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Preliminaries

1.1 Automorphism Groups

A subset Ω ⊆ Cn will be called a domain if it is connected and open. The
automorphism group Aut (Ω) of Ω is by definition the set of all holomorphic
mappings f : Ω → Ω with inverse map f−1 existing and also holomorphic. The
group operation is the composition of mappings, and it is easy to check that
this binary operation makes Aut (Ω) into a group. When n = 1, it is well
known and easy to prove that f−1 will be automatically holomorphic when it
is defined. This follows from the argument principle because a locally injective
holomorphic function has nowhere zero first derivative. This result is also true
in several complex variables, but requires more effort to prove. One must show
that a locally injective, equi-dimensional holomorphic mapping has nowhere
vanishing holomorphic Jacobian determinant; from this it follows immediately
that f−1 is holomorphic. This result is conceptually fundamental, but plays
little explicit role in what follows and will not be discussed further. [See, e.g.,
[Narasimhan 1971] for a proof.]

The definition of automorphism group can obviously be extended to the
case where Ω is replaced by a complex manifold M . The same observation
applies to the redundancy of the hypothesis that f−1 be holomorphic since the
proof of that result can be performed in local coordinates. Much of the theory
of automorphism groups of domains in space can be transferred, without any
extra work, directly to the complex manifold case; we shall often treat the two
situations simultaneously. Other results are quite different for manifolds than
for domains in Cn, and we shall indicate some of these distinctions later.

Just as, in one complex variable, the study of Riemann surfaces can clarify
basic function-theoretic questions, the study of manifolds in higher dimen-
sions can clarify the situation for domains in space. However, little detailed
knowledge of complex manifold theory will be needed for the reading of this
book.

The subject of the geometry of open sets in Cn and of the geometry of
open complex manifolds in general divides itself rather naturally into two
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parts. It is really two subjects. In one of these, the domains and manifolds
are such that their automorphism groups are finite dimensional and indeed
are Lie groups. In the other, the automorphism groups involve infinitely many
parameters. The one-variable, Riemann surface situation (for example) is de-
ceptively simple. The group Aut (M) when M is a Riemann surface is always
a Lie group, as we shall prove in Chapter 2. By contrast, if one takes Ω = C2,
then the group Aut (Ω) is not a Lie group but rather is infinite dimensional
in a certain sense. For example, if f : C → C is any entire function, then
(z1, z2) �→ (z1 + f(z2), z2) is an automorphism of C2.

The present book is primarily about the situations in which Aut (Ω) is a
(finite-dimensional) Lie group and satisfies an additional condition that the
action is proper in the following sense: the action map A : Aut (Ω)×Ω → Ω×Ω
defined by (ϕ, z) �→ (ϕ(z), z) is proper. That is, A−1(C) is compact for each
compact subset C of Ω × Ω. In particular, the isotropy group Ip × {p} :=
{ϕ ∈ Aut (Ω) : ϕ(p) = p} is compact for any p ∈ Ω since Ip = A−1(p, p). For
a statement like this to make sense, we need to define a topology on Aut (Ω).
The appropriate topology, which will be used throughout, is the compact-open
topology, equivalently the topology of uniform convergence on compact sets.
[It should be noted that all the complex manifolds that we shall consider in
the sequel will be paracompact; thus no topological pathologies will arise. In
particular, the compact-open topology is metrizable in this case.]

If Ω is a bounded domain in Cn, then Aut (Ω) is necessarily a Lie group.
This was proved specifically by H. Cartan ([Cartan 1935]). Our approach to
this will be via normal families and the Bochner–Montgomery theorem (The-
orem 1.3.11 below), which characterizes the subgroups of the diffeomorphism
group which are Lie groups. Our approach will also yield the properness of
the action of Aut (Ω) on Ω (Theorem 1.3.12).

Any covering-space quotient of a manifold M with Aut (M) acting prop-
erly, and in particular any covering-space quotient of a bounded domain, also
has its automorphism group acting properly. Also, any Riemann surface except
the Riemann sphere C ∪ {∞} and C itself has this proper-action property.1

In addition to bounded domains in Cn and their quotients, there are other
classes of complex manifolds for which the automorphism group action is
proper. Some aspects of this phenomenon will be considered in Chapter 7.

The role of proper action can be made explicit even at this early stage of
our development. This condition is necessary for the existence of a (smooth)
Riemannian metric for which all the elements of the automorphism group are
isometries. Actually, the condition of proper action is also sufficient for the

1That the property holds for tori and for C with one point removed is, in a sense,
accidental: for these Riemann surfaces are both covered by C, which itself does not
have the desired property that the action of the automorphism group is proper. But
all other Riemann surfaces (except the sphere and the cylinder) are quotients of the
unit disc D = {ζ ∈ C : |ζ| < 1}, and for these the general principle applies.
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existence of such an “invariant metric” [Palais 1961].2 This will be discussed
in more detail in Section 1.3.

Thus, for the domains and manifolds that we shall consider, the automor-
phism group, which is at first sight a function-theoretic object, will turn out
to be also a geometric one via the existence of an invariant metric. These mat-
ters will usually be treated here by constructing explicitly an invariant metric
rather than by appealing to the general results of Lie group theory.

In Riemann surface theory, this idea of relating function theory to geom-
etry goes back at least to Poincaré and even Riemann. In higher dimensions,
some aspects of the idea also have a long history, but many developments have
occurred in recent times as well. It is this interaction between function theory
and geometry that makes the whole subject so varied and interesting. And
while we begin with the function theory, geometry soon takes center stage and
plays a major role thereafter.

1.2 Some Fundamentals from Complex Analysis
of Several Variables

We shall use systematically the standard notational conventions for coordi-
nates in Cn, first

z = (z1, . . . , zn) and w = (w1, . . . , wn).

We shall also write

|z| =
⎛⎝ n∑

j=1

|zj |2
⎞⎠ 1

2

.

Thus a mapping from an open subset of Cn into Cm is given by an m-tuple
of complex-valued functions of n complex variables:

w = (w1, . . . , wn) = f(z) = (f1(z1, . . . , zn), . . . , fm(z1, . . . , zn)).

Such a map is, by definition, holomorphic if each of the functions fj , j =
1, . . . ,m, is holomorphic in one and hence any of the various equivalent senses
of the word “holomorphic.”

Here and elsewhere we take for granted basic elements of the theory of
functions of several complex variables, for which see [Grauert/Fritzsche 1976],
[Hörmander 1990], or [Krantz 2001] for instance. In particular, we assume that

2It is a familiar fact that the group of isometries of a (smooth) Riemannian
manifold acts properly. But the partial converse, that a properly-acting subgroup
of the group of diffeomorphisms acts as isometries for some smooth metric, is not
obvious.
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the reader is aware that, for C-valued functions f(z1, . . . , zn) defined on an
open subset of Cn, the following ideas are equivalent:

• The function f is holomorphic in each variable separately; 3

• The function f is real-continuously differentiable (C1) and satisfies the
Cauchy–Riemann equations in each variable separately;

• The function f has at each point p = (p1, p2, . . . , pn) of its domain a power
series expansion

f(z) =
∑

i1,i2,...,in≥0

ai1i2···in(z1 − p1)i1(z2 − p2)i2 · · · (zn − pn)in

which converges absolutely to f for all (z1, z2, . . . , zn) in some open neigh-
borhood of p.

As will be taken for granted here, many of the ideas of one complex variable
have more or less automatic extensions to several variables. These include the
Cauchy integral formula in several variables: recall that the polydisc Dn(p, r)
of polyradius r = (r1, . . . , rn) with rj > 0 for every j is defined to be

Dn(p, r) := {(z1, . . . , zn) ∈ Cn : |zj − pj | < rj for every j}.

If the closure cl(Dn(p, r)) of this polydisc is contained in the (open) domain of
definition of a holomorphic function f then, for each (z1, . . . , zn) in the open
polydisc,

f(z1, . . . , zn)

=
1

(2πi)n

∮
|ζ1−p1|=r1

· · ·
∮

|ζn−pn|=rn

f(ζ1, . . . , ζn)
(ζ1 − z1) · · · (ζn − zn)

dζn · · · dζ1,

where the integral is an iterated line integral. This reconstructs the power
series expansion of f around (p1, . . . , pn), by expansion of the integrand and
integration term-by-term. Differentiation of this formula under the integral
sign together with obvious estimates also yields the following, which we shall
apply repeatedly: if a sequence {fj} of C-valued holomorphic functions on an
open subset U of Cn converges uniformly on each compact subset of U , then
every derivative (of any order) of the sequence also converges uniformly on
each compact subset, and the derivative of the limit is equal to the limit of
the derivative.

This last result, which is a direct analogue of a familiar fact about one-
variable theory, will be especially important to us since, in effect, it says
that the compact-open topology for holomorphic functions is the same as the
C∞ topology. Thus sets or groups of holomorphic mappings have a natural,
unique topology. This means that the subtle questions associated to the phrase

3In the background here is the famous theorem of Hartogs that a function holo-
morphic in each variable separately is automatically continuous, indeed real analytic.
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“Hilbert’s fifth problem” play no role here; such matters are automatically
straightforward.

Hurwitz’s theorem in one variable on limits of zero-free functions has a
direct generalization to several variables: first, if fj : Ω → C, j = 1, 2, 3, . . .,
are holomorphic functions from a domain (i.e., a connected open set) in Cn

with 0 	∈ fj(Ω), and if the sequence {fj} converges uniformly on compact
subsets of Ω to a (necessarily holomorphic) limit f0 : Ω → C, then either
f0(Ω) = {0}, i.e., f0 ≡ 0, or 0 	∈ f0(Ω), i.e., f0 is nowhere zero. The proof
is obtained by observing that, if f0(z0) = 0 for some z0 ∈ Ω, then, by the
one-variable Hurwitz theorem, the function ζ �→ f0(z0 + aζ), for ζ ∈ C with
|ζ| small and for a ∈ Cn with ‖a‖ = 1, is defined and identically zero. Then
that f0 ≡ 0 follows by analytic continuation.

Since one of the main subjects of this book is self-mappings of domains
in Cn or, on occasion, complex manifolds, we have some special interest in
holomorphic mappings where domain and range have equal dimension; first,
n-tuples (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn)) of holomorphic functions of n vari-
ables. Attached to this situation is the holomorphic Jacobian determinant J ,
first, the ordinary determinant of the n× n complex matrix⎛⎜⎜⎝

∂f1
∂z1

· · · ∂f1
∂zn

...
...

∂fn

∂z1
· · · ∂fn

∂zn

⎞⎟⎟⎠ .

A linear algebra calculation shows that the Jacobian determinant of the map-
ping considered as a real mapping from an open subset of R2n to R2n is |J |2.
This is a generalization of the familiar fact from one variable that the real
differential of a holomorphic function is a rotation followed by dilation by a
factor of |f ′|, so that its action on the area element is multiplication by |f ′|2.

Returning to the Cn situation in general, we see that the holomorphic
mapping from an open subset into Cn again is nonsingular as a real mapping at
a given point if and only if its holomorphic Jacobian determinant J is nonzero
at that point. Combining this observation with Hurwitz’s theorem, we see that
the limit (uniformly on compact sets) of everywhere nonsingular mappings of a
connected open set in Cn to Cn is either everywhere nonsingular or everywhere
singular. In the latter case, the limit mapping has image with empty interior
(by Sard’s theorem (Theorem 5.3.2)). This line of thought is associated to the
idea that the limit of biholomorphic mappings is either biholomorphic or in
some sense “degenerate.” This point will be explored in detail in later sections.

It is of interest to characterize holomorphic mappings in terms of their real
differentials. This is done in effect by way of the Cauchy–Riemann equations.
Let (f1(z1, . . . , zn), . . . , fm(z1, . . . , zn)) be a holomorphic mapping into Cm

defined on an open subset of Cn. Then we write fj = uj +
√−1vj , where uj ,

vj are real-valued. The Cauchy–Riemann equations are as usual

∂uj

∂x�
=

∂vj

∂y�
and

∂uj

∂y�
= −∂vj

∂x�
, j = 1, . . . ,m, � = 1, . . . , n.
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We write here, by convention, z� = x� +
√−1y�. This can be thought of

in a less coordinate-dependent fashion as follows. Identify Cn with R2n by
sending (z1, . . . , zn) to (x1, y1, . . . , xn, yn). Define an R-linear map J2n of R2n

to itself by sending (x1, y1, . . . , xn, yn) to (−y1, x1, . . . ,−yn, xn). Then the
Cauchy–Riemann equations for a map F : U → Cm, with U open in Cn, are
equivalent to

J2m ◦ dF = dF ◦ J2n,

where dF is the real differential of F considered as a C∞ function from R2n

to R2m.
This characterization of holomorphicity has an immediate consequence

that is important for the theory of complex manifolds. first, if two complex
local coordinate systems (z1, . . . , zn) and (w1, . . . , wn) are holomorphically
related, then the J operator determined from the z-coordinates is the same
operator as the J operator determined from the w-coordinates. The meaning
of this assertion is familiar in Riemann surface theory: J is rotation by 90◦

counterclockwise in the orientation determined by the Riemann surface struc-
ture. The meaning of this is the same in any holomorphic coordinate system
because the real differential of the coordinate change is orientation-preserving
and conformal. In higher dimensions, there is again a coordinate-invariant op-
erator J on the real tangent space at each point of a complex manifold. This
operator corresponds to the J operator in any coordinate system, and the ob-
servation in the previous paragraph shows that it is independent of coordinate
choice.

The J operator thus obtained provides a way to connect real Rieman-
nian geometry with complex behavior, since J is a real (1, 1) tensor but it
completely determines which (locally defined) functions are holomorphic. This
approach to the geometry of complex manifolds is presented systematically
in, e.g., [Greene 1987], [Wells 1979]; see also [Kobayashi/Nomizu 1963].

1.3 Normal Families and Automorphisms

Let D ⊂ C denote the open unit disc {ζ ∈ C : |ζ| < 1}. Also D(p, r) ⊂ C
denotes the open disc with radius r centered at p. For r > 0 we let

Dn(0, r) ≡ D(0, r)× · · · ×D(0, r)︸ ︷︷ ︸
n times

.

Further, if p = (p1, . . . , pn) ∈ Cn and r > 0, then

Dn(p, r) ≡ D(p1, r)× · · · ×D(pn, r).

If f : D → D ⊂ C is a holomorphic function with f(0) = 0 and |f ′(0)| = 1,
then f has the form f(z) = f ′(0)z. In particular, if f ∈ Aut (D) and if such
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an f has f ′(0) = 1, then f(z) = z. This is part of the classical Schwarz
lemma. The following result is a direct generalization to several variables, and
to arbitrary bounded domains. There are many possible generalizations of the
Schwarz lemma, some of which will be discussed later on in this book, but
this one is the one that will play the most direct role in our investigations.
For example, it will enable us to see that, if Ω is a bounded domain, then
Aut (Ω) has compact isotropy group at each point.

Theorem 1.3.1 (H. Cartan). Suppose that Ω is a bounded domain in Cn.
Let φ : Ω → Ω be holomorphic and suppose that, for some p ∈ Ω, φ(p) = p
and dφ(p) = id. [Here dφ is the n-dimensional complex differential.] Then φ
is the identity mapping from Ω to itself.

Boundedness of Ω is an essential hypothesis: consider the automorphism
of C2 given by (z1, z2) �→ (z1 + z2

2 , z2).

Proof of Theorem 1.3.1. We may assume that p = 0 (the origin). For proof
by contradiction, assume that φ does not coincide with the identity mapping.
Expanding φ in a power series about p = 0 (and remembering that φ is
vector-valued, hence so is the expansion) yields

φ(z) = z + Pk(z) + O(|z|k+1),

where Pk is the first nonvanishing homogeneous polynomial (of degree k)
of order exceeding 1 in the Taylor expansion. Defining φj(z) = φ ◦ · · · ◦ φ
(j times); direct computation then gives that

φ2(z) = z + 2Pk(z) + O(|z|k+1)
φ3(z) = z + 3Pk(z) + O(|z|k+1)

...
φj(z) = z + jPk(z) + O(|z|k+1).

Choose polydiscs Dn(0, a) ⊆ Ω ⊆ Dn(0, b). The Cauchy estimates imply
then that, for any multi-index α = (α1, . . . , αn) with |α| := α1 + · · ·+αn = k,

j ·
∣∣∣∣( ∂

∂z

)α

φ
∣∣∣
0

∣∣∣∣ =
∣∣∣∣( ∂

∂z

)α

φj
∣∣∣
0

∣∣∣∣ ≤ n · b · α!
ak

,

where (
∂

∂z

)α

=
∂α1

∂zα1
1
· · · ∂

αn

∂zαn
n

.

Note that the rightmost item in this estimate is independent of j. Hence,
for each such multi-index α with |α| = k, (∂/∂z)αφ

∣∣
0 = 0. Thus Pk = 0,

a contradiction. ��
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This argument in particular applies when the dimension n = 1 and the
domain Ω is the unit disc. There it gives a conceptually direct proof of the
corresponding part of the classical Schwarz lemma.

Cartan’s result has some further immediate but surprising consequences.

Corollary 1.3.2. Suppose that Ω is a bounded, circular domain in Cn, that
is (eiθz1, e

iθz2, . . . , e
iθzn) ∈ Ω whenever (z1, z2, . . . , zn) ∈ Ω for every θ ∈ R.

If 0 ∈ Ω and f ∈ Aut (Ω) with f(0) = 0, then f is a linear mapping.

Proof. For θ ∈ R and z ∈ Ω, let F (z) = e−iθf(eiθz). Then F ∈ Aut (Ω),
since Ω is circular. By the chain rule it follows that

d(f−1 ◦ F )
∣∣
0 = id.

Hence

f−1 ◦ F = id

on Ω, or equivalently f = F . If we write f = (f1, . . . , fn), F = (F1, . . . , Fn),
and

fj(z) =
+∞∑

|N |=1

aNzN

is the Taylor expansion of fj , then the Taylor expansion of Fj is, by definition
of F and by substitution,

Fj =
+∞∑

|N |=1

e−iθaNei|N |θzN .

But Fj = fj . Therefore ei(|N |−1)θaN = aN for all multi-indices N and all
θ ∈ R. This implies that aN = 0 for |N | ≥ 2.4 Thus each fj is linear. ��

It is easy to modify this argument to show that, if Ω1, Ω2 are two bounded,
circular domains containing the origin 0 and if F : Ω1 → Ω2 is biholomorphic
with F (0) = 0, then F is linear. This immediately implies that, when n ≥ 2,
the unit ball {(z1, . . . , zn) : |z1|2 + · · · + |zn|2 < 1} and the unit polydisc
{(z1, . . . , zn) : |zj | < 1, j = 1, . . . , n} are not biholomorphic: If there were a
biholomorphic map between them, then applying suitable biholomorphic maps
to each variable in the unit polydisc separately would produce a biholomorphic
map that took 0 to 0. This would then have to be linear, which is not possible,
since, e.g., the ball has smooth boundary and the polydisc does not (when
n ≥ 2). Thus the direct analogue of the Riemann mapping theorem fails
in Cn, n ≥ 2: (bounded) domains can be homeomorphic to the ball without
being biholomorphic to it. This failure, even for small perturbations of the
ball, will be explained in much more detail in later chapters.

4Here N = (n1, . . . , nn) and |N | = n1 + · · · + nn.
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The second corollary will play an important role in what follows.

Corollary 1.3.3. If Ω is a bounded domain in Cn and p ∈ Ω, then the
mapping

f �−→ df
∣∣
p

is an injective homomorphism of the group

Ip ≡ {f ∈ Aut (Ω) : f(p) = p}
into GL(n,C).

Proof. If df
∣∣
p

= dg
∣∣
p

for f, g ∈ Ip, then the chain rule gives that d(f−1◦g)∣∣
p

=
id, where the identity map id is given by the n × n identity matrix In ∈
GL(n,C). By Theorem 1.3.1, f−1 ◦ g : Ω → Ω is the identity mapping. Hence
f ≡ g. We conclude that f �→ df

∣∣
p

is injective on Ip. The homomorphism
property is a special case of the chain rule. ��

If a group G acts on a space X through an action G × X → X, and
if x ∈ X, then the orbit Ox of the point x is the set {gx : g ∈ G}. In a
natural sense the orbit is the image of the group G. Indeed, Ox is naturally
identified with the quotient G/Ix, where Ix = {g ∈ G : gx = x}. We shall
be particularly interested in boundary points that are accumulation points of
some orbit for the action of the automorphism group Aut (Ω) on Ω. If the
orbit Ox ⊆ Ω, considered as a point set, has a boundary point p ∈ ∂Ω as an
accumulation point then we call p a boundary orbit accumulation point. These
will be discussed in detail in Section 1.5.

Corollary 1.3.3 immediately yields the following observation. Fix p0 ∈ Ω.
Then each f ∈ Aut (Ω) is uniquely determined by f(p0) and df |p0 . Now the
possibilities for f(p0) range at most over Ω and for df |p0 over Cn2

(identifying
df |p0 with its complex n × n matrix). So in a general sense Aut (Ω) is pa-
rameterized by a subset of Cn ×Cn2

. Thus one might expect Aut (Ω) to be a
finite-dimensional group, and hence a Lie group. This expectation turns out to
be justified. But of course this depends on adding the topology into the picture
of Aut (Ω): as it stands, this “parameterization” is only set-theoretic. We have
already discussed the appropriate topology for Aut (Ω), first the compact-open
topology. Clearly the association f �→ (f(p0), df |p0) ∈ Cn ×Cn2

is continuous
(for the second factor, by Cauchy estimates). To pursue this matter further,
we shall need some results from normal families, to which we shall turn next.

Among results also associated to normal families and the closure properties
of the group Aut (Ω), when Ω is a bounded domain in Cn, the following
principle will in particular play an important role in our later considerations.
While in a sense this is just an application of standard normal families ideas,
the details are surprisingly subtle in this general, multi-variable situation.

Theorem 1.3.4 (Normal Families of Automorphisms). Let Ω be a
bounded domain in Cn. If {fj} is a sequence in Aut (Ω) which converges
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uniformly on compact subsets of Ω and if, for some p0 ∈ Ω, the limit
limj→∞ fj(p0) is a point of Ω, then the limit holomorphic mapping f0 ≡
lim fj : Ω → cl(Ω) has image equal precisely to Ω and f0 ∈ Aut (Ω).

Without the hypothesis about the point p0, the conclusion can fail. For
example, if Ω = D = {z ∈ C : |z| < 1} and

fj(z) =
z − (1− 1/j)
1− (1− 1/j)z

,

then fj ∈ Aut (Ω), but

lim fj = the constant function −1.

In one complex variable, such “degenerate limits,” where lim fj(p0) ∈ cl(Ω)\Ω
for some p0 and hence (by the theorem) all p0 ∈ Ω, are necessarily constant
functions. This is an easy consequence of Hurwitz’s theorem on the limits
of sequences of zero-free holomorphic functions. For, suppose to the contrary
that lim fj(p0) = q ∈ cl(Ω) \ Ω. Then the limit of the zero-free functions
fj(z)− q for z ∈ Ω has a zero at p0 and is hence ≡ 0 on Ω.

This argument indeed shows that, under the hypotheses of the theorem,
lim fj is “interior,” i.e., (lim fj)(Ω) ⊂ Ω, in the one-variable case. But the
argument needed in general (i.e., higher dimensions) is much more intricate—
even though Hurwitz’s theorem on limits of sequences of zero-free holomorphic
functions continues to play a role.

Proof of Theorem 1.3.4. Let Jfj be the holomorphic Jacobian determinant
of fj as discussed earlier. Then Jfj is zero-free on Ω. Write f0 for the limit
of the fj . By Hurwitz’s theorem, Jf0 is either identically 0 or is zero-free. To
rule out the first possibility, we show that Jf0(p0) 	= 0. For this, note that

Jf0(p0) = lim
j→∞

Jfj (p0) = lim
j→∞

1
Jgj (fj(p0))

,

where gj ≡ f−1
j .

Since lim fj(p0) exists by hypothesis and belongs to Ω, it follows that
the set {fj(p0)} belongs to a compact subset of Ω. Indeed it belongs to
{limj fj(p0)}∪{fj(p0)}, which is surely compact. By Cauchy estimates, Jgj is
bounded on this compact set. Thus limj 1/Jgj (fj(p0)) 	= 0, and that is what
we wanted.

It would be pleasant if the fact that we just established, first that Jf0 is
zero-free on Ω, implied immediately that f0(Ω) ⊂ Ω. In the special case that
Ω has a “nice boundary” (e.g., a regularly embedded C2 hypersurface in Cn),
the result would actually follow. For in that case Jf0 being nowhere zero
implies that f0(Ω) is open in Cn and for a domain Ω with smooth boundary,
every subset of the closure cl(Ω) of Ω that is open in Cn is contained in Ω. But
of course in a more general setting, wherein the boundary of Ω is not smooth,



1.3 Normal Families and Automorphisms 11

cl(Ω) can in fact contain points of cl(Ω) \Ω in its interior (e.g., consider the
case of Ω a punctured open ball). Thus a more refined argument is needed.

Fix a point p ∈ Ω. Then Jf0(p) 	= 0 and of course the entire holomor-
phic Jacobian matrix of first derivatives of fj at p converges to the matrix
for f0, which is nonsingular. Moreover, the second derivatives of the fj on
any fixed, closed ball cl(Bn(p, ε)) ⊂ Ω, ε > 0, are bounded uniformly in j by
Cauchy estimates. Now it follows from the inverse function theorem (see, e.g.,
[Krantz/Parks 2002]) that there is a δ > 0 such that fj(Ω) contains an open
ball of radius δ around fj(p). Here δ can be taken to be independent of j. In
particular, since fj(Ω) = Ω, the distance of fj(p) to Cn\Ω is at least δ for all j.
It follows that limj fj(p) = f0(p) is in Ω, not in cl(Ω) \Ω. Thus, f0(Ω) ⊂ Ω.

Now that we know that f0 is “interior,” i.e., it maps the interior points
to the interior points and hence no interior points are mapped to a boundary
point, we want to show that f0 ∈ Aut (Ω), i.e., that f0 : Ω → Ω is one-to-one
and onto. Passing to a subsequence if necessary, we can suppose that {gj} =
{f−1

j } converges uniformly on compact subsets to a limit g0 : Ω → cl(Ω). Our
next goal is to show that g0 is interior. By the argument used to show that f0
was interior, it suffices to show that g0(f0(p0)) belongs to Ω, not to cl(Ω)\Ω.

For this, choose λ > 0 such that the closed ball cl
(
Bn(f0(p0), 2λ)

) ⊂ Ω.
Notice that fj(p0) ∈ cl

(
Bn(f0(p0), λ)

)
whenever j is sufficiently large. Hence,

by Cauchy estimates, there is a constant M > 0, independent of j, such that

‖gj(fj(p0))− gj(f0(p0))‖ ≤M‖fj(p0)− f0(p0)‖
for all j sufficiently large. But gj(fj(p0)) = p0. Hence

‖p0 − gj(f0(p0))‖ ≤M‖fj(p0)− f0(p0)‖.
Since the righthand side goes to 0 as j → +∞, so does the lefthand side and
hence

g0(f0(p0)) = lim
j→∞

gj(f0(p0)) = p0.

We conclude that g0(f0(p0)) ∈ Ω and therefore g0 is interior.
We now must show that f0 ◦ g0 : Ω → Ω and g0 ◦ f0 : Ω → Ω are both

identity maps of Ω to Ω. This of course will establish that f0 ∈ Aut (Ω). This
final result is a consequence of the next lemma.

Lemma 1.3.5. If {fj : Ω → Ω} and {gj : Ω → Ω} are sequences of holomor-
phic mappings which converge uniformly on compact subsets of Ω to interior
limits f0 : Ω → Ω and g0 : Ω → Ω, then the sequence {gj ◦ fj : Ω → Ω}
converges uniformly on compact subsets of Ω to g0 ◦ f0 : Ω → Ω.

Assuming this lemma for the moment, we may apply it to fj and gj as
before. Since gj ◦ fj is the identity map of Ω to Ω, for all j, it follows that
g0 ◦ f0 is also the identity map. Applying the lemma again with the roles of f
and g interchanged gives that f0 ◦ g0 is the identity. This completes the proof
of the theorem. Thus, it remains to prove the lemma.
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Proof of Lemma 1.3.5. Suppose that K ⊂ Ω is a compact subset. Then choose
ε > 0 such that

Lε ≡ {z ∈ Ω : ‖z − w‖ ≤ ε for some w ∈ f0(K)}

is a compact subset of Ω. This choice is possible since f0(K) is a compact
subset of Ω. For all j sufficiently large, fj(K) ⊂ Lε. Furthermore, the mem-
bers of {gj} are uniformly Lipschitz continuous on Lε by Cauchy estimates.
Thus, for z ∈ K and j large, there is a j-independent constant M such that

‖gj(fj(z))− g0(f0(z))‖ ≤ ‖gj(fj(z))− gj(f0(z))‖+ ‖gj(f0(z))− g0(f0(z))‖
≤ M‖fj(z)− f0(z)‖+ ‖gj(f0(z))− g0(f0(z))‖.

Now ‖fj(z) − f0(z)‖ → 0 uniformly for z ∈ K. Also, since {f0(z) : z ∈
K} is compact, ‖gj(f0(z)) − g0(f0(z))‖ → 0 uniformly for z ∈ K. Thus
limj gj(fj(z)) = g0(f0(z)) uniformly for z ∈ K as required. ��

The proof of Theorem 1.3.4 is now complete. ��
Corollary 1.3.6. For each p ∈ Ω, the orbit Op := {f(p) : f ∈ Aut (Ω)} is
closed in Ω.

Proof. We need to show that, if {fj(p)} converges to q ∈ Ω, then q ∈ Op,
i.e., that q = f(p) for some f ∈ Aut (Ω). Choose a subsequence of {fj}
which converges uniformly on compact subsets of Ω to f : Ω → cl(Ω).5 By
Theorem 1.3.4, f ∈ Aut (Ω) and clearly f(p) = limj fj(p) = q. ��
Corollary 1.3.7. The injective homomorphism f �→ df |p of Ip (the isotropy
group {f ∈ Aut (Ω) : f(p) = p}) onto dIp is a homeomorphism of Ip (in the
compact-open topology) onto a compact subgroup of GL(n,C).

Proof. That f �→ df |p is an injective homomorphism of Ip onto dIp has al-
ready been established (Corollary 1.3.3). The continuity is an immediate con-
sequence of the Cauchy estimates for first derivatives. For the compactness,
note that a sequence {dfj |p : fj ∈ Ip} has a subsequence {dfjk

|p : fjk
∈ Ip}

for which {fjk
} converges uniformly on compact subsets of Ω and, by The-

orem 1.3.4, to an element f0 ∈ Aut (Ω) that fixes p. Again by the Cauchy
estimates, dfjk

|p converges in GL(n,C) to df0|p ∈ dIp. ��
The compactness part of Corollary 1.3.7 is a special case of a more general

result which has essentially the same proof.

Corollary 1.3.8. If K is a compact subset of Ω and p ∈ Ω, then {f ∈
Aut (Ω) : f(p) ∈ K} is a compact subset of Aut (Ω).

5We shall use the notation cl(Ω) for the closure of Ω, instead of the more famil-
iar Ω, to avoid confusion with the complex conjugate.
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Proof. Let {fj} be a sequence in Aut (Ω) with fj(p) ∈ K for all j. Since K is
compact, we see by passing to a subsequence (still called fj) that limj fj(p)
exists and lies in K. By normal families considerations, a further passage to a
subsequence yields a sequence that converges uniformly on compact sets. By
Theorem 1.3.4, this sequential limit is itself an automorphism. Obviously this
limit takes p to some point in K. ��

Corollary 1.3.9. If, for some p ∈ Ω, {f(p) : f ∈ Aut (Ω)} is compact, then
Aut (Ω) is compact.

Proof. In the corollary before this one, we simply take K = {f(p) : f ∈
Aut (Ω)}. ��

For all p ∈ Ω, {f(p) : f ∈ Aut (Ω)} is compact if Aut (Ω) is compact, just
because for a given p the mapping

F : Aut (Ω)→ Ω

f �→ f(p)

is continuous. Thus we have proved the following result.

Proposition 1.3.10. If one orbit of Aut (Ω) is compact, then Aut (Ω) is com-
pact and all of its orbits are compact.

We know from Corollary 1.3.6 that any orbit of Aut (Ω) is closed in Ω.
Thus the only way that an orbit of Aut (Ω) can be noncompact is to “run out
to the boundary” of Ω, i.e., the closure must contain an element of cl(Ω) \Ω.
One of the main points of the present book is to study what happens when
Aut (Ω) is noncompact. And one of the main approaches will be to study
cl(Ω) \Ω in a neighborhood of such a “boundary orbit accumulation point,”
that is, an element of cl(Ω) \ Ω that lies in the closure of some orbit of the
automorphism group action.

We now see that the automorphism group of a bounded domain is a (finite-
dimensional) Lie group. For this we shall use the following general theorem.

Theorem 1.3.11 ([Bochner/Montgomery 1946]). Let G be a subgroup
of the diffeomorphism group of a smooth manifold. If it is locally compact,
then G is a Lie group.

When the action of the automorphism group is proper, the group is neces-
sarily locally compact. first, as before, we define the action map A : Aut (Ω)×
Ω → Ω×Ω by A(ϕ, z) = (ϕ(z), z). Then A−1 of a compact-closure neighbor-
hood of (z, z) for any z ∈ Ω has compact closure in Aut (Ω) × Ω, when A is
a proper map. This gives a compact-closure neighborhood of the identity in
Aut (Ω), by projection to the first factor of Aut (Ω)× Ω. Thus to show that
Aut (Ω) is a Lie group when Ω is a bounded domain in Cn, it suffices, in the
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presence of the Bochner–Montgomery theorem (Theorem 1.3.11), to show:

Theorem 1.3.12. If Ω is a bounded domain in Cn, then the action of Aut (Ω)
on Ω is proper, i.e., the map (ϕ, z) �→ (ϕ(z), z) : Aut (Ω) × Ω → Ω × Ω is
proper.

Proof. Properness means explicitly that, if C ⊂ Ω × Ω is a compact set,
then {(ϕ, z) : (ϕ(z), z) ∈ C} is a compact set in Aut (Ω) × Ω. To check this
property for Aut (Ω), suppose that {(ϕj , zj) : j = 1, 2, . . .} is a sequence
with (ϕj(zj), zj) ∈ C for all j. Passing to a subsequence if necessary, one can
assume that {zj} converges to a point z0 ∈ Ω and that the sequence {ϕj(zj)}
converges to w0 ∈ Ω.

Since Ω is bounded, Cauchy estimates imply that ϕj(z0) converges to w0:
in more detail, this follows by noting from the Cauchy estimates that, for some
ε > 0, B(z0, 2ε) ⊂ Ω, so that there is a constant M > 0 independent of j such
that the norm of the (real) differential of ϕj is less than M at each point of
B(z0, ε). Thus the distance from ϕj(zj) to ϕj(z0) is bounded by M‖zj − z0‖,
and hence goes to 0.

Since ϕj(z0) converges now to w0 ∈ Ω, it follows from Corollary 1.3.8 that
{ϕj} has a subsequence that converges to some ϕ0 ∈ Aut (Ω). The compact-
ness of {(ϕ, z) : (ϕ(z), z) ∈ C} has thus been established. ��

Corollary 1.3.13. If Ω is a bounded domain in Cn, then Aut (Ω) is a Lie
group.

Proof. Combine Theorem 1.3.12 with the Bochner–Montgomery theorem
(Theorem 1.3.11). ��

As already noted at the end of Section 1.1, this result implies, from the
result of Palais [Palais 1961], the existence of a smooth Riemannian metric
on Ω invariant under Aut (Ω). Averaging this with respect to the almost
complex structure produces a Hermitian metric on Ω invariant under Aut (Ω).
In Chapter 3, an explicit construction of such a metric will be presented, but
it is worth noting that the existence of such an invariant metric is guaranteed
by the general principles we have discussed.

The general situation just described gives at least a philosophical idea of
why Aut (Ω) is a Lie group when Ω is a bounded domain. The precise version
of this idea is Theorem 1.3.11 by Bochner and Montgomery. The main point
is to describe the elements of G := Aut (Ω) locally, in a neighborhood of the
identity element, by a finite number of parameters so as to make the group
itself a manifold (of finite dimension). A way to think of this is to look for a
point of minimal isotropy dimension. This idea makes sense because all the
isotropy groups are closed subgroups of GL(n,C) (actually U(n)), so the idea
of dimension is just submanifold dimension. If p is such a point, and its orbit
Op := {γ(p) : γ ∈ G}, then elements γ near the identity can be determined by
specifying γ(p), which is near p, and dγ

∣∣
p
, which is near the “identity map,”
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where the “identity map” is just the map from the tangent space at p to the
tangent space at γ(p) arising from the coordinates in Cn. The set of such dγ
in Euclidean coordinates is a submanifold of GL(n,C), although it is not in
general a subgroup (if γ(p) 	= p). Using submanifold coordinates from that
observation and submanifold-of-Cn coordinates of Op near p gives a local
parameterization of G = Aut (Ω) near the identity.

This picture will be clearer if one thinks of the case of Ω the unit disc and
p = 0. Let γ be an element of Aut (Ω). Near the identity, we can parameterize
Aut (Ω) by the image γ(0) together with dγ

∣∣
0. The set of such dγ

∣∣
0 (when

γ(0) is near 0) is a submanifold of GL(1,C) = C \ {0}. It generally is not a
subgroup:

{dγ∣∣0 : γ(0) = a} = {ωT−a

∣∣
0 : |ω| = 1},

where T−a ∈ Aut (Ω) is defined by T−a(z) = (z+a)/(1+az). But we still get
a legitimate smooth parameterization of Aut (Ω) near the identity.

The reader is invited to consider the corresponding local parameterization
of Aut (Ω) when Ω is the unit ball in C2—after this group is discussed in
some detail in the next section.

Note that one obtains here a view of the general fact that, for G = Aut (Ω),

dimOp + dim (Ip) = dim G,

when

Op = orbit of p = {γ(p) : γ ∈ G}.

[This holds in general: the restriction to minimal isotropy, maximal orbit di-
mensions we made was just for convenience of visualization purposes.]

A closed subgroup of GL(n,C) which acts on Cn isometrically is necessarily
a closed subgroup of U(n) and is hence compact. Conversely, if a subgroup of
GL(n,C) is compact, then there is a Hermitian metric on GL(n,C) for which
the subgroup acts isometrically and hence belongs to the U(n) associated to
the Hermitian metric. This follows from a standard argument using averaging
of the standard metric with respect to the group action of the given subgroup
of GL(n,C).

The fact that every compact subgroup of GL(n,C) acts isometrically rela-
tive to some Hermitian metric combined with Corollary 1.3.7 implies that, at
each point p ∈ Ω, there is a Hermitian metric for which Ip acts isometrically
on the tangent space at p. This strongly suggests that one ought to seek a
Hermitian metric on Ω which is Aut (Ω)-invariant. In other words, one ought
to look for a C∞ family hp, p ∈ Ω, of Hermitian metrics such that, for all
γ ∈ Aut (Ω) and p ∈ Ω, the map dγ

∣∣
p

from the tangent space at p with metric
hp is an isometry onto the tangent space at γ(p) with metric hγ(p). Indeed,
it even suggests a way to do this: for some selection of distinguished points
p, one in each orbit, choose hp more or less arbitrarily except that in some
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sense it varies nicely with the choices of orbit. Then, for q in the orbit of such
a point p, determine hq by the requirement that dγ

∣∣
p

must be isometric for
a γq with γq(p) = q. This is well defined by Corollary 1.3.7, independently of
which γq is chosen. Thus the only question is whether this can be done so that
the resulting metric on all of Ω is C∞. This involves finding smooth “slices”
for orbits. This is the point addressed in [Palais 1961]. But since we shall
construct such Aut (Ω)-invariant metrics directly later on, we leave Palais’s
general construction as a philosophical observation.

1.4 The Basic Examples

In this section we shall collect a number of examples for which the auto-
morphism groups are obtained explicitly. Some of these are well known and
elementary, and the derivations of their automorphism groups need be out-
lined only briefly. But it will be convenient to have them all in one place; and
looking at them all at once will suggest various paths of exploration that we
follow later.

(1) Aut (C) = {z �→ az + b : a, b ∈ C, a 	= 0}.
If f : C→ C is injective, then the only possible singularity of f at∞ is a
simple pole. If instead ∞ were a removable singularity, then f would be
constant by Liouville’s theorem. If∞ were an essential singularity, then f
would not be injective in any neighborhood of∞. Similarly, a pole at ∞
of higher order than 1 would preclude injectivity in a neighborhood of∞.
Thus the nonconstant injective function f is a polynomial of degree one.
That any polynomial of degree one is an automorphism is clear. ��

(2) Aut (D) = {z �→ ω · (z − a)/(1− az) : a, ω ∈ C, |ω| = 1, |a| < 1}.
That

Ta : z �−→ z − a

1− az

is defined and injective from D to D is easy algebra. Also Ta(T−a(z)) = z;
hence Ta is surjective.

Conversely, suppose that f ∈ Aut (D). Let a = f−1(0). Then g :=
f/Ta is holomorphic and zero-free on D and

lim
|ζ|→1

|g(ζ)| = lim
|ζ|→1

∣∣∣∣ f(ζ)
Ta(ζ)

∣∣∣∣ = 1.

By the maximum principle applied to both g and 1/g, we see that
|Ta/f | ≡ 1 on D, hence f = ωTa for some constant ω with |ω| = 1.6 ��

6An alternative argument is to note that Ta ◦ f maps the disc to the disc and
fixes 0. Then Schwarz’s lemma implies that |(Ta ◦ f)(z)| ≤ |z|. Applying the same
reasoning to the inverse of this mapping gives |(Ta ◦f)(z)| ≥ |z|. Hence |Ta ◦f(z)| ≡
|z| on D, and Ta ◦ f equals w · id on D for some ω with |ω| = 1.
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(3) Aut (C \ {0}) = {z �→ azε : ε = ±1, a ∈ C, a 	= 0}.
If f ∈ Aut (C\{0}), then a connectivity argument shows that limz→0 f(z)
= 0 or limz→0 |f(z)| = +∞. Composing with an inversion, we may as-
sume that the first alternative holds. But then f , considered as a holo-
morphic function, has a removable singularity at the origin. Thus the
extension f(0) = 0 makes f an entire function that is an automor-
phism of the entire plane. From part (1), f(z) = az, for some a 	= 0.
In case limz→0 f(z) = ∞, the same reasoning applied to 1/f gives
1/f(z) = az. ��

(4) Aut ({z ∈ C : 0 < r1 < |z| < r2}) = {z �→ ωz : ω ∈ C, |ω| = 1} ∪ {z �→
ωr1r2/z : ω ∈ C, |ω| = 1}.
Denote the annulus by A. By a connectivity argument, for each f ∈
Aut (A), either
(a) lim|z|→r2 |f(z)| = r2 and lim|z|→r1 |f(z)| = r1;

or

(b) lim|z|→r2 |f(z)| = r1 and lim|z|→r1 |f(z)| = r2.
In either case, repeated application of Schwarz reflection to the

boundary circles extends f to an automorphism f̂ : C \ {0} → C \ {0}
of C \ {0}. Thus, by Example (3), f(z) = az or f(z) = a/z for some
nonzero a ∈ C. The condition f(A) = A tells us then that a = ω in the
first instance and that a = ωr1r2 in the second instance. ��

(5) Aut ({(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1}).
The set

B2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1}

is of course the unit ball in C2. First notice that I(0,0) = U(2) ⊂ GL(2,C).
Obviously U(2) ⊂ I(0,0). If f ∈ I(0,0), then f is C-linear according to
Corollary 1.3.2. Since f has to preserve the unit sphere (the boundary
of B2), it is immediate that f ∈ U(2).

Now a direct calculation, analogous to that for the disc, shows
that the mapping

T(a,0)(z1, z2) ≡
(

z1 − a

1− az1
,

√
1− |a|2 z2

1− az1

)

sends the ball B2 into itself. Furthermore, the inverse mapping to T(a,0)
is T(−a,0). Thus T(a,0) is an automorphism.

If (z1, z2) is any point of B2, then there is an element λ ∈ U(2) that
takes (z1, z2) to a point of the form (a, 0). Also T(a,0)(a, 0) = (0, 0). These
two pieces of information combined tell us that Aut (B2) acts transitively
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on B2: this means that any point of B2 may be moved to any other by
some element of the automorphism group. first, B2 is homogeneous.

Let G denote the subgroup of Aut (B2) generated by U(2) together
with {T(a,0) : a ∈ C, |a| < 1}. Then the isotropy subgroup of G at the
origin obviously contains U(2). Thus it equals U(2). It follows that G is
the full automorphism group, by Theorem 1.3.1.7 For future reference,
note that if ϕ ∈ Aut (B2), then one can always express ϕ in the form
μ1◦T(b,0)◦μ2, where μ1, μ2 are unitary rotations. first, let λ2 = a unitary
rotation taking ϕ−1((0, 0)) to a point of the form (b, 0). Then T(b,0) ◦ λ2
takes ϕ−1((0, 0)) to (0, 0). Hence T(b,0) ◦λ2 ◦ϕ takes (0, 0) to (0, 0). Thus,
from our earlier observations, T(b,0) ◦λ2 ◦ϕ is a unitary rotation, say λ1.
Hence ϕ = λ−1

2 ◦ T(b,0) ◦ λ1, which has the desired form. ��
(6) Aut ({(z1, z2) ∈ C2 : |z1|4 + |z2|4 < 1}).

By Corollary 1.3.2, the elements of I0 (the isotropy group at 0 = (0, 0))
are C-linear. Such a map must take a point of the boundary of the form
(α, 0) or (0, α) to another point with one coordinate 0. This is so because
boundary points with one coordinate 0 are exactly those boundary points
where ∂Ω makes higher than first-order contact with its complex tangent
plane, a condition preserved by invertible complex linear maps. Thus

I0 =
{
(z1, z2) �→ (ω1z1, ω2z2) : ω1, ω2 ∈ C, |ω1| = |ω2| = 1

}
∪{(z1, z2) �→ (ω1z2, ω2z1) : ω1, ω2 ∈ C, |ω1| = |ω2| = 1

}
.

Next, we claim that any element of Aut (Ω) must in fact fix the
origin. Let φ be an automorphism. By standard results in several complex
variables, φ and φ−1 are C∞ up to the boundary of Ω (see [Bell 1981]).
Weakly pseudoconvex boundary points must consequently be mapped
only to weakly pseudoconvex boundary points. So φ must take the union
of the two circles to itself. Thus φ must (after composition with the map
permuting the coordinates if necessary) preserve the circle {(α, 0) ∈ ∂Ω},
and it must also preserve the circle {(0, α) ∈ ∂Ω}. By the Cauchy integral
formula and continuity of φ at the boundary, it follows that φ preserves
the entire discs {(α, 0) : |α| ≤ 1} and {(0, α) : |α| ≤ 1}. We conclude that
φ(0) = 0. Hence φ is linear and in fact φ ∈ I0. So we have completely
identified all elements of Aut (Ω), and this verifies that Aut (Ω) = I0. ��

(7) Aut (Ω) for Ω = {(z1, z2) ∈ C2 : 0 < α < |z1|2 + |z2|2 < 1}.
By the Hartogs extension phenomenon, each element f ∈ Aut (Ω) ex-
tends uniquely to a holomorphic mapping f̂ : B2 → B2, where B2 is the
unit ball in C2 as usual. These extensions must all be invertible since

7Determining the automorphism group of B2 as a recognizable Lie group requires
additional work. It turns out that it is PSL(2, C). See [Helgason 1962] for more on
this matter.



1.4 The Basic Examples 19

clearly f̂ ◦ g = f̂ ◦ ĝ for all f, g ∈ Aut (Ω) (and of course the extension
of the identity map is the identity map). Each such f̂ , f ∈ Aut (Ω), is
a unitary rotation. To see this, note that, by the remark at the end of
Example (5), f̂ = μ1 ◦ T(a,0) ◦ μ2 for some unitary rotations μ1, μ2 with
T(a,0), as in the discussion there. Both μ1 and μ2 preserve Ω, but T(a,0)
definitely does not preserve Ω if a 	= 0. This point is simple to check
algebraically by looking at points of the form ta/|a| with −1 < t < 1.
Thus f̂ can preserve Ω only if a = 0 and, hence, f̂ is a unitary rota-
tion. Consequently, Aut (Ω) consists of the restrictions to Ω of the set of
unitary rotations around the origin (0, 0). ��

(8) Aut (Ω) for

Ω = {(z1, z2) ∈ C2 : 1/100 < |z1|2 + |z2|2 < 1}
\
[
{(z1, z2) ∈ C2 : |z1 − 3/4|2 + |z2|2 ≤ r1}

∪ {(z1, z2) ∈ C2 : |z1|2 + |z2 − 7/8|2 ≤ r2}
]
,

with some small positive numbers r1 and r2.
Notice first that each element of Aut (Ω) again extends uniquely to

an element of Aut (B2), by the Hartogs extension theorem. Then each
automorphism of Ω must either preserve the sphere Σ = {(z1, z2) :
|z1|2 + |z2|2 = 1/100} or map this sphere to one of the other deleted
spheres, by topological considerations. Algebraic considerations show
that the image of a Euclidean sphere around the origin under an au-
tomorphism of B2 is a Euclidean sphere only if the automorphism fixes
the origin and hence is a rotation.

The algebraic determination that the image of a sphere with a center
at the origin is again a sphere only if the origin is fixed can be done con-
veniently as follows. Consider T(a,0), for −1 < a < 1, acting on S(r) =
the sphere of radius 0 < r < 1 around the origin (0, 0). Then T(a,0)(r, 0)
and T(a,0)(−r, 0) are diametrically opposite on the image sphere. Again,
if the image is a sphere, it then follows that the vector from T(a,0)(0, r) to
T(a,0)(−r, 0) is perpendicular to the vector from T(a,0)(0, r) to T(a,0)(r, 0).
But direct calculation shows that the inner product of these two vectors
is 0 if and only if a = 0.

As in the arguments for Example (7) above, f is now an automor-
phism of B2 preserving the origin, that is the center of Σ. Consequently,
any automorphisms of this Ω must be elements of U(2). Since the el-
ements of U(2) are Euclidean isometries, and since the removed balls
around (3/4, 0) and (0, 7/8) have centers that are at different distances
from the origin, each of these balls must be mapped to itself. It follows
that the automorphism which is an element of U(2) must in fact be the
identity mapping. Thus Aut (Ω) = {id}: the automorphism group has
just the single element, which is the identity. In this circumstance, we
say that the domain Ω is rigid. ��
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(9) Aut (Ω) for

Ω = {(z1, z2) ∈ C2 : |z1|2 + |z2|2k < 1} , k > 1 .

First we note that I0 is linear from Corollary 1.3.3. Also this isotropy
group clearly contains all linear maps of the form

(z1, z2) �→ (eiθ1z1, e
iθ2z2) , θ1, θ2 ∈ R.

By the same logic as in Example (6), the set {(α, 0) ∈ Ω} must be
mapped to itself by any element of this isotropy group. This and the com-
pactness of I0 imply that

I0 = {(z1, z2) �→ (eiθ1z1, e
iθ2z2) : θ1, θ2 ∈ R},

as follows. The invariance of the disc {(α, 0) ∈ Ω} implies that the ma-
trices in I0 have the form (

α11 α12
0 α22

)
with α11 	= 0 and α22 	= 0. If also α12 were not zero, then the powers
of this matrix (which arise under multiple compositions of the map-
ping) would not be contained in a compact set in GL(n,C). Thus in fact
α12 = 0.

For a ∈ C, |a| < 1, consider the mapping

Sa : (z1, z2) �−→
(

z1 − a

1− az1
,
(1− |a|2)1/2k

(1− az1)1/2k
z2

)
.

We see that Sa belongs to Aut (Ω). This assertion can be easily checked
by direct calculation. Also S−a is the inverse mapping of Sa. The or-
bit of 0 under Aut (Ω) consequently contains {(α, 0) ∈ Ω}. Again, by
the logic of Example (6) using [Bell 1981] etc., it follows that the set
{(α, 0) ∈ Ω} is preserved by elements of Aut (Ω). Hence the Aut (Ω)-
orbit of 0 is equal to {(α, 0) ∈ Ω}. This information then completely
determines the automorphism group. ��

(10) Aut (D2), where D2 = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1}.
We write τa(z) = (z − a)/(1− āz) for z ∈ D ⊆ C. The maps of the form
(z1, z2) �→ (τa1(z1), τa2(z2)) act transitively on D2. Also the isotropy
subgroup I0 at the origin (0, 0) consists of linear maps only by Corol-
lary 1.3.2. These linear maps must have the form (z1, z2) �→ (ω1z1, ω2z2)
or (z1, z2) �→ (ω2z2, ω1z1) with |ω1| = |ω2| = 1, since they must pre-
serve the distinguished boundary {(z1, z2) : |z1| = 1, |z2| = 1}: this set
is exactly the points where ∂D2 is not smooth, and the property of be-
ing not smooth is preserved by linear maps. It follows that Aut (D2) is
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exactly the group generated by the maps (z1, z2) �→ (τa1(z1), τa2(z2)),
(z1, z2) �→ (ω1z1, ω2z2) with |ω1| = |ω2| = 1, and (z1, z2) �→ (z2, z1).

Examples (5) and (10) yield the following historical theorem of Poincaré,
which, as already discussed, shows that the Riemann mapping theorem does
not hold in complex dimension higher than 1. The proof of this theorem by
Poincaré (see below) demonstrated that automorphism groups could play an
important role—especially in complex dimensions greater than 1. Of course we
have already shown in the remarks after Corollary 1.3.2 that the ball and the
polydisc are not biholomorphic, but Poincaré’s proof is of historical interest.

Theorem 1.4.1 (Poincaré). In complex dimension 2, the ball and the bidisc
are not biholomorphic to each other.

Proof. Suppose that there exists a biholomorphic map f : B2 → D2 = D×D.
Composing with an automorphism of D2, we may assume without loss of gen-
erality that f maps the origin to itself. Then the map f∗ : Aut (B2) →
Aut (D2) defined by f∗(γ) ≡ f−1◦γ◦f is a continuous group isomorphism. So,
this map generates a group isomorphism between the identity components of
the isotropy subgroups at the origin. Note that the identity component of the
isotropy subgroup of Aut (B2) at the origin contains U(2), the group of 2× 2
unitary matrices (and indeed = U(2)). On the other hand, the identity com-
ponent of the isotropy subgroup of Aut (D2) at the origin is the torus group
consisting of rotations in each variable separately. But the torus group is com-
mutative, while U(2) is noncommutative. This is a contradiction. Therefore
the desired conclusion follows immediately. ��

1.5 Orbit Accumulation Boundary Points
Are Pseudoconvex

In the preceding section, we have rather few examples in higher dimensions
(i.e., Cn, n ≥ 2) of domains Ω with Aut (Ω) noncompact. But the examples
that we do have—numbers (5), (9), (10) in the last section—all have the
notable property that they are convex and hence pseudoconvex. It turns out
that if Ω is a bounded domain and p is a point of the boundary with the
boundary smooth near p, then accumulation of an Aut (Ω)-orbit at p implies
pseudoconvexity at p. More precisely:

Theorem 1.5.1 (Greene/Krantz [Greene/Krantz 1991]). If p0 ∈ ∂Ω is
a boundary point of a bounded domain Ω in Cn whose boundary is C2 smooth
in a neighborhood of p0, and if there exists a sequence ϕj ∈ Aut (Ω) such that
limj→∞ ϕj(x0) = p0 for some x0 ∈ Ω, then ∂Ω is Levi pseudoconvex at p0.

Proof. Assume the contrary, that ∂Ω is not pseudoconvex at p0. Then there
exists a compact set K contained in Ω such that the holomorphic hull K̂
of K contains a set of the form Ω ∩ U where U is an open set in Cn
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Fig. 1.1. The Hartogs figure and its holomorphic hull.

containing p0.8 [Recall that the holomorphic hull K̂ of a compact set K is by
definition the set {p ∈ Ω : |f(p)| ≤ maxK |f |,∀f : Ω → C holomorphic}.] ��

Now choose an ε > 0 such that Bn(x0, 3ε) ⊂ Ω. Let AM be the set of
ϕ ∈ Aut (Ω) such that ‖dϕ−1|ϕ(x0)‖ ≤ M , where ‖ · ‖ here represents the
usual operator norm. Then we show:

Lemma 1.5.2. There exists δ > 0 such that ϕ(Bn(x0, ε)) contains Bn(ϕ(x0),
δ) for every ϕ ∈ AM .

Proof of the lemma. Since dϕ−1|ϕ(x0) = (dϕ|x0)
−1, we see that ‖(dϕ|x0)

−1‖ ≤
M whenever ϕ ∈ AM . Consider the map

T (z) := (dϕ|x0)
−1 ◦ ϕ(z), z ∈ Bn(x0, ε).

The differential at x0 of this map is equal to the identity. And its second
derivatives on Bn(x0, ε) are bounded (Cauchy estimates on ϕ) by a constant
depending only on M and the bound on ‖(dϕ|x0)

−1‖ (and Ω and ε) but
not on ϕ ∈ AM . Hence, by standard information about the inverse function
theorem, T (Bn(x0, ε)) contains a ball of radius α > 0 centered at x0, where α
is independent of which ϕ is chosen from AM : here α depends only on M (and
ε and Ω). Thus the image of the map ϕ = dϕ|x0 ◦ T contains a ball of radius
δ > 0 centered at ϕ(x0), with δ independent of the choice of ϕ. [The radius δ
depends only on M, ε, and Ω for the following reason: since dϕ|x0 is a linear
transformation with its inverse bounded above in operator norm, no such ϕ

8The usual construction of a compact set in Ω with holomorphic hull running
out to a nonpseudoconvex boundary is casually called a “Hartogs tin can” in several
complex variables (Figure 1.1). See [Grauert/Fritzsche 1976] for example. In case
one “Hartogs tin can” does not provide a U of the sort we are after, one can perturb
it and take the set K as the union of the perturbations to get the desired situation.
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can take a given radius ball to a set not containing a definite radius ball. In
fact, it cannot contract anything by more than a factor of 1/M .] Thus the
assertion of the lemma follows.

Altogether, one obtains that, if ϕj(x0) → p0 ∈ ∂Ω as j → ∞, then
‖dϕ−1

j |ϕj(x0)‖ → ∞. Let ψj = (ψ1
j , . . . , ψ

n
j ) be the component representation

of ϕ−1
j for a moment. Passing to a subsequence, we may assume that∣∣∣∣∣ ∂ψ�

j

∂zm

∣∣∣
ϕj(z0)

∣∣∣∣∣→∞
for some �,m ∈ {1, . . . ,m}. [Otherwise these ϕjs would belong to AM for some
M > 0, and hence the image of ϕj contains a ball of radius δ, independent of j.
A contradiction.] However, this is impossible, because |∂ψ�

j/∂zm| is bounded
near p0 by its absolute value on the compact Hartogs figure K, and that is
bounded by a constant independent of j, by Cauchy estimates. This completes
the proof. ��

We shall return to related considerations later in Chapter 7 (Proposi-
tion 7.6.2), using somewhat different, albeit related, methods.

1.6 Holomorphic Vector Fields and Their Flows

From the viewpoint of the Lie theory of transformation groups, it is natural
to ask which (real) vector fields have the property that their flows consist of
holomorphic mappings. We shall have explicit use for these ideas later (e.g.,
in Chapter 6), in addition to their general interest. To explore the matter in
some detail, we recall first the general viewpoint.

Suppose that V : U → RN is a “vector field” (at this state, it is just a
vector-valued function) on an open set U ⊂ RN . If V has suitable regularity—
even Lipschitz continuity will suffice—then, for each p ∈ U , there are an ε > 0
and a neighborhood W of p, p ∈ W ⊂ U , such that, for each q ∈ W , there is
a differentiable function γq : (−ε, ε)→ U with

dγq

dt

∣∣∣
t
= V(γq(t))

for each t ∈ (−ε, ε). Such a γq is called an integral curve of V with initial
point q. Integral curves are unique up to the domain of definition in t if their
initial point is given.

Such a vector field V : U → RN thus defines a (local) flow q �→ γq(t). We
call this function ϕt so that ϕt : W → U is defined for all t ∈ (−ε, ε). Also,
ϕ0 = the identity map. Uniqueness of integral curves shows that

ϕt1 ◦ ϕt2 = ϕt1+t2

for all t1, t2 with both |t1| and |t2| small enough that the ϕ-maps are defined.
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This all makes sense for vector fields defined on an open subset of a man-
ifold M of dimension n. In this case, the vector field V is a function from
M into the tangent bundle TM :=

⋃
p∈M TpM , where TpM is the tangent

space of M at p, and it is required that V(p) ∈ TpM for every p ∈ M . The
definitions of properties are the same as for the Euclidean space case, mutatis
mutandis.

Now we are interested specifically in the question, either for Cn = R2n, or
on a complex manifold (locally the same as Cn), of which vector fields V have
the property that the associated local flows ϕt are holomorphic functions.
Such a flow is called holomorphic, that is, a flow of a vector field is called
holomorphic, if for each t, ϕt is holomorphic (where it is defined).

The answer to this question is straightforward, but it will be most easily
explainable if we introduce some notation.

First we identify Cn with R2n by setting zj = xj + iyj , j = 1, . . . , n, and
then identifying (z1, . . . , zn) ∈ Cn with (x1, y1, . . . , xn, yn). We set ∂

∂xj
= the

R2n vector with the (2j − 1)-th component 1 and all other components 0,
and then ∂

∂yj
= the R2n vector with (2j)-th component 1 and all other com-

ponents 0, for j = 1, 2, . . . , n. [This notation makes sense because the di-
rectional derivative of a function along one such vector just considered is
equal to the corresponding partial derivative, e.g., ∂

∂x1
of a function is its

directional derivative along the vector (1, 0, . . . , 0) ∈ R2n.] As usual, we set
∂

∂zj
= 1

2

(
∂

∂xj
− i ∂

∂yj

)
as a differential operator.

If V is a real vector field on U ⊂ Cn = R2n, then V has the form
n∑

j=1

aj
∂

∂xj
+

n∑
j=1

bj
∂

∂yj

for some real-valued functions aj and bj and these are uniquely determined.
We define

JV =
n∑

j=1

aj
∂

∂yj
−

n∑
j=1

bj
∂

∂xj
.

One can easily verify that

V − iJV = 2

⎛⎝ n∑
j=1

(aj + ibj)
∂

∂zj

⎞⎠ .

We define the real vector field V to be holomorphic if, for each j, the function
aj + ibj is holomorphic. Thus a real vector field V is holomorphic if and only
if V is the real part of a complex vector field of the form

∑n
j=1 fj

∂
∂zj

where
the fj are holomorphic functions. In these terms, we can answer the question
about which real vector fields have (local) flows that are holomorphic.

Theorem 1.6.1 (Lie Theory Lemma). A C1 real vector field V has holo-
morphic local flows ϕt if and only if V is a holomorphic vector field in the
sense just defined.
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If one is willing to use the standard methods of “Lie derivatives,” then
this assertion is easy to check. We shall present that proof first. Then we shall
recast it in more concrete form in which the concept of Lie derivative is not
used explicitly.

Proof of the lemma using Lie derivatives. The local flow ϕt for a fixed t value
is holomorphic if and only if dϕt commutes with the J-mapping already de-
fined. (This latter is just a restatement of the Cauchy–Riemann equations.)
Here dϕt denotes the real differential of ϕt. Since ϕ0 = the identity map, to
check that dϕt ◦J = J ◦dϕt for all t, we need only check that LVJ = 0 where
LVJ denotes the Lie derivative of the tensor J with respect to V. Thus we
need only check that, for each j = 1, . . . , n,

(LVJ)
∂

∂xj
= 0 and (LVJ)

∂

∂yj
= 0.

Now

(LVJ)
∂

∂xj
= LV

(
J

∂

∂xj

)
− J

(
LV

(
∂

∂xj

))
by the Leibniz rule for Lie derivatives. But

LV

(
J

∂

∂xj

)
= LV

(
∂

∂yj

)
= −

n∑
�=1

∂a�

∂yj

∂

∂x�
−

n∑
�=1

∂b�

∂yj

∂

∂y�

while

J

(
LV

(
∂

∂xj

))
= −J

(
n∑

�=1

∂a�

∂xj

∂

∂x�
+

n∑
�=1

∂b�

∂xj

∂

∂y�

)

=
n∑

�=1

∂b�

∂xj

∂

∂x�
− ∂a�

∂xj

∂

∂y�
.

Thus, LV
(
J ∂

∂xj

)
= J

(
LV
(

∂
∂xj

))
if and only if

∂a�

∂yj
= − ∂b�

∂xj
and

∂a�

∂xj
=

∂b�

∂yj

for � = 1, . . . , n, in both cases. But these are precisely the Cauchy–Riemann
equations for a� + ib� to be holomorphic in the zj variable. It is clear that if
these hold, then (LVJ)

(
∂

∂yj

)
is also 0 since

J

(
LV

(
J

∂

∂xj

)
− JLV

(
∂

∂xj

))
= LV

(
∂

∂xj

)
+ J

(
LV

(
∂

∂yj

))
= −LV

(
J

(
∂

∂yj

))
+ J

(
LV

(
∂

∂yj

))
.
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For the converse direction, just trace the steps backwards. The conclusion
follows.

To carry out essentially the same proof without introducing the Lie deriva-
tives explicitly, we compute first, for each j = 1, . . . , n,

∂

∂t

(
Jdϕt|p,0

(
∂

∂xj

)
− dϕt|p,0

(
∂

∂yj

))
.

For this, note that p = ϕ0(p) and write, for all q near p,

ϕt(q) = (x1,t(q), y1,t(q), . . . , xn,t(q), yn,t(q)).

Then

dϕt

(
∂

∂xj

)
=
(
∂x1,t

∂xj
,
∂y1,t

∂xj
, . . . ,

∂xn,t

∂xj
,
∂yn,t

∂xj

)
and

dϕt

(
∂

∂yj

)
=
(
∂x1,t

∂yj
,
∂y1,t

∂yj
, . . . ,

∂xn,t

∂yj
,
∂yn,t

∂yj

)
,

while

J

(
dϕt

(
∂

∂xj

))
=
(
∂y1,t

∂xj
, −∂x1,t

∂xj
, . . .

)
.

So

∂

∂t
J

(
dϕt

(
∂

∂xj

))
=
(
∂2y1,t

∂t∂xj
, −∂2x1,t

∂t∂xj
, . . .

)
=
(

∂

∂xj

(
∂y1,t

∂t

)
, . . .

)
and

∂

∂t
dϕt

(
∂

∂yj

)
=
(
∂2x1,t

∂t∂yj
, . . .

)
=
(

∂

∂yj

(
∂x1,t

∂t

)
, . . .

)
.

Note that

∂x�,t

∂t

∣∣∣
t=0,p

= a�(p) and
∂y�,t

∂t

∣∣∣
t=0,p

= b�(p).

Translating the Cauchy–Riemann equations for the functions a� + ib� back
into the x, y notation gives

∂

∂t

{
J

(
dϕt

(
∂

∂xj

))
− dϕt

(
J

(
∂

∂xj

))}
= 0

when t = 0.
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Working through the details of this calculation gives that this implication
goes in both directions.

Now note that dϕt+h(·) = dϕt(dϕh(·)) for small h and so dϕt+h − dϕt =
dϕt(dϕh − dϕ0). Hence limh→0

1
h (dϕt+h − dϕt) = 0, if limh→0

1
h (dϕh −

identity) = 0. Thus, if V is holomorphic then Jdϕt( ∂
∂yj

)− dϕt(J( ∂
∂yj

)) = 0.
first, ϕt is holomorphic. These calculations also work in the opposite
direction. ��

This proof is essentially the same as the Lie derivative one: the Lie deriva-
tive concept has been replaced by equality of mixed partials, in effect.

Corollary 1.6.2. If the local flow functions ϕt of a real vector field V are
holomorphic, then so are the local flow functions of JV.

Proof. If V − iJV is a holomorphic linear combination of ∂
∂z vector fields,

then so is i(V − iJV). But Re (i(V − iJV)) = JV. ��
If V is a (real) vector field defined on an open set U ⊂ RN (or on a manifold

M), and if q ∈ U (or, q ∈M , respectively), then it may not be the case that
the integral curve γq(t) of V with γq(0) = q is defined for all t ∈ R. So the
local flow functions ϕt of V may not be defined on all U for all t.

Note, however, that if there is an ε > 0 such that ϕt(q) is defined for all
t ∈ (−ε, ε) and all q ∈ U (or q ∈M), then ϕt is defined for all t ∈ R: this result
follows by “patching together” via uniqueness of integral curves the local flows
for |t| < ε/2. That is, one notes that ϕt should equal ϕt/k ◦ · · · ◦ϕt/k (k-times)
for any positive integer k and that, if k is large enough, then |t/k| ≤ ε/2.
Then one uses ϕt/k ◦ · · · ◦ ϕt/k as the definition of ϕt and verifies easily that
this indeed has the defining property that d

dtϕt(q) = V(ϕt(q)).
Consequently, if M is a compact manifold and V a vector field on it, then

the ϕt flows associated to V are defined for all t ∈ R since the existence of
an ε uniform over M follows from the basic local existence result for ordinary
differential equations and the compactness of M .

In noncompact complex instances, it can happen that a holomorphic vec-
tor field V has integral curves and flow functions ϕt defined for all t ∈ R
but JV, also a holomorphic vector field, does not. Consider, for instance, the
vector field V(x, y) = (y,−x) on U := {z ∈ C | |z| < 1}. The vector field V is
the“infinitesimal generator” of rotations around the origin, and its flow ϕt, de-
fined for all t ∈ R, is the rotation clockwise around the origin through angle t.
As guaranteed by the fact that V is holomorphic (V = Re (−2iz ∂

∂z )), these ϕt

are indeed holomorphic. The vector field JV is (x, y). This too is holomorphic:
JV = Re 2z ∂

∂z . Its local flow functions ϕt are given by ϕt(x, y) = (etx, ety),
as is easily verified. But of course these are not defined for all t: when t is
large positive, (etx, ety) no longer lies in U , unless (x, y) = (0, 0), the origin
(0, 0) being a fixed point of the flow since JV(0, 0) = (0, 0).

But, when one passes to the compact case, things change. The vector
field V extends to be a vector field on C ∪ {∞}, the “Riemann sphere”: it
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is again the infinitesimal generator of the one-parameter group of rota-
tions around the origin (in the clockwise direction). Since this is a group
of holomorphic mappings, it must be that V extended is holomorphic on
C ∪ {∞}. (One can of course check directly that V is holomorphic at∞, using
w = 1/z as a local coordinate around ∞.) But now the flow of JV is defined
for all t: the point (etx, ety) is in C for all (x, y) ∈ R2 with (x, y) 	= (0, 0), and
the flow has (0, 0) and∞ as fixed points, with t going to −∞ corresponding to
motion towards 0. Thus one sees in action the important difference between
the compact and noncompact cases. These themes will reappear in Chapter 6.
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