h ∈ L2(R) and ‖g−h‖W (L∞,ℓ1) < δ,
then G(h, a, b) is a frame for L2(R).

(b) Does part (a) remain valid if we replace the amalgam norm ‖·‖W (L∞,ℓ1)

by the L2-norm ‖ · ‖L2?

11.6 The Zak Transform

The Zak transform is a fundamental tool for analyzing Gabor frames, espe-
cially at the critical density (ab = 1). The Zak transform was first introduced
by Gel’fand [Gel50]. As with many useful notions, it has been rediscovered
many times and goes by a variety of names. Weil [Wei64] defined a Zak trans-
form for locally compact abelian groups, and this transform is often called
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the Weil–Brezin map in representation theory and abstract harmonic analy-
sis, e.g., [Sch84], [AT85]. Zak rediscovered this transform, which he called the
k-q transform, in his work on quantum mechanics, e.g., [Zak67], [BGZ75]. The
terminology “Zak transform” has become customary in applied mathematics
and signal processing. For more information, we refer to Janssen’s influential
article [Jan82] and survey [Jan88], or Gröchenig’s text [Grö01, Chap. 8].

In this section we define the Zak transform and examine some of its most
interesting properties. In the following sections we will see how the Zak trans-
form can be used to analyze Gabor systems, and how the unusual properties
of the Zak transform are related to the Balian–Low Theorem. We will be con-
centrating in this section on the critical density, ab = 1. By dilating g, we can
reduce this further to a = b = 1, so we simply fix a = b = 1 now.

The Gabor system G(χ[0,1], 1, 1) = {MnTkχ[0,1]}k,n∈Z is an orthonormal
basis for L2(R). Let

Q = [0, 1]2

denote the unit square in R2, and consider the sequence

{Enk}k,n∈Z, where Enk(x, ξ) = e2πinx e−2πikξ. (11.18)

This sequence is contained in the Hilbert space L2(Q), whose norm and inner
product are given by

‖F‖2L2(Q) =

∫ 1

0

∫ 1

0

|F (x, ξ)|2 dx dξ

and

〈F,G〉 =

∫ 1

0

∫ 1

0

F (x, ξ)G(x, ξ) dx dξ.

By Theorem B.10 or by direct calculation, {Enk}k,n∈Z is an orthonormal
basis for L2(Q). We can define a unitary map by sending the elements of one
orthonormal basis to another orthonormal basis, and this is precisely what we
do to define the Zak transform (see Exercise 11.20).

Definition 11.20 (Zak Transform). The Zak transform is the unique uni-
tary map Z : L2(R)→ L2(Q) that satisfies

Z(MnTkχ[0,1]) = Enk, k, n ∈ Z. ♦ (11.19)

Now we give an equivalent formulation of the Zak transform that will help
us to extend its domain to spaces other than L2(R).

Theorem 11.21. Given f ∈ L2(R), we have

Zf(x, ξ) =
∑

j∈Z

f(x− j) e2πijξ , (x, ξ) ∈ Q, (11.20)

where this series converges unconditionally in the norm of L2(Q).



326 11 Gabor Bases and Frames

Proof. A direct calculation shows that if f ∈ L2(R) and j 6= ℓ then the
functions f(x+ j) e2πijξ and f(x+ ℓ) e2πiℓξ are orthogonal elements of L2(Q).
Therefore, if F is any finite subset of Z then

∥∥∥∥
∑

j∈F
f(x− j) e2πijξ

∥∥∥∥
2

L2(Q)

=
∑

j∈F
‖f(x− j) e2πijξ‖2L2(Q)

=
∑

j∈F

∫ 1

0

∫ 1

0

|f(x− j) e2πijξ|2 dx dξ

=
∑

j∈F

∫ 1

0

|f(x− j)|2 dx. (11.21)

Since f ∈ L2(R), the series
∑
j∈Z

∫ 1

0 |f(x− j)|2 dx converges unconditionally

and equals ‖f‖2L2. Consequently, the series appearing on the right-hand side of
equation (11.20) converges unconditionally in L2(Q), and if we set Uf(x, ξ) =∑
j∈Z

f(x− j) e2πijξ then it follows from equation (11.21) that ‖Uf‖L2(Q) =

‖f‖L2. This operator U is an isometry, so to show that U = Z we simply have
to show that U(MnTkχ[0,1]) = Enk for all k, n ∈ Z. To see this, note that if
(x, ξ) ∈ Q then χ[0,1](x− j) = 0 for all j 6= 0, so

U(MnTkχ[0,1])(x, ξ) =
∑

j∈Z

MnTkχ[0,1](x− j) e2πijξ

=
∑

j∈Z

e2πin(x−j)χ[0,1](x− j − k) e2πijξ

= e2πin(x+k) e−2πikξ = Enk(x, ξ),

where we have used the fact that e2πink = 1. ⊓⊔
It will be important for us to consider the Zak transform on domains other

than L2(R), and the correct spaces are precisely the Wiener amalgam spaces
W (Lp, ℓ1) introduced in Section 11.4. The next theorem shows that the Zak
transform maps W (Lp, ℓ1) into Lp(Q), and maps W (C, ℓ1) into C(Q), the
space of continuous functions on Q = [0, 1]2.

Theorem 11.22. (a) If 1 ≤ p ≤ ∞ then for each f ∈ W (Lp, ℓ1) the series

Zf(x, ξ) =
∑

j∈Z

f(x− j) e2πijξ , (x, ξ) ∈ Q, (11.22)

converges absolutely in Lp(Q), and Z is a bounded mapping of W (Lp, ℓ1)
into Lp(Q).

(b) For each f ∈ W (C, ℓ1) the series in equation (11.22) converges absolutely
in C(Q) with respect to the uniform norm, and Z is a bounded mapping
of W (C, ℓ1) into C(Q).
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Proof. (a) If f ∈ W (Lp, ℓ1) with p finite then

∑

j∈Z

‖f(x− j) e2πijξ‖Lp(Q) =
∑

j∈Z

(∫ 1

0

∫ 1

0

|f(x− j) e2πijξ|p dx dξ
)1/p

=
∑

j∈Z

‖f · χ[j,j+1]‖Lp < ∞,

so the series defining Zf converges absolutely in Lp(Q). A similar calcula-
tion holds if p = ∞, and these calculations also show that ‖Zf‖Lp(Q) ≤
‖f‖W (Lp,ℓ1).

(b) If f ∈ W (C, ℓ1) ⊆ W (L∞, ℓ1) then we have by part (a) that Zf ∈
L∞(Q), and the series defining Zf converges absolutely in the uniform norm.
As each term f(x − j) e2πijξ is continuous on Q and the uniform limit of
continuous functions is continuous, Zf is continuous on Q. ⊓⊔

Remark 11.23. In particular, the Zak transform maps L1(R) = W (L1, ℓ1)
continuously into L1(Q), and it is injective by Exercise 11.22. However, that
exercise also shows that the range of Z : L1(R)→ L1(Q) is a dense but proper
subspace of L1(Q). A consequence of this is that Z−1 : range(Z)→ L1(R) is
unbounded, in contrast to the fact that Z is a unitary mapping of L2(R) onto
L2(Q). Readers familiar with interpolation will recognize that since Z maps
L1(Q) boundedly into itself and L2(Q) boundedly into itself, it extends to a
bounded map of Lp(Q) into itself for each 1 ≤ p ≤ 2. However, if 1 ≤ p < 2
then Z is not surjective and Z−1 is unbounded. ♦

Given f ∈ L2(R), we can extend the domain of Zf from Q = [0, 1]2 to all
of R2 in a natural way. In all of the preceding arguments, nothing is changed
if we replace the unit square Q with a translated square Q+ z, where z ∈ R2.
Moreover, if Q and Q+ z overlap then the two definitions of Zf will coincide
almost everywhere on Q∩(Q+z) (and everywhere if Zf is continuous). Hence
Zf has a unique extension from Q to the entire plane R2. This is similar to
how a function on [0, 1) is extended to a 1-periodic function on R, as in
Notation 4.23. However, there is an interesting twist here, because Zf on R2

is not obtained by extending Zf periodically from Q. Instead, Zf satisfies
the following rather peculiar quasiperiodicity relations (Exercise 11.21).

Theorem 11.24. If f ∈ L2(R) or f ∈W (Lp, ℓ1), then for m, n ∈ Z we have

Zf(x+m, ξ + n) = e2πimξ Zf(x, ξ),

where the equality holds pointwise everywhere on R2 if Zf is continuous, and
almost everywhere otherwise. ♦

Definition 11.25 (Quasiperiodicity). We say that a function F on R2 that
satisfies
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F (x+m, ξ + n) = e2πimξ F (x, ξ) a.e., m, n ∈ Z, (11.23)

is quasiperiodic. We refer to equation (11.23) as the quasiperiodicity relations
for F. ♦

Quasiperiodicity has a rather unexpected implication: No continuous
quasiperiodic function can be nonzero everywhere. Since a complete justifica-
tion of this statement requires some facts from complex analysis or algebraic
geometry, we will be content to appeal to authority for the justification of
certain steps in the proof that we present.

Theorem 11.26. A continuous quasiperiodic function F must vanish at some
point of Q.

Proof. First we give a standard direct argument that proves the theorem but
does little to illuminate the mystery of why a zero must exist. Suppose that F
was quasiperiodic and continuous on R2 but everywhere nonzero. Because R2

is simply connected, there exists a continuous function ϕ : R2 → R such that

F (x, ξ) = |F (x, ξ)| e2πiϕ(x,ξ), (x, ξ) ∈ R2.

Students of complex analysis may recognize that this continuous logarithm ϕ
can be constructed directly, and its existence also follows from general topolog-
ical lifting principles [Grö01]. Applying this logarithm to the quasiperiodicity
relations, we see that for each m, n ∈ Z there exists an integer κ(m,n) such
that

ϕ(x +m, ξ + n) = ϕ(x, ξ) +mξ + κ(m,n), (x, ξ) ∈ R2.

Hence

0 =
(
ϕ(0, 0)− ϕ(1, 0)

)
+
(
ϕ(1, 0)− ϕ(1, 1)

)

+
(
ϕ(1, 1)− ϕ(0, 1)

)
+
(
ϕ(0, 1)− ϕ(0, 0)

)

=
(
−0− κ(1, 0)

)
+
(
−0− κ(0, 1)

)
+
(
1 + κ(1, 0)

)
+
(
0 + κ(0, 1)

)

= 1,

which is a contradiction.
Now we give another argument, due to Janssen [Jan05], that is perhaps

more revealing. Suppose that F is continuous, quasiperiodic, and everywhere
nonzero on R2. Then for each fixed x ∈ R, the function Fx(ξ) = F (x, ξ)
is continuous, 1-periodic, and nonzero on R. As ξ varies from 0 to 1, the
values Fx(ξ) trace out a closed curve Jx in the complex plane that never
intersects the origin. Such a curve has a well-defined winding number Nx
that is an integer representing the total number of times the curve Jx travels
counterclockwise around the origin. Now, since F is continuous, the curves Jx
deform continuously as we vary x. Further, since
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F1(ξ) = F (1, ξ) = e2πiξF (0, ξ) = e2πiξF0(ξ),

the curve J1 winds one more time around the origin than does J0. However,
there is no way to continuously deform a curve that winds N0 times around
the origin into one that winds N1 = N0 + 1 times around the origin without
having the curve pass through the origin at some time. Hence there must be
at least one value of x such that the curve Jx passes through the origin, which
says that F (x, ξ) = 0 for some ξ. ⊓⊔

Figure 11.3 illustrates the idea of the second proof of Theorem 11.26. We
can think of the curve Jx as being a rubber band wound Nx times around the
origin. The rubber band is stretched and moved as x varies, but always lies
in the complex plane. It can cross itself, but it cannot be cut. The left side of
Figure 11.3 shows the curve J0 for the specific example F0(ξ) = 1 + i+ e2πiξ.
This curve is a circle that does not contain the origin, and so has winding
number N0 = 0. The curve J1 traced out by the function F1(ξ) = e2πiξF0(ξ)
is shown on the right side of Figure 11.3. The point F1(ξ) is located at the
same distance from the origin as F0(ξ), but has been rotated counterclockwise
by an angle of 2πξ radians. As a consequence, J1 makes one extra trip around
the origin, so has winding number N1 = 1. There is no way to deform the
left-hand rubber band into the right-hand one without passing through the
origin in the process.

-2 -1 1 2

-2 i

-i

i

2 i

-2 -1 1 2

-2 i

-i

i

2 i

Fig. 11.3. Plots of the complex-valued functions F0(ξ) = 1 + i+ e2πiξ and F1(ξ) =
e2πiξ F0(ξ) for 0 ≤ ξ ≤ 1. The graph is shown as a solid line for 0 ≤ ξ ≤ 1/2, and as
a dashed line for 1/2 ≤ ξ ≤ 1. The winding number of the left-hand graph is zero,
while it is one for the right-hand graph.

Remark 11.27. Note that the domain of the function F in Theorem 11.26
is the plane R2, and F is required to be continuous on the entire plane.
Applying the quasiperiodicity relations, this is the same as requiring that F
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be continuous on the closed square Q = [0, 1]2. It is not enough to assume
that F is quasiperiodic and continuous on [0, 1)2. For example, if we set F = 1
on [0, 1)2 then we can extend it to a quasiperiodic function on R2 by defining

F (x+m, ξ + n) = e2πimξ, x, ξ ∈ [0, 1), m, n ∈ Z.

This function F is quasiperiodic, but it is not continuous on R2, and it has
no zeros on R2. ♦

Example 11.28. The third Jacobi theta function is

θ3(z, q) = 1 + 2

∞∑

k=1

qk
2

cos(4πkz) =

∞∑

k=−∞
qk

2

e4πikz ,

where 0 ≤ q < 1 and z ∈ C [Rai60]. With q fixed, θ3(·, q) is analytic on the
entire complex plane.

Fix r > 0 and let ϕr be the Gaussian function ϕr(x) = e−rx
2

. Since
ϕr ∈W (C, ℓ1), we know that Zϕr is continuous and therefore has a zero. The
Zak transform of ϕr is

Zϕr(x, ξ) =
∑

j∈Z

ϕr(x− j) e2πijξ

=
∑

j∈Z

e−rx
2

e2rxj e−rj
2

e2πijξ

= e−rx
2
∑

j∈Z

(e−r)j
2

e4πij(
ξ
2
− irx

2π )

= e−rx
2

θ3(
ξ
2 − irx

2π , e
−r).

In particular, Zϕr is infinitely differentiable on R2.
Now, the zeros of θ3(·, q) occur precisely at the points

zmn =
1

4
+

τ

4
+

m

2
+

nτ

2
,

where q = eπiτ , Im(τ) > 0. Since e−r = eπi(ir), it follows that Zϕr(x, ξ) = 0
if and only if

ξ

2
− irx

2π
=

1

4
+

ir

4π
+

m

2
+

irn

2π
,

i.e., (x, ξ) = (−n − 1/2,m + 1/2). Thus Zϕr has a single zero in the unit
square Q = [0, 1]2, at the point (1/2, 1/2). ♦

Exercises

11.20. Prove that there is a unique unitary operator that satisfies equation
(11.19).
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11.21. Prove Theorem 11.24.

11.22. If f ∈ L1(R) then Zf ∈ W (L1, ℓ1) = L1(Q) by Theorem 11.22. Prove
the following statements.

(a) f(x) =
∫ 1

0 Zf(x, ξ) dξ for almost every x ∈ R.

(b) If Zf is continuous, then f is continuous.

(c) Z is an injective mapping of L1(R) into L1(Q), and the range of

Z : L1(R)→ L1(Q) is a proper, dense subspace of L1(Q).

(d) Z−1 : L1(Q)→ L1(R) is unbounded.

11.23. Suppose that f ∈ L2(R) is such that Zf is continuous.

(a) Show that if f is even then Zf(1/2, 1/2) = 0.

(b) Show that if f is odd then Zf(0, 0) = Zf(0, 1/2) = Zf(1/2, 0) = 0.

(c) Show that if f is real valued then Zf(x, 1/2) = 0 for some x ∈ [0, 1].

11.7 Gabor Systems at the Critical Density

Now we will use the Zak transform to analyze Gabor systems at the critical
density. As before, it suffices to consider a = b = 1. In this section we will
characterize those Gabor systems G(g, 1, 1) that are exact, Riesz bases, or
orthonormal bases in terms of the Zak transform of g, and in the next section
we will use this characterization to prove some versions of the Balian–Low
Theorem.

The utility of the Zak transform is that it converts a Gabor system
G(g, 1, 1) = {MnTkg}k,n∈Z into a system of weighted exponentials on R2.
Recall from equation (11.18) that Enk denotes the two-dimensional complex
exponential function Enk(x, ξ) = e2πinx e−2πikξ.

Theorem 11.29. If g ∈ L2(R), then

Z(MnTkg) = Enk Zg a.e., k, n ∈ Z.

Proof. Using the fact that e−2πin(j−k) = 1 for integer j, k, n, we compute
that

Z(MnTkg)(x, ξ) =
∑

j∈Z

(MnTkg)(x− j) e2πijξ

=
∑

j∈Z

e2πin(x−j) g(x− k − j) e2πijξ

=
∑

j∈Z

e2πin(x−j+k) g(x− j) e2πi(j−k)ξ
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= e2πinx e−2πikξ
∑

j∈Z

g(x− j) e2πijξ

= Enk(x, ξ)Zg(x, ξ).

The series above converge in L2(Q), not pointwise, but this does not affect
the calculation. ⊓⊔

As a consequence, we obtain another proof that a sequence of regular
translations {g(x− ak)}k∈Z cannot be complete in L2(R) (compare Exercise
10.18).

Corollary 11.30. If g ∈ L2(R) and a > 0, then {g(x−ak)}k∈Z is incomplete
in L2(R).

Proof. By dilating g, it suffices to take a = 1, so our sequence is T (g) =
{Tkg}k∈Z. Taking n = 0 in Theorem 11.29, the image of this sequence under
the Zak transform is

ZT (g) = {E0k Zg}k∈Z =
{
e−2πikξ Zg(x, ξ)

}
k∈Z

.

Taking finite linear combinations and L2 limits, it follows that every element
of span(ZT (g)) has the form p(ξ)Zg(x, ξ) for some function p. However, not
every element of L2(Q) has this form (why?), so ZT (g) is incomplete in L2(Q).
Since Z is unitary, T (g) is therefore incomplete in L2(R). ⊓⊔

Since the Zak transform is unitary, it preserves basis and frame properties.
Consequently, G(g, 1, 1) is exact, a frame, a Riesz basis, or an orthonormal
basis if and only if the same is true of {Enk Zg}k,n∈Z. Now, the system of
unweighted exponentials {Enk}k,n∈Z is an orthonormal basis for L2(Q), and
a Riesz basis is the image of an orthonormal basis under a topological iso-
morphism, so if {Enk Zg}k,n∈Z is to be a Riesz basis then the mapping that
sends Enk to Enk Zg must extend to be a topological isomorphism of L2(Q)
onto itself. The only way that the multiplication operation U(F ) = F ·Zg on
L2(Q) can be a topological isomorphism is if 0 < inf |Zg| ≤ sup |Zg| < ∞.
Extending this idea gives us the following characterization of Gabor systems
at the critical density. Note that this result is very much a two-dimensional
version of Theorem 10.10!

Theorem 11.31. Let g ∈ L2(R) be fixed.

(a) G(g, 1, 1) is complete in L2(R) if and only if Zg 6= 0 a.e.

(b) G(g, 1, 1) is minimal in L2(R) if and only if 1/Zg ∈ L2(Q). In this case,

G(g, 1, 1) is exact and its biorthogonal system is G(g̃, 1, 1) where g̃ ∈ L2(R)

satisfies Zg̃ = 1/Zg.

(c) G(g, 1, 1) is a Bessel sequence in L2(R) if and only if Zg ∈ L∞(R), and
in this case B = ‖Zg‖2L∞ is a Bessel bound.
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(d) G(g, 1, 1) is a frame for L2(R) if and only if there exist A, B > 0 such
that A ≤ |Zg(x, ξ)|2 ≤ B a.e. In this case G(g, 1, 1) is a Riesz basis and
A, B are frame bounds.

(e) G(g, 1, 1) is an orthonormal basis for L2(R) if and only if |Zg(x, ξ)| =
1 a.e.

Proof. Much of the proof is similar to the proof of Theorem 10.10. Therefore
we will prove some statements and assign the remainder as Exercise 11.24.

(a) Suppose that Zg 6= 0 a.e. If we can show that {Enk Zg}k,n∈Z is com-
plete in L2(Q), then it follows from the unitarity of Z that G(g, 1, 1) is com-
plete in L2(R).

So, suppose that F ∈ L2(Q) is such that
〈
F, Enk Zg

〉
L2(Q)

= 0 for each

k, n ∈ Z. Let G = F · Zg. Then G ∈ L1(Q), and its Fourier coefficients with
respect to the orthonormal basis {Enk}k,n∈Z are

Ĝ(n, k) =
〈
G, Enk

〉
L2(Q)

=

∫ 1

0

∫ 1

0

F (x, ξ)Zg(x, ξ)Enk(x, ξ) dx dξ

=
〈
F, Enk Zg

〉
L2(Q)

= 0.

Although {Enk}k,n∈Z is not a basis for L1(Q), a two-dimensional analogue

of Theorem 4.25 implies that functions in L1(Q) are uniquely determined by
their Fourier coefficients. Since the Fourier coefficients ofG agree with those of

the zero function, we conclude that G = 0 a.e. As G = F ·Zg and Zg 6= 0 a.e.,
it follows that F = 0 a.e. Hence {Enk Zg}k,n∈Z is complete.

(b) Suppose that 1/Zg ∈ L2(Q). Then we must have Zg 6= 0 a.e., so
G(g, 1, 1) is complete by statement (a). Also, since Z is surjective, there exists

some function g̃ ∈ L2(Q) such that Zg̃ = 1/Zg. We compute that

〈
MnTkg, Mn′Tk′ g̃

〉
=
〈
Enk Zg, En′k′ Zg̃

〉
L2(Q)

=
〈
Enk Zg, En′k′/Zg

〉
L2(Q)

=
〈
Enk, En′k′

〉
L2(Q)

= δnn′ δkk′ .

Hence G(g̃, 1, 1) is biorthogonal to G(g, 1, 1). Thus G(g, 1, 1) is both minimal
and complete, so it is exact. ⊓⊔

As is the case for the systems of weighted exponentials considered in Theo-
rem 10.10, the characterization of Gabor systems G(g, 1, 1) that are Schauder
bases for L2(R) is a more subtle problem. In [HP06] it was shown that if
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G(g, a, b) is a Schauder basis then we must have ab = 1 (and therefore can
reduce to the case a = b = 1), and G(g, 1, 1) is a Schauder basis for L2(R) if
and only if |Zg|2 is a product A2 weight for L2(Q).

From Theorem 11.31 we obtain the following corollary, whose implications
will be explored in the next section. We let C1(R2) denote the set of all
differentiable functions F : R2 → C whose partial derivatives ∂F/∂x and
∂F/∂ξ are both continuous.

Corollary 11.32. Fix g ∈ L2(R).

(a) If Zg is continuous on Q (and hence on R2), then G(g, 1, 1) not a frame
or a Riesz basis for L2(R).

(b) If Zg ∈ C1(R2) then G(g, 1, 1) not exact in L2(R).

Proof. (a) This follows immediately from Theorem 11.31 and the fact that
any continuous quasiperiodic function must have a zero.

(b) If Zg is differentiable on R2 then it is continuous and therefore has at
least one zero in Q by Theorem 11.26. For simplicity, assume that this zero
is located at the origin. The C1 hypothesis implies that Zg is Lipschitz on a
neighborhood of the origin, i.e., there exist C > 0 and δ > 0 such that

x2 + ξ2 < δ =⇒ |Zg(x, ξ)− Zg(0, 0)| ≤ C |(x, ξ) − (0, 0)|,

where | · | is the Euclidean norm on R2. Since Zg(0, 0) = 0, by switching to

polar coordinates we find that the integral of 1/|Zg|2 over the open ball Bδ(0)
is

∫∫

Bδ(0)

1

|Zg(x, ξ)|2 dx dξ ≥
1

C2

∫∫

Bδ(0)

1

x2 + ξ2
dx dξ

=
1

C2

∫ 2π

0

∫ δ

0

1

r2
r dr dθ = ∞.

Hence 1/Zg /∈ L2(Q), so G(g, 1, 1) is not exact. ⊓⊔

Exercises

11.24. Prove the remaining statements in Theorem 11.31.

11.25. (a) Let p(x) =
∑N
k=−N cke

2πikx be a trigonometric polynomial. Show

that if |p| = 1 a.e., then p(x) = cne
2πinx for some n between −N and N.

(b) Suppose that g ∈ L2(R) is compactly supported. Show that G(g, 1, 1)
is an orthonormal basis for L2(R) if and only if |g| = χE for some bounded
set E ⊆ R that satisfies

∑
k∈Z

χE(x− k) = 1 a.e.
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11.8 The Balian–Low Theorem

In this section we will prove the two versions of the Balian–Low Theorem given
in Theorem 8.12, which state that all Gabor frames at the critical density are
“bad” in some sense. We begin with the following simple result, which was
proved in [Hei90] and first appeared in journal form in [BHW95]. Recall from
Theorem 11.31 that when a = b = 1, a Gabor system G(g, 1, 1) is a frame for
L2(R) if and only if it is a Riesz basis.

Theorem 11.33 (Amalgam BLT). If G(g, 1, 1) is a Riesz basis for L2(R)
then g /∈W (C, ℓ1). Specifically, either

g is not continuous or
∑

k∈Z

‖g · χ[k,k+1]‖L∞ = ∞.

Moreover, we also have ĝ /∈W (C, ℓ1), where ĝ is the Fourier transform of g.

Proof. We have already done the work earlier in the chapter. If g ∈W (C, ℓ1)
then Theorem 11.22 implies that Zg ∈ C(Q). Corollary 11.32 therefore implies
that G(g, 1, 1) cannot be a frame for L2(R), simply because Zg must have a
zero. The same reasoning transfers to ĝ by applying Exercise 11.4. ⊓⊔

Thus, if g is to generate a Riesz basis at the critical density, then either g
must be discontinuous or it must have poor decay at infinity, and similarly ĝ
is either discontinuous or has poor decay.

Example 11.34. We saw in Example 11.28 that the Zak transform of the Gaus-
sian function φ(x) = e−πx

2

is continuous, so G(φ, 1, 1) cannot be a Riesz basis
for L2(R). Since Zφ is bounded, G(φ, 1, 1) is a Bessel sequence, but it does
not have a positive lower frame bound. On the other hand, G(φ, 1, 1) is com-
plete since Zφ has only a single zero in Q and therefore Zφ is nonzero almost
everywhere. Because Zφ is infinitely differentiable, Corollary 11.32 implies
that G(φ, 1, 1) is not exact, and therefore it has a positive excess. An argu-
ment similar to the one presented in Example 5.9(c) can be used to show that
G(g, 1, 1) is overcomplete by precisely one element. That is, if we remove any
single element from G(φ, 1, 1) then it will still be complete, but if we remove
two elements then it becomes incomplete. In particular,

G(φ, 1, 1) \ {φ} = {MnTkφ}(k,n) 6=(0,0)

is exact, but it is not a Schauder basis or a frame for L2(R) (see [Fol89,
p. 168]). ♦

The theorem originally stated by Balian [Bal81] and independently by Low
[Low85] quantifies the “unpleasantness” of a Gabor orthonormal basis gener-
ator in a different manner than Theorem 11.33. In contrast to the Amalgam
BLT, the hypotheses of their theorem do not imply that Zg is continuous,
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which is why the proof is more difficult. A gap in the original proofs was filled
by Coifman, Daubechies, and Semmes in [Dau90]. At the same time, they
also extended the proof from orthonormal bases to Riesz bases, yielding the
following result that we call the “Classical” Balian–Low Theorem.

Theorem 11.35 (Classical BLT). If G(g, 1, 1) is a Riesz basis for L2(R)
then (∫ ∞

−∞
|xg(x)|2 dx

)(∫ ∞

−∞
|ξĝ(ξ)|2 dξ

)
= ∞. ♦ (11.24)

Before discussing the proof of Theorem 11.35, we make some remarks on
what it says qualitatively and how its conclusions compare to those of the
Amalgam BLT.

The Fourier transform is a unitary mapping of L2(R) onto itself, so if g
belongs to L2(R) then so does ĝ. The celebrated Classical Uncertainty Prin-
ciple of quantum mechanics takes the following mathematical form: We must
always have

(∫ ∞

−∞
|xg(x)|2 dx

)(∫ ∞

−∞
|ξĝ(ξ)|2 dξ

)
≥ 1

4π

∫ ∞

−∞
|g(x)|2 dx. (11.25)

A proof of this inequality is sketched in Exercise 11.32. The left-hand side of
equation (11.25) may be finite or infinite, but it can never be smaller than

the right-hand side. The Gaussian function φ(x) = e−πx
2

achieves equality
in equation (11.25), and the only functions that do so are translated and
modulated Gaussians of the form

c e2πiξ0x e−r(x−x0)
2

, c ∈ C, r > 0.

The Classical BLT states that if G(g, 1, 1) is a Riesz basis for L2(R) then not
only do we have the bound given in equation (11.25), but the left-hand side of
that equation must actually be infinite. Thus the generator of a Gabor Riesz
basis must “maximize uncertainty.”

One important feature of the Fourier transform is that it interchanges
the roles of smoothness and decay. Roughly speaking, the smoother that g
is, the faster that ĝ must decay at infinity, and the faster that g decays, the
smoother that ĝ must be. If g decays well at infinity then we should have∫
|xg(x)|2 dx < ∞. For example, if g is bounded and for x large enough we

have |g(x)| ≤ C|x|−p where p > 3/2, then
∫
|xg(x)|2 dx will be finite. Thus, to

say that
∫
|xg(x)|2 dx =∞ is to say that g does not decay rapidly, at least in

some integrated average sense, and therefore ĝ is not very smooth. Similarly, if∫
|ξĝ(ξ)|2 dξ =∞ then ĝ does not decay well and hence g is not very smooth.

The Classical BLT implies that if G(g, 1, 1) is a Riesz basis then at least one
of these things must happen, and so g is a “bad function” (at least in terms
of Gabor theory).

Qualitatively, the Classical and Amalgam BLTs have similar conclusions:
The generator of a Gabor Riesz basis at the critical density is either not
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smooth or it has poor decay. The two theorems quantify this statement in
somewhat different ways. While there is a good deal of overlap, neither con-
clusion implies the other, so the two BLTs are distinct theorems [BHW95].

We will give an elegant proof of Theorem 11.35 due to Battle [Bat88] for the
case that G(g, 1, 1) is an orthonormal basis. This proof relies on the operator
theory that underlies the proof of the Classical Uncertainty Principle, and with
some work the proof can be extended to Gabor systems that are Riesz bases,
see [DJ93]. For some variations on the proof and more extensive discussion
we refer to the survey paper [BHW95].

Proof (of Theorem 11.35 for orthonormal bases). The quantum mechanics
operators of position and momentum are, in mathematical terms,

Pf(x) = xf(x) and Mf(x) =
1

2πi
f ′(x). (11.26)

These operators obviously do not map L2(R) into itself. We can make them
well defined by restricting their domains to appropriate dense subsets of
L2(R), but even if we do this, these operators are unbounded with respect to
L2-norm (Exercise 11.28). Still, these are key operators in harmonic analysis
and quantum mechanics.

Suppose that g ∈ L2(R) is such that G(g, 1, 1) is an orthonormal basis for

L2(R). In particular, this implies

〈g,MnTkg〉 = δ0k δ0n, k, n ∈ Z.

If either
∫
|xg(x)|2 dx = ∞ or

∫
|ξĝ(ξ)|2 dξ = ∞ then equation (11.24)

holds trivially, so suppose that both of these quantities are finite. In terms of
the position operator, this means Pg ∈ L2(R) and P ĝ ∈ L2(R).

Since g and Pg both belong to L2(R), for k, n ∈ Z we compute that
〈
Pg, MnTkg

〉
(11.27)

=

∫ ∞

−∞
xg(x) e−2πinx g(x− k) dx

=

∫ ∞

−∞
g(x) e2πinx (x− k) g(x− k) dx+ k

∫ ∞

−∞
g(x) e2πinx g(x− k) dx

=
〈
g, MnTkPg

〉
+ k

〈
g, MnTkg

〉

=
〈
g, MnTkPg

〉
+ k δ0k δ0n

=
〈
g, MnTkPg

〉
+ 0. (11.28)

The adjoint of Mn is M−n, and likewise the adjoint of Tk is T−k. Further, Mn

and Tk commute because we are at the critical density. Therefore
〈
g, MnTkPg

〉
=
〈
T−kM−ng, Pg

〉
=
〈
M−nT−kg, Pg

〉
. (11.29)
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Combining equations (11.28) and (11.29), we see that

〈
Pg, MnTkg

〉
=
〈
M−nT−kg, Pg

〉
. (11.30)

Our next goal is to perform a similar calculation using Mg instead of Pg.
Because the Fourier transform interchanges smoothness with decay, the

hypotheses g, P ĝ ∈ L2(R) imply that g has a certain amount of smoothness.
Specifically, Theorem 9.27(b) states that g is absolutely continuous on any
finite interval, g′(x) exists a.e., g′ ∈ L2(R), and

ĝ′ (ξ) = 2πiξ ĝ(ξ) = 2πi P ĝ(ξ) a.e.

In particular, Mg ∈ L2(R) and

(Mg)
∧

=
( 1

2πi
g′
)∧

= P ĝ.

Since the Fourier transform is unitary on L2(R), we “switch to the Fourier
side” and apply equation (11.30) to compute that

〈
Mg, MnTkg

〉
=
〈
(Mg)

∧

, (MnTkg)
∧
〉

=
〈
P ĝ, TnM−kĝ

〉

=
〈
P ĝ, M−kTnĝ

〉

=
〈
MkT−nĝ, P ĝ

〉

=
〈
(T−kM−ng)

∧

, (Mg)
∧
〉

=
〈
T−kM−ng, Mg

〉

=
〈
M−nT−kg, Mg

〉
. (11.31)

By expanding Pg and Mg in the orthonormal basis {MnTkg}k,n∈Z and
applying equations (11.30) and (11.31) we obtain

〈
Mg, Pg

〉
=

〈 ∑

k,n∈Z

〈
Mg, MnTkg

〉
MnTkg, Pg

〉

=
∑

k,n∈Z

〈
Mg, MnTkg

〉 〈
MnTkg, Pg

〉

=
∑

k,n∈Z

〈
M−nT−kg, Mg

〉 〈
Pg, M−nT−kg

〉

=
∑

k,n∈Z

〈
Pg, MnTkg

〉〈
MnTkg, Mg

〉

=
〈
Pg, Mg

〉
.
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However, we will show that we also have

〈
Mg, Pg

〉
= 〈Pg,Mg〉 − 1

2πi
, (11.32)

which is a contradiction. To see that equation (11.32) holds, first write

〈
Mg, Pg

〉
=

1

2πi

∫ ∞

−∞
g′(x)xg(x) dx.

Integration by parts is valid for absolutely continuous functions (Theorem
9.28). Setting u(x) = g(x) and v(x) = xg(x), we therefore compute that

∫ b

a

g′(x)xg(x) dx

=

∫ b

a

(
xg′(x) + g(x)

)
g(x) dx −

∫ b

a

g(x) g(x) dx

=

(
b |g(b)|2 − a |g(a)|2 −

∫ b

a

xg(x) g′(x) dx

)
−
∫ b

a

|g(x)|2 dx.

If we fix a, then each of the integrals appearing above converges to a finite
value as b → ∞. Consequently, b |g(b)|2 must converge as b → ∞. However,
since g is square integrable, this limit must be zero (Exercise 11.27). A similar
argument applies as a→ −∞, so we have

〈
Mg, Pg

〉
=

1

2πi
lim

a→−∞
b→∞

∫ b

a

g′(x)xg(x) dx

=
1

2πi
lim

a→−∞
b→∞

(
−
∫ b

a

xg(x) g′(x) dx −
∫ b

a

|g(x)|2 dx
)

=

∫ ∞

−∞
Pg(x)Mg(x) dx − 1

2πi
‖g‖2L2

= 〈Pg,Mg〉 − 1

2πi
.

This gives our contradiction. ⊓⊔

However, this is not the end of the story on bases related to time-frequency
shifts. A remarkable construction known as Wilson bases yields orthonormal
bases for L2(R) (as well as unconditional bases for the modulation spaces
Mp,q
s (R)) generated by appropriate linear combinations of time-frequency

shifts of “nice” functions. For details on this topic we refer to Gröchenig’s
text [Grö01].
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Exercises

11.26. Let φ(x) = e−πx
2

be the Gaussian function. Show that G(φ, 1, 1) is
ℓ2-independent, i.e., if c = (ckn)k,n∈Z ∈ ℓ2(Z2) and

∑
cknMnTkφ = 0, then

ckn = 0 for every k and n. Note that since G(φ, 1, 1) is a Bessel sequence, if
we let R denote the synthesis operator for G(φ, 1, 1) then ℓ2-independence is
equivalent to the statement that R : ℓ2(Z2)→ L2(R) is injective.

11.27. Show that if g ∈ L2(R) and limx→∞ x |g(x)|2 exists, then this limit
must be zero.

11.28. Let P, M be the position and momentum operators introduced in
equation (11.26). These operators are not defined on all of L2(R). Instead,
define domains

DP = {f ∈ L2(R) : xf(x) ∈ L2(R)},
DM = {f ∈ L2(R) : f is differentiable and f ′ ∈ L2(R)},

which are dense subspaces of L2(R). Restricted to these domains, P maps DP

into L2(R) and M maps DM into L2(R). Show that P and M are unbounded
even when restricted to these domains, i.e.,

sup
f∈DP ,

‖f‖L2=1

‖Pf‖L2 = ∞ = sup
f∈DM ,
‖f‖L2=1

‖Mf‖L2.

11.29. Let S(R) be the Schwartz space introduced in Definition 9.18. Show
that the position and momentum operators map S(R) into itself, and are
self-adjoint when restricted to this domain, i.e.,

〈Pf, g〉 = 〈f, Pg〉 and 〈Mf, g〉 = 〈f,Mg〉

for all f ∈ S(R). (The Schwartz space is a convenient dense subspace of
L2(R), but can be replaced in this problem by some larger subspaces of L2(R)
if desired.)

11.30. The commutator of position and momentum is the operator [P,M ] =

PM −MP. Show that [P,M ] = − 1
2πiI in the sense that [P,M ]f = − 1

2πif for

all differentiable functions f. How does this relate to equation (11.32)?

11.31. This exercise will give an abstract operator-theoretic version of the
Uncertainty Principle.

Let S be a subspace of a Hilbert space H, and let A, B : S → H be linear
but possibly unbounded operators. By replacing S with the smaller space
domain(AB)∩ domain(BA) if necessary, we may assume that A, B, AB, and
BA are all defined on S.

(a) Show that if A, B are self-adjoint in the sense that
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∀ f, g ∈ S, 〈Af, g〉 = 〈f,Ag〉 and 〈Bf, g〉 = 〈f,Bg〉,
then

∀ f ∈ S, ‖Af‖ ‖Bf‖ ≥ 1

2

∣∣〈[A,B]f, f
〉∣∣,

where [A,B] = AB −BA is the commutator of A and B.

(b) Show that equality holds in part (a) if and only if Af = icBf for some
c ∈ R.

11.32. Apply Exercises 11.29–11.31 to the position and momentum operators
P and M to derive the Classical Uncertainty Principle,

‖xg(x)‖L2 ‖ξ ĝ(ξ)‖L2 ≥ 1

4π
‖g‖2L2, (11.33)

for g ∈ S(R).

Remark: An extension by density argument can be used to prove that
equation (11.33) extends to all g ∈ L2(R), or integration by parts for abso-
lutely continuous functions can be used to prove directly that equation (11.33)
holds whenever ‖xg(x)‖L2 ‖ξ ĝ(ξ)‖L2 is finite, see [Heil].

11.33. Modify Battle’s argument to prove the Weak BLT : If G(g, 1, 1) is a
Riesz basis for L2(R) then

‖xg(x)‖L2 ‖ξĝ(ξ)‖L2 ‖xg̃(x)‖L2 ‖ξ̂̃g(ξ)‖L2 = ∞,
where g̃ is the dual system generator from Theorem 11.31(b).

Remark: It requires some work, but it can be shown that the Weak BLT
implies Theorem 11.35; see [DJ93] or the survey paper [BHW95].

11.9 The HRT Conjecture

In the final section of this chapter we will present an open problem related to
Gabor systems that is so very simple to state yet is still unsolved, at least as
of the time of writing. This conjecture first appeared in print in 1996 [HRT96].
As this topic is more personal to me than some of the others that appear in
this volume, I will often speak more directly to the reader in this section than
usual.

In the previous sections we saw many results dealing with Gabor systems
G(g, a, b) that are complete, a frame, exact, a Riesz basis, an orthonormal
basis, and so forth. Yet we have not yet asked what may be the most basic
questions of all: Are Gabor systems finitely independent? Given any collection
of vectors in a vector space, surely one of the very first properties that we
would like to determine is whether these vectors are independent or dependent.
For lattice Gabor systems G(g, a, b), the answer is known (though the proof is
nontrivial!). The next theorem is due to Linnell [Lin99], and partially answers
a question first posed in [HRT96].
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Theorem 11.36. If g ∈ L2(R)\{0} and a, b > 0, then G(g, a, b) is finitely
linearly independent. ♦

We will discuss Theorem 11.36 and its proof a little later. Assuming the
validity of Theorem 11.36, Exercise 11.36 shows how to extend it a little
further, as follows.

Corollary 11.37. Let A be an invertible 2 × 2 matrix, choose z ∈ R2, and
set Λ = A(Z2) + z. Then for any nonzero g ∈ L2(R),

G(g,Λ) =
{
MbTag

}
(a,b)∈Λ

is finitely linearly independent. ♦

When A is an invertible matrix, we call A(Z2) a full-rank lattice in R2.
Thus A(Z2) + z is a rigid translate of a full-rank lattice. In particular, if
we choose any three noncollinear points in R2, then we can always find A
and z so that Λ = A(Z2) + z contains these three points (Exercise 11.34).
Therefore any set of three noncollinear time-frequency shifts of a nonzero
g ∈ L2(R) is linearly independent, and the collinear case can be addressed
by other arguments (Exercise 11.37). Since one point is trivial and two points
are always collinear, we obtain the following corollary.

Corollary 11.38. Let N = 1, 2, or 3. If g ∈ L2(R)\{0} and (pk, qk) for
i = 1, . . . , N are distinct points in R2, then

{
e2πiqkxg(x− pk) : k = 1, . . . , N

}

is linearly independent. ♦

Thus, any collection of up to three distinct time-frequency shifts of a func-
tion g ∈ L2(R) is linearly independent. Surely four points cannot be much
more difficult—how hard can it be to show that a set of four vectors in a vec-
tor space are linearly independent? It is not that hard if we have four specific
vectors in hand, but we are asking a somewhat more general question. If we
let (pk, qk) for i = 1, 2, 3, 4 be any set of four distinct points in R2, we want
to know if

{
Mqk

Tpk
g : k = 1, 2, 3, 4

}
=
{
e2πiqkxg(x− pk) : k = 1, 2, 3, 4

}

is linearly independent for every nonzero function g ∈ L2(R). The answer to
this question is not known!

One difficulty is that four noncollinear distinct points in R2 need not lie on
a translate of a full-rank lattice. For example, because the distances between
the following points are not rationally related, there is no matrix A and point z
so that the four points

{
(0, 0), (1, 0), (0, 1), (

√
2,
√

2)
}
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are contained in A(Z2)+ z. Forgetting about generic sets of four points, what
about just this particular set of points? If g ∈ L2(R) is not the zero function,
must the set of time-frequency translates of g determined by those four points
be independent, i.e., must

{
g(x), g(x− 1), e2πixg(x), e2πi

√
2xg(x−

√
2)
}

be linearly independent? I don’t know, and neither does anyone else.

Conjecture 11.39 (HRT Subconjecture). If g ∈ L2(R)\{0} then

{
g(x), g(x− 1), e2πixg(x), e2πi

√
2xg(x−

√
2)
}

(11.34)

is linearly independent.

There’s nothing special about
√

2 in this choice of four points; the answer
is still unknown if we replace the two instances of

√
2 in equation (11.34) by

some other irrational numbers (on the other hand, Ziemowit Rzeszotnik has

shown me his unpublished proof that
{
g(x), g(x−1), e2πixg(x), e2πi

√
2xg(x)

}

is independent for each nonzero g ∈ L2(R), and the recent paper [Dem10]
addresses the case of any four points that lie on two parallel lines).

The answer to Conjecture 11.39 is known for some special classes of func-
tions g ∈ L2(R), and for those functions for which the answer is known the
answer is always yes, linear independence holds.

Example 11.40. Suppose that g ∈ L2(R) is supported within the halfline
[0,∞), i.e., g(x) = 0 for almost every x < 0, and suppose also that g is
not the zero function on [0, 1]. If the collection of time-frequency translates in
equation (11.34) is dependent then there exist scalars a, b, c, d, not all zero,
such that

ag(x) + bg(x− 1) + ce2πixg(x) + de2πi
√

2xg(x−
√

2) = 0 a.e. (11.35)

Note that the functions g(x) and e2πixg(x) are supported within [0,∞), while

g(x− 1) is supported in [1,∞) and e2πi
√

2xg(x−
√

2) is supported in [
√

2,∞).
Therefore, if we only consider points x between 0 and 1 then equation (11.35)
reduces to

(a+ ce2πix) g(x) = 0 for a.e. x ∈ [0, 1].

However, if either a or c is nonzero then a+ ce2πix 6= 0 for almost every x, so
g(x) = 0 a.e. on [0, 1], which contradicts our assumptions on g. Therefore we
must have a = c = 0. But then

bg(x− 1) + de2πi
√

2xg(x−
√

2) = 0 a.e.,

which contradicts the fact that any set of two time-frequency translates of g
must be independent. ♦
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Conjecture 11.39 is a special case of the following conjecture, first made
in [HRT96].

Conjecture 11.41 (HRT Conjecture). If g ∈ L2(R) is not the zero func-
tion and Λ = {(pk, qk)}Nk=1 is any set of finitely many distinct points in R2,
then

G(g,Λ) =
{
Mqk

Tpk
g
}N
k=1

is a linearly independent set of functions in L2(R). ♦

Conjecture 11.41 is also known as the Linear Independence Conjecture
for time-frequency shifts. Despite having been worked on by a large number
of groups, there is a scarcity of hard results. The main papers specifically
dealing with the HRT Conjecture appear to be [HRT96], [Lin99], [Kut02],
[Bal08], [BS09], [Dem10], [DG10], [DZ10], and there is also a survey paper on
the topic [Hei06].

Some partial results on the HRT Conjecture are known. For example, the
idea of Example 11.40 extends to any finite number of points, so independence
in the HRT Conjecture is known to hold if we add the extra assumption that g
is compactly supported or is only nonzero within a halfline (−∞, a] or [a,∞);
see Exercise 11.38. On the other hand, it is quite surprising that there are very
few partial results based on smoothness or decay conditions on g. In particular,
the HRT Conjecture is open even if we impose the extra hypothesis that g lie in
the Schwartz class S(R), i.e., g is infinitely differentiable and xmg(n)(x)→ 0
as x → ±∞ for every m, n ∈ N. While the HRT Conjecture is known to
be true for some Schwartz class functions, such as those that are compactly
supported, it is not known whether or not it holds for every nonzero Schwartz
class function.

Let us return to lattice Gabor systems and Theorem 11.36 in particular,
and try to illustrate why the proof of that theorem is nontrivial. Consider the
case of three specific points in R2, say

Λ =
{
(0, 0), (a, 0), (0, 1)

}
. (11.36)

We will address the “difficult case” where a is irrational.

Example 11.42. Suppose that g ∈ L2(R)\{0} is such that

G(g,Λ) =
{
g(x), g(x− a), e2πixg(x)

}

is linearly dependent, where a > 0 is irrational. Then there exist scalars c1,
c2, c3, not all zero, such that

c1g(x) + c2g(x− a) + c3e
2πixg(x) = 0 a.e.

If any one of c1, c2, c3 is zero then we reduce to only two time-frequency shifts,
so we assume that c1, c2, c3 are all nonzero. Dividing through by c2, we can
further assume that c2 = 1. Rearranging,
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g(x− a) =
(
−c1 − c3 e2πix

)
g(x) = m(x) g(x) a.e., (11.37)

where m(x) = −c1− c3 e2πix. Note that m is a 1-periodic trigonometric poly-
nomial. Iterating equation (11.37), for integer n > 0 we obtain

|g(x− na)| = |m(x− (n− 1)a) · · · m(x− a)m(x) g(x)|

= |g(x)|
n−1∏

j=0

|m(x− ja)|

= |g(x)| en· 1
n

Pn−1

j=0
p(x−ja) a.e., (11.38)

where p(x) = ln |m(x)|. Since g is square integrable, if g(x−na) grows with n
then we might hope to obtain a contradiction, although we must be careful
since g is only defined almost everywhere.

Now, p is 1-periodic, so p(x−ja) = p(x−ja mod 1), where t mod 1 denotes
the fractional part of t. A consequence of the fact that a is irrational is that
the points {x − ja mod 1}∞j=0 form a dense subset of [0, 1). In fact, they are
“well distributed” in a technical sense due to the fact that x 7→ x+ a mod 1 is
an ergodic mapping of [0, 1) onto itself (i.e., only subsets of measure 0 or mea-

sure 1 can be invariant under this map). Hence the quantity 1
n

∑n−1
j=0 p(x−ja)

is like a Riemann sum approximation to
∫ 1

0 p(x) dx, except that the rectangles

with height p(x − ja) and width 1
n are distributed “randomly” around [0, 1)

instead of uniformly, possibly even with overlaps or gaps (see Figure 11.4).
Still, the ergodicity ensures that the Riemann sum analogy is a good one in
the limit. Specifically, the Birkhoff Ergodic Theorem [Wal82] implies that

lim
n→∞

1

n

n−1∑

j=0

p(x− ja) =

∫ 1

0

p(x) dx = C a.e. (11.39)

The fact that C =
∫ 1

0 p(x) dx exists and is finite follows from the fact that
any singularities of p correspond to zeros of the well-behaved function m
(Exercise 11.42). So, if we fix ε > 0, then 1

n

∑n−1
j=0 p(x − ja) ≥ (C − ε) for n

large enough. Let us ignore the fact that “large enough” depends on x (or,
by applying Egoroff’s Theorem, restrict to a subset where the convergence in
equation (11.39) is uniform). Substituting into equation (11.38) then yields

|g(x− na)| ≥ e(C−ε)n |g(x)|, n large.

Considering x in a set of positive measure where g is nonzero and using the
fact that g ∈ L2(R), we conclude that C− ε < 0. This is true for every ε > 0,
so C ≤ 0. A converse argument based on the relation g(x) = m(x+a) g(x+a)
similarly yields the inequality C ≥ 0. This still allows the possibility that
C = 0, but a slightly more subtle argument presented in [HRT96] also based on
ergodicity yields the full result. The case a is rational is more straightforward,
since then the points x− ja mod 1 repeat themselves. ♦
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Fig. 11.4. The area of the boxes (counting overlaps) is 1
n

Pn−1
j=0 p(x− ja).

By applying the techniques used in Exercises 11.35 and 11.36, the HRT
Conjecture for three noncollinear points can always be reduced to the HRT
Conjecture for the three points given in equation (11.36) for some a 6= 0.
However, the argument given in Example 11.42 is limited to only three points
so we have not proved that the HRT Conjecture is valid for all lattice Gabor
systems. Still, our argument does suggest why the proof of Theorem 11.36 is
nontrivial. There is no obvious way to extend the technique of Example 11.42
to apply to four points in general position. It particular, the argument depends
critically on the recurrence relation that appears in equation (11.37), and this
recurrence relation is a consequence of the fact that there are only two distinct
translations appearing in the collection

{
g(x), g(x − a), e2πixg(x)

}
. Specifi-

cally, g(x) and e2πixg(x) are translated by zero, while g(x − a) is translated
by a. As soon as we have three or more distinct translates, the recurrence
relation becomes much more complicated (too complicated to use?). Indeed,
Linnell’s proof takes a quite different approach, relying on the fact that the
operators Mbn, Tak with k, n ∈ Z generate a von Neumann algebra (see
[Lin99]).

So, we attack the HRT Conjecture from a different angle. Fix any set
Λ = {(pk, qk)}Nk=1 of finitely many distinct points in R2, and define

SΛ =
{
g ∈ L2(R) : G(g,Λ) is independent

}
. (11.40)

The HRT Conjecture is that SΛ = L2(R)\{0}. While we don’t know that this

is the case, we do know that SΛ is dense in L2(R). For example, SΛ contains
all compactly supported functions in L2(R) (Exercise 11.38) and all finite
linear combinations of Hermite functions (Exercise 11.40), each of which is
a dense subset of L2(R). Perhaps we can apply some kind of perturbation
argument to show that SΛ actually contains all nonzero functions in L2(R).
The next theorem is an attempt in this direction.
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Theorem 11.43. Assume that g ∈ L2(R) and Λ = {(pk, qk)}Nk=1 are such
that G(g,Λ) is linearly independent. Then there exists an ε > 0 such that
G(h,Λ) is independent for any h ∈ L2(R) with ‖g − h‖L2 < ε.

Proof. Define the linear mapping T : CN → L2(R) by

T (c1, . . . , cN ) =

N∑

k=1

ckMqk
Tpk

g.

Note that T is injective since G(g,Λ) is independent. Therefore T is a lin-
ear bijection of CN onto range(T ), which is an N -dimensional subspace of
L2(R). Since linear operators on finite-dimensional spaces are continuous,
both T : CN → range(T ) and T−1 : range(T ) → CN are bounded. As all
norms on CN are equivalent, it follows that there exist constants A, B > 0
such that

A

N∑

k=1

|ck| ≤
∥∥∥∥
N∑

k=1

ckMqk
Tpk

g

∥∥∥∥
L2

≤ B

N∑

k=1

|ck|, (c1, . . . , cN ) ∈ CN .

Therefore, if ‖g − h‖L2 < A, then for any (c1, . . . , cN ) ∈ CN we have

∥∥∥∥
N∑

k=1

ckMqk
Tpk

h

∥∥∥∥
L2

≥
∥∥∥∥
N∑

k=1

ckMqk
Tpk

g

∥∥∥∥
L2

−
∥∥∥∥
N∑

k=1

ckMqk
Tpk

(h− g)
∥∥∥∥
L2

≥ A

N∑

k=1

|ck| −
N∑

k=1

|ck| ‖Mqk
Tpk

(h− g)‖L2

= (A− ‖h− g‖L2)

N∑

k=1

|ck|.

Consequently, if
∑N
k=1 ckMqk

Tpk
h = 0 a.e. then ck = 0 for every k. ⊓⊔

Thus, the set SΛ defined in equation (11.40) is actually an open subset of
L2(R). Plus, we know that it is dense—so isn’t it all of L2(R)? No, we can’t
conclude that. For example, R\{π} is an open and dense but proper subset
of the real line. Therefore, we still don’t know whether the HRT Conjecture
is valid for all nonzero g ∈ L2(R). On the other hand, this does tell us that
any counterexamples are “rare” in some sense.

I’ve worked hard on the HRT Conjecture but haven’t solved it. If you solve
it, please let me know! One word of warning—the problem seems to be much
harder than it looks. I’ve produced dozens of incorrect proofs myself, and seen
many more. Many of the errors in these proofs are related to the fact that
the translation and modulation operators Ta, Mb do not commute for most
values of a and b. I hope you enjoy this charming little problem, but beware
of the pesky phase factor in the relation TaMb = e−2πiabMbTa.
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Exercises

11.34. Show that if (pi, qi) for i = 1, 2, 3 are three noncollinear points in R2,
then there exist an invertible 2 × 2 matrix A and a point z ∈ R2 such that
Λ = A(Z2) + z contains those three points.

11.35. Fix g ∈ L2(R)\{0}, and let Λ = {(pk, qk)}Nk=1 be any set of finitely

many distinct points in R2. Define G(g,Λ) = {Mqk
Tpk

g}Nk=1.

(a) Fix z ∈ R2. Show that G(g,Λ) is linearly independent if and only if
G(g,Λ + z) is linearly independent.

(b) Given r ∈ R, let Sr = [ 1 0
r 1 ] , so multiplication by the matrix Sr is a

shear operation on R2. Define h(x) = eπirx
2

g(x), and show that G(g,Λ) is

linearly independent if and only if G(h, Sr(Λ)) is linearly independent.

(c) Let R =
[

0 −1
1 0

]
, so multiplication by R is a counterclockwise rotation

of R2 by 90 degrees. Show that G(g,Λ) is linearly independent if and only if

G( ∨

g,R(Λ)) is linearly independent, where
∨

g is the inverse Fourier transform
of g.

(d) Given a 6= 0, let Da =
[
a 0
0 1/a

]
, so multiplication by Da is a dilation

by a on the x1-axis and a corresponding dilation by 1/a on the x2-axis. Define
h(x) = g(x/a), and show that G(g,Λ) is linearly independent if and only if

G(h,Da(Λ)) is linearly independent.

(e) Show that if A is a 2×2 matrix with det(A) = 1, then A can be written
as a product of matrices of the form Sr, R, and Da.

Remark: This factorization is related to the fact that every 2 × 2 matrix
with determinant 1 is a symplectic matrix. In contrast, not every 2d × 2d
matrix with determinant 1 is symplectic when d > 1. As a consequence, the
HRT Conjecture becomes even more intractable in higher dimensions.

11.36. Assuming Theorem 11.36, prove Corollary 11.37.

11.37. Fix g ∈ L2(R)\{0}.
(a) Show that if {qk}Nk=1 is any set of finitely many distinct real numbers,

then {Mqk
g}Nk=1 is linearly independent.

(b) Show that if {pk}Nk=1 is any set of finitely many distinct real numbers,

then {Tpk
g}Nk=1 is linearly independent.

(c) Show that if Λ = {(pk, qk)}Nk=1 is any set of finitely many distinct but

collinear points in R2, then G(g,Λ) = {Mqk
Tpk

g}Nk=1 is linearly independent.

11.38. Suppose that g ∈ L2(R)\{0} is supported within some halfline, either
(−∞, a] or [a,∞) where a ∈ R. Show that if Λ = {(pk, qk)}Nk=1 is any set of

finitely many distinct points in R2, then G(g,Λ) = {Mqk
Tpk

g}Nk=1 is linearly
independent.
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11.39. The nth Hermite function Hn is

Hn(x) = eπx
2

Dne−2πx2

, n ≥ 0,

where Dn denotes the nth derivative operator.

(a) Prove that

Hn+1(x) = H ′
n(x)− 2πxHn(x), n ≥ 0. (11.41)

(b) Use equation (11.41) to show that Hn(x) = pn(x) e
−πx2

, where pn is
a polynomial of degree n whose leading coefficient is (−4π)n. Consequently,
each Hn is infinitely differentiable and has exponential decay at infinity, and
span{Hn}n≥0 =

{
p(x) e−πx

2

: p is a polynomial
}
.

Remark: It can be shown that {Hn}n≥0 is an orthogonal (but not orthonor-
mal) basis for L2(R). Hence span{Hn}n≥0 is a dense subspace of L2(R).

11.40. Let φ(x) = e−πx
2

be the Gaussian function, and let h(x) = p(x) e−πx
2

where p is any nontrivial polynomial. Show that if Λ = {(pk, qk)}Nk=1 is any

set of finitely many distinct points in R2, then G(h,Λ) = {Mqk
Tpk

h}Nk=1 is
linearly independent.

11.41. Assume that g ∈ L2(R) and Λ = {(pk, qk)}Nk=1 are such that G(g,Λ)

is linearly independent. Show that there exists ε > 0 such that G(g,Λ′) is

independent for any set Λ′ = {(α′
k, β

′
k)}Nk=1 with |αk − α′

k|, |βk − β′
k| < ε for

k = 1, . . . , N.

11.42. Suppose that m is differentiable and m(0) = 0. Set p(x) = ln |m(x)|,
and show that

∫ δ
−δ p(x) dx exists and is finite if δ > 0 is small enough.
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