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Covering Theorems and the Differentiation of
Integrals

A number of fundamental problems in geometric analysis—ranging from decompo-
sitions of measures to density of sets to approximate continuity of functions—depend
on the theory of differentiation of integrals. These results, in turn, depend on a vari-
ety of so-called covering theorems for families of balls (and other geometric objects).
Thus we come upon the remarkable, and profound, fact that deep analytic facts reduce
to rather elementary (but often difficult) facts about Euclidean geometry.

The technique of covering lemmas has become an entire area of mathematical
analysis (see, for example, [DGu 75] and [Ste 93]). It is intimately connected with
problems of differentiation of integrals, with certain maximal operators (such as the
Hardy–Littlewood maximal operator), with the boundedness of multiplier operators
in harmonic analysis, and (concomitantly) with questions of summation of Fourier
series.

The purpose of the present chapter is to introduce some of these ideas. We do
not strive for any sort of comprehensive treatment, but rather to touch upon the key
concepts and to introduce some of the most pervasive techniques and applications.

4.1 Wiener’s Covering Lemma and Its Variants

Let S ⊆ RN be a set. A covering of S will be a collection U = {Uα}α∈A of sets such
that

⋃
α∈A Uα ⊇ S. If all the sets of U are open, then we call U an open covering

of S. A subcovering of the covering U is a covering V = {Vβ}β∈B such that each Vβ
is one of the Uα . A refinement of the covering U is a collection W = {Wγ }γ∈G of
sets such that eachWγ is a subset of some Uα . If U is a covering of a set S, then the
valence of U is the least positive integerM such that no point of S lies in more than
M of the sets in U .

It is elementary to see that any open covering of a set S ⊆ RN has a countable
subcover. We also know, thanks to Lebesgue, that any open covering of S has a
refinement with valence at most N + 1 (see [HW 41, Theorem V 1]).
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92 4 Covering Theorems and the Differentiation of Integrals

Wiener’s covering lemma1 concerns a covering of a set by a collection of balls.
When applying the lemma, one must be willing to replace any particular ball by a
ball with the same center but triple its radius—see Figure 4.1.

Fig. 4.1. Wiener’s covering lemma.

Lemma 4.1.1 (Wiener). Let K ⊆ RN be a compact set with a covering U =
{Bα}α∈A,Bα = B(cα, rα), by open balls. Then there is a subcollection Bα1 , Bα2 ,

. . . , Bαm, consisting of pairwise disjoint balls, such that

m⋃
j=1

B(cαj , 3rαj ) ⊇ K.

Proof. Since K is compact, we may immediately assume that there are only finitely
many Bα. Let Bα1 be the ball in this collection that has the greatest radius (this ball
may not be unique). LetBα2 be the ball that is disjoint fromBα1 and has greatest radius
among those balls that are disjoint from Bα1 (again, this ball may not be unique). At
the j th step choose the (not necessarily unique) ball disjoint fromBα1 , . . . , Bαj−1 that
has greatest radius among those balls that are disjoint fromBα1 , . . . , Bαj−1 .Continue.
The process ends in finitely many steps. We claim that the Bαj chosen in this fashion
do the job.

For each j , we will write Bαj = B(cαj , rαj ). It is enough to show that Bα ⊆⋃
j B(cαj , 3rαj ) for every α. Fix an α. If α = αj for some j then we are done.

If α �∈ {αj }, let j0 be the first index j with Bαj ∩ Bα �= ∅ (there must be one;
otherwise, the process would not have stopped). Then rαj0 ≥ rα; otherwise, we
selected Bαj0 incorrectly. But then (by the triangle inequality) B(cαj0 , 3rαj0 ) ⊇
B(cα, rα) as desired. ��

For completeness, and because it is such an integral part of the classical theory
of measures, we now present the venerable covering theorem of Vitali.2

1 Norbert Wiener (1894–1964).
2 Giuseppe Vitali (1875–1932).
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Proposition 4.1.2. Let A ⊆ RN and let B be a family of open balls. Suppose that
each point of A is contained in arbitrarily small balls belonging to B. Then there
exist pairwise disjoint balls Bj ∈ B such that

LN
⎛⎝A \⋃

j

Bj

⎞⎠ = 0 .

Furthermore, for any ε > 0, we may choose the balls Bj in such a way that∑
j

LN(Bj ) ≤ LN(A)+ ε .

Proof. The last statement will follow from the substance of the proof. For the first
statement, let us begin by making the additional assumption (which we shall remove
at the end) that the set A ≡ A0 is bounded. We may select a bounded open set U0
that containsA0 and that is such that LN(U0) exceeds LN(A0) by as small a quantity
as we may wish. In fact, we demand that

LN(U0) ≤ (1+ 5−N)LN(A0) .

Now focus attention on those balls that lie inU0. By Lemma 4.1.1, we may select
a finite, pairwise disjoint collection Bj = B(xj , rj ) ∈ B, j = 1, . . . , k1, such that
Bj ⊆ U0 for each j and

A0 ⊆
k1⋃
j=1

B(xj , 3rj ) .

Now we may calculate that

3−NLN(A0) ≤ 3−N
∑
j

LN [B(xj , 3rj )] = 3−N
∑
j

3NLN(Bj ) =
∑
j

LN(Bj ) .

Let

A1 = A0 \
k1⋃
j=1

Bj .

Then

LN(A1) ≤ LN
⎛⎝U0 \

k1⋃
j=1

Bj

⎞⎠

= LN
⎛⎝U0 \

k1⋃
j=1

Bj

⎞⎠ = LN(U0)−
k1∑
j=1

LN(Bj )

≤ (1+ 5−N − 3−N)LN(A0) ≡ u · LN(A0) ,
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where u ≡ 1 + 5−N − 3−N < 1. Now A1 is a bounded subset of RN \⋃k1j=1 Bj .
Hence we may find a bounded, open set U1 ⊆ U0 such that

A1 ⊆ U1 ⊆ RN \
k1⋃
j=1

Bj

and
LN(U1) ≤ (1+ 5−N)LN(A1) .

Just as in the first iteration of this construction, we may now find disjoint balls
Bj , j = k1 + 1, . . . , k2, for which Bj ⊆ U1 and

LN(A2) ≤ u · LN(A1) ≤ u2 LN(A0) ;
here

A2 = A1 \
k2⋃

j=k1+1

Bj = A0 \
k2⋃
j=1

Bj .

By our construction, all the balls B1, . . . , Bk2 are disjoint.
Afterm repetitions of this procedure, we find that we have balls B1, B2, . . . , Bkm

such that

LN
⎛⎝A0 \

km⋃
j=1

Bj

⎞⎠ ≤ um LN(A0) .

Since u < 1, the result follows.
For the general case, we simply decompose RN into closed unit cubes Q� with

disjoint interiors and sides parallel to the axes and apply the result just proved to each
A0 ∩Q�. ��
The Maximal Function
Aclassical construct, due to Hardy and Littlewood,3 is the so-called maximal function.
It is used to control other operators, and also to study questions of differentiation of
integrals.

Definition 4.1.3. If f is a locally integrable function on RN , we let

Mf (x) = sup
R>0

1

LN [B(x, R)]
∫

B(x,R)
|f (t)| dLN(t) .

The operator M is called the Hardy–Littlewood maximal operator. The func-
tions to whichM is applied may be real-valued or complex-valued. A few facts are
immediately obvious aboutM:

(1) M is not linear, but it is sublinear in the sense that

M[f + g](x) ≤ Mf (x)+Mg(x) .
3 Godfrey Harold Hardy (1877–1947), John Edensor Littlewood (1885–1977).
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(2) Mf is always nonnegative, and it could be identically equal to infinity.
(3) Mf makes sense for any locally integrable f .

We will in fact prove that Mf is finite LN -almost everywhere, for any f ∈ Lp.
In order to do so, it is convenient to formulate a weak notion of boundedness for
operators. To begin, we say that a measurable function f is weak typep, 1 ≤ p <∞,
if there exists a C = C(f ) with 0 < C <∞ such that, for any λ > 0,

LN({x ∈ RN : |f (x)| > λ}) ≤ C
λp
.

An operator T on Lp taking values in the collection of measurable functions is said
to be of weak type (p, p) if there exists a C = C(T ) with 0 < C <∞ such that, for
any f ∈ Lp and for any λ > 0,

LN({x ∈ RN : |Tf (x)| > λ}) ≤ C ·
(‖f ‖Lp
λ

)p
.

A function is defined to be weak type ∞ when it is L∞. For 1 ≤ p <∞, an Lp

function is certainly weak type p, but the converse is not true. In fact, we note that
the function f (x) = |x|−1/p on R1 is weak type p, but not in Lp, for 1 ≤ p < ∞.
The Hilbert transform (see [Kra 99]) is an important operator that is not bounded on
L1 but is in fact weak type (1, 1).

Proposition 4.1.4. The Hardy–Littlewood maximal operatorM is weak type (1, 1).

Proof. Let λ > 0. Set Sλ = {x : |Mf (x)| > λ}. Because Mf is the supremum of
a set of continuous functions, Mf is lower semicontinuous, and consequently, Sλ is
open.

Since Sλ is open, we may let K ⊆ Sλ be a compact subset with 2 LN(K) ≥
LN(Sλ). For each x ∈ K, there is a ball Bx = B(x, rx) with

λ <
1

LN(Bx)

∫
Bx

|f (t)|dLN(t) .

Then {Bx}x∈K is an open cover ofK by balls. By Lemma 4.1.1, there is a subcollection
{Bxj }Mj=1 that is pairwise disjoint but such that the threefold dilates of these selected
balls still cover K . Then

LN(Sλ) ≤ 2 LN(K) ≤ 2 LN
⎛⎝ M⋃
j=1

B(xj , 3rj )

⎞⎠ ≤ 2
M∑
j=1

LN [B(xj , 3rj )]

≤
M∑
j=1

2 · 3N LN(Bxj )

≤
M∑
j=1

2 · 3N
λ

∫
Bxj

|f (t)|dLN(t)

≤ 2 · 3N
λ

‖f ‖L1 . ��
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One of the venerable applications of the Hardy–Littlewood operator is the
Lebesgue differentiation theorem:

Theorem 4.1.5. Let f be a locally Lebesgue integrable function on RN . Then, for
LN -almost every x ∈ RN , it holds that

lim
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t) = f (x) .

Proof. Multiplying f by a compactly supported C∞ function that is identically 1 on
a ball, we may as well suppose that f ∈ L1. We may also assume, by linearity, that
f is real-valued. We begin by proving that

lim
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

exists.
Let ε > 0. Select a function ϕ, continuous with compact support, and real-valued,

such that ‖f − ϕ‖L1 < ε2. Then

LN
{
x ∈ RN :

∣∣∣∣lim sup
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

− lim inf
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

∣∣∣∣ > ε}

≤ LN
{
x ∈ RN : lim sup

R→0+

1

LN [B(x, R)]
∫

B(x,R)
|f (t)− ϕ(t)| dLN(t)

+
∣∣∣∣lim sup
R→0+

1

LN [B(x, R)]
∫

B(x,R)
ϕ(t) dLN(t)

− lim inf
R→0+

1

LN [B(x, R)]
∫

B(x,R)
ϕ(t) dLN(t)

∣∣∣∣
+ lim sup
R→0+

1

LN [B(x, R)]
∫

B(x,R)
|ϕ(t)− f (t)| dLN(t) > ε

}

≤ LN
{
x ∈ RN : lim sup

R→0+

1

LN [B(x, R)]
∫

B(x,R)
|f (t)− ϕ(t)| dLN(t) > ε

3

}

+ LN
{
x ∈ RN :

∣∣∣∣lim sup
R→0+

1

LN [B(x, R)]
∫

B(x,R)
ϕ(t) dLN(t)

− lim inf
R→0+

1

LN [B(x, R)]
∫

B(x,R)
ϕ(t) dLN(t)

∣∣∣∣ > ε3
}

+ LN
{
x ∈ RN : lim sup

R→0+

1

LN [B(x, R)]
∫

B(x,R)
|ϕ(t)− f (t)| dLN(t) > ε

3

}
≡ I + II + III .
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Now II = 0 because the set being measured is empty (since ϕ is continuous).
Each of I and III may be estimated by

LN
{
x ∈ RN : M(f − ϕ)(x) > ε/3

}
,

and this, by Proposition 4.1.4, is majorized by

C · ε
2

ε/3
= c · ε .

In sum, we have proved the estimate

LN
{
x ∈ RN :

∣∣∣∣ lim sup
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

− lim inf
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

∣∣∣∣ > ε} ≤ c · ε .
It follows immediately that

lim
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

exists for LN -almost every x ∈ RN .
The proof that the limit actually equals f (x) at LN -almost every point follows

exactly the same lines. We shall omit the details. ��
Corollary 4.1.6. IfA ⊆ RN is Lebesgue measurable, then for almost every x ∈ RN,
it holds that

χ
A
(x) = lim

r→0+
LN(A ∩ B(x, r))

LN(B(x, r)) .

Proof. Set f = χ
A
. Then∫

B(x,r)
f (t) dLN(t) = LN(A ∩ B(x, r)),

and the corollary follows from Theorem 4.1.5. ��
Definition 4.1.7. A function f : RN → R is said to be approximately continuous if,
for LN -almost every x0 ∈ RN and for each ε > 0, the set

{x : |f (x)− f (x0)| > ε}
has density 0 at x0, that is,

0 = lim
r→0+

LN({x : |f (x)− f (x0)| > ε} ∩ B(x0, r))

LN(B(x0, r))
.
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Corollary 4.1.8. If a function f : RN → R is Lebesgue measurable, then it is
approximately continuous.

Proof. Suppose that f is Lebesgue measurable. Let q1, q2, . . . be an enumeration
of the rational numbers. For each positive integer i, let Ei be the set of points
x /∈ {z : f (z) < qi} for which

0 < lim sup
r→0+

LN({z : f (z) < qi} ∩ B(x, r))

LN(B(x, r))

and let Ei be the set of points x /∈ {z : qi < f (z)} for which

0 < lim sup
r→0+

LN({z : qi < f (z)} ∩ B(x, r))

LN(B(x, r)) .

By Corollary 4.1.6 and the Lebesgue measurability of f, we know that

LN(Ei) = 0 and LN(Ei) = 0 .

Thus we see that

E ≡
∞⋃
i=1

(Ei ∪ Ei)

is also a set of Lebesgue measure zero.
Consider any point x0 /∈ E and any ε > 0. There exist rational numbers qi and

qj such that

f (x0)− ε < qi < f (x0) < qj < f (x0)+ ε.
We have {x : |f (x) − f (x0)| > ε} ⊆ {z : f (z) < qi} ∪ {z : qj < f (z)}. By the
definition of Ei and Ej we have

0 = lim
r→0+

LN({z : f (z) < qi} ∩ B(x0, r))

LN(B(x0, r))

and

0 = lim
r→0+

LN({z : qj < f (z)} ∩ B(x0, r))

LN(B(x0, r))
.

It follows that

0 = lim
r→0+

LN({x : |f (x)− f (x0)| > ε} ∩ B(x0, r))

LN(B(x0, r))
.

Since x0 /∈ E and ε > 0 were arbitrary, we conclude that f is approximately contin-
uous. ��
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4.2 The Besicovitch Covering Theorem

Preliminary Remarks
The Besicovitch covering theorem,4 which we shall treat in the present section, is
of particular interest to geometric analysis because its statement and proof do not
depend on a measure. This is a result about the geometry of balls in space.

The Besicovitch Covering Theorem

Theorem 4.2.1. LetN be a positive integer. There is a constantK = K(N) with the
following property. Let B = {Bj }Mj=1, whereM ∈ N∪{∞}, be any finite or countable

collection of balls in RN with the property that the interior of no ball contains the
center of any other. Then we may write

B = B1 ∪ · · · ∪ BK

so that each Bj , j = 1, . . . , K , is a collection of balls with pairwise disjoint closures.
Here by a ball we mean a set B satisfying B(x, r) ⊆ B ⊆ B(x, r), for some

x ∈ RN and some r > 0.

It is a matter of some interest to determine what the best possible K is for any
given dimension N . Significant progress on this problem has been made in [Sul 94].
See also [Loe 93]. Certainly our proof below will give little indication of the bestK .

We shall see that the heart of this theorem is the following lemma about balls.

Lemma 4.2.2. There is a constant K̃ = K̃(N), depending only on the dimension of
the space RN , with the following property: Let B0 = B(x0, r0) be a ball of fixed
positive radius. Let B1 = B(x1, r1), B2 = B(x2, r2), . . . , Bp = B(xp, rp) be balls
such that

(1) Each Bj has nonempty intersection with B0, j = 1, . . . , p;
(2) The radii rj satisfy rj ≥ r0 for all j = 1, . . . , p;
(3) The interior of no ballBj contains the center of any otherBk for j, k ∈ {0, . . . , p}

with j �= k.
Then p ≤ K̃ .

Here is what the lemma says in simple terms: Fix the ball B0. Then at most K̃
pairwise disjoint balls of (at least) the same size can touch B0. Note here that being
“pairwise disjoint’’ and “intersecting but not containing the center of the other ball’’
are essentially equivalent: if the second condition holds then shrinking each ball by
a factor of one-half makes the balls pairwise disjoint; if the balls are already pairwise
disjoint, have equal radii, and are close together, then doubling their size arranges for
the first condition to hold.

Our proof of Lemma 4.2.2 is based on the next two lemmas—which in essence
rely only on two-dimensional Euclidean geometry (trigonometry)—and on the fact

4 Abram Samoilovitch Besicovitch (1891–1970).
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that we can choose a set of unit vectors in RN such that every direction is within a
small angle of one of our chosen unit vectors (where the measure of an angle between
two vectors is defined to be in the interval [0, π ]).
Lemma 4.2.3. Suppose the ball B(q, r), with r ≥ 1, intersects the closed unit ball
and does not contain the origin in its interior, i.e., r ≤ |q|. If u is a unit vector making
an angle φ ≤ π/6 with q, then

√
3 u ∈ B(q, r).

Proof. Because B(q, r) intersects the closed unit ball and does not contain the origin
in its interior, we can write |q| = x + r with 0 ≤ x ≤ 1 ≤ r . By the law of cosines
we have

|q −√3 u|2 = |q|2 + 3− 2
√

3 |q| cosφ

≤ |q|2 + 3− 2
√

3 |q| cos π6

= (x + r)2 + 3− 3 (x + r) .
Thus it will suffice to show that

(x + r)2 + 3− 3 (x + r) ≤ r2

or, equivalently,
f (x, r) = x2 + 2xr + 3− 3x − 3r ≤ 0 .

Since for each fixed r , f (x, r) is quadratic in x with positive second derivative and
since we are concerned only with the range 0 ≤ x ≤ 1, it will suffice to consider only
the endpoints x = 0 and x = 1. But we have

f (0, r) = 3− 3r ≤ 0 and f (1, r) = 1+ 2r + 3− 3− 3r = 1− r ≤ 0 ,

as required. ��
Lemma 4.2.4. Suppose neither of the balls B(q1, r1)and B(q2, r2) contains the center
of the other ball in its interior. If the point p is in both balls, then the angle between
q1 − p and q2 − p is at least π/3.

Proof. To see this, we denote the angle in question by θ and use the law of cosines
to compute

|q1 − q2|2 = |q1 − p|2 + |q2 − p|2 − 2 |q1 − p| |q2 − p| cos θ .

So we have

cos θ ≤ |q1 − p|2 + |q2 − p|2 − |q1 − q2|2
2 |q1 − p| |q2 − p| .

Since neither ball contains the center of the other ball in its interior, we know that
|q1 − q2| is at least as large as the radius of either ball. So we have both |q1 − p| ≤
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r1 ≤ |q1 − q2| and |q2 − p| ≤ r2 ≤ |q1 − q2|. Suppose without loss of generality
that |q1 − p| ≤ |q2 − p|. Then we estimate

cos θ ≤ |q1 − p|2 + |q2 − p|2 − |q1 − q2|2
2 |q1 − p| |q2 − p|

≤ |q1 − p|2
2 |q1 − p| |q2 − p|

= 1

2
· |q1 − p|
|q2 − p| ≤

1

2
,

as required. ��
Proof of Lemma 4.2.2. Suppose for the moment (we confirm this construction later)
that we have chosen a set of unit vectors u1, u2, . . . , uκ(N) in RN with the property
that for any unit vector u ∈ RN , there is a j such that the angle between u and uj
is strictly less than π/6 (picture points sufficiently dense on the unit sphere—see the
discussion below). The number, κ(N), of vectors uj will be used below.

Consider balls B0, B1, . . . , Bp as in the statement of Lemma 4.2.2 and suppose
that p ≥ κ(N)2 + 1. Without loss of generality, we may assume that B0 = B(0, 1).
The direction to the center of each ball is within an angle strictly less than π/6 of one
of the unit vectors uj and so, by Lemma 4.2.3, must contain the point

√
3 uj . Since

there are at least κ(N)2+1 balls and only κ(N) possible uj ’s, there must be (at least)
one j∗ such that κ(N)+ 1 of the balls contain the point

√
3 uj∗ .

Now consider those κ(N)+ 1 balls. The direction from
√

3 uj∗ to each center is
within an angle strictly less than π/6 of one of the unit vectors uk . But since there
are κ(N) + 1 balls and only κ(N) possible uk’s, there must be two centers within
angle less than π/6 of the same direction and thus within an angle less than π/3 of
each other, contradicting Lemma 4.2.4. We conclude that p ≤ κ(N)2.

Finally, we show that there exists a set of unit vectors u1, u2, . . . , uκ(N) in RN

with the property that for any unit vector u ∈ RN , there is a j such that the angle
between u and uj is strictly less than π/6. Let

F = {B(uj , 1/4) : j = 1, 2, . . . , κ(N) }
be a maximal pairwise disjoint family of balls with centers in the unit sphere. All
of the balls B(uj , 1/4) are contained in B(0, 5/4), so, by comparing volumes, we
see that

κ(N) ≤ �N (5/4)
N

�N (1/4)N
= 5N .

[In Remark 4.2.5, we give an alternative construction for the uj that avoids any use
of volume in RN or (N − 1)-dimensional area in the unit sphere.]

To see that the unit vectors u1, u2, . . . , uκ(N) have the requisite property, let u be
an arbitrary unit vector. There must exist a j such that |u − uj | < 1/2; otherwise,
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we could add the ball B(u, 1/4) to the family F , contradicting the maximality of F .
Fix such a j and let θ denote the angle between uj and u. Using the law of cosines
we estimate

cos θ = |uj |2 + |u|2 − |uj − u|2
2 |uj | |u| = 1− 1

2 |uj − u|2

≥ 7/8 >
√

3/2 = cos π6 ,

so the angle θ is strictly less than π/6. ��
Remark 4.2.5. We now give another, more explicit, construction of a set of unit
vectors U ⊆ RN with the property that for any unit vector u ∈ RN , there exists
u∗ ∈ U such that the angle between u and u∗ is strictly less than π/6.

The vectors in U are formed by choosing θ1, θ2, . . . , θN−1 from the set{
0, π
m
, 2π
m
, . . . ,

(m−1)π
m
, π
}

(4.1)

and choosing a sign τ ∈ {−1, +1}. We then set

uθ1,...,θN−1,τ

=
(

cos θ1, cos θ2 sin θ1, . . . , cos θN−1
∏N−2
i=1 sin θi, τ ·∏N−1

i=1 sin θi
)
.

Given a unit vector u ∈ RN , there exist 0 ≤ φi ≤ π , i = 1, 2, . . . , N − 1, and
τ ′ ∈ {−1, +1} such that

u =
(

cosφ1, cosφ2 sin φ1, . . . , cosφN−1
∏N−2
i=1 sin φi, τ ′ ·∏N−1

i=1 sin φi
)
.

The sign τ ′ represents a hemisphere containing u.
The main fact needed to verify that u is within π/6 of some uθ1,...,θN−1,τ is that if

τ = τ ′, then

u·uθ1,...,θN−1,τ = cos(θ1−φ1)−
N−1∑
k=1

([
1−cos(θk−φk)

] k−1∏
�=1

sin θ� sin φ�

)
. (4.2)

Equation (4.2) is proved by induction on N .
One completes the construction by choosing a sufficiently large value for m

in (4.1). ��
H. Federer’s concept of a directionally limited metric space—see [Fed 69,

2.8.9]—abstracts and formalizes the geometry that goes into the proof of Lemma 4.2.2.
More precisely, it generalizes to abstract contexts the notion that a cone in a given
direction can contain only a certain number of points with distance η > 0 from the
vertex and distance η from each other. The interested reader is advised to study that
source.

Now we can present the proof of Besicovitch’s covering theorem.
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Proof of Theorem 4.2.1. First consider the case M < ∞ (recall that M was the
number of balls in B, the given collection of balls).

We have an iterative procedure for selecting balls.
Select B1

1 to be a ball of maximum radius (this ball may not be unique). Then

select B1
2 to be a ball of maximum radius such that B1

2 is disjoint from B1
1 (again, this

ball may not be unique). Continue until this selection procedure is no longer possible

(remember that there are only finitely many balls in total). Set B1 =
{
B1
j

}
.

Now work with the remaining balls. LetB2
1 be the ball with greatest radius. Then

select B2
2 to be the remaining ball with greatest radius such that B2

2 is disjoint from

B2
1 . Continue in this fashion until no further selection is possible. Set B2 =

{
B2
j

}
.

Working with the remaining balls, we now produce the family B3, and so forth (see
Figure 4.2). Clearly, since in total there are only finitely many balls, this procedure
must stop. We will have produced finitely many—say q—nonempty families of
balls, each family consisting of balls having pairwise disjoint closures: B1, . . . ,Bq .
It remains to say how large q can be.

Fig. 4.2. Besicovitch’s covering theorem.

Suppose that q > K̃(N) + 1, where K̃(N) is as in the lemma. Let Bq1 be the
first ball in the family Bq . The closure of that ball must have intersected the closure
of a ball in each of the preceding families (in case there are several such balls in
a family, we consider the ball chosen earliest); by our selection procedure, each of
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those balls must have been at least as large in radius as Bq1 . Thus Bq1 is a ball with
at least K̃(N) + 1 “neighbors’’ as in the lemma. But the lemma says that a ball can
have only K̃(N) such neighbors. That is a contradiction.

We conclude that q ≤ K̃(N)+ 1. That proves the theorem whenM is finite.
WhenM = ∞, recursive application of the above iterative procedure completes

the proof of the theorem. We argue as follows:
Suppose that for eachM = 1, 2, . . . , the iterative procedure above is carried out

for the set of balls
{
Bj
}M
j=1 resulting in the families of balls BM,i1 , 1 ≤ i1 ≤ K̃(N)+1.

There must be a particular i1 with 1 ≤ i1 ≤ K̃(N) + 1 such that the ball B1 is
assigned to BM,i1 for infinitely many values ofM . We assign B1 to a family that we
label Bi1 .

LetM1,1 be the smallest value ofM for whichB1 is assigned to BM,i1 . Proceeding
inductively, we assume that M1,1 < M1,2 < · · · < M1,� have been defined. Let
M1,�+1 be the smallest value of M that is greater than M1,� and is such that B1 is
assigned to BM,i1 . Thus we define the increasing sequenceM1,�, � = 1, 2, . . . , with
the property that B1 is assigned to BM,i1 when our procedure is carried out with
M = M1,�.

There must be a particular i2 with 1 ≤ i2 ≤ K̃(N) + 1 such that the ball B2 is
assigned to BM,i2 for infinitely many M ∈ {M1,1,M1,2, . . .}. If i2 = i1 holds, then
we assign B2 to the family Bi1 that already contains B1. In this case, we see that
the closures of B1 and B2 do not intersect because there is an M = M1,� for which
B1, B2 ∈ BM,i1 = BM,i2 (in fact, there are infinitely many such M’s). On the other
hand, if i2 �= i1, then we assign B2 to a new family that we label Bi2 .

Let M2,1 be the smallest M ∈ {M1,1,M1,2, . . .} for which B2 is assigned to
BM,i2 . Proceeding inductively, we assume that M2,1 < M2,2 < · · · < M2,� have
been defined. LetM2,�+1 be the smallestM ∈ {M1,1,M1,2, . . .} that is greater than
M2,� and is such thatB2 is assigned to BM,i2 . Thus we define the increasing sequence
M2,�, � = 1, 2, . . . , that is a subsequence of

{
M1,p

}∞
p=1 and has the property that B2

is assigned to BM,i2 when our procedure is carried out withM = M2,�.
Continuing in this way we assign each ball Bp to one of the families B1,B2,

. . . ,BK̃(N)+1. ��
Remark 4.2.6. Note that there do not exist uncountable families of balls none of
which contains the center of any of the other balls. That is because shrinking each ball
by a factor of one-half—while keeping the same centers—makes the balls pairwise
disjoint.

The next lemma show us one situation in which we can construct a covering of a
set by a family of open balls with the property that no ball contains the center of any
other ball.

Lemma 4.2.7. Let B be a family of open balls centered at points of a compact set A.
Suppose B is such that

(1) every point of A is the center of at least one ball in B,
(2) sup{r : B(x, r) ∈ B} <∞,
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(3) {B(xi, ri)}∞i=1 ⊆ B with xi → x and ri → r > 0 implies B(x, r) ∈ B.

Then there are finitely many balls B(xi, ri) ∈ B, i = 1, 2, . . . , n, such that xi /∈
B(xj , rj ) whenever i �= j and A ⊆⋃ni=1 B(xi, ri).

Proof. Let B(x1, r1) ∈ B be such that r1 is maximal. Inductively we define
B(xn+1, rn+1) to be such that xn+1 ∈ A \⋃ni=1 B(xi, ri) and rn+1 is maximal. If
A \⋃ni=1 B(xi, ri) = ∅, the construction terminates and we do not define xn+1.

Our construction ensures that we have xi /∈ B(xj , rj ) whenever i �= j . We claim
that the construction terminates after finitely many steps. To see this fact, we argue
by contradiction. Thus we suppose that B(xi, ri) has been defined for i = 1, 2, . . . .
Since the balls B(xi, ri/2) are disjoint and all lie in a bounded set, we see that ri ↓ 0,
as i →∞.

Because A is compact and ∅ �= A \ ⋃ni=1 B(xi, ri) holds for each n, we see
that there is x ∈ A \⋃∞

i=1 B(xi, ri). Let B(x, r) ∈ B. Since ri is a nonincreasing
sequence with limit 0, there must be an i such that ri+1 < r ≤ ri , but then we see
that B(xi+1, ri+1) was incorrectly chosen. ��

Sometimes the requirement that no ball can contain the center of any other ball is
too restrictive. In that case the condition we give next may be useful.

Definition 4.2.8. By a controlled family of balls we mean a family B of closed balls
with positive radii such that if B(a, r) ∈ B, B(b, s) ∈ B, and B(a, r) �= B(b, s), then

either |a − b| > r > 4s/5 or |a − b| > s > 4r/5.

The next lemma tells us that if we shrink the balls in a controlled family by a
factor of one-third, the balls become disjoint. Of course, that also implies that there
are no uncountable controlled families.

Lemma 4.2.9. If B(a, r) and B(b, s) are members of a controlled family, then
B(a, r/3) ∩ B(b, s/3) = ∅.

Proof. We may assume without loss of generality that

|a − b| > r > 4s/5 .

Suppose p ∈ B(a, r/3) ∩ B(b, s/3). Then we have

|a − b| ≤ |a − p| + |p − b| ≤ r/3+ s/3 ≤ r/3+ (5/4) · s/3 = 3r/4 ,

a contradiction. ��
The geometric lemma applicable to balls in a controlled family is given next.

Lemma 4.2.10. If B(a, r) and B(b, s) are members of a controlled family and if
additionally

4 ≤ r ≤ |a| ≤ r + 1 ,

4 ≤ s ≤ |b| ≤ s + 1 ,

then the angle between a/|a| and b/|b| is at least cos−1(7/8).
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Proof. Let θ denote the angle between a/|a| and b/|b|. Since the balls are members
of a controlled family, we may suppose without loss of generality that

|a − b| > r > 4s/5 .

Using the law of cosines, we see that

cos θ = |a|2 + |b|2 − |a − b|2
2 |a| |b| = |a|

2 |b| +
|b|

2 |a| −
|a − b|2
2 |a| |b|

≤ r + 1

2 s
+ s + 1

2 r
− r2

2 r s
= 1

2 s
+ s

2 r
+ 1

2 r
≤ 1

8
+ 5

8
+ 1

8
. ��

As before, we have a bound, depending only on the dimension, for how many
balls in a controlled family can intersect one particular ball.

Lemma 4.2.11. There is a constant K = K(N), depending only on the dimension
of our space RN , with the following property: Let B0 = B(x0, r0) be a ball of fixed
positive radius. Let B1 = B(x1, r1), B2 = B(x2, r2), . . . , Bp = B(xp, rp) be balls
such that

(1) Each Bj has nonempty intersection with B0, j = 1, . . . , p;
(2) The radii rj ≥ r0 for all j = 1, . . . , p;
(3) The balls

{
Bj
}p
j=0 are members of a controlled family.

Then p ≤ K .

Proof. Without loss of generality we may suppose that x0 = 0 and r0 = 1. Divide
the balls B1, B2, . . . , Bp into two collections:

B1 = {Bj : 4 ≤ rj ≤ |xj | ≤ rj + 1 }
and

B2 =
{
Bj
}p
j=0

∖
B1 .

By Lemma 4.2.10, the number of balls in B1 can be bounded by a number depending
only on N . So our task is to bound the number of balls in B2.

We claim that ⋃
B∈B2

B ⊆ B(0, 9) .

Observe that |xj | ≤ rj + 1 holds for every j because B0 ∩ Bj �= ∅. Thus

B2 = {Bj : rj < 4 or |xj | < rj } .
In case rj < 4 holds, we have |xj |+ rj ≤ 2rj + 1 < 9. Also, if |xj | < rj and j �= 0,
then, because the balls are members of a controlled family, we have |xj | > 1 > 4rj /5,
which yields |xj | + rj < 2rj < 5/2.

Since the balls in
{
B(xj , rj /3)

}p
j=0

are pairwise disjoint (by Lemma 4.2.9) and

since rj ≥ 1 holds for all the balls in B2, we see that B2 contains no more than
9N/(1/3)N = 33N balls. ��
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Theorem 4.2.12. Let N be a positive integer. There is a constant K = K(N) with
the following property. Given a setA ⊆ RN , a positive finite number R, and a family
B of closed balls of positive radius not exceeding R, if every point of A is the center
of at least one ball in B, then there exist B1,B2, . . . ,BK such that

A ⊆
K⋃
j=1

⋃
B∈Bj

B ,

and for each j , the balls in Bj are pairwise disjoint.

Proof. Enlarge A, if necessary, so that it contains all centers of balls in B. It will
certainly suffice to prove the result for this possibly larger set, which we will continue
to denote by A.

If we construct a controlled family B′ ⊆ B with

A ⊆
⋃
B∈B′
B , (4.3)

then we can obtain the desired conclusion by applying the argument used in the proof
of Theorem 4.2.1, but with the role of Lemma 4.2.2 filled by Lemma 4.2.11.

We proceed to construct such a controlled family. To this end, we consider the
class � of all controlled subfamilies B′ of B that also satisfy the condition that for
any B(y, s) ∈ B,

either |x − y| ≤ r holds for some B(x, r) ∈ B′,

or |x − y| > r > 4s/5 holds for every B(x, r) ∈ B′.

}
(4.4)

We note that ∅ ∈ �, and we partially order � using the relation ⊆. It is easy to see
that the union of any subclass of � that is linearly ordered by ⊆ is itself an element
of �. Therefore Zorn’s lemma5 tells us that � has a maximal element B′. It remains
to verify that B′ satisfies (4.3).

If B′ does not satisfy (4.3), then

Y = {y ∈ A : |y − x| > r holds for all B(x, r) ∈ B′} �= ∅ .
Select B(y∗, s∗) such that y∗ ∈ Y and

s∗ > (4/5) · sup{s : ∃y ∈ Y such that B(y, s) ∈ B} (4.5)

(this is where we use the fact that the radii of the balls are bounded by R < ∞).
We will now show that B′′ = B′ ∪ {B(y∗, s∗) } is controlled and satisfies the condi-
tion (4.4).

To see that B′′ is controlled, we need only consider B(x, r) ∈ B′ and B(y∗, s∗).
Since y∗ ∈ Y , (4.4) tells us that |x−y∗| > r > 4s∗/5, verifying that B′′ is controlled.

5 Max August Zorn (1906–1993).
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To check that B′′ satisfies (4.4), we consider an arbitrary B(y, s) ∈ B. If there
already exists a B(x, r) ∈ B′ for which |x − y| ≤ r holds, then (4.4) is satisfied. On
the other hand, if |x − y| > r holds for every B(x, r) ∈ B′, then y ∈ Y . We consider
B(y∗, s∗). If |y−y∗| ≤ s∗, then again (4.4) holds. Finally, we have the case in which
|y−y∗| > s∗ holds. But now we also have s∗ > 4s/5 by (4.5) and again (4.4) holds.

We have shown that B′′ ∈ � and we know that B′ is a proper subset of B′′. This
contradicts the maximality of B′, so we conclude that in fact (4.3) is satisfied. ��

Recall the notion of a Radon measure from Definition 1.2.11 in Section 1.2. Using
the Besicovitch covering theorem instead of Wiener’s covering lemma, we can prove
a result like Vitali’s (Proposition 4.1.2) for more general Radon measures:

Proposition 4.2.13. Let µ be a Radon measure on RN . Let A ⊆ RN and let B be a
family of closed balls, with positive radius, such that each point of A is the center of
arbitrarily small balls in B. Then there are disjoint balls Bj ∈ B such that

µ

(
A \

⋃
j

Bj

)
= 0 .

Proof. We shall follow the same proof strategy as for Proposition 4.1.2. We may as
well suppose that µ(A) > 0; otherwise, there is nothing to prove. We also suppose
(as we have done in the past) that A is bounded. Let K be as in Theorem 4.2.1.

Let U be a bounded open set with A ⊆ U and choose a compact set C such that
C ⊆ U and µ(A ∩C) ≥ (1/2) µ(A). We define B̃ to be the family of balls in B that
are centered in A ∩ C and contained in U .

By Theorem 4.2.1, we obtain subfamilies B̃1, B̃2, . . . , B̃K such that each B̃j is a
collection of balls that are pairwise disjoint. We have

A ∩ C ⊆
K⋃
j=1

⋃
B∈B̃j

B.

Now it is clear that

µ(A ∩ C) ≤
K∑
j=1

µ

⎛⎜⎝ ⋃
B∈B̃j
(A ∩ B)

⎞⎟⎠ .
Hence there is a particular index j0 such that

µ(A ∩ C) ≤ K · µ
⎛⎜⎝ ⋃
B∈B̃j0

(A ∩ B)
⎞⎟⎠ .

We have
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µ(A) ≤ 2µ(A ∩ C) ≤ 2K · µ
⎛⎜⎝ ⋃
B∈B̃j0

(A ∩ B)
⎞⎟⎠ .

We can choose a finite subfamily B̂ ⊆ B̃j0 such that

µ(A) ≤ 3K · µ
⎛⎝⋃
B∈B̂
(A ∩ B)

⎞⎠ .
So setting

A1 = A \
⋃
B∈B̂
B ,

we conclude that

µ(A1) ≤ µ(A) [1− 1/(3K)]
and thatA1 is contained in the bounded open setU1 = U \⋃B∈B̂ B. Now we simply
iterate the construction, just as in the proof of Proposition 4.1.2.

We may dispense with the hypothesis that A is bounded just as in the proof of
Proposition 4.1.2—making the additional observation that, since the Radon measure
µ is σ -finite, it can measure at most countably many hyperplanes parallel to the
axes with positive measure (so that we can avoid them when we chop up space into
cubes). ��

4.3 Decomposition and Differentiation of Measures

Next we turn to differentiation theorems for measures. These are useful in geometric
measure theory and also in the theory of singularities for partial differential equations.

Suppose that µ and λ are Radon measures on RN . We define the upper derivate
of µ with respect to λ at a point x ∈ RN to be

Dλ(µ, x) ≡ lim sup
r↓0

µ[B(x, r)]
λ[B(x, r)]

and the lower derivate of µ with respect to λ at a point x ∈ RN to be

Dλ(µ, x) ≡ lim inf
r↓0

µ[B(x, r)]
λ[B(x, r)] .

At a point x where the upper and lower derivates are equal, we define the derivative
of µ by λ to be

Dλ(µ, x) = Dλ(µ, x) = Dλ(µ, x) .
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Remark 4.3.1. It is convenient when calculating these derivates to declare 0/0 =
0 (this is analogous to other customs in measure theory). The derivates that we
have defined are Borel functions. To see this, first observe that x �→ µ[B(x, r)]
is continuous. This is in fact immediate from Lebesgue’s dominated convergence
theorem. Next notice that our definition of the three derivates does not change if we
restrict r to lie in the positive rationals. Since, for each fixed r , the function

x �−→ µ[B(x, r)]
λ[B(x, r)]

is continuous, and since the supremum and infimum of a countable family of Borel
functions is Borel, we are done.

Definition 4.3.2. Let µ and λ be measures on RN . We say that µ is absolutely
continuous with respect to λ if, for A ⊆ RN ,

λ(A) = 0 implies µ(A) = 0 .

It is common to denote this relation by µ$ λ.
Our next result will require the following lemma:

Lemma 4.3.3. Let µ and λ be Radon measures on RN . Let 0 < t <∞ and suppose
that A ⊆ RN .

(1) If Dλ(µ, x) ≤ t for all x ∈ A then µ(A) ≤ tλ(A).
(2) If Dλ(µ, x) ≥ t for all x ∈ A then µ(A) ≥ tλ(A).
Proof. If ε > 0 then the Radon property gives us an open setU such thatA ⊆ U and
λ(U) ≤ λ(A)+ ε. Then the Vitali theorem for Radon measures (Proposition 4.2.13)
gives disjoint closed balls Bj ⊆ U such that

µ(Bj ) ≤ (t + ε)λ(Bj ) (provided the balls are sufficiently small)

and

µ

⎛⎝A \⋃
j

Bj

⎞⎠ = 0 .

We conclude that

µ(A) ≤
∑
j

µ(Bj ) ≤ (t + ε)
∑
j

λ(Bj )

≤ (t + ε)λ(U) ≤ (t + ε)(λ(A)+ ε) .
Letting ε → 0 yields µ(A) ≤ t · λ(A). This is assertion (1). Assertion (2) may be
established in just the same way. ��
Theorem 4.3.4. Suppose that µ and λ are Radon measures on RN .
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(1) The derivative Dλ(µ, x) exists and is finite λ-almost everywhere.
(2) For any Borel set B ⊆ RN ,∫

B

Dλ(µ, x) dλ(x) ≤ µ(B) ,

with equality if µ << λ.
(3) The relationµ << λ holds if and only ifDλ(µ, x) <∞ forµ-almost all x ∈ RN .

Proof.
(1) Let 0 < r <∞ and 0 < s < t <∞. Define

As,t (r) = {x ∈ B(0, r) : Dλ(µ, x) ≤ s < t ≤ Dλ(µ, x)}
and

At(r) = {x ∈ B(0, r) : Dλ(µ, x) ≥ t} .
Now Lemma 4.3.3 implies that

t · λ(As,t (r)) ≤ µ(As,t (r)) ≤ s · λ(As,t (r)) <∞
and, for u > 0,

u · λ(Au(r)) ≤ µ(Au(r)) ≤ µ[B(0, r)] <∞ .
Since s < t , these inequalities imply that λ(As,t (r)) = 0 and λ(

⋂
u>0Au(r)) =

limu→∞ λ(Au(r)) = 0. But

RN \ {x ∈ RN : Dλ(µ, x) exists and is finite}

=
⋃
r∈N

⋃
0<s<t
s,t∈Q

As,t (r) ∪
⋃
r∈N

⋂
u>0

Au(r) . (4.6)

We see then that the set in (4.6) has λ-measure 0, and this proves assertion (1).

(2) For 1 < t <∞ and p = 0,±1,±2, . . . , we define

Bp = {x ∈ B : tp ≤ Dλ(µ, x) < tp+1} .
Then part (1) above and Lemma 4.3.3(2) yield that∫

B

Dλ(µ, x) dλ(x) =
∞∑
k=−∞

∫
Bk

Dλ(µ, x) dλ(x)

≤
∞∑
k=−∞

tk+1 λ(Bk)

≤ t ·
∞∑
k=−∞

µ(Bk)

≤ t · µ(B) .
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Letting t ↓ 1 yields then
∫
B
Dλ(µ, x) dλ(x) ≤ µ(B).

Suppose now that µ << λ. Then the sets of λ-measure 0 are of course also sets of
µ-measure zero. Part (1) tells us thatDλ(µ, x) = 1/Dµ(λ, x) > 0 forµ-almost every
x. We conclude that µ(B) =∑∞

k=−∞ µ(Bk), and an argument similar to the one just
given (using Lemma 4.3.3(2)) gives the inequality

∫
B
Dλ(µ, x) dλ(x) ≥ µ(B).

(3) By (1), we know that Dλ(µ, x) < ∞ at λ-almost every x; if µ << λ then this
also holds at µ-almost every x.

For the reverse direction in (3), assume that Dλ(µ, x) < ∞ for µ-almost all
x ∈ RN . Take A ⊆ RN with λ(A) = 0. For u = 1, 2, . . . , Lemma 4.3.3(2) gives

µ
({x ∈ A : Dλ(µ, x) ≤ u} ≤ u · λ(A) = 0 .

We conclude that µ(A) = 0. ��

Now we reach our first goal, which is a density theorem and a theorem on the
differentiation of integrals for Radon measures.

Theorem 4.3.5. Let λ be a Radon measure on RN .

(1) If A ⊆ RN is λ-measurable then the limit

lim
r↓0

λ(A ∩ B(x, r))

λ[B(x, r)]
exists and equals 1 for λ-almost every x ∈ A and equals 0 for λ-almost every
x ∈ RN \ A.

(2) If f : RN → R is locally λ-integrable, then

lim
r↓0

1

λ[B(x, r)]
∫

B(x,r)
f (x) dλ(x) = f (x)

for λ-almost every x ∈ RN .

Proof. Part (1) follows from part (2) by setting f = χ
A

. To prove (2), we may take
f ≥ 0. Define µ(A) = ∫

A
f (x) dλ(x). Then µ is a Radon measure and µ << λ.

Theorem 4.3.4(2) now yields that∫
E

Dλ(µ, x) dλ(x) = µ(E) =
∫
E

f dλ

for all Borel sets E. This clearly entails f (x) = Dλ(µ, x) for λ-almost all x ∈ RN .
That proves (2). ��

We say that two Radon measures µ and λ are mutually singular if there is a
set A ⊆ RN such that λ(A) = 0 = µ(RN \ A). Now we have a version of the
Radon–Nikodym theorem combined with the Lebesgue decomposition.
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Theorem 4.3.6. Suppose that λ and µ are finite Radon measures on RN . Then there
is a Borel function f and a Radon measure ν such that λ and ν are mutually singular
and

µ(E) =
∫
E

f dλ+ ν(E)

for any Borel set E ⊆ RN . Furthermore, µ << λ if and only if ν = 0.

Proof. Define
A = {x ∈ RN : Dλ(µ, x) <∞} .

Recalling that denotes the restriction of a measure, we set

µ1 = µ A and ν = µ (RN \ A) .
Then obviously µ = µ1+ ν, and λ and ν are mutually singular by Theorem 4.3.4(1).
Now Lemma 4.3.3(1) gives µ1 << λ; hence µ1 has the required representation by
Theorem 4.3.4(2) with f (x) = Dλ(µ, x). The last statement of the theorem is now
obvious. ��

We conclude this section with some results concerning densities of measures (see
Definition 2.2.1).

Theorem 4.3.7. Fix 0 < t . Ifµ is a Borel regular measure on RN andA ⊆ C ⊆ RN ,
then

t ≤ �∗M(µ C, x) , for all x ∈ A, implies t · SM(A) ≤ µ(C) .
Remark 4.3.8. Since spherical measure is always at least as large as Hausdorff mea-
sure, we also have the conclusion

t ≤ �∗M(µ C, x) , for all x ∈ A, implies t ·HM(A) ≤ µ(C) .
Proof. Without loss of generality, we may assume that µ(C) < ∞. It will also be
sufficient to prove that t < �∗M(µ C, x), for all x ∈ A, implies t ·SM(A) ≤ µ(C).

Fix 0 < δ. We will estimate the approximating measure SM6δ (A). This estimation
will require a special type of covering, which we construct next.

Set

B = {B(x, r) : x ∈ A, 0 < r ≤ δ, t ·�M · rM ≤ (µ C)B(x, r) } ,
B1 = {B(x, r) ∈ B : 2−1δ < r ≤ δ } ,

and let B′1 be a maximal pairwise disjoint subfamily of B1.
Assuming that B′1,B′2, . . . ,B′k have already been defined, set

Bj+1 =
{

B(x, r) ∈ B : 2−(j+1)δ < r ≤ 2−j δ, ∅ = B(x, r)
⋂ j⋃
i=1

⋃
B∈B′i
B
}
,
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and let B′j+1 be a maximal pairwise disjoint subfamily of Bj+1.
Note that the assumptionµ(C) <∞ ensures that each B′i is finite. Also note that,

by construction, any two closed balls in the family
⋃∞
i=1 B′i are disjoint, so we have

∞∑
i=1

∑
B∈B′i
(µ C)(B) = (µ C)

(⋃∞
i=1
⋃
B∈B′i B

)
≤ µ(C) <∞ . (4.7)

Claim. For each n,

A ⊆
(⋃n
i=1
⋃
B∈B′i B

) ⋃(⋃∞
i=n+1

⋃
B∈B′i B̂

)
(4.8)

holds, where, for each ball B = B(x, r), we set B̂ = B(x, 3r).
To verify the claim, considerx /∈⋃ni=1

⋃
B∈Bi B. Since

⋃n
i=1
⋃
B∈Bi B is closed,

there is B(x, r) ∈ B such that

∅ = B(x, r)
⋂⋃n

i=1
⋃
B∈B′i B .

Letting k be such that 2−k < r ≤ 2−(k−1), we see that if k > n and B(x, r) /∈ B′k ,
then

∅ �= B(x, r)
⋂⋃k

i=n+1
⋃
B∈B′i B .

Thus there is B(y, t) ∈ B′i , where n + 1 ≤ i ≤ k, such that ∅ �= B(x, r) ∩ B(y, t).
Since r ≤ 2−(k−1) and 2−k < t , we have x ∈ B(y, r + t) ⊆ B(y, 3t). The claim is
proved.

Let ε > 0 be arbitrary. By (4.7) (see also (4.8)), we choose n such that

∞∑
i=1

∑
B∈B′i
(µ C)(B) < ε .

Using the claim and letting radB denote the radius of the ball B, we estimate

SM6δ (A) ≤
⎛⎝ n∑
i=1

∑
B∈B′i
�M (radB)M

⎞⎠+
⎛⎝ ∞∑
i=n+1

∑
B∈B′i
�M (rad B̂)M

⎞⎠

=
⎛⎝ n∑
i=1

∑
B∈B′i
�M (radB)M

⎞⎠+ 3M

⎛⎝ ∞∑
i=n+1

∑
B∈B′i
�M (radB)M

⎞⎠

≤ t−1

⎛⎝ n∑
i=1

∑
B∈B′i
(µ C)B

⎞⎠+ 3M t−1

⎛⎝ ∞∑
i=n+1

∑
B∈B′i
(µ C)B

⎞⎠
≤ t−1 [µ(C)+ 3M ε ] .
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Since ε > 0 was arbitrary, we conclude that SM6δ (A) ≤ t−1 µ(C). The result follows,
since δ > 0 was also arbitrary. ��
Corollary 4.3.9. In RN , the measures SN , HN , T N , CN , GN , QNt , and INt (1 ≤ t ≤
∞) all agree with the N -dimensional Lebesgue measure LN .

Proof. Noting that βt (N,N) = 1, for 1 ≤ t ≤ ∞, and using Proposition 2.1.5, we
see that SN is the largest of the measures SN , HN , T N , CN , GN , QNt , and INt , while
IN1 is the smallest. Theorem 4.3.7 implies SN ≤ LN and (2.9) gives us IN1 ≥ LN ,
so the result follows. ��
Corollary 4.3.10. If µ is a Borel regular measure on RN , A ⊆ RN is µ-measurable,
and µ(A) <∞, then

�∗M(µ A, x) = 0

holds for SM -almost every x ∈ RN \ A.

Proof. Let j be a positive integer and set

Cj =
{
x ∈ (RN \ A) : j−1 ≤ �∗M(µ A, x)

}
.

Arguing by contradiction, suppose that SM(Cj ) is positive. Then, by the Borel
regularity of µ, we can find a closed set E ⊆ A such that

µ(A \ E) < j−1 · SM(Cj ) .
For x ∈ Cj , since E is closed and x /∈ E, we have

j−1 ≤ �∗M(µ A, x) = �∗M [µ (A \ E) , x]
= �∗M [ (µ A) (RN \ E) , x] .

So we can apply Theorem 4.3.7 (with the roles of µ, A, and B played by µ A,
RN \ E, and Cj , respectively), to conclude that

t · SM(Cj ) ≤ (µ A)(RN \ E) = µ(A \ E) ,
a contradiction.

Thus we have SM(Cj ) = 0 and the result follows. ��

4.4 The Riesz Representation Theorem

In this section, we prove a version of the Riesz representation theorem for linear
functionals. Anticipating that our main application of this theorem will be to currents
with finite mass, we have taken our linear functionals to be defined on the space of
real-valued, infinitely differentiable, compactly supported functions on RN . Stan-
dard versions of the theorem apply to linear functionals on the space of continuous,
compactly supported functions (see, for example, [Fol 84], [Roy 88], or [Rud 87]).
In [EG 92], Evans and Gariepy prove a version of the theorem for linear functionals
on the space of vector-valued, continuous, compactly supported functions.



116 4 Covering Theorems and the Differentiation of Integrals

Theorem 4.4.1 (Riesz Representation Theorem). Let D denote the set of real-
valued, infinitely differentiable, compactly supported functions on RN . IfL : D → R
is a linear functional satisfying

M = sup

{
|L(φ)| : φ ∈ D, sup

x∈RN
|φ| ≤ 1

}
<∞ , (4.9)

then there exists a Radon measure λ on RN and a λ-measurable function g : RN → R
such that

(1) λ
(
RN
)
= M ,

(2) L(φ) =
∫

RN
φ g dλ , for all φ ∈ D.

Proof. First, we note that it follows immediately from (4.9) that

|L(φ)| ≤ M · sup
x
|φ(x)| , for φ ∈ D . (4.10)

Step 1: Definition of the measure λ. We define the function λ on subsets of RN by
setting λ(∅) = 0, setting

λ(U) = sup

{
|L(φ)| : φ ∈ D, sup

x
|φ(x)| ≤ 1, suppφ ⊆ U

}
(4.11)

when U is a nonempty open set, and setting

λ(E) = inf { λ(U) : U is open, E ⊆ U } (4.12)

when E is not an open set.
Ultimately we will show that λ is a measure. It follows immediately that

λ(RN) = M , (4.13)

A ⊆ B implies λ(A) ≤ λ(B) . (4.14)

To show that µ is a measure, we first show that λ is countably subadditive on the
family of open sets. To see this, let Ui , i = 1, 2, . . . , be a sequence of open sets. We
need to show that

λ
(⋃

iUi

)
≤
∑
i

λ(Ui) (4.15)

holds. It is no loss of generality to assume that
∑
i λ(Ui) <∞.

Suppose that φ ∈ D, supx∈RN |φ| ≤ 1, and suppφ ⊆ ∪iUi . Let αi be a smooth
partition of unity for the set suppφ, subordinate to the cover {Ui}∞i=1 (see [KPk 99]).

We estimate
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∣∣L (∑ni=mφ · αi)∣∣ = ∣∣∑ni=mL (φ · αi)∣∣ ≤ n∑
i=m

|L (φ · αi)| ≤
∞∑
i=m
λ(Ui) .

Thus L(
∑
i φ · αi) and

∑
i |L(φ · αi)| are convergent. We then have

|L(φ)| = ∣∣L (φ∑iαi)∣∣ = ∣∣L (∑iφ · αi)∣∣ ≤∑
i

|L (φ · αi)| ≤
∑
i

λ(Ui) ,

and (4.15) follows.
To complete the proof that λ is a measure, we show that λ is countably subadditive

on the family of all subsets of RN . To see this, we letEi , i = 1, 2, . . . , be a sequence
of sets. We need to show that λ(

⋃
iEi) ≤∑i λ(Ei). We may suppose without loss

of generality that
∑
i λ(Ei) <∞.

Let ε > 0 be arbitrary. For each i, letUi be an open set withλ(Ui) ≤ λ(Ei)+2−iε.
Then, by (4.15), we have

λ(
⋃
iEi) ≤ λ(⋃ iUi) ≤∑

i

λ(Ui) ≤ ε +
∑
i

λ(Ei) ,

and the claim follows from the fact that ε > 0 was arbitrary.

Step 2: A bound on L. We claim that

|L(φ)| ≤ sup
x
|φ(x)| · λ

(
{x : φ(x) �= 0}

)
, for φ ∈ D . (4.16)

To see this, fix a nonzero φ ∈ D, set κ = supx |φ(x)|, and set

U = {x : φ(x) �= 0} .
Let α� : R → R, � = 1, 2, . . . , be a sequence of infinitely differentiable functions
such that

α�(t) = 0 if |t | ≤ 1/(2�),

|α�(t)| ≤ 1/� if 1/(2�) < |t | < 1/�,

α�(t) = t if 1/� ≤ |t | .
For � such that 1/� ≤ supx |φ(x)|, we have κ = supx α� ◦ φ(x) and

suppα� ◦ φ ⊆ U ,
so

|L(α� ◦ φ)| ≤ κ λ(U) .
Since supx |φ − α� ◦ φ| ≤ 1/� holds, we conclude from (4.10) that

|L(φ)− L(α� ◦ φ)| = |L(φ − α� ◦ φ)| ≤ M/�
holds. Letting �→∞, we obtain the claim.

Step 3: Showing that λ is a Radon measure. First, we claim that λ is finitely
additive on the family of open sets. To see this, let U and V be disjoint open sets.
Let ε > 0 be arbitrary. Let φU ∈ D satisfy
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• supx |φU(x)| ≤ 1,
• suppφU ⊆ U ,
• λ(U) ≤ |L(φU)| + ε.
Replacing φU by −φU if necessary, we may assume that L(φU) = |L(φU)|. Choose
φV ∈ D similarly. Then we have

λ(U)+ λ(V ) ≤ |L(φU)| + |L(φV )| + 2ε

= L(φU)+ L(φV )+ 2ε

= L(φU + φV )+ 2ε

≤ |L(φU + φV )| + 2ε ≤ λ(U ∪ V )+ 2ε ,

and since ε > 0 was arbitrary, the claim follows.
Next, we claim that λ satisfies Carathéodory’s criterion. To see this, let A and B

be sets that are separated by a positive distance.
Let ε > 0 be arbitrary. We can find an open set U with A ∪ B ⊆ U and

λ(U) ≤ λ(A ∪ B) + ε. Since A and B are at a positive distance from each other,
we may assume without loss of generality that U = UA ∪UB , where UA and UB are
disjoint open sets containing A and B, respectively. Then we have

λ(A)+ λ(B) ≤ λ(UA)+ λ(UB) = λ(UA ∪ UB) ≤ λ(A ∪ B)+ ε ,
and the claim follows from the fact that ε > 0 was arbitrary.

Since λ satisfies Carathéodory’s criterion, we know that all open sets are λ-
measurable. The fact that λ is a Radon measure follows from (4.12) and the fact
that λ(RN) <∞.

Step 4: Extension of L. Let D denote the set of functions f : RN → R such
that f is bounded and f is the pointwise limit of a sequence of functions in D. We
observe that

• D contains the characteristic function of any open subset of RN ,
• D is a vector space,
• D is closed under multiplication.

We will define the extension of L from D to D.
Let f ∈ D. Let φi be a sequence of functions in D with f = limi φi . We may

assume without loss of generality that the functions φi are uniformly bounded.
Set

κ ≡ sup
i

sup
x
φi(x) <∞ .

Fix ε > 0. For each n, set

An = {x : ∃ i, j ≥ n such that |φi(x)− φj (x)| ≥ ε } .
Then we have A1 ⊇ A2 ⊇ · · · and ∩nAn = ∅. So λ(An) ↓ 0 as n→ ∞. Fix an n
such that λ(An) < ε.

Let β : R → R be an infinitely differentiable function satisfying



4.4 The Riesz Representation Theorem 119

• β takes its values in [0, 1],
• β(t) = 1 if |t | ≥ 2ε,
• β(t) = 0 if |t | < ε.
For i, j ≥ n, we have

|L(φi − φj )| ≤
∣∣∣L[β ◦ (φi − φj ) · (φi − φj ) ] ∣∣∣
+
∣∣∣L[ (1− β ◦ (φi − φj )) · (φi − φj ) ∣∣∣

≤ 2 (κ +M) ε .
Thus we see that L(φi) forms a Cauchy sequence. We define

L
(

lim
i→∞φi

)
= lim
i→∞L(φi) .

It is easy to see that the extension of L is well-defined and linear.
The extension of L satisfies an estimate like (4.16); specifically, we claim that if

f ∈ D, then it holds that

|L(f )| ≤ sup
x
|f (x)| · λ

(
{x : f (x) �= 0}

)
. (4.17)

To see this, fix the function f ∈ D and fix a uniformly bounded sequence φi ∈ D
that converges pointwise to f . It is no loss of generality to assume that

sup
x
|f (x)| = lim

i→∞

(
sup
x
|φi(x)|

)
.

SetW = {x : f (x) �= 0}.
Let ε > 0 be arbitrary. Then we can find an open set U with W ⊆ U and

λ(U) ≤ λ(W)+ ε.
Let α� : RN → R be a sequence of infinitely differentiable functions with values

in [0, 1] such that {x : α�(x) = 1} increases to χ
U

. Then φi · αi is a uniformly
bounded sequence that converges to f .

We have

|L(φi · αi)| ≤ sup
x
|(φi · αi)(x)| · λ

(
{x : (φi · αi)(x) �= 0}

)
≤ sup
x
|f (x)| · λ

(
{x : αi(x) �= 0}

)
≤ sup
x
|f (x)| · λ(U)

≤ sup
x
|f (x)| · (λ(W)+ ε) ,
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and the claim follows.

Step 5: A family of subsets of RN . Let O denote the family of subsets A of RN for
which χ

A
∈ D. Since

χ
A∩B = χA χB ,
χ
A∪B = χA + χB − χA χB ,
χ
A\B = (1− χB) χA ,

we see that O is closed under finite unions, finite intersections, and complements.
Also every element of O is a Borel set. Note that

L(χ
U
)+ λ(U) ≥ 0

holds, for any U ∈ O.

Step 6: Definition of the measure µ. We define the function µ on subsets of RN by
setting

µ(U) = L(χ
U
)+ λ(U) , (4.18)

when U is open, and setting

µ(E) = inf {µ(U) : U is open, E ⊆ U } , (4.19)

when E is not open.
For sets U,V ∈ O with U ⊆ V , we have

L(χ
V
)+ λ(V ) = L(χ

U
+ χ
V \U)+ λ(U ∪ (V \ U) )

= L(χ
U
)+ L(χ

V \U)+ λ(U)+ λ(V \ U)

≥ L(χ
U
)+ λ(U) .

If U and V are open with U ⊆ V , then we conclude that µ(U) ≤ µ(V ). Then by
(4.19), µ is monotone on all sets.

We claim that
µ(E) = L(χ

E
)+ λ(E) , for E ∈ O . (4.20)

The argument above also shows that if U is open, E ∈ O, and E ⊆ U , then

L(χ
E
)+ λ(E) ≤ µ(U) .

Let ε > 0 be arbitrary. Then we can find an open U with E ⊆ U and

λ(U) ≤ λ(E)+ ε .
Since

λ(U) = λ(U \ E)+ λ(E) ,
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we have
λ(U \ E) ≤ ε .

By (4.17), we have
L(χ
U\E) ≤ ε ,

so

L(χ
U
)+ λ(U) = L(χ

E
)+ λ(E)+ L(χ

U\E)+ λ(U \ E) ≤ L(χE)+ λ(E)+ 2ε

holds. Thus we have
µ(E) ≤ L(χ

E
)+ λ(E)+ 2ε ,

and the claim follows from the fact that ε > 0 was arbitrary.
By (4.20), we see that we obtain the same function µ on subsets of RN if we

define µ by setting
µ(U) = L(χ

U
)+ λ(U) , (4.21)

when U ∈ O, and setting

µ(E) = inf {µ(U) : U ∈ O, E ⊆ U } , (4.22)

when E /∈ O. We shall use this alternative definition. Ultimately we will show that
µ is a measure. We note that the original definition of µ is useful for verifying that
µ is a Radon measure.

By (4.17), we see that
0 ≤ µ(E) ≤ 2λ(E)

holds, for every setE. In particular, µ is absolutely continuous with respect to λ. We
also note that if U,V ∈ O, then

µ(V ) = L(χ
V
)+ λ(V )

= L(χ
U
+ χ
V \U)+ λ(U ∪ (V \ U) )

= L(χ
U
)+ L(χ

V \U)+ λ(U)+ λ(V \ U)

≥ L(χ
U
)+ λ(U)

= µ(U)
and

µ(U ∪ V ) = L(χ
U∪V )+ λ(U ∪ V )

= L(χ
U
)+ L(χ

V
)− L(χ

U∩V )+ λ(U ∪ V )
= L(χ

U
)+ L(χ

V
)− L(χ

U∩V )+ λ(U)+ λ(V )− λ(U ∩ V )
= µ(U)+ µ(V )− µ(U ∩ V ) ≤ µ(U)+ µ(V ) ,
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so λ is finitely additive and finitely subadditive on O.

Step 7: Showing that µ is a Radon measure. First, we claim that µ is countably
subadditive on O. To see this, let a sequence {Ui} ⊆ O be given. We need to
show that

µ
(⋃

iUi

)
≤
∑
i

µ(Ui) (4.23)

holds.
Let ε > 0 be arbitrary. Set

An =
(⋃∞

i=1Ui
) \ (⋃ ni=1Ui

)
.

Then λ(An)→ 0 as n→∞. Choose n such that λ(An) < ε. We have

µ(
⋃∞
i=1Ui) = µ(

⋃ n
i=1Ui)+ L(χAn)+ λ(An)

≤ µ(⋃ ni=1Ui)+ 2ε ≤ 2ε +
∞∑
i=1

µ(Ui) ,

and the claim follows from the fact that ε > 0 was arbitrary.
We see that µ is countably subadditive by using the same argument that showed

that λ is subadditive. We can also see that Carathéodory’s criterion holds for µ in the
same way that we saw that it holds for λ, and we similarly conclude that λ is a Radon
measure.

Step 8: Obtaining the function g. By Theorem 4.3.6, there exists a Borel function
f such that

µ(E) =
∫
E

f dλ

holds, for any Borel set E. Set g = f − 1. For U ∈ O, we have

L(χ
U
) = µ(U)− λ(U) =

∫
U

(f − 1) dλ =
∫
U

g dλ .

For φ ∈ D, we obtain

L(φ) =
∫
φ g dλ

by uniformly approximating φ by simple functions of the form
∑
i αiχEi

, with Ei ∈
O, and applying (4.17). ��

4.5 Maximal Functions Redux

It is possible to construe the Hardy–Littlewood maximal function in the more general
context of measures.
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Definition 4.5.1. Let µ be a Radon measure on RN . If f is a µ-measurable function
and x ∈ RN then we define

Mµf (x) = sup
r>0

1

µ[B(x, r)]
∫

B(x,r)
|f (t)| dµ(t) .

Further, and more generally, if ν is a Radon measure on RN then we define

Mµν(x) = sup
r>0

ν[B(x, r)]
µ[B(x, r)] .

Finally, it is sometimes useful to have the noncentered maximal operator M̃µ
defined by

M̃µf (x) = sup
B(z,r)%x

1

µ[B(z, r)]
∫

B(z,r)
|f (t)| dµ(t) .

A similar definition may be given for the maximal function of a Radon measure.

The principal result about these maximal functions is the following:

Theorem 4.5.2. The operatorMµ is weak type (1, 1) in the sense that

µ
{
x ∈ RN : Mµν(x) > s

}
≤ C · ν(R

N)

s
.

In particular, if f ∈ L1(µ) then

µ
{
x ∈ RN : Mµf (x) > s

}
≤ C · ‖f ‖L1

s
.

In case the measure µ satisfies the enlargement condition µ[B(x, 3r)] ≤ c ·
µ[B(x, r)], then we have

µ
{
x ∈ RN : M̃µν(x) > s

}
≤ c · s−1 · ν

{
x ∈ RN : M̃µν(x) > s

}
.

The proof of this result follows the same lines as the development of Proposi-
tion 4.1.4, and we omit the details. A full account may be found in [Mat 95].




