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Preface

Geometric measure theory has roots going back to ancient Greek mathematics, for
considerations of the isoperimetric problem (to find the planar domain of given
perimeter having greatest area) led naturally to questions about spatial regions and
boundaries.

In more modern times, the Plateau problem is considered to be the wellspring of
questions in geometric measure theory. Named in honor of the nineteenth century
Belgian physicist Joseph Plateau, who studied surface tension phenomena in general,
and soap films and soap bubbles in particular, the question (in its original formulation)
was to show that a fixed, simple, closed curve in three-space will bound a surface of
the type of a disk and having minimal area. Further, one wishes to study uniqueness
for this minimal surface, and also to determine its other properties.

Jesse Douglas solved the original Plateau problem by considering the minimal
surface to be a harmonic mapping (which one sees by studying the Dirichlet integral).
For this work he was awarded the Fields Medal in 1936.

Unfortunately, Douglas’s methods do not adapt well to higher dimensions, so it
is desirable to find other techniques with broader applicability. Enter the theory of
currents. Currents are continuous linear functionals on spaces of differential forms.
Brought to fruition by Federer and Fleming in the 1950s, currents turn out to be
a natural language in which to formulate the sorts of extremal problems that arise
in geometry. One can show that the natural differential operators in the subject
are closed when acting on spaces of currents, and one can prove compactness and
structure theorems for spaces of currents that satisfy certain natural bounds. These
two facts are key to the study of generalized versions of the Plateau problem and
related questions of geometric analysis. As a result, Federer and Fleming were able
in 1960 to prove the existence of a solution to the general Plateau problem in all
dimensions and codimensions.

Today, geometric measure theory, which is properly focused on the study of
currents and their geometry, is a burgeoning field in its own right. Furthermore, the
techniques of geometric measure theory are finding good use in complex geometry,
in partial differential equations, and in many other parts of modern geometry. It is
desirable to have a text that introduces the graduate student to key ideas in this subject.



xii Preface

The present book is such a text. Demanding minimal background—only basic
courses in calculus and linear algebra and real variables and measure theory—this
book treats all the key ideas in the subject. These include the deformation theorem,
the area and coarea formulas, the compactness theorem, the slicing theorem, and
applications to fundamental questions about minimal surfaces that span given bound-
aries. In an effort to keep things as fundamental and near-the-surface as possible, we
eschew generality and concentrate on the most essential results. As part of our effort
to keep the exposition self-contained and accessible, we have limited our treatment
of the regularity theory to proving almost-everywhere regularity of mass-minimizing
hypersurfaces. We provide a full proof of the Lipschitz space estimate for harmonic
functions that underlies the regularity of mass-minimizing hypersurfaces.

The notation in this subject—which is copious and complex—has been carefully
considered by these authors and we have made strenuous effort to keep it as stream-
lined as possible. This is virtually the only graduate-level text in geometric measure
theory that has figures and fully develops the subject; we feel that these figures add
to the clarity of the exposition.

It should also be stressed that this book provides considerable background to bring
the student up to speed. This includes

• measure theory

• lower-dimensional measures and Carathéodory’s construction

• Haar measure

• covering theorems and differentiation of measures

• Poincaré inequalities

• differential forms and Stokes’s theorem

• a thorough introduction to distributions and currents

Some students will find that they can skip certain of the introductory material; but it
is useful to have it all present to establish terminology and notation, as a resource, and
for reference. We have also made a special effort to keep this book self-contained.
We do not want the reader running off to other sources for key ideas; he or she should
be able to read this book while sitting at home.

Geometric measure theory uses techniques from geometry, measure theory, anal-
ysis, and partial differential equations. This book showcases all these methodologies,
and explains the ways in which they interact. The result is a rich symbiosis that is
both rewarding and educational.

The subject of geometric measure theory deserves to be known to a broad audience,
and we hope that the present text will facilitate the dissemination of the subject to a
new generation of mathematicians. It has been our pleasure to record these topics in
a definitive and accessible and, we hope, lively form. We hope that the reader will
derive the same satisfaction in studying these ideas in the present text. Of course, we
welcome comments and criticisms, so that the book may be kept lively and current
and as accurate as possible.
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1

Basics

Our purpose in this chapter will be to establish notation and terminology. The reader
should already be acquainted with most of the concepts discussed and thus might
wish to skim the chapter or skip ahead, returning if clarification is needed.

1.1 Smooth Functions

The set of real numbers will be denoted by R. In this book, we will be concerned with
questions of geometric analysis in an N -dimensional Euclidean space. That is, we
will work in the space RN of ordered N -tuples of real numbers. The inner product
x · y of two elements x, y ∈ RN is defined by setting

x · y =
N∑
i=1

xiyi ,

where
x = (x1, x2, . . . , xN) and y = (y1, y2, . . . , yN) .

Of course, the inner product is a symmetric, bilinear, positive definite function on
RN × RN . The norm of the element x ∈ RN , denoted by |x|, is defined by setting

|x| = √x · x , (1.1)

as we may since x ·x is always nonnegative. The standard orthonormal basis elements
for RN will be denoted by ei , i = 1, 2, . . . , N . Specifically, ei is the vector with
N entries, all of which are 0’s except the ith entry, which is 1. For computational

N should be considered column vectors. Column vectors can

notation, as we did above.
The open ball of radius r > 0 centered at x will be denoted by B(x, r) and is

defined by setting

purposes, elements of R
waste space on the page, and so we sometimes take the liberty of using row vector

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
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2 1 Basics

B(x, r) = { y ∈ RN : |x − y| < r } .
The closed ball of radius r ≥ 0 centered at x will be denoted by B(x, r) and is defined
by setting

B(x, r) = { y ∈ RN : |x − y| ≤ r } .
The standard topology on the space RN is defined by letting the open sets consist

of all arbitrary unions of open balls. The closed sets are then defined to be the
complements of the open sets. For any subset A of RN (or of any topological space),

there is a largest open set contained inA. That set, denoted by Å, is called the interior
of A. Similarly, A is contained in a smallest closed set containing A and that set,
denoted by A, is called the closure of A. The topological boundary of A, denoted by
∂A, is defined by setting

∂A = A \ Å .
Remark 1.1.1.

(1) At this juncture, the only notion of boundary in sight is that of the topological
boundary. Since later we shall be led to define another notion of boundary, we
are taking care to emphasize that the present definition is the topological one.
When it is clear from context that we are discussing the topological boundary,
then we will refer simply to the “boundary of A.’’

(2) The notations Å and A for the interior and closure, respectively, of the set A
are commonly used but are not universal. A variety of notations is used for the
topological boundary of A, and ∂A is one of the more popular choices.

Let U ⊆ RN be any open set. A function f : U → RM is said to be continuously
differentiable of order k, or Ck , if f possesses all partial derivatives of order not
exceeding k and all of those partial derivatives are continuous; we write f ∈ Ck or
f ∈ Ck(U) if U is not clear from context. If the range of f is also not clear from
context, then we write (for instance) f ∈ Ck(U ;RM).When k = 1, we simply say
that f is continuously differentiable. The function f is said to be C∞, or infinitely
differentiable, provided that f ∈ Ck for every positive k. The function f is said to be
inCω, or real analytic, provided that it has a convergent power series expansion about
each point of U.We direct the reader to [KPk 02] for matters related to real analytic
functions. We also extend the preceding notation by using f ∈ C0 to indicate that f
is continuous.

The order of differentiability of a function is referred to as its smoothness. By a
smooth function, one typically means an f ∈ C∞, but sometimes one may mean an
f ∈ Ck , where k is an integer as large as turns out to be needed.

The support of a continuous function f : U → RM, denoted by supp f , is the
closure of the set of points where f �= 0.We will use Ckc to denote the Ck functions
with compact support; here k can be a nonnegative integer or∞.

Let Z denote the integers, Z+ the nonnegative integers, and N the positive integers.
A multi-index α is an element of (Z+)N , the Cartesian product of N copies of Z+.
If α = (α1, α2, . . . , αN) is a multi-index and x = (x1, x2, . . . , xN) is a point in RN,
then we introduce the following standard notation:



1.1 Smooth Functions 3

xα ≡ (x1)
α1(x2)

α2 · · · (xN)αN ,

|α| ≡ α1 + α2 + · · · + αN ,

∂ |α|

∂xα
≡ ∂

α1

∂x
α1
1

∂α2

∂x
α2
2

· · · ∂
αN

∂x
αN
N

,

α! ≡ (α1!)(α2!) · · · (αN !) .
With this notation, a function f on U is Ck if (∂ |α|/∂xα)f exists and is continuous
for all multi-indices α with |α| ≤ k.

We will sometimes find it convenient to use the alternative notations

Dxif =
∂f

∂xi
and Dxi xj f =

∂2f

∂xi∂xj

for the partial derivatives of the function f (which may be a real-valued or vector-
valued function).

Definition 1.1.2. If f is defined in a neighborhood of p ∈ RN , and if f takes values
in RM , then we say that f is differentiable at p when there exists a linear function
Df (p) : RN → RM such that

lim
x→p

|f (x)− f (p)− 〈Df (p), x − p〉|
|x − p| = 0 . (1.2)

In case f is differentiable at p, we call Df (p) the differential of f at p.

Advanced calculus tells us that if f is differentiable as in Definition 1.1.2, then
the first partial derivatives of f exist and that we can evaluate the differential applied
to the vector v using the equation

〈Df (p), v〉 =
N∑
i=1

vi
∂f

∂xi
(p) =

N∑
i=1

(ei · v) ∂f
∂xi
(p) , (1.3)

where v = ∑ni=1 viei . The Jacobian matrix1 of f at p is denoted by Jac f and is
defined by

Jac f ≡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂f1

∂x1
(p)

∂f1

∂x2
(p) · · · ∂f1

∂xN
(p)

∂f2

∂x1
(p)

∂f2

∂x2
(p) · · · ∂f2

∂xN
(p)

...
...

...
∂fM

∂x1
(p)
∂fM

∂x2
(p) · · · ∂fM

∂xN
(p)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

1 Carl Gustav Jacobi (1804–1851).



4 1 Basics

For v ∈ RN , we have

〈Df (p), v〉 = [Jac f ] v , (1.4)

where on the right-hand side of (1.4) the vector v is represented as a column vector
and Jac f operates on v by matrix multiplication. Equation (1.4) is simply another
way of writing (1.3). We will sometimes find it convenient to use the notation

Dvf (p) = 〈Df (p), v〉 .

We will denote the collection of allM-by-N matrices with real entries by

MM,N .

The Hilbert–Schmidt norm2 on MM,N is defined by setting

∣∣∣ (ai,j ) ∣∣∣ =
⎛⎝ M∑
i=1

N∑
j=1

(ai,j )
2

⎞⎠1/2

for
(
ai,j
) ∈MM,N . The standard topology on MM,N is that induced by the Hilbert–

Schmidt norm. Of course, the mapping

(
ai,j
) �−→ M∑

i=1

N∑
j=1

ai,j ei+(j−1)M

from MM,N to RMN is a homeomorphism.
The function sending a point to its differential, when the differential exists, takes its

values in the space of linear transformations from RN to RM , a space often denoted
by Hom(RN,RM). The space Hom(RN,RM) can be identified with MM,N by
representing each linear transformation by an M × N matrix. The Jacobian matrix
provides that representation for the differential of a function.

The standard topology on Hom(RN,RM) is that induced by the Hilbert–Schmidt
norm on MM,N and the identification of Hom(RN,RM) with MM,N . On a finite-
dimensional vector space, all norms induce the same topology, so, in particular, the
same topology is given by the mapping norm on Hom(RN,RM) defined by

‖L‖ = sup{ |L(v)| : v ∈ RN, |v| ≤ 1 } .

We see that f : U → RM is C1 if and only if

p �−→ Df (p)

is a continuous mapping from U into Hom(RN,RM).

2 David Hilbert (1862–1943), Erhard Schmidt (1876–1959).
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Definition 1.1.3. If f ∈ Ck(U,RM), k = 1, 2, . . . , we define the kth differential of
f at p, denoted by Dkf (p), to be the k-linear RM -valued function given by

〈Dkf (p), (v1, v2, . . . , vk)〉 =
N∑

i1,i2,...,ik=1

k∏
j=1

(eij ·vj )
∂k

∂xi1∂xi2 · · · ∂xik
f (p) . (1.5)

Note that in the case k = 1, equations (1.3) and (1.5) agree. Also note that the
equality of mixed partial derivatives guarantees thatDkf (p) is a symmetric function.
The interested reader may consult [Fed 69, 1.9, 1.10, 3.1.11] to see the kth differential
placed in the context of the symmetric algebra over a vector space.

Finally, note that in case k > 1, one can show inductively that (1.5) agrees with
the value of the differential at p of the function

〈Dk−1f (·), (v1, v2, . . . , vk−1)〉
applied to the vector vk , that is,

〈Dkf (p), (v1, v2, . . . , vk)〉 = 〈D 〈Dk−1f (p), (v1, v2, . . . , vk−1)〉, vk〉
holds.

In caseM = 1, one often identifies the differential of f with the gradient vector
of f , denoted by grad f and defined by setting

grad f =
N∑
i=1

∂f

∂xi
ei .

Similarly, the second differential of f can be identified with the Hessian matrix3 of
f , denoted by Hess (f ) and defined by

Hess (f ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2f

∂x2
1

∂2f

∂x1 ∂x2
. . .

∂2f

∂x1 ∂xN

∂2f

∂x2 ∂x1

∂2f

∂x2
2

. . .
∂2f

∂x2 ∂xN
...

...
...

∂2f

∂xN ∂x1

∂2f

∂xN ∂x2
. . .

∂2f

∂x2
N

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

If f is suitably smooth, one has

v · grad f = 〈Df, v〉
and

v · ([Hess (f )]w) = 〈D2f, (v,w)〉 ,
for vectors v and w represented as columns and where [Hess (f )]w indicates matrix
multiplication.

3 Ludwig Otto Hesse (1811–1874).
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1.2 Measures

Standard references for basic measure theory are [Fol 84], [Roy 88], and [Rud 87].
Since there are variations in terminology and notation among authors, we will briefly
review measure theory. We shall not provide proofs of most statements, but instead
refer the reader to [Fol 84], [Roy 88], and [Rud 87] for details.

Definition 1.2.1. Let X be a nonempty set.

(1) By a measure on X we mean a function µ defined on all subsets of X satisfying
the conditions µ(∅) = 0, A ⊆ B implies µ(A) ≤ µ(B), and

µ

(⋃
A∈F
A

)
≤
∑
A∈F
µ(A) if F is collection of subsets of X

with card(F) ≤ ℵ0. (1.6)

(2) If a set A ⊆ X satisfies

µ(E) = µ(E ∩ A)+ µ(E \ A) for all E ⊆ X, (1.7)

then we say that A is µ-measurable.

The condition (1.6) is called countable subadditivity. Since the empty union is
the empty set and the empty sum is zero, countable subadditivity implies µ(∅) = 0.
Nonetheless, it is worth emphasizing that µ(∅) = 0 must hold.

Proposition 1.2.2. Let µ be a measure on the nonempty set X.

(1) If µ(A) = 0, then A is µ-measurable.
(2) If A is µ-measurable and B ⊆ X, then

µ(A ∪ B) = µ(A)+ µ(B)− µ(A ∩ B) .
Definition 1.2.3. Let X be a nonempty set. By a σ -algebra on X is meant a family
M of subsets of X such that

(1) ∅ ∈M, X ∈M,
(2) M is closed under countable unions,
(3) M is closed under countable intersections, and
(4) M is closed under taking complements in X.

Theorem 1.2.4. If µ is a measure on the nonempty set X, then the family of µ-
measurable sets forms a σ -algebra.

Theorem 1.2.5. Let µ be a measure on the nonempty set X.

(1) If F is an at most countable family of pairwise disjoint µ-measurable sets, then

µ

(⋃
A∈F
A

)
=
∑
A∈F
µ(A) .



1.2 Measures 7

(2) If A1 ⊆ A2 ⊆ A3 ⊆ · · · is a nondecreasing family of µ-measurable sets, then

µ

( ∞⋃
i=1

Ai

)
= lim
i→∞µ(Ai) .

(3) If B1 ⊇ B2 ⊇ B3 ⊇ · · · is a nonincreasing family of µ-measurable sets and
µ(B1) <∞, then

µ

( ∞⋂
i=1

Bi

)
= lim
i→∞µ(Bi) .

Remark 1.2.6. The conclusion (1) of Theorem 1.2.5 is called countable additivity.
Many authors prefer the term outer measure for the countably subadditive functions
we have called measures. Those authors define a measure to be a countably additive
function on a σ -algebra. But if M is a σ -algebra and

m :M→ {t : 0 ≤ t ≤ ∞}
is a countably additive function, then one can define µ(A) for any A ⊆ X by setting

µ(A) = inf { m(E) : A ⊆ E ∈M } .
With µ so defined, we see that µ(A) = m(A) holds wheneverA ∈M and that every
set in M is µ-measurable. Thus it is no loss of generality to assume from the outset
that a measure is defined on all subsets ofX. It should be stressed that even though the
measure is defined on all subsets of X, some subsets of X will not be µ-measurable.

The notion of a regular measure, defined next, gives additional useful structure.

Definition 1.2.7. A measure µ on a nonempty set X is regular if for each set A ⊆ X
there exists a µ-measurable set B with A ⊆ B and µ(A) = µ(B).

One consequence of the additional structure available when one is working with
a regular measure is given in the next lemma. The lemma is easily proved using the
analogous result for µ-measurable sets, i.e., Theorem 1.2.5(2).

Lemma 1.2.8. Let µ be a regular measure on the nonempty set X. If a sequence of
subsets {Aj } of X satisfies A1 ⊆ A2 ⊆ · · · , then

µ

⎛⎝ ∞⋃
j=1

Aj

⎞⎠ = lim
j→∞µ(Aj ) .

Definition 1.2.9. If X is a topological space, then the Borel sets4 are the elements of
the smallest σ -algebra containing the open sets.

4 Émile Borel (1871–1956).
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For a measure on a topological space, it is evident that the measurability of all
the open sets implies the measurability of all the Borel sets, but it is typical for the
Borel sets to be a proper subfamily of the measurable sets. For instance, the sets in
RN known as Suslin sets5 or (especially in the descriptive set theory literature) as
analytic sets are µ-measurable for measures µ of interest in geometric analysis. Any
continuous image of a Borel set is a Suslin set, so every Borel set is ipso facto a Suslin
set. Suslin sets are discussed in Section 1.7.

For the study of geometric analysis, the measures of interest always satisfy the
following condition of Borel regularity.

Definition 1.2.10. Let µ be a measure on the topological space X. We say that µ is
Borel regular if every open set is µ-measurable and if for each A ⊆ X, there exists
a Borel set B ⊆ X with A ⊆ B and µ(A) = µ(B).

Often we will be working in the more restrictive class of Radon measures6 defined
next.

Definition 1.2.11. Suppose µ is a measure on a locally compact Hausdorff space7 X.
We say that µ is a Radon measure if the following conditions hold:

(1) Every compact set has finite µ measure.
(2) Every open set is µ-measurable, and if V ⊆ X is open, then

µ(V ) = sup{ µ(K) : K is compact and K ⊆ V } .
(3) For every A ⊆ X,

µ(A) = inf { µ(V ) : V is open and A ⊆ V } .
Definition 1.2.12. Let X be a metric space with metric �.

(1) For a set A ⊆ X, we define the diameter of A by setting

diamA = sup{ �(x, y) : x, y ∈ A } .
(2) For sets A,B ⊆ X, we define the distance between A and B by setting

dist(A,B) = inf { �(a, b) : a ∈ A, b ∈ B } .
IfA is the singleton set {a0}, then we will abuse the notation by writing dist(a0, B)

instead of dist({a0}, B).
When one is working in a metric space, a convenient tool for verifying the mea-

surability of the open sets is often provided by Carathéordory’s criterion,8 which we
now introduce.

5 Mikhail Yakovlevich Suslin (1894–1919).
6 Johann Radon (1887–1956).
7 Felix Hausdorff (1869–1942).
8 Constantin Carathéodory (1873–1950).
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Theorem 1.2.13 (Carathéodory’s criterion). Supposeµ is a measure on the metric
space X. All open subsets of X are µ-measurable if and only if

µ(A)+ µ(B) ≤ µ(A ∪ B) (1.8)

holds whenever A,B ⊆ X with 0 < dist(A,B).

Proof. First, suppose all open subsets ofX are µ-measurable and let A,B ⊆ X with
0 < dist(A,B) be given. Setting d = dist(A,B), we can define the open set

V = { x ∈ X : dist(x,A) < d/2 } .
Since V is open, thus µ-measurable, we have

µ(A ∪ B) = µ[(A ∪ B) ∩ V ] + µ[(A ∪ B) \ V ] = µ(A)+ µ(B) ,
so (1.8) holds.

Conversely, let V ⊆ X be open and suppose (1.8) holds whenever A,B ⊆ X
with 0 < dist(A,B). Let E ⊆ X be an arbitrary set. Without loss of generality, we
may suppose that µ(E) <∞ holds. Using (1.8) inductively, we see that

µ(E) ≥
n∑
i=1

µ( {x ∈ E : 1/(2i + 1) ≤ dist(x, V ) < 1/(2i)} )

and likewise,

µ(E) ≥
n∑
i=1

µ( {x ∈ E : 1/(2i + 2) ≤ dist(x, V ) < 1/(2i + 1)} ) .

Since n was arbitrary, we conclude that

2µ(E) ≥
∞∑
i=1

µ( {x ∈ E : 1/(i + 1) ≤ dist(x, V ) < 1/i} ) ,

so

0 = ∈n→∞
∞∑
i=n
µ( {x ∈ E : 1/(i + 1) ≤ dist(x, V ) < 1/i} )

≥ µ( {x ∈ E : 0 < dist(x, V ) < 1/n} ) .
Again using (1.8), we see that

µ(E) ≥ µ(E ∩ V )+ µ( {x ∈ E : 1/n ≤ dist(x, V )} )
≥ µ(E ∩ V )+ µ(E \ V )− µ( {x ∈ E : 0 < dist(x, V ) < 1/n} ) ,

and letting n→∞, we obtain

µ(E) ≥ µ(E ∩ V )+ µ(E \ V ) .
Since E ⊆ X was arbitrary, V is µ-measurable. ��
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1.2.1 Lebesgue Measure

To close out this section, we define Lebesgue measure9 on R. Other measures will
be defined in Chapter 2.

Definition 1.2.14. For A ⊆ R, the (one-dimensional) Lebesgue measure of A is
denoted by L1(A) and is defined by setting L1(A) equal to

inf
{ ∑
I∈I

length(I ) : I is a family of bounded open intervals, A ⊆
⋃
I∈I
I
}
. (1.9)

Here, of course, if I = (a, b) is an open interval, then length(I ) = b − a.
It is easy to see that L1 is a measure, and it is easy to apply Carathéodory’s criterion

(by dividing long intervals into short intervals) to see that all open sets in the reals
are L1 measurable. The purpose of the Lebesgue measure is to extend the notion of
length to more general sets. It may not be obvious that the result of the construction
agrees with the ordinary notion of length, so we confirm that fact next.

Lemma 1.2.15. If a bounded, closed interval [a, b] is contained in the union of
finitely many nonempty, bounded, open intervals, (a1, b1), (a2, b2), . . . , (an, bn), then
it holds that

b − a ≤
n∑
i=1

(bi − ai) . (1.10)

Proof. Noting that the result is obvious when n = 1, we argue by induction on n by
supposing that the result holds for all bounded, closed intervals and all n less than or
equal to the natural number N .

Consider

[a, b] ⊆
N+1⋃
i=1

(ai, bi) .

At least one of the intervals contains a, so by renumbering the intervals if need be,
we may suppose a ∈ (aN+1, bN+1). Also, we may suppose bN+1 < b, because
b ≤ bN+1 would give us b − a < bN+1 − aN+1.

We have

[bN+1, b] ⊆
N⋃
i=1

(ai, bi) ,

and thus, by the induction hypothesis,

b − bN+1 ≤
N∑
i=1

(bi − ai) ,

so

9 Henri Léon Lebesgue (1875–1941).
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b−a ≤ (bN+1−aN+1)+(b−bN+1) ≤ (bN+1−aN+1)+
N∑
i=1

(bi−ai) =
N+1∑
i=1

(bi−ai) ,

as required. ��
Corollary 1.2.16. The Lebesgue measure of the closed, bounded interval [a, b] equals
b − a.
Proof. Clearly, we have L1([a, b]) ≤ b− a. To obtain the reverse inequality, we ob-
serve that, if [a, b] is covered by a countable family of open intervals, then by com-
pactness, [a, b] is covered by finitely many of the open intervals. It then follows from
the lemma that the sum of the lengths of the covering intervals exceeds b − a. ��

Lebesgue measure is the unique translation-invariant measure on R that assigns
measure 1 to the unit interval. The next example shows us that not every set is
L1-measurable.

Example 1.2.17. Let Q denote the rational numbers. Notice that for each a ∈ R, the
set Xa defined by

Xa = { a + q : q ∈ Q }
intersects the unit interval [0, 1]. Of course, if a1 − a2 is a rational number, then
Xa1 = Xa2 , but also the converse is true: if Xa1 = Xa2 , then a1 − a2 ∈ Q.

By the axiom of choice, there exists a set C such that

C ∩ [0, 1] ∩Xa
has exactly one element for every a ∈ R. By the way C is defined, the sets C − q =
{ c−q : c ∈ C }, q ∈ [0, 1]∩Q, must be pairwise disjoint. Because L1 is translation-
invariant, all the sets C− q have L1 measure equal to L1(C), and if one of those sets
is L1-measurable, then all of them are.

Now, if t ∈ [0, 1], then there is c ∈ [0, 1] ∩ Xt , that is, c = t + q with q ∈ Q.
Equivalently, we can write q = c − t , so we see that −1 ≤ q ≤ 1 and t ∈ C − q.
Thus we have

[0, 1] ⊆
⋃

q∈[−1,1]∩Q

(C − q) ⊆ [−1, 2] (1.11)

and the sets in the union are all pairwise disjoint.
If C were L1-measurable, then the left-hand containment in (1.11) would tell us

that L1(C) > 0, while the right-hand containment would tell us that L1(C) = 0.
Thus we have a contradiction. We conclude that C is not L1-measurable. ��

The construction in the Example 1.2.17 is widely known. Less well known is
the general fact that if µ is a Borel regular measure on a complete, separable metric
space such that there are sets with positive, finite measure and with the property that
no point has positive measure, then there must exist a set that is not µ-measurable
(see [Fed 69, 2.2.4]).

The construction of nonmeasurable sets requires the use of the axiom of choice.
In fact, Robert Solovay has used the method of forcing (originally developed by Paul
Cohen (1934–2007)) to construct a model of set theory in which the axiom of choice
is not valid and in which every set of reals is Lebesgue measurable (see [Sov 70]).
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1.3 Integration

The definition of the integral in use in the mid 1800s was that given byAugustin-Louis
Cauchy (1789–1850). Cauchy’s definition is applicable to continuous integrands,
and easily extends to piecewise continuous integrands, but does not afford more
generality. This lack of generality in the definition of the definite integral compelled
Bernhard Riemann (1826–1866) to clarify the notion of an integrable function for his
investigation of the representation of functions by trigonometric series.

Recall that Riemann’s definition of the integral of a function f : [a, b] → R is
based on the idea of partitioning the domain of the function into sub-intervals. This
approach is mandated by the absence of a measure of the size of general subsets of the
domain. Measure theory takes away that limitation and allows the definition of the
integral to proceed by partitioning the domain via the inverse images of intervals in
the range. While this change of the partitioning may seem minor, the consequences
are far-reaching and have provided a theory that continues to serve us well.

1.3.1 Measurable Functions

Definition 1.3.1. Let µ be a measure on the nonempty set X.

(1) The term µ-almost can serve as an adjective or adverb in the following ways:
(a) Let P(x) be a statement or formula that contains a free variable x ∈ X. We

say that P(x) holds for µ-almost every x ∈ X if

µ
(
{ x ∈ X : P(x) is false }

)
= 0 .

IfX is understood from context, then we simply say that P(x) holdsµ-almost
everywhere.

(b) Two sets A,B ⊆ X are µ-almost equal if their symmetric difference has

µ-measure zero, i.e., µ
[
(A \ B) ∪ (B \ A)

]
= 0.

(c) Two functions f and g, each defined for µ-almost every x ∈ X, are said to
be µ-almost equal if f (x) = g(x) holds for µ-almost every x ∈ X.

(2) Let Y be a topological space. By a µ-measurable, Y -valued function we mean
a Y -valued function f defined for µ-almost every x ∈ X such that the inverse
image of any open subset U of Y is a µ-measurable subset of X, that is,
(a) f : D ⊆ X→ Y ,
(b) µ(X \D) = 0, and
(c) f−1(U) is µ-measurable whenever U ⊆ Y is open.

Remark 1.3.2.

(1) For the purposes of measure and integration, two functions that are µ-almost
equal are equivalent. This defines an equivalence relation.

(2) It is no loss of generality to assume that a µ-measurable function is defined at
every point of X. In fact, suppose f is a µ-measurable, Y -valued function with
domain D and let y0 be any element of Y . We can define the µ-measurable
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function f̃ : X→ Y by setting f̃ = f on D and f̃ (x) = y0, for all x ∈ X \D.
Then f and f̃ are µ-almost equal and f̃ is defined at every point of X.

Next we state two classical theorems concerning measurable functions due to
Egorov10 and Luzin.11

Theorem 1.3.3 (Egorov’s theorem). Let µ be a measure on X and let f1, f2, . . .

be real-valued, µ-measurable functions. If A ⊆ X with µ(A) <∞,

lim
n→∞ fn(x) = g(x) exists for µ-almost every x ∈ A,

and ε > 0, then there exists a µ-measurable set B, with µ(A \ B) < ε, such that fn
converges uniformly to g on B.

Theorem 1.3.4 (Luzin’s theorem). Let X be a metric space and let µ be a Borel
regular measure onX. If f : X→ R isµ-measurable,A ⊆ X isµ-measurable with
µ(A) < ∞, and ε > 0, then there exists a closed set C ⊆ A, with µ(A \ C) < ε,
such that f is continuous on C.

One reason for the usefulness of the notion of a µ-measurable function is that
the set of µ-measurable functions is closed under operations of interest in analysis
(including limiting operations). This usefulness is further enhanced by using the
extended real numbers, which we define next.

Definition 1.3.5. Often we will allow a function to take the values +∞ = ∞ and
−∞. To accommodate this generality, we define the extended real numbers

R = R ∪ {∞, −∞} .
The standard ordering on R is defined by requiring

x ≤ y if and only if

(x, y) ∈
(
{−∞} × R

) ⋃ (
R× {∞}

) ⋃ { (x, y) ∈ R× R : x ≤ y } .

The operation of addition is extended by requiring that it agree with values already
defined for the real numbers, by demanding that the operation be commutative, and
by assigning the values given in the following table:

+ −∞ x ∈ R +∞
+∞ undefined +∞ +∞
−∞ −∞ −∞ undefined

The operation of multiplication is extended by requiring that it agree with values
already defined for the real numbers, by demanding that the operation be commutative,
and by assigning the values given in the following table:

10 Dmitriı̆ Fedorovich Egorov (1869–1931).
11 Nikolai Nikolaevich Luzin (Nicolas Lusin) (1883–1950).
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× −∞ ≤ x < 0 0 0 < x ≤ +∞
+∞ −∞ undefined +∞
−∞ +∞ undefined −∞

The topology on R has as a basis the finite open intervals and the intervals of the form
[−∞, a) and (a,∞] for a ∈ R.

The extension of each arithmetic operation given above is maximal subject to
the requirement that the operation remain continuous. Nonetheless, when defining
integrals, it is convenient to extend the above definitions by adopting the convention
that

0 · ∞ = 0 · (−∞) = 0 .

Theorem 1.3.6. Let µ be a measure on the nonempty set X.

(1) If f and g are µ-measurable, extended-real-valued functions and if f + g (re-
spectively, fg) is defined µ-almost everywhere, then f + g (respectively, fg) is
µ-measurable.

(2) If f and g are µ-measurable, extended-real-valued functions, then the functions
max{f, g} and min{f, g} are µ-measurable.

(3) If f1, f2, . . . are µ-measurable, extended-real-valued functions, then the func-
tions lim supn→∞ fn and lim inf n→∞ fn are µ-measurable.

1.3.2 The Integral

Definition 1.3.7. For a function f : X → R we define the positive part of f to be
the function f+ : X→ [0,∞] defined by setting

f+(x) =
{
f (x) if f (x) > 0,
0 otherwise.

Similarly, the negative part of f is denoted by f− and is defined by setting

f−(x) =
{
f (x) if f (x) < 0,
0 otherwise.

Definition 1.3.8.

(1) The characteristic function of S ⊆ X is the function with domain X defined, for
x ∈ X, by setting

χ
S
(x) =

{
1 if x ∈ S,
0 if x /∈ S.

(2) By a simple function is meant a linear combination of characteristic functions of
subsets of X; that is, f is a simple function if it can be written in the form

f =
n∑
i=1

ai χAi
, (1.12)

where the numbers ai can be real or complex, but only finite values are allowed
(that is, ai �= ±∞).
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The nonnegative, µ-measurable, simple functions are of particular interest for
integration theory.

Lemma 1.3.9. Let µ be a measure on the nonempty set X. If f : X → [0,∞]
is µ-measurable, then there exists a sequence of µ-measurable, simple functions
hn : X→ [0,∞], n = 1, 2, . . . , such that

(1) 0 ≤ h1 ≤ h2 ≤ · · · ≤ f , and
(2) lim
n→∞hn = f (x), for all x ∈ X.

Proof. We can set

hn = nχBn +
n2n−1∑
i=1

i · 2−n χ
Ai
,

where Bn = f−1
(
[n,∞]

)
, and

Ai = f−1
(
[i · 2−n, (i + 1) · 2−n)

)
, i = 1, 2, . . . , n2n − 1 . ��

Definition 1.3.10. Let µ be a measure on the nonempty set X. If f : X → R is µ-
measurable, then the integral of f with respect to µ or, more simply, the µ-integral
of f (or, more simply yet, the integral of f when the measure is clear from context)
is denoted by ∫

f dµ =
∫
X

f (x) dµ(x)

and is defined as follows:

(1) In case f is a nonnegative, simple function written as in (1.12) with each Ai
µ-measurable, we set ∫

f dµ =
n∑
i=1

ai µ(Ai) . (1.13)

(2) In case f is a nonnegative function, we set∫
f dµ = sup

{ ∫
h dµ : 0 ≤ h ≤ f, h simple, µ-measurable

}
. (1.14)

(3) In case at least one of
∫
f+ dµ and

∫
f− dµ is finite, so that

∫
f+ dµ−

∫
f− dµ

is defined, we set ∫
f dµ =

∫
f+ dµ−

∫
f− dµ . (1.15)
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(4) In case both
∫
f+ dµ and

∫
f− dµ are infinite, the quantity

∫
f dµ is unde-

fined.

Definition 1.3.11.

(1) To integrate f over a subsetA ofX, we multiply f by the characteristic function
of A, that is, ∫

A

f dµ =
∫
f · χ

A
dµ .

(2) The definition of
∫
f dµ extends to complex-valued, respectively RN -valued,

functions by separating f into real and imaginary parts, respectively components,
and combining the resulting real-valued integrals using linearity.

(3) If
∫
|f | dµ is finite, then we say that f is µ-integrable (or simply integrable if

the measure µ is clear from context). In particular, f is µ-integrable if and only
if |f | is µ-integrable.

Remark 1.3.12.

(1) By a Lebesgue integrable function is meant an L1-integrable function in the
terminology of Definition 1.3.11(3).

(2) The theories of Riemann integration and Lebesgue integration are connected by
the following theorem:

A bounded, real-valued function on a closed interval is Riemann inte-
grable if and only if the set of points at which the function is discontinuous
has Lebesgue measure zero.

We will not prove this result. A proof can be found in [Fol 84, Theorem (2.28)].
(3) The reader should be aware that the terminology in [Fed 69] is different from that

which we use: In [Fed 69] a function is said to be “µ integrable’’ if
∫
f dµ is

defined, the values +∞ and −∞ being allowed, and “µ summable’’ if
∫ |f | dµ

is finite.

The following basic facts hold for integration of nonnegative functions.

Theorem 1.3.13. Let µ be a measure on the nonempty set X. Suppose f, g : X →
[0,∞] are µ-measurable.

(1) If A ⊆ X is µ-measurable, and f (x) = 0 holds for µ-almost all x ∈ A, then∫
A

f dµ = 0 .

(2) If A ⊆ X is µ-measurable and µ(A) = 0, then∫
A

f dµ = 0 .
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(3) If 0 ≤ c <∞, then ∫
(c · f ) dµ = c

∫
f dµ .

(4) If f ≤ g, then ∫
f dµ ≤

∫
g dµ .

(5) If A ⊆ B ⊆ X are µ-measurable, then∫
A

f dµ ≤
∫
B

f dµ .

Proof. Conclusions (1)–(4) are immediate from the definitions, and conclusion (5)
follows from (4). ��

Of course, it is essential that the equation
∫
(f +g) dµ = ∫ f dµ+ ∫ g dµ hold.

Unfortunately, this equation is not an immediate consequence of the definition. To
prove it we need the next lemma, which is a weak form of Lebesgue’s monotone
convergence theorem.

Lemma 1.3.14. Let µ be a measure on the nonempty set X. If f : X → [0,∞] is
µ-measurable and 0 ≤ h1 ≤ h2 ≤ · · · ≤ f is a sequence of simple, µ-measurable
functions with lim

n→∞hn = f , then

lim
n→∞

∫
hn dµ =

∫
f dµ .

Proof. The inequality limn→∞
∫
hn dµ ≤

∫
f dµ is immediate from the definition

of the integral.
To obtain the reverse inequality, let � be an arbitrary simple, µ-measurable func-

tion with 0 ≤ � ≤ f and write

� =
k∑
i=1

ai χAi
,

where each Ai is µ-measurable. Let c ∈ (0, 1) also be arbitrary.
For each m ∈ N, set

Em = { x : c · �(x) ≤ hm(x) } and �m = c · � · χEm .
For m ≤ n, we have �m ≤ hn, so applying Theorem 1.3.13(4), we obtain∫

�m dµ ≤ lim
n→∞

∫
hn dµ .

Finally, we note that for each i = 1, 2, . . . , k, the sets Ai ∩ Em increase to Ai as
m→∞, so µ(Ai) = limm→∞ µ(Ai ∩ Em) and thus

c

∫
� dµ =

∫
c · � dµ = lim

m→∞

∫
�m dµ ≤ lim

n→∞

∫
hn dµ .

The result follows from the arbitrariness of � and c. ��
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Theorem 1.3.15. Let µ be a measure on the nonempty set X. If f, g : X → [0,∞]
are µ-measurable, then∫

(f + g) dµ =
∫
f dµ+

∫
g dµ .

Proof. The result clearly holds if f and g are simple functions, and the general case
then follows from Lemmas 1.3.9 and 1.3.14. ��
Corollary 1.3.16. Theµ-integrable functions form a vector space, and theµ-integral
is a linear functional on the space of µ-integrable functions.

The decisive results for integration theory are Fatou’s lemma12 and the monotone
and dominated convergence theorems of Lebesgue (see any of [Fol 84], [Roy 88], and
[Rud 87]). In the development outlined above, it is easiest first to prove Lebesgue’s
monotone convergence theorem, arguing as in the proof of Lemma 1.3.14. Then one
uses the monotone convergence theorem to prove Fatou’s lemma and the dominated
convergence theorem. We state these results next.

Theorem 1.3.17. Let µ be a measure on the nonempty set X.

(1) [Fatou’s lemma] If f1, f2, . . . are nonnegative µ-measurable functions, then

lim inf
n→∞

∫
X

fn dµ ≥
∫
X

lim inf
n→∞ fn dµ .

(2) [Lebesgue’s monotone convergence theorem] Iff1 ≤ f2 ≤ · · ·are nonnegative
µ-measurable functions, then

lim
n→∞

∫
X

fn dµ =
∫
X

lim
n→∞ fn dµ .

(3) [Lebesgue’s dominated convergence theorem] Let f1, f2, . . . be complex-
valuedµ-measurable functions that convergeµ-almost everywhere to f . If there
exists a nonnegative µ-measurable function g such that

sup
n
|fn(x)| ≤ g(x) and

∫
X

g dµ <∞ ,

then

lim
n→∞

∫
X

|fn − f | dµ = 0 and lim
n→∞

∫
X

fn dµ =
∫
X

f dµ .

One of the beauties of measure theory is that we deal in analysis almost exclusively
with measurable functions and sets, and the ordinary operations of analysis would
never cause us to leave the realm of measurable functions and sets. However, in
geometric measure theory it is occasionally necessary to deal with functions that either
are nonmeasurable or are not known a priori to be measurable. In such situations, it
is convenient to have a notion of upper and lower integral.
12 Pierre Joseph Louis Fatou (1878–1929).
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Definition 1.3.18. Letµ be a measure on the nonempty setX and let f : X→ [0,∞]
be defined µ-almost everywhere. We denote the upper µ-integral of f by∫

f dµ

and define it by setting∫
f dµ = inf

{ ∫
ψ dµ : 0 ≤ f ≤ ψ and ψ is µ-measurable

}
.

Similarly, the lower µ-integral of f is denoted by∫
f dµ

and defined by setting∫
f dµ = sup

{ ∫
φ dµ : 0 ≤ φ ≤ f and φ is µ-measurable

}
.

Lemma 1.3.19. If µ is a measure on the nonempty set X and f, g : X→ [0,∞] are
defined µ-almost everywhere, then the following hold:

(1)
∫
f dµ ≤

∫
f dµ ,

(2) if f ≤ g, then
∫
f dµ ≤

∫
g dµ and

∫
f dµ ≤

∫
g dµ ,

(3) if f is µ-measurable, then
∫
f dµ =

∫
f dµ =

∫
f dµ ,

(4) if 0 ≤ c, then
∫
cf dµ = c

∫
f dµ and

∫
cf dµ = c

∫
f dµ ,

(5)
∫
f dµ+

∫
g dµ ≤

∫
(f + g) dµ and

∫
(f + g) dµ ≤

∫
f dµ+

∫
g dµ .

The lemma follows easily from the definitions.

Proposition 1.3.20. Suppose f : X → [0,∞] satisfies
∫
f dµ < ∞. For such a

function, ∫
f dµ =

∫
f dµ

holds if and only if f is µ-measurable.

Proof. Suppose the upper and lower µ-integrals of f are equal. Choose sequences
of µ-measurable functions g1 ≤ g2 ≤ · · · ≤ f and h1 ≥ h2 ≥ · · · ≥ f with
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lim
n→∞

∫
gn dµ =

∫
f dµ =

∫
f dµ = lim

n→∞

∫
hn dµ .

Then g = limn→∞ gn and h = limn→∞ hn are µ-measurable with g ≤ f ≤ h.
Since, by Lebesgue’s dominated convergence theorem, the µ-integrals of g and h are
equal, we see that g and h must be µ-almost equal to each other, and thus µ-almost
equal to f . ��

1.3.3 Lebesgue Spaces

Definition 1.3.21. Fix 1 ≤ p ≤ ∞. Let µ be a measure on the nonempty set X.
The Lebesgue space Lp(µ) (or simply Lp if the choice of the measure is clear from
context) is the vector space of µ-measurable, complex-valued functions satisfying

‖f ‖p <∞ ,
where ‖f ‖p is defined by setting

‖f ‖p =

⎧⎪⎪⎨⎪⎪⎩
(∫

|f |p dµ
)1/p

, if p <∞,

inf
{
t : µ

(
X ∩ { x : |f (x)| > t }

)
= 0

}
, if p = ∞.

The elements of Lp are called Lp functions. Of course, the L1 functions are just the
µ-integrable functions. The L2 functions are also called square integrable functions,
and, for 1 ≤ p <∞, the Lp functions are also called p-integrable functions.

Remark 1.3.22.

(1) A frequently used tool in analysis is Hölder’s inequality13∫
fg dµ ≤ ‖f ‖p ‖g‖q ,

where f and g are µ-measurable, 1 < p < ∞, and 1/p + 1/q = 1. We note
that Hölder’s inequality is also valid when the integrals are replaced by upper
integrals. The proof of this generalization makes use of Lemma 1.3.19(2)5).

(2) The functional ‖ · ‖p is called the Lp-norm. In the cases p = 1 and p = ∞, it is
easy to verify that the Lp-norm is, in fact, a norm, but for the case 1 < p <∞,
this fact is a consequence of Minkowski’s inequality14

‖f + g‖p ≤ ‖f ‖p + ‖g‖p .
(3) Much of the importance of the Lebesgue spaces stems from the discovery that
Lp, 1 ≤ p < ∞, is a complete metric space. This result is sometimes (for
instance in [Roy 88]) called the Riesz–Fischer theorem.15

13 Otto Ludwig Hölder (1859–1937).
14 Hermann Minkowski (1864–1909).
15 Frigyes Riesz (1880–1956), Ernst Sigismund Fischer (1875–1954).
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1.3.4 Product Measures and the Fubini–Tonelli Theorem

Definition 1.3.23. Let µ be a measure on the nonempty set X and let ν be a measure
on the nonempty set Y . The Cartesian product of the measures µ and ν is denoted
µ× ν and is defined by setting

(µ× ν)(E) = inf
{ ∞∑
i=1

µ(Ai) · ν(Bi) : E ⊆
∞⋃
i=1

Ai × Bi,

Ai ⊆ X is µ-measurable, for i = 1, 2, . . . ,

Bi ⊆ Y is ν-measurable, for i = 1, 2, . . .
}
. (1.16)

It is immediately verified thatµ×ν is a measure onX×Y . Clearly the inequality

(µ× ν)(A× B) ≤ µ(A) · ν(B)
holds whenever A ⊆ X is µ-measurable and B ⊆ Y is ν-measurable. The product
measure µ× ν is the largest measure satisfying that condition.

One of the main concerns in using product measures is justifying the interchange of
the order of integration in a multiple integral. The next example illustrates a situation
in which the order of integration in a double integral cannot be interchanged.

Example 1.3.24. The counting measure on X is defined by setting

µ(E) =
{

card(E) if E is finite,
∞ otherwise,

for E ⊆ X. If ν is another measure on X for which 0 < ν(X) and ν( {x } ) = 0 for
each x ∈ X, and if f : X×X→ [0,∞] is the characteristic function of the diagonal,
that is,

f (x1, x2) =
{

1 if x1 = x2,
0 otherwise,

then ∫ ( ∫
f (x1, x2) dµ(x1)

)
dν(x2) =

∫
1 dν = ν(X) > 0 ,

but ∫ ( ∫
f (x1, x2) dν(x2)

)
dµ(x1) =

∫
0 dµ = 0 . ��

To avoid the phenomenon in the preceding example we introduce a definition.

Definition 1.3.25. Let µ be a measure on the nonempty set X. We say that µ is
σ -finite if X can be written as a countable union of µ-measurable sets each having
finite µ measure.

The main facts about product measures, which often do allow the interchange of
the order of integration, are stated in the next theorem. We refer the reader to any of
[Fol 84], [Roy 88], and [Rud 87].
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Theorem 1.3.26. Let µ be a σ -finite measure on the nonempty set X and let ν be a
σ -finite measure on the nonempty set Y .

(1) If A ⊆ X is µ-measurable and B ⊆ Y is ν-measurable, then A× B is (µ× ν)-
measurable and

(µ× ν)(A× B) = µ(A) · ν(B) .
(2) (Tonelli’s16 theorem) If f : X × Y → [0,∞] is (µ× ν)-measurable, then

g(x) =
∫
f (x, y) dν(y) (1.17)

defines a µ-measurable function on X,

h(y) =
∫
f (x, y) dµ(x) (1.18)

defines a ν-measurable function on Y , and∫
f d(µ× ν) =

∫ ( ∫
f (x, y) dµ(x)

)
dν(y)

=
∫ ( ∫

f (x, y) dν(y)

)
dµ(x) . (1.19)

(3) (Fubini’s17 theorem) If f is (µ× ν)-integrable, then
(a) φ(x) ≡ f (x, y) is µ-integrable for ν-almost every y ∈ Y ,
(b) ψ(y) ≡ f (x, y) is ν-integrable for µ-almost every x ∈ X,
(c) g(x) defined by (1.17) is a µ-integrable function on X,
(d) h(y) defined by (1.18) is a ν-integrable function on Y , and
(e) equation (1.19) holds.

Definition 1.3.27. The N -dimensional Lebesgue measure on RN , denoted by LN , is
defined inductively by setting LN = LN−1 × L1.

1.4 The Exterior Algebra

In an introductory vector calculus course, a vector is typically described as repre-
senting a direction and a magnitude, that is, an oriented line and a length. When
later an oriented plane and an area in that plane are to be represented, a direction
orthogonal to the plane and a length equal to the desired area are often used. This
last device is viable only for (N − 1)-dimensional oriented planes in N -dimensional
space, because the complementary dimension must be 1. For the general case of an

16 Leonida Tonelli (1885–1946).
17 Guido Fubini (1879–1943).
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orientedm-dimensional plane and anm-dimensional area in RN , some new idea must
be invoked.

The straightforward way to represent an oriented m-dimensional plane in RN is
to specify an ordered m-tuple of independent vectors parallel to (contained in) the
plane. To simultaneously represent an m-dimensional area in that plane, choose the
vectors so that the m-dimensional area of the parallelepiped they determine equals
that given m-dimensional area. Of course, a given oriented m-dimensional plane
and m-dimensional area can be represented equally well by many different ordered
m-tuples of vectors, and identifying any two such ordered m-tuples introduces an
equivalence relation on the ordered m-tuples of vectors. To facilitate computation
and understanding, the equivalence classes of ordered m-tuples are overlaid with a
vector space structure. The result is the alternating algebra of m-vectors in RN . We
now proceed to a formal definition.

Definition 1.4.1.

(1) Define an equivalence relation ∼ on(
RN
)m = RN × RN × · · · × RN︸ ︷︷ ︸

m factors

by requiring, for all α ∈ R and 1 ≤ i < j ≤ m,
(a)
(u1, . . . , α ui, . . . , uj , . . . , um) ∼ (u1, . . . , ui, . . . , α uj , . . . , um),

(b)
(u1, . . . , ui, . . . , uj , . . . , um) ∼ (u1, . . . , ui +α uj , . . . , uj , . . . , um),

(c)
(u1, . . . , ui, . . . , uj , . . . , um) ∼ (u1, . . . , −uj , . . . , ui, . . . , um),

and extending the resulting relation to be symmetric and transitive.
(2) The equivalence class of (u1, u2, . . . , . . . , um) under∼ is denoted by u1∧u2∧
· · · ∧ um. We call u1 ∧ u2 ∧ · · · ∧ um a simple m-vector.

(3) On the vector space of formal linear combinations of simplem-vectors, we define
the equivalence relation ≈ by extending the relation defined by requiring
(a) α(u1 ∧ u2 ∧ · · · ∧ um) ≈ (αu1) ∧ u2 ∧ · · · ∧ um,
(b) (u1 ∧ u2 ∧ · · · ∧ um)+ (v1 ∧ u2 ∧ · · · ∧ um) ≈ (u1 + v1) ∧ u2 ∧ · · · ∧ um.

(4) The equivalence classes of formal linear combinations of simplem-vectors under
the relation ≈ are the m-vectors in RN . The vector space of m-vectors in RN is
denoted by

∧
m (R

N).
(5) The exterior algebra of RN , denoted by

∧
∗ (RN), is the direct sum of the∧

m (R
N) together with the exterior multiplication defined by linearly extending

the definition

(u1∧u2∧· · ·∧u�)∧(v1∧v2∧· · ·∧vm) = u1∧u2∧· · ·∧u�∧v1∧v2∧· · ·∧vm .
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Remark 1.4.2.

(1) When m = 1, Definition 1.4.1(1) is vacuous, so
∧

1 (R
N) is isomorphic to, and

will be identified with, RN . If the vectors u1, u2, . . . , um are linearly dependent,
then u1 ∧ u2 ∧ · · · ∧ um is the additive identity in

∧
m (R

N), so we write u1 ∧
u2 ∧ · · · ∧ um = 0. Consequently, when N < m,

∧
m (R

N) is the trivial vector
space containing only 0.

(2) As an exercise, the reader should convince himself that e1∧e2+e3∧e4 ∈∧ 2 (R
4)

is not a simple 2-vector.

For a nontrivial simplem-vector u1∧u2∧· · ·∧um in RN , the associated subspace
is that subspace spanned by the vectors u1, u2, . . . , um. It is evident from Defini-
tion 1.4.1(1) that if u1 ∧ u2 ∧ · · · ∧ um = ±v1 ∧ v2 ∧ · · · ∧ vm, then their associated
subspaces are equal. We assert that if u1∧u2∧· · ·∧um = ±v1∧v2∧· · ·∧vm, then
also the m-dimensional area of the parallelepiped determined by u1, u2, . . . , um is
equal to the m-dimensional area of the parallelepiped determined by v1, v2, . . . , vm.
To see this last fact, we need the next proposition, which gives us a way to compute
the m-dimensional areas in question. The proof is based on [Por 96].

Proposition 1.4.3. Let u1, u2, . . . , um be vectors in RN . Then the parallelepiped
determined by those vectors has m-dimensional area√

det
(
Ut U

)
, (1.20)

where U is the N ×m matrix with u1, u2, . . . , um as its columns.

Proof. If the vectors u1, u2, . . . , um are pairwise orthogonal, then the result is im-
mediate. Thus we will reduce the general case to this special case.

Notice that Cavalieri’s principle18 shows us that adding a multiple of uj to another
vector ui, i �= j, does not change the m-dimensional area of the parallelepiped
determined by the vectors. But also notice that such an operation on the vectors ui
is equivalent to multiplying U on the right by an m × m triangular matrix with 1’s
on the diagonal. The Gram–Schmidt orthogonalization procedure19 is effected by
a sequence of operations of precisely this type. Thus we see that there is an upper
triangular matrix A with 1’s on the diagonal such that UA has orthogonal columns
and the columns ofUA determine a parallelepiped with the samem-dimensional area
as the parallelepiped determined by u1, u2, . . . , um. Since the columns of UA are

orthogonal, we know that
√

det
(
(UA)t (UA)

)
equals them-dimensional area of the

parallelepiped determined by its columns, and thus equals them-dimensional area of
the parallelepiped determined by u1, u2, . . . , um. Finally, we compute

det
(
(UA)t (UA)

)
= det

(
At Ut U A

)
= det

(
At
)

det
(
Ut U

)
det(A)

= det
(
Ut U

)
. ��

18 Bonaventura Francesco Cavalieri (1598–1647).
19 Jørgen Pedersen Gram (1850–1916).
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Corollary 1.4.4. If u1, u2, . . . , um and v1, v2, . . . , vm are vectors in RN with

u1 ∧ u2 ∧ · · · ∧ um = ±v1 ∧ v2 ∧ · · · ∧ vm ,
then the m-dimensional area of the parallelepiped determined by the vectors u1, u2,

. . . , um equals them-dimensional area of the parallelepiped determined by the vectors
v1, v2, . . . , vm.

Proof. We consider the m-tuples of vectors on the left-hand and right-hand sides of
Definition 1.4.1(1a,b,c). Let Ul be the matrix whose columns are the vectors on the
left-hand side and let Ur be the matrix whose columns are the vectors on the right-
hand side. For (a), we have Ur = UlA, where A is the m×m diagonal matrix with
1/α in the ith column and α in the j th column. For (b), we have Ur = UlA, whereA
is an m×m triangular matrix with 1’s on the diagonal. For (c), we have Ur = UlA,
where A is an m × m permutation matrix with one of its 1’s replaced by −1. In all
three cases, det(A) = ±1, and the result follows. ��

For computational purposes, it is often convenient to use the basis

ei1 ∧ ei2 ∧ · · · ∧ eim , 1 ≤ i1 < i2 < · · · < im ≤ N , (1.21)

for
∧
m (R

N). Specifying that the m-vectors in (1.21) are orthonormal induces the
standard inner product on

∧
m (R

N). The exterior product (sometimes called the
wedge product)

∧ :∧ � (RN)×∧m (RN)→∧
�+m (RN)

is an anticommutative, multilinear multiplication. Any linear F : RN → RP extends
to a linear map Fm :∧m (RN)→∧

m (R
P ) by defining

Fm(u1 ∧ u2 ∧ · · · ∧ um) = F(u1) ∧ F(u2) ∧ · · · ∧ F(um) .

1.5 The Generalized Pythagorean Theorem

The generalized Pythagorean theorem (Theorem 1.5.2 below) tells us that for a figure
� lying in anm-dimensional affine subspace of RN , the square of them-dimensional
area of� equals the sum of the squares of them-dimensional areas of the orthogonal
projections of � onto all possible coordinate m-planes. For conceptual simplicity,
we will restrict our attention to polyhedral figures �. We consider a few instances of
this theorem:

• If m = 1 and � is a line segment, then the generalized Pythagorean theorem
tells us that the square of the length of the segment is the sum of the squares
of the lengths in each of the coordinate directions; that is, we recover the usual
Pythagorean theorem.



26 1 Basics

• Suppose � is the parallelepiped generated by the m vectors u1, . . . , um and U is
the matrix whose columns are u1, . . . , um. Then the (signed)m-dimensional area
of each projection of � onto a coordinate m-plane is given by an m-by-m minor
determinant of U . Proposition 1.4.3 tells us that the m-dimensional area of �

equals
√

det (Ut U). Thus the generalized Pythagorean theorem implies—and,
in fact, is equivalent to—the nontrivial fact that

det (Ut U) =
∑
λ

[det (Uλ)]
2 (1.22)

holds, where in (1.22) the summation extends over all λ = {i1, . . . , im} ⊆
{1, . . . , N} and where for each such λ, Uλ is the m-by-m submatrix whose rows
are the rows numbered i1, . . . , im in U .

• If � is an m-dimensional simplex in RN , then � automatically lies in an m-
dimensional affine subspace of RN , and the generalized Pythagorean theorem
applies to �. Figure 1.1 illustrates this situation when � is a triangle in R3. We
have used A to denote the area of the triangle and Aij to denote the area of the
projection of the triangle onto the (xi, xj )-coordinate plane.

A

A12

A13

A23

x3

x1

x2

Fig. 1.1. A2 = A2
12 + A2

13 + A2
23.

In this section, we will give a geometrical proof of the generalized Pythagore-
an theorem. In particular, the proof will make no use of determinants. The main
computation in the proof is made by applying the divergence theorem of advanced
calculus to a constant vector field, while our other primary tool is the fact that the
m-dimensional area of a figure is unchanged when the figure is mapped by an isometry.
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Notation 1.5.1.

(1) Anym-dimensional polyhedral figure can be written as the union ofm-dimension-
al simplices that intersect only in their boundaries. Thus, to prove the generalized
Pythagorean theorem, it is sufficient to prove it when � ⊆ RN is an m-simplex.
Accordingly we will assume throughout the remainder of this section that � is
the m-dimensional simplex determined by the m+ 1 points u0, . . . , um.

(2) We will denote the m-dimensional area of � by A.
(3) If λ ⊆ {1, 2, . . . , N} and card(λ) = K , then �λ : RN → RK will be the

orthogonal projection given by

�λ(x1, x2, . . . , xN) = (xi1 , xi2 , . . . , xiK ) ,
where λ = {i1, i2, . . . , iK} and i1 < i2 < · · · < iK . We will need only the two
cases K = m and K = 2.

(4) If λ ⊆ {1, 2, . . . , N} and card(λ) = m, let Aλ denote the m-dimensional area
of �λ(�). We will sometimes abuse this notation (as we did in Figure 1.1) by
writing Ai1,i2,...,iK instead of the more pedantic A{i1,i2,...,iK }.

(5) Since a set λ ⊆ {1, 2, . . . , m+ 1} with card(λ) = m is most easily described by
the one element it omits, we will write

Aı̂ = A1,...,i−1,i+1,...,m+1 .

Using the notation given above, we can state our result as follows:

Theorem 1.5.2 (Generalized Pythagorean theorem). If � is an m-dimensional
simplex in RN , then it holds that

A2 =
∑

λ⊆{1,...,N}
card (λ)=m

A2
λ . (1.23)

Note that if N = m, the theorem is trivial. We first give a proof of the theorem in
the case N = m+ 1.

The Codimension-One Case, N = m + 1
Our proof for the case N = m+ 1 will be based on an application of the divergence
theorem.

Proposition 1.5.3. Let � be an m-simplex in Rm+1 with m-dimensional area A. Let
n0 be a unit vector normal to �. Then

A |n0 · ei | = Aı̂
holds for i = 1, . . . , m+ 1.

Proof. We may assume for convenience that i = m + 1. If n0 · em+1 = 0, then the
result is trivial, so we also may assume that n0 · em+1 > 0, i.e., n0 points “up.’’
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By translating � if necessary, we may assume that all the coordinates of all the
points in � are positive. Consider the closed polyhedral cylinder C made up of the
line segments connecting each point of � with its projection on the (x1, . . . , xm)-
coordinate hyperplane; that is,

C =
{
(1− t) x + t �1,...,m(x) : x ∈ �, 0 ≤ t ≤ 1

}
(Figure 1.2 illustrates C in the case m = 2). It will be convenient to call � the “top’’
of C and to call B ≡ �1,...,m(�) the “bottom’’ of C.

Note that except on the top and bottom of C, the outward unit normal to ∂C is
orthogonal to em+1. On the top of C the outward unit normal to C equals n0, and on
the bottom of C the outward unit normal to C equals −em+1 (see Figure 1.2).

A
n

–e3

A12

Fig. 1.2. Applying the divergence theorem.

The divergence theorem tells us that if w is a C1 vector field on C, then∫
∂C

w · n dσ =
∫
C

div w dV

holds, where n is the outward unit normal vector to ∂C, dσ is the element of m-
dimensional area on ∂C, and dV is the element of (m+ 1)-dimensional volume in C.

Applying the divergence theorem to the constant vector field w ≡ em+1 on C, we
obtain

0 =
∫
C

div w dV =
∫
∂C

w · n dσ = A n0 · em+1 − Am̂+1
,

and the result follows. ��
Corollary 1.5.4. The generalized Pythagorean theorem holds when N = m+ 1.

Proof. Let n0 be a unit vector normal to � ⊆ Rm+1. Since n0 is a unit vector,
Proposition 1.5.3 gives us
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A2 = A2
m+1∑
i=1

(n0 · ei )2 =
m+1∑
i=1

A2 (n0 · ei )2 =
m+1∑
i=1

A2
ı̂ . ��

The Higher Codimension Case, N ≥ m + 2

Definition 1.5.5. By a coordinate-plane rotation of RN we will mean a linear trans-
formation that for some i < j , rotates the (xi, xj )-plane while leaving the remaining
(N − 2) coordinates unchanged. We will call xi and xj the rotated coordinates.

Our strategy for completing the proof of the generalized Pythagorean theorem is
to show that the result holds for � if and only if it holds for the image of � under a
coordinate-plane rotation. We then show that a sequence of coordinate-plane rotations
of � will move � into an m-dimensional plane parallel to a coordinate m-plane—a
situation in which the generalized Pythagorean theorem holds trivially.

Notation 1.5.6.

(1) Suppose F : RN → RN is a linear transformation. We set

�̃ = F(�) .
For λ ⊆ {1, 2, . . . , N}with card(λ) = m, Ãλ will denote them-dimensional area
of �λ(�̃). Similarly, when N = m+ 1, we will use the notation Ã ı̂ .

(2) For each positive integer K , we let IRK be the identity map on RK .

Lemma 1.5.7. Let F = R × IRN−2 , where R : R2 → R2 is a rotation. Suppose
λ ⊆ {1, 2, . . . , N} with card(λ) = m. If

either {1, 2} ∩ λ = ∅ or {1, 2} ∩ λ = {1, 2} ,
then Aλ = Ãλ.
Proof. When {1, 2} ∩ λ = ∅ holds, we have

�λ(�) = �λ(�̃) ,
so the result is trivial in this case.

Now suppose that {1, 2} ⊆ λ. Then we have

�λ ◦ F = �λ ◦ (R× IRN−2) = (R× IRm−2) ◦�λ ,
and the result follows because R× IRm−2 is an isometry. ��

In Lemma 1.5.7, we considered projections �λ such that λ either included the
indices of both rotated coordinates or omitted the indices of both rotated coordinates.
In contrast, them-dimensional area of the projection is not preserved when λ includes
exactly one of the indices of the rotated coordinates. But we do have the next result.
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Lemma 1.5.8. Let F = R × IRN−2 , where R : R2 → R2 is a rotation. If λ′ ⊆
{3, 4, . . . , N} with card(λ′) = m− 1, then

A2
{1}∪λ′ + A2

{2}∪λ′ = Ã2
{1}∪λ′ + Ã2

{2}∪λ′ . (1.24)

Proof. For notational convenience, suppose that

λ′ = {3, 4, . . . , m+ 1} .
Each summand in (1.24) is unchanged if � is replaced by its projection into Rm+1,
so we may and shall assume that N = m+ 1.

We have already shown that the generalized Pythagorean theorem holds when
N = m + 1, so we can apply that theorem to � ⊆ Rm+1 and to �̃ ⊆ Rm+1. Using
also the fact that A = Ã (which holds because F is an isometry), we obtain

m+1∑
i=1

A2
ı̂ = A2 = Ã2 =

m+1∑
i=1

Ã2
ı̂ .

Observe that

m+1∑
i=1

A2
ı̂ = A2

λ′∪{1} + A2
λ′∪{2} +

∑
λ′′⊆λ′

card (λ′′)=m−2

A2
λ′′∪{1,2}

and, likewise, that

m+1∑
i=1

Ã2
ı̂ = Ã2

λ′∪{1} + Ã2
λ′∪{2} +

∑
λ′′⊆λ′

card (λ′′)=m−2

Ã2
λ′′∪{1,2} .

Lemma 1.5.7 tells us that for each λ′′ ⊆ λ′ with card(λ′′) = m− 2,

Aλ′′∪{1,2} = Ãλ′′∪{1,2}
holds, so the result follows. ��

In Lemmas 1.5.7 and 1.5.8, we considered a rotationR in the (x1, x2)-plane merely
for convenience of notation. By relabeling coordinates, we see that the following
result holds.

Proposition 1.5.9. Suppose F : RN → RN rotates the (xi, xj )-plane while leaving
all the other coordinates unchanged (here i < j ).

(1) If λ ⊆ {1, 2, . . . , N} with card(λ) = m and if

either {i, j} ∩ λ = ∅ or {i, j} ∩ λ = {i, j} ,
then Aλ = Ãλ.
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(2) If λ′ ⊆ {1, 2, . . . , N} with card(λ′) = m− 1 and if

{i, j} ∩ λ′ = ∅ ,
then

A2
{i}∪λ′ + A2

{j}∪λ′ = Ã2
{i}∪λ′ + Ã2

{j}∪λ′ .

In the next result, we show that the generalized Pythagorean theorem holds for�
if and only if it holds for the image of � under a coordinate-plane rotation.

Corollary 1.5.10. If F : RN → RN rotates the (xi, xj )-plane while leaving all the
other coordinates unchanged (here i < j ), then we have A = Ã and∑

λ⊆{1,...,N}
card (λ)=m

A2
λ =

∑
λ⊆{1,...,N}

card (λ)=m

Ã2
λ .

Consequently, the generalized Pythagorean theorem holds for� if and only if it holds
for �̃.

Proof. Observe that∑
λ⊆{1,...,N}

card (λ)=m

A2
λ =

∑
λ⊆{1,...,N}

card (λ)=m, λ∩{i,j}=∅

A2
λ +

∑
λ⊆{1,...,N}

card (λ)=m, λ∩{i,j}={i,j}

A2
λ

+
∑

λ′⊆{1,...,N}
card (λ′)=m−1, λ′∩{i,j}=∅

(
A2
λ′∪{i} + A2

λ′∪{j}
)

and, likewise, that∑
λ⊆{1,...,N}

card (λ)=m

Ã2
λ =

∑
λ⊆{1,...,N}

card (λ)=m, λ∩{i,j}=∅

Ã2
λ +

∑
λ⊆{1,...,N}

card (λ)=m, λ∩{i,j}={i,j}

Ã2
λ

+
∑

λ′⊆{1,...,N}
card (λ′)=m−1, λ′∩{i,j}=∅

(
Ã2
λ′∪{i} + A2

λ′∪{j}
)
.

The result now follows from Proposition 1.5.9. ��
Proof of the Generalized Pythagorean Theorem. By translating � if necessary, we
may suppose that u0 coincides with the origin. Let us also introduce the notation

ui = (ui,1, ui,2, . . . , ui,N ) .
By Corollary 1.5.10, it suffices to prove the generalized Pythagorean theorem for

the image of � after a sequence of coordinate-plane rotations. In fact, we will show
that there exists a sequence of coordinate-plane rotations such that the resulting image
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of � is contained in the (x1, . . . , xm)-coordinate plane. Since the generalized Py-
thagorean theorem holds trivially for a simplex lying in anm-dimensional coordinate
plane, it follows that the generalized Pythagorean theorem holds for the originally
given �.

• The first sequence of coordinate-plane rotations. We begin with the rotation
R of the (x1, x2)-plane that maps �{1,2}(u1) = (u1,1, u1,2) to (t, 0), where t =
(u2

1,1 + u2
1,2)

1/2. When the coordinate-plane rotation R× IRN−2 is applied to � and
� is replaced by its image—without changing notation—we obtain

u1 = (u1,1, 0, u1,3, . . . , u1,N ) .

The second coordinate-plane rotation will rotate the (x1, x3)-plane so that
�{1,3}(u1) = (u1,1, u1,3) is mapped to (t, 0), where t = (u2

1,1 + u2
1,3)

1/2. After
again replacing � by its image—still without changing notation—we obtain

u1 = (u1,1, 0, 0, u1,4, . . . , u1,N ) .

After a total of N − 1 coordinate-plane rotations and replacements, we obtain

u1 = (u1,1, 0, 0, . . . , 0) . (1.25)

From now on, x1 will not be one of the rotated coordinates in any of the coordinate-
plane rotations we use. Consequently, (1.25) will continue to hold.

• The (i + 1)st sequence of coordinate-plane rotations. Suppose that we have

u1 = (u1,1, 0, 0, . . . ,0,0,. . . ,0) ,
u2 = (u2,1,u2,2,0, . . . ,0,0,. . . ,0) ,
...
...
...
...
...

...
...
...

ui = (ui,1,ui,2,ui,3,. . . ,ui,i ,0,. . . ,0) .
(1.26)

In particular, observe that (1.26) implies that the points u1, u2, . . . , ui all lie in the
(x1, x2, . . . , xi)-coordinate plane.

Arguing inductively, we will show that we can obtain (1.26) with i = m. Note
that when i = 1, (1.26) is the same as (1.25).

Our next coordinate-plane rotation will rotate the (xi+1, xi+2)-plane so that
�{i+1,i+2}(ui+1) = (ui+1,i+1, ui+1,i+2) is mapped to (t, 0), where t = (u2

i+1,i+1 +
u2
i+1,i+2)

1/2. Then we obtain

ui+1 = (ui+1,1, ui+1,2, . . . , ui+1,i+1, 0, ui+1,i+3, . . . , ui+1,N ) .

Continuing in that fashion, we see that after a total ofN − i− 1 coordinate-plane
rotations, we obtain

ui+1 = (ui+1,1, ui+1,2, . . . , ui+1,i+1, 0, 0, . . . , 0) .

Since none of the coordinates x1, x2, . . . , xi have been rotated coordinates for any
of the coordinate-plane rotations we have used, the values of those coordinates will
have remained unchanged. Thus we now have (1.26) with i replaced by i + 1.
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Arguing as above for i = 1, 2, . . . , m−1, we see that—including the first sequence
of coordinate-plane rotations—after a grand total of (N − 1)+∑m−1

i=1 (N − i − 1) =
(m/2) (2N −m− 1) coordinate-plane rotations, we obtain (1.26) with i replaced by
m. Thus we see that the image of � lies in the (x1, . . . , xm)-coordinate plane, as
desired. ��
Remark 1.5.11. In [Bar 96], the reader will find a proof of the usual Pythagorean the-
orem via dimensional analysis. E. Thomann has conjectured (private communication)
that the generalized Pythagorean theorem also might be provable via a dimensional
analysis argument.

1.6 The Hausdorff Distance and Steiner Symmetrization

Consider the collection P(RN) of all subsets of RN . It is often useful, especially
in geometric applications, to have a metric on P(RN). In this section we address
methods for achieving this end. In Definition 1.2.12, we defined dist(S, T ) for subsets
S, T of a metric space; unfortunately, this function need not satisfy the triangle
inequality. Also, in practice, P(RN) (the entire power set of RN ) is probably too
large a collection of objects to have a reasonable and useful metric topology (see
[Dug 66, Section IX.9] for several characterizations of metrizability). With these
considerations in mind, we shall restrict attention to the collection of nonempty,
bounded subsets of RN .

Definition 1.6.1. Let S and T be nonempty, bounded subsets of RN . We set

HD (S, T ) = max

{
sup
s∈S

dist(s, T ), sup
t∈T

dist(S, t)

}
. (1.27)

This function is called the Hausdorff distance.

Notice that HD (S, T ) = HD (S, T ) = HD (S, T ) = HD (S, T ), so we further
restrict our attention to the collection of nonempty sets that are both closed and
bounded (i.e., compact) subsets of RN . For convenience, in this section, we will use
B to denote the collection of nonempty, compact subsets of RN .

In Figure 1.3, if we let d denote the distance from a point on the left to the
line segment on the right, then every point in the line segment is within distance√
d2 + (ε/2)2 of one of the points on the left—and that bound is sharp. Thus we see

that HD (S, T ) = √d2 + (ε/2)2.

Lemma 1.6.2. Let S, T ∈ B. Then there are points s ∈ S and t ∈ T such that
HD (S, T ) = |s − t |.

We leave the proof as an exercise for the reader (see Figure 1.4).

Proposition 1.6.3. The function HD is a metric on B.
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S T

Fig. 1.3. The Hausdorff distance.

s
t

S

T

Fig. 1.4. Points that realize the Hausdorff distance.

Proof. Clearly HD ≥ 0, and if S = T , then HD (S, T ) = 0.
Conversely, if HD (S, T ) = 0 then let s ∈ S. By definition, there are points

tj ∈ T such that |s− tj | → 0. Since T is compact, we may select a subsequence {tjk }
such that tjk → s. Again, since T is compact, we then conclude that s ∈ T . Hence
S ⊆ T . Similar reasoning shows that T ⊆ S. Hence S = T .

Finally, we come to the triangle inequality. Let S, T ,U ∈ B. Let s ∈ S, t ∈
T , u ∈ U. Then we have

|s − u| ≤ |s − t | + |t − u|
⇓

dist(S, u) ≤ |s − t | + |t − u|
⇓

dist(S, u) ≤ dist(S, t)+ |t − u|
⇓

dist(S, u) ≤ HD (S, T )+ |t − u|
⇓

dist(S, u) ≤ HD (S, T )+ dist(T , u)

⇓
dist(S, u) ≤ HD (S, T )+ sup

u∈U
dist(T , u)
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⇓
sup
u∈U

dist(S, u) ≤ HD (S, T )+ sup
u∈U

dist(T , u).

By symmetry, we have

sup
s∈S

dist(U, s) ≤ HD (U, T )+ sup
s∈S

dist(T , s)

and thus

max{ sup
u∈U

dist(S, u) , sup
s∈S

dist(U, s) }
≤ max

{
HD (S, T )+ sup

u∈U
dist(T , u) , HD (U, T )+ sup

s∈S
dist(T , s)

}
.

We conclude that

HD (U, S) ≤ HD (U, T )+ HD (T , S). ��
There are fundamental questions concerning completeness, compactness, etc. that

we need to ask about any metric space.

Theorem 1.6.4. The metric space (B,HD ) is complete.

Proof. Let {Sj } be a Cauchy sequence in the metric space (B,HD ). We seek an
element S ∈ B such that Sj → S.

Elementary estimates, as in any metric space, show that the elements Sj are all
contained in a common ball B(0, R).We set S equal to

∞⋂
j=1

⎛⎝ ∞⋃
�=j
S�

⎞⎠ .
Then S is nonempty, closed, and bounded, so it is an element of B.

To see that Sj → S, select ε > 0. Choose J large enough so that if j, k ≥ J then
HD (Sj , Sk) < ε. For m > J set Tm = ∪m�=J S�. Then it follows from the definition,
and from Proposition 1.6.3, that HD (SJ , Tm) < ε for every m > J. Therefore, with
Up = ∪∞�=pS� for every p > J , it follows that HD (SJ , Up) ≤ ε.

We conclude that HD (SJ ,∩Kp=J+1Up) ≤ ε. Hence, by the continuity of the
distance, HD (SJ , S) ≤ ε. That is what we wished to prove. ��

As a corollary of the proof of Theorem 1.6.4 we obtain the following:

Corollary 1.6.5. Let {Sj } be a sequence of elements of B. Suppose that Sj → S in
the Hausdorff metric. Then

Ln(S) ≥ lim sup
j→∞

Ln(Sj ) .
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The next theorem informs us of a seminal fact regarding the Hausdorff distance
topology.

Theorem 1.6.6. The set of nonempty compact subsets of RN with the Hausdorff dis-
tance topology is boundedly compact, i.e., any bounded sequence has a subsequence
that converges to a compact set.

Proof. Let A1, A2, . . . be a bounded sequence in the Hausdorff distance. We may
assume without loss of generality that each Ai is a subset of the closed unit N -cube,
C0. For each integer k ≥ 1, subdivide the unit N -cube into 2kN congruent subcubes
of side length 2−k; denote that collection of 2kN subcubes by Sk .

We will use an inductive construction and a diagonalization argument. LetA0,i =
Ai for i = 1, 2, . . . . For each k ≥ 1, the sequence Ak,i, i = 1, 2, . . . , will be a
subsequence of the preceding sequenceAk−1,i , i = 1, 2, . . . .Also, we will construct
sets C0 ⊇ C1 ⊇ · · · inductively. Each Ck will be a union of a set of cubes in Sk .
The first set in this sequence is the unit cube C0 itself. For each k = 0, 1, . . . , the
sequence Ak,i, i = 1, 2, . . . , and the set Ck are to have the properties that

D ∩ Ak,i �= ∅ holds for i = 1, 2, . . .

whenever D ∈ Sk is one of the cubes forming Ck ,
(1.28)

and
Ak,i ⊆ Ck holds for all sufficiently large i. (1.29)

It is clear that (1.28) and (1.29) are satisfied when k = 0.
Assume Ak−1,i , i = 1, 2, . . . , and Ck−1 have been defined so that

D ∩ Ak−1,i �= ∅ holds for i = 1, 2, . . .

whenever D ∈ Sk−1 is one of the cubes forming Ck−1,

and
Ak−1,i ⊆ Ck−1 holds for all sufficiently large i.

We let Ck be the collection of cubes in Sk that are subsets of Ck−1 (here we are
effectively subdividing the cubes that form Ck−1). A subcollection, C ⊆ Ck, will be
called admissible if there are infinitely many i for which

D ∩ Ak−1,i �= ∅ holds for all D ∈ C. (1.30)

Let Ck be the union of a maximal admissible collection of subcubes, which is im-
mediately seen to exist because Ck is finite. Let Ak,1, Ak,2, . . . be the subsequence
of Ak−1,1, Ak−1,2, . . . consisting of those Ak−1,i for which (1.30) is true. Observe
that Ak,i ⊆ Ck holds for sufficiently large i; otherwise, there is another subcube that
could be added to the maximal collection while maintaining admissibility.

We set

C =
∞⋂
k=0

Ck
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and claim that C is the limit in the Hausdorff distance of Ak,k as k→∞. Of course,
C is nonempty by the finite intersection property. Let ε > 0 be given. Clearly we
can find an index k0 such that

Ck0 ⊆ {x : dist(x, C) < ε}.
There is a number i0 such that for i ≥ i0 we have

Ak0,i ⊆ Ck0 ⊆ {x : dist(x, C) < ε}.
So, for k ≥ k0 + i0, we know that

Ak,k ⊆ {x : dist(x, C) < ε}
holds. We let k1 ≥ k0 + i0 be such that

√
N 2−k1 < ε.

Let c ∈ C be arbitrary. Then c ∈ Ck1 , so there is some cube, D, of side length 2−k1
containing c and for which

D ∩ Ak1,i �= ∅
holds for all i. But then if k ≥ k1, we have D ∩ Ak,k �= ∅, so

dist(c, Ak,k) ≤
√
N s−k < ε.

It follows that HD (C,Ak,k) < ε holds for all k ≥ k1. ��
Next we give two more useful facts about the Hausdorff distance topology.

Definition 1.6.7. A subsetC of a vector space is convex if for x, y ∈ C and 0 ≤ t ≤ 1
we have

(1− t) x + t y ∈ C .
Proposition 1.6.8. Let C be the collection of all closed, bounded, convex sets in RN.
Then C is a closed subset of the metric space (B,HD ).

Proof. There are several amusing ways to prove this assertion. One is by contradic-
tion. If {Sj } is a convergent sequence in C, then let S ∈ B be its limit. If S does not
lie in C then S is not convex. Thus there is a segment � with endpoints lying in S but
with some interior point p not in S.

Let ε > 0 be selected so that the open ball U(p, ε) does not lie in S. Let a, b
be the endpoints of �. Choose j so large that HD (Sj , S) < ε/2. For such j , there
exist points aj , bj ∈ Sj such that |aj − a| < ε/3 and |bj − b| < ε/3. But then each
point cj (t) ≡ (1− t)aj + tbj has distance less than ε/3 from c(t) ≡ (1− t)a + tb,
0 ≤ t ≤ 1. In particular, there is a point pj on the line segment �j connecting aj
to bj such that |pj − p| < ε/3. Noting that pj must lie in Sj , we see that we have
contradicted our statement about U(p, ε). Therefore S must be convex. ��
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Proposition 1.6.9. Let {Sj } be a sequence of elements of B, each of which is con-
nected. Suppose that Sj → S in the Hausdorff metric. Then S must be connected.

Proof. Suppose not. Then S is disconnected. So we may write S = A∪B with each
of A and B closed and nonempty and A∩B = ∅. Then there is a number η > 0 such
that if a ∈ A and b ∈ B then |a − b| > η.

Choose j so large that HD (Sj , S) < η/3. Define

Aj = {s ∈ Sj : dist(s, A) ≤ η/3} and Bj = {s ∈ Sj : dist(s, B) ≤ η/3}.
ClearlyAj ∩Bj = ∅ andAj , Bj are closed and nonempty. Moreover,Aj ∪Bj = Sj .
That contradicts the connectedness of Sj and completes the proof. ��
Remark 1.6.10. It is certainly possible to have totally disconnected sets Ej , j =
1, 2, . . . , such that Ej → E as j →∞ and E is connected (exercise).

Now we turn to a new arena in which the Hausdorff distance is applicable.

Definition 1.6.11. Let V be an (N − 1)-dimensional vector subspace of RN. Steiner
symmetrization20 with respect to V is the operation that associates with each bounded
subset T of RN the subset T̃ of RN having the property that for each straight line �
perpendicular to V, � ∩ T̃ is a closed line segment with center in V or is empty and
the conditions

L1(� ∩ T̃ ) = L1(� ∩ T ) (1.31)

and
� ∩ T̃ = ∅ if and only if � ∩ T = ∅

hold, where in (1.31), L1 means the Lebesgue measure resulting from isometrically
identifying the line � with R.

In Figure 1.5, B is the Steiner symmetrization of A with respect to the line L.
Steiner used symmetrization to give a proof of the isoperimetric theorem that he

presented to the Berlin Academy of Science in 1836 (see [Str 36]). The results in the
remainder of this section document a number of aspects of the behavior of Steiner
symmetrization.

Proposition 1.6.12. If T is a bounded LN -measurable subset of RN and if S is ob-
tained from T by Steiner symmetrization, then S is LN -measurable and

LN(T ) = LN(S).

Proof. This is a consequence of Fubini’s theorem. ��
Lemma 1.6.13. Fix 0 < M < ∞. If A and A1, A2, . . . are closed subsets of RN ∩
B(0,M) such that

20 Jakob Steiner (1796–1863).



1.6 The Hausdorff Distance and Steiner Symmetrization 39

A B

L

Fig. 1.5. Steiner symmetrization.

∞⋂
i0=1

⎡⎣ ∞⋃
i=i0
Ai

⎤⎦ ⊆ A,
then

lim sup
i

LN(Ai) ≤ LN(A).

Proof. Let ε > 0 be arbitrary. Then there exists an open set U with A ⊆ U and

LN(U) ≤ LN(A)+ ε.
A routine argument shows that for all sufficiently large i, Ai ⊆ U. It follows that

lim sup
i

LN(Ai) ≤ LN(U),

and the fact that ε was arbitrary implies the lemma. ��
Proposition 1.6.14. If T is a compact subset of RN and if S is obtained from T by
Steiner symmetrization, then S is compact.

Proof. Let V be an (N − 1)-dimensional vector subspace of RN, and suppose that
S is the result of Steiner symmetrization of T with respect to V. It is clear that the
boundedness of T implies the boundedness of S. To see that S is closed, consider any
sequence of points p1, p2, . . . in S that converges to some point p. Each pi lies in a
line �i perpendicular to V, and we know that

dist(pi, V ) ≤ 1

2
L1(�i ∩ S) = 1

2
L1(�i ∩ T ).
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We also know that the line perpendicular to V and containing p must be the limit of
the sequence of lines �1, �2, . . . . Further, we know that

dist(p, V ) = lim
i→∞ dist(pi, V ).

The inequality
lim sup
i

L1(�i ∩ T ) ≤ L1(� ∩ T ) (1.32)

would allow us to conclude that

dist(p, V ) = lim
i→∞ dist(pi, V ) ≤ 1

2
lim sup
i→∞

L1(�i ∩ T ) ≤ 1

2
L1(� ∩ T ),

and thus that p ∈ S.
To obtain the inequality (1.32), we let qi be the vector parallel to V that translates

�i to �, and we apply Lemma 1.6.13, withN replaced by 1 and with � identified with
R, to the sets Ai = τqi (�i ∩ T ) , which are the translates of the sets �i ∩ T .We can
take A = � ∩ T , because T is closed. ��
Proposition 1.6.15. If T is a bounded, convex subset of RN and S is obtained from
T by Steiner symmetrization, then S is also a convex set.

Proof. LetV be an (N−1)-dimensional vector subspace of RN, and suppose that S is
the result of Steiner symmetrization of T with respect to V. Let x and y be two points
of S.We let x′ and y′ denote the points obtained from x and y by reflection through
the hyperplane V.Also, let �x and �y denote the lines perpendicular to V and passing
through the points x and y, respectively. By the definition of Steiner symmetrization
and the convexity of T , we see that �x ∩ T must contain a line segment, say from px
to qx, of length at least dist(x, x′). Likewise, �y ∩T contains a line segment from py
to qy of length at least dist(y, y′). The convex hull of the four points px, qx, py, qy
is a trapezoid,Q, which is a subset of T .

We claim that the trapezoid, Q′, that is the convex hull of x, x′, y, y′ must be
contained in S. Let x′′ be the point of intersection of �x and V. Similarly, define y′′
to be the intersection of �y and V. For any 0 ≤ τ ≤ 1, the line �′′ perpendicular to V
and passing through

(1− τ)x′′ + τy′′
intersects the trapezoidQ ⊆ T in a line segment of length

d1 = (1− τ)dist(px, qx)+ τdist(py, qy) ,

and it intersects the trapezoidQ′ in a line segment, centered about V, of length

d2 = (1− τ)dist(x, x′)+ τdist(y, y′).

But S must contain a closed line segment of �′′, centered about V, of length at least
d1. Since d1 at least as large as d2,

�′′ ∩Q′ ⊆ �′′ ∩ S.
Since the choice of 0 ≤ τ ≤ 1 was arbitrary, we conclude thatQ′ ⊆ S. In particular,
the line segment from x to y is contained inQ′ and thus in S. ��
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The power of Steiner symmetrization obtains from the following theorem.

Theorem 1.6.16. Suppose that C is a nonempty family of nonempty compact subsets
of RN that is closed in the Hausdorff distance topology and that is closed under the
operation of Steiner symmetrization with respect to any (N − 1)-dimensional vector
subspace of RN. Then C contains a closed ball (possibly of radius 0) centered at the
origin.

Proof. Let C be such a family of compact subsets of RN and set

r = inf {s : there exists T ∈ C with T ⊆ B(0, s)}.

If r = 0, we are done, so we may assume r > 0. By Theorem 1.6.6, any uniformly
bounded family of nonempty compact sets is compact in the Hausdorff distance
topology, so we can suppose there exists a T ∈ C with T ⊆ B(0, r).

We claim that T = B(0, r). If not, then there exist p ∈ B(0, r) and ε > 0 such
that T ⊆ B(0, r) \ B(p, ε). Suppose T1 is the result of Steiner symmetrization of T
with respect to any arbitrarily chosen (N − 1)-dimensional vector subspace V. Let
� be the line perpendicular to V and passing through p. For any line �′ parallel to
� and at distance less than ε from �, the Lebesgue measure of the intersection of �′
with T must be strictly less than the length of the intersection of �′ with B(0, r), so
the intersection of �′ with ∂B(0, r) is not in T1.We conclude that if p1 is either one
of the points of intersection of the sphere of radius r about the origin with the line �,
then

B(p1, ε) ∩ ∂B(0, r) ∩ T1 = ∅.
Choose a finite set of distinct additional points p2, p3, . . . , pk such that

∂B(0, r) ⊆ ⋃ k
i=1B(pi, ε).

For i = 1, 2, . . . , k − 1, let Ti+1 be the result of Steiner symmetrization of Ti
with respect to the (N − 1)-dimensional vector subspace perpendicular to the line
through pi and pi+1. By the lemma it follows that

B(pi, ε) ∩ ∂B(0, r) ∩ Tj = ∅

holds for i ≤ j ≤ k. Thus we have

Tk ∩ ∂B(0, r) = ∅,

so

Tk ⊆ B(0, s)

holds for some s < r, a contradiction. ��
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1.7 Borel and Suslin Sets

In this section, we discuss the Borel and Suslin sets. The goal of the section is to
show that for all reasonable measures on Euclidean space, the continuous images of
Borel sets are measurable sets (Corollary 1.7.19). This result is based on three facts:
every Borel set is a Suslin set (Theorem 1.7.9), the continuous image of a Suslin set is
a Suslin set (Theorem 1.7.12), and all Suslin sets are measurable (Corollary 1.7.18).

To put it as briefly as possible, the Suslin sets in RN are the sets obtained as the
orthogonal projections of Borel sets in RN+M . The history of Suslin sets is of some
interest. In [Leb 05] (on page 191) Lebesgue had claimed that every projection of a
Borel set is again a Borel set—Lebesgue even gave what he believed was a proof.
It was Suslin (see [Sus 17]) who showed that, in fact, the Borel sets form a proper
subfamily within the Suslin sets, and consequently, there exists a Borel set whose
orthogonal projection is not a Borel set. While it is clearly of interest to know that
there exists a Suslin set that is not a Borel set, we will not prove or use that result.
We refer the interested reader to [Fed 69, 2.2.11], [Hau 62, Section 33], or [Jec 78,
Section 39].

Construction of the Borel Sets
In Section 1.2 we defined the Borel sets in a topological space to be the members of
the smallest σ -algebra that includes all the open sets. The virtue of this definition is
its efficiency, but the price we pay for that efficiency is the absence of a mechanism
for constructing the Borel sets. In this section, we will provide that constructive
definition of the Borel sets.

For definiteness we work on RN . We will use transfinite induction over the small-
est uncountable ordinal ω1 (see Appendix A.1 for a brief introduction to transfinite
induction) to define families of sets �0

α and �0
α , for α < ω1. For us, the superscript

0’s are superfluous, but we include them since they are typically used in descriptive
set theory.

Definition 1.7.1. Set

�0
1 = the family of all open sets in RN ,

�0
1 = the family of all closed sets in RN .

If α < ω1, and �0
β and �0

β have been defined for all β < α, then set

�0
α = the family of sets of the form

A =
∞⋃
i=1

Ai, where each Ai ∈ �0
β for some β < α, (1.33)

�0
α = the family of sets of the form RN \ A for A ∈ �0

α . (1.34)
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Since the complement of a union is the intersection of the complements, we see
that we can also write

�0
α = the family of sets of the form

A =
∞⋂
i=1

Ai, where each Ai ∈ �0
β for some β < α. (1.35)

By transfinite induction over ω1, we see that for α < ω1, all the elements of �0
α and

�0
α are Borel sets.

Lemma 1.7.2. If 1 ≤ β < α < ω1, then

�0
β ⊆ �0

α , �0
β ⊆ �0

α , �0
β ⊆ �0

α , �0
β ⊆ �0

α

hold.

Proof. By (1.33) and (1.35), we see that �0
β ⊆ �0

α and �0
β ⊆ �0

α hold whenever
1 ≤ β < α < ω1.

Every open set in Euclidean space is a countable union of closed sets, so�0
1 ⊆ �0

2
holds. Consequently, we also have�0

1 ⊆ �0
2. Since�0

1 ⊆ �0
2 ⊆ �0

α holds whenever
2 < α and since�0

1 ⊆ �0
2 holds, we have�0

1 ⊆ �0
α and�0

1 ⊆ �0
α for all 1 < α < ω1.

Fix 1 ≤ β < α < ω1. Suppose �0
γ ⊆ �0

α and �0
γ ⊆ �0

α hold whenever γ < β.

Any set A ∈ �0
β must be of the form A = ∪∞i=1Ai with each Ai ∈ �0

γ for some

γ < β. Then since β < α, we see that A ∈ �0
α . Thus �0

β ⊆ �0
α . Similarly, we have

�0
β ⊆ �0

α . ��
Corollary 1.7.3. We have ⋃

α<ω1

�0
α =

⋃
α<ω1

�0
α . (1.36)

Theorem 1.7.4. The family of sets in (1.36) is the σ -algebra of Borel subsets of RN .

Proof. Let B denote the family of sets in (1.36). To see that B is closed under
countable unions, suppose we are given A1, A2, . . . in B. Considering the left-hand
side of (1.36), we see that for each i, there is αi < ω1 such that Ai ∈ �0

αi
. Since

the sequence α1, α2, . . . is countable, but ω1 is uncountable, there is α∗ < ω1 with
αi < α

∗ for all i (see Lemma A.1.4). We conclude that ∪∞i=1Ai ∈ �α∗ . Thus B
is closed under countable unions. We argue similarly to see that B is closed under
countable intersections and complements. ��

Because in the definition of �0
α , equation (1.34) can be replaced by (1.35), The-

orem 1.7.4 has the following corollary.

Corollary 1.7.5. The family of Borel sets in RN is the smallest family of sets contain-
ing the open sets that is closed under countable unions and countable intersections.
Likewise, the family of Borel sets in RN is the smallest family of sets, containing the
closed sets, that is closed under countable unions and countable intersections.
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Suslin Sets
Recall that the positive integers are denoted by N. We let Ñ denote the set of all finite
sequences of positive integers and we let N denote the set of all infinite sequences
of positive integers, so

Ñ = { (n1, n2, . . . , nk) : k ∈ N, ni ∈ N for i = 1, 2, . . . , k } ,
N = { (n1, n2, . . .) : ni ∈ N for i = 1, 2, . . . } .

Definition 1.7.6. Let M be a collection of subsets of a set X. Suppose that there is a
setMn1,n2,...,nk ∈ M associated with every finite sequence of positive integers. We
can represent this relation as a function ν : Ñ →M defined by

(n1, n2, . . . , nk)
ν�−→ Mn1,n2,...,nk .

Such a function ν is called a determining system in M. Associated with the deter-
mining system ν is the set called the nucleus of ν denoted by N (ν) and defined by

N (ν) =
⋃
n∈N

n=(n1,n2,...)

(
Mn1 ∩Mn1,n2 ∩ · · · ∩Mn1,n2,...,nk ∩ · · ·

)
.

Suslin’s operation (A) is the function that when applied to the argument ν produces
the result N (ν). We will say that N (ν) is a Suslin set generated by M. The family
of all Suslin sets generated by M will be denoted by M(A).

By the Suslin sets in a topological space we mean the Suslin sets generated by
the family of closed sets.

Since N has the same cardinality as the real numbers, we see that the nucleus is
formed by an uncountable union of countable intersections of sets in M. We might
expect that operation (A) could be extremely powerful, but at the outset it is not
immediately clear what can be done with the operation. The next proposition tells us
that operation (A) is at least as powerful as those used to form the Borel sets.

Proposition 1.7.7. Suppose A1, A2, . . . ∈ M, then there exist determining systems
νU and νI such that

N (νU ) =
∞⋃
i=1

Ai and N (νI ) =
∞⋂
i=1

Ai .

Proof. Define νU and νI by

(n1, n2, . . . , nk)
νU

l−−−−−→ An1 ,

(n1, n2, . . . , nk)
νI

l−−−−−→ Ak .
It is easy to see that νU and νI have the desired properties. ��
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The next theorem that tells us that repeated applications of operation (A) produce
nothing that cannot be produced with only one application of the operation.

Theorem 1.7.8. If M is a family of sets, if ∅ ∈M, and if M(A) is the family of Suslin
sets generated by M, then any Suslin set generated by M(A) is already an element
of M(A). Symbolically, we have(

M(A)
)

(A) =M(A) .

Proof. Let

(n1, n2, . . . , nk)
ν�−→ Mn1,n2,...,nk ∈M(A)

be a determining system in M(A). For each n1, n2, . . . , nk ∈ Ñ , the setMn1,n2,...,nk

must itself be the nucleus of a determining system νn1,n2,...,nk in M; that is,

(q1, q2, . . . , q�)
νn1,n2,...,nk

l−−−−−−−−−−→ Mq1,q2,...,q�n1,n2,...,nk ∈M ,

Mn1,n2,...,nk =⋃
q∈N

q=(q1,q2,...)

(
M
q1
n1,n2,...,nk ∩Mq1,q2n1,n2,...,nk ∩ · · · ∩Mq1,q2,...,q�n1,n2,...,nk ∩ · · ·

)
,

N (ν) =
⋃
n∈N

n=(n1,n2,...)

(
Mn1 ∩Mn1,n2 ∩ · · · ∩Mn1,n2,...,nk ∩ · · ·

)
.

We can rewrite N (ν) as the union of the sets(
M
q1

1
n1 ∩ M

q1
1 ,q

1
2

n1 ∩ · · · ∩ Mq1
1 ,q

1
2 ,...,q

1
�

n1 ∩ · · ·
)

⋂ (
M
q2

1
n1,n2 ∩ M

q2
1 ,q

2
2

n1,n2 ∩ · · · ∩ Mq2
1 ,q

2
2 ,...,q

2
�

n1,n2 ∩ · · ·
)

...
...

...
...⋂ (

M
qk1
n1,n2,...,nk ∩ Mq

k
1 ,q
k
2

n1,n2,...,nk ∩ · · · ∩ M
qk1 ,q

k
2 ,...,q

k
�

n1,n2,...,nk ∩ · · ·
)

...
...

...
... .

(1.37)

Notice that the set in the kth row and �th column of (1.37) is indexed by k subscripts
and � superscripts. The choices of the subscripts and superscripts are constrained by
the following requirements:

in any row, the list of subscripts is constant,
in any row, the list of superscripts grows by concatenation,
in any column, the list of subscripts grows by concatenation.

⎫⎬⎭ (1.38)

Let the prime numbers in increasing numerical order be given by the list
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p1, p2, p3, . . . .

We can use the list of primes to encode the information concerning the number of
subscripts, the number of superscripts, and their values as follows: Set

m = pk1 · p�2 · pn1
3 · pn2

4 · · · pnkk+2 · p
qk1
k+3 · p

qk2
k+4 · · · p

qk�
�+k+2 . (1.39)

Given a positive integerm, the unique factorization ofm into prime powers determines
whetherm is of the form (1.39). Certainly not every positive integerm is of the form
(1.39), nor is every sequence of positive integers m1,m2, . . . consistent with the
conditions (1.38), even if the individual numbers mi are of the form (1.39). But it is
true that any sequence of sets in (1.37) will give rise to a sequence of positive integers
m1,m2, . . . of the form (1.39) that satisfies the conditions (1.38).

We now define the determining system

(m1,m2, . . . , mk)
σ�−→ Sm1,m2,...,mk .

For each positive integer m, if m is of the form (1.39), then the numbers k, �,
n1, n2, . . . , nk , qk1 , q

k
2 , . . . , q

k
� are uniquely determined by (1.39). So we can make

the definition

Tm =
{
S
qk1 ,q

k
2 ,...,q

k
�

n1,n2,...,nk if m is of the form (1.39) ,

∅ otherwise.

Then, for the sequence of positive integers m1,m2, . . . , set

Sm1,m2,...,mk =
{
Tm1 ∩ Tm2 ∩ · · · ∩ Tmk if (1.38) is not violated,

∅ otherwise.

For m = (m1,m2, . . .) ∈ N , the set

Sm1 ∩ Sm1,m2 ∩ · · · ∩ Sm1,m2,...,mk ∩ · · ·
is either one of the sets in (1.37) or the empty set. By construction, every set in (1.37)
gives rise to a sequence m = (m1,m2, . . .) ∈ N such that

Sm1 ∩ Sm1,m2 ∩ · · · ∩ Sm1,m2,...,mk ∩ · · ·
equals that set in (1.37). Thus we have N (ν) = N (σ ). ��
Theorem 1.7.9. Every Borel set in RN is a Suslin set.

Proof. By Proposition 1.7.7 and Theorem 1.7.8, the collection of Suslin sets is closed
under countable unions and countable intersections. Thus by Corollary 1.7.5, the
collection of Suslin sets contains all the Borel sets. ��
Continuous Images of Suslin Sets
Suppose f : X → Y is a function from a set X to a set Y . The inverse image of a
union of sets equals the union of the inverse images, and likewise the inverse image
of an intersection of sets equals the intersection of the inverse images. Images of sets
under functions are not as well behaved as inverse images; nonetheless, we do have
the following result—which is easily verified.
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Proposition 1.7.10. Let f : X→ Y .

(1) For {Aα}α∈I a collection of subsets of X, f
(⋃
α∈I Aα

) =⋃α∈I f (Aα) holds.
(2) For X ⊇ A1 ⊇ A2 ⊇ · · · , f

(⋂∞
i=1Ai

) ⊆ ⋂∞
i=1 f (Ai) holds and strict inclu-

sion is possible.

To obtain an equality for images of intersections, we need to look at continuous
functions and decreasing sequences of compact sets.

Proposition 1.7.11. Let X and Y be topological spaces and let f : X → Y be
continuous. If X is sequentially compact, X ⊇ C1 ⊇ C2 ⊇ · · · , and if each Ci is a
closed subset of X, then f

(⋂∞
i=1 Ci

) =⋂∞
i=1 f (Ci).

Proof. By Proposition 1.7.10, we need only show that
⋂∞
i=1 f (Ci) ⊆ f

(⋂∞
i=1 Ci

)
,

so suppose y ∈⋂∞
i=1 f (Ci).

For each i, there is xi ∈ Ci withf (xi) = y, and because the setsCi are decreasing,
we have xj ∈ Ci whenever j ≥ i.

Set x0,j = xj for j = 1, 2, . . . . Since C1 is sequentially compact, there is a
convergent subsequence {x1,j }∞j=1 of {x0,j }∞j=1. Arguing inductively, suppose 1 ≤
i and that we have already constructed a convergent sequence {xi,j }∞j=1 that is a
subsequence of {xh,j }∞j=1, for 0 ≤ h ≤ i − 1, and is such that every xi,j is a point
of Ci , for j = 1, 2, . . . . Since {xi,j }∞j=1 is a subsequence of the original sequence
{x0,j }∞j=1, there is a j∗ such that xi,j ∈ Ci+1 holds for all j with j∗ ≤ j . Since
Ci+1 is sequentially compact, we can select a convergent subsequence {xi+1,j }∞j=1
of {xi,j }∞j=j∗ , and thus satisfy the induction hypothesis.

By construction, the sequence {xj,j }∞j=1 is convergent. Hence we have

limj→∞ xj,j ∈ ⋂∞
i=1 Ci , f

(
limj→∞ xj,j

) = lim∞j=1 f
(
xj,j
) = y, and thus we

have shown that y ∈⋂∞
i=1 Ci . ��

Theorem 1.7.12. If f : RN → RM is continuous and S ⊆ RN is a Suslin set, then
f (S) is a Suslin subset of RM .

Proof. Since any closed subset of RN is a countable union of compact sets, we see
that if K is the collection of compact subsets of RN , then K(A) is the collection of
Suslin sets.

Let S ⊆ RN be a Suslin set, and let ν be a determining system in K such that
S = N (ν). Since any finite intersection of compact sets is compact, we see that the

determining system (n1, n2, . . . , nk)
ν�−→ Kn1,n2,...,nk has the same nucleus as the

determining system (n1, n2, . . . , nk)
ν̃�−→ Hn1,n2,...,nk in K given by

Hn1,n2,...,nk = Kn1 ∩Kn1,n2 ∩ · · · ∩Kn1,n2,...,nk .

Because the sets
{
Hn1,n2,...,nk

}∞
k=1 form a decreasing sequence of compact sets, we

can apply Propositions 1.7.10 and 1.7.11 to conclude that
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f (S) = f [N (ν)] = f [N (̃ν)]

= f

⎡⎢⎢⎣ ⋃
n∈N

n=(n1,n2,...)

(
Hn1 ∩Hn1,n2 ∩ · · · ∩Hn1,n2,...,nk ∩ · · ·

) ⎤⎥⎥⎦
=

⋃
n∈N

n=(n1,n2,...)

(
f (Hn1) ∩ f (Hn1,n2) ∩ · · · ∩ f (Hn1,n2,...,nk ) ∩ · · ·

)
,

and so we see that f (S) is a Suslin set in RM . ��
Measurability of Suslin Sets
In order to prove that the Suslin sets are measurable, we need to introduce some
additional structures similar to the nucleus of a determining system.

Definition 1.7.13. Let (n1, n2, . . . , nk)
ν�−→ An1,n2,...,nk be given. Let h1, h2, . . . , hs

be a finite sequence of positive integers. We define the following sets:

N h1,h2,...,hs (ν) =
⋃

(n1,n2,...)∈N
ni≤hi , 1≤i≤s

An1 ∩ An1,n2 ∩ · · · ∩ An1,n2,...,nk ∩ · · · , (1.40)

N h1,h2,...,hs (ν) =
h1⋃
n1=1

h2⋃
n2=1

· · ·
hs⋃
ns=1

An1 ∩ An1,n2 ∩ · · · ∩ An1,n2,...,ns . (1.41)

The next proposition follows immediately from the definition.

Proposition 1.7.14. Let (n1, n2, . . . , nk)
ν�−→ An1,n2,...,nk be given. We have

N 1(ν) ⊆ · · · ⊆ N h(ν) ⊆ N h+1(ν) ⊆ · · · ,

N (ν) =
∞⋃
k=1

N k(ν) ,

N h1,...,hs ,1(ν) ⊆ · · · ⊆ N h1,...,hs ,k(ν) ⊆ N h1,...,hs ,k+1(ν) ⊆ · · · ,

N h1,...,hs (ν) =
∞⋃
k=1

N h1,...,hs ,k(ν) .

Corollary 1.7.15. If µ is a regular measure on the nonempty set X and ν is a deter-
mining system in any family of subsets of X and if E is any subset of X, then

lim
k→∞µ

[
E ∩ N k(ν)

]
= µ

[
E ∩ N (ν)

]
,

lim
k→∞µ

[
E ∩ N h1,h2,...,hs ,k(ν)

]
= µ

[
E ∩ N h1,h2,...,hs (ν)

]
.
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Proof. Recall that Lemma 1.2.8 tells us that for a regular measure the measure of the
union of an increasing sequence of sets is the limit of the measures of the sets, so the
result follows immediately from Proposition 1.7.14. ��

We will need the following lemma.

Lemma 1.7.16. Let (n1, n2, . . . , nk)
ν�−→ An1,n2,...,nk and (h1, h2, . . .) ∈ N be

given. Then we have

N h1(ν) ∩ N h1,h2(ν) ∩ · · · ∩ N h1,h2,...,hs (ν) ∩ · · · ⊆ N (ν) . (1.42)

Proof. Fix a point x belonging to the left-hand side of (1.42).
First we claim that there exists a positive integer n0

1 ≤ h1 such that for every k
with 2 ≤ k, there exist n2, n3, . . . , nk with ni ≤ hi , for 2 ≤ i ≤ k, and with

x ∈ An0
1
∩ An0

1,n2
∩ · · · ∩ An0

1,n2,...,nk
.

To verify this, suppose it were not true. Then for each index n1 ≤ h1 there would be
exist a positive integer k(n1) such that

x /∈ An1 ∩ An1,n2 ∩ · · · ∩ An1,n2,...,nk(n1)

whenever ni ≤ hi for i = 2, 3, . . . , k(n1).
Setting K(1) = max{ k(1), k(2), . . . , k(h1) }, we see that

x /∈
h1⋃
n1=1

h2⋃
n2=1

· · ·
hK(1)⋃
nK(1)=1

An1 ∩ An1,n2 ∩ · · · ∩ An1,n2,...,nK(1) ,

which contradicts our assumption that x is an element of the left-hand side of (1.42).
Arguing inductively, suppose we have selected positive integers n0

1, n
0
2, . . . , n

0
s

satisfying

n0
1 ≤ h1, n0

2 ≤ h2, . . . , n0
s ≤ hs ,

for every k with s + 1 ≤ k, there exist ns+1, ns+2, . . . , nk
with ni ≤ hi , for s + 1 ≤ i ≤ k, and with
x ∈ An0

1
∩ An0

1,n
0
2
∩ · · · ∩ An0

1,n
0
2,...,n

0
s ,ns+1,ns+2,...,nk

.

⎫⎪⎪⎬⎪⎪⎭ (1.43)

We claim that we can select n0
s+1 ≤ hs+1 so that (1.43) holds with s replaced by

s + 1. If no such n0
s+1 existed, then for each index ns+1 ≤ hs+1 there would exist a

positive integer k(ns+1) such that

x /∈ An0
1
∩ An0

1,n
0
2
∩ · · · ∩ An0

1,n
0
2,...,n

0
s ,ns+1,ns+2,...,nk(ns+1)

whenever ni ≤ hi for i = s + 1, s + 2, . . . , k(ns+1).
Setting K(s + 1) = max{ k(1), k(2), . . . , k(hs+1) }, we see that
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x /∈
h1⋃
n1=1

h2⋃
n2=1

· · ·
hK(s+1)⋃
nK(s+1)=1

An1 ∩ An1,n2 ∩ · · · ∩ An1,n2,...,nK(s+1) ,

which contradicts our assumption that x is an element of the left-hand side of (1.42).
Thus there exists an infinite sequence n0

1 ≤ h1, n0
2 ≤ h2, . . . such that

x ∈ An0
1
∩ An0

1,n
0
2
∩ · · · ∩ An0

1,n
0
2,...,n

0
k
∩ · · · ;

hence x ∈ N (ν). ��
Theorem 1.7.17. Let µ be a regular measure on the nonempty set X, and let M be
the collection of µ-measurable subsets ofX. If ν is a determining system in M, then
N (ν) is µ-measurable.

Proof. Let the determining system ν be (n1, n2, . . . , nk)
ν�−→ Mn1,n2,...,nk , and set

A = N (ν). We need to show that for any set E ⊆ X, we have

µ(E ∩ A)+ µ(E \ A) ≤ µ(E) .
We may assume that µ(E) <∞. Let ε > 0 be arbitrary.

Using Corollary 1.7.15, we can inductively define a sequence of positive integers
h1, h2, . . . such that

µ
[
C ∩ N h1(ν)

]
≥ µ

[
E ∩ N (ν)

]
− ε/2

and
µ
[
C ∩ N h1,h2,...,hk (ν)

]
≥ µ

[
E ∩ N h1,h2,...,hk−1(ν)

]
− ε/2k .

We have N h1,h2,...,hk (ν) ⊆ N h1,h2,...,hk (ν), so

µ
[
E ∩ N h1,h2,...,hk (ν)

]
≥ µ

[
E ∩ N h1,h2,...,hk (ν)

]
≥ µ(E ∩ N (ν))− ε

holds, and thus, since N h1,h2,...,hk (ν) is µ-measurable,

µ(E) = µ
[
E ∩ N h1,h2,...,hk (ν)

]
+ µ

[
E \ N h1,h2,...,hk (ν)

]
≥ µ

[
E ∩ N (ν)

]
+ µ

[
E \ N h1,h2,...,hk (ν)

]
− ε .

Now the sequence of sets
{

N h1,h2,...,hk (ν)
}
k=1,2,...

is descending, and by

Lemma 1.7.16 its limit is a subset of N (ν). Consequently the sequence{
X \N h1,h2,...,hk

}
k=1,2,...

is ascending and its limit contains the setX \N (ν). Hence

lim
k→∞µ

[
E \ N h1,h2,...,hk (ν)

]
= µ

[
E \

∞⋃
k=1

N h1,h2,...,hk (ν)

]
≥ µ

[
E \ N (ν)

]
,
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so
µ(E) ≥ µ

[
E ∩ N (ν)

]
+ µ

[
E \ N (ν)

]
− ε ,

and the result follows since ε is an arbitrary positive number. ��
Corollary 1.7.18. If µ is a Borel regular measure on the topological space X, then
all the Suslin sets in X are µ-measurable.

Corollary 1.7.19. If f : RN → RM is continuous, µ is a Borel regular measure on
RM , and S ⊆ RN is a Suslin set, then f (S) is µ-measurable.

Remark 1.7.20. The particular properties of Euclidean space required for Corol-
lary 1.7.19 are that every open set is a countable union of closed sets and that every
closed set is a countable union of compact sets.



2

Carathéodory’s Construction and Lower-Dimensional
Measures

In the study of geometric questions about sets it is useful to have various devices for
measuring the size of those sets. Certainly lower-dimensional measures are one such
mechanism. The classic construction of Carathéodory provides an umbrella paradigm
that generates a great many such measures, suitable for a variety of applications. Our
aim in the present chapter is to give a thorough development of this theory and to
present a number of examples and applications.

Certainly the ideas that we present here began with Hausdorff [Hau 18] and
Carathéodory [Car 14]. In the intervening eighty years they have developed in a
number of startling and powerful new directions. We shall endeavor to describe both
the history as well as some of the current directions.

2.1 The Basic Definition

Let F be a collection of sets in RN . These will be our “test sets’’ for constructing
Hausdorff-type measures. Let ζ : F → [0,+∞] be a function (called the gauge
of the measure to be constructed). Then preliminary measures φδ , 0 < δ ≤ ∞, are
created as follows:

If A ⊆ RN , then set

φδ(A)

= inf

{∑
S∈G
ζ(S) : G ⊆ F ∩ {S : diam S ≤ δ}, card(G) ≤ ℵ0, andA ⊆

⋃
S∈G
S

}
.

(2.1)

Each number in the set over which we take the infimum in (2.1) is obtained by covering
A by sets of diameter not exceeding δ (see Figure 2.1). We can either separately define
φδ(∅) = 0; or we can note that the empty sum is 0, so the empty covering of the empty
set realizes the infimum in (2.1). Note that φδ clearly satisfies the monotonicity and
subadditivity requirements of Definition 1.2.1 and thus is a measure.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
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Fig. 2.1. Carathéodory’s construction.

If 0 < δ1 < δ2 ≤ ∞ then it is immediate that φδ1 ≥ φδ2 . Thus we may set

ψ(A) = lim
δ→0+

φδ(A) = sup
δ>0
φδ(A) .

Certainly ψ is also a measure. This process for constructing the measure ψ is called
Carathéodory’s construction. Once the family of sets F and the gauge ζ have been
selected, the resulting measure ψ is uniquely determined.

By applying Carathéodory’s criterion, Theorem 1.2.13, we can immediately see
that any open set is ψ-measurable. Indeed, one sees that

φδ(A ∪ B) ≥ φδ(A)+ φδ(B)
whenever dist(A,B) > δ > 0. This follows because any set of diameter ≤ δ that is
part of a covering of A ∪ B will either intersect A or intersect B but not both. Thus
any collection G as above will partition naturally into a subcollection that covers A
and a subcollection that covers B.

Example 2.1.1. Not every open set is φδ-measurable, for fixed δ > 0. To see this,
let N = 1, let F be the collection of open intervals, and let ζ(S) = (diam (S))1/2.
Define I1 = (0, δ/2), I2 = (δ/2, δ), and I = I1 ∪ I2. Then it is easy to see that

φδ(I1) = (δ/2)1/2 , φδ(I2) = (δ/2)1/2 , φδ(I ) = δ1/2 .
But then the inequality

φδ(I ) ≥ φδ(I1)+ φδ(I2)
clearly fails. ��
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It is not difficult to show that if all members of F are Borel sets, then every
subset A of RN is contained in a Borel set Ã with the same φδ measure (just take the
intersection of the unions of covers). Thus ψ is a Borel regular measure.

We now describe an alternative approach to Carathéodory’s construction that is
due to Federer [Fed 54]. In fact, ψ(A) can be characterized as the infimum of the set
of all numbers t with this property:

For each open covering U of A there exists a countable subfamily
G of F such that each member of G is contained in some member

of U , G covers A, and ∑
S∈G
ζ(S) < t .

(2.2)

One advantage of this new definition—important for us—is that it frees the definition
of ψ from any reference to a metric. This is particularly useful if one wants to define
Hausdorff measure on a manifold.

2.1.1 Hausdorff Measure and Spherical Measure

Hausdorff measure and spherical measure were introduced by Hausdorff in [Hau 18].
Let m be a nonnegative integer and let �m be the m-dimensional volume of the

unit ball in Euclidean m-space, that is,

�m = 2πm/2

m�(m/2)
= [�(1/2)]m
�(m/2+ 1)

. (2.3)

Now we specialize to the situation in which F is the collection of all sets S and

ζ1(S) = �m 2−m(diam S)m (2.4)

for S �= ∅. [Note that this definition makes sense for any m ≥ 0 with �m defined by
(2.3), although the interpretation of �m as the volume of a ball is no longer relevant
or valid when m is not an integer.]

We call the resulting measure the m-dimensional Hausdorff measure on RN ,
denoted by Hm. It is worth noting that the same measure would result if we let F
be the collection of all closed sets or all open sets. In fact, because any set and its
convex hull have the same diameter, we could restrict attention to convex sets.

It is immediate that the measure H0 is counting measure (see Example 1.3.24).

Proposition 2.1.2. For 0 ≤ s < t <∞ and A ⊆ RN , we have that

(1) Hs(A) <∞ implies that Ht (A) = 0;
(2) Ht (A) > 0 implies that Hs(A) = ∞.

Proof. It will be convenient to use Hsδ (respectively, Htδ) to denote the preliminary
measure φδ constructed using the gauge ζ1 in (2.4) withm = s (respectively,m = t).

For (1), let A ⊆⋃i Ei , with diam (Ei) ≤ δ and
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�s 2−s
∑
i

diam (Ei)
s ≤ Hsδ(A)+ 1 .

Then

Htδ(A) ≤ �t 2−t
∑
i

diam (Ei)
t

≤ δt−s �t 2−t
∑
i

diam (Ei)
s ≤ δt−s (�t/�s) 2s−t

(
Hsδ(A)+ 1

)
.

As δ→ 0+, this estimate gives (1).
Statement (2) is really just the contrapositive of (1). But it is worth stating

separately, since it is the basis for the theory of Hausdorff dimension. ��
When F is the family of all closed balls in RN , and ζ1 is as above, then the

resulting measure ψ is called the m-dimensional spherical measure. We denote this
measure by Sm. The same measure results if we use the family of all open balls.

Of course, it is immediate that

Hm ≤ Sm ≤ 2m ·Hm .
More precise comparisons are possible, and we shall explore these in due course.

2.1.2 A Measure Based on Parallelepipeds

Let M > 0 be an integer and assume that M ≤ N , the dimension of the Euclidean
space RN . Now suppose we use the new gauge function defined by

ζ2(S) = �M · 2−M · sup

{
|(a1− b1)∧ · · · ∧ (aM − bM)| : a1, b1, . . . , aM, bM ∈ S

}
.

(2.5)
See Figure 2.2. We will learn more about this gauge in Lemma 2.1.3. Carathéodory’s
construction on the family F of all nonempty subsets of RN will be denoted by T M

Fig. 2.2. A construction based on exterior algebra.
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and will be calledM-dimensional Federer1 measure on RN . Of course, we could use
all open sets S, or all compact sets S, or all convex sets S; the same measure would
result.

Since

|(a1 − b1) ∧ · · · ∧ (aM − bM)| ≤
M∏
i=1

|ai − bi | ,

we conclude that
ζ2(S) ≤ �M · 2−M(diam S)M

and thus that T M ≤ HM . Observe that the gauge ζ2 assigns the same value to any
set and to its convex hull. This follows because the map of (RN)2M into

∧
M(R

N)

yielding the preceding exterior product is affine with respect to each of the 2M
variables a1, b1, . . . , aM, bM .

2.1.3 Projections and Convexity

Continue to assume that M > 0 is an integer with M ≤ N , the dimension of the
Euclidean space RN . We let O(N,M) denote the collection of orthogonal injections
of RM into RN , so each element of O(N,M) is a linear map from RM to RN that
is represented by an N × M matrix with orthonormal columns. In case M = N ,
we write O(M) = O(M,M), so that O(M) is the orthogonal group. Furthermore,
O∗(N,M) will be the set of adjoints of elements of O(N,M) from RN onto RM

(these are of course orthogonal projections). For S ⊆ RN , we set

ζ3(S) = sup
{
LM [p(S)] : p ∈ O∗(N,M)

}
, (2.6)

where LM is theM-dimensional Lebesgue measure.

Gross Measure

Let F be the family of all Borel subsets of RN . Then Carathéodory’s construction,
with ζ3 as in (2.6), gives the M-dimensional Gross measure2 on RN . It is denoted
by GM .

Carathéodory Measure

Let F be the family of all open, convex subsets of RN . Then Carathéodory’s con-
struction, with ζ3 as in (2.6), gives the M-dimensional Carathéodory measure3 on
RN . We denote this measure by CM . The family of all closed, convex subsets gives
rise to just the same measure.

It is worth noting that, when M = 1, then ζ3(S) = diam (S) when S is convex
and hence

C1 = H1 .

1 This measure was introduced by H. Federer in [Fed 69].
2 Introduced in [Gro 18a] and [Gro 18b].
3 Introduced in [Car 14].
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2.1.4 Other Geometric Measures

Fix RN as usual and select a positive integerM such thatM ≤ N . For 1 ≤ t ≤ ∞,
we now proceed to define a gauge function ζ4,t :

For S ⊆ RN , define fS : O∗(N,M)→ R by setting

fS(p) = LM [p(S)] for all p ∈ O∗(N,M) .

Let θ∗N,M be the measure on O∗(N,M), with total measure 1, that is invariant under
the action of the orthogonal group. (We will prove the existence of such a measure in
Chapter 3, where our arguments are independent of this chapter.) To ensure that the
measures resulting from Carathéodory’s construction using the gauge ζ4,t give values
that agree with those found for smooth surfaces using calculus, we need to introduce
a normalizing factor βt (N,M). For completeness, we give the definition here. For
1 ≤ t <∞, let βt (N,M) be the positive number that satisfies the equation(∫

|(∧Mp)ξ |t dθ∗N,M(p)
)1/t

= βt (N,M) · |ξ |

for any simpleM-vector ξ of RN . Set β∞(N,M) = 1. Finally, set

ζ4,t (S) =
(
βt (N,M)

)−1
(∫ ∣∣∣fS(p)∣∣∣t dθ∗N,M(p))1/t

(2.7)

whenever fS(p) = LM [p(S)] is θ∗N,M -measurable.
In fact, fS is θ∗N,M -measurable whenever S is a Borel or Suslin set. This measur-

ability holds because
{ (x, y, p) : x ∈ S, y = p(x) }

is a Suslin set in RN × RM ×O∗(N,M) whenever S is a Borel or Suslin set in RN .
The map

t �−→ βt (N,M)ζ4,t (S) (2.8)

sends t to the Lt -norm of a fixed function on a space with total measure 1, so, using
Hölder’s inequality and Lebesgue’s convergence theorems, we see that the map (2.8)
is nondecreasing and continuous; thus ζ4,t (S) is continuous as a function of t .

Integral Geometric Measure

Let F be the family of all Borel subsets of RN . Using Carathéodory’s construction
with gauge ζ4,t , we construct the M-dimensional integral geometric measure with
exponent t on RN . This measure is denoted by IMt . Roughly speaking, integral
geometric measure measures all projections of the given set, and then integrates
out (using an invariant measure) over all projections. The M-dimensional integral
geometric measure with exponent 1 was introduced by Jean Favard (1902–1965) in
[Fav 32] and is sometimes called Favard measure.

It is worth noting that IMt (A) = 0 if and only if the set A is contained in a Borel
set B with LM [p(B)] = 0 for θ∗N,M -almost every p ∈ O∗N,M . Thus all the measures

IMt , 1 ≤ t ≤ ∞, have the same null sets.
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Gillespie Measure

Let F be the family of all open, convex subsets of RN . The Carathéodory construction
with gauge ζ4,t then gives the measure QMt . We call this measure theM-dimensional
Gillespie4 measure with exponent t on RN . The same measure results when we use
instead the family of all closed, convex subsets of RN .

Since the function fS is continuous for any bounded, open, convex set S, we see
that QM∞ = CM .

2.1.5 Summary

In Table 2.1, we summarize the measures, and their constructions, that have been
described in this section.

To establish the relationships among the measures listed in Table 2.1, we will
need to understand ζ2 better.

Lemma 2.1.3. If S ⊆ RM is a nonempty subset, then

LM(S) ≤ �M · 2−M · sup{|(a1− b1)∧ · · ·∧ (aM − bM)| : a1, b1, . . . , aM, bM ∈ S} .

Proof. Let M = N and let ζ2(S) be as above. Take λ,µ > 0. Define C to be the
collection of all nonempty, compact, convex subsets S of RN such that

LM(S) ≥ λ and ζ2(S) ≤ µ .

By the upper semicontinuity of Lebesgue measure with respect to the Hausdorff
distance, i.e., Corollary 1.6.5, and by the definition of ζ2, C is closed with respect
to the Hausdorff metric. We further claim that if the set T is obtained from S ∈ C
by Steiner symmetrization, then T ∈ C. To see that this claim holds, recall that
Proposition 1.6.12 tells us that Steiner symmetrization preserves Lebesgue measure,
while symmetrization also preserves the gauge ζ2 just by linearity.

Now, in case C is nonempty, we can conclude from Theorem 1.6.16 that there is
some ball B(0, r) in C. Thus

λ ≤ LM [B(0, r)] = �M · rM = ζ2[B(0, r)] ≤ µ .

That proves our result. ��

Corollary 2.1.4. For S ⊆ RN , it holds that

ζ3(S) ≤ ζ2(S) .
4 David Clinton Gillespie (1879–1935) suggested the measure QM1 to Anthony Perry Morse

(1911–1984) and John A. F. Randolph (see [MR 40]).
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Table 2.1. Measures resulting from Carathéodory’s construction.

Gauges

m ∈ R, 0 ≤ m < ∞
ζ1(S) = �m 2−m(diam S)m

M ∈ Z, 1 ≤ M ≤ N ,

ζ2(S) = �M · 2−M · sup{|(a1 − b1) ∧ · · · ∧ (aM − bM)| : a1, . . . , bM ∈ S},

ζ3(S) = sup{LM [p(S)] : p ∈ O∗(N,M)},

ζ4,t (S) = (βt (N,M))−1 ‖LM [p(S)]‖t .

Notation Name of Measure Family of Sets F Gauge

Hm Hausdorff all sets ζ1

Sm spherical balls ζ1

T M Federer all sets ζ2

GM Gross Borel sets ζ3

CM Carathéodory open, convex sets ζ3

IM1 Favard Borel sets ζ4,1

IMt integral geometric Borel sets ζ4,t
with exponent t

QMt Gillespie open, convex sets ζ4,t
with exponent t

Proof. For p ∈ O∗(N,M), we have

|p(a1 − b1) ∧ · · · ∧ p(aM − bM)| ≤ |(a1 − b1) ∧ · · · ∧ (aM − bM)| ,
so, by Lemma 2.1.3,

LM [p(S)]
≤ �M · 2−M · sup{|(a1 − b1) ∧ · · · ∧ (aM − bM)| : a1, b1, . . . , aM, bM ∈ p(S)}
≤ �M · 2−M · sup{|p(a1 − b1) ∧ · · · ∧ p(aM − bM)| : a1, b1, . . . , aM, bM ∈ S}
≤ �M · 2−M · sup{|(a1 − b1) ∧ · · · ∧ (aM − bM)| : a1, b1, . . . , aM, bM ∈ S}
= ζ2(S)



2.2 The Densities of a Measure 61

holds. Taking the supremum over p ∈ O∗(N,M), we obtain the result. ��

The following six facts will allow us to compare the measures we have created
using Carathéodory’s construction.

(1) making the family of sets F smaller cannot decrease the measure resulting from
Carathéodory’s construction,

(2) ζ2 ≤ ζ1,
(3) ζ3 ≤ ζ2,
(4) βt (N,m) ζ4,t (S) is a nondecreasing function of t ,
(5) ζ4,∞ ≤ ζ3, and
(6) ζ3 and ζ4,∞ agree on the open, convex sets.

Proposition 2.1.5. ForM an integer with 1 ≤ M ≤ N and for ∞ ≥ t ≥ s ≥ 1, the
following relationships hold:

SM ≥ HM ≥ T M
∨
CM = QM∞ ≥ βt (N,M) ·QMt ≥ βs(N,M) ·QMs
∨ ∨ ∨ ∨
GM ≥ IM∞ ≥ βt (N,M) · IMt ≥ βs(N,M) · IMs .

Proof. Use the six facts above. ��

Noting that βt (N,N) = 1 for 1 ≤ t ≤ ∞, we see that when N = M , IN1 is
the smallest of the measures that we have defined in this section. Also note that the
inequality

IN1 (A) ≥ LN(A), for all A ⊆ RN , (2.9)

is evident from the definition of IN1 . Ultimately (see Corollary 4.3.9) we will show
that in RN , the measures SN , HN , T N , CN , GN , QNt , and INt (1 ≤ t ≤ ∞) all agree
with the N -dimensional Lebesgue measure LN .

2.2 The Densities of a Measure

At a point p of a smooth m-dimensional surface S in RN , we know that the m-
dimensional area of S ∩ B(p, r) approaches 0 like rm as r ↓ 0. We might hope to
generalize that observation to less smooth surfaces and more general measures, or we
might wish to show that if some measure behaves in that way on a set S, then that
set exhibits some other desirable behavior. The tools for such investigations are the
densities of a measure, which we define next.

Definition 2.2.1. Letµ be a measure on RN . Fix a point p ∈ RN and fix 0 ≤ m <∞
(m need not be an integer).
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(1) The m-dimensional upper density of µ at p is denoted by �∗m(µ, p) and is
defined by setting

�∗m(µ, p) = lim sup
r↓0

µ
[
B(p, r)

]
�m rm

.

(2) Similarly, the m-dimensional lower density of µ at p is denoted by �m∗ (µ, p)
and is defined by setting

�m∗ (µ, p) = lim inf
r↓0

µ
[
B(p, r)

]
�m rm

.

(3) In case�m∗ (µ, p) = �∗m(µ, p), we call their common value them-dimensional
density of µ at p and denote it by �m(µ, p).

Because Hausdorff measure and spherical measure are based on diameters of sets
and balls, respectively, a bound on the upper density of a measure µ should imply a
relationship betweenµ and Hausdorff measure and betweenµ and spherical measure.
To obtain such results, we need to require the measure µ to be regular. Recall that
Lemma 1.2.8 tells us that for a regular measure, the measure of the union of an
increasing sequence of sets equals the limit of their measures.

Proposition 2.2.2. Let µ be a regular measure on RN , and let 0 ≤ t < ∞ be fixed.
If Hm(A) <∞ and �∗m(µ, p) ≤ t holds for all p ∈ A, then

µ(A) ≤ t · 2m ·Hm(A) ≤ t · 2m · Sm(A) .
Proof. Since Hm ≤ Sm, we need only consider the Hausdorff measure.

Let s with t < s <∞ be arbitrary. For each positive integer j , set

Aj = A ∩
{
p : µ

[
B(p, r)

]
≤ s ·�m rm, for all r ≤ 1/j

}
.

By Lemma 1.2.8, the fact that Hm(Aj ) <∞, and the arbitrariness of s, it suffices to
prove that

µ(Aj ) ≤ 2m · s ·Hm(Aj ) (2.10)

holds for each j .
Now let δ satisfy 0 < δ ≤ 1/j . Let S1, S2, . . . be a family of sets of diameter not

exceeding δ such that Aj ⊆ ∪∞i=1Si . Without loss of generality, we may assume that
each Si intersects Aj in a point Pi . We conclude that

µ(Aj ) ≤
∞∑
i=1

µ(Si) ≤
∞∑
i=1

µ
[
B(pi, diam Si)

]

≤
∞∑
i=1

s �m (diam Si)
m ≤ 2m s

∞∑
i=1

ζ1(Si)
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holds, where ζ1(S) is the gauge function

ζ1(S) = �m 2−m (diam S)m .

Since the countable covering {Si} by sets with diameter not exceeding δwas otherwise
arbitrary, we conclude that

µ(Aj ) ≤ 2m · s · φδ(Aj ) .
Letting δ ↓ 0, we obtain (2.10). ��
Definition 2.2.3. If µ is a measure on the nonempty set X and A ⊆ X is any set,
define the measure µ A on X by setting

(µ A)(E) = µ(A ∩ E)
for eachE ⊆ X. It is easy to check thatµ A is, in fact, a measure, and it is also easy
to check that any set that is µ-measurable is also µ A-measurable. We call µ A
the restriction of µ to A.

Corollary 2.2.4. Fix 0 ≤ t < 2−m. If A ⊆ RN with Hm(A) < ∞ and if
�∗m(Hm A,p) < t holds for each p ∈ A, then Hm(A) = 0.

Proof. Argue by contradiction. Assume Hm(A) > 0 and apply Proposition 2.2.2 to
the measure µ = Hm A on the set A. ��
Remark 2.2.5. In fact the conclusion of Corollary 2.2.4 remains true even without
the hypothesis Hm(A) < ∞ as long as A is assumed to be a Suslin set. Obtaining
this generalization requires the next result, which we shall not prove here.

Theorem 2.2.6 ([Bes 52]). If A is a compact subset of RN with Hm(A) = ∞, then
there is a compact set B with B ⊆ A and 0 < Hm(B) <∞.

2.3 A One-Dimensional Example

Suppose g : R → R is nondecreasing. Let F be the family of all nonempty, bounded
open subintervals of R. Define the gauge

ζ ({t ∈ R : a < t < b}) = g(b)− b(a) (2.11)

whenever−∞ < a < b <∞. Now applying Carathéodory’s construction produces
a measure ψ that we will investigate.

Lemma 2.3.1. If g is continuous at a and b, then

ψ
{
t ∈ R : a < t < b} = g(b)− g(a) .
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Proof. First we observe that, using the gauge in (2.11), all the measures φδ , for
0 < δ < ∞, in Carathéodory’s construction are equal. This is because if g is
continuous at points t1 < t2 < · · · < tN+1 then

g(tN+1)− g(t1) = lim
ε→0+

n∑
j=1

[g(tj+1 + ε)− g(tj − ε)] ,

which allows us to replace any particular interval by shorter intervals. From the
equality of all the approximating measures φδ , we conclude that ψ({t ∈ R : a < t <
b}) ≤ g(b)− g(a).

To obtain the opposite inequality, notice that if G is any countable family of
open intervals covering the interval (a, b), and if ε > 0, then {t ∈ R : a + ε ≤
t ≤ b − ε} is covered by some finite subfamily of G. Call this subcovering
(u1, v1), (u2, v2), . . . , (uk, vk). Thus

k∑
j=1

[g(vj )− g(uj )] ≥ g(b − ε)− g(a + ε) ,

and that proves the result. ��
The measure ψ is the measure associated with Riemann–Stieltjes integration5

with respect to g. See [Rud 76, Chapter 6] or [Fed 69, 2.5.17] for more on the
Riemann–Stieltjes integral.

Example 2.3.2. In the special case that g(x) = x, the gauge ζ defined in (2.11) agrees
with the gauge ζ1 used to define Hausdorff measure (or spherical measure) on R, so
that ψ = H1 = S1. The lemma tells us that H1 and S1 assign the same measure to
any open interval as does L1. We conclude that, on R, L1 = H1 = S1. ��

2.4 Carathéodory’s Construction and Mappings

Carathéodory’s construction is complicated enough that it is often a challenge to
compute values of the resulting measure. For this reason, the next proposition is of
considerable utility.

First recall that a partition of a set A is a collection P of pairwise disjoint subsets
of A whose union equals A; that is,

P1 ∩ P2 = ∅ if P1, P2 ∈ P with P1 �= P2 ,

A =
⋃
P∈P
P .

5 Thomas Jan Stieltjes (1856–1894).
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Proposition 2.4.1. Letψ be the result of applying Carathéodory’s construction to the
family F using a gauge function ζ . Suppose that every element of F is a Borel set,
and suppose that the gauge function satisfies the sub-additivity condition

ζ(A) ≤
∑
B∈G
ζ(B) (2.12)

whenever G is a countable subfamily of F with A ⊆⋃B∈G B.
If A ⊆ RN is any set in F , then we have

ψ(A) = sup

{∑
B∈H
ζ(B) : H is an F-partition of A

}
.

Furthermore, if H1,H2, . . . are F-partitions of A, then

lim sup
j→∞

{diam B : B ∈ Hj } = 0 implies lim
j→∞

∑
B∈Hj

ζ(B) = ψ(A) .

Proof. Of course, ζ(S) ≤ ψ(S) holds for every set S ∈ F . Since any S ∈ F is
a Borel set and any Borel set is ψ-measurable, every S ∈ F is ψ-measurable. It
follows that ∑

B∈H
ζ(B) ≤

∑
B∈H
ψ(B) = ψ(A)

whenever H is an F-partition of A.
If the diameters of the members of the partitions Hj of A approach 0 as j →∞,

then we also have

ψ(A) ≤ lim inf
j→∞

∑
B∈Hj

ζ(B) ≤ lim inf
j→∞

∑
B∈Hj

ψ(B) . ��

Proposition 2.4.1 can be applied to the construction of Gm and Imt . One con-
cludes that

Imt = lim
s→t−

Ims for 1 ≤ t ≤ ∞ .
The theorem cannot be applied to Hm, Sm, T m, or Qmt . For instance, there is no hope
of ζ1 satisfying (2.12), since in general, diam (A ∪ B) is in no way bounded by the
two numbers diamA and diamB.

Now we introduce the notion of the multiplicity of a mapping.

Definition 2.4.2. Suppose that f : X → Y . We let N(f, y) denote the number of
elements of f−1({y}). More precisely, for y ∈ Y , we set

N(f, y) =
{

card{x ∈ X : f (x) = y} if {x ∈ X : f (x) = y} is finite,

∞ otherwise.

We call N(f, y) the multiplicity of f at y.
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Proposition 2.4.3. Let µ be a measure on RN , let f : RM → RN , and let F be the
family of Borel subsets of RM . Assume that f (A) is µ-measurable wheneverA ∈ F .
If we set

ζ(S) = µ[f (S)] for S ⊆ X ,
and if ψ is the result of Carathéodory’s construction on RM using the gauge ζ on the
family F , then

ψ(A) =
∫
N(f |A, y) dµ(y) for every A ∈ F .

Proof. Let H1,H2, . . . be Borel partitions of A such that each member of Hj is the
union of some subfamily of Hj+1 and

sup{diam S : S ∈ Hj } → 0 as j →∞ .
Then ∑

S∈Hj
χ
f (S)
(y) ↑ N(f |A, y) as j ↑ ∞

for each y ∈ Y . Thus the last proposition and the Lebesgue monotone convergence
theorem imply that

ψ(A) = lim
j→∞

∑
S∈Hj

µ[f (S)] = lim
j→∞

∫ ∑
S∈Hj

χf (S) dµ =
∫
N(F |A, y) dµ(y) . ��

Definition 2.4.4. LetX and Y be metric spaces with metrics distX and distY , respec-
tively. A function f : X→ Y is said to be Lipschitz6 of order 1, or simply Lipschitz,
if there existsM <∞ such that

distY [f (x1), f (x2)] ≤ M distX[x, y] (2.13)

holds, for all x1, x2 ∈ X. The least choice of M that makes (2.13) true is called the
Lipschitz constant for f and is denoted by Lip f .

Corollary 2.4.5. If f is a Lipschitz mapping of RM into RN , if 0 ≤ m < ∞, and if
A ⊆ RM is Borel, then

(Lip f )m ·Hm(A) ≥
∫
N(f |A, y) dHm(y) .

Proof. We apply Proposition 2.4.3 with µ replaced by Hm, so we have ζ(S) =
Hm[f (S)]. It is elementary that

Hm[f (S)] ≤ (Lip f )m ·Hm(S) for S ⊆ RM ,

and the result follows. ��
6 Rudolf Otto Sigismund Lipschitz (1832–1903).
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Now an interesting geometric upshot of this discussion is the following:

Corollary 2.4.6. If C ⊆ RM is connected then

H1(C) ≥ diam C .

Proof. We may of course assume that H1(C) <∞. Choose a Borel set B ⊇ C such
that H1(B) = H1(C).

For a, b ∈ C, we define F : RM → R by setting F(x) = dist(a, x) for x ∈ RM .
Then, by the previous corollary and our discussion of Hausdorff measure in one
dimension,

H1(C) = H1(B) ≥
∫
N(F |B, y) dH1(y) ≥ H1[F(C)] ≥ dist(a, b)

just because 0 = F(a) and F(b) belong to the interval F(C). That proves the
result. ��

In the proof of Corollary 2.4.5 we used the inequality (Lip f )m · Hm(A) ≥
Hm[f (A)], a fact that follows directly from the definition of Hausdorff measure.
We now note this fact as a separate proposition.

Proposition 2.4.7. If f is a Lipschitz mapping of RM into RN , if 0 ≤ m < ∞, and
if A ⊆ RM is any set, then

(Lip f )m ·Hm(A) ≥ Hm[f (A)] .

2.5 The Concept of Hausdorff Dimension

The concept of Hausdorff dimension relies on the following conclusions of Proposi-
tion 2.1.2:

(1) If Hm(A) <∞ then Hk(A) = 0 for any m < k <∞.
(2) If Hm(A) = +∞ then Hk(A) = +∞ for any 0 ≤ k < m.

Definition 2.5.1. The Hausdorff dimension of an infinite set A ⊆ RN is

dimHA = sup{s : Hs(A) > 0} = sup{s : Hs(A) = ∞}
= inf {t : Ht (A) <∞} = inf {t : Ht (A) = 0} .

It is clear that the Hausdorff dimension of a set A ⊆ RN is that unique extended
real number α with the property that

s < α implies Hs(A) = ∞ ,
t > α implies Ht (A) = 0 .
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Fig. 2.3. The Sierpiński gasket.

When α = dimHA, we cannot know anything for sure about Hα(A). That is to say,
the value could be 0 or positive finite or infinity. If, for a given A, we can find an s
such that 0 < Hs(A) < ∞, then it must be that s = dimHA. While the Hausdorff
dimension of the set A can be an integer, in general this is not the case. Figure 2.3
illustrates a classic example [due to Wacław Sierpiński (1882–1969)] of a set with
Hausdorff dimension log 3/ log 2.

Clearly the notion of Hausdorff dimension has the properties of monotonicity and
stability with respect to countable unions:

dimHA ≤ dimH B for A ⊆ B ⊆ RN ;

dimH

⎛⎝ ∞⋃
j=1

Aj

⎞⎠ = sup
j

dimHAj for Aj ⊆ RN, j = 1, 2, . . . .

It is not difficult to show that dimH RN = N and that the dimension of a line
segment is 1. More generally, the dimension of any compact C1 curve is 1. For one
can use the implicit function theorem to locally flatten the curve, and then the result
follows from that for a segment. The dimension of any discrete set is 0.

Sometimes sets have surprising Hausdorff dimensions. Probably the first such
surprise was exhibited in [Osg 03] when William Fogg Osgood (1864–1943) pub-
lished his example of a Jordan arc7 γ in R2 that has positive area, hence dimH γ = 2
(see [PS 92] for a generalization to a Jordan arc γ in RN with dimH γ = N ).

7 Marie Ennemond Camille Jordan (1838–1922).
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Fig. 2.4. Brownian motion.

A recent result of note is that of Mitsuhiro Shishikura [Shi 98] showing that the
boundary of the Mandelbrot set8 has Hausdorff dimension 2.

We construct the m-dimensional Hausdorff measure by summing mth powers of
the diameters of the covering sets. But, in some contexts, it is convenient to apply
another function to the diameters. For example, in the study of Brownian motion9

(see Figure 2.4) it is useful to consider the gauges

ζ(S) = [diam S]2 · log log[diam S]−1 in dimension ≥ 3

and

ζ(S) = [diam S]2 · log[diam S]−1 · log log[diam S]−1 in dimension 2 .

It can be shown that the trajectories of Brownian motion have positive and σ -finite
measure with respect to the measures that are created from Carathéodory’s construc-
tion with these gauges ζ .

A planar Brownian path almost surely intersects itself. In the 1980s, Mandelbrot
conjectured that the boundary of the set enclosed by the return of a Brownian path
is almost surely of Hausdorff dimension 4/3. Recent work of Lawler, Schramm, and
Werner in [LSW 01] and [LSW 02] has confirmed the Mandelbrot conjecture.

2.6 Some Cantor Set Examples

In this section, we construct examples of sets of various Hausdorff dimensions. Much
of our discussion follows [Mat 95]. Certainly additional examples can be found in
Sections 2.10.28, 2.10.29, 3.3.19, and 3.3.20 of [Fed 69].

8 Earlier numerical work by John H. Ewing and Glenn Edward Schober (1938–1991) in
[ES 92] had suggested that the boundary of the Mandelbrot set has positive 2-dimensional
Lebesgue measure.

9 Robert Brown (1773–1858).
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2.6.1 Basic Examples

Fix a parameter 0 < λ < 1/2. Set I0 = [0, 1] and let I1,1 and I1,2 be
the intervals [0, λ] and [1 − λ, 1] respectively. Inductively, if the 2k−1 intervals
Ik−1,1, Ik−1,2, . . . , Ik−1,2k−1 , each having length λk−1, have been constructed, then
we define Ik,1, . . . , Ik,2k by deleting an interval of length (1− 2λ) · diam (Ik−1,j ) =
(1− 2λ) · λk−1 from the middle of each Ik−1,j . All of the 2k intervals thus obtained

at this kth step have length λk , so H1
[⋃2k
j=1 Ik,j

]
= (2λ)k .

We may pass to a limit of this construction in the usual “direct limit’’ or “limsup’’
manner: We set

C(λ) =
∞⋂
k=0

2k⋃
j=1

Ik,j .

See Figure 2.5. Then it is easy to see that C(λ) is a compact, nonempty, perfect set
and therefore is uncountable. It has no interior and it has Lebesgue measure zero.
Every C(λ), 0 < λ < 1/2, is a Cantor set,10 and any two are homeomorphic. The
most frequently encountered rendition of the sets C(λ) is the case λ = 1/3, which is
the Cantor middle-thirds set.

I0,1

I1,1 I1,2

I2,1 I2,2 I2,3 I2,4

I3,1 I3,8

Fig. 2.5. A Cantor set.

It is convenient now to study the Hausdorff measures and dimensions of these
Cantor sets. The nature of Carathéodory’s construction shows immediately that it is
easier to find upper bounds than lower bounds for Hausdorff measure. This is because
any particular covering gives an upper bound, but a lower bound requires an estimate
over all coverings. Our calculations will bear out this assertion.

We let Hmδ denote the preliminary measure φδ of (2.1) constructed using the gauge
ζ1 of (2.4); that is,

10 Georg Ferdinand Ludwig Philipp Cantor (1845–1918).
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Hmδ (A) = inf

{∑
S∈G
�m 2−m(diam S)m :

G ⊆ {S : diam S ≤ δ}, card(G) ≤ ℵ0, and A ⊆
⋃
S∈G
S

}
.

To begin, for each k = 1, 2, . . . , we have C(λ) ⊆⋃j Ik,j , hence

Hm
λk
[C(λ)] ≤

2k∑
j=1

diam (Ik,j )
m = 2kλkm = (2λm)k .

To make this upper bound truly useful, we would like it to remain uniformly bounded
as k→+∞. Of course, the least value ofm for which this occurs is provided by the
equation 2λm = 1, i.e.,

m = log 2

log(1/λ)
.

For this choice of m we have

Hm[C(λ)] = lim
k→+∞Hm

λk
[C(λ)] ≤ 1 .

Hence dimH C(λ) ≤ m.
Our next calculation will show that Hm[C(λ)] ≥ 1/4. Hence we will be able to

conclude that

dimH C(λ) = log 2

log(1/λ)
. (2.14)

To prove this new estimate, we need only show that∑
j

diam (Ij )
m ≥ 1

4
(2.15)

whenever the Ij are open intervals covering C(λ). The set C(λ) is compact; hence
finitely many of the Ij ’s cover C(λ). Hence we may as well assume from the outset
that C(λ) is covered by I1, . . . , In.

SinceC(λ) certainly has no interior, we can suppose (making the Ij slightly larger
if necessary) that the endpoints of each Ij lie outside C(λ). Then we may select a
number δ > 0 such that the Euclidean distance from the set of all endpoints of the Ij
to C(λ) is at least δ. We select k > 0 so large that δ > λk = diam (Ik,i). Thus each
interval Ik,i is contained in some Ij .

Next we claim that, for any open interval I and any fixed index �, we have the
inequality ∑

I�,i⊆I
diam (I�,i)

m ≤ 4 · diam (I )m . (2.16)

This claim will give (2.15), since



72 2 Carathéodory’s Construction and Lower-Dimensional Measures

4
∑
j

diam (Ij )
m ≥

∑
j

∑
Ik,�⊆Ij

diam (Ik,i)
m ≥

2k∑
i=1

diam (Ik,i)
m = 1 .

It remains then to prove (2.16).
So suppose that there are some intervals I�,i that lie inside I and let n be the least

integer for which I contains some In,i . Then n ≤ �. Let In,j1 , In,j2 , . . . , In,jp be
all the nth-generation intervals that have nontrivial intersection with I . Then p ≤ 4,
since otherwise, I would contain some In−1,i . Thus

4 · diam (I )m ≥
p∑
s=1

diam (In,js )
m

=
p∑
s=1

∑
I�,i⊆In,js

diam (I�,i)
m

≥
∑
I�,i⊆I

diam (I�,i)
m .

That completes the proof. ��
It is actually possible, with some refined efforts, to show that∑

diam (Ij )
m ≥ 1 ,

which gives the sharper fact that Hm[C(λ)] = 1.
It is worth noting the intuitive fact that when λ increases, the size of the deleted

holes decreases and therefore the sets C(λ) become larger. Corresponding to this
intuitive observation, (2.14) shows that dimH C(λ) increases as λ increases. Also
observe that when λ increases from 0 to 1/2, then dimH C(λ) takes all the values
between 0 and 1.

2.6.2 Some Generalized Cantor Sets

In the preceding construction of Cantor sets we always kept constant the ratio of the
lengths of intervals in two successive stages of the construction. We are not bound
to do so, and we can thus introduce the following variant of the construction.

Let T = {λi} be a sequence of numbers in the interval (0, 1/2). We construct a
set C(T ) as in the last subsection, but we now take the intervals Ik,j to have length
λk ·diam (Ik−1,i ). Then, for each k, we obtain 2k intervals of length sk = λ1 ·λ2 · · · λk .

Let h : [0,∞)→ [0,∞) be a continuous, increasing function satisfying h(sk) =
2−k . Then, by the argument of the preceding subsection, the measure ψ resulting
from Carathéodory’s construction using the gauge ζ(S) = h(diam S) satisfies

1

4
≤ ψ[C(T )] ≤ 1 .
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We can also run this argument in the converse direction. Beginning with any
continuous, increasing function h : [0,∞, ) → [0,∞) satisfying h(0) = 0 and
h(2r) < 2h(r) for 0 < r < ∞, we inductively select λ1, λ2, . . . such that h(sk) =
h(λ1 · λ2 · · · λk) = 2−k holds. For any such h there is then a compact set Ch ⊆ R1

such that 0 < ψh(Ch) <∞, where ψh is the measure resulting from Carathéodory’s
construction using the gauge ζ(S) = h(diam S).

Now fix 0 < m ≤ 1. Letting h(0) = 0 and h(r) = rm log(1/r) for r small, we
observe that the condition h(2r) < 2h(r) is satisfied for r small and thus we can find
a compact set Ch with ψh(Ch) positive and finite. By comparing rm log(1/r) to rm

for r small, we conclude that Hm(Ch) = 0, while by comparing rm log(1/r) to rs ,
0 ≤ s < r , for r small, we conclude that dimH Ch = m. On the other hand, choosing
h(r) = rm/ log(1/r) instead (for r small), we see that the condition h(2r) < 2h(r)
is again satisfied for r small and we see that Ch has Hausdorff dimension m and is
not σ -finite with respect to the measure Hm. In particular, the extreme cases s = 0
and s = 1 give, respectively, a set of dimension 1 with zero Lebesgue measure and
an uncountable set of dimension zero.

2.6.3 Cantor Sets in Higher Dimensions

Of course, Cantor sets can be constructed in dimensions 2 and higher, following the
paradigm of the last section. The idea is illustrated in Figure 2.6.

Fig. 2.6. A higher-dimensional Cantor set.

To illustrate the utility of these Cantor sets in constructing examples for Hausdorff
dimension, we now describe one result.
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Suppose that for k = 1, 2, . . . we have compact sets Ei1,i2,...,ik with ij =
1, . . . , nj . assume that

Ei1,...,ik,ik+1 ⊆ Ei1,...,ik , (2.17)

dk = max
i1,...,ik

diam (Ei1,...,ik )→ 0 as k→∞ , (2.18)

nk+1∑
j=1

diam (Ei1,...,ik,j )
m = diam (Ei1,...,ik )

m , (2.19)

∑
B∩Ei1,...,ik �=∅

diam (Ei1,...,ik )
m ≤ c · diam (B)m

for any ball B with diam (B) ≥ dk , (2.20)

where 0 < c <∞ is a constant. Define the set

E =
∞⋂
k=1

⋃
i1,...,ik

Ei1,...,ik . (2.21)

It is immediate from (2.19) that Hm(E) is finite. To see that Hm(E) is also positive,
suppose that E is covered by a family of sets of diameter less than δ. We can replace
each set in the family by an open ball of slightly more than twice the set’s diameter
while still covering E . Thus we may suppose that E is covered by a family of open
balls. Since E is compact, we may suppose the family of open balls is finite. So
we have E ⊆ ⋃Aα=1 Uα , where each Uα is an open ball. Since, as a function of k,⋃
i1,...,ik

Ei1,...,ik is a decreasing family of compact sets, there is a k0 such that

⋃
i1,...,ik0

Ei1,...,ik0
⊆
A⋃
α=1

Uα .

Now, using (2.20), we estimate

A∑
α=1

diam Uα ≥ c−1
A∑
α=1

∑
Uα∩Ei1,...,ik0 �=∅

diam (Ei1,...,ik0 )
m

≥ c−1
∑
i1,...,ik0

diam (Ei1,...,ik0 )
m = c−1

n1∑
i1=1

diam (Ei1)
m .

Thus Hm(E) is greater thanC ·∑n1
i1=1 diam (Ei1)

m, whereC depends only on c andm.

Example 2.6.1. Let E be the unit ball B(0, 1) ⊆ R2. Consider the subset Ẽ of E
consisting of balls of radius 1/4 centered at the four points



2.6 Some Cantor Set Examples 75

Fig. 2.7. The first two stages in the construction in Example 2.6.1.

v1 = (3/4, 0) , v2 = (1/4,
√

2/2) ,

v3 = (−3/4, 0) , v4 = (−1/4, −√2/2) .

We want to recursively define sets of closed balls by starting with Ẽ and at each stage
of the construction replacing each ball with a scaled copy of Ẽ (see Figure 2.7). More
precisely, for k = 1, 2, . . . and ij ∈ {1, 2, 3, 4}, for j = 1, 2, . . . , k, set

pi1,i2,...,ik =
k∑
j=1

(1/4)j−1 vij , Ei1,i2,...,ik = B
[
pi1,i2,...,ik , (1/4)

k
]
.

These sets satisfy (2.17)–(2.20) with dk = 2(1/4)k ,m = 1, and c = 4. With E defined
as in (2.21), we conclude that 0 < H1(E) <∞, so E is of Hausdorff dimension 1.

The set E that we have constructed projects orthogonally onto the full interval
[−1, 1] on the x-axis. An interesting property of this set is that there are two mutually
orthogonal lines (specifically, with slopes 1/

√
2 and−√2) onto which E orthogonally

projects to a set of Hausdorff dimension 1/2. ��
There is an extensive literature of self-similar sets and their Hausdorff measures

and dimensions. We refer the reader to [Mat 95] and [Rog 98] for further particulars
on this topic.

References for additional interesting and instructive sets can be found in Sections
2.10.6 and 3.3.21 of [Fed 69].
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Invariant Measures and the Construction of
Haar Measure

The N -dimensional Lebesgue measure LN , the most commonly used measure on
RN , has the property that LN(A) = LN(b+A) for any set A and translation by any
element b ∈ RN . In fact this translation invariance essentially characterizes Lebesgue
measure on RN . However, consider instead the space R+ ≡ {x ∈ R : x > 0}with the
group operation being multiplication (instead of addition). Now what is the invariant
measure?

In fact, the reader may verify that the measure dx/x is invariant under the group
action. Indeed, if A is a measurable set and b ∈ R+, then∫

R+
χ
A
(x · b) dx

x
=
∫

R+
χ
A
(x)
dx

x
.

More generally, one may ask, “Is it possible to find an invariant measure on any
topological group?’’ By a topological group we mean a topological space that also
comes equipped with a binary operation that induces a group structure on the under-
lying set. We require that the group operations (product and inverse) be continuous
in the given topology. Examples of topological groups are

(1) (RN,+),N -dimensional Euclidean space under the operation of vector addition,
(2) (T, · ), the circle group consisting of the complex numbers with modulus 1 under

the operation of complex multiplication,
(3) (O(N), · ), the orthogonal group consisting of the orthogonal transformations of

RN under the operation of composition or, equivalently, consisting of theN ×N
orthogonal matrices under the operation of matrix multiplication,

(4) (SO(N), · ), the special orthogonal group consisting of the orientation-preserving
orthogonal transformations of RN under the operation of composition or, equiv-
alently, consisting of the N × N orthogonal matrices with determinant 1 under
the operation of matrix multiplication.

While an invariant measure, called Haar measure,1 exists on any locally compact
group, we shall concentrate our efforts in the present chapter on compact groups.

1 Alfréd Haar (1885–1933).
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One advantage of compact groups is that the left-invariant Haar measure and the
right-invariant Haar measure are identical. For our purposes, the study of compact
groups will suffice.

3.1 The Fundamental Theorem

The basic theorem about the existence and uniqueness of Haar measure is as follows.
We first enunciate a result about invariant integrals. Of course, an integral can be
thought of as a linear functional on the continuous functions. Then we use a simple
limiting argument to extend this functional from continuous functions to characteristic
functions (see the corollary). Figure 3.1 illustrates the process of using translates of
the graph of a function to approximate the characteristic function of a set.

Fig. 3.1. Constructing Haar measure.

Theorem 3.1.1. Let G be a compact topological group. There is a unique invariant
integral λ on G such that λ(1) = 1.

Remark 3.1.2. Specifically, the theorem requires that λ be a monotone (or positive)
Daniell integral,2 that is, a linear functional on the continuous functions such that
for continuous f , g, and fn, n = 1, 2, . . . , f ≤ g implies λ(f ) ≤ λ(g) and fn ↑ f
implies λ(fn) ↑ λ(f ) (see [Fed 69, 2.5] or [Roy 88, Chapter 16]). The invariance of
λmeans that if ϕ is a continuous function onG, if g ∈ G, and if ϕg(x) ≡ ϕ(gx), then

λ(ϕ) = λ(ϕg) .
Corollary 3.1.3. LetG be a compact topological group. There is a unique invariant
Radon measure µ on G such that µ(G) = 1. The invariance of µ means that for all
sets A ⊆ G and g ∈ G,

µ(A) = µ{ga : a ∈ A} = µ{ag−1 : a ∈ A} .
Proof of the Theorem. Let C(G) denote the continuous functions on G, and let
C(G)+ denote the nonnegative continuous functions. If h ∈ G then let Ah de-
note the operator of left multiplication by h. If u ∈ C(G)+ and 0 �= v ∈ C(G)+,
then letW(u, v) be the set of all maps

2 Percy John Daniell (1889–1946).
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ξ : G→ {t ∈ R : 0 ≤ t <∞}
for which

{g ∈ G : ξ(g) > 0} is finite

and
u(x) ≤

∑
g∈G
ξ(g) · (v ◦ Ag)(x) =

∑
g∈G
ξ(g) · v(gx) .

Now define the Haar ratio

(u : v) ≡ inf

{∑
G

ξ

∣∣∣∣ ξ ∈ W(u, v)
}

(here we have altered our set-builder notation to avoid using the colon for two distinct
purposes in the same line). ClearlyW(u, v) �= ∅ and

(u : v) ≥ [sup
x∈G
u(x)]/[sup

x∈G
v(x)] .

Also we have

(u ◦ Ah : v) = (u : v) for h ∈ G ;
(cu : v) = c(u : v) for 0 < c <∞;

(u1 + u2 : v) ≤ (u1 : v)+ (u2 : v) ;
u1 ≤ u2 implies (u1 : v) ≤ (u2 : v) .

If u, v,w ∈ C(G)+ are all nonzero, then

(u : w) ≤ (u : v) · (v : w)
just because ξ ∈ W(u, v) and η ∈ W(v,w) imply

u ≤
∑
g∈G
ξ(g) ·

∑
h∈G
η(h) · (w ◦ Ah ◦ Ag) =

∑
k∈G
(w ◦ Ak) ,

with ζ(k) =∑hg=k ξ(g) · η(h) and
∑
G ζ =

∑
G ξ ·

∑
G η. As a result,

1

(w : u) ≤
(u : v)
(w : v) ≤ (u : w) . (3.1)

Now fix a 0 �= w ∈ C(G)+ and consider the Cartesian product P of the compact
intervals {

t ∈ R
∣∣∣ 0 ≤ t ≤ (u : w)

}
corresponding to all u ∈ C(G)+ (again the set-builder notation has been modified to
avoid confusion). Whenever 0 �= v ∈ C(G)+, we define pv ∈ P by
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pv(u) = (u : v)
(w : v) for u ∈ C(G)+ ,

as we may by the right-hand inequality in (3.1). Observe that the left-hand inequality
in (3.1) tells us that if u �= 0, then

0 <
1

(w : u) ≤ pv(u) .

We let B be the family of sets of the form

{(x, y) : xy−1 ∈ V }
for V a neighborhood of e, the identity in the group G. (Then B is the basis for a
uniformity on G—see [Kel 55] for the concept of uniformity.) With each β ∈ B we
associate the closed set

S(β) = {pv : (spt v)× (spt v) ⊆ β} .
If β1, β2, β3 ∈ B and β1 ∩ β2 ⊇ β3 then S(β1) ∩ S(β2) ⊇ S(β3) �= ∅. Thus,

since P is compact (by Tychonoff’s theorem), there is a point

λ ∈
⋂
β∈B
S(β) .

This function λ turns out to be a nonzero invariant integral on C(G)+. That is to say,
it is a bounded linear functional on C(G)+, and it extends naturally to C(G). The
properties that we desire for λ follow immediately from the properties of the approx-
imating functions pv . The only nontrivial part of the verification is proving that

λ(u1 + u2) ≥ λ(u1)+ λ(u2) whenever u1, u2 ∈ C(G)+ . (3.2)

To prove (3.2), we choose f ∈ C(G)+ satisfying

spt u1 ∪ spt u2 ⊆ {x ∈ G : f (x) > 0} .
For any ε > 0, we define s, r1, r2 ∈ C(G)+ so that

s = u1 + u2 + εf , rj s = uj , and spt rj = spt uj for j ∈ {1, 2} .
Now we use the uniform continuity of r1, r2 to obtain β ∈ B such that

|rj (x)− fj (y)| ≤ ε whenever (x, y) ∈ β, j ∈ {1, 2} .
For any v ∈ S(β), a ∈ spt v, ξ ∈ W(s, v), we define

ξj (G) =
[
fj (g

−1a)+ ε
]
ξ(g) whenever g ∈ G and j ∈ {1, 2} .

We infer that
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uj (x) = rj (x) · s(x) ≤
∑
g∈G
rj (x) · ξ(g) · v(gx) ≤

∑
g∈G
ξj (g) · v(gx)

just because v(gx) �= 0 implies that (gx, a) ∈ β and (x, g−1a) ∈ β. Thus ξj ∈
W(uj , v) and

(u1 : v)+ (u2 : v) ≤
∑
G

ξ1 +
∑
G

ξ2 ≤ (1+ 2ε)
∑
G

ξ

since r1 + r2 ≤ 1.
It follows that

pv(u1)+ pv(u2) ≤ (1+ 2ε)pv(s) ≤ (1+ 2ε)
[
pv(u1 + u2)+ εpv(f )

]
whenever v ∈ S(β). Since λ ∈ S(β), we may now conclude that

λ(u1)+ λ(u2) ≤ (1+ 2ε)
[
λ(u1 + u2)+ ελ(f )

]
. ��

Proof of Corollary 3.1.3. If E ⊆ G then let us say that a sequence of continuous
functions fj is adapted to E if

(a) 0 ≤ f1 ≤ f2 ≤ · · · ,
(b) 1 ≤ lim

j→∞ fj (x) whenever x ∈ E .

We define a set function φ by

φ(E) = inf

{
lim
j→∞ λ(fj ) : {fj } is adapted to E

}
. (3.3)

Of course, λ is monotone, in the sense that f ≤ g implies λ(f ) ≤ λ(g). So the limit
in (3.3) will always exist.

Claim 1. The function φ is a measure on G.
To verify this assertion we must show that if E ⊆ ⋃∞

j=1 Bj then µ(E) ≤∑
j µ(Bj ). This follows because if {f j� } is adapted to Bj then the sequence of

functions

gm =
m∑
j=1

f
j
m

is adapted to E. Moreover,

λ(gm) =
m∑
j=1

λ(f
j
m) ≤

∞∑
j=1

lim
�→∞ λ(f

j
� ) .

Claim 2. Suppose that g ∈ C(G)+, E is a set, g(x) ≤ 1 for x ∈ E, and g(x) = 0
for x �∈ E. Then λ(g) ≤ φ(E).

To see this, let {fj } be adapted to E. Then certainly
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hm ≡ inf {fm, g} ↑ g as m ↑ ∞ .
Thus

λ(g) = lim
m→∞ λ(hm) ≤ lim

m→∞ λ(fm) .

Claim 3. Every f ∈ C(G)+ is φ-measurable.
To prove this claim, let T ⊆ X and −∞ < a < b <∞. We shall show that

φ(T ) ≥ φ(T ∩ {x : f (x) ≤ a})+ φ(T ∩ {x : f (x) ≥ b}) .
The assertion is trivial if a ≤ 0. Thus take a ≥ 0 and assume that {gj } is adapted to
T . Define

h = 1

b − a ·
[

inf {f, b} − inf {f, a}
]

and
km = inf {gm, h} .

Since

(a) 0 ≤ km+1 − km ≤ gm+1 − gm,
(b) h(x) = 1 whenever f (x) ≥ b,
(c) h(x) = 0 whenever f (x) ≤ a,
we see that the sequence {kj } is adapted to the set

B ≡ T ∩ {x : f (x) ≥ b}
and the sequence {gj − kj } is adapted to the set

A = T ∩ {x : f (x) ≤ a} .
In conclusion,

lim
m→∞ λ(gm) = lim

m→∞[λ(km)+ λ(gm − km)] ≥ φ(B)+ φ(A) .
Claim 4. If f ∈ C(G)+ then λ(f ) = ∫ f dφ.

For this assertion, let ft = inf {f, t} whenever t ≥ 0.
Now if k > 0 is a positive integer and ε > 0, then

(a) 0 ≤ fkε(x)− f(k−1)ε(x) ≤ ε for x ∈ G;
(b) fkε(x)− f(k−1)ε(x) = ε whenever f (x) ≥ kε;
(c) fkε(x)− f(k−1)ε(x) = 0 whenever f (x) ≤ (k − 1)ε.

As a result,

λ
(
fkε − f(k−1)ε

) ≥ ε φ{x : f (x) ≥ kε}
≥
∫
(f(k+1)ε − fkε) dφ

≥ ε φ{x : f (x) ≥ (k + 1)ε}
≥ λ(f(k+2)ε − f(k+1)ε) .
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Summing on k from 1 to m, we see that

λ(fmε) ≥
∫
(f(m+1)ε − fε) dφ ≥ λ(f(m+2)ε − f2ε) .

Certainly fmε ↑ f asm ↑ ∞ and λ(f ) ≥ ∫ (f −fε) dφ ≥ λ(f −f2ε). Also fε ↓ 0.
It follows that λ(f ) = ∫ f dφ.

Now we use linearity to extend our assertion to all of C(G). Let f be any
continuous function on G. Write f = f+ − f−, where f+ ≥ 0 and f− ≥ 0. Then

λ(f ) = λ(f+)− λ(f−) =
∫
f+ dφ −

∫
f− dφ =

∫
f dφ .

Finally, if U is any open subset of G, then let f1 ≤ f2 ≤ · · · be continuous
functions such that fj (x) converges to the characteristic function χ

U
of U . Then it

follows that µ is translation invariant on U . This assertion may then be extended to
Borel sets in an obvious way. Finally, one deduces the invariance ofµ for measurable
sets. This establishes the corollary. ��

If G is a compact topological group and also happens to be a metric space (such
as the orthogonal group—see below), then we say that the metric d is invariant if

d(gh, gk) = d(hg, kg) = d(h, k)
for any g, h, k in the group. It follows, for such a metric, that g[B(h, r)] = B(gh, r)
for any (open) metric ball. Since the Haar measure is invariant, we conclude that
the Haar measure of all balls with the same radii are the same. In fact this property
characterizes Haar measure, as we shall now see.

Definition 3.1.4. A Borel regular measure µ on a metric space X is called uniformly
distributed if the measures of all nontrivial balls are positive and, in addition,

µ(B(x, r)) = µ(B(y, r)) for all x, y ∈ X, 0 < r <∞ .
Proposition 3.1.5. Let µ and ν be uniformly distributed Borel regular measures on
a separable metric space X. Then there is a positive constant c such that µ = c · ν.
Proof. Define

g(r) = µ(B(x, r)) and h(r) = ν(B(x, r)) ,
where our hypothesis guarantees that these definitions are unambiguous (i.e., do not
depend on x ∈ X). Suppose that U ⊆ X is any nonempty, open, bounded subset of
X. Then

lim
r↓0

ν(U ∩ B(x, r))

h(r)

clearly exists and equals 1 for any x ∈ U . Now we have
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µ(U) =
∫
U

lim
r↓0

ν(U ∩ B(x, r))

h(r)
dµ(x)

(Fatou)≤ lim inf
r↓0

[
1

h(r)

∫
U

ν(U ∩ B(x, r)) dµ(x)

]
(Fubini)= lim inf

r↓0

[
1

h(r)

∫
U

µ(B(y, r)) dν(y)

]

=
[

lim inf
r↓0

g(r)

h(r)

]
ν(U) .

A symmetric argument shows that

ν(U) ≤
[

lim inf
r↓0

h(r)

g(r)

]
µ(U) .

It follows immediately that

c ≡ lim
r↓0

g(r)

h(r)

exists. Furthermore, µ(U) = c · ν(U) for any bounded, open set U ⊆ X. Now the
full equality follows by Borel regularity. ��

It is a matter of some interest to determine the Haar measure on some specific
groups and symmetric spaces. We have already noted that Haar measure on RN is
Lebesgue measure (or any constant multiple thereof). Since this group is noncompact,
we must forgo the stipulation that the total mass of the measure be 1.

In this book we are particularly interested in groups that bear on the geometry of
Euclidean space. We have already noted the Haar measure on the multiplicative reals,
which corresponds to the dilation group. And the preceding paragraph treats the Haar
measure of the group of translations. The next section treats the other fundamental
group acting on space, which is the group of rotations.

3.2 Haar Measure for the Orthogonal Group and the
Grassmannian

Let SN−1 be the standard unit sphere in RN ,

SN−1 =
⎧⎨⎩x ∈ RN : |x| =

N∑
j=1

x2
j = 1

⎫⎬⎭ .
Of course, SN−1 bounds B(0, 1), which is the open unit ball in RN . Then SN−1

is an (N − 1)-dimensional manifold, and is naturally equipped with the Hausdorff
measure HN−1.
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An equivalent method for defining an invariant measure on SN−1 is as follows:
If A ⊆ SN−1 we define

Ã = {ta : 0 ≤ t ≤ 1, a ∈ A} .
Then set

σN−1(A) = HN−1(SN−1) · LN(Ã)
LN [B(0, 1)] .

It may be verified—by first checking on spherical caps in SN−1 and then using Vitali’s
theorem and outer regularity of the measure—that HN−1 andσN−1 are equal measures
onSN−1. Of course, we may normalize either measure to have total mass 1 by dividing
out by the surface area of the sphere, and we will assume this normalization in what
follows. That is, we redefine σN−1 by setting

σN−1(A) = LN(Ã)
LN [B(0, 1)] .

The orthogonal group O(N) consists of those linear transformations L with the
property that

L−1 = Lt . (3.4)

This is the standard, if not the most enlightening, definition. Because of the identity

Lx · Ly = x · (LtLy) , (3.5)

one can easily see that L is orthogonal if and only if

Lx · Ly = x · y
for all x, y ∈ RN .

A useful interpretation of (3.5) is thatLwill take any orthonormal basis for RN to
another orthonormal basis. Conversely, ifu1, . . . , uN andv1, . . . , vN are orthonormal
bases for RN and if we set L(uj ) = vj for every j and extend by linearity, then the
result is an orthogonal transformation of RN .

Recall that the special orthogonal group SO(N) consists of those orthogonal
transformations having determinant 1. These will be just the rotations.

In R2 the condition of orthogonality has a particularly simple formulation: if
u1, u2 is an orthonormal basis for R2 then any orthogonal transformation will either
preserve the orientation (i.e., the order) of the pair, or it will not. In the first instance
the transformation is a rotation. In the second it is a reflection in some line through
the origin. In RN we may say analogously that a linear transformation is orthogonal
if and only if it is (i) a rotation, (ii) a reflection in some hyperplane through the origin,
or (iii) a composition of these.

We know that the orthogonal group is compact. Indeed, the row entries of the
matrix representation of an element of O(N)will just be an orthonormal basis of RN ;
so the set is closed and bounded. It is convenient to describe Haar measure θN on the
orthogonal group O(N) by letting the measure be induced by the action of the group
on the sphere.
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Proposition 3.2.1. Fix a point s ∈ SN−1. Let A ⊆ O(N). Then it holds that

θN(A) = σN−1({gs : g ∈ A}) .
Proof. Define f : O(N) → SN−1 by f (g) = gs. We define the pushforward
measure [f∗θN ] on SN−1 by

[f∗θn](B) = θN(f−1(B)) for B ⊆ SN−1 .

We observe that, with f−1(B) = A,

[f∗θN ](B) = θN(A) = θN({g ∈ O(N) : gs ∈ B} .
It is our job, then, to show that [f∗θN ] = σN−1. Since both these measures have
total mass 1 on SN−1, it suffices by Proposition 3.1.5 to show that f∗θN is uniformly
distributed.

Now let a, b ∈ SN−1. There is a (not necessarily unique) element g̃ ∈ O(N) such
that g̃a = b. In order to discuss the concept of “uniformly distributed’’ on SN−1,
we need a metric; we simply take that metric induced on the sphere by the standard
metric on Euclidean space.3 Let B(x, r) denote the closed metric ball with center
x ∈ SN−1 and radius r . Then it is clear that g(B(a, r)) = B(b, r) for any r > 0. But
then the invariance of θN (since it is Haar measure) gives

[f∗θN ](B(b, r)) = θN({g ∈ O(N) : |gs − b| ≤ r})
= θN({g ∈ O(N) : |gs − g̃a| ≤ r})
= θN({g ∈ O(N) : |̃g−1gs − a| ≤ r}
= θN({h ∈ O(N) : |hs − a| ≤ r} = [f∗θN ](B(a, r)) .

Thus [f∗θN ] is uniformly distributed and we are done. ��
Now fix 0 < M < N . The Grassmannian4 G(N,M) is the collection of all

M-dimensional linear subspaces of RN . In fact it is possible to equipG(N,M) with
a manifold structure, and we shall say more about this point later. For the moment,
we wish to consider a natural measure on G(N,M).

In case M = 1 the task is fairly simple. When N = 2, each line is uniquely
determined by the angle it subtends with the positive x-axis. Thus we may measure
subsets ofG(N,M)by measuring the cognate set in the interval [0, π)using Lebesgue
measure. Similarly, a line in RN ,N ≥ 2, is determined by its two points of intersection

3 It is worth noting that O(N) is also a metric space: If g, h ∈ O(N) then we define d(g, h)
as usual by

d(g, h) = ‖g − h‖ = sup
x∈SN−1

|g(x)− h(x)| .

4 Hermann Grassmann (1809–1877).
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with the unit sphere SN−1. So we may measure a set in G(N,M) by measuring the
cognate set in the sphere. When N > M > 1 then things are more complicated.

To develop a general framework for defining a measure on G(N,M), we make
use of Euclidean orthogonal projections. Let 0 < M < N and let E ∈ G(N,M).
Define

PE : RN → RN

to be the Euclidean orthogonal projection ontoE. IfE,F ∈ G(N,M) then we define
a metric

d(E, F ) = ‖PE − PF ‖ ;
here, as usual, ‖ ‖ denotes the standard operator norm. This metric makesG(N,M)
compact. To see that this compactness claim holds, we argue as follows: Any set
of M orthonormal vectors determines an element of G(N,M). Thus we have a
(many-to-one) map from a closed subset of

SN−1 × SN−1 × · · · × SN−1︸ ︷︷ ︸
M factors

to G(N,M), and the metric makes the map continuous.
We see immediately that the action of O(N) onG(N,M) is distance-preserving.

Namely, the action of an orthogonal transformation on space will evidently preserve
the relative positions of twoM-planes. Alternatively, such a transformation preserves
inner products, so it will preserve the set of vectors to which each ofE,F ∈ G(N,M)
is orthogonal and hence will preserve d(E, F ). More specifically, if g ∈ O(N), then

d(gE, gF) = d(E, F ) .
We further verify that O(N) acts transitively on G(N,M). This means that if

E,F ∈ G(N,M), then there is an element g ∈ O(N) such that gE = F . To see
this, let u1, . . . , uM be an orthonormal basis forE and v1, . . . , vM be an orthonormal
basis for F . Complete the first basis to an orthonormal basis u1, . . . , uN for RN and
likewise complete the second basis to an orthonormal basis v1, . . . , vN for RN . Then
the map uj ↔ vj , j = 1, . . . , N , extends by linearity to an element of O(N), and it
takes E to F .

Now fix an element H ∈ G(N,M). Define the map

fH : O(N)→ G(N,M)
g �→ gH .

Now we define a measure on G(N,M) by

γN,M = [fH ]∗θN .
More explicitly, if A ⊆ G(N,M) then

γN,M(A) = θN {g ∈ G(N,M) : gH ∈ A} .
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Now, since θN is an invariant measure on O(N), we may immediately deduce that
the measure γN,M is invariant on G(N,M) under the action of O(N). This means
that, for g ∈ O(N) and A ⊆ G(N,M),

γN,M(gA) = γN,M(A) .
Since O(N) acts transitively onG(N,M), and in a distance-preserving manner, it is
immediate that each O(N)-invariant Radon measure on G(N,M) is uniformly dis-
tributed. As a result, by Proposition 3.1.5, the measure is unique up to multiplication
by a constant. One important consequence of this discussion is that the measure γN,M
is independent of the choice of H .

We may also note that, for any A ⊆ G(N,M),
γN,M(A) = γN,N−M({E⊥ : E ∈ A} . (3.6)

Here E⊥ is the usual Euclidean orthogonal complement of E in RN . One may check
this assertion by showing that the right-hand side of (3.6) is O(N)-invariant (just
because [gE]⊥ = g(E⊥) for g ∈ O(N), E ∈ G(N,M)).

Again, the uniqueness of uniformly distributed measures allows us to relate γN,M
to the surface measure σN−1 on the sphere. To wit, for A ⊆ G(N, 1),

γN,1(A) = σN−1

(⋃
E∈A
E ∩ SN−1

)

and

γN,N−1(A) = σN−1

(⋃
E∈A
E⊥ ∩ SN−1

)
.

We leave the details of these identities to the interested reader.

Similarly we can construct the invariant measure θ∗N,M on O∗(N,M), the col-

lection of orthogonal projections from RN onto RM . Fix p ∈ O∗(N,M) and define
fp : O → O∗(N,M) by fp(g) = p ◦ g. Then we define θ∗N,M = [fp]∗θN .

3.2.1 Remarks on the Manifold Structure of G(N, M)

Fix 0 < M < N <∞ and consider G(N,M). We will now sketch two methods for
giving G(N,M) a manifold structure.

Method 1. Let E be an M-dimensional subspace of RN . Then there is a natural
bijection � between Hom (E,E⊥) and a subset UE ⊆ G(N,M). Specifically, �
sends a linear map L from E to E⊥ to its graph �L ⊆ E ⊕ E⊥. An element of the
graph is of course an ordered pair (x,L(x)), with x ∈ RM and L(x) ∈ RN−M . The
graph is thus a linear subspace of RN of dimension M; it is therefore an element of
G(N,M).

We use the inverse mappings�−1 : UE → Hom (E,E⊥) as the coordinate charts
for our manifold structure. ��
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Method 2. Let E be an M-dimensional subspace of RN , and let PE : RN → RN

be orthogonal projection onto E. If T = TE is the N × N matrix representation of
PE then T is symmetric (since a projection must be self-adjoint), has rank M , and
is idempotent (i.e., T 2 = T ). Conversely, if T̃ is any symmetric N × N matrix that
has rank M and is idempotent then there is an M-dimensional subspace Ẽ ⊆ RN

for which T̃ is the matrix representation of the orthogonal projection onto Ẽ. The
reference [Hal 51] contains an incisive discussion of these ideas. Because of these
considerations, we may identify G(N,M) with the set of symmetric, idempotent,
N ×N matrices of rankM .

Now we take T to have the form(
A B

C D

)
=
(
AM×M BM×(N−M)
C(N−M)×M D(N−M)×(N−M)

)
, (3.7)

where we takeA to be anM×M matrix and thus the sizes ofB,C,D are as indicated.
If A is nonsingular, then we can compute(

I 0
−C I

)(
A−1 0

0 I

)(
A B

C D

)
=
(
I A−1B

0 D − CA−1B

)
,

so we see that T has rankM if and only ifD = CA−1B. If we further assume that T
is symmetric of rankM , thenA is nonsingular and symmetric,C = Bt, and so it must
be thatD = BtA−1B. It follows that T is idempotent if and only if A2+BBt = A.

From the last paragraph, we see that G(N,M) can be identified with the set of
N ×N matrices of the form (3.7) satisfying

(1) A is nonsingular and symmetric;
(2) C = Bt;
(3) D = BtA−1B;
(4) A2 + BBt = A.

We observe that (1) is equivalent to (M2 −M)/2 scalar conditions, (2) is equivalent
toM(N −M) scalar conditions, (3) is equivalent to (N −M)2 scalar conditions, and
(4) is equivalent to (M2 +M)/2 scalar conditions. It then follows from the implicit
function theorem that G(N,M) is a manifold of dimensionM(N −M).
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Covering Theorems and the Differentiation of
Integrals

A number of fundamental problems in geometric analysis—ranging from decompo-
sitions of measures to density of sets to approximate continuity of functions—depend
on the theory of differentiation of integrals. These results, in turn, depend on a vari-
ety of so-called covering theorems for families of balls (and other geometric objects).
Thus we come upon the remarkable, and profound, fact that deep analytic facts reduce
to rather elementary (but often difficult) facts about Euclidean geometry.

The technique of covering lemmas has become an entire area of mathematical
analysis (see, for example, [DGu 75] and [Ste 93]). It is intimately connected with
problems of differentiation of integrals, with certain maximal operators (such as the
Hardy–Littlewood maximal operator), with the boundedness of multiplier operators
in harmonic analysis, and (concomitantly) with questions of summation of Fourier
series.

The purpose of the present chapter is to introduce some of these ideas. We do
not strive for any sort of comprehensive treatment, but rather to touch upon the key
concepts and to introduce some of the most pervasive techniques and applications.

4.1 Wiener’s Covering Lemma and Its Variants

Let S ⊆ RN be a set. A covering of S will be a collection U = {Uα}α∈A of sets such
that

⋃
α∈A Uα ⊇ S. If all the sets of U are open, then we call U an open covering

of S. A subcovering of the covering U is a covering V = {Vβ}β∈B such that each Vβ
is one of the Uα . A refinement of the covering U is a collection W = {Wγ }γ∈G of
sets such that eachWγ is a subset of some Uα . If U is a covering of a set S, then the
valence of U is the least positive integerM such that no point of S lies in more than
M of the sets in U .

It is elementary to see that any open covering of a set S ⊆ RN has a countable
subcover. We also know, thanks to Lebesgue, that any open covering of S has a
refinement with valence at most N + 1 (see [HW 41, Theorem V 1]).

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
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Wiener’s covering lemma1 concerns a covering of a set by a collection of balls.
When applying the lemma, one must be willing to replace any particular ball by a
ball with the same center but triple its radius—see Figure 4.1.

Fig. 4.1. Wiener’s covering lemma.

Lemma 4.1.1 (Wiener). Let K ⊆ RN be a compact set with a covering U =
{Bα}α∈A,Bα = B(cα, rα), by open balls. Then there is a subcollection Bα1 , Bα2 ,

. . . , Bαm, consisting of pairwise disjoint balls, such that

m⋃
j=1

B(cαj , 3rαj ) ⊇ K.

Proof. Since K is compact, we may immediately assume that there are only finitely
many Bα. Let Bα1 be the ball in this collection that has the greatest radius (this ball
may not be unique). LetBα2 be the ball that is disjoint fromBα1 and has greatest radius
among those balls that are disjoint from Bα1 (again, this ball may not be unique). At
the j th step choose the (not necessarily unique) ball disjoint fromBα1 , . . . , Bαj−1 that
has greatest radius among those balls that are disjoint fromBα1 , . . . , Bαj−1 .Continue.
The process ends in finitely many steps. We claim that the Bαj chosen in this fashion
do the job.

For each j , we will write Bαj = B(cαj , rαj ). It is enough to show that Bα ⊆⋃
j B(cαj , 3rαj ) for every α. Fix an α. If α = αj for some j then we are done.

If α �∈ {αj }, let j0 be the first index j with Bαj ∩ Bα �= ∅ (there must be one;
otherwise, the process would not have stopped). Then rαj0 ≥ rα; otherwise, we
selected Bαj0 incorrectly. But then (by the triangle inequality) B(cαj0 , 3rαj0 ) ⊇
B(cα, rα) as desired. ��

For completeness, and because it is such an integral part of the classical theory
of measures, we now present the venerable covering theorem of Vitali.2

1 Norbert Wiener (1894–1964).
2 Giuseppe Vitali (1875–1932).
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Proposition 4.1.2. Let A ⊆ RN and let B be a family of open balls. Suppose that
each point of A is contained in arbitrarily small balls belonging to B. Then there
exist pairwise disjoint balls Bj ∈ B such that

LN
⎛⎝A \⋃

j

Bj

⎞⎠ = 0 .

Furthermore, for any ε > 0, we may choose the balls Bj in such a way that∑
j

LN(Bj ) ≤ LN(A)+ ε .

Proof. The last statement will follow from the substance of the proof. For the first
statement, let us begin by making the additional assumption (which we shall remove
at the end) that the set A ≡ A0 is bounded. We may select a bounded open set U0
that containsA0 and that is such that LN(U0) exceeds LN(A0) by as small a quantity
as we may wish. In fact, we demand that

LN(U0) ≤ (1+ 5−N)LN(A0) .

Now focus attention on those balls that lie inU0. By Lemma 4.1.1, we may select
a finite, pairwise disjoint collection Bj = B(xj , rj ) ∈ B, j = 1, . . . , k1, such that
Bj ⊆ U0 for each j and

A0 ⊆
k1⋃
j=1

B(xj , 3rj ) .

Now we may calculate that

3−NLN(A0) ≤ 3−N
∑
j

LN [B(xj , 3rj )] = 3−N
∑
j

3NLN(Bj ) =
∑
j

LN(Bj ) .

Let

A1 = A0 \
k1⋃
j=1

Bj .

Then

LN(A1) ≤ LN
⎛⎝U0 \

k1⋃
j=1

Bj

⎞⎠

= LN
⎛⎝U0 \

k1⋃
j=1

Bj

⎞⎠ = LN(U0)−
k1∑
j=1

LN(Bj )

≤ (1+ 5−N − 3−N)LN(A0) ≡ u · LN(A0) ,
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where u ≡ 1 + 5−N − 3−N < 1. Now A1 is a bounded subset of RN \⋃k1j=1 Bj .
Hence we may find a bounded, open set U1 ⊆ U0 such that

A1 ⊆ U1 ⊆ RN \
k1⋃
j=1

Bj

and
LN(U1) ≤ (1+ 5−N)LN(A1) .

Just as in the first iteration of this construction, we may now find disjoint balls
Bj , j = k1 + 1, . . . , k2, for which Bj ⊆ U1 and

LN(A2) ≤ u · LN(A1) ≤ u2 LN(A0) ;
here

A2 = A1 \
k2⋃

j=k1+1

Bj = A0 \
k2⋃
j=1

Bj .

By our construction, all the balls B1, . . . , Bk2 are disjoint.
Afterm repetitions of this procedure, we find that we have balls B1, B2, . . . , Bkm

such that

LN
⎛⎝A0 \

km⋃
j=1

Bj

⎞⎠ ≤ um LN(A0) .

Since u < 1, the result follows.
For the general case, we simply decompose RN into closed unit cubes Q� with

disjoint interiors and sides parallel to the axes and apply the result just proved to each
A0 ∩Q�. ��
The Maximal Function
Aclassical construct, due to Hardy and Littlewood,3 is the so-called maximal function.
It is used to control other operators, and also to study questions of differentiation of
integrals.

Definition 4.1.3. If f is a locally integrable function on RN , we let

Mf (x) = sup
R>0

1

LN [B(x, R)]
∫

B(x,R)
|f (t)| dLN(t) .

The operator M is called the Hardy–Littlewood maximal operator. The func-
tions to whichM is applied may be real-valued or complex-valued. A few facts are
immediately obvious aboutM:

(1) M is not linear, but it is sublinear in the sense that

M[f + g](x) ≤ Mf (x)+Mg(x) .
3 Godfrey Harold Hardy (1877–1947), John Edensor Littlewood (1885–1977).
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(2) Mf is always nonnegative, and it could be identically equal to infinity.
(3) Mf makes sense for any locally integrable f .

We will in fact prove that Mf is finite LN -almost everywhere, for any f ∈ Lp.
In order to do so, it is convenient to formulate a weak notion of boundedness for
operators. To begin, we say that a measurable function f is weak typep, 1 ≤ p <∞,
if there exists a C = C(f ) with 0 < C <∞ such that, for any λ > 0,

LN({x ∈ RN : |f (x)| > λ}) ≤ C
λp
.

An operator T on Lp taking values in the collection of measurable functions is said
to be of weak type (p, p) if there exists a C = C(T ) with 0 < C <∞ such that, for
any f ∈ Lp and for any λ > 0,

LN({x ∈ RN : |Tf (x)| > λ}) ≤ C ·
(‖f ‖Lp
λ

)p
.

A function is defined to be weak type ∞ when it is L∞. For 1 ≤ p <∞, an Lp

function is certainly weak type p, but the converse is not true. In fact, we note that
the function f (x) = |x|−1/p on R1 is weak type p, but not in Lp, for 1 ≤ p < ∞.
The Hilbert transform (see [Kra 99]) is an important operator that is not bounded on
L1 but is in fact weak type (1, 1).

Proposition 4.1.4. The Hardy–Littlewood maximal operatorM is weak type (1, 1).

Proof. Let λ > 0. Set Sλ = {x : |Mf (x)| > λ}. Because Mf is the supremum of
a set of continuous functions, Mf is lower semicontinuous, and consequently, Sλ is
open.

Since Sλ is open, we may let K ⊆ Sλ be a compact subset with 2 LN(K) ≥
LN(Sλ). For each x ∈ K, there is a ball Bx = B(x, rx) with

λ <
1

LN(Bx)

∫
Bx

|f (t)|dLN(t) .

Then {Bx}x∈K is an open cover ofK by balls. By Lemma 4.1.1, there is a subcollection
{Bxj }Mj=1 that is pairwise disjoint but such that the threefold dilates of these selected
balls still cover K . Then

LN(Sλ) ≤ 2 LN(K) ≤ 2 LN
⎛⎝ M⋃
j=1

B(xj , 3rj )

⎞⎠ ≤ 2
M∑
j=1

LN [B(xj , 3rj )]

≤
M∑
j=1

2 · 3N LN(Bxj )

≤
M∑
j=1

2 · 3N
λ

∫
Bxj

|f (t)|dLN(t)

≤ 2 · 3N
λ

‖f ‖L1 . ��
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One of the venerable applications of the Hardy–Littlewood operator is the
Lebesgue differentiation theorem:

Theorem 4.1.5. Let f be a locally Lebesgue integrable function on RN . Then, for
LN -almost every x ∈ RN , it holds that

lim
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t) = f (x) .

Proof. Multiplying f by a compactly supported C∞ function that is identically 1 on
a ball, we may as well suppose that f ∈ L1. We may also assume, by linearity, that
f is real-valued. We begin by proving that

lim
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

exists.
Let ε > 0. Select a function ϕ, continuous with compact support, and real-valued,

such that ‖f − ϕ‖L1 < ε2. Then

LN
{
x ∈ RN :

∣∣∣∣lim sup
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

− lim inf
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

∣∣∣∣ > ε}

≤ LN
{
x ∈ RN : lim sup

R→0+

1

LN [B(x, R)]
∫

B(x,R)
|f (t)− ϕ(t)| dLN(t)

+
∣∣∣∣lim sup
R→0+

1

LN [B(x, R)]
∫

B(x,R)
ϕ(t) dLN(t)

− lim inf
R→0+

1

LN [B(x, R)]
∫

B(x,R)
ϕ(t) dLN(t)

∣∣∣∣
+ lim sup
R→0+

1

LN [B(x, R)]
∫

B(x,R)
|ϕ(t)− f (t)| dLN(t) > ε

}

≤ LN
{
x ∈ RN : lim sup

R→0+

1

LN [B(x, R)]
∫

B(x,R)
|f (t)− ϕ(t)| dLN(t) > ε

3

}

+ LN
{
x ∈ RN :

∣∣∣∣lim sup
R→0+

1

LN [B(x, R)]
∫

B(x,R)
ϕ(t) dLN(t)

− lim inf
R→0+

1

LN [B(x, R)]
∫

B(x,R)
ϕ(t) dLN(t)

∣∣∣∣ > ε3
}

+ LN
{
x ∈ RN : lim sup

R→0+

1

LN [B(x, R)]
∫

B(x,R)
|ϕ(t)− f (t)| dLN(t) > ε

3

}
≡ I + II + III .
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Now II = 0 because the set being measured is empty (since ϕ is continuous).
Each of I and III may be estimated by

LN
{
x ∈ RN : M(f − ϕ)(x) > ε/3

}
,

and this, by Proposition 4.1.4, is majorized by

C · ε
2

ε/3
= c · ε .

In sum, we have proved the estimate

LN
{
x ∈ RN :

∣∣∣∣ lim sup
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

− lim inf
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

∣∣∣∣ > ε} ≤ c · ε .
It follows immediately that

lim
R→0+

1

LN [B(x, R)]
∫

B(x,R)
f (t) dLN(t)

exists for LN -almost every x ∈ RN .
The proof that the limit actually equals f (x) at LN -almost every point follows

exactly the same lines. We shall omit the details. ��
Corollary 4.1.6. IfA ⊆ RN is Lebesgue measurable, then for almost every x ∈ RN,
it holds that

χ
A
(x) = lim

r→0+
LN(A ∩ B(x, r))

LN(B(x, r)) .

Proof. Set f = χ
A
. Then∫

B(x,r)
f (t) dLN(t) = LN(A ∩ B(x, r)),

and the corollary follows from Theorem 4.1.5. ��
Definition 4.1.7. A function f : RN → R is said to be approximately continuous if,
for LN -almost every x0 ∈ RN and for each ε > 0, the set

{x : |f (x)− f (x0)| > ε}
has density 0 at x0, that is,

0 = lim
r→0+

LN({x : |f (x)− f (x0)| > ε} ∩ B(x0, r))

LN(B(x0, r))
.
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Corollary 4.1.8. If a function f : RN → R is Lebesgue measurable, then it is
approximately continuous.

Proof. Suppose that f is Lebesgue measurable. Let q1, q2, . . . be an enumeration
of the rational numbers. For each positive integer i, let Ei be the set of points
x /∈ {z : f (z) < qi} for which

0 < lim sup
r→0+

LN({z : f (z) < qi} ∩ B(x, r))

LN(B(x, r))

and let Ei be the set of points x /∈ {z : qi < f (z)} for which

0 < lim sup
r→0+

LN({z : qi < f (z)} ∩ B(x, r))

LN(B(x, r)) .

By Corollary 4.1.6 and the Lebesgue measurability of f, we know that

LN(Ei) = 0 and LN(Ei) = 0 .

Thus we see that

E ≡
∞⋃
i=1

(Ei ∪ Ei)

is also a set of Lebesgue measure zero.
Consider any point x0 /∈ E and any ε > 0. There exist rational numbers qi and

qj such that

f (x0)− ε < qi < f (x0) < qj < f (x0)+ ε.
We have {x : |f (x) − f (x0)| > ε} ⊆ {z : f (z) < qi} ∪ {z : qj < f (z)}. By the
definition of Ei and Ej we have

0 = lim
r→0+

LN({z : f (z) < qi} ∩ B(x0, r))

LN(B(x0, r))

and

0 = lim
r→0+

LN({z : qj < f (z)} ∩ B(x0, r))

LN(B(x0, r))
.

It follows that

0 = lim
r→0+

LN({x : |f (x)− f (x0)| > ε} ∩ B(x0, r))

LN(B(x0, r))
.

Since x0 /∈ E and ε > 0 were arbitrary, we conclude that f is approximately contin-
uous. ��
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4.2 The Besicovitch Covering Theorem

Preliminary Remarks
The Besicovitch covering theorem,4 which we shall treat in the present section, is
of particular interest to geometric analysis because its statement and proof do not
depend on a measure. This is a result about the geometry of balls in space.

The Besicovitch Covering Theorem

Theorem 4.2.1. LetN be a positive integer. There is a constantK = K(N) with the
following property. Let B = {Bj }Mj=1, whereM ∈ N∪{∞}, be any finite or countable

collection of balls in RN with the property that the interior of no ball contains the
center of any other. Then we may write

B = B1 ∪ · · · ∪ BK

so that each Bj , j = 1, . . . , K , is a collection of balls with pairwise disjoint closures.
Here by a ball we mean a set B satisfying B(x, r) ⊆ B ⊆ B(x, r), for some

x ∈ RN and some r > 0.

It is a matter of some interest to determine what the best possible K is for any
given dimension N . Significant progress on this problem has been made in [Sul 94].
See also [Loe 93]. Certainly our proof below will give little indication of the bestK .

We shall see that the heart of this theorem is the following lemma about balls.

Lemma 4.2.2. There is a constant K̃ = K̃(N), depending only on the dimension of
the space RN , with the following property: Let B0 = B(x0, r0) be a ball of fixed
positive radius. Let B1 = B(x1, r1), B2 = B(x2, r2), . . . , Bp = B(xp, rp) be balls
such that

(1) Each Bj has nonempty intersection with B0, j = 1, . . . , p;
(2) The radii rj satisfy rj ≥ r0 for all j = 1, . . . , p;
(3) The interior of no ballBj contains the center of any otherBk for j, k ∈ {0, . . . , p}

with j �= k.
Then p ≤ K̃ .

Here is what the lemma says in simple terms: Fix the ball B0. Then at most K̃
pairwise disjoint balls of (at least) the same size can touch B0. Note here that being
“pairwise disjoint’’ and “intersecting but not containing the center of the other ball’’
are essentially equivalent: if the second condition holds then shrinking each ball by
a factor of one-half makes the balls pairwise disjoint; if the balls are already pairwise
disjoint, have equal radii, and are close together, then doubling their size arranges for
the first condition to hold.

Our proof of Lemma 4.2.2 is based on the next two lemmas—which in essence
rely only on two-dimensional Euclidean geometry (trigonometry)—and on the fact

4 Abram Samoilovitch Besicovitch (1891–1970).
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that we can choose a set of unit vectors in RN such that every direction is within a
small angle of one of our chosen unit vectors (where the measure of an angle between
two vectors is defined to be in the interval [0, π ]).
Lemma 4.2.3. Suppose the ball B(q, r), with r ≥ 1, intersects the closed unit ball
and does not contain the origin in its interior, i.e., r ≤ |q|. If u is a unit vector making
an angle φ ≤ π/6 with q, then

√
3 u ∈ B(q, r).

Proof. Because B(q, r) intersects the closed unit ball and does not contain the origin
in its interior, we can write |q| = x + r with 0 ≤ x ≤ 1 ≤ r . By the law of cosines
we have

|q −√3 u|2 = |q|2 + 3− 2
√

3 |q| cosφ

≤ |q|2 + 3− 2
√

3 |q| cos π6

= (x + r)2 + 3− 3 (x + r) .
Thus it will suffice to show that

(x + r)2 + 3− 3 (x + r) ≤ r2

or, equivalently,
f (x, r) = x2 + 2xr + 3− 3x − 3r ≤ 0 .

Since for each fixed r , f (x, r) is quadratic in x with positive second derivative and
since we are concerned only with the range 0 ≤ x ≤ 1, it will suffice to consider only
the endpoints x = 0 and x = 1. But we have

f (0, r) = 3− 3r ≤ 0 and f (1, r) = 1+ 2r + 3− 3− 3r = 1− r ≤ 0 ,

as required. ��
Lemma 4.2.4. Suppose neither of the balls B(q1, r1)and B(q2, r2) contains the center
of the other ball in its interior. If the point p is in both balls, then the angle between
q1 − p and q2 − p is at least π/3.

Proof. To see this, we denote the angle in question by θ and use the law of cosines
to compute

|q1 − q2|2 = |q1 − p|2 + |q2 − p|2 − 2 |q1 − p| |q2 − p| cos θ .

So we have

cos θ ≤ |q1 − p|2 + |q2 − p|2 − |q1 − q2|2
2 |q1 − p| |q2 − p| .

Since neither ball contains the center of the other ball in its interior, we know that
|q1 − q2| is at least as large as the radius of either ball. So we have both |q1 − p| ≤
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r1 ≤ |q1 − q2| and |q2 − p| ≤ r2 ≤ |q1 − q2|. Suppose without loss of generality
that |q1 − p| ≤ |q2 − p|. Then we estimate

cos θ ≤ |q1 − p|2 + |q2 − p|2 − |q1 − q2|2
2 |q1 − p| |q2 − p|

≤ |q1 − p|2
2 |q1 − p| |q2 − p|

= 1

2
· |q1 − p|
|q2 − p| ≤

1

2
,

as required. ��
Proof of Lemma 4.2.2. Suppose for the moment (we confirm this construction later)
that we have chosen a set of unit vectors u1, u2, . . . , uκ(N) in RN with the property
that for any unit vector u ∈ RN , there is a j such that the angle between u and uj
is strictly less than π/6 (picture points sufficiently dense on the unit sphere—see the
discussion below). The number, κ(N), of vectors uj will be used below.

Consider balls B0, B1, . . . , Bp as in the statement of Lemma 4.2.2 and suppose
that p ≥ κ(N)2 + 1. Without loss of generality, we may assume that B0 = B(0, 1).
The direction to the center of each ball is within an angle strictly less than π/6 of one
of the unit vectors uj and so, by Lemma 4.2.3, must contain the point

√
3 uj . Since

there are at least κ(N)2+1 balls and only κ(N) possible uj ’s, there must be (at least)
one j∗ such that κ(N)+ 1 of the balls contain the point

√
3 uj∗ .

Now consider those κ(N)+ 1 balls. The direction from
√

3 uj∗ to each center is
within an angle strictly less than π/6 of one of the unit vectors uk . But since there
are κ(N) + 1 balls and only κ(N) possible uk’s, there must be two centers within
angle less than π/6 of the same direction and thus within an angle less than π/3 of
each other, contradicting Lemma 4.2.4. We conclude that p ≤ κ(N)2.

Finally, we show that there exists a set of unit vectors u1, u2, . . . , uκ(N) in RN

with the property that for any unit vector u ∈ RN , there is a j such that the angle
between u and uj is strictly less than π/6. Let

F = {B(uj , 1/4) : j = 1, 2, . . . , κ(N) }
be a maximal pairwise disjoint family of balls with centers in the unit sphere. All
of the balls B(uj , 1/4) are contained in B(0, 5/4), so, by comparing volumes, we
see that

κ(N) ≤ �N (5/4)
N

�N (1/4)N
= 5N .

[In Remark 4.2.5, we give an alternative construction for the uj that avoids any use
of volume in RN or (N − 1)-dimensional area in the unit sphere.]

To see that the unit vectors u1, u2, . . . , uκ(N) have the requisite property, let u be
an arbitrary unit vector. There must exist a j such that |u − uj | < 1/2; otherwise,
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we could add the ball B(u, 1/4) to the family F , contradicting the maximality of F .
Fix such a j and let θ denote the angle between uj and u. Using the law of cosines
we estimate

cos θ = |uj |2 + |u|2 − |uj − u|2
2 |uj | |u| = 1− 1

2 |uj − u|2

≥ 7/8 >
√

3/2 = cos π6 ,

so the angle θ is strictly less than π/6. ��
Remark 4.2.5. We now give another, more explicit, construction of a set of unit
vectors U ⊆ RN with the property that for any unit vector u ∈ RN , there exists
u∗ ∈ U such that the angle between u and u∗ is strictly less than π/6.

The vectors in U are formed by choosing θ1, θ2, . . . , θN−1 from the set{
0, π
m
, 2π
m
, . . . ,

(m−1)π
m
, π
}

(4.1)

and choosing a sign τ ∈ {−1, +1}. We then set

uθ1,...,θN−1,τ

=
(

cos θ1, cos θ2 sin θ1, . . . , cos θN−1
∏N−2
i=1 sin θi, τ ·∏N−1

i=1 sin θi
)
.

Given a unit vector u ∈ RN , there exist 0 ≤ φi ≤ π , i = 1, 2, . . . , N − 1, and
τ ′ ∈ {−1, +1} such that

u =
(

cosφ1, cosφ2 sin φ1, . . . , cosφN−1
∏N−2
i=1 sin φi, τ ′ ·∏N−1

i=1 sin φi
)
.

The sign τ ′ represents a hemisphere containing u.
The main fact needed to verify that u is within π/6 of some uθ1,...,θN−1,τ is that if

τ = τ ′, then

u·uθ1,...,θN−1,τ = cos(θ1−φ1)−
N−1∑
k=1

([
1−cos(θk−φk)

] k−1∏
�=1

sin θ� sin φ�

)
. (4.2)

Equation (4.2) is proved by induction on N .
One completes the construction by choosing a sufficiently large value for m

in (4.1). ��
H. Federer’s concept of a directionally limited metric space—see [Fed 69,

2.8.9]—abstracts and formalizes the geometry that goes into the proof of Lemma 4.2.2.
More precisely, it generalizes to abstract contexts the notion that a cone in a given
direction can contain only a certain number of points with distance η > 0 from the
vertex and distance η from each other. The interested reader is advised to study that
source.

Now we can present the proof of Besicovitch’s covering theorem.
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Proof of Theorem 4.2.1. First consider the case M < ∞ (recall that M was the
number of balls in B, the given collection of balls).

We have an iterative procedure for selecting balls.
Select B1

1 to be a ball of maximum radius (this ball may not be unique). Then

select B1
2 to be a ball of maximum radius such that B1

2 is disjoint from B1
1 (again, this

ball may not be unique). Continue until this selection procedure is no longer possible

(remember that there are only finitely many balls in total). Set B1 =
{
B1
j

}
.

Now work with the remaining balls. LetB2
1 be the ball with greatest radius. Then

select B2
2 to be the remaining ball with greatest radius such that B2

2 is disjoint from

B2
1 . Continue in this fashion until no further selection is possible. Set B2 =

{
B2
j

}
.

Working with the remaining balls, we now produce the family B3, and so forth (see
Figure 4.2). Clearly, since in total there are only finitely many balls, this procedure
must stop. We will have produced finitely many—say q—nonempty families of
balls, each family consisting of balls having pairwise disjoint closures: B1, . . . ,Bq .
It remains to say how large q can be.

Fig. 4.2. Besicovitch’s covering theorem.

Suppose that q > K̃(N) + 1, where K̃(N) is as in the lemma. Let Bq1 be the
first ball in the family Bq . The closure of that ball must have intersected the closure
of a ball in each of the preceding families (in case there are several such balls in
a family, we consider the ball chosen earliest); by our selection procedure, each of
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those balls must have been at least as large in radius as Bq1 . Thus Bq1 is a ball with
at least K̃(N) + 1 “neighbors’’ as in the lemma. But the lemma says that a ball can
have only K̃(N) such neighbors. That is a contradiction.

We conclude that q ≤ K̃(N)+ 1. That proves the theorem whenM is finite.
WhenM = ∞, recursive application of the above iterative procedure completes

the proof of the theorem. We argue as follows:
Suppose that for eachM = 1, 2, . . . , the iterative procedure above is carried out

for the set of balls
{
Bj
}M
j=1 resulting in the families of balls BM,i1 , 1 ≤ i1 ≤ K̃(N)+1.

There must be a particular i1 with 1 ≤ i1 ≤ K̃(N) + 1 such that the ball B1 is
assigned to BM,i1 for infinitely many values ofM . We assign B1 to a family that we
label Bi1 .

LetM1,1 be the smallest value ofM for whichB1 is assigned to BM,i1 . Proceeding
inductively, we assume that M1,1 < M1,2 < · · · < M1,� have been defined. Let
M1,�+1 be the smallest value of M that is greater than M1,� and is such that B1 is
assigned to BM,i1 . Thus we define the increasing sequenceM1,�, � = 1, 2, . . . , with
the property that B1 is assigned to BM,i1 when our procedure is carried out with
M = M1,�.

There must be a particular i2 with 1 ≤ i2 ≤ K̃(N) + 1 such that the ball B2 is
assigned to BM,i2 for infinitely many M ∈ {M1,1,M1,2, . . .}. If i2 = i1 holds, then
we assign B2 to the family Bi1 that already contains B1. In this case, we see that
the closures of B1 and B2 do not intersect because there is an M = M1,� for which
B1, B2 ∈ BM,i1 = BM,i2 (in fact, there are infinitely many such M’s). On the other
hand, if i2 �= i1, then we assign B2 to a new family that we label Bi2 .

Let M2,1 be the smallest M ∈ {M1,1,M1,2, . . .} for which B2 is assigned to
BM,i2 . Proceeding inductively, we assume that M2,1 < M2,2 < · · · < M2,� have
been defined. LetM2,�+1 be the smallestM ∈ {M1,1,M1,2, . . .} that is greater than
M2,� and is such thatB2 is assigned to BM,i2 . Thus we define the increasing sequence
M2,�, � = 1, 2, . . . , that is a subsequence of

{
M1,p

}∞
p=1 and has the property that B2

is assigned to BM,i2 when our procedure is carried out withM = M2,�.
Continuing in this way we assign each ball Bp to one of the families B1,B2,

. . . ,BK̃(N)+1. ��
Remark 4.2.6. Note that there do not exist uncountable families of balls none of
which contains the center of any of the other balls. That is because shrinking each ball
by a factor of one-half—while keeping the same centers—makes the balls pairwise
disjoint.

The next lemma show us one situation in which we can construct a covering of a
set by a family of open balls with the property that no ball contains the center of any
other ball.

Lemma 4.2.7. Let B be a family of open balls centered at points of a compact set A.
Suppose B is such that

(1) every point of A is the center of at least one ball in B,
(2) sup{r : B(x, r) ∈ B} <∞,
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(3) {B(xi, ri)}∞i=1 ⊆ B with xi → x and ri → r > 0 implies B(x, r) ∈ B.

Then there are finitely many balls B(xi, ri) ∈ B, i = 1, 2, . . . , n, such that xi /∈
B(xj , rj ) whenever i �= j and A ⊆⋃ni=1 B(xi, ri).

Proof. Let B(x1, r1) ∈ B be such that r1 is maximal. Inductively we define
B(xn+1, rn+1) to be such that xn+1 ∈ A \⋃ni=1 B(xi, ri) and rn+1 is maximal. If
A \⋃ni=1 B(xi, ri) = ∅, the construction terminates and we do not define xn+1.

Our construction ensures that we have xi /∈ B(xj , rj ) whenever i �= j . We claim
that the construction terminates after finitely many steps. To see this fact, we argue
by contradiction. Thus we suppose that B(xi, ri) has been defined for i = 1, 2, . . . .
Since the balls B(xi, ri/2) are disjoint and all lie in a bounded set, we see that ri ↓ 0,
as i →∞.

Because A is compact and ∅ �= A \ ⋃ni=1 B(xi, ri) holds for each n, we see
that there is x ∈ A \⋃∞

i=1 B(xi, ri). Let B(x, r) ∈ B. Since ri is a nonincreasing
sequence with limit 0, there must be an i such that ri+1 < r ≤ ri , but then we see
that B(xi+1, ri+1) was incorrectly chosen. ��

Sometimes the requirement that no ball can contain the center of any other ball is
too restrictive. In that case the condition we give next may be useful.

Definition 4.2.8. By a controlled family of balls we mean a family B of closed balls
with positive radii such that if B(a, r) ∈ B, B(b, s) ∈ B, and B(a, r) �= B(b, s), then

either |a − b| > r > 4s/5 or |a − b| > s > 4r/5.

The next lemma tells us that if we shrink the balls in a controlled family by a
factor of one-third, the balls become disjoint. Of course, that also implies that there
are no uncountable controlled families.

Lemma 4.2.9. If B(a, r) and B(b, s) are members of a controlled family, then
B(a, r/3) ∩ B(b, s/3) = ∅.

Proof. We may assume without loss of generality that

|a − b| > r > 4s/5 .

Suppose p ∈ B(a, r/3) ∩ B(b, s/3). Then we have

|a − b| ≤ |a − p| + |p − b| ≤ r/3+ s/3 ≤ r/3+ (5/4) · s/3 = 3r/4 ,

a contradiction. ��
The geometric lemma applicable to balls in a controlled family is given next.

Lemma 4.2.10. If B(a, r) and B(b, s) are members of a controlled family and if
additionally

4 ≤ r ≤ |a| ≤ r + 1 ,

4 ≤ s ≤ |b| ≤ s + 1 ,

then the angle between a/|a| and b/|b| is at least cos−1(7/8).
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Proof. Let θ denote the angle between a/|a| and b/|b|. Since the balls are members
of a controlled family, we may suppose without loss of generality that

|a − b| > r > 4s/5 .

Using the law of cosines, we see that

cos θ = |a|2 + |b|2 − |a − b|2
2 |a| |b| = |a|

2 |b| +
|b|

2 |a| −
|a − b|2
2 |a| |b|

≤ r + 1

2 s
+ s + 1

2 r
− r2

2 r s
= 1

2 s
+ s

2 r
+ 1

2 r
≤ 1

8
+ 5

8
+ 1

8
. ��

As before, we have a bound, depending only on the dimension, for how many
balls in a controlled family can intersect one particular ball.

Lemma 4.2.11. There is a constant K = K(N), depending only on the dimension
of our space RN , with the following property: Let B0 = B(x0, r0) be a ball of fixed
positive radius. Let B1 = B(x1, r1), B2 = B(x2, r2), . . . , Bp = B(xp, rp) be balls
such that

(1) Each Bj has nonempty intersection with B0, j = 1, . . . , p;
(2) The radii rj ≥ r0 for all j = 1, . . . , p;
(3) The balls

{
Bj
}p
j=0 are members of a controlled family.

Then p ≤ K .

Proof. Without loss of generality we may suppose that x0 = 0 and r0 = 1. Divide
the balls B1, B2, . . . , Bp into two collections:

B1 = {Bj : 4 ≤ rj ≤ |xj | ≤ rj + 1 }
and

B2 =
{
Bj
}p
j=0

∖
B1 .

By Lemma 4.2.10, the number of balls in B1 can be bounded by a number depending
only on N . So our task is to bound the number of balls in B2.

We claim that ⋃
B∈B2

B ⊆ B(0, 9) .

Observe that |xj | ≤ rj + 1 holds for every j because B0 ∩ Bj �= ∅. Thus

B2 = {Bj : rj < 4 or |xj | < rj } .
In case rj < 4 holds, we have |xj |+ rj ≤ 2rj + 1 < 9. Also, if |xj | < rj and j �= 0,
then, because the balls are members of a controlled family, we have |xj | > 1 > 4rj /5,
which yields |xj | + rj < 2rj < 5/2.

Since the balls in
{
B(xj , rj /3)

}p
j=0

are pairwise disjoint (by Lemma 4.2.9) and

since rj ≥ 1 holds for all the balls in B2, we see that B2 contains no more than
9N/(1/3)N = 33N balls. ��
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Theorem 4.2.12. Let N be a positive integer. There is a constant K = K(N) with
the following property. Given a setA ⊆ RN , a positive finite number R, and a family
B of closed balls of positive radius not exceeding R, if every point of A is the center
of at least one ball in B, then there exist B1,B2, . . . ,BK such that

A ⊆
K⋃
j=1

⋃
B∈Bj

B ,

and for each j , the balls in Bj are pairwise disjoint.

Proof. Enlarge A, if necessary, so that it contains all centers of balls in B. It will
certainly suffice to prove the result for this possibly larger set, which we will continue
to denote by A.

If we construct a controlled family B′ ⊆ B with

A ⊆
⋃
B∈B′
B , (4.3)

then we can obtain the desired conclusion by applying the argument used in the proof
of Theorem 4.2.1, but with the role of Lemma 4.2.2 filled by Lemma 4.2.11.

We proceed to construct such a controlled family. To this end, we consider the
class � of all controlled subfamilies B′ of B that also satisfy the condition that for
any B(y, s) ∈ B,

either |x − y| ≤ r holds for some B(x, r) ∈ B′,

or |x − y| > r > 4s/5 holds for every B(x, r) ∈ B′.

}
(4.4)

We note that ∅ ∈ �, and we partially order � using the relation ⊆. It is easy to see
that the union of any subclass of � that is linearly ordered by ⊆ is itself an element
of �. Therefore Zorn’s lemma5 tells us that � has a maximal element B′. It remains
to verify that B′ satisfies (4.3).

If B′ does not satisfy (4.3), then

Y = {y ∈ A : |y − x| > r holds for all B(x, r) ∈ B′} �= ∅ .
Select B(y∗, s∗) such that y∗ ∈ Y and

s∗ > (4/5) · sup{s : ∃y ∈ Y such that B(y, s) ∈ B} (4.5)

(this is where we use the fact that the radii of the balls are bounded by R < ∞).
We will now show that B′′ = B′ ∪ {B(y∗, s∗) } is controlled and satisfies the condi-
tion (4.4).

To see that B′′ is controlled, we need only consider B(x, r) ∈ B′ and B(y∗, s∗).
Since y∗ ∈ Y , (4.4) tells us that |x−y∗| > r > 4s∗/5, verifying that B′′ is controlled.

5 Max August Zorn (1906–1993).
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To check that B′′ satisfies (4.4), we consider an arbitrary B(y, s) ∈ B. If there
already exists a B(x, r) ∈ B′ for which |x − y| ≤ r holds, then (4.4) is satisfied. On
the other hand, if |x − y| > r holds for every B(x, r) ∈ B′, then y ∈ Y . We consider
B(y∗, s∗). If |y−y∗| ≤ s∗, then again (4.4) holds. Finally, we have the case in which
|y−y∗| > s∗ holds. But now we also have s∗ > 4s/5 by (4.5) and again (4.4) holds.

We have shown that B′′ ∈ � and we know that B′ is a proper subset of B′′. This
contradicts the maximality of B′, so we conclude that in fact (4.3) is satisfied. ��

Recall the notion of a Radon measure from Definition 1.2.11 in Section 1.2. Using
the Besicovitch covering theorem instead of Wiener’s covering lemma, we can prove
a result like Vitali’s (Proposition 4.1.2) for more general Radon measures:

Proposition 4.2.13. Let µ be a Radon measure on RN . Let A ⊆ RN and let B be a
family of closed balls, with positive radius, such that each point of A is the center of
arbitrarily small balls in B. Then there are disjoint balls Bj ∈ B such that

µ

(
A \

⋃
j

Bj

)
= 0 .

Proof. We shall follow the same proof strategy as for Proposition 4.1.2. We may as
well suppose that µ(A) > 0; otherwise, there is nothing to prove. We also suppose
(as we have done in the past) that A is bounded. Let K be as in Theorem 4.2.1.

Let U be a bounded open set with A ⊆ U and choose a compact set C such that
C ⊆ U and µ(A ∩C) ≥ (1/2) µ(A). We define B̃ to be the family of balls in B that
are centered in A ∩ C and contained in U .

By Theorem 4.2.1, we obtain subfamilies B̃1, B̃2, . . . , B̃K such that each B̃j is a
collection of balls that are pairwise disjoint. We have

A ∩ C ⊆
K⋃
j=1

⋃
B∈B̃j

B.

Now it is clear that

µ(A ∩ C) ≤
K∑
j=1

µ

⎛⎜⎝ ⋃
B∈B̃j
(A ∩ B)

⎞⎟⎠ .
Hence there is a particular index j0 such that

µ(A ∩ C) ≤ K · µ
⎛⎜⎝ ⋃
B∈B̃j0

(A ∩ B)
⎞⎟⎠ .

We have
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µ(A) ≤ 2µ(A ∩ C) ≤ 2K · µ
⎛⎜⎝ ⋃
B∈B̃j0

(A ∩ B)
⎞⎟⎠ .

We can choose a finite subfamily B̂ ⊆ B̃j0 such that

µ(A) ≤ 3K · µ
⎛⎝⋃
B∈B̂
(A ∩ B)

⎞⎠ .
So setting

A1 = A \
⋃
B∈B̂
B ,

we conclude that

µ(A1) ≤ µ(A) [1− 1/(3K)]
and thatA1 is contained in the bounded open setU1 = U \⋃B∈B̂ B. Now we simply
iterate the construction, just as in the proof of Proposition 4.1.2.

We may dispense with the hypothesis that A is bounded just as in the proof of
Proposition 4.1.2—making the additional observation that, since the Radon measure
µ is σ -finite, it can measure at most countably many hyperplanes parallel to the
axes with positive measure (so that we can avoid them when we chop up space into
cubes). ��

4.3 Decomposition and Differentiation of Measures

Next we turn to differentiation theorems for measures. These are useful in geometric
measure theory and also in the theory of singularities for partial differential equations.

Suppose that µ and λ are Radon measures on RN . We define the upper derivate
of µ with respect to λ at a point x ∈ RN to be

Dλ(µ, x) ≡ lim sup
r↓0

µ[B(x, r)]
λ[B(x, r)]

and the lower derivate of µ with respect to λ at a point x ∈ RN to be

Dλ(µ, x) ≡ lim inf
r↓0

µ[B(x, r)]
λ[B(x, r)] .

At a point x where the upper and lower derivates are equal, we define the derivative
of µ by λ to be

Dλ(µ, x) = Dλ(µ, x) = Dλ(µ, x) .
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Remark 4.3.1. It is convenient when calculating these derivates to declare 0/0 =
0 (this is analogous to other customs in measure theory). The derivates that we
have defined are Borel functions. To see this, first observe that x �→ µ[B(x, r)]
is continuous. This is in fact immediate from Lebesgue’s dominated convergence
theorem. Next notice that our definition of the three derivates does not change if we
restrict r to lie in the positive rationals. Since, for each fixed r , the function

x �−→ µ[B(x, r)]
λ[B(x, r)]

is continuous, and since the supremum and infimum of a countable family of Borel
functions is Borel, we are done.

Definition 4.3.2. Let µ and λ be measures on RN . We say that µ is absolutely
continuous with respect to λ if, for A ⊆ RN ,

λ(A) = 0 implies µ(A) = 0 .

It is common to denote this relation by µ$ λ.
Our next result will require the following lemma:

Lemma 4.3.3. Let µ and λ be Radon measures on RN . Let 0 < t <∞ and suppose
that A ⊆ RN .

(1) If Dλ(µ, x) ≤ t for all x ∈ A then µ(A) ≤ tλ(A).
(2) If Dλ(µ, x) ≥ t for all x ∈ A then µ(A) ≥ tλ(A).
Proof. If ε > 0 then the Radon property gives us an open setU such thatA ⊆ U and
λ(U) ≤ λ(A)+ ε. Then the Vitali theorem for Radon measures (Proposition 4.2.13)
gives disjoint closed balls Bj ⊆ U such that

µ(Bj ) ≤ (t + ε)λ(Bj ) (provided the balls are sufficiently small)

and

µ

⎛⎝A \⋃
j

Bj

⎞⎠ = 0 .

We conclude that

µ(A) ≤
∑
j

µ(Bj ) ≤ (t + ε)
∑
j

λ(Bj )

≤ (t + ε)λ(U) ≤ (t + ε)(λ(A)+ ε) .
Letting ε → 0 yields µ(A) ≤ t · λ(A). This is assertion (1). Assertion (2) may be
established in just the same way. ��
Theorem 4.3.4. Suppose that µ and λ are Radon measures on RN .
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(1) The derivative Dλ(µ, x) exists and is finite λ-almost everywhere.
(2) For any Borel set B ⊆ RN ,∫

B

Dλ(µ, x) dλ(x) ≤ µ(B) ,

with equality if µ << λ.
(3) The relationµ << λ holds if and only ifDλ(µ, x) <∞ forµ-almost all x ∈ RN .

Proof.
(1) Let 0 < r <∞ and 0 < s < t <∞. Define

As,t (r) = {x ∈ B(0, r) : Dλ(µ, x) ≤ s < t ≤ Dλ(µ, x)}
and

At(r) = {x ∈ B(0, r) : Dλ(µ, x) ≥ t} .
Now Lemma 4.3.3 implies that

t · λ(As,t (r)) ≤ µ(As,t (r)) ≤ s · λ(As,t (r)) <∞
and, for u > 0,

u · λ(Au(r)) ≤ µ(Au(r)) ≤ µ[B(0, r)] <∞ .
Since s < t , these inequalities imply that λ(As,t (r)) = 0 and λ(

⋂
u>0Au(r)) =

limu→∞ λ(Au(r)) = 0. But

RN \ {x ∈ RN : Dλ(µ, x) exists and is finite}

=
⋃
r∈N

⋃
0<s<t
s,t∈Q

As,t (r) ∪
⋃
r∈N

⋂
u>0

Au(r) . (4.6)

We see then that the set in (4.6) has λ-measure 0, and this proves assertion (1).

(2) For 1 < t <∞ and p = 0,±1,±2, . . . , we define

Bp = {x ∈ B : tp ≤ Dλ(µ, x) < tp+1} .
Then part (1) above and Lemma 4.3.3(2) yield that∫

B

Dλ(µ, x) dλ(x) =
∞∑
k=−∞

∫
Bk

Dλ(µ, x) dλ(x)

≤
∞∑
k=−∞

tk+1 λ(Bk)

≤ t ·
∞∑
k=−∞

µ(Bk)

≤ t · µ(B) .
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Letting t ↓ 1 yields then
∫
B
Dλ(µ, x) dλ(x) ≤ µ(B).

Suppose now that µ << λ. Then the sets of λ-measure 0 are of course also sets of
µ-measure zero. Part (1) tells us thatDλ(µ, x) = 1/Dµ(λ, x) > 0 forµ-almost every
x. We conclude that µ(B) =∑∞

k=−∞ µ(Bk), and an argument similar to the one just
given (using Lemma 4.3.3(2)) gives the inequality

∫
B
Dλ(µ, x) dλ(x) ≥ µ(B).

(3) By (1), we know that Dλ(µ, x) < ∞ at λ-almost every x; if µ << λ then this
also holds at µ-almost every x.

For the reverse direction in (3), assume that Dλ(µ, x) < ∞ for µ-almost all
x ∈ RN . Take A ⊆ RN with λ(A) = 0. For u = 1, 2, . . . , Lemma 4.3.3(2) gives

µ
({x ∈ A : Dλ(µ, x) ≤ u} ≤ u · λ(A) = 0 .

We conclude that µ(A) = 0. ��

Now we reach our first goal, which is a density theorem and a theorem on the
differentiation of integrals for Radon measures.

Theorem 4.3.5. Let λ be a Radon measure on RN .

(1) If A ⊆ RN is λ-measurable then the limit

lim
r↓0

λ(A ∩ B(x, r))

λ[B(x, r)]
exists and equals 1 for λ-almost every x ∈ A and equals 0 for λ-almost every
x ∈ RN \ A.

(2) If f : RN → R is locally λ-integrable, then

lim
r↓0

1

λ[B(x, r)]
∫

B(x,r)
f (x) dλ(x) = f (x)

for λ-almost every x ∈ RN .

Proof. Part (1) follows from part (2) by setting f = χ
A

. To prove (2), we may take
f ≥ 0. Define µ(A) = ∫

A
f (x) dλ(x). Then µ is a Radon measure and µ << λ.

Theorem 4.3.4(2) now yields that∫
E

Dλ(µ, x) dλ(x) = µ(E) =
∫
E

f dλ

for all Borel sets E. This clearly entails f (x) = Dλ(µ, x) for λ-almost all x ∈ RN .
That proves (2). ��

We say that two Radon measures µ and λ are mutually singular if there is a
set A ⊆ RN such that λ(A) = 0 = µ(RN \ A). Now we have a version of the
Radon–Nikodym theorem combined with the Lebesgue decomposition.
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Theorem 4.3.6. Suppose that λ and µ are finite Radon measures on RN . Then there
is a Borel function f and a Radon measure ν such that λ and ν are mutually singular
and

µ(E) =
∫
E

f dλ+ ν(E)

for any Borel set E ⊆ RN . Furthermore, µ << λ if and only if ν = 0.

Proof. Define
A = {x ∈ RN : Dλ(µ, x) <∞} .

Recalling that denotes the restriction of a measure, we set

µ1 = µ A and ν = µ (RN \ A) .
Then obviously µ = µ1+ ν, and λ and ν are mutually singular by Theorem 4.3.4(1).
Now Lemma 4.3.3(1) gives µ1 << λ; hence µ1 has the required representation by
Theorem 4.3.4(2) with f (x) = Dλ(µ, x). The last statement of the theorem is now
obvious. ��

We conclude this section with some results concerning densities of measures (see
Definition 2.2.1).

Theorem 4.3.7. Fix 0 < t . Ifµ is a Borel regular measure on RN andA ⊆ C ⊆ RN ,
then

t ≤ �∗M(µ C, x) , for all x ∈ A, implies t · SM(A) ≤ µ(C) .
Remark 4.3.8. Since spherical measure is always at least as large as Hausdorff mea-
sure, we also have the conclusion

t ≤ �∗M(µ C, x) , for all x ∈ A, implies t ·HM(A) ≤ µ(C) .
Proof. Without loss of generality, we may assume that µ(C) < ∞. It will also be
sufficient to prove that t < �∗M(µ C, x), for all x ∈ A, implies t ·SM(A) ≤ µ(C).

Fix 0 < δ. We will estimate the approximating measure SM6δ (A). This estimation
will require a special type of covering, which we construct next.

Set

B = {B(x, r) : x ∈ A, 0 < r ≤ δ, t ·�M · rM ≤ (µ C)B(x, r) } ,
B1 = {B(x, r) ∈ B : 2−1δ < r ≤ δ } ,

and let B′1 be a maximal pairwise disjoint subfamily of B1.
Assuming that B′1,B′2, . . . ,B′k have already been defined, set

Bj+1 =
{

B(x, r) ∈ B : 2−(j+1)δ < r ≤ 2−j δ, ∅ = B(x, r)
⋂ j⋃
i=1

⋃
B∈B′i
B
}
,
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and let B′j+1 be a maximal pairwise disjoint subfamily of Bj+1.
Note that the assumptionµ(C) <∞ ensures that each B′i is finite. Also note that,

by construction, any two closed balls in the family
⋃∞
i=1 B′i are disjoint, so we have

∞∑
i=1

∑
B∈B′i
(µ C)(B) = (µ C)

(⋃∞
i=1
⋃
B∈B′i B

)
≤ µ(C) <∞ . (4.7)

Claim. For each n,

A ⊆
(⋃n
i=1
⋃
B∈B′i B

) ⋃(⋃∞
i=n+1

⋃
B∈B′i B̂

)
(4.8)

holds, where, for each ball B = B(x, r), we set B̂ = B(x, 3r).
To verify the claim, considerx /∈⋃ni=1

⋃
B∈Bi B. Since

⋃n
i=1
⋃
B∈Bi B is closed,

there is B(x, r) ∈ B such that

∅ = B(x, r)
⋂⋃n

i=1
⋃
B∈B′i B .

Letting k be such that 2−k < r ≤ 2−(k−1), we see that if k > n and B(x, r) /∈ B′k ,
then

∅ �= B(x, r)
⋂⋃k

i=n+1
⋃
B∈B′i B .

Thus there is B(y, t) ∈ B′i , where n + 1 ≤ i ≤ k, such that ∅ �= B(x, r) ∩ B(y, t).
Since r ≤ 2−(k−1) and 2−k < t , we have x ∈ B(y, r + t) ⊆ B(y, 3t). The claim is
proved.

Let ε > 0 be arbitrary. By (4.7) (see also (4.8)), we choose n such that

∞∑
i=1

∑
B∈B′i
(µ C)(B) < ε .

Using the claim and letting radB denote the radius of the ball B, we estimate

SM6δ (A) ≤
⎛⎝ n∑
i=1

∑
B∈B′i
�M (radB)M

⎞⎠+
⎛⎝ ∞∑
i=n+1

∑
B∈B′i
�M (rad B̂)M

⎞⎠

=
⎛⎝ n∑
i=1

∑
B∈B′i
�M (radB)M

⎞⎠+ 3M

⎛⎝ ∞∑
i=n+1

∑
B∈B′i
�M (radB)M

⎞⎠

≤ t−1

⎛⎝ n∑
i=1

∑
B∈B′i
(µ C)B

⎞⎠+ 3M t−1

⎛⎝ ∞∑
i=n+1

∑
B∈B′i
(µ C)B

⎞⎠
≤ t−1 [µ(C)+ 3M ε ] .
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Since ε > 0 was arbitrary, we conclude that SM6δ (A) ≤ t−1 µ(C). The result follows,
since δ > 0 was also arbitrary. ��
Corollary 4.3.9. In RN , the measures SN , HN , T N , CN , GN , QNt , and INt (1 ≤ t ≤
∞) all agree with the N -dimensional Lebesgue measure LN .

Proof. Noting that βt (N,N) = 1, for 1 ≤ t ≤ ∞, and using Proposition 2.1.5, we
see that SN is the largest of the measures SN , HN , T N , CN , GN , QNt , and INt , while
IN1 is the smallest. Theorem 4.3.7 implies SN ≤ LN and (2.9) gives us IN1 ≥ LN ,
so the result follows. ��
Corollary 4.3.10. If µ is a Borel regular measure on RN , A ⊆ RN is µ-measurable,
and µ(A) <∞, then

�∗M(µ A, x) = 0

holds for SM -almost every x ∈ RN \ A.

Proof. Let j be a positive integer and set

Cj =
{
x ∈ (RN \ A) : j−1 ≤ �∗M(µ A, x)

}
.

Arguing by contradiction, suppose that SM(Cj ) is positive. Then, by the Borel
regularity of µ, we can find a closed set E ⊆ A such that

µ(A \ E) < j−1 · SM(Cj ) .
For x ∈ Cj , since E is closed and x /∈ E, we have

j−1 ≤ �∗M(µ A, x) = �∗M [µ (A \ E) , x]
= �∗M [ (µ A) (RN \ E) , x] .

So we can apply Theorem 4.3.7 (with the roles of µ, A, and B played by µ A,
RN \ E, and Cj , respectively), to conclude that

t · SM(Cj ) ≤ (µ A)(RN \ E) = µ(A \ E) ,
a contradiction.

Thus we have SM(Cj ) = 0 and the result follows. ��

4.4 The Riesz Representation Theorem

In this section, we prove a version of the Riesz representation theorem for linear
functionals. Anticipating that our main application of this theorem will be to currents
with finite mass, we have taken our linear functionals to be defined on the space of
real-valued, infinitely differentiable, compactly supported functions on RN . Stan-
dard versions of the theorem apply to linear functionals on the space of continuous,
compactly supported functions (see, for example, [Fol 84], [Roy 88], or [Rud 87]).
In [EG 92], Evans and Gariepy prove a version of the theorem for linear functionals
on the space of vector-valued, continuous, compactly supported functions.
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Theorem 4.4.1 (Riesz Representation Theorem). Let D denote the set of real-
valued, infinitely differentiable, compactly supported functions on RN . IfL : D → R
is a linear functional satisfying

M = sup

{
|L(φ)| : φ ∈ D, sup

x∈RN
|φ| ≤ 1

}
<∞ , (4.9)

then there exists a Radon measure λ on RN and a λ-measurable function g : RN → R
such that

(1) λ
(
RN
)
= M ,

(2) L(φ) =
∫

RN
φ g dλ , for all φ ∈ D.

Proof. First, we note that it follows immediately from (4.9) that

|L(φ)| ≤ M · sup
x
|φ(x)| , for φ ∈ D . (4.10)

Step 1: Definition of the measure λ. We define the function λ on subsets of RN by
setting λ(∅) = 0, setting

λ(U) = sup

{
|L(φ)| : φ ∈ D, sup

x
|φ(x)| ≤ 1, suppφ ⊆ U

}
(4.11)

when U is a nonempty open set, and setting

λ(E) = inf { λ(U) : U is open, E ⊆ U } (4.12)

when E is not an open set.
Ultimately we will show that λ is a measure. It follows immediately that

λ(RN) = M , (4.13)

A ⊆ B implies λ(A) ≤ λ(B) . (4.14)

To show that µ is a measure, we first show that λ is countably subadditive on the
family of open sets. To see this, let Ui , i = 1, 2, . . . , be a sequence of open sets. We
need to show that

λ
(⋃

iUi

)
≤
∑
i

λ(Ui) (4.15)

holds. It is no loss of generality to assume that
∑
i λ(Ui) <∞.

Suppose that φ ∈ D, supx∈RN |φ| ≤ 1, and suppφ ⊆ ∪iUi . Let αi be a smooth
partition of unity for the set suppφ, subordinate to the cover {Ui}∞i=1 (see [KPk 99]).

We estimate
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∣∣L (∑ni=mφ · αi)∣∣ = ∣∣∑ni=mL (φ · αi)∣∣ ≤ n∑
i=m

|L (φ · αi)| ≤
∞∑
i=m
λ(Ui) .

Thus L(
∑
i φ · αi) and

∑
i |L(φ · αi)| are convergent. We then have

|L(φ)| = ∣∣L (φ∑iαi)∣∣ = ∣∣L (∑iφ · αi)∣∣ ≤∑
i

|L (φ · αi)| ≤
∑
i

λ(Ui) ,

and (4.15) follows.
To complete the proof that λ is a measure, we show that λ is countably subadditive

on the family of all subsets of RN . To see this, we letEi , i = 1, 2, . . . , be a sequence
of sets. We need to show that λ(

⋃
iEi) ≤∑i λ(Ei). We may suppose without loss

of generality that
∑
i λ(Ei) <∞.

Let ε > 0 be arbitrary. For each i, letUi be an open set withλ(Ui) ≤ λ(Ei)+2−iε.
Then, by (4.15), we have

λ(
⋃
iEi) ≤ λ(⋃ iUi) ≤∑

i

λ(Ui) ≤ ε +
∑
i

λ(Ei) ,

and the claim follows from the fact that ε > 0 was arbitrary.

Step 2: A bound on L. We claim that

|L(φ)| ≤ sup
x
|φ(x)| · λ

(
{x : φ(x) �= 0}

)
, for φ ∈ D . (4.16)

To see this, fix a nonzero φ ∈ D, set κ = supx |φ(x)|, and set

U = {x : φ(x) �= 0} .
Let α� : R → R, � = 1, 2, . . . , be a sequence of infinitely differentiable functions
such that

α�(t) = 0 if |t | ≤ 1/(2�),

|α�(t)| ≤ 1/� if 1/(2�) < |t | < 1/�,

α�(t) = t if 1/� ≤ |t | .
For � such that 1/� ≤ supx |φ(x)|, we have κ = supx α� ◦ φ(x) and

suppα� ◦ φ ⊆ U ,
so

|L(α� ◦ φ)| ≤ κ λ(U) .
Since supx |φ − α� ◦ φ| ≤ 1/� holds, we conclude from (4.10) that

|L(φ)− L(α� ◦ φ)| = |L(φ − α� ◦ φ)| ≤ M/�
holds. Letting �→∞, we obtain the claim.

Step 3: Showing that λ is a Radon measure. First, we claim that λ is finitely
additive on the family of open sets. To see this, let U and V be disjoint open sets.
Let ε > 0 be arbitrary. Let φU ∈ D satisfy
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• supx |φU(x)| ≤ 1,
• suppφU ⊆ U ,
• λ(U) ≤ |L(φU)| + ε.
Replacing φU by −φU if necessary, we may assume that L(φU) = |L(φU)|. Choose
φV ∈ D similarly. Then we have

λ(U)+ λ(V ) ≤ |L(φU)| + |L(φV )| + 2ε

= L(φU)+ L(φV )+ 2ε

= L(φU + φV )+ 2ε

≤ |L(φU + φV )| + 2ε ≤ λ(U ∪ V )+ 2ε ,

and since ε > 0 was arbitrary, the claim follows.
Next, we claim that λ satisfies Carathéodory’s criterion. To see this, let A and B

be sets that are separated by a positive distance.
Let ε > 0 be arbitrary. We can find an open set U with A ∪ B ⊆ U and

λ(U) ≤ λ(A ∪ B) + ε. Since A and B are at a positive distance from each other,
we may assume without loss of generality that U = UA ∪UB , where UA and UB are
disjoint open sets containing A and B, respectively. Then we have

λ(A)+ λ(B) ≤ λ(UA)+ λ(UB) = λ(UA ∪ UB) ≤ λ(A ∪ B)+ ε ,
and the claim follows from the fact that ε > 0 was arbitrary.

Since λ satisfies Carathéodory’s criterion, we know that all open sets are λ-
measurable. The fact that λ is a Radon measure follows from (4.12) and the fact
that λ(RN) <∞.

Step 4: Extension of L. Let D denote the set of functions f : RN → R such
that f is bounded and f is the pointwise limit of a sequence of functions in D. We
observe that

• D contains the characteristic function of any open subset of RN ,
• D is a vector space,
• D is closed under multiplication.

We will define the extension of L from D to D.
Let f ∈ D. Let φi be a sequence of functions in D with f = limi φi . We may

assume without loss of generality that the functions φi are uniformly bounded.
Set

κ ≡ sup
i

sup
x
φi(x) <∞ .

Fix ε > 0. For each n, set

An = {x : ∃ i, j ≥ n such that |φi(x)− φj (x)| ≥ ε } .
Then we have A1 ⊇ A2 ⊇ · · · and ∩nAn = ∅. So λ(An) ↓ 0 as n→ ∞. Fix an n
such that λ(An) < ε.

Let β : R → R be an infinitely differentiable function satisfying
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• β takes its values in [0, 1],
• β(t) = 1 if |t | ≥ 2ε,
• β(t) = 0 if |t | < ε.
For i, j ≥ n, we have

|L(φi − φj )| ≤
∣∣∣L[β ◦ (φi − φj ) · (φi − φj ) ] ∣∣∣
+
∣∣∣L[ (1− β ◦ (φi − φj )) · (φi − φj ) ∣∣∣

≤ 2 (κ +M) ε .
Thus we see that L(φi) forms a Cauchy sequence. We define

L
(

lim
i→∞φi

)
= lim
i→∞L(φi) .

It is easy to see that the extension of L is well-defined and linear.
The extension of L satisfies an estimate like (4.16); specifically, we claim that if

f ∈ D, then it holds that

|L(f )| ≤ sup
x
|f (x)| · λ

(
{x : f (x) �= 0}

)
. (4.17)

To see this, fix the function f ∈ D and fix a uniformly bounded sequence φi ∈ D
that converges pointwise to f . It is no loss of generality to assume that

sup
x
|f (x)| = lim

i→∞

(
sup
x
|φi(x)|

)
.

SetW = {x : f (x) �= 0}.
Let ε > 0 be arbitrary. Then we can find an open set U with W ⊆ U and

λ(U) ≤ λ(W)+ ε.
Let α� : RN → R be a sequence of infinitely differentiable functions with values

in [0, 1] such that {x : α�(x) = 1} increases to χ
U

. Then φi · αi is a uniformly
bounded sequence that converges to f .

We have

|L(φi · αi)| ≤ sup
x
|(φi · αi)(x)| · λ

(
{x : (φi · αi)(x) �= 0}

)
≤ sup
x
|f (x)| · λ

(
{x : αi(x) �= 0}

)
≤ sup
x
|f (x)| · λ(U)

≤ sup
x
|f (x)| · (λ(W)+ ε) ,
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and the claim follows.

Step 5: A family of subsets of RN . Let O denote the family of subsets A of RN for
which χ

A
∈ D. Since

χ
A∩B = χA χB ,
χ
A∪B = χA + χB − χA χB ,
χ
A\B = (1− χB) χA ,

we see that O is closed under finite unions, finite intersections, and complements.
Also every element of O is a Borel set. Note that

L(χ
U
)+ λ(U) ≥ 0

holds, for any U ∈ O.

Step 6: Definition of the measure µ. We define the function µ on subsets of RN by
setting

µ(U) = L(χ
U
)+ λ(U) , (4.18)

when U is open, and setting

µ(E) = inf {µ(U) : U is open, E ⊆ U } , (4.19)

when E is not open.
For sets U,V ∈ O with U ⊆ V , we have

L(χ
V
)+ λ(V ) = L(χ

U
+ χ
V \U)+ λ(U ∪ (V \ U) )

= L(χ
U
)+ L(χ

V \U)+ λ(U)+ λ(V \ U)

≥ L(χ
U
)+ λ(U) .

If U and V are open with U ⊆ V , then we conclude that µ(U) ≤ µ(V ). Then by
(4.19), µ is monotone on all sets.

We claim that
µ(E) = L(χ

E
)+ λ(E) , for E ∈ O . (4.20)

The argument above also shows that if U is open, E ∈ O, and E ⊆ U , then

L(χ
E
)+ λ(E) ≤ µ(U) .

Let ε > 0 be arbitrary. Then we can find an open U with E ⊆ U and

λ(U) ≤ λ(E)+ ε .
Since

λ(U) = λ(U \ E)+ λ(E) ,
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we have
λ(U \ E) ≤ ε .

By (4.17), we have
L(χ
U\E) ≤ ε ,

so

L(χ
U
)+ λ(U) = L(χ

E
)+ λ(E)+ L(χ

U\E)+ λ(U \ E) ≤ L(χE)+ λ(E)+ 2ε

holds. Thus we have
µ(E) ≤ L(χ

E
)+ λ(E)+ 2ε ,

and the claim follows from the fact that ε > 0 was arbitrary.
By (4.20), we see that we obtain the same function µ on subsets of RN if we

define µ by setting
µ(U) = L(χ

U
)+ λ(U) , (4.21)

when U ∈ O, and setting

µ(E) = inf {µ(U) : U ∈ O, E ⊆ U } , (4.22)

when E /∈ O. We shall use this alternative definition. Ultimately we will show that
µ is a measure. We note that the original definition of µ is useful for verifying that
µ is a Radon measure.

By (4.17), we see that
0 ≤ µ(E) ≤ 2λ(E)

holds, for every setE. In particular, µ is absolutely continuous with respect to λ. We
also note that if U,V ∈ O, then

µ(V ) = L(χ
V
)+ λ(V )

= L(χ
U
+ χ
V \U)+ λ(U ∪ (V \ U) )

= L(χ
U
)+ L(χ

V \U)+ λ(U)+ λ(V \ U)

≥ L(χ
U
)+ λ(U)

= µ(U)
and

µ(U ∪ V ) = L(χ
U∪V )+ λ(U ∪ V )

= L(χ
U
)+ L(χ

V
)− L(χ

U∩V )+ λ(U ∪ V )
= L(χ

U
)+ L(χ

V
)− L(χ

U∩V )+ λ(U)+ λ(V )− λ(U ∩ V )
= µ(U)+ µ(V )− µ(U ∩ V ) ≤ µ(U)+ µ(V ) ,
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so λ is finitely additive and finitely subadditive on O.

Step 7: Showing that µ is a Radon measure. First, we claim that µ is countably
subadditive on O. To see this, let a sequence {Ui} ⊆ O be given. We need to
show that

µ
(⋃

iUi

)
≤
∑
i

µ(Ui) (4.23)

holds.
Let ε > 0 be arbitrary. Set

An =
(⋃∞

i=1Ui
) \ (⋃ ni=1Ui

)
.

Then λ(An)→ 0 as n→∞. Choose n such that λ(An) < ε. We have

µ(
⋃∞
i=1Ui) = µ(

⋃ n
i=1Ui)+ L(χAn)+ λ(An)

≤ µ(⋃ ni=1Ui)+ 2ε ≤ 2ε +
∞∑
i=1

µ(Ui) ,

and the claim follows from the fact that ε > 0 was arbitrary.
We see that µ is countably subadditive by using the same argument that showed

that λ is subadditive. We can also see that Carathéodory’s criterion holds for µ in the
same way that we saw that it holds for λ, and we similarly conclude that λ is a Radon
measure.

Step 8: Obtaining the function g. By Theorem 4.3.6, there exists a Borel function
f such that

µ(E) =
∫
E

f dλ

holds, for any Borel set E. Set g = f − 1. For U ∈ O, we have

L(χ
U
) = µ(U)− λ(U) =

∫
U

(f − 1) dλ =
∫
U

g dλ .

For φ ∈ D, we obtain

L(φ) =
∫
φ g dλ

by uniformly approximating φ by simple functions of the form
∑
i αiχEi

, with Ei ∈
O, and applying (4.17). ��

4.5 Maximal Functions Redux

It is possible to construe the Hardy–Littlewood maximal function in the more general
context of measures.
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Definition 4.5.1. Let µ be a Radon measure on RN . If f is a µ-measurable function
and x ∈ RN then we define

Mµf (x) = sup
r>0

1

µ[B(x, r)]
∫

B(x,r)
|f (t)| dµ(t) .

Further, and more generally, if ν is a Radon measure on RN then we define

Mµν(x) = sup
r>0

ν[B(x, r)]
µ[B(x, r)] .

Finally, it is sometimes useful to have the noncentered maximal operator M̃µ
defined by

M̃µf (x) = sup
B(z,r)%x

1

µ[B(z, r)]
∫

B(z,r)
|f (t)| dµ(t) .

A similar definition may be given for the maximal function of a Radon measure.

The principal result about these maximal functions is the following:

Theorem 4.5.2. The operatorMµ is weak type (1, 1) in the sense that

µ
{
x ∈ RN : Mµν(x) > s

}
≤ C · ν(R

N)

s
.

In particular, if f ∈ L1(µ) then

µ
{
x ∈ RN : Mµf (x) > s

}
≤ C · ‖f ‖L1

s
.

In case the measure µ satisfies the enlargement condition µ[B(x, 3r)] ≤ c ·
µ[B(x, r)], then we have

µ
{
x ∈ RN : M̃µν(x) > s

}
≤ c · s−1 · ν

{
x ∈ RN : M̃µν(x) > s

}
.

The proof of this result follows the same lines as the development of Proposi-
tion 4.1.4, and we omit the details. A full account may be found in [Mat 95].



5

Analytical Tools: The Area Formula, the Coarea
Formula, and Poincaré Inequalities

5.1 The Area Formula

The main result of this section is the following theorem.

Theorem 5.1.1 (Area Formula). If f : RM → RN is a Lipschitz function and
M ≤ N, then∫

A

JMf (x) dLM(x) =
∫

RN
card(A ∩ f−1(y)) dHM(y) (5.1)

holds for each Lebesgue measurable subset A of RM.

See Figure 5.1. Here JMf denotes theM-dimensional Jacobian of f , which will
be defined below in Definition 5.1.3. In case M = N, theM-dimensional Jacobian
agrees with the usual Jacobian |det(Df )|.

Fig. 5.1. The area formula.

The proof of the area formula separates into three fundamental parts. The first
is understanding the situation for linear maps. The second is extending our under-
standing to the behavior of maps that are well approximated by linear maps. This
second part of the proof is essentially multivariable calculus, and the area formula
for C1 maps follows readily. The third part of the proof brings in the measure theory
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that allows us to reduce the behavior of Lipschitz maps to that of maps that are well
approximated by linear maps.

In the next section we will treat the coarea formula that applies to a Lipschitz
map f : RM → RN, but with M ≥ N instead of M ≤ N. The proof of the coarea
formula is similar to the proof of the area formula in that the same three steps of
understanding linear maps, understanding maps well approximated by linear maps,
and applying measure theory are fundamental. The discussion of linear maps in the
next subsection will be applicable to both the area formula and the coarea formula.

5.1.1 Linear Maps

Akey ingredient in the area formula is theK-dimensional Jacobian, which is a measure
of how K-dimensional area transforms under the differential of a mapping. Since a
linear map sends one parallelepiped into another, the fundamental question is, “What
is the K-dimensional area of the parallelepiped determined by a set of K vectors in
RN?’’ Of course, the answer is known, and G. J. Porter gave a particularly lucid
derivation in [Por 96]. We follow Porter’s approach in the argument given below
(this argument also appeared earlier, in Section 1.4).

Since we will often need to divide by theK-dimensional area of a parallelepiped,
when we say that P is a K-dimensional parallelepiped, we will assume that P is not
contained in any (K−1)-dimensional subspace. That is, when P is aK-dimensional
parallelepiped we mean that there are linearly independent vectors v1, v2, . . . , vK
such that

P =
{
K∑
i=1

λi vi : 0 ≤ λi ≤ 1, for i = 1, 2, . . . , K

}
.

Proposition 5.1.2. If

vi =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

v1 i

v2 i

...

vN i

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, for i = 1, 2, . . . , K , (5.2)

are vectors in RN, then the parallelepiped determined by those vectors has K-
dimensional area √

det
(
V t V

)
, (5.3)

where V is the N ×K matrix having v1, v2, . . . , vK as its columns.

Proof. If the vectors v1, v2, . . . , vK are orthogonal, then the result is immediate.
Thus we will reduce the general case to this special case.

Notice that Cavalieri’s principle shows us that adding a multiple of vi to another
vector vj , j �= i, does not change the K-dimensional area of the parallelepiped
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determined by the vectors. But also notice that such an operation on the vectors
vi is equivalent to multiplying V on the right by a K × K triangular matrix with
1’s on the diagonal (upper triangular if i < j and lower triangular if i > j ). The
Gram–Schmidt orthogonalization procedure is effected by a sequence of operations
of precisely this type. Thus we see that there is an upper triangular matrix A with
1’s on the diagonal such that VA has orthogonal columns and the columns of VA
determine a parallelepiped with the same K-dimensional area as the parallelepiped
determined by v1, v2, . . . , vN. Since the columns of VA are orthogonal, we know

that
√

det
(
(VA)t (VA)

)
equals the K-dimensional area of the parallelepiped deter-

mined by its columns, and thus equals the K-dimensional area of the parallelepiped
determined by v1, v2, . . . , vK. Finally, we compute

det
(
(VA)t (VA)

)
= det

(
At V t V A

)
= det

(
At
)

det
(
V t V

)
det(A)

= det
(
V t V

)
. ��

Definition 5.1.3. Suppose that U ⊆ RM , f : U → RN , f is differentiable at a, and
K ≤ M.We define the K-dimensional Jacobian of f at a, denoted by JKf (a), by
setting

JKf (a) = sup

{
HK [Df (a)(P )]

HK [P ] :

P is a K-dimensional parallelepiped contained in RM

}
. (5.4)

The conventional situation considered in elementary multivariable calculus is that
in which K = M = N. In that case, it is easily seen from Proposition 5.1.2 that one
may choose P to be the unit M-dimensional cube and that JMf (a) = JNf (a) =
|det(Df (a))|.

Two other special cases are of interest: They areK = M < N andM > N = K.
When K = M < N, again one can choose P to be the unitM-dimensional cube in
RM. The image of P under Df (a) is the parallelepiped determined by the columns
of the matrix representing Df (a). It follows from Proposition 5.1.2 that JMf (a) =√

det
[
(Df (a))t (Df (a))

]
.

WhenM > N = K, thenP should be chosen to lie in the orthogonal complement
of the kernel of Df (a). This follows because if P is any parallelepiped in RM ,
then the image under Df (a) of the orthogonal projection of P onto the orthogonal
complement of the kernel ofDf (a) is the same as the image ofP underDf (a), while
N -dimensional area of the orthogonal projection is no larger than theN -dimensional
area of P .
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It is plain to see that the orthogonal complement of the kernel ofDf (a) is the span
of the columns of (Df (a))t. If we begin with the parallelepiped determined by the
columns of (Df (a))t, then that parallelepiped maps onto the parallelepiped deter-
mined by the columns of (Df (a)) (Df (a))t.By Proposition 5.1.2, theN -dimensional
area of the first parallelepiped is√

det
[
(Df (a)) (Df (a))t

]
,

and the N -dimensional area of the second parallelepiped is√
det
[(
(Df (a)) (Df (a))t

)t (
(Df (a)) (Df (a))t

)]
= det

[
(Df (a)) (Df (a))t

]
,

so the ratio is JNf (a) =
√

det
[
(Df (a)) (Df (a))t

]
. (The preceding discussion could

also have been phrased in terms of the effect of the adjoint of Df on the area of a
parallelepiped in RN .)

We summarize the above facts in the following lemma.

Lemma 5.1.4. Suppose that f : RM → RN is differentiable at a.

(1) IfM = N, then
JMf (a) = JNf (a) = |det(Df (a))|. (5.5)

(2) IfM ≤ N, then

JMf (a) =
√

det
[
(Df (a))t (Df (a))

]
. (5.6)

(3) IfM ≥ N, then

JNf (a) =
√

det
[
(Df (a)) (Df (a))t

]
. (5.7)

Remark 5.1.5. The generalized Pythagorean theorem (see Section 1.5) allows one to
see that the right-hand side of either (5.6) or (5.7) is equal to the square root of the
sum of the squares of the K ×K minors of Df (a), where K = min{M,N}. This is
the form one is naturally led to if one develops the K-dimensional Jacobian via the
alternating algebra over RM and RN as in [Fed 69].

We will also need to make use of the polar decomposition of linear maps.

Theorem 5.1.6 (Polar Decomposition).
(1) If M ≤ N and T : RM → RN is linear, then there exist a symmetric linear

map S : RM → RM and an orthogonal injection U : RM → RN such that
T = U ◦ S.

(2) If M ≥ N and T : RM → RN is linear, then there exist a symmetric linear
map S : RN → RN and an orthogonal injection U : RN → RM such that
T = S ◦ Ut.
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Proof.
(1) For convenience, let us first suppose that T is of full rank. TheM×M matrix T t T
is symmetric and positive definite. So T t T has a complete set of M orthonormal
eigenvectors v1, v2, . . . , vM associated with the positive eigenvalues λ1, λ2, . . . , λM.

We define S : RM → RM by setting

S(vi ) =
√
λi vi .

Using the orthonormal basis v1, v2, . . . , vM,we see thatS is represented by a diagonal
matrix; thus S is symmetric.

We define U : RM → RN by setting

U(vi ) = 1√
λi
T (vi ) .

We calculate

U(vi ) · U(vj ) = 1√
λi

1√
λj
T (vi ) · T (vj )

= 1√
λi

1√
λj

vi · (T t T )(vj )

= 1√
λi

1√
λj
λj vi · vj = δij .

Thus U is an orthogonal injection.
In case T is not of full rank, it follows that some of the λi’s may be zero. For

such an index i, we may chooseU(vi ) arbitrarily, subject only to the requirement that
U(v1), U(v2), . . . , U(vn) be an orthonormal set.

(2) We apply (1) to the mapping T t to obtain a symmetric map S and an orthogonal
injection U such that T t = U ◦ S, but then T = (U ◦ S)t = S ◦ Ut. ��

The first application of the Jacobian is in the following basic lemma concerning
the behavior of Lebesgue measure under a linear map.

Lemma 5.1.7. IfA ⊆ RM is Lebesgue measurable and T : RM → RM is linear, then

LM
(
T (A)

) = |det(T )|LM(A) .
Proof. By countable additivity, it will suffice to prove the result for bounded sets A.
Given ε > 0, we can find an open U with A ⊆ U and LM(U \ A) < ε.We write U
as an increasing union of sets Cn such that each Cn is a union of cubes that intersect
only on their faces. Then we have

LM(T (U)) = lim
n→∞LM(T (Cn)) = lim

n→∞ |det(T )|LM(Cn) = |det(T )|LM(U) .

So we conclude that
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LM(T (A)) ≤ LM(T (U)) ≤ |det(T )|LM(U) ≤ |det(T )| [ε + LM(A)] .
Letting ε ↓ 0, we see that

LM(T (A)) ≤ |det(T )|LM(A) .
Now we need to prove the reverse inequality. Note that if det(T ) = 0, then we

are done. Assuming det(T ) �= 0, we apply the case already proved to T (A) and T −1

to see that

LM(A) = LM(T −1(T (A))) ≤ |det(T −1)|LM(T (A)) .
The result follows since det(T −1) = (det(T ))−1. ��
Lemma 5.1.8 (Main Estimates for the Area Formula). Suppose that M ≤ N ,
T : RM → RN is linear and of full rank, and that 0 < ε < 1

2 . Let � be orthogonal
projection onto the image of T . Set

λ = inf
{ |〈T , v〉| : |v| = 1

}
. (5.8)

If the Lebesgue measurable set A ⊆ RM is such that

(1) Df (a) exists for a ∈ A,

(2) ‖Df (a)− T ‖ < ε holds for a ∈ A,

(3) |f (y)− f (a)− 〈Df (a), y − a〉| < ε |y − a| holds for y, a ∈ A,

(4) �|f (A) is one-to-one,

then (
1− 3ελ−1)M · JMT · LM(A) ≤ HM

(
f (A)

)
≤ (1+ 2ελ−1)M · JMT · LM(A) . (5.9)

Proof. First we bound HM
(
f (A)

)
from above. We use the polar decomposition to

write T = U ◦ S, where S : RM → RM is a symmetric map and U : RM → RN

is an orthogonal injection, and we note that S is nonsingular with JMS = JMT and
with λ−1 = ‖S−1‖.

Set B = S(A) and g = f ◦ S−1.We know that

LM(B) = JMS · LM(A) = JMT · LM(A) .
We claim that

Lip (g|B) ≤ 1+ 2ελ−1 .

To see this, suppose z, b ∈ B. Then with a = S−1(b), y = S−1(z), it follows that
|y − a| ≤ λ−1|z− b|. Therefore we have
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|g(z)− g(b)|
≤ |g(z)− g(b)− 〈Dg(b), z− b〉| + |〈Dg(b)− U, z− b〉| + |〈U, z− b〉|
= |f (y)− f (a)− 〈Df (a), y − a〉|

+ |〈(Df (a)− T ) ◦ S−1, z− b〉| + |z− b|
≤ ε |y − a| + ‖Df (a)− T ‖ · ‖S−1‖ · |z− b| + |z− b|
≤ (1+ 2ελ−1) |z− b| . (5.10)

Finally, we have

HM
(
f (A)

) = HM
(
g(B)

)
≤ (1+ 2ελ−1)M · LM(B)
= (1+ 2ελ−1)M · JMT · LM(A) .

Next we bound HM
(
f (A)

)
from below. We continue to use the same notation

for the polar decomposition and we will continue to write g = f ◦ S−1. Set C =
�
(
f (A)

) = �(g(B)) and h = (� ◦ g|B)−1
.We claim that

Lip (h|C) ≤
(
1− 3ελ−1)−1

.

To see this, suppose w, c ∈ C. Let b ∈ B be such that � ◦ g(b) = c and z ∈ B be
such that�◦g(z) = w.Arguing as we did to obtain the upper bound (5.10), but with
some obvious changes, we see that

|g(z)− g(b)| ≥ (1− 2ελ−1) |z− b| .
Also we have

ελ−1|z− b| ≥ |g(z)− g(b)− 〈Dg(b), z− b〉|
= |�(g(z)− g(b)− 〈Dg(b), z− b〉)

+�⊥(g(z)− g(b)− 〈Dg(b), z− b〉)|
≥ |�⊥(g(z)− g(b)− 〈Dg(b), z− b〉)|
= |�⊥(g(z)− g(b))| .

Thus we conclude that

|�(g(z))−�(g(b))| ≥ |g(z)− g(b)| − |�⊥(g(z)− g(b))|
≥ (1− 2ελ−1) |z− b| − ελ−1 |z− b| .
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Finally, we calculate that

JMT ·HM(A) = LM(B)

≤ (1− 3ελ−1)M · LM(C)
≤ (1− 3ελ−1)M ·HM(f (A)) . ��

5.1.2 C1 Functions

Now we can prove the area formula for C1 functions.

Theorem 5.1.9. Suppose thatM ≤ N . If f : RM → RN is a C1 function, then∫
A

JMf (x) dLM(x) =
∫

RN
card(A ∩ f−1(y)) dHM(y)

holds for each Lebesgue measurable subset A of RM.

Proof. By countable additivity, it will suffice to prove the result for bounded sets A.
We first prove the result under the additional assumptions that f is one-to-one and
that JMf (a) > 0 holds at every point of A.

It is plain that, for any ε > 0, every subset of A with sufficiently small diameter
satisfies conditions (1)–(3) of Lemma 5.1.8 for some full-rank linear T : RM →
RN—namely, we can choose T to beDf at any point in such a sufficiently small set.
SinceDf onA is the restriction of a continuous function, we can find a positive lower
bound for λ in (5.8). To see that condition (4) of Lemma 5.1.8 is also satisfied on a
subset of A of small enough diameter, we suppose, to the contrary, that � ◦ f (y) =
� ◦ f (z); we show that in this case, ε > 0 can be chosen small enough compared to
λ that conditions (1)–(3) lead to a contradiction. Using (1)–(3), we estimate

|〈T , y − z〉| = |� 〈T , y − z〉)|
≤ |� 〈T −Df (a), y − z〉| + |� 〈Df (a)−Df (z), y − z〉|

+ |� 〈Df (z), y − z〉|
≤ ‖T −Df (a)‖ |y − z| + ‖Df (a)−Df (z)‖ |y − z|

+ |� 〈Df (z), y − z〉|
= ‖T −Df (a)‖ |y − z| + ‖Df (a)−Df (z)‖ |y − z|

+ |�(f (y)− f (z)− 〈Df (z), y − z〉)|
≤ ‖T −Df (a)‖ |y − z| + ‖Df (a)−Df (z)‖ |y − z|

+ |f (y)− f (z)− 〈Df (a), y − z〉| .
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By choosing a, y, z in a small enough set we can bound the right-hand side of the
preceding inequality above by 3 ε |y − z|, while the left-hand side is bounded below
by λ |y − z|. Choosing ε smaller than 1

3 λ gives a contradiction. Thus (4) also must
hold on subsets of small enough diameter, and the result follows by decomposing A
into such sufficiently small sets.

In case f is not necessarily one-to-one, but still assuming JMf (a) > 0 holds at
every point of A, there is σ > 0 such that f is one-to-one in any ball of radius σ
about any point in A. Write

A =
⋃
j

Aj ,

where the setsAj , j = 1, 2, . . . , are pairwise disjoint HM -measurable sets all having
diameter less than σ . Then we have∑

j

χ
f (Ai,j )

(y) = card(A ∩ f−1(y)) for each y ∈ RN .

We conclude that∫
A

JMf (x) dLM(x) =
∑
j

∫
Aj

JMf (x) dLM(x)

=
∑
j

HM [f (Ai,j )]

=
∫

RN

∑
j

χ
f (Ai,j )

dHM

=
∫

RN
card(A ∩ f−1(y)) dHM .

To complete the proof, we need to show that the image of a set on which JMf = 0
has measure zero. That fact follows by defining fε : RM → RM+N by

x �−→
(
εx, f (x)

)
.

This definition of fε gives us the full-rank hypothesis, but increases the Jacobian only
by a bounded multiple of ε. The image of f is the orthogonal projection of the image
of fε , and thus its Hausdorff measure is no larger than the Hausdorff measure of the
image of fε. By letting ε decrease to 0, we conclude that the Hausdorff measure of
the image of f is 0. ��

The last part of the preceding proof gives us the next corollary, which is known
as Sard’s theorem.1 The sharp version of Sard’s theorem, the Morse–Sard–Federer
theorem, can be found in [Fed 69, 3.4.3].

Corollary 5.1.10. Suppose that M ≤ N . If f : RM → RN is a C1 function and
A = {x : JMf (x) = 0}, then HM [ f (A) ] = 0.

1 Arthur Sard (1909–1980).
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5.1.3 Rademacher’s Theorem

Theorem 5.1.11 (Rademacher’s Theorem2). If f : RM → RN is a Lipschitz
function, then f is differentiable LM -almost everywhere and the differential of f is
a measurable function.

Proof. We may assume N = 1.We use induction on M. In case M = 1, the result
follows from the classical theorem stating that an absolutely continuous function from
R to R is differentiable L1-almost everywhere.

We consider the inductive step M > 1. Note that if M − 1 variables are held
constant, then, as a function of the one remaining variable, f is absolutely continuous.
By Fubini’s theorem, we see that allM partial derivatives of f are defined LM -almost
everywhere and are measurable functions. The goal is to show that these partial
derivatives actually represent the differential at almost every point.

Let us write RM = RM−1 ×R and denote points p ∈ RM−1 ×R by p = (x, y),
x ∈ RM−1, y ∈ R.We consider a point p0 = (x0, y0) at which the following two
conditions are satisfied:

(1) As a function of the firstM − 1 variables, f is differentiable.
(2) AllM partial derivatives of f exist and are approximately continuous (see Defi-

nition 4.1.7).

For convenience of notation, we assume that f (p0) = 0, that p0 = (0, 0), and that
all the partial derivatives of f at p0 vanish.

Fix an ε with 1 > ε > 0. By (1), we can choose r0 > 0 such that |x| < r0
implies that

|f (x, 0)| ≤ ε|x|
holds. By (2), theM-dimensional density at (0, 0) of{

(x′, y′) :
∣∣∣∣∂f∂y (x′, y′)

∣∣∣∣ > ε}
is zero. Thus, by choosing a smaller value for r0 if necessary, we may assume that
for 0 < r < r0,

LM
{
(x′, y′) :

∣∣∣∣∂f∂y (x′, y′)
∣∣∣∣ > ε, |x′| < 2r, −2r < y′ < 2r

}
≤ 1

2�M−1 · εMrM
(5.11)

holds.
Now consider (0, 0) �= (x, y) ∈ RM−1 × R with |x| < r0 and |y| < r0. Set

r = max{ |x|, |y| } If for every x′ ∈ RM−1 with |x′ − x| < εr , we have

L1
{
(x′, y′) :

∣∣∣∣∂f∂y (x′, y′)
∣∣∣∣ > ε, −2r < y′ < 2r

}
≥ εr ,

then we can estimate
2 Hans Rademacher (1892–1969).
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LM
{
(x′, y′) :

∣∣∣∣∂f∂y (x′, y′)
∣∣∣∣ > ε, |x′| < 2r, −2r < y′ < 2r

}

≥ LM
{
(x′, y′) :

∣∣∣∣∂f∂y (x′, y′)
∣∣∣∣ > ε, |x′ − x| < εr, −2r < y′ < 2r

}
≥ εr · LM−1{ x′ ∈ RM−1 : |x′ − x| < r }
≥ �M−1 · εMrM ,

contradicting (5.11).
By the last paragraph, there exists x′ ∈ RM−1, with |x′ − x| < εr , such that

L1
{
(x′, y′) :

∣∣∣∣∂f∂y (x′, y′)
∣∣∣∣ > ε, −2r < y′ < 2r

}
< εr

holds; select and fix such an x′. We have

|f (x′, y)− f (x′, 0)| =
∣∣∣∣∫ y

0

∂f

∂y
(x′, η) dL1(η)

∣∣∣∣
≤ ε|y| +Mεr
< (M + 1)εr , (5.12)

where we have used the fact that
∣∣∣ ∂f∂y (x′, η)∣∣∣ ≤ M holds for L1-almost all η. Also,

we have

|f (x, y)− f (x′, y)| ≤ M|x − x′| < Mεr , (5.13)

|f (x, 0)− f (x′, 0)| ≤ M|x − x′| < Mεr , (5.14)

|f (x, 0)| ≤ ε|x| < εr. (5.15)

Combining (5.12), (5.13), (5.14), and (5.15), we obtain

|f (x, y)| ≤ (3M + 2)εr ,

from which it follows that Df (0, 0) = 0. ��
As a consequence of Rademacher’s theorem and the Whitney extension theo-

rem3 (see [Fed 69] or [KPk 99]), we have the following approximation theorem for
Lipschitz functions.

Theorem 5.1.12. If f : RN → Rν is Lipschitz and if ε > 0, then there exists a C1

function g : RN → Rν for which

LN {x : f (x) �= g(x)} ≤ ε ,
LN {x : Df (x) �= Dg(x)} ≤ ε .

3 Hassler Whitney (1907–1989).
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Proof. It will suffice to prove the result when ν = 1.
Recall that the Whitney extension theorem forC1 functions tells us the following:

Let A ⊆ RN be closed. Suppose that f : A → R and v : A → RN are
continuous. If the limit of

f (y)− f (x)− v(x) · (y − x)
|y − x|

is zero as x, y ∈ A, with x �= y, approach any point of A, then there exists
a C1 function g : RN → R with g(a) = f (a) and grad g(a) = v(a) for all
a ∈ A.

By Rademacher’s theorem applied to f and Lusin’s theorem (i.e., Theorem 1.3.4)
applied to grad f (for LN on RN , Lusin’s theorem is easily seen to be applicable to
sets with infinite measure), there is a closed set B ⊆ RN with LN(RN \ B) < ε/2
such that grad f exists and is continuous on B. We set v(x) = grad f (x) and

hk(x) = sup

{
f (y)− f (x)− v(x) · (y − x)

|y − x| : y ∈ B, 0 < |y − x| < 1/k

}
,

for x ∈ B, k = 1, 2, . . . . Since f is differentiable on B, hk(x)→ 0 for each x ∈ B.
By Egorov’s theorem (i.e., Theorem 1.3.3), there exists a closed set A ⊆ B with
LN(B \ A) ≤ ε/2 such that hk converges to 0 uniformly on compact subsets of A.
Thus we can apply Whitney’s extension theorem to f and v onA to obtain the desired
function g. ��

Proof of the Area Formula. As usual, it will suffice to consider the case in whichA is
bounded. Use Theorem 5.1.12 to replace f by the C1 function g when A is replaced
by a set B with LM(A \ B) < ε. Theorem 5.1.9 applies to g on B.

To complete the proof, observe that for any Aj ⊆ A, it holds that HM [f (Aj )] ≤
(Lip f )M LM(Aj ). In particular, by decomposing A \ B into pairwise disjoint sets
Aj on which f is one-to-one, we obtain∫

RN
card((A \ B) ∩ f−1(y)) dHM(y) ≤ (Lip f )M ε . ��

Corollary 5.1.13. If f : RM → RN is a Lipschitz function andM ≤ N, then∫
A

g(x) JMf (x) dLM(x) =
∫

RN

∑
x∈A∩f−1(y)

g(x) dHM(y) (5.16)

holds for each Lebesgue measurable subset A of RM and each nonnegative LM -
measurable function g : A→ R.

Proof. Approximate g by simple functions. ��
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5.2 The Coarea Formula

The main result of this section is the following theorem.

Theorem 5.2.1 (Coarea Formula). If f : RM → RN is a Lipschitz function and
M ≥ N, then∫

A

JNf (x) dLM(x) =
∫

RN
HM−N(A ∩ f−1(y)) dLN(y) (5.17)

holds for each Lebesgue measurable subset A of RM.

See Figure 5.2. Here JNf denotes the N -dimensional Jacobian of f , which was
defined in the previous section in Definition 5.1.3 and which was seen in (5.7) to be
given by

JNf (a) =
√

det
[
(Df (a)) · (Df (a))t].

In case M = N, the N -dimensional Jacobian agrees with the usual Jacobian
|det(Df )|, and the area and coarea formulas coincide. In case M > N, and
f : RM = RN × RM−N → RN is orthogonal projection onto the first factor, then
the coarea formula simplifies to Fubini’s theorem; thus one can think of the coarea
formula as a generalization of Fubini’s theorem to functions more complicated than
orthogonal projection. The coarea formula was first proved in [Fed 59].

Fig. 5.2. The coarea formula.

As in the proof of the area formula, the proof of the coarea formula separates into
three fundamental parts. The first is to understand the situation for linear maps. This
was done in the previous section. The second part is to extend our understanding to
the behavior of maps that are well approximated by linear maps. The third part of the
proof brings in the measure theory that allows us to reduce the behavior of Lipschitz
maps to that of maps that are well approximated by linear maps.

Main Estimates for the Coarea Formula

Lemma 5.2.2. Suppose thatM > N, f : RM → RN ,U : RN → RM is orthogonal,
and 0 < ε < 1/2. If the Lebesgue measurable set A ⊆ RM is such that
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(1) Df (a) exists for a ∈ A,

(2) ‖Df (a)− Ut‖ < ε holds for a ∈ A,

(3) |f (y)− f (a)− 〈Df (a), y − a〉| < ε |y − a| holds for y, a ∈ A,
then

(1− 2ε)M
∫

RN
HM−N

(
A ∩ f−1(y)

)
dLN(y) ≤

∫
A

JMf (a) dLM(a)

≤
∫

RN
HM−N

(
A ∩ f−1(y)

)
dLN(y) . (5.18)

Proof. TheN columns of the matrix representingU form an orthonormal set, but not
a full basis. By completing that set of vectors to an orthonormal basis, we can obtain
a complementary set ofM − N orthonormal vectors. ThoseM − N vectors can be
used as the columns of a matrix representing an orthogonal map V : RM−N → RM

such that ker (Ut) and ker (V t) are orthogonal complements.
Define F : RM → RN × RM−N by setting

F(x) = (f (x), V t(x)
)
,

and let� : RN ×RM−N → RN be projection on the first factor. It is easy to see that

JMF = JNf.
Subsequently we will show that F |A is one-to-one, so that by the area formula,

LM [F(A)] =
∫
A

JMF dLM =
∫
A

JNf dLM .

Thus, using Fubini’s theorem, we have∫
A

JNf dLM = LM
[
F(A)

]
=
∫

RN
HM−N

[
F(A) ∩�−1(z)

]
dLN(z)

=
∫

RN
HM−N

[
F(A ∩ f−1(z))

]
dLN(z) .

To complete the proof, we show F |A to be one-to-one and estimate the Lipschitz
constant of F on A ∩ f−1(z) and the Lipschitz constant of F−1 on F(A ∩ f−1(z)).

Suppose that a, y ∈ A ∩ f−1(z). Then

F(a) = (f (a), V t(a)) = (z, V t(a)) and F(y) = (f (y), V t(y)) = (z, V t(y)) .

We should like to compare |a − y| and |F(a)− F(y)|. But the first components are
the same, so
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|F(a)− F(y)| = |V t(a)− V t(y)|.
On the one hand, V t is distance-decreasing, so

|F(a)− F(y)| ≤ |a − y|.
On the other hand,

|〈Ut, y − a〉| ≤ |〈Df (a), y − a〉| + ‖Df (a)− Ut‖ |y − a|
= |f (y)− f (a)− 〈Df (a), y − a〉| + ‖Df (a)− Ut‖ |y − a|
< 2ε|y − a|,

and
|y − a|2 = |V t(a)− V t(y)|2 + |〈Ut, y − a〉|2,

so
|V t(a)− V t(y)|2 ≥ |y − a|2 (1− 4ε2).

Thus we have √
1− 4ε2 |y − a| ≤ |F(y)− F(a)| ≤ |y − a| ,

so we see thatF is one-to-one and we have obtained bounds on the Lipschitz constants
of both F and F−1. Finally, we note that 1− 2ε <

√
1− 4ε2. ��

Corollary 5.2.3. Suppose that M > N , f : RM → RN , T : RM → RN is of rank
N , and 0 < ε < 1/2. If the Lebesgue measurable set A ⊆ RM is such that

(1) Df (a) exists for a ∈ A,

(2) ‖Df (a)− T ‖ < ε holds for a ∈ A,

(3) |f (y)− f (a)− 〈Df (a), y − a〉| < ε |y − a| holds for y, a ∈ A,

then

(1− 2ε)M
∫

RN
HM−N

(
A ∩ f−1(y)

)
dLN(y) ≤

∫
A

JMf (a) dLM(a)

≤
∫

RN
HM−N

(
A ∩ f−1(y)

)
dLN(y) . (5.19)

Proof. By the polar decomposition (Theorem 5.1.6), there exists a symmetric linear
map S : RN → RN and an orthogonal map U : RN → RM such that T = S ◦ Ut.

Set g = S−1 ◦ f. Then we apply the lemma to g and U to obtain

(1− 2ε)M
∫

RN
HM−N

(
A ∩ g−1(z)

)
dLN(z) ≤

∫
A

JMg(a) dLM(a)

≤
∫

RN
HM−N

(
A ∩ g−1(z)

)
dLN(z). (5.20)
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Notice that if y = S(z), then

A ∩ g−1(z) = A ∩ f−1(y),

so by the change of variables formula in RN applied to the mapping S, we have∫
RN

HM−N
(
A ∩ g−1(z)

)
JNS dLN(z) =

∫
RN

HM−N
(
A ∩ f−1(y)

)
dLN(y).

Also we have JNS JMg = JMf, so∫
A

JNg JMg(a) dLM(a) =
∫
A

JMf (a) dLM(a)

holds. By multiplying all three terms in (5.20) by JNS, we obtain (5.19). ��

5.2.1 Measure Theory of Lipschitz Maps

We need to verify that the integrand on the right-hand side of (5.17) is measur-
able. (The measurability of the integrand on the left-hand side of (5.17) is given by
Rademacher’s theorem, i.e., Theorem 5.1.11.) First we obtain a useful preliminary
estimate that generalizes a result originally proved in [EH 43].

Lemma 5.2.4. Suppose 0 ≤ N ≤ M < ∞. There exists a constant C(M,N) such
that the following statement is true: If f : RM → RN is a Lipschitz function and
A ⊆ RM , then∫

RNHM−N
(
A ∩ f−1(y)

)
dHNy ≤ C(M,N) [Lip (f )

]N HM(A) (5.21)

holds.

Proof. We may assume that the right-hand side of (5.21) is finite.
Fix σ > 0. By the definition of Hausdorff measure, there exists a cover of A by

closed sets S1, S2, . . . , all having diameter less than σ, such that

∑
i

�M

(
diam (Si)

2

)M
≤ HM(A)+ σ.

For y ∈ RN we observe that

HM−Nσ (A ∩ f−1(y)) ≤
∑

{i:Si∩f−1(y)�=∅}
�M−N

(
diam (Si)

2

)M−N
= 2N−M �M−N

∑
i

(
diam (Si)

)M−N
χ
f (Si)
(y).

Note also that if p ∈ Si, then



5.2 The Coarea Formula 141

f (Si) ⊆ B
(
f (p), [Lip (f )] diam (Si)

)
,

so ∫
RN
χ
f (Si )
dHN ≤ [Lip (f )]N �N

(
diam (Si)

)N
.

Thus we have∫
RNHM−Nσ

(
A ∩ f−1(y)

)
dHNy

≤ 2N−M �M−N
∑
i

(
diam (Si)

)M−N ∫
RN
χ
f (Si )
dHN

≤ 2N−M �M−N �N [Lip (f )]N
∑
i

(
diam (Si)

)N
≤ 2N

�M−N �N
�M

(
HM(A)+ σ

)
.

The result follows by letting σ decrease to 0. ��
Lemma 5.2.5. Suppose that f : RM → RN is a Lipschitz function. If A ⊆ RM is
HM -measurable, then the mapping

RN % y �−→ HM−N
(
A ∩ f−1(y)

)
is HN -measurable.

Proof. By the previous lemma, we can ignore sets of arbitrarily small measure; hence
we may and shall assume that A is compact.

Observe that, for U ⊆ RM ,

f (A)
⋂ { y : f−1(y) ∩ A ⊆ U } = f (A)

∖
f (A \ U) . (5.22)

Additionally, note that if U ⊆ RM is open, then f (A) and f (A \ U) are compact,
and thus the set in (5.22) is a Borel subset of RN .

Let U denote the family of open subsets of RN that are finite unions of open balls
with rational radii and centers in QN .

We will show that for t ∈ R, {y : HM−N(A ∩ f−1(y)) ≤ t} is a Borel subset of
RN . For t < 0, we have {y : HM−N(A∩ f−1(y)) ≤ t} = ∅, so we may assume that
t ≥ 0.

For each i = 1, 2, . . . , let Fi denote the collection of finite subfamilies of U such
that {Ui,1, Ui,2, . . . , Ui,kj } ∈ Fi if and only if

diam (Ui,j ) < 1/i, for j = 1, 2, . . . , kj ,

ki∑
j=1

�M−N
(

diam (Ui,j )

2

)M−N
≤ t + 1

i
.
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Since Fi is at most countable, we see that

Bi =
⋃

{Ui,1,...,Ui,ki }∈Fi
f (A)

∖
f (A \ ∪kij=1Ui,j ) (5.23)

is a Borel subset of RN . Finally, we observe that

{ y : HM−N(A ∩ f−1(y)) ≤ t }

=
[

RN \ f (A)
] ⋃ [

f (A)
⋂ { y : HM−N(A ∩ f−1(y)) ≤ t }

]
,

and that f (A)
⋂ { y : HM−N(A ∩ f−1(y)) ≤ t } is the intersection of the sets Bi

in (5.23). ��

5.2.2 Proof of the Coarea Formula

By Theorem 5.1.11 and (5.21), we may assume that Df (a) exists at every point
a ∈ A.We first prove the result under the additional assumption that JNf (a) > 0
at every point of A. By Lusin’s theorem (i.e., Theorem 1.3.4), we may assume that
Df (a) is the restriction to A of a continuous function. By Egorov’s theorem (i.e.,
Theorem 1.3.3) we may suppose that

|f (y)− f (a)− 〈Df (a), y − a〉|
|y − a|

converges uniformly to 0 as y ∈ A approaches a ∈ A. It is plain that, for any ε > 0,
conditions (1)–(3) of Corollary 5.2.3 are satisfied in any subset of A that has small
enough diameter.

Finally, to complete the proof, we need to consider the case in which JNf = 0
holds on all of A. In that case, the left-hand side of (5.17) is 0. We need to show that
the right-hand side of (5.17) also equals 0. To this end, consider fε : RM+N → RN

defined by
(x, y) �−→ f (x)+ εy.

We can apply what has already been proved to the set

A× [−1, 1]N ⊆ RM × RN.

We have LM+N(A× [−1, 1]N) = 2NLM(A), JNfε ≤ ε [ε + Lip (f )]N−1, and∫
A×[−1,1]N

JNfε dLM+N =
∫

RN
HM

[(
A× [−1, 1]N ) ∩ f−1

ε (z)
]
dLN(z) .

By (5.21) we observe that

C(M,N)HM
[(
A× [−1, 1]N ) ∩ f−1

ε (z)
]

≥
∫

RN
HM−N

[(
A× [−1, 1]N ) ∩ f−1

ε (z) ∩�−1(y)
]
dLN(y)

=
∫
[−1,1]N

HM−N
[
A ∩ f−1(z− εy)] dLN(y) .
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Thus

2N LM(A) ε [ε + Lip (f )]N−1

≥
∫
A×[−1,1]N

JNfε dLM+N

≥ 1

C(M,N)

∫
RN

∫
[−1,1]N

HM−N
[
A ∩ f−1(z− εy)] dLN(y) dLN(z)

= 1

C(M,N)

∫
[−1,1]N

∫
RN

HM−N
[
A ∩ f−1(z− εy)] dLN(z) dLN(y)

= 2N

C(M,N)

∫
RN

HM−N
[
A ∩ f−1(z)

]
dLN(z)

holds, where the last equation holds by translation invariance. Letting ε ↓ 0, we
see that ∫

RN
HM−N

[
A ∩ f−1(z)

]
dLN(z) = 0 . ��

Corollary 5.2.6. If f : RM → RN is a Lipschitz function andM ≥ N, then∫
A

g(x) JNf (x) dLM(x) =
∫

RN

∫
A∩f−1(y)

g dHM−N dLN(y) (5.24)

holds for each Lebesgue measurable subset A of RM and each nonnegative LM -
measurable function g : A→ R.

Remark 5.2.7. Observe that whenM = ν and g ≡ 1, the integral with respect to 0-
dimensional Hausdorff measure overA∩f−1(y) gives the cardinality ofA∩f−1(y).

Proof. Approximate g by simple functions. ��

5.3 The Area and Coarea Formulas for C1 Submanifolds

Definition 5.3.1. By an M-dimensional C1 submanifold of RN we will mean a set
S ⊆ RN for which each point has an open neighborhood V in RN such that there
exists a one-to-one C1 map φ : U → RN , where U ⊆ RM is open, with

(1) Dφ of rankM at all points of U ,
(2) φ(U) = V ⋂ S.

Remark 5.3.2. The object defined in Definition 5.3.1 is sometimes called a regularly
embedded C1 submanifold.

Definition 5.3.3. Suppose that S is anM-dimensional C1 submanifold of RN . Let x
be a point of S and let φ be as in Definition 5.3.1.
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(1) The range of Dφ(u), u ∈ U , will be called the tangent space to S at x = φ(u)
and will be denoted by TxS.

(2) Now suppose x ∈ S and f : W → Rν , where W contains a neighborhood of x
in S. We say that f is differentiable relative to S at x if there is f̃ : W̃ → Rν

such that
(a) W̃ is a neighborhood of x in RN ,
(b) f

∣∣
S∩W̃ = f̃

∣∣
S∩W̃ ,

(c) f̃ is differentiable at x.
In case f is differentiable relative to S at x, we will call the restriction ofDf̃ (x)
to TxS the differential of f relative to S at x and we will denote Df̃ (x)

∣∣
TxS

by
DSf (x).

(3) For K ≤ M , we define the K-dimensional Jacobian of f relative to S at x,
denoted by JSK f (x), by setting

J SK f (x) = sup

{HK [DSf (P )]
HK [P ] :

P is a K-dimensional parallelepiped contained in TxS
}
.

(5.25)

Remark 5.3.4. In case ν = 1, we define the gradient of f relative to S to be that
vector ∇Sf (x) ∈ TxS for which

〈DSf, v 〉 = ∇Sf (x) · v
holds for allv ∈ TxS. If fact,∇Sf (x) is simply the orthogonal projection of grad f̃ (x)
on TxS, where f̃ is as in (2) of the preceding definition.

Lemma 5.3.5. Suppose S is anM-dimensional C1 submanifold of RN . Suppose the
Rν-valued function f is differentiable relative to S at x.

(1) IfM ≤ ν, then
J SM f ·HM [P ] = HM [DSf (P )]

holds for anyM-dimensional parallelepiped P contained in TxS.
(2) If ν ≤ M , then

J Sν f ·Hν[P ] = Hν[DSf (P )]
holds for any ν-dimensional parallelepiped P contained in the orthogonal com-
plement of kerDSf in TxS.

Proof. (1) Choose the orthonormal coordinate system in RN so that TxS is the span
of e1, e2, . . . , eM . With this choice of coordinate system,DSf can be represented by
an ν ×M matrix T .

Consider two M-dimensional parallelepipeds P1 and P2 contained in TxS. For
i = 1, 2, let Vi be theM ×M matrix whose columns are the vectors that determine
Pi . There is a nonsingularM ×M matrix A such that V2 equals the matrix product
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AV1 (recall that we assume that ourM-dimensional parallelepipeds are determined
byM linearly independent vectors).

Using Proposition 5.1.2, we compute

HM [P1] =
√

det(V t
1 V1) = |det(V1)| ,

HM [P2] =
√
V
t
2 V2 =

√
V
t
1 A

t V1A = |det(A)| |det(V1)| ,

HM [DSf (P1)] =
√

det(V t
1 T

t T V1) =
√

det(T t T ) |det(V1)| ,

HM [DSf (P2)] =
√

det(V t
2 T

t T V2) ,

=
√

det(V t
1 A

t T t T AV1) =
√

det(T t T ) |det(A)| |det(V1)| ,
and the result follows.

(2) If P is a ν-dimensional parallelepiped and P̃ is its orthogonal projection on the
orthogonal complement of the kernel ofDSf , then we haveDSf (P ) = DSf (P̃ ) and
Hν(P ) ≥ Hν(P̃ ). Thus the supremum in (5.25) will be realized by a parallelepiped
contained in the orthogonal projection on the orthogonal complement of the kernel
of DSf .

Choosing the orthonormal coordinate system in RN so that the orthogonal com-
plement of the kernel ofDSf is the span of e1, e2, . . . , eν , and arguing as in the proof
of (1), we see that the supremum is realized by any such parallelepiped. ��
Lemma 5.3.6. Suppose that M ≤ ν, S is an M-dimensional C1 submanifold of
RN , and φ is as in Definition 5.3.1 above. If the Rν-valued function f is C1 in a
neighborhood of x in S and if x = φ(u), then

J SM f [φ(u)] JMφ(u) = JM(f ◦ φ)(u) .
Proof. Let P be an M-dimensional parallelepiped contained in RM . By Def-
inition 5.1.3 and Lemma 5.1.4, we have HM [Dφ(P )] = JMφ(u)HM [P ] and
HM [D(f ◦ φ)(P )] = JM(f ◦ φ)(u)HM [P ]. By Lemma 5.3.5, we have
HM [DS(φ(P ))] = J SM f HM [Dφ(P )]. Since DS(φ(P )) = D(f ◦ φ)(P ), we con-
clude that

J SM f JMφ(u)HM [P ] = J SM f HM [Dφ(P )]

= HM [DS(φ(P ))]
= HM [D(f ◦ φ)(P )]
= JM(f ◦ φ)(u)HM [P ] ,

from which the result follows. ��



146 5 Analytical Tools: TheArea Formula, the Coarea Formula, and Poincaré Inequalities

We now can prove the following version of the area formula forC1 submanifolds.

Theorem 5.3.7. Suppose M ≤ ν and f : RN → Rν is Lipschitz. If S ⊆ RN is an
M-dimensional C1 submanifold, then∫

S

g J SM f dHM =
∫

Rν
g(y) card(S ∩ f−1(y)) dHM(y)

for every HM -measurable function g.

Proof. It suffices to consider g ≡ 1 and S = φ(U), where φ : U → RN . By part (1)
of Lemma 5.3.5 and Corollary 5.1.13, we have∫

S

J SM f dHM =
∫
U

JSM f [φ(u)] JMφ(u) dLM(u)

=
∫
U

JM(f ◦ φ)(u) dLM(u)

=
∫

Rν
card(U ∩ (f ◦ φ)−1(y)) dHM(y)

=
∫

Rν
card(S ∩ f−1(y)) dHM(y) . ��

Lemma 5.3.8. Suppose that ν < M , S is an M-dimensional C1 submanifold of
RN , and φ is as in Definition 5.3.1 above. If the Rν-valued function f is C1 in a
neighborhood of x in S and if z = f (x), then

Jν (f ◦ φ) · J (f ◦φ)
−1(z)

M−ν φ = JM φ · J Sν f . (5.26)

Proof. The two linear functions D(f ◦ φ) and DSf clearly have the same rank. If
that common rank is less than ν, then both sides of (5.26) are zero. Thus we may
assume that both functions have rank ν.

Let � : TxS → TxS be orthogonal projection onto the orthogonal complement
of kerDSf . Choose an (M − ν)-dimensional parallelepiped P1 in kerD(f ◦ φ) and
a ν-dimensional parallelepiped P2 in the orthogonal complement of kerD(f ◦ φ).
Since Dφ maps kerD(f ◦ φ) onto kerDSf , we have

HM [(Dφ(P1))× (� ◦Dφ(P2))] = HM [(Dφ(P1))× (Dφ(P2))] . (5.27)

Since � ◦Dφ(P2) is a ν-dimensional parallelepiped in the orthogonal complement
of kerDSf and P2 is a ν-dimensional parallelepiped in the orthogonal complement
of kerD(f ◦ φ), Lemma 5.3.5 gives us

J Sν f ·Hν[� ◦Dφ(P2)] = Hν[DSf (� ◦Dφ(P2))]
= Hν[DSf ◦Dφ(P2)]
= Hν[D(f ◦ φ)(P2)]
= Jν (f ◦ φ) ·Hν[P2] . (5.28)
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We also have
J
(f ◦φ)−1(z)
M−ν φ ·HM−ν[P1] = HM−ν[Dφ(P1)] . (5.29)

Combining (5.28) and (5.29), using (5.27), and applying Lemma 5.3.5 again, we
obtain

Jν (f ◦ φ) · J (f ◦φ)
−1(z)

M−ν φ ·HM−ν[P1] ·Hν[P2]

= J Sν f ·HM−ν[Dφ(P1)] ·Hν[� ◦Dφ(P2)]
= J Sν f ·HM [(Dφ(P1))× (� ◦Dφ(P2))]
= J Sν f ·HM [(Dφ(P1))× (Dφ(P2))]
= J Sν f ·HM [Dφ(P1 × P2)]
= J Sν f · JM φ ·HM [P1 × P2]

= J Sν f · JM φ ·HM−ν[P1] ·Hν[P2] ,
and the result follows. ��

To end this section, we prove the coarea formula for C1 submanifolds. As we
shall see in the next section, the condition that f be C1 is not essential; it suffices to
assume only that f is Lipschitz.

Theorem 5.3.9. Suppose M ≥ ν and f : RN → Rν is C1. If S ⊆ RN is an
M-dimensional C1 submanifold, then∫

S

g J Sν f dHM =
∫

Rν

∫
S∩f−1(y)

g dHM−ν dHν(y)

for every HM -measurable function g.

Proof. It suffices to consider g ≡ 1 and S = φ(U), where φ : U → RN . By
Lemma 5.3.5 and Theorem 5.3.7, we have∫

S

J Sν f dHM =
∫
U

JSν f (x)JM φ(u) dLM

=
∫

Rν
Jν (f ◦ φ) J (f ◦φ)

−1(z)
M−ν φ dHM−ν dHν(y)

=
∫

Rν

∫
U∩(f ◦φ)−1(y)

J
(f ◦φ)−1(z)
M−ν φ dHM−ν dHν(y)

=
∫

Rν

∫
S∩f−1(y)

dHM−ν dHν(y) . ��
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5.4 Rectifiable Sets

Definition 5.4.1. LetM be an integer with 1 ≤ M ≤ N . A set S ⊆ RN is said to be
countablyM-rectifiable if

S ⊆ S0

⋃⎛⎝ ∞⋃
j=1

Fj (R
M)

⎞⎠ ,
where

(1) HM(S0) = 0;
(2) Fj : RM → RN are Lipschitz functions, j = 1, 2, . . . .

We will usually use countablyM-rectifiable sets in conjunction with the hypoth-
esis of HM -measurability and the assumption that the intersection with any compact
set has finite Hausdorff measure.

Our terminology follows that of [Sim 83] rather than that of [Fed 69]. The dis-
tinction here is that we are allowing the set S0 with HM(S0) = 0, but that set is
excluded in [Fed 69].

It is easy to see that a Lipschitz function f : A → RN can be extended to a
Lipschitz function F : RM → R with Lip (F ) bounded by a constant multiple4 of
Lip (f ). Thus condition (2) in Definition 5.4.1 is equivalent to mandating that

S = S0
⋃⎛⎝ ∞⋃

j=1

Fj (Sj )

⎞⎠ ,
where HM(S0) = 0, Sj ⊆ RM , and Fj : Sj → RN is Lipschitz. In practice this is
the way that we think of anM-rectifiable set.

Lemma 5.4.2. The set S is countably M-rectifiable (1 ≤ M) if and only if S ⊆⋃∞
j=0 Tj , where HM(T0) = 0 and where each Tj for j ≥ 1 is an M-dimensional,

embedded C1 submanifold of RN .

Proof. The “if’’ direction of the result is trivial. For the “only if’’ part, we use
Theorem 5.1.12. Specifically, we select C1 functions h(j)1 , h

(j)

2 , . . . such that if Fj
are Lipschitz functions as in Definition 5.4.1, then

Fj (R
M) ⊆ Ej ⋃( ∞⋃

�=1

h
(j)
� (R

M)

)
, j = 1, 2, . . . ,

where HM(Ej ) = 0. Then set

4 The deeper result that an R
N -valued function on a subset of R

M can be extended without
increasing the Lipschitz constant is Kirszbraun’s theorem (see [Fed 69] or [KPk 99]).
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C�j =
{
x ∈ RM : JM h(j)� (x) = 0

}
,

where JM h
(j)
� (x) denotes the M-dimensional Jacobian of h(j)� at x (see Defini-

tion 5.1.3), and define

T0 =
⎛⎝ ∞⋃
j=1

Ej

⎞⎠⋃⎛⎝ ∞⋃
�,j=1

h
(j)
� (C�j )

⎞⎠ .
Theorem 5.1.1, the area formula, now tells us that HM

(⋃∞
�,j=1 h

(j)
� (C�j )

)
= 0 and

hence HM(T0) = 0.
Because the open set RM \ C�j consists only of points at which JM h

(j)
� is non-

vanishing, RM \ C�j can be written as the union of countably many open sets U�jk
that may be chosen small enough that each T�jk = h(j)� (U�jk) is anM-dimensional,
embedded C1 submanifold of RN . Then we have

S ⊆ T0 ∪
∞⋃

�,j,k=1

T�jk ,

as required. ��
Proposition 5.4.3. Suppose M ≥ 1. If the set S is HM -measurable and countably
M-rectifiable, then S =⋃∞

j=0 Sj , where

(1) HM(S0) = 0,
(2) Si

⋂
Sj = ∅ if i �= j ,

(3) for j ≥ 1, Sj ⊆ Tj , and Tj is anM-dimensional, embedded C1 submanifold of
RN .

Proof. Let the Tj be as in Lemma 5.4.2. Define the Sj inductively by setting S0 =
S
⋂
T0 and Sj+1 = (S⋂ Tj+1) \⋃ji=0 Si . ��

Definition 5.4.4. Let S ⊆ RN be HM -measurable with HM(S ∩ K) < ∞ for ev-
ery compact K . We say that an M-dimensional linear subspace W of RN is the
approximate tangent space to S at x ∈ RN if

lim
λ→0+

∫
λ−1(S−x)

f (y) dHM(y) =
∫
W

f (y) dHM(y)

for all compactly supported continuous functions f . Here

y ∈ λ−1(S − x)⇐⇒ λy + x ∈ S⇐⇒ y = λ−1(z− x) for some z ∈ S .
Of course, if S is anM-dimensionalC1 submanifold of RN , then the approximate

tangent space coincides with the usual tangent space arising from the smooth structure.
When S is not aC1 submanifold, there may exist various exceptional points x of S for
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which there is a setW that is not anM-dimensional linear subspace, but nonetheless
ought to be considered a tangent object for S at x—for example, at a vertex of a
simplex. Even so, our definition will be justified by the fact that in the case that S is
countablyM-rectifiable, the set of such exceptional points x has HM measure zero.

Notation 5.4.5. When the approximate tangent space to S at x exists, we will denote
it by TxS. Here the dimensionM should always be understood to be the Hausdorff
dimension of S. This notation extends that introduced in Definition 5.3.3, (1).

Theorem 5.4.6. If S is HM -measurable and countablyM-rectifiable and if HM(S ∩
K) < ∞ holds for every compact K ⊆ RN , then TxS exists for HM -almost every
x ∈ S.

Proof. Write S as in Proposition 5.4.3 and consider j ≥ 1. By Corollary 4.3.10, we
have (using the notation of Proposition 5.4.3)

�∗M [HM (S \ Sj ), x] = 0

for HM -almost every x ∈ Sj . By Theorem 4.3.5, we have

lim
r↓0

HM [Sj ⋂B(x, r)]
HM [Tj ⋂B(x, r)] = 1

for HM -almost every x ∈ Sj . Since Tj is anM-dimensional C1 submanifold of RN ,
the result follows with TxS = TxTj . ��
Definition 5.4.7. Suppose that the set S is HM -measurable and countably M-recti-
fiable and suppose that HM(S ∩ K) < ∞ holds for every compact K ⊆ RN . Let
f : S → Rν . We define DSf and J SK , K ≤ M , by writing S as in Proposition 5.4.3
and setting

DSf (x) = DTj f (x) ,

J SK f (x) = J TjK f (x)
whenever j ≥ 1 and the respective right-hand side exists. We call DSf the approx-
imate differential of f and JSK f the approximate K-dimensional Jacobian of f . In
case ν = 1, we similarly define the approximate gradient of f , denoted by ∇Sf .

Now that the requisite definitions have been made, the area and coarea formulas
for countablyM-rectifiable sets follow readily from the corresponding results for C1

submanifolds.

Theorem 5.4.8. Suppose that M ≤ ν and f : RN → Rν is Lipschitz. If S ⊆ RN

is HM -measurable and countably M-rectifiable and if HM(S ∩ K) < ∞ holds for
every compact K ⊆ RN , then J SM f exists HM -almost everywhere in S and∫

S

g J SM f dHM =
∫

Rν
g(y) card(S ∩ f−1(y)) dHM(y)

holds for every HM -measurable function g.



5.5 Poincaré Inequalities 151

Proof. Write S as in Proposition 5.4.3 and apply Theorem 5.3.7. ��
Theorem 5.4.9. Suppose M ≥ ν and f : RN → Rν is Lipschitz. If S ⊆ RN is
HM -measurable and countably M-rectifiable and if HM(S ∩ K) < ∞ holds for
every compact K ⊆ RN , then J Sν f exists HM -almost everywhere in S and∫

S

g J Sν f dHM =
∫

Rν

∫
S∩f−1(y)

g dHM−ν dHν(y)

holds for every HM -measurable function g.

Proof. Write S as in Proposition 5.4.3 and, using Theorem 5.1.12 to approximate the
Lipschitz map f by C1 maps, apply Theorem 5.3.7. ��

5.5 Poincaré Inequalities

The Poincaré inequalities5 are like a weak version of the Sobolev inequalities6 (see
[Zie 89, Section 2.4] for an introduction to Sobolev inequalities). They are of a priori
interest, but they also are adequate for many of our applications in geometric measure
theory.

We shall require a bit of preliminary machinery in order to formulate and prove the
results that follow. In most partial differential equations texts, the Poincaré inequali-
ties are formulated for smooth testing functions. Here we must have such inequalities
for functions of bounded variation. So some extra effort is required.

A function u on a domain U ⊆ RN is said to be of local bounded variation on
U , written u ∈ BVloc(U), if for each W ⊂⊂ U there is a constant c = c(W) < ∞
such that ∫

W

u(x) div g(x) dLN(x) ≤ c(W) · sup |g| (5.30)

holds for all compactly supported, vector-valued functions g = (g1, . . . , gN) with
each gj ∈ C∞(W). For convenience we denote the space of such g by KW(U,RN).
Then we see from (5.30) that the linear functional

KW(U,RN) % g �−→
∫
W

u(x) div g(x) dLN(x)

is bounded in the supremum norm. Thus the Riesz representation theorem, i.e.,
Theorem 4.4.1, tells us that there is a Radon measure µ on U and a µ-measurable
function ν = (ν1, . . . , νN), with |ν| = 1 almost everywhere, such that7

5 Jules Henri Poincaré (1854–1912).
6 Sergei Lvovich Sobolev (1908–1989).
7 Of course, the usual formulation of the Riesz theorem does not include the vector-valued

function ν. That function is necessitated by the fact that g is vector-valued. The extension
of Riesz’s theorem to the vector-valued case is routine.
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U

u(x) div g(x) dLN(x) =
∫
U

g(x) · ν(x) dµ(x) .

In the language of distribution theory, the weak derivatives Dju of u are repre-
sented by the signed measures νjdµ, j = 1, . . . , N . It is thus convenient to denote
the total variation measure8 µ by |Du|.

We will find it useful in our discussions to use Friedrichs mollifiers9 to smooth
our bounded variation functions.

Definition 5.5.1. We call ϕ a mollifier if (see Figure 5.3)

Fig. 5.3. The graph of a mollifier.

• ϕ ∈ C∞(RN);
• ϕ ≥ 0;
• suppϕ ⊆ B(0, 1);

•
∫

RN
ϕ(x) dLN(x) = 1;

• ϕ(x) = ϕ(−x).
For σ > 0 we set ϕσ (x) = σ−Nϕ(x/σ). We call {ϕσ }σ>0 a family of mollifiers or an
approximation to the identity.

In case f ∈ L1
loc(R

N) and σ > 0, we define

fσ (x) = f ∗ ϕσ (x) =
∫

RN
f (z) ϕσ (x − z) dLN(z) =

∫
RN
f (x − z) ϕσ (z) dLN(z) .

(5.31)
Then fσ ∈ C∞ and fσ converges back to f in a variety of senses. In particular,
fσ → f pointwise almost everywhere and fσ → f in the L1

loc topology. In case
f is continuous then fσ converges uniformly on compact sets to f . The reference
[SW 71] contains details of these assertions.

We begin with a version of the Poincaré inequality for smooth functions. If f is
a Lebesgue measurable function and U is a subset of positive Lebesgue measure of
the domain of f then we let

8 Indeed, if u ∈ W1,1
loc (U) then dµ = |Du|dLN and νj = Dju|Du| provided |Du| �= 0.

9 Kurt Otto Friedrichs (1901–1982).
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fU = 1

LN(U)

∫
U

f (t) dLN(t) (5.32)

be the average of f over U .

Lemma 5.5.2. Let U be a bounded, convex, open subset of RN . Let f be a continu-
ously differentiable function on U . Then there is a constant c = c(U) such that∫

U

|f − fU | dLN ≤ c ·
∫
U

|Df | dLN .

Proof. We will use the notation |U | = LN(U). We calculate that∫
U

|f − fU | dLN =
∫
U

∣∣∣∣f (x)− 1

|U |
∫
U

f (t) dLN(t)
∣∣∣∣ dLN(x)

=
∫
U

∣∣∣∣ 1

|U |
∫
U

[ f (x)− f (t) ] dLN(t)
∣∣∣∣ dLN(x)

≤ 1

|U |
∫
U

∫
U

|f (x)− f (t)| dLN(x) dLN((t)

= 1

|U |
∫
U

∫
U

∣∣∣∣∣
∫ 1

0

d

ds
f ((1− s)t + sx) dL1(s)

∣∣∣∣∣ dLN(x) dLN(t)
≤ 1

|U |
∫
U

∫
U

∫ 1

0
|Df ((1− s)t + sx)| · |x − t | dL1(s) dLN(x) dLN(t)

≤ diam (U) · 1

|U |
∫
U

∫
U

∫ 1

0
|Df ((1− s)t + sx)| dL1(s) dLN(x) dLN(t)

= diam (U) · 1

|U |
∫
U

∫ 1/2

0

(∫
U

|Df ((1− s)t + sx)| dLN(t)
)
dL1(s) dLN(x)

+ diam (U) · 1

|U |
∫
U

∫ 1

1/2

(∫
U

|Df ((1− s)t + sx)| dLN(x)
)
dL1(s) dLN(t) .

For 1/2 ≤ s ≤ 1, by making the change of variable x̂ = (1− s)t + sx, we see that∫
U

|Df ((1− s)t + sx)| dLN(x) =
∫
Û

|Df (̂x)| s−N dLN (̂x) ,

where
Û = {(1− s)t + sx : x ∈ U} .

Observing that Û ⊆ U , we obtain∫
Û

|Df (̂x)| s−N dLN (̂x) ≤ s−N ‖Df ‖L1(U) ≤ 2N ‖Df ‖L1(U) .
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Similarly, for 0 ≤ s ≤ 1/2 we have∫
U

|Df ((1− s)t + sx)| dLN(t) ≤ 2N ‖Df ‖L1(U) .

We conclude that∫
U

|f − fU | dLN ≤ diam(U) · 1

|U | · 2
N ‖Df ‖L1(U)

∫
U

dLN

= 2N diam(U) ‖Df ‖L1(U) . ��
Remark 5.5.3. Observe that we used the convexity property of U in order to invoke
the fundamental theorem of calculus in line 4 of the calculation. In fact, with extra
effort, a result may be proved on a smoothly bounded domain. One then instead uses
a piecewise linear curve with the fundamental theorem.

Next we wish to replace the average fU in the statement of the lemma with a
more arbitrary constant.

Lemma 5.5.4. Let β ∈ R and 0 < θ < 1 be constants. Let f and U be as in
Lemma 5.5.2, and let fU be as in (5.32). Assume that

LN {x ∈ U : f (x) ≥ β} ≥ θ LN(U)
and

LN {x ∈ U : f (x) ≤ β}| ≥ θ LN(U) .
Then there is a constant C = C(θ) such that∫

U

|f (x)− β| dLN(x) ≤ θ−1(1+ θ) ·
∫
U

|f (x)− fU | dLN(x) .
Proof. We write

U+ = {x ∈ U : f (x) ≥ β} , U− = {x ∈ U : f (x) ≤ β} .
First we shall prove that∫

U

|fU − β| dLN ≤ C ·
∫
U

|f (x)− fU | dLN(x) .
We consider two cases:

(1) First we treat the case β > fU . Then we have∫
U

|fU − β| dLN =
∫
U

(β − fU) dLN

= LN(U) · (β − fU)

≤ LN(U) ·
[(

1

LN(U+)

∫
U+
f (x) dLN(x)

)
− fU

]

= LN(U) ·
(

1

LN(U+)

∫
U+
(f (x)− fU) dLN(x)

)
.
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Now, on the set where f ≥ β we certainly have, since β > fU , that f > fU .
Therefore the last line is (by our hypotheses about θ and β)

≤ C ·
∫
U

|f (x)− fU | dLN(x) .

Thus ∫
U

|fU − β| dLN ≤ C ·
∫
U

|f (x)− fU | dLN(x) .
(2) Now we treat the case β ≤ fU . Then we have∫

U

|fU − β| dLN =
∫
U

(fU − β) dLN

≤ LN(U) ·
(
fU − 1

LN(U−)

∫
U−
f (x) dLN(x)

)

= LN(U) ·
(

1

LN(U−)

∫
U−
(fU − f (x)) dLN(x)

)
.

Now clearly f ≤ β ≤ fU on U−. So we may estimate the last line, in view of
our hypotheses about θ and β, by

C ·
∫
U

|fU − f (x)| dLN(x) .

We have the simple estimates∫
U

|f (x)− β| dLN(x) ≤
∫
U

|f (x)− fU | dLN(x)+
∫
U

|fU − β| dLN(x)

≤
∫
U

|f (x)− fU | dLN(x)+ C ·
∫
U

|f (x)− fU | dLN(x) .

That is the desired result. ��
Theorem 5.5.5. Let U be a bounded, convex, open subset of RN . Let β, θ be as in
Lemma 5.5.4. Let f be a continuously differentiable function on U . Then∫

U

|f − β| dLN ≤ c ·
∫
U

|Df | dLN .

Proof. Combine the two lemmas. ��
Theorem 5.5.6. Let U be a bounded, convex, open subset of RN . Let β, θ be as in
Lemma 5.5.4. Let u be a function of bounded variation on U . Then∫

U

|u− β| dLN ≤ c ·
∫
U

|Du| .
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Proof. Use a standard approximation argument to reduce the result to the preceding
theorem. ��

Our next Poincaré inequality mediates between the variation of a function on RN

and its variation on the natural domain of support U . Of course, the boundary of U
will play a key role in the result.

Theorem 5.5.7. Let U ⊆ RN be a bounded, open, and convex domain. If u ∈
BVloc(R

N) with supp u ⊆ U , then there is a constant c = c(U) such that∫
RN
|Du| dLN ≤ c ·

(∫
U

|Du| +
∫
U

|u| dLN
)
.

Proof. For δ > 0 small, set Uδ = {x ∈ U : dist(x, ∂U) > δ}. Let φδ be a compactly
supported C∞ function satisfying

(1) φδ = 1 in Uδ;
(2) φδ = 0 in RN \ Uδ/2;
(3) 0 ≤ φδ ≤ 1 in RN ;
(4) for some point a ∈ U and some c = c(U, a) > 0,

|Dφδ(x)| ≤ −c · (x − a) ·Dφδ(x) for all x ∈ U .
Condition (4) is perhaps unfamiliar, and merits some discussion. The point a should
be thought of as lying in the “middle’’ of U , and its existence as mandated in (4) is
simply a manifestation of the starlike quality of U (see Figure 5.4). The effect of the
boundary of U will be expressed via the value of c(U, a) in condition (4).

a

x

Fig. 5.4. The point a representing the middle of the set U .

We now apply the definition of |Dw| with w = φδ · u to obtain∫
RN
|D(φδ · u)| dLN ≤

∫
RN
|Dφδ| · |u| dLN +

∫
RN
φδ · |Du| . (5.33)
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Property (4) of the function φδ tells us that∫
RN
|Dφδ| · |u| dLN ≤ −c

∫
RN
[(x − a) ·Dφδ] · |u| dLN(x) .

Notice that

−
∫

RN
div [(x − a) · φδ] · |u| dLN = −

∫
RN
N · φδ · |u| + (x − a) ·Dφδ · |u| dLN .

Here we have used the fact that div (x−a) = N , the dimension of the ambient space.
Thus we see that∫

RN
−div [(x − a) · φδ] · |u| +Nφδ|u| dLN =

∫
RN
(x − a) ·Dφδ · |u| dLN .

In conclusion,∫
RN
|Dφδ| · |u| dLN ≤ c ·

∫
RN
(−|u| · div ((x − a)φδ)+N |u|φδ) dLN(x) .

This last is majorized by

c

(∫
U

∣∣D|u| ∣∣+ ∫
RN
|u| dLN

)
≤ c

(∫
U

|Du| dLN +
∫

RN
|u| dLN

)
. (5.34)

Here we have used the definition of
∣∣D|u| ∣∣ and the fact that

∣∣D|u| ∣∣ ≤ |Du| as seen
by a standard approximation argument.

Now it is not difficult to verify that∫
RN
|Du| dLN ≤ lim inf

δ→0+

∫
RN
|D(φδu)| . (5.35)

The result follows by combining (5.33), (5.34), and (5.35). ��
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The Calculus of Differential Forms and
Stokes’s Theorem

In this chapter, we give a brief treatment of the classical theory of differential forms
and Stokes’s theorem. These topics provide motivation for the more abstract theory
of currents.

6.1 Differential Forms and Exterior Differentiation

Multilinear Functions and m-Covectors
The dual space of RN is very useful in the formulation of line integrals (see Appen-
dices A.2 and A.3), but to define surface integrals we need to go beyond the dual
space to consider functions defined on ordered m-tuples of vectors.

Definition 6.1.1. Let (RN)m be the Cartesian product of m copies of RN .

(1) A function φ : (RN)m → R is m-linear if it is linear as a function of each of its
m arguments; that is, for each 1 ≤ � ≤ m, it holds that

φ(u1, . . . , u�−1, αu+ βv, u�+1, . . . , um)

= α φ(u1, . . . , u�−1, u, u�+1, . . . , um)

+ β φ(u1, . . . , u�−1, v, u�+1, . . . , um) ,

whereα, β ∈ R andu, v, u1, . . . , u�−1, u�+1, . . . , um ∈ RN . The more inclusive
term multilinear means m-linear for an appropriate m.

(2) A function φ : (RN)m→ R is alternating if interchanging two arguments results
in a sign change for the value of the function; that is, for 1 ≤ i < � ≤ m, it holds
that

φ(u1, . . . , ui−1, ui, ui+1, . . . , u�−1, u�, u�+1, . . . , um)

= − φ(u1, . . . , ui−1, u�, ui+1, . . . , u�−1, ui, u�+1, . . . , um) ,

where u1, . . . , um ∈ RN .

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
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(3) We denote by
∧m
(RN) the set ofm-linear, alternating functions from (RN)m to

R. We endow
∧m
(RN) with the usual vector space operations of addition and

scalar multiplication, namely,

(φ + ψ)(u1, u2, . . . , um) = φ(u1, u2, . . . , um)+ ψ(u1, u2, . . . , um)

and
(α φ)(u1, u2, . . . , um) = α · φ(u1, u2, . . . , um) ,

so
∧m
(RN) is itself a vector space. The elements of

∧m
(RN) are called m-

covectors of RN .

Remark 6.1.2.

(1) In case m = 1, requiring a map to be alternating imposes no restriction; also,
1-linear is the same as linear. Consequently, we see that

∧1
(RN) is the dual

space of RN ; that is,
∧1
(RN) = (RN)∗.

(2) Recalling that the standard basis for RN is written e1, e2, . . . , eN,we let e∗i denote
the dual of ei defined by

〈 e∗i , ej 〉 =
{

1 if j = i,
0 if j �= i.

Then e∗1, e∗2, . . . , e∗N form the standard dual basis for (RN)∗.
(3) If x1, x2, . . . , xN are the coordinates in RN , then it is traditional to use the alter-

native notation dxi to denote the dual of ei ; that is,

dxi = e∗i , for i = 1, 2, . . . , N .

Example 6.1.3. The archetypical multilinear, alternating function is the determinant.
As a function of its columns (or rows), the determinant of an N -by-N matrix is N -
linear and alternating. It is elementary to verify that every element of

∧N
(RN) is a

real multiple of the determinant function. ��
The next definition shows how we can extend the use of determinants to define

examples of m-linear, alternating functions when m is strictly smaller than N .

Definition 6.1.4. Let a1, a2, . . . , am ∈∧1
(RN) be given. Each ai can be written

ai = ai 1 dx1 + ai 2 dx2 + · · · + ai N dxN .
We define a1 ∧ a2 ∧ · · · ∧ am ∈ ∧m

(RN), called the exterior product of
a1, a2, . . . , am, by setting

(a1 ∧ a2 ∧ · · · ∧ am)(u1, u2, . . . , um)

= det

⎡⎢⎢⎢⎢⎣
⎛⎜⎜⎜⎝
a1 1 a1 2 . . . a1N
a2 1 a2 2 . . . a2N
...
...

...

am 1 am 2 . . . amN

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
u1 1 u1 2 . . . u1m
u2 1 u2 2 . . . u2m
...
...

...

uN 1 uN 2 . . . uN m

⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎦ , (6.1)
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where the uij are the components of the vectors u1, u2, . . . , um ∈ RN ; that is, each
uj is given by

uj = u1 j e1 + u2 j e2 + · · · + uN j eN .

To see that the function in (6.1) is m-linear and alternating, rewrite it in the form

(a1 ∧ a2 ∧ · · · ∧ am)(u1, u2, . . . , um)

= det

⎛⎜⎜⎜⎝
〈a1, u1〉 〈a1, u2〉 . . . 〈a1, um〉
〈a2, u1〉 〈a2, u2〉 . . . 〈a2, um〉
...

...
...

〈am, u1〉 〈am, u2〉 . . . 〈am, um〉

⎞⎟⎟⎟⎠ , (6.2)

where 〈ai, uj 〉 is the dual pairing of ai and uj (see Section A.2).
Elements of

∧mRN that can be written in the form a1 ∧ a2 ∧ · · · ∧ am are called
simple m-covectors.

Recall that
∧
m (R

N) is the space ofm-vectors in RN defined in Section 1.4. It is
easy to see that any element of

∧m
(RN) is well-defined on

∧
m (R

N) (just consider
the equivalence relation in Definition 1.4.1). Thus

∧m
(RN) can be considered the

dual space of
∧
m (R

N). Evidently

dxi1 ∧ dxi2 ∧ · · · ∧ dxim , 1 ≤ i1 < i2 < · · · < im ≤ N , (6.3)

is the dual basis to the basis

ei1 ∧ ei2 ∧ · · · ∧ eim , 1 ≤ i1 < i2 < · · · < im ≤ N ,
for
∧
m (R

N).

Differential Forms

Definition 6.1.5. Let W ⊂ RN be open. A differential m-form on W is a function
φ : W → ∧m

(RN). We call m the degree of the form. We say that the differential
m-form φ is Ck if for each set of (constant) vectors v1, v2, . . . , vm, the real-valued
function 〈φ(p), v1 ∧ v2 ∧ · · · ∧ vm〉 is a Ck function of p ∈ W .

The differential form can be rewritten in terms of a basis and component functions
as follows: For each m-tuple 1 ≤ i1 < i2 < · · · < im ≤ N , define the real-valued
function

φi1,i2,...,im(p) = 〈φ(p), ei1 ∧ ei2 ∧ · · · ∧ eim〉 .
Then we have

φ =
∑

1≤i1<i2<···<im≤N
φi1,i2,...,im dxi1 ∧ dxi2 ∧ · · · ∧ dxim .

The natural role for a differentialm-form is to serve as the integrand in an integral
over an m-dimensional surface. This is consistent with and generalizes integration
of a 1-form along a curve.
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Definition 6.1.6. Suppose

(1) the m-dimensional surface S ⊆ RN is parametrized by the function F : U →
RN , where U is an open subset of Rm; that is, F is a one-to-one Ck (k ≥ 1)
function, DF is of rank m, and S = F(U),

(2) W ⊆ RN is open with F(U) ⊆ W , and
(3) φ is a differential m-form onW .

Then the integral of φ over S is defined by∫
S

φ =
∫
U

〈
φ ◦ F(t), ∂F

∂t1
∧ ∂F
∂t2

∧ · · · ∧ ∂F
∂tm

〉
dLm(t) (6.4)

whenever the right-hand side of (6.4) is defined.

The surface S in Definition 6.1.6 is an oriented surface for which the orientation is
induced by the orientation on Rm and the parametrizationF . The value of the integral
is unaffected by a reparametrization as long as the reparametrization is orientation-
preserving.

Exterior Differentiation
In Appendix A.3 one can see how the exterior derivative of a function allows the
fundamental theorem of calculus to be applied to the integrals of 1-forms along
curves. The exterior derivative of a differential form, which we discuss next, is
the mechanism that allows the fundamental theorem of calculus to be extended to
higher-dimensional settings.

Definition 6.1.7. Suppose that U ⊂ RN is open and f : U → R is a Ck function,
k ≥ 1.

(1) The exterior derivative of f is the 1-form df on U defined by setting

df = ∂f
∂x1
dx1 + ∂f

∂x2
dx2 + · · · + ∂f

∂xN
dxN . (6.5)

Note that (6.5) is equivalent to

〈df (p), v〉 = 〈Df (p), v〉 , (6.6)

for p ∈ U and v ∈ RN .
(2) The exterior derivative of them-form φ = f dxi1 ∧ dxi2 ∧ · · · ∧ dxim ,m ≥ 1, is

the (m+ 1)-form dφ given by setting

dφ = (df ) ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxim .
(3) The definition of exterior differentiation in (2) is extended by linearity to all Ck

m-forms, m ≥ 1.

The rules analogous to those for ordinary derivatives of sums and products of
functions are given in the next lemma.
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Lemma 6.1.8. Let φ and ψ be C1 m-forms and let θ be a C1 �-form. It holds that

(1) d(φ + ψ) = (dφ)+ (dψ),
(2) d(φ ∧ θ) = (dφ) ∧ θ + (−1)mφ ∧ (dθ).
Proof.
(1) Equation (1) follows immediately from Definition 6.1.7(3).

(2) Note that in case m = 0, equation (2) reduces to Definition 6.1.7(2) and the
usual product rule. Now suppose that m ≥ 1, φ = f dxi1 ∧ dxi2 ∧ · · · ∧ dxim , and
θ = g dxj1 ∧ dxj2 ∧ · · · ∧ dxj� . Using Definition 6.1.7(2), we compute

d(φ ∧ θ)
= d(fg) dxi1 ∧ dxi2 ∧ · · · ∧ dxim ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxj�
= [(df ) g + f (dg)] dxi1 ∧ dxi2 ∧ · · · ∧ dxim ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxj�
= [(df ) ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxim ] ∧ [g dxj1 ∧ dxj2 ∧ · · · ∧ dxj� ]
+ (−1)m[f dxi1 ∧ dxi2 ∧ · · · ∧ dxim ] ∧ [(dg) ∧ dxj1 ∧ dxj2 ∧ · · · ∧ dxj� ]

= (dφ) ∧ θ + (−1)mφ ∧ (dθ) . ��
In contrast to the situation for ordinary derivatives of functions, repeated exterior

differentiation results in a trivial form.

Theorem 6.1.9. If the differential m-form φ : U → ∧m
(RN) is Ck , k ≥ 2, then

d dφ = 0 holds.

Proof. For m = 0, φ is a real-valued function, so we have

d dφ =
∑
j �=i

∑
i

∂

∂xj

(
∂φ

∂xi

)
dxj ∧ dxi

=
∑
i<j

[
∂

∂xi

(
∂φ

∂xj

)
− ∂
∂xj

(
∂φ

∂xi

)]
dxi ∧ dxj = 0 .

For m ≥ 1 and φ = f dxi1 ∧ dxi2 ∧ · · · ∧ dxim , we have

d dφ =
∑
j �=i

j /∈{i1,i2,...,im}

∑
i /∈{i1,i2,...,im}

∂

∂xj

(
∂f

∂xi

)
dxj ∧ dxi ∧ dxi1 ∧ · · · ∧ dxim

=
∑
i<j

i,j /∈{i1,i2,...,im}

[
∂

∂xi

(
∂f

∂xj

)
− ∂
∂xj

(
∂f

∂xi

)]
dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxim

= 0 .

The result now follows from the linearity of exterior differentiation. ��
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Definition 6.1.10.

(1) An m-form φ is said to be closed if dφ = 0.
(2) An m-form φ is said to be exact if there exists an (m − 1)-form ψ such that
dψ = φ.

Remark 6.1.11. Theorem 6.1.9 tells us that every exact form is closed. It is not
the case that every closed form is exact. In fact, the distinction between closed
forms and exact forms underlies the celebrated theorem of Georges de Rham (1903–
1990) relating the geometrically defined singular cohomology of a smooth manifold
to the cohomology defined by differential forms (see [DRh 31] or Theorem 29A in
Chapter IV of [Whn 57]).

6.2 Stokes’s Theorem

Motivation
Stokes’s theorem1 expresses the equality of the integral of a differential form over
the boundary of a surface and the integral of the exterior derivative of the form over
the surface itself. The simplest instance of this equality is found in the part of the
fundamental theorem of calculus that assures us that the difference between the values
of a (continuously differentiable) function at the endpoints of an interval is equal to
the integral of the derivative of the function over that interval—here the interval
plays the role of the surface and the endpoints form the boundary of that surface. In
fact, Stokes’s theorem can be considered the higher-dimensional generalization of the
fundamental theorem of calculus.

Oriented Rectangular Solids in RN

In order to state Stokes’s theorem, one needs to define the oriented geometric boundary
of an m-dimensional surface. In fact, the general definitions are designed so that the
proof of Stokes’s theorem can be reduced to the special case of a nicely bounded
region in RN , indeed, to the even more special case of a rectangular solid that has its
faces parallel to the coordinate hyperplanes.

The space RN itself is oriented by the unit N -vector e1 ∧ e2 ∧ · · · ∧ eN . The
orientation of a Lebesgue measurable subset of RN will be induced by the orientation
of RN as described in the next definition.

Definition 6.2.1. Let U ⊆ RN be LN -measurable, and let ω be a continuous differ-
ential N -form defined on U .

(1) The integral of ω over U is defined by setting∫
U

ω =
∫
U

〈ω(x), e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN(x) . (6.7)

Note that on the left-hand side of (6.7), U denotes the oriented set, while on the
right-hand side, U denotes the set of points. On the left-hand side of (6.7), U is

1 George Gabriel Stokes (1819–1903).
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deemed to have the positive orientation given by the unitN -vector e1∧e2∧· · ·∧
eN . One must recognize from the context which meaning of U is being used. In
Chapter 7, we will introduce a notation that allows us to explicitly indicate when
U is to be considered an oriented set.

(2) If U is to be given the opposite, or negative, orientation, the resulting oriented
set will be denoted by −U . We define∫

−U
ω =

∫
U

−〈ω(x), e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN(x) . (6.8)

Definition 6.2.1 gives us a broadly applicable definition of the integral for an
oriented set of top dimension. The matter is much more difficult for lower-dimen-
sional sets.

A lower-dimensional case that is straightforward is that of a singleton set con-
sisting of the point p ∈ RN . The point itself will be considered to be positively
oriented. A 0-form is simply a function, and the “integral’’ over p is evaluation at p.
Traditionally, evaluation at a point is called a Dirac delta function,2 so we will use
the notation

δp(f ) = f (p)
for any real-valued function whose domain includes p.

The next definition will specify a choice of orientation for an (N−1)-dimensional
rectangular solid in RN that is parallel to a coordinate hyperplane.

Definition 6.2.2. Suppose that N ≥ 2.

(1) An (N − 1)-dimensional rectangular solid, parallel to a coordinate hyperplane in
RN , is a set of the form

F = [a1, b1] × · · · × [ai−1, bi−1] × {c} × [ai+1, bi+1] × · · · × [aN, bN ] ,
where ai < bi for i = 1, . . . , i − 1, i + 1, . . . , N .

(2) The (N − 1)-dimensional rectangular solid F ⊆ RN will be oriented by the
(N − 1)-vector

êi =
∧
j �=i

ej = e1 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ eN .

(3) Let ω be a continuous (N − 1)-form defined on F . The integral of ω over F is
defined by ∫

F
ω =

∫
F
〈ω(x), êi〉 dHN−1(x) .

Similarly, the integral of ω over −F is defined by∫
−F
ω =

∫
F
−〈ω, êi〉 dHN−1 .

Note that
∫
−F ω = −

∫
F ω holds.

2 Paul Adrien Maurice Dirac (1902–1984).
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(4) For a formal linear combination of (N − 1)-dimensional rectangular solids as
described in (1), ∑

α�F� , (6.9)

we define ∫
∑
α�F�
ω =

∑
α�

∫
F�
ω . (6.10)

We can now define the oriented boundary of the rectangular solid in RN that has
its faces parallel to the coordinate hyperplanes.

Definition 6.2.3. Let

R = [a1, b1] × [a2, b2] × · · · × [aN, bN ] ,
where ai < bi , for i = 1, 2, . . . , N .

(1) If N ≥ 2, then for i = 1, 2, . . . , N , set

R+
i = [a1, b1] × · · · × [ai−1, bi−1] × {bi} × [ai+1, bi+1] × · · · × [aN, bN ] ,

R−
i = [a1, b1] × · · · × [ai−1, bi−1] × {ai} × [ai+1, bi+1] × · · · × [aN, bN ] .

In case N = 1, set R+
1 = δb1 and R−

1 = δa1 .
(2) The oriented boundary of R, denoted by ∂

O
R to distinguish it from the topological

boundary, is the formal sum

∂
O
R =

⎧⎪⎪⎨⎪⎪⎩
δb1 − δa1 if N ≥ 1 ,

N∑
i=1

(−1)i−1 (R+
i −R−

i

)
if N ≥ 2 .

Stokes’s Theorem on a Rectangular Solid
We now state and prove the basic form of Stokes’s theorem.

Theorem 6.2.4. Let

R = [a1, b1] × [a2, b2] × · · · × [aN, bN ] ,
where ai < bi , for i = 1, 2, . . . , N . If φ is a Ck , k ≥ 1, (N − 1)-form on an open set
containing R, then it holds that ∫

∂
O
R
φ =

∫
R
dφ .

Proof. For N = 1, the result is simply the fundamental theorem of calculus, so we
will suppose that N ≥ 2.

Write
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φ =
N∑
i=1

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN .

It suffices to prove that∫
R
d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN)

=
∫
∂
O
R
(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN)

holds for each 1 ≤ i ≤ N.
Fix an i between 1 and N . We compute

d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN)
= (dφi) dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

=
N∑
j=1

∂φi

∂xj
dxj ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

= ∂φi
∂xi
dxi ∧ dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

= ∂φi
∂xi
(−1)i−1 dx1 ∧ · · · ∧ dxi−1 ∧ dxi ∧ dxi+1 ∧ · · · ∧ dxN ,

so we have∫
R
d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN)

=
∫
R
(−1)i−1 ∂φi

∂xi
〈dx1 ∧ dx2 ∧ · · · ∧ dxN, e1 ∧ e2 ∧ · · · eN 〉 dLN

= (−1)i−1
∫
R
∂φi

∂xi
dLN .

By applying Fubini’s theorem to evaluate
∫
R(∂φi/∂xi) dLN , we obtain∫

R
∂φi

∂xi
dLN

=
∫
[a1,b1]×···×[ai−1,bi−1]×[ai+1,bi+1]×···×[aN ,bN ]

(∫ bi
ai

∂φi

∂xi
dL1(xi)

)
dLN−1

=
∫
[a1,b1]×···×[ai−1,bi−1]×[ai+1,bi+1]×···×[aN ,bN ]

φi |xi=bi dLN−1
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−
∫
[a1,b1]×···×[ai−1,bi−1]×[ai+1,bi+1]×···×[aN ,bN ]

φi |xi=ai dLN−1

=
∫
R+
i

φi dHN−1 −
∫
R−
i

φi dHN−1 .

We conclude that∫
R
d(φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN)

= (−1)i−1

(∫
R+
i

φi dHN−1 −
∫
R−
i

φi dHN−1

)
. (6.11)

On the other hand, we compute∫
∂
O
R
φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

=
N∑
j=1

(−1)j−1
∫
R+
j

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

−
N∑
j=1

(−1)j−1
∫
R−
j

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN

=
N∑
j=1

(−1)j−1
∫
R+
j

φi 〈dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN, êj 〉 dHN−1

−
N∑
j=1

(−1)j−1
∫
R−
j

φi 〈dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN, êj 〉 dHN−1

= (−1)i−1

(∫
R+
i

φi dHN−1 −
∫
R−
i

φi dHN−1

)
. (6.12)

Since (6.11) and (6.12) agree, we have the result. ��

The Gauss–Green Theorem
A vector field on an open set U ⊆ RN is a function V : U → RN . The component
functions Vi , i = 1, 2, . . . , N , are defined by setting

Vi(x) = V (x) · ei ,
so we have V =∑Ni=1 Vi ei . We say that V is Ck if the component functions are Ck .
The divergence of V , denoted by divV , is the real-valued function
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divV =
N∑
i=1

∂Vi

∂xi
.

Given an (N − 1)-form φ in RN we can associate with it a vector field V by the
following means: if φ is written

φ =
N∑
i=1

φi dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxN ,

then set

V =
N∑
i=1

(−1)i−1 φi ei .

Direct calculation shows that

dφ = (divV ) dx1 ∧ dx2 ∧ · · · ∧ dxN
holds. One can also verify that∫

∂
O
R
φ =

∫
∂R
V · n dHN−1

holds, where n is the outward-pointing unit vector orthogonal to the topological
boundary ∂R. We call n the outward unit normal vector.

By converting the statement of Theorem 6.2.4 about integrals of forms into the
corresponding statement about vector fields, one obtains the following result, called
the Gauss–Green theorem3 or the divergence theorem:

Corollary 6.2.5. If V is a C1 vector field on an open set containing R, then∫
R

divV dLN =
∫
∂R
V · n dHN−1 .

By piecing together rectangular solids and estimating the error at the boundary,
one can prove a more general version of Theorem 6.2.4 or of Corollary 6.2.5. Thus
we have the following result.

Theorem 6.2.6. Let A ⊆ RN be a bounded open set with C1 boundary, and let
n(x) denote the outward unit normal to ∂A at x. If V is a C1 vector field defined on
A, then ∫

A

divV dLN =
∫
∂A

V · n dHN−1 .

Theorem 6.2.6 is by no means the most general result available. The reader should
see [Fed 69, 4.5.6] for an optimal version of the Gauss–Green theorem.

3 Johann Carl Friedrich Gauss (1777–1855), George Green (1793–1841).
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The Pullback of a Form

Definition 6.2.7. Suppose that U ⊆ RN is open and F : U → RM is Ck , k ≥ 1. Fix
a point p ∈ U . If the differential m-form φ is defined at F(p), then the pullback of
φ is the m-form, defined at p, denoted by F #φ and evaluated on v1, v2, . . . , vm by
setting

〈F #φ(p), v1 ∧ v2 ∧ · · · ∧ vm〉 = 〈φ[F(p)],Dv1F ∧Dv2F ∧ · · · ∧DvmF 〉 , (6.13)

where we use the notation
DviF = 〈DF, vi〉 ,

for i = 1, 2, . . . , m. In case m = 0, (6.13) reduces to F #φ = φ ◦ F .

Remark 6.2.8. We now have three similar notations in use: DviF as above;Dλ(µ, x)
for differentiation of measures, which was introduced in Section 4.3; and DSf (x)
for the differential of f relative to the surface S, which was introduced in Section 5.3
for smooth surfaces and extended to rectifiable sets in Section 5.4. The notation that
is meant should always be clear from context.

The next theorem tells us that the operations of pullback and exterior differenti-
ation commute. This seems like an insignificant observation, but in fact, it is key to
generalizing Stokes’s theorem, i.e., Theorem 6.2.4.

Theorem 6.2.9. Suppose thatU ⊆ RN is open and F : U → RM isCk , k ≥ 2. Fix a
point p ∈ U . If the differentialm-form φ is defined andCk , k ≥ 2, in a neighborhood
of F(p), then

d(F #φ) = F #(dφ) (6.14)

holds at p.

Proof. First we consider the casem = 0 in which F #φ = φ ◦F . Fix v ∈ RN . Using
the chain rule and (6.6), we compute

〈dF #φ, v〉 = 〈d[φ ◦ F ], v〉 = 〈D[φ ◦ F ], v〉
= 〈Dφ[F(p)], 〈DF, v〉〉 = 〈dφ[F(p)], 〈DF, v〉〉 .

The most efficient argument to deal with the case m ≥ 1 is to first consider a
1-form φ that can be written as an exterior derivative; that is, φ = dψ for a 0-form
ψ . Then we have

d(F #φ) = d(F #dψ) = d(dF #ψ) = 0 = F #(d dψ) = F #(dφ) .

Lemma 6.1.8 allows us to see that the set of forms satisfying (6.14) is closed under
addition and exterior multiplication. The general case then follows by addition and
exterior multiplication of 0-forms and exterior derivatives of 0-forms. ��
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In Appendix A.4, the reader can see an alternative argument that is less elegant,
but which reveals the inner workings of interchanging a pullback and an exterior
differentiation.

Stokes’s Theorem
Let R be a rectangular solid in RN . IfU is open with R ⊆ U ⊆ RN andF : U → RM

is one-to-one and Ck , k ≥ 1, then the F -image of R is an N -dimensional Ck surface
parametrized by F . We denote this surface by

F#R .

This definition extends to formal sums by setting F#

[∑
αRα

]
=∑α F#Rα .

In Definition 6.1.6, we gave a definition for the integral of a differential form over
a surface. The next lemma gives us another way of looking at that definition.

Lemma 6.2.10. Ifω is a continuousN -form defined in a neighborhood ofF(R), then∫
F#R
ω =

∫
R
F #ω .

Proof. By Definition 6.1.6, we have∫
F#R
ω =

∫
R

〈
ω ◦ F(t), ∂F

∂t1
∧ ∂F
∂t2

∧ · · · ∧ ∂F
∂tN

〉
dLN(t) .

Observing that
∂F

∂ti
= 〈DF, ei〉 ,

for i = 1, 2, . . . , N , we see that〈
ω ◦ F(t), ∂F

∂t1
∧ ∂F
∂t2

∧ · · · ∧ ∂F
∂tN

〉
= 〈ω ◦ F(t), 〈DF, e1〉 ∧ 〈DF, e2〉 ∧ · · · ∧ 〈DF, eN 〉〉

=
〈
F #ω, e1 ∧ e2 ∧ · · · ∧ eN

〉
,

and the result follows. ��
The boundary of a smooth surface is usually defined by referring back to the space

of parameters. That is our motivation for the next definition.

Definition 6.2.11. The oriented boundary of F#R will be denoted by ∂
O
F#R and is

defined by

∂
O
F#R =

N∑
i=1

(−1)i−1 (F#R+
i − F#R−

i

) = F#∂OR .
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Some explanation of this definition is called for because F#R+
i and F#R−

i do not
quite fit our earlier discussion. Recall that R+

i and R−
i lie in planes parallel to the

coordinate hyperplanes, so F restricted to either R+
i or R−

i can be thought of as a
function on RN−1. Note that both R+

i and R−
i are oriented in a manner consistent

with this interpretation.
We are now in a position to state and prove a general version of Stokes’s theorem.

Theorem 6.2.12 (Stokes’s Theorem). Let R be a rectangular solid in RN . Suppose
that U is open with R ⊆ U ⊆ RN and that F : U → RM is one-to-one and Ck ,
k ≥ 1, with DF of rank N at every point of U . If ω is a Ck , k ≥ 2, (N − 1)-form
defined on F(R), then ∫

F#R
dω =

∫
∂
O
F#R
ω .

Proof. We compute∫
F#R
dω

(Lemma 6.2.10)=
∫
R
F #(dω)

(Thm. 6.2.9)=
∫
R
d(F #ω)

(Thm. 6.2.4)=
∫
∂
O
R
F #ω

(Lemma 6.2.10)=
∫
F#∂OR

ω
(Def. 6.2.11)=

∫
∂
O
F#R
ω . ��

As was true for the earlier version of Stokes’s theorem (Theorem 6.2.4) and for the
Gauss–Green theorem (Corollary 6.2.5), a more general version of Theorem 6.2.12
may be obtained by piecing together patches of surface. Since the theory of cur-
rents gives a still more general expression to Stokes’s theorem, we will defer further
discussion of Stokes’s theorem until we have introduced the language of currents.
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Introduction to Currents

In the traditional setup (see our Chapter 6), a differential form is a smooth function
that assigns to each point of space a covector. For the purposes of integration on
smooth surfaces, de Rham cohomology, and other standard applications of geometric
analysis, differential forms with smooth coefficients are the perfect device. But
for applications in geometric measure theory and certain areas of partial differential
equations, something more general is needed. In particular, differential forms in
the raw (as just described) are not convenient for limit processes. Thus was born
the theory of currents. The earliest provenance of currents occurs in [Sch 51] and
[DRh 55], but the theory came into its own in [FF 60] and later works. See [Fed 69]
for a complete bibliography as of that writing.

Intuitively, a current is a differential form with coefficients that are distributions.
[The rigorous definition of current is more technical; this intuitive definition will suf-
fice for our introductory remarks.] It will turn out, for example, that integration over
a rectifiable set, with suitable orientation, can be thought of as a current. However, it
cannot be thought of as a traditional differential form.

The main advantage of the space of currents is that it possesses useful compactness
properties. Just as it is useful to extend the domain of an elliptic differential operator
to L2, with the definition of differentiation taken in the distribution sense, so that the
operator becomes closed, so it is useful to study the Plateau problem, and questions
of minimal surface theory, and a variety of variational problems, in the context of
currents. For it turns out that a collection of currents that is bounded in a rather
weak sense will have a convergent subsequence or subnet. Frequently, the limit of
that sequence or net will be the solution of the variational problem that we seek.
It generally requires considerable extra effort to verify in practice that that limiting
current can actually be represented by integration over a regular surface; but it can
be done. This has become the standard approach to a variety of extremal problems
in geometric measure theory.

Currents may also be used to construct representation theorems for measures and
other linear operators of geometric analysis, to produce approximation theorems, to
solve partial differential equations, and to prove isoperimetric inequalities. They have
become a fundamental device of geometric analysis.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
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Our purpose in the present chapter is to give a rigorous but very basic introduction
to the theory of currents and to indicate some of their applications. Our exposition
in this chapter owes a debt to [Fed 69], [Sim 83], and [Whn 57]. For further reading,
we recommend [Fed 69], [FF 60], [LY 02], and [Mat 95]. Some modern treatments
of currents may also be found in [Blo 98], [Kli 91], [Lel 69], [LG 86]. We note
particularly the extensive monograph [GMS 98] treating the subject of Cartesian
currents—heuristically Cartesian currents can be thought of as being weak limits of
graphs of smooth maps—and their application to variational problems.

7.1 A Few Words about Distributions

The theory of currents is built on the framework of distributions. We will quickly
cover those portions of distribution theory for which we have immediate use. For the
reader familiar with the basic theory of distributions, the main purpose will be to fix
some notation. The reader who wishes to pursue some background reading should
see [Hor 69], [Kra 92], [Tre 80].

Fix M,N ∈ N. Let U ⊆ RN be open and let V be an M-dimensional vector
space. By choosing a basis, we can identify V with RM and thus apply all the usual
constructions of calculus. We let E(U, V ) denote the C∞ mappings of U into V .
Now, as is customary in the theory of distributions, we define a family of seminorms.
If i ∈ Z, i ≥ 0, and K ⊆ U is compact, then we let, for φ ∈ E(U, V ),

νiK(φ) = sup{‖Djφ(x)‖ : 0 ≤ j ≤ i and x ∈ K} .
Here Dj is, of course, the j th differential and ‖Djφ(x)‖ is its operator norm (also
called the mapping norm—see Definition 1.1.3). Equivalently, one could use the
seminorms ν̃iK defined by taking the supremum over K of the partial derivatives up
to and including order i of allM component functions.

The family of all the seminorms νiK induces a locally convex, translation-invariant
Hausdorff topology on E(U, V ). A subbasis for the topology consists of sets of the
form

O(ψ, i,K, r) = {φ ∈ E(U, V ) : νiK(φ − ψ) < r}
for ψ ∈ E(U, V ) fixed and r > 0. Then E(U, V ) is a topological vector space.

We define E ′(U, V ) to be the set of all continuous, real-valued linear functionals
on E(U, V ). We endow E ′(U, V ) with the weak topology generated by the subbasis
consisting of sets of the form

{T ∈ E ′(U, V ) : a < T (φ) < b}
for φ ∈ E(U, V ) and a < b ∈ R. This topology is also referred to as the weak-∗
topology.

Now, for φ ∈ E(U, V ), recall that suppφ, the support of φ, is defined by

suppφ = U \
⋃
{W : W is open, φ(x) = 0 whenever x ∈ W } .
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We would like to give a similar definition of the support of an element of E ′(U, V ). To
match the standard notation for currents, we will denote the support of T ∈ E ′(U, V )
by spt T instead of supp T . For T ∈ E ′(U, V ), we define

spt T =

U \
⋃
{W : W is open, T (φ) = 0 whenever φ ∈ E(U, V ), suppφ ⊆ W } .

This is the support of T . Then each element of E ′(U, V ) is compactly supported just
because, given T ∈ E ′(U, V ), there exist 0 < M < ∞, i ∈ Z+, and K ⊂⊂ RN

such that
|T (φ)| ≤ M · νiK(φ)

holds, for all φ ∈ E(U, V ),1 and this inequality implies spt T ⊆ K . In conclusion,
we see that E ′(U, V ) is the union of its closed subsets

E ′K(U, V ) ≡ {T ∈ E ′(U, V ) : spt T ⊆ K}
corresponding to all compact subsets K of U . In fact, one may see (and this is
important in practice) that all the members of any convergent sequence in E ′(U, V )
belong to some single set E ′K(U, V ).

For each compact K ⊆ U we let

DK(U, V ) = {φ ∈ E(U, V ) : suppφ ⊆ K} .
We notice that DK(U, V ) is closed in E(U, V ). Now we define the vector space

D(U, V ) =
⋃
{DK(U, V ) : K is a compact subset of U} .

We endow D(U, V ) with the largest topology such that the inclusion maps
DK(U, V ) ↪→ D(U, V ) are all continuous. It follows that a subset W of D(U, V )
is open if and only if W ∩DK(U, V ) belongs to the relative topology of DK(U, V )
in E(U, V ). Thus the inclusion map D(U, V ) ↪→ E(U, V ) is continuous. This map
is not a homeomorphism unless U = ∅ or M = 0. But it should be noted that
the topologies of E(U, V ) and D(U, V ) induce the same relative topology on each
DK(U, V ).

Now we define the dual space D′(U, V ) to be the vector space of all continu-
ous, real-valued linear functionals on D(U, V ). We endow D′(U, V ) with the weak
topology generated by the sets

{T ∈ D′(U, V ) : a < T (φ) < b}
corresponding to φ ∈ D(U, V ) and a < b ∈ R. Again, this topology is sometimes
referred to as the weak-∗ topology.

1 To see this, note that T−1(−1, 1) must be open in E(U, V ) and consider a neighborhood
basis of 0 ∈ E(U, V ).
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Each member of D(U, V ) has compact support. However, the support of a mem-
ber of D′(U, V ) need not be compact. For example, if U = V = R and δp is the
Dirac delta mass at p [i.e., the functional defined by δp(φ) = φ(p)] then

η ≡
∞∑
j=1

2−j δj

is an element of D′(U, V ) that certainly does not have compact support. In point of
fact, a real-valued linear functional T on D(U, V ) belongs to D′(U, V ) if and only
if, for each compact subsetK ⊆ U , there are nonnegative integers i andM such that

T (φ) ≤ M · νiK(φ) whenever φ ∈ DK(U, V ) .

An element of D′(U, V ) is called a distribution in U with values in V . Since
D(U, V ) ⊆ E(U, V ), it follows that E ′(U, V ) ⊆ D′(U, V ). We sometimes refer
to the elements of E ′(U, V ) as the compactly supported distributions.

In case U = V = R, we see that any L1 function f defines a distribution
Tf ∈ D′(R,R) by setting

Tf (φ) =
∫ ∞

−∞
f (t)φ(t) dL1(t) ,

for each φ ∈ D(R,R). If f is continuously differentiable, then integration by parts
gives us

Tf ′(φ) =
∫ ∞

−∞
f ′(t)φ(t) dL1(t) = −

∫ ∞

−∞
f (t)φ′(t) dL1(t) = −Tf (φ′) .

This last equation motivates the general definition for differentiation of distributions.

Definition 7.1.1. For T ∈ D′(U, V ), the partial derivative of T with respect to the
ith variable, 1 ≤ i ≤ N , is the element DxiT of D′(U, V ) defined by setting

(Dxi T )(φ) = −T (∂φ/∂xi) .
A similar definition is applicable to the currents with compact support.

We use the notation DxiT (instead of ∂T /∂xi) for the partial derivative of the
distributionT to avert possible confusion later with the boundary operator on currents.

The distributions in D′(U,R) are sometimes called generalized functions. The
next result generalizes the fact that if the derivative of a function vanishes, then the
function is constant.

Proposition 7.1.2. If T ∈ D′(R,R) and DxT = 0, i.e., T (φ′) = 0, for all φ ∈
D(R,R), then there is c ∈ R such that T = c, i.e., T (φ) = c ∫R φ dL1, for all
φ ∈ D(R,R).
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Proof. Fix ψ ∈ D(R,R) with
∫
R ψ dL1 �= 0. Given φ ∈ D(R,R), set

f (t) =
∫ t
−∞
[φ(τ)+ q ψ(τ)] dL1(τ ) where q = −

∫
R
φ dL1

/∫
R
ψ dL1 .

Then f ∈ D(R,R) and f ′ = φ + q ψ . Thus we have

0 = −DxT (f ) = T (f ′) = T (φ)+ q T (ψ) ,
and we see that the result holds with

c =
(
T (ψ)

/∫
R
ψ dL1

)
. ��

Proposition 7.1.2 is the simplest case of a more general result that tells us that
if all the partial derivatives of a distribution on RN vanish, then the distribution is
just a constant. Another form of that theorem in the context of currents is called the
constancy theorem, and that result will be particularly important to us later. We treat
it in detail below.

7.2 The Definition of a Current

With notation as in the last section, we define

EM(U) = E
(
U,
∧M RN

)
, EM(U) = E ′

(
U,
∧M RN

)
,

DM(U) = D
(
U,
∧M RN

)
, DM(U) = D′

(
U,
∧M RN

)
.

Thus, in brief, EM(U) is the space of differential forms on U with degree M and
having C∞ coefficients. Also DM(U) is the subspace of EM(U) having coefficients
of compact support in U . The spaces DM(U) and EM(U) are duals of these spaces.
The members of DM(U) are called theM-dimensional currents on U , and the image
of EM(U) in DM(U) consists of allM-dimensional currents with compact support in
U . To summarize, we have DM(U) ⊆ EM(U) and EM(U) ⊆ DM(U).

A simple example of anM-dimensional current on U is provided by considering
an LN -measurable function ξ : U → ∧

M (R
N) with the property that its operator

norm ‖ξ‖ has finite integral over U , i.e., ‖ξ‖ ∈ L1(U). Then define T ∈ DM(U) by
setting

T (φ) =
∫
U

〈φ(x), ξ(x) 〉 dLN(x)

for each φ ∈ DM(U). Certainly this example can be generalized by considering
measuresµ different from LN . The function ξ will then need to beµ-measurable and
satisfy

∫
U
‖ξ‖ dµ <∞ or, to generalize further,

∫
K
‖ξ‖ dµ <∞ for each compact

K ⊆ U . As will become clear, such examples in DM(U) are particularly useful when
the measure µ is concentrated on a set of dimensionM .
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Now we define some operations on currents that are dual to those on differential
forms. Those who know some algebraic topology will recognize some of the classical
cohomology operations lurking in the background (see [BT 82] or [Spa 66]).

Let T ∈ DM(U). If φ ∈ Ek(U) and k ≤ M then we define

T φ ∈ DM−k(U)

according to the identity

(T φ)(ψ) ≡ T (φ ∧ ψ) for all ψ ∈ DM−k(U) .

Now let ξ be a p-vector field with C∞ coefficients on U (that is, a smooth map
into

∧
p RN ). We let

T ∧ ξ ∈ DM+p(U)
be specified by the identity

(T ∧ ξ)(ψ) ≡ T (ξ ψ) for all ψ ∈ DM+p(U) ,

where ξ ψ is the interior product characterized by 〈ξ ψ, α〉 = 〈ψ, α ∧ ξ〉 for
α ∈ ∧M RN . (This last definition is consistent with [Fed 69, 1.5] despite the fact
that in the dual pairing 〈·, ·〉, we are placing M-covectors on the left andM-vectors
on the right.)

Since the interior product used above may not be familiar, we will say more about
it here. Suppose that

1 ≤ i1 < · · · < ip ≤ N and 1 ≤ j1 < · · · < jM+p ≤ N .
If { i1, . . . , ip } �⊆ { j1, . . . , jM+p }, then

(ei1 ∧ · · · ∧ eip ) (dxj1 ∧ · · · ∧ dxjM+p ) = 0 .

On the other hand, if { i1, . . . , ip } ⊆ { j1, . . . , jM+p }, then we write

{ k1, . . . , kM } = { j1, . . . , jM+p } \ { i1, . . . , ip } ,
where 1 ≤ k1 < · · · < kM ≤ N . In this case, we have

(ei1 ∧ · · · ∧ eip ) (dxj1 ∧ · · · ∧ dxjM+p ) = σ dxk1 ∧ · · · ∧ dxkM ,
where σ ∈ {−1, +1 } is the sign of the permutation

(j1, . . . , jM+p) �−→ (k1, . . . , kM, i1, . . . , ip) .
In practice, it is often not necessary to require that φ and ξ have C∞ coefficients.

It is only necessary to be able to make sense of the expressions that we use. Thus, in
the special case that T is given by an integral, we need only require that φ and ξ be
measurable and that their norms have finite integral over every compact set in U . In
particular, we may let
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T A = T χ
A
∈ EM(U)

for each set A that is measurable with respect to the measure used to define T .
One of the features that makes currents important is that there is an associated

homology theory. For this we need a boundary operator. IfM ≥ 1 and T ∈ DM(U),
then we let the boundary of T ,

∂T ∈ DM−1(U) ,

be defined by setting
(∂T )(ψ) = T (dψ) (7.1)

whenever ψ ∈ DM−1(U). This definition is motivated by and consistent with
Stokes’s theorem, as we shall see later. It is also convenient to define ∂T = 0
for T ∈ D0(U).

The reader should keep in mind that, for a current T ∈ DM(U), there is a sig-
nificant distinction between the boundary of the current, ∂T ∈ DM−1(U), defined in
(7.1) and a partial derivative of the current, Dx�T ∈ DM(U), 1 ≤ � ≤ N . Defini-
tion 7.1.1 tells us that, for any C∞ real-valued function with compact support in U
and any choice of 1 ≤ j1 < · · · < jM ≤ N ,

Dx�T (φ dxj1 ∧ · · · ∧ dxjM ) = −T
[
(Dx�φ) dxj1 ∧ · · · ∧ dxjM

]
holds, where

Dx�φ =
∂φ

∂x�

is the ordinary partial derivative of the real-valued function φ.

Proposition 7.2.1. Suppose that φ and ξ have C∞ coefficients on U , where φ is a
form of degree k and ξ is a p-vector field. Then

(1) ∂(∂T ) = 0 if dim T ≥ 2 ;
(2) (∂T ) φ = T dφ + (−1)k∂(T φ) ;
(3) ∂T = −

N∑
j=1

(Dxj T ) dxj if dim T ≥ 1 ;

(4) T =
∑

1≤j1<···<jM≤N

[
T dxj1 ∧ · · · ∧ dxjM

]
∧ ej1 ∧ · · · ∧ ejM ;

(5) Dxj (T φ) = (Dxj T ) φ + T (∂φ/∂xj ) ;
(6) Dxj (T ∧ ξ) = (Dxj T ) ∧ ξ + T ∧ (∂ξ/∂xj ) ;
(7) (T ∧ ξ) φ = T ∧ (ξ φ) if dim T = 0 and k ≤ p ;
(8) ∂(T ∧ ξ) = −T ∧ div ξ −

N∑
j=1

(Dxj T ) ∧ (ξ dxj ) if dim T = 0 ≤ p .

In the above, the partial derivatives ∂φ/∂xj of the form φ and ∂ξ/∂xj of the vector
field ξ are obtained by differentiating the coefficient functions. The reader may easily
verify the identities given in the proposition.
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Currents Representable by Integration

If U ⊆ RN is an open set and µ is a Radon measure on U (see Definition 1.2.11),
then the functional

ϕ �−→
∫
U

ϕ dµ

is positive (i.e.,
∫
U
ϕ dµ ≥ 0 whenever ϕ ≥ 0), R-linear, and continuous on the space

of compactly supported continuous functions on U . The topology on the compactly
supported continuous functions can be characterized by defining ϕ0 to be the limit of
the sequence {ϕj } if and only if ϕj → ϕ0 uniformly and, in addition,

⋃
j suppϕj is

a compact subset of U .
The Riesz representation theorem, i.e., Theorem 4.4.1, tells us that every posi-

tive, R-linear, continuous functional on the space of compactly supported continuous
functions arises in this way. Similarly, each R-linear, continuous functional T on the
space of compactly supported continuous functions gives rise to a pair of mutually
singular Radon measures µ1 and µ2 such that

T (ϕ) =
∫
U

ϕ dµ1 −
∫
U

ϕ dµ2 .

For our purposes, it is more convenient to form the total variation measure µ by
setting µ = µ1+µ2, to define a Borel function f that equals+1 at µ1-almost every
point and equals −1 at µ2-almost every point, and to write then

T (ϕ) =
∫
U

f ϕ dµ (7.2)

(see Figure 7.1).

Fig. 7.1. A current representable by integration.

We would like to know which 0-dimensional currents T ∈ D′(U,R) can be
represented by integrals of Radon measures. Not every 0-dimensional current can be
so written (consider for instance derivatives of the Dirac delta δp). The characterizing
property is that for each openW ⊂⊂ U there exists anM <∞ such that
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|T (φ)| ≤ M sup{ |φ(x)| : x ∈ U } (7.3)

holds for all φ ∈ D(U,R). In fact, when (7.3) holds, T extends to all compactly
supported continuous functions on U , thereby defining an R-linear, continuous func-
tional.

Now suppose that T ∈ DM(U). We define the mass of T on the open set U by

M(T ) = sup
|ω|≤1

ω∈DM(U)

T (ω) .

IfW ⊆ U is an open subset then we have the refined notion of mass given by

MW(T ) = sup
|ω|≤1, ω∈DM(U)

suppω⊆W

T (ω) .

Notice that if MW(T ) < ∞ for all open W ⊂⊂ U , then, for each sequence
1 ≤ j1 < j2 < · · · < jM ≤ N , the 0-dimensional current

T (dxj1 ∧ dxj2 ∧ · · · ∧ dxjM )
satisfies the condition (7.3) and thus defines a total variation measure µj1,...,jM and
function fj1,...,jM as in (7.2). Using the identity

T =
∑

1≤j1<···<jM≤N

[
T dxj1 ∧ · · · ∧ dxjM

]
∧ ej1 ∧ · · · ∧ ejM ,

we see that we can add together the total variation measures µj1,...,jM and functions
fj1,...,jM ej1∧· · ·∧ejM and normalize the resulting function to obtain a Radon measure
µT onU and aµT -measurable orientation function

−→
T with values in

∧
M (R

N) such
that |−→T | = 1 µT -almost everywhere and

T (ω) =
∫
U

〈ω(x), −→T (x) 〉 dµT (x) . (7.4)

In consequence of (7.4), the current T is said to be representable by integration.
The measure µT—which we call the total variation measure associated with T—is
characterized by the identity

µT (W) = sup
|ω|=1,ω∈DM(U)

suppω⊆W

T (ω) ,

and this last equals MW(T ) for any open W ⊆ U . We have in particular that
µT (U) = M(T ).

The total variation measure µT will also be denoted by ‖T ‖. This alternative
notation ‖T ‖ is the only one used in [Fed 69].

If E is a µT -measurable set and µT (RN \ E) = 0, then we have T = T E and
we say that T is carried by E. Certainly T is carried by spt T , but since spt T is by
definition a closed set, T can be carried on a much smaller set than spt T .
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It is worth noting that mass M is lower semicontinuous in the sense that if Tj → T
in U in the topology of weak convergence then

MW(T ) ≤ lim inf
j→∞ MW(Tj ) for all openW ⊂ U . (7.5)

Currents Associated to Oriented Submanifolds

A particularly important type of current representable by integration is that associated
with an oriented submanifold of RN . Suppose that S is a C1 orientedM-dimensional
submanifold. By saying that S is oriented we mean that at each point x ∈ S there is
a set ofM orthonormal tangent vectors ξ1(x), ξ2(x), . . . , ξM(x) such that

−⇀
S (x) = ξ1(x) ∧ ξ2(x) ∧ · · · ∧ ξM(x)

defines a continuous function
−⇀
S : S → ∧

M (R
N). We define the current S ∈

DM(RN) by setting

S (ω) =
∫
S

〈ω, −⇀S 〉 dHM .

As a special case of this definition, we can take S to be a Lebesgue measurable subset
of RN and define

S (ω) =
∫
S

〈ω, e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN , (7.6)

for ω ∈ DN(RN).
In case S is an oriented submanifold with oriented boundary, the classical Stokes’s

theorem tells us that
S (dω) = ∂

O
S (ω) , (7.7)

where ∂
O
S is the oriented boundary of S (see Definition 6.2.11 and Theorem 6.2.12).

By the definition of the boundary of a current we have

S (dω) = ( ∂ S )(ω) . (7.8)

Equations (7.7) and (7.8) show that the definition of the boundary of a current is
consistent with the classical definition of the oriented boundary.

We also observe that
M( S ) = HM(S) ,

which shows that the mass generalizes the area of a submanifold.

In case M = N − 1, one can identify2 −⇀S with a unit vector normal to S.
Figure 7.2 uses this identification to illustrate a current associated with a 2-dimen-
sional submanifold of R3.

2 This identification is effected by the Hodge star operator, which is discussed in Section 7.5.
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Fig. 7.2. A current associated with a 2-dimensional submanifold.

7.3 Constructions Using Currents and the Constancy Theorem

We can think of LN as the 0-dimensional current that gives the value
∫
U
φ dLN when

applied to φ ∈ D0(RN). If ξ is anM-vector field with LN -measurable coefficients,
satisfying ∫

K

‖ξ‖ dLN <∞

for each compact subset K ⊆ RN , then there is a corresponding current LN ∧ ξ ∈
DM(RN) given by

(LN ∧ ξ)(ψ) =
∫
〈ψ, ξ 〉 dLN for ψ ∈ DM(RN) .

Recalling the definitions in the last section, we see that for φ ∈ Ek(U), with
k ≤ M , (LN ∧ ξ) φ ∈ DM−k(U) is given by[

(LN ∧ ξ) φ
]
(ψ) =

∫
〈φ ∧ ψ, ξ 〉 dLN

for ψ ∈ DM−k(RN). We can also write this as (LN ∧ ξ) φ = LN ∧ (ξ φ), where
we define the interior product ξ φ by requiring that 〈ψ, ξ φ 〉 = 〈φ ∧ ψ, ξ 〉.

As we did for the interior product defined in the preceding section, we can ex-
amine the effect of the interior product ξ φ on the basis vectors for

∧
M (R

N) and∧M−k
(RN). Suppose that

1 ≤ i1 < · · · < iM ≤ N and 1 ≤ j1 < · · · < jM−k ≤ N .
If { i1, . . . , iM } �⊇ { j1, . . . , jM−k }, then

(ei1 ∧ · · · ∧ eiM ) (dxj1 ∧ · · · ∧ dxjM−k ) = 0 .
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On the other hand, if { i1, . . . , iM } ⊇ { j1, . . . , jM−k }, then we write

{ �1, . . . , �k } = { i1, . . . , iM } \ { j1, . . . , jM−k } ,
where 1 ≤ �1 < · · · < �k ≤ N . In this case, we have

(ei1 ∧ · · · ∧ eiM ) (dxj1 ∧ · · · ∧ dxjM−k ) = σ dx�1 ∧ · · · ∧ dx�k ,
where σ ∈ {−1, +1 } is the sign of the permutation

(i1, . . . , iM) �−→ (j1, . . . , jM−k, �1, . . . , �k) .
If it happens that ξ hasC1 coefficients, then (using the fact that when LN is treated

as a current, all its partial derivatives vanish) we have

Dxj (LN ∧ ξ) = LN ∧ (∂ξ/∂xj )
and

∂(LN ∧ ξ) = −
N∑
j=1

[Dxj (LN ∧ ξ) ] dxj = −LN ∧
⎛⎝ N∑
j=1

(∂ξ/∂xj ) dxj

⎞⎠ .
In caseM = 1, in which case ξ is an ordinary vector field, we see that

N∑
j=1

(∂ξ/∂xj ) dxj = div ξ . (7.9)

Letting (7.9) define the divergence of anM-vector field for all 1 ≤ M ≤ N , we have

∂(LN ∧ ξ) = −LN ∧ div ξ .

Let ξ be anM-vector field on U . We define the differential form DMξ by setting

DMξ = ξ (dx1 ∧ · · · ∧ dxN) .
Of course, DMξ has degreeN −M . Also, with each differential form φ of degreeM
on U we associate the (N −M)-vector field

DMφ = (e1 ∧ · · · ∧ eN) φ .

If φ ∈ DN−M and ψ ∈ DM , then we see that

(LN ∧ DN−Mφ)(ψ) =
∫
〈ψ, DN−Mφ 〉 dLN

=
∫
〈 dx1 ∧ · · · ∧ dxN, φ ∧ ψ 〉 dLN .
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The following commutative diagram helps to clarify the roles of the different
spaces and their interaction with the various boundary and coboundary operators:

EN−M(RN) DN−M−→ E(RN,
∧
M RN)

LN∧−→ DM(RN)

(−1)N−Md

⏐⏐⏐⏐I
⏐⏐⏐⏐I div

⏐⏐⏐⏐I −∂
EN−M+1(RN)

DN−M+1−→ E(RN,
∧
M−1 RN)

LN∧−→ DM−1(RN)

The special notation

EN = LN ∧ e1 ∧ · · · ∧ eN ∈ DN(RN)

is often used. Of course, this means that if φ ∈ DN(RN), then

EN(φ) =
∫
〈φ(x), e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN(x) .

We see that

DxjE
N = 0 for each j = 1, . . . , N and ∂EN = 0 .

Comparing with (7.6), we see that for any Lebesgue measurable set A ⊆ RN ,

EN A = A .

If T ∈ DN(U) and j ∈ {1, . . . , N}, then, using the formula

∂T = −
N∑
�=1

(Dx�T ) dx�

and the fact that
∧N+1 RN = 0, we can calculate that

(∂T ) ∧ ej = (−1)NDxj T . (7.10)

Thus the vanishing of the boundary of an N -dimensional current is equivalent to the
vanishing of its partial derivatives. Accordingly we expect that an N -dimensional
current with vanishing boundary should be given by integration. That intuition is
confirmed by the next proposition.

Proposition 7.3.1 (Constancy Theorem). If T ∈ DN(U) with ∂T = 0 and if U is
a connected open set, then there is a real number c such that

T = c (EN U) = c U .
In order to prove the constancy theorem, we will need to introduce the notion of

smoothing currents. In what follows, we will use mollifiers in a standard manner.
Mollifiers were introduced in Section 5.5. Recall from Definition 5.5.1 that ϕ is a
mollifier if
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• ϕ ∈ C∞(RN);
• ϕ ≥ 0;
• suppϕ ⊆ B(0, 1);

•
∫

RN
ϕ(x) dLN(x) = 1;

• ϕ(x) = ϕ(−x).
For σ > 0 we set ϕσ (x) = σ−Nϕ(x/σ). Also recall that in case f ∈ L1

loc(R
N) and

σ > 0, equation (5.31) defined

fσ (x) = f ∗ ϕσ (x) =
∫

RN
f (z) ϕσ (x − z) dLN(z) =

∫
RN
f (x − z) ϕσ (z) dLN(z) .

Definition 7.3.2. Given a current T ∈ DM(RN), we define a new current Tσ ∈
DM(RN) by

Tσ (ω) = T (ϕσ ∗ ω) . (7.11)

[Note here that we convolve ϕσ with a form by convolving with each of the coefficient
functions.] The process of forming Tσ from T is called smoothing the current T .

The crucial facts are collected in the next lemma.

Lemma 7.3.3.

(1) Tσ converges to T in DM(RN) as σ ↓ 0,
(2) Dxj Tσ = (Dxj T )σ , for j = 1, 2, . . . , N ,
(3) for each σ > 0, Tσ corresponds to a function in E(RN,

∧
M RN).

Proof.
(1) This is immediate from the fact that, for ω ∈ DM(RN), ϕσ ∗ ω converges to ω in
the topology of DM(RN).
(2) Fix j ∈ {1, . . . , N} and ω ∈ DM(RN). We have

ϕσ ∗ (∂ω/∂xj ) = ∂(ϕσ ∗ ω)/∂xj ,
so we compute

(Dxj Tσ )(ω) = −Tσ (∂ω/∂xj ) = −T [ϕσ ∗ (∂ω/∂xj )]
= −T [∂(ϕσ ∗ ω)/∂xj ] = Dxj T (ϕσ ∗ ω) = (Dxj T )σ (ω) .

(3) In order to focus on the essential ideas, we will consider just the case M = N .
Let tz : RN → RN denote translation by z ∈ RN , so that

tz(x) = x + z .
We define the real-valued function Fσ by setting

Fσ (z) = T [ (ϕσ ◦ t−z) dx1 ∧ dx2 ∧ · · · ∧ dxN ] . (7.12)
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Another way to write (7.12) is as

Fσ (z) = Tx[ϕσ (x − z) dx1 ∧ dx2 ∧ · · · ∧ dxN ] , (7.13)

where the subscript x on T indicates that we are considering x as the operant variable
for the current, while z is treated as a parameter. It is routine to verify that Fσ is C∞
using the fact that ϕσ is C∞.

We claim that Tσ corresponds to the function Fσ e1 ∧ e2 ∧ · · · ∧ eN ∈ EN(RN);
that is,

Tσ (ω) =
∫

RN
Fσ · 〈ω, e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN (7.14)

holds, for each ω ∈ DM(RN).
To verify the claim, fix ω ∈ DM(RN) and write

ω = g dx1 ∧ dx2 ∧ · · · ∧ dxN ,
where g is scalar-valued and C∞. By definition, the left-hand side of (7.14) equals

Tx

[(∫
RN
g(z) ϕσ (x − z) dLN(z)

)
dx1 ∧ dx2 ∧ · · · ∧ dxN

]
.

We can approximate ∫
RN
g(z) ϕσ (x − z) dLN(z)

(in the topology of D(RN,R)) by finite sums

p∑
k=1

g(zk) ϕσ (x − zk)LN(Ak) ,

where zk ∈ Ak and where the Ak are Borel subsets of the support of g. Thus

Tx

[
p∑
k=1

g(zk) ϕσ (x − zk)LN(Ak) dx1 ∧ dx2 ∧ · · · ∧ dxN
]

will approximate Tσ (ω).
By the linearity of T and using (7.13), we have

Tx

[
p∑
k=1

g(zk) ϕσ (x − zk)LN(Ak) dx1 ∧ dx2 ∧ · · · ∧ dxN
]

=
p∑
k=1

Tx [ϕσ (x − zk) dx1 ∧ dx2 ∧ · · · ∧ dxN ] g(zk)LN(Ak)

=
p∑
k=1

Fσ (zk) · 〈ω(zk), e1 ∧ e2 ∧ · · · ∧ eN 〉LN(Ak) .
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But as the diameters of the Ak approach 0,

p∑
k=1

Fσ (zk) · 〈ω(zk), e1 ∧ e2 ∧ · · · ∧ eN 〉LN(Ak)

approaches ∫
RN
Fσ · 〈ω, e1 ∧ e2 ∧ · · · ∧ eN 〉 dLN ,

verifying the claim. ��
Smoothing is defined in a general open set U ⊆ RN by introducing functions

wj ∈ D(U,R) such that the sets Kj = {x : wj(x) = 1} are increasing and exhaust
U . For T ∈ DM(U), one then considers (T wj )σ—as one may, since T wj ∈
DM(RN).

Proposition 7.3.4. IfT ∈ DM(U), whereU ⊆ RM , and if M(T ) <∞ and M(∂T ) <
∞ hold, then T = U F with F ∈ BV (U).
Proof. Referring to Lemma 7.3.3(3), we observe that Tσ = U Fσ and that the
L1-norm of Fσ equals M(Tσ ), which is bounded by M(T ). Also,

∫ |DFσ | equals
M(∂Tσ ), which is bounded by M(∂T ). By the compactness theorem for functions of
bounded variation (see [KPk 99, Corollary 3.6.14]), we can select a sequence σi ↓ 0
such that Fσi converges to a BV -function F and conclude from Lemma 7.3.3(1) that
T = U F . ��

Now we return to the constancy theorem.

Proof of the Constancy Theorem. For convenience of exposition we suppose that
U = RN . By (7.10), the hypothesis ∂T = 0 tells us that all the partial deriva-
tives of T vanish. Then, for any σ > 0, the partial derivatives of Tσ must vanish. We
know that Tσ corresponds to a function in E(RN,

∧
N RN) and that function must be

constant since its partial derivatives vanish. Letting σ ↓ 0, we obtain the result. ��
We end this section with the following variant of the constancy theorem.

Proposition 7.3.5. If T ∈ DM(RN) with ∂T = 0 and spt T ⊆ V , where V is an
M-dimensional plane, then there is a real number c such that

T = c V ,
that is, T = c (HM V

)∧v1∧v2∧· · ·∧vM , where v1, v2, . . . , vM is an orthonormal
family of vectors parallel to V .

Proof. Without loss of generality, we may suppose that

V = { (x1, x2, . . . , xN) : xM+1 = xM+2 = · · · = xN = 0 } .
Fix σ : R → R, a compactly supported,C∞ function satisfying σ(t) = t , for |t | < 1.
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Consider 1 ≤ i1 < i2 < · · · < iM ≤ N and suppose that M < iM . Let φ be an
arbitrary compactly supported, real-valued C∞ function on RN . Setting

ω = σ (xiM ) · φ(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxiM−1 ,

we see that, on V, dω = φ(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxiM , so that

0 = (∂T )(ω) = T (dω) = T
(
φ(x) dxi1 ∧ dxi2 ∧ · · · ∧ dxiM

)
holds. Thus we have

T dxi1 ∧ · · · ∧ dxiM = 0 .

Using the preceding paragraph, we conclude that

T =
∑

1≤i1<···<iM≤N

[
T dxi1 ∧ · · · ∧ dxiM

]
∧ ei1 ∧ · · · ∧ eiM

=
[
T dx1 ∧ · · · ∧ dxM

]
∧ e1 ∧ · · · ∧ eM .

Thus we can identify T with an element of DN(RN) and apply the constancy
theorem. ��

7.4 Further Constructions with Currents

7.4.1 Products of Currents

Next we need the notion of a Cartesian product of currents.

Definition 7.4.1. SupposeU1 ⊆ RN1 , T1 ∈ DM1(U1) andU2 ⊆ RN2 , T2 ∈ DM2(U2).
We defineT1×T2 ∈ DM1+M2(U1×U2), the Cartesian product ofT1 andT2 as follows:

(1) We will denote the basis covectors in RN1 by dxα and the basis covectors in RN2

by dyβ .
(2) If 1 ≤ α1 < α2 < · · · < αM1 ≤ N1, 1 ≤ β1 < β2 < · · · < βM2 ≤ N2, and
g ∈ D(U1 × U2,R), then set

[T1 × T2](g dxα1 ∧ · · · ∧ dxαM1
∧ dyβ1 ∧ · · · ∧ dyβM2

)

= T1

(
T2[ g(x, y) dyβ1 ∧ · · · ∧ dyβM2

] dxα1 ∧ · · · ∧ dxαM1

)
.

(3) If ω1 ∈ DM ′1(U1), ω2 ∈ DM ′2(U2)withM ′1+M ′2 = M1+M2 butM ′1 �= M1 and
M ′2 �= M2, then [T1 × T2](ω1 ∧ ω2) = 0.

(4) Extend T1 × T2 to DM1+M2(U1 × U2) by linearity.
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Now it is immediate that

∂(T1 × T2) = (∂T1)× T2 + (−1)M1T1 × ∂T2 . (7.15)

In case either M1 = 0 or M2 = 0, then the last formula is still valid, provided the
corresponding terms are interpreted to be zero.

In the special case that T ∈ DM(U) with U ⊆ RN and (0, 1) is the 1-current
in R1 given by integration over the oriented unit interval, then (7.15) becomes

∂( (0, 1) × T ) = (δ1 − δ0)× T − (0, 1) × ∂T
= δ1 × T − δ0 × T − (0, 1) × ∂T .

Of course, δp denotes the 0-current that is given by a point mass at p.

7.4.2 The Pushforward

Now we shall define the notion of the pushforward of a current. Some of the most
important and profound properties of currents will be formulated in terms of the
preservation of certain structures under the pushforward. The setup is this. We are
given open sets U ⊆ RN1 and V ⊆ RN2 and a smooth mapping f : U → V . If
ω ∈ DM(V ) then letf #ω be the standard pullback of the formω (see Definition 6.2.7).

Now the current T is given on U , and we must suppose that f
∣∣∣
spt T

is proper: this

means that the inverse image under f of any compact set, intersected with spt T , is
compact. We define the pushforward f#T under f (see Figure 7.3) of the current
T by

f#T (ω) = T (ζ · f #ω) ∀ω ∈ DM(V ) , (7.16)

where ζ is any compactly supportedC∞(U) function that equals 1 in a neighborhood
of spt T ∩ supp f #ω. The definition of f#T given in (7.16) is independent of ζ .
Notice that

∂f#T = f#∂T (7.17)

Fig. 7.3. The pushforward of a current.
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holds for f , T as above. In fact, (7.17) holds because one can interchange the exterior
differentiation and pullback operations on forms (see Theorem 6.2.9).

If MW(T ) <∞ for everyW ⊆ U then f is representable by integration and f#T

is given explicitly by

f#T (ω) =
∫
〈−⇀T , f #ω 〉 dµT

=
∫
〈 〈∧M Df,−⇀T (x)〉, ω(f (x)) 〉 dµT (x) .

This formula gives a way to make sense of f#T even when f is only continuously
differentiable and proper.

The next result is about vanishing of currents on sets that project to measure 0
in all coordinate directions. For notation, if α = (i1, . . . , iM) is a multi-index with
1 ≤ i1 < i2 < · · · < iM ≤ N then we let pα denote the orthogonal projection of RN

onto RM given by
(x1, . . . , xP ) �−→ (xi1 , . . . , xiM ) .

Lemma 7.4.2. Let U ⊆ RN be open as usual. Let E ⊆ U be closed. Assume that
LM(pα(E)) = 0 for each multi-index α = (i1, . . . , iM), 1 ≤ i1 < i2 < · · · < IM ≤
N . Then T E = 0 whenever T ∈ DM(U) with MW(T ) and MW(∂T ) finite for
everyW ⊂⊂ U .

Proof. Let ω ∈ DM(U). We write

ω =
∑

α∈!(N,M)
ωαdx

α

with ωα ∈ C∞(U) and compactly supported. Thus

T (ω) =
∑
α

T (ωαdx
α)

=
∑
α

(T ωα) dx
α

=
∑
α

(T ωα)p#
α dy .

Here dy ≡ dy1 ∧ · · · ∧ dyM in the standard coordinates on RM .
So we have

T (ω) =
∑
α

pα#(T ωα)(dy) . (7.18)

This last makes sense just because spt T ωα ⊆ suppωα , which is a compact subset
of U .

On the other hand, we know for any τ ∈ DN−1(U) that
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∂(T ωα)(τ ) = (T ωα)(dτ)
= T (ωαdτ)
= T (d(ωατ))− T (dωα ∧ τ)
= ∂T (ωατ)− T (dωα ∧ τ) ,

and so

MW(∂(T ωω)) ≤ MW(∂T ) · sup |ωα| +MW(T ) · sup |dωα| .
From this we conclude that

M(∂pα#(T ωα)) = M(pα#∂(T ωα)) ≤ M(∂(T ωα)) <∞ .
Now we apply Proposition 7.3.4 to see that there is a θα ∈ BV (pα(U)) such that

pα#(T ωα) = pα(U) θα .

It follows that pα#(T ωα) pα(E) = 0 because LM(pα(E)) = 0. Assuming without
loss of generality that E is closed, we now see that

M(pα#(T ωα)) ≤ M(pα#(T ωα) (R
M \ pα(E)))

= M( pα#[ (T ωα) (RN \ p−1
α pα(E)) ] )

≤ M((T ωα) (RN \ p−1
α pαE)) (7.19)

≤ MW(T (RN \ p−1
α pαE)) · |ωα|

≤ MW(T (RN \ E)) · |ωα| (7.20)

for any open setW such that suppω ⊆ W ⊆ U .
Now we combine (7.18) and (7.20) to obtain

MW(T ) ≤ cMW(T (RN \ E)) .
In particular, we see that

MW(T E) ≤ cMW(T (RN \ E)) . (7.21)

If K is any compact subset of E, then we can choose sets {Wq} such that

• Wq ⊂⊂ U ;
• Wq+1 ⊆ Wq ;
•
⋂∞
q=1Wq = K .

By (7.21), with W = Wq , we conclude that M(T K) = 0. Since K was arbitrary,
we see that M(T E) = 0. ��
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7.4.3 The Homotopy Formula

Next we have the homotopy formula for currents. Let f, g : U → V be smooth
mappings, with U ⊆ RN1 and V ⊆ RN2 . Let h be a smooth homotopy of f to g; that
is, h : [0, 1] × U → V , h(0, x) = f (x), and h(1, x) = g(x). If T ∈ DM(U) and if
the restriction ofh to [0, 1]×spt T is proper, thenh#( (0, 1) ×T ) is well-defined and

∂h#( (0, 1) × T ) = h#∂( (0, 1) × T )
= h#(δ1 × T − δ0 × T − (0, 1) × ∂T )
= g#T − f#T − h#( (0, 1) × ∂T ) .

The homotopy formula is then a simple rearrangement of this last equality:

g#T − f#T = ∂h#( (0, 1) × T )+ h#( (0, 1) × ∂T ) . (7.22)

An important instance of the homotopy formula occurs when

h(t, x) = tg(x)+ (1− t)f (x) = f (x)+ t (g(x)− f (x)) ;
we call this an affine homotopy of f to g. Then we can obtain that

M[h#( (0, 1) ×T ) ] ≤ sup
spt T

|f−g|· sup
x∈spt T

(‖Df (x)‖+‖Dg(x)‖)MM(T ) . (7.23)

In fact, this inequality follows immediately once we notice that

h#( (0, 1) × T )(ω)

=
∫ 1

0

∫ 〈
〈∧M+1Dh(t, x), e1 ∧−→T (x)〉, ω(h(t, x))

〉
dµT (x) dL1(t)

=
∫ 1

0

∫ 〈
(g(x)− f (x)) ∧

〈t∧M Df (x)+ (1− t)∧M Dg(x),−→T (x)〉, ω(h(t, x)) 〉 dµT (x) dL1(t) .

(7.24)

Figure 7.4 illustrates the homotopy formula. In this figure, T is the 1-dimensional
current associated with the oriented line segment on the left, f is the identity, and g
maps the line segment on the left to the polygonal path on its right. The six-sided
polygonal region then corresponds to h#( (0, 1) × T ) with h the affine homotopy
of f to g.

7.4.4 Applications of the Homotopy Formula

The next lemma shows us how the homotopy formula can be used to define f#T in
case f is only Lipschitz—provided that the restriction of f to the support of T is
proper and both MW(T ), MW(∂T ) are finite for allW ⊂⊂ U . We will use smoothing
of currents as described in Definition 7.3.2.



194 7 Introduction to Currents

Fig. 7.4. The homotopy formula.

Lemma 7.4.3. Let T be a current, T ∈ DM(U), and suppose that MW(T ), MW(∂T )
are finite for each W ⊂⊂ U . Let f : U → V be a Lipschitz mapping, and assume
that the restriction of f to the support of T is proper. Then we may define

f#(T ) ≡ lim
σ→0+

fσ#T (ω)

because the limit on the right-hand side exists for each ω ∈ DM(V ). We also may
conclude that

spt f#T ⊆ f (spt T ) and MW(f#T ) ≤
(

ess sup
f−1(W)

|Df |
)M

Mf−1(W)(T )

for allW ⊂⊂ V .

Proof. If σ, τ > 0 are small then the homotopy formula gives us that

fσ#T (ω)− fτ#T (ω) = h#( [0, 1) × T )(dω)+ h#( (0, 1) × ∂T )(ω) ,
where h is the usual affine homotopy of fτ to fσ . Now (7.23) tells us, for small
σ, τ , that

|fσ#T (ω)− fτ#T (ω)| ≤ c sup
f−1(K)∩ spt T

|fσ − fτ | · ‖f ‖Lip .

Here K is a compact subset of V with suppω ⊆ interior (K). Since fσ → f

uniformly on compact subsets of U , the result clearly follows. ��
Now we need the notion of a cone over a current T ∈ DM(U). Any definition

that we give should have the property that in the special case that T = S , where S
is a submanifold of the sphere SN−1 ⊆ RN , the cone over T is CS , where

CS = {λx : x ∈ S, 0 ≤ λ ≤ 1} .
We define the cone using ideas and terminology that we have introduced thus far.
We let
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• T ∈ DM ;
• U be star-shaped with respect to the point 0 (i.e., t ∈ U , for each x ∈ U and each

0 ≤ t ≤ 1);
• spt T be compact;
• h : R× RN → RN be defined by h(t, x) = tx.
Then the cone over T , denoted by δ0×× T , is given by

δ0×× T = h#( (0, 1) × T ) . (7.25)

It follows that δ0×× T ∈ DM+1(U) and, by the homotopy formula,

∂(δ0×× T ) = T − δ0×× ∂T .
Also, if spt T ⊆ {x : |x| = r } holds, then we can estimate

M(δ0×× T ) ≤ r

M + 1
M(T ) .

This last estimate follows from observing that

h#( (0, 1) × T )(ω)

=
∫ 1

0

∫ 〈
〈∧M+1Dh(t, x), e1 ∧−→T (x)〉, ω(h(t, x))

〉
dµT (x) dL1(t)

=
∫ 1

0

∫
tM 〈 x ∧−→T (x), ω(tx) 〉 dµT (x) dL1(t) .

By making the obvious modifications, we can define the cone over T with vertex
p, which we denote by δp ×× T . In this case, we have

∂(δp ×× T ) = T − δp ×× ∂T (7.26)

and, if spt T ⊆ {x : |x − p| = r } holds,

M(δp ×× T ) ≤ r

M + 1
M(T ) . (7.27)

7.5 Rectifiable Currents with Integer Multiplicity

Now we consider integer-multiplicity currents T ∈ DN(U), which are similar to, but
more general than, the currents associated with smooth surfaces. These new currents
will be based on the notion of a countably M-rectifiable set that was introduced in
Section 5.4.

Definition 7.5.1. Let M be an integer with 1 ≤ M ≤ N . Let T ∈ DM(U) for
U ⊆ RN an open set. We say that T is an integer-multiplicity rectifiableM-current
(or, more succinctly, an integer-multiplicity current) if there are S, θ , and ξ such that
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(1) S is an HM -measurable, countablyM-rectifiable subset ofU with HM(S
⋂
K) <

∞ for each compact K ⊆ U ;
(2) θ is a locally HM -integrable, nonnegative, integer-valued function;
(3) ξ : S → ∧

M (R
N) is an HM -measurable function such that, for HM -almost

every point x ∈ S, ξ(x) is a simple unitM-vector in TxS;
(4) the current T is given by

T (ω) =
∫
S

〈ω(x), ξ(x) 〉 θ(x) dHM(x)

for ω ∈ DM(U).
For (3), recall that ξ(x) is simple if ξ(x) = τ1∧· · ·∧ τM ; in this situation it is usually
most convenient to choose {τj } to be an orthonormal basis for TxS.

In the preceding definition, we call θ the multiplicity of T and ξ the orientation
of T . It will be convenient for us to write T = τ (S, θ, ξ). In terms of the notation
for currents representable by integration introduced in (7.4) we have

−⇀
S = ξ, µS = ‖S‖ = HM (θ χ

S
) .

Figure 7.5 illustrates a current that fails to be integer-multiplicity rectifiable because
the orientation does not lie in the tangent space.

Fig. 7.5. A current that is not integer-multiplicity rectifiable.

Let T ∈ D0(U) for U ⊆ RN an open set. We say that T is an integer-multiplicity
rectifiable 0-current if there are S ⊆ U and θ : S → Z such that

S
⋂
K is finite if K ⊆ U is compact,

T (ω) =
∑

x∈S∩suppω

θ(x) ω(x) for ω ∈ D0(U). (7.28)

In this case, the multiplicity function of T is the absolute value of θ and the orientation
function of T is the sign of θ , so we may write

T = τ (S, |θ |, sgn(θ)) .
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Some Properties of Integer-Multiplicity Currents

(1) If T1, T2 ∈ DM(U) are integer-multiplicity currents, then so is p1T1 + p2T2 for
any p1, p2 ∈ Z.

(2) If T1 = τ (V1, θ1, ξ1) ∈ DM(U) and T2 = τ (V2, θ2, ξ2) ∈ DN(V ) then T1×T2 ∈
DM+N(U × V ) is also integer-multiplicity and

T1 × T2 = τ (V1 × V2, θ1θ2, ξ1 ∧ ξ2) .
(3) If F : U → V is Lipschitz, S ⊆ U , and T = τ (S, θ, ξ) ∈ DM(U), and if f

∣∣
spt T

is proper, then F#T ∈ DM(V ) is integer-multiplicity and

F#T = τ ( F (S), φ, η) ,

where φ ∈ ∧M RN and η ∈ Z+ are characterized, HM -almost everywhere in
F(S), by ∑

x∈F−1(y)∩S+
θ(x) · 〈

∧
M DSF(x), ξ(x)〉

|〈∧M DSF(x), ξ(x)〉| = φ(y) η(y) . (7.29)

Here S+ is the set of x ∈ S for which TxS and DSF(x) both exist and DSF(x)
is of rankM on TxS.

Statements (1) and (2) are immediate. To see statement (3) we reason as follows:
By definition,

F#T (ω) =
∫
V

〈ω(f (x)), 〈∧M DSF(x), ξ(x)〉 〉 θ(x) dHM(x) .
Corollary 5.1.13 of the area formula allows us to rewrite the last equation as

F#T (ω) =
∫
F(S)

〈
ω(y),

∑
x∈F−1(y)∩S+

θ(x) · 〈
∧
M DSF, ξ(x)〉

|〈∧M DSF, ξ(x)〉|
〉
dHM(y) .

(7.30)
For HM -almost every y the approximate tangent space Ty(F (S)) exists and TxS and
DSF exist for all x ∈ F−1(y) ∩ S+. Hence

〈∧M DSF, ξ(x)〉
|〈∧M DSF, ξ(x)〉| = ±τ1 ∧ · · · ∧ τM , (7.31)

where τ1, . . . , τM is an orthonormal basis for Ty(F (S)). Thus we obtain (7.29).
Considering a y such that the approximate tangent space Ty(F (S)) exists and

TxS and DSF exist for all x ∈ F−1(y) ∩ S+ and replacing τ1 by −τ1 if necessary,
we may suppose that τ1 ∧ · · · ∧ τM = η(y). Then we have

φ(y) =
∑
A1

θ(x)−
∑
A2

θ(x) ,
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where A1 is the set of x ∈ F−1(y) ∩ S+ for which

η = 〈∧M DSF(x), ξ(x)〉
|〈∧M DSF(x), ξ(x)〉|

and A2 is the set of x ∈ F−1(y) ∩ S+ for which

−η = 〈∧M DSF(x), ξ(x)〉
|〈∧M DSF(x), ξ(x)〉| .

Thus, for HM -almost every y ∈ F(W), we have

η(y) =
∑

x∈F−1(y)∩W+
θ(x)− 2

∑
A2

θ(x) ≤
∑

x∈F−1(y)∩W+
θ(x) .

We also note that, for HM -almost every y ∈ F(W), η(y) is congruent modulo 2 to∑
x∈F−1(y)∩W+ θ(x).
One of the main things that we do in this subject is to extract “convergent’’

subsequences from collections of currents. This is, for instance, how we prove an
existence theorem for the solution of the Plateau problem.3 The next compactness
theorem is an instance of this point of view.

Theorem 7.5.2 (Compactness for Integer-Multiplicity Currents). Let {Tj } ⊆
DM(U) be a sequence of integer-multiplicity currents such that

sup
j≥1

[
MW(Tj )+MW(∂Tj )

]
<∞ for allW ⊂⊂ U .

Then there is an integer-multiplicity current T ∈ DM(U) and a subsequence {Tj ′ }
such that Tj ′ → T weakly in U .

The compactness theorem was first proved by Federer and Fleming in [FF 60].
Their proof had the drawback of relying on the structure theorem for sets of fi-
nite Hausdorff measure (for the structure theorem, see [Whe 98] and the references
therein). An alternative proof was developed by Bruce Solomon (see [Som 84]).
Solomon’s proof used facts about multivalued functions, which led Brian White to
give a third proof that avoided both the structure theory and multivalued functions
(see [Whe 89]). Later in this book we will give a proof of the compactness theorem
using metric-space-valued functions of bounded variation in a manner similar to that
in [LY 02]. It should be noted that the work of Ambrosio and Kirchheim [AK 00]
puts this metric space approach into a more general and natural context. Yet another
extension of this theory appears in [Whe 99].

Remark 7.5.3. It is important to realize that the existence of the subsequence {Tj ′ } and
the limit current T in Theorem 7.5.2 is an immediate consequence of the Banach–
Alaoglu theorem.4 What is nontrivial is the fact that T is an integer-multiplicity

3 Joseph Antoine Ferdinand Plateau (1801–1883).
4 Stefan Banach (1892–1945), Leonidas Alaoglu (1914–1981).
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current. In the codimension-1 case, that is, when the ambient space has dimension
N = M+1, Theorem 7.5.2 can be proved using Proposition 7.3.4 and the compactness
theorem for functions of bounded variation. In case M = 0, because of (7.28),
Theorem 7.5.2 is a consequence of the Bolzano–Weierstrass theorem.5

To end this section we will prove a decomposition theorem for integer-multiplicity
currents of codimension 1. The statement of this theorem invokes the notion of a set of
locally finite perimeter. We recall the relevant definitions here (see [KPk 99, Section
3.7]; the original definition is due to De Giorgi):

Definition 7.5.4.

(1) If A is a Borel set and U ⊆ RN is open, then the perimeter of A in U is denoted
by P(A,U) and is defined by

P(A,U) =
∫
U

|Dχ
A
|

= sup

{∫
A

div(g) dLN : g ∈ C1(U ;RN), supp g ⊂⊂ U, |g| ≤ 1

}
.

(2) We say that A is of locally finite perimeter if

P(A,U) <∞
holds for every bounded open set U . Sets of locally finite perimeter are also
called Caccioppoli sets.6

(3) If A is of locally finite perimeter, then there is a positive Radon measure µ and
a µ-measurable RN -valued function σ, with |σ(x)| = 1 for µ-almost every x,
such that the distribution derivative of χ

A
is given byDχ

A
= σµ. It is customary

to use the notation |Dχ
A
| for the Radon measure µ and to write nA = −σ , so

that
Dχ
A
= −nA |DχA|

and

P(A,U) =
∫
U

|Dχ
A
| .

We have defined nA to be the negative of σ so that nA will be the outward unit
normal to A.

(4) In case A has locally finite perimeter in U , the reduced boundary of A, denoted
by ∂∗A, is the set of x ∈ U such that
(a) |Dχ

A
|(B(x, r)) > 0 holds for r > 0,

5 Bernard Placidus Johann Nepomuk Bolzano (1781–1848), Karl Theodor Wilhelm Weier-
strass (1815–1897).

6 Renato Caccioppoli (1904–1959).



200 7 Introduction to Currents

(b) nA(x) = lim
r↓0

∫
B(x,r)

nA d|DχA|
|Dχ

A
|(B(x, r)) ,

(c) |nA| = 1.
The structure theorem for sets of finite perimeter tells us that

|Dχ
A
| = HN−1 ∂∗A . (7.32)

Theorem 7.5.5. Let U be an open set in RM+1 and let R be an integer-multiplicity
current in DM+1(U) with MW(∂R) < ∞ for all W ⊂⊂ U . Then T = ∂R is of
integer multiplicity, and we can find a decreasing sequence of (M + 1)-dimensional
Lebesgue measurable sets {Uj }∞j=−∞ of locally finite perimeter in U such that

R =
∞∑
j=1

Uj −
0∑

j=−∞
U \ Uj ,

T =
∞∑

j=−∞
∂ Uj ,

µT =
∞∑

j=−∞
µ
∂ Uj

.

In particular,

MW(T ) =
∞∑

j=−∞
MW(∂ Uj ) for all W ⊂⊂ U .

Remark 7.5.6. Lebesgue measurable sets whose boundaries as currents have locally
finite mass correspond to domains with locally finite perimeter. Here we describe
that correspondence.

Let " : D(U,RM+1)→ DM(U) be the version of the Hodge star operator7 given
by

" g =
M+1∑
j=1

(−1)j−1gj dx1 ∧ · · · ∧ dxj−1 ∧ dxj+1 ∧ · · · ∧ dxN+1 .

Thus d " g = (div g) dx1∧· · ·∧dxM+1. Then, for any (M+1)-dimensional Lebesgue
measurable set A ⊆ U , we see that

∂ A ( " g) = A (d " g) =
∫
U

χ
A

div g dLM+1 .

Thus, by definition of |Dχ
A
| and M(T ), we find that for any (M + 1)-dimensional

Lebesgue measurable A ⊆ U ,
7 William Vallance Douglas Hodge (1903–1975).
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(1) A has locally finite perimeter in U if and only if MW(∂ A ) < ∞ holds for all
W ⊂⊂ U ,

(2) in case A has locally finite perimeter in U , then

MW(∂ A ) =
∫
W

|Dχ
A
| , for allW ⊂⊂ U ,

−−⇀
∂ A = " nA , at |Dχ

A
|-almost every point of U .

Proof of Theorem 7.5.5. Now R must have the form

R = τ (S, θ, ξ) ,

where S is an (M + 1)-dimensional Lebesgue measurable subset of U . We may
suppose that ξ(x) = ±e1 ∧ · · · ∧ eM+1 and θ ∈ Z+ for all x ∈ U and that θ(x) = 0
holds for x ∈ U \ S.

Set

θ+(x) =
{
θ(x) if ξ(x) = e1 ∧ · · · ∧ eM+1,

0 otherwise,

θ−(x) =
{
θ(x) if ξ(x) = −e1 ∧ · · · ∧ eM+1,

0 otherwise,

θ̃ = θ+ − θ− .
We have

R(ω) =
∫
S

a θ̃ dLM+1(x) ,

where ω = a dx1 ∧ · · · ∧ dxM+1 ∈ DM+1(U) and

MW(R) =
∫
W

|θ̃ | dLM+1(x) (7.33)

for allW ⊂⊂ U . Also we have

MW(T ) =
∫
W

|Dθ̃ | (7.34)

for allW ⊂⊂ U , because we can convert between the left-hand and right-hand sides
of (7.34) using the operation " . Thus we see that θ̃ ∈ BVloc(U).

Now let

Uj = {x ∈ U : θ+(x) ≥ j} ,
Wj = {x ∈ U : θ−(x) ≥ j} ,

for j = 1, 2, . . . , so that
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θ̃ = θ+ − θ− =
∞∑
j=1

χ
Uj
−

∞∑
j=1

χ
Wj
.

Since

Wj = { x : θ̃ (x) ≤ −j }
= U \ { x : θ̃ (x) > −j } = U \ { x : θ̃ (x) ≥ −j + 1 } ,

we can set
Uj = {x ∈ U : θ(x) ≥ −j} ,

for j = 0,−1,−2, . . . , and conclude that

θ̃ =
∞∑
j=1

χ
Uj
−

0∑
j=−∞

χ
U\Uj

and that

R =
∞∑
j=1

Uj −
0∑

j=−∞
U \ Uj

in U .
Since T (ω) = ∂R(ω) = R(dω), ω ∈ DM(U), we have

T = ∂R
=

∞∑
j=1

∂ Uj −
∞∑
j=0

∂ Vj

=
∞∑

j=−∞
∂ Uj . (7.35)

Hence we have the necessary decomposition of T ; it remains only to prove that each
Uj has locally finite perimeter in U and that the corresponding measures sum up.

To this end, we will use a smoothing argument. Choose 0 < ε < 1/6 and let
ψj ∈ C1(R), j ∈ Z, satisfy

• ψj (t) = 0 for t ≤ j − 1+ ε;
• ψj (t) = 1 for t ≥ j − ε;
• 0 ≤ ψj ≤ 1;
• sup |ψ ′j | ≤ 1+ 3ε.

Then, because θ̃ is integer-valued, we have χ
Uj
= ψj ◦ θ̃ for all j ∈ Z.

Suppose that a is a nonnegative, compactly supported, continuous function on U
and that g = (g1, . . . , gM+1), where each component gj is a compactly supported,
continuous function on U . Suppose that |g| ≤ a holds. For any choices of k, � ∈ Z
with k ≤ �, we have
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U

(div g)
(∑�

j=k χUj
)
dLM+1 =

∫
U

(div g)
(∑�

j=k ψj ◦ θ̃
)
dLM+1

= lim
σ→0+

∫
U

(div g)
(∑�

j=k ψj ◦ θ̃σ
)
dLM+1

= − lim
σ→0+

∫
U

g ·
(∑�

j=k [grad θ̃σ ] [ψ ′j ◦ θ̃σ ]
)
dLM+1

≤ (1+ 3ε) lim
σ→0+

∫
U

a |grad θ̃σ | dLM+1

= (1+ 3ε)
∫
U

a |Dθ̃ |

= (1+ 3ε)
∫
U

a dµT .

Here θ̃σ are the mollified functions formed in our usual way (see Definition 5.5.1);
we have used the fact that the mollification of a bounded variation function converges
back to that function in a suitable topology (see [KPk 99, Section 3.6]), and we have
also used (7.34).

By taking k = �, we see that each Uj has locally finite perimeter in U . If instead
we take k = −� and set R� = ∑�j=1 Uj −

∑�
j=0 Vj , we see that (with g as in

Remark 7.5.6) the last display implies that

|R�(d " g)| ≤ (1+ 3ε)
∫
U

a dµT .

Thus, with T� = ∂R�, we have that∫
U

a dµT� ≤
∫
U

a dµT

holds for all 1 ≤ � and all compactly supported 0 ≤ a ∈ C∞(U).
Using (7.32), we also know that

R�(d " g) =
�∑

j=−�

∫
U

div g · χ
Uj
dLM+1(x)

=
�∑

j=−�

∫
∂∗Uj

nj · g dHM .

Here nj is the outward unit normal for Uj and ∂∗Uj is the reduced boundary for Uj .
Since Uj+1 ⊆ Uj , we have nj = nk on ∂∗Uj ∩ ∂∗Uk . Thus the last line may be
rewritten as
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T�( " g) =
∫
U

n · g h� dHM . (7.36)

In (7.36) we have let h� = ∑�j=−� χ∂∗Uj and let n be defined on
⋃∞
j=−∞ ∂∗Uj by

n = nj on ∂∗Uj .
Since |n| = 1 on

⋃∞
j=−∞ ∂∗Uj , we may thus conclude that∫
a dµT� =

∫
a h� dHM

=
�∑

j=−�

∫
∂∗Uj
a dHM

=
�∑

j=−�

∫
a dµ

∂ Uj
.

Letting �→+∞, we can now conclude that

µT ≥
∞∑

j=−∞
µ
∂ Uj

.

The reverse inequality of course follows directly from (7.35). Hence the proof is
complete. ��

7.6 Slicing

Our first goal in this section is to define the concept of the “slice’’ of an integer-
multiplicity current. Roughly speaking, we slice a current by intersecting it with
the level set of a Lipschitz function. The process is closely related to the content of
the coarea formula. First recall from Theorem 5.4.9 that if S is an HM -measurable,
countablyM-rectifiable set, then forHM -almost everyx ∈ S, the approximate tangent
plane TxS exists. If, additionally, f : RM+K → R is Lipschitz, then for HM -almost
every x ∈ S, the approximate gradient ∇Sf (x) : TxS → R also exists.

The following lemma is a special case of Theorem 5.4.9.

Lemma 7.6.1. Let S be an HM -measurable, countablyM-rectifiable set and let f :
RM+K → R be Lipschitz. If we define S+ to be the set of x ∈ S for which TxS and
∇Sf (x) exist and for which∇Sf (x) �= 0, then for L1-almost all t ∈ R, the following
statements hold:

(1) St = f−1(t) ∩ S+ is countably HM−1-rectifiable.
(2) For HM−1-almost every x ∈ St , the tangent spaces TxS and TxSt both exist. In

fact, TxSt is an (M − 1)-dimensional subspace of TxS and

TxS = {y + λ∇Sf (x) : y ∈ TxSt , λ ∈ R} .
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Finally, for any nonnegative HM -measurable function g on S we have

(3)
∫ ∞

−∞

(∫
St

g dHM−1
)
dL1(t) =

∫
S

|∇Sf | g dHM .

Now we apply the lemma. We replace g in statement (3) by g · χ{x:f (x)<t}. We
thus obtain the identity∫

S∩{x:f (x)<t}
|∇Sf | g dHM =

∫ t
−∞

∫
Su

g dHM−1dL1(u) .

Hence the left-hand side is an absolutely continuous function of t and we may write

d

dt

∫
S∩{x:f (x)<t}

|∇Sf | g dHM =
∫
St

g dHM−1 for all t ∈ R .

We let T = τ (S, θ, ξ) be an integer-multiplicity current in U , with U an open set
in RM+K . Let f be a Lipschitz function on U and let

θ+(x) =
{

0 if ∇Sf (x) = 0 ,
θ(x) if ∇Sf (x) �= 0 .

For L1-almost every t ∈ R with TxS, TxSt existing for HM−1-almost every x ∈ St ,
and such that the identity (3) of Lemma 7.6.1 holds, we define ξt (x) by

ξt (x) = ξ(x)
( ∇Sf (x)
|∇Sf (x)|

)
(7.37)

and we note that ξt (x) has the following properties

• ξt (x) is simple;
• ξt (x) lies in

∧
M−1 (TxSt ) ⊆

∧
M−1 (TxS);

• ξt (x) has unit length for HM−1-almost every x ∈ St .
Continuing to assume that T ∈ DM(U) is given by T = τ (S, θ, ξ), we define

the slice of T by the Lipschitz mapping f as follows.

Definition 7.6.2. For L1-almost every t ∈ R, we know that TxS, TxSt exist and (3)
of Lemma 7.6.1 holds for HM−1-almost every x ∈ St . We now define the integer-
multiplicity current 〈T , f, t〉 ∈ DM−1 by

〈T , f, t〉 = τ (St , θt , ξt ) ,

where ξt (x) is as in (7.37) and
θt = θ+

∣∣
St
.

We call 〈T , f, t〉 the slice of the current T by the function f at t . See Figure 7.6.

The next lemma records some of the main properties of slices.
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Fig. 7.6. Slicing.

Lemma 7.6.3. Slices enjoy these features:

(1) For each openW ⊆ U ,∫ ∞

−∞
MW( 〈T , f, t〉 ) dL1(t) =

∫
S∩W

|∇Sf | θ dHM

≤
(

ess sup
S∩W

|∇Sf |
)

MW(T ) .

(2) If MW(∂T ) <∞ for allW ⊂⊂ U , then for L1-almost every t ∈ R, we have

〈T , f, t〉 = ∂[ T {x : f (x) < t} ] − (∂T ) {x : f (x) < t} .

(3) If ∂T is of integer multiplicity in DM−1(U), then for L1-almost every t ∈ R, we
have

〈∂T , f, t〉 = −∂〈T , f, t〉 .
Remark 7.6.4. The equation in (2) is often the most intuitively helpful way to think
of a slice of T .

Proof.
(1) To prove (1), take g = θ+ in formula (3) of Lemma 7.6.1.

(2) Recall that the countableM-rectifiability of S allows us to write
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S =
∞⋃
j=0

Sj ,

where Si ∩ Sj = ∅ when i �= j , HM(S0) = 0, and each Sj ⊆ Vj , j ≥ 1, with
Vj an embedded C1 submanifold of RM+K . This decomposition, together with the
definition of∇S , shows that if h is Lipschitz on RM+K and if hσ are the mollifications
of h (formed in the usual way—see (5.31)) then as σ → 0,

v · ∇Shσ converges to v · ∇Sh (7.38)

for any fixed, bounded HM -measurable function v with values in RM+K ; that is,
∇Shσ converges to ∇Sh in the weak topology of L2(µT ). To verify this assertion,
one need only check that (2) holds with theC1 submanifoldsVj replacing Sj and with
v vanishing on RM+K \ Sj ; one approximates v by a smooth function and exploits
the fact that the hσ converge uniformly to h.

Now let ε > 0 and let γ be the unique piecewise linear, continuous function
satisfying

γ (s) =
{

1 if s < t − ε ,
0 if s > t .

Then γ is Lipschitz, and we apply the reasoning of the preceding paragraph to h =
γ ◦ f . Letting ω ∈ DM(U), we have

∂T (hσω) = T (d(hσω))
= T (dhσ ∧ ω)+ T (hσ dω) .

Now, applying the integral representation (7.4) to ∂T , we see that

(∂T h)(ω) = lim
σ→0+

T (dhσ ∧ ω)+ (T h)(dω) . (7.39)

Since ξ(x) orients TxS, we have

〈 dhσ ∧ ω, ξ(x) 〉 = 〈 (dhσ (x))T ∧ ωT , ξ(x) 〉
= 〈 (dhσ (x))T ∧ ω, ξ(x) 〉 .

Here λT denotes the orthogonal projection of !q(RM+K) onto !q(TxS)). We con-
clude that

T (dhσ ∧ ω) =
∫
S

〈 (dhσ (x))T ∧ ω, ξ(x) 〉 θ dHM

=
∫
S

〈ω, ξ(x) ∇Shσ (x) 〉 θ dHM .

Thus we may use (7.38) to write

lim
σ→0+

T (dhσ ∧ ω) =
∫
S

〈ω, ξ(x) ∇Sh(x) 〉 θ dHM . (7.40)
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By definition of ∇Sh, and by the chain rule for Lipschitz functions, we have

∇Sh = γ ′(f )∇Sf for HM -almost every point of S . (7.41)

Here we have used the convention that γ ′(f ) = 0 when f takes one of the values t
or t − ε for which γ is not differentiable. Notice also that

∇Sh(x) = ∇Sf (x) = 0

for HM -almost every point in {x ∈ S : f (x) = c}, c a constant.
Now (7.39), (7.40), and (7.41) tell us that

(∂T h)(ω) = −1

ε

∫
S∩{t−ε<f<t}

〈ω, ξ ∇Sf 〉 θ dHM + (T h)(dω) .

We conclude by letting ε → 0 and exploiting the remark following the proof of
Lemma 7.6.1 with g = θ 〈ω, ξ ∇Sf/|∇Sf | 〉. In fact, by considering a countable
dense set of ω ∈ DM(U), we can show that the aforementioned remark is applicable
with this choice ofg except on a setF of points t having measure 0, withF independent
of ω. That completes the proof of (2).

(3) To prove part (3) of the theorem, we begin by applying part (2) with ∂T replacing
T . Since ∂2 = 0, we find that

〈∂T , f, t〉 = ∂[(∂T ) {f < t}] .
If we instead apply ∂ to the identity in (2) we obtain

∂[ (∂T ) {x : f (x) < t} ] = −∂〈T , f, t〉 .
Therefore part (3) is proved. ��

The right-hand side of the equation in part (2) of Lemma 7.6.3 makes sense when
T and ∂T are representable by integration, without the necessity of assuming that
T is an integer-multiplicity current. Thus we may consider slicing for an arbitrary
current T ∈ DM(U) that together with its boundary has locally finite mass in U . So
suppose that MW(T ) + MW(∂T ) < ∞ for all W ⊂⊂ U . Initially, we define two
types of slices by

〈T , f, t−〉 = ∂[ T {x : f (x) < t} ] − (∂T ) {x : f (x) < t} (7.42)

and

〈T , f, t+〉 = −∂[ T {x : f (x) > t} ] + (∂T ) {x : f (x) > t} . (7.43)

For only countably many values of t does it hold that

M[ T {x : f (x) = t} ] +M[ (∂T ) {x : f (x) = t} ] > 0 .

For all other values of t , we have
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〈T , f, t−〉 − 〈T , f, t+〉 = ∂[ T {x : f (x) �= t} ] − (∂T ) {x : f (x) �= t} = 0 ,

and we denote the common value of 〈T , f, t+〉 and 〈T , f, t−〉 by 〈T , f, t〉.
The important facts about these slices are that if f is Lipschitz on U , then

spt 〈T , f, t±〉 ⊂ spt T ∩ {x : f (x) = t} (7.44)

and, for all openW ⊂ U ,

MW
(
〈T , f, t+〉

)
≤ ess sup

W

|Df | · lim inf
h→0+

1

h
MW

(
T {t < f < t + h}

)
, (7.45)

MW
(
〈T , f, t−〉

)
≤ ess sup

W

|Df | · lim inf
h→0+

1

h
MW

(
T {t − h < f < t}

)
. (7.46)

Certainly MW(T {f < t}) is increasing in t ; thus the function is differentiable for
L1-almost every t ∈ R and∫ b

a

d

dt
MW(T {f < t}) dL1(t) ≤ MW(T {a < f < b})

for any a < b. Thus (7.46) yields the following bound on the upper integral of the
mass of the slices:∫ b

a

MW(〈T , f, t±〉) dL1(t) ≤ ess sup
W

|Df | ·MW(T {a < f < b}) (7.47)

for every openW ⊂ U .
Now we prove (7.44), (7.45), and (7.46). First consider the case that f is C1 and

let γ be any smooth, increasing function from R to R+. We have

∂(T γ ◦ f )(ω)− ((∂T ) γ ◦ f )(ω) = (T γ ◦ f )(dω)− ((∂T ) γ ◦ f )(ω)
= T (γ ◦ f dω)− T (d(γ ◦ fω))
= −T (γ ′(f )df ∧ ω) . (7.48)

Now let ε > 0 be arbitrary and select γ piecewise linear such that

γ (t) =
{

0 for t < a ,
1 for t > b .

We also suppose that 0 ≤ γ ′(t) ≤ [1+ ε]/[b − a] for a < t < b. Then the left side
of (7.48) converges to 〈T , f, a+〉 if we let b decrease to a. Hence (7.44) now follows
because spt γ ′ ⊂ [a, b].
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Furthermore, the right-hand side R of (7.48) is majorized by

|R| ≤ (sup
W

|Df |) ·
(

1+ ε
b − a

)
·MW(T {a < f < b}) · (sup

W

|ω|)

for all ω with support in W . Hence we have (7.45) for f ∈ C1. Equation (7.46) for
f ∈ C1 is proved similarly.

To handle the more general Lipschitz f , we simply examine fσ in place of f
in (7.42), (7.43), and in the preceding argument, and let σ → 0+ to obtain the
conclusion.

We conclude this section with a discussion of slicing a current T ∈ DM by a
Lipschitz function F : RM+K → RL, where 2 ≤ L ≤ M . The most straightforward
approach is to formulate the definition iteratively. For example, if T is integer-
multiplicity, then define

〈 T , F, (t1, . . . , tL) 〉 = 〈 〈· · · 〈 〈 T , F1, t1 〉, F2, t2 〉, · · ·〉, FL, tL〉 ,
where F1, F2, . . . , FL are the components of F .

Of particular interest to us will be slicing the integer-multiplicity current T =
τ (S, θ, ξ) by the orthogonal projection onto a coordinateM-plane. Let p : RM+K →
RM map (x1, x2, . . . , xM+K) to (x1, x2, . . . , xM). Proceeding in a manner similar
to Lemma 7.6.1, we define S+ to be the set of x ∈ S for which TxS and DSp(x)
exist and for which rankDSp(x) = M . Then for LM -almost every t = (t1, . . . , tM),
we have

〈 T , p, t 〉 =
∑

x∈p−1(t)∩S+
σ(x) θ(x) δx , (7.49)

where σ(x) = sgn(a) when 〈∧M p, ξ(x) 〉 = a dx1 ∧ · · · ∧ dxM .
The next proposition is then evident from the definition in (7.49).

Proposition 7.6.5. Let p : RM+K → RM be projection onto the coordinate plane as
above.

(1) If h : RM → RK , A ⊆ RM is LM -measurable, and H : RM → RM+K is given
by H(t) = (t, h(t)), then

〈H# A , p, t 〉 = δH(t) .

(2) For continuous φ : RM+K → R and ψ : RM → R, if at least one of the two
functions is compactly supported, then∫

ψ(x)〈T , p, x〉 (φ) dLM(x) = [T (ψ ◦ p) dx1 ∧ · · · ∧ dxM ](φ) .

The interested reader will find an extremely thorough treatment of slicing in a
very general context in [Fed 69, Section 4.3].
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7.7 The Deformation Theorem

One of the cornerstones of geometric measure theory, and more particularly of the
theory of currents, is the deformation theorem. There are both scaled and unscaled
versions of this result. The scaled version of the theorem is obtained by applying
homotheties to the unscaled version, so we will concentrate on the unscaled version.
First we need some notation that will be particular to this treatment:

• 1 ≤ M,K ∈ Z (we will be consideringM-dimensional currents in RM+K );
• C = [0, 1] × [0, 1] × · · · × [0, 1]︸ ︷︷ ︸

M+K factors

(the standard unit cube in RM+K );

• ZM+K = {(z1, z2, . . . , zM+K) : zj ∈ Z} (the integer lattice in RM+K );
• for j = 0, 1, . . . ,M + K , we will use Lj to denote the collection of all the
j -dimensional faces occurring in the cubes

tz(C) = [z1, z1 + 1] × [z2, z2 + 1] × · · · × [zM+K, zM+K + 1]
as z = (z1, z2, . . . , zM+K) ∈ ZM+K ranges over the integer lattice.

Each M-dimensional face F ∈ LM corresponds (once we make a choice of
orientation) to an integer-multiplicity current F . For currents having finite mass
and having boundaries of finite mass, the deformation theorem tells us how such a
current can be approximated by a linear combination of the F , F ∈ LM . The name
“deformation theorem’’ arises from the proof of the theorem. The precise statement
is as follows.

Theorem 7.7.1 (Deformation Theorem, Unscaled Version). Suppose that T is an
M-dimensional current in RM+K with

M(T )+M(∂T ) <∞ .
Then we may write

T − P = ∂R + S ,
where P ∈ DM(RM+K), R ∈ DM+1(RM+K), and S ∈ DM(RM+K) satisfy

P =
∑
F∈LM

pF F , where pF ∈ R, for F ∈ LM , (7.50)

M(P ) ≤ cM(T ) , M(∂P ) ≤ cM(∂T ) , (7.51)

M(R) ≤ cM(T ) , M(S) ≤ cM(∂T ) . (7.52)

The constant c depends onM and K . Further,

spt P ∪ sptR ⊂
{
x : dist(x, spt T ) < 2

√
M +K

}
,

spt ∂P ∪ spt S ⊂
{
x : dist(x, spt ∂T ) < 2

√
M +K

}
.
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Moreover, if T is an integer-multiplicity current, then P and R can be chosen
to be integer-multiplicity currents. Also, in this case, the numbers pF in (7.50)
are integers. If in addition ∂T is integer-multiplicity, then S can be chosen to be
integer-multiplicity. [We shall see later that in case T is integer-multiplicity and
M(∂T ) <∞, then ∂T is automatically integer-multiplicity.]

See Figure 7.7.

Fig. 7.7. The deformation theorem.

A few remarks about the unscaled deformation theorem are now in order. First,
since ∂S = ∂T − ∂P and M(∂P ) ≤ cM(∂T ), it is an immediate corollary that
M(∂S) ≤ cM(∂T ). Also, the inequalities M(∂P ) ≤ cM(∂T ) and M(S) ≤ cM(∂T )
yield immediately that when ∂T = 0 then ∂P = 0 and S = 0.

The estimate for the mass of P in (7.51) depends only on the mass of T and not
on the mass of ∂T . This estimate, due to Leon Simon, is an improvement over the
original estimate given by Federer and Fleming.

For the record now, we shall also state the scaled version of the deformation
theorem. In the statement, we will use the notation ηt : RM+K → RM+K for the
homothety defined by

ηt (x) = tx .
Theorem 7.7.2 (Deformation Theorem, Scaled Version). Fix ρ > 0. Suppose that
T is anM-dimensional current in RM+K with

M(T )+M(∂T ) <∞ .
Then we may write

T − P = ∂R + S ,
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where P ∈ DM(RM+K), R ∈ DM+1(R
M+K), and S ∈ DM(RM+K). We have

P =
∑
F∈LM

pF ηρ # F , (7.53)

where pF ∈ R, for F ∈ LM , and

M(P ) ≤ cM(T ) , M(∂P ) ≤ cM(∂T ) , (7.54)

M(R) ≤ c ρM(T ) , M(S) ≤ c ρM(∂T ) . (7.55)

The constant c depends only onM and K . Further,

spt P ∪ sptR ⊂
{
x : dist(x, spt T ) < 2

√
M +Kρ

}
,

spt ∂P ∪ spt S ⊂
{
x : dist(x, spt ∂T ) < 2

√
M +Kρ

}
.

In the case that T is integer-multiplicity then so are P and R. If ∂T is integer-
multiplicity then so is S.

The scaled deformation theorem is an immediate consequence of applying the
unscaled theorem to η1/ρ #T and then applying ηρ # to the P , R, and S so obtained.
The two factors of ρ in (7.55) occur because the dimension of R is 1 more than the
dimension of T and the dimension of S is 1 more than the dimension of ∂T . Thus it
will suffice to prove the unscaled deformation theorem.

The essence of the proof of the unscaled theorem consists in pushing forward by
a retraction to deform the current T onto the M-skeleton LM . The first step in our
presentation of the proof will therefore be the construction of the retraction. For this
construction, we introduce additional notation.

• For j = 0, 1, . . . ,M +K , set

Lj =
⋃
F∈Lj

F ,

so that Lj is the j -skeleton of the cubical decomposition⋃
z∈ZM+K

(z+ C)

of RM+K ;
• for j = 0, 1, . . . ,M +K , set

L̃j = ( 12 , 1
2 , . . . ,

1
2 )+ Lj .
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Clearly we have

RM+K = LM+K ⊇ LM+K−1 ⊇ LM+K−2 ⊇ · · · ⊇ L0 ,

and similar containments hold for the L̃j .
Observe that

L̃0 ∩ LM+K−1 = ∅,
L̃1 ∩ LM+K−2 = ∅,

...

L̃K−1 ∩ LM = ∅ ;
these equations hold because

• a point in LM+K−j−1 must have j + 1 integral coordinate values,

whereas

• a point in L̃j must haveM +K − j coordinate values that are multiples of 1/2.

Similarly we see that, for any face F ∈ LM+K−j , the center of F is the point of
intersection of F and L̃j . Thus the nearest-point-retraction

ξj : LM+K−j \ LM+K−j−1 → L̃j
is well-defined. We define the retraction

ψj : LM+K−j \ L̃j → LM+K−j−1

by requiring that

• ψj (x) = x, if x ∈ LM+K−j−1;
• the line segment connecting ψj (x) and ξj (x) contains x if x ∈ LM+K−j \
[ L̃j ⋃LM+K−j−1 ].

In effect, ψj radially projects the points in F ∈ LM+K−j from the center of F onto
the relative boundary of F , so of course ψj cannot be defined at the center of F and
still be continuous.

We define
ψ : RM+K \ L̃K−1 → LM

by
ψ = ψK−1 ◦ ψK−2 ◦ · · · ◦ ψ0 .

Figure 7.8 illustrates the mapping ψ (for M = 1 and K = 2) by showing how ψ0
maps a curve in the unit cube onto the faces of the cube by radially projecting from
the center of the cube. Then ψ1 maps that projected curve onto the edges of the cube
by radially projecting from the centers of the faces.



7.7 The Deformation Theorem 215

Fig. 7.8. The mapping ψ .

It is crucial to estimate the norm of the differential of ψ . Because ψ is the
composition of radial projections, one can bound |Dψ | from below by

1 ≤ |Dψ | .
One also expects to be able to bound |Dψ | from above by a constant divided by the
minimum distance to any of the centers of projection. We will prove such an upper
bound, but in fact our proof will be more analytic than geometric. We will need the
next elementary lemma.

Lemma 7.7.3. If 0 ≤ a0 ≤ a1 ≤ · · · ≤ aj+1 < 1/2, then

j∏
i=0

(1+ 2ai − 2ai+1)
−1 ≤ 1

1− 2aj+1
.

Proof. We argue by induction. The result is obvious if j = 0 and easily verified if
j = 1.

Now, assuming that the result holds for j , we see that

j+1∏
i=0

(1+ 2ai − 2ai+1)
−1 ≤ (1− 2aj+1)

−1 (1+ 2aj+1 − 2aj+2)
−1

≤ 1

1− 2aj+2
,

where the first inequality follows from the induction hypothesis and the second in-
equality follows from the case j = 1. ��
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Lemma 7.7.4. There is a constant c = c = c(M,K) such that

|Dψ(x)| ≤ c
ρ

holds for LM+K -almost every x ∈ RM+K \ L̃K−1, where ρ = dist(x, L̃K−1).

Proof. First note that if θ is the composition of reflections through planes of the form
ej · x = k/2, k ∈ Z, translations of the form tz, z ∈ ZM+K , and permutations
of coordinates, then θ ◦ ψ ◦ θ−1 = ψ . Thus it suffices to consider points x =
(x1, x2, . . . , xM+K) of the form

0 < x1 < x2 < · · · < xM+K < 1/2 .

Since no coordinate of x equals 1/2, we have x /∈ L̃M+K . One computes ψ0(x) by
finding the smallest value of t ∈ R for which

(1− t)
(

1
2 ,

1
2 , . . . ,

1
2

)
+ t
(
x1, x2, . . . , xM+K

)
has a coordinate equal to 0. In fact, that smallest value of t is 1/(1 − 2x1), and we
see that

ψ0(x) = 1

1− 2x1
(0, x2 − x1, . . . , xM+K − x1) .

Proceeding in this way, we see that

ψ1 ◦ ψ0(x) = 1

1− 2x1

1

1− 2(x2 − x1)
(0, 0, x3 − x2, . . . , xM+K − x2)

and, ultimately, that

ψ(x) = ψK−1 ◦ ψK−2 ◦ · · · ◦ ψ0(x)

= (1− 2x1)
−1
K−1∏
j=1

[ 1− 2(xj+1 − xj ) ]−1 (7.56)

(0, 0, . . . , 0, xK+1 − xK, . . . , xM+K − xK)

=
K−1∏
j=0

(1+ 2xj − 2xj+1)
−1

(0, 0, . . . , 0, xK+1 − xK, . . . , xM+K − xK) ∈ LM ,
where x0 = 0.

By computing the partial derivatives of

(xI − xK)
K−1∏
j=0

(1+ 2xj − 2xj+1)
−1 , for 1+K ≤ I ≤ M +K ,
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and using the estimate in Lemma 7.7.3, we see that each∣∣∣∣∂(eI · ψ)∂xJ

∣∣∣∣
can be bounded by a constant multiple of (1− 2xM+K)−1. Since the point of L̃K−1

nearest to x is
(
x1, x2, . . . , xK−1,

1
2 ,

1
2 , . . . ,

1
2

)
, we have

ρ = 2−1

⎛⎝M+K∑
j=K
(1− 2xj )

2

⎞⎠1/2

≥ 2−1 (1− 2xM+K) ,

so the desired bound holds. ��

7.8 Proof of the Unscaled Deformation Theorem

We divide the proof into four steps.

Step 1. We claim that ∫
C̃

|Dψ(x)|M dLM+K(x) <∞ ,

where C̃ = [− 1
2 ,

1
2 ] × [− 1

2 ,
1
2 ] × · · · × [− 1

2 ,
1
2 ].

Using the estimate in Lemma 7.7.4, we see that it will suffice to bound∫
C̃
(ρ̃)−M dLM+K , where ρ̃ is the distance from a point in RM+K to the union of

the (K − 1)-dimensional coordinate planes. Since the distance from a point to the
union of the (K − 1)-dimensional coordinate planes is the minimum of the dis-
tances to each of the individual (K − 1)-dimensional coordinate planes, if we write
x = (x′, x′′) ∈ RM+K , where x′ ∈ RM+1 and x′′ ∈ RK−1, then it will suffice to
bound

∫
C̃
|x′|−M dLM+K(x). We may also replace C̃ by the larger setB1×B2, where

B1 = {x′ ∈ RM+1 : |x′| ≤ 2−1(M + 1)1/2 } ,
B2 = {x′′ ∈ RK−1 : |x′′| ≤ 2−1(K − 1)1/2 } .

We have∫
C̃

|x′|−M dLM+K(x) ≤
∫
B1

∫
B2

|x′|−M dLM+1(x′) dLK−1(x′′)

= LK−1(B2) ·
∫ 2−1(M+1)1/2

0

∫
RM+1∩{ξ :|ξ |=r}

r−M dHM(ξ) dL1(r)

= LK−1(B2) ·HM
(
RM+1 ∩ {ξ : |ξ | = 1}

)
· 2−1(M + 1)1/2 <∞ .
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Step 2. There exists a point a ∈ C̃ such that∫
|Dψ(x)|M d‖ta #T ‖(x) ≤ cM(T ) ,

∫
|Dψ(x)|M d‖ta #∂T ‖(x) ≤ cM(∂T )

hold, where c depends only onM andK . (Recall that ‖W‖ denotes the total variation
measure of the currentW.)

Set

c = 4
∫
C̃

|Dψ(x)|M dLM+K(x) .
By the symmetry in the construction of ψ we have∫

C̃

|Dψ(x + a)|M dLM+K(a) =
∫
C̃

|Dψ(a)|M dLM+K(a) = c/4 .

By Fubini’s theorem, we have

(c/4)M(T ) =
∫ ∫

C̃

|Dψ(x + a)|M dLM+K(a) d‖T ‖(x)

=
∫
C̃

∫
|Dψ(x + a)|M d‖T ‖(x) dLM+K(a) .

Set

G1 =
{
a ∈ C̃ :

∫
|Dψ(x + a)|M d‖T ‖(x) ≤ cM(T )

}
,

H1 = C̃ \G1 =
{
a ∈ C̃ :

∫
|Dψ(x + a)|M d‖T ‖(x) > cM(T )

}
.

We have∫
C̃

∫
|Dψ(x + a)|M d‖T ‖(x) dLM+K(a) ≥ cM(T )LM+K(H1) ,

so if LM+K(H1) ≥ 1/3 held, then we would have (c/4)M(T ) ≥ (c/3)M(T ). That
is a contradiction. So we have LM+K(H1) < 1/3 and LM+K(G1) ≥ 2/3.

A similar argument shows that

G2 =
{
a ∈ C̃ :

∫
|Dψ(x + a)|M d‖∂T ‖(x) ≤ cM(∂T )

}
satisfies LM+K(G2) ≥ 2/3.

We have
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LM+K(G1
⋂
G2) = LM+K(G1)+ LM+K(G2)− LM+K(G1

⋃
G2)

≥ LM+K(G1)+ LM+K(G2)− LM+K(C̃) ≥ 1/3 .

Thus there exists a ∈ G1
⋂
G2. Finally, we observe that∫

|Dψ(x)|M d‖ta #T ‖(x) =
∫
|Dψ(x + a)|M d‖T ‖(x)

and ∫
|Dψ(x)|M d‖∂ta #T ‖(x) =

∫
|Dψ(x + a)|M d‖∂T ‖(x)

hold.

Step 3. Now we fix an a ∈ C̃ as in Step 2 above and write T̃ = ta #T . Applying the
homotopy formula (see (7.22) in Section 7.4), we have

T = T̃ + ∂h#( (0, 1) × T )+ h#( (0, 1) × ∂T ) , (7.57)

where h is the affine homotopy

h(t, x) = t x + (1− t)ψ(x)
between the identity map and ta . We have the estimates

M[h#( (0, 1) × T ) ] ≤ |a|M(T ) ,
M[h#( (0, 1) × ∂T ) ] ≤ |a|M(∂T ) .

We also have

T̃ = ψ# T̃ + ∂k#( (0, 1) × T̃ )+ k#( (0, 1) × ∂T̃ ) , (7.58)

where k is the affine homotopy

k(t, x) = t x + (1− t)ψ(x)
between the identity map and ψ . We note the estimates

M[ k#( (0, 1) × T̃ ) ] ≤ 2−1 (M +K)1/2
∫
|Dψ(x)|M d‖T̃ ‖(x)

≤ 2−1 (M +K)1/2 cM(T ) ,

M[ k#( (0, 1) × ∂T̃ ) ] ≤ 2−1 (M +K)1/2
∫
|Dψ(x)|M−1 d‖∂T̃ ‖(x)

≤ 2−1 (M +K)1/2
∫
|Dψ(x)|M d‖∂T̃ ‖(x)
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≤ 2−1 (M +K)1/2 cM(∂T ) ,

M
(
ψ# T̃

)
≤
∫
|Dψ(x)|M d‖T̃ ‖(x) ≤ cM(T ) ,

M
(
ψ# ∂T̃

)
≤
∫
|Dψ(x)|M−1 d‖∂T̃ ‖(x)

≤
∫
|Dψ(x)|M d‖∂T̃ ‖(x) ≤ cM(∂T ) .

Combining (7.57) and (7.58), we have

T − ψ#T̃ = ∂
[
h#( (0, 1) × T )+ k#( (0, 1) × T̃ )

]
+ h#( (0, 1) × ∂T )+ k#( (0, 1) × ∂T̃ ) .

We set
R = h#( (0, 1) × T )+ k#( (0, 1) × T̃ )

and
S1 = h#( (0, 1) × ∂T )+ k#( (0, 1) × ∂T̃ ) .

Note thatR is integer-multiplicity if T is, and S1 is integer-multiplicity if ∂T is. Also
we have

sptR ⊂
{
x : dist(x, spt T ) < 2

√
M +K

}
,

spt S1 ⊂
{
x : dist(x, spt ∂T ) < 2

√
M +K

}
.

Step 4. While ψ#T̃ is supported in LM , it need not have the form∑
F∈LM

pF F

required by (7.50). We will now show how ψ#T̃ can be used to construct P as
in (7.50).

WriteQ = ψ#T̃ . We have

sptQ ⊂ LM . (7.59)

Let F be one of the faces in LM (that is to say, F ∈ LM ) and let F̊ be the interior of
F . Suppose that F ⊂ RM × {0} ⊂ RM+K and let p be orthogonal projection onto
RM × {0}. The construction of ψ tells us that p ◦ ψ = ψ in a neighborhood of any
point y ∈ F̊ . Thus we have that

p#(Q F̊ ) = Q F̊ .
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Identifying RM×{0}with RM and applying Proposition 7.3.4, we obtain a function
of bounded variation θF such that

M(Q F̊ ) =
∫
F̊

|θF | dLM(x) (7.60)

and

M((∂Q) F̊ ) =
∫
F̊

|DθF | (7.61)

hold and such that

(Q F̊ )(ω) =
∫
F̊

〈ω(x), e1 ∧ e2 ∧ · · · ∧ en 〉 θF (x) dLM(x) (7.62)

holds for all ω ∈ DM(RM).
In addition, by (7.62),

(Q F̊ − β F )(ω) =
∫
F̊

(θF − β) 〈ω(x), e1 ∧ · · · ∧ eM 〉 dLM(x) .

Thus, we have

M(Q F̊ − β F ) =
∫
F̊

|θF − β| dLM(x) , (7.63)

M(∂(Q F̊ − β F )) =
∫

RM
|D(χ

F̊
(θF − β))| . (7.64)

Now let us take β = βF such that

min

{
LM{x ∈ F̊ : θF (x) ≥ β}, LM{x ∈ F̊ : θF (x) ≤ β}

}
≥ 1

2
.

Note that we can do this because LM(F̊ ) = 1. Also we may take βF ∈ Z whenever
θF is integer-valued.

We have now, by Theorem 5.5.6, Theorem 5.5.7, (7.60), (7.61), (7.63), and
(7.64), that

M(Q F̊ − β F ) ≤ c
∫
F̊

|DθF | = cM(∂Q F̊ ) , (7.65)

M(∂(Q F̊ − β F )) ≤ c
∫
F̊

|DθF | = cM(∂Q F̊ ) . (7.66)

It is also the case that
Q ∂F = 0 . (7.67)

Now, summing over F ∈ LM and using (7.65), (7.66), and (7.67), with P =∑
F∈LM βF F , we see that
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M(Q− P) ≤ cM(∂Q) , (7.68)

M(∂Q− ∂P ) ≤ cM(∂Q) . (7.69)

Actually our choice of βF tells us that

|βF | ≤ 2
∫
F̊

|θF | dLM(x) .

Thus, again using (7.63), and since M(P ) =∑F |βF |, we see that

M(P ) ≤ cM(Q) . (7.70)

We also know, from (7.69) above (and the triangle inequality), that

M(∂P ) ≤ cM(∂Q) . (7.71)

Finally, we write
T − P = ∂R + S , (7.72)

where S = S1 + (Q− P), and the deformation theorem follows. ��

7.9 Applications of the Deformation Theorem

There are some immediate applications of the deformation theorem that amply illus-
trate the power of the theorem. These are:

• the isoperimetric theorem;
• the weak polyhedral approximation theorem;
• the boundary rectifiability theorem.

Theorem 7.9.1 (Isoperimetric Inequality). Let M ≥ 2. Suppose that T ∈
DM−1(RM+K) is integer-multiplicity. Assume that spt T is compact and that ∂T = 0.
Then there is a compactly supported, integer-multiplicity current R ∈ DM(RM+K)
such that ∂R = T and

[ M(R) ](M−1)/M ≤ cM(T ) .

Here the constant c depends onM and K .

The theorem deserves some commentary. In its most classical formulation, the
current T is a current of integration on a simple, closed curve γ in R2. Of course,
the mass of T is then its length. The current R is then a 2-dimensional current (i.e.,
a region in the plane) whose boundary is T . And the conclusion of the theorem is
then that the square root of the area of R is majorized by a constant times the mass
of T . We know, both intuitively and because of the classical isoperimetric theorem,
that the extremal curve T—that is, the curve that encloses the largest area for a given
perimeter (see Figure 7.9)—is the circle. Let us say that that extremal curve is a
circle of radius r . Its mass is 2πr . The region inside this curve is a disk of radius r ,
and its mass is πr2. In this situation the asserted inequality is obvious with constant
c = 1/(2

√
π).
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Fig. 7.9. The isoperimetric inequality.

Proof of the Theorem. The case T = 0 is trivial, so let us assume that T �= 0. Let
P,R, S be integer-multiplicity currents as in Theorem 7.7.2, the scaled version of the
deformation theorem, applied with M replaced by M − 1 and with K replaced by
K + 1. For the moment, ρ > 0 is arbitrary; observe also that S = 0 because ∂T = 0.

Clearly, because

M( ηρ# F ) = HM−1[ η(F ) ] = ρM−1

for all F ∈ FM−1, we know that

M(P ) = N(ρ) ρM−1

for some nonnegative integer N(ρ). Theorem 7.7.2 tells us that M(P ) ≤ cM(T ). If
we take

ρ = [ 2 cM(T ) ]1/(M−1) , (7.73)

then we have

N(ρ) 2 cM(T ) = N(ρ) ρM−1 = M(P ) ≤ cM(T ) ,

so 2N(ρ) ≤ 1, implying that N(ρ) = 0.
Choosing ρ as in (7.73), we haveP = 0. Theorem 7.7.1 now tells us that T = ∂R

for the compactly supported, integer-multiplicity current R and we have

M(R) ≤ c ρM(T ) = 21/(M−1) cM/(M−1) [M(T ) ]M/(M−1) . ��
Theorem 7.9.2 (Weak Polyhedral Approximation). Let T ∈ DM(U) be any
integer-multiplicity current with MW(∂T ) < ∞ for all W ⊂⊂ U . Then there is
a sequence {P�} of currents of the form

P� =
∑
F∈FM

p
(�)
F ηρ�# F , (7.74)

with p(�)F ∈ Z, ρ� ↓ 0 and with P� converging weakly to T (so ∂P� also converges
weakly to ∂T ) in U .
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Proof. First consider the case U = RM+K and M(T ) <∞, M(∂T ) <∞. Now we
just use the deformation theorem directly: For any sequence ρ� ↓ 0, Theorem 7.7.1,
the scaled version of the deformation theorem, applied with ρ = ρ�, yields P� as in
(7.74) such that

T − P� = ∂R� + S�
for some R�, S� such that

M(R�) ≤ c ρ�M(T )→ 0 ,

M(S�) ≤ c ρ�M(∂T )→ 0 ,

and
M(P�) ≤ cM(T ) and M(∂P�) ≤ cM(∂T ) .

Clearly the last three lines give P�(ω) → T�(ω) for all ω ∈ DM(RM+K). Also
∂P� = 0 if ∂T = 0. Hence the theorem is established if U = RM+K and T , ∂T are
of finite mass.

For the general case, let us take any Lipschitz function φ on RM+K such that
φ > 0 inU and φ = 0 on RM+K \U . We further assume that {x = φ(x) > λ} ⊂⊂ U
for all λ > 0. For L1-almost every λ > 0, Lemma 7.6.3 implies that Tλ ≡ T {x :
φ(x) > λ} is such that M(∂Tλ) < ∞. Since spt Tλ ⊂⊂ U , we can use the above
argument to approximate Tλ for any such λ. Then, for a suitable sequence λj ↓ 0,
the required approximation is an immediate consequence. ��
Theorem 7.9.3 (Boundary Rectifiability). Let the integer-multiplicity current T ∈
DM be such that MW(∂T ) <∞ for all W ⊂⊂ U . Then ∂T , which is an element of
DM−1(U), is also an integer-multiplicity current.

Proof. This is a direct consequence of the last theorem and of the compactness
theorem, Theorem 7.5.2, applied to integer-multiplicity currents of dimension
M − 1. ��
Remark 7.9.4. The compactness theorem is not proved until Section 8.1. We will
see there that the proof of the compactness theorem for integer-multiplicity currents
of dimension M uses the boundary rectifiability theorem for currents of dimension
M − 1. So logically the compactness theorem and boundary rectifiability theorem
are proved together in an induction that begins with the compactness theorem for
integer-multiplicity currents of dimension 0.
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Currents and the Calculus of Variations

8.1 Proof of the Compactness Theorem

First let us recall the statement of the compactness theorem, Theorem 7.5.2:

The Compactness Theorem for Integer-Multiplicity Currents. Let {Tj } ⊆
DM(U) be a sequence of integer-multiplicity currents such that

sup
j≥1

[
MW(Tj )+MW(∂Tj )

]
<∞ for allW ⊂⊂ U .

Then there is an integer-multiplicity current T ∈ DM(U) and a subsequence {Tj ′ }
such that Tj ′ → T weakly in U .

Logically the compactness theorem and boundary rectifiability theorem are proved
in tandem by induction on M , the dimension of the currents. The induction begins
with the straightforward proof of the compactness theorem in the caseM = 0. That
proof is given in the next subsection.

The inductive step is then in two parts. First it is shown that the boundary rec-
tifiability theorem is valid. Note that the boundary rectifiability theorem is vacuous
when M = 0. In Section 7.9, we showed that when M ≥ 1, the boundary rectifi-
ability theorem is an easy consequence of the compactness theorem for currents of
dimensionM − 1.

The second part of the induction step is to prove the compactness theorem for
dimensionM assuming the boundary rectifiability theorem for dimensionM and the
compactness theorem for dimension M − 1. The strategy for this part of the proof
is to use slicing to convert a sequence of weakly convergentM-dimensional integer-
multiplicity currents into a sequence of functions that take their values in the space of
0-dimensional integer-multiplicity currents. These functions are of bounded variation
in an appropriate sense. We then analyze the behavior of the graphs of such functions
of bounded variation to understand the structure of the limitM-dimensional current.

To carry out this program we must study the 0-dimensional integer-multiplicity
currents in some detail and we must define and investigate the appropriate space of
functions of bounded variation.
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8.1.1 Integer-Multiplicity 0-Currents

Notation 8.1.1.

(1) Let R0(R
M+K) denote the space of finite-mass integer-multiplicity 0-currents in

RM+K .
(2) By (7.28), a nonzero current T in R0(R

M+K) can be written

T =
α∑
j=1

cj δpj , (8.1)

where α is a positive integer, pj ∈ RM+K for each 1 ≤ j ≤ α, pi �= pj for
1 ≤ i �= j ≤ α, δpj is the Dirac mass at pj , and cj ∈ Z\{0} for each 1 ≤ j ≤ α.

Proof of the Compactness Theorem for Integer-Multiplicity Currents of Dimension 0.
Suppose that Tj ∈ R0(RM+K), j = 1, 2, . . . , and that

L = sup
j≥1

M(Tj ) <∞ .

By the Banach–Alaoglu theorem there is a T ∈ D0(RM+k) such that a subsequence
of the Tj converges weakly to T . For simplicity, we will not change notation. Instead
we will suppose that the original sequence Tj converges weakly to T . What we must
prove is that T ∈ R0(RM+K).

Consider 0 < m < ∞ chosen large enough that T B(0,m) �= 0. We can write
each Tj B(0,m) ∈ R0(RM+K) as

Tj B(0,m) =
L∑
i=1

c
(j)
i δ

p
(j)
i

,

where
c
(j)
i ∈ Z , −L ≤ c(j)i ≤ L , p

(j)
i ∈ B(0,m) .

We now allow c(j)i = 0 because it is possible that M[ Tj B(0,m) ] < L holds.
By the Bolzano–Weierstrass theorem, we can pass to a subsequence—but again

we will not change notation—so that for j = 1, 2, . . . , L, c(j)i → ci ∈ Z and

p
(j)
i → pi ∈ B(0,m) as j →∞.

If φ ∈ D0(RM+K) with suppφ ⊆ B(0,m), then we have

Tj (φ) = Tj B(0, m)(φ)→
L∑
i=1

ci φ(pi)

and we have Tj (φ)→ T (φ) because Tj converges weakly to T . Thus we can write

T B(0,m) =
α∑
i=1

ci δpi ,
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where (by renaming if necessary) we can suppose that α ≤ L is a positive integer,
pi ∈ B(0,m) for each 1 ≤ i ≤ α, ph �= pi for 1 ≤ h �= i ≤ α, and ci ∈ Z \ {0} for
each 1 ≤ i ≤ α. Since M(T ) ≤ L < ∞, we see that in fact we can choose m large
enough that T = T B(0,m). ��
Notation 8.1.2.

(1) Equation (8.1) tells us that, for φ ∈ D0(RM+K),

T (φ) =
α∑
j=1

cj φ(pj ) . (8.2)

We can also use (8.2) to define T (φ) when φ is merely continuous.
(2) We will use the metric d0 on R0(RM+K) defined by

d0(T1, T2)

= sup{ (T1 − T2)(φ) : φ is Lipschitz, ‖φ‖∞ ≤ 1, ‖dφ‖∞ ≤ 1 } .
(3) We let FM+K denote the space of nonempty finite subsets of RM+K metrized by

the Hausdorff distance. The Hausdorff distance is defined in Section 1.6. The
Hausdorff distance between A and B is denoted by HD (A,B).

(4) Define
� : R0(R

M+K)→ R

by
�(T ) = inf { |p − q| : p, q ∈ spt (T ), p �= q } .

Note that if either T = 0 or card[ spt (T ) ] = 1, then �(T ) = +∞.

Lemma 8.1.3. If Tj ∈ R0(RM+K) and Tj → T ∈ R0(RM+K) weakly as j →∞,
then

card[ spt (T ) ] ≤ lim inf
j→∞ card[ spt (Tj ) ] .

If additionally

card[ spt (T ) ] = card[ spt (Tj ) ], j = 1, 2, . . . ,

then
�(T ) = lim

j→∞ �(Tj ) .

Proof. For each p ∈ spt (T ) we can find φp ∈ D0(RM+K) for which φp(p) = 1,
φp(x) < 1 for x �= p, and φp(q) = 0 for q ∈ spt (T ) with q �= p. The existence of
such a function φp implies thatp is a limit point of any set of the form

⋃
i≥I spt [ Tji ],

and the result follows. ��
The proof of the next lemma is elementary, but we treat it in detail because the

result is so essential to proving the compactness theorem.
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Lemma 8.1.4. If T , T̃ ∈ R0(R
M+K) satisfy 0 <M(T ) = M(T̃ ), then it holds that

min
{

1, (1/3) �(T ), HD [ spt (T ), spt (T̃ ) ]
}
≤ d0(T , T̃ ) .

Proof. Write T =∑αj=1 cj δpj as in (8.1), and write T̃ =∑q∈spt (T̃ ) γq δq . Set

r = min
{

1, (1/3) �(T )
}
.

We may assume that d0(T , T̃ ) < r .
Because M(T ) = M(T̃ ) holds, we have

α∑
j=1

|cj | =
∑

q∈spt (T̃ )

|γq | . (8.3)

For j = 1, 2, . . . , α, define φj by setting

φj (x) =
{

sgn(cj ) · [ r − |x − pj | ] if |x − pj | < r,
0 if |x − pj | ≥ r.

Since |φj | ≤ rT ≤ 1 and |dφj | ≤ 1 hold, we have (T − T̃ )(φj ) ≤ d0(T , T̃ ).
If there were 1 ≤ j ≤ α for which spt (T̃ )

⋂
B(pj , r) = ∅ held, then we would

have
d0(T , T̃ ) ≥ (T − T̃ )(φj ) = T (φj ) = r |cj | ≥ r ,

contradicting the assumption that d0(T , T̃ ) < r holds. We conclude that

spt (T̃ )
⋂

B(pj , r) �= ∅ , for j = 1, 2, . . . , α. (8.4)

Now define φ = ∑α
j=1 φj . Since the φj have disjoint supports, we see that

|φ| ≤ rT ≤ 1 and |dφ| ≤ 1 hold. Setting

Aj = spt (T̃ )
⋂

B(pj , r) , B = spt (T̃ ) \⋃αj=1Aj ,

and using (8.3), we have

d0(T , T̃ ) ≥ (T − T̃ )(φ) = T (φ)− T̃ (φ)

= r
α∑
j=1

|cj | −
α∑
j=1

∑
q∈Aj

sgn(cj ) [ r − |q − pj | ] γq

= r
∑

q∈spt (T̃ )

|γq | −
α∑
j=1

∑
q∈Aj

sgn(cj ) [ r − |q − pj | ] γq

=
∑
q∈B
r |γq | +

α∑
j=1

∑
q∈Aj

(
r |γq | − sgn(cj ) [ r − |q − pj | ] γq

)
. (8.5)
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Note that every summand in (8.5) is nonnegative.
If there existed q ∈ B, then we would have

d0(T , T̃ ) ≥ r |γq | ≥ r ,
contradicting the assumption that d0(T , T̃ ) < r holds. We conclude that

spt (T̃ ) ⊆⋃αj=1B(pj , r) . (8.6)

Now we consider q∗ ∈ spt (T̃ ) and 1 ≤ j∗ ≤ α such that q∗ ∈ Aj∗ . Looking
only at the summand in (8.5) that corresponds to j∗ and q∗, we see that

d0(T , T̃ ) ≥ r |γq∗ | − sgn(cj∗) [ r − |q∗ − pj∗ | ] γq∗ (8.7)

holds.
In assessing the significance of (8.7) there are two cases to be considered according

to the sign of cj∗γq∗ .

Case 1. In case sgn(cj∗ γq∗) = −1 holds, we have

sgn(cj∗) γq∗ = sgn(cj∗) sgn(γq∗) |γq∗ | = sgn(cj∗ γq∗) |γq∗ | = −|γq∗ | .
The fact that sgn(cj∗) γq∗ = −|γq∗ | holds implies

d0(T , T̃ ) ≥ r |γq | − sgn(cj ) [ r − |q − pj | ] γq
= (r + r − |q∗ − pj∗ |) |γq∗ | ≥ r ,

and this last inequality contradicts the assumption that d0(T , T̃ ) < r .

Case 2. Because of the contradiction obtained in the last paragraph, we see that
sgn(cj∗ γq∗) = +1 must hold. Consequently we have sgn(cj∗) γq∗ = |γq∗ |, which
implies that

d0(T , T̃ ) ≥ (r − r + |q − pj∗ |) |γq∗ | ≥ |q∗ − pj∗ | .
By (8.6), for q∗ ∈ spt (T̃ ), there exists j∗ such that q∗ ∈ Aj∗ . Similarly, by (8.4),

for 1 ≤ j∗ ≤ α, there exists q∗ ∈ spt (T̃ ) such that q∗ ∈ Aj∗ . Thus we conclude that
d0(T , T̃ ) ≥ HD [ spt (T ), spt (T̃ ) ]. ��
Theorem 8.1.5.

(1) If A ⊆ RM and f : A→ FM+K is a Lipschitz function, then⋃
x∈A
f (x) (8.8)

is a countablyM-rectifiable subset of RM+K .
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(2) If A ⊆ RM and g : A→ R0(R
M+K) is a Lipschitz function, then⋃
x∈A

spt [ g(x) ] (8.9)

is a countablyM-rectifiable subset of RM+K .

Proof.
(1) Let m be a Lipschitz bound for f . Then 1 will be a Lipschitz bound for f (x/m).
Thus, without loss of generality, we may suppose that 1 is a Lipschitz bound for f .

In this proof, we will need to consider open balls in both RM and in RM+K . Ac-
cordingly, we will use the notation BM(x, r) for the open ball in RM and BM+K(x, r)
for the open ball in RM+K .

For � = 1, 2, . . ., set A� = { x ∈ A : card[ f (x) ] = � }. Note that
⋃
x∈A1
f (x)

is the image of the Lipschitz function u : A1 → RM+K defined by requiring f (x) =
{u(x)}.

Now consider � ≥ 2 and x ∈ A�. Write f (x) = {p1, p2, . . . , p� } and set
r(x) = mini �=j |pi − pj |.

If z ∈ A�⋂BM(x, r(x)/4), then for each i = 1, 2, . . . , � there is a unique
q ∈ f (z)⋂BM+K(pi, r(x)/4) and we define ui(z) = q.

The functions u1, u2, . . . , u� are Lipschitz because, for

z1, z2 ∈ A�⋂BM(x, r(x)/4) ,

we have

HD [ f (z1), f (z2) ] = max{ |ui(z1)− ui(z2)| : i = 1, 2, . . . , � } .
Since

⋃
z∈A�∩BM(x,r(x)/4)

f (z) =
�⋃
i=1

{
ui(z) : z ∈ A�⋂BM(x, r(x)/4)

}
,

we see that
⋃
z∈A�∩BM(x,r(x)/4) f (z) is a countablyM-rectifiable subset of RM+K .

As a subspace of a second countable space, A� is second countable, so it has the
Lindelöf1 property; that is, every open cover has a countable subcover. Thus there
is a countable cover of A� by sets of the form A�

⋂
BM(x, r(x)/4), x ∈ A�. We

conclude that
⋃
z∈A� f (z) is a countably M-rectifiable subset of RM+K and hence⋃∞

�=1
⋃
z∈A� f (z) is also countablyM-rectifiable.

(2) Without loss of generality, suppose that 1 is a Lipschitz bound for g. For i and j
positive integers, set

Ai,j = { x ∈ A : M[ g(x) ] = j and 2−i < rg(x) } ,
1 Ernst Leonard Lindelöf (1870–1946).
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where
rg(x) = min

{
1, (1/3) ρ[ g(x) ]

}
.

Fix x ∈ Ai,j . For z1, z2 ∈ Ai,j ⋂B(x, 2−i−1), we have

M[ g(z1) ] = M[ g(z2) ] = j and d0[ g(z1), g(z2) ] < 2−i < rg(z1) .

So, by Lemma 8.1.4, HD [ spt (g(z1)), spt (g(z2)) ] ≤ d0[ g(z1), g(z2) ] holds. Thus

f : Ai,j ⋂B(x, 2−i−1)→ FM+K

defined by f (z) = spt [ g(z) ] is Lipschitz. By part (1) we conclude that⋃
z∈Ai,j∩B(x,2−i−1)

spt [ g(z) ] (8.10)

is a countablyM-rectifiable subset of RM+K . As in the proof of (1), we observe that
Ai,j has the Lindelöf property, and so the result follows. ��

8.1.2 A Rectifiability Criterion for Currents

The next theorem provides a criterion for guaranteeing that a current is an integer-
multiplicity rectifiable current. Later we shall use this criterion to complete the proof
of the compactness theorem.

Theorem 8.1.6 (Rectifiability Criterion). If T ∈ DM(RM+K) satisfies the following
conditions:

(1) M(T )+M(∂T ) <∞,
(2) ‖T ‖ = HM θ , where θ is integer-valued and nonnegative,
(3) { x : θ(x) > 0 } is a countablyM-rectifiable set,

then T is an integer-multiplicity rectifiable current.

Proof. Set S = { x : θ(x) > 0 }. We need to show that for HM -almost every point

in S,
−⇀
T (x) = v1 ∧ · · · ∧ vM , where v1, . . . , vM is an orthonormal system parallel

to TxS.
Of course, HM -almost every point x of S is a Lebesgue point of θ and is

a point where
−⇀
T (x) and TxS both exist. Also, by Theorem 4.3.7, we see that

�∗M(‖∂T ‖, x) <∞holds for HM -almost every x ∈ S. Hence�M−1(‖∂T ‖, x) = 0
also holds for HM -almost every x ∈ S. Let us consider such a point and, for con-
venience of notation, suppose that x = 0. Consider a sequence ri ↓ 0. Pass-
ing to a subsequence if necessary, but without changing notation, we may sup-
pose that ηri #T and ηri #∂T converge weakly to R and ∂R, respectively. Here

ηr : RM+K → RM+K is given by ηr (z) = r−1 z. Then we have
−⇀
R (0) = −⇀T (0),

∂R = 0, and sptR ⊆ T0S. By Proposition 7.3.5 (a variant of the constancy theorem),

we have
−⇀
R (x) = v1∧· · ·∧vM , where v1, . . . , vM is an orthonormal system parallel

to T0S. ��
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8.1.3 MBV Functions

In this subsection, we introduce a class of metric-space-valued functions of bounded
variation. The notion of metric-space-valued functions of bounded variation was
introduced in [Amb 90] and applied to currents in [AK 00].

Definition 8.1.7.

(1) A function u : RM → R0(RM+K) can be written

u(y) =
∞∑
i=1

ci(y) δpi(y) , (8.11)

where only finitely many ci(y) are nonzero, for any y ∈ RM .
(2) If u is as in (8.11) and and φ : RM+K → R, then we define u , φ : RM → R by

setting

(u , φ)(y) =
∞∑
i=1

ci(y) φ
[
pi(y)

]
, (8.12)

for y ∈ RM ; thus the value of (u , φ)(y) is the result of applying the 0-current
u(y) to the function φ. We use the notation , in analogy with the notation ◦ for
composition.

(3) A Borel function u : RM → R0(RM+K) is a metric-space-valued function of
bounded variation if for every bounded Lipschitz function φ : RM+K → R, the
function u , φ is locally BV in the traditional sense (see for instance [KPk 99,
Section 3.6]). We will abbreviate “u is a metric-space-valued function of bounded
variation’’ to simply “u is MBV.’’

(4) If u : RM → R0(RM+K) is MBV, then we denote the total variation measure
of u by Vu and define it by

(Vu)(A) = sup

{∫
A

|D(u , φ)| : φ : RM+K → R, |φ| ≤ 1, |dφ| ≤ 1

}

= sup

{∫
(u , φ) divg dLM : supp g ⊆ A, |g| ≤ 1, |φ| ≤ 1, |dφ| ≤ 1

}
for A ⊆ RM open.

For us the most important example of an MBV function will be provided by slicing
a current. That is the content of the next proposition.

Proposition 8.1.8. Let p : RM+K = RM × RK → RM be projection onto the first
factor. If T ∈ DM(RM+K) is an integer-multiplicity current with M(T )+M(∂T ) <
∞, then u : RM → R0(RM+K) defined by

u(x) = 〈T , p, x〉
is MBV and
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Vu(A) ≤ M
[
‖∂T ‖(A)+ ‖T ‖(A)

]
holds, for each open set A ⊆ RM .

Proof. Fix an open setA ⊆ RM . Let g ∈ C1(RM,RM) satisfy |g| ≤ 1 and supp g ⊆
A. Let φ : RM+K → R be such that |φ| ≤ 1 and |dφ| ≤ 1.

Pick i with 1 ≤ i ≤ M and set

ψ = gi , dx̂ı = dx1 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxM .
Using Proposition 7.6.5(2), we estimate∣∣∣∣ ∫ Dxiψ 〈T , p, x〉 (φ) dLM(x) ∣∣∣∣

=
∣∣∣ ( T [

(Dxiψ) ◦ p
]
dx1 ∧ · · · ∧ dxM

)
(φ)

∣∣∣
=
∣∣∣ T (φ [(Dxiψ) ◦ p

]
dx1 ∧ · · · ∧ dxM

) ∣∣∣
=
∣∣∣ T [φ d(ψ ◦ p) ∧ dx̂ı ]

∣∣∣
=
∣∣∣ (∂T ) [φ (ψ ◦ p) dx̂ı ] − T [(ψ ◦ p) dφ ∧ dx̂ı ]

∣∣∣
≤ ‖∂T ‖(A)+ ‖T ‖(A) ,

so ∣∣∣∣∫ 〈T , p, x〉φ div(g) dLn(x)
∣∣∣∣ ≤ M [ ‖∂T ‖(A)+ ‖T ‖(A) ] . ��

In fact, we have the following more general result.

Theorem 8.1.9. Let p : RM+K = RM × RK → RM be projection onto the first
factor and fix 0 < L < ∞. If for � = 1, 2, . . . , we have that T� ∈ DM(RM+K) is
an integer-multiplicity current with M(T�) + M(∂T�) ≤ L and if T� → T weakly,
then for LM -almost every x ∈ RM , it holds that 〈T , p, x〉 is an integer-multiplicity
current. Furthermore, the function u : RM → R0(RM+K) defined by

u(x) = 〈T , p, x〉
is MBV, and

Vu(A) ≤ M L
holds for each open set A ⊆ RM .

Proof. Since 〈T�, p, x〉 → 〈T , p, x〉 weakly for LM -almost every x ∈ RM , we
see that 〈T , p, x〉 is an integer-multiplicity current by the compactness theorem for
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0-dimensional currents. Then, using the same notation as in the proof of Proposi-
tion 8.1.8, we estimate∣∣∣∣ ∫ ψxi 〈T , p, x〉 (φ) dLM(x) ∣∣∣∣

=
∣∣∣ ( T (

ψxi ◦ p
)
dx1 ∧ · · · ∧ dxM

)
(φ)

∣∣∣
=
∣∣∣ T ( φ (ψxi ◦ p

)
dx1 ∧ · · · ∧ dxM )

∣∣∣
=
∣∣∣ T [φ d(ψ ◦ p) ∧ dx̂ı ]

∣∣∣
=
∣∣∣ lim
�→∞ T� [φ d(ψ ◦ p) ∧ dx̂ı ]

∣∣∣
= lim
�→∞

∣∣∣ (∂T�) [φ (ψ ◦ p) dx̂ı ] − T� [ (ψ ◦ p) dφ ∧ dx̂ı ]
∣∣∣

≤ lim
�→∞

[
‖∂T�‖(A)+ ‖T�‖(A)

]
,

and the result follows. ��
Definition 8.1.10. For a measure µ on RM , we define the maximal function for µ,
denoted by Mµ, by

Mµ(x) = sup
r>0

1

�MrM
µ
[

B(x, r)
]
.

(This definition is a variation on the definition given in Section 4.5.)

Lemma 8.1.11. If v is a real-valued BV function and 0 is a Lebesgue point for f ,
then it holds that

1

�MrM

∫
B(0,r)

|v(x)− v(0)|
|x| dLM(x)

≤
∫ 1

0

1

�M(τr)M

∫
B(0,τ r)

|Dv(x)| dLM(x) dL1(τ ) ≤ M|Dv|(0) .

Proof. For a C1 function v : RM → R, we have

|v(x)− v(0)| =
∣∣∣∣∣
∫ 1

0

d

dτ
v(τx) dL1(τ )

∣∣∣∣∣
=
∣∣∣∣∣
∫ 1

0
〈Dv(τx) , x 〉 dL1(τ )

∣∣∣∣∣ ≤
∫ 1

0
|Dv(τx)| |x| dL1(τ ) .
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So

1

�MrM

∫
B(0,r)

|v(x)− v(0)|
|x| dLM(x)

≤
∫

B(0,r)

∫ 1

0

1

�MrM
|Dv(τx)| dL1(τ ) dLM(x)

=
∫ 1

0

∫
B(0,r)

1

�MrM
|Dv(τx)| dLM(x) dL1(τ )

=
∫ 1

0

1

�M(τr)M

∫
B(0,τ r)

|Dv(x)| dLM(x) dL1(τ ) .

The result follows by smoothing (see [KPk 99, Theorem 3.6.12]). ��
Theorem 8.1.12. If v : RM → R is a BV function and y and z are Lebesgue points
for v, then

|v(y)− v(z)| ≤
[
M|Dv|(y)+M|Dv|(z)

]
|y − z| .

Proof. Suppose that y �= z. Let p be the midpoint of the segment connecting y and
z and set r = |y − z|.

For x ∈ B(p, r/2) we have

|v(y)− v(z)|
|y − z| ≤ |v(y)− v(x)|

|y − z| + |v(x)− v(z)||y − z| ,

|x − y| ≤ |x − p| + |p − y| ≤ r/2+ r/2 = |y − z| ,
|x − z| ≤ |x − p| + |p − z| ≤ r/2+ r/2 = |y − z| ,

so

|v(y)− v(z)|
|y − z| ≤ |v(y)− v(x)|

|y − z| + |v(x)− v(z)||y − z|

≤ |v(y)− v(x)|
|y − x| + |v(x)− v(z)||x − z| .

As a result,

|v(y)− v(z)|
|y − z| = 1

�MrM

∫
B(p,r/2)

|v(y)− v(z)|
|y − z| dLM

≤ 1

�MrM

∫
B(p,r/2)

|v(y)− v(x)|
|y − x| dLM

+ 1

�MrM

∫
B(p,r/2)

|v(x)− v(z)|
|x − z| dLM
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≤ 1

�MrM

∫
B(y,r)

|v(y)− v(x)|
|y − x| dLM

+ 1

�MrM

∫
B(z,r)

|v(x)− v(z)|
|x − z| dLM

≤ M|Dv|(y)+M|Dv|(z) . ��
Corollary 8.1.13. If u : RM → R0(RM+K) is an MBV function, then there is a set
E with LM(E) = 0 such that, for y, z ∈ RM \ E, it holds that

d0[ u(y), u(z) ] ≤
[
MVu(y)+MVu(z)

]
|y − z| .

Proof. Let φi , i = 1, 2, . . . , be a dense set in D0(RM) and let Ei be the set of non-
Lebesgue points for u , φi . Then we set E = ⋃∞

i=1 Ei and the result follows from
Theorem 8.1.12. ��

The preceding corollary tells us that an MBV function u is Lipschitz on any set
where the maximal function for Vu is bounded. As we saw in Chapter 4, we can use
covering-theorem methods to show that maximal functions are well behaved. We do
so again in the next lemma.

Lemma 8.1.14. For each λ > 0, it holds that

LM{x :Mµ(x) > λ} ≤ BM
λ
µ(RM) ,

where BM is the constant for RM from the Besicovitch covering theorem.

Proof. Set
L = {x :Mµ(x) > λ} .

For each x ∈ L, choose a ball B(x, rx) such that

1

�MrM
µ[B(x, rx) ] > λ .

Since L ⊆ ⋃x∈L B(x, rx) , we can apply the Besicovitch covering theorem to find
families F1, F2, . . . , FBM of pairwise disjoint balls B(x, rx), x ∈ L, such that L ⊆⋃BM
i=1

⋃
B∈Fi B. Then we have

LM(L) ≤ LM
(⋃BM
i=1

⋃
B∈FiB

)
≤
BM∑
i=1

∑
B∈Fi

2−M �M diam (B)

<
1

λ

BM∑
i=1

∑
B∈Fi
µ(B) ≤ BM

λ
µ(RM) . ��
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Theorem 8.1.15. If u : RM → R0(R
M+K) is an MBV function, then there is a set E

with LM(E) = 0 such that ⋃
x∈RM\E

spt [ u(x) ]

is a countablyM-rectifiable subset of RM+K .

Proof. We apply Lemma 8.1.14 to write RM as the union of sets Ai on which the
maximal function for Vu is bounded. By Corollary 8.1.13, there is a set Ei ⊆ Ai of
measure zero such that u is Lipschitz on Ai \Ei . So we can apply Theorem 8.1.5 to
see that

⋃
x∈Ai\Ei spt [ u(x) ] is countablyM-rectifiable. ��

8.1.4 The Slicing Lemma

Lemma 8.1.16. Suppose that f : U → R is Lipschitz.
If Ti converges weakly to T and

sup
(

MW(Ti)+MW(∂Ti)
)
<∞

for everyW ⊂⊂ U , then, for L1-almost every r , there is a subsequence ij such that

〈Tij , f, r〉 converges weakly to 〈T , f, r〉 (8.13)

and

sup
(

MW [ 〈Tij , f, r〉 ] +MW [ ∂〈Tij , f, r〉 ]
)
<∞

holds forW ⊂⊂ U .
If additionallyW0 ⊂⊂ U is such that

lim
i→∞

(
MW0(Ti)+MW0(∂Ti)

)
= 0 ,

then the subsequence can be chosen so that

lim
i→∞

(
MW0 [ 〈Tij , f, r〉 ] +MW0 [ ∂〈Tij , f, r〉 ]

)
= 0 .

Proof. Passing to a subsequence for which ‖Tij ‖ + ‖∂Tij ‖ converges weakly to a
Radon measure µ, we see that (8.13) holds, except possibly for the at most countably
many r for which µ{x : f (x) = r } has positive measure.

The remaining conclusions follow by passing to additional subsequences and
using (7.47) and the fact that ∂〈 Ti, f, r 〉 = 〈 ∂Ti, f, r 〉. ��
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8.1.5 The Density Lemma

Lemma 8.1.17. Suppose that T ∈ DM(U). For B(x, r) ⊆ U , set

λ(x, r) = inf {M(S) : ∂S = ∂[ T B(x, r) ], S ∈ DM(U)} .
(1) If MW(T )+MW(∂T ) <∞ holds for everyW ⊂⊂ U , then

lim
r↓0

λ(x, r)

‖T ‖ (B(x, r) ) = 1 (8.14)

holds for ‖T ‖-almost every x ∈ U .
(2) If

(a) ∂T = 0,
(b) ∂[ T B(x, r) ] is integer-multiplicity for every x ∈ U and almost every

0 < r ,
(c) MW(T )+MW(∂T ) <∞ holds for everyW ⊂⊂ U ,

then there exists δ > 0 such that

�M∗ (‖T ‖, x) > δ
holds for ‖T ‖-almost every x ∈ U .

Proof.
(1) We argue by contradiction. Since λ(x, r) ≤ ‖T ‖ (B(x, r) ) is true by definition,
we suppose that there is an ε > 0 and E ⊆ U with ‖T ‖(E) > 0 such that for each
x ∈ E there exist arbitrarily small r > 0 such that

λ(x, r) < (1− ε) ‖T ‖ (B(x, r) ) .
We may assume that E ⊆ W for an openW ⊂⊂ U .

Consider ρ > 0. Cover ‖T ‖-almost all of E by disjoint balls Bi = B(xi, ri),
where xi ∈ E and ri < ρ. For each i, let Si ∈ DM(U) satisfy

∂Si = [ T B(xi, ri) ], M(Si) < (1− ε)M[ T B(xi, ri) ] .
Set

Tρ = T −
∑
i

T Bi +
∑
i

Si .

For any ω ∈ DM(U) we have

(T − Tρ)(ω) =
∑
i

(T Bi − Si)(ω)

=
∑
i

[ ∂( δxi ×× (T Bi − Si) ) ](ω)

=
∑
i

( δxi ×× (T Bi − Si) )(dω)
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≤
∑
i

M( δxi ×× (T Bi − Si) ) · sup |dω|

≤ ρ
∑
i

M(T Bi − Si) · sup |dω|

≤ 2ρ
∑
i

M(T Bi) · sup |dω|

≤ 2ρM(T ) · sup |dω| .
Thus we see that Tρ converges weakly to T as ρ decreases to zero. By the lower

semicontinuity of mass, we have

MW(T ) ≤ lim inf
ρ↓0

MW(Tρ) .

On the other hand, we have

MW(Tρ) ≤ MW
(
T −

∑
i

T Bi

)
+
∑
i

MW(Si)

≤ MW
(
T −

∑
i

T Bi

)
+ (1− ε)

∑
i

MW(T Bi)

≤ MW(T )− ε
∑
i

MW(T Bi)

≤ MW(T )− ε‖T ‖(E) ,
a contradiction.

(2) Let x be a point at which (8.14) holds. Set f (r) = M( T B(x, r) ). For suffi-
ciently small r we have

f (r) < 2λ(x, r) . (8.15)

To be specific, let us suppose that (8.15) holds for 0 < r < R.
For L1-almost every r , we have

M[ ∂( T B(x, r) ) ] ≤ f ′(r) .
Applying the isoperimetric inequality, we have

λ(x, r)(M−1)/M ≤ c0 f ′(r) ,
where c0 is a constant depending only on the dimensions M and K . So, by (8.15),
we have

[f (r)](M−1)/M ≤ c1 f ′(r) (0 < r < R) ,

where c1 is another constant. Thus we have
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d

dr

[
f (r)

]1/M = (1/M) f ′(r)
[
f (r)

](1−M)/M ≥ 1/c1 .

Since f is a nondecreasing function, we have[
f (ρ)

]1/M ≥
∫ ρ

0

d

dL1(r)

[
f (r)

]1/M
dL1(r) ≥

∫ ρ
0

1/c1 dL1(r) = ρ/c1 .

We conclude that f (r) ≥ (r/c1)M holds for 0 < r < R. ��

8.1.6 Completion of the Proof of the Compactness Theorem

Now that we have all the requisite tools at hand, we can complete the proof of the
compactness theorem. Recall that by hypothesis we have a sequence {Tj } ⊆ DM(U)
of integer-multiplicity currents such that

sup
j≥1

[
MW(Tj )+MW(∂Tj )

]
<∞ for allW ⊂⊂ U .

By applying the Banach–Alaoglu theorem and passing to a subsequence if necessary,
but without changing notation, we may assume that there is a current T ∈ DM(U)
such that Tj → T weakly in U . Our task is to show that T is an integer-multiplicity
rectifiable current.

By the slicing lemma applied with f (x) = |x−a| (a ∈ U ), we see that it suffices
to consider the case in which U = RM+K and all the Tj are supported in a fixed
compact set.

By the boundary rectifiability theorem, each ∂Tj is integer-multiplicity. By the
compactness theorem for currents of dimension M − 1, ∂T is integer-multiplicity
(since ∂Tj converges weakly to ∂T ). We know then that δ0×× (∂Tj ) and δ0×× (∂T ) are
integer-multiplicity. By subtracting those currents from Tj and T , we may suppose
that ∂Tj = 0, for all j (and, of course, ∂T = 0).

By Lemma 8.1.17, we know that ‖T ‖ = HM θ , where θ is real-valued and
nonnegative. In fact, θ is bounded below by a positive number, so we see that

A = {x ∈ RM+K : θ(x) > 0}
has finite HM measure.

Consider α a multi-index with

1 ≤ α1 < α2 < · · · < αM ≤ M +K . (8.16)

Let pα : RM+K → RM be the orthogonal projection mapping

RM+K % x �−→
M∑
i=1

(eαi · x) ei .

By Theorem 8.1.9, we see that 〈T , pα, x〉 is an MBV function of x with total variation
measure bounded by ML. By Theorem 8.1.15, we see that there is a set Eα ⊆ RM

with LM(Eα) = 0 such that
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Sα =
⋃

x∈RM\Eα
spt [ 〈T , pα, x〉 ]

is a countablyM-rectifiable subset of RM+K . Also set

Bα = A⋂ p−1
α (Eα) .

We have A ⊆ Sα⋃Bα .
Letting I denote the set of all the multi-indices as in (8.16), we see that

A ⊆
⋂
α∈I

[
Sα
⋃
Bα

]
⊆ S⋃B ,

where
S =

⋃
α∈I
Sα , B =

⋂
α∈I
Bα .

By Lemma 7.4.2, T B = 0, so T = T S.
We may suppose that A ⊆ S. By Theorem 8.1.9 we know that, for each α ∈ I

and for LM -almost every x ∈ RM , 〈T , pα, x〉 is integer-valued. So we conclude that
θ is in fact integer-valued.

Finally, Theorem 8.1.6 tells us that T is an integer-multiplicity rectifiable
current. ��

8.2 The Flat Metric

Here we introduce a new topology given by the so-called flat metric. Our main
result is that, for a sequence of integer-multiplicity currents {Tj } ⊂ DM(U) with
supj≥1[MW(Tj )+MW(∂Tj ) ] <∞, for allW ⊂⊂ U , this new topology is equivalent
to that given by weak convergence. There is some confusion in the literature because
readers assume that the word “flat’’ has some geometric connotation of a lack of
curvature. In point of fact the use of this word is an allusion to Hassler Whitney’s
use of the musical notation $ to denote the metric.

Let U denote an arbitrary open set in RM+K . Set

I(U) = {T ∈ DM(U) : T is integer-multiplicity, MW(∂T ) <∞ ifW ⊂⊂ U} .
Also set, for any L > 0 andW ⊂⊂ U ,

IL,W (U) = {T ∈ I : spt T ⊂ W, M(T )+M(∂T ) ≤ L} .
When the open set U is clear from context, as it usually is, we will simply write I
and IL,W for I(U) and IL,W (U), respectively.

On I we define a family of pseudometrics {dW }W⊂⊂U by

dW(T1, T2) = inf
{

MW(S)+MW(R) : T1 − T2 = ∂R + S,

R ∈ DM+1(U), S ∈ DM(U) are of integer multiplicity
}
.
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It is worth explicitly noting that if ω ∈ DM(U) with spt ω ⊂ W , then

| (T1 − T2)(ω) | ≤ dW(T1, T2) ·max
{

sup
x∈W

|ω(x)|, sup
x∈W

|dω(x)|
}
. (8.17)

In what follows we shall assume that I is equipped with the topology given by
the family {dW }W⊂⊂U of pseudometrics. This topology is the flat metric topology for
I. Obviously there is a countable topological base of neighborhoods at each point,
and Tj → T in this topology if and only if dW(Tj , T )→ 0 for allW ⊂⊂ U .

Theorem 8.2.1. Let T , {Tj } in DM(U) be integer-multiplicity currents with
supj≥1{MW(Tj )+MW(∂Tj ) } <∞ for allW ⊂⊂ U . Then Tj converges weakly to
T if and only if

dW(Tj , T )→ 0 for each W ⊂⊂ U . (8.18)

Remark 8.2.2. The statement of this last theorem in no way invokes the compactness
theorem (Theorem 7.5.2), but we must note that if we combine the result with the
compactness theorem then we can see that, for any family of positive (finite) constants
{c(W)}W⊂⊂U , the set

{ T ∈ I : MW(T )+MW(∂T ) ≤ c(W) for all W ⊂⊂ U }
is sequentially compact when equipped with the flat metric topology.

Proof of the Theorem. First observe that if (8.18) holds, then (8.17) implies that Tj
converges weakly to T .

In proving the converse, that weak convergence implies flat metric convergence,
the main point is demonstrating the appropriate total boundedness property. More
particularly, we shall show that for any given ε > 0 and W ⊂⊂ W̃ ⊂⊂ U , we can
find a number n = n(ε,W, W̃ , L) and integer-multiplicity currents P1, P2, . . . , Pn ∈
DM(U) such that

IL,W ⊂
n⋃
j=1

{ S ∈ I : dW̃ (S, Pj ) < ε } ; (8.19)

that is, each element of IL,W is within ε of one of the currents P1, P2, . . . , Pn, as
measured by the pseudometric dW̃ . This fact follows immediately from the deforma-
tion theorem. To wit, for any ρ > 0, Theorem 7.7.2 shows that for T ∈ IL,W we can
find integer-multiplicity currents P,R, S such that

(1) T − P = ∂R + S;
(2) P =

∑
F∈LM

pF ηρ# F , pF ∈ Z;

(3) spt P ⊂ {x : dist(x, spt T ) < 2
√
M +K ρ};

(4) M(P ) =
∑

F∈LM(ρ)
|pF | ρM and M(P ) ≤ cM(T ) ≤ c L;
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(5) sptR
⋃

spt S ⊂ {x : dist(x, spt T ) < 2
√
M +K ρ}

and M(R)+M(S) ≤ c ρM(T ) ≤ c ρ L.

It follows that for ρ small enough to ensure 2
√
M +K < dist(W, ∂W̃ ), the estimates

(1) and (5) imply that
dW̃ (T , P ) ≤ c ρ L .

Since there are only finitely many currents P as in (2), (3), (4), they may be indexed
P1, . . . , Pn as in (8.19), where the number n depends only on L,W ,M , K , and ρ.

Next we choose an increasing family of sets Wi ⊂⊂ U such that the boundaries
of theWi cut the Tj in a controlled way. Specifically, we notice that by (1) and (2) of
Lemma 7.6.3 and Sard’s theorem (i.e., Corollary 5.1.10), we can find a subsequence
{Tj ′ } ⊂ {Tj } and a sequence {Wi} with Wi ⊂⊂ Wi+1 ⊂⊂ U and ∪∞i=1Wi = U such
that supj ′≥1 M[ ∂(Tj ′ Wi) ] <∞ for all i. It follows that we may henceforth assume
without loss of generality thatW ⊂⊂ U and

spt Tj ⊂ W for all j .

Now we take any W̃ such that W ⊂⊂ W̃ ⊂⊂ U . We apply (8.19) with ε = 2−r ,
r = 1, 2, . . . , so that we may extract a subsequence {Tjr }∞r=1 from {Tj } such that

dW̃ (Tjr+1 , Tjr ) < 2−r

and so
Tjr+1 − Tjr = ∂Rr + Sr . (8.20)

Here Rr , Sr are integer-multiplicity,

sptRr
⋃

spt Sr ⊂ W̃ ,
and

M(Rr)+M(Sr) ≤ 2−r .

Thus, by the compactness theorem, Theorem 7.5.2, we can define integer-
multiplicity currents R(�), S(�) via series

R(�) =
∞∑
r=�
Rr

and

S(�) =
∞∑
r=�
Sr ,

which converge in the mass topology. It follows then that

M[R(�) ] +M[ S(�) ] ≤ 2−�+1

and, from (8.20),
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T − Tj� = ∂R(�) + S(�) .
Hence we have a subsequence {Tj�} of {Tj } such that dW̃ (T , Tj�)→ 0. Since we

can in this manner extract a subsequence converging relative to dW̃ from any given
subsequence of {Tj }, we have dW̃ (T , Tj ) → 0. Since this process can be repeated
withW = Wi , W̃ = Wi+1 for all i, the desired result follows. ��

8.3 Existence of Currents Minimizing Variational Integrals

8.3.1 Minimizing Mass

One of the problems that motivated the development of the theory of integer-
multiplicity currents is the problem of finding an area-minimizing surface having
a prescribed boundary. The study of area-minimizing surfaces is quite old, dating
back to Euler’s discovery2 of the area-minimizing property of the catenoid in the
1740s and to Lagrange’s discovery3 of the minimal surface equation in the 1760s.
But despite the many advances since the time of Euler and Lagrange, many interesting
questions and avenues of research remain.

In the context of integer-multiplicity currents, it is appropriate to investigate the
problem of minimizing the mass of the current, as the mass accounts for both the area
of the corresponding surface and the multiplicity attached to the surface. The next
definition applies in very general situations to make precise the notion of a current
being mass-minimizing in comparison with currents having the same boundary.

Definition 8.3.1. Suppose that U ⊆ RN is open and T ∈ DM(RN) is an integer-
multiplicity current. For a subset B ⊆ U , we say that T is mass-minimizing in
B if

MW [T ] ≤ MW [S] (8.21)

holds whenever S is an integer-multiplicity current and

W ⊂⊂ U ,
∂S = ∂T ,
spt [S − T ] is a compact subset of B ∩W .

Remark 8.3.2. In case B = RN , we say simply that T is mass-minimizing. If, addi-
tionally, T has compact support, then Definition 8.3.1 reduces to the requirement that

M[T ] ≤ M[S]

hold whenever ∂S = ∂T .

2 Leonhard Euler (1707–1783).
3 Joseph-Louis Lagrange (1736–1813).
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If R is a nontrivial (M − 1)-dimensional current that is the boundary of some
integer-multiplicity current, then it makes sense to ask whether there exists a mass-
minimizing integer-multiplicity current with R as its boundary. The next theorem
tells us that indeed, such a mass-minimizing current does exist.

Theorem 8.3.3. Suppose that 1 ≤ M ≤ N . If R ∈ DM−1(RN) has compact support
and if there exists an integer-multiplicity current Q ∈ DM(RN) with R = ∂Q, then
there exists a mass-minimizing integer-multiplicity current T with ∂T = R.

Proof. Let {Ti}∞i=1 be a sequence of integer-multiplicity currents with ∂Ti = R, for
i = 1, 2, . . . , and with

lim
i→∞M[Ti] = inf {M[S] : ∂S = R, S is integer-multiplicity } .

Setm = dist(sptR, 0) and let f : RN → B(0, m) be the nearest-point retraction.
Because the boundary operator and the pushforward operator commute, we have

∂(f#Ti) = f#(∂Ti) = f#R = R
for i = 1, 2, . . . . Noting that Lip (f ) = 1, we conclude that

M[f#Ti] ≤ M[Ti]
holds, for i = 1, 2, . . . . Thus, by replacing Ti with f#Ti if need be, we may suppose
that spt Ti ⊆ B(0, m) holds for i = 1, 2, . . . .

Now consider the sequence of integer-multiplicity currents {Si}∞i=1 defined by
setting Si = Ti − Q, for each i = 1, 2, . . . . Noting that ∂Si = 0 for each i, we
see that the sequence {Si}∞i=1 satisfies the conditions of the compactness theorem
(Theorem 7.5.2). We conclude that there exist a subsequence {Sik }∞k=1 of {Si}∞i=1 and
an integer-multiplicity current S∗ such that Sik → S∗ as k →∞. We conclude also
that ∂S∗ = 0.

Setting T = S∗ + Q, we see that Tik = Sik +Q→ S∗ +Q = T as k→∞ and
that ∂T = ∂(S∗ +Q) = ∂S∗ + ∂Q = ∂Q = R. By the lower semicontinuity of the
mass, we have

M[T ] = inf {M[S] : ∂S = R, S is integer-multiplicity } . ��

8.3.2 Other Integrands and Integrals

Minimizing the mass of a current is only one of many possible variational problems
that can be considered in the space of integer-multiplicity currents. To introduce more
general problems, we first define an appropriate class of integrands.

Definition 8.3.4. Let U ⊆ RN be open and suppose that 1 ≤ M ≤ N .

(1) By anM-dimensional parametric integrand onU we mean a continuous function
F : U ×∧M RN → R satisfying the homogeneity condition
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F(x, rω) = r F (x, ω) , for r ≥ 0, x ∈ U, ω ∈∧M RN .

The integrand is positive if
F(x, ω) > 0

holds whenever ω �= 0. We will limit our attention to positive integrands (see
Remark 8.3.5).

(2) If F is an M-dimensional parametric integrand on U and T = τ (V , θ, ξ) is an
M-dimensional integer-multiplicity current supported in U , then the integral of
F over T , denoted by

∫
T
F , is defined by setting∫

T

F =
∫
V

F (x, θ(x) ξ(x)) dHM(x) =
∫
U

F(x,
−⇀
T (x)) d‖T ‖(x) .

(3) We say that the parametric integrand F is a constant-coefficient integrand if
F(x1, ω) = F(x2, ω) holds for x1, x2 ∈ U and ω ∈∧M RN . If F is a constant-
coefficient integrand, then it is no loss of generality to assume that U = RN .

(4) Given any x0 ∈ U , we define the constant-coefficient parametric integrand Fx0
by setting

Fx0(x, ω) = F(x0, ω) , for x ∈ RN, ω ∈∧M RN .

Remark 8.3.5. The limitation to considering a positive integrand is convenient when
one seeks a current that minimizes the integral of the integrand, because one knows
immediately that zero is a lower bound for the possible values of the integral.

Example 8.3.6.

(1) The M-dimensional area integrand is the constant-coefficient parametric inte-
grand A given by

A(x, ω) = |ω| , for x ∈ U, ω ∈∧M RN .

We see that ∫
T

A = M[T ] .

(2) Let F be an (N−1)-dimensional parametric integrand on RN . IfW is a bounded
open subset of RN and T is the (N − 1)-dimensional integer-multiplicity current
associated with the graph of a function g : W → R, then∫

T

F =
∫
W

F
[
(x, g(x)), eN +∑N−1

i=1 Dig(x) e ı̂
]
dLN−1(x) .

Comparing with [Mor 66, p. 2] for instance, we see that integrating the parametric
integrand F over a surface defined by the graph of a function g gives the same
result as evaluating the classical nonparametric functional∫

W

F[x, g(x),Dg(x)] dLN−1(x)

over the regionW , where the integrand F is given by
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F[x, z, p] = F
[
(x, z), eN +∑N−1

i=1 pi e ı̂
]
, (8.22)

for x ∈ RN−1, z ∈ R, and p = (p1, p2, . . . , pN−1) ∈ RN−1.
A similar comparison can be made in higher codimensions, but the notation

becomes increasingly unwieldy. ��
The notion of minimizing a parametric integrand is defined analogously to Defi-

nition 8.3.1, but with the appropriate modification of (8.21); more precisely, we have
the following definition.

Definition 8.3.7. Let F : U ×∧M RN → R be an M-dimensional parametric in-
tegrand on U . Suppose that T ∈ DM(RN) is an integer-multiplicity current. For a
subset B ⊆ U , we say that T is F -minimizing in B if∫

T W

F ≤
∫
S W

F (8.23)

holds whenever S is an integer-multiplicity current and

W ⊂⊂ U ,
∂S = ∂T ,
spt [S − T ] is a compact subset of B ∩W .

The existence of mass-minimizing currents was guaranteed by Theorem 8.3.3.
The proof of that theorem, as given above, is an instance of the “direct method’’ in
the calculus of variations. In the direct method, a minimizing sequence is chosen
(always possible as long as the infimum of the values of the functional is finite), a
convergent subsequence is extracted (a compactness theorem is needed—in our case
Theorem 7.5.2), and a lower-semicontinuity result is applied (lower semicontinuity
is immediate for the mass functional). Thus the question naturally arises whether the
integral of a parametric integrand is lower semicontinuous.

Definition 8.3.8. Let F : U ×∧M RN → R be an M-dimensional positive para-
metric integrand on U . We say that F is semielliptic if for each x0 ∈ U , the
integer-multiplicity current associated with any orientedM-dimensional plane isFx0 -
minimizing.

Remark 8.3.9. What Definition 8.3.8 tells us is that F is semielliptic if and only if
for every x0 ∈ U , the conditions

(1) v1, v2, . . . , vM ∈ RN are linearly independent,
(2) V is a bounded, relatively open subset of span {v1, v2, . . . , vM} ,
(3) ξ = v1 ∧ v2 ∧ · · · ∧ vM/|v1 ∧ v2 ∧ · · · ∧ vM | ,
(4) T = τ (V , 1, ξ) ,
(5) R is a compactly supported integer-multiplicity current,
(6) ∂R = ∂T ,
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imply that ∫
T

Fx0 ≤
∫
R

Fx0 . (8.24)

The hypothesis of semiellipticity for the integrand F is sufficient to guarantee
the lower semicontinuity of the integral of F as a functional on integer-multiplicity
currents. We state the result here without proof.

Theorem 8.3.10. Suppose that 1 ≤ M ≤ N . Let F : U × ∧M RN → R be an
M-dimensional positive parametric integrand on U . If F is semielliptic, then the
functional T �−→ ∫

T
F is lower semicontinuous. That is, if K ⊂ U is compact,

Ti → T in the flat metric, and spt Ti ⊆ K for i = 1, 2, . . . , then it holds that∫
T

F ≤ lim inf
i→∞

∫
Ti

F .

The heuristic of the proof is that, for ‖T ‖-almost every x0, T can be approximated
by an M-dimensional plane and F can be approximated by Fx0 . The details can be
found in [Fed 69, 5.1.5].

Corollary 8.3.11. Suppose that 1 ≤ M ≤ N . Let F : U ×∧M RN → R be anM-
dimensional semielliptic positive parametric integrand. LetK be a compact subset of
U . IfR ∈ DM−1(RN)and if there exists an integer-multiplicity currentQ ∈ DM(RN)
with R = ∂Q and with sptQ ⊆ K , then there exists an integer-multiplicity current
T with ∂T = R and with spt T ⊆ K that is F -minimizing in K .

Proof. Proceeding as in the proof of Theorem 8.3.3, we let {Ti}∞i=1 be a sequence of
integer-multiplicity currents with ∂Ti = R and with spt Ti ⊆ K , for i = 1, 2, . . . ,
chosen so that

lim
i→∞

∫
Ti

F

= inf

{ ∫
S

F : ∂S = R, spt S ⊆ K, S is integer-multiplicity

}
.

By the compactness theorem, we can extract a convergent subsequence, and then the
result follows from Theorem 8.3.10. ��

As regards being convenient for guaranteeing lower semicontinuity, the condition
of semiellipticity is hardly satisfactory, since it may be difficult to verify that currents
associated withM-dimensional planes are Fx0 -minimizing. A more practical condi-
tion is that each Fx0 be convex.

Definition 8.3.12. Let F : U × ∧M RN → R be an M-dimensional parametric
integrand on U . We say that F is convex if for each x0 ∈ U , Fx0 is a convex function
on
∧
M RN , that is, if

F
(
x0, λω1 + (1− λ)ω2

)
≤ λF(x0, ω1)+ (1− λ) F (x0, ω2)

holds for ω1, ω2 ∈∧M RN and 0 ≤ λ ≤ 1.
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Theorem 8.3.13. If theM-dimensional parametric integrand F is convex, then it is
semielliptic.

Proof. Let F be convex and fix x0 ∈ U . Suppose that the conditions of Re-
mark 8.3.9(1)–(6) hold.

First we claim that ∫ −⇀
T d‖T ‖ =

∫ −⇀
R d‖R‖ . (8.25)

Both sides of (8.25) are elements of
∧
M RN . If (8.25) were false, then we could find

ω ∈∧M RN such that〈
ω,

∫ −⇀
T d‖T ‖ −

∫ −⇀
R d‖R‖

〉
�= 0 .

But choosingW ∈ DM+1(RN) such that ∂W = T−R, as we may because ∂(T−R) =
0, and thinking of ω as a differential form having a constant value (so that dω = 0
holds), we see that

0 = W [dω] = (∂W)[ω] =
∫
〈ω,−⇀T 〉 d‖T ‖ −

∫
〈ω,−⇀R 〉 d‖R‖

=
〈
ω,

∫ −⇀
T d‖T ‖ −

∫ −⇀
R d‖R‖

〉
,

a contradiction.

Now by the homogeneity of Fx0 , the fact that
−⇀
T is constant, equation (8.25), and

using Jensen’s inequality,4 we obtain∫
T

Fx0 =
∫
F

(
x0,
−⇀
T

)
d‖T ‖ = F

(
x0,
−⇀
T

)
‖T ‖[RN ]

= F
(
x0,
−⇀
T ‖T ‖[RN ]

)
= F

(
x0,

∫ −⇀
T d‖T ‖

)

= F
(
x0,

∫ −⇀
R d‖R‖

)
≤
∫
F

(
x0,

−⇀
R

)
d‖R‖ =

∫
R

Fx0 . ��

Finally, we illustrate the subtle difference between the notion of a convex paramet-
ric integrand and the notion of convexity of integrands in the nonparametric setting.

Example 8.3.14. The 2-dimensional parametric area integrand on R4 is convex, but
the integrand that gives the 2-dimensional area of the graph of a function g over a
region in R2 is not a convex function of Dg. In fact, if g = (g1, g2) is a function of
(x1, x2), then the area of the graph of g is found by integrating

4 Johan Ludwig William Valdemar Jensen (1859–1925).
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F(p1,1, p1,2, p2,1, p2,2) =

√√√√√1+
2∑
i,j=1

p2
i,j +

(
p1,1 p2,2 − p1,2 p2,1

)2
, (8.26)

where we set

pi,j = ∂gi
∂xj
.

We see that the function in (8.26) is not convex by comparing

F(T , T , 0, 0)+ F(0, 0,−T , T )
2

=
√

1+ 2T 2 (8.27)

with

F
(

1
2T ,

1
2T ,− 1

2T ,
1
2T
)
=
√

1+ T 2 + 1
4T

4 , (8.28)

and noting that, for large |T |, the value in (8.28) is larger than the value in (8.27). ��

8.4 Density Estimates for Minimizing Currents

One gains information about a current that minimizes a variational integral by using
comparison surfaces. A comparison surface can be any surface having the same
boundary as the minimizer. To be useful, a comparison surface should be one that
you construct in such a way that the variational integral on the comparison surface
can be estimated. Since the variational integral for the minimizer must be less than
or equal to the integral for the comparison surface, some information can thereby be
gleaned from the estimate for the variational integral on the comparison surface. The
next lemma illustrates this idea.

Lemma 8.4.1. If T ∈ DM(RN) is a mass-minimizing, integer-multiplicity current,
p ∈ spt T , and B(p, r) ∩ spt ∂T = ∅, where 0 < r , then

M[ T B(p, r) ] ≤ r
M

M[ ∂(T B(p, r)) ] . (8.29)

Proof. The comparison surface C that we use is the cone over ∂(T B(p, r)) with
vertex p; see Figure 8.1. That is, we set

C = δp ×× ∂(T B(p, r))

using the cone construction in (7.25) with 0 replaced by p andM replaced byM− 1.
Then by (7.26) we have

∂C = ∂(T B(p, r)) (8.30)

and by (7.27) we have

M[C] ≤ r
M

M[ ∂(T B(p, r)) ] . (8.31)
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Fig. 8.1. The conical comparison surface.

By (8.30), we see that

∂
(
T + C − T B(p, r)

)
= ∂T ,

so, because T is mass-minimizing, we have

M[T ] ≤ M[ T + C − T B(p, r) ]
and we conclude that

M[ T B(p, r) ] ≤ M[C] ≤ r
M

M[ ∂(T B(p, r)) ]

holds. ��
The upper bound (8.29) for the mass of a mass-minimizer inside a ball is interest-

ing, but the reader may have noticed the absence of a bound for the quantity on the
right-hand side of (8.29). The next lemma, which follows readily from Lemma 7.6.3,
provides that missing bound.

Lemma 8.4.2. If T ∈ DM(RN) is an integer-multiplicity current, p ∈ spt T , and
B(p,R) ∩ spt ∂T = ∅, where 0 < R, then for L1-almost every 0 < r < R, it
holds that

M[ ∂(T B(p, r) ] ≤ d
dr

M[ T B(p, r) ] . (8.32)
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The remarkable fact is that by combining Lemma 8.4.1 and Lemma 8.4.2, we can
obtain the lower bound on the density of a mass-minimizing current given in the next
theorem.

Theorem 8.4.3. If T ∈ DM(RN) is a mass-minimizing integer-multiplicity current,
p ∈ spt T , and B(p,R) ∩ spt ∂T = ∅, where 0 < R, then

�M r
M ≤ M[ T B(p, r) ] (8.33)

holds, for 0 < r < R.

Proof. Define φ : (0, R)→ R by setting

φ(r) = M[ T B(p, r) ] .
Then φ is a nondecreasing function and (8.29) and (8.32) tell us that

φ(r) ≤ r
M
φ′(r)

holds, for L1-almost every 0 < r < R.
Now choose 0 < r0 < r < R. Since

log rM − log rM0 =
∫ r
r0

M

ρ
dL1(ρ) ≤

∫ r
r0

(
log ◦φ

)′
(ρ) dL1(ρ)

≤
(

log ◦φ
)
(r)−

(
log ◦φ

)
(r0) ,

we conclude that
M[ T B(p, r0) ]

rM0

≤ M[ T B(p, r) ]
rM

. (8.34)

Fixing 0 < r < R and letting r0 ↓ 0 in (8.34), we see that

�∗M(‖T ‖, p) �M rM ≤ M[ T B(p, r) ] (8.35)

holds. Replacing p in (8.35) by a nearby q ∈ spt T for which 1 ≤ �M(‖T ‖, q) is
true, we obtain

�M (r − |p − q|)M ≤ M[ T B(p, r − |p − q|) ] . (8.36)

Finally, letting q → p in (8.36), we obtain (8.33). ��
The inequality (8.34) expresses the monotonicity of the density of an M-

dimensional area-minimizing surface. In fact, the monotonicity property holds very
generally for surfaces that are extremal with respect to the area integrand (see for
instance [All 72, 5.1(1)]). Allard has also shown in [All 74] that the methods used
to prove monotonicity for surfaces that are extremal for the area integrand will not
extend to more general integrands.

The preceding paragraph notwithstanding, a lower bound on density does hold
for surfaces that minimize more general variational integrals. In the general case, the
comparison surface used is not the cone, but rather the surface whose existence is
guaranteed by the isoperimetric inequality.
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Lemma 8.4.4. Fix 0 < λ < 1. Let F be anM-dimensional parametric integrand on
RN satisfying the bounds

λ|ω| ≤ F(x, ω) ≤ λ−1|ω| , (8.37)

for x ∈ RN and ω ∈∧M (RN).
If T ∈ DM(RN) is an F -minimizing integer-multiplicity current, p ∈ spt T , and

B(p, r) ∩ spt ∂T = ∅, where 0 < r , then

M[ T B(p, r) ] ≤ λ−2 CM,N

(
M[ ∂(T B(p, r) ]

)M/(M−1)
. (8.38)

Here CM,N is the constant in the isoperimetric inequality for (M − 1)-dimensional
boundaries andM-dimensional surfaces in RN .

Proof. By the isoperimetric inequality, there is an integer-multiplicity currentQwith
∂Q = ∂(T B(p, r) and

M[Q] ≤ CM,N
(

M[ ∂(T B(p, r) ]
)M/(M−1)

.

Using (8.37), we obtain

M[ T B(p, r) ] ≤ λ−1
∫
T B(p,r)

F

≤ λ−1
∫
Q

F

≤ λ−2 M[Q] ≤ λ−2 CM,N

(
M[ ∂(T B(p, r) ]

)M/(M−1)
. ��

By combining Lemma 8.4.2 and Lemma 8.4.4, we obtain the next theorem.

Theorem 8.4.5. Fix 0 < λ < 1. Let F be an M-dimensional parametric integrand
on RN satisfying the bounds

λ|ω| ≤ F(x, ω) ≤ λ−1|ω| ,
for x ∈ RN and ω ∈∧M (RN).

If T ∈ DM(RN) is an F -minimizing integer-multiplicity current, p ∈ spt T , and
B(p,R) ∩ spt ∂T = ∅, where 0 < R, then

M−M λ2(M−1) C
(1−M)
M,N rM ≤ M[ T B(p, r) ] (8.39)

holds, for 0 < r < R.

Proof. As in the proof of Theorem 8.4.3, we define φ : (0, R)→ R by setting

φ(r) = M[ T B(p, r) ] .
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Then φ is a nondecreasing function and (8.38) and (8.32) tell us that

φ(r) ≤ λ−2 CM,N
[
φ′(r)

]M/(M−1)

or, equivalently,

λ2(M−1)/M C
(1−M)/M
M,N ≤

[
φ(r)

](1−M)/M
φ′(r) = M d

dr

[
φ(r)

]1/M

holds, for L1-almost every 0 < r < R.
Now fix 0 < r < R. Since we have

M−1 λ2(M−1)/M C
(1−M)/M
M,N r =

∫ r
0
M−1 λ2(M−1)/M C

(1−M)/M
M,N dρ

≤
∫ r

0
M−1 d

dρ

[
φ(ρ)

]1/M
dρ

≤
[
φ(r)

]1/M
,

(8.39) follows. ��
Theorem 8.4.5 applies to an integer-multiplicity current that minimizes an elliptic

integrand. The theorem gives us a lower bound on the mass of the minimizing
current T in any ball that is centered in the support of T and that does not intersect
the support of ∂T . Remarkable as Theorem 8.4.5 is, Theorem 8.4.3, which applies
to mass-minimizing currents, gives an even larger, and in fact optimal, lower bound
for the mass in a ball.
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Regularity of Mass-Minimizing Currents

In the last chapter we proved the existence of solutions to certain variational problems
in the context of integer-multiplicity rectifiable currents. In this chapter, we address
the question of whether such solutions are in fact smooth surfaces. Such a question
is quite natural: Indeed, Hilbert’s 19th problem asked [Hil 02], “Are the solutions of
regular problems in the calculus of variations always necessarily analytic?’’

While Hilbert proposed his famous problems in 1900, the earliest precursors
of currents as a tool for solving variational problems are the generalized curves of
Laurence Chisholm Young (1905–2000) [You 37]. So of course, Hilbert could not
have been been referring to variational problems in the context of integer-multiplicity
currents.

Sets of finite perimeter are essentially equivalent to codimension-one integer-
multiplicity rectifiable currents. It was Ennio de Giorgi (1928–1996) [DGi 61a],
[DGi 61b] who first proved the existence and almost-everywhere regularity of
area-minimizing sets of finite perimeter. Subsequently, Ernst Robert Reifenberg
(1928–1964) [Rei 64a], [Rei 64b] proved the almost-everywhere regularity of area-
minimizing surfaces in higher codimensions.

Later work of W. Fleming [Fle 62], E. De Giorgi [DGi 65], Frederick Justin
Almgren, Jr. (1933–1997) [Alm 66], J. Simons [Sis 68], E. Bombieri, E. De Giorgi,
and E. Giusti [BDG 69], and H. Federer [Fed 70], led to the definitive result that states
that, in RN , an (N − 1)-dimensional mass-minimizing integer-multiplicity current is
a smooth, embedded manifold in its interior, except for a singular set of Hausdorff
dimension at most N − 8.

The extension of the regularity theory to general elliptic integrands was made by
Almgren [Alm 68]. His result is that an integer-multiplicity current that minimizes the
integral of an elliptic integrand is regular on an open dense set. Later work ofAlmgren,
R. Schoen, and L. Simon [SSA 77] gave a stronger result in codimension one.

In our exposition, we will limit the scope of what we prove in favor of including
more detail. Specifically, we will limit our attention to the area integrand and to
codimension-one surfaces. An advantage of this approach is that we can include a
complete derivation of the needed a priori estimates. Our exposition is based on the
direct argument of R. Schoen and L. Simon [SS 82].

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
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9.1 Preliminaries

Notation 9.1.1.

(1) We letM be a positive integer,M ≥ 2.
(2) We identify RM+1 with RM × R and let p be the projection onto RM and q be

the projection onto R.
(3) We let BM(y, ρ) denote the open ball in RM of radius ρ, centered at y. The

closed ball of radius ρ, centered at y, will be denoted by B
M
(y, ρ).

(4) The cylinder BM(y, ρ)×R will be denoted by C(y, ρ) and its closure by C(y, ρ).
(5) Recall that e1, e2, . . . , eM+1 is the standard basis for RM+1, and dx1, dx2,

. . . , dxM+1 is the dual basis in
∧1 RM+1.

(6) As basis elements for
∧
M RM+1 we will use

e 1̂, e 2̂, . . . , e M̂+1
, (9.1)

where
e ı̂ = e1 ∧ e2 ∧ · · · ∧ ei−1 ∧ ei+1 ∧ · · · ∧ eM+1 .

Since theM-dimensional subspace associated with e
M̂+1

will play a special role
in what follows, we will also use the notation

eM = e
M̂+1

= e1 ∧ e2 ∧ · · · ∧ eM .

(7) We will identify
∧M RM+1 and the dual space of

∧
M RM+1 using the standard

isomorphism. Thus we will write 〈φ, η 〉 and φ(η) interchangeably when η ∈∧
M RM+1 and φ ∈∧M RM+1 - [∧M RM+1

]′
.

(8) We set

dx ı̂ = dx1 ∧ dx2 ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxM+1 (9.2)

for i = 1, 2, . . . ,M + 1.We will also use the notation

dxM = dx
M̂+1

= dx1 ∧ dx2 ∧ · · · ∧ dxM . (9.3)

Definition 9.1.2.

(1) According to the definition given in Example 8.3.6(1), the M-dimensional area
integrand on RM+1 is a function on RM+1 ×∧M RM+1, but a function that is
in fact independent of the first component of the argument. For simplicity of
notation, we will consider the M-dimensional area integrand to be a function
only on

∧
M RM+1, so that

A :∧M RM+1 → R

is given by
A(ξ) = |ξ |

for ξ ∈∧M RM+1.
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(2) TheM-dimensional area functional A is defined by setting

A(S) =
∫
A

(−⇀
S (x)

)
d‖S‖(x)

whenever S is an M-dimensional current representable by integration. We also
have A(S) = M(S) = ‖S‖(RM+1). Of course, the area integrand is called that
because, when S is the current associated with a classicalM-dimensional surface,
then A(S) equals the area of that surface.

Next we will calculate the first and second derivatives of the area integrand and
note some important identities.

Using the basis (9.1), we find that if ξ =∑Mi=1 ξie ı̂ , then

A(ξ) =
√
ξ2

1 + ξ2
2 + · · · + ξ2

M+1 ; (9.4)

so the derivative of the area integrand,DA, is represented by the 0-by-(M+1)matrix

DA(ξ) =
(
ξ1/|ξ |, ξ2/|ξ |, . . . , ξM+1/|ξ |

)
. (9.5)

That is,
〈DA(ξ), η 〉 = (ξ · η)/|ξ | (9.6)

holds for ξ, η ∈∧M RM+1, or equivalently, we have

DA(ξ) = |ξ |−1
M+1∑
i=1

ξi dx ı̂ . (9.7)

In particular, we have
DA(e ı̂ ) = dx ı̂ . (9.8)

We see that the second derivative of the area integrand, D2A, is represented by
the Hessian matrix

D2A(ξ) = |ξ |−1

⎛⎜⎜⎜⎝
1 0 . . . 0
0 1 . . . 0
...
...
. . .
...

0 0 . . . 1

⎞⎟⎟⎟⎠

− |ξ |−3

⎛⎜⎜⎜⎝
ξ2

1 ξ1ξ2 . . . ξ1ξM+1

ξ2ξ1 ξ2
2 . . . ξ2ξM+1

...
...
. . .

...

ξM+1ξ1 ξM+1ξ2 . . . ξ
2
M+1

⎞⎟⎟⎟⎠ . (9.9)

Equivalently, for the partial derivatives ∂2A/∂ξi∂ξj = Dξi ξj A, we have
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Dξi ξj A(ξ) = |ξ |−3 (|ξ |2 δi j − ξi ξj ) , (9.10)

where δi j is the Kronecker delta.1

Using (9.10), we can compute the Hilbert–Schmidt norm of D2A as follows:

|D2A(ξ)|2 =
M+1∑
i,j=1

[Dξi ξj A(ξ)]2

= |ξ |−6
M+1∑
i,j=1

[
|ξ |2 δi j − ξi ξj

]2

= |ξ |−6
M+1∑
i,j=1

[
|ξ |4 δi j − 2 |ξ |2 ξi ξj δi j + ξ2

i ξ
2
j

]

= |ξ |−6
[
(M + 1) |ξ |4 − 2 |ξ |4 + |ξ |4

]
= M |ξ |−2 .

So we have
|D2A| = √M/|ξ | . (9.11)

We note that

1

2
|ξ − η|2 = A(η)− 〈DA(ξ), η 〉, for |ξ | = |η| = 1 . (9.12)

Equation (9.12) follows because

1

2
|ξ − η|2 = 1

2

(
|ξ |2 − 2ξ · η + |η|2

)
= 1− ξ · η
= |η| − (ξ · η)/|ξ |
= A(η)− 〈DA(ξ), η 〉 ,

where the last equality follows from (9.6).
Equation (9.12) will play an important role in the regularity theory, but it is the

inequality

1

2
|ξ − η|2 ≤ A(η)− 〈DA(ξ), η 〉, for |ξ | = |η| = 1, (9.13)

1 Leopold Kronecker (1823–1891).
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that is essential. Any inequality of the form (9.13) (but with 1
2 possibly replaced

by another positive constant) is called a Weierstrass condition. Ellipticity of an
integrand is equivalent to the integrand satisfying a Weierstrass condition (see [Fed 75,
Section 3]).

Definition 9.1.3. We say that the M-dimensional integer-multiplicity current T is
mass-minimizing if

A(T ) ≤ A(S) (9.14)

holds whenever S ∈ DM(RM+1) is integer-multiplicity with ∂S = ∂T .

When a current is projected into a plane, the mass of the projection is less than
or equal to the mass of the original current. The difference between the two masses
is the “excess’’ (see Figure 9.1). The fundamental quantity used in the regularity
theory is the “cylindrical excess,’’ which is the excess of the part of a current in a
cylinder, normalized to account for the radius of the cylinder. We give the precise
definition next.

Fig. 9.1. The excess.

Definition 9.1.4. For an integer-multiplicity T ∈ DM(RM+1), y ∈ RM , and ρ > 0,
the cylindrical excess E(T , y, ρ) is defined by

E(T , y, ρ) = 1

2
ρ−M

∫
C(y,ρ)

|−⇀T − eM |2 d‖T ‖ , (9.15)
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where we recall that
T = ‖T ‖ ∧ −⇀T .

The next lemma shows the connection between equation (9.15), which defines the
excess, and the more heuristic description of the excess given before the definition.

Lemma 9.1.5. Suppose that T ∈ DM(RM+1) is integer-multiplicity, y ∈ RM , � is a
positive integer, and ρ > 0. If

p#(T C(y, ρ)) = �EM BM(y, ρ)

and spt ∂T ⊆ RM+1 \ C(y, ρ), then it holds that

E(T , y, ρ) = ρ−M
(
‖T ‖(C(y, ρ))− ‖p#T ‖(BM(y, ρ))

)
= ρ−M (‖T ‖(C(y, ρ))− ��M ρM) .

(9.16)

Proof. Since |−⇀T | = |eM | = 1, we have

|−⇀T − eM |2 = |−⇀T |2 + |eM |2 − 2

(−⇀
T · eM

)

= 2− 2

(−⇀
T · eM

)
.

So we have

1

2

∫
C(y,ρ)

|−⇀T − eM |2 d‖T ‖ =
∫

C(y,ρ)
1−

(−⇀
T · eM

)
d‖T ‖

= ‖T ‖(C(y, ρ))− ‖p#T ‖(BM(y, ρ))
= ‖T ‖(C(y, ρ))− ��M ρM . ��

We now give two corollaries of the lemma. The first is an immediate consequence
of the proof of Lemma 9.1.5 and the second shows us the effect of an isometry on the
excess.

Corollary 9.1.6. Suppose that T ∈ DM(RM+1) is integer-multiplicity, y ∈ RM , � is
a positive integer, and ρ > 0. If

p#(T C(y, ρ)) = �EM BM(y, ρ)

and spt ∂T ⊆ RM+1 \ C(y, ρ), then for any LM -measurable B ⊆ BM(y, ρ), it
holds that

‖T ‖(B × R) ≤ 1

2

∫
B×R

|−⇀T − eM |2 d‖T ‖ + �LM(B) . (9.17)



9.1 Preliminaries 261

Proof. The corollary is an immediate consequence of the proof of the lemma. ��
Corollary 9.1.7. Suppose that T ∈ DM(RM+1) is integer-multiplicity, ρ > 0,

p#(T C(0, ρ)) = �EM BM(0, ρ) ,

and spt ∂T ⊆ RM+1 \ C(0, ρ).
If 1 < λ <∞, j : RM+1 → RM+1 is an isometry, 0 < ρ′ < ρ, and

spt j#T C(0, ρ′) ⊆ j
(

spt T C(0, ρ)
)
,

then

E( j#T , 0, ρ′ ) ≤ λ (ρ/ρ′)M E( T , 0, ρ )

+ λ

2(λ− 1)
· (ρ/ρ′)M · � · ‖j− IRM+1‖2M · E( T , 0, ρ )

+ λ ��M
2(λ− 1)

· (ρ/ρ′)M · ‖j− IRM+1‖2M .

Proof. Using∣∣∣∧M j
(−⇀
T
)
− eM

∣∣∣ ≤ ∣∣∣∧M j
(−⇀
T
)
−∧M j

(
eM
) ∣∣∣+ ∣∣∣∧M j

(
eM
)
− eM

∣∣∣
and

( |α| + |β| )2 = λα2 + λ

λ− 1
β2 −

(√
λ− 1 |α| − |β|/√λ− 1

)2

≤ λα2 + λ

λ− 1
β2 ,

we obtain

E( j#T , 0, ρ′ ) ≤ 1

2
(ρ′)−M

∫
C(0,ρ)

∣∣∣∧M j
(−⇀
T
)
− eM

∣∣∣2 d‖T ‖
≤ λ

2
(ρ′)−M

∫
C(0,ρ)

∣∣∣∧M j
(−⇀
T
)
−∧M j

(
eM
) ∣∣∣2 d‖T ‖

+ λ

2(λ− 1)
(ρ′)−M

∫
C(0,ρ)

∣∣∣∧M j
(

eM
)
− eM

∣∣∣2 d‖T ‖
= λ

2
(ρ′)−M

∫
C(0,ρ)

∣∣∣−⇀T − eM
∣∣∣2 d‖T ‖

+ λ

2(λ− 1)
(ρ′)−M

∫
C(0,ρ)

∣∣∣∧M j
(

eM
)
− eM

∣∣∣2 d‖T ‖
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≤ λ
2
(ρ′)−M

∫
C(0,ρ)

∣∣∣−⇀T − eM
∣∣∣2 d‖T ‖

+ λ

2(λ− 1)
(ρ′)−M‖ j− IRM+1 ‖2M ‖T ‖C(0, ρ) ,

and the result follows from Lemma 9.1.5. ��
Notation 9.1.8. Certain hypotheses will occur frequently in what follows, so we col-
lect them here (with labels) for easy reference:

(H1) spt ∂T ⊆ RM+1 \ C(y, ρ),
(H2) p#[T C(y, ρ)] = EM BM(y, ρ),
(H3) �M rM ≤ ‖T ‖{X ∈ RM+1 : |X − Y | < r} holds whenever Y ∈ spt T and

{X ∈ RM+1 : |X − Y | < r} ∩ spt ∂T = ∅,
(H4) E(T , y, ρ) < ε,
(H5) T is mass-minimizing.

Here ρ and ε are positive and y ∈ RM .

Note that the constancy theorem, i.e., Proposition 7.3.1, implies that if spt T ⊆
RM+1 \ C(y, ρ), then, because ∂p#T = p#∂T , we have

p#(T C(y, ρ)) = �EM BM(y, ρ) , (9.18)

where � is an integer. So in (H2) we are making the simplifying assumption that
� = 1.

Note that (H5) allows us to apply Theorem 8.4.3 to obtain (H3), so (H3) is, in
fact, a consequence of (H5).

9.2 The Height Bound and Lipschitz Approximation

We begin this section with the height bound lemma. The proof we give is simplified
by using hypothesis (H3). While the height bound lemma remains true for currents
minimizing the integral of an integrand other than area, the proof is more difficult
because the lower bound on mass that they satisfy (see Theorem 8.4.5) is weaker than
that in (H3).

Lemma 9.2.1 (Height bound). For eachσ with 0 < σ < 1, there are ε0 = ε0(M, σ)
and c1 = c1(M, σ) such that the hypotheses (H1–H4), with ε = ε0 in (H4), imply

sup
{
|q (X1)− q (X2)| : X1, X2 ∈ spt T ∩ C(y, σρ)

}
≤ c1 ρ

(
E(T , y, ρ)

) 1
2M
.
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Proof. By using a translation and homothety if need be, we may assume that y = 0
and ρ = 1. We write

E = E(T , 0, 1) .
Set

r0 = 1
2 (1− σ) (9.19)

and
ε0 = 2−M �M (1− σ)M . (9.20)

First we consider points whose projections onto BM(0, 1) are separated by a
distance less than 2 r0. So suppose that X1, X2 ∈ spt T ∩ C(0, σ ) are such that

1
2

∣∣∣p (X1)− p (X2)

∣∣∣ < r0 .
We set

r = 1
2

∣∣∣p (X1)− p (X2)

∣∣∣ , h = 1
2

∣∣∣q (X1)− q (X2)

∣∣∣ .
Then we have ∣∣∣X1 −X2

∣∣∣ = 2
√
r2 + h2 .

We set
s = min{

√
r2 + h2 − r , r0 } .

Then we have
B(X1, r + s)⋂B(X2, r + s) = ∅

and
B(X1, r + s)⋃B(X2, r + s) ⊆ C(0, 1) .

Setting
x∗ = 1

2 (p (X1)+ p (X2)) ,

so that ∣∣p (X1)− x∗
∣∣ = ∣∣p (X2)− x∗

∣∣ = r ,
we see (Figure 9.2) that

p (X1) p (X2)

s
r r

Fig. 9.2. The projections of the balls.
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BM(x∗, s) ⊆ p (B(X1, r + s))⋂ p (B(X2, r + s))
and thus that

LM
[

p (B(X1, r + s))⋂ p (B(X2, r + s))
]
≥ �M sM .

By (H3) we have

‖T ‖B(X1, r + s)+ ‖T ‖B(X2, r + s) ≥ 2�M (r + s)M

= LM
[

p (B(X1, r + s))
]
+ LM

[
p (B(X2, r + s))

]
.

Thus we have

E ≥ ‖T ‖
[

B(X1, r + s)⋃B(X2, r + s)
]

− LM
[

p (B(X1, r + s))⋃ p (B(X2, r + s))
]

≥ LM
[

p (B(X1, r + s))
]
+ LM

[
p (B(X2, r + s))

]
− LM

[
p (B(X1, r + s))⋃ p (B(X2, r + s))

]
= LM

[
p (B(X1, r + s))⋂ p (B(X2, r + s))

]
≥ �M sM .

We now consider two possibilities.

Case 1. s = r0,

Case 2. s =
√
r2 + h2 − r < r0.

In Case 1, by the definition of r0, i.e., (9.19), the definition of ε0, i.e., (9.20), and
(H4), we have

E ≥ �M sM = �M rM0 = 2−M �M (1− σ)M = ε0 > E ,
a contradiction. Thus we may assume that Case 2 holds.

In Case 2, we note that

h ≤
√
r2 + h2

≤ (
√
r2 + h2 − r)+ r0

≤ 2 r0 .

Then it follows that
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E ≥ �M sM

= �M (
√
r2 + h2 − r)M

= �M
(
(r2 + h2)− r2√
r2 + h2 + r

)M

≥ �M
⎛⎝ h2√
r20 + 4r20 + r0

⎞⎠M

≥ �M 2−M (1− σ)−M h2M ,

where we obtain the last inequality by using the definition of r0, i.e., (9.19), and, for
simplicity, we have replaced

√
5+ 1 by the larger number 4.

We have shown that any two points in spt T ∩ C(0, σ ) whose projections onto
BM(0, 1) are separated by a distance less than 2 r0 will have their projections by q
separated by less than

21/2�
−1/(2M)
M (1− σ)1/2 E1/(2M) .

But any two points x1 and x2 in BM(0, σ ) are separated by a distance less than 2 σ ,
so if the two points are separated by more than 2 r0 = (1 − σ), then we can form a
sequence of points z1 = x1, z2, . . . , zM = x2 such that |zi+1 − zi | ≤ (1− σ) = 2r0.
We can take L to be the smallest integer exceeding 2 σ/(1− σ). Thus we have

L ≤ 1+ 2 σ

1− σ =
1+ σ
1− σ <

2

1− σ .

Hence we may set

c1(M, σ) = L · 21/2�
−1/(2M)
M (1− σ)1/2

≤ 23/2�
−1/(2M)
M (1− σ)−1/2 . ��

Lemma 9.2.2 (Lipschitz approximation). Let γ with 0 < γ ≤ 1 be given. There
exist constants c2, c3, and c4 such that the following holds:

If the hypotheses (H1–H4) are satisfied with ε = ε0(M, 2/3) in (H4), where
ε0(M, 2/3) is as in Lemma 9.2.1, then there is a Lipschitz function g : BM(y, ρ/4)→
R satisfying the following conditions:

Lip g ≤ γ, (9.21)

sup
{
|g(z)− g(y)| : z ∈ BM(y, ρ/4)

}
≤ c2 ρ

(
E(T , y, ρ)

) 1
2M
, (9.22)
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LM
[

BM(y, ρ/4) \
{
z ∈ BM(y, ρ/4) : p−1(z) ∩ spt T = {(z, g(z))}

} ]
≤ ρM c3 γ−2M E(T , y, ρ), (9.23)

‖T − T g‖C(y, ρ/4) ≤ ρM c4 γ−2M E(T , y, ρ) , (9.24)

where
T g = G#

(
EM BM(y, ρ/4)

)
, (9.25)

with G : BM(y, ρ/4)→ C(y, ρ/4) defined by

G(x) = (x, g(x)) , for x ∈ BM(y, ρ/4) .

Proof. Fix the choice of 0 < γ ≤ 1 and specify a value of ε0 for which the conclusion
of Lemma 9.2.1 holds with σ chosen to equal 2/3. That is, if the hypotheses (H1–H4)
hold with ε = ε0 and with z and δ in place of y and ρ, respectively, then

sup
{
|q (X1)− q (X2)| : X1, X2 ∈ spt T ∩ C(z, 2δ/3)

}
≤ c1 δ

(
E(T , z, δ)

) 1
2M
. (9.26)

Consider η with
0 < η < ε0 . (9.27)

Set

A =
{
z ∈ BM(y, ρ/4) : E(T , z, δ) ≤ η for all δ with 0 < δ < 3ρ/4

}
, (9.28)

and set
B = BM(0, ρ/4) \ A .

For each b ∈ B there exists δ(b) with 0 < δ(b) < 3ρ/4 such that the excess
E(T , b, δ(b)) is greater than η, that is,

1

2

∫
C(b,δ(b))

|−⇀T − eM |2 d‖T ‖ = δ(b)M · E(T , b, δ(b)) > η · δ(b)M . (9.29)

Applying the Besicovitch covering theorem (i.e., Theorem 4.2.12) to the family
of closed balls

B =
{

B
M
(b, δ(b)) : b ∈ B

}
,

we obtain the subfamilies B1,B2, . . . ,BK of B such that each Bi consists of pairwise
disjoint balls and

B ⊆
K⋃
i=1

Bi ,
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where
Bi =

⋃
B
M
(b,δ(b))∈Bi

B
M
(b, δ(b)) .

Here K is a number that depends only on the dimension M . Using (9.29), we see
that, for each i = 1, 2, . . . , K , we have

ηLM (Bi) = η
∑

B
M
(b,δ(b))∈Bi

�M

[
δ(b)

]M

< �M
∑

B
M
(b,δ(b))∈Bi

δ(b)M E(T , b, δ(b))

= 1

2
�M

∫
Bi

|−⇀T − eM |2 d‖T ‖

≤ 1

2
�M

∫
C(y,ρ)

|−⇀T − eM |2 d‖T ‖ .

We conclude that

ηLM(B) ≤
K∑
i=1

ηLM
(⋃
i

Bi

)

≤ K
2
�M

∫
C(y,ρ)

|−⇀T − eM |2 d‖T ‖

= c5 ρM E(T , y, ρ) . (9.30)

If x1, x2 ∈ BM(0, ρ/4) ∩ A, and if X1, X2 are points with

Xi ∈ spt T ∩ p−1(xi), i = 1, 2,

then
|x1 − x2| < ρ/2 ,

so we can apply (9.26) with z = x1 and with δ chosen to satisfy

3 |x1 − x2|/2 < δ < 3ρ/4 . (9.31)

Letting δ in (9.31) decrease to 3 |x1 − x2|/2, we conclude that

|q (X1)− q (X2)| ≤ c6 η1/(2M) |x1 − x2| , (9.32)

where we set
c6 = max{ 3/2, (3/2) c1, ε

−1
0 } . (9.33)
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Thus we may choose

η = γ 2M c−2M
6 ≤ c−2M

6 < c−1
6 ≤ ε0 , (9.34)

so that c6 η1/(2M) = γ holds, and consequently we have

|q (X1)− q (X2)| ≤ γ |x1 − x2| (9.35)

for any points
x1, x2 ∈ BM(0, ρ/4)

⋂
A ,

where
X1 ∈ spt T

⋂
p−1(x1) and X2 ∈ spt T

⋂
p−1(x2) .

In particular, (9.35) shows that, for any x ∈ A ∩ BM(0, ρ/4), there is exactly one
X ∈ p−1(x)

⋂
spt T . Thus, we can define g∗ : A⋂BM(0, ρ/4)→ R by requiring{

(x, g∗(x))
}
= p−1(x)

⋂
spt T , whenever x ∈ A⋂BM(0, ρ/4) .

Inequality (9.35) tells us that Lip (g∗) ≤ γ holds on A
⋂

BM(y, ρ/4), so by
Kirszbraun’s extension theorem (see [KPk 99, Theorem 5.2.2]) g∗ extends to g∗∗ :
BM(y, ρ/4)→ R with the same Lipschitz constant.

By Lemma 9.2.1, if we set

g = min
{
α, max{β, g∗∗ }

}
,

where

α = g(y)− c1 E1/(2M)(T , y, ρ) ρ, β = g(y)+ c1 E1/(2M)(T , y, ρ) ρ ,

then {
(x, g(x))

}
= p−1(x)

⋂
spt T whenever x ∈ A⋂BM(0, ρ/4)

and
sup
{
|g(x)− g(y)| : BM(y, ρ/4)

}
≤ c1 E1/(2M)(T , y, ρ) ρ

will both hold.
Using (9.17), (9.30), and (9.34), we see that

‖T ‖
[
(BM(y, ρ/4) \ A)× R

]
= LM

[
BM(y, ρ/4) \ A

]
+ 1

2

∫
(BM(y,ρ/4)\A)×R

|−⇀T − eM |2 d‖T ‖

≤ LM [B] + 1

2

∫
C(y,ρ)

|−⇀T − eM |2 d‖T ‖

≤ (η−1c5 + 1) ρM E(T , y, ρ)

= (c5 c2M6 γ−2M + 1) ρM E(T , y, ρ)

≤ (c5 c2M6 + 1) γ−2M ρM E(T , y, ρ) .
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So we conclude that (9.23) holds with c3 = c5 c2M6 + 1.
Finally, we have

‖T − T g‖C(y, ρ/4) ≤ ‖T ‖
[
(BM(y, ρ/4) \ A)× R

]
+ ‖T g‖

[
(BM(y, ρ/4) \ A)× R

]
≤ ‖T ‖[ (BM(y, ρ/4) \ A)× R

]
+ γ LM [B]

≤ 2 (c5 c
2M
6 + 1) γ−2M ρM E(T , y, ρ) ,

so we see that (9.24) holds with c4 = 2 (c5 c2M6 + 1). ��

9.3 Currents Defined by Integrating over Graphs

Currents obtained by integration over the graph of a function are particularly nice and
are helpful to our intuitive understanding of the concepts being developed here. We
will show how the cylindrical excess of such a current relates to a familiar quantity
from analysis, namely the Dirichlet integral (see Corollary 9.3.7).

Notation 9.3.1. Let f : BM(0, σ )→ R be Lipschitz.

(1) We use the notation F for the function from BM(0, σ ) to RM+1 given by F(x) =
(x, f (x)).

(2) We use the notation GF for the M-dimensional current that is defined by inte-
gration over the graph of f , that is,

GF = F#(EM BM(0, σ )) .

Writing
JF (x) = 〈∧M (DF(x)), eM 〉 ,

we have

GF [ψ] =
∫

BM(0,σ )
〈ψ(x, f (x)), JF (x) 〉 dLM(x) (9.36)

for any differentialM-form ψ defined on C(0, σ ).

Lemma 9.3.2. If f : BM(0, σ )→ R is Lipschitz, then we have

−⇀
GF(F(x)) = (1+ |Df |2)−1/2

(
eM +

M∑
i=i

∂f

∂xi
e ı̂

)
, (9.37)

DA(
−⇀
GF) = (1+ |Df |2)−1/2

(
dxM +

M∑
i=1

(
∂f

∂xi

)
dx ı̂

)
, (9.38)



270 9 Regularity of Mass-Minimizing Currents

DA(
−⇀
GF)−DA(eM) =

(1+ |Df |2)−1/2

(
dxM +

M∑
i=1

(
∂f

∂xi

)
dx ı̂

)
− dxM . (9.39)

Proof. By definition, we have

〈∧M (DF(x)), eM 〉 =
M∧
i=1

(
ei + ∂f

∂xi
eM+1

)
.

So

JF = eM +
M∑
i=i

∂f

∂xi
e ı̂ . (9.40)

We obtain (9.37) from (9.40) by dividing by the norm of JF . Equation (9.38)
follows from (9.37) and (9.7). Equation (9.39) follows from (9.38) and (9.8). ��

For the record, we note that the coefficient of dxM in (9.39) is

(1+ |Df |2)−1/2 − 1 .

Lemma 9.3.3. Define a map from RM to RM+1 by

x = (x1, x2, . . . , xM) �−→ X = (1+ |x|2)−1/2 (1, x1, x2, . . . , xM) .

If A and B are the images of a and b under this map then

(1) |A− B| ≤ |a − b| ;
(2) for each 0 < c <∞, it holds that

|a|, |b| ≤ c implies |a − b| ≤ (1+ c2)2 |A− B| .
Proof. The mapping x �→ X is the composition of two mappings: the distance-
preserving map

x = (x1, x2, . . . , xk) �−→ (1, x1, x2, . . . , xk)

followed by the radial projection onto the unit sphere

y = (y1, y2, . . . , yk+1) �−→ |y|−1 (y1, y2, . . . , yk+1) .

Part (1) follows from the fact that the radial projection does not increase the distance
between points that are outside of the open unit ball.

To prove (2), we note that

|1+ a · b| ≤ (1+ |a|2)1/2 (1+ |b|2)1/2

holds, with equality if and only if a = b. Thus
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0 < (1+ |a|2)1/2 (1+ |b|2)1/2 + (1+ a · b)
always holds, so we may compute

(1+ |a|2)1/2 (1+ |b|2)1/2 |A− B|2

= 2
[
(1+ |a|2)1/2 (1+ |b|2)1/2 − (1+ a · b)

]
= 2

[
(1+ |a|2)1/2 (1+ |b|2)1/2 + (1+ a · b)

]−1

·
[
(1+ |a|2) (1+ |b|2)− (1+ a · b)2

]
= 2

[
(1+ |a|2)1/2 (1+ |b|2)1/2 + (1+ a · b)

]−1

·
[
|a − b|2 + |a|2 |b|2 − (a · b)2

]
≥ 2

[
(1+ |a|2)1/2 (1+ |b|2)1/2 + (1+ a · b)

]−1 |a − b|2 .
The estimate in (2) now follows readily. ��
Proposition 9.3.4. We have∣∣∣∣−⇀GF(F(x))−−⇀GF(F(y))∣∣∣∣ ≤ |Df (x)−Df (y)| (9.41)

and, provided |Df (x)|, |Df (y)| ≤ c, we have

|Df (x)−Df (y)| ≤ (1+ c2)2
∣∣∣∣−⇀GF(F(x))−−⇀GF(F(y))∣∣∣∣ . (9.42)

Proof. This result follows immediately from Lemma 9.3.3 and (9.37). ��
We leave the easy proof of the next lemma to the reader.

Lemma 9.3.5. For t ∈ R we have

0 ≤ 1− (1+ t2)−1/2 ≤ min{ 1
2 t

2 , |t |} . (9.43)

If additionally |t | ≤ C <∞ holds, then we have

t2

2(1+ C2)
≤ 1− (1+ t2)−1/2 . (9.44)

Proposition 9.3.6. It holds that

[1+ Lip (f )]−2 |Df |2 ≤
∣∣∣∣−⇀GF − eM

∣∣∣∣2 ≤ min
{
|Df |2, 2|Df |

}
. (9.45)
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Proof. By (9.37) we have

−⇀
GF − eM = (1+ |Df |2)−1/2

[
(1− (1+ |Df |2)1/2)eM +

M∑
i=1

∂f

∂xi
e ı̂

]
,

so

|−⇀GF − eM |2 = (1+ |Df |2)−1
[

1− 2(1+ |Df |2)1/2 + (1+ |Df |2)+ |Df |2
]

= (1+ |Df |2)−1
[

2(1+ |Df |2)− 2(1+ |Df |2)1/2
]

= 2
[

1− (1+ |Df |2)−1/2
]
.

The upper bound follows from (9.43), while the lower bound follows from (9.44). ��
Corollary 9.3.7. It holds that

2−1 [1+ Lip (f )]−2 σ−M
∫

BM(0,σ )
|Df |2 dLM ≤ E(GF , 0, σ )

≤ 2−1 σ−M
∫

BM(0,σ )
|Df |2 dLM .

Proof. The corollary is an immediate consequence of Proposition 9.3.6 and the defi-
nition of the cylindrical excess, i.e., Definition 9.1.4. ��
Proposition 9.3.8. We have∣∣∣∣DA(−⇀GF)−DA(eM)∣∣∣∣ ≤ min

{
|Df |2, 2 |Df |

}
. (9.46)

Proof. By (9.39), we have

DA(
−⇀
GF)−DA(eM)

= (1+ |Df |2)−1/2

[
(1− (1+ |Df |2)1/2dxM +

M∑
i=1

(
∂f

∂xi

)
dx ı̂

]
,

so we can proceed as in the proof of Proposition 9.3.6 and apply (9.43). ��

9.4 Estimates for Harmonic Functions

The heuristic behind the regularity theory for area-minimizing surfaces is that, at
a point where an area-minimizing surface is horizontal, the closer you look at the
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surface, the more it looks like the graph of a harmonic function. This is made plausible
by the fact that an area-minimizing graph is given by a function u that minimizes the
integral of the area integrand √

1+ |Du|2 ,
while a harmonic function u minimizes the integral of

1

2
|Du|2 .

Since the area integrand
√

1+ |Du|2 has the expansion

1+ 1

2
|Du|2 +

∞∑
k=2

(
1/2

k

)
|Du|2k ,

we see that, at a point where the graph is horizontal, minimizing 1
2 |Du|2 must be

nearly the same as minimizing
√

1+ |Du|2.
To turn the heuristic discussion above into a useful estimate, we will need to in-

vestigate the boundary regularity of solutions for the Dirichlet problem2 for Laplace’s
equation3 on the unit ball. To obtain a sharp result we must use the Lipschitz spaces
that we introduce next.

Notation 9.4.1. Let B denote the open unit ball in RM and let � denote the unit
sphere.

(1) For g : �→ R, we say that g is differentiable at x ∈ � if G defined by

G(z) = g(z/|z|) (z �= 0)

is differentiable at x. This definition exploits the special structure of �, but it
is easily seen to be equivalent to the usual definition of differentiability for a
function defined on a surface (for example, see [Hir 76, pp. 15ff.]).

(2) If g : �→ R is differentiable at x ∈ � and if v a unit vector, then the directional
derivative of g at x in the direction v is defined by

∂g

∂v
(x) = 〈DG(x), v 〉 . (9.47)

We will also use (9.47) as the definition of ∂g/∂v when v is not a unit vector.
(3) For δ with 1 < δ < 2, we say that g : � → R is Lipschitz of order δ, written
g ∈ !δ(�), if g is differentiable at every point of �, ∂g

∂v
(x) is a continuous

function of x for each unit vector v, and there exists C < ∞ such that for each
unit vector v, ∣∣∣∣∂g∂v (x1)− ∂g

∂v
(x0)

∣∣∣∣ ≤ C |x1 − x0|δ−1

holds for x0, x1 ∈ �.
2 Johann Peter Gustav Lejeune Dirichlet (1805–1859).
3 Pierre-Simon Laplace (1749–1827).
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(4) If g : �→ R is Lipschitz of order δ on � (1 < δ < 2), then we set

‖g‖!δ = sup
x∈�|v|=1

∣∣∣∣∂g∂v (x)
∣∣∣∣

+ sup
x0,x1∈�, x0 �=x1|v|=1

|x1 − x0|1−δ
∣∣∣∣∂g∂v (x1)− ∂g

∂v
(x0)

∣∣∣∣ . (9.48)

The number ‖g‖!δ defines a seminorm on !δ(�). Had we wished to define a
norm, we could have done so by including the term supx∈� |g(x)| as an additional
summand on the right-hand side of (9.48).

We have defined the Lipschitz spaces!δ(�) for δ in the limited range 1 < δ < 2
because those are the only spaces we will need in this section. For a comprehensive
study of Lipschitz spaces, the reader should see [Kra 83].

Lemma 9.4.2. For δ with 1 < δ < 2 there exists a constant c7 = c7(δ) with the
following property:

If g ∈ !δ(�) and if u ∈ C0(B)
⋂
C2(B) satisfies

.u = 0 on B ,

u = g on � ,
(9.49)

then the Hilbert–Schmidt norm of the Hessian matrix of u (i.e., the square root of
the sum of the squares of the entries in the matrix) is bounded by∣∣∣Hess [u(x)]

∣∣∣ ≤ c7 · ‖g‖!δ · �(x)δ−2 . (9.50)

Here, of course, . denotes the Laplacian
∑M
i=1 ∂

2/∂x2
i .

Proof. Our proof will be based on the fact that the function u solving (9.49) is given
by the Poisson integral formula.4 Recall (see [CH 62, pp. 264ff.], [Kra 99, p. 186],
or [Kra 05, p. 143]) that the Poisson kernel for the unit ball in RM is given by

P(x, y) = �(M/2)
2πM/2

· 1− |x|2
|x − y|M (9.51)

= �(M/2)
2πM/2

· �(x) (2− �(x))|x − y|M , (9.52)

where
�(x) = 1− |x|

4 Siméon Denis Poisson (1781–1840).
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is the distance from x ∈ B to �. The solution to the Dirichlet problem (9.49) is
given by

u(x) =
∫
�

P (x, y) g(y) dHM−1(y) . (9.53)

Interior estimate. Observe that if x ∈ B stays at least a fixed positive distance away
from�, then each |∂P/∂xi | (and all higher derivatives of P as well) will be bounded
above. Thus we can obtain estimates for the derivatives of u by differentiating the
right-hand side of (9.53) under the integral and estimating the resulting integral. Thus
we have (9.50) for x ∈ BM(0, 1/2).

Notation. For v ∈ RM a unit vector, ∂f/∂v will denote the directional derivative of
the function f in the direction v. Here f may be real-valued or vector-valued.

Of particular interest are the directional derivatives of the Poisson kernel P(x, y).
Since P depends on the two arguments x ∈ RM and y ∈ RM , we will augment our
notation for directional derivatives to indicate the variable with respect to which the
differentiation is to be performed. The notation ∂P/∂xv will mean that the directional
derivative of P(x, y) in the direction v is to be computed by differentiating with
respect to x while treating y as a parameter. We have

∂P

∂xv
=
M∑
i=1

vi
∂P

∂xi
. (9.54)

On the other hand, when we wish to differentiate P(x, y) as a function of y while
treating x as a parameter, we will write ∂P/∂yv .We have

∂ P

∂yv
=
M∑
i=1

vi
∂P

∂yi
. (9.55)

Equations (9.54) and (9.55) remain meaningful when v is not a unit vector, and later
we will have occasion to apply (9.55) in such a circumstance.

Estimates for derivatives of P . Fix a point x ∈ B \ {0}. Let y be a point on �.
Using (9.51), we compute the derivatives ofP(x, y) as follows: Let v be a unit vector.
Since

∂x

∂v
= v

(that is, the directional derivative, in the direction v, of the map x �→ x is v itself),
we have

∂P

∂xv
(x, y) = �(M/2)

2πM/2
·
(
− 2 x · v
|x − y|M −

M (1− |x|2) (x − y) · v
|x − y|M+2

)
.

Similarly, we find that

∂P

∂yv
(x, y) = �(M/2)

2πM/2
· M (1− |x|

2) (x − y) · v
|x − y|M+2

= M (x − y) · v|x − y|2 P(x, y) .
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If we consider v = τ , where τ is a unit vector tangent at x to the sphere of radius
|x| centered at the origin, then we have x · τ = 0. We conclude that

∂P

∂xτ
(x, y) = �(M/2)

2πM/2
· −M (1− |x|

2) (x − y) · τ
|x − y|M+2

= −M (x − y) · τ|x − y|2 P(x, y)
(9.56)

and that
∂P

∂xτ
(x, y) = − ∂P

∂yτ
(x, y) . (9.57)

(Note that the vector τ is the same vector on both sides of (9.57). The subscript y in
the notation ∂ P

∂yτ
(x, y) on the right-hand side of (9.57) merely tells us to differentiate

with respect to y while treating x as a constant; the subscript in no way implies that
τ is tangent to � at y.) From (9.56), we also obtain the estimate∣∣∣∣ ∂P∂xτ (x, y)

∣∣∣∣ ≤ M |x − y|−1 P(x, y) . (9.58)

Similarly, if τ̂ is also a unit vector tangent at x to the sphere of radius |x| centered
at the origin, we have

∂2P

∂xτ ∂x τ̂
(x, y) = − ∂2P

∂yτ ∂x τ̂
(x, y) . (9.59)

For the vector v, which here need not be a unit vector, we find that

∂2P

∂yv ∂xτ
(x, y) = M v · τ

|x − y|2 P(x, y)

−(2M +M2)
[ (x − y) · τ ] [ (x − y) · v ]

|x − y|4 P(x, y) ,

and we obtain the estimate∣∣∣∣ ∂2P

∂yv ∂xτ
(x, y)

∣∣∣∣ ≤ (3M +M2) |v| |x − y|−2 P(x, y) . (9.60)

Suppose x ∈ B \ {0} and let ν = x/|x| be the outward unit normal vector at x to
the sphere of radius |x| centered at the origin. We compute

∂P

∂xν
(x, y) = �(M/2)

2πM/2
·
(
− 2 x · ν
|x − y|M −

M (1− |x|2) (x − y) · ν
|x − y|M+2

)
.

We obtain the estimate∣∣∣∣ ∂P∂xν (x, y)
∣∣∣∣ ≤ �(M/2)2πM/2

· 1− |x|2
|x − y|M

(
2 |x · ν|
1− |x|2 +M

|(x − y) · ν|
|x − y|2

)
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≤ �(M/2)
2πM/2

· 1− |x|2
|x − y|M

(
2 |x|

�(x) (2− �(x)) +M
|x − y|
|x − y|2

)
≤ P(x, y) (2 �(x)−1 +M |x − y|−1)

≤ P(x, y) · (M + 2) · �(x)−1 , (9.61)

where we have used the fact that �(x) ≤ |x − y| (which holds because y ∈ �), thus
implying

1

|x − y| ≤ �(x)
−1 . (9.62)

In the remainder of the proof, we will use the identity (9.59) for tangential deriva-
tives and the estimates for the derivatives of P to obtain estimates for the second
derivatives of u.

Estimates for tangential second derivatives of u. Fix a point x ∈ B \ {0}. Let τ
and τ̂ be unit vectors tangent at x to the sphere of radius |x| centered at the origin.

Since Hess [ u(x) ] is unaffected by adding a constant to g, we may suppose for
convenience that

g(ζ(x)) = 0 , (9.63)

where ζ(x) = x/|x| is the radial projection of x into �. It also will be convenient to
use “C’’ to denote a generic constant, the specific value of which may vary from line
to line.

We compute∣∣∣∣ ∂2u

∂τ ∂τ̂

∣∣∣∣ = ∣∣∣∣ ∫
�

∂2P

∂xτ ∂x τ̂
(x, y) g(y) dHM−1(y)

∣∣∣∣
=
∣∣∣∣ ∫
�

− ∂2P

∂yτ ∂x τ̂
(x, y) g(y) dHM−1(y)

∣∣∣∣
=
∣∣∣∣ ∫
�

∂P

∂xτ̂
(x, y)

∂ g

∂yτ
(y) dHM−1(y)

−
∫
�

∂

∂yτ

(
∂P

∂xτ̂
(x, y) g(y)

)
dHM−1(y)

∣∣∣∣
≤
∣∣∣∣ ∫
�

∂P

∂xτ̂
(x, y)

[
∂ g

∂yτ
(y)− ∂ g

∂yτ
(ζ(x))

]
dHM−1(y)

∣∣∣∣
+
∣∣∣∣ ∫
�

∂

∂yτ

(
∂P

∂xτ̂
(x, y) g(y)

)
dHM−1(y)

∣∣∣∣
= I + II .

Here we have also used the fact that
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�

∂P

∂xτ̂
(x, y) dHM−1(y) = 0 . (9.64)

Equation (9.64) holds because∫
�

P (x, y) dHM−1(y) ≡ 1 (9.65)

implies

0 = ∂
∂τ̂

∫
�

P (x, y) dHM−1(y) =
∫
�

∂P

∂xτ̂
(x, y) dHM−1(y) .

Set

S1 =
{
y ∈ � : |y − ζ(x)| ≤ �(x)

}
, (9.66)

S2 =
{
y ∈ � : |y − ζ(x)| > �(x)

}
(9.67)

(see Figure 9.3).

x ζ(x) x ζ(x)

S1

S2

Fig. 9.3. The regions S1 and S2 in �.

Using (9.58), we can estimate that I is bounded by

M

∫
�

1

|x − y| P(x, y) ‖g‖!δ |y − ζ(x)|
δ−1 dHM−1(y)

= M
∫
S1

1

|x − y| P(x, y) ‖g‖!δ |y − ζ(x)|
δ−1 dHM−1(y)

+M
∫
S2

1

|x − y| P(x, y) ‖g‖!δ |y − ζ(x)|
δ−1 dHM−1(y)

= I1 + I2 .
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We estimate I1 by using (9.62), (9.65), the nonnegativity of P , and the fact that
on S1, it holds that

|y − ζ(x)|δ−1 ≤ �(x)δ−1

because δ − 1 > 0. We have

I1 ≤ ‖g‖!δ · �(x)−1
∫
S1

P(x, y) |y − ζ(x)|δ−1 dHM−1(y)

≤ ‖g‖!δ · �(x)−1
∫
S1

P(x, y) �(x)δ−1 dHM−1(y)

= ‖g‖!δ · �(x)δ−2
∫
S1

P(x, y) dHM−1(y)

≤ ‖g‖!δ · �(x)δ−2
∫
�

P (x, y) dHM−1(y) = ‖g‖!δ · �(x)δ−2 .

To estimate I2, we first note that

|y − ζ(x)| ≤ |y − x| + |ζ(x)− x| = |y − x| + �(x) ≤ 2|y − x| , (9.68)

which implies that
1

|x − y| ≤ 2|y − ζ(x)|−1 .

Also we note that on S2, it holds that

|y − ζ(x)|δ−2 ≤ �(x)δ−2

because δ − 2 < 0. We estimate

I2 ≤ 2 ‖g‖!δ
∫
S2

P(x, y) |y − ζ(x)|δ−2 dHM−1(y)

≤ 2 ‖g‖!δ
∫
S2

P(x, y) �(x)δ−2 dHM−1(y)

= 2 ‖g‖!δ · �(x)δ−2
∫
S2

P(x, y) dHM−1(y)

≤ 2 ‖g‖!δ · �(x)δ−2
∫
�

P (x, y) dHM−1(y) = 2 ‖g‖!δ · �(x)δ−2 .

To obtain an estimate for II , suppose without loss of generality that ζ(x) = e1
and τ = e2. Setting

T = T (y) = (y2
1 + y2

2)
−1/2 (−y2 e1 + y1 e2) ,
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for each y = (y1, y2, . . . , yM) ∈ �, with (y1, y2) �= (0, 0), and applying the funda-
mental theorem of calculus, we see that∫

�

∂

∂yT

(
∂P

∂xτ̂
(x, y) g(y)

)
dHM−1(y) = 0 ;

more specifically, we parametrize the sphere by(
r cos θ, r sin θ, y′,±

√
1− r2 − |y′|2

)
,

where 0 < r < 1, 0 < θ < 2π , y′ ∈ RM−3, with 0 < |y′| < √1− r2, and integrate
first with respect to θ .

Setting v = v(y) = τ − T (y) and using (9.63), we have

II =
∣∣∣∣ ∫
�

(
∂

∂yτ
− ∂

∂yT

) (
∂P

∂xτ̂
(x, y) g(y)

)
dHM−1(y)

∣∣∣∣
=
∣∣∣∣ ∫
�

∂

∂yv

(
∂P

∂xτ̂
(x, y) g(y)

)
dHM−1(y)

∣∣∣∣
≤
∣∣∣∣ ∫
�

∂2P

∂yv ∂x τ̂
(x, y) [ g(y)− g(ζ(x)) ] dHM−1(y)

∣∣∣∣
+
∣∣∣∣ ∫
�

∂P

∂xτ̂
(x, y)

∂ g

∂yv
(y) dHM−1(y)

∣∣∣∣
= II1 + II2 ,

where we have used the assumption that g(ζ(x)) = 0.
Consider y = (y1, y2, . . . , yM) ∈ � and write (y1, y2) = (r cos θ, r sin θ),

where 0 ≤ r ≤ 1. It is easy to check that 1 − cos θ ≤ 2(1 − r cos θ) holds for
0 ≤ r ≤ 1. The law of cosines tells us that |τ − T (y)| = √2(1− cos θ) and that
|(y1, y2)− (1, 0)| = √2(1− r cos θ), so we have

|τ − T (y)| ≤ √
2 |y − ζ(x)| (9.68)≤ 2

√
2 |y − x| . (9.69)

Observe that |g(y) − g(ζ(x))| is bounded by ‖g‖!δ multiplied by the distance
from y to ζ(x) measured along the sphere. Thus we have

|g(y)− g(ζ(x))| ≤ C · ‖g‖!δ · |y − ζ(x)| ≤ 2C · ‖g‖!δ · |y − x| .
Using (9.60) and (9.69), we may estimate

II1 ≤ C
∫
�

|τ − T |
|x − y|2 P(x, y) · ‖g‖!δ · |y − x| dH

M−1(y)

≤ C · ‖g‖!δ .
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Next, observe that ∣∣∣∣ ∂ g∂yv (y)
∣∣∣∣ ≤ |v| · ‖g‖!δ ,

so, by (9.58) and (9.69), we see that

II2 ≤ C
∫
�

|x − y|−1 P(x, y) · ‖g‖!δ · |τ − T | dHM−1(y)

≤ C · ‖g‖!δ .
Thus we have ∣∣∣∣ ∂2u

∂τ ∂τ̂

∣∣∣∣ ≤ C · ‖g‖!δ · �(x)δ−2 , (9.70)

for x ∈ B \ {0} and unit vectors τ , τ̂ with τ · x = τ̂ · x = 0.

Mixed normal and tangential second derivatives. Fix a point x ∈ B \ {0}, let τ
be a unit vector tangent at x to the sphere of radius |x| centered at the origin, and let
ν = x/|x| be the outward unit normal vector at x to the sphere of radius |x|.

We have

∂2u

∂ν ∂τ
=
∫
�

∂2P

∂ν ∂τ
(x, y) g(y) dHM−1(y)

=
∫
�

∂P

∂xν
(x, y)

∂ g

∂yτ
(y) dHM−1(y)

=
∫
�

∂P

∂xν
(x, y)

[
∂ g

∂yτ
(y)− ∂ (g ◦ ζ )

∂yτ
(g ◦ ζ )(x)

]
dHM−1(y) . (9.71)

We can proceed as before, with S1 and S2 defined as in (9.66) and (9.67), to estimate∣∣∣∣ ∂2u

∂ν ∂τ

∣∣∣∣ ≤ ‖g‖!δ ∫
�

∣∣∣∣ ∂P∂xν (x, y)
∣∣∣∣ |y − ζ(x)|δ−1 dHM−1(y)

= ‖g‖!δ
∫
S1

∣∣∣∣ ∂P∂xν (x, y)
∣∣∣∣ |y − ζ(x)|δ−1 dHM−1(y)

+ ‖g‖!δ
∫
S2

∣∣∣∣ ∂P∂xν (x, y)
∣∣∣∣ |y − ζ(x)|δ−1 dHM−1(y)

= III + IV .
We use (9.61) to estimate

III ≤ ‖g‖!δ · (M + 2) · �(x)δ−2 .

Estimating IV is more complicated. We use the estimate (9.61) to see that
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∣∣∣∣ ≤ (M + 2) · �(x)−1 · P(x, y)

= (M + 2) · �(x)−1 · �(M/2)
2πM/2

· �(x) (2− �(x))|x − y|M

= (M + 2) · �(M/2)
2πM/2

· 2− �(x)
|x − y|M

≤ (M + 2) �(M/2)

πM/2
· 1

|x − y|M .

Then, using the estimate |y − x|−1 ≤ 2|y − ζ(x)|−1, we obtain

IV ≤ C · ‖g‖!δ
∫
S2

|y − ζ(x)|δ−1−M dHM−1(y) .

To estimate this last integral, we suppose without loss of generality that ζ(x) =
(1, 0, . . . , 0). We write

(y1, y2, . . . , yM) = (y′, y′′, η) with y′ = y1, y
′′ = (y2, y3, . . . , yM−1), η = yM ,

so that � can be parametrized by

η = ±(1− y′2 − |y′′|2)1/2

with
dHM−1(y) = (1− y′2 − |y′′|2)−1/2 dLM−1(y′, y′′) .

We have |y − ζ(x)| = (2− 2y′)1/2, so

IV ≤ C ‖g‖!δ
∫ 1−�(x)2/2

−1

∫
|y′′|=

√
1−y′2

(2− 2y′)(δ−1−M)/2

(1− y′2 − |y′′|2)1/2 dL
M−2(y′′) dL(y′) .

We note that the integral∫
|y′′|=

√
1−y′2
(1− y′2 − |y′′|2)−1/2 dLM−2(y′′)

equals the (M − 2)-dimensional area of the upper hemisphere of radius
√

1− y′2 in
RM−1. Thus we have

IV = C ‖g‖!δ
∫ 1−�(x)2/2

−1
(2− 2y′)(δ−1−M)/2 (1− y′2)(M−2)/2 dL(y′)

≤ C ‖g‖!δ
∫ 1−�(x)2/2

−1
(1− y′)(δ−3)/2 dL(y′)

≤ C ‖g‖!δ 2(M+δ−1)/2/(δ − 1) ,
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and we conclude that ∣∣∣∣ ∂2u

∂ν ∂τ

∣∣∣∣ ≤ C · 1

δ − 1
· ‖g‖!δ · �(x)δ−2 . (9.72)

The second normal derivative. Fix a point x ∈ B \ {0} and let ν = x/|x| be the
outward unit normal vector to the sphere of radius |x| centered at the origin.

If τ1, τ2, . . . , τM−1 are pairwise orthogonal unit vectors, all tangent at x to the
sphere of radius |x|, then

∂2u

∂ν2
= −

M−1∑
i=1

∂2u

∂τ 2
i

,

so that ∣∣∣∣∂2u

∂ν2

∣∣∣∣ ≤ C · ‖g‖!δ · �(x)δ−2 . (9.73)

Summary. For x ∈ B \ {0}, we can make an orthogonal change of basis such that
x/|x| coincides with one of the standard basis vectors. Then (9.70), (9.72), and (9.73)
give us the required bound for the Hilbert–Schmidt norm of the Hessian matrix for u
at x. ��

Lemma 9.4.3. Fix 0 < δ < 1 and 1 < σ̂ < 2. There is a constant c8 = c8(δ) such
that if

g : BM(0, σ̂ )→ R

is smooth and u ∈ C0(B)
⋂
C2(B) satisfies

.u = 0 on B ,

u = g on � ,

then

(1) sup
{
|x − z|−δ |Du(x)−Du(z)| : x, z ∈ B, x �= z

}
+ sup
B

|Du|

≤ c8 ·
(

sup
{
|x − z|−δ |Dg(x)−Dg(z)| : x, z ∈ BM(0, σ̂ ), x �= z

}
+ sup

BM(0,σ̂ )
|Dg|

)
,

(2) sup
BM(0,1/2)

∣∣∣Hess [u(x)]
∣∣∣ ≤ c8 (∫

B

∣∣∣Hess [u(x)]
∣∣∣2 dLM)1/2

,

(3) sup
x∈BM(0,η̂)

|Du(x)−Du(0)|2 ≤ c8 η̂2
∫
B

∣∣∣Hess [u(x)]
∣∣∣2 dLM ,

for each 0 < η̂ < 1/2.
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Proof.
(1) Since

sup
B

|Du| ≤ sup
�

|Dg|

holds by the maximum principle, it suffices to estimate

sup
{
|x − z|−δ |Du(x)−Du(z)| : x, z ∈ B, x �= z

}
.

We do so by comparing
|Du(x1)−Du(x0)|

to hδ , where x0, x1 ∈ B and h = |x1−x0|. We need only consider h small, and again
by the maximum principle, we need to consider only x0 near �.

Set δ̂ = 1+ δ. We will apply Lemma 9.4.2 with δ replaced by δ̂. By that lemma,
we have ∣∣∣Hess [u(x)]

∣∣∣ ≤ c7 · ‖g‖!
δ̂
· �(x)δ̂−2

for x ∈ B, where �(x) = 1− |x|. Note that

‖g‖!
δ̂
≤ sup

{
|x − z|−δ |Dg(x)−Dg(z)| : x, z ∈ BM(0, σ̂ ), x �= z

}
+ sup

BM(0,σ̂ )
|Dg|

holds. In what follows, C will denote a generic positive, finite constant incorporating
the value of c7.

We need to estimate |Du(x1)−Du(x0)|. The proximity of the boundary� makes
it difficult to obtain the needed estimate. Rather than proceeding directly, we replace
each point xi by a point x̃i that is at distance h farther away from � (see Figure 9.4).
Remarkably, it is then feasible to estimate the individual terms |Du(x̃0)−Du(x0)|,
|Du(x̃1)−Du(x1)|, and |Du(x̃0)−Du(x̃1)|.

Fig. 9.4. Moving the points away from the boundary.

Let x̃i be such that

ζ(x̃i) = ζ(xi) ,
|x̃i | = |xi | − h ;

then we have



9.4 Estimates for Harmonic Functions 285

|Du(x1)−Du(x0)| ≤ |Du(x1)−D(x̃1)|
+ |Du(x̃1)−Du(x̃0)|
+ |Du(x̃0)−Du(x0)|

= I + II + III .
Set ν = x0/|x0|. We have

III ≤
∫ h

0

∣∣∣∣∂(Du)∂ν (x0 − tν)
∣∣∣∣ dL1(t)

≤
∫ h

0

∣∣∣Hess [u(x0 − tν)]
∣∣∣ dL1(t)

≤ C ‖g‖!
δ̂

∫ h
0
�(x0 − tν)δ̂−2 dL1(t)

≤ C ‖g‖!
δ̂

∫ h
0
[�(x0)+ t]δ̂−2 dL1(t)

= C ‖g‖!
δ̂

(
[�(x0)+ h]δ̂−1 − �(x0)

δ̂−1
)

≤ C hδ̂−1 = C hδ ,
if �(x0) is small. (Note that δ̂ − 1 > 0.)

Likewise, we estimate

I ≤ C ‖g‖!
δ̂
hδ̂−1 .

To estimate II , we note that

II ≤
∫ h

0
h

∣∣∣Hess [u(x̃0 + ξ)]
∣∣∣ dL1(t) , (9.74)

where x̃0 + ξ is a point on the segment between x̃0 and x̃1. The right-hand side of
(9.74) is bounded above by

C ‖g‖!
δ̂
h

∫ h
0
�(x̃0 + ξ)δ̂−2 dL1(t) ≤ C ‖g‖!

δ̂
h

∫ h
0
hδ̂−2 dL1(t)

≤ C ‖g‖!
δ̂
hδ̂ .

(2) Fix i, j ∈ {1, 2, . . . ,M} and x ∈ BM(0, 1/2). For 0 < r < 1/2, by the mean
value property of harmonic functions, we have

∂2u

∂xi ∂xj
(x) = C · r1−M

∫
{y:|y|=r}

∂2u

∂xi ∂xj
(x + y) dHM−1(y) .
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But then∣∣∣∣ ∂2u

∂xi ∂xj
(x)

∣∣∣∣ = C
∣∣∣∣∣
∫ 1/2

1/4
r1−M

∫
{y:|y|=r}

∂2u

∂xi ∂xj
(x + y) dHM−1(y) dL1(r)

∣∣∣∣∣
≤ C

∣∣∣∣∫
BM(x,1/2)

∂2u

∂xi ∂xj
(z) dLM(z)

∣∣∣∣
≤ C

(∫
B

∣∣∣∣ ∂2u

∂xi ∂xj

∣∣∣∣2 dLM
)1/2

holds and the result follows.

(3) Fix i ∈ {1, 2, . . . ,M} and x ∈ BM(0, 1/2) \ {0}. Set ν = x/|x| and

ψ(t) = ∂u
∂xi
(tν)

for −1 < t < 1. Thus ψ ′(t) is the directional derivative of ∂u/∂xi in the direction ν
at the point tν. It follows that |ψ ′(t)| is bounded by the operator norm of the Hessian

matrix for u at tν. Hence |ψ ′(t)| is bounded by a multiple of
∣∣∣Hess [u(tν)]

∣∣∣.
Using the fundamental theorem of calculus, we estimate∣∣∣∣ ∂u∂xi (x)− ∂u∂xi (0)

∣∣∣∣2 = ∣∣∣∣∫ |x|

0
ψ ′(t) dL1(t)

∣∣∣∣2
≤ |x|2 · sup

{
|ψ ′(t)|2 : 0 ≤ t ≤ |x|

}
≤ |x|2 · sup

y∈BM(0,1/2)

∣∣∣Hess [u(y)]
∣∣∣2 ,

so we see that conclusion (3) follows from conclusion (2). ��

9.5 The Main Estimate

The next lemma is the main tool in the regularity theory. The lemma tells us that
once the cylindrical excess (see Definition 9.1.4) of an area-minimizing surface is
small enough, then the excess on a smaller cylinder can be made even smaller by
appropriately rotating the surface.

Lemma 9.5.1. There exist constants

0 < θ < 1/8 , 0 < ε∗ ≤ (θ/4)2M , (9.75)
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depending only onM , with the following property:
If 0 ∈ spt T , if T0 = T C(0, ρ/2), and if the hypotheses (H1–H5) (see page 262)

hold with
y = 0 , ε = ε∗ ,

then
sup
X∈spt T0

|q (X)| ≤ ρ/8 (9.76)

holds and there exists a linear isometry j : RM+1 → RM+1 with

θ−2M E( T , 0, ρ ) ≤ 1/64 , (9.77)

‖j− IRM+1‖2 ≤ θ−2M E( T , 0, ρ ) , (9.78)

E( j#T0, 0, θρ ) ≤ θ E( T , 0, ρ ) . (9.79)

Here IRM+1 is the identity map on RM+1.

Proof. Since we may change scale if need be, it will be sufficient to prove the lemma
with ρ = 1. We ultimately will choose

ε∗ < ε0 , (9.80)

where ε0 is as in Lemmas 9.2.1 and 9.2.2 (in particular, Lemma 9.2.1 is invoked with
σ = 2/3), so we will assume that 0 ∈ spt T and that the hypotheses (H1–H5) hold
with y = 0, ρ = 1, and with ε = ε0, where ε0 is as in Lemma 9.2.1.

We set

δ = 1

9M2
,

E = E( T , 0, 1 ) .

Lipschitz approximations. We can apply Lemma 9.2.2 to obtain a Lipschitz function
whose graph approximates spt T . In fact, there are two such approximating functions
that will be of interest:

• We let gδ : BM(0, 1/4) → R be a Lipschitz function as in Lemma 9.2.2 corre-
sponding to the choice

γ = E2 δ .

• We let h : BM(0, 1/4) → R be a Lipschitz function as in Lemma 9.2.2 corre-
sponding to the choice γ = 1.

Smoothing gδ . Letϕ ∈ C∞(RM) be a mollifier as in Definition 5.5.1 withN replaced
byM . As usual, for 0 < ν,

• set
ϕν(z) = ν−M ϕ(ν−1z);
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• let f ∗ ϕν denote convolution of f with ϕν .

Let 0 < c9 <∞ satisfy

sup |ϕ| ≤ c9 ,
sup |Dϕ| ≤ c9 ,

sup
x �=z
|x − z|−δ |Dϕ(x)−Dϕ(z)| ≤ c9 .

Defining
g̃δ = gδ ∗ ϕE , (9.81)

we obtain the following standard estimates:

sup
BM(0,1/8)

|Dg̃δ| ≤ sup
BM(0,1/4)

|Dgδ| ≤ E2δ ≤ Eδ, (9.82)

sup
BM(0,1/8)

|̃gδ − gδ| ≤ E sup
BM(0,1/4)

|Dgδ| ≤ E1+δ, (9.83)

sup{ |x − z|−δ |Dg̃δ(x)−Dg̃δ(z)| : x, z ∈ BM(0, 1/8), x �= z }
≤ sup

BM(0,1/4)
|Dgδ| · sup

x �=z
|x − z|−δ |φ(E−1x)− φ(E−1z)|

≤ E2δ · E−δ · sup
x �=z
|x − z|−δ |φ(x)− φ(z)|

≤ c9 Eδ . (9.84)

The graph of g̃δ . We next define

S̃ = G̃#(EM BM(0, 1/8) ) , (9.85)

where G̃ : BM(0, 1/8)→ C(0, 1/8) is defined by

G̃(x) = (x, g̃δ(x)) .
Choosing σ . For each 0 < σ < 1/8 we let

Tσ = T C(0, σ ), S̃σ = S̃ C(0, σ ) .

We wish to show that there is a finite positive constant c10 such that there are infinitely
many choices of 1/16 < σ < 1/8 for which the following inequalities all hold:

HM−1
{
x ∈ ∂BM(0, σ ) : gδ(x) �= h(x)

}
≤ c10 E

1−4Mδ , (9.86)

‖∂Tσ‖(RM+1) ≤ c10, (9.87)

‖∂Tσ‖
{
X : |P(X)−X| > E1+δ } ≤ c10 E

1−4Mδ , (9.88)
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where P is the “vertical retraction’’ of C(0, 1/8) onto the graph of g̃δ . That is, for
X ∈ C(0, 1/8) we have

P(X) = (p (X), g̃δ(p (X))) .
Notice that P#Tσ = S̃σ by (9.18) and the definition of S̃.

• First, by (9.23) and by Theorem 5.2.1, i.e., the coarea formula, we have∫ 1/8

1/16
HM−1

{
x ∈ ∂BM(0, σ ) : gδ(x) �= h(x)

}
dL1(σ )

≤ LM
(

BM(y, 1/4) \
{
z ∈ BM(y, 1/4) : p−1(z)

⋂
spt T = {(x, h(x))}

} )
+ LM

(
BM(y, 1/4) \

{
z ∈ BM(y, 1/4) : p−1(z)

⋂
spt T = {(x, gδ(x))}

} )
≤ c3 (1+ E−4δ) E ≤ 2 c3 E

1−4δ .

• Because ∂T has its support outside the cylinder of radius 1, we can identify ∂Tσ
with the slice 〈T , r, σ+〉, where r is the distance from the axis of the cylinder. We
conclude that ∫ 1/8

1/16
‖∂Tσ‖(RM+1) dL1(σ ) ≤

∫
C(0,1/8)

d‖T ‖

holds.

• Third, by (9.83), if X = (x, gδ(x)) coincides with the point p−1(x)
⋂

spt T , then
X and P(X) are separated by a distance not exceeding E1+δ . So we use (9.24) to
estimate ∫ 1/8

1/16
‖∂Tσ‖{ X : |P(X)−X| > E1+δ } dL1(σ )

=
∫ 1/8

1/16
‖〈T , r, σ+〉‖{ X : |P(X)−X| > E1+δ } dL1(σ )

=
∫ 1/8

1/16
‖〈T − S̃, r, σ+〉‖C(y, 1/4) dL1(σ )

≤ ‖T − S̃‖C(y, 1/4) ≤ c4 E−4Mδ E ,

where we note that, in the notation of Lemma 9.2.2, S̃ corresponds to T gδ .

The homotopy between Tσ and ˜Sσ . LetH : [0, 1]×C(0, 1/8)→ RM+1 be defined
by H(t, x) = tP (X)+ (1− t)X. By the homotopy formula (7.22), we have

∂V = ∂Tσ − ∂S̃σ , (9.89)
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where
V = H#( 0, 1 × ∂Tσ ) .

By (7.23) and Lemma 9.2.2 applied with γ = E2δ (in particular, using (9.21) and
(9.23)), and by (9.83), (9.86), and (9.88), we have

‖V ‖(RM+1)

≤ 2
∫
|P(X)−X| d‖Tσ‖

≤ 2
(

sup
X∈spt ∂Tσ

|P(X)−X|
)
· ‖∂Tσ‖

{
X : |X − P(X)| > E1+δ }

+ c10 E
1+δ

≤ c11 E
1+1/(2M)−4Mδ + c10 E

1+δ

≤ c12 E
1+δ , (9.90)

where we have made use of the fact that δ = (9M2)−1.

The approximating harmonic function. The aim is to show that with 1/16 < σ <
1/8 chosen such that (9.86), (9.87), and (9.88) hold, T C(0, σ ) can be very closely
approximated by the graph of a harmonic function.

Let 1/16 < σ < 1/8 be such that (9.86), (9.87), and (9.88) (and consequently

(9.90)) hold. Let u : BM(0, σ )→ R be continuous and satisfy

.u = 0 on BM(0, σ ),

u = g̃δ on ∂BM(0, σ ),

}
(9.91)

where g̃δ is as in (9.81), so (9.82) and (9.84) will hold.
Recall that (9.82) and (9.84) are the estimates

sup
BM(0,1/8)

|Dg̃δ| ≤ Eδ

and

sup{ |x − z|−δ |Dg̃δ(x)−Dg̃δ(z)| : x, z ∈ BM(0, 1/8), x �= z} ≤ c9 Eδ .
By applying Lemma 9.4.3 with σ̂ = 1/(8σ), g(x) = g̃δ(x/σ ), and η̂ = η/σ , we see
that there exist constants c13 and c14 such that if u is as in (9.91), then the following
estimates hold:

sup{ |x − z|−δ |Du(x)−Du(z)| : x, z ∈ BM(0, σ ), x �= z}
+ sup

BM(0,σ )
|Du| ≤ c13 E

δ , (9.92)

sup
x∈BM(0,η)

|Du(x)−Du(0)|2 ≤ c14 η
2
∫

BM(0,σ )
|Du|2 dLM , (9.93)
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for each 0 < η < σ/2.

The comparison surface and the first use of the minimality of T . Define G :
BM(0, σ )→ C(0, σ ) by setting G(x) = (x, u(x)) and set

S = G#(EM BM(0, σ )) .

We have ∂S = ∂S̃σ , where we recall that S̃σ = S̃ C(0, σ ) and that S̃ is defined
in (9.85). Consequently, we have

∂(V + S − Tσ ) = 0 , (9.94)

by (9.89). This last equation tells us that

∂(V + S) = ∂Tσ ,
so we can use V + S as a comparison surface for the area-minimizing surface Tσ .
Since it is true for any V and S that

A[V ] + A[S] ≥ A[V + S] ,
we have

A[V ] + A[S] ≥ A[V + S] ≥ A[Tσ ] , (9.95)

because Tσ is area-minimizing.

The first calculation of the difference between Tσ and S. We extend
−⇀
S to all of

C(0, σ ) by setting −⇀
S (X) = −⇀S

(
p (X), u(p (X))

)
. (9.96)

Using the extension of
−⇀
S in (9.96) and noting that

−⇀
Tσ = −⇀T holds ‖Tσ‖-almost

everywhere, we get

A[Tσ ] − A[S] =
∫
A(
−⇀
T ) d‖Tσ‖ −

∫
A(
−⇀
S ) d‖S‖

=
∫ (
A(
−⇀
T )−

〈
DA(

−⇀
S ),

−⇀
T
〉 )
d‖Tσ‖

+
∫ 〈
DA(

−⇀
S ),

−⇀
T
〉
d‖Tσ‖ −

∫
A(
−⇀
S ) d‖S‖

=
∫ (
A(
−⇀
T )−

〈
DA(

−⇀
S ),

−⇀
T
〉 )
d‖Tσ‖

+
∫ 〈
DA(

−⇀
S ),

−⇀
T
〉
d‖Tσ‖ −

∫ 〈
DA(

−⇀
S ),

−⇀
S
〉
d‖S‖ , (9.97)

where we have also used (9.6) to conclude that A(
−⇀
S ) =

〈
DA(

−⇀
S ),

−⇀
S
〉
.
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By (9.12) we have

A(
−⇀
T )−

〈
DA(

−⇀
S ),

−⇀
T
〉
= 1

2

∣∣∣−⇀T −−⇀S ∣∣∣2 . (9.98)

For integrands other than area, a Weierstrass condition would be used here instead of

(9.12). Recalling from (9.7) that we may also treatDA(
−⇀
S ) as a differentialM-form,

we have∫ 〈
DA(

−⇀
S ),

−⇀
T
〉
d‖Tσ‖ −

∫ 〈
DA(

−⇀
S ),

−⇀
S
〉
d‖S‖ = [Tσ − S]

(
DA(

−⇀
S )
)
.

(9.99)
Using (9.97), (9.98), and (9.99), we see that

A[Tσ ] − A[S] = 1

2

∫ ∣∣∣−⇀T −−⇀S ∣∣∣2 d‖Tσ‖ + [Tσ − S](DA(−⇀S ) ) . (9.100)

Use of the comparison surface and the second use of the minimality of T . Since
(9.94) tells us that ∂(V + S − Tσ ) = 0, we have

V + S − Tσ = ∂R
for some (M + 1)-dimensional current R, so (see (9.3) for notation)

(V + S − Tσ )
(
dxM

)
= (∂R)

(
dxM

)
= R

(
d dxM

)
= 0 .

Since (9.7) tells us that DA(eM) = dxM , we conclude that

(V + S − Tσ )
(
DA(eM)

)
= 0 .

Thus we have

A[Tσ ] − A[S] = 1

2

∫ ∣∣∣−⇀T −−⇀S ∣∣∣2 d‖Tσ‖
+ (Tσ − S)

(
DA(

−⇀
S )−DA(eM)

)

+ V
(
DA(eM)

)
. (9.101)

From(9.95), (9.100), and (9.101) we obtain

A[V ] ≥ A[Tσ ] − A[S]

≥ 1

2

∫ ∣∣∣−⇀T −−⇀S ∣∣∣2 d‖Tσ‖
+ (Tσ − S)

(
DA(

−⇀
S )−DA(eM)

)
+ V (DA(eM) ) . (9.102)
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By (9.90), we have A[V ] = ‖V ‖(RM+1) ≤ c12 E
1+δ and consequently also∣∣∣V (DA(eM) ) ∣∣∣ ≤ c12 E

1+δ .

Thus we have

2c12 E
1+δ ≥ 1

2

∫ ∣∣∣−⇀T −−⇀S ∣∣∣2 d‖Tσ‖
+ (Tσ − S)

(
DA(

−⇀
S )−DA(eM)

)
. (9.103)

Estimating the second term on the right in (9.103). We wish to estimate the second
term on the right in (9.103) by an expression similar to the first term on the right. The
argument to obtain the desired estimate is sufficiently complicated that we state the
result as a separate claim.

Claim. There exist constants c15 and c16 such that∣∣∣ (Tσ − S)(DA(−⇀S )−DA(eM) ) ∣∣∣
≤ c15 E

1+δ + 2 c16 E
δ

∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖ . (9.104)

Proof of the Claim. We recall that h is as in Lemma 9.2.2 with γ = 1, and we
introduce

T 0
σ = G0

#(E
M BM(0, σ )) ,

whereG0(x) = (x, h(x)). By (9.24) of the Lipschitz approximation lemma, we have

‖T 0
σ − Tσ‖C(0, σ ) ≤ c4 E , (9.105)

because γ = 1, ρ = 1, and σ < 1/8.
The estimate (9.92) gives us the bound |Du| ≤ c13 E

δ . Then, using (9.46), we
obtain ∣∣∣DA(−⇀S )−DA(eM) ∣∣∣ ≤ 2 c13 E

δ . (9.106)

By (9.105) and (9.106) we have∣∣∣ (Tσ − S)(DA(−⇀S )−DA(eM) ) ∣∣∣
≤
∣∣∣ (T 0
σ − S)

(
DA(

−⇀
S )−DA(eM)

) ∣∣∣+ ∣∣∣ (Tσ − T 0
σ )
(
DA(

−⇀
S )−DA(eM)

) ∣∣∣
≤
∣∣∣ (T 0
σ − S)

(
DA(

−⇀
S )−DA(eM)

) ∣∣∣+ c4 E · 2 c13 E
δ . (9.107)
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Because S is the current defined by integrating over the graph of u, we apply
(9.39) with f = u to obtain

DA(
−⇀
S )−DA(eM)

= (1+ |Du|2)−1/2

(
dxM +

M∑
i=1

(Dxi u) dx ı̂

)
− dxM . (9.108)

Because T 0
σ is the current defined by integration over the graph of h, we may apply

(9.36), (9.40), and (9.37), with f = h, and use (9.108) to find that

T 0
σ

(
DA(

−⇀
S )−DA(eM)

)

=
∫

BM(0,σ )

[
(1+ |Du|2)−1/2

(
1+

M∑
i=1

DxiuDxi h

)
− 1

]
dLM . (9.109)

Similarly, taking f = u, we obtain

S
(
DA(

−⇀
S )−DA(eM)

)

=
∫

BM(0,σ )

[
(1+ |Du|2)−1/2

(
1+

M∑
i=1

DxiuDxi u

)
− 1

]
dLM . (9.110)

Combining (9.109) and (9.110), we find that

(T 0
σ − S)

(
DA(

−⇀
S )−DA(eM)

)

=
∫

BM(0,σ )

[
(1+ |Du|2)−1/2

M∑
i=1

DxiuDxi (h− u)
]
dLM . (9.111)

We will simplify the integrand in (9.111) so that we can use the fact that u is a
harmonic function. To this end we use (9.43) to bound∣∣∣∣∣

∫
BM(0,σ )

[
(1+ |Du|2)−1/2

M∑
i=1

DxiuDxi (h− u)
]
dLM

−
∫

BM(0,σ )

[
M∑
i=1

DxiuDxi (h− u)
]
dLM

∣∣∣∣∣
above by
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BM(0,σ )

|Du|
∣∣∣∣∣
M∑
i=1

DxiuDxi (h− u)
∣∣∣∣∣ dLM

≤
∫

BM(0,σ )
|Du| |Du| |D(h− u)| dLM

≤
∫

BM(0,σ )
|Du| |Du|

(
|Dh| + |Du|

)
dLM

≤
∫

BM(0,σ )
|Du|3 dLM +

∫
BM(0,σ )

|Du| |Du| |Dh| dLM

≤
∫

BM(0,σ )
|Du|3 dLM + 1

2

∫
BM(0,σ )

|Du|
(
|Du|2 + |Dh|2

)
dLM

≤ 3

2

∫
BM(0,σ )

|Du|
(
|Du|2 + |Dh|2

)
dLM .

So, using the bound |Du| ≤ c13 E
δ from (9.92), we can write

(T 0
σ − S)(DA(

−⇀
S )−DA(eM)) =

∫
BM(0,σ )

[
M∑
i=1

DxiuDxi (h− u)
]
dLM + R ,

(9.112)
where

|R| ≤ (3/2) c13 E
δ

∫
BM(0,σ )

(
|Du|2 + |Dh|2

)
dLM . (9.113)

The fact that u is harmonic will allow us to express the integrand

M∑
i=1

DxiuDxi (h− u)

in (9.112) as the divergence of a vector field, and thereby allow us to use the Gauss–
Green theorem to replace the integral over the disk by an integral over the boundary
of the disk.

Set

w = (h− u)
M∑
i=1

Dxiu ei .

We compute

div w =
M∑
i=1

∂

∂xi
[(h− u)Dxi u]
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=
M∑
i=1

DxiuDxi (h− u)+ (h− u)
M∑
i=1

∂2u

∂x2
i

=
M∑
i=1

DxiuDxi (h− u) .

Applying the Gauss–Green theorem (Theorem 6.2.6), we obtain∫
BM(0,σ )

divw dLM =
∫
∂BM(0,σ )

w·η dHM−1 ,

where η is the outward unit normal to ∂BM(0, σ ). Hence we conclude that∫
BM(0,σ )

[
M∑
i=1

DxiuDxi (h− u)
]
dLM

=
∫
∂BM(0,σ )

(h− u)
M∑
i=1

Dxiu ηi dHM−1

=
∫
∂BM(0,σ )

(h− g̃δ)
M∑
i=1

Dxiu ηi dHM−1 ,

where we use the boundary condition in (9.91) to replace u by g̃δ in the last term.
Thus we have

(T 0
σ − S)

(
DA(

−⇀
S )−DA(eM)

)

=
∫
∂BM(0,σ )

(h− g̃δ)
M∑
i=1

Dxiu ηi dHM−1 + R .

Now, using (9.92) to estimate |Du| ≤ c13 E
δ , (9.22) to estimate |h − gδ| ≤

2 c2 E1/(2M), (9.83) to estimate |gδ − g̃δ| ≤ E1+δ , and (9.86) to estimate

HM−1
{
x ∈ ∂BM(0, σ ) : gδ(x) �= h(x)

}
≤ c10 E

1−4Mδ ,

and recalling that δ = 1/(9M2), we obtain the estimate∣∣∣∣∣
∫
∂BM(0,σ )

(h− g̃δ)
M∑
i=1

Dxiu ηi dHM−1

∣∣∣∣∣
≤
∣∣∣∣∣
∫
∂BM(0,σ )

(h− gδ)
M∑
i=1

Dxiu ηi dHM−1

∣∣∣∣∣
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+
∣∣∣∣∣
∫
∂BM(0,σ )

(gδ − g̃δ)
M∑
i=1

Dxiu ηi dHM−1

∣∣∣∣∣
≤ c13 E

δ

(∫
∂BM(0,σ )

|h− gδ| dHM−1

+
∫
∂BM(0,σ )

|gδ − g̃δ| dHM−1
)

≤ c13 E
δ
(

2 c2 E
1/(2M) c10 E

1−4Mδ + E1+δ M �M
)

= c13

(
2 c2 c10 E

6−1δ1/2 +M�M Eδ
)
E1+δ . (9.114)

Combining equation (9.112) with the estimates (9.113) and (9.114), we obtain the
estimate∣∣∣ (T 0

σ − S)
(
DA(

−⇀
S )−DA(eM)

) ∣∣∣
≤ c17 E

1+δ + (3/2) c13 E
δ

∫
BM((,0),σ )

(|Du|2 + |Dh|2) dLM ,

where we set c17 = c13 ( 2 c2 c10 +M�M ), as we may since E < 1.
Next, noting that we have Lipu ≤ 1 and Liph ≤ 1, we apply Proposition 9.3.6

to conclude that

|Du|2 + |Dh|2 ≤ 4
(
|−⇀S − eM |2 + |−⇀T 0

σ − eM |2
)
.

Assume now that the function
−⇀
T 0
σ has been extended (as has

−⇀
S ) to all of C(0, σ )

by defining
−⇀
T 0
σ (X) = −⇀

T 0
σ [p (X), h(p (X))] at points where the right-hand side is

defined and
−⇀
T 0
σ (X) = eM otherwise. Using also the fact that the measure ‖Tσ‖ is

larger than the measure LM , we obtain∣∣∣ (T 0
σ − S)

(
DA(

−⇀
S )−DA(eM)

) ∣∣∣
≤ c17 E

1+δ + c16 E
δ

∫ (
|−⇀S − eM |2 + |−⇀T 0

σ − eM |2
)
d‖Tσ‖ ,

with c16 = 4 · (3/2) c13.
Since∣∣∣−⇀S − eM

∣∣∣2 ≤ ( ∣∣∣−⇀S −−⇀T ∣∣∣+ ∣∣∣−⇀T − eM
∣∣∣ )2 ≤ 2

( ∣∣∣−⇀S −−⇀T ∣∣∣2 + ∣∣∣−⇀T − eM
∣∣∣2 ) ,

we deduce that
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σ − S)

(
DA(

−⇀
S )−DA(eM)

) ∣∣∣
≤ c17 E

1+δ

+ c16 E
δ

∫ (
2
∣∣∣−⇀S −−⇀T ∣∣∣2 + 2

∣∣∣−⇀T − eM
∣∣∣2 + ∣∣∣−⇀T 0

σ − eM
∣∣∣2 ) d‖Tσ‖

= c17 E
1+δ + 2 c16 E

δ

∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖
+ 2 c16 E

δ

∫ ∣∣∣−⇀T − eM
∣∣∣2 d‖Tσ‖

+ c16 E
δ

∫ ∣∣∣−⇀T 0
σ − eM

∣∣∣2 d‖Tσ‖
≤ c17 E

1+δ + 2 c16 E
δ

∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖
+ 4 c16 E

δ · E + c16 E
δ

∫ ∣∣∣−⇀T 0
σ − eM

∣∣∣2 d‖Tσ‖ . (9.115)

Using the fact that
−⇀
T 0
σ and

−⇀
T are HM -almost always simple unitM-vectors, we

note that∫ ∣∣∣−⇀T 0
σ − eM

∣∣∣2 d‖Tσ‖
≤
∫ ∣∣∣−⇀T − eM

∣∣∣2 d‖Tσ‖ + ∫ ∣∣∣ ∣∣∣−⇀T 0
σ − eM |2 −

∣∣∣−⇀T − eM
∣∣∣2 ∣∣∣ d‖Tσ‖

≤ 2E +
∫ ∣∣∣ ∣∣∣−⇀T 0

σ − eM
∣∣∣2 − ∣∣∣−⇀T − eM

∣∣∣2 ∣∣∣ d‖Tσ‖
≤ 2E + 2

∫ ∣∣∣ (−⇀T 0
σ −−⇀T ) · eM

∣∣∣ d‖Tσ‖
≤ 2E + 2

∫ ∣∣∣−⇀T 0
σ −−⇀T

∣∣∣ d‖Tσ‖ .
By (9.24), we have

‖T 0
σ − Tσ‖C(0, σ ) ≤ c4 E ,

so ∫ ∣∣∣−⇀T 0
σ −−⇀T

∣∣∣ d‖Tσ‖ ≤ c4 E ,
and we conclude that
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σ − eM

∣∣∣2 d‖Tσ‖ ≤ 2 (1+ c4) E . (9.116)

Combining (9.107), (9.115), and (9.116), we obtain the estimate∣∣∣ (Tσ − S)(DA(−⇀S )−DA(eM) ) ∣∣∣
≤ c15 E

1+δ + 2 c16 E
δ

∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖ ,
with

c15 = c4 · 2 c13 + c17 + 4 c16 + c16 · 2 (1+ c4) .
Thus the claim has been proved.

Combining the estimates. Combining (9.101) and (9.104), we obtain the estimate(
1/2− 2 c16 E

δ
) ∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖ ≤ 2 c12 E

1+δ + c15 E
1+δ .

So we have ∫ ∣∣∣−⇀S −−⇀T ∣∣∣2 d‖Tσ‖ ≤ c18 E
1+δ , (9.117)

where c18 = 4 (2 c12 + c15), provided that

c16 E
δ ≤ 1/8 (9.118)

holds.

Considering candidates for θ . Consider an arbitrary 0 < θ < σ/4. We have∫
C(0,2θ)

∣∣∣−⇀T −−⇀S (0) ∣∣∣2 d‖T ‖
≤ 2

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S ∣∣∣2 d‖T ‖ + 2
∫

C(0,2θ)

∣∣∣−⇀S −−⇀S (0) ∣∣∣2 d‖T ‖
≤ 2

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S ∣∣∣2 d‖T ‖ + 2
(

sup
C(0,2θ)

∣∣∣−⇀S −−⇀S (0) ∣∣∣2 ) · ‖T ‖C(0, 2θ) .
Now

‖T ‖C(0, 2θ)−�M (2θ)M = 1

2

∫
C(0,2θ)

∣∣∣−⇀T − eM
∣∣∣2 d‖T ‖ ≤ E

(see (9.16)), so that

‖T ‖C(0, 2θ) ≤ �M (2θ)M + E ≤ (1+�M2M) θM , (9.119)

provided that
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E ≤ θM (9.120)

holds. Successively applying (9.41), (9.93), and Proposition 9.3.6, we see that

sup
C(0,2θ)

∣∣∣−⇀S −−⇀S (0) ∣∣∣2 ≤ sup
C(0,2θ)

|Du−Du(0)|2

≤ c14 θ
2
∫

BM(0,σ )
|Du|2 dLM

≤ 4 c14 θ
2
∫ ∣∣∣−⇀S − eM

∣∣∣2 d‖Tσ‖ . (9.121)

Using (9.119) and (9.121), we then deduce, subject to (9.120), that

1

2

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S (0) ∣∣∣2 d‖T ‖
≤
∫

C(0,2θ)

∣∣∣−⇀T −−⇀S ∣∣∣2 d‖T ‖
+ c19 θ

M+2
∫ ∣∣∣−⇀S − eM

∣∣∣2 d‖Tσ‖
≤
∫

C(0,2θ)

∣∣∣−⇀T −−⇀S ∣∣∣2 d‖T ‖
+ 2 c19 θ

M+2
∫ ( ∣∣∣−⇀S −−⇀T ∣∣∣2 + ∣∣∣−⇀T − eM

∣∣∣2 ) d‖Tσ‖
≤ (1+ 2 c19)

∫ ∣∣∣−⇀T −−⇀S ∣∣∣2 d‖Tσ‖ + 4 c19 θ
M+2 E , (9.122)

where c19 = 4 c14 · (1+�M2M). Combining (9.122) and (9.117), we deduce that

1

2

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S (0) ∣∣∣2 d‖T ‖ ≤ (1+ 2 c19) · 2 c18 E
1+δ + 4 c19 θ

M+2 E ,

so
1

2
θ−M

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S (0) ∣∣∣2 d‖T ‖ ≤ (1+ 4 c19) θ
2 E (9.123)

holds, provided that

c16 E
δ ≤ 1/8, E ≤ θM, (1+ 2 c19) c18 E

δ ≤ θ2 . (9.124)

Note that (9.124) includes conditions (9.118) and (9.120).

Bounding the slope of the harmonic function at 0. By definition we have
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1

2
θ−M

∫
C(0,2θ)

∣∣∣−⇀T − eM
∣∣∣2 d‖T ‖ ≤ θ−M E . (9.125)

Using �M(2 θ)M ≤ ‖T ‖[C(0, 2 θ)], we can estimate∣∣∣−⇀S (0)− eM
∣∣∣2

= 1

‖T ‖C(0, 2 θ)
∫

C(0,2 θ)

∣∣∣−⇀S (0)− eM
∣∣∣2 d‖T ‖

≤ 1

�M (2 θ)M

∫
C(0,2 θ)

∣∣∣−⇀S (0)− eM
∣∣∣2 d‖T ‖

≤ 2

�M (2 θ)M

∫
C(0,2 θ)

( ∣∣∣−⇀S (0)−−⇀T ∣∣∣2 + ∣∣∣−⇀T − eM
∣∣∣2 ) d‖T ‖

≤ 1

�M 2M−2

1

2
θ−M

∫
C(0,2 θ)

∣∣∣−⇀S (0)−−⇀T ∣∣∣2 d‖T ‖
+ 1

�M 2M−2

1

2
θ−M

∫
C(0,2 θ)

∣∣∣−⇀T − eM
∣∣∣2 d‖T ‖ .

By (9.123) and (9.125), we have∣∣∣−⇀S (0)− eM
∣∣∣2 ≤ c20 θ

−M E , (9.126)

provided that (9.124) holds, where we may set c20 = 23−M �−1
M (1+ 2 c19).

Defining the isometry. It is easy to see that there exists a constant c21 such that
(9.126) implies the existence of a linear isometry j of RM+1 with〈∧

M j,
−⇀
S (0)

〉
= eM and ‖j− IRM+1‖2 ≤ c21 θ

−M E . (9.127)

One way to construct such a j is to set vi = 〈Du(0), ei 〉 for i = 1, 2, . . . ,M . Then
apply the Gram–Schmidt orthogonalization procedure to the set

{v1, v2, . . . , vM, eM+1}
to obtain the orthonormal basis {w1, w2, . . . , wM+1}. Finally, let j be the inverse of
the isometry represented by the matrix having the vectors wi as its columns.

Recall that T0 = T C(0, 1/2). By (H1) (see page 262), we have

spt ∂T ⊆ RM+1 \ C(0, 1) .

So we see that
dist( spt ∂T0, C(0, 1/4) ) = 1/4 .
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By Lemma 9.2.1 and the assumption that 0 ∈ spt T , we have

sup
X∈C(0,1/2)∩spt T

|q (X)| ≤ c4 E1/(2M) , (9.128)

so spt ∂T0 ⊆ B(0, 1/2+ c4 E1/(2M)). By (9.127), we have

|x − j(x)| ≤ (c21 θ
−M E)1/2 · (1/2+ c4 E1/(2M))

for x ∈ spt ∂T0. Thus if

(c21 θ
−M E)1/2 · (1/2+ c4 E1/(2M)) < 1/4 (9.129)

holds, then we have
spt ∂j#T0 ⊆ RN \ C(0, 1/4) .

A similar argument shows that if

(c21 θ
−M E)1/2 · (θ + c4 E1/(2M)) < θ (9.130)

holds, then we have
spt T0

⋂
j−1C(0, θ) ⊆ C(0, 2θ) .

Selecting θ and ε∗ to complete the proof of the lemma. If we satisfy the conditions
(9.124), (9.129), and (9.130), then we obtain the estimates (9.123), (9.127), and
(9.128). Those estimates are

1

2
θ−M

∫
C(0,2θ)

∣∣∣−⇀T −−⇀S (0) ∣∣∣2 d‖T ‖ (9.123)≤ (1+ 4 c19) θ
2 E ,

‖j− IRM+1‖2 (9.127)≤ c21 θ
−M E ,

sup
X∈C(0,1/2)∩spt T

|q (X)| (9.128)≤ c4 E
1/(2M) .

We must choose θ and ε∗ so that the estimates (9.123), (9.127), and (9.128) will
imply that (9.76), (9.78), and (9.79) hold. Finally, we need to meet the conditions
(9.75) in the statement of the lemma and the condition (9.80) that allowed the use of
Lemmas 9.2.1 and 9.2.2. Thus a full set of conditions that, if satisfied, complete the
proof of the lemma is the following (of course, θ and ε∗ must be positive):

θ
(9.75)
< 1/8 , (9.131)

ε∗
(9.75)≤ (θ/4)2M ,

ε∗
(9.80)
< ε0 ,
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c16 E
δ

(9.124)≤ 1/8 ,

E
(9.124)≤ θM ,

(1+ 2 c19) c18 E
δ

(9.124)≤ θ2 ,

(c21 θ
−M E)1/2 · (1/2+ c4 E1/(2M))

(9.129)
< 1/4 ,

(c21 θ
−M E)1/2 · (θ + c4 E1/(2M))

(9.130)
< θ ,

c4 E
1/(2M) so (9.128)⇒(9.76)≤ 1/8 ,

c21 θ
−M E

so (9.127)⇒(9.78)≤ θ−2M E , (9.132)

θ−2M E
(9.77)≤ 1/64 ,

(1+ 4 c19) θ
2 E

so (9.123)⇒(9.79)≤ θ E . (9.133)

We first choose and fix 0 < θ such that (9.131), (9.132), and (9.133) hold. This
choice is clearly independent of the value of E and the choice of ε∗. Then we
select 0 < ε∗ such that, assuming that E < ε∗ holds, the remaining conditions are
satisfied. ��

9.6 The Regularity Theorem

The next theorem gives us a flexible tool that we can use in proving regularity; the
proof of the theorem is based on iteratively applying Lemma 9.5.1.

Theorem 9.6.1. Let θ and ε∗ be as in Lemma 9.5.1. There exist constants c22 and
c23, depending only onM , with the following property:

If 0 ∈ spt T , if T0 = T C(0, ρ/2), and if the hypotheses (H1–H5) (see page 262)
hold with

y = 0 , ε = ε∗ ,
then

E( T , 0, r ) ≤ c22 E( T , 0, ρ ) , for 0 < r ≤ ρ , (9.134)

and there exists a linear isometry j of RM+1 such that

spt ∂j#T0 ∩ C(0, ρ/4) = ∅ ,
‖j− IRM+1‖ ≤ 4 θ−2M E( T , 0, ρ ) ≤ 4−2 , (9.135)

E( j#T0, 0, r ) ≤ c23 · r
ρ
· E( T , 0, ρ ) for 0 < r ≤ ρ/4 . (9.136)
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Proof. Set j0 = IRM+1 . We will show inductively that, for q = 1, 2, . . . , there are
linear isometries jq of RM+1 such that, writing

Tq = jq#T0 ,

we have

sup
X∈spt Tq−1∩C(0,θq−1ρ/4)

|q (X)| ≤ θq−1 ρ/2 for q ≥ 2 , (9.137)

E( Tq, 0, θq ρ ) ≤ θ E( Tq−1, 0, θq−1 ρ ) for q ≥ 2 , (9.138)

‖jq − jq−1‖ ≤ θ−M θ(q−1)/2 E( T , 0, ρ )1/2 , (9.139)

E( Tq, 0, θq ρ ) ≤ θq E( T , 0, ρ ) . (9.140)

Note that for q = 2, 3, . . . , (9.140) follows from (9.138) and from the instance
of (9.140) in which q is replaced by q − 1. Thus we need only verify (9.140) for the
specific value q = 1.

Start of induction on q to prove (9.137)–(9.140). For q = 1, conditions (9.137)
and (9.138) are vacuous, so we need only verify (9.139) and (9.140). Let j1 be the
isometry whose existence is guaranteed by Lemma 9.5.1. Then the inequality (9.78)
gives us (9.139), and the inequality (9.79) gives us (9.140).

Inductive step. Now suppose that (9.137)–(9.140) hold for q. We apply Lemma 9.5.1
to Tq with ρ replaced by θqρ. We may do so because Tq = jq#T0 is mass-minimizing.
Inequality (9.76) of Lemma 9.5.1 gives us (9.137) with q replaced by q + 1.

The isometry j whose existence is guaranteed by Lemma 9.5.1 satisfies

‖j− IRM+1‖ ≤ θM E(Tq, 0, θqρ)1/2 , (9.141)

E
(

j#

(
Tq C(0, θqρ/2)

)
, 0, θq+1ρ

)
≤ θ E( Tq, 0, θqρ ) . (9.142)

By (9.140) and (9.141), we have

‖j− IRM+1‖ ≤ θ−M θq/2 E( T , 0, ρ )1/2 .

Setting jq+1 = j ◦ jq , we obtain

‖jq+1 − jq‖ = ‖(j− IRM+1) ◦ jq‖ = ‖j− IRM+1‖ ≤ θ−M θq/2 E( T , 0, ρ )1/2 ,

which gives us (9.139) with q replaced by q + 1.
Since

j#

(
Tq C(0, θqρ/2)

)
C(0, θq+1ρ) = (j#Tq) C(0, θq+1ρ) ,

we have
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E( Tq+1, 0, θq+1ρ )

= E
(

j#

(
Tq C(0, θqρ/2)

)
, 0, θq+1ρ

)
≤ θ E( Tq, 0, θqρ ) ,

which gives us (9.138) with q replaced by q + 1. The inductive step has been
completed.

Next we show that jq has a well-defined limit as q → ∞. For Q > q ≥ 0, we
estimate

‖jQ − jq‖ ≤
Q+1∑
s=q

‖js+1 − js‖ ≤ θ−M
∞∑
s=q
θs/2 E(T0, 0, ρ)

1/2

= θ(q/2)−M E(T0, 0, ρ)
1/2 · 1

1−√θ ≤ 2 θ(q/2)−M E(T0, 0, ρ)
1/2 .

Thus the jq form a Cauchy sequence in the mapping-norm topology. We set

j = lim
q→∞ jq

and conclude that

‖j− jq‖2 ≤ 4 θq−2M E(T0, 0, ρ) ≤ 1/16 (9.143)

holds for 0 ≤ q.
Recall Corollary 9.1.7, which tells us how the excess is affected by an isome-

try. Using (9.143) together with (9.137), (9.139), and (9.140), we see that with an
appropriate choice of c24,

E(j#T0, 0, θ
qρ) ≤ c24 θ

q E(T0, 0, ρ) (9.144)

holds for each q ≥ 1. Using (9.144) together with (9.76) and (9.143) with q = 0, we
see that, with an appropriate choice of c25,

E(j#T0, 0, r) ≤ c25 (r/ρ) E(T0, 0, ρ)

holds for 0 < r < ρ/4, proving (9.136). Finally, we see that (9.134) follows from
(9.76), (9.136), (9.137), and (9.143), again with q = 0. ��

We are now ready to state and prove the regularity theorem.

Theorem 9.6.2 (Regularity). There exist constants

0 < ε1 , 0 < c26 <∞ ,
depending only onM , with the following property:

If the hypotheses (H1–H5) (see page 262) hold with

ε = ε1 ,
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then spt T ∩ C(y, ρ/4) is the graph of a C1 function u. Moreover, u satisfies the
following Hölder condition with exponent 1/2:

sup
BM(y,ρ/4)

‖Du‖ + ρ1/2 sup
x,z∈BM(y,ρ/4),x �=z

|x − z|−1/2 ‖Du(x)−Du(z)‖

≤ c26

(
E( T , y, ρ )

)1/2
. (9.145)

Remark 9.6.3.

(1) Once (9.145) is established, the higher regularity theory applies to show that u
is in fact real analytic. The treatise [Mor 66] is the standard reference for the
higher regularity theory including the results for systems of equations needed
when surfaces of higher codimension are considered.

(2) By the constancy theorem, the regularity theorem implies immediately that

T C(y, ρ/4) = G#

(
EM BM(y, ρ/4)

)
, where G is the mapping x �−→

(x, u(x)).

Proof. We set
ε1 = min{ θ2M ε∗, 2−M c−2M

6 c−1
22 } ,

where θ and ε∗ are as in Lemma 9.5.1, c22 is as in (9.134) in Theorem 9.6.1, and c6
is as in (9.32) in the proof of Lemma 9.2.2.

In (9.75) in the statement of Lemma 9.5.1, we required that 0 < θ < 1/8 and that
0 < ε∗ < (θ/4)2M . Thus we have ε1 < ε∗/2M , so E( T , y, ρ ) < ε1 implies that
E( T , z, ρ/2 ) < ε∗ for each z ∈ BM(y, ρ/2). Therefore, after translating the origin
and replacing ρ by ρ/2, we can apply Theorem 9.6.1 to conclude that

E( T , z, r ) ≤ c22 E( T , z, ρ/2 ) ≤ 2M c22 E( T , y, ρ ) (9.146)

holds for 0 < r ≤ ρ/2 and z ∈ BM(y, ρ/2). Theorem 9.6.1 also tells us that

E( jz# Tz, z, r ) ≤ c23 · r
ρ/2

· E( T , z, ρ/2 )

≤ 2M+1 c23 E( T , y, ρ ) (9.147)

holds for 0 < r ≤ ρ/8, where Tz = T C(y, ρ/4). It also says that jz is an
isometry of RM+1 with spt ∂jz#Tz∩C(z, ρ/8) = ∅, jz(z, w) = (z, w) for some point
(z, w) ∈ spt T , and

‖Djz − IRM+1‖ ≤ 4 θ−2M E( T , z, ρ/2 ) ≤ 4−2 . (9.148)

In (9.80) of the proof of Lemma 9.5.1 we required that ε∗ < ε0, where ε0 is as in
Lemma 9.2.1. Thus we also have ε1 < ε0. Now we look in detail at the construction
in the proof of Lemma 9.2.2 with γ = 1. In particular, when the choice

η = c−2M
6
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is made in (9.34), we guarantee that η = c−2M
6 is strictly less than ε0. Since ε1 ≤

2−M c−2M
6 holds, (9.146) implies that

E( T , z, r ) ≤ c−2M
6 = η

holds for 0 < r ≤ ρ/2 and z ∈ BM(y, ρ/2). Thus the set A defined in (9.28)
contains all of BM(y, ρ/2). We conclude that there exists a Lipschitz function g :
BM(y, ρ/4)→ R such that

Lip g ≤ 1 , (9.149)

T C(y, ρ/4) = G#

(
EM BM(y, ρ/4)

)
, (9.150)

with G : BM(y, ρ/4)→ C(y, ρ/4) defined by G(x) = (x, g(x)).
If Lz : RM → R denotes the linear map whose graph is mapped to RM × {0} by

Djz, then estimates (9.147), (9.148), (9.149) and equation (9.150) imply that

r−M
∫

BM(z,r)
‖Dg − Lz‖2 dLM ≤ c27 (r/ρ) E( T , y, ρ ) (9.151)

holds for 0 < r ≤ ρ/8 and z ∈ BM(y, ρ/4), where c27 is an appropriate constant.
We will apply (9.151) with z1, z2 ∈ BM(y, ρ/4) and with r = |z1 − z2| < ρ/8.

Setting z∗ = (z1 + z2)/2 and B = BM(z1, r)
⋂

BM(z2, r), we estimate

�M (r/2)
M ‖Lz1 − Lz2‖2 ≤

∫
B

‖Lz1 − Lz2‖2 dLM

≤ 2
∫
B

(
‖DLz1 −Dg‖2 + ‖Dg − Lz2‖2

)
dLM

≤ 2
∫

BM(z1,r)
‖DLz1 −Dg‖2 dLM

+ 2
∫

BM(z2,r)
‖Dg − Lz2‖2 dLM

≤ 2 rM c27 (r/ρ) E( T , y, ρ ) .

Thus we have

‖Lz1 − Lz2‖2 ≤ 2M+1�−1
M c27 (|z1 − z2|/ρ) E( T , y, ρ ) .

Since (9.151) also implies that

Dg(z) = Lz
holds for LM -almost all z ∈ BM(y, ρ/4), we conclude that
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‖Dg(z1)−Dg(z2)‖ ≤ c28 (|z1 − z2|/ρ)1/2 E( T , y, ρ )1/2 (9.152)

holds for LM -almost all z1, z2 ∈ BM(y, ρ/4), where we set

c28 = 2(M+1)/2�
−1/2
M c

1/2
27 .

Since g is Lipschitz, we conclude that g is C1 in BM(y, ρ/4), that (9.152) holds for
all z1, z2 ∈ BM(y, ρ/4), and that (9.145) follows from (9.148) and (9.152) when we
set u = g. ��

9.7 Epilogue

In our exposition of the regularity results, we made the simplifying assumptions
that the current being studied was of codimension one and that it minimized the
integral of the area integrand. Relaxing these assumptions introduces notational and
technical complexity and requires deeper results to obtain bounds for solutions of the
appropriate partial differential equation or system of partial differential equations.
Nonetheless the proof of the regularity theorem goes through—as Schoen and Simon
showed.

What is affected fundamentally by relaxing the assumptions is the applicability of
the regularity theorem and the further results that can be proved. It is the hypothesis
(H3) that causes the most difficulty in applying Theorem 9.6.2.

Because we have limited our attention to the codimension-one case, we have
Theorem 7.5.5 available to decompose a mass-minimizing current into a sum of
mass-minimizing currents each of which is the boundary of the current associated
with a set of locally finite perimeter. Thus we have proved the following theorem.

Theorem 9.7.1. If T is a mass-minimizing, integer-multiplicity current of dimension
M in RM+1, then, for HM -almost every a ∈ spt T \ spt ∂T , there is r > 0 such that
B(a, r)

⋂
spt T is the graph of a C1 function.

The more general form of the regularity theorem in [SS 82] extends Theorem 9.7.1
to currents minimizing the integral of smooth elliptic integrands and, in higher codi-
mensions, yields a set of regular points that is dense, though not necessarily of full
measure.

Suppose that T is an M-dimensional, integer-multiplicity current in RN , and
suppose that T minimizes the integral of a smoothM-dimensional elliptic integrand
F . Let us denote the set of regular points of the current T by reg T and the set of
singular points of T by sing T . More precisely, reg T is defined by

reg T = ( spt T \ spt ∂T )

∩ {a : ∃r > 0 such that B(a, r)
⋂

spt T is the graph of a C1 function
}

and
sing T = spt T \ ( spt ∂T

⋃
reg T

)
.
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Table 9.1. Interior regularity of minimizing currents.

F = A F �= A

N − M = 1 dimH (sing T ) ≤ M − 7 HM−2(sing T ) = 0

[Fed 70] [SSA 77]

N − M ≥ 2 dimH (sing T ) ≤ M − 2 reg T is dense in spt T \ spt ∂T

[Alm 00] [Alm 68]

Table 9.1 summarizes what is known about reg T and sing T (and gives a reference
for each result). In the table, A denotes theM-dimensional area integrand.

One can also consider the question of what happens near points of spt ∂T , that
is, boundary regularity as opposed to the interior regularity considered above. The
earliest results in the context of geometric measure theory are in William K. Allard’s
work [All 68], [All 75]. Allard’s results focus on the area integrand. Robert M. Hardt
considered more general integrands in [Har 77]. For area-minimizing hypersurfaces,
the definitive result is that of Hardt and Simon [HS 79], which tells us that if ∂T
is associated with a C2 submanifold, then, near every point of spt ∂T , the set spt T
is a C1 embedded submanifold-with-boundary. More recently, Frank Duzaar and
Klaus Steffen (see [DS 02]) have given a unified argument applicable to the interior
and boundary regularity of currents that “almost’’ locally minimize the integral of a
general elliptic integrand.

Regularity theory is not a finished subject. The finer structure of the singular
set is not generally known (2-dimensional area-minimizing currents are an important
exception—see [Cha 88]), so understanding the singular set remains a challenge.
Also, techniques created to answer questions about surfaces that minimize integrals
of elliptic integrands have found applicability in other areas, for instance, to systems of
partial differential equations (e.g., [Eva 86]), mean curvature flows (e.g., [Whe 05]),
and harmonic maps (e.g., [Whe 97]). The future will surely see more progress.



Appendix

A.1 Transfinite Induction

We provide a sketch of transfinite induction over the smallest uncountable ordinal.
Since we use transfinite induction only for the specific purpose of constructing the
Borel sets, we have kept the discussion here minimal. The reader interested in a more
complete discussion should see [Hal 74, Sections 17–19].

Definition A.1.1. A relation < on a set Z is a well-ordering if

(1) for x, y ∈ Z exactly one of x < y, y < x, and x = y holds,
(2) for x, y, z ∈ Z , x < y and y < z imply x < z,
(3) ifA ⊆ Z is nonempty, then there exists a ∈ A such that a < x holds for all x ∈ A

with x �= a; in this case, we call a the least element of A and write a = minA.

Recall the well-ordering principle (see for instance [Fol 84] or [Roy 88]).

Theorem A.1.2 (Well-Ordering Principle). Every set can be well-ordered.

Now choose any uncountable set Z , and let it be well-ordered by the relation <.
Every nonempty set has a least element. In particular, the entire well-ordered set will
have a least element: Let 1 denote that least element of Z , so 1 = min Z . Now
that 1 has been defined, we can write 2 = min (Z \ {1}). Of course, this process can
be continued by using induction over the positive integers. Below we will describe
induction over an ordered set of cardinality strictly larger than the cardinality of the
integers.

The set of predecessors of α ∈ Z is { z ∈ Z : z < α }. We would like to consider
the minimum of the set

A =
{
x ∈ Z : {z ∈ Z : z < x} is uncountable

}
.

At the moment we cannot guarantee that this set is nonempty. If A happens to be
empty, change the name of Z to Z̃ and let the new Z be Z = Z̃∪{x∗}, where x∗ /∈ Z̃ .
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Extend the ordering < from Z̃ to Z by requiring that x < x∗ hold for every x ∈ Z̃ .
With these changes, Z will still be well-ordered and A will be nonempty.

Let ω1 be the least element of Z for which the set of predecessors is uncountable;
that is,

ω1 = min
{
x ∈ Z : {z ∈ Z : z < x} is uncountable

}
.

By Definition A.1.1(3), we have

{z ∈ Z : z < ω1} is uncountable. (A.1)

The next lemma describes induction over ω1. This is an instance of transfinite induc-
tion.

Lemma A.1.3 (Transfinite Induction over ω1). Suppose that P (α) is a statement
that is either true or false depending on the choice of the parameter α < ω1. If

(1) P (1) is true and
(2) for α < ω1, P (α) is true whenever P (β) is true for all β < α,

then P (α) is true for all α < ω1.

Proof. IfA = { α : α < ω1, P (α) is false }were nonempty, then α̃ = minAwould
exist. Note that by (1), α̃ cannot equal 1. Then by (2), α̃ cannot be any other element
of {z ∈ Z : z < ω1}, and we have reached a contradiction. ��

The next lemma tells us that we cannot traverse ω1 in countably many steps.
Thus there is an essential difference between induction over the positive integers and
induction over ω1. In the construction of the Borel sets, this lemma allows us to
conclude that induction over ω1 is sufficient to construct all the Borel sets; that is, no
new sets would be constructed if we continued the inductive construction beyond ω1.

Lemma A.1.4. If α1, α2, . . . is a sequence in Z and if αi < ω1 holds for each i =
1, 2, . . . , then there is α∗ with α∗ < ω1 and αi < α∗ for all i.

Proof. Since αi < ω1, the set of predecessors of αi is countable. Thus the set

A = {αi : i = 1, 2, . . .} ∪
∞⋃
i=1

{x ∈ Z : x < αi}

is a countable union of countable sets and hence is countable.
By (A.1), {z ∈ Z : z < ω1} is uncountable, while A is merely countable, so there

exists
α∗ ∈ {z : z < ω1} \ A .

For each i, α∗ is unequal to αi and is not a predecessor of αi , so αi < α∗ must hold.
Thus α∗ is as required. ��
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A.2 Dual Spaces

Throughout this section we let V be a vector space over the real numbers.

Definition A.2.1. The dual space of V , denoted by V ∗, is the set of real-valued
linear functions on V together with the operations of scalar multiplication and vector
addition defined, for α ∈ R and ξ, η ∈ V ∗, by setting

(αξ)(v) = α(ξ(v)), for v ∈ V,
(ξ + η)(v) = (ξ(v))+ (η(v)), for v ∈ V.

With these operations, V ∗ forms a vector space in its own right.

Remark A.2.2.

(1) The elements of the dual spaceV ∗ are often called functionals, providing a briefer
way to say “real-valued linear functions.’’ Elements of V ∗ are also called dual
vectors or covectors.

(2) Our emphasis in this section will be algebraic. On the other hand, if the vector
space V is endowed with a topology and if the vector space operations are con-
tinuous with respect to that topology, then V is called a topological vector space.
It then makes sense to consider the continuous linear functionals on V . The set
of continuous linear functionals is denoted by V ′ and it forms a subspace of V ∗.
The continuous linear functionals are the object of study in functional analysis.

Notation A.2.3. Because of the way the vector space operations are defined in V ∗,
the expression

ξ(v) ,

where ξ ∈ V ∗, v ∈ V , is linear in both ξ and v. The symmetry of this situation is
better emphasized by writing

〈ξ, v〉 = ξ(η) .
The bilinear function 〈ξ, v〉 is called the dual pairing.

Example A.2.4. When RN is viewed as a vector space, its elements are typically
represented by column vectors:

x =

⎛⎜⎜⎜⎝
x1
x2
...

xN

⎞⎟⎟⎟⎠ .
Elements of the dual space (RN)∗ are represented by row vectors:

ξ = (ξ1 ξ2 . . . ξN ) .
With these notational conventions the dual pairing is expressed as
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〈ξ, x〉 = (ξ1 ξ2 . . . ξN )

⎛⎜⎜⎜⎝
x1
x2
...

xN

⎞⎟⎟⎟⎠ , (A.2)

where the operation on the right-hand side of (A.2) is ordinary matrix multiplication.
Equation (A.2) justifies our convention of writing the element of the dual space on
the left in the dual pairing. This convention is not followed universally, since some
authors put the dual space element on the right. ��
Definition A.2.5. Suppose a basis for V has been selected:

B = {ba}a∈A ,
where A is some index set. For each ba we define b∗a ∈ V ∗ by setting

〈b∗a, ba′ 〉 =
{

1, if a′ = a,
0, if a′ �= a,

for basis elements ba′ and extending by linearity to all of V . The mapping

ba �−→ b∗a
can in turn be extended from B to all of V by linearity, thus defining a mapping
iB : V → V ∗.
Remark A.2.6. We will see in Corollary A.2.9 that when V is finite-dimensional, the
set of {b∗a}a∈A forms a basis for V ∗ called the “dual basis.’’

Lemma A.2.7. The map iB : V → V ∗ is one-to-one.

Proof. Suppose iB(v) = 0. Write v =∑nj=1 αjbaj as we may since B is a basis for
V . By linearity

iB(v) =
n∑
j=1

αj iB(baj )

holds, so for any j0 ∈ {1, 2, . . . , n}, we have

0 = 〈iB(v), baj0 〉

=
n∑
j=1

αj 〈b∗aj , baj0 〉

= αj0 .
Thus we have α1 = α2 = · · · = αn = 0 and consequently v = 0. ��
Lemma A.2.8. The map iB : V → V ∗ is an isomorphism if and only if V is finite-
dimensional.
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Proof. By Lemma A.2.7, we need to show that iB is surjective if and only if V is
finite-dimensional.

First suppose V is infinite-dimensional. We define X ∈ V ∗ by setting〈
X,

n∑
j=1

αjbaj

〉
=
n∑
j=1

αj .

We cannot express X as a finite linear combination of the functionals b∗a , so X is not
in the range of iB (one can write X formally as an infinite linear combination of b∗a ,
namely as X = ∑a∈B b∗a , because whenever X is evaluated on v ∈ V only finitely
many of the summands will be nonzero).

Now suppose that V is finite-dimensional. We can write

B = {b1, b2, . . . , bN } .

Letting ξ ∈ V ∗ be arbitrary, we see by linearity that

ξ =
N∑
i=1

〈ξ, bi〉 b∗i . ��

From the proof of Lemma A.2.8 we obtain the following corollary.

Corollary A.2.9. If V is finite-dimensional with basis B = {b1, b2, . . . , bN } , then
B∗ = {b∗1, b∗2, . . . , b∗N } is a basis for V ∗ called the dual basis.

Remark A.2.10. As was noted in Section 6.1, for the special case of RN with coor-
dinates x1, x2, . . . , xN and standard basis e1, e2, . . . , eN, it is traditional to write dxi
to denote the dual of ei ; that is,

dxi = e∗i , for i = 1, 2, . . . , N . (A.3)

The reason for this notation is made clear in Section A.3.

Remark A.2.11. One can consider the dual space of V ∗, denoted by V ∗∗. It is always
possible to embed V into V ∗∗ using the mapping I : V → V ∗∗ defined by setting

〈I(v), ξ〉 = 〈ξ, v〉 ,

for v ∈ V and ξ ∈ V ∗. If V is finite-dimensional with basis B and dual basis
B∗, then one checks that I = iB∗ ◦ iB. Thus by Lemma A.2.8, we see that if V is
finite-dimensional, then I is an isomorphism. Because the natural embedding I is
an isomorphism when V is finite-dimensional, it is common in the finite-dimensional
case to identify V and V ∗∗.
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The Dual of an Inner Product Space

In this subsection, we assume that V also has the structure of an inner product space
and let the inner product of x, y ∈ V be denoted by x · y. In this case, every element
x ∈ V defines a corresponding element ξx ∈ V ∗ by setting

〈ξx, y〉 = x · y .
The mapping x �−→ ξx is one-to-one because 〈ξx, x〉 = x · x = 0 if and only if
x = 0.

Remark A.2.12. If V has the orthonormal basis B, then the mapping iB is the same
as the mapping x �−→ ξx
Lemma A.2.13. If V is a finite-dimensional inner product space, then the mapping
x �−→ ξx is an isomorphism of V onto V ∗.

Proof. If V is finite-dimensional, then V ∗ is also finite-dimensional and dim V =
dim V ∗. Since the mapping x �−→ ξx is one-to-one, its image must have the same
dimension as its domain, thus it maps onto V ∗. ��

Lemma A.2.13 gives us a natural way to define an inner product on the dual of a
finite-dimensional inner product space, which we do in the next definition.

Definition A.2.14. If V is a finite-dimensional inner product space, then the dual
inner product on V ∗ is defined by requiring the mapping x �−→ ξx to be an isom-
etry. Equivalently, if B is an orthonormal basis for V , then we decree B∗ to be an
orthonormal basis for V ∗.

Remark A.2.15. Even with the extra structure of an inner product on V , if V is
infinite-dimensional, then V and V ∗ are not isomorphic. What is true is that if V is
given the metric topology derived from the inner product and if V is complete in that
metric, then V is isomorphic to the vector space V ′ of continuous linear functionals (a
result known as the Riesz representation theorem). Such a space V , namely, an inner
product space that forms a complete metric space when endowed with the metric
derived from the inner product, is called a Hilbert space. A pertinent reference is
[Con 90].

A.3 Line Integrals

In a course on vector calculus, a student will learn about line integrals along a curve
in Euclidean space, first in R2 and then more generally in R3, or perhaps even in RN .
Such an introduction typically will involve two types of line integral, one being the
integral with respect to arc length ∫

C

f ds

and the second being the the integral of a differential form



A.3 Line Integrals 317∫
C

f dx + g dy + h dz .

The vector calculus definition of a line integral is operational.

Definition A.3.1. If the curveC is parametrized by the smooth function γ : [a, b] →
RN , then the integral with respect to arc length of the function f over the curve C is
given by ∫

C

f ds :=
∫ b
a

f [γ (t)] |γ ′(t)| dt .

If we suppose the component functions of C are γ1, γ2, . . . , and γN , then the integral
of the differential form f1 dx1+ f2 dx2+ · · · + fN dxN over the curve C is given by∫

C

f1 dx1 + f2 dx2 + · · · + fN dxN :=
∫ b
a

(∑N
i=1 fi[γ (t)] γ ′i (t)

)
dt . (A.4)

The mnemonic for the latter definition is that the component functions could be
written

x1(t), x2(t), . . . , xN(t) ,

inspiring the mechanical calculations

dx1 = x′1(t) dt, dx2 = x′2(t) dt, . . . , dxN = x′N(t) dt .

The operational definition of the line integral of a differential form leaves unan-
swered the question of what a differential form is. To answer that question, recall that
if RN has coordinates x1, x2, . . . , xN and has the standard basis e1, e2, . . . , eN , then
dx1, dx2, . . . , dxN are dual to e1, e2, . . . , eN , respectively. So for any fixed point in
the domain of f1, f2, . . . , fN ,

f1 dx1 + f2 dx2 + · · · + fN dxN
is an element of the dual space of RN . In light of this interpretation of the differential
form, the integrand on the right-hand side of (A.4),∑N

i=1 fi[γ (t)] γ ′i (t) ,

is the dual pairing of

f1 dx1 + f2 dx2 + · · · + fN dxN
against the velocity vector of the curve

γ ′1(t) e1 + γ ′2(t) e2 + · · · + γ ′N(t) eN .



318 Appendix

Exterior Differentiation

The fundamental theorem of calculus tells us that integration and differentiation of
functions can be thought of as inverse operations. We might wonder whether the line
integral is also inverse to some type of differentiation. Indeed, “exterior differentia-
tion,’’ which we define next, plays that role.

Definition A.3.2. Suppose that U ⊆ RN is open. If F : U → R is differentiable,
then the exterior derivative of F , denoted by dF , is the differential form defined by

dF = ∂F
∂x1
dx1 + ∂F

∂x2
dx2 + · · · + ∂F

∂xN
dxN . (A.5)

Example A.3.3. Fix i ∈ {1, 2, . . . , N}. Suppose F : RN → R is defined by setting

F(x1, x2, . . . , xN) = xi . (A.6)

We compute

dF = dxi . (A.7)

The functionF defined by (A.6) is often denoted by xi . If we were to use that notation
then (A.7) would become the tautology “dxi = dxi .’’ ��

The next theorem shows us that the line integral is indeed the inverse operation
to exterior differentiation, justifying the use of the notation “dF .’’

Theorem A.3.4. If U ⊆ RN is open, F : U → R is continuously differentiable, and
C ⊆ U is a curve with initial point p0 and terminal point p1, then∫

C

dF = F(p1)− F(p0) .

Proof. Suppose C is parametrized by the smooth function γ : [a, b] → RN . Then
the initial point of the curve is p0 = γ (a) and the terminal point of the curve is
p1 = γ (b).

Consider the function φ : R → R defined by φ(t) = F [γ (t)]. The fundamental
theorem of calculus tells us that∫ b

a

φ′(t) dt = φ(b)− φ(a) = F(p1)− F(p0) .

On the other hand, the chain rule and (A.4) tell us that
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a

φ′(t) dt =
∫ b
a

(
∂F

∂x1
γ ′1(t)+

∂F

∂x2
γ ′2(t)+ · · · +

∂F

∂xN
γ ′N(t)

)
dt =

∫
C

dF . ��

A.4 Pullbacks and Exterior Derivatives

Theorem 6.2.9 tells us that for differential forms, the operations of pullback and
exterior differentiation commute. In this section, we give an alternative proof of that
theorem. The proof given here hinges on the fact that the order of differentiation does
not matter in a second derivative of a C2 function.

We will need to develop a new expression for the exterior derivative.

Definition A.4.1. Suppose that the differential m-form φ : U → ∧m
(RN) is given

and is C1. For any vector v ∈ RN , the directional derivative of φ in the direction v is
them-form, denoted byDvφ, that when applied to them vectors v1, v2, . . . , vm ∈ RN

at the point p is defined by setting〈(
Dvφ(p)

)
, v1 ∧ v2 ∧ · · · ∧ vm

〉
= lim
t→0

〈φ(p + tv), v1 ∧ v2 ∧ · · · ∧ vm〉 − 〈φ(p), v1 ∧ v2 ∧ · · · ∧ vm〉
t

. (A.8)

To obtain an (m+1)-form by differentiating φ, we need to modify the directional
derivative so as to make it an alternating function ofm+1 vectors. The standard way
to convert a multilinear function into an alternating multilinear function is to average
the alternating sum over all permutations of the arguments. Since the underlying
m-form φ is already alternating in its m arguments, the required alternating sum
simplifies to the following:

1

m+ 1

m+1∑
i=1

(−1)i+1
〈(
Dviφ(p)

)
, v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vm+1

〉
. (A.9)

Expressions such as v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vm+1 occur with enough
frequency that it is useful to have a special notation for them.

Notation A.4.2. Given vectors v1, v2, . . . , v�, we set

v1 ∧ · · · ∧ v̂j ∧ · · · ∧ v� = v1 ∧ · · · ∧ vj−1 ∧ vj+1 ∧ · · · ∧ v� , (A.10)

v1 ∧ · · · ∧ v̂i ∧ · · · ∧ v̂j ∧ · · · ∧ v�
= v1 ∧ · · · ∧ vi−1 ∧ vi+1 ∧ · · · ∧ vj−1 ∧ vj+1 ∧ · · · ∧ v� . (A.11)

Of course, we would like to see that the expression in (A.9) agrees with the exterior
derivative as previously defined. That is the content of Proposition A.4.3.

Proposition A.4.3. Suppose that the differentialm-form φ : U →∧m
(RN) is given

and is C1. Then, for any set of m+ 1 vectors v1, v2, . . . , vm+1 ∈ RN , we have
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〈dφ(p), v1 ∧ v2 ∧ · · · ∧ vm ∧ vm+1〉

= 1

m+ 1

m+1∑
i=1

(−1)i+1
〈(
Dviφ(p)

)
, v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm+1

〉
. (A.12)

Proof. The result is easily verified by checking that it is true when the vi are all
chosen to be standard basis vectors. ��

Theorem A.4.4. Suppose that U ⊆ RN is open and F : U → RM is C2. Fix a point
p ∈ U . If the differential m-form φ is defined and C1 in a neighborhood of F(p),

then d
(
F #φ

) = F #
(
dφ
)

holds at p.

Proof. Fix vectors u, v1, v2, . . . , vm ∈ RN . We do a preliminary calculation of the
directional derivative in the direction u of φ#F applied to the m-vector v1 ∧ v2 ∧
· · · ∧ vm. Writing w = DuF , we obtain

〈Du(F #φ), v1 ∧ v2 ∧ · · · ∧ vm〉

= lim
t→0

〈(F #φ)(p + tu), v1 ∧ · · · ∧ vm〉 − 〈(F #φ)(p), v1 ∧ · · · ∧ vm〉
t

= lim
t→0

[
〈φ ◦ F(p + tu), Dv1F(p + tu) ∧ · · · ∧DvmF(p + tu)〉

− 〈 φ ◦ F(p), Dv1F(p) ∧ · · · ∧DvmF(p) 〉
]/
t

= 〈Dwφ[F(p)], Dv1F ∧Dv2F ∧ · · · ∧DvmF 〉
+ 〈φ ◦ F,DuDv1F ∧Dv2F ∧ · · · ∧DvmF 〉
+ 〈φ ◦ F,Dv1F ∧DuDv2F ∧ · · · ∧DvmF 〉
+ · · · + 〈φ ◦ F,Dv1F ∧Dv2F ∧ · · · ∧DuDvmF 〉 .

Now fix vectors v1, v2, . . . , vm+1 ∈ RN . Writing wi = DviF and using (A.12),
we see that

(m+ 1)
〈
d
(
F #φ

)
, v1 ∧ v2 ∧ · · · ∧ vm+1

〉

=
m+1∑
i=1

(−1)i+1〈Dvi (F #φ), v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vm+1〉

=
m+1∑
i=1

(−1)i+1〈Dwiφ[F(p)],Dv1F ∧ · · · ∧ D̂viF ∧ · · · ∧Dvm+1F 〉
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+
m+1∑
i=1

(−1)i+1

(
i−1∑
j=1

〈
φ ◦ F,

Dv1F ∧ · · · ∧DviDvj F ∧ · · · ∧ D̂viF ∧ · · · ∧Dvm+1F
〉

+
m+1∑
j=i+1

〈φ ◦ F,Dv1F ∧ · · · ∧ D̂viF ∧ · · · ∧DviDvj F ∧ · · · ∧Dvm+1F 〉
)
.

Again using (A.12), we have

m+1∑
i=1

(−1)i+1〈Dwiφ[F(p)],Dv1F ∧ · · · ∧ D̂viF ∧ · · · ∧Dvm+1F 〉

= (m+ 1) 〈dφ[F(p)],Dv1F ∧ · · · ∧Dvm+1F 〉

= (m+ 1)
〈
F #
(
dφ
)
, v1 ∧ v2 ∧ · · · ∧ vm+1

〉
.

Also we have
m+1∑
i=1

(−1)i+1

(
i−1∑
j=1

〈φ ◦ F,Dv1F ∧ · · · ∧DviDvj F ∧ · · · ∧ D̂viF ∧ · · · ∧Dvm+1F 〉

+
m+1∑
j=i+1

〈φ ◦ F,Dv1F ∧ · · · ∧ D̂viF ∧ · · · ∧DviDvj F ∧ · · · ∧Dvm+1F 〉
)

=
m+1∑
i=1

i−1∑
j=1

(−1)i+j
〈
φ ◦ F,

DviDvj F ∧Dv1F ∧ · · · ∧ D̂vj F ∧ · · · ∧ D̂viF ∧ · · · ∧Dvm+1F
〉

+
m+1∑
i=1

m+1∑
j=i+1

(−1)i+j−1
〈
φ ◦ F,

DvjDviF ∧Dv1F ∧ · · · ∧ D̂viF ∧ · · · ∧ D̂vj F ∧ · · · ∧Dvm+1F
〉

=
m+1∑

1≤j<i≤m+1

(−1)i+j
〈
φ ◦ F,

DviDvj F ∧Dv1F ∧ · · · ∧ D̂vj F ∧ · · · ∧ D̂viF ∧ · · · ∧Dvm+1F
〉

+
m+1∑

1≤i<j≤m+1

(−1)i+j−1
〈
φ ◦ F,
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DvjDviF ∧Dv1F ∧ · · · ∧ D̂viF ∧ · · · ∧ D̂vj F ∧ · · · ∧Dvm+1F
〉

= 0 ,

where the last equality follows from the fact thatDvjDviF = DviDvj F, that is, from
the fact that the order of differentiation can be interchanged. ��
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constant-coefficient integrand, 246
continuous linear functionals, 313
continuously differentiable, 2

of order k, 2
controlled family of balls, 105
convex

integrand, 248
set, 37
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coordinate-plane rotation, 29
countable

additivity, 7
subadditivity, 6

countablyM-rectifiable set, 148
counting measure, 21, 55
covectors, 160, 313
covering, 91
currents, 177

associated with an oriented submanifold,
182

representable by integration, 181
cylindrical excess, 259

Daniell integral, 78
de Rham, Georges, 164
decomposition theorem for codimension 1

integer-multiplicity currents, 200
deformation theorem

scaled, 212
unscaled, 211

degree of a differential form, 161
density of µ at p, 62
derivative of µ by λ, 109
determining system, 44
diameter of a set, 8
differentiable, 3

at x ∈ �, 273
relative to a submanifold, 144

differential, 3
m-form, 161

Dirac delta, 176
function, 165

directional
derivative, 275

of g at x in the direction v, 273
of a differential form, 319

-ly limited, 102
distance between sets, 8
distribution, 176

compactly supported, 176
divergence, 168

of anM-vector field, 184
theorem, 169

dual
basis, 315
inner product, 316
pairing, 313
space, 313

vector, 313

Egorov’s theorem, 13
exact form, 164
extended real numbers, 13
exterior

algebra, 23
derivative, 162, 318
multiplication, 23
product, 25, 160

F -minimizing, 247
family of mollifiers, 152
Favard measure, 58
Federer measure, 57
flat metric topology, 242
form

closed, 164
exact, 164

Fubini’s theorem, 22
function

Lebesgue integrable, 16
µ-measurable, 12
simple, 14

functional, 313
analysis, 313

gauge, 53
Gauss–Green theorem, 169
generalized functions, 176
Gillespie measure, 59
gradient vector, 5
Grassmannian, 86
Gross measure, 57

Hölder’s inequality, 20
Haar

measure, 77, 78
ratio, 79

Hardy–Littlewood maximal operator, 94
Hausdorff

dimension, 67
distance, 33
measure, 55

height bound lemma, 262
Hessian matrix, 5
Hilbert space, 316
Hilbert–Schmidt norm, 4
Hodge star operator, 200
homotopy
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affine, 193
formula, 193

infinitely differentiable, 2
inner product, 1

dual, 316
integer-multiplicity

current, 195
rectifiableM-current, 195

integrable, 16
integral

geometric measure, 58
of a differential form, 317
of a differential m-form, 162
of a parametric integrand, 246
of ω

over −F , 165
over F , 165

with respect to arc length, 317
integrand

area, 246
constant-coefficient, 246
convex, 248
integral of, 246
parametric, 245
positive, 246
semielliptic, 247

interior, 2
product, 178, 183
regularity, 309

invariant
integral, 78
metric, 83

isoperimetric inequality, 222

Jacobian
K-dimensional, 127
matrix, 3

kth differential, 5

Lp

functions, 20
-norm, 20

least element, 311
Lebesgue

decomposition, 112
differentiation theorem, 96
integrable function, 16

measure, 10
space, 20

Lipschitz
approximation lemma, 265
constant, 66
function, 66
of order δ, 273

local
bounded variation, 151
-ly finite perimeter, 199

lower
density of µ at p, 62
derivate, 109
µ-integral, 19

Luzin’s theorem, 13

m

-linear, 159
-vectors in R

N , 23
Mandelbrot set, 69
mapping norm, 4
mass, 181

-minimizing, 244, 259
maximal function, 94, 234

for a measure, 122
MBV, 232

function, 232
measure, 6

Cartesian product, 21
regular, 7

metric
-space-valued functions of bounded

variation, 232
flat, 242

Minkowski’s inequality, 20
mollifier, 152, 185
monotone Daniell integral, 78
Morse–Sard–Federer theorem, 133
µ

-almost
functions, 12
sets, 12

every, 12
everywhere, 12

-integrable, 16
-integral, 15
-measurable, 6

function, 12
multi-index, 2
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multilinear, 159
multiplicity, 196

of f at y, 65
mutually singular, 112

N -dimensional Lebesgue measure, 22
negative part, 14
norm, 1
nucleus, 44

open
ball, 1
covering, 91
set, 2

operation (A), Suslin’s, 44
operator norm, 174
orientation, 196

function, 181
oriented boundary, 171
orthogonal

group, 77
injection, 57
projection, 57

outer measure, 7
outward unit normal vector, 169

p

-integrable functions, 20
-vector field, 178

parametric integrand, 245
partial derivative of a distribution, 176
partition, 64
perimeter, 199
Poincaré inequality, 155, 156
Poisson kernel, 274
polar decomposition, 128
polyhedral approximation theorem, 223
positive

Daniell integral, 78
integrand, 246
orientation, 165
part, 14

predecessors, 311
pullback of an m-form, 170
pushforward

measure, 86
of a current, 190

Pythagorean theorem, generalized, 27

Rademacher’s theorem, 134

Radon measure, 8
Radon–Nikodym theorem, 112
real analytic, 2
rectifiable set, 148
reduced boundary, 199
refinement of a covering, 91
regular

-ity theorem, 305
-ly embedded C1 submanifold, 143
measure, 7

relative
differentiability, 144
differential, 144
gradient, 144
Jacobian, K-dimensional, 144

representable by integration, 181
restriction of a measure, 63
Riemann–Stieltjes integration, 64
Riesz–Fischer theorem, 20
Riesz representation theorem, 116, 151, 180,

316
rotated coordinates, 29

Sard’s theorem, 133
semielliptic integrand, 247
σ

-algebra, 6
-finite, 21

simple
covectors, 161
function, 14
m-vector, 23

slice of a current, 205, 208
smooth

function, 2
ing a current, 186
-ness, 2

special orthogonal group, 77
spherical measure, 56
square integrable function, 20
standard

basis, 1
dual, 160

dual basis, 160
inner product on

∧
m (R

N), 25
star-shaped, 195
Steiner symmetrization, 38
Stokes’s theorem, 166, 172
subcovering, 91
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sublinear, 94
submanifold, 143
support, 2

of a distribution, 175
Suslin

operation (A), 44
sets, 8, 44

generated by M, 44

tangent space to a submanifold, 144
Tonelli’s theorem, 22
topological

group, 77
vector space, 313

total variation measure, 232
of a current, 181

transfinite induction, 312

uniformly distributed measure, 83
upper

density of µ at p, 62
derivate, 109
µ-integral, 19

valence of a covering, 91
Vitali covering theorem, 93

weak
-∗ topology, 174, 175
topology, 174, 175

-∗, 174, 175
type
∞, 95
p, 95
(p, p), 95

wedge product, 25
Weierstrass condition, 259
well-ordering, 311
Whitney extension theorem, 136
Wiener covering lemma, 92
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