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Regularity of Mass-Minimizing Currents

In the last chapter we proved the existence of solutions to certain variational problems
in the context of integer-multiplicity rectifiable currents. In this chapter, we address
the question of whether such solutions are in fact smooth surfaces. Such a question
is quite natural: Indeed, Hilbert’s 19th problem asked [Hil 02], “Are the solutions of
regular problems in the calculus of variations always necessarily analytic?’’

While Hilbert proposed his famous problems in 1900, the earliest precursors
of currents as a tool for solving variational problems are the generalized curves of
Laurence Chisholm Young (1905–2000) [You 37]. So of course, Hilbert could not
have been been referring to variational problems in the context of integer-multiplicity
currents.

Sets of finite perimeter are essentially equivalent to codimension-one integer-
multiplicity rectifiable currents. It was Ennio de Giorgi (1928–1996) [DGi 61a],
[DGi 61b] who first proved the existence and almost-everywhere regularity of
area-minimizing sets of finite perimeter. Subsequently, Ernst Robert Reifenberg
(1928–1964) [Rei 64a], [Rei 64b] proved the almost-everywhere regularity of area-
minimizing surfaces in higher codimensions.

Later work of W. Fleming [Fle 62], E. De Giorgi [DGi 65], Frederick Justin
Almgren, Jr. (1933–1997) [Alm 66], J. Simons [Sis 68], E. Bombieri, E. De Giorgi,
and E. Giusti [BDG 69], and H. Federer [Fed 70], led to the definitive result that states
that, in RN , an (N − 1)-dimensional mass-minimizing integer-multiplicity current is
a smooth, embedded manifold in its interior, except for a singular set of Hausdorff
dimension at most N − 8.

The extension of the regularity theory to general elliptic integrands was made by
Almgren [Alm 68]. His result is that an integer-multiplicity current that minimizes the
integral of an elliptic integrand is regular on an open dense set. Later work ofAlmgren,
R. Schoen, and L. Simon [SSA 77] gave a stronger result in codimension one.

In our exposition, we will limit the scope of what we prove in favor of including
more detail. Specifically, we will limit our attention to the area integrand and to
codimension-one surfaces. An advantage of this approach is that we can include a
complete derivation of the needed a priori estimates. Our exposition is based on the
direct argument of R. Schoen and L. Simon [SS 82].
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9.1 Preliminaries

Notation 9.1.1.

(1) We letM be a positive integer,M ≥ 2.
(2) We identify RM+1 with RM × R and let p be the projection onto RM and q be

the projection onto R.
(3) We let BM(y, ρ) denote the open ball in RM of radius ρ, centered at y. The

closed ball of radius ρ, centered at y, will be denoted by B
M
(y, ρ).

(4) The cylinder BM(y, ρ)×R will be denoted by C(y, ρ) and its closure by C(y, ρ).
(5) Recall that e1, e2, . . . , eM+1 is the standard basis for RM+1, and dx1, dx2,

. . . , dxM+1 is the dual basis in
∧1 RM+1.

(6) As basis elements for
∧
M RM+1 we will use

e 1̂, e 2̂, . . . , e M̂+1
, (9.1)

where
e ı̂ = e1 ∧ e2 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ eM+1 .

Since theM-dimensional subspace associated with e
M̂+1

will play a special role
in what follows, we will also use the notation

eM = e
M̂+1

= e1 ∧ e2 ∧ · · · ∧ eM .

(7) We will identify
∧M RM+1 and the dual space of

∧
M RM+1 using the standard

isomorphism. Thus we will write 〈φ, η 〉 and φ(η) interchangeably when η ∈∧
M RM+1 and φ ∈∧M RM+1 - [∧M RM+1

]′
.

(8) We set

dx ı̂ = dx1 ∧ dx2 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxM+1 (9.2)

for i = 1, 2, . . . ,M + 1.We will also use the notation

dxM = dx
M̂+1

= dx1 ∧ dx2 ∧ · · · ∧ dxM . (9.3)

Definition 9.1.2.

(1) According to the definition given in Example 8.3.6(1), the M-dimensional area
integrand on RM+1 is a function on RM+1 ×∧M RM+1, but a function that is
in fact independent of the first component of the argument. For simplicity of
notation, we will consider the M-dimensional area integrand to be a function
only on

∧
M RM+1, so that

A :∧M RM+1 → R

is given by
A(ξ) = |ξ |

for ξ ∈∧M RM+1.
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(2) TheM-dimensional area functional A is defined by setting

A(S) =
∫
A

(−⇀
S (x)

)
d‖S‖(x)

whenever S is an M-dimensional current representable by integration. We also
have A(S) = M(S) = ‖S‖(RM+1). Of course, the area integrand is called that
because, when S is the current associated with a classicalM-dimensional surface,
then A(S) equals the area of that surface.

Next we will calculate the first and second derivatives of the area integrand and
note some important identities.

Using the basis (9.1), we find that if ξ =∑Mi=1 ξie ı̂ , then

A(ξ) =
√
ξ2

1 + ξ2
2 + · · · + ξ2

M+1 ; (9.4)

so the derivative of the area integrand,DA, is represented by the 0-by-(M+1)matrix

DA(ξ) =
(
ξ1/|ξ |, ξ2/|ξ |, . . . , ξM+1/|ξ |

)
. (9.5)

That is,
〈DA(ξ), η 〉 = (ξ · η)/|ξ | (9.6)

holds for ξ, η ∈∧M RM+1, or equivalently, we have

DA(ξ) = |ξ |−1
M+1∑
i=1

ξi dx ı̂ . (9.7)

In particular, we have
DA(e ı̂ ) = dx ı̂ . (9.8)

We see that the second derivative of the area integrand, D2A, is represented by
the Hessian matrix

D2A(ξ) = |ξ |−1

⎛⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...
...
. . .
...

0 0 . . . 1

⎞⎟⎟⎟⎠

− |ξ |−3

⎛⎜⎜⎜⎝
ξ2

1 ξ1ξ2 . . . ξ1ξM+1

ξ2ξ1 ξ2
2 . . . ξ2ξM+1

...
...
. . .

...

ξM+1ξ1 ξM+1ξ2 . . . ξ
2
M+1

⎞⎟⎟⎟⎠ . (9.9)

Equivalently, for the partial derivatives ∂2A/∂ξi∂ξj = Dξi ξj A, we have
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Dξi ξj A(ξ) = |ξ |−3 (|ξ |2 δi j − ξi ξj ) , (9.10)

where δi j is the Kronecker delta.1

Using (9.10), we can compute the Hilbert–Schmidt norm of D2A as follows:

|D2A(ξ)|2 =
M+1∑
i,j=1

[Dξi ξj A(ξ)]2

= |ξ |−6
M+1∑
i,j=1

[
|ξ |2 δi j − ξi ξj

]2

= |ξ |−6
M+1∑
i,j=1

[
|ξ |4 δi j − 2 |ξ |2 ξi ξj δi j + ξ2

i ξ
2
j

]

= |ξ |−6
[
(M + 1) |ξ |4 − 2 |ξ |4 + |ξ |4

]
= M |ξ |−2 .

So we have
|D2A| = √M/|ξ | . (9.11)

We note that

1

2
|ξ − η|2 = A(η)− 〈DA(ξ), η 〉, for |ξ | = |η| = 1 . (9.12)

Equation (9.12) follows because

1

2
|ξ − η|2 = 1

2

(
|ξ |2 − 2ξ · η + |η|2

)
= 1− ξ · η
= |η| − (ξ · η)/|ξ |
= A(η)− 〈DA(ξ), η 〉 ,

where the last equality follows from (9.6).
Equation (9.12) will play an important role in the regularity theory, but it is the

inequality

1

2
|ξ − η|2 ≤ A(η)− 〈DA(ξ), η 〉, for |ξ | = |η| = 1, (9.13)

1 Leopold Kronecker (1823–1891).
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that is essential. Any inequality of the form (9.13) (but with 1
2 possibly replaced

by another positive constant) is called a Weierstrass condition. Ellipticity of an
integrand is equivalent to the integrand satisfying a Weierstrass condition (see [Fed 75,
Section 3]).

Definition 9.1.3. We say that the M-dimensional integer-multiplicity current T is
mass-minimizing if

A(T ) ≤ A(S) (9.14)

holds whenever S ∈ DM(RM+1) is integer-multiplicity with ∂S = ∂T .

When a current is projected into a plane, the mass of the projection is less than
or equal to the mass of the original current. The difference between the two masses
is the “excess’’ (see Figure 9.1). The fundamental quantity used in the regularity
theory is the “cylindrical excess,’’ which is the excess of the part of a current in a
cylinder, normalized to account for the radius of the cylinder. We give the precise
definition next.

Fig. 9.1. The excess.

Definition 9.1.4. For an integer-multiplicity T ∈ DM(RM+1), y ∈ RM , and ρ > 0,
the cylindrical excess E(T , y, ρ) is defined by

E(T , y, ρ) = 1

2
ρ−M

∫
C(y,ρ)

|−⇀T − eM |2 d‖T ‖ , (9.15)
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where we recall that
T = ‖T ‖ ∧ −⇀T .

The next lemma shows the connection between equation (9.15), which defines the
excess, and the more heuristic description of the excess given before the definition.

Lemma 9.1.5. Suppose that T ∈ DM(RM+1) is integer-multiplicity, y ∈ RM , � is a
positive integer, and ρ > 0. If

p#(T C(y, ρ)) = �EM BM(y, ρ)

and spt ∂T ⊆ RM+1 \ C(y, ρ), then it holds that

E(T , y, ρ) = ρ−M
(
‖T ‖(C(y, ρ))− ‖p#T ‖(BM(y, ρ))

)
= ρ−M (‖T ‖(C(y, ρ))− ��M ρM) .

(9.16)

Proof. Since |−⇀T | = |eM | = 1, we have

|−⇀T − eM |2 = |−⇀T |2 + |eM |2 − 2

(−⇀
T · eM

)

= 2− 2

(−⇀
T · eM

)
.

So we have

1

2

∫
C(y,ρ)

|−⇀T − eM |2 d‖T ‖ =
∫

C(y,ρ)
1−

(−⇀
T · eM

)
d‖T ‖

= ‖T ‖(C(y, ρ))− ‖p#T ‖(BM(y, ρ))
= ‖T ‖(C(y, ρ))− ��M ρM . ��

We now give two corollaries of the lemma. The first is an immediate consequence
of the proof of Lemma 9.1.5 and the second shows us the effect of an isometry on the
excess.

Corollary 9.1.6. Suppose that T ∈ DM(RM+1) is integer-multiplicity, y ∈ RM , � is
a positive integer, and ρ > 0. If

p#(T C(y, ρ)) = �EM BM(y, ρ)

and spt ∂T ⊆ RM+1 \ C(y, ρ), then for any LM -measurable B ⊆ BM(y, ρ), it
holds that

‖T ‖(B × R) ≤ 1

2

∫
B×R

|−⇀T − eM |2 d‖T ‖ + �LM(B) . (9.17)
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Proof. The corollary is an immediate consequence of the proof of the lemma. ��
Corollary 9.1.7. Suppose that T ∈ DM(RM+1) is integer-multiplicity, ρ > 0,

p#(T C(0, ρ)) = �EM BM(0, ρ) ,

and spt ∂T ⊆ RM+1 \ C(0, ρ).
If 1 < λ <∞, j : RM+1 → RM+1 is an isometry, 0 < ρ′ < ρ, and

spt j#T C(0, ρ′) ⊆ j
(

spt T C(0, ρ)
)
,

then

E( j#T , 0, ρ′ ) ≤ λ (ρ/ρ′)M E( T , 0, ρ )

+ λ

2(λ− 1)
· (ρ/ρ′)M · � · ‖j− IRM+1‖2M · E( T , 0, ρ )

+ λ ��M
2(λ− 1)

· (ρ/ρ′)M · ‖j− IRM+1‖2M .

Proof. Using∣∣∣∧M j
(−⇀
T
)
− eM

∣∣∣ ≤ ∣∣∣∧M j
(−⇀
T
)
−∧M j

(
eM
) ∣∣∣+ ∣∣∣∧M j

(
eM
)
− eM

∣∣∣
and

( |α| + |β| )2 = λα2 + λ

λ− 1
β2 −

(√
λ− 1 |α| − |β|/√λ− 1

)2

≤ λα2 + λ

λ− 1
β2 ,

we obtain

E( j#T , 0, ρ′ ) ≤ 1

2
(ρ′)−M

∫
C(0,ρ)

∣∣∣∧M j
(−⇀
T
)
− eM

∣∣∣2 d‖T ‖
≤ λ

2
(ρ′)−M

∫
C(0,ρ)

∣∣∣∧M j
(−⇀
T
)
−∧M j

(
eM
) ∣∣∣2 d‖T ‖

+ λ

2(λ− 1)
(ρ′)−M

∫
C(0,ρ)

∣∣∣∧M j
(

eM
)
− eM

∣∣∣2 d‖T ‖
= λ

2
(ρ′)−M

∫
C(0,ρ)

∣∣∣−⇀T − eM
∣∣∣2 d‖T ‖

+ λ

2(λ− 1)
(ρ′)−M

∫
C(0,ρ)

∣∣∣∧M j
(

eM
)
− eM

∣∣∣2 d‖T ‖
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≤ λ
2
(ρ′)−M

∫
C(0,ρ)

∣∣∣−⇀T − eM
∣∣∣2 d‖T ‖

+ λ

2(λ− 1)
(ρ′)−M‖ j− IRM+1 ‖2M ‖T ‖C(0, ρ) ,

and the result follows from Lemma 9.1.5. ��
Notation 9.1.8. Certain hypotheses will occur frequently in what follows, so we col-
lect them here (with labels) for easy reference:

(H1) spt ∂T ⊆ RM+1 \ C(y, ρ),
(H2) p#[T C(y, ρ)] = EM BM(y, ρ),
(H3) �M rM ≤ ‖T ‖{X ∈ RM+1 : |X − Y | < r} holds whenever Y ∈ spt T and

{X ∈ RM+1 : |X − Y | < r} ∩ spt ∂T = ∅,
(H4) E(T , y, ρ) < ε,
(H5) T is mass-minimizing.

Here ρ and ε are positive and y ∈ RM .

Note that the constancy theorem, i.e., Proposition 7.3.1, implies that if spt T ⊆
RM+1 \ C(y, ρ), then, because ∂p#T = p#∂T , we have

p#(T C(y, ρ)) = �EM BM(y, ρ) , (9.18)

where � is an integer. So in (H2) we are making the simplifying assumption that
� = 1.

Note that (H5) allows us to apply Theorem 8.4.3 to obtain (H3), so (H3) is, in
fact, a consequence of (H5).

9.2 The Height Bound and Lipschitz Approximation

We begin this section with the height bound lemma. The proof we give is simplified
by using hypothesis (H3). While the height bound lemma remains true for currents
minimizing the integral of an integrand other than area, the proof is more difficult
because the lower bound on mass that they satisfy (see Theorem 8.4.5) is weaker than
that in (H3).

Lemma 9.2.1 (Height bound). For eachσ with 0 < σ < 1, there are ε0 = ε0(M, σ)
and c1 = c1(M, σ) such that the hypotheses (H1–H4), with ε = ε0 in (H4), imply

sup
{
|q (X1)− q (X2)| : X1, X2 ∈ spt T ∩ C(y, σρ)

}
≤ c1 ρ

(
E(T , y, ρ)

) 1
2M
.



9.2 The Height Bound and Lipschitz Approximation 263

Proof. By using a translation and homothety if need be, we may assume that y = 0
and ρ = 1. We write

E = E(T , 0, 1) .
Set

r0 = 1
2 (1− σ) (9.19)

and
ε0 = 2−M �M (1− σ)M . (9.20)

First we consider points whose projections onto BM(0, 1) are separated by a
distance less than 2 r0. So suppose that X1, X2 ∈ spt T ∩ C(0, σ ) are such that

1
2

∣∣∣p (X1)− p (X2)

∣∣∣ < r0 .
We set

r = 1
2

∣∣∣p (X1)− p (X2)

∣∣∣ , h = 1
2

∣∣∣q (X1)− q (X2)

∣∣∣ .
Then we have ∣∣∣X1 −X2

∣∣∣ = 2
√
r2 + h2 .

We set
s = min{

√
r2 + h2 − r , r0 } .

Then we have
B(X1, r + s)⋂B(X2, r + s) = ∅

and
B(X1, r + s)⋃B(X2, r + s) ⊆ C(0, 1) .

Setting
x∗ = 1

2 (p (X1)+ p (X2)) ,

so that ∣∣p (X1)− x∗
∣∣ = ∣∣p (X2)− x∗

∣∣ = r ,
we see (Figure 9.2) that

p (X1) p (X2)

s
r r

Fig. 9.2. The projections of the balls.
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BM(x∗, s) ⊆ p (B(X1, r + s))⋂ p (B(X2, r + s))
and thus that

LM
[

p (B(X1, r + s))⋂ p (B(X2, r + s))
]
≥ �M sM .

By (H3) we have

‖T ‖B(X1, r + s)+ ‖T ‖B(X2, r + s) ≥ 2�M (r + s)M

= LM
[

p (B(X1, r + s))
]
+ LM

[
p (B(X2, r + s))

]
.

Thus we have

E ≥ ‖T ‖
[

B(X1, r + s)⋃B(X2, r + s)
]

− LM
[

p (B(X1, r + s))⋃ p (B(X2, r + s))
]

≥ LM
[

p (B(X1, r + s))
]
+ LM

[
p (B(X2, r + s))

]
− LM

[
p (B(X1, r + s))⋃ p (B(X2, r + s))

]
= LM

[
p (B(X1, r + s))⋂ p (B(X2, r + s))

]
≥ �M sM .

We now consider two possibilities.

Case 1. s = r0,

Case 2. s =
√
r2 + h2 − r < r0.

In Case 1, by the definition of r0, i.e., (9.19), the definition of ε0, i.e., (9.20), and
(H4), we have

E ≥ �M sM = �M rM0 = 2−M �M (1− σ)M = ε0 > E ,
a contradiction. Thus we may assume that Case 2 holds.

In Case 2, we note that

h ≤
√
r2 + h2

≤ (
√
r2 + h2 − r)+ r0

≤ 2 r0 .

Then it follows that
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E ≥ �M sM

= �M (
√
r2 + h2 − r)M

= �M
(
(r2 + h2)− r2√
r2 + h2 + r

)M

≥ �M
⎛⎝ h2√
r20 + 4r20 + r0

⎞⎠M

≥ �M 2−M (1− σ)−M h2M ,

where we obtain the last inequality by using the definition of r0, i.e., (9.19), and, for
simplicity, we have replaced

√
5+ 1 by the larger number 4.

We have shown that any two points in spt T ∩ C(0, σ ) whose projections onto
BM(0, 1) are separated by a distance less than 2 r0 will have their projections by q
separated by less than

21/2�
−1/(2M)
M (1− σ)1/2 E1/(2M) .

But any two points x1 and x2 in BM(0, σ ) are separated by a distance less than 2 σ ,
so if the two points are separated by more than 2 r0 = (1 − σ), then we can form a
sequence of points z1 = x1, z2, . . . , zM = x2 such that |zi+1 − zi | ≤ (1− σ) = 2r0.
We can take L to be the smallest integer exceeding 2 σ/(1− σ). Thus we have

L ≤ 1+ 2 σ

1− σ =
1+ σ
1− σ <

2

1− σ .

Hence we may set

c1(M, σ) = L · 21/2�
−1/(2M)
M (1− σ)1/2

≤ 23/2�
−1/(2M)
M (1− σ)−1/2 . ��

Lemma 9.2.2 (Lipschitz approximation). Let γ with 0 < γ ≤ 1 be given. There
exist constants c2, c3, and c4 such that the following holds:

If the hypotheses (H1–H4) are satisfied with ε = ε0(M, 2/3) in (H4), where
ε0(M, 2/3) is as in Lemma 9.2.1, then there is a Lipschitz function g : BM(y, ρ/4)→
R satisfying the following conditions:

Lip g ≤ γ, (9.21)

sup
{
|g(z)− g(y)| : z ∈ BM(y, ρ/4)

}
≤ c2 ρ

(
E(T , y, ρ)

) 1
2M
, (9.22)
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LM
[

BM(y, ρ/4) \
{
z ∈ BM(y, ρ/4) : p−1(z) ∩ spt T = {(z, g(z))}

} ]
≤ ρM c3 γ−2M E(T , y, ρ), (9.23)

‖T − T g‖C(y, ρ/4) ≤ ρM c4 γ−2M E(T , y, ρ) , (9.24)

where
T g = G#

(
EM BM(y, ρ/4)

)
, (9.25)

with G : BM(y, ρ/4)→ C(y, ρ/4) defined by

G(x) = (x, g(x)) , for x ∈ BM(y, ρ/4) .

Proof. Fix the choice of 0 < γ ≤ 1 and specify a value of ε0 for which the conclusion
of Lemma 9.2.1 holds with σ chosen to equal 2/3. That is, if the hypotheses (H1–H4)
hold with ε = ε0 and with z and δ in place of y and ρ, respectively, then

sup
{
|q (X1)− q (X2)| : X1, X2 ∈ spt T ∩ C(z, 2δ/3)

}
≤ c1 δ

(
E(T , z, δ)

) 1
2M
. (9.26)

Consider η with
0 < η < ε0 . (9.27)

Set

A =
{
z ∈ BM(y, ρ/4) : E(T , z, δ) ≤ η for all δ with 0 < δ < 3ρ/4

}
, (9.28)

and set
B = BM(0, ρ/4) \ A .

For each b ∈ B there exists δ(b) with 0 < δ(b) < 3ρ/4 such that the excess
E(T , b, δ(b)) is greater than η, that is,

1

2

∫
C(b,δ(b))

|−⇀T − eM |2 d‖T ‖ = δ(b)M · E(T , b, δ(b)) > η · δ(b)M . (9.29)

Applying the Besicovitch covering theorem (i.e., Theorem 4.2.12) to the family
of closed balls

B =
{

B
M
(b, δ(b)) : b ∈ B

}
,

we obtain the subfamilies B1,B2, . . . ,BK of B such that each Bi consists of pairwise
disjoint balls and

B ⊆
K⋃
i=1

Bi ,
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where
Bi =

⋃
B
M
(b,δ(b))∈Bi

B
M
(b, δ(b)) .

Here K is a number that depends only on the dimension M . Using (9.29), we see
that, for each i = 1, 2, . . . , K , we have

ηLM (Bi) = η
∑

B
M
(b,δ(b))∈Bi

�M

[
δ(b)

]M

< �M
∑

B
M
(b,δ(b))∈Bi

δ(b)M E(T , b, δ(b))

= 1

2
�M

∫
Bi

|−⇀T − eM |2 d‖T ‖

≤ 1

2
�M

∫
C(y,ρ)

|−⇀T − eM |2 d‖T ‖ .

We conclude that

ηLM(B) ≤
K∑
i=1

ηLM
(⋃
i

Bi

)

≤ K
2
�M

∫
C(y,ρ)

|−⇀T − eM |2 d‖T ‖

= c5 ρM E(T , y, ρ) . (9.30)

If x1, x2 ∈ BM(0, ρ/4) ∩ A, and if X1, X2 are points with

Xi ∈ spt T ∩ p−1(xi), i = 1, 2,

then
|x1 − x2| < ρ/2 ,

so we can apply (9.26) with z = x1 and with δ chosen to satisfy

3 |x1 − x2|/2 < δ < 3ρ/4 . (9.31)

Letting δ in (9.31) decrease to 3 |x1 − x2|/2, we conclude that

|q (X1)− q (X2)| ≤ c6 η1/(2M) |x1 − x2| , (9.32)

where we set
c6 = max{ 3/2, (3/2) c1, ε

−1
0 } . (9.33)
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Thus we may choose

η = γ 2M c−2M
6 ≤ c−2M

6 < c−1
6 ≤ ε0 , (9.34)

so that c6 η1/(2M) = γ holds, and consequently we have

|q (X1)− q (X2)| ≤ γ |x1 − x2| (9.35)

for any points
x1, x2 ∈ BM(0, ρ/4)

⋂
A ,

where
X1 ∈ spt T

⋂
p−1(x1) and X2 ∈ spt T

⋂
p−1(x2) .

In particular, (9.35) shows that, for any x ∈ A ∩ BM(0, ρ/4), there is exactly one
X ∈ p−1(x)

⋂
spt T . Thus, we can define g∗ : A⋂BM(0, ρ/4)→ R by requiring{

(x, g∗(x))
}
= p−1(x)

⋂
spt T , whenever x ∈ A⋂BM(0, ρ/4) .

Inequality (9.35) tells us that Lip (g∗) ≤ γ holds on A
⋂

BM(y, ρ/4), so by
Kirszbraun’s extension theorem (see [KPk 99, Theorem 5.2.2]) g∗ extends to g∗∗ :
BM(y, ρ/4)→ R with the same Lipschitz constant.

By Lemma 9.2.1, if we set

g = min
{
α, max{β, g∗∗ }

}
,

where

α = g(y)− c1 E1/(2M)(T , y, ρ) ρ, β = g(y)+ c1 E1/(2M)(T , y, ρ) ρ ,

then {
(x, g(x))

}
= p−1(x)

⋂
spt T whenever x ∈ A⋂BM(0, ρ/4)

and
sup
{
|g(x)− g(y)| : BM(y, ρ/4)

}
≤ c1 E1/(2M)(T , y, ρ) ρ

will both hold.
Using (9.17), (9.30), and (9.34), we see that

‖T ‖
[
(BM(y, ρ/4) \ A)× R

]
= LM

[
BM(y, ρ/4) \ A

]
+ 1

2

∫
(BM(y,ρ/4)\A)×R

|−⇀T − eM |2 d‖T ‖

≤ LM [B] + 1

2

∫
C(y,ρ)

|−⇀T − eM |2 d‖T ‖

≤ (η−1c5 + 1) ρM E(T , y, ρ)

= (c5 c2M6 γ−2M + 1) ρM E(T , y, ρ)

≤ (c5 c2M6 + 1) γ−2M ρM E(T , y, ρ) .
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So we conclude that (9.23) holds with c3 = c5 c2M6 + 1.
Finally, we have

‖T − T g‖C(y, ρ/4) ≤ ‖T ‖
[
(BM(y, ρ/4) \ A)× R

]
+ ‖T g‖

[
(BM(y, ρ/4) \ A)× R

]
≤ ‖T ‖[ (BM(y, ρ/4) \ A)× R

]
+ γ LM [B]

≤ 2 (c5 c
2M
6 + 1) γ−2M ρM E(T , y, ρ) ,

so we see that (9.24) holds with c4 = 2 (c5 c2M6 + 1). ��

9.3 Currents Defined by Integrating over Graphs

Currents obtained by integration over the graph of a function are particularly nice and
are helpful to our intuitive understanding of the concepts being developed here. We
will show how the cylindrical excess of such a current relates to a familiar quantity
from analysis, namely the Dirichlet integral (see Corollary 9.3.7).

Notation 9.3.1. Let f : BM(0, σ )→ R be Lipschitz.

(1) We use the notation F for the function from BM(0, σ ) to RM+1 given by F(x) =
(x, f (x)).

(2) We use the notation GF for the M-dimensional current that is defined by inte-
gration over the graph of f , that is,

GF = F#(EM BM(0, σ )) .

Writing
JF (x) = 〈∧M (DF(x)), eM 〉 ,

we have

GF [ψ] =
∫

BM(0,σ )
〈ψ(x, f (x)), JF (x) 〉 dLM(x) (9.36)

for any differentialM-form ψ defined on C(0, σ ).

Lemma 9.3.2. If f : BM(0, σ )→ R is Lipschitz, then we have

−⇀
GF(F(x)) = (1+ |Df |2)−1/2

(
eM +

M∑
i=i

∂f

∂xi
e ı̂

)
, (9.37)

DA(
−⇀
GF) = (1+ |Df |2)−1/2

(
dxM +

M∑
i=1

(
∂f

∂xi

)
dx ı̂

)
, (9.38)
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DA(
−⇀
GF)−DA(eM) =

(1+ |Df |2)−1/2

(
dxM +

M∑
i=1

(
∂f

∂xi

)
dx ı̂

)
− dxM . (9.39)

Proof. By definition, we have

〈∧M (DF(x)), eM 〉 =
M∧
i=1

(
ei + ∂f

∂xi
eM+1

)
.

So

JF = eM +
M∑
i=i

∂f

∂xi
e ı̂ . (9.40)

We obtain (9.37) from (9.40) by dividing by the norm of JF . Equation (9.38)
follows from (9.37) and (9.7). Equation (9.39) follows from (9.38) and (9.8). ��

For the record, we note that the coefficient of dxM in (9.39) is

(1+ |Df |2)−1/2 − 1 .

Lemma 9.3.3. Define a map from RM to RM+1 by

x = (x1, x2, . . . , xM) �−→ X = (1+ |x|2)−1/2 (1, x1, x2, . . . , xM) .

If A and B are the images of a and b under this map then

(1) |A− B| ≤ |a − b| ;
(2) for each 0 < c <∞, it holds that

|a|, |b| ≤ c implies |a − b| ≤ (1+ c2)2 |A− B| .
Proof. The mapping x �→ X is the composition of two mappings: the distance-
preserving map

x = (x1, x2, . . . , xk) �−→ (1, x1, x2, . . . , xk)

followed by the radial projection onto the unit sphere

y = (y1, y2, . . . , yk+1) �−→ |y|−1 (y1, y2, . . . , yk+1) .

Part (1) follows from the fact that the radial projection does not increase the distance
between points that are outside of the open unit ball.

To prove (2), we note that

|1+ a · b| ≤ (1+ |a|2)1/2 (1+ |b|2)1/2

holds, with equality if and only if a = b. Thus
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0 < (1+ |a|2)1/2 (1+ |b|2)1/2 + (1+ a · b)
always holds, so we may compute

(1+ |a|2)1/2 (1+ |b|2)1/2 |A− B|2

= 2
[
(1+ |a|2)1/2 (1+ |b|2)1/2 − (1+ a · b)

]
= 2

[
(1+ |a|2)1/2 (1+ |b|2)1/2 + (1+ a · b)

]−1

·
[
(1+ |a|2) (1+ |b|2)− (1+ a · b)2

]
= 2

[
(1+ |a|2)1/2 (1+ |b|2)1/2 + (1+ a · b)

]−1

·
[
|a − b|2 + |a|2 |b|2 − (a · b)2

]
≥ 2

[
(1+ |a|2)1/2 (1+ |b|2)1/2 + (1+ a · b)

]−1 |a − b|2 .
The estimate in (2) now follows readily. ��
Proposition 9.3.4. We have∣∣∣∣−⇀GF(F(x))−−⇀GF(F(y))∣∣∣∣ ≤ |Df (x)−Df (y)| (9.41)

and, provided |Df (x)|, |Df (y)| ≤ c, we have

|Df (x)−Df (y)| ≤ (1+ c2)2
∣∣∣∣−⇀GF(F(x))−−⇀GF(F(y))∣∣∣∣ . (9.42)

Proof. This result follows immediately from Lemma 9.3.3 and (9.37). ��
We leave the easy proof of the next lemma to the reader.

Lemma 9.3.5. For t ∈ R we have

0 ≤ 1− (1+ t2)−1/2 ≤ min{ 1
2 t

2 , |t |} . (9.43)

If additionally |t | ≤ C <∞ holds, then we have

t2

2(1+ C2)
≤ 1− (1+ t2)−1/2 . (9.44)

Proposition 9.3.6. It holds that

[1+ Lip (f )]−2 |Df |2 ≤
∣∣∣∣−⇀GF − eM

∣∣∣∣2 ≤ min
{
|Df |2, 2|Df |

}
. (9.45)
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Proof. By (9.37) we have

−⇀
GF − eM = (1+ |Df |2)−1/2

[
(1− (1+ |Df |2)1/2)eM +

M∑
i=1

∂f

∂xi
e ı̂

]
,

so

|−⇀GF − eM |2 = (1+ |Df |2)−1
[

1− 2(1+ |Df |2)1/2 + (1+ |Df |2)+ |Df |2
]

= (1+ |Df |2)−1
[

2(1+ |Df |2)− 2(1+ |Df |2)1/2
]

= 2
[

1− (1+ |Df |2)−1/2
]
.

The upper bound follows from (9.43), while the lower bound follows from (9.44). ��
Corollary 9.3.7. It holds that

2−1 [1+ Lip (f )]−2 σ−M
∫

BM(0,σ )
|Df |2 dLM ≤ E(GF , 0, σ )

≤ 2−1 σ−M
∫

BM(0,σ )
|Df |2 dLM .

Proof. The corollary is an immediate consequence of Proposition 9.3.6 and the defi-
nition of the cylindrical excess, i.e., Definition 9.1.4. ��
Proposition 9.3.8. We have∣∣∣∣DA(−⇀GF)−DA(eM)∣∣∣∣ ≤ min

{
|Df |2, 2 |Df |

}
. (9.46)

Proof. By (9.39), we have

DA(
−⇀
GF)−DA(eM)

= (1+ |Df |2)−1/2

[
(1− (1+ |Df |2)1/2dxM +

M∑
i=1

(
∂f

∂xi

)
dx ı̂

]
,

so we can proceed as in the proof of Proposition 9.3.6 and apply (9.43). ��

9.4 Estimates for Harmonic Functions

The heuristic behind the regularity theory for area-minimizing surfaces is that, at
a point where an area-minimizing surface is horizontal, the closer you look at the
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surface, the more it looks like the graph of a harmonic function. This is made plausible
by the fact that an area-minimizing graph is given by a function u that minimizes the
integral of the area integrand √

1+ |Du|2 ,
while a harmonic function u minimizes the integral of

1

2
|Du|2 .

Since the area integrand
√

1+ |Du|2 has the expansion

1+ 1

2
|Du|2 +

∞∑
k=2

(
1/2

k

)
|Du|2k ,

we see that, at a point where the graph is horizontal, minimizing 1
2 |Du|2 must be

nearly the same as minimizing
√

1+ |Du|2.
To turn the heuristic discussion above into a useful estimate, we will need to in-

vestigate the boundary regularity of solutions for the Dirichlet problem2 for Laplace’s
equation3 on the unit ball. To obtain a sharp result we must use the Lipschitz spaces
that we introduce next.

Notation 9.4.1. Let B denote the open unit ball in RM and let � denote the unit
sphere.

(1) For g : �→ R, we say that g is differentiable at x ∈ � if G defined by

G(z) = g(z/|z|) (z �= 0)

is differentiable at x. This definition exploits the special structure of �, but it
is easily seen to be equivalent to the usual definition of differentiability for a
function defined on a surface (for example, see [Hir 76, pp. 15ff.]).

(2) If g : �→ R is differentiable at x ∈ � and if v a unit vector, then the directional
derivative of g at x in the direction v is defined by

∂g

∂v
(x) = 〈DG(x), v 〉 . (9.47)

We will also use (9.47) as the definition of ∂g/∂v when v is not a unit vector.
(3) For δ with 1 < δ < 2, we say that g : � → R is Lipschitz of order δ, written
g ∈ !δ(�), if g is differentiable at every point of �, ∂g

∂v
(x) is a continuous

function of x for each unit vector v, and there exists C < ∞ such that for each
unit vector v, ∣∣∣∣∂g∂v (x1)− ∂g

∂v
(x0)

∣∣∣∣ ≤ C |x1 − x0|δ−1

holds for x0, x1 ∈ �.
2 Johann Peter Gustav Lejeune Dirichlet (1805–1859).
3 Pierre-Simon Laplace (1749–1827).
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(4) If g : �→ R is Lipschitz of order δ on � (1 < δ < 2), then we set

‖g‖!δ = sup
x∈�|v|=1

∣∣∣∣∂g∂v (x)
∣∣∣∣

+ sup
x0,x1∈�, x0 �=x1|v|=1

|x1 − x0|1−δ
∣∣∣∣∂g∂v (x1)− ∂g

∂v
(x0)

∣∣∣∣ . (9.48)

The number ‖g‖!δ defines a seminorm on !δ(�). Had we wished to define a
norm, we could have done so by including the term supx∈� |g(x)| as an additional
summand on the right-hand side of (9.48).

We have defined the Lipschitz spaces!δ(�) for δ in the limited range 1 < δ < 2
because those are the only spaces we will need in this section. For a comprehensive
study of Lipschitz spaces, the reader should see [Kra 83].

Lemma 9.4.2. For δ with 1 < δ < 2 there exists a constant c7 = c7(δ) with the
following property:

If g ∈ !δ(�) and if u ∈ C0(B)
⋂
C2(B) satisfies

.u = 0 on B ,

u = g on � ,
(9.49)

then the Hilbert–Schmidt norm of the Hessian matrix of u (i.e., the square root of
the sum of the squares of the entries in the matrix) is bounded by∣∣∣Hess [u(x)]

∣∣∣ ≤ c7 · ‖g‖!δ · �(x)δ−2 . (9.50)

Here, of course, . denotes the Laplacian
∑M
i=1 ∂

2/∂x2
i .

Proof. Our proof will be based on the fact that the function u solving (9.49) is given
by the Poisson integral formula.4 Recall (see [CH 62, pp. 264ff.], [Kra 99, p. 186],
or [Kra 05, p. 143]) that the Poisson kernel for the unit ball in RM is given by

P(x, y) = �(M/2)
2πM/2

· 1− |x|2
|x − y|M (9.51)

= �(M/2)
2πM/2

· �(x) (2− �(x))|x − y|M , (9.52)

where
�(x) = 1− |x|

4 Siméon Denis Poisson (1781–1840).
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is the distance from x ∈ B to �. The solution to the Dirichlet problem (9.49) is
given by

u(x) =
∫
�

P (x, y) g(y) dHM−1(y) . (9.53)

Interior estimate. Observe that if x ∈ B stays at least a fixed positive distance away
from�, then each |∂P/∂xi | (and all higher derivatives of P as well) will be bounded
above. Thus we can obtain estimates for the derivatives of u by differentiating the
right-hand side of (9.53) under the integral and estimating the resulting integral. Thus
we have (9.50) for x ∈ BM(0, 1/2).

Notation. For v ∈ RM a unit vector, ∂f/∂v will denote the directional derivative of
the function f in the direction v. Here f may be real-valued or vector-valued.

Of particular interest are the directional derivatives of the Poisson kernel P(x, y).
Since P depends on the two arguments x ∈ RM and y ∈ RM , we will augment our
notation for directional derivatives to indicate the variable with respect to which the
differentiation is to be performed. The notation ∂P/∂xv will mean that the directional
derivative of P(x, y) in the direction v is to be computed by differentiating with
respect to x while treating y as a parameter. We have

∂P

∂xv
=
M∑
i=1

vi
∂P

∂xi
. (9.54)

On the other hand, when we wish to differentiate P(x, y) as a function of y while
treating x as a parameter, we will write ∂P/∂yv .We have

∂ P

∂yv
=
M∑
i=1

vi
∂P

∂yi
. (9.55)

Equations (9.54) and (9.55) remain meaningful when v is not a unit vector, and later
we will have occasion to apply (9.55) in such a circumstance.

Estimates for derivatives of P . Fix a point x ∈ B \ {0}. Let y be a point on �.
Using (9.51), we compute the derivatives ofP(x, y) as follows: Let v be a unit vector.
Since

∂x

∂v
= v

(that is, the directional derivative, in the direction v, of the map x �→ x is v itself),
we have

∂P

∂xv
(x, y) = �(M/2)

2πM/2
·
(
− 2 x · v
|x − y|M −

M (1− |x|2) (x − y) · v
|x − y|M+2

)
.

Similarly, we find that

∂P

∂yv
(x, y) = �(M/2)

2πM/2
· M (1− |x|

2) (x − y) · v
|x − y|M+2

= M (x − y) · v|x − y|2 P(x, y) .
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If we consider v = τ , where τ is a unit vector tangent at x to the sphere of radius
|x| centered at the origin, then we have x · τ = 0. We conclude that

∂P

∂xτ
(x, y) = �(M/2)

2πM/2
· −M (1− |x|

2) (x − y) · τ
|x − y|M+2

= −M (x − y) · τ|x − y|2 P(x, y)
(9.56)

and that
∂P

∂xτ
(x, y) = − ∂P

∂yτ
(x, y) . (9.57)

(Note that the vector τ is the same vector on both sides of (9.57). The subscript y in
the notation ∂ P

∂yτ
(x, y) on the right-hand side of (9.57) merely tells us to differentiate

with respect to y while treating x as a constant; the subscript in no way implies that
τ is tangent to � at y.) From (9.56), we also obtain the estimate∣∣∣∣ ∂P∂xτ (x, y)

∣∣∣∣ ≤ M |x − y|−1 P(x, y) . (9.58)

Similarly, if τ̂ is also a unit vector tangent at x to the sphere of radius |x| centered
at the origin, we have

∂2P

∂xτ ∂x τ̂
(x, y) = − ∂2P

∂yτ ∂x τ̂
(x, y) . (9.59)

For the vector v, which here need not be a unit vector, we find that

∂2P

∂yv ∂xτ
(x, y) = M v · τ

|x − y|2 P(x, y)

−(2M +M2)
[ (x − y) · τ ] [ (x − y) · v ]

|x − y|4 P(x, y) ,

and we obtain the estimate∣∣∣∣ ∂2P

∂yv ∂xτ
(x, y)

∣∣∣∣ ≤ (3M +M2) |v| |x − y|−2 P(x, y) . (9.60)

Suppose x ∈ B \ {0} and let ν = x/|x| be the outward unit normal vector at x to
the sphere of radius |x| centered at the origin. We compute

∂P

∂xν
(x, y) = �(M/2)

2πM/2
·
(
− 2 x · ν
|x − y|M −

M (1− |x|2) (x − y) · ν
|x − y|M+2

)
.

We obtain the estimate∣∣∣∣ ∂P∂xν (x, y)
∣∣∣∣ ≤ �(M/2)2πM/2

· 1− |x|2
|x − y|M

(
2 |x · ν|
1− |x|2 +M

|(x − y) · ν|
|x − y|2

)
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≤ �(M/2)
2πM/2

· 1− |x|2
|x − y|M

(
2 |x|

�(x) (2− �(x)) +M
|x − y|
|x − y|2

)
≤ P(x, y) (2 �(x)−1 +M |x − y|−1)

≤ P(x, y) · (M + 2) · �(x)−1 , (9.61)

where we have used the fact that �(x) ≤ |x − y| (which holds because y ∈ �), thus
implying

1

|x − y| ≤ �(x)
−1 . (9.62)

In the remainder of the proof, we will use the identity (9.59) for tangential deriva-
tives and the estimates for the derivatives of P to obtain estimates for the second
derivatives of u.

Estimates for tangential second derivatives of u. Fix a point x ∈ B \ {0}. Let τ
and τ̂ be unit vectors tangent at x to the sphere of radius |x| centered at the origin.

Since Hess [ u(x) ] is unaffected by adding a constant to g, we may suppose for
convenience that

g(ζ(x)) = 0 , (9.63)

where ζ(x) = x/|x| is the radial projection of x into �. It also will be convenient to
use “C’’ to denote a generic constant, the specific value of which may vary from line
to line.

We compute∣∣∣∣ ∂2u

∂τ ∂τ̂

∣∣∣∣ = ∣∣∣∣ ∫
�

∂2P

∂xτ ∂x τ̂
(x, y) g(y) dHM−1(y)

∣∣∣∣
=
∣∣∣∣ ∫
�

− ∂2P

∂yτ ∂x τ̂
(x, y) g(y) dHM−1(y)

∣∣∣∣
=
∣∣∣∣ ∫
�

∂P

∂xτ̂
(x, y)

∂ g

∂yτ
(y) dHM−1(y)

−
∫
�

∂

∂yτ

(
∂P

∂xτ̂
(x, y) g(y)

)
dHM−1(y)

∣∣∣∣
≤
∣∣∣∣ ∫
�

∂P

∂xτ̂
(x, y)

[
∂ g

∂yτ
(y)− ∂ g

∂yτ
(ζ(x))

]
dHM−1(y)

∣∣∣∣
+
∣∣∣∣ ∫
�

∂

∂yτ

(
∂P

∂xτ̂
(x, y) g(y)

)
dHM−1(y)

∣∣∣∣
= I + II .

Here we have also used the fact that
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�

∂P

∂xτ̂
(x, y) dHM−1(y) = 0 . (9.64)

Equation (9.64) holds because∫
�

P (x, y) dHM−1(y) ≡ 1 (9.65)

implies

0 = ∂
∂τ̂

∫
�

P (x, y) dHM−1(y) =
∫
�

∂P

∂xτ̂
(x, y) dHM−1(y) .

Set

S1 =
{
y ∈ � : |y − ζ(x)| ≤ �(x)

}
, (9.66)

S2 =
{
y ∈ � : |y − ζ(x)| > �(x)

}
(9.67)

(see Figure 9.3).

x ζ(x) x ζ(x)

S1

S2

Fig. 9.3. The regions S1 and S2 in �.

Using (9.58), we can estimate that I is bounded by

M

∫
�

1

|x − y| P(x, y) ‖g‖!δ |y − ζ(x)|
δ−1 dHM−1(y)

= M
∫
S1

1

|x − y| P(x, y) ‖g‖!δ |y − ζ(x)|
δ−1 dHM−1(y)

+M
∫
S2

1

|x − y| P(x, y) ‖g‖!δ |y − ζ(x)|
δ−1 dHM−1(y)

= I1 + I2 .
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We estimate I1 by using (9.62), (9.65), the nonnegativity of P , and the fact that
on S1, it holds that

|y − ζ(x)|δ−1 ≤ �(x)δ−1

because δ − 1 > 0. We have

I1 ≤ ‖g‖!δ · �(x)−1
∫
S1

P(x, y) |y − ζ(x)|δ−1 dHM−1(y)

≤ ‖g‖!δ · �(x)−1
∫
S1

P(x, y) �(x)δ−1 dHM−1(y)

= ‖g‖!δ · �(x)δ−2
∫
S1

P(x, y) dHM−1(y)

≤ ‖g‖!δ · �(x)δ−2
∫
�

P (x, y) dHM−1(y) = ‖g‖!δ · �(x)δ−2 .

To estimate I2, we first note that

|y − ζ(x)| ≤ |y − x| + |ζ(x)− x| = |y − x| + �(x) ≤ 2|y − x| , (9.68)

which implies that
1

|x − y| ≤ 2|y − ζ(x)|−1 .

Also we note that on S2, it holds that

|y − ζ(x)|δ−2 ≤ �(x)δ−2

because δ − 2 < 0. We estimate

I2 ≤ 2 ‖g‖!δ
∫
S2

P(x, y) |y − ζ(x)|δ−2 dHM−1(y)

≤ 2 ‖g‖!δ
∫
S2

P(x, y) �(x)δ−2 dHM−1(y)

= 2 ‖g‖!δ · �(x)δ−2
∫
S2

P(x, y) dHM−1(y)

≤ 2 ‖g‖!δ · �(x)δ−2
∫
�

P (x, y) dHM−1(y) = 2 ‖g‖!δ · �(x)δ−2 .

To obtain an estimate for II , suppose without loss of generality that ζ(x) = e1
and τ = e2. Setting

T = T (y) = (y2
1 + y2

2)
−1/2 (−y2 e1 + y1 e2) ,
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for each y = (y1, y2, . . . , yM) ∈ �, with (y1, y2) �= (0, 0), and applying the funda-
mental theorem of calculus, we see that∫

�

∂

∂yT

(
∂P

∂xτ̂
(x, y) g(y)

)
dHM−1(y) = 0 ;

more specifically, we parametrize the sphere by(
r cos θ, r sin θ, y′,±

√
1− r2 − |y′|2

)
,

where 0 < r < 1, 0 < θ < 2π , y′ ∈ RM−3, with 0 < |y′| < √1− r2, and integrate
first with respect to θ .

Setting v = v(y) = τ − T (y) and using (9.63), we have

II =
∣∣∣∣ ∫
�

(
∂

∂yτ
− ∂

∂yT

) (
∂P

∂xτ̂
(x, y) g(y)

)
dHM−1(y)

∣∣∣∣
=
∣∣∣∣ ∫
�

∂

∂yv

(
∂P

∂xτ̂
(x, y) g(y)

)
dHM−1(y)

∣∣∣∣
≤
∣∣∣∣ ∫
�

∂2P

∂yv ∂x τ̂
(x, y) [ g(y)− g(ζ(x)) ] dHM−1(y)

∣∣∣∣
+
∣∣∣∣ ∫
�

∂P

∂xτ̂
(x, y)

∂ g

∂yv
(y) dHM−1(y)

∣∣∣∣
= II1 + II2 ,

where we have used the assumption that g(ζ(x)) = 0.
Consider y = (y1, y2, . . . , yM) ∈ � and write (y1, y2) = (r cos θ, r sin θ),

where 0 ≤ r ≤ 1. It is easy to check that 1 − cos θ ≤ 2(1 − r cos θ) holds for
0 ≤ r ≤ 1. The law of cosines tells us that |τ − T (y)| = √2(1− cos θ) and that
|(y1, y2)− (1, 0)| = √2(1− r cos θ), so we have

|τ − T (y)| ≤ √
2 |y − ζ(x)| (9.68)≤ 2

√
2 |y − x| . (9.69)

Observe that |g(y) − g(ζ(x))| is bounded by ‖g‖!δ multiplied by the distance
from y to ζ(x) measured along the sphere. Thus we have

|g(y)− g(ζ(x))| ≤ C · ‖g‖!δ · |y − ζ(x)| ≤ 2C · ‖g‖!δ · |y − x| .
Using (9.60) and (9.69), we may estimate

II1 ≤ C
∫
�

|τ − T |
|x − y|2 P(x, y) · ‖g‖!δ · |y − x| dH

M−1(y)

≤ C · ‖g‖!δ .
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Next, observe that ∣∣∣∣ ∂ g∂yv (y)
∣∣∣∣ ≤ |v| · ‖g‖!δ ,

so, by (9.58) and (9.69), we see that

II2 ≤ C
∫
�

|x − y|−1 P(x, y) · ‖g‖!δ · |τ − T | dHM−1(y)

≤ C · ‖g‖!δ .
Thus we have ∣∣∣∣ ∂2u

∂τ ∂τ̂

∣∣∣∣ ≤ C · ‖g‖!δ · �(x)δ−2 , (9.70)

for x ∈ B \ {0} and unit vectors τ , τ̂ with τ · x = τ̂ · x = 0.

Mixed normal and tangential second derivatives. Fix a point x ∈ B \ {0}, let τ
be a unit vector tangent at x to the sphere of radius |x| centered at the origin, and let
ν = x/|x| be the outward unit normal vector at x to the sphere of radius |x|.

We have

∂2u

∂ν ∂τ
=
∫
�

∂2P

∂ν ∂τ
(x, y) g(y) dHM−1(y)

=
∫
�

∂P

∂xν
(x, y)

∂ g

∂yτ
(y) dHM−1(y)

=
∫
�

∂P

∂xν
(x, y)

[
∂ g

∂yτ
(y)− ∂ (g ◦ ζ )

∂yτ
(g ◦ ζ )(x)

]
dHM−1(y) . (9.71)

We can proceed as before, with S1 and S2 defined as in (9.66) and (9.67), to estimate∣∣∣∣ ∂2u

∂ν ∂τ

∣∣∣∣ ≤ ‖g‖!δ ∫
�

∣∣∣∣ ∂P∂xν (x, y)
∣∣∣∣ |y − ζ(x)|δ−1 dHM−1(y)

= ‖g‖!δ
∫
S1

∣∣∣∣ ∂P∂xν (x, y)
∣∣∣∣ |y − ζ(x)|δ−1 dHM−1(y)

+ ‖g‖!δ
∫
S2

∣∣∣∣ ∂P∂xν (x, y)
∣∣∣∣ |y − ζ(x)|δ−1 dHM−1(y)

= III + IV .
We use (9.61) to estimate

III ≤ ‖g‖!δ · (M + 2) · �(x)δ−2 .

Estimating IV is more complicated. We use the estimate (9.61) to see that
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∣∣∣∣ ≤ (M + 2) · �(x)−1 · P(x, y)

= (M + 2) · �(x)−1 · �(M/2)
2πM/2

· �(x) (2− �(x))|x − y|M

= (M + 2) · �(M/2)
2πM/2

· 2− �(x)
|x − y|M

≤ (M + 2) �(M/2)

πM/2
· 1

|x − y|M .

Then, using the estimate |y − x|−1 ≤ 2|y − ζ(x)|−1, we obtain

IV ≤ C · ‖g‖!δ
∫
S2

|y − ζ(x)|δ−1−M dHM−1(y) .

To estimate this last integral, we suppose without loss of generality that ζ(x) =
(1, 0, . . . , 0). We write

(y1, y2, . . . , yM) = (y′, y′′, η) with y′ = y1, y
′′ = (y2, y3, . . . , yM−1), η = yM ,

so that � can be parametrized by

η = ±(1− y′2 − |y′′|2)1/2

with
dHM−1(y) = (1− y′2 − |y′′|2)−1/2 dLM−1(y′, y′′) .

We have |y − ζ(x)| = (2− 2y′)1/2, so

IV ≤ C ‖g‖!δ
∫ 1−�(x)2/2

−1

∫
|y′′|=

√
1−y′2

(2− 2y′)(δ−1−M)/2

(1− y′2 − |y′′|2)1/2 dL
M−2(y′′) dL(y′) .

We note that the integral∫
|y′′|=

√
1−y′2
(1− y′2 − |y′′|2)−1/2 dLM−2(y′′)

equals the (M − 2)-dimensional area of the upper hemisphere of radius
√

1− y′2 in
RM−1. Thus we have

IV = C ‖g‖!δ
∫ 1−�(x)2/2

−1
(2− 2y′)(δ−1−M)/2 (1− y′2)(M−2)/2 dL(y′)

≤ C ‖g‖!δ
∫ 1−�(x)2/2

−1
(1− y′)(δ−3)/2 dL(y′)

≤ C ‖g‖!δ 2(M+δ−1)/2/(δ − 1) ,



9.4 Estimates for Harmonic Functions 283

and we conclude that ∣∣∣∣ ∂2u

∂ν ∂τ

∣∣∣∣ ≤ C · 1

δ − 1
· ‖g‖!δ · �(x)δ−2 . (9.72)

The second normal derivative. Fix a point x ∈ B \ {0} and let ν = x/|x| be the
outward unit normal vector to the sphere of radius |x| centered at the origin.

If τ1, τ2, . . . , τM−1 are pairwise orthogonal unit vectors, all tangent at x to the
sphere of radius |x|, then

∂2u

∂ν2
= −

M−1∑
i=1

∂2u

∂τ 2
i

,

so that ∣∣∣∣∂2u

∂ν2

∣∣∣∣ ≤ C · ‖g‖!δ · �(x)δ−2 . (9.73)

Summary. For x ∈ B \ {0}, we can make an orthogonal change of basis such that
x/|x| coincides with one of the standard basis vectors. Then (9.70), (9.72), and (9.73)
give us the required bound for the Hilbert–Schmidt norm of the Hessian matrix for u
at x. ��

Lemma 9.4.3. Fix 0 < δ < 1 and 1 < σ̂ < 2. There is a constant c8 = c8(δ) such
that if

g : BM(0, σ̂ )→ R

is smooth and u ∈ C0(B)
⋂
C2(B) satisfies

.u = 0 on B ,

u = g on � ,

then

(1) sup
{
|x − z|−δ |Du(x)−Du(z)| : x, z ∈ B, x �= z

}
+ sup
B

|Du|

≤ c8 ·
(

sup
{
|x − z|−δ |Dg(x)−Dg(z)| : x, z ∈ BM(0, σ̂ ), x �= z

}
+ sup

BM(0,σ̂ )
|Dg|

)
,

(2) sup
BM(0,1/2)

∣∣∣Hess [u(x)]
∣∣∣ ≤ c8 (∫

B

∣∣∣Hess [u(x)]
∣∣∣2 dLM)1/2

,

(3) sup
x∈BM(0,η̂)

|Du(x)−Du(0)|2 ≤ c8 η̂2
∫
B

∣∣∣Hess [u(x)]
∣∣∣2 dLM ,

for each 0 < η̂ < 1/2.



284 9 Regularity of Mass-Minimizing Currents

Proof.
(1) Since

sup
B

|Du| ≤ sup
�

|Dg|

holds by the maximum principle, it suffices to estimate

sup
{
|x − z|−δ |Du(x)−Du(z)| : x, z ∈ B, x �= z

}
.

We do so by comparing
|Du(x1)−Du(x0)|

to hδ , where x0, x1 ∈ B and h = |x1−x0|. We need only consider h small, and again
by the maximum principle, we need to consider only x0 near �.

Set δ̂ = 1+ δ. We will apply Lemma 9.4.2 with δ replaced by δ̂. By that lemma,
we have ∣∣∣Hess [u(x)]

∣∣∣ ≤ c7 · ‖g‖!
δ̂
· �(x)δ̂−2

for x ∈ B, where �(x) = 1− |x|. Note that

‖g‖!
δ̂
≤ sup

{
|x − z|−δ |Dg(x)−Dg(z)| : x, z ∈ BM(0, σ̂ ), x �= z

}
+ sup

BM(0,σ̂ )
|Dg|

holds. In what follows, C will denote a generic positive, finite constant incorporating
the value of c7.

We need to estimate |Du(x1)−Du(x0)|. The proximity of the boundary� makes
it difficult to obtain the needed estimate. Rather than proceeding directly, we replace
each point xi by a point x̃i that is at distance h farther away from � (see Figure 9.4).
Remarkably, it is then feasible to estimate the individual terms |Du(x̃0)−Du(x0)|,
|Du(x̃1)−Du(x1)|, and |Du(x̃0)−Du(x̃1)|.

Fig. 9.4. Moving the points away from the boundary.

Let x̃i be such that

ζ(x̃i) = ζ(xi) ,
|x̃i | = |xi | − h ;

then we have
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|Du(x1)−Du(x0)| ≤ |Du(x1)−D(x̃1)|
+ |Du(x̃1)−Du(x̃0)|
+ |Du(x̃0)−Du(x0)|

= I + II + III .
Set ν = x0/|x0|. We have

III ≤
∫ h

0

∣∣∣∣∂(Du)∂ν (x0 − tν)
∣∣∣∣ dL1(t)

≤
∫ h

0

∣∣∣Hess [u(x0 − tν)]
∣∣∣ dL1(t)

≤ C ‖g‖!
δ̂

∫ h
0
�(x0 − tν)δ̂−2 dL1(t)

≤ C ‖g‖!
δ̂

∫ h
0
[�(x0)+ t]δ̂−2 dL1(t)

= C ‖g‖!
δ̂

(
[�(x0)+ h]δ̂−1 − �(x0)

δ̂−1
)

≤ C hδ̂−1 = C hδ ,
if �(x0) is small. (Note that δ̂ − 1 > 0.)

Likewise, we estimate

I ≤ C ‖g‖!
δ̂
hδ̂−1 .

To estimate II , we note that

II ≤
∫ h

0
h

∣∣∣Hess [u(x̃0 + ξ)]
∣∣∣ dL1(t) , (9.74)

where x̃0 + ξ is a point on the segment between x̃0 and x̃1. The right-hand side of
(9.74) is bounded above by

C ‖g‖!
δ̂
h

∫ h
0
�(x̃0 + ξ)δ̂−2 dL1(t) ≤ C ‖g‖!

δ̂
h

∫ h
0
hδ̂−2 dL1(t)

≤ C ‖g‖!
δ̂
hδ̂ .

(2) Fix i, j ∈ {1, 2, . . . ,M} and x ∈ BM(0, 1/2). For 0 < r < 1/2, by the mean
value property of harmonic functions, we have

∂2u

∂xi ∂xj
(x) = C · r1−M

∫
{y:|y|=r}

∂2u

∂xi ∂xj
(x + y) dHM−1(y) .
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But then∣∣∣∣ ∂2u

∂xi ∂xj
(x)

∣∣∣∣ = C
∣∣∣∣∣
∫ 1/2

1/4
r1−M

∫
{y:|y|=r}

∂2u

∂xi ∂xj
(x + y) dHM−1(y) dL1(r)

∣∣∣∣∣
≤ C

∣∣∣∣∫
BM(x,1/2)

∂2u

∂xi ∂xj
(z) dLM(z)

∣∣∣∣
≤ C

(∫
B

∣∣∣∣ ∂2u

∂xi ∂xj

∣∣∣∣2 dLM
)1/2

holds and the result follows.

(3) Fix i ∈ {1, 2, . . . ,M} and x ∈ BM(0, 1/2) \ {0}. Set ν = x/|x| and

ψ(t) = ∂u
∂xi
(tν)

for −1 < t < 1. Thus ψ ′(t) is the directional derivative of ∂u/∂xi in the direction ν
at the point tν. It follows that |ψ ′(t)| is bounded by the operator norm of the Hessian

matrix for u at tν. Hence |ψ ′(t)| is bounded by a multiple of
∣∣∣Hess [u(tν)]

∣∣∣.
Using the fundamental theorem of calculus, we estimate∣∣∣∣ ∂u∂xi (x)− ∂u∂xi (0)

∣∣∣∣2 = ∣∣∣∣∫ |x|

0
ψ ′(t) dL1(t)

∣∣∣∣2
≤ |x|2 · sup

{
|ψ ′(t)|2 : 0 ≤ t ≤ |x|

}
≤ |x|2 · sup

y∈BM(0,1/2)

∣∣∣Hess [u(y)]
∣∣∣2 ,

so we see that conclusion (3) follows from conclusion (2). ��

9.5 The Main Estimate

The next lemma is the main tool in the regularity theory. The lemma tells us that
once the cylindrical excess (see Definition 9.1.4) of an area-minimizing surface is
small enough, then the excess on a smaller cylinder can be made even smaller by
appropriately rotating the surface.

Lemma 9.5.1. There exist constants

0 < θ < 1/8 , 0 < ε∗ ≤ (θ/4)2M , (9.75)



9.5 The Main Estimate 287

depending only onM , with the following property:
If 0 ∈ spt T , if T0 = T C(0, ρ/2), and if the hypotheses (H1–H5) (see page 262)

hold with
y = 0 , ε = ε∗ ,

then
sup
X∈spt T0

|q (X)| ≤ ρ/8 (9.76)

holds and there exists a linear isometry j : RM+1 → RM+1 with

θ−2M E( T , 0, ρ ) ≤ 1/64 , (9.77)

‖j− IRM+1‖2 ≤ θ−2M E( T , 0, ρ ) , (9.78)

E( j#T0, 0, θρ ) ≤ θ E( T , 0, ρ ) . (9.79)

Here IRM+1 is the identity map on RM+1.

Proof. Since we may change scale if need be, it will be sufficient to prove the lemma
with ρ = 1. We ultimately will choose

ε∗ < ε0 , (9.80)

where ε0 is as in Lemmas 9.2.1 and 9.2.2 (in particular, Lemma 9.2.1 is invoked with
σ = 2/3), so we will assume that 0 ∈ spt T and that the hypotheses (H1–H5) hold
with y = 0, ρ = 1, and with ε = ε0, where ε0 is as in Lemma 9.2.1.

We set

δ = 1

9M2
,

E = E( T , 0, 1 ) .

Lipschitz approximations. We can apply Lemma 9.2.2 to obtain a Lipschitz function
whose graph approximates spt T . In fact, there are two such approximating functions
that will be of interest:

• We let gδ : BM(0, 1/4) → R be a Lipschitz function as in Lemma 9.2.2 corre-
sponding to the choice

γ = E2 δ .

• We let h : BM(0, 1/4) → R be a Lipschitz function as in Lemma 9.2.2 corre-
sponding to the choice γ = 1.

Smoothing gδ . Letϕ ∈ C∞(RM) be a mollifier as in Definition 5.5.1 withN replaced
byM . As usual, for 0 < ν,

• set
ϕν(z) = ν−M ϕ(ν−1z);
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• let f ∗ ϕν denote convolution of f with ϕν .

Let 0 < c9 <∞ satisfy

sup |ϕ| ≤ c9 ,
sup |Dϕ| ≤ c9 ,

sup
x �=z
|x − z|−δ |Dϕ(x)−Dϕ(z)| ≤ c9 .

Defining
g̃δ = gδ ∗ ϕE , (9.81)

we obtain the following standard estimates:

sup
BM(0,1/8)

|Dg̃δ| ≤ sup
BM(0,1/4)

|Dgδ| ≤ E2δ ≤ Eδ, (9.82)

sup
BM(0,1/8)

|̃gδ − gδ| ≤ E sup
BM(0,1/4)

|Dgδ| ≤ E1+δ, (9.83)

sup{ |x − z|−δ |Dg̃δ(x)−Dg̃δ(z)| : x, z ∈ BM(0, 1/8), x �= z }
≤ sup

BM(0,1/4)
|Dgδ| · sup

x �=z
|x − z|−δ |φ(E−1x)− φ(E−1z)|

≤ E2δ · E−δ · sup
x �=z
|x − z|−δ |φ(x)− φ(z)|

≤ c9 Eδ . (9.84)

The graph of g̃δ . We next define

S̃ = G̃#(EM BM(0, 1/8) ) , (9.85)

where G̃ : BM(0, 1/8)→ C(0, 1/8) is defined by

G̃(x) = (x, g̃δ(x)) .
Choosing σ . For each 0 < σ < 1/8 we let

Tσ = T C(0, σ ), S̃σ = S̃ C(0, σ ) .

We wish to show that there is a finite positive constant c10 such that there are infinitely
many choices of 1/16 < σ < 1/8 for which the following inequalities all hold:

HM−1
{
x ∈ ∂BM(0, σ ) : gδ(x) �= h(x)

}
≤ c10 E

1−4Mδ , (9.86)

‖∂Tσ‖(RM+1) ≤ c10, (9.87)

‖∂Tσ‖
{
X : |P(X)−X| > E1+δ } ≤ c10 E

1−4Mδ , (9.88)



9.5 The Main Estimate 289

where P is the “vertical retraction’’ of C(0, 1/8) onto the graph of g̃δ . That is, for
X ∈ C(0, 1/8) we have

P(X) = (p (X), g̃δ(p (X))) .
Notice that P#Tσ = S̃σ by (9.18) and the definition of S̃.

• First, by (9.23) and by Theorem 5.2.1, i.e., the coarea formula, we have∫ 1/8

1/16
HM−1

{
x ∈ ∂BM(0, σ ) : gδ(x) �= h(x)

}
dL1(σ )

≤ LM
(

BM(y, 1/4) \
{
z ∈ BM(y, 1/4) : p−1(z)

⋂
spt T = {(x, h(x))}

} )
+ LM

(
BM(y, 1/4) \

{
z ∈ BM(y, 1/4) : p−1(z)

⋂
spt T = {(x, gδ(x))}

} )
≤ c3 (1+ E−4δ) E ≤ 2 c3 E

1−4δ .

• Because ∂T has its support outside the cylinder of radius 1, we can identify ∂Tσ
with the slice 〈T , r, σ+〉, where r is the distance from the axis of the cylinder. We
conclude that ∫ 1/8

1/16
‖∂Tσ‖(RM+1) dL1(σ ) ≤

∫
C(0,1/8)

d‖T ‖

holds.

• Third, by (9.83), if X = (x, gδ(x)) coincides with the point p−1(x)
⋂

spt T , then
X and P(X) are separated by a distance not exceeding E1+δ . So we use (9.24) to
estimate ∫ 1/8

1/16
‖∂Tσ‖{ X : |P(X)−X| > E1+δ } dL1(σ )

=
∫ 1/8

1/16
‖〈T , r, σ+〉‖{ X : |P(X)−X| > E1+δ } dL1(σ )

=
∫ 1/8

1/16
‖〈T − S̃, r, σ+〉‖C(y, 1/4) dL1(σ )

≤ ‖T − S̃‖C(y, 1/4) ≤ c4 E−4Mδ E ,

where we note that, in the notation of Lemma 9.2.2, S̃ corresponds to T gδ .

The homotopy between Tσ and ˜Sσ . LetH : [0, 1]×C(0, 1/8)→ RM+1 be defined
by H(t, x) = tP (X)+ (1− t)X. By the homotopy formula (7.22), we have

∂V = ∂Tσ − ∂S̃σ , (9.89)
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where
V = H#( 0, 1 × ∂Tσ ) .

By (7.23) and Lemma 9.2.2 applied with γ = E2δ (in particular, using (9.21) and
(9.23)), and by (9.83), (9.86), and (9.88), we have

‖V ‖(RM+1)

≤ 2
∫
|P(X)−X| d‖Tσ‖

≤ 2
(

sup
X∈spt ∂Tσ

|P(X)−X|
)
· ‖∂Tσ‖

{
X : |X − P(X)| > E1+δ }

+ c10 E
1+δ

≤ c11 E
1+1/(2M)−4Mδ + c10 E

1+δ

≤ c12 E
1+δ , (9.90)

where we have made use of the fact that δ = (9M2)−1.

The approximating harmonic function. The aim is to show that with 1/16 < σ <
1/8 chosen such that (9.86), (9.87), and (9.88) hold, T C(0, σ ) can be very closely
approximated by the graph of a harmonic function.

Let 1/16 < σ < 1/8 be such that (9.86), (9.87), and (9.88) (and consequently

(9.90)) hold. Let u : BM(0, σ )→ R be continuous and satisfy

.u = 0 on BM(0, σ ),

u = g̃δ on ∂BM(0, σ ),

}
(9.91)

where g̃δ is as in (9.81), so (9.82) and (9.84) will hold.
Recall that (9.82) and (9.84) are the estimates

sup
BM(0,1/8)

|Dg̃δ| ≤ Eδ

and

sup{ |x − z|−δ |Dg̃δ(x)−Dg̃δ(z)| : x, z ∈ BM(0, 1/8), x �= z} ≤ c9 Eδ .
By applying Lemma 9.4.3 with σ̂ = 1/(8σ), g(x) = g̃δ(x/σ ), and η̂ = η/σ , we see
that there exist constants c13 and c14 such that if u is as in (9.91), then the following
estimates hold:

sup{ |x − z|−δ |Du(x)−Du(z)| : x, z ∈ BM(0, σ ), x �= z}
+ sup

BM(0,σ )
|Du| ≤ c13 E

δ , (9.92)

sup
x∈BM(0,η)

|Du(x)−Du(0)|2 ≤ c14 η
2
∫

BM(0,σ )
|Du|2 dLM , (9.93)
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for each 0 < η < σ/2.

The comparison surface and the first use of the minimality of T . Define G :
BM(0, σ )→ C(0, σ ) by setting G(x) = (x, u(x)) and set

S = G#(EM BM(0, σ )) .

We have ∂S = ∂S̃σ , where we recall that S̃σ = S̃ C(0, σ ) and that S̃ is defined
in (9.85). Consequently, we have

∂(V + S − Tσ ) = 0 , (9.94)

by (9.89). This last equation tells us that

∂(V + S) = ∂Tσ ,
so we can use V + S as a comparison surface for the area-minimizing surface Tσ .
Since it is true for any V and S that

A[V ] + A[S] ≥ A[V + S] ,
we have

A[V ] + A[S] ≥ A[V + S] ≥ A[Tσ ] , (9.95)

because Tσ is area-minimizing.

The first calculation of the difference between Tσ and S. We extend
−⇀
S to all of

C(0, σ ) by setting −⇀
S (X) = −⇀S

(
p (X), u(p (X))

)
. (9.96)

Using the extension of
−⇀
S in (9.96) and noting that

−⇀
Tσ = −⇀T holds ‖Tσ‖-almost

everywhere, we get

A[Tσ ] − A[S] =
∫
A(
−⇀
T ) d‖Tσ‖ −

∫
A(
−⇀
S ) d‖S‖

=
∫ (
A(
−⇀
T )−

〈
DA(

−⇀
S ),

−⇀
T
〉 )
d‖Tσ‖

+
∫ 〈
DA(

−⇀
S ),

−⇀
T
〉
d‖Tσ‖ −

∫
A(
−⇀
S ) d‖S‖

=
∫ (
A(
−⇀
T )−

〈
DA(

−⇀
S ),

−⇀
T
〉 )
d‖Tσ‖

+
∫ 〈
DA(

−⇀
S ),

−⇀
T
〉
d‖Tσ‖ −

∫ 〈
DA(

−⇀
S ),

−⇀
S
〉
d‖S‖ , (9.97)

where we have also used (9.6) to conclude that A(
−⇀
S ) =

〈
DA(

−⇀
S ),

−⇀
S
〉
.
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By (9.12) we have

A(
−⇀
T )−

〈
DA(

−⇀
S ),

−⇀
T
〉
= 1

2

∣∣∣−⇀T −−⇀S ∣∣∣2 . (9.98)

For integrands other than area, a Weierstrass condition would be used here instead of

(9.12). Recalling from (9.7) that we may also treatDA(
−⇀
S ) as a differentialM-form,

we have∫ 〈
DA(

−⇀
S ),

−⇀
T
〉
d‖Tσ‖ −

∫ 〈
DA(

−⇀
S ),

−⇀
S
〉
d‖S‖ = [Tσ − S]

(
DA(

−⇀
S )
)
.

(9.99)
Using (9.97), (9.98), and (9.99), we see that

A[Tσ ] − A[S] = 1

2

∫ ∣∣∣−⇀T −−⇀S ∣∣∣2 d‖Tσ‖ + [Tσ − S](DA(−⇀S ) ) . (9.100)

Use of the comparison surface and the second use of the minimality of T . Since
(9.94) tells us that ∂(V + S − Tσ ) = 0, we have

V + S − Tσ = ∂R
for some (M + 1)-dimensional current R, so (see (9.3) for notation)

(V + S − Tσ )
(
dxM

)
= (∂R)

(
dxM

)
= R

(
d dxM

)
= 0 .

Since (9.7) tells us that DA(eM) = dxM , we conclude that

(V + S − Tσ )
(
DA(eM)

)
= 0 .

Thus we have

A[Tσ ] − A[S] = 1

2

∫ ∣∣∣−⇀T −−⇀S ∣∣∣2 d‖Tσ‖
+ (Tσ − S)

(
DA(

−⇀
S )−DA(eM)

)

+ V
(
DA(eM)

)
. (9.101)

From(9.95), (9.100), and (9.101) we obtain

A[V ] ≥ A[Tσ ] − A[S]

≥ 1

2

∫ ∣∣∣−⇀T −−⇀S ∣∣∣2 d‖Tσ‖
+ (Tσ − S)

(
DA(

−⇀
S )−DA(eM)

)
+ V (DA(eM) ) . (9.102)
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By (9.90), we have A[V ] = ‖V ‖(RM+1) ≤ c12 E
1+δ and consequently also∣∣∣V (DA(eM) ) ∣∣∣ ≤ c12 E

1+δ .

Thus we have

2c12 E
1+δ ≥ 1

2

∫ ∣∣∣−⇀T −−⇀S ∣∣∣2 d‖Tσ‖
+ (Tσ − S)

(
DA(

−⇀
S )−DA(eM)

)
. (9.103)

Estimating the second term on the right in (9.103). We wish to estimate the second
term on the right in (9.103) by an expression similar to the first term on the right. The
argument to obtain the desired estimate is sufficiently complicated that we state the
result as a separate claim.

Claim. There exist constants c15 and c16 such that∣∣∣ (Tσ − S)(DA(−⇀S )−DA(eM) ) ∣∣∣
≤ c15 E

1+δ + 2 c16 E
δ

∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖ . (9.104)

Proof of the Claim. We recall that h is as in Lemma 9.2.2 with γ = 1, and we
introduce

T 0
σ = G0

#(E
M BM(0, σ )) ,

whereG0(x) = (x, h(x)). By (9.24) of the Lipschitz approximation lemma, we have

‖T 0
σ − Tσ‖C(0, σ ) ≤ c4 E , (9.105)

because γ = 1, ρ = 1, and σ < 1/8.
The estimate (9.92) gives us the bound |Du| ≤ c13 E

δ . Then, using (9.46), we
obtain ∣∣∣DA(−⇀S )−DA(eM) ∣∣∣ ≤ 2 c13 E

δ . (9.106)

By (9.105) and (9.106) we have∣∣∣ (Tσ − S)(DA(−⇀S )−DA(eM) ) ∣∣∣
≤
∣∣∣ (T 0
σ − S)

(
DA(

−⇀
S )−DA(eM)

) ∣∣∣+ ∣∣∣ (Tσ − T 0
σ )
(
DA(

−⇀
S )−DA(eM)

) ∣∣∣
≤
∣∣∣ (T 0
σ − S)

(
DA(

−⇀
S )−DA(eM)

) ∣∣∣+ c4 E · 2 c13 E
δ . (9.107)
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Because S is the current defined by integrating over the graph of u, we apply
(9.39) with f = u to obtain

DA(
−⇀
S )−DA(eM)

= (1+ |Du|2)−1/2

(
dxM +

M∑
i=1

(Dxi u) dx ı̂

)
− dxM . (9.108)

Because T 0
σ is the current defined by integration over the graph of h, we may apply

(9.36), (9.40), and (9.37), with f = h, and use (9.108) to find that

T 0
σ

(
DA(

−⇀
S )−DA(eM)

)

=
∫

BM(0,σ )

[
(1+ |Du|2)−1/2

(
1+

M∑
i=1

DxiuDxi h

)
− 1

]
dLM . (9.109)

Similarly, taking f = u, we obtain

S
(
DA(

−⇀
S )−DA(eM)

)

=
∫

BM(0,σ )

[
(1+ |Du|2)−1/2

(
1+

M∑
i=1

DxiuDxi u

)
− 1

]
dLM . (9.110)

Combining (9.109) and (9.110), we find that

(T 0
σ − S)

(
DA(

−⇀
S )−DA(eM)

)

=
∫

BM(0,σ )

[
(1+ |Du|2)−1/2

M∑
i=1

DxiuDxi (h− u)
]
dLM . (9.111)

We will simplify the integrand in (9.111) so that we can use the fact that u is a
harmonic function. To this end we use (9.43) to bound∣∣∣∣∣

∫
BM(0,σ )

[
(1+ |Du|2)−1/2

M∑
i=1

DxiuDxi (h− u)
]
dLM

−
∫

BM(0,σ )

[
M∑
i=1

DxiuDxi (h− u)
]
dLM

∣∣∣∣∣
above by
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BM(0,σ )

|Du|
∣∣∣∣∣
M∑
i=1

DxiuDxi (h− u)
∣∣∣∣∣ dLM

≤
∫

BM(0,σ )
|Du| |Du| |D(h− u)| dLM

≤
∫

BM(0,σ )
|Du| |Du|

(
|Dh| + |Du|

)
dLM

≤
∫

BM(0,σ )
|Du|3 dLM +

∫
BM(0,σ )

|Du| |Du| |Dh| dLM

≤
∫

BM(0,σ )
|Du|3 dLM + 1

2

∫
BM(0,σ )

|Du|
(
|Du|2 + |Dh|2

)
dLM

≤ 3

2

∫
BM(0,σ )

|Du|
(
|Du|2 + |Dh|2

)
dLM .

So, using the bound |Du| ≤ c13 E
δ from (9.92), we can write

(T 0
σ − S)(DA(

−⇀
S )−DA(eM)) =

∫
BM(0,σ )

[
M∑
i=1

DxiuDxi (h− u)
]
dLM + R ,

(9.112)
where

|R| ≤ (3/2) c13 E
δ

∫
BM(0,σ )

(
|Du|2 + |Dh|2

)
dLM . (9.113)

The fact that u is harmonic will allow us to express the integrand

M∑
i=1

DxiuDxi (h− u)

in (9.112) as the divergence of a vector field, and thereby allow us to use the Gauss–
Green theorem to replace the integral over the disk by an integral over the boundary
of the disk.

Set

w = (h− u)
M∑
i=1

Dxiu ei .

We compute

div w =
M∑
i=1

∂

∂xi
[(h− u)Dxi u]
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=
M∑
i=1

DxiuDxi (h− u)+ (h− u)
M∑
i=1

∂2u

∂x2
i

=
M∑
i=1

DxiuDxi (h− u) .

Applying the Gauss–Green theorem (Theorem 6.2.6), we obtain∫
BM(0,σ )

divw dLM =
∫
∂BM(0,σ )

w·η dHM−1 ,

where η is the outward unit normal to ∂BM(0, σ ). Hence we conclude that∫
BM(0,σ )

[
M∑
i=1

DxiuDxi (h− u)
]
dLM

=
∫
∂BM(0,σ )

(h− u)
M∑
i=1

Dxiu ηi dHM−1

=
∫
∂BM(0,σ )

(h− g̃δ)
M∑
i=1

Dxiu ηi dHM−1 ,

where we use the boundary condition in (9.91) to replace u by g̃δ in the last term.
Thus we have

(T 0
σ − S)

(
DA(

−⇀
S )−DA(eM)

)

=
∫
∂BM(0,σ )

(h− g̃δ)
M∑
i=1

Dxiu ηi dHM−1 + R .

Now, using (9.92) to estimate |Du| ≤ c13 E
δ , (9.22) to estimate |h − gδ| ≤

2 c2 E1/(2M), (9.83) to estimate |gδ − g̃δ| ≤ E1+δ , and (9.86) to estimate

HM−1
{
x ∈ ∂BM(0, σ ) : gδ(x) �= h(x)

}
≤ c10 E

1−4Mδ ,

and recalling that δ = 1/(9M2), we obtain the estimate∣∣∣∣∣
∫
∂BM(0,σ )

(h− g̃δ)
M∑
i=1

Dxiu ηi dHM−1

∣∣∣∣∣
≤
∣∣∣∣∣
∫
∂BM(0,σ )

(h− gδ)
M∑
i=1

Dxiu ηi dHM−1

∣∣∣∣∣



9.5 The Main Estimate 297

+
∣∣∣∣∣
∫
∂BM(0,σ )

(gδ − g̃δ)
M∑
i=1

Dxiu ηi dHM−1

∣∣∣∣∣
≤ c13 E

δ

(∫
∂BM(0,σ )

|h− gδ| dHM−1

+
∫
∂BM(0,σ )

|gδ − g̃δ| dHM−1
)

≤ c13 E
δ
(

2 c2 E
1/(2M) c10 E

1−4Mδ + E1+δ M �M
)

= c13

(
2 c2 c10 E

6−1δ1/2 +M�M Eδ
)
E1+δ . (9.114)

Combining equation (9.112) with the estimates (9.113) and (9.114), we obtain the
estimate∣∣∣ (T 0

σ − S)
(
DA(

−⇀
S )−DA(eM)

) ∣∣∣
≤ c17 E

1+δ + (3/2) c13 E
δ

∫
BM((,0),σ )

(|Du|2 + |Dh|2) dLM ,

where we set c17 = c13 ( 2 c2 c10 +M�M ), as we may since E < 1.
Next, noting that we have Lipu ≤ 1 and Liph ≤ 1, we apply Proposition 9.3.6

to conclude that

|Du|2 + |Dh|2 ≤ 4
(
|−⇀S − eM |2 + |−⇀T 0

σ − eM |2
)
.

Assume now that the function
−⇀
T 0
σ has been extended (as has

−⇀
S ) to all of C(0, σ )

by defining
−⇀
T 0
σ (X) = −⇀

T 0
σ [p (X), h(p (X))] at points where the right-hand side is

defined and
−⇀
T 0
σ (X) = eM otherwise. Using also the fact that the measure ‖Tσ‖ is

larger than the measure LM , we obtain∣∣∣ (T 0
σ − S)

(
DA(

−⇀
S )−DA(eM)

) ∣∣∣
≤ c17 E

1+δ + c16 E
δ

∫ (
|−⇀S − eM |2 + |−⇀T 0

σ − eM |2
)
d‖Tσ‖ ,

with c16 = 4 · (3/2) c13.
Since∣∣∣−⇀S − eM

∣∣∣2 ≤ ( ∣∣∣−⇀S −−⇀T ∣∣∣+ ∣∣∣−⇀T − eM
∣∣∣ )2 ≤ 2

( ∣∣∣−⇀S −−⇀T ∣∣∣2 + ∣∣∣−⇀T − eM
∣∣∣2 ) ,

we deduce that
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σ − S)

(
DA(

−⇀
S )−DA(eM)

) ∣∣∣
≤ c17 E

1+δ

+ c16 E
δ

∫ (
2
∣∣∣−⇀S −−⇀T ∣∣∣2 + 2

∣∣∣−⇀T − eM
∣∣∣2 + ∣∣∣−⇀T 0

σ − eM
∣∣∣2 ) d‖Tσ‖

= c17 E
1+δ + 2 c16 E

δ

∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖
+ 2 c16 E

δ

∫ ∣∣∣−⇀T − eM
∣∣∣2 d‖Tσ‖

+ c16 E
δ

∫ ∣∣∣−⇀T 0
σ − eM

∣∣∣2 d‖Tσ‖
≤ c17 E

1+δ + 2 c16 E
δ

∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖
+ 4 c16 E

δ · E + c16 E
δ

∫ ∣∣∣−⇀T 0
σ − eM

∣∣∣2 d‖Tσ‖ . (9.115)

Using the fact that
−⇀
T 0
σ and

−⇀
T are HM -almost always simple unitM-vectors, we

note that∫ ∣∣∣−⇀T 0
σ − eM

∣∣∣2 d‖Tσ‖
≤
∫ ∣∣∣−⇀T − eM

∣∣∣2 d‖Tσ‖ + ∫ ∣∣∣ ∣∣∣−⇀T 0
σ − eM |2 −

∣∣∣−⇀T − eM
∣∣∣2 ∣∣∣ d‖Tσ‖

≤ 2E +
∫ ∣∣∣ ∣∣∣−⇀T 0

σ − eM
∣∣∣2 − ∣∣∣−⇀T − eM

∣∣∣2 ∣∣∣ d‖Tσ‖
≤ 2E + 2

∫ ∣∣∣ (−⇀T 0
σ −−⇀T ) · eM

∣∣∣ d‖Tσ‖
≤ 2E + 2

∫ ∣∣∣−⇀T 0
σ −−⇀T

∣∣∣ d‖Tσ‖ .
By (9.24), we have

‖T 0
σ − Tσ‖C(0, σ ) ≤ c4 E ,

so ∫ ∣∣∣−⇀T 0
σ −−⇀T

∣∣∣ d‖Tσ‖ ≤ c4 E ,
and we conclude that
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σ − eM

∣∣∣2 d‖Tσ‖ ≤ 2 (1+ c4) E . (9.116)

Combining (9.107), (9.115), and (9.116), we obtain the estimate∣∣∣ (Tσ − S)(DA(−⇀S )−DA(eM) ) ∣∣∣
≤ c15 E

1+δ + 2 c16 E
δ

∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖ ,
with

c15 = c4 · 2 c13 + c17 + 4 c16 + c16 · 2 (1+ c4) .
Thus the claim has been proved.

Combining the estimates. Combining (9.101) and (9.104), we obtain the estimate(
1/2− 2 c16 E

δ
) ∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖ ≤ 2 c12 E

1+δ + c15 E
1+δ .

So we have ∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖ ≤ c18 E
1+δ , (9.117)

where c18 = 4 (2 c12 + c15), provided that

c16 E
δ ≤ 1/8 (9.118)

holds.

Considering candidates for θ . Consider an arbitrary 0 < θ < σ/4. We have∫
C(0,2θ)

∣∣∣−⇀T −−⇀S (0) ∣∣∣2 d‖T ‖
≤ 2

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S ∣∣∣2 d‖T ‖ + 2
∫

C(0,2θ)

∣∣∣−⇀S −−⇀S (0) ∣∣∣2 d‖T ‖
≤ 2

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S ∣∣∣2 d‖T ‖ + 2
(

sup
C(0,2θ)

∣∣∣−⇀S −−⇀S (0) ∣∣∣2 ) · ‖T ‖C(0, 2θ) .
Now

‖T ‖C(0, 2θ)−�M (2θ)M = 1

2

∫
C(0,2θ)

∣∣∣−⇀T − eM
∣∣∣2 d‖T ‖ ≤ E

(see (9.16)), so that

‖T ‖C(0, 2θ) ≤ �M (2θ)M + E ≤ (1+�M2M) θM , (9.119)

provided that
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E ≤ θM (9.120)

holds. Successively applying (9.41), (9.93), and Proposition 9.3.6, we see that

sup
C(0,2θ)

∣∣∣−⇀S −−⇀S (0) ∣∣∣2 ≤ sup
C(0,2θ)

|Du−Du(0)|2

≤ c14 θ
2
∫

BM(0,σ )
|Du|2 dLM

≤ 4 c14 θ
2
∫ ∣∣∣−⇀S − eM

∣∣∣2 d‖Tσ‖ . (9.121)

Using (9.119) and (9.121), we then deduce, subject to (9.120), that

1

2

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S (0) ∣∣∣2 d‖T ‖
≤
∫

C(0,2θ)

∣∣∣−⇀T −−⇀S ∣∣∣2 d‖T ‖
+ c19 θ

M+2
∫ ∣∣∣−⇀S − eM

∣∣∣2 d‖Tσ‖
≤
∫

C(0,2θ)

∣∣∣−⇀T −−⇀S ∣∣∣2 d‖T ‖
+ 2 c19 θ

M+2
∫ ( ∣∣∣−⇀S −−⇀T ∣∣∣2 + ∣∣∣−⇀T − eM

∣∣∣2 ) d‖Tσ‖
≤ (1+ 2 c19)

∫ ∣∣∣−⇀T −−⇀S ∣∣∣2 d‖Tσ‖ + 4 c19 θ
M+2 E , (9.122)

where c19 = 4 c14 · (1+�M2M). Combining (9.122) and (9.117), we deduce that

1

2

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S (0) ∣∣∣2 d‖T ‖ ≤ (1+ 2 c19) · 2 c18 E
1+δ + 4 c19 θ

M+2 E ,

so
1

2
θ−M

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S (0) ∣∣∣2 d‖T ‖ ≤ (1+ 4 c19) θ
2 E (9.123)

holds, provided that

c16 E
δ ≤ 1/8, E ≤ θM, (1+ 2 c19) c18 E

δ ≤ θ2 . (9.124)

Note that (9.124) includes conditions (9.118) and (9.120).

Bounding the slope of the harmonic function at 0. By definition we have
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1

2
θ−M

∫
C(0,2θ)

∣∣∣−⇀T − eM
∣∣∣2 d‖T ‖ ≤ θ−M E . (9.125)

Using �M(2 θ)M ≤ ‖T ‖[C(0, 2 θ)], we can estimate∣∣∣−⇀S (0)− eM
∣∣∣2

= 1

‖T ‖C(0, 2 θ)
∫

C(0,2 θ)

∣∣∣−⇀S (0)− eM
∣∣∣2 d‖T ‖

≤ 1

�M (2 θ)M

∫
C(0,2 θ)

∣∣∣−⇀S (0)− eM
∣∣∣2 d‖T ‖

≤ 2

�M (2 θ)M

∫
C(0,2 θ)

( ∣∣∣−⇀S (0)−−⇀T ∣∣∣2 + ∣∣∣−⇀T − eM
∣∣∣2 ) d‖T ‖

≤ 1

�M 2M−2

1

2
θ−M

∫
C(0,2 θ)

∣∣∣−⇀S (0)−−⇀T ∣∣∣2 d‖T ‖
+ 1

�M 2M−2

1

2
θ−M

∫
C(0,2 θ)

∣∣∣−⇀T − eM
∣∣∣2 d‖T ‖ .

By (9.123) and (9.125), we have∣∣∣−⇀S (0)− eM
∣∣∣2 ≤ c20 θ

−M E , (9.126)

provided that (9.124) holds, where we may set c20 = 23−M �−1
M (1+ 2 c19).

Defining the isometry. It is easy to see that there exists a constant c21 such that
(9.126) implies the existence of a linear isometry j of RM+1 with〈∧

M j,
−⇀
S (0)

〉
= eM and ‖j− IRM+1‖2 ≤ c21 θ

−M E . (9.127)

One way to construct such a j is to set vi = 〈Du(0), ei 〉 for i = 1, 2, . . . ,M . Then
apply the Gram–Schmidt orthogonalization procedure to the set

{v1, v2, . . . , vM, eM+1}
to obtain the orthonormal basis {w1, w2, . . . , wM+1}. Finally, let j be the inverse of
the isometry represented by the matrix having the vectors wi as its columns.

Recall that T0 = T C(0, 1/2). By (H1) (see page 262), we have

spt ∂T ⊆ RM+1 \ C(0, 1) .

So we see that
dist( spt ∂T0, C(0, 1/4) ) = 1/4 .
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By Lemma 9.2.1 and the assumption that 0 ∈ spt T , we have

sup
X∈C(0,1/2)∩spt T

|q (X)| ≤ c4 E1/(2M) , (9.128)

so spt ∂T0 ⊆ B(0, 1/2+ c4 E1/(2M)). By (9.127), we have

|x − j(x)| ≤ (c21 θ
−M E)1/2 · (1/2+ c4 E1/(2M))

for x ∈ spt ∂T0. Thus if

(c21 θ
−M E)1/2 · (1/2+ c4 E1/(2M)) < 1/4 (9.129)

holds, then we have
spt ∂j#T0 ⊆ RN \ C(0, 1/4) .

A similar argument shows that if

(c21 θ
−M E)1/2 · (θ + c4 E1/(2M)) < θ (9.130)

holds, then we have
spt T0

⋂
j−1C(0, θ) ⊆ C(0, 2θ) .

Selecting θ and ε∗ to complete the proof of the lemma. If we satisfy the conditions
(9.124), (9.129), and (9.130), then we obtain the estimates (9.123), (9.127), and
(9.128). Those estimates are

1

2
θ−M

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S (0) ∣∣∣2 d‖T ‖ (9.123)≤ (1+ 4 c19) θ
2 E ,

‖j− IRM+1‖2 (9.127)≤ c21 θ
−M E ,

sup
X∈C(0,1/2)∩spt T

|q (X)| (9.128)≤ c4 E
1/(2M) .

We must choose θ and ε∗ so that the estimates (9.123), (9.127), and (9.128) will
imply that (9.76), (9.78), and (9.79) hold. Finally, we need to meet the conditions
(9.75) in the statement of the lemma and the condition (9.80) that allowed the use of
Lemmas 9.2.1 and 9.2.2. Thus a full set of conditions that, if satisfied, complete the
proof of the lemma is the following (of course, θ and ε∗ must be positive):

θ
(9.75)
< 1/8 , (9.131)

ε∗
(9.75)≤ (θ/4)2M ,

ε∗
(9.80)
< ε0 ,
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c16 E
δ

(9.124)≤ 1/8 ,

E
(9.124)≤ θM ,

(1+ 2 c19) c18 E
δ

(9.124)≤ θ2 ,

(c21 θ
−M E)1/2 · (1/2+ c4 E1/(2M))

(9.129)
< 1/4 ,

(c21 θ
−M E)1/2 · (θ + c4 E1/(2M))

(9.130)
< θ ,

c4 E
1/(2M) so (9.128)⇒(9.76)≤ 1/8 ,

c21 θ
−M E

so (9.127)⇒(9.78)≤ θ−2M E , (9.132)

θ−2M E
(9.77)≤ 1/64 ,

(1+ 4 c19) θ
2 E

so (9.123)⇒(9.79)≤ θ E . (9.133)

We first choose and fix 0 < θ such that (9.131), (9.132), and (9.133) hold. This
choice is clearly independent of the value of E and the choice of ε∗. Then we
select 0 < ε∗ such that, assuming that E < ε∗ holds, the remaining conditions are
satisfied. ��

9.6 The Regularity Theorem

The next theorem gives us a flexible tool that we can use in proving regularity; the
proof of the theorem is based on iteratively applying Lemma 9.5.1.

Theorem 9.6.1. Let θ and ε∗ be as in Lemma 9.5.1. There exist constants c22 and
c23, depending only onM , with the following property:

If 0 ∈ spt T , if T0 = T C(0, ρ/2), and if the hypotheses (H1–H5) (see page 262)
hold with

y = 0 , ε = ε∗ ,
then

E( T , 0, r ) ≤ c22 E( T , 0, ρ ) , for 0 < r ≤ ρ , (9.134)

and there exists a linear isometry j of RM+1 such that

spt ∂j#T0 ∩ C(0, ρ/4) = ∅ ,
‖j− IRM+1‖ ≤ 4 θ−2M E( T , 0, ρ ) ≤ 4−2 , (9.135)

E( j#T0, 0, r ) ≤ c23 · r
ρ
· E( T , 0, ρ ) for 0 < r ≤ ρ/4 . (9.136)
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Proof. Set j0 = IRM+1 . We will show inductively that, for q = 1, 2, . . . , there are
linear isometries jq of RM+1 such that, writing

Tq = jq#T0 ,

we have

sup
X∈spt Tq−1∩C(0,θq−1ρ/4)

|q (X)| ≤ θq−1 ρ/2 for q ≥ 2 , (9.137)

E( Tq, 0, θq ρ ) ≤ θ E( Tq−1, 0, θq−1 ρ ) for q ≥ 2 , (9.138)

‖jq − jq−1‖ ≤ θ−M θ(q−1)/2 E( T , 0, ρ )1/2 , (9.139)

E( Tq, 0, θq ρ ) ≤ θq E( T , 0, ρ ) . (9.140)

Note that for q = 2, 3, . . . , (9.140) follows from (9.138) and from the instance
of (9.140) in which q is replaced by q − 1. Thus we need only verify (9.140) for the
specific value q = 1.

Start of induction on q to prove (9.137)–(9.140). For q = 1, conditions (9.137)
and (9.138) are vacuous, so we need only verify (9.139) and (9.140). Let j1 be the
isometry whose existence is guaranteed by Lemma 9.5.1. Then the inequality (9.78)
gives us (9.139), and the inequality (9.79) gives us (9.140).

Inductive step. Now suppose that (9.137)–(9.140) hold for q. We apply Lemma 9.5.1
to Tq with ρ replaced by θqρ. We may do so because Tq = jq#T0 is mass-minimizing.
Inequality (9.76) of Lemma 9.5.1 gives us (9.137) with q replaced by q + 1.

The isometry j whose existence is guaranteed by Lemma 9.5.1 satisfies

‖j− IRM+1‖ ≤ θM E(Tq, 0, θqρ)1/2 , (9.141)

E
(

j#

(
Tq C(0, θqρ/2)

)
, 0, θq+1ρ

)
≤ θ E( Tq, 0, θqρ ) . (9.142)

By (9.140) and (9.141), we have

‖j− IRM+1‖ ≤ θ−M θq/2 E( T , 0, ρ )1/2 .

Setting jq+1 = j ◦ jq , we obtain

‖jq+1 − jq‖ = ‖(j− IRM+1) ◦ jq‖ = ‖j− IRM+1‖ ≤ θ−M θq/2 E( T , 0, ρ )1/2 ,

which gives us (9.139) with q replaced by q + 1.
Since

j#

(
Tq C(0, θqρ/2)

)
C(0, θq+1ρ) = (j#Tq) C(0, θq+1ρ) ,

we have
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E( Tq+1, 0, θq+1ρ )

= E
(

j#

(
Tq C(0, θqρ/2)

)
, 0, θq+1ρ

)
≤ θ E( Tq, 0, θqρ ) ,

which gives us (9.138) with q replaced by q + 1. The inductive step has been
completed.

Next we show that jq has a well-defined limit as q → ∞. For Q > q ≥ 0, we
estimate

‖jQ − jq‖ ≤
Q+1∑
s=q

‖js+1 − js‖ ≤ θ−M
∞∑
s=q
θs/2 E(T0, 0, ρ)

1/2

= θ(q/2)−M E(T0, 0, ρ)
1/2 · 1

1−√θ ≤ 2 θ(q/2)−M E(T0, 0, ρ)
1/2 .

Thus the jq form a Cauchy sequence in the mapping-norm topology. We set

j = lim
q→∞ jq

and conclude that

‖j− jq‖2 ≤ 4 θq−2M E(T0, 0, ρ) ≤ 1/16 (9.143)

holds for 0 ≤ q.
Recall Corollary 9.1.7, which tells us how the excess is affected by an isome-

try. Using (9.143) together with (9.137), (9.139), and (9.140), we see that with an
appropriate choice of c24,

E(j#T0, 0, θ
qρ) ≤ c24 θ

q E(T0, 0, ρ) (9.144)

holds for each q ≥ 1. Using (9.144) together with (9.76) and (9.143) with q = 0, we
see that, with an appropriate choice of c25,

E(j#T0, 0, r) ≤ c25 (r/ρ) E(T0, 0, ρ)

holds for 0 < r < ρ/4, proving (9.136). Finally, we see that (9.134) follows from
(9.76), (9.136), (9.137), and (9.143), again with q = 0. ��

We are now ready to state and prove the regularity theorem.

Theorem 9.6.2 (Regularity). There exist constants

0 < ε1 , 0 < c26 <∞ ,
depending only onM , with the following property:

If the hypotheses (H1–H5) (see page 262) hold with

ε = ε1 ,
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then spt T ∩ C(y, ρ/4) is the graph of a C1 function u. Moreover, u satisfies the
following Hölder condition with exponent 1/2:

sup
BM(y,ρ/4)

‖Du‖ + ρ1/2 sup
x,z∈BM(y,ρ/4),x �=z

|x − z|−1/2 ‖Du(x)−Du(z)‖

≤ c26

(
E( T , y, ρ )

)1/2
. (9.145)

Remark 9.6.3.

(1) Once (9.145) is established, the higher regularity theory applies to show that u
is in fact real analytic. The treatise [Mor 66] is the standard reference for the
higher regularity theory including the results for systems of equations needed
when surfaces of higher codimension are considered.

(2) By the constancy theorem, the regularity theorem implies immediately that

T C(y, ρ/4) = G#

(
EM BM(y, ρ/4)

)
, where G is the mapping x �−→

(x, u(x)).

Proof. We set
ε1 = min{ θ2M ε∗, 2−M c−2M

6 c−1
22 } ,

where θ and ε∗ are as in Lemma 9.5.1, c22 is as in (9.134) in Theorem 9.6.1, and c6
is as in (9.32) in the proof of Lemma 9.2.2.

In (9.75) in the statement of Lemma 9.5.1, we required that 0 < θ < 1/8 and that
0 < ε∗ < (θ/4)2M . Thus we have ε1 < ε∗/2M , so E( T , y, ρ ) < ε1 implies that
E( T , z, ρ/2 ) < ε∗ for each z ∈ BM(y, ρ/2). Therefore, after translating the origin
and replacing ρ by ρ/2, we can apply Theorem 9.6.1 to conclude that

E( T , z, r ) ≤ c22 E( T , z, ρ/2 ) ≤ 2M c22 E( T , y, ρ ) (9.146)

holds for 0 < r ≤ ρ/2 and z ∈ BM(y, ρ/2). Theorem 9.6.1 also tells us that

E( jz# Tz, z, r ) ≤ c23 · r
ρ/2

· E( T , z, ρ/2 )

≤ 2M+1 c23 E( T , y, ρ ) (9.147)

holds for 0 < r ≤ ρ/8, where Tz = T C(y, ρ/4). It also says that jz is an
isometry of RM+1 with spt ∂jz#Tz∩C(z, ρ/8) = ∅, jz(z, w) = (z, w) for some point
(z, w) ∈ spt T , and

‖Djz − IRM+1‖ ≤ 4 θ−2M E( T , z, ρ/2 ) ≤ 4−2 . (9.148)

In (9.80) of the proof of Lemma 9.5.1 we required that ε∗ < ε0, where ε0 is as in
Lemma 9.2.1. Thus we also have ε1 < ε0. Now we look in detail at the construction
in the proof of Lemma 9.2.2 with γ = 1. In particular, when the choice

η = c−2M
6
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is made in (9.34), we guarantee that η = c−2M
6 is strictly less than ε0. Since ε1 ≤

2−M c−2M
6 holds, (9.146) implies that

E( T , z, r ) ≤ c−2M
6 = η

holds for 0 < r ≤ ρ/2 and z ∈ BM(y, ρ/2). Thus the set A defined in (9.28)
contains all of BM(y, ρ/2). We conclude that there exists a Lipschitz function g :
BM(y, ρ/4)→ R such that

Lip g ≤ 1 , (9.149)

T C(y, ρ/4) = G#

(
EM BM(y, ρ/4)

)
, (9.150)

with G : BM(y, ρ/4)→ C(y, ρ/4) defined by G(x) = (x, g(x)).
If Lz : RM → R denotes the linear map whose graph is mapped to RM × {0} by

Djz, then estimates (9.147), (9.148), (9.149) and equation (9.150) imply that

r−M
∫

BM(z,r)
‖Dg − Lz‖2 dLM ≤ c27 (r/ρ) E( T , y, ρ ) (9.151)

holds for 0 < r ≤ ρ/8 and z ∈ BM(y, ρ/4), where c27 is an appropriate constant.
We will apply (9.151) with z1, z2 ∈ BM(y, ρ/4) and with r = |z1 − z2| < ρ/8.

Setting z∗ = (z1 + z2)/2 and B = BM(z1, r)
⋂

BM(z2, r), we estimate

�M (r/2)
M ‖Lz1 − Lz2‖2 ≤

∫
B

‖Lz1 − Lz2‖2 dLM

≤ 2
∫
B

(
‖DLz1 −Dg‖2 + ‖Dg − Lz2‖2

)
dLM

≤ 2
∫

BM(z1,r)
‖DLz1 −Dg‖2 dLM

+ 2
∫

BM(z2,r)
‖Dg − Lz2‖2 dLM

≤ 2 rM c27 (r/ρ) E( T , y, ρ ) .

Thus we have

‖Lz1 − Lz2‖2 ≤ 2M+1�−1
M c27 (|z1 − z2|/ρ) E( T , y, ρ ) .

Since (9.151) also implies that

Dg(z) = Lz
holds for LM -almost all z ∈ BM(y, ρ/4), we conclude that
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‖Dg(z1)−Dg(z2)‖ ≤ c28 (|z1 − z2|/ρ)1/2 E( T , y, ρ )1/2 (9.152)

holds for LM -almost all z1, z2 ∈ BM(y, ρ/4), where we set

c28 = 2(M+1)/2�
−1/2
M c

1/2
27 .

Since g is Lipschitz, we conclude that g is C1 in BM(y, ρ/4), that (9.152) holds for
all z1, z2 ∈ BM(y, ρ/4), and that (9.145) follows from (9.148) and (9.152) when we
set u = g. ��

9.7 Epilogue

In our exposition of the regularity results, we made the simplifying assumptions
that the current being studied was of codimension one and that it minimized the
integral of the area integrand. Relaxing these assumptions introduces notational and
technical complexity and requires deeper results to obtain bounds for solutions of the
appropriate partial differential equation or system of partial differential equations.
Nonetheless the proof of the regularity theorem goes through—as Schoen and Simon
showed.

What is affected fundamentally by relaxing the assumptions is the applicability of
the regularity theorem and the further results that can be proved. It is the hypothesis
(H3) that causes the most difficulty in applying Theorem 9.6.2.

Because we have limited our attention to the codimension-one case, we have
Theorem 7.5.5 available to decompose a mass-minimizing current into a sum of
mass-minimizing currents each of which is the boundary of the current associated
with a set of locally finite perimeter. Thus we have proved the following theorem.

Theorem 9.7.1. If T is a mass-minimizing, integer-multiplicity current of dimension
M in RM+1, then, for HM -almost every a ∈ spt T \ spt ∂T , there is r > 0 such that
B(a, r)

⋂
spt T is the graph of a C1 function.

The more general form of the regularity theorem in [SS 82] extends Theorem 9.7.1
to currents minimizing the integral of smooth elliptic integrands and, in higher codi-
mensions, yields a set of regular points that is dense, though not necessarily of full
measure.

Suppose that T is an M-dimensional, integer-multiplicity current in RN , and
suppose that T minimizes the integral of a smoothM-dimensional elliptic integrand
F . Let us denote the set of regular points of the current T by reg T and the set of
singular points of T by sing T . More precisely, reg T is defined by

reg T = ( spt T \ spt ∂T )

∩ {a : ∃r > 0 such that B(a, r)
⋂

spt T is the graph of a C1 function
}

and
sing T = spt T \ ( spt ∂T

⋃
reg T

)
.
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Table 9.1. Interior regularity of minimizing currents.

F = A F �= A

N − M = 1 dimH (sing T ) ≤ M − 7 HM−2(sing T ) = 0

[Fed 70] [SSA 77]

N − M ≥ 2 dimH (sing T ) ≤ M − 2 reg T is dense in spt T \ spt ∂T

[Alm 00] [Alm 68]

Table 9.1 summarizes what is known about reg T and sing T (and gives a reference
for each result). In the table, A denotes theM-dimensional area integrand.

One can also consider the question of what happens near points of spt ∂T , that
is, boundary regularity as opposed to the interior regularity considered above. The
earliest results in the context of geometric measure theory are in William K. Allard’s
work [All 68], [All 75]. Allard’s results focus on the area integrand. Robert M. Hardt
considered more general integrands in [Har 77]. For area-minimizing hypersurfaces,
the definitive result is that of Hardt and Simon [HS 79], which tells us that if ∂T
is associated with a C2 submanifold, then, near every point of spt ∂T , the set spt T
is a C1 embedded submanifold-with-boundary. More recently, Frank Duzaar and
Klaus Steffen (see [DS 02]) have given a unified argument applicable to the interior
and boundary regularity of currents that “almost’’ locally minimize the integral of a
general elliptic integrand.

Regularity theory is not a finished subject. The finer structure of the singular
set is not generally known (2-dimensional area-minimizing currents are an important
exception—see [Cha 88]), so understanding the singular set remains a challenge.
Also, techniques created to answer questions about surfaces that minimize integrals
of elliptic integrands have found applicability in other areas, for instance, to systems of
partial differential equations (e.g., [Eva 86]), mean curvature flows (e.g., [Whe 05]),
and harmonic maps (e.g., [Whe 97]). The future will surely see more progress.




