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Markov Chain Approximations: Path and
Control Delayed

7.0 Outline of the Chapter

This chapter adapts the Markov chain approximation methods that were in-
troduced in Chapter 6 to the problem with delays. The approximating chains
are constructed almost exactly as they are for the no-delay case, except that
the transition probabilities must take the delays into account. Various numer-
ical approximations are developed. They are reasonable and well motivated.
But in view of the fact that rather little is known about either approximation
or numerical methods for delay equations, the algorithms are to be viewed
as a first step and will hopefully encourage additional work. When construct-
ing an algorithm, there are two large issues of concern, and both must be
kept in mind. One is numerical feasibility. The other concerns the proof of
convergence, as the approximating parameter goes to zero.

Because the basic state space of the problem with delays is infinite-
dimensional, one must work with approximations. One can devise “Markov
chain like” approximations that converge to the original model and for which
the optimal value functions converge to that for the original model. Alterna-
tively, one can first approximate the original model, say along the lines done
in Chapter 4, so that the resulting problem is finite-dimensional. Then ap-
proximate the result for numerical purposes. Both approaches are taken in
this chapter, although the latter one is more realistic, as the memory require-
ments are much less. As seen in Chapter 4, the suggested finite-dimensional
approximations are often quite good. Further approximations are developed
in Chapters 8 and 9 when the path or control values are delayed, and they
will often be advantageous.

The validity of an approximation to the original model depends on the
relative insensitivity of the values and controls to the quantities that are being
approximated, whether it is the path, path and delay, control, and so forth.
The greater the sensitivity, the finer the approximation needs to be. This is
a particularly difficult problem for the delay model, as the behavior can be
quite sensitive to the delay, and little is known about this in general.
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The proofs of convergence in [58] are purely probabilistic, being based
on weak convergence methods. The idea is to interpolate the chain to a
continuous-time process in a suitable manner, show that the Bellman equa-
tion for the interpolation is the same as for the chain, and then show that the
interpolated processes converge to an optimal diffusion as the approximating
parameter goes to zero. The approach is parallel to this for the problem with
delays, and we try to arrange the development with an eye to using the pow-
erful methods and results of [58] to the extent possible, so as to simplify the
proof of convergence.

Section 1 introduces the unapproximated model and the main assump-
tions. As for the nondelay case, the main assumption is local consistency.
This condition is the same as that for the nondelay problem, with the ap-
propriate delay-dependent drift and diffusion terms used. The state of the
problem, as needed for the numerical procedure, consists of a segment of the
path (over the delay interval) and of the control path as well (if the control is
also delayed). The only change in the local consistency condition is the use of
the “memory segment” arguments in the drift and diffusion functions. As in
Chapter 6, the local consistency condition says no more than that the condi-
tional mean change (resp, covariance) in the state of the approximating chain
is proportional to the drift (resp, covariance) of the original diffusion process,
modulo small errors. It need not hold everywhere (see, e.g., [58, Section 5.5]).
Transition probabilities for the approximating chain are readily obtained from
the formulas that are used for the nondelay case in [58].

For pedagogical purposes, in much of the development, we divide the dis-
cussion into a part where only the path is delayed in the dynamics and a part
where both the control and path are delayed, for which the algorithms are
much more complicated The delay system analogs of all of the cost functions
covered in [58] can be dealt with. But for simplicity of exposition, most of
the discussion is confined to the discounted case, with boundary reflection. If
the process is stopped on reaching a boundary then, with the model of Sec-
tion 3.1 and the cost function (3.4.1), all of the approximation methods and
convergence results will hold, and the necessary theorems are stated. Section
1 concludes with the discussion of the continuous time interpolations. These
interpolations, which are used for the convergence proofs only and not for
the numerical algorithms, are a little more complicated than those used for
the no-delay case in Chapter 6, owing to the need to represent the “memory
segment” argument in a way that can be used in the development of efficient
approximation methods.

In Section 2, some particular Markov chain approximations are introduced,
with the aim of efficiency in the use of memory. The implicit approximation
method of Chapter 5 has some advantages in dealing with the memory prob-
lem, and this is discussed in Section 3. Section 4 deals with various details
concerning the relation between the implicit approximation procedure and
the model with randomly varying delays in Subsection 4.2.3. Keep in mind
that these randomly varying delays are not a feature of the original model,
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but appear in the numerical approximation as a consequence of the use of the
implicit approximation procedure to simplify the memory problem. One could
treat the case where the original model has randomly time varying delays as
well, as noted in the comments below (3.1.8), but at the expense of increased
memory requirements.

Chapter 8 continues the development of the ideas in this chapter and
contains the proofs of the convergence theorems.

7.1 The Model and Local Consistency

The approach to numerical approximation is analogous to what was done for
the no-delay case in Chapter 6. The main new issues concern accounting for
the fact that b(·), σ(·), and k(·) depend on the “memory” segments of the
solution path and/or the control, whichever is delayed in the dynamics. We
will construct an “approximating” controlled finite-state process {ξh

n, n ≥ 0}
and interpolation intervals {∆thn, n ≥ 0} in much the same way as was done in
Chapter 6. This approximating process will serve as the basis of the numerical
procedure. It will be seen that these processes are constructed as easily as they
are for the no-delay problem in [58]. Although {ξh

n} itself is not a Markov chain
due to the memory, one can embed it into a finite-state Markov chain. It is
the Bellman equation for the embedded chain that needs to be solved to get
the optimal cost. Indeed a main concern are representations for such Markov
chains that are efficient from the point of view of computation. In this section,
a generic approximation will be constructed. Although it often requires too
much memory to be of practical use, it will provide the foundation for the
alternative and more practical approximations in Section 3 and in the next
chapter.

7.1.1 The Models

The model is the controlled reflected diffusion of Section 3.2. Assumptions
(A3.2.1) and (A3.2.2) on the constraint set G are always used. Other con-
ditions will be given when needed. Rewriting the equations for convenience,
when both the path and control are delayed and in terms of ordinary controls,
the model is (3.2.3):

x(t) = x(0) +
∫ t

0

b(x̄(s), ū(s))ds +
∫ t

0

σ(x̄(s))dw(s) + z(t), (1.1)

where the conditions (A3.1.2) and (A3.1.3) hold. For notational simplicity, we
suppose that, if both the path and control are delayed, then the maximum
delay is the same for both. The case where they are not the same is a simple
and obvious modification. In relaxed control notation, (1.1) is
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x(t) = x(0) +
∫ t

0

b̄(x̄(s), r̄(t))ds +
∫ t

0

σ(x̄(s))dw(s) + z(t), (1.2)

where, as in (3.1.6),

b̄(x̄(t), r̄(t)) =
∫ 0

−θ̄

∫
U

b(x̄(t), α, θ)r′(dα, t + θ)µc(dθ), (1.3)

and ∫ t

0

b̄(x̄(s), r̄(s))ds =
∫ 0

−θ̄

[∫ t

0

ds

∫
U

b(x̄(s), α, θ)r′(dα, s + θ)
]

µc(dθ).

The discounted cost function (3.4.4) is

W (x̂, r̂, r)

= Er
x̂,r̂

∫ ∞

0

ds

∫ 0

−θ̄

∫
U

e−βt [k(x̄(t), α, θ)r′(dα, t + θ)µc(dθ)dt + q′dy(t)] ,

(1.4)
where x̂ and r̂ denote the initial memory segments of the path and control,
resp. The existence of an optimal control was shown in Theorem 3.5.1.

If the path only is delayed, then we drop the control memory segment
term, and the model specializes to

x(t) = x(0) +
∫ t

0

ds

∫
U

b(x̄(s), α)r′(dα, s) +
∫ t

0

σ(x̄(s))dw(s) + z(t), (1.5)

W (x̂, r) = Er
x̂

∫ ∞

0

∫ 0

−θ̄

∫
U

e−βt [k(x̄(t), α)r′(dα, t)dt + q′dy(t)] . (1.6)

As usual, if the process stops on hitting the boundary, then drop (A3.1.2)
and (A3.1.3) and add (A3.4.1) and (A3.4.2).

7.1.2 Delay in Path Only: Local Consistency and Interpolations

The approximating chain ξh
n takes values in the set Sh, and the definitions of

Sh, Gh = Sh ∩G and ∂G+
h from the beginning of Section 6.2 are used. As for

the no-delay problem, the key requirement that is placed on the approximat-
ing chain is that it satisfy a local consistency condition analogous to (6.2.1).
The dynamics of (1.5) at time t involve the memory segment x̄(t) of the path
on the delay interval [t − θ̄, t]. An analogous dependence must hold for the
dynamics of the ξh

n process. The definition of the memory segment of the
approximating chain will depend on the particular continuous-time interpola-
tion of the ξh

n values that is used, and several useful forms will be developed
in the sequel and in the next chapter. For simplicity, we will start by using
an analog of the explicit approximation procedure of Sections 6.2–6.4. This
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will not usually yield the best form of the memory segment, but it provides a
convenient introduction to the overall approximation method. Suppose that
ξh
n, ∆thn are available (these will be constructed below) and, as in Section 6.2,

define the interpolated time thn =
∑n−1

i=0 ∆thi . The process ξh(·) is defined to
be the piecewise-constant continuous-time interpolation of {ξh

n} with intervals
{∆thn}, as in (6.3.1). Recall the discussion below (6.3.1) concerning the inter-
polation at the reflecting states. In particular, if ξh

n is a reflecting state, then
ξh(thn) = ξh

n+1, which is the state that the reflecting state ξh
n is instantaneously

sent to.

Path memory segments. Define the segment ξ̄h
n of the path ξh(·) by

ξ̄h
n(θ) = ξh(thn + θ) for θ ∈ [−θ̄, 0), and ξ̄h

n(0) = ξh
n. (1.7a)

This is the segment of the interpolated path on [thn − θ̄, thn) with the value ξh
n

at θ = 0. If ξh
n ∈ Gh, then ξh

n(θ) = ξh(thn + θ) for all θ ∈ [−θ̄, 0]. Define the
process ξ̄h(t) by

ξ̄h(t) = ξ̄h
n, for thn ≤ t < thn+1. (1.7b)

Let ξ̂ denote the canonical value of ξ̄h
n.

To construct the dynamics of the approximating chain, we will need to
define a path memory segment that plays the role of x̄(t). There is a great
deal of flexibility in the way that this approximation is constructed from the
{ξh

n}. The choice influences the computational complexity, and we return to
this issue in subsequent sections. Until further notice, we use ξ̄h

n. This choice
is not always suitable for numerical purposes, and will later be modified in
various ways to simplify the numerical computations. The exact form of the
approximation is not important at this point.

The initial condition x̄(0) = {x(t) : −θ̄ ≤ t ≤ 0} for (1.5) is an arbi-
trary continuous function. This will have to be approximated for numerical
convenience. Until further notice, we simply assume that we use a sequence
ξ̄h
0 ∈ D(Gh; [−θ̄, 0]), that is piecewise-constant and that converges to x̄(0)

uniformly on [−θ̄, 0] as h → 0.

Local consistency in Gh. For numerical purposes it is often useful to ap-
proximate the set U . Thus, as in Section 6.2, let Uh be a sequence of compact
sets that converges to U as h → 0 in the sense that the closed convex hull
of (b(x, Uh), k(x, Uh)) converges to the closed convex hull of (b(x, U), k(x, U))
as h → 0. Each Uh might contain only a finite set of points.

Let ξh
n ∈ Gh. Analogously to the no-delay case in Section 6.2, the chain and

intervals are assumed to satisfy the following local consistency properties. Let
uh

n (with values in Uh) denote the control applied at time n. The distribution
of ξh

n+1, given the initial data and {ξh
i , uh

i , i ≤ n}, will depend only on the
current path memory segment ξ̄h

n and current control uh
n and not otherwise on

n, analogously to the case in Chapter 6. Recall the definition ∆ξh
n = ξh

n+1−ξh
n

and that of the martingale difference βh
n in (6.2.3), and let Eh,α

ξ̂,n
denote the
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expectation given all data to time n, with uh
n = α and ξ̄h

n = ξ̂. Analogously to
the definition for the no-delay case in (6.2.1), local consistency is said to hold
if there is a function ∆th(·) such that, for ξ̂(0) = ξh

n ∈ Gh,1

Eh,α

ξ̂,n
∆ξh

n = bh(ξ̂, α)∆th(ξ̂, α) = b(ξ̂, α)∆th(ξ̂, α) + o(∆th(ξ̂, α)),

Eh,α

ξ̂,n
βh

n[βh
n]′ = ah(ξ̂)∆th(ξ̂, α) = a(ξ̂)∆th(ξ̂, α) + o(∆th(ξ̂, α)),

a(ξ̂) = σ(ξ̂)σ′(ξ̂),

supn,ω |ξh
n+1 − ξh

n|
h→ 0, supξ̂,α ∆th(ξ̂, α) h→ 0.

(1.8)

The reflecting boundary is treated the same as in Section 6.2. If ξh
n is a re-

flecting state, then it is sent to a state in Gh, with no control applied. The
mean of ξh

n+1 − ξh
n, conditioned on the data to time n, is a reflection direction

at the point ξh
n. In particular, (6.2.2) holds. Define ∆thn = ∆th(ξ̄h

n, uh
n).

We have the analog of (6.2.4)

ξh
n+1 = ξh

n + ∆thnb(ξ̄h
n, uh

n) + βh
n + ∆zh

n + o(∆thn). (1.9)

Constructing the transition probabilities. For simplicity in the devel-
opment, we will suppose that Sh is a regular h-grid. Hence the points in Gh

are h units apart in each direction. This is done only to simplify the nota-
tion. Any of the state spaces Gh that are allowed in [58] can be used here. In
particular, the state space approximation parameter can depend on the coor-
dinate direction. The simple example of the construction in Section 6.4 and,
indeed, any of the methods in [58] for obtaining the transition probabilities
and interpolation intervals for the no-delay case can be readily adapted to the
delay case.

For the no-delay problem and x ∈ Gh, all of the methods in [58] for gener-
ating the controlled transition probabilities ph(x, x̃|α) when the grid spacing
was uniform in each coordinate direction gave results that depended only on
the grid spacings, the “next state” x̃, and on the drift and covariance func-
tions b(x, α) and a(x) = σ(x)σ′(x), resp. They did not depend on the state
and control values in any other way. In addition the transition probability
for the chains in [58] for the no-delay case could be written as a ratio in the
following way. There are functions Nh(·) and Dh(·) such that for x ∈ Gh,

P{ξh
1 = x̃|ξh

0 = x, uh
0 = α} = ph(x, x̃|α) =

Nh(b(x, α), a(x), x̃)
Dh(b(x, α), a(x))

,

∆th(x, α) = Th(b(x, α), a(x)) =
h2

Dh(b(x, α), a(x))
.

(1.10)

1 (1.8) defines bh(·) and ah(·).
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The particular forms of Nh(·) and Dh(·) depend on the actual approximation
method.2 The function Dh(·) is simply a normalization, so that the sum of
the probabilities over x̃ is unity. The transition probability from a state x to
a state x̃ must be a function of b(·), a(·), and x̃, only, because that is the only
information that is available. Hence, the representation (1.10) is unrestrictive.
The values of Nh(·) and Dh(·) for the two examples of construction in Section
6.4 are obvious from (6.4.5) or (6.4.7).

For the delay case, we can use the identical forms. For any of the approxi-
mation methods in [58] or elsewhere for getting the Nh(·), Dh(·) in (1.10) that
yield locally consistency in the sense of (6.2.1), for ξ̂(0) ∈ Gh we can use the
forms

ph(ξ̂, x̃|α) = P{ξh
1 = x̃|ξ̄h

0 = ξ̂, uh
0 = α} =

Nh(b(ξ̂, α), a(ξ̂), x̃)

Dh(b(ξ̂, α), a(ξ̂))
,

∆th(ξ̂, α) =
h2

Dh(b(ξ̂, α), a(ξ̂))
.

(1.11)

In particular,

ph(ξ̄h
n, x̃|uh

n) = P{ξh
n+1 = x̃|ξ̄h

n, uh
n} =

Nh(b(ξ̄h
n, uh

n), a(ξ̄h
n), x̃)

Dh(b(ξ̄h
n, uh

n), a(ξ̄h
n))

. (1.12)

With the use of (1.11), local consistency in the sense of (6.2.1) implies the local
consistency (1.8). It is only the dependence on b(·), a(·), x̃, and h that matters,
no matter what the form of the memory segment ξ̂. The above discussion is
formalized by the following assumption. The assumption is not needed if local
consistency is otherwise assured.

A1.1. The transition probabilities and interpolation intervals are given in the
form (1.10) with the delay dependencies incorporated (yielding (1.11)), where
(1.10) is locally consistent for the no-delay case.3

A discounted cost function. Let Eh,uh

ξ̂
denote the expectation given initial

condition4 ξ̂ = ξ̄h
0 and control sequence uh = {uh

n, 0 ≤ n < ∞}. Define ∆zh
n

2 The form of T h(·) in (1.10) supposes that Sh is a grid with the same spacing in
each coordinate direction, so that h is real-valued. This is chosen for simplicity
in the development. For more general forms of Sh, the functions T h(·), Nh(·) and
Dh(·) might also depend on the current state x and the local spacing of the states.
But whatever they are, they are functions of the drift and diffusion functions. See
[58, Section 5.2]. With the delay-dependencies of these functions incorporated,
the resulting transition probabilities and interpolation interval would yield the
desired local consistency. All that is needed is local consistency.

3 The form is usually N(hb(x, α), a(x), x̃)/D(hb(x, α), a(x)) for some functions
N(·), D(·).

4 The approximation ξ̂ of the initial condition will depend on h in general.
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and ∆yh
n as above (6.2.3). An approximation to the discounted cost function

(3.4.3) for the chain is

Wh(ξ̂, uh) = Eh,uh

ξ̂

∞∑
n=0

e−βth
n
[
k(ξ̄h

n, uh
n)∆th(ξ̄h

n, uh
n) + q′∆yh

n

]
,

V h(ξ̂) = inf
uh

Wh(ξ̂, uh).
(1.13)

By Lemma 6.3.1 (which is [58, Theorem 11.1.3]), the costs are well defined.
Let yh(·) denote the continuous-time interpolation of {∆yh

n} with intervals
{∆thn}.

A “Markov” continuous-time interpolation. One continuous-time in-
terpolation, namely ξh(·), has already been defined. We will now define the
analog of the interpolation ψh(·) that was defined in Subsection 6.3.2. Let the
random variables {νn}, the interval ∆τh

n = νn∆thn, and τh
n =

∑n−1
i=0 ∆τh

n , be
defined as in the first paragraph of Subsection 6.3.2. Then define ψh(t) by
(6.3.4) or (6.3.8), using the intervals ∆τh

n , all based the processes ξh
n and ∆thn

of this chapter. Because the timescale of the ψh(·) uses the intervals ∆τh
n ,

and that of the memory segment ξ̄h
n uses the intervals ∆thn, the dynamical

equation for ψh(·) will be a little awkward. But keep in mind that this dy-
namical equation will be used only in the proofs of convergence and not for
the numerical computations. As for the no-delay case, the chains ξh

n are used
for the numerics, with whatever approximation to the path memory segment
is used.

Recall the definitions of the interpolations uh
τ (·), Bh

τ (·), rh
τ (·), and zh

τ (·), in
Subsection 6.3.2, and the definition dh

τ (s) = max{n : τh
n ≤ s} in (6.5.23).

Define the function qh
τ (s) = thdh

τ (s). Given interpolated time s in the scale
determined by the ∆τh

n , the function dh
τ (s) is the index of the process ξh

n

that gives ψh(s) in the sense that we have ψh(s) = ξh
dh

τ (s) = ξh(qh
τ (s)).

With this notation, the conditional drift rate of the process ψh(·) at time
s is bh(ξ̄h(qh

τ (s)), uh
τ (s)) (bh(·) was defined in (1.8)). Decomposing the process

ψh(·) into a compensator, martingale, and reflection term as in (6.3.8), and
using relaxed control terminology, leads to the representation

ψh(t) = ξh
0 +

∫ t

0

∫
Uh

bh(ξ̄h(qh
τ (s)), α)rh

τ (dα ds) + Bh
τ (t) + zh

τ (t), (1.14)

where ξh
0 = ξ̄h

0 (0) and Bh
τ (·) is a martingale with quadratic variation process

∫ t

0

ah(ξ̄h(qh
τ (s)))ds.

As noted below (6.3.8), there is a martingale wh(·) with quadratic variation
It and that converges weakly to a Wiener process such that
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Bh
τ (t) =

∫ t

0

σ(ξ̄h(qh
τ (s)))dwh(s) + εh(t)

where limh→0 E sups≤t |εh(s)|2 → 0 for each t < ∞
Modulo an asymptotically negligible error due to the “continuous time”

approximation of the discount factor, the cost function (1.13) can be written
as

Wh(ξ̂, uh) = Eh,uh

ξ̂

∫ ∞

0

∫
Uh

e−βt
[
k(ξ̄h(qh

τ (s)), α)rh
τ (dα ds) + q′dyh

τ (s)
]
.

(1.15)
The following theorem says that any method for solving the control prob-

lem for any locally consistent approximation will yield an approximation to
the value for the original model (1.5). The proof is in Section 5 of the next
chapter. The absorbing boundary case is dealt with in Theorem 1.3.

Theorem 1.1. Let ξh
n, ∆thn be locally consistent with the model (1.5) whose

initial condition is x̄(0), a continuous function, and with cost function (1.6)
and its approximation

Eh,uh

ξ̂

∞∑
n=0

e−βth
n
[
k(ξ̄h

n, uh
n)∆thn + q′∆yh

n

]
(1.16)

being used. Let ξ̄h
0 ∈ D(Gh; [−θ̄, 0]) be any piecewise-constant sequence that

converges to x̄(0) uniformly on [−θ̄, 0]. Assume (A3.1.1), (A3.1.2), (A3.2.1)–
(A3.2.3), and (A3.4.3). Then V h(ξ̄h

0 ) → V (x̄(0)) as h → 0.

7.1.3 Delay in the Path and Control

Now consider the model (relaxed control form) (1.2), with cost (1.4), where
both the path and control are delayed. As for the case where only the path is
delayed, one constructs an approximating chain {ξh

n, n ≥ 0} and interpolation
intervals {∆thn, n ≥ 0}. The initial data for (1.2) is x̄(0) = {x(s),−θ̄ ≤ s ≤
0} ∈ C(G; [−θ̄, 0]) and ū(0) = {u(s),−θ̄ ≤ s ≤ 0} ∈ L2(U ; [−θ̄, 0]), where the
control segment is needed due to the delay in the control. The control memory
segment for the approximating chain is slightly different. For the process (1.2),
either the segment {u(s), s ∈ [−θ̄, 0]} or the segment {u(s), s ∈ [−θ̄, 0)} will
do for the initial control data. But for the chain, the control at time 0, namely,
uh

0 , which is used to get ξh
1 , is to be determined at time 0, and should not

be given as part of the initial data. This fact accounts for our use of the
control segment on the half open [−θ̄, 0) as the initial data. Let û denote
the canonical value of the control memory segment on the half open interval.
With α denoting the canonical value of the current value of the control, we can
write terms such as b̄(ξ̂, û, α) without ambiguity, depending on the memory
segments and the current control value.
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Definitions of the control memory segments. In the remainder of this
section, we continue to use the full path memory segment ξ̄h

n from the previous
subsection. Given the initial control data ū(0), we need to approximate it for
use on the chain, and, analogously, obtain a control memory segment for each
step of the chain. In this subsection, we will use a form for the control memory
segment that is analogous to ξ̄h

n. It will usually be very costly in terms of the
required memory, but serves as a useful introduction. Alternative, and more
efficient, approximations will be discussed in the next chapter. The control
memory segment will be denoted by ūh

n, with canonical value û, and is defined
in terms of the continuous-time interpolation of the control process, as follows.
Let uh

n denote the control that is used on step n. An interpolation interval
∆th(ξ̂, û, α) will be defined in the local consistency condition (1.23). Redefine
∆thn = ∆th(ξ̄h

n, ūh
n, uh

n) and thn =
∑n−1

i=0 ∆thi , and define the interpolation uh(·)
of {uh

n} with intervals {∆thn}. Then define the full control memory segment
ūh

n = {uh(thn + θ), θ ∈ [−θ̄, 0)}. It is the segment of uh(·) on [thn − θ̄, thn).
Then (û, α) denotes the canonical value of the control on a closed interval
[t− θ̄, t] for any t. Let ūh

0 be any piecewise-constant function in D(Uh; [−θ̄, 0))
that converges to the function ū(0) in the L2-sense as h → 0 and extend the
definition of uh(·) to [−θ̄,∞).

Summarizing, in this section the memory state at time n of the approx-
imating chain and the associated dynamic program is ξ̄h

n, ūh
n, the value of

ξh(·) on the closed interval [thn − θ̄, thn], together with the segment of uh(·) on
[thn − θ̄, thn).

The distribution of ξh
n+1, given the initial data and {ξh

i , uh
i , i ≤ n}, will

depend only on the current memory segments ξ̄h
n, ūh

n, and the current control
uh

n, and not on n otherwise. Let Eh,α

ξ̂,û,n
denote the expectation given all data

to step n, and that ξ̄h
n = ξ̂, ūh

n = û, with control value α used at time n.
Keep in mind that if control value α is used at step n for the chain, then it is
used on [thn, thn+1) for the interpolation ξh(·). Letting rh(·) denote the relaxed
control representation of uh(·) and with the memory segment ūh

n being used,
we can write the drift term as

b̄(ξ̄h
n, ūh

n, uh
n) =

∫ 0

−θ̄

∫
Uh

b(ξ̄h
n, α, θ)rh,′(dα, thn + θ)µc(dθ). (1.17)

Example. Before proceeding with the general definition of local consistency
when the control is delayed, which is essentially that used in Chapter 6 and
in the previous subsection, let us consider a simple example. In (1.1), let

b(x̄(t), ū(t)) = b1(x̄(t), u(t − θ̄)) + b0(x̄(t), u(t)). (1.18)

Then the measure µc(·) is concentrated on the points −θ̄ and 0. The analog
of the first line of (1.8) will be

E
h,uh

n

ξ̄h
n,ūh

n,n
∆ξh

n =
[
b1(ξ̄h

n, u(thn − θ̄)) + b0(ξ̄h
n, uh

n)
]
∆thn + o(∆thn). (1.19)
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Notation. Recall the definition of r̃′(dα, t, θ) above (3.1.8) and in (4.4.2) and
its role in the development of the approximating models in Chapter 4. Analo-
gous definitions will be useful in the proofs of convergence in dealing with the
various approximations to the piecewise constant control memory segments,
as it will be the control memory segment at each t that is being approxi-
mated. For this purpose, define the relaxed control derivatives r̃h,′

τ (dα, t, θ)
and r̃h,′(dα, t, θ), for t ∈ [0,∞) and θ ∈ [−θ̄, 0], by

r̃h,′
τ (dα, t, θ) = rh,′(dα, τh

n + θ), for t ∈ [τh
n , τh

n+1),

r̃h,′(dα, t, θ) = rh,′(dα, thn + θ), for t ∈ [thn, thn+1).
(1.20)

Define the relaxed control derivative r̄h,′
n with values r̄h,′

n (dα, θ), for θ ∈ [−θ̄, 0),
by

r̄h,′
n (dα, θ) = rh,′(dα, thn + θ). (1.21)

The r̄h,′
n is a representation of the control memory segment in terms of

the derivative of its relaxed control representation, which we will find to
be very useful. Using (1.20) and the fact that r̃h,′

τ (dα, s, θ) is constant for
s ∈ [τh

n , τh
n+1), we can write

b̄(ξ̄h
n, ūh

n, uh
n)∆τh

n = b̄(ξ̄h
n, r̄h,′

n , uh
n)∆τh

n

=
∫ τh

n+1

τh
n

∫ 0

−θ̄

∫
Uh

b(ξ̄h
n, α, θ)r̃h,′

τ (dα, s, θ)µc(dθ)ds.
(1.22)

Equation (1.22) defines b̄(ξ̄h
n, r̄h,′

n , uh
n), and we will use this notation when

working in terms of relaxed controls.

The general definition of local consistency when the control is de-
layed. The local consistency condition for the chain is that there exists a
function ∆th(·) such that for ξ̂ = ξ̄h

n, with ξ̂(0) ∈ Gh, and û = ūh
n, α = uh

n,

Eh,α

ξ̂,û,n
∆ξh

n = b̄h(ξ̂, û, α)∆th(ξ̂, û, α) = b̄(ξ̂, û, α)∆th(ξ̂, û, α) + o(∆th(ξ̂, û, α)),

Eh,α

ξ̂,û,n
βh

n[βh
n]′ = ah(ξ̂, û, α)∆th(ξ̂, û, α) = a(ξ̂)∆th(ξ̂, û, α) + o(∆th(ξ̂, û, α)),

a(ξ̂) = σ(ξ̂)σ′(ξ̂),

supn,ω |ξh
n+1 − ξh

n|
h→ 0, supξ̂,û,α ∆th(ξ̂, û, α) h→ 0.

(1.23)
The relations in (1.23) define the functions bh(·) and ah(·). The reflecting
boundary is treated exactly as it was when only the path was delayed, using
transition probabilities satisfying (6.2.2).5

5 Recall that ∆th
n = ∆th(ξ̄h

n, ūh
n, uh

n) when the control is delayed.
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The transition probabilities. The following analogs of (1.11) and (1.12)
ensure the local consistency, if the same functions Nh(·) and Dh(·) are used.
As for (1.11) and (1.12), it is only the dependence on b(·), a(·), x̃, and h that
matters, no matter what the form of the memory segments ξ̂, û.

ph(ξ̂, û, x̃|α) = P{ξh
1 = x̃|ξ̄h

0 = ξ̂, ūh
0 = û, uh

0 = α} =
Nh(b̄(ξ̂, û, α), a(ξ̂), x̃)

Dh(b̄(ξ̂, û, α), a(ξ̂))
,

∆th(ξ̂, û, α) = Th(b̄(ξ̂, û, α), a(ξ̂)) =
h2

Dh(b̄(ξ̂, û, α), a(ξ̂))
,

(1.24)
and

ph(ξ̄h
n, ūh

n, x̃|uh
n) = P{ξh

n+1 = x̃|ξ̄h
n, ūh

n, uh
n} =

Nh(b̄(ξ̄h
n, ūh

n, uh
n), a(ξ̄h

n), x̃)
Dh(b̄(ξ̄h

n, ūh
n, uh

n), a(ξ̄h
n))

.

The notation ph(ξ̄h
n, r̄h,′

n , x̃|uh
n) will also be used for ph(ξ̄h

n, ūh
n, x̃|uh

n). We for-
malize the above discussion as follows. The assumption is not needed if local
consistency is otherwise ensured.

A1.2. The transition probabilities and interpolation intervals are given in the
form (1.24), where (1.10) is locally consistent for the nondelay case.

Continuous-time interpolations. The continuous-time interpolations are
defined as for the case where only the path is delayed, dealt with in the
previous subsection. We will write out the expressions for the interpolation
ψh(·) and the associated discounted cost that are analogous to (1.14) and
(1.15). Extend the definition of uh

τ (t) to the interval [−θ̄,∞) by letting it equal
ūh

0 (θ) for θ ∈ [−θ̄, 0), and let rh
τ (·) denote the relaxed control representation of

this extended uh
τ (·). Recalling the definition (1.20), for ξh

0 ∈ Gh the continuous
time interpolation (1.14) is replaced by

ψh(t) = ξh
0 +

∫ 0

−θ̄

[∫ t

0

∫
Uh

bh(ξ̄h(qh
τ (s)), α, θ)r̃h,′

τ (dα, s, θ)ds

]
µc(dθ)

+Bh
τ (t) + zh

τ (t).
(1.25)

Let Eh,uh

ξ̂,û
denote the expectation under initial data ξ̄h

0 = ξ̂ and control se-

quence uh = {uh
n, n ≥ 0}, with initial control segment (on [−θ̄, 0)) being û.

The analog of the cost function (1.13) is

Wh(ξ̂, û, uh) = Eh,uh

ξ̂,û

∞∑
n=0

e−βth
n
[
k̄(ξ̄h

n, ūh
n, uh

n)∆thn + q′∆yh
n

]
,

V h(ξ̂, û) = inf
uh

Wh(ξ̂, û, uh),
(1.26)

where k̄(·) is defined analogously to b̄(·) in (1.17).
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In integral and relaxed control form, and modulo an asymptotically negli-
gible error due to the approximation of the discount factor, (1.26) equals

Wh(ξ̂, û, uh)

= Eh,uh

ξ̂,û

∫ 0

−θ̄

µc(dθ)
[∫ ∞

0

dt

∫
Uh

e−βtk(ξ̄h(qh
τ (t)), α, θ)r̃h,′

τ (dα, t, θ)
]

+Eh,uh

ξ̂,û

∫ ∞

0

e−βtq′dyh
τ (t).

(1.27)
The following convergence theorem, whose proof is in Section 5 of the

next chapter, says that any method for solving the control problem for any
locally consistent approximation will yield an approximation to the value for
the original model (1.1) or (1.2).

Theorem 1.2. Let ξh
n, ∆thn be locally consistent with (1.1) or (1.2) in the

sense of (1.23), with initial data x̄(0), a continuous function on [−θ̄, 0], and
ū(0) ∈ L2(U ; [−θ̄, 0)). The cost function for (1.2) is (1.4) and that for the ap-
proximating chain is (1.26). Let ξ̄h

0 ∈ D(Gh; [−θ̄, 0]) be piecewise-constant, and
converge to x̄(0) uniformly on [−θ̄, 0]. Let ūh

0 ∈ D(Uh; [−θ̄, 0)) be piecewise-
constant and converge to ū(0) in the sense of L2. Assume (A3.1.2), (A3.1.3),
and (A3.2.1)–(A3.2.3), (A3.4.3). Then V h(ξ̄h

0 , ūh
0 ) → V (x̄(0), ū(0)) as h → 0.

7.1.4 Absorbing Boundaries and Other Cost Functions

The next theorem covers the case where the boundary is absorbing rather
than reflecting. The proof will be discussed in Section 5 of the next chapter.

Theorem 1.3. Assume the conditions of either Theorems 1.1 or 1.2, except
those on the reflection directions. Use the cost function (3.4.1) if the control
is not delayed and (3.4.2) if the control is delayed. Assume (A3.4.1) and
(A3.4.2). For the chain let Nh

G denote the first time that it leaves G0, the
interior of G, and use either the cost function

Wh(ξ̂, uh) = Eh,uh

ξ̂

⎡
⎣Nh

G−1∑
n=0

e−βth
nk(ξ̄h

n, uh
n)∆th(ξ̄h

n, uh
n) + e−βNh

Gg0(ξh
Nh

G
)

⎤
⎦ ,

(1.28)
or

Wh(ξ̂, û, uh)

= Eh,uh

ξ̂,û

⎡
⎣Nh

G−1∑
n=0

e−βth
n k̄(ξ̄h

n, ūh
n, uh

n)∆th(ξ̄h
n, ūh

n, uh
n) + e−βNh

Gg0(ξh
Nh

G
)

⎤
⎦ ,

(1.29)
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according to the case. Then, according to the case, as h → 0, V h(ξ̄h
0 ) →

V (x̄(0)) or V h(ξ̄h
0 , ūh

0 ) → V (x̄(0), ū(0)).

Optimal stopping. Suppose that we have the option of stopping before G0

is exited. Then replace Nh
G by the minimum of Nh

G and the stopping time.
The theorem continues to hold. Similarly, Theorems 1.1 and 1.2 hold if we
allow stopping with a continuous stopping cost. See the development of the
optimal stopping problem in [58].

7.1.5 Approximations to the Memory Segments

In applications, keeping the full computed memory segments ξ̄h
n, ūh

n (or r̄h,′
n )

might be too costly in terms of memory. Specific approximations based on
truncations and discretizations will be discussed in the next chapter, and an
approximation if only the path is delayed is discussed in Section 3. Consid-
erable flexibility is possible in the modeling of the memory segments. It is
preferable to use relaxed control notation for the control memory segments,
and this will be done in terms of its derivative. So, following the notation for
the control memory segment in (1.21), when the full memory segments6 are
used, let us rewrite the equation below (1.24):

ph(ξ̄h
n, r̄h,′

n , x̃|uh
n) =

Nh(b̄(ξ̄h
n, r̄h,′

n , uh
n), a(ξ̄h

n), x̃)

Dh(b̄(ξ̄h
n, r̄h,′

n , uh
n), a(ξ̄h

n))
, (1.30a)

where b̄(ξ̄h
n, r̄h,′

n , uh
n) is defined in (1.22).

Approximations: Definitions. The approximations to the full memory seg-
ments (ξ̄h

n, r̄h,′
n ) will be denoted by (ξ̄h,κ

a,n , r̄h,κ,′
a,n ), where, for θ ∈ [−θ̄, 0), r̄h,κ,′

a,n (θ)
is a probability measure on Uh, and ξ̄h,κ

a,n(θ) is Gh-valued for θ ∈ [−θ̄, 0), and
ξ̄h,κ
a,n(0) will have values either in Gh or in the set of reflecting states ∂G+

h .
The variable κ → 0 is a parameter of the approximation. It will also be used
to index the associated chain, control, interpolation interval, and so forth,
and in the applications will generally take the values δ or (δ0, δ), analogously
to the parameters of the approximations used in Chapter 4. The subscript
“a” denotes the type of memory segment approximation, analogously to the
usage with the approximations in Chapter 4 (e.g., random, periodic, periodic-
Erlang), and, unless noted otherwise, it will be used to index only the ap-
proximating memory segments and the relaxed control representation of the
approximating control memory segment.

With these approximations used, the true transition probabilities are
6 The full memory segments at iterate n are the interpolations (with intervals
{∆th

n}) of the paths and control, resp., over the intervals [th
n−θ̄, th

n] and [th
n−θ̄, th

n),
resp.
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ph(ξ̄h,κ
a,n , r̄h,κ,′

a,n , x̃|α = uh,κ
n ) =

Nh(b̄(ξ̄h,κ
a,n , r̄h,κ,′

a,n , uh,κ
n ), a(ξ̄h,κ

a,n), x̃)

Dh(b̄(ξ̄h,κ
a,n , r̄h,κ,′

a,n , uh,κ
n ), a(ξ̄h,κ

a,n))
, (1.30b)

where b̄(ξ̄h,κ
a,n , r̄h,κ,′

a,n , uh,κ
n ) is defined by (1.22) with (ξ̄h,κ

a,n , r̄h,κ,′
a,n , uh,κ

n ) replacing
(ξ̄h

n, r̄h,′
n , uh

n). Define ∆th,κ
n = ∆th(ξ̄h,κ

a,n , ūh,κ
a,n, uh,κ

n ), th,κ
n =

∑n−1
i=0 ∆th,κ

i , with
analogous definitions for ∆τh,κ

n and τh,κ
n .

For whatever the type “a” of the approximation, let the relaxed control
that is defined by the controls {uh,κ

n } with interpolation intervals {∆τh,κ
n } be

denoted by rh,κ
τ (·), and let that defined by the interpolation with intervals

{∆th,κ
n } be denoted by rh,κ(·). Define the following function of α, t and θ,

where θ ∈ [−θ̄, 0):

r̄h,κ,′
n (dα, θ) = rh,κ,′(dα, th,κ

n + θ). (1.31a)

r̄h,κ,′
n (·) is the full memory segment defined by the actual realized control on

the interval [th,κ
n − θ̄, th,κ

n ). Keep in mind that it is not necessarily equal to
the approximating memory segment r̄h,κ,′

a,n (·), which is the one that is actually
used in the dynamics and cost function at step n of the chain when the
approximation type is “a.”

The following functions of α, t and θ, where θ ∈ [−θ̄, 0], will be useful in
analyzing the approximations and their convergence:

r̃h,κ,′
a (dα, t, θ) = r̄h,κ,′

a,n (dα, θ), for θ ∈ [−θ̄, 0)

r̃h,κ,′
a (dα, t, 0) = I{uh,κ

n ∈dα},

}
for t ∈ [th,κ

n , th,κ
n+1),

r̃h,κ,′
a,τ (dα, t, θ) = r̄h,κ,′

a,n (dα, θ), for θ ∈ [−θ̄, 0)

r̃h,κ,′
a,τ (dα, t, 0) = I{uh,κ

n ∈dα},

}
for t ∈ [τh,κ

n , τh,κ
n+1).

(1.31b)
We will always use the definitions:

ξ̄h,κ
a (·) is the interpolation of {ξ̄h,κ

a,n}, with intervals {∆th,κ
n },

ξ̄h,κ
n is the full memory path segment {ξh,κ(th,κ

n + θ), θ ∈ [−θ̄, 0]}.
(1.32)

The interpolated process ψh,κ(·) with the memory segment approx-
imation. With the above definitions, we can write the analog of the interpo-
lation (1.14) with the approximating memory segments used as

ψh,κ(t) = ξh
0 +

∫ 0

−θ̄

[∫ t

0

∫
Uh

bh(ξ̄h,κ
a (qh,κ

τ (s)), α, θ)r̃h,κ,′
a,τ (dα, s, θ)

]
µc(dθ)ds

+Bh,κ
τ (t) + zh,κ

τ (t),
(1.33)

where the martingale Bh,κ
τ (·) has quadratic variation process
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0

ah(ξ̄h,κ
a (qh,κ

τ (s)))ds.

General assumptions on the approximating memory segments and a
convergence theorem. In subsequent sections and in Chapter 8, particular
approximations will be proposed. But for maximum usefulness and simplicity
of the proofs, it is convenient to state a convergence theorem in terms of some
general properties. Suppose that

lim
h→0

sup
control

sup
n

E sup
−θ̄≤θ≤0

∣∣ξ̄h,κ
a,n(θ) − ξ̄h,κ

n (θ)
∣∣ = 0 (1.34)

and (note that the upper limit of integration is 0−)

sup
control

sup
n

E

∣∣∣∣
∫ 0−

−θ̄

∫
Uh

f(α, θ)
[
rh,κ,′(dα, thn + θ) − r̄h,κ,′

a,n (dα, θ)
]
µc(dθ)

∣∣∣∣→ 0

(1.35)
for each bounded and continuous real-valued function f(·), as h → 0 and
κ → 0. Then, the approximations and the full memory segments are close for
small κ and h, and the drift rate at iterate n of the chain is approximated as
follows:

Drift rate under the approximating memory segments =∫ 0−

−θ̄

∫
Uh

b(ξ̄h,κ
a,n , α, θ)r̄h,κ,′

a,n (dα, θ)µc(dθ) + b(ξ̄h,κ
a,n , uh,κ

n , 0)µc({0})

≈
∫ 0−

−θ̄

∫
Uh

b(ξ̄h,κ
n , α, θ)r̄h,κ,′

n (dα, θ)µc(dθ) + b(ξ̄h,κ
n , uh,κ

n , 0)µc({0}).

(1.36)
Condition (1.35) is quite strong because it concerns the behavior at each

iterate. Consider the following weaker condition, which allows us to consider
averages of the differences between the full control memory segment and its
approximations over a finite time interval. For bounded and continuous f(·),
replace (1.35) by the assumption that

E

∣∣∣∣∣
∫ t+∆

t

ds

∫ 0

−θ̄

∫
Uh

f(s, α, θ)
[
rh,κ,′(dα, s + θ) − r̃h,κ,′

a (dα, s, θ)
]
µc(dθ)

∣∣∣∣∣→ 0

(1.37)
as h → 0, uniformly in the control and in t for each ∆ > 0. Using this, (1.34),
and the timescale equivalences in Theorem 3.1 will allow us to asymptotically
approximate the drift term in (1.33) by∫ 0

−θ̄

[∫ t

0

∫
Uh

bh(ξ̄h,κ(qh,κ
τ (s)), α, θ)rh,κ,′

τ (dα, s + θ)
]

µc(dθ)ds. (1.38)

Let V h,κ(x̂, û) denote the optimal cost function for the model modified as
above, using approximating memory segments ξ̄h,κ

a,n and r̄h,κ,′
a,n . Then we have

the following result.
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Theorem 1.4. Assume the conditions of Theorems 1.1, 1.2, or 1.3, but with
the use of memory segment approximations ξ̄h,κ

a,n and r̄h,κ,′
a,n satisfying (1.34)

and (1.37), resp. Then V h,κ(ξ̄h
0 , ūh

0 ) → V (x̄(0), ū(0)) as h → 0 and then κ → 0.

7.2 Computational Procedures

7.2.1 Delay in the Path Only: State Representations and the
Bellman Equation

Theorem 1.1 gave sufficient conditions for a numerical approximation to the
optimal control problem for system (1.5) and cost function (1.6) to converge
to the optimal value as the approximation parameter h goes to zero. But it
does not give any hint as to how the approximation might be constructed
so that the numerical procedure is actually reasonable from a computational
perspective. Suppose that the process ξh

n is locally consistent and the transi-
tion probabilities satisfy (1.11). Because the transition probabilities in (1.11)
depend on ξ̂, a key problem is that the state space must include the informa-
tion that is needed to define ξ̂, and this might require considerable memory.
The effective use of dynamic programming methods requires that the system
(i.e., the memory) state be embedded into a finite-state Markov chain. The
size and structure of this chain determines the numerical feasibility of the
algorithm, and this is the subject of the rest of this section. The next section
and Chapter 8 show some advantages of the implicit approximation method
as well as of methods motivated by it. Keep in mind that the reflection direc-
tions depend only on the reflecting point, as the reflection directions do not
depend on delayed values and are not controlled.

A first and crude Markov chain representation. We will begin the
discussion of representations and approximations of the path memory segment
with a rather crude form. Until further notice, continue to use the interpolation
ξh(·) defined above (1.7a). Let us start with the memory state at step n being
ξ̄h
n, defined in (1.7b), which we recall is a piecewise-constant function with

ξ̄h
n(θ) = ξh(thn + θ), for θ ∈ [−θ̄, 0]. All of its values must be in Gh, except

possibly the most recent one, ξ̄h
n(0) = ξh

n, which can take values in either Gh

or ∂G+
h .

The ξ̄h
n can be represented in terms of a finite-state Markov process as

follows. Let ∆
h

= infα,ξ̂ ∆th(ξ̂, α), where α ∈ Uh and ξ̂ ∈ D(Gh; [−θ̄, 0]).

Suppose (w.l.o.g.) that θ̄/∆
h

= Kh is an integer. The interpolated time inter-
val [thn − θ̄, thn] is covered by at most Kh intervals of length ∆̄h. The reflection
states do not appear in the construction of ξ̄h

n(θ), for θ < 0, but it is possible
that ξ̄h

n(0) ∈ ∂G+
h . Suppose that ξh

n ∈ Gh. Let ξh
n,i, i > 0, denote the ith non-

reflection state before step n, and ∆thn,i the associated interpolation interval.
Then we can represent ξ̄h

n in terms of {(ξh
n,Kh , ∆thn,Kh), . . . , (ξh

n,1, ∆thn,1), ξ
h
n}.
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If ξh
n �∈ Gh, so that it is a reflecting state, then to compute the transition prob-

ability to the next state the values of the path before step n are not needed
and the above vector is still a complete description of the needed memory.

This new representation clearly evolves as a (2Kh + 1)-dimensional con-
trolled Markov chain, although it will usually be much too complicated to be
of any practical use for computation. If the interpolation interval ∆th(ξ̂, α) is
not constant, then the construction of the ξ̄h

n requires that we keep a record
of the values of both the ξh

i , ∆thi , for the indices i that contribute to ξ̄h
n. The

use of constant interpolation intervals simplifies this problem. Consider the
special case where ∆th(ξ̂, α) is a constant. This would be the case if σ(·) were
a constant and an approximation analogous to that in the example in Section
6.4 were used. Then the vector {(ξh

n,Kh , . . . , ξh
n,1, ξ

h
n} evolves as a Markov pro-

cess and ξ̄h
n is a piecewise-constant and right-continuous (except possibly at

θ = 0) interpolation of these values, with ξ̄h
n(0) = ξh

n. We can identify ξ̄h
n with

this vector without ambiguity.

Transforming to a constant interpolation interval. If ∆th(ξ̂, α) is not
constant, then (6.2.7) showed how to transform the transition probabilities to
yield a chain with a constant interpolation interval for the no-delay case, and
we now write the analogous equations for the delay case. Let p̄h(·) denote the
transition probabilities for the constant interpolation interval case and use
the form (1.11) for ph(ξ̂, x̃|α). Suppose (w.l.o.g.) that a state does not transit
to itself in that ph(ξ̂, ξ̂(0)|α) = 0. To get the transition probabilities p̄h(·) for
the delay case with the constant interpolation interval ∆̄h, use the analog of
(6.2.7):

p̄h(ξ̂, x̃|α) = ph(ξ̂, x̃|α)
(
1 − p̄h(ξ̂, ξ̂(0)|α)

)
p̄h(ξ̂, ξ̂(0)|α) = 1 − ∆̄h

∆th(ξ̂, α)
.

(2.1)

A one-dimensional example with a constant interpolation interval.
Let ∆th(ξ̂, α) = ∆̄h, so that the interpolation interval is constant. Detailed
examination of the memory vector suggests various ways of simplifying the
state space. To simplify the presentation, until further notice we let x(t) be
one-dimensional with G = [0, B], where B > 0 is assumed to be an integral
multiple of the approximation parameter h. We assume that nonreflection
states move only to their nearest neighbors. Then Gh = {0, h, . . . , B} and the
reflection states are {−h, B + h}.

For ξ̂(0) ∈ Gh, the Bellman equation for the process defined by this chain
with cost (1.13) can be written as

V h(ξ̂) = inf
α∈Uh

[
e−β∆̄h ∑

±
ph(ξ̂, ξ̂(0) ± h|α)V h(ŷ±) + k(ξ̂, α)∆̄h

]
. (2.2a)
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The terms ŷ± denote the functions on [−θ̄, 0] that represent the memory
segment at the next step, where the state of the chain is ξh

1 = ξ̂(0) ± h. The
values are obtained as follows:

ŷ±(θ) = ξ̂(θ + ∆̄h), −θ̄ ≤ θ < −∆̄h,

ŷ±(θ) = ξ̂(0), −∆̂h ≤ θ < 0, ŷ±(0) = ξ̂(0) ± h.

If ξ̂(0) is a reflecting state, then there is no shift and only the value ξ̂(0)
changes. It becomes ξh

1 . In particular, if ξ̂(0) = −h, then ∆th(ξ̂, α) = 0 and

V h(ξ̂) = V h(ξ̂+) + q1h, (2.2b)

where ξ̂+(θ) equals ξ̂(θ), except at θ = 0 where ξ̂+(0) = 0. If ξ̂(0) = B + h,
then ∆th(ξ̂, α) = 0 and

V h(ξ̂) = V h(ξ̂−) + q2h, (2.2c)

where ξ̂−(θ) = ξ̂(θ), except for θ = 0, where ξ̂−(0) = B. Owing to the
contraction due to the discounting, there is a unique solution to (2.2).

More simply, as noted above we can represent ξ̄h
n unambiguously as

ξ̄h
n = (ξh

n,Kh , . . . , ξh
n,1, ξ

h
n).

If ξh
n ∈ Gh, then we can represent ξ̄h

n+1 unambiguously as

ξ̄h
n+1 = (ξh

n,Kh−1, . . . , ξ
h
n,1, ξ

h
n, ξh

n+1).

If ξh
n = −h, then we can represent ξ̄h

n+1 unambiguously as

ξ̄h
n+1 = (ξh

n,Kh , · · · , ξh
n,1, 0),

and analogously if ξh
n = B+h. With this representation, the maximum number

of possible values can be very large, up to (B/h + 1)Kh

(B/h + 3) where,
typically, Kh = O(1/h2).

Simplifying the state representation by using differences. The repre-
sentation that is used for the memory segment in the above one-dimensional
example requires a state space of enormous size. This can be reduced by using
the standard data compression method of using only the current ξh

n and the
differences between successive values. This gives the representation

ξ̄h
n = (ch

n,Kh , · · · , ch
n,1, ξ

h
n),

where
ch
n,1 = ξh

n,1 − ξh
n

ch
n,i = ξh

n,i − ξh
n,i−1, for 1 < i ≤ Kh.

(2.3)
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If the path can move only its nearest neighbors, then the ch
n,i take at

most two values, and the number of values in the state space is reduced to
2Kh

(B/h + 3). The two values and the reconstruction of the ξh
n,i from them

are easily determined by an iterative procedure. For example, if ξh
n = −h, then

ξh
n,1 = 0. If ξh

n = 0, then ξh
n,1 ∈ {0, h}. If ξh

n is not a reflecting or boundary
value then ξh

n,1 = ξh
n−1 = ξh

n ±h. If ξh
n,i = 0, then ξh

n,i−1 ∈ {0, h}. If ξh
n,i is not

a boundary value (it cannot be a reflecting state), then ξh
n,i−1 = ξh

n,i ± h, and
so forth.

If ∆th(ξ̂, α) is not constant, so that we need to use (2.1) to transform
the transition probabilities, we then have the possibility of transitions from a
state to itself, since p̄h(ξ̂, ξ̂(0)|α) might not now be zero. Because ξh

n+1 − ξh
n ∈

{−h, 0, h}, each of the ch
n,i can take as many as three values and we have at

most (B/h+3)3Kh

points in the state space. Theorem 1.1 holds. Keep in mind
that the memory state at time n + 1 must be computable from the memory
state at time n and the new value ξh

n+1. The use of differences reduces the
memory requirements, but at the price of increased computation. It would
be worthwhile to evaluate other data coding and compression schemes, even
those with a small loss of information.

The approaches in Section 3 and in the next chapter use fewer intervals to
cover [−θ̄, 0] and have the promise of being more efficient in terms of mem-
ory requirements as they use approximations to the path over interpolation
intervals that are larger than ∆̄h.

7.2.2 Delay in Both Path and Control

Now suppose that both the control and the path are delayed, with the max-
imum delay being θ̄ for each. The memory requirements can be greatly in-
creased. In this subsection, we suppose that ∆thn = ∆̄h, a constant, and give a
representation of the memory segment of the control process that is an analog
of the representation that was used for the path in the previous subsection.
The general case will be dealt with in the next chapter.

For illustrative purposes, let us continue to work with a one-dimensional
example and the notation of the previous subsection. Let uh

n,i denote the
control action that was used in the ith no-reflection step before step n. Let
ph(ξ̂, û; x̃|α) denote the probability P{ξh

1 = x̃|ξ̄h
0 = ξ̂, ūh

0 = û, uh
0 = α}. Anal-

ogously to what was done in the previous subsection, the memory variables
can be embedded into a Markov process, with values at time n being{

(ξh
n,Kh , uh

n,Kh), . . . , (ξh
n,1, u

h
n,1), ξ

h
n

}
.

The analog of (2.2a) with cost function (1.29) is, for ξ̂(0) ∈ Gh,

V h(ξ̂, û) = inf
α∈Uh

[
e−β∆̄h ∑

±
ph(ξ̂, û; ξ̂(0) ± h|α)V h(ŷ±, ûα) + k̄(ξ̂, û, α)∆̄h

]
,

(2.4)



7.2 Computational Procedures 179

where ŷ± denotes the new “path memory sections” defined below (2.2a). The
new “control memory segment” depends on the current choice of control,
namely α. The interpolated form is ûα, defined by

ûα(θ) = û(θ + ∆̄h), −θ̄ ≤ θ < −∆̄h,

ûα(θ) = α, −∆̄h ≤ θ < 0.

It can be unambiguously represented in the form

ûα =
(
uh

n,Kh−1, . . . , u
h
n,1, α

)
.

The reflecting states are treated as for the no-delay case. Because of the con-
traction due to the discounting, there is a unique solution to (2.4).

We can use the more efficient representation (2.3) for the path variable.
However, the total memory requirements with this approach would be large,
unless Uh itself can be approximated by only a few values. Suppose that
U = Uh consists of only the two points {0, 1}. Then the number of points
needed to represent the control memory segment is 2Kh

, comparable to what
was needed for the one-dimensional problem of the previous subsection where
only the path was delayed. If only the control were delayed, then this crude
representation for the control memory would be more acceptable.

The dynamics depend on delayed values of the control, but not the
current value. In this case, ph(ξ̂, û; x̃|α) does not depend on the current
control choice α, and (2.4) simplifies to

V h(ξ̂, û) = inf
α∈Uh

[
e−β∆̄h ∑

±
ph(ξ̂, û; ξ̂(0) ± h)V h(ŷ±, ûα) + k̄(ξ̂, û, α)∆̄h

]
.

(2.5)

7.2.3 A Comment on Higher-Dimensional Problems

The discussion in the previous subsection concentrated on one-dimensional
models. The representations of the memory all extend to higher-dimensional
problems, but the required memory grows exponentially in the dimension.
When the path only is delayed, there are representations that are analogous
to (2.3). Consider a two-dimensional problem in a box [0, B1] × [0, B2], with
the same path delay in each coordinate, no control delay, and discretization
level h in each coordinate. The ξh

n in (2.3) is replaced by vector containing the
current two-dimensional value of the chain. The difference ci = ξh

n,i − ξh
n,i−1

is now a two-dimensional vector. The values can be computed iteratively, as
for the one-dimensional case, but the somewhat boring details will not be
presented here.
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7.3 The Implicit Numerical Approximation: Path
Delayed

The implicit method of constructing the approximating chain that was intro-
duced in Section 6.5 can play an important role in reducing the memory re-
quirements and state space size. It also serves as the basis of a variety of other
useful approximations with memory requirements that are less than what was
needed in Section 2.7 The equations (6.5.6) provided a simple way of getting
the transition probabilities and interpolation interval for the implicit approxi-
mation method directly from those for the explicit approximation method for
the no-delay problem. The approach is the same for the problem with delays.
In this section, we concentrate on the model where only the path is delayed.
Further developments are in the next chapter.

Let δ > 0 be the discretization interval for the time variable, with h2/δ → 0
as h → 0, δ → 0. As in Section 6.5, let ξh,δ

n denote the state process for
the spatial component, φh,δ

n that for the time variable, and define ζh,δ
n =

(φh,δ
n , ξh,δ

n ). To get the transition probabilities, one starts with the delay form
of (6.5.6), where the ph(·) are defined as in Section 1.

7.3.1 Local Consistency and the Memory Segment

Transition probabilities. In this section, let ξ̄h,δ
r,n denote the path memory

segment that is used at iterate n for the chain. It will replace the ξ̄h
n that was

used in Sections 1 and 2 and will be defined precisely in (3.8) after defining
the transition probabilities and interpolations. As for the method of Sections 1
and 2, it is a function on [−θ̄, 0] with the value at θ = 0 being ξ̄h,δ

r,n(0) = ξh,δ
n .

The canonical value of ξ̄h,δ
r,n is again denoted by ξ̂. The subscript r is used

owing to the relationship with the random delay approximation of (4.2.7).
With the implicit approximation method, there are several possibilities for
the interpolation that defines the memory segment, and the choice affects the
computational complexity.

Let ph,δ(ξ̂, iδ; x̃, iδ|α) denote the probability that ξh,δ
n+1 = x̃ and that

φh,δ
n+1 = iδ, given all past data and ξ̄h,δ

r,n = ξ̂, φh,δ
n = iδ, uh,δ

n = α (i.e., the
time variable is not advancing). Let ph,δ(ξ̂, iδ; ξ̂(0), iδ + δ|α) denote the prob-
ability that ξh,δ

n+1 = ξh,δ
n and φh,δ

n+1 = iδ + δ, given all past data and the values
uh,δ

n = α, and ξ̄h,δ
r,n = ξ̂, φh,δ

n = iδ, with ξ̂(0) = ξh,δ
n (i.e., the time variable is

advancing, and the spatial state does not change). These probabilities depend
on the past only via the value of the current path memory segment ξ̂.
7 Since we do not know the rate of convergence as a function of the parameters of

the various approximations, this assertion is not quantifiable at the present time,
except by computations and simulations for selected problems.
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Now, adapting the procedure that led to (6.5.6) to the delay case yields the
transition probabilities and interpolation intervals ∆th,δ(ξ̂, α) for the ζh,δ

n =
(φh,δ

n , ξh,δ
n ) process in terms of those for the ξh

n process as:

ph,δ
(
ξ̂, iδ; x̃, iδ

∣∣α) = ph
(
ξ̂, x̃
∣∣α)(1 − ph,δ

(
ξ̂, iδ; ξ̂(0), iδ + δ

∣∣α))
ph,δ

(
ξ̂, iδ; ξ̂(0), iδ + δ

∣∣α) =
∆th(ξ̂, α)

∆th(ξ̂, α) + δ
,

(3.1)

∆th,δ(ξ̂, α) =
δ∆th(ξ̂, α)

∆th(ξ̂, α) + δ
. (3.2)

Redefine

∆th,δ
n = ∆th,δ(ξ̄h

n, uh
n), th,δ

n =
n−1∑
i=0

∆th,δ
i . (3.3)

An alternative form of the implicit process. An alternative construction
allows both the spatial and time variable to change simultaneously. Then
the transition probabilities for the spatial component is just (1.11), (1.12),
the conditional probability that time advances at step n is just ∆th(ξ̂, α)/δ,

and the interpolation interval is ∆th(ξ̂, α). This procedure is equivalent to
reindexing the process determined by (3.1) by omitting the indices at which
the time variable advances. The corresponding spatial path is that of the
explicit procedure. This variation will be useful in Chapter 8.

Local consistency and dynamical representations. Define ∆ξh,δ
n =

ξh,δ
n+1 − ξh,δ

n and the martingale differences

βh,δ
n =

[
∆ξh,δ

n − Eh,δ
n ∆ξh,δ

n

]
I{ξh,δ

n ∈Gh},

βh,δ
0,n = (φh,δ

n+1 − φh,δ
n ) − Eh,δ

n (φh,δ
n+1 − φh,δ

n ),

where Eh,δ
n is the expectation conditioned on the data to step n. Let Eh,δ,α

ξ̂,n

denote the expectation conditioned on the data to step n with uh,δ
n = α and

ξ̄h,δ
r,n = ξ̂. Then, for ξh,δ

n ∈ Gh, the definitions (3.1), (3.2), and (1.8) yield the
analog of (6.5.7):

Eh,δ,α

ξ̂,n
∆ξh,δ

n = bh(ξ̂, α)∆th,δ(ξ̂, α) = b(ξ̂, α)∆th,δ(ξ̂, α) + o(∆th,δ(ξ̂, α)),

Eh,δ,α

ξ̂,n
βh,δ

n [βh,δ
n ]′ = ah(ξ̂)∆th,δ(ξ̂, α) = a(ξ̂)∆th,δ(ξ̂, α) + o(∆th,δ(ξ̂, α)),

Eh,δ,α

ξ̂,n

[
φh,δ

n+1 − φh,δ
n

]
= ∆th,δ

n .

(3.4)
The reflecting states are dealt with as in Section 1. The use of the process ζh,δ

n

leads to some intriguing possibilities for efficient representation of the memory
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data for the delay problem. Note that either the spatial variable ξh,δ
n changes

or the time variable φh,δ
n advances at each iteration, but not both. There are

several choices for the timescale of the continuous-time interpolations. We
will start by using the ∆th,δ

n defined in (3.3) as the interpolation intervals,
and construct ξh,δ(·). Then we will define an interpolation with which it will
be convenient to define the memory segment ξ̄h,δ

r,n .
Let ∆zh,δ

n denote the reflection term at step n, with components ∆yh,δ
i,n .

Recall the definition of the time dh,δ(·) given in (6.5.23). Let ξh,δ(·) and φh,δ(·)
denote the continuous-time interpolations of the {ξh,δ

n } and {φh,δ
n }, resp., with

the intervals {∆th,δ
n } when the path memory segments {ξ̄h,δ

r,n} are used. We
always define φh,δ

0 = 0. Then we can write

ξh,δ
n+1 = ξh,δ

n + bh(ξ̄h,δ
r,n , uh,δ

n )∆th,δ
n + βh,δ

n + ∆zh,δ
n , (3.5)

ξh,δ(t) = ξh,δ
0 +

dh,δ(t)−1∑
i=0

bh(ξ̄h,δ
r,i , uh,δ

i )∆th,δ
i +

dh,δ(t)−1∑
i=0

βh,δ
i +

dh,δ(t)−1∑
i=0

∆zh,δ
i ,

(3.6)
φh,δ

n+1 = φh,δ
n + ∆th,δ

n + βh,δ
0,n. (3.7)

Interpolations using φh,δ(·) as the timescale. Definition of the
memory segment ξ̄h,δ

r,n. In analogy to the definition (1.7a), define ξ̄h,δ
n =

{ξh,δ(th,δ
n + θ), θ ∈ [−θ̄, 0]}. If ξ̄h,δ

r,n were simply a segment of the interpolated
process ξh,δ(·), say ξ̄h,δ

n , then the issues concerning the number of required
values of the memory variable that arose in Section 2 would arise here in the
same way, and there would be no advantage in the use of the implicit approx-
imation procedure. Consider the alternative where the time variables φh,δ

n

determine interpolated time, in that real (i.e., interpolated) time advances
(by an amount δ) only when the time variable is incremented and it does not
advance otherwise. This will be an analog of the “random” Approximation 4
defined by (4.2.7).

To make this precise, consider ξh,δ
n at only the times that φh,δ

n changes.
Suppose that θ̄/δ = Qδ is an integer. Recall the definition (6.5.13) where
vh,δ
0 = 0, and, for n > 0,

vh,δ
n = inf{i > vh,δ

n−1 : φh,δ
i − φh,δ

i−1 = δ}.

The path memory segment denoted by ξ̄h,δ
r,n is defined to be the function on

[θ̄, 0], with the following values: For any l and n satisfying vh,δ
l ≤ n < vh,δ

l+1,
set
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ξ̄h,δ
r,n(0) = ξh,δ

n ,

ξ̄h,δ
r,n(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξh,δ

vh,δ
l

, θ ∈ [−δ, 0),
...
ξh,δ

vh,δ
l−Qδ+1

, θ ∈ [−θ̄,−θ̄ + δ).

(3.8)

Figure 3.1 illustrates the construction of ξh,δ(·) and ξ̄h,δ
r,n(·) for θ̄/δ = 3 and

vh,δ
l ≤ n < vh,δ

l+1, and where we define σh,δ
l = th,δ

vh,δ
l

.

ξh,δ(t)

tth,δ
nσh,δ

lσh,δ
l−1σh,δ

l−2σh,δ
l−3

ξh,δ

vh,δ
l

ξh,δ

vh,δ
l−1

ξh,δ

vh,δ
l−2

ξ̄h,δ
r,n(θ)

−2δ −δ−θ̄ 0
θδδδ

ξh,δ

vh,δ
l

ξh,δ

vh,δ
l−1

ξh,δ

vh,δ
l−2

ξh,δ

vh,δ
l−3

ξh,δ
n

ξh,δ
n

Figure 3.1. Illustration of ξ̄h,δ
r,n(θ), for vh,δ

l ≤ n < vh,δ
l+1, θ̄/δ = 3.

Recall that, in this section, ξ̂ denotes the canonical value of the memory
ξ̄h,δ
r,n . It can be represented as the piecewise-constant right-continuous interpo-

lation with interval δ of its values(
ξ̂(−θ̄), . . . , ξ̂(−δ), ξ̂(0)

)
with a discontinuity at θ = 0, and we can unambiguously call the above set ξ̂.

The possible transitions are as follows. If the time variable advances at the
current step, then we have the shift(

ξ̂(−θ̄), . . . , ξ̂(−δ), ξ̂(0)
)
→
(
ξ̂(−θ̄ + δ), . . . , ξ̂(−δ), ξ̂(0), ξ̂(0)

)
. (3.9a)

This implies that ξ̂(0) ∈ Gh, as otherwise there must be a reflection at the
current step and the time variable could not advance. Let ξ̂(0) ∈ Gh and
suppose that the time variable does not advance. Then

ξ̂ =
(
ξ̂(−θ̄), . . . , ξ̂(−δ), ξ̂(0)

)
→
(
ξ̂(−θ̄), . . . , ξ̂(−δ), ξ1

)
, (3.9b)
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where, conditioned on the time variable not advancing and the use of control
value α, the probability that ξ1 = x̃ is ph(ξ̂, x̃|α). Suppose that ξ̂(0) �∈ Gh, so
that it is a reflecting point. Then

ξ̂ =
(
ξ̂(−θ̄), . . . , ξ̂(−δ), ξ̂(0)

)
→
(
ξ̂(−θ̄), . . . , ξ̂(−δ), ξ1

)
, (3.9c)

where ξ1 ∈ Gh is the state that the reflecting state ξ̂(0) moves to, with the
transition probabilities satisfying (6.2.2).

Size of the state space. For the one-dimensional problem discussed at the
end of Section 2, the maximum size of the state space that is required with
the use of ξ̄h,δ

r,n for the path memory segment is

(B/h + 1)θ̄/δ(B/h + 3) (3.10)

compared with (B/h+1)Kh

(B/h+3) there, where commonly Kh = O(1/h2).
This saving is partly due to the fact that, for the implicit approximation pro-
cedure, the memory consists of the samples at iterates separated by many
steps, and not the set of values or differences in the values for each of those
individual steps. One could approximate the values of the ξ̂(−iδ), i > 0, fur-
ther by discretizing to a coarser set of values. Further reductions in the size
of the state space will be dealt with in the next chapter, where we discuss the
advantages of using differences of the values in lieu of the values themselves,
and also develop alternative constructions that are motivated by the implicit
approximation procedure and are likely to be advantageous.

Note on the interpolation interval. An important additional point to
note is that the implicit approximation procedure does not require the use
of a constant interpolation time interval. It allows us to use the original time
intervals ∆th,δ

n ≈ ∆thn, and not the minimal value ∆
h
. This is computationally

advantageous when the values ∆th(ξ̂, α) vary a great deal, as for example when
the upper bound on the control is large or when a(·) is not constant. In the
example of Section 6.4, ∆th(x) = h2/σ2(x), and if σ2(·) varies a great deal,
the transformation to a constant interval might entail a considerable increase
in the dimension of the memory segment ξ̄h

n that was used in Section 2. The
implicit approximation procedure does not have this disadvantage.

The effective maximum delay. The approximation procedure that we have
just illustrated has replaced the true maximum delay by a random delay. The
actual effective maximum delay for the example in the figure is th,δ

n −σh,δ
l−2. In

general, for σh,δ
l ≤ th,δ

n < σh,δ
l+1, the maximum delay is th,δ

n −σh,δ
l−Qδ+1. As δ → 0,

the delays converge to their values for the original model (1.5). Let δ be fixed.
It is shown in Theorem 4.1 that, as h → 0, the interpolated times between
increases in the time variable φh,δ(·) are exponentially distributed with mean
δ. The interval between a random time and the most recent time before it
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that φh,δ(·) increased is also (asymptotically) exponentially distributed with
mean δ, and these intervals are asymptotically mutually independent. Thus,
as h → 0, the maximum delay is the sum of Qδ exponentially distributed and
mutually independent random variables, each with mean δ. Hence it has an
Erlang distribution of order Qδ, and with total mean θ̄.

7.3.2 The Cost Function and Bellman Equation

With the use of the process ζh,δ
n , with ξ̄h,δ

r,0 = ξ̂ and the control sequence
uh,δ = {uh,δ

n , n < ∞} used, an approximation to the discounted cost function
(3.4.3) is

Wh,δ(ξ̂, uh,δ) = Eh,δ,uh,δ

ξ̂

∞∑
n=0

e−βφh,δ
n

[
k(ξ̄h,δ

r,n , uh,δ
n )δI{φh,δ

n+1 	=φh,δ
n } + q′∆yh,δ

n

]
.

(3.11)
By using the last line of (3.4) and taking a conditional expectation, the term
δI{φh,δ

n+1 	=φh,δ
n } can be replaced by ∆th,δ

n . It will be shown in Theorem 3.2 that

(3.11) is well defined and is asymptotically equal to

Eh,δ,uh,δ

ξ̂

∞∑
n=0

e−βth,δ
n
[
k(ξ̄h,δ

r,n , uh,δ
n )∆th,δ

n + q′∆yh,δ
n

]
. (3.12)

With the form (3.12), the effective canonical cost rate when the memory
segment is ξ̂ and control value α is used is just k(ξ̂, α) times δ times the prob-
ability that the time variable advances, and the product is k(ξ̂, α)∆th,δ(ξ̂, α).

The Bellman equation. The Bellman equation can be based on either (3.11)
or (3.12). They might yield different results but will be asymptotically equal
by Theorem 3.2. For (3.11) and ξ̂(0) = ξh,δ

0 ∈ Gh, the Bellman equation is8

V h,δ(ξ̂) = inf
α∈Uh

[∑
x̃

ph,δ
(
ξ̂, φ; x̃, φ

∣∣α)V h,δ
(
ξ̂(−θ̄), . . . , ξ̂(−δ), x̃

)

+e−βδph,δ
(
ξ̂, φ; ξ̂(0), φ + δ

)
V h,δ

(
ξ̂(−θ̄ + δ), . . . , ξ̂(−δ), ξ̂(0), ξ̂(0)

)

+k(ξ̂, α)∆th,δ(ξ̂, α)

]
,

(3.13)
where V h,δ(ξ̂) is the optimal value. The analog for (3.12) can be written as
(using a more succinct notation)

8 The time variable φ does not appear in the state as the dynamical terms are
time-independent.
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V h,δ(ξ̂) = inf
α∈Uh

Eh,δ,α

ξ̂

[
e−β∆th,δ(ξ̂,α)V h,δ

(
ξ̄h,δ
r,1

)
+ k(ξ̂, α)∆th,δ(ξ̂, α)

]
,

(3.14)
where ξ̄h,δ

r,1 is the successor memory segment to ξ̂ under control value α. If
ξ̂(0) �∈ Gh, then for either (3.11) or (3.12)

V h,δ(ξ̂) = Eh,δ,α

ξ̂

[
V h,δ(ξ̄h,δ

r,1 ) + q′∆yh,δ
0

]
, (3.15)

where ∆yh,δ
0 is the vector of the components of the reflection term from state

ξ̂(0). These equations make it clear that the full state at iterate n is ξ̄h,δ
r,n ,

namely, the current values of the spatial variable ξh,δ
n , together with its value

at the last Qδ = θ̄/δ times that the time variable advances.

7.3.3 The Use of Averaging in Constructing the Path Memory
Approximation

One might be tempted to use an average of the path values over the intervals in
lieu of the samples ξh,δ

vh,δ
i

in (3.8). This can be done, but it entails a considerable

increase in the memory requirements. One possibility is as follows. Let vh,δ
l ≤

n < vh,δ
l+1. Define

ξh,δ
av,l,n =

∑n
i=vh,δ

l
+1 ξh,δ

i ∆th,δ
i∑n

i=vh,δ
l

+1 ∆th,δ
i

, ξh,δ
av,l =

∑vh,δ
l+1−1

i=vh,δ
l

+1
ξh,δ
i ∆th,δ

i∑vh,δ
l+1−1

i=vh,δ
l

+1
∆th,δ

i

.

Then replace the ξh,δ

vh,δ
l

in (3.8) by ξh,δ
av,l,n, the path average over the interval

[vh,δ
l + 1, n]. Replace ξh,δ

vh,δ
l−i

by ξh,δ
av,l−i. The ratio can be computed recursively

on each interval: At the beginning of the lth cycle, set ξh,δ

av,l,vh,δ
l

+1
= ξh,δ

vh,δ
l

+1
,

and for n > vh,δ
l + 1, use

ξh,δ
av,l,n+1 =

ξh,δ
n+1∆th,δ

n+1∑n+1

i=vh,δ
l

+1
∆th,δ

i

+
ξh,δ
av,l,n

1 + ∆th,δ
n+1/

∑n
i=vh,δ

l
+1 ∆th,δ

i

.

The computation is simpler if the interpolation interval is constant. In
general, one needs to keep track of the running sums of the weighted path
variables and the accumulated time, which introduces two new variables, one
whose dimension is that of G. The set of such values will have to be discretized.
For example, discretize the possible values and update the approximations by
randomization if the new values fall between the allowable discrete points. The
randomization method could be analogous to what is to be done in Section
8.4 for the periodic-Erlang approximation for the control variables. This will,
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in any case, yield a value that is a close to a convex combination of a subset
of values within the interval, so it might be worth considering. Similar consid-
erations apply to the approximations that are used for the path in Chapter
8, but the issue will not be pursued further.

A simpler procedure is to use a linear interpolation of the values in (3.8),
which would not entail any increase in the required memory.

7.3.4 Timescales

The Interpolation ψh,δ(·) and its timescale. The discrete-parameter
process {ξh,δ

n } with memory segments {ξ̄h,δ
r,n} (or the variations discussed in

the next chapter) are used for the numerical computations. The proofs of
convergence in Section 8.5 will be based on a continuous-time process ψh,δ(·)
that is analogous to those defined by (1.14), (6.3.10), and (6.5.12), analogously
to what was done in [58, Chapters 10 and 11]. Next, recalling the method of
defining (1.14), let us define the interpolation ψh,δ

n (·). Let νn, n < ∞, be
mutually independent and identically and exponentially distributed with unit
mean (as above (6.3.4)), and independent of {ζh,δ

n , uh
n}. Then set ∆τh,δ

n =
νn∆th,δ

n and τh,δ
n =

∑n−1
i=0 ∆τh,δ

n . Recall the definition of dh,δ
τ (s) from (6.5.23)

and let rh,δ
τ (·) denote the relaxed control representation of the interpolation

(intervals ∆τh,δ
n ) of the control process. Analogously to what was done in

getting (1.14), define the interpolation ξ̄h,δ
r (·) (with intervals {∆th,δ

n }) of the
memory segment by ξ̄h,δ

r (s) = ξ̄h,δ
r,n , for th,δ

n ≤ s < th,δ
n+1, and set qh,δ

τ (s) =
th,δ

dh,δ
τ (s)

. With these definitions, ξ̄h,δ

r,dh,δ
τ (s)

= ξ̄h,δ
r (qh,δ

τ (s)). Let ψh,δ(·) denote

the interpolation of the sequence ξh,δ
n using the random intervals ∆τh,δ

n . Then,
analogously to (1.14),

ψh,δ(t) = ξh,δ
0 +

∫ t

0

∫
Uh

bh(ξ̄h,δ

r,dh,δ
τ (s)

, α)rh,δ
τ (dα ds) + Bh,δ

τ (t) + zh,δ
τ (t), (3.16)

where the drift term can be written as∫ t

0

∫
Uh

bh(ξ̄h,δ
r (qh,δ

τ (s)), α)rh,δ
τ (dα ds),

and the quadratic variation of the martingale Bh,δ
τ (·) is

∫ t

0

ah(ξ̄h,δ
r (qh,δ

τ (s)))ds.

Asymptotic equivalence of the timescales. It follows from the proof of
Theorem 6.5.1 that the timescales used in the ξh,δ(·) and the ψh,δ(·) processes
coincide asymptotically. That is, qh,δ(s)−s → 0, φh,δ(s)−s → 0 and qh,δ

τ (s)−
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s → 0. The following theorem reasserts this result in the context of the current
chapter.

Theorem 3.1. Assume local consistency, (A3.1.1), (A3.1.2), (A3.2.1), (A3.2.2)
and (A3.4.3), with system (1.5) and memory segment (3.8). Let φh,δ(·) denote
the interpolation of the φh,δ

n with the intervals ∆th,δ
n , and suppose that h/δ is

bounded as h → 0 and δ → 0. Then Theorem 6.5.1 holds and for each T < ∞,

lim
h,δ→0

sup
ξ̂,uh,δ

Eh,δ,uh,δ

ξ̂
sup

−θ̄≤θ≤0,t≤T

∣∣∣ψh,δ(t + θ) − ξ̄h,δ

dh,δ
τ (t)

(θ)
∣∣∣ = 0. (3.17)

If the memory segments ξ̄h
n are used, as in Section 2, then the index δ is

redundant and we have

lim
h→0

sup
ξ̂,uh

Eh,uh

ξ̂
sup

−θ̄≤θ≤0,t≤T

∣∣∣ψh(t + θ) − ξ̄h
dh

τ (t)(θ)
∣∣∣ = 0. (3.18)

An alternative construction of the implicit procedure. Time and
spatial variables changing simultaneously. Recall the comments on the
alternative construction of an implicit procedure below (3.3), where we allowed
the possibility that both the path and time variables change simultaneously.
With the memory segment taking any of the forms that were discussed, the
resulting processes and costs are asymptotically equivalent to those for the
implicit procedure.

7.3.5 Convergence Theorems

The next theorem asserts that the cost functions (3.11) and (3.12) are well
defined and asymptotically equal.

Theorem 3.2. Assume local consistency, (A3.1.1), (A3.1.2), (A3.2.1), (A3.2.2),
and (A3.4.3), and the model (1.5) with memory segment (3.8). Then (3.11)
is asymptotically equal to (3.12) uniformly in the control and in the initial
condition ξ̂, where the function ξ̂ is piecewise-constant, with intervals δ and
with values in Gh.

Proof. To show that the sum involving k(·) in (3.11) is well defined, first note
that it can be bounded by a constant times the expectation of

∫∞
0

e−βφh,δ(s)ds.
By Theorem 3.1 or Theorem 6.5.1, for each K > 0 there is an ε1 > 0, which
does not depend on the controls, initial conditions, or T , such that for small
enough h, δ,

P
{
φh,δ(T + K) − φh,δ(T ) ≥ ε1

∣∣data to T
}

> ε1, w.p.1.
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Hence, for each K > 0 there is ε2 > 0, not depending on the controls, initial
conditions, or T , such that for small enough h, δ,

E
[
e−β(φh,δ(T+K)−φh,δ(T ))

∣∣data to T
}
≤ e−ε2 w.p.1.

This implies that the “tail” of the sum (3.11) can be neglected and we need
only consider the sum

∑Nh,δ(t)
i=0 where Nh,δ(t) = min{n : th,δ

n ≥ t} for arbi-
trary t. But, by Theorem 3.1 or Theorem 6.5.1, for such a sum the asymptotic
values are the same if φh,δ

i is replaced by th,δ
i for i ≤ Nh,δ(t). Hence the terms

involving k(·) in (3.11) and (3.12) are asymptotically equal. The above esti-
mates and Lemma 6.3.1 yield the same result for the terms involving ∆yh,δ

n .

The convergence theorem. As in Theorem 1.1, approximate the initial
condition x̄(0) by ξ̄h,δ

0 (in the sense of uniform convergence as h → 0, δ → 0),
and let it be constant on the Qδ intervals [−θ̄,−θ̄ + δ), . . . , [−δ, 0), with all
values being in Gh. Because by Theorem 3.2 we can use (3.12) for the cost
function when proving convergence, the proof of the next theorem is nearly
identical to that of Theorem 1.1, which is to be given in Section 8.5.

Theorem 3.3. Assume local consistency, (A3.1.1), (A3.1.2), (A3.2.1)–(A3.2.3),
and (A3.4.3), with system (1.5) and cost function (3.4.3). The memory seg-
ment for the numerical approximation is (3.8). Let ph,δ(·) be derived via
(3.1)–(3.3) from the transition probabilities ph(·) that are locally consistent
(in the sense of (1.8)). Let ξ̄h,δ

0 approximate the continuous initial condition
x̂ as in Theorem 1.1. Let h/δ be bounded. With either (3.11) or (3.12) used,
V h,δ(ξ̄h,δ

0 ) → V (x̂) as h → 0, δ → 0. The analogous result holds for the ana-
log of the cost functional (1.28) if (A3.4.1) and (A3.4.2) are assumed and the
conditions on the reflection directions are dropped.

7.4 The Implicit Approximation Procedure and the
Random Delay Model

The intervals between time advances, δ fixed. Consider the implicit
approximation procedure of Section 3, with the value of δ fixed and only
h → 0. The following theorem shows that the sequence of times between
shifts in the time variable converges to a sequence of i.i.d. random variables,
each of which is exponentially distributed with mean δ. Define σ̂h,δ

l = τh,δ

vh,δ
l

,

where vh,δ
l was defined above (3.8). Recall the definition of σh,δ

l = th,δ

vh,δ
l

below

(3.8).
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In the theorem, we ignore the time-shift steps in the indexing. This does
not change the distribution of the quantities of interest. The resulting path is
that for the explicit procedure if the same controls are used.

Theorem 4.1. Assume the model of Section 3 and that ∆th(ξ̂, α) = O(h2),
with the assumptions of Theorem 3.3, but with δ fixed. As h → 0, φh,δ(·) con-
verges to a Poisson process with rate 1/δ and jump size δ, and this process on
[t,∞) is independent of the other weak-sense limits on [0, t]. The conditional
distribution of σh,δ

l+1 − σh,δ
l , given the data to time σh,δ

l , converges to an expo-
nentially distributed random variable with mean δ, and the conditional mean
value converges to δ, all uniformly in the data and l. Now let δ = O(h) and
replace σh,δ

l+1−σh,δ
l by [σh,δ

l+1−σh,δ
l ]/δ. Then the results of the previous sentence

hold, but with mean unity. The analogous results hold if the σ̂h,δ
l are used in

lieu of the σh,δ
l .

Proof. Fix δ > 0. Let R(·) be a Poisson process with rate 1/δ and jump size
δ. Approximate φh,δ(·) as follows. For each n, if R(·) has multiple jumps on
[th,δ

n , th,δ
n+1), then ignore any jump beyond the first, and assign the remaining

jump (if any) to time th,δ
n . The difference between this process and both φh,δ(·)

and R(·) converges weakly to zero as h → 0. This yields the first two assertions
of the theorem. The assertion concerning the convergence of the conditional
mean follows from this and the uniform integrability of {σh,δ

l+1 − σh,δ
l ; h, l, δ}.

If δ = O(h), then the result for the [σh,δ
l+1 − σh,δ

l ]/δ follows by a rescaling of
time and amplitude. A similar argument is used if the σ̂h,δ

l are used in lieu of
the σh,δ

l .

Convergence to the random delay model if δ is fixed. If δ > 0 is fixed
and only h → 0, then the limit is the optimal value for the Approximation
4 of Section 4.2. This assertion follows from Theorem 4.1 and the proof of
Theorem 3.3 (see Section 8.5) and is stated in the following theorem.

Theorem 4.2. Let the initial condition for (1.1) be x̄(0), assumed to be con-
tinuous and G-valued. Let the G-valued piecewise constant x̄δ(0) (intervals δ)
converge to x̄(0) uniformly on [−θ̄, 0]. Assume the conditions of Theorem 3.3,
but with the memory segment defined by (4.2.7), the random case. Hence the
model is (4.1.9b), with x̄a = x̄δ

r, for which we suppose that there is a weak-
sense unique solution for each control and initial condition x̄δ(0). Let V δ(ξ̂)
denote the optimal cost for this model. Let ξ̄h,δ

0 approximate x̄δ(0) (in the
sense of uniform convergence as h → 0), with values in Gh, and use (3.1) and
(3.2) for the transition probabilities and interpolation intervals. Then, with
δ > 0 fixed, V h,δ(ξ̄h,δ

0 ) → V δ(x̄δ(0)). As δ → 0, V δ(x̄δ(0)) → V (x̄(0)). The
same results hold for the analog of the cost function (1.28) for the implicit
procedure.



7.4 The Implicit Approximation Procedure and the Random Delay Model 191

Consider the analog of Theorem 1.4 for the implicit procedure. Then, under
the analogs of its conditions for the implicit method and the path memory
segment ξ̄h,δ

r,n used in lieu of ξ̄h
n, its conclusions hold.

Comment. The implicit approximation algorithm illustrates one way of re-
ducing the memory requirement over that needed for the procedure of Sections
1 or 2. In addition, one does not need the interval ∆th(ξ̂, α) to be constant,
which is a considerable advantage when σ(·) is either small or is not a constant.
The motivation for the implicit approximation procedure was the desire for
a simpler representation of the path memory segment for the approximating
process. However, the randomness of the effective delays with this procedure
might be too large unless δ is small. Approximations that aim at compromises
between the explicit procedure of Section 1 and the implicit approximation
procedure will be discussed in the next chapter. Reliable numerical compar-
isons are still lacking, however.


