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Lie Groups Realized as Automorphism Groups

5.1 Introduction

If Ω is a bounded domain in a complex Euclidean space, then the group
Aut (Ω) of its holomorphic automorphisms is a finite-dimensional Lie group,
as already discussed (Theorems 1.3.11, 1.3.12). It is natural to ask:

Question. Which Lie groups occur as the automorphism group of a
bounded domain?

Quite satisfactory answers are known. Bounded domains with noncompact
automorphism group are in a sense unusual (cf. Corollary 3.4.4). Therefore
it is natural to focus upon the compact Lie groups in asking which groups
appear. In fact, every compact Lie group occurs as the automorphism group
of a bounded domain in some complex Euclidean space, indeed a strictly pseu-
doconvex domain with real analytic boundary. This fact was proved indepen-
dently and by different methods in [Bedford/Dadok 1987] and [Saerens/Zame
1987]. These proofs are the subject of this chapter.

In more detail:

Theorem 5.1.1 (Bedford–Dadok, Saerens–Zame). Let G be a compact
Lie group. Then there exist a positive integer N and a bounded strongly pseu-
doconvex domain Ω in CN with a smooth (C∞) boundary such that Aut (Ω)
is Lie isomorphic to G.

The semicontinuity theorem of Greene–Krantz (Theorem 4.4.3) makes it
possible to choose the boundary of the domain in the theorem to be real
analytic, as already stated. This will be discussed after the proof of the C∞

result as stated.

5.2 General Philosophy

Before introducing the proofs, let us discuss the general philosophy underlying
this theorem. Let G be a compact Lie group. It is a basic fact of Lie group
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theory that G can be Lie isomorphically embedded into a unitary group U(n),
for some n > 0. (This fact is an aspect of the famous Peter–Weyl theo-
rem. cf. [Chevalley 1946].) Therefore it is automatic to construct a bounded
strongly pseudoconvex domain whose automorphism group contains a sub-
group that is isomorphic to the given group G: the unit ball Bn suffices,
since U(n) is a subgroup of its automorphism group. On the other hand, it
is a general principle that perturbation of the boundary of the domain in the
smooth category will lose some of the automorphisms. [This was discussed
earlier, in Chapter 4, in connection with the semicontinuity theorem (The-
orem 4.4.3).] Hence the key issue here is how to perturb the ball—or some
other domain with G contained in its automorphism group—so that G is kept
while the other unwanted automorphisms are eliminated.

We first present the proof by Saerens and Zame and then the proof by
Bedford and Dadok. The techniques are so different that both proofs are worth
considering carefully.

5.3 The Saerens/Zame Proof

5.3.1 Unitary Representation

Start with the injective Lie group homomorphism ι : G→ U(n) of G into some
unitary group U(n) already mentioned. In order for such a faithful unitary
representation to exist, n of course needs to be sufficiently large.

5.3.2 G-action by Left Multiplication

Consider the group GL(n,C) of nonsingular n × n matrices with complex
entries. Let G act on GL(n,C)× Cm as follows.

G× (GL(n,C)× Cm) −→ GL(n,C)× Cm

(g, (z, w)) �→ g(z, w) := (g · z, w),

where:

• the action of g on (z, w) ∈ GL(n,C)× Cm is only on the first component
z ∈ GL(n,C) by left multiplication.

• the positive integer m will be determined later, and the role of Cm will
also be clarified at the same time.

5.3.3 Averaging a Plurisubharmonic Exhaustion

Now consider the following real-valued function ϕ : GL(n,C) × Cm → R
defined by

ϕ(z, w) = |det z|−2 +
n∑

i,j=1

|zij |2 +
m∑

k=1

|wk|2.
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This function is a smooth (in fact real analytic), strictly plurisubharmonic
(psh for shorthand) exhaustion function for GL(n,C)×Cm, which is an open
connected subset of Cn2+m.

Take a bi-invariant measure ν of total mass 1 on the compact Lie group
G (the Haar measure), and consider the averaged function

ϕG(z, w) =
∫

G

ϕ(g · z, w) dν(g).

This new function is also a real analytic, strictly psh exhaustion function for
GL(n,C)× Cm and is obviously G-invariant.

5.3.4 A G-Invariant Strongly Pseudoconvex Domain

Now take a regular value T ∈ R, that is, a real number T such that dϕG is
nowhere singular on (ϕG)−1(T ). [Such T are dense in R, by the Morse-Sard
theorem (Theorem 5.3.2); see Section 5.3.7 for more details on this matter.]
One can take T to be sufficiently large that (ϕG)−1(−∞, T ) contains the set
U(n)×{0}. Denote by DG the connected component of (ϕG)−1(−∞, T ) that
contains the set U(n)×{0}. By its construction, DG is a G-invariant, bounded
domain in Cn2+m with a C∞ smooth boundary. It has in fact real analytic
boundary, by construction.

5.3.5 Preparation for Perturbation of the Boundary

Since dϕG is nonsingular at each point of ∂DG, there exists an open neigh-
borhood W of ∂DG on which dϕG is nonsingular. Choose r > 0 such that
(ϕG)−1(−r + T, T + r) ⊂ W ; such an r > 0 exists because ∂DG is compact.
Replacing W by (ϕG)−1(−r + T, T + r), we may assume that W itself is a
G-invariant open neighborhood of ∂DG, consisting of only regular points of ϕG.

Now consider the quotient by the G-action. By construction, the G-action
is a fixed-point-free, properly discontinuous action. Therefore the quotient
spaces W/G and ∂DG/G are smooth manifolds.

5.3.6 Scalar Invariants

Finding a suitable perturbation of the boundary of DG uses an idea from the
theory of curvature invariants in the sense of Tanaka–Chern–Moser. Here is a
brief summary.

This concerns the local CR-invariants of the real hypersurfaces that will
play an important role in the perturbation step. Consider a smooth real-valued
function φ : Cn+1 → R that defines a smooth hypersurface M = {φ = 0} pass-
ing through the origin 0. In case M is strongly pseudoconvex, the function φ
can be written, after a suitable change of coordinate system, say (z1, . . . , zn, ζ)
with ζ = u+ iv about 0, in what is called the Chern–Moser normal form (see
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pp. 241–243 of [Burns/Shnider/Wells 1978] for further details and precise ter-
minology). In this “normal form,”

φ(z1, . . . , zn, ζ) = v −
n∑

α=1

|zα|2 −
∑

p,q≥2

Np,q

where each Np,q is a polynomial in the multi-variables z, z̄ of type (p, q), first p
of zs and q of zs, with coefficients that are formal power series in the variable
u as follows.

Np,q =
∑

Na1···ap;b̄1···b̄q
(u) za1

1 · · · zap
p z̄b1

1 · · · z̄bq
q

and

Na1···ap;b̄1···b̄q
(u) =

∞∑
j=0

N
(j)
a1···ap;b̄1···b̄q

uj .

The origin 0 in M is called spherical (or umbilical in [Burns/Shnider/Wells
1978]; for the original introduction and developments, see [Chern/Moser 1974])
if the coordinates can be chosen so that N

(0)
a1a2b̄1b̄2

= 0 for any a1a2b̄1b̄2. Oth-
erwise, 0 is called nonspherical. This notion is independent of the choice of
the normal form and is in fact preserved by biholomorphic transformations.

At a nonspherical point, further normalization, called the restricted nor-
mal form, is available (see Lemma 3.1 of [Burns/Shnider/Wells 1978]). In
[Burns/Shnider/Wells 1978], “curvature invariants” for j ≥ 0, p ≥ q ≥ 2, p ≥ 3
are given by

Kj
p,q :=

∑
|N (j)

a1···ap;b̄1···b̄q
|2

at the origin. (The curvature invariants make sense only at nonspherical
points.) These are local CR invariants, meaning that the CR equivalences pre-
serve the value of these terms.

5.3.7 Jets and Multi-Jets

The proof also involves the concept of jets. Again a brief summary.

Jets

Let X,Y be smooth manifolds and let f, g : X → Y be smooth maps with
f(x) = y = g(x) for some x ∈ X and y ∈ Y . Then f and g are said to have
first-order contact at x if every first-order partial derivative of f coincides
with the corresponding derivative of g at x in some local coordinates around
x and y in X and Y respectively. Notice that this concept does not depend
upon the choices for local coordinate systems for X at x and for Y at y.
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Likewise, f and g are said to have k-th order contact if they have the same
partial derivatives at p of order up to and including k. Again, for every k, this
concept does not depend upon the choices for local coordinate systems for X
at x and for Y at y. For each k, it is obvious that this defines an equivalence
relation; denote it by ∼=k, for the germs of smooth mappings. For a smooth
map f : X → Y satisfying f(x) = y, denote by jkf |x,y the equivalence class
of the germ of f at x with respect to the relation ∼=k.

Denote by Jk(X,Y )x,y the collection of all the equivalence classes just
defined. This is not in general a vector space as it does not have any obvious
addition or scalar multiplication. However, in case Y is a Euclidean space,
it is a vector space in an obvious way. In particular, J1(X,R)x,y is naturally
isomorphic to the cotangent space of X at x.

It is customary to call Jk(X,Y )x,y the space of k-th order jets (or simply
k-th jets) of maps from X to Y at (x, y) and to consider the space

Jk(X,Y ) =
⋃

(x,y)∈X×Y

Jk(X,Y )x,y (disjoint union).

This union is usually called the jet bundle for smooth maps from X to Y .
Notice that the space of k-th jets and the k-jet bundle are finite-dimensional
smooth manifolds for each k = 1, 2, 3, . . ..

Likewise, it makes sense to consider the map

jkf : X → Jk(X,Y ) : x �→ jkf |x,f(x)

which is usually called the k-jet of the smooth map f : X → Y . It is a smooth
map with respect to the obvious smooth structure on Jk(X,Y ).

Multi-Jets

Now we shall introduce the concept of “multi-jets” (although, for our exposi-
tion here we only need double-jets).

First, we define

X(s) :=
{

(x1, . . . , xs) ∈
s∏

X | xj 	= xk if j 	= k

}
and let α : Jk(X,Y )→ X be the projection defined by α(σ) = x if and only
if σ = jkf |x,y for some y ∈ Y and some germ of a smooth f : X → Y with
f(x) = y. Then let αs :=

∏s
α :
∏s

�=1 J
k(X,Y )→∏s

X be the product map.
Then one can consider the space of s-fold k-th jets defined by

Jk
(s)(X,Y ) := (αs)−1(X(s)).

This is what is called in [Saerens/Zame 1987] a multi-jet. One can easily gen-
eralize this formalism to define the concept of the s-fold multi-jet bundle
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Jk
(s)(X,Y ) and the map jk

(s)f : X(s) → Jk
(s)(X,Y ), where the last is noth-

ing but

jk
(s)f(x1, . . . , xs) = (jkf(x1), . . . , jkf(xs))

for every (x1, . . . , xs) ∈ X(s).

Transversality

The transversality concept in differential topology is also needed for the proof.
The idea of transversality grew out of the idea of regular value, already used
in Section 5.3.4. For completeness and motivation, we discuss this first. Let
f : M → N be a smooth map from a smooth manifold M to another smooth
manifold N . Then one would like to know when the pre-image f−1(y) is
necessarily a smooth submanifold of M for y ∈ N . A satisfactory answer
comes of course from the implicit function theorem:

A point y ∈ N is called a regular value of the smooth map f : M → N
if, for any x ∈ f−1(y), the differential dfx : TxM → TyN is surjective. The
implicit function theorem then implies:

Theorem 5.3.1. Let M and N be smooth manifolds and let f : M → N be a
smooth mapping. If y ∈ N is a regular value for f , then the pre-image f−1(y)
is an embedded submanifold of M .

One notices that, due to the logic involving the empty set, any point y ∈
N \ f(M) becomes a regular value. Of course in such a case f−1(y) coincides
with the empty set, and that is surely a submanifold. (The dimension of empty
submanifold is usually understood to be −1.) One might like to disregard such
a “pathological” case, but in fact there is no particular reason to do so; in fact
it will play an important role in many cases, including our current discussion.

Do regular values exist? The following familiar theorem guarantees their
abundance.

Theorem 5.3.2 (Sard’s Theorem; cf. e.g., [Munkres 1966]). The set of
regular values for a smooth map f : M → N is dense in N .

In fact, if we denote the set of regular values by R, then N \R is of measure
zero. Note that the concept “measure zero” in differential topology does not
have to involve any specific choice of a measure. A set is measure zero if and
only if it has measure zero in every local coordinate system in the sense that
its intersection with each coordinate domain has measure zero in Rn when
mapped to Rn by the local coordinate map.

The following notion of transversality grew out of the concept of regular
values.

Definition 5.3.3. Let M,N be smooth manifolds and let Z be a submanifold
of N . Let f : M → N be a smooth mapping. Then we say that f is transversal
to Z, if the equality
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dfx(TxM) + Tf(x)Z = Tf(x)N

for any x ∈ f−1(Z). It is customary to denote transversality by f � Z.

The following is a well-known result in differential topology (cf. e.g., [Hirsch
1976]).

Theorem 5.3.4 (Transversality). Let M,N be smooth manifolds and Z a
submanifold of N . Let f : M → N be a smooth mapping. If f is transversal
to Z, then f−1(Z) is an embedded submanifold of M .

The reader must have noticed, by the logic involving the empty set, that f
is transversal to Z whenever f(M)∩Z = ∅. On the other hand, if it happens
to be the case that dimN > dimM +dimZ, then f can be transversal to Z if
and only if f(M)∩Z = ∅. Again, this seemingly somewhat pathological logic
is going to play an important role in what follows.

Now what about the generalization of Sard’s theorem (Theorem 5.3.2)?
The Saerens/Zame proof uses the following standard theorems on this subject
(cf. e.g., [Golubitsky/Guillemin 1973]):

Theorem 5.3.5. Let X and Y be smooth manifolds.

(1) [Thom transversality theorem] Let W be a submanifold of Jk(X,Y ) and
let TW := {f ∈ C∞(X,Y ) | jkf � W}. Then TW is a dense Gδ-subset of
C∞(X,Y ) in the C∞ topology.

(2) [Multi-jet transversality theorem] Let W be a submanifold of Jk
(s)(X,Y )

and let TW := {f ∈ C∞(X,Y ) | jk
(s)f � W}. Then TW is a dense Gδ-

subset of C∞(X,Y ) in the C∞ topology.

5.3.8 Application of Transversality to ∂DG

We now return to the actual proof of Theorem 5.1.1 at the point where we had
a G-invariant domain DG with a smooth strongly pseudoconvex boundary, and
the regular G-invariant neighborhood W of ∂DG (end of Subsection 5.3.5).

Consider Ψ the set of all smooth, strictly psh, G-invariant, proper func-
tions defined on GL(n,C) × Cm that are nonsingular at every point of W ,
with W as in Subsection 5.3.5. This set is nonempty as we constructed such
a function ϕG by an averaging method. However, unlike what is claimed
in [Saerens/Zame 1987] by Saerens and Zame, it is actually not true that
Ψ is an open subset of C∞(GL(n,C) × Cm,R), since G-invariance is not an
open condition.

Fortunately, this incorrect claim is not essential for the rest of the argu-
ments. Here is a way to fix the situation. Consider the subset

D := {h ∈ C∞(GL(n,C)× Cm,R) | h(g · x) = h(x),
∀x ∈ GL(n,C)× Cm and ∀g ∈ G}.
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This is a closed linear subspace of the Fréchet (i.e., complete, semi-normed)
space C∞(GL(n,C)× Cm,R). Consider now the set

ΨG = {φ ∈ C∞(GL(n,C)/G× Cm,R) | φ ◦ π ∈ Ψ}.

Here, π : GL(n,C)×Cm → GL(n,C)/G×Cm is the standard quotient map.
Since G is compact, the map π is proper. It then follows by the chain rule
that the map π∗ : C∞(GL(n,C)×Cm,R)→ D defined by π∗(ψ) := ψ ◦π is a
continuous mapping. Since the function space Ψ is an open subset of D in the
inherited topology from C∞(GL(n,C) × Cm,R), and since ΨG = [π∗]−1(Ψ),
we see immediately that Ψ/G is an open subset of C∞(GL(n,C) × Cm,R).
This is what we need for the rest of the argument.

Let the correspondence φ �→ φG : Ψ → ΨG be defined by φ/G(G·x) = φ(x).
This gives rise to the natural map

π∗
k : JkΨ → JkΨG,

defined by π∗
k

(
jkφG

∣∣
Gx

)
= jkφ|x for every x ∈ GL(n,C)× Cm.

5.3.9 Elimination of Spherical Jets by Perturbation

Recall the definition of spherical (boundary) point in Section 5.3.6. The con-
cept of spherical point depends only upon the jet of order at most 4. Therefore
it makes sense to define the concept of spherical jets (of normalized defining
functions) following the obvious method, instead of the concept of spherical
point associated with the (normalized) defining function. Denote by Sk the
set of spherical jets in JkΨ and let Σk := π∗

k(Sk). Furthermore, for p, q with
p > q ≥ 3 and p+q ≤ k, the scalar curvature invariant functions K̃0

p,q are also
defined on JkΨG \Σk, analogously to the curvature functions for Ψ . Also, let

Sk
p,q = {ψ ∈ JkΨ | K0

p,q(ψ) = 0}

and

Σk
p,q = {ψ ∈ JkΨG | K0

p,q(ψ) = 0}.

Lemma 5.3.6. There exists � > 0 such that, for every m ≥ �, the following
estimates hold:

codim (Σ4 in J4ΨG) ≥ 2(n2 + m)

and

codim (Σ4
p,q in J4ΨG) ≥ 2(n2 + m)

whenever the positive integers p, q satisfy the conditions p > q ≥ 3 and
p + q ≤ m.
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Notice that 2n2+2m = dimR W . The proof of this lemma uses only general
facts on the jets and the curvature invariants introduced in [Burns/Shnider/
Wells 1978]. The proof we sketch here is reorganized by B.-L. Min in his thesis
([Min, B.-L. 2009]; see also [Min, B.-L. 2009a]). We refer to this last paper for
further details.

A sketch of the proof of Lemma 5.3.6. The proof is a direct computation.
In [Burns/Shnider/Wells 1978], the codimension of the space S4 of spheri-
cal jet in J4Ψ was computed to be t2(t− 1)2/4− (t− 1)2 where t = n2 +m =
dimC W . On the other hand, dimR J4Ψ = dimR W + 1 + dimR A4

2n2+2m where
Ak

r is the vector space of polynomials of degree ≤ k in r variables without
constant terms.

Note that dimR G ≤ n2 as G ∈ U(n). Consequently, dimR J4Ψ/G ≥
n2 + 2m + 1 + dimA4

n2+2m, and this eventually gives rise to

Codim (Σ4 in J4ΨG) ≥ 1
4
m4 − lower order terms in m.

As n is fixed, and m can be chosen sufficiently large, one can see (due to the
remarks in the first paragraph of this proof) that the assertion of the lemma
follows. ��

On the other hand, let m ≥ � be an integer as in the preceding lemma,
and let

Σ = S4 ∪

⎛⎜⎝ ⋃
p>q≥3
p+q≤m

Σ4
p,q

⎞⎟⎠ .

Now apply the transversality theorem (Theorem 5.3.5) on jets and multi-
jets introduced above. Recall the special neighborhood W for the boundary of
the domain DG defined earlier. For such a W , there exists a dense Gδ-subset
of Ψ/G such that ψ in the Gδ-subset has the following two properties:

(1) If a map j4ψ : W/G→ J4ΨG is transversal to Σ4 and, at the same time,
to Σ4

p,q, then j4ψ(y) 	∈ Σ4 ∪Σ4
p,q for any y ∈W/G.

(2) If

J4ΨG
× := {nonspherical jets in J4ΨG}

and

J4Ψ× := {nonspherical jets in J4Ψ},
then there exists a set Q of 4(n2 + m) + 1 distinct curvature functions
K̃1, . . . , K̃Q, where K̃� = K̃p�,q�

for p� and q� satisfying p� > q� ≥ 3 and
p� + q� ≤ m, such that the map

K̃ := (K̃1, . . . , K̃Q) : J4ΨG
× → RQ
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has maximal rank. Let Δ denote the diagonal of RQ × RQ. Then the
inverse image (K̃, K̃)−1(Δ) is a submanifold of J4ΨG

× × J4ΨG
×. The

function ψ has its double jet j4
(2)ψ : (W/G)(2) → J4

(2)Ψ/G, transversal to

(K̃, K̃)−1(Δ).

Property (1) holds on a dense Gδ by the codimension estimates in the pre-
vious lemma. Property (2) holds on a dense Gδ by the multijet transversality
theorem, Theorem 5.3.5 (2). Thus properties (1) and (2) hold simultaneously
on a dense Gδ-set.

5.3.10 Construction of Ω

It may be useful to summarize what has been done up to this point. We started
with the embedding of the given compact Lie group G into the unitary group
U(n) of some sufficiently large n. Then we considered the real analytic strictly
psh function

ϕ(z, w) = |det z|−2 +
∑
|zjk|2 +

∑
|w�|2

defined on GL(n,C)×Cm. Then, exploiting the compactness of the given Lie
group G, we have used the averaging process

ϕG(z, w) :=
∫

G

ϕ(g · z, w) dν(g)

so that the new function ϕG is invariant under the G-action and is strictly
psh and real analytic. Then we choose a regular value T so that DG :=
(ϕG)−1(−∞, T ) is defined to be a G-invariant, bounded, strongly pseudocon-
vex domain with a real analytic boundary. Furthermore, we observed that
there exists a special G-invariant open neighborhood W of ∂DG such that
dϕG is nonsingular at every point of W .

Then, using jets and transversality theorems, we were able to perturb ϕG

as follows.
Construct first φ : GL(n,C)/G × Cm → R by φ(G · x) = ϕG(x). Then

perturb φ to obtain ψ : GL(n,C)/G×Cm so that ψ̃ := ψ ◦π is still arbitrarily
close to φ on compact subsets (and hence in particular on W ). Notice that
here one needs to take m sufficiently large. Of course ψ̃ is still strictly psh and
smooth of class C∞, and dψ̃ is nonsingular at any point of W . Furthermore,
if we now let

Ω = ψ̃−1(−∞, T ),

then Ω is a bounded strongly pseudoconvex domain in Cn2+m that has the
following properties:

(i) G ⊂ Aut (Ω).
(ii) ∂Ω has no point at which the jet of ψ is spherical.
(iii) If x, y ∈ ∂Ω such that x 	∈ G · y, then K(j4ψ(x)) 	= K(j4ψ(y)).
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Now to continue the proof, we wish to show that G = Aut (Ω). Let h ∈
Aut (Ω). Since the scalar curvature invariant function is a CR invariant, and
since h extends to a diffeomorphism of cl(Ω) by Fefferman’s extension theo-
rem, h(x) = y implies that x ∈ G · y.

Thus h(x) = gx · x for some gx ∈ G that is a priori depending on x. But
recall that the elements x and h(x) are in GL(n,C)×Cm. Hence we may write
x = (z, w) and h(x) = h(z, w) = (h1(z, w), h2(z, w)). Now gx ·x = h(x) means

g(z,w) = h1(z, w)z−1 and h2(z, w) = w.

Therefore the map g : ∂Ω → G, g(z, w) = g(z,w), defines a CR-function.
However, U(n) inside GL(n,C) is totally real. Therefore the differential of
this map has to vanish identically. This means that g = g(z,w) is independent
of x = (z, w) ∈ ∂Ω and hence depends only on h. first, for every h ∈ Aut (Ω)
there exists g ∈ G such that h(z, w) = (g · z, w) for any (z, w) ∈ Ω. Hence
G = Aut (Ω) as desired. This completes the construction and the proof of
Theorem 5.1.1.

5.4 The Bedford/Dadok Proof

An alternative approach to the realization of a given compact Lie group as
the automorphism group of a bounded domain was given by E. Bedford and
J. Dadok ([Bedford/Dadok 1987]). Their essential idea was to realize the given
group as the isometry group of a perturbation of the unit ball in some real
Euclidean space Rn and then pass to the complex setting by considering a
suitable modification of the “tube domain” in Cn over the domain in Rn.
Their paper also considers the question of realizing a given compact Lie group
as the automorphism group of a compact-closure (and strongly pseudoconvex)
domain in a Stein manifold, rather than in a complex Euclidean space: the
point here is that this realization is possible in rather lower dimensions than
if one requires a domain in Cn. We shall outline the approaches in the two
cases, the Cn case first. Complete details are given in [Bedford/Dadok 1987]
for both.

5.4.1 Structure of the Proof

Suppose that G is a compact Lie group and that (following the notation
of [Bedford/Dadok 1987]) ω is a bounded domain in some Euclidean space
Rn with the following properties:

(a) there is an injective homomorphism of G into O(n), the image of which
we again denote by G, such that ω is invariant under G;

(b) if g : Rn → Rn is an affine transformation with g(ω) = ω, then g ∈ G.
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(We shall see later that, for suitable n, such an ω can be obtained as a C∞

small perturbation of the unit ball in Rn.) Now let

Ω = (ω + iRn) \ V ⊂ Cn

where V = {(z1, . . . , zn) ∈ Cn : z2
1 + · · · + z2

n = 1
2}. The role of removing V

from the “tube domain” ω + iRn will become apparent momentarily. Note
that each g ∈ G takes Ω to itself if G is taken to act on Cn by complex
linear extension of its action on ω ⊂ Rn: this is clear since g takes ω + iRn to
itself and g takes V to itself—because g on Ω maps the set {(x1, . . . , xn) ∈
Rn : x2

1 + · · ·+ x2
n = 1

2} to itself, since g ∈ O(n).1

The domain Ω is of course unbounded, but it is biholomorphic to a
bounded open set (since it is contained in a proper cone). This immediately
implies, using the fact that bounded holomorphic functions extend across
deleted subvarieties, that any automorphism of Ω extends to be an automor-
phism of the tube domain ω + iRn. Now automorphisms of tube domains are
completely understood. In particular it is shown in [Yang 1982] that every
automorphism of ω + iRn has the form z �→ Az + b + ic for some b, c ∈ Rn

and some A ∈ GL(n,R). Here Az + b must map ω to itself, so from property
(b) of ω above, b = 0 and A ∈ G ⊂ O(n). Now, for z �→ Az + ic to map
V to itself, it must be that c = 0: this is so because A maps V to itself but
V 	= V + ic if c 	= 0. Hence the original automorphism z �→ Az + b + ic is in
fact an element of G.

5.4.2 How to Obtain a Bounded Domain

The domain Ω does not as such answer the question of realizing G as the
automorphism group of a bounded domain with a smooth boundary, since Ω
is neither bounded nor smooth (because of the removal of V , which has real
codimension 2). However one can modify Ω as follows: the domain Ω is pseu-
doconvex so it admits a C∞ strictly plurisubharmonic exhaustion function
ϕ : Ω → R. By averaging with respect to the action of the compact group
G on Ω, one can obtain such a ϕ that is G-invariant, so that its c-sublevel
sets Ωϕ,c := {z ∈ Ω : ϕ(z) < c} are C∞, bounded and G-invariant, for generic
choice of c (by Sard’s theorem (Theorem 5.3.2)), first for c regular values
of ϕ. For each fixed c, there is an arbitrarily small (in the C∞ sense) pertur-
bation, to be denoted Ω̂ϕ,c, which guarantees that Ω̂ϕ,c is still contained in
Ω, G-invariant and strongly pseudoconvex, and has the further property that
Aut (Ω̂ϕ,c) preserves the function

∑n
j=1 z

2
j . This follows from the arguments

discussed earlier (Section 5.4.1; see also Sections 5.3.3, 5.3.4, and 5.3.8.) about
introducing orbit-stabilizing perturbations. Since G itself preserves

∑n
j=1 z

2
j ,

1The inclusion relation g(V ) ⊂ V follows by the “persistence of identities” upon
passing from a totally real maximal dimension submanifold to a whole connected
open set in C

n.
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the possibility of carrying this perturbation process in a G-equivariant way fol-
lows easily. By choosing the perturbations sufficiently small (for each cj), the
property can be retained that for some fixed increasing sequence cj → +∞,
the Ω̂ϕ,cj are increasing (i.e., Ω̂ϕ,cj ⊂ Ω̂ϕ,cj+1 and

⋃+∞
j=1 Ω̂ϕ,cj = Ω.

With these choices made, it follows that, for j sufficiently large, Aut (Ω̂ϕ,cj
)

must be exactly G.
To see this, it suffices to show that if cj → +∞, cj a regular (i.e., noncrit-

ical) value for ϕ, and αj ∈ Aut (Ω̂ϕ,cj ), then there is a subsequence αjk
of the

αjs which converges uniformly on compact subsets of Ω to an automorphism
of Ω, first to an element of G. For, if this is known, then Aut (Ω̂ϕ,cj

) restricted
to some fixed (nonempty) Ω̂ϕ,c lies, when j is large enough, in a small neigh-
borhood of G

∣∣
Ωϕ,c

and hence, by the results of Chapter 4, in fact = G (since
it contains G).

To check the indicated convergence result for a subsequence of the αj ,
note first that some subsequence αjk

of the αjs converges uniformly on com-
pact subsets of Ω to some holomorphic function α0 : Ω → Ω ∪ ∂Ω. This
follows from standard normal families arguments since Ω is biholomorphic to
a bounded domain. Note that we need not worry about possible “divergence to
infinity” for this reason: Re (

∑
z2

j ) is preserved by Aut (Ω̂ϕ,c) by construction.
And, the real parts of the zjs are bounded on Ω̂ϕ,c. It follows that the imagi-
nary parts of the coordinates of ϕj(0, . . . , 0) are bounded for ϕj ∈ Aut (Ω̂ϕ,cj

),
the bound being uniform in j. The limit α0 is in Aut (Ω) = G, provided it
does not “degenerate,” i.e., provided that α0(Ω) ⊂ Ω, for which it suffices to
show that α0(Ω) 	⊂ ∂Ω.

Now α0(Ω) cannot contain points of ∂ω+ iRn that are not in V since such
points are strongly pseudoconvex, by the standard argument about strongly
pseudoconvex boundary points of domains not biholomorphic to the ball
(cf. [Rosay 1979]) and the “scaling version” of Rosay’s argument presented
in Chapter 9 (see Theorem 9.2.1). On the other hand, it cannot be that
α0(Ω) ⊂ V since this would give a retraction of Ω ∪V onto V , which is impos-
sible for homological reasons: Ω ∪V is contractible, but V ∩ (ω+iRn) is homo-
logically nontrivial in dimension n since {(x1, . . . , xn) ∈ Rn : x2

1+. . .+x2
n = 1

2}
is not homologically trivial in V .

5.4.3 Construction of ω

Turning now to the construction of a suitable ω as a C∞ small perturbation of
the unit ball in some Rn, we note first a general idea of metric perturbations
and group actions: Suppose that (M, g0) is a Riemannian manifold with metric
g0 invariant under a faithful action on M of a compact Lie group G. (By
faithful, we mean here that only the identity in G acts as the identity map
of M .) Thus, in effect, G can be thought of as a subgroup of the isometry
group Isom (M, g0) of M with respect to the metric g0. Now, in general, it is
not necessarily the case that there is a metric g on M that is C∞ close to g0
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such that Isom (M, g) = G. For example, if a metric of the k-dimensional
sphere Sk is invariant under the standard SO(k + 1) action on Sk, then it
is necessarily a multiple of the standard Sk metric, and hence its isometry
group is O(k + 1), not just SO(k + 1). However, what is true is that there is
always a metric g on M , C∞ close to g0, such that the metric g is invariant
under the G-action and Isom (M, g) has the same orbits as the G-action.
Such an orbit-stabilizing perturbation of g0 is obtained by making G-invariant
alterations of the g0-metric in tubular neighborhoods of sufficiently many
G-orbits of maximal dimension. Then the detailed argument is similar to but
easier than the corresponding ideas in the Saerens–Zame argument already
presented, so we omit the details at this time. In summary, one can stabilize
a given G-orbit by making a high-order derivative of the metric g in normal
directions to the orbit larger than for other (remote) orbits: this will stabilize
a neighborhood of the orbit. This process can be successively adjusted to
stabilize smaller neighborhoods and the limit orbit itself. Then a dense set of
other orbits can be stabilized, by the Baire category theorem. Hence all orbits
can be stabilized.

Thus the problem of finding a suitable ω as above can be solved if it can
be converted to an orbit stabilization situation. As pointed out in [Bedford/
Dadok 1987], this can be arranged by choosing first a diagonal embedding. Sup-
pose that the group G has a faithful representation as a subgroup of O(n) for
some n. Then G has an action on Rn2 ∼= Rn ⊕ · · · ⊕ Rn (n summands) by
letting G act on each summand by its O(n) representation. The G can be
considered as a subgroup of O(n2), and this faithful representation of G has
the following property: If a subgroup H of O(n2) has the same orbits as G,
i.e., Hx = Gx for all x ∈ Rn2

, then H = G.
The role of the diagonal embedding process can be made more vivid by

constructing a concrete example. Consider the action of SO(3) on S2 ⊂ R3,
S2 = {(x, y, z) : x2 + y2 + z2 = 1} as usual, and the action of O(3) on S2.
The 2-sphere is itself an orbit for both actions, and, moreover, any metric
invariant under SO(3) has to be a multiple of the standard metric on S2 and
hence must be invariant under O(3). No process of orbit stabilization—indeed
no process whatever—can produce a metric on S2 which is SO(3) invariant
but not O(3) invariant: it cannot be arranged that Isom (S2, g) = SO(3)
exactly with SO(3) acting in the standard way as indicated. In fact it cannot
be arranged that Isom (S2, g) = SO(3), acting any way at all. The reason is
that a faithful SO(3) action must a priori have an orbit of dimension =
dimSO(3)− maximum isotropy dimension = 3 − 1 = 2. Thus every faithful
SO(3) action on S2 must make S2 homogeneous so that an invariant metric
must have constant Gauss curvature; and then S2 with that metric must be
isometric to S2 with a multiple of its standard metric. But such a metric has
isometry group O(3), not just SO(3).

All this difficulty of distinguishing SO(3) from O(3) by orbits can be re-
paired, as it were, by considering the diagonal action. first we let SO(3) act on
R9 as follows. Consider A ∈ SO(3), a 3×3 orthogonal matrix. Then associate
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to A a diagonal-associate Â ∈ O(9), first the 9 × 9 matrix with three 3 × 3
diagonal blocks being A, and all other matrix elements 0:

Âij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Aij if 1 ≤ i, j ≤ 3,
Ai−3,j−3 if 4 ≤ i, j ≤ 6,
Ai−6,j−6 if 7 ≤ i, j ≤ 9,
0 otherwise.

The transformation Â, constructed from A ∈ SO(3), gives an orthogonal
action on R9.

The crucial point that makes this construction of interest is this: if H is a
subgroup of O(9) the action of which on S8 (or, equivalently on R9) has each
H-orbit contained in some orbit of the diagonal action (action by {Â : A ∈
SO(3)}), then each element h ∈ H has the form Â for some A ∈ SO(3).
This will be checked momentarily. Note that this means that if a Riemannian
metric g on S8 is invariant under the action of {Â : A ∈ SO(3)} and also
has the orbit stabilization property that Isom (g) has the same orbits as the
orbits of {Â : A ∈ SO(3)}, then Isom (g) = {Â : A ∈ SO(3)} ∼= SO(3). Since
such orbit stabilization can always be induced by a small perturbation of S8,
by making {A}-invariant perturbations normal to enough {Â : A ∈ SO(3)}-
orbits, one finds then a metric on S8 with its isometry group isomorphic to
SO(3). The O(3) versus SO(3) difficulty for the actions on S2 is eliminated
by moving up to S8. [Here we use implicitly the rigidity of small perturbations
of S8: for such, isometries of the metric are always realized as the restriction of
a rigid motion of R9, hence, changing the origin if need be, by O(9) elements.
See the end of Subsection 5.4.4 for details of this idea.]

It remains to see why a subgroup H of O(9) which has orbits contained
in {Â}-orbits must itself consist of elements of Â form. For this consider a
9× 9 matrix h ∈ H ⊂ O(9). We write images as column vectors here, so the
first column of the matrix h is the image under h of e1 = (1, 0, . . . , 0), this
image written in column form. This image is of course in the H-orbit of e1 =
(1, 0, . . . , 0) and hence by hypothesis is in the {Â} orbit of e1 = (1, 0, . . . , 0):
it equals Âe1 for some A ∈ SO(3). In particular, this column has its bottom
six entries = 0. Similarly, the fourth column of the h-matrix has its top three
and bottom three entries = 0. The seventh column has its top six entries = 0.

Now we wish to see that the top three entries of column 1 of the h matrix =
the middle three entries of column 4 = the bottom three entries of column 7
(same order, top to bottom, in the three cases). For this, we consider the
h-image of e1 + e4 + e7 where ei = the vector with 1 in the i-th position,
all other components = 0. This h-image is (written as a column) the sum of
the first, fourth and seventh columns. And, noting the forms of these columns
already shown, this is the top three entries of the first column followed by
the middle three of the fourth column followed by the bottom three of the
seventh column. On the other hand h(e1 + e4 + e7) belongs to the H-orbit
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of e1 + e4 + e7, and hence by hypothesis to the {Â}-orbit of e1 + e4 + e7. So
h(e1 + e4 + e7) = Â(e1 + e4 + e7) for some A ∈ SO(3). But Â(e1 + e4 + e7)
(as a column vector) consists of its top three entries repeated in order two
additional times. This shows that the h-matrix has the correct form to be an
Â-matrix as far as the first, fourth, and seventh columns are concerned.

Similar reasoning applied to e2, e5 and e8 together with e2 + e5 + e8 and
e3, e6 and e9 together with e3 +e6 +e9 completes the proof that the H-matrix
has repeated block-diagonal form. The block, call it B, must belong to O(3),
since h ∈ O(9). To see that B ∈ SO(3), consider h(e1+e5+e9). This (column)
vector is, from top to bottom, first column of B, second column of B, third
column of B. Therefore, in order for the element B̂(e1 + e5 + e9) to coincide
with the element Â(e1 +e5 +e9), for some A ∈ SO(3), it must be that B = A.
So h = B̂ for some B ∈ SO(3).

Note that the map of SO(3) onto the orbit of e1 + e5 + e9 is injective:
Â1(e1 + e5 + e9) = Â2(e1 + e5 + e9) implies that A1 = A2. It follows from
general considerations that this is true generically: A �→ Âv is injective for
generic vectors v ∈ R9, i.e., the set of v for which this is true is dense and
open in R9.

Thus one is indeed in the situation where orbit stabilization suffices. The
orbit stabilization process is in fact simpler in this case than for a general
Riemannian action. And one sees that there is a G-invariant C∞-small per-
turbation of the unit sphere which lies in the unit sphere except for a set of
small measure and which stabilizes G-orbits in the sense that the (abstract)
isometry group for the perturbation ω has the same orbits as G acting on the
perturbation ω. It follows then that any affine mapping of Rn2

that preserves
this perturbed domain ω is in fact in O(n2) and hence in G: the reason is
that, because of the coincidence of the perturbation ω with the unit sphere
everywhere but on a set of small measure, such an affine mapping must carry
some open subset of the unit sphere to itself and hence be in O(n2). Further
details can be found in [Bedford/Dadok 1987].

5.4.4 Isometry Group of a Riemannian Manifold

Note that, with ω so chosen, G is in fact the full isometry group of ∂ω, the
boundary of ω. This follows from the fact that ∂ω, being C∞ close to the
unit sphere, is thus rigid in the sense that all its intrinsic (abstract) isome-
tries extend to be isometries of Rn2

. This rigidity follows from E. Cartan’s
“type number” local rigidity theorem: the unit sphere has maximal type num-
ber and hence so does every hypersurface C∞ close enough to it. (Refer
to [Hermann 1968] for these matters. See also [Spivak 1975], Volume 5, Chap-
ter 12, p. 244 ff and the discussion on type numbers and rigidity.) From another
only slightly different viewpoint, ∂ω, being C∞ close to the unit sphere, has
positive sectional curvature and thus is rigid, again by E. Cartan’s result.
Thus any isometry of ∂ω extends to an isometry of Rn2

so that G = the
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isometry group of ∂ω considered as an abstract Riemannian manifold. Thus
one obtains: if G is a compact Lie group, then there is a compact Riemannian
manifold (M, g) such that Isom (M, g) ∼= G.

Curiously, the natural question in geometry that this result answers was
never considered successfully in the context of pure Riemannian geometry it-
self, prior to its arising in the present context of complex analysis in [Bedford/
Dadok 1987] and [Saerens/Zame 1987].

5.4.5 Stein Domains

The second major line of thought in [Bedford/Dadok 1987] concerns realiza-
tion of compact Lie groups as automorphism groups of bounded domains (i.e.,
domains with compact closure) in Stein manifolds which are not necessarily
biholomorphic to bounded domains in Cn. This more general class of domains
yields a possible realization in lower dimensions. In effect, one can go from
complex dimension n2 for the Euclidean space case if G ⊂ O(n) to dimension
equal to that of G itself, clearly much lower when n is large.

Theorem 5.4.1 (Bedford–Dadok). If G is a connected compact Lie group
the dimension of whose center is not 1, then there is a strongly pseudoconvex
domain Ω with the real analytic boundary contained in the complexification
GC of G and with G ⊂ Ω such that Aut (Ω) ∼= G and Aut (Ω) consists exactly
of the action of G on itself by translation extended holomorphically to Ω.

If the dimension of the center of G is 1, then a similar domain Ω exists
in GC × C.

This result is established by using the decomposition of G into the product
of its center and simply connected simple factors, up to a finite quotient. The
essential point is then to use the result of H. Cartan showing that, under quite
general circumstances, the automorphism group of a product is the product
of the automorphism groups of the factors. (This will be discussed in more
detail later.)

5.4.6 Decomposition of G into T × Gs

The product decomposition result is a standard part of Lie group theory
(cf. [Helgason 1962]): Every connected compact Lie group G has the form (T k×
G1 × . . .×G�)/H where T k is a k-dimensional torus (k = 0 is allowed), the
Gis are simply connected compact simple groups, and H is a finite subgroup.
While the result is usually considered only in a Lie-group-theoretic context, it
actually has an illuminating differential-geometric interpretation (and, indeed,
proof).

This arises as follows: any left-invariant metric on the compact Lie group
can be averaged with respect to the Haar measure on right translations of G.
This produces a bi-invariant metric 〈 , 〉 on G. For this bi-invariant metric,
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the covariant derivative DXY , where X and Y are left-invariant vector fields,
is 1

2 [X,Y ]. And, again for left-invariant vector fields, the Riemann curva-
ture tensor R(X,Y, Z,W ) is −1

4 〈[X,Y ], [Z,W ]〉 (cf. [Milnor 1963]; note that
the sign convention for R in that reference is opposite to ours). This cur-
vature tensor is parallel. Moreover, the Riemann sectional curvatures at-
tached to it are all nonnegative, as follows immediately from the formula:
the sectional curvature of the 2-plane spanned by an orthonormal pair X,Y
is −R(X,Y,X, Y ) = 〈[X,Y ], [X,Y ]〉 ≥ 0.

Let I be the set of all left-invariant vector fields X such that [X,Y ] = 0 for
all left-invariant vector fields Y and set Ip = {X(p) : X ∈ I}, p ∈ G. If X ∈ I,
then X is globally parallel, since DY X = 1

2 [Y,X] = 0 for every (left-invariant)
Y so DX ≡ 0. Thus the family of subspaces Ip ⊂ TpG, ∀p ∈ G, is a parallel
family (i.e., invariant under parallel translation). The parallel nature of the
family Ip can be interpreted in terms of the curvature tensor R: I is exactly
the set of all left-invariant vector fields X such that R(X,Y, Z,W ) = 0 for all
left-invariant vector fields Y, Z,W . So the parallel nature of R implies that of
the family Ip.

The de Rham decomposition theorem (cf. [Kobayashi/Nomizu 1963], The-
orem 6.2, p. 192, Vol. I) now implies that the universal cover Ĝ of G splits as
a product T ×Gs where the tangent space of the torus T at each point is the
lift of I at the image of the point under the covering projection. And thus,
for the pullback to Ĝ of the metric of G, the torus T is flat. Moreover Gs

is necessarily compact. (In the notation Gs, “s” stands for semi-simple, for
reasons that will appear later.)

The group Gs is compact because, if Gs were noncompact, then there
would be a geodesic ray γ : [0,+∞)→ Gx emanating from a pre-image of the
identity. [Recall that a ray is a curve γ on [0,+∞) with dis(γ(0), γ(t)) = t
for all t ≥ 0.] But if v is the tangent vector γ′(0) and V the associated left-
invariant vector field on G, then there is a left-invariant vector field on G
with [V,W ] 	= 0. This would mean that −R(V,W, V,W ) would be a positive
constant along the ray, implying the existence of a conjugate point to the
initial point of the ray, a contradiction. Alternatively, one could show that
Gs is compact by noting that it is complete and has positive Ricci curvature
bounded away from 0: this follows by noting that, at a pre-image of the iden-
tity, there is at least one 2-plane of positive sectional curvature containing a
given vector v 	= 0, associated, as above, to W such that [V,W ] 	= 0. So the
Ricci curvature of v is positive. Since curvature is parallel, the Ricci curvature
is positive and bounded away from 0 everywhere. The compactness of Gs of
course implies that any covering-space quotient of it is finite-to-one.

5.4.7 Decomposition of Gs

There is potentially a further decomposition of Gs that arises as follows. Since
the metric is bi-invariant, its Lie derivative as a tensor with respect to a left-
invariant vector field Y must be 0. This gives
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0 = Y 〈X,Z〉 − 〈[Y,X], Z〉 − 〈X, [Y, Z]〉

for X,Y, Z left-invariant vector fields, using the usual Leibniz property to
compute the LY Lie derivative of 〈 , 〉 as a tensor. But 〈X,Z〉 is constant so
that Y 〈X,Z〉 = 0. It follows that 〈[X,Y ], Z〉 = 〈X, [Y, Z]〉. This same formula
holds if we consider the lifts of left-invariant vector fields on G to vector
fields on Ĝ. Let L = the Lie algebra of such lifts. Then the relationship
〈[X,Y ], Z〉 = 〈X, [Y, Z]〉 implies that the orthogonal complement of an ideal
in L is again an ideal, as one sees immediately. From this viewpoint, the space
of vector fields in L tangent to Gs is exactly the orthogonal complement of the
ideal in L consisting of vector fields tangent to T . Now the fact that orthogonal
complements of ideals are again ideals implies that the tangent ideal of Gs can
be successively decomposed into, finally, an orthogonal direct sum of simple
ideals. Since Gs is simply connected, this implies a corresponding product
decomposition of Gs into a product: the ideal decomposition is parallel by
bi-invariance, so the de Rham decomposition theorem again applies. Thus, in
outline, one arrives at the Lie group decomposition result as stated. Of course,
the argument just discussed can be considered exclusively in Lie group terms:
the appeal to the de Rham decomposition theorem is used just to give a
differential geometric perspective.

The irreducibility of the ideals arising in this final decomposition implies
that the positive Ricci curvature on each irreducible factor is in fact constant:
the bi-invariant metrics are Einstein. Thus the Ricci curvature tensor itself
can be thought of as being the original bi-invariant metric up to a constant
factor. The R(X,Y, Z,W ) = −〈[X,Y ], [Z,W ]〉 formula shows that this Ricci
curvature is in fact, again up to a constant, equal to the traditional “Killing
form” K(X,Y ) = −tr (ad(X)ad(Y )), where ad(X) is the map on the tangent
space determined by Lie bracketing with X. Thus the original metric and the
Killing form metric are themselves Einstein metrics. The uniqueness (up to
constant factors) of bi-invariant metrics on the simple factors can of course
be seen directly from the irreducibility of the tangent ideals.

The decomposition of Ĝ into T×Gs, and the associated information about
G itself, can also be viewed in the context of the Toponogov splitting theorem
for complete manifolds of nonnegative sectional curvature, at least as far as
the T×Gs decomposition is concerned. (The further decomposition of Gs into
simple factors does not fit into this picture, however.) The reader is invited
to consult [Cheeger/Ebin 1975] or [Petersen 2006] for further details of this
perspective on decomposition.

5.4.8 Torus Group Case

We now begin constructing domains in the complexification of a compact
connected Lie group G with automorphism group = G.

As already noted, the product decomposition of a compact connected Lie
group offers a natural approach to finding domains with automorphism group
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equal to the given compact Lie group. If such domains can be found for each
factor in the product then, under quite general and rather easily arranged
circumstances, the product of these domains will serve for the whole (product)
group. We now turn to this situation in more detail.

The first case to consider is that of a k-dimensional torus T = {(α1, . . . ,
αk) ∈ Ck : |αi| = 1, ∀i}. Recall the classical concept of a Reinhardt domain: an
open and connected set Ω ⊂ Ck such that Ω is invariant under the mappings
(z1, . . . , zk) �→ (α1z1, . . . , αkzk) where each αi has modulus 1. The torus T
acts on such a domain, by definition.

A Reinhardt domain, say Ω, is completely specified by its “log profile”

Log (Ω) := {(log |z1|, . . . , log |zk|) ∈ R ∪ {−∞} : (z1, . . . , zk) ∈ Ω}.
We allow −∞ values to accommodate the possibility that U contains points
with some or all coordinates = 0. We write Log (z1, . . . , zk) for the k-tuple
(log |z1|, . . . , log |zk|), including the possible −∞ values.

Note that Log−1(1, . . . , 1) = T ⊂ Ck. Thus Log−1(V ), where V is
some neighborhood of (1, . . . , 1) in Rk, is a tubular neighborhood of the real
n-dimensional submanifold T of Ck. Note also that T is a totally real sub-
manifold of Ck in the sense that the tangent space of T and the J-image
of this tangent space intersect in the 0-vector only. (Here J is the stan-
dard almost complex structure on R2k = Ck.) That T is totally real is
clear at the point (1, 1, . . . , 1) ∈ Ck, since the tangent space in R2k coor-
dinates (x1, y1, . . . , xk, yk), xj + iyj = zj , is the set of vectors of the form
(0, b1, 0, b2, . . . , 0, bk), each bj ∈ R. The same holds at other points of T since
these arise from (1, 1, . . . , 1) by a complex linear map which preserves T .
Thus we can identify, for each (sufficiently small) neighborhood V in Rk of
(1, 1, . . . , 1), the set Log−1(V ) with a tubular neighborhood of T in its own
complexification: TC is characterized in a neighborhood of T by being a com-
plex k-dimensional manifold containing T as a totally real submanifold.

Suppose now that Ω is a Reinhardt domain and Log (Ω) is a bounded
convex domain in Rk. Then, by [Bedford 1980], the automorphisms of Ω must
have the form:

(z1, . . . , zk) �→ (c1zm1 , . . . , ckz
mk),

where we are using multi-index notation

zmj = z
m1

j

1 · · · zmk
j

k ,

and where it is required that the matrix (m�
j) ∈ GL(k,Z). A mapping of this

form maps Ω to Ω if and only if the affine mapping z �→Mz+log |c| is an affine
mapping of Log (Ω) to itself. Here M = the matrix (m�

j), z = (z1, . . . , zk) ∈ Ck

and c = (c1, . . . , ck) ∈ Ck.
Now, if k ≥ 2, then, generically, domains in Rk have no nontrivial affine

self-mappings. In particular, there are domains V in Rk that are small pertur-
bations of a (small) ball around the origin in Rk. For such V , as before, the
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domain Log−1(V ) is a tubular neighborhood of T in its complexification TC,
where as earlier we identify T with a totally real submanifold of Ck. And, for
such V (which have no nonidentity affine self-mapping), the automorphism
group of Log−1(V ) is exactly T .

In case k = 1, any connected bounded open neighborhood of 0 in Rk = R1

has an affine self-mapping that is not the identity, first reflection at its mid-
point, the neighborhood being of course an open interval. Thus, in this case,
for any V , Log−1(V ) has an automorphism other than those in T . (One such
automorphism which is associated to the affine “inversion” indicated is the
automorphism z �→ R1R2/z of {z : R1 < |z| < R2}, 0 < R1 < R2 < +∞
to itself.) So special consideration and indeed an extra dimension (as stated
in the theorem) is needed in this case. Indeed no Riemann surface has auto-
morphism group isomorphic to {z ∈ C : |z| = 1} (cf. Chapter 2): the extra
dimension is definitely required.

The reader can find an explicit construction dealing with this special case
in [Bedford/Dadok 1987].

In summary form: set Ω = {(z, w) ∈ ω×C : r1(z) < |w| < r2(z)}, where ω
is a smoothly bounded, triply-connected domain in C with Aut (ω) being the
identity alone, and r1, r2 are continuous functions on the closure of ω, smooth
on ω itself, with 0 < r1 < r2 on the closure of ω. Then, if r1(z)r2(z) is not
the modulus of a holomorphic function on ω, then Aut (Ω) is isomorphic to
{α ∈ C : |α| = 1} = T . The proof can be found in [Bedford/Dadok 1987].
Note that it is not hard to see that there are, for example, perturbations of
the unit ball in C2 for which the automorphisms group is exactly the set of
maps (isomorphic to T )

(z1, z2) �→ (αz1, αz2), α ∈ C, |α| = 1.

The point of the more intricate construction of Bedford/Dadok is that the
above Ω lies in TC × C.

5.4.9 The Case of Simple Lie Groups

The next stage in the application of the product decomposition to finding
domains in GC with specified automorphism group is to consider the case G =
a compact simple group. In this case the usual representation of G acting on
its own Lie algebra is faithful up to a finite kernel. In more detail, if v is a
vector in the tangent space of G at the identity and γ(t) is the corresponding
one-parameter subgroup, then we define Ad g, g ∈ G acting on v, by

(Ad g)(v) =
d

dt
g−1γ(t)g

∣∣∣
t=0

,

this being again a tangent vector to G at the identity. This gives a represen-
tation

G→ linear endomorphism of the tangent space of G at the identity.
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The simplicity of G implies that the kernel of this representation is finite.
Indeed, to check this one needs only check that the kernel contains no
1-parameter subgroup, since the kernel is a closed subgroup of G. This follows
from the simplicity of G and the associated nondegeneracy of the Killing form.

Thus, up to a finite quotient, G can be considered to be a matrix group.
The image of the Ad representation is in fact a subgroup of the orthogonal
group of linear transformations of the tangent space at the identity, orthog-
onal relative to the bi-invariant metric (which is the Killing form, as already
discussed).

This gives an explicit way to construct a neighborhood basis of G in-
side GC; first, if ω is a neighborhood of zero in the tangent space of G at the
identity, then we can set Ωω = G · exp(iω) (ignoring the quotienting, which
is easily handled by “lifting”), where exp is the usual exponentiation of ma-
trices. Of course one can handle this matter “intrinsically”: since exp in the
1-parameter subgroup sense is defined on ω, and since G is totally real in GC

and exp is real analytic, there is a unique way to define exp holomorphically
on a sufficiently small neighborhood of the identity in GC. In particular, if w is
sufficiently small, then exp(iω) is defined in this way, simply from holomorphic
function theory.

Note that such a tubular neighborhood is G-invariant (for left multiplica-
tion action of G), and that this G-action is holomorphic on this G-invariant
neighborhood of G in GC. The final step in completing the construction is to
show that, for some suitable choice of ω, these G-induced automorphisms are
the only automorphisms of the tubular neighborhood.

To begin with, we restrict the neighborhood ω of 0 in the Lie algebra of G
(which we identify as usual with the tangent space of G at the identity) to be
a perturbation of a small ball around 0 in the Lie algebra in the bi-invariant
metric. As far back as Grauert’s proof of the existence of real analytic embed-
ding of real analytic manifolds [Grauert 1958], it was noted that for such ω,
the associated tubular neighborhood Ωω is C∞ strongly pseudoconvex. This
is a general phenomenon, not involving the fact that G is a Lie group: every
compact real analytic manifold has a neighborhood basis of smooth strongly
pseudoconvex domain inside its own complexification (again [Grauert 1958]).
In particular, such tubular neighborhoods are Stein manifolds, by Grauert’s
solution of the Levi problem since they have no compact positive-dimensional
subvarieties. Each of these Stein tubular neighborhoods has compact closure in
a slightly larger tubular neighborhood which is also a Stein manifold. Then it
follows that a given such tubular neighborhood has a defined, positive definite
Bergman metric in the manifold sense. This Bergman metric is constructed
from the Bergman kernel obtained from the space of L2 holomorphic (k, 0)
forms, k = the complex dimension of the complexification, as discussed in
Section 3.2. This follows easily from embedding in complex Euclidean space
the slightly larger Stein manifold in which the given tubular neighborhood has
compact closure. The given tubular neighborhood thus inherits holomorphic
L2 forms from the ambient Euclidean space; these restrictions/pullbacks to
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the tubular neighborhood in the submanifold (of CN ) are automatically L2,
and there are enough of them to guarantee a positive definite Bergman met-
ric. This argument is a straightforward generalization of the argument showing
that a bounded domain in CN has a defined and positive definite Bergman
metric.

Returning to the specific situation of an Ωω in GC with ω so chosen as
above, note that Aut (Ωω) contains G in the sense that (left) multiplication
by elements of G acts as biholomorphic maps on Ωω. A priori, it could be that
Aut (Ωω) is larger than G, or even that the connected component of the iden-
tity in Aut (Ωω) was larger than G. [Note that Aut (Ωω) is a Lie group here and
indeed a Lie group with the isotropy of points of Ωω compact, since Aut (Ωω)
is a closed subgroup of the isometry group of the Bergman metric of Ωω.]

Now the homology group Hd(Ωω,Z) is isomorphic to Hd(G,Z), since ω is
convex; thus Ωω has a strong deformation retract onto G ⊂ Ωω by linearly
contracting ω to 0 in the Lie algebra. Since Hd(G,Z) = Z, d = dimR G, it
follows by topological considerations that there is an orbit of Aut (Ωω) in Ωω

with dimension at most d ([Bedford 1983a]). Since Aut (Ωω) contains G in
the sense mentioned, such an Aut (Ωω)-orbit of dimension at most d must in
fact be a finite union of G-orbits (of dimension exactly d). And any one of
these must be stable under the identity component Aut 0(Ωω) of Aut (Ωω),
by continuity.

Let Gx0 (following the notation of [Bedford/Dadok 1987]) be such an
Aut 0(Ωω)-stable orbit. Then Aut 0(Ωω) acts as isometries on Gx0, when Gx0
is equipped with the restriction of the Bergman metric of Ωω. Identifying
Gx0 with G (since left multiplication by “elements of G” is a simply transi-
tive action on Gx0), one obtains that Aut 0(Ωω) is in effect a subgroup of the
identity component of the isometry group of G with the left-invariant metric
obtained by restricting the Bergman metric to Gx0 (identified with G). Note
that this need not be the bi-invariant metric of G itself (if x0 	∈ G ⊂ GC),
but it is left invariant. The form of such isometries was determined in
[Ochiai/Takahashi 1976]: for each f ∈ Aut 0(Ωω), there are elements a, b ∈ G
such that f(g · x0) = agb · x0, where · denotes the G-action operation.

Since G is transitive on Gx0, an “extra” automorphism in Aut 0(Ωω), that
is one that is not in G, can be obtained as an automorphism ϕ fixing x0
followed by one in G. Such an automorphism ϕ fixing x0, and stabilizing the
orbit Gx0 at x0, acts on the tangent space Tx0(Gx0) of Gx0 at x0. The Cauchy–
Riemann equations then determine an action on J(Tx0(Gx0)). Thus, since ϕ
is a Bergman metric isometry, this determines the action of ϕ on geodesics
with tangent vectors in J(Tx0(Gx0)).

The domain ω determines the domain Ωω as far as its transversal-to-G
nature is concerned. So, in this situation, it is natural to suppose that a
suitable choice of ω will rule out the possibility of any nontrivial such action
of dϕ on the J(Tx0(Gx0)). And then, again by Cauchy–Riemann equations,
the action dϕ along G would also be necessarily trivial. Then no “extra”
automorphisms in Aut 0(Ωω) would exist.
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This intuitive expectation is in fact correct. In [Bedford/Dadok 1987], it
is shown that for this it suffices to choose ω so that (i) ω = −ω and (ii) the
only σ ∈ automorphisms of the Lie algebra of G with σ(ω) = ω is the iden-
tity. (Note here that multiplication by −1 is not an automorphism of the
Lie algebra so the conditions are consistent.) Of course, ω continues to be
chosen so that G · exp(iω) is strongly pseudoconvex and smoothly bounded
in GC. For the sufficiency of this genericity condition, the reader is referred
to [Bedford/Dadok 1987].

5.4.10 Connected Lie Group Case with Product Decomposition

Once the situation is in hand for the torus factor and the simple group factors
in the product decomposition G = T×G1×· · ·×G�/H, H finite, the group G as
a whole is treated as follows. A domain in the complexification GC of G written
as G · exp(iω), some ω, can be obtained in particular with ω = ω0 × · · · × ω�

in obvious notation. By a result of H. Cartan

Aut (Ωω) = T ×Aut (Ω1)× · · · ×Aut (Ω�),

(where T = Aut (Ω0) and Ωj = Ωωj ) provided that the ws are chosen so that
no permutation-of-factors automorphisms arise: this choice of ws is always pos-
sible. A lifting argument disposes of the H-quotienting (see [Bedford/Dadok
1987] for details), and one obtains a pseudoconvex product domain in GC with
automorphism group G.

We replace this domain with a bounded strongly pseudoconvex domain
with smooth boundary by considering sub-level sets of a C∞ strictly plurisub-
harmonic exhaustion function ϕ, first {z : ϕ(z) < λ}, λ a noncritical value
of ϕ. The normal families method of [Greene/Krantz 1985b] can be applied
to obtain a bounded, strongly pseudoconvex domain with smooth boundary
which is clearly G-invariant and has no “extra” automorphisms so that its
automorphism group is G. By using a real analytic ϕ, one can in fact make
this final domain have real analytic boundary.

5.4.11 Some Remarks

If one is not restricted to bounded strongly pseudoconvex domains, for in-
stance if one is interested in constructing complex manifolds with prescribed
automorphism group, there is more recent work, even when the given Lie
group is noncompact. See for instance [Winkelmann 2004], [Kan, S.-J. 2007].

On the other hand, the following question was posed by Greene and Krantz
some years ago:

Question ([Greene/Krantz 1982a]). Let Ω be a bounded, strongly pseudocon-
vex domain in Cn with C∞ boundary, whose automorphism group is compact.
Let H be a closed subgroup of the automorphism group. Then, for any open
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neighborhood U of Ω in the C∞ topology, does there exist Ω′ ∈ U such that
Aut (Ω) is Lie-group-isomorphic to H?

A significant partial answer is reported recently: see [Min, B.-L. 2009]. the
result is as follows.

Theorem 5.4.2 ([Min, B.-L. 2009]). Let Ω be a bounded, strongly pseu-
doconvex domain in CN with C∞ boundary, with its automorphism group G
compact. If N > 5 dimR G + 4, then, for any closed subgroup H of G and
any open neighborhood U (in the C∞ topology on domains) of Ω, there exists
Ω′ ∈ U such that Aut (Ω′) is Lie-group-isomorphic to H.

Whether the codimension condition N > 5 dimR G+4 is sharp is not known
at this writing. Of course some restriction on the dimension is clearly required;
see for example the discussion on O(3) and SO(3) actions in Section 5.4.3.
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