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24.1 Statement of the Problems

In this chapter, we propose a new way of understanding the classical exte-
rior Dirichlet and Neumann problems for the Helmholtz equation as limiting
situations of transmission problems, and study the stability of this limiting
process under discretization. This kind of problems appear in the study of the
scattering of time-harmonic acoustic and thermal waves.

We assume that Ωint ⊂ R
d, d = 2 or 3, is a bounded, simply connected,

open set with smooth boundary Γ . If the obstacle is impenetrable, then the
scattering amplitude of a time-harmonic wave with wavenumber λ2 solves
an exterior Dirichlet or Neumann problem for the Helmholtz equation ∆u +
λ2u = 0 in Ωext := R

d \Ωint. It satisfies the Sommerfeld radiation condition
at infinity

lim
r→∞ r

d−1
2 (∂ru− ıλu) = 0,

uniformly in all directions x/|x| ∈ R
d, r := |x| (see [CK83]). When waves can

propagate through Γ , that is, when the obstacle is penetrable, and the physical
properties in both media are different, the problem in Ωint is modeled by
∆u+µ2u = 0. Both Helmholtz equations are coupled through two continuity
conditions of the form

uint − uext = f, on Γ ,

α ∂nu
int − β ∂nu

ext = β g, on Γ .

Typically, f = uinc and g = ∂nuinc are the Cauchy data on Γ of an incident
wave, a known solution to the exterior Helmholtz equation. In acoustics, µ2 is
proportional to ρ/α2, where ρ is the density and α the velocity of transmission
in Ωint. For thermal waves, µ2 is proportional to ıρ/α, where ρ is the density
multiplied by the specific heat capacity and α is the conductivity. General
conditions on the parameters λ, µ, α, and β guaranteeing uniqueness can be
found in [RS06a] and the references therein.
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Dirichlet, Neumann, and transmission problems have been studied suc-
cessfully from both the analytical and the numerical points of view in a wide
number of works with a special emphasis on the study of acoustic waves (see
for instance [CK83], [CS85], [KM88], [KR78], and [TW93]). More recently,
Helmholtz transmission problems have also appeared in the study of scatter-
ing of thermal waves (see [Man01], [RS06a], and [TSS02]).

When studying the behavior of the solution to the transmission problem
depending on the interior parameters, physical experiments as well as numeri-
cal simulations seem to point out that, for a fixed interior wave number, when
the parameter α tends to zero, the solution to

(Pα)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆uα + λ2uα = 0, in Ωext,

∆uα + µ2uα = 0, in Ωint,

uint
α − uext

α = f, on Γ ,

α ∂nu
int
α − β ∂nu

ext
α = β g, , on Γ ,

lim
r→∞ r

d−1
2 (∂ruα − ıλuα) = 0,

tends to the solution to the exterior Neumann problem

(PN )

∣∣∣∣∣∣∣∣
∆uN + λ2uN = 0, in Ωext,

∂nuN = −g, on Γ ,

lim
r→∞ r

d−1
2 (∂ruN − ıλuN ) = 0,

whereas if α goes to infinity, the solution (Pα) converges to the solution of the
exterior Dirichlet problem

(PD)

∣∣∣∣∣∣∣∣
∆uD + λ2uD = 0, in Ωext,

uD = −f, on Γ ,

lim
r→∞ r

d−1
2 (∂ruD − ıλuD) = 0.

This can also be seen by taking limits formally. The aim of this work is to
give a rigorous proof of these facts, providing the corresponding convergence
rates. We want to point out that we are restricting ourselves to a particular
family of transmission problems where only one of the two interior parameters
varies. In this case we will show linear convergence. To improve our estimates,
both interior parameters would have to converge to zero in the Neumann case
or to infinity in the Dirichlet one. In view of numerical experiments in the
two-dimensional setting, we believe that for the case of the Dirichlet problem,
the faster the modulus of the interior wavenumber increases, the higher the
convergence rate is, although we cannot predict any rate in terms of it. On the
other hand, for the Neumann problem, we have not observed any substantial
improvement by making the interior wavenumber tend to zero. At the current
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stage of our research, we cannot prove the results when both parameters vary,
since our study is based on the very simple fact that all the integral operators
involved in the boundary formulation do not depend on α. Taking into account
that the fundamental solution depends on the wavenumber, our study cannot
be adapted easily to the case of a family of transmission problems depending
on both interior parameters.

24.2 Boundary Integral Formulations

Since we are dealing with exterior problems, a suitable way of inspecting them
is by using boundary integral formulations. We introduce the fundamental
solution to the Helmholtz equation ∆u+ ρ2u = 0,

φρ(x,y) :=

{
ıH

(1)
0 (ρ |x − y|)/4, if d = 2,

exp(ı ρ|x − y|)/(4π|x − y|), if d = 3,

and the single-layer potential

Sρϕ :=
∫

Γ
φρ( · ,y)ϕ(y) dγy : R

d −→ C.

We also define the boundary integral operators

V ρϕ :=
∫

Γ
φρ( · ,y)ϕ(y) dγy : Γ −→ C,

Jρϕ :=
∫

Γ
∂n( · )φρ( · ,y)ϕ(y) dγy : Γ −→ C.

We recall some well-known properties of the integral operators above (see
[McL00]): (i) the bounded operator V ρ : H−1/2(Γ ) → H1/2(Γ ) is invertible if
and only if −ρ2 is not a Dirichlet eigenvalue of the Laplace operator in Ωint;
(ii) the bounded operator − 1

2I + Jρ : H−1/2(Γ ) → H−1/2(Γ ) is invertible;
and (iii) the bounded operator 1

2I + Jρ : H−1/2(Γ ) → H−1/2(Γ ) is invertible
if and only if −ρ2 is not a Neumann eigenvalue of the Laplace operator in
Ωint.

We will use indirect formulations in terms of single-layer potentials that
can fail if either −µ2 or −λ2 are Dirichlet eigenvalues of the Laplace operator
in Ωint and if −µ2 is a Neumann eigenvalue of the Laplacian in Ωint. To avoid
these particular cases, we can adapt our results to the indirect formulation
proposed in [RS06b] and based on Brakhage–Werner potentials.

The solution to the Dirichlet problem (PD) can be represented as uD =
SλψD, where ψD is the unique solution to

V λψD = −f. (24.1)

The solution to the Neumann problem (PN ) is uN = SλψN , where ψN is the
unique solution to



210 M.-L. Rapún and F.-J. Sayas

( 1
2I − Jλ)ψN = g. (24.2)

Finally, the solution to the transmission problem (Pα) can be obtained as
uα = Sλψα in Ωext and uα = Sµϕα in Ωint, with (ψα, ϕα) solving

Hα

[
ϕα

ψα

]
:=

[
V µ −V λ

α( 1
2I + Jµ) β( 1

2I − Jλ)

][
ϕα

ψα

]
=

[
f

β g

]
. (24.3)

The proof of these results can be found in [CZ92, Chap. 7] and [RS06a].

24.3 Convergence Analysis

We start by noticing that if x ∈ Ωext, then

|uα(x)−u∗(x)| = |Sλ(ψα−ψ∗)(x)| = |〈ψα−ψ∗, φλ(x, · )〉| ≤ Cx‖ψα−ψ∗‖−1/2,

where the subscript “∗” stands for either D or N . Therefore, the study of
pointwise convergence in Ωext can be carried out by analyzing the convergence
of the densities in H−1/2(Γ ). Indeed, here we use the natural H−1/2(Γ )-norm,
but when using a weaker or stronger norm, one obtains the same convergence
rate in terms of α. The only difference is the constant appearing in the esti-
mate. In any case, it does not depend on α, but depends on x. It only blows
up when we are close to Γ and it is uniformly bounded in the exterior of any
ball containing Γ when λ �∈ R, whereas for λ ∈ R, uniform boundedness is
only assured in compact sets.

Proposition 1. Consider the operators

A := (1
2I + Jµ)(V µ)−1 : H1/2(Γ ) → H−1/2(Γ ),

D := β−1( 1
2I − Jλ)−1AV λ : H−1/2(Γ ) → H−1/2(Γ ),

Hα := β( 1
2I − Jλ) + αAV λ : H−1/2(Γ ) → H−1/2(Γ ).

Then

(a) If |α| < ‖D‖−1, then Hα is invertible. Moreover,

‖H−1
α ‖ ≤ C, ∀ |α| ≤ α0 < ‖D‖−1.

(b) If |α| > ‖D−1‖, then Hα is invertible. Moreover,

‖H−1
α ‖ ≤ C |α|−1, ∀ |α| ≥ α0 > ‖D−1‖.

(c) If either |α| < ‖D‖−1 or |α| > ‖D−1‖, then

ψα = H−1
α (−αAf + β g) . (24.4)
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Proof. First, we assume that |α| < ‖D‖−1 and decompose

Hα = β( 1
2I − Jλ)(I + αD). (24.5)

Applying the geometric series theorem (see [AH01, Theorem 2.3.1]), we deduce
that Hα is invertible. Furthermore, for all |α| ≤ α0 < ‖D‖−1,

‖H−1
α ‖ ≤ ‖β−1( 1

2I − Jλ)−1‖‖(I + αD)−1‖ ≤ C

1 − |α|‖D‖ ≤ C ′.

For |α| > ‖D−1‖, the proof is completely analogous: We now decompose

Hα = αAV λ(I + α−1D−1), (24.6)

to deduce the invertibility of Hα and the uniform bound

‖H−1
α ‖ ≤ |α|−1‖(V λ)−1A−1‖‖(I + α−1D−1)−1‖ ≤ C |α|−1

1−|α|−1‖D−1‖ ≤ C ′|α|−1,

for all |α| ≥ α0 > ‖D−1‖. Finally, to show (c), we remark that

Hα =

[
I 0

αA I

][
V µ −V λ

0 Hα

]
,

with Hα being the operator introduced in (24.3). By (a) and (b), the operator
Hα is invertible for the considered values of α, and

H−1
α =

[
(V µ)−1 (V µ)−1V λH−1

α

0 H−1
α

][
I 0

−αA I

]

=

[
(V µ)−1(I − αV λH−1

α A) (V µ)−1V λ H−1
α

−αH−1
α A H−1

α

]
.

Finally, the result follows readily from (24.3).

Proposition 2. (a) For all |α| ≤ α0 < ‖D‖−1 ,

‖ψα − ψN‖−1/2 ≤ C |α|.

(b) For all |α| ≥ α0 > ‖D−1‖ ,

‖ψα − ψD‖−1/2 ≤ C |α|−1.

Proof. (a) From (24.2) and (24.4) it follows that

ψα − ψN = −αH−1
α Af +

(
β H−1

α − ( 1
2I − Jλ)−1) g,

and, by (24.5), we can write
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β H−1
α − ( 1

2I − Jλ)−1 = β H−1
α − β(I + αD)H−1

α = −αβDH−1
α .

Applying Proposition1(a), we now easily deduce the result. To prove (b), we
proceed likewise: by direct computation using (24.1) and (24.4), we see that

ψα − ψD =
(
−αH−1

α A+ (V λ)−1) f + βH−1
α g,

and, by (24.6), we have

−αH−1
α A+ (V λ)−1 = −αH−1

α A+ (α I +D−1)H−1
α A = D−1H−1

α A.

The result is now a consequence of Proposition1(b).

Corollary 1. (a) The solution of (Pα) converges to the solution of (PN ) in
Ωext as α → 0. Moreover, for all |α| ≤ α0 < 1/‖D‖,

|uα(x) − uN (x)| ≤ Cx|α|, x ∈ Ωext.

(b) The solution of (Pα) converges to the solution of (PD) in Ωext as α → ∞.
Moreover, for all |α| ≥ α0 > ‖D−1‖,

|uα(x) − uD(x)| ≤ Cx|α|−1, x ∈ Ωext.

24.4 Convergence at the Discrete Level

In this section, we describe briefly how the previous study applies when dealing
with numerical approximations to (PD), (PN ), and (Pα) obtained by an ab-
stract class of discretizations sharing some common features. The hypotheses
we will specify shortly are satisfied by a wide number of numerical methods;
in particular, all the abstract Petrov–Galerkin schemes analyzed in [RS06a]
fall into that setting, along with the quadrature methods studied in [DRS06].

We will assume that all the densities involved in the numerical solution
to the corresponding boundary integral equations are approximated in a dis-
crete space Xm of dimension m. In principle, Xm could not be a subspace
of H−1/2(Γ ) as happens when using quadrature methods where the discrete
space is formed by Dirac delta distributions. As in the continuous case, the
considered norm does not add any difficulty as indicated at the beginning of
Section 24.3. We also assume that in order to compute the coordinates of the
approximate densities in a basis of Xm, one has to solve linear systems of
equations of the form

V λ
mψ

m
D = −fm, (24.7)

(1
2Im − Jλ

m)ψm
N = gm, (24.8)[

V µ
m −V λ

m

α( 1
2Im + Jµ

m) β( 1
2Im − Jλ

m)

][
ϕm

α

ψm
α

]
=

[
fm

β gm

]
, (24.9)
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for (PD), (PN ), and (Pα), respectively, where the matrices V λ
m, Im, J

λ
m, V

µ
m,

and Jµ
m do not depend on α. Obviously, to have a unique solution in (24.7)–

(24.9), the corresponding matrices have to be invertible. Then, with the same
arguments as in Propositions 1 and 2, the following bounds can be proven:

‖ψα − ψN‖ ≤ C |α|, ∀ |α| ≤ α0,

‖ψα − ψD‖ ≤ C |α|−1, ∀ |α| ≥ α1,

where ‖ · ‖ is any norm in C
m. From here one deduces the same kind of

bounds for the densities in the norm of Xm. If the approximate solutions to
(PD), (PN ), and (Pα) are defined by simply introducing the discrete densities
obtained in (24.7)–(24.9) in the definition of the single-layer potentials, then
results analogous to those in Corollary 1 can be derived straightforwardly.

24.5 Numerical Examples

This last section is devoted to numerical illustrations in the two-dimensional
setting. The numerical method we use here is an easy-to-implement quadra-
ture method proposed in [DRS06].

−2 −1.5 −1 −0.5 0 0.5 1 1.5
−3

−2.5

−2

−1.5

−1

−0.5

0

Fig. 24.1. Geometry of the problem.

We have considered the nonconvex domain represented in Figure 24.1,
whose boundary is smooth. The physical parameters are λ = µ = 1 + ı and
β = 1, which correspond to a problem of scattering of thermal waves. We
have taken uinc(x1, x2) := exp(−ıλx2) as incident wave and have computed
the total wave

uinc + uα in Ωext, uα in Ωint,
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for some different values of α. In Figure 24.2, we represent the modulus of the
total wave for five transmission problems with decreasing values of α as well
as the modulus of the total wave that solves the exterior Neumann problem.
Notice that the solution for α = 1 is the planar incident wave.

α = 1 α = 0.5 α = 0.25

α = 0.125 α = 0.0625 Neumann

Fig. 24.2. α = 1, 1/2, 1/4, 1/8, 1/16, and the Neumann exterior problem.

α = 1 α = 3 α = 9

α = 27 α = 81 Dirichlet

Fig. 24.3. α = 1, 3, 9, 27, 81, and the Dirichlet exterior problem.



24 Dirichlet and Neumann Problems as Limits of Transmission Problems 215

In Table 24.1, we write the errors EN
abs := maxi |uα(xi) − uN (xi)| and

EN
rel := maxi (|uα(xi)− uN (xi)|/|uN (xi)|), where xi are the 50× 50 points in

the rectangle [−2, 1.5]× [−3, 0] represented in Figure 24.1. The corresponding
estimated convergence rates (ecr) are computed by comparing errors for con-
secutive values of α in the usual way. It is clear that these numerical results
fit with the theoretical ones.

We now solve the same problem for increasing values of α. In Figure 24.3,
we represent the modulus of the total wave solution for the transmission and
Dirichlet problems. Relative and absolute errors at the points xi are written on
the right of Table 24.1. Notice that in this case, although absolute errors have
almost the same size as in the Neumann case, relative errors are now really
large. This is not surprising, since the total wave in the Dirichlet problem is
almost zero in the shadow of the obstacle.

Acknowledgement. The authors are partially supported by MEC/FEDER Project
MTM-2004-01905, Gobierno de Navarra Project Ref. 18/2005, and by DGA-Grupo
Consolidado PDIE.

Table 24.1. Absolute and relative errors for the Neumann and Dirichlet problems.

α EN
abs ecr EN

rel ecr

10−1 5.95 ·10−2 1.24 ·10−1

10−2 6.33 ·10−3 0.97 1.34 ·10−2 0.96
10−3 6.37 ·10−4 0.99 1.35 ·10−3 0.99
10−4 6.37 ·10−5 0.99 1.35 ·10−4 0.99
10−5 6.37 ·10−6 0.99 1.35 ·10−5 0.99

α ED
abs ecr ED

rel ecr

101 2.30 ·10−1 5.00 ·102

102 2.77 ·10−2 -0.91 7.01 ·10 -0.85
103 2.82 ·10−3 -0.99 7.25 -0.98
104 2.82 ·10−4 -0.99 7.28 ·10−1 -0.99
105 2.82 ·10−5 -0.99 7.28 ·10−2 -0.99
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