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Basics

Our purpose in this chapter will be to establish notation and terminology. The reader
should already be acquainted with most of the concepts discussed and thus might
wish to skim the chapter or skip ahead, returning if clarification is needed.

1.1 Smooth Functions

The set of real numbers will be denoted by R. In this book, we will be concerned with
questions of geometric analysis in an N -dimensional Euclidean space. That is, we
will work in the space RN of ordered N -tuples of real numbers. The inner product
x · y of two elements x, y ∈ RN is defined by setting

x · y =
N∑
i=1

xiyi ,

where
x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN) .

Of course, the inner product is a symmetric, bilinear, positive definite function on
RN × RN . The norm of the element x ∈ RN , denoted by |x|, is defined by setting

|x| = √x · x , (1.1)

as we may since x ·x is always nonnegative. The standard orthonormal basis elements
for RN will be denoted by ei , i = 1, 2, . . . , N . Specifically, ei is the vector with
N entries, all of which are 0’s except the ith entry, which is 1. For computational
purposes, elements of RN should be considered column vectors. Column vectors can
waste space on the page, and so we sometimes take the liberty of using row vector
notation, as we did above.

The open ball of radius r > 0 centered at x will be denoted by B(x, r) and is
defined by setting
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B(x, r) = { y ∈ RN : |x − y| < r } .
The closed ball of radius r ≥ 0 centered at x will be denoted by B(x, r) and is defined
by setting

B(x, r) = { y ∈ RN : |x − y| ≤ r } .
The standard topology on the space RN is defined by letting the open sets consist

of all arbitrary unions of open balls. The closed sets are then defined to be the
complements of the open sets. For any subset A of RN (or of any topological space),

there is a largest open set contained inA. That set, denoted by Å, is called the interior
of A. Similarly, A is contained in a smallest closed set containing A and that set,
denoted by A, is called the closure of A. The topological boundary of A, denoted by
∂A, is defined by setting

∂A = A \ Å .
Remark 1.1.1.

(1) At this juncture, the only notion of boundary in sight is that of the topological
boundary. Since later we shall be led to define another notion of boundary, we
are taking care to emphasize that the present definition is the topological one.
When it is clear from context that we are discussing the topological boundary,
then we will refer simply to the “boundary of A.’’

(2) The notations Å and A for the interior and closure, respectively, of the set A
are commonly used but are not universal. A variety of notations is used for the
topological boundary of A, and ∂A is one of the more popular choices.

Let U ⊆ RN be any open set. A function f : U → RM is said to be continuously
differentiable of order k, or Ck , if f possesses all partial derivatives of order not
exceeding k and all of those partial derivatives are continuous; we write f ∈ Ck or
f ∈ Ck(U) if U is not clear from context. If the range of f is also not clear from
context, then we write (for instance) f ∈ Ck(U ;RM).When k = 1, we simply say
that f is continuously differentiable. The function f is said to be C∞, or infinitely
differentiable, provided that f ∈ Ck for every positive k. The function f is said to be
inCω, or real analytic, provided that it has a convergent power series expansion about
each point of U.We direct the reader to [KPk 02] for matters related to real analytic
functions. We also extend the preceding notation by using f ∈ C0 to indicate that f
is continuous.

The order of differentiability of a function is referred to as its smoothness. By a
smooth function, one typically means an f ∈ C∞, but sometimes one may mean an
f ∈ Ck , where k is an integer as large as turns out to be needed.

The support of a continuous function f : U → RM, denoted by supp f , is the
closure of the set of points where f �= 0.We will use Ckc to denote the Ck functions
with compact support; here k can be a nonnegative integer or∞.

Let Z denote the integers, Z+ the nonnegative integers, and N the positive integers.
A multi-index α is an element of (Z+)N , the Cartesian product of N copies of Z+.
If α = (α1, α2, . . . , αN) is a multi-index and x = (x1, x2, . . . , xN) is a point in RN,
then we introduce the following standard notation:
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xα ≡ (x1)
α1(x2)

α2 · · · (xN)αN ,

|α| ≡ α1 + α2 + · · · + αN ,

∂ |α|

∂xα
≡ ∂

α1

∂x
α1
1

∂α2

∂x
α2
2

· · · ∂
αN

∂x
αN
N

,

α! ≡ (α1!)(α2!) · · · (αN !) .
With this notation, a function f on U is Ck if (∂ |α|/∂xα)f exists and is continuous
for all multi-indices α with |α| ≤ k.

We will sometimes find it convenient to use the alternative notations

Dxif =
∂f

∂xi
and Dxi xj f =

∂2f

∂xi∂xj

for the partial derivatives of the function f (which may be a real-valued or vector-
valued function).

Definition 1.1.2. If f is defined in a neighborhood of p ∈ RN , and if f takes values
in RM , then we say that f is differentiable at p when there exists a linear function
Df (p) : RN → RM such that

lim
x→p

|f (x)− f (p)− 〈Df (p), x − p〉|
|x − p| = 0 . (1.2)

In case f is differentiable at p, we call Df (p) the differential of f at p.

Advanced calculus tells us that if f is differentiable as in Definition 1.1.2, then
the first partial derivatives of f exist and that we can evaluate the differential applied
to the vector v using the equation

〈Df (p), v〉 =
N∑
i=1

vi
∂f

∂xi
(p) =

N∑
i=1

(ei · v) ∂f
∂xi
(p) , (1.3)

where v = ∑ni=1 viei . The Jacobian matrix1 of f at p is denoted by Jac f and is
defined by

Jac f ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1

∂x1
(p)

∂f1

∂x2
(p) · · · ∂f1

∂xN
(p)

∂f2

∂x1
(p)

∂f2

∂x2
(p) · · · ∂f2

∂xN
(p)

...
...

...
∂fM

∂x1
(p)
∂fM

∂x2
(p) · · · ∂fM

∂xN
(p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

1 Carl Gustav Jacobi (1804–1851).
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For v ∈ RN , we have

〈Df (p), v〉 = [Jac f ] v , (1.4)

where on the right-hand side of (1.4) the vector v is represented as a column vector
and Jac f operates on v by matrix multiplication. Equation (1.4) is simply another
way of writing (1.3). We will sometimes find it convenient to use the notation

Dvf (p) = 〈Df (p), v〉 .

We will denote the collection of allM-by-N matrices with real entries by

MM,N .

The Hilbert–Schmidt norm2 on MM,N is defined by setting

∣∣∣ (ai,j ) ∣∣∣ =
⎛⎝ M∑
i=1

N∑
j=1

(ai,j )
2

⎞⎠1/2

for
(
ai,j
) ∈MM,N . The standard topology on MM,N is that induced by the Hilbert–

Schmidt norm. Of course, the mapping

(
ai,j
) �−→ M∑

i=1

N∑
j=1

ai,j ei+(j−1)M

from MM,N to RMN is a homeomorphism.
The function sending a point to its differential, when the differential exists, takes its

values in the space of linear transformations from RN to RM , a space often denoted
by Hom(RN,RM). The space Hom(RN,RM) can be identified with MM,N by
representing each linear transformation by an M × N matrix. The Jacobian matrix
provides that representation for the differential of a function.

The standard topology on Hom(RN,RM) is that induced by the Hilbert–Schmidt
norm on MM,N and the identification of Hom(RN,RM) with MM,N . On a finite-
dimensional vector space, all norms induce the same topology, so, in particular, the
same topology is given by the mapping norm on Hom(RN,RM) defined by

‖L‖ = sup{ |L(v)| : v ∈ RN, |v| ≤ 1 } .

We see that f : U → RM is C1 if and only if

p �−→ Df (p)

is a continuous mapping from U into Hom(RN,RM).

2 David Hilbert (1862–1943), Erhard Schmidt (1876–1959).
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Definition 1.1.3. If f ∈ Ck(U,RM), k = 1, 2, . . . , we define the kth differential of
f at p, denoted by Dkf (p), to be the k-linear RM -valued function given by

〈Dkf (p), (v1, v2, . . . , vk)〉 =
N∑

i1,i2,...,ik=1

k∏
j=1

(eij ·vj )
∂k

∂xi1∂xi2 · · · ∂xik
f (p) . (1.5)

Note that in the case k = 1, equations (1.3) and (1.5) agree. Also note that the
equality of mixed partial derivatives guarantees thatDkf (p) is a symmetric function.
The interested reader may consult [Fed 69, 1.9, 1.10, 3.1.11] to see the kth differential
placed in the context of the symmetric algebra over a vector space.

Finally, note that in case k > 1, one can show inductively that (1.5) agrees with
the value of the differential at p of the function

〈Dk−1f (·), (v1, v2, . . . , vk−1)〉
applied to the vector vk , that is,

〈Dkf (p), (v1, v2, . . . , vk)〉 = 〈D 〈Dk−1f (p), (v1, v2, . . . , vk−1)〉, vk〉
holds.

In caseM = 1, one often identifies the differential of f with the gradient vector
of f , denoted by grad f and defined by setting

grad f =
N∑
i=1

∂f

∂xi
ei .

Similarly, the second differential of f can be identified with the Hessian matrix3 of
f , denoted by Hess (f ) and defined by

Hess (f ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2f

∂x2
1

∂2f

∂x1 ∂x2
. . .

∂2f

∂x1 ∂xN

∂2f

∂x2 ∂x1

∂2f

∂x2
2

. . .
∂2f

∂x2 ∂xN
...

...
...

∂2f

∂xN ∂x1

∂2f

∂xN ∂x2
. . .

∂2f

∂x2
N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If f is suitably smooth, one has

v · grad f = 〈Df, v〉
and

v · ([Hess (f )]w) = 〈D2f, (v,w)〉 ,
for vectors v and w represented as columns and where [Hess (f )]w indicates matrix
multiplication.

3 Ludwig Otto Hesse (1811–1874).
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1.2 Measures

Standard references for basic measure theory are [Fol 84], [Roy 88], and [Rud 87].
Since there are variations in terminology and notation among authors, we will briefly
review measure theory. We shall not provide proofs of most statements, but instead
refer the reader to [Fol 84], [Roy 88], and [Rud 87] for details.

Definition 1.2.1. Let X be a nonempty set.

(1) By a measure on X we mean a function µ defined on all subsets of X satisfying
the conditions µ(∅) = 0, A ⊆ B implies µ(A) ≤ µ(B), and

µ

(⋃
A∈F
A

)
≤
∑
A∈F
µ(A) if F is collection of subsets of X

with card(F) ≤ ℵ0. (1.6)

(2) If a set A ⊆ X satisfies

µ(E) = µ(E ∩ A)+ µ(E \ A) for all E ⊆ X, (1.7)

then we say that A is µ-measurable.

The condition (1.6) is called countable subadditivity. Since the empty union is
the empty set and the empty sum is zero, countable subadditivity implies µ(∅) = 0.
Nonetheless, it is worth emphasizing that µ(∅) = 0 must hold.

Proposition 1.2.2. Let µ be a measure on the nonempty set X.

(1) If µ(A) = 0, then A is µ-measurable.
(2) If A is µ-measurable and B ⊆ X, then

µ(A ∪ B) = µ(A)+ µ(B)− µ(A ∩ B) .
Definition 1.2.3. Let X be a nonempty set. By a σ -algebra on X is meant a family
M of subsets of X such that

(1) ∅ ∈M, X ∈M,
(2) M is closed under countable unions,
(3) M is closed under countable intersections, and
(4) M is closed under taking complements in X.

Theorem 1.2.4. If µ is a measure on the nonempty set X, then the family of µ-
measurable sets forms a σ -algebra.

Theorem 1.2.5. Let µ be a measure on the nonempty set X.

(1) If F is an at most countable family of pairwise disjoint µ-measurable sets, then

µ

(⋃
A∈F
A

)
=
∑
A∈F
µ(A) .
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(2) If A1 ⊆ A2 ⊆ A3 ⊆ · · · is a nondecreasing family of µ-measurable sets, then

µ

( ∞⋃
i=1

Ai

)
= lim
i→∞µ(Ai) .

(3) If B1 ⊇ B2 ⊇ B3 ⊇ · · · is a nonincreasing family of µ-measurable sets and
µ(B1) <∞, then

µ

( ∞⋂
i=1

Bi

)
= lim
i→∞µ(Bi) .

Remark 1.2.6. The conclusion (1) of Theorem 1.2.5 is called countable additivity.
Many authors prefer the term outer measure for the countably subadditive functions
we have called measures. Those authors define a measure to be a countably additive
function on a σ -algebra. But if M is a σ -algebra and

m :M→ {t : 0 ≤ t ≤ ∞}
is a countably additive function, then one can define µ(A) for any A ⊆ X by setting

µ(A) = inf { m(E) : A ⊆ E ∈M } .
With µ so defined, we see that µ(A) = m(A) holds whenever A ∈M and that every
set in M is µ-measurable. Thus it is no loss of generality to assume from the outset
that a measure is defined on all subsets ofX. It should be stressed that even though the
measure is defined on all subsets of X, some subsets of X will not be µ-measurable.

The notion of a regular measure, defined next, gives additional useful structure.

Definition 1.2.7. A measure µ on a nonempty set X is regular if for each set A ⊆ X
there exists a µ-measurable set B with A ⊆ B and µ(A) = µ(B).

One consequence of the additional structure available when one is working with
a regular measure is given in the next lemma. The lemma is easily proved using the
analogous result for µ-measurable sets, i.e., Theorem 1.2.5(2).

Lemma 1.2.8. Let µ be a regular measure on the nonempty set X. If a sequence of
subsets {Aj } of X satisfies A1 ⊆ A2 ⊆ · · · , then

µ

⎛⎝ ∞⋃
j=1

Aj

⎞⎠ = lim
j→∞µ(Aj ) .

Definition 1.2.9. If X is a topological space, then the Borel sets4 are the elements of
the smallest σ -algebra containing the open sets.

4 Émile Borel (1871–1956).
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For a measure on a topological space, it is evident that the measurability of all
the open sets implies the measurability of all the Borel sets, but it is typical for the
Borel sets to be a proper subfamily of the measurable sets. For instance, the sets in
RN known as Suslin sets5 or (especially in the descriptive set theory literature) as
analytic sets are µ-measurable for measures µ of interest in geometric analysis. Any
continuous image of a Borel set is a Suslin set, so every Borel set is ipso facto a Suslin
set. Suslin sets are discussed in Section 1.7.

For the study of geometric analysis, the measures of interest always satisfy the
following condition of Borel regularity.

Definition 1.2.10. Let µ be a measure on the topological space X. We say that µ is
Borel regular if every open set is µ-measurable and if for each A ⊆ X, there exists
a Borel set B ⊆ X with A ⊆ B and µ(A) = µ(B).

Often we will be working in the more restrictive class of Radon measures6 defined
next.

Definition 1.2.11. Suppose µ is a measure on a locally compact Hausdorff space7 X.
We say that µ is a Radon measure if the following conditions hold:

(1) Every compact set has finite µ measure.
(2) Every open set is µ-measurable, and if V ⊆ X is open, then

µ(V ) = sup{ µ(K) : K is compact and K ⊆ V } .
(3) For every A ⊆ X,

µ(A) = inf { µ(V ) : V is open and A ⊆ V } .
Definition 1.2.12. Let X be a metric space with metric �.

(1) For a set A ⊆ X, we define the diameter of A by setting

diamA = sup{ �(x, y) : x, y ∈ A } .
(2) For sets A,B ⊆ X, we define the distance between A and B by setting

dist(A,B) = inf { �(a, b) : a ∈ A, b ∈ B } .
IfA is the singleton set {a0}, then we will abuse the notation by writing dist(a0, B)

instead of dist({a0}, B).
When one is working in a metric space, a convenient tool for verifying the mea-

surability of the open sets is often provided by Carathéordory’s criterion,8 which we
now introduce.

5 Mikhail Yakovlevich Suslin (1894–1919).
6 Johann Radon (1887–1956).
7 Felix Hausdorff (1869–1942).
8 Constantin Carathéodory (1873–1950).
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Theorem 1.2.13 (Carathéodory’s criterion). Supposeµ is a measure on the metric
space X. All open subsets of X are µ-measurable if and only if

µ(A)+ µ(B) ≤ µ(A ∪ B) (1.8)

holds whenever A,B ⊆ X with 0 < dist(A,B).

Proof. First, suppose all open subsets ofX are µ-measurable and let A,B ⊆ X with
0 < dist(A,B) be given. Setting d = dist(A,B), we can define the open set

V = { x ∈ X : dist(x,A) < d/2 } .
Since V is open, thus µ-measurable, we have

µ(A ∪ B) = µ[(A ∪ B) ∩ V ] + µ[(A ∪ B) \ V ] = µ(A)+ µ(B) ,
so (1.8) holds.

Conversely, let V ⊆ X be open and suppose (1.8) holds whenever A,B ⊆ X
with 0 < dist(A,B). Let E ⊆ X be an arbitrary set. Without loss of generality, we
may suppose that µ(E) <∞ holds. Using (1.8) inductively, we see that

µ(E) ≥
n∑
i=1

µ( {x ∈ E : 1/(2i + 1) ≤ dist(x, V ) < 1/(2i)} )

and likewise,

µ(E) ≥
n∑
i=1

µ( {x ∈ E : 1/(2i + 2) ≤ dist(x, V ) < 1/(2i + 1)} ) .

Since n was arbitrary, we conclude that

2µ(E) ≥
∞∑
i=1

µ( {x ∈ E : 1/(i + 1) ≤ dist(x, V ) < 1/i} ) ,

so

0 = ∈n→∞
∞∑
i=n
µ( {x ∈ E : 1/(i + 1) ≤ dist(x, V ) < 1/i} )

≥ µ( {x ∈ E : 0 < dist(x, V ) < 1/n} ) .
Again using (1.8), we see that

µ(E) ≥ µ(E ∩ V )+ µ( {x ∈ E : 1/n ≤ dist(x, V )} )
≥ µ(E ∩ V )+ µ(E \ V )− µ( {x ∈ E : 0 < dist(x, V ) < 1/n} ) ,

and letting n→∞, we obtain

µ(E) ≥ µ(E ∩ V )+ µ(E \ V ) .
Since E ⊆ X was arbitrary, V is µ-measurable. ��
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1.2.1 Lebesgue Measure

To close out this section, we define Lebesgue measure9 on R. Other measures will
be defined in Chapter 2.

Definition 1.2.14. For A ⊆ R, the (one-dimensional) Lebesgue measure of A is
denoted by L1(A) and is defined by setting L1(A) equal to

inf
{ ∑
I∈I

length(I ) : I is a family of bounded open intervals, A ⊆
⋃
I∈I
I
}
. (1.9)

Here, of course, if I = (a, b) is an open interval, then length(I ) = b − a.
It is easy to see that L1 is a measure, and it is easy to apply Carathéodory’s criterion

(by dividing long intervals into short intervals) to see that all open sets in the reals
are L1 measurable. The purpose of the Lebesgue measure is to extend the notion of
length to more general sets. It may not be obvious that the result of the construction
agrees with the ordinary notion of length, so we confirm that fact next.

Lemma 1.2.15. If a bounded, closed interval [a, b] is contained in the union of
finitely many nonempty, bounded, open intervals, (a1, b1), (a2, b2), . . . , (an, bn), then
it holds that

b − a ≤
n∑
i=1

(bi − ai) . (1.10)

Proof. Noting that the result is obvious when n = 1, we argue by induction on n by
supposing that the result holds for all bounded, closed intervals and all n less than or
equal to the natural number N .

Consider

[a, b] ⊆
N+1⋃
i=1

(ai, bi) .

At least one of the intervals contains a, so by renumbering the intervals if need be,
we may suppose a ∈ (aN+1, bN+1). Also, we may suppose bN+1 < b, because
b ≤ bN+1 would give us b − a < bN+1 − aN+1.

We have

[bN+1, b] ⊆
N⋃
i=1

(ai, bi) ,

and thus, by the induction hypothesis,

b − bN+1 ≤
N∑
i=1

(bi − ai) ,

so

9 Henri Léon Lebesgue (1875–1941).
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b−a ≤ (bN+1−aN+1)+(b−bN+1) ≤ (bN+1−aN+1)+
N∑
i=1

(bi−ai) =
N+1∑
i=1

(bi−ai) ,

as required. ��
Corollary 1.2.16. The Lebesgue measure of the closed, bounded interval [a, b] equals
b − a.
Proof. Clearly, we have L1([a, b]) ≤ b− a. To obtain the reverse inequality, we ob-
serve that, if [a, b] is covered by a countable family of open intervals, then by com-
pactness, [a, b] is covered by finitely many of the open intervals. It then follows from
the lemma that the sum of the lengths of the covering intervals exceeds b − a. ��

Lebesgue measure is the unique translation-invariant measure on R that assigns
measure 1 to the unit interval. The next example shows us that not every set is
L1-measurable.

Example 1.2.17. Let Q denote the rational numbers. Notice that for each a ∈ R, the
set Xa defined by

Xa = { a + q : q ∈ Q }
intersects the unit interval [0, 1]. Of course, if a1 − a2 is a rational number, then
Xa1 = Xa2 , but also the converse is true: if Xa1 = Xa2 , then a1 − a2 ∈ Q.

By the axiom of choice, there exists a set C such that

C ∩ [0, 1] ∩Xa
has exactly one element for every a ∈ R. By the way C is defined, the sets C − q =
{ c−q : c ∈ C }, q ∈ [0, 1]∩Q, must be pairwise disjoint. Because L1 is translation-
invariant, all the sets C− q have L1 measure equal to L1(C), and if one of those sets
is L1-measurable, then all of them are.

Now, if t ∈ [0, 1], then there is c ∈ [0, 1] ∩ Xt , that is, c = t + q with q ∈ Q.
Equivalently, we can write q = c − t , so we see that −1 ≤ q ≤ 1 and t ∈ C − q.
Thus we have

[0, 1] ⊆
⋃

q∈[−1,1]∩Q

(C − q) ⊆ [−1, 2] (1.11)

and the sets in the union are all pairwise disjoint.
If C were L1-measurable, then the left-hand containment in (1.11) would tell us

that L1(C) > 0, while the right-hand containment would tell us that L1(C) = 0.
Thus we have a contradiction. We conclude that C is not L1-measurable. ��

The construction in the Example 1.2.17 is widely known. Less well known is
the general fact that if µ is a Borel regular measure on a complete, separable metric
space such that there are sets with positive, finite measure and with the property that
no point has positive measure, then there must exist a set that is not µ-measurable
(see [Fed 69, 2.2.4]).

The construction of nonmeasurable sets requires the use of the axiom of choice.
In fact, Robert Solovay has used the method of forcing (originally developed by Paul
Cohen (1934–2007)) to construct a model of set theory in which the axiom of choice
is not valid and in which every set of reals is Lebesgue measurable (see [Sov 70]).
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1.3 Integration

The definition of the integral in use in the mid 1800s was that given byAugustin-Louis
Cauchy (1789–1850). Cauchy’s definition is applicable to continuous integrands,
and easily extends to piecewise continuous integrands, but does not afford more
generality. This lack of generality in the definition of the definite integral compelled
Bernhard Riemann (1826–1866) to clarify the notion of an integrable function for his
investigation of the representation of functions by trigonometric series.

Recall that Riemann’s definition of the integral of a function f : [a, b] → R is
based on the idea of partitioning the domain of the function into sub-intervals. This
approach is mandated by the absence of a measure of the size of general subsets of the
domain. Measure theory takes away that limitation and allows the definition of the
integral to proceed by partitioning the domain via the inverse images of intervals in
the range. While this change of the partitioning may seem minor, the consequences
are far-reaching and have provided a theory that continues to serve us well.

1.3.1 Measurable Functions

Definition 1.3.1. Let µ be a measure on the nonempty set X.

(1) The term µ-almost can serve as an adjective or adverb in the following ways:
(a) Let P(x) be a statement or formula that contains a free variable x ∈ X. We

say that P(x) holds for µ-almost every x ∈ X if

µ
(
{ x ∈ X : P(x) is false }

)
= 0 .

IfX is understood from context, then we simply say that P(x) holdsµ-almost
everywhere.

(b) Two sets A,B ⊆ X are µ-almost equal if their symmetric difference has

µ-measure zero, i.e., µ
[
(A \ B) ∪ (B \ A)

]
= 0.

(c) Two functions f and g, each defined for µ-almost every x ∈ X, are said to
be µ-almost equal if f (x) = g(x) holds for µ-almost every x ∈ X.

(2) Let Y be a topological space. By a µ-measurable, Y -valued function we mean
a Y -valued function f defined for µ-almost every x ∈ X such that the inverse
image of any open subset U of Y is a µ-measurable subset of X, that is,
(a) f : D ⊆ X→ Y ,
(b) µ(X \D) = 0, and
(c) f−1(U) is µ-measurable whenever U ⊆ Y is open.

Remark 1.3.2.

(1) For the purposes of measure and integration, two functions that are µ-almost
equal are equivalent. This defines an equivalence relation.

(2) It is no loss of generality to assume that a µ-measurable function is defined at
every point of X. In fact, suppose f is a µ-measurable, Y -valued function with
domain D and let y0 be any element of Y . We can define the µ-measurable



1.3 Integration 13

function f̃ : X→ Y by setting f̃ = f on D and f̃ (x) = y0, for all x ∈ X \D.
Then f and f̃ are µ-almost equal and f̃ is defined at every point of X.

Next we state two classical theorems concerning measurable functions due to
Egorov10 and Luzin.11

Theorem 1.3.3 (Egorov’s theorem). Let µ be a measure on X and let f1, f2, . . .

be real-valued, µ-measurable functions. If A ⊆ X with µ(A) <∞,

lim
n→∞ fn(x) = g(x) exists for µ-almost every x ∈ A,

and ε > 0, then there exists a µ-measurable set B, with µ(A \ B) < ε, such that fn
converges uniformly to g on B.

Theorem 1.3.4 (Luzin’s theorem). Let X be a metric space and let µ be a Borel
regular measure onX. If f : X→ R isµ-measurable,A ⊆ X isµ-measurable with
µ(A) < ∞, and ε > 0, then there exists a closed set C ⊆ A, with µ(A \ C) < ε,
such that f is continuous on C.

One reason for the usefulness of the notion of a µ-measurable function is that
the set of µ-measurable functions is closed under operations of interest in analysis
(including limiting operations). This usefulness is further enhanced by using the
extended real numbers, which we define next.

Definition 1.3.5. Often we will allow a function to take the values +∞ = ∞ and
−∞. To accommodate this generality, we define the extended real numbers

R = R ∪ {∞, −∞} .
The standard ordering on R is defined by requiring

x ≤ y if and only if

(x, y) ∈
(
{−∞} × R

) ⋃ (
R× {∞}

) ⋃ { (x, y) ∈ R× R : x ≤ y } .

The operation of addition is extended by requiring that it agree with values already
defined for the real numbers, by demanding that the operation be commutative, and
by assigning the values given in the following table:

+ −∞ x ∈ R +∞
+∞ undefined +∞ +∞
−∞ −∞ −∞ undefined

The operation of multiplication is extended by requiring that it agree with values
already defined for the real numbers, by demanding that the operation be commutative,
and by assigning the values given in the following table:

10 Dmitriı̆ Fedorovich Egorov (1869–1931).
11 Nikolai Nikolaevich Luzin (Nicolas Lusin) (1883–1950).
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× −∞ ≤ x < 0 0 0 < x ≤ +∞
+∞ −∞ undefined +∞
−∞ +∞ undefined −∞

The topology on R has as a basis the finite open intervals and the intervals of the form
[−∞, a) and (a,∞] for a ∈ R.

The extension of each arithmetic operation given above is maximal subject to
the requirement that the operation remain continuous. Nonetheless, when defining
integrals, it is convenient to extend the above definitions by adopting the convention
that

0 · ∞ = 0 · (−∞) = 0 .

Theorem 1.3.6. Let µ be a measure on the nonempty set X.

(1) If f and g are µ-measurable, extended-real-valued functions and if f + g (re-
spectively, fg) is defined µ-almost everywhere, then f + g (respectively, fg) is
µ-measurable.

(2) If f and g are µ-measurable, extended-real-valued functions, then the functions
max{f, g} and min{f, g} are µ-measurable.

(3) If f1, f2, . . . are µ-measurable, extended-real-valued functions, then the func-
tions lim supn→∞ fn and lim inf n→∞ fn are µ-measurable.

1.3.2 The Integral

Definition 1.3.7. For a function f : X → R we define the positive part of f to be
the function f+ : X→ [0,∞] defined by setting

f+(x) =
{
f (x) if f (x) > 0,
0 otherwise.

Similarly, the negative part of f is denoted by f− and is defined by setting

f−(x) =
{
f (x) if f (x) < 0,
0 otherwise.

Definition 1.3.8.

(1) The characteristic function of S ⊆ X is the function with domain X defined, for
x ∈ X, by setting

χ
S
(x) =

{
1 if x ∈ S,
0 if x /∈ S.

(2) By a simple function is meant a linear combination of characteristic functions of
subsets of X; that is, f is a simple function if it can be written in the form

f =
n∑
i=1

ai χAi
, (1.12)

where the numbers ai can be real or complex, but only finite values are allowed
(that is, ai �= ±∞).
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The nonnegative, µ-measurable, simple functions are of particular interest for
integration theory.

Lemma 1.3.9. Let µ be a measure on the nonempty set X. If f : X → [0,∞]
is µ-measurable, then there exists a sequence of µ-measurable, simple functions
hn : X→ [0,∞], n = 1, 2, . . . , such that

(1) 0 ≤ h1 ≤ h2 ≤ · · · ≤ f , and
(2) lim
n→∞hn = f (x), for all x ∈ X.

Proof. We can set

hn = nχBn +
n2n−1∑
i=1

i · 2−n χ
Ai
,

where Bn = f−1
(
[n,∞]

)
, and

Ai = f−1
(
[i · 2−n, (i + 1) · 2−n)

)
, i = 1, 2, . . . , n2n − 1 . ��

Definition 1.3.10. Let µ be a measure on the nonempty set X. If f : X → R is µ-
measurable, then the integral of f with respect to µ or, more simply, the µ-integral
of f (or, more simply yet, the integral of f when the measure is clear from context)
is denoted by ∫

f dµ =
∫
X

f (x) dµ(x)

and is defined as follows:

(1) In case f is a nonnegative, simple function written as in (1.12) with each Ai
µ-measurable, we set ∫

f dµ =
n∑
i=1

ai µ(Ai) . (1.13)

(2) In case f is a nonnegative function, we set∫
f dµ = sup

{ ∫
h dµ : 0 ≤ h ≤ f, h simple, µ-measurable

}
. (1.14)

(3) In case at least one of
∫
f+ dµ and

∫
f− dµ is finite, so that

∫
f+ dµ−

∫
f− dµ

is defined, we set ∫
f dµ =

∫
f+ dµ−

∫
f− dµ . (1.15)
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(4) In case both
∫
f+ dµ and

∫
f− dµ are infinite, the quantity

∫
f dµ is unde-

fined.

Definition 1.3.11.

(1) To integrate f over a subsetA ofX, we multiply f by the characteristic function
of A, that is, ∫

A

f dµ =
∫
f · χ

A
dµ .

(2) The definition of
∫
f dµ extends to complex-valued, respectively RN -valued,

functions by separating f into real and imaginary parts, respectively components,
and combining the resulting real-valued integrals using linearity.

(3) If
∫
|f | dµ is finite, then we say that f is µ-integrable (or simply integrable if

the measure µ is clear from context). In particular, f is µ-integrable if and only
if |f | is µ-integrable.

Remark 1.3.12.

(1) By a Lebesgue integrable function is meant an L1-integrable function in the
terminology of Definition 1.3.11(3).

(2) The theories of Riemann integration and Lebesgue integration are connected by
the following theorem:

A bounded, real-valued function on a closed interval is Riemann inte-
grable if and only if the set of points at which the function is discontinuous
has Lebesgue measure zero.

We will not prove this result. A proof can be found in [Fol 84, Theorem (2.28)].
(3) The reader should be aware that the terminology in [Fed 69] is different from that

which we use: In [Fed 69] a function is said to be “µ integrable’’ if
∫
f dµ is

defined, the values +∞ and −∞ being allowed, and “µ summable’’ if
∫ |f | dµ

is finite.

The following basic facts hold for integration of nonnegative functions.

Theorem 1.3.13. Let µ be a measure on the nonempty set X. Suppose f, g : X →
[0,∞] are µ-measurable.

(1) If A ⊆ X is µ-measurable, and f (x) = 0 holds for µ-almost all x ∈ A, then∫
A

f dµ = 0 .

(2) If A ⊆ X is µ-measurable and µ(A) = 0, then∫
A

f dµ = 0 .
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(3) If 0 ≤ c <∞, then ∫
(c · f ) dµ = c

∫
f dµ .

(4) If f ≤ g, then ∫
f dµ ≤

∫
g dµ .

(5) If A ⊆ B ⊆ X are µ-measurable, then∫
A

f dµ ≤
∫
B

f dµ .

Proof. Conclusions (1)–(4) are immediate from the definitions, and conclusion (5)
follows from (4). ��

Of course, it is essential that the equation
∫
(f +g) dµ = ∫ f dµ+ ∫ g dµ hold.

Unfortunately, this equation is not an immediate consequence of the definition. To
prove it we need the next lemma, which is a weak form of Lebesgue’s monotone
convergence theorem.

Lemma 1.3.14. Let µ be a measure on the nonempty set X. If f : X → [0,∞] is
µ-measurable and 0 ≤ h1 ≤ h2 ≤ · · · ≤ f is a sequence of simple, µ-measurable
functions with lim

n→∞hn = f , then

lim
n→∞

∫
hn dµ =

∫
f dµ .

Proof. The inequality limn→∞
∫
hn dµ ≤

∫
f dµ is immediate from the definition

of the integral.
To obtain the reverse inequality, let � be an arbitrary simple, µ-measurable func-

tion with 0 ≤ � ≤ f and write

� =
k∑
i=1

ai χAi
,

where each Ai is µ-measurable. Let c ∈ (0, 1) also be arbitrary.
For each m ∈ N, set

Em = { x : c · �(x) ≤ hm(x) } and �m = c · � · χEm .
For m ≤ n, we have �m ≤ hn, so applying Theorem 1.3.13(4), we obtain∫

�m dµ ≤ lim
n→∞

∫
hn dµ .

Finally, we note that for each i = 1, 2, . . . , k, the sets Ai ∩ Em increase to Ai as
m→∞, so µ(Ai) = limm→∞ µ(Ai ∩ Em) and thus

c

∫
� dµ =

∫
c · � dµ = lim

m→∞

∫
�m dµ ≤ lim

n→∞

∫
hn dµ .

The result follows from the arbitrariness of � and c. ��
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Theorem 1.3.15. Let µ be a measure on the nonempty set X. If f, g : X → [0,∞]
are µ-measurable, then∫

(f + g) dµ =
∫
f dµ+

∫
g dµ .

Proof. The result clearly holds if f and g are simple functions, and the general case
then follows from Lemmas 1.3.9 and 1.3.14. ��
Corollary 1.3.16. Theµ-integrable functions form a vector space, and theµ-integral
is a linear functional on the space of µ-integrable functions.

The decisive results for integration theory are Fatou’s lemma12 and the monotone
and dominated convergence theorems of Lebesgue (see any of [Fol 84], [Roy 88], and
[Rud 87]). In the development outlined above, it is easiest first to prove Lebesgue’s
monotone convergence theorem, arguing as in the proof of Lemma 1.3.14. Then one
uses the monotone convergence theorem to prove Fatou’s lemma and the dominated
convergence theorem. We state these results next.

Theorem 1.3.17. Let µ be a measure on the nonempty set X.

(1) [Fatou’s lemma] If f1, f2, . . . are nonnegative µ-measurable functions, then

lim inf
n→∞

∫
X

fn dµ ≥
∫
X

lim inf
n→∞ fn dµ .

(2) [Lebesgue’s monotone convergence theorem] Iff1 ≤ f2 ≤ · · ·are nonnegative
µ-measurable functions, then

lim
n→∞

∫
X

fn dµ =
∫
X

lim
n→∞ fn dµ .

(3) [Lebesgue’s dominated convergence theorem] Let f1, f2, . . . be complex-
valuedµ-measurable functions that convergeµ-almost everywhere to f . If there
exists a nonnegative µ-measurable function g such that

sup
n
|fn(x)| ≤ g(x) and

∫
X

g dµ <∞ ,

then

lim
n→∞

∫
X

|fn − f | dµ = 0 and lim
n→∞

∫
X

fn dµ =
∫
X

f dµ .

One of the beauties of measure theory is that we deal in analysis almost exclusively
with measurable functions and sets, and the ordinary operations of analysis would
never cause us to leave the realm of measurable functions and sets. However, in
geometric measure theory it is occasionally necessary to deal with functions that either
are nonmeasurable or are not known a priori to be measurable. In such situations, it
is convenient to have a notion of upper and lower integral.
12 Pierre Joseph Louis Fatou (1878–1929).
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Definition 1.3.18. Letµ be a measure on the nonempty setX and let f : X→ [0,∞]
be defined µ-almost everywhere. We denote the upper µ-integral of f by∫

f dµ

and define it by setting∫
f dµ = inf

{ ∫
ψ dµ : 0 ≤ f ≤ ψ and ψ is µ-measurable

}
.

Similarly, the lower µ-integral of f is denoted by∫
f dµ

and defined by setting∫
f dµ = sup

{ ∫
φ dµ : 0 ≤ φ ≤ f and φ is µ-measurable

}
.

Lemma 1.3.19. If µ is a measure on the nonempty set X and f, g : X→ [0,∞] are
defined µ-almost everywhere, then the following hold:

(1)
∫
f dµ ≤

∫
f dµ ,

(2) if f ≤ g, then
∫
f dµ ≤

∫
g dµ and

∫
f dµ ≤

∫
g dµ ,

(3) if f is µ-measurable, then
∫
f dµ =

∫
f dµ =

∫
f dµ ,

(4) if 0 ≤ c, then
∫
cf dµ = c

∫
f dµ and

∫
cf dµ = c

∫
f dµ ,

(5)
∫
f dµ+

∫
g dµ ≤

∫
(f + g) dµ and

∫
(f + g) dµ ≤

∫
f dµ+

∫
g dµ .

The lemma follows easily from the definitions.

Proposition 1.3.20. Suppose f : X → [0,∞] satisfies
∫
f dµ < ∞. For such a

function, ∫
f dµ =

∫
f dµ

holds if and only if f is µ-measurable.

Proof. Suppose the upper and lower µ-integrals of f are equal. Choose sequences
of µ-measurable functions g1 ≤ g2 ≤ · · · ≤ f and h1 ≥ h2 ≥ · · · ≥ f with
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lim
n→∞

∫
gn dµ =

∫
f dµ =

∫
f dµ = lim

n→∞

∫
hn dµ .

Then g = limn→∞ gn and h = limn→∞ hn are µ-measurable with g ≤ f ≤ h.
Since, by Lebesgue’s dominated convergence theorem, the µ-integrals of g and h are
equal, we see that g and h must be µ-almost equal to each other, and thus µ-almost
equal to f . ��

1.3.3 Lebesgue Spaces

Definition 1.3.21. Fix 1 ≤ p ≤ ∞. Let µ be a measure on the nonempty set X.
The Lebesgue space Lp(µ) (or simply Lp if the choice of the measure is clear from
context) is the vector space of µ-measurable, complex-valued functions satisfying

‖f ‖p <∞ ,
where ‖f ‖p is defined by setting

‖f ‖p =

⎧⎪⎪⎨⎪⎪⎩
(∫

|f |p dµ
)1/p

, if p <∞,

inf
{
t : µ

(
X ∩ { x : |f (x)| > t }

)
= 0

}
, if p = ∞.

The elements of Lp are called Lp functions. Of course, the L1 functions are just the
µ-integrable functions. The L2 functions are also called square integrable functions,
and, for 1 ≤ p <∞, the Lp functions are also called p-integrable functions.

Remark 1.3.22.

(1) A frequently used tool in analysis is Hölder’s inequality13∫
fg dµ ≤ ‖f ‖p ‖g‖q ,

where f and g are µ-measurable, 1 < p < ∞, and 1/p + 1/q = 1. We note
that Hölder’s inequality is also valid when the integrals are replaced by upper
integrals. The proof of this generalization makes use of Lemma 1.3.19(2)5).

(2) The functional ‖ · ‖p is called the Lp-norm. In the cases p = 1 and p = ∞, it is
easy to verify that the Lp-norm is, in fact, a norm, but for the case 1 < p <∞,
this fact is a consequence of Minkowski’s inequality14

‖f + g‖p ≤ ‖f ‖p + ‖g‖p .
(3) Much of the importance of the Lebesgue spaces stems from the discovery that
Lp, 1 ≤ p < ∞, is a complete metric space. This result is sometimes (for
instance in [Roy 88]) called the Riesz–Fischer theorem.15

13 Otto Ludwig Hölder (1859–1937).
14 Hermann Minkowski (1864–1909).
15 Frigyes Riesz (1880–1956), Ernst Sigismund Fischer (1875–1954).
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1.3.4 Product Measures and the Fubini–Tonelli Theorem

Definition 1.3.23. Let µ be a measure on the nonempty set X and let ν be a measure
on the nonempty set Y . The Cartesian product of the measures µ and ν is denoted
µ× ν and is defined by setting

(µ× ν)(E) = inf
{ ∞∑
i=1

µ(Ai) · ν(Bi) : E ⊆
∞⋃
i=1

Ai × Bi,

Ai ⊆ X is µ-measurable, for i = 1, 2, . . . ,

Bi ⊆ Y is ν-measurable, for i = 1, 2, . . .
}
. (1.16)

It is immediately verified thatµ×ν is a measure onX×Y . Clearly the inequality

(µ× ν)(A× B) ≤ µ(A) · ν(B)
holds whenever A ⊆ X is µ-measurable and B ⊆ Y is ν-measurable. The product
measure µ× ν is the largest measure satisfying that condition.

One of the main concerns in using product measures is justifying the interchange of
the order of integration in a multiple integral. The next example illustrates a situation
in which the order of integration in a double integral cannot be interchanged.

Example 1.3.24. The counting measure on X is defined by setting

µ(E) =
{

card(E) if E is finite,
∞ otherwise,

for E ⊆ X. If ν is another measure on X for which 0 < ν(X) and ν( {x } ) = 0 for
each x ∈ X, and if f : X×X→ [0,∞] is the characteristic function of the diagonal,
that is,

f (x1, x2) =
{

1 if x1 = x2,
0 otherwise,

then ∫ ( ∫
f (x1, x2) dµ(x1)

)
dν(x2) =

∫
1 dν = ν(X) > 0 ,

but ∫ ( ∫
f (x1, x2) dν(x2)

)
dµ(x1) =

∫
0 dµ = 0 . ��

To avoid the phenomenon in the preceding example we introduce a definition.

Definition 1.3.25. Let µ be a measure on the nonempty set X. We say that µ is
σ -finite if X can be written as a countable union of µ-measurable sets each having
finite µ measure.

The main facts about product measures, which often do allow the interchange of
the order of integration, are stated in the next theorem. We refer the reader to any of
[Fol 84], [Roy 88], and [Rud 87].
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Theorem 1.3.26. Let µ be a σ -finite measure on the nonempty set X and let ν be a
σ -finite measure on the nonempty set Y .

(1) If A ⊆ X is µ-measurable and B ⊆ Y is ν-measurable, then A× B is (µ× ν)-
measurable and

(µ× ν)(A× B) = µ(A) · ν(B) .
(2) (Tonelli’s16 theorem) If f : X × Y → [0,∞] is (µ× ν)-measurable, then

g(x) =
∫
f (x, y) dν(y) (1.17)

defines a µ-measurable function on X,

h(y) =
∫
f (x, y) dµ(x) (1.18)

defines a ν-measurable function on Y , and∫
f d(µ× ν) =

∫ ( ∫
f (x, y) dµ(x)

)
dν(y)

=
∫ ( ∫

f (x, y) dν(y)

)
dµ(x) . (1.19)

(3) (Fubini’s17 theorem) If f is (µ× ν)-integrable, then
(a) φ(x) ≡ f (x, y) is µ-integrable for ν-almost every y ∈ Y ,
(b) ψ(y) ≡ f (x, y) is ν-integrable for µ-almost every x ∈ X,
(c) g(x) defined by (1.17) is a µ-integrable function on X,
(d) h(y) defined by (1.18) is a ν-integrable function on Y , and
(e) equation (1.19) holds.

Definition 1.3.27. The N -dimensional Lebesgue measure on RN , denoted by LN , is
defined inductively by setting LN = LN−1 × L1.

1.4 The Exterior Algebra

In an introductory vector calculus course, a vector is typically described as repre-
senting a direction and a magnitude, that is, an oriented line and a length. When
later an oriented plane and an area in that plane are to be represented, a direction
orthogonal to the plane and a length equal to the desired area are often used. This
last device is viable only for (N − 1)-dimensional oriented planes in N -dimensional
space, because the complementary dimension must be 1. For the general case of an

16 Leonida Tonelli (1885–1946).
17 Guido Fubini (1879–1943).
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orientedm-dimensional plane and anm-dimensional area in RN , some new idea must
be invoked.

The straightforward way to represent an oriented m-dimensional plane in RN is
to specify an ordered m-tuple of independent vectors parallel to (contained in) the
plane. To simultaneously represent an m-dimensional area in that plane, choose the
vectors so that the m-dimensional area of the parallelepiped they determine equals
that given m-dimensional area. Of course, a given oriented m-dimensional plane
and m-dimensional area can be represented equally well by many different ordered
m-tuples of vectors, and identifying any two such ordered m-tuples introduces an
equivalence relation on the ordered m-tuples of vectors. To facilitate computation
and understanding, the equivalence classes of ordered m-tuples are overlaid with a
vector space structure. The result is the alternating algebra of m-vectors in RN . We
now proceed to a formal definition.

Definition 1.4.1.

(1) Define an equivalence relation ∼ on(
RN
)m = RN × RN × · · · × RN︸ ︷︷ ︸

m factors

by requiring, for all α ∈ R and 1 ≤ i < j ≤ m,
(a)
(u1, . . . , α ui, . . . , uj , . . . , um) ∼ (u1, . . . , ui, . . . , α uj , . . . , um),

(b)
(u1, . . . , ui, . . . , uj , . . . , um) ∼ (u1, . . . , ui +α uj , . . . , uj , . . . , um),

(c)
(u1, . . . , ui, . . . , uj , . . . , um) ∼ (u1, . . . , −uj , . . . , ui, . . . , um),

and extending the resulting relation to be symmetric and transitive.
(2) The equivalence class of (u1, u2, . . . , . . . , um) under∼ is denoted by u1∧u2∧
· · · ∧ um. We call u1 ∧ u2 ∧ · · · ∧ um a simple m-vector.

(3) On the vector space of formal linear combinations of simplem-vectors, we define
the equivalence relation ≈ by extending the relation defined by requiring
(a) α(u1 ∧ u2 ∧ · · · ∧ um) ≈ (αu1) ∧ u2 ∧ · · · ∧ um,
(b) (u1 ∧ u2 ∧ · · · ∧ um)+ (v1 ∧ u2 ∧ · · · ∧ um) ≈ (u1 + v1) ∧ u2 ∧ · · · ∧ um.

(4) The equivalence classes of formal linear combinations of simplem-vectors under
the relation ≈ are the m-vectors in RN . The vector space of m-vectors in RN is
denoted by

∧
m (R

N).
(5) The exterior algebra of RN , denoted by

∧
∗ (RN), is the direct sum of the∧

m (R
N) together with the exterior multiplication defined by linearly extending

the definition

(u1∧u2∧· · ·∧u�)∧(v1∧v2∧· · ·∧vm) = u1∧u2∧· · ·∧u�∧v1∧v2∧· · ·∧vm .
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Remark 1.4.2.

(1) When m = 1, Definition 1.4.1(1) is vacuous, so
∧

1 (R
N) is isomorphic to, and

will be identified with, RN . If the vectors u1, u2, . . . , um are linearly dependent,
then u1 ∧ u2 ∧ · · · ∧ um is the additive identity in

∧
m (R

N), so we write u1 ∧
u2 ∧ · · · ∧ um = 0. Consequently, when N < m,

∧
m (R

N) is the trivial vector
space containing only 0.

(2) As an exercise, the reader should convince himself that e1∧e2+e3∧e4 ∈∧ 2 (R
4)

is not a simple 2-vector.

For a nontrivial simplem-vector u1∧u2∧· · ·∧um in RN , the associated subspace
is that subspace spanned by the vectors u1, u2, . . . , um. It is evident from Defini-
tion 1.4.1(1) that if u1 ∧ u2 ∧ · · · ∧ um = ±v1 ∧ v2 ∧ · · · ∧ vm, then their associated
subspaces are equal. We assert that if u1∧u2∧· · ·∧um = ±v1∧v2∧· · ·∧vm, then
also the m-dimensional area of the parallelepiped determined by u1, u2, . . . , um is
equal to the m-dimensional area of the parallelepiped determined by v1, v2, . . . , vm.
To see this last fact, we need the next proposition, which gives us a way to compute
the m-dimensional areas in question. The proof is based on [Por 96].

Proposition 1.4.3. Let u1, u2, . . . , um be vectors in RN . Then the parallelepiped
determined by those vectors has m-dimensional area√

det
(
Ut U

)
, (1.20)

where U is the N ×m matrix with u1, u2, . . . , um as its columns.

Proof. If the vectors u1, u2, . . . , um are pairwise orthogonal, then the result is im-
mediate. Thus we will reduce the general case to this special case.

Notice that Cavalieri’s principle18 shows us that adding a multiple of uj to another
vector ui, i �= j, does not change the m-dimensional area of the parallelepiped
determined by the vectors. But also notice that such an operation on the vectors ui
is equivalent to multiplying U on the right by an m × m triangular matrix with 1’s
on the diagonal. The Gram–Schmidt orthogonalization procedure19 is effected by
a sequence of operations of precisely this type. Thus we see that there is an upper
triangular matrix A with 1’s on the diagonal such that UA has orthogonal columns
and the columns ofUA determine a parallelepiped with the samem-dimensional area
as the parallelepiped determined by u1, u2, . . . , um. Since the columns of UA are

orthogonal, we know that
√

det
(
(UA)t (UA)

)
equals them-dimensional area of the

parallelepiped determined by its columns, and thus equals them-dimensional area of
the parallelepiped determined by u1, u2, . . . , um. Finally, we compute

det
(
(UA)t (UA)

)
= det

(
At Ut U A

)
= det

(
At
)

det
(
Ut U

)
det(A)

= det
(
Ut U

)
. ��

18 Bonaventura Francesco Cavalieri (1598–1647).
19 Jørgen Pedersen Gram (1850–1916).
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Corollary 1.4.4. If u1, u2, . . . , um and v1, v2, . . . , vm are vectors in RN with

u1 ∧ u2 ∧ · · · ∧ um = ±v1 ∧ v2 ∧ · · · ∧ vm ,
then the m-dimensional area of the parallelepiped determined by the vectors u1, u2,

. . . , um equals them-dimensional area of the parallelepiped determined by the vectors
v1, v2, . . . , vm.

Proof. We consider the m-tuples of vectors on the left-hand and right-hand sides of
Definition 1.4.1(1a,b,c). Let Ul be the matrix whose columns are the vectors on the
left-hand side and let Ur be the matrix whose columns are the vectors on the right-
hand side. For (a), we have Ur = UlA, where A is the m×m diagonal matrix with
1/α in the ith column and α in the j th column. For (b), we have Ur = UlA, whereA
is an m×m triangular matrix with 1’s on the diagonal. For (c), we have Ur = UlA,
where A is an m × m permutation matrix with one of its 1’s replaced by −1. In all
three cases, det(A) = ±1, and the result follows. ��

For computational purposes, it is often convenient to use the basis

ei1 ∧ ei2 ∧ · · · ∧ eim , 1 ≤ i1 < i2 < · · · < im ≤ N , (1.21)

for
∧
m (R

N). Specifying that the m-vectors in (1.21) are orthonormal induces the
standard inner product on

∧
m (R

N). The exterior product (sometimes called the
wedge product)

∧ :∧ � (RN)×∧m (RN)→∧
�+m (RN)

is an anticommutative, multilinear multiplication. Any linear F : RN → RP extends
to a linear map Fm :∧m (RN)→∧

m (R
P ) by defining

Fm(u1 ∧ u2 ∧ · · · ∧ um) = F(u1) ∧ F(u2) ∧ · · · ∧ F(um) .

1.5 The Generalized Pythagorean Theorem

The generalized Pythagorean theorem (Theorem 1.5.2 below) tells us that for a figure
� lying in anm-dimensional affine subspace of RN , the square of them-dimensional
area of� equals the sum of the squares of them-dimensional areas of the orthogonal
projections of � onto all possible coordinate m-planes. For conceptual simplicity,
we will restrict our attention to polyhedral figures �. We consider a few instances of
this theorem:

• If m = 1 and � is a line segment, then the generalized Pythagorean theorem
tells us that the square of the length of the segment is the sum of the squares
of the lengths in each of the coordinate directions; that is, we recover the usual
Pythagorean theorem.
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• Suppose � is the parallelepiped generated by the m vectors u1, . . . , um and U is
the matrix whose columns are u1, . . . , um. Then the (signed)m-dimensional area
of each projection of � onto a coordinate m-plane is given by an m-by-m minor
determinant of U . Proposition 1.4.3 tells us that the m-dimensional area of �

equals
√

det (Ut U). Thus the generalized Pythagorean theorem implies—and,
in fact, is equivalent to—the nontrivial fact that

det (Ut U) =
∑
λ

[det (Uλ)]
2 (1.22)

holds, where in (1.22) the summation extends over all λ = {i1, . . . , im} ⊆
{1, . . . , N} and where for each such λ, Uλ is the m-by-m submatrix whose rows
are the rows numbered i1, . . . , im in U .

• If � is an m-dimensional simplex in RN , then � automatically lies in an m-
dimensional affine subspace of RN , and the generalized Pythagorean theorem
applies to �. Figure 1.1 illustrates this situation when � is a triangle in R3. We
have used A to denote the area of the triangle and Aij to denote the area of the
projection of the triangle onto the (xi, xj )-coordinate plane.

A

A12

A13

A23

x3

x1

x2

Fig. 1.1. A2 = A2
12 + A2

13 + A2
23.

In this section, we will give a geometrical proof of the generalized Pythagore-
an theorem. In particular, the proof will make no use of determinants. The main
computation in the proof is made by applying the divergence theorem of advanced
calculus to a constant vector field, while our other primary tool is the fact that the
m-dimensional area of a figure is unchanged when the figure is mapped by an isometry.
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Notation 1.5.1.

(1) Anym-dimensional polyhedral figure can be written as the union ofm-dimension-
al simplices that intersect only in their boundaries. Thus, to prove the generalized
Pythagorean theorem, it is sufficient to prove it when � ⊆ RN is an m-simplex.
Accordingly we will assume throughout the remainder of this section that � is
the m-dimensional simplex determined by the m+ 1 points u0, . . . , um.

(2) We will denote the m-dimensional area of � by A.
(3) If λ ⊆ {1, 2, . . . , N} and card(λ) = K , then �λ : RN → RK will be the

orthogonal projection given by

�λ(x1, x2, . . . , xN) = (xi1 , xi2 , . . . , xiK ) ,
where λ = {i1, i2, . . . , iK} and i1 < i2 < · · · < iK . We will need only the two
cases K = m and K = 2.

(4) If λ ⊆ {1, 2, . . . , N} and card(λ) = m, let Aλ denote the m-dimensional area
of �λ(�). We will sometimes abuse this notation (as we did in Figure 1.1) by
writing Ai1,i2,...,iK instead of the more pedantic A{i1,i2,...,iK }.

(5) Since a set λ ⊆ {1, 2, . . . , m+ 1} with card(λ) = m is most easily described by
the one element it omits, we will write

Aı̂ = A1,...,i−1,i+1,...,m+1 .

Using the notation given above, we can state our result as follows:

Theorem 1.5.2 (Generalized Pythagorean theorem). If � is an m-dimensional
simplex in RN , then it holds that

A2 =
∑

λ⊆{1,...,N}
card (λ)=m

A2
λ . (1.23)

Note that if N = m, the theorem is trivial. We first give a proof of the theorem in
the case N = m+ 1.

The Codimension-One Case, N = m + 1
Our proof for the case N = m+ 1 will be based on an application of the divergence
theorem.

Proposition 1.5.3. Let � be an m-simplex in Rm+1 with m-dimensional area A. Let
n0 be a unit vector normal to �. Then

A |n0 · ei | = Aı̂
holds for i = 1, . . . , m+ 1.

Proof. We may assume for convenience that i = m + 1. If n0 · em+1 = 0, then the
result is trivial, so we also may assume that n0 · em+1 > 0, i.e., n0 points “up.’’
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By translating � if necessary, we may assume that all the coordinates of all the
points in � are positive. Consider the closed polyhedral cylinder C made up of the
line segments connecting each point of � with its projection on the (x1, . . . , xm)-
coordinate hyperplane; that is,

C =
{
(1− t) x + t �1,...,m(x) : x ∈ �, 0 ≤ t ≤ 1

}
(Figure 1.2 illustrates C in the case m = 2). It will be convenient to call � the “top’’
of C and to call B ≡ �1,...,m(�) the “bottom’’ of C.

Note that except on the top and bottom of C, the outward unit normal to ∂C is
orthogonal to em+1. On the top of C the outward unit normal to C equals n0, and on
the bottom of C the outward unit normal to C equals −em+1 (see Figure 1.2).

A
n

–e3

A12

Fig. 1.2. Applying the divergence theorem.

The divergence theorem tells us that if w is a C1 vector field on C, then∫
∂C

w · n dσ =
∫
C

div w dV

holds, where n is the outward unit normal vector to ∂C, dσ is the element of m-
dimensional area on ∂C, and dV is the element of (m+ 1)-dimensional volume in C.

Applying the divergence theorem to the constant vector field w ≡ em+1 on C, we
obtain

0 =
∫
C

div w dV =
∫
∂C

w · n dσ = A n0 · em+1 − Am̂+1
,

and the result follows. ��
Corollary 1.5.4. The generalized Pythagorean theorem holds when N = m+ 1.

Proof. Let n0 be a unit vector normal to � ⊆ Rm+1. Since n0 is a unit vector,
Proposition 1.5.3 gives us
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A2 = A2
m+1∑
i=1

(n0 · ei )2 =
m+1∑
i=1

A2 (n0 · ei )2 =
m+1∑
i=1

A2
ı̂ . ��

The Higher Codimension Case, N ≥ m + 2

Definition 1.5.5. By a coordinate-plane rotation of RN we will mean a linear trans-
formation that for some i < j , rotates the (xi, xj )-plane while leaving the remaining
(N − 2) coordinates unchanged. We will call xi and xj the rotated coordinates.

Our strategy for completing the proof of the generalized Pythagorean theorem is
to show that the result holds for � if and only if it holds for the image of � under a
coordinate-plane rotation. We then show that a sequence of coordinate-plane rotations
of � will move � into an m-dimensional plane parallel to a coordinate m-plane—a
situation in which the generalized Pythagorean theorem holds trivially.

Notation 1.5.6.

(1) Suppose F : RN → RN is a linear transformation. We set

�̃ = F(�) .
For λ ⊆ {1, 2, . . . , N}with card(λ) = m, Ãλ will denote them-dimensional area
of �λ(�̃). Similarly, when N = m+ 1, we will use the notation Ã ı̂ .

(2) For each positive integer K , we let IRK be the identity map on RK .

Lemma 1.5.7. Let F = R × IRN−2 , where R : R2 → R2 is a rotation. Suppose
λ ⊆ {1, 2, . . . , N} with card(λ) = m. If

either {1, 2} ∩ λ = ∅ or {1, 2} ∩ λ = {1, 2} ,
then Aλ = Ãλ.
Proof. When {1, 2} ∩ λ = ∅ holds, we have

�λ(�) = �λ(�̃) ,
so the result is trivial in this case.

Now suppose that {1, 2} ⊆ λ. Then we have

�λ ◦ F = �λ ◦ (R× IRN−2) = (R× IRm−2) ◦�λ ,
and the result follows because R× IRm−2 is an isometry. ��

In Lemma 1.5.7, we considered projections �λ such that λ either included the
indices of both rotated coordinates or omitted the indices of both rotated coordinates.
In contrast, them-dimensional area of the projection is not preserved when λ includes
exactly one of the indices of the rotated coordinates. But we do have the next result.
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Lemma 1.5.8. Let F = R × IRN−2 , where R : R2 → R2 is a rotation. If λ′ ⊆
{3, 4, . . . , N} with card(λ′) = m− 1, then

A2
{1}∪λ′ + A2

{2}∪λ′ = Ã2
{1}∪λ′ + Ã2

{2}∪λ′ . (1.24)

Proof. For notational convenience, suppose that

λ′ = {3, 4, . . . , m+ 1} .
Each summand in (1.24) is unchanged if � is replaced by its projection into Rm+1,
so we may and shall assume that N = m+ 1.

We have already shown that the generalized Pythagorean theorem holds when
N = m + 1, so we can apply that theorem to � ⊆ Rm+1 and to �̃ ⊆ Rm+1. Using
also the fact that A = Ã (which holds because F is an isometry), we obtain

m+1∑
i=1

A2
ı̂ = A2 = Ã2 =

m+1∑
i=1

Ã2
ı̂ .

Observe that

m+1∑
i=1

A2
ı̂ = A2

λ′∪{1} + A2
λ′∪{2} +

∑
λ′′⊆λ′

card (λ′′)=m−2

A2
λ′′∪{1,2}

and, likewise, that

m+1∑
i=1

Ã2
ı̂ = Ã2

λ′∪{1} + Ã2
λ′∪{2} +

∑
λ′′⊆λ′

card (λ′′)=m−2

Ã2
λ′′∪{1,2} .

Lemma 1.5.7 tells us that for each λ′′ ⊆ λ′ with card(λ′′) = m− 2,

Aλ′′∪{1,2} = Ãλ′′∪{1,2}
holds, so the result follows. ��

In Lemmas 1.5.7 and 1.5.8, we considered a rotationR in the (x1, x2)-plane merely
for convenience of notation. By relabeling coordinates, we see that the following
result holds.

Proposition 1.5.9. Suppose F : RN → RN rotates the (xi, xj )-plane while leaving
all the other coordinates unchanged (here i < j ).

(1) If λ ⊆ {1, 2, . . . , N} with card(λ) = m and if

either {i, j} ∩ λ = ∅ or {i, j} ∩ λ = {i, j} ,
then Aλ = Ãλ.
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(2) If λ′ ⊆ {1, 2, . . . , N} with card(λ′) = m− 1 and if

{i, j} ∩ λ′ = ∅ ,
then

A2
{i}∪λ′ + A2

{j}∪λ′ = Ã2
{i}∪λ′ + Ã2

{j}∪λ′ .

In the next result, we show that the generalized Pythagorean theorem holds for�
if and only if it holds for the image of � under a coordinate-plane rotation.

Corollary 1.5.10. If F : RN → RN rotates the (xi, xj )-plane while leaving all the
other coordinates unchanged (here i < j ), then we have A = Ã and∑

λ⊆{1,...,N}
card (λ)=m

A2
λ =

∑
λ⊆{1,...,N}

card (λ)=m

Ã2
λ .

Consequently, the generalized Pythagorean theorem holds for� if and only if it holds
for �̃.

Proof. Observe that∑
λ⊆{1,...,N}

card (λ)=m

A2
λ =

∑
λ⊆{1,...,N}

card (λ)=m, λ∩{i,j}=∅

A2
λ +

∑
λ⊆{1,...,N}

card (λ)=m, λ∩{i,j}={i,j}

A2
λ

+
∑

λ′⊆{1,...,N}
card (λ′)=m−1, λ′∩{i,j}=∅

(
A2
λ′∪{i} + A2

λ′∪{j}
)

and, likewise, that∑
λ⊆{1,...,N}

card (λ)=m

Ã2
λ =

∑
λ⊆{1,...,N}

card (λ)=m, λ∩{i,j}=∅

Ã2
λ +

∑
λ⊆{1,...,N}

card (λ)=m, λ∩{i,j}={i,j}

Ã2
λ

+
∑

λ′⊆{1,...,N}
card (λ′)=m−1, λ′∩{i,j}=∅

(
Ã2
λ′∪{i} + A2

λ′∪{j}
)
.

The result now follows from Proposition 1.5.9. ��
Proof of the Generalized Pythagorean Theorem. By translating � if necessary, we
may suppose that u0 coincides with the origin. Let us also introduce the notation

ui = (ui,1, ui,2, . . . , ui,N ) .
By Corollary 1.5.10, it suffices to prove the generalized Pythagorean theorem for

the image of � after a sequence of coordinate-plane rotations. In fact, we will show
that there exists a sequence of coordinate-plane rotations such that the resulting image
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of � is contained in the (x1, . . . , xm)-coordinate plane. Since the generalized Py-
thagorean theorem holds trivially for a simplex lying in anm-dimensional coordinate
plane, it follows that the generalized Pythagorean theorem holds for the originally
given �.

• The first sequence of coordinate-plane rotations. We begin with the rotation
R of the (x1, x2)-plane that maps �{1,2}(u1) = (u1,1, u1,2) to (t, 0), where t =
(u2

1,1 + u2
1,2)

1/2. When the coordinate-plane rotation R× IRN−2 is applied to � and
� is replaced by its image—without changing notation—we obtain

u1 = (u1,1, 0, u1,3, . . . , u1,N ) .

The second coordinate-plane rotation will rotate the (x1, x3)-plane so that
�{1,3}(u1) = (u1,1, u1,3) is mapped to (t, 0), where t = (u2

1,1 + u2
1,3)

1/2. After
again replacing � by its image—still without changing notation—we obtain

u1 = (u1,1, 0, 0, u1,4, . . . , u1,N ) .

After a total of N − 1 coordinate-plane rotations and replacements, we obtain

u1 = (u1,1, 0, 0, . . . , 0) . (1.25)

From now on, x1 will not be one of the rotated coordinates in any of the coordinate-
plane rotations we use. Consequently, (1.25) will continue to hold.

• The (i + 1)st sequence of coordinate-plane rotations. Suppose that we have

u1 = (u1,1, 0, 0, . . . ,0,0,. . . ,0) ,
u2 = (u2,1,u2,2,0, . . . ,0,0,. . . ,0) ,
...
...
...
...
...

...
...
...

ui = (ui,1,ui,2,ui,3,. . . ,ui,i ,0,. . . ,0) .
(1.26)

In particular, observe that (1.26) implies that the points u1, u2, . . . , ui all lie in the
(x1, x2, . . . , xi)-coordinate plane.

Arguing inductively, we will show that we can obtain (1.26) with i = m. Note
that when i = 1, (1.26) is the same as (1.25).

Our next coordinate-plane rotation will rotate the (xi+1, xi+2)-plane so that
�{i+1,i+2}(ui+1) = (ui+1,i+1, ui+1,i+2) is mapped to (t, 0), where t = (u2

i+1,i+1 +
u2
i+1,i+2)

1/2. Then we obtain

ui+1 = (ui+1,1, ui+1,2, . . . , ui+1,i+1, 0, ui+1,i+3, . . . , ui+1,N ) .

Continuing in that fashion, we see that after a total ofN − i− 1 coordinate-plane
rotations, we obtain

ui+1 = (ui+1,1, ui+1,2, . . . , ui+1,i+1, 0, 0, . . . , 0) .

Since none of the coordinates x1, x2, . . . , xi have been rotated coordinates for any
of the coordinate-plane rotations we have used, the values of those coordinates will
have remained unchanged. Thus we now have (1.26) with i replaced by i + 1.
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Arguing as above for i = 1, 2, . . . , m−1, we see that—including the first sequence
of coordinate-plane rotations—after a grand total of (N − 1)+∑m−1

i=1 (N − i − 1) =
(m/2) (2N −m− 1) coordinate-plane rotations, we obtain (1.26) with i replaced by
m. Thus we see that the image of � lies in the (x1, . . . , xm)-coordinate plane, as
desired. ��
Remark 1.5.11. In [Bar 96], the reader will find a proof of the usual Pythagorean the-
orem via dimensional analysis. E. Thomann has conjectured (private communication)
that the generalized Pythagorean theorem also might be provable via a dimensional
analysis argument.

1.6 The Hausdorff Distance and Steiner Symmetrization

Consider the collection P(RN) of all subsets of RN . It is often useful, especially
in geometric applications, to have a metric on P(RN). In this section we address
methods for achieving this end. In Definition 1.2.12, we defined dist(S, T ) for subsets
S, T of a metric space; unfortunately, this function need not satisfy the triangle
inequality. Also, in practice, P(RN) (the entire power set of RN ) is probably too
large a collection of objects to have a reasonable and useful metric topology (see
[Dug 66, Section IX.9] for several characterizations of metrizability). With these
considerations in mind, we shall restrict attention to the collection of nonempty,
bounded subsets of RN .

Definition 1.6.1. Let S and T be nonempty, bounded subsets of RN . We set

HD (S, T ) = max

{
sup
s∈S

dist(s, T ), sup
t∈T

dist(S, t)

}
. (1.27)

This function is called the Hausdorff distance.

Notice that HD (S, T ) = HD (S, T ) = HD (S, T ) = HD (S, T ), so we further
restrict our attention to the collection of nonempty sets that are both closed and
bounded (i.e., compact) subsets of RN . For convenience, in this section, we will use
B to denote the collection of nonempty, compact subsets of RN .

In Figure 1.3, if we let d denote the distance from a point on the left to the
line segment on the right, then every point in the line segment is within distance√
d2 + (ε/2)2 of one of the points on the left—and that bound is sharp. Thus we see

that HD (S, T ) = √d2 + (ε/2)2.

Lemma 1.6.2. Let S, T ∈ B. Then there are points s ∈ S and t ∈ T such that
HD (S, T ) = |s − t |.

We leave the proof as an exercise for the reader (see Figure 1.4).

Proposition 1.6.3. The function HD is a metric on B.
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S T

Fig. 1.3. The Hausdorff distance.

s
t

S

T

Fig. 1.4. Points that realize the Hausdorff distance.

Proof. Clearly HD ≥ 0, and if S = T , then HD (S, T ) = 0.
Conversely, if HD (S, T ) = 0 then let s ∈ S. By definition, there are points

tj ∈ T such that |s− tj | → 0. Since T is compact, we may select a subsequence {tjk }
such that tjk → s. Again, since T is compact, we then conclude that s ∈ T . Hence
S ⊆ T . Similar reasoning shows that T ⊆ S. Hence S = T .

Finally, we come to the triangle inequality. Let S, T ,U ∈ B. Let s ∈ S, t ∈
T , u ∈ U. Then we have

|s − u| ≤ |s − t | + |t − u|
⇓

dist(S, u) ≤ |s − t | + |t − u|
⇓

dist(S, u) ≤ dist(S, t)+ |t − u|
⇓

dist(S, u) ≤ HD (S, T )+ |t − u|
⇓

dist(S, u) ≤ HD (S, T )+ dist(T , u)

⇓
dist(S, u) ≤ HD (S, T )+ sup

u∈U
dist(T , u)
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⇓
sup
u∈U

dist(S, u) ≤ HD (S, T )+ sup
u∈U

dist(T , u).

By symmetry, we have

sup
s∈S

dist(U, s) ≤ HD (U, T )+ sup
s∈S

dist(T , s)

and thus

max{ sup
u∈U

dist(S, u) , sup
s∈S

dist(U, s) }
≤ max

{
HD (S, T )+ sup

u∈U
dist(T , u) , HD (U, T )+ sup

s∈S
dist(T , s)

}
.

We conclude that

HD (U, S) ≤ HD (U, T )+ HD (T , S). ��
There are fundamental questions concerning completeness, compactness, etc. that

we need to ask about any metric space.

Theorem 1.6.4. The metric space (B,HD ) is complete.

Proof. Let {Sj } be a Cauchy sequence in the metric space (B,HD ). We seek an
element S ∈ B such that Sj → S.

Elementary estimates, as in any metric space, show that the elements Sj are all
contained in a common ball B(0, R).We set S equal to

∞⋂
j=1

⎛⎝ ∞⋃
�=j
S�

⎞⎠ .
Then S is nonempty, closed, and bounded, so it is an element of B.

To see that Sj → S, select ε > 0. Choose J large enough so that if j, k ≥ J then
HD (Sj , Sk) < ε. For m > J set Tm = ∪m�=J S�. Then it follows from the definition,
and from Proposition 1.6.3, that HD (SJ , Tm) < ε for every m > J. Therefore, with
Up = ∪∞�=pS� for every p > J , it follows that HD (SJ , Up) ≤ ε.

We conclude that HD (SJ ,∩Kp=J+1Up) ≤ ε. Hence, by the continuity of the
distance, HD (SJ , S) ≤ ε. That is what we wished to prove. ��

As a corollary of the proof of Theorem 1.6.4 we obtain the following:

Corollary 1.6.5. Let {Sj } be a sequence of elements of B. Suppose that Sj → S in
the Hausdorff metric. Then

Ln(S) ≥ lim sup
j→∞

Ln(Sj ) .
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The next theorem informs us of a seminal fact regarding the Hausdorff distance
topology.

Theorem 1.6.6. The set of nonempty compact subsets of RN with the Hausdorff dis-
tance topology is boundedly compact, i.e., any bounded sequence has a subsequence
that converges to a compact set.

Proof. Let A1, A2, . . . be a bounded sequence in the Hausdorff distance. We may
assume without loss of generality that each Ai is a subset of the closed unit N -cube,
C0. For each integer k ≥ 1, subdivide the unit N -cube into 2kN congruent subcubes
of side length 2−k; denote that collection of 2kN subcubes by Sk .

We will use an inductive construction and a diagonalization argument. LetA0,i =
Ai for i = 1, 2, . . . . For each k ≥ 1, the sequence Ak,i, i = 1, 2, . . . , will be a
subsequence of the preceding sequenceAk−1,i , i = 1, 2, . . . .Also, we will construct
sets C0 ⊇ C1 ⊇ · · · inductively. Each Ck will be a union of a set of cubes in Sk .
The first set in this sequence is the unit cube C0 itself. For each k = 0, 1, . . . , the
sequence Ak,i, i = 1, 2, . . . , and the set Ck are to have the properties that

D ∩ Ak,i �= ∅ holds for i = 1, 2, . . .

whenever D ∈ Sk is one of the cubes forming Ck ,
(1.28)

and
Ak,i ⊆ Ck holds for all sufficiently large i. (1.29)

It is clear that (1.28) and (1.29) are satisfied when k = 0.
Assume Ak−1,i , i = 1, 2, . . . , and Ck−1 have been defined so that

D ∩ Ak−1,i �= ∅ holds for i = 1, 2, . . .

whenever D ∈ Sk−1 is one of the cubes forming Ck−1,

and
Ak−1,i ⊆ Ck−1 holds for all sufficiently large i.

We let Ck be the collection of cubes in Sk that are subsets of Ck−1 (here we are
effectively subdividing the cubes that form Ck−1). A subcollection, C ⊆ Ck, will be
called admissible if there are infinitely many i for which

D ∩ Ak−1,i �= ∅ holds for all D ∈ C. (1.30)

Let Ck be the union of a maximal admissible collection of subcubes, which is im-
mediately seen to exist because Ck is finite. Let Ak,1, Ak,2, . . . be the subsequence
of Ak−1,1, Ak−1,2, . . . consisting of those Ak−1,i for which (1.30) is true. Observe
that Ak,i ⊆ Ck holds for sufficiently large i; otherwise, there is another subcube that
could be added to the maximal collection while maintaining admissibility.

We set

C =
∞⋂
k=0

Ck
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and claim that C is the limit in the Hausdorff distance of Ak,k as k→∞. Of course,
C is nonempty by the finite intersection property. Let ε > 0 be given. Clearly we
can find an index k0 such that

Ck0 ⊆ {x : dist(x, C) < ε}.
There is a number i0 such that for i ≥ i0 we have

Ak0,i ⊆ Ck0 ⊆ {x : dist(x, C) < ε}.
So, for k ≥ k0 + i0, we know that

Ak,k ⊆ {x : dist(x, C) < ε}
holds. We let k1 ≥ k0 + i0 be such that

√
N 2−k1 < ε.

Let c ∈ C be arbitrary. Then c ∈ Ck1 , so there is some cube, D, of side length 2−k1
containing c and for which

D ∩ Ak1,i �= ∅
holds for all i. But then if k ≥ k1, we have D ∩ Ak,k �= ∅, so

dist(c, Ak,k) ≤
√
N s−k < ε.

It follows that HD (C,Ak,k) < ε holds for all k ≥ k1. ��
Next we give two more useful facts about the Hausdorff distance topology.

Definition 1.6.7. A subsetC of a vector space is convex if for x, y ∈ C and 0 ≤ t ≤ 1
we have

(1− t) x + t y ∈ C .
Proposition 1.6.8. Let C be the collection of all closed, bounded, convex sets in RN.
Then C is a closed subset of the metric space (B,HD ).

Proof. There are several amusing ways to prove this assertion. One is by contradic-
tion. If {Sj } is a convergent sequence in C, then let S ∈ B be its limit. If S does not
lie in C then S is not convex. Thus there is a segment � with endpoints lying in S but
with some interior point p not in S.

Let ε > 0 be selected so that the open ball U(p, ε) does not lie in S. Let a, b
be the endpoints of �. Choose j so large that HD (Sj , S) < ε/2. For such j , there
exist points aj , bj ∈ Sj such that |aj − a| < ε/3 and |bj − b| < ε/3. But then each
point cj (t) ≡ (1− t)aj + tbj has distance less than ε/3 from c(t) ≡ (1− t)a + tb,
0 ≤ t ≤ 1. In particular, there is a point pj on the line segment �j connecting aj
to bj such that |pj − p| < ε/3. Noting that pj must lie in Sj , we see that we have
contradicted our statement about U(p, ε). Therefore S must be convex. ��
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Proposition 1.6.9. Let {Sj } be a sequence of elements of B, each of which is con-
nected. Suppose that Sj → S in the Hausdorff metric. Then S must be connected.

Proof. Suppose not. Then S is disconnected. So we may write S = A∪B with each
of A and B closed and nonempty and A∩B = ∅. Then there is a number η > 0 such
that if a ∈ A and b ∈ B then |a − b| > η.

Choose j so large that HD (Sj , S) < η/3. Define

Aj = {s ∈ Sj : dist(s, A) ≤ η/3} and Bj = {s ∈ Sj : dist(s, B) ≤ η/3}.
ClearlyAj ∩Bj = ∅ andAj , Bj are closed and nonempty. Moreover,Aj ∪Bj = Sj .
That contradicts the connectedness of Sj and completes the proof. ��
Remark 1.6.10. It is certainly possible to have totally disconnected sets Ej , j =
1, 2, . . . , such that Ej → E as j →∞ and E is connected (exercise).

Now we turn to a new arena in which the Hausdorff distance is applicable.

Definition 1.6.11. Let V be an (N − 1)-dimensional vector subspace of RN. Steiner
symmetrization20 with respect to V is the operation that associates with each bounded
subset T of RN the subset T̃ of RN having the property that for each straight line �
perpendicular to V, � ∩ T̃ is a closed line segment with center in V or is empty and
the conditions

L1(� ∩ T̃ ) = L1(� ∩ T ) (1.31)

and
� ∩ T̃ = ∅ if and only if � ∩ T = ∅

hold, where in (1.31), L1 means the Lebesgue measure resulting from isometrically
identifying the line � with R.

In Figure 1.5, B is the Steiner symmetrization of A with respect to the line L.
Steiner used symmetrization to give a proof of the isoperimetric theorem that he

presented to the Berlin Academy of Science in 1836 (see [Str 36]). The results in the
remainder of this section document a number of aspects of the behavior of Steiner
symmetrization.

Proposition 1.6.12. If T is a bounded LN -measurable subset of RN and if S is ob-
tained from T by Steiner symmetrization, then S is LN -measurable and

LN(T ) = LN(S).

Proof. This is a consequence of Fubini’s theorem. ��
Lemma 1.6.13. Fix 0 < M < ∞. If A and A1, A2, . . . are closed subsets of RN ∩
B(0,M) such that

20 Jakob Steiner (1796–1863).
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A B

L

Fig. 1.5. Steiner symmetrization.

∞⋂
i0=1

⎡⎣ ∞⋃
i=i0
Ai

⎤⎦ ⊆ A,
then

lim sup
i

LN(Ai) ≤ LN(A).

Proof. Let ε > 0 be arbitrary. Then there exists an open set U with A ⊆ U and

LN(U) ≤ LN(A)+ ε.
A routine argument shows that for all sufficiently large i, Ai ⊆ U. It follows that

lim sup
i

LN(Ai) ≤ LN(U),

and the fact that ε was arbitrary implies the lemma. ��
Proposition 1.6.14. If T is a compact subset of RN and if S is obtained from T by
Steiner symmetrization, then S is compact.

Proof. Let V be an (N − 1)-dimensional vector subspace of RN, and suppose that
S is the result of Steiner symmetrization of T with respect to V. It is clear that the
boundedness of T implies the boundedness of S. To see that S is closed, consider any
sequence of points p1, p2, . . . in S that converges to some point p. Each pi lies in a
line �i perpendicular to V, and we know that

dist(pi, V ) ≤ 1

2
L1(�i ∩ S) = 1

2
L1(�i ∩ T ).
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We also know that the line perpendicular to V and containing p must be the limit of
the sequence of lines �1, �2, . . . . Further, we know that

dist(p, V ) = lim
i→∞ dist(pi, V ).

The inequality
lim sup
i

L1(�i ∩ T ) ≤ L1(� ∩ T ) (1.32)

would allow us to conclude that

dist(p, V ) = lim
i→∞ dist(pi, V ) ≤ 1

2
lim sup
i→∞

L1(�i ∩ T ) ≤ 1

2
L1(� ∩ T ),

and thus that p ∈ S.
To obtain the inequality (1.32), we let qi be the vector parallel to V that translates

�i to �, and we apply Lemma 1.6.13, withN replaced by 1 and with � identified with
R, to the sets Ai = τqi (�i ∩ T ) , which are the translates of the sets �i ∩ T .We can
take A = � ∩ T , because T is closed. ��
Proposition 1.6.15. If T is a bounded, convex subset of RN and S is obtained from
T by Steiner symmetrization, then S is also a convex set.

Proof. LetV be an (N−1)-dimensional vector subspace of RN, and suppose that S is
the result of Steiner symmetrization of T with respect to V. Let x and y be two points
of S.We let x′ and y′ denote the points obtained from x and y by reflection through
the hyperplane V.Also, let �x and �y denote the lines perpendicular to V and passing
through the points x and y, respectively. By the definition of Steiner symmetrization
and the convexity of T , we see that �x ∩ T must contain a line segment, say from px
to qx, of length at least dist(x, x′). Likewise, �y ∩T contains a line segment from py
to qy of length at least dist(y, y′). The convex hull of the four points px, qx, py, qy
is a trapezoid,Q, which is a subset of T .

We claim that the trapezoid, Q′, that is the convex hull of x, x′, y, y′ must be
contained in S. Let x′′ be the point of intersection of �x and V. Similarly, define y′′
to be the intersection of �y and V. For any 0 ≤ τ ≤ 1, the line �′′ perpendicular to V
and passing through

(1− τ)x′′ + τy′′
intersects the trapezoidQ ⊆ T in a line segment of length

d1 = (1− τ)dist(px, qx)+ τdist(py, qy) ,

and it intersects the trapezoidQ′ in a line segment, centered about V, of length

d2 = (1− τ)dist(x, x′)+ τdist(y, y′).

But S must contain a closed line segment of �′′, centered about V, of length at least
d1. Since d1 at least as large as d2,

�′′ ∩Q′ ⊆ �′′ ∩ S.
Since the choice of 0 ≤ τ ≤ 1 was arbitrary, we conclude thatQ′ ⊆ S. In particular,
the line segment from x to y is contained inQ′ and thus in S. ��
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The power of Steiner symmetrization obtains from the following theorem.

Theorem 1.6.16. Suppose that C is a nonempty family of nonempty compact subsets
of RN that is closed in the Hausdorff distance topology and that is closed under the
operation of Steiner symmetrization with respect to any (N − 1)-dimensional vector
subspace of RN. Then C contains a closed ball (possibly of radius 0) centered at the
origin.

Proof. Let C be such a family of compact subsets of RN and set

r = inf {s : there exists T ∈ C with T ⊆ B(0, s)}.

If r = 0, we are done, so we may assume r > 0. By Theorem 1.6.6, any uniformly
bounded family of nonempty compact sets is compact in the Hausdorff distance
topology, so we can suppose there exists a T ∈ C with T ⊆ B(0, r).

We claim that T = B(0, r). If not, then there exist p ∈ B(0, r) and ε > 0 such
that T ⊆ B(0, r) \ B(p, ε). Suppose T1 is the result of Steiner symmetrization of T
with respect to any arbitrarily chosen (N − 1)-dimensional vector subspace V. Let
� be the line perpendicular to V and passing through p. For any line �′ parallel to
� and at distance less than ε from �, the Lebesgue measure of the intersection of �′
with T must be strictly less than the length of the intersection of �′ with B(0, r), so
the intersection of �′ with ∂B(0, r) is not in T1.We conclude that if p1 is either one
of the points of intersection of the sphere of radius r about the origin with the line �,
then

B(p1, ε) ∩ ∂B(0, r) ∩ T1 = ∅.
Choose a finite set of distinct additional points p2, p3, . . . , pk such that

∂B(0, r) ⊆ ⋃ k
i=1B(pi, ε).

For i = 1, 2, . . . , k − 1, let Ti+1 be the result of Steiner symmetrization of Ti
with respect to the (N − 1)-dimensional vector subspace perpendicular to the line
through pi and pi+1. By the lemma it follows that

B(pi, ε) ∩ ∂B(0, r) ∩ Tj = ∅

holds for i ≤ j ≤ k. Thus we have

Tk ∩ ∂B(0, r) = ∅,

so

Tk ⊆ B(0, s)

holds for some s < r, a contradiction. ��
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1.7 Borel and Suslin Sets

In this section, we discuss the Borel and Suslin sets. The goal of the section is to
show that for all reasonable measures on Euclidean space, the continuous images of
Borel sets are measurable sets (Corollary 1.7.19). This result is based on three facts:
every Borel set is a Suslin set (Theorem 1.7.9), the continuous image of a Suslin set is
a Suslin set (Theorem 1.7.12), and all Suslin sets are measurable (Corollary 1.7.18).

To put it as briefly as possible, the Suslin sets in RN are the sets obtained as the
orthogonal projections of Borel sets in RN+M . The history of Suslin sets is of some
interest. In [Leb 05] (on page 191) Lebesgue had claimed that every projection of a
Borel set is again a Borel set—Lebesgue even gave what he believed was a proof.
It was Suslin (see [Sus 17]) who showed that, in fact, the Borel sets form a proper
subfamily within the Suslin sets, and consequently, there exists a Borel set whose
orthogonal projection is not a Borel set. While it is clearly of interest to know that
there exists a Suslin set that is not a Borel set, we will not prove or use that result.
We refer the interested reader to [Fed 69, 2.2.11], [Hau 62, Section 33], or [Jec 78,
Section 39].

Construction of the Borel Sets
In Section 1.2 we defined the Borel sets in a topological space to be the members of
the smallest σ -algebra that includes all the open sets. The virtue of this definition is
its efficiency, but the price we pay for that efficiency is the absence of a mechanism
for constructing the Borel sets. In this section, we will provide that constructive
definition of the Borel sets.

For definiteness we work on RN . We will use transfinite induction over the small-
est uncountable ordinal ω1 (see Appendix A.1 for a brief introduction to transfinite
induction) to define families of sets �0

α and �0
α , for α < ω1. For us, the superscript

0’s are superfluous, but we include them since they are typically used in descriptive
set theory.

Definition 1.7.1. Set

�0
1 = the family of all open sets in RN ,

�0
1 = the family of all closed sets in RN .

If α < ω1, and �0
β and �0

β have been defined for all β < α, then set

�0
α = the family of sets of the form

A =
∞⋃
i=1

Ai, where each Ai ∈ �0
β for some β < α, (1.33)

�0
α = the family of sets of the form RN \ A for A ∈ �0

α . (1.34)



1.7 Borel and Suslin Sets 43

Since the complement of a union is the intersection of the complements, we see
that we can also write

�0
α = the family of sets of the form

A =
∞⋂
i=1

Ai, where each Ai ∈ �0
β for some β < α. (1.35)

By transfinite induction over ω1, we see that for α < ω1, all the elements of �0
α and

�0
α are Borel sets.

Lemma 1.7.2. If 1 ≤ β < α < ω1, then

�0
β ⊆ �0

α , �0
β ⊆ �0

α , �0
β ⊆ �0

α , �0
β ⊆ �0

α

hold.

Proof. By (1.33) and (1.35), we see that �0
β ⊆ �0

α and �0
β ⊆ �0

α hold whenever
1 ≤ β < α < ω1.

Every open set in Euclidean space is a countable union of closed sets, so�0
1 ⊆ �0

2
holds. Consequently, we also have�0

1 ⊆ �0
2. Since�0

1 ⊆ �0
2 ⊆ �0

α holds whenever
2 < α and since�0

1 ⊆ �0
2 holds, we have�0

1 ⊆ �0
α and�0

1 ⊆ �0
α for all 1 < α < ω1.

Fix 1 ≤ β < α < ω1. Suppose �0
γ ⊆ �0

α and �0
γ ⊆ �0

α hold whenever γ < β.

Any set A ∈ �0
β must be of the form A = ∪∞i=1Ai with each Ai ∈ �0

γ for some

γ < β. Then since β < α, we see that A ∈ �0
α . Thus �0

β ⊆ �0
α . Similarly, we have

�0
β ⊆ �0

α . ��
Corollary 1.7.3. We have ⋃

α<ω1

�0
α =

⋃
α<ω1

�0
α . (1.36)

Theorem 1.7.4. The family of sets in (1.36) is the σ -algebra of Borel subsets of RN .

Proof. Let B denote the family of sets in (1.36). To see that B is closed under
countable unions, suppose we are given A1, A2, . . . in B. Considering the left-hand
side of (1.36), we see that for each i, there is αi < ω1 such that Ai ∈ �0

αi
. Since

the sequence α1, α2, . . . is countable, but ω1 is uncountable, there is α∗ < ω1 with
αi < α

∗ for all i (see Lemma A.1.4). We conclude that ∪∞i=1Ai ∈ �α∗ . Thus B
is closed under countable unions. We argue similarly to see that B is closed under
countable intersections and complements. ��

Because in the definition of �0
α , equation (1.34) can be replaced by (1.35), The-

orem 1.7.4 has the following corollary.

Corollary 1.7.5. The family of Borel sets in RN is the smallest family of sets contain-
ing the open sets that is closed under countable unions and countable intersections.
Likewise, the family of Borel sets in RN is the smallest family of sets, containing the
closed sets, that is closed under countable unions and countable intersections.
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Suslin Sets
Recall that the positive integers are denoted by N. We let Ñ denote the set of all finite
sequences of positive integers and we let N denote the set of all infinite sequences
of positive integers, so

Ñ = { (n1, n2, . . . , nk) : k ∈ N, ni ∈ N for i = 1, 2, . . . , k } ,
N = { (n1, n2, . . .) : ni ∈ N for i = 1, 2, . . . } .

Definition 1.7.6. Let M be a collection of subsets of a set X. Suppose that there is a
setMn1,n2,...,nk ∈ M associated with every finite sequence of positive integers. We
can represent this relation as a function ν : Ñ →M defined by

(n1, n2, . . . , nk)
ν�−→ Mn1,n2,...,nk .

Such a function ν is called a determining system in M. Associated with the deter-
mining system ν is the set called the nucleus of ν denoted by N (ν) and defined by

N (ν) =
⋃
n∈N

n=(n1,n2,...)

(
Mn1 ∩Mn1,n2 ∩ · · · ∩Mn1,n2,...,nk ∩ · · ·

)
.

Suslin’s operation (A) is the function that when applied to the argument ν produces
the result N (ν). We will say that N (ν) is a Suslin set generated by M. The family
of all Suslin sets generated by M will be denoted by M(A).

By the Suslin sets in a topological space we mean the Suslin sets generated by
the family of closed sets.

Since N has the same cardinality as the real numbers, we see that the nucleus is
formed by an uncountable union of countable intersections of sets in M. We might
expect that operation (A) could be extremely powerful, but at the outset it is not
immediately clear what can be done with the operation. The next proposition tells us
that operation (A) is at least as powerful as those used to form the Borel sets.

Proposition 1.7.7. Suppose A1, A2, . . . ∈ M, then there exist determining systems
νU and νI such that

N (νU ) =
∞⋃
i=1

Ai and N (νI ) =
∞⋂
i=1

Ai .

Proof. Define νU and νI by

(n1, n2, . . . , nk)
νU

l−−−−−→ An1 ,

(n1, n2, . . . , nk)
νI

l−−−−−→ Ak .
It is easy to see that νU and νI have the desired properties. ��
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The next theorem that tells us that repeated applications of operation (A) produce
nothing that cannot be produced with only one application of the operation.

Theorem 1.7.8. If M is a family of sets, if ∅ ∈M, and if M(A) is the family of Suslin
sets generated by M, then any Suslin set generated by M(A) is already an element
of M(A). Symbolically, we have(

M(A)
)

(A) =M(A) .

Proof. Let

(n1, n2, . . . , nk)
ν�−→ Mn1,n2,...,nk ∈M(A)

be a determining system in M(A). For each n1, n2, . . . , nk ∈ Ñ , the setMn1,n2,...,nk

must itself be the nucleus of a determining system νn1,n2,...,nk in M; that is,

(q1, q2, . . . , q�)
νn1,n2,...,nk

l−−−−−−−−−−→ Mq1,q2,...,q�n1,n2,...,nk ∈M ,

Mn1,n2,...,nk =⋃
q∈N

q=(q1,q2,...)

(
M
q1
n1,n2,...,nk ∩Mq1,q2n1,n2,...,nk ∩ · · · ∩Mq1,q2,...,q�n1,n2,...,nk ∩ · · ·

)
,

N (ν) =
⋃
n∈N

n=(n1,n2,...)

(
Mn1 ∩Mn1,n2 ∩ · · · ∩Mn1,n2,...,nk ∩ · · ·

)
.

We can rewrite N (ν) as the union of the sets(
M
q1

1
n1 ∩ M

q1
1 ,q

1
2

n1 ∩ · · · ∩ Mq1
1 ,q

1
2 ,...,q

1
�

n1 ∩ · · ·
)

⋂ (
M
q2

1
n1,n2 ∩ M

q2
1 ,q

2
2

n1,n2 ∩ · · · ∩ Mq2
1 ,q

2
2 ,...,q

2
�

n1,n2 ∩ · · ·
)

...
...

...
...⋂ (

M
qk1
n1,n2,...,nk ∩ Mq

k
1 ,q
k
2

n1,n2,...,nk ∩ · · · ∩ M
qk1 ,q

k
2 ,...,q

k
�

n1,n2,...,nk ∩ · · ·
)

...
...

...
... .

(1.37)

Notice that the set in the kth row and �th column of (1.37) is indexed by k subscripts
and � superscripts. The choices of the subscripts and superscripts are constrained by
the following requirements:

in any row, the list of subscripts is constant,
in any row, the list of superscripts grows by concatenation,
in any column, the list of subscripts grows by concatenation.

⎫⎬⎭ (1.38)

Let the prime numbers in increasing numerical order be given by the list
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p1, p2, p3, . . . .

We can use the list of primes to encode the information concerning the number of
subscripts, the number of superscripts, and their values as follows: Set

m = pk1 · p�2 · pn1
3 · pn2

4 · · · pnkk+2 · p
qk1
k+3 · p

qk2
k+4 · · · p

qk�
�+k+2 . (1.39)

Given a positive integerm, the unique factorization ofm into prime powers determines
whetherm is of the form (1.39). Certainly not every positive integerm is of the form
(1.39), nor is every sequence of positive integers m1,m2, . . . consistent with the
conditions (1.38), even if the individual numbers mi are of the form (1.39). But it is
true that any sequence of sets in (1.37) will give rise to a sequence of positive integers
m1,m2, . . . of the form (1.39) that satisfies the conditions (1.38).

We now define the determining system

(m1,m2, . . . , mk)
σ�−→ Sm1,m2,...,mk .

For each positive integer m, if m is of the form (1.39), then the numbers k, �,
n1, n2, . . . , nk , qk1 , q

k
2 , . . . , q

k
� are uniquely determined by (1.39). So we can make

the definition

Tm =
{
S
qk1 ,q

k
2 ,...,q

k
�

n1,n2,...,nk if m is of the form (1.39) ,

∅ otherwise.

Then, for the sequence of positive integers m1,m2, . . . , set

Sm1,m2,...,mk =
{
Tm1 ∩ Tm2 ∩ · · · ∩ Tmk if (1.38) is not violated,

∅ otherwise.

For m = (m1,m2, . . .) ∈ N , the set

Sm1 ∩ Sm1,m2 ∩ · · · ∩ Sm1,m2,...,mk ∩ · · ·
is either one of the sets in (1.37) or the empty set. By construction, every set in (1.37)
gives rise to a sequence m = (m1,m2, . . .) ∈ N such that

Sm1 ∩ Sm1,m2 ∩ · · · ∩ Sm1,m2,...,mk ∩ · · ·
equals that set in (1.37). Thus we have N (ν) = N (σ ). ��
Theorem 1.7.9. Every Borel set in RN is a Suslin set.

Proof. By Proposition 1.7.7 and Theorem 1.7.8, the collection of Suslin sets is closed
under countable unions and countable intersections. Thus by Corollary 1.7.5, the
collection of Suslin sets contains all the Borel sets. ��
Continuous Images of Suslin Sets
Suppose f : X → Y is a function from a set X to a set Y . The inverse image of a
union of sets equals the union of the inverse images, and likewise the inverse image
of an intersection of sets equals the intersection of the inverse images. Images of sets
under functions are not as well behaved as inverse images; nonetheless, we do have
the following result—which is easily verified.
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Proposition 1.7.10. Let f : X→ Y .

(1) For {Aα}α∈I a collection of subsets of X, f
(⋃
α∈I Aα

) =⋃α∈I f (Aα) holds.
(2) For X ⊇ A1 ⊇ A2 ⊇ · · · , f

(⋂∞
i=1Ai

) ⊆ ⋂∞
i=1 f (Ai) holds and strict inclu-

sion is possible.

To obtain an equality for images of intersections, we need to look at continuous
functions and decreasing sequences of compact sets.

Proposition 1.7.11. Let X and Y be topological spaces and let f : X → Y be
continuous. If X is sequentially compact, X ⊇ C1 ⊇ C2 ⊇ · · · , and if each Ci is a
closed subset of X, then f

(⋂∞
i=1 Ci

) =⋂∞
i=1 f (Ci).

Proof. By Proposition 1.7.10, we need only show that
⋂∞
i=1 f (Ci) ⊆ f

(⋂∞
i=1 Ci

)
,

so suppose y ∈⋂∞
i=1 f (Ci).

For each i, there is xi ∈ Ci withf (xi) = y, and because the setsCi are decreasing,
we have xj ∈ Ci whenever j ≥ i.

Set x0,j = xj for j = 1, 2, . . . . Since C1 is sequentially compact, there is a
convergent subsequence {x1,j }∞j=1 of {x0,j }∞j=1. Arguing inductively, suppose 1 ≤
i and that we have already constructed a convergent sequence {xi,j }∞j=1 that is a
subsequence of {xh,j }∞j=1, for 0 ≤ h ≤ i − 1, and is such that every xi,j is a point
of Ci , for j = 1, 2, . . . . Since {xi,j }∞j=1 is a subsequence of the original sequence
{x0,j }∞j=1, there is a j∗ such that xi,j ∈ Ci+1 holds for all j with j∗ ≤ j . Since
Ci+1 is sequentially compact, we can select a convergent subsequence {xi+1,j }∞j=1
of {xi,j }∞j=j∗ , and thus satisfy the induction hypothesis.

By construction, the sequence {xj,j }∞j=1 is convergent. Hence we have

limj→∞ xj,j ∈ ⋂∞
i=1 Ci , f

(
limj→∞ xj,j

) = lim∞j=1 f
(
xj,j
) = y, and thus we

have shown that y ∈⋂∞
i=1 Ci . ��

Theorem 1.7.12. If f : RN → RM is continuous and S ⊆ RN is a Suslin set, then
f (S) is a Suslin subset of RM .

Proof. Since any closed subset of RN is a countable union of compact sets, we see
that if K is the collection of compact subsets of RN , then K(A) is the collection of
Suslin sets.

Let S ⊆ RN be a Suslin set, and let ν be a determining system in K such that
S = N (ν). Since any finite intersection of compact sets is compact, we see that the

determining system (n1, n2, . . . , nk)
ν�−→ Kn1,n2,...,nk has the same nucleus as the

determining system (n1, n2, . . . , nk)
ν̃�−→ Hn1,n2,...,nk in K given by

Hn1,n2,...,nk = Kn1 ∩Kn1,n2 ∩ · · · ∩Kn1,n2,...,nk .

Because the sets
{
Hn1,n2,...,nk

}∞
k=1 form a decreasing sequence of compact sets, we

can apply Propositions 1.7.10 and 1.7.11 to conclude that
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f (S) = f [N (ν)] = f [N (̃ν)]

= f

⎡⎢⎢⎣ ⋃
n∈N

n=(n1,n2,...)

(
Hn1 ∩Hn1,n2 ∩ · · · ∩Hn1,n2,...,nk ∩ · · ·

) ⎤⎥⎥⎦
=

⋃
n∈N

n=(n1,n2,...)

(
f (Hn1) ∩ f (Hn1,n2) ∩ · · · ∩ f (Hn1,n2,...,nk ) ∩ · · ·

)
,

and so we see that f (S) is a Suslin set in RM . ��
Measurability of Suslin Sets
In order to prove that the Suslin sets are measurable, we need to introduce some
additional structures similar to the nucleus of a determining system.

Definition 1.7.13. Let (n1, n2, . . . , nk)
ν�−→ An1,n2,...,nk be given. Let h1, h2, . . . , hs

be a finite sequence of positive integers. We define the following sets:

N h1,h2,...,hs (ν) =
⋃

(n1,n2,...)∈N
ni≤hi , 1≤i≤s

An1 ∩ An1,n2 ∩ · · · ∩ An1,n2,...,nk ∩ · · · , (1.40)

N h1,h2,...,hs (ν) =
h1⋃
n1=1

h2⋃
n2=1

· · ·
hs⋃
ns=1

An1 ∩ An1,n2 ∩ · · · ∩ An1,n2,...,ns . (1.41)

The next proposition follows immediately from the definition.

Proposition 1.7.14. Let (n1, n2, . . . , nk)
ν�−→ An1,n2,...,nk be given. We have

N 1(ν) ⊆ · · · ⊆ N h(ν) ⊆ N h+1(ν) ⊆ · · · ,

N (ν) =
∞⋃
k=1

N k(ν) ,

N h1,...,hs ,1(ν) ⊆ · · · ⊆ N h1,...,hs ,k(ν) ⊆ N h1,...,hs ,k+1(ν) ⊆ · · · ,

N h1,...,hs (ν) =
∞⋃
k=1

N h1,...,hs ,k(ν) .

Corollary 1.7.15. If µ is a regular measure on the nonempty set X and ν is a deter-
mining system in any family of subsets of X and if E is any subset of X, then

lim
k→∞µ

[
E ∩ N k(ν)

]
= µ

[
E ∩ N (ν)

]
,

lim
k→∞µ

[
E ∩ N h1,h2,...,hs ,k(ν)

]
= µ

[
E ∩ N h1,h2,...,hs (ν)

]
.
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Proof. Recall that Lemma 1.2.8 tells us that for a regular measure the measure of the
union of an increasing sequence of sets is the limit of the measures of the sets, so the
result follows immediately from Proposition 1.7.14. ��

We will need the following lemma.

Lemma 1.7.16. Let (n1, n2, . . . , nk)
ν�−→ An1,n2,...,nk and (h1, h2, . . .) ∈ N be

given. Then we have

N h1(ν) ∩ N h1,h2(ν) ∩ · · · ∩ N h1,h2,...,hs (ν) ∩ · · · ⊆ N (ν) . (1.42)

Proof. Fix a point x belonging to the left-hand side of (1.42).
First we claim that there exists a positive integer n0

1 ≤ h1 such that for every k
with 2 ≤ k, there exist n2, n3, . . . , nk with ni ≤ hi , for 2 ≤ i ≤ k, and with

x ∈ An0
1
∩ An0

1,n2
∩ · · · ∩ An0

1,n2,...,nk
.

To verify this, suppose it were not true. Then for each index n1 ≤ h1 there would be
exist a positive integer k(n1) such that

x /∈ An1 ∩ An1,n2 ∩ · · · ∩ An1,n2,...,nk(n1)

whenever ni ≤ hi for i = 2, 3, . . . , k(n1).
Setting K(1) = max{ k(1), k(2), . . . , k(h1) }, we see that

x /∈
h1⋃
n1=1

h2⋃
n2=1

· · ·
hK(1)⋃
nK(1)=1

An1 ∩ An1,n2 ∩ · · · ∩ An1,n2,...,nK(1) ,

which contradicts our assumption that x is an element of the left-hand side of (1.42).
Arguing inductively, suppose we have selected positive integers n0

1, n
0
2, . . . , n

0
s

satisfying

n0
1 ≤ h1, n0

2 ≤ h2, . . . , n0
s ≤ hs ,

for every k with s + 1 ≤ k, there exist ns+1, ns+2, . . . , nk
with ni ≤ hi , for s + 1 ≤ i ≤ k, and with
x ∈ An0

1
∩ An0

1,n
0
2
∩ · · · ∩ An0

1,n
0
2,...,n

0
s ,ns+1,ns+2,...,nk

.

⎫⎪⎪⎬⎪⎪⎭ (1.43)

We claim that we can select n0
s+1 ≤ hs+1 so that (1.43) holds with s replaced by

s + 1. If no such n0
s+1 existed, then for each index ns+1 ≤ hs+1 there would exist a

positive integer k(ns+1) such that

x /∈ An0
1
∩ An0

1,n
0
2
∩ · · · ∩ An0

1,n
0
2,...,n

0
s ,ns+1,ns+2,...,nk(ns+1)

whenever ni ≤ hi for i = s + 1, s + 2, . . . , k(ns+1).
Setting K(s + 1) = max{ k(1), k(2), . . . , k(hs+1) }, we see that
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x /∈
h1⋃
n1=1

h2⋃
n2=1

· · ·
hK(s+1)⋃
nK(s+1)=1

An1 ∩ An1,n2 ∩ · · · ∩ An1,n2,...,nK(s+1) ,

which contradicts our assumption that x is an element of the left-hand side of (1.42).
Thus there exists an infinite sequence n0

1 ≤ h1, n0
2 ≤ h2, . . . such that

x ∈ An0
1
∩ An0

1,n
0
2
∩ · · · ∩ An0

1,n
0
2,...,n

0
k
∩ · · · ;

hence x ∈ N (ν). ��
Theorem 1.7.17. Let µ be a regular measure on the nonempty set X, and let M be
the collection of µ-measurable subsets ofX. If ν is a determining system in M, then
N (ν) is µ-measurable.

Proof. Let the determining system ν be (n1, n2, . . . , nk)
ν�−→ Mn1,n2,...,nk , and set

A = N (ν). We need to show that for any set E ⊆ X, we have

µ(E ∩ A)+ µ(E \ A) ≤ µ(E) .
We may assume that µ(E) <∞. Let ε > 0 be arbitrary.

Using Corollary 1.7.15, we can inductively define a sequence of positive integers
h1, h2, . . . such that

µ
[
C ∩ N h1(ν)

]
≥ µ

[
E ∩ N (ν)

]
− ε/2

and
µ
[
C ∩ N h1,h2,...,hk (ν)

]
≥ µ

[
E ∩ N h1,h2,...,hk−1(ν)

]
− ε/2k .

We have N h1,h2,...,hk (ν) ⊆ N h1,h2,...,hk (ν), so

µ
[
E ∩ N h1,h2,...,hk (ν)

]
≥ µ

[
E ∩ N h1,h2,...,hk (ν)

]
≥ µ(E ∩ N (ν))− ε

holds, and thus, since N h1,h2,...,hk (ν) is µ-measurable,

µ(E) = µ
[
E ∩ N h1,h2,...,hk (ν)

]
+ µ

[
E \ N h1,h2,...,hk (ν)

]
≥ µ

[
E ∩ N (ν)

]
+ µ

[
E \ N h1,h2,...,hk (ν)

]
− ε .

Now the sequence of sets
{

N h1,h2,...,hk (ν)
}
k=1,2,...

is descending, and by

Lemma 1.7.16 its limit is a subset of N (ν). Consequently the sequence{
X \N h1,h2,...,hk

}
k=1,2,...

is ascending and its limit contains the setX \N (ν). Hence

lim
k→∞µ

[
E \ N h1,h2,...,hk (ν)

]
= µ

[
E \

∞⋃
k=1

N h1,h2,...,hk (ν)

]
≥ µ

[
E \ N (ν)

]
,
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so
µ(E) ≥ µ

[
E ∩ N (ν)

]
+ µ

[
E \ N (ν)

]
− ε ,

and the result follows since ε is an arbitrary positive number. ��
Corollary 1.7.18. If µ is a Borel regular measure on the topological space X, then
all the Suslin sets in X are µ-measurable.

Corollary 1.7.19. If f : RN → RM is continuous, µ is a Borel regular measure on
RM , and S ⊆ RN is a Suslin set, then f (S) is µ-measurable.

Remark 1.7.20. The particular properties of Euclidean space required for Corol-
lary 1.7.19 are that every open set is a countable union of closed sets and that every
closed set is a countable union of compact sets.




