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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with sig-
nificant developments in harmonic analysis, ranging from abstract harmonic
analysis to basic applications. The title of the series reflects the importance
of applications and numerical implementation, but richness and relevance of
applications and implementation depend fundamentally on the structure and
depth of theoretical underpinnings. Thus, from our point of view, the inter-
leaving of theory and applications and their creative symbiotic evolution is
axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flour-
ished, developed, and deepened over time within many disciplines and by
means of creative cross-fertilization with diverse areas. The intricate and fun-
damental relationship between harmonic analysis and fields such as signal
processing, partial differential equations (PDEs), and image processing is re-
flected in our state-of-the-art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such
as wavelet theory, Banach algebras, classical Fourier analysis, time-frequency
analysis, and fractal geometry, as well as the diverse topics that impinge on
them.

For example, wavelet theory can be considered an appropriate tool to
deal with some basic problems in digital signal processing, speech and image
processing, geophysics, pattern recognition, biomedical engineering, and tur-
bulence. These areas implement the latest technology from sampling methods
on surfaces to fast algorithms and computer vision methods. The underlying
mathematics of wavelet theory depends not only on classical Fourier analysis,
but also on ideas from abstract harmonic analysis, including von Neumann
algebras and the affine group. This leads to a study of the Heisenberg group
and its relationship to Gabor systems, and of the metaplectic group for a
meaningful interaction of signal decomposition methods. The unifying influ-
ence of wavelet theory in the aforementioned topics illustrates the justification
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for providing a means for centralizing and disseminating information from the
broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a
host of issues demands.

Along with our commitment to publish mathematically significant works at
the frontiers of harmonic analysis, we have a comparably strong commitment
to publish major advances in the following applicable topics in which harmonic
analysis plays a substantial role:

Antenna theory Prediction theory
Biomedical signal processing Radar applications
Digital signal processing Sampling theory

Fast algorithms Spectral estimation
Gabor theory and applications Speech processing

Image processing Time-frequency and
Numerical partial differential equations time-scale analysis

Wavelet theory

The above point of view for the ANHA book series is inspired by the
history of Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important prob-
lems in mathematics and the sciences. Historically, Fourier series were devel-
oped in the analysis of some of the classical PDEs of mathematical physics;
these series were used to solve such equations. In order to understand Fourier
series and the kinds of solutions they could represent, some of the most basic
notions of analysis were defined, e.g., the concept of “function.” Since the
coefficients of Fourier series are integrals, it is no surprise that Riemann inte-
grals were conceived to deal with uniqueness properties of trigonometric series.
Cantor’s set theory was also developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenom-
ena, such as sound waves, can be described in terms of elementary harmonics.
There are two aspects of this problem: first, to find, or even define properly,
the harmonics or spectrum of a given phenomenon, e.g., the spectroscopy
problem in optics; second, to determine which phenomena can be constructed
from given classes of harmonics, as done, for example, by the mechanical syn-
thesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in
engineering, mathematics, and the sciences. For example, Wiener’s Tauberian
theorem in Fourier analysis not only characterizes the behavior of the prime
numbers, but also provides the proper notion of spectrum for phenomena such
as white light; this latter process leads to the Fourier analysis associated with
correlation functions in filtering and prediction problems, and these problems,
in turn, deal naturally with Hardy spaces in the theory of complex variables.
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Nowadays, some of the theory of PDEs has given way to the study of
Fourier integral operators. Problems in antenna theory are studied in terms
of unimodular trigonometric polynomials. Applications of Fourier analysis
abound in signal processing, whether with the fast Fourier transform (FFT),
or filter design, or the adaptive modeling inherent in time-frequency-scale
methods such as wavelet theory. The coherent states of mathematical physics
are translated and modulated Fourier transforms, and these are used, in con-
junction with the uncertainty principle, for dealing with signal reconstruction
in communications theory. We are back to the raison d’être of the ANHA
series!

John J. Benedetto
Series Editor

University of Maryland
College Park
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Preface

A basis for a Banach space is a set of elementary building blocks that can be
put together in a unique way to obtain any given element of the space. Bases
are central to the study of the geometry of Banach spaces, which is a rich and
beautiful classical subject in analysis. Bases and their relatives are also of key
importance in classical and applied harmonic analysis, where they are used
for decomposing and manipulating functions, operators, signals, images, and
other objects.

In 1986 I was a young graduate student at the University of Maryland,
College Park, just beginning to learn about harmonic analysis from my advi-
sor, John Benedetto. I was at that awkward point of realizing that he wanted
me to call him by his first name, yet feeling uncomfortable using any address
less formal than “Dr. Benedetto” (for a long time I avoided this issue by
never speaking to John unless he was already looking at me). One day John
returned from a conference with news about an exciting new development,
called “wavelets.” Together with John’s other graduate students of the time
(David Walnut, William Heller, Rodney Kerby, and Jean-Pierre Gabardo), we
began learning and thinking about wavelets. Through John we obtained early
preprints of many papers that ultimately had a deep impact on the field. I
recall spending many hours studying a xerox copy of a long preprint by Ingrid
Daubechies, some 50 pages of meticulously handwritten single-spaced mathe-
matics and exposition that eventually became published as the paper [Dau90].
I was especially fascinated by the use of frames in this paper, both wavelet
frames and time-frequency (Gabor) frames. Frames are basis-like systems, but
they allow the possibility of nonunique representations, and hence can incor-
porate redundancy. While uniqueness seems at first glance to be a property
that we cannot live without, redundancy can actually be a useful and even
essential property in many settings.

While reading these early papers, it became clear to our group that it
would be important to understand the precise relationships between bases
and frames, and John assigned me the task of becoming our resident expert
on basis theory. Thus began a journey into the classical field of the geome-
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try of Banach spaces. My instructors were the beautiful but comprehensive
(even encyclopedic) volumes on bases in Banach spaces by Singer [Sin70],
Lindenstrauss and Tzafriri [LT77], [LT79], and Marti [Mar69] (and if I had
been aware of it at the time, the text by Diestel [Die84] would also be on
this list). Additionally, while not specifically a basis theory volume, the el-
egant text on nonharmonic Fourier analysis by Young (now published as a
“Revised First Edition” [You01]) provided a deep yet gentle introduction to
both bases and frames that perfectly complemented the basis theory books
mentioned above. A 1987 handwritten survey of what I learned about bases
and frames circulated for some years among John’s students and colleagues.
This survey was finally typed in 1997 and was the original incarnation of “A
Basis Theory Primer.” Over the years, John and many others have asked me
to turn that survey into a proper book, and the present volume is the re-
sult. The core material of the first Basis Primer has been greatly expanded
and polished (hopefully benefiting from some 20 years of reflection on these
subjects). Many new topics have been added, including chapters on Gabor
bases and frames, wavelet bases and frames, and Fourier series (which are
bases of complex exponentials). Introductory chapters on Banach spaces and
functional analysis have also been included, which make the text almost en-
tirely self-contained. A solutions manual for this volume is also available for
instructors upon request at the Birkhäuser website.

Outline and Goals

A primer is a old-fashioned word for a school book,1 and this is a text for
learning the theory of bases and frames and some of their appearances in clas-
sical and applied harmonic analysis. Extensive exercises complement the text
and provide opportunities for learning by doing (hints for selected exercises
appear at the end of the volume).

The text is divided into four parts. Part I reviews the functional anal-
ysis that underlies most of the concepts presented in the later parts of the
text. Part II presents the abstract theory of bases and frames in Banach and
Hilbert spaces. It begins with the classical topics of convergence, Schauder
bases, biorthogonal systems, and unconditional bases, and concludes with
more “modern” topics, such as Riesz bases and frames in Hilbert spaces.
Part III is devoted to a study of concrete systems that form frames or bases
for various Hilbert spaces. These include systems of weighted exponentials,
systems of translations, Gabor systems, and wavelets. Each of these play im-
portant roles both in mathematics and in applications such as digital signal
processing. It has become common to refer to these ideas as being part of the
field of “applied harmonic analysis.” Part IV is concerned with the theory of
Fourier series, which is usually considered to be part of “classical harmonic
analysis,” although it is also widely applicable. Our presentation emphasizes

1The correct pronunciation is prim-er, not prime-er.
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the role played by bases, which is a different viewpoint than is taken in most
discussions of Fourier series.

In summary, Parts I and II deal with the abstract development of bases and
frames, while Parts III and IV apply these concepts to particular situations
in applied and classical harmonic analysis. The mathematical tools needed
to understand the abstract theory are the basic ideas of functional analysis
and operator theory, which are presented in Part I. Measure theory makes
only limited appearances in Parts I and II, and is used in those parts mostly
to give examples. However, the theory of Lebesgue measure and Lebesgue
integration is needed throughout Parts III and IV, and therefore a short review
of basic ideas from measure theory is given in Appendix A. A small number
of proofs and exercises in the text use the concepts of compact operators or
tensor products of Hilbert spaces, and these topics are briefly reviewed in
Appendix B.

We discuss each part of the text in more detail below.

Part 1: A Primer on Functional Analysis

This part presents the background material that is needed to develop the
theory of bases, frames, and applications in the remainder of the text. Most
of this background is drawn from functional analysis and operator theory.
Chapter 1 introduces Banach and Hilbert spaces and basic operator theory,
while Chapter 2 presents more involved material from functional analysis,
such as the Hahn–Banach Theorem and the Uniform Boundedness Principle.
Proofs of most results are included, as well as extensive exercises.

Part II: Bases and Frames

Part II develops the abstract theory of bases and frames in Banach and Hilbert
spaces. Chapter 3 begins with a detailed account of convergence of infinite
series in Banach spaces, focusing especially on the meaning of unconditional
convergence. Chapter 4 defines bases and derives their basic properties, one
of the most important of which is the fact that the coefficient functionals
associated with a basis are automatically continuous. The Schauder, Haar, and
trigonometric systems are studied as concrete examples of bases in particular
Banach spaces. Generalizations of bases that allow weak or weak* convergence
instead of norm convergence are also discussed.

Chapter 5 continues the development of basis theory by examining the
subtle distinctions between true bases, which provide unique infinite series
representations of vectors in Banach spaces, and exact systems, which possess
the minimality and completeness properties enjoyed by bases but which do not
yield the infinite series representations that bases provide. This understanding
allows us to extend the basis properties of the Haar system to Lp[0, 1], to derive
results on the stability of bases under perturbations, and to characterize the
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basis properties of the sequence of coefficient functionals associated with a
basis.

In Chapter 6 we consider bases that have the important extra property that
the basis expansions converge unconditionally, i.e., regardless of ordering. We
see that the Schauder system, which was proved by Schauder to be a basis for
the space C[0, 1] of continuous functions on [0, 1], fails to be an unconditional
basis for that space, as does the Haar system in L1[0, 1].

Chapter 7 turns to the study of bases in the setting of Hilbert spaces.
Unlike generic Banach spaces, Hilbert spaces have a notion of orthogonality,
and we can take advantage of this additional structure to derive much more
concrete results. We consider orthonormal bases, Riesz bases, unconditional
bases, and the more general concept of Bessel sequences in Hilbert spaces.
A key role is played by the analysis operator, which breaks a vector into a
sequence of scalars that (we hope) captures all the information about a vector
in a discrete fashion, much as a musical score is a discrete representation
of a symphony as a “sequence of notes.” Conversely, the synthesis operator
forms (infinite) linear combinations of special vectors (perhaps basis vectors),
much as the musicians in an orchestra create the symphony by superimposing
their musical notes. When these special vectors form a basis, we have unique
representations. Analysis and synthesis are injective in this case, and their
composition is the identity operator.

Chapter 8 is inspired by a simple question: Why do we need unique rep-
resentations? In many circumstances it is enough to know that we have a set
of vectors that we can use as building blocks in the sense that any vector in
the space can be represented as some suitable superposition of these building
blocks. This leads us to define and study frames in Hilbert spaces, which pro-
vide such nonunique representations. Moreover, frames also have important
“stability” properties such as unconditional convergence and the existence
of an equivalent discrete-type norm for the space via the analysis operator.
Frames provide a mathematically elegant means for dealing with nonunique or
redundant representations, and have found many practical applications both
in mathematics and engineering.

Part III: Bases and Frames in Applied Harmonic Analysis

In Part III of the text, we focus on concrete systems that form bases or frames
in particular Hilbert spaces. The material in this part, and also in Part IV,
does require more fluency with the tools of measure theory than was needed in
Parts I or II. Appendix A contains a brief review, without proofs, of the main
results from measure theory that are used in the text, such as the Lebesgue
Dominated Convergence Theorem and Fubini’s Theorem.

Much of what we do in Part III is related to what is today called “applied
harmonic analysis.” The Fourier transform on the real line is a fundamental
tool for the analysis of many of these systems, and therefore Chapter 9 presents
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a short review of this topic. For the purposes of this volume, the most essential
facts about the Fourier transform are that:

(i) the Fourier transform is a unitary mapping of L2(R) onto itself, and
(ii) the operations of translation and modulation are interchanged when

the Fourier transform is applied.
Chapter 10 explores several important frames that are related to the

trigonometric system {e2πinx}n∈Z. The trigonometric system is an orthonor-
mal basis for the Hilbert space L2[0, 1], but by embedding it into L2(R) and
applying the Fourier transform we magically obtain a fundamental result in
signal processing known as the Classical Sampling Theorem: A bandlimited
function f ∈ L2(R) with supp(f̂ ) ⊆ [− 1

2 ,
1
2 ] can be recovered from its sample

values {f(n)}n∈Z. Moreover, the fact that {e2πinbx}n∈Z is a frame for L2[0, 1]
when 0 < b < 1 translates into a statement about stable reconstruction by
oversampling. Also discussed in Chapter 10 are two closely related types of
systems, namely systems of weighted exponentials {e2πinxϕ(x)}n∈Z in L2[0, 1]
and systems of translates {g(x− k)}k∈Z in L2(R).

In Chapter 11 we analyze Gabor systems in L2(R). These are gener-
ated by simple time-frequency shifts of a single function, and have the form
{e2πibnxg(x− ak)}k,n∈Z where g ∈ L2(R) and a, b > 0 are fixed. Thus a Ga-
bor system incorporates features from both systems of weighted exponentials
and systems of translates. The elements e2πibnxg(x − ak) of a Gabor system
are much like notes of different frequencies played at different times that are
superimposed to create a symphony. The theory of Gabor frames and bases,
which is named in honor of the Nobel prize winner Dennis Gabor, is not only
mathematically beautiful but has a great utility in mathematics, physics, and
engineering. We will see that the mathematical formulation of the quantum
mechanical uncertainty principle forces us to rely on Gabor frames that are
not bases—redundancy is essential to these frames. There do exist Gabor
systems that are orthonormal or Riesz bases for L2(R), but the generator g
of such a system cannot be a very “nice” function. Such a generator cannot
simultaneously be continuous and have good decay at infinity; more precisely,
the Heisenberg product ‖xg(x)‖L2 ‖ξĝ(ξ)‖L2 that appears in the uncertainty
principle must be infinite.

Wavelet systems, which are the topic of Chapter 12, are also simply gen-
erated from a single function, but through time-scale shifts instead of time-
frequency shifts. A wavelet system has the form {an/2ψ(anx −mbk)}k,n∈Z ,
where ψ ∈ L2(R), a > 1, and b > 0 are fixed. The Haar system is an example
of a wavelet orthonormal basis, and has been known since 1910. Unfortu-
nately, the Haar system, which is the wavelet system with a = 2, b = 1,
and ψ = χ

[0,1/2) − χ[1/2,1), is generated by a discontinuous function. The
“wavelet revolution” of the 1980s began with the discovery of orthonormal
wavelet bases generated by very nice functions (in striking contrast to the
nonexistence of “nice” Gabor bases). In particular, we will encounter genera-
tors ψ that are either m-times differentiable and compactly supported, or are
infinitely differentiable and have compactly supported Fourier transforms.
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Part IV: Fourier Series

In Part IV of this volume, which consists of Chapters 13 and 14, we see
how basis theory relates to that part of classical harmonic analysis that deals
with Fourier series. The main goal of these chapters is to prove that the
trigonometric system {e2πinx}n∈Z is a basis for Lp[0, 1] for each 1 < p < ∞,
although we will see that this basis is conditional when p 6= 2.

The basis properties of the trigonometric system are a beautiful appli-
cation of the machinery developed earlier in Part II. However, to properly
work with Fourier series we need an additional set of tools that were not re-
quired in the preceding chapters. This is one reason that Fourier series have
been placed into a separate portion of the text. The tools we need, including
convolution, approximate identities, and Cesàro summation, are quite elegant
in themselves, not to mention very important in digital signal processing as
well as mathematics. Chapter 13 is devoted to developing these tools, which
then provide the foundation for our analysis of the basis properties of the
trigonometric system in Chapter 14.

Course Outlines

This text is a learning tool, suitable for independent study or as the basis for
an advanced course. There are several options for building a course around
this text, two of which are listed below.

Course 1: Functional Analysis, Bases, and Frames. A course on
functional analysis, bases, and frames could focus on Parts I and II. This
would be ideal for students who have not already had an in-depth course
on functional analysis. Additionally, the material in Parts I and II does not
require deep familiarity with Lebesgue measure or integration. Part I develops
the most important tools of functional analysis and operator theory, and then
Part II applies these tools to develop the theory of bases and frames.

Course 2: Bases, Frames, Applied Harmonic Analysis, and
Fourier Series. A course for students already familiar with functional anal-
ysis can begin with Part II, and treat Chapters 1 and 2 as a quick reference
guide on functional analysis and operator theory. This course would emphasize
bases and frames and their roles in applied and classical harmonic analysis.
The abstract theory of bases and frames contained in Part II of the text would
not require expertise in measure theory, while the applications in Parts III
and IV will require fluency with Lebesgue measure and integral on the part
of the reader.

A solutions manual for instructors is available upon request; instructions
for obtaining a copy are given on the Birkhäuser website.



Preface xxi

Further Reading

As the title emphasizes, this volume is a primer rather than an exhaustive
treatment of the subject. There are many possible directions for the reader
who wishes to learn more, including those listed below.

• Functional Analysis. Chapters 1 and 2 provide an introduction to operator
theory and functional analysis. More detailed and extensive development
of these topics is available in texts such as Conway [Con90], Folland [Fol99],
Gohberg and Goldberg [GG01], and Rudin [Rud91], to name only a few.

• Classical Basis Theory. For the student interested in bases and the geome-
try of Banach spaces there are a number of classic texts available, including
the volumes mentioned above by Singer [Sin70], Lindenstrauss and Tzafriri
[LT77], [LT79], Marti [Mar69], and Diestel [Die84]. These books contain
an enormous amount of material on basis theory. Most of the proofs on
bases that we give in Chapters 3–6 are either adapted directly from or are
inspired by the proofs given in these texts.

• Frame Theory. The recent text [Chr03] by Christensen provides a thor-
ough and accessible introduction to both frames and Riesz bases. My own
“Basis and Frame Primer” was the text by Young [You01], and his volume
is still a gem that I highly recommend. Moreover, Young’s text is a stan-
dard reference on sampling theory and nonharmonic Fourier series, and it
provides a wealth of fascinating and useful historical notes.

• Gabor Systems and Time-Frequency Analysis. Gabor systems form one
part of the modern theory of time-frequency analysis, which is itself a part
of applied harmonic analysis. For a much more extensive account of time-
frequency analysis than appears in this volume I highly recommend the
essential text [Grö01] by Gröchenig.

• Wavelet Theory. There are now many texts on wavelet theory, but the vol-
ume by Daubechies [Dau92] is a classic. We also recommend Hernández
and Weiss [HW96], especially for wavelet theory in function spaces other
than L2(R). The text [Wal02] by my mathematical sibling Walnut provides
an introduction to wavelet theory and many of its applications. Moreover,
Walnut’s text avoids measure theory and so is suitable for a course aimed
at upper-level undergraduate students. For wavelet theory from the engi-
neering point of view, we mention the texts by Mallat [Mal09], Strang and
Nguyen [SN96], and Vetterli and Kovačević [VK95].

• Fourier Series. Chapters 13 and 14 delve into classical harmonic analysis,
proceeding just far enough to develop the tools needed to understand the
basis properties of the trigonometric system on [0, 1], the one-dimensional
torus. These same tools are the foundation of much of harmonic analysis,
both on the torus, the real line, and abstractly. For further reading on har-
monic analysis we suggest the volumes by Benedetto [Ben97], Katznelson
[Kat04], Grafakos [Gra04], or the author’s forthcoming text [Heil].
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General Notation

We use the symbol ⊓⊔ to denote the end of a proof, and the symbol ♦ to denote
the end of a definition, remark, or example, or the end of the statement of a
theorem whose proof will be omitted.

The set of natural numbers will be denoted by N = {1, 2, 3, . . .}. Also,
Z = {. . . ,−1, 0, 1, . . .} is the set of integers, Q is the set of rational numbers,
R is the set of real numbers, and C is the set of complex numbers. On occasion,
we formally use the extended real numbers R ∪ {−∞,∞}. For example, the
infimum and supremum of a set of real numbers {an}n∈N always exist as
extended real numbers, i.e., we always have −∞ ≤ inf an ≤ sup an ≤ ∞.

Most of the abstract results of Parts I and II of this volume apply simul-
taneously to real vector spaces and complex vector spaces. We therefore let
F denote a generic choice of scalar field, i.e., F can be either R or C, accord-
ing to context. When we turn from abstract theory to the study of concrete
systems in Parts III and IV we will fix the scalar field as F = C.

The real part of a complex number z = a + ib (a, b ∈ R) is Re(z) = a,
and the imaginary part is Im(z) = b. We say that z is rational if both its
real and imaginary parts are rational numbers. The complex conjugate of z
is z̄ = a − ib. The polar form of z is z = reiθ where r > 0 and θ ∈ [0, 2π).
The modulus, or absolute value, of z is |z| =

√
zz̄ =

√
a2 + b2 = r, and its

argument is arg(z) = θ.
If S is a subset of a set X, then its complement is X\S = {x ∈ X : x /∈ S}.

The cardinality of a set A is denoted by |A|.
Given a set X and points xi ∈ X for i ∈ I, we let {xi}i∈I denote the

sequence indexed by I. We often write {xi}i∈I ⊆ X, although it should be
noted that {xi}i∈I is a sequence and not just a set. Technically, a sequence
{xi}i∈I is shorthand for the mapping i 7→ xi, and therefore the vectors in a
sequence need not be distinct. In particular, a sequence {xi}i∈I where xi = x
for every i ∈ I is called a constant sequence.

Sequences or series with unspecified limits are assumed to be over the
natural numbers. That is, we use the shorthand notation
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(cn) = (cn)n∈N, {xn} = {xn}n∈N,
∑

n

xn =
∞∑

n=1

xn.

We generally use the notation (cn) to denote a sequence of scalars and {xn}
to denote a sequence of vectors.

A series
∑
cn of real or complex scalars converges if limN→∞

∑N
n=1 cn

exists as a real or complex number. If (cn) is a sequence of nonnegative real
scalars, we use the notation

∑
cn < ∞ to mean that the series

∑
cn con-

verges. A bi-infinite series
∑∞
n=−∞ cn converges if

∑∞
n=0 cn and

∑∞
n=1 c−n

both converge (convergence of series is examined in detail in Chapter 3).
Let X and Y be sets. We write f : X → Y to denote a function with

domain X and codomain Y. The image or range of f is range(f) = f(X) =
{f(t) : t ∈ X}. A function f : X → Y is injective, or 1-1, if f(a) = f(b) implies
a = b. It is surjective, or onto, if f(X) = Y. It is bijective if it is both injective
and surjective. If S ⊆ X, then the restriction of f to the domain S is denoted
by f |S . Given A ⊆ X, the direct image of A under f is f(A) = {f(t) : t ∈ A},
the set of all images of elements of A. If B ⊆ Y, then the inverse image of B
under f is f−1(B) = {t ∈ X : f(t) ∈ B}, the set of all elements whose image
lies in B. Given b ∈ R, a function f : R → Y is b-periodic if f(t + b) = f(t)
for all t ∈ R.

The support of a continuous function f : R→ F is the closure in R of the
set {t ∈ R : f(t) 6= 0}. Hence a continuous function has compact support if it
is zero outside of some finite interval.

We let C(R) denote the space of all continuous functions f : R → F,
and Cc(R) is the subspace consisting of the continuous, compactly supported
functions. Likewise Cm(R) is the space of all m-times differentiable functions
such that f, f ′, . . . , f (m) are all continuous, and Cmc (R) contains those func-
tions f ∈ Cm(R) that have compact support. C∞(R) is the space of infinitely
differentiable functions on R, and C∞

c (R) is the subspace of infinitely differ-
entiable, compactly supported functions.

Given A, B ⊆ R and c, x ∈ R, we define A + x = {a + x : a ∈ A},
A+B = {a+ b : a ∈ A, b ∈ B}, and cA = {ca : a ∈ A}.

Given a setX, the characteristic function of a subsetA ⊆ X is the function
χA : X → R defined by

χA(t) =

{
1, if t ∈ A,
0, if t /∈ A.

The Kronecker delta is

δmn =

{
1, if m = n,

0, if m 6= n.

We let δn denote the sequence δn = (δnk)k∈N. That is, the nth component of
the sequence δn is 1, while all other components are zero. We call δn the nth
standard basis vector.
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Whenever we speak of measure or measurability, it is with respect to
Lebesgue measure on subsets of the real line. The Lebesgue measure of a
measurable set E ⊆ R is denoted by |E|. Some standard terminology related
to Lebesgue measure is as follows. Let E be a measurable subset of R and let
f : E → F be a scalar-valued function defined on E. We say that f is bounded
if there exists a real number M such that |f(t)| ≤M for every t ∈ E. We say f
is essentially bounded if f is measurable and there exists a real numberM such
that |f(t)| ≤ M almost everywhere, i.e., if the set Z = {t ∈ E : |f(t)| > M}
has Lebesgue measure zero.

A property is said to hold almost everywhere (abbreviated a.e.) if the
Lebesgue measure of the set on which the property fails is zero. For example,
if f, g : E → F and {t ∈ E : f(t) 6= g(t)} has measure zero, then we write
f = g a.e. Also, although we do not define the support of functions that are
not continuous, we will say that a measurable function f : R→ F has compact
support if f(t) = 0 for almost all t outside of some finite interval. We write
supp(f) ⊆ [a, b] to mean that f(t) = 0 for a.e. t /∈ [a, b].

All integrals in this volume are Lebesgue integrals. The Lebesgue integral
of a bounded piecewise continuous function on a finite interval coincides with
its Riemann integral (and, more generally, the two integrals coincide for any
bounded function f on [a, b] that is continuous at almost every point).





Part I

A Primer on Functional Analysis
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Banach Spaces and Operator Theory

The tools that we need to develop the abstract theory of bases and frames
are largely drawn from the field of functional analysis. Therefore, the first
two chapters of this volume survey the basic definitions and theorems from
functional analysis that will be used throughout this volume. This chapter
reviews foundational material that is likely to be at least partially familiar to
most readers, while Chapter 2 delves into more advanced topics in functional
analysis.

Proofs of most theorems are either included or assigned as exercises (with
hints appearing at the end of the volume). Some of the deeper results are
stated without proof. There are many texts that the reader can turn to for
proofs of those theorems and for more detailed information, including such
classics as [Con90], [Fol99], [GG01], [RS80], [Rud91], and many others.

Many of the concrete examples of bases and frames that we will see in this
volume occur in the setting of sequence spaces such as ℓp or function spaces
such as Lp(R). Some familiarity with basic real analysis, especially Lebesgue
measure and integration, is needed to fully appreciate the Lp examples. Refer-
ences for background and details on real analysis and measure theory include
[Fol99], [Roy88], [Rud87], [WZ77]. A brief review of Lebesgue measure and
integration is presented in Appendix A.

1.1 Definition and Examples of Banach Spaces

linear spaces). The scalar field associated with the vector spaces in this volume

opening section on General Notation, we will use the symbol F to denote a
generic choice of one of these two fields.

A norm on a vector space quantifies the idea of the “size” of a vector.

Definition 1.1. A vector space X is called a normed linear space if for each
x ∈ X there is a (finite) real number ‖x‖, called the norm of x, such that:

We assume that the reader is familiar with vector spaces (which are also called

C. Heil, A Basis Theory Primer: Expanded Edition, Applied and Numerical Harmonic Analysis,   

will always be either the real line R or the complex plane C. As noted in the
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(a) ‖x‖ ≥ 0 for all x ∈ X,
(b) ‖x‖ = 0 if and only if x = 0,

(c) ‖cx‖ = |c| ‖x‖ for all x ∈ X and scalars c, and

(d) the Triangle Inequality: ‖x+ y‖ ≤ ‖x‖+ ‖y‖ holds for all x, y ∈ X.
Given a norm ‖ ·‖, we refer to the number ‖x−y‖ as the distance between

the vectors x and y. We call

Br(x) =
{
y ∈ X : ‖x− y‖ < r

}

the open ball in X centered at x with radius r. ♦

On occasion we will also deal with seminorms which, by definition, must
satisfy properties (a), (c), and (d) of Definition 1.1, but need not satisfy prop-
erty (b). For example, if we define ‖x‖ = |x1| for x = (x1, x2) ∈ F2, then ‖ · ‖
is a seminorm on F2, but it is not a norm on F2.

Given a normed space X, it is usually clear from context what norm we
mean to use on X. Therefore, we usually just write ‖ · ‖ to denote the norm
on X. However, when there is a possibility of confusion we may write ‖ ·‖X to
specify that this norm is the norm on X, or we may write “the space (X, ‖·‖)”
to emphasize that ‖ · ‖ represents the norm on X.

In addition to ‖ · ‖, we sometimes use symbols such as | · |, ||| · |||, or ρ(·) to
denote a norm or seminorm.

Definition 1.2. Let X be a normed linear space.

(a) A sequence of vectors {xn} in X converges to x ∈ X if we have
limn→∞ ‖x− xn‖ = 0, i.e., if

∀ ε > 0, ∃N > 0, ∀n ≥ N, ‖x− xn‖ < ε.

In this case, we write either xn → x or limn→∞ xn = x.

(b) A sequence of vectors {xn} in X is a Cauchy sequence in X if we have
limm,n→∞ ‖xm − xn‖ = 0. More precisely, this means that

∀ ε > 0, ∃N > 0, ∀m,n ≥ N, ‖xm − xn‖ < ε. ♦

Every convergent sequence in a normed space is a Cauchy sequence (see
Exercise 1.2). However, the converse is not true in general (consider Exer-
cise 1.18).

Definition 1.3. We say that a normed space X is complete if it is the case
that every Cauchy sequence inX is a convergent sequence. A complete normed
linear space is called a Banach space. ♦
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Sometimes we need to be explicit about which scalar field is associated
with a Banach space X. We say that X is a real Banach space if it is a
Banach space over the real field (i.e., F = R), and similarly it is a complex
Banach space if F = C.

All Cauchy and convergent sequences in a normed space are bounded above
in the following sense (see Exercise 1.2).

Definition 1.4. A sequence {xn} in a Banach space X is:

(a) bounded below if inf ‖xn‖ > 0,

(b) bounded above if sup ‖xn‖ <∞,
(c) normalized if ‖xn‖ = 1 for all n. ♦

To emphasize that the boundedness discussed in Definition 1.4 refers to
the norm of the elements of the sequence, we will sometimes say that {xn}
is norm-bounded below, etc. Also, we sometimes use the term “bounded”
without the qualification “above” or “below.” In most cases, we only mean
that the sequence is bounded above. However, in certain contexts we may
require that the sequence be bounded both above and below. For example,
this is what we mean when we define a “bounded basis” in Definition 4.5.
This more restricted meaning for “bounded” is always stated explicitly in a
definition.

The simplest example of a Banach space is the scalar field F, where the
norm on F is the absolute value. We will take as given the fact that F is
complete with respect to absolute value. There are infinitely many norms on F,
but they are all positive scalar multiples of absolute value (Exercise 1.1), so
we always assume that the norm on F is the absolute value.

Example 1.5. The next simplest example of a Banach space is Fd, the set of
all d-tuples of scalars, where d is a positive integer. There are many choices
of norms for Fd. Writing a generic vector v ∈ Fd as v = (v1, . . . , vd), each of
the following defines a norm on Fd, and Fd is complete with respect to each
of these norms:

|v|p =





(
|v1|p + · · ·+ |vd|p

)1/p
, 1 ≤ p <∞,

max{|v1|, . . . , |vd|}, p =∞.
(1.1)

The Euclidean norm |v| of a vector v ∈ Fd is the norm corresponding to the
choice p = 2, i.e.,

|v| = |v|2 =
√
|v1|2 + · · ·+ |vd|2.

This particular norm has some extra algebraic properties that we will discuss
further in Section 1.5. The fact that | · |p is a norm on Fd is immediate for the
cases p = 1 and p = ∞. For 1 < p < ∞ the only norm property that is not
obvious is the Triangle Inequality, and this can be shown by using exactly the
same argument that we use later to prove Theorem 1.13. The proof that Fd

is complete with respect to these norms is assigned as Exercise 1.3. ♦
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The following example shows that we can construct norms on any finite-
dimensional vector space.

Example 1.6. Let V be a finite-dimensional vector space. Then there exists a
finite set of vectors B = {x1, . . . , xd} that is a basis for V, i.e., B spans V and

B is linearly independent. Each x ∈ V can be written as x =
∑d

k=1 ck(x)xk
for a unique choice of scalars ck(x). Given 1 ≤ p ≤ ∞, if we set

‖x‖p =





(
|c1(x)|p + · · ·+ |cd(x)|

)1/p
, 1 ≤ p <∞,

max
{
|c1(x)|, . . . , |cd(x)|

}
, p =∞,

then ‖ · ‖p is a norm on V and V is complete with respect to this norm (see
Exercise 1.4 and Theorem 1.14). ♦

The preceding examples illustrate the fact that there can be many norms
on any given space.

Definition 1.7. Suppose that X is a normed linear space with respect to
a norm ‖ · ‖ and also with respect to another norm ||| · |||. These norms are
equivalent if there exist constants C1, C2 > 0 such that

∀x ∈ X, C1 ‖x‖ ≤ |||x||| ≤ C2 ‖x‖. ♦

Note that if ‖ · ‖ and ||| · ||| are equivalent norms on X, then they define the
same convergence criterion in the sense that

lim
n→∞

‖x− xn‖ = 0 ⇐⇒ lim
n→∞

|||x − xn||| = 0.

Any two of the norms | · |p on Fd are equivalent (see Exercise 1.3). This is
a special case of the following theorem, whose proof is more subtle and will
be omitted (see [Con90, Thm. 3.1]).

Theorem 1.8. If V is a finite-dimensional vector space, then any two norms
on V are equivalent. ♦

Now we give some examples of infinite-dimensional Banach spaces. We
have not yet presented the tools that are needed to prove that these are
Banach spaces, but will do so in Section 1.2 (see Theorem 1.13).

Example 1.9. In this example we consider some vector spaces whose elements
are infinite sequences of scalars x = (xk) = (xk)k∈N indexed by the natural
numbers.

(a) Given 1 ≤ p <∞, we define ℓp to be the space of all infinite sequences
of scalars that are p-summable, i.e.,

ℓp = ℓp(N) =
{
x = (xk) :

∑

k

|xk|p <∞
}
. (1.2)
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We will see in Theorem 1.14 that this is a Banach space with respect to the
norm

‖x‖ℓp = ‖(xk)‖ℓp =

(∑

k

|xk|p
)1/p

. (1.3)

(b) We define ℓ∞ to be the space of all bounded infinite sequences of
scalars:

ℓ∞ = ℓ∞(N) =
{
x = (xk) : (xk) is a bounded sequence

}
.

This is a Banach space with respect to the sup-norm

‖x‖ℓ∞ = ‖(xk)‖ℓ∞ = sup
k
|xk|. ♦

We can obtain analogous Banach spaces ℓp(I) by replacing the index set N
by another countable index set I. For example, ℓp

(
{1, . . . , d}

)
is simply the

vector space Fd with the norm defined in equation (1.3). Another example is
ℓp(Z), which is used extensively in Chapters 9–14. The elements of ℓp(Z) are
bi-infinite sequences of scalars that are p-summable (or bounded if p = ∞).
Exercise 1.15 shows how to define ℓp(I) for uncountable index sets I.

Example 1.10. Now we consider some vector spaces whose elements are scalar-
valued functions on a measurable domain E ⊆ R.

(a) Given 1 ≤ p < ∞, we define Lp(E) to be the space of all measurable
functions on E that are p-integrable, i.e.,

Lp(E) =

{
f : E → F :

∫

E

|f(t)|p dt <∞
}
.

Then

‖f‖Lp =

(∫

E

|f(t)|p dt
)1/p

defines a seminorm on Lp(E). It is not a norm because any function f such
that f = 0 a.e. will satisfy ‖f‖Lp = 0 even though f need not be identically
zero. Therefore, we usually “identify” any two functions that differ only on a
set of measure zero. Regarding any two such functions as defining the same
element of Lp(E), we have that ‖·‖Lp is a norm. In a more technical language,
the elements of Lp(E) are actually equivalence classes of functions that are
equal a.e., and the norm of such an equivalence class is the norm of any
representative of the class.

(b) In the opening section on General Notation, we declared that a mea-
surable function f is essentially bounded if there exists a real number M such
that |f(t)| ≤ M almost everywhere. We define L∞(E) to be the space of all
essentially bounded functions on E:

L∞(E) =
{
f : E → F : f is essentially bounded on E

}
.
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Again identifying functions that are equal a.e., L∞(E) is a Banach space with
respect to the norm

‖f‖L∞ = ess sup
t∈E

|f(t)| = inf
{
M ≥ 0 : |f(t)| ≤M a.e.

}
. ♦ (1.4)

We will see several more examples of normed spaces and Banach spaces in
Section 1.3.

Exercises

1.1. Show that if ‖ · ‖ is a norm on the scalar field F, then there exists a
positive number λ > 0 such that ‖x‖ = λ |x|, where |x| is the absolute value
of x.

1.2. Given a normed linear space X, prove the following facts.

(a) Every convergent sequence inX is Cauchy, and the limit of a convergent
sequence is unique.

(b) Every Cauchy sequence in X is bounded.

(c) Reverse Triangle Inequality:
∣∣‖x‖ − ‖y‖

∣∣ ≤ ‖x− y‖ for all x, y ∈ X.
(d) Continuity of the norm: xn → x =⇒ ‖xn‖ → ‖x‖.
(e) Continuity of vector addition:

xn → x and yn → y =⇒ xn + yn → x+ y.

(f) Continuity of scalar multiplication:

xn → x and cn → c =⇒ cnxn → cx.

(g) Convexity of open balls: If x, y ∈ Br(z) then

θx+ (1− θ)y ∈ Br(z) for all 0 ≤ θ ≤ 1.

1.3. (a) Assuming that the functions | · |p on Fd given in equation (1.1) are
norms on Fd, show that any two of these norms are equivalent.

(b) Assuming that F is complete with respect to absolute value, show that
Fd is complete with respect to any one of the norms | · |p.

1.4. Let V be a finite-dimensional vector space. Prove that the function ‖ · ‖1
on V defined in Example 1.6 is a norm, and that V is complete with respect
to this norm.

1.5. Show that if vectors xn in a normed space X satisfy ‖xn+1 − xn‖ < 2−n

for every n ∈ N, then {xn} is a Cauchy sequence in X.
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1.6. Let {xn} be a sequence in a normed space X, and let x ∈ X be fixed.
Suppose that every subsequence {yn} of {xn} has a subsequence {zn} of {yn}
such that zn → x. Show that xn → x.

1.7. LetX be a complex Banach space. LetXR = X as a set, but considerXR

as a vector space over the real field. That is, vector addition in XR is defined
just as in X, but scalar multiplication in XR is restricted to multiplication by
real scalars. Let ‖ · ‖R = ‖ · ‖, and show that (XR, ‖ · ‖R) is a real Banach
space.

1.8. We say that a set X (not necessarily a vector space) is a metric space
if for each x, y ∈ X there exists a real number d(x, y) such that for all x, y,
z ∈ X we have:

i. i. d(x, y) ≥ 0,
ii. d(x, y) = 0 if and only if x = y,
iii. d(x, y) = d(y, x), and
iv. the Triangle Inequality: d(x, y) ≤ d(x, z) + d(y, z).

In this case we call d a metric on X, and we refer to d(x, y) as the distance
between x and y.

(a) Show that if X is a normed space, then d(x, y) = ‖x − y‖ is a metric
on X.

(b) Make a definition of convergent and Cauchy sequences in a metric
space, and show that every convergent sequence is Cauchy.

(c) Define a metric space to be complete if every Cauchy sequence in X
converges to an element of X. Let X = Q and set d(x, y) = |x − y|, the
ordinary absolute value of the difference of x and y. Show that d is a metric
on Q, but Q is incomplete with respect to this metric.

1.9. Fix 0 < p < 1, and define ℓp by equation (1.2) and ‖ · ‖ℓp by equation
(1.3).

(a) Show that ‖ · ‖ℓp fails the Triangle Inequality and hence is not a norm
on ℓp.

(b) Show that ‖x + y‖pℓp ≤ ‖x‖
p
ℓp + ‖y‖pℓp, and use this to show that ℓp is

a vector space and d(x, y) = ‖x− y‖pℓp is a metric on ℓp.

(c) Let B = {x ∈ ℓp : d(x, 0) < 1} be the “open unit ball” with respect to
the metric d, and show that B is not convex. Use this to show that there is
no norm ‖ · ‖ on ℓp such that d(x, y) = ‖x− y‖.

1.2 Hölder’s and Minkowski’s Inequalities

In this section we will prove that ℓp is a Banach space. The proof of the
completeness of Lp(E) is similar in spirit, but is somewhat more technical as
various notions from measure theory are required, and will be omitted.
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For p = 1 and p = ∞ it is easy to see that the function ‖ · ‖ℓp defined
in Example 1.9 satisfies the Triangle Inequality. It is not nearly so obvious
that the Triangle Inequality holds when 1 < p <∞. The next theorem gives a
fundamental inequality on the norm of a product of two functions or sequences,
and we will use this inequality to prove the Triangle Inequality on ℓp for
1 < p < ∞. For this result, the following notion of the dual index will be
useful.

Notation 1.11. Given 1 ≤ p ≤ ∞, its dual index is the number 1 ≤ p′ ≤ ∞
satisfying

1

p
+

1

p′
= 1,

where we use the conventions that 1/0 =∞ and 1/∞ = 0. ♦

For example, 1′ =∞, 2′ = 2, 3′ = 4/3, and ∞′ = 1. Explicitly,

p′ =
p

p− 1
,

and we have (p′)′ = p.

Theorem 1.12 (Hölder’s Inequality). Fix 1 ≤ p ≤ ∞.
(a) If x = (xk) ∈ ℓp and y = (yk) ∈ ℓp

′

, then (xkyk) ∈ ℓ1 and

‖(xkyk)‖ℓ1 ≤ ‖(xk)‖ℓp ‖(yk)‖ℓp′ .

For 1 < p <∞ this is equivalent to the statement

∑

k

|xkyk| ≤
(∑

k

|xk|p
)1/p (∑

k

|yk|p
′

)1/p′

.

(b) If f ∈ Lp(E) and g ∈ Lp′(E), then fg ∈ L1(E) and

‖fg‖L1 ≤ ‖f‖Lp ‖g‖Lp′ .

For 1 < p <∞ this is equivalent to the statement

∫

E

|f(t) g(t)| dt ≤
(∫

E

|f(t)|p dt
)1/p(∫

E

|g(t)|p′ dt
)1/p′

.

Proof. We will concentrate on the ℓp spaces, as the proof for Lp(E) is similar.
The cases p = 1 and p =∞ are straightforward, so assume that 1 < p <∞.

Suppose that x = (xk) ∈ ℓp and y = (yk) ∈ ℓp
′

satisfy ‖x‖ℓp = 1 = ‖y‖ℓp′ .
By Exercise 1.10, we have the inequality

|xkyk| ≤
|xk|p
p

+
|yk|p

′

p′
, k ∈ N.
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Consequently,

‖(xkyk)‖ℓ1 =
∑

k

|xkyk| ≤
∑

k

( |xk|p
p

+
|yk|p

′

p′

)

=
‖(xk)‖pℓp

p
+
‖(yk)‖p

′

ℓp′

p′

=
1

p
+

1

p′
= 1. (1.5)

Given arbitrary x ∈ ℓp and y ∈ ℓp
′

, let s = ‖x‖ℓp and t = ‖y‖ℓp′ . Then

x/s = (xk/s) ∈ ℓp and y/t = (yk/t) ∈ ℓp
′

are each unit vectors, i.e., ‖x/s‖ℓp =
1 = ‖y/t‖ℓp′ . The result then follows by applying equation (1.5) to x/s and
y/t. ⊓⊔

Note that if p = 2 then the dual index is p′ = 2 as well. Therefore, we
have the following special cases of Hölder’s inequality, usually referred to as
the Cauchy–Schwarz or Cauchy–Bunyakovski–Schwarz inequalities:

‖(xkyk)‖ℓ1 ≤ ‖(xk)‖ℓ2 ‖(yk)‖ℓ2 and ‖fg‖L1 ≤ ‖f‖L2 ‖g‖L2. (1.6)

ℓ2 and L2(E) are specific examples of Hilbert spaces, which are discussed in
more detail in Section 1.5. In particular, Theorem 1.37 will present a general-
ization of the Cauchy–Bunyakovski–Schwarz inequalities that is valid in any
Hilbert space.

Now we show that ‖ · ‖ℓp is a norm on ℓp. Although we will not prove
it, a similar argument shows that ‖ · ‖Lp is a norm on Lp(E). The Triangle
Inequality on ℓp or Lp is often called Minkowski’s Inequality.

Theorem 1.13 (Minkowski’s Inequality). If 1 ≤ p ≤ ∞, then ‖ · ‖ℓp is a
norm on ℓp and ‖ · ‖Lp is a norm on Lp(E).

Proof. The cases p = 1 and p =∞ are straightforward, so consider 1 < p <∞.
All of the properties of a norm are clear except for the Triangle Inequality. To
prove this, fix x = (xk) and y = (yk) in ℓp. Then we have

‖x+ y‖pℓp =
∑

k

|xk + yk|p−1 |xk + yk|

≤
∑

k

|xk + yk|p−1 |xk| +
∑

k

|xk + yk|p−1 |yk|

≤
(∑

k

(
|xk + yk|p−1

)p′
)1/p′ (∑

k

|xk|p
)1/p

+

(∑

k

(
|xk + yk|p−1

)p′
)1/p′ (∑

k

|yk|p
)1/p
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=

(∑

k

|xk + yk|p
)(p−1)/p

‖x‖ℓp +

(∑

k

|xk + yk|p
)(p−1)/p

‖y‖ℓp

= ‖x+ y‖p−1
ℓp ‖x‖ℓp + ‖x+ y‖p−1

ℓp ‖y‖ℓp ,
where we have applied Hölder’s Inequality with exponents p′ and p, and used
the fact that p′ = p/(p − 1). Dividing both sides by ‖x + y‖p−1

ℓp , we obtain
‖x+ y‖ℓp ≤ ‖x‖ℓp + ‖y‖ℓp. ⊓⊔

Finally, we show that ℓp is complete and therefore is a Banach space. The
argument for Lp(E) is similar in spirit but is technically more complicated,
and will be omitted (see [Fol99] or [WZ77]).

Theorem 1.14. If 1 ≤ p ≤ ∞, then ℓp is a Banach space with respect to the
norm ‖ · ‖ℓp , and Lp(E) is a Banach space with respect to the norm ‖ · ‖Lp .

Proof. Fix 1 ≤ p <∞ (the case p =∞ is similar), and suppose that {xn}n∈N

is a Cauchy sequence in ℓp. Each xn is a vector in ℓp, so let us write the
components of xn as

xn =
(
xn(1), xn(2), . . .

)
.

Then for each fixed index k ∈ N we have |xm(k) − xn(k)| ≤ ‖xm − xn‖ℓp .
Hence

(
xn(k)

)
n∈N

is a Cauchy sequence of scalars, and therefore must con-

verge since F is complete. Define x(k) = limn→∞ xn(k). Then xn converges
componentwise to x =

(
x(1), x(2), . . .

)
, i.e.,

∀ k ∈ N, x(k) = lim
n→∞

xn(k).

We need to show that xn converges to x in the norm of ℓp.
Choose any ε > 0. Then, by the definition of a Cauchy sequence, there

exists an N such that ‖xm − xn‖ℓp < ε for all m, n > N. Fix any particular
n > N. For each M > 0 we have

M∑

k=1

|x(k)−xn(k)|p = lim
m→∞

M∑

k=1

|xm(k)−xn(k)|p ≤ lim
m→∞

‖xm−xn‖pℓp ≤ εp.

Since this is true for every M, we conclude that

‖x−xn‖pℓp =
∞∑

k=1

|x(k)−xn(k)|p = lim
M→∞

M∑

k=1

|x(k)−xn(k)|p ≤ εp. (1.7)

Consequently,

‖x‖ℓp = ‖x− xn + xn‖ℓp ≤ ‖x− xn‖ℓp + ‖xn‖ℓp < ∞,
so x ∈ ℓp. Further, since equation (1.7) holds for all n > N, we have that
limn→∞ ‖x− xn‖ℓp = 0, i.e., xn → x in ℓp. Therefore ℓp is complete. ⊓⊔

Theorems 1.13 and 1.14 carry over with minimal changes to show that Fd

is a Banach space with respect to any of the norms |·|p defined in Example 1.5.
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Exercises

1.10. (a) Show that if 0 < θ < 1, then tθ ≤ θt+(1−θ) for t ≥ 0, with equality
if and only if t = 1.

(b) Suppose that 1 < p <∞ and a, b ≥ 0. Apply part (a) with t = apb−p
′

and θ = 1/p to show that ab ≤ ap/p + bp
′

/p′, with equality if and only if
b = ap−1.

1.11. Show that equality holds in Hölder’s Inequality for sequences (part (a)
of Theorem 1.12) if and only if there exist scalars α, β, not both zero, such
that α |xk|p = β |yk|p

′

for each k ∈ I.

1.12. Show that if 1 ≤ p < q ≤ ∞, then ℓp ( ℓq and ‖x‖ℓq ≤ ‖x‖ℓp for all
x ∈ ℓp.

1.13. Let E ⊆ R be measurable with |E| <∞. Show that if 1 ≤ p < q ≤ ∞,
then Lq(E) ( Lp(E) and ‖f‖Lp ≤ |E| 1p− 1

q ‖f‖Lq for all f ∈ Lp(E).

1.14. Show that if x ∈ ℓq for some finite q, then ‖x‖ℓp → ‖x‖ℓ∞ as p → ∞,
but this can fail if x /∈ ℓq for any finite q.

1.15. Given an arbitrary index set I, define ℓ∞(I) to be the space of all
bounded sequences x = (xi)i∈I indexed by I, with ‖x‖∞ = supi∈I |xi|. For
1 ≤ p <∞ let ℓp(I) consist of all sequences x = (xi)i∈I with at most countably
many nonzero components such that ‖x‖pℓp =

∑ |xi|p < ∞. Show that each
of these spaces ℓp(I) is a Banach space with respect to ‖ · ‖ℓp . What is ℓp(I)
if I = {1, . . . , d}?

1.16. Let X, Y be normed linear spaces. Given 1 ≤ p <∞, x ∈ X, and y ∈ Y,
define ‖(x, y)‖p =

(
‖x‖pX + ‖y‖pY

)1/p
and ‖(x, y)‖∞ = max{‖x‖X , ‖y‖Y }.

(a) Prove that ‖ · ‖p is a norm on the Cartesian product X × Y, and ‖ · ‖p
and ‖ · ‖q are equivalent norms on X × Y for any 1 ≤ p, q ≤ ∞.

(b) Show that if X and Y are Banach spaces, then X × Y is a Banach
space with respect to ‖ · ‖p.

1.3 Basic Properties of Banach Spaces

In this section we will give some definitions and facts that hold for normed
spaces and Banach spaces.

Definition 1.15. Let X be a normed linear space.

(a) Recall from Definition 1.1 that if x ∈ X and r > 0, then the open ball in
X centered at x with radius r is Br(x) = {y ∈ X : ‖x− y‖ < r}.
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(b) A subset U ⊆ X is open if for each x ∈ U there exists an r > 0 such that
Br(x) ⊆ U.

(c) A subset E ⊆ X is closed if X\E is open.

(d) Let E ⊆ X. Then x ∈ X is a limit point of E if there exist xn ∈ E with
all xn 6= x such that xn → x.

(e) The closure of a subset E ⊆ X is the smallest closed set E that contains E,
i.e., E = ∩

{
F : F is closed and E ⊆ F

}
.

(f) A subset E ⊆ X is dense in X if E = X. ♦

The following lemma gives useful equivalent reformulations of some of the
notions defined above. Exercise 1.17 asks for proof of Lemma 1.16.

Lemma 1.16. Given a Banach space X and given E ⊆ X, the following
statements hold.

(a) E is closed if and only if it contains all of its limit points.

(b) E = E ∪ {x ∈ X : x is a limit point of E}. Consequently, E is closed if
and only if E = E.

(c) E is dense in X if and only if every x ∈ X is a limit point of E. ♦

Once we have a space X in hand that we know is a Banach space with
respect to a norm ‖ · ‖, we often need to know if a given subspace S of X is
also a Banach space with respect to this same norm. The next lemma (whose
proof is Exercise 1.18) gives a convenient characterization of those subspaces
that are complete with respect to the norm on X.

Lemma 1.17. Let S be a subspace of a Banach space X. Then S is a Ba-
nach space with respect to the norm on X if and only if S is a closed subset
of X. ♦

We can use Lemma 1.17 to give some additional examples of normed spaces
that are or are not Banach spaces.

Example 1.18. (a) Define

c = c(N) =
{
a = (ak) : lim

k→∞
ak exists

}
,

c0 = c0(N) =
{
a = (ak) : lim

k→∞
ak = 0

}
.

Exercise 1.20 asks for a proof that c and c0 are closed subspaces of ℓ∞. Con-
sequently, Lemma 1.17 implies that c and c0 are Banach spaces with respect
to the norm ‖ · ‖ℓ∞ .

(b) Now consider

c00 = c00(N) =
{
a = (ak) : only finitely many ak are nonzero

}
.
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Even though the elements of c00 are infinite sequences, since only finitely many
components are nonzero, they are often called “finite sequences.” Note that
c00 is a subspace of c0, c, and ℓ∞. By Exercise 1.20, c00 is a proper, dense
subset of c0. Consequently, c00 = c0 6= c00, so c00 is not a closed subspace
of c0 (or of c or ℓ∞), and therefore it is not a Banach space with respect to
‖ · ‖ℓ∞ .

A specific example of a Cauchy sequence in c00 that does not have a limit
in c00 is the sequence {xn}, where xn is the vector in ℓp given by

xn =
(
1, 1

2 , . . . ,
1
n , 0, 0, . . .

)
.

The vectors xn do converge in ℓ∞ norm to the vector x = (1, 1
2 ,

1
3 , . . . ), but

x does not belong to c00. While {xn} converges in c0 and in ℓ∞, it does not
converge in c00. ♦

Although c00 is not a Banach space with respect to the sup-norm, it is a
proper, dense subspace of c0, which is a Banach space. More generally, given
any normed linear space X that is not complete, there exists a unique Banach

space X̃ such that X is a proper, dense subspace of X̃ and the norm on X̃
extends the norm on X (see Exercise 1.25).

Following are some examples of normed spaces whose elements are contin-
uous functions. More examples appear in the Exercises.

Example 1.19. (a) Define

C(R) =
{
f : R→ F : f is continuous on R

}
.

While there is no convenient norm on C(R), Exercise 1.21 shows that the
subspace

Cb(R) =
{
f ∈ C(R) : f is bounded

}

is a Banach space with respect to the sup-norm or uniform norm

‖f‖∞ = sup
t∈R

|f(t)|.

(b) By Exercise 1.21,

C0(R) =
{
f ∈ Cb(R) : lim

|t|→∞
f(t) = 0

}

is a closed subspace of Cb(R) with respect to the uniform norm. Therefore
C0(R) is a Banach space with respect to ‖ · ‖∞.

(c) Recall that a continuous function f : R → F has compact support if
f(t) = 0 for all t outside of some finite interval. The space

Cc(R) =
{
f ∈ C(R) : f has compact support

}
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is a subspace of C0(R) and Cb(R). However, Cc(R) is a dense but proper
subset of C0(R) with respect to the uniform norm (Exercise 1.21). Hence
Cc(R) is not closed and therefore is not complete with respect to ‖ · ‖∞.

(d) We can similarly define spaces of functions that are continuous on
domains other than R. The most important example for us is the space of
functions that are continuous on a closed finite interval [a, b], which we write
as follows:

C[a, b] =
{
f : [a, b]→ F : f is continuous on [a, b]

}
.

Every continuous function on [a, b] is bounded, and C[a, b] is a Banach space
with respect to the uniform norm. ♦

Remark 1.20. For a continuous function f, the supremum of |f(x)| coincides
with its essential supremum, i.e., ‖f‖∞ = ‖f‖L∞ (see Exercise 1.19). There-
fore, if we identify a continuous function f with the equivalence class of all
functions that equal f almost everywhere, then we can regard Cb(E) as being
a subspace of L∞(E). In this sense of identification, Cb(R) and C0(R) are
closed subspaces of L∞(E), but Cc(R) is not a closed subspace with respect
to ‖ · ‖L∞. ♦

When considering a space of bounded continuous functions by itself, we
usually assume that the norm on the space is the uniform norm. For example,
Example 1.29 below will present the Weierstrass Approximation Theorem,
which deals with C[a, b] under the uniform norm. However, if we are thinking
of a space of continuous functions as being a subspace of a larger space X,
then we use the norm on X unless specifically stated otherwise. For example,
the next lemma considers C[a, b] as a subspace of Lp[a, b], and we therefore
implicitly assume in this result that the norm on C[a, b] is ‖ · ‖Lp . For proof
of Lemma 1.21, we refer to [Fol99].

Lemma 1.21. (a) C[a, b] is dense in Lp[a, b] for each 1 ≤ p <∞.
(b) Cc(R) is dense in Lp(R) for each 1 ≤ p <∞. ♦

Next we prove directly that all finite-dimensional subspaces of a normed
space are closed.

Theorem 1.22. If M is a finite-dimensional subspace of a normed linear
space X, then M is closed.

Proof. Suppose that xn ∈M and xn → y ∈ X. If y /∈M, define

M1 = M + span{y} = {m+ cy : m ∈M, c ∈ F}.

Since y /∈ M, every vector x ∈ M1 has a unique representation of the form
x = mx + cxy with mx ∈M and cx ∈ F. Therefore we can define
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‖x‖M1
= ‖mx‖+ |cx|,

where ‖ · ‖ is the norm on X. This forms a norm on M1.
Since M1 is finite dimensional, Theorem 1.8 implies that all norms on M1

are equivalent. Hence there exist constants A, B > 0 such that

A ‖x‖ ≤ ‖x‖M1
≤ B ‖x‖, x ∈M1.

Now, since xn ∈ M, the representation of y − xn as a vector in M1 takes
mz = −xn and cz = 1. Therefore

1 ≤ ‖xn‖+ 1 = ‖y − xn‖M1
≤ B ‖y − xn‖ → 0 as n→∞.

This is a contradiction, so we must have y ∈M. Hence M is closed. ⊓⊔

The next definition provides one way to distinguish “large” Banach spaces
from “small” ones. Specifically, a “small” Banach space is one that contains
a countable dense subset; we call such a space separable. For example, Q is a
countable dense subset of R, so R is separable, and likewise Fd is separable
for each d ∈ N.

Definition 1.23. A normed linear space X is separable if it contains a count-
able dense subset. ♦

Example 1.24. (a) If 1 ≤ p <∞ then ℓp is separable, but ℓ∞ is not separable
(see Example 1.31 and Exercise 1.28). It is likewise true that Lp(E) is sepa-
rable for 1 ≤ p < ∞ and L∞(E) is not separable (unless |E| = 0), although
the proof of these facts requires some knowledge of measure theory and will
be omitted.

(b) In Example 1.29 we will see that the Weierstrass Approximation The-
orem implies that the Banach space C[a, b] is separable (with respect to the
uniform norm). This can then be used to show that C0(R) is separable as well
(Exercise 1.27). ♦

Exercises

1.17. Prove Lemma 1.16.

1.18. Prove Lemma 1.17.

1.19. Show that if f ∈ Cb(R), then ess supt∈R |f(t)| = supt∈R |f(t)|, and
consequently ‖f‖L∞ = ‖f‖∞.

1.20. (a) Show that c and c0 are closed subspaces of ℓ∞.

(b) Show that c00 is a proper, dense subspace of c0, and hence is not closed
with respect to the norm ‖ · ‖ℓ∞ .
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(c) Let {δn} denote the sequence of standard basis vectors (see Exam-
ple 1.30). Given x = (xn) ∈ c0, show that x =

∑
xnδn, where the series

converges with respect to the norm ‖ · ‖ℓ∞ . Show further that the scalars xn
in this representation are unique.

1.21. (a) Show that Cb(R) is a Banach space with respect to the uniform
norm ‖ · ‖∞.

(b) Show that C0(R) is a closed subspace of Cb(R).

(c) Show that Cc(R) is a proper, dense subspace of C0(R), and hence is
not closed with respect to ‖ · ‖∞.

(d) Let C(T) be the set of all continuous functions f ∈ C(R) that are
1-periodic, i.e., f(t + 1) = f(t) for every t ∈ R. Show that C(T) is a closed
subspace of Cb(R).

1.22. Let Cmb (R) be the space of all m-times differentiable functions on R
each of whose derivatives is bounded and continuous, i.e.,

Cmb (R) =
{
f ∈ Cb(R) : f, f ′, . . . , f (m) ∈ Cb(R)

}
.

(a) Show that Cmb (R) is a Banach space with respect to the norm

‖f‖Cm
b

= ‖f‖∞ + ‖f ′‖∞ + · · ·+ ‖f (m)‖∞,
and

Cm0 (R) =
{
f ∈ C0(R) : f, f ′, . . . , f (m) ∈ C0(R)

}

is a subspace of Cmb (R) that is also a Banach space with respect to the same
norm.

(b) Now we change the norm on C1
b (R). Show that (C1

b (R), ‖ · ‖∞) is a
normed space, but is not complete.

1.23. We say that a function f : R → F is Hölder continuous with exponent
α > 0 if there exists a constant K > 0 such that

∀x, y ∈ R, |f(x)− f(y)| ≤ K |x− y|α.
A function that is Hölder continuous with exponent α = 1 is said to be
Lipschitz.

(a) Show that if f is Hölder continuous for some α > 1, then f is constant.

(b) Show that if f is differentiable on R and f ′ is bounded, then f is
Lipschitz. Find a function g that is Lipschitz but is not differentiable at every
point.

(c) Given 0 < α < 1, define

Cα(R) =
{
f ∈ C(R) : f is Hölder continuous with exponent α

}
.

Show that Cα(R) is a Banach space with respect to the norm

‖f‖Cα = |f(0)| + sup
x 6=y

f(x)− f(y)

|x− y|α .
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1.24. Consider the two functions ϕ1, ϕ2 pictured in Figure 1.1. The function
ϕ1 takes the constant value 1/2 on the interval (1/3, 2/3) that is removed in
the first stage of the construction of the classical Cantor middle-thirds set,
and is linear on the remaining intervals. The function ϕ2 also takes the same
constant 1/2 on the interval (1/3, 2/3) but additionally is constant with values
1/4 and 3/4 on the two intervals (1/9, 2/9) and (7/9, 8/9) that are removed in
the second stage of the construction of the Cantor set. Continue this process,
defining ϕ3, ϕ4, . . . , and prove the following facts.

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

0.25 0.5 0.75 1

0.25

0.5

0.75

1

Fig. 1.1. Top left: The function ϕ1. Top right: The function ϕ2. Bottom: The Devil’s
staircase (Cantor–Lebesgue function).

(a) Each ϕk is monotone increasing on [0, 1], and |ϕk+1(t)− ϕk(t)| < 2−k

for every t ∈ [0, 1].

(b) ϕ(t) = limk→∞ ϕk(t) converges uniformly on [0, 1]. The limit function
ϕ is called the Cantor–Lebesgue function or, more picturesquely, the Devil’s
staircase.

(c) The Cantor–Lebesgue function is Hölder continuous on the interval
[0, 1] precisely for exponents α in the range 0 < α ≤ log3 2 ≈ 0.6309 . . . . In
particular, ϕ is continuous and monotone increasing on [0, 1] but it is not
Lipschitz. Even so, ϕ is differentiable for a.e. t ∈ [0, 1], and ϕ′(t) = 0 a.e.
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1.25. Let X be a normed linear space that is not complete. Let C be the set
of all Cauchy sequences in X, and define a relation ∼ on C by declaring that
{xn} ∼ {yn} if limn→∞ ‖xn − yn‖ = 0.

(a) Show that ∼ is an equivalence relation on C.
(b) Let [xn] =

{
{yn} : {yn} ∼ {xn}

}
denote the equivalence class of {xn}

under the relation ∼ . Let X̃ be the set of all equivalence classes [xn]. Define∥∥[xn]
∥∥ eX = limn→∞ ‖xn‖. Prove that ‖ · ‖ eX is a well-defined norm on X̃.

(c) Given x ∈ X, let [x] denote the equivalence class of the Cauchy se-

quence {x, x, x, . . . }. Show that T : x 7→ [x] is an isometric map of X into X̃,
where isometric means that ‖Tx‖ eX = ‖x‖ for every x (see Definition 1.60).

Show also that T (X) is a dense subspace of X̃ (so, in the sense of identifying

of X with T (X), we can consider X to be a subspace of X̃).

(d) Show that X̃ is a Banach space with respect to ‖ · ‖ eX . We call X̃ the
completion of X.

(e) Prove that X̃ is unique in the sense that if Y is a Banach space and
U : X → Y is a linear isometry such that U(X) is dense in Y, then there exists

a linear isometric bijection V : Y → X̃.

1.4 Linear Combinations, Sequences, Series, and
Complete Sets

In this section we review some definitions and concepts related to sequences,
linear combinations, and infinite series in normed spaces.

Definition 1.25. Let S be a subset of a normed linear space X.

(a) S is finitely linearly independent, or simply independent for short, if for
every choice of finitely many distinct vectors x1, . . . , xN ∈ S and scalars
c1, . . . , cN ∈ F we have

N∑

n=1

cnxn = 0 =⇒ c1 = · · · = cN = 0.

(b) The finite linear span, or simply the span, of S is the set of all finite linear
combinations of elements of S, i.e.,

span(S) =

{ N∑

n=1

cnxn : N ∈ N, x1, . . . , xN ∈ S, c1, . . . , cN ∈ F

}
.

If S = {xn} is countable, then we often write span{xn} instead of
span({xn}):
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span{xn} =

{ N∑

n=1

cnxn : N ∈ N and c1, . . . , cN ∈ F

}
.

(c) The closed linear span, or simply the closed span, of S is the closure
in X of span(S), and is denoted span(S). If S = {xn} then we write
span{xn} = span({xn}).

(d) {xn} is complete (or total or fundamental) in X if span(S) = X, i.e., if
span(S) is dense in X. ♦
Later we will see an equivalent characterization of complete sequences in

Banach spaces (see Corollary 2.5).

Remark 1.26. Unfortunately, the term “complete” is heavily overused in math-
ematics, and indeed we have now introduced two distinct uses for it. First,
a normed linear space X is complete if every Cauchy sequence in X is con-
vergent. Second, a sequence {xn} in a normed linear space X is complete if
span{xn} is dense in X. Which of these two distinct uses is meant should be
clear from context. ♦

Only separable normed spaces can contain a countable complete sequence.

Theorem 1.27. Let X be a normed space. If there exists a sequence {xn}n∈N

in X that is complete, then X is separable.

Proof. Suppose that {xn} is a complete sequence in X, and let

S =

{ N∑

n=1

rnxn : N > 0, rn is rational

}
,

where if F = C then “rational” means that both the real and imaginary parts
are rational. Then S is countable, and we claim it is dense in X. Without loss
of generality, we may assume that every xn is nonzero.

Choose any x ∈ X. Since span(S) is dense in X, there exists a vector

y =

N∑

n=1

cnxn

such that ‖x− y‖ < ε. For each n, choose a rational scalar rn such that

|cn − rn| <
ε

N ‖xn‖
,

and set z =
∑N
n=1 rnxn. Then z ∈ S and

‖y − z‖ ≤
N∑

n=1

|cn − rn| ‖xn‖ <
N∑

n=1

ε

N ‖xn‖
‖xn‖ = ε.

Hence ‖x− z‖ < 2ε, so S is dense in X. ⊓⊔
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It is very important to distinguish between elements of the closed span and
vectors that can be written in the form x =

∑∞
n=1 cnxn. Before elaborating

on this, we give the definition of an infinite series in a normed space. We will
explore infinite series in depth in Chapter 3.

Definition 1.28 (Convergent Series). Let {xn} be a sequence in a normed
linear space X. Then the series

∑∞
n=1 xn converges and equals x ∈ X if the

partial sums sN =
∑N

n=1 xn converge to x, i.e., if

lim
N→∞

‖x− sN‖ = lim
N→∞

∥∥∥∥x−
N∑

n=1

xn

∥∥∥∥ = 0. ♦

We emphasize that the definition of the closed span does not say that

span{xn} =

{ ∞∑

n=1

cnxn : cn ∈ F

}
← This need not hold!

In particular it is not true that an arbitrary element of span{xn} can always
be written as x =

∑∞
n=1 cnxn for some cn ∈ F (see Example 1.29). Instead,

span{xn} =
{
x ∈ X : ∃ cn,N ∈ F such that

N∑

n=1

cn,Nxn → x as N →∞
}
.

That is, an element x lies in the closed span of {xn} if and only if there exist
cn,N ∈ F for N ∈ N and n = 1, . . . , N such that

N∑

n=1

cn,Nxn → x as N →∞. (1.8)

We emphasize that the scalars cn,N in equation (1.8) can depend on N. In
contrast, to say that x =

∑∞
n=1 cnxn means that

N∑

n=1

cnxn → x as N →∞. (1.9)

In order for equation (1.9) to hold, the scalars cn must be independent of N.
We will explore these issues in more detail in Chapter 3.

Example 1.29. Consider the Banach space C[a, b] under the uniform norm.
The Weierstrass Approximation Theorem states that if f ∈ C[a, b] and ε > 0,
then there exists polynomial p(x) =

∑n
k=0 ckx

k such that ‖f − p‖∞ < ε
(see [BBT97, Cor. 9.65]). This is equivalent to saying that the sequence of

monomials {xk}∞k=0 is complete in C[a, b] (which implies by Theorem 1.27
that C[a, b] is separable). However, not every function f ∈ C[a, b] can be
written as f(x) =

∑∞
k=0 αkx

k with convergence of the series in the uniform
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norm. A series of this form is called a power series, and if it converges at
some point x, then it converges absolutely for all points t with |t| < r where
r = |x|. Moreover, by Exercise 1.29 the function f so defined is infinitely
differentiable on (−r, r). Therefore, for example, the function f(x) = |x − c|
where a < c < b cannot be written as a power series, even though it belongs

to the closed span of {xk}∞k=0. In the language of Chapter 4, while {xk}∞k=0 is

complete in C[a, b], it does not form a basis for C[a, b]. Moreover, {xk}∞k=0 is
not a basis even though it is both complete and finitely linearly independent.

Although we will not prove it, given f ∈ C[a, b] it is possible to explicitly
construct polynomials pn such that ‖f −pn‖∞ → 0 as n→∞. The Bernstein
polynomials for f are one example of such a construction, e.g., see [Bar76,
Thm. 24.7] for details. ♦

On the other hand, the next example shows that it is possible for the
closed span of a sequence to consist of “infinite linear combinations” of the
sequence elements.

Example 1.30 (Standard Basis for c0). For each n ∈ N, we let δn denote
the sequence δn = (δnk)k∈N = (0, . . . , 0, 1, 0, . . . ), where the 1 is in the nth
component. The finite span of {δn} is span{δn} = c00. Given x = (xn) ∈ c0,
set sN =

∑N
n=1 xnδn. Then since xn → 0 we have

lim
N→∞

‖x− sN‖ℓ∞ = lim
N→∞

sup
n>N

|xn| = lim sup
n→∞

|xn| = 0.

Hence

x =

∞∑

n=1

xnδn, (1.10)

where the series converges with respect to ‖ · ‖ℓ∞ , which is the norm of c0.
Further, the scalars xn in equation (1.10) are unique. Thus every x is a limit
of elements of span{δn} so {δn} is complete in c0. However, even more is
true. In the language of Chapter 4, the fact that every x ∈ c0 has a unique
representation of the form given in equation (1.10) says that {δn} forms a basis
for c0. Not only do we know that finite linear combinations of the vectors δn
are dense in c0, but we can actually write every element of c0 as a unique
“infinite linear combination” of the δn. Hence

c0 = span{δn} =

{ ∞∑

n=1

cnδn : cn ∈ F and lim
n→∞

cn = 0

}
.

We call {δn} the standard basis for c0. ♦

Note that if we use a norm other than ‖ ·‖ℓ∞, then the closed span of {δn}
might be different.
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Example 1.31 (Standard Basis for ℓp). If x = (xn) ∈ ℓp where 1 ≤ p <∞ and

we set sN =
∑N

n=1 xnδn, then

lim
N→∞

‖x− sN‖ℓp = lim
N→∞

∞∑

n=N+1

|xn|p = 0,

so we have x =
∑
xnδn with convergence of this series in ℓp-norm. Further, if

x =
∑
cnδn for some scalars cn, then we must have cn = xn (why?). In the

terminology of Definition 4.3, the sequence {δn} is a basis for ℓp, which we
call the standard basis for ℓp. Consequently ℓp is separable when p is finite,
and an explicit countable dense subset is

S =
{
x = (x1, . . . , xn, 0, 0, . . . ) : n ∈ N, xn rational

}
.

In contrast, ℓ∞ is not separable; see Exercise 1.28. ♦
We introduce the following terminology to distinguish between a sequence

that is merely complete in a Banach space X and one that has properties
similar to those possessed by the standard basis in c0 and ℓp.

Definition 1.32 (Basis). A sequence {xn} of vectors in a Banach space X
is a basis for X if every x ∈ X can be written

x =

∞∑

n=1

cnxn (1.11)

for a unique choice of scalars cn ∈ F. ♦
In particular, if {xn} is a basis and we write x as in equation (1.11),

then the partial sums sN =
∑N
n=1 cnxn belong to the finite span of {xn} and

converge to x as N →∞. Hence span{xn} is dense in X. Therefore every basis
is a complete sequence, but Example 1.29 shows us that a complete sequence
need not be a basis.

Bases and their relatives will occupy us from Chapter 4 onwards. For
now we simply warn the reader not to confuse the meaning of “basis” in
the sense of Definition 1.32 with the familiar notion of a “basis” in finite-
dimensional linear algebra. A vector space basis (which we call a Hamel basis
in this volume) is one that spans and is linearly independent using finite linear
combinations only, whereas Definition 1.32 is worded in terms of “infinite
linear combinations.” The two notions are not equivalent. For more detailed
discussions of this issue, see Chapters 4 and 5, and Sections 4.1 and 5.2 in
particular.

Exercises

1.26. Suppose that
∑
xn and

∑
yn are convergent series in a normed spaceX.

Show that
∑

(xn + yn) is convergent and equals
∑
xn +

∑
yn.
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1.27. Show that C0(R) is separable.

1.28. (a) Show that if X is a normed linear space and there exists an un-
countable set S ⊆ X such that ‖x − y‖ = 1 for every x 6= y ∈ S, then X is
not separable.

(b) LetD = {x = (x1, x2, . . . ) ∈ ℓ∞ : xk = 0, 1 for each k}. Show thatD is
uncountable and that if x, y are two distinct vectors in D, then ‖x−y‖ℓ∞ = 1.
Conclude that ℓ∞ is not separable.

(c) Show that L∞(R) is not separable.

1.29. Let (ck)k≥0 be a fixed sequence of real numbers. Show that if the series∑∞
k=0 cky

k converges for some y ∈ R, then the series f(x) =
∑∞
k=0 ckx

k

converges absolutely for all |x| < |y|, and show that this function f is infinitely
differentiable for all x with |x| < |y|.

1.5 Hilbert Spaces

A Hilbert space is a Banach space with additional geometric properties. In
particular, the norm of a Hilbert space is obtained from an inner product that
mimics the properties of the dot product of vectors in Rn or Cn. Recall that
the dot product of u, v ∈ Cn is defined by

u · v = u1v1 + · · ·+ unvn. (1.12)

The Euclidean norm |v| = (|v1|2 + · · ·+ |vn|2)1/2 is related to the dot product

by the equation |v| = (v·v)1/2. For p 6= 2 the norm |v|p = (|v1|p+· · ·+|vn|p)1/p
has no such relation to the dot product. In fact, when p 6= 2 there is no way to
define a “generalized dot product” u · v that has the same essential algebraic
properties as the usual dot product and which also satisfies |v|p = (v · v)1/2.
These “essential algebraic properties” of the dot product are the properties
(a)–(d) that appear in the following definition. Note that if F = R, then the
complex conjugate appearing in this definition is superfluous.

Definition 1.33. A vector space H is an inner product space if for each x,
y ∈ H there exists a scalar 〈x, y〉 ∈ F, called the inner product of x and y, so
that the following statements hold:

(a) 〈x, x〉 is real and 〈x, x〉 ≥ 0 for each x ∈ H,
(b) 〈x, x〉 = 0 if and only if x = 0,

(c) 〈y, x〉 = 〈x, y〉 for all x, y ∈ H, and

(d) 〈ax+ by, z〉 = a〈x, z〉+ b〈y, z〉 for all x, y, z ∈ H and all a, b ∈ F. ♦



26 1 Banach Spaces and Operator Theory

Alternative symbols for inner products include [·, ·], (·, ·), etc.
Combining parts (c) and (d) of Definition 1.33, it follows by induction that

〈 N∑

n=1

cnxn, y

〉
=

N∑

n=1

cn 〈xn, y〉 and

〈
x,

N∑

n=1

cnyn

〉
=

N∑

n=1

cn 〈x, yn〉.

If H is an inner product space, then we will see in Theorem 1.37 that
‖x‖ = 〈x, x〉1/2 defines a norm for H, called the induced norm. Hence all inner
product spaces are normed linear spaces. If H is complete with respect to this
induced norm, then H is called a Hilbert space. Thus Hilbert spaces are those
Banach spaces whose norms can be derived from an inner product.

A given vector space may have many inner products.

Definition 1.34. We say that two inner products 〈·, ·〉 and (·, ·) for a Hilbert
space H are equivalent if the corresponding induced norms ‖x‖2 = 〈x, x〉 and

|||x|||2 = (x, x) are equivalent in the sense of Definition 1.7. ♦

Now we give some examples of Hilbert spaces.

Example 1.35. (a) Fd is a Hilbert space with respect to the dot product given
in equation (1.12). Also, if A is a positive definite n × n matrix with entries
in F, then

〈x, y〉A = Ax · y, x, y ∈ Fd, (1.13)

defines another inner product on Fd, and Fd is a Hilbert space with respect to
this inner product. Moreover, every inner product on Fd has the form given
in equation (1.13) for some positive definite matrix A, and all such inner
products on Fd are equivalent (see Exercise 1.30).

(b) ℓ2 is a Hilbert space with respect to the inner product

〈
(xk), (yk)

〉
=

∞∑

k=1

xk yk, (xk), (yk) ∈ ℓ2.

Note that the Cauchy–Bunyakovski–Schwarz Inequality implies that the series
above converges absolutely for each choice of sequences (xk), (yk) ∈ ℓ2. Since
c00 is a subset of ℓ2, we can use the same rule to define an inner product on
c00. Thus c00 is an inner product space, but it is not complete with respect to
this inner product.

(c) L2(E) is a Hilbert space with respect to the inner product

〈f, g〉 =

∫

E

f(t) g(t) dt, f, g ∈ L2(E).

The fact that the integral above exists is again a consequence of the Cauchy–
Bunyakovski–Schwarz Inequality. The same rule defines an inner product on
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any subspace X of L2(E), but X will only be complete with respect to that
inner product if it is a closed subspace of L2(E). For example,

X =
{
f ∈ L2(R) : f = 0 a.e. on (−∞, 0)

}

is a closed subspace of L2(R) and hence is a Hilbert space with respect to the
inner product of L2(R). On the other hand, Cc(R) is a proper dense subspace
of L2(R) and hence is not closed in L2(R). If we place the inner product from
L2(R) on Cc(R), then Cc(R) is an inner product space, but it is not complete
and therefore is not a Hilbert space with respect to that inner product. ♦

Here are a few basic properties of an inner product (see Exercise 1.31).
We say that vectors x, y in a Hilbert space are orthogonal if 〈x, y〉 = 0, and
in this case we often write x ⊥ y.

Lemma 1.36. Let H be a Hilbert space, and let x, y ∈ H be given.

(a) Polar Identity: ‖x+ y‖2 = ‖x‖2 + 2 Re(〈x, y〉) + ‖y‖2.
(b) Pythagorean Theorem: If 〈x, y〉 = 0 then ‖x± y‖2 = ‖x‖2 + ‖y‖2.
(c) Parallelogram Law: ‖x+ y‖2 + ‖x− y‖2 = 2

(
‖x‖2 + ‖y‖2

)
. ♦

The following result generalizes the Cauchy–Bunyakovski–Schwarz in-
equality to any Hilbert space H, and shows that the induced norm is indeed
a norm on H.

Theorem 1.37. Let H be an inner product space.

(a) Cauchy–Bunyakovski–Schwarz Inequality:

|〈x, y〉| ≤ ‖x‖ ‖y‖ for all x, y ∈ H.

(b) ‖x‖ = 〈x, x〉1/2 is a norm on H.

(c) ‖x‖ = sup
‖y‖=1

|〈x, y〉|.

Proof. (a) If x = 0 or y = 0 then there is nothing to prove, so suppose that
both are nonzero. Write 〈x, y〉 = α |〈x, y〉| where α ∈ F and |α| = 1. Then for
t ∈ R we have by the Polar Identity that

0 ≤ ‖x− αty‖2 = ‖x‖2 − 2 Re(ᾱt 〈x, y〉) + t2 ‖y‖2

= ‖x‖2 − 2t |〈x, y〉|+ t2 ‖y‖2.

This is a real-valued quadratic polynomial in the variable t. In order for it
to be nonnegative, it can have at most one real root. This requires that the

discriminant be at most zero, so
(
−2 |〈x, y〉|

)2 − 4 ‖x‖2 ‖y‖2 ≤ 0. The desired
inequality then follows upon rearranging.



28 1 Banach Spaces and Operator Theory

(b) The only property that is not obvious is the Triangle Inequality. From
the Polar Identity and the Cauchy–Bunyakovski–Schwarz Inequality,

‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + 2 Re(〈x, y〉) + ‖y‖2

≤ ‖x‖2 + 2 |〈x, y〉|+ ‖y‖2

≤ ‖x‖2 + 2 ‖x‖ ‖y‖+ ‖y‖2

=
(
‖x‖+ ‖y‖

)2
.

(c) We have sup‖y‖=1 |〈x, y〉| ≤ ‖x‖ by the Cauchy–Bunyakovski–Schwarz
Inequality, and the opposite inequality follows by considering y = x/‖x‖. ⊓⊔

We obtain the following useful facts as corollaries of Cauchy–Bunyakov-
ski–Schwarz.

Corollary 1.38. Let H be a Hilbert space.

(a) Continuity of the inner product: If xn → x and yn → y in H, then
〈xn, yn〉 → 〈x, y〉.

(b) If the series x =
∑∞

n=1 xn converges in H, then for any y ∈ H we have

〈x, y〉 =

〈 ∞∑

n=1

xn, y

〉
=

∞∑

n=1

〈xn, y〉.

Proof. (a) Suppose xn → x and yn → y. Since convergent sequences are
bounded, C = sup ‖xn‖ <∞. Therefore

|〈x, y〉 − 〈xn, yn〉| ≤ |〈x− xn, y〉|+ |〈xn, y − yn〉|
≤ ‖x− xn‖ ‖y‖+ ‖xn‖ ‖y − yn‖
≤ ‖x− xn‖ ‖y‖+ C ‖y − yn‖ → 0 as n→∞.

(b) Suppose that the series x =
∑∞

n=1 xn converges in H, and let sN =∑N
n=1 xn denote the partial sums of this series. Then, by definition, sN → x

in H. Hence, given y ∈ H we have

∞∑

n=1

〈xn, y〉 = lim
N→∞

( N∑

n=1

〈xn, y〉
)

= lim
N→∞

〈 N∑

n=1

xn, y

〉
= lim

N→∞
〈sN , y〉 = 〈x, y〉,

where at the last step we have used the continuity of the inner product. ⊓⊔

Now we give the definition and basic properties of orthogonal projections
in a Hilbert space.



1.5 Hilbert Spaces 29

Theorem 1.39. Let H be a Hilbert space, and let M be a closed subspace
of H. Given x ∈ H, there exists a unique element p ∈M that is closest to x,
i.e., ‖x− p‖ = dist(x,M) = inf{‖x−m‖ : m ∈M}.

Proof. Fix x ∈ H, and let d = dist(x,M) = inf{‖x −m‖ : m ∈ M}. Then,
by definition, there exist yn ∈ M such that d ≤ ‖x − yn‖ → d as n → ∞.
Therefore, if we fix any ε > 0 then we can find an N such that

n > N =⇒ d2 ≤ ‖x− yn‖2 ≤ d2 + ε2.

By the Parallelogram Law,

‖(x− yn)− (x− ym)‖2 +‖(x− yn)+ (x− ym)‖2 = 2
(
‖x− yn‖2 +‖x− ym‖2

)
.

Hence,

∥∥∥ym − yn
2

∥∥∥
2

=
1

4
‖(x− yn)− (x− ym)‖2

=
‖x− yn‖2

2
+
‖x− ym‖2

2
−
∥∥∥x− ym + yn

2

∥∥∥
2

.

However, ym+yn

2 ∈M since M is a subspace, so ‖x− ym+yn

2 ‖ ≥ d. Also, if m,

n > N then ‖x− yn‖2, ‖x− ym‖2 ≤ d2 + ε2. Therefore, for m, n > N we have

∥∥∥ym − yn
2

∥∥∥
2

≤ d2 + ε2

2
+
d2 + ε2

2
− d2 = ε2.

Thus, ‖ym − yn‖ ≤ 2ε for all m, n > N, which says that the sequence {yn}
is Cauchy. Since H is complete, this sequence must converge, so yn → p for
some p ∈ H. But yn ∈ M for all n and M is closed, so we must have p ∈ M.
Since x−yn → x−p, it follows from the continuity of the norm (Exercise 1.2)
that

‖x− p‖ = lim
n→∞

‖x− yn‖ = d,

and hence ‖x − p‖ ≤ ‖x − y‖ for every y ∈ M. Thus p is a closest point
in M to x, and we leave as an exercise the task of proving that p is unique
(Exercise 1.35). ⊓⊔

The proof of Theorem 1.39 carries over without change to show that if K
is a closed, convex subset of a Hilbert space, then given any x ∈ H there is a
unique point p in K that is closest to x.

Definition 1.40. Let M be a closed subspace of a Hilbert space H.

(a) Given x ∈ H, the unique vector p ∈ M that is closest to x is called the
orthogonal projection of x onto M.

(b) For x ∈ H let Px denote the vector that is the orthogonal projection of x
onto M. Then the mapping P : x 7→ Px is called the orthogonal projection
of H onto M. ♦
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Now we define orthogonal complements, which play an important role in
the analysis of Hilbert spaces. The lack of orthogonal projections and orthog-
onal complements in non-Hilbert spaces is often what makes the analysis of
generic Banach spaces so much more difficult than it is for Hilbert spaces.

Definition 1.41 (Orthogonal Complement). Let A be a subset (not nec-
essarily closed or a subspace) of a Hilbert spaceH. The orthogonal complement
of A is

A⊥ =
{
x ∈ H : x ⊥ A

}
=
{
x ∈ H : 〈x, y〉 = 0 for all y ∈ A

}
. ♦

The orthogonal complement of A is always a closed subspace of H, even
if A is not (Exercise 1.36).

Lemma 1.42. If A is a subset of a Hilbert space H, then A⊥ is a closed
subspace of H. ♦

Orthogonal projections can be characterized in terms of orthogonal com-
plements as follows (see Exercise 1.37).

Theorem 1.43. If M is a closed subspace of a Hilbert space H and x ∈ H,
then the following statements are equivalent.

(a) x = p+ e where p is the orthogonal projection of x onto M.

(b) x = p+ e where p ∈M and e ∈M⊥.

(c) x = p+ e where e is the orthogonal projection of x onto M⊥. ♦

Consequently, if P is the orthogonal projection of H onto M, then the
orthogonal projection of H onto M⊥ is I − P.

Here are some properties of orthogonal complements. (Exercise 1.38).

Lemma 1.44. Let H be a Hilbert space.

(a) If M is a closed subspace of H, then (M⊥)⊥ = M.

(b) If A is any subset of H, then

A⊥ = span(A)⊥ = span(A)⊥ and (A⊥)⊥ = span(A).

(c) A sequence {xn} in H is complete if and only if the following statement
holds:

x ∈ H and 〈x, xn〉 = 0 for every n =⇒ x = 0. ♦

Definition 1.45 (Orthogonal Direct Sum). LetM, N be closed subspaces
of a Hilbert space H.

(a) The direct sum of M and N is M +N = {x+ y : x ∈M, y ∈ N}.
(b) We say that M and N are orthogonal subspaces, denoted M ⊥ N, if x ⊥ y

for every x ∈M and y ∈ N.
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(c) If M, N are orthogonal subspaces in H, then we call their direct sum the
orthogonal direct sum of M and N, and denote it by M ⊕N. ♦
The proof of the next lemma is Exercise 1.39.

Lemma 1.46. Let M, N be closed, orthogonal subspaces of H.

(a) M ⊕N is a closed subspace of H.

(b) M ⊕M⊥ = H. ♦

Exercises

1.30. An n × n matrix A is said to be positive definite if Ax · x > 0 for all
x ∈ Fn (compare Definition 2.14).

(a) Show that if A is a positive definite n× n matrix then equation (1.13)
defines an inner product on Fd.

(b) Show that if 〈·, ·〉 is an inner product on Fd then there exists some
positive definite matrix A such that equation (1.13) holds.

(c) Prove that the inner products on Fd defined by equation (1.13) are all
equivalent.

1.31. Prove Lemma 1.36.

1.32. Show that if p 6= 2 then the norm ‖ · ‖ℓp on ℓp is not induced from any
inner product on ℓp.

1.33. Show that equality holds in the Cauchy–Bunyakovski–Schwarz Inequal-
ity if and only if x = cy or y = cx for some scalar c ∈ F.

1.34. We say that 〈·, ·〉 is a semi-inner product on a vector space H if prop-
erties (a), (c), and (d) of Definition 1.33 are satisfied. Prove that if 〈·, ·〉 is
a semi-inner product then ‖x‖ = 〈x, x〉1/2 defines a seminorm on H, and
|〈x, y〉| ≤ ‖x‖ ‖y‖ for all x, y ∈ H.
1.35. Given a closed subspace M of a Hilbert space H and given x ∈ H, prove
that the point in M closest to x is unique.

1.36. Prove Lemma 1.42.

1.37. Prove Theorem 1.43.

1.38. Prove Lemma 1.44.

1.39. Prove Lemma 1.46.

1.40. Let H, K be Hilbert spaces. Show that H ×K is a Hilbert space with
respect to the inner product

〈
(h1, k1), (h2, k2)

〉
= 〈h1, h2〉H + 〈k1, k2〉K .

1.41. Prove that the completion H̃ (Exercise 1.25) of an inner product
space H is a Hilbert space with respect to an inner product that extends
the inner product on H.
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1.6 Orthogonal Sequences in Hilbert Spaces

Two vectors x, y in a Hilbert space are orthogonal if 〈x, y〉 = 0. Sequences
in a Hilbert space which possess the property that any two distinct elements
are orthogonal have a number of useful features, which we consider in this
section.

Definition 1.47. Let {xn} be a sequence in a Hilbert space H.

(a) {xn} is an orthogonal sequence if 〈xm, xn〉 = 0 whenever m 6= n.

(b) {xn} is an orthonormal sequence if 〈xm, xn〉 = δmn, i.e., {xn} is orthogonal
and ‖xn‖ = 1 for every n.

(c) We recall from Definition 1.32 that {xn} is a basis for H if every x ∈ H
can be written x =

∑∞
n=1 cnxn for a unique choice of scalars cn.

(d) An orthonormal sequence {xn} is an orthonormal basis if it is both or-
thonormal and a basis. ♦

The definition of orthogonal and orthonormal sequences in a Hilbert
space H can be extended to arbitrary subsets of H. In particular, we say
that S ⊆ H is orthogonal if given any x 6= y ∈ S we have 〈x, y〉 = 0.

While orthogonality only makes sense in an inner product space, the def-
inition of a basis extends without change to Banach spaces. We will explore
bases in detail starting in Chapter 4. Here in this section we will concentrate
on the specific issue of basis properties of orthonormal sequences in Hilbert
spaces. We note that in the Banach space literature and in this volume the
word basis is reserved for countable sequences that satisfy statement (c) of
Definition 1.47.

We first recall the Pythagorean Theorem (Lemma 1.36), extended by in-
duction to finite collections of orthogonal vectors.

Lemma 1.48 (Pythagorean Theorem). If {x1, . . . , xN} are orthogonal

vectors in an inner product space H, then
∥∥∑N

n=1 xn
∥∥2

=
∑N

n=1 ‖xn‖2. ♦

The following result summarizes some basic results connected to conver-
gence of infinite series of orthonormal vectors.

Theorem 1.49. If {xn} is an orthonormal sequence in a Hilbert space H,
then the following statements hold.

(a) Bessel’s Inequality:
∑ |〈x, xn〉|2 ≤ ‖x‖2 for every x ∈ H.

(b) If x =
∑
cnxn converges, then cn = 〈x, xn〉.

(c)
∑
cnxn converges ⇐⇒ ∑ |cn|2 <∞.

(d) x ∈ span{xn} ⇐⇒ x =
∑ 〈x, xn〉xn.

(e) If x ∈ H, then p =
∑ 〈x, xn〉xn is the orthogonal projection of x onto

span{xn}.
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Proof. We will prove some statements, and the rest are assigned as Exer-
cise 1.42.

(a) Choose x ∈ H. For each N ∈ N define yN = x −∑N
n=1〈x, xn〉xn. If

1 ≤ m ≤ N, then

〈yN , xm〉 = 〈x, xm〉 −
N∑

n=1

〈x, xn〉 〈xn, xm〉 = 〈x, xm〉 − 〈x, xm〉 = 0.

Thus yN ⊥ x1, . . . , xN . Therefore, by the Pythagorean Theorem,

‖x‖2 =
∥∥∥yN +

N∑

n=1

〈x, xn〉xn
∥∥∥

2

= ‖yN‖2 +

N∑

n=1

‖〈x, xn〉xn‖2

= ‖yN‖2 +

N∑

n=1

|〈x, xn〉|2 ≥
N∑

n=1

|〈x, xn〉|2.

Letting N →∞, we obtain Bessel’s Inequality.

(c) Suppose that
∑∞

n=1 |cn|2 <∞. Set

sN =

N∑

n=1

cnxn and tN =

N∑

n=1

|cn|2.

We know that {tN}N∈N is a convergent (hence Cauchy) sequence of scalars,
and we must show that {sN}N∈N is a convergent sequence of vectors. We
have for N > M that

‖sN − sM‖2 =
∥∥∥

N∑

n=M+1

cnxn

∥∥∥
2

=

N∑

n=M+1

‖cnxn‖2 =

N∑

n=M+1

|cn|2 = |tN − tM |.

Since {tN}N∈N is Cauchy, we conclude that {sN}N∈N is a Cauchy sequence
in H and hence converges.

(d) Choose x ∈ span{xn}. By Bessel’s Inequality,
∑ |〈x, xn〉|2 < ∞, and

therefore by part (c) we know that the series y =
∑ 〈x, xn〉xn converges.

Given any particular m ∈ N, by applying Corollary 1.38(b) we have
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〈x− y, xm〉 = 〈x, xm〉 −
〈∑

n

〈x, xn〉xn, xm
〉

= 〈x, xm〉 −
∑

n

〈x, xn〉〈xn, xm〉

= 〈x, xm〉 − 〈x, xm〉 = 0.

Thus x− y ∈ {xn}⊥ = span{xn}⊥. However, we also have x− y ∈ span{xn},
so x− y = 0. ⊓⊔

It is tempting to conclude from Theorem 1.49 that if {xn} is an or-
thonormal sequence in a Hilbert space H, then every x ∈ H can be written
x =

∑ 〈x, xn〉xn. This, however, is not always the case, for there may not be
“enough” vectors in the sequence to span all of H. In particular, if {xn} is not
complete, then its closed span is only a proper closed subspace of H and not
all of H. For example, a finite sequence of orthonormal vectors {x1, . . . , xN}
can only span a finite-dimensional subspace of an infinite-dimensional Hilbert
space, and therefore cannot be complete in an infinite-dimensional space. As
another example, if {xn} is an orthonormal sequence in H, then {x2n} is also
an orthonormal sequence in H. However, x1 is orthogonal to every x2n, so it
follows from Lemma 1.44 that {x2n} is incomplete.

The next theorem presents several equivalent conditions which imply that
an orthonormal sequence is complete in H.

Theorem 1.50. If {xn} is an orthonormal sequence in a Hilbert space H,
then the following statements are equivalent.

(a) {xn} is complete in H.

(b) {xn} is a basis for H, i.e., for each x ∈ H there exists a unique sequence
of scalars (cn) such that x =

∑
cnxn.

(c) x =
∑ 〈x, xn〉xn for each x ∈ H.

(d) Plancherel’s Equality: ‖x‖2 =
∑ |〈x, xn〉|2 for all x ∈ H.

(e) Parseval’s Equality: 〈x, y〉 = ∑ 〈x, xn〉 〈xn, y〉 for all x, y ∈ H.

Proof. We will prove some implications, and assign the rest as Exercise 1.42.

(a)⇒ (c). If {xn} is complete, then its closed span is all of H by definition,
so by Theorem 1.49(d) we have that x =

∑ 〈x, xn〉xn for every x ∈ H.
(d) ⇒ (c). Suppose that ‖x‖2 =

∑ |〈x, xn〉|2 for all x ∈ H. Fix x ∈ H,
and define sN =

∑N
n=1 〈x, xn〉xn. Then, by the Polar Identity and the

Pythagorean Theorem,
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‖x− sN‖2 = ‖x‖2 − 2 Re(〈x, sN 〉) + ‖sN‖2

= ‖x‖2 − 2

N∑

n=1

|〈x, xn〉|2 +

N∑

n=1

|〈x, xn〉|2

= ‖x‖2 −
N∑

n=1

|〈x, xn〉|2 → 0 as N →∞.

Hence x =
∑ 〈x, xn〉xn. ⊓⊔

As the Plancherel and Parseval Equalities are equivalent, these terms are
often used interchangeably.

Note that Theorem 1.50 implies that every complete orthonormal se-
quence in a Hilbert space is actually a basis for H. This need not be true for
nonorthogonal sequences. An example in ℓ2 is constructed in Exercise 1.46.
In fact, that example is complete and finitely linearly independent yet is not
a basis for ℓ2.

Now we give some examples of orthonormal bases.

Example 1.51 (Standard Basis for ℓ2). By Example 1.31, the standard basis
{δn} is complete in ℓ2, and it is clearly orthonormal. Hence it is an orthonormal
basis for ℓ2. ♦

Example 1.52 (The Trigonometric System). Let H = L2(T) denote the space
of complex-valued functions that are 1-periodic on R and are square integrable
on the interval [0, 1]. The norm and inner product are defined by integrating
on the interval [0, 1], i.e.,

〈f, g〉 =

∫ 1

0

f(t) g(t) dt and ‖f‖2L2 =

∫ 1

0

|f(t)|2 dt.

For each n ∈ Z, define a function en by

en(t) = e2πint, t ∈ R.

We call {en}n∈Z the trigonometric system. Given integers m 6= n,

〈em, en〉 =

∫ 1

0

em(t) en(t) dt

=

∫ 1

0

e−2πi(m−n)t dt =
e−2πi(m−n) − 1

−2πi(m− n)
= 0.

Hence {en}n∈Z is an orthogonal sequence in L2(T), and it is easy to check
that it is orthonormal.

It is a more subtle fact that {en}n∈Z is complete in L2(T). One approach to
proving this relies on techniques from harmonic analysis, and will be presented
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in Chapters 13 and 14. Therefore, until we reach those chapters we will simply
assume that the trigonometric system is complete in L2(T). Assuming this
completeness, Theorem 1.50 implies that {en}n∈Z is an orthonormal basis for
L2(T).

If f ∈ L2(T) then the expansion f =
∑

n∈Z
〈f, en〉 en is called the Fourier

series representation of f, and
(
〈f, en〉

)
n∈Z

is the sequence of Fourier coeffi-

cients of f. The Fourier coefficients are often denoted by

f̂(n) = 〈f, en〉 =
∫ 1

0

f(t) e−2πint dt, n ∈ Z.

The elements of the space L2(T) are 1-periodic functions on the real line.
Sometimes it is more convenient to work with the space L2[0, 1] consisting
of complex-valued square integrable functions whose domain is the interval
[0, 1]. All of the statements above apply equally to L2[0, 1], i.e., {en}n∈Z is an
orthonormal basis for L2[0, 1]. In fact, by the periodicity of the exponentials,
{en}n∈Z is an orthonormal basis for L2(I) where I is any interval in R of
length 1. ♦

Note that we are only guaranteed that the Fourier series of f ∈ L2(T)
will converge in L2-norm. Establishing the convergence of Fourier series in
other senses can be extremely difficult. We explore some of these issues
in Chapter 14, and prove there that the symmetric partial sums sN (x) =∑n
n=−N f̂(n) e2πinx of the Fourier series of f ∈ Lp(T) converge in Lp-norm

when 1 < p <∞. One of the deepest results in harmonic analysis, which we do
not prove in this volume, is the Carleson–Hunt Theorem, which states that the
symmetric partial sums of the Fourier series of a function f ∈ Lp(T) converge
pointwise almost everywhere to f when 1 < p <∞ (see Theorem 14.9).

Notation 1.53. Even though we will not prove that the trigonometric system
is complete in L2(T) until Chapters 13 and 14, as stated above we will take
this as given in Chapters 1–12 and use the fact that {en}n∈Z is an orthonormal
basis for L2(T) and L2[0, 1] without further comment. If we prefer to work
with real-valued functions,

{1} ∪ {
√

2 sin 2πnt}n∈N ∪ {
√

2 cos 2πnt}n∈N

forms an orthonormal basis for L2(T) or L2[0, 1] when we take F = R (see
Exercise 1.49). ♦

In light of Example 1.52, if {en} is an orthonormal basis for an arbitrary
Hilbert space H, then the basis representation x =

∑ 〈x, en〉 en is sometimes

called the generalized Fourier series of x ∈ H, and
(
〈x, en〉

)
is called the

sequence of generalized Fourier coefficients of x.
The next example gives another important orthonormal basis.
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Fig. 1.2. Graphs of ψ−2,0 and ψ2,2.

Example 1.54 (The Haar System). Let χ = χ[0,1) be the box function. The
function

ψ = χ
[0,1/2) − χ[1/2,1)

is called the Haar wavelet. For integer n, k ∈ Z, define

ψn,k(t) = 2n/2ψ(2nt− k).

The Haar system for L2(R) is

{
χ(t− k)

}
k∈Z

∪
{
ψn,k

}
n≥0, k∈Z

.

Direct calculations show that the Haar system is an orthonormal sequence in
L2(R) (see Exercise 1.50 or the “proof by picture” in Figure 1.2), and we will
prove that the Haar system is complete in L2(R).

Suppose that f ∈ L2(R) is orthogonal to each element of the Haar system.
Considering the integer translates χ(t − k) of the box function, this implies
that ∫ k+1

k

f(t) dt = 0, k ∈ Z.

Next, since f ⊥ χ we have

∫ 1/2

0

f(t) dt+

∫ 1

1/2

f(t) dt =

∫ 1

0

f(t) dt = 〈f, χ〉 = 0,

and since f ⊥ ψ we have

∫ 1/2

0

f(t) dt−
∫ 1

1/2

f(t) dt = 〈f, ψ〉 = 0.

Adding and subtracting,
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∫ 1/2

0

f(t) dt = 0 =

∫ 1

1/2

f(t) dt.

Continuing in this way, it follows that
∫

In,k

f(t) dt = 0 for every dyadic interval In,k =
[ k
2n
,
k + 1

2n

]
.

Given t ∈ R, for each n ∈ N there exists some dyadic interval Jn(t) =
In,kn(t) such that t ∈ Jn(t). The diameter of Jn(t) shrinks rapidly with n,
and we have ∩Jn(t) = {t}. We appeal now to a fundamental result from
real analysis, the Lebesgue Differentiation Theorem (Theorem A.30), which
implies that for almost every t ∈ R we have

f(t) = lim
n→∞

1

|Jn(t)|

∫

Jn(t)

f(u) du.

Since
∫
Jn(t) f(u) du = 0 for every n, we conclude that f = 0 a.e. ♦

Remark 1.55. (a) The sequence {ψn,k}n,k∈Z, containing dilations of the Haar
wavelet at all dyadic scales 2n with n ∈ Z, also forms an orthonormal basis for
L2(R), and this basis is also referred to as the Haar system for L2(R). This
system is the simplest example of a wavelet orthonormal basis for L2(R). Un-
fortunately, our proof that the Haar system is an orthonormal basis yields lit-
tle insight into the elegant construction of general wavelet orthonormal bases,
which is the topic of Chapter 12.

(b) The system originally introduced by Haar is

{
χ
}
∪
{
ψn,k

}
n≥0, k=0,...,2n−1

,

which forms an orthonormal basis for L2[0, 1]. An English translation of Haar’s
1910 paper [Haa10] can be found in [HW06]. ♦

Suppose that a Hilbert space H has an orthonormal basis {en}. Then

S =

{ N∑

n=1

rnen : N > 0, rational rn ∈ F

}
(1.14)

is a countable, dense subset of H, so H is separable (see Theorem 1.27). The
next result proves the converse, i.e., every separable Hilbert space possesses an
orthonormal basis. This proof requires some familiarity with Zorn’s Lemma,
which is an equivalent form of the Axiom of Choice.

Theorem 1.56. Let H be a Hilbert space.

(a) H contains a subset T that is both complete and orthonormal.

(b) H has an orthonormal basis {en}n∈N if and only if H is separable.
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Proof. (a) Let S denote the set of all orthonormal subsets of H. Inclusion of
sets forms a partial order on S.

Suppose that C = {Si}i∈I is a chain in H, i.e., I is an arbitrary index set
and for each i, j ∈ I we have either Si ⊆ Sj or Sj ⊆ Si. Define S = ∪i∈ISi. If
x, y are two distinct elements of S, then x ∈ Si and y ∈ Sj for some i and j.
Since C is a chain, we must either have x, y ∈ Si or x, y ∈ Sj . In any case,
〈x, y〉 = 0 since Si and Sj are each orthonormal. Thus S is itself orthonormal.
Since Si ⊆ S for every i ∈ I, this tells us that S is an upper bound for the
chain C.

Zorn’s Lemma says that, given a partially ordered set, if every chain has
an upper bound, then the set has a maximal element. Therefore, S must have
a maximal element, i.e., there exists some orthonormal set T ∈ S which has
the property that if S ∈ S and S is comparable to T (either S ⊆ T or T ⊆ S),
then we must have S ⊆ T.

We claim now that T is a complete orthonormal subset of H. If T is not
complete, then span(T ) is a proper subset of H, and hence there exists some

nonzero vector x ∈ span(T )⊥. By rescaling, we may assume ‖x‖ = 1. But
then T ′ = T ∪ {x} is orthonormal and T ( T ′, contradicting the fact that T
is a maximal element of S. Hence T must be complete.

(b) We already know that if H contains an orthonormal basis then it
is separable, so suppose that H is an arbitrary separable Hilbert space. By
part (a), H contains a complete orthonormal subset T. By Exercise 1.58, any
orthonormal subset of a separable Hilbert space must be countable, so we
can write T = {en}n∈N. Thus T is a complete orthonormal sequence, and
therefore it is an orthonormal basis by Theorem 1.50. ⊓⊔

Example 1.57. An example of a nonseparable Hilbert space is the space ℓ2(R)
consisting of all sequences x = (xi)i∈R indexed by the real line with at most
countably many terms nonzero and such that

∑ |xi|2 <∞. The inner product
on this space is 〈x, y〉 =

∑
xi yi (see Exercise 1.58). ♦

Exercises 3.6 and 3.7 in Chapter 3 deal with orthonormal sets in nonsep-
arable Hilbert spaces.

Exercises

1.42. Prove the remaining parts of Theorems 1.49 and 1.50.

1.43. (a) Let M be a proper, closed subspace of a Hilbert space H. Given
x ∈ H\M, let p be the orthogonal projection of x onto M, and show that
the vector y = (x − p)/‖x − p‖ satisfies ‖y‖ = 1, y ∈ M⊥, and dist(y,M) =
infm∈M ‖y −m‖ = 1.

(b) Show that if H is an infinite-dimensional Hilbert space, then there
exists an infinite orthonormal sequence {en} in H, and no subsequence {enk

}
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is Cauchy. Contrast this with the Bolzano–Weierstrass Theorem, which states
that every bounded sequence in Fd has a convergent subsequence.

Remark: In another language, this problem shows that the closed unit ball
D = {x ∈ H : ‖x‖ ≤ 1} in H is not compact when H is infinite dimensional.

1.44. This exercise will extend Exercise 1.43 to an arbitrary normed linear
space X.

(a) Prove F. Riesz’s Lemma: If M is a proper, closed subspace of X and
ε > 0, then there exists x ∈ X with ‖x‖ = 1 such that dist(x,M) =

infm∈M ‖x−m‖ > 1− ε.
(b) Prove that if X is infinite dimensional then there exists a bounded

sequence {xn} in X that has no convergent subsequences (hence the closed
unit ball D = {x ∈ X : ‖x‖ ≤ 1} is never compact in an infinite-dimensional
Banach space).

1.45. Let {xn} be a finitely linearly independent sequence in a Hilbert
space H. Show that there exists an orthogonal sequence {yn} in H such that
span{y1, . . . , yN} = span{x1, . . . , xN} for each N ∈ N (this is the Gram–
Schmidt orthogonalization procedure).

1.46. We say that a sequence {xn} in a Banach spaceX is ω-dependent if there
exist scalars cn, not all zero, such that

∑
cnxn = 0, where the series converges

in the norm of X. A sequence is ω-independent if it is not ω-dependent (we
explore ω-independent sequences in more detail in Chapter 5).

(a) Show that if {xn} is a basis for a Hilbert space H then {xn} is ω-
independent.

(b) Let α, β ∈ C be fixed nonzero scalars such that |α/β| > 1. Let {δn}n∈N

be the standard basis for ℓ2, and define x0 = δ1 and xn = αδn + βδn+1 for
n ∈ N. Prove that {xn}n≥0 is complete and finitely independent in ℓ2, but is
not ω-independent and therefore is not a basis for ℓ2.

1.47. Let {xn} be a sequence in a Hilbert space H. Prove that the following
two statements are equivalent.

(a) For each m ∈ N we have xm /∈ span{xn}n6=m (such a sequence is said
to be minimal).

(b) There exists a sequence {yn} in H such that 〈xm, yn〉 = δmn for all
m, n ∈ N (we say that sequences {xn} and {yn} satisfying this condition are
biorthogonal).

Show further that, in case these hold, the sequence {yn} is unique if and
only if {xn} is complete.

Remark: Lemma 5.4 will establish an analogous result for Banach spaces.

1.48. Let ψ = χ
[0,1/2) − χ[1/2,1) be the Haar wavelet. Compute the Fourier

coefficients of ψ and apply the Plancherel Equality to show that π2

8 =∑∞
n=1

1
(2n−1)2 .
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1.49. This exercise provides a real-valued analogue of the orthonormal basis
{e2πint}n∈Z for complex L2(T) discussed in Example 1.52. Let real L2(T)
consist of all real-valued, 1-periodic functions on R that are square integrable
on [0, 1]. Assuming the fact that {e2πint}n∈Z is complete in complex L2(T),

show that {1} ∪ {
√

2 sin 2πnt}n∈N ∪ {
√

2 cos 2πnt}n∈N forms an orthonormal
basis for real L2(T) if we take F = R, and forms an orthonormal basis for
complex L2(T) if we take F = C.

1.50. (a) Prove that the Haar system discussed in Remark 1.55(a) is an or-
thonormal basis for L2(R).

(b) Prove that the Haar system given in Remark 1.55(b) is an orthonormal
basis for L2[0, 1].

1.51. Let {xn} be an orthonormal basis for a separable Hilbert space H.

Show that if
∑ ‖xn − yn‖2 < 1, then {yn} is complete in H. Show that this

conclusion need not hold if
∑ ‖xn − yn‖2 = 1.

1.52. Let {xn} be an orthonormal sequence in a Hilbert space H. Given a
vector x ∈ H, show that x ∈ span{xn} if and only if ‖x‖2 =

∑ |〈x, xn〉|2.
1.53. Let M be a closed subspace of a Hilbert space H. If M is finite
dimensional, let dim(M) be the dimension of M, otherwise set dim(M) =∞.
Let P be the orthogonal projection of H onto M. Show that if {en} is any
orthonormal basis for H, then

∑ ‖Pen‖2 = dim(M).

1.54. This result is due to Vitali. Let {fn} be an orthonormal sequence in
L2[a, b]. Show that {fn} is complete if and only if

∞∑

n=1

∣∣∣∣
∫ x

a

fn(t) dt

∣∣∣∣
2

= x− a, x ∈ [a, b].

1.55. Use the Vitali criterion (Exercise 1.54) to prove that the following two
statements are equivalent.

(a) The trigonometric system {e2πinx}n∈Z is complete in L2(T).

(b)

∞∑

n=1

1− cos 2πnx

π2n2
= x− x2 for x ∈ [0, 1].

Remark: If we assume Euler’s formula

∞∑

n=1

1

n2
=

π2

6
,

then statement (b) reduces to

∞∑

n=1

cos 2πnx

π2n2
= x2 − x+

1

6
, x ∈ [0, 1]. (1.15)
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Conversely, equation (1.15) implies Euler’s formula by taking x = 0. For a
proof that equation (1.15) holds, see Exercise 13.25.

1.56. This result is due to Dalzell. Let {fn} be an orthonormal sequence in
L2[a, b]. Show that {fn} is complete if and only if

∞∑

n=1

∫ b

a

∣∣∣∣
∫ x

a

fn(t) dt

∣∣∣∣
2

=
(b− a)2

2
.

1.57. This result is due to Boas and Pollard [BP48]. Suppose that {fn}n∈N

is an orthonormal basis for L2[a, b]. Show that there exists a function m ∈
L∞[a, b] such that {mfn}n≥2 is complete in L2[a, b].

1.58. (a) Let H be a Hilbert space. Show that if H contains an uncountable
orthonormal subset, then H is not separable.

(b) Prove that the space ℓ2(R) defined in Example 1.57 is a Hilbert space.

Given t ∈ R, define et(t) = 1 and et(i) = 0 for i 6= t. Show that {et}t∈R

is a complete uncountable orthonormal system for ℓ2(R), and conclude that
ℓ2(R) is nonseparable.

1.59. For each ξ ∈ R, define a function eξ : R→ C by eξ(t) = e2πiξt. Let H =
span{eξ}ξ∈R, i.e., H consists of all finite linear combinations of the functions
eξ. Show that

〈f, g〉 = lim
T→∞

1

2T

∫ T

−T
f(t) g(t) dt, f, g ∈ H,

defines an inner product on H, and {eξ}ξ∈R is an uncountable orthonormal
system in H.

Remark: The completion H̃ of H is an important nonseparable Hilbert
space. In particular, it contains the class of almost periodic functions [Kat04],
and it plays an important role in Wiener’s theory of generalized harmonic
analysis [Wie33]. Since span{eξ}ξ∈R = H and H is dense in H̃, {eξ}ξ∈R is a

complete orthonormal system in H̃.

1.7 Operators

Let X and Y be normed linear spaces. An operator is simply another name
for a function L : X → Y (although sometimes this terminology is restricted
to functions that are linear).

In addition to the basic terminology for functions reviewed in the opening
section of General Notation, we introduce the following notation for operators.

Definition 1.58. Let X and Y be normed linear spaces, and let L : X → Y
be an operator. We write either Lx or L(x) to denote the action of L on an
element x ∈ X.
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(a) L is linear if

∀x, y ∈ X, ∀ a, b ∈ F, L(ax+ by) = aL(x) + bL(y).

(b) L is antilinear if

∀x, y ∈ X, ∀ a, b ∈ F, L(ax+ by) = āL(x) + b̄L(y).

(c) L is continuous if xn → x in X implies L(xn)→ L(x) in Y.

(d) The kernel or nullspace of L is ker(L) = {f ∈ X : Lx = 0}.
(e) The rank of L is the dimension of its range: rank(L) = dim(range(L)).

We say that L is a finite-rank operator if its range is finite dimensional.

(f) L is a functional if Y = F.

(g) Two operators A, B : X → X commute if AB = BA. ♦

Continuity can be equivalently stated in the following abstract form (see
Exercise 1.60). Indeed, for functions on abstract topological spaces, this is
usually taken to be the definition of continuity.

Theorem 1.59. Let X, Y be normed spaces, and let f : X → Y be given.
Then f is continuous if and only if f−1(V ) is open in X for each open set
V ⊆ Y. ♦

A nonzero linear operator L : X → Y cannot mapX into a bounded subset
of Y, simply because ‖L(cx)‖Y = |c| ‖Lx‖Y and |c| can be arbitrarily large.
However, we can consider “boundedness” in another way, by examining the
relationship between the size of ‖x‖X and ‖Lx‖Y . If there is a limit to how
large ‖Lx‖Y can be in comparison to ‖x‖X , then we say that L is bounded.
We quantify this notion and introduce some related terminology in the next
definition.

Definition 1.60. Let X and Y be normed linear spaces, and let L : X → Y
be a linear operator.

(a) L is bounded if there exists a finite K ≥ 0 such that

∀x ∈ X, ‖Lx‖Y ≤ K ‖x‖X .

(b) The operator norm, or simply the norm, of L is

‖L‖X→Y = sup
‖x‖X=1

‖Lx‖Y .

(c) We say that L is norm-preserving or isometric if ‖Lx‖Y = ‖x‖X for every
x ∈ X.
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(d) If L is linear, bijective, and isometric, then we call L an isometric isomor-
phism.

(e) We say that X and Y are isometrically isomorphic, denoted X ∼= Y, if
there exists an isometric isomorphism L : X → Y. ♦

Most of the operators that we will deal with will be linear, but on occasion
we will encounter antilinear operators. The properties of and terminology for
antilinear operators are similar to those for linear operators. For example, we
say that X and Y are antilinearly isometrically isomorphic if there exists an
antilinear bijective isometry L : X → Y. Of course, the distinction between
linear and antilinear operators is only an issue over the complex field.

Usually it is clear from context which space a norm is being applied to,
and so we usually just write ‖L‖ for the operator norm of L. With similar
implicit notation for the norm on X and Y, we can write the definition of the
operator norm as

‖L‖ = sup
‖x‖=1

‖Lx‖,

but it is important to note that there are three different meanings of the
symbol ‖ · ‖ on the line above: ‖x‖ is the norm of x ∈ X, ‖Lx‖ is the norm of
Lx ∈ Y, and ‖L‖ is the operator norm of L. We will see in Theorem 1.67 that
the operator norm is a true norm on the vector space B(X,Y ) of all bounded
linear operators that map X into Y.

Here are some of the basic properties of linear operators and the operator
norm (see Exercise 1.61).

Theorem 1.61. Let X, Y be normed linear spaces, and let L : X → Y be a
linear operator.

(a) L(0) = 0, and L is injective if and only if kerL = {0}. In particular, if L
is an isometry then it is injective.

(b) If L is a bijection then the inverse map L−1 : Y → X is also a linear
bijection.

(c) L is bounded if and only if ‖L‖ <∞.
(d) If L is bounded then

‖Lx‖ ≤ ‖L‖ ‖x‖, x ∈ X,

and ‖L‖ is the smallest real number K such that ‖Lx‖ ≤ K‖x‖ for all
x ∈ X.

(e) ‖L‖ = sup
‖x‖≤1

‖Lx‖ = sup
x 6=0

‖Lx‖
‖x‖ . ♦

Example 1.62. Consider a linear operator on a finite-dimensional real vector
space, say L : Rn → Rm. For simplicity, impose the Euclidean norm on both
Rn and Rm. If we let S = {x ∈ Rn : ‖x‖ = 1} be the unit sphere in Rn,
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then L(S) = {Lx : ‖x‖ = 1} is a (possibly degenerate) ellipsoid in Rm. The
supremum in the definition of the operator norm of L is achieved in this case,
and is the length of a semimajor axis of the ellipsoid L(S). Thus, ‖L‖ is the
“maximum distortion” of the unit sphere under L, illustrated for the case
m = n = 2 in Figure 1.3. ♦
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3

Fig. 1.3. Image of the unit circle under a particular linear operator L : R2 → R2.
The operator norm ‖L‖ of L is the length of a semimajor axis of the ellipse.

A crucial property of linear operators on normed linear spaces is that
boundedness and continuity are equivalent.

Theorem 1.63. If X, Y are normed linear spaces and L : X → Y is a linear
operator, then

L is continuous ⇐⇒ L is bounded.

Proof. ⇐. If L is bounded and xn → x, then we have

‖Lx− Lxn‖ = ‖L(x− xn)‖ ≤ ‖L‖ ‖x− xn‖ → 0 as n→∞,

so L is continuous.

⇒. Suppose that L is linear and continuous but unbounded. Then we have
‖L‖ = ∞, so there must exist xn ∈ X with ‖xn‖ = 1 such that ‖Lxn‖ ≥ n.
Set yn = xn/n. Then ‖yn − 0‖ = ‖yn‖ = ‖xn‖/n → 0, so yn → 0. Since
L is continuous and linear, this implies that Lyn → L0 = 0. Consequently
‖Lyn‖ → ‖0‖ = 0 by the continuity of the norm (Exercise 1.2). However,
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‖Lyn‖ =
1

n
‖Lxn‖ ≥

1

n
· n = 1

for all n, which is a contradiction. Hence L must be bounded. ⊓⊔

As a consequence, we use the terms continuous and bounded interchange-
ably when speaking of linear operators.

The “metaspace” of all bounded linear operators that map one normed
space into another plays an important role in functional analysis.

Definition 1.64. Given normed linear spaces X, Y, we define

B(X,Y ) =
{
L : X → Y : L is bounded and linear

}
.

If X = Y then we write B(X) = B(X,X). ♦

Example 1.65. Continuing the discussion in Example 1.62, any linear operator
A : Fn → Fm has the form x 7→ Ax where A is an m× n matrix with entries
in F. All such operators are bounded, and Exercise 1.70 derives some explicit
formulas for the operator norm (which depends on the norm that we choose
for Fn and Fm). We usually identify the operator A with the matrix A. In
this sense, B(Fn,Fm) is identified with the set of all m × n matrices with
entries in F. ♦

The following result states that any linear operator mapping a finite-
dimensional vector space V into a normed space Y must be bounded (see
Exercise 1.68). Recall from Example 1.6 and Theorem 1.8 that every finite-
dimensional space has norms, and all of these norms are equivalent.

Theorem 1.66. If V is a finite-dimensional vector space and Y is a normed
linear space, then any linear operator T : V → Y is bounded. ♦

Be aware that the situation for linear operators with finite-dimensional
ranges is quite different. In Example 4.2 we will show that if X is an infinite-
dimensional normed linear space, then there exists a linear operator µ : X → F
that is unbounded!

Now we show that the operator norm is a norm on B(X,Y ), and B(X,Y )
is complete whenever Y is complete.

Theorem 1.67. Let X, Y, and Z be normed spaces.

(a) B(X,Y ) is a normed linear space with respect to the operator norm.

(b) If Y is a Banach space, then B(X,Y ) is a Banach space with respect to
the operator norm.

(c) The operator norm is submultiplicative, i.e., if A ∈ B(X,Y ) and B ∈
B(Y, Z), then BA ∈ B(X,Z) and ‖BA‖ ≤ ‖B‖ ‖A‖.
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Proof. We sketch the proof of statement (b), and assign the remainder of the
proof as Exercise 1.69. The idea is similar to our proof that ℓp is complete (see
Theorem 1.14). Given a Cauchy sequence {An}, we will use the Cauchyness
to construct a candidate limit A that An converges to “pointwise.” Then we
show that An actually converges to the candidate limit A in norm. “Pointwise
convergence” of operators means Anx→ Ax for each x ∈ X, but by itself this
usually does not imply that An converges to A in operator norm.

Assume that X is normed and Y is Banach, and let {An} be a sequence
of operators in B(X,Y ) that is Cauchy with respect to the operator norm.
Given any particular x ∈ X, we have

‖Amx−Anx‖ ≤ ‖Am −An‖ ‖x‖.

Therefore {Anx} is a Cauchy sequence in Y. Since Y is complete, this sequence
must converge, say Anx→ y ∈ Y. Define Ax = y. This gives us our candidate
limit operator A, and we leave as an exercise the task of showing that A
defined in this way is linear and bounded.

It remains to show that An → A in operator norm. Fix any ε > 0. Since
{An} is Cauchy, there exists an N such that

m,n > N =⇒ ‖Am −An‖ <
ε

2
.

Choose any x ∈ X with ‖x‖ = 1. Then since Amx → Ax, there exists an
m > N such that

‖Ax−Amx‖ <
ε

2
.

Hence for any n > N we have

‖Ax−Anx‖ ≤ ‖Ax−Amx‖+ ‖Amx−Anx‖
≤ ‖Ax−Amx‖+ ‖Am −An‖ ‖x‖ <

ε

2
+
ε

2
= ε.

Taking the supremum over all unit vectors, we conclude that ‖A − An‖ ≤ ε
for all n > N, so An → A in operator norm. ⊓⊔

For operators that map a space into itself, we can define the notion of
eigenvalues and eigenvectors.

Definition 1.68 (Eigenvalues and Eigenvectors). Let X be a normed
space and L : X → X a linear operator.

(a) A scalar λ is an eigenvalue of L if there exists a nonzero vector x ∈ X
such that Lx = λx.

(b) A nonzero vector x ∈ X is an eigenvector of L if there exists a scalar
λ such that Lx = λx. If x is an eigenvector of L corresponding to the
eigenvalue λ, then we often say that x is a λ-eigenvector of L.
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(c) If λ is an eigenvalue of L, then ker(L− λI) is called the eigenspace corre-
sponding to λ, or the λ-eigenspace for short. ♦

Eigenvalues and eigenvectors are especially important when dealing with
self-adjoint operators on Hilbert spaces, see Section 2.4.

We end this section by looking at isometric operators acting on Hilbert
spaces. The next result shows that a linear isometry that maps one Hilbert
space into another must preserve inner products as well as norms.

Theorem 1.69. Let H, K be Hilbert spaces, and let L : H → K be a linear
mapping. Then L is an isometry if and only if 〈Lx,Ly〉 = 〈x, y〉 for all x,
y ∈ H.

Proof. ⇒. This follows immediately from the fact that ‖x‖2 = 〈x, x〉.
⇐. We assume F = C, as the proof for real scalars is almost identical.

Suppose that L is an isometry, and fix x, y ∈ H. Then for any scalar c ∈ C
we have by the Polar Identity and the fact that L is isometric that

‖x‖2 + 2 Re(c̄ 〈x, y〉) + |c|2 ‖y‖2 = ‖x+ cy‖2

= ‖Lx+ cLy‖2

= ‖Lx‖2 + 2 Re(c̄ 〈Lx,Ly〉) + |c|2 ‖Ly‖2

= ‖x‖2 + 2 Re(c̄ 〈Lx,Ly〉) + |c|2 ‖y‖2.

Thus Re(c̄ 〈Lx,Ly〉) = Re(c̄ 〈x, y〉) for every c ∈ C. Taking c = 1 and c = i,
this implies that 〈Lx,Ly〉 = 〈x, y〉. ⊓⊔

We earlier defined an isometric isomorphism to be a bijective isometry be-
tween normed spaces. For operators on Hilbert spaces, we call such operators
unitary (although this word is sometimes reserved for the case H = K).

Definition 1.70 (Unitary Operator). If H, K are Hilbert spaces and
L : H → K is an isometric isomorphism, then L is called a unitary opera-
tor, and in this case we say that H and K are unitarily isomorphic. ♦

Exercises

1.60. Prove Theorem 1.59.

1.61. Prove Theorem 1.61.

1.62. If X, Y are normed spaces and L : X → Y is continuous, show that
ker(L) is a closed subspace of X.

1.63. Let X be a normed space and suppose L ∈ B(X). Show that if λ is an
eigenvalue of L, then |λ| ≤ ‖L‖.
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1.64. (a) Define L : ℓ2 → ℓ2 by L(x) = (x2, x3, . . . ). Prove that this left-shift
operator is bounded, linear, surjective, not injective, is not an isometry, and
satisfies ‖L‖ = 1. Find all of the eigenvalues and eigenvectors of L.

(b) Define R : ℓ2 → ℓ2 by R(x) = (0, x1, x2, x3, . . . ). Prove that this right-
shift operator is bounded, linear, injective, not surjective, and is an isometry.
Find all of the eigenvalues and eigenvectors of R.

(c) Compute LR and RL and show that LR 6= RL. Contrast this with
the fact that in finite dimensions, if A, B : Fn → Fn are linear maps (hence
correspond to multiplication by n × n matrices), then AB = I if and only if
BA = I.

1.65. Recall from Exercise 1.22 that Cb(R) is a Banach space with respect to
the uniform norm ‖ · ‖∞, and C1

b (R) is a Banach space with respect to the
norm ‖f‖C1

b
= ‖f‖∞ + ‖f ′‖∞.

(a) Define D : C1
b (R)→ Cb(R) by Df = f ′, and show that D is a bounded

operator.

(b) Let D : C1
b (R) → Cb(R) be the same operator as in part (a), but re-

place the norm on C1
b (R) by the L∞-norm. Show that D is now an unbounded

operator.

1.66. Let {en} be an orthonormal basis for a separable Hilbert space H, and
fix a sequence of scalars λ = (λn) ∈ ℓ∞. Define

Mλx =

∞∑

n=1

λn 〈x, en〉 en, x ∈ H,

and prove the following facts.

(a) Mλ is a bounded mapping of H into itself, and its operator norm is
‖Mλ‖ = ‖λ‖ℓ∞ .

(b) Each λn is an eigenvalue for Mλ with corresponding eigenvector en.

(c) Mλ is injective if and only if λn 6= 0 for every n.

(d) Mλ is surjective if and only if infn |λn| > 0. Further, if inf |λn| = 0 but
λn 6= 0 for every n then range(Mλ) is a dense but proper subspace of H.

1.67. Let E ⊆ R be Lebesgue measurable, and choose 1 ≤ p < ∞ and
m ∈ L∞(R). Define Tm : Lp(R) → Lp(R) by Tmf = fm, i.e., pointwise
multiplication of f by the function m. Show that Tm is bounded and ‖Tm‖ =
‖m‖∞.

1.68. Prove Theorem 1.66.

1.69. Fill in the details and finish the proof of Theorem 1.67.
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1.70. Let A be an m× n matrix with entries in F, which we view as a linear
operator A : Fn → Fm. The operator norm of A depends on the choice of
norm for Fn and Fm. Show that if the norm on Fn and Fm is | · |1 then

‖A‖ = max
j=1,...,n

{ m∑

i=1

|aij |
}
,

and if the norm on Fn and Fm is | · |∞ then

‖A‖ = max
i=1,...,m

{ n∑

j=1

|aij |
}
.

1.71. Show that if H, K are separable Hilbert spaces, then H and K are
isometrically isomorphic.

1.72. Let Y be a dense subspace of a normed space X, and let Z be a Banach
space. Given L ∈ B(Y, Z), show that there exists a unique operator L̃ ∈
B(X,Z) whose restriction to Y is L. Prove that ‖L̃‖ = ‖L‖.

1.8 Bounded Linear Functionals and the Dual Space

The space of bounded linear functionals on a normed space is especially im-
portant in functional analysis.

Definition 1.71 (Dual Space). Given a normed linear space X, the space
of all bounded linear functionals on X is the dual space of X, and is denoted
by

X∗ = B(X,F) =
{
L : X → F : L is bounded and linear

}
. ♦

Since F is complete, Theorem 1.67 implies that the dual space X∗ of a
normed space X is complete, even if X is not.

Notation 1.72 (Bilinear Form Notation). We often use Greek letters such
as λ, µ, Λ to denote continuous linear functionals. It is also convenient to use
the symbol x∗ to denote a typical element of X∗. When using this notation it
is important to note that x∗ is simply a functional on X, and is not somehow
determined from some specific element x ∈ X. That is, x∗ is a mapping from
X to F, and the value of x∗ at an arbitrary point x ∈ X is x∗(x).

Given a linear functional x∗, we often denote the action of x∗ on an element
x in its domain by

〈x, x∗〉 = x∗(x). (1.16)

Note that this notation does not represent an inner product, but rather stands
for the value of the functional x∗ evaluated at the point x.
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Using this notation, the linearity of x∗ is expressed by the statement

∀x, y ∈ X, ∀ a, b ∈ F, 〈ax+ by, x∗〉 = a〈x, x∗〉+ b〈y, x∗〉.

Similarly, the continuity of x∗ is expressed in this notation by the statement

xn → x =⇒ 〈xn, x∗〉 → 〈x, x∗〉.

Since the norm on the scalar field F is simply the absolute value, the operator
norm of a linear functional x∗ is given in this notation by the formula

‖x∗‖ = sup
‖x‖X=1

|〈x, x∗〉|.

Sometimes we write ‖x∗‖X∗ to emphasize that this is the norm of x∗ as an
element of X∗.

We refer to the notation 〈·, ·〉 given in equation (1.16) as a bilinear form
notation, because not only is it linear as a function of x, but it is also linear
as a function of x∗. That is, with x ∈ X fixed we have

∀x∗, y∗ ∈ X∗, ∀ a, b ∈ F, 〈x, ax∗ + by∗〉 = a〈x, x∗〉+ b〈x, y∗〉.

This bilinearity is quite convenient for the purposes of Banach space theory,
although it does create certain notational ambiguities that we will address in
Notation 1.74. ♦

It is often difficult to explicitly characterize the dual space X∗ of a given
Banach space X. However, it is possible to characterize the dual spaces of
some particular Banach spaces. For example, fix 1 ≤ p ≤ ∞ and consider the
Banach space ℓp. Let p′ be the dual index to p as defined in Notation 1.11,
i.e., 1

p + 1
p′ = 1. Given y ∈ ℓp′ , define µy : ℓp → F as follows (we show both

the standard notation µy(x) and the bilinear form notation 〈x, µy〉):

µy(x) = 〈x, µy〉 =
∑

n

xnyn, x ∈ ℓp. (1.17)

The series in equation (1.17) converges by Hölder’s Inequality, and we have

|〈x, µy〉| ≤ ‖x‖ℓp ‖y‖ℓp′ .

Taking the supremum over all unit vectors x ∈ X, we conclude that ‖µy‖ ≤
‖y‖ℓp′ < ∞. Hence µy is a bounded linear functional on ℓp. We will shortly

prove that we actually have ‖µy‖ = ‖y‖ℓp′ . Consequently, each vector y ∈ ℓp′
determines a continuous linear functional µy ∈ (ℓp)∗ whose operator norm
is exactly the norm of y. Therefore the mapping y 7→ µy is an isometric

map of ℓp
′

into (ℓp)∗. The next theorem will show that if 1 ≤ p < ∞ then
every continuous linear functional on ℓp has this form. That is, y 7→ µy is an

isometric isomorphism of ℓp
′

onto (ℓp)∗ when p is finite. Therefore we often
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write ℓp
′

= (ℓp)∗ and y = µy, although these are technically identifications
rather than true equalities. For p = ∞ the mapping y 7→ µy is an isometry
but is not surjective (see Exercise 2.8). Therefore, identifying y with µy, we
have ℓ1 ( (ℓ∞)∗.

Now we make these statements precise.

Theorem 1.73 (Dual Space of ℓp). Fix 1 ≤ p ≤ ∞. For each y ∈ ℓp′ , let µy
be as in equation (1.17). Then the mapping T : ℓp

′ → (ℓp)∗ given by T (y) = µy
is a linear isometry of ℓp

′

into (ℓp)∗, and it is an isometric isomorphism if
p <∞.

Proof. We will consider the case 1 < p < ∞; the cases p = 1 and p = ∞ are
similar (see Exercise 1.73). We have already seen that T maps ℓp

′

into (ℓp)∗

with ‖µy‖ ≤ ‖y‖ℓp′ for each y ∈ ℓp′ , so it remains to show that T is isometric
and surjective.

To show that T is isometric, we must show that ‖µy‖ = ‖y‖ℓp′ for each

y ∈ ℓp′ . If y = 0 then ‖µy‖ = 0 = ‖y‖ℓp , so assume that y 6= 0. If we can find
a particular unit vector x ∈ ℓp such that |〈x, µy〉| = ‖y‖ℓp′ , then we will have

‖µy‖ = sup
‖z‖ℓp=1

|〈z, µy〉| ≥ |〈x, µy〉| = ‖y‖ℓp′ ,

which is the inequality we need to conclude that T is isometric. To create this
vector x, let αk ∈ F be the scalar of unit modulus such that αkyk = |yk|, and
define x = (xk) by

xk =
αk |yk|p

′−1

‖y‖p′−1

ℓp′

, k ∈ N.

Using the fact that (p′ − 1) p = p′, we have

‖x‖pℓp =
∑

k

( |yk|p
′−1

‖y‖p′−1

ℓp′

)p
=
∑

k

|yk|p
′

‖y‖p′
ℓp′

= 1,

so x is indeed a unit vector. Also,

|〈x, µy〉| =
∑

k

xkyk =
∑

k

αk |yk|p
′−1

‖y‖p′−1

ℓp′

yk =
‖y‖p

′

p′

‖y‖p′−1

ℓp′

= ‖y‖ℓp′ .

This shows that ‖µy‖ ≥ ‖y‖ℓp′ , and therefore T is an isometry.
To show that T is surjective, choose any bounded linear functional µ ∈

(ℓp)∗. Let {δn} be the standard basis for ℓp. For each k ∈ N let yk = 〈δk, µ〉,
and set y = (yk). Given any x = (xk) ∈ ℓp, we have x =

∑
xkδk, where the

series converges in the norm of ℓp. Since µ is continuous on ℓp, it therefore
follows from Exercise 1.76 that

〈x, µ〉 =

〈∑

k

xkδk, µ

〉
=
∑

k

xk 〈δk, µ〉 =
∑

k

xkyk.
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Now we will appeal to Theorem 2.24. We have not proved that theorem yet,
but we will give its proof later, and its proof does not depend on what we
are doing here so we are not reasoning circularly. Theorem 2.24 tells us that
if
∑
xkyk converges for each x ∈ ℓp then we must have y ∈ ℓp′ . Consequently

µ = µy = T (y), so T is surjective. ⊓⊔

It is likewise true that Lp(E)∗ = Lp
′

(E) for 1 ≤ p < ∞, and L1(E) (

L∞(E)∗. More precisely, each g ∈ Lp′(E) determines a continuous linear func-
tional µg ∈ Lp(E)∗ by the formula

µg(f) = 〈f, µg〉 =

∫

E

f(t) g(t) dt, f ∈ Lp(E).

Indeed, µg is bounded because we have by Hölder’s Inequality that

|〈f, µg〉| ≤
∫

E

|f(t)| |g(t)| dt ≤ ‖f‖Lp ‖g‖Lp′ .

This tells us that ‖µg‖ ≤ ‖g‖Lp′ , and it can be shown that equality holds.

Therefore the mapping g 7→ µg is an injective embedding of Lp
′

(E) into
Lp(E)∗, and it is surjective if p is finite [Fol99].

Another example of a function space whose dual has a nice characterization
is C0(R). Although there are several results that go by the name “Riesz
Representation Theorem,” one version asserts that C0(R)∗ ∼= Mb(R), the
space of bounded Radon measures on R [Fol99, Thm. 7.17]. The discrete
version of this result takes the form c0

∗ ∼= ℓ1. This fact is easier to prove than
the identification C0(R)∗ ∼= Mb(R), and is assigned as Exercise 1.75.

Notation 1.74. Consider again the identification of ℓp
′

with (ℓp)∗ derived in
Theorem 1.73. For simplicity of discussion, we restrict our attention to the
case 1 ≤ p <∞, where we have (ℓp)∗ = ℓp

′

.

Given y ∈ ℓp′ , if we follow the practice of identifying y with the functional
µy ∈ (ℓp)∗ that it determines, and consider the bilinear form notation intro-
duced in Notation 1.72, then we can write the action of y as a linear functional
on an element x ∈ ℓp in any of these ways:

〈x, y〉 = 〈x, µy〉 = µy(x) =
∑

k

xkyk, x ∈ ℓp.

Our preferred notation for the rest of this volume will be 〈x, y〉.
Unfortunately, this does create a notational ambiguity, because if p = 2

then p′ = 2 and we have already used the notation 〈·, ·〉 to denote the inner
product on ℓ2. Given x, y ∈ ℓ2, we now have two conflicting meanings for the
notation 〈x, y〉. On the one hand, 〈x, y〉 denotes the inner product of x with y,
which is

〈x, y〉 =
∑

k

xkyk. (1.18)
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On the other hand, since y ∈ ℓ2 it determines a linear functional µy on ℓ2,
and 〈x, y〉 denotes the action of this linear functional on x, which is

〈x, y〉 =
∑

k

xkyk. (1.19)

This ambiguity is usually not a problem in practice. If we are dealing with a
generic Banach space X, then we assume that the notation 〈x, x∗〉 represents
the bilinear form notation for a bounded linear functional x∗ ∈ X∗ acting on
an element x ∈ X. However, if we know that H is a Hilbert space, then 〈x, y〉
will denote the inner product of x, y ∈ H.

The main advantage of the bilinear form notation 〈x, x∗〉 is that it is linear
both as a function of x and x∗, and for most purposes in Banach space theory
this is quite convenient. In contrast, an inner product 〈x, y〉 is linear in x but
antilinear in y, because 〈x, ay+bz〉 = ā〈x, y〉+b̄〈x, z〉. In some areas, especially
harmonic analysis and the theory of distributions, it is more convenient to use
a functional notation 〈x, x∗〉 that directly extends the inner product notation
in the sense that it is linear as a function of x ∈ X but antilinear as a function
of x∗ ∈ X∗ (indeed, this is the viewpoint taken in [Heil]). ♦

As a special case of Theorem 1.73, (ℓ2)∗ can be isometrically identified
with ℓ2. The next result states that if H is any Hilbert space, then H∗ can be
isometrically identified with H. In particular, any continuous linear functional
on H is formed by taking the inner product with some unique element of H.
However, since we are dealing with an inner product, which by definition is
antilinear in the second variable, this identification of H with H∗ is antilinear
rather than linear. This result is one of several that are known as the Riesz
Representation Theorem.

Theorem 1.75 (Riesz Representation Theorem). Let H be a Hilbert
space, and for each y ∈ H define µy : H → F by

µy(x) = 〈x, y〉, x ∈ H.

Then the following statements hold.

(a) µy ∈ H∗ and ‖µy‖ = ‖y‖ for each y ∈ H.
(b) The mapping y 7→ µy is an antilinear bijective isometry of H onto H∗.

Proof. Let T (y) = µy. To see that T is antilinear, fix y, z ∈ H and a, b ∈ F.
Then for x ∈ H we have that

µay+bz(x) = 〈x, ay + bz〉 = ā〈x, y〉+ b̄〈x, z〉 = āµy(x) + b̄µz(x),

which means that

T (ax+ by) = µay+bz = āµy + b̄µz = āT (y) + b̄T (z).

We assign the rest of the proof as Exercise 1.77. ⊓⊔
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As before, we usually “identify” the element y ∈ H with the functional
µy ∈ H∗. Hence we write simply y = µy and say that y “is” a linear functional
on H, when we actually mean that y determines the functional µy(x) = 〈x, y〉.
In the same way, we identify H with H∗ and write H = H∗. In this sense,
all Hilbert spaces are self-dual. Again, there is a possible source of confusion
deriving from the fact that the identification of H with H∗ given by y 7→ µy is
antilinear, in contrast to the linear identification made in Theorem 1.73, but
this is usually not a problem in practice.

Exercises

1.73. Complete the proof of Theorem 1.73 for p = 1 and p =∞.

1.74. Let X be a normed space. Given µ ∈ X∗, µ 6= 0, show that if z /∈ ker(µ),
then every x ∈ X can be written uniquely as x = y+ cz where y ∈ ker(µ) and
c ∈ F.

1.75. Given y = (yk) ∈ ℓ1, define µy : c0 → F by 〈x, µy〉 =
∑
xkyk. Show that

y 7→ µy is an isometric isomorphism of ℓ1 onto c0
∗. Thus c0

∗ ∼= ℓ1.

1.76. Let X be a normed space, and suppose that the series x =
∑
xn con-

verges in X. Show that if µ ∈ X∗, then
∑ 〈xn, µ〉 is a convergent series of

scalars, and 〈x, µ〉 =
∑ 〈xn, µ〉.

1.77. Prove Theorem 1.75.

1.78. Fix 1 ≤ p ≤ ∞, and let y = (yn) be a fixed sequence of scalars. Use
Theorem 1.73 to show that there exists a constant C such that |〈x, y〉| ≤
C ‖x‖ℓp for all finite sequences x ∈ c00 if and only if y ∈ ℓp′ .

1.79. Let µ be a linear functional on a normed space X. Prove that

µ is bounded ⇐⇒ ker(µ) is closed.

1.80. Let X, Y be normed spaces. Then, by Exercise 1.16, the Cartesian
product X × Y is a normed space with respect to the norm ‖(x, y)‖∞ =
max{‖x‖, ‖y‖}. Likewise, X∗ × Y ∗ is normed with respect to ‖(x∗, y∗)‖1 =
‖x∗‖ + ‖y∗‖. Show that, with respect to these choices of norms, (X × Y )∗ is
isometrically isomorphic to X∗ × Y ∗.



2

Functional Analysis

In this chapter we survey the main theorems of functional analysis that deal
with Banach spaces, including the Hahn–Banach, Baire Category, Uniform
Boundedness, Open Mapping, and Closed Graph Theorems. References for
additional information on this material (and sources for many of the proofs
that we give) include the texts by Conway [Con90], Folland [Fol99], and Rudin
[Rud91].

2.1 The Hahn–Banach Theorem and Its Implications

Orthogonality played an essential role in many of the proofs for Hilbert spaces
that appeared in Sections 1.5 and 1.6. The analysis of general Banach spaces
is much more difficult because there need not be any notion of orthogonality
in a Banach space. The Hahn–Banach Theorem is a fundamental result for
Banach spaces that allows us to do some things in Banach spaces that at
first glance seem to be impossible without having the tools that orthogonality
provides.

The abstract form of the Hahn–Banach Theorem is a statement about
extension of linear functionals. We state a form that applies to both real and
complex vector spaces.

Theorem 2.1 (Hahn–Banach Theorem). Let X be a vector space over F
and let ρ be a seminorm on X. If M is a subspace of X and λ : M → F is a
linear functional on M satisfying

|〈x, λ〉| ≤ ρ(x), x ∈M,

then there exists a linear functional Λ: X → F such that

Λ|M = λ and |〈x,Λ〉| ≤ ρ(x), x ∈ X. ♦

C. Heil, A Basis Theory Primer: Expanded Edition, Applied and Numerical Harmonic Analysis,   
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The proof of the Hahn–Banach Theorem takes some preparation, and
therefore we will omit it (see [Con90] for a proof). The most important point
to note is that the extension Λ obeys the same bound that is satisfied by λ,
but does so on the entire space X and not just on the subspace M.

In practice, it is usually not the Hahn–Banach Theorem itself but rather
one of its many corollaries that is applied. Therefore we will concentrate in
this section on these implications. Since these corollaries are so important,
when invoking any one of them it is customary to write “by the Hahn–Banach
Theorem” instead of “by a corollary to the Hahn–Banach Theorem.”

Our first corollary states that any bounded linear functional on a sub-
space M of a normed space X has an extension to the entire space whose
operator norm on X equals the operator norm on M. This is easy to prove
when the space is a Hilbert space (see Exercise 2.1), but it is far from obvious
that such an extension should be possible on non-inner product spaces.

Corollary 2.2 (Hahn–Banach). Let X be a normed linear space and M a
subspace of X. If λ ∈M∗, then there exists Λ ∈ X∗ such that

Λ|M = λ and ‖Λ‖X∗ = ‖λ‖M∗ .

Proof. Set ρ(x) = ‖λ‖M∗ ‖x‖X for x ∈ X. Note that ρ is defined on all of X,
and is a seminorm on X (in fact, it is a norm if λ 6= 0). Further,

∀x ∈M, |〈x, λ〉| ≤ ‖x‖X ‖λ‖M∗ = ρ(x).

Hence Theorem 2.1 implies that there exists a linear functional Λ: X → F
such that Λ|M = λ (which implies ‖Λ‖X∗ ≥ ‖λ‖M∗) and

∀x ∈ X, |〈x,Λ〉| ≤ ρ(x) = ‖λ‖M∗ ‖x‖X ,

which implies that ‖Λ‖X∗ ≤ ‖λ‖M∗ . ⊓⊔

Given a normed space X and given x∗ ∈ X∗, the operator norm of x∗ is

‖x∗‖X∗ = sup
x∈X, ‖x‖X=1

|〈x, x∗〉|.

Thus, we obtain the operator norm of x∗ on X∗ by “looking back” at its action
on X. The next corollary provides a complementary viewpoint: The norm of
x ∈ X can be obtained by “looking forward” to its action on X∗. Again, this
is easy to prove directly for Hilbert spaces (see Theorem 1.37), but is a much
more subtle fact for generic Banach spaces.

Corollary 2.3 (Hahn–Banach). Let X be a Banach space. Then for each
x ∈ X we have

‖x‖X = sup
x∗∈X∗, ‖x∗‖X∗=1

|〈x, x∗〉|. (2.1)

Further, the supremum is achieved.
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Proof. Fix x ∈ X, and let α denote the supremum on the right-hand side of
equation (2.1). Since |〈x, x∗〉| ≤ ‖x‖X ‖x∗‖X∗ , we have α ≤ ‖x‖X .

Let M = span{x}, and define λ : M → F by 〈cx, λ〉 = c ‖x‖X . Then
λ ∈ M∗ and ‖λ‖M∗ = 1. Corollary 2.2 therefore implies that there exists
some Λ ∈ X∗ with Λ|M = λ and ‖Λ‖X∗ = ‖λ‖M∗ = 1. In particular, since
x ∈ M, we have α ≥ |〈x,Λ〉| = |〈x, λ〉| = ‖x‖X , and therefore the supremum
in equation (2.1) is achieved. ⊓⊔

Now we can give one of the most powerful and often-used implications of
the Hahn–Banach Theorem. It states that we can find a bounded linear func-
tional that separates a point from a closed subspace of a normed space. This is
easy to prove constructively for the case of a Hilbert space (see Exercise 2.2),
but it is quite amazing that we can do this in arbitrary normed spaces.

Corollary 2.4 (Hahn–Banach). Let X be a normed linear space. Suppose
that:

(a) M is a closed subspace of X,

(b) x0 ∈ X\M, and

(c) d = dist(x0,M) = inf
{
‖x0 −m‖ : m ∈M

}
.

Then there exists Λ ∈ X∗ such that

〈x0,Λ〉 = 1, Λ|M = 0, and ‖Λ‖X∗ =
1

d
.

Proof. Note that d > 0 since M is closed. Define M1 = span{M,x0}. Then
each x ∈M1 can be written as x = mx + txx0 for some mx ∈M and tx ∈ F,
and since x0 /∈ M, this representation is unique (verify!). Define λ : M1 → F
by 〈x, λ〉 = tx. Then λ is linear, λ|M = 0, and 〈x0, λ〉 = 1.

If x ∈M1 and tx 6= 0, then we have mx/tx ∈M, so

‖x‖ = ‖txx0 +mx‖X = |tx|
∥∥∥x0 −

(−mx

tx

)∥∥∥
X
≥ |tx| d.

If tx = 0 (so x ∈M), this is still true. Hence, |〈x, λ〉| = |tx| ≤ ‖x‖X/d for all
x ∈M1. Therefore λ is continuous on M1, and ‖λ‖M∗

1
≤ 1/d.

On the other hand, there exist vectorsmn ∈M such that ‖x0−mn‖X → d.
Since λ vanishes on M, we therefore have

1 = 〈x0, λ〉 = 〈x0 −mn, λ〉 ≤ ‖x0 −mn‖X ‖λ‖M∗

1
→ d ‖λ‖M∗

1
.

Therefore ‖λ‖M∗

1
≥ 1/d.

Applying Corollary 2.2, there exists a Λ ∈ X∗ such that Λ|M1
= λ and

‖Λ‖X∗ = ‖λ‖M∗

1
. This functional Λ has all of the required properties. ⊓⊔

Unlike the preceding corollaries, the next corollary is usually not given a
special name, but we will have occasion to use it often (compare Lemma 1.44
for the case of Hilbert spaces).
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Corollary 2.5. Let X be a Banach space. Then {xn} ⊆ X is complete if and
only if the following statement holds:

x∗ ∈ X∗ and 〈xn, x∗〉 = 0 for every n =⇒ x∗ = 0.

Proof. ⇒. Suppose that {xn} is complete, i.e., span{xn} = X. Suppose that
x∗ ∈ X∗ satisfies 〈xn, x∗〉 = 0 for every n. Since x∗ is linear, we therefore have

〈x, x∗〉 = 0 for every x =
∑N

n=1 cnxn ∈ span{xn}. However, x∗ is continuous,

so this implies 〈x, x∗〉 = 0 for every x ∈ span{xn} = X. Hence x∗ is the zero
functional.

⇐. Suppose that the only x∗ ∈ X∗ satisfying 〈xn, x∗〉 = 0 for every n is
x∗ = 0. Define Z = span{xn}, and suppose that Z 6= X. Then we can find an
element y ∈ X such that y /∈ Z. Since Z is a closed subset of X, we therefore
have d = dist(y, Z) > 0. By the Hahn–Banach Theorem (Corollary 2.4), there
exists a functional Λ ∈ X∗ satisfying 〈y,Λ〉 = 1 6= 0 and 〈z,Λ〉 = 0 for every
z ∈ Z. However, this implies that 〈xn,Λ〉 = 0 for every n. By hypothesis,
Λ must then be the zero functional, contradicting the fact that 〈y,Λ〉 6= 0.
Hence, we must have Z = X, so {xn} is complete in X. ⊓⊔

Exercises

2.1. Let M be a subspace of a Hilbert space H and fix λ ∈M. Show directly
that there exists some Λ ∈ H such that 〈x,Λ〉 = 〈x, λ〉 for all x ∈ M and
‖Λ‖ = ‖λ‖.

2.2. Suppose that M is a closed subspace of a Hilbert space H, x0 ∈ H\M,
and d = dist(x0,M). Show directly that there exists a µ ∈ H such that
〈x0, µ〉 = 1, 〈x, µ〉 = 0 for all x ∈M, and ‖µ‖ = 1/d.

2.3. Let X be a normed space. Show that if X∗ is separable then X is sepa-
rable, but the converse can fail.

2.4. The Weierstrass Approximation Theorem implies that {xk}k≥0 is com-
plete in C[0, 1]. Show that {x2k}k≥0 is also complete in C[0, 1].

2.5. Given a subset A of a normed space X, define its orthogonal complement
A⊥ ⊆ X∗ by

A⊥ =
{
µ ∈ X∗ : 〈x, µ〉 = 0 for all x ∈ A

}
.

Prove that A⊥ is a closed subspace of X∗, and explain how this relates to
Corollary 2.5.

2.6. Let S be a subspace of a normed space X, and show that its closure S is
given by

S =
⋂{

ker(µ) : µ ∈ X∗ and S ⊆ ker(µ)
}
.
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2.2 Reflexivity

Given a normed space X, its dual space X∗ is a Banach space, so we can
consider the dual of the dual space, which we denote by X∗∗. The next result
shows that there is a natural isometry that maps X into X∗∗.

Theorem 2.6. Let X be a normed linear space. Given x ∈ X, define
π(x) : X∗ → F by

〈
x∗, π(x)

〉
= 〈x, x∗〉, x∗ ∈ X∗.

Then π(x) is a bounded linear functional on X∗, and has operator norm

‖π(x)‖X∗∗ = ‖x‖X .
Consequently, the mapping

π : X → X∗∗

x 7→ π(x),

is a linear isometry of X into X∗∗.

Proof. By definition of the operator norm,

‖π(x)‖X∗∗ = sup
x∗∈X∗, ‖x∗‖X∗=1

|〈x∗, π(x)〉|.

On the other hand, by the Hahn–Banach Theorem in the form of Corollary 2.3,

‖x‖ = sup
x∗∈X∗, ‖x∗‖X∗=1

|〈x, x∗〉|.

Since 〈x, x∗〉 = 〈x∗, π(x)〉, the result follows. ⊓⊔
Definition 2.7 (Natural Embedding of X into X∗∗). Let X be a normed
space.

(a) The mapping π : X → X∗∗ defined in Theorem 2.6 is called the natural
embedding or the canonical embedding of X into X∗∗.

(b) If the natural embedding of X into X∗∗ is surjective, then we say that X
is reflexive. ♦
Note that in order for X to be called reflexive, the natural embedding

must be a surjective isometry. There exist Banach spaces X such that X is
isometrically isomorphic to X∗∗ even though X is not reflexive [Jam51].

By the Riesz Representation Theorem (Theorem 1.75), every Hilbert space
is reflexive.

Exercise 2.7 asks for a proof that ℓp is reflexive for each 1 < p < ∞.
However, ℓ1 and ℓ∞ are not reflexive. Another nonreflexive example is the
space c0, since by Exercise 1.75 we have c0

∗∗ ∼= (ℓ1)∗ ∼= ℓ∞. The space c0
is one of the few easily exhibited nonreflexive separable spaces whose dual is
separable.

It is likewise true that Lp(E) is reflexive when 1 < p < ∞, but not for
p = 1 or p =∞.
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Exercises

2.7. Show that ℓp is reflexive for each 1 < p <∞.

2.8. Let X be a Banach space. Show that if X is separable but X∗ is not,
then X is not reflexive. Use this to show that ℓ1 is a proper subspace of (ℓ∞)∗.

2.3 Adjoints of Operators on Banach Spaces

The duality between Banach spaces and their dual spaces allows us to define
the “dual” of a bounded linear operator on Banach spaces.

Let X and Y be Banach spaces, and let T : X → Y be a bounded linear
operator. Fix ν ∈ Y ∗, and define a functional µ : X → F by

〈x, µ〉 = 〈Tx, ν〉, x ∈ X.

That is, µ = ν ◦ T. Then µ is linear since T and ν are linear. Further,

|〈x, µ〉| = |〈Tx, ν〉| ≤ ‖Tx‖Y ‖ν‖Y ∗ ≤ ‖T ‖ ‖x‖X ‖ν‖Y ∗ ,

so

‖µ‖X∗ = sup
‖x‖X=1

|〈x, µ〉| ≤ ‖T ‖ ‖ν‖Y ∗ < ∞. (2.2)

Hence µ is bounded, so µ ∈ X∗. Thus, for each ν ∈ Y ∗ we have defined a
functional µ ∈ X∗, so we can define an operator T ∗ : Y ∗ → X∗ by setting
T ∗ν = µ. This mapping T ∗ is linear, and by equation (2.2) we have

‖T ∗ν‖X∗ = ‖µ‖X∗ ≤ ‖T ‖ ‖ν‖Y ∗ .

Taking the supremum over all unit vectors ν ∈ Y ∗, we conclude that T ∗ is
bounded and ‖T ∗‖ ≤ ‖T ‖.

We can use the Hahn–Banach Theorem to show that ‖T ∗‖ = ‖T ‖. Choose
any x ∈ X with ‖x‖X = 1. By Corollary 2.3,

‖Tx‖Y = sup
‖ν‖Y ∗=1

|〈Tx, ν〉|, (2.3)

and this supremum is achieved. Let ν ∈ Y ∗ be any particular functional with
unit norm that achieves the supremum in equation (2.3). Then we have

‖Tx‖Y = |〈Tx, ν〉| = |〈x, T ∗ν〉|
≤ ‖x‖X ‖T ∗ν‖X∗

≤ ‖x‖X ‖T ∗‖ ‖ν‖Y ∗

= ‖x‖X ‖T ∗‖.
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Since this is true for every unit vector x ∈ X, we conclude that ‖T ‖ ≤ ‖T ∗‖.
In summary, given T ∈ B(X,Y ), we have constructed an operator T ∗ ∈

B(Y ∗, X∗) that satisfies

∀x ∈ X, ∀ ν ∈ Y ∗,
〈
Tx, ν

〉
=
〈
x, T ∗ν

〉
. (2.4)

According to Exercise 2.9, there is a unique such operator, and we call it the
adjoint of T.

Definition 2.8 (Adjoint). Given T ∈ B(X,Y ), the unique operator T ∗ ∈
B(Y ∗, X∗) satisfying equation (2.4) is called the adjoint of T. ♦

Example 2.9. Let E ⊆ R be Lebesgue measurable, choose 1 ≤ p < ∞, and
fix m ∈ L∞(R). Let Tm : Lp(R) → Lp(R) be the operation of pointwise
multiplication of f by m, i.e., Tmf = fm for f ∈ Lp(R). Exercise 1.67
shows that Tm is bounded and has operator norm ‖Tm‖ = ‖m‖L∞. Therefore,

T ∗
m : Lp

′

(E)→ Lp
′

(E) is the unique operator that satisfies

〈f, T ∗
mg〉 = 〈Tmf, g〉 = 〈fm, g〉 =

∫

E

f(t)m(t) g(t) dt = 〈f, gm〉

for f ∈ Lp(E) and g ∈ Lp(E)∗ = Lp
′

(E). Therefore T ∗
mg = gm, so T ∗

m is also
multiplication by the function m. Technically, however, Tm and T ∗

m are not
the same operator, since Tm maps Lp(E) into itself, while T ∗

m maps Lp
′

(E)
into itself. ♦

Exercises

2.9. Let X, Y be Banach spaces. Given T ∈ B(X,Y ), show that there is a
unique operator T ∗ ∈ B(Y ∗, X∗) that satisfies equation (2.4).

2.10. Let X be a Banach space. Given µ ∈ X∗ = B(X,F), explicitly describe
its adjoint µ∗.

2.11. Let M be a closed subspace M of a normed space X, and fix L ∈ B(X).
We say that M is invariant under L if L(M) ⊆ M. Show that if M ⊆ X is
invariant under L, thenM⊥ is invariant under L∗, whereM⊥ is the orthogonal
complement defined in Exercise 2.5.

2.12. Suppose that M is a closed subspace of a Banach space X. Let
ǫ : M → X be the embedding map, i.e., ǫ(x) = x for x ∈ M. Show that
ǫ∗ : X∗ →M∗ is the restriction map, i.e., if µ ∈ X∗, then ǫ∗µ = µ|M .
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2.4 Adjoints of Operators on Hilbert Spaces

Since Hilbert spaces are Banach spaces, if H, K are Hilbert spaces and
T ∈ B(H,K), then there exists a unique adjoint operator T ∗ ∈ B(K∗, H∗).
However, since Hilbert spaces are self-dual, we can regard the adjoint as be-
longing to B(K,H). In particular, if K = H then T and T ∗ both belong to
B(H). This makes adjoints of operators on Hilbert spaces quite special, and
so we study them in more detail in this section.

Because of the conflict between our bilinear form notation 〈x, x∗〉 for func-
tionals x∗ acting on elements x and the inner product 〈x, y〉, which is antilinear
as a function of y, the definition of adjoints on Hilbert spaces differs slightly
from the definition on Banach spaces. We defined the adjoint using the bilin-
ear form notation, but when dealing with a space that we know is a Hilbert
space, it is usually more convenient to employ that space’s inner product.
Therefore, we define the adjoint of an operator on a Hilbert space as follows.

Definition 2.10 (Adjoint). Let H and K be Hilbert spaces. Let 〈·, ·〉H
denote the inner product on H, and 〈·, ·〉K the inner product on K. If
A ∈ B(H,K), then the adjoint of A is the unique operator A∗ ∈ B(K,H)
satisfying

∀x ∈ H, ∀ y ∈ K, 〈Ax, y〉K = 〈x,A∗y〉H . ♦
Comparing Definitions 2.8 and 2.10, we see that there is an ambiguity in

the definition of an adjoint. We use the convention that if X, Y are Banach
spaces then the adjoint of T ∈ B(X,Y ) is defined by Definition 2.8, while if
we know that H, K are Hilbert spaces then the adjoint of A ∈ B(H,K) is
defined by Definition 2.10.

Example 2.11. Consider again the mapping Tm discussed in Example 2.9, but
now consider the particular case p = 2. Since L2(E) is a Hilbert space, we
define T ∗

m to be the unique operator that, for f, g ∈ L2(E), satisfies

〈f, T ∗
mg〉 = 〈Tmf, g〉 = 〈fm, g〉 =

∫

E

f(t)m(t) g(t) dt

=

∫

E

f(t) g(t)m(t) dt = 〈f, gm〉.

Therefore T ∗
mg = gm, i.e., T ∗

m is multiplication by the function m. ♦
Thus, we see that Definitions 2.8 and 2.10 differ in how they define the

adjoint. Fortunately, this is not a significant problem in practice.

Example 2.12. Consider the finite-dimensional Hilbert spaces H = Cn and
K = Cm. A linear operator A : Cn → Cm is given by multiplication by
an m × n matrix A, which we identify with the operator A. The Hilbert
space adjoint of A corresponds to multiplication by the conjugate transpose

or Hermitian matrix A∗ = AT, while the Banach space adjoint corresponds
to multiplication by the transpose matrix AT (see Exercise 2.13). ♦
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The next result summarizes some of the properties of adjoints on Hilbert
spaces (see Exercise 2.16).

Theorem 2.13. Let H, K, L be Hilbert spaces, and fix A ∈ B(H,K) and
B ∈ B(K,L).

(a) (A∗)∗ = A.

(b) (BA)∗ = A∗B∗.

(c) ker(A) = range(A∗)⊥.

(d) ker(A)⊥ = range(A∗).

(e) A is injective if and only if range(A∗) is dense in H.

(f) ‖A‖ = ‖A∗‖ = ‖A∗A‖1/2 = ‖AA∗‖1/2. ♦

We now make some definitions specifically for the case of adjoints of op-
erators that map a Hilbert space into itself.

Definition 2.14. LetH be a Hilbert space, and letA, B : H → H be bounded
linear operators.

(a) A is self-adjoint or Hermitian if A = A∗. By definition,

A is self-adjoint ⇐⇒ ∀x, y ∈ H, 〈Ax, y〉 = 〈x,Ay〉.

(b) A is positive, denoted A ≥ 0, if A is self-adjoint and 〈Ax, x〉 is real with
〈Ax, x〉 ≥ 0 for every x ∈ H.

(c) A is positive definite or strictly positive, denoted A > 0, if A is self-adjoint
and 〈Ax, x〉 is real with 〈Ax, x〉 > 0 for every x 6= 0.

(d) We write A ≥ B if A−B ≥ 0, and A > B if A−B > 0. ♦

We will need the following results for self-adjoint and positive operators.

Theorem 2.15. If A ∈ B(H) is self-adjoint, then

‖A‖ = sup
‖x‖=1

|〈Ax, x〉|.

Proof. Let us take F = C; the proof for real scalars is similar. Set M =
sup‖x‖=1 |〈Ax, x〉|. By the Cauchy–Bunyakovski–Schwarz Inequality and the
definition of operator norm, we have M ≤ ‖A‖.

Choose any unit vectors x, y ∈ H. Then, by expanding the inner products,
canceling terms, and using the fact that A = A∗, we see that

〈
A(x + y), x+ y

〉
−
〈
A(x− y), x− y

〉
= 2 〈Ax, y〉+ 2 〈Ay, x〉
= 2 〈Ax, y〉+ 2 〈y,Ax〉
= 4 Re(〈Ax, y〉).
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Applying the definition of M and using the Parallelogram Law, it follows that

4 Re(〈Ax, y〉) ≤ |〈A(x + y), x+ y〉|+ |〈A(x − y), x− y〉|
≤ M ‖x+ y‖2 +M ‖x− y‖2

= 2M
(
‖x‖2 + ‖y‖2

)
= 4M.

That is, Re(〈Ax, y〉) ≤ M for every choice of unit vectors x and y. Write
|〈Ax, y〉| = α 〈Ax, y〉 where α ∈ C satisfies |α| = 1. Then ᾱy is another unit
vector, so

|〈Ax, y〉| = α〈Ax, y〉 = 〈Ax, ᾱy〉 ≤ M.

Using Lemma 1.36(c), we therefore have

‖Ax‖ = sup
‖y‖=1

|〈Ax, y〉| ≤ M.

Since this is true for every unit vector x, we conclude that ‖A‖ ≤M. ⊓⊔

As a corollary, we obtain the following useful fact for self-adjoint operators.

Corollary 2.16. Let H be a Hilbert space. If A ∈ B(H) is self-adjoint and
〈Ax, x〉 = 0 for every x ∈ H, then A = 0. ♦

Although we will not prove it, it can be shown that if H is a complex
Hilbert space, then A ∈ B(H) is self-adjoint if and only if 〈Ax, x〉 is real for
every x ∈ H. Hence for complex Hilbert spaces, the hypothesis in Corollary
2.16 that A is self-adjoint is redundant.

We end this section by proving that every positive operator A on a Hilbert
space has a square root. That is, there exists a positive operator S such that
S2 = A. The idea of the proof is that if a is a real number with 0 < a < 1 and
if (1− t)2 = a, then t = 1

2 (1−a)+ 1
2 t

2 and the iteration tn+1 = 1
2 (1−a)+ 1

2 t
2
n

converges to t. We make an operator analogue of this recursion. To prove
convergence, we need the following lemma, which will be useful to us again in
Chapter 8.

Lemma 2.17. If T : H → H is a positive operator on a Hilbert space H, then

∀x, y ∈ H, |〈Tx, y〉|2 ≤ 〈Tx, x〉 〈Ty, y〉.

Proof. By definition of a positive operator, 〈Tx, x〉 ≥ 0 for every x ∈ H.
Therefore (x, y) = 〈Tx, y〉 defines a semi-inner product on H, and |||x||| =
(x, x)1/2 is a seminorm on H. In general, (·, ·) need not be an inner prod-
uct (this happens if and only if T is positive definite). Still, the Cauchy–
Bunyakovski–Schwarz Inequality holds for semi-inner products by Exercise
1.34, so we have

|〈Tx, y〉|2 = |(x, y)|2 ≤ |||x|||2 |||y|||2 = (x, x) (y, y) = 〈Tx, x〉 〈Ty, y〉. ⊓⊔
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Theorem 2.18. If A ∈ B(H) is a positive operator on a Hilbert space H,
then there exists a positive operator A1/2 ∈ B(H) such that A1/2A1/2 = A.
Moreover, A1/2 commutes with A and with all operators that commute with A.

Proof. We present some parts of the proof and assign the remainder as Exer-
cise 2.23.

Suppose that A ≥ 0. The result is trivial if A is the zero operator, so
assume A 6= 0. Let c = ‖A‖−1. Then for every x we have

〈cAx, x〉 ≤ |c| ‖Ax‖ ‖x‖ ≤ |c| ‖A‖ ‖x‖2 = ‖x‖2 = 〈Ix, x〉,

which in operator notation says that cA ≤ I. Since A has a square root if
and only if cA has a square root, we can simply replace A by cA. That is, it
suffices to prove the result under the assumptions that A ≥ 0, A ≤ I, and
‖A‖ = 1.

Let B = I −A. Set T0 = 0, T1 = 1
2B, and

Tn+1 =
1

2
(B + T 2

n ), n ≥ 2.

Each Tn is a polynomial in B, and therefore commutes with Tm and with
every operator that commutes with B. The polynomial defining Tn has only
nonnegative coefficients, so Tn ≥ 0. Further, Tn+1 − Tn is also a polynomial
in B with all nonnegative coefficients. Consequently, Tn − Tm ≥ 0 for all
n ≥ m ≥ 0.

By induction, ‖Tn‖ ≤ 1 for every n. Therefore, if we fix x ∈ H then

the sequence
(
〈Tnx, x〉

)
is a bounded, increasing sequence of nonnegative real

scalars. Hence this sequence must converge, and so is Cauchy. Now, if n ≥ m
then by using Theorem 1.37(c) and Lemma 2.17 we compute that

‖Tnx− Tmx‖2 = sup
‖y‖=1

|〈(Tn − Tm)x, y〉|2

≤ sup
‖y‖=1

|〈(Tn − Tm)x, x〉| |〈(Tn − Tm)y, y〉|

≤ sup
‖y‖=1

|〈Tnx, x〉 − 〈Tmx, x〉| ‖Tn − Tm‖ ‖y‖2

≤ 2 |〈Tnx, x〉 − 〈Tmx, x〉|.

Since
(
〈Tnx, x〉

)
is a Cauchy sequence of scalars, we conclude that {Tnx} is a

Cauchy sequence of vectors in H. Therefore {Tnx}n∈N converges in H, and we
define Tx to be the limit of this sequence. This operator T is bounded, linear,
and positive, and it commutes with B and with every operator that commutes
withB. Further, T = 1

2 (B+T 2). Consequently, the operator S = I−T satisfies
S2 = A, and S is positive since ‖T ‖ ≤ 1. ⊓⊔

In fact, the square root A1/2 is unique; see Exercise 2.24.
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Exercises

2.13. Let A : Cn → Cm be a linear operator, which we identify with its m×n
matrix representation. Show that the adjoint of A in the Hilbert space sense

(Definition 2.10) is the conjugate transpose matrix A∗ = AT, while the adjoint
of A in the Banach space sense (Definition 2.8) is the transpose matrix AT.

2.14. Let L, R be the left- and right-shift operators on ℓ2 defined in Exer-
cise 1.64. Show that R = L∗.

2.15. Fix λ ∈ ℓ∞, and let Mλ be the multiplication operator defined in Ex-
ercise 1.66. Find M∗

λ , and determine when Mλ is self-adjoint, positive, or
positive definite.

2.16. Prove Theorem 2.13.

2.17. Let M be a closed subspace of a Hilbert space H, and let P ∈ B(H) be
given. Show that P is the orthogonal projection of H onto M if and only if
P 2 = P, P ∗ = P, and range(P ) = M.

2.18. LetH be a Hilbert space and suppose that A, B ∈ B(H) are self-adjoint.
Show that ABA, and BAB are self-adjoint, but AB is self-adjoint if and only
if AB = BA. Exhibit self-adjoint operators A, B that do not commute.

2.19. Let H be a Hilbert space and let A ∈ B(H) be fixed.

(a) Show that if A is self-adjoint then all eigenvalues of A are real, and
eigenvectors of A corresponding to distinct eigenvalues are orthogonal.

(b) Show that if A is a positive operator then all eigenvalues of A are real
and nonnegative.

(c) Show that if A is a positive definite operator then all eigenvalues of A
are real and strictly positive.

2.20. Let H, K be Hilbert spaces. Show that if A ∈ B(H,K), then A∗A ∈
B(H) and AA∗ ∈ B(K) are positive operators.

2.21. Let H be a Hilbert space. Given A ∈ B(H), show that ker(A) =

ker(A∗A) and range(A∗A) = range(A∗).

2.22. Let H, K be Hilbert spaces, and fix U ∈ B(H,K). Show that U is
unitary if and only if U is a bijection and U−1 = U∗.

2.23. Fill in the details in the proof of Theorem 2.18.

2.24. Let A be a positive operator on a Hilbert space H.

(a) Show that 〈Ax, x〉 = 0 if and only if Ax = 0.

(b) Show that the operator A1/2 constructed in Theorem 2.18 is unique,
i.e., there is only one positive operator S satisfying S2 = A.
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2.5 The Baire Category Theorem

Just as it is not possible to write the Euclidean plane R2 as the union of count-
ably many straight lines, the Baire Category Theorem states that a complete
metric space cannot be written as a countable union of “nowhere dense” sets.
Since we are mainly interested in Banach spaces in this volume, we will prove
this theorem in the setting of complete normed spaces, but the proof carries
over without change to complete metric spaces.

Definition 2.19 (Nowhere Dense Sets). Let X be a Banach space, and
let E ⊆ X be given.

(a) E is nowhere dense or rare if X\E is dense in X.

(b) E is meager or first category if it can be written as a countable union of
nowhere dense sets.

(c) E is nonmeager or second category if it is not meager. ♦

We can restate the meaning of nowhere dense sets as follows (see Exer-
cise 2.25).

Lemma 2.20. Let E be a nonempty subset of a Banach space X. Then E is
nowhere dense if and only if E contains no nonempty open subsets. ♦

The set of rationals Q is not a nowhere dense subset of R, but it is meager
in R. Although it is not a real vector space and hence not a normed space,
Q under the metric d(x, y) = |x − y| is an example of an incomplete metric
space that is a meager subset of itself.

Now we prove the Baire Category Theorem.

Theorem 2.21 (Baire Category Theorem). Every Banach space X is a
nonmeager subset of itself. Consequently, if

X =
∞⋃
n=1

En

where each En is a closed subset of X, then at least one En contains a
nonempty open subset.

Proof. Suppose that X = ∪En where each En is nowhere dense. Then, by

definition, Un = X\En is dense, and it is open since En is closed.
Choose x1 ∈ U1 and let r1 > 0 be such that B1 = Br1(x1) ⊆ U1. Then

since U2 is dense, there exists a point x2 ∈ U2 ∩B1. Since U2 and B1 are both
open, there exists some r2 > 0 such that B2 = Br2(x2) ⊆ U2 ∩ B1. Without
loss of generality, we can take r2 small enough that we have both r2 < r1/2

and B2 ⊆ B1. Continuing in this way we obtain points xn ∈ Un and open
balls Bn = Brn(xn) ⊆ Un such that

rn <
rn−1

2
and Bn ⊆ Bn−1.
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In particular, rn → 0 and the balls Bn are nested.
Fix ε > 0, and let N be large enough so that rN < ε/2. If m, n > N,

then we have xm, xn ∈ BN . Hence ‖xm − xn‖ < 2rN < ε. Thus {xn}n∈N is
Cauchy, and therefore there exists some x ∈ X such that xn → x.

Now fix any N > 0. Then, since the Bn are nested, we have xn ∈ BN+1

for all n > N. As xn → x, this implies that x ∈ BN+1 ⊆ BN . This is true for
every N, so

x ∈
∞⋂
n=1

Bn ⊆
∞⋂
n=1

Un =
∞⋂
n=1

(X\En).

But then x /∈ ∪En, which is a contradiction. ⊓⊔

Exercises

2.25. Prove Lemma 2.20.

2.26. Show that Cc(R) is a meager subset of C0(R).

2.27. Suppose that f is an infinitely differentiable function on R such that
for each t ∈ R there exists some integer nt ≥ 0 so that f (nt)(t) = 0. Prove
that there exists some open interval (a, b) and some polynomial p such that
f(t) = p(t) for all t ∈ (a, b).

2.28. Let D be the subset of C[0, 1] consisting of all functions f ∈ C[0, 1]
that have a right-hand derivative at at least one point in [0, 1]. Show that D
is meager in C[0, 1], and conclude that there are functions in C[0, 1] that are
not differentiable at any point.

2.6 The Uniform Boundedness Principle

The Uniform Boundedness Principle states that a family of bounded linear
operators on a Banach space that are uniformly bounded at each individual
point must actually be uniformly bounded in operator norm.

Theorem 2.22 (Uniform Boundedness Principle). Let X be a Banach
space and Y a normed linear space. If {Ai}i∈I is any collection of operators
in B(X,Y ) such that

∀x ∈ X, sup
i∈I
‖Aix‖ < ∞,

then
sup
i∈I
‖Ai‖ < ∞.
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Proof. Set

En =
{
x ∈ X : sup

i∈I
‖Aix‖ ≤ n

}
.

Then X = ∪En by hypothesis, and since each Ai is continuous it follows
that En is closed. Consequently, the Baire Category Theorem implies that
some En must contain an open ball, say Br(x0) ⊆ En.

Given any nonzero x ∈ X, if we set y = x0 + sx with s = r
2‖x‖ then we

have y ∈ Br(x0) ⊆ En, and therefore

‖Aix‖ =
∥∥∥Ai

(y − x0

s

)∥∥∥ ≤ 1

s

(
‖Aiy‖+ ‖Aix0‖

)
≤ 2 ‖x‖

r
2n =

4n

r
‖x‖.

Consequently, ‖Ai‖ ≤ 4n/r, which is a constant independent of i. ⊓⊔

The following special case of the Uniform Boundedness Principle is often
useful (sometimes the names “Uniform Boundedness Principle” and “Banach–
Steinhaus Theorem” are used interchangeably). The proof of Theorem 2.23 is
assigned as Exercise 2.29.

Theorem 2.23 (Banach–Steinhaus Theorem). Let X and Y be Banach
spaces. If An ∈ B(X,Y ) for n ∈ N and Ax = limn→∞Anx exists for each
x ∈ X, then A ∈ B(X,Y ) and ‖A‖ ≤ supn ‖An‖ <∞. ♦

Note that the hypotheses of the Banach–Steinhaus Theorem do not imply
that An → A in operator norm. A counterexample is given in Exercise 2.30.

As an application of the Banach–Steinhaus Theorem, we prove a fact that

was used earlier to show that the dual space ℓp is (isomorphic to) ℓp
′

when p
is finite (see Theorem 1.73).

Theorem 2.24. Fix 1 ≤ p ≤ ∞ and any sequence of scalars y = (yk). Then∑
xkyk converges for all x ∈ ℓp if and only if y ∈ ℓp′ . Furthermore, in this

case Tyx = (xkyk) defines a bounded linear map of ℓp into ℓ1, and

∑

k

|xkyk| = ‖Tyx‖ℓ1 ≤ ‖x‖ℓp ‖y‖ℓp′ , x ∈ ℓp.

Proof. We will prove the case 1 < p <∞ (the cases p = 1 and p =∞ are Ex-
ercise 2.32). Assume that

∑
xkyk converges for all x ∈ ℓp. Define functionals

TN , T : ℓp → F by

Tx =
∞∑

k=1

xkyk and TNx =
N∑

k=1

xkyk.

Clearly TN is linear, and for x ∈ ℓp we have

|TNx| ≤
( N∑

k=1

|xk|p
)1/p ( N∑

k=1

|yk|p
′

)1/p′

≤ CN ‖x‖ℓp ,
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where CN =
(∑N

k=1 |yk|p
′)1/p′

is a finite constant independent of x (though

not independent of N). Therefore TN ∈ B(ℓp,F) = (ℓp)∗ for each N.
By hypothesis, TNx → Tx as N → ∞ for each x ∈ ℓp. The Banach–

Steinhaus Theorem therefore implies that T ∈ B(ℓp,F) = (ℓp)∗ and ‖T ‖ ≤
C = sup ‖TN‖ <∞.

At this point, if we accept the fact that (ℓp)∗ = ℓp
′

then we can argue as
follows. Since T ∈ (ℓp)∗ there must exist some z ∈ ℓp′ such that Tx = 〈x, z〉 =∑
xkzk for all x ∈ ℓp. Letting {δk} denote the standard basis vectors on ℓp,

we have yk = Tδk = zk for every k, so y = z ∈ ℓp′ .
However, since the current theorem was used in the proof that (ℓp)∗ = ℓp

′

,
in order to avoid circularity we need to give a direct proof that y belongs
to ℓp

′

. To do this, set

xN =
(
α1 |y1|p

′−1, . . . , αN |yN |p
′−1, 0, 0, . . .

)
∈ ℓp,

where αk is a scalar of unit modulus such that αkyk = |yk|. Then we have
from the definition of T that

|TxN | =

N∑

k=1

αk |yk|p
′−1 yk =

N∑

k=1

|yk|p
′

,

while from ‖T ‖ ≤ C we obtain

|TxN | ≤ C ‖xN‖ℓp = C

( N∑

k=1

|yk|(p
′−1)p

)1/p

= C

( N∑

k=1

|yk|p
′

)1/p

.

Combining the two preceding equations, dividing through by
(∑N

k=1 |yk|p
′)1/p

,
and noting that 1− 1

p = 1
p′ , this implies that

( N∑

k=1

|yk|p
′

)1/p′

=

( N∑

k=1

|yk|p
′

)1− 1
p

≤ C.

Letting N →∞, we see that ‖y‖ℓp′ ≤ C. ⊓⊔

Exercises

2.29. Prove Theorem 2.23.

2.30. Let {en} be an orthonormal basis for a Hilbert space H, and let PN be
the orthogonal projection of H onto span{e1, . . . , eN}. Show that PNx → x
for every x ∈ H, but ‖I − PN‖→/ 0 as N →∞.
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2.31. Let X, Y be Banach spaces. Suppose An ∈ B(X,Y ) for n ∈ N and
Ax = limn→∞ Anx exists for each x in a dense subspace S of X.

(a) Show that if supn ‖An‖ <∞ then A extends to a bounded map on X,

and Ax = limn→∞Anx for all x ∈ X.
(b) Give an example that shows that the hypothesis supn ‖An‖ < ∞ in

part (a) is necessary.

2.32. Prove Theorem 2.24 for the cases p = 1 and p =∞.

2.33. (a) Let X be a Banach space. Show that S ⊆ X∗ is bounded if and only
if sup

{
|〈x, x∗〉| : x∗ ∈ S

}
<∞ for each x ∈ X.

(b) Let X be a normed linear space. Show that S ⊆ X is bounded if and
only if sup

{
|〈x, x∗〉| : x ∈ S

}
<∞ for each x∗ ∈ X∗.

2.34. Fix 1 ≤ p, q ≤ ∞. Let A = [aij ]i,j∈N be an infinite matrix and set
ai = (aij)j∈N for each i ∈ N. Suppose that

(a) (Ax)i = 〈x, ai〉 =
∑
j aijxj converges for each x ∈ ℓp and i ∈ N, and

(b) Ax =
(
(Ax)i

)
i∈N

=
(
〈x, ai〉

)
i∈N
∈ ℓq for each x ∈ ℓp.

Identifying the matrix A with the map x 7→ Ax, prove that A ∈ B(ℓp, ℓq).

2.7 The Open Mapping Theorem

By Theorem 1.59, a function f : X → Y is continuous if the inverse image
under f of any open subset of Y is open in X. It is often important to consider
direct images of open sets as well.

Definition 2.25 (Open Mapping). Let X, Y be normed linear spaces. A
function A : X → Y is an open mapping if

U is open in X =⇒ A(U) is open in Y. ♦

In general, a continuous function need not be an open mapping. For ex-
ample, f(x) = sinx is a continuous mapping of the real line into itself, but f
maps the open interval (0, 2π) onto the closed interval [−1, 1].

The Open Mapping Theorem asserts that any continuous linear surjection
of one Banach space onto another must be an open mapping. The key to the

proof is the following lemma. For clarity, we will write BXr (x) and BYr (y) to
distinguish open balls in X from open balls in Y.

Lemma 2.26. Let X, Y be Banach spaces and fix A ∈ B(X,Y ). If A(BX1 (0))

contains an open ball in Y, then A(BX1 (0)) contains an open ball BYr (0) for
some r > 0.
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Proof. Suppose that A(BX1 (0)) contains some open ball BYs (z). We claim that
if we set r = s/2, then

BYr (0) ⊆ A(BX1 (0)). (2.5)

To see this, fix x ∈ BYr (0), i.e., ‖x‖X < r = s/2. Then 2x + z ∈ BYs (z) ⊆
A(BX1 (0)). Hence there exist vectors yn ∈ X with ‖yn‖X < 1 such that

Ayn → 2x + z. Also, z ∈ BYs (z) ⊆ A(BX1 (0)), so there exist vectors zn ∈ X
with ‖zn‖X < 1 such that Azn → z. Then wn = (yn − zn)/2 ∈ BX1 (0), and

Awn =
Ayn −Azn

2
→ (2x+ z)− z

2
= x as n→∞.

Hence x ∈ A(BX1 (0)), so equation (2.5) holds.
Now we will show that we actually have BYr/2(0) ⊆ A(BX1 (0)). To see this,

suppose that y ∈ BYr/2(0). Rescaling equation (2.5), we have y ∈ A(BX1/2(0)),

so there exists some x1 ∈ X with ‖x1‖ < 1/2 such that ‖y − Ax1‖ < r/4.

Then y − Ax1 ∈ BYr/4(0) ⊆ A(BX1/4(0)), so there exists some x2 ∈ X with

‖x2‖ < 1/4 such that ‖(y − Ax1) − Ax2‖ < r/8. Continuing in this way, we
obtain vectors xn ∈ X with ‖xn‖ < 2−n such that

‖y −Azn‖ <
r

2n+1
,

where zn =
∑n

k=1 xk. Hence Azn → y. However, {zn}n∈N is Cauchy in X, so
zn → z for some z ∈ X. Since A is continuous, it follows that y = Az. Since
‖y‖ < 1, we therefore have y ∈ A(BX1 (0)). ⊓⊔
Theorem 2.27 (Open Mapping Theorem). If X, Y are Banach spaces
and A : X → Y is a continuous linear surjection, then A is an open mapping.

Proof. Since A is surjective, we have

Y =
∞⋃
k=1

A(BXk (0)).

The Baire Category Theorem implies that some set A(BXk (0)) must contain
an open ball. Therefore, by Lemma 2.26, there is some r > 0 such that

BYr (0) ⊆ A(BX1 (0)). (2.6)

Now suppose that U ⊆ X is open and y ∈ A(U). Then y = Ax for some
x ∈ U, so BXs (x) ⊆ U for some s > 0. Rescaling equation (2.6), we have

BYt (0) ⊆ A(BXs (0)) for some t > 0. Therefore

BYt (y) = BYt (0) +Ax ⊆ A(BXs (0) + x) = A(BXs (x)) ⊆ A(U),

so A(U) is open. ⊓⊔
The hypotheses in the Open Mapping Theorem that X and Y are both

complete is necessary; see [Con90].
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Exercises

2.35. Let X and Y be Banach spaces. Show that A ∈ B(X,Y ) is surjective if
and only if range(A) is not meager in Y.

2.8 Topological Isomorphisms

Topological isomorphisms will play an important role in the remainder of this
volume.

Definition 2.28. Let X, Y be normed linear spaces.

(a) A linear operator T : X → Y is a topological isomorphism if T is a bijection
and both T and T−1 are continuous.

(b) We say that X and Y are topologically isomorphic if there exists a topo-
logical isomorphism T : X → Y. ♦

Every isometric isomorphism is a topological isomorphism, but the con-
verse need not hold (see Exercise 2.39).

For the case of linear operators on Banach spaces, we have the following
useful consequence of the Open Mapping Theorem.

Theorem 2.29 (Inverse Mapping Theorem). If X, Y are Banach spaces
and T : X → Y is a continuous linear bijection, then T−1 : Y → X is contin-
uous. Consequently T is a topological isomorphism.

Proof. The Open Mapping Theorem implies that T is an open mapping, so if
U ⊆ X is open then T (U) is an open subset of Y.However, since T is a bijection
we have (T−1)−1(U) = T (U). Hence the inverse image under T−1 of any open
set is open, which implies by Theorem 1.59 that T−1 is continuous. ⊓⊔

The next result is a typical application of the Inverse Mapping Theorem.

Theorem 2.30. Suppose X is a vector space that is complete with respect to
each of two norms ‖ · ‖ and ||| · |||. If there exists C > 0 such that ‖x‖ ≤ C |||x|||
for all x ∈ X, then ‖ · ‖ and ||| · ||| are equivalent norms on X.

Proof. The hypotheses imply that the identity map I : (X, ||| · |||)→ (X, ‖ · ‖)
is a bounded bijection, so, by the Inverse Mapping Theorem, the inverse map
I−1 : (X, ‖ · ‖)→ (X, ||| · |||) is a bounded bijection. Hence there is some c > 0
such that

|||x||| = |||I−1(x)||| ≤ c ‖x‖,
so the two norms are equivalent. ⊓⊔

The next theorem, whose proof is Exercise 2.42, states that the adjoint of
a topological isomorphism is itself a topological isomorphism.
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Theorem 2.31. Let X, Y be Banach spaces. If T : X → Y is a topological
isomorphism, then its adjoint T ∗ : Y ∗ → X∗ is a topological isomorphism, and
if T is an isometric isomorphism then so is T ∗. ♦

We will use the Inverse Mapping Theorem to derive two results for oper-
ators on Hilbert spaces. The following theorem shows that a bounded linear
operator has closed range if and only if its adjoint has closed range (this also
holds for operators on Banach space, see [Rud91, Thm. 4.14]).

Theorem 2.32. Fix A ∈ B(H,K), where H and K are Hilbert spaces. Then

range(A) is closed ⇐⇒ range(A∗) is closed.

Proof. ⇐. Suppose that range(A∗) is closed, and let M = range(A). Define
T ∈ B(H,M) by Tx = Ax for x ∈ H. Since range(T ) is dense in M, Theorem
2.13 implies that T ∗ : M → H is injective. Given y ∈ K, write y = m+e where
m ∈ M and e ∈ M⊥. Since ker(A∗) = range(A)⊥ = M⊥, for any x ∈ H we
have

〈x,A∗y〉 = 〈x,A∗m〉 = 〈Ax,m〉 = 〈Tx,m〉 = 〈x, T ∗m〉.

Hence A∗y = A∗m = T ∗m, and it follows from this that range(T ∗) =
range(A∗), which is closed. Now set N = range(T ∗) and define U ∈ B(M,N)
by Uy = T ∗y for y ∈ M. Then U is a continuous bijection, so it is a topo-
logical isomorphism by the Inverse Mapping Theorem. Theorem 2.31 there-
fore implies that U∗ ∈ B(N,M) is a topological isomorphism. In particular,
range(U∗) = M is closed.

Fix y ∈ M, so y = U∗x for some x ∈ N. Let z be any vector in K, and
let p be its orthogonal projection onto M. Then, since Ax, U∗x, and y all
belong to M,

〈y, z〉 = 〈U∗x, z〉
= 〈U∗x, p〉
= 〈x, Up〉
= 〈x, T ∗p〉
= 〈Tx, p〉
= 〈Ax, p〉 = 〈Ax, z〉.

Therefore y = Ax, so M ⊆ range(A) and hence range(A) = M is closed.

⇒. Since (A∗)∗ = A, this follows from the previous case. ⊓⊔

Our next application of the Inverse Mapping Theorem constructs a “pseu-
doinverse” of a bounded operator A that has closed range. Although A need
not be injective, the pseudoinverse A† acts as a right-inverse of A, at least
when we restrict the domain of A† to range(A).
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Theorem 2.33. Let H and K be Hilbert spaces. Assume that A ∈ B(H,K)
has closed range, and let P be the orthogonal projection of K onto range(A).
Then the mapping B : ker(A)⊥ → range(A) defined by Bx = Ax for x ∈
ker(A)⊥ is a topological isomorphism, and A† = B−1P ∈ B(K,H) satisfies
the following:

(a) AA†y = y for every y ∈ range(A),

(b) AA† is the orthogonal projection of K onto range(A), and

(c) A†A is the orthogonal projection of H onto range(A∗).

Proof. The mapping B is bounded and linear since it is a restriction of the
bounded mapping A. Further, the fact that H = ker(A) ⊕ ker(A)⊥ implies
that B is a bijection of ker(A)⊥ onto range(A). Applying the Inverse Mapping
Theorem, we conclude that B : ker(A)⊥ → range(A) is a topological isomor-
phism. Hence B−1 : range(A) → ker(A)⊥ is a topological isomorphism, and
therefore A† = B−1P is bounded. We assign the proof of statements (a)–(c)
as Exercise 2.43. ⊓⊔

Definition 2.34 (Pseudoinverse). Given A ∈ B(H,K), the operator A†

constructed in Theorem 2.33 is called the Moore–Penrose pseudoinverse, or
simply the pseudoinverse, of A. ♦

Exercise 2.44 gives an equivalent characterization of the pseudoinverse.

Exercises

2.36. Show that if T : X → Y is a topological isomorphism of a normed
space X onto a normed space Y, then a sequence {xn} is complete in X if and
only if {Txn} is complete in Y.

2.37. Let X and Y be normed linear spaces. Show that if T : X → Y is a
topological isomorphism, then ‖T−1‖−1 ‖x‖ ≤ ‖Tx‖ ≤ ‖T ‖ ‖x‖ for all x ∈ X.

2.38. Let X be a Banach space and Y a normed linear space. Suppose that
L : X → Y is bounded and linear. Prove that the following two statements
are equivalent.

(a) There exists c > 0 such that ‖Lx‖ ≥ c‖x‖ for all x ∈ X.
(b) L is injective and range(L) is closed.

Show further that, in case these hold, L : X → range(L) is a topological
isomorphism.

2.39. Given a sequence of scalars λ = (λk), define a mapping Tλ on sequences
x = (xk) by Tλx = (λkxk). Prove the following statements.

(a) Tλ is a bounded map of ℓ2 into itself if and only if λ ∈ ℓ∞.
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(b) Tλ is a topological isomorphism of ℓ2 onto itself if and only if 0 <
inf |λk| ≤ sup |λk| <∞.

(c) Tλ is an isometric isomorphism of ℓ2 onto itself if and only if |λk| = 1
for every n.

2.40. Let X be a Banach space. Given T ∈ B(X), define T 0 = I. Show that
if ‖T ‖ < 1, then I − T is a topological isomorphism of X onto itself and
(I − T )−1 =

∑∞
n=0 T

n, where the series converges in operator norm (this is
called a Neumann series for (I − T )−1).

2.41. Show that if X is a Banach space, Y is a normed linear space, and
T : X → Y is a topological isomorphism, then Y is a Banach space.

2.42. Prove Theorem 2.31.

2.43. Show that the operator A† = B−1P defined in Theorem 2.33 satisfies
statements (a)–(c) of that theorem.

2.44. Assume that A ∈ B(H,K) has closed range, and let A† be its pseudoin-
verse. Prove the following statements.

(a) ker(A†) = range(A)⊥.

(b) range(A†) = ker(A)⊥.

(c) AA†y = y for all y ∈ range(A).

(d) A† is the unique operator in B(K,H) that satisfies statements (a)–(c)
above.

2.45. Let H be a Hilbert space. Given a positive definite operator A ∈ B(H),
prove the following statements.

(a) A is injective and has dense range.

(b) A is a topological isomorphism of H onto itself if and only if it is
surjective. Show by example that a positive definite operator need not be a
topological isomorphism.

(c) If A is a surjective positive definite operator, then (x, y) = 〈Ax, y〉
defines an inner product that is equivalent to the original inner product 〈·, ·〉
on H.

2.9 The Closed Graph Theorem

The Closed Graph Theorem provides a convenient means of testing whether
a linear operator on Banach spaces is continuous.

Theorem 2.35 (Closed Graph Theorem). Let X and Y be Banach spaces.
If T : X → Y is linear, then the following statements are equivalent.
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(a) T is continuous.

(b) If xn → x in X and Txn → y in Y, then y = Tx.

Proof. (a) ⇒ (b). This follows immediately from the definition of continuity.

(b) ⇒ (a). Assume that statement (b) holds. Define

|||x||| = ‖x‖X + ‖Tx‖Y , x ∈ X.

Now we appeal to Exercise 2.46, which states that ||| · ||| is a norm on X and X
is complete with respect to this norm.

Since ‖x‖X ≤ |||x||| for x ∈ X and X is complete with respect to both
norms, it follows from Theorem 2.30 that there exists a constant C > 0 such
that |||x||| ≤ C ‖x‖X for x ∈ X. Consequently, ‖Tx‖Y ≤ |||x||| ≤ C ‖x‖X , so T
is bounded. ⊓⊔

The name of the Closed Graph Theorem comes from the fact that hypoth-
esis (b) in Theorem 2.35 can be equivalently formulated as follows: The graph
of T, graph(T ) =

{
(f, T f) : f ∈ X

}
, is a closed subset of the product space

X × Y.
Exercise 2.49 shows that the hypothesis in the Closed Graph Theorem

that X is complete is necessary, and it can be shown that it is also necessary
that Y be complete.

Exercises

2.46. Prove the claim in Theorem 2.35 that ||| · ||| is a norm on X and X is
complete with respect to this norm.

2.47. Use the Closed Graph Theorem to give another proof of Theorem 2.24.

2.48. Use the Closed Graph Theorem to give another proof of Exercise 2.34.

2.49. Let Cb(R) and C1
b (R) be as in Exercise 1.22, and assume that the norm

on both of these spaces is the uniform norm. In this case Cb(R) is complete,
but C1

b (R) is not. Show that the differentiation operator D : C1
b (R)→ Cb(R)

given by Df = f ′ is unbounded, but has a closed graph, i.e., if fn → f
uniformly and f ′

n → g uniformly then f ′ = g.

2.10 Weak Convergence

In this section we discuss some types of “weak convergence” that we will
occasionally make use of (see especially Section 4.7). Part (a) of the following
definition recalls the usual notion of convergence as given in Definition 1.2,
and parts (b) and (c) introduce some new types of convergence.
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Definition 2.36. Let X be a Banach space.

(a) We say that a sequence {xn} of elements of X converges to x ∈ X if
limn→∞ ‖x − xn‖ = 0. For emphasis, we sometimes refer to this type of
convergence as strong convergence or norm convergence. We denote norm
convergence by xn → x or limn→∞ xn = x.

(b) A sequence {xn} of elements of X converges weakly to x ∈ X if

∀x∗ ∈ X∗, lim
n→∞

〈xn, x∗〉 = 〈x, x∗〉.

We denote weak convergence by xn
w→x.

(c) A sequence {x∗n} of functionals in X∗ converges weak* to x∗ ∈ X∗ if

∀x ∈ X, lim
n→∞

〈x, x∗n〉 = 〈x, x∗〉.

We denote weak* convergence by x∗n
w*−→x∗. ♦

Note that weak* convergence only applies to convergence of functionals in
a dual space X∗. However, since X∗ is a Banach space, we can consider strong
or weak convergence of functionals in X∗ as well as weak* convergence. By
definition, strong (norm), weak, and weak* convergence of a sequence {x∗n}
in X∗ mean:

x∗n → x∗ ⇐⇒ lim
n→∞

‖x∗ − x∗n‖ = 0,

x∗n
w→x∗ ⇐⇒ ∀x∗∗ ∈ X∗∗, lim

n→∞
〈x∗n, x∗∗〉 = 〈x∗, x∗∗〉,

x∗n
w*−→x∗ ⇐⇒ ∀x ∈ X, lim

n→∞
〈x, x∗n〉 = 〈x, x∗〉.

If X is reflexive then X = X∗∗, and therefore x∗n
w→x∗ if and only if

x∗n
w*−→x∗. For general Banach spaces, we have the following implications.

Lemma 2.37. Let X be a Banach space, and let xn, x ∈ X and x∗n, x
∗ ∈ X∗

be given.

(a) Strong convergence in X implies weak convergence in X :

xn → x =⇒ xn
w→x.

(b) Weak convergence in X∗ implies weak* convergence in X∗:

x∗n
w→x∗ =⇒ x∗n

w*−→x∗.

Proof. (a) Suppose that xn → x strongly, and fix any x∗ ∈ X∗. Since x∗ is

continuous we have limn→∞ 〈xn, x∗〉 = 〈x, x∗〉, so xn
w→x.
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(b) Suppose that x∗n, x
∗ ∈ X∗ and x∗n

w→x∗. Given x ∈ X we have
π(x) ∈ X∗∗, where π : X → X∗∗ is the natural embedding of X into X∗∗.
By definition of weak convergence, limn→∞ 〈x∗n, x∗∗〉 = 〈x∗, x∗∗〉 for every
x∗∗ ∈ X∗∗. Taking x∗∗ = π(x) in particular, we have

lim
n→∞

〈x, x∗n〉 = lim
n→∞

〈
x∗n, π(x)

〉
=
〈
x∗, π(x)

〉
= 〈x, x∗〉.

Thus x∗n
w*−→x∗. ⊓⊔

It is easy to see that strongly convergent sequences are norm-bounded
above. It is a more subtle fact that the same is true of weakly convergent
sequences.

Theorem 2.38. Let X be a Banach space.

(a) If {xn} ⊆ X and xn
w→x in X, then x is unique and sup ‖xn‖X <∞.

(b) If {x∗n} ⊆ X∗ and x∗n
w*−→x∗ in X∗, then x∗ is unique and sup ‖x∗n‖X∗ <

∞.

Proof. We prove statement (a) and assign statement (b) as Exercise 2.50.

Suppose that xn
w→x. If we also had xn

w→ y, then for each x∗ ∈ X∗ we
would have

〈x− y, x∗〉 = 〈x, x∗〉 − 〈y, x∗〉 = lim
n→∞

〈xn, x∗〉 − lim
n→∞

〈xn, x∗〉 = 0.

The Hahn–Banach Theorem (Corollary 2.3) therefore implies that x = y.
For each x ∈ X, let π(x) be the image of x in X∗∗ under the natural

embedding of X into X∗∗. Then for each x∗ ∈ X∗,

lim
n→∞

〈
x∗, π(xn)

〉
= lim

n→∞
〈xn, x∗〉 = 〈x, x∗〉.

Since convergent sequences of scalars are bounded, we therefore have

∀x∗ ∈ X∗, sup
n
|
〈
x∗, π(xn)

〉
| <∞.

Hence, by the Uniform Boundedness Principle, sup ‖π(xn)‖X∗∗ < ∞. Since
‖π(xn)‖X∗∗ = ‖xn‖X (Theorem 2.6), we conclude that {xn} is bounded
in X. ⊓⊔

Strong, weak, and weak* convergence can all be defined in terms of topolo-
gies on X or X∗. For example, the strong topology is induced from the norm
‖ · ‖ on X. The weak topology on X is induced from the family of seminorms
ρx∗(x) = |〈x, x∗〉| with x∗ ranging through X∗. The weak* topology on X∗

is induced from the family of seminorms ρx(x
∗) = |〈x, x∗〉| with x ranging

through X. One difference between these latter two topologies and the strong
topology is that, because the weak and weak* topologies are not defined by a
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norm, in order to rigorously relate topological concepts to limit concepts we
must use nets instead of ordinary sequences indexed by the natural numbers.
For example, a set E ⊆ X is weakly closed if its complement is an open set in
the weak topology, and this is equivalent to the requirement that E contains
all of its weak limit points (compare Lemma 1.16). However, the definition of
a weak limit is a point x ∈ X for which there exists a net {xi}i∈I such that xi
converges to x in the appropriate net sense (see the discussion in Section 3.2).

We will not pursue the connection between weak or weak* convergence
and topologies in this volume, but we sketch the proof of one result in order
to give a brief (albeit incomplete) illustration of these ideas.

Theorem 2.39. Let M be a subspace of a normed space X. If M is strongly
closed (i.e., closed with respect to the norm topology), then it is weakly closed
(i.e., closed with respect to the weak topology).

Proof. If M = X then we are done, so suppose that M is strongly closed
and there exists some vector x /∈ M. Then, by the Hahn–Banach Theorem
(Corollary 2.4), there exists an x∗ ∈ X∗ such that x∗|M = 0 and 〈x, x∗〉 = 1.

By definition, X∗ is the set of all strongly continuous linear functionals
on X, so we know that the functional x∗ is strongly continuous. On the other
hand, if xn

w→x then, by definition of weak convergence, 〈xn, x∗〉 → 〈x, x∗〉.
Hence, simply by definition, each element of X∗ is weakly continuous (techni-
cally, we should justify this by using nets instead of sequences, but the idea
is the same).

Just as in Theorem 1.59, weak continuity of x∗ is equivalent to the fact
that the inverse image of any open set in the codomain of x∗ (which is F)
is weakly open in X. Therefore, since F\{0} is an open subset of F, the set
U = (x∗)−1(F\{0}) ⊆ X is open in the weak topology. Since x∗ maps every
element of M to zero, no element of M is contained in U, i.e., U ⊆ X\M.
Further, x ∈ U since 〈x, x∗〉 6= 0. Thus, given an arbitrary element x ∈ X\M,
we have found a weakly open set U such that x ∈ U ⊆ X\M. Therefore
X\M is open in the weak topology, which says that M is closed in the weak
topology. ⊓⊔

The converse of Theorem 2.39 is true as well, i.e., every weakly closed
subspace is strongly closed. In fact, since strong convergence always implies
weak convergence, every strong limit point of an arbitrary set is a weak limit
point. Therefore, if a set is weakly closed then it contains all of its weak limit
points and hence contains all of its strong limit points. Thus every weakly
closed set is strongly closed. By taking complements, every weakly open set
is strongly open, so the weak topology is a subset of the strong topology.
However, the strong and weak topologies are distinct in infinite-dimensional
spaces, so in general it is not true that every strongly closed set is weakly
closed—this is why Theorem 2.39 is interesting!

The strong, weak, and weak* topologies are only three specific examples of
topologies on a Banach space X or X∗. There are many other topologies that
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are useful in specific applications. Additionally, there are many other useful
vector spaces that are not Banach spaces, but for which topologies can still
be defined. We shall not deal with such topological vector spaces, but instead
refer to texts such as [Con90] for details.

Exercises

2.50. Prove part (b) of Theorem 2.38.

2.51. In this exercise we will denote the components of x ∈ ℓp by x =
(
x(k)

)
.

(a) Given 1 < p <∞ and xn, y ∈ ℓp, show that xn
w→ y in ℓp if and only if

sup ‖xn‖ℓp <∞ and xn converges componentwise to y, i.e., limn→∞ xn(k) =
y(k) for each k ∈ N. Does either implication remain valid if p = 1?

(b) Given 1 ≤ p ≤ ∞ and xn, y ∈ ℓp, show that xn
w*−→ y in ℓp if and only

if xn converges componentwise to y and sup ‖xn‖ℓp <∞ (recall that ℓ1 ∼= c0
∗

and ℓp
′ ∼= (ℓp)∗ for 1 ≤ p <∞).

2.52. Show that if {xn} is an orthonormal sequence in a Hilbert space H,

then xn
w→ 0.
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Unconditional Convergence of Series in Banach
and Hilbert Spaces

In any real or complex vector space X we can always form finite linear combi-

nations
∑N

n=1 cnxn of elements of X. However, we cannot form infinite series
or “infinite linear combinations” unless we have some notion of what it means
to converge in X. This is because an infinite series

∑∞
n=1 xn is, by defini-

tion, the limit of the partial sums
∑N
n=1 xn. Fortunately, we are interested in

normed vector spaces. A normed space has a natural notion of convergence,
and therefore we can consider infinite series and “infinite linear combinations”
in these spaces.

Of course, even if X is a normed space, given arbitrary vectors xn ∈ X the
infinite series

∑∞
n=1 xn need not converge. If it does converge then there are

additional issues about the convergence that we need to consider. These often
have to do with some aspect of the “stability” of the convergence. One such
stability requirement that we will focus on in great detail in this chapter is
unconditional convergence, which is convergence independent of the ordering
of the terms in the series. Another example is absolute convergence, which
is convergence of the norms of the terms in the infinite series. Although we
learn in Calculus class that these two requirements are equivalent for series of
real numbers, we will see that they are not equivalent in infinite-dimensional
normed spaces. Absolute convergence always implies unconditional conver-
gence, but unconditional convergence need not imply absolute convergence in
general.

These more restrictive notions of convergence will be very important to
us in later chapters when we study bases and related systems in Banach and
Hilbert spaces. A basis is a countable subset {xn} such that every vector x in
our space has a unique representation of the form x =

∑∞
n=1 cnxn. In practice,

we often need to know if these representations converge unconditionally or
absolutely, or are stable in other senses. We will explore bases, unconditional
bases, and other systems in the later chapters of this volume. In this chapter
we focus on the meaning of convergence, absolute convergence, and especially
unconditional convergence of series.

C. Heil, A Basis Theory Primer: Expanded Edition, Applied and Numerical Harmonic Analysis,   
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3.1 Convergence, Absolute Convergence, and
Unconditional Convergence of Series

Convergent series in normed spaces were introduced in Definition 1.28. We
recall that definition now, and also define Cauchy series.

Definition 3.1. Let {xn} be a sequence in a normed linear space X.

(a) The series
∑∞

n=1 xn is convergent in X and equals x ∈ X if the partial

sums sN =
∑N

n=1 xn converge to x in the norm of X, i.e., if

∀ ε > 0, ∃N0 > 0, ∀N ≥ N0, ‖x− sN‖ =

∥∥∥∥x−
N∑

n=1

xn

∥∥∥∥ < ε.

(b) The series
∑∞

n=1 xn is Cauchy in X if the sequence {sN} of partial sums
is a Cauchy sequence in X, i.e., if

∀ ε > 0, ∃N0 > 0, ∀N > M ≥ N0,

‖sN − sM‖ =

∥∥∥∥
N∑

n=M+1

xn

∥∥∥∥ < ε. ♦

As noted in the opening section on General Notation, we often write
∑
xn

as an abbreviation for
∑∞

n=1 xn, although for clarity we sometimes write out
the latter expression explicitly.

We will deal almost exclusively with Banach spaces in this volume. By
definition, given a Banach space X, a series

∑
xn converges in X if and only

if it is a Cauchy series in X.
Here are some more restrictive types of convergence of series.

Definition 3.2. Let {xn} be a sequence in a Banach space X.

(a) The series
∑∞

n=1 xn is unconditionally convergent if
∑∞

n=1 xσ(n) converges
in X for every permutation σ of N.

(b) The series
∑∞

n=1 xn is absolutely convergent if
∑∞
n=1 ‖xn‖ <∞. ♦

Although Definition 3.2(a) does not require that
∑
xσ(n) converge to the

same value for every permutation σ, we will see in Corollary 3.11 that if a
series is unconditionally convergent then

∑
xσ(n) is independent of σ.

If a series
∑∞
n=1 xn converges but does not converge unconditionally, we

say that it is conditionally convergent.
The next lemma shows that if (cn) is a sequence of real or complex scalars,

then
∑
cn converges unconditionally if and only if it converges absolutely.

Lemma 3.5 will show us that absolute convergence implies unconditional con-
vergence in any Banach space. However, Example 3.4 shows that the converse
fails in any infinite-dimensional Hilbert space. In Section 3.6 we will show
that unconditional convergence is equivalent to absolute convergence only in
finite-dimensional Banach spaces.
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Lemma 3.3. If (cn) is a sequence of real or complex scalars, then

∑

n

cn converges absolutely ⇐⇒
∑

n

cn converges unconditionally.

Proof. ⇒. Suppose that
∑ |cn| < ∞, and choose any ε > 0. Then

∑ |cn|
is Cauchy, so there exists some N0 > 0 such that

∑N
n=M+1 |cn| < ε for all

N > M ≥ N0. Let σ be any permutation of N, and let

N1 = max
{
σ−1(1), . . . , σ−1(N0)

}
.

Suppose that N > M ≥ N1 and M + 1 ≤ n ≤ N. Then n > N1, so n 6=
σ−1(1), . . . , σ−1(N0). Hence σ(n) 6= 1, . . . , N0, so σ(n) > N0. In particular,

K = min
{
σ(M + 1), . . . , σ(N)

}
> N0 and L = max

{
σ(M + 1), . . . , σ(N)

}
≥

K, so ∣∣∣∣
N∑

n=M+1

cσ(n)

∣∣∣∣ ≤
N∑

n=M+1

|cσ(n)| ≤
L∑

n=K

|cn| < ε.

Hence
∑
cσ(n) is a Cauchy series of scalars, and therefore must converge.

⇐. Suppose first that
∑
cn is a sequence of real scalars that does not

converge absolutely. Let (pn) be the sequence of nonnegative terms of (cn) in
order, and let (qn) be the sequence of negative terms of (cn) in order (where
either (pn) or (qn) may be a finite sequence). If

∑
pn and

∑
qn both converge,

then
∑ |cn| converges and equals

∑
pn−

∑
qn, which is a contradiction. Hence

at least one of
∑
pn or

∑
qn must diverge.

Suppose that
∑
pn diverges. Since pn ≥ 0 for every n, there must exist an

m1 > 0 such that
p1 + · · ·+ pm1

> 1.

Then, there must exist an m2 > m1 such that

p1 + · · ·+ pm1
− q1 + pm1+1 + · · ·+ pm2

> 2.

Continuing in this way, we see that

p1 + · · ·+ pm1
− q1 + pm1+1 + · · ·+ pm2

− q2 + · · ·

is a rearrangement of
∑
cn that diverges. Hence

∑
cn cannot converge un-

conditionally. A similar proof applies if
∑
qn diverges.

Thus we have shown, by a contrapositive argument, that if
∑
cn is a

series of real scalars that converges unconditionally, then it must converge
absolutely. Suppose that

∑
cn is a series of complex scalars that converges

unconditionally. Write cn = an + ibn with an, bn ∈ R, and let σ be any
permutation of N. Then c =

∑
cσ(n) converges, and we can write c = a+ ib

with a, b ∈ R. Since
∣∣a−∑N

n=1 aσ(n)

∣∣ ≤
∣∣c−∑N

n=1 cσ(n)

∣∣, it follows that a =∑
aσ(n) converges. This is true for every permutation σ, so

∑
an converges
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unconditionally, and therefore must converge absolutely since it is a series of
real scalars. Similarly,

∑
bn converges absolutely, and finally

∑
|cn| =

∑
|an + ibn| ≤

∑
|an|+

∑
|bn| < ∞. ⊓⊔

Exercise 3.2 shows that if
∑
cn is a sequence of real scalars that con-

verges conditionally, then there exist permutations σ of N such that the se-
ries

∑
cσ(n) diverges to ∞, diverges to −∞, converges to any given finite real

value, or oscillates without converging.

Example 3.4. The alternating harmonic series
∑

(−1)n/n converges (in fact,
it converges to ln(1/2), the natural logarithm of 1/2). However, it does not
converge absolutely, so it cannot converge unconditionally. ♦

We show now that absolute convergence always implies unconditional con-
vergence in any Banach space.

Lemma 3.5. Let {xn} be a sequence in a Banach space X. If
∑
xn converges

absolutely then it converges unconditionally.

Proof. Assume that
∑ ‖xn‖ <∞. If M < N, then

∥∥∥∥
N∑

n=M+1

xn

∥∥∥∥ ≤
N∑

n=M+1

‖xn‖.

Since
∑ ‖xn‖ is a Cauchy series of real numbers, it follows that

∑
xn is a

Cauchy series in X and therefore converges. We can repeat this argument for
any permutation σ of N since we always have

∑ ‖xσ(n)‖ <∞ by Lemma 3.3.
Therefore

∑
xn is unconditionally convergent. ⊓⊔

However, unconditional convergence does not imply absolute convergence
in general.

Example 3.6. Let {en} be an infinite orthonormal sequence in an infinite-
dimensional Hilbert space H. Then, by Exercise 3.1,

∑
cnen converges if and

only if it converges unconditionally, and this happens precisely for (cn) ∈ ℓ2.
On the other hand, since ‖en‖ = 1, the series

∑
cnen converges absolutely

if and only if
∑ |cn| < ∞. Hence absolute convergence holds exactly for

(cn) ∈ ℓ1. Since ℓ1 is a proper subset of ℓ2, there are series
∑
cnen which

converge unconditionally but not absolutely. In particular, this is the case for
the series

∑
en/n. ♦

Note that in Example 3.6 we were able to completely characterize the
collection of coefficients (cn) such that

∑
cnen converges, because we knew

that {en} was an orthonormal sequence in a Hilbert space. For arbitrary
sequences {xn} in Hilbert or Banach spaces, it is usually much more difficult
to characterize explicitly those coefficients (cn) such that

∑
cnxn converges

or converges unconditionally.
In Section 3.6 we will see that absolute convergence is equivalent to un-

conditional convergence only for finite-dimensional vector spaces.
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Exercises

3.1. Given an orthonormal sequence {en} in a Hilbert space H, prove that
the following statements are equivalent.

(a)
∑
cnen converges.

(b)
∑
cnen converges unconditionally.

(c)
∑ |cn|2 <∞.

3.2. Assume that
∑
cn is a conditionally convergent series of real scalars, i.e.,

the series converges but does not converge unconditionally.

(a) Let (pn) be the sequence of nonnegative terms of (cn) in order, and let
(qn) be the sequence of negative terms of (cn) in order. Show that

∑
pn and∑

qn must both diverge.

(b) Given x ∈ R, show there exists a permutation σ of N such that
∑
cσ(n)

converges and equals x.

(c) Show that there exists a permutation σ of N such that
∑
cσ(n) diverges

to ∞, i.e., limN→∞
∑N

n=1 cσ(n) = ∞, and another permutation τ such that∑
cτ(n) diverges to −∞.
(d) Show that there exists a permutation σ of N such that

∑
cσ(n) does

not converge and does not diverge to ∞ or −∞.

3.3. Let X be a normed space. Prove that the following two statements are
equivalent.

(a) X is a Banach space.

(b) Every absolutely convergent series in X converges in X. That is, if
(xn) is a sequence in X and

∑ ‖xn‖ < ∞, then the series
∑
xn converges

in X.

3.4. Given vectors xmn in a Banach space X such that
∑
m

∑
n ‖xmn‖ <∞,

show that for any bijection σ : N→ N×N the following series exist and are
equal:

∑

m

(∑

n

xmn

)
=
∑

n

(∑

m

xmn

)
=
∑

k

xσ(k).

Compare Theorem A.34, which formulates a similar result for series of scalars.

3.5. Let X be a Banach space, and fix A ∈ B(X). For n > 0 let An denote
the usual nth power of A (An = A · · ·A, n times), and define A0 = I (the
identity map on X).

(a) Given x ∈ X, show that the series eA(x) =
∑∞

k=0
Akx
k! converges abso-

lutely in X, and show that eA is a linear operator on X.
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(b) Prove that the series
∑∞

k=0
Ak

k! converges absolutely in B(X), and
equals the operator eA defined in part (a). Conclude that eA ∈ B(X) and

‖eA‖ ≤ e‖A‖.

(c) Prove that if A, B ∈ B(X) and AB = BA, then eAeB = eA+B = eBeA.

(d) Let H be a Hilbert space. Show that if A ∈ B(H) is self-adjoint, then
eiA is unitary.

3.2 Convergence with Respect to the Directed Set of
Finite Subsets of N

In Section 3.3 we will give several equivalent reformulations of unconditional
convergence. One of these will be in terms of convergence with respect to the
net determined by the finite subsets of N. Nets are generalizations of sequences
indexed by the natural numbers, and they are instrumental in formulating the
notion of convergence in abstract topological spaces. We briefly review nets
in this section, especially the net of finite subsets of N.

Definition 3.7 (Directed Sets, Nets). A directed set is a set I together
with a relation ≤ on I such that:

(a) ≤ is reflexive: i ≤ i for all i ∈ I,
(b) ≤ is transitive: i ≤ j and j ≤ k implies i ≤ k, and

(c) for any i, j ∈ I, there exists some k ∈ I such that i ≤ k and j ≤ k.
A net in a set X is a sequence {xi}i∈I of elements of X indexed by a

directed set I. ♦
The set of natural numbers I = N under the usual ordering is one example

of a directed set, and hence every ordinary sequence indexed by the natural
numbers is a net. Another typical example is I = P(X), the power set of X,
ordered by inclusion, i.e., U ≤ V if and only if U ⊆ V, and there are many
variations on this theme.

We will not need to deal with abstract topological spaces (and hence will
not even define them), but even without knowing what every term means it is
interesting to see the definition of convergence of a net—it is strikingly similar
in spirit to the definition of convergence of a sequence. A directed set takes
the place of the natural numbers N and an open set U takes the place of
ε > 0 (which really means the open ball of radius ε), but otherwise the two
definitions are quite similar.

Definition 3.8 (Convergence of a Net). Let X be a topological space, let
{xi}i∈I be a net in X, and let x ∈ X be given. Then we say that {xi}i∈I
converges to x if for any open set U containing x there exists an i0 ∈ I such
that

i ≥ i0 =⇒ xi ∈ U. ♦
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Most of the topological spaces that we will encounter are normed linear
spaces (and in fact are usually Banach spaces). Since open sets in normed
linear spaces are defined in terms of open balls, when implementing Definition
3.8 in these spaces it suffices to consider the open balls Bε(x) centered at x
instead of arbitrary open sets U that contain x.

The directed set I of interest to us here is the set of all finite subsets of N:

I =
{
F ⊆N : F is finite

}
,

ordered by inclusion. Given a formal series
∑
xn (i.e., the vectors xn are

arbitrary, and there is no requirement that the series converges in any sense),
the associated net of all possible finite partial sums of this series is

{∑

n∈F
xn

}

F∈I
=

{∑

n∈F
xn : F ⊆ N, F finite

}
.

Restating Definition 3.8 for the specific case of this net gives us the following
definition.

Definition 3.9. Let X be a Banach space and let xn, x ∈ X be given. Then
the series

∑
xn converges to x with respect to the directed set of finite subsets

of N if

∀ ε > 0, ∃ finite F0 ⊆ N, ∀ finite F ⊇ F0,

∥∥∥∥x−
∑

n∈F
xn

∥∥∥∥ < ε.

In this case, we write x = limF

∑
n∈F xn. ♦

Often we abuse terminology slightly and say that a series
∑
xn converges

with respect to the net of finite subsets of N, rather than the directed set of
finite subsets of N.

Convergence of
∑
xn with respect to the net of finite subsets of N implies

convergence of the series in the sense of Definition 3.1. To see this, suppose
that x = limF

∑
n∈F xn exists. Fix ε > 0, and let F0 be the corresponding

finite subset of N given by Definition 3.9. Let N0 be the largest integer in

F0. Then for any N > N0 we have {1, . . . , N} ⊇ F0, so ‖x −∑N
n=1 xn‖ < ε.

Thus the partial sums sN =
∑N

n=1 xn converge to x, which precisely says that∑
xn converges and equals x. In fact, we will see in the next section that

limF

∑
n∈F xn exists if and only if the series

∑
xn converges unconditionally.

Exercises

3.6. Let H be a (possibly nonseparable) Hilbert space and let I be a (possibly
uncountable) index set. Show that if {xi}i∈I is an orthonormal set in H, then
the following statements hold.
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(a) If x ∈ H then 〈x, xi〉 6= 0 for at most countably many i ∈ I.
(b) For each x ∈ H, ∑i∈I |〈x, xi〉|2 ≤ ‖x‖2.
(c) For each x ∈ H, the series p =

∑
i∈I 〈x, xi〉xi converges with respect

to the net of finite subsets of I, and p is the orthogonal projection of x onto
span{xi}i∈I .

3.7. Let H be a (possibly nonseparable) Hilbert space and let I be an index
set. Given an orthonormal set {xi}i∈I in H, prove that the following state-
ments are equivalent.

(a) {xi}i∈I is complete.

(b) For each x ∈ H we have x =
∑
i∈I 〈x, xi〉xi, where the series converges

with respect to the net of finite subsets of I.

(c) For each x ∈ H, ‖x‖2 =
∑

i∈I |〈x, xi〉|2.

3.3 Equivalent Characterizations of Unconditional
Convergence

The following theorem is one of the main results of this chapter. It pro-
vides several equivalent formulations of unconditional convergence in Banach
spaces.

Theorem 3.10. Given a sequence {xn} in a Banach space X, the following
statements are equivalent.

(a)
∑
xn converges unconditionally.

(b) limF

∑
n∈F xn exists.

(c) For every ε > 0 there exists an N > 0 such that

∀ finite F ⊆N, min(F ) > N =⇒
∥∥∥∥
∑

n∈F
xn

∥∥∥∥ < ε.

(d)
∑
xnj converges for every increasing sequence 0 < n1 < n2 < · · · .

(e)
∑
εnxn converges for every choice of signs εn = ±1.

(f)
∑
λnxn converges for every bounded sequence of scalars (λn).

(g)
∑ |〈xn, x∗〉| converges uniformly with respect to the unit ball in X∗, i.e.,

lim
N→∞

sup

{ ∞∑

n=N

|〈xn, x∗〉| : x∗ ∈ X∗, ‖x∗‖ ≤ 1

}
= 0.
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Proof. To illustrate some of the variety of techniques that can be employed,
we will prove more implications than are strictly necessary.

(a) ⇒ (b). Suppose that x =
∑
xn is unconditionally convergent, but

limF

∑
n∈F xn does not exist. Then there is some ε > 0 such that

∀ finite F0, ∃ finite F ⊇ F0 such that

∥∥∥∥x−
∑

n∈F
xn

∥∥∥∥ ≥ ε. (3.1)

Since
∑
xn converges, there is an integer M1 > 0 such that

∀N ≥M1,

∥∥∥∥x−
N∑

n=1

xn

∥∥∥∥ <
ε

2
.

Define F1 = {1, . . . ,M1}. Then, by equation (3.1), there is a finite G1 ⊇ F1

such that ‖x −∑n∈G1
xn‖ ≥ ε. Let M2 be the largest integer in G1 and let

F2 = {1, . . . ,M2}. Continuing in this way, we obtain a sequence of finite sets

F1 ⊆ G1 ⊆ F2 ⊆ G2 ⊆ · · · such that

∥∥∥∥x−
∑

n∈FN

xn

∥∥∥∥ <
ε

2
and

∥∥∥∥x−
∑

n∈GN

xn

∥∥∥∥ ≥ ε.

Hence
∥∥∥∥

∑

n∈GN\FN

xn

∥∥∥∥ =

∥∥∥∥
∑

n∈GN

xn −
∑

n∈FN

xn

∥∥∥∥

≥
∥∥∥∥x−

∑

n∈GN

xn

∥∥∥∥ −
∥∥∥∥x−

∑

n∈FN

xn

∥∥∥∥

≥ ε − ε

2
=

ε

2
.

Therefore, FN must be a proper subset of GN . Let σ be any permutation of N
obtained by enumerating in turn the elements of F1, then G1\F1, then F2\G1,
then G2\F2, etc. Then for each N we have

∥∥∥∥
|GN |∑

n=|FN |+1

xσ(n)

∥∥∥∥ =

∥∥∥∥
∑

n∈GN\FN

xn

∥∥∥∥ ≥
ε

2
.

Since |FN |, |GN | → ∞ as N increases, we see that
∑
xσ(n) is not Cauchy and

hence cannot converge, which is a contradiction.

(b) ⇒ (c). Suppose that x = limF

∑
n∈F xn exists, and choose ε > 0. By

definition, there must be a finite set F0 ⊆N such that
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∀ finite F ⊇ F0,

∥∥∥∥x−
∑

n∈F
xn

∥∥∥∥ <
ε

2
.

LetN = max(F0), and suppose thatG is any finite subset of N with min(G) >
N. Then since F0 ∩G = ∅,

∥∥∥∥
∑

n∈G
xn

∥∥∥∥ =

∥∥∥∥
(
x−

∑

n∈F0

xn

)
−
(
x−

∑

n∈F0∪G
xn

)∥∥∥∥

≤
∥∥∥∥x−

∑

n∈F0

xn

∥∥∥∥ +

∥∥∥∥x−
∑

n∈F0∪G
xn

∥∥∥∥

<
ε

2
+

ε

2
= ε.

Therefore statement (c) holds.

(c)⇒ (a). Assume that statement (c) holds, and let σ be any permutation
of N. We need to show that

∑
xσ(n) is Cauchy. So, choose ε > 0 and let N

be the number whose existence is implied by statement (c). Define

N0 = max
{
σ−1(1), . . . , σ−1(N)

}
.

Assume that L > K ≥ N0, and set F = {σ(K + 1), . . . , σ(L)}. If k ≥ K + 1

then k > N0, so k 6= σ−1(1), . . . , σ−1(N) and therefore σ(k) 6= 1, . . . , N. Hence

min(F ) = min
{
σ(K + 1), . . . , σ(L)

}
> N.

Hypothesis (c) therefore implies that

∥∥∥∥
L∑

n=K+1

xσ(n)

∥∥∥∥ =

∥∥∥∥
∑

n∈F
xn

∥∥∥∥ < ε.

Thus
∑
xσ(n) is Cauchy and therefore must converge.

(c) ⇒ (d). Assume that statement (c) holds, and let 0 < n1 < n2 < · · ·
be any increasing set of integers. We will show that

∑
xni is Cauchy, hence

convergent. Given ε > 0 let N be the number whose existence is implied by
statement (c). Let j be such that nj > N. If ℓ > k ≥ j then

min {nk+1, . . . , nℓ} ≥ nj > N,

so statement (c) implies that
∥∥∑ℓ

i=k+1 xni

∥∥ < ε, as desired.

(c) ⇒ (g). Assume that statement (c) holds, and choose ε > 0. Let N be
the integer whose existence is guaranteed by statement (c). Given L ≥ K > N
and any x∗ ∈ X∗ with ‖x∗‖ ≤ 1, define
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F+ = {n ∈ N : K ≤ n ≤ L and Re(〈xn, x∗〉) ≥ 0},
F− = {n ∈ N : K ≤ n ≤ L and Re(〈xn, x∗〉) < 0}.

Note that min(F+) ≥ K > N, so

∑

n∈F+

|Re(〈xn, x∗〉)| = Re

( ∑

n∈F+

〈xn, x∗〉
)

= Re

(〈 ∑

n∈F+

xn, x
∗
〉)

≤
∣∣∣∣
〈 ∑

n∈F+

xn, x
∗
〉∣∣∣∣

≤ ‖x∗‖
∥∥∥∥
∑

n∈F+

xn

∥∥∥∥ < ε.

A similar inequality holds for F−, so
∑L

n=K |Re(〈xn, x∗〉)| < 2ε. If F = C
then we apply a similar argument to the imaginary parts, and in any case

obtain
∑L

n=K |〈xn, x∗〉| < 4ε. Letting L→∞, we conclude that

K > N =⇒ sup

{ ∞∑

n=K

|〈xn, x∗〉| : x∗ ∈ X∗, ‖x∗‖ ≤ 1

}
≤ 4ε,

from which statement (g) follows.

(d) ⇒ (c) and (a) ⇒ (c). Assume that statement (c) does not hold. Then
there exists an ε > 0 such that for each N ∈ N there is some finite set of
integers FN such that min(FN ) > N yet

∥∥∑
n∈FN

xn
∥∥ ≥ ε.

Let G1 = F1 and N1 = max(G1). Then let G2 = FN1
and N2 = max(G2).

Continuing in this way, we obtain a sequence of finite sets GK such that for
each K,

max(GK) < min(GK+1) and

∥∥∥∥
∑

n∈GK

xn

∥∥∥∥ ≥ ε. (3.2)

Now let 0 < n1 < n2 < · · · be a complete list of the elements of
⋃
GK . It is

clear then from equation (3.2) that
∑
xnj is not Cauchy, hence not convergent,

so statement (d) does not hold.
Next let σ be any permutation of N obtained by enumerating in turn the

elements of

G1, {1, . . . ,max(G1)}\G1, G2, {max(G1) + 1, . . . ,max(G2)}\G2, G3, . . .

As this is a complete listing of N, it follows from equation (3.2) that
∑
xσ(n)

is not Cauchy, so statement (a) does not hold either.
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(d) ⇒ (e). Assume that statement (d) holds and let (εn) be any sequence
of signs εn = ±1. Define

F+ = {n : εn = 1} and F− = {n : εn = −1}.

Let F+ = {n+
j } and F− = {n−

j } be enumerations of F+ and F− in increasing

order. By hypothesis, both
∑
xn+

j
and

∑
xn−

j
converge, whence

∑
εnxn =∑

xn+
j
−∑ xn−

j
converges as well. Therefore statement (e) holds.

(e) ⇒ (d). Suppose that statement (e) holds, and let 0 < n1 < n2 < · · ·
be an increasing sequence of integers. Define εn = 1 for all n, and set

γn =

{
1, if n = nj for some j,

−1, if n 6= nj for any j.

By hypothesis, both
∑
εnxn and

∑
γnxn converge, so

∑

j

xnj =
1

2

(∑

n

εnxn +
∑

n

γnxn

)

converges as well. Therefore statement (d) holds.

(g)⇒ (f). Suppose that statement (g) holds, and let (λn) be any sequence
of scalars with |λn| ≤ 1. Given ε > 0, by hypothesis there exists a number N0

such that

∀K ≥ N0, sup

{ ∞∑

n=K

|〈xn, x∗〉| : x∗ ∈ X∗, ‖x∗‖ ≤ 1

}
< ε.

Suppose that N > M ≥ N0. By the Hahn–Banach theorem (Corollary 2.3),
we can find a functional x∗ ∈ X∗ such that ‖x∗‖ = 1 and

〈 N∑

n=M+1

λnxn, x
∗
〉

=

∥∥∥∥
N∑

n=M+1

λnxn

∥∥∥∥.

Then

∥∥∥∥
N∑

n=M+1

λnxn

∥∥∥∥ =

N∑

n=M+1

λn 〈xn, x∗〉

≤
N∑

n=M+1

|λn| |〈xn, x∗〉|

≤
∞∑

n=M+1

|〈xn, x∗〉| < ε.
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Hence
∑
λnxn is Cauchy, and therefore must converge. Thus statement (f)

holds.

(f) ⇒ (e). This implication is trivial. ⊓⊔

Now we can show that the value of an unconditionally convergent series is
independent of the choice of permutation σ.

Corollary 3.11. Let {xn} be a sequence in a Banach space X. If the series∑
xn converges unconditionally, then

∑
xσ(n) =

∑
xn for every permuta-

tion σ of N.

Proof. Suppose that
∑
xn is unconditionally convergent. Then by Theorem

3.10 we know that x = limF

∑
n∈F xn exists. Let σ be any permutation of N,

and choose ε > 0. By Definition 3.9, there is a finite set F0 ⊆ N such that

∀ finite F ⊇ F0,

∥∥∥∥x−
∑

n∈F
xn

∥∥∥∥ < ε. (3.3)

Let N0 be large enough so that F0 ⊆ {σ(1), . . . , σ(N0)}. Choose any N ≥ N0,
and define F = {σ(1), . . . , σ(N)}. Then F ⊇ F0, so by equation (3.3),

∥∥∥∥x−
N∑

n=1

xσ(n)

∥∥∥∥ =

∥∥∥∥x−
∑

n∈F
xn

∥∥∥∥ < ε.

Hence x =
∑
xσ(n), with x independent of σ. ⊓⊔

We conclude this section with some comments on Theorem 3.10. Intu-
itively, we expect that if a series

∑
xn converges and we make the terms

“smaller” then the series should still converge. Yet Theorem 3.10 implies that
if a series

∑
xn is conditionally convergent, then there will exist some scalars

|λn| ≤ 1 such that
∑
λnxn no longer converges. In some sense, conditional

convergence requires “miraculous cancellations,” and if we multiply the terms
by scalars λn then we can remove these cancellations and hence the conver-
gence. For example, the alternating harmonic series

∑
(−1)n/n converges,

but if we multiply each term by (−1)n then we remove the cancellations that
allow it to converge. Even if we require |λn| < 1, the series

∑
(−1)nλn/n need

not converge, e.g., consider λn = (−1)n/ ln(n+ 1).

Exercises

3.8. Let {xn} be a sequence in a Banach spaceX. Fix 1 ≤ p ≤ ∞, and suppose
that T (µ) =

(
〈xn, µ〉

)
∈ ℓp′ for every µ ∈ X∗. Prove the following statements

about T, which is called the analysis operator associated with {xn}. These
facts will be useful to us in Chapters 7 and 8.
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(a) T : X∗ → ℓp
′

is bounded and linear.

(b) If 1 ≤ p < ∞ then the series
∑
cnxn converges unconditionally for

each (cn) ∈ ℓp, and the synthesis operator Uc =
∑
cnxn is a bounded map of

ℓp into X.

(c) If p =∞ and (cn) ∈ ℓ1, then the series
∑
cnxn converges weakly, i.e.,∑

cn 〈xn, µ〉 converges for each µ ∈ X∗. However,
∑
cnxn need not converge

in the norm of X.

(d) If 1 ≤ p <∞ then T = U∗.

(e) If 1 < p <∞ and X is reflexive, then U = T ∗.

3.4 Further Results on Unconditional Convergence

We will show in Theorem 3.15 of this section that each of the numbers R,
RE , and RΛ that we define next must be finite when

∑
xn converges un-

conditionally. However, Exercise 3.9 demonstrates that the converse fails in
general, i.e., finiteness of R, RE , RΛ does not imply that

∑
xn converges un-

conditionally. Still, this gives us valuable information about unconditionally
convergent series that we will make use of in Section 3.5 and Chapter 6.

Notation 3.12. Given a sequence {xn} in a Banach space X, we associate
the following numbers (which exist in the extended real sense):

R = sup

{∥∥∥∥
∑

n∈F
xn

∥∥∥∥ : all finite F ⊆ N
}
,

RE = sup

{∥∥∥∥
∑

n∈F
εnxn

∥∥∥∥ : all finite F ⊆ N and E = (εn) with εn = ±1

}
,

RΛ = sup

{∥∥∥∥
∑

n∈F
λnxn

∥∥∥∥ : all finite F ⊆ N and Λ = (λn) with |λn| ≤ 1

}
. ♦

Note that we always have 0 ≤ R ≤ RE ≤ RΛ ≤ +∞. We will see in
Theorem 3.14 that that any one of R, RE , RΛ is finite if and only if they are
all finite.

The following standard result is due to Carathéodory, e.g., see [Sin70,
p. 467].

Theorem 3.13. Given real numbers λ1, . . . , λN each with |λn| ≤ 1, there exist
real numbers ck ≥ 0 and signs εnk = ±1 for k = 1, . . . , N +1 and n = 1, . . . , N
such that

N+1∑

k=1

ck = 1 and
N+1∑

k=1

εnk ck = λn for n = 1, . . . , N. ♦
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Theorem 3.14. Let X be a Banach space. Given a sequence {xn} in X, the
following relations hold in the extended real sense:

(a) R ≤ RE ≤ 2R,
(b) RE = RΛ if F = R,

(c) RE ≤ RΛ ≤ 2RE if F = C.

As a consequence, any one of R, RE , RΛ is finite if and only if the other two
are finite.

Proof. (a) We have R ≤ RE by definition. Given any finite set F ⊆ N and
any sequence of signs εn = ±1, define

F+ = {n : εn = 1} and F− = {n : εn = −1}.

Then
∥∥∥∥
∑

n∈F
εnxn

∥∥∥∥ =

∥∥∥∥
∑

n∈F+

xn −
∑

n∈F−

xn

∥∥∥∥ ≤
∥∥∥∥
∑

n∈F+

xn

∥∥∥∥ +

∥∥∥∥
∑

n∈F−

xn

∥∥∥∥ ≤ 2R.

Taking suprema, we obtain RE ≤ 2R.
(b) Choose any finite F ⊆ N and any sequence Λ = (λn) of real scalars

such that |λn| ≤ 1 for every n. Let N be the cardinality of F. Since the λn
are real, it follows from Theorem 3.13 that there exist real numbers ck ≥ 0
and signs εnk = ±1, where the indices range over k = 1, . . . , N + 1 and n ∈ F,
such that

N+1∑

k=1

ck = 1 and

N+1∑

k=1

εnkck = λn for n ∈ F.

Therefore,

∥∥∥∥
∑

n∈F
λnxn

∥∥∥∥ =

∥∥∥∥
∑

n∈F

N+1∑

k=1

εnkckxn

∥∥∥∥

≤
N+1∑

k=1

ck

∥∥∥∥
∑

n∈F
εnkxn

∥∥∥∥

≤
N+1∑

k=1

ckRE = RE .

Taking suprema, we obtain RΛ ≤ RE .

(c) Choose any finite F ⊆ N and any sequence Λ = (λn) of complex scalars
such that |λn| ≤ 1 for every n. Write λn = αn + iβn with αn, βn real. Then,
as in the proof of part (b), we obtain
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∥∥∥∥
∑

n∈F
αnxn

∥∥∥∥ ≤ RE and

∥∥∥∥
∑

n∈F
βnxn

∥∥∥∥ ≤ RE .

Therefore ‖∑n∈F λnxn‖ ≤ 2RE , from which it follows that RΛ ≤ 2RE .

Alternative proof of (b) and (c). We will give another proof of statements
(b) and (c) that uses the Hahn–Banach Theorem instead of Carathéodory’s
Theorem.

Assume first that the scalar field is real. Let F ⊆ N be finite, and let
Λ = (λn) be any sequence of real scalars such that |λn| ≤ 1 for each n. By
the Hahn–Banach theorem (Corollary 2.3), there exists an x∗ ∈ X∗ such that

‖x∗‖ = 1 and

〈∑

n∈F
λnxn, x

∗
〉

=

∥∥∥∥
∑

n∈F
λnxn

∥∥∥∥.

Since x∗ is a real-valued functional, 〈xn, x∗〉 is real for every n. Define

εn =

{
1, if 〈xn, x∗〉 ≥ 0,

−1, if 〈xn, x∗〉 < 0.

Then
∥∥∥∥
∑

n∈F
λnxn

∥∥∥∥ =
∑

n∈F
λn 〈xn, x∗〉

≤
∑

n∈F
|λn 〈xn, x∗〉|

≤
∑

n∈F
|〈xn, x∗〉|

=
∑

n∈F
εn 〈xn, x∗〉

=

〈∑

n∈F
εnxn, x

∗
〉

≤ ‖x∗‖
∥∥∥∥
∑

n∈F
εnxn

∥∥∥∥ =

∥∥∥∥
∑

n∈F
εnxn

∥∥∥∥.

Taking suprema, we obtain RΛ ≤ RE , as desired.
For the complex case, we split into real and imaginary parts as before,

i.e., we choose any finite F ⊆ N and any sequence Λ = (λn) of complex
scalars such that |λn| ≤ 1 for every n, and we write λn = αn + iβn with
αn, βn real. The trouble now is finding a real-valued functional x∗ with the
desired properties. We accomplish this by considering X as a Banach space
over the real field instead of the complex field. That is, we let XR = X as a
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set and define ‖ · ‖XR
= ‖ · ‖, but we take F = R. Then (XR, ‖ · ‖XR

) is a
real Banach space by Exercise 1.7, so by Corollary 2.3 applied to XR there
is an x∗ ∈ X∗

R
such that ‖x∗‖ = 1 and

〈∑
n∈F αnxn, x

∗〉 =
∥∥∑

n∈F αnxn
∥∥.

Then, as in part (b), we obtain
∥∥∑

n∈F αnxn
∥∥ ≤

∥∥∑
n∈F εnxn

∥∥, and a similar

argument applies to the imaginary parts. ⊓⊔

Theorem 3.15. If
∑
xn converges unconditionally then R, RE , and RΛ are

all finite.

Proof. By Proposition 3.14, we need only show that any one of R, RE , or RΛ
is finite. However, since the arguments have different flavors, we will give
separate proofs of the finiteness of R and RΛ.

Proof that R < ∞. Assume that
∑
xn converges unconditionally. Then,

by Theorem 3.10(c), we can find an N > 0 such that

∀ finite G ⊆ N, min(G) > N =⇒
∥∥∥∥
∑

n∈G
xn

∥∥∥∥ < 1.

Define F0 = {1, . . . , N} and set

M = max
F⊆F0

∥∥∥∥
∑

n∈F
xn

∥∥∥∥.

Note that M <∞ since F0 is finite.
Now choose any finite F ⊆N, and write F = (F ∩ F0) ∪ (F\F0). Then

∥∥∥∥
∑

n∈F
xn

∥∥∥∥ ≤
∥∥∥∥
∑

n∈F∩F0

xn

∥∥∥∥ +

∥∥∥∥
∑

n∈F\F0

xn

∥∥∥∥ ≤ M + 1.

Hence R ≤M + 1 <∞, as desired.

Proof that RΛ < ∞. Assume that
∑
xn converges unconditionally. For

each finite F ⊆ N and each sequence Λ = (λn) satisfying |λn| ≤ 1 for all n,
define a functional TF,Λ : X∗ → F by

TF,Λ(x∗) =

〈∑

n∈F
λnxn, x

∗
〉
.

Then, by definition of the operator norm and by the Hahn–Banach Theorem
(Theorem 2.3), we have

‖TF,Λ‖ = sup
‖x∗‖=1

|TF,Λ(x∗)| = sup
‖x∗‖=1

∣∣∣∣
〈∑

n∈F
λnxn, x

∗
〉∣∣∣∣ =

∥∥∥∥
∑

n∈F
λnxn

∥∥∥∥.

Therefore, RΛ is realized by the formula
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RΛ = sup
F,Λ
‖TF,Λ‖,

where the supremum is over finite F ⊆ N and bounded sequences of scalars
Λ = (λn).

Now let x∗ ∈ X∗ be fixed. Then, by the continuity of x∗ and the un-
conditional convergence of

∑
xn, we have that

∑ 〈xσ(n), x
∗〉 =

〈∑
xσ(n), x

∗〉

exists for every permutation σ of N. Therefore, the series
∑ 〈xn, x∗〉 con-

verges unconditionally. However, the terms 〈xn, x∗〉 in this series are scalars,
and unconditional convergence of a series of scalars is equivalent to absolute
convergence (Lemma 3.3). Therefore,

|TF,Λ(x∗)| =

∣∣∣∣
〈∑

n∈F
λnxn, x

∗
〉∣∣∣∣

≤
∑

n∈F
|λn| |〈xn, x∗〉|

≤
∑

n∈F
|〈xn, x∗〉|,

and hence

sup
F,Λ
|TF,Λ(x∗)| ≤

∞∑

n=1

|〈xn, x∗〉| < ∞.

The Uniform Boundedness Principle (Theorem 2.22) therefore implies that
RΛ = supF,Λ ‖TF,Λ‖ <∞. ⊓⊔

Exercise 3.9 shows that the converse of Theorem 3.15 is false in general,
i.e., finiteness of R, RE , or RΛ need not imply that the series

∑
xn converges

unconditionally, or even that the series converges at all.

Exercises

3.9. (a) Let X = ℓ∞, and let {δn} be the sequence of standard basis vectors
(which is contained in ℓ∞ but does not form a basis for it). Show that R =
RE = RΛ = 1, but

∑
δn does not converge in ℓ∞.

(b) Exhibit a sequence {xn} in a separable Banach space X such that R,
RΛ, and RE are finite but

∑
xn does not converge.

3.5 Unconditional Convergence of Series in Hilbert
Spaces

In this section we will derive a necessary condition for the unconditional con-
vergence of series in Hilbert spaces, and also extend this to the Banach spaces
Lp(E) with 1 ≤ p ≤ 2.

The following result was first obtained in [Orl33].
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Theorem 3.16 (Orlicz’s Theorem). If {xn} is a sequence in a Hilbert space
H, then

∞∑

n=1

xn converges unconditionally =⇒
∞∑

n=1

‖xn‖2 <∞. ♦

Orlicz’s Theorem does not extend to Banach spaces in general (but see
Theorem 3.27 for some specific Banach spaces in which it does hold). Further,
the following example shows that the converse of Theorem 3.16 is false in
general, even in Hilbert spaces.

Example 3.17. Let H be a Hilbert space, and fix any x ∈ H with ‖x‖ = 1.

Then
∥∥∑N

n=M+1cnx
∥∥ =

∣∣∑N
n=M+1cn

∣∣, so
∑
cnx converges in H if and only

if
∑
cn converges as a series of scalars. Likewise,

∑
cnx converges uncondi-

tionally if and only if
∑
cn converges unconditionally. Therefore, if (cn) ∈ ℓ2

is such that
∑
cn converges conditionally, then

∑
cnx converges condition-

ally even though
∑ ‖cnx‖2 =

∑ |cn|2 < ∞. For example, this is the case for
cn = (−1)n/n. ♦

We will give three proofs of Orlicz’s Theorem. The first is simpler, but the
second and third give improved bounds on the value of

∑ ‖xn‖2, and each
has a different flavor. We will use the numbers R, RE , and RΛ introduced in
Notation 3.12. By Theorem 3.15, if

∑
xn converges unconditionally, then R,

RE , and RΛ are all finite.
The first proof requires the following simple lemma.

Lemma 3.18. Let H be a Hilbert space, and suppose x1, . . . , xN ∈ H. Then
there exist scalars λ1, . . . , λN , each with |λn| ≤ 1, such that

N∑

n=1

‖xn‖2 ≤
∥∥∥∥
N∑

n=1

λnxn

∥∥∥∥
2

.

Proof. This is clear for N = 1. For N = 2, define λ1 = 1 and let λ2 be the

scalar such that |λ2| = 1 and λ2 〈x1, x2〉 = |〈x1, x2〉|. Then

‖λ1x1 + λ2x2‖2 = ‖x1‖2 + 2 Re
(
λ1λ2 〈x1, x2〉

)
+ ‖x2‖2

= ‖x1‖2 + 2 |〈x1, x2〉| + ‖x2‖2

≥ ‖x1‖2 + ‖x2‖2.

The full result then follows by induction. ⊓⊔

We can now give our first proof of Orlicz’s Theorem.

Theorem 3.19. If {xn} is a sequence in a Hilbert space H, then
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∞∑

n=1

‖xn‖2 ≤ RΛ2.

In particular, if
∑
xn converges unconditionally, then both of these quantities

are finite.

Proof. Fix any N > 0. Then by Lemma 3.18, we can find scalars λn with
|λn| ≤ 1 such that

N∑

n=1

‖xn‖2 ≤
∥∥∥∥
N∑

n=1

λnxn

∥∥∥∥
2

≤ RΛ2.

Letting N →∞ therefore gives the result. ⊓⊔

The second proof uses the following lemma.

Lemma 3.20. If x1, . . . , xN are elements of a Hilbert space H, then

Average

{∥∥∥∥
N∑

n=1

εnxn

∥∥∥∥
2

: all εn = ±1

}
=

N∑

n=1

‖xn‖2. (3.4)

Proof. For each N, define SN = {(ε1, . . . , εN ) : all εn = ±1}, and note that
|SN | = 2N . We will proceed by induction on N. For N = 1 we have

Average

{∥∥∥∥
1∑

n=1

εnxn

∥∥∥∥
2

: (εn) ∈ S1

}
=

1

2

(
‖x1‖2 + ‖ − x1‖2

)
= ‖x1‖2.

Therefore equation (3.4) holds when N = 1.
Suppose now that equation (3.4) holds for some N ≥ 1. Using the Paral-

lelogram Law (Lemma 1.36), we compute that

Average

{∥∥∥∥
N+1∑

n=1

εnxn

∥∥∥∥
2

: (εn) ∈ SN+1

}

=
1

2N+1

∑

(εn)∈SN+1

∥∥∥∥
N+1∑

n=1

εnxn

∥∥∥∥
2

=
1

2N+1

∑

(εn)∈SN

∑

εN+1=±1

∥∥∥∥
N+1∑

n=1

εnxn

∥∥∥∥
2

=
1

2N+1

∑

(εn)∈SN

(∥∥∥∥
N∑

n=1

εnxn + xN+1

∥∥∥∥
2

+

∥∥∥∥
N∑

n=1

εnxn − xN+1

∥∥∥∥
2)

=
1

2N+1

∑

(εn)∈SN

2

(∥∥∥∥
N∑

n=1

εnxn

∥∥∥∥
2

+ ‖xN+1‖2
)
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=
1

2N

∑

(εn)∈SN

∥∥∥∥
N∑

n=1

εnxn

∥∥∥∥
2

+
1

2N

∑

(εn)∈SN

‖xN+1‖2

=

( N∑

n=1

‖xn‖2
)

+ ‖xN+1‖2,

the last equality following from the induction hypothesis. Thus equation (3.4)
holds for N + 1 as well. ⊓⊔

We can now give a second proof of Orlicz’s Theorem. Since RE ≤ RΛ, the
bound on the value of

∑ ‖xn‖2 in the following result is sharper in general
than the corresponding bound in Theorem 3.19.

Theorem 3.21. If {xn} is a sequence in a Hilbert space H then

∑
‖xn‖2 ≤ RE

2.

In particular, if
∑
xn converges unconditionally then both of these quantities

are finite.

Proof. Fix any N > 0. Then by Lemma 3.20,

N∑

n=1

‖xn‖2 = Average

{∥∥∥∥
N∑

n=1

εnxn

∥∥∥∥
2

: all εn = ±1

}

≤ Average{RE
2 : all εn = ±1} = RE

2.

Letting N →∞ therefore gives the result. ⊓⊔

Our final proof uses the Rademacher system, which is a sequence of or-
thonormal functions in L2[0, 1], to derive Orlicz’s Theorem for the special case
H = L2(E). Since all separable Hilbert spaces are isometrically isomorphic
(Exercise 1.71), this proves Orlicz’s Theorem for all separable Hilbert spaces.

Definition 3.22. The Rademacher system is the sequence {Rn}∞n=0 in L2[0, 1]
defined by

Rn(t) = sign(sin 2nπt) =





1, t ∈
2n−1−1⋃
k=0

(2k

2n
,
2k + 1

2n

)
,

0, t =
k

2n
, k = 0, . . . , 2n,

−1, t ∈
2n−1−1⋃
k=0

(2k + 1

2n
,
2k + 2

2n

)
. ♦

The first four Rademacher functions are pictured in Figure 3.1.
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Fig. 3.1. Graphs of R0, R1 (top), and R2, R3 (bottom).

Theorem 3.23. The Rademacher system {Rn}∞n=0 is an orthonormal se-
quence in L2[0, 1], but it is not complete.

Proof. Since |Rn(t)| = 1 almost everywhere on [0, 1] we have ‖Rn‖2 = 1. Thus,
Rademacher functions are normalized. To show the orthogonality, define

S+
n = {t ∈ [0, 1] : Rn(t) > 0} and S−

n = {t ∈ [0, 1] : Rn(t) < 0}.

If m 6= n then

〈Rm, Rn〉 = |S+
m ∩ S+

n | − |S+
m ∩ S−

n | − |S−
m ∩ S+

n | + |S−
m ∩ S−

n |

=
1

4
− 1

4
− 1

4
+

1

4
= 0.

Thus {Rn}∞n=0 is an orthonormal sequence in L2[0, 1].
Finally, consider the function w(t) = R1(t)R2(t), pictured in Figure 3.2.

Reasoning similar to the above shows that 〈w,Rn〉 = 0 for every n ≥ 0. Hence
{Rn}∞n=0 is incomplete in L2[0, 1]. ⊓⊔

1

-1

0

1

Fig. 3.2. Graph of w(t) = R1(t)R2(t).
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Although the Rademacher system is not complete, it is the starting point
for the construction of the Walsh system, which is a complete orthonormal
basis for L2[0, 1]. Elements of the Walsh system are formed by taking finite
products of Rademacher functions. The graphs of the Rademacher and Walsh
systems suggest a close relationship to the Haar system (see Example 1.54),
which is the simplest wavelet orthonormal basis for L2(R). Indeed, the Walsh
system is the system of wavelet packets corresponding to the Haar system.
We will discuss wavelet bases in Chapter 12, and for more details on wavelet
packets we refer to [Wic94].

We can now give our final proof of Orlicz’s Theorem. This proof does
require some knowledge of Lebesgue measure and integration.

Theorem 3.24. Let E ⊆ R be measurable. If {fn} is a sequence of functions
in L2(E) then ∑

n

‖fn‖2L2 ≤ RE
2.

In particular, if
∑
fn converges unconditionally then both of these quantities

are finite.

Proof. By definition, a vector fn in L2(E) is actually an equivalence class
of functions that are equal almost everywhere, so we must be careful when
speaking about the value of fn at a point. For this proof, we fix any par-
ticular representative of fn. Since fn is square integrable, we can take this
representative to be defined and finite at all points of E.

Let {Rn}∞n=0 be the Rademacher system (Definition 3.22). Since {Rn} is
an orthonormal system, the Plancherel Equality (Theorem 1.50) implies that

∀x ∈ E,
∥∥∥∥
N∑

n=1

fn(x)Rn

∥∥∥∥
2

L2[0,1]

=
N∑

n=1

|fn(x)|2.

Moreover, since Rn(t) = ±1 for a.e. t, we have from the definition of RE that

∥∥∥∥
N∑

n=1

Rn(t) fn

∥∥∥∥
L2(E)

≤ RE for a.e. t ∈ [0, 1]. (3.5)

Therefore,

N∑

n=1

‖fn‖2L2(E) =

∫

E

N∑

n=1

|fn(x)|2 dx

=

∫

E

∥∥∥∥
N∑

n=1

fn(x)Rn

∥∥∥∥
2

L2[0,1]

dx

=

∫

E

∫ 1

0

∣∣∣∣
N∑

n=1

fn(x)Rn(t)

∣∣∣∣
2

dt dx
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=

∫ 1

0

∫

E

∣∣∣∣
N∑

n=1

fn(x)Rn(t)

∣∣∣∣
2

dx dt (by Tonelli’s Theorem)

=

∫ 1

0

∥∥∥∥
N∑

n=1

Rn(t) fn

∥∥∥∥
2

L2(E)

dt

≤
∫ 1

0

RE
2 dt

= RE
2,

where Tonelli’s Theorem allows us to interchange the order of integration at
the point indicated because of the fact that the integrands are nonnegative.
Letting N →∞ therefore gives the result. ⊓⊔

We used the Rademacher system in the proof of Theorem 3.24 because it is
the orthonormal sequence originally used by Orlicz in his proof. However, any
orthonormal sequence {en} in L2[0, 1] whose elements are uniformly bounded
in L∞-norm would do just as well. For, if ‖en‖L∞ ≤M for all n then we can

replace equation (3.5) with
∥∥∑N

n=1 en(t) fn
∥∥
L2 ≤MRΛ a.e. The remainder of

the proof then carries through with Rn replaced by en, except that the final

conclusion becomes
∑N
n=1 ‖en‖2L2 ≤ (MRΛ)2.

For example, we could use the trigonometric system {e2πint}n∈Z to prove
Theorem 3.24, in which case we can take M = 1. However, we cannot use the
Haar system to prove Theorem 3.24, because it is not uniformly bounded in
L∞-norm. A typical element of the Haar system is ψnk(t) = 2n/2ψ(2nt− k),
where ψ = χ

[0,1/2) − χ[1/2,1), so although ψnk is a unit vector in L2-norm,

with respect to L∞-norm we have ‖ψnk‖∞ = 2n/2.
Although the Rademacher functions did not play a special role in the proof

of Theorem 3.24, we will use their specific structure to extend Theorem 3.24 to
Lp(E) with 1 ≤ p ≤ 2. The key is an estimate known as Khinchine’s Inequal-
ities (or Khintchine’s Inequalities). To prove this estimate we will need the
Multinomial Theorem, which is the generalization of the Binomial Theorem
to expressions containing more than two terms. Specifically, the Multinomial
Theorem states that

(a1 + · · ·+ aN )m =
∑

j1+···+jN =m,

jn≥0

(
m

j1, . . . , jN

)
aj11 · · · ajNN

where (
m

j1, . . . , jN

)
=

m!

j1! · · · jN !
,

which is known as a multinomial coefficient.
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We will also need the following inequality, whose proof is Exercise 1.13:

‖ · ‖Lp[0,1] ≤ ‖ · ‖Lq[0,1], 1 ≤ p ≤ q ≤ ∞. (3.6)

Note that the following result applies to real scalars only.

Theorem 3.25 (Khinchine’s Inequalities). For each 1 ≤ p <∞ there ex-
ist constants kp, Kp > 0 such that for every N ∈ N and real scalars c1, . . . , cN ,

kp

( N∑

n=1

c 2
n

)1/2

≤
∥∥∥∥
N∑

n=1

cnRn

∥∥∥∥
Lp[0,1]

≤ Kp

( N∑

n=1

c 2
n

)1/2

. (3.7)

Proof. Step 1. We begin with a generic calculation. Suppose that j1, . . . , jN
are nonnegative integers. If every jn is even then R1(t)

j1 · · ·RN (t)jN = 1 for

almost every t, and hence
∫ 1

0
R1(t)

j1 · · ·RN (t)jN dt = 1 in this case. However,

if any jn is odd then
∫ 1

0 R1(t)
j1 · · ·RN (t)jN dt = 0.

Step 2. Suppose that p is an even integer, say p = 2m where m ∈ N. Fix
real scalars c1, . . . , cN and set

I =

∥∥∥∥
N∑

n=1

cnRn

∥∥∥∥
2m

L2m[0,1]

.

Using the Multinomial Theorem and applying Step 1, we compute that

I =

∫ 1

0

( N∑

n=1

cnRn(t)

)2m

dt

=
∑

j1+···+jN =2m,

jn≥0

(
2m

j1, . . . , jN

)
cj11 · · · cjNN

∫ 1

0

R1(t)
j1 · · ·RN (t)jN dt

=
∑

2j1+···+2jN =2m,

jn≥0

(
2m

2j1, . . . , 2jN

)
c2j11 · · · c2jNN . (3.8)

Now we estimate the multinomial coefficient appearing on the line above:

(
2m

2j1, . . . , 2jN

)
=

(2m)!

(2j1)! · · · (2jN )!

=
(2m)(2m− 1) · · · (m+ 1)

(2j1)(2j1 − 1) · · · (j1 + 1) · · · (2jN )(2jN − 1) · · · (jN + 1)

m!

j1! · · · jN !

≤ (2m)(2m) · · · (2m)

(2)(2) · · · (2) · · · (2)(2) · · · (2)

(
m

j1, . . . , jN

)
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=
2mmm

2j1 · · · 2jN
(

m

j1, . . . , jN

)

= mm

(
m

j1, . . . , jN

)
.

Therefore we can continue equation (3.8) as follows:

I ≤
∑

j1+···+jN =m,

jn≥0

mm

(
m

j1, . . . , jN

)
c2j11 · · · c2jNN = mm

( N∑

n=1

c 2
n

)m
.

Taking (2m)th roots,

∥∥∥∥
N∑

n=1

cnRn

∥∥∥∥
L2m[0,1]

= I1/(2m) ≤ m1/2

( N∑

n=1

c 2
n

)1/2

,

so the upper inequality in equation (3.7) holds with K2m = m1/2.

Step 3. Now suppose that p is any index in the range 2 ≤ p < ∞. Let
m ∈ N be the integer such that 2m− 2 < p ≤ 2m. Then by combining Step 2
with equation (3.6), we have

∥∥∥∥
N∑

n=1

cnRn

∥∥∥∥
Lp[0,1]

≤
∥∥∥∥
N∑

n=1

cnRn

∥∥∥∥
L2m[0,1]

≤ m1/2

( N∑

n=1

c 2
n

)1/2

.

Therefore the upper inequality in equation (3.7) holds with Kp = m1/2.
Also, since p ≥ 2 the lower inequality follows from the orthonormality of
the Rademacher functions and equation (3.6):

( N∑

n=1

c 2
n

)1/2

=

∥∥∥∥
N∑

n=1

cnRn

∥∥∥∥
L2[0,1]

≤
∥∥∥∥
N∑

n=1

cnRn

∥∥∥∥
Lp[0,1]

.

Thus we can take kp = 1 in equation (3.7) when 2 ≤ p <∞.
Step 4. Finally, suppose that 1 ≤ p < 2. Let f =

∑N
n=1 cnRn. Applying

Step 3 using the index 4, we have

‖f‖L4[0,1] ≤ K4

( N∑

n=1

c 2
n

)1/2

. (3.9)

Then, by using Hölder’s Inequality with index 3/2 and dual index (3/2)′ = 3,
we compute that

N∑

n=1

c 2
n = ‖f‖2L2[0,1] =

∫ 1

0

|f(t)|2/3 |f(t)|4/3 dt

≤
(∫ 1

0

(
|f(t)|2/3

)3/2
dt

)2/3 (∫ 1

0

(
|f(t)|4/3

)3
dt

)1/3



3.5 Unconditional Convergence of Series in Hilbert Spaces 113

=

(∫ 1

0

|f(t)| dt
)2/3 (∫ 1

0

|f(t)|4 dt
)1/3

= ‖f‖2/3L1[0,1] ‖f‖
4/3
L4[0,1]

≤ ‖f‖2/3Lp[0,1]K
4/3
4

( N∑

n=1

c 2
n

)2/3

,

where the final inequality comes from applying equations (3.6) and (3.9).
Rearranging, we find that

( N∑

n=1

c 2
n

)1/2

≤ ‖f‖Lp[0,1]K
2
4 = K 2

4

∥∥∥∥
N∑

n=1

cnRn

∥∥∥∥
Lp[0,1]

.

Hence the lower estimate in equation (3.7) holds with kp = K−2
4 . Combining

equation (3.6) with the orthonormality of the Rademacher functions we see
that ∥∥∥∥

N∑

n=1

cnRn

∥∥∥∥
Lp[0,1]

≤
∥∥∥∥
N∑

n=1

cnRn

∥∥∥∥
L2[0,1]

=

( N∑

n=1

c 2
n

)1/2

.

Hence the upper inequality in equation (3.7) holds with Kp = 1. ⊓⊔

We will use Khinchine’s Inequalities to prove the following result.

Lemma 3.26. Fix 1 ≤ p < ∞ and a measurable set E ⊆ R. If {fn} is a
sequence of functions in Lp(E) and

∑
fn converges unconditionally, then

∫

E

( ∞∑

n=1

|fn(x)|2
)p/2

dx < ∞.

Proof. Because Khinchine’s Inequalities apply to real scalars, we first assume
that the scalar field is F = R. Just as in equation (3.5), since

∑
fn converges

unconditionally and Rn(t) = ±1 for almost every t, we have

∫

E

∣∣∣∣
N∑

n=1

fn(x)Rn(t)

∣∣∣∣
p

dx =

∥∥∥∥
N∑

n=1

Rn(t) fn

∥∥∥∥
p

Lp(E)

≤ RE
p for a.e. t ∈ [0, 1].

Using Khinchine’s Inequalities, we therefore have that

∫

E

( N∑

n=1

|fn(x)|2
)p/2

dx ≤ k−pp

∫

E

∥∥∥∥
N∑

n=1

fn(x)Rn

∥∥∥∥
p

Lp[0,1]

dx

= k−pp

∫

E

∫ 1

0

∣∣∣∣
N∑

n=1

fn(x)Rn(t)

∣∣∣∣
p

dt dx
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= k−pp

∫ 1

0

∫

E

∣∣∣∣
N∑

n=1

fn(x)Rn(t)

∣∣∣∣
p

dx dt (3.10)

≤ k−pp

∫ 1

0

RE
p dt

= k−pp RE
p.

Tonelli’s Theorem allows us to interchange in the order of integration at
equation (3.10) because of the fact that the integrand is nonnegative. Since∑N
n=1 |fn(x)|2 increases with N, the Monotone Convergence Theorem implies

that

∫

E

( ∞∑

n=1

|fn(x)|2
)p/2

dx = lim
N→∞

∫

E

( N∑

n=1

|fn(x)|2
)p/2

dx

≤ k−pp RE
p < ∞.

We assign the proof for the case F = C as Exercise 3.11. ⊓⊔

Now we can prove Orlicz’s Theorem on unconditional convergence of series
in Lp(E).

Theorem 3.27 (Orlicz’s Theorem). Choose 1 ≤ p ≤ 2 and a measurable
set E ⊆ R. If fn ∈ Lp(E) and

∑
fn converges unconditionally in Lp(E), then

∑

n

‖fn‖2Lp < ∞.

Proof. As in many proofs in analysis, the key is to apply Hölder’s Inequality
using a clever choice of indices. Since 1 ≤ p ≤ 2, we have 1 ≤ 2

p ≤ 2. The dual

index to 2/p is the number q = (2/p)′ that satisfies 1
2/p + 1

q = 1. Explicitly,

q = (2/p)′ =
2/p

2/p− 1
=

2

2− p .

Therefore, if we choose any finite sequence d = (d1, . . . , dN , 0, 0, . . . ) ∈ c00,
then we can apply Hölder’s Inequality to obtain

N∑

n=1

|fn(x)|p |dn| ≤
( N∑

n=1

(
|fn(x)|p

)2/p
)p/2( N∑

n=1

|dn|(2/p)
′

)1/(2/p)′

=

( N∑

n=1

|fn(x)|2
)p/2( N∑

n=1

|dn|q
)1/q

.

Let cn = ‖fn‖pLp and set c = (cn). Then
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|〈c, d〉| ≤
N∑

n=1

‖fn‖pLp |dn|

=
N∑

n=1

∫

E

|fn(x)|p |dn| dx

≤
∫

E

( N∑

n=1

|fn(x)|2
)p/2 ( N∑

n=1

|dn|q
)1/q

dx

= C

( N∑

n=1

|dn|q
)1/q

= C ‖d‖q,

where C =
∫
E

(∑N
n=1 |fn(x)|2

)p/2
dx is finite by Lemma 3.26. Exercise 1.78

therefore implies that c ∈ ℓq′ , where q′ is the dual index to q. Since q is the

dual index to 2/p, we conclude that q′ = 2/p, and therefore
∑ ‖fn‖2Lp =

‖c‖q
′

q′ <∞. ⊓⊔

Suppose that {fn} is an orthonormal basis for L2(E). Then we know
exactly when

∑
cnfn converges in L2(E). Specifically,

∑
cnfn converges in

L2(E) if and only if
∑ |cn|2 < ∞, and in this case

∑
cnfn converges un-

conditionally (Exercise 3.1). What happens if we change the norm? If E has
finite measure and 1 ≤ p ≤ 2, then L2(E) ⊆ Lp(E) by Exercise 1.13, so
{fn} ⊆ Lp(E). Can we determine exactly when

∑
cnfn converges uncon-

ditionally in Lp-norm? This is a very difficult question in general, but the
following consequence of Orlicz’s Theorem gives us a necessary condition for
unconditional convergence. We assign the proof of this result as Exercise 3.12.

Theorem 3.28. Fix 1 ≤ p ≤ 2, and let E ⊆ R be a measurable set with
|E| <∞. Let {fn} be an orthonormal basis for L2(E) such that

A = inf
n
‖fn‖Lp > 0.

If f =
∑

n cnfn converges unconditionally in Lp(E), then
∑ |cn|2 < ∞ and

f ∈ L2(E). ♦

Exercises

3.10. Suppose that {xn} is a sequence in a Hilbert space H that is bounded
above and below in norm. Show that if

∑
cnxn converges unconditionally,

then (cn) ∈ ℓ2. Is the converse true?

3.11. Prove Lemma 3.26 for the case of complex scalars.
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3.12. Prove Theorem 3.28.

3.13. Prove the following version of Orlicz’s Theorem for the case 2 < p <∞:
If
∑
fn converges unconditionally in Lp(E) then

∑ ‖fn‖pLp <∞.

3.6 The Dvoretzky–Rogers Theorem

Example 3.6 showed that in any infinite-dimensional Hilbert space, there ex-
ists a series

∑
xn that converges unconditionally but not absolutely. In fact, we

can do this with vectors xn that satisfy
∑ ‖xn‖2 <∞. The Dvoretzky–Rogers

Theorem will show us that in any infinite-dimensional Banach space there ex-
ists an unconditionally convergent series

∑
xn such that

∑ ‖xn‖2 < ∞ but∑ ‖xn‖ =∞. As a consequence, unconditional and absolute convergence are
only equivalent in finite-dimensional spaces.

There are several different proofs of the Dvoretzky–Rogers Theorem. The
original proof [DR50] is quite geometric, and an account in that spirit can be
found in [Mar69]. A proof based on p-summing operators appears in [Die84].
We follow another argument from [LT77].

Our first lemma states that in any finite-dimensional normed space we can
find a basis consisting of unit vectors whose biorthogonal system also consists
of unit vectors.

Definition 3.29. LetX be a finite-dimensional normed space of dimension n,
and fix vectors x1, . . . , xn ∈ X and functionals a1, . . . , an ∈ X∗. If ‖xk‖ = 1 =
‖ak‖ and 〈xj , ak〉 = δjk for 1 ≤ j, k ≤ n then we call

(
{xk}nk=1, {ak}nk=1

)
an

Auerbach system for X. ♦

In the language of Chapter 4, an Auerbach system is a normalized basis
for X whose dual basis is also normalized.

Lemma 3.30. Every finite-dimensional normed space X has an Auerbach
system

(
{xk}nk=1, {ak}nk=1

)
.

Proof. Since X is a finite-dimensional vector space, it has a basis {y1, . . . , yn}.
By rescaling, we can assume that ‖yk‖ = 1 for every k. Each x ∈ X can be
written uniquely as

x =

n∑

k=1

ck(x) yk, x ∈ X,

and furthermore each ck is a continuous functional since it is a linear map on
a finite-dimensional normed space. Therefore we adopt our preferred notation
for continuous linear functionals and write 〈x, ck〉 instead of ck(x) in this
proof. Let

S =
{
x ∈ X : ‖x‖ = 1

}
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be the unit sphere in X. This is a compact set since X is finite dimensional.
Define a (nonlinear) functional d : Xn → R by

d(z1, . . . , zn) = det
[
〈zj , ck〉

]
j,k=1,...,n

, z1, . . . , zn ∈ X.

Since each ck is continuous on X and d is a polynomial function of the ck,
it follows that d is continuous on Xn (see Exercise 1.16 for a discussion of
the product space Xn). As Sn is a compact subset of Xn, the continuous
function |d| must achieve a maximum on Sn, say at (x1, . . . , xn) ∈ Sn. Note
that since 〈yj , ck〉 = δjk we have d(y1, . . . , yn) = 1, and therefore

|d(x1, . . . , xn)| ≥ |d(y1, . . . , yn)| = 1.

Now define continuous linear functionals ak on X by

〈x, ak〉 =
d(x1, . . . , xk−1, x, xk+1, . . . , xn)

d(x1, . . . , xn)
, x ∈ X.

Then

〈xk, ak〉 =
d(x1, . . . , xn)

d(x1, . . . , xn)
= 1.

On the other hand, if j 6= k then d(x1, . . . , xk−1, xj , xk+1, . . . , xn) is the de-
terminant of a matrix with two identical rows, so 〈xj , ak〉 = 0. Finally, if x is
a unit vector then

|〈x, ak〉| =
|d(x1, . . . , xk−1, x, xk+1, . . . , xn)|

|d(x1, . . . , xn)|
≤ |d(x1, . . . , xn)|
|d(x1, . . . , xn)|

= 1,

while for the unit vector xk we have 〈xk, ak〉 = 1. Thus ‖ak‖ = 1. ⊓⊔

The next lemma is the key to the proof of the Dvoretzky–Rogers Theorem.
Although its proof is long, it is well worth reading as it has a kind of “surprise
ending.”

Lemma 3.31. Let X be a finite-dimensional normed space with dim(X) = n2.
Then there exists a subspace Y of X and an inner product (·, ·) on Y such
that:

(a) dim(Y ) = n,

(b) the norm ||| · ||| on Y induced from (·, ·) satisfies ‖y‖ ≤ |||y||| for all y ∈ Y,
(c) there exists a basis {y1, . . . , yn} for Y that is orthonormal with respect to

(·, ·) and satisfies ‖yk‖ ≥ 1/8 for k = 1, . . . , n.

Proof. Let
(
{xk}n

2

k=1, {ak}n
2

k=1

)
be an Auerbach system for X. Define an inner

product (·, ·)1 on X by

(x, y)1 = n2
n2∑

k=1

〈x, ak〉 〈y, ak〉.
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The corresponding induced norm is

|||x|||1 = n

( n2∑

k=1

|〈x, ak〉|2
)1/2

.

Since ‖xk‖ = 1 = ‖ak‖, for any x ∈ X we have

1

n2
|||x|||1 =

1

n

( n2∑

k=1

|〈x, ak〉|2
)1/2

≤ 1

n

( n2∑

k=1

‖x‖2 ‖ak‖2
)1/2

= ‖x‖

=

∥∥∥∥
n2∑

k=1

〈x, ak〉xk
∥∥∥∥

≤
n2∑

k=1

|〈x, ak〉| ‖xk‖

≤ n

( n2∑

k=1

|〈x, ak〉|2
)1/2

= |||x|||1.

Thus
1

n2
|||x|||1 ≤ ‖x‖ ≤ |||x|||1, all x ∈ X. (3.11)

If 1 ≤ n2 ≤ 8, then

1

8
|||x|||1 ≤ ‖x‖ ≤ |||x|||1, all x ∈ X.

In this case the proof is finished—we simply let Y be any n-dimensional
subspace of X, set (·, ·) = (·, ·)1 and ||| · ||| = ||| · |||1, and choose any basis
{y1, . . . , yn} for Y that is orthonormal with respect to (·, ·). Therefore our
task is to deal with the case n2 > 8.

So, fix n2 > 8, and suppose that it is the case that every subspace Y of X
with dim(Y ) > dim(X)/2 = n2/2 contains a vector y such that |||y|||1 = 1 and
‖y‖ ≥ 1/8. Since Y = X is such a subspace, we can let y1 be a vector in X
such that |||y1|||1 = 1 and ‖y1‖ ≥ 1/8. Taking the orthogonal complement
with respect to the inner product (·, ·)1, the subspace Y = span{y1}⊥ has

dimension n2 − 1 > n2/2, so there exists some vector y2 ∈ span{y1}⊥ such
that |||y2|||1 = 1 and ‖y2‖ ≥ 1/8. Continuing in this way, we can construct at
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least n2

2 − 1 vectors yk that are orthonormal with respect to (·, ·)1 and satisfy

|||yk|||1 = 1 and ‖yk‖ ≥ 1/8 for each k. This gives us n2

2 − 1 ≥ n vectors with
the properties we are seeking, so the proof is finished in this case.

The other possibility is that there exists some subspace X2 of X with
dim(X2) > dim(X)/2 = n2/2 such that ‖y‖ < 1/8 for all y ∈ X2 with
|||y|||1 = 1. In this case, define

(·, ·)2 =
1

82
(·, ·)1 and ||| · |||2 =

1

8
||| · |||1.

Despite the fact that we have simply scaled the norm and inner product, our
hypotheses on X2 combined with equation (3.11) give us the following norm
equivalence:

8

n2
|||y|||2 =

1

n2
|||y|||1 ≤ ‖y‖ <

1

8
|||y|||1 = |||y|||2, y ∈ X2.

If it is the case that 8 < n2 ≤ 82, then

1

8
|||y|||2 ≤

8

n2
|||y|||2 ≤ ‖y‖ < |||y|||2, all y ∈ X2.

Since dim(X2) > n2/2 ≥ n, we are done with this case by letting Y be any
n-dimensional subspace of X2 and taking (·, ·) = (·, ·)2 and ||| · ||| = ||| · |||2.

Hence we are reduced to the case n2 > 82. There are two possibilities. One
is that every subspace Y of X2 with dim(Y ) > dim(X2)/2 contains a vector y
such that |||y|||2 = 1 and ‖y‖ ≥ 1/8. In this case, since dim(X2)/2 > n2/4 we

can find at least n2

4 − 1 vectors yk that are orthonormal with respect to (·, ·)
and satisfy |||yk|||2 = 1 and ‖yk‖ ≥ 1/8. Since n2 > 82 we have n2

4 − 1 ≥ n, so
the proof is complete in this case.

The other possibility is that there exists a subspace X3 of X2 with

dim(X3) > dim(X2)/2 > n2/4 such that ‖y‖ < 1/8 for all y ∈ X3 with

|||y|||2 = 1. In this case we set (·, ·)3 = 1
82 (·, ·)2 and ||| · |||3 = 1

8 ||| · |||1 and pro-

ceed as before, eventually settling the proof for the case 82 < n2 ≤ 83. If
n2 > 83 we continue on, but since n is fixed, this procedure must end after
finitely many steps! ⊓⊔

Corollary 3.32. If X is a finite-dimensional normed space with dim(X) =
n2, then there exist unit vectors x1, . . . , xn ∈ X such that

∥∥∥∥
n∑

k=1

ckxk

∥∥∥∥ ≤ 8

( n∑

k=1

|ck|2
)1/2

, c1, . . . , cn ∈ F.

Proof. Let y1, . . . , yn be the vectors whose existence is implied by Lemma 3.31,
and set xk = yk/‖yk‖. Using the notation of that lemma, since {y1, . . . , yn}
is orthonormal with respect to (·, ·) and since ‖yk‖ ≥ 1/8, we have
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∥∥∥∥
n∑

k=1

ckxk

∥∥∥∥ ≤
∣∣∣∣
∣∣∣∣
∣∣∣∣
n∑

k=1

ckxk

∣∣∣∣
∣∣∣∣
∣∣∣∣

=

∣∣∣∣
∣∣∣∣
∣∣∣∣
n∑

k=1

ck
yk
‖yk‖

∣∣∣∣
∣∣∣∣
∣∣∣∣

≤ 8

∣∣∣∣
∣∣∣∣
∣∣∣∣
n∑

k=1

ckyk

∣∣∣∣
∣∣∣∣
∣∣∣∣

= 8

( n∑

k=1

|ck|2
)1/2

,

the last equality following from orthonormality. ⊓⊔

As a consequence we can prove that if absolute and unconditional conver-
gence are equivalent in a Banach space X, then X must be finite dimensional.
The converse implication, that absolute and unconditional convergence are
equivalent in finite-dimensional spaces, is Exercise 3.14.

Theorem 3.33 (Dvoretzky–Rogers Theorem). Let X be an infinite-
dimensional Banach space. If (cn) ∈ ℓ2, then there exist unit vectors xn ∈ X
such that the series

∑
cnxn converges unconditionally in X. Consequently,

there exist series that converge unconditionally but not absolutely in X.

Proof. Choose an increasing sequence of integers (nk) such that

∞∑

j=nk

|cj |2 ≤ 2−2k, k ∈ N.

Since X is infinite dimensional, given any k ∈ N there exist subspaces of X of
dimension (nk+1−nk)2. Corollary 3.32 therefore implies that there exist unit
vectors xnk

, . . . , xnk+1−1 such that for any scalars λk with |λk| ≤ 1 we have

∥∥∥∥
nk+1−1∑

j=nk

λjcjxj

∥∥∥∥ ≤ 8

(nk+1−1∑

j=nk

|λjcj |2
)1/2

≤ 8 · 2−k. (3.12)

To finish the proof we just have to show that the series
∑
λncnxn converges,

since Theorem 3.10 then implies that
∑
cnxn converges unconditionally.

So, fix ε > 0, and choose K large enough that

8

∞∑

k=K

2−k < ε.

Fix any N > M > nK , and set µn = 1 for n = M, . . . , N and µn = 0
otherwise. Appealing then to equation (3.12), we compute that
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∥∥∥∥
N∑

n=M

λncnxn

∥∥∥∥ =

∥∥∥∥
∞∑

k=K

nk+1−1∑

j=nk

µjλjcjxj

∥∥∥∥

≤
∞∑

k=K

∥∥∥∥
nk+1−1∑

j=nk

µjλjcjxj

∥∥∥∥

≤
∞∑

k=K

8

(nk+1−1∑

j=nk

|µjλjcj |2
)1/2

= 8

∞∑

k=K

2−k

< ε.

Therefore
∑
λncnxn is Cauchy, and hence converges. ⊓⊔

The space C[0, 1] is infinite dimensional, so unconditional convergence does
not imply absolute convergence in this space. That is, there exist series

∑
fn in

C[0, 1] that converge unconditionally with respect to ‖·‖∞, yet
∑ ‖fn‖∞ =∞.

Still, there is an interesting characterization of unconditional convergence in
this space, due to Sierpiński [Sie10] (see [Sem82, Prop. 1.5.7]).

Theorem 3.34. Let fn ∈ C[0, 1] be given. Then, with respect to the norm of
C[0, 1],

∑

n

fn converges unconditionally ⇐⇒
∑

n

|fn| converges.

Proof. ⇐. Suppose that the series
∑ |fn| converges with respect to the uni-

form norm. Then
∑ |fn| is a Cauchy series, so given ε > 0 there exists some

N0 such that

∀N > M ≥ N0,

∥∥∥∥
N∑

n=M

|fn|
∥∥∥∥
∞

< ε.

Let F be any finite subset of N with min(F ) > N0, and set M = min(F ) and

N = max(F ). Since
∣∣∑

n∈F fn(t)
∣∣ ≤∑n∈F |fn(t)|, we have

∥∥∥∥
∑

n∈F
fn

∥∥∥∥
∞

=

∥∥∥∥
∣∣∣
∑

n∈F
fn

∣∣∣
∥∥∥∥
∞
≤
∥∥∥∥
∑

n∈F
|fn|

∥∥∥∥
∞
≤
∥∥∥∥

N∑

n=M

|fn|
∥∥∥∥
∞

< ε.

Criterion (c) from Theorem 3.10 therefore tells us that
∑
fn converges un-

conditionally with respect to ‖ · ‖∞.
⇒. Suppose that the series

∑ |fn| does not converge with respect to ‖·‖∞.
Then there exists an ε > 0 and an increasing sequence M1 < N1 < M2 <
N2 < M3 < · · · such that
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∥∥∥∥
Nk∑

n=Mk

|fn|
∥∥∥∥
∞
≥ ε, k ∈ N.

Hence for each k there exists some point tk such that

Nk∑

n=Mk

|fn(tk)| ≥ ε, k ∈ N.

For each k and all n in the range Mk ≤ n ≤ Nk, let λn ∈ F be a scalar of
unit modulus such that λnfn(tk) = |fn(tk)|. For all other n, set λn = 0. Then
(λn) is a bounded sequence of scalars, but for each k we have

∥∥∥∥
Nk∑

n=Mk

λnfn

∥∥∥∥
∞
≥
∣∣∣∣
Nk∑

n=Mk

λnfn(tk)

∣∣∣∣ =

Nk∑

n=Mk

|fn(tk)| ≥ ε.

Hence the series
∑
λnfn is not Cauchy in C[0, 1], so criterion (f) from Theorem

3.10 implies that
∑
fn does not converge unconditionally in C[0, 1]. ⊓⊔

Obviously, the interaction between the absolute value of f and the norm
of C[0, 1] plays an important role in this proof. To expand on this, let the
scalar field be real. Then C[0, 1] has a natural partial ordering ≤ defined by

f ≤ g ⇐⇒ f(t) ≤ g(t) for all t ∈ [0, 1]. (3.13)

With respect to this partial order, C[0, 1] is a Banach lattice in the following
sense.

Definition 3.35 (Banach Lattice). Let X be a real Banach space, and
let ≤ be a partial order on X. Then X is a Banach lattice if the following
statements hold.

(a) x ≤ y =⇒ x+ z ≤ y + z for all x, y, z ∈ X.
(b) x ≥ 0 and a ≥ 0 =⇒ ax ≥ 0 for all x ∈ X and a ∈ R.

(c) Every pair of elements x, y ∈ X has a least upper bound x ∨ y and a
greatest lower bound x ∧ y.

(d) |x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖ for all x, y ∈ X, where |x| is defined by

|x| = x ∨ (−x). ♦

In this definition, a partial order is a relation that is reflexive, symmetric,
and transitive, and x ∨ y is a least upper bound for x and y if x, y ≤ x ∨ y,
and x, y ≤ z implies x ∨ y ≤ z.

For a discussion of a generalization of Theorem 3.34 to Banach lattices,
see [DW02], and for general details on bases and Banach lattices, see [LT79].
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Exercises

3.14. Let X be a finite-dimensional normed space. Show that a series
∑
xn

in X is unconditionally convergent if and only if it is absolutely convergent.

3.15. Let F = R. Show that C[0, 1] is a Banach lattice with respect to the
ordering ≤ given in equation (3.13). Also show that f∨g = max{f, g}, f∧g =
min{f, g}, and |f | is the ordinary absolute value of f.

Remark: Another example of a Banach lattice is given in Exercise 6.6.
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Bases in Banach Spaces

Now we reach the centerpiece of this volume, which is the theory of bases in
Banach spaces. Since every Banach space is a vector space, it has a basis in the
ordinary vector space sense, i.e., a set that spans and is linearly independent.
However, this definition of basis restricts us to using only finite linear com-
binations of vectors, while in any normed space it makes sense to deal with
infinite series. Restricting to finite linear combinations when working in an
infinite-dimensional space is simply too restrictive for most purposes. More-
over, the proof that a vector space basis exists is nonconstructive in general,
as it relies on the Axiom of Choice. Hence we need a new notion of basis that
is appropriate for infinite-dimensional Banach spaces, and that is the main
topic of this chapter.

In Section 4.1 we will review the existence, properties, and disadvantages
of vector space bases, which we will call Hamel bases in order to distinguish
them from the more interesting bases that we will consider for Banach spaces.
Then in Sections 4.2–4.7 we define and study bases for Banach spaces and give
some important specific examples of bases. The final section of this chapter is
optional, and discusses some generalization of bases to the weak and weak*
topologies on Banach spaces.

4.1 Hamel Bases

We begin with Hamel bases, which are the bases that we are familiar with
from linear algebra.

Definition 4.1 (Hamel Basis). Let V be a vector space. A sequence of
vectors {xi}i∈I is a Hamel basis for V if

(a) the finite linear span of {xi}i∈I is V, i.e., span{xi}i∈I = V, and

(b) {xi}i∈I is finitely linear independent. ♦
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Note that we do not require the index set I of a Hamel basis to be count-
able. Equivalent formulations of Definition 4.1 are that {xi}i∈I is a Hamel
basis for V if and only if every nonzero vector x ∈ V can be written as
x =

∑N
k=1 ckxik for a unique choice of indices i1, . . . , iN ∈ I and unique

nonzero scalars c1, . . . , cN , or that every x ∈ V can be written uniquely as
x =

∑
i∈I ai(x)xi for some unique choice of scalars ai(x) of which at most

finitely many are nonzero.
In finite-dimensional linear algebra, a Hamel basis is usually just called

a “basis.” However, when dealing with Banach spaces, the term “basis” is
usually reserved for a different concept, one that we will explore in depth in
the following sections. In this volume, the unqualified term “basis” will always
refer to the Banach space definition of basis that appears in Definition 4.3.

An argument based on the Axiom of Choice in the form of Zorn’s Lemma,
similar to the one used in the proof of Theorem 1.56, shows that every vector
space has a Hamel basis (see Exercise 4.1). It can be shown that all Hamel
bases for a given vector space have exactly the same cardinality, and that
cardinality is called the dimension of the space.

Hamel bases are extremely useful in finite-dimensional vector spaces and
in vector spaces with countably infinite dimension. For example, the set of
monomials {xk}k≥0 is a Hamel basis for the vector space of polynomials P .
However, for a generic vector space V we usually only know that a Hamel
basis for V exists because of the Axiom of Choice. In fact, it is known that the
statement “Every vector space has a Hamel basis” is one of many equivalent
formulations of the Axiom of Choice.

Unfortunately, a Hamel basis for an infinite-dimensional Banach space
must be uncountable (see Exercise 4.2). Besides the fact that there is usually
no way to constructively exhibit such a basis, an uncountable Hamel basis is
generally too unwieldy to be of much use. Therefore, in the next section we
will introduce a definition of a basis for a Banach space that allows the use of
“infinite linear combinations,” rather than just the finite linear combinations
to which Hamel bases are restricted.

One interesting thing that we can use Hamel bases for is to show that if X
is an infinite-dimensional Banach space, then there exist linear functionals
on X that are not continuous.

Example 4.2. Let X be an infinite-dimensional Banach space, and let {xi}i∈I
be a Hamel basis for X. By dividing each vector by its norm, we can as-
sume that ‖xi‖ = 1 for every i ∈ I. Let J0 = {j1, j2, . . . } be any countable
subsequence of I. Define a scalar-valued function µ on {xi}i∈I by setting
µ(xjn) = n for n ∈ N and µ(xi) = 0 for i ∈ I\J0. Then extend µ lin-
early to all of X : Each nonzero vector x ∈ X has a unique representation as
x =

∑N
k=1 ckxik for some i1, . . . , iN ∈ I and nonzero scalars c1, . . . , cN , so

we define µ(x) =
∑N

k=1 ck µ(xik ). We also set µ(0) = 0. Then µ is a linear

functional on X, but since ‖xjn‖ = 1 yet |µ(xjn)| = n, the functional µ is
unbounded. ♦
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Exercises

4.1. Use Zorn’s Lemma to show that if V is a vector space then there exists
a sequence {xi}i∈I that is a Hamel basis for V.

Remark: Although we focus in this volume on real and complex vector
spaces, the argument of this exercise applies to any vector space V over any
field F.

4.2. Let X be an infinite-dimensional Banach space, and prove the following
statements.

(a) Any Hamel basis for X must be uncountable.

(b) Any infinite-dimensional subspace of X that has a countable Hamel
basis is a meager subset of X, and cannot be a closed subspace of X.

(c) By Exercise 2.26, Cc(R) is a meager, dense subspace of C0(R). Show
that Cc(R) does not have a countable Hamel basis.

4.3. Let {xi}i∈I be a Hamel basis for an infinite-dimensional Banach space X.
Then each x ∈ X can be written uniquely as x =

∑
i∈I ai(x)xi where at most

finitely many of the scalars ai(x) are nonzero. Each ai is a linear functional
on X, and we call {ai}i∈I the sequence of coefficient functionals associated
with the Hamel basis {xi}i∈I . This exercise addresses the question of whether
these coefficient functionals can be continuous.

(a) Show by example that it is possible for some particular functional ai
to be continuous.

(b) Show that ai(xj) = δij for i, j ∈ I, where δij is the Kronecker delta.

(c) Let J = {i ∈ I : ai is continuous}. Show that supj∈J ‖aj‖ <∞.
(d) Show that at most finitely many functionals ai can be continuous, i.e.,

J is finite.

(e) Give an example of an infinite-dimensional normed linear space that has
a Hamel basis {xi}i∈I such that each of the associated coefficient functionals
ai for i ∈ I is continuous.

4.4. Let µ be an unbounded linear functional on an infinite-dimensional Ba-
nach space X (see Example 4.2). Then by Exercise 1.16, X1 = X × F
is a Banach space with respect to the norm ‖(x, c)‖X1

= ‖x‖X + |c|. Set

Y = graph(µ) = {(x, µ(x)) : x ∈ X}, and define ‖(x, µ(x))‖Y = ‖x‖X .
(a) Show that (Y, ‖ · ‖Y ) is a Banach space.

(b) Show that even though Y ⊆ X1, the normed space (Y, ‖ · ‖Y ) is not
continuously embedded into (X1, ‖ · ‖X1

), i.e., the mapping I : (Y, ‖ · ‖Y ) →
(X1, ‖ · ‖X1

) given by I(z) = z is not continuous.

4.5. Since the set Q of rational numbers is a field, we can consider the vec-
tor space R over the field Q. By Exercise 4.1, there exists a Hamel basis
{xi}i∈I for R over Q. Hence every nonzero number x ∈ R can be written



128 4 Bases in Banach Spaces

uniquely as x =
∑N
k=1 ckxik for some i1, . . . , iN ∈ I and nonzero rational

scalars c1, . . . , cN . Use this to show that there exists a function f : R → R
that satisfies f(x + y) = f(x) + f(y) for all x, y ∈ R but does not satisfy
f(cx) = cf(x) for all c, x ∈ R. Thus f is not linear, even though f respects
addition.

4.2 Bases

As we have seen, every vector space has a Hamel basis that is finitely linearly
independent and whose finite linear span is the entire space. However, when
we deal with normed spaces there are many good reasons why we do not want
to restrict ourselves to just finite linear combinations. Since we have a notion
of convergence in a normed space, we can create infinite series. Therefore, we
introduce the following notion of a basis in a Banach space.

Definition 4.3 (Basis). A countable sequence {xn} in a Banach space X is
a basis for X if

∀x ∈ X, ∃ unique scalars an(x) such that x =
∑

n

an(x)xn. (4.1)

We call the series in equation (4.1) the basis expansion or the basis represen-
tation of x with respect to {xn}. ♦

Some remarks and observations about this definition are in order.

Remark 4.4. (a) We briefly introduced and discussed bases in Section 1.6.
There we were mostly interested in the question of the basis properties of
orthonormal sequences in Hilbert spaces, while here we are considering the
more general (and difficult) setting of Banach spaces.

(b) We restrict ourselves to Banach spaces in order to avoid pathologies
from having Cauchy series that do not converge. Since every normed space
has a unique completion that is a Banach space (Exercise 1.25), this is not a
significant imposition.

(c) If {xn} is a basis, then since the representation of each x ∈ X as

x =
∑
an(x)xn is unique, we must have xn 6= 0 for every n. Consequently, the

sequence {xn/‖xn‖} is a basis forX consisting of unit vectors (in Definition 4.5
we will call such a basis normalized).

(d) The definition of basis requires that {xn} be a countable sequence.
Sometimes, as in Exercises 3.6 and 3.7, it is possible to deal with uncountable
systems that have basis-like properties, but to avoid confusion we will not call
such systems bases.

(e) The definition of basis requires that the basis series expansions x =∑
an(x)xn converge in norm. We could consider other notions of convergence,
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e.g., weak or weak* convergence of the series. We will consider these types of
generalizations in Section 4.7.

(f) If {xn} is a basis for X then {xn} is a countable complete sequence

in X. Consequently, the set of all finite linear combinations
∑N

n=1 cnxn with
rational cn forms a countable, dense subset of X (see Theorem 1.27), so X is
separable. The question of whether every separable Banach space possesses a
basis was a longstanding problem known as the Basis Problem. It was shown
by Enflo [Enf73a] that there exist separable, reflexive Banach spaces which do
not possess any bases! ♦

Some types of bases that have useful extra properties are identified in the
next definition.

Definition 4.5. Let {xn} be a basis for a Banach space X.

(a) {xn} is an unconditional basis if the series in equation (4.1) converge
unconditionally for each x ∈ X. A basis that is not an unconditional basis
is called a conditional basis.

(b) {xn} is an absolutely convergent basis if the series in equation (4.1) con-
verge absolutely for each x ∈ X.

(c) {xn} is a bounded basis if {xn} is norm-bounded both above and below,
i.e., if 0 < inf ‖xn‖ ≤ sup ‖xn‖ <∞.

(d) {xn} is a normalized basis if ‖xn‖ = 1 for every n ∈ N. ♦

Absolutely convergent bases have a simple characterization: A Banach
space X has an absolutely convergent basis if and only if X is topologically
isomorphic to ℓ1 (see Exercise 4.14). Unconditional bases are much more in-
teresting and will be studied in detail in Chapter 6. A great advantage of un-
conditional bases is that the ordering of the index set is irrelevant. Hence any
countable set can be used as the index set of an unconditional basis, whereas
if we have a conditional basis indexed by a countable set other than N then
we must specify the ordering of the index set.

Sometimes we need to deal with sequences that are bases for a closed
subspace of X rather than the entire space. We use the following terminology
for such sequences.

Definition 4.6 (Basic Sequence). Let X be a Banach space. A sequence
{xn} in X is a basic sequence in X if it is a basis for span{xn}. ♦

Most of the terminology for bases carries over to basic sequences. For
example, {xn} is an unconditional basic sequence if it is an unconditional
basis for span{xn}, etc.
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Exercises

4.6. Let {xn} be a basis for a Banach space X, and let (λn) be a sequence of
nonzero scalars.

(a) Show that {λnxn} is a basis for X. In particular, {xn/‖xn‖} is a
normalized basis for X.

(b) If {xn} is an unconditional basis, will {λnxn} be an unconditional
basis?

(c) If {xn} is an absolutely convergent basis, will {λnxn} be an absolutely
convergent basis?

4.7. Let H be a separable Hilbert space.

(a) Show that an orthonormal basis for H is a normalized unconditional
basis for H.

(b) Give an example of a basis {xn} for H that is not an orthogonal
sequence.

(c) Give an example of a basis {xn} for H that contains no orthogonal
subsequences (equivalently, 〈xm, xn〉 6= 0 for all m 6= n).

4.8. (a) Show that the standard basis {δn}n∈N is a normalized unconditional
basis for ℓp for each 1 ≤ p <∞, and is also a normalized unconditional basis
for c0.

(b) By Exercise 1.20, c =
{
x = (xn) ∈ ℓ∞ : limn→∞ xn exists

}
is a closed

subspace of ℓ∞, and c0 is a proper closed subspace of c. Find a vector δ0 ∈ c
such that {δn}n≥0 is a normalized unconditional basis for c.

(c) Show that c∗ is isometrically isomorphic to ℓ1. Compare Exercise 1.75,
which shows that we also have c0

∗ ∼= ℓ1, and Exercise 4.22, which shows that c
and c0 are topologically isomorphic but not isometrically isomorphic.

4.9. For each n ∈ N, define yn = (1, . . . , 1, 0, 0, . . . ), where the 1 is repeated n
times. Show that {yn} is a normalized conditional basis for c0.

4.10. For each n ∈ N, define zn = (0, . . . , 0, 1, 1, . . . ), where the 0 is re-
peated n − 1 times. Show that {zn} is a normalized conditional basis for c
(this is called the summing basis for c).

4.3 Schauder Bases

Suppose that {xn} is a basis for a Banach space X. Then the requirement that
the basis expansions in equation (4.1) are unique implies that the coefficients
an(x) are linear functions of x, and the sequence {an} is uniquely determined
by {xn}.
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Definition 4.7 (Coefficient Functionals). Given a basis {xn} for a Ba-
nach space X, the sequence of linear functionals {an} defined by equation
(4.1) is called the associated sequence of coefficient functionals, or simply the
coefficient functionals, for {xn}. ♦

Intuitively, we expect linear functionals to be the “simplest” possible func-
tions on a vector space, and it is tempting to believe that anything as simple
as a linear functional must be continuous. Unfortunately, Example 4.2 has
already demonstrated that if we accept the Axiom of Choice then there ex-
ist unbounded linear functionals on every infinite-dimensional normed space.
Hence the first question that we should ask about a basis is whether the
associated coefficient functionals are continuous.

Definition 4.8 (Schauder Basis). Let {xn} be a basis for a Banach spaceX,
and let {an} be the associated coefficient functionals. Then we say that {xn}
is a Schauder basis for X if each coefficient functional an is continuous. ♦

Thus, a basis is a Schauder basis if an ∈ X∗ for every n. In Theorem 4.13
we will prove the nontrivial fact that every basis for a Banach space is a
Schauder basis.

Here are some specific examples of bases for which we already have explicit
expressions for the coefficient functionals. In each of these cases we can see
directly that the coefficient functionals are continuous.

Example 4.9. (a) Let {en} be an orthonormal basis for a separable Hilbert
space H. The basis representation of x ∈ H is x =

∑ 〈x, en〉 en, so the coeffi-
cient functionals are an(x) = 〈x, en〉, which are continuous on H. Note that, in
the sense of the identification of H∗ with H given by the Riesz Representation
Theorem (Theorem 1.75), we have an = en ∈ H = H∗ for each n.

(b) Let {δn} be the sequence of standard basis vectors introduced in Ex-
amples 1.30 and 1.51. Then {δn} is a basis for ℓp for each 1 ≤ p < ∞,
called the standard basis for ℓp. The basis representation of x = (xn) ∈ ℓp

is x =
∑
xnδn, so the coefficient functionals are given by an(x) = xn. These

functionals are continuous on ℓp, so an ∈ (ℓp)∗. By Theorem 1.73, (ℓp)∗ is
identified with ℓp

′

in the sense that every continuous linear functional µ on ℓp

has the form µ(x) = 〈x, y〉 =
∑
xnyn for some unique y ∈ ℓp′ . For the func-

tional an we have an(x) = xn = 〈x, δn〉, so we usually identify an with δn and
write an = δn. Thus the sequence of coefficient functionals associated with
the basis {δn} is {δn}. In this example, we have the interesting fact that δn
belongs both to ℓp and (ℓp)∗ = ℓp

′

.
For p = ∞, the sequence {δn} is a basis for c0 (see Example 1.30), and

the sequence of coefficient functionals is again {δn}, which is contained in
c0

∗ = ℓ1. We call {δn} the standard basis for c0.

(c) By Exercise 4.9, if we set yn = (1, . . . , 1, 0, 0, . . . ) then {yn} is a
conditional basis for c0. The coefficient functionals are given by an(x) =
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xn − xn+1 = 〈x, δn〉 − 〈x, δn+1〉 for x = (xn) ∈ c0. Hence the coefficient
functionals are continuous. Further, in the sense of identification, we have
an = δn − δn+1 ∈ ℓ1 = c0

∗. ♦

Once we have shown that the coefficient functionals for a basis are necessar-
ily continuous, we will adopt the bilinear form notation discussed in Notation
1.72 and write 〈x, an〉 instead of an(x). However, before attempting to prove
the continuity of the coefficient functionals, we need to develop some basic
facts. The first thing to observe is that if {xn} is a basis and we fix m ∈ N,
then we have two ways to write xm:

xm =
∑

n

an(xm)xn and xm =
∑

n

δmn xn. (4.2)

Therefore, by uniqueness of the basis representation we must have an(xm) =
δmn for every m and n.

Definition 4.10 (Biorthogonal Systems). Given a Banach space X and
given sequences {xn} ⊆ X and {an} ⊆ X∗, we say that {an} is biorthogonal
to {xn} if 〈xm, an〉 = δmn for every m, n ∈ N. We call {an} a biorthogonal
system or a dual system to {xn}. ♦

We have not yet proved that {an} is contained in X∗, but we will do so
in Theorem 4.13. Once this is proved, we can use the terminology of Defini-
tion 4.10 and say that a basis {xn} and its sequence of coefficient functions
{an} are biorthogonal systems. We will study general biorthogonal systems in
more detail in Chapter 5.

The following partial sum operators will be of fundamental importance in
our analysis.

Definition 4.11 (Partial Sum Operators). Let {xn} be a basis for a Ba-
nach space X, with coefficient functionals {an}. The partial sum operators
or natural projections associated with {xn} are the mappings SN : X → X
defined by

SNx =

N∑

n=1

an(x)xn, x ∈ X. ♦

The partial sum operator SN is linear since the functionals an are linear.
We claim that

an is continuous for each n ⇐⇒ SN is continuous for each N.

Certainly if each an is continuous then each SN is continuous. To see the
converse implication, given N ≥ 2 write

aN (x)xN =

N∑

n=1

an(x)xn −
N−1∑

n=1

an(x)xn = SNx− SN−1x. (4.3)
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Therefore, if each SN is continuous, then each an is continuous as well. We
focus now on the partial sum operators.

Note that if {xn} is a basis, then

x =

∞∑

n=1

an(x)xn = lim
N→∞

SNx.

Since convergent sequences are bounded, we have supN ‖SNx‖ <∞ for each
x ∈ X. If only we knew that the SN were bounded, then we could apply
the Uniform Boundedness Principle to conclude that C = supN ‖SN‖ < ∞.
We will be able to do this eventually, and this number C will be called the
basis constant for {xn}, but for now we must be very careful not to implicitly
assume that either the coefficient functionals or the partial sum operators are
continuous.

The next theorem is the key tool in our analysis. It states that if {xn} is a
basis, then it is possible to endow the space Y of all sequences (cn) such that∑
cnxn converges with a norm so that it becomes a Banach space topologically

isomorphic to X. In general it is difficult or impossible to describe this space Y
explicitly, but the only fact we really need right now is that Y is isomorphic
to X. One situation where the space Y is easily characterized was discussed
in Chapter 1: If {xn} is an orthonormal basis for a Hilbert space H, then∑
cnxn converges if and only if (cn) ∈ ℓ2.
Recall that a topological isomorphism between normed spaces X and Y

is a linear bijection T : X → Y such that T and T−1 are both continuous
(Definition 2.28). By the Inverse Mapping Theorem, if T is a continuous linear
bijection of a Banach space X onto another Banach space Y, then T−1 is
automatically continuous and therefore T is a topological isomorphism.

Theorem 4.12. Let {xn} be a sequence in a Banach space X, and assume
that xn 6= 0 for every n. Let

Y =

{
(cn) :

∑
cnxn converges in X

}
,

and set

‖(cn)‖Y = sup
N

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.

Then the following statements hold.

(a) Y is a Banach space.

(b) If {xn} is a basis for X, then Y is topologically isomorphic to X via the
synthesis mapping T : (cn) 7→∑

cnxn.

Proof. (a) It is clear that Y is a vector space. If (cn) ∈ Y then
∑
cnxn =

limN→∞
∑N

n=1 cnxn converges. Since convergent sequences are bounded, we
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therefore have ‖(cn)‖Y <∞ for each (cn) ∈ Y. Thus ‖ · ‖Y is well defined. It
is easy to see that

‖(cn) + (dn)‖Y ≤ ‖(cn)‖Y + ‖(dn)‖Y and ‖t (cn)‖Y = |t| ‖(cn)‖Y ,

so ‖ · ‖Y is at least a seminorm on Y. Suppose that ‖(cn)‖Y = 0. Then∥∥∑N
n=1 cnxn

∥∥ = 0 for every N. In particular, ‖c1x1‖ = 0, so we must have

c1 = 0 since x1 6= 0. But then ‖c2x2‖ =
∥∥∑2

n=1 cnxn
∥∥ = 0, so c2 = 0, etc.

Hence ‖ · ‖Y is a norm on Y.
Now we must show that Y is complete with respect to this norm. Suppose

that AN =
(
cN (n)

)
n∈N

∈ Y and {AN}N∈N is a Cauchy sequence in Y. Then

for each fixed n ≥ 2 and M, N ∈ N,

|cM (n)− cN (n)| ‖xn‖

= ‖
(
cM (n)− cN (n)

)
xn‖

≤
∥∥∥∥
n∑

k=1

(
cM (k)− cN (k)

)
xk

∥∥∥∥ +

∥∥∥∥
n−1∑

k=1

(
cM (k)− cN (k)

)
xk

∥∥∥∥

≤ 2 ‖AM −AN‖Y .

Also, for n = 1 we have |cM (n) − cN (n)| ‖xn‖ ≤ ‖AM − AN‖Y . Since {AN}
is Cauchy and xn 6= 0, we conclude that

(
cN (n)

)
N∈N

is a Cauchy sequence

of scalars, and therefore must converge to some scalar c(n) as N → ∞. Our

goal is to show that AN → A =
(
c(n)

)
n∈N

in the norm of Y as N →∞.
Choose any ε > 0. Then since {AN} is Cauchy in Y, there exists an integer

N0 > 0 such that

∀M,N ≥ N0, ‖AM −AN‖Y = sup
L

∥∥∥∥
L∑

n=1

(
cM (n)− cN(n)

)
xn

∥∥∥∥ < ε.

Fix L > 0, and define

yM,N =

L∑

n=1

(
cM (n)− cN (n)

)
xn and yN =

L∑

n=1

(
c(n)− cN (n)

)
xn.

Note that ‖yM,N‖ < ε for each M, N ≥ N0. Also, keeping L fixed, we have

‖yM,N − yN‖ =

∥∥∥∥
L∑

n=1

(
c(n)− cM (n)

)
xn

∥∥∥∥

≤
L∑

n=1

|c(n)− cM (n)| ‖xn‖

→ 0 as M →∞.
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Thus yM,N → yN as M →∞. Consequently, for all N ≥ N0 we have

‖yN‖ = lim
M→∞

‖yM,N‖ ≤ ε.

Substituting the definition of yN and taking the supremum over L, we obtain

∀N ≥ N0, sup
L

∥∥∥∥
L∑

n=1

(
c(n)− cN (n)

)
xn

∥∥∥∥ ≤ ε. (4.4)

Now,
(
cN0

(n)
)
n∈N

∈ Y, so the series
∑

n cN0
(n)xn converges by definition

of Y. Hence, there is an M0 > 0 such that

∀N > M ≥M0,

∥∥∥∥
N∑

n=M+1

cN0
(n)xn

∥∥∥∥ < ε.

Therefore, if N > M ≥M0, N0 then

∥∥∥∥
N∑

n=M+1

c(n)xn

∥∥∥∥

=

∥∥∥∥
N∑

n=1

(
c(n)− cN0

(n)
)
xn −

M∑

n=1

(
c(n)− cN0

(n)
)
xn +

N∑

n=M+1

cN0
(n)xn

∥∥∥∥

≤
∥∥∥∥
N∑

n=1

(
c(n)− cN0

(n)
)
xn

∥∥∥∥ +

∥∥∥∥
M∑

n=1

(
c(n)− cN0

(n)
)
xn

∥∥∥∥

+

∥∥∥∥
N∑

n=M+1

cN0
(n)xn

∥∥∥∥

≤ ε + ε + ε = 3ε.

Therefore
∑
c(n)xn converges in X, so A = (c(n)) ∈ Y. Finally, by equation

(4.4), we have that AN → A in the norm of Y, so Y is complete.

(b) Now we assume that {xn} is a basis for X. Then T (cn) =
∑
cnxn

maps Y intoX by definition of Y. Further, T is clearly linear, and it is bijective
because {xn} is a basis. If (cn) ∈ Y, then

‖T (cn)‖ =

∥∥∥∥
∞∑

n=1

cnxn

∥∥∥∥ = lim
N→∞

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ ≤ sup
N

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ = ‖(cn)‖Y ,

so T is bounded. The Inverse Mapping Theorem therefore implies that T is a
topological isomorphism of Y onto X. ⊓⊔
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As a consequence, we obtain our goal that the partial sum operators are
continuous, which also implies that the coefficient functionals are continuous.
This fact is really a corollary of Theorem 4.12, but since it is so important we
will designate it a theorem.

Theorem 4.13. Let {xn} be a basis for a Banach space X, with coefficient
functionals {an}. Let Y be as in Theorem 4.12, so T (cn) =

∑
cnxn is a

topological isomorphism of Y onto X. Then the following statements hold.

(a) The partial sum operators SN are bounded, and ‖SN‖ ≤ ‖T−1‖ for each
N ∈ N.

(b) C = supN ‖SN‖ <∞.
(c) |||x||| = supN ‖SNx‖ forms a norm on X that is equivalent to the initial

norm ‖ · ‖, and we have ‖ · ‖ ≤ ||| · ||| ≤ C ‖ · ‖.
(d) The coefficient functionals an are continuous linear functionals on X that

satisfy
1 ≤ ‖an‖ ‖xn‖ ≤ 2C, n ∈ N.

(e) {xn} is a Schauder basis for X, and {an} is the unique sequence in X∗

that is biorthogonal to {xn}.

Proof. (a) Fix any x ∈ X. Then we have by definition that x =
∑
an(x)xn.

The scalars an(x) are unique, so T−1 is given by T−1x =
(
an(x)

)
. Hence

sup
N
‖SNx‖ = sup

N

∥∥∥∥
N∑

n=1

an(x)xn

∥∥∥∥

=
∥∥(an(x)

)∥∥
Y

= ‖T−1x‖Y ≤ ‖T−1‖ ‖x‖.

Therefore SN is bounded, and its operator norm satisfies ‖SN‖ ≤ ‖T−1‖.
(b) From part (a), we have C = supN ‖SN‖ ≤ ‖T−1‖ <∞.
(c) It is easy to see that ||| · ||| has at least the properties of a seminorm.

Given x ∈ X we have

|||x||| = sup
N
‖SNx‖ ≤ sup

N
‖SN‖ ‖x‖ = C ‖x‖.

Also, since SNx→ x in the norm of X,

‖x‖ = lim
N→∞

‖SNx‖ ≤ sup
N
‖SNx‖ = |||x|||.

It follows from these two estimates that ||| · ||| is a norm, and that it is equivalent
to ‖ · ‖.

(d) As in equation (4.3), we have for n ≥ 2 that an(x)xn = Snx− Sn−1x.
Hence
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|an(x)| ‖xn‖ = ‖an(x)xn‖ ≤ ‖Snx‖ + ‖Sn−1x‖ ≤ 2C ‖x‖.

Since each xn is nonzero, we conclude that ‖an‖ ≤ 2C/‖xn‖ < ∞. Since
a1(x)x1 = S1x, the same estimate is also valid for n = 1. Consequently, each
an is bounded and ‖an‖ ‖xn‖ ≤ 2C for each n. As in the discussion following
equation (4.2), by uniqueness we must have am(xn) = δmn, so {xn} and {an}
are biorthogonal, and therefore 1 = an(xn) ≤ ‖an‖ ‖xn‖.

(e) Since the coefficient functionals are continuous, {xn} is a Schauder
basis, and we have observed that {an} is a biorthogonal sequence in X∗. This
biorthogonal system is unique because of the fact that {xn} is complete (for
explicit proof, see Lemma 5.4). ⊓⊔

Because of Theorem 4.13, the words “basis” and “Schauder basis” are often
used interchangeably. Further, the associated sequence of coefficient function-
als {an} ⊆ X∗ is synonymously referred to as the biorthogonal system or the
dual system to {xn}.

The number C appearing in Theorem 4.13 is important enough to be dig-
nified with a name of its own.

Definition 4.14 (Basis Constant). If {xn} is a basis for a Banach space
X, then its basis constant is the finite number C = supN ‖SN‖. The basis
constant always lies in the range 1 ≤ C < ∞. If the basis constant is C = 1,
then the basis is said to be monotone. ♦

The basis constant does depend on the choice of norm. Unless otherwise
specified, the basis constant is always taken with respect to the original norm
on X. Changing to an equivalent norm for X will not change the fact that
{xn} is a basis, but it can change the basis constant for {xn}. In particular,
we show next that the basis constant with respect to the equivalent norm ||| · |||
is always 1.

Theorem 4.15. Every basis {xn} is monotone with respect to the equivalent
norm |||x||| = supN ‖SNx‖.

Proof. Note that the composition of the partial sum operators SM and SN
satisfies the rule

SM SN = Smin{M,N}.

Therefore,

|||SNx||| = sup
M
‖SMSNx‖ = sup

{
‖S1x‖, . . . , ‖SNx‖

}

and
sup
N
|||SNx||| = sup

N
‖SNx‖ = |||x|||.

It follows from this that supN |||SN ||| = 1. ⊓⊔
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Remark 4.16. Instead of changing the norm on X, suppose that we consider
all possible bases for X with respect to a fixed norm ‖ · ‖. Must it be the case
that at least one of these bases is monotone? This was shown by Gurarĭı to
be false [Gur65]. Further, it was shown by Enflo [Enf73b] that there exists a
Banach space (X, ‖ · ‖) such that inf

{
CB : all bases B for X

}
> 1, where CB

denotes the basis constant of a basis B for X with respect to the fixed norm
‖ · ‖ for X. ♦

Since we now know that the coefficient functionals an for a basis are ele-
ments of X∗, we will follow Notation 1.72 and use the notation an(x) = 〈x, an〉
interchangeably. In fact, from this point onward our preferred notation will
be 〈x, an〉, although on occasion it is more convenient to write an(x).

Remark 4.17. Some particular special cases deserve mention.

(a) If {xn} is a basis for a Hilbert space H, then the associated coefficient
functionals belong to H∗, which is isometrically isomorphic to H by the Riesz
Representation Theorem. As usual, we therefore identify the coefficient func-
tional an with the element of H that determines this functional. Thus the
dual system {an} is the sequence of vectors in H such that every x ∈ H can
be written uniquely as x =

∑ 〈x, an〉xn.
(b) Similarly, in other cases where we have an explicit identification of the

dual space X∗, we follow the usual notational conventions. For example, if
{xn} is a basis for ℓp with 1 ≤ p < ∞, then each coefficient functional an is

determined by an element of ℓp
′

, and we identify the functional an with this
vector in ℓp

′

. ♦

As we have seen, the sequence of coefficient functionals {an} is contained
in the dual space X∗, which is itself a Banach space. It is therefore natural
to ask what kind of properties this sequence has, especially whether it is a
basis for X∗. In general, the answer to this is no. For example, the standard
basis {δn} is a basis for X = ℓ1, and its sequence of coefficient functionals is
again {δn}, which is contained in X∗ = ℓ∞ but is not a basis for ℓ∞. Instead,
with respect to the ℓ∞-norm, {δn} is a basis for the space c0. We will prove in
Section 5.6 that this example is typical: If {xn} is a basis for a Banach spaceX
then its sequence of coefficient functionals {an} is a basis for span{an}, which
in general may be a proper subspace of X∗. However, we will also see that if
X is reflexive then {an} is complete in X∗ and hence {an} is a basis for X∗

(see Corollary 5.22).

Exercises

4.11. Show that the standard basis {δn}n∈N is a monotone basis for ℓp for
each index 1 ≤ p < ∞, and is also a monotone basis for c0. Is the basis
{δn}n≥0 for c given in Exercise 4.8 monotone?
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4.12. Show that any subsequence of a basis is a basic sequence.

4.13. Suppose that {xn} is a Schauder basis for a Hilbert space H, and its
biorthogonal system is {yn}. Show that if ‖xn‖ = ‖yn‖ = 1 for every n, then
{xn} is an orthonormal basis for H.

4.14. Show that if {xn} is an absolutely convergent basis for a Banach
space X, then

Ty =

∞∑

n=1

yn
‖xn‖

xn, y = (yn) ∈ ℓ1,

is a topological isomorphism of ℓ1 ontoX. Conversely, show that every Banach
space topologically isomorphic to ℓ1 has an absolutely convergent basis.

4.15. This exercise will give an alternative approach to proving Theorem 4.13.
Let {xn} be a basis for a Banach spaceX, and set |||x||| = supN ‖SNx‖, where
the SN are the partial sum operators.

(a) Show that ||| · ||| is a norm on X, and ‖x‖ ≤ |||x||| for all x ∈ X.
(b) Suppose that {yn} is a Cauchy sequence in X with respect to ||| · |||.

With N fixed, show that {SNyn}n∈N is Cauchy with respect to ‖ · ‖. Let
zN be such that ‖zN − SNyn‖ → 0 as n → ∞, and observe that zN ∈
span{x1, . . . , xN}.

(c) Show that for each N ∈ N we have limn→∞
(
supN ‖zN −SNyn‖

)
= 0,

and use this to show that {zN}N∈N is Cauchy with respect to ‖ · ‖. Let y ∈ X
be the element such that ‖y − zN‖ → 0.

(d) Show that SN(zN+1) = zN , and use this to show that zN =
∑N
n=1 cnxn

where cn is independent of N.

(e) Show that y =
∑∞

n=1 cnxn, and hence zN = SNy. Use this to show
that |||y − yn||| → 0, and conclude that X is complete with respect to ||| · |||.

(f) Show that ‖ · ‖ and ||| · ||| are equivalent norms on X, and use this to
show that C = supN ‖SN‖ < ∞. Conclude that {xn} is a Schauder basis
for X.

4.16. We say that a Banach space X has the approximation property if the
identity operator on X can be uniformly approximated on every compact
subset ofX by operators with finite rank. That is, given a compact setK ⊆ X,
there must exist continuous finite rank operators TN such that

lim
N→∞

(
sup
x∈K

‖x− TNx‖
)

= 0.

(a) Show that if X has a basis, then X has the approximation property.

(b) Suppose that Y is a Banach space that has the approximation property
and X is an arbitrary Banach space. Show that if T : X → Y is a compact
operator, then there exist continuous finite-rank operators TN : X → Y such
that ‖T − TN‖ → 0 as N →∞.

Remark: Compact sets and compact operators are reviewed in Appendix B.
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4.17. Let X be a Banach space.

(a) Show that if {xn} is a basis for X, then the only possible vector y ∈ X
such that xn

w→ y is y = 0 (weak convergence is defined in Section 2.10).

(b) Use Theorem 2.39 to show that part (a) remains valid if we only assume
that {xn} is a basic sequence in X.

(c) Give an example of a basis {xn} for a Banach spaceX such that xn
w→ 0.

(d) Give an example of a basis {xn} for a Banach space X such that {xn}
does not converge weakly to any vector in X.

4.4 Equivalent Bases

In this section we prove several results related to the invariance of bases under
topological isomorphisms. We begin with the easy fact that bases are preserved
by topological isomorphisms.

Lemma 4.18. Let X, Y be Banach spaces. If {xn} is a basis for X and
T : X → Y is a topological isomorphism, then {Txn} is a basis for Y.

Proof. If y is any element of Y then T−1y ∈ X, so there are unique scalars
(cn) such that T−1y =

∑
cnxn. Since T is continuous, this implies that y =

T (T−1y) =
∑
cnTxn. Suppose y =

∑
bnTxn is another representation of y.

Then since T−1 is continuous, we have T−1y =
∑
bnxn, and hence bn = cn

for each n since {xn} is a basis for X. Thus {Txn} is a basis for Y. ⊓⊔

This motivates the following definition.

Definition 4.19. Let X and Y be Banach spaces. A basis {xn} for X is
equivalent to a basis {yn} for Y if there exists a topological isomorphism
T : X → Y such that Txn = yn for all n. If X = Y then we write {xn} ∼ {yn}
to mean that {xn} and {yn} are equivalent bases for X. ♦

Note that ∼ is an equivalence relation on the set of all bases for a Banach
space X.

We can characterize equivalent bases in terms of convergence of series.

Theorem 4.20. Let X and Y be Banach spaces. If {xn} is a basis for X and
{yn} is a basis for Y, then the following two statements are equivalent.

(a) {xn} is equivalent to {yn}.
(b)

∑
cnxn converges in X if and only if

∑
cnyn converges in Y.

Proof. (a) ⇒ (b). This is Exercise 4.18.

(b)⇒ (a). Suppose that statement (b) holds. Let {an} ⊆ X∗ be the coeffi-
cient functionals for the basis {xn}, and let {bn} ⊆ Y ∗ be the coefficient func-
tionals for the basis {yn}. Suppose that x ∈ X is given. Then x =

∑ 〈x, an〉xn



4.4 Equivalent Bases 141

converges in X, so Tx =
∑ 〈x, an〉 yn converges in Y. The fact that the ex-

pansion x =
∑ 〈x, an〉xn is unique ensures that T is well defined, and it is

clear that T is linear.
If Tx = 0 then

∑
0yn = 0 = Tx =

∑
〈x, an〉 yn,

and therefore 〈x, an〉 = 0 for every n since {yn} is a basis. Hence x =∑ 〈x, an〉xn = 0, so T is injective.
Next, choose any element y ∈ Y. Then the series y =

∑ 〈y, bn〉 yn converges

in Y, so x =
∑ 〈y, bn〉xn converges in X. Since x =

∑ 〈x, an〉xn and {xn}
is a basis, this forces 〈y, bn〉 = 〈x, an〉 for every n. Hence Tx = y, so T is
surjective.

It remains to show that T is continuous. For eachN, define TN : X → Y by
TNx =

∑N
n=1 〈x, an〉 yn. Since each functional an is continuous, each operator

TN is continuous. Since TNx → Tx, it follows from the Banach–Steinhaus
Theorem (Theorem 2.23) that T is bounded. ⊓⊔

Example 4.21. If {en} and {fn} are two orthonormal bases for a Hilbert space
H, then we know from Theorem 1.49 that

∑

n

cnen converges ⇐⇒
∑

n

|cn|2 <∞ ⇐⇒
∑

n

cnfn converges.

Hence {en} ∼ {fn} by Theorem 4.20. Thus, all orthonormal bases for H are
equivalent. ♦

More generally, we will see in Section 7.2 that all bounded unconditional
bases in a Hilbert space are equivalent. In particular, since every orthonormal
basis is a bounded unconditional basis, every bounded unconditional basis in
a Hilbert space is equivalent to an orthonormal basis.

The situation for general bases is much more complicated, even for Hilbert
spaces. In particular, it is known that if X is an infinite-dimensional Banach
space that has a basis, then there exist uncountably many nonequivalent nor-
malized conditional bases for X [Sin70, Thm. 23.3].

Exercises

4.18. Prove the implication (a) ⇒ (b) in Theorem 4.20.

4.19. Suppose that {xn} is a basis for a Banach space X, {yn} is a sequence
in a normed space Y, and there exists a topological isomorphism T : X → Y
such that Txn = yn for every n. Show that Y is a Banach space, {yn} is a
basis for Y, and {xn} is equivalent to {yn}.
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4.20. Suppose {xn} is a basis for a Banach space X that is equivalent to a
basis {yn} for a Banach space Y. Show that {xn} is a bounded basis, uncon-
ditional basis, or absolutely convergent basis for X if and only if the same is
true of the basis {yn} for Y.

4.21. Let {xn} be a basis for a Banach space X and {yn} a basis for a Ba-
nach space Y. Show that {xn} is equivalent to {yn} if and only if there exist
constants C1, C2 > 0 such that for all N ∈ N and c1, . . . , cN ∈ F we have

C1

∥∥∥∥
N∑

n=1

cnyn

∥∥∥∥ ≤
∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ ≤ C2

∥∥∥∥
N∑

n=1

cnyn

∥∥∥∥.

4.22. (a) Let {δn} be the standard basis for c0. By Exercise 4.8, if we set δ0 =
(1, 1, . . . ), then {δn}n≥0 is a basis for c. Show that c and c0 are topologically
isomorphic, and these two bases are equivalent.

(b) Show that if x ∈ c0 and ‖x‖∞ = 1, then there exist y 6= z ∈ c0 with
‖y‖∞ = ‖z‖∞ = 1 such that x = (y+z)/2. Show that the analogous statement
for c can fail.

(c) Show that c is not isometrically isomorphic to c0 (even so, note that
their dual spaces c∗ and c0

∗ are each isometrically isomorphic to ℓ1 by Exer-
cises 1.75 and 4.8).

4.5 Schauder’s Basis for C[0, 1]

In this section we will give Schauder’s original construction from [Sch27] of
a basis for the space C[0, 1] of continuous functions on [0, 1]. That paper
introduced the notion of what we now call Schauder bases.

Definition 4.22 (The Schauder System). The Schauder system in C[0, 1]
is {

χ, ℓ
}
∪
{
sn,k

}
n≥0, k=0,...,2n−1

,

where χ = χ[0,1], ℓ(t) = t, and sn,k is the continuous function given by

sn,k(t) =





1, t = k+1/2
2n ,

linear, on
[
k
2n ,

k+1/2
2n

]
and on

[
k+1/2

2n , k+1
2n

]
,

0, otherwise;

see the illustration in Figure 4.1. ♦

Equivalently, if we let

W (t) = s0,0(t) = max{1− |2t− 1|, 0}
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Fig. 4.1. Some elements of the Schauder system: ℓ, s0,0 (top), and s1,0, s1,1 (bot-
tom).

be the “hat function” or “tent function” supported on [0, 1], then sn,k is the
dilated and translated hat function

sn,k(t) = W (2nt− k),

which is supported on the interval
[
k
2n ,

k+1
2n

]
. Although we will not need this

fact, if we recall the Haar system defined in Example 1.54, it is interesting to
observe that, except for a scaling factor, sn,k is an antiderivative of the Haar
function hn,k.

Fix any f ∈ C[0, 1]. Then we can choose scalars a, b such that the function
g = f − aχ− bℓ satisfies g(0) = g(1) = 0. Our first goal is to show that there
exist scalars cn,k such that

g =

∞∑

n=0

2n−1∑

k=0

cn,ksn,k,

with uniform convergence of the series.
Set

h0 = g(1
2 ) s0,0.

Then h0 is a continuous function with a piecewise linear graph that agrees
with g at the points 0, 1

2 , 1. Let g0 = g− h0, and note that g0 vanishes at the
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points 0, 1
2 , 1. Now define

h1 = g0(
1
4 ) s1,0 + g0(

3
4 ) s1,1.

Then h1 is a continuous function with a piecewise linear graph that agrees
with g0 at the points 0, 1

4 ,
1
2 ,

3
4 , 1. Consequently, h0 + h1 is continuous with

a piecewise linear graph and agrees with g at 0, 1
4 ,

1
2 ,

3
4 , 1. Continuing in this

way we inductively construct functions

hn =
2n−1∑

k=0

cn,k sn,k

such that kn = h0 + · · ·+hn is a linear approximation to g on dyadic subinter-

vals of the form
[

j
2n+1 ,

j+1
2n+1

]
. Since g is uniformly continuous, it follows that

kn converges uniformly to g. Hence g = limn→∞ kn =
∑∞
n=1 hn, so

f = aχ+ bℓ+ g = aχ+ bℓ+
∞∑

n=0

2n−1∑

k=0

cn,ksn,k, (4.5)

where the series converges in the uniform norm. Further, this representation
is unique (Exercise 4.23), so it follows that the Schauder system is a basis for
C[0, 1].

We will show in Section 6.3 that the Schauder system is a conditional
basis for C[0, 1]. In fact, it can be shown that C[0, 1] does not contain any
unconditional bases. Another space that contains no unconditional bases is
L1[0, 1], cf. [LT77], [Sin70].

The Franklin system [Fra28] is the orthonormal basis for L2[0, 1] obtained
by applying the Gram–Schmidt orthogonalization procedure to the Schauder
system. The Franklin system is an unconditional basis for Lp[0, 1] for each
1 < p <∞.

Exercises

4.23. Prove that the representation of functions f ∈ C[0, 1] given in equation
(4.5) is unique.

4.6 The Trigonometric System

In this section we briefly discuss the basis that is—at least from the view-
point of a harmonic analyst—perhaps the most important of all. This is the
trigonometric system {e2πint}n∈Z. Unfortunately, we cannot prove the basis
properties of this system using the tools that we have developed so far. There-
fore, we summarize some facts about the trigonometric system in this section,
and return to a more detailed study in Chapters 13 and 14.

First, we note a technical detail.
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Notation 4.23. Because the functions e2πint are 1-periodic on R, we often
restrict their domain to [0, 1] or another interval of length 1, and regard them
as being elements of Lp[0, 1]. However, in some circumstances, especially when
dealing with continuity, it is more convenient to deal with spaces of 1-periodic
functions on R instead of functions on [0, 1]. For example, taking p = ∞,
uniform limits of 1-periodic functions are 1-periodic, so span{e2πint}n∈Z is
contained in

C(T) =
{
f ∈ C(R) : f is 1-periodic

}
.

Restricting functions to the domain [0, 1], we can identify C(T) with

Cper[0, 1] =
{
f ∈ C[0, 1] : f(0) = f(1)

}
.

Since Cper[0, 1] is a proper, closed subspace of C[0, 1], the trigonometric system
cannot be complete in C[0, 1]. Instead, we will see that the trigonometric
system is complete in C(T) and in Cper[0, 1], so these are the appropriate
spaces of continuous functions to consider when dealing with {e2πint}n∈Z.
For p finite we define

Lp(T) =
{
f : R→ C : f is 1-periodic and

∫ 1

0

|f(t)|p dt <∞
}
,

but because functions in Lp are only defined almost everywhere, the distinc-
tion between Lp(T) and Lp[0, 1] is usually irrelevant. Hence we often use the
symbols Lp(T) and Lp[0, 1] interchangeably, although technically they are
only equivalent in the sense of identification. For p = ∞, the space L∞(T)
consists of the 1-periodic essentially bounded functions, which we identify
with L∞[0, 1].

Another equivalent formulation of Lp(T) is to let T be the interval [0, 1),
and endow this set with an additive operation under which it is a group. The
appropriate operation is addition modulo 1, which is defined by (x+y) mod 1

= frac(x + y), the fractional part of x + y. For example, (1
2 + 3

4 ) mod 1 = 1
4 .

In this formulation we really are identifying T with the quotient group R/Z.
However we think of T, in both the group and the topological sense it is
isomorphic to the circle group {eiθ : θ ∈ R} under multiplication of com-
plex scalars, eiθeiη = ei(θ+η). The circle is the 1-dimensional torus, hence the
letter T for this group. ♦

In summary, when dealing with the trigonometric system, or in other sit-
uations where we implicitly regard functions on [0, 1) as being extended 1-
periodically to the real line, we use the function spaces Lp(T) and C(T),
while in other situations we consider Lp[0, 1] and C[0, 1]. For example, C[0, 1]
is the appropriate setting for the Schauder system (Section 4.3), and Lp[0, 1]
is the appropriate setting for the Haar system (Section 5.5).

Now that we have defined the appropriate function spaces, we consider
the properties of the trigonometric system in these spaces. The easiest fact
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to observe is that the trigonometric system is an orthonormal sequence in
L2(T). We proved this in Example 1.52, and stated there that it is also true
that {e2πint}n∈Z is complete in L2(T) and hence is an orthonormal basis
for that space. We will prove the completeness and basis properties of the
trigonometric system in Chapters 13 and 14. For convenience, we summarize
them in the following definition and theorem.

Definition 4.24 (Fourier Coefficients). Given f ∈ L1(T), we define its
Fourier coefficients to be

f̂(n) =
〈
f, e2πint

〉
=

∫ 1

0

f(t) e−2πint dt, n ∈ Z,

and we set
f̂ =

(
f̂(n)

)
n∈Z

.

We often refer to the sequence f̂ as the Fourier transform of f. ♦

Theorem 4.25 (The Trigonometric System in Lp(T) and C(T)).

(a) {e2πint}n∈Z is an orthonormal basis for L2(T). Hence each f ∈ L2(T)
can be written uniquely as

f(t) =
∑

n∈Z

f̂(n) e2πint,

where the series converges unconditionally in L2-norm, and we have

‖f‖2L2 =
∑

n∈Z

|f̂(n)|2.

(b) {e2πint}n∈Z is a conditional basis for Lp(T) for each 1 < p < 2 and
2 < p <∞ with respect to the ordering

Z = {0,−1, 1,−2, 2, . . .} = {k1, k2, . . . }.

In particular, for these p each f ∈ Lp(T) can be written uniquely as

f(t) =

∞∑

n=1

f̂(kn) e2πiknt,

where the series converges in Lp-norm, but the series is conditionally con-
vergent for some f ∈ Lp(T).

(c) {e2πint}n∈Z is complete but not a basis for L1(T) or C(T). Even so, each

function f ∈ L1(T) is uniquely determined by its Fourier transform f̂ ,
i.e., if f ∈ L1(T) then

f̂(n) = 0 for all n ∈ Z ⇐⇒ f = 0. ♦
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Exercises

4.24. (a) Prove that C(T) is a Banach space with respect to the uniform
norm.

(b) Show that Cper[0, 1] is a proper closed subspace of C[0, 1], and that
Cper[0, 1] is isometrically isomorphic to C(T).

(c) Show that Lp(T) is isometrically isomorphic to Lp[0, 1] for each 1 ≤
p ≤ ∞.

(d) Show that if 1 ≤ p < q ≤ ∞, then Lq(T) ( Lp(T).

4.7 Weak and Weak* Bases in Banach Spaces

To this point we have considered sequences that are bases with respect to the
norm topology on a Banach space X. In this section we will briefly survey
the natural generalization of bases to the weak or weak* topologies. We will
content ourselves with these topologies only, although it is certainly possible
to generalize the notion of basis further to the setting of abstract topological
vector spaces. We refer to [Mar69] and related sources for such generalizations.

The weak and weak* topologies are reviewed in Section 2.10. As discussed
there, the norm topology on a Banach space is often referred to as the strong
topology, and convergence in norm is often called strong convergence.

Definition 4.26. Let X be a Banach space, and let {xn} be a sequence in X.

(a) We recall the definition of a basis from Definition 4.3: {xn} is a basis
for X if for each x ∈ X there exist unique scalars an(x) such that x =∑
an(x)xn, with convergence of this series in the strong topology, i.e.,

lim
N→∞

∥∥∥∥x−
N∑

n=1

an(x)xn

∥∥∥∥ = 0.

In this section, in order to emphasize the type of convergence required,
we will usually refer to a basis as a strong basis or a norm basis. By
Theorem 4.13, each coefficient functional am associated with a strong basis
is strongly continuous, i.e., ‖y−yn‖ → 0 implies limn→∞ am(yn) = am(y)
for each m ∈ N. Hence every strong basis is a strong Schauder basis, and
therefore we usually write 〈x, an〉 instead of an(x).

(b) {xn} is a weak basis for X if for each x ∈ X there exist unique scalars
an(x) such that x =

∑
an(x)xn, with convergence of this series in the

weak topology, i.e.,

∀x∗ ∈ X∗, lim
N→∞

〈 N∑

n=1

an(x)xn, x
∗
〉

= 〈x, x∗〉. (4.6)
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A weak basis is a weak Schauder basis if each coefficient functional am
is weakly continuous on X, i.e., if yn

w→ y in X implies limn→∞ am(yn) =
am(y) for each m ∈ N. We refer to {an} as the sequence of coefficient
functionals associated to {xn}.

(c) A sequence {x∗n} of functionals in X∗ is a weak* basis for X∗ if for each
x∗ ∈ X∗ there exist unique scalars a∗n(x

∗) such that x∗ =
∑
a∗n(x∗)x∗n,

with convergence of this series in the weak* topology, i.e.,

∀x ∈ X, lim
N→∞

〈
x,

N∑

n=1

a∗n(x
∗)x∗n

〉
= 〈x, x∗〉.

A weak* basis is a weak* Schauder basis if each coefficient functional a∗m is

weak* continuous on X∗, i.e., if y∗n
w*−→ y∗ in X∗ implies limn→∞ a∗m(y∗n) =

a∗m(y∗) for each m ∈ N. We refer to {a∗n} as the sequence of coefficient
functionals associated to {x∗n}. ♦

All strong bases are weak bases (see Exercise 4.25).

Theorem 4.27. Let X be a Banach space. If {xn} is a strong basis for X,
then {xn} is a weak basis for X. Further, in this case {xn} is a weak Schauder
basis for X with coefficient functionals that are strongly continuous on X. ♦

Surprisingly, the converse is also true: Every weak basis for a Banach
spaceX is a strong basis. We will prove this in Theorem 4.30, after establishing
some properties of weak bases.

We let the partial sum operators for a weak basis {xn} be defined in

the usual way, i.e., SNx =
∑N
n=1 an(x)xn (compare Definition 4.11). The

following result, whose proof we assign as Exercise 4.26, is the analogue for
weak bases of Theorem 4.12.

Theorem 4.28. Let {xn} be a sequence in a Banach space X, and assume
that xn 6= 0 for every n. Define Y =

{
(cn) :

∑
cnxn converges weakly in X

}
,

and set

‖(cn)‖Y = sup
N

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.

Then the following statements hold.

(a) Y is a Banach space.

(b) If {xn} is a weak basis for X, then Y is topologically isomorphic to X via
the mapping (cn) 7→

∑
cnxn. ♦

An immediate consequence is that the partial sum operators for a weak
basis are strongly continuous.

Corollary 4.29. Let {xn} be a weak basis for a Banach space X, with asso-
ciated coefficient functionals {an}. Then the following statements hold.
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(a) supN ‖SNx‖ <∞ for each x ∈ X.
(b) Each SN is strongly continuous, and C = supN ‖SN‖ <∞.
(c) |||x||| = supN ‖SNx‖ forms a norm on X that is equivalent to the initial

norm ‖ · ‖, and we have ‖ · ‖ ≤ ||| · ||| ≤ C ‖ · ‖.
(d) Each coefficient functional an is strongly continuous, and

1 ≤ ‖an‖ ‖xn‖ ≤ 2C, n ∈ N. (4.7)

(e) {xn} is a weak Schauder basis for X.

Proof. (a), (b). Let Y be as in Theorem 4.28. Then T : X → Y defined by
T (cn) =

∑
cnxn (converging weakly) is a topological isomorphism of X

onto Y. Suppose that x ∈ X. Then we have by definition that the se-
ries x =

∑
an(x)xn converges weakly and the scalars an(x) are unique, so

T−1x = (an(x)). Hence

sup
N
‖SNx‖ = sup

N

∥∥∥∥
N∑

n=1

an(x)xn

∥∥∥∥

=
∥∥(an(x))

∥∥
Y

= ‖T−1x‖Y ≤ ‖T−1‖ ‖x‖ < ∞.

(c) It is easy to see that ||| · ||| has the properties of at least a seminorm.
Given x ∈ X we have

|||x||| = sup
N
‖SNx‖ ≤ sup

N
‖SN‖ ‖x‖ = C ‖x‖

and
‖x‖ = lim

N→∞
‖SNx‖ ≤ sup

N
‖SNx‖ = |||x|||.

It follows that ||| · ||| is a norm that is equivalent to the initial norm ‖ · ‖.
(d) Since each SN is continuous and aN(x)xN = SNx−SN−1x for N ≥ 2,

each aN is continuous. The proof of equation (4.7) then follows just as it does
in the proof of Theorem 4.13.

(e) This now follows from the definition of weak Schauder basis. ⊓⊔

Theorem 4.30 (Weak Basis Theorem). Every weak basis for a Banach
space X is a strong basis for X, and conversely.

Proof. By Theorem 4.27, all strong bases are weak bases.
For the converse, assume that {xn} is a weak basis for X, and let {an} be

the associated sequence of coefficient functionals. By Corollary 4.29, an ∈ X∗

for each n. Moreover, by the uniqueness of the representations in equation
(4.6), we must have 〈xm, an〉 = δmn, so {an} is biorthogonal to {xn}. Further,
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supN ‖SN‖ <∞ by Corollary 4.29. Therefore, by Theorem 5.12, it suffices to
show that {xn} is complete.

Assume that x∗ ∈ X∗ satisfies 〈xn, x∗〉 = 0 for every n. Then for each
x ∈ X, we have by equation (4.6) that

〈x, x∗〉 = lim
N→∞

〈 N∑

n=1

〈x, an〉xn, x∗
〉

= lim
N→∞

N∑

n=1

〈x, an〉 〈xn, x∗〉 = 0.

Hence x∗ = 0, so {xn} is complete. ⊓⊔

Now we turn our attention to weak* bases. Although a nonseparable space
cannot possess any strong bases (and therefore by Theorem 4.30 cannot pos-
sess any weak bases either), our first example shows that a nonseparable
Banach space can possess a weak* basis.

Example 4.31. Let X = ℓ1, and note that X∗ = ℓ∞ is not separable. The
sequence of standard basis vectors {δn} is contained in ℓ∞, although it does
not form a strong basis for this space. We will show that {δn} is a weak* basis
for ℓ∞. Choose any y = (yn) ∈ ℓ∞. Then for any x = (xn) ∈ ℓ1, we have

lim
N→∞

〈
x,

N∑

n=1

ynδn

〉
= lim

N→∞

N∑

n=1

〈x, δn〉 yn = lim
N→∞

N∑

n=1

xnyn = 〈x, y〉.

Hence y =
∑
ynδn in the weak* topology (even though this series need not

converge strongly), and by Exercise 4.27 this representation is unique. There-
fore {δn} is a weak* basis for ℓ∞. ♦

Although every strong or weak basis is a strong Schauder basis, the follow-
ing example shows that a weak* basis need not be a weak* Schauder basis.
We assign the proof of the statements made in this example as Exercise 4.28.

Example 4.32. Let X = c0, so X
∗ = ℓ1. Let {δn} be the standard basis for ℓ1,

and define

x1 = δ1,

xn = (−1)nδ1 + δn = ((−1)n, 0, . . . , 0, 1, 0, . . . ) for n > 1,

y1 = (1,−1, 1,−1, 1,−1, . . .),

yn = δn for n > 1.

Then {xn} ⊆ ℓ1 and {yn} ⊆ ℓ∞, and {xn} is a strong Schauder basis for ℓ1

whose biorthogonal system is {yn} (Exercise 4.28).
Since strong convergence inX∗ implies weak and weak* convergence inX∗,

it follows that every x ∈ ℓ1 can be written x =
∑ 〈x, yn〉xn with strong, weak,

and weak* convergence of this series. Since {xn} is a strong and hence weak
basis, this is the unique way to represent x as x =

∑
cnxn with strong or weak
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convergence of the series. A separate calculation is required to determine if
this is the unique representation of x with respect to weak* convergence of
the series, and indeed this is the case. Hence {xn} is also a weak* basis for ℓ1.

However, the sequence y1 does not belong to c0, and the functional de-
termined by y1 is not weak* continuous on ℓ1. Hence {xn} is not a Schauder
weak* basis for ℓ1. ♦

Our final example shows that a strong basis for X∗ need not be a weak*
basis for X∗ (see Exercise 4.29).

Example 4.33. Let X = c0, so that X∗ = ℓ1. Let {δn} be the standard basis
for ℓ1, and define

x1 = δ1,

xn = δn − δn−1 = (0, . . . , 0,−1, 1, 0, . . . ) for n > 1,

yn = (0, . . . , 0, 0, 1, 1, 1, . . . ) for n ∈ N.

Then {xn} is a strong Schauder basis for ℓ1 whose biorthogonal system is
{yn} (Exercise 4.29). As observed in Example 4.32, this implies that x ∈ ℓ1
can be written x =

∑ 〈x, yn〉xn with strong, weak, and weak* convergence of
this series. However, with respect to weak* convergence of the series we have∑
xn = 0 so {xn} is not “weak* ω-independent.” Therefore, x =

∑ 〈x, yn〉xn
is not a unique representation of x in the form x =

∑
cnxn with respect to

weak* convergence. Hence {xn} is not a weak* basis for ℓ1, even though it is
a strong and weak Schauder basis for ℓ1. ♦

Exercises

4.25. Prove Theorem 4.27.

4.26. Prove Theorem 4.28.

4.27. Finish the details of Example 4.31.

4.28. Prove the statements made in Example 4.32

4.29. Prove the statements made in Example 4.33.
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Biorthogonality, Minimality, and More About
Bases

In this chapter we explore some of the many “shades of grey” in the mean-
ing of independence in infinite-dimensional Banach spaces, and we apply this
knowledge to derive additional results about Schauder bases.

5.1 The Connection between Minimality and
Biorthogonality

If {xn} is a Schauder basis with associated coefficient functionals {an}, then
we have the biorthogonality condition 〈xm, an〉 = δmn.Unfortunately, the next
example shows that the existence of a biorthogonal sequence is not sufficient
by itself to guarantee that we have a Schauder basis, even when combined
with completeness.

Example 5.1. Complete with biorthogonal sequence =⇒/ basis.

Recall that the space C(T) consisting of the complex-valued, continuous,
1-periodic functions on R is a Banach space with respect to the uniform norm
‖ · ‖∞ (see Exercise 4.24). Define en(t) = e2πint for n ∈ Z. Not only are these
functions elements of C(T), but they define continuous linear functionals on
C(T) via the rule

〈f, en〉 =

∫ 1

0

f(t) e−2πint dt, f ∈ C(T), (5.1)

because

|〈f, en〉| ≤
∫ 1

0

|f(t)| dt ≤ ‖f‖∞.

Thus, we can consider en to be an element of C(T)∗ in the sense that we iden-
tify the function en with the functional on C(T) that it determines. Further,
{en}n∈Z is its own biorthogonal system since 〈em, en〉 = δmn. The Weierstrass
Approximation Theorem for trigonometric polynomials, which we will prove
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in Chapter 13, states that if f ∈ C(T) then there exists some integer N and

scalars cn such that
∥∥f −∑N

n=−N cnen
∥∥
∞ < ε. Equivalently, this says that

span{en}n∈Z is dense in C(T), so {en}n∈Z is complete in C(T).
Thus, {en}n∈Z is complete in C(T) and has a biorthogonal sequence in

C(T)∗. However, we shall see that it is not a basis for C(T). Since this se-
quence is indexed by Z rather than N, in order to discuss convergence of
partial sums we must fix an ordering of this index set. We choose the “nat-
ural” ordering {0,−1, 1,−2, 2, . . .}, which means that we are considering the

sequence of partial sums
∑0

n=0,
∑0

n=−1,
∑1

n=−1,
∑1
n=−2,

∑2
n=−2, etc. Sup-

pose that {en}n∈Z was a basis for C(T) with respect to this ordering of Z.
Then given f ∈ C(T), the partial sums of its basis expansion converge to f.

Considering the “symmetric” partial sums
∑N
n=−N in particular, this implies

that

f = lim
N→∞

N∑

n=−N
〈f, en〉 en, (5.2)

where the limit is in the norm ‖ · ‖∞. When the limit in equation (5.2) exists,
it is customary to write f =

∑
n∈Z
〈f, en〉 en and call this the Fourier series

representation of f. However, it is known that there exist continuous functions
f ∈ C(T) whose Fourier series representation does not converge uniformly.
Hence {en}n∈Z is not a basis for C(T), at least with respect to the natural
ordering of Z given above. We will discuss this in more detail in Chapter 14,
or see [Gra04], [Kat04], [Heil]. ♦

Remark 5.2. (a) In contrast, we know that {e2πint}n∈Z is an orthonormal basis
for L2(T), and hence the Fourier series of every function f ∈ L2(T) converges
unconditionally in L2-norm to f (see Example 1.52). However, we should not
be misled into thinking that the difference between this fact and Example 5.1
is that L2(T) is a Hilbert space while C(T) is not. We will give more examples
in the coming sections that illustrate this point.

(b) Although we will not need this information, the dual space of C(T)
can be characterized as the space of all complex Radon measures on the torus.
More generally, one of the Riesz Representation Theorems states that if X is
a locally convex Hausdorff topological space then C0(X)∗ is isomorphic to the
space of complex Radon measures on X, see [Fol99]. ♦

While having a biorthogonal system is not equivalent to being a basis, it
is equivalent to something else. We explore this next.

Definition 5.3 (Minimal Sequences). We say that a sequence {xn} in a
Banach space X is minimal if no vector xm lies in the closed span of the other
vectors xn, i.e.,

∀m ∈ N, xm /∈ span{xn}n6=m.
A sequence that is both minimal and complete is said to be exact. ♦
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We will show that minimality and the existence of a biorthogonal sequence
are equivalent. This is easy to prove in Hilbert spaces by making use of orthog-
onal complements (see Exercise 1.47), but to prove this for generic Banach
spaces we will need to employ the Hahn–Banach Theorem.

Lemma 5.4. Let {xn} be a sequence in a Banach space X.

(a) ∃ {an} ⊆ X∗ biorthogonal to {xn} ⇐⇒ {xn} is minimal.

(b) ∃ unique {an} ⊆ X∗ biorthogonal to {xn} ⇐⇒ {xn} is exact.

Proof. (a) ⇒. Suppose that {an} ⊆ X∗ is biorthogonal to {xn}. Fix any

m ∈ N, and choose z ∈ span{xn}n6=m, say z =
∑N

j=1 cnjxnj . Then

〈z, am〉 =
N∑

j=1

cnj 〈xnj , am〉 = 0,

since xnj 6= xm for each j. Thus am = 0 on span{xn}x 6=m, and since am is

continuous we therefore have 〈z, am〉 = 0 for all z ∈ span{xn}n6=m. How-

ever 〈xm, am〉 = 1, so we must have xm /∈ span{xn}n6=m. Therefore {xn} is
minimal.

⇐. Suppose that {xn} is minimal. Fix m, and define E = span{xn}n6=m.
This is a closed subspace of X that does not contain xm. Therefore, by the
Hahn–Banach Theorem (Corollary 2.4) there is a functional am ∈ X∗ such
that

〈xm, am〉 = 1 and 〈x, am〉 = 0 for x ∈ E.
Repeating this for each m ∈ N we obtain a sequence {an} that is biorthogonal
to {xn}.

(b) We assign this part as Exercise 5.1. ⊓⊔
Example 5.5. By the Weierstrass Approximation Theorem, the sequence of
monomials {xk}k≥0 is complete in C[0, 1]. However, by Exercise 2.4 the proper

subsequence {x2k}k≥0 is also complete in C[0, 1]. Therefore x ∈ span{x2k}k≥0,
so {xk}k≥0 is not minimal and consequently does not possess a biorthogonal
system. ♦

The following remarkable result characterizes the sequences of monomials
that are complete in C[0, 1] or C[a, b] (see [DM72] for proof). In the statement
of this result, we implicitly omit any terms of the form 1/0 from the given
series.

Theorem 5.6 (Müntz–Szász Theorem). Let 0 ≤ n1 ≤ n2 ≤ · · · be an
increasing sequence of nonnegative integers.

(a) {xnk}k∈N is complete in C[0, 1] if and only if n1 = 0 and
∑

1/nk =∞.
(b) If 0 < a < b < ∞ then {xnk}k∈N is complete in C[a, b] if and only if∑

1/nk =∞. ♦
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Exercises

5.1. Prove part (b) of Lemma 5.4.

5.2. Fix 1 ≤ p < ∞. Show that {xk}k≥0 is complete but not minimal in

Lp[0, 1], and is not complete in L∞[0, 1].

5.2 Shades of Grey: Independence

In finite dimensions, a sequence {x1, . . . , xn} is minimal if and only if it is
linearly independent, and in this case it is a basis for its span. These simple
facts do not extend to infinite sequences in infinite-dimensional spaces. In
this section we will consider some of the “shades of grey” in the meaning
of independence in infinite dimensions. Some of the terms given in the next
definition were introduced earlier, but we restate them here for convenience.

Definition 5.7. A sequence {xn} in a Banach space X is:

(a) finitely linearly independent (or finitely independent or simply independent

for short) if
∑N

n=1 cnxn = 0 implies c1 = · · · = cN = 0,

(b) ω-independent if
∑∞
n=1 cnxn converges and equals 0 only when cn = 0 for

every n,

(c) minimal if xm /∈ span{xn}n6=m for every m,

(d) a basic sequence if it is a Schauder basis for span{xn}. ♦

In particular, a Schauder basis for X is a basic sequence that is complete.
Completeness is essentially a spanning-type property, whereas we are most
interested at the moment in independence-type properties. Hence we focus in
this section on basic sequences rather than bases.

We have the following implications among the independence properties
introduced in Definition 5.7.

Theorem 5.8. Let {xn} be a sequence in a Banach space X. Then the fol-
lowing statements hold.

(a) {xn} is a basic sequence =⇒ {xn} is minimal.

(b) {xn} is minimal =⇒ {xn} is ω-independent.

(c) {xn} is ω-independent =⇒ {xn} is finitely independent.

Proof. (a) Assume that {xn} is a basic sequence in X. Then {xn} is a basis
for M = span{xn}, so there exists a sequence {an} ⊆M∗ that is biorthogonal
to {xn}.

Fixm ∈ N, and define Em = span{xn}n6=m. Then, since {xn} and {an} are
biorthogonal, we have 〈x, am〉 = 0 for every x ∈ Em. Since am is continuous
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on M, this implies 〈x, am〉 = 0 for every x ∈ Em = span{xn}n6=m. However,

we know that 〈xm, am〉 = 1, so we conclude that xm /∈ Em. Hence {xn} is
minimal.

(b) Suppose that {xn} is minimal and
∑
cnxn converges and equals 0.

Suppose that there exists some m such that cm 6= 0. Then

xm = − 1

cm

∑

n6=m
cnxn ∈ span{xn}n6=m,

which contradicts the definition of minimality. Therefore the sequence {xn}
is ω-independent.

(c) This is immediate. ⊓⊔

The following examples show that none of the converse implications in
Theorem 5.8 hold in general, even in Hilbert spaces and even if we assume
completeness.

Example 5.9. Minimal and complete =⇒/ basis.

(a) Example 5.1 shows that the sequence {e2πint}n∈Z is minimal and com-
plete in C(T) but is not a basis for C(T).

(b) We will give a Hilbert space example from [KS35] of a sequence that
is minimal and complete but not a basis. Let {en} be an orthonormal basis
for a separable Hilbert space H, and let xn = en + e1 for n ≥ 2. Consider the
sequence {xn}n≥2. Given m, n ≥ 2, we have

〈xm, en〉 = 〈em, en〉+ 〈e1, en〉 = δmn + 0.

Hence the sequence {en}n≥2 is biorthogonal to {xn}n≥2, so {xn}n≥2 is mini-
mal.

If x ∈ H satisfies 〈x, xn〉 = 0 for every n ≥ 2, then 〈x, en〉 = −〈x, e1〉 for
all n ≥ 2. Therefore, by the Plancherel Equality,

∞∑

n=1

|〈x, e1〉|2 =
∞∑

n=1

|〈x, en〉|2 = ‖x‖2 < ∞,

so we must have 〈x, e1〉 = 0. But then 〈x, en〉 = 0 for every n, so x = 0 and
{xn}n≥2 is complete. Since we have already shown that {xn}n≥2 is minimal,
we conclude that it is exact.

However, we will show that {xn}n≥2 is not a basis forH. Since the sequence
(1/n)n∈N belongs to ℓ2, the series x =

∑∞
n=1 en/n converges in H. Suppose

that we could write x =
∑∞

n=2 cnxn, with convergence of the series in the

norm of H. Then for each m ≥ 2 we would have

1

m
= 〈x, em〉 =

〈 ∞∑

n=2

cnxn, em

〉
=

∞∑

n=2

cn 〈en + e1, em〉 = cm.
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But then ∞∑

n=2

cnxn =

∞∑

n=2

1

n
xn =

∞∑

n=2

1

n
(en + e1),

which is a contradiction because this series does not converge (consider the
norms of the partial sums). Hence we cannot represent the vector x in the
form x =

∑∞
n=2 cnxn, so {xn}n≥2 is not a basis.

An interesting fact about this example is that while {xn}n≥2 is exact (both

minimal and complete), its biorthogonal sequence {en}n≥2 is not complete!
In contrast, we will see in Corollary 5.22 that the biorthogonal sequence to
a Schauder basis for a Hilbert space (or a reflexive Banach space) must be
complete.

(c) We give another, even more interesting, example of a sequence in a
Hilbert space that is exact but not a basis. Consider the trigonometric system
{en}n∈Z where en(t) = e2πint, which forms an orthonormal basis for L2(T).
Define functions fn ∈ L2(T) by

fn(t) = ten(t) = t e2πint, n 6= 0.

More precisely, we define fn(t) = ten(t) for t ∈ [0, 1), and then extend fn
1-periodically to R. Also define

gn(t) =
en(t)− 1

t
=

en(t)− e0(t)
t

n 6= 0.

A direct calculation shows that

‖gn‖2L2 =

∫ 1

0

|gn(t)|2 dt = 4πn

∫ πn

0

sin2 u

u2
du < ∞, (5.3)

so gn ∈ L2(T). Further, for integers m, n 6= 0 we have

〈fm, gn〉 =

∫ 1

0

tem(t)
en(t)− e0(t)

t
dt = 〈em, en〉 − 〈em, e0〉 = δmn − 0.

Therefore {gn}n6=0 is biorthogonal to {fn}n6=0, so each of these sequences is
minimal in L2(T).

Now suppose that f ∈ L2(T) is such that 〈f, fn〉 = 0 for all n 6= 0. The
function g(t) = tf(t) belongs to L2(T), and for each n 6= 0 we have

〈g, en〉 =

∫ 1

0

tf(t) e−2πint dt =

∫ 1

0

f(t) fn(t) dt = 〈f, fn〉 = 0.

Since {en}n∈Z is an orthonormal basis for L2(T), this implies that

g =
∑

n∈Z

〈g, en〉 en = 〈g, e0〉 e0. (5.4)
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As e0 is the constant function 1, we therefore have

f(t) =
g(t)

t
=
〈g, e0〉 e0(t)

t
=

c

t
a.e.,

where c is the constant 〈g, e0〉. If c 6= 0 then f(t) = c/t /∈ L2(T), which is a
contradiction. Therefore c = 0, so f = 0 a.e. Hence {fn}n6=0 is complete in
L2(T).

Since {fn}n6=0 is both minimal and complete, it is exact in L2(T). Suppose
that it was a basis for L2(T). Then it would have a finite basis constant C.
Since {gn}n6=0 is the biorthogonal sequence, Theorem 4.13(d) implies that

1 ≤ ‖fn‖L2 ‖gn‖L2 ≤ 2C, n 6= 0.

As the functions fn all have identical norms, this implies that sup ‖gn‖L2 <∞.
However, since

lim
n→∞

∫ πn

0

sin2 u

u2
du =

π

2
,

it follows from equation (5.3) that limn→∞ ‖gn‖L2 =∞. This is a contradic-

tion, so {fn}n6=0 cannot be a basis for L2(T), no matter what ordering of

Z\{0} we choose.
In contrast to the example from part (a), we will show that this biorthog-

onal sequence {gn}n6=0 is complete in L2(T). Suppose h ∈ L2(T) satisfies

〈h, gn〉 = 0 for n 6= 0. If we define g0(t) = e−2πi0·t−1
t = 0, then 〈h, gn〉 = 0 for

all n ∈ Z. Set g(t) = h(t) e
2πit−1
t ∈ L2(T). Then for every m ∈ Z we have

〈g, em〉 =

∫ 1

0

g(t) e−2πimt dt

=

∫ 1

0

h(t)
e−2πi(m−1)t − 1 + 1− e−2πimt

t
dt

= 〈h, gm−1〉 − 〈h, gm〉 = 0.

Therefore g = 0 a.e., which implies h = 0 a.e., so we conclude that {gn}n6=0 is
complete. We refer to [HY10] for other results inspired by this example. ♦

Example 5.10. ω-independent and complete =⇒/ minimal.

(a) Let X be a Banach space that has a sequence that is exact but is not a
basis forX (e.g., Example 5.9 shows that such sequences exist in any separable
Hilbert space). Then by Theorem 5.12, which we will prove shortly, there
exists some y ∈ X such that the series

∑∞
n=1 〈y, an〉xn does not converge,

where {an} is the biorthogonal sequence to {xn}. Consider the new sequence
{y}∪{xn}. This sequence is complete, and since y ∈ X = span{xn} it cannot
be minimal. However, we will show that {y} ∪ {xn} is ω-independent.
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Suppose c0y +
∑∞

n=1 cnxn = 0, i.e., the series converges and equals zero.

If c0 6= 0 then y = − 1
c0

∑∞
n=1 cnxn. In this case, the biorthogonality of

{xn} and {an} implies that 〈y, an〉 = −cn/c0. But then
∑∞
n=1 〈y, an〉xn con-

verges, which is a contradiction. Therefore, we must have c0 = 0, and hence∑∞
n=1 cnxn = 0. However, {xn} is minimal and therefore ω-independent, so

this implies that every cn is zero. Consequently {y} ∪ {xn} is ω-independent
and complete, but it is not minimal.

(b) Here is another example of a complete ω-independent sequence that is
not minimal. By the Weierstrass Approximation Theorem, the set of mono-
mials {xk}k≥0 is complete in the space C[0, 1] of continuous functions on

[0, 1]. However, Exercise 2.4 shows that {x2k}k≥0 is also complete in C[0, 1],
so {xk}k≥0 cannot be minimal. Alternatively, this also follows from the
Müntz–Szász Theorem (Theorem 5.6). Still, we will show that {xk}k≥0 is
ω-independent.

Suppose that
∑∞

k=0 ckx
k = 0, where the series converges uniformly on

[0, 1]. Then by Exercise 1.29, the function f(x) =
∑∞
k=0 ckx

k is well defined
and infinitely differentiable on (−1, 1), and by hypothesis we have f = 0 on
[0, 1). Taking limits from the right, we see that f (n)(0) = 0 for every n ≥ 0.
Considering n = 0, we see that c0 = f(0) = 0. Since power series can be
differentiated term by term, we have f ′(x) =

∑∞
k=1 kckx

k−1, and therefore
c1 = f ′(0) = 0. Continuing in this way we obtain ck = 0 for every k. Hence
{xk}k≥0 is ω-independent.

It is interesting to note that the sequence {xk}k≥0 contains no minimal
subsequences. Indeed, by the Müntz–Szász Theorem, if {xnk}k∈N is complete
in C[0, 1], then we can remove any particular monomial xnj (except for the
constant polynomial x0 = 1) and still have a complete sequence. ♦
Example 5.11. Finitely independent and complete =⇒/ ω-independent.

(a) Let α, β ∈ C be fixed nonzero scalars such that |α/β| > 1. Let {δn}n∈N

be the standard basis for ℓ2, and define x0 = δ1 and xn = αδn + βδn+1 for
n ∈ N. By Exercise 1.46, {xn}n≥0 is complete and finitely independent in ℓ2,
but is not ω-independent.

(b) We give another example of a complete, finitely independent sequence
that is not ω-independent. Let X be a Banach space that has a basis, and let
{xn} be a basis for X. Let {an} ⊆ X∗ be its biorthogonal sequence, and let
x ∈ X be any element such that 〈x, an〉 6= 0 for every n, such as

x =
∑

n

xn
2n ‖xn‖

.

Note that x cannot equal any xn because 〈xn, am〉 = 0 when m 6= n. Consider
the new sequence {x} ∪ {xn}n∈N. This is certainly complete, and we have
−x +

∑ 〈x, an〉xn = 0, so it is not ω-independent. However, we claim that

it is finitely independent. Suppose that c0x +
∑N
n=1 cnxn = 0. Substituting

x =
∑ 〈x, an〉xn, it follows that



5.3 A Characterization of Schauder Bases 161

N∑

n=1

(
c0 〈x, an〉+ cn

)
xn +

∞∑

n=N+1

c0 〈x, an〉xn = 0.

However, {xn} is a basis, so this is only possible if c0 〈x, an〉 + cn = 0 for
n = 1, . . . , N and c0 〈x, an〉 = 0 for n > N. Since no 〈x, an〉 is zero we
therefore must have c0 = 0. But then c1 = · · · = cN = 0, so {x} ∪ {xn} is
finitely independent. ♦

Exercises

5.3. Let {en} be an orthonormal basis for a Hilbert space H. Show that each
of the following two sequences are ω-independent and complete in H, but are
not minimal.

(a) {e1} ∪ {en + en+1}n∈N.

(b) {e1} ∪ {e1 + 1
nen}n≥2.

5.4. Let {en} be an orthonormal basis for a Hilbert space H, and for each

n ∈ N define xn =
∑n
k=1 ek/k. Show that {xn} is minimal and complete

in H, but is not a Schauder basis for H.

5.5. Let {xn} be a sequence in a Banach space X. Show that if {xn} is ω-
independent and for every x ∈ X there exist some scalars (cn) such that
x =

∑
cnxn, then {xn} is a basis for X.

5.6. Let X be a Banach space. Let us say that a sequence {PN} ⊆ B(X) is a
family of partial sum projections if: (i) P 2

N = PN , (ii) PNx → x as N → ∞
for each x ∈ X, (iii) dim(range(PN )) = N, and (iv) PNPM = Pmin{M,N}.

(a) Show that if {xn} is a basis for X, then {SN} is a family of partial
sum projections.

(b) Suppose that {PN} is a family of partial sum projections. Show that
if there exist nonzero vectors x1 ∈ range(P1) and xn ∈ range(Pn)∩ ker(Pn−1)
for n > 1, then {xn} is a basis for X.

5.3 A Characterization of Schauder Bases

If {xn} is a minimal sequence in a Banach space X, then it has a biorthogonal
sequence {an} ⊆ X∗. Therefore, even though we do not know whether {xn}
is a basis, we can define partial sum operators

SNx =

N∑

k=1

〈x, an〉xn, x ∈ X. (5.5)
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Each SN is a bounded operator onX since each an is continuous by hypothesis.
The sequence {xn} is a basis if and only if SNx → x for each x ∈ X. The
next theorem gives some equivalent characterizations of when this happens. In
particular, we see that a Schauder basis is precisely an exact sequence whose
basis constant C = supN ‖SN‖ is finite.

Theorem 5.12. Given a sequence {xn} in a Banach space X, the following
statements are equivalent.

(a) {xn} is a basis for X.

(b) There exists a biorthogonal sequence {an} ⊆ X∗ such that

∀x ∈ X, x = lim
N→∞

SNx =

∞∑

n=1

〈x, an〉xn.

(c) {xn} is complete and there exists a biorthogonal sequence {an} ⊆ X∗ such
that the series

∑ 〈x, an〉xn converges for each x ∈ X.
(d) {xn} is exact and supN ‖SNx‖ <∞ for all x ∈ X.
(e) {xn} is exact and supN ‖SN‖ <∞.

Proof. (e) ⇒ (b). Assume that statement (e) holds, and choose any x ∈
span{xn}, say x =

∑M
n=1 cnxn. Then, since SN is linear and {xn} and {an}

are biorthogonal, we have for each N ≥M that

SNx = SN

( M∑

m=1

cmxm

)
=

M∑

m=1

cm SNxm =
M∑

m=1

cmxm = x.

Therefore, we trivially have x = limN→∞ SNx =
∑ 〈x, an〉xn whenever x lies

in the dense subspace span{xn}.
At this point we could simply appeal to Exercise 2.31 to draw the conclu-

sion that x = limN→∞ SNx for arbitrary x ∈ X, but we will write out the
argument in detail. Let C = supN ‖SN‖, and let x be any element of X. Since
span{xn} is dense in X, given ε > 0 we can find an element y ∈ span{xn}
such that ‖x − y‖ < ε/(1 + C), say y =

∑M
m=1 cmxm. Then for N ≥ M we

have

‖x− SNx‖ ≤ ‖x− y‖ + ‖y − SNy‖ + ‖SNy − SNx‖
≤ ‖x− y‖ + 0 + ‖SN‖ ‖x− y‖
≤ (1 + C) ‖x− y‖
< ε.

Thus x = limN→∞ SNx =
∑ 〈x, an〉xn.

We assign the proof of the remaining implications as Exercise 5.7. ⊓⊔
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Unfortunately, given an exact sequence {xn}, it can be very difficult to
determine whether any of the hypotheses of Theorem 5.12 hold.

Example 5.13. Fix 0 < α < 1/2, and set ϕ(t) = |t− 1
2 |α for t ∈ [0, 1]. Observe

that both ϕ and its pointwise reciprocal ϕ̃(t) = 1/ϕ(t) = |t− 1
2 |−α belong to

L2(T). Set en(t) = e2πint, and recall that {en}n∈Z is an orthonormal basis

for L2(T). Now consider the sequence

{enϕ}n∈Z = {e2πint ϕ(t)}n∈Z,

which we call a sequence of weighted exponentials (we will study such se-
quences in detail in Section 10.3). Given m, n ∈ Z we have

〈emϕ, enϕ̃ 〉 =

∫ 1

0

em(t)ϕ(t) en(t) ϕ̃(t) dt

=

∫ 1

0

em(t) en(t) dt = 〈em, en〉 = δmn.

Hence {enϕ̃}n∈Z is biorthogonal to {enϕ}n∈Z, so each of these sequences is

minimal in L2(T). By Exercise 5.9, they are also complete, and hence are
exact. It is a much more subtle fact, due to Babenko [Bab48], that {enϕ}n∈Z

is a conditional basis for L2(T). Babenko’s paper is in Russian, but his proof
is discussed in the text by Singer, see [Sin70, Example 11.2, pp. 351–354]. ♦

The difficulty in Example 5.13 is showing that the series

f =
∑

n∈Z

〈f, enϕ̃〉 enϕ

converges for each function f ∈ L2(T). The convergence is conditional, and
is with respect to the “natural” ordering Z = {0,−1, 1,−2, 2, . . .}. This was
proved directly by Babenko, but it was later shown by by Hunt, Mucken-
houpt, and Wheeden that the specific function ϕ used in Example 5.13 can be

replaced by any function ϕ such that |ϕ|2 belongs to the class of A2 weights
on T, which are defined as follows.

Definition 5.14 (A2 weight). A nonnegative function w ∈ L1(T) is an A2

weight if

sup
I

(
1

|I|

∫

I

w(t) dt

)(
1

|I|

∫

I

1

w(t)
dt

)
< ∞,

where the supremum is taken over all intervals I ⊆ R (recall that functions
in L2(T) are 1-periodic on R). The class of A2 weights on T is denoted by
A2(T). ♦
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Thus, a necessary condition for w to be an A2 weight is that 1/w be
integrable, but a little more is required to actually be an A2 weight—the
averages of w and 1/w on intervals I must be “complementary.” The following
result is an equivalent formulation of the theorem of Hunt, Muckenhoupt, and
Wheeden [HMW73]. There are also extensions of this result to p 6= 2, see
[HMW73] or [Gra04].

Theorem 5.15. Given ϕ ∈ L2(T), the following statements are equivalent.

(a) {e2πintϕ(t)}n∈Z is a Schauder basis for L2(T) with respect to the ordering
Z = {0,−1, 1,−2, 2, . . .}.

(b) |ϕ|2 ∈ A2(T). ♦

If we set ϕ(t) = |t− 1
2 |α with 0 < α < 1/2 then |ϕ|2 is an example of an A2

weight (Exercise 5.9). In Section 10.3 we will characterize those functions ϕ
such that the system of weighted exponentials {e2πintϕ(t)}n∈Z is complete,

exact, an unconditional basis, or an orthonormal basis for L2(T). In particular,
we will see that {e2πintϕ(t)}n∈Z is an unconditional basis if and only if there
exist constants A, B > 0 such that A ≤ |ϕ(t)|2 ≤ B a.e.

Exercises

5.7. Prove the remaining implications in Theorem 5.12.

5.8. Let {xn} be a basis for a Hilbert space H and {yn} be a basis for a
Hilbert space K. This exercise will show that the tensor product sequence
{xm ⊗ yn}m,n∈N is a basis for the tensor product space H ⊗K = B2(H,K)
(see Appendix B for definitions).

Let {an}, {bn} and CX , CY denote the biorthogonal systems and basis
constants for {xn}, {yn}, respectively. Order N×N as follows:

N×N =
{
(1, 1),

(2, 1), (2, 2), (1, 2),

(3, 1), (3, 2), (3, 3), (2, 3), (1, 3),

(4, 1), (4, 2), (4, 3), (4, 4), (3, 4), (2, 4), (1, 4),

. . .
}
,

and let {zk}k∈N denote {xm ⊗ yn}m,n∈N arranged according to the above

ordering of N × N. Let SXN , S
Y
N , and SZN denote the partial sum operators

associated with {xm}, {yn}, and {zk}, respectively.

(a) Show that {xm ⊗ yn}m,n∈N is exact in H ⊗ K, and its biorthogonal
system is {am ⊗ bn}m,n∈N.

(b) Prove the following relationships among the partial sum operators
(where we let SX0 and SY0 be the zero operators):
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SZN2 = SXN ⊗ SYN ,

SZN2+ℓ = SXN ⊗ SYN + (SXN+1 − SXN )⊗ SYℓ , ℓ = 1, . . . , N + 1,

SZN2+N+1+ℓ = SXN+1 ⊗ SYN+1 − SXℓ ⊗ (SYN+1 − SYN ), ℓ = 1, . . . , N.

(c) Show that ‖SZN‖ ≤ 3 CX CY for each N ∈ N, and conclude that {zk} is
a basis for H ⊗K.

5.9. Fix 0 < α < 1/2, and let ϕ(t) = |t− 1
2 |α be as in Example 5.13.

(a) Prove that {e2πintϕ(t)}n∈Z is exact in L2(T), and its biorthogonal

system {e2πintϕ̃(t)}n∈Z is also exact (compare Exercise 10.9).

(b) Prove that |ϕ|2 ∈ A2(T).

5.4 A Characterization of Minimal Sequences and
Schauder Bases

As Theorem 5.12 illustrates, even though a minimal sequence {xn} need not
be a basis, it is often still useful to consider the corresponding partial sum
operators SN defined in equation (5.5). To motivate the next result, suppose
that {xn} is a basis with basis constant C. Then given any N ≥M and scalars
c1, . . . , cN , we have

∥∥∥∥
M∑

n=1

cnxn

∥∥∥∥ =

∥∥∥∥SM
( N∑

n=1

cnxn

)∥∥∥∥

≤ ‖SM‖
∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥

≤ C
∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥. (5.6)

We will prove a characterization of minimal sequences that involves a simi-
lar estimate. However, in contrast to equation (5.6), the characterization of
minimal sequences allows constants CM that depend on M.

Theorem 5.16. Let {xn} be a sequence in a Banach space X with all vectors
xn 6= 0. Then the following two statements are equivalent.

(a) {xn} is minimal.

(b) ∀M, ∃CM ≥ 1 such that

∀N ≥M, ∀ c0, . . . , cN ,
∥∥∥∥
M∑

n=1

cnxn

∥∥∥∥ ≤ CM

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.
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Proof. (a) ⇒ (b). Assume that {xn} is minimal. By Lemma 5.4, there exists
a sequence {an} ⊆ X∗ biorthogonal to {xn}. Therefore, given N ≥ M and
scalars c0, . . . , cN we have

∥∥∥∥
M∑

n=1

cnxn

∥∥∥∥ =

∥∥∥∥SM
( N∑

n=1

cnxn

)∥∥∥∥ ≤ ‖SM‖
∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.

Hence statement (b) follows with CM = ‖SM‖.
(b) ⇒ (a). Assume that statement (b) holds, and let E = span{xn}. Set

C0 = 0. Then given x =
∑N

n=1 cnxn ∈ E and 1 ≤M ≤ N, we have

|cM | ‖xM‖ = ‖cMxM‖ ≤
∥∥∥∥
M∑

n=1

cnxn

∥∥∥∥ +

∥∥∥∥
M−1∑

n=1

cnxn

∥∥∥∥

≤ CM

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ + CM−1

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥

= (CM + CM−1) ‖x‖.

As xM 6= 0, we therefore have

|cM | ≤
CM + CM−1

‖xM‖
‖x‖, 1 ≤M ≤ N. (5.7)

In particular, if x = 0 then c1 = · · · = cN = 0, so {xn} is finitely linearly
independent. Since E is the finite linear span of {xn}, this implies that {xn} is
a Hamel basis for E. That is, every element x ∈ E has a unique representation
of the form x =

∑∞
n=1 an(x)xn where only finitely many of the scalars an(x)

are nonzero. By equation (5.7),

|an(x)| ≤
Cn + Cn−1

‖xn‖
‖x‖, x ∈ E,

so an is continuous on the subspace E. By the Hahn–Banach Theorem (Corol-
lary 2.2), there is a continuous extension of an to all of X, which we also refer
to as an. Consequently {xn} is minimal since {an} ⊆ X∗ is biorthogonal to
{xn} ⊆ X. ⊓⊔

Given an exact sequence {xn}, the next result states that the constants
CM appearing in Theorem 5.16 are uniformly bounded in M if and only if
{xn} is a basis for X.

Theorem 5.17. If {xn} is a sequence in a Banach space X, then the following
statements are equivalent.

(a) {xn} is a basis for X.
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(b) {xn} is complete, xn 6= 0 for all n, and there exists C ≥ 1 such that

∀N ≥M, ∀ c1, . . . , cN ,
∥∥∥∥
M∑

n=1

cnxn

∥∥∥∥ ≤ C

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥. (5.8)

Further, in case these hold, the best constant C in equation (5.8) is the basis
constant C = C = supN ‖SN‖.

Proof. (a) ⇒ (b). This follows as in equation (5.6).

(b) ⇒ (a). Suppose that statement (b) holds. Theorem 5.16 implies that
{xn} is minimal, so there exists a biorthogonal system {an} ⊆ X∗. Since {xn}
is complete, it suffices by Theorem 5.12 to show that supN ‖SN‖ <∞.

Suppose that x =
∑M

n=1 cnxn ∈ span{xn}. Then:

N ≤M =⇒ ‖SNx‖ =

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ ≤ C

∥∥∥∥
M∑

n=1

cnxn

∥∥∥∥ = C ‖x‖,

N > M =⇒ ‖SNx‖ =

∥∥∥∥
M∑

n=1

cnxn

∥∥∥∥ = ‖x‖.

As C ≥ 1 we therefore have

∀x ∈ span{xn}, ∀N ∈ N, ‖SNx‖ ≤ C ‖x‖.

However, each SN is continuous and span{xn} is dense in X, so we have
‖SNx‖ ≤ C ‖x‖ for all x ∈ X and N ∈ N. Thus supN ‖SN‖ ≤ C < ∞, and
this argument also shows that the smallest possible value for C is C = C =
supN ‖SN‖. ⊓⊔

Exercises

5.10. Let X be a complex Banach space. By Exercise 1.7, the vector space
XR = X over the real field is a real Banach space. Let {xn} be a fixed sequence
in X. Show that

{xn} is a basis for X ⇐⇒ {x1, ix1, x2, ix2, . . . } is a basis for XR.

5.11. Let X be a Banach space. Show that {xn} ⊆ X is a monotone basis
for X if and only if {xn} is complete, xn 6= 0 for every n, and

∀N ∈ N, ∀ c1, . . . , cN , cN+1 ∈ F,

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ ≤
∥∥∥∥
N+1∑

n=1

cnxn

∥∥∥∥.

5.12. Prove that the Schauder system is a monotone basis for C[0, 1].
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5.13. Let X be a Banach space. Show that X has a monotone basis if and
only if there exists a sequence of operators {PN} ⊆ B(X) such that for each
N ∈ N we have

(i) ‖PN‖ = 1,

(ii) P 2
N = PN ,

(iii) dim(range(PN )) = N,

(iv) range(PN ) ⊆ range(PN+1), and

(v)
⋃

range(PN ) is dense in X.

5.5 The Haar System in Lp[0, 1]

Set χ = χ[0,1], and let ψn,k be as defined in Example 1.54. Then by Exercise
1.50, the Haar system

H =
{
χ
}
∪
{
ψn,k

}
n≥0, k=0,...,2n−1

,

forms an orthonormal basis for L2[0, 1]. Let us consider what happens if we
take p 6= 2.

Since L∞[0, 1] is not separable, it cannot have a basis (but even so, see
Exercise 5.15 for more on the Haar system in L∞[0, 1]). Therefore we focus
on 1 ≤ p < ∞. Note that χ + ψ0,0 = 2χ[0,1/2), and by continuing to form
finite sums we see that χ[ k

2n ,
k+1

2n ), the characteristic function of the dyadic

interval [ k2n ,
k+1
2n ), belongs to span(H) for each n ≥ 0 and k = 0, . . . , 2n − 1.

Consequently,

span(H) = span
{
χ

[ k
2n ,

k+1

2n ) : n ≥ 0, k = 0, . . . , 2n − 1
}
.

The right-hand set on the line above is dense in Lp[0, 1], so the Haar system is
complete in Lp[0, 1] when p is finite. We will use Exercise 5.11 to show that H
is a a basis for Lp[0, 1].

Enumerate the Haar system as

{h1, h2, . . . } = {χ, ψ0,0, ψ1,0, ψ1,1, ψ2,0, ψ2,1, ψ2,2, . . . }. (5.9)

Fix N > 1 and scalars c1, . . . , cN , and consider the functions

gN−1 =

N−1∑

n=1

cnhn and gN =

N∑

n=1

cnhn.

Note that gN−1 and gN agree except possibly on the dyadic interval I where
hN is nonzero. Let I1, I2 denote the left and right halves of I. Then gN−1 takes
a constant value c on I, and there is a constant dN such that gN = c + dN



5.5 The Haar System in Lp[0, 1] 169

on I1 and gN = c− dN on I2. Let m be the integer such that the length of I
is 2−m. Then

∫ 1

0

∣∣∣∣
N∑

n=1

cnhn(t)

∣∣∣∣
p

dt −
∫ 1

0

∣∣∣∣
N−1∑

n=1

cnhn(t)

∣∣∣∣
p

dt

=

∫ 1

0

|gN(t)|p dt−
∫ 1

0

|gN−1(t)|p dt

=

∫

I1

|c+ dN |p dt+
∫

I2

|c− dN |p dt−
∫

I

|c|p dt

=
|c+ dN |p

2m+1
+
|c− dN |p

2m+1
− |c|

p

2m

= 2−m−1
(
|c+ dN |p + |c− dN |p − 2 |c|p

)
. (5.10)

The quantity in equation (5.10) is nonnegative by Exercise 5.14. Therefore

∥∥∥∥
N−1∑

n=1

cnhn

∥∥∥∥
p

=

(∫ 1

0

∣∣∣∣
N−1∑

n=1

cnhn(t)

∣∣∣∣
p

dt

)1/p

≤
(∫ 1

0

∣∣∣∣
N∑

n=1

cnhn(t)

∣∣∣∣
p

dt

)1/p

=

∥∥∥∥
N∑

n=1

cnhn

∥∥∥∥
p

,

so it follows from Exercise 5.11 thatH = {hn} is a monotone basis for Lp[0, 1].
Thus, we have proved the following result.

Theorem 5.18. Given 1 ≤ p <∞, the Haar system is a monotone basis for
Lp[0, 1] with respect to the ordering given in equation (5.9). ♦

It can be shown that the Haar system is an unconditional basis for Lp[0, 1]
when 1 < p < ∞. This was proved by Paley [Pal32], and a short and seem-
ingly “magical” proof has been given by Burkholder [Bur88]. We will prove in
Section 6.4 that the Haar system is a conditional basis for L1[0, 1].

Exercises

5.14. Fix 1 ≤ p <∞, and prove the following statements.

(a) (1 + t)p ≤ 2p−1 (1 + tp) for all t ≥ 1.

(b) If a, b ∈ F then |a+ b|p ≤ 2p−1 (|a|p + |b|p).
(c) The quantity appearing in equation (5.10) is nonnegative.

5.15. Let {hn} be the Haar system, enumerated as in equation (5.9).

(a) What is the biorthogonal system for {hn} as a basis for Lp[0, 1]?
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(b) Show that {hn} is a basic sequence in L∞[0, 1].

(c) Show that C[0, 1] ⊆ span{hn} (closure in L∞-norm). In fact, show that
if f ∈ C[0, 1] then the series

∑ 〈f, hn〉hn converges uniformly to f.

5.16. (a) Suppose that f ∈ C(R) is Hölder continuous with exponent α, i.e.,
there exists a constant K > 0 such that |f(x) − f(y)| ≤ K |x − y|α for all x,
y ∈ [0, 1] (compare Exercise 1.23). Show that there exists a constant C > 0
such that

|〈f, ψn,k〉| ≤ C 2−n(α+1/2), n ≥ 0, k ∈ Z.

(b) How does the conclusion change if we only assume that f is Hölder
continuous at a point x, i.e., there exist K, δ > 0 such that |f(x) − f(y)| ≤
K |x− y|α for all y with |x− y| < δ?

5.6 Duality for Bases

Let π denote the canonical embedding of a Banach space X into its double-
dualX∗∗. That is, if x ∈ X then π(x) ∈ X∗∗ is the continuous linear functional
on X∗ defined by 〈x∗, π(x)〉 = 〈x, x∗〉 for x∗ ∈ X∗ (see Definition 2.7).

Suppose that {xn} is a minimal sequence in X. Then by Lemma 5.4, it
has a biorthogonal system {an} ⊆ X∗. Consider the sequence {π(xn)} ⊆ X∗∗.
For m, n ∈ N we have

〈am, π(xn)〉 = 〈xn, am〉 = δmn.

Therefore {π(xn)} is a sequence in X∗∗ that is biorthogonal to {an} in X∗.
Hence {an} is a minimal sequence in X∗. This proves the following result.

Lemma 5.19. If {xn} is a minimal sequence in a Banach space X and
{an} ⊆ X∗ is biorthogonal to {xn}, then {an} is minimal in X∗ and {π(xn)}
is a biorthogonal sequence in X∗∗. ♦

However, in general we cannot replace the word “minimal” in Lemma 5.19
by “exact.” We have trivial counterexamples whenever X∗ is nonseparable,
for in this case the countable sequence {an} cannot possibly be complete in
X∗. For example, the standard basis {δn} is a basis for X = ℓ1, and hence is
exact in ℓ1, but its biorthogonal system (which is also {δn}) is not complete
in X∗ = ℓ∞.

Less trivially, even if X∗ is separable, it is not true that the dual of an
exact sequence need be exact. In fact, this can fail even in Hilbert spaces.

Example 5.20. Given an orthonormal basis {en}n∈N for a separable Hilbert

space H, Example 5.9(b) constructs a sequence {xn}n≥2 that is exact but
whose biorthogonal sequence is {en}n≥2, which is not complete. ♦
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However, instead of just being exact, suppose that {xn} is a basis for X.
Again, if X∗ is not separable then the biorthogonal sequence cannot possibly
be a basis for X∗. On the other hand, {an} is minimal and therefore is exact
as a subset of its closed span. Will {an} be a basis for span{an}? The next
theorem shows that this much does always hold.

Theorem 5.21. Let X be a Banach space. If {xn} is a basis for X, then its
biorthogonal system {an} is a basis for span{an} in X∗.

Proof. By Lemma 5.19 {an} is exact in span{an}, and {π(xn)} is a biorthog-
onal system in X∗∗. Therefore, by Theorem 5.12, we need only show that the
partial sum operators TN associated with the sequence {an} are uniformly
bounded in operator norm. These partial sum operators have the form

TN(x∗) =

N∑

n=1

〈x∗, π(xn)〉 an =

N∑

n=1

〈xn, x∗〉 an, x∗ ∈ span{an}.

As usual, let SN denote the partial sum operators associated with the
basis {xn}. Since SN is a continuous linear mapping of X into itself, it has
an adjoint S∗

N : X∗ → X∗. In fact, if x ∈ X and x∗ ∈ X∗ then, by definition
of the adjoint,

〈
x, S∗

N (x∗)
〉

=
〈
SNx, x

∗〉 =

〈 N∑

n=1

〈x, an〉xn, x∗
〉

=

N∑

n=1

〈x, an〉 〈xn, x∗〉

=

〈
x,

N∑

n=1

〈xn, x∗〉 an
〉

=
〈
x, TN(x∗)

〉
.

Therefore TN = S∗
N , and hence ‖TN‖ = ‖S∗

N‖ = ‖SN‖. Consequently,

supN ‖TN‖ = supN ‖SN‖ <∞. ⊓⊔
By Example 5.20, the dual of an exact system need not itself be exact,

even in a Hilbert space. In striking contrast we show next that the dual of a
basis for a reflexive Banach space X is a basis for X∗.

Corollary 5.22. If {xn} is a basis for a reflexive Banach space X, then its
biorthogonal system {an} is a basis for X∗.

Proof. Theorem 5.21 implies that {an} is a basis for for span{an} in X∗, so we
need only show that {an} is complete in X∗. Suppose that x∗∗ ∈ X∗∗ satisfies
〈an, x∗∗〉 = 0 for every n. Since X is reflexive, X∗∗ = π(X), and therefore
x∗∗ = π(x) for some x ∈ X. But then 〈x, an〉 = 〈an, π(x)〉 = 〈an, x∗∗〉 = 0
for every n. Hence x =

∑ 〈x, an〉xn = 0, which implies that x∗∗ = π(x) = 0.
Consequently {an} is complete in X∗ by Corollary 2.5. ⊓⊔
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If {xn} is a basis for a Banach space X and its biorthogonal system {an} is
a basis for X∗, then we say that {xn} is a shrinking basis for X. In particular,
every basis for a reflexive Banach space is shrinking.

We use Corollary 5.22 to show that the dual systems of equivalent bases
in Hilbert spaces are themselves equivalent.

Corollary 5.23. Let H be a Hilbert space. Let {xn} be a basis for H with
biorthogonal system {an}, and let {yn} be a basis for H with biorthogonal
system {bn}. If {xn} ∼ {yn}, then {an} ∼ {bn}.

Proof. Since Hilbert spaces are self-dual, Corollary 5.22 implies that {an} is
a basis for H with biorthogonal system {xn}, and {bn} is a basis for H with
biorthogonal system {yn}. If {xn} ∼ {yn}, then there exists a topological
isomorphism T : H → H such that Txn = yn for every n. The adjoint mapping
T ∗ is also a topological isomorphism of H onto itself, and we have for each
m, n ∈ N that

〈xm, T ∗bn〉 = 〈Txm, bn〉 = 〈ym, bn〉 = δmn = 〈xm, an〉.

Since {xn} is complete, this implies that T ∗bn = an for every n, and therefore
{an} ∼ {bn}. ⊓⊔

Exercises

5.17. Let {xn} be a basis for a Banach space X, with biorthogonal system
{an} ⊆ X∗.

(a) Show that if {xn} is a bounded basis for X, then {an} is a bounded
basis for span{an} in X∗.

(b) If {xn} is a normalized basis for X, must {an} be a normalized basis
for span{an}?

5.18. Suppose that {xn} is a minimal system in a Banach space X, and it has
a biorthogonal system {an} that is a basis for X∗. Prove that {xn} is a basis
for X.

5.7 Perturbations of Bases

Given a basis {xn} for a Banach space X, it is often useful to have some
idea of how much the elements xn can be perturbed so that the resulting new
sequence remains a basis for X, or at least a basis for its closed linear span.
The first result of this type was proved by Paley and Wiener [PW34] in the
context of Hilbert spaces, although the same proof extends to Banach spaces.
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Theorem 5.24 (Paley–Wiener). Let {xn} be a basis for a Banach space X.
If {yn} ⊆ X and there exists a constant 0 ≤ λ < 1 such that

∥∥∥∥
N∑

n=1

cn (xn − yn)
∥∥∥∥ ≤ λ

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥, N ∈ N, c1, . . . , cN ∈ F,

then {yn} is a basis for X, and {yn} is equivalent to {xn}.
Proof. Let {an} be the sequence of coefficient functionals associated with
{xn}. Given x ∈ X, the series x =

∑ 〈x, an〉xn converges, and we have by
hypothesis that

∥∥∥∥
N∑

n=M+1

〈x, an〉 (xn − yn)
∥∥∥∥ ≤ λ

∥∥∥∥
N∑

n=M+1

〈x, an〉xn
∥∥∥∥ (5.11)

whenever M < N. Since
∑ 〈x, an〉xn is a Cauchy series, we conclude that∑ 〈x, an〉 (xn − yn) is Cauchy as well and hence converges. Define Tx =∑ 〈x, an〉 (xn − yn). Then T is linear, and by taking M = 0 and letting

N →∞ in equation (5.11) we see that

‖Tx‖ =

∥∥∥∥
∞∑

n=1

〈x, an〉 (xn − yn)
∥∥∥∥ ≤ λ

∥∥∥∥
∞∑

n=1

〈x, an〉xn
∥∥∥∥ = λ ‖x‖.

Thus T is bounded and ‖T ‖ ≤ λ < 1. Exercise 2.40 therefore implies that
I − T is a topological isomorphism of X onto itself. Given m ∈ N, we have

(I − T )xm = xm −
∑

n

〈xm, an〉 (xn − yn) = xm − (xm − ym) = ym.

By Lemma 4.18 and the definition of equivalent bases, we conclude that {yn}
is a basis for X that is equivalent to {xn}. ⊓⊔

Using the gross estimate |〈x, an〉| ≤ ‖x‖ ‖an‖, we obtain the following
corollary (see Exercise 5.19).

Corollary 5.25. Let {xn} be a basis for a Banach space X, with associated
coefficient functionals {an} ⊆ X∗. If {yn} ⊆ X and

λ =
∑

n

‖an‖ ‖xn − yn‖ < 1,

then {yn} is a basis for X that is equivalent to {xn}. ♦
Corollary 5.25 does not remain valid if we assume only that λ ≤ 1 (see

Exercise 5.19). However, the next result shows that we can allow λ to be
any finite positive number if we impose the extra requirement that {yn} be
complete. This proof has a different flavor than the preceding ones, as it
makes use of facts about compact operators, which are briefly reviewed in
Appendix B.
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Theorem 5.26. Let {xn} be a basis for a Banach space X, with associated
coefficient functionals {an} ⊆ X∗. If {yn} is a complete sequence in X and

λ =
∑

n

‖an‖ ‖xn − yn‖ < ∞,

then {yn} is a basis for X that is equivalent to {xn}.

Proof. If x ∈ X, then the series Tx =
∑ 〈x, an〉 (xn−yn) converges absolutely

in X since
∑

n

|〈x, an〉| ‖xn − yn‖ ≤
∑

n

‖x‖ ‖an‖ ‖xn − yn‖ ≤ λ ‖x‖. (5.12)

This also shows that T is a bounded operator and ‖T ‖ ≤ λ. For each
N ∈ N, define the bounded, finite-rank operator TN : X → X by TNx =∑N
n=1 〈x, an〉 (xn − yn). A computation similar to the one in equation (5.12)

shows that

‖T − TN‖ ≤
∞∑

n=N+1

‖an‖ ‖xn − yn‖ → 0 as N →∞.

Each TN is compact by Theorem B.5(b), and operator norm limits of compact
operators are compact by Theorem B.5(c), so we conclude that T is a compact
operator on X.

Now we will show that {yn} is an ω-independent sequence. Suppose
that

∑
cnyn = 0 for some choice of scalars cn ∈ F. Let N be large

enough that
∑∞
n=N+1 ‖an‖ ‖xn − yn‖ < 1. Corollary 5.25 then implies that

{x1, . . . , xN , yN+1, yN+2, . . . } is a basis for X. Set XN = span{x1, . . . , xN}
and YN = span{yN+1, yN+2, . . . }. Then XN∩YN = {0} and XN+YN = X, so
by Exercise 5.21 the codimension of YN in X is codim(YN ) = dim(XN ) = N.
Suppose that ck 6= 0 for some 1 ≤ k ≤ N. Then

yk = − 1

ck

∑

n6=k
cnyn ∈ span{yn}n6=k. (5.13)

If we set ZN = span{yn : 1 ≤ n ≤ N, n 6= k}, then by combining equation
(5.13) with the fact that {yn} is complete, we see that ZN + YN = X. But
then codim(YN ) ≤ dim(ZN ) ≤ N − 1, which contradicts Exercise 5.21. Hence
we must have c1 = · · · = cN = 0. Then

N∑

n=1

cnxn −
∞∑

n=N+1

cnyn =

∞∑

n=1

cnyn = 0,

so cn = 0 for all n since {x1, . . . , xN , yN+1, yN+2, . . . } is a basis. Hence {yn}
is ω-independent.
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Suppose now that (I − T )x = 0 for some x ∈ X. Then

0 = x− Tx =
∑

n

〈x, an〉xn +
∑

n

〈x, an〉 (xn − yn) =
∑

n

〈x, an〉 yn,

so 〈x, an〉 = 0 for every n since {yn} is ω-independent. Therefore x = 0, so
ker(I−T ) = {0}. Since T is compact, the Fredholm Alternative (Theorem B.6)
implies that I−T is a topological isomorphism of X onto itself. Since we have
(I −T )xm = ym for every m, it follows from Lemma 4.18 that {yn} is a basis
equivalent to {xn}. ⊓⊔

The perturbation theorems we have presented are typical examples that
apply to general bases. More refined versions of these results are known, and
often it is possible to derive sharper results for given classes of Banach spaces.
One survey of basis perturbations appears in [RH71].

Exercises

5.19. Prove Corollary 5.25. Does Theorem 5.24 or Corollary 5.25 remain valid
if λ = 1?

5.20. (a) Prove the Krein–Milman–Rutman Theorem: If {xn} is a basis for a
Banach space X, then there exist constants εn such that if {yn} is a sequence
in X satisfying ‖xn − yn‖ < εn for all n, then {yn} is a basis for X that is
equivalent to {xn}.

(b) Suppose that X is a Banach space that has a basis. Show that any
dense subset E of X contains a basis for X.

(c) Show that there exists a basis {pn} for C[0, 1] such that each pn is
a polynomial. Contrast this with the fact that {xk}k≥0 is not a basis for
C[0, 1], and the Schauder system is a basis for C[0, 1] that does not consist of
polynomials.

5.21. This exercise defines and presents some facts about quotient spaces for
vector spaces analogous to those for quotient groups in abstract algebra.

Let M be a subspace of a vector space V.

(a) Define x ∼ y if x − y ∈ M. Show that ∼ is an equivalence relation
on V, and the equivalence class of x is [x] = M + x = {m+ x : m ∈M}.

(b) The quotient space is V/M = {M + x : x ∈ V }. Show that

(x+M) + (y +M) = (x + y) +M and c(x +M) = (cx) +M

are well-defined operations on V/M, and V/M is a vector space with respect
to these operations.

(c) Prove the Isomorphism Theorem for vector spaces: If V, X are vector
spaces and T : V → W is linear and surjective with kernel M = ker(T ), then
ψ(x+M) = Tx is a well-defined linear bijection of V/M onto W.
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(d) If there exists a subspace N ⊆ V such that M∩N = {0} and M+N =
{m + n : m ∈ M,n ∈ N} = V, then we define the codimension of M to be
codim(M) = dim(N). Show that the codimension is independent of the choice
of subspace N, and codim(M) = dim(V/M).
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Unconditional Bases in Banach Spaces

A Schauder basis provides unique series representations x =
∑ 〈x, an〉xn

of each vector in a Banach space. However, conditionally convergent series
are delicate in many respects. For example, if x =

∑ 〈x, an〉xn converges
conditionally and (λn) is a bounded sequence of scalars, then the series∑
λn 〈x, an〉xn may not converge. Unconditionality is an important prop-

erty, and in many applications we greatly prefer a basis that is unconditional
over one that is conditional. Therefore we study unconditional bases in more
detail in this chapter.

6.1 Basic Properties and the Unconditional Basis
Constant

We can reformulate unconditionality of a basis as follows (see Exercise 6.1).

Lemma 6.1. Given a sequence {xn} in a Banach space X, the following two
statements are equivalent.

(a) {xn} is an unconditional basis for X.

(b) {xσ(n)} is a basis for X for every permutation σ of N.

In this case, if {an} is the sequence of coefficient functionals for {xn}, then
{aσ(n)} is the sequence of coefficient functionals for {xσ(n)}. ♦

By Lemma 4.18, topological isomorphisms preserve the property of being
a basis. The same is true of unconditional bases (see Exercise 6.2).

Lemma 6.2. (a) Unconditional bases are preserved by topological isomor-
phisms. That is, if {xn} is an unconditional basis for a Banach space X
and T : X → Y is a topological isomorphism, then {Txn} is an uncondi-
tional basis for Y.

(b) Bounded unconditional bases are likewise preserved by topological isomor-
phisms. ♦
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Recall from Definition 4.19 that two bases {xn} and {yn} are equivalent
if there exists a topological isomorphism T such that Txn = yn for every n.
We will see in Section 7.2 that all bounded unconditional bases for a Hilbert
space are equivalent, and in fact they are equivalent to orthonormal bases.
Up to isomorphisms, the only other infinite-dimensional Banach spaces that
have a basis and in which all bounded unconditional bases are equivalent are
the sequence spaces c0 and ℓ1 [LP68], [LZ69].

Notation 6.3. We will associate three types of partial sum operators with
a given unconditional basis {xn} for a Banach space X. Let {an} be the
biorthogonal system to {xn}. First, to each finite set F ⊆ N we associate the
partial sum operator SF : X → X defined by

SF (x) =
∑

n∈F
〈x, an〉xn, x ∈ X.

Second, to each finite set F ⊆ N and each set of scalars E = {εn}n∈F satisfying
εn = ±1 for all n, we associate the operator SF,E : X → X defined by

SF,E(x) =
∑

n∈F
εn 〈x, an〉xn, x ∈ X.

Finally, to each finite set F ⊆ N and each collection of scalars Λ = {λn}n∈F
satisfying |λ| ≤ 1 for all n, we associate the operator SF,Λ : X → X defined
by

SF,Λ(x) =
∑

n∈F
λn 〈x, an〉xn, x ∈ X.

Note that while the operators SF are projections in the sense that S 2
F = SF ,

the operators SF,E and SF,Λ need not be projections in this sense. ♦
Applying Theorem 3.10, we obtain the following facts about unconditional

bases, where the suprema are implicitly taken over all F, E , Λ described in
Notation 6.3. The proof of this result is Exercise 6.3.

Theorem 6.4. If {xn} is an unconditional basis for a Banach space X, then
the following statements hold.

(a) The following three quantities are finite for each x ∈ X :

|||x||| = sup
F
‖SF (x)‖,

|||x|||E = sup
F,E
‖SF,E(x)‖,

|||x|||Λ = sup
F,Λ
‖SF,Λ(x)‖.

(b) The following three numbers are finite:

K = sup
F
‖SF‖, KE = sup

F,E
‖SF,E‖, KΛ = sup

F,Λ
‖SF,Λ‖.
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(c) ||| · ||| ≤ ||| · |||E ≤ 2 ||| · ||| and K ≤ KE ≤ 2K.
(d) If F = R then ||| · |||E = ||| · |||Λ and KE = KΛ.
(e) If F = C then ||| · |||E ≤ ||| · |||Λ ≤ 2 ||| · |||E and KE ≤ KΛ ≤ 2KE .

(f) ||| · |||, ||| · |||E , and ||| · |||Λ form norms on X, each equivalent to the initial
norm ‖ · ‖, with

‖ · ‖ ≤ ||| · ||| ≤ K ‖ · ‖,
‖ · ‖ ≤ ||| · |||E ≤ KE ‖ · ‖,
‖ · ‖ ≤ ||| · |||Λ ≤ KΛ ‖ · ‖. ♦

Notation 6.5. Given an unconditional basis {xn} for a Banach space X, we
will let the constants K, KE , and KΛ and the norms ||| · |||, ||| · |||E , and ||| · |||Λ
be as described in Theorem 6.4. ♦
Definition 6.6 (Unconditional Basis Constant). If {xn} is an uncondi-
tional basis for a Banach space X, then the number KE is called the uncondi-
tional basis constant for {xn}. ♦

Comparing the number K to the basis constant C from Definition 4.14,
we see that C ≤ K. In fact, if we let Cσ be the basis constant for the per-
muted basis {xσ(n)}, then K = sup Cσ, where we take the supremum over all

permutations σ of N.
The unconditional basis constant KE implicitly depends on the norm for

X, and changing the norm to some other equivalent norm may change the
value of the basis constant. For example, the unconditional basis constant
for {xn} with respect to the equivalent norm ||| · |||E is precisely 1 (compare
Theorem 4.15 for the analogous statement for the basis constant).

Exercises

6.1. Prove Lemma 6.1.

6.2. Prove Lemma 6.2.

6.3. Prove Theorem 6.4.

6.4. Let {xn} be an unconditional basis for a Banach spaceX, with associated
coefficient functionals {an}.

(a) Prove that {an} is an unconditional basic sequence in X∗.

(b) Show that if X is reflexive, then {an} is an unconditional basis for X∗.

6.5. Use Orlicz’s Theorem to prove that {e2πint}n∈Z cannot be an uncondi-
tional basis for Lp(T) when 1 ≤ p < 2. Argue by duality to show that it also
cannot be an unconditional basis when 2 < p <∞. (See Chapter 14 for proof
that {e2πint}n∈Z is a basis for Lp(T) when 1 < p <∞, but is not a basis for
L1(T) or C(T).)
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6.2 Characterizations of Unconditional Bases

The next result gives several equivalent formulations of unconditional bases.
We include the proofs of more implications than are strictly needed, in order
to illustrate some different approaches to the proof.

Theorem 6.7. Let {xn} be a complete sequence in a Banach space X such
that xn 6= 0 for every n. Then the following statements are equivalent.

(a) {xn} is an unconditional basis for X.

(b) ∃C1 ≥ 1, ∀ c1, . . . , cN , ∀ ε1, . . . , εN = ±1,

∥∥∥∥
N∑

n=1

εncnxn

∥∥∥∥ ≤ C1

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥. (6.1)

(c) ∃C2 ≥ 1, ∀ b1, . . . , bN , ∀ c1, . . . , cN ,

|b1| ≤ |c1|, . . . , |bN | ≤ |cN | =⇒
∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥ ≤ C2

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.

(d) ∃ 0 < C3 ≤ 1 ≤ C4 <∞, ∀ c1, . . . , cN ,

C3

∥∥∥∥
N∑

n=1

|cn|xn
∥∥∥∥ ≤

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ ≤ C4

∥∥∥∥
N∑

n=1

|cn|xn
∥∥∥∥.

(e) {xn} is a basis, and for each bounded sequence of scalars Λ = (λn) there
exists a continuous linear operator TΛ : X → X such that TΛ(xn) = λnxn
for all n ∈ N.

Further, in case these hold, the best constant C1 in equation (6.1) is the un-
conditional basis constant C1 = KE = supF,E ‖SF,E‖.

Proof. (a) ⇒ (b). Suppose that {xn} is an unconditional basis for X, with
coefficient functionals {an}. Choose any scalars c1, . . . , cN and any signs

ε1, . . . , εN = ±1, and set x =
∑N
n=1 cnxn. Then 〈x, an〉 = cn if n ≤ N,

while 〈x, an〉 = 0 if n > N. Therefore

N∑

n=1

εncnxn =
∑

n∈F
εn 〈x, an〉xn = SF,E(x),

where F = {1, . . . , N} and E = {ε1, . . . , εN}. By definition of ||| · |||E and by
Theorem 6.4(f), we therefore have

∥∥∥∥
N∑

n=1

εncnxn

∥∥∥∥ = ‖SF,E(x)‖ ≤ |||x|||E ≤ KE ‖x‖ = KE

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.
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Thus statement (b) holds with C1 = KE .

(b)⇒ (a). Suppose that statement (b) holds, and let σ be any permutation
of N. We must show that {xσ(n)} is a basis for X. By hypothesis, {xσ(n)} is
complete with every element nonzero. Therefore, by Theorem 5.17 it suffices
to show that there is a constant Cσ such that

∀N ≥M, ∀ cσ(1), . . . , cσ(N),

∥∥∥∥
M∑

n=1

cσ(n)xσ(n)

∥∥∥∥ ≤ Cσ

∥∥∥∥
N∑

n=1

cσ(n)xσ(n)

∥∥∥∥.

To this end, fix any N ≥ M and choose any scalars cσ(1), . . . , cσ(N). Define
cn = 0 for n /∈ {σ(1), . . . , σ(N)}. Let L = max{σ(1), . . . , σ(N)}, and define

εn = 1 and γn =

{
1, if n ∈ {σ(1), . . . , σ(M)},
−1, otherwise.

Then,

∥∥∥∥
M∑

n=1

cσ(n)xσ(n)

∥∥∥∥ =

∥∥∥∥
L∑

n=1

(
εn + γn

2

)
cnxn

∥∥∥∥

≤ 1

2

∥∥∥∥
L∑

n=1

εncnxn

∥∥∥∥ +
1

2

∥∥∥∥
L∑

n=1

γncnxn

∥∥∥∥

≤ C1

2

∥∥∥∥
L∑

n=1

cnxn

∥∥∥∥ +
C1

2

∥∥∥∥
L∑

n=1

cnxn

∥∥∥∥

= C1

∥∥∥∥
N∑

n=1

cσ(n)xσ(n)

∥∥∥∥.

This is the desired result, with Cσ = C1.

(a) ⇒ (c). Suppose that {xn} is an unconditional basis for X, with coeffi-
cient functionals {an}. Choose any scalars c1, . . . , cN and b1, . . . , bN such that

|bn| ≤ |cn| for every n. Define x =
∑N

n=1 cnxn, and note that cn = 〈x, an〉.
Let λn be such that bn = λncn. Since |bn| ≤ |cn| we can take |λn| ≤ 1 for
every n. Therefore, if we define F = {1, . . . , N} and Λ = {λ1, . . . , λN}, then

N∑

n=1

bnxn =
∑

n∈F
λncnxn =

∑

n∈F
λn 〈x, an〉xn = SF,Λ(x).

Hence

∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥ = ‖SF,Λ(x)‖ = |||x|||Λ ≤ KΛ ‖x‖ = KΛ
∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.
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Thus statement (c) holds with C2 = KΛ.
(b) ⇒ (c). Suppose that statement (b) holds. Choose any N > 0, and any

scalars bn, cn such that |bn| ≤ |cn| for each n = 1, . . . , N. Let |λn| ≤ 1 be
such that bn = λncn. Let αn = Re(λn) and βn = Im(λn). Since the αn are
real and satisfy |αn| ≤ 1, Carathéodory’s Theorem (Theorem 3.13) implies
that we can find scalars tm ≥ 0 and signs εnm = ±1, for m = 1, . . . , N + 1 and
n = 1, . . . , N, such that

N+1∑

m=1

tm = 1 and

N+1∑

m=1

εnm tm = αn for n = 1, . . . , N.

Hence,

∥∥∥∥
N∑

n=1

αncnxn

∥∥∥∥ =

∥∥∥∥
N∑

n=1

N+1∑

m=1

εnmtmcnxn

∥∥∥∥

=

∥∥∥∥
N+1∑

m=1

tm

N∑

n=1

εnmcnxn

∥∥∥∥

≤
N+1∑

m=1

tm

∥∥∥∥
N∑

n=1

εnmcnxn

∥∥∥∥

≤
N+1∑

m=1

tm C1

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥

= C1

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.

A similar formula holds for the imaginary parts βn (which are zero if F = R),
so

∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥ =

∥∥∥∥
N∑

n=1

λncnxn

∥∥∥∥

≤
∥∥∥∥
N∑

n=1

αncnxn

∥∥∥∥ +

∥∥∥∥
N∑

n=1

βncnxn

∥∥∥∥

≤ 2C1

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.

Therefore statement (c) holds with C2 = 2C1.

(c)⇒ (a). Suppose that statement (c) holds, and let σ be any permutation
of N. We must show that {xσ(n)} is a basis for X. By hypothesis, {xσ(n)} is
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complete inX and every element xσ(n) is nonzero. Therefore, by Theorem 5.17
it suffices to show that there is a constant Cσ such that

∀N ≥M, ∀ cσ(1), . . . , cσ(N),

∥∥∥∥
M∑

n=1

cσ(n)xσ(n)

∥∥∥∥ ≤ Cσ

∥∥∥∥
N∑

n=1

cσ(n)xσ(n)

∥∥∥∥.

To this end, fix any N ≥ M and choose any scalars cσ(1), . . . , cσ(N). Define
cn = 0 for n /∈ {σ(1), . . . , σ(N)}. Let L = max{σ(1), . . . , σ(N)} and define

λn =

{
1, if n ∈ {σ(1), . . . , σ(M)},
0, otherwise.

Then,

∥∥∥∥
M∑

n=1

cσ(n)xσ(n)

∥∥∥∥ =

∥∥∥∥
L∑

n=1

λncnxn

∥∥∥∥

≤ C2

∥∥∥∥
L∑

n=1

cnxn

∥∥∥∥

= C2

∥∥∥∥
N∑

n=1

cσ(n)xσ(n)

∥∥∥∥.

This is the desired result, with Cσ = C2.

(c) ⇒ (d). Assume that statement (c) holds, and choose any scalars
c1, . . . , cN . Let bn = |cn|. Then we have both |bn| ≤ |cn| and |cn| ≤ |bn|,
so statement (c) implies

∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥ ≤ C2

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ and

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥ ≤ C2

∥∥∥∥
N∑

n=1

bnxn

∥∥∥∥.

Therefore statement (d) holds with C3 = 1/C2 and C4 = C2.

(d)⇒ (c). Assume that statement (d) holds. Choose any scalars c1, . . . , cN
and any signs ε1, . . . , εN = ±1. Then, by statement (d),

∥∥∥∥
N∑

n=1

εncnxn

∥∥∥∥ ≤ C4

∥∥∥∥
N∑

n=1

|εncn|xn
∥∥∥∥ = C4

∥∥∥∥
N∑

n=1

|cn|xn
∥∥∥∥ ≤

C4

C3

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥.

Hence statement (c) holds with C2 = C4/C3.

(a) ⇒ (e). Let {xn} be an unconditional basis for X, with coefficient
functionals {an}. Let (λn) be any bounded sequence of scalars, and let
M = sup |λn|. Fix any x ∈ X. Then the series x =

∑ 〈x, an〉xn converges un-
conditionally. Hence, by Theorem 3.10(f), the series TΛ(x) =

∑
λn 〈x, an〉xn

converges. Clearly TΛ : X → X defined in this way is linear, and we have
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‖TΛ(x)‖ = M

∥∥∥∥
∑

n

λn
M
〈x, an〉xn

∥∥∥∥ ≤ MKΛ
∥∥∥∥
∑

n

〈x, an〉xn
∥∥∥∥ = MKΛ ‖x‖.

Therefore TΛ is continuous. Finally, the biorthogonality of {xn} and {an}
ensures that TΛ(xn) = λnxn for every n.

(e)⇒ (a). Suppose that statement (e) holds. Since {xn} is a basis, there ex-
ists a biorthogonal sequence {an} ⊆ X∗ such that the series x =

∑ 〈x, an〉xn
converges and is the unique expansion of x in terms of the vectors xn.We must
show that this series converges unconditionally. Let Λ = (λn) be any sequence
of scalars such that |λn| ≤ 1 for every n. Then, by hypothesis, there exists a
continuous mapping TΛ : X → X such that TΛ(xn) = λnxn for every n. The
continuity of TΛ implies that

TΛ(x) = TΛ

(∑

n

〈x, an〉xn
)

=
∑

n

〈x, an〉TΛ(xn) =
∑

n

λn 〈x, an〉xn.

That is, the rightmost series on the line above converges for every choice of
bounded scalars, so Theorem 3.10(f) tells us that the series x =

∑ 〈x, an〉xn
converges unconditionally. ⊓⊔

Exercises

6.6. Let X be a real Banach space, and suppose that {xn} is an unconditional
basis for X with unconditional basis constant KE = 1. Given x =

∑
anxn and

y =
∑
bnyn in X, declare that x ≤ y if an ≤ bn for every n. Show that ≤ is a

partial order on X, and X is a Banach lattice in the sense of Definition 3.35.
Using the notation of that definition, show that x ∨ y =

∑
max{an, bn} xn,

x ∧ y =
∑

min{an, bn} xn, and |x| =∑ |an|xn.

6.7. Set F = R. The Haar system is an orthonormal basis for L2[0, 1], so by
Exercise 6.6 there is a partial ordering ≤ on L2[0, 1] induced by this uncondi-
tional basis. There is also the ordinary partial ordering ≤ on L2[0, 1] defined
by f ≤ g if f(t) ≤ g(t) for a.e. t. Do these two orderings coincide?

6.3 Conditionality of the Schauder System in C[0, 1]

We saw in Section 4.5 that the Schauder system is a basis for C[0, 1]. Now
we will show that this basis is conditional. We do this indirectly—we will
not explicitly construct an element of C[0, 1] whose basis representation con-
verges conditionally, but rather will use Theorem 6.7 to demonstrate that the
unconditional basis constant for the Schauder system must be infinite.

Using the notation of Section 4.3, the elements of the Schauder system
are the box function χ = χ

[0,1], the function ℓ(t) = t, and the dilated and



6.3 Conditionality of the Schauder System in C[0, 1] 185

0 1

4

1

2

3

4
1

0

1

0 1

4

1

2

3

4
1

0

1

0 1

4

1

2

3

4
1

0

1

0 1

4

1

2

3

4
1

0

1

Fig. 6.1. From top to bottom: The functions t1, t2, t3, and t4.

translated hat functions sn,k(t) = W (2nt−k), where W is the hat function of
height 1 supported on [0, 1]. We select a subsequence of the Schauder system
by defining:

t1 = s0,0
(
hat function on I1 =

[
0, 1
])
,

t2 = s1,0
(
hat function on I2 =

[
0, 1

2

])
,

t3 = s2,1
(
hat function on I3 =

[
1
4 ,

1
2

])
,

t4 = s3,2
(
hat function on I4 =

[
1
4 ,

3
8

])
,
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t5 = s4,5
(
hat function on I5 =

[
5
16 ,

3
8

])
,

t6 = s5,10
(
hat function on I6 =

[
5
16 ,

11
32

])
,

etc., where we alternate choosing the left or right half of IN−1 as the interval
IN on which the hat function tN is supported (see Figure 6.1).

Now consider the function gN =
∑N
n=1 tn. Our goal is not to show that gN

converges uniformly (in fact, it does not), but rather to compute its norm and

to compare this to the norm of hN =
∑N
n=1 (−1)n+1tn (see the illustration in

Figure 6.2).

1
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Fig. 6.2. The functions g5 (left) and h5 (right).

The functions gN−1 and gN agree everywhere except on the interval IN .
Let µN be the midpoint of IN . The function gN−1 is linear on the interval IN ,
and gN achieves its global maximum at the midpoint µN . By construction,
for N ≥ 3 one endpoint of IN is µN−2 and the other is µN−1. Letting aN =
gN(µN ) be the global maximum of gN , we have

aN = 1 +
aN−1 + aN−2

2
.

By Exercise 6.8, aN increases without bound as N →∞.
On the other hand, a similar analysis of hN =

∑N
n=1 (−1)n+1tn shows that

we always have |hN (t)| ≤ 2 (Exercise 6.8), so bN = ‖hN‖∞ ≤ 2. Consequently
there can be no finite constant C such that

∥∥∥∥
N∑

n=1

tn

∥∥∥∥
∞

= aN ≤ CbN = C

∥∥∥∥
N∑

n=1

(−1)n+1tn

∥∥∥∥
∞
, N ∈ N.

Considering hypothesis (c) of Theorem 6.7, we conclude that the Schauder
system cannot be unconditional.
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Exercises

6.8. Show that aN →∞ and 0 ≤ bN ≤ 2 for each N.

6.4 Conditionality of the Haar System in L1[0, 1]

By Theorem 5.18, the Haar system is a basis for Lp[0, 1] for each 1 ≤ p <∞,
at least with respect to the ordering given in equation (5.9). We will show that
this basis is conditional when p = 1 by taking an indirect approach similar to
the one we used to prove that the Schauder system is conditional.

Set χ = χ
[0,1], and let ψn,k be as defined in Example 1.54. For this proof,

we only need to deal with the elements of the Haar system that are nonzero
at the origin. Normalizing so that each function has unit L1-norm, these are
the functions χ and

kn = 2n/2ψn,0 = 2n
(
χ

[0,2−n−1) − χ[2−n−1,2−n)

)
, n ≥ 0.

Fix N > 0 and define

fN = χ +

2N∑

n=0

kn.

Examining the graphs of the functions kn, we see that there is a great deal of
cancellation in this sum, leaving us with

fN = 22N+1 χ
[0,2−2N−1).

In particular, fN is a unit vector in L1[0, 1].
Now we form a “subseries” of the series defining fN . Specifically, we take

gN =

2N∑

n=0
n even

kn.

Looking at the graphs in Figure 6.3, we see that g0 = −1 on [12 , 1), g1 =

4− 1 = −3 on [18 ,
1
4 ), and g2 = 1 + 4− 16 = −11 on [ 1

32 ,
1
16 ). In general, since

kn is −1 only on an interval where each of k0, . . . , kn−1 are identically 1, we
see that

gN (x) =

(N−1∑

n=0

4n
)
− 4N = −2

3
4N − 1

3
, 1

2 4−N ≤ x < 4−N .

Therefore the L1-norm of gN on this particular interval is

∫ 4−N

1
2

4−N

|gN(t)| dt =

(
2

3
4N +

1

3

)
1

2
4−N ≥ 1

3
.
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However, gN = gN−1 on the interval [4−N , 1], so the total L1-norm of gN is
at least

‖gN‖L1 ≥
N∑

n=0

∫ 4−n

1
2

4−n

|gn(t)| dt ≥
N + 1

3
.

Since ‖fN‖L1 = 1 for every N, criterion (c) of Theorem 6.7 implies that the
Haar system cannot be an unconditional basis for L1[0, 1].
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Fig. 6.3. The functions g1 (top) and g2 (bottom).

The facts that the Schauder system is conditional in C[0, 1] and the Haar
system is conditional in L1[0, 1] are special cases of the deeper fact that these
two spaces contain no unconditional bases whatsoever! For proof, we refer to
[LT77], [Sin70].
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Bessel Sequences and Bases in Hilbert Spaces

In this chapter and the next we focus on bases and basis-like systems in Hilbert
spaces. Our goal in this chapter is to understand bounded unconditional bases
in Hilbert spaces, but in order to do this, we first need to study sequences
that need not be bases but which do have a property that is reminiscent of
Bessel’s Inequality for orthonormal bases. These Bessel sequences will also be
very useful to us in Chapter 8 when we consider frames in Hilbert spaces.

7.1 Bessel Sequences in Hilbert Spaces

Bessel sequences are defined as follows.

Definition 7.1 (Bessel Sequence). A sequence {xn} in a Hilbert space H
is a Bessel sequence if

∀x ∈ H,
∑

n

|〈x, xn〉|2 < ∞. ♦

Thus, if {xn} is a Bessel sequence, then the analysis operator C that takes
an element x to the sequence of coefficients Cx =

(
〈x, xn〉

)
maps H into ℓ2.

By applying either the Uniform Boundedness Principle or the Closed Graph
Theorem, this mapping must be bounded. The next theorem, whose proof is
Exercise 7.2, states several additional properties possessed by Bessel sequences
(parts (a)–(c) of this exercise can also be derived by applying Exercise 3.8 with
X = H and p = 2).

Theorem 7.2. Let {xn} be a Bessel sequence in a Hilbert space H. If we
define Cx =

(
〈x, xn〉

)
for x ∈ H, then the following statements hold.

(a) C is a bounded mapping of H into ℓ2, and therefore there exists a constant
B > 0 such that

∀x ∈ H,
∑

n

|〈x, xn〉|2 ≤ B ‖x‖2. (7.1)
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190 7 Bessel Sequences and Bases in Hilbert Spaces

(b) If (cn) ∈ ℓ2, then the series
∑
cnxn converges unconditionally in H, and

Rc =
∑
cnxn defines a bounded map of ℓ2 into H.

(c) R = C∗ and ‖R‖ = ‖C‖ ≤ B1/2. Consequently,

∀ (cn) ∈ ℓ2,
∥∥∥∥
∑

n

cnxn

∥∥∥∥
2

≤ B
∑

n

|cn|2.

(d) If {xn} is complete, then C is injective and range(R) is dense in H. ♦
Comparing equation (7.1) to Bessel’s Inequality for orthonormal bases

(Theorem 1.49), we see the motivation for the name “Bessel sequence.” How-
ever, a Bessel sequence need not be orthonormal and need not be a basis
(Exercise 7.1).

Definition 7.3. Let {xn} be a Bessel sequence in a Hilbert space H.

(a) A constant B such that equation (7.1) holds is called a Bessel bound or an
upper frame bound for {xn} (compare Definition 8.2). The smallest such
constant B is called the optimal Bessel bound.

(b) The operator C : H → ℓ2 defined in Theorem 7.2 is called the analysis
operator or the coefficient mapping for {xn}, and its adjoint R : ℓ2 → H
is the synthesis operator or the reconstruction operator for {xn}.

(c) The frame operator for {xn} is S = RC : H → H.

(d) The Gram operator or Gram matrix for {xn} is G = CR : ℓ2 → ℓ2. ♦
Note that the optimal Bessel bound is precisely ‖C‖2.
We will study frames in detail in Chapter 8. These are Bessel sequences

which also possess a “lower frame bound” in the sense that there is a constant
A > 0 such that A ‖x‖2 ≤∑ |〈x, xn〉|2 for x ∈ H. The synthesis operator for
a frame is sometimes called the pre-frame operator (and this terminology is
sometimes applied to generic Bessel sequences as well).

Since the analysis and synthesis operators associated to a Bessel sequence
{xn} are bounded, the frame and Gram operators are bounded as well. More-
over, S = C∗C = RR∗ and G = CC∗ = R∗R are self-adjoint and positive in
the sense of Definition 2.14. By definition,

Sx = RCx =
∑

n

〈x, xn〉xn, x ∈ H,

and therefore
〈Sx, x〉 =

∑

n

|〈x, xn〉|2. (7.2)

In particular, an orthonormal basis is a Bessel sequence, and the frame oper-
ator for an orthonormal basis is S = I. However, there exist Bessel sequences
whose frame operator is S = I but which are neither orthonormal nor bases
(see Exercise 7.1).

We have the following equivalent characterizations of Bessel sequences (see
Exercise 7.3).
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Theorem 7.4. Let {xn} be a sequence in a Hilbert space H, and let {δn} be

the standard basis for ℓ2. Then the following statements are equivalent.

(a) {xn} is a Bessel sequence in H.

(b) There exists a constant B > 0 and a dense set E ⊆ H such that

∀x ∈ E,
∑

n

|〈x, xn〉|2 ≤ B ‖x‖2.

(c) There exists a constant B > 0 such that

∀N ∈ N, ∀ c1, . . . , cN ∈ F,

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥
2

≤ B
N∑

n=1

|cn|2. (7.3)

(d) The series
∑
cnxn converges for each sequence (cn) ∈ ℓ2.

(e) There exists a bounded operator R : ℓ2 → H such that Rδn = xn for each
n ∈ N.

(f) There exists an orthonormal sequence {en} in H and a bounded operator
T ∈ B(H) such that Ten = xn for each n ∈ N.

Further, when these hold, the operator R appearing in part (e) is the synthesis

operator for {xn}, and span{xn} = range(R). ♦

Now we consider the Gram operator G associated with a Bessel sequence.
Since G is a bounded mapping of ℓ2 into itself, it can be represented as multi-
plication by an infinite matrix. We identify the Gram operator and the matrix
that represents it. The form of this matrix is given in the next result, whose
proof is Exercise 7.4.

Theorem 7.5. Let {xn} be a Bessel sequence in a Hilbert space H. Then the
matrix for the Gram operator G is

G =
[
〈xn, xm〉

]
m,n∈N

. ♦

That is, if we think of c = (cn) ∈ ℓ2 as a column vector, then Gc is the

product of the infinite matrix
[
〈xn, xm〉

]
m,n∈N

with the vector c = (cn). The

mth entry of Gc is (Gc)m =
∑

n cn 〈xn, xm〉.
We can extend the notion of a Gram matrix to sequences that are

not Bessel. Given any sequence {xn} in a Hilbert space H, we call G =[
〈xn, xm〉

]
m,n∈N

the Gram matrix or the Gramian for {xn}. However, it is

important to note that this matrix need not define a bounded mapping on
ℓ2. In fact, the following converse to Theorem 7.5 shows that this happens
exactly for Bessel sequences.

Theorem 7.6. Let {xn} be a sequence in a Hilbert space H, and let G be its
Gram matrix. If either:
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(a) G is a bounded map of
(
c00, ‖ · ‖ℓ2

)
into ℓ2, i.e., there exists a constant

B > 0 such that ‖Gc‖ℓ2 ≤ B ‖c‖ℓ2 for all finite sequences c, or

(b) multiplication by G is a well-defined mapping of ℓ2 into itself, i.e., for
each c = (cn) ∈ ℓ2 the series (Gc)m =

∑
n cn 〈xn, xm〉 converges for each

m ∈ N and the sequence Gc =
(
(Gc)m

)
m∈N

belongs to ℓ2,

then {xn} is a Bessel sequence.

Proof. (a) Choose any finite sequence c = (c1, . . . , cN , 0, 0, . . . ) ∈ c00. Then

〈Gc, c〉 =

N∑

m=1

(Gc)m cm

=

N∑

m=1

( N∑

n=1

〈xn, xm〉 cn
)
cm

=

N∑

m=1

N∑

n=1

cn 〈xn, xm〉 cm

=

〈 N∑

n=1

cnxn,
N∑

m=1

cmxm

〉

=

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥
2

.

On the other hand,

〈Gc, c〉 ≤ ‖Gc‖ℓ2 ‖c‖ℓ2 ≤ B ‖c‖2ℓ2 = B
N∑

n=1

|cn|2.

Combining these two estimates, we see that equation (7.3) holds, and therefore
Theorem 7.4 implies that {xn} is a Bessel sequence.

(b) The well-defined hypothesis of this part precisely fulfills the hypotheses
of Exercise 2.34. That exercise therefore implies that c 7→ Gc is a bounded
mapping on ℓ2, so we conclude from part (a) that {xn} is a Bessel sequence. ⊓⊔

If {xn} is a Bessel sequence, then it follows from the proof of Theorem 7.6,
or directly from the fact that G = R∗R, that we have the useful equality

∀ c = (cn) ∈ ℓ2, 〈Gc, c〉 = ‖Rc‖2 =

∥∥∥∥
∑

n

cnxn

∥∥∥∥
2

.

Example 7.7. Consider the sequence of monomials {xk}k≥0. By Example 1.29
or Theorem 5.6, the monomials are complete but are not a basis for C[0, 1],
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and by Exercise 5.2, the same is true in the space L2[0, 1]. The Gram matrix
for the monomials is

G =
[
〈xn, xm〉

]
m,n≥0

=
[

1
m+n+1

]
m,n≥0

= H,

which is the famous Hilbert matrix. It is not obvious, but the Hilbert matrix
determines a bounded mapping on ℓ2(N ∪ {0}). Exercise 7.12 shows that
‖H‖ ≤ 4, and in fact it is known that the operator norm of the Hilbert matrix
is precisely ‖H‖ = π [Cho83]. Theorem 7.6 therefore implies that {xk}k≥0 is
a Bessel sequence in L2[0, 1]. ♦

All Bessel sequences must be bounded above in norm (Exercise 7.5), but
not all norm-bounded sequences are Bessel sequences (see Exercise 7.1). On
the other hand, we end this section by making use of Orlicz’s Theorem to
prove that all unconditional bases that are norm-bounded above are examples
of Bessel sequences. Various examples of other systems that are or are not
Bessel sequences are considered in the Exercises.

Theorem 7.8. Let H be a Hilbert space. Every unconditional basis for H that
is norm-bounded above is a Bessel sequence in H.

Proof. Let {xn} be an unconditional basis for H such that sup ‖xn‖ <∞, and
let {yn} be its biorthogonal system in H. By Theorem 4.13 we have for each n
that 1 ≤ ‖xn‖ ‖yn‖ ≤ 2C where C is the basis constant. Hence inf ‖yn‖ > 0.

By Exercise 6.4, {yn} is an unconditional basis for H and {xn} is its
biorthogonal sequence. Therefore, given x ∈ H, the series x =

∑ 〈x, xn〉 yn
converges unconditionally. By Orlicz’s Theorem (Theorem 3.16), it follows
that ∑

n

|〈x, xn〉|2 ‖yn‖2 =
∑

n

∥∥〈x, xn〉 yn
∥∥2

< ∞.

Consequently, since {yn} is norm-bounded below,
∑ |〈x, xn〉|2 < ∞ for each

x ∈ H. Therefore {xn} is a Bessel sequence. ⊓⊔

Exercises

7.1. Let H be a separable Hilbert space. For each of the following, construct
a sequence {xn} that has the specified property.

(a) A bounded sequence that is not a Bessel sequence.

(b) A Bessel sequence that is a nonorthogonal basis for H.

(c) A Bessel sequence that is not a basis for H but has frame operator
S = I.

(d) A Bessel sequence such that {xn}n∈N\F is complete for every finite
F ⊆N.

(e) An unconditional basis that is not a Bessel sequence.
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(f) A normalized conditional basis that is a Bessel sequence.

(g) A normalized conditional basis that is not a Bessel sequence.

(h) A basis that is Bessel but whose biorthogonal sequence is not Bessel.

7.2. Give a direct proof of Theorem 7.2.

7.3. Prove Theorem 7.4.

7.4. Prove Theorem 7.5.

7.5. Let {xn} be a Bessel sequence in a Hilbert space H and let B be a Bessel
bound.

(a) Show that ‖xn‖2 ≤ B for every n ∈ N. Thus Bessel sequences are
bounded above in norm.

(b) Show that if ‖xm‖2 = B for any particular m, then xn ⊥ xm for all
n 6= m.

7.6. Let H, K be Hilbert spaces. Show that if {xn} is a Bessel sequence in H
and L ∈ B(H,K), then {Lxn} is a Bessel sequence in K.

7.7. Suppose that H is a Hilbert space contained in another Hilbert space K.
Given a sequence {xn} in H, show that {xn} is a Bessel sequence in H if and
only if it is a Bessel sequence in K.

7.8. Let {xn} be a sequence in a Hilbert space H.

(a) If
∑ |〈x, xn〉|2 < ∞ for all x in a dense set E ⊆ H, must {xn} be a

Bessel sequence?

(b) If there exists a constant B > 0 such that
∑ |〈x, xn〉|2 ≤ B ‖x‖2 for

all x in a complete set E ⊆ H, must {xn} be a Bessel sequence?

7.9. Show that a sequence {xn} in a Hilbert space H is a Bessel sequence if
either of the following two conditions holds:

(a)
∑

m

∑
n |〈xm, xn〉|2 <∞, or

(b) supm
∑

n |〈xm, xn〉| <∞.
Observe that hypothesis (a) is quite restrictive, e.g., it is not satisfied by any
infinite orthonormal sequence.

7.10. Suppose that {xn} is a Bessel sequence that is a basis for a Hilbert
space H. Let {yn} be the biorthogonal sequence, and let B be a Bessel bound.

(a) Show that

∀x ∈ H, 1

B
‖x‖2 ≤

∑

n

|〈x, yn〉|2.

We say that {yn} has a lower frame bound of B−1; compare Definition 8.2.
Note that {yn} need not be a Bessel sequence; see Exercise 7.1(h).
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(b) Show that for all N ∈ N and c1, . . . , cN ∈ F we have

1

B

N∑

n=1

|cn|2 ≤
∥∥∥∥
N∑

n=1

cnyn

∥∥∥∥
2

.

7.11. Let {xn}, {yn} be Bessel sequences in separable Hilbert spaces H, K,
respectively. Show that the tensor product sequence {xm ⊗ yn}m,n∈N is a
Bessel sequence in H ⊗K = B2(H,K) (see Appendix B for definitions).

7.12. The Hilbert matrix is

H =




1 1/2 1/3 1/4 · · ·
1/2 1/3 1/4 1/5

1/3 1/4 1/5 1/6

1/4 1/5 1/6 1/7
...

. . .




.

Define

C =




1 0 0 0 · · ·
1/2 1/2 0 0

1/3 1/3 1/3 0

1/4 1/4 1/4 1/4
...

. . .




and L =




1 1/2 1/3 1/4 · · ·
1/2 1/2 1/3 1/4

1/3 1/3 1/3 1/4

1/4 1/4 1/4 1/4
...

. . .




,

and prove the following statements.

(a) L = CC∗, so L ≥ 0 (i.e., L is a positive operator).

(b) I − (I − C)(I − C)∗ = diag(1, 1/2, 1/3, 1/4, . . .), the diagonal matrix
with entries 1, 1/2, . . . on the diagonal.

(c) ‖(I − C)‖2 = ‖(I − C)(I − C)∗‖ ≤ 1.

(d) ‖C‖ ≤ 2 and ‖L‖ ≤ 4.

Remark: It is a fact (though not so easy to prove) that if A, B are sym-
metric matrices and aij ≤ bij for all i, j ∈ N, then ‖A‖ ≤ ‖B‖. Consequently,
‖H‖ ≤ ‖L‖ ≤ 4.

7.2 Unconditional Bases and Riesz Bases in Hilbert
Spaces

Let H be a separable Hilbert space. We saw in Example 4.21 that all or-
thonormal bases in H are equivalent. We will show in this section that the
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class of bases that are equivalent to orthonormal bases coincides with the
class of bounded unconditional bases for H, and we will discuss some of the
properties of such bases.

Definition 7.9 (Riesz Basis). Let {xn} be a sequence in a Hilbert space H.

(a) {xn} is a Riesz basis if it is equivalent to some (and therefore every)
orthonormal basis for H.

(b) {xn} is a Riesz sequence if it is a Riesz basis for its closed span in H. ♦

Note that all Riesz bases are equivalent since all orthonormal bases are
equivalent. Also, since all orthonormal bases are Bessel sequences, any Riesz
basis {xn} must be a Bessel sequence (see Exercise 7.6). Hence we have at
hand the tools discussed in Section 7.1. In particular, if {xn} is a Riesz basis,
then we know that the analysis operator Cx =

(
〈x, xn〉

)
is a bounded mapping

of H into ℓ2, and its adjoint is the synthesis operator Rc =
∑
cnxn for c =

(cn) ∈ ℓ2, where this series converges unconditionally in H.
As with bases or unconditional bases, the image of a Riesz basis under a

topological isomorphism is a Riesz basis.

Lemma 7.10. Riesz bases are preserved by topological isomorphisms. Specif-
ically, if {xn} is a Riesz basis for a Hilbert space H and T : H → K is a
topological isomorphism, then {Txn} is a Riesz basis for K.

Proof. Since H possesses a basis, it is separable. Therefore K, being topolog-
ically isomorphic to H, is separable as well. By Exercise 1.71, all separable
Hilbert spaces are isometrically isomorphic, so there exists an isometry Z that
maps H onto K. Further, by the definition of Riesz basis, there exists an or-
thonormal basis {en} for H and a topological isomorphism U : H → H such
that Uen = xn. Since Z is an isometric isomorphism, the sequence {Zen}
is an orthonormal basis for K. Hence, TUZ−1 is a topological isomorphism
of K onto itself which has the property that TUZ−1(Zen) = TUen = Txn.
Hence {Txn} is equivalent to an orthonormal basis for K, so we conclude that
{Txn} is a Riesz basis for K. ⊓⊔

This yields one half of our characterization of Riesz bases.

Theorem 7.11. Every Riesz basis for a Hilbert space H is a bounded uncon-
ditional basis for H.

Proof. Let {xn} be a Riesz basis for a Hilbert space H. Then there exists an
orthonormal basis {en} for H and a topological isomorphism T : H → H such
that Ten = xn for every n. However, {en} is a bounded unconditional basis,
and bounded unconditional bases are preserved by topological isomorphisms
by Lemma 6.2(b), so {xn} must be a bounded unconditional basis for H. ⊓⊔

Before presenting the converse to this result, we prove that Riesz bases
are interchangeable with their dual systems in the following sense.
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Lemma 7.12. Let {xn} be a basis for a Hilbert space H, with biorthogonal
system {yn}. Then the following statements are equivalent.

(a) {xn} is a Riesz basis for H.

(b) {yn} is a Riesz basis for H.

(c) {xn} ∼ {yn}.

Proof. (a) ⇒ (b), (c). If {xn} is a Riesz basis for H, then {xn} ∼ {en} for
some orthonormal basis {en} of H. By Corollary 5.23, {xn} and {en} have
equivalent biorthogonal systems. However, {en} is biorthogonal to itself, so
this implies {yn} ∼ {en} ∼ {xn}. Hence {yn} is equivalent to {xn}, and {yn}
is a Riesz basis for H.

(b) ⇒ (a), (c). By Corollary 5.22, {yn} is a basis for H with biorthogonal
system {xn}. Therefore, this argument follows symmetrically.

(c) ⇒ (a), (b). Assume that {xn} ∼ {yn}. Then there exists a topological
isomorphism T : H → H such that Txn = yn for every n. Given x ∈ H, we
therefore have

x =
∑

n

〈x, yn〉xn =
∑

n

〈x, Txn〉xn,

so

〈Tx, x〉 =

〈∑

n

〈x, Txn〉Txn, x
〉

=
∑

n

|〈x, Txn〉|2 ≥ 0.

Thus T is a continuous and positive linear operator on H, and therefore has
a continuous and positive square root T 1/2 by Theorem 2.18. Similarly, T−1

is positive and has a positive square root. Consequently, T 1/2 is a topological
isomorphism. Further, T 1/2 is self-adjoint, so

〈T 1/2xm, T
1/2xn〉 = 〈xm, T 1/2T 1/2xn〉 = 〈xm, Txn〉 = 〈xm, yn〉 = δmn.

Hence {T 1/2xn} is an orthonormal sequence in H, and it is complete since
{xn} is complete and T 1/2 is a topological isomorphism. Therefore {xn} is the
image of the orthonormal basis {T 1/2xn} under the topological isomorphism
T−1/2, so {xn} is a Riesz basis. By symmetry, {yn} is a Riesz basis as well. ⊓⊔

Now we can prove that Riesz bases and bounded unconditional bases are
equivalent, and we also give several other equivalent formulations of Riesz
bases. We include the proofs of more implications than are strictly necessary.
Additional characterizations of Riesz bases will be given in Theorem 8.32.

Theorem 7.13. Let {xn} be a sequence in a Hilbert space H. Then the fol-
lowing statements are equivalent.

(a) {xn} is a Riesz basis for H.

(b) {xn} is a bounded unconditional basis for H.
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(c) {xn} is a basis for H, and

∑

n

cnxn converges ⇐⇒
∑

n

|cn|2 <∞.

(d) {xn} is complete in H and there exist constants A, B > 0 such that

∀ c1, . . . , cN , A
N∑

n=1

|cn|2 ≤
∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥
2

≤ B
N∑

n=1

|cn|2. (7.4)

(e) There is an equivalent inner product (·, ·) for H such that {xn} is an
orthonormal basis for H with respect to (·, ·).

(f) {xn} is a complete Bessel sequence and possesses a biorthogonal system
{yn} that is also a complete Bessel sequence.

(g) {xn} is complete, and multiplication of vectors in ℓ2 by the Gram matrix
G =

[
〈xn, xm〉

]
m,n∈N

defines a topological isomorphism of ℓ2 onto itself.

Proof. (a) ⇒ (b). This is Theorem 7.11.

(a) ⇒ (e). If {xn} is a Riesz basis for H, then there exists an orthonor-
mal basis {en} for H and a topological isomorphism T : H → H such that
Txn = en for every n. Define

(x, y) = 〈Tx, T y〉 and |||x|||2 = (x, x) = 〈Tx, Tx〉 = ‖Tx‖2.

It is easy to see that (·, ·) is an inner product for H, and by applying Exercise
2.37 we obtain ‖T−1‖−1 ‖x‖ ≤ |||x||| ≤ ‖T ‖ ‖x‖. Hence ||| · ||| and ‖ · ‖ are
equivalent norms for H, and so (·, ·) and 〈·, ·〉 are equivalent inner products.
Since

(xm, xn) = 〈Txm, Txn〉 = 〈em, en〉 = δmn,

the sequence {xn} is orthonormal with respect to (·, ·). Suppose x ∈ H sat-
isfies (x, xn) = 0 for every n. Then 0 = (x, xn) = 〈Tx, Txn〉 = 〈Tx, en〉 for
every n, so Tx = 0 since {en} is complete with respect to 〈·, ·〉. Since T is a
topological isomorphism, we therefore have x = 0, so {xn} is complete with
respect to (·, ·). A complete orthonormal sequence is an orthonormal basis, so
statement (e) holds.

(a) ⇒ (g). Suppose that {xn} is a Riesz basis for H. Since all Riesz bases
and orthonormal bases are equivalent, there exists a topological isomorphism
T : ℓ2 → H such that Tδn = xn, where {δn} is the standard basis for ℓ2. Note
that since {xn} is a Bessel sequence, T is precisely the synthesis operator R
for {xn}. Hence G = R∗R = T ∗T is also a topological isomorphism.

(b) ⇒ (f). Suppose that {xn} is a bounded unconditional basis for H,
and let {yn} be its biorthogonal system. Since H is reflexive, Exercise 6.4
implies that {yn} is also an unconditional basis for H. Also, by Theorem 4.13,
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1 ≤ ‖xn‖ ‖yn‖ ≤ 2C where C is the basis constant for {xn}. Hence {yn} is
a bounded unconditional basis for H. All bounded unconditional bases are
Bessel sequences by Theorem 7.8, so statement (f) follows.

(c)⇒ (a). Let {en} be an orthonormal basis forH. Then, by Theorem 4.20,
statement (c) implies that {xn} ∼ {en}, so {xn} is a Riesz basis for H.

(d) ⇒ (c). Suppose that statement (d) holds. Taking cm = 1 and cn = 0
for n 6= m, we see from equation (7.4) that ‖xm‖2 ≥ B−1. Hence each xm is
nonzero. Choose any M < N, and scalars c1, . . . , cN . Then, by equation (7.4),

∥∥∥∥
M∑

n=1

cnxn

∥∥∥∥
2

≤ B

M∑

n=1

|cn|2 ≤ B

N∑

n=1

|cn|2 ≤
B

A

∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥
2

.

Since {xn} is complete and every xn is nonzero, Theorem 5.17 implies that
{xn} is a basis for H.

It remains to show that
∑
cnxn converges if and only if

∑ |cn|2 < ∞.
Given a sequence of scalars (cn) and M < N, we have by equation (7.4) that

A

N∑

n=M+1

|cn|2 ≤
∥∥∥∥

N∑

n=M+1

cnxn

∥∥∥∥
2

≤ B

N∑

n=M+1

|cn|2.

Therefore,
∑
cnxn is a Cauchy series in H if and only if

∑ |cn|2 is a Cauchy
series of real numbers. Hence one series converges if and only if the other series
converges.

(e) ⇒ (d). Suppose that (·, ·) is an equivalent inner product for H such
that {xn} is an orthonormal basis with respect to (·, ·). Let ||| · ||| denote the
norm induced by (·, ·). Then there exist constants A, B > 0 such that

∀x ∈ H, A |||x|||2 ≤ ‖x‖2 ≤ B |||x|||2. (7.5)

Given x ∈ H, we have the orthonormal basis expansion x =
∑

(x, xn)xn,
where the series converges with respect to ||| · |||. Since ‖ · ‖ is equivalent to
||| · |||, this series also converges with respect to ‖ · ‖. Hence span{xn} is dense
and therefore {xn} is complete, with respect to both norms.

Now choose any scalars c1, . . . , cN . Then by the Plancherel Equality (The-

orem 1.50),
∣∣∣∣∣∣∑N

n=1 cnxn
∣∣∣∣∣∣2 =

∑N
n=1 |cn|2. Combined with equation (7.5),

this implies that

A

N∑

n=1

|cn|2 ≤
∥∥∥∥
N∑

n=1

cnxn

∥∥∥∥
2

≤ B

N∑

n=1

|cn|2,

so statement (d) holds.

(f) ⇒ (b). Suppose that {xn} and {yn} are biorthogonal Bessel systems
that are each complete in H. Given x ∈ H, we have

(
〈x, yn〉

)
∈ ℓ2 since {yn}
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is Bessel. Hence z =
∑ 〈x, yn〉xn converges unconditionally by Theorem 7.2.

By biorthogonality, 〈z, yn〉 = 〈x, yn〉 for every n, and so z = x since {yn} is
complete. Thus x =

∑ 〈x, yn〉xn with unconditional convergence. Biorthogo-
nality ensures that this representation is unique, so {xn} is an unconditional
basis for H. Both {xn} and {yn} are bounded above in norm since they are
Bessel sequences. Also, 1 ≤ ‖xn‖ ‖yn‖ ≤ 2C, where C is the basis constant
for {xn}, so {xn} and {yn} are bounded below in norm. Therefore {xn} is a
bounded unconditional basis for H.

(f) ⇒ (g). Suppose that {xn}, {yn} are biorthogonal sequences that are
each complete Bessel sequences. Let C, R be the analysis and synthesis oper-
ators for {xn}, and let D, V be the analysis and synthesis operators for {yn}.
These are all bounded since {xn} and {yn} are Bessel. By biorthogonality, if
c ∈ ℓ2, then

CV c =

(〈∑

n

cnyn, xm

〉)

m∈N

= (cm)m∈N = c.

Further, if x ∈ H, then RDx =
∑ 〈x, yn〉xn, and biorthogonality implies

that 〈RDx, yn〉 = 〈x, yn〉 for each n. Since {yn} is complete, this implies that
RDx = x. Symmetric arguments show that V C andDR are identity operators
as well. Finally, G = CR, so L = DV is a bounded operator that satisfies

GL = CRDV = CV = I and LG = DV CR = DR = I.

Hence G has a bounded two-sided inverse, and therefore is a topological iso-
morphism.

(g) ⇒ (d). Assume that {xn} is complete and the Gram matrix G de-
fines a topological isomorphism of ℓ2 onto itself. Then G is bounded, so
we have by Theorem 7.6 that {xn} is a Bessel sequence, and therefore

〈Gc, c〉 =
∥∥∑ cnxn

∥∥2 ≥ 0 for all c = (cn) ∈ ℓ2. Hence G is a positive operator

on ℓ2, and in fact it is positive definite since it is a topological isomorphism.
Exercise 2.45 therefore implies that |||c||| = 〈Gc, c〉 is an equivalent norm on

ℓ2. Hence there exist constants A, B > 0 such that A |||c|||2 ≤ ‖c‖2ℓ2 ≤ B |||c|||2
for all c ∈ ℓ2, and this implies that statement (d) holds. ⊓⊔

Exercises

7.13. Given a Riesz basis {xn} in a Hilbert space H, prove that the following
statements are equivalent.

(a)
∑
cnxn converges.

(b)
∑
cnxn converges unconditionally.

(c)
∑ |cn|2 <∞.
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7.14. Show that every basis for a finite-dimensional vector space V is a Riesz
basis for V (with respect to any inner product on V ).

7.15. Exhibit an unconditional basis for a Hilbert space H that is not a Riesz
basis for H.

7.16. Show that if {xn} is a complete sequence in a Hilbert space H that

satisfies
∥∥∑N

n=1 cnxn
∥∥2

=
∑N
n=1 |cn|2 for any N ∈ N and c1, . . . , cN ∈ F,

then {xn} is an orthonormal basis for H.

7.17. Let {xn}, {yn} be Riesz bases for Hilbert spaces H, K, respectively.
Show that the tensor product sequence {xm ⊗ yn}m,n∈N is a Riesz basis for
H ⊗K = B2(H,K) (see Appendix B for definitions).

7.18. Let {xn} be an orthonormal basis for a Hilbert space H. Suppose {yn}
is a sequence in H and there exists 0 < λ < 1 such that

∥∥∥∥
N∑

n=1

cn (xn − yn)
∥∥∥∥

2

≤ λ

N∑

n=1

|cn|2, N ∈ N, c1, . . . , cN ∈ F.

Show that {yn} is a Riesz basis for H.

7.19. Let {xn} be an orthonormal basis for a Hilbert space H. Let Tk ∈ B(H)
and ank ∈ F be such that

λ =

∞∑

k=1

‖Tk‖
(
sup
n
|ank|

)
< 1.

Assume that the series

yn = xn +

∞∑

k=1

ank Tken

converges for each n ∈ N. Show that {yn} is a Riesz basis for H.

7.20. In this exercise we will use the abbreviation eb(x) = e2πibx, where b ∈ R.

Also, we identify the Hilbert space L2(T) with L2[− 1
2 ,

1
2 ].

Fix λn ∈ C and assume that

δ = sup
n∈Z

|n− λn| < ∞.

(a) Define bounded linear operators Tk on L2[− 1
2 ,

1
2 ] by

Tkf(x) = xkf(x).

Show that the operator norm of Tk is ‖Tk‖ = 2−k.
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(b) Define

ank = −
(
2πi(λn − n)

)k

k!
.

Show that

en − eλn =
∞∑

k=1

ank Tken, n ∈ Z,

where the series converge absolutely in L2[− 1
2 ,

1
2 ].

(c) Show that if
δ < (ln 2)/π ≈ 0.22 . . . ,

then {e2πiλnx}n∈Z is a Riesz basis for L2[− 1
2 ,

1
2 ].

Remark: This result is due to Duffin and Eachus [DE42], but it is not
quite the best possible. Kadec’s 1

4 -Theorem [Kad64] states that if δ < 1
4 then

{e2πiλnx}n∈Z is a Riesz basis for L2[− 1
2 ,

1
2 ], and it is known that 1

4 is the
optimal value. For a more detailed discussion, we refer to [You01].
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Frames in Hilbert Spaces

So far in this volume we have mostly focused on bases, which provide unique
series representations of vectors in Banach spaces in terms of the basis vectors.
Intuitively, uniqueness seems to be important, if not essential, to any practi-
cal use of series representations. Yet in many applications uniqueness turns
out to be more of a hindrance than a help. For example, suppose that {xn}
is a basis for a Banach space. Then x =

∑ 〈x, an〉xn uniquely, so x is char-
acterized by the information appearing in the sequence of basis coefficients(
〈x, an〉

)
. Considering a data transmission application, if even one single coef-

ficient 〈x, an〉 is lost from this sequence during transmission, then the receiver
has no hope of reconstructing x from the received coefficients. If somehow
there was some redundancy built into the coefficients, then we might still be
able to reconstruct x from the remaining coefficients.

In this chapter we will study frames, which provide basis-like but usually
redundant series representations of vectors in a Hilbert space. As suggested
by the preceding discussion, frames have found many applications in engineer-
ing, but are also important tools in pure mathematics. For example, frames
play key roles in wavelet theory, time-frequency analysis, the theory of shift-
invariant spaces, sampling theory, and many other areas.

Some of the concrete frames used in those applications will be presented
in Part III. In this chapter we concentrate on the abstract theory of frames.
Frames were first introduced by Duffin and Schaeffer [DS52] during their study
of nonharmonic Fourier series, and that paper is still an elegant introduction to
frames. Many of the proofs that we present are directly inspired by Duffin and
Schaeffer’s paper. Other important sources include the classic text by Young
[You01] and the papers and texts by Daubechies [Dau92] and Christensen
[Chr03]. Other references will be noted as we progress through the chapter.

C. Heil, A Basis Theory Primer: Expanded Edition, Applied and Numerical Harmonic Analysis,   
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8.1 Definition and Motivation

Each orthonormal basis {en} for a Hilbert space H satisfies the Plancherel

Equality, which states that
∑ |〈x, en〉|2 = ‖x‖2 for all x ∈ H. However, a

sequence can satisfy the Plancherel Equality without being orthonormal or a
basis. Here is an (elementary) finite-dimensional example.

Example 8.1. Let H = R2, and set

x1 = (1, 0), x2 = (0, 1), x3 =
(

1√
2
, 1√

2

)
, x4 =

(
− 1√

2
, 1√

2

)
.

Each of {x1, x2} and {x3, x4} is an orthonormal basis for R2, so

4∑

n=1

|〈x, xn〉|2 = 2 ‖x‖2, x ∈ R2.

Therefore the family {2−1/2xn}4n=1 satisfies the Plancherel Equality, but it is
not orthogonal and is not a basis for R2. ♦

We will call a sequence that satisfies the Plancherel Equality a Parseval
frame. Exercise 8.1 gives another, less trivial, example of a Parseval frame.
Specifically, if we take

x1 = (0, 1), x2 =
(
−

√
3

2 ,− 1
2

)
, x3 =

(√
3

2 ,− 1
2

)
,

then
∑3

n=1 |〈x, xn〉|2 = 3
2 ‖x‖2 for all x ∈ R2. Therefore, if we set c = (2/3)1/2,

then {cx1, cx2, cx3} is a Parseval frame, but it is not a union of orthonormal
bases. This system is affectionately referred to as the “Mercedes frame” (see
Figure 8.1). Using a little three-dimensional visualization, we realize that the
Mercedes frame is the orthogonal projection of a certain orthonormal basis
for R3 onto a two-dimensional plane. We will see in Corollary 8.34 that all
frames can be realized in a similar manner.

While a Parseval frame is required to precisely satisfy the Plancherel
Equality, the definition of a generic frame imposes a less stringent require-
ment.

Definition 8.2 (Frame). A sequence {xn} in a Hilbert space H is a frame
for H if there exist constants A, B > 0 such that the following pseudo-
Plancherel formula holds:

∀x ∈ H, A ‖x‖2 ≤
∑

n

|〈x, xn〉|2 ≤ B ‖x‖2. (8.1)

The constants A, B are called frame bounds. We refer to A as a lower frame
bound, and to B as an upper frame bound. The largest possible lower frame
bound is called the optimal lower frame bound, and the smallest possible upper
frame bound is the optimal upper frame bound. ♦
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-1 1

-1

1

Fig. 8.1. The three vectors of the Mercedes frame. A dashed unit circle is included
for comparison, and also to motivate its alternative name (the peace frame).

Thus, {xn} is a frame if |||x||| =
∥∥(〈x, xn〉

)∥∥
ℓ2

is an equivalent norm

for H, and if it is possible to take A = B = 1 then we actually have
‖x‖ =

∥∥(〈x, xn〉
)∥∥
ℓ2

(and in this case we call {xn} a Parseval frame, see

Definition 8.3). Although the frame definition says nothing explicitly about
basis or basis-like properties of {xn}, we will see that the norm equivalence re-
quirement alone implies unconditionally convergent, basis-like representations
of vectors in H.

Frames were introduced by Duffin and Schaeffer in their 1952 paper on
nonharmonic Fourier series [DS52], and much of the abstract theory of frames
was elegantly laid out in that paper. Young’s text [You01], whose first edition
appeared in 1980, contains a beautiful development of abstract frames and
their applications to nonharmonic Fourier series. Frames for L2(R) based
on time-frequency or time-scale translates of functions were constructed by
Daubechies, Grossmann, and Meyer in [DGM86], and the paper [Dau90] by
Daubechies extensively analyzed frames in these settings. These papers and
others spurred a dramatic development of wavelet theory and frame theory
in the following years; see the texts [Dau92], [Grö01], [Chr03], or the research
survey [HW89].

The following special types of frames will be important.

Definition 8.3. Let {xn} be a frame for a Hilbert space H.

(a) We say that {xn} is a tight frame if we can choose A = B as frame bounds.
In this case, we usually refer to A as “a frame bound” for {xn}, or say
that {xn} is an A-tight frame.



206 8 Frames in Hilbert Spaces

(b) We say that {xn} is a Parseval frame if A = B = 1 are frame bounds.
Thus a Parseval frame is a 1-tight frame.

(c) We say that {xn} is an exact frame if it ceases to be a frame whenever
any single element is deleted from the sequence. ♦

On occasion we need to deal with sequences that do not satisfy the frame
condition on all of H but are frames for their closed spans.

Definition 8.4. A sequence {xn} in a Hilbert space H is called a frame se-
quence if it is a frame for span{xn}. ♦

We make some basic observations about frames.

Remark 8.5. (a) Every orthonormal basis is an exact Parseval frame, and con-
versely every exact Parseval frame is an orthonormal basis (Exercise 8.7). On
the other hand, we have already seen examples of Parseval frames that are
not exact, not orthonormal, and not bases.

(b) A frame is a sequence, not a set, and hence repetitions of elements are
allowed. Also, the zero vector is allowed to be an element of a frame. This
gives us more trivial examples of frames that are not bases, e.g., if {en} is an
orthonormal basis for H then {0, e1, e2, . . . } is a Parseval frame that is not a
basis. We must beware of the zero vector when dealing with frames, but we
should not be misled into thinking that the only differences between frames
and bases arise from trivialities such as repeating elements or including the
zero vector. There are many nontrivial and interesting examples of frames,
even in finite dimensions.

(c) If {xn} is a frame then
∑ |〈x, xn〉|2 is an absolutely convergent series

of nonnegative scalars |〈x, xn〉|2, and therefore it converges unconditionally by

Lemma 3.3. In particular,
∑ |〈x, xσ(n)〉|2 =

∑ |〈x, xn〉|2 for any permutation

σ of N. Hence every rearrangement {xσ(n)} of a frame is a frame, and therefore
it usually does not matter what countable set we use to index a frame. Many
series involving frames will converge unconditionally—but not all. We will
consider this issue in more detail in Section 8.6.

(d) Every frame is a Bessel sequence, and hence all of the results derived
in Section 7.1 apply to frames. However, not every Bessel sequence is a frame
(consider part (c) of Example 8.6). When trying to show that a given sequence
is a frame it is often comparatively easy to show that it is a Bessel sequence.
The difficulty usually lies in establishing the existence of a lower frame bound.

(e) A Bessel sequence need not be complete, but it follows from Definition
8.2 that frames must be complete. For, if we have 〈x, xn〉 = 0 for every n, then
A ‖x‖2 ≤∑ |〈x, xn〉|2 = 0 and therefore x = 0. Since any space that contains
a countable complete subset is separable (Theorem 1.27), we conclude that a
Hilbert space that possesses a frame is separable. Conversely, every separable
Hilbert space has an orthonormal basis and hence has frames.
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(f) Some authors use the term “normalized frame” for what we call a
Parseval frame, and other authors define a “normalized frame” to be a frame
{xn} such that ‖xn‖ = 1 for all n. The latter terminology is more in line
with the terminology for normalized bases introduced in Definition 4.5, but
because of this ambiguity in meaning, we will avoid using the term normalized
in connection with frames.1 Currently, the preferred terminology for a frame
that satisfies ‖xn‖ = 1 for all n is uniform norm frame or equal norm frame.

(g) At first glance, “exact frame” may seem to be another unfortunate
choice of terminology since we already have defined an exact sequence to be
a sequence that is both minimal and complete. However, we will see that a
frame is an exact sequence if and only if it is an exact frame, so there is no
ambiguity with this terminology in the end. We will also see that a frame is
an exact frame if and only if it is a basis for H, in which case it is actually
a Riesz basis for H. An inexact frame is redundant or overcomplete in the
sense that a proper subset of the frame is still complete (in fact, still a frame).
Hence, we often use the terms inexact, overcomplete, or redundant to describe
a frame that is not a basis.

(h) Our focus in this volume is on infinite sequences {xn}n∈N that are
frames for infinite-dimensional Hilbert spaces. However, we can certainly con-
sider frames for finite-dimensional spaces. Exercise 8.11 will show that a se-
quence {v1, . . . , vn} is a frame for a d-dimensional Hilbert space H if and
only if {v1, . . . , vn} is a spanning set for H, and it is an exact frame if and
only if it is a Hamel basis for H. While this seems to suggest that frames for
finite-dimensional spaces (often referred to as finite frames) are trivial, quite
the opposite is true. The elegant characterization of finite uniform norm tight
frames (FUNTFs) by Benedetto and Fickus [BF03] has inspired a great deal
of research, and finite frames play important roles in modern signal-processing
applications such as Σ-∆ quantization schemes [BPY06]. We refer to the text
[HKLW07] and the survey paper [CFKLT06] for more on finite frames. ♦

Looking ahead, the “frame miracle” is that even though the definition of a
frame is a statement about inner products that manifestly does not imply that
the sequence is a basis, a frame {xn} nonetheless yields basis-like expansions
of the form x =

∑
an(x)xn for x ∈ H. We can even choose functionals an that

are continuous, and so we have x =
∑ 〈x, yn〉xn for some yn ∈ H. Further,

there is a canonical choice for the dual system {yn}, and using that choice
these “frame expansions” converge unconditionally for every x ∈ H. We have
almost every advantage of an unconditional basis—except that the scalars in
this expansion need not be unique in general. We will prove these facts for
general frames in Section 8.2. Many of these facts have elegant direct proofs
for the case of tight frames, and are assigned as exercises at the end of this
section. In particular, Exercise 8.5 shows that if {xn} is an A-tight frame then
x = 1

A

∑ 〈x, xn〉xn for all x ∈ H.
1Thanks to Larry Baggett for introducing the term Parseval frame.
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In the remainder of this section, we give some examples that illustrate
various features of frames. We start with some simple examples that show
that tightness and exactness are distinct properties for frames.

Example 8.6. Let {en} be an orthonormal basis for a Hilbert space H.

(a) {en} is a tight exact frame for H with frame bounds A = B = 1 (hence
is a Parseval frame).

(b) {e1, e1, e2, e2, e3, e3, . . . } is a tight inexact frame with bounds A = B = 2,
but it is not orthogonal and it is not a basis, although it does contain an
orthonormal basis. Similarly, if {fn} is another orthonormal basis for H
then {en} ∪ {fn} is a tight inexact frame for H.

(c) {e1, e2/2, e3/3, . . . } is a complete orthogonal sequence and it is a basis
for H, but it does not possess a lower frame bound and hence is not a
frame.

(d) {e1, e2/
√

2, e2/
√

2, e3/
√

3, e3/
√

3, e3/
√

3, . . . } is an inexact Parseval
frame, and no nonredundant subsequence is a frame. Further, while this
sequence does contain an orthogonal basis, that basis is not a Riesz basis
because it is not norm-bounded below.

(e) {2e1, e2, e3, . . . } is a nontight exact frame with frame bounds A = 1,
B = 2. ♦

The preceding example suggests the question: Does every frame contain a
basis as a subset? The example in part (d) shows that if we allow inf ‖xn‖ = 0,
then there exist frames that do not contain a Riesz basis. The first example
of a frame that is norm-bounded below but contains no Riesz bases as subsets
was given by Seip [Sei95]. In that article, Seip obtained a variety of deep
results related to the question of when a system of nonharmonic complex
exponentials {e2πiλnt}n∈N that forms a frame for L2[0, 1] will contain a Riesz
basis, or when a Riesz sequence of exponentials can be extended to form a
frame for L2[0, 1]. Casazza and Christensen also constructed a frame that is
norm-bounded below and which does not contain a Riesz basis [CC98a], and
they further showed in [CC98b] that this frame contains no subsets that are
Schauder bases (see Example 8.45).

Systems of exponentials are very interesting and have applications in many
areas, so let us take a closer look at them. We will focus on “harmonic” or
“lattice” sequences whose frequencies form a subgroup of R. Nonharmonic
systems are considerably more difficult to understand, e.g., see the text by
Young [You01].

Example 8.7 (Trigonometric Systems Revisited). We will consider the trigono-
metric system {e2πibnt}n∈Z in L2(T), where b is a fixed positive real number.
Since functions in L2(T) are 1-periodic, we are implicitly considering e2πibnt

to be defined on the interval [0, 1) and then extended 1-periodically to R.
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(a) When b = 1 we know that {e2πint}n∈Z forms an orthonormal basis for
L2(T) (see the discussion in Example 1.52 and Section 4.6).

(b) Suppose that b > 1. Considered on all of R, the function e2πibnt is 1/b-
periodic. However, we are restricting our attention to [0, 1). Since 1/b < 1,
the interval [0, 1/b] is properly contained in [0, 1). Therefore, for those t such

that t and t+1/b both belong to [0, 1) we have e2πibnt = e2πibn(t+1/b). Taking

finite linear combinations and limits, every function in span{e2πibnt}n∈Z must
exhibit a similar behavior. However, not every function in L2(T) satisfies
f(t) = f(t + 1/b), so there are functions in L2(T) that are not in the closed

span of {e2πibnt}n∈Z. For example, the function f(t) = t, t ∈ [0, 1), is one of

these. Hence {e2πibnt}n∈Z is incomplete and therefore cannot be a frame for
L2(T) (see Exercise 8.9).

(c) Now consider 0 < b < 1. It is still true that e2πibnt is 1/b-periodic when
we consider all t ∈ R, but now we have 1/b > 1. Hence the argument used in
part (b) does not apply to this case. Moreover, for special choices of b we can
easily see that {e2πibnt}n∈Z is a frame for L2(T). For example, if b = 1/2 then
we can write {e2πibnt}n∈Z as a union of two orthonormal bases for L2(T):

{
e2πint/2

}
n∈Z

=
{
e2πint

}
n∈Z

∪
{
e2πi(n+1/2)t

}
n∈Z

=
{
e2πint

}
n∈Z

∪
{
eπit e2πint

}
n∈Z

.

Hence this system is a tight frame with frame bound 2. Similarly, if 1/b =
M ∈ N then {e2πibnt}n∈Z is a union of M orthonormal bases and therefore
is an M -tight frame. We often say that a sequence that is a union of M
orthonormal bases or Riesz bases is “M -times overcomplete,” or that it has
“redundancy M.”

What if 1/b is not an integer? For example, if 1/b =
√

2 then there is

certainly no way to divide {e2πint/
√

2}n∈Z into “
√

2-many orthonormal bases.”

Yet Exercise 8.9 shows that {e2πint/
√

2}n∈Z is a tight frame, and the frame
bound is exactly

√
2. In some sense, this system has redundancy

√
2, even

though we cannot interpret redundancy as meaning that a sequence is a union
of bases. Quantifying what redundancy means is surprisingly difficult, and we
refer to the papers [BCHL06a], [BCHL06b] for results in this direction (see
also the survey paper [Hei07]).

The system {e2πibnt}n∈Z illustrates another subtlety about the meaning
of redundancy. Exercise 8.9 shows that {e2πibnt}n∈Z is a tight frame but is
not a basis for L2(T) when 0 < b < 1. The frames discussed in Example 8.6
that fail to be bases do so because they contain linearly dependent subsets,
but we will show that this is not the case for {e2πibnt}n∈Z.

Suppose that {e2πibnt}n∈Z contained a finite dependent subset. Then we
would have

N∑

n=−N
cne

2πibnt = 0
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for some N ∈ N and scalars cn not all zero. Technically, this is an equality
of functions in L2(T), which means that it holds for almost every t. However,
since both sides are continuous, we can assume without loss of generality that

equality holds for all t. Let p be the polynomial p(z) =
∑N
n=−N cnz

n+N . Then

for z = e2πibt with t ∈ R we have

p(z) =
N∑

n=−N
cne

2πib(n+N)t = e2πibNt
N∑

n=−N
cne

2πibnt = 0.

Hence p has uncountably many roots in the complex plane. This contradicts
the Fundamental Theorem of Algebra, which states that a nontrivial polyno-
mial has at most finitely many roots. Therefore, even though {e2πibnt}n∈Z is
a redundant frame, it is finitely linearly independent.

In summary, if 0 < b < 1 then {e2πibnt}n∈Z is a tight frame with “redun-
dancy 1/b” that is not a basis yet provides basis-like representations of vectors
in L2(T). This frame is redundant, even though it is finitely linearly indepen-
dent. Exercise 8.9 shows that this frame is not ω-independent, and therefore
is not minimal. In particular, the constant function 1 (which is e2πib0t) be-
longs to span{e2πibnt}n6=0, so this smaller set is still complete, and Exercise 8.6
shows that this smaller set is still a frame for L2(T). ♦

Remark 8.8. Although it takes some of the “magic” out of it, we can get an im-
portant insight into Example 8.7 by recasting it in terms of orthogonal projec-
tions. Since the trigonometric system {e2πint}n∈Z is an orthonormal basis for
L2[0, 1], a simple change of variables tells us that {b−1/2e2πibnt}n∈Z is an or-
thonormal basis for L2[0, b−1]. If 0 < b < 1 then we can think of L2[0, 1] as be-
ing a closed subspace of L2[0, b−1] by extending a function f ∈ L2[0, 1] by zero

on (1, b−1]. With this understanding, the mapping P : L2[0, b−1] → L2[0, 1]
defined by Pf = f · χ[0,1] is an orthogonal projection. By Exercise 8.8, the
orthogonal projection of an orthonormal basis onto a closed subspace is a
Parseval frame for that subspace. Hence the sequence {b−1/2e2πibnt}n∈Z in
L2[0, 1] is simply the image of an orthonormal basis under an orthogonal pro-
jection, and therefore is a Parseval frame. On the other hand, if b > 1 then
L2[0, b−1] is a proper subspace of L2[0, 1], which yields (why?) the incomplete-
ness statement of Example 8.7(b).

Later we will see that the fact that an orthogonal projection of an or-
thonormal basis is a Parseval frame has a converse, see Corollary 8.34. ♦

Example 8.7 shows that some redundant frames contain no finitely de-
pendent subsets, and also shows that some redundant frames are unions of
orthonormal bases while others are not. We have also seen that some frames
contain no bases as subsets. Feichtinger asked a very natural related question,
and made the following conjecture (recall that a Riesz sequence is a sequence
{xn} that is a Riesz basis for its closed span within H).
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Conjecture 8.9 (Feichtinger Conjecture). If {xn} is a frame that is
norm-bounded below, then {xn} can be written as the union of finitely many
Riesz sequences. ♦

The reason that we include norm-boundedness in this conjecture is that
there exist trivial counterexamples if we allow the norms of the frame elements
to converge to zero, e.g., see Example 8.6(d).

At the time of writing, there are many classes of frames for which the
Feichtinger Conjecture is known to be true (e.g., see [Grö03], [BCHL06a],
[BoS06]), but there are no known counterexamples. More surprisingly, Casazza
and Tremain [CT06] have shown that the Feichtinger Conjecture is equivalent
to an entire suite of other open conjectures from different areas of mathemat-
ics and engineering, including the 1959 Kadison–Singer Conjecture, which is
one of the deepest open problems in operator theory today. For surveys and
references, see [CE07], [CMTW06].

The frames of complex exponentials discussed in Example 8.7 are related
to many other types of frames that arise naturally in theory and applications.
Some of these are listed in the next example, and there are many variations
on these types of frames.

Example 8.10. (a) Given ϕ ∈ L2(T), a frame of weighted exponentials is a

frame for L2(T) of the form {e2πibntϕ(t)}n∈N, where bn ∈ R.Often we require

that the set {bn} have some special structure, e.g., {bn} = bZ for some fixed

b > 0. A specific system of weighted exponentials of the form {e2πintϕ(t)}n∈N

was considered in Example 5.13, and the unweighted system {e2πibnt}n∈N

was studied above in Example 8.7. We will consider the weighted systems
{e2πintϕ(t)}k∈Z in detail in Section 10.3.

(b) Given g ∈ L2(R), a frame of translates is a frame sequence in L2(R)
of the form {g(t− ak)}k∈N, where ak ∈ R. We will consider lattice frames of
translates of the form {g(t − ak)}k∈Z in Section 10.4, and they also play an
important role in Chapter 12.

(c) Given g ∈ L2(R), a Gabor frame is a frame for L2(R) of the form

{e2πibntg(t− an)}n∈N,

where an, bn ∈ R. If a, b > 0 are fixed and {e2πibntg(t− ak)}k,n∈Z is a frame
for L2(R) then we call it a lattice Gabor frame. We will study lattice Gabor
frames in Chapter 11.

(d) Given ψ ∈ L2(R), a wavelet frame is a frame for L2(R) of the form

{a1/2
n ψ(ant− bn)}n∈N,

where an > 1 and bn ∈ R. Some of the most common wavelet frames are
dyadic wavelet frames based on dilation by a factor of 2, e.g., a frame of the
form {2n/2ψ(2nt − k)}k,n∈Z. We will study dyadic wavelet frames in Chap-
ter 12. ♦
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In the examples above, we cannot choose ϕ, g, ψ, an, or bn at random
and hope to obtain a frame. Often we can find some specific functions and
parameters that will yield a frame, but constructing frames that have extra
desirable properties is usually more difficult. Moreover, it is extremely difficult
or impossible to explicitly characterize all possible choices of ϕ, g, ψ, an, bn
that yield frames. We will address some of these issues in Chapters 10–12.

Remark 8.11. We call e2πibtg(t − a) a time-frequency translate of g and
a1/2ψ(at − b) a time-scale translate of ψ. Thus a Gabor frame is a frame
constructed from time-frequency translates of a function g, while a wavelet
frame is a frame constructed from time-scale translates of ψ. ♦

As we have mentioned, Gabor frames play an important role in time-
frequency analysis, which is a type of local harmonic analysis. To give one
illustration of why we are interested in time-frequency frames rather than
time-frequency Riesz bases, we quote two versions of the Balian–Low Theo-
rems. Essentially, these theorems tell us that we simply cannot construct useful
Gabor systems that are Riesz bases for L2(R), and so we absolutely need the
added flexibility of frames in order to construct “useful” Gabor systems.

Theorem 8.12. Fix g ∈ L2(R) and a, b > 0.

(a) (Classical Balian–Low Theorem) If {e2πibmtg(t − an)}m,n∈Z is a Riesz
basis for L2(R), then

(∫ ∞

−∞
|tg(t)|2 dt

)(∫ ∞

−∞
|ξĝ(ξ)|2 dξ

)
=∞,

where ĝ denotes the Fourier transform of g (see Definition 9.7).

(b) (Amalgam Balian–Low Theorem) If {e2πibmtg(t − an)}m,n∈Z is a Riesz
basis for L2(R), then either g is not continuous or

∑

k∈Z

‖g χ[k,k+1]‖L∞ = ∞. ♦

We will discuss the Balian–Low Theorems in Section 11.8, and we refer to
the survey paper [BHW95] for historical discussion and references. Qualita-
tively, both versions of the Balian–Low Theorem (which is known familiarly
as the BLT )2 say that if a lattice Gabor frame is not redundant, then the
generating function g has such poor time-frequency localization that it is es-
sentially useless for nontrivial applications. For example, the easiest example
of a Gabor orthonormal basis is obtained by taking g = χ

[0,1] and a = b = 1
(see Exercise 11.5). This function g is discontinuous. Further, while g has ex-
cellent decay in time (in fact, it is zero outside of [0, 1]), its Fourier transform
is ĝ(ξ) = e−πiξ (sin πξ)/(πξ), which decays only on the order of 1/|ξ| and is
not even integrable. On the other hand, it is possible to create very nice func-
tions g that generate redundant Gabor frames for L2(R) (see Section 11.2).
These are the frames that are used in practice in time-frequency analysis.

2In the United States, a BLT is a Bacon, Lettuce, and Tomato sandwich.
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Exercises

8.1. Prove that the Mercedes frame is a tight frame for R2 with frame bound
A = 3/2.

8.2. Show that if {xn} is a frame for a Hilbert space H and {yn} is a Bessel
sequence in H, then {xn} ∪ {yn} is a frame for H.

8.3. Show that if {xn}n∈N is a Riesz basis and J ⊆ N, then {xn}n∈J is a
Riesz basis for span{xn}n∈J . Does the analogous statement hold for frames?

8.4. Let {xn} be a sequence in a Hilbert space H, and let E be a dense
subset of H. Show that if there exist some A, B > 0 such that A ‖x‖2 ≤∑ |〈x, xn〉|2 ≤ B ‖x‖2 for x ∈ E, then {xn} is a frame for H. Thus it suffices
to establish the frame condition on some dense (and hopefully “nice”) subset
of H (compare hypothesis (b) of Theorem 7.4).

8.5. Let {xn} be an A-tight frame for a Hilbert space H. Show that the frame
operator for {xn} (see Definition 7.3) is S = AI, and use this to show that
x = A−1

∑ 〈x, xn〉xn for x ∈ H.

8.6. Let {xn} be an A-tight frame in a Hilbert space H.

(a) Show that ‖xn‖2 ≤ A for every n ∈ N.

(b) Show that if ‖xm‖2 < A for some m, then {xn}n6=m is a frame for H,

and the optimal lower frame bound for {xn}n6=m is A−‖xm‖2 (note that this
new frame might not be tight).

(c) Show that if ‖xm‖2 = A for some m, then xm ⊥ xn for all n 6= m.

8.7. Let {xn} be an A-tight frame for a Hilbert space H. Show directly that
the following statements are equivalent.

(a) ‖xn‖2 = A for every n.

(b) {xn} is an orthogonal (but not necessarily orthonormal) sequence with
no zero elements.

(c) {xn} is a basis for H.

(d) {xn} is ω-independent.

(e) {xn} is an exact frame.

Use these equivalences to show that {xn} is an exact Parseval frame for H if
and only if it is an orthonormal basis for H.

8.8. Let P be the orthogonal projection of a Hilbert space H onto a closed
subspace M. Show that if {xn} is an orthonormal basis for H, then {Pxn} is
a Parseval frame for M.
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8.9. Given λ ∈ R, let eλ(t) = e2πiλt for t ∈ [0, 1).

(a) Show that if b > 1, then span{ebn}n∈Z is a proper subspace of L2(T).
In particular, find a nonzero function in L2(T) that is orthogonal to ebn for
every n ∈ Z.

(b) Show that if 0 < b < 1 then {ebn}n∈Z is a tight frame for L2(T),
and find the frame bound. Show directly that this sequence is not orthogonal,
and demonstrate that it is not a basis by finding two distinct ways to write
the constant function as 1 =

∑
cnebn, where the series converges in L2-norm.

Show that {ebn}n6=0 is a frame for L2(T), and therefore {ebn}n∈Z is inexact.

8.10. (a) Prove the following perturbation result for frames. Suppose that
{xn} is a frame for a Hilbert space H with frame bounds A, B, and {yn} ⊆ H
is such that {fn − gn} is a Bessel sequence with Bessel bound K. Show that
{gn} is a frame if K < A.

(b) Show that if {hn} is a sequence in H that satisfies K =
∑ ‖hn‖2 <∞,

then {hn} is a Bessel sequence with Bessel bound K.

(c) Exercise 8.9 showed that {e2πibnt}n∈Z is a frame for L2(T) when 0 <
b ≤ 1. Combine this with parts (a) and (b) of this exercise to formulate and
prove a theorem establishing a sufficient condition on numbers λn ∈ R so that
{e2πiλnt}n∈Z is a frame for L2(T). Do you think your result is optimal?

8.2 Frame Expansions and the Frame Operator

In this section we will show that a frame yields unconditionally convergent,
basis-like representations of vectors in a Hilbert space. Note that frames are
Bessel sequences, so all of the facts in Theorems 7.2 and 7.4 regarding Bessel
sequences also apply to frames.

In the statement of the next result, we use the operator notation U ≤ V
introduced in Definition 2.14. Specifically, U ≤ V if and only if 〈Ux, x〉 ≤
〈V x, x〉 for every x ∈ H.
Theorem 8.13. Let {xn} be a frame for a Hilbert space H with frame bounds
A, B. Then the following statements hold.

(a) The frame operator S is a topological isomorphism of H onto itself, and
AI ≤ S ≤ BI.

(b) S−1 is a topological isomorphism, and B−1I ≤ S−1 ≤ A−1I.

(c) {S−1xn} is a frame for H with frame bounds B−1, A−1.

(d) For each x ∈ H,

x =
∑

n

〈x, S−1xn〉xn =
∑

n

〈x, xn〉S−1xn, (8.2)

and these series converge unconditionally in the norm of H.
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(e) If the frame is A-tight, then S = AI, S−1 = A−1I, and

∀x ∈ H, x = A−1
∑
〈x, xn〉xn.

Proof. (a) Since {xn} is a Bessel sequence, the frame operator S is a contin-
uous positive operator on H. Further, equation (7.2) tells us that 〈Sx, x〉 =∑ |〈x, xn〉|2. Since 〈AIx, x〉 = A ‖x‖2, the frame definition can be rewritten
as

〈AIx, x〉 ≤ 〈Sx, x〉 ≤ 〈BIx, x〉, x ∈ H.
In operator notation, this says that AI ≤ S ≤ BI.

Applying the Cauchy–Bunyakovski–Schwarz Inequality to 〈Sx, x〉, we have

A ‖x‖2 = 〈AIx, x〉 ≤ 〈Sx, x〉 ≤ ‖Sx‖ ‖x‖.

Hence A ‖x‖ ≤ ‖Sx‖ for all x ∈ H, so it follows from Exercise 2.38 that S has
closed range and S : H → range(S) is a topological isomorphism. It therefore
only remains to show that range(S) = H.

Suppose that y ∈ H was orthogonal to range(S), i.e., 〈Sx, y〉 = 0 for every
x ∈ H. Then A ‖y‖2 = 〈AIy, y〉 ≤ 〈Sy, y〉 = 0, so y = 0. Thus range(S)⊥ =
{0}, and since range(S) is a closed subspace we therefore have range(S) =
range(S)⊥⊥ = {0}⊥ = H. Thus S is surjective.

(b) Since S is a positive topological isomorphism, the same is true of S−1.
Also, since AI ≤ S, we have 〈AIy, y〉 ≤ 〈Sy, y〉 for every vector y ∈ H.
Applying this with y = S−1x, we see that

0 ≤ A ‖S−1x‖2 =
〈
AI(S−1x), S−1x

〉

≤
〈
S(S−1x), S−1x

〉

=
〈
x, S−1x

〉

≤ ‖x‖ ‖S−1x‖.

Consequently ‖S−1x‖ ≤ A−1 ‖x‖, and therefore
〈
S−1x, x

〉
≤ ‖S−1x‖ ‖x‖ ≤ A−1 ‖x‖2 =

〈
A−1Ix, x

〉
.

Hence S−1 ≤ A−1I.
To prove the inequality S−1 ≥ B−1I, we will use Lemma 2.17. That

lemma, which is the Cauchy–Bunyakovski–Schwarz Inequality applied to the
inner product (x, y) = 〈S−1x, y〉, tells us that

〈S−1u, v〉2 ≤ 〈S−1u, u〉 〈S−1v, v〉, u, v ∈ H.

Taking u = Sx and v = x, we therefore have

‖x‖4 = 〈x, x〉2 =
〈
S−1(Sx), x

〉2

≤
〈
S−1(Sx), Sx

〉 〈
S−1x, x

〉
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= 〈x, Sx〉
〈
S−1x, x

〉

≤ B ‖x‖2
〈
S−1x, x

〉
.

Hence 〈S−1x, x〉 ≥ B−1 ‖x‖2 = 〈B−1Ix, x〉, so S−1 ≥ B−1I.

(c) The fact that S is self-adjoint implies that S−1 is self-adjoint as well.
Therefore,

∑

n

〈x, S−1xn〉S−1xn =
∑

n

〈S−1x, xn〉S−1xn

= S−1

(∑

n

〈S−1x, xn〉xn
)

= S−1S(S−1x) = S−1x.

Consequently,
∑

n

|
〈
x, S−1xn

〉
|2 =

∑

n

〈
x, S−1xn

〉 〈
S−1xn, x

〉
=
〈
S−1x, x

〉
.

Applying the fact that B−1I ≤ S−1 ≤ A−1I, we conclude that

1

B
‖x‖2 ≤

∑

n

|
〈
x, S−1xn

〉
|2 ≤ 1

A
‖x‖2, x ∈ H.

(d) Since {xn} and {S−1xn} are Bessel sequences,
∑
cnxn and

∑
cnS

−1xn
converge unconditionally for each (cn) ∈ ℓ2. Since

(
〈x, xn〉

)
and

(
〈x, S−1xn〉

)

belong to ℓ2 and S, S−1 are continuous, we have

x = S(S−1x) =
∑

n

〈S−1x, xn〉xn =
∑

n

〈x, S−1xn〉xn

and

x = S−1(Sx) = S−1

(∑

n

〈x, xn〉xn
)

=
∑

n

〈x, xn〉S−1xn,

with unconditional convergence of the series.

(e) This follows from the preceding statements, and was also established
directly in Exercise 8.5. ⊓⊔

Thus each frame {xn} has a dual system {S−1xn} associated to it that
is also a frame. Unlike bases, this dual system need not be biorthogonal to
{xn}, and it need not be unique. We will explore these issues in more detail
in the following sections.

Definition 8.14 (Canonical Dual Frame). Let {xn} be a frame with frame
operator S. The frame {S−1xn} is called the canonical dual frame or the
standard dual frame for {xn}. ♦
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Notation 8.15. Given a frame {xn}, we will write x̃n = S−1xn, so the canon-
ical dual frame is {x̃n}. Thus if {xn} is a frame then

x =
∑

n

〈x, x̃n〉xn =
∑

n

〈x, xn〉 x̃n, x ∈ H, (8.3)

with unconditional convergence of these series. If we let C, R be the analysis

and synthesis operators for {xn} and C̃, R̃ the analysis and synthesis operators
for {x̃n}, then equation (8.3) says that

x = RC̃x = R̃Cx, x ∈ H.

That is, analysis followed by the appropriate synthesis is the identity (though
synthesis followed by analysis will not be the identity in general).

Note that

R̃C̃x =
∑

n

〈x, x̃n〉 x̃n = S−1

(∑

n

〈x, x̃n〉xn
)

= S−1x,

so the frame operator for {x̃n} is S−1. Consequently, the canonical dual of
{x̃n} is {xn}, because

˜̃xn = (S−1)−1 x̃n = SS−1xn = xn. ♦

Sometimes the canonical dual frame is simply referred to as “the dual
frame,” although this can be misleading because there are usually many dual
frames in the following sense.

Definition 8.16 (Alternative Duals). Let {xn} be a frame for a Hilbert
space H. A sequence {yn} ⊆ H such that

x =
∑

n

〈x, yn〉xn, x ∈ H,

is called an alternative dual of {xn}. If {yn} is a frame (which need not be the
case in general), then it is an alternative dual frame, or simply a dual frame
for short, of {xn}. ♦

For example, if {en} is an orthonormal basis for H then the frame
{e1, e1, e2, e2, . . . } has infinitely many duals. The canonical dual frame is
{e1/2, e1/2, e2/2, e2/2, . . .}, but {e1, 0, e2, 0, . . . } and {0, e1, 0, e2, . . . } are ex-
amples of alternative dual frames.

The canonical dual frame is certainly the dual that we encounter most
often. However, in applications the use of an alternative dual can sometimes
lead to frame expansions that are “better behaved” than those obtained using
the canonical dual [LO04], [BLPY10]. To illustrate this, consider the frame
{e1, e1, e2, e2, . . . }. If we use the alternative dual {e1, 0, e2, 0, . . . } then at least
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“half” of the coefficients in the frame expansion will be zero, while if we use
the canonical dual frame {e1/2, e1/2, e2/2, e2/2, . . .} then typically every co-
efficient in the frame expansion will be nonzero. While this example is trivial,
the need for “well-concentrated” frame coefficients is important in many ap-
plications. For a survey of sparse representations with extensive references,
we refer to [BDE09].

In the remainder of this section we will derive some abstract properties of
alternative duals. First we show that every inexact frame has multiple dual
frames.

Lemma 8.17. If {xn} is a frame for a Hilbert space H, then {xn} has a
unique dual frame if and only if it is exact (and in this case the unique dual
is the canonical dual).

Proof. ⇒. The easiest proof of this fact uses some machinery from Section 8.3,
and so we assign it as Exercise 8.23.

⇐. Suppose that {xn} is an inexact frame, and let {x̃n} denote its canon-
ical dual frame. If xm = 0 for some m then x̃m = S−1xm = 0, and in this case
we can obtain a new dual frame by replacing x̃m by any nonzero vector in H
that we like.

So, consider the more interesting case where xn 6= 0 for every n. By defini-
tion of exact frame, there exists some frame element xm that can be removed
from {xn}n∈N yet still leave a frame. That is, {xn}n6=m is a frame for H
for some index m. This frame has a canonical dual frame, say {yn}n6=m. Set
ym = 0. Then {yn}n∈N is a frame, and given x ∈ H we have

∞∑

n=1

〈x, yn〉xn = 〈x, ym〉xm +
∑

n6=m
〈x, yn〉xn = 0 + x = x.

Thus {yn}n∈N is a dual frame for {xn}n∈N, but it is not the canonical dual

{x̃n}n∈N since ym = 0 while x̃m = S−1xm 6= 0. ⊓⊔
The proof of the following theorem is Exercise 8.16.

Theorem 8.18. Let {xn} be a frame for a Hilbert space H.

(a) If {yn} is a Bessel sequence in H that is an alternative dual for {xn},
then {yn} is a frame and {xn} is an alternative dual frame for {yn}.

(b) A Bessel sequence {yn} is the canonical dual frame for {xn} if and only if

it is an alternative dual and range(C) = range(C̃), where C is the analysis

operator for {xn} and C̃ is the analysis operator for {yn}. ♦
The next result deals with the orthogonal projection of frames onto closed

subspaces.

Theorem 8.19. Let {xn} be a frame for a Hilbert space H, with canonical
dual frame {x̃n}. Let P be the orthogonal projection of H onto a closed sub-
space M.
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(a) {Pxn} is a frame for M with the same frame bounds as {xn}, and {P x̃n}
is an alternative dual frame for {Pxn}.

(b) {P x̃n} is the canonical dual frame for {Pxn} if and only if PS = SP,
where S is the frame operator for {xn}.

Proof. (a) The proof that {Pxn} is a frame relies on the fact that Px = x for
x ∈M and the self-adjointness of P, and is assigned as Exercise 8.17. By the
same argument {P x̃n} is a frame for M, and given x ∈M we have

∑

n

〈x, P x̃n〉Pxn = P

(∑

n

〈Px, x̃n〉xn
)

= P (Px) = x,

so {P x̃n} is an alternative dual frame for {Pxn}.
(b) Suppose that {P x̃n} is the canonical dual frame for {Pxn}. Let T be

the frame operator for {Pxn} as a frame for M. Then we have

T−1(Pxn) = P x̃n = PS−1xn, n ∈ N.

Since {xn} is complete and S−1, T−1, and P are continuous, it follows that
T−1Px = PS−1x for every x ∈ H. Since S is a topological isomorphism on H
and T is a topological isomorphism on M, we therefore have

PS = TT−1PS = TPS−1S = TP.

Since P, S, and T are self-adjoint, by taking adjoints we obtain

SP = (PS)∗ = (TP )∗ = PT.

Hence SP = SPP = PTP = PPS = PS.
The converse implication is Exercise 8.17. ⊓⊔
If M is a closed subspace of a Hilbert space H, then we know how to use an

orthonormal basis for M to represent the orthogonal projection of H onto M
(see Theorem 1.49). The next result shows that we can use an arbitrary frame
for M in place of an orthonormal basis to represent an orthogonal projection.

Theorem 8.20. Let {xn} be a frame sequence in a Hilbert space H, and let
M = span{xn}. Let {x̃n} be the canonical dual frame of {xn} as a frame
for M. Then

Px =
∑

n

〈x, x̃n〉xn, x ∈ H, (8.4)

is the orthogonal projection of H onto M.

Proof. Let P be the orthogonal projection of H onto M. To show that P has
the form given in equation (8.4), observe that P x̃n = x̃n since x̃n ∈M. Given
x ∈ H we have Px ∈M, so using frame expansions in M and the fact that P
is self-adjoint it follows that

Px =
∑

n

〈Px, x̃n〉xn =
∑

n

〈x, P x̃n〉xn =
∑

n

〈x, x̃n〉xn. ⊓⊔



220 8 Frames in Hilbert Spaces

Exercises

8.11. Let v1, . . . , vn be vectors in Fd. Give direct proofs of the following state-
ments.

(a) {v1, . . . , vn} is a Bessel sequence in Fd, its synthesis operator corre-
sponds to multiplication by the matrix R that has v1, . . . , vn as columns, and
its analysis operator is C = R∗, the Hermitian of the matrix R.

(b) The following are equivalent: (i) {v1, . . . , vn} spans Fd, (ii) S = C∗C
is positive definite, (iii) {v1, . . . , vn} is a frame for Fd. Further, in case these
hold, the optimal frame bounds for {v1, . . . , vn} are λ1, λd, where λ1 is the
smallest eigenvalue of S and λd is the largest eigenvalue.

(c) The following are equivalent: (i) {v1, . . . , vn} is linearly independent,
(ii) G = CC∗ is positive definite, (iii) {v1, . . . , vn} is a Riesz sequence in Fd.

8.12. Let {v1, . . . , vN} be a finitely many vectors in a Hilbert space H.

(a) Show that {v1, . . . , vN} is a frame sequence, i.e., it is a frame for
span{v1, . . . , vN}.

(b) Assume {v1, . . . , vN} is linearly independent, and let A, B be frame
bounds for {v1, . . . , vN} as a frame for its span. Show that

∀ c1, . . . , cN , A

N∑

k=1

|ck|2 ≤
∥∥∥
N∑

k=1

ckvk

∥∥∥
2

≤ B
N∑

k=1

|ck|2.

8.13. A sequence {xn} in a Banach space X is called a quasibasis if there
exist an ∈ X∗ such that x =

∑ 〈x, an〉xn for all x ∈ X. All Schauder bases
and frames are therefore quasibases. Exhibit a quasibasis for a Hilbert space
that is neither a basis nor a frame.

8.14. Given a sequence {xn} in a Hilbert space H, show that {xn} is a frame
with frame bounds A, B if and only if Sx =

∑ 〈x, xn〉xn is a well-defined
positive linear mapping of H into H that satisfies AI ≤ S ≤ BI.

8.15. This exercise will give an alternative proof that the frame operator S is
a topological isomorphism.

(a) Show that if U, V ∈ B(H) are positive and U ≤ V then ‖U‖ ≤ ‖V ‖.
(b) Let S be the frame operator for a frame {xn} that has frame bounds

A, B. Prove the operator inequalities

0 ≤ I − 1

B
S ≤ B −A

B
I

and

0 ≤ I − 2

A+B
S ≤ B −A

B +A
I,

and use either one of these to show that S is a topological isomorphism.
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8.16. Prove Theorem 8.18.

8.17. Complete the proof of Theorem 8.19.

8.18. Let {xn} be a frame for a Hilbert space H. Let C, R, S be the analysis,

synthesis, and frame operators for {xn}, and let C̃, R̃ be the analysis and
synthesis operators for the canonical dual frame {x̃n}.

(a) Show that C̃ = CS−1 and R̃ = S−1R.

(b) Show that the orthogonal projection P of ℓ2 onto range(C) is

Pc = CR̃c = CS−1Rc =

{〈∑

n

cnx̃n, xk

〉}

k∈N

, c = (cn) ∈ ℓ2.

8.19. Let {xn} be a frame for a Hilbert space H and let C : H → ℓ2 be its
analysis operator. Let {δn} be the standard basis for ℓ2, and prove that the
following two statements are equivalent.

(a) {yn} is an alternative dual frame for {xn}.
(b) There is a bounded left-inverse V of C such that yn = V δn for all

n ∈ N (that is, V : ℓ2 → H is bounded, V C = I, and yn = V δn).

8.20. Let T ∈ B(H) be a Hilbert–Schmidt operator on a Hilbert space H (see
Definition B.7). Show that if {xn} is a frame for H with canonical dual frame

{x̃n}, then the Hilbert–Schmidt norm of T is given by ‖T ‖2HS =
∑ 〈Txn, T x̃n〉.

8.3 Overcompleteness

Now we will prove some results related to the uniqueness of frame expansions.
Our first result shows that among all choices of scalars (cn) for which x =∑
cnxn, the scalars cn = 〈x, x̃n〉 associated with the canonical dual frame

{x̃n} have the minimal ℓ2-norm.

Theorem 8.21. Let {xn} be a frame for a Hilbert space H, and fix x ∈ H. If
x =

∑
cnxn for some scalars (cn), then

∑

n

|cn|2 =
∑

n

∣∣〈x, x̃n〉
∣∣2 +

∑

n

∣∣〈x, x̃n〉 − cn
∣∣2.

In particular, the sequence
(
〈x, x̃n〉

)
has the minimal ℓ2-norm among all such

sequences (cn).

Proof. By equation (8.2) we have x =
∑
anxn where an = 〈x, x̃n〉. Let (cn)

be any sequence of scalars such that x =
∑
cnxn. Since

∑ |an|2 < ∞, there

is nothing to prove if
∑ |cn|2 = ∞, so we may assume that (cn) ∈ ℓ2. Using

the self-adjointness of S−1, we compute that
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〈x, S−1x〉 =

〈∑

n

anxn, S
−1x

〉

=
∑

n

an 〈x̃n, x〉

=
∑

n

anan =
〈
(an), (an)

〉
ℓ2

and

〈x, S−1x〉 =

〈∑

n

cnxn, S
−1x

〉

=
∑

n

cn 〈x̃n, x〉

=
∑

n

cnan =
〈
(cn), (an)

〉
ℓ2
.

Therefore (cn−an) is orthogonal to (an) in ℓ2, so by the Pythagorean Theorem
we have

‖(cn)‖2ℓ2 = ‖(cn − an) + (an)‖2ℓ2 = ‖(cn − an)‖2ℓ2 + ‖(an)‖2ℓ2 . ⊓⊔

As a consequence, we obtain a remarkable formula for
∑
n6=m |〈xm, x̃n〉|2.

This formula and its consequences will play an important role in characterizing
the class of exact frames in Section 8.4. Compare parts (b) and (c) of the next
result to Exercise 8.6, which obtains similar results for tight frames.

Theorem 8.22. Let {xn} be a frame for a Hilbert space H.

(a) For each m ∈ N,

∑

n6=m
|〈xm, x̃n〉|2 =

1 − |〈xm, x̃m〉|2 − |1− 〈xm, x̃m〉|2
2

. (8.5)

(b) If 〈xm, x̃m〉 = 1, then 〈xm, x̃n〉 = 0 for n 6= m.

(c) The removal of a vector from a frame leaves either a frame or an incom-
plete set. Specifically,

〈xm, x̃m〉 6= 1 =⇒ {xn}n6=m is a frame,

〈xm, x̃m〉 = 1 =⇒ {xn}n6=m is incomplete.

Proof. (a) Fix any m, and let an = 〈xm, x̃n〉. Then xm =
∑
anxn by equation

(8.2). However, we also have xm =
∑
δmnxn, so Theorem 8.21 implies that
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1 =
∑

n

|δmn|2 =
∑

n

|an|2 +
∑

n

|an − δmn|2

= |am|2 +
∑

n6=m
|an|2 + |am − 1|2 +

∑

n6=m
|an|2.

Rearranging, we find that

∑

n6=m
|an|2 =

1− |am|2 − |am − 1|2
2

.

(b) Suppose that 〈xm, x̃m〉 = 1. Then
∑

n6=m |〈xm, x̃n〉|2 = 0 by equation

(8.5). Hence 〈x̃m, xn〉 = 0 for n 6= m.

(c) Suppose that 〈xm, x̃m〉 = 1. Then by part (b), x̃m is orthogonal to xn
for every n 6= m. However, x̃m 6= 0 since 〈x̃m, xm〉 = 1 6= 0. Therefore
{xn}n6=m is incomplete in this case.

On the other hand, suppose that 〈xm, x̃m〉 6= 1, and set an = 〈xm, x̃n〉.
We have xm =

∑
anxn by equation (8.2). Since am 6= 1, we therefore have

xm = 1
1−am

∑
n6=m anxn. Hence, for each x ∈ H,

|〈x, xm〉|2 =

∣∣∣∣
1

1− am
∑

n6=m
an 〈x, xn〉

∣∣∣∣
2

≤ C
∑

n6=m
|〈x, xn〉|2,

where C = |1− am|−2
∑
n6=m |an|2 > 0. Therefore,

∑

n

|〈x, xn〉|2 = |〈x, xm〉|2 +
∑

n6=m
|〈x, xn〉|2 ≤ (1 + C)

∑

n6=m
|〈x, xn〉|2.

Hence, if we let A, B be frame bounds for {xn} then

A

1 + C
‖x‖2 ≤ 1

1 + C

∑

n

|〈x, xn〉|2 ≤
∑

n6=m
|〈x, xn〉|2 ≤ B ‖x‖2,

so {xn}n6=m is a frame with frame bounds A/(1 + C), B. ⊓⊔

As a corollary, we find that a frame is exact if and only if it is biorthogonal
to its dual frame. We assign the proof as Exercise 8.21 (compare Exercise 8.7
for the case of tight frames).

Corollary 8.23. If {xn} is a frame for a Hilbert space H, then the following
statements are equivalent.

(a) {xn} is an exact frame.

(b) {xn} and {x̃n} are biorthogonal.

(c) 〈xn, x̃n〉 = 1 for all n.



224 8 Frames in Hilbert Spaces

Consequently, if {xn} is an A-tight frame, then the following statements are
equivalent.

(a’) {xn} is an exact frame.

(b’) {xn} is an orthogonal basis for H.

(c’) ‖xn‖2 = A for all n. ♦

In Example 8.6(d), we constructed a frame that is not norm-bounded
below. The following result shows that all frames are norm-bounded above,
and all exact frames are norm-bounded below (the proof is Exercise 8.22).

Corollary 8.24. If {xn} is a frame for a Hilbert space H with frame bounds
A, B, then the following statements hold.

(a) {xn} is norm-bounded above, with ‖xn‖2 ≤ B for every n ∈ N.

(b) If {xn} is exact then it is norm-bounded below, with A ≤ ‖xn‖2 for every
n ∈ N. ♦

Exercises

8.21. Prove Corollary 8.23.

8.22. Prove Corollary 8.24.

8.23. Show that if {xn} is an exact frame for a Hilbert space H then it has a
unique dual frame (the canonical dual).

8.4 Frames and Bases

Now we will determine the exact relationship that holds between frames and
bases. Our approach in this section follows [HW89]; see [You01] for an alter-
native approach.

Theorem 8.25. An inexact frame is not a basis.

Proof. Assume that {xn} is an inexact frame. Then by definition, {xn}n6=m is
a frame for some m, and therefore is complete. However, no proper subset of
a basis can be complete, so {xn} cannot be a basis. Alternatively, we can see
this directly by writing xm =

∑ 〈xm, x̃n〉xn and xm =
∑
δmnxn. By Theorem

8.22, the fact that {xn}n6=m is a frame implies that 〈xm, x̃m〉 6= 1. Hence we
have two distinct representations of xm in terms of the frame elements, so
{xn} cannot be a basis. ⊓⊔

We observe next that frames are preserved by topological isomorphisms
(see Exercise 8.24).
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Lemma 8.26. Frames are preserved by topological isomorphisms. Specifically,
if {xn} is a frame for a Hilbert space H and T : H → K is a topological isomor-
phism, then {Txn} is a frame for K and the following additional statements
hold as well.

(a) If A, B are frame bounds for {xn}, then {Txn} has frame bounds
A ‖T−1‖−2, B ‖T ‖2.

(b) If S is the frame operator for {xn}, then {Txn} has frame operator TST ∗.

(c) {xn} is exact if and only if {Txn} is exact. ♦

We can now show that the class of exact frames for H coincides with the
class of bounded unconditional bases for H. By Theorem 7.13, this further
coincides with the class of Riesz bases for H.

Theorem 8.27. Let {xn} be a sequence in a Hilbert space H. Then {xn} is
an exact frame for H if and only if it is a bounded unconditional basis for H.

Proof. ⇒. Assume that {xn} is an exact frame for H. Then {xn} is norm-
bounded both above and below by Corollary 8.24. We have from equation
(8.2) that x =

∑ 〈x, x̃n〉xn for all x, with unconditional convergence of this
series. Corollary 8.23 implies that {xn} and {x̃n} are biorthogonal, so this
representation is unique, and therefore {xn} is a bounded unconditional basis
for H.

⇐. Assume that {xn} is a bounded unconditional basis for H. Then {xn}
is a Riesz basis by Theorem 7.13. Therefore, by the definition of Riesz basis,
there exists an orthonormal basis {en} for H and a topological isomorphism
T : H → H such that Ten = xn for all n. However, {en} is an exact frame
and exact frames are preserved by topological isomorphisms (Lemma 8.26),
so {xn} must be an exact frame for H. ⊓⊔

We can explicitly exhibit the topological isomorphism T that appears in
the proof of Theorem 8.27. Since S is a positive operator that is a topological
isomorphism of H onto itself, it has a square root S1/2 that is a positive
topological isomorphism (see Theorem 2.18). Similarly, S−1 has a square root
S−1/2, and it is easy to verify that (S1/2)−1 = S−1/2. Since {xn} is exact,
{xn} and {x̃n} are biorthogonal by Corollary 8.23. Therefore,

〈S−1/2xm, S
−1/2xn〉 = 〈xm, S−1/2S−1/2xn〉 = 〈xm, x̃n〉 = δmn.

Thus {S−1/2xn} is an orthonormal sequence. Moreover, it is complete since
topological isomorphisms preserve complete sequences. Therefore {S−1/2xn}
is an orthonormal basis for H, and the topological isomorphism T = S1/2

maps this orthonormal basis onto the frame {xn}.
We can consider the sequence {S−1/2xn} for any frame, not just exact

frames. If {xn} is inexact then {S−1/2xn} will not be an orthonormal basis
for H, but we show next that it will be a Parseval frame for H.
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Corollary 8.28. Let {xn} be a frame for a Hilbert space H.

(a) S−1/2 is a topological isomorphism of H onto itself, and {S−1/2xn} is a
Parseval frame for H.

(b) 〈xn, x̃n〉 = ‖S−1/2xn‖2, and 0 ≤ 〈xn, x̃n〉 ≤ 1 for every n.

(c) {xn} is an exact frame if and only if {S−1/2xn} is an orthonormal basis
for H.

Proof. (a) S−1/2 is a topological isomorphism because S is. Since frames are
preserved by topological isomorphisms, we therefore have that {S−1/2xn} is
a frame for H. For each x ∈ H,

∑

n

〈x, S−1/2xn〉S−1/2xn = S−1/2SS−1/2x = x = Ix,

and it follows from this that {S−1/2xn} is a Parseval frame.

(b) Since S−1/2 is self-adjoint, we have

〈xn, x̃n〉 =
〈
xn, S

−1xn
〉

=
〈
S−1/2xn, S

−1/2xn
〉

= ‖S−1/2xn‖2.

Since {S−1/2xn} is 1-tight, it follows from Corollary 8.24 that ‖S−1/2xn‖2 ≤ 1
for every n.

(c) Since S−1/2 is a topological isomorphism, {xn} is exact if and only
if {S−1/2xn} is exact. Statement (c) follows by combining this with the fact
that a Parseval frame is exact if and only if it is an orthonormal basis (see
Exercise 8.7). ⊓⊔

We call {S−1/2xn} the canonical Parseval frame associated with {xn}.

Exercises

8.24. Prove Lemma 8.26.

8.25. Let {xn} be a frame for a Hilbert space H. Show that if {xn} is a Riesz
basis for H and M is a proper closed subspace of H, then {Pxn} is a frame
but is not a Riesz basis for M, where P denotes the orthogonal projection
of H onto M.

8.5 Characterizations of Frames

In this section we will prove some equivalent formulations of frames and Riesz
bases in terms of the analysis and synthesis operators, and as images of or-
thonormal bases for H.
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Theorem 8.29. Given a sequence {xn} in a Hilbert space H, the following
statements are equivalent.

(a) {xn} is a frame for H.

(b) There exist A, B > 0 such that A ‖x‖2 ≤ ‖Cx‖2ℓ2 ≤ B ‖x‖2 for every
x ∈ H.

(c) The analysis operator Cx =
(
〈x, xn〉

)
maps H bijectively onto a closed

subspace of ℓ2.

(d) The synthesis operator Rc =
∑
cnxn is well defined for each c = (cn) ∈ ℓ2,

and maps ℓ2 onto H.

(e) {xn} is a complete Bessel sequence, and there exist A, B > 0 such that
A ‖c‖2ℓ2 ≤ ‖Rc‖2 ≤ B ‖c‖2ℓ2 for c ∈ ker(R)⊥, i.e.,

A
∑

n

|cn|2 ≤
∥∥∥∥
∑

n

cnxn

∥∥∥∥
2

≤ B
∑

n

|cn|2

for those c = (cn) that are contained in ker(R)⊥.

In case these hold, the constants A, B appearing in statements (b) and (e)
are frame bounds for {xn}. Further, A = ‖R†‖−2 is a lower frame bound for
{xn}, where R† is the pseudoinverse of the synthesis operator R.

Proof. (a)⇔ (b). Statement (b) is simply a restatement of the definition of a
frame.

(b)⇒ (c). Suppose that there exist constants A, B > 0 such that A ‖x‖2 ≤
‖Cx‖2ℓ2 ≤ B ‖x‖2 for every x ∈ H. Then Cx ∈ ℓ2, C is a bounded injective
mapping of H into ℓ2, and C has closed range by Exercise 2.38.

(c)⇒ (b). Suppose that C mapsH injectively into ℓ2 and has closed range.

Then
∑ |〈x, xn〉|2 = ‖Cx‖2ℓ2 < ∞ for every x, so {xn} is a Bessel sequence.

Theorem 7.2 therefore implies that C is a bounded mapping of H into ℓ2.
As C is injective and has closed range, it is a bounded bijection of H onto
the Hilbert space range(C). Consequently, by the Inverse Mapping Theorem,
C : H → range(C) is a topological isomorphism. By Exercise 2.38, there exists
a constantA > 0 such thatA ‖x‖2 ≤ ‖Cx‖2ℓ2 for all x ∈ H. Since C is bounded,
we also have ‖Cx‖2ℓ2 ≤ ‖C‖2 ‖x‖2, so statement (b) holds.

(b) ⇒ (e). If statement (b) holds, then {xn} is a Bessel sequence with
Bessel bound B, and the analysis operator C has closed range. Therefore
ker(R)⊥ = range(R∗) = range(C), and Theorem 7.2 tells us that the synthesis
operator R is well defined on ℓ2 with ‖R‖2 ≤ B. Therefore ‖Rc‖2 ≤ B ‖c‖2ℓ2
for all c ∈ ℓ2, so the upper inequality in statement (e) holds not only on
ker(R)⊥, but on all of ℓ2.

For the lower inequality, fix c ∈ ker(R)⊥ = range(C). Then c = Cx for

some x ∈ H, so by using the fact R = C∗ and the inequality A ‖x‖2 ≤ ‖Cx‖2ℓ2
we obtain
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A ‖c‖4ℓ2 = A |〈c, c〉|2 = A |〈c, Cx〉|2

= A |〈Rc, x〉|2

≤ A ‖Rc‖2 ‖x‖2

≤ ‖Rc‖2 ‖Cx‖2ℓ2
= ‖Rc‖2 ‖c‖2ℓ2.

This gives the lower inequality A ‖c‖2ℓ2 ≤ ‖Rc‖2 for c ∈ ker(R)⊥.

(e) ⇒ (d). Suppose that statement (e) holds. Then R maps ℓ2 into H
since {xn} is Bessel, and R has dense range since {xn} is complete (see Theo-
rem 7.2). Therefore, to show that statement (d) holds, we need to show that R
is surjective.

Choose any y ∈ H. Then since range(R) is dense in H, we can find vectors
yn ∈ range(R) such that yn → y. For each vector yn, we can choose a sequence
cn ∈ ker(R)⊥ such that Rcn = yn. By hypothesis,

A ‖cm − cn‖2ℓ2 ≤ ‖Rcm −Rcn‖2 = ‖ym − yn‖2,

so {cn} is a Cauchy sequence in ℓ2. Hence there exists some sequence c ∈ ℓ2
such that ‖c−cn‖ℓ2 → 0, and therefore Rcn → Rc in H since R is continuous.
However, Rcn = yn → y, so y = Rc ∈ range(R). Thus R is surjective.

(d)⇒ (a). Suppose that R is well defined and maps ℓ2 onto H. Then {xn}
is a Bessel sequence by Theorem 7.4, so we only need to establish the existence
of a lower frame bound. Since R has closed range, Theorem 2.33 implies that
it has a bounded pseudoinverse R† : H → ℓ2 that satisfies RR†x = x for
every x ∈ range(R) = H. Write the components of the sequence R†x as

R†x =
(
(R†x)n

)
. Then we have

x = RR†x =
∑

n

(R†x)n xn, x ∈ H,

so

‖x‖4 = |〈x, x〉|2 =

∣∣∣∣
∑

n

(R†x)n 〈x, xn〉
∣∣∣∣
2

≤
(∑

n

|(R†x)n|2
)(∑

n

|〈x, xn〉|2
)

=
∥∥R†x

∥∥2

ℓ2

∑

n

|〈x, xn〉|2

≤
∥∥R†∥∥2 ‖x‖2

∑

n

|〈x, xn〉|2.

Rearranging, we find that {xn} has a lower frame bound of ‖R†‖−2.



8.5 Characterizations of Frames 229

Proof of the additional statements. Assume that statements (a)–(e) hold.
The numbers A, B in statement (b) are clearly frame bounds for {xn}, and
the proof of (d)⇒ (a) showed that ‖R†‖−2 is a lower frame bound. Hence the
remaining issue is to show that the constants A, B appearing in statement (e)
are frame bounds for {xn}.

Let S be the frame operator and {x̃n} the canonical dual frame. Given
x ∈ H we have

(
〈x, x̃n〉

)
=
(
〈S−1x, xn〉

)
= C(S−1x) ∈ range(C) = ker(R)⊥,

where we have used the fact that range(C) is closed. Therefore, by state-
ment (e),

A
∑

n

|〈x, x̃n〉|2 ≤
∥∥∥∥
∑

n

〈x, x̃n〉xn
∥∥∥∥

2

= ‖x‖2.

Hence {x̃n} has an upper frame bound of A−1, and a similar calculation shows
it has a lower frame bound of B−1. Since {xn} is the canonical dual of {x̃n},
Theorem 8.13 implies that A, B are frame bounds for {xn}. ⊓⊔

We can also characterize frames as the image of orthonormal bases under
surjective maps. We state the next result for infinite-dimensional spaces, and
discuss the modification needed for finite-dimensional spaces after the proof.

Corollary 8.30. Let H be a separable, infinite-dimensional Hilbert space.
Then a sequence {xn} is a frame for H if and only if there exists an or-
thonormal basis {en} for H and a surjective operator T ∈ B(H) such that
Ten = xn for every n ∈ N.

Proof. ⇒. Suppose {xn} is a frame for H. Let {δn} be the standard basis
for ℓ2, and let {en} be any orthonormal basis for H. Since H and ℓ2 are
each separable, infinite-dimensional Hilbert spaces, there exists an isometric
isomorphism U : H → ℓ2 such that Uen = δn for each n. By Theorem 8.29, the
synthesis operator R is a bounded map of ℓ2 onto H, and we have Rδn = xn
for every n. Therefore UR : H → H is surjective and satisfies URen = xn.

⇐. If {xn} is the image of an orthonormal basis {en} under a bounded
surjective map T, then {xn} is a Bessel sequence by Exercise 7.6, and therefore
the synthesis operator R maps ℓ2 boundedly into H. Choose any y ∈ H. Then
y = Tx for some x since T is surjective. Since {en} is an orthonormal basis
for H, we have x =

∑ 〈x, en〉 en. Since T is bounded, it follows that

y = Tx =
∑

n

〈x, en〉Ten =
∑

n

〈x, en〉xn = Rc,

where c =
(
〈x, en〉

)
∈ ℓ2. Hence R is surjective, and therefore {xn} is a frame

by Theorem 8.29. ⊓⊔
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Suppose that {x1, . . . , xm} is a frame for a d-dimensional Hilbert space H.
By Exercise 8.11, this happens if {x1, . . . , xm} is a spanning set, so we must
have m ≥ n. If m > n then {x1, . . . , xm} is a redundant frame, and in this
case H and ℓ2({1, . . . ,m}) are not isomorphic since they have different di-
mensions. Hence the proof of Corollary 8.30 does not quite carry over to the
finite-dimensional setting. On the other hand, we simply have to modify the
statement of the corollary as follows.

Corollary 8.31. Let H be a d-dimensional Hilbert space, and let K be an
m-dimensional Hilbert space. Then a sequence {x1, . . . , xm} is a frame for H
if and only if there exists an orthonormal basis {e1, . . . , em} for K and a
surjective linear operator T : K → H such that Ten = xn for every n =
1, . . . ,m. ♦

Since a Riesz basis is a frame with extra “independence” properties, we
expect that we can give a characterization of Riesz bases that is similar in
flavor to Theorem 8.29. This is given in the next result, which complements
the characterizations of Riesz bases given in Theorem 7.13. We assign the
proof of Theorem 8.32 as Exercise 8.27.

Theorem 8.32. Given a sequence {xn} in a Hilbert space H, the following
statements are equivalent.

(a) {xn} is a Riesz basis for H.

(b) The analysis operator Cx =
(
〈x, xn〉

)
maps H bijectively onto ℓ2.

(c) The synthesis operator Rc =
∑
cnxn is well defined for each c = (cn) ∈ ℓ2,

and maps ℓ2 bijectively onto H.

(d) There exists an orthonormal basis {en} for H and a bounded bijection
T ∈ B(H) such that Ten = xn for every n ∈ N.

(e) {xn} is an ω-independent frame.

(f) {xn} is an ℓ2-independent frame, i.e., it is a frame and if
∑
cnxn = 0

for some sequence (cn) ∈ ℓ2 then cn = 0 for every n. ♦

Note the subtle difference between statements (e) and (f) in Theorem 8.32.
Whereas ω-independence requires that cn = 0 for all n whenever (cn) is any
sequence such that

∑
cnxn converges and equals zero, ℓ2-independence only

requires that this conclusion hold under the additional assumption that (cn)
belongs to ℓ2. In general, ω-independence is not equivalent to ℓ2-independence,
even for Bessel sequences (see Exercise 8.28).

Using Theorem 8.29, we will show that every frame is equivalent (in the
sense of topological isomorphism) to a particular kind of frame sequence in ℓ2.
This result is due to Holub [Hol94] (see also Aldroubi [Ald95]).

Corollary 8.33. Let {xn} be a sequence in a Hilbert space H, and let {δn}
be the standard basis for ℓ2.
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(a) {xn} is a frame for H if and only if there exists a closed subspace M of
ℓ2 and a topological isomorphism T : M → H such that xn = TPMδn for
every n, where PM is the orthogonal projection of ℓ2 onto M.

(b) {xn} is a Parseval frame for H if and only if we can take the operator T
in part (a) to be an isometric isomorphism.

Further, in case either of these statements holds we can take the subspace M
to be M = range(C), where C is the analysis operator for {xn}.

Proof. Suppose that {xn} is a frame for H. Let M = ker(R)⊥ = range(C),
and define T : M → H by Tc = Rc for c ∈M. Then T is a bounded bijection,
and hence is a topological isomorphism. Further, ker(PM ) = ker(R) = M⊥, so
it follows that RPMδn = Rδn, and therefore TPMδn = RPMδn = Rδn = xn.

We assign the remainder of the proof as Exercise 8.29. ⊓⊔

Viewing Corollary 8.33 from a different angle, we obtain the Naimark
Duality Theorem for frames, which states that all frames can be obtained as
orthogonal projections of Riesz bases (compare this result to Corollaries 8.30
and 8.31). The proof of the next result is Exercise 8.30.

Corollary 8.34 (Naimark Duality). Let {xn} be a sequence in a Hilbert
space H.

(a) {xn} is a frame for H if and only if there exists a Hilbert space K ⊇ H
and a Riesz basis {en} for K such that PHen = xn for each n, where PH
is the orthogonal projection of K onto H.

(b) {xn} is a Parseval frame for H if and only if there exists a Hilbert space
K ⊇ H and an orthonormal basis {en} for K such that PHen = xn for
each n. ♦

Corollary 8.33 is so named because it can be derived from Naimark’s Di-
lation Theorem, see the paper [Cza08] by Czaja for references. It has been
independently discovered several times, and appears to have been first stated
explicitly by Han and Larson [HL00].

Exercises

8.26. Let {xn} be a frame for a Hilbert space H. Let C, R be the analysis

and synthesis operators for {xn}, and let C̃, R̃ be the analysis and synthesis
operators for the canonical dual frame {x̃n}.

(a) Show that range(C) = range(C̃).

(b) Show that the pseudoinverse R† of the synthesis operator R is R† = C̃,
so

R†x = C̃x =
{
〈x, x̃n〉

}
=
{
〈x, S−1xn〉

}
, x ∈ H.
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(c) Show that the optimal frame bounds for {xn} are

A = ‖C̃‖−2 = ‖S−1‖−1 and B = ‖C‖2 = ‖S‖.

8.27. Prove Theorem 8.32.

8.28. Let {xn} be a Bessel sequence in a Hilbert space H, and let R : ℓ2 → H
be its synthesis operator.

(a) Show that {xn} is complete if and only if R has dense range.

(b) Show that {xn} is ℓ2-independent if and only if R is injective.

(c) Now assume that {xn} is a Bessel sequence that is a conditional
Schauder basis for H (see Exercise 7.1 for an example). Show that there exists

some x ∈ H such that
(
〈x, x̃n〉

)
/∈ ℓ2, where (x̃n) is the dual basis to {xn}.

Show that the sequence {xn} ∪ {x} is ℓ2-independent but not ω-independent.

8.29. Prove the remaining statements in Corollary 8.33.

8.30. Prove Corollary 8.34.

8.31. (a) Exhibit a frame for Fd that contains infinitely many nonzero vectors.

(b) Show that if {xn}n∈I is a frame for Fd and infn∈I ‖xn‖ > 0, then I is
finite.

8.32. Let {xn} be a frame for a Hilbert space H and let {yn} be a frame
for a Hilbert space K. Inspired by Definition 4.19, declare {xn} and {yn} to
be equivalent if there exists a topological isomorphism T : H → K such that
Txn = yn for every n.

(a) Show that {xn} and {yn} are equivalent if and only if range(CX) =
range(CY ), where CX , CY are the analysis operators for {xn} and {yn}.

(b) Show that part (a) is equivalent to:

∀ (cn) ∈ ℓ2,
∑

cnxn = 0 ⇐⇒
∑

cnyn = 0.

(c) Exhibit a frame {xn} and a permutation σ of N that fixes all but
finitely many elements of N such that {xn} is not equivalent to {xσ(n)}. Show
that this cannot happen if {xn} is an exact frame.

(d) Exhibit a frame {xn} and a sequence of signs εn = ±1 such that {xn}
is not equivalent to {εnxn}. Show that this cannot happen if {xn} is an exact
frame.

Remark: Parts (c) and (d) illustrate some of the weaknesses of this notion
of equivalence for frames. A more robust notion of frame equivalence was
introduced by Balan and Landau in [BL07].
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8.33. Show that {xn} is a Parseval frame for a Hilbert space H if and only
if there exists a Hilbert space K and a Parseval frame {yn} for K such that{
(xn, yn)

}
is an orthonormal basis for H ×K.

8.34. Let H be an infinite-dimensional separable Hilbert space. Show that
if M is an infinite-dimensional closed subspace of ℓ2, then there exists a frame
{xn} for H such that range(C) = M, where C is the analysis operator.

8.35. This exercise is about superframes as introduced by Balan [Bal98] and
Han and Larson [HL00]. Let {xn} be a frame for a Hilbert space H and let
{yn} be a frame for a Hilbert space K. Let CX be the analysis operator for
{xn} and CY the analysis operator for {yn}.

(a) Show that if range(CX) ⊥ range(CY ) then
{
(xn, yn)

}
is a frame for

H × K, and it is a Parseval frame if and only if both {xn} and {yn} are
Parseval. (When range(CX) ⊥ range(CY ), we say that {xn} and {yn} are
orthogonal frames.)

(b) Suppose that, in addition, we have range(CX)⊕range(CY ) = ℓ2. Show
that

{
(xn, yn)

}
is a Riesz basis for H × K, and it is an orthonormal basis

if and only if {xn} and {yn} are each Parseval frames (in this case, we call{
(xn, yn)

}
a superframe).

(c) Give examples of frames {xn} and {yn} that are not Riesz bases but
are such that

{
(xn, yn)

}
is a Riesz basis for H ×H.

(d) Given a frame {xn} for H, show there exists a frame {yn} for H such
that

{
(xn, yn)

}
is a Riesz basis for H ×H.

8.36. This exercise gives another way to construct frames for “larger” spaces
from “smaller” ones.

(a) Let {xn}, {yn} be frames for Hilbert spaces H, K, respectively. Show
that the tensor product sequence {xm ⊗ yn}m,n∈N is a frame for H ⊗ K =
B2(H,K) (see Appendix B for definitions).

(b) Let E, F be measurable subsets of R. Show that if {fn} is a frame for

L2(E) and {gn} is a frame for L2(F ), then
{
fm(x)gn(y)

}
m,n∈N

is a frame for

L2(E × F ).

8.6 Convergence of Frame Series

In this section we examine the convergence of
∑
cnxn for arbitrary sequences

of scalars when {xn} is a frame. By Theorem 7.2, one of the important facts
about such series are that if {xn} is a frame and

∑ |cn|2 <∞, then
∑
cnxn

converges (unconditionally) in H. The following example shows that the con-
verse does not hold in general.
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Example 8.35. Let {xn} be any frame that includes infinitely many zero el-
ements. Let cn = 1 whenever xn = 0, and let cn = 0 when xn 6= 0. Then∑
cnxn = 0, even though

∑ |cn|2 =∞.
Less trivially, let {en} be an orthonormal basis for a Hilbert space H.

Define xn = n−1en and yn = (1− n−2)1/2en. Then {xn} ∪ {yn} is a Parseval
frame. Let x =

∑
n−1en. This is an element of H since

∑
n−2 < ∞. With

respect to the frame {xn} ∪ {yn} we can write x =
∑

(1 · xn + 0 · yn), and∑
(12 + 02) =∞. ♦

The frame representations in Example 8.35 are not the ones correspond-
ing to the canonical dual frame representations given in equation (8.3). If we
restrict our attention to just the expansions x =

∑ 〈x, x̃n〉xn then we al-

ways have
∑ |〈x, x̃n〉|2 < ∞ since the canonical dual frame {x̃n} is a frame.

However, nonuniqueness is one of the major reasons that we are interested in
frames, so it is important to consider alternative representations of elements
with respect to a frame {xn}.

Most “practical” examples of frames are norm-bounded below. For these
frames, we can completely characterize when

∑
cnxn will converge uncondi-

tionally. The next result and the various examples given in this section are
from [Hei90].

Theorem 8.36. If {xn} is a frame that is norm-bounded below, then

∑

n

|cn|2 <∞ ⇐⇒
∑

n

cnxn converges unconditionally.

Proof. ⇐. Assume that
∑
cnxn converges unconditionally. Then Orlicz’s The-

orem (Theorem 3.16) implies that
∑ |cn|2 ‖xn‖2 =

∑ ‖cnxn‖2 <∞, and since

{xn} is norm-bounded below, it follows that
∑ |cn|2 <∞. ⊓⊔

By Exercise 7.13, if {xn} is an exact frame then
∑
cnxn converges if and

only if it converges unconditionally, and this happens precisely when (cn) ∈ ℓ2.
The next example shows that, for an inexact frame,

∑
cnxn may converge

conditionally, even if the frame is norm-bounded below.

Example 8.37. Let {en} be an orthonormal basis for a separable Hilbert
space H. Then {e1, e1, e2, e2, . . . } is a frame that is norm-bounded below.
The series

e1 − e1 +
e2√
2
− e2√

2
+

e3√
3
− e3√

3
+ · · · (8.6)

converges strongly in H to 0, but the series

e1 + e1 +
e2√
2

+
e2√
2

+
e3√
3

+
e3√
3

+ · · ·

does not converge. Therefore, the series in equation (8.6) converges condi-
tionally (see Theorem 3.10). Since (n−1/2) /∈ ℓ2, the conditionality of the
convergence also follows from Theorem 8.36. ♦
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By Exercise 7.13, if {xn} is an exact frame then the three statements,
(i)
∑ |cn|2 <∞, (ii)

∑
cnxn converges, and (iii)

∑
cnxn converges uncondi-

tionally, are equivalent. By Example 8.37, these equivalences may fail if the
frame is not exact. However, we can certainly construct inexact frames for
which these equivalences remain valid. For example, if {en} is an orthonor-
mal basis for a Hilbert space H, then these equivalences hold for the frame
{xn} = {e1, e1, e2, e3, . . . }. Our next theorem will show that it is precisely
the frames that are Riesz bases plus finitely many elements that have this
property.

Definition 8.38. Let {xn} be a frame for a Hilbert space H.

(a) We call {xn} a Besselian frame if
∑
cnxn converges only for (cn) ∈ ℓ2.

(b) {xn} is an unconditional frame if
∑
cnxn converges if and only if it con-

verges unconditionally.

(c) {xn} is a near-Riesz basis if there is a finite set F ⊆ N such that {xn}n/∈F
is a Riesz basis for H. ♦

In particular, the frame in Example 8.37 is norm-bounded below but is
not unconditional, not Besselian, and not a near-Riesz basis.

The following theorem, and the terminology in Definition 8.38, is due to
Holub [Hol94].

Theorem 8.39. Given a frame {xn} for a Hilbert space H, the following
statements are equivalent.

(a) {xn} is a near-Riesz basis.

(b) {xn} is Besselian.

(c) range(C)⊥ = ker(R) is finite dimensional.

Moreover, if {xn} is norm-bounded below, then statements (a)–(c) are also
equivalent to the following statement.

(d) {xn} is an unconditional frame.

Proof. We will prove some portions of the theorem, and assign the remaining
details and implications as Exercise 8.37.

Note that by applying Corollary 8.33, it suffices to prove the theorem for
a frame of the form {Pδn}, where P is the orthogonal projection of ℓ2 onto
a closed subspace M and {δn} is the standard basis for ℓ2. Such a frame is
Parseval, and we have range(C) = M.

(a) ⇒ (b). Exercise.

(b)⇒ (c). Suppose that range(C)⊥ is infinite dimensional, and let {φn}n∈N

be an orthonormal basis for range(C)⊥ = M⊥ = ker(P ). We will show that
{xn} is not a Besselian frame.

Let m1 = 1. Since φ1 =
∑ 〈φ1, δn〉 δn is a unit vector and
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∑

n

〈φ1, δn〉Pδn = P

(∑

n

〈φ1, δn〉 δn
)

= Pφ1 = 0,

we can find an integer N1 such that

∥∥∥∥
N1∑

n=1

〈φ1, δn〉 δn
∥∥∥∥
ℓ2
≥ 1

2
and

∥∥∥∥
N1∑

n=1

〈φ1, δn〉Pδn
∥∥∥∥
ℓ2
≤ 1.

Since {φn} is orthonormal, it follows from Bessel’s Inequality that φn
w→ 0 (see

Exercise 2.52). That is,

∀x ∈ ℓ2, lim
k→∞

〈φk, x〉 = 0.

Hence we can find an m2 > m1 such that

∥∥∥∥
N1∑

n=1

〈φm2
, δn〉 δn

∥∥∥∥
ℓ2
≤

N1∑

n=1

|〈φm2
, δn〉| ≤

1

4
.

Since

∥∥∥∥
N2∑

n=N1+1

〈φm2
, δn〉 δn

∥∥∥∥
ℓ2
≥
∥∥∥∥
N2∑

n=1

〈φm2
, δn〉 δn

∥∥∥∥
ℓ2
−
∥∥∥∥
N1∑

n=1

〈φm2
, δn〉 δn

∥∥∥∥
ℓ2

≥
∥∥∥∥
N2∑

n=1

〈φm2
, δn〉 δn

∥∥∥∥
ℓ2
− 1

4

→ 1 − 1

4
=

3

4
as N2 →∞,

and

∥∥∥∥
N2∑

n=N1+1

〈φm2
, δn〉Pδn

∥∥∥∥
ℓ2

≤
∥∥∥∥
N2∑

n=1

〈φm2
, δn〉Pδn

∥∥∥∥
ℓ2

+

∥∥∥∥P
( N1∑

n=1

〈φm2
, δn〉 δn

)∥∥∥∥
ℓ2

≤
∥∥∥∥
N2∑

n=1

〈φm2
, δn〉Pδn

∥∥∥∥
ℓ2

+ ‖P‖ 1

4

→ 0 +
1

4
=

1

4
as N2 →∞,

we can choose N2 large enough that we have both

∥∥∥∥
N2∑

n=N1+1

〈φm2
, δn〉 δn

∥∥∥∥
ℓ2
≥ 1

2
and

∥∥∥∥
N2∑

n=N1+1

〈φm2
, δn〉Pδn

∥∥∥∥
ℓ2
≤ 1

2
.
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Continuing in this way, we can find 1 = m1 < m2 < · · · and N1 < N2 < · · ·
such that for each k we have

∥∥∥∥
Nk+1∑

n=Nk+1

〈φmk
, δn〉 δn

∥∥∥∥
ℓ2
≥ 1

2
and

∥∥∥∥
Nk+1∑

n=Nk+1

〈φmk
, δn〉Pδn

∥∥∥∥
ℓ2
≤ 1

2k
.

For each k ∈ N, define

cn = k−1/2 〈φmk
, δn〉, Nk + 1 ≤ n ≤ Nk+1.

Exercise: The series

∞∑

n=N1+1

cnPδn =
∞∑

k=1

Nk+1∑

n=Nk+1

k−1/2 〈φmk
, δn〉Pδn

is Cauchy and therefore converges. However,
∑ |cn|2 = ∞, so we conclude

that {Pδn} is not a Besselian frame for M.

(c) ⇒ (a). Suppose that range(C)⊥ is finite dimensional. Since P is the
orthogonal projection ontoM = range(C), the operator I−P is the orthogonal
projection onto range(C)⊥. By Exercise 1.53,

∑

n

‖(I − P )δn‖2ℓ2 = dim
(
range(C)⊥

)
< ∞,

so we can find some N ∈ N such that

∞∑

n=N+1

‖δn − Pδn‖2ℓ2 < ∞.

Since ‖δn‖ℓ2 = 1, Theorem 5.26 implies that {δ1, . . . , δN , P δN+1, P δN+2, . . . }
is a basis for ℓ2 that is equivalent to {δn}. Therefore this sequence is a
Riesz basis for ℓ2, and hence {Pδn}∞n=N+1 is a Riesz basis for its closed
span K, which is contained within M. Since span{Pδn}∞n=N+1 = K and
span{Pδn}n∈N = M, there exist sets F ⊆ {1, . . . , N} such that the closed
span of {Pδn}n∈F ∪ {Pδn}∞n=N+1 is M. Exercise: If we let F be a minimal
such set, then this sequence is a Riesz basis for M, and hence {Pδn}n∈N is a
near-Riesz basis for M.

(b) ⇔ (d). Exercise. ⊓⊔

Exercises

8.37. Complete the proof of Theorem 8.39.
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8.7 Excess

Now we will take a closer look at the overcompleteness and undercompleteness
of sequences, especially for frames and frame sequences. The results of this
section are mostly taken from [BCHL03].

Notation 8.40. It will be convenient in this section to consider cardinalities
to be either finite or infinite, with no distinction between infinite sets of dif-
ferent sizes. Therefore, given a set E we will let |E| denote its cardinality
if E is finite; otherwise we set |E| = ∞. Likewise, given a subspace S of a
vector space, if S is finite-dimensional then dim(S) will denote its dimension;
otherwise we set dim(S) =∞. ♦

Using this convention, we define the excess and deficit of a sequence as
follows.

Definition 8.41. Let F = {xn} be a sequence in a separable Hilbert spaceH.

(a) The deficit of F is

d(F) = inf
{
|G| : G ⊆ H and span(F ∪ G) = H

}
.

(b) The excess of F is

e(F) = sup
{
|G| : G ⊆ F and span(F\G) = span(F)

}
. ♦

The infimum and supremum in Definition 8.41 are actually achieved, so
the deficit is the cardinality of the smallest set that we need to add to F so
that it becomes complete in H, and the excess is the cardinality of the largest
set that we can remove from F without changing its closed span.

Note that a frame for a Hilbert space H has zero deficit, as does any
complete sequence. On the other hand, a Riesz sequence in H has zero excess,
and it follows from Theorem 8.22 that if a frame has zero excess then it is an
exact frame and hence is a Riesz basis for H.

The following result, proved in [BCHL03], relates the deficit and excess to
the analysis and synthesis operators.

Lemma 8.42. Let F = {xn} be a Bessel sequence in a separable Hilbert
space H, with analysis operator C and synthesis operator R.

(a) d(F) = dim
(
ker(C)

)
= dim

(
range(R)⊥

)
.

(b) e(F) ≥ dim
(
range(C)⊥

)
= dim

(
ker(R)

)
.

(c) {xn} is a near-Riesz basis if and only if it is a frame with finite excess.

(d) If F is a frame and {x̃n} is its canonical dual frame, then

e(F) = dim
(
range(C)⊥

)
= dim

(
ker(R)

)
=
∑

n

(
1− 〈xn, x̃n〉

)
. (8.7)
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Proof. (a) If we add an orthonormal basis E for span(F)⊥ to F , then the
new sequence F ∪ E will be complete, and this is the smallest size set that
we can add to make F into a complete sequence. Hence the deficit of F is
the dimension of span(F)⊥. Theorem 7.4 tells us that span(F) = range(R) =
ker(C)⊥. Therefore, since R = C∗, Theorem 2.13 implies that span(F)⊥ =
ker(C).

(b) Let {a1, . . . , aN} be linearly independent sequences in ker(R), where
we take N = dim(ker(R)) if ker(R) is finite dimensional and N arbitrary but
finite otherwise. Denote the components of an by an = (an,k)k∈N. Then

Ran =

∞∑

k=1

an,kxk = 0, n = 1, . . . , N, (8.8)

or, in terms of an infinite matrix equation,



a1,1 a1,2 · · ·
...

... · · ·
aN,1 aN,2 · · ·






x1

x2

...


 =




0
...
0


 . (8.9)

The matrix on the left of equation (8.9) has N linearly independent rows, i.e.,
it has row rank N. The same Gaussian elimination argument used for finite
matrices implies that this matrix has column rank N as well (Exercise 8.38).
Let F = {k1, . . . , kN} denote the indices of a set of N linearly independent
columns of this matrix. We will show that {xn}n/∈F is complete in span(F).

Suppose that x ∈ span(F) satisfies 〈xn, x〉 = 0 for n /∈ F. Then from
equation (8.8) we have

0 = 〈Ran, x〉 =

∞∑

k=1

an,k 〈xk, x〉 =

m∑

i=1

an,ki 〈xki , x〉, n = 1, . . . , N.

That is, 

a1,k1 · · · a1,km

...
. . .

...
am,k1 · · · am,km






〈xk1 , x〉

...
〈xkN , x〉


 =




0
...
0


 .

However, the matrix on the left-hand side of this equation is invertible, so this
implies that 〈xki , x〉 = 0 for i = 1, . . . , N. Hence 〈xn, x〉 = 0 for all n ∈ N, so
x = 0. Therefore {xn}n/∈F is complete, so e(F) ≥ N.

(c) If F is a near-Riesz basis, then there is a finite set F ⊆ N such that
{xn}n/∈F is a Riesz basis. Let k = |F |. If we remove 2k+ 1 elements from the
original sequence F = {xn}n∈N, then at least k + 1 of these indices must be
coming from N\F. Yet span{xn}n∈F is at most k-dimensional, so removing
2k + 1 elements from F must leave us with an incomplete sequence. Hence
the excess of F is finite.
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Conversely, suppose that F is a frame with finite excess, i.e., there is some
finite set F ⊆ N such that {xn}n/∈F is complete, but any subset of this is
incomplete. By Theorem 8.22, the removal of a single vector from a frame
leaves either a frame or an incomplete set, and by induction this extends to
the removal of finitely many elements from a frame. Therefore {xn}n/∈F must
be a frame. Yet if any additional element is removed from {xn}n/∈F then it
becomes incomplete, so {xn}n/∈F is an exact frame and therefore is a Riesz
basis for H.

(d) We prove the final equality in equation (8.7) first. Recall from Exercise
8.18 that the orthogonal projection of ℓ2 onto ker(R) = range(C)⊥ is given
by P = I − CS−1R. Letting {δn} be the standard basis for ℓ2, and using
Exercise 1.53, we therefore have

e(F) = dim
(
ker(R)

)
=
∑

n

‖Pδn‖2ℓ2

=
∑

n

〈δn, P δn〉

=
∑

n

(
1−

〈
Rδn, S

−1Rδn
〉)

=
∑

n

(
1− 〈xn, x̃n〉

)
.

It remains to show that e(F) = dim
(
ker(R)

)
. If dim

(
ker(R)

)
= ∞, then

the proof of part (b) shows that e(F) ≥ dim
(
ker(R)

)
= ∞. Therefore, sup-

pose that dim
(
ker(R)

)
<∞. Then F is a near-Riesz basis by Theorem 8.39,

so there is a finite set F such that {xn}n/∈F is a Riesz basis. By applying
Corollary 8.33, it suffices to assume that {xn} = {Pδn} where P is the or-
thogonal projection of ℓ2 onto the closed subspace M = range(C). In this
setting, our assumption is that {Pδn}n/∈F is a Riesz basis for M. Note that
ker(R) = range(C)⊥ = M⊥ = ker(P ).

Let K = span{δn}n/∈F , and suppose that a = (an) ∈ ℓ2. Then Pa ∈M, so
since {Pδn}n/∈F is a Riesz basis for M we can write Pa =

∑
n/∈F cnPδn for a

unique choice of scalars cn. Set y =
∑

n/∈F cnδn ∈ K and observe that Py =
Pa. Therefore z = a− y ∈ ker(P ), so a = y + z ∈ K + ker(P ), and therefore

ℓ2 = K +ker(P ). On the other hand, if a ∈ K ∩ker(P ), then a =
∑
n/∈F anδn

and 0 = Pa =
∑

n/∈F anPδn. By uniqueness, we conclude that an = 0 for all

n /∈ F, so a = 0. Thus we have both ℓ2 = K + ker(P ) and K ∩ ker(P ) = {0}.
In the language of Exercise 5.21, this tells us that the codimension of K is

codim(K) = dim
(
ker(P )

)
= dim

(
ker(R)

)
.However, we also have ℓ2 = K+K⊥

and K ∩K⊥ = {0}. Exercise 5.21 shows that the codimension of a space is
independent of the choice of complementary subspace, so we conclude that
codim(K) = dim(K⊥) = |F |. Therefore, e(F) = |F | = dim

(
ker(R)

)
. ⊓⊔
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Example 8.43. (a) If F is a Bessel sequence that is not a frame, then it is
possible that e(F) can strictly exceed dim

(
ker(R)

)
. For example, let {en}

be an orthonormal basis for a Hilbert space H, and set f =
∑
en/n. Then

F = {en/n}n∈N ∪ {f} is a Bessel sequence but it is not a frame, and we
have e(F) = 1 while dim

(
ker(R)

)
= 0. It is similarly possible to construct

Bessel sequences such that e(F) is any specified finite value or infinity yet
dim

(
ker(R)

)
= 0.

(b) Another interesting example is considered in Example 11.34. As dis-
cussed there, the Gabor system F = {e2πinxφ(x−n)}m,n∈Z generated by the

Gaussian function φ(x) = e−πx
2

is a Bessel sequence with excess e(F) = 1.
However, by Exercise 11.26 this system has dim

(
ker(R)

)
= 0. In contrast to

the example given in part (a), the elements of this Bessel sequence all have
identical norms. ♦

If F is a frame with finite excess, then some finite subset can be removed
and leave a Riesz basis. If F is a frame with infinite excess, then by definition
it is possible to remove some infinite subset yet still leave a complete set. We
will see that it is not always possible to find an infinite subset that can be
removed and leave a frame. The next theorem, proved in [BCHL03], charac-
terizes those Parseval frames for which this can be done (and a general result
for arbitrary frames is also proved in that paper). Surprisingly, the ability
to remove infinitely many elements and leave a frame is determined by what
happens when single elements are removed from the frame.

Theorem 8.44. Let F = {xn}n∈N be a Parseval frame for a Hilbert space H,
and let G = {xnk

}k∈N be a subsequence of F . Then the following statements
are equivalent.

(a) F\{xnk
} is complete (and hence a frame) for each k ∈ N, and there

exists a single constant L > 0 that is a lower frame bound for each frame
F\{xnk

}.
(b) supk∈N ‖xnk

‖ < 1.

In case these hold, for each 0 < ε < L there exists an infinite subsequence Gε
of G such that F\Gε is a frame for H with frame bounds L− ε, 1.

Proof. For simplicity of notation, let yk = xnk
for k ∈ N.

By Exercise 8.6, the optimal lower frame bound for F\{yk} is 1− ‖yk‖2,
so it follows from this that statements (a) and (b) are equivalent. Therefore,
our task is show that if 0 < ε < L is given then we can find the desired
subsequence Gε.

By hypothesis, the frame operator S for F is the identity:

∀ f ∈ H, f = Sf =
∑

n

〈f, xn〉xn.

We are given that F\{yk} is a frame with lower frame bound L, so since the
optimal lower frame bound for F\{yk} is 1− ‖yk‖2, we must have
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L ≤ 1− ‖yk‖2, k ∈ N.

Since {yk}k∈N is a subset of the Parseval frame F , we have for eachm ∈ N
that

∑
k |〈ym, yk〉|2 ≤ ‖ym‖2 <∞. Therefore,

∀m ∈ N, lim
k→∞

〈ym, yk〉 = 0.

Appealing to Exercise 8.39, we can extract a subsequence Gε = {ymk
}k∈N

with the property that

∑

j,k∈N,
k 6=j

|〈ymk
, ymj 〉| < ε. (8.10)

We claim that F\Gε is a frame for H with lower frame bound L − ε. To see
this, consider the operator

Tf =

∞∑

k=1

〈f, ymk
〉 ymk

.

This is a bounded operator since Gε is a Bessel sequence. We have

‖Tf‖2 =

〈 ∞∑

k=1

〈f, ymk
〉 ymk

,

∞∑

j=1

〈f, ymj 〉 ymj

〉

=
∞∑

k=1

|〈f, ymk
〉|2 ‖ymk

‖2 +
∑

j,k∈N,
k 6=j

〈f, ymk
〉 〈ymj , f〉 〈ymk

, ymj 〉

≤
(
sup
k
‖ymk

‖2
)
〈Tf, f〉 +

‖f‖2
(
sup
k
‖ymk

‖2
)( ∑

j,k∈N,
k 6=j

|〈ymk
, ymj〉|

)

≤ (1 − L) ‖Tf‖ ‖f‖ + ‖f‖2 (1− L) ε.

Taking the suprema over all unit vectors f yields

‖T ‖2 ≤ (1− L) ‖T ‖+ (1 − L) ε,

and after some algebra we obtain the estimate ‖T ‖ ≤ 1−L+ε. Consequently,

∑

n

|〈f, xn〉|2 −
∞∑

k=1

|〈f, ymk
〉|2 = ‖f‖2 − 〈Tf, f〉 ≥ (L− ε) ‖f‖2.

Thus F\Gε is a frame with lower frame bound L− ε. ⊓⊔
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As we mentioned earlier, Casazza and Christensen [CC98a] constructed a
Parseval frame F that is norm-bounded below but contains no subsets that
are Riesz bases or even Schauder bases for H. Following [BCHL03], we now
show that their frame has infinite excess, yet there is no way to choose an
infinite subset G so that F\G is still a frame.

Example 8.45. LetH be a separable Hilbert space. Index an orthonormal basis
for H as {enj }n∈N, j=1,...,n. Set Hn = span{en1 , . . . , enn}, and define

fnj = enj −
1

n

n∑

i=1

eni , j = 1, . . . , n,

fnn+1 =
1√
n

n∑

i=1

eni .

Then Fn = {fn1 , . . . , fnn+1} is a Parseval frame for Hn [CC98a, Lem. 2.5].
Since Hn is n-dimensional, at most one element can be removed from Fn
if the remaining elements are to span Hn. Moreover fnn+1 is orthogonal to
fn1 , . . . , f

n
n , so the element fnn+1 cannot be removed. If one of the other ele-

ments is removed, say fn1 , then since

n+1∑

j=2

|〈en1 , fnj 〉|2 =

( n∑

j=2

1

n2

)
+

1
√
n

2 =
2

n
− 1

n2
,

the lower frame bound for Fn\{fn1 } as a frame for Hn is at most 2/n− 1/n2.
The sequence F = {fnj }n∈N, j=1,...,n+1 is a Parseval frame for H with

infinite excess. Suppose that G is any infinite subset of F such that F\G
is complete. Then G cannot contain any elements of the form fnn+1. Hence
G = {fnk

jk
}k∈N with n1 < n2 < · · · and jk ≤ nk for every k. But then the

lower frame bound for F\G can be at most 2/nk − 1/n2
k for every k, which

implies that F\G cannot have a positive lower frame bound and therefore is
not a frame. ♦

The proof that the frame discussed in Example 8.45 contains no subsets
that are Riesz bases or Schauder bases is obtained by calculating the basis
constants for subsequences that are bases for Hn. These basis constants tend
to infinity with n, and so the basis constant of any ω-independent subsequence
must be infinite. For a detailed proof, see [CC98a] or [Chr03].

For arbitrary frames, it is difficult to say much more about excess than
what appears in Theorem 8.44. However, many frames that are used in prac-
tice, such as Gabor frames, have an internal structure that can be used to
derive stronger and more sophisticated statements about excess. For exam-
ple, we will give a test from [BCHL03] that determines the deficit or excess
of some sequences.
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Definition 8.46. Let C be the analysis operator for a Bessel sequence {xn}
in a separable Hilbert space H. If there exist bounded operators U : H → H
and V : ℓ2 → ℓ2 such that V C = CU, then we say that (U, V ) is a pair of
intertwining operators for {xn}. ♦

The existence of intertwining operators implies the following facts (see
Exercise 8.41).

Lemma 8.47. If (U, V ) is a pair of intertwining operators for a Bessel se-
quence {xn}, then the following statements hold:

(a) U
(
ker(C)

)
⊆ ker(C),

(b) V ∗(ker(R)
)
⊆ ker(R),

(c) V
(
range(C)

)
⊆ range(C),

(d) U∗(range(R)
)
⊆ range(R). ♦

In another terminology, statement (a) says that ker(C) is invariant un-
der U, and so forth.

Using this, we can show that many sequences that have an intertwining
pair of operators can have only zero or infinite deficit or excess.

Theorem 8.48. Suppose that F = {xn} is a Bessel sequence in a separable
Hilbert space that has a pair of intertwining operators (U, V ).

(a) If U∗ has no eigenvalues, then either span{xn} is infinite dimensional or
xn = 0 for every n.

(b) If U has no eigenvalues, then either d(F) = 0 or d(F) =∞.
(c) If F is a frame and V ∗ has no eigenvalues, then either e(F) = 0 or

e(F) =∞.

Proof. First we make a generic observation about bounded operators on H
that have no eigenvalues. Suppose that T is such an operator, and M is a
closed subspace of H that is invariant under T. If M has finite dimension, then
T |M maps the finite-dimensional vector space M into itself. Consequently,
if M 6= {0} then T |M must have an eigenvalue λ, and this must also be
an eigenvalue of T, which is a contradiction. Therefore any nontrivial closed
subspace that is invariant under T must be infinite dimensional.

(a) This follows from part (d) of Lemma 8.47 and the fact that span(F) =

range(R).

(b) Since d(F) = dim
(
ker(C)

)
, this follows from Lemma 8.47(a).

(c) If F is a frame then e(F) = dim
(
ker(R)

)
, so this follows from

Lemma 8.47(b). ⊓⊔
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Example 8.49. Consider the lattice trigonometric system Eb = {e2πibnt}n∈Z =
{ebn}n∈Z presented in Example 8.7. This system is incomplete in L2(T) when
b > 1, an orthonormal basis when b = 1, and an overcomplete frame when
0 < b < 1. Let U : L2(T)→ L2(T) be the multiplication operator

Uf(x) = e2πibtf(t), f ∈ L2(T),

and let V : ℓ2(Z)→ ℓ2(Z) be the right-shift operator

V (cn)n∈Z = (cn−1)n∈Z.

Note that

〈Uf, ebn〉 =

∫ 1

0

e2πibt f(t) e−2πibnt dt = 〈f, eb(n−1)〉.

Letting C be the analysis operator for Eb, we therefore have that

CUf =
{
〈Uf, ebn〉

}
n∈Z

=
{
〈f, eb(n−1)〉

}
n∈Z

= V
{
〈f, ebn〉

}
n∈Z

= V Cf.

Therefore (U, V ) is an intertwining pair for Eb. Further, by Exercise 8.42,
none of U, V, U∗, or V ∗ has an eigenvalue, so we conclude that the deficit
and the excess of Eb can only be zero or infinity. For b = 1 we know that
E1 = {e2πint}n∈Z is an orthonormal basis for L2(T), so this simply confirms
what we already knew: d(Eb) = 0 = e(Eb). On the other hand, for b 6= 1 it
does give us new information.

If b > 1, then Example 8.7 showed us that Eb is incomplete, but it did
not tell us how large the deficit is. Incompleteness means that the deficit is
nonzero, but now we know that span(Eb)⊥ is actually an infinite-dimensional
space when b > 1.

Similarly, for 0 < b < 1 we knew from Example 8.7 that Eb is overcomplete,
but we did not know how large the excess was. Since overcompleness means
that the excess is nonzero, it follows from the discussion above that the excess
must actually be infinite. Moreover, by Exercise 8.42 it is possible to remove
an infinite subset from Eb yet still leave a frame (and not just a complete set).
Thus Eb is “infinitely redundant” when 0 < b < 1, even though it is finitely
linearly independent. ♦

For more sophisticated results on excess and properties of localized frames,
we refer to [BCHL06a], [BCHL06b], [BCL10].

Exercises

8.38. Prove that the matrix appearing on the left-hand side of equation (8.9)
has column rank N, i.e., its columns span an N -dimensional subspace of FN .
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8.39. Verify the claim in the proof of Theorem 8.44 that there exists a sub-
sequence such that equation (8.10) is satisfied.

8.40. Let F = {xn} be a frame for a Hilbert space H with frame bounds A, B
and canonical dual frame {x̃n}. Let G = {xnk

} be a subsequence of {xn}, and
show that the following statements are equivalent.

(a) {xn}n6=nk
is complete (and hence a frame) for each k ∈ N, and there

exists a single constant L > 0 that is a lower frame bound for each frame
{xn}n6=nk

.

(b) supk 〈xnk
, x̃nk
〉 < 1.

Show further that if these statements hold, then there exists an infinite
subsequence Gε of G such that F\Gε is a frame for H with frame bounds
L(A/B)− ε, 1.

Remark: It is shown in [BCHL03] that Gε can be chosen so that F\Gε has
frame bounds L− ε, 1.

8.41. Prove Lemma 8.47.

8.42. (a) Prove that the operators U, V, U∗, and V ∗ appearing in Exam-
ple 8.49 have no eigenvalues.

(b) Show that if 0 < b < 1, then there is an infinite set J ⊆ Z such that
{e2πibnt}n/∈J is a frame for L2(T).
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9

The Fourier Transform on the Real Line

In Part II we developed the abstract theory of bases and frames. Now in
Part III we turn to more concrete settings, and examine some frames and
bases that have a specific structure. In Chapter 10 we will consider systems of
weighted exponentials and systems of translates, while in Chapter 11 we turn
to Gabor systems and then to wavelets in Chapter 12. Part IV, consisting of
Chapters 13 and 14, is devoted to Fourier series.

The Fourier transform is a fundamental mathematical tool that will be
very useful to us throughout Part III. In this chapter we present a short
review of some of the most important properties of the Fourier transform. We
will sketch the main ideas, and refer to texts such as [Ben97], [DM72], [Gra04],
[Kat04], [Heil] for complete details and proofs. The flavor of the proofs of the
theorems in this section is quite similar to those of the analogous results for
Fourier series that we will develop in detail in Chapter 13. Hence the interested
reader can use that chapter as a stepping stone to a broader study of Fourier
analysis. Indeed, from an abstract point of view, Fourier series correspond to
the Fourier transform of functions on the torus T, while in this chapter we are
interested in the Fourier transform of functions on the real line R (for details
on the abstract Fourier transform we refer to [Rud62] or [Fol95]).

One notational change from the preceding chapters is that throughout
Parts III and IV the scalar field will always be complex.

Notation 9.1 (Scalars Are Complex). In the abstract development in
Parts I and II it was convenient to allow F to denote a generic choice of
either the real or complex scalar field. Because we are now dealing with con-
crete systems, it will be better to fix the scalar field. Therefore, throughout
all of Parts III and IV, the scalar field will be F = C. In particular, functions
and sequences will generally be complex valued. ♦

Also, as we will be dealing with complex exponential functions very often,
we introduce the following notation.
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Notation 9.2 (Complex Exponentials). Given λ ∈ R we will use the
abbreviation

eλ(x) = e2πiλx, x ∈ R. ♦ (9.1)

In particular, the trigonometric system is {en}n∈Z, although sometimes
for emphasis we write out {e2πinx}n∈Z.

9.1 Summary: Main Properties of the Fourier Transform
on the Real Line

For the convenience of the reader, we summarize in this section the main
properties of the Fourier transform that we will need in the coming chapters.

The Fourier transform can be defined on many spaces of functions or
distributions, but mostly we will use it on the Banach spaces L1(R) and
L2(R). As an operator on these spaces we usually denote the Fourier transform
by F , and we denote the action of the Fourier transform of a function f by

f̂ = F(f).

The precise definition of the Fourier transform will be given later. However,
what is most important to us is not the actual definition, but rather the
properties of the Fourier transform that appear in Theorems 9.3 and 9.5 below.

The first important fact is that the Fourier transform is unitary on L2(R)
and bounded on L1(R).

Theorem 9.3 (Properties of the Fourier Transform).

(a) The Fourier transform F is a bounded, injective linear mapping of L1(R)
into C0(R).

(b) The Fourier transform F is a unitary mapping of L2(R) onto itself. ♦

The second important fact is the way in which the Fourier transform in-
teracts with the translation, modulation, and dilation operators.

Notation 9.4 (Translation, Modulation, Dilation). We define the fol-
lowing operations on functions f : R→ C.

Translation: (Taf)(x) = f(x− a), a ∈ R.

Modulation: (Mbf)(x) = e2πibxf(x), b ∈ R.

Dilation: (Drf)(x) = r1/2f(rx), r > 0. ♦

The translation and modulation operators Ta and Mb are isometries on
Lp(R) for each 1 ≤ p ≤ ∞. The dilation operator Dr is isometric on L2(R),
and is a multiple of an isometry on Lp(R) for all other p.
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Theorem 9.5. (a) The Fourier transform interchanges translation with mod-
ulation: For all f ∈ L1(R) or f ∈ L2(R) we have

(Taf)
∧

(ξ) = M−af̂ (ξ) = e−2πiaξf̂(ξ). (9.2)

(b) The Fourier transform interchanges modulation with translation: For all
f ∈ L1(R) or f ∈ L2(R) we have

(Mbf)
∧

(ξ) = Tbf̂ (ξ) = f̂(ξ − b). (9.3)

(c) The Fourier transform interchanges dilation with a reciprocal dilation: For
all f ∈ L1(R) or f ∈ L2(R) we have

(Drf)
∧

(ξ) = D1/r f̂ (ξ) =
1

r
f̂(ξ/r). (9.4)

The equalities in equations (9.2), (9.3), and (9.4) hold pointwise everywhere
if f ∈ L1(R), and pointwise almost everywhere if f ∈ L2(R). ♦

Properties such as being a basis or a frame are preserved by unitary maps,
so by applying the Fourier transform to a sequence {fn} we obtain a new

sequence {fn̂} that has a different structure but still has the same basis or
frame properties as {fn}. Because of the way the Fourier transform interacts

with translation, modulation, and dilation, it is often easier to work with {fn̂}
than {fn}.

Corollary 9.6. Let {fn} be a sequence in L2(R). Then {fn} is a Schauder
basis, Riesz basis, Bessel sequence, or frame for L2(R) if and only if the same

is true of {fn̂}. ♦

In the remainder of this chapter we will motivate the Fourier transform
and prove Theorems 9.3 and 9.5 and some related results.

9.2 Motivation: The Trigonometric System

Every locally compact abelian group (LCA group or LCAG) has a Fourier
transform associated to it. In particular, the real line R and the torus T
are LCA groups, and each has an associated Fourier transform. Although we
did not discuss it in these terms, whenever we worked with the trigonomet-
ric system {e2πinx}n∈Z in earlier chapters, we were dealing with the Fourier
transform for the torus. In the coming sections we will introduce the Fourier
transform for the real line, but in order to motivate it we first take another
look at the trigonometric system and the Fourier transform on T.

Recall from Theorem 4.25 that the trigonometric system {en}n∈Z forms
an orthonormal basis for L2(T). Therefore every function f ∈ L2(T) can be
written as
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f =
∑

n∈Z

〈f, en〉 en. (9.5)

Thinking of the operators associated with a frame motivates us to view the
representation in equation (9.5) as consisting of two parts. First, the function f
has Fourier coefficients

f̂(n) = 〈f, en〉 =

∫ 1

0

f(x) e−2πinx dx, n ∈ Z.

The sequence
f̂ =

(
f̂(n)

)
n∈Z
∈ ℓ2(Z)

is the Fourier transform of f , and the mapping F : f 7→ f̂ is the Fourier
transform for the torus. Using the frame terminology from Chapter 8, the
Fourier transform is precisely the analysis operator C for the Parseval frame

{en}n∈Z, so f̂ = Ff = Cf. The Fourier transform is an analysis operation—

we take a function f ∈ L2(T) and analyze it, converting it from a function

on T into a sequence f̂ indexed by Z.
The second part of equation (9.5) is the recovery of f from its Fourier

transform f̂ =
(
f̂(n)

)
n∈Z

. We can view this recovery both as being the inverse

F−1 of the Fourier transform operator and as the synthesis operator R for the
Parseval frame {en}n∈Z. The synthesis operator F−1 = R maps ℓ2(Z) back to

L2(R). We usually denote its action on c ∈ ℓ2(Z) by
∨

c. Writing c = (cn)n∈Z,

the 1-periodic function
∨

c is

∨

c(x) = (F−1c)(x) = (Rc)(x) =
∑

n∈Z

cnen(x) =
∑

n∈Z

cne
2πinx,

where the series converges unconditionally in L2(R). Equation (9.5) is simply

the frame representation f = RCf :

f(x) = RCf(x) =
∑

n∈Z

〈f, en〉 en(x) =
∑

n∈Z

f̂(n) e2πinx, (9.6)

which we can also write as

f = F−1(Ff) =
(
f̂
)∨
, f ∈ L2(T). (9.7)

Analysis followed by synthesis, or the Fourier transform followed by the inverse
Fourier transform, is the identity operator, and this is expressed in equations
(9.5), (9.6), and (9.7), which are identical equalities written using different
notation. Since the trigonometric system is an orthonormal basis for L2(T),
it is also true that synthesis followed by analysis is the identity:

c = F(F−1c) =
(

∨

c
)∧
, c ∈ ℓ2(Z).
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By focusing solely on L2(T) we are glossing over many interesting aspects
of the Fourier transform, some of which will be discussed in greater detail in
Chapters 13 and 14. However, the main point for us here is that the Fourier
transform and its inverse are analysis and synthesis operators associated with
the trigonometric system {e2πinx}n∈Z.

9.3 The Fourier Transform on L1(R)

The Fourier transform for the real line is also related to analysis and synthesis
operators based on the complex exponentials, but since the functions e2πinx

are not square integrable on R, it is not immediately obvious how we can use
them to analyze functions in L2(R). The sequence {e2πinx}n∈Z is not even
contained in L2(R), and it certainly does not form an orthonormal basis for
L2(R). Even so, there are very strong analogies between the Fourier transform
on the real line and the version on the torus that we discussed in Section 9.2
(and these analogies are reflections of the definition of the Fourier transform
on abstract LCA groups).

Although e2πinx is not square integrable, it is a bounded function, and so
if we take f ∈ L1(R) rather than L2(R) then the “inner product” of f with
e2πinx is well defined. Since we are no longer dealing with periodic functions it
will be important to consider all real frequencies of the exponentials, not just
integer frequencies n. We will no longer be relying on the existence of a basis
of complex exponential functions, and we will need to consider eξ(x) = e2πiξx

for all real values of ξ. We no longer have a countable sequence that forms a
frame, but we will see that we still have analysis and synthesis.

Our analysis operator on L1(R) is defined as follows.

Definition 9.7 (Fourier Transform on L1(R)). The Fourier transform of

f ∈ L1(R) is the function f̂ : R→ C defined by

f̂(ξ) = 〈f, eξ〉 =

∫ ∞

−∞
f(x) e−2πiξx dx, ξ ∈ R. (9.8)

As an operator, the Fourier transform is the mapping F : f 7→ f̂ . ♦

For notational clarity, we sometimes write f
∧

or (f)
∧

instead of f̂ .
Even though a function f ∈ L1(R) is only defined almost everywhere, its

Fourier transform f̂ is defined for every ξ ∈ R since the integral in equation
(9.8) “converges absolutely”:

∫ ∞

−∞
|f(x) e−2πiξx| dx =

∫ ∞

−∞
|f(x)| dx = ‖f‖L1 < ∞. (9.9)

Both f : R → C and f̂ : R → C are complex-valued functions on R, though

f̂ is defined everywhere while f is only defined almost everywhere. In fact, we

show next that f̂ is a continuous function on R.
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Lemma 9.8. If f ∈ L1(R) then f̂ is bounded and uniformly continuous on R,
and

‖f̂ ‖∞ ≤ ‖f‖L1. (9.10)

Proof. Given ξ, η ∈ R we have

∣∣f̂(ξ + η)− f̂(ξ)
∣∣ =

∣∣∣∣
∫ ∞

−∞
f(x) e−2πi(ξ+η)x dx −

∫ ∞

−∞
f(x) e−2πiξx dx

∣∣∣∣

≤
∫ ∞

−∞
|f(x)| |e−2πiξx| |e−2πiηx − 1| dx

=

∫ ∞

−∞
|f(x)| |e−2πiηx − 1| dx.

Note that the final quantity above is independent of ξ. For almost every x
(those where f(x) is defined), we have

lim
η→0
|f(x)| |e−2πiηx − 1| = 0.

Also,
|f(x)| |e−2πiηx − 1| ≤ 2|f(x)| ∈ L1(R),

so the Lebesgue Dominated Convergence Theorem (Theorem A.24) implies
that

sup
ξ∈R

∣∣f̂(ξ + η)− f̂(ξ)
∣∣ ≤

∫ ∞

−∞
|f(x)| |e−2πiηx − 1| dx → 0 as η → 0.

Hence f̂ is uniformly continuous on R.
Boundedness follows from equation (9.9), because

|f̂(ξ)| =

∣∣∣∣
∫ ∞

−∞
f(x) e−2πiξx dx

∣∣∣∣ ≤
∫ ∞

−∞
|f(x) e−2πiξx| dx = ‖f‖L1.

Taking the supremum over ξ ∈ R, we see that ‖f̂ ‖∞ ≤ ‖f‖L1. ⊓⊔

When we dealt with the Fourier transform on the torus, the Fourier trans-

form of a function f ∈ L2(T) was a sequence f̂ =
(
f̂(n)

)
n∈Z ∈ ℓ2(Z). Now

the Fourier transform of f ∈ L1(R) is a continuous function f̂ ∈ Cb(R). We

will see how to define f̂ when f ∈ L2(R) in Section 9.4.

Example 9.9. The characteristic function χ[−T,T ] belongs to L1(R), and its
Fourier transform is

(χ[−T,T ])
∧

(ξ) =

∫ T

−T
e−2πiξx dx =

{
sin 2πTξ
πξ , ξ 6= 0,

2T, ξ = 0.
(9.11)
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This is a continuous function on R. We usually just write (χ[−T,T ])
∧

(ξ) =
sin 2πTξ
πξ , and assume it is defined appropriately at the origin.

An important special case is the sinc function dπ = (χ[− 1
2
, 1
2
])

∧

, which is
given explicitly as

dπ(ξ) = (χ[− 1
2
, 1
2
])

∧

(ξ) =
sinπξ

πξ
. (9.12)

While the sinc function is continuous, it is not integrable on R (Exercise 9.1).
On the other hand, dπ is continuous and dπ(ξ)→ 0 as |ξ| → ∞, so dπ ∈ C0(R).
Recalling that C0(R) is a Banach space with respect to the uniform norm, we
observe that ∥∥(χ[− 1

2
, 1
2
])

∧
∥∥
∞ = ‖dπ‖∞ = 1,

so dπ is a unit vector in C0(R). ♦

Example 9.9 shows us that f ∈ L1(R) does not imply f̂ ∈ L1(R) in
general, so the Fourier transform does not map L1(R) into itself. Instead, we
will show that F maps L1(R) into C0(R).

Theorem 9.10 (Riemann–Lebesgue Lemma). The Fourier transform
maps L1(R) into C0(R):

f ∈ L1(R) =⇒ f̂ ∈ C0(R).

Proof. We saw in Lemma 9.8 that f̂ is continuous, so our task is to show that

f̂ decays to zero at ±∞. Since e−πi = −1, for ξ 6= 0 we have

f̂(ξ) =

∫ ∞

−∞
f(x) e−2πiξx dx (9.13)

= −
∫ ∞

−∞
f(x) e−2πiξx e−2πiξ( 1

2ξ ) dx

= −
∫ ∞

−∞
f(x) e−2πiξ(x+ 1

2ξ ) dx

= −
∫ ∞

−∞
f
(
x− 1

2ξ

)
e−2πiξx dx. (9.14)

Averaging equalities (9.13) and (9.14) yields

f̂(ξ) =
1

2

∫ ∞

−∞

(
f(x)− f

(
x− 1

2ξ

))
e−2πiξx dx.

Using the strong continuity of translation proved in Exercise 9.2, it follows
that

|f̂(ξ)| ≤ 1

2

∫ ∞

−∞

∣∣∣f(x) − f
(
x− 1

2ξ

)∣∣∣ dx =
1

2
‖f − T 1

2ξ
f‖L1 → 0

as |ξ| → ∞. Therefore f̂ ∈ C0(R). ⊓⊔
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Since equation (9.10) tells us that ‖f̂ ‖∞ ≤ ‖f‖L1, the Fourier transform is

a bounded mapping of L1(R) into C0(R), and its operator norm is at most 1.

In fact, since χ[− 1
2
, 1
2
] is a unit vector in L1(R), and its Fourier transform, the

sinc function dπ, is a unit vector in C0(R), the operator norm of F is precisely

‖F‖L1→C0
= 1. (9.15)

However, F : L1(R) → C0(R) is not an isometry, and it can be shown that
its range is a dense but proper subspace of C0(R) (compare Exercise 13.26
for the analogous statement for the Fourier transform on the torus).

Now we turn to synthesis for the Fourier transform. While synthesis for the
Fourier transform on the torus converted a sequence c into a periodic function
∨

c, for the real line it transforms a function f into another function
∨

f .

Definition 9.11. The inverse Fourier transform of f ∈ L1(R) is

∨

f (ξ) =

∫ ∞

−∞
f(x) e2πiξx dx, ξ ∈ R.

We also write F−1f =
∨

f for the inverse Fourier transform of f ∈ L1(R). ♦

Note that
∨

f (ξ) = f̂(−ξ). Therefore,
∨

f and f̂ have many similarities, and
analysis and synthesis are more “symmetric” for the Fourier transform on the
real line than on the torus.

In particular, the Fourier transform and the inverse Fourier transform
both map L1(R) into C0(R). However, if f ∈ L1(R) then f̂ need not belong
to L1(R), and so we cannot compose the Fourier transform with the inverse
Fourier transform in general. Thus our terminology is a little misleading, as the
operator F−1 given in Definition 9.11 is not literally the inverse of the Fourier
transform F : L1(R)→ C0(R). However, we will show that the operator F−1

does play the role of synthesis and an inverse to F if we impose appropriate

restrictions. Specifically, if f and f̂ are both integrable then f can be recovered

from f̂ via the synthesis operation F−1.

Theorem 9.12 (Inversion Formula). If f, f̂ ∈ L1(R), then f and f̂ are
continuous, and

f(x) =
(
f̂
)∨

(x) =

∫ ∞

−∞
f̂(ξ) e2πiξx dξ (9.16)

with equality holding pointwise everywhere. Similarly,

f(x) =
( ∨

f
)∧

(x) =

∫ ∞

−∞

∨

f (ξ) e−2πiξx dξ

for every x. ♦
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Theorem 9.12 should be compared to Theorem 13.25 for Fourier series,

which states that if f ∈ L1(T) is such that f̂ ∈ ℓ1(T), then f is continuous

and f(x) =
(
f̂
)∨

(x) for all x ∈ T. The proof of Theorem 9.12 is quite similar
to the proof of Theorem 13.25 that we present in Chapter 13, and therefore
the proof of Theorem 9.12 will be omitted.

Remark 9.13. We are abusing terminology in Theorem 9.12 when we say that
“f is continuous.” An element of L1(R) is an equivalence class of functions
that are equal almost everywhere, so it does not make literal sense to say that
f ∈ L1(R) is continuous. What we really mean is that there is a representative
of f that is a continuous function, or, in other words, there is some continuous
function g such that f is the equivalence class of functions that are equal to g
almost everywhere. ⊓⊔
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Fig. 9.1. Graph of eξ(x) = e2πiξx for ξ = 2 and 0 ≤ x ≤ 4.

We expand on the meaning of equation (9.16). Picture the complex expo-
nential

eξ(x) = e2πiξx = cos(2πξx) + i sin(2πξx)

as a function of x. While x lies in R, the function values eξ(t) are complex
numbers that lie on the unit circle S1 in C. As x ranges through the real line,
the values eξ(x) = e2πiξx move around the unit circle S1. If ξ > 0, then as
x increases through an interval of length 1/ξ, the values eξ(x) = e2πiξx move
once around S1 in the counter-clockwise direction. If ξ is negative, the same
is true except that the values eξ(x) = e2πiξx circle around S1 in the opposite
direction. The function eξ is periodic with period 1/ξ, and we say that eξ has
frequency ξ. The graph of eξ is

Γξ =
{
(x, e2πiξx) : x ∈ R

}
⊆ R×C.



258 9 The Fourier Transform on the Real Line
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Fig. 9.2. Graph of ϕ(x) = 2 cos(2π
√

7x) + 0.7 cos(2π9x).

Identifying R×C with R×R2 = R3, the graph Γξ is a helix in R3 coiling
around the x-axis, which runs down the center of the helix (see Figure 9.1).
The function eξ is a “pure tone” in some sense.

For a given fixed ξ, the function f̂(ξ) e2πiξx is a pure tone whose amplitude

is the scalar f̂(ξ). Given two frequencies η, ξ and amplitudes f̂(η), f̂(ξ), a
function ϕ of the form

ϕ(x) = f̂(η) e2πiηx + f̂(ξ) e2πiξx

is a superposition of two pure tones (see the illustration of the real part of
such a superposition in Figure 9.2). The real part of a superposition of 75 pure
tones with randomly chosen frequencies and amplitudes is shown in Figure 9.3.

The Inversion Formula is an extreme version of such a superposition. It

says that any function f (so long as f and f̂ are integrable) can be represented

as an integral (in effect, a continuous sum) of pure tones f̂(ξ) e2πiξx over
all possible frequencies ξ ∈ R. By superimposing all the pure tones with
the correct amplitudes, we create any function that we like. Of course, the
“superposition” is an integral, not a finite or even countable sum, but still we
are combining our very simple building blocks eξ to create very complicated
functions f via the Inversion Formula. Equation (9.6) is an analogue of this for
functions f ∈ L2(T). On the torus, we superimpose pure tones en(x) = e2πinx,
all of which are 1-periodic, in order to synthesize arbitrary square integrable
1-periodic functions. On the real line, our pure tones eξ(x) = e2πiξx share
no common period when we consider all ξ ∈ R, and we synthesize arbitrary

functions on R (as long as f, f̂ ∈ L1(R)).
A consequence of Theorem 9.12 is that functions in L1(R) are completely

determined by their Fourier transforms.

Corollary 9.14 (Uniqueness Theorem). If f ∈ L1(R) then

f = 0 a.e. ⇐⇒ f̂ = 0 a.e.

Consequently, the Fourier transform F : L1(R)→ C0(R) is injective. ♦
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Fig. 9.3. Graph of 75 superimposed pure tones: ϕ(x) =
P75

k=1
bf(ξk) cos(2πξkx).

One important property of the Fourier transform is that it interchanges
translation with modulation, modulation with translation, and dilation with
a reciprocal dilation. This was stated explicitly in Theorem 9.5. The proof of
that theorem for f ∈ L1(R) follows by making simple changes of variable. For
example, if we fix f ∈ L1(R) and a ∈ R then we have

(Taf)
∧

(ξ) =

∫
f(x− a) e−2πiξx dx

=

∫
f(x) e−2πiξ(x+a) dx

= e−2πiaξ

∫
f(x) e−2πiξx dx

= e−2πiaξ f̂(ξ) = M−af̂ (ξ). (9.17)

This proves equation (9.2) in Theorem 9.5 when f ∈ L1(R). We assign the
proof of the equalities in equations (9.3) and (9.4) for f ∈ L1(R) as Exer-
cise 9.3.

Another important property of the Fourier transform is that it inter-

changes decay of a function f with smoothness of its Fourier transform f̂ .

Theorem 9.15. Given f ∈ L1(R), if xmf(x) ∈ L1(R) for some m ∈ N then

f̂ ∈ Cm0 (R),

i.e., f̂ is m-times differentiable and f̂ , f̂ ′, . . . , f̂ (m) ∈ C0(R). Furthermore,
we have in this case that xkf(x) ∈ L1(R) for k = 0, . . . ,m, and the kth

derivative of f̂ is the Fourier transform of (−2πix)kf(x):

f̂ (k) =
dk

dξk
f̂ =

(
(−2πix)kf(x)

)∧
, k = 0, . . . ,m. ♦ (9.18)
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We can guess that equation (9.18) should hold by formally exchanging a
derivative and an integral:

d

dξ
f̂(ξ) =

d

dξ

∫ ∞

−∞
f(x) e−2πiξx dx

=

∫ ∞

−∞
f(x)

d

dξ
e−2πiξx dx

=

∫ ∞

−∞
f(x) (−2πix) e−2πiξx dx

= (−2πixf(x))
∧

(ξ).

Essentially, the proof of Theorem 9.15 is the justification of this interchange,
and this is done by applying the Lebesgue Dominated Convergence Theorem
(Exercise 9.4).

Similarly, smoothness is interchanged with decay under the Fourier trans-
form.

Theorem 9.16. Let f ∈ L1(R) and m ∈ N be given. If f is everywhere
m-times differentiable and f, f ′, . . . , f (m) ∈ L1(R), then

(f (k))
∧

(ξ) = (2πiξ)k f̂(ξ), k = 0, . . . ,m.

Consequently,

|f̂(ξ)| ≤ ‖f
(m)‖L1

|2πξ|m , ξ 6= 0. ♦ (9.19)

The proof of Theorem 9.16 is somewhat more subtle than that of Theorem
9.15 and will be omitted. In any case, the point is that the smoother an

integrable function f is, the faster its Fourier transform f̂ will decay at infinity.

In particular, if f is smooth enough then f̂ will be integrable.

Corollary 9.17. If f ∈ L1(R) is twice differentiable and f ′′ ∈ L1(R), then f̂

decays like C/|ξ|2 and therefore f̂ ∈ L1(R). In particular,

f ∈ C2
c (R) =⇒ f̂ ∈ L1(R).

Proof. Since f̂ is continuous it is bounded near the origin. Also, since f ′′ is

integrable, Theorem 9.16 tells us that |f̂(ξ)| ≤ C/|ξ|2 away from the origin.

The combination of these facts implies that f̂ is integrable. ⊓⊔

Note that if a function f has both smoothness and decay, then these are in-

terchanged by the Fourier transform, so f̂ has both decay and smoothness. We
collect those functions that have an extreme amount of simultaneous smooth-
ness and decay to form the Schwartz class.
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Definition 9.18 (Schwartz Class). The Schwartz class S(R) consists of all
infinitely differentiable functions f : R→ C that satisfy

‖xmf (n)(x)‖∞ < ∞, m, n ≥ 0. ♦

Consequently, if f ∈ S(R) then for each choice of m and n there exists a
constant Cmn such that

|f (n)(x)| ≤ Cmn
|x|m , x 6= 0. (9.20)

The constants Cmn may grow with m or n. We often euphemistically refer to
functions satisfying equation (9.20) for all m and n as having rapid decay at
infinity.

The space C∞
c (R) consisting of all infinitely differentiable functions that

vanish outside of some finite interval is contained in S(R). An example of a
function in S(R) that is not compactly supported is the Gaussian function

φ(x) = e−πx
2

.
Although we will not prove it, it can be shown that the Schwartz space is

invariant under the Fourier transform.

Theorem 9.19. The Fourier transform maps S(R) bijectively onto itself. ♦
As remarked above, we have C∞

c (R) ⊆ S(R). Here is a similar inclusion
formulated “on the Fourier side.”

Corollary 9.20. If f ∈ L1(R) and f̂ ∈ C∞
c (R), then f ∈ S(R).

Proof. The function f̂ is integrable by hypothesis, so f =
(
f̂
)∨

by the Inver-

sion Formula (Theorem 9.12). However, f̂ ∈ S(R), so Theorem 9.19 implies

that
(
f̂
)∨ ∈ S(R) as well. ⊓⊔

Exercises

9.1. Prove that the sinc function dπ(ξ) = sinπξ
πξ does not belong to L1(R).

9.2. (a) Prove that every function f ∈ C0(R) is uniformly continuous, and
show that uniform continuity is equivalent to the statement

lim
a→0
‖Taf − f‖L∞ = 0. (9.21)

Show that equation (9.21) can fail if we only assume f ∈ Cb(R).

(b) Show that if 1 ≤ p <∞ and f ∈ Lp(R), then

lim
a→0
‖Taf − f‖Lp = 0.

Because of this, we say that translation is strongly continuous on Lp(R) for
finite p.
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9.3. Prove that the equalities in equations (9.3) and (9.4) hold for all functions
f ∈ L1(R).

9.4. Prove Theorem 9.15.

9.4 The Fourier Transform on L2(R)

So far we have defined the Fourier transform as an operator on L1(R). Now
we will see how to extend it to the domain L2(R).

We let Cmc (R) denote the space of m-times differentiable functions on R
that are compactly supported. We will need to use the fact that C2

c (R) is dense
in L2(R). The proof of this is quite similar to the solution of Exercise 13.17
in Chapter 13, and will be omitted. In fact, the same argument shows that
Cmc (R) and C∞

c (R) are dense in Lp(R) for every m ∈ N and 1 ≤ p <∞ (an
explicit example of a function in C∞

c (R) is constructed in Exercise 11.9).

Theorem 9.21. If f ∈ C2
c (R) then f̂ ∈ L2(R) and we have

‖f̂ ‖L2 = ‖f‖L2.

Proof. We sketch the proof and assign the details as Exercise 9.5.

Note that f ∈ L1(R), so f̂ is a continuous function. Let f̃ denote the

involution f̃(x) = f(−x) of f, whose Fourier transform is

(f̃ )
∧

(ξ) = f̂(ξ), ξ ∈ R.

The convolution of f with f̃ is

g(x) = (f ∗ f̃ )(x) =

∫ ∞

−∞
f(y) f̃(x− y) dy.

Exercise 9.5 shows that g is continuous and compactly supported. Note that

g(0) =

∫ ∞

−∞
f(y) f̃(−y) dy =

∫ ∞

−∞
f(y) f(y)dy = ‖f‖2L2.

Since g is integrable, it has a Fourier transform in the sense of Definition 9.7.
Using Exercise 9.5 we see that ĝ has the form

ĝ(ξ) = (f ∗ f̃ )
∧

(ξ) = f̂(ξ) (f̃ )
∧

(ξ) = |f̂(ξ)|2.

Exercise 9.5 also shows that g = f ∗ f̃ is just as smooth as f, so g ∈ C2
c (R)

and therefore ĝ ∈ L1(R) by Corollary 9.17. Hence the Inversion Formula

(Theorem 9.12) applies, so g(x) =
(
ĝ
)∨

(x) for every x. Consequently,

g(0) = (ĝ )
∨

(0) =

∫ ∞

−∞
ĝ(ξ) dξ =

∫ ∞

−∞
|f̂(ξ)|2 dξ = ‖f̂ ‖2L2 .

Therefore ‖f̂ ‖2L2 = g(0) = ‖f‖L2. ⊓⊔
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Convolution is a very important operation, and it will be studied in de-
tail in the setting of the torus in Section 13.3. Very similar results hold for
convolution of functions on the real line; see Exercise 9.5.

Theorem 9.21 shows that the mapping F : f 7→ f̂ is an isometric map of(
C2
c (R), ‖ · ‖L2

)
into L2(R). By Exercise 1.72, since C2

c (R) is dense in L2(R)

the mapping F has a continuous extension to an isometric map F of L2(R)
into L2(R). Since the Fourier transform maps the Schwartz space S(R) onto
itself, the range of F includes the dense space S(R). As F is isometric, it has
a closed range, so we conclude that F is an isometric mapping of L2(R) onto
itself. That is, F is a unitary operator on L2(R).

Definition 9.22 (Fourier Transform on L2(R)). The unitary mapping
F : L2(R)→ L2(R) defined above is the Fourier transform on L2(R). ♦

The definition of the Fourier transform on L2(R) is not as pleasantly
explicit as its definition on L1(R). In essence, the point is that F is isometric
with respect to the L2-norm on some space that is dense in both L1(R) and
L2(R), and this allows us to implicitly extend F to a unitary mapping on all
of L2(R).

To compute the Fourier transform of f ∈ L2(R) using this definition, we
must choose functions fn ∈ C2

c (R) such that fn → f in L2(R). Then the

Fourier transform of f is the unique function f̂ ∈ L2(R) such that fn̂ → f̂
in the norm of L2(R). It can be shown that this definition is independent of

the choice of functions fn̂, so the Fourier transform is uniquely defined on
L2(R), and this definition extends the Fourier transform on L1(R) ∩ L2(R).
Once defined in this way, it follows that if {fn}n∈N is any sequence of functions

in L2(R) such that fn → f in L2-norm, then fn̂ → f̂ in L2-norm.
Since F is unitary on L2(R), the inversion formula holds trivially on this

space:

∀ f ∈ L2(R), f =
(
f̂
)∨

=
( ∨

f
)∧
. (9.22)

In contrast to Theorem 9.12, this is an equality of functions in L2(R) and
hence holds pointwise only in the almost everywhere sense. On the other
hand, this equation is the exact analogue for L2(R) of equation (9.6) for the
Fourier transform on L2(T). Analysis followed by synthesis is the identity, as
is synthesis followed by analysis. Just as the Fourier transform for the torus,
F : L2(T)→ ℓ2(Z), is unitary, so is the Fourier transformF : L2(R)→ L2(R).

Since the Fourier transform is unitary, we have the following equalities.

Theorem 9.23. The following statements hold for all f, g ∈ L2(R).

(a) Plancherel’s Equality: ‖f̂ ‖L2 = ‖f‖L2.

(b) Parseval’s Equality: 〈f, g〉 = 〈f̂ , ĝ 〉. ♦

The Plancherel and Parseval Equalities are equivalent, and as a conse-
quence these names are often used interchangeably.
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Remark 9.24. We emphasize that if f ∈ L1(R) then f̂ is a continuous function

that is defined everywhere, while if f ∈ L2(R) then f̂ ∈ L2(R) and so is only
defined almost everywhere. These transforms coincide if f ∈ L1(R) ∩ L2(R)

in the usual sense of identifying the continuous function f̂ ∈ C0(R) with the
equivalence class of functions that equal it almost everywhere, and it is this

equivalence class that we call the function f̂ ∈ L2(R). ♦

Many formulas that hold for the Fourier transform on L1(R) have an ana-
logue on L2(R), though we must often replace pointwise everywhere state-
ments with pointwise almost everywhere statements. For example, equation
(9.17) says that

(Taf)
∧

= M−af̂ , f ∈ L1(R),

and we will show how to extend this equality to functions in L2(R).
Fix f ∈ L2(R) and a ∈ R. Since C2

c (R) is dense in L2(R), there ex-

ist functions fn ∈ C2
c (R) such that fn → f in L2-norm. As the Fourier

transform is unitary, fn̂ → f̂ in L2-norm. By Theorem A.23, convergence
in L2-norm implies the existence of a subsequence that converges pointwise
almost everywhere. Therefore, by passing to a subsequence we can assume

that fn̂(ξ) → f̂(ξ) a.e. Since fn ∈ L1(R) we have (Tafn)
∧

(ξ) = M−afn̂(ξ)

for all ξ. Taking limits, it follows that (Taf)
∧

(ξ) = M−af̂(ξ) for almost ev-
ery ξ. In particular, this proves that equation (9.2) in Theorem 9.5 holds
for f ∈ L2(R), and we assign the proof of equations (9.3) and (9.4) in that
theorem for f ∈ L2(R) as Exercise 9.6.

Exercises

9.5. This exercise provides the details needed for the proof of Theorem 9.21.
Let f, g ∈ L1(R) be fixed, and prove the following facts.

(a) The Fourier transform of the involution f̃(x) = f(−x) is

(f̃ )
∧

(ξ) = f̂(ξ), ξ ∈ R.

(b) The convolution

(f ∗ g)(x) =

∫ ∞

−∞
f(y) g(x− y) dy

exists for almost every x, and f ∗ g ∈ L1(R) with ‖f ∗ g‖L1 ≤ ‖f‖L1 ‖g‖L1.
Further, f ∗ g = g ∗ f.

(c) The Fourier transform of f ∗ g is

(f ∗ g)∧(ξ) = f̂(ξ) ĝ(ξ), ξ ∈ R.
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(d) If f, g are compactly supported, then so is f ∗ g.

(e) If g is differentiable and g′ is integrable and bounded, then f ∗ g is

differentiable and (f ∗ g)′ = f ∗ g′.

9.6. Use the fact that C2
c (R) is dense in L2(R) to show that equations (9.3)

and (9.4) hold for f ∈ L2(R) in the sense of pointwise almost everywhere
equality of functions.

9.7. (a) Prove that if f ∈ L1(R) is real and even, then f̂ is real and even.

(b) Show that part (a) also holds if we assume f ∈ L2(R).

9.8. (a) Prove that if f ∈ L1(R) and f̂ ∈ L1(R), then f
∧∧

(ξ) = f(−ξ) and
f

∧∧∧∧

(ξ) = f(ξ) for all ξ ∈ R.

(b) Prove that if f ∈ L2(R), then f
∧∧

(ξ) = f(−ξ) and f
∧∧∧∧

(ξ) = f(ξ)
for almost every ξ ∈ R.

9.5 Absolute Continuity

We saw in Theorems 9.15 and 9.16 that the Fourier transform interchanges

smoothness of a function f ∈ L1(R) with decay of its Fourier transform f̂ ,
and likewise decay is interchanged with smoothness. There are many ways to
quantify the precise way that smoothness is interchanged with decay, and in
Chapter 11 we will need the following version for functions in L2(R). This
result formulates smoothness in terms of absolute continuity. Essentially, ab-
solutely continuous functions are those for which the Fundamental Theorem
of Calculus is valid.

Definition 9.25. A function g : [a, b]→ C is absolutely continuous on [a, b] if
g is differentiable at almost every point in [a, b], g′ ∈ L1[a, b], and

g(x)− g(a) =

∫ x

a

g′(t) dt, x ∈ [a, b]. ♦

For example, let ϕ be the Cantor–Lebesgue function on [0, 1] constructed
in Exercise 1.24. This is a continuous, nonzero function that is differentiable
almost everywhere but satisfies ϕ′ = 0 a.e. Hence the Fundamental Theorem
of Calculus fails for the Cantor–Lebesgue function, so this function is continu-
ous but not absolutely continuous. All differentiable functions on [a, b] whose
derivative is continuous on [a, b] are absolutely continuous, but the converse
fails. For example, if f is any function in L1[a, b] and g(x) =

∫ x
a
f(t) dt, then

it follows from the Lebesgue Differentiation Theorem (Theorem A.30) that
for almost every x ∈ (a, b) we have
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g′(x) = lim
h→0

1

h

∫ x+h

x

f(t) dt = f(x).

Hence g is absolutely continuous on [a, b] and g′ = f a.e. In fact, every ab-
solutely continuous function has precisely this form, since if g is absolutely
continuous then Definition 9.25 states that g′ ∈ L1[a, b] and g(x) =

∫ x
a g

′(t) dt.

Remark 9.26. Often, a function g on [a, b] is defined to be absolutely continu-
ous if for every ε > 0 there exists a δ > 0 such that, for any finite or countably
infinite collection of nonoverlapping subintervals

{
[aj , bj]

}
j

of [a, b], we have

∑

j

(bj − aj) < δ =⇒
∑

j

|f(bj)− f(aj)| < ε.

This can be shown to be equivalent to Definition 9.25, e.g., see [Fol99] or
[WZ77]. ♦

One proof of the next result is given in [Heil].

Theorem 9.27. (a) If f ∈ L2(R) and
∫∞
−∞ |x|2 |f(x)|2 dx < ∞, then f̂ is

absolutely continuous on every finite interval [a, b], f̂ is differentiable at

almost every point of R, f̂ ′ ∈ L2(R), and f̂ ′ = ĝ a.e. where g(x) =
−2πixf(x).

(b) If f ∈ L2(R) and
∫∞
−∞ |ξ|2 |f̂(ξ)|2 dξ <∞, then f is absolutely continuous

on every finite interval [a, b], f is differentiable at almost every point of R,

f ′ ∈ L2(R), and f̂ ′ (ξ) = 2πiξf̂(ξ) a.e. ♦

One important fact about absolutely continuous functions that we will
sometimes need is that integration by parts is valid for such functions. The
proof of this result is assigned as Exercise 9.9.

Theorem 9.28 (Integration by Parts). If f, g are absolutely continuous
on [a, b], then

∫ b

a

f(x) g′(x) dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′(x) g(x) dx. ♦

Exercises

9.9. Prove Theorem 9.28.
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Sampling, Weighted Exponentials, and
Translations

Now we will apply the machinery of bases and frames to analyze specific types
of sequences that arise in many situations in applied harmonic analysis and
other areas. This chapter focuses on sequences closely related to the trigono-
metric system {e2πinx}n∈Z, which forms an orthonormal basis for L2(T), while
Chapter 11 is devoted to Gabor systems and Chapter 12 to wavelets.

We usually think of the exponential function

en(x) = e2πinx

as being a 1-periodic function on R. As such it belongs to the space L2(T),
but it does not belong to L2(R) because |e2πinx| = 1 for every x. In Sec-
tions 10.1 and 10.2 we take a different approach. Instead of considering the
complex exponential to be periodic, we will restrict our attention to a domain
of length 1 and extend by zero outside of this domain. In this way we obtain
a sequence that belongs to L2(R). Despite the simplicity of this idea, it yields
significant results. It will be convenient in this section to take our domain
to be symmetric about the origin, which means that we are considering the
functions

ǫn = en · χ[− 1
2
, 1
2
] ∈ L2(R).

Since the interval [− 1
2 ,

1
2 ] has length 1, {ǫn}n∈Z is an orthonormal sequence

in L2(R). Of course, it is not complete in L2(R). Rather, its closed span is

L2
[ 1
2
, 1
2
](R) =

{
f ∈ L2(R) : f(x) = 0 for a.e. |x| > 1

2

}
.

We will refer to L2
[ 1
2
, 1
2
]
(R) as the subspace of L2(R) consisting of functions

that are “timelimited” to the interval [− 1
2 ,

1
2 ].

Since the Fourier transform is unitary, the sequence {ǫn̂}n∈Z is also or-
thonormal in L2(R). Letting

dπ(x) =
sinπξ

πξ

C. Heil, A Basis Theory Primer: Expanded Edition, Applied and Numerical Harmonic Analysis,   
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be the sinc function from Example 9.9, we can write ǫn̂ explicitly as a trans-
lated sinc function:

ǫn̂(ξ) =

∫ 1/2

−1/2

e2πinx e−2πiξx dx =
sinπ(ξ − n)

π(ξ − n)
= dπ(ξ − n) = Tndπ(ξ).

The functions Tndπ are not compactly supported, but each one has a Fourier

transform that is nonzero only within [− 1
2 ,

1
2 ]. In fact, since f̂(ξ) =

∨

f (−ξ), we
have

(Tndπ)
∧

(ξ) = (ǫn̂)
∧

(ξ) = (ǫn̂)
∨

(−ξ) = ǫn(−ξ) = e−2πinξ χ
[− 1

2
, 1
2
](ξ).

The closed span of the orthonormal sequence {ǫn̂}n∈Z = {Tndπ}n∈Z is

PW(R) =
{
f ∈ L2(R) : f̂(ξ) = 0 for a.e. |ξ| > 1

2

}
.

We call PW(R) the Paley–Wiener space of functions “bandlimited” to the
interval [− 1

2 ,
1
2 ].

The fact that {Tndπ}n∈Z is an orthonormal basis for PW(R) will lead
us in Section 10.2 to a proof of the Classical Sampling Theorem for the case
of critical sampling (see Theorem 10.7). The Sampling Theorem is a ubiq-
uitous result in signal processing that gives an algorithm for reconstructing
a bandlimited function f from the countably many “sample values” f(n),

n ∈ Z. Further, by replacing the exponential functions e2πinx with e2πibnx

we can construct redundant frames for the Paley–Wiener space and thereby
obtain the Sampling Theorem for oversampling, which means recovery from
the samples f(bn), n ∈ Z when 0 < b < 1 is fixed.

Sections 10.1 and 10.2 are devoted to bandlimited functions and the proof
of the Sampling Theorem, both of which deal with functions in L2(R). In
Section 10.3 we return to L2(T) and modify the trigonometric system in a
different way, by introducing a 1-periodic “weight function” ϕ on T. This
gives us a system of weighted exponentials {e2πinxϕ(x)}n∈Z in L2(T). We will
completely characterize the functions ϕ for which this system is a Schauder
basis, frame, Bessel sequence, and so forth.

Instead of thinking of e2πinxϕ(x) as being a periodic function, we could
simply cut it off outside the interval [− 1

2 ,
1
2 ], giving us the function

ϕn(x) = e2πinx ϕ(x)χ[− 1
2
, 1
2
](x) ∈ L2(R).

In the terminology of Notation 9.4 we can write ϕn = Mnϕ0, i.e., ϕn is
a modulation of the timelimited function ϕ0 = ϕχ[− 1

2
, 1
2
]. As the Fourier

transform converts modulation into translation, ϕn̂ is therefore a translation
of ϕ0̂ :

ϕn̂ (ξ) = (Mnϕ0)
∧

(ξ) = Tnϕ0̂(ξ) = ϕ0̂(ξ − n).

Since the Fourier transform is unitary, the frame and basis properties of the
sequence {ϕn}n∈Z carry over to the sequence
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{
ϕn̂
}
n∈Z

=
{
Tnϕ0̂

}
n∈Z

=
{
ϕ0̂(ξ − n)

}
n∈Z

.

Therefore we can apply the results of Section 10.3 to understand the properties
of the system of translates {Tnϕ0̂}n∈Z. However, if we replace the bandlimited
function ϕ0̂ by a generic function g ∈ L2(R), then it is not nearly so clear
what properties the sequence {Tng}n∈Z will possess. We consider these general
systems of integer translations in Section 10.4, and will determine exactly
when the system {g(x−n)}n∈Z is a Schauder basis, frame, Riesz basis, Bessel
sequence, etc., for its closed span in L2(R).

10.1 Bandlimited Functions

Our main goal in Sections 10.1 and 10.2 is to prove the Sampling Theorem
for bandlimited functions. We break this into two parts. In this section we
consider the Paley–Wiener space of bandlimited functions in some detail, and
then in the following section we use this knowledge to prove the Sampling
Theorem and some related results.

The precise definition of timelimited and bandlimited functions is as fol-
lows.

Definition 10.1. Fix T , Ω > 0.

(a) A function f ∈ L2(R) is timelimited to [−T, T ] if supp(f) ⊆ [−T, T ] (that
is, f(x) = 0 for almost every |x| > T ). We denote the space of functions
in L2(R) timelimited to [−T, T ] by

L2
[−T,T ](R) =

{
f ∈ L2(R) : supp(f) ⊆ [−T, T ]

}
.

(b) A function f ∈ L2(R) is bandlimited to [−Ω,Ω] if supp(f̂ ) ⊆ [−Ω,Ω]

(that is, f̂(ξ) = 0 for almost every |ξ| > Ω). We denote the space of
functions in L2(R) bandlimited to [−Ω,Ω] by

FL2
[−Ω,Ω](R) =

{
f ∈ L2(R) : supp(f̂ ) ⊆ [−Ω,Ω]

}
. ♦

The spaces L2
[−T,T ](R) and FL2

[−Ω,Ω](R) are closed subspaces of L2(R)

(Exercise 10.3). Further, as the notation suggests, FL2
[−Ω,Ω](R) is the image

of L2
[−Ω,Ω](R) under the Fourier transform. In fact, since the interval [−Ω,Ω]

is symmetric about the origin,F and F−1 both map L2
[−Ω,Ω](R) unitarily onto

FL2
[−Ω,Ω](R), and consequently F and F−1 each map FL2

[−Ω,Ω](R) unitarily

back to L2
[−Ω,Ω](R) (Exercise 10.1).

Many signals encountered in “real life” are bandlimited, or are so close to
being bandlimited that we can safely regard them as being so. For example,
although a generic sound wave may comprise a large range of frequencies, the
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human ear is only responsive to a limited range of these frequencies, approxi-
mately 20 Hz to 20,000 Hz (Hz is the abbreviation for Hertz, which is frequency
measured in cycles per second). The signal produced by the typical telephone
speaker encompasses a much smaller range of frequencies, often only 300 Hz to
3000 Hz. Essentially, the Fourier transform of the sound signal coming out of a
telephone speaker is supported within [−3000,−300]∪ [300, 3000], so this sig-

nal belongs to FL2
[−Ω,Ω](R) with Ω = 3000. Interestingly, a nonzero function

cannot be simultaneously timelimited and bandlimited, see Corollary 10.6.
It will be most convenient for us fix Ω = 1

2 throughout this section (by
Exercise 10.2, we can always reduce to this case by applying a dilation). We
give a special name to the space of functions bandlimited to the interval
[− 1

2 ,
1
2 ].

Definition 10.2 (Paley–Wiener Space). The Paley–Wiener space PW(R)
is the space of functions in L2(R) whose Fourier transforms are supported
within the interval [− 1

2 ,
1
2 ]:

PW(R) = FL2
[ 1
2
, 1
2
](R) =

{
f ∈ L2(R) : supp(f̂ ) ⊆ [ 12 ,

1
2 ]
}
. ♦

Example 10.3. Consider the sinc function dπ(x) = sinπξ
πξ . We implicitly take

dπ(0) = 1, so dπ is infinitely differentiable on R.
The sinc function is bandlimited, although since dπ is not integrable we

cannot use the formula f̂(ξ) =
∫
f(x) e−2πiξx dx to check this. Instead, we

note that χ[− 1
2
, 1
2
] belongs to both L1(R) and L2(R), and its inverse Fourier

transform is

(
χ

[− 1
2
, 1
2
]

)∨
(ξ) =

∫ 1/2

−1/2

e2πiξx dx =
sinπξ

πξ
= dπ(x).

Since dπ ∈ L2(R) and F and F−1 are inverse operations on L2(R), we con-
clude that

dπ̂ =
(
χ

[− 1
2
, 1
2
]

)∨∧

= χ
[− 1

2
, 1
2
].

Thus dπ̂ is supported in [− 1
2 ,

1
2 ], so dπ belongs to PW(R). Note that since

χ
[− 1

2
, 1
2
] is even, its Fourier transform and inverse Fourier transform are equal,

and similarly the Fourier and inverse Fourier transforms of dπ coincide.
Since the Fourier transform converts translation into modulation, every

translate Tadπ(x) = dπ(x − a) of the sinc function also belongs to PW(R).
Explicitly, by applying Theorem 9.3 we see that

(Tadπ)
∧

(ξ) = M−adπ̂(ξ) = e2πiax χ[− 1
2
, 1
2
](x). ♦

We will prove some of the most important properties of the Paley–Wiener
space in the next theorem. To motivate statement (d) of Theorem 10.4, recall
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that the Fourier transform interchanges smoothness with decay (see Theo-

rems 9.15 and 9.16). Qualitatively speaking, the faster that f̂ decays at ±∞,
the smoother that f must be. The ultimate in decay is compact support, since
this means the function is zero outside of some finite interval. Hence if f is

bandlimited then f̂ has extreme decay, and so we expect that f must be very
smooth.

Theorem 10.4. (a) PW(R) is a closed subspace of L2(R).

(b) PW(R) is translation-invariant, i.e.,

f ∈ PW(R), a ∈ R =⇒ Taf ∈ PW(R).

(c) If f ∈ PW(R) then f̂ ∈ L1(R) and f =
(
f̂
)∨ ∈ C0(R).

(d) Every function f ∈ PW(R) is infinitely differentiable, and f (n) ∈ PW(R)
for all n ≥ 0.

(e) {Tndπ}n∈Z is an orthonormal basis for PW(R).

(f) If 0 < b < 1 then {Tbndπ}n∈Z is a redundant tight frame for PW(R), with

frame bound A = B = b−1.

(g) If b > 1 then {Tbndπ}n∈Z is incomplete in PW(R).

Proof. (a) This is Exercise 10.3(a).

(b) If f ∈ PW(R) then f̂(ξ) = 0 for almost every |ξ| > 1/2. Given a ∈ R
we have from Theorem 9.3 that

(Taf)
∧

(ξ) = M−af̂(ξ) = e−2πiaξ f̂(ξ).

Hence (Taf)
∧

(ξ) = 0 for a.e. |ξ| > 1/2, so Taf ∈ PW(R).

(c) If f ∈ PW(R) then f ∈ L2(R), so f =
(
f̂
)∨

a.e. Applying the Cauchy–
Schwarz–Bunyakovski Inequality, we have

∫ ∞

−∞
|f̂(ξ)| dξ =

∫ 1/2

−1/2

|f̂(ξ)| · 1 dξ

≤
(∫ 1/2

−1/2

|f̂(ξ)|2 dξ
)1/2 (∫ 1/2

−1/2

12 dξ

)1/2

= ‖f̂ ‖2L2 < ∞.

Thus f̂ is integrable, so its inverse Fourier transform
(
f̂
)∨

belongs to C0(R) by
Theorem 9.10. Therefore f is continuous, in the sense that it equals the con-

tinuous function
(
f̂
)∨

almost everywhere. By redefining f on a set of measure

zero we can therefore assume that f(x) =
(
f̂
)∨

(x) for every x.

(d) Given f ∈ PW(R), by part (c) we can write f as
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f(x) =
(
f̂
)∨

(x) =

∫ ∞

−∞
f̂(ξ) e2πiξx dξ =

∫ 1/2

−1/2

f̂(ξ) e2πiξx dξ. (10.1)

As f̂ is integrable and compactly supported, so the same is true of the
function

g(ξ) = 2πiξf̂(ξ).

In particular, supp(g) ⊆ [− 1
2 ,

1
2 ]. The Fourier or inverse Fourier transform of

an integrable function is continuous, so
∨

g is continuous on R. Using equation
(10.1) and formally interchanging a limit and an integral, we compute that

f ′(x) = lim
y→x

f(x)− f(y)

x− y

= lim
y→x

∫ 1/2

−1/2

f̂(ξ)
e2πiξx − e2πiξy

x− y dξ

=

∫ 1/2

−1/2

f̂(ξ) lim
y→x

e2πiξx − e2πiξy
x− y dξ

=

∫ 1/2

−1/2

f̂(ξ)
d

dx
e2πiξx dξ

=

∫ 1/2

−1/2

f̂(ξ) 2πiξ e2πiξx dξ

=
∨

g(ξ).

Because the interval [− 1
2 ,

1
2 ] has finite measure, the Dominated Convergence

Theorem can be used to justify the interchange of limit and integral in the
calculation above. We assign the details as Exercise 10.3(b).

Thus, f is differentiable at every point and f ′ =
∨

g. Hence f̂ ′ = g is
supported within [− 1

2 ,
1
2 ], so f ′ ∈ PW(R). By induction, we see that f is

infinitely differentiable.

(e) Since the trigonometric system {e2πinx}n∈Z is an orthonormal basis
for L2(T), it follows that

{ǫn}n∈Z =
{
e2πinx χ[− 1

2
, 1
2
](x)

}
n∈Z

=
{
Mnχ[− 1

2
, 1
2
]

}
n∈Z

is an orthonormal basis for L2
[− 1

2
, 1
2
]
(R). Since the Fourier transform maps

L2
[ 1
2
, 1
2
]
(R) unitarily onto PW(R) and since

ǫn̂ = (Mnχ[− 1
2
, 1
2
])

∧

= Tndπ,

it follows that {Tndπ}n∈Z is an orthonormal basis for PW(R).
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(f) By Exercise 8.9, if 0 < b < 1 then {e2πibnx}n∈Z is a redundant tight
frame for L2(T) with frame bound A = B = b−1. As in the proof of part (d),
it follows from this that {Tbndπ}n∈Z is a redundant tight frame for PW(R)
with frame bound A = B = b−1.

(g) This likewise follows from Exercise 8.9. ⊓⊔

Remark 10.5. Technically, it is an abuse of terminology to say that a bandlim-
ited function is smooth. A bandlimited function is an element of L2(R) and
hence is really an equivalence class of functions that are equal almost every-
where. What we mean when we say that a function f ∈ L2(R) is continuous
is that there is a representative of this equivalence class that is continuous,
and it is this representative that we work with when we speak of the function
values f(x) for x ∈ R. ♦

Part (d) of Theorem 10.4 tells us that every bandlimited function is in-

finitely differentiable, but even more is true: If f ∈ L2(R) and f̂ has compact
support then there exists a unique extension of f : R → C to a function
f : C → C that is analytic on the complex plane C. This statement is part
of the beautiful Paley–Wiener Theorem, which provides a fundamental link
between harmonic analysis and complex analysis (see [Kat04] for the exact
statement and proof of the Paley–Wiener Theorem). One implication of this
is that no function can be simultaneously timelimited and bandlimited (also
see Exercise 10.4 for a direct proof of Corollary 10.6).

Corollary 10.6. If f ∈ L2(R) and both f and f̂ have compact support, then
f = 0.

Proof. Suppose f ∈ L2(R) and f̂ has compact support. Then the Paley–
Wiener Theorem implies that f can be extended to a function that is analytic
on C. Suppose f also has compact support, say f(x) = 0 for |x| > R. An im-
portant property of analytic functions is that they are entirely determined by
their values on any line segment, curve, or set in C that has an accumulation
point in C. Hence if f is analytic and f(z) = 0 for all z = x+ i0 with |x| > R,
then f must be identically zero for all z. ⊓⊔

We will not pursue this interaction with complex analysis further, but
we note that it is the basis for much of the analysis of nonharmonic Fourier
series and its applications to irregular sampling theory. We refer to the text
by Young [You01] for more details on this subject.

Exercises

10.1. Show that the Fourier transform F and the inverse Fourier transform
F−1 each map L2

[−Ω,Ω](R) unitarily onto FL2
[−Ω,Ω](R).
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10.2. Show that the dilation operator Dr maps FL2
[−Ω,Ω](R) unitarily onto

FL2
[−rΩ,rΩ](R).

10.3. (a) Prove statement (a) in Theorem 10.4.

(b) Show that PW(R) ⊆ C∞(R) by justifying the statements made in the
proof of Theorem 10.4(d).

10.4. Given f ∈ PW(R), prove the following statements.

(a) The nth derivative of f can be written as

f (n)(x) =

∫ 1/2

−1/2

(2πiξ)n f̂(ξ) e2πiξx dξ.

(b) ‖f (n)‖∞ ≤ πn ‖f̂‖L1 for each n ≥ 0.

(c) Given a ∈ R, the Taylor series for f about the point a converges to
f(x) for every x, i.e.,

f(x) =

∞∑

n=0

f (n)(a)

n!
(x− a)n, x ∈ R.

Remark: This says that f is a real analytic function on R. The Paley–Wiener
Theorem implies more, in particular f has an extension to a function that is
complex analytic on C.

(d) Use part (c) to give another proof of Corollary 10.6.

10.2 The Sampling Theorem

Given f ∈ L2(R), the Inversion Formula for the Fourier transform tells us

that we can recover a function f from its Fourier transform f̂ by applying

the inverse Fourier transform: f =
(
f̂
)∨
. In the case that f, f̂ ∈ L1(R), this

becomes the pointwise formula from Theorem 9.12:

f(x) =
(
f̂
)∨

(x) =

∫ ∞

−∞
f̂(ξ) e2πiξx dξ, x ∈ R.

That is, if we know the value of f̂(ξ) for every ξ then, by superimposing

the “elementary functions” e2πiξx multiplied by the amplitudes f̂(ξ), we can
recover f. This is an uncountable superposition in the sense that we must in-
tegrate over all ξ ∈ R, but the amplitude f̂(ξ) does have a “physical meaning”
in the sense that it represents the “amount” of frequency ξ that is present in
the signal f.

A frame expansion allows us to recover f via a countable superposition. If
{fn} is a frame for L2(R) then for every f ∈ L2(R) we have
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f =
∑

n

〈f, f̃n〉 fn,

where {f̃n} is the canonical dual frame and the series converges in L2-norm.
Now our “elementary functions” are the frame functions fn, and they are su-

perimposed with amplitudes given by the frame coefficients 〈f, f̃n〉. However,
in general these frame coefficients need not have an obvious “physical mean-
ing.” Is there a way to choose the frame {fn} so that the frame coefficients
〈f, fn〉 will reflect “useful” properties of f? What is “useful” may have differ-
ent meanings depending on the application at hand, so we focus this question
further. Can we construct a frame {fn} so that the frame coefficient 〈f, fn〉 is
an actual function value of f, say f(n)? We will see that the answer is yes if
we restrict our attention to functions that are bandlimited to an appropriate
frequency band.

The key is the following computation, which is based on the unitarity
of the Fourier transform and the properties of bandlimited functions. Fix a
function f ∈ PW(R) and a point a ∈ R. By Theorem 10.4, f is smooth

and the Inversion Formula f(x) =
(
f̂
)∨

(x) holds pointwise for each x ∈ R.

Applying the Parseval Equality and noting that f̂ χ[− 1
2
, 1
2
] = f̂ , we therefore

have

〈f, Tadπ〉 =
〈
f̂ , (Tadπ)

∧
〉

=
〈
f̂ , M−adπ̂

〉

=

∫ ∞

−∞
f̂(ξ) e−2πiaξ χ

[− 1
2
, 1
2
](ξ) dξ

=

∫ 1/2

−1/2

f̂(ξ) e2πiaξ dξ

=

∫ ∞

−∞
f̂(ξ) e2πiaξ dξ

=
(
f̂
)∨

(a) = f(a). (10.2)

This observation leads us to the Classical Sampling Theorem (also known as
the Shannon Sampling Theorem, the Shannon–Whittaker Sampling Theorem,
the Nyquist–Shannon Sampling Theorem, and several other names).

Theorem 10.7 (Classical Sampling Theorem). If 0 < b ≤ 1 then for all
f ∈ PW(R) we have

f(x) = b
∑

n∈Z

f(bn)
sinπ(ξ − bn)

π(ξ − bn)
, (10.3)

where the series converges unconditionally in L2-norm.
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Proof. By Theorem 10.4, we know that {Tbndπ}n∈Z is a b−1-tight frame for
PW(R). Therefore, given f ∈ PW(R) we have

f = b
∑

n∈Z

〈f, Tbndπ〉Tbndπ, (10.4)

with unconditional convergence of the series in L2-norm. Since equation (10.2)
tells us that 〈f, Tbndπ〉 = f(bn), equations (10.3) and (10.4) coincide. ⊓⊔

Thus, a bandlimited function f in the Paley–Wiener space is entirely deter-
mined by the countably many sample values f(bn), n ∈ Z, as long as b ≤ 1.
Note that there are infinitely many functions (including smooth functions)
that have the same sample values as f at the points bn but differ from f at
other points. However, by the Paley–Wiener Theorem, a bandlimited func-
tion f is the restriction to the real line of a function that is analytic on the
complex plane. Analytic functions are very highly constrained, and so it is not
so surprising that a bandlimited f should be determined by only countably
many sample values. However, we must sample “densely enough.” If we take
b > 1 then {Tbndπ}n∈Z is an incomplete sequence in PW(R), and consequently
functions f ∈ PW(R) are not completely determined by their sample values
{f(bn)}n∈Z in this case (Exercise 10.6). This phenomenon is called aliasing.
If we take b = 1 then {Tndπ}n∈Z is an orthonormal basis for PW(R), and we
refer to this situation as “critical sampling” or “sampling at the Nyquist den-
sity.” When 0 < b < 1 the sequence {Tbndπ}n∈Z is a redundant tight frame for
PW(R), and we refer to this as “oversampling.” We can only reconstruct from
samples in the critically sampled or oversampled cases. Oversampling offers
many advantages in applications, due to the fact that we have a redundant
frame in the background in this case.

Looking at the proof of Theorem 10.7, we see that the key ingredient is
that a set of complex exponentials is a frame for the Paley–Wiener space. This
gives us the following generalization, whose proof is assigned as Exercise 10.5.
In the statement of this result, recall that eλ denotes the complex exponential
function eλ(x) = e2πiλx.

Theorem 10.8. Let {λn}n∈N be any sequence of real numbers such that

{eλn}n∈N is a frame for L2(T). Let {ẽn}n∈N be the canonical dual frame

of {eλn}n∈N in L2(T), and define

s̃n =
(
ẽn χ[− 1

2
, 1
2
]

)∨
.

Then for any f ∈ PW(R) we have

f =
∑

n∈Z

f(λn) s̃n,

where the series converges in L2-norm. ♦
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In general, the functions s̃n will not be sinc functions, and indeed it may
be difficult to write them explicitly when the frame is not tight. On the other
hand, we can often use alternative duals instead of the canonical dual in order
to improve on the properties of s̃n. These and many other issues are dealt with
in irregular sampling theory, and we refer to [You01] for more information.

Of course, Theorem 10.8 begs the question of which sequences {e2πiλnx}n∈N

are frames for L2(T). This was a longstanding problem introduced in the
very first frame paper by Duffin and Schaeffer [DS52]. A complete solution
was finally given by Ortega-Cerdà and Seip in [OS02]. Loosely, the sequence

{λn}n∈N can be assigned a “density” in the real line, and {e2πiλnx}n∈N is a
frame when this density is large enough. For the regularly spaced sequence
{e2πibnx}n∈Z, the “density” of {bn}n∈Z is precisely 1/b, and we have a frame
exactly when 1/b ≥ 1.

Sampling theory is now a major topic in mathematics and signal process-
ing, and there is a vast literature covering both applied and abstract view-
points. For more details, we refer to the texts [Hig96], [Mar91], and the survey
articles and edited volumes [BF01], [Hig85], [Jer77], [Uns00].

Exercises

10.5. Prove Theorem 10.8.

10.6. Show that if b > 1 then a function f ∈ PW(R) is not uniquely deter-
mined by the sequence of sample values {f(bn)}n∈Z.

10.3 Frames of Weighted Exponentials

The results of Sections 10.1 and 10.2 were largely driven by the fact that
the sequence {e2πibnx}n∈Z is a frame for L2(T) whenever 0 < b ≤ 1. By
extending these functions by zero outside of [− 1

2 ,
1
2 ] and applying the Fourier

transform, we translated this frame property to the sequence {Tbndπ}n∈Z in
the Paley–Wiener space, which is a subspace of L2(R).

Now we return to the setting of L2(T). We consider sequences that are
related to the complex exponentials, but which also incorporate a “weighting”
function ϕ.

Definition 10.9. A lattice system of weighted exponentials is a sequence in
L2(T) of the form

E(ϕ) =
{
e2πinxϕ(x)

}
n∈Z

=
{
ϕen

}
n∈Z

,

where ϕ ∈ L2(T) is a fixed 1-periodic function. ♦
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More generally, we could consider lattice systems {e2πibnxϕ(x)}n∈Z where
b > 0, or even “irregular” systems {e2πiλnxϕ(x)}n∈N where {λn} is an ar-
bitrary sequence of real numbers. These types of sequences are important in
many applications, but we will focus on b = 1. In analogy with the Sampling
Theorem, this is often referred to as the case of “critical sampling.”

Our next theorem will characterize some of the properties of the sequence
E(ϕ) in L2(T). We let Zϕ denote the zero set of ϕ:

Zϕ = {x ∈ T : ϕ(x) = 0}.
Since ϕ is 1-periodic, the set Zϕ is a “1-periodic” subset of the real line.
Technically, Zϕ is only defined up to sets of measure zero, i.e., if we choose
a different representative of ϕ then we may get a different set Zϕ, but the
symmetric difference between any two such sets will have measure zero.

The idea behind the proof of Theorem 10.10 is the simple observation that
if f ∈ L2(T) then

〈f, ϕen〉 =

∫ 1

0

f(x)ϕ(x) e−2πinx dx = 〈f ϕ, en〉. (10.5)

Thus 〈f, ϕen〉 is the nth Fourier coefficient of the function f ϕ. If the product
f ϕ belongs to L2(T) then we can use the fact that {en}n∈Z is an orthonor-
mal basis for L2(T) to analyze f ϕ. However, in general we only know that
f, ϕ ∈ L2(T), which only tells us that f ϕ ∈ L1(T). Still, functions in L1(T)
are completely determined by their Fourier coefficients (Theorem 4.25), so the
values 〈f ϕ, en〉 do determine f ϕ. If we are fortunate enough to know that ϕ
is bounded, then we will have f ϕ ∈ L2(T), in which case we can represent
f ϕ in terms of the orthonormal basis {en}n∈Z.

Theorem 10.10. Given ϕ ∈ L2(T), the following statements hold.

(a) E(ϕ) is complete in L2(T) if and only if ϕ(x) 6= 0 for a.e. x.

(b) E(ϕ) is minimal in L2(T) if and only if 1/ϕ ∈ L2(T). In this case E(ϕ)

is exact, and its biorthogonal system is E(ϕ̃ ) where ϕ̃ = 1/ϕ.

(c) E(ϕ) is a Bessel sequence in L2(T) if and only if ϕ ∈ L∞(T). In this case

|ϕ(x)|2 ≤ B a.e., where B is a Bessel bound.

(d) E(ϕ) is a frame sequence in L2(T) if and only if there exist A, B > 0 such
that A ≤ |ϕ(x)|2 ≤ B for a.e. x /∈ Zϕ. In this case the closed span of E(ϕ)
is

Hϕ =
{
f ∈ L2(T) : f = 0 a.e. on Zϕ

}
, (10.6)

and A, B are frame bounds for E(ϕ) as a frame for Hϕ.

(e) E(ϕ) is an unconditional basis for L2(T) if and only if there exist A, B > 0
such that A ≤ |ϕ(x)|2 ≤ B for a.e. x. In this case E(ϕ) is a Riesz basis
for L2(T).

(f) E(ϕ) is an orthonormal basis for L2(T) if and only if |ϕ(x)| = 1 for a.e. x.
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Proof. We will prove one direction of the implications in each of statements
(a)–(e), and assign the proof of the converse implications, and the proof of
statement (f), as Exercise 10.8.

(a) Suppose that E(ϕ) is complete, and set f = χZϕ . Then 〈f, ϕen〉 = 0

for every n, so by completeness we have f = 0 a.e. Hence |Zϕ| = 0, which
says that ϕ is nonzero a.e.

(b) Suppose that E(ϕ) is minimal in L2(T). Then it has a biorthogonal
system {ϕ̃n}n∈Z in L2(T). Fix m ∈ Z, and observe that the product ϕ̃mϕ
belongs to L1(T). Further,

〈ϕ̃mϕ, en〉 =

∫ 1

0

ϕ̃m(x)ϕ(x) e−2πinx dx = 〈ϕ̃m, ϕen〉 = δmn.

Although {en}n∈Z is not a basis for L1(T), Theorem 4.25 states that functions
in L1(T) are uniquely determined by their Fourier coefficients. The nth Fourier
coefficient of the function ϕ̃mϕ ∈ L1(T) is 〈ϕ̃mϕ, en〉 = δmn, and the nth
Fourier coefficient of the function em ∈ L1(T) is 〈em, en〉 = δmn. Therefore
we must have ϕ̃mϕ = em a.e. Since em is nonzero almost everywhere, this
implies that ϕ 6= 0 a.e. and ϕ̃m = em/ϕ. In particular, since e0 = 1 we have
1/ϕ = e0/ϕ = ϕ̃0 ∈ L2(T).

(c) Suppose that E(ϕ) is a Bessel sequence in L2(T), and let B be a Bessel
bound. Set E = {x ∈ T : |ϕ(x)|2 > B} and consider χE , the characteristic

function of E. We have χE ϕ ∈ L2(T), so
∫

E

|ϕ(x)|2 dx = ‖χE ϕ‖2L2 =
∑

n∈Z

|〈χE ϕ, en〉|2

=
∑

n∈Z

|〈χE , ϕen〉|2

≤ B ‖χE‖2L2 =

∫

E

B dx.

Hence
∫
E

(
|ϕ(x)|2−B

)
dx ≤ 0. However, |ϕ(x)|2−B is strictly positive on E,

so this implies that |E| = 0 (see Theorem A.15). Therefore |ϕ|2 ≤ B a.e.

(d) By Exercise 10.7, the space Hϕ defined in equation (10.6) is a closed
subspace of L2(T).

Suppose that E(ϕ) is a frame sequence in L2(T), i.e., E(ϕ) is a frame for
its closed span. Let A, B be frame bounds for E(ϕ) as a frame for its closed
span. Since E(ϕ) is a Bessel sequence, we have |ϕ|2 ≤ B a.e. by part (c).

Note that span(E(ϕ)) ⊆ Hϕ by the definition of Hϕ. To show that
span

(
E(ϕ)

)
= Hϕ, suppose that f ∈ Hϕ satisfies 〈f, ϕen〉 = 0 for every

n ∈ Z. Since ϕ is bounded, f ϕ ∈ L2(T), and its Fourier coefficients are
〈f ϕ, en〉 = 〈f, ϕen〉 = 0 for n ∈ Z. Therefore f ϕ = 0 a.e., and since f ∈ Hϕ,
this implies f = 0 a.e. Hence E(ϕ) is complete in Hϕ.
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Now fix any f ∈ Hϕ. Again f ϕ ∈ L2(T) since ϕ is bounded, so since E(ϕ)
is a frame for Hϕ we have

A

∫ 1

0

|f(x)|2 dx = A ‖f‖2L2 ≤
∑

k∈Z

|〈f, ϕen〉|2

=
∑

k∈Z

|〈f ϕ, en〉|2

= ‖f ϕ‖2L2

=

∫ 1

0

|f(x)|2 |ϕ(x)|2 dx.

Since f and ϕ both vanish on Zϕ, this implies

∫

[0,1]\Zϕ

|f(x)|2
(
|ϕ(x)|2 −A

)
dx ≥ 0. (10.7)

If |ϕ(x)|2 < A on any set E ⊆ [0, 1]\Zϕ of positive measure, then taking
f = χE in equation (10.7) leads to a contradiction. Hence we must have
|ϕ(x)|2 ≥ A for a.e. x /∈ Zϕ.

(e) Suppose that E(ϕ) is an unconditional basis for L2(T). Then since
‖ϕen‖L2 = ‖ϕ‖L2 for every n, it is a bounded unconditional basis, and there-
fore is a Riesz basis by Theorem 7.13. Every Riesz basis is an exact frame, so
by parts (b) and (d) we must have A ≤ |ϕ(x)|2 ≤ B a.e. ⊓⊔

Remark 10.11. (a) The question of when E(ϕ) is a Schauder basis for L2(T)
is much more subtle. We saw in Example 5.13 that if ϕ(x) = |x − 1

2 |−α
with 0 < α < 1/2, then E(ϕ) is a Schauder basis for L2(T), but it is not a
frame or Riesz basis for L2(T). We stated the Schauder basis characterization
of weighted exponentials in Theorem 5.15: E(ϕ) = {ϕen}n∈Z is a Schauder
basis for L2(T) with respect to the ordering Z = {0,−1, 1,−2, 2, . . .} if and
only if |ϕ|2 is an A2(T) weight. The proof of this result is due to Hunt,
Muckenhoupt, and Wheeden [HMW73] and will be omitted. However, the
material that we will cover in Chapter 14 is a good preparation for the proof,
so the interested reader can consult texts such as [Gra04] for details after
completing Chapter 14.

(b) If E(ϕ) is a redundant frame sequence in L2(T) then it is not a Riesz
basis for L2(T), so Theorem 10.10 implies that Zϕ must have positive measure.
But we must also have A ≤ |ϕ|2 ≤ B a.e. on the complement of Zϕ, so ϕ
cannot be continuous in this case. ♦

Finally, we characterize the dual frame of E(ϕ) when E(ϕ) is a frame
sequence.
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Theorem 10.12. Fix ϕ ∈ L2(T). If E(ϕ) is a frame sequence in L2(T), then
the canonical dual frame within Hϕ is E(ϕ̃ ) where

ϕ̃(x) =

{
1/ϕ(x), x /∈ Zϕ,
0, x ∈ Zϕ.

(10.8)

Proof. Let Hϕ be as in Theorem 10.10, and let S : Hϕ → Hϕ be the frame
operator for E(ϕ). Then for any m ∈ Z we have

S(f em) =
∑

n∈Z

〈
f em, ϕen

〉
ϕen

=
∑

n∈Z

〈
f, ϕen−m

〉
ϕen

=
∑

n∈Z

〈
f, ϕen

〉
ϕen+m

=
∑

n∈Z

〈
f, ϕen

〉
ϕen · em = (Sf) · em.

That is, S commutes with multiplication by em. Consequently S−1 commutes
with multiplication by em as well, and therefore the canonical dual frame is

{
S−1(ϕen)

}
n∈Z

=
{
(S−1ϕ)en

}
n∈Z

=
{
ψen

}
n∈Z

= E(ψ),

where ψ = S−1ϕ.
Now we must show that ψ has the prescribed form. Let ϕ̃ be defined by

equation (10.8), and note that ϕ̃ϕ = χ
ZC

ϕ
, the characteristic function of the

complement of Zϕ. Therefore

Sϕ̃ =
∑

n∈Z

〈
ϕ̃, ϕen

〉
ϕen

=
∑

n∈Z

〈
ϕ̃ϕ, en

〉
ϕen

=
∑

n∈Z

〈
χ
ZC

ϕ
, en

〉
ϕen

=

(∑

n∈Z

〈
χ
ZC

ϕ
, en

〉
en

)
ϕ (10.9)

= χ
ZC

ϕ
· ϕ (10.10)

= ϕ.

The factorization in equation (10.9) is allowed because of the fact that ϕ is
bounded (Exercise 10.10), and equation (10.10) follows from equation (10.9)
because {en}n∈Z is an orthonormal basis for L2(T). Consequently we have
ψ = S−1ϕ = ϕ̃. ⊓⊔
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Exercises

10.7. Prove that the subspace Hϕ defined in equation (10.6) is a closed sub-
space of L2(T).

10.8. Complete the proof of Theorem 10.10.

10.9. Let ϕ(t) = |t− 1
2 |α where 0 < α < 1/2, as in Example 5.13. Show that

E(ϕ) is exact in L2(T) but cannot be an unconditional basis for L2(T).

10.10. Justify the equality in equation (10.9).

10.11. Given a sequence c = (ck)k∈Z ∈ ℓ2(Z), let Tnc denote the translated
sequence Tnc = (ck−n)k∈Z. Characterize those sequences c such that {Tnc}n∈Z

is complete, Bessel, minimal, a frame, a Schauder basis, a Riesz basis, or an
orthonormal basis for ℓ2(Z).

10.4 Frames of Translates

Frames of translates play important roles in many areas, including wavelet
theory and reconstruction of signals from sample values. A lattice system of
translates is a sequence in L2(R) that has the form {g(x − ak)}k∈Z where
g ∈ L2(R) and a > 0 are fixed. Exercise 10.18 shows that such a sequence
can never be complete in L2(R), and therefore can never be a frame or a
Riesz basis for all of L2(R). Instead, what we usually need to know is whether
{g(x−ak)}k∈Z is a frame, Riesz basis, etc., for its closed span in L2(R). Since
the dilation operator Daf(x) = a1/2f(ax) is a unitary mapping of L2(R) onto
itself, by making a change of variables it suffices to consider the case a = 1
(see Exercise 10.12). Hence in this section we will focus on sequences of integer
translates, which we can write as

T (g) =
{
Tkg

}
k∈Z

=
{
g(x− k)

}
k∈Z

,

where Ta is the translation operator

Taf(x) = f(x− a).

In order to characterize the properties of T (g), we will make use of the
Fourier transform, which is reviewed in Chapter 9. The most important facts
about the Fourier transform Ff = f̂ that we will need are given in Theorems
9.3 and 9.5. Specifically, F is a unitary mapping of L2(R) onto itself, and it
interchanges translation with modulation according to the rules

(Taf)
∧

(ξ) = M−af̂(ξ) = e−2πiaξ f̂(ξ)

and
(Mbf)

∧

(ξ) = Tbf̂(ξ) = f̂(ξ − b).



10.4 Frames of Translates 283

By unitarity, a system of translates T (g) is a frame for its closed span in
L2(R) if and only if its image F(T (g)) under the Fourier transform is a frame
for its closed span in L2(R). This image has the form

F(T (g)) =
{
(Tkg)

∧
}
k∈Z

=
{
M−kĝ

}
k∈Z

=
{
e−2πikξ ĝ(ξ)

}
k∈Z

.

This looks very much like the systems of weighted exponentials that we con-
sidered in the preceding section, but we must keep in mind that the function ĝ
is not 1-periodic. Rather, ĝ is a square integrable function on R, and so does
not belong to L2(T). In order to distinguish between these different types of
sequences, we introduce a new notation, and also recall the definitions of T (g)
and E(ϕ). We choose the sign in the complex exponentials to best match their
use in this section.

Definition 10.13. (a) Given g ∈ L2(R), the system of integer translates gen-
erated by g is

T (g) =
{
Tkg

}
k∈Z

=
{
g(x− k)

}
k∈Z

,

and the system of integer modulates generated by ĝ is

M(ĝ ) =
{
M−kĝ

}
k∈Z

=
{
e−2πikξ ĝ(ξ)

}
k∈Z

.

(b) Given ϕ ∈ L2(T), the system of weighted exponentials generated by ϕ is

E(ϕ) =
{
e−2πikξ ϕ(ξ)

}
k∈Z

. ♦

The sequences T (g) and M(ĝ ) are each contained in L2(R), and the
Fourier transform maps T (g) ontoM(ĝ ). Therefore T (g) andM(ĝ ) have ex-
actly the same basis or frame properties. If there was a unitary transformation
that turned T (g) or M(ĝ ) into a system of weighted exponentials in L2(T),
then we could immediately use the machinery developed in Section 10.3 to an-
alyze them. In order to attempt this, we need the following periodic function
associated with g.

Notation 10.14. (a) Given g ∈ L2(R), we let Φg denote the 1-periodic func-
tion

Φg(ξ) =
∑

k∈Z

|ĝ(ξ + k)|2, ξ ∈ R. (10.11)

We call Φg the periodization of |ĝ |2.

(b) More generally, given f, g ∈ L2(R) the bracket product of f̂ with ĝ is the

1-periodic function [f̂ , ĝ ] given by

[f̂ , ĝ ](ξ) =
∑

k∈Z

f̂(ξ + k) ĝ(ξ + k), ξ ∈ R. ♦ (10.12)
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Since |g|2 ∈ L1(R), it follows from Exercise 10.13 that Φg ∈ L1(T), and

∫ 1

0

Φg(ξ) dξ =

∫ ∞

−∞
|ĝ(ξ)|2 dξ = ‖ĝ ‖2L2(R) = ‖g‖2L2(R).

Consequently, Φ
1/2
g =

(∑
k∈Z
|ĝ(ξ + k)|2

)1/2
belongs to L2(T), and

‖Φ1/2
g ‖L2(T) = ‖g‖L2(R).

Therefore g 7→ Φ
1/2
g is a norm-preserving map of L2(R) into L2(T). Unfortu-

nately this map is neither linear nor surjective, but its isometric nature does
lead us to suspect that the properties of T (g) in L2(R) may be reflected in

the properties of the system of weighted exponentials E(Φ1/2
g ) in L2(T). In

fact, there is one case where we can see this connection directly.

Example 10.15. Suppose that g ∈ L2(R) has the property that ĝ is zero a.e.
outside of the interval [0, 1], i.e., g is bandlimited to [0, 1]. Restricting our
attention to this interval, we can think of

M(ĝ ) =
{
e−2πikξ ĝ(ξ)

}
k∈Z

as being a sequence in L2[0, 1]. On the other hand, the support property of ĝ
implies that Φg(ξ) = |ĝ(ξ)|2 on [0, 1], so

E(Φ1/2
g ) =

{
e−2πikξ |ĝ(ξ)|

}
k∈Z

.

The only difference between these two systems is that M(ĝ ) is generated

by ĝ while E(Φ1/2
g ) is generated by |ĝ|. If we examine the hypotheses of The-

orem 10.10, we see that the properties of E(ϕ) given there depend only on |ϕ|
and not on the phase of ϕ. Hence, when supp(ĝ ) ⊆ [0, 1], we can apply Theo-

rem 10.10 to determine the properties of E(Φ1/2
g ) and hence the properties of

M(ĝ ) and T (g). ♦

We will see that by being a little more clever we can define a linear operator

that maps T (g) isometrically onto E(Φ1/2
g ). Consequently, we will be able to

tie properties of T (g) to properties of E(Φ1/2
g ) by passing through this unitary

map. First we introduce some additional notation that will be used throughout
this section.

Notation 10.16. (a) Given g ∈ L2(R), we let V0(g) denote the closed sub-
space generated by the integer translates of g:

V0(g) = span(T (g)) = span
{
Tkg

}
k∈Z

. (10.13)
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As in Theorem 10.10, ZΦg denotes the zero set of Φg:

ZΦg = {ξ ∈ T : Φg(ξ) = 0}.

We also set
HΦg = {F ∈ L2(T) : F = 0 a.e. on ZΦg},

which is a closed subspace of L2(T) by Exercise 10.7.

(b) The sequence space ℓ2(Z) will play an important role in this sec-
tion. This is the space of bi-infinite sequences c = (. . . , c−1, c0, c1, . . . ) that
are square summable. The space of bi-infinite sequences with finitely many
nonzero components is denoted by c00(Z). We let δk be the kth standard basis
vector in ℓ2(Z):

δk = (δkn)n∈Z.

(c) Given c = (ck)k∈Z ∈ ℓ2(Z), its Fourier transform or Fourier series is

the function ĉ ∈ L2(T) defined by

ĉ(ξ) =
∑

k∈Z

cke
−2πikξ. (10.14)

Since {e−2πikξ}k∈Z is an orthonormal basis for L2(T), this series converges
unconditionally in L2(T). The mapping c 7→ ĉ is a unitary mapping of ℓ2(Z)
onto L2(T). Fourier series will be studied in detail in Chapter 13. It should

always be clear from context that f̂ denotes the Fourier transform of a function
f ∈ L2(R) while ĉ denotes the Fourier series of a sequence c ∈ ℓ2(Z). ♦

Note that the space V0(g) defined in equation (10.13) is shift-invariant in
the following sense.

Definition 10.17. Let S be a closed subspace of L2(R).

(a) S is shift-invariant if for each f ∈ S we have f(x−k) ∈ S for every k ∈ Z.

(b) S is translation-invariant if for each f ∈ S we have f(x− a) ∈ S for every
a ∈ Z. ♦

Every translation-invariant space is shift-invariant, but not conversely. The
Paley–Wiener space PW(R) is translation-invariant, and PW(R) = V0(dπ)
where dπ is the sinc function. On the other hand, the space V0(χ[0,1]) is shift-
invariant but not translation-invariant.

The next lemma defines the isometry that we will use to characterize the
properties of systems of translates. The idea of the proof is that we map a

function
∑
ck Tkg in V0(g) = span(T (g)) to the function

(∑
cke−k

)
Φ

1/2
g in

L2(T). In other words, we are hoping that Tkg 7→ e−kΦ
1/2
g extends to an

isometry on V0(g). However, we must be careful, because we are not assuming
that T (g) is a basis or a frame for its closed span, so we may not be able to
write every function in V0(g) in the form

∑
ckTkg.
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Lemma 10.18. Given g ∈ L2(R), the following statements hold.

(a) For any sequence c = (ck)k∈Z with finitely many nonzero components, we
have ∥∥∥∥

∑

k∈Z

ck Tkg

∥∥∥∥
2

L2(R)

=

∫ 1

0

|ĉ(ξ)|2 Φg(ξ) dξ. (10.15)

(b) The mapping U : span{Tkg}k∈Z → L2(T) given by

U

(∑

k∈Z

ck Tkg

)
= ĉ Φ1/2

g , c = (ck)k∈Z ∈ c00(Z),

is a linear isometry, and it extends to a unitary mapping of V0(g)
onto HΦg .

(c) We have
U(Tkg) = e−k Φ1/2

g , k ∈ Z,

and therefore the isometry U maps the sequence T (g) in V0(g) to the

sequence E(Φ1/2
g ) in HΦg .

(d) If T (g) is a Bessel sequence, then
∑

k∈Z
ck Tkg converges unconditionally

and equation (10.15) holds for all sequences c = (ck)k∈Z ∈ ℓ2(Z), and

U

(∑

k∈Z

ck Tkg

)
= ĉ Φ1/2

g , c = (ck)k∈Z ∈ ℓ2(Z).

Proof. (a) Fix c = (ck)k∈Z ∈ c00(Z). In this case, the series in equation (10.14)
defining ĉ is a finite sum. Since ĉ is 1-periodic, by applying the unitarity of
the Fourier transform on L2(R) we compute that

∥∥∥∥
∑

k∈Z

ck Tkg

∥∥∥∥
2

L2(R)

=

∥∥∥∥
∑

k∈Z

ck (Tkg)
∧

∥∥∥∥
2

L2(R)

=

∥∥∥∥
∑

k∈Z

ckM−kĝ

∥∥∥∥
2

L2(R)

=

∫ ∞

−∞

∣∣∣∣
∑

k∈Z

cke
−2πikξ ĝ(ξ)

∣∣∣∣
2

dξ

=

∫ ∞

−∞
|ĉ(ξ) ĝ(ξ) |2 dξ (10.16)

=
∑

j∈Z

∫ 1

0

|ĉ(ξ + j) ĝ(ξ + j) |2 dξ
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=

∫ 1

0

|ĉ(ξ)|2
∑

j∈Z

|ĝ(ξ + j) |2 dξ

=

∫ 1

0

|ĉ(ξ)|2 Φg(ξ) dξ

=
∥∥ĉ Φ1/2

g

∥∥
L2(T)

.

The only place in this calculation where the assumption that c is a finite
sequence is needed is to establish the equality in equation (10.16); all of the
other steps are valid for arbitrary sequences c ∈ ℓ2(Z).

(b) By Exercise 10.14, the sequence T (g) = {Tkg}k∈Z is finitely indepen-
dent, so the mapping U is well defined, and equation (10.15) shows that U
maps span{Tkg}k∈Z isometrically into L2(T). By Exercise 1.72, U has an ex-
tension to an isometric map of V0(g) into L2

Φg
(T), which we also call U. By

definition we have range(U) ⊆ HΦg , so it only remains to show that the range
of U is HΦg .

Since U is an isometry, its range is closed. Therefore, if we can find a
sequence in range(U) that is complete in HΦg , then we must have range(U) =
HΦg . Set

Gk(ξ) = U(Tkg)(ξ) = e−2πikξ Φg(ξ)
1/2,

and suppose that F ∈ HΦg satisfies 〈F,Gk〉 = 0 for k ∈ Z. Then for every k
we have

〈
FΦ1/2

g , e−k
〉

=

∫ 1

0

F (ξ)Φg(ξ)
1/2 e2πikξ dξ = 〈F,Gk〉 = 0. (10.17)

Since F and Φ
1/2
g both belong to L2(T), their product belongs to L1(T). Al-

though {e2πikξ}k∈Z is not a basis for L1(T), Theorem 4.25 states that func-
tions in L1(T) are uniquely determined by their Fourier coefficients. The kth

Fourier coefficient of FΦ
1/2
g is the inner product

〈
FΦ

1/2
g , ek

〉
, so by equation

(10.17) every Fourier coefficient of FΦ
1/2
g is zero. Since every Fourier coeffi-

cient of the zero function is also zero, we conclude that FΦ
1/2
g = 0 a.e. As

F ∈ HΦg , it follows that F = 0 a.e. Therefore {Gk}k∈Z is a subset of range(U)
that is complete in HΦg .

(c) Let δk be the delta sequence. Then δ̂k = e−k, so by the definition of U

we have U(Tkg) = e−k Φ
1/2
g .

(d) Suppose that T (g) is a Bessel sequence, and let (ck)k∈Z be any se-
quence in ℓ2(Z). Theorem 7.2 implies that the series

∑
n∈Z

ck Tkg converges
unconditionally in L2(R). Since the Fourier transform is unitary, the sequence
M(ĝ ) = {M−kĝ }k∈Z is Bessel, and therefore the series F =

∑
k∈Z

ckM−kĝ
converges unconditionally in L2(R). Also, the series ĉ(ξ) =

∑
k∈Z

cke
−2πikξ
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converges unconditionally in L2(T) because {e−2πikξ}k∈Z is an orthonormal
basis for that space. If these series converged pointwise then we could write

F (ξ) =
∑

k∈Z

cke
−2πikξ ĝ(ξ) =

(∑

k∈Z

cke
−2πikξ

)
ĝ(ξ) = ĉ(ξ) ĝ(ξ).

However, we only know that these series converge in the norm of their re-
spective spaces, but even so Exercise 10.15 tells us that the equality F (ξ) =
ĉ(ξ) ĝ(ξ) holds pointwise almost everywhere. Hence the calculations leading
to equation (10.15) extend to arbitrary sequences (ck)k∈Z ∈ ℓ2(Z). ⊓⊔

Now we can characterize the properties of systems of translates. Part (b)
of the following theorem was first proved by Benedetto and Li [BL98], and
part (f) is due to Nielsen and Šikić [NS07]. Note that, by definition, T (g) is

complete in the space V0(g) and E(Φ1/2
g ) ⊆ HΦg .

Theorem 10.19. Given g ∈ L2(R), the following statements hold.

(a) T (g) is a Bessel sequence in V0(g) if and only if Φg ∈ L∞(T), and in this
case Φg ≤ B a.e. where B is a Bessel bound.

(b) T (g) is a frame for V0(g) if and only if there exist A, B > 0 such that

A ≤ Φg(ξ) ≤ B a.e. ξ /∈ ZΦg .

In this case A, B are frame bounds for T (g).

(c) T (g) is minimal in V0(g) if and only if 1/Φg ∈ L1(T), and in this case
T (g) is exact in V0(g).

(d) T (g) is an unconditional basis for V0(g) if and only if there exist A, B > 0
such that A ≤ Φg ≤ B a.e., and in this case it is a Riesz basis for V0(g).

(e) T (g) is an orthonormal basis for V0(g) if and only if Φg(t) = 1 a.e.

(f) With respect to the ordering {0,−1, 1,−2, 2, . . .} of the index set Z, T (g)
is a Schauder basis for V0(g) if and only if Φg ∈ A2(T).

Proof. Most of the implications follow directly by combining Lemma 10.18
with Theorem 5.15 or Theorem 10.10, so we will only elaborate on a few
details.

(a) Since U : V0(g)→ HΦg is unitary, T (g) is a Bessel sequence in V0(g) if

and only if E(Φ1/2
g ) is a Bessel sequence in HΦg . By Exercise 7.7, being Bessel

in HΦg is equivalent to being Bessel in L2(T), and by Theorem 10.10 this
happens if and only if Φg is bounded.

(b) T (g) is a frame for V0(g) if and only if E(Φ1/2
g ) is a frame for HΦg .

This happens if and only if E(Φ1/2
g ) is a frame sequence in L2(T), so the result

follows from Theorem 10.10.
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To illustrate another approach, we give a second proof of one implication,
based on the characterization of frames given in Theorem 8.29(e). Assume
that T (g) is a frame for V0(g) with frame bounds A, B, and let R denote its
reconstruction operator. If c = (ck)k∈Z ∈ ker(R) then

∑
k∈Z

ck Tkg = 0, so

∫ 1

0

|ĉ(ξ)|2 Φg(ξ) dξ =

∥∥∥∥
∑

k∈Z

ck Tkg

∥∥∥∥
2

L2(R)

= 0.

It follows that

ker(R) =
{
c ∈ ℓ2(Z) : ĉ(ξ) = 0 for a.e. ξ /∈ ZΦg

}
,

and therefore

ker(R)⊥ =
{
c ∈ ℓ2(Z) : ĉ(ξ) = 0 for a.e. ξ ∈ ZΦg

}

=
{
c ∈ ℓ2(Z) : ĉ ∈ HΦg

}
. (10.18)

Choose any function F ∈ HΦg . Then the characterization of ker(R)⊥ in

equation 10.18 implies that F = ĉ for some sequence c = (ck)k∈Z ∈ ker(R)⊥.
By Lemma 10.18(d), we therefore have

∫ 1

0

|F (ξ)|2 Φg(ξ) dξ =

∥∥∥∥
∑

k∈Z

ck Tkg

∥∥∥∥
2

L2(R)

≥ A
∑

k∈Z

|ck|2 (10.19)

= A

∫ 1

0

|F (ξ)|2 dξ,

where the inequality in equation (10.19) follows from Theorem 8.29(e). It
follows from this that Φg(ξ) ≥ A for a.e. ξ /∈ ZΦg .

(c) By Theorem 10.10, E(Φ1/2
g ) is minimal if and only if Φ

−1/2
g ∈ L2(T),

which is equivalent to 1/Φg ∈ L1(T). ⊓⊔

Next we will deduce the structure of the canonical dual of a frame sequence
of translates. For this we will need the bracket product function [f̂ , ĝ ] defined in
equation (10.12). Note that if we take f = g then [ĝ, ĝ ] = Φg, the periodization
of |ĝ |2 defined in equation (10.11). The bracket product can be viewed as an

L1 function-valued inner product on L2(R), and more generally it is a special
case of an inner product for a Hilbert C∗ module. For more information on
the bracket product, we refer to the paper [CL03].

The following lemma says that the inner product of f with Tkg is the
(−k)th Fourier coefficient of [f̂ , ĝ ]. For preciseness, we emphasize in the state-
ment and proof of this lemma which space an inner product is being taken on.
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Lemma 10.20. If f, g ∈ L2(R) then [f̂ , ĝ ] ∈ L1(T) and

〈f, Tkg〉L2(R) =

∫ 1

0

[f̂ , ĝ ](ξ) e2πikξ dξ =
〈
[f̂ , ĝ ], e−k

〉
L2(T)

, k ∈ Z.

Consequently, if [f̂ , ĝ ] ∈ L2(T) then

[f̂ , ĝ ](ξ) =
∑

k∈Z

〈f, Tkg〉L2(R) e
−2πikξ, (10.20)

where the series converges unconditionally in L2(T).

Proof. Since f̂ , ĝ ∈ L2(R), the product f̂ ĝ belongs to L1(R), and therefore

its periodization [f̂ , ĝ ] belongs to L1(T). Applying the unitarity of the Fourier
transform on L2(R) and then periodizing the integral, we compute that

〈f, Tkg〉L2(R) = 〈f̂ , (Tkg)∧〉L2(R)

= 〈f̂ ,M−kĝ 〉L2(R)

=

∫ ∞

−∞
f̂(ξ) e2πikξ ĝ(ξ) dξ

=
∑

j∈Z

∫ 1

0

f̂(ξ + j) ĝ(ξ + j) e2πik(ξ+j) dξ

=

∫ 1

0

(∑

j∈Z

f̂(ξ + j) ĝ(ξ + j)

)
e2πikξ dξ

=
〈
[f̂ , ĝ ], e−k

〉
L2(T)

.

In the calculations above, we have used the periodicity of the complex ex-
ponential to write e2πik(ξ+j) = e2πikξ, and we are allowed to interchange the
order of summation and integration by appealing to Fubini’s Theorem.

Finally, if [f̂ , ĝ ] belongs to L2(T) then we have

[f̂ , ĝ ] =
∑

k∈Z

〈
[f̂ , ĝ ], e−k

〉
L2(T)

e−k,

which implies equation (10.20). ⊓⊔

Theorem 10.21. If g ∈ L2(R) and T (g) is a frame for V0(g), then the canon-
ical dual frame in V0(g) is T (g̃), where g̃ ∈ V0(g) is the function whose Fourier
transform is

̂̃g(ξ) =

{
ĝ(ξ)/Φg(ξ), ξ ∈ R\ZΦg ,

0, ξ ∈ ZΦg .
(10.21)
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Proof. By Exercise 10.17, the frame operator S : V0(g)→ V0(g) for T (g) com-
mutes with the translation operator Tk when k ∈ Z, and as a consequence the
canonical dual frame has the form T (h) for some h ∈ V0(g).

Since Φg is bounded above and below on the complement of ZΦg , there is

a function g̃ ∈ L2(R) whose Fourier transform satisfies equation (10.21). If
we define

m(ξ) =

{
1/Φg(ξ), ξ ∈ R\ZΦg ,

0, ξ ∈ ZΦg ,

then m ∈ L2(T) and ̂̃g = m ĝ. Consequently, Exercise 10.17 implies that
g̃ ∈ V0(g), and our goal is to show that h = g̃.

For simplicity of notation set Z = ZΦg , and let U : V0(g) → HΦg be the

unitary map constructed in Lemma 10.18. Note that the bracket product of
̂̃g with ĝ is [

̂̃g, ĝ
]
(ξ) =

∑

j∈Z

̂̃g(ξ + j) ĝ(ξ + j) = χ
ZC(ξ),

the characteristic function of the complement of Z = ZΦg . Lemma 10.20
therefore implies that

〈
g̃, Tkg

〉
L2(R)

=
〈
χ
ZC , e−k

〉
L2(T)

, k ∈ Z.

Setting ck = 〈g̃, Tkg〉L2(R), we have

ĉ =
∑

k∈Z

ck e−k =
∑

k∈Z

〈g̃, Tkg〉L2(R) e−k

=
∑

k∈Z

〈
χ
ZC , e−k

〉
L2(T)

e−k = χ
ZC .

Applying Lemma 10.18(d), it follows that

U(Sg̃) = U

(∑

k∈Z

〈g̃, Tkg〉L2(R) Tkg

)

= U

(∑

k∈Z

ck Tkg

)

= ĉ Φ1/2
g = χ

ZC Φ1/2
g = Φ1/2

g = U(g).

Thus Sg̃ = g, so g̃ = S−1g = h. ⊓⊔

Using a similar approach we can find a function g♯ such that T (g♯) is a
Parseval frame for V0(g) = span(T (g)); see Exercise 10.21. If T (g) is a Riesz
basis for V0(g), then T (g♯) will be an orthonormal basis for V0(g).
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Fig. 10.1. Top: The hat function w. Bottom left: Generator ew of the dual frame.
Bottom right: Generator w♯ of the associated orthonormal basis (this is the Battle–

Lemarié linear spline scaling function).

Example 10.22. Let w(x) = max{1 − |x|, 0}. This is the “hat function” or
“tent function” on [−1, 1], see Figure 10.1. Exercise 10.22 shows that Φw is
bounded above and below, and therefore T (w) is a Riesz basis for its closed
span V0(g). Hence Theorem 10.21 gives us a function w̃ such that T (w̃) is the
biorthogonal sequence to T (w). Since w̃ belongs to V0(g), we can write it in
the basis T (w) as

w̃ =
∑

k∈Z

〈
w̃, Tkw̃

〉
Tkw. (10.22)

Lemma 10.20 tells us that

〈
w̃, Tkw̃

〉
=
〈
Φ ew, e−k

〉
, (10.23)

and by Exercise 10.22 we have

Φ ew(ξ) =
1

Φw(ξ)
=

3

2 + cos 2πξ
.

Therefore we can (numerically) compute the inner products appearing in equa-
tion (10.23), and find the representation of w̃ in terms of the Riesz basis T (w).
Since Tkw is nonzero only within an interval of length 2, for any given x the
series appearing in equation (10.22) has at most two nonzero terms, so we see
that w̃ is a piecewise linear function. On the other hand, infinitely many of
the inner products 〈w̃, Tkw̃〉 are nonzero, so w̃ is not compactly supported.
Still, the fact that Φ ew(ξ) is infinitely differentiable implies that its Fourier
coefficients

〈
Φ ew, e−k

〉
decay rapidly as |k| → ∞ (see Exercise 13.3). There-

fore w̃(ξ) decays rapidly as |ξ| → ∞, and in fact it can be shown that w̃ decays
exponentially. We illustrate w̃ in Figure 10.1.
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Additionally, Exercise 10.21 provides us with a function w♯ whose inte-
ger translates generate an orthonormal basis for V0(w) = span(T (w)). We
can likewise represent w♯ in the basis T (w) and see that w♯ is piecewise lin-
ear. The function w♯, which is pictured in Figure 10.1, is the first of the
Battle–Lemarié scaling functions [Bat87], [Lem88]. The higher-order Battle–
Lemarié scaling functions are constructed similarly, replacing the hat function
by a higher-order B-spline function. The nth B-spline is (n− 1)-times differ-
entiable (Exercise 12.20), so the Battle–Lemarié scaling functions increase in
smoothness with n.We refer to [Chr03] for more details on the Battle–Lemarié
functions. ♦

It is not so easy to find functions g ∈ L2(R) such that T (g) is a frame
but not a Riesz basis for its closed span V0(g). By Theorem 10.19, if T (g) is
a redundant frame sequence then ZΦg must be nontrivial. However, Φg must
also be bounded away from zero on the complement of ZΦg , which implies
that Φg cannot be continuous. This proves the following lemma.

Lemma 10.23. Let g ∈ L2(R) be such that T (g) is a frame sequence. Then

T (g) is redundant =⇒ Φg is not continuous. ♦

If g ∈ L1(R)∩L2(R) then ĝ is continuous (Theorem 9.10). Consequently,
if ĝ decays quickly enough at infinity then the series defining Φg will converge
uniformly, and hence Φg will be continuous. The next result gives a specific
criterion quantifying this statement.

Lemma 10.24. Assume g ∈ L1(R) ∩ L2(R) and

∑

k∈Z

‖ĝ · χ[k,k+1]‖2∞ < ∞. (10.24)

Then the following statements hold.

(a) Φg is continuous and T (g) is a Bessel sequence.

(b) T (g) is a frame for V0(g) if and only if it is a Riesz basis for V0(g).

Proof. (a) By hypothesis, ĝ is continuous, so each function Gk(x) = |ĝ(ξ+k)|2
belongs to C[0, 1]. By definition, Φg =

∑
k∈Z

Gk, and equation (10.24) says

that this series converges absolutely in C[0, 1]. Therefore Φg is continuous on
[0, 1], and since it is 1-periodic it is continuous everywhere. Consequently Φg
is bounded, so Theorem 10.19 implies that T (g) is a Bessel sequence.

(b) If T (g) is a frame sequence, then 0 < A ≤ Φg ≤ B < ∞ off the zero
set of Φg. Since Φg is continuous, the only way this can happen is if the zero
set of Φg is empty. ⊓⊔

Equation (10.24) is an example of an amalgam space norm condition. We
will study amalgam spaces in more detail in Section 11.4. In the terminology of
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that section, the hypothesis appearing in equation (10.24) says that ĝ belongs
to the space W (L∞, ℓ2). Loosely, ĝ is “locally bounded” and has “ℓ2-type
decay” at infinity. This, combined with continuity of ĝ, implies continuity of
Φg, which implies that T (g) cannot be a redundant frame for V0(g). This
does not tell us that T (g) will be a Riesz basis for V0(g), as that depends on
whether Φg has any zeros.

Here is another sufficient condition on g that implies continuity of Φg. In
contrast to Lemma 10.24, this condition is formulated in terms of g rather
than ĝ. This result is due to Jia and Micchelli [JM91].

Theorem 10.25. Given g ∈ L2(R), let

Θ(x) =
∑

k∈Z

|g(x+ k)| (10.25)

be the periodization of |g|. If Θ ∈ L2(T), i.e.,

∫ 1

0

Θ(x)2 dx =

∫ 1

0

(∑

k∈Z

|g(x+ k)|
)2

dx < ∞, (10.26)

then the following statements hold.

(a) Φg is continuous and T (g) is a Bessel sequence.

(b) T (g) is a frame for V0(g) if and only if it is a Riesz basis for V0(g).

Proof. As in the proof of Lemma 10.24, if we prove that Φg is continuous then
the remaining statements are consequences of Theorem 10.19.

Since each term |g(x + k)| is nonnegative, the series in equation (10.25)
defining Θ(x) converges at almost every x either to a finite nonnegative value
or to +∞. Applying Tonelli’s Theorem and using the fact that Θ is 1-periodic,
we have

∑

k∈Z

|〈g, Tkg〉| =
∑

k∈Z

∣∣∣∣
∫ ∞

−∞
g(x) g(x − k) dx

∣∣∣∣

≤
∑

k∈Z

∑

j∈Z

∫ 1

0

|g(x− j) g(x− j − k)| dx

=
∑

j∈Z

∫ 1

0

|g(x− j)|
∑

k∈Z

|g(x− j − k)| dx

=
∑

j∈Z

∫ 1

0

|g(x− j)|Θ(x) dx

=

∫ 1

0

Θ(x)2 dx < ∞.
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Hence the sequence
(
〈g, Tkg〉

)
k∈Z

belongs to ℓ1(Z). However, by Lemma 10.20,

〈g, Tkg〉 = 〈Φg, e−k〉. Thus the sequence of Fourier coefficients of Φg belongs
to ℓ1(Z). On the other hand we have Φg ∈ L1(T), simply because ĝ ∈ L2(R).
Appealing to a result we will prove in Chapter 13, a function in L1(T) whose
Fourier coefficients belong to ℓ1(Z) can be written as an absolutely convergent
Fourier series (see Theorem 13.25):

Φg(ξ) =
∑

k∈Z

〈Φg, e−k〉 e−k(ξ) =
∑

k∈Z

cke
−2πikξ,

where (ck) ∈ ℓ1(Z). This is an equality of functions in L1(T), and hence
holds pointwise almost everywhere. However, since e−2πikξ is continuous on T
and (ck)k∈Z ∈ ℓ1(Z), the series

∑
k∈Z

cke
−2πikξ converges uniformly to a

continuous function on T, and therefore Φg is continuous on T (in the usual
meaning of equaling a continuous function almost everywhere). ⊓⊔

In short, if g ∈ L2(R) is such that T (g) is a redundant frame for its closed
span, then g cannot be a very “nice” function. Some specific examples are
given in Exercise 10.20.

Remark 10.26. Note the interesting similarities and differences between the
conditions appearing in Lemma 10.24 and Theorem 10.25. Equation (10.24)
is an amalgam norm condition on ĝ :

∑

k∈Z

(
sup
ξ∈[0,1]

|ĝ(ξ + k)|
)2

< ∞,

while equation (10.26) is a norm condition on the periodization of g:

∫ 1

0

(∑

k∈Z

|g(x+ k|
)2

dx < ∞. ♦

We close this chapter with an open problem related to systems of trans-
lates. By Exercise 10.18, T (g) must always be incomplete in L2(R). Surpris-
ingly, if we allow slightly nonregular translations, then we can obtain complete
sequences of translates. For example, Olevskii and Ulanovskii have shown that
there exists a function g ∈ L2(R) and points ak with |ak − k| < ε such that
{g(x − ak)}k∈N is complete in L2(R) [Ole97], [OU04]. Although such “ir-
regular” systems are considerably more difficult to analyze than the systems
T (g), it has been shown [CDH99] that {g(x− ak)}k∈N can never be a frame
for L2(R), no matter what function g ∈ L2(R) and scalars ak ∈ R that we
choose. In an earlier paper, Olson and Zalik proved that {g(x− ak)}k∈N can
never be a Riesz basis for L2(R), and they made the following conjecture
[OZ92].

Conjecture 10.27 (Olson–Zalik Conjecture). There does not exist a
function g ∈ L2(R) and scalars ak ∈ R such that {g(x−ak)}k∈N is a Schauder
basis for L2(R). ♦
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This conjecture is still open as of the time of writing. Currently, the best
partial result known is that if g ∈ L1(R)∩L2(R) then {g(x−ak)}k∈N cannot
be a Schauder basis for L2(R) [DH00]. We will give a short proof, due to
A. Olevskii, of the weaker result that {g(x − ak)}k∈N can never be a Riesz
basis.

Theorem 10.28. If g ∈ L2(R) and ak ∈ R for k ∈ N then {g(x− ak)}k∈N

is not a Riesz basis for L2(R).

Proof. If {g(x − ak)}k∈N is a Riesz basis for L2(R) then, since the Fourier

transform is unitary, the sequence {e−2πiakξ ĝ(ξ)}k∈N is also a Riesz basis for
L2(R). If ĝ vanished on any set E with positive measure then χE would be
orthogonal to every element of this basis, which is a contradiction. Hence we
must have ĝ(ξ) 6= 0 for almost every ξ. By Theorem 7.13, there exist constants
A, B > 0 such that for any sequence (ck)k∈N ∈ ℓ2 we have

A

∞∑

k=1

|ck|2 ≤
∥∥∥∥

∞∑

k=1

ck e
−2πiakξ ĝ(ξ)

∥∥∥∥
2

L2

≤ B

∞∑

k=1

|ck|2. (10.27)

The function F = ĝ · χ[0,1] belongs to L2(R), so it can be written in the

basis {e−2πiakξ ĝ(ξ)}k∈N as

F (ξ) =
∞∑

k=1

ck e
−2πiakξ ĝ(ξ),

where the series converges unconditionally in L2-norm and the scalars (ck)k∈N

belong to ℓ2. Given r > 0, define

Fr(ξ) =

∞∑

k=1

ck e
−2πiak(ξ−r) ĝ(ξ) =

∞∑

k=1

(ck e
2πiakr) e−2πiakξ ĝ(ξ).

This series converges unconditionally in L2(R) because
∑ |ck e2πiakr|2 < ∞.

Since ĝ is nonzero almost everywhere, we can define Gr(ξ) = Fr(ξ)/ĝ(ξ). Set

sN (ξ) =

N∑

k=1

ck e
−2πiak(ξ−r).

Then sN(ξ) ĝ(ξ) → Fr(ξ) = Gr(ξ) ĝ(ξ) in L2-norm as N → ∞. But we also
have

sN (ξ + r) ĝ(ξ) =

N∑

k=1

ck e
−2πiakξ ĝ(ξ) → F (ξ) = χ[0,1](ξ) ĝ(ξ).

Since convergence in L2-norm implies the existence of a subsequence that
converges pointwise a.e., there exist Nk such that
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sNk
(ξ) ĝ(ξ) → Fr(ξ) = Gr(ξ) ĝ(ξ) a.e.

and
sNk

(ξ + r) ĝ(ξ) → F (ξ) = χ[0,1](ξ) ĝ(ξ) a.e.

Since ĝ(ξ) 6= 0 for a.e. ξ, this implies that

Gr(ξ) = χ[0,1](ξ − r) = χ[r,r+1](ξ) a.e.

Consequently Fr(ξ) = Gr(ξ) ĝ(ξ) = χ[r,r+1](ξ) ĝ(ξ), so by applying equation
(10.27) we see that

∫ 1

0

|ĝ(ξ)|2 dξ = ‖F‖2L2 ≤ B

∞∑

k=1

|ck|2

≤ B

A
‖Fr‖2L2

=
B

A

∫ r+1

r

|ĝ(ξ)|2 dξ → 0 as r →∞.

This implies that ĝ = 0 a.e. on [0, 1], which is a contradiction. ⊓⊔

Exercises

10.12. Let g ∈ L2(R) and a > 0 be given, and define h(x) = g(ax). Show
that {g(x−ak)}k∈Z is a frame sequence in L2(R) if and only if {h(x−k)}k∈Z

is a frame sequence in L2(R). What is the relation between the closed spans
of these two systems?

10.13. Given a function f ∈ L1(R) and given a > 0, we call the function

ϕ(x) =
∑

n∈Z

f(x+ an)

the a-periodization of f (or simply the periodization if a = 1). Show that the
series defining ϕ converges absolutely in L1[0, a], and

∫ a

0

ϕ(x) dx =

∫ ∞

−∞
f(x) dx.

In particular, the bracket product of f, g ∈ L2(R) is the function [f, g] ∈ L1(T)
defined by

[f, g](x) =
∑

n∈Z

f(x+ n) g(x+ n).

10.14. Show that if g ∈ L2(R) is not the zero function, then {Tag}a∈R is
finitely linearly independent.
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10.15. Suppose that g ∈ L2(R) is such that M(ĝ ) = {e−2πikξ ĝ(ξ)}k∈Z

is a Bessel sequence in L2(R). By Theorem 7.2, if (ck)k∈Z ∈ ℓ2(Z) then
the series F (ξ) =

∑
k∈Z

cke
−2πikξ ĝ(ξ) converges unconditionally in L2(R).

Also, since {e−2πikξ}k∈Z is an orthonormal basis for L2(T) the series ĉ(ξ) =∑
k∈Z

cke
−2πikξ converges unconditionally in L2(T). Show that F (ξ) =

ĉ(ξ) ĝ(ξ) a.e.

10.16. Prove the remaining statements in Theorem 10.19.

10.17. Suppose that g ∈ L2(R) is such that T (g) is a frame sequence in
L2(R), and let S : V0(g)→ V0(g) be its frame operator.

(a) Show that S(Tkf) = Tk(Sf) for each f ∈ V0(g). Use this to show that
the canonical dual frame in V0(g) is T (h) where h = S−1g.

(b) Show that

f ∈ V0(g) ⇐⇒ ∃m ∈ L2(T) such that f̂ = m ĝ a.e.

10.18. (a) Suppose g ∈ L2(R) and ĝ is nonzero almost everywhere. Show that

if f ∈ V0(g) then there is a 1-periodic function p such that f̂ = p ĝ a.e.

(b) Given an an arbitrary function g in L2(R), show that T (g) is incom-
plete in L2(R).

10.19. Suppose that f, g ∈ L2(R) are such that T (f) and T (g) are both
orthonormal sequences.

(a) Show that T (f) and T (g) have the same closed spans if and only if

f̂(ξ) = α(ξ) ĝ(ξ) a.e., where α is 1-periodic and |α(ξ)| = 1 a.e.

(b) Show that if f and g are each compactly supported, then span(T (f)) =

span(T (g)) if and only f = αTkg where k ∈ Z and α is a scalar with |α| = 1.

10.20. Let g ∈ L2(R) be given.

(a) Show that if g is compactly supported (zero almost everywhere out-
side of some finite interval), then T (g) is a Bessel sequence but cannot be a
redundant frame for its closed span V0(g) (compare Exercise 10.22).

(b) Show that if ĝ is continuous and compactly supported, then T (g) is a
Bessel sequence but cannot be a redundant frame for V0(g).

(c) Find a function g ∈ L2(R) such that T (g) is a redundant frame
for V0(g).

10.21. Suppose that g ∈ L2(R) is such that T (g) is a frame sequence in
L2(R), and let g♯ ∈ L2(R) be the function whose Fourier transform is

ĝ♯(ξ) =

{
ĝ(ξ)Φg(ξ)

−1/2, ξ /∈ ZΦg ,

0, ξ ∈ ZΦg .
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Show that g♯ ∈ V0(g) = span(T (g)), and T (g♯) is a Parseval frame for V0(g).
Show further that if T (g) is a Riesz basis for V0(g) then T (g♯) is an orthonor-
mal basis for V0(g).

10.22. Let w(x) = max{1− |x|, 0} be the “hat” or “tent” function on [−1, 1].
Use Lemma 10.20 to show that

Φw(ξ) =
2 + cos 2πξ

3
=

1 + 2 cos2 πξ

3
,

and conclude that T (w) is a Riesz basis for its closed span V0(g). Find ̂̃w, Φ ew,

ŵ♯, and
[
ŵ♯, ̂̃w

]
.

10.23. Suppose that g ∈ L2(R) and ak ∈ R are such that {g(x−ak)}k∈N is a
Schauder basis for L2(R). Show that the sequence (ak)k∈N must be uniformly
separated, i.e., infj 6=k |aj − ak| > 0.



11

Gabor Bases and Frames

In this chapter we will consider the construction and properties of the class
of Gabor frames for the Hilbert space L2(R). The analysis and application
of Gabor systems is one part of the field of time-frequency analysis, which is
more broadly explored in Gröchenig’s text [Grö01].

In Chapter 10 we focused on systems of weighted exponentials {e2πinx}n∈Z

and systems of translates {g(x − k)}k∈Z. Each of these systems is generated
by applying a single type of operation (modulation or translation) to a single
generating function (ϕ or g). The resulting sequences have many applications,
but their closed spans can only be proper subspaces of L2(R). In contrast,
Gabor systems incorporate both modulations and translations, and can be
frames for all of L2(R).

Gabor systems were briefly introduced in Example 8.10 and are defined
precisely as follows.

Definition 11.1. A lattice Gabor system, or simply a Gabor system for short,
is a sequence in L2(R) of the form

G(g, a, b) = {e2πibnxg(x− ak)}k,n∈Z,

where g ∈ L2(R) and a, b > 0 are fixed. We call g the generator or the atom
of the system, and refer to a, b as the lattice parameters. ♦

More generally, an “irregular” Gabor system is a sequence of the form
G(g,Λ) =

{
e2πibxg(x − a)

}
(a,b)∈Λ

, where Λ is an arbitrary countable set of

points in R2. Lattice Gabor systems have many attractive features and appli-
cations, and are much easier to analyze than irregular Gabor systems, so we
focus on lattice systems for most of this chapter. For more details on irregular
Gabor systems, we refer to [Grö01] or the survey paper [Hei07].

We are especially interested in Gabor systems that form frames or Riesz
bases for L2(R). Naturally, if G(g, a, b) is a frame for L2(R), then we call it a
Gabor frame, and if it is a Riesz basis, then we call it a Gabor Riesz basis or
an exact Gabor frame.
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Gabor systems are named after Dennis Gabor (1900–1979), who was
awarded the Nobel prize for his invention of holography. In his paper [Gab46],
Gabor proposed using the Gabor system G(φ, 1, 1) generated by the Gaus-

sian function φ(x) = e−πx
2

. Von Neumann [vN32, p. 406] had earlier claimed
(without proof) that G(φ, 1, 1) is complete in L2(R), i.e., its finite linear span
is dense. Gabor conjectured (incorrectly, as we will see) that every function
in L2(R) could be represented in the form

f =
∑

k,n∈Z

ckn(f)MnTkφ (11.1)

for some scalars ckn(f); see [Gab46, Eq. 1.29]. This is one reason why general
families G(g, a, b) are named in his honor (see [Jan01] for additional historical
remarks and references).

Von Neumann’s claim of completeness was proved in [BBGK71], [Per71],
and [BGZ75]. However, completeness is a weak property and does not imply
the existence of expansions of the form given in equation (11.1). Reading a
bit extra into what von Neumann and Gabor actually wrote, possibly they
expected that G(φ, 1, 1) would be a Schauder basis or a Riesz basis for L2(R).
In fact, G(φ, 1, 1) is neither, as it is overcomplete in the sense that any single
element may be removed and still leave a complete system. In fact, the excess is
precisely 1, because this system becomes incomplete as soon as two elements
are removed. However, even with one element removed, the resulting exact
system forms neither a Schauder basis nor a Riesz basis; cf. [Fol89, p. 168]. In
fact, Janssen proved in [Jan81] that Gabor’s conjecture that each f ∈ L2(R)
has an expansion of the form in equation (11.1) is true, but he also showed
that the series converges only in the sense of tempered distributions—not in
the norm of L2—and the coefficients ckn grow with k and n (see also [LS99]).

Today we realize that there are no “good” Gabor Riesz bases G(g, a, b) for
L2(R). Indeed, the Balian–Low Theorem, which we mentioned in Chapter 8
and will consider in detail in Section 11.8, implies that only “badly behaved”
atoms g can generate Gabor Riesz bases. On the other hand, redundant Gabor
frames with nice generators do exist, and they provide us with useful tools for
many applications. We will study the construction and special properties of
Gabor frames in this chapter.

11.1 Time-Frequency Shifts

We recall the following operations on functions f : R→ C.

Translation: (Taf)(x) = f(x− a), a ∈ R.

Modulation: (Mbf)(x) = e2πibxf(x), b ∈ R.

Dilation: (Drf)(x) = r1/2f(rx), r > 0.
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Fig. 11.1. The Gaussian window φ(x) = e−πx2

and the real part of the time-
frequency shift M3T5φ.

We often think of the independent variable x ∈ R as representing time, and
hence refer to translation as a time shift. We call modulation a frequency shift,
and say that a composition of translation and modulation is a time-frequency
shift (see the illustration in Figure 11.1). Thus, a Gabor system G(g, a, b) is a
set of time-frequency shifts of the atom g:

G(g, a, b) =
{
MbnTakg

}
k,n∈Z

.

Unfortunately, the translation and modulation operators do not commute
in general. Being careful with the ordering of composition and evaluation, we
compute that

TaMbf(x) = (Ta(Mbf))(x)

= (Mbf)(x − a)

= e2πib(x−a)f(x− a)

= e−2πiab e2πibxf(x− a)

= e−2πiabMbTaf.

The pesky phase factor e−2πiab has modulus 1, but we only have e−2πiab = 1
when ab ∈ Z. Hence Mb and Ta only commute when the product ab is in-
teger. Even so, by Exercise 11.3, {MbnTakg}k,n∈Z is a frame if and only if
{TakMbng}k,n∈Z is a frame, so in this sense the ordering of Tak and Mbn is
not important in many circumstances. However, we must still be careful to
respect these phase factors in our calculations, as they do create significant
difficulties at times (as in Section 11.9).

The product ab of the lattice generators appears in many calculations
involving Gabor systems. It is usually the product ab that is important, rather
than the individual values of a and b, because by dilating g we can change
the value of a at the expense of a complementary change to b. This is made
precise in the next lemma.

Lemma 11.2. Fix g ∈ L2(R) and a, b ∈ R. Then given r > 0, G(g, a, b) is a
frame for L2(R) if and only if G(Drg, a/r, br) is a frame for L2(R).
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Proof. Using the dilation Drg(x) = r1/2g(rx), we have

Dr(MbnTakg)(x) = r1/2(MbnTakg)(rx)

= r1/2e2πibnrxg(rx − ak)

= r1/2e2πibnrxg(r(x − ak/r))
= MbnrTak/r(Drg)(x).

Thus G(Drg, a/r, br) is the image of G(g, a, b) under the dilation Dr. The
result then follows from the fact that Dr is a unitary mapping of L2(R) onto
itself. ⊓⊔

If G(g, a, b) is a Gabor frame, then its frame operator is

Sf =
∑

n∈Z

∑

k∈Z

〈f,MbnTakg〉MbnTakg.

The frame operator commutes with Mbn and Tak for k, n ∈ Z (Exercise 11.3).
A consequence of this is that S−1 also commutes with Mbn and Tak, so we have
S−1(MbnTakg) = MbnTak(S

−1g). Therefore the canonical dual of G(g, a, b) is
another Gabor frame.

Lemma 11.3. If G(g, a, b) is a Gabor frame for L2(R), then its canonical
dual frame is G(g̃, a, b) where g̃ = S−1g. ♦

To each Gabor system G(g, a, b) we will associate the a-periodic function
G0 defined by

G0(x) =
∑

k∈Z

|g(x− ak)|2 =
∑

k∈Z

|Takg(x)|2, x ∈ R.

Implicitly, G0 depends on g and a. Note that G0 is the a-periodization of |g|2
in the sense of Exercise 10.13, and by that exercise we have G0 ∈ L1[0, a] and

∫ a

0

G0(x) dx =

∫ ∞

−∞
|g(x)|2 dx = ‖g‖2L2. (11.2)

Exercises

11.1. Given g ∈ L2(R), show that {MbnTakg}k,n∈Z is a frame for L2(R) if
and only if {TakMbng}k,n∈Z is a frame, and in this case their frame operators
coincide.

11.2. (a) Use the fact that TaMb = e−2πiabMbTa to show that the set
{TaMb}a,b∈R of time-frequency shift operators is not closed under compo-
sitions, and hence does not form a group.
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(b) Define
H1 =

{
e2πitTaMb

}
a,b,t∈R

,

and show that H1 is a nonabelian group under composition of operators.

(c) Define
H2 = R3 =

{
(a, b, t)

}
a,b,t∈R

.

Show that H2 is a nonabelian group with respect to the operation

(a, b, t) ∗ (c, d, u) = (a+ c, b+ d, t+ u+ bc).

Show further that H2 is isomorphic to H1.

(d) Define

H3 =








1 b t
0 1 a
0 0 1






a,b,t∈R

.

Show that H3 is a nonabelian group with respect to multiplication of matrices,
and H3 is isomorphic to H1.

(e) Show that aZ× bZ×{0} = {(ak, bn, 0)}k,n∈Z is not a subgroup of H2,
but the countable subset aZ×bZ×abZ = {(ak, bn, abj)}k,n,j∈Z is a subgroup.

(f) As a set, H2 = R3, and hence has a natural topology. In fact, H2 is
an example of a locally compact group (LCG). Every LCG has associated left
and right Haar measures (and these are unique up to scalar multiples). Show
that the left Haar measure for H2 is da db dt, which means that for every
(c, d, u) ∈ H2 we have

∫∫∫
F
(
(c, d, u) ∗ (a, b, t)

)
da db dt =

∫∫∫
F (a, b, t) da db dt

for every integrable function F on H2 = R3. Show that the right Haar measure
is also da db dt. Thus, even though H2 is nonabelian, its left and Haar right
measures coincide (such an LCG is said to be unimodular).

Remark: The (isomorphic) groups H1, H2, H3 are called the Heisenberg
group. The properties of the Heisenberg group should be contrasted with those
of the affine group discussed in Exercise 12.2.

11.3. Let G(g, a, b) be a Gabor frame for L2(R).

(a) Show that the frame operator S commutes with Mbn and Tak for all
k, n ∈ Z, and use this to show that S−1 also commutes with Mbn and Tak.

(b) Show that the canonical dual frame of G(g, a, b) is the Gabor frame
G(g̃, a, b) where g̃ = S−1g.

(c) Suppose that G(g, a, b) is a frame for L2(R). Show that G(g, a, b) is a
Riesz basis if and only if 〈g, g̃ 〉 = 1.

(d) Show that the canonical Parseval frame of a lattice Gabor frame is
another lattice Gabor frame. Specifically, if G(g, a, b) is a frame for L2(R)
and we set g♯ = S−1/2g, where S is the frame operator, then G(g♯, a, b) is a
Parseval frame for L2(R).
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11.4. Fix g ∈ L2(R) and a, b > 0. Recall from equations (9.2) and (9.3) that
the Fourier transform interchanges translation with modulation. Use this to
show that

G(g, a, b) is a frame ⇐⇒ G(ĝ, b, a) is a frame.

11.2 Painless Nonorthogonal Expansions

The simplest example of a Gabor frame is

G(χ[0,1], 1, 1) =
{
e2πinx χ[k,k+1](x)

}
k,n∈Z

.

If we fix a particular k, then by Example 1.52 we know that the sequence{
e2πinx χ[k,k+1](x)

}
n∈Z

is an orthonormal basis for L2[k, k + 1]. Hence the

Gabor system G(χ[0,1], 1, 1) is simply the union of orthonormal bases for
L2[k, k + 1] over all k ∈ Z, and consequently G(χ[0,1], 1, 1) is an orthonor-
mal basis for L2(R).

Unfortunately, this Gabor system is not very useful in practice. The gener-
ator χ[0,1] is very well localized in the time domain in the sense that it is zero
outside of a finite interval. However, it is discontinuous, and this means that
the expansion of a smooth function in the orthonormal basis G(χ[0,1], 1, 1) will
not converge any faster than the expansion of a discontinuous function. From
another viewpoint, the problem with the function g = χ

[0,1] is that its Fourier
transform is a modulated sinc function:

ĝ(ξ) = e−πiξ
sinπξ

πξ
.

Thus ĝ decays only on the order of 1/|ξ| and is not even integrable. We want
to find Gabor frames generated by functions that are both smooth and well
localized.

We can try to create “better” Gabor systems by using a different atom g or
different lattice parameters a, b. If we stick to functions g that are compactly
supported in an interval of length 1/b, then it is quite easy to create Gabor
frames G(g, a, b) for L2(R), and we can even do so with smooth, compactly
supported generators if we choose a and b appropriately. This was first done
by Daubechies, Grossmann, and Meyer [DGM86], who referred to these as
Painless Nonorthogonal Expansions.

Theorem 11.4 (Painless Nonorthogonal Expansions). Fix a, b > 0 and
g ∈ L2(R).

(a) If 0 < ab ≤ 1 and supp(g) ⊆ [0, b−1], then G(g, a, b) is a frame for L2(R)
if and only if there exist constants A, B > 0 such that

Ab ≤
∑

k∈Z

|g(x− ak)|2 ≤ Bb a.e. (11.3)

In this case, A, B are frame bounds for G(g, a, b).
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(b) If 0 < ab < 1, then there exist g supported in [0, b−1] that satisfy equation
(11.3) and are as smooth as we like (even infinitely differentiable).

(c) If ab = 1, then any g that is supported in [0, b−1] and satisfies equation
(11.3) must be discontinuous.

(d) If ab > 1 and g is supported in [0, b−1], then equation (11.3) is not satisfied
and G(g, a, b) is incomplete in L2(R).

Proof. (a) Suppose that supp(g) ⊆ [0, b−1] and equation (11.3) holds. Ex-
ercise 8.4 tells us that in order to show that G(g, a, b) is a frame, we need
only establish that the frame bounds hold on a dense subset of L2(R). So,
let us consider functions f in the dense subspace Cc(R) (actually, continu-
ity is not needed here, we could just as well restrict our attention to func-
tions that are bounded and compactly supported). Since g ∈ L2(R) is sup-
ported within [0, b−1], the translated function Takg belongs to L2(Ik), where
Ik = [ak, ak + b−1]. Since f is bounded, the product f · Takg also belongs to
L2(Ik). Now, {e2πinx}n∈Z is an orthonormal basis for L2[0, 1], so by making
a change of variables it follows that

{b1/2ebn}n∈Z = {b1/2e2πibnx}n∈Z

is an orthonormal basis for L2(Ik). Applying the Plancherel Equality (and
keeping in mind that Takg is supported in Ik), we therefore have

∫ ∞

−∞
|f(x) g(x − ak)|2 dx =

∫ ak+b−1

ak

∣∣f(x)Takg(x)
∣∣2 dx

=
∥∥f · Takg

∥∥
L2(Ik)

=
∑

n∈Z

∣∣〈f · Takg, b1/2ebn
〉
L2(Ik)

∣∣2

= b
∑

n∈Z

∣∣∣∣
∫ ak+b−1

ak

f(x) g(x− ak) e−2πibnx dx

∣∣∣∣
2

= b
∑

n∈Z

∣∣∣∣
∫ ∞

−∞
f(x) e2πibnx g(x− ak) dx

∣∣∣∣
2

= b
∑

n∈Z

∣∣〈f, MbnTakg
〉∣∣2. (11.4)

Hence, using Tonelli’s Theorem to interchange the sum and integral,



308 11 Gabor Bases and Frames

∑

k,n∈Z

∣∣〈f, MbnTakg
〉∣∣2 = b−1

∑

k∈Z

∫ ∞

−∞
|f(x) g(x − ak)|2 dx

= b−1

∫ ∞

−∞
|f(x)|2

∑

k∈Z

|g(x− ak)|2 dx (11.5)

≥
∫ ∞

−∞
|f(x)|2Adx = A ‖f‖2L2.

A similar computation shows that the upper frame bound estimate also holds
for f. Since Cc(R) is dense in L2(R), we conclude that G(g, a, b) is a frame
with frame bounds A, B.

We will improve on the converse implication in Theorem 11.6, so we omit
the proof here.

(b) Suppose that 0 < ab < 1, and let g be any continuous function such
that g(x) = 0 outside of [0, b−1] and g(x) > 0 on (0, b−1). For example, we
could let g be the hat function supported on [0, b−1]. Because a < b−1, it
follows that the a-periodic function G0(x) =

∑ |g(x−ak)|2 is continuous and
strictly positive at every point. Consequently, 0 < inf G0 ≤ supG0 < ∞, so
G(g, a, b) is a frame by part (a).

There are many functions g that satisfy these requirements and are more
smooth, even infinitely differentiable. For concrete examples, see Exercise 11.9.

(c) If ab = 1 then a = b−1. If supp(g) ⊆ [0, b−1] = [0, a] then Takg is
supported in [ka, (k + 1)a]. If g is continuous then g(0) = g(a) = 0. Since
the intervals [ka, (k + 1)a] overlap at at most one point, it follows that G0 is
continuous and G0(ka) = 0 for every k ∈ Z. Part (a) therefore implies that
G(g, a, b) cannot be a frame.

(d) If ab > 1 then a > b−1. Hence G0(x) =
∑ |g(x−ak)|2 is zero on [b−1, a],

so G(g, a, b) cannot be a frame. In fact, the function χ[b−1,a] is orthogonal to
every element of G(g, a, b), so this Gabor system is incomplete. ⊓⊔

Note that it is the product ab that is important in Theorem 11.4 because,
by Lemma 11.2, we can change the value of a at the expense of a complemen-
tary change to b. Also, by translating g we can replace [0, b−1] by any interval
of length b−1.

Here is a more constructive approach to the proof of Theorem 11.4(b).

Example 11.5. For simplicity, assume that 1
2 < ab < 1. Then for any given x,

the series G0(x) =
∑ |g(x−ak)|2 contains at most two nonzero terms. Define

a continuous function g supported on [0, b−1] by setting
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g(x)2 =





0, x < 0,

linear, x ∈ [0, b−1 − a],
1, x ∈ [b−1 − a, a],
linear, x ∈ [a, b−1],

0, x > b−1.

For this g we have G0(x) = 1 for every x ∈ R (see Figure 11.2). Hence
G(g, a, b) is a b−1-tight frame, and by rescaling we can make it a Parseval
frame if we wish. By using a smoother g, we can similarly create Parseval
Gabor frames with generators that are as smooth as we like (Exercise 11.10).
The construction becomes more complicated if ab < 1

2 because there are more
overlaps to consider, but the idea can be extended to any values of a, b with
0 < ab < 1. ♦

0 1 2 3 4 5 6 7
0

1

Fig. 11.2. Graphs of g(x)2 and g(x − a)2 from Example 11.5 using a = 3 and
b = 1/4.

We summarize some of the important points in the Painless Nonorthogonal
Expansions construction.

• If 0 < ab < 1 then we can construct nice atoms g (smooth and compactly
supported) such that G(g, a, b) is a frame or even a Parseval frame for
L2(R).

• If ab = 1 then there exist Gabor frames G(g, a, b) for L2(R), but all of the
frames constructed using the methods of this section have generators g
that are discontinuous.

• If ab > 1 then no Gabor system with supp(g) ⊆ [0, b−1] can be a frame for
L2(R), and in fact G(g, a, b) must be incomplete in this case.

Exercise 11.6 refines these observations further, yielding the following addi-
tional facts.

• If 0 < ab < 1 then the frames constructed in this section are redundant
(not exact).

• If ab = 1 then the frames constructed in this section are exact and hence
are Riesz bases for L2(R).
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In the following sections, we will see that the properties listed above apply
not only to the “Painless” constructions, but to all Gabor systems G(g, a, b).
The analysis will not be quite as painless and will require new insights, but we
will see that there are no “nice” Gabor Riesz bases G(g, a, b) at all, whereas
there are many “well-behaved” redundant Gabor frames. Although it lies out-
side the scope of this volume, we remark that the utility of redundant Gabor
frames extends far beyond the Hilbert space setting. Specifically, if G(g, a, b) is
a Gabor frame that is generated by a function g that has sufficient simultane-
ous concentration in both time and frequency, then G(g, a, b) will be a frame
not only for L2(R) but also for an entire range of associated function spaces
Mp,q
s (R) (1 ≤ p, q ≤ ∞, s ∈ R) known as modulation spaces. These spaces

quantify time-frequency concentration of functions (and distributions), and
arise naturally in problems that involve both time and frequency. We refer to
the text by Gröchenig [Grö01] for a beautiful development of this rich subject.

Exercises

11.5. Show that G(χ[0,1], 1, 1) is an orthonormal basis for L2(R). Also show
that G(χ[0,1], a, 1) is a frame for L2(R) if and only if 0 < a ≤ 1.

Remark: Amazingly, there is no known explicit characterization of the set
of points (a, b) such that G(χ[0,1], a, b) is a frame for L2(R), see [Jan03].

11.6. Assume that the hypotheses of part (a) of Theorem 11.4 are satisfied,
i.e., 0 < ab ≤ 1, supp(g) ⊆ [0, b−1], and equation (11.3) holds. Prove the
following statements about the frame G(g, a, b).

(a) The frame operator is pointwise multiplication by b−1G0, i.e., Sf =
b−1G0f for f ∈ L2(R).

(b) The canonical dual frame is G(g̃, a, b) where g̃ = bg/G0.

(c) If ab = 1 then G(g, a, b) is a Riesz basis for L2(R).

(d) If 0 < ab < 1 then G(g, a, b) is a redundant frame for L2(R).

11.7. Show that if g ∈ Cc(R) is not the zero function, then there exist some
a, b > 0 such that G(g, a, b) is a frame for L2(R).

11.8. Let g ∈ Cc(R) satisfy supp(g) = [0, b−1
0 ] and g(x) > 0 for x ∈ (0, b−1

0 ).
Show that G(g, a, b) is a frame for L2(R) for 0 < a < b−1

0 and 0 < b < b0.

11.9. This exercise will construct a compactly supported, infinitely differen-
tiable function on the real line. Define f(x) = e−1/x2 χ(0,∞)(x).

(a) Show that for every n ∈ N, there exists a polynomial pn of degree 3n
such that

f (n)(x) = pn(x
−1) e−x

−2
χ(0,∞)(x).

Conclude that f is infinitely differentiable, every derivative of f is bounded,
and f (n)(x) = 0 for every x ≤ 0 and n ≥ 0.
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(b) Show that if a < b, then g(x) = f(x− a) f(b− x) is infinitely differen-
tiable, is zero outside of (a, b), and is strictly positive on (a, b).

11.10. Let 0 < ab < 1 be fixed. By Exercise 11.9, there exists a function
f ∈ C∞

c (R) supported in [0, b−1] such that f > 0 on (0, b−1).

(a) Set F0(x) =
∑

k∈Z
|f(x− ak)|2 and show that g = f/F

1/2
0 is infinitely

differentiable, compactly supported, and satisfies
∑
k∈Z
|g(x − ak)|2 = 1 ev-

erywhere.

(b) Show that there exists a function g ∈ C∞
c (R) such that G(g, a, b) is a

Parseval frame for L2(R).

11.3 The Nyquist Density and Necessary Conditions for
Frame Bounds

Theorem 11.4, the Painless Nonorthogonal Expansions construction, gives nec-
essary and sufficient conditions for the existence of Gabor frames G(g, a, b)
when the atom g is supported in an interval of length 1/b. This equivalence
does not extend to general functions in L2(R). Still, the necessary part of the
theorem does extend, as follows.

Theorem 11.6. If g ∈ L2(R) and a, b > 0 are such that G(g, a, b) is a frame
for L2(R) with frame bounds A, B > 0, then we must have Ab ≤ G0 ≤ Bb a.e.,
i.e.,

Ab ≤
∑

k∈Z

|g(x− ak)|2 ≤ Bb a.e. (11.6)

In particular, g must be bounded.

Proof. The proof is similar to the proof of part (a) of Theorem 11.4. However,
now we do not know the support of g, so instead we restrict our attention to
functions f that are bounded and supported in an interval I of length 1/b.
In this case the product f · Takg belongs to L2(I). Since {b1/2ebn}n∈Z is an
orthonormal basis for L2(I), it follows, just as in equation (11.4), that

b
∑

n∈Z

∣∣〈f, MbnTakg
〉∣∣2 =

∫ ∞

−∞
|f(x) g(x− ak)|2 dx.

Applying the lower frame bound for G(g, a, b), we find that

∫ ∞

−∞
|f(x)|2G0(x) dx =

∑

k∈Z

∫ ∞

−∞
|f(x) g(x− ak)|2 dx

= b
∑

k,n∈Z

∣∣〈f, MbnTakg
〉∣∣2
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≥ bA ‖f‖2L2

= bA

∫ ∞

−∞
|f(x)|2 dx.

Thus, for every bounded f ∈ L2(I) we have
∫ ∞

−∞
|f(x)|2

(
G0(x)− bA

)
dx ≥ 0. (11.7)

Now, if G0(x) < bA on some subset E of I that has positive measure, then we
could take f = χE and obtain a contradiction to equation (11.7). Therefore we
must have G0 ≥ bA a.e. on I, and a similar calculation using the upper frame
bound gives G0 ≤ bB a.e. on I. Since I is an arbitrary interval of length 1/b
and since the real line can be covered by countably many translates of I, we
conclude that bA ≤ G0 ≤ bB a.e. on R. ⊓⊔

Combining Theorem 11.6 with Exercise 11.3 gives several interesting corol-
laries for Gabor frames. Note that the statements in the next corollary apply to
all Gabor frames G(g, a, b), not just those with compactly supported atoms g.

Corollary 11.7 (Density and Frame Bounds). Fix g ∈ L2(R) and a,
b > 0. If G(g, a, b) is a frame for L2(R) with frame bounds A, B, then the
following statements hold.

(a) Aab ≤ ‖g‖2L2 ≤ Bab.
(b) If G(g, a, b) is a Parseval frame, then ‖g‖2L2 = ab.

(c) 0 < ab ≤ 1.

(d) 〈g, g̃ 〉 = ab, where g̃ = S−1g is the generator of the canonical dual frame.

(e) G(g, a, b) is a Riesz basis if and only if ab = 〈g, g̃ 〉 = 1.

Proof. (a), (b) Integrating equation (11.6) over the interval [0, a], we have

Aab =

∫ a

0

Ab dx ≤
∫ a

0

∑

k∈Z

|g(x− ak)|2 dx ≤
∫ ∞

−∞
|g(x)|2 dx = ‖g‖2L2.

A similar calculation shows that ‖g‖2L2 ≤ Bab. If the frame is Parseval then
A = B = 1.

(c) By Exercise 11.3, if we set g♯ = S−1/2g then G(g♯, a, b) is a Parseval
frame. Part (b) therefore implies that ‖g♯‖2L2 = ab. On the other hand, the
elements of a Parseval frame can have at most unit norm (see Exercise 7.5),
so we must have ‖g♯‖2L2 ≤ 1. Hence ab ≤ 1.

(d) Combining ‖g♯‖2L2 = ab with the fact that S−1/2 is self-adjoint,

〈g, g̃ 〉 = 〈g, S−1/2S−1/2g〉 = 〈S−1/2g, S−1/2g〉 = ‖g♯‖2L2 = ab.

(e) This follows by combining part (d) with Corollary 8.23 (see also Exer-
cise 11.3). ⊓⊔
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Parts (a) and (b) of Corollary 11.7 were proved by Daubechies in her
seminal paper [Dau90]. The first proof of part (c) was given by Ramanathan
and Steger [RS95] as a special case of their results on irregular Gabor systems.
The simple proof of part (c) given here appears to have been first presented
by Balan [Bal98], but has been independently discovered several times.

Looking at parts (c) and (e) of Corollary 11.7 a little more closely, we see
that the value of ab separates Gabor frames into three categories:

• If ab > 1 then G(g, a, b) is not a frame.

• If G(g, a, b) is a frame and ab = 1 then it is a Riesz basis.

• If G(g, a, b) is a frame and 0 < ab < 1 then it is a redundant frame.

We saw in Section 11.2 that this trichotomy held for the Painless Nonorthog-
onal Expansions, and now we see that it holds for all Gabor systems. The
value 1/(ab) is called the density of the Gabor system G(g, a, b), because the
number of points of aZ × bZ that lie in a given ball in R2 is asymptotically
1/(ab) times the volume of the ball as the radius increases to infinity. We refer
to the density 1/(ab) = 1 as the critical density or the Nyquist density.

In fact, the trichotomy for the Painless Nonorthogonal Expansions was
even more pronounced. We proved in Theorem 11.4(d) that if ab > 1 and
g ∈ L2(R) is supported in [0, b−1] then G(g, a, b) is incomplete. In contrast,
Corollary 11.7 only tells us that G(g, a, b) cannot be a frame, which is a weaker
statement. Although it is more difficult to prove, it is true that if g is any
function in L2(R) and ab > 1 then G(g, a, b) must be incomplete in L2(R).
The first explicit proof of this fact was given by Baggett [Bag90], using the
representation theory of the discrete Heisenberg group. It was also proved by
Daubechies for the case that ab is rational [Dau90], and she also pointed out
that a proof for general ab > 1 can be inferred from results of Rieffel [Rie81]
on the coupling constants of C∗-algebras.

There is still a surprise left for us in the case ab > 1. Comparing Theorem
11.6 to Theorem 10.19 we see some suspiciously similar equations. Theorem
11.6 tells us that if G(g, a, b) = {MbnTakg}k,n∈Z is a Gabor frame for L2(R)
with frame bounds A, B, then

Ab ≤
∑

k∈Z

|g(x− ak)|2 ≤ Bb a.e.

After making the appropriate changes of variable (see Exercise 11.12), The-
orem 10.19 says that T (g) = {Takg}k∈Z is a Riesz basis for its closed span
with frame bounds A, B if and only if

Aa ≤
∑

k∈Z

|ĝ(ξ − k
a )|2 ≤ Ba a.e., (11.8)

where ĝ is the Fourier transform of g. Coordinating properly between g and

ĝ, a and 1
a , and b and 1

b , we find that there are Riesz sequences of translates

of g and ĝ associated with every Gabor frame, even redundant frames!
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Theorem 11.8. Assume G(g, a, b) is a frame for L2(R) with frame bounds
A, B, and let ĝ be the Fourier transform of g. Then the following statements
hold.

(a) Aa ≤∑n∈Z
|ĝ(ξ − bn)|2 ≤ Ba a.e.

(b) {Tn/bg}n∈Z is a Riesz sequence in L2(R) with frame bounds Aab, Bab (as
a frame for its closed span).

(c) {Tk/aĝ }k∈Z is a Riesz sequence in L2(R) with frame bounds Aab, Bab
(as a frame for its closed span).

Proof. (a) Suppose that G(g, a, b) is a frame. Exercise 11.4 shows that the
image of G(g, a, b) under the Fourier transform is G(ĝ, b, a). Since the Fourier
transform is unitary, G(ĝ, b, a) must be a frame with the same frame bounds as
G(g, a, b). Statement (a) then follows by applying Theorem 11.6 to G(ĝ, b, a).

(b) Write part (a) as

Aab

b
≤
∑

n∈Z

|ĝ(ξ − bn)|2 ≤ Bab

b
a.e.

Comparing this to equation (11.8), we see that {Tn/bg}n∈Z is a Riesz basis

for its closed span, and the frame bounds are Aab, Bab.

(c) This follows by applying part (b) to the frame G(ĝ, b, a). ⊓⊔
Thus, even if G(g, a, b) is a redundant frame (which cannot have a biorthog-

onal sequence), {Tn/bg}n∈Z is a Riesz sequence and therefore has a biorthog-
onal sequence! Although we will not prove it, Theorem 11.8 is actually only a
part of a result that seems very surprising (at least when first encountered).

Theorem 11.9 (Duality Principle). Given g ∈ L2(R) and a, b > 0, the
following statements are equivalent.

(a) G(g, a, b) = {MbnTakg}k,n∈Z is a frame for L2(R), with frame bounds
A, B.

(b) G(g, 1/b, 1/a) = {Mk/aTn/bg}k,n∈Z is a Riesz sequence in L2(R), with
frame bounds Aab, Bab (as a frame for its closed span). ♦
Thus, the property of being a frame with respect to the lattice aZ × bZ

is dual to the property of being a Riesz sequence with respect to the lattice
1
bZ × 1

aZ (which is called the adjoint lattice to aZ × bZ). In spirit, this is
similar to the fact that if the rows of a rectangular m × n matrix span Rn,
then its columns are linearly independent vectors in Rm, and conversely.

Independent and essentially simultaneous proofs of Theorem 11.9 were
published by Daubechies, H. Landau, and Z. Landau [DLL95], Janssen
[Jan95], and Ron and Shen [RS97], each with a completely different tech-
nique.

Theorem 11.9 gives us the following addition to the “trichotomy facts”
discussed previously.
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Corollary 11.10. If G(g, a, b) is a Riesz sequence in L2(R), then ab ≥ 1.

Proof. If G(g, a, b) is a Riesz sequence, then G(g, 1/b, 1/a) is a frame by The-

orem 11.9. Corollary 11.7 therefore implies that 1
b

1
a ≤ 1, so ab ≥ 1. ⊓⊔

For additional discussion and extensive references related to the material
of this section we refer to the survey paper [Hei07].

Exercises

11.11. Fix g ∈ L2(R) and a, b > 0.

(a) Show that G(g, a, b) is a Riesz basis for L2(R) if and only if it is a
frame and ab = 1.

(b) Show that G(g, a, b) is an orthonormal basis for L2(R) if and only if it
is a tight frame, ab = 1, and ‖g‖L2 = 1.

11.12. Given g ∈ L2(R), show that T (g) = {Tkg}k∈Z is a Riesz basis for its
closed span with frame bounds A, B if and only if equation (11.8) holds.

11.13. Suppose that G(g, a, b) is a frame for L2(R). Without appealing to
Theorem 11.9, show that {Mk/aĝ }n∈Z and {Mn/bĝ }n∈Z are Riesz sequences
in L2(R).

11.14. Assuming Theorem 11.9, show that G(g, a, b) is a tight frame for L2(R)
if and only if G(g, 1/b, 1/a) is an orthogonal sequence in L2(R).

11.4 Wiener Amalgam Spaces

Now we introduce a family of Banach spaces that will play an important role
in our further analysis of Gabor frames. While the Lp spaces are ubiquitous in
analysis, one of their limitations is that the Lp-norm is defined by a “global”
criterion alone. As the following example shows, we can rearrange functions in
many ways that do not change their Lp-norms but do change other properties.

Example 11.11. Recall that the box function χ[0,1) generates a Gabor system
G(χ[0,1), 1, 1) that is an orthonormal basis for L2(R). Although the box func-
tion has the disadvantage of being discontinuous, it at least has the advantage
of being well localized in time.

Now let us create a new function by dividing the interval [0, 1) into the
infinitely many pieces [0, 1

2 ), [ 12 ,
3
4 ), [ 34 ,

7
8 ), . . . and then “sending those pieces

off to infinity.” That is, we define

g = χ
[0, 1

2
) + T1χ[ 1

2
, 3
4
) + T2χ[ 3

4
, 7
8
) + · · · (11.9)

= χ
[0, 1

2
) + χ

[1+ 1
2
,1+ 3

4
) + χ

[2+ 3
4
,2+ 7

8
) + · · · . (11.10)
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Not only is this function discontinuous, but it does not decay at infinity. Even
so, it has exactly the same Lp-norm as χ[0,1), and because we translated the
“pieces” by integers it follows that G(g, 1, 1) is also an orthonormal basis for
G(g, 1, 1) (Exercise 11.16). However, we cannot distinguish between the well
localized function χ

[0,1) and the poorly localized function g by considering
their Lp-norms ‖χ[0,1)‖Lp and ‖g‖Lp. ♦

The amalgam spaces are determined by a norm which amalgamates, or
mixes, a local criterion for membership with a global criterion. Or, it may be
more precise to interpret the norm as giving a global criterion for a local prop-
erty of the function. Special cases were first introduced by Wiener [Wie26],
[Wie33]. A more general class of amalgams, named Wiener amalgam spaces,
was introduced and extensively studied by Feichtinger, with some of the main
papers being [FG85], [Fei87], [Fei90]. We refer to [Hei03] for an introductory
survey of amalgam spaces with references to the original papers. We will need
the following simple amalgams, which mix a local Lp criterion with a global
ℓq criterion.

Definition 11.12 (Wiener Amalgam Spaces). Given 1 ≤ p ≤ ∞ and
1 ≤ q <∞, the Wiener amalgam space W (Lp, ℓq) consists of those functions
f ∈ Lp(R) for which the norm

‖f‖W (Lp,ℓq) =

(∑

k∈Z

‖f · χ[k,k+1]‖qLp

)1/q

is finite. For q =∞ we substitute the ℓ∞-norm for the ℓq-norm above, i.e.,

‖f‖W (Lp,ℓ∞) = sup
k∈Z

‖f · χ[k,k+1]‖Lp .

We also define

W (C, ℓq) =
{
f ∈ W (L∞, ℓq) : f is continuous

}
,

and we impose the norm ‖ · ‖W (L∞,ℓq) on W (C, ℓq). ♦

Thus a function in W (Lp, ℓq) is locally an Lp function, and globally the
values ‖f · χ[k,k+1]‖Lp decay in an ℓq manner. The space W (L∞, ℓ2) made an
appearance earlier in this volume; see Lemma 10.24.

Note that W (Lp, ℓp) = Lp(R). By Exercise 11.15, W (Lp, ℓq) and W (C, ℓq)
are Banach spaces.

The space W (L∞, ℓ1) will be especially important to us in the coming
pages. A function g in this space is “locally bounded” and has an “ℓ1-type
decay” at infinity.

Here are some of the properties ofW (L∞, ℓ1). In particular, part (d) of this
result says that the intervals [k, k + 1] in the definition of the amalgam norm
can be replaced by intervals [ak, a(k+ 1)] in the sense of giving an equivalent
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norm on the space. The constants in this norm equivalence will be expressed
in terms of the numbers

Ca = max
{
1 + a, 2

}
.

Theorem 11.13. (a) W (L∞, ℓ1) is contained in Lp(R) for 1 ≤ p ≤ ∞, and
is dense in Lp(R) for 1 ≤ p <∞.

(b) W (L∞, ℓ1) is closed under translations, and for each b ∈ R we have

‖Tbf‖W (L∞,ℓ1) ≤ 2 ‖f‖W (L∞,ℓ1). (11.11)

(c) W (L∞, ℓ1) is an ideal in L∞(R) with respect to pointwise products, i.e.,

f ∈ L∞(R), g ∈ W (L∞, ℓ1) =⇒ fg ∈ W (L∞, ℓ1),

and
‖fg‖W (L∞,ℓ1) ≤ ‖f‖L∞ ‖g‖W (L∞,ℓ1). (11.12)

(d) Given a > 0,

|||f |||a =
∑

k∈Z

‖f · χ[ak,a(k+1)]‖L∞

is an equivalent norm for W (L∞, ℓ1), with

1

C1/a
|||f |||a ≤ ‖f‖W (L∞,ℓ1) ≤ Ca |||f |||a. (11.13)

Proof. We will prove the upper inequality in equation (11.13), and assign the
remainder of the proof as Exercise 11.17.

Fix a > 0, and define

Ik =
{
n ∈ Z : [k, k + 1] ∩ [an, a(n+ 1)] 6= ∅

}
,

Jn =
{
k ∈ Z : [k, k + 1] ∩ [an, a(n+ 1)] 6= ∅

}
.

If a ≥ 1 then |Jn| ≤ 1 + a, while if 0 < a ≤ 1 then |Jn| ≤ 2. Hence |Jn| ≤ Ca,
independently of n. Therefore

‖f‖W (L∞,ℓ1) =
∑

k∈Z

‖f · χ[k,k+1]‖L∞

≤
∑

k∈Z

∑

n∈Ik

‖f · χ[an,a(n+1)]‖L∞

=
∑

n∈Z

∑

k∈Jn

‖f · χ[an,a(n+1)]‖L∞

≤ Ca
∑

n∈Z

‖f · χ[an,a(n+1)]‖L∞ . ⊓⊔
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Rewording part of Theorem 11.13(d) gives us the following inequality.

Corollary 11.14. If f ∈ W (L∞, ℓ1) and a > 0, then

∑

k∈Z

‖Takf · χ[0,a]‖L∞ ≤ C1/a ‖f‖W (L∞,ℓ1).

Proof. We simply have to note that

∑

k∈Z

‖Takf · χ[0,a]‖L∞ =
∑

k∈Z

‖f · χ[ak,a(k+1)]‖L∞

and apply the lower inequality in equation (11.13). ⊓⊔

While the periodization of a generic function in L1(R) is integrable over
a period (Exercise 10.13), the periodization of a function g ∈ W (L∞, ℓ1) is
bounded.

Lemma 11.15. Fix a > 1. If g ∈W (L∞, ℓ1) then its a-periodization

ϕ(x) =
∑

n∈Z

g(x+ an) =
∑

n∈Z

Tang(x)

is a-periodic, bounded, and satisfies

‖ϕ‖L∞ =

∥∥∥∥
∑

n∈Z

Tang

∥∥∥∥
L∞

≤ C1/a ‖g‖W (L∞,ℓ1). (11.14)

Proof. The function ϕ is a-periodic and integrable by Exercise 10.13. Using
the periodicity, we therefore have

‖ϕ‖L∞ = ‖ϕ · χ[0,a]‖L∞ =

∥∥∥∥
∑

n∈Z

Tang · χ[0,a]

∥∥∥∥
L∞

≤ C1/a ‖g‖W (L∞,ℓ1),

where the final inequality comes from Corollary 11.14. ⊓⊔

Exercises

11.15. Prove that W (Lp, ℓq) is a Banach space for each p, q, and W (C, ℓq) is
a closed subspace of W (L∞, ℓq).

11.16. Let g be the function defined in Example 11.11. Show that G(g, 1, 1)
is an orthonormal basis for L2(R), but g /∈ W (L∞, ℓ1).

11.17. Complete the proof of Theorem 11.13.
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11.5 The Walnut Representation

The Painless Nonorthogonal Expansions give us many examples of Gabor
frames, but they are limited by the requirement that the atom g be supported
in an interval of length 1/b. This support assumption produces some “mirac-
ulous cancellations” that allow us to write the frame condition in very simple
terms. Indeed, equation (11.5) tells us that if g is supported in [0, b−1] then

∑

k,n∈Z

∣∣〈f, MbnTakg
〉∣∣2 = b−1

∫ ∞

−∞
|f(x)|2G0(x) dx.

While the left-hand side of this equation is quite complicated, involving both
time shifts of g and multiplications by complex exponentials e2πibnx, the right-
hand side is extremely simple, involving a single multiplication. Even the
function G0 is quite simple, being built purely out of translates of g:

G0(x) =
∑

k∈Z

|g(x− ak)|2 =
∑

k∈Z

|Takg(x)|2.

Upon closer examination, what lies behind the miraculous cancellations in
the Painless Nonorthogonal Expansions is the Plancherel Equality: g is sup-
ported in [0, b−1] and {b1/2e2πibnx}n∈Z is an orthonormal basis for L2[0, b−1].

If the support of g is not contained in a single interval of length b−1, then
the analysis of the frame condition becomes much more involved. The Walnut
Representation [Wal92] is a result of this analysis, and it provides a funda-
mental characterization of the frame operator for Gabor systems with a much
broader class of atoms g. The idea is simply that we break an arbitrary func-
tion g into pieces of length b−1, analyze each piece, and paste the pieces back
together. In the end we obtain a representation of the frame that is expressed
purely in terms of translation operators—no modulations! This representation
plays a fundamental role in time-frequency analysis, especially in the exten-
sion of the frame properties of Gabor systems from L2(R) to other function
spaces.

A forerunner of the Walnut Representation was used by Daubechies in her
paper [Dau90]. Walnut’s work appears in [Wal89], [Wal92], [Wal93], and some
of it is also summarized in the survey paper [HW89]. We will develop the
Walnut Representation in L2(R), and refer to the text [Grö01] for extensions
beyond the Hilbert space setting.

The delicate part of the proof of the Walnut Representation lies in pasting
the pieces back together. Here, it becomes necessary to place a mild restriction
on g. Specifically, we need g to lie in the Wiener amalgam space W (L∞, ℓ1).
This excludes functions that have extremely poor decay at infinity, like the
one given in equation (11.9), but still leaves us with a very large class of atoms
to choose from. Given this restriction, we can define a family of correlation
functions associated with g, of which G0 is only the first member.
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Definition 11.16. Given g ∈ W (L∞, ℓ1) and a, b > 0, we define associated
correlation functions Gn by

Gn(x) =
∑

k∈Z

g(x− ak) g(x− ak − n
b ), n ∈ Z. ♦

In particular, G0(x) =
∑
k∈Z
|g(x− ak)|2.

Note how both the usual lattice aZ× bZ and the adjoint lattice 1
bZ× 1

aZ
from the Duality Principle play a role in the definition of the correlation
functions!

It is often useful to write Gn in the forms

Gn =
∑

k∈Z

Takg · Tak+ n
b
ḡ =

∑

k∈Z

Tak
(
g · Tn

b
ḡ
)
. (11.15)

Thus Gn is the a-periodization of g · Tn
b
ḡ. Since g belongs to W (L∞, L1),

it is bounded, and therefore the product g · Tn
b
ḡ belongs to W (L∞, ℓ1) by

Theorem 11.13(c). Applying Lemma 11.15 to this function, we see that Gn
is well defined, a-periodic, and bounded. The next lemma shows that the
L∞-norms of the Gn are actually very well controlled.

Lemma 11.17. If g ∈W (L∞, ℓ1) then Gn ∈ L∞(R) and

∑

n∈Z

‖Gn‖L∞ ≤ 2C1/a Cb ‖g‖2W (L∞,ℓ1).

Proof. By Lemma 11.15, using the form of Gn given in equation (11.15) we
see that

‖Gn‖L∞ =

∥∥∥∥
∑

k∈Z

Tak
(
g · Tn

b
ḡ
)∥∥∥∥
L∞

≤ C1/a

∥∥g · Tn
b
ḡ
∥∥
W (L∞,ℓ1)

.

Since |ḡ| = |g|, we therefore have

∑

n∈Z

‖Gn‖L∞ ≤ C1/a

∑

n∈Z

∥∥g · Tn
b
g
∥∥
W (L∞,ℓ1)

= C1/a

∑

n∈Z

∑

k∈Z

∥∥g · χ[k,k+1] · Tn
b
g · χ[k,k+1]

∥∥
L∞

≤ C1/a

∑

k∈Z

‖g · χ[k,k+1]‖L∞

(∑

n∈Z

‖Tn
b
g · χ[k,k+1]‖L∞

)
.

The series in parentheses on the last line resembles the W (L∞, ℓ1) norm of
Tn

b
g, but it is not since the summation is over n instead of k. Instead, after

some work similar to that used in the proof of Theorem 11.13(d), we see that
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∑

n∈Z

‖Tn
b
g · χ[k,k+1]‖L∞ =

∑

n∈Z

‖g · χ[−n
b +k,−n

b +k+1]‖L∞

≤ 2Cb
∑

m∈Z

‖g · χ[m,m+1]‖L∞

= 2Cb ‖g‖W (L∞,ℓ1).

The main issue in the computation above is that an interval of the form
[m,m+ 1] intersects at most 2Cb intervals of the form [−nb + k,−nb + k + 1]
with n ∈ Z. Hence

∑

n∈Z

‖Gn‖L∞ ≤ 2C1/a Cb
∑

k∈Z

‖g · χ[k,k+1]‖L∞ ‖g‖W (L∞,ℓ1)

= 2C1/a Cb ‖g‖2W (L∞,ℓ1). ⊓⊔

Now we can derive the Walnut Representation. While not every function
in W (L∞, ℓ1) will generate a Gabor frame, the next theorem tells us that
G(g, a, b) will always be a Bessel sequence, no matter what values of a, b > 0
that we choose. Therefore G(g, a, b) has a well-defined frame operator that
maps L2(R) into itself, and the Walnut Representation realizes this frame
operator solely in terms of translations. A simple trick that we will employ
several times in the proof is to write

∑

n∈Z

∫ b−1

0

h
(
x− n

b

)
dx =

∫ ∞

−∞
h(x) dx =

∫ b−1

0

∑

n∈Z

h
(
x− n

b

)
dx.

This is valid for any function h ∈ L1(R).

Theorem 11.18 (Walnut Representation). Let g ∈ W (L∞, ℓ1) and a,
b > 0 be given. Then G(g, a, b) is a Bessel sequence, and its frame operator is
given by

Sf = b−1
∑

n∈Z

Tn
b
f ·Gn, f ∈ L2(R). (11.16)

Proof. Lemma 11.17 implies that the series

Lf = b−1
∑

n∈Z

Tn
b
·Gn

converges absolutely in L2(R) for each f ∈ L2(R). Moreover,

‖Lf‖ ≤ b−1
∑

n∈Z

‖Tn
b
f‖L2 ‖Gn‖L∞ ≤ B ‖f‖L2

where

B =
2

b
C1/a Cb ‖g‖2W (L∞,ℓ1).
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Hence L is a bounded operator on L2(R).
By Theorem 7.4, to show that G(g, a, b) is a Bessel sequence we only need

to establish that the Bessel bound holds on a dense subspace of L2(R). We
will show that B is a Bessel bound on the dense subspace Cc(R).

Fix f ∈ Cc(R) and k ∈ Z. Then f · Takḡ is bounded and compactly
supported, so its b−1-periodization

Fk(x) =
∑

j∈Z

f
(
x− j

b

)
g
(
x− ak − j

b

)

belongs to L2[0, b−1] (and in fact is bounded). Since Fk is b−1-periodic, we
have Fk

(
x− j

b

)
= Fk(x) for j ∈ Z.

Using the fact that {b1/2e2πibnx}n∈Z is an orthonormal basis for L2[0, b−1],
we compute that

∑

n∈Z

|〈f,MbnTakg〉|2

=
∑

n∈Z

∣∣∣∣
∫ ∞

−∞
f(x) e−2πibnx g(x− ak) dx

∣∣∣∣
2

=
∑

n∈Z

∣∣∣∣
∫ b−1

0

∑

j∈Z

f
(
x− j

b

)
e−2πibn

(
x− jb

)
g
(
x− ak − j

b

)
dx

∣∣∣∣
2

=
∑

n∈Z

∣∣∣∣
∫ b−1

0

∑

j∈Z

f
(
x− j

b

)
g
(
x− ak − j

b

)
e−2πibnx dx

∣∣∣∣
2

=
∑

n∈Z

∣∣〈Fk, ebn
〉
L2[0,b−1]

∣∣2

=
∥∥Fk

∥∥2

L2[0,b−1]

= b−1

∫ b−1

0

|Fk(x)|2 dx.

Assuming that we can interchange the integral and sum as indicated, and
using the fact that Fn is b−1-periodic, we therefore have

∑

k∈Z

∑

n∈Z

|〈f,MbnTakg〉|2

= b−1
∑

k∈Z

∫ b−1

0

Fk(x)Fk(x) dx

= b−1
∑

k∈Z

∫ b−1

0

∑

j∈Z

f
(
x− j

b

)
g
(
x− ak − j

b

)
Fk
(
x− j

b

)
dx
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= b−1
∑

k∈Z

∫ ∞

−∞
f(x) g(x− ak)Fk(x) dx

= b−1
∑

k∈Z

∫ ∞

−∞
f(x) g(x− ak)

∑

j∈Z

f
(
x− j

b

)
g
(
x− ak − j

b

)
dx

= b−1
∑

j∈Z

∫ ∞

−∞
f(x) f

(
x− j

b

) ∑

k∈Z

g(x− ak) g
(
x− ak − j

b

)
dx

= b−1
∑

j∈Z

∫ ∞

−∞
f(x) f

(
x− j

b

)
Gj(x) dx

=

〈
f, b−1

∑

j∈Z

T j
b
f ·Gj(x)

〉

L2(R)

=
〈
f, Lf

〉
.

The interchanges in order can be justified by using Fubini’s Theorem (Exercise
11.18). Since T is bounded, we conclude that G(g, a, b) is a Bessel sequence,
and

〈f, Sf〉 =
∑

k∈Z

∑

n∈Z

|〈f,MbnTakg〉|2

=
〈
f, Lf

〉

≤ ‖f‖L2 ‖Lf‖L2

≤ B ‖f‖2L2.

Hence the Bessel bound holds on Cc(R).
This also shows us that 〈f, Sf〉 = 〈f, Lf〉 for all f ∈ Cc(R). Since Cc(R)

is dense and both S and L are bounded, we conclude that 〈f, Sf〉 = 〈f, Lf〉
for all f ∈ L2(R). Since S is self-adjoint, Corollary 2.16 therefore implies that
S = L. ⊓⊔

We emphasize the contrast between the appearance of the Gabor frame
operator in its original form and in the Walnut Representation:

∑

k∈Z

∑

n∈Z

〈f,MbnTakg〉MbnTakg = Sf = b−1
∑

n∈Z

Tn
b
f ·Gn.

Aside from the fact that the Walnut Representation contains a single summa-
tion, it also contains no complex exponentials. If f and g are real valued then
every term on the right-hand side of the line above is real valued, while the
terms on the left-hand side need not be.

One of the consequences of Theorem 11.18 is that if g ∈ W (L∞, ℓ1) then
G(g, a, b) will be a frame for all small enough values of a and b [HW89,
Thm. 4.1.8].
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We end this section by mentioning another fundamental representation of
the Gabor frame operator. This is the Janssen Representation (also known
as the Dual Lattice Representation), which expresses the frame operator as
a superposition of time-frequency shift operators [Jan95], [DLL95]. The hy-
potheses required for the Janssen Representation are slightly different than
those of the Walnut Representation. Note the explicit role played by the ad-
joint lattice in this representation.

Theorem 11.19 (Janssen Representation). Let g ∈ L2(R) and a, b > 0
be given. If ∑

k∈Z

∑

n∈Z

∣∣〈g, M k
a
Tn

b
g
〉∣∣ < ∞, (11.17)

then

S =
1

ab

∑

k∈Z

∑

n∈Z

〈
g, M k

a
Tn

b
g
〉
M k

a
Tn

b
,

where the series converges absolutely in operator norm. ♦

Equation (11.17) is referred to as Condition A. It is close but not identi-
cal to the requirement that g belong to W (L∞, ℓ1). The Feichtinger algebra
S0, which equals the modulation space M1, is a smaller subspace on which
both conditions are satisfied simultaneously. The Feichtinger algebra has many
other useful properties, e.g., it is closed under both convolution and pointwise
products, and in most cases it is the class from which we should choose gen-
erators g for Gabor frames [Grö01].

Exercises

11.18. Justify the use of Fubini’s Theorem in the proof of Theorem 11.18.

11.19. This exercise gives a perturbation theorem for Gabor frames.

(a) Let g ∈ L2(R) and a, b > 0 be such that G(g, a, b) is a frame for L2(R).
Show that there exists a δ > 0 such that if h ∈ L2(R) and ‖g−h‖W (L∞,ℓ1) < δ,
then G(h, a, b) is a frame for L2(R).

(b) Does part (a) remain valid if we replace the amalgam norm ‖·‖W (L∞,ℓ1)

by the L2-norm ‖ · ‖L2?

11.6 The Zak Transform

The Zak transform is a fundamental tool for analyzing Gabor frames, espe-
cially at the critical density (ab = 1). The Zak transform was first introduced
by Gel’fand [Gel50]. As with many useful notions, it has been rediscovered
many times and goes by a variety of names. Weil [Wei64] defined a Zak trans-
form for locally compact abelian groups, and this transform is often called
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the Weil–Brezin map in representation theory and abstract harmonic analy-
sis, e.g., [Sch84], [AT85]. Zak rediscovered this transform, which he called the
k-q transform, in his work on quantum mechanics, e.g., [Zak67], [BGZ75]. The
terminology “Zak transform” has become customary in applied mathematics
and signal processing. For more information, we refer to Janssen’s influential
article [Jan82] and survey [Jan88], or Gröchenig’s text [Grö01, Chap. 8].

In this section we define the Zak transform and examine some of its most
interesting properties. In the following sections we will see how the Zak trans-
form can be used to analyze Gabor systems, and how the unusual properties
of the Zak transform are related to the Balian–Low Theorem. We will be con-
centrating in this section on the critical density, ab = 1. By dilating g, we can
reduce this further to a = b = 1, so we simply fix a = b = 1 now.

The Gabor system G(χ[0,1], 1, 1) = {MnTkχ[0,1]}k,n∈Z is an orthonormal
basis for L2(R). Let

Q = [0, 1]2

denote the unit square in R2, and consider the sequence

{Enk}k,n∈Z, where Enk(x, ξ) = e2πinx e−2πikξ. (11.18)

This sequence is contained in the Hilbert space L2(Q), whose norm and inner
product are given by

‖F‖2L2(Q) =

∫ 1

0

∫ 1

0

|F (x, ξ)|2 dx dξ

and

〈F,G〉 =

∫ 1

0

∫ 1

0

F (x, ξ)G(x, ξ) dx dξ.

By Theorem B.10 or by direct calculation, {Enk}k,n∈Z is an orthonormal
basis for L2(Q). We can define a unitary map by sending the elements of one
orthonormal basis to another orthonormal basis, and this is precisely what we
do to define the Zak transform (see Exercise 11.20).

Definition 11.20 (Zak Transform). The Zak transform is the unique uni-
tary map Z : L2(R)→ L2(Q) that satisfies

Z(MnTkχ[0,1]) = Enk, k, n ∈ Z. ♦ (11.19)

Now we give an equivalent formulation of the Zak transform that will help
us to extend its domain to spaces other than L2(R).

Theorem 11.21. Given f ∈ L2(R), we have

Zf(x, ξ) =
∑

j∈Z

f(x− j) e2πijξ , (x, ξ) ∈ Q, (11.20)

where this series converges unconditionally in the norm of L2(Q).
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Proof. A direct calculation shows that if f ∈ L2(R) and j 6= ℓ then the
functions f(x+ j) e2πijξ and f(x+ ℓ) e2πiℓξ are orthogonal elements of L2(Q).
Therefore, if F is any finite subset of Z then

∥∥∥∥
∑

j∈F
f(x− j) e2πijξ

∥∥∥∥
2

L2(Q)

=
∑

j∈F
‖f(x− j) e2πijξ‖2L2(Q)

=
∑

j∈F

∫ 1

0

∫ 1

0

|f(x− j) e2πijξ|2 dx dξ

=
∑

j∈F

∫ 1

0

|f(x− j)|2 dx. (11.21)

Since f ∈ L2(R), the series
∑
j∈Z

∫ 1

0 |f(x− j)|2 dx converges unconditionally

and equals ‖f‖2L2. Consequently, the series appearing on the right-hand side of
equation (11.20) converges unconditionally in L2(Q), and if we set Uf(x, ξ) =∑
j∈Z

f(x− j) e2πijξ then it follows from equation (11.21) that ‖Uf‖L2(Q) =

‖f‖L2. This operator U is an isometry, so to show that U = Z we simply have
to show that U(MnTkχ[0,1]) = Enk for all k, n ∈ Z. To see this, note that if
(x, ξ) ∈ Q then χ[0,1](x− j) = 0 for all j 6= 0, so

U(MnTkχ[0,1])(x, ξ) =
∑

j∈Z

MnTkχ[0,1](x− j) e2πijξ

=
∑

j∈Z

e2πin(x−j)χ[0,1](x− j − k) e2πijξ

= e2πin(x+k) e−2πikξ = Enk(x, ξ),

where we have used the fact that e2πink = 1. ⊓⊔
It will be important for us to consider the Zak transform on domains other

than L2(R), and the correct spaces are precisely the Wiener amalgam spaces
W (Lp, ℓ1) introduced in Section 11.4. The next theorem shows that the Zak
transform maps W (Lp, ℓ1) into Lp(Q), and maps W (C, ℓ1) into C(Q), the
space of continuous functions on Q = [0, 1]2.

Theorem 11.22. (a) If 1 ≤ p ≤ ∞ then for each f ∈ W (Lp, ℓ1) the series

Zf(x, ξ) =
∑

j∈Z

f(x− j) e2πijξ , (x, ξ) ∈ Q, (11.22)

converges absolutely in Lp(Q), and Z is a bounded mapping of W (Lp, ℓ1)
into Lp(Q).

(b) For each f ∈ W (C, ℓ1) the series in equation (11.22) converges absolutely
in C(Q) with respect to the uniform norm, and Z is a bounded mapping
of W (C, ℓ1) into C(Q).
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Proof. (a) If f ∈ W (Lp, ℓ1) with p finite then

∑

j∈Z

‖f(x− j) e2πijξ‖Lp(Q) =
∑

j∈Z

(∫ 1

0

∫ 1

0

|f(x− j) e2πijξ|p dx dξ
)1/p

=
∑

j∈Z

‖f · χ[j,j+1]‖Lp < ∞,

so the series defining Zf converges absolutely in Lp(Q). A similar calcula-
tion holds if p = ∞, and these calculations also show that ‖Zf‖Lp(Q) ≤
‖f‖W (Lp,ℓ1).

(b) If f ∈ W (C, ℓ1) ⊆ W (L∞, ℓ1) then we have by part (a) that Zf ∈
L∞(Q), and the series defining Zf converges absolutely in the uniform norm.
As each term f(x − j) e2πijξ is continuous on Q and the uniform limit of
continuous functions is continuous, Zf is continuous on Q. ⊓⊔

Remark 11.23. In particular, the Zak transform maps L1(R) = W (L1, ℓ1)
continuously into L1(Q), and it is injective by Exercise 11.22. However, that
exercise also shows that the range of Z : L1(R)→ L1(Q) is a dense but proper
subspace of L1(Q). A consequence of this is that Z−1 : range(Z)→ L1(R) is
unbounded, in contrast to the fact that Z is a unitary mapping of L2(R) onto
L2(Q). Readers familiar with interpolation will recognize that since Z maps
L1(Q) boundedly into itself and L2(Q) boundedly into itself, it extends to a
bounded map of Lp(Q) into itself for each 1 ≤ p ≤ 2. However, if 1 ≤ p < 2
then Z is not surjective and Z−1 is unbounded. ♦

Given f ∈ L2(R), we can extend the domain of Zf from Q = [0, 1]2 to all
of R2 in a natural way. In all of the preceding arguments, nothing is changed
if we replace the unit square Q with a translated square Q+ z, where z ∈ R2.
Moreover, if Q and Q+ z overlap then the two definitions of Zf will coincide
almost everywhere on Q∩(Q+z) (and everywhere if Zf is continuous). Hence
Zf has a unique extension from Q to the entire plane R2. This is similar to
how a function on [0, 1) is extended to a 1-periodic function on R, as in
Notation 4.23. However, there is an interesting twist here, because Zf on R2

is not obtained by extending Zf periodically from Q. Instead, Zf satisfies
the following rather peculiar quasiperiodicity relations (Exercise 11.21).

Theorem 11.24. If f ∈ L2(R) or f ∈W (Lp, ℓ1), then for m, n ∈ Z we have

Zf(x+m, ξ + n) = e2πimξ Zf(x, ξ),

where the equality holds pointwise everywhere on R2 if Zf is continuous, and
almost everywhere otherwise. ♦

Definition 11.25 (Quasiperiodicity). We say that a function F on R2 that
satisfies
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F (x+m, ξ + n) = e2πimξ F (x, ξ) a.e., m, n ∈ Z, (11.23)

is quasiperiodic. We refer to equation (11.23) as the quasiperiodicity relations
for F. ♦

Quasiperiodicity has a rather unexpected implication: No continuous
quasiperiodic function can be nonzero everywhere. Since a complete justifica-
tion of this statement requires some facts from complex analysis or algebraic
geometry, we will be content to appeal to authority for the justification of
certain steps in the proof that we present.

Theorem 11.26. A continuous quasiperiodic function F must vanish at some
point of Q.

Proof. First we give a standard direct argument that proves the theorem but
does little to illuminate the mystery of why a zero must exist. Suppose that F
was quasiperiodic and continuous on R2 but everywhere nonzero. Because R2

is simply connected, there exists a continuous function ϕ : R2 → R such that

F (x, ξ) = |F (x, ξ)| e2πiϕ(x,ξ), (x, ξ) ∈ R2.

Students of complex analysis may recognize that this continuous logarithm ϕ
can be constructed directly, and its existence also follows from general topolog-
ical lifting principles [Grö01]. Applying this logarithm to the quasiperiodicity
relations, we see that for each m, n ∈ Z there exists an integer κ(m,n) such
that

ϕ(x +m, ξ + n) = ϕ(x, ξ) +mξ + κ(m,n), (x, ξ) ∈ R2.

Hence

0 =
(
ϕ(0, 0)− ϕ(1, 0)

)
+
(
ϕ(1, 0)− ϕ(1, 1)

)

+
(
ϕ(1, 1)− ϕ(0, 1)

)
+
(
ϕ(0, 1)− ϕ(0, 0)

)

=
(
−0− κ(1, 0)

)
+
(
−0− κ(0, 1)

)
+
(
1 + κ(1, 0)

)
+
(
0 + κ(0, 1)

)

= 1,

which is a contradiction.
Now we give another argument, due to Janssen [Jan05], that is perhaps

more revealing. Suppose that F is continuous, quasiperiodic, and everywhere
nonzero on R2. Then for each fixed x ∈ R, the function Fx(ξ) = F (x, ξ)
is continuous, 1-periodic, and nonzero on R. As ξ varies from 0 to 1, the
values Fx(ξ) trace out a closed curve Jx in the complex plane that never
intersects the origin. Such a curve has a well-defined winding number Nx
that is an integer representing the total number of times the curve Jx travels
counterclockwise around the origin. Now, since F is continuous, the curves Jx
deform continuously as we vary x. Further, since
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F1(ξ) = F (1, ξ) = e2πiξF (0, ξ) = e2πiξF0(ξ),

the curve J1 winds one more time around the origin than does J0. However,
there is no way to continuously deform a curve that winds N0 times around
the origin into one that winds N1 = N0 + 1 times around the origin without
having the curve pass through the origin at some time. Hence there must be
at least one value of x such that the curve Jx passes through the origin, which
says that F (x, ξ) = 0 for some ξ. ⊓⊔

Figure 11.3 illustrates the idea of the second proof of Theorem 11.26. We
can think of the curve Jx as being a rubber band wound Nx times around the
origin. The rubber band is stretched and moved as x varies, but always lies
in the complex plane. It can cross itself, but it cannot be cut. The left side of
Figure 11.3 shows the curve J0 for the specific example F0(ξ) = 1 + i+ e2πiξ.
This curve is a circle that does not contain the origin, and so has winding
number N0 = 0. The curve J1 traced out by the function F1(ξ) = e2πiξF0(ξ)
is shown on the right side of Figure 11.3. The point F1(ξ) is located at the
same distance from the origin as F0(ξ), but has been rotated counterclockwise
by an angle of 2πξ radians. As a consequence, J1 makes one extra trip around
the origin, so has winding number N1 = 1. There is no way to deform the
left-hand rubber band into the right-hand one without passing through the
origin in the process.

-2 -1 1 2
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Fig. 11.3. Plots of the complex-valued functions F0(ξ) = 1 + i+ e2πiξ and F1(ξ) =
e2πiξ F0(ξ) for 0 ≤ ξ ≤ 1. The graph is shown as a solid line for 0 ≤ ξ ≤ 1/2, and as
a dashed line for 1/2 ≤ ξ ≤ 1. The winding number of the left-hand graph is zero,
while it is one for the right-hand graph.

Remark 11.27. Note that the domain of the function F in Theorem 11.26
is the plane R2, and F is required to be continuous on the entire plane.
Applying the quasiperiodicity relations, this is the same as requiring that F
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be continuous on the closed square Q = [0, 1]2. It is not enough to assume
that F is quasiperiodic and continuous on [0, 1)2. For example, if we set F = 1
on [0, 1)2 then we can extend it to a quasiperiodic function on R2 by defining

F (x+m, ξ + n) = e2πimξ, x, ξ ∈ [0, 1), m, n ∈ Z.

This function F is quasiperiodic, but it is not continuous on R2, and it has
no zeros on R2. ♦

Example 11.28. The third Jacobi theta function is

θ3(z, q) = 1 + 2

∞∑

k=1

qk
2

cos(4πkz) =

∞∑

k=−∞
qk

2

e4πikz ,

where 0 ≤ q < 1 and z ∈ C [Rai60]. With q fixed, θ3(·, q) is analytic on the
entire complex plane.

Fix r > 0 and let ϕr be the Gaussian function ϕr(x) = e−rx
2

. Since
ϕr ∈W (C, ℓ1), we know that Zϕr is continuous and therefore has a zero. The
Zak transform of ϕr is

Zϕr(x, ξ) =
∑

j∈Z

ϕr(x− j) e2πijξ

=
∑

j∈Z

e−rx
2

e2rxj e−rj
2

e2πijξ

= e−rx
2
∑

j∈Z

(e−r)j
2

e4πij(
ξ
2
− irx

2π )

= e−rx
2

θ3(
ξ
2 − irx

2π , e
−r).

In particular, Zϕr is infinitely differentiable on R2.
Now, the zeros of θ3(·, q) occur precisely at the points

zmn =
1

4
+

τ

4
+

m

2
+

nτ

2
,

where q = eπiτ , Im(τ) > 0. Since e−r = eπi(ir), it follows that Zϕr(x, ξ) = 0
if and only if

ξ

2
− irx

2π
=

1

4
+

ir

4π
+

m

2
+

irn

2π
,

i.e., (x, ξ) = (−n − 1/2,m + 1/2). Thus Zϕr has a single zero in the unit
square Q = [0, 1]2, at the point (1/2, 1/2). ♦

Exercises

11.20. Prove that there is a unique unitary operator that satisfies equation
(11.19).
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11.21. Prove Theorem 11.24.

11.22. If f ∈ L1(R) then Zf ∈ W (L1, ℓ1) = L1(Q) by Theorem 11.22. Prove
the following statements.

(a) f(x) =
∫ 1

0 Zf(x, ξ) dξ for almost every x ∈ R.

(b) If Zf is continuous, then f is continuous.

(c) Z is an injective mapping of L1(R) into L1(Q), and the range of

Z : L1(R)→ L1(Q) is a proper, dense subspace of L1(Q).

(d) Z−1 : L1(Q)→ L1(R) is unbounded.

11.23. Suppose that f ∈ L2(R) is such that Zf is continuous.

(a) Show that if f is even then Zf(1/2, 1/2) = 0.

(b) Show that if f is odd then Zf(0, 0) = Zf(0, 1/2) = Zf(1/2, 0) = 0.

(c) Show that if f is real valued then Zf(x, 1/2) = 0 for some x ∈ [0, 1].

11.7 Gabor Systems at the Critical Density

Now we will use the Zak transform to analyze Gabor systems at the critical
density. As before, it suffices to consider a = b = 1. In this section we will
characterize those Gabor systems G(g, 1, 1) that are exact, Riesz bases, or
orthonormal bases in terms of the Zak transform of g, and in the next section
we will use this characterization to prove some versions of the Balian–Low
Theorem.

The utility of the Zak transform is that it converts a Gabor system
G(g, 1, 1) = {MnTkg}k,n∈Z into a system of weighted exponentials on R2.
Recall from equation (11.18) that Enk denotes the two-dimensional complex
exponential function Enk(x, ξ) = e2πinx e−2πikξ.

Theorem 11.29. If g ∈ L2(R), then

Z(MnTkg) = Enk Zg a.e., k, n ∈ Z.

Proof. Using the fact that e−2πin(j−k) = 1 for integer j, k, n, we compute
that

Z(MnTkg)(x, ξ) =
∑

j∈Z

(MnTkg)(x− j) e2πijξ

=
∑

j∈Z

e2πin(x−j) g(x− k − j) e2πijξ

=
∑

j∈Z

e2πin(x−j+k) g(x− j) e2πi(j−k)ξ
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= e2πinx e−2πikξ
∑

j∈Z

g(x− j) e2πijξ

= Enk(x, ξ)Zg(x, ξ).

The series above converge in L2(Q), not pointwise, but this does not affect
the calculation. ⊓⊔

As a consequence, we obtain another proof that a sequence of regular
translations {g(x− ak)}k∈Z cannot be complete in L2(R) (compare Exercise
10.18).

Corollary 11.30. If g ∈ L2(R) and a > 0, then {g(x−ak)}k∈Z is incomplete
in L2(R).

Proof. By dilating g, it suffices to take a = 1, so our sequence is T (g) =
{Tkg}k∈Z. Taking n = 0 in Theorem 11.29, the image of this sequence under
the Zak transform is

ZT (g) = {E0k Zg}k∈Z =
{
e−2πikξ Zg(x, ξ)

}
k∈Z

.

Taking finite linear combinations and L2 limits, it follows that every element
of span(ZT (g)) has the form p(ξ)Zg(x, ξ) for some function p. However, not
every element of L2(Q) has this form (why?), so ZT (g) is incomplete in L2(Q).
Since Z is unitary, T (g) is therefore incomplete in L2(R). ⊓⊔

Since the Zak transform is unitary, it preserves basis and frame properties.
Consequently, G(g, 1, 1) is exact, a frame, a Riesz basis, or an orthonormal
basis if and only if the same is true of {Enk Zg}k,n∈Z. Now, the system of
unweighted exponentials {Enk}k,n∈Z is an orthonormal basis for L2(Q), and
a Riesz basis is the image of an orthonormal basis under a topological iso-
morphism, so if {Enk Zg}k,n∈Z is to be a Riesz basis then the mapping that
sends Enk to Enk Zg must extend to be a topological isomorphism of L2(Q)
onto itself. The only way that the multiplication operation U(F ) = F ·Zg on
L2(Q) can be a topological isomorphism is if 0 < inf |Zg| ≤ sup |Zg| < ∞.
Extending this idea gives us the following characterization of Gabor systems
at the critical density. Note that this result is very much a two-dimensional
version of Theorem 10.10!

Theorem 11.31. Let g ∈ L2(R) be fixed.

(a) G(g, 1, 1) is complete in L2(R) if and only if Zg 6= 0 a.e.

(b) G(g, 1, 1) is minimal in L2(R) if and only if 1/Zg ∈ L2(Q). In this case,

G(g, 1, 1) is exact and its biorthogonal system is G(g̃, 1, 1) where g̃ ∈ L2(R)

satisfies Zg̃ = 1/Zg.

(c) G(g, 1, 1) is a Bessel sequence in L2(R) if and only if Zg ∈ L∞(R), and
in this case B = ‖Zg‖2L∞ is a Bessel bound.
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(d) G(g, 1, 1) is a frame for L2(R) if and only if there exist A, B > 0 such
that A ≤ |Zg(x, ξ)|2 ≤ B a.e. In this case G(g, 1, 1) is a Riesz basis and
A, B are frame bounds.

(e) G(g, 1, 1) is an orthonormal basis for L2(R) if and only if |Zg(x, ξ)| =
1 a.e.

Proof. Much of the proof is similar to the proof of Theorem 10.10. Therefore
we will prove some statements and assign the remainder as Exercise 11.24.

(a) Suppose that Zg 6= 0 a.e. If we can show that {Enk Zg}k,n∈Z is com-
plete in L2(Q), then it follows from the unitarity of Z that G(g, 1, 1) is com-
plete in L2(R).

So, suppose that F ∈ L2(Q) is such that
〈
F, Enk Zg

〉
L2(Q)

= 0 for each

k, n ∈ Z. Let G = F · Zg. Then G ∈ L1(Q), and its Fourier coefficients with
respect to the orthonormal basis {Enk}k,n∈Z are

Ĝ(n, k) =
〈
G, Enk

〉
L2(Q)

=

∫ 1

0

∫ 1

0

F (x, ξ)Zg(x, ξ)Enk(x, ξ) dx dξ

=
〈
F, Enk Zg

〉
L2(Q)

= 0.

Although {Enk}k,n∈Z is not a basis for L1(Q), a two-dimensional analogue

of Theorem 4.25 implies that functions in L1(Q) are uniquely determined by
their Fourier coefficients. Since the Fourier coefficients ofG agree with those of

the zero function, we conclude that G = 0 a.e. As G = F ·Zg and Zg 6= 0 a.e.,
it follows that F = 0 a.e. Hence {Enk Zg}k,n∈Z is complete.

(b) Suppose that 1/Zg ∈ L2(Q). Then we must have Zg 6= 0 a.e., so
G(g, 1, 1) is complete by statement (a). Also, since Z is surjective, there exists

some function g̃ ∈ L2(Q) such that Zg̃ = 1/Zg. We compute that

〈
MnTkg, Mn′Tk′ g̃

〉
=
〈
Enk Zg, En′k′ Zg̃

〉
L2(Q)

=
〈
Enk Zg, En′k′/Zg

〉
L2(Q)

=
〈
Enk, En′k′

〉
L2(Q)

= δnn′ δkk′ .

Hence G(g̃, 1, 1) is biorthogonal to G(g, 1, 1). Thus G(g, 1, 1) is both minimal
and complete, so it is exact. ⊓⊔

As is the case for the systems of weighted exponentials considered in Theo-
rem 10.10, the characterization of Gabor systems G(g, 1, 1) that are Schauder
bases for L2(R) is a more subtle problem. In [HP06] it was shown that if
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G(g, a, b) is a Schauder basis then we must have ab = 1 (and therefore can
reduce to the case a = b = 1), and G(g, 1, 1) is a Schauder basis for L2(R) if
and only if |Zg|2 is a product A2 weight for L2(Q).

From Theorem 11.31 we obtain the following corollary, whose implications
will be explored in the next section. We let C1(R2) denote the set of all
differentiable functions F : R2 → C whose partial derivatives ∂F/∂x and
∂F/∂ξ are both continuous.

Corollary 11.32. Fix g ∈ L2(R).

(a) If Zg is continuous on Q (and hence on R2), then G(g, 1, 1) not a frame
or a Riesz basis for L2(R).

(b) If Zg ∈ C1(R2) then G(g, 1, 1) not exact in L2(R).

Proof. (a) This follows immediately from Theorem 11.31 and the fact that
any continuous quasiperiodic function must have a zero.

(b) If Zg is differentiable on R2 then it is continuous and therefore has at
least one zero in Q by Theorem 11.26. For simplicity, assume that this zero
is located at the origin. The C1 hypothesis implies that Zg is Lipschitz on a
neighborhood of the origin, i.e., there exist C > 0 and δ > 0 such that

x2 + ξ2 < δ =⇒ |Zg(x, ξ)− Zg(0, 0)| ≤ C |(x, ξ) − (0, 0)|,

where | · | is the Euclidean norm on R2. Since Zg(0, 0) = 0, by switching to

polar coordinates we find that the integral of 1/|Zg|2 over the open ball Bδ(0)
is

∫∫

Bδ(0)

1

|Zg(x, ξ)|2 dx dξ ≥
1

C2

∫∫

Bδ(0)

1

x2 + ξ2
dx dξ

=
1

C2

∫ 2π

0

∫ δ

0

1

r2
r dr dθ = ∞.

Hence 1/Zg /∈ L2(Q), so G(g, 1, 1) is not exact. ⊓⊔

Exercises

11.24. Prove the remaining statements in Theorem 11.31.

11.25. (a) Let p(x) =
∑N
k=−N cke

2πikx be a trigonometric polynomial. Show

that if |p| = 1 a.e., then p(x) = cne
2πinx for some n between −N and N.

(b) Suppose that g ∈ L2(R) is compactly supported. Show that G(g, 1, 1)
is an orthonormal basis for L2(R) if and only if |g| = χE for some bounded
set E ⊆ R that satisfies

∑
k∈Z

χE(x− k) = 1 a.e.
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11.8 The Balian–Low Theorem

In this section we will prove the two versions of the Balian–Low Theorem given
in Theorem 8.12, which state that all Gabor frames at the critical density are
“bad” in some sense. We begin with the following simple result, which was
proved in [Hei90] and first appeared in journal form in [BHW95]. Recall from
Theorem 11.31 that when a = b = 1, a Gabor system G(g, 1, 1) is a frame for
L2(R) if and only if it is a Riesz basis.

Theorem 11.33 (Amalgam BLT). If G(g, 1, 1) is a Riesz basis for L2(R)
then g /∈W (C, ℓ1). Specifically, either

g is not continuous or
∑

k∈Z

‖g · χ[k,k+1]‖L∞ = ∞.

Moreover, we also have ĝ /∈W (C, ℓ1), where ĝ is the Fourier transform of g.

Proof. We have already done the work earlier in the chapter. If g ∈W (C, ℓ1)
then Theorem 11.22 implies that Zg ∈ C(Q). Corollary 11.32 therefore implies
that G(g, 1, 1) cannot be a frame for L2(R), simply because Zg must have a
zero. The same reasoning transfers to ĝ by applying Exercise 11.4. ⊓⊔

Thus, if g is to generate a Riesz basis at the critical density, then either g
must be discontinuous or it must have poor decay at infinity, and similarly ĝ
is either discontinuous or has poor decay.

Example 11.34. We saw in Example 11.28 that the Zak transform of the Gaus-
sian function φ(x) = e−πx

2

is continuous, so G(φ, 1, 1) cannot be a Riesz basis
for L2(R). Since Zφ is bounded, G(φ, 1, 1) is a Bessel sequence, but it does
not have a positive lower frame bound. On the other hand, G(φ, 1, 1) is com-
plete since Zφ has only a single zero in Q and therefore Zφ is nonzero almost
everywhere. Because Zφ is infinitely differentiable, Corollary 11.32 implies
that G(φ, 1, 1) is not exact, and therefore it has a positive excess. An argu-
ment similar to the one presented in Example 5.9(c) can be used to show that
G(g, 1, 1) is overcomplete by precisely one element. That is, if we remove any
single element from G(φ, 1, 1) then it will still be complete, but if we remove
two elements then it becomes incomplete. In particular,

G(φ, 1, 1) \ {φ} = {MnTkφ}(k,n) 6=(0,0)

is exact, but it is not a Schauder basis or a frame for L2(R) (see [Fol89,
p. 168]). ♦

The theorem originally stated by Balian [Bal81] and independently by Low
[Low85] quantifies the “unpleasantness” of a Gabor orthonormal basis gener-
ator in a different manner than Theorem 11.33. In contrast to the Amalgam
BLT, the hypotheses of their theorem do not imply that Zg is continuous,
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which is why the proof is more difficult. A gap in the original proofs was filled
by Coifman, Daubechies, and Semmes in [Dau90]. At the same time, they
also extended the proof from orthonormal bases to Riesz bases, yielding the
following result that we call the “Classical” Balian–Low Theorem.

Theorem 11.35 (Classical BLT). If G(g, 1, 1) is a Riesz basis for L2(R)
then (∫ ∞

−∞
|xg(x)|2 dx

)(∫ ∞

−∞
|ξĝ(ξ)|2 dξ

)
= ∞. ♦ (11.24)

Before discussing the proof of Theorem 11.35, we make some remarks on
what it says qualitatively and how its conclusions compare to those of the
Amalgam BLT.

The Fourier transform is a unitary mapping of L2(R) onto itself, so if g
belongs to L2(R) then so does ĝ. The celebrated Classical Uncertainty Prin-
ciple of quantum mechanics takes the following mathematical form: We must
always have

(∫ ∞

−∞
|xg(x)|2 dx

)(∫ ∞

−∞
|ξĝ(ξ)|2 dξ

)
≥ 1

4π

∫ ∞

−∞
|g(x)|2 dx. (11.25)

A proof of this inequality is sketched in Exercise 11.32. The left-hand side of
equation (11.25) may be finite or infinite, but it can never be smaller than

the right-hand side. The Gaussian function φ(x) = e−πx
2

achieves equality
in equation (11.25), and the only functions that do so are translated and
modulated Gaussians of the form

c e2πiξ0x e−r(x−x0)
2

, c ∈ C, r > 0.

The Classical BLT states that if G(g, 1, 1) is a Riesz basis for L2(R) then not
only do we have the bound given in equation (11.25), but the left-hand side of
that equation must actually be infinite. Thus the generator of a Gabor Riesz
basis must “maximize uncertainty.”

One important feature of the Fourier transform is that it interchanges
the roles of smoothness and decay. Roughly speaking, the smoother that g
is, the faster that ĝ must decay at infinity, and the faster that g decays, the
smoother that ĝ must be. If g decays well at infinity then we should have∫
|xg(x)|2 dx < ∞. For example, if g is bounded and for x large enough we

have |g(x)| ≤ C|x|−p where p > 3/2, then
∫
|xg(x)|2 dx will be finite. Thus, to

say that
∫
|xg(x)|2 dx =∞ is to say that g does not decay rapidly, at least in

some integrated average sense, and therefore ĝ is not very smooth. Similarly, if∫
|ξĝ(ξ)|2 dξ =∞ then ĝ does not decay well and hence g is not very smooth.

The Classical BLT implies that if G(g, 1, 1) is a Riesz basis then at least one
of these things must happen, and so g is a “bad function” (at least in terms
of Gabor theory).

Qualitatively, the Classical and Amalgam BLTs have similar conclusions:
The generator of a Gabor Riesz basis at the critical density is either not
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smooth or it has poor decay. The two theorems quantify this statement in
somewhat different ways. While there is a good deal of overlap, neither con-
clusion implies the other, so the two BLTs are distinct theorems [BHW95].

We will give an elegant proof of Theorem 11.35 due to Battle [Bat88] for the
case that G(g, 1, 1) is an orthonormal basis. This proof relies on the operator
theory that underlies the proof of the Classical Uncertainty Principle, and with
some work the proof can be extended to Gabor systems that are Riesz bases,
see [DJ93]. For some variations on the proof and more extensive discussion
we refer to the survey paper [BHW95].

Proof (of Theorem 11.35 for orthonormal bases). The quantum mechanics
operators of position and momentum are, in mathematical terms,

Pf(x) = xf(x) and Mf(x) =
1

2πi
f ′(x). (11.26)

These operators obviously do not map L2(R) into itself. We can make them
well defined by restricting their domains to appropriate dense subsets of
L2(R), but even if we do this, these operators are unbounded with respect to
L2-norm (Exercise 11.28). Still, these are key operators in harmonic analysis
and quantum mechanics.

Suppose that g ∈ L2(R) is such that G(g, 1, 1) is an orthonormal basis for

L2(R). In particular, this implies

〈g,MnTkg〉 = δ0k δ0n, k, n ∈ Z.

If either
∫
|xg(x)|2 dx = ∞ or

∫
|ξĝ(ξ)|2 dξ = ∞ then equation (11.24)

holds trivially, so suppose that both of these quantities are finite. In terms of
the position operator, this means Pg ∈ L2(R) and P ĝ ∈ L2(R).

Since g and Pg both belong to L2(R), for k, n ∈ Z we compute that
〈
Pg, MnTkg

〉
(11.27)

=

∫ ∞

−∞
xg(x) e−2πinx g(x− k) dx

=

∫ ∞

−∞
g(x) e2πinx (x− k) g(x− k) dx+ k

∫ ∞

−∞
g(x) e2πinx g(x− k) dx

=
〈
g, MnTkPg

〉
+ k

〈
g, MnTkg

〉

=
〈
g, MnTkPg

〉
+ k δ0k δ0n

=
〈
g, MnTkPg

〉
+ 0. (11.28)

The adjoint of Mn is M−n, and likewise the adjoint of Tk is T−k. Further, Mn

and Tk commute because we are at the critical density. Therefore
〈
g, MnTkPg

〉
=
〈
T−kM−ng, Pg

〉
=
〈
M−nT−kg, Pg

〉
. (11.29)
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Combining equations (11.28) and (11.29), we see that

〈
Pg, MnTkg

〉
=
〈
M−nT−kg, Pg

〉
. (11.30)

Our next goal is to perform a similar calculation using Mg instead of Pg.
Because the Fourier transform interchanges smoothness with decay, the

hypotheses g, P ĝ ∈ L2(R) imply that g has a certain amount of smoothness.
Specifically, Theorem 9.27(b) states that g is absolutely continuous on any
finite interval, g′(x) exists a.e., g′ ∈ L2(R), and

ĝ′ (ξ) = 2πiξ ĝ(ξ) = 2πi P ĝ(ξ) a.e.

In particular, Mg ∈ L2(R) and

(Mg)
∧

=
( 1

2πi
g′
)∧

= P ĝ.

Since the Fourier transform is unitary on L2(R), we “switch to the Fourier
side” and apply equation (11.30) to compute that

〈
Mg, MnTkg

〉
=
〈
(Mg)

∧

, (MnTkg)
∧
〉

=
〈
P ĝ, TnM−kĝ

〉

=
〈
P ĝ, M−kTnĝ

〉

=
〈
MkT−nĝ, P ĝ

〉

=
〈
(T−kM−ng)

∧

, (Mg)
∧
〉

=
〈
T−kM−ng, Mg

〉

=
〈
M−nT−kg, Mg

〉
. (11.31)

By expanding Pg and Mg in the orthonormal basis {MnTkg}k,n∈Z and
applying equations (11.30) and (11.31) we obtain

〈
Mg, Pg

〉
=

〈 ∑

k,n∈Z

〈
Mg, MnTkg

〉
MnTkg, Pg

〉

=
∑

k,n∈Z

〈
Mg, MnTkg

〉 〈
MnTkg, Pg

〉

=
∑

k,n∈Z

〈
M−nT−kg, Mg

〉 〈
Pg, M−nT−kg

〉

=
∑

k,n∈Z

〈
Pg, MnTkg

〉〈
MnTkg, Mg

〉

=
〈
Pg, Mg

〉
.
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However, we will show that we also have

〈
Mg, Pg

〉
= 〈Pg,Mg〉 − 1

2πi
, (11.32)

which is a contradiction. To see that equation (11.32) holds, first write

〈
Mg, Pg

〉
=

1

2πi

∫ ∞

−∞
g′(x)xg(x) dx.

Integration by parts is valid for absolutely continuous functions (Theorem
9.28). Setting u(x) = g(x) and v(x) = xg(x), we therefore compute that

∫ b

a

g′(x)xg(x) dx

=

∫ b

a

(
xg′(x) + g(x)

)
g(x) dx −

∫ b

a

g(x) g(x) dx

=

(
b |g(b)|2 − a |g(a)|2 −

∫ b

a

xg(x) g′(x) dx

)
−
∫ b

a

|g(x)|2 dx.

If we fix a, then each of the integrals appearing above converges to a finite
value as b → ∞. Consequently, b |g(b)|2 must converge as b → ∞. However,
since g is square integrable, this limit must be zero (Exercise 11.27). A similar
argument applies as a→ −∞, so we have

〈
Mg, Pg

〉
=

1

2πi
lim

a→−∞
b→∞

∫ b

a

g′(x)xg(x) dx

=
1

2πi
lim

a→−∞
b→∞

(
−
∫ b

a

xg(x) g′(x) dx −
∫ b

a

|g(x)|2 dx
)

=

∫ ∞

−∞
Pg(x)Mg(x) dx − 1

2πi
‖g‖2L2

= 〈Pg,Mg〉 − 1

2πi
.

This gives our contradiction. ⊓⊔

However, this is not the end of the story on bases related to time-frequency
shifts. A remarkable construction known as Wilson bases yields orthonormal
bases for L2(R) (as well as unconditional bases for the modulation spaces
Mp,q
s (R)) generated by appropriate linear combinations of time-frequency

shifts of “nice” functions. For details on this topic we refer to Gröchenig’s
text [Grö01].
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Exercises

11.26. Let φ(x) = e−πx
2

be the Gaussian function. Show that G(φ, 1, 1) is
ℓ2-independent, i.e., if c = (ckn)k,n∈Z ∈ ℓ2(Z2) and

∑
cknMnTkφ = 0, then

ckn = 0 for every k and n. Note that since G(φ, 1, 1) is a Bessel sequence, if
we let R denote the synthesis operator for G(φ, 1, 1) then ℓ2-independence is
equivalent to the statement that R : ℓ2(Z2)→ L2(R) is injective.

11.27. Show that if g ∈ L2(R) and limx→∞ x |g(x)|2 exists, then this limit
must be zero.

11.28. Let P, M be the position and momentum operators introduced in
equation (11.26). These operators are not defined on all of L2(R). Instead,
define domains

DP = {f ∈ L2(R) : xf(x) ∈ L2(R)},
DM = {f ∈ L2(R) : f is differentiable and f ′ ∈ L2(R)},

which are dense subspaces of L2(R). Restricted to these domains, P maps DP

into L2(R) and M maps DM into L2(R). Show that P and M are unbounded
even when restricted to these domains, i.e.,

sup
f∈DP ,

‖f‖L2=1

‖Pf‖L2 = ∞ = sup
f∈DM ,
‖f‖L2=1

‖Mf‖L2.

11.29. Let S(R) be the Schwartz space introduced in Definition 9.18. Show
that the position and momentum operators map S(R) into itself, and are
self-adjoint when restricted to this domain, i.e.,

〈Pf, g〉 = 〈f, Pg〉 and 〈Mf, g〉 = 〈f,Mg〉

for all f ∈ S(R). (The Schwartz space is a convenient dense subspace of
L2(R), but can be replaced in this problem by some larger subspaces of L2(R)
if desired.)

11.30. The commutator of position and momentum is the operator [P,M ] =

PM −MP. Show that [P,M ] = − 1
2πiI in the sense that [P,M ]f = − 1

2πif for

all differentiable functions f. How does this relate to equation (11.32)?

11.31. This exercise will give an abstract operator-theoretic version of the
Uncertainty Principle.

Let S be a subspace of a Hilbert space H, and let A, B : S → H be linear
but possibly unbounded operators. By replacing S with the smaller space
domain(AB)∩ domain(BA) if necessary, we may assume that A, B, AB, and
BA are all defined on S.

(a) Show that if A, B are self-adjoint in the sense that
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∀ f, g ∈ S, 〈Af, g〉 = 〈f,Ag〉 and 〈Bf, g〉 = 〈f,Bg〉,
then

∀ f ∈ S, ‖Af‖ ‖Bf‖ ≥ 1

2

∣∣〈[A,B]f, f
〉∣∣,

where [A,B] = AB −BA is the commutator of A and B.

(b) Show that equality holds in part (a) if and only if Af = icBf for some
c ∈ R.

11.32. Apply Exercises 11.29–11.31 to the position and momentum operators
P and M to derive the Classical Uncertainty Principle,

‖xg(x)‖L2 ‖ξ ĝ(ξ)‖L2 ≥ 1

4π
‖g‖2L2, (11.33)

for g ∈ S(R).

Remark: An extension by density argument can be used to prove that
equation (11.33) extends to all g ∈ L2(R), or integration by parts for abso-
lutely continuous functions can be used to prove directly that equation (11.33)
holds whenever ‖xg(x)‖L2 ‖ξ ĝ(ξ)‖L2 is finite, see [Heil].

11.33. Modify Battle’s argument to prove the Weak BLT : If G(g, 1, 1) is a
Riesz basis for L2(R) then

‖xg(x)‖L2 ‖ξĝ(ξ)‖L2 ‖xg̃(x)‖L2 ‖ξ̂̃g(ξ)‖L2 = ∞,
where g̃ is the dual system generator from Theorem 11.31(b).

Remark: It requires some work, but it can be shown that the Weak BLT
implies Theorem 11.35; see [DJ93] or the survey paper [BHW95].

11.9 The HRT Conjecture

In the final section of this chapter we will present an open problem related to
Gabor systems that is so very simple to state yet is still unsolved, at least as
of the time of writing. This conjecture first appeared in print in 1996 [HRT96].
As this topic is more personal to me than some of the others that appear in
this volume, I will often speak more directly to the reader in this section than
usual.

In the previous sections we saw many results dealing with Gabor systems
G(g, a, b) that are complete, a frame, exact, a Riesz basis, an orthonormal
basis, and so forth. Yet we have not yet asked what may be the most basic
questions of all: Are Gabor systems finitely independent? Given any collection
of vectors in a vector space, surely one of the very first properties that we
would like to determine is whether these vectors are independent or dependent.
For lattice Gabor systems G(g, a, b), the answer is known (though the proof is
nontrivial!). The next theorem is due to Linnell [Lin99], and partially answers
a question first posed in [HRT96].
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Theorem 11.36. If g ∈ L2(R)\{0} and a, b > 0, then G(g, a, b) is finitely
linearly independent. ♦

We will discuss Theorem 11.36 and its proof a little later. Assuming the
validity of Theorem 11.36, Exercise 11.36 shows how to extend it a little
further, as follows.

Corollary 11.37. Let A be an invertible 2 × 2 matrix, choose z ∈ R2, and
set Λ = A(Z2) + z. Then for any nonzero g ∈ L2(R),

G(g,Λ) =
{
MbTag

}
(a,b)∈Λ

is finitely linearly independent. ♦

When A is an invertible matrix, we call A(Z2) a full-rank lattice in R2.
Thus A(Z2) + z is a rigid translate of a full-rank lattice. In particular, if
we choose any three noncollinear points in R2, then we can always find A
and z so that Λ = A(Z2) + z contains these three points (Exercise 11.34).
Therefore any set of three noncollinear time-frequency shifts of a nonzero
g ∈ L2(R) is linearly independent, and the collinear case can be addressed
by other arguments (Exercise 11.37). Since one point is trivial and two points
are always collinear, we obtain the following corollary.

Corollary 11.38. Let N = 1, 2, or 3. If g ∈ L2(R)\{0} and (pk, qk) for
i = 1, . . . , N are distinct points in R2, then

{
e2πiqkxg(x− pk) : k = 1, . . . , N

}

is linearly independent. ♦

Thus, any collection of up to three distinct time-frequency shifts of a func-
tion g ∈ L2(R) is linearly independent. Surely four points cannot be much
more difficult—how hard can it be to show that a set of four vectors in a vec-
tor space are linearly independent? It is not that hard if we have four specific
vectors in hand, but we are asking a somewhat more general question. If we
let (pk, qk) for i = 1, 2, 3, 4 be any set of four distinct points in R2, we want
to know if

{
Mqk

Tpk
g : k = 1, 2, 3, 4

}
=
{
e2πiqkxg(x− pk) : k = 1, 2, 3, 4

}

is linearly independent for every nonzero function g ∈ L2(R). The answer to
this question is not known!

One difficulty is that four noncollinear distinct points in R2 need not lie on
a translate of a full-rank lattice. For example, because the distances between
the following points are not rationally related, there is no matrix A and point z
so that the four points

{
(0, 0), (1, 0), (0, 1), (

√
2,
√

2)
}
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are contained in A(Z2)+ z. Forgetting about generic sets of four points, what
about just this particular set of points? If g ∈ L2(R) is not the zero function,
must the set of time-frequency translates of g determined by those four points
be independent, i.e., must

{
g(x), g(x− 1), e2πixg(x), e2πi

√
2xg(x−

√
2)
}

be linearly independent? I don’t know, and neither does anyone else.

Conjecture 11.39 (HRT Subconjecture). If g ∈ L2(R)\{0} then

{
g(x), g(x− 1), e2πixg(x), e2πi

√
2xg(x−

√
2)
}

(11.34)

is linearly independent.

There’s nothing special about
√

2 in this choice of four points; the answer
is still unknown if we replace the two instances of

√
2 in equation (11.34) by

some other irrational numbers (on the other hand, Ziemowit Rzeszotnik has

shown me his unpublished proof that
{
g(x), g(x−1), e2πixg(x), e2πi

√
2xg(x)

}

is independent for each nonzero g ∈ L2(R), and the recent paper [Dem10]
addresses the case of any four points that lie on two parallel lines).

The answer to Conjecture 11.39 is known for some special classes of func-
tions g ∈ L2(R), and for those functions for which the answer is known the
answer is always yes, linear independence holds.

Example 11.40. Suppose that g ∈ L2(R) is supported within the halfline
[0,∞), i.e., g(x) = 0 for almost every x < 0, and suppose also that g is
not the zero function on [0, 1]. If the collection of time-frequency translates in
equation (11.34) is dependent then there exist scalars a, b, c, d, not all zero,
such that

ag(x) + bg(x− 1) + ce2πixg(x) + de2πi
√

2xg(x−
√

2) = 0 a.e. (11.35)

Note that the functions g(x) and e2πixg(x) are supported within [0,∞), while

g(x− 1) is supported in [1,∞) and e2πi
√

2xg(x−
√

2) is supported in [
√

2,∞).
Therefore, if we only consider points x between 0 and 1 then equation (11.35)
reduces to

(a+ ce2πix) g(x) = 0 for a.e. x ∈ [0, 1].

However, if either a or c is nonzero then a+ ce2πix 6= 0 for almost every x, so
g(x) = 0 a.e. on [0, 1], which contradicts our assumptions on g. Therefore we
must have a = c = 0. But then

bg(x− 1) + de2πi
√

2xg(x−
√

2) = 0 a.e.,

which contradicts the fact that any set of two time-frequency translates of g
must be independent. ♦
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Conjecture 11.39 is a special case of the following conjecture, first made
in [HRT96].

Conjecture 11.41 (HRT Conjecture). If g ∈ L2(R) is not the zero func-
tion and Λ = {(pk, qk)}Nk=1 is any set of finitely many distinct points in R2,
then

G(g,Λ) =
{
Mqk

Tpk
g
}N
k=1

is a linearly independent set of functions in L2(R). ♦

Conjecture 11.41 is also known as the Linear Independence Conjecture
for time-frequency shifts. Despite having been worked on by a large number
of groups, there is a scarcity of hard results. The main papers specifically
dealing with the HRT Conjecture appear to be [HRT96], [Lin99], [Kut02],
[Bal08], [BS09], [Dem10], [DG10], [DZ10], and there is also a survey paper on
the topic [Hei06].

Some partial results on the HRT Conjecture are known. For example, the
idea of Example 11.40 extends to any finite number of points, so independence
in the HRT Conjecture is known to hold if we add the extra assumption that g
is compactly supported or is only nonzero within a halfline (−∞, a] or [a,∞);
see Exercise 11.38. On the other hand, it is quite surprising that there are very
few partial results based on smoothness or decay conditions on g. In particular,
the HRT Conjecture is open even if we impose the extra hypothesis that g lie in
the Schwartz class S(R), i.e., g is infinitely differentiable and xmg(n)(x)→ 0
as x → ±∞ for every m, n ∈ N. While the HRT Conjecture is known to
be true for some Schwartz class functions, such as those that are compactly
supported, it is not known whether or not it holds for every nonzero Schwartz
class function.

Let us return to lattice Gabor systems and Theorem 11.36 in particular,
and try to illustrate why the proof of that theorem is nontrivial. Consider the
case of three specific points in R2, say

Λ =
{
(0, 0), (a, 0), (0, 1)

}
. (11.36)

We will address the “difficult case” where a is irrational.

Example 11.42. Suppose that g ∈ L2(R)\{0} is such that

G(g,Λ) =
{
g(x), g(x− a), e2πixg(x)

}

is linearly dependent, where a > 0 is irrational. Then there exist scalars c1,
c2, c3, not all zero, such that

c1g(x) + c2g(x− a) + c3e
2πixg(x) = 0 a.e.

If any one of c1, c2, c3 is zero then we reduce to only two time-frequency shifts,
so we assume that c1, c2, c3 are all nonzero. Dividing through by c2, we can
further assume that c2 = 1. Rearranging,
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g(x− a) =
(
−c1 − c3 e2πix

)
g(x) = m(x) g(x) a.e., (11.37)

where m(x) = −c1− c3 e2πix. Note that m is a 1-periodic trigonometric poly-
nomial. Iterating equation (11.37), for integer n > 0 we obtain

|g(x− na)| = |m(x− (n− 1)a) · · · m(x− a)m(x) g(x)|

= |g(x)|
n−1∏

j=0

|m(x− ja)|

= |g(x)| en· 1
n

Pn−1

j=0
p(x−ja) a.e., (11.38)

where p(x) = ln |m(x)|. Since g is square integrable, if g(x−na) grows with n
then we might hope to obtain a contradiction, although we must be careful
since g is only defined almost everywhere.

Now, p is 1-periodic, so p(x−ja) = p(x−ja mod 1), where t mod 1 denotes
the fractional part of t. A consequence of the fact that a is irrational is that
the points {x − ja mod 1}∞j=0 form a dense subset of [0, 1). In fact, they are
“well distributed” in a technical sense due to the fact that x 7→ x+ a mod 1 is
an ergodic mapping of [0, 1) onto itself (i.e., only subsets of measure 0 or mea-

sure 1 can be invariant under this map). Hence the quantity 1
n

∑n−1
j=0 p(x−ja)

is like a Riemann sum approximation to
∫ 1

0 p(x) dx, except that the rectangles

with height p(x − ja) and width 1
n are distributed “randomly” around [0, 1)

instead of uniformly, possibly even with overlaps or gaps (see Figure 11.4).
Still, the ergodicity ensures that the Riemann sum analogy is a good one in
the limit. Specifically, the Birkhoff Ergodic Theorem [Wal82] implies that

lim
n→∞

1

n

n−1∑

j=0

p(x− ja) =

∫ 1

0

p(x) dx = C a.e. (11.39)

The fact that C =
∫ 1

0 p(x) dx exists and is finite follows from the fact that
any singularities of p correspond to zeros of the well-behaved function m
(Exercise 11.42). So, if we fix ε > 0, then 1

n

∑n−1
j=0 p(x − ja) ≥ (C − ε) for n

large enough. Let us ignore the fact that “large enough” depends on x (or,
by applying Egoroff’s Theorem, restrict to a subset where the convergence in
equation (11.39) is uniform). Substituting into equation (11.38) then yields

|g(x− na)| ≥ e(C−ε)n |g(x)|, n large.

Considering x in a set of positive measure where g is nonzero and using the
fact that g ∈ L2(R), we conclude that C− ε < 0. This is true for every ε > 0,
so C ≤ 0. A converse argument based on the relation g(x) = m(x+a) g(x+a)
similarly yields the inequality C ≥ 0. This still allows the possibility that
C = 0, but a slightly more subtle argument presented in [HRT96] also based on
ergodicity yields the full result. The case a is rational is more straightforward,
since then the points x− ja mod 1 repeat themselves. ♦
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Fig. 11.4. The area of the boxes (counting overlaps) is 1
n

Pn−1
j=0 p(x− ja).

By applying the techniques used in Exercises 11.35 and 11.36, the HRT
Conjecture for three noncollinear points can always be reduced to the HRT
Conjecture for the three points given in equation (11.36) for some a 6= 0.
However, the argument given in Example 11.42 is limited to only three points
so we have not proved that the HRT Conjecture is valid for all lattice Gabor
systems. Still, our argument does suggest why the proof of Theorem 11.36 is
nontrivial. There is no obvious way to extend the technique of Example 11.42
to apply to four points in general position. It particular, the argument depends
critically on the recurrence relation that appears in equation (11.37), and this
recurrence relation is a consequence of the fact that there are only two distinct
translations appearing in the collection

{
g(x), g(x − a), e2πixg(x)

}
. Specifi-

cally, g(x) and e2πixg(x) are translated by zero, while g(x − a) is translated
by a. As soon as we have three or more distinct translates, the recurrence
relation becomes much more complicated (too complicated to use?). Indeed,
Linnell’s proof takes a quite different approach, relying on the fact that the
operators Mbn, Tak with k, n ∈ Z generate a von Neumann algebra (see
[Lin99]).

So, we attack the HRT Conjecture from a different angle. Fix any set
Λ = {(pk, qk)}Nk=1 of finitely many distinct points in R2, and define

SΛ =
{
g ∈ L2(R) : G(g,Λ) is independent

}
. (11.40)

The HRT Conjecture is that SΛ = L2(R)\{0}. While we don’t know that this

is the case, we do know that SΛ is dense in L2(R). For example, SΛ contains
all compactly supported functions in L2(R) (Exercise 11.38) and all finite
linear combinations of Hermite functions (Exercise 11.40), each of which is
a dense subset of L2(R). Perhaps we can apply some kind of perturbation
argument to show that SΛ actually contains all nonzero functions in L2(R).
The next theorem is an attempt in this direction.
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Theorem 11.43. Assume that g ∈ L2(R) and Λ = {(pk, qk)}Nk=1 are such
that G(g,Λ) is linearly independent. Then there exists an ε > 0 such that
G(h,Λ) is independent for any h ∈ L2(R) with ‖g − h‖L2 < ε.

Proof. Define the linear mapping T : CN → L2(R) by

T (c1, . . . , cN ) =

N∑

k=1

ckMqk
Tpk

g.

Note that T is injective since G(g,Λ) is independent. Therefore T is a lin-
ear bijection of CN onto range(T ), which is an N -dimensional subspace of
L2(R). Since linear operators on finite-dimensional spaces are continuous,
both T : CN → range(T ) and T−1 : range(T ) → CN are bounded. As all
norms on CN are equivalent, it follows that there exist constants A, B > 0
such that

A

N∑

k=1

|ck| ≤
∥∥∥∥
N∑

k=1

ckMqk
Tpk

g

∥∥∥∥
L2

≤ B

N∑

k=1

|ck|, (c1, . . . , cN ) ∈ CN .

Therefore, if ‖g − h‖L2 < A, then for any (c1, . . . , cN ) ∈ CN we have

∥∥∥∥
N∑

k=1

ckMqk
Tpk

h

∥∥∥∥
L2

≥
∥∥∥∥
N∑

k=1

ckMqk
Tpk

g

∥∥∥∥
L2

−
∥∥∥∥
N∑

k=1

ckMqk
Tpk

(h− g)
∥∥∥∥
L2

≥ A

N∑

k=1

|ck| −
N∑

k=1

|ck| ‖Mqk
Tpk

(h− g)‖L2

= (A− ‖h− g‖L2)

N∑

k=1

|ck|.

Consequently, if
∑N
k=1 ckMqk

Tpk
h = 0 a.e. then ck = 0 for every k. ⊓⊔

Thus, the set SΛ defined in equation (11.40) is actually an open subset of
L2(R). Plus, we know that it is dense—so isn’t it all of L2(R)? No, we can’t
conclude that. For example, R\{π} is an open and dense but proper subset
of the real line. Therefore, we still don’t know whether the HRT Conjecture
is valid for all nonzero g ∈ L2(R). On the other hand, this does tell us that
any counterexamples are “rare” in some sense.

I’ve worked hard on the HRT Conjecture but haven’t solved it. If you solve
it, please let me know! One word of warning—the problem seems to be much
harder than it looks. I’ve produced dozens of incorrect proofs myself, and seen
many more. Many of the errors in these proofs are related to the fact that
the translation and modulation operators Ta, Mb do not commute for most
values of a and b. I hope you enjoy this charming little problem, but beware
of the pesky phase factor in the relation TaMb = e−2πiabMbTa.
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Exercises

11.34. Show that if (pi, qi) for i = 1, 2, 3 are three noncollinear points in R2,
then there exist an invertible 2 × 2 matrix A and a point z ∈ R2 such that
Λ = A(Z2) + z contains those three points.

11.35. Fix g ∈ L2(R)\{0}, and let Λ = {(pk, qk)}Nk=1 be any set of finitely

many distinct points in R2. Define G(g,Λ) = {Mqk
Tpk

g}Nk=1.

(a) Fix z ∈ R2. Show that G(g,Λ) is linearly independent if and only if
G(g,Λ + z) is linearly independent.

(b) Given r ∈ R, let Sr = [ 1 0
r 1 ] , so multiplication by the matrix Sr is a

shear operation on R2. Define h(x) = eπirx
2

g(x), and show that G(g,Λ) is

linearly independent if and only if G(h, Sr(Λ)) is linearly independent.

(c) Let R =
[

0 −1
1 0

]
, so multiplication by R is a counterclockwise rotation

of R2 by 90 degrees. Show that G(g,Λ) is linearly independent if and only if

G( ∨

g,R(Λ)) is linearly independent, where
∨

g is the inverse Fourier transform
of g.

(d) Given a 6= 0, let Da =
[
a 0
0 1/a

]
, so multiplication by Da is a dilation

by a on the x1-axis and a corresponding dilation by 1/a on the x2-axis. Define
h(x) = g(x/a), and show that G(g,Λ) is linearly independent if and only if

G(h,Da(Λ)) is linearly independent.

(e) Show that if A is a 2×2 matrix with det(A) = 1, then A can be written
as a product of matrices of the form Sr, R, and Da.

Remark: This factorization is related to the fact that every 2 × 2 matrix
with determinant 1 is a symplectic matrix. In contrast, not every 2d × 2d
matrix with determinant 1 is symplectic when d > 1. As a consequence, the
HRT Conjecture becomes even more intractable in higher dimensions.

11.36. Assuming Theorem 11.36, prove Corollary 11.37.

11.37. Fix g ∈ L2(R)\{0}.
(a) Show that if {qk}Nk=1 is any set of finitely many distinct real numbers,

then {Mqk
g}Nk=1 is linearly independent.

(b) Show that if {pk}Nk=1 is any set of finitely many distinct real numbers,

then {Tpk
g}Nk=1 is linearly independent.

(c) Show that if Λ = {(pk, qk)}Nk=1 is any set of finitely many distinct but

collinear points in R2, then G(g,Λ) = {Mqk
Tpk

g}Nk=1 is linearly independent.

11.38. Suppose that g ∈ L2(R)\{0} is supported within some halfline, either
(−∞, a] or [a,∞) where a ∈ R. Show that if Λ = {(pk, qk)}Nk=1 is any set of

finitely many distinct points in R2, then G(g,Λ) = {Mqk
Tpk

g}Nk=1 is linearly
independent.
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11.39. The nth Hermite function Hn is

Hn(x) = eπx
2

Dne−2πx2

, n ≥ 0,

where Dn denotes the nth derivative operator.

(a) Prove that

Hn+1(x) = H ′
n(x)− 2πxHn(x), n ≥ 0. (11.41)

(b) Use equation (11.41) to show that Hn(x) = pn(x) e
−πx2

, where pn is
a polynomial of degree n whose leading coefficient is (−4π)n. Consequently,
each Hn is infinitely differentiable and has exponential decay at infinity, and
span{Hn}n≥0 =

{
p(x) e−πx

2

: p is a polynomial
}
.

Remark: It can be shown that {Hn}n≥0 is an orthogonal (but not orthonor-
mal) basis for L2(R). Hence span{Hn}n≥0 is a dense subspace of L2(R).

11.40. Let φ(x) = e−πx
2

be the Gaussian function, and let h(x) = p(x) e−πx
2

where p is any nontrivial polynomial. Show that if Λ = {(pk, qk)}Nk=1 is any

set of finitely many distinct points in R2, then G(h,Λ) = {Mqk
Tpk

h}Nk=1 is
linearly independent.

11.41. Assume that g ∈ L2(R) and Λ = {(pk, qk)}Nk=1 are such that G(g,Λ)

is linearly independent. Show that there exists ε > 0 such that G(g,Λ′) is

independent for any set Λ′ = {(α′
k, β

′
k)}Nk=1 with |αk − α′

k|, |βk − β′
k| < ε for

k = 1, . . . , N.

11.42. Suppose that m is differentiable and m(0) = 0. Set p(x) = ln |m(x)|,
and show that

∫ δ
−δ p(x) dx exists and is finite if δ > 0 is small enough.
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Wavelet Bases and Frames

The Gabor systems that we studied in the preceding chapter are generated
from time-frequency shifts of a single function. A time-frequency shift is a com-
position of the two simple operations of translation and modulation. Wavelets
are likewise generated by two simple operations, this time translation and
dilation. A composition of translation and dilation is called a time-scale shift
(see the illustration in Figure 12.1), and so a wavelet system is a collection of
time-scale shifts of a single function.

-1 1 2 3 4 5
-1

1

Fig. 12.1. The function ψ(x) = e−πx2

cos 3x and a time-scale shift D23T36ψ(x) =
81/2ψ(8x− 36).

Definition 12.1. A wavelet system is a sequence in L2(R) of the form

W(ψ, a, b) = {an/2ψ(anx− bk)}k,n∈Z,

where ψ ∈ L2(R) and a > 1, b > 0 are fixed. If we use the translation
and dilation operators introduced in Notation 9.4, we can write this wavelet
system as

W(ψ, a, b) = {DanTbkψ}k,n∈Z.

We call ψ the generator or the atom of the system, and refer to a, b as the
parameters of the system. A typical choice is a = 2 and b = 1. We set
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W(ψ) = W(ψ, 2, 1) = {D2nTkψ}k,n∈Z = {2n/2ψ(2nx− k)}k,n∈Z,

and call W(ψ) a dyadic wavelet system. A wavelet system that forms a frame
is called a wavelet frame, etc. ♦

The simplest example of a wavelet orthonormal basis was introduced by
Haar in 1910 [Haa10]. The original Haar system is an orthonormal basis for
L2[0, 1], but there are natural ways to extend it to form an orthonormal basis
for L2(R). Setting χ = χ[0,1) and ψ = χ[0,1/2) − χ[1/2,1), each of

{
χ(x− k)

}
k∈Z

∪
{
2n/2ψ(2nx− k)

}
n≥0, k∈Z

(12.1)

and
W(ψ) =

{
2n/2ψ(2nx− k)

}
n,k∈Z

(12.2)

forms an orthonormal basis for L2(R). Each of these is often referred to as
the Haar system for L2(R).

Unfortunately, the function ψ = χ
[0,1/2)−χ[1/2,1), which we call the Haar

wavelet, is not smooth, and this limits its utility. We faced this same issue
in Chapter 11 when we considered the Gabor orthonormal basis G(χ[0,1], 1, 1)
generated by the box function. We saw in that chapter that the Balian–Low
Theorem implies that there is no way to find a “nice” generator g such that
the Gabor system G(g, a, b) is a Riesz basis for L2(R). On the other hand, we
can find very nice generators g such that G(g, a, b) forms a redundant frame
for L2(R).

In this chapter we explore the construction of wavelet bases and frames.
We will see that while there are many similarities to Gabor systems, there are
also many fundamental, and surprising, differences. In particular, there exist
orthonormal wavelet basesW(ψ) for L2(R) that are generated by functions ψ
that are both very smooth and decay rapidly at infinity. For a more detailed
introduction to wavelet theory in L2(R) we refer to the text by Daubechies
[Dau92].

Wavelet systems have many uses outside of the Hilbert space setting. In
particular, a wavelet basis for L2(R) generated by a smooth wavelet ψ is also
an unconditional basis for an entire associated family of function spaces, the
Besov spaces Bp,qs (R) and the Triebel–Lizorkin spaces F p,qs (R) (which include
Lp(R) for 1 < p < ∞). These are classical function spaces that quantify
smoothness-related properties of functions and distributions. They are widely
used in problems in analysis and other areas. In this chapter, our focus will be
on the Hilbert space L2(R). For details on the extension of the basis properties
of wavelet systems to other function spaces we refer to the texts by Meyer
[Mey92] or Hernández and Weiss [HW96].

12.1 Some Basic Facts

Interestingly, the operations of translation and modulation on which Gabor
systems are based “almost commute.” We have TaMb = e−2πiabMbTa, and
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while the scalar e−πiab will not be 1 in general, it does have modulus 1.
The situation for wavelets is quite different, as translation and dilation are
“highly noncommutative.” Being careful with the ordering of composition and
evaluation, we compute that

DaTbf(x) = (Da(Tbf))(x)

= a1/2(Tbf)(ax)

= a1/2f(ax− b)

= a1/2f(a(x− b/a))
= Tb/aDaf(x).

Thus the translation parameter is dramatically affected when we interchange
the order of translation and dilation. One consequence of this is that the
canonical dual of a wavelet frame need not itself be a wavelet frame. The
problem is that if W(ψ, a, b) is a wavelet frame, then its frame operator

Sf =
∑

n∈Z

∑

k∈Z

〈f,DanTbkψ〉DanTbkψ

will commute with dilations Dan , but it need not commute with translations
Tbk. Indeed, we have

S(Tbf) =
∑

n∈Z

∑

k∈Z

〈
Tbf, DanTbkψ

〉
DanTbkψ

=
∑

n∈Z

∑

k∈Z

〈
f, T−bDanTbkψ

〉
DanTbkψ

=
∑

n∈Z

∑

k∈Z

〈
f, DanT−anbTbkψ

〉
DanTbkψ,

but since n ranges through Z, the translation parameters anb cannot all be
integer multiples of b. In practice, the dual of a wavelet frame often does turn
out to be another wavelet frame, but this is not assured. Of course, Parseval
frames and orthonormal bases are self-dual, and this is the situation on which
we primarily concentrate in this chapter.

Exercises

12.1. Show that if W(ψ, a, b) is a wavelet frame for L2(R), then its frame
operator S commutes with Dan for n ∈ Z. What does this imply about the
structure of the canonical dual frame?
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12.2. Define

A1 = {DaTb}a>0,b∈R, A2 =

{[
a b
0 1

]}

a>0,b∈R

, A3 =
{
(a, b)

}
a>0,b∈R

.

In particular, A1 is the set of all time-scale shift operators, and so is a sub-
set of B(L2(R)). Define the following operations: On A1 it is composition of
operators, on A2 it is matrix multiplication, and on A3 it is

(a, b) ∗ (c, d) = (ac, bc+ d).

(a) Show that A1, A2, A3 are isomorphic groups with respect to these
operations.

(b) Given a > 1, b > 0, show that {DanTbk}k,n∈Z is not a subgroup of A1.

(c) With a > 1 and b > 0 fixed, let G be the subgroup of A1 generated
by Da and Tb, i.e., it is the intersection of all subgroups of A1 that contain
both Da and Tb. Show that G contains DanT(amj+k)b for every m, n, j, k ∈ Z.

As
{
(amj + k)b

}
m,j,k∈Z

is dense in R, we conclude that there are no discrete

“separated” subgroups of A1 that contain both dilations and translations.

(d) As a set, A3 = (0,∞)×R, and hence has a natural topology. In fact,
A3 is an example of a locally compact group (LCG). Every LCG has associated
left and right Haar measures (and these are unique up to scalar multiples).
Show that the left Haar measure for A3 is da

a db, which means that for every
(u, v) ∈ A3 we have

∫ ∞

−∞

∫ ∞

0

F
(
(u, v) ∗ (a, b)

) da
a
db =

∫ ∞

−∞

∫ ∞

0

F (a, b)
da

a
db

for every function F on A3 that is integrable with respect to da
a db. What is

the right Haar measure?

Remark: The (isomorphic) groups A1, A2, A3 are called the affine group.
The properties of the affine group should be contrasted with those of the
Heisenberg affine group discussed in Exercise 11.2.

12.2 Wavelet Frames and Wavelet Sets

We saw in Section 11.2 that it is easy to construct Gabor frames with
compactly supported generators. Moreover, we can construct redundant Ga-
bor frames with generators that are as smooth as we like. These “Painless
Nonorthogonal Expansions” are due to Daubechies, Grossmann, and Meyer
[DGM86]. In that same paper they also observed that those techniques can
be used to construct wavelet frames for L2(R).
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The key to the construction is the fact that if I is an interval of length b−1

then {b1/2e2πibnx}n∈Z is an orthonormal basis for L2(I). Now, a Gabor system

G(g, a, b) = {e2πibnxg(x − ak)}k,n∈Z explicitly includes exponential functions
as part of its definition, but exponential functions do not appear in the defi-
nition of the wavelet system W(ψ, a, b) = {an/2ψ(anx − bk)}k,n∈Z. However,
the Fourier transform converts translations into modulations and dilations
into reciprocal dilations, so if we move to the “Fourier side” then we will see

exponential functions. Letting Ŵ(ψ, a, b) denote the image ofW(ψ, a, b) under
the Fourier transform, we have

Ŵ(ψ, a, b) =
{
(DanTbkψ)

∧
}
k,n∈Z

=
{
Da−nM−bkψ̂

}
k,n∈Z

=
{
a−n/2e−2πibka−nξ ψ̂(a−nξ)

}
k,n∈Z

(12.3)

=
{
an/2e2πibka

nξ ψ̂(anξ)
}
k,n∈Z

. (12.4)

Since the Fourier transform is unitary, W(ψ, a, b) is a frame if and only if

Ŵ(ψ, a, b) is a frame.

Example 12.2. Since the Fourier transform maps L2(R) onto itself, there is

a function ψ ∈ L2(R) such that ψ̂ = χ[1,2]. Explicitly, ψ is the modulated

sinc function ψ(x) = e3πix (sinπx)/(πx). By equation (12.3), the image of the

dyadic wavelet system W(ψ) =W(ψ, 2, 1) under the Fourier transform is

Ŵ(ψ) =
{
2−n/2e−2πik2−nξ χ[1,2](2

−nξ)
}
k,n∈Z

.

With n fixed, {
2−n/2e−2πik2−nξ χ[1,2](2

−nξ)
}
k∈Z

is an orthonormal basis for L2[2n, 2n+1]. Since ∪n∈Z[2n, 2n+1] = (0,∞), we

conclude that Ŵ(ψ) is an orthonormal basis for L2[0,∞). We were hoping for
an orthonormal basis for L2(R) but didn’t quite get it. On the other hand, if

we set ψ1 = ψ and let ψ2 be the function such that ψ̂2 = χ[−2,−1] then Ŵ(ψ2)

is an orthonormal basis for L2(−∞, 0], and hence Ŵ(ψ1) ∪ Ŵ(ψ2) is an or-
thonormal basis for L2(R). Applying the unitary of the Fourier transform, we
conclude that the union of the two dyadic wavelet systemsW(ψ1) andW(ψ2)
forms an orthonormal basis for L2(R). Individually,W(ψ1) is an orthonormal
basis for the closed subspace

H2
+(R) =

{
f ∈ L2(R) : supp(f̂ ) ⊆ [0,∞)

}
,

while W(ψ2) is an orthonormal basis for

H2
−(R) =

{
f ∈ L2(R) : supp(f̂ ) ⊆ (−∞, 0]

}
. ♦



356 12 Wavelet Bases and Frames

The Painless Nonorthogonal Expansions have a very similar construction
except that we allow the supports of the Fourier transforms of our functions
to overlap. Exercise 12.3 shows, for example, that if we choose a generator
ψ1 ∈ L2(R) such that

supp(ψ̂1) ⊆ [1, 1 + b−1] and
∑

n∈Z

|ψ̂1(a
nξ)|2 = b a.e., (12.5)

then Ŵ(ψ1, a, b) = {an/2e2πibkanξ ψ̂1(a
nξ)}k,n∈Z is a Parseval frame for

L2[0,∞). Figure 12.2 illustrates one possible choice of ψ̂1 corresponding to
the parameters a = 2 and b = 1/2. Combining this with a similar function
ψ2 whose Fourier transform is supported on the negative halfline, we can cre-

ate a Parseval frame for L2(R) of the form Ŵ(ψ1, a, b) ∪ Ŵ(ψ2, a, b). Since

the Fourier transform is unitary, W(ψ1, a, b) ∪W(ψ2, a, b) is therefore a Par-
seval frame for L2(R). We can do this with functions ψ1, ψ2 whose Fourier
transforms are both compactly supported and as smooth as we like. Since the
Fourier transform interchanges smoothness and decay, the smoother that ψ̂1,
ψ̂2 are, the faster that ψ1, ψ2 will decay at infinity.

0 1 2 3 4 5 6 7
0

0.5

1

Fig. 12.2. Graphs of bψ1(ξ)2 and bψ1(2ξ)2 for a = 2 and b = 1/2. We haveP
n∈Z

|bψ(2nξ)|2 = 1/2 on (0,∞).

Except that we needed to use two generators instead of one to achieve
a frame for L2(R), this “painless” construction of a wavelet frame is very
similar to that of a Gabor frame. The construction even suggests that there
may be a Nyquist density for wavelet frames. For, in order for equation (12.5)
to hold, we must have a ≤ 1+b−1. Must this same restriction apply to generic
wavelet frames? To see that the answer is no, fix any function ψ ∈ L2(R),
parameters a > 1 and b > 0, and scale j ∈ Z. If we define φ(x) = Da−jψ(x) =
a−j/2ψ(a−jx) then

W(φ, a, ajb) =
{
an/2φ(anx− ajbk)

}
k,n∈Z

=
{
an/2a−j/2ψ

(
a−j(anx− ajbk)

)}
k,n∈Z

=
{
a(n−j)/2ψ(an−jx− bk)

}
k,n∈Z

= W(ψ, a, b).
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The new wavelet system W(φ, a, ajb) has exactly the same closed span as the
original system W(ψ, a, b), but has a different translation parameter. More-
over, ajb can be as large or as small as we like. The following theorem due to
Dai, Larson, and Speegle [DLS97] is even more surprising.

Theorem 12.3. Given any a > 1 and b > 0, there exists a function ψ ∈
L2(R) such that ψ̂ is the characteristic function of a compact set and the
wavelet system W(ψ, a, b) is an orthonormal basis for L2(R).

More generally, let A be any expansive d×d matrix (i.e., every eigenvalue
λ of A satisfies |λ| > 1), and let b > 0 be any positive number. Then there
exists a compact set E ⊆ Rd such that if we let ψ ∈ L2(Rd) be the function

satisfying ψ̂ = χE , then

{
| det(A)|n/2ψ(Anx− bk)

}
n∈Z,k∈Zd

is an orthonormal basis for L2(Rd). ♦

In contrast, if G(g, a, b) is a Gabor Riesz basis for L2(R) then necessarily
ab = 1, and if G(g, a, b) is a frame then ab ≤ 1.

A set E of the type appearing in Theorem 12.3 is called a wavelet set.
Exercise 12.4 shows that, for the one-dimensional case, the wavelet sets are
precisely those subsets of R that “simultaneously tile by translation and di-
lation.” A similar characterization holds for higher dimensions. However, it is
not obvious that such sets exist, especially in higher dimensions.

-4 -2 2 4

-1.0

-0.5

0.5

1.0

-2 -1 1 2
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1

Fig. 12.3. The Shannon wavelet ψ (left) and its Fourier transform bψ (right).

Example 12.4 (The Shannon Wavelet). The simplest example of a wavelet set
in one dimension is E = [−1,− 1

2 ]∪ [ 12 , 1]. This set tiles by integer translations,

i.e., the integer translates of E cover R and the overlaps of these translates
have measure zero:

⋃
k∈Z

(E + k) = R and |(E + j) ∩ (E + k)| = 0 if j 6= k.
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Moreover, this set tiles by dyadic dilations:
⋃
n∈Z

(2nE) = R\{0} and |(2mE) ∩ (2nE)| = 0 if m 6= n.

Exercise 12.4 therefore implies that W(ψ) =
{
D2nTkψ

}
k,n∈Z

is a dyadic or-

thonormal basis for L2(R), where ψ ∈ L2(R) satisfies ψ̂ = χE . This function ψ
is called the Shannon wavelet, and is given explicitly by

ψ(x) =
sin 2πx

πx
− sinπx

πx
. (12.6)

The Shannon wavelet ψ and its Fourier transform ψ̂ = χE are shown in
Figure 12.3. ♦

-
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1

Fig. 12.4. The wedding cake wavelet set.

The wavelet set E for the Shannon wavelet is fairly nice, but because of
the dilation/translation tiling properties of wavelet sets, they often exhibit a
kind of fractal or self-similar appearance. Figure 12.4 displays a wavelet set
corresponding to the dilation matrix A = 2I and translation parameter b = 1.
This set, discovered by Dai, Larson, and Speegle, tiles by translations and
dilations in the sense that

⋃
k∈Z2

(E + k) = R2 and
⋃
n∈Z

(2nE) = R2,

both with overlaps of measure zero. This set E is disconnected, with three
separate connected components. It is also fractal-like; turned sideways the left-
hand and right-hand components have infinitely many “tiers” that decrease
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rapidly in size, reminiscent of a wedding cake. Consequently, E is known as the
“wedding cake” wavelet set. Many other wavelet sets are now known, some
“complicated” and some “simple.” We refer to [DLS97], [BMM99], [BS06],
[Mer08] for more details and examples.

As fascinating as wavelet sets are, they have the disadvantage that their
Fourier transforms are characteristic functions and hence are discontinuous.
The Haar system has a similar disadvantage, although its discontinuities occur
on the time side rather than the Fourier side. This suggests that while there
may not be a Nyquist density for wavelets, there may still be some type of
Balian–Low Theorem. Perhaps all wavelet Riesz bases must be “bad” in some
sense? We will address this question in Section 12.4 by taking a completely
different approach to the construction of wavelet bases, and we will see that
the situation for wavelet bases is very different from that for Gabor bases.

There are many other interesting issues involving wavelets in higher di-
mensions that we will not be able to pursue. We will give just one example of
a Haar-like wavelet basis for L2(R2), and then return to the one-dimensional
setting for the remainder of the chapter.

Example 12.5 (The Twin Dragon). A quincunx was a Roman coin worth five-
twelfths of the standard bronze coin as. Today the word quincunx refers to the
geometrical pattern of five dots that represents the number five on a playing
die. The quincunx matrix is

A =

[
1 −1
1 1

]
. (12.7)

Note that A is not only expansive in the sense of Theorem 12.3, but also has
integer entries. Consequently A maps the set Z2 into itself. In particular, the
five points

(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)

are mapped by A to the five points

(0, 0), (1, 1), (1,−1), (−1,−1), (−1, 1),

which form a quincunx pattern. The set A(Z2) can be viewed as an infinite
repetition of this quincunx pattern. By a stretch of the imagination, the quin-
cunx lends its name to the matrix A. Since the matrix

B =

[
1 1
−1 1

]
(12.8)

satisfies B(Z2) = A(Z2), it is also called the quincunx matrix.
It can be shown that there is a unique compact set Q that satisfies

Q = A−1(Q) ∪ A−1(Q+ d) (12.9)

where d = (1, 0). The set Q is shown in Figure 12.5, and the sets A−1(Q)
and A−1(Q + d) can be seen in Figure 12.6. In the language of fractals, Q
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Fig. 12.5. The twin dragon.
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Fig. 12.6. The twin dragon wavelet ψ takes the value 1 on the light region and −1
on the dark region.

is the attractor of the iterated function system generated by the two maps
w1(x) = A−1x and w2(x) = A−1(x + d). This is a two-dimensional analogue
of the fact that the unit interval [0, 1] is the unique compact set in R that
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satisfies

[0, 1] =
1

2

(
[0, 1]

)
∪ 1

2

(
[0, 1] + 1

)
.

The set Q satisfying (12.9) is a well-known fractal called the twin dragon. The
two smaller sets A−1(Q) and A−1(Q+ d) are shrunken, rotated versions of Q
that intersect only along their boundaries (which have measure zero). Thus Q
is self-similar in the sense that it can be built out of two smaller copies of
itself. For more on fractals and iterated function systems, we refer to [Hut81],
[YHK97], [Fal03].

The self-similarity of the set Q can also be expressed in the functional
equation

χQ(x) = χQ(Ax) + χQ(Ax − d) a.e.,

which should be compared to the equation

χ[0,1](x) = χ[0,1](2x) + χ[0,1](2x− 1) a.e.

that is satisfied by the box function χ[0,1]. Just as the Haar wavelet

ψ(x) = χ[0,1](2x)− χ[0,1](2x− 1)

generates a wavelet orthonormal basis for L2(R), the function

ψ(x) = χQ(Ax) − χQ(Ax − d)
generates an orthonormal basis for L2(R2) of the form

{2n/2ψ(Anx− k)}n∈Z,k∈Z2 .

In contrast to the wavelet sets described in Theorem 12.3, here it is the func-

tion ψ rather than its Fourier transform ψ̂ that is compactly supported. ♦
A dilation matrix is an expansive d× d matrix A that has integer entries.

Gröchenig and Madych [GM92] proved that there are Haar-like orthonormal
wavelet bases associated with “most” dilation matrices. The issue of exactly
which dilation matrices for which this is true involves interesting number-
theoretic and other issues; see [LagW95].

Exercises

12.3. Fix a > 1, b > 0, c > 0, and let ψ ∈ L2(R) be such that supp(ψ̂ ) ⊆
[c, c+ b−1] and

∑
n∈Z
|ψ̂(anξ)|2 = b for almost every ξ ≥ 0.

(a) Show that Ŵ(ψ, a, b) is a Parseval frame for L2[0,∞), and W(ψ, a, b)

is a Parseval frame for H2
+(R) = {f ∈ L2(R) : supp(f̂ ) ⊆ [0,∞)}.

(b) Show that if a, b are chosen correctly, then we can choose ψ so that ψ̂

is continuous. Can we choose ψ so that ψ̂ is infinitely differentiable?

(c) Find ψ1, ψ2 with continuous Fourier transforms so thatW(ψ1)∪W(ψ2)
is a Parseval frame for L2(R).
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12.4. This exercise will consider wavelet sets in one dimension. For simplicity
we fix b = 1, but allow any dilation parameter a > 1.

Let E be a measurable subset of R. We say that E tiles by translation if
∪k∈Z (E+k) = R up to a set of measure zero and the overlaps (E+j)∩(E+k)
have measure zero for j 6= k. Similarly, E tiles by dilation if ∪n∈Z (an)E = R
up to a set of measure zero and (amE)∩(anE) has measure zero when m 6= n.

(a) Prove that if E tiles by translation then {e2πikx}k∈Z is an orthonormal
basis for L2(E).

(b) Show that if E tiles both by translation and by dilation and ψ̂ = χE ,
then {DanTkψ}k,n∈Z is an orthonormal basis for L2(R). Therefore E is a
wavelet set in this case.

(c) Suppose that {DanTkψ}k,n∈Z is an orthonormal basis for L2(R), where

ψ̂ = χE . Show that E tiles by translation and by dilation.

(d) Show that E = [−1,− 1
2 ]∪ [ 12 , 1] is a wavelet set if we take a = 2. Verify

the explicit formula for the Shannon wavelet ψ given in equation (12.6).

12.5. LetH(Rd) denote the collection of all compact, nonempty subsets of Rd.
Given B ∈ Rd define

dist(x,B) = inf
{
|x− y| : y ∈ B

}
and Bε =

{
x ∈ Rd : dist(x,B) < ε

}
.

Show that
d(B,C) = inf

{
ε > 0 : B ⊆ Cε and C ⊆ Bε

}

is a metric on H(Rd).

Remark: In fact, H(Rd) is complete with respect to this metric [Hut81].

12.6. Let A be the quincunx matrix given in equation (12.7) and let d = (1, 0).
Then f(K) = A−1(K) ∪ A−1(K + d) maps H(R2) into itself, and it can be
shown that f is contractive with respect to the metric given in Exercise 12.5.
This implies that f has a unique fixed point Q, and given any set K0 ∈ H(R2)
the iterationKn+1 = f(Kn) converges toQ. Use this to plot the twin dragonQ
(take K0 = {0}).

12.7. What is the attractor Q if we replace the matrix A in Exercise 12.6 by
the quincunx matrix B defined in equation (12.8)?

12.3 Frame Bounds and the Admissibility Condition

We constructed a variety of wavelet frames and bases in the preceding sec-
tion. Some of these, like the Haar system or the Shannon wavelet system,
are orthonormal bases for L2(R). Others, such as the Painless Nonorthogonal
Expansions, combine a frame for the space H2

+(R) with another frame for
H2

−(R) in order to obtain a frame for L2(R) (see Example 12.2). In any case,
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we will see in this section that we can derive interesting connections between
the wavelet system parameters a, b, the frame bounds A, B, and a new quan-
tity called the admissibility constant for the generator ψ. We will focus on
wavelet frames for L2(R) that require a single generator, but the results can
be modified to apply to frames for H2

±(R).
The following result should be compared to Theorem 11.6 and Corollary

11.7 for Gabor frames. The proof we give is similar in spirit to the proof
of those results. However, we have to be considerably more careful because

while
{
b1/2an/2e2πibka

nξ
}
n∈Z

is an orthonormal basis for L2(I) where I is an

interval of length b−1a−n, these lengths depend on n. The argument given
here is due to Chui and Shi [CS93].

Theorem 12.6. If ψ ∈ L2(R) and a > 1, b > 0 are such that W(ψ, a, b) is a
frame for L2(R) with frame bounds A, B, then the following statements hold.

(a) ψ̂ is bounded, and

Ab ≤
∑

n∈Z

|ψ̂(anξ)|2 ≤ Bb a.e. (12.10)

(b) We have

Ab ln a ≤
∫ ∞

0

|ψ̂(ξ)|2
|ξ| dξ,

∫ 0

−∞

|ψ̂(ξ)|2
|ξ| dξ ≤ Bb ln a.

(c) If W(ψ, a, b) is a Parseval frame for L2(R), then

∫ ∞

0

|ψ̂(ξ)|2
|ξ| dξ =

∫ 0

−∞

|ψ̂(ξ)|2
|ξ| dξ = b ln a.

(d) W(ψ, a, b) is an orthonormal basis for L2(R) if and only if it is a Parseval
frame and ‖ψ‖L2 = 1.

Proof. (a) For this proof, given E ⊆ R we will consider L2(E) to be a subspace
of L2(R) by regarding each function f ∈ L2(E) to be zero a.e. outside of E.

We will work on the Fourier side. By equation (12.4), our hypothesis is
that

Ŵ(ψ, a, b) =
{
an/2e2πibka

nξ ψ̂(anξ)
}
k,n∈Z

is a frame for L2(R) with frame bounds A, B. That is, for every f ∈ L2(R)
we have

A ‖f‖2L2 ≤
∑

n∈Z

∑

k∈Z

∣∣〈f(ξ), an/2e2πibka
nξ ψ̂(anξ)

〉∣∣2 ≤ B ‖f‖2L2.

Define the following series for M < N ∈ Z:
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WM,N (ξ) = b−1
N∑

n=M

|ψ̂(anξ)|2,

WN (ξ) = b−1
N∑

n=−∞
|ψ̂(anξ)|2,

W (ξ) = b−1
∑

n∈Z

|ψ̂(anξ)|2.

Note that the function WM,N is integrable on R since ψ̂ ∈ L2(R). While W
will not be integrable on R, it is “dilationally periodic” in the sense that
W0(aξ) = W0(ξ).

Step 1. Given N ∈ N, let I be any closed interval in (0,∞) whose length
satisfies |I| ≤ b−1a−N . Then for n ≤ N the interval I is contained in an
interval J of length b−1a−n. If g ∈ L2(I) then ‖g‖L2(I) = ‖g‖L2(J), so the

Plancherel Equality implies that for every n ≤ N and g ∈ L2(I) we have

‖g‖2L2 =
∑

k∈Z

∣∣〈g, b1/2an/2e2πibkanξ
〉∣∣2. (12.11)

Now let f be any bounded function supported within I. Since f(ξ) ψ̂(anξ)
belongs to L2(I), we apply equation (12.11) to this function and compute
that, for any M < N,

N∑

n=M

∑

k∈Z

∣∣〈f(ξ), an/2e2πibka
nξ ψ̂(anξ)

〉∣∣2

=
N∑

n=M

b−1
∑

k∈Z

∣∣〈f(ξ) ψ̂(anξ), b1/2an/2e2πibka
nξ
〉∣∣2

= b−1
N∑

n=M

∥∥f(ξ) ψ̂(anξ)
∥∥2

L2

= b−1
N∑

n=M

∫

I

|f(ξ)|2 |ψ̂(anξ)|2 dξ

=

∫

I

|f(ξ)|2WM,N (ξ) dξ. (12.12)

Step 2. Fix M < N and ξ0 > 0, and let h > 0 be small enough that
the interval Ih = [ξ0, ξ0 + h] satisfies h = |Ih| ≤ b−1a−N . Applying equation
(12.12) to the function fh = h−1/2χIh

and taking the upper frame bound into
consideration, we see that
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1

h

∫ ξ0+h

ξ0

WM,N (ξ) dξ =

N∑

n=M

∑

k∈Z

∣∣〈fh(ξ), an/2e2πibka
nξ ψ̂(anξ)

〉∣∣2

≤
∑

n∈Z

∑

k∈Z

∣∣〈fh(ξ), an/2e2πibka
nξ ψ̂(anξ)

〉∣∣2

≤ B ‖fh‖2L2 = B.

Since WM,N is integrable, if we let h → 0 then the Lebesgue Differentiation
Theorem (Theorem A.30) tells us that for almost every ξ0 > 0 we have

WM,N (ξ0) = lim
h→0

1

h

∫ ξ0+h

ξ0

WM,N (ξ) dξ ≤ B.

Thus WM,N ≤ B a.e. on (0,∞). Letting M → −∞ and N → ∞, it follows

that W ≤ B a.e. on (0,∞), and a similar argument shows that this inequality
also holds almost everywhere on (−∞, 0). Consequently we have proved that
the upper inequality in equation (12.10) holds. The lower inequality will take
more effort.

Step 3. Fix ξ0 > 0 and ε > 0. Then there exists some N ∈ Z such that

∫ ∞

aNξ0

|ψ̂(ξ)|2 dξ < ε.

Again set Ih = [ξ0, ξ0 + h], this time with h > 0 small enough that

h = |Ih| ≤ b−1a−N and ξ0 + h ≤ aξ0.

Taking fh = h−1/2χIh
we have, just as in equation (12.12),

N∑

n=−∞

∑

k∈Z

∣∣〈fh(ξ), an/2e2πibka
nξ ψ̂(anξ)

〉∣∣2 =
1

h

∫ ξ0+h

ξ0

WN (ξ) dξ. (12.13)

We need to estimate the series analogous to the one appearing in equation
(12.13), but with n running from N + 1 to infinity.

Fix n > N. Since fh(a
−nξ) ψ̂(ξ) is integrable on R, its b−1-periodization

F (ξ) =
∑

j∈Z

fh
(
a−n(ξ + b−1j)

)
ψ̂
(
ξ + b−1j

)
(12.14)

belongs to L1[0, b−1] (see Exercise 10.13). Since Ih has length h, given ξ there
can be at most C = banh + 1 values of j ∈ Z such that a−n(ξ + b−1j) ∈ Ih.
Substituting equation (12.14) and applying the Cauchy–Bunyakovski–Schwarz
Inequality,
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∫ b−1

0

|F (ξ)|2 dξ ≤
∫ b−1

0

(∑

j∈Z

∣∣fh
(
a−n(ξ + b−1j)

)∣∣2
)(∑

j∈Z

∣∣ψ̂
(
ξ + b−1j

)∣∣2
)
dξ

≤ C

h

∫ b−1

0

∑

j∈Z

∣∣ψ̂
(
ξ + b−1j

)∣∣2 dξ

=
C

h
‖ψ̂‖2L2 < ∞.

Thus F ∈ L2[0, b−1]. Hence, by the Plancherel Equality,

‖F‖2L2 =
∑

j∈Z

∣∣〈F (ξ), b1/2e2πibjξ
〉∣∣2,

where the norm and inner product in the preceding equation are taken on the
interval [0, b−1]. Using this, the fact that supp(f) ⊆ [0,∞), and the periodicity
of the functions e2πibξ, we compute that

∑

k∈Z

∣∣〈fh(ξ), an/2e2πibka
nξ ψ̂(anξ)

〉∣∣2

=
∑

k∈Z

∣∣∣∣
∫ ∞

0

fh(ξ) a
n/2 e2πibka

nξ ψ̂(anξ) dξ

∣∣∣∣
2

=
∑

k∈Z

∣∣∣∣
∫ ∞

0

fh(a
−nξ) a−n/2 e2πibkξ ψ̂(ξ) dξ

∣∣∣∣
2

(change variables)

= a−n
∑

k∈Z

∣∣∣∣
∑

j∈Z

∫ b−1

0

fh
(
a−n(ξ + b−1j)

)
ψ̂
(
ξ + b−1j

)
e2πibk(ξ+b

−1j) dξ

∣∣∣∣
2

= a−n
∑

k∈Z

∣∣∣∣
∫ b−1

0

∑

j∈Z

fh
(
a−n(ξ + b−1j)

)
ψ̂
(
ξ + b−1j

)
e2πibkξ dξ

∣∣∣∣
2

= b−1a−n
∑

k∈Z

∣∣〈F (ξ), b1/2e2πibkξ
〉∣∣2

= b−1a−n‖F‖2L2. (12.15)

It is important now that we recall that F is b−1-periodic. Using this periodicity
and the definition of fh, we have

‖F‖2L2 =

∫ b−1

0

|F (ξ)| |F (ξ)| dξ

≤
∫ b−1

0

∑

j∈Z

|fh
(
a−n(ξ + b−1j)

)
| |ψ̂
(
ξ + b−1j

)
| |F (ξ + b−1j)| dξ
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=

∫ ∞

0

|fh(a−nξ)| |ψ̂(ξ)| |F (ξ)| dξ

= h−1/2

∫ an(ξ0+h)

anξ0

|ψ̂(ξ)| |F (ξ)| dξ

≤ h−1/2

(∫ an(ξ0+h)

anξ0

|ψ̂(ξ)|2 dξ
)1/2 (∫ an(ξ0+h)

anξ0

|F (ξ)|2 dξ
)1/2

. (12.16)

As |F |2 is b−1-periodic, it has the same integral on any interval of length b−1.
The interval [anξ0, a

n(ξ0 +h)] has length anh, so it can be covered by banh+1
intervals of length b−1. Therefore

∫ an(ξ0+h)

anξ0

|F (ξ)|2 dξ ≤ (banh+ 1)

∫ b−1

0

|F (ξ)|2 dξ = (banh+ 1) ‖F‖2L2.

Combining this with equation (12.16), we see that

‖F‖2L2 ≤ h−1/2

(∫ an(ξ0+h)

anξ0

|ψ̂(ξ)|2 dξ
)1/2 (

(banh+ 1) ‖F‖2L2

)1/2

.

Simplifying and dividing both sides by ‖F‖L2 yields

‖F‖L2 ≤
(
banh+ 1

h

)1/2(∫ an(ξ0+h)

anξ0

|ψ̂(ξ)|2 dξ
)1/2

.

Squaring, we can continue equation (12.15) as follows:

b−1a−n ‖F‖2L2 ≤
(
1 + b−1a−nh−1

) ∫ an(ξ0+h)

anξ0

|ψ̂(ξ)|2 dξ. (12.17)

Now, since ξ0 +h < aξ0, the intervals [anξ0, a
n(ξ0 +h)] are disjoint. There-

fore, combining equations (12.16) and (12.17) and summing over n > N, we
find that

∞∑

n=N+1

∑

k∈Z

∣∣〈fh(ξ), an/2e2πibka
nξ ψ̂(anξ)

〉∣∣2

≤
∞∑

n=N+1

∫ an(ξ0+h)

anξ0

|ψ̂(ξ)|2 dξ +

∞∑

n=N+1

b−1a−nh−1

∫ an(ξ0+h)

anξ0

|ψ̂(ξ)|2 dξ

≤
∫ ∞

aNξ0

|ψ̂(ξ)|2 dξ + b−1h−1
∞∑

n=N+1

∫ ξ0+h

ξ0

|ψ̂(anξ)|2 dξ

< ε +
1

h

∫ ξ0+h

ξ0

b−1
∞∑

n=N+1

|ψ̂(anξ)|2 dξ

< ε +
1

h

∫ ξ0+h

ξ0

(W −WN )(ξ) dξ. (12.18)
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Finally, combining equations (12.13) and (12.18) and using the facts that

Ŵ(ψ, a, b) is a frame and ‖fh‖L2 = 1, we have

A = A ‖fh‖2L2 ≤
N∑

n=−∞

∑

k∈Z

∣∣〈fh(ξ), an/2e2πibka
nξ ψ̂(anξ)

〉∣∣2

+

∞∑

n=N+1

∑

k∈Z

∣∣〈fh(ξ), an/2e2πibka
nξ ψ̂(anξ)

〉∣∣2

≤ 1

h

∫ ξ0+h

ξ0

WN (ξ) dξ + ε +
1

h

∫ ξ0+h

ξ0

(W −WN )(ξ) dξ.

=
1

h

∫ ξ0+h

ξ0

W (ξ) dξ + ε.

This is valid for all h small enough. Letting h → 0, the Lebesgue Differen-
tiation Theorem therefore implies that for almost every choice of ξ0 > 0 we
have

A ≤ lim
h→0

1

h

∫ ξ0+h

ξ0

W (ξ) dξ + ε = W (ξ0) + ε.

Since ε is arbitrary, we obtain A ≤ W (ξ0) for almost every ξ0 > 0, and a
similar argument applies for ξ0 < 0. This establishes the lower inequality in
equation (12.10).

(b) Integrating the result from part (a) and using the change of variables
η = anξ, we have

Ab ln a =

∫ a

1

Ab

ξ
dξ ≤

∫ a

1

∑

n∈Z

|ψ̂(anξ)|2
ξ

dξ

=
∑

n∈Z

∫ an+1

an

|ψ̂(η)|2
η

dη

=

∫ ∞

0

|ψ̂(η)|2
η

dη.

Combining this with a similar computation using the upper frame bound and
estimates for the interval (−∞, 0] gives the result.

(c), (d) These follow immediately from part (b). ⊓⊔
As an example, let ψ be the Shannon wavelet (see Example 12.4). Then

ψ̂ = χE where E = [−1,− 1
2 ] ∪ [12 , 1]. Since E is a wavelet set, W(ψ) =

W(ψ, 2, 1) is a dyadic wavelet orthonormal basis for L2(R). Considering Fig-

ure 12.3, we see that
∑
n∈Z
|ψ̂(2nξ)|2 = 1 a.e., which is in agreement with

Theorem 12.6(a).
The quantity appearing in part (b) of Theorem 12.6 is very important for

wavelet frames.
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Definition 12.7 (Admissibility Constant). The admissibility constant of
a function ψ ∈ L2(R) is

Cψ =

∫ ∞

−∞

|ψ̂(ξ)|2
|ξ| dξ.

The admissibility constant could be infinite. We say that ψ is admissible if
Cψ <∞. ♦

By Theorem 12.6, if W(ψ, a, b) is a frame, then ψ must be admissible.

However, the converse fails in general. Note that if ψ̂ is continuous then ad-

missibility requires ψ̂(0) = 0. In particular, if a function ψ ∈ L1(R) ∩ L2(R)

is admissible then ψ̂ is continuous (Theorem 9.10) and so we must have
∫ ∞

−∞
ψ(x) dx =

∫ ∞

−∞
ψ(x) e−2πi0ξ dx = ψ̂(0) = 0.

Thus, an admissible integrable ψ must oscillate in some sense. This fact is
sometimes given as the reason for the terminology “wavelet,” though the orig-
inal motivation for the name seems to have been different.

Note that in Corollary 11.7 for Gabor systems, we were able to go a little
further and obtain the Nyquist density condition for Gabor frames. The key
there was that the canonical dual frame and the canonical Parseval frame
associated with a Gabor frame are each themselves Gabor frames. This need
not be the case for wavelet frames. However, even if we consider Parseval
wavelet frames, we are faced with the admissibility constant in Theorem 12.6
rather than ‖ψ‖2L2. Since all the elements of W(ψ, a, b) have the same norm,
we know that if it is a Parseval frame then it is an orthonormal basis if and
only if ‖ψ‖2L2 = 1, but this does not tell us anything directly about the admis-
sibility constant. From the point of view of abstract group representations, it
can be shown that the admissibility constant for the generator g of a Gabor
system is simply its norm, whereas for wavelets we have a distinction between
the norm and the admissibility constant. This is a consequence of the “highly
noncommutative” nature of translations and dilations in comparison to trans-
lations and modulations. Daubechies’s book [Dau92] or the survey [HW89]
are sources for additional information on this topic.

The appearance of the admissibility constant in Theorem 12.6 also suggests
that our discussion in Section 12.2 on the lack of a Nyquist density for wavelet
frames may be incomplete, since we did not take the value of the admissibility
constant into account. However, Balan [Bal97] has shown that this is not the
case (see also [Dau90, Thm. 2.10]). But even this is not the end of the story
on the relationship between density and frame properties for wavelets. See
[HK03], [SZ03], [SZ04] [HK07], [Kut07] for more information.

Exercises

12.8. Show that
{
ψ ∈ L2(R) : ψ is admissible

}
is dense in L2(R).
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12.9. Show that if ψ ∈ L1(R) ∩ L2(R) is admissible, then ψ̂(0) = 0.

12.4 Multiresolution Analysis

In this section we will focus on dyadic wavelet orthonormal bases W(ψ) =
W(ψ, 2, 1). If we keep b = 1 then most of the ideas of this section have
generalizations to integer dilation factors a ∈ N, but the fact that the dilation
factor a is integer is quite important.

The idea of multiresolution analysis is that a dyadic wavelet orthonormal
basis {D2nTkψ}k,n∈Z naturally divides L2(R) into subspaces with different
“resolution levels.” If we fix a particular value of n, then the functions Tkψ for
k ∈ Z all have the same “size,” but have different “centers” on the real line
due to the translation by k. As n increases, these functions become more and
more compressed, while as n decreases they become more and more stretched
out. If we define closed subspaces

Wn = span
{
D2nTkψ

}
k∈Z

, n ∈ Z, (12.19)

and let Qn denote the orthogonal projection of L2(R) onto Wn, then we can
write the basis representation of a function f ∈ L2(R) as

f =
∑

n∈Z

∑

k∈Z

〈
f, D2nTkψ

〉
D2nTkψ =

∑

n∈Z

Qnf.

The spaceWn is generated by functions D2nTkψ that all have the same “detail
size.” Projecting f onto this space will therefore, in some sense, give us the
information that is present in f specifically at “detail size n.” Putting together
all the information at the different detail sizes allows us to recapture f.

Now define
Vn = span

{
D2mTkψ

}
m<n, k∈Z

.

The projection Pnf of f onto Vn gives us a “blurry” picture of f. In some
sense Pnf is an approximation to f at “resolution level n.” We move from
resolution level to resolution level by adding “details” from Wn:

Pn+1f = Pnf +Qnf.

By definition of orthonormal basis, Pnf converges to f as n increases, and we
accomplish this by adding information with smaller and smaller details as n
increases. The space V0 can be considered a central space in this scheme, essen-
tially consisting of functions that have details of at most unit size (“resolution
level zero”).

To start making these comments about resolution level more precise, note
some of the properties that these subspaces Vn possess:

• the Vn are nested, i.e., Vn ⊆ Vn+1,
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• Vn+1 is the dilation of Vn by a factor of 2, i.e.,

Vn+1 = D2(Vn) =
{
f(2x) : f ∈ Vn

}
,

• ∪n∈ZVn is dense in L2(R),

• ∩n∈ZVn = {0}, and

• Vn⊕Wn = Vn+1, where ⊕ denotes the orthogonal direct sum of subspaces.

These facts are all predicated on the assumption that we have a dyadic wavelet
orthonormal basis {D2nTkψ}k,n∈Z in hand. What if we don’t have an or-
thonormal basis but rather want to construct one? Multiresolution analysis
turns the above discussion into a construction algorithm for wavelet bases by
focusing on the subspaces Vn rather than the wavelet ψ.

Definition 12.8 (Multiresolution Analysis). A multiresolution analysis
(MRA) for L2(R) is a sequence {Vn}n∈Z of closed subspaces of L2(R) such
that:

(a) Vn ⊆ Vn+1 for each n ∈ Z,

(b) Vn+1 = D2(Vn) for each n ∈ Z,

(c) ∪n∈ZVn is dense in L2(R),

(d) ∩n∈ZVn = {0},
(e) there exists a function ϕ ∈ V0 such that {Tkϕ}k∈Z is an orthonormal basis

for V0.

We call ϕ a scaling function for the MRA. ♦

MRAs were introduced by Mallat and developed by Mallat and Meyer (see
[Mal89a], [Mal89b]). The introduction of MRAs sparked an enormous surge
of interest in wavelet theory. Many of the influential early papers in wavelet
theory are reprinted in the volume [HW96].

The aspect of MRAs that we have not encountered before is the scal-
ing function ϕ. The scaling function is not the wavelet that generates the
orthonormal basis for L2(R), but we will see that if we can find a scaling
function ϕ, then we can construct an associated wavelet ψ such that W(ψ) is
an orthonormal basis for L2(R). Not every wavelet orthonormal basis is as-
sociated with an MRA, but every MRA does have an associated orthonormal
wavelet basis.

Remark 12.9. (a) Since the space V0 in an MRA is the closed span of
T (ϕ) = {Tkϕ}k∈Z, we could emphasize this fact by writing V0(ϕ), as we
did in Chapter 10. However, in this chapter we will follow wavelet tradition
and just write V0.

(b) Requirements (a)–(e) in Definition 12.8 are not independent. For ex-
ample, requirement (d) is implied by the other hypotheses [Mad92].
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(c) We could create a more general definition of MRA by requiring only
that {Tkϕ}k∈Z be a Riesz basis or a frame for V0. By Exercise 10.21, if

{Tkϕ}k∈Z is a frame for V0 then there exists a function ϕ♯ ∈ V0 such that
{Tkϕ♯}k∈Z is a Parseval frame for V0, and if {Tkϕ}k∈Z is a Riesz basis for V0

then {Tkϕ♯}k∈Z is an orthonormal basis for V0. However, the mapping ϕ 7→ ϕ♯

will usually not preserve desirable properties of ϕ such as compact support
(see Example 12.38). Hence, it is often better to work directly with ϕ instead
of replacing it by ϕ♯. Some references on MRAs using Riesz bases or frames
include [CDF92] and [BL98].

(d) Even more generally, there are situations where, instead of assuming
that a scaling function exists, we only assume that the space V0 is shift-
invariant (invariant under integer translations). However, we will restrict our
attention to MRAs of the form given in Definition 12.8, and refer to [BM99]
for an introduction to generalized MRAs. ♦

The next lemma gives some implications of the definition of an MRA (we
assign the proof as Exercise 12.11). We say that a subspace S of L2(R) is
a-shift-invariant if TakS ⊆ S for k ∈ Z, or, equivalently,

f ∈ S =⇒ f(x− ak) ∈ S for k ∈ Z.

If a = 1 then we simply say that S is shift-invariant.

Lemma 12.10. Suppose that {Vn}n∈Z is an MRA for L2(R) and let Pn de-
note the orthogonal projection of L2(R) onto Vn. Then the following state-
ments hold.

(a) Vn = D2n(V0) =
{
f(2nx) : f ∈ Vn

}
.

(b) {D2nTkϕ}k∈Z is an orthonormal basis for Vn.

(c) V0 is shift-invariant, and Vn is 2−n-shift-invariant.

(d) Pnf → f in L2(R) as n→∞ for every f ∈ L2(R).

(e) Pnf → 0 in L2(R) as n→ −∞ for every f ∈ L2(R). ♦

Lemma 12.10(a) tells us that the spaces Vn in an MRA are completely
determined by the base space V0. Therefore, if we want to build an MRA then
we can focus on the space V0 and the scaling function ϕ. Once we have these,
we know what the space Vn has to be, and the issue is whether properties (a),
(c), and (d) in the definition of an MRA are satisfied.

Let us see now how the scaling function has been hiding in some of the ex-
amples of wavelet orthonormal bases that we have already discussed. This will
also give some insight into how to proceed from an MRA to an orthonormal
wavelet basis.
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Example 12.11 (MRA for the Haar System). An MRA begins with subspaces
and a scaling function, whereas we have so far begun with a wavelet and the
wavelet system that it generates. In this example we will start with the MRA
that is associated with the Haar wavelet, and see how the Haar wavelet is
produced from this MRA.

The “base space” V0 for the Haar MRA is the space of all step functions
in L2(R) that are constant on intervals [k, k + 1):

V0 =

{∑

k∈Z

ckχ[k,k+1) : (ck)k∈Z ∈ ℓ2(Z)

}
.

By Lemma 12.10, if we are to have an MRA then the space Vn must consist
of all dilations by 2n of functions in V0. For the Haar MRA, Vn is therefore
the space of step functions in L2(R) that are constant on intervals

[
k
2n ,

k+1
2n

)
.

Hence, the projection Pnf of a function f ∈ L2(R) onto Vn is the best ap-
proximation (in L2-norm) to f by a step function with nodes at the points
k/2n. In this sense, Pnf is a picture of f at “resolution level n.”

If we set χ = χ
[0,1), then {Tkχ}k∈Z is an orthonormal basis for V0. Hence

the box function χ is a scaling function for the Haar MRA.
To show that we actually have an MRA, it remains to show that prop-

erties (a), (c), and (d) in Definition 12.8 are satisfied. Property (a) is the
nestedness requirement Vn ⊆ Vn+1, and this is certainly satisfied. For exam-
ple, functions in V0 are step functions constant on each interval [k, k + 1),

while functions in V1 are step functions constant on each interval
[
k
2 ,

k+1
2

)
.

Hence V0 ⊆ V1, and since Vn = D2nV0, it follows that Vn ⊆ Vn+1 for every n.
Here is an alternative way to see the nestedness property. The orthonormal

basis {Tkχ}k∈Z for V0 is generated from integer translates of χ. This function χ

has a self-similarity property in the sense that it is a sum of two smaller shifted
copies of itself. Specifically, since χ(2x) = χ

[0, 1
2
) and χ(2x − 1) = χ

[ 1
2
,1), the

box function χ satisfies the refinement equation

χ(x) = χ(2x) + χ(2x− 1). (12.20)

This refinement equation is illustrated in Figure 12.7. We will study more
general refinement equations in Section 12.5. The important point now is
that each of χ(2x) and χ(2x − 1) belong to V1, so χ ∈ V1 as well. Since V1

is shift-invariant (in fact, it is invariant under half-integer translations), we
have Tkχ ∈ V1 for every k ∈ Z. Therefore, since every element of the basis
{Tkχ}k∈Z for V0 belongs to the closed subspace V1, we have V0 ⊆ V1.

Now suppose that f ∈ L2(R) belongs to every subspace Vn. Then f must

be constant on every interval
[
k
2n ,

k+1
2n

)
for all k, n ∈ Z. In particular, f is

constant on [0, 2n) for every n ∈ N, which implies f is constant on [0,∞),
and similarly it is constant on (−∞, 0]. Since f ∈ L2(R), this implies that
f = 0. Hence property (d) in Definition 12.8 is satisfied.
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Fig. 12.7. The refinement equation for the box function. Top left: χ(2x). Top right:
χ(2x− 1). Bottom: χ(x) = χ(2x) + χ(2x− 1).

Finally, ∪n∈ZVn is dense because the projection Pnf of f onto Vn converges
to f as n→∞. In fact,

Pnf =
∑

k∈Z

〈f,D2nTkχ〉D2nTkχ =
∑

k∈Z

ck,n χ[ k
2n ,

k+1

2n ), (12.21)

where

ck,n = 2n 〈f, χ[ k
2
, k+1

2
)〉 = 2n

∫ (k+1)/2n

k/2n

f(x) dx (12.22)

is simply the average of f on the interval
[
k
2n ,

k+1
2n

)
. Property (c) in Defini-

tion 12.8 is satisfied, so {Vn}n∈Z is an MRA for L2(R).
But what does this have to do with the Haar wavelet ψ = χ

[0,1/2)−χ[1/2,1)?
While the subspaces Vn are “resolution levels,” the Haar wavelet ψ determines
“detail spaces” Wn that move us from one resolution level to another. In
particular, define

W0 = span
{
Tkψ

}
k∈Z

,

and note that {Tkψ}k∈Z is an orthonormal basis for W0. Since the Haar
wavelet ψ is orthogonal to the scaling function χ, the subspaces V0 and W0

are orthogonal. Now, just as equation (12.20) implies that V0 ⊆ V1, the fact
that

ψ(x) = χ
[0,1/2)(x)− χ[1/2,1)(x) = χ(2x)− χ(2x− 1) ∈ V1

implies that W0 ⊆ V1. Hence the orthogonal direct sum of V0 and W0 is
contained in V1:
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V0 ⊕W0 = {f + g : f ∈ V0, g ∈ W0} ⊆ V1,

and we claim that equality holds. Indeed, if h ∈ V1 then, as in equations
(12.21) and (12.22), we have

h =
∑

k∈Z

ck χ[ k
2
,k+1

2
)

where ck is the average of h on χ
[ k
2
, k+1

2
). If we let ak be the average of h on

χ[k,k+1), then ak is the average of c2k and c2k+1. Hence

h(x) =
∑

k∈Z

ak χ(x− k) +
∑

k∈Z

bk ψ(x− k) ∈ V0 ⊕W0,

where bk = c2k−ak (see the “proof by picture” in Figure 12.8). Thus we have
V1 = V0 ⊕W0. In particular, if we let P1f, P0f, Q0f denote the orthogonal
projections of a function f ∈ L2(R) onto V1, V0, and W0, respectively, then

P1f = P0f +Q0f.

The function P0f is an approximation to f at “resolution level 0.” Adding
Q0f, we obtain P1f, the approximation at “resolution level 1.”

0.5 1.0 1.5 2.0 2.5 3.0

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Fig. 12.8. A function h in V1 (solid line) is a sum of a function f in V0 (dashed
line) and a function g in W0 (difference between h and f).

Now define Wn as in equation (12.19), i.e.,

Wn = span
{
D2nTkψ

}
k∈Z

.

The Wn are orthogonal subspaces, and for any n > 0 we have
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Vn+1 = Vn ⊕Wn.

Iterating,
Vn = V0 ⊕W0 ⊕ · · · ⊕Wn−1.

As {Tkχ}k∈Z is an orthonormal basis for V0 and {D2mTkψ}k∈Z is an orthonor-
mal basis for Wm, it follows that

Pnf =
∑

k∈Z

akTkχ +

n−1∑

m=0

∑

k∈Z

bk,mD2mTkψ

for some appropriate scalars ak and bk,m. Since Pnf → f, we therefore have

f =
∑

k∈Z

akTkχ +

∞∑

m=0

∑

k∈Z

bk,mD2mTkψ.

This shows that the Haar system given in equation (12.1) is an orthonormal
basis for L2(R). If we write

Vn = V−n ⊕W−n ⊕ · · · ⊕Wn−1

and recall that P−nf → 0 as n → ∞, then we can similarly show that the
Haar system given in equation (12.2) is an orthonormal basis for L2(R). ♦

Strictly speaking, we went through some extra steps in Example 12.11, but
the ideas presented there are a good introduction to the general procedure for
constructing MRAs and wavelet orthonormal bases from scaling functions.

Here is another interesting MRA.

Example 12.12 (MRA for the Shannon Wavelet). The Shannon wavelet was
introduced in Example 12.4. If we set E = [−1,− 1

2 ]∪ [ 12 , 1], then the Shannon

wavelet is the function ψ ∈ L2(R) whose Fourier transform is ψ̂ = χE . Let
B = [− 1

2 ,
1
2 ]. The scaling function for the Shannon MRA is the sinc function

ϕ(x) = dπ(x) =
sinπx

πx
,

whose Fourier transform is

ϕ̂ = χB = χ
[− 1

2
, 1
2
];

see Figure 12.9
The sinc function played an important role in our discussion of sampling

theory in Chapter 10. We saw in Theorem 10.4 that {Tkϕ}k∈Z is an orthonor-
mal basis for the Paley–Wiener space PW(R). Hence the base space for this
MRA is

V0 = PW(R) =
{
f ∈ L2(R) : supp(f̂ ) ⊆ [− 1

2 ,
1
2 ]
}
.
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Fig. 12.9. The Shannon scaling function ϕ (left) and its Fourier transform bϕ (right).

Dilating, the space Vn contains the functions in L2(R) that are bandlimited

to [−2n−1, 2n−1]:

Vn =
{
f ∈ L2(R) : supp(f̂ ) ⊆ [−2n−1, 2n−1]

}
. (12.23)

Consequently Vn ⊆ Vn+1, and it also follows from equation (12.23) that
∪n∈ZVn is dense in L2(R) and ∩n∈ZVn = {0} (we assign the verification
of these facts as Exercise 12.10). Hence {Vn}n∈Z is an MRA.

The detail spaces are

Wn = span{D2nTkψ}k∈Z

=
{
f ∈ L2(R) : supp(f̂ ) ⊆ [−2n,−2n−1] ∪ [2n−1, 2n]

}
.

These spaces Wn are mutually orthogonal and we have Vn+1 = Vn ⊕Wn for
each n ∈ Z. Just as in Example 12.11, it follows that

{Tkϕ}k∈Z ∪ {D2nTkψ}n≥0, k∈Z and W(ψ) = {D2nTkψ}n,k∈Z

are each orthonormal bases for L2(R). ♦
The two examples above are perhaps not quite as convincing as we might

like, because in each of them we had a function in hand that we knew generated
a wavelet orthonormal basis. In the following sections we will see how to use
MRAs to construct new examples of wavelet bases.

Exercises

12.10. Prove that the Shannon MRA {Vn}n∈Z constructed in Example 12.12
is indeed an MRA.

12.11. Prove Lemma 12.10.

12.12. (a) Suppose that {Vn}n∈Z is an MRA for L2(R) with scaling func-
tion ϕ. Show that {D2nTkϕ}k,n∈Z is complete in L2(R).

(b) Show that {D2nTkχ[0,1]}k,n∈Z is complete in L2(R).
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12.5 All About the Scaling Function, I: Refinability

The key to using an MRA to construct a wavelet orthonormal basis is the
scaling function ϕ. The scaling function determines V0 and hence Vn, and
these determine the detail spaces Wn and ultimately the wavelet ψ. In this
section and the next we focus on the construction and properties of the scaling
function, and then in Section 12.7 we will see how to construct an MRA and
a wavelet ψ from the scaling function ϕ.

We begin by examining some of the properties that a scaling function
for an MRA must possess. By Definition 12.8, a first requirement is that the
scaling function ϕ must have orthonormal integer translates. We characterized
this requirement in Section 10.4 in terms of the periodization Φϕ of |ϕ̂ |2, and
we give here another direct proof of this condition.

Lemma 12.13. Given ϕ ∈ L2(R),

{Tkϕ}k∈Z is orthonormal ⇐⇒ Φϕ(ξ) =
∑

k∈Z

|ϕ̂(ξ + k)|2 = 1 a.e.

Moreover, in case these hold, f ∈ span{Tkϕ}k∈Z if and only if

f̂(ξ) = m(ξ) ϕ̂(ξ) a.e. for some m ∈ L2(T). (12.24)

Proof. The Fourier transform is unitary and interchanges translation with
modulation, so

〈
Tnϕ, ϕ

〉
=
〈
(Tnϕ)

∧

, ϕ̂
〉

=
〈
M−nϕ̂, ϕ̂

〉
.

Since |ϕ̂ |2 is integrable, its periodization Φϕ(ξ) =
∑
k∈Z
|ϕ̂(ξ+k)|2 belongs to

L1(T) (see Exercise 10.13). By Theorem 4.25, functions in L1(T) are uniquely
determined by their Fourier coefficients. The Fourier coefficients of the con-

stant function 1 are the delta sequence, 1̂(n) = δ0n for n ∈ Z. Using the fact
that e−2πinξ is 1-periodic, the Fourier coefficients of Φϕ are

Φ̂ϕ(n) =

∫ 1

0

Φϕ(ξ) e−2πinξ dξ

=

∫ 1

0

∑

k∈Z

|ϕ̂(ξ + k)|2 e−2πi(n+k)ξ dξ

=

∫ ∞

−∞
|ϕ̂(ξ)|2 e−2πinξ dξ

=

∫ ∞

−∞
e−2πinξ ϕ̂(ξ) ϕ̂(ξ)dξ =

〈
M−nϕ̂, ϕ̂

〉
= 〈Tnϕ,ϕ〉.

Therefore ϕ has orthonormal translates if and only if the Fourier coefficients
of Φϕ are the delta sequence, which happens if and only if Φϕ = 1 a.e.
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The proof that f ∈ span{Tkϕ}k∈Z is equivalent to equation (12.24) follows
from Exercise 10.17. To sketch one direction of the implication, suppose that
ϕ has orthonormal translates and f ∈ span{Tkϕ}k∈Z. Then

f =
∑

k∈Z

〈f, Tkϕ〉Tkϕ,

where the series converges unconditionally in L2-norm. Applying the Fourier
transform,

f̂(ξ) =
∑

k∈Z

〈f, Tkϕ〉M−kϕ̂(ξ)

=

(∑

k∈Z

〈f, Tkϕ〉 e−2πikξ

)
ϕ̂(ξ) (12.25)

= m(ξ) ϕ̂(ξ).

The function m(ξ)
∑

k∈Z
〈f, Tkϕ〉 e−2πikξ belongs to L2(T) because we have∑

k∈Z
|〈f, Tkϕ〉|2 <∞. The factoring performed in equation (12.25) does need

justification, and this follows from Exercise 10.15. ⊓⊔

Once we have in hand a function ϕ that has orthonormal integer translates,
we can define

V0 = span{Tkϕ}k∈Z =

{∑

k∈Z

ck ϕ(x− k) : (ck)k∈Z ∈ ℓ2(Z)

}
(12.26)

and
Vn = D2nV0, n ∈ Z, (12.27)

and then check to see whether {Vn}n∈Z is an MRA. In general this will not
happen. The nestedness requirement Vn ⊆ Vn+1 is particularly restrictive and
will usually not be satisfied.

Since Vn+1 = D2(Vn), the nestedness requirement Vn ⊆ Vn+1 is equivalent
to the single inclusion V0 ⊆ V1. As the scaling function ϕ belongs to V0, if we
are to have an MRA then we must have

ϕ ∈ V0 ⊆ V1 =

{∑

k∈Z

ck ϕ(2x− k) : (ck)k∈Z ∈ ℓ2(Z)

}
.

Hence in order for the nestedness requirement to be satisfied, there must exist
some sequence of scalars (ck)k∈Z ∈ ℓ2(Z) such that

ϕ(x) =
∑

k∈Z

ck ϕ(2x− k).

Somehow we need to find a function ϕ with orthonormal translates that also
satisfies an equation of this form.
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Definition 12.14 (Refinable Function). We say that a function ϕ ∈ Lp(R)
is refinable in Lp(R) if there exists a sequence of scalars (ck)k∈Z such that
the series

∑
k∈Z

ck ϕ(2x− k) converges in Lp(R) and we have

ϕ(x) =
∑

k∈Z

ck ϕ(2x− k) a.e. (12.28)

We refer to equation (12.28) as a refinement equation, dilation equation, or
two-scale difference equation. The scalars ck are called the refinement coeffi-
cients. ♦

We are usually interested in the case p = 2, but often it is convenient to
consider refinable functions in L1(R) or L1(R) ∩ L2(R). In the statements
of our theorems and exercises we specify what domain we are considering,
usually whatever is most convenient for that result. The difficult problem of
completely characterizing those sequences (ck)k∈Z which have an Lp solution
to the corresponding refinement equation has been studied in detail, especially
when (ck)k∈Z has only finitely many nonzero components. We refer to the
extensive bibliography in [CHM04] for references on this subject. For a short
survey of refinement equations in wavelet theory, see the survey paper [Str89]
by Strang.

The box function χ = χ
[0,1), which is the scaling function for the Haar

MRA, is refinable since it satisfies the refinement equation given in equation
(12.20). Note that since we only require the equality in the refinement equation
to hold almost everywhere, the function χ

[0,1] satisfies the same refinement
equation as χ[0,1) (of course, both of these functions define the same element
of L2(R)).

The Shannon scaling function is another example of a refinable function
(Exercise 12.15). However, not every function is refinable and not every re-
finement equation has a solution. Further, not every refinable function has
orthonormal translates, e.g., consider the hat function (see Figure 12.10 and
Exercise 12.14).

0 1 2

0.5

1

Fig. 12.10. The hat function h on the interval [0, 2] is refinable: h(x) = 1
2
h(2x) +

h(2x− 1) + 1
2
h(2x− 2).

Refinable functions have been extensively studied because they play key
roles in many areas other than just wavelet theory. In many of those contexts
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there is no need to seek functions with orthonormal translates. For example,
subdivision schemes are widely used in computer graphics to represent smooth
surfaces as a limit of polygonal meshes, and these schemes are closely related
to refinement equations [CDM91].

The refinement equation takes the following form in the Fourier domain.

Lemma 12.15. Suppose ϕ ∈ L2(R) is refinable with refinement coefficients
(ck)k∈Z ∈ ℓ2(Z). Then

ϕ̂(ξ) = m0(ξ/2) ϕ̂(ξ/2) a.e., (12.29)

where m0 ∈ L2(T) is given by

m0(ξ) =
1

2

∑

k∈Z

cke
−2πikξ. (12.30)

Proof. Note that the series defining m0 in equation (12.30) converges uncon-
ditionally in L2(T) since (ck)k∈Z ∈ ℓ2(Z).

In operator notation, the refinement equation is

ϕ =
∑

k∈Z

2−1/2ckD2Tkϕ. (12.31)

Technically, while the hypothesis that ϕ is refinable requires that the series in
equation (12.31) converge, we cannot assume that it converges uncondition-
ally. We only know that there is some ordering of the index set Z with respect
to which the partial sums of this series will converge. Implicitly taking series
with respect to this ordering and recalling from equations (9.2)–(9.4) that the
Fourier transform interchanges translation with modulation and dilation with
a reciprocal dilation, we compute that

ϕ̂(ξ) =
∑

k∈Z

2−1/2ck (D2Tkϕ)
∧

(ξ)

=
∑

k∈Z

2−1/2 ckD1/2M−kϕ̂(ξ)

=
∑

k∈Z

(
2−1/2 ck 2−1/2 e−2πik(ξ/2) ϕ̂(ξ/2)

)

=
1

2

(∑

k∈Z

ck e
−2πik(ξ/2)

)
ϕ̂(ξ/2) (12.32)

= m0(ξ/2) ϕ̂(ξ/2).

This is an equality of functions in L2(R), so pointwise we have ϕ̂(ξ) =
m0(ξ/2) ϕ̂(ξ/2) a.e. The factoring performed at equation (12.32) does need
to be justified. This justification is very similar to the proof of Exercise 10.15,
but slightly different since we do not have unconditional convergence of all
series. We assign the details as Exercise 12.17. ⊓⊔
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For partial converses to Lemma 12.15, see Exercise 12.18.

Notation 12.16. Given refinement coefficients (ck)k∈Z ∈ ℓ2(Z), we let m0

denote the function

m0(ξ) =
1

2

∑

k∈Z

cke
−2πikξ ∈ L2(T). (12.33)

We call m0 the symbol of the refinement equation ϕ(x) =
∑
ckϕ(2x−k). ♦

Except for the multiplicative factor 1/2 appearing on the right-hand side
of equation (12.33), in the language of Chapter 13 the symbol m0 is the
Fourier transform of the sequence (ck)k∈Z. To avoid the issues with condi-
tional convergence that arose in the proof of Lemma 12.15, we will usually
need to impose some conditions on the refinement coefficients. Typically, we
will assume at minimum that (ck)k∈Z is summable, i.e., it belongs to ℓ1(Z).

Now we give some examples of refinable functions. For the most part we
will only sketch ideas and not give complete proofs here, although some of
these will receive a more rigorous treatment in the exercises and following
sections. We refer to sources such as [Dau92], [DL91], [DL92], [CH94], [HC94]
for complete proofs and discussion of these examples.

The “simplest” refinement equations are those with only finitely many
nonzero refinement coefficients. So, we consider refinement equations of the
form

ϕ(x) =
N∑

k=0

ck ϕ(2x− k). (12.34)

We set ck = 0 for k < 0 and k > N. The number N + 1 is the length
of this refinement equation, or, in engineering parlance, the number of taps
in the equation. Up to multiplication by a scalar, there is at most one in-
tegrable solution to equation (12.34) (see Corollary 12.26). If an integrable
solution ϕ exists, then ϕ is compactly supported and supp(ϕ) ⊆ [0, N ] (see
Exercise 12.36). If all the ck are real, then ϕ is real valued. The smoothness
of a solution is limited by N ; Exercise 12.21 shows that a solution ϕ can have
at most N − 2 continuous derivatives.

There are no integrable solutions to one-term refinement equations (i.e.,
those with N = 0), although there do exist solutions in the sense of distri-
butions or “generalized functions” (see Exercise 12.34). To obtain interesting
solutions to the refinement equation we need to consider largerN, and we usu-
ally also need to impose some extra conditions on the ck, most importantly
the normalization ∑

k∈Z

ck = 2.

Typically, we must further refine this by imposing the following minimal ac-
curacy condition:
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∑

k∈Z

c2k = 1 =
∑

k∈Z

c2k+1. (12.35)

This is a necessary condition if ϕ is to have orthonormal integer translates,
although it is not sufficient. One consequence of equation (12.35) is that if
an integrable solution ϕ to the refinement equation exists, then its periodiza-
tion

∑
j∈Z

ϕ(x + j) is constant a.e. (Exercise 12.29). Exact representation of
polynomials is important because a function that is smooth at a point x can
be well approximated in a neighborhood of x by a polynomial. The smoother
that f is at x, the higher-order polynomial we can use in the approximation.
At least intuitively, the more polynomials that we can exactly reproduce, the
better we will be able to approximate f using translates of ϕ (hence the name
“accuracy condition”).

If we take N = 1 and assume the minimal accuracy requirement, then we
are looking at the refinement equation

ϕ(x) = ϕ(2x) + ϕ(2x− 1).

Up to scale, the unique integrable solution is the box function χ[0,1).

Example 12.17 (B-Splines). There is an interesting family of refinable func-
tions known as B-splines that are related to the box function. As discussed
in Exercise 12.20, the B-splines are defined recursively by B0 = χ[0,1] and
Bn+1 = Bn ∗ B0, the convolution of Bn with B0. Each Bn satisfies a re-
finement equation with N = n + 1, and Bn increases in smoothness with n.
The spline B1 is the hat function on [0, 2], which is pictured in Figure 12.10,
and the spline B2 is the piecewise quadratic function shown in Figure 12.11.
Unfortunately for our purposes, except for B0 the spline Bn does not have
orthonormal integer translates. ♦

0.5 1 1.5 2 2.5 3

-1

-0.5

0.5

1

0.5 1 1.5 2 2.5 3
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-0.5

0.5

1

Fig. 12.11. Left: The spline B2, which satisfies the refinement equation B2(x) =
1
4
B2(2x)+ 3

4
B2(2x−1)+ 3

4
B2(2x−2)+ 1

4
B2(2x−3). Right: The first derivative B′

2

of B2.

To obtain more examples, we fix N = 3 and assume that the minimal accu-
racy condition in equation (12.35) is satisfied. This means that our refinement
equation has the form
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ϕ(x) = c0 ϕ(2x) + c1 ϕ(2x− 1) + c2 ϕ(2x− 2) + c3 ϕ(2x− 3), (12.36)

with the minimal accuracy constraint

c0 + c2 = c1 + c3 = 1.

Hence we have only two degrees of freedom in the choice of the coefficients
c0, c1, c2, c3, and we arbitrarily select the independent variables to be c0, c3.
Each choice of (c0, c3) gives us a different refinement equation to examine.
Thus we can consider our refinement equations to be parametrized by the
(c0, c3) plane. Restricting our attention to real-valued coefficients, this is the
plane pictured in Figure 12.12. We will discuss the geometric objects appear-
ing in this figure below, and we refer to [CH94], [HC94] for more detailed
discussions.

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Fig. 12.12. The (c0, c3) plane, including the “curve of existence,” “circle of orthogo-
nality,” “triangle of exclusion,” “line of smoothness,” and the “region of continuity.”

In the following examples we will examine some of the properties of ϕ
as we let (c0, c3) vary throughout this plane.1 Some particular points in the
(c0, c3) plane that we have already seen (or will soon encounter) and their
corresponding refinable functions are given in Table 12.1.

1For an interactive version of the (c0, c3) plane, see Wim Swelden’s wavelet applet
at http://cm.bell-labs.com/who/wim/cascade/.



12.5 All About the Scaling Function, I: Refinability 385

Table 12.1. Some particular points in the (c0, c3) plane.

Point Description Illustration

(1, 0) Box function χ
[0,1] Figure 12.7

(0, 0) Box function χ
[1,2]

(0, 1) Box function χ
[2,3]

(1, 1) Stretched box function χ
[0,3] Example 12.21

( 1
2
, 0) Hat function on [0, 2] Figure 12.10

(0, 1
2
) Hat function on [1, 3]

( 1
4
, 1

4
) B-spline B2 Figure 12.11

( 1+
√

3
4

, 1−
√

3
4

) Daubechies D4 function Example 12.22

The fact that the objects appearing in Figure 12.12 are symmetric with
respect to the line c3 = c0 is due to the fact that if ϕ(x) is the scaling function
corresponding to the point (c0, c3), then ϕ(3 − x) is the scaling function cor-

responding to the point (c3, c0). Thus, for example, the point (1−
√

3
4 , 1+

√
3

4 )
corresponds to a time-reversed version of the Daubechies D4 function.

Example 12.18 (L2 Existence). Theorem 12.29, which we prove in the next
section, implies that there is an L2 solution to the refinement equation for
every point on the circle that appears in Figure 12.12, and Exercise 12.27
extends this to the interior of the circle. However, this is not a sharp result. It is
possible to give an exact mathematical characterization of those points (c0, c3)
for which a compactly supported refinable function ϕ ∈ L2(R) exists [Eir92],
[LauW95], [Vil92]. This characterization is in terms of the spectral radius of a
single associated finite matrix whose entries are determined by the refinement
coefficients ck (the spectral radius is the maximum modulus of the eigenvalues
of the matrix). A numerical computation of this spectral radius shows that
all points in the interior of the ellipse-like dashed curve in Figure 12.12 have
L2 solutions to their corresponding refinement equations. ♦

Example 12.19 (Continuity). We prefer our refinable functions to be as smooth
as possible. Suppose that there is a continuous solution to the 4-tap refinement
equation. Taking into account that ϕ is supported in [0, 3], we see that for
x ∈ [0, 1

2 ] the refinement equation reduces to

ϕ(x) = c0ϕ(2x), x ∈ [0, 1
2 ]. (12.37)

Since ϕ(0) = 0, for any x > 0 we have

0 = ϕ(0) = lim
n→∞

ϕ(2−nx) = lim
n→∞

cn0 ϕ(x).

Consequently we must have |c0| < 1, and a similar argument shows that
|c3| < 1. Hence continuous solutions are restricted to the interior of the
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square [−1, 1] × [−1, 1] in the (c0, c3) plane. A more refined analysis shows
that continuous solutions are restricted to the interior of the triangle pictured
in Figure 12.12.

It is possible to give a mathematical characterization of those points (c0, c3)
that have continuous solutions in terms of the joint spectral radius of two
matrices whose entries are determined by the coefficients ck [DL92]. However,
whereas the spectral radius of a single matrix is simply the maximum of the
moduli of its eigenvalues, the evaluation of the joint spectral radius of two
matrices can be very challenging (see the references in [Jun09], [CHM04]).
The shaded region in Figure 12.12 is a numerical approximation to the set
of points for which this joint spectral radius is strictly less than 1, which
corresponds to continuous solutions. Out of these points, those lying on the
solid line segment correspond to differentiable ϕ. For example, the spline B2

corresponds to the point (1/4, 1/4). ♦

Example 12.20 (Graphing). A continuous refinable function ϕ is easy to plot
to any desired level of resolution. If we know the values of ϕ(j) for j integer
then we know the value of ϕ(j/2) by applying the refinement equation:

ϕ(j/2) =

3∑

k=0

ck ϕ(j − k).

Iterating, we can obtain ϕ(j/2ℓ) for any j ∈ Z and ℓ ∈ N. In particular, if ϕ
is not the zero function then we cannot have ϕ(j) = 0 for every integer j.

So, we just need to find ϕ(j) for j ∈ Z. Since supp(ϕ) ⊆ [0, 3], out of these
values only ϕ(1) and ϕ(2) can be nonzero. Applying the refinement equation
and taking the support of ϕ into consideration, we have

ϕ(1) =

3∑

k=0

ck ϕ(2− k) = c0 ϕ(2) + c1 ϕ(1),

ϕ(2) =

3∑

k=0

ck ϕ(4− k) = c2 ϕ(2) + c3 ϕ(1).

Hence
(
ϕ(1), ϕ(2)

)T
is an eigenvector of the matrix

M =

[
c1 c0
c3 c2

]
,

with eigenvalue 1. The minimal accuracy condition implies that
∑
j∈Z

ϕ(x+j)
is constant. Scaling so that this constant is 1, we obtain ϕ(1) + ϕ(2) = 1.
Combined with the eigenvector condition above, this completely determines
the values of ϕ(j) for j integer. As above we can then precisely compute
ϕ(j/2ℓ). As long as ϕ is continuous, this gives us an accurate picture of its
graph.
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Another approach to graphing, as well as to proofs of existence or other
properties, is to note that a refinable function ϕ is a fixed point of the operator

Tf(x) =
∑

k∈Z

ck f(2x− k).

A fixed point can often be computed via the iteration fi+1 = Tfi for a suit-
able starting function f0. This iteration, called the Cascade Algorithm, is an
important tool in the study of refinable functions. ♦

Example 12.21 (Orthonormal Translates). Given (c0, c3), suppose that ϕ is
such that {Tkϕ}k∈Z is an orthonormal sequence in L2(R). Set ck = 0 for
k < 0 and k > 3. Since only finitely many c0 are nonzero, we can manipulate
the order of the series in the following calculation as we like:

δ0,n = 〈Tnϕ,ϕ〉 =

∫ ∞

−∞
ϕ(x − n)ϕ(x) dx

=

∞∑

j=−∞

∞∑

k=−∞
cj ck

∫ ∞

−∞
ϕ(2x− 2n− j)ϕ(2x− k) dx

=
1

2

∞∑

j=−∞

∞∑

k=−∞
cj ck

∫ ∞

−∞
ϕ(x− 2n− j)ϕ(x − k) dx

=
1

2

∞∑

j=−∞

∞∑

k=−∞
cj ck

〈
T2n+jϕ, Tkϕ

〉

=
1

2

∞∑

j=−∞

∞∑

k=−∞
cj ck δ2n+j,k

=
1

2

∞∑

j=−∞
cj c2n+j . (12.38)

Only c0, c1, c2, c3 can be nonzero, so this reduces to the two equations

c20 + c21 + c22 + c23 = 2,

c0c2 + c1c3 = 0.

By the minimal accuracy assumption we have c2 = 1− c0 and c3 = 1− c1, so
these two equations reduce yet further to

(
c0 −

1

2

)2

+
(
c3 −

1

2

)2

=
1

2
. (12.39)

Restricting to real-valued coefficients, this one-parameter family corresponds
to the circle that appears in Figure 12.12. Any ϕ that has orthonormal inte-
ger translates must lie on this circle and, with a single exception, all of the
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functions on this circle do have orthonormal translates. The exception is the
point (1, 1), which corresponds to the refinement equation

ϕ(x) = ϕ(2x) + ϕ(2x− 3).

The solution is the “stretched box” ϕ = χ
[0,3], which does not have orthonor-

mal integer translates. ♦
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Fig. 12.13. The functions discussed in Example 12.22.

Example 12.22 (Examples). Figure 12.13 shows continuous refinable functions
corresponding to four particular points that lie on the circle in Figure 12.12.
On the top left we see the Daubechies D4 scaling function, which corresponds
to the point

(c0, c3) =

(
1 +
√

3

4
,
1−
√

3

4

)
≈ (0.683013,−0.183013),

and on the top right we see the refinable function ϕ that corresponds to the
“nearby” point

(c0, c3) =

(
3

5
,−1

5

)
= (0.6,−0.2),

which has the computational advantage of being rational. The bottom row
shows two points on the circle that are more “distant” from D4. On the
bottom left we see
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(c0, c3) =

(
2 +
√

2

4
,
2−
√

6

4

)
≈ (0.853553,−0.112372).

Note that this point is “close” to (1, 0), which corresponds to the box function
χ[0,1]. On the bottom right we see

(c0, c3) =

(
2−
√

2

4
,
2−
√

6

4

)
≈ (0.146447,−0.112372),

which lies close to (0, 0), whose corresponding refinable function is χ[1,2].While
it may not be obvious from their graphs, each of these four functions is con-
tinuous and has orthonormal integer translates.

These functions are continuous, but they are not differentiable. The re-
finement equation tells us that the graph of a refinable function has a certain
kind of self-similarity, in the sense that ϕ equals a sum of translated, dilated,
and rescaled copies of itself. A refinable function ϕ that is continuous but
not differentiable is Hölder continuous in the sense of Exercise 1.23, and the
graphs of such functions typically exhibit the fractal-like appearance that we
see in Figure 12.13. Indeed, for x in the range 0 ≤ x ≤ 1/2 we have pre-
cise self-similarity in the sense that ϕ(x) = c0 ϕ(2x). It can be shown that
the function D4 is Hölder continuous precisely for exponents α in the range
0 < α < − log2(1 +

√
3)/4 ≈ 0.550 . . . [Dau92]. It is actually much more diffi-

cult to compute the analogous range for the function ϕ corresponding to the
point (0.6,−0.2), but numerical computations show that it is globally slightly
smoother, in the sense that it is Hölder continuous for exponents in the range
0 < α < − log2 0.660 ≈ 0.600 . . . [CH94], [HC94].

Of all of the refinable functions corresponding to points on the “circle of
orthogonality,” D4 is in some sense the “best.” While D4 is not differentiable,
the point for D4 in Figure 12.12 lies at the intersection of the circle and
the dashed line (the other intersection point corresponds to the time-reversed
function D4(3 − x)). The significance of the dashed line is that all points on
it satisfy two accuracy conditions, namely,

∑

k∈Z

(−1)k kj ck = 0, j = 0, 1.

As a consequence, D4 not only reproduces the constant function exactly, but
also reproduces linear functions. Specifically, Exercise 12.30 shows that there
exist scalars aj such that

∑

j∈Z

aj D4(x+ j) = x, x ∈ R.

Note that for any particular x, only finitely many terms in this series are
nonzero. Higher-order accuracy is desirable for many reasons. It is necessary,
though not sufficient, for ϕ to be smooth. In light of Taylor expansions, it is
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important to have as many polynomials as possible representable by translates
of ϕ. The function D4 corresponds to the point on the circle of orthogonality
that satisfies the greatest number of accuracy conditions. ♦

1 2 3 4 5

-0.5

0.5

1.0

1.5

1 2 3 4 5

-2

-1

1

2

Fig. 12.14. The Daubechies function D6 and its first derivative D′
6.

By taking N larger we can construct many more refinable functions, hav-
ing more smoothness, satisfying more accuracy conditions, or having some
other desirable property. However, exhaustively characterizing these proper-
ties, as we have attempted to do for N = 3, becomes increasingly difficult asN
increases. Instead of trying to characterize all refinable functions, another ap-
proach is to create families which have particular desirable properties, such as
the B-splines considered in Example 12.17. Unfortunately, the B-splines do
not have orthonormal translates. The Daubechies scaling functions [Dau92]
are a family of refinable functions D2N that satisfy refinement equations of
length 2N, have orthonormal integer translates, satisfyN accuracy conditions,
and increase in smoothness with N (though not as quickly as the B-splines).
The functionD2 is the box function, andD4 is the function discussed in Exam-
ple 12.21. The function D6, pictured in Figure 12.14, satisfies the refinement
equation

D6(x) =

5∑

k=0

ckD6(2x− k)

where
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This function is differentiable, but only “barely” so, in the sense that its first
derivative is Hölder continuous only for exponents α that lie in the range
0 < α < 0.087833 . . . , see [DL92]. For complete details on the construction of
the Daubechies family of scaling functions, we refer to [Dau92], [Wal02].

We close this section by remarking that a refinement equation of finite
length is an expression of finite linear dependence among the time-scale shifts
of ϕ. In contrast, the HRT Conjecture discussed in Section 11.9 is that every
function in L2(R) has finitely linearly independent time-frequency shifts. Thus
time-scale and time-frequency shifts behave quite differently in this regard.
But why is there such a difference? There seems to be no satisfying answer to
this question at present.

More abstractly, time-scale shifts are associated with a representation of
the affine group (Exercise 12.2), while time-frequency shifts are associated
with a representation of the Heisenberg group (Exercise 11.2). Formulated in
an abstract group setting, Linnell has observed that the HRT Conjecture is
related to zero divisor issues [Lin99]. In this context, the HRT Conjecture has
a flavor similar to the Zero Divisor Conjecture of Higman [Hig40], which has
been open since 1940.

Conjecture 12.23 (Zero Divisor Conjecture). The group algebra FG of
a torsion-free group G over a field F is a domain. ♦

We return in the next section to analysis of general refinement equations
and their solutions, especially those that have orthonormal integer translates.

Exercises

12.13. Suppose that ϕ ∈ L2(R) is refinable, with refinement coefficients
(ck)k∈Z ∈ ℓ1(Z). Show that Tmϕ is refinable for every m ∈ Z, and the re-
finement coefficients for Tmϕ are (ck+m)k∈Z.

12.14. The hat function on [0, 2] is B1(x) = max{1−|x−1|, 0}. Show directly
that B1 is refinable.

12.15. The Shannon scaling function is the sinc function ϕ(x) = sin πx
πx . Show

that ϕ is refinable, and show that the symbol for the refinement equation is
m0 = χ

[− 1
4
, 1
4
] (extended 1-periodically to R).

12.16. The following refinement equation (based on dilation by 3) has a con-
tinuous solution:

ϕ(x) =
1

2
ϕ(3x) +

1

2
ϕ(3x− 1) + ϕ(3x− 2) +

1

2
ϕ(3x− 3) +

1

2
ϕ(3x− 4).

What function satisfies this refinement equation?
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12.17. Justify the factorization performed in equation (12.32) in the proof of
Lemma 12.15.

12.18. Fix ϕ ∈ L2(R) and m(ξ) = 1
2

∑
k∈Z

cke
−2πikξ with (ck)k∈Z ∈ ℓ2(Z),

and suppose that
ϕ̂(ξ) = m(ξ/2) ϕ̂(ξ/2) a.e.

Show that if either:

(a) {Tkϕ}k∈Z is a Bessel sequence, or

(b) (ck)k∈Z ∈ ℓ1(Z),

then ϕ is refinable.

12.19. (a) The convolution of sequences c = (ck)k∈Z and d = (dk)k∈Z in ℓ1(Z)
is the sequence c ∗ d whose components are

(c ∗ d)k =
∑

j∈Z

cj dk−j .

Show that this series converges for every k, and c ∗ d ∈ ℓ1(Z). Show further
that if c and d are both finite sequences, then so is c ∗ d.

(b) The convolution of functions ϕ, ψ ∈ L1(R) is the function ϕ ∗ψ given
by

(ϕ ∗ ψ)(x) =

∫ ∞

−∞
ϕ(y)ψ(x − y) dy.

Show that this integral exists for almost every x, and we have ϕ ∗ψ ∈ L1(R).
Show also that if ϕ and ψ are each compactly supported, then so is ϕ ∗ ψ.

(c) Suppose that ϕ, ψ ∈ L1(R) satisfy the refinement equations

ϕ(x) =
∑

k∈Z

ck ϕ(2x− k) and ψ(x) =
∑

k∈Z

dk ψ(2x− k),

where c = (ck)k∈Z ∈ ℓ1(Z) and d = (dk)k∈Z ∈ ℓ1(Z). Show that their convo-

lution ϕ ∗ ψ is refinable. Let mc(x) = 1
2

∑
cke

−2πikξ be the symbol for ϕ and

md(x) = 1
2

∑
cke

−2πikξ be the symbol for ψ, and show that the symbol for
ϕ ∗ ψ is mc∗d(ξ) = mc(ξ)md(ξ).

12.20. Set B0 = χ[0,1], and recursively define the nth B-spline Bn by

Bn = Bn−1 ∗ χ[0,1],

where ∗ denotes the convolution operation defined in Exercise 12.19.

(a) Show that B1 = χ[0,1] ∗ χ[0,1] is the hat function on the interval [0, 2],
and find explicit formulas for B2 and B′

2.
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(b) Show that Bn is refinable, integrable, and compactly supported. Show
that the symbol for this refinement equation is

m0(ξ) =

(
1 + e−2πiξ

2

)n+1

.

(c) Find an explicit formula for B̂n, and show that B̂n ∈ L1(R) for all
n > 0.

(d) Prove that B′
n(x) = Bn−1(x− 1)−Bn−1(x) for n > 1.

(e) Show that Bn ∈ Cn−1(R) for n > 0, and B
(n−1)
n is piecewise linear.

12.21. Suppose that ϕ ∈ L2(R) is a compactly supported solution to the
finite length refinement equation

ϕ(x) =

N∑

k=0

ck ϕ(2x− k).

Prove the following statements.

(a) supp(ϕ) ⊆ [0, N ], i.e., ϕ(x) = 0 for almost every x /∈ [0, N ].

(b) If ϕ is continuous then the vector
(
ϕ(1), . . . , ϕ(N−1)

)
is an eigenvector

of the (N − 1)× (N − 1) matrix

M =




c1 c0 0 · · · 0 0
c3 c2 c1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · cN cN−1


 = [c2i−j ]i,j=1,...,N

for the eigenvalue 1. Note the double-shift in the rows of M ; for this reason M
is called a two-slanted matrix.

(c) If ϕ is differentiable then ϕ′ is refinable.

(d) If ϕ ∈ C1(R) then 1 and 1/2 are both eigenvalues of M.

(e) ϕ cannot be infinitely differentiable, and in fact can have at most N−2
continuous derivatives.

12.22. Suppose ϕ ∈ L2(R) is refinable with refinement coefficients (ck)k∈Z ∈
ℓ2(Z). Show that if ϕ is compactly supported and {Tkϕ}k∈Z is orthonormal,
then only finitely many of the refinement coefficients are nonzero.

12.6 All About the Scaling Function, II: Existence

We cannot choose coefficients (ck)k∈Z at random and expect that a solution ϕ
to the refinement equation
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ϕ(x) =
∑

k∈Z

ck ϕ(2x− k)

will exist. At minimum, we usually assume (ck)k∈Z ∈ ℓ1(Z) and require∑
ck = 2. To motivate this normalization, suppose that ϕ is refinable and

ϕ̂(ξ) is continuous. Then we can take ξ = 0 in equation (12.29), and we ob-
tain ϕ̂(0) = m0(0) ϕ̂(0). As we will see in Corollary 12.26, if ϕ is not the
zero function then we must have ϕ̂(0) 6= 0, and therefore m0(0) = 1. This
is equivalent to the requirement that

∑
ck = 2. We will see later that other

conditions, such as the minimal accuracy condition imposed in most of the
examples in Section 12.5, are also important.

Iterating equation (12.29), we see that

ϕ̂(ξ) = m0(ξ/2) ϕ̂(ξ/2)

= m0(ξ/2)m0(ξ/4) ϕ̂(ξ/4)

...

=

( n∏

j=1

m0(2
−jξ)

)
ϕ̂(2−nξ). (12.40)

If m0 is continuous then the normalization m0(0) = 1 implies that

lim
n→∞

m0(2
−nξ) = m0(0) = 1.

This suggests taking a limit in equation (12.40). An infinite product is impli-
cated, and we suspect that ϕ̂ will be given by

ϕ̂(ξ) = C

∞∏

j=1

m0(2
−jξ), (12.41)

where C is the constant ϕ̂(0).
The calculations above assume that a refinable function ϕ exists and has

certain properties, whereas what we really want to do is to start with re-
finement coefficients (ck)k∈Z and show that a solution to the corresponding
refinement equation exists. The function m0 is determined by the ck, and, in
light of the discussion above, a good start would be to try to choose ck so that
the infinite product

P (ξ) =

∞∏

j=1

m0(2
−jξ)

converges. In this case, equation (12.41) suggests that we might be able to
define a refinable function ϕ by declaring that its Fourier transform is ϕ̂(ξ) =

P (ξ) =
∏∞
j=1m0(2

−jξ). Since the Fourier transform is unitary on L2(R), if

we have P ∈ L2(R) then there will exist a function ϕ ∈ L2(R) such that
ϕ̂ = P. This function ϕ is likely to be the refinable function that we seek.
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The remainder of this section essentially makes this approach precise. First
we will find conditions on the ck that ensure that the infinite product con-
verges, then we impose further conditions that imply that P is square inte-
grable, and finally we obtain our refinable function ϕ. In so doing, we will
find some necessary and some sufficient conditions for the existence of a solu-
tion to the refinement equation, but we will not find conditions that are both
necessary and sufficient.

We must impose some decay conditions on the scalars ck in order to obtain
results about the convergence of the infinite product or the existence of a
scaling function. Typical hypotheses and their relation to properties of m0

and the refinement equation are given next.

Example 12.24. (a) If (ck)k∈Z ∈ ℓ2(Z), then the series defining m0 converges
unconditionally in L2(T). In this case, m0 is square integrable over a period,
although it is only defined almost everywhere. On the other hand, with this
hypothesis on the ck we cannot even be sure that the series

∑
k∈Z

ck ϕ(2x−k)
in the refinement equation will converge, and therefore it will be very difficult
to determine if the refinement equation has any solutions. Even if this series
does converge, we may be left with unpleasant issues about conditional versus
unconditional convergence, as in the proof of Lemma 12.15.

(b) If (ck)k∈Z ∈ ℓ1(Z), then the series m0(ξ) = (1/2)
∑
k∈Z

cke
−2πikξ

converges absolutely in Lp(T) for every p. In particular, p = ∞ corresponds
to uniform convergence, and since each function e2πikξ is continuous it follows
that m0 is continuous. Also, this hypothesis implies that

∑

k∈Z

‖ck ϕ(2x− k)‖L2 = 2−1/2
∑

k∈Z

|ck| ‖ϕ‖L2 < ∞,

so the series
∑
k∈Z

ck ϕ(2x− k) converges absolutely in L2(R). This still does
not imply that there is a solution to the refinement equation, but at least it
gives us something to work with.

(c) If
∑

k∈Z
|kck| < ∞, then m0 is not only continuous, but is differ-

entiable and has a continuous derivative (Exercise 12.28), and we will see in
Theorem 12.25 that this hypothesis implies that the infinite product discussed
above converges.

(d) If (ck)k∈Z is a finite sequence then m0 is a trigonometric polynomial
and hence is infinitely differentiable and has at most finitely many zeros in
any finite interval. ♦

The next result, whose proof is adapted from [DL91], shows that if we
assume the normalization condition m0(0) = 1 and sufficient decay on the
coefficients ck, then the infinite product in equation (12.41) will converge.



396 12 Wavelet Bases and Frames

Theorem 12.25. Suppose that we have

(a) decay:
∑

k∈Z
|kck| <∞, and

(b) normalization: m0(0) = 1
2

∑
k∈Z

ck = 1.

Define Pn(ξ) =
∏n
j=1m0(2

−jξ). Then the infinite product

P (ξ) =

∞∏

j=1

m0(2
−jξ) = lim

n→∞
Pn(ξ)

converges uniformly on compact subsets of R to a continuous function P that
satisfies P (0) = 1.

Proof. By Exercise 12.28, the symbol m0 is differentiable and has a contin-
uous derivative. It therefore follows from the Mean Value Theorem that m0

is Lipschitz (see Exercise 1.23). In particular, since m0(0) = 1, there is a
constant C such that

|m0(ξ) − 1| ≤ C|ξ|, ξ ∈ T.

Combining this with the fact that 1 + x ≤ ex, we obtain the estimate

|Pn(ξ)| =

n∏

j=1

∣∣(m0(2
−jξ)− 1

)
+ 1
∣∣

≤
n∏

j=1

(
C 2−j |ξ|+ 1

)

≤
n∏

j=1

eC 2−j |ξ|

= eC
Pn

j=1 2−j |ξ|

≤ eC|ξ|.

Note that this upper bound is independent of n. If we fix R > 0 then

sup
ξ∈[−R,R]

|Pn(ξ)− Pn−1(ξ)| = sup
ξ∈[−R,R]

|m0(2
−nξ)− 1| |Pn−1(ξ)|

≤ C 2−nReCR.

Consequently {Pn}n∈N is a Cauchy sequence in L∞[−R,R]. Therefore, since
each Pn is continuous there exists a continuous function qR on [−R,R] such
that Pn → qR uniformly on [−R,R] as n → ∞. Clearly any two of these
functions qR must coincide on the domain where they are both defined, so
there is a single continuous function P defined on the real line that equals qR
on [−R,R] for every R. Further, P (0) = 1 since Pn(0) = 1 for every n. ⊓⊔



12.6 All About the Scaling Function, II: Existence 397

As a consequence, we obtain the following facts about the existence and
uniqueness of a solution to the refinement equation.

Corollary 12.26. Assume that the hypotheses of Theorem 12.25 are satisfied,
and let P be as in that theorem.

(a) If ϕ ∈ L1(R) satisfies the refinement equation (12.28) then ϕ̂ is a scalar
multiple of P. Specifically, if such an integrable ϕ exists then

ϕ̂(ξ) = ϕ̂(0)P (ξ).

Consequently, if ϕ is not the zero function then
∫∞
−∞ ϕ(x) dx = ϕ̂(0) 6= 0.

(b) If P ∈ L2(R) then there exists a function ϕ ∈ L2(R) such that ϕ̂ = P,
and this function ϕ satisfies the refinement equation (12.28).

Proof. (a) If ϕ ∈ L1(R), then its Fourier transform ϕ̂ is a continuous function
(Theorem 9.10). By Lemma 12.15, if ϕ satisfies the refinement equation then
ϕ̂(ξ) = m0(ξ/2) ϕ̂(ξ/2). Iterating this equation and applying Theorem 12.25,
we see that

ϕ̂(ξ) =

( n∏

j=1

m0(2
−jξ)

)
ϕ̂(2−nξ) = Pn(ξ) ϕ̂(2−nξ) → P (ξ) ϕ̂(0)

as n→∞.
(b) If P ∈ L2(T), then it has an inverse Fourier transform ϕ =

∨

P ∈
L2(T), and this is the unique function that satisfies ϕ̂ = P. Since P (ξ) =
m0(ξ/2)P (ξ/2), it follows from Exercise 12.18 that ϕ is refinable. ⊓⊔

While there do exist refinable functions ϕ that are not integrable, they are
usually not of much use to us. Thus, Corollary 12.26 tells us that, in most
practical situations, if a solution to the refinement equation exists at all then
it is unique (up to a scaling factor). Corollary 12.26 also tells us that if we
can ensure that P ∈ L2(R), then a solution to the refinement equation will
exist. Unfortunately, the hypotheses of Theorem 12.25 and Corollary 12.26
do not in general imply that P will be square integrable. On the other hand,
the next result gives a necessary condition for a refinable function to have
orthonormal integer translates, and in Theorem 12.29 we will see that this
necessary condition actually implies that we have P ∈ L2(R). As usual, we
let Φϕ(ξ) =

∑
k∈Z
|ϕ̂(ξ + k)|2 denote the periodization of |ϕ̂|2.

Theorem 12.27. If ϕ ∈ L2(R) is refinable and satisfies the refinement equa-
tion (12.28) with coefficients (ck)k∈Z ∈ ℓ2, then the following statements hold.

(a) Φϕ(ξ) =
∣∣m0

(
ξ
2

)∣∣2 Φϕ
(
ξ
2

)
+
∣∣m0

(
ξ
2 + 1

2

)∣∣2 Φϕ
(
ξ
2 + 1

2

)
a.e.

(b) If {Tkϕ}k∈Z is an orthonormal sequence, then

|m0(ξ)|2 + |m0(ξ + 1
2 )|2 = 1 a.e. (12.42)



398 12 Wavelet Bases and Frames

(c) If (ck)k∈Z ∈ ℓ1(Z), then equation (12.42) is equivalent to

∑

k∈Z

ck ck+2n = 2δ0n, n ∈ Z. (12.43)

Proof. (a) By Lemma 12.15, ϕ̂(ξ) = m0(ξ/2) ϕ̂(ξ/2) a.e. Applying the refine-
ment equation and the periodicity of m0, we therefore have

Φϕ(ξ) =
∑

k∈Z

|ϕ̂(ξ + k)|2

=
∑

k∈Z

∣∣m0

(
ξ+k
2

)∣∣2 ∣∣ϕ̂
(
ξ+k
2

)∣∣2

=
∑

k∈Z

∣∣m0

(
ξ+2k

2

)∣∣2 ∣∣ϕ̂
(
ξ+2k

2

)∣∣2 +
∑

k∈Z

∣∣m0

(
ξ+2k+1

2

)∣∣2 ∣∣ϕ̂
(
ξ+2k+1

2

)∣∣2

=
∣∣m0

(
ξ
2

)∣∣2 ∑

k∈Z

∣∣ϕ̂
(
ξ
2 + k

)∣∣2 +
∣∣m0

(
ξ+1
2

)∣∣2 ∑

k∈Z

∣∣ϕ̂
(
ξ+1
2 + k

)∣∣2

=
∣∣m0

(
ξ
2

)∣∣2 Φϕ
(
ξ
2

)
+
∣∣m0

(
ξ
2 + 1

2

)∣∣2 Φϕ
(
ξ
2 + 1

2

)
.

(b) Lemma 12.13 implies that if ϕ has orthonormal integer translates then
Φϕ(ξ) = 1 a.e. It therefore follows from part (a) that |m0(

ξ
2 )|2+|m0(

ξ
2 + 1

2 )|2 =
1 a.e., so the result follows by replacing ξ with 2ξ.

(c) We assign the proof of the equivalence of equations (12.42) and (12.43)
as Exercise 12.23. ⊓⊔

Note that equation (12.43) is precisely the necessary condition for or-
thonormal translates that we derived in equation (12.38) for the special case
of 4-tap refinement equations.

The converse of Theorem 12.27 does not hold in general. On the other
hand, it can be shown that counterexamples like the one following are “rare”
in some sense (see [Law90]).

Example 12.28. The stretched box χ[0,3] satisfies the refinement equation

χ[0,3](x) = χ[0,3](2x) + χ[0,3](2x− 3),

which has refinement coefficients c0 = c3 = 1 and all other ck = 0. A direct
calculation shows that equation (12.43) is satisfied, yet χ[0,3] does not have
orthonormal integer translates. As discussed in Example (12.21), out of all
the refinement equations of length 4 that satisfy equation (12.43) only the
stretched box fails to have orthonormal translates. ♦

In signal processing terminology, equation (12.42) is the antialiasing con-
dition. Moreover, the equivalent form given in equation (12.43) is almost a
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convolution condition. Let c̃ denote the sequence c̃ =
(
c−k
)
k∈Z

. The convolu-
tion of c̃ with c is the sequence c̃ ∗ c whose components are

(c̃ ∗ c)n =
∑

k∈Z

c̃k cn−k, =
∑

k∈Z

c−k cn−k, =
∑

k∈Z

ck ck+n, n ∈ Z.

Thus, the equivalent form of the antialiasing condition given in equation
(12.43) says that the downsampled sequence

(
(c̃ ∗ c)2n

)
n∈Z

is twice the delta

sequence. For more on convolution see Exercise 12.19 and Section 13.3.
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Fig. 12.15. Symbols for some refinable functions. Top left: Shannon scaling func-
tion. Top right: Linear spline Battle–Lemarié scaling function (see Example 12.38).
Bottom left: Daubechies D4 function (absolute value of the symbol). Bottom right:
Box function χ

[0,1] (absolute value of the symbol).

If the antialiasing condition holds and m0 is continuous, then m0(0) = 1
and so m0(ξ) will be close to 1 for ξ close to zero (and, by periodicity, for ξ
close to any integer n). These are the “low frequencies” in T, so antialiasing
roughly corresponds to m0 being close to 1 for low frequencies and close to 0
for high frequencies. Thus m0 is a low-pass filter. The “ideal” low-pass filter
would be the 1-periodic extension of χ[− 1

4
, 1
4
]. Indeed, this is the symbol for

the Shannon scaling function. Unfortunately, the refinement coefficients for
the Shannon scaling function decay very slowly. If we impose faster decay on
the ck then m0 will be smoother, but by the same token it will be farther
from the “ideal” low-pass filter. In Figure 12.15 we show the symbols m0 for
four particular refinable functions that satisfy the antialiasing requirement.



400 12 Wavelet Bases and Frames

Now we show that when the decay, normalization, and antialiasing con-
ditions all hold simultaneously, there will exist a solution to the refinement
equation. This argument is due to Mallat [Mal89b].

Theorem 12.29. If we have

(a) decay:
∑

k∈Z
|kck| <∞,

(b) normalization: m0(0) = 1, and

(c) antialiasing: |m0(ξ)|2 + |m0(ξ + 1
2 )|2 = 1 for ξ ∈ T,

then the function ϕ ∈ L2(R) whose Fourier transform is

ϕ̂(ξ) =

∞∏

j=1

m0(2
−jξ)

satisfies the refinement equation ϕ(x) =
∑

k∈Z
ck ϕ(2x − k). Moreover, ϕ̂ is

continuous and ϕ̂(0) = 1.

Proof. The decay hypothesis implies that m0 is continuous (which is why the
statement of hypothesis (c) is for all ξ rather than almost every ξ). Set

Pn(ξ) =

n∏

j=1

m0(2
−jξ) and pn = Pn · χ[−2n−1,2n−1].

Then Pn is continuous, and pn is continuous on the interval [−2n−1, 2n−1]. By
Theorem 12.25, the infinite product

P (ξ) =

∞∏

j=1

m0(2
−jξ) = lim

n→∞
Pn(ξ)

converges uniformly on compact sets, and therefore pn converges pointwise to
the continuous function P. Since m0(2

−jξ) is 2j-periodic, the function Pn is
2n-periodic. Further, for n > 1 we have

Pn(ξ) = m0(2
−nξ)Pn−1(ξ).

Since pn is supported on [−2n−1, 2n−1], we therefore compute that

‖pn‖2L2 =

∫ 2n−1

−2n−1

|Pn(ξ)|2 dξ

=

∫ 2n−1

0

|Pn(ξ)|2 dξ +

∫ 2n−1

0

|Pn(ξ + 2n−1)|2 dξ

=

∫ 2n−1

0

|m0(2
−nξ)|2 |Pn−1(ξ)|2 dξ

+

∫ 2n−1

0

|m0(2
−nξ + 1

2 )|2 |Pn−1(ξ + 2n−1)|2 dξ
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=

∫ 2n−1

0

(
|m0(2

−nξ)|2 + |m0(2
−nξ + 1

2 )|2
)
|Pn−1(ξ)|2 dξ (12.44)

=

∫ 2n−1

0

|Pn−1(ξ)|2 dξ

=

∫ 2n−2

−2n−2

|Pn−1(ξ)|2 dξ (12.45)

= ‖pn−1‖2L2,

where at equations (12.44) and (12.45) we have used the fact that Pn−1 is
2n−1-periodic.

Thus ‖pn‖L2 is independent of n. Applying Fatou’s Lemma (Theorem
A.19), we obtain

‖P‖2L2 =

∫ ∞

−∞
|P (ξ)|2 dξ =

∫ ∞

−∞
lim
n→∞

|pn(ξ)|2 dξ

≤ lim
n→∞

∫ ∞

−∞
|pn(ξ)|2 dξ

= ‖p1‖2L2 < ∞.

Therefore P ∈ L2(R), so by Corollary 12.26 the function ϕ ∈ L2(R) that
satisfies ϕ̂ = P is refinable. Finally, ϕ̂(0) = P (0) = 1. ⊓⊔

This brings us close to a method for constructing MRAs. The preceding
results tell us that if we can find coefficients (ck)k∈Z that satisfy the decay,
normalization, and antialiasing conditions of Theorem 12.29, then there will
exist a function ϕ ∈ L2(R) that satisfies the refinement equation with co-
efficients (ck)k∈Z. The antialiasing condition is necessary but not sufficient
to ensure that ϕ will have orthonormal integer translates, but “most” of the
time this will be the case. We will see in the next section that if ϕ does have
orthonormal integer translates then it generates an MRA, and from this MRA
we can construct a wavelet ψ such thatW(ψ) is a dyadic wavelet orthonormal
basis for L2(R).

Before proceeding to the wavelet, we make some remarks about accuracy
conditions. If we combine the antialiasing condition with the normalization
m0(0) = 1 we obtain m0(1/2) = 0. In terms of the refinement coefficients, this
says that ∑

k∈Z

ck = 2 and
∑

k∈Z

(−1)kck = 0.

We call this the “minimal accuracy condition.” It is a consequence of (but
not equivalent to) the normalization and antialiasing hypotheses on the re-
finement coefficients. It is an “accuracy” condition in that it implies that the
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periodization of ϕ is constant almost everywhere (Exercise 12.29). More pre-
cisely, if there is an integrable solution ϕ to the refinement equation then the
minimal accuracy condition implies that

∑
j∈Z

ϕ(x + j) = C, a constant, al-
most everywhere. This constant must be nonzero if the integer translates of ϕ
are independent in an appropriate sense.

To motivate why this is interesting, recall that we are hoping to build
an MRA from ϕ. In particular, the space V0 is generated from the integer
translates of ϕ. Since the constant function does not belong to L2(R) we
know that the series

∑
k∈Z

ϕ(x + k) = C does not converge in L2-norm, and

the constant function C cannot literally belong to V0. But still in some sense
we have “in spirit” that constants belong to V0, and higher-order accuracy
conditions, ∑

k∈Z

(−1)k kj ck = 0, j = 0, . . . , p, (12.46)

correspond to polynomials up to degree p being representable by integer trans-
lates of ϕ (see Exercise 12.30). Considering Taylor expansions suggests that
the more polynomials that “belong” to V0, the better we will be able to ap-
proximate the smooth parts of functions by elements of V0. Another reason to
impose accuracy conditions is that high smoothness requires high accuracy,
although the converse does not hold in general.

Exercises

12.23. Show that equations (12.42) and (12.43) are equivalent when (ck)k∈Z ∈
ℓ1(Z).

12.24. Show that the conclusion of Theorem 12.25 remains valid if we replace
the decay hypothesis on the refinement coefficients by

∑
k∈Z
|k|δ|ck| <∞ for

some δ > 0.

12.25. Suppose that c = (. . . , 0, 0, c0, . . . , cN , 0, 0, . . . ) is a finite sequence with
c0, cN 6= 0, Show that if the antialiasing requirement (12.42) is satisfied thenN
is odd.

12.26. Let χ = χ[0,1) be the box function, which satisfies the refinement

equation χ(x) = χ(2x) + χ(2x− 1).

(a) Show that χ̂(ξ) = eπiξ sinπξ
πξ .

(b) Show that |m0(ξ)|2 + |m0(ξ + 1
2 )|2 = 1.

(c) Give a direct proof of Viète’s formula:

∞∏

j=1

cos(2−jπξ) =
sinπξ

πξ
.
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(d) Explain how Viète’s formula relates to Theorem 12.29.

Remark: Viète proved the special case ξ = 1/2, which leads to the formula

2

π
=

√
2

2

√
2 +
√

2

2

√
2 +

√
2 +
√

2

2
· · · .

12.27. Show that Theorem 12.29 continues to hold if instead of the antialias-
ing condition we only require that |m0(ξ)|2 + |m0(ξ + 1

2 )|2 ≤ 1 for ξ ∈ T.

12.28. (a) Show that if
∑
k∈Z
|kjck| < ∞, then m0 is j-times differentiable

and its jth derivative is the continuous function

m
(j)
0 (ξ) =

(−2πi)j

2

∑

k∈Z

kj ck e
−2πikx.

Conclude that

m
(j)
0 (1/2) = 0 ⇐⇒

∑

k∈Z

(−1)k kj ck = 0,

and compare this to the accuracy conditions given in equation (12.46).

(b) Let Bn be the nth B-spline defined in Exercise 12.20. Show that the

accuracy condition m
(j)
0 (1/2) = 0 holds for j = 0, . . . , n.

12.29. Suppose that ϕ ∈ L1(R) is refinable, with refinement coefficients
(ck)k∈Z ∈ ℓ1(Z) that satisfy

∑
k∈Z

ck = 2. Show that if the “minimal ac-

curacy” condition
∑

k (−1)k ck = 0 holds then the periodization of ϕ is equal
almost everywhere to a constant, specifically

∑

j∈Z

ϕ(x + j) = ϕ̂(0) a.e.

(This is easier to do if ϕ is assumed to be continuous.)

12.30. This exercise extends Exercise 12.29, but to avoid issues of convergence
we assume that ϕ is a compactly supported solution of a refinement equation
with finitely many nonzero coefficients ck. Suppose that

∑
k∈Z

ck = 2 and the

accuracy conditions
∑

k∈Z
(−1)k kj ck = 0 hold for j = 0 and j = 1. Show

that ∑

j∈Z

(j − 2a)ϕ(x+ j) = x a.e.,

where
a =

∑

k∈Z

2k c2k =
∑

k∈Z

(2k + 1) c2k+1.
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12.31. The Hilbert transform of f ∈ L2(R) is the function Hf whose Fourier

transform is (Hf)
∧

(ξ) = −i sign(ξ) f̂(ξ), where sign(ξ) = 1, 0, or −1 according
to whether ξ > 0, ξ = 0, or ξ < 0, respectively.

(a) Show that the Hilbert transform is a unitary mapping of L2(R) onto
itself, but it does not map L1(R) ∩ L2(R) onto itself. In particular, if f ∈
L1(R) ∩ L2(R) satisfies f̂(0) 6= 0, then Hf /∈ L1(R).

(b) Suppose that ϕ ∈ L2(R) satisfies a refinement equation with coeffi-
cients (ck)k∈Z ∈ ℓ1(Z). Show that Hϕ satisfies the same refinement equation.

12.32. Show that if the hypotheses of Theorem 12.25 are satisfied, then the
function P has at most polynomial growth at infinity, i.e., there exists some
C > 0 and integer M > 0 such that

|P (ξ)| ≤ C |ξ|M , |ξ| ≥ 1.

12.33. Assume (ck)k∈Z ∈ ℓ1(Z) satisfies |m0(0)| = 1
2

∣∣∑ ck
∣∣ < 1. Show that

there are no nontrivial integrable solutions to the corresponding refinement
equation.

Note: Exercises 12.34–12.36 require some knowledge of distributions, tem-
pered distributions, and the distributional Fourier transform.

12.34. The dilation of a distribution µ ∈ D′(R) is defined by duality:

〈f,D2µ〉 = 〈D1/2f, µ〉, f ∈ C∞
c (R).

We say that a distribution µ satisfies the refinement equation ϕ(x) = 2ϕ(2x)
in a distributional sense if µ = 21/2D2µ.

(a) Show that the function 1/x satisfies the one-term refinement equation
ϕ(x) = 2ϕ(2x). However, 1/x is not an integrable function and does not
determine a tempered distribution.

(b) The δ distribution is the linear functional on C∞
c (R) defined by 〈f, δ〉 =

f(0) for f ∈ C∞
c (R). Show that δ satisfies the equation ϕ(x) = 2ϕ(2x) in a

distributional sense.

(c) The jth distributional derivative δ(j) of δ is defined by 〈f, δ(j)〉 =
(−1)j f (j)(0) for f ∈ C∞

c (R). Show that δ(j) satisfies ϕ(x) = 2j+1 ϕ(2x) in a
distributional sense.

(d) The principal value of 1/x is the linear functional pv(1/x) on C∞
c (R)

given by

〈
f, pv(1/x)

〉
= lim

T→∞

∫

1
T <|t|<T

f(t)

t
dt, f ∈ C∞

c (R).
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Show that pv(1/x) satisfies ϕ(x) = 2ϕ(2x) in a distributional sense.

Remark: δ and pv(1/x) are each tempered distributions, and therefore have
distributional Fourier transforms. The Fourier transform of δ is identified with
the constant function, i.e., δ̂ = 1. The Fourier transform of pv(1/x) is identified
with the function (

pv(1/x)
)∧

(ξ) = −πi sign(ξ),

where sign(ξ) = 1, 0, or −1 according to whether ξ > 0, ξ = 0, or ξ < 0,
respectively. Up to scale, δ is the unique distributional solution to ϕ(x) =
2ϕ(2x) whose Fourier transform is continuous.

12.35. A tempered distribution µ ∈ S ′(R) satisfies the refinement equation
in the sense of distributions if we have µ =

∑
2−1/2ckD2Tkµ, where

〈
f, D2Tkµ

〉
=
〈
T−kD1/2f, µ

〉
, f ∈ S(R).

(a) Show that if the hypotheses of Theorem 12.25 are satisfied, then µ =
∨

P
(the inverse distributional Fourier transform of P ) is a tempered distribution
that satisfies the refinement equation in the sense of distributions.

(b) Show that, up to scale, µ is the unique tempered distribution that sat-
isfies the refinement equation and has a Fourier transform that is a continuous
function.

(c) Let θ be any bounded function such that θ(2ξ) = θ(ξ) for all ξ. Show
that ν̂(ξ) = P (ξ) θ(ξ) defines a tempered distribution that satisfies the refine-
ment equation in the sense of distributions.

(d) Show that a function θ that satisfies θ(2ξ) = θ(ξ) and is continuous at
ξ = 0 is a constant function. Give examples of nonconstant functions θ such
that θ(2ξ) = θ(ξ) for all ξ.

12.36. This exercise considers tempered distributions that are solutions to
the refinement equation

ϕ(x) =

N∑

k=0

ck ϕ(2x− k), where

N∑

k=0

ck = 2. (12.47)

(a) Let δk be the point mass at k distribution, i.e., 〈f, δk〉 = f(k) for

f ∈ S(R). Set ν = 1
2

∑N
k=0 ck δk, and show that the distributional Fourier

transform of ν is ν̂ = m0.

(b) Set

νn =
1

2

N∑

k=0

ck δ2−nk and µn = ν1 ∗ · · · ∗ νn.
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Show that

µ̂n(ξ) = Pn(ξ) =

n∏

j=1

m0(2
−jξ)

and
supp(µn) ⊆ [0, 1

2N ] + · · ·+ [0, 2−nN ] ⊆ [0, N ].

(c) By Exercise 12.35(a), there is a distributional solution µ to the refine-
ment equation that satisfies µ̂ = P. By Theorem 12.25, µ̂n = Pn converges to

P = µ̂ uniformly on compact sets. Show that µn
w*−→ϕ, i.e.,

lim
n→∞

〈f, µn〉 = 〈f, ϕ〉, f ∈ S(R),

and use this to show that supp(ϕ) ⊆ [0, N ].

(d) Show that if there exists an integrable solution ϕ to the refinement
equation (12.47), then ϕ is compactly supported and supp(ϕ) ⊆ [0, N ].

(e) Show that if the antialiasing condition is also satisfied, then there exists
a compactly supported solution ϕ ∈ L2(R) to the refinement equation (which
is therefore integrable by Cauchy–Bunyakovski–Schwarz).

12.7 All About the Wavelet

The preceding section showed us how to construct refinable functions that are
likely to have orthonormal translates. Now we show that if such a function ϕ
does have orthonormal translates then it generates an MRA. We will then be
able to use this to construct dyadic wavelet orthonormal bases for L2(R).

The proof of the next result, which is due to Cohen [Coh90], requires
that ϕ be integrable. For example, if the refinement coefficients are a finite
sequence then ϕ is both square integrable and compactly supported and hence
is automatically integrable.

Theorem 12.30. Assume ϕ ∈ L1(R) ∩ L2(R) is a refinable function and
{Tkϕ}k∈Z is an orthonormal sequence. If we set

V0 = span{Tkϕ}k∈Z and Vn = D2n(V0), n ∈ Z,

then {Vn} is an MRA for L2(R).

Proof. The hypotheses imply that statements (a), (b), and (e) in the definition
of an MRA (Definition 12.8) are satisfied. So, it remains to show that ∩Vn =
{0} and ∪Vn is dense in L2(R).

For each n ∈ Z let Pn denote the orthogonal projection of L2(R) onto Vn.
By Lemma 12.10, for each fixed n the sequence {D2nTkϕ}k∈Z is an orthonor-
mal basis for Vn. Therefore
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Pnf =
∑

k∈Z

〈
f, D2nTkϕ

〉
D2nTkϕ,

and we have
‖Pnf‖2L2 =

∑

k∈Z

∣∣〈f, D2nTkϕ
〉∣∣2.

Since the subspaces Vn are nested, to show that ∩Vn = {0} we need only
show that

∀ f ∈ L2(R), lim
n→−∞

‖Pnf‖L2 = 0.

Moreover, it suffices to establish this limit for f contained in a complete
subset of L2(R). By Exercise 12.12, {D2jTℓχ}j,ℓ∈Z is complete in L2(R),
where χ = χ

[0,1]. With j, ℓ ∈ Z fixed, define

En =
⋃
k∈Z

[
2n−jℓ+ k, 2n−j(ℓ+ 1) + k

]
, n ∈ Z.

Then

∥∥Pn(D2jTℓχ)
∥∥2

L2 =
∑

k∈Z

∣∣〈D2jTℓχ, D2nTkϕ
〉∣∣2

=
∑

k∈Z

∣∣〈D2j−nTℓχ, Tkϕ
〉∣∣2

=
∑

k∈Z

∣∣∣∣2(j−n)/2

∫ (ℓ+1) 2n−j

ℓ 2n−j

ϕ(x − k) dx
∣∣∣∣
2

(12.48)

≤
∑

k∈Z

∫ (ℓ+1) 2n−j

ℓ 2n−j

|ϕ(x − k)|2 dx (12.49)

=

∫

En

|ϕ(x)|2 dx,

where the inequality in equation (12.49) follows from Cauchy–Bunyakovski–
Schwarz. Since ϕ ∈ L2(R), the Lebesgue Dominated Convergence Theorem
therefore implies that

lim
n→−∞

∥∥Pn(D2jTℓχ)
∥∥
L2 = lim

n→−∞

∫

En

|ϕ(x)|2 dx = 0.

This establishes that ∩Vn = {0}.
To show that ∪Vn is dense in L2(R), it suffices to show that

∀ f ∈ L2(R), lim
n→∞

‖f − Pnf‖L2 = 0.

By orthogonality, ‖f‖2L2 = ‖Pnf‖2L2 + ‖f − Pnf‖2L2 , so we can equivalently
formulate our goal as
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∀ f ∈ L2(R), lim
n→∞

‖Pnf‖L2 = ‖f‖L2.

Moreover, as above it suffices to establish that this equality holds for the
functions D2jTℓχ with j, ℓ ∈ Z. Using the computations leading to equation
(12.48), we have

‖Pnχ‖2L2 =
∑

k∈Z

∣∣∣∣2−n/2
∫ 2n

0

ϕ(x − k) dx
∣∣∣∣
2

. (12.50)

Also, if n ≥ j then

‖Pn(D2jTℓχ)‖2L2 =
∑

k∈Z

∣∣∣∣2(j−n)/2

∫ (ℓ+1) 2n−j

ℓ 2n−j

ϕ(x− k) dx
∣∣∣∣
2

=
∑

k∈Z

∣∣∣∣2(j−n)/2

∫ 2n−j

0

ϕ(x− k) dx
∣∣∣∣
2

= ‖Pn−jχ‖2L2 .

Therefore

lim
n→∞

‖Pn(D2jTℓχ)‖L2 = lim
n→∞

‖Pn−jχ‖L2 = lim
n→∞

‖Pnχ‖L2 .

Since ‖D2jTℓχ‖L2 = ‖χ‖L2 = 1, ultimately it suffices to establish the single
equality

lim
n→∞

‖Pnχ‖L2 = ‖χ‖L2 = 1. (12.51)

To estimate ‖Pnχ‖L2 , we will divide the summation in equation (12.50)
into three parts, indexed by sets I1, I2, I3 that we will define below. We fix
ε > 0, and let T be an integer large enough that

∫

|x|>T
|ϕ(x)| dx < ε.

Since we are interested in the limit as n → ∞, we can consider the interval
[k, k + 2n] to be much longer than the interval [−T, T ].

Our first index set I1 contains those k such that [−T, T ] is entirely con-
tained within [k, k + 2n]:

I1 =
{
k ∈ Z : [−T, T ] ⊆ [k, k + 2n]

}
=
{
T − 2n, . . . ,−T

}
.

Note that I1 contains 2n − 2T + 1 elements.
The second index set I2 consists of those k such that [−T, T ] intersects the

interval [k, k+ 2n] but is not contained within it. Since n is large, I2 contains
4T elements.

The third index set is

I3 = Z \ (I1 ∪ I2) =
{
k ∈ Z : [k, k + 2n] ⊆ R\[−T, T ]

}
.
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Recall that ϕ̂(0) =
∫
ϕ(x) dx. For k ∈ I1 we have that

∣∣∣∣
∫ k+2n

k

ϕ(x)dx − ϕ̂(0)

∣∣∣∣ =

∣∣∣∣
∫

x/∈[k,k+2n]

ϕ(x)dx

∣∣∣∣

≤
∫

x/∈[−T,T ]

|ϕ(x)|dx < ε.

Hence

S1(n) =
∑

k∈I1
2−n

∣∣∣∣
∫ k+2n

k

ϕ(x) dx

∣∣∣∣
2

≤
∑

k∈I1
2−n

(
|ϕ̂(0)|+ ε

)2

=
2n − 2T + 1

2n
(
|ϕ̂(0)|+ ε

)2
,

so
lim sup
n→∞

S1(n) ≤
(
|ϕ̂(0)|+ ε

)2
.

A similar estimate from below shows that

lim inf
n→∞

S1(n) ≥
(
|ϕ̂(0)| − ε

)2
.

For the second sum, we use the gross estimate

S2(n) =
∑

k∈I2
2−n

∣∣∣∣
∫ k+2n

k

ϕ(x) dx

∣∣∣∣
2

≤
∑

k∈I2
2−n ‖ϕ‖2L1 =

4T

2n
‖ϕ‖2L1,

which implies that
lim
n→∞

S2(n) = 0.

For the third sum, note that the intervals [k, k+2n] cover R\[−T, T ] about
2n times. More precisely, for |x| > T we have

1 ≤
∑

k∈I3

χ[k,k+2n](x) ≤ 2n a.e.

Also, since ε is small, for k ∈ I3 the number
∣∣∫ k+2n

k ϕ(x) dx
∣∣ is less than 1,

and hence its square is even smaller. Therefore,

S3(n) =
∑

k∈I3
2−n

∣∣∣∣
∫ k+2n

k

ϕ(x) dx

∣∣∣∣
2

≤ 2−n
∑

k∈I3

∫ k+2n

k

|ϕ(x)| dx

≤ 2−n 2n
∫

|x|>T
|ϕ(x)| dx < ε.
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Consequently,
0 ≤ lim sup

n→∞
S3(n) ≤ ε.

By equation (12.50) and the definition of I1, I2, I3,

‖Pnχ‖2L2 = S1(n) + S2(n) + S3(n).

Combining all the preceding estimates we therefore obtain

(
|ϕ̂(0)| − ε

)2 ≤ lim inf
n→∞

‖Pnχ‖2L2 ≤ lim sup
n→∞

‖Pnχ‖2L2 ≤
(
|ϕ̂(0)|+ ε

)2
,

and since ε is arbitrary, it follows that

lim
n→∞

‖Pnχ‖2L2 = |ϕ̂(0)|2 = 1.

This establishes that equation (12.51) holds, and completes the proof. ⊓⊔

Now that we have an MRA, we need to construct the associated wavelet
function. As discussed in Section 12.4, projection of a function f onto Vn gives
us a “blurry” picture of f, essentially containing that information in f that
is visible at “resolution level n”. The purpose of the wavelet is to represent
the details of size n that we need to add in order to move to “resolution
level n+ 1”. More precisely, we have Vn ⊆ Vn+1, and the wavelet space Wn is
the space that we need to combine with Vn in order to obtain Vn+1. Since we
are interested in orthogonal decompositions, we need Wn to be the orthogonal
complement of Vn within Vn+1. That is, Wn is the space such that

Vn ⊕Wn = Vn+1.

Moreover, because Vn = D2n(V0), if we can just find the space W0 such that
V0 ⊕W0 = V1 then the spaces Wn for n 6= 0 will be given by Wn = D2n(W0).
We summarize this in the next lemma, but note that while this gives us the
“wavelet spaces” Wn, the real issue will be finding an orthonormal basis for
the space W0.

Lemma 12.31. Let {Vn}n∈Z be an MRA for L2(R) with scaling function ϕ.
Let W0 be the orthogonal complement of V0 within the space V1, and set Wn =
D2nW0. Let Pn denote the orthogonal projection of L2(R) onto Vn, and Qn
the orthogonal projection of L2(R) onto Wn. Then the following statements
hold.

(a) Vn ⊕Wn = Vn+1.

(b) Pn+1 = Pn +Qn.

(c) The spaces Wn are mutually orthogonal, i.e., Wm ⊥Wn whenever m 6= n.
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(d) If f ∈ L2(R), then {Qnf}n∈Z is an orthogonal sequence, and

f =
∑

n∈Z

Qnf.

(e) L2(R) = ⊕n∈ZWn.

Proof. (a) We have V0 ⊕W0 = V1 by construction. Combining this with the
fact that Vn = D2n(V0) and Wn = D2n(W0), we obtain Vn ⊕Wn = Vn+1.

(b) This is again an immediate consequence of the fact that W0 is the
orthogonal complement of V0 as a subspace of V1.

(c) The space W1 is the orthogonal complement of V1 within V2. However,
W0 is contained within V1, so the space W0 is orthogonal to W1. By induction,
Wm is orthogonal to Wn whenever m 6= n.

(d) The orthogonality of the sequence {Qnf}n∈Z follows from part (c).
Consequently, if the series

∑
Qnf converges, then it converges uncondition-

ally. Iterating part (b), we have

Pnf − P−nf =

n−1∑

k=−n

(
Pk+1f − Pkf

)
=

n−1∑

k=−n
Qkf.

Lemma 12.10 tells us that Pnf → f and P−nf → 0 as n → ∞, so, as limits
in L2-norm,

f = lim
n→∞

(
Pnf − P−nf

)
= lim

n→∞

n−1∑

k=−n
Qkf =

∑

k∈Z

Qkf.

(e) This is a restatement of part (d). ⊓⊔

As a consequence, if we can find an orthonormal basis of translates for W0,
then we have found an orthonormal dyadic wavelet basis for L2(R).

Corollary 12.32. Using the same notation as Lemma 12.31, if there exists
a function ψ ∈W0 such that {Tkψ}k∈Z is an orthonormal basis for W0, then
the wavelet system

W(ψ) =
{
D2nTkψ

}
k,n∈Z

is an orthonormal basis for L2(R).

Proof. By scaling, if {Tkψ}k∈Z is an orthonormal basis for W0, then for each
fixed n we have that {D2nTkψ}k∈Z is an orthonormal basis forWn. Combining
this with parts (d) or (e) of Lemma 12.31, we see thatW(ψ) is an orthonormal
basis for L2(R). ⊓⊔
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So, our goal reduces to finding a single function ψ such that {Tkψ}k∈Z is
an orthonormal basis for W0. If such a function exists, then ψ ∈ W0 ⊆ V1.
We know that

{
D2Tkϕ

}
k∈Z

is an orthonormal basis for V1, so ψ must be
representable in terms of this basis. Consequently, ψ satisfies an equation
much like the refinement equation that ϕ satisfies, namely,

ψ =
∑

k∈Z

〈ψ,D2Tkϕ〉D2Tkϕ, (12.52)

or
ψ(x) =

∑

k∈Z

dk ϕ(2x− k), (12.53)

where dk = 21/2 〈ψ,D2Tkϕ〉. This is not actually a refinement equation since
ψ is not represented in terms of dilated and translated copies of itself. Still,
it tells us that once we have the scaling function ϕ, we can hope to build the
wavelet ψ from the scaling function. We just need an explicit formula for the
scalars dk.

As in the proof of Lemma 12.15, equation (12.53) translates on the Fourier
side to

ψ̂(ξ) = m1(ξ/2) ϕ̂(ξ/2),

where

m1(ξ) =
1

2

∑

k∈Z

dk e
−2πikξ. (12.54)

We can work with the scalars ck, dk or with the functions m0, m1, whichever
is more convenient. Unfortunately, by themselves equations (12.52), (12.53),
and (12.54) do not tell us how to find the scalars dk or the function m1. We
need to use more information, namely that W0 is orthogonal to V0. For this,
we adapt a motivational discussion from [Dau90].

If we had a function ψ such that {Tkψ}k∈Z was an orthonormal basis for
W0 then, by Lemma 12.13, the Fourier transform of a generic function f ∈ W0

would have the form
f̂(ξ) = m(ξ) ψ̂(ξ) a.e., (12.55)

where m ∈ L2(T). We do not yet know that such a wavelet ψ exists, but W0

is a well-defined space (being the orthogonal complement of V0 within V1).
Therefore, our goal is to create a function ψ ∈ W0 so that every function
f ∈ W0 can be represented in the form given in equation (12.55).

Now, if we take an arbitrary function f ∈ W0, then f belongs to the larger
space V1 and therefore it can be written as

f =
∑

k∈Z

〈f,D2Tkϕ〉D2Tkϕ.

An argument similar to the one used to prove Lemma 12.15 shows that

f̂(ξ) = mf (ξ/2) ϕ̂(ξ/2) a.e., (12.56)
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where

mf (ξ) =
1

2

∑

k∈Z

〈f,D2Tkϕ〉 e−2πikξ ∈ L2(T).

The function mf (ξ/2) is 2-periodic, not 1-periodic, so equation (12.56) is not
in the form that we desire. However, we will manipulate it until we reach
something that has the form given in equation (12.55).

Since f ∈ W0, ϕ ∈ V0, and W0 ⊥ V0, we have 〈f, Tkϕ〉 = 0 for every k ∈ Z.
Lemma 10.20 tells us that the bracket product function

[f̂ , ϕ̂ ](ξ) =
∑

k∈Z

f̂(ξ + k) ϕ̂(ξ + k)

belongs to L1(T). The same lemma also tells us that the Fourier coefficients

of [f̂ , ϕ̂ ] are

〈
[f̂ , ĝ ], ek

〉
L2(T)

= 〈f, T−kϕ〉 = 0, k ∈ Z.

As functions in L1(T) are uniquely determined by their Fourier coefficients

(Theorem 4.25), this implies that [f̂ , ϕ̂ ] = 0 a.e. Therefore, by using the
refinement equation and equation (12.56) and arguing similarly as in the proof
of Theorem 12.27, we find that

0 = [f̂ , ϕ̂ ](ξ) =
∑

k∈Z

f̂(ξ + k) ϕ̂(ξ + k)

=
∑

k∈Z

mf

(
ξ+k
2

)
ϕ̂
(
ξ+k
2

)
m0

(
ξ+k
2

)
ϕ̂
(
ξ+k
2

)

= mf

(
ξ
2

)
m0

(
ξ
2

) ∑

k∈Z

∣∣ϕ̂
(
ξ
2 + k

)∣∣2

+ mf

(
ξ+1
2

)
m0

(
ξ+1
2

) ∑

k∈Z

∣∣ϕ̂
(
ξ+1
2 + k

)∣∣2

= mf

(
ξ
2

)
m0

(
ξ
2

)
+ mf

(
ξ
2 + 1

2

)
m0

(
ξ
2 + 1

2

)
. (12.57)

Replacing ξ by 2ξ, we conclude that

mf (ξ)m0(ξ) + mf (ξ + 1
2 )m0(ξ + 1

2 ) = 0 a.e. (12.58)

Since ϕ has orthonormal translates, the antialiasing condition

|m0(ξ)|2 + |m0(ξ + 1
2 )|2 = 1 a.e.

holds. Therefore m0(ξ) and m0(ξ + 1
2 ) cannot vanish simultaneously on any

set with positive measure. Applying this fact to equation (12.58), we can write

mf (ξ) = λ(ξ)m0(ξ + 1
2 ) a.e., (12.59)
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where

λ(ξ) =




−mf (ξ + 1

2 )/m0(ξ), m0(ξ) 6= 0,

mf (ξ)/m0(ξ + 1
2 ), otherwise.

Suppose m0(ξ) and m0(ξ+ 1
2 ) are both nonzero. Then by applying periodicity

and equation (12.58) we have

λ(ξ) = −mf (ξ + 1
2 )/m0(ξ)

= mf (ξ)/m0(ξ + 1
2 )

= mf

(
(ξ + 1

2 ) + 1
2

)
/m0(ξ + 1

2 ) = −λ(ξ + 1
2 ),

and the same equality λ(ξ+ 1
2 ) = −λ(ξ) also holds if either m0(ξ) orm0(ξ+

1
2 )

is zero. While this does not say that λ is 1
2 -periodic, it does imply that the

function e−2πiξλ(ξ) is 1
2 -periodic. Therefore, if we define

m(ξ) = eπiξλ( ξ2 ) (12.60)

then m is a 1-periodic function and

f̂(ξ) = mf(
ξ
2 ) ϕ̂( ξ2 ) = λ( ξ2 )m0(

ξ
2 + 1

2 ) ϕ̂( ξ2 )

= m(ξ) e−πiξm0(
ξ+1
2 ) ϕ̂( ξ2 ) (12.61)

Comparing equation (12.61) to our hoped-for equation (12.55), we are led to
guess that ψ will be the function whose Fourier transform is

ψ̂(ξ) = e−πiξm0(
ξ+1
2 ) ϕ̂( ξ2 ). (12.62)

Note that we have not proved that this choice will work. In particular, a
major issue is that we have not proved that the function m belongs to L2(T).

Also, even if we do prove that this formula for ψ̂ gives us a function ψ that
generates an orthonormal basis for W0, it is not unique. For example, W0 is
shift-invariant, so we can always replace ψ by an integer translate Tjψ. More
generally, Exercise 10.19 implies that if {Tkψ}k∈Z is an orthonormal basis for

W0, then so is {Tkη}k∈Z where η̂(ξ) = α(ξ) ψ̂(ξ) and α is a 1-periodic function
such that |α(ξ)| = 1 a.e.

Still, we will proceed to verify our guess that ψ̂ defined by equation (12.62)
gives us a function ψ such that {Tkψ}k∈Z is an orthonormal basis forW0.With

ψ̂ defined in this way, the function m1 given in equation (12.54) has the form

m1(ξ) = e−2πiξm0(ξ + 1
2 )

= e−2πiξ 1

2

∑

k∈Z

ck e
2πik(ξ+ 1

2
)
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=
1

2

∑

k∈Z

ck e
πik e2πi(k−1)ξ

=
1

2

∑

k∈Z

(−1)k−1 c1−k e
−2πikξ .

Hence the coefficients dk are

dk = (−1)k−1 c1−k.

Since

|m0(ξ)|2 + |m1(ξ)|2 = |m0(ξ)|2 + |m0(ξ + 1
2 )|2 = 1 a.e.,

m1 is a high-pass filter in the same sense that m0 is a low-pass filter.
Now we will make this motivational discussion precise. The next theorem

shows that if we have an MRA and we define ψ as above, then ψ generates a
wavelet orthonormal basis for L2(R). Combining this with Theorem 12.30, we
see that from any refinable function ϕ ∈ L1(R)∩L2(R) that has orthonormal
translates we can construct a wavelet orthonormal basis for L2(R).

Theorem 12.33. Assume that {Vn}n∈Z is an MRA for L2(R) with scaling
function ϕ, and let (ck)k∈Z ∈ ℓ2(Z) be the refinement coefficients for ϕ. Then
the following statements hold.

(a) The series

ψ(x) =
∑

k∈Z

(−1)k−1 c1−k ϕ(2x− k)

converges unconditionally in L2-norm.

(b) The Fourier transform of ψ is

ψ̂(ξ) = m1(ξ/2)ϕ(ξ/2) where m1(ξ) = e−2πiξm0(ξ + 1
2 ).

(c)
{
Tkψ

}
k∈Z

is an orthonormal basis for W0, and Tkψ is orthogonal to Tjϕ
for every j, k ∈ Z.

(d) W(ψ) =
{
2n/2ψ(2nx− k)

}
k,n∈Z

is an orthonormal basis for L2(R).

Proof. We will prove statements (c) and (d), and assign the proofs of state-
ments (a) and (b) as Exercise 12.37.

(c) With m1(ξ) = e−2πiξm0(ξ + 1
2 ), an argument similar to the one in the

proof of Theorem 12.27 shows that

Φψ(ξ) =
∑

k∈Z

|ψ̂(ξ + k)|2

= |m1(ξ)|2 + |m1(ξ + 1
2 )|2

= |m0(ξ + 1
2 )|2 + |m0(ξ)|2 = 1 a.e. (12.63)
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By Lemma 12.13 we conclude that {Tkψ}k∈Z is an orthonormal sequence.
As in equation (12.57), we have

m1(ξ)m0(ξ) + m1(ξ + 1
2 )m0(ξ + 1

2 ) = 0 a.e.,

and from this it follows that
[
ψ̂, ϕ̂

]
(ξ) =

∑

k∈Z

ψ̂(ξ + k) ϕ̂(ξ + k) = 0 a.e. (12.64)

Lemma 10.20 therefore implies that Tjψ is orthogonal to Tkϕ for every j,
k ∈ Z.

We must still show that {Tkψ}k∈Z is complete in W0. So, suppose that f
is an arbitrary function in W0. The argument that proceeds from equation
(12.56) through equation (12.61) does not involve ψ, but only uses the fact
that f ∈ W0 and W0 ⊥ V0. Consequently all of the argument in equations
(12.56)–(12.61) is valid. Using the notation from that argument, we have

f̂(ξ) = m(ξ) e−πiξm0(
ξ+1
2 ) ϕ̂( ξ2 ) = m(ξ) ψ̂(ξ).

If we can show that m ∈ L2(T), then it follows from Lemma 12.13 that
f ∈ span{Tkψ}k∈Z and the proof will be complete.

By equation (12.60), the function m is square integrable if and only if λ is,
so our task reduces to showing that λ ∈ L2(T). We know that mf ∈ L2(T),
and by combining equation (12.59) with the fact that |λ(ξ + 1

2 )| = |λ(ξ)|, we
see that

∫ 1

0

|mf (ξ)|2 dξ

=

∫ 1

0

|λ(ξ)|2 |m0(ξ + 1
2 )|2 dξ

=

∫ 1/2

0

|λ(ξ)|2 |m0(ξ + 1
2 )|2 dξ +

∫ 1/2

0

|λ(ξ + 1
2 )|2 |m0(ξ + 1)|2 dξ

=

∫ 1/2

0

|λ(ξ)|2
(
|m0(ξ + 1

2 )|2 + |m0(ξ)|2
)
dξ

=

∫ 1/2

0

|λ(ξ)|2 dξ.

Since mf ∈ L2(R), we therefore have λ ∈ L2(T).

(d) This follows from Corollary 12.32. ⊓⊔
Corollary 12.34. Assume that ϕ ∈ L1(R) ∩ L2(R) is a refinable function
such that {Tkϕ}k∈Z is an orthonormal sequence. Then the spaces Vn defined in
Theorem 12.30 form an MRA for L2(R), and the function ψ defined in Theo-
rem 12.33 generates a dyadic wavelet orthonormal basisW(ψ) for L2(R). ♦



12.8 Examples 417

Theorem 12.29 tells us that if we assume decay, normalization, and an-
tialiasing conditions on ϕ then a square integrable solution to the refine-
ment equation will exist. With rare exceptions, such a refinable function will
have orthonormal translates, and hence can be used to generate a wavelet or-
thonormal basis for L2(R). Necessary and sufficient conditions for ϕ to have
orthonormal translates can be given (this is called Cohen’s condition). We
refer to [Dau92] for more details on this issue.

Exercises

12.37. Prove statements (a) and (b) in Theorem 12.33. Also, justify equations
(12.63) and (12.64) in the proof of statement (c) of that theorem.

12.38. Suppose that ϕ ∈ L2(R) is the scaling function for an MRA, and the
wavelet ψ is defined as in Theorem 12.33. Prove the following statements.

(a) |ϕ̂(ξ)|2 + |ψ̂(ξ)|2 = |ϕ̂(ξ/2)|2 a.e.

(b)
∑∞
n=1 |ψ̂(2nξ)|2 = |ϕ̂(ξ)|2 a.e.

(c)
∑

n∈Z
|ψ̂(2nξ)|2 = 1 a.e. (try to do this without appealing to Theorem

12.6).

Remark: This problem is easier if we assume that ϕ ∈ L1(R)∩L2(R), for
then ϕ̂ ∈ C0(R) by Theorem 9.10.

12.8 Examples

Before applying the results of the preceding sections we note that not every
orthonormal wavelet basis is associated with an MRA.

Example 12.35 (The Journé Wavelet). The Journé wavelet is the function ψ

whose Fourier transform ψ̂ is the characteristic function of the set

E =
[
− 16

7 ,−2
]
∪
[
− 1

2 ,− 2
7

]
∪
[
2
7 ,

1
2

]
∪
[
2, 16

7

]
. (12.65)

Exercise 12.4 can be used to show that E is a wavelet set, which implies that
the dyadic wavelet systemW(ψ) is an orthonormal basis for L2(R). However,
Exercise 12.39 sketches a proof that there is no MRA whose associated wavelet
is the function ψ. ♦

In some sense the Journé wavelet is “pathological,” but in another sense
this pathology is simply a reflection of our preference for MRA wavelets. Some
wavelet sets are associated with MRAs; for example, the Shannon wavelet is
a wavelet set example and is associated with an MRA (see Example 12.4).
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However, “most” wavelet sets behave more like the Journé wavelet in the
sense that they are not associated with MRAs.

For the remainder of this section we will focus on wavelets that are associ-
ated with MRAs. We begin by applying Corollary 12.34 to refinable functions
that satisfy finite length refinement equations of the form

ϕ(x) =

N∑

k=0

ck ϕ(2x− k).

Setting ck = 0 for k < 0 or k > N, the decay condition
∑ |kck| < ∞ is

automatically satisfied. We assume that the normalization condition
∑
ck = 2

and the antialiasing condition

∑

k∈Z

ck ck+2n = 2δ0n, n ∈ Z,

both hold. This implies that N is odd (Exercise 12.25), and it also implies
that the minimal accuracy condition

∑

k∈Z

c2k = 1 =
∑

k∈Z

c2k+1

is satisfied. Further, by Theorem 12.29 there exists a square integrable solution
ϕ to the refinement equation, and Exercise 12.36 shows that this solution is
compactly supported (and hence integrable). If this function ϕ has orthonor-
mal translates, then the wavelet

ψ(x) =

1∑

k=1−N
(−1)k−1 c1−k ϕ(2x− k) (12.66)

generates a wavelet orthonormal basisW(ψ) for L2(R). While Theorem 12.29
does not imply that {Tkϕ}k∈Z must be an orthonormal system, this is usu-
ally the case in practice. In a sense that can be made precise, out of all the
coefficients c0, . . . , cN that satisfy the hypotheses of Theorem 12.29, only a
set of measure zero yields functions ϕ that do not have orthonormal integer
translates [Law90].

In any case, since supp(ϕ) ⊆ [0, N ], the wavelet ψ given by equation (12.66)
is supported within the interval [(1 − N)/2, (N + 1)/2]. However, since any
integer translate of the wavelet generates the same space W0, when working
with finite length refinement equations we often define the wavelet by

ψ(x) =
N∑

k=0

(−1)k cN−k ϕ(2x− k), (12.67)

which is supported in the same interval [0, N ] in which the scaling function ϕ
is supported.
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Example 12.36 (The Haar Wavelet). The scaling function for the Haar MRA
is the box function χ = χ

[0,1], which satisfies the refinement equation

χ(x) = χ(2x) + χ(2x− 1).

Since χ has orthonormal translates, the Haar wavelet

ψ = χ(2x)− χ(2x− 1)

generates a wavelet orthonormal basis for L2(R) (compare this to the direct
proof given in Example 1.54). ♦

Example 12.37 (The Daubechies Wavelet). By going to refinement equations
with more coefficients, we can create scaling functions and wavelets that are
continuous (or smoother) and compactly supported. We mentioned the fam-
ily of Daubechies scaling functions D2N in Section 12.5, and described the
function D4 in detail there. The D4 function satisfies the refinement equation

D4(x) =

3∑

k=0

ckD4(2x− k),

where

c0 =
1 +
√

3

4
, c1 =

3 +
√

3

4
, c2 =

1 +
√

3

4
, c3 =

1−
√

3

4
.

As D4 has orthonormal translates, Theorem 12.33 implies that

W4(x) =

3∑

k=0

(−1)k c3−kD4(2x− k)

generates a wavelet orthonormal basis for L2(R). Since W4 is a finite linear
combination of translated and dilated copies ofD4, it has the same smoothness
as D4, as can be seen in the plot in Figure 12.16. Specifically, W4 is Hölder
continuous, but it is not differentiable. Though it does not seem obvious by
looking at its graph, the function W4 has the remarkable property that it is
orthogonal to every dyadic dilation and translation W4(2

nx− k) of itself, and
the collection W(ψ) =

{
2n/2W4(2

nx − k)
}
n,k∈Z

forms an orthonormal basis

for L2(R). ♦

More generally, each scaling function ϕ corresponding to a point (c0, c3)
lying on the circle in Figure 12.12 has orthonormal translates, with the sin-
gle exception of the point (1, 1) whose scaling function is the stretched box
ϕ = χ

[0,3]. Each scaling function that has orthonormal translates determines
a wavelet ψ and an orthonormal wavelet basis W(ψ) for L2(R). One such
wavelet is shown in Figure 12.16 alongside W4.
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Fig. 12.16. Left: The Daubechies wavelet W4. Right: Wavelet corresponding to the
bottom right scaling function in Figure 12.13.

Some of the scaling functions and wavelets corresponding to points on
the (c0, c3) circle are continuous and some are discontinuous, but none are
differentiable. By going to longer refinement equations, we can create com-
pactly supported wavelets that have as many continuous derivatives as we
like (though by Exercise 12.21 we can never create a compactly supported in-
finitely differentiable wavelet by this method). In particular, the Daubechies
wavelets W2N are supported in [0, 2N ] and their smoothness increases lin-
early with N (for large N we have D2N , W2N ∈ CµN (R) with µ ≈ 0.2, see
[Dau92]). For example, the function D6 is differentiable (see Figure 12.14).
In contrast to the situation for wavelets, the Balian–Low Theorems (Theo-
rems 11.33 and 11.35) tell us that the generator of a Gabor Riesz basis for
L2(R) can never be both smooth and decay well at infinity!

Now we turn to some non-compactly supported wavelets. For these types
of functions, it is often more convenient to work directly with m0 and m1 than
with the refinement coefficients.

Example 12.38 (The Battle–Lemarié Wavelet). Let w(x) = max{1 − |x|, 0}
be the hat function on [−1, 1]. This is a continuous refinable function, but it
does not have orthonormal translates. On the other hand, its integer translates
form a Riesz basis for the space V0 = span{Tkw}k∈Z. In Example 10.22 we
showed how to construct a function w♯ that has orthonormal translates and
generates the same space V0 as the hat function,

V0 = span{Tkw}k∈Z = span{Tkw♯}k∈Z.

This function w♯ is the linear spline Battle–Lemarié scaling function, and it
is pictured in Figure 12.17. It is continuous, piecewise linear, and has rapid
decay at infinity. Its Fourier transform is given explicitly by

ŵ♯(ξ) = ŵ(ξ)Φw(ξ)−1/2 =

(
sinπξ

πξ

)2 (
3

2 + cos 2πξ

)1/2

. (12.68)

The function Φw is continuous, 1-periodic, and everywhere nonzero, so the

same is true of Φ
−1/2
w .
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Fig. 12.17. Top: Linear spline Battle–Lemarié scaling function (left) and wavelet
(right). Bottom: Absolute values of the corresponding Fourier transforms.

Equation (12.68) expresses in the Fourier domain the fact that w♯ belongs
to V0. While it is easy to see that w is refinable, it is not quite so clear that
w♯ is refinable. To show this, we need to find a function m0 ∈ L2(T) such

that ŵ♯(ξ) = m0(ξ/2) ŵ♯(ξ/2). Since ŵ♯ is nonzero almost everywhere, we can
define

m0(ξ) =
ŵ♯(2ξ)

ŵ♯(ξ)
=

1

4

(
sin 2πξ

sinπξ

)2(
2 + cos 2πξ

2 + cos 4πξ

)1/2

= (cos2 πξ)

(
2 + cos 2πξ

2 + cos 4πξ

)1/2

.

This is a square integrable, 1-periodic function (see Figure 12.15). Exercise
12.18 therefore implies that w♯ is refinable. The high-pass filter is

m1(ξ) = e−2πiξ (sin2 πξ)

(
2− cos 2πξ

2 + cos 4πξ

)1/2

.

The refinement coefficients ck decay quickly, so the wavelet

ψ(x) =
∑

k∈Z

(−1)k−1 c1−k w
♯(2x− k)

has rapid decay as well (in fact, it can be shown that ϕ and ψ have exponential
decay at infinity). A plot of this wavelet, obtained by numerically computing
the above quantities, is shown in Figure 12.17. Note that since ψ belongs to
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the space V1, it is piecewise linear. By replacing the hat function with higher-
order B-splines, we can create wavelets that have greater smoothness and still
decay quickly at infinity, see [Chr03] for details. ♦

We end this chapter by discussing the Meyer wavelet, though it may be
more precise to refer to “Meyer wavelets,” since the same construction pro-
duces an entire family of wavelets with similar properties. An important prop-
erty of the Meyer wavelet is that its Fourier transform is compactly supported.
The Shannon wavelet is another example of a wavelet with this property,
but while the Fourier transform of the Shannon wavelet is discontinuous, the
Fourier transform of the Meyer wavelet is smooth. In fact, we can construct
examples that are as smooth as we like, even infinitely differentiable.

Example 12.39 (The Meyer Wavelet). To create the Meyer wavelet we first
construct a scaling function. Let ϕ̂ be any continuous “bell function” satisfying
the following properties:

(a) supp(ϕ̂ ) = [− 2
3 ,

2
3 ],

(b) ϕ̂ > 0 on (− 2
3 ,

2
3 ),

(c) ϕ̂ = 1 on (− 1
3 ,

1
3 ),

(d)
∑
k∈Z
|ϕ̂(ξ + k)|2 = 1.

For example, if we take a = 1 and b = 3/4 in Exercise 11.10 then we obtain
a function g that almost has the right properties. That function is supported
on [0, 4

3 ], so to obtain ϕ̂ we just have to translate left: ϕ̂(x) = g(x + 2
3 ).

More explicit constructions can also be given, see [Dau92], [Wal02], and Ex-
ercise 12.40.

In any case, since ϕ̂ is continuous and compactly supported, it is square
integrable, and therefore its inverse Fourier transform ϕ belongs to L2(R).
Further, requirement (d) above implies that ϕ has orthonormal integer trans-
lates. We call ϕ the Meyer scaling function, see Figure 12.18. Note that since
ϕ̂ is both real and even, the function ϕ is real and even as well (Exercise 9.7).

Of course, in order to properly call ϕ a scaling function, we must show
that it is refinable. Rather than trying to use the approach we used for the
Battle–Lemarié wavelet, we take advantage of the fact that ϕ̂ is compactly
supported and constant on the interval [− 1

3 ,
1
3 ]. We want to find m0 so that

ϕ̂(ξ) = m0(ξ/2) ϕ̂(ξ/2), and we observe that

ϕ̂(ξ) = ϕ̂(ξ) ϕ̂(ξ/2),

since ϕ̂(ξ/2) = 1 on [− 2
3 ,

2
3 ]. This suggests taking m0(ξ/2) = ϕ̂(ξ), or m0(ξ) =

ϕ̂(2ξ). But we need m0 to be 1-periodic, so what we do is define m0(ξ) to be
the 1-periodic extension of ϕ̂(2ξ) to the real line. Since ϕ̂(2ξ) is supported in
[− 1

3 ,
1
3 ], which has length less than 1, we can write m0 explicitly as

m0(ξ) =
∑

k∈Z

ϕ̂(2(ξ + k)).
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This function belongs to L2(T), and we have

ϕ̂(ξ) = m0(ξ/2) ϕ̂(ξ/2), ξ ∈ R.

Therefore ϕ is refinable, so Corollary 12.34 implies the existence of a corre-
sponding wavelet ψ, which we call the Meyer wavelet. As m0 is real valued,
the high-pass filter is

m1(ξ) = e−2πiξm0(ξ + 1
2 ) = e−2πiξ

∑

k∈Z

ϕ̂(2ξ + 2k + 1).

Taking the support of ϕ̂ into account, the Fourier transform of the wavelet ψ
is

ψ̂(ξ) = m1(ξ/2) ϕ̂(ξ/2) = e−πiξ
∑

k∈Z

ϕ̂(ξ + 2k + 1) ϕ̂(ξ/2)

= e−πiξ
(
ϕ̂(ξ − 1) + ϕ̂(ξ + 1)

)
ϕ̂(ξ/2).

Note that the function ĝ(ξ) =
(
ϕ̂(ξ − 1) + ϕ̂(ξ + 1)

)
ϕ̂(ξ/2) is real and even,

so its inverse Fourier transform g is real and even. Since ψ̂ = e−πiξ ĝ(ξ) we
have ψ(x) = g(x− 1

2 ), so ψ is real valued and is symmetric about x = 1
2 .

Illustrations of the Meyer scaling function and wavelet and their Fourier
transforms appear in Figure 12.18. These illustrations are based on the bell
function ϕ̂ that is constructed in Exercise 12.40. ♦
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Fig. 12.18. Top left: Meyer scaling function. Top right: Meyer wavelet. Bottom:
Absolute values of the corresponding Fourier transforms.

One of the many interesting things about the Meyer wavelet is that if we
take our starting bell function to be infinitely differentiable then ϕ̂ and ψ̂
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are both infinitely differentiable and compactly supported. As a consequence,
Corollary 9.20 implies that ϕ and ψ both belong to the Schwartz space S(R),
and therefore they decay faster at infinity than any polynomial (though they
do not have exponential decay). This is again in remarkable contrast to the
situation for Gabor bases, and leads us to a final historical remark.

As we have noted, the first orthonormal wavelet basis was the Haar system,
constructed in 1910. However, the functions comprising the Haar system are
discontinuous. A wavelet basis generated by a k-times differentiable function ψ
was constructed by Strömberg in 1982 [Str83], but unfortunately was mostly
overlooked at the time. While trying to prove that an analogue of the Balian–
Low Theorem holds for wavelet bases, Meyer (who was unaware of Strömberg’s
construction) instead found his wavelet, which manifestly shows that the BLT
does not hold for wavelets. Meyer’s construction in [Mey85] did not have the
short proof given above. Multiresolution analysis had not yet been invented,
and Meyer did not arrive at his construction through the use of a scaling
function. Instead, he defined the wavelet ψ explicitly, and directly proved that
W(ψ) was an orthonormal basis for L2(R), via an argument that can only
be described as relying upon “miraculous cancellations”! Other constructions,
including those of Battle [Bat87] and Lemarié [Lem88] followed shortly after,
and the need for miracles was soon removed when Mallat and Meyer developed
the framework of multiresolution analysis. Though Meyer’s 1986 lectures at
the University of Torino on multiresolution analysis were not available to me,
one of my very first encounters with wavelet theory was with a xerox copy of
his handwritten notes for the Zygmund lecture he gave at the University of
Chicago a year later [Mey87]. These notes were eventually typed and appear
in the reprint volume [HW96].

Exercises

12.39. (a) Show that the Journé set E defined in equation (12.65) is a wavelet
set (use Exercise 12.4).

(b) Define ψ̂ = χE , and suppose that ψ was associated with an MRA.
Let ϕ be the scaling function for this MRA. Use Exercise 12.38 to show that
|ϕ̂| = χF , where

F =
[
− 8

7 ,−1
]
∪
[
− 4

7 ,− 1
2

]
∪
[
− 2

7 ,
2
7

]
∪
[
1
2 ,

4
7

]
∪
[
1, 8

7

]
.

(c) Use the equation ϕ̂(ξ) = m0(ξ/2) ϕ̂(ξ/2) to show that |m0(ξ)| = 1
for ξ ∈

[
− 2

7 ,
2
7

]
. Since m0 is 1-periodic, this also shows that |m0(ξ)| = 1 for

ξ ∈
[

5
7 ,

9
7

]
. Show that if ξ ∈

[
1, 8

7

]
then ϕ(2ξ) = 0 but |m0(ξ)ϕ(ξ)| = 1.

Conclude that ψ cannot be associated with an MRA.

(d) For an alternative proof that ψ cannot be associated with an MRA,
compute Φϕ(ξ) =

∑
k∈Z
|ϕ̂(ξ + k)|2, and use this to obtain a contradiction.
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12.40. (a) Define

ν(x) =





0, x < 0,

x4 (35− 84x+ 70x2 − 20x3), 0 ≤ x ≤ 1,

1, x > 1.

Show that ν ∈ C3(R) and 0 ≤ ν(x) ≤ 1 for all x. We call ν a C3-sigmoid
function.

(b) Define

ϕ̂(ξ) =





0, ξ ≤ − 2
3 or ξ ≥ 2

3 ,

sin
(
π
2 ν(3x+ 2)

)
, − 2

3 < ξ < − 1
3 ,

1, − 1
3 ≤ ξ ≤ 1

3 ,

cos
(
π
2 ν(3x+ 2)

)
, 1

3 < ξ < 2
3 .

Show that ϕ̂ is a bell function in the sense of Example 12.39.
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Fourier Series

This chapter and the next are devoted to the trigonometric system {e2πinx}n∈Z

in the spaces Lp(T) and C(T). In this chapter we will develop some new tools,
including convolution and approximate identities, and then in Chapter 14 we
apply these tools to determine the basis properties of the trigonometric sys-
tem in Lp(T) and C(T). Sources for additional information on the material
in these chapters include [Ben97], [Kat04], [Gra04], or [Heil].

13.1 Notation and Terminology

Most of the functions that we will encounter in this chapter will be defined
on the domain T, which means that they are 1-periodic functions on the real
line. We have discussed this domain before, but it will be useful to recall some
terminology precisely here.

As a set, we think of T as being the real line, but functions in Lp(T) or
C(T) are required to be 1-periodic, and the Lp-norm of a function in Lp(T)
is computed over one period of the function, e.g., on any interval of length 1
(typically the interval [0, 1), but the interval [− 1

2 ,
1
2 ) is often convenient as

well). A function specified on the interval [0, 1) has a unique extension to a 1-
periodic function on R, and we usually work interchangeably with the function
on [0, 1) and its 1-periodic extension. Since single points have zero Lebesgue
measure, as far as Lp is concerned it does not matter if we define a function on
[0, 1) or [0, 1] and then extend it periodically to R. However, for continuous
functions it is important to distinguish between being continuous on [0, 1)
and having a continuous 1-periodic extension to R. Functions in C(T) satisfy
f(0) = f(1), and we often do not distinguish between functions in C(T) and
continuous functions on the closed interval [0, 1] that satisfy f(0) = f(1).

A trivial, but important, fact about 1-periodic functions is that if f ∈
L1(T) and y ∈ R, then we have

∫ 1

0

f(x− y) dx =

∫ 1

0

f(x) dx. (13.1)
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Thus, integrals on T are invariant under the change of variable x 7→ x− y. A
less trivial but equally important fact is that C(T) is dense in Lp(T) for each
1 ≤ p <∞, see Lemma A.27.

In addition to the spaces Lp(T) and C(T), we will use the following spaces
of m-times differentiable or infinitely differentiable functions on T:

Cm(T) =
{
f ∈ C(T) : f, f ′, . . . , f (m) ∈ C(T)

}
,

C∞(T) =
{
f ∈ C(T) : f, f ′, · · · ∈ C(T)

}
.

The sequence spaces that appear in this chapter will usually be on the
integers Z rather than the natural numbers. We denote these spaces by ℓp(Z),
c0(Z), c(Z), etc. For example, c0(Z) consists of those bi-infinite sequences
x = (xn)n∈Z for which xn → 0 as n → ±∞. It will be convenient in this
chapter to write sequences in either of the forms x = (xn) or x =

(
x(n)

)
.

The standard basis vectors will be indexed by the integers Z. That is, in
this chapter we set

δn = (δnk)k∈Z, n ∈ Z,

and refer to {δn}n∈Z as the standard basis. The standard basis is an uncon-
ditional basis for ℓp(Z) for each 1 ≤ p < ∞, and it is also an unconditional
basis for c0(Z).

Throughout this chapter, en will denote the 1-periodic complex exponen-
tial function

en(x) = e2πinx, x ∈ T.

A finite linear combination

N∑

n=−N
cne

2πinx ∈ span{en}n∈Z

is called a trigonometric polynomial.
Because the functions en belong simultaneously to the Hilbert space L2(T)

and the Banach spaces Lp(T), it will be convenient in this chapter to use
a notation for linear functionals that extends the inner product on L2(T).
Specifically, when f, g are functions such that their product fg is integrable,
we will write

〈f, g〉 =

∫ 1

0

f(x) g(x) dx.

Using this convention, the sequence {en}n∈Z ⊆ Lp(T) is biorthogonal to the

sequence {en}n∈Z ⊆ Lp
′

(T) when 1 ≤ p ≤ ∞. Hence {en}n∈Z is minimal in
Lp(T) for each 1 ≤ p ≤ ∞, and it is likewise minimal in C(T). Our goal
is to determine the completeness and basis properties of this sequence. By
direct calculation, {en}n∈Z is an orthonormal sequence in L2(T). We will
show in Section 13.6 that {en}n∈Z is complete in Lp(T) for 1 ≤ p < ∞ and
is also complete in C(T). Combined with orthonormality, this tells us that



13.2 Fourier Coefficients and Fourier Series 431

the trigonometric system is an orthonormal basis for L2(T). Addressing the
basis properties in other spaces will take more work, but we will ultimately
show that {en}n∈Z is a basis for Lp(T) for each 1 < p <∞, and is exact but
not a basis for L1(T) and C(T). We already know from Exercise 6.5 that the
trigonometric system cannot be an unconditional basis in Lp(T) when p 6= 2,
so we conclude that it is a conditional basis for 1 < p < 2 and 2 < p <∞.

We will need the translation and modulation operators, acting on functions
on T or sequences on Z.

Definition 13.1. We define the following operations on functions f : T→ C.

Translation: (Taf)(x) = f(x− a), a ∈ R.

Modulation: (Mθf)(x) = e2πiθxf(x), θ ∈ R.

Analogous operations on sequences c =
(
c(n)

)
n∈Z

are defined as follows.

Translation: (Tmc)(n) = c(n−m), m ∈ Z.

Modulation: (Mθc)(n) = e2πiθnc(n), θ ∈ R. ♦

Exercises

13.1. (a) Prove that every function in C(T) is uniformly continuous, and use
this to prove that translation is strongly continuous on C(T), i.e.,

∀ f ∈ C(T), lim
a→0
‖Taf − f‖∞ = 0.

(b) Use the fact that C(T) is dense in Lp(T) to prove that translation is
strongly continuous on Lp(T) when 1 ≤ p <∞, i.e.,

∀ 1 ≤ p <∞, ∀ f ∈ Lp(T), lim
a→0
‖Taf − f‖Lp = 0.

13.2 Fourier Coefficients and Fourier Series

We begin with the Fourier coefficients of an integrable function on T. Thinking
of {en}n∈Z in its role as the biorthogonal system, the Fourier coefficients of f
are simply its “inner products” with the biorthogonal system {en}n∈Z.

Definition 13.2 (Fourier Coefficients). Given f ∈ L1(T), its Fourier co-
efficients are

f̂(n) = 〈f, en〉 =

∫ 1

0

f(x) e−2πinx dx, n ∈ Z.

We set
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f̂ =
(
f̂(n)

)
n∈Z

,

and refer to the sequence f̂ as the Fourier transform of f. When we wish to
emphasize the role of the Fourier transform as an operator, we write Ff = f̂ .

We also define

∨

f (n) = 〈f, e−n〉 =

∫ 1

0

f(x) e2πinx dx, n ∈ Z,

and call the sequence
∨

f =
( ∨

f (n)
)
n∈Z

the inverse Fourier transform of f. We often write F−1f =
∨

f . ♦

The reason for the terminology “inverse” will become clear later. For no-

tational clarity, we sometimes write f
∧

or (f)
∧

instead of f̂ .
If f ∈ L1(T) then

|f̂(n)| ≤
∫ 1

0

|f(x) e2πinx| dx =

∫ 1

0

|f(x)| dx = ‖f‖L1, (13.2)

so f̂ ∈ ℓ∞(Z). Hence F : L1(T)→ ℓ∞(Z) and

‖f̂ ‖ℓ∞ ≤ ‖f‖L1,

so F is bounded with operator norm ‖F‖ ≤ 1.

Example 13.3. Given m ∈ N, we have by biorthogonality that the Fourier
coefficients of em are

êm(n) = 〈em, en〉 = δmn, n ∈ Z.

That is, êm = δm. In particular, ‖êm‖ℓ∞ = 1 = ‖em‖L1, so the operator norm
of F : L1(T)→ ℓ∞(Z) is ‖F‖ = 1 (compare equation (9.15)). ♦

Note that L1(T) is the largest space in the universe of function spaces
that we are considering, in the sense that L1(T) contains C(T) and Lp(T) for
each 1 ≤ p ≤ ∞. Since we know that {en}n∈Z is minimal and the biorthog-
onal sequence is {en}n∈Z, if it is a basis for Lp(T) or C(T) then the basis
representation of a function f would be

f(x) =
∑

n∈Z

f̂(n) en(x) =
∑

n∈Z

f̂(n) e2πinx, (13.3)

where the series converges in norm with respect to some fixed ordering of Z.
Given f ∈ L1(T), it is customary to refer to the formal series

∑

n∈Z

f̂(n) e2πinx (13.4)
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as the Fourier series of f. There is no guarantee that this series will converge
in any sense, and one of the main issues that we will address in Chapter 14 is
the question of when and in what sense equation (13.3) holds.

We have a symmetric definition of the Fourier transform of a sequence in
ℓ1(Z). Note that, in contrast to the Lp spaces, ℓ1(Z) is the smallest sequence
space in our universe, as ℓ1(Z) ⊆ ℓp(Z) for each 1 ≤ p ≤ ∞ and ℓ1(Z) ⊆ c0(Z).

Definition 13.4. If c = (cn)n∈Z ∈ ℓ1(Z), then its Fourier transform is the
function

ĉ(x) =
∑

n∈Z

cnen(x) =
∑

n∈Z

cne
−2πinx, x ∈ T. (13.5)

The inverse Fourier transform of c ∈ ℓ1(Z) is

∨

c(x) =
∑

n∈Z

cne−n(x) =
∑

n∈Z

cne
2πinx, x ∈ T. ♦ (13.6)

Since each term cnen is continuous and ‖en‖∞ = 1, the series in equation
(13.5) converges absolutely with respect to the uniform norm. Therefore ĉ is

a continuous, 1-periodic function when c ∈ ℓ1(Z), and similarly
∨

c ∈ C(T).
That is,

c ∈ ℓ1(Z) =⇒ ĉ ,
∨

c ∈ C(T).

For example, the Fourier transform of the sequence δm is the function δ̂m(x) =
em(x) = e2πimx.

Ignoring questions of convergence, we have at least formally that the
Fourier series of f given in equation (13.4) is the Fourier transform of f

followed by the inverse Fourier transform of the sequence f̂ :

(
f̂
)∨

(x) =
∑

n∈Z

f̂(n) e2πinx.

Thus the question of whether the Fourier series of f converges to f is the

question of whether the Inversion Formula f =
(
f̂
)∨

is valid, and in what
sense it is valid.

We often think of the variable x ∈ T as representing time, and therefore we
often say that a function f on T lives “in the time domain,” while its Fourier

transform f̂ lives “in the frequency domain.” The next result is one example
of how an operation in the time domain is converted by the Fourier transform
into a dual operation in the frequency domain. Specifically, the Fourier trans-
form interchanges translation in time with modulation in frequency and vice
versa, both for functions on T and for sequences on Z.

Lemma 13.5. Given f ∈ L1(T), a ∈ R, and m ∈ Z we have for all n ∈ Z:

(a) (Taf)
∧

(n) = (M−af̂ )(n) = e−2πinaf̂(n),

(b) (Mmf)
∧

(n) = (Tmf̂ )(n) = f̂(n−m),
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Given c ∈ ℓ1(Z), m ∈ Z, and a ∈ R we have for all x ∈ T:

(c) (Tmc)
∧

(x) = (M−mĉ )(x) = e−2πimx ĉ(x),

(d) (Mac)
∧

(x) = (Taĉ )(x) = ĉ(x − a).
Proof. We compute that

(Mmf)
∧

(n) =

∫ 1

0

(Mmf)(x) e−2πinx dx

=

∫ 1

0

f(x) e−2πi(n−m)x dx = f̂(n−m).

The remainder of the proof is assigned as Exercise 13.2. ⊓⊔

Exercises

13.2. Prove Lemma 13.5, and also derive analogous formulas for the inverse
Fourier transforms (Taf)

∨

, (Mmf)
∨

, (Tmc)
∨

, and (Mac)
∨

.

13.3. This exercise will show how the Fourier transform transforms smooth-
ness of a function f into decay of its Fourier coefficients. Show that if

f ∈ C1(T) then f̂ ′ (n) = 2πinf̂(n) for n ∈ Z, and use this to show that

f̂(n)| ≤ ‖f
′‖L1

2π |n| , n 6= 0.

Extend to higher derivatives, and compare Theorem 9.16.

13.4. This exercise will show how the Fourier transform transforms decay of a
sequence c into smoothness of its Fourier transform. Show that if c = (cn)n∈Z

satisfies
∑

n∈Z
|ncn| <∞, then ĉ(ξ) =

∑
n∈Z

cne
−2πinx is differentiable and

ĉ ′(ξ) = −2πi
∑

n∈Z

ncne
−2πinx = d̂(ξ),

where d = (−2πincn)n∈Z ∈ ℓ1(Z). Extend to higher derivatives, and compare
Theorem 9.15.

13.3 Convolution

Convolution is a fundamental tool that we will use extensively in our analysis
of Fourier series. Therefore we spend this section developing some of the basic
properties of this tool.

Although L1(T) is not closed under pointwise products (Exercise 13.6), we
will see that convolution is a multiplication-like operation under which L1(T)
is closed.
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Definition 13.6 (Convolution of Periodic Functions). Let f and g be
measurable 1-periodic functions. The convolution of f with g is the function
f ∗ g given by

(f ∗ g)(x) =

∫ 1

0

f(y) g(x− y) dy, (13.7)

whenever this integral is well defined. ♦

We have a corresponding discrete version of convolution.

Definition 13.7 (Convolution of Sequences). Let a = (ak)k∈Z and b =
(bk)k∈Z be sequences of complex scalars. Then the convolution of a with b is
the sequence a ∗ b =

(
(a ∗ b)k

)
k∈Z

given by

(a ∗ b)k =
∑

j∈Z

aj bk−j , (13.8)

whenever this series converges. ♦

More generally, convolution can be defined on any locally compact group,
of which T and Z are two examples. We briefly encountered convolution of
functions on R a few times earlier in this volume; see in particular Exercises
9.5, 12.19, and 12.20.

The definition of convolution may seem rather ad hoc at first. We will give
some motivation for it in Section 13.4, but for now let us show that convolution
is well defined in many cases.

Theorem 13.8 (Young’s Inequality). Fix 1 ≤ p ≤ ∞. If f ∈ Lp(T) and
g ∈ L1(T) then f ∗ g ∈ Lp(T), and we have

‖f ∗ g‖Lp ≤ ‖f‖Lp ‖g‖L1. (13.9)

Proof. First we show that f ∗g exists and is measurable if f, g ∈ L1(T). Since

g is 1-periodic, for any y we have
∫ 1

0 |g(x− y)| dx =
∫ 1

0 |g(x)| dx = ‖g‖L1, and
therefore

∫ 1

0

∫ 1

0

|f(y) g(x− y)| dy dx =

∫ 1

0

(∫ 1

0

|g(x− y)| dx
)
|f(y)| dy

=

∫ 1

0

‖g‖L1 |f(y)| dy

= ‖g‖L1 ‖f‖L1 < ∞.

Hence, it follows from Fubini’s Theorem that (f ∗ g)(x) =
∫ 1

0 f(y) g(x− y) dy
exists for almost every x and is an integrable function of x. Since g is 1-
periodic, f ∗ g is 1-periodic as well.
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Now suppose that 1 < p <∞, and choose f ∈ Lp(T) and g ∈ L1(T). Since
Lp(T) ⊆ L1(T), the above work tells us that f ∗ g exists. Applying Hölder’s
Inequality with exponents p and p′ and using the change-of-variable formula
given in equation (13.1), we have

|(f ∗ g)(x)| ≤
∫ 1

0

|f(y) g(x− y)| dy

=

∫ 1

0

(∣∣f(y)
∣∣ ∣∣g(x− y)

∣∣1/p
) ∣∣g(x− y)

∣∣1/p′ dy

≤
(∫ 1

0

|f(y)|p |g(x− y)|p/p dy
)1/p(∫ 1

0

|g(x− y)|p′/p′ dy
)1/p′

=

(∫ 1

0

|f(y)|p |g(x− y)| dy
)1/p(∫ 1

0

|g(y)| dy
)1/p′

= ‖g‖1/p
′

L1

(∫ 1

0

|f(y)|p |g(x− y)| dy
)1/p

.

Note that

1 +
p

p′
= 1 +

p(p− 1)

p
= 1 + p− 1 = p.

Therefore, interchanging integrals by Tonelli’s Theorem,

‖f ∗ g‖pLp =

∫ 1

0

|(f ∗ g)(x)|p dx

≤ ‖g‖p/p
′

L1

∫ 1

0

∫ 1

0

|f(y)|p |g(x− y)| dy dx

= ‖g‖p/p
′

L1

∫ 1

0

|f(y)|p
(∫ 1

0

|g(x− y)| dx
)
dy

= ‖g‖p/p
′

L1

∫ 1

0

|f(y)|p
(∫ 1

0

|g(x)| dx
)
dy

= ‖g‖p/p
′

L1

∫ 1

0

|f(y)|p ‖g‖L1 dy

= ‖g‖1+
p

p′

L1 ‖f‖pLp

= ‖g‖pL1 ‖f‖pLp,

so the result follows upon taking pth roots.
The cases p = 1 and p =∞ are assigned as Exercise 13.7. ⊓⊔
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In particular, L1(T) is closed under convolution, and we have

‖f ∗ g‖L1 ≤ ‖f‖L1 ‖g‖L1. (13.10)

In another language, the fact that L1(T) is a Banach space that has an op-
eration ∗ that satisfies equation (13.10) says that L1(T) is a Banach algebra
with respect to the operation ∗.

There is a corresponding discrete version of Young’s Inequality, and as
a consequence ℓ1(Z) is also a Banach algebra with respect to convolution
(Exercise 13.7).

Theorem 13.9 (Young’s Inequality). Fix 1 ≤ p ≤ ∞. If f ∈ ℓp(Z) and
g ∈ ℓ1(Z) then f ∗ g ∈ ℓp(Z), and we have

‖f ∗ g‖ℓp ≤ ‖f‖ℓp ‖g‖ℓ1. ♦ (13.11)

One of the most important facts about convolution is that the Fourier
transform interchanges the operation of convolution with pointwise multipli-
cation.

Theorem 13.10. (a) If f, g ∈ L1(T) then (f ∗ g)∧ is the sequence

(f ∗ g)∧ =
(
f̂(n) ĝ(n)

)
n∈Z

.

(b) If c, d ∈ ℓ1(Z) then (c ∗ d)∧ is the function

(c ∗ d)∧(x) =
∑

n∈Z

cndne
−2πinx.

Proof. Fix f, g ∈ L1(T). Appealing to Exercise 13.9 for justification of the
interchange of the order of integration, we apply Fubini’s Theorem to compute
that

(f ∗ g)∧(n) =

∫ 1

0

(f ∗ g)(x) e−2πinx dx

=

∫ 1

0

∫ 1

0

f(y) g(x− y) dy e−2πinx dx

=

∫ 1

0

f(y) e−2πiny

(∫ 1

0

g(x− y) e−2πin(x−y) dx

)
dy

=

∫ 1

0

f(y) e−2πiny

(∫ 1

0

g(x) e−2πinx dx

)
dy

=

∫ 1

0

f(y) e−2πiny ĝ(n) dy

= f̂(n) ĝ(n).

The proof of part (b) is Exercise 13.9. ⊓⊔
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Some of the algebraic properties of convolution are given in the next result,
whose proof is Exercise 13.10.

Lemma 13.11. The following facts hold for f, g, h ∈ L1(T).

(a) Commutativity: f ∗ g = g ∗ f.
(b) Associativity: (f ∗ g) ∗ h = f ∗ (g ∗ h).
(c) Distributive laws: f ∗ (g + h) = f ∗ g + f ∗ h.
(d) Commutativity with translations:

f ∗ (Tag) = (Taf) ∗ g = Ta(f ∗ g), a ∈ R. ♦

Exercises

13.5. Let p(x) =
∑M

k=0 akx
k and q(x) =

∑N
k=0 bkx

k be two polynomials.

Their pointwise product is a polynomial of the form p(x)q(x) =
∑M+N

n=0 cnx
n.

Find an explicit formula for cn, and explain its relation to the convolution of
the sequences (ak)k∈Z and (bk)k∈Z, where we take ak = 0 if k 6= 0, . . . ,M and
similarly for bk.

13.6. Show that f, g ∈ L1(T) does not imply fg ∈ L1(T).

13.7. Prove Theorem 13.8 for the cases p = 1 and p =∞.

13.8. Prove Theorem 13.9.

13.9. Justify the use of Fubini’s Theorem in the proof of part (a) of Theo-
rem 13.10, and prove part (b) of that theorem.

13.10. Prove Lemma 13.11, and establish analogous properties for the convo-
lution of sequences.

13.11. Given f ∈ L1(T), set f∗(x) = f(−x) and show that f̂∗(n) = f̂(−n) =
∨

f (n). Conclude that if f is even then f̂ is even and f̂ =
∨

f .

13.12. Let δ = δ0 =
(
δ0n
)
n∈Z

. Show that δ is an identity for convolution on

ℓp(Z), i.e., c ∗ δ = c for every c ∈ ℓp(Z), where 1 ≤ p ≤ ∞.
Remark: We will see in Corollary 13.15 that there is no element of L1(T)

that is an identity for convolution on Lp(T).

13.13. (a) Show that if f ∈ L1(T) and g ∈ C(T) then f ∗ g ∈ C(T).

(b) Prove that convolution commutes with differentiation in the following
sense: If f ∈ L1(T) and g ∈ C1(T) then f ∗ g ∈ C1(T), and (f ∗ g)′ = f ∗ g′.
Extend to g ∈ Cm(T) and g ∈ C∞(T).

13.14. Fix 1 ≤ p ≤ ∞. Show that if f ∈ Lp(T) and g ∈ Lp′(T) then f ∗ g ∈
C(T).
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13.4 Approximate Identities

One motivation for convolution is to think of it as a kind of weighted averaging
operator. For example, consider the functions

χT =
1

2T
χ[−T,T ],

extended 1-periodically to the real line (we assume 0 < T < 1/2). Given
f ∈ L1(T),

(f ∗ χT )(x) =

∫ 1

0

f(y)χT (x − y) dy =
1

2T

∫ x+T

x−T
f(y) dy = AvgT f(x),

the average of f on the interval [x− T, x+ T ] (see Figure 13.1).

T

x - T x T + x 1

Avg f HxL

Fig. 13.1. The area of the dashed box equals
R x+T

x−T
f(y) dy, which is the area under

the graph of f between y = x− T and y = x+ T.

For a general function g, the mapping f 7→ f ∗ g can be regarded as a
weighted averaging of f, with g weighting some parts of the domain more than
others. Technically, it may be better to think of the function g∗(x) = g(−x)
as the weighting function, since g∗ is the function being translated when we
compute

(f ∗ g)(x) =

∫ 1

0

f(y) g∗(y − x) dy = Avgg∗f(x).

In any case, (f ∗ g)(x) is a weighted average of f around the point x. Al-
ternatively, since convolution is commutative, we can equally view it as an
averaging of g using the weighting corresponding to f∗(x) = f(−x).

Now consider what happens to the convolution f ∗χT = AvgT f as T → 0.
The function χT becomes a taller and taller “spike” centered at the origin
(and since it is 1-periodic, there are corresponding spikes centered at each
integer point). The height of the spike is chosen so that the integral of χT
over a period is always 1. As T decreases, we are averaging f over smaller
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and smaller intervals. Intuitively, this should give values (f ∗ χT )(x) that are
closer and closer to the value f(x). This intuition is made precise in Lebesgue’s
Differentiation Theorem (Theorem A.30), which states that if f ∈ L1(T) then
for almost every x we have

f(x) = lim
T→0

(f ∗ χT )(x) = lim
T→0

AvgT f(x).

Thus f ≈ f ∗χT when T is small. We will see later (Theorem 13.14) that there
is no identity element for convolution on L1(T). That is, there is no function
g ∈ L1(R) such that f ∗ g = f for all f ∈ L1(R). Still, the function χT is
approximately an identity for convolution, and this approximation becomes
better and better the smaller T becomes.

A similar phenomenon occurs for convolution with functions other than
χT . That is, even though there is no single function g ∈ L1(T) such that
f ∗ g = f for all f ∈ L1(T), we can create many different sequences of
functions kN such that f ∗ kN → f as N → ∞. Moreover, by designing
the kN appropriately, we can make f ∗ kN converge to f in different senses.
Essentially, what we need are 1-periodic functions kN that become more and
more “spike-like” as N increases. The following definition specifies the exact
features that we need the functions kN to possess.

Definition 13.12. An approximate identity or a summability kernel on T is
a family {kN}N∈N of functions in L1(T) such that

(a)
∫ 1

0 kN (x) dt = 1 for every N,

(b) sup ‖kN‖L1 < ∞, and

(c) for every 0 < δ < 1/2 we have

lim
N→∞

∫

δ≤|x|< 1
2

|kN (x)| dx = 0. ♦

Property (a) says that each function kN has the same total “signed mass”
in the sense that its integral over a period is 1, and property (c) says that
most of this mass is being squeezed into smaller and smaller intervals around
the origin (and hence, by periodicity, around each integer point). Property (b)
requires that the “absolute mass” of the kN be uniformly bounded. Some of the
elements of one particular approximate identity are displayed in Figure 13.4,
and we can see there how those functions kN become more spike-like as N
increases.

One way to create an approximate identity is to take a single function k

that satisfies
∫ 1

0 k = 1 and is only nonzero on a small interval around the origin
and then mimic the shrinking process that created the functions χT , e.g.,
define kN (x) = Nk(Nx) near the origin, followed by a 1-periodic extension

to R. The dilation Nk(Nt) ensures that
∫ 1

0
kN =

∫ 1

0
k for all N, and also

makes the functions kN more and more concentrated around integer points



13.4 Approximate Identities 441

(see Exercise 13.15). On the other hand, in many circumstances the functions
kN are imposed upon us, so to check that {kN} forms an approximate identity
we must verify that the conditions given in Definition 13.12 hold. We will see
some particularly important approximate identities in the next section, but
for now let us see what we can do with them.

Theorem 13.13. Let {kN}N∈N be an approximate identity.

(a) If 1 ≤ p <∞ and f ∈ Lp(T), then f ∗ kN → f in Lp-norm as N →∞.
(b) If f ∈ C(T), then f ∗ kN → f uniformly as N →∞.

Proof. Consider the case p = 1. Fix f ∈ L1(T). Noting that
∫ 1

0 kN = 1, we
compute that

‖f − f ∗ kN‖L1 =

∫ 1

0

|f(x)− (f ∗ kN )(x)| dx

=

∫ 1

0

∣∣∣∣f(x)

∫ 1

0

kN (t) dt −
∫ 1

0

f(x− t) kN (t) dt

∣∣∣∣ dx

≤
∫ 1

0

∫ 1

0

|f(x) − f(x− t)| |kN (t)| dt dx

=

∫ 1

0

∫ 1

0

|f(x) − f(x− t)| |kN (t)| dx dt

=

∫ 1

0

|kN (t)|
∫ 1

0

|f(x)− Ttf(x)| dx dt

=

∫ 1

0

|kN (t)| ‖f − Ttf‖L1 dt, (13.12)

where the interchange in the order of integration is permitted by Tonelli’s
Theorem since the integrands are nonnegative. We want to show that the
quantity above tends to zero as N →∞.

Choose ε > 0. Appealing to the strong continuity of translation proved in
Exercise 13.1, there exists a δ > 0 such that

|t| < δ =⇒ ‖f − Ttf‖L1 < ε.

By definition of approximate identity, K = sup ‖kN‖L1 <∞ and there exists
some N0 such that

N > N0 =⇒
∫

δ≤|t|<1/2

|kN (t)| dt < ε.

Taking the domain of a period to be [− 1
2 ,

1
2 ], for N > N0 we can continue the

estimate in equation (13.12) as follows:
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‖f − f ∗ kN‖L1

≤
∫

|t|<δ
|kN (t)| ‖f − Ttf‖L1 dt +

∫

δ≤|t|<1/2

|kN (t)| ‖f − Ttf‖L1 dt

≤
∫

|t|<δ
|kN (t)| ε dt +

∫

δ≤|t|<1/2

|kN (t)|
(
‖f‖L1 + ‖Ttf‖L1

)
dt

≤ ε

∫ 1/2

−1/2

|kN (t)| + 2‖f‖L1

∫

δ≤|t|<1/2

|kN (t)| dt

≤ εK + 2‖f‖L1 ε.

Thus ‖f − f ∗ kN‖L1 → 0 as N →∞. The remainder of the proof is assigned
as Exercise 13.16. ⊓⊔

We end this section with some applications of the strong continuity of
translation. Compare the next result to Theorem 9.10.

Theorem 13.14 (Riemann–Lebesgue Lemma). If f ∈ L1(T), then f̂ ∈
c0(Z), i.e., f̂(n)→ 0 as n→ ±∞.
Proof. Since e−πi = −1, we have for n 6= 0 that

f̂(n) =

∫ 1

0

f(x) e−2πinx dx

= −
∫ 1

0

f(x) e−2πinx e−2πin( 1
2n ) dx

= −
∫ 1

0

f(x) e−2πin(x+ 1
2n ) dx

= −
∫ 1

0

f
(
x− 1

2n

)
e−2πinx dx.

Averaging the first and last lines in the equalities above, we obtain

f̂(n) =
1

2

∫ 1

0

(
f(x)− f

(
x− 1

2n

))
e−2πinx dx. (13.13)

Using the strong continuity of translation proved in Exercise 13.1, we therefore
have that

|f̂(n)| ≤ 1

2

∫ 1

0

∣∣∣f(x)− f
(
x− 1

2n

)∣∣∣ dx =
1

2
‖f − T 1

2n
f‖L1 → 0

as |n| → ∞. ⊓⊔
As a corollary, we find that there is no identity element for convolution in

L1(T). In contrast, Exercise 13.12 shows that there does exist an identity for
convolution in ℓ1(Z).



13.5 Partial Sums and the Dirichlet Kernel 443

Corollary 13.15. There is no function g ∈ L1(T) such that f ∗ g = f for all
f ∈ L1(T).

Proof. Suppose that such a function g existed. Then by Theorem 13.10, for
every f ∈ L1(T) and n ∈ Z we would have

f̂(n) ĝ(n) = (f ∗ g)∧(n) = f̂(n).

In particular, if we fix n and take f = en then f̂ = δn and therefore f̂(n) = 1,
so we must have ĝ(n) = 1. This contradicts the fact that ĝ ∈ c0(Z). ⊓⊔

Exercises

13.15. Design an approximate identity {kN} such that kN ∈ C(T), kN ≥ 0
everywhere, and kN = 0 on

[
1
N , 1− 1

N

]
. How smooth can you make kN?

13.16. Prove Theorem 13.13 for 1 < p <∞ and for C(T).

13.17. The existence of infinitely differentiable, compactly supported func-
tions is demonstrated in Exercise 11.9. Combine Exercises 13.13 and 13.15
with Theorem 13.13 to show that C∞(T) is dense in Lp(T) for 1 ≤ p < ∞,
and is dense in C(T) with respect to the uniform norm. Conclude that Cm(T)
is dense in these spaces for each integer m ≥ 0.

13.18. Fix 0 < α < 1. Show that if f ∈ C(T) is Hölder continuous with
exponent α (see Exercise 1.23) then

|f̂(n)| ≤ 1

2

(
1

2|n|

)α
, n 6= 0.

13.5 Partial Sums and the Dirichlet Kernel

Given f ∈ L1(T), let SNf denote the Nth symmetric partial sum of the
formal Fourier series in equation (13.4), i.e.,

SNf(x) =

N∑

n=−N
f̂(n) e2πinx, x ∈ T.

This is a well-defined element of L1(T), and in fact SNf ∈ C(T). Our question
is whether SNf will converge to f in any sense. Let

dN (x) =
N∑

n=−N
e2πinx, (13.14)
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so we have dN ∈ C(T) for each N. Then

SNf(x) =
N∑

n=−N
f̂(n) e2πinx

=

N∑

n=−N

(∫ 1

0

f(t) e−2πint dt

)
e2πinx

=

∫ 1

0

f(t)

N∑

n=−N
e2πin(x−t) dt

=

∫ 1

0

f(t) dN (x− t) dt

= (f ∗ dN )(x). (13.15)

Now we see exactly why we spent so much time discussing convolution and
approximate identities: The symmetric partial sums of the Fourier series of f
are given by the convolutions SNf = f ∗ dN . If {dN} was an approximate
identity, then we would know that f ∗dN converges to f in Lp(T), 1 ≤ p <∞,
and in C(T). Alas, {dN} is not an approximate identity, and this is precisely
what makes the question of convergence of Fourier series so delicate.

Definition 13.16 (Dirichlet Kernel). The Dirichlet kernel for T is the
family {dN}N∈N, where dN is the function defined in equation (13.14). ♦

The next lemma writes the elements of the Dirichlet kernel in several
alternative forms (see Exercise 13.19).

Lemma 13.17. Let χN denote the discrete characteristic function of the set
{−N, . . . , N}, i.e.,

χN(n) =

N∑

m=−N
δm(n) =

{
1, −N ≤ n ≤ N,
0, |n| > N.

Then for each N ∈ N we have

dN (x) =

N∑

n=−N
e2πinx =

sin (2N + 1)πx

sinπx
= χN̂(x) =

∨

χN (x). ♦

Note that χN is a sequence, and so its Fourier transform as defined in

equation (13.4) is a continuous 1-periodic function. Also, the equality χN̂ =
∨

χN
follows from the fact that χN is even, compare Exercise 13.11.

Each function dN belongs to L1(T), and its graph does appear to become
more like a “1-periodic spike train” as N → ∞ (see Figure 13.2). Unfor-
tunately, the oscillations of dN only decay slowly with N, and as a conse-
quence the sequence {dn} is not bounded above in L1-norm. While we do
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Fig. 13.2. Three elements of the Dirichlet kernel. Top: d1. Middle: d5. Bottom: d10.

have
∫ 1

0
dN = 1 for every N, we achieve this only because the large oscilla-

tions of dN produce “miraculous” cancellations in this integral.
The proof of the next result is Exercise 13.20.

Theorem 13.18. dN ∈ L1(T) and
∫ 1

0 dN = 1 for each N ∈ N, and for N > 1
we have

4

π2

N∑

k=1

1

k
≤ ‖dN‖L1 ≤ 3 +

4

π2

N∑

k=1

1

k
. ♦

By the Integral Test,

lnN ≤
N∑

k=1

1

k
≤ 1 + lnN,

so supN ‖dN‖L1 = ∞, and therefore the Dirichlet kernel does not form an
approximate identity on T.
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Fig. 13.3. Convolution of the square wave f with elements of the Dirichlet kernel.
Top: f ∗ d5. Middle: f ∗ d10. Bottom: f ∗ d50.

Let f = χ[0,1/2) − χ[1/2,1) be the square wave function, extended 1-
periodically to R. Figure 13.3 shows f ∗ d5, f ∗ d10, and f ∗ d50. We can
see Gibbs’s phenomenon in this figure: f ∗ dN does not converge uniformly
to f. Instead, f ∗ dN always overshoots f by an amount (about 9%) that does
not decrease with N (see [DM72] for proof).

Exercises

13.19. Prove Lemma 13.17.

13.20. Prove Theorem 13.18.
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13.6 Cesàro Summability and the Fejér Kernel

When considering series whose convergence properties are unknown, or which
may even diverge, it is often useful to consider the averages of the partial
sums of the series instead of the partial sums themselves. These Cesàro, or
arithmetic, means are usually much “better behaved” than the partial sums
themselves. For the case of the Fourier series of f ∈ L1(T), these means are

σNf(x) =
S0f(x) + · · ·+ SNf(x)

N + 1

=

N∑

n=−N

(
1− |n|

N + 1

)
f̂(n) e2πinx, (13.16)

where the second equality is proved in Exercise 13.21. Define sequences

WN =

N∑

n=−N

(
1− |n|

N + 1

)
δn,

and note that the components of WN are

WN (k) = max
{

1− |k|
N + 1

, 0
}
, k ∈ Z.

Thus WN is a “discrete hat function,” as compared to the “discrete charac-
teristic function” χN . Set

wN (x) = ŴN (x) =

N∑

n=−N

(
1− |n|

N + 1

)
δ̂n(x)

=

N∑

n=−N

(
1− |n|

N + 1

)
e2πinx. (13.17)

Note that ŴN = (WN )
∨

since WN is even.

Definition 13.19 (Fejér Kernel). The Fejér kernel for T is the family
{wN}N∈N where wN is the function defined in equation (13.17). ♦

The letter “w” is for “Weiss,” which was Fejér’s surname at birth.
Appealing to Exercise 13.22, a calculation similar to the one in equation

(13.15) shows that the Cesàro means have the form

σNf = f ∗ wN . (13.18)

Some elements of the Fejér kernel are shown in Figure 13.4. These functions
appear to be more concentrated than the Dirichlet kernel, and hence it seems
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Fig. 13.4. Three elements of the Fejér kernel. Top: w1. Middle: w5. Bottom: w10.

reasonable to expect that {wN} will form an approximate identity. If this is
true then the Cesàro means σNf = f ∗wN will converge to f in Lp(T) and in
C(T) even though the partial sums SNf may not converge. With some work,
we can write wN in closed form and show that the Fejér kernel does indeed
form an approximate identity (see Exercise 13.23).

Lemma 13.20. (a) Given N ∈ N we have

wN (x) =
1

N + 1

(
sin (N + 1)πx

sinπx

)2

.

(b) ‖wN‖L1 =
∫ 1

0 wN = 1 for every N ∈ N.

(c) The Fejér kernel {wN}N∈N forms an approximate identity on T.
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(d) If 1 ≤ p < ∞ and f ∈ Lp(T), then σNf = f ∗ wN → f in Lp-norm as
N →∞.

(e) If f ∈ C(T), then σNf = f ∗ wN → f uniformly as N →∞. ♦

To contrast convergence using the Fejér kernel with that using the Dirichlet
kernel, let f = χ[0,1/2)−χ[1/2,1) be the square wave function. Figure 13.3 shows

f ∗ dN for various N, while Figure 13.5 shows f ∗wN for the same N. We can
see that f ∗ wN appears to be a much better approximation to f than does
f ∗ dN .
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Fig. 13.5. Convolution of the square wave f with elements of the Fejér kernel. Top:
f ∗ w5. Middle: f ∗ w10. Bottom: f ∗ w50.

The fact that the Fejér kernel is an approximate identity has many impor-
tant implications, which we will explore in the remainder of this section and
in the following sections.
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Our first observation is that by combining equation (13.16) with the fact
that σNf = f ∗ wN , we see that

(f ∗ wN )(x) = σNf(x) =
N∑

n=−N

(
1− |n|

N + 1

)
f̂(n) e2πinx

=

N∑

n=−N
WN (n) f̂(n) en(x),

which is a finite linear combination of the exponential functions en. Hence
σNf ∈ span{en}n∈Z. Since {wN}N∈N is an approximate identity, σNf → f
in Lp-norm if p is finite and uniformly if f ∈ C(T). Consequently, the set of
trigonometric polynomials, span{en}n∈Z, is dense in these spaces, which tells
us that {en}n∈Z is complete.

Theorem 13.21 (Completeness). The trigonometric system {en}n∈Z is
complete in C(T) and in Lp(T) for each 1 ≤ p <∞. ♦

The completeness of {en}n∈Z in C(T) is usually given a special name and
worded as follows.

Corollary 13.22 (Weierstrass Approximation Theorem). If f ∈ C(T),
then given any ε > 0, there exists a trigonometric polynomial p(x) =∑N
n=−N cne

2πinx such that ‖f − p‖∞ < ε. ♦
Since every trigonometric polynomial is infinitely differentiable, this gives

another proof that C∞(T) is dense in Lp(T) for p finite and also in C(T);
compare Exercise 13.13.

As we have observed in earlier chapters, completeness alone is a rather
weak property. However, in a Hilbert space we have the wonderful fact that
a complete orthonormal sequence is an orthonormal basis. Since we already
know that the trigonometric system is orthonormal and we have completeness
from Theorem 13.21, we immediately obtain the following important fact.

Theorem 13.23 (Orthonormal Basis of Exponentials in L2(T)). The
trigonometric system {en}n∈Z is an orthonormal basis for L2(T). Conse-
quently, the following statements hold.

(a) For each f ∈ L2(T) we have

f(x) =
(
f̂
)∨

(x) =
∑

n∈Z

f̂(n) e2πinx, (13.19)

where the series converges unconditionally in L2-norm.

(b) Plancherel’s Equality and Parseval’s Equality hold for f, g ∈ L2(T):

‖f‖2L2 =
∑

n∈Z

|f̂(n)|2 and 〈f, g〉 =
∑

n∈Z

f̂(n) ĝ(n) = 〈f̂ , ĝ 〉.
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(c) F : f 7→ f̂ is a unitary map of L2(T) onto ℓ2(Z). ♦

We also have a dual result for the Fourier transform of sequences.

Theorem 13.24. For each c = (cn) ∈ ℓ2(Z), the series

ĉ(x) =
∑

n∈Z

cne
−2πinx

converges unconditionally in L2-norm, and Plancherel’s Equality and Parse-
val’s Equality hold for c, d ∈ ℓ2(Z):

‖ĉ ‖2L2 =
∑

n∈Z

|cn|2 and 〈ĉ , d̂ 〉 =
∑

n∈Z

cndn.

Consequently F : c 7→ ĉ is a unitary map of ℓ2(Z) onto L2(T). ♦

Thus Theorem 13.24 extends the definition of the Fourier transform of
sequences from ℓ1(Z) to the larger space ℓ2(Z). However, while the Fourier
transform of a sequence c ∈ ℓ1(Z) is a continuous function, the Fourier trans-
form of c ∈ ℓ2(Z) is a function in L2(T) and therefore may only be defined
almost everywhere.

Exercises

13.21. Given a sequence of scalars a = (ak)k∈Z, let sN =
∑N

k=−N ak.

(a) Let σN = (s0 + · · ·+ sN )/(N + 1) denote the Cesàro means, and show
that

σN =

N∑

n=−N

(
1− |n|

N + 1

)
an.

(b) Show that if the partial sums sN converge, then the Cesàro means σN
converge to the same limit, i.e.,

lim
N→∞

N∑

n=−N

(
1− |n|

N + 1

)
an = lim

N→∞
sN =

∞∑

n=−∞
an.

(c) Set an = (−1)n for n ≥ 0 and an = 0 for n < 0. Show that the series∑
n∈Z

an is Cesàro summable even though the partial sums do not converge,
and find the limit of the Cesàro means.

13.22. Prove the equality appearing in equation (13.18).

13.23. Prove Lemma 13.20.
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13.7 The Inversion Formula for L1(T)

The trigonometric system is not a basis for L1(T). However, we will prove

in this section that if f ∈ L1(T) and we also have f̂ ∈ ℓ1(Z), then the
Fourier series of f converges uniformly to f. In fact, with these hypotheses
the Fourier series of f converges absolutely in the uniform norm, and therefore
also converges unconditionally.

Theorem 13.25 (Inversion Formula). If f ∈ L1(T) and f̂ ∈ ℓ1(Z), then f
is continuous and

f(x) =
(
f̂
)∨

(x) =
∑

n∈Z

f̂(n) e2πinx, x ∈ T,

where the series converges absolutely with respect to the L∞-norm on T.

Proof. Since f̂ ∈ ℓ1(Z), we have

∑

n∈Z

‖f̂(n) en‖∞ =
∑

n∈Z

|f̂(n)| < ∞.

Hence the series
(
f̂
)∨

=
∑

n∈Z
f̂(n) en converges absolutely with respect to

‖ · ‖∞. Since this is a uniformly convergent series of continuous functions, we

conclude that
(
f̂
)∨

is a continuous function. Our task is to show that this
function equals f.

We know that f ∗ wN → f in L1-norm, and furthermore

(f ∗wN )(x) = σNf(x) =
∑

n∈Z

WN (n) f̂(n) en(x).

Fix x, and note that for each n we have

lim
N→∞

WN (n) f̂(n) en(x) = f̂(n) en(x).

Further, |WN (n) f̂(n) en(x)| ≤ |f̂(n)| and f̂ ∈ ℓ1(Z). Therefore we can apply
the series version of the Dominated Convergence Theorem (Theorem A.25) to
obtain

lim
N→∞

(f ∗ wN )(x) = lim
N→∞

∑

n∈Z

WN (n) f̂(n) e2πinx

=
∑

n∈Z

f̂(n) e2πinx =
(
f̂
)∨

(x).

On the other hand, f ∗ wN → f in L1-norm, so there is a subsequence such

that (f ∗ wNk
)(x) → f(x) for almost every x. Therefore

(
f̂
)∨

(x) = f(x) a.e.
By redefining f on a set of measure zero, we therefore have that f equals the

continuous function
(
f̂
)∨

pointwise everywhere. ⊓⊔



13.7 The Inversion Formula for L1(T) 453

The Fourier algebra or Wiener algebra for the torus is the set of all abso-
lutely convergent Fourier series:

A(T) =
{
ĉ : c ∈ ℓ1(Z)

}
=

{∑

n∈Z

cne
−2πinx :

∑

n∈Z

|cn| <∞
}
.

Since each element ĉ of A(T) is integrable, the Inversion Formula implies that

A(T) =
{
f ∈ L1(T) : f̂ ∈ ℓ1(Z)

}
.

As a consequence of the Inversion Formula, we can show that the Fourier
transform is injective on L1(T).

Corollary 13.26 (Uniqueness Theorem). If f ∈ L1(T) then

f̂(n) = 0 for all n ∈ Z ⇐⇒ f = 0 a.e.

Proof. If f ∈ L1(T) and f̂ = 0 then we have f̂ ∈ ℓ1(Z). Hence the Inversion

Formula tells us that f =
(
f̂
)∨

= 0. ⊓⊔

Exercises

13.24. (a) Show that if f ∈ L1(T) and f̂ ∈ ℓ2(Z), then f ∈ L2(T).

(b) Use part (a) to show that the Plancherel Equality remains true if we
assume that f belongs to L1(T) instead of the smaller space L2(T). In other
words, show that if f ∈ L1(T), then we have

∑

n∈Z

|f̂(n)|2 = ‖f‖2L2,

in the sense that one side is finite if and only if the other side is finite, and in
this case they are equal; otherwise both sides are infinite.

13.25. Let f(x) = π2 (x2−x+ 1
6 ) for x ∈ [0, 1). When extended 1-periodically,

f is a continuous function on T. Compute f̂ and show that f̂ ∈ ℓ1(Z). Use
this to show that

∞∑

n=1

cos 2πnx

n2
= π2

(
x2 − x+

1

6

)
, x ∈ [0, 1], (13.20)

where the series converges uniformly on [0, 1]. What does the series converge
to for other x? Take x = 0 to obtain Euler’s formula:

∞∑

n=1

1

n2
=

π2

6
.

Compare Exercise 1.55.
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13.26. Prove the following facts about the Fourier algebra A(T).

(a) A(T) is a Banach space with respect to the norm ‖f‖A = ‖f̂ ‖ℓ1 , and

F : f 7→ f̂ is an isometric isomorphism of A(T) onto L1(T).

(b) A(T) is closed under pointwise products, and ‖fg‖A ≤ ‖f‖A ‖g‖A
(hence A(T) is a Banach algebra with respect to pointwise products).

(c) C2(T) ⊆ A(T), and therefore A(T) is dense in C(T).

(d) L2(T) ∗ L2(T) = A(T).

(e) A(T) is a meager subset of C(T).
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Basis Properties of Fourier Series

In this chapter we will prove that the trigonometric system {e2πint}n∈Z is a
Schauder basis for Lp(T) for each 1 < p < ∞. The proof will combine the
tools of convolution and approximate identities developed in Chapter 13 with
the theory of bases developed in Part II of this volume.

14.1 The Partial Sum Operators

Since we know that the trigonometric system is both minimal and complete in
Lp(T) and C(T), to determine if it is a basis we must determine the norms of
the partial sum operators. If these are uniformly bounded, then {en}n∈Z has
a finite basis constant and is therefore a basis by Theorem 5.12. However, in
order to do this we must choose an ordering of the index set Z, and consider the
partial sums corresponding to that ordering. We impose a “natural” ordering
on Z, namely,

Z = {0,−1, 1,−2, 2,−3, 3, . . .}. (14.1)

With respect to this ordering, the partial sums corresponding to the exact
system {en}n∈Z are the symmetric partial sums

SNf(x) =

N∑

n=−N
f̂(n) e2πinx,

interleaved with the asymmetric partial sums

S
a
Nf(x) =

N−1∑

n=−N
f̂(n) e2πinx.

That is, to say that the series f(x) =
∑
n∈Z

f̂(n) e2πinx converges with respect
to the ordering in equation (14.1) is to say that the sequence of partial sums
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S0f, S
a
1 f, S1f, S

a
2 f, S2f, . . .

converges to f in norm. Therefore, by Theorem 5.12, the trigonometric system
is a basis for Lp(T) with respect to this ordering if and only if its basis constant

Cp = sup
{
‖SN‖Lp→Lp , ‖Sa

N‖Lp→Lp

}
N∈N

is finite (we write ‖SN‖Lp→Lp to emphasize the dependence of the operator
norm on p). Similarly, {en}n∈Z is a basis for C(T) if and only if

C∞ = sup
{
‖SN‖C→C , ‖Sa

N‖C→C

}
N∈N

is finite.
While we have discussed the symmetric partial sums in some detail in

the preceding sections, the lack of any prior discussion of the asymmetric
partial sums now stands out conspicuously. The reason for this is that our next
theorem will show that the symmetric partial sums are uniformly bounded
in operator norm if and only if the asymmetric partial sums are uniformly
bounded. Hence it is safe to simply ignore the asymmetric partial sums (and
indeed, they are rarely even mentioned). More surprising, at least at first
glance, is that we can also replace the symmetric partial sums with the one-
sided partial sums

S
o
Nf(x) =

2N∑

n=0

f̂(n) e2πinx,

and even with the twisted partial sums

S
t
Nf(x) = −i

2N∑

n=−2N

sign(n) f̂(n) e2πinx,

where sign(n) is the sign function (1, 0, or −1 according to whether n > 0,
n = 0, or n < 0, respectively). To prove this, it is useful to note that we can
write SNf and So

Nf on the Fourier side as

(SNf)
∧

= f̂ · χ[−N,N ] and (S
o
Nf)

∧

= f̂ · χ[0,2N ],

where we have slightly abused notation by writing χ[−N,N ] instead of the more

cumbersome χ{−N,...,N}. Now, multiplying f̂ by χ[0,2N ] is exactly the same

as translating f̂ left by N units, multiplying by χ[−N,N ], and translating the
result right by N units, i.e.,

f̂ · χ[0,2N ] = T−N
((
TN f̂

)
· χ[−N,N ]

)
.

Since the Fourier transform turns translations into modulations and vice versa,
we obtain the following relation between SNf and So

Nf (see Exercise 14.1).
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Lemma 14.1. Given f ∈ L1(T) and N ∈ N, we have

S
o
Nf = MNSNM−Nf. ♦

Since modulation is an isometry on Lp(T) and on C(T), we see that the
operator norms of SN and So

N are identical. The relationships among the
operator norms of the other partial sum operators are more complicated, but
nonetheless we obtain the following connections between them.

Theorem 14.2. If 1 ≤ p <∞, then the following statements are equivalent.

(a) {e2πinx}n∈Z is a Schauder basis for Lp(T) with respect to the ordering
of Z given in equation (14.1).

(b) sup ‖SN‖Lp→Lp <∞.
(c) sup ‖Sa

N‖Lp→Lp <∞.
(d) sup ‖So

N‖Lp→Lp <∞.
(e) sup ‖S t

N‖Lp→Lp <∞.
Analogous equivalences also hold if Lp(T) is replaced everywhere by C(T).

Proof. We prove some implications for Lp(T), and assign the remaining im-
plications and the extension to C(T) as Exercise 14.2.

(b) ⇒ (c) If f ∈ Lp(T) and N > 0, then, using equation (13.2) and
Exercise 1.13, we compute that

‖Sa
Nf‖Lp = ‖SNf − f̂(N) e2πiNx‖Lp

≤ ‖SNf‖Lp + |f̂(N)|

≤ ‖SNf‖Lp + ‖f‖L1

≤ ‖SNf‖Lp + ‖f‖Lp .

Hence ‖Sa
N‖Lp→Lp ≤ ‖SN‖Lp→Lp + 1.

(d) ⇒ (e). Suppose that statement (d) holds, and fix f ∈ Lp(T). By

Exercise 13.11, the function f∗(x) = f(−x) satisfies (f∗)
∧

(n) = f̂(−n) for
n ∈ Z. Therefore,

S
o
Nf(x)− So

Nf
∗(−x) =

2N∑

n=0

f̂(n) e2πinx −
2N∑

n=0

f̂(−n) e−2πinx

=

2N∑

n=0

f̂(n) e2πinx −
0∑

n=−2N

f̂(n) e2πinx
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=

2N∑

n=−2N

sign(n) f̂(n) e2πinx

= i S
t
Nf(x).

Consequently,

‖S t
Nf‖ ≤ ‖S

o
Nf‖Lp + ‖So

Nf
∗‖Lp

≤ ‖So
N‖Lp→Lp ‖f‖Lp + ‖So

N‖Lp→Lp ‖f∗‖Lp

= 2 ‖So
N‖Lp→Lp ‖f‖Lp . ⊓⊔

We will return to the twisted and one-sided sums shortly, but for the
moment let us concentrate on the symmetric partial sums. Since SNf = f∗dN ,
we have that ‖SNf‖Lp ≤ ‖f‖Lp ‖dN‖L1, and therefore

‖SN‖Lp→Lp ≤ ‖dN‖L1 . (14.2)

Similarly, ‖SN‖C→C ≤ ‖dN‖L1. The numbers ‖dN‖L1 are called the Lebesgue
constants. By Exercise 13.20, they tend to infinity as N → ∞. Therefore,
if equality holds in equation (14.2), then the exponentials cannot form a
Schauder basis for Lp(T).

Theorem 14.3. ‖SN‖L1→L1 = ‖dN‖L1 = ‖SN‖C→C . Consequently, while
{e2πinx}n∈Z is exact in both L1(T) and C(T), it is not a Schauder basis for
either space.

Proof. Consider L1(T) first. Since the Fejér kernel {wm}m∈N is an approxi-
mate identity, we have

lim
m→∞

‖SNwm‖L1 = lim
m→∞

‖wm ∗ dN‖L1 = ‖dN‖L1.

Since ‖wm‖L1 = 1, it follows that ‖SN‖L1→L1 ≥ ‖dN‖L1 .
Now we turn to C(T). Consider signdN , the sign function of dN , which

takes only the values 1, 0, or −1. The function signdN is piecewise constant,
with 2N zero crossings in [0, 1]. Fix ε > 0, and let gN be any continuous
function such that gN (x) = sign dN (x) except for a set EN of measure at
most ε/(4N+2). We can do this in such a way that −1 ≤ gN ≤ 1 everywhere,
so we have ‖gN‖∞ = 1. Since ‖dN‖∞ = 2N + 1,

∣∣∣∣
∫ 1

0

|dN (x)| dx −
∫ 1

0

gN(x) dN (x) dx

∣∣∣∣

=

∫

EN

|dN (x)| dx −
∫

EN

gN (x) dN (x) dx

≤ 2 |EN | ‖dN‖∞

≤ ε.
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Consequently,

‖SNgN‖∞ ≥ |SNgN(0)| = |(gN ∗ dN )(0)|

=

∣∣∣∣
∫ 1

0

gN(x) dN (x) dx

∣∣∣∣

≥
∫ 1

0

|dN (x)| dx − ε

= ‖dN‖L1 − ε.

Since gN is a unit vector, it follows that ‖SN‖C→C ≥ ‖dN‖L1 − ε. Since ε is
arbitrary, the result follows. ⊓⊔

Consequently, there exist integrable functions whose Fourier series do not
converge in L1-norm, and continuous functions whose Fourier series do not
converge uniformly. In fact, we show next that the proof of Theorem 14.3
implies the existence of continuous functions whose Fourier series diverge at
a point. Although the following proof is nonconstructive, explicit examples of
such functions are known.

Corollary 14.4. Given x ∈ T, there exists a function f ∈ C(T) such that
SNf(x) does not converge as N →∞.

Proof. By replacing f with a 1-periodic translation of f, it suffices to con-
sider x = 0. For each N ∈ N define a linear functional µN : C(T) → C by
〈f, µN 〉 = SNf(0). The proof of Theorem 14.3 shows that µN is bounded
and ‖µN‖ = ‖dN‖L1 . If limN→∞ 〈f, µN 〉 exists for each f ∈ C(T), then the
Banach–Steinhaus Theorem (Theorem 2.23) implies that supN ‖µN‖ < ∞,
which contradicts the fact that supN ‖dN‖L1 =∞. ⊓⊔

Even more surprising, given any set E ⊆ T of measure zero, there exists
a continuous function f such that SNf(x) diverges for each x ∈ E [Kat04,
Thm. 3.5]. In particular, there exist continuous functions whose Fourier series
diverge for every x in a dense subset of T.

Exercises

14.1. Prove Lemma 14.1.

14.2. Finish the proof of Theorem 14.2.

14.3. (a) Suppose that f ∈ C(T), f(0) = 0, and f is differentiable at x = 0.
Show that g(x) = f(x)/(e−2πix − 1) ∈ C(T) and
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N∑

k=−N
f̂(k) = ĝ(N + 1)− ĝ(−N).

Conclude that the symmetric partial sums of the Fourier series for f converge
at the point x = 0 to f(0).

(b) Show that if f ∈ C(T) is differentiable at a point x ∈ T, then

lim
N→∞

N∑

k=−N
f̂(k) e2πikx = f(x).

14.2 The Conjugate Function

Typically, the analysis of the convergence of Fourier series is worded in terms

of the conjugate function f̃ , which is the formal limit of the twisted partial

sums of the Fourier series of f. The mapping f 7→ f̃ is closely related to the
Hilbert transform of functions on R, and hence we will denote it by H (we
refer to [Gra04] for more details on the Hilbert transform).

Definition 14.5 (Conjugate Function). Let f ∈ L1(T) be given. If there
exists a function g ∈ L1(T) such that

ĝ(n) = −i sign(n) f̂(n), n ∈ Z,

then g is called the conjugate function of f. We denote the conjugate function

by f̃ or Hf.
We say that a subspace B ⊆ L1(T) admits conjugation if each function

f ∈ B has a conjugate function Hf that belongs to B. ♦

Formally, the conjugate function of f is

Hf(x) = −i
∑

n∈Z

sign(n) f̂(n) e2πinx, (14.3)

although it is important to note that there is no guarantee that this series will
converge in general. One special case is functions f that have absolutely con-
vergent Fourier series. In this case the series in equation (14.3) also converges
absolutely. This leads to the next result, whose proof is Exercise 14.5.

Theorem 14.6. The Fourier algebra A(T) admits conjugation, and if f ∈
A(T), then the twisted partial sums S t

Nf converge to Hf in Lp-norm for each
1 ≤ p ≤ ∞:

∀ f ∈ A(T), ∀ 1 ≤ p ≤ ∞, lim
N→∞

‖Hf − S t
Nf‖Lp = 0. ♦ (14.4)
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Thus, conjugation is well defined on A(T), which is a dense subspace of
Lp(T) for 1 ≤ p < ∞ (see Exercise 13.26). Typically, an operator that is
defined on a dense subspace of a Banach space can only be extended to the
entire space if it is bounded. Combining this with our previous results relating
boundedness of the various types of partial sums to Schauder basis properties,
we obtain the following theorem for Lp(T).

Theorem 14.7. Given 1 ≤ p ≤ ∞, the following statements are equivalent.

(a) The trigonometric system {en}n∈Z is a Schauder basis for Lp(T) with
respect to the ordering of Z given in equation (14.1).

(b) Lp(T) admits conjugation.

(c) Conjugation is a bounded mapping of some dense subspace of Lp(T) into
Lp(T).

(d) Lp(T) admits conjugation, and conjugation is a bounded mapping of Lp(T)
into itself.

Proof. We prove some implications, and assign the rest as Exercise 14.6.

(a) ⇒ (c). Assume that {en}n∈Z is a Schauder basis for Lp(T). Then by

Theorem 14.2, C = sup ‖S t
N‖Lp→Lp < ∞. Therefore, using equation (14.4),

for each f ∈ A(T) we have

‖Hf‖Lp = lim
N→∞

‖S t
Nf‖Lp ≤ lim sup

N→∞
‖S t

N‖Lp→Lp ‖f‖Lp ≤ C ‖f‖Lp.

Hence H is a bounded mapping of
(
A(T), ‖·‖Lp

)
into Lp(T), so statement (c)

holds.

(d) ⇒ (a). Assume that H is a bounded mapping of Lp(T) into itself.

Since |f̂(0)| ≤ ‖f‖L1 ≤ ‖f‖Lp , it follows that the Riesz projection operator

Rf =
f + iHf

2
+
f̂(0)

2
, f ∈ Lp(T),

is also a bounded mapping of Lp(T) into itself. Note that

(Rf)
∧

= f̂ · χ[0,∞) and (M2N+1RM−2N−1f)
∧

= f̂ · χ[2N+1,∞),

and therefore
S

o
Nf = Rf −M2N+1RM−2N−1f.

Since modulation is an isometry on Lp(T), it follows that

‖So
N‖Lp→Lp ≤ 2 ‖R‖Lp→Lp .

The right-hand side is a constant independent of N, so Theorem 14.2 implies
that {en}n∈Z is a Schauder basis for Lp(T). ⊓⊔
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Since we know that the trigonometric system does not form a Schauder
basis for L1(T) or C(T), we conclude that these two spaces do not admit
conjugation. We next consider Lp(T) when 1 < p < ∞, beginning with the
case where p is an even integer.

Theorem 14.8. If k ∈ N, then the trigonometric system {en}n∈Z is a
Schauder basis for L2k(T) with respect to the ordering of Z given in equa-
tion (14.1).

Proof. Let S = span{en}n∈Z. This is the set of all trigonometric polynomials,

and it is dense in L2k(T) by Theorem 13.21. By Theorem 14.7, it suffices to
show that conjugation is a bounded mapping of S into L2k(T).

Step 1. Suppose that f(x) =
∑N

n=−N cn e
2πinx is a nonzero real-valued

trigonometric polynomial that satisfies c0 = f̂(0) = 0. Then f has a conjugate
function Hf, and Hf is also real valued by Exercise 14.4. Since

f(x) + iHf(x) = 2
N∑

n=1

cn e
2πinx,

function f + iHf is a trigonometric polynomial that contains only positive
frequencies. Therefore g = (f + iHf)2k is also a trigonometric polynomial
that contains only positive frequencies. Since f and Hf are both real valued,
expanding by the Binomial Theorem and considering real parts, it follows that

0 = ĝ(0) =

∫ 1

0

(
f(x) + iHf(x)

)2k
dx

= Re

( 2k∑

j=0

i2k−j
(

2k

j

) ∫ 1

0

f(x)j Hf(x)2k−j dx

)

=

k∑

j=0

(−1)k−j
(

2k

2j

) ∫ 1

0

f(x)2j Hf(x)2k−2j dx.

Solving for the j = 0 term and applying Hölder’s Inequality with exponents
pj = (2k)/(2j) and p′j = (2k)/(2k − 2j), we find that

‖Hf‖2k2k =

∫ 1

0

Hf(x)2k dx

=

k∑

j=1

(−1)j+1

(
2k

2j

) ∫ 1

0

f(x)2j Hf(x)2k−2j dx
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≤
k∑

j=1

(−1)j+1

(
2k

2j

)(∫ 1

0

|f(x)|2j· 2k
2j dx

) 2j
2k

×
(∫ 1

0

|Hf(x)|(2k−2j)· 2k
2k−2j dx

) 2k−2j
2k

=
k∑

j=1

(
2k

2j

)
‖f‖2j2k ‖Hf‖

2k−2j
2k .

If we set t = ‖Hf‖2k/‖f‖2k and rearrange the preceding inequality, we obtain

1 ≤
k∑

j=1

(
2k

2j

)
t−2j . (14.5)

Define

r(s) =
k∑

j=1

(
2k

2j

)
s−2j , s > 0.

This is a decreasing function of s, and lims→∞ r(s) = 0. Hence

C = sup
{
s > 0 : r(s) ≥ 1

}
< ∞.

By equation (14.5) we have r(t) ≥ 1, so we must have t ≤ C, and therefore

‖Hf‖2k ≤ C ‖f‖2k.
Step 2. Now suppose that f is any real-valued trigonometric polynomial.

Then f̂(0) =
∫ 1

0 f(x) dx is real valued, so g(x) = f(x) − f̂(0) is a real-valued
trigonometric polynomial that satisfies ĝ(0) = 0. Further, Hg = Hf, so

‖Hf‖2k = ‖Hg‖2k ≤ C ‖g‖2k
≤ C ‖f‖2k + C |f̂(0)|
≤ C ‖f‖2k + C ‖f‖L1

≤ (C + 1) ‖f‖2k.

Step 3. If f is an arbitrary trigonometric polynomial, then we can write
f = g + ih, where g and h are real-valued trigonometric polynomials. Since
Hf = Hg + iHh, by applying Step 2 to Hg and Hh we obtain ‖Hf‖2k ≤
(2C + 2) ‖f‖2k. Therefore conjugation is a bounded mapping on the dense
subspace S, so the result follows by Theorem 14.7. ⊓⊔

Thus, we have proved that conjugation is a bounded mapping on L2(T),
L4(T), L6(T), etc. If we could somehow infer boundedness for the “in-
between” values of p, we could conclude that the trigonometric system is
a Schauder basis for Lp(T) for each 2 ≤ p < ∞. This is a classic situation,
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and interpolation theory comes to our rescue here. In particular, the Riesz–
Thorin Interpolation Theorem implies that conjugation is bounded on Lp(T)
for each p ∈ [2k, 2k+ 2], and hence for all 2 ≤ p <∞. For details on interpo-
lation theory in this context, we refer to [Kat04], and for a general reference
on interpolation theory we refer to [BL76].

Finally, if f and g are sufficiently nice functions, e.g., f, g ∈ A(T), then
we have by the Parseval Equality that

〈
Hf, g

〉
=
〈
(Hf)

∧

, ĝ
〉

= −i
∑

n∈Z

sign(n) f̂(n) ĝ(n)

= −
〈
f̂ , (Hg)

∧
〉

= −〈f,Hg〉.

Hence conjugation is skew-adjoint, and this can be used to give an argument
“by duality” that boundedness of H on Lp(T) for 2 ≤ p <∞ implies bound-
edness for 1 < p ≤ 2 (see Exercise 14.7).

Thus, with considerably more work than for the case p = 2, we see that the
trigonometric system forms a Schauder basis for Lp(T) for each 1 < p < ∞.
Moreover, Exercise 6.5 tells us that this basis is conditional if p 6= 2. The
partial sums of the Fourier series of f ∈ Lp(T) converge to f in Lp-norm if
we follow the ordering Z = {0,−1, 1, 2,−2, . . .}. However, if p 6= 2 then there
exists some f ∈ Lp(T) such that the partial sums of its Fourier series do not
converge with respect to some other ordering of Z.

Exercises

14.4. (a) Suppose that g ∈ L1(T). Show that g is real valued if and only if

ĝ(n) = ĝ(−n) for n ∈ Z.

(b) Show that if f ∈ A(T) is real valued, then its conjugate function Hf
is also real valued.

14.5. Prove Theorem 14.6.

14.6. Finish the proof of Theorem 14.7.

14.7. Given 1 < p < ∞, show that conjugation is bounded on Lp(T) if and

only if it is bounded on Lp
′

(T).

14.3 Pointwise Almost Everywhere Convergence

We have concentrated on norm convergence of Fourier series. One of the deep-
est results in Fourier analysis is the following theorem on pointwise almost
everywhere convergence of Fourier series, which we state without proof. This
theorem was proved by Lennart Carleson for the case p = 2 in [Car66] and
extended to 1 < p <∞ by Richard Hunt in [Hun68].
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Theorem 14.9 (Carleson–Hunt Theorem). If 1 < p < ∞, then for each
f ∈ Lp(T), the partial sums SNf converge to f pointwise a.e. That is,

f(x) =
∑

n∈Z

f̂(n) e2πinx a.e.,

in the sense of convergence of the symmetric partial sums. ♦

The restriction to p > 1 is necessary, as there exist functions f ∈ L1(T)
whose Fourier series diverge at almost every x [Gra04, Thm. 3.4.2].



Part V

Appendices



A

Lebesgue Measure and Integration

In this appendix we give a brief review, without proofs, of Lebesgue measure
and integration on subsets of Rd. Details and proofs can be found in texts on
real analysis, such as [Fol99] or [WZ77].

A.1 Exterior Lebesgue Measure

For compactness of notation, we will refer to rectangular parallelepipeds in
Rd whose sides are parallel to the coordinate axes simply as “boxes.”

Definition A.1. (a) A box in Rd is a set of the form

Q = [a1, b1]× · · · × [ad, bd] =

d∏

i=1

[ai, bi].

The volume of this box is

vol(Q) = (b1 − a1) · · · (bd − ad) =

d∏

i=1

(bi − ai).

(b) The exterior Lebesgue measure or outer Lebesgue measure of a set E ⊆ Rd

is
|E|e = inf

{∑

k

vol(Qk)
}
,

where the infimum is taken over all finite or countable collections of boxes
Qk such that E ⊆ ⋃k Qk. ♦

Thus, every subset of Rd has a uniquely defined exterior measure that lies
in the range 0 ≤ |E|e ≤ ∞. Here are some of the basic properties of exterior
measure.

Theorem A.2. (a) If Q is a box in Rd, then |Q|e = vol(Q).
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(b) Monotonicity: If E ⊆ F ⊆ Rd, then |E|e ≤ |F |e.
(c) Countable subadditivity: If Ek ⊆ Rd for k ∈ N, then

∣∣∣
∞⋃
k=1

Ek

∣∣∣
e
≤

∞∑

k=1

|Ek|e.

(d) Translation invariance: If E ⊆ Rd and h ∈ Rd, then |E + h|e = |E|e,
where E + h = {t+ h : t ∈ E}.

(e) Regularity: If E ⊆ Rd and ε > 0, then there exists an open set U ⊇ E
such that |U |e ≤ |E|e + ε, and hence

|E|e = inf
{
|U |e : U open, U ⊇ E

}
. ♦

A.2 Lebesgue Measure

Definition A.3. A set E ⊆ Rd is Lebesgue measurable, or simply measurable,
if

∀ ε > 0, ∃ open U ⊇ E such that |U\E|e ≤ ε. (A.1)

If E is Lebesgue measurable, then its Lebesgue measure is its exterior Lebesgue
measure and is denoted by |E| = |E|e. ♦

Note that equation (A.1) does not follow from Theorem A.2(e). One con-
sequence of the Axiom of Choice is that there exist subsets of Rd that are not
measurable.

The following result summarizes some of the properties of measurable sets.

Theorem A.4. (a) The class of measurable subsets of Rd is a σ-algebra,
meaning that :

i. ∅ and Rd are measurable,
ii. if E1, E2, . . . are measurable, then ∪Ek is measurable,
iii. if E is measurable, then Rd\E is measurable.

(b) Every open and every closed subset of Rd is measurable.

(c) Every subset E of Rd with |E|e = 0 is measurable. ♦

Since measurability is preserved under complements and countable unions,
it is also preserved under countable intersections.

We give some equivalent formulations of measurability.

Definition A.5. (a) A set H ⊆ Rd is a Gδ-set if there exist finitely or count-
ably many open sets Uk such that H = ∩Uk.

(b) A set H ⊆ Rd is an Fσ-set if there exist finitely or countably many closed
sets Fk such that H = ∪Fk. ♦
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Theorem A.6. Let E ⊆ Rd be given. Then the following statements are
equivalent.

(a) E is measurable.

(b) For every ε > 0, there exists a closed set F ⊆ E such that |E\F |e ≤ ε.
(c) E = H\Z where H is a Gδ-set and |Z| = 0.

(d) E = H ∪ Z where H is an Fσ-set and |Z| = 0. ♦

Now we list some properties of Lebesgue measure.

Theorem A.7. Let E and Ek be measurable subsets of Rd.

(a) Countable additivity: If E1, E2, . . . are disjoint measurable subsets of Rd,
then ∣∣∣

∞⋃
k=1

Ek

∣∣∣ =

∞∑

k=1

|Ek|.

(b) If E1 ⊆ E2 and |E1| <∞, then |E2\E1| = |E2| − |E1|.
(c) Continuity from below: If E1 ⊆ E2 ⊆ · · · , then

∣∣∪Ek
∣∣ = limk→∞ |Ek|.

(d) Continuity from above: If E1 ⊇ E2 ⊇ · · · and |E1| < ∞, then
∣∣∩Ek

∣∣ =
limk→∞ |Ek|.

(e) Translation invariance: If h ∈ Rd, then |E + h| = |E|, where E + h =
{x+ h : x ∈ E}.

(f) Linear changes of variable: If T : Rd → Rd is linear, then T (E) is mea-
surable and |T (E)| = | det(T )| |E|.

(g) Cartesian products: If E ⊆ Rm and F ⊆ Rn are measurable, then E×F ⊆
Rm+n is measurable and |E × F | = |E| |F |. ♦

We end this section with some terminology.

Definition A.8. A property that holds except possibly on a set of measure
zero is said to hold almost everywhere, abbreviated a.e. ♦

For example, if C is the classical Cantor middle-thirds set, then |C| = 0.
Hence, the characteristic function χC of C satisfies χC(t) = 0 except for those t
that belong to the zero measure set C. Therefore we say that χC(t) = 0 for
almost every t, or χC = 0 a.e. for short.

The essential supremum of a function is an example of a quantity that is
defined in terms of a property that holds almost everywhere.

Definition A.9 (Essential Supremum). The essential supremum of a
function f : E → R is

ess sup
t∈E

f(t) = inf{M : f ≤M a.e.}.

We say that f is essentially bounded if ess supt∈E |f(t)| <∞. ♦
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A.3 Measurable Functions

Now we define the class of measurable functions on subsets of Rd.

Definition A.10 (Real-Valued Measurable Functions). Fix a measur-
able set E ⊆ Rd, and let f : E → R be given. Then f is a Lebesgue measurable
function, or simply a measurable function, if f−1(α,∞) = {t ∈ E : f(t) > α}
is a measurable subset of Rd for each α ∈ R. ♦

In particular, every continuous function f : Rd → R is measurable. How-
ever, a measurable function need not be continuous.

Measurability is preserved under most of the usual operations, including
addition, multiplication, and limits. Some care does need to be taken with
compositions, but if we compose a measurable function with a continuous
function in the correct order, then measurability will be assured.

Theorem A.11. Let E ⊆ Rd be measurable.

(a) If f : E → R is measurable and g = f a.e., then g is measurable.

(b) If f, g : E → R are measurable, then so is f + g.

(c) If f : E → R is measurable and ϕ : R → R is continuous, then ϕ ◦ f
is measurable. Consequently, |f |, f2, f+, f−, and |f |p for p > 0 are all
measurable.

(d) If f, g : E → R are measurable, then so is fg.

(e) If fn : E → R are measurable for n ∈ N, then so are sup fn, inf fn,
lim sup fn, and lim inf fn.

(f) If fn : E → R are measurable for n ∈ N and f(t) = limn→∞ fn(t) exists
for a.e. t, then f is measurable. ♦

Definition A.12 (Complex-Valued Measurable Functions). Given a
measurable domain E ⊆ Rd and a complex-valued function f : E → C,
write f in real and imaginary parts as f = fr + ifi. Then we say that f
is measurable if both fr and fi are measurable. ♦

Egoroff’s Theorem says that pointwise convergence of measurable func-
tions is uniform convergence on “most” of the set.

Theorem A.13 (Egoroff’s Theorem). Let E ⊆ Rd be measurable with
|E| <∞. If fn, f : E → C are measurable functions and fn(t)→ f(t) for a.e.
t ∈ E, then for every ε > 0 there exists a measurable set A ⊆ E such that
|A| < ε and fn converges uniformly to f on E\A, i.e.,

lim
n→∞

(
sup
t/∈A
|f(t)− fn(t)|

)
= 0. ♦
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A.4 The Lebesgue Integral

To define the Lebesgue integral of a measurable function, we first begin with
“simple functions” and then extend to nonnegative functions, real-valued func-
tions, and complex-valued functions.

Definition A.14. Let E ⊆ Rd be measurable.

(a) A simple function on E is a function φ : E → F of the form

φ =

N∑

k=1

ak χEk
, (A.2)

where N > 0, ak ∈ F, and the Ek are measurable subsets of E.

(b) If a1, . . . , aN ∈ F are the distinct values assumed by a simple function φ
and we set Ek = {t ∈ E : φ(t) = ak}, then φ has the form given in
equation (A.2) and the sets E1, . . . , EN form a partition of E. We call
this the standard representation of φ.

(c) If φ is a nonnegative simple function on E with standard representation

φ =
∑N

k=1 ak χEk
, then the Lebesgue integral of φ over E is

∫

E

φ =

∫

E

φ(t) dt =

N∑

k=1

ak |Ek|.

(d) If f : E → [0,∞) is a measurable function, then the Lebesgue integral of f
over E is

∫

E

f =

∫

E

f(t) dt = sup

{∫

E

φ : 0 ≤ φ ≤ f, φ simple

}
.

If A is a measurable subset of E, then we write
∫
A
f =

∫
E
f χA. ♦

Following are some of the basic properties of integrals of nonnegative func-
tions.

Theorem A.15. Let E ⊆ Rd and f, g : E → [0,∞) be measurable.

(a) If φ is a simple function on E, then the integrals of φ given in parts (c)
and (d) of Definition A.14 coincide.

(b) If f ≤ g then
∫
E
f ≤

∫
E
g.

(c) Tchebyshev’s Inequality: If α > 0, then |{t ∈ E : f(t) > α}| ≤ 1
α

∫
E
f.

(d)
∫
E f = 0 if and only if f = 0 a.e. ♦

The definition of
∫
E f given in Definition A.14 is often cumbersome to

implement. One application of the next result (which is also known as the
Beppo Levi Theorem) is that the integral of f can be obtained as a limit
instead of a supremum of integrals of simple functions. We say that a sequence
of real-valued functions {fn} is monotone increasing if f1(t) ≤ f2(t) ≤ · · ·
for all t. We write fn ր f to mean that {fn} is monotone increasing and
fn(t)→ f(t) pointwise.
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Theorem A.16 (Monotone Convergence Theorem). Let E ⊆ Rd be
measurable, and assume {fn} are nonnegative measurable functions on E such
that fn ր f. Then

lim
n→∞

∫

E

fn =

∫

E

f. ♦

Theorem A.17. If E ⊆ Rd and f : E → [0,∞) are measurable then there ex-
ist simple functions φn such that φn ր f, and consequently

∫
E
φn ր

∫
E
f. ♦

Corollary A.18. Let {fn} be a sequence of measurable, nonnegative functions
on a measurable set E ⊆ Rd. Then

∫

E

( ∞∑

n=1

fn

)
=

∞∑

n=1

∫

E

fn.

In particular, if f : E → [0,∞) is measurable, A1, A2, . . . are disjoint and
measurable, and A = ∪Ak, then

∫

A

f =
∑

k

∫

Ak

f. ♦

If we have functions fn that are not monotone increasing, then we may
not be able to interchange a limit with an integral. The following result states
that as long as the fn are all nonnegative, we do at least have an inequality.

Theorem A.19 (Fatou’s Lemma). If {fn} is a sequence of measurable,
nonnegative functions on a measurable set E ⊆ Rd, then

∫

E

(
lim inf
n→∞

fn

)
≤ lim inf

n→∞

∫

E

fn. ♦

We define the integral of a general real-valued function by writing it as a
difference of two nonnegative functions, and that of a complex-valued function
by splitting it into real and imaginary parts.

Definition A.20. Let E ⊆ Rd be measurable.

(a) Given a measurable function f : E → R define

f+(t) = max
{
f(t), 0

}
, f−(t) = max

{
−f(t), 0

}
.

Then f+, f− ≥ 0, and we have f = f+ − f− and |f | = f+ + f−. The
Lebesgue integral of f on E is

∫

E

f =

∫

E

f+ −
∫

E

f−,

as long as this does not have the form ∞−∞ (in that case, the integral
is undefined).
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(b) Given a measurable function f : E → C, write the real and imaginary
parts of f as f = fr + ifi. If

∫
E fr and

∫
E fi both exist and are finite,

then the Lebesgue integral of f on E is

∫

E

f =

∫

E

fr + i

∫

E

fi. ♦

Theorem A.21. Let f be a measurable function on a measurable set E ⊆ Rd.
Then

∫
E
f exists and is a finite scalar if and only if

∫
E
|f | < ∞, and in this

case
∣∣∫
E
f
∣∣ ≤

∫
E
|f |. ♦

A.5 Lp Spaces and Convergence

Let E be a measurable subset of Rd. Given 1 ≤ p < ∞, for each measurable
function f : E → C we define the Lp-norm of f to be

‖f‖Lp =

(∫

E

|f(t)|p dt
)1/p

.

Lp(E) is the space of all functions for which ‖f‖Lp is finite. Technically, ‖·‖Lp

is only a seminorm on Lp(E) because any function f satisfying f = 0 a.e.
will have ‖f‖Lp = 0. However, if we identify functions that are equal almost
everywhere, i.e., we consider them as defining the same element of Lp(E), then
‖ · ‖Lp is a norm on Lp(E). Further, it can be shown that Lp(E) is complete
with respect to this norm, and hence is a Banach space.

For p =∞ we define the L∞-norm of f to be

‖f‖L∞ = ess sup
t∈E

|f(t)| = inf
{
M ≥ 0 : |f(t)| ≤M a.e.

}
.

Then L∞(E) is a Banach space with respect to this norm if we again identify
functions that are equal almost everywhere.

Remark A.22. (a) Technically, an element of Lp(E) is an equivalence class of
functions that are equal almost everywhere rather than a single function. We
can usually safely ignore the distinction between a function and the equiva-
lence class of functions that are equal to it a.e., but on occasion some care
needs to be taken. One such situation arises when dealing with continuous
functions. Every function in Cb(R) is continuous and bounded, so we often
write Cb(R) ⊆ L∞(R). However, in doing so we are really identifying Cb(R)

with its image in L∞(R) under the equivalence relation of equality almost

everywhere. That is, if f ∈ Cb(R) then it determines an equivalence class f̃
of functions that are equal to it almost everywhere, and it is this equivalence

class f̃ that belongs to L∞(R). Conversely, if we are given f ∈ L∞(R) (re-

ally an equivalence class f̃ of functions) and there is a representative of this
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equivalence class that belongs to Cb(R), then we write f ∈ Cb(R), meaning
that there is a representative of f that belongs to Cb(R).

(b) The two statements “f is continuous a.e.” and “f equals a continuous
function a.e.” are distinct. The first means that limy→x f(y) = f(x) for almost
every x, while the second means that there exists a continuous function g such
that f(x) = g(x) for almost every x. Only in the latter case can we say that
there is a representative of f that is a continuous function. The function χ[0,1]

is an example of a function that is continuous a.e. but does not equal any
continuous function a.e. ♦

Convergence in Lp-norm is not equivalent to pointwise convergence of func-
tions, but we do have the following important fact.

Theorem A.23. Let E ⊆ Rd be measurable and fix 1 ≤ p ≤ ∞. If fn,
f ∈ Lp(E) and fn → f in Lp-norm, then there exists a subsequence {fnk

}k∈N

such that fnk
(t)→ f(t) for almost every t ∈ E. ♦

The Dominated Convergence Theorem is one of the most important con-
vergence theorems for integrals.

Theorem A.24 (Lebesgue Dominated Convergence Theorem). As-
sume {fn} is a sequence of measurable functions on a measurable set E ⊆ Rd

such that:

(a) f(t) = limn→∞ fn(t) exists for a.e. t ∈ E, and

(b) there exists g ∈ L1(E) such that |fn(t)| ≤ g(t) a.e. for every n.

Then fn converges to f in L1-norm, i.e.,

lim
n→∞

‖f − fn‖L1 = lim
n→∞

∫

E

|f − fn| = 0,

and, consequently,

lim
n→∞

∫

E

fn =

∫

E

f. ♦

There is also a series version of the Dominated Convergence Theorem.

Theorem A.25 (Dominated Convergence Theorem for Series). As-
sume (amn)m,n∈N is a sequence of complex scalars such that:

(a) am = limn→∞ amn exists for all m ∈ N, and

(b) there exists a sequence b = (bm) ∈ ℓ1 such that |amn| ≤ bm for every m
and n.

Then
lim
n→∞

∑

m

amn =
∑

m

am. ♦



A.6 Repeated Integration 477

It is often useful to know that we can approximate a given Lp function
by functions that have some special properties. For example, combining the
Lebesgue Dominated Convergence Theorem with Theorem A.17 shows that
the set of Lp simple functions is dense in Lp(E), and we can restrict further
to simple functions with compact support.

Theorem A.26. Let E ⊆ Rd be Lebesgue measurable. Then the set S con-
sisting of all compactly supported simple functions is dense in Lp(E) for each
1 ≤ p <∞. ♦

Here are some other examples of dense subspaces of Lp.

Lemma A.27. Cc(R
d) is dense in Lp(Rd) for each 1 ≤ p < ∞. If K ⊆ Rd

is compact, then C(K) is dense in Lp(K) for each 1 ≤ p <∞. ♦

Lemma A.28. {χ[a,b] : −∞ < a < b < ∞} is complete in Lp(R) for each
1 ≤ p <∞. ♦

Lemma A.29. {χE×F : E,F ⊆ R} is complete in Lp(R2) for each index
1 ≤ p <∞. ♦

An important property of integrable functions is given in the next theorem.

Theorem A.30 (Lebesgue Differentiation Theorem). Fix f ∈ L1[a, b].
Then for almost every x ∈ (a, b),

lim
h→0

1

h

∫ x+h

x

f(y) dy = lim
h→0

1

2h

∫ x+h

x−h
f(y) dy = f(x).

Consequently, the indefinite integral of f,

F (x) =

∫ x

a

f(y) dy,

is differentiable a.e., and F ′ = f a.e. ♦

In fact, the intervals [x, x + h] or [x − h, x + h] can be replaced by
any collection of sets {Sh}h>0 that shrink regularly to x, which means that
diam(Sh)→ 0, and there exists a constant C > 0 such that if Qh is the small-
est interval centered at x that contains Sh, then |Qh| ≤ C |Sh|. The Lebesgue
Differentiation Theorem can also be generalized to higher dimensions.

A.6 Repeated Integration

Let E ⊆ Rm and F ⊆ Rn be measurable. If f is a measurable function on
E × F then there are three natural integrals of f over E × F. First, there is
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the integral of f over the set E × F ⊆ Rm+n, which we write as the double
integral ∫∫

E×F
f =

∫∫

E×F
f(x, y) (dx dy).

Second, for each fixed y we can integrate f(x, y) as a function of x, and then
integrate the result in y, obtaining the iterated integral

∫

F

(∫

E

f(x, y) dx

)
dy.

Third, we also have the iterated integral

∫

E

(∫

F

f(x, y) dy

)
dx.

In general these three integrals need not be equal, even if they all exist. The
theorems of Fubini and Tonelli give sufficient conditions under which we can
exchange the order of integration. We begin with Tonelli’s Theorem, which
states that interchange is allowed if f is nonnegative.

Theorem A.31 (Tonelli’s Theorem). Let E be a measurable subset of Rm

and F a measurable subset of Rn. If f : E × F → [0,∞) is measurable, then
the following statements hold.

(a) fx(y) = f(x, y) is measurable on F for each x ∈ E.
(b) fy(x) = f(x, y) is measurable on E for each y ∈ F.
(c) g(x) =

∫
F
fx(y) dy is a measurable function on E.

(d) h(y) =
∫
E f

y(x) dx is a measurable function on F.

(e) We have

∫∫

E×F
f(x, y) (dx dy) =

∫

F

(∫

E

f(x, y) dx

)
dy

=

∫

E

(∫

F

f(x, y) dy

)
dx,

in the sense that either all three of the quantities above are finite and
equal, or all are infinite. ♦

As a corollary, we obtain the useful fact that to test whether a given
function belongs to L1(E × F ) we can simply show that any one of three
possible integrals is finite.

Corollary A.32. Let E be a measurable subset of Rm and F a measurable
subset of Rn. If f is a measurable function on E × F, then (as nonnegative
real numbers or as infinity):
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∫∫

E×F
|f(x, y)| (dx dy) =

∫

F

(∫

E

|f(x, y)| dx
)
dy =

∫

E

(∫

F

|f(x, y)| dy
)
dx.

Consequently, if any one of these three integrals is finite, then f belongs to
L1(E × F ). ♦

Fubini’s Theorem allows the interchange of integrals if f is integrable.

Theorem A.33 (Fubini’s Theorem). Let E be a measurable subset of Rm

and F a measurable subset of Rn. If f ∈ L1(E × F ), then the following
statements hold.

(a) fx(y) = f(x, y) is measurable and integrable on F for almost every x ∈ E.
(b) fy(x) = f(x, y) is measurable and integrable on E for almost every y ∈ F.
(c) g(x) =

∫
F
fx(y) dy is a measurable and integrable function on E.

(d) h(y) =
∫
E f

y(x) dx is a measurable and integrable function on F.

(e) We have

∫∫

E×F
f(x, y)(dx dy) =

∫

F

(∫

E

f(x, y) dx

)
dy =

∫

E

(∫

F

f(x, y) dy

)
dx,

where each of these quantities is a finite scalar. ♦

There are also corresponding discrete versions of Fubini’s Theorem and
Tonelli’s Theorem for series.

Theorem A.34. (a) Given a sequence (amn)m,n∈N with all amn ≥ 0, we have

∑

m

∑

n

amn =
∑

n

∑

m

amn,

in the sense that either both are finite and equal, or both are infinite.

(b) Given a sequence (amn)m,n∈N with
∑

m

∑
n |amn| <∞, we have

∑

m

∑

n

amn =
∑

n

∑

m

amn. ♦

An entirely similar result holds for interchanging an integral with a series.



B

Compact and Hilbert–Schmidt Operators

Although compact operators play an important role in many areas of analysis,
they appear only rarely in this volume. In particular, we use them in the
proof of Theorem 5.26, and the special type of compact operators known as
Hilbert–Schmidt operators play a role in some exercises that deal with tensor
products. This appendix provides a brief review of the properties of compact
and Hilbert–Schmidt operators that are relevant to our uses in this volume.
A few proofs are included, and some others are sketched in the Exercises for
this appendix.

B.1 Compact Sets

Strictly speaking, we can define compact operators without needing to know
the meaning of a compact set, but for completeness we recall the definition
and basic properties of compact sets in normed spaces.

Definition B.1 (Compact Set). A subset K of a normed space X is com-
pact if every covering of K by open sets has a finite subcovering. More pre-
cisely, K is compact if it is the case that whenever

K ⊆ ⋃
i∈I

Ui,

where {Ui}i∈I is any collection of open subsets of X, there exist finitely many
i1, . . . , iN ∈ I such that

K ⊆
N⋃
k=1

Uik . ♦

If we replace “normed space” by “topological space,” then Definition B.1
is the abstract definition of a compact set in a general topological space.
However, we are most interested in Banach spaces. In this setting compactness
can be equivalently reformulated in the following ways.
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Theorem B.2. If K is a subset of a Banach space X, then the following
statements are equivalent.

(a) K is compact.

(b) K is sequentially compact, i.e., every sequence {xn} of points of K con-
tains a convergent subsequence {xnk

}k∈N whose limit belongs to K.

(c) K is closed and totally bounded, i.e., for every r > 0, there exist finitely
many x1, . . . , xN ∈ X such that

K ⊆
N⋃
k=1

Br(xk). ♦

Theorem B.2 carries over without change if X is a complete metric space
instead of a Banach space. If X is an arbitrary normed or metric space, then
Theorem B.2 remains valid if we replace the word “closed” in statement (c) by
“complete,” i.e., every Cauchy sequence in K converges to an element of K.

A compact subset of a normed space is both closed and bounded, and in
a finite-dimensional normed space the converse holds as well. However, the
converse fails in every infinite-dimensional normed space. In particular, if X
is an infinite-dimensional normed space, then Exercise 1.44 shows that the
closed unit ball D = {x ∈ X : ‖x‖ ≤ 1} in X is not compact.

B.2 Compact Operators

Now we give the definition of a compact operator in the setting of Banach
spaces.

Definition B.3. Let X, Y be Banach spaces. A linear operator T : X → Y
is compact if for every sequence {xn} ⊆ X with ‖xn‖ ≤ 1 for every n, there
exists a subsequence of {Txn} that converges in Y. ♦

Equivalently, T is compact if the closure in Y of {Tx : ‖x‖ ≤ 1} is a
compact subset of Y.

Here are some examples of compact and non-compact operators, and more
examples are given below.

Example B.4. (a) By Exercise 1.44, the closed unit ball D = {x : ‖x‖ ≤ 1} is
a compact subset of a normed space X if and only if X is finite dimensional.
Hence the identity operator I : X → X is a compact operator if and only if X
is finite dimensional.

(b) Suppose that T : X → Y is a bounded linear operator with finite-
dimensional range. Then range(T ) is a finite-dimensional normed space, where
the norm on range(T ) is inherited from Y. Hence {Tx : ‖x‖ ≤ 1} is a closed and
bounded subset of a finite-dimensional space, and therefore is compact. Hence
all bounded linear operators with finite-dimensional ranges are compact. Since
the dimension of the range is the rank of an operator, an operator with finite-
dimensional range is called a finite-rank operator.
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(c) A compact operator need not have finite rank. For example, if λ =
(λk) ∈ ℓ∞ then we can define a bounded operator Mλ : ℓ2 → ℓ2 by

Mλ(x1, x2, . . . ) = (λ1x1, λ2x2, . . . ).

Exercise B.3 shows that Mλ is compact if and only if λ ∈ c0. However, Mλ

has finite rank if and only if λ is a finite sequence. If λ ∈ c0 and λn 6= 0 for
every n then Mλ is compact and injective and range(Mλ) is a dense subspace
of ℓ2, so Mλ is certainly not finite rank in this case. ♦

In essence, although compact operators need not have finite-dimensional
ranges, they are still in some sense “close” to being finite rank.

The next result summarizes some of the basic properties of compact op-
erators (see Exercise B.1).

Theorem B.5. Let X, Y, Z be Banach spaces, and let T : X → Y and
S : Y → Z be linear operators.

(a) If T is compact, then T is bounded.

(b) If T is bounded and has finite rank, then T is compact.

(c) If Tn : X → Y are compact operators and ‖T−Tn‖ → 0, then T is compact.

(d) If T is compact and S is bounded, or if T is bounded and S is compact,
then ST is compact.

(e) If T : X → X is compact and λ ∈ F, then ker(T − λI) is finite dimen-
sional. ♦
Restating part (e) of Theorem B.5 another way, if λ is an eigenvalue of a

compact operator T, then the corresponding λ-eigenspace is finite dimensional.
We will also need the following fact, which we state without proof. This

theorem is a special case of the Fredholm Alternative, e.g., see [Meg98,
Thm. 3.2.24].

Theorem B.6. Let X be a Banach space. If T ∈ B(X) is compact and
ker(I−T ) = {0}, then I−T is a topological isomorphism of X onto itself. ♦

Exercises

B.1. Prove Theorem B.5.

B.2. Let H, K be Hilbert spaces. Show that if T : H → K is compact and
{en} is an orthonormal sequence in H, then Ten → 0.

B.3. Let {en} be an orthonormal basis for a Hilbert space H. Fix λ ∈ ℓ∞,
and let Mλ : H → H be the operator defined in Exercise 1.66.

(a) Show that Mλ is compact if and only if λ ∈ c0.
(b) Show that if λ ∈ c0 and λn 6= 0 for every n, then

{
Mλx : ‖x‖ ≤ 1

}
is

not closed in H.
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B.3 Hilbert–Schmidt Operators

Hilbert–Schmidt operators are a special type of compact operator on Hilbert
spaces. The definition can be extended to arbitrary Hilbert spaces, but we
will restrict our attention to separable spaces.

Definition B.7. Given separable Hilbert spacesH, K, we say that a bounded
linear operator T : H → K is Hilbert–Schmidt if there exists an orthonormal
basis {en} for H such that

∑ ‖Ten‖2 < ∞. The space of Hilbert–Schmidt
operators mapping H into K is denoted

B2(H,K) =
{
T ∈ B(H,K) : T is Hilbert–Schmidt

}
,

and we write B2(H) = B(H,H). ♦
The next theorem states some of the properties of Hilbert–Schmidt oper-

ators (see Exercise B.4).

Theorem B.8. Let H, K be separable Hilbert spaces.

(a) Given T ∈ B(H,K), the quantity

‖T ‖2HS =
∑

n

‖Ten‖2

is independent of the choice of orthonormal basis {en} for H (i.e., it
is either finite and equal for all orthonormal bases, or infinite for every
orthonormal basis). Further,

‖T ∗‖HS = ‖T ‖HS and ‖T ‖ ≤ ‖T ‖HS.

(b) ‖ · ‖HS is a norm on B2(H,K), and B2(H,K) is complete with respect to
this norm. Further, B2(H,K) is a Hilbert space with respect to the inner
product

〈T, U〉HS =
∑

n

〈Ten, Uen〉, T, U ∈ B2(H,K),

where {en} is any orthonormal basis for H.

(c) If T ∈ B2(H,K), A ∈ B(H), and B ∈ B(K), then BT, TA ∈ B2(H,K),
and we have

‖BT ‖HS ≤ ‖B‖ ‖T ‖HS, ‖TA‖HS ≤ ‖A‖ ‖T ‖HS.

(d) All bounded linear finite-rank operators on H are Hilbert–Schmidt, and all
Hilbert–Schmidt operators are compact. Moreover,

B00(H,K) =
{
L ∈ B(H,K) : L has finite rank

}

is dense in B2(H,K) with respect to ‖ · ‖HS. ♦
We call ‖T ‖HS the Hilbert–Schmidt norm of T.
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Exercises

B.4. Prove Theorem B.8.

B.4 Finite-Rank Operators and Tensor Products

We examine the finite-rank operators a little more closely, and show how they
can be written in terms of tensor product operators.

Definition B.9 (Tensor Product Operator). Let H, K be Hilbert spaces.
The tensor product of x ∈ H with y ∈ K is the operator x ⊗ y ∈ B(H,K)
defined by

(x⊗ y)(z) = 〈z, x〉 y, z ∈ H. ♦ (B.1)

Note that x ⊗ y is a bounded linear operator with finite rank, and so is
Hilbert–Schmidt. If x = 0 or y = 0 then x⊗ y is the zero operator. Otherwise
the range of x ⊗ y is span{y}, the line through y, and hence x ⊗ y has rank
one.

These tensor product operators are “elementary building blocks” for
B2(H,K) in the following sense.

Theorem B.10. Let H, K be separable Hilbert spaces.

(a) T ∈ B(H,K) has rank one if and only if T = x⊗y for some x ∈ H, y ∈ K
not both zero.

(b) T ∈ B(H,K) has finite rank if and only if T =
∑N
k=1 xk ⊗ yk for some

N ∈ N, xk ∈ H, and yk ∈ K.
(c) {x⊗ y : x ∈ H, y ∈ K} is complete in B2(H,K).

(d) If x1, x2 ∈ H and y1, y2 ∈ K, then

〈
x1 ⊗ y1, x2 ⊗ y2

〉
HS

= 〈x2, x1〉H 〈y1, y2〉K .

(e) If {en} is an orthonormal basis for H and {fn} is an orthonormal basis
for K, then {em ⊗ fn}m,n∈N is an orthonormal basis for B2(H,K).

(f) If T ∈ B(H,K), then 〈T, em ⊗ fn〉 = 〈Tem, fn〉 for every m, n ∈ N.

Proof. We prove part (e) and assign the remainder as Exercise B.5.
If {en} and {fn} are orthonormal bases, then by part (d) we have

〈
em ⊗ fn, em′ ⊗ fn′

〉
HS

= 〈fn, fn′〉 〈em′ , em〉 = δmm′ δnn′ .

Therefore {em ⊗ fn}m,n∈N is an orthonormal sequence in B2(H,K).
Fix T ∈ B2(H,K). Applying the Plancherel Equality, we have
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∑

m,n

|〈Tem, fn〉|2 =
∑

m

(∑

n

|〈Tem, fn〉|2
)

=
∑

m

‖Tem‖2 = ‖T ‖2HS < ∞.

Since {em ⊗ fn}m,n∈N is orthonormal, this implies that the series

U =
∑

m,n

〈Tem, fn〉 (em ⊗ fn)

converges in B2(H,K). If we can show that T = U then we can conclude that
{em ⊗ fn}m,n∈N is complete, and hence is an orthonormal basis.

To see this, choose any x ∈ H. Then

Ux =
∑

m,n

〈Tem, fn〉 (em ⊗ fn)(x)

=
∑

n

(∑

m

〈Tem, fn〉 〈x, em〉
)
fn

=
∑

n

(∑

m

〈x, em〉 〈em, T ∗fn〉
)
fn

=
∑

n

〈x, T ∗fn〉 fn

=
∑

n

〈Tx, fn〉 fn = Tx,

so T = U as desired. ⊓⊔

By part (d) of Theorem B.10, B2(H,K) is isomorphic to the completion
of span{x ⊗ y : x ∈ H, y ∈ K}. This is a specific example of the abstract
construction of the tensor product H ⊗K of Hilbert spaces H, K. Likewise,
there exists an abstract notion of the tensor product of Banach spaces. We
refer to the text by Ryan [Rya02] for more details. In this language H ⊗ K
is isometrically isomorphic to B2(H,K), and so for us it will be sufficient to
define the tensor product of H and K to be

H ⊗K = B2(H,K).

Exercise B.9 is a useful illustration of how an operator U ∈ B(H) and an
operator V ∈ B(K) can be combined to give a tensor product operator U⊗V ∈
B(H ⊗K).

To give a concrete example of a tensor product of Hilbert spaces, let us
consider L2(E)⊗L2(F ) = B2(L

2(E), L2(F )). We will characterize the opera-
tors in this space as special types of integral operators.

Definition B.11 (Integral Operator). Let E, F be measurable subsets
of R, and let k be a fixed measurable function on E × F. Then the integral
operator Lk with kernel k is formally defined by
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Lkf(y) =

∫

E

k(x, y) f(x) dx, y ∈ F. ♦ (B.2)

The use of the word kernel in this definition should not be confused with
its use as meaning the nullspace of the operator. It should always be clear from
context which meaning of “kernel” is intended. Also, “formally” means that
there is no guarantee that the integral in equation (B.2) will exist in general.
We must determine conditions on k that imply that Lkf is well defined.

An integral operator is a generalization of ordinary matrix-vector multi-
plication. Let A be an m×n matrix with entries aij and let u ∈ Fn be given.
Then Au ∈ Fm, and its components are

(Au)i =
n∑

j=1

aij uj , i = 1, . . . ,m.

Thus, the function values k(x, y) are analogous to the entries aij of the ma-
trix A, and the values Lkf(x) are analogous to the entries (Au)i (although
for convenience we have ordered x, y in k(x, y) differently than i, j in aij).

Let us examine some integral operators with especially simple kernels.

Example B.12 (Tensor Product Kernels). Fix g ∈ L2(E) and h ∈ L2(F ). We
call the function g ⊗ h on E × F defined by

(g ⊗ h)(x, y) = g(x) h(y), (x, y) ∈ E × F, (B.3)

the tensor product of g and h. Sometimes the complex conjugate is omit-
ted in the definition of tensor product, and sometimes g ⊗ h is defined as

(g ⊗ h)(x, y) = g(x)h(y), but it will be convenient for our purposes to place
the complex conjugate on g.

Of course, we have already declared that the symbols g ⊗ h denote the
operator mapping L2(E) into L2(F ) defined by

(g ⊗ h)(f) = 〈f, g〉h, f ∈ L2(E).

The reason we use this ambiguous notation is that the operator g ⊗ h is
precisely the integral operator whose kernel is the function g ⊗ h. For, if we
fix any f ∈ L2(E) then

Lg⊗hf(y) =

∫

E

(g ⊗ h)(x, y) f(x) dx

=

∫

E

g(x)h(y) f(x) dx

= 〈f, g〉h(y) = (g ⊗ h)(f)(y),

in the sense of almost everywhere equality. Thus Lg⊗h = g ⊗ h. The distinc-
tion between g ⊗ h as a function and as an operator is usually clear from
context. ♦
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Exercises

B.5. Complete the proof of Theorem B.10.

B.6. Let H, K be separable Hilbert spaces. Prove the following facts about
tensor products.

(a) ‖x⊗ y‖HS = ‖x‖H ‖y‖K .
(b) (ax)⊗ y = ā (x⊗ y) and x⊗ (by) = b (x⊗ y).
(c) (x + w)⊗ y = (x ⊗ y) + (w ⊗ y) and x⊗ (y + z) = (x⊗ y) + (x⊗ z).
(d) ‖x⊗ y − w ⊗ z‖HS ≤ ‖x− w‖H ‖y‖K + ‖w‖H ‖y − z‖K .

B.7. (a) Given xk ∈ H and yk ∈ K, show that the adjoint of T =
∑M

k=1 xk⊗yk
is T ∗ =

∑M
k=1 yk ⊗ xk

(b) Given T ∈ B(H,K), show that T is compact if and only if T ∗ is
compact.

B.8. Let E, F be measurable subsets of R, and let {em}m∈N and {fn}n∈N be
orthonormal bases for L2(E) and L2(F ), respectively. Let em⊗ en denote the
tensor product function defined in equation (B.3), and show that the family
{em ⊗ fn}m,n∈N is an orthonormal basis for L2(E × F ).

B.9. Let H, K be separable Hilbert spaces. Fix U ∈ B(H) and V ∈ B(K)
and prove the following statements.

(a) If x ∈ H and y ∈ K then V (x⊗ y)U∗ = Ux⊗ V y.
(b) There exists a unique bounded operator T ∈ B(H ⊗ K) such that

‖T ‖ ≤ ‖U‖ ‖V ‖ and T (g ⊗ h) = Tg ⊗ Th for all g ∈ H and h ∈ K.
We call T the tensor product of U and V, and write T = U ⊗ V.

(c) (U1 ⊗ V1)(U2 ⊗ V2) = U1U2 ⊗ V1V2.

(d) If U and V are each topological isomorphisms, then so is T = U ⊗ V.
(e) Specialize to H = L2(E) and K = L2(F ). In particular, show that

if U ∈ B(L2(E)) and V ∈ B(L2(R)) then there exists a unique operator

U ⊗ V ∈ B(L2(E × F )) such that (U ⊗ V )(g ⊗ h) = Ug ⊗ V h, where g ⊗ h
and Ug ⊗ V h are the functions defined by equation (B.3).

B.5 The Hilbert–Schmidt Kernel Theorem

Now we will show that L2(E × F ) = L2(E) ⊗ L2(F ) in the sense that
there is an isometric isomorphism between L2(E × F ) and L2(E)⊗ L2(F ) =
B2(L

2(E), L2(F )).
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Theorem B.13 (Hilbert–Schmidt Kernel Theorem).

(a) If k ∈ L2(E × F ), then the integral operator Lk with kernel k is Hilbert–
Schmidt, and ‖Lk‖HS = ‖k‖L2.

(b) k 7→ Lk is an isometric isomorphism of L2(E × F ) onto L2(E)⊗ L2(F ).

Proof. (a) Fix k ∈ L2(R2). Then by the Cauchy–Bunyakovski–Schwarz In-
equality we have

‖Lkf‖2L2 =

∫

F

|Lkf(y)|2 dy

≤
∫

F

(∫

E

|k(x, y)| |f(x)| dx
)2

dy

≤
∫

F

(∫

E

|k(x, y)|2 dx
)(∫

E

|f(x)|2 dx
)
dy

=

∫

F

∫

E

|k(x, y)|2 dx ‖f‖2L2 dy

= ‖k‖2L2 ‖f‖2L2.

Hence Lkf ∈ L2(F ), and Lk is a bounded mapping of L2(E) into L2(F ).
Now let {em}m∈N be an orthonormal basis for L2(E) and let {fn}n∈N

be an orthonormal basis for L2(F ). By Exercise B.8, {em ⊗ en}m,n∈N is an
orthonormal basis (of functions) for L2(E × F ). Consequently, the norm of
k ∈ L2(E × F ) is

‖k‖2L2 =
∑

m,n

|〈k, em ⊗ en〉|2.

Now, since the product k·(em⊗fn) is an integrable function, Fubini’s Theorem
(Theorem A.33) allows us to interchange integrals in the following calculation:

〈k, em ⊗ fn〉 =

∫

F

∫

E

k(x, y) em(x) fn(y) dx dy

=

∫

F

(∫

E

k(x, y) em(x) dx

)
fn(y) dy

=

∫

F

Lkem(y) fn(y) dy

= 〈Lkem, fn〉.
Therefore

‖Lk‖2HS =
∑

m

‖Lkem‖2L2 =
∑

m

∑

n

|〈Lkem, fn〉|2

=
∑

m,n

|〈k, em ⊗ en〉|2 = ‖k‖2L2,
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so Lk is Hilbert–Schmidt and the mapping k 7→ Lk is isometric.

(b) Suppose that T is a Hilbert–Schmidt operator mapping L2(E) into
L2(F ). Let {en}, {fn} be an orthonormal bases for L2(E) and L2(F ), respec-
tively. Then

∑

m,n

|〈Tem, fn〉|2 =
∑

m

‖Tem‖2 = ‖T ‖2HS < ∞. (B.4)

Since {em ⊗ fn}m,n∈N is an orthonormal basis (of functions) for L2(E × F ),
the series

k =
∑

m,n

〈Tem, fn〉 (em ⊗ fn)

therefore converges in L2(E × F ). Hence k ∈ L2(E × F ) and the integral
operator Lk is Hilbert–Schmidt by part (a). In fact, since k 7→ Lk is an
isometry and the operator em⊗fn is the integral operator whose kernel is the
function em ⊗ fn, we conclude that

Lk =
∑

m,n

〈Tem, fn〉 (em ⊗ en), (B.5)

where this series converges in Hilbert–Schmidt norm (note that em⊗ en is an
operator in equation (B.5)). Since the Hilbert–Schmidt norm dominates the
operator norm, the series defining Lk above also converges in operator norm,
so given f ∈ L2(E) we have that

Lkf =
∑

m,n

〈Tem, fn〉 〈f, em〉 en

=
∑

m

〈f, em〉
(∑

n

〈Tem, fn〉 fn
)

=
∑

m

〈f, em〉Tem

= T

(∑

m

〈f, em〉 em
)

= Tf.

Therefore T = Lk. ⊓⊔



Hints for Exercises

Chapter 1

1.3 (a) Fix p and show that | · |p is equivalent to | · |∞.
(b) Let {xn} be a Cauchy sequence in Fd. Each xn is a vector in Fd. Write

the components of xn as xn = (xn(1), . . . , xn(d)). Fix 1 ≤ k ≤ d and show that
the sequence of scalars (xn(k))k∈N is Cauchy (with respect to absolute value).
Since F is complete, this sequence must converge. Set y(k) = limn→∞ xn(k),
and let y = (y(1), . . . , y(d)). Show that limn→∞ |y − yn|p = 0. In fact, by
part (a) it suffices to consider just one value of p, say p = 1 or p =∞.
1.8 For each n, let xn be a rational number such that π < xn < π + 1/n.
Then (xn) is a Cauchy sequence in Q, but it does not converge in the space Q.
It does converge in the larger space R, but since the limit does not belong
to Q, it is not convergent in Q.

1.9 (a), (c) Consider x = δ1 and y = δ2 (the first two standard basis vectors).

(b) Assume 0 < p < 1. Show that (1 + t)p ≤ 1 + tp for t > 0, and use this
to show that (a+ b)p ≤ ap + bp for a, b ≥ 0.

1.12 To show strict inclusion, consider xn = (n log2 n)−1/q.

1.13 Suppose 1 ≤ p < q <∞, and note that 1 < q/p <∞. Given f ∈ Lq(E),
apply Hölder’s Inequality to

∫
E |f |p · 1 using exponents q/p and (q/p)′.

One way to show strict inclusion is use the fact that there exist disjoint
sets En ⊆ E such that |En| = 2−n|E|, and consider f =

∑
2n/q χEn .

1.19 Suppose that f ∈ Cb(R), and let M = ‖f‖L∞. Suppose that there is
a point x where |f(x)| > M. Then since |f | is continuous, there must be an
open interval (a, b) containing x such that |f(y)| > M for y ∈ (a, b). But then
|f | > M on a set with positive measure, i.e., it is not true that |f | ≤ M a.e.,
which contradicts the definition of M. Hence we must have |f(x)| ≤ M for
all x, so ‖f‖∞ ≤ ‖f‖L∞.
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1.20 (c) Let x = (1/n)n∈N and xn = (1, 1/2, . . . , 1/n, 0, 0, . . . ). Show that
‖x− xn‖ℓ∞ → 0, but x /∈ c00. A similar idea can be used to show that every
element x ∈ c0 is a limit point of c00, so c00 is dense in c0.

1.21 (c) Show that g(x) = e−x
2

is a limit point of C0(R) but does not belong
to Cc(R).

1.25 (c) Given [xn] ∈ X̃, for each m ∈ N let Ym = T (xm) and show that

Ym → [xn] in X̃ as m→∞.
(d) Given a Cauchy sequence {XN}N∈N in X̃, by part (c) there exists

some yN ∈ X such that ‖XN − T (yN)‖ eX < 1/N. Show that {yN} is Cauchy

in X and let Y = [yN ]. Show that T (yN) → Y in X̃, and use this to show

that XN → Y in X̃.

(e) Given A ∈ X̃, there exist xn ∈ X such that T (xn) → A. Show that
{U(xn)} is Cauchy in Y, and so there exists someB ∈ Y such that U(xn)→ B.
Define V (A) = B, and show that V is a well-defined isometric isomorphism

of X̃ onto Y.

1.30 (b) Let {e1, . . . , en} be the standard basis for Fn, and consider the
matrix A = [〈ei, ej〉]nj,i=1.

(c) All positive definite matrices are diagonalizable and have strictly pos-
itive eigenvalues, and there exists an orthonormal basis for Cn consisting of
eigenvectors of A.

1.32 Show that the Parallelogram Law is not satisfied.

1.37 (a)⇒ (b). Let p be the point in M closest to x, and let e = p−x. Given
m ∈M and λ ∈ C, show that

‖x− p‖2 ≤ ‖x− (p+ λm)‖2 = ‖x− p‖2 − 2 Re(λ〈m, e〉) + |λ|2 ‖m‖2.

Consider λ = t > 0 to show that Re(〈m, e〉) ≥ 0, and then consider other λ
to obtain 〈f, e〉 = 0.

(c) ⇒ (b). Suppose x = p + e where e is the orthogonal projection of x
onto M⊥. Then p ∈ (M⊥)⊥ by the equivalence of statements (a) and (b).
Write p = q + f where q ∈ M and f ∈ M⊥. Then 〈p, f〉 = 0 = 〈q, f〉. Show
that ‖f‖2 = 〈f, f〉 = 0, so f = 0 and p = q ∈M.

1.44 (a) Choose any u ∈ X \M. Since M is closed, a = dist(u,M) > 0.
Fix δ > 0 small enough that a

a+δ > 1 − ε. Then there exists v ∈ M such
that a ≤ ‖u − v‖ < a + δ. Set x = (u − v)/‖u − v‖. Given y ∈ M we have
z = v + ‖u− v‖ y ∈M. Show that ‖x− y‖ = ‖u− z‖/‖u− v‖ > 1− ε.

(b) If X is infinite dimensional, repeatedly apply part (a) to find vectors xn
such that ‖xn − xm‖ > 1/2 for all m < n.

1.45 Inductively apply Exercise 1.43 using M = span{y1, . . . , yN} and x =
xN+1.
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1.48 The Fourier coefficients are f̂(n) = 0 for n even and f̂(n) = −(2i)/(πn)
for n odd.

1.53 Let {fn} be an orthonormal basis obtained by taking an orthonormal
basis for M and extending it to an orthonormal basis for H. Use Plancherel
to write

∑
n ‖Pen‖2 =

∑
n

∑
m |〈Pen, fm〉|2, and interchange summations.

1.54 Show that the Plancherel Equality holds for the functions χ[a,x].

1.56 Use Exercise 1.54.

1.57 Let m be a bounded function such that m(x) 6= 0 for almost every x
and such that f/m /∈ L2[a, b].

1.71 Choose an orthonormal basis {xn} for H and an orthonormal basis {yn}
for K. Define L : H → K by Lx =

∑ 〈x, xn〉 yn.
1.72 Fix x ∈ X. Since Y is dense in X, there exist yn ∈ Y such that yn → x.
Show that {Lyn}n∈N is Cauchy in Z, so there exists a vector z ∈ Z such that

Lgn → z. Show that L̃x = z is well defined and has the required properties.

1.79 Use Exercises 1.44 and 1.74.

Chapter 2

2.3 If X∗ is separable, then by rescaling the elements of a countable dense
subset of X∗ we can find a countable set {λn}n∈N that is dense in the closed
unit sphere D∗ =

{
µ ∈ X∗ : ‖µ‖X∗ = 1

}
in X∗. Since ‖λn‖X∗ = 1, there

must exist some xn ∈ X with |〈xn, λn〉| ≥ 1/2. Then M = span{xn}n∈N is a
closed subspace of X, and it is separable by Theorem 1.27.

If M 6= X, choose x0 ∈ X\M with d = dist(x0,M) = 1. Then by Hahn–
Banach, there exists some λ ∈ X∗ such that λ|M = 0, 〈x0, λ〉 = 1, and
‖λ‖X∗ = 1. Show that ‖λ − λn‖X∗ ≥ 1/2 for every n, contradicting the fact
that {λn}n∈N is dense in D∗.

2.6 Apply Corollary 2.4 to S̄.

2.18 To construct noncommutating self-adjoint operators, consider orthogo-
nal projections.

2.23 Show that Tn+1−Tn = 1
2 (Tn−Tn−1) (Tn+Tn+1). Therefore, if Tn−Tn−1

is a polynomial in B with all coefficients nonnegative, then so is Tn+1 − Tn.
2.24 (a) By Theorem 2.18, there exists at least one positive operator S such
that S2 = A.

(b) Suppose that B is also a positive operator such that B2 = A. Fix x
and let y = (S − B)x. Show that 〈Sy, y〉+ 〈By, y〉 = 0. Since B, S ≥ 0, this
implies 〈Sy, y〉 = 0 = 〈By, y〉. Show that ‖Sx−Bx‖2 = 〈Sy, x〉 − 〈By, x〉 and
use part (a).
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2.27 Consider Fn = {x ∈ R : f (n)(x) = 0}. Show that Fn is closed and apply
the Baire Category Theorem.

2.28 Hint: Given n ∈ N, let Fn consist of all functions f ∈ C[0, 1] for which
there exists some x0 ∈ [0, 1) such that |f(x) − f(x0)| < n (x − x0) for all
x0 < x < 1. Show that Fn is closed and has empty interior.

2.32 For p =∞, work directly instead of applying the Uniform Boundedness
Principle.

2.33 (a) Bounded means bounded in norm, i.e., supx∗∈S ‖x∗‖ <∞.
(b) Apply part (a) to S∗∗ = {π(x) : x ∈ S}, where π is the natural

embedding of X into X∗∗.

2.34 Let ai = (aij)j∈N. Then, by hypothesis, (Ax)i = 〈x, ai〉 =
∑

j xjaij

converges for every x ∈ ℓp, so Theorem 2.24 implies that ai ∈ ℓp
′

. De-
fine ANx =

(
〈x, a1〉, . . . , 〈x, aN 〉, 0, 0, . . .

)
. For q < ∞, apply the Banach–

Steinhaus Theorem. For q = ∞, use the Uniform Boundedness Principle di-
rectly.

2.35 Write range(A) = ∪kA(BXk (0)). If range(A) is nonmeager, then some

set A(BXk (0)) must contain an open ball. Apply Lemma 2.26 to conclude that

range(A) contains an open ball.

2.38 Suppose yn = Lxn ∈ range(L) and yn → y in Y. Show that {xn} is a
Cauchy sequence in X.

2.45 (c) Apply the Cauchy–Bunyakovski–Schwarz identity to (·, ·) as follows:

‖x‖4 = (A−1x, x) ≤ |||A−1x|||2 |||x|||2 = 〈x,A−1x〉 |||x|||2 ≤ ‖A−1‖ ‖x‖2 |||x|||2.

Alternatively, let A1/2 be the positive square root of A. Then |||x||| = ‖A1/2x‖2,
so A−1 is bounded on (H, ||| · |||) because

sup
|||x|||=1

|||A−1x||| = sup
‖A1/2x‖=1

‖A−1/2x‖ = sup
‖y‖=1

‖A−1x‖ = ‖A−1‖.

2.47 Given x ∈ ℓp, by considering (αnxn) where αnxnyn = |xnyn|, show that
Tx = (xnyn) ∈ ℓ1. Then use the Closed Graph Theorem to prove that T is
continuous, and finally prove that x 7→ ∑

xnyn is a continuous linear func-
tional on ℓp.

2.49 Fix x ∈ R, and show that
∫ x
0 f

′
n(x) dx →

∫ x
0 g(t) dt and

∫ x
0 f

′
n(x) dx→

f(x)− f(0).

2.51 (a) Weakly convergent sequences are bounded by Theorem 2.38. For
the index p = 1, weak convergence implies boundedness and componentwise
convergence, but the converse fails.
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Chapter 3

3.3 ⇒. Let sN =
∑N

n=1 xn, and show that the sequence of partial sums

{sN}N∈N is Cauchy in X.

⇐. Suppose that every absolutely convergent series is convergent. Let
{xn}n∈N be a Cauchy sequence in X. Show that there exists a subsequence
{xnk

}k∈N such that ‖xnk+1
− xnk

‖ < 2−k for every k. Then
∑

k(xnk+1
− xnk

)

is absolutely convergent, hence converges, say to x. Show that {xn}n∈N has a

subsequence that converges (consider the partial sums of
∑
k(xnk+1

− xnk
)).

Show that {xn}n∈N converges.

3.8 (a) Apply the Uniform Boundedness Principle or the Closed Graph The-
orem.

(b) Apply Theorem 3.10(f).

(c) Consider X = c0 and the standard basis vectors {δn}.
3.12 If

∑ |cn|2 < ∞, then g =
∑
cnfn converges in L2-norm. Use the fact

that a sequence that converges in Lp-norm has a subsequence that converges
pointwise a.e. to show that g = f a.e.

3.14 Use Lemma 3.3 and the fact that all norms on a finite-dimensional
normed space are equivalent.

Chapter 4

4.2 (a) Consider FN = span{x1, . . . , xN} and apply the Baire Category
Theorem.

(c) Let FN = {f ∈ Cc(R) : f(x) = 0 for x /∈ (−N,N)}. Then FN is a
closed subspace of C0(R), and Cc(R) = ∪FN . Apply Baire Category to show
that Cc(R) is meager in C0(R). However, if Cc(R) had a countable Hamel
basis, then FN would have one as well, contradicting part (a).

4.5 Use the idea of Example 4.2 to create a discontinuous function f : R→ R
that is Q-linear, i.e., f(ax+ by) = af(x) + bf(y) for x, y ∈ R and a, b ∈ Q.

4.8 (b) Consider δ0 = (1, 1, 1, . . . ).

(c) Given µ ∈ c∗, define T (µ) = (yn)n≥0 where y0 = 〈δ0, µ〉−
∑∞
n=1 〈δn, µ〉

and yn = 〈δn, µ〉 for n ∈ N. Show that T : c∗ → ℓ1 is an isometric isomorphism.
Alternatively, given y = (yn)n≥0 ∈ ℓ1, define µy ∈ c∗ by 〈x, µ〉 =∑∞
n=0 xnyn where x0 = limn→∞ xn, and show that y 7→ µy is an isometric

isomorphism.

4.15 (d) By Theorem 1.66, every linear operator on a finite-dimensional
domain is continuous. Therefore, SN restricted to span{x1, . . . , xN+1} is con-
tinuous. The vectors SN+1yn and zN+1 belong to this domain.
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4.16 (a) Since X is a metric space, if K ⊆ X is compact then it is totally
bounded, i.e., given ε > 0 there exist finitely many y1, . . . , yM such that
K ⊆ ⋃Mk=1 Bε(yk). Then there exists a single N0 such that ‖yk − SNyk‖ ≤ ε
for all N ≥ N0 and k = 1, . . . , N.

(b) If T is compact, then D = T (B) is a compact subset of Y, where
B = {x ∈ X : ‖x‖ ≤ 1} is the closed unit ball in X.

4.24 (d) Consider tα.

Chapter 5

5.3 (a) Show that {en + en+1}n∈N is complete.

5.4 The biorthogonal system is {nen − (n+ 1)en+1}n∈N.

5.7 (b) ⇒ (a). Use the continuity of am to show that the representation
x =

∑ 〈x, an〉xn is unique.

(d) ⇒ (e). Uniform Boundedness Principle.

5.8 (a) The finite-rank operators are dense in H ⊗ K = B2(H,K), so if

T ∈ H ⊗K then there exists an operator of the form L =
∑N
k=1 pk ⊗ qk such

that ‖T − L‖HS < ε. Exercise B.6 may be useful in showing that L can be
approximated by a finite linear combination of operators of the form xm⊗yn.

(b) By the uniqueness statement in Exercise B.9(b), to show that SZN2 =
SXN ⊗ SYN it suffices to check that equality holds when these operators are
applied to “simple tensors” x⊗ y.
5.9 (a) Suppose that f ∈ L2(T) and 〈f, |t − 1

2 |−αe2πint〉 = 0 for every n.
Then by rearranging the integral, the function g(t) = f(t) |t − 1

2 |−α satisfies
〈g, e2πint〉 = 0 for every n. Although g need not belong to L2(T), it does
belong to L1(T). Use the fact (see Theorem 4.25) that functions in L1(T) are
uniquely determined by their Fourier coefficients to conclude that g = 0.

5.10 This is harder than it looks, because the hypothesis that the series
x =

∑
(an+ibn)xn converges does not imply that

∑
anxn converges (compare

Theorem 3.10).

⇒. Given a basis {xn} for X, consider Theorem 5.17.

⇐. Show that if {xn, ixn} is a basis for XR then {xn} is minimal in X
and every x ∈ X has some representation of the form x =

∑
cnxn.

5.13 ⇐. Suppose that x1, . . . , xN ∈ range(PN ) have been chosen. Since
range(PN ) ⊆ range(PN+1) and P 2

N = PN , the operator PN maps the (N +1)-

dimensional space range(PN+1) onto the N -dimensional space range(PN ).
Hence there must exist some unit vector xN+1 ∈ range(PN+1) such that
PNxN+1 = 0.

5.16 (b) The same conclusion holds for those n and k such that
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supp(ψn,k) =
[
2−nk, 2−n(k + 1)

]
⊆ (x− δ, x+ δ).

In essence, the conclusion holds for all n large enough and for those k such
that ψn,k is “localized at x.”

5.17 Consider Example 5.13.

Chapter 6

6.8 Let cN = hN (µN ), and show that cN = cN−1+cN−2

2 +1 when N is odd and

cN = cN−1+cN−2

2 −1 when N is even. Use this to prove that 1 ≤ cN ≤ 2 for N
odd and −1 ≤ cN ≤ 0 for N even. Use the fact that hN is piecewise linear
to show that its global maximum must occur at t = µn for some 1 ≤ n ≤ N,
and likewise its global minimum will occur at t = µm for some 1 ≤ m ≤ N.

Chapter 7

7.1 (c) Consider unions of orthonormal bases.

(d) Would a union of infinitely many orthonormal bases work?

(f) Consider Example 5.13.

(g) Consider the dual system in Example 5.13, which is {fn}n∈Z where
fn(t) = |t− 1

2 |−αe2πint. Set gr = χ
[ 1
2
, 1
2
+r], and use the fact that {e2πint}n∈Z

is an orthonormal basis to show that there is no finite constant B such that∑
n∈Z
|〈gr, fn〉|2 ≤ B ‖gr‖2L2 for all r > 0.

7.2 (b) Write

∥∥∥∥
N∑

n=M+1

cnxn

∥∥∥∥ = sup
‖y‖=1

∣∣∣∣
〈 N∑

n=M+1

cnxn, y

〉∣∣∣∣ ≤ sup
‖y‖=1

N∑

n=M+1

|cn| |〈xn, y〉|,

and apply the Cauchy–Bunyakovski–Schwarz Inequality to the series. The
same argument can be applied to {xσ(n)} for any permutation σ of N.

7.3 (b) ⇒ (a). Given x ∈ H, fix N ∈ N, choose yk ∈ E such that yk → x,

and consider
∑N
n=1 |〈yk, xn〉|2.

(d) ⇒ (e). Statement (d) implies that Tc =
∑
cnxn is a linear map of ℓ2

into H. Given N ∈ N, define TNc =
∑N
n=1 cnxn. Show that TN : ℓ2 → H is

bounded, and apply the Banach–Steinhaus Theorem.

(e) ⇒ (a). Consider R∗.

7.7 If P is the orthogonal projection of K onto H, then
∑ |〈x, Pxn〉|2 =∑ |〈Px, xn〉|2.
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7.8 Consider {nen} where {en} is an orthonormal basis.

7.9 (a) Let G be the Gram matrix for {xn}, and fix c ∈ c00. Note that

‖Gc‖2ℓ2 ≤
∑

m

∣∣∣∣
∑

n

〈xn, xm〉 cn
∣∣∣∣
2

,

and apply the Cauchy–Bunyakovski–Schwarz Inequality to the inner series.
Remark: Under these hypotheses G is a special type of compact operator

on ℓ2 known as a Hilbert–Schmidt operator, compare Exercise B.4.

(b) This is a special case of Schur’s Test for boundedness of operators
on ℓ2. Write

‖Gc‖2ℓ2 ≤
∑

m

(∑

n

(
|〈xn, xm〉|1/2

) (
|〈xn, xm〉|1/2 |cn|

))2

,

and apply Cauchy–Bunyakovski–Schwarz to the factors appearing in the inner
summation.

Remark: By applying Hölder’s Inequality with proper exponents, the same
idea shows that under these hypotheses G defines a bounded map of ℓp into
itself for each 1 ≤ p ≤ ∞.
7.10 (b) Use the biorthogonality to write

N∑

n=1

|cn|2 =

N∑

n=1

∣∣∣∣
〈 N∑

m=1

cmym, xn

〉∣∣∣∣
2

,

and apply the fact that B is a Bessel bound.

7.18 Use Theorem 5.24.

7.20 (b) Write

e2πinx − e2πiλnx = e2πinx
(
1− e2πi(λn−λ)x

)

= −e2πinx
∞∑

k=1

(
2πi(λn − n)

)k

k!
xk.

(c) With λ as in Exercise 7.19, show that λ ≤ eπδ − 1.

Chapter 8

8.3 A subset of a frame need not be a frame sequence, consider Exercise 8.2.

8.5 S − AI is self-adjoint. The norm of a self-adjoint operator T can be
computed using ‖T ‖ = sup‖x‖=1 |〈Tx, x〉|.
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8.9 (a) Show that every function in span{e2πibnx}n∈Z is 1/b-periodic.

(b) {b1/2 e2πibnt}n∈Z is an orthonormal basis for L2[0, 1/b], which properly
contains L2[0, 1]. The frame bound is A = B = 1/b.

8.10 (a) Use the Triangle Inequality and the Reverse Triangle Inequality in

ℓ2. Frame bounds for {yn} are (A1/2 −K1/2)2, (B1/2 +K1/2)2.

(c) Using the estimate |eit − 1| ≤ |t|, it follows that ‖ebn − eλn‖2L2 ≤
4π2

3 |bn− λn|2. Hence if
∑ |bn− λn|2 < 3

4π2b then {eλn}n∈Z will be a frame.
Remark: This result is not even close to being optimal! For example, for

b = 1 the Kadec 1
4 -Theorem states that if sup |n − λn| ≤ L < 1/4, then

{eλn}n∈Z is an exact frame for L2[0, 1] (see [You01]).

8.11 Since S is a positive d × d matrix, there is an orthonormal basis
{w1, . . . , wd} for Fd consisting of eigenvectors of S, with corresponding eigen-
values 0 ≤ λ1 ≤ · · · ≤ λd.
8.15 (a) Use Theorem 2.15.

(b) Use a Neumann series argument (see Exercise 2.40) to show that B−1S
or 2(A+B)−1S is a topological isomorphism.

8.16 (a) Show first that y =
∑ 〈y, xn〉xn for every y ∈ H.

(b) Show that C̃C∗C̃ = C̃, and use the fact that range(C) = range(C̃) to

infer that C̃C∗C = C and C∗ = C∗CC̃∗.

8.17 (b) ⇐ . Show that if PS = SP, then S−1P = PS−1. Let T be the
frame operator for {Pxn} as a frame for M, and show that TP = SP on H,
so T = S|M as operators on M.

8.18 (b) Show that Pc = c for c ∈ range(C) and Pc = 0 for c ∈ range(C)⊥.

8.19 (a) ⇒ (b). Let V be the synthesis operator for {yn}.
(b) ⇒ (a). RV ∗ = C∗V ∗ = (CV )∗ = I.

8.22 (b) Using the lower frame bound, A ‖x̃m‖2 ≤
∑
n |〈x̃m, xn〉|2. Now apply

the fact that {xn} and {x̃n} are biorthogonal.

8.23 If {xn} is exact, then it is biorthogonal to its canonical dual frame.

8.26 (b) Let T be the synthesis operator restricted to ker(R)⊥ = range(C).
Then T is a topological isomorphism of range(C) onto H, and it follows from
the construction of the pseudoinverse (Theorem 2.33) that R† = T−1 : H →
range(C). Keeping in mind that R̃C = I = RC̃, show that T−1 = C̃.

8.30 Suppose that {xn} is a frame for H. Let M = range(C) and let
T : M → H be the topological isomorphism from Corollary 8.33. Let K =
H×M⊥. Then U = (TPMc, PM⊥c) is a topological isomorphism of ℓ2 onto K,
so {Uδn} is a Riesz basis for K. Identify H with H × {0} ⊆ K.
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8.32 (d) Let {en} be an orthonormal basis for a Hilbert spaceH and consider
the frames {e1, e1, e2, e3, e4, · · · } and {e1,−e1, e2, e3, e4, · · · }.
8.33 ⇒. Suppose that {xn} is a Parseval frame for H. By Corollary 8.33,
there exists a Hilbert space K ⊇ H and an orthonormal basis {eN} for K
such that xn = Pen for every n. Set yn = (I − P )en, so {yn} is a Parseval
frame for H⊥. Show directly that

{
(xn, yn)

}
is a Parseval frame for H ×H⊥

and
∥∥(xn, yn)

∥∥
H×H⊥

= 1 for every n (see Exercise 1.40 for the definition of

the inner product and norm on a Cartesian product of Hilbert spaces).

8.34 (a) Let T : H → M be an isometric isomorphism, and consider
{T−1PMδn}.
8.35 (a) The inner product and norm on H × K are constructed in Exer-
cise 1.40.

(c) To create a nontrivial example, let M be a closed subspace of ℓ2 such
that both M and M⊥ are infinite dimensional, and let PM , PM⊥ be the
orthogonal projections of ℓ2 ontoM andM⊥. Consider {PMδn} and {PM⊥δn},
and show that

{
(PMδn, PM⊥δn)

}
is an orthonormal basis for M ×M⊥. Note

that even though M ×M⊥ is isomorphic to ℓ2, this frame is quite different
from the frame

{
PMδn

}
∪
{
PM⊥δn)

}
for ℓ2, which is tight but is not a basis.

8.36 Exercise B.9 implies that {xm⊗yn}m,n∈N is Bessel. Show that its frame
operator is SX ⊗ SY where SX , SY are the frame operators for {xm}, {yn}
respectively.

8.37 If we set ψk =
∑Nk+1

n=Nk+1 k
−1/2 〈φmk

, δn〉Pδn then we have ‖ψk‖ℓ2 ≤
k−1/2 2−k. Show that we always have

∥∥∑t
n=s 〈φmj , δn〉Pδn

∥∥
ℓ2
≤ 1. Given

N1 + 1 ≤ M < N < ∞, estimate
∥∥∑N

n=M cn Pδn
∥∥
ℓ2

by writing
∑N

n=M =
∑Nj+1

n=M +
∑ℓ

k=j+1

∑Nk+1

n=Nk+1 +
∑N

n=Nℓ+1, where j is as small as possible

and ℓ is as large as possible.

8.40 Suppose statement (a) holds. By Exercise 8.24, since S−1/2 is a topo-

logical isomorphism and ‖S1/2‖2 ≤ B, the frame {S−1/2xn}n6=nk
has a lower

bound of L/B. However, since {S−1xn} is a Parseval frame, Exercise 8.6 im-

plies that its optimal lower bound is 1− ‖S−1/2yn‖2. Apply Theorem 8.44 to
{S−1xn}.
8.42 (b) {e2πibnt}n∈Z is a b−1-tight frame, so {be2πibnt}n∈Z is Parseval. Apply
Theorem 8.44.

Chapter 9

9.2 (a) The function f(x) = sinx2 is continuous and bounded, but is not
uniformly continuous.
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(b) First prove the result for functions in Cc(R), and then use the fact
that Cc(R) is dense in Lp(R).

9.4 |eiθ − 1| ≤ |θ| for all θ.

9.5 (b) Write
∫
|(f ∗ g)(x)| dx as an iterated integral, and apply Fubini’s

Theorem.

(c) Write (f ∗ g)∧(ξ) as an iterated integral, and apply Fubini’s Theorem.

(d) Suppose that f(x) = 0 for a.e. x /∈ [−R,R] and g(x) = 0 for a.e.
x /∈ [−S, S]. Show that (f ∗ g)(x) = 0 for a.e. x /∈ [−R− S,R+ S].

(e) Use the Mean Value Theorem and the Lebesgue Dominated Conver-
gence Theorem to justify the following calculation:

(f ∗ g)′(x) = lim
h→0

(f ∗ g)(x+ h)− (f ∗ g)(x)
h

= lim
h→0

∫ ∞

−∞
f(y)

g(x+ h− y)− g(x− y)
h

dy

=

∫ ∞

−∞
f(y) g′(x − y) dy = (f ∗ g′)(x).

9.9 Let E = {(x, y) ∈ [a, b]2 : x ≤ y}. By Fubini’s Theorem, the two iterated
integrals

∫ b

a

∫ b

a

χE(x, y) f ′(x) g′(y) dx dy =

∫ b

a

(∫ y

a

f ′(x) dx

)
g′(y) dy

and
∫ b

a

∫ b

a

χE(x, y) f ′(x) g′(y) dy dx =

∫ b

a

f ′(x)

(∫ b

x

g′(y) dy

)
dx

are equal.

Chapter 10

10.3 Every sequence that converges in L2-norm has a subsequence that con-
verges pointwise almost everywhere.

10.4 (a) Setting g(ξ) = 2πiξf̂(ξ), the proof of Theorem 10.4(d) shows that
f ′ =

∨

g. Hence

f ′(x) =
∨

g (x) =

∫ ∞

−∞
2πiξf̂(ξ) e2πiξx dξ =

∫ 1/2

−1/2

2πiξf̂(ξ) e2πiξx dξ.

(c) Part (b) implies that the Taylor series converges absolutely for each x,
but consider the remainder term in order to show that it converges to f(x).
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10.8 (d) Show that the frame inequalities hold for all f ∈ Hϕ∩L∞(T), which
is a dense subspace of Hϕ, and apply Exercise 8.4.

10.11 Since {e2πinx}n∈Z is an orthonormal basis for L2(T), if we set
ĉ(ξ) =

∑
k∈Z

ck e
−2πikx then c 7→ ĉ is a unitary mapping of ℓ2(Z) onto L2(T).

Show that (Tnc)
∧

(ξ) = e−2πinx ĉ(ξ), and conclude that {Tnc}n∈Z = E(ĉ ) is

the system of weighted exponentials generated by the function ĉ ∈ L2(T).
Theorem 10.10 tells us exactly when this system is complete, Bessel, etc.,
in L2(T), so {Tnc}n∈Z must have exactly the same properties in ℓ2(Z). For
example,

{Tnc}n∈Z is complete ⇐⇒ ĉ(ξ) 6= 0 a.e.

10.14 Take the Fourier transform of both sides, and use the fact that a non-
trivial trigonometric polynomial m(ξ) =

∑N
k=1 e

2πiakξ can have only count-
ably many zeros.

10.15 Set mN (ξ) =
∑N

k=−N cke
−2πikξ. Show that there exists some subse-

quence of {mN} that converges pointwise a.e., say mNk
(ξ) → ĉ(ξ) a.e. as

k → ∞. Hence mNk
(ξ) ĝ(ξ)→ ĉ(ξ) ĝ(ξ) a.e. However, by hypothesis we have

that mN ĝ → F in L2(R) as N →∞.

10.17 (b) Suppose that f̂ = m ĝ where m ∈ L2(T). Then

m(ξ) = ĉ(ξ) =
∑

k∈Z

cke
−2πikξ

for some sequence c ∈ ℓ2(Z). Show that
∑N

k=−N ck e
−2πikξ ĝ(ξ) converges to

f̂ in the norm of L2(R). Applying the inverse Fourier transform, this implies
that f =

∑
k∈Z

ck Tkg ∈ V0.

10.19 (b) In this case α is a trigonometric polynomial such that |α(ξ)|2 = 1.
Let α(ξ) =

∑
k∈Z

αk e
−2πiαkξ, where only finitely many αk are nonzero. Write

out |α(ξ)|2 = α(ξ)α(ξ), and use the linear independence of the complex
exponentials to show that all but one αk must be zero.

10.22 Φ ew(ξ) = 3/(2 + cos 2πξ) and
[
ŵ♯, ̂̃w

]
(ξ) = 31/2/(2 + cos 2πξ)1/2.

10.23 Translation is strongly continuous in Lp(R) for 1 ≤ p <∞. That is, if
g ∈ Lp(R) then lima→0 ‖g(x)−g(x−a)‖Lp = 0. Let Sj denote the partial sum
operators and consider Sj(fjk) for j < k, where fjk(x) = g(x−aj)−g(x−ak).

Chapter 11

11.3 (b) Using part (a), S(MbnTkaf) = MbnTkaSf for every f ∈ L2(R).
Since S is a topological isomorphism, we can replace f by S−1f.

(c) Apply part (b) and Corollary 8.23.
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(d) By Theorem 2.18, S−1/2 commutes with every operator that commutes
with S−1.

11.6 (d) Use the fact that g̃ = bg/G0 to show that 〈g, g̃ 〉 = 1 if and only if
g(x− ak) = 0 a.e. on [0, b−1] for all k 6= 0.

11.13 Use Theorem 11.8.

11.22 (c) Since Z(MnTkχ[0,1]) = Enk, the range of Z contains the finite span

of {Enk}k,n∈Z. The two-dimensional analogue of Theorem 4.25 implies that

{Enk}k,n∈Z is complete in L1(Q), so range(Z) is dense.

If Z : L1(R)→ L1(Q) was surjective, then given f ∈ L2(R) we would have
Zf ∈ L2(Q) ⊆ L1(Q), and therefore Zg = Zf for some g ∈ L1(Q). Show that
g = f a.e. and conclude that L2(R) ⊆ L1(R), which is a contradiction.

Here is one way to do this. The series Zf(x, ξ) =
∑
j∈Z

f(x − j)e2πijξ

converges in L2(Q). Use this to show that

〈
Zf, Enk

〉
=

∫ 1

0

f(x+ k) e−2πinx dx =
(
f χ[k,k+1]

)∧
(n),

the nth Fourier coefficient of f χ[k,k+1]. Show that a similar formula holds
for g. Since f χ[k,k+1] and g χ[k,k+1] both belong to L1[k, k + 1], and func-

tions in L1[k, k+ 1] are uniquely determined by their Fourier coefficients (see
Theorem 4.25), it follows that f χ[k,k+1] = g χ[k,k+1] a.e.

(d) If Z−1 : range(Z) → L1(R) was continuous, then it would have an
extension to a continuous map of L1(Q) to L1(R).

11.25 (a) Let ck = 0 for |k| > N and show that

1 = |p(x)|2 =
∑

k∈Z

∑

j∈Z

cj ck+j e
2πikx a.e.

Then apply the fact that {e2πinx}n∈Z is an orthonormal basis for L2(T) to
conclude that

∑
j∈Z

cj ck+j = δ0k for k ∈ Z.

(b) If G(g, 1, 1) is an orthonormal basis then we have |Zg|2 = 1 a.e. and∑ |g(x− j)|2 = 1 a.e. If g is compactly supported then

Zg(x, ξ) =

N∑

j=−N
g(x− j) e2πijξ

for some finite N. Apply part (a) to Zg(x, ·).
11.31 (a) Show that

〈
[A,B]f, f

〉
= 2i Im

〈
Bf, Af

〉
, and apply Cauchy–

Bunyakovski–Schwarz.

11.36 Since A is invertible, it is a scalar multiple of a matrix B with de-
terminant 1. By Exercise 11.35(e), the matrix B can be written as a product
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of matrices of the form Sr, R, and Da. Combine Theorem 11.36 with parts
(a)–(d) of Exercise 11.35.

11.37 (a) A function of the form m(x) =
∑N

k=1 cke
2πiqkx is called a (non-

harmonic) trigonometric polynomial. If we extend the domain of m to x ∈ C
then m is an analytic function on C. Therefore, if m is not the zero function
then it cannot vanish on any set that has an accumulation point. In particular,
m cannot vanish on any subset of R that has positive measure.

(b) Suppose that
∑N

k=1 ckTpk
g = 0 a.e., apply the Fourier transform, and

use part (a).

(c) By applying Exercise 11.35(a), it suffices to assume that the collection

Λ = {(pk, qk)}Nk=1 is contained in a line that passes through the origin. If this
line is vertical, apply part (a). Otherwise, by choosing r ∈ R correctly, the

set G(h, S−r(Λ)) will have the form
{
Tpk

h
}N
k=1

, where S−r is the shear matrix
considered in Exercise 11.35(b).

11.38 A nontrivial trigonometric polynomial cannot vanish on any set of
positive measure.

Chapter 12

12.1 Define ψ̃k = S−1(Tbkψ) for k ∈ Z, Then the canonical dual has the

form
{
Dan ψ̃k

}
k,n∈Z

.

12.2 (c) Dan = (Da)
n and Tbk = (Tb)

k belong to G for every k, n ∈ Z.
Consider compositions of DanTbk with DamTbℓ.

(d) The right Haar measure is da
a2 db.

12.4 (a) The trigonometric system {e2πinx}n∈Z forms an orthonormal basis
for L2[0, 1] and each function e2πinx is 1-periodic.

12.7 The attractor Q is the parallelogram with vertices at (0, 0), (1, 0), (2, 1),
and (1, 1).

12.11 (e) Show that it suffices to show that ‖Pnf‖L2 → 0 as n → −∞ for
all f in a dense subspace of L2(R). Then let f be bounded and compactly
supported, say supp(f) ⊆ [−R,R]. Use the Cauchy–Bunyakovski–Schwarz
Inequality to show that

‖Pnf‖2L2 =
∑

k∈Z

∣∣〈f, D2nTkϕ
〉∣∣2

=
∑

k∈Z

2−n
∣∣∣∣
∫ 2nR

−2nR

f(2−nx)ϕ(x − k) dx
∣∣∣∣
2
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≤
∑

k∈Z

2−n ‖f‖2L∞

(∫ 2nR

−2nR

dx

)(∫ 2nR+k

−2nR+k

|ϕ(x)|2 dx
)
,

and consider what happens as n→ −∞.
12.16 Plot the function, and compare Figure 1.1.

12.17 The argument is similar to Exercise 10.15. By hypothesis, the refine-
ment equation converges with respect to some ordering of Z. Hence there exist
some finite subsets Fn of Z such that

ϕ = lim
n→∞

∑

k∈Fn

2−1/2ckD2Tkϕ.

By applying the unitarity of the Fourier transform we obtain

ϕ̂(ξ) =
1

2
lim
n→∞

∑

k∈Fn

cke
−2πik(ξ/2) ϕ̂(ξ/2).

This is a limit in L2-norm, but by passing to a subsequence of the sets Fn
it holds pointwise a.e. On the other hand, the series defining m0 converges
unconditionally in L2-norm, so

m0(ξ) =
1

2
lim
n→∞

∑

k∈Fn

ck e
−2πikξ.

This is convergence in L2(T), but by again passing to a subsequence it holds
pointwise a.e.

12.18 The hypotheses imply that the series defining m converges absolutely
in L2(T). Also, since ‖D2Tkϕ‖L2 = ‖ϕ‖L2, the series

∑
ckD2Tkϕ converges

absolutely in L2(R), and hence
∑
ck (D2Tkϕ)

∧

converges absolutely in L2(R)
as well.

12.19 (a) Write out
∑

k |(c ∗ d)k| as an iterated series, and use Fubini’s
Theorem to interchange the order of summation.

(b) See Exercise 9.5.

(c) Show that

(ϕ ∗ ψ)(x) =
1

2

∑

k∈Z

(c ∗ d)k (ϕ ∗ ψ)(2x− k).

12.20 (b) Apply Exercise 12.19 (see also Exercise 9.5). In particular, L1(R)
is closed under convolution, so Bn = Bn−1 ∗ χ[0,1] ∈ L1(R) by induction.

(c) By equation (9.12), the Fourier transform of χ[− 1
2
, 1
2
] is the sinc function.

Since χ[0,1] = T 1
2

χ
[− 1

2
, 1
2
], its Fourier transform is
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(χ[0,1])
∧

(ξ) = M− 1
2
(χ[− 1

2
, 1
2
])

∧

(ξ) = e−πiξ
sinπξ

πξ
.

(d) Either compute directly, or show that (T1Bn −Bn)∧ = B̂′
n and apply

the Uniqueness Theorem (Corollary 9.14). By Exercise 9.5(c), the Fourier
transform converts convolution into multiplication.

(e) Use Theorem 9.15 and the Inversion Formula (Theorem 9.12) to show

that since B̂n has fast decay, Bn must be smooth. To show that B
(n−1)
n is

piecewise linear, use the relation proved in part (d).

12.23 Set an =
∑

k∈Z
ck−2n ck, and show that a = (an)n∈Z belongs to ℓ1(Z).

Then show that |m0(ξ)|2 + |m0(ξ + 1
2 )|2 = 1

2

∑
n∈Z

ane
2πinξ.

12.24 Write

|m0(ξ) − 1| =

∣∣∣∣
1

2

∑

k∈Z

cke
2πikξ − 1

2

∑

k∈Z

ck

∣∣∣∣

≤ 1

2

∑

k∈Z

|e2πikξ − 1|δ|e2πikξ − 1|1−δ |ck|

and use the fact that |eiθ − 1| ≤ min{|θ|, 2}.
12.28 (a) Use the Dominated Convergence Theorem for series (Theorem
A.25) to show that

lim
h→0

m0(ξ + h)−m0(ξ)

h
= lim

h→0

1

2

∑

k∈Z

ck
e−2πik(ξ+h) − e−2πikξ

h

=
1

2

∑

k∈Z

ck lim
h→0

e−2πik(ξ+h) − e−2πikξ

h
.

(b) Let Mn be the symbol for Bn. Exercises 12.19 and 12.20 imply that
Mn(ξ) = Mn−1(ξ)M0(ξ). Apply induction and the product rule to show that

M
(j)
n (1/2) = 0 for j = 0, . . . , n+ 1.

12.29 Since ϕ ∈ L1(R), Exercise 10.13 implies that its periodization p(x) =∑
k∈Z

ϕ(x+k) belongs to L1(T). Note that p(x+1) = p(x) a.e. by definition,
and use the refinement equation to show that p(2x) = p(x) a.e. If p was
continuous, then these two conditions on p can be used directly to show that p
is constant. One way to prove that this still holds a.e. when we only assume p
is integrable is to use the fact that τx = 2x mod 1 is an ergodic mapping of
[0, 1) onto itself (i.e., any subset of [0, 1) that is invariant under this map must
either have measure 0 or measure 1). The Birkhoff Ergodic Theorem [Wal82,
Thm. 1.14] implies that if f ∈ L1(T) then

1

n

n−1∑

k=0

f(τkx) →
∫ 1

0

f(t) dt a.e. as n→∞.
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Note that p(τx) = p(x).

12.30 The idea is similar to that of Exercise 12.29, although the details are
more difficult. Let

h(x) =
∑

j∈Z

(j − 2a)ϕ(x+ j) − x,

and show that

h(x+ 1) = h(x) and h(x) =
h(x)

2

for almost all x. Apply the Birkhoff Ergodic Theorem to show that h = 0 a.e.

12.31 (a) The Fourier transform of any function f ∈ L1(R) is continuous.

(b) The function θ(ξ) = −i sign(ξ) satisfies θ(2ξ) = θ(ξ). Use the fact that
ϕ̂(ξ) = m0(ξ/2) ϕ̂(ξ/2) a.e. to show that (Hϕ)

∧

(ξ) = m0(ξ/2) (Hϕ)
∧

(ξ/2)
a.e., and then apply Exercise 12.18.

12.32 Fix R > ‖m0‖∞ large enough so that α = log2R > 0, and let C =
‖P · χ[−1,1]‖∞. Given 2n−1 ≤ |ξ| < 2n with n > 1, show that

|P (ξ)| ≤ CRn = CR 2(n−1)α ≤ CR |ξ|α.

12.33 Since |m0(0)| < 1, there exists some δ > 0 such that |m0(ξ)| ≤
r < 1 for all |ξ| < δ. The refinement equation on the Fourier side is ϕ̂(ξ) =
m0(ξ/2) ϕ̂(ξ/2). Iterate to show that ϕ̂ = 0.

12.36 (c) Show that Pn and P obey the same growth estimate, i.e., there
exist C and M independent of n such that |Pn(ξ)| ≤ C |ξ|M for all |ξ| ≥ 1. If
f ∈ S(R), then

|f(ξ)| ≤ D

|ξ|M+2
, |ξ| ≥ 1,

where D = ‖ξM+2 f̂(ξ)‖∞. Estimate

|〈f, µ− µn〉| =
∣∣〈f̂ , µ̂− µ̂n

〉∣∣ =

∫ ∞

−∞
|f̂(ξ)| |P (ξ) − Pn(ξ)| dξ

by breaking the integral into the regions |ξ| ≤ T and |ξ| > T for some appro-
priate T.

12.38 (b) Use part (a). By the Riemann–Lebesgue Lemma, ϕ̂(ξ) → 0 as
|ξ| → ∞.
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Chapter 13

13.4 Except for a scaling factor, this is the same as Exercise 12.28.

13.13 (b) Write 1
h

(
(f ∗ g)(x+ h)− (f ∗ g)(x)

)
as an integral, and apply the

Lebesgue Dominated Convergence Theorem.

13.14 Translation is strongly continuous on Lp(T) when 1 ≤ p < ∞ (see
Exercise 13.1).

13.16 Show that ‖f − f ∗ kN‖pLp is bounded by
∫ 1

0

(∫ 1

0

|f(x)− f(x− t)| |kN (t)|1/p |kN (t)|1/p′ dt
)p

dx.

Then apply Hölder’s Inequality in a similar fashion to how it is used to prove
Young’s Inequality.

13.18 Consider equation (13.13).

13.19
∨

χN (x) is a geometric series in the variable ω = e2πix.

13.20 To obtain the lower estimate, use the fact that | sinx| ≤ |x| and make
a change of variables to write

1

2
‖dN‖L1 ≥

∫ 1/2

0

| sin(2N + 1)πx|
π|x| dx

=

∫ N+ 1
2

0

| sinπx|
π|x| dx

≥
N−1∑

k=0

∫ k+1

k

| sinπx|
π|x| dx.

For the upper estimate, note that

f(x) =
1

sinπx
− 1

πx

is odd and increasing on [−1/2, 1/2]. Consequently,

1

| sinπx| ≤
1

π|x| +
(
1− 2

π

)
, |x| ≤ 1

2
.

Hence

1

2
‖dN‖L1 ≤

∫ 1/2

0

| sin(2N + 1)πx|
π|x| dx +

(
1− 2

π

) ∫ 1/2

0

| sin(2N + 1)πx| dx

≤
∫ N+ 1

2

0

| sinπx|
π|x| dx +

(
1− 2

π

) 1

2

≤
∫ 1

0

sinπx

πx
dx +

N∑

k=1

∫ k+1

k

| sinπx|
π|x| dx +

(1

2
− 1

π

)
.
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The number γ = limN→∞
(∑N

k=1
1
k − lnN

)
is called Euler’s constant, and it

has the numerical value γ ≈ 0.57721566 . . . .

13.23 (a) Note that
∨

χN (x) =
∑N

n=−N e
2πinx. Use Exercise 13.21 to write

∨

WN (x) =

N∑

n=−N

(
1− |n|

N + 1

)
e2πinx =

∨

χ0(x) + · · ·+
∨

χN (x)

N + 1
.

Now substitute

∨

χn(x) =
sin(2n+ 1)πx

sinπx
=

e(2n+1)πix − e−(2n+1)πix

eπix − e−πix ,

and simplify the resulting geometric series.

(b) To show
∫
wN = 1, use the form

wN (x) =

N∑

n=−N

(
1− |n|

N + 1

)
e2πinx.

To show requirement (c) in the definition of approximate identity, use the
form

wN (x) =
1

N + 1

( sin(N + 1)πx

sinπx

)2

.

13.26 (a) Apply Exercise 13.3.

(b) Suppose that f ∈ A(T). For each n ∈ Z, let gn be any complex number

such that g2
n = f̂(n). Then (gn)n∈Z ∈ ℓ2(Z), so g(x) =

∑
n∈Z

gn e
2πinx belongs

to L2(T). Show that g ∗ g = f.

(c) For each N ∈ N, define FN =
{
f ∈ A(T) :

∑∞
n=−∞ |f̂(n)| ≤ N

}
, so

A(T) = ∪FN . Show that each FN is a closed subset of C(T). Since A(T) is
a dense subspace of C(T), it contains no open subsets of C(T). Therefore,
FN contains no interior points, so is nowhere dense, and consequently A(T)
is meager.

Chapter 14

14.2 (e) ⇒ (d). 2So
Nf = S2Nf + iS t

Nf + f̂(0) = −S t
NS

t
Nf + iS t

Nf + 2 f̂(0).

14.4 (a) Suppose that g ∈ L1(T) satisfies ĝ(n) = ĝ(−n) for every n. Show

that (g ∗ wN )∧(n) = (g ∗wN )
∧

(−n) for every n. Apply the Inversion Formula
to g ∗ wN to show that g ∗ wN is real valued. Since g ∗ wN → g in L1-norm,
there is a subsequence that converges to g pointwise a.e.
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14.5 If f ∈ A(T) then f ∈ L1(T) and f̂ ∈ ℓ1(Z). The Inversion Formula

implies that f(x) =
∑

n∈Z
f̂(n) e2πinx, with absolute convergence of this series

in Lp-norm.

14.6 (b) ⇒ (d). Apply the Closed Graph Theorem.

(c) ⇒ (d). Use an extension by density argument similar to the one used
to solve Exercise 1.72.

Appendix B

B.1 (b) Every closed and bounded subset of a finite-dimensional vector space
is compact (this is the Heine–Borel Theorem).

(c) Use the following Cantor-type diagonalization argument. Suppose that
{xn}n∈N is a bounded sequence in X. Since T1 is compact, there exists a sub-

sequence {x(1)
n }n∈N of {xn}n∈N such that {T1x

(1)
n }n∈N converges. Then since

T2 is compact, there exists a subsequence {x(2)
n }n∈N of {x(1)

n }n∈N such that

{T2x
(2)
n }n∈N converges (and note that {T1x

(2)
n }n∈N also converges!). Continue

to construct subsequences in this way, and then show that the “diagonal sub-

sequence” {Tx(n)
n }n∈N converges (use the fact that there exists a k such that

‖T − Tk‖ < ε). Therefore T is compact.

B.2 Use Exercise 1.6.

B.3 Consider the finite-rank operators TNf =
∑N

n=1 λn 〈f, en〉 en, and apply
Theorem B.5(c).

B.4 (b) If {Tn} is Cauchy with respect to ‖ · ‖HS then it is Cauchy with
respect to ‖ · ‖ by part (a). Hence there exists some T ∈ B(H) such that Tn
converges to T in operator norm. Show that ‖T − Tn‖HS → 0.

(d) Let {en} be an orthonormal basis for H and for each N ∈ N define

TNx =
∑N

n=1 〈x, en〉Ten. Each TN is continuous and has finite rank, and so is

compact. Show that ‖T−TN‖HS → 0, so the finite-rank operators are dense in
B2(H,K). Also, since the operator norm is dominated by the Hilbert–Schmidt
norm, Theorem B.5 implies that T is compact.
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Symbol Description Reference

‖ · ‖ Norm or seminorm Definition 1.1

‖ · ‖ℓp ℓp-norm Example 1.9

‖ · ‖Lp Lp-norm Example 1.10

‖ · ‖HS Hilbert–Schmidt norm Theorem B.8

‖L‖X→Y Operator norm of L : X → Y Definition 1.60

〈·, ·〉 Inner product or semi-inner product Definition 1.33

〈·, ·〉 Notation for functionals Notation 1.74

[f̂ , ĝ ] Bracket product of f̂ and ĝ Equation (10.12)

χE Characteristic function of a set E General Notation

δn Standard basis vector General Notation

δmn Kronecker delta General Notation

Φg Periodization of |ĝ |2 Equation (10.11)

A ≥ 0 A is a positive operator Definition 2.14

A > 0 A is a positive definite operator Definition 2.14

A∗ Adjoint of A Section 2.8

a.e. Almost everywhere General Notation

A2(T) Space of A2 weights Definition 5.14

B(X,Y ) Bounded linear operators from X to Y Definition 1.64

B(X) Bounded linear operators from X to X Definition 1.64

B2(H,K) Hilbert–Schmidt operators from H to K Definition B.7

B2(H) Hilbert–Schmidt operators from H to H Definition B.7

Br(f) Open ball of radius r centered at f Definition 1.15

c Sequences converging at infinity Example 1.18

c0 Sequences vanishing at infinity Example 1.18
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c00 Finite sequences Example 1.18

ĉ Fourier transform of a sequence c Definition 13.4
∨

c Inverse Fourier transform of a sequence c Definition 13.4

c ∗ d Convolution of sequences Definition 13.7

C Complex plane General Notation

C Analysis (coefficient) operator Definition 7.3

Cb(R) Bounded continuous functions Example 1.19

C0(R) Continuous functions vanishing at infinity Example 1.19

Cc(R) Continuous, compactly supported functions Example 1.19

Cm(R) m-times differentiable functions General Notation

Cmb (R) Bounded functions in Cm(R) Exercise 1.22

Cmc (R) Compactly supported functions in Cm(R) General Notation

C∞(R) Infinitely differentiable functions General Notation

C∞
c (R) Compactly supported functions in C∞(R) General Notation

C[a, b] Continuous functions on [a, b] Example 1.19

C(T) Continuous functions on T Notation 4.23

Cm(T) m-times differentiable functions on T Section 13.1

C∞(T) Infinitely differentiable functions on T Section 13.1

Dr Dilation operator Notation 9.4

D4, D6, D2N Daubechies scaling functions Section 12.5

eλ Complex exponential e2πiλx Notation 9.2

E Closure of a set E Definition 1.15

|E| Lebesgue measure of E ⊆ R General Notation

E(ϕ) System of weighted exponentials Definition 10.9

ess sup Essential supremum Equation (1.4)

f ⊥ g Orthogonal vectors Section 1.5

F Generic scalar field General Notation

F Fourier transform operator for R Definition 9.7

f̂ Fourier transform of f ∈ L1(R) Definition 9.7
∨

f Inverse Fourier transform of f ∈ L1(R) Definition 9.11

F Fourier transform operator for T Definition 13.2

f̂ Fourier transform of f ∈ L1(T) Definition 13.2
∨

f Inverse Fourier transform of f ∈ L1(T) Definition 13.2

f ∗ g Convolution of functions Definition 13.6

FL2
[−Ω,Ω](R) Functions bandlimited to [−Ω,Ω] Definition 10.1

G Gram matrix Definition 7.3
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G(g, a, b) Gabor system Definition 11.1

G0 a-periodization of |g|2 Section 11.1

Gn Correlation function Section 11.5

ker(T ) Kernel (nullspace) of an operator T Definition 1.58

ℓp(I) p-summable sequences Example 1.9

Lp(E) Lebesgue space of p-integrable functions Example 1.10

Lp(T) p-integrable functions on T Notation 4.23

L2
[−T,T ](R) Functions timelimited to [−T, T ] Definition 10.1

m0 Symbol of a refinement equation Notation 12.16

M⊥ Orthogonal complement of a subspace M Definition 1.41

M +N Direct sum of subspaces Definition 1.45

M ⊕N Orthogonal direct sum of subspaces Definition 1.45

Mb Modulation operator on R Notation 9.4

Mb Modulation operator on T or Z Definition 13.1

M(ĝ ) System of integer modulates of ĝ Definition 10.13

N Natural numbers, {1, 2, 3, . . .} General Notation

PW(R) Paley–Wiener space Definition 10.2

Q Set of rational numbers General Notation

R Real line General Notation

R Synthesis (reconstruction) operator Definition 7.3

S Frame operator Definition 7.3

S(R) Schwartz space Definition 9.18

sign(x) Sign function Section 14.1

span(E) Finite linear span of E Definition 1.25

span(E) Closed linear span of E Definition 1.25

T Torus, domain of 1-periodic functions Notation 4.23

Ta Translation operator on R Notation 9.4

Ta Translation operator on T or Z Definition 13.1

T (g) System of integer translates of g Definition 10.13

W(ψ, a, b) Wavelet system Definition 12.1

W(ψ) Dyadic wavelet system Definition 12.1

W (Lp, ℓq) Wiener amalgam space Definition 11.12

W (C, ℓq) Wiener amalgam space Definition 11.12

W4, W6, W2N Daubechies wavelets Section 12.5

X∗ Dual space of X Definition 1.71

x∗ Generic element of X∗ Notation 1.72
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x̃n Dual frame element Notation 8.15

xn
w→x Weak convergence Definition 2.36

µn
w*−→µ Weak* convergence Definition 2.36

Z Integers, {. . . ,−1, 0, 1, . . .} General Notation

Z Zak transform Definition 11.20
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[Haj08] P. Hájek, Biorthogonal Systems in Banach Spaces, Springer, New York,
2008.

[Hig77] J. R. Higgins, Completeness and Basis Properties of Sets of Special

Functions, Cambridge University Press, Cambridge, UK, 1977.
[KK91] M. I. Kadets and V. M. Kadets, Series in Banach Spaces, Barkhäuser,
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häuser, Boston, 2003.
[Chr08] O. Christensen, Frames and Bases: An Introductory Course, Birk-
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[Grö01] K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser,
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eigenvector, 47
equal norm frame, 207
equivalent

bases, 140, 178
frames, 232
inner products, 26
norms, 6

ergodic mapping, 345, 506
Ergodic Theorem, 345
essential supremum, 471
essentially bounded function, xxv, 7,

471
Euclidean norm, 5

Euler’s
constant, 509
formula, 41, 453

exact
frame, 206
sequence, 154

excess, 238
expansive matrix, 357, 361
exterior Lebesgue measure, 469

F. Riesz’s Lemma, 40
Fatou’s Lemma, 474
Feichtinger algebra, 324
Feichtinger Conjecture, 211
Fejér kernel, 447
filter

high pass, 415
low pass, 399

finite frame, 207
finite linear independence, 20, 156
finite linear span, 20
finite-rank operator, 43, 482
first category, 69
Fourier algebra, 453
Fourier coefficients, 36, 146, 252, 431
Fourier series, 36, 433
Fourier transform, 146, 252, 253, 282,

382, 433
inverse, 256, 432, 433
on ℓ1(Z), 433
on L1(R), 253
on L1(T), 432
on L2(R), 263

fractal, 361
frame, 204
A-tight, 205
alternative dual, 217
Besselian, 235
bounds, 204
canonical dual, 216
canonical Parseval, 226
deficit, 238
dual, 217
dyadic wavelet, 211
equal norm, 207
equivalent, 232
exact, 206
excess, 238
Feichtinger Conjecture, 211
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finite, 207
Gabor, 211
inexact, 207
ℓ2-independent, 230
lattice Gabor, 211
lower frame bound, 204
Mercedes, 204
miracle, 207
near-Riesz, 235
of translates, 211
of weighted exponentials, 211
operator, 190
optimal lower frame bound, 204
optimal upper frame bound, 204
overcomplete, 207
Parseval, 206
peace, 205
pre-frame operator, 190
redundant, 207
sequence, 206
standard dual, 216
tight, 205
unconditional, 235
uniform norm, 207
upper frame bound, 204
wavelet, 211

Franklin system, 144
Fredholm Alternative, 483
frequency, 257
frequency shift, 303
Fubini’s Theorem, 479
function

absolutely continuous, 265
analytic, 273
bandlimited, 269, 377
Battle–Lemarié, 293, 399, 420
box, 37, 374
conjugate, 460
Daubechies, 388, 390
essentially bounded, xxv, 471
Gaussian, 261
Haar wavelet, 37, 374, 419
hat, 292, 380, 391
Hermite, 349
Hölder continuous, 18, 389
Lebesgue measurable, 472
Lipschitz, 18
Meyer, 422
periodic, xxiv

quasiperiodic, 328
refinable, 380
scaling, 371
sign, 456
simple, 473
sinc, 255, 268, 376
stretched box, 388, 398
timelimited, 269

functional, 43
FUNTF, 207

Gabor frame, 211, 301
Gabor Riesz basis, 301
Gabor system, 301

atom, 301
generator, 301
lattice parameters, 301

Gabor, Dennis, 302
Gaussian function, 261
generalized Fourier coefficients, 36
generalized Fourier series, 36
generalized harmonic analysis, 42
Gibbs’s phenomenon, 446
Gram matrix, 190, 191
Gram operator, 190
Gram–Schmidt orthogonalization

procedure, 40

Haar
measure, 305, 354
scaling function, 373
system, 37, 168, 187, 352
wavelet, 37, 374, 419

Hahn–Banach Theorem, 57–59
Hamel basis, 24, 125
hat function, 143, 292, 380, 391
Heine–Borel Theorem, 510
Heisenberg group, 305
Hermite function, 349
Hertz, 270
high-pass filter, 415
Hilbert matrix, 193
Hilbert space, 26
Hilbert transform, 404, 460
Hilbert–Schmidt

norm, 484
operator, 484, 498

Hölder continuous function, 18, 389
Hölder’s Inequality, 10
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HRT
Conjecture, 344
Subconjecture, 343

identity for convolution, 438, 442
induced norm, 26
infinite product, 394
inner product, 25
inner product space, 25
integral

Lebesgue, 473
integral operator, 486
integration by parts, 266
intertwining operators, 244
invariant subspace, 63
inverse Fourier transform, 256, 432, 433
Inverse Mapping Theorem, 75
Inversion Formula, 452
involution, 262
isometric isomorphism, 44
isometry, 43
Isomorphism Theorem, 175
iterated function system, 360
iterated integral, 478

Jacobi theta function, 330
Janssen Representation, 324
joint spectral radius, 386
Journé wavelet, 417

Kadison–Singer Conjecture, 211
kernel, 43

Dirichlet, 444
Fejér, 447
of an integral operator, 486

Khinchine’s Inequalities, 111
Krein–Milman–Rutman Theorem, 175
Kronecker delta, xxiv

lattice
full-rank, 342

lattice Gabor system, 301
Lebesgue constants, 458
Lebesgue Differentiation Theorem, 477
Lebesgue Dominated Convergence

Theorem, 476
Lebesgue integral, 473
Lebesgue measurable function, 472
Lebesgue measurable set, 470

Lebesgue measure, 470
exterior, 469

left-shift operator, 49
limit point, 14
linear independence, 20
Linear Independence Conjecture, 344
linear space, 3
Lipschitz function, 18
locally compact abelian group, 251
locally compact group, 305, 354
low-pass filter, 399
lower frame bound, 204

matrix
dilation, 361
expansive, 357, 361
Gram, 190
quincunx, 359

meager, 69, 454
measurable function, 472
measurable set, 470
Mercedes frame, 204
metric space, 9
Meyer

scaling function, 422
wavelet, 422

minimal accuracy condition, 382, 401,
403

minimal sequence, 40, 154, 156
Minkowski’s Inequality, 11
modulation, 250, 302, 431
modulation space, 310, 339
monotone basis, 137
Monotone Convergence Theorem, 474
monotone increasing sequence, 473
Moore–Penrose pseudoinverse, 77
MRA, 371
Multinomial Theorem, 110
multiresolution analysis, 371
Müntz–Szász Theorem, 155

Naimark Duality Theorem, 231
natural embedding, 61
natural projections, 132
near-Riesz basis, 235
net, 92
Neumann series, 78
nonmeager, 69
norm, 3
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norm basis, 147
norm convergence, 80
normalized basis, 129
normed linear space, 3
nowhere dense, 69
nullspace, 43
Nyquist density, 313

Olson–Zalik Conjecture, 295
one-sided partial sums, 456
open ball, 4, 13
open mapping, 73
Open Mapping Theorem, 74
open set, 14
operator, 42

adjoint, 63, 64
analysis, 99, 190
antilinear, 43
bounded, 43
coefficient, 190
commuting, 43
compact, 482
continuous, 43
finite-rank, 43, 482
frame, 190
functional, 43
Gram, 190
Hilbert–Schmidt, 484, 498
integral, 486
isometric, 43
isometric isomorphism, 44
kernel, 43
left-shift, 49
linear, 43
norm, 43
norm-preserving, 43
open mapping, 73
positive, 65
positive definite, 65
reconstruction, 190
right-shift, 49
self-adjoint, 65
synthesis, 100, 190
topological isomorphism, 75
unitary, 48

optimal
Bessel bound, 190
lower frame bound, 204
upper frame bound, 204

Orlicz’s Theorem, 105, 114
orthogonal

complement, 30, 60
direct sum, 31
frames, 233
projection, 29
sequence, 32
subspaces, 30
vectors, 27

orthonormal
basis, 32
sequence, 32

outer Lebesgue measure, 469

Painless Nonorthogonal Expansions,
306

Paley–Wiener perturbation theorem,
173

Paley–Wiener space, 270, 376
Paley–Wiener Theorem, 273
Parallelogram Law, 27
Parseval Equality, 34, 263, 450
Parseval frame, 206
partial sum operators, 132, 148, 161
partial sums, 22, 88, 443

asymmetric, 455
one-sided, 456
symmetric, 154, 443, 455
twisted, 456

peace frame, 205
periodization, 283, 297, 304, 378, 397
Plancherel Equality, 34, 263, 450
Polar Identity, 27
positive definite matrix, 26, 31
power series, 23
pre-frame operator, 190
principal value, 404
pseudoinverse, 77, 228
Pythagorean Theorem, 27, 32

quasibasis, 220
quasiperiodicity, 328
quincunx matrix, 359
quotient space, 175

Rademacher system, 107
rank, 43
rare, 69
real analytic function, 274
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real Banach space, 5
reconstruction operator, 190
refinable function, 380
refinement equation, 380
reflexive, 61
Riemann–Lebesgue Lemma, 255, 442
Riesz

basis, 196
sequence, 196

Riesz projection operator, 461
Riesz Representation Theorem, 53, 54,

154
Riesz–Thorin Interpolation Theorem,

464
right-shift operator, 49

Sampling Theorem, 275
scaling function, 371

Battle–Lemarié, 293
Daubechies, 388
Haar, 373
Meyer, 422
Shannon, 376

Schauder basis, 131
Schauder system, 142, 184
Schur’s Test, 498
Schwartz class, 261, 344
second category, 69
self-adjoint operator, 65
seminorm, 4
separable normed space, 17
sequence

basic, 156
Bessel, 189
biorthogonal, 40
bounded above, 5
bounded below, 5
complete, 4, 21, 450
finitely independent, 20, 156
frame, 206
minimal, 156
normalized, 5
orthogonal, 32
orthonormal, 32
Riesz, 196
ω-independent, 40, 156

sequentially compact set, 482
series

absolutely convergent, 88, 452

Cauchy, 88
conditionally convergent, 88
convergent, 22, 88
Fourier, 433
unconditionally convergent, 88, 450

set
first category, 69
meager, 69, 454
nonmeager, 69
nowhere dense, 69
rare, 69
second category, 69

Shannon
scaling function, 376
wavelet, 358

Shannon Sampling Theorem, 275
shift-invariant space, 285, 372
shrinking basis, 172
sigmoid function, 425
sign function, 456
simple function, 473

standard representation, 473
sinc function, 255, 268, 376
span, 20

closed linear, 21
finite linear, 20

spectral radius, 385
joint, 386

spline
B-spline, 383, 392

standard basis, xxiv
for ℓp, 24, 35, 131, 430
for c0, 23, 430

standard dual frame, 216
standard representation, 473
stretched box, 388, 398
strong

basis, 147
convergence, 80
Schauder basis, 147

strong continuity of translation, 261,
431, 441

submultiplicative norm, 46
summability kernel, 440
summing basis, 130
superframe, 233
symbol, 382
symmetric partial sums, 455
synthesis operator, 100, 190
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Tchebyshev’s Inequality, 473
tempered distribution, 404
tensor product, 485, 487
tent function, 143, 292
tight frame, 205
time shift, 303
time-frequency translate, 212, 303
time-scale translate, 212
timelimited function, 269
Tonelli’s Theorem, 478
topological isomorphism, 75
totally bounded set, 482
translation, 250, 282, 302, 431
translation-invariant space, 271, 285
Triangle Inequality, 4, 9
Triebel–Lizorkin space, 352
trigonometric polynomial, 430
trigonometric system, 35, 144, 429, 455
twin dragon, 361
twisted partial sums, 456
two-scale difference equation, 380
two-slanted matrix, 393

Uncertainty Principle, 340
unconditional

basis, 129
basis constant, 179
frame, 235

unconditionally convergent series, 88,
450, 451

Uniform Boundedness Principle, 70
uniform norm, 15
uniform norm frame, 207
uniformly separated, 299
unimodular locally compact group, 305
Uniqueness Theorem, 258, 453
unitary operator, 48
upper frame bound, 190, 204

vector space, 3
Viète’s formula, 402
volume of a box, 469
von Neumann algebra, 346
von Neumann, John, 302

Walnut Representation, 321
Walsh system, 109
wavelet

admissible, 369
Battle–Lemarié, 420
Daubechies, 419
frame, 211, 352
Haar, 37, 374, 419
Journé, 417
Meyer, 422
orthonormal basis, 38
set, 357, 417
Shannon, 358

wavelet system, 351
atom, 351
dyadic, 351
generator, 351

weak
basis, 147
convergence, 80
limit point, 82
Schauder basis, 148

Weak Balian–Low Theorem, 341
weak*

basis, 148
convergence, 80
Schauder basis, 148

Weierstrass Approximation Theorem,
22, 60, 450

weight
A2, 163, 280, 334

weighted exponentials, 163, 211, 277
Wiener amalgam space, 316
Wilson basis, 339
winding number, 328

Young’s Inequality
for periodic functions, 435
for sequences, 437

Zak transform, 324
Zero Divisor Conjecture, 391
Zorn’s Lemma, 38, 126
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