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The Calculus of Differential Forms and
Stokes’s Theorem

In this chapter, we give a brief treatment of the classical theory of differential forms
and Stokes’s theorem. These topics provide motivation for the more abstract theory
of currents.

6.1 Differential Forms and Exterior Differentiation

Multilinear Functions and m-Covectors
The dual space of RN is very useful in the formulation of line integrals (see Appen-
dices A.2 and A.3), but to define surface integrals we need to go beyond the dual
space to consider functions defined on ordered m-tuples of vectors.

Definition 6.1.1. Let (RN)m be the Cartesian product of m copies of RN .

(1) A function φ : (RN)m → R is m-linear if it is linear as a function of each of its
m arguments; that is, for each 1 ≤ � ≤ m, it holds that

φ(u1, . . . , u�−1, αu+ βv, u�+1, . . . , um)

= α φ(u1, . . . , u�−1, u, u�+1, . . . , um)

+ β φ(u1, . . . , u�−1, v, u�+1, . . . , um) ,

whereα, β ∈ R andu, v, u1, . . . , u�−1, u�+1, . . . , um ∈ RN . The more inclusive
term multilinear means m-linear for an appropriate m.

(2) A function φ : (RN)m→ R is alternating if interchanging two arguments results
in a sign change for the value of the function; that is, for 1 ≤ i < � ≤ m, it holds
that

φ(u1, . . . , ui−1, ui, ui+1, . . . , u�−1, u�, u�+1, . . . , um)

= − φ(u1, . . . , ui−1, u�, ui+1, . . . , u�−1, ui, u�+1, . . . , um) ,

where u1, . . . , um ∈ RN .
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(3) We denote by
∧m
(RN) the set ofm-linear, alternating functions from (RN)m to

R. We endow
∧m
(RN) with the usual vector space operations of addition and

scalar multiplication, namely,

(φ + ψ)(u1, u2, . . . , um) = φ(u1, u2, . . . , um)+ ψ(u1, u2, . . . , um)

and
(α φ)(u1, u2, . . . , um) = α · φ(u1, u2, . . . , um) ,

so
∧m
(RN) is itself a vector space. The elements of

∧m
(RN) are called m-

covectors of RN .

Remark 6.1.2.

(1) In case m = 1, requiring a map to be alternating imposes no restriction; also,
1-linear is the same as linear. Consequently, we see that

∧1
(RN) is the dual

space of RN ; that is,
∧1
(RN) = (RN)∗.

(2) Recalling that the standard basis for RN is written e1, e2, . . . , eN,we let e∗i denote
the dual of ei defined by

〈 e∗i , ej 〉 =
{

1 if j = i,
0 if j �= i.

Then e∗1, e∗2, . . . , e∗N form the standard dual basis for (RN)∗.
(3) If x1, x2, . . . , xN are the coordinates in RN , then it is traditional to use the alter-

native notation dxi to denote the dual of ei ; that is,

dxi = e∗i , for i = 1, 2, . . . , N .

Example 6.1.3. The archetypical multilinear, alternating function is the determinant.
As a function of its columns (or rows), the determinant of an N -by-N matrix is N -
linear and alternating. It is elementary to verify that every element of

∧N
(RN) is a

real multiple of the determinant function. ��
The next definition shows how we can extend the use of determinants to define

examples of m-linear, alternating functions when m is strictly smaller than N .

Definition 6.1.4. Let a1, a2, . . . , am ∈∧1
(RN) be given. Each ai can be written

ai = ai 1 dx1 + ai 2 dx2 + · · · + ai N dxN .
We define a1 ∧ a2 ∧ · · · ∧ am ∈ ∧m

(RN), called the exterior product of
a1, a2, . . . , am, by setting

(a1 ∧ a2 ∧ · · · ∧ am)(u1, u2, . . . , um)

= det

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎝
a1 1 a1 2 . . . a1N
a2 1 a2 2 . . . a2N
...
...

...

am 1 am 2 . . . amN

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
u1 1 u1 2 . . . u1m
u2 1 u2 2 . . . u2m
...
...

...

uN 1 uN 2 . . . uN m

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ , (6.1)
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where the uij are the components of the vectors u1, u2, . . . , um ∈ RN ; that is, each
uj is given by

uj = u1 j e1 + u2 j e2 + · · · + uN j eN .

To see that the function in (6.1) is m-linear and alternating, rewrite it in the form

(a1 ∧ a2 ∧ · · · ∧ am)(u1, u2, . . . , um)

= det

⎛⎜⎜⎜⎝
〈a1, u1〉 〈a1, u2〉 . . . 〈a1, um〉
〈a2, u1〉 〈a2, u2〉 . . . 〈a2, um〉
...

...
...

〈am, u1〉 〈am, u2〉 . . . 〈am, um〉

⎞⎟⎟⎟⎠ , (6.2)

where 〈ai, uj 〉 is the dual pairing of ai and uj (see Section A.2).
Elements of

∧mRN that can be written in the form a1 ∧ a2 ∧ · · · ∧ am are called
simple m-covectors.

Recall that
∧
m (R

N) is the space ofm-vectors in RN defined in Section 1.4. It is
easy to see that any element of

∧m
(RN) is well-defined on

∧
m (R

N) (just consider
the equivalence relation in Definition 1.4.1). Thus

∧m
(RN) can be considered the

dual space of
∧
m (R

N). Evidently

dxi1 ∧ dxi2 ∧ · · · ∧ dxim , 1 ≤ i1 < i2 < · · · < im ≤ N , (6.3)

is the dual basis to the basis

ei1 ∧ ei2 ∧ · · · ∧ eim , 1 ≤ i1 < i2 < · · · < im ≤ N ,
for
∧
m (R

N).

Differential Forms

Definition 6.1.5. Let W ⊂ RN be open. A differential m-form on W is a function
φ : W → ∧m

(RN). We call m the degree of the form. We say that the differential
m-form φ is Ck if for each set of (constant) vectors v1, v2, . . . , vm, the real-valued
function 〈φ(p), v1 ∧ v2 ∧ · · · ∧ vm〉 is a Ck function of p ∈ W .

The differential form can be rewritten in terms of a basis and component functions
as follows: For each m-tuple 1 ≤ i1 < i2 < · · · < im ≤ N , define the real-valued
function

φi1,i2,...,im(p) = 〈φ(p), ei1 ∧ ei2 ∧ · · · ∧ eim〉 .
Then we have

φ =
∑

1≤i1<i2<···<im≤N
φi1,i2,...,im dxi1 ∧ dxi2 ∧ · · · ∧ dxim .

The natural role for a differentialm-form is to serve as the integrand in an integral
over an m-dimensional surface. This is consistent with and generalizes integration
of a 1-form along a curve.
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Definition 6.1.6. Suppose

(1) the m-dimensional surface S ⊆ RN is parametrized by the function F : U →
RN , where U is an open subset of Rm; that is, F is a one-to-one Ck (k ≥ 1)
function, DF is of rank m, and S = F(U),

(2) W ⊆ RN is open with F(U) ⊆ W , and
(3) φ is a differential m-form onW .

Then the integral of φ over S is defined by∫
S

φ =
∫
U

〈
φ ◦ F(t), ∂F

∂t1
∧ ∂F
∂t2

∧ · · · ∧ ∂F
∂tm

〉
dLm(t) (6.4)

whenever the right-hand side of (6.4) is defined.

The surface S in Definition 6.1.6 is an oriented surface for which the orientation is
induced by the orientation on Rm and the parametrizationF . The value of the integral
is unaffected by a reparametrization as long as the reparametrization is orientation-
preserving.

Exterior Differentiation
In Appendix A.3 one can see how the exterior derivative of a function allows the
fundamental theorem of calculus to be applied to the integrals of 1-forms along
curves. The exterior derivative of a differential form, which we discuss next, is
the mechanism that allows the fundamental theorem of calculus to be extended to
higher-dimensional settings.

Definition 6.1.7. Suppose that U ⊂ RN is open and f : U → R is a Ck function,
k ≥ 1.

(1) The exterior derivative of f is the 1-form df on U defined by setting

df = ∂f
∂x1
dx1 + ∂f

∂x2
dx2 + · · · + ∂f

∂xN
dxN . (6.5)

Note that (6.5) is equivalent to

〈df (p), v〉 = 〈Df (p), v〉 , (6.6)

for p ∈ U and v ∈ RN .
(2) The exterior derivative of them-form φ = f dxi1 ∧ dxi2 ∧ · · · ∧ dxim ,m ≥ 1, is

the (m+ 1)-form dφ given by setting

dφ = (df ) ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxim .
(3) The definition of exterior differentiation in (2) is extended by linearity to all Ck

m-forms, m ≥ 1.

The rules analogous to those for ordinary derivatives of sums and products of
functions are given in the next lemma.
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Lemma 6.1.8. Let φ and ψ be C1 m-forms and let θ be a C1 �-form. It holds that

(1) d(φ + ψ) = (dφ)+ (dψ),
(2) d(φ ∧ θ) = (dφ) ∧ θ + (−1)mφ ∧ (dθ).
Proof.
(1) Equation (1) follows immediately from Definition 6.1.7(3).

(2) Note that in case m = 0, equation (2) reduces to Definition 6.1.7(2) and the
usual product rule. Now suppose that m ≥ 1, φ = f dxi1 ∧ dxi2 ∧ · · · ∧ dxim , and
θ = g dxj1 ∧ dxj2 ∧ · · · ∧ dxj� . Using Definition 6.1.7(2), we compute

d(φ ∧ θ)
= d(fg) dxi1 ∧ dxi2 ∧ · · · ∧ dxim ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxj�
= [(df ) g + f (dg)] dxi1 ∧ dxi2 ∧ · · · ∧ dxim ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxj�
= [(df ) ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxim ] ∧ [g dxj1 ∧ dxj2 ∧ · · · ∧ dxj� ]
+ (−1)m[f dxi1 ∧ dxi2 ∧ · · · ∧ dxim ] ∧ [(dg) ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxj� ]

= (dφ) ∧ θ + (−1)mφ ∧ (dθ) . ��
In contrast to the situation for ordinary derivatives of functions, repeated exterior

differentiation results in a trivial form.

Theorem 6.1.9. If the differential m-form φ : U → ∧m
(RN) is Ck , k ≥ 2, then

d dφ = 0 holds.

Proof. For m = 0, φ is a real-valued function, so we have

d dφ =
∑
j �=i

∑
i

∂

∂xj

(
∂φ

∂xi

)
dxj ∧ dxi

=
∑
i<j

[
∂

∂xi

(
∂φ

∂xj

)
− ∂
∂xj

(
∂φ

∂xi

)]
dxi ∧ dxj = 0 .

For m ≥ 1 and φ = f dxi1 ∧ dxi2 ∧ · · · ∧ dxim , we have

d dφ =
∑
j �=i

j /∈{i1,i2,...,im}

∑
i /∈{i1,i2,...,im}

∂

∂xj

(
∂f

∂xi

)
dxj ∧ dxi ∧ dxi1 ∧ · · · ∧ dxim

=
∑
i<j

i,j /∈{i1,i2,...,im}

[
∂

∂xi

(
∂f

∂xj

)
− ∂
∂xj

(
∂f

∂xi

)]
dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxim

= 0 .

The result now follows from the linearity of exterior differentiation. ��
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Definition 6.1.10.

(1) An m-form φ is said to be closed if dφ = 0.
(2) An m-form φ is said to be exact if there exists an (m − 1)-form ψ such that
dψ = φ.

Remark 6.1.11. Theorem 6.1.9 tells us that every exact form is closed. It is not
the case that every closed form is exact. In fact, the distinction between closed
forms and exact forms underlies the celebrated theorem of Georges de Rham (1903–
1990) relating the geometrically defined singular cohomology of a smooth manifold
to the cohomology defined by differential forms (see [DRh 31] or Theorem 29A in
Chapter IV of [Whn 57]).

6.2 Stokes’s Theorem

Motivation
Stokes’s theorem1 expresses the equality of the integral of a differential form over
the boundary of a surface and the integral of the exterior derivative of the form over
the surface itself. The simplest instance of this equality is found in the part of the
fundamental theorem of calculus that assures us that the difference between the values
of a (continuously differentiable) function at the endpoints of an interval is equal to
the integral of the derivative of the function over that interval—here the interval
plays the role of the surface and the endpoints form the boundary of that surface. In
fact, Stokes’s theorem can be considered the higher-dimensional generalization of the
fundamental theorem of calculus.

Oriented Rectangular Solids in RN

In order to state Stokes’s theorem, one needs to define the oriented geometric boundary
of an m-dimensional surface. In fact, the general definitions are designed so that the
proof of Stokes’s theorem can be reduced to the special case of a nicely bounded
region in RN , indeed, to the even more special case of a rectangular solid that has its
faces parallel to the coordinate hyperplanes.

The space RN itself is oriented by the unit N -vector e1 ∧ e2 ∧ · · · ∧ eN . The
orientation of a Lebesgue measurable subset of RN will be induced by the orientation
of RN as described in the next definition.

Definition 6.2.1. Let U ⊆ RN be LN -measurable, and let ω be a continuous differ-
ential N -form defined on U .

(1) The integral of ω over U is defined by setting∫
U

ω =
∫
U

〈ω(x), e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN(x) . (6.7)

Note that on the left-hand side of (6.7), U denotes the oriented set, while on the
right-hand side, U denotes the set of points. On the left-hand side of (6.7), U is

1 George Gabriel Stokes (1819–1903).
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deemed to have the positive orientation given by the unitN -vector e1∧e2∧· · ·∧
eN . One must recognize from the context which meaning of U is being used. In
Chapter 7, we will introduce a notation that allows us to explicitly indicate when
U is to be considered an oriented set.

(2) If U is to be given the opposite, or negative, orientation, the resulting oriented
set will be denoted by −U . We define∫

−U
ω =

∫
U

−〈ω(x), e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN(x) . (6.8)

Definition 6.2.1 gives us a broadly applicable definition of the integral for an
oriented set of top dimension. The matter is much more difficult for lower-dimen-
sional sets.

A lower-dimensional case that is straightforward is that of a singleton set con-
sisting of the point p ∈ RN . The point itself will be considered to be positively
oriented. A 0-form is simply a function, and the “integral’’ over p is evaluation at p.
Traditionally, evaluation at a point is called a Dirac delta function,2 so we will use
the notation

δp(f ) = f (p)
for any real-valued function whose domain includes p.

The next definition will specify a choice of orientation for an (N−1)-dimensional
rectangular solid in RN that is parallel to a coordinate hyperplane.

Definition 6.2.2. Suppose that N ≥ 2.

(1) An (N − 1)-dimensional rectangular solid, parallel to a coordinate hyperplane in
RN , is a set of the form

F = [a1, b1] × · · · × [ai−1, bi−1] × {c} × [ai+1, bi+1] × · · · × [aN, bN ] ,
where ai < bi for i = 1, . . . , i − 1, i + 1, . . . , N .

(2) The (N − 1)-dimensional rectangular solid F ⊆ RN will be oriented by the
(N − 1)-vector

êi =
∧
j �=i

ej = e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ eN .

(3) Let ω be a continuous (N − 1)-form defined on F . The integral of ω over F is
defined by ∫

F
ω =

∫
F
〈ω(x), êi〉 dHN−1(x) .

Similarly, the integral of ω over −F is defined by∫
−F
ω =

∫
F
−〈ω, êi〉 dHN−1 .

Note that
∫
−F ω = −

∫
F ω holds.

2 Paul Adrien Maurice Dirac (1902–1984).
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(4) For a formal linear combination of (N − 1)-dimensional rectangular solids as
described in (1), ∑

α�F� , (6.9)

we define ∫
∑
α�F�
ω =

∑
α�

∫
F�
ω . (6.10)

We can now define the oriented boundary of the rectangular solid in RN that has
its faces parallel to the coordinate hyperplanes.

Definition 6.2.3. Let

R = [a1, b1] × [a2, b2] × · · · × [aN, bN ] ,
where ai < bi , for i = 1, 2, . . . , N .

(1) If N ≥ 2, then for i = 1, 2, . . . , N , set

R+
i = [a1, b1] × · · · × [ai−1, bi−1] × {bi} × [ai+1, bi+1] × · · · × [aN, bN ] ,

R−
i = [a1, b1] × · · · × [ai−1, bi−1] × {ai} × [ai+1, bi+1] × · · · × [aN, bN ] .

In case N = 1, set R+
1 = δb1 and R−

1 = δa1 .
(2) The oriented boundary of R, denoted by ∂

O
R to distinguish it from the topological

boundary, is the formal sum

∂
O
R =

⎧⎪⎪⎨⎪⎪⎩
δb1 − δa1 if N ≥ 1 ,

N∑
i=1

(−1)i−1 (R+
i −R−

i

)
if N ≥ 2 .

Stokes’s Theorem on a Rectangular Solid
We now state and prove the basic form of Stokes’s theorem.

Theorem 6.2.4. Let

R = [a1, b1] × [a2, b2] × · · · × [aN, bN ] ,
where ai < bi , for i = 1, 2, . . . , N . If φ is a Ck , k ≥ 1, (N − 1)-form on an open set
containing R, then it holds that ∫

∂
O
R
φ =

∫
R
dφ .

Proof. For N = 1, the result is simply the fundamental theorem of calculus, so we
will suppose that N ≥ 2.

Write
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φ =
N∑
i=1

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN .

It suffices to prove that∫
R
d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN)

=
∫
∂
O
R
(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN)

holds for each 1 ≤ i ≤ N.
Fix an i between 1 and N . We compute

d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN)
= (dφi) dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

=
N∑
j=1

∂φi

∂xj
dxj ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

= ∂φi
∂xi
dxi ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

= ∂φi
∂xi
(−1)i−1 dx1 ∧ · · · ∧ dxi−1 ∧ dxi ∧ dxi+1 ∧ · · · ∧ dxN ,

so we have∫
R
d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN)

=
∫
R
(−1)i−1 ∂φi

∂xi
〈dx1 ∧ dx2 ∧ · · · ∧ dxN, e1 ∧ e2 ∧ · · · eN 〉 dLN

= (−1)i−1
∫
R
∂φi

∂xi
dLN .

By applying Fubini’s theorem to evaluate
∫
R(∂φi/∂xi) dLN , we obtain∫

R
∂φi

∂xi
dLN

=
∫
[a1,b1]×···×[ai−1,bi−1]×[ai+1,bi+1]×···×[aN ,bN ]

(∫ bi
ai

∂φi

∂xi
dL1(xi)

)
dLN−1

=
∫
[a1,b1]×···×[ai−1,bi−1]×[ai+1,bi+1]×···×[aN ,bN ]

φi |xi=bi dLN−1
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−
∫
[a1,b1]×···×[ai−1,bi−1]×[ai+1,bi+1]×···×[aN ,bN ]

φi |xi=ai dLN−1

=
∫
R+
i

φi dHN−1 −
∫
R−
i

φi dHN−1 .

We conclude that∫
R
d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN)

= (−1)i−1

(∫
R+
i

φi dHN−1 −
∫
R−
i

φi dHN−1

)
. (6.11)

On the other hand, we compute∫
∂
O
R
φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

=
N∑
j=1

(−1)j−1
∫
R+
j

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

−
N∑
j=1

(−1)j−1
∫
R−
j

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

=
N∑
j=1

(−1)j−1
∫
R+
j

φi 〈dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN, êj 〉 dHN−1

−
N∑
j=1

(−1)j−1
∫
R−
j

φi 〈dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN, êj 〉 dHN−1

= (−1)i−1

(∫
R+
i

φi dHN−1 −
∫
R−
i

φi dHN−1

)
. (6.12)

Since (6.11) and (6.12) agree, we have the result. ��

The Gauss–Green Theorem
A vector field on an open set U ⊆ RN is a function V : U → RN . The component
functions Vi , i = 1, 2, . . . , N , are defined by setting

Vi(x) = V (x) · ei ,
so we have V =∑Ni=1 Vi ei . We say that V is Ck if the component functions are Ck .
The divergence of V , denoted by divV , is the real-valued function
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divV =
N∑
i=1

∂Vi

∂xi
.

Given an (N − 1)-form φ in RN we can associate with it a vector field V by the
following means: if φ is written

φ =
N∑
i=1

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN ,

then set

V =
N∑
i=1

(−1)i−1 φi ei .

Direct calculation shows that

dφ = (divV ) dx1 ∧ dx2 ∧ · · · ∧ dxN
holds. One can also verify that∫

∂
O
R
φ =

∫
∂R
V · n dHN−1

holds, where n is the outward-pointing unit vector orthogonal to the topological
boundary ∂R. We call n the outward unit normal vector.

By converting the statement of Theorem 6.2.4 about integrals of forms into the
corresponding statement about vector fields, one obtains the following result, called
the Gauss–Green theorem3 or the divergence theorem:

Corollary 6.2.5. If V is a C1 vector field on an open set containing R, then∫
R

divV dLN =
∫
∂R
V · n dHN−1 .

By piecing together rectangular solids and estimating the error at the boundary,
one can prove a more general version of Theorem 6.2.4 or of Corollary 6.2.5. Thus
we have the following result.

Theorem 6.2.6. Let A ⊆ RN be a bounded open set with C1 boundary, and let
n(x) denote the outward unit normal to ∂A at x. If V is a C1 vector field defined on
A, then ∫

A

divV dLN =
∫
∂A

V · n dHN−1 .

Theorem 6.2.6 is by no means the most general result available. The reader should
see [Fed 69, 4.5.6] for an optimal version of the Gauss–Green theorem.

3 Johann Carl Friedrich Gauss (1777–1855), George Green (1793–1841).
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The Pullback of a Form

Definition 6.2.7. Suppose that U ⊆ RN is open and F : U → RM is Ck , k ≥ 1. Fix
a point p ∈ U . If the differential m-form φ is defined at F(p), then the pullback of
φ is the m-form, defined at p, denoted by F #φ and evaluated on v1, v2, . . . , vm by
setting

〈F #φ(p), v1 ∧ v2 ∧ · · · ∧ vm〉 = 〈φ[F(p)],Dv1F ∧Dv2F ∧ · · · ∧DvmF 〉 , (6.13)

where we use the notation
DviF = 〈DF, vi〉 ,

for i = 1, 2, . . . , m. In case m = 0, (6.13) reduces to F #φ = φ ◦ F .

Remark 6.2.8. We now have three similar notations in use: DviF as above;Dλ(µ, x)
for differentiation of measures, which was introduced in Section 4.3; and DSf (x)
for the differential of f relative to the surface S, which was introduced in Section 5.3
for smooth surfaces and extended to rectifiable sets in Section 5.4. The notation that
is meant should always be clear from context.

The next theorem tells us that the operations of pullback and exterior differenti-
ation commute. This seems like an insignificant observation, but in fact, it is key to
generalizing Stokes’s theorem, i.e., Theorem 6.2.4.

Theorem 6.2.9. Suppose thatU ⊆ RN is open and F : U → RM isCk , k ≥ 2. Fix a
point p ∈ U . If the differentialm-form φ is defined andCk , k ≥ 2, in a neighborhood
of F(p), then

d(F #φ) = F #(dφ) (6.14)

holds at p.

Proof. First we consider the casem = 0 in which F #φ = φ ◦F . Fix v ∈ RN . Using
the chain rule and (6.6), we compute

〈dF #φ, v〉 = 〈d[φ ◦ F ], v〉 = 〈D[φ ◦ F ], v〉
= 〈Dφ[F(p)], 〈DF, v〉〉 = 〈dφ[F(p)], 〈DF, v〉〉 .

The most efficient argument to deal with the case m ≥ 1 is to first consider a
1-form φ that can be written as an exterior derivative; that is, φ = dψ for a 0-form
ψ . Then we have

d(F #φ) = d(F #dψ) = d(dF #ψ) = 0 = F #(d dψ) = F #(dφ) .

Lemma 6.1.8 allows us to see that the set of forms satisfying (6.14) is closed under
addition and exterior multiplication. The general case then follows by addition and
exterior multiplication of 0-forms and exterior derivatives of 0-forms. ��
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In Appendix A.4, the reader can see an alternative argument that is less elegant,
but which reveals the inner workings of interchanging a pullback and an exterior
differentiation.

Stokes’s Theorem
Let R be a rectangular solid in RN . IfU is open with R ⊆ U ⊆ RN andF : U → RM

is one-to-one and Ck , k ≥ 1, then the F -image of R is an N -dimensional Ck surface
parametrized by F . We denote this surface by

F#R .

This definition extends to formal sums by setting F#

[∑
αRα

]
=∑α F#Rα .

In Definition 6.1.6, we gave a definition for the integral of a differential form over
a surface. The next lemma gives us another way of looking at that definition.

Lemma 6.2.10. Ifω is a continuousN -form defined in a neighborhood ofF(R), then∫
F#R
ω =

∫
R
F #ω .

Proof. By Definition 6.1.6, we have∫
F#R
ω =

∫
R

〈
ω ◦ F(t), ∂F

∂t1
∧ ∂F
∂t2

∧ · · · ∧ ∂F
∂tN

〉
dLN(t) .

Observing that
∂F

∂ti
= 〈DF, ei〉 ,

for i = 1, 2, . . . , N , we see that〈
ω ◦ F(t), ∂F

∂t1
∧ ∂F
∂t2

∧ · · · ∧ ∂F
∂tN

〉
= 〈ω ◦ F(t), 〈DF, e1〉 ∧ 〈DF, e2〉 ∧ · · · ∧ 〈DF, eN 〉〉

=
〈
F #ω, e1 ∧ e2 ∧ · · · ∧ eN

〉
,

and the result follows. ��
The boundary of a smooth surface is usually defined by referring back to the space

of parameters. That is our motivation for the next definition.

Definition 6.2.11. The oriented boundary of F#R will be denoted by ∂
O
F#R and is

defined by

∂
O
F#R =

N∑
i=1

(−1)i−1 (F#R+
i − F#R−

i

) = F#∂OR .
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Some explanation of this definition is called for because F#R+
i and F#R−

i do not
quite fit our earlier discussion. Recall that R+

i and R−
i lie in planes parallel to the

coordinate hyperplanes, so F restricted to either R+
i or R−

i can be thought of as a
function on RN−1. Note that both R+

i and R−
i are oriented in a manner consistent

with this interpretation.
We are now in a position to state and prove a general version of Stokes’s theorem.

Theorem 6.2.12 (Stokes’s Theorem). Let R be a rectangular solid in RN . Suppose
that U is open with R ⊆ U ⊆ RN and that F : U → RM is one-to-one and Ck ,
k ≥ 1, with DF of rank N at every point of U . If ω is a Ck , k ≥ 2, (N − 1)-form
defined on F(R), then ∫

F#R
dω =

∫
∂
O
F#R
ω .

Proof. We compute∫
F#R
dω

(Lemma 6.2.10)=
∫
R
F #(dω)

(Thm. 6.2.9)=
∫
R
d(F #ω)

(Thm. 6.2.4)=
∫
∂
O
R
F #ω

(Lemma 6.2.10)=
∫
F#∂OR

ω
(Def. 6.2.11)=

∫
∂
O
F#R
ω . ��

As was true for the earlier version of Stokes’s theorem (Theorem 6.2.4) and for the
Gauss–Green theorem (Corollary 6.2.5), a more general version of Theorem 6.2.12
may be obtained by piecing together patches of surface. Since the theory of cur-
rents gives a still more general expression to Stokes’s theorem, we will defer further
discussion of Stokes’s theorem until we have introduced the language of currents.




