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Preface

This book deals with numerical methods for control and optimal control prob-
lems for nonlinear continuous-time stochastic systems with delays. It is an
extension to the model with delays of the Markov chain approximation meth-
ods of [58]. For the nondelay problem, these methods are a widely used and
powerful class of numerical approximations of optimal costs or other func-
tionals of controlled or uncontrolled stochastic processes in continuous time
and have significant applications to deterministic problems. A comprehensive
development is in [58].1

There are numerous sources of delays in the modeling of realistic physical
and biological systems. Many examples arise in communications and queueing,
due to the finite speed of signal transmission, the nonnegligible time required
to traverse long communications distances, or the time required to go through
a queue [90]. Other examples arise because of mechanical transportation delays
as, for example in hydraulic control systems, delays due to noninstantaneous
human responses or chemical reactions, or delays due to visco-elastic effects in
materials. The books [44, 45] contains many concrete examples in mechanics,
physics and control, as well as in biology and medecine. These examples are
for the most part uncontrolled and deterministic. But many of them would
be more realistic if noise were added. Many examples, together with a great
deal of information on deterministic delay systems are in [77]. The excellent
reference [46] contains a thorough development of the problems of optimal
control of deterministic and stochastic delay systems up to its original date
of publication (1992), with many examples from biology, mechanics, and else-
where, as well as a discussion of approximation in policy space algorithms for
approximating the optimal cost and control. Other examples can be found
in [17, 39, 68, 77, 78]. Examples arise in biological systems due to the time

1 This book is concerned with optimization and control problems, and with the
computation of the expected values of system functionals of interest. Methods for
the pathwise numerical solution of the delay equation itself for deterministic and
stochastic models are discussed in [2, 6, 32, 47, 48, 69, 81].
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delay in the body’s adaptive loops, the finite speed of blood flow, or the time
required for enzyme or other chemical reactions to occur (see, e.g., [4, Chapter
2]). Models of ecological interactions have been a main source of dynamical
models with delays, and applications to financial mathematics are beginning
to appear [11]. Very little information is available concerning solutions when
the models are nonlinear and stochastic, and numerical methods should be a
main source of such information. The reference [75] is concerned with discrete-
time approximations to determinstic control problems governed by differential
inclusions.

There is a huge literature on control problems for delay systems for the
linear model (deterministic or stochastic) with a quadratic cost criterion, and
many good computational methods have been developed. Some of the ap-
proximations have been done in the spectral domain, based on finite-order
rational approximations to the transfer function of the system. Others work
with the state-space formulation, where the key issue is the finite-dimensional
approximation of the Ricatti equation, which is often done via an approxima-
tion to the semigroup of the system. A selection of the available results can
be found in [3, 15, 22, 26, 28, 35, 36, 37, 38, 40, 63, 66, 72, 95] and in their
references. Although these techniques and algorithms have been very useful
for the linear problem, it is not clear (as for the problem without delays),
how to adapt them to the nonlinear models that are of concern to us. For
this reason, we confine attention to analogs of the approaches that have been
found to be very useful for the general no-delay problem, namely the Markov
chain approximation method.

The models of the systems of concern in the book are diffusion and reflected
diffusion processes, and the results can be extended to cover jump-diffusions.
The control might be “ordinary” in the sense that it is a bounded measurable
function, or it might be impulsive, or what is known as a “singular” control.
All of the usual cost functionals are covered; the discounted cost, stopping on
reaching a boundary, optimal stopping, ergodic, etc. Any or all of the path,
control, boundary reflection process, or driving Wiener process, might appear
in delayed from. Examples where the boundary reflection process might be
delayed occur in communications/queueing models, where there is a commu-
nications delay. (See Section 1.2 for an example.) If a buffer overflows (corre-
sponding to a lost packet), a signal is sent to the source, which receives it after
a delay, and then adjusts its rate of transmission accordingly. The buffer over-
flow is a component of the boundary reflection process. Models with delays of
such boundary reflection terms have not been treated previously.

For the nondelay problem, the approach of the Markov chain approxi-
mation method starts by approximating the original controlled process by a
controlled Markov chain on a finite state space. The approximation parameter
is denoted by h and it might be vector-valued. The original cost functional
is also approximated so that it is suitable for the chain. The approximating
chain must satisfy a simple condition called “local consistency.” This is quite
unrestrictive and means simply that from a local point of view and for small
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h, the conditional mean and covariance of the changes in state of the chain
are proportional to the local mean drift and covariance of the original process,
modulo small errors. Many straightforward ways of getting the approximating
chains are discussed in [58], where it is seen that the approach is very flexible.
The approximation yields a control problem that is close to the original, which
gives the method intuitive content that can be exploited for the construction
of effective algorithms. After getting the approximating chain, one solves the
Bellman equation for the optimal cost (or simply the equation for the value
function of interest if there is no control), and proves that the solution con-
verges to the desired optimal cost or value function as h goes to zero. One
tries to choose the approximation so that the associated control or optimal
control problem can be solved with a reasonable amount of computation and
that the approximation errors are acceptable.

The proofs of convergence of the Markov chain approximation method as
h → 0 are purely probabilistic. We always work with the processes. No tools
from PDE theory or classical numerical analysis are used. The idea behind the
proof can be described as follows. For the optimal control problem, starting
with the approximating chain with its optimal control, one gets a suitable
continuous-time interpolation, and shows that in the sense of weak or dis-
tributional convergence, there is a convergent subsequence whose limit is an
optimally controlled process of the original diffusion type, and with the origi-
nal cost function and boundary data. The mathematical basis is the theory of
weak convergence of probability measures, and this powerful theory provides
a unifying approach for all of the problems of interest. The development in
this book depends heavily on the results and methods in [58]. We try to be
as self-contained as possible, and do review all of the essential ideas, but it
would be beneficial to be familiar with the basic ideas in that source before
reading this book.

The probabilistic nature of the methods of process approximation and of
the mathematical proofs of convergence allows us to use our physical intuition
concerning the original problem in all phases of the development. This gives
us great flexibility in the details of the approximation and in the construction
of algorithms. These advantages will carry over to the problem with delays.
In fact, the probabilistic approach to the approximation and convergence is
particularly important when there are delays, since virtually nothing is known
about the analytical properties of the associated (infinite-dimensional) Bell-
man equations for nonlinear problems.

When doing numerical work on general nonlinear systems, it is most con-
venient if the system is bounded. Many types of systems are a priori bounded,
owing to the physical constraints on the state variables. For example, systems
arising in communications or in approximations to queueing models might
be bounded due to the boundedness of the buffers and the possible rates of
transmission. Other systems are intrinsically bounded due to saturation ef-
fects. Models of many communications and queueing systems involve bound-



xiv Preface

aries on the state space that are reflecting, where the reflection directions are
determined by the internal routing of the data in the system [56].

There are two standard ways of bounding a state space if it is not already
bounded due to the physical constraints imposed on the model. One might
stop the process, with an associated stopping cost, if it attempts to leave a
prespecified region. Or one might confine it to a given region via a reflect-
ing boundary (the latter method is common in ergodic cost problems). Both
approaches are dealt with. If the boundary is added for numerical purposes,
then one might have to experiment with it to assure that it is large enough so
that it does not materially affect the quantities of main interest. For simplic-
ity, we confine attention to the diffusion model, with the noise variance not
being controlled. The methods can be extended to cover jump diffusions and
controlled variance and jumps; One adapts the methods that are used in [58]
for such problems analogously to the way that the methods for the covered
problems are adapted.

For models without delays, the system state takes values in a subset of
some finite-dimensional Euclidean space, and the control is a functional of the
current state. For models with delays, the state space must take the path of
the delayed quantities (over the delay intervals) into account, and this makes
the problem infinite-dimensional. So a major issue in adapting the Markov
chain approximation method to models with delays concerns suitable “finite”
approximations to the “memory segments” so that a reasonable numerical
method can be devised, and much attention is given to this problem.

The methods of approximation that are developed are natural and seem
to be quite promising. They deal with issues of approximation that are fun-
damental. However to date there has been little numerical experience, and
considerable further work is required. Yet, judging from the experience with
no-delay problems, the methods that are developed are very likely to be the
foundation of useful algorithms. There are many additional difficulties to be
overcome before effective numerical methods for nonlinear stochastic delay
equations become a reality. One is rarely interested in an optimal control.
Since the model of interest is often not known precisely, or the implementation
of an optimal control might be difficult, what is desired is an understanding of
the structure of the control, and how it can be approximated. For the no-delay
case in low dimensions this is facilitated by being able to visualize the control
via graphical methods. This would be a considerable challenge when there are
delays.

Numerical optimization methods are often used as a means of exploring
the possible tradeoffs among competing criteria. One solves the optimization
problem repeatedly, varying the weights of the various components of interest,
to see how a decrease in the value of one component affects the values of the
other components, under conditions of optimality, as in [59]. Such information
can be invaluable to the system designer, even if optimality is not sought for
its own sake.

Next the contents of the various chapters of the book will be described.
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Outline of the book. Suppose that the effect of the control action is delayed
by an amount θ̄. This can cause serious instabilities. To effectively control
in such a case, in determining the current control action one must take into
account the control actions that were made in the recent past but whose effects
have not yet been seen by the controller, those up to θ̄ units of time back from
the present time. Chapter 1 contains some simple examples that dramatically
illustrate this point. It also describes the class of examples for which there
is a state transformation that reduces the problem to one in finitely many
dimensions. The narrowness of this class makes numerical methods all the
more important.

Chapter 2 is a summary of the main results that will be needed from the
theory of weak convergence of a sequence of random processes, and of the so-
called martingale problem for characterizing the limit of a weakly convergent
sequence. The theory of weak convergence is an extension to a sequence of
random processes of the theory of convergence in probability of a sequence
of random variables, and is a fundamental tool for approximation and limit
theorems. The primary processes of concern in the proofs of convergence are
continuous-time interpolations of the approximating chains, and we will need
to show that they have limits that are (in fact, optimal) controlled diffusions.
Weak convergence theory, together with the methods of the so-called martin-
gale problem for characterizing the limit procesess as the the desired diffu-
sions, provides the essential tools. With their use, the proofs of convergence
are purely probabilistic. For the no-delay case this probabilistic approach to
the proofs of convergence of numerical algorithms is the most powerful and
flexible. For the delay case, there does not seem to be any alternative since,
as noted above, the Bellman equation is infinite-dimensional and virtually
nothing is known about it.

Chapter 3 describes the controlled dynamical system models that will be
of main interest. The subject of delay equations is vast, whether determin-
istic, stochastic, or controlled or not; for example, see [27, 39, 44, 45, 51,
57, 68, 73, 74, 77, 78]. The behavior can be quire bizarre, as seen in the ex-
amples in [6, 74]. The numerical approximations that are of interest require
that the path take values in some compact subset G of a Euclidean space,
and this motivates the models. The process can be either stopped on first (if
ever) reaching the boundary of G, or else be prevented from leaving G by a
boundary reflection process, both being standard models in applications. The
stochastic differential equations with path and control delays are reviewed
for the cases where the process is either reflected from a boundary or not.
Relaxed controls, which are very helpful when dealing with approximation
and convergence in control problems, and the Girsanov transformation, an
approach to constructing control systems from uncontrolled systems, are dis-
cussed. The Girsanov transformation method will be crucial in dealing with
the ergodic cost problem in Chapter 5. When the control and possibly the re-
flection process and/or the driving Wiener process appear in a delayed form,
the most direct approaches to the numerical approximation could require an
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impossibly large memory. One promising way of alleviating this is discussed in
Chapter 9 and a dynamical model that is particularly useful for that approach
is introduced in Chapter 3.

The existence of an optimal control is also shown. The proof of this fact is
important because it is a template for the proofs of convergence of the system
and numerical approximations in subsequent chapters. Proofs of the existence
of solutions to uncontrolled stochastic delay equations of the diffusion type
(without reflecting boundaries) and some of their properties can be found in
[39, 68, 73, 74]. For the singular control problem, the definition of the model
and the existence of an optimal control are dealt with via a very useful “time
transformation” method, which is necessary owing to the possibly wild nature
of the associated paths and controls.

Numerical methods involve working with approximations of the original
problem whether there are delays or not. The design and success of a numer-
ical approximation is dependent upon the sensitivity of the original model to
perturbations in its structure since the numerical algorithm itself is an ap-
proximation to the original model. This issue of sensitivity is a particularly
acute problem when there are delays owing to the great sensitivity of many
such models to parameter variations. See, for example the examples in [74].
One must always be aware of this issue of sensitivity in constructing a nu-
merical approximation. Nevertheless it is important to simplify the original
dynamical model as much as possible without sacrificing the essential aspects
of the results. Fortunately, for many problems of interest, approximations that
are useful for numerical purposes can be obtained.

The key difference between the problem with and without delays is that
the state space for the problem with delays involves the “memory segments”
of the components whose delayed values appear in the dynamics. The first
step in the construction of a numerical approximation involves approximat-
ing the original dynamical system. In our case, this entails approximating the
delays and dynamics so that the resulting model is simpler, and ultimately
finite-dimensional. Chapter 4 is is devoted to a set of model simplifications
that have considerable promise when the path or path and/or control are de-
layed. A variety of approximations are presented, eventually leading to finite-
dimensional forms that will be used as the basis of numerical algorithms in
Chapters 7–9. To help validate the approximations, simulations that compare
the paths of the original and approximated system are presented, and it is
seen that the approximations can be quite good.

Delay equations might have rapidly time-varying terms, even rapidly vary-
ing delays. This complicates the numerical problem. But, under suitable con-
ditions, there are limit and approximation theorems that allow us to replace
the system by a simpler “averaged” one and some such results are presented
at the end of Chapter 4.

Chapter 5 is concerned with the average cost per unit time (ergodic cost)
problem for nondegenerate reflected diffusion models, where only the path is
delayed. The aim is to prepare ourselves for the needs of the numerical algo-
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rithms for this case. Hence the issues of model complexity and simplification
that were of concern in Chapter 4 are also of concern here. There are only a
few results on the ergodic theory for general delay equations. Some, dealing
with the problems of existence and convergence of the distributions to invari-
ant measures are [12, 18, 83, 86]. Since they are not quite adequate for the
needs of the numerical and approximation problems for the systems of inter-
est, the necessary results are developed, using methods based on the Girsanov
transformation and the Doeblin condition, and to the extent possible follow-
ing the procedures laid out in [56, Chapter 4]. Of particular interest is the
demonstration that the various model approximations developed in Chapter
4 can also be used for the ergodic cost problem.

The Markov chain approximation method for the model with no delays is
outlined in Chapter 6. We review of the key parts of [58] that will be needed in
the sequel. All of the usual process models and cost functions can be handled.
For efficiency, the development and analysis of the numerical algorithms in
the following chapters is organized to take advantage of the results in [58],
wherever possible, and it would be helpful if the reader has some familiar-
ity with that reference. The notation will be slightly different from that in
the references [31, 50, 58], since we wish to adapt or simplify it for the par-
ticular purposes of this book. The basic and unrestrictive local consistency
condition, methods of approximation, continuous time interpolations, and the
discounted, singular, impulsive control, and ergodic cost function are cov-
ered. The numerical algorithms are based on the finite-state Markov chain
approximation. But the convergence proofs are based on continuous-time in-
terpolations of the approximating chains. These interpolations are used for
the convergence proofs only and not for the numerical algorithms.

Owing to the local consistency condition, the dynamical system that is
represented by a continuous-time interpolation of the chain “resembles” the
original controlled diffusion process. Thus we would expect that the optimal
cost or the values of the functionals of interest would be close to those for
the diffusion. This is quantified by the convergence theorems. There are two
(asymptotically equivalent) methods of getting the approximating chains that
are of interest, called the “explicit” and “implicit” methods. They differ in
the way that the time variable is treated, and each can be obtained from the
other. The first method was the basic approach for the nondelay problem. The
second method will play a useful role in reducing the memory requirements
when there are delays.

The adaptation of the methods of the Markov chain approximation method
to the models with delays begins in Chapter 7 and is continued in Chapter 8.
It is shown in Chapter 7 that any method of constructing the approximating
chain for the no-delay problem can be readily adapted to the delay problem,
with the transition probabilities taking the delays into account. The only
change in the local consistency condition is the use of the “memory segment”
arguments in the drift and diffusion functions.
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The algorithms in Chapters 7–9 are well motivated and seem to be quite
reasonable. But since the subject is in its infancy, what is presented should
be taken as a first step, and will hopefully motivate further work. When
constructing a numerical approximation algorithm, there are two main issues
that must be kept in mind. The algorithm must be numerically feasible and
it must be such that there is a proof of convergence as the approximating
parameter goes to zero. These issues inform the structure of the development.

We start the development in Chapter 7 by working with numerical ap-
proximations to the original model. Then we turn our attention to the various
approximations to the original model that were developed in Chapter 4, with
an eye to the feasibility of their numerical approximations, taking the two
main issues cited above into consideration. It will be seen that variations of
the implicit approximation method of Chapter 6 can be advantageous in deal-
ing with the memory problem. The continuous-time interpolations that are
used for the convergence proofs are somewhat more complicated that those
for the no-delay case, owing to the need to represent the “memory segment”
argument in a way that is convenient for use in the proofs of convergence.

The development is continued in Chapter 8, where classes of numerical
approximations that we call the periodic and periodic-Erlang are given. The
chapter also contains the proofs of convergence for the algorithms in both
chapters. Where possible, the proofs follow the general lines that were used
for the no-delay case in [58]. As noted above, one interpolates the chain to a
continuous-time process in a suitable manner, shows that the Bellman equa-
tion for the interpolation is the same as for the chain, and then that the
interpolated processes converge to an optimal diffusion as the approximating
parameter goes to zero.

The methods of Chapters 7 and 8 are promising if only the path is delayed
or if the control is delayed but the control-value space has only a few points.
The memory requirements can become onerous if the reflection process and/or
the Wiener process also appear in delayed form, or if the control-value space
has more than a few points. Chapter 9 takes an alternative approach that
reduces the memory requirements for general nonlinear stochastic problems
where the control and reflection terms, as well as the path variables, are de-
layed. The approach was suggested by the work in [94] for linear deterministic
system with a quadratic cost function. Effectively, the delay equation is re-
placed by a type of stochastic wave equation with no delays, and its numerical
solution yields the optimal costs and controls for the original model. The rep-
resentation is equivalent to the original problem in that any solution to one
yields a solution to the other. The details of the appropriate Markov chain
approximation are given and the convergence theorem is proved. Theoreti-
cally, with the use of appropriate numerical approximations, the dimension of
the required memory vector is much reduced, although there is little practical
numerical experience as yet.

Because of the large sizes of the state spaces that arise in the numerical
approximations, it would seem that the topic is well suited for one of the
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various approaches that are known as approximate dynamic programming,
or even linear programming with suitably sampled constraints. See., e.g., the
references in [30, 87, 82]. The success of such approaches usually depends on
detailed insight into the “physics” of the problem, so that the approximation
can be tailored apprpriately. At this time, it is not at all clear how to use
such approaches for our problem, but one must always seek approaches that
simplify the problem while yielding meaningful results.

Numbering and cross referencing. Cross reference numbering within a
chapter does not include the chapter number. For example, within Chapter 5,
Equation 4 of Section 3 of Chapter 5 is called Equation (3.4), and Subsection
6 of Section 3 of Chapter 5 is called Subsection 3.6, with the analogous usage
for Theorem, Figure, and Assumption. Cross references between chapters do
include the chapter number. For example, in Chapter 5, a reference to Equa-
tion 4 of Section 3 of Chapter 2 is called Equation (2.3.4), and Subsection 6
of Section 3 of Chapter 2 is called Subsection 2.3.6, with the analogous usage
for Theorem, Figure, and Assumption.

A glossary of the more frequently used symbols appears at the end of the
book.

The author gratefully acknowledges the long-term support of the Army
Research Office and the National Science Foundation on numerical methods
in stochastic control.

Providence, Rhode Island, USA Harold J. Kushner
February 2008



1

Examples and Introduction

1.0 Outline of the Chapter

Consider a system where the effects of the control are delayed. Letting the
control depend only on the current state of the system will lead to oscillations
in the path, and possible instability, unless the delay is small. The cause
is often overcontrol, due to the fact that the current choice for the control
ignores control actions that have been made, but whose effects have not yet
been seen due to the delay. The purpose of this chapter is simply to illustrate
the improvement in behavior that can be achieved when the current control
properly takes past control actions into account. The examples are simple and
there is no concern for optimality in any sense, but they illustrate the point.
The issue of finite-dimensional representations of a dynamical system with
delays is intriguing. This is possible under certain conditions and is discussed
briefly. The conditions are narrow, but the results are interesting since they do
cover some applications of interest and can provide benchmarks to evaluate
numerical methods.

1.1 An Introductory Example: Controlling the
Temperature of a Fluid Flow

This example is intended to be illustrative of the importance of a control that
depends on the past. It is a classical and perhaps the most familiar example
of the effects of delay. One wishes to keep the temperature x(t) of water at
the end of a pipe at a desired value T . At the source, there are tanks of cool
and hot water, and valves that connect these to the pipe. The control at time
t is a signal u(t) sent from the measurement point at the end of the pipe
to the valve controllers. The signal is received instantaneously at the valves,
which act instantaneously, but it takes a time θ̄ for any correction to be seen
at the measurement point. A positive value of the control signal increases the

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
doi: 10.1007/978-0-8176-4 621-9_1,
H.J. Kushner, Numerical Methods for Controlled Stochastic Delay Systems, 1  
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fraction of the flow that is hot water, and a negative value the fraction that
is cool water. The system dynamics are dx(t) = u(t − θ̄)dt + σdw(t), where
w(·) is a Wiener process that serves as a disturbance in the system that might
be due to turbulence in the pipe or to uneven cooling. Let us start with a
noiseless model. Then the mixed flow moves through the pipe as a wave with
a sharp wavefront.

A naive or inexperienced controller simply measures the discrepancy
T − x(t) between the desired and the measured temperatures and sends the
corresponding signal u(t) = c0[T − x(t)], c0 > 0. The familiar result is an os-
cillation in the measured temperature. This is illustrated in Figure 1.1, where
θ̄ = 10, c0 = .15, T = 5, and x(0) = 15. Both the measured temperature and
the control are plotted. The behavior is typical, unless the delays are short.
The oscillations will decrease as the gain c0 decreases. For c0 = .05 there will
be minimal oscillation but the desired level 5 is not well-approximated until
approximately time 80.

The oscillations occur because at each time the control signal simply de-
pends on the current error. It does not account for the fact that other control
signals that depended on the measured error were recently sent and whose
effects have not yet been seen. So we have overcontroled. This is the key is-
sue that distinguishes the problem with delays from that without delays. By
making the gain smaller, the effect of ignoring the past is decreased since the
rate of change of the temperature is smaller.
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Figure 1.1. Deterministic model. Control not delay-dependent.

If the wave front was not sharp, but was approximatable by a wedge, then
a possible model is dx(t) = dt

∫ 0

−θ̄
u(x(t + θ))dµc(θ) + σdw(t), where µc(·) is

a measure whose effect is to spread out the wave front.
A more experienced controller would account for his past actions in choos-

ing the current value of the control. This is done in the case plotted in Fig-
ure 1.2, where u(t) has the form u(t) = c1(T − x(t) − S(t)), c1 = .15, and



1.1 A Fluid Flow Example 3

S(t) =
∫ t

t−θ̄
u(s)ds. There was no attempt to optimize the control. The aim

is simply to illustrate the advantage of accounting for recent control actions.
See [92] where a similar control is used.
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Figure 1.2. Deterministic model. Control delay-dependent.

The comparisons between the effects of a naive control and one that takes
the past into account are even more dramatic when the control is required to
be bang-bang, taking values ū or −ū for some ū > 0. Figure 1.3 is the case
of Figure 1.1, but with u(t) = c0 sign(T − x(t)), c0 = .15. As c0 decreases,
the amplitude of the oscillations decreases, but never goes to zero, and it
takes it takes increasingly longer for the path to settle down to its asymptotic
oscillatory form. Compare this to the situation in Figure 1.4, which is the case
of Figure 1.2, with control u(t) = c1 sign(T − x(t) − S(t)), c1 = .15.
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Figure 1.3. Deterministic model. Bang-bang control. Control not
delay-dependent.
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In the figure, the control is rapidly oscillating between the two allowed
values ±.15. The convergence is faster as the gain increases.
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Figure 1.4. Deterministic model. Bang-bang control. Control
delay-dependent.

The past-dependent control is also better at tracking time-varying temper-
ature goals. The behavior with added noise follows a similar (perhaps even a
worse) comparison. Let σ = .4. Figure 1.5 uses the control of Figure 1.1. The
oscillations increase as time increases. Figure 1.6 uses the control of Figure
1.2. The behavior is that of a well-controlled system subject to uncontrollable
noise. The driving noise processes in Figures 1.5 and 1.6 are the same.
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Figure 1.5. σ = .4. Control not delay-dependent.
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Figure 1.6. σ = .4. Control delay-dependent.

1.2 An Example from Internet Regulation

Due to the finite speed of electromagnetic signaling, delays are a common
part of many telecommunications systems and can have significant effects on
performance. One important example is the AIMD (additive increase multi-
plicative decrease) model that arises in (FTP) congestion control of internet
traffic over long distances. The reference [1] studied the heavy traffic asymp-
totics [56] of many AIMD connections sharing a common router in the pres-
ence of other traffic, called ”mice.” These mice are in the system for a short
time and are uncontrolled. The system was scaled by speed (bandwidth) and
average number of sources, both proportional to a parameter n. With appro-
priate scalings of the packet rate and buffer size, an approximating controlled
delayed-diffusion model was derived. The randomness due to the mice and/or
number of connections appears in the limit. As often with heavy traffic mod-
els, the limit contains the main structural and parametric dependencies and
is much simpler than the original system.

To improve the performance, another control, to be called the preemptive
control is used. This control selects packets at random to be “marked” as
they enter the buffer. The chance of being selected depends on the buffer
state and/or source (input) rate, and is a control function to be chosen.1

1 Early marking or discarding has become very popular since it was deployed in the
RED (Random Early Detection) buffer management scheme [25]. It was designed
to counter the synchronization in the source rate adjustments that can occur
when there are many sources that send data to a common router buffer, and the
buffer overflows. Then, after a communications delay, many of the sources would
reduce their rates more or less simultaneously. Then, again after a delay, when
it appears that the packets are getting through, they would increase their rates,



6 1 Examples and Introduction

The selection probability will increase when the system nears a dangerous
operating point, whose value would depend on the system delays. The selected
packets are not dropped, as they would be if they were due to buffer overflows.
But a signal is sent to the source indicating the marking, and the source
responds by reducing its rate. Thus the effect on the source rate is similar
to that of lost packets. This control, which anticipates the possibility of lost
packets due to buffer overflows in the near future, can reduce the average
queueing delay and rate of overflow considerably. Numerical data support
this assertion. In a sense, the use of the preemptive control creates “false”
rejections, which are spread out, thereby helping to reduce the oscillations
that are caused by bursts of lost packets.

A simple form of the final model in [1] is

dρ(t) = cdt − v2

[ κ

v1 + am
dU(t − θ̄) + κ1u(t − θ̄)dt

]
, (2.1)

x(t) − x(0) =
∫ t

0

[ρ(s) − b] ds + σwm(t) + L(t) − U(t). (2.2)

Here wm(·) is a standard Wiener process and σwm(·) represents the noise due
to the presence of the mice. The variable ρ(·) represents the centered and
scaled rate at which controlled packets are put into the system, x(·) repre-
sents the scaled content of a buffer, and θ̄ is the round trip transportation
delay. The nondecreasing process U(·) represents the scaled buffer overflow
and can increase only when the buffer is full. The nondecreasing process L(·)
can increase only when the buffer is empty and assures that it does not be-
come negative. The b, c, σ, κ, κ1, v1, v2, and am are constants. The variables
are measured at the buffer, and the control is determined there. The overflow
and selections by the preemptive control are signaled to the source, which
receives the information after a delay and adjusts its rate accordingly. The
effect of a control signal sent from the buffer reaches the buffer after a delay
of θ̄. Note the delayed reflection term U(t− θ̄). Such delayed reflection terms
are common occurrences in models of communications systems, but have not
previously been treated in the literature on delay systems.

A revised model, a tentative control and simulations. Since the model
is a heavy traffic limit, the variables are centered and scaled, so ρ can be either
positive or negative. Nevertheless the form (2.1) and (2.2) makes sense even
for a non-heavy-traffic model, where ρ is constrained to be nonnegative. As
long as the queue is not empty, the processor is working full time and the total
system throughput is as high as possible. Then the main issues are average
queueing delay, losses due to buffer overflow, and the mean source rate.

Consider the following modification of (2.1):

all acting at more or less the same time. This results in high oscillation and poor
overall utilization.
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dρ(t) = cdt − v0ρ(t)dU(t − θ̄) − u(t − θ̄)dt + dLρ(t), ρ(t) ≥ 0, (2.3)

where the term ρ(t)dU(t− θ̄) represents the (delayed) multiplicative decrease
due to buffer overflow. The nondecreasing reflection term Lρ(t) can increase
only when ρ(t) = 0 and serves to keep the source rate from going negative.
These variables would normally be scaled. With no preemptive control, the
system will overflow, and the source rate will be regulated only by the effects
of the delayed loss term ρ(t)dU(t − θ̄). For the model (2.2) and (2.3), let
c = 1, b = 1, θ̄ = 1, σ2 = 1, v0 = 1, and let the scaled buffer size be B = 7.
Figure 2.1 is a typical plot of the queue size and source rate when there is
no preemptive control, with the queue being represented by the upper curve.
The driving noise processes for all cases for this example are the same. The
comparisons are similar with other choices of the noise processes.
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Figure 2.1. σ = 1. Uncontrolled AIMD model.

The queue is never empty, so the processor output rate cannot be im-
proved. The average queue length is 6.0, the average source rate is 1.9, and
the average buffer overflow loss per unit time is 0.867, which is exceedingly
high, especially considering that the overflow packets need to be retransmit-
ted. By increasing the penalty parameter v0, the queue overflow behavior can
be improved, but the general behavior is similar. Reducing the value of the
continuous rate increase parameter c helps. Figure 2.2 illustrates the case of
Figure 2.1, with c reduced to 0.1. The average queue length is 3.48, the aver-
age source rate is 1.12, and the average overflow per unit time is .17, which is
still large.
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Figure 2.2. σ = 1. Uncontrolled AIMD model. Smaller rate of increase

The figure illustrates a familiar behavior. While the average source rate ρ
is smaller than for the case of Figure 2.1, the queue is rarely empty and so the
processor is working essentially full time, and less (although still too much)
of the uncontrolled traffic is lost.

Controls. Let the (nonnegative) control be bounded above by ū. Suppose that
the cost function is either discounted or ergodic, with cost rates that are linear
in the overflow and queue size, and with no penalty on the preemptive control.
When there is no delay, the optimal controls are of the “bang-bang” type. They
would take the maximum value when some function of the rate and buffer
occupancy is above a threshold value, and be zero otherwise. Computations
show that this function can be well approximated by an affine function,2 and
the cost does not change much when the region in which the control is active is
approximated by a rectangle. When there are delays the control would still be
“bang-bang,” but the form of the functions that determine the active region
(in the infinite-dimensional) state space is not known. Part of the object of the
book is to develop feasible ways of getting information about its structure.
In this example, our only concern is to demonstrate the value of including
information on past control actions in the computation of the present control
value, analogously to what was done in the first example.

With a dynamic programming formulation, the control at time t would
depend on the full system state, which is the pair (x(t), ρ(t)), and the control
memory segment {u(t + θ),−θ̄ ≤ θ ≤ 0}. Since, without the constraints that
are handled by the reflection terms, the system is linear, and the buffer over-
flow should be small with any reasonable control, one could follow a common
current procedure by dropping the bound on the control and the upper and
lower bounds on the queue, use a quadratic cost function, and approximate
2 See the figure in [1].
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the consequent optimal linear control. One would still have to experiment with
this cost function to assure that the desired tradeoffs among the quantities of
interest are achieved for the system with a bounded queue and control.

Continuing, let ū = 2.5 be an upper bound for the control. Now, taking
a clue from the form of the optimal controls for the no-delay problem, for
parameters ρ0, x0 that are to be chosen let the control be zero if ρ(t) ≤ ρ0 or
x(t) ≤ x0. Otherwise, we use the form

u(t) = max{0, x(t) + ρ1.5(t) − 3S(t)} ∧ ū, (2.4)

where S(t) was defined in the previous example.3 The value of the control at
a time t is the average rate of packet selection at that time.

This form was found to be useful via experimentation, but no claim is
made concerning any optimality properties. Figure 2.3 plots the queue and
source rate values for the parameters that were used in Figure 2.1. It is seen
that, for the plotted trajectory, the queue rarely overflows and is rarely empty.
The mean queue length is 3.39, the mean source rate is 1.025, and the mean
overflow per unit time is .02, a vast improvement over the uncontrolled model
and that for the model with the reduced rate increase c = .1 as well. The role
of S(t) is the same as in Example 1, to help avoid overcontrol by accounting for
the control values chosen on the time interval [t−θ̄, t) in computing the control
value at time t. It is likely that the control can be modified to reduce the
oscillations, but it is not clear whether that will help the overall performance.
The variations in the queue process are influenced by the driving noise as
well as by variations in the source rate process, so that process will always be
random if σ �= 0.

Let σ = 0. Then for the uncontrolled case of Figure 2.1, the average queue
length is close to the maximum (7), and the source and overflow rates converge
to 1.68 and .62, resp., quite bad. For the case of Figure 2.2, the average queue
size is close to the maximum, and the source and overflow rates converge to
1.097 and .09, resp. For the controlled model of Figure 2.3 (but with σ = 0),
the overflow rate is zero and the queue length and source rate converge to
2.96 and 1.02, respectively, a vast improvement over the above uncontrolled
cases.
3 A complication in applications is that, in general, the controllable source rates

would not be known at the controller; only the queue lengths and the total queue
input rates, which is the sum of the controllable and uncontrollable source rates.
However, if a “locally” smoothed queue input rate is used, then the noise due to
the uncontrollable sources is partly averaged out, yielding an approximation to
the controllable source rate.
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Figure 2.3. σ = 1. AIMD model with control.

Suppose that (2.3) is replaced by

dρ(t) = cdt − v0ρ(t)dU(t − θ̄) − ρ(t)u(t − θ̄)dt + dLρ(t), (2.5)

where the effect of the preemptive control is proportional to the source rate.
The result is plotted in Figure 2.4. The performance is close to that of the case
of Figure 2.3, but the oscillations in the source rate are reduced. The average
queue length is 3.2, and the average source and overflow rates are 1.02 and
.02, resp.
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Figure 2.4. σ = 1. AIMD model with proportional control (2.5)

1.3 Models With Finite-Dimensional Equivalences

The numerical problem would be considerably simpler if there was a state
transformation that would yield an equivalent system that is finite-dimensional.
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Such models do exist, but the class is quite narrow. One such class is in
[5, 33, 62] for an model with no boundary constraints:

dx(t) = b1(x(t), y(t), u(t))dt+b2(x(t), y(t))x(t− θ̄)dt+σ(x(t), y(t), u(t))dw(t),
(3.1)

where, for a real number λ and real-valued b3(·),

y(t) =
∫ 0

−θ̄

eλθb3(x(t + θ))ds. (3.2)

The cost function is defined over a finite interval and depends only on x(·)
and y(·). A main assumption in [5] is that the system of PDEs defined by

eθ̄λTx(x, y)b2(x, y) = Ty(x, y) (3.3)

has a solution, where Tx denotes the Jacobian of T with respect to x and
T (x, y) has the dimension of x. Then, under appropriate conditions on the
functions in (3.1), (3.2), and in the cost rate, the system with state variable
Q(t) = T (x(t), y(t)) has a finite-dimensional dynamical representation. See
the references for full details. Applications for which explicit solutions to (3.3)
are available are given for a financial-investment problem and for a problem
of admission control arising in communications. This model is similar to that
used in [33, 62]. An application to an investment-consumption problem is
developed in [33], and necessary and sufficient conditions for this class of
processes to have a finite-dimensional Bellman equation are given in [62].

Another example takes the (real-valued) form

dx(t) =
[
a1x(t) + a2y(t) + a3x(t − θ̄)

]
dt

+σ
[
x(t) + a3e

λθ̄y(t)
]
dw(t) − dγ(t),

where γ(·) is the total asset that has been consumed or harvested by time t.
The value function (to be maximized) is over a long finite interval and has
the particular form, with x = x(t) and y = y(t),

W (x, y, t) = Eγ
x,y

∫ T

t

e−ρs

[(
x(s) + a3e

λθ̄y(s)
)k

ds + dγ(s)
]

.

If the parameters of the problem satisfy particular narrow relations, then
the optimal control can be solved for explicitly. In this example [33] the control
is singular. I.e., there is a boundary line of the form v∗ = c1x(t) + c2y(t), for
some constant v∗, such that the control acts only on the boundary and keeps
the pair (x(t), y(t)) on one side. Singular controls are common occurrences in
the no-delay analog of such problems. Although the models and the allowed
parameter sets are very special, the results are interesting since in principle
they allow a comparison of the optimal cost values with those for controls that
ignore the delay. The infinite-dimensional memory problem is not necessarily
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completely eliminated. Since the control is to be applied to the system (3.1)
where x(·) is observed, to compute the control at time t in an application one
needs to compute y(t). If we cannot compute y(·) from a dynamical system
whose inputs at time t are only the control u(t) and x(t), then we will have
to keep the memory segment {x(t + θ),−θ̄ ≤ θ ≤ 0}. This is still simpler
than if the control depended on the full memory segment rather than on some
finite-dimensional functional of it.



2

Weak Convergence and Martingales

2.0 Outline of the Chapter

This chapter contains a brief review of two of the main mathematical methods
for dealing with the convergence of a sequence of approximations to a stochas-
tic process or for showing that a sequence of stochastic processes has a limit
and for characterizing it. The first method is the theory of weak convergence
of a sequence of probability measures. The theory, which is an extension to
a sequence of random processes of the theory of convergence in probability
of a sequence of random variables, provides powerful tools for approximation
and limit theorems. Once one knows that the sequence of processes of concern
has a limit, that limit must be characterized. The methods of the so-called
martingale problem are a standard and powerful approach to doing such a
characterization, when the limit is a diffusion-type process.

The numerical approximations of concern will be representable as con-
trolled Markov chains with multistep memory. The convergence and approxi-
mation theorems of the later chapters, which are based on weak convergence
theory and the methods of the martingale problem, show that the expecta-
tions of a large set of functionals of these chains converge to the values for
the original process, as the approximation parameter goes to zero. In partic-
ular, the optimal cost values converge to the optimal value for the original
controlled process of interest. Also, suitable interpolations of the sequence of
approximating chains, under their optimal controls, converges to an optimal
limit process. In addition, for numerical purposes one often approximates the
original model and uses that for the numerical computations. Then one must
show that these approximations do indeed provide results that are close to
those for the original model. The same methods are employed for these pur-
poses. Only an outline of the results that are of main use to us will be given.
The comprehensive references [8, 23] contain full details and much additional
information. The references [55, 58, 61, 56] contain many applications of these
methods to control and communications systems or to numerical approxima-
tions.

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
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2.1 Weak Convergence

Let IRk denote Euclidean r-space with canonical value x = (x1, . . . , xk), and
let {Xn} be a sequence of IRk-valued random variables on a probability space
(Ω,F , P ). If there is an IRk-valued random variable X such that Ef(Xn) →
Ef(X) for each bounded and continuous real-valued function f(·) on IRk,
then Xn converges to X in distribution. The sequence {Xn} is said to be tight
or, equivalently said, bounded in probability if

lim
K→∞

sup
n

P {|Xn| ≥ K} = 0. (1.1)

An equivalent definition is that for each small µ > 0 there are finite Mµ and
Kµ such that P {|Xn| ≥ Kµ} ≤ µ for n ≥ Mµ. Convergence in distribution is
also called weak convergence. Tightness is a necessary and sufficient condition
that any subsequence of {Xn} have a further subsequence that converges in
distribution [10, 23].

Let {ξn} be a sequence of mutually independent and identically distributed
real-valued random variables, with mean zero and unit variance and w(·) a
real-valued Wiener process with unit variance parameter. For t > 0 define

wn(t) =
1√
n

[nt]∑
i=1

ξi, (1.2)

where [nt] denotes the integer part of nt. Then the central limit theorem says
that wn(t) converges in distribution to a normally distributed random variable
with mean zero and variance t.

For an integer k, and 0 = t0 < t1 < · · · < tk+1, the multivariate central
limit theorem [10] says that {wn(ti+1)−wn(ti), i ≤ k} converges in distribu-
tion to {w(ti+1) − w(ti), i ≤ k}. Now consider wn(·) to be a random process
with paths that are constant on the intervals [i/n, (i+1)/n). It is then natural
to ask whether the sequence of processes wn(·) converges to w(·) in a stronger
sense. For example, will the distribution of the maximum max{wn(t) : t ≤ 1}
converge in distribution to max{w(t) : t ≤ 1} ? Donsker’s theorem states that
F (wn(·)) converges in distribution to F (w(·)) for a large class of functionals
F (·) [7, 23], for example for measurable F (·) that depend on only a finite
segment of the path and are continuous almost everywhere with respect to
the measure of w(·). This is an example of the theory of weak convergence.

The two main steps in getting the limit theorems for random processes
are analogous to what is done for proving the central limit theorem: First
show that there are appropriately convergent subsequences and then identify
the limits. For vector-valued random variables, the necessary and sufficient
condition (1.1) for the first step says that, neglecting an n-dependent set of
small (uniformly in n) probability, the values of the random variables Xn

are confined to some compact set. When random processes replace random
variables, there will be an analogous condition ensuring that the paths are in
a compact set with a “high probability.”
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2.1.1 Basic Theorems of Weak Convergence

Definitions. Let S denote a metric space with metric ρ(·) and C(S) the
set of real-valued continuous functions on S, with Cb(S) being the subset of
bounded functions. Let B(S) denote the collection of Borel subsets of S. Let
P(S) denote the space of probability measures on (S,B(S)). Let Xn, n < ∞,
and X be S-valued random variables, with distributions Pn, n < ∞, and P ,
respectively. The sequence {Xn, n < ∞} is said to converge in distribution
to X if Ef(Xn) → Ef(X) for all f ∈ Cb(S) or, equivalently written, if∫

S
f(s)Pn(ds) →

∫
S

f(s)P (ds). This is called weak convergence and written
as Pn ⇒ P . We will often say that the sequence of random variables Xn

converges weakly to X, and denote this by Xn ⇒ X as well. The X will be
said to be the weak-sense limit.

For λ ∈ Λ, an arbitrary index set, let Pλ ∈ P(S). The set {Pλ, λ ∈ Λ} is
called tight if for each ε > 0 there is a compact set Kε ⊂ S such that

inf
λ∈Λ

Pλ(Kε) ≥ 1 − ε. (1.3)

If Pλ is the measure defined by an S-valued random variable Xλ, then we will
also say that {Xλ, λ ∈ Λ} is tight. If all of the Xλ are defined on the same
probability space, then (1.3) is equivalent to

inf
λ∈Λ

P {Xλ ∈ Kε} ≥ 1 − ε. (1.4)

The Prohorov metric. Let Pi ∈ P(S), i = 1, 2. For A ∈ B(S), define the
set Aε = {s′ : ρ(s′, s) < ε for some s ∈ A}. Then the Prohorov metric π(·) on
P(S) is defined by

π(P1, P2) = inf {ε > 0 : P1(A) ≤ P2(Aε) + ε for all closed A ∈ B(S)} ,

and is always used on the space P(S). The following two theorems are funda-
mental.

Theorem 1.1. [23, page 101.] If S is complete and separable, then P(S) is
complete and separable.

Theorem 1.2. [23, Theorem 3.2.2.] If S is complete and separable, then a set
{Pλ, λ ∈ Λ} ⊂ P(S) has compact closure if and only if {Pλ, λ ∈ Λ} is tight.

Suppose that S is complete and separable and that a given sequence of
probability measures has compact closure (Prohorov metric). Theorem 1.2
then implies the existence of a convergent subsequence [19, Theorem 13, page
21]. The theorem gives a practical method for verifying the compact closure
property, as tightness is also a property of the random variables (or processes)
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associated with the Pλ. These random variables typically have explicit rep-
resentations (for example, they might be solutions to a stochastic differential
equation) that can be used to verify the tightness property. A sequence of
vector-valued random variables is tight if the sequence of each of its compo-
nents is tight, as asserted in the next result.

Corollary 1.3. Let S1 and S2 be complete and separable metric spaces, and
define S = S1 × S2 with the usual product space topology. For {Pλ, λ ∈ Λ} ⊂
P(S), let Pλ,i be the marginal distribution of Pλ on Si. Then {Pλ, λ ∈ Λ} is
tight if and only if {Pλ,i, λ ∈ Λ}, i = 1, 2, are tight.

The next theorem contains some statements that are equivalent to weak
convergence. Let ∂B be the boundary of the set B ∈ B(S).

Theorem 1.4. [23, Theorem 3.3.1.] Let S be a metric space and let Pn, n < ∞,
and P be elements of P(S). Then statements (i)–(iv) below are equivalent and
are implied by (v). If S is separable, then (i)–(v) are equivalent:

(i) Pn ⇒ P,
(ii) lim supn Pn(F ) ≤ P (F ) for closed sets F,

(iii) lim infn Pn(O) ≥ P (O) for open sets O,
(iv) limn Pn(B) = P (B) if P (∂B) = 0,
(v) π(Pn, P ) → 0.

The theorem implies that, for separable S, convergence in the Prohorov
metric is equivalent to weak convergence. Part (iv) implies the following im-
portant extension of the class of functionals that converge in distribution.

Theorem 1.5. [7, Theorem 5.1.] Let S be a metric space, and let Pn, n < ∞,
and P be probability measures on P(S) satisfying Pn ⇒ P . Let f(·) be a real-
valued measurable function on S and define Df to be the measurable set of
points at which f(·) is not continuous. Let Xn and X be random variables
that induce the measures Pn and P on S, respectively. Then f(Xn) ⇒ f(X)
whenever P{X ∈ Df} = 0.

The Skorokhod representation. Suppose that Xn ⇒ X, where the Xn and
X might be defined on different probability spaces. The probability spaces
are unimportant, as weak convergence is a statement on the measures of the
random variables. But for the purpose of characterizing the weak-sense limit
X, it can be very useful to have all processes defined on the same space and
weak convergence replaced by probability one convergence. This can be done
without changing the distributions of the Xn or X. The result is known as
the Skorokhod representation [23].
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Theorem 1.6. [23, Theorem 3.1.8.] Let S be a separable metric space, and
assume that Pn ∈ P(S) converges weakly to P ∈ P(S) as n → ∞. Then
there exists a probability space (Ω̃, F̃ , P̃ ) on which there are defined random
variables X̃n, n < ∞, and X̃ such that for all Borel sets B and all n < ∞,

P̃
{

X̃n ∈ B
}

= Pn (B) , P̃
{

X̃ ∈ B
}

= P (B) , (1.5)

and such that
X̃n → X̃ with probability one. (1.6)

2.1.2 The Function Spaces D(S; I)

For a complete and separable metric space S, let D(S; I) denote the set of S-
valued functions on the interval I that are right continuous and have left-hand
limits. Let C(S; I) denote the subset of continuous functions. The interval
I will be either [0,∞), [t1,∞) or [t1, t2] for some t1 < t2. Even when the
weak-sense limit processes have continuous paths, it is usually easier to prove
tightness and weak convergence using the path spaces D(S; [0,∞)). If there
are Poisson jumps in the system dynamics or if the control is of an impulsive
or singular nature, then D(S; [0,∞)) must be used. We next define the metric.

The Skorokhod metric [23, Chapter 3.5], [7, Chapter 3]. For T > 0, let ΛT

denote the space of continuous and strictly increasing functions from [0, T ]
onto [0, T ]. The functions in this set will be “allowable timescale distortions.”
For λ(·) ∈ ΛT define

|λ| = sup
s<t

∣∣∣∣log
{

λ(t) − λ(s)
t − s

}∣∣∣∣ .
The Skorokhod metric d′T (·) on D(IRk; [0, T ]) is defined by, for λ(·) ∈ ΛT ,

d′T (f(·), g(·)) = inf{ε : |λ| ≤ ε, sup
0≤s≤T

|f(s) − g(λ(s))| ≤ ε, for some λ(·)}.

(1.7)
On the space D(IRk; [0,∞)), the metric is defined by

d′(f(·), g(·)) =
∫ ∞

0

e−t min [1, d′t(f(·), g(·))] dt. (1.8)

Now let S be a complete and separable metric space with metric ρ(·). Then
the Skorokhod metric on the spaces D(S; [0, T ]) is defined by the d′T (·) above,
but with ρ(f(s), g(λ(s))) used in place of |f(s)−g(λ(s))|, where both f(·) and
g(·) are now points in D(S; [0, T ]). Define the space D(S; [0,∞)) analogously.
If S is complete and separable, then so are D(S; [0, T ]) and D(S; [0,∞)) [23].

If fn(·) → f(·) in dT (·) where f(·) is continuous, then the convergence
must be uniform on [0, T ]. If there are ηn → 0 such that the discontinuities
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of fn(·) are less than ηn in magnitude and if fn(·) → f(·) in dT (·), then the
convergence is uniform on [0, T ] and f(·) must be continuous. Because of the
“timescale distortion” that is involved in the definition of the metric dT (·),
we can have (loosely speaking) convergence of a sequence of discontinuous
functions where there are only a finite number of discontinuities, where both
the locations and the values of the discontinuities converge, and a type of
“equicontinuity” condition holds between the discontinuities. See [7, 23] for
full detail.

A criterion for tightness in D(S; [0, T ]) and D(S; [0,∞)). The following
criterion for tightness will be used. Recall that for a filtration {Ft, t ≥ 0}, the
random time τ is an Ft-stopping time if {τ ≤ t} ∈ Ft for all t ∈ [0,∞).

Theorem 1.7. [49, Theorem 2.7b.] Let xn(·) be processes with paths in
D(S; [0,∞)), where S is a complete and separable metric space with metric
ρ(·). For each δ > 0 and rational t < ∞, let there be a compact set Sδ,t ⊂ S
such that

sup
n

P (xn(t) �∈ Sδ,t) ≤ δ. (1.9)

Let Fn
t be the σ-algebra determined by {xn(s), s ≤ t} and let Tn(T ) be the

set of Fn
t -stopping times that are no bigger than T . Suppose that

lim
δ→0

lim sup
n

sup
τ∈Tn(T )

E min {1, ρ(xn(τ + δ), xn(τ))} = 0 (1.10)

for each T < ∞. Then {xn(·), n < ∞} is tight in D(S; [0,∞)).

Let C(G; [a, b]) denote the space of S-valued continuous functions on the
interval [a, b] with the sup norm topology, where G is a compact subset of a
Euclidean space. If the interval [a, b] is unbounded, then the local sup norm
topology is used. The next theorem gives a necessary and sufficient condition
for tightness of sequence of G-value continuous processes.

Theorem 1.8. [8, Theorem 7.3.] The sequence of G-valued processes xn(·) is
tight in C(G; [0, 1]) if and only if: For each ε > 0 and η > 0, there is a δ > 0
and an n0 < ∞ such that, for n ≥ n0,

P

{
sup
iδ<1

sup
s≤δ

|xn(s) − xn(iδ)| ≥ ε

}
≤ η.

2.2 Martingales and the Martingale Method

2.2.1 Martingales

Definitions. Let (Ω,F , P ) denote a probability space. It will always be
assumed that F is complete; i.e., it contains all subsets of P -null sets.
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Let F × B([0,∞)) denote the completion of the product σ-algebra with re-
spect to the product measure, with Lebesgue measure used on B([0,∞)). A
function φ(·) on Ω × [0,∞) and with values φ(ω, t) in some metric space
S is said to be a measurable process if it is a measurable mapping from
(Ω × [0,∞),F × B([0,∞))) to (S,B(S)). All processes are assumed to be
measurable and separable. It is always assumed that S and C(S; [0,∞)) and
D(S; [0,∞)) are complete and separable metric spaces ([7, 23]).

A family of σ-algebras {Ft, t ≥ 0} is called a filtration on this probability
space if Fs ⊂ Ft ⊂ F for all 0 ≤ s ≤ t. We will always assume that the
Ft are complete in that Ft contains all the subsets of null sets in F . If A is
a collection of random variables defined on (Ω,F , P ), then we use F(A) to
denote the σ-algebra generated by A. Let EFt

and PFt
denote the expectation

and probability, respectively, conditioned on the σ-algebra Ft.
Let M(·) be a stochastic process defined on (Ω,F , P ) with filtration

{Ft, t ≥ 0}. If M(t) is Ft-measurable for each t, then M(·) is said to be
Ft-adapted. Let M(·) be Ft-adapted and take values in the path space
D(IRk; [0,∞)). Then M(·) is said to be an Ft-martingale if E|M(t)| < ∞
for all t ≥ 0 and

EFtM(t + s) = M(t) w.p.1 for all s, t ≥ 0. (2.1)

If the filtration is unimportant or obvious, then we will simply say that M(·)
is a martingale. If M(·) is an Ft-martingale, then it is also an F(M(s), s ≤ t)-
martingale. We say that {F(M(s), s ≤ t), t ≥ 0} is the filtration generated by
M(·).

Martingales are a fundamental tool in stochastic analysis. Processes can
often be decomposed into a sum of a process of bounded variation and a
martingale. This decomposition can be used to facilitate the analysis, as the
bounded-variation term is often relatively easy to handle, and there are many
useful techniques for the analysis of martingales. The following inequalities
will be useful. Let M(·) be a real or vector-valued Ft-martingale with paths
in D(IRk; [0,∞)) for some k ≥ 1. Then [10, 16, 42, 76] for any c > 0 and
0 ≤ t ≤ T ,

PFt

{
sup

t≤s≤T
|M(s)| ≥ c

}
≤ EFt |M(T )|2/c2 w.p.1, (2.2)

EFt
sup

t≤s≤T
|M(s)|2 ≤ 4EFt

|M(T )|2 w.p.1. (2.3)

Stopping time. Let {Ft, t ≥ 0} be a filtration. If M(·) is an Ft-martingale
and τ is an Ft-stopping time, then the “stopped” process defined by M(t∧ τ)
is also an Ft-martingale [10, 76]. Let Fτ denote the “stopped” σ-algebra that
is composed of the sets A ∈ F such that A ∩ {τ ≤ t} ∈ Ft for all t.
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2.2.2 Verifying That a Process Is a Martingale

We now give a method that will be useful in showing that a process is a
martingale. It is only a rewording of the definition of a martingale in terms of
conditional expectations.

Let Y be a vector-valued random variable with E|Y | < ∞, and let V (·)
be a process with paths in D(S; [0,∞)), where S is a complete and separable
metric space. Suppose that for some given t > 0, each integer p and each set of
real numbers 0 ≤ si ≤ t, i = 1, . . . , p, and each bounded and continuous real-
valued function h(·), Eh(V (si), i ≤ p)Y = 0. This fact and the arbitrariness
of p, si, t, and of the function h(·) imply that

E[Y |V (s), s ≤ t] = 0

with probability one [10].
Next, let U(·) be a random process with E|U(t)| < ∞ for each t, with

values in D(S; [0,∞)), and such that for all p, h(·), si ≤ t, i ≤ p, as given
above, and a given real τ > 0,

Eh(U(si), i ≤ p) [U(t + τ) − U(t)] = 0. (2.4)

Then E[U(t + τ) − U(t)|U(s), s ≤ t] = 0. If this holds for all t and τ > 0,
then by the definition (2.1) of a martingale, U(·) is a martingale with respect
to the filtration generated by U(·). It is often more convenient to work with
the following more general setup.

Theorem 2.1. Let U(·) be a random process with paths in D(IRk; [0,∞)) and
with E|U(t)| < ∞ for each t. Let V (·) be a process with paths in D(S; [0,∞)),
where S is a complete and separable metric space. Let U(t) be measurable on
the σ-algebra FV

t determined by {V (s), s ≤ t}. Suppose that for each real t ≥ 0
and τ ≥ 0, each integer p, and each set of real numbers si ≤ t, i = 1, . . . , p,
and each bounded and continuous real-valued function h(·),

Eh(V (si), i ≤ p) [U(t + τ) − U(t)] = 0. (2.5)

Then U(·) is an FV
t -martingale.

An application. A sufficient condition for a Wiener process. The
numerical approximations can be represented as processes that have the drift
of the original diffusion and are driven by martingales. For the convergence
proofs one needs to prove that these martingales converge to a Wiener process.
The following result is useful for this purpose.

A process v(·) is said to be nonanticipative with respect to a Wiener
process w(·) if w(·) is a martingale with respect to the filtration gener-
ated by (v(·), w(·)). Equivalently, for all t, w(t + ·) − w(t) is independent
of {v(s), w(s), s ≤ t}. Let x(·) and z(·) be IRr-valued continuous processes
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with z(·) having bounded variation (w.p.1) on any bounded time interval.
Let b(·), σ(·), x(·) be measurable processes and define a(t) = σ(t)σ′(t) =
{ai,j(t); i, j}. For f(·) a real-valued function with compact support that is
continuous and bounded together with its first and second derivatives, define

Lf(x(t)) = f ′
x(x(t))b(t) +

1
2

∑
i,j

ai,j(t)fxixj (x(t)).

Let h(·) be a bounded and continuous function of its arguments, and for
an integer k, and nonnegative t, T , let 0 ≤ t1 ≤ · · · ≤ tk < t < t + T , and let
f(·) be as above. Suppose that for all such h(·), f(·), k, t, T, ti, we have

Eh (x(ti), b(ti), σ(ti), z(ti), i ≤ k)

×
[
f(x(t + T )) − f(x(t)) −

∫ T

t

(Lf(x(s))ds + f ′
x(x(s))dz(s))

]
= 0.

(2.6)
Then there is a standard IRr-valued Wiener process on the same probability
space (perhaps augmenting the space by adding an “independent” Wiener pro-
cess) such that [42, Chapter 5, Proposition 4.6] x(·), z(·), b(·), σ(·) are nonan-
ticipative with respect to w(·), and

x(t) = x(0) +
∫ t

0

b(s)ds +
∫ t

0

σ(s)dw(s) + z(t).
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Stochastic Delay Equations: Models

3.0 Outline of the Chapter

In this chapter, we will describe most of the models that will be of interest
in the sequel. The subject of delay equations is vast, whether deterministic,
stochastic, or controlled or not; for example, see [27, 44, 45, 68, 74, 73, 77].
The behavior can be quire bizarre, as seen in the examples in [74]. Our main
concern is with models for which practical convergent numerical algorithms
are possible.

Numerical approximations usually require that the process be confined to
some compact set G, either directly or after a state space transformation. This
motivates the models that we use. Two types of physical models are discussed.
With the first, in Section 1, the process is either stopped on first reaching the
boundary of a compact set G or else it is confined to G via its own dynamics.
Thus the behavior on the boundary of G is irrelevant. A process might be
stopped on first reaching the boundary either because that is the problem of
interest or to obtain a bounded state space for purely numerical purposes.
The models of interest are defined, with path and/or control delays. Standard
issues, such as relaxed controls and weak-sense uniqueness, are reviewed. We
start with the simplest model (1.1), where only the path is delayed, and then
discuss the models in the order of increasing complexity.

Models for many physical problems have reflecting boundaries. They occur
naturally in problems arising in queueing and communications systems [56],
where the state space is often bounded owing to the finiteness of buffers and
nonnegativity of their content, and the internal routing and buffer overflows
determine the reflection directions on the boundary. One common way of
“numerically” bounding a state space is to impose a reflecting boundary, if
one does not exist already. In this case, one selects the region so that the
boundary plays a minor role. Section 2 introduces the standard reflecting
diffusion model, also known as the Skorokhod problem, where the process is
confined to G by means of a reflection process on the boundary. Estimates
of the moments of the reflection terms are given as well as criteria for the
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tightness of a sequence of solutions. The outline is brief and additional material
can be found in [56] and in the other references cited in Section 2. If the path,
control (and possibly the reflection terms as well) are delayed, then the model
(2.11) is useful and it is the form that will be used in Chapter 9, which
concerns an approach that is designed to deal with the memory requirements
of the numerical procedures when the path, control, and possibly the reflection
processes are delayed. The so-called neutral equation model is in Subsection
2.3. The system models that are discussed are the ideal ones. Because the
state spaces for such problems are infinite-dimensional, approximations need
to be made before the numerical problem can be considered, and some such
approximations will be discussed in Chapter 4.

In order not to overcomplicate the development and to focus on the issues
that are of main concern in the delay case, we omit treatment of many inter-
esting cases, such as where the control occurs in the variance term or where
there are Poisson-type jumps, controlled or not. These are fully dealt with in
[58] for the no-delay case, and that development can be carried over to the
delay case in the same manner that we carry over the cases that are treated.
The Girsanov transformation method, discussed in Section 3, is a powerful
tool for introducing nonlinear control while maintaining uniqueness. It will be
very useful for the treatment of the ergodic cost problem in Chapter 5. Typ-
ical cost functionals are discussed in Section 4. The existence of an optimal
control is shown in Section 5. The proofs are of interest also because they pro-
vide a template for the proofs of convergence of the numerical approximations
in Chapters 7–9. The singular and impulsive control problems are considered
in Section 6. The models are described and existence of an optimal control
proved. Singular controls occur frequently in routing and admission control in
communications problems, where it is usually determined by a “free bound-
ary;” that is where there is a set in the state space with the control acting
when the process reaches its boundary, and attempts to keep the process from
exiting the set.

We will suppose that the maximum delays are the same for the path and
control. This will not be the case in general, where the maximum delay will
depend on the component of the path or control. But the convention greatly
simplifies the notation, and it is trivial to adjust any of the results to the case
where the maximum delays are different.

We have supposed that the delays are not random and are known. Suppose
that the delay is random, say a finite-state Markov chain, but its value is
always known. (See, e.g., [79] for an example arising in communications.) In
this case, we simply augment the system state by the state of this Markov
process, assuming that its value is always known. The memory segment will
be that for the maximum delay.
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3.1 The System Model: Boundary Absorption

Two types of delayed stochastic differential equations will be used as system
models, depending on the boundary conditions. In this section, we discuss a
simple model for use when the control stops on first leaving a predetermined
set or hitting its boundary. Because interest in the process stops on first
contact with the boundary, we need not specify reflection or other boundary
processes. In the next section, we discuss the models when there are reflecting
boundaries.

Terminology. The path of the stochastic differential equation of concern
takes values in IRr, Euclidean r-space, and the solution is denoted by x(·). In
this section, the process is stopped on first hitting the boundary of a compact
set G ⊂ IRr. The control u(t) takes values in a compact set U . An admissible
control is an (ω, t)-measurable U -valued function that is nonanticipative with
respect to the driving Wiener process w(·). The maximum delay is denoted by
0 < θ̄ < ∞. Define x̄(t) to be the path memory segment {x(t+θ),−θ̄ ≤ θ ≤ 0}.
The value of the function x̄(t) at θ will be written as x(t, θ). The dynamical
terms depend on the segments x̄(t) of the x(·)-process over an interval of
length θ̄, the state of the process, and we need to define the space of such
segments. In work on the mathematics of delay equations, it is common to
use either the path space C(G; [−θ̄, 0]) of continuous G-valued functions on
the interval [−θ̄, 0] (with the sup norm topology) or L2(G; [−θ̄, 0]), the space
of square integrable functions on [−θ̄, 0]. The Skorokhod space D(G; [−θ̄, 0]) is
more appropriate for the work on the convergence of the numerical algorithms
and for the results concerning the existence of an optimal control later in this
chapter, as well as for the approximation results in Chapter 4, which use weak
convergence methods, and its use involves no loss of generality. If the model
is extended to include a Poisson-type jump term or has singular or impulsive
controls, then the use of D(G; [−θ̄, 0]) is indispensable.

Note that if fn(·) converges to f(·) in D(G; [t1, t2]) and f(·) is continuous,
then the convergence is uniform on any bounded subinterval.

We will use x̂, with values x̂(θ), −θ̄ ≤ θ ≤ 0, to denote the canonical point
in D(G;−[θ̄, 0]). A shortcoming of the Skorokhod topology is that the function
f(·) defined by f(x̂) = x̂(θ0), for any fixed θ0 ∈ [−θ̄, 0], is not continuous (it is
measurable). But it is continuous at all points x̂ that are continuous functions.
In our case, all the solution paths x(·) will be continuous.

Delay in the path only. When the path only is delayed, the process model
is the controlled diffusion

dx(t) = b(x̄(t), u(t))dt + σ(x̄(t))dw(t), (1.1)

with initial condition x̂ = {x(s),−θ̄ ≤ s ≤ 0}. We will use the following as-
sumptions. The last sentence of (A1.1) (and its analog in the other conditions)
is not needed in this chapter. But we write it for use in the later chapters.
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A1.1. b(·) is bounded and measurable and is continuous on D(G; [−θ̄, 0])×U
at each point (x̂(·), α) such that x̂(·) is continuous.1 More generally, suppose
that if fn(·) → f(·) in D(G; [−θ̄, 0]) and that the values of fn(·) at the points
of discontinuity of f(·) converge to those of f(·), then b(fn, α) → b(f, α)
uniformly in α.

A1.2. The matrix-valued function σ(·) is bounded and measurable and is con-
tinuous on D(G; [−θ̄, 0]) at each point x̂(·) that is continuous. More generally,
suppose that if fn(·) → f(·) in D(G; [−θ̄, 0]) and that the values of fn(·) at the
points of discontinuity of f(·) converge to those of f(·), then σ(fn) → σ(f).
The function k(·) that will appear in the cost function satisfies the condition
on b(·).

Assumption (A1.1) covers the common case where b(x̄(t), α) =
∑

i bi(x(t−
θi), α), 0 ≤ θi ≤ θ̄, where the bi(·) are continuous.

Delays in the path and control. We will also consider the problem where
the control as well as the path is delayed. Let B(U ; [−θ̄, 0]) denote the space
of measurable functions on [−θ̄, 0] with values in U , and let û, with values
û(θ),−θ̄ ≤ θ ≤ 0, denote a canonical element of B(U ; [−θ̄, 0]). Then the
dynamical term b(·) becomes a function of both x̂, û. As noted in the Chapter
Outline, we will suppose that the maximum delays are the same for the path
and control. This will not be the case in general, where the delay will depend
on the component of the path or control. But the convention greatly simplifies
the notation, and it is trivial to adjust any of the results to the case where
the maximum delays are different.

Depending on the applications of interest, there are a variety of choices for
the way that the control appears in b(·). We will use the following common
assumption, where ū(t) denotes the “memory-segment” function {u(t+θ), θ ∈
[−θ̄, 0]}.

A1.3. Let µc(·) be a bounded measure on the Borel sets of [−θ̄, 0] and let b(·)
be a bounded measurable function on D(G; [−θ̄, 0])×U × [−θ̄, 0]. The function
b(x̂, α, v) is continuous in (x̂, α, v) at each point x̂ that is a continuous func-
tion. More generally, suppose that if fn(·) → f(·) in D(G; [−θ̄, 0]) and that
the values of fn(·) at the points of discontinuity of f(·) converge to those of
f(·), or else sup−θ̄≤θ≤0 |fn(θ) − f(θ)| → 0, then b(fn, α, θ) → b(f, α, θ) uni-

1 The space D(G; [−θ̄, 0]) is used because we will be using weak convergence meth-
ods, but also because the various approximations to x̄(t) will be discontinuous,
although their limits will be continuous. The continuity of x̂ implies that if x̂n → x̂
in D(G; [−θ̄, 0]) and x̂ is continuous then b(x̂n, α) → b(x̂, α) uniformly in α. The
function b(·) would not generally be continuous on D(G; [−θ̄, 0]). For example,
let θ̄ = 1 and b(x̂) = x̂(−.5). Define x̂n(θ) = 1 for θ ∈ [−.5 + 1/n, 0] and equal to
zero otherwise. Then, in D(G; [−θ̄, 0]), x̂n converges to the function with value
unity at θ ≥ −.5. But b(x̂n) = 0 for all n.
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formly in α, θ. The function k(·) that will appear in the cost function satisfies
the condition on b(·).

Define

b̄(x̄(t), ū(t)) =
∫ 0

−θ̄

b(x̄(t), u(t + θ), θ)µc(dθ). (1.2)

Then the system is

dx(t) = b̄(x̄(t), ū(t))dt + σ(x̄(t))dw(t), (1.3)

with initial condition (x̂, û) = {x̂(θ), û(θ),−θ̄ ≤ θ ≤ 0}.

An example of the general form covered by (A1.3) is, for 0 ≤ θi ≤ θ̄,

dx(t) = x(t)x(t − θ1)u(t − θ2)dt + u2(t − θ3)dt + b0(x̄(t))dt + σ(x̄(t))dw,

in which case µc(·) is concentrated on the three points {0,−θ2,−θ3}. What is
not covered are “cross” terms in the control such as u(t− θ1)u(t− θ2), where
θ1 �= θ2.

Relaxed controls. Given a control u(·), for a real Borel set T and a Borel set
A ⊂ U , let r(A, T ) denote the Lebesgue measure of the subset of T on which
the control takes values in A. The (random) measure r(·) is equivalent to the
control u(·) in that one can be obtained from the other. A relaxed control is
an extension of this idea. When proving approximation and limit theorems,
it is common practice to work in terms of relaxed controls, as they are better
behaved than ordinary controls in that r(A, [0, t]) is continuous in t.

A relaxed control r(·) [58] is a measure on the Borel sets of U × [0,∞),
with r(A × [0, ·]) being measurable and nonanticipative with respect to w(·)
for each Borel A ∈ U , and satisfying r(U×[0, t]) = t. It must then be Lipschitz
continuous, with Lipschitz constant ≤ 1. Write r(A, t) = r(A×[0, t]). The left-
hand derivative2 r′(dα, t) = lim0<δ→0[r(dα, t) − r(dα, t − δ)]/δ is defined for
almost all (ω, t). By the definitions, r(dα ds) = r′(dα, s)ds. For −θ̄ ≤ θ ≤ 0,
we write r(dα, ds + θ) for r(dα, s + ds + θ)− r(dα, s + θ). The weak topology
is used on the relaxed controls. Thus rn(·) converges to r(·) if and only if∫ ∫

φ(α, s)rn(dα ds) →
∫ ∫

φ(α, s)r(dα ds) for all continuous functions φ(·)
with compact support. With this topology, the space of relaxed controls is
compact, which is one of its main advantages. An ordinary control u(·) can be
written as the relaxed control r(·) defined by its derivative r′(A, t) = I{u(t)∈A},
where IK is the indicator function of the set K. Then, as noted above, r(A, t)
is the amount of time that the control takes values in the set A by time t.

Rewriting (1.1) in terms of relaxed controls yields

2 In [58] mt or rt were used to denote the derivative. But this notation would be
confusing in the context of the notation required to represent the various delays
in this book.
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x(t) = x(0) +
∫ t

0

∫
U

b(x̄(s), α)r(dα ds) +
∫ t

0

σ(x̄(s))dw(s)

= x(0) +
∫ t

0

∫
U

b(x̄(s), α)r′(dα, s)ds +
∫ t

0

σ(x̄(s))dw(s)).
(1.4)

In relaxed control form, the integral of (1.2) on [0, t] is

∫ t

0

∫ 0

−θ̄

∫
U

b(x̄(s), α, θ)r′(dα, s + θ)µc(dθ)ds

=
∫ 0

−θ̄

[∫ t

0

∫
U

b(x̄(s), α, θ)r(dα, ds + θ)
]

µc(dθ).
(1.5)

Define the control memory segment

r̄(t) = {r(s) − r(t − θ̄), t − θ̄ ≤ s ≤ t}

with canonical value r̂, and set

b̄(x̄(t), r̄(t)) =
∫ 0

−θ̄

∫
U

b(x̄(t), α, θ)r′(dα, t + θ)µc(dθ). (1.6)

Then the full system equation (1.3) becomes

x(t) = x(0) +
∫ 0

−θ̄

[∫ t

0

∫
U

b(x̄(s), α, θ)r(dα, ds + θ)
]

µc(dθ) +
∫ t

0

σ(x̄(s))dw(s)

= x(0) +
∫ t

0

b̄(x̄(s), r̄(t))ds +
∫ t

0

σ(x̄(s))dw(s),

(1.7)
and the initial condition is (x̄(0), ū(0)). For ordinary controls, (1.6) can be
written in the simpler form (1.2).

For use in Chapter 4 and later, we introduce an alternative way of writing
(1.6). Define the function r̃′(dα, t, θ) = r′(dα, t+θ). Then (1.6) can be written
as

b̄(x̄(t), r̄(t)) =
∫ 0

−θ̄

∫
U

b(x̄(t), α, θ)r̃′(dα, t, θ)µc(dθ). (1.8)

This form will be useful because when we will be approximating the control
memory segment in Chapter 4, it is the function r′(dα, t + θ) that will be
approximated for each t and the result will not necessarily be representable
as a function of α and the sum t + θ.

Random delays. In principle, there is no difficulty in letting the delays
be random. The issues are of a practical nature. Suppose that the delay is
random in that there are real-valued nonanticipative processes θi(·), i ≤ L,
with 0 ≤ θi(t) ≤ θ̄, such that the dynamical terms are b(x(t − θi(t)), i ≤
L, u(t)) and σ(x(t − θi(t)), i ≤ L). Such systems are discussed in [73, pages
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167–186]. Suppose that θ(·) is a finite-state Markov chain, the simplest model.
The randomness complicates the numerical problem because it adds a new
state variable, the state of the chain. If the state of the chain is known, then
numerical algorithms can be developed along the lines of the later chapters.
One needs to keep track of the maximum memory segment, assumed to be of
length θ̄. If the state of the chain is not known, then we have the substantially
more difficult problem of “partial information,” with which we do not deal.

Strong and weak-sense solutions. For notational convenience only, we will
suppose that the initial conditions x̄(0) and ū(0) are not random. A strong-
sense solution to (1.1), (1.3), (1.4), or (1.7), is a process x(·) such that, for each
t, x(t) is measurable function of {w(s), u(s), s ≤ t} or of {w(s), r(s), s ≤ t},
according to the case. The definitions are the same for the reflected diffusion
model discussed in the next section.

Consider the model (1.1) or (1.4). If w(·) is a Wiener process on [0,∞)
and r(·) is a relaxed control on the same probability space and it is defined
on [0,∞), and is nonanticipative with respect to w(·), then we say that the
pair is admissible or, if w(·) is understood, that r(·) is admissible. Suppose
that, given an admissible pair (w1(·), r1(·)) and initial condition x̂, there is
a probability space on which is defined a set (x(·), w(·), r(·)) solving (1.4)
with x̄(0) = x̂, where (x(·), r(·)) is nonanticipative with respect to the Wiener
process w(·), (w(·), r(·)) has the same probability law as (w1(·), r1(·)), and the
probability law of the solution set does not depend on the probability space.
Then we say that there is a unique solution to (1.1) in the weak sense [42].
The definition is the same with model (1.7), except that the initial control
condition û or r̂ needs to be specified. Because all controls will be admissible,
the qualifier will often be dropped. We always assume the following condition.

A1.4. There is a weak-sense unique weak-sense solution to (1.4) or (1.7),
whichever is appropriate, for each admissible pair (w(·), r(·)) and initial data.

The techniques that are used to prove existence and uniqueness for the no-
delay problem can be adapted to the delay problem. For example, use (A1.1),
(A1.2), and the Lipschitz condition

|σ(x̂) − σ(ŷ)| + |b(x̂, α, v) − b(ŷ, α, θ)| ≤ K sup
−θ̄≤θ≤0

|x̂(θ) − ŷ(θ)|,

and a standard Picard iteration. In fact, this ensures that there is a strong-
sense solution for any admissible pair (w(·), r(·)). See also [67, Section 1.7]
and [73, 74] for a more complete development for the uncontrolled problem.
Alternatively, one can use the Girsanov measure transformation methods [56,
58] that will be discussed in Section 3.
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3.2 Reflecting Diffusions: The Skorokhod Problem

3.2.1 The Reflected Diffusion

In this section, we describe a standard model of a reflecting diffusion. The
process x(·) will be confined to a convex polyhedron G ∈ IRr, with a nonempty
interior and boundary ∂G, by means of the boundary reflection process z(·).
The conditions on the reflection directions on the boundary are stated below.
Let yi(·) denote the nondecreasing process that is the component of z(·) that is
due to reflection from the ith face of G. In problems arising in communications
theory, it is usually buffer overflows that are penalized, and on the boundaries
associated with overflows, the reflection directions are inward normals to the
boundary. The reflected diffusion models (2.1) or (2.3) below and their relaxed
control forms are known as the Skorokhod problem. For a detailed discussion
of the Skorokhod problem and the assumptions (A2.1) and (A2.2), see [56,
Chapter 3] and [20, 21]. In this subsection we consider the cases where the
path and/or the control is delayed. The next subsection gives an alternative
model that can be used when part of the reflection or Wiener process also
appears in a delayed form.

Assumptions on the state space G. Assumptions (A2.1) and (A2.2) are
the ones used in [58] (see Section 5.7 of this reference), and are standard in the
treatment of general reflecting diffusions [20, 21], [56, Section 3.5]. They might
look complicated, but are quite reasonable, as seen from the discussion in [56,
Chapter 3], which relates them to conditions that arise in various applications
in queueing and communications.

A2.1. The state space G is the intersection of a finite number of closed half
spaces in Euclidean r-space IRr and is the closure of its interior. Let ∂Gi,
i = 1, . . . , denote the faces of G, and ni the interior normal to ∂Gi. Interior
to ∂Gi, the reflection direction is denoted by the unit vector di, and 〈di, ni〉 > 0
for each i. The possible reflection directions at points on the intersections of
the ∂Gi are in the convex hull of the directions on the adjoining faces. No
more than r constraints are active at any boundary point.

Let d(x) denote the convex hull of the set of reflection directions at the
point x ∈ ∂G, whether it is a singleton or not.

A2.2. For each x ∈ ∂G, define the index set I(x) = {i : x ∈ ∂Gi}. Suppose
that x ∈ ∂G lies in the intersection of more than one boundary; that is, I(x)
has the form I(x) = {i1, . . . , ik} for some k > 1. Let N(x) denote the convex
hull of the interior normals ni1 , . . . , nik

to ∂Gi1 , . . . , ∂Gik
, resp., at x. Then

there is some vector v ∈ N(x) such that γ′v > 0 for all γ ∈ d(x). (See Figure
2.1 for an illustration of this condition.)

There is a neighborhood N(G) and an extension of d(·) to N(G)−G that is
upper semicontinuous in the following sense: For each ε > 0, there is ρ > 0 that
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goes to zero as ε → 0 and such that if x ∈ N(G)−G and distance(x, ∂G) ≤ ρ,
then d(x) is in the convex hull of the directions {d(v); v ∈ ∂G, distance(x, v) ≤
ε}.
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Figure 2.1. Illustration of (A2.2).

With only the path delayed, the model is the reflected form of (1.1):

dx(t) = b(x̄(t), u(t))dt + σ(x̄(t))dw(t) + dz(t), (2.1)

with relaxed control representation

dx(t) =
∫

U

b(x̄(t), α)r′(dα, t)dt + σ(x̄(t))dw(t) + dz(t). (2.2)

When both the path and control are delayed, the model is the reflected form
of (1.2):

dx(t) = b̄(x̄(t), ū(t))dt + σ(x̄(t))dw(t) + dz(t), (2.3)

with relaxed control form, analogously to (1.7),

x(t) = x(0) +
∫ t

0

b̄(x̄(s), r̄(s))ds +
∫ t

0

σ(x̄(s))dw(s) + z(t), (2.4)

where b̄(·) was defined in either (1.2) or (1.6), according to the case. The
analog of (A1.4) is:

A2.3. There is a unique weak-sense solution to (2.4) for each initial admissible
relaxed control and initial data.

Note on the solution. Let |z|(t) denote the variation of z(·) on the inter-
val [0, t]. By a solution to any of (2.1)–(2.4), we mean the following. z(·) is
the reflection process and satisfies the following conditions: |z|(t) < ∞ with
probability one (w.p.1) for all t, and there is a measurable function γ(·) with
γ(t) ∈ d(x(t)) w.p.1 such that z(t) =

∫ t

0
γ(s)d|z|(s). This says only that the
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reflection process can change only when x(t) is on the boundary, and the in-
crements are in a correct reflection direction. We can write z(t) =

∑
i diyi(t),

where yi(·) is a nondecreasing process that can increase only when x(t) is on
the ith face of G. See [56, 58] for more detail on controlled reflected diffusions.

Remarks on the assumptions. The extension of d(x) to an outer neigh-
borhood of ∂G that is required in the last part of (A2.2) is needed as the
Markov chain processes associated with the numerical procedures are defined
on a discrete grid and might leave G before being reflected back in. The ex-
tension can always be constructed, so the requirement is insignificant. Under
(A2.1)–(A2.2), the choice of the reflection direction (in the allowed convex
sets) on the corners and edges of G has no effect on the process. If the state
space is being bounded for purely numerical reasons, then the reflections are
introduced only to give a compact set G, which should be large enough so that
the effects on the solution in the region of main interest are small. A common
choice is a hyperrectangle with interior normal reflection directions. The con-
dition (A2.2) implies (see [20, 56]), the so-called “completely-S” condition,
the fundamental boundary condition for the modeling of stochastic networks,
[29, 56, 84], and which ensures that z(·) has bounded variation w.p.1.

Estimates of the reflection term z(·). Estimates of the variation of z(·)
will be needed in many of the proofs and to ensure that the cost functions are
well defined. The basic results are covered by the following theorem, which
is a rewording of [58, Theorem 1.1, Chapter 11], except for the assertion
concerning (2.7). This assertion is proved by working recursively on intervals
(0, θ0], (θ0, 2θ0], . . . , using the previous part of the theorem, until the interval
(0, T ] is covered, where θ0 is defined in the theorem. With p(·) omitted, the
bounds on the expectations in (2.5) and (2.6) depend on E supt≤T |X(0) +∫ t

0
f(s)ds +

∫ t

0
σ(s)dw(s)|2, and the appropriate “recursive”adjustments are

made when p(·) �= 0.

Lemma 2.1. Assume (A2.1)–(A2.2). Let f(·), σ(·) be measurable and non-
anticipative processes of the appropriate dimension, and bounded in norm by
some constant K < ∞. Define

dX(t) = f(t)dt + σ(t)dw(t) + dZ(t), X(0) ∈ G,

where Z(·) is the reflection term. Let |Z|(t) denote the variation of Z(·) on
the interval [0, t]. Then

lim
T→0

sup
X(0),f,σ

E|Z|2(T ) = 0. (2.5)

For each T < ∞,
sup

X(0),f,σ

E|Z|2(T ) < ∞. (2.6)
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Let Yi(·) denote the component of the reflection process that is due to reflection
on the ith face, with corners and edges assigned in any way at all to the
adjacent faces, and define Y (·) = {Yi(·), i}. Then (2.5) and (2.6) hold for
Y (·) replacing Z(·). Let p(·) be a bounded function of θ and x, with θ-support
concentrated on [−θ̄, 0] and that takes the value zero on −θ0 ≤ θ ≤ 0, where
θ0 > 0. For X(0) ∈ G, redefine X(·) by

dX(t) = f(t)dt+σ(t)dw(t)+dt

∫ 0

θ=−θ̄

p(X(t+θ), θ)dθY (t+θ)+dZ(t). (2.7)

Then (2.5) and (2.6) continue to hold.
Suppose that, for ∆ > 0, on the intervals [n∆, n∆+∆) the system evolves

as (2.7) without the reflection term, and the reflection comes in at times n∆
if X(n∆−) �∈ G. Then the lemma holds if limT,∆→0 replaces limT→0 in (2.5).

Tightness of a sequence of solutions to the Skorokhod problem.
The following result will be useful to establish tightness in D(G; [0,∞)) of a
sequence of processes and is a special case of [56, Theorem 3.6.1]. See also
[58, Theorem 11.1.2]. Some details of the proof will be given in Theorem 5.5,
which gives a generalization that will be useful for the proofs of convergence
of the numerical procedures in Chapters 7–9.

Lemma 2.2. Assume (A2.1) and (A2.2). Assume the form

xn(t) = xn(0) + Fn(t) + zn(t), x(t) ∈ G, (2.8)

where zn(·) is the reflection process and Fn(·) is asymptotically continuous in
the sense that for each ν > 0 and T > 0,

lim
δ→0

lim sup
n→∞

P

{
sup
t≤T

sup
s≤δ

|Fn(t + s) − Fn(t)| ≥ ν

}
= 0. (2.9)

Then {zn(·), yn(·)} is tight in D(G; [0,∞)), the limit (x(·), z(·)) of any weakly
convergent subsequence is continuous with probability one, and z(·) is a reflec-
tion process for x(·).

The following extension of Lemma 2.2 will be useful in showing the con-
vergence of the numerical approximations, and the proof is that of Lemma
2.2. The lemma is designed to handle problems where the “reflection” might
occur outside of but close to the boundary, at a maximum distance that goes
to zero as n → ∞.

Lemma 2.3. Assume (A2.1), (A2.2), the form (2.8), and the condition (2.9).
The functions Fn(·) are assumed to be piecewise-constant. Suppose that Fn(·)
jumps at t, with x(t−) + dFn(t) �∈ G. Let the reflection direction that takes
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the path back into G take the value at the point x(t−) + dFn(t), as defined by
the last paragraph of (A2.2). Then the conclusions of Lemma 2.2 hold.

Assumptions (A2.1) and (A2.2) imply that, for large n, the zn(·) in (2.8)
can be written as3

zn(t) =
∑

i

diy
n
i (t), (2.10)

where the yn
i (·) are nondecreasing and can increase only at t where xn(t) is

within a distance of ∂Gi that goes to zero as n → ∞. The representation
(2.10) is not necessarily unique as the assignment when the path is sent back
to an edge or corner is not specified. It is not necessary to specify it. But, if
desired, it can be specified in any measurable way.

Hölder continuity of the sample paths.

Lemma 2.4. [42, Theorem 2.9.25.] The sample paths of a Wiener process on
any interval [0, T ] are Hölder continuous with an exponent slightly less than
1/2, with an arbitrarily high probability, in the sense that, for any ρ > 0

P

{
lim
δ→0

sup
0<s<t<1,t−s≤δ

|w(t) − w(s)|
δ.5−ρ

> 0

}
= 0.

By a time change argument, this extends to any stochastic integral with a
bounded integrand. Hence it holds for the unreflected process.

The first sentence in the next theorem is the remark in [8, bottom of page
124]. The second sentence is a consequence of the first and the criterion in
Theorem 2.1.7. The theorem implies that for each ε > 0 there is a compact
set Kε ⊂ C(G; [0, 1]) such that for all T < ∞,

inf
x̄(0),ū(0)

P {(x(T + s), s ∈ [0, 1]) ∈ Kε} ≥ 1 − ε.

Theorem 2.5. A sequence of continuous processes that is tight in D(G; [0, 1])
is also tight in C(G; [0, 1]). Let xn(·) be a sequence of solutions to any of the
stochastic differential equations that we have considered in this chapter. Then
the sequence {xn(l + ·); l = 1, 2, . . . , n < ∞} on [0, 1] is tight in C(G; [0, 1]).

3 For the model (2.8) and the models that arise as representations of the numerical
approximations, the process might jump out of G by a small amount, say at
most by εn that goes to zero as n → ∞. Then the reflection back to G occurs
at a point that is not in G. By the extension in (A2.2) the form (2.10) should
be
∑

i
dn

i (t)yn
i (t), where dn

i (t) → di as n → ∞. But we use the form (2.10) for
simplicity. The modifications in the development with the more general form are
trivial.



3.2 Reflecting Diffusions 35

3.2.2 Delayed Control, Reflection Term, and/or Wiener Process

In many applications delayed values of the reflection term and/or the Wiener
process also appear in the dynamics. This causes serious problems with the
memory requirements for the numerical algorithms. The following model is
used for the numerical approximations developed in Chapter 9. Those methods
help to reduce the memory requirements for such problems as well as for the
problem with delayed controls. All functions of θ have value zero for θ < −θ̄
and θ > 0.

Definition. Let µa(·) be a distribution function on the interval [−θ̄ − ε0, ε0],
for any ε0 > 0, and with µa(·) being left-continuous. The value of ε0 is unim-
portant and is introduced only to simplify the notation for the increments at
the end points of [−θ̄, 0]. The mass on the end intervals [−θ̄ − ε0,−θ̄) and
(0, ε0] is zero. Define the differential dµa(θ) = µa(θ + dθ) − µa(θ).

The model is

dx(t) = c(x(t), u(t))dt

+dt

∫ 0

−θ̄

b(x(t + θ), u(t + θ), θ)dµa(θ) + σ(x(t))dw(t) + dz(t)

+dt

∫ 0

θ=−θ̄

p(x(t + θ), θ)dθy(t + θ).

(2.11)

The last integral is with respect to θ in the sense that

p(x(t + θ), θ)dθy(t + θ) = p(x(t + θ), θ) [y(t + θ + dθ) − y(t + θ)] .

We suppose that z(t) = 0 for t ≤ 0. As with (1.7) or (2.4), the initial condition
is the pair x̂ = {x(s),−θ̄ ≤ s ≤ 0}, û = {u(s),−θ̄ ≤ s ≤ 0}. One could
incorporate the term containing b(·) into the term containing c(·). But we
prefer to use both terms, with b(·) being used to represent the component
of the drift with delayed arguments, and c(·) being used to represent the
component without delays.

The relaxed control form of (2.11) is

dx(t) = dt

∫
U

c(x(t), α)r′(dα, t)

+dt

∫ 0

−θ̄

∫
U

b(x(t + θ), α, θ)r′(dα, t + θ)dµa(θ) + σ(x(t))dw(t)

+dz(t) + dt

∫ 0

θ=−θ̄

p(x(t + θ), θ)dθy(t + θ).

(2.12)
For the boundary absorption case, where there is no reflection term, simply
omit the terms containing z(·) and y(·).
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The models (2.11) or (2.12) include drift terms such as f0(x(t − θ1)) +
f1(u(t − θ2)), where the delays θ1 and θ2 are equal or unequal. We can also
use the form

L∑
i=1

∫ 0

−θ̄

bi(x(t + θ), u(t + θ), θ)dµai(θ) (2.13)

(with the analogous replacement in the relaxed control form (2.12)), where
the bi(·) and µai(·) satisfy the conditions to be imposed on b(·) and µa(·),
resp.

In models arising in communications where there is a delayed component
of the reflection process, it arises due to a transportation delay. This motivates
(A2.4) below. In any case, the assumption is needed for technical reasons, to
ensure that the solution processes are well defined.

A2.4. There is θ0 ∈ [−θ̄, 0) such that p(x, θ) = 0 for θ ≥ θ0.

A2.5. The functions b(·), c(·), p(·), c(·), and σ(·), are bounded and continuous.
The distribution function µa(·) satisfies µa(0+) − µa(θ) → 0 as θ ↑ 0. The
function k(·) that will appear in the cost function satisfies the condition on
b(·). We suppose that z(t) = 0 for t ≤ 0.

A2.6. There is a unique weak sense solution to (2.12) for each initial condition
and admissible control.

Comment on the delayed reflection term in (2.11). Consider a one-
dimensional problem. Let p(x, θ) = 1/δ on the interval [−∆ − δ,−∆], ∆ >
0, δ > 0, with value zero elsewhere. Then, with y(t) = 0, t ≤ 0, we have∫ t

0

ds

∫ 0

−θ̄

p(θ)dθy(s + θ) =
1
δ

∫ t−∆

t−∆−δ

y(s)ds ≈ y(t − ∆) (2.14)

for small δ. In this way, point delays as well as distributed delays can be
approximated.

Extensions. One can add the delayed Wiener process term

dt

∫ 0

−θ̄

pw(x(t + θ), θ)dθw(t + θ), (2.15)

where pw(·) satisfies the conditions on p(·). We can also use the form[∫ 0

−θ̄

σ(x(t + θ), θ)µσ(dθ)
]

dw(t), (2.16)

where µσ(·) has a bounded derivative with respect to Lebesgue measure, for
the noise term in (2.11) or (2.12), with little additional difficulty for the numer-
ical problem. The term c(x(t), u(t)) can be replaced by the form c(x̄(t), u(t)),
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which uses the path memory segment, but this would increase the memory re-
quirements considerably. See Chapter 9, where the numerical approximations
for (2.11) and (2.12) are done.

3.2.3 Neutral Equations

The numerical algorithms will also apply to models of the form

d [x(t) − F (x̄(t))] =
∫

U

b(x̄(t), α)r′(dα, t)dt + σ(x̄(t))dw(t) + dz(t),

where F (·) is a continuous IRr-valued function on C(G; [−θ̄, 0]). Such forms
are known as neutral equations. Rewrite in integral form:

x(t) − F (x̄(t)) = x(0) − F (x̄(0))

+
∫ t

0

∫
U

b(x̄(s), α)r′(dα, s)ds +
∫ t

0

σ(x̄(s))dw(s) + z(t).
(2.17)

If the control is delayed as well, then use the form (2.4) with b̄(·). The memory
segments at time t are still on the interval [t − θ̄, t]. See [68, Chapter 6] for a
discussion of the existence and uniqueness of solutions for the model without
boundary reflections. For the deterministic form, various applications and an
analysis of the stability problem can be found in [77], and a development of
the general theory is in [27].

We will suppose that F (·) satisfies the following “gap” condition. The other
conditions that apply to (2.3) or (2.4) are assumed as well. If the boundary
is absorbing and not reflecting, then drop z(·) and the assumptions on the
reflection directions.

A2.7. There is 0 < θ̄1 < θ̄ such that F (x̂) depends only on the part of x̂ on
[−θ̄,−θ̄1].

3.2.4 Controlled Variance and Jumps

All of the models in [58] can be handled with delays in the dynamics. However,
in this book, for the sake of simplicity, we will not deal with models subject to
(controlled or uncontrolled) jump driving forces or with controlled variance.
The main new issues when there are delays are the same as those for the
models in the previous subsections. The algorithmic development and proofs
of convergence would be adaptations of those in [58, Chapter 13] to the models
with delays, along the lines of what is done in this book for the models of the
previous subsections of this section. We will write simple forms of the possible
models so that the full range of control problems can be seen.

Poisson jumps. Let {Ft, t < ∞} be a filtration on a probability space,
with w(·) a standard vector-valued Ft-Wiener process and N(·) an Ft-Poisson
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random measure with intensity measure h(dt dρ) = λdt × Π(dρ), where Π(·)
is a measure on a compact set Γ . Let q(·) be a bounded measurable function.
Then, with ordinary controls used, the analog of (1.1) is

x(t) = x(0) +
∫ t

0

b(x̄(s), u(s))ds

+
∫ t

0

σ(x̄(s))dw(s) +
∫ t

0

∫
Γ

q(x̄(s−), ρ)N(ds dρ).
(2.18)

There are obvious analogs of the other forms in Sections 1 and 2.

Controlled variance. The analog of (1.1) with controlled variance is

x(t) = x(0) +
∫ t

0

b(x̄(s), u(s))ds +
∫ t

0

σ(x̄(s), u(s))dw(s). (2.19)

A reflecting boundary satisfying (A2.1) and (A2.2) and associated reflection
term z(·) can be added in all cases and the controls can be delayed as well,
as in (2.3) or (2.4).

3.3 The Girsanov Transformation

The Girsanov transformation method for obtaining weak-sense existence and
uniqueness is widely used in control problems, particularly where we wish to
use feedback controls u(x) that are not Lipschitz continuous, or where b(·) is
not Lipschitz continuous. See [42] and the references therein. Given a solution
(either in the weak or strong sense) to the uncontrolled forms of any of the
dynamical equations (1.3), (1.7), (2.3), (2.4), (2.11) or (2.12), the Girsanov
transformation method defines another solution, with a controlled drift term
that we are able to choose, by simply transforming the probability measure
P on the original probability space to a new measure, denoted by P̃ . The
new drift term contains the desired control. The key is the construction of
the Radon–Nikodym derivative of the new measure with respect to P . The
procedure will be particularly useful in Chapter 5 for the ergodic cost problem.

As usual, let (Ω,F , P ) be the probability space, with filtration {Ft, t ≥ 0}
and F = ∪tFt. Let w(·) be an m-dimensional standard Ft-Wiener process.
Let v(·) be an m-dimensional bounded and adapted (to Ft) process. Define

R(t) = exp
(∫ t

0

v′(s)dw(s) − 1
2

∫ t

0

|v(s)|2ds

)
. (3.1)

By Itô’s Lemma,

R(t) = 1 +
∫ t

0

R(s)v′(s)dw(s).

In fact [34, 42, 80], for s > 0, t ≥ 0,
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ER(t) = 1, E
[
R(t + s)

∣∣v(u), w(u), u ≤ t
]

= R(t), w.p.1.

Thus the process R(·) is an Ft-martingale.
For 0 < T < ∞, define the probability measure P̃T on (Ω,FT ) by the

Radon–Nikodym derivative dP̃T /dP = R(T ). That is,

P̃T (A) = E [IAR(T )] , for A ∈ FT , (3.2)

where IA denotes the indicator function of the event A and the expectation is
with respect to P . Because ER(T ) = 1, P̃T is indeed a probability measure.
There is a unique extension of the P̃T , T < ∞, to a measure P̃ on (Ω,F).
The next theorem gives a key consequence.

Theorem 3.1. [42, 65, 80]. Assume that R(·) defined by equation (3.1) is a
martingale (which is assured here as v(·) is bounded). Then

w̃(t) = w(t) −
∫ t

0

v(s)ds (3.3)

is a standard m dimensional Ft-Wiener process on the probability space
(Ω,F , P̃ ).

Application. In control theory this result is often used in the following way.
Let w1(·) and w2(·) denote the first m and last k − m components of a k-
dimensional Wiener process w(·), respectively, and define x1(·) and x2(·) sim-
ilarly, with x(·) = (x1(·), x2(·)). Let σ1(·) be an m×m matrix-valued function
with the property that the inverse σ−1

1 (x) exists and is uniformly bounded in
x. Suppose that the stochastic differential equation

dx1(t)=b1(x(t))dt + σ1(x(t))dw1,
dx2(t)=b2(x(t))dt + σ2(x(t))dw2,

(3.4)

has a unique weak-sense solution with the given initial condition.4 Let b̃1(·)
be a bounded, measurable, and IRm-valued function. Define

q1(·) = σ−1
1 (x(·))b̃1(x(·)).

Define R(·), P̃T , and P̃ as in (3.1) and (3.2) above, but using (q1(·), w1(·)) in
lieu of (v(·), w(·)), and define

w̃1(t) = w1(t) −
∫ t

0

q1(s)ds.

Then, under P̃ , the process x(·) satisfies

4 The development is identical if b(·) depends on the control, or in the delay case,
or if there is a reflection term.
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dx1(t)=b1(x(t))dt + b̃1(x(t))dt + σ1(x(t))dw̃1(t),
dx2(t)=b2(x(t))dt + σ2(x(t))dw2(t),

(3.5)

and (w̃1(·), w2(·)) is a standard Ft-Wiener process.
The process b̃1(x(·)) can be replaced by the more general form bc(x(t), u(t)),

where bc(·) is bounded and measurable, u(t) is U -valued, and (u(·), w(·)) is
an admissible pair. The solution to (3.5) is weak-sense unique (under the new
measure P̃ ) [34, 42, 52], as the original solution to (3.4) is weak-sense unique.

3.4 Cost Functions

In order not to overburden the text, the development of the numerical methods
in the following chapters will concentrate on the discounted and ergodic cost
functionals, with either boundary absorption or reflection. All of the standard
cost functionals in [58] can be handled. In this section, we will describe the
discounted cost functions for the models of Section 2, and results concerning
the existence of optimal controls are given in the next section. The impul-
sive and singular control models are discussed in Section 6. The ergodic cost
functional will be treated in Chapter 5.

The discounted cost function: Absorbing boundary. Consider the case
where the boundary is absorbing. For a continuous function φ(·), define the
set G = {x : φ(x) ≤ 0} with nonempty interior G0 = {x : φ(x) < 0}, and
suppose that G bounded and is the closure of G0. The control process stops
at the time τG = inft{x(t) �∈ G0} = inft{x(t) ∈ ∂G}, the first time that the
boundary ∂G of G is reached. If x(t) ∈ G0 for all t < ∞, then define τG = ∞.
We will use the following assumptions.

A4.1. The real-valued function g0(·) in (4.1) is bounded and continuous.
Whatever the case, the real-valued function k(·) satisfies the conditions on
b(·).

A4.2. For each control, and w.p.1, inft{x(t) �∈ G0} = inft{x(t) �∈ G}.

Assumption (A4.2) is critical for the convergence of the numerical pro-
cedures when the process is to stop on first reaching a boundary. It ensures
that (w.p.1) the paths are not tangent to the boundary at the first time that
they reach it. Because all numerical procedures involve, either explicitly or im-
plicitly, approximations of the original model, we need to ensure that the first
hitting times of the approximations converge to that of the original model, and
(A4.2) ensures this. The condition is discussed further in [58, Section 10.2],
where it is shown how to avoid it by a simple and unrestrictive approximation
of “smoothing” the absorption near the boundary.

Let β > 0 and let Er
x̂ denote the expectation under the initial condition

x̂ = x̄(0), when the relaxed control r(·) is used on [0,∞). Then when the path
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only is delayed the discounted cost function is

W (x̂, r) = Er
x̂

∫ τG

0

∫
U

e−βtk(x̄(t), α)r′(dα, t)dt + Er
x̂e−βτGg0(x(τG)). (4.1)

Define5

V (x̂) = inf
r

W (x̂, r),

where the inf is over the admissible relaxed controls.
For the model (1.7), in which both the path and control are delayed, we

need to specify the segment of the control on [−θ̄, 0]. This might be given in
either ordinary or relaxed control form. In either case, let r̂ denote the relaxed
control representation of the initial control segment. In our terminology, r̂ =
r̄(0). The discounted cost function corresponding with the model (1.7) is

W (x̂, r̂, r) = Er
x̂,r̂

∫ τG

0

∫ 0

−θ̄

∫
U

e−βt [k(x̄(t), α, θ)r′(dα, t + θ)µc(dθ)dt]

+Er
x̂,r̂e

−βτGg0(x(τG)),
(4.2)

where Er
x̂,r̂ is the expectation given initial conditions x̂ = x̄(0), r̂ = r̄(0), and

the use of relaxed control r(·) on [0,∞). Define

V (x̂, r̂) = inf
r

W (x̂, r̂, r),

where the infimum is over all relaxed controls with initial segments r̄(0) = r̂.
Recall that, in our notation, for θ < 0, r′(dα, t + θ)dt = r(dα, dt + θ).

Optimal stopping. Suppose that we have the option of stopping the process
at a time τ that can be no later than the first time τG that the process
hits the boundary ∂G. Then τ is another control variable and the cost is
either (4.1) or (4.2) with τG replaced by min{τG, τ} and, for (4.2), V (x̂, r̂) =
infr,τ W (x̂, r̂, r, τ). In optimal stopping problems it is frequently the case that
there is no control u(·).

Discounted cost function: Reflecting boundary. For the reflecting
boundary model of Section 2, where (A2.1) and (A2.2) are used, the pro-
cess x(·) never stops and we set τG = ∞ in the cost function and put a weight

5 Because we are working with weak-sense solutions, the Wiener process might not
be fixed. For example, if Girsanov measure transformation methods are used, then
the Wiener process will depend on the control. Then the inf in (4.1) should be
over all admissible pairs (r(·), w(·)), with the given initial data. But to simplify
the notation, we write simply infm. This is essentially a theoretical issue. The
numerical procedures give feedback controls and all that we need to know is
that there is an optimal value function to which the approximating values will
converge.
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on the reflection terms. For a vector q = {qi, i = 1, . . .}, the discounted cost
function analog of (4.1) is

W (x̂, r) = Er
x̂

∫ ∞

0

∫
U

e−βt [k(x̄(t), α)r′(dα, t)dt + q′dy(t)] . (4.3)

The term q′dy(t) can be used to penalize behavior on the boundary. For
example, in models of communications systems, where a boundary denotes a
buffer capacity, the reflection from that boundary denotes a buffer overflow
that we might wish to penalize. The boundary penalty is also useful for the
modeling of a “numerical” boundary. Suppose that the reflecting boundary
is added simply to bound the state space for numerical purposes. One then
tries to select the reflection direction so that the process is concentrated in
the region of greatest importance. Adding an appropriate boundary penalty
can be helpful in this regard.

The analog of (4.2) is

W (x̂, r̂, r)

= Er
x̂,r̂

∫ ∞

0

∫ 0

−θ̄

∫
U

e−βt [k(x̄(t), α, θ)r′(dα, t + θ)µc(dθ)dt + q′dy(t)] .
(4.4)

For the model (2.12), replace (4.4) by

W (x̂, r̂, r)

= Er
x̂,r̂

∫ ∞

0

∫ 0

−θ̄

∫
U

e−βt [k(x(t + θ), α, θ)r′(dα, t + θ)dµa(θ)dt + q′dy(t)] .

(4.5)
If the reflection term is delayed, then the cost function will also depend on
the initial segment ẑ of the reflection term. But we generally suppose that
z(t) = 0, t ≤ 0.

The yi(·) in the representation z(t) =
∑

i diyi(t) are not necessarily defined
uniquely if the process x(·) hovers around an edge or corner of G. This is not
a problem if the noise does not allow such hovering, for example if

inf
x̂

n′
iσ(x̂)σ′(x̂)ni > 0 (4.6)

for all faces i with qi �= 0, where ni is the interior normal to the ith face [56,
Theorem 4.2.1]. To handle the general problem, we use the following assump-
tion, which will also ensure that the limit of the sequence of cost functionals
for the numerical approximations is the cost for the limit processes.

A4.3. Either the set of directions di for the faces meeting at any edge or
corner are linearly independent or, if not, then the coefficients qi are identical
for the components of any linearly dependent (at any edge or corner) subset.
[In the latter case, it is only the sum of the relevant components yi(·) that
matters in the cost function.]
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3.5 Existence of an Optimal Control

The proofs of convergence of the numerical procedures are facilitated by know-
ing that there is an optimal control. We will discuss the proof for the models
of Section 1 and Subsections 2.1 and 2.2. The proof will illustrate one way of
using the martingale method introduced at the end of Section 2.2 for iden-
tifying the limit of a sequence of processes as a diffusion and will serve as a
template for the convergence proofs for the numerical methods in Chapters
7–9.

3.5.1 Reflecting or Absorbing Boundary: Discounted Cost

Theorem 5.1 establishes the existence of an optimal relaxed control for the
discounted cost function and a reflecting or absorbing boundary. The proof of
existence closely follows the standard procedure for the no-delay problem, say
that of [58, Theorem 10.2.1]. We will outline the procedure and concentrate
on the differences. See also [31, Theorem 2.1]. Theorem 5.2 says that the cost
functionals are continuous in the initial conditions, uniformly in the control,
and the proof is nearly identical to that of Theorem 5.1. Theorem 5.3 asserts
that the use of relaxed controls does not affect the infimum of the costs.
The no-delay form is [58, Theorem 10.1.2] and the proof is omitted because
the adjustments for the current case are readily made, given the comments
in the proof of Theorem 5.1. There is currently no proof that the optimal
value function satisfies a Bellman equation. But this is not needed for the
convergence of the numerical approximations. Theorem 5.4 will be of technical
assistance in proving the convergence of the numerical algorithms in Chapters
7–9. The described controls are not for practical use. In the proof of Theorem
5.1, it is supposed that the sequence of reflection processes is tight. The proof
of this fact is outlined in Theorem 5.5, and the method will be very useful
when dealing with the singular control model in Section 6.

Theorem 5.1 Use the model (2.4) with fixed initial condition x̂, r̂, where x̂ is
continuous on [−θ̄, 0] and use the cost functional (4.4). Assume (A1.2), (A1.3),
(A2.1)–(A2.3), and (A4.3). Then there is an optimal control. That is, there is
a probability space on which is defined a set of processes (x(·), w(·), r(·), z(·))
solving (2.4), where (x(·), r(·), z(·)) is nonanticipative with respect to the
Wiener process w(·), r̄(0) = r̂, x̄(0) = x̂, and W (x̂, r̂, r) = V (x̂, r̂). If the
control is not delayed so that the model is (2.1), then with (A1.1) and (A1.4)
replacing (A1.3) and (A2.3), the conclusions continue to hold.

Now assume the model (2.11) with associated conditions (A2.4)–(A2.6).
Then the conclusions continue to hold. Suppose that control stops when the
boundary is reached. Use the cost function (4.2), drop (A2.1), (A2.2), and
(A4.3), and assume (A4.1), (A4.2). Then the conclusions continue to hold.
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Proof. The proof will be given for (2.4) only. The proof for (2.11) is similar.
Proofs of existence of optimal controls start by taking a minimizing sequence
of controls, and showing that, for some subsequence, there is a limit control
that is optimal. Because we are using weak-sense solutions, the probability
space and driving Wiener process might depend on the control. This is only
a technical matter, and the dependence will be suppressed in the discussion
and notation.

Let rn(·) be a minimizing sequence6 of relaxed controls, with associated
standard Wiener processes wn(·), solutions xn(·), reflection processes zn(·),
with initial conditions x̄n(0) = x̂ and r̄n(0) = r̂. That is, xn(·) satisfies

xn(t) = x̂(0)+∫ 0

−θ̄

[∫ t

0

∫
U

b(x̄n(s), α, θ)rn(dα, ds + θ)
]

µc(dθ) +
∫ t

0

σ(x̄n(s))dwn(s) + zn(t).

(5.1)
There are nonanticipative, continuous, and nondecreasing processes yn

i (·) such
that zn(·) =

∑
i diy

n(·), so that we can work with either zn(·) or yn(·).
The wn(·) are all standard Wiener processes, hence the set is tight, and

any weak-sense limit is a standard Wiener process. The sequence of relaxed
controls rn(·) is always tight and any weak-sense limit has continuous paths,
w.p.1. The processes defined by the ordinary and stochastic integral terms of
(5.1) are also tight, and all weak-sense limits are continuous. The tightness
and asymptotic continuity of the sequence zn(·) and the continuity of any
weak-sense limit follows from Theorem 5.5.7

Now, take a weakly convergent subsequence of (xn(·), rn(·), zn(·), wn(·))
with limit denoted by (x(·), r(·), z(·), w(·)), and index it by n also. Use the
Skorohod representation Theorem 2.1.6 (see also [23, page 102]), so that we
can assume that the convergence is w.p.1 in the topologies of the spaces of
concern. By the weak convergence, we must have x(t) ∈ G, and that z(·) can
change only at t where x(t) is on ∂G. By the weak convergence and Skorokhod
representation, we can suppose that sups≤t |xn(s) − x(s)| → 0 for each t > 0.
Then (A1.3) implies that, for all θ ∈ [−θ̄, 0] and t ≥ 0, w.p.1,

sup
s≤t, α

|b(x̄n(s), α, θ) − b(x̄(s), α, θ)| → 0,

and also for σ(·) and k(·) replacing b(·). The last sentence and the continuity
and boundedness assumptions (A1.3) yield, w.p.1,
6 As noted above and in Section 4, it is the pair (rn(·), wn(·)) of (control, Wiener

process) that determines the cost. Thus a cost function W (x̂, r̂, r) depends on
the distribution of the pair (r(·), w(·)) where w(·) is the Wiener process that is
used, together with the relaxed control r(·), to get the solution. For notational
simplicity, we omit the w(·) argument because what is being defined is clear.

7 The methods that are used for proving the tightness and asymptotic continuity of
the reflection terms will be of use when dealing with the singular control problem
as well, so we prefer to separate them out.
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0

∫
U

b(x̄n(s), α, θ)rn(dα, ds + θ) →
∫ t

0

∫
U

b(x̄(s), α, θ)r(dα, ds + θ)

for all t ≥ 0 and θ ∈ [−θ̄, 0], w.p.1. From this and the dominated convergence
theorem it follows that the first integral in (5.1) converges to the process
obtained when the superscript n is dropped. The same argument shows that
the first integral in the cost function (4.4), with xn(·) and rn(·) used, converges
to the value for the limit.

Nonanticipativity of the limit processes with respect to the limit Wiener
process w(·) is shown as follows, again using a standard method. Let φj(·), j ≤
J, be continuous functions with compact support and write

〈r, φj〉 (t) =
∫ t

0

∫
U

φj(α, s)r(dα ds).

For arbitrary t > 0 and integer I > 0, let si ≤ t for i ≤ I, and let h(·) be
an arbitrary bounded and continuous function. By the nonanticipativity, for
each n and T > 0,

Eh (xn(si), zn(si), wn(si), 〈rn, φj〉 (si), i ≤ I, j ≤ J)

× (wn(t + T ) − wn(t)) = 0.
(5.2)

By the weak convergence, the continuity of the limit processes, and the uni-
form integrability of {wn(t + T ) − wn(t)}, (5.2) holds with the superscript
n dropped. Now, by Theorem 2.2.1, the arbitrariness of h(·), I, J, si, t, and
φj(·), implies that w(·) is a martingale with respect to the σ-algebra gen-
erated by (x(·), w(·), z(·), r(·)). Hence the limit processes are nonanticipative
with respect to w(·).

The convergence of the stochastic integral is obtained by an approxima-
tion argument. For a measurable function f(·) and κ > 0, let fκ(·) be the
approximation that takes the value f(nκ) on [nκ, nκ +κ). Then, by the weak
convergence and the continuity properties of σ(·) in (A1.2), for each κ and as
n → ∞, ∫ t

0

σ(x̄n
κ(s))dwn(s) →

∫ t

0

σ(x̄κ(s))dw(s). (5.3)

To get the limit of the stochastic integrals
∫ t

0
σ(x̄n(s))dwn(s), we first

bound the mean square value E
∫ t

0
[σ(x̄n

κ(s)) − σ(x̄n(s))]2 ds by a constant
times

E

∫ t

0

[σ(x̄n
κ(s)) − σ(x̄κ(s))]2 ds + E

∫ t

0

[σ(x̄κ(s)) − σ(x̄(s))]2 ds

+E

∫ t

0

[σ(x̄n(s)) − σ(x̄(s))]2 ds.

(5.4)

Because x(·) is continuous w.p.1 and xn(·) → x(·) uniformly on any bounded
time interval w.p.1, the continuity properties of σ(·) imply that the first and
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third integrals go to zero as n → ∞. The continuity properties of σ(·) and
x(·) imply that the second integral goes to zero as κ → 0. Hence the left-hand
term of (5.3) approximates

∫ t

0
σ(x̄n(s))dwn(s) uniformly in n and in t on any

bounded interval, for small κ. The convergence of the second integral of (5.4)
and the nonanticipativity of x(·) imply the convergence (uniformly, w.p.1 on
any bounded time interval) of the right-hand term in (5.3) to

∫ t

0
σ(x̄(s))dw(s).

It follows from Theorem 5.5 that z(·) is the reflection process for x(·).
Factor the limit process z(·) as z(·) =

∑
diyi(·). By Lemma 2.1, {yn(t +

T ) − yn(t); t < ∞, n < ∞} is uniformly integrable for any T < ∞ and so are
the increments of z(·) and y(·). This, the weak convergence, and the condition
(A4.3), imply that component of the cost due to the reflection terms also con-
verges to the value for the limit process. Finally, by the minimizing property
of the sequence rn(·), W (x̂, r̂, rn) → W (x̂, r̂, r) = V (x̂, r̂), the infimum of the
costs.

Now turn to the case where the boundary is absorbing. The only new
concern is the convergence of

W (x̂n, r̂n, rn) = Ern

x̂n,r̂n

∫ 0

−θ̄

[∫ τn
G

0

∫
U

e−βtk(x̄n(t), α, θ)rn,′(dα, t + θ)dt

]
µc(dθ)

+Ern

x̂n,r̂ne−βτn
Gg0(xn(τG)),

where τn
G is the first escape time of xn(·) from G0. The terminal costs converge

due to the weak convergence and the continuity of g0(·), and the integral
converges due to weak convergence and the condition (A4.2).

The next theorem is implied by the proof of Theorem 5.1.

Theorem 5.2. Assume the conditions of Theorem 1.1, but let (x̄n(0), r̄n(0))
converge weakly to (x̂, r̂), where x̂(·) is continuous. Then V (x̄n(0), r̄n(0)) →
V (x̂, r̂).

The next theorem asserts that the use of relaxed controls does not change
the minimal values. See [58, Theorem 10.1.2] for the no-delay case. The proof
depends on the fact that for any relaxed control r(·) one can find a sequence of
ordinary controls un(·), each taking a finite number of values in U , such that
(x̂, rn(·), w(·)) converges weakly to (x̂, r(·), w(·)) where rn(·) is the relaxed
control representation of un(·).

Theorem 5.3. Assume the conditions of Theorem 1.2. Then, with fixed initial
conditions,

inf
u

W (x̂, r̂, u) = inf
r

W (x̂, r̂, r),

where the infu (resp., infr) is over all controls (resp., relaxed controls).

An approximately optimal control. The next result, which is [58, 11.1.6]
except for the more general initial condition, will be useful in the proof of con-
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vergence of the numerical approximations to the optimal value. It constructs
an ε-optimal control of a special form for the original model. Its purpose is
simply to facilitate the proof, and it has no value in applications. The theorem
is essentially a consequence of the weak-sense uniqueness of the solution for
each control and initial condition.

Theorem 5.4. Assume the conditions of Theorem 5.1. For ε0 > 0, let
(x(·), z(·), r(·), w(·)) be an ε0-optimal process. Let ε > 0, δ > 0, and let Uε be a
finite set in U . For small enough ε0, δ, and fine enough approximation Uε to U ,
there is a probability space with an ε-optimal solution (xε(·), zε(·), uε(·), wε(·))
of the following form. The control uε(t) takes values in Uε and is constant on
intervals [nδ, nδ + δ), n ≥ 0. There is ρ > 0 such that the probability law of
uε(nδ), conditioned on the data {xε(s), zε(s), wε(s), s ≤ nδ;uε(lδ), l < n} de-
pends only on the initial condition and the samples {wε(lρ), lρ ≤ nδ;uε(lδ), l <
n}. It is continuous in the wε(·) arguments and in the initial condition
x̂ ∈ C(G; [−θ̄, 0]) for each value of {uε(lδ), l < n}.

Tightness and asymptotic continuity of the reflection terms. It is
difficult to prove directly that {zn(·)} is tight and has continuous limits. In [58,
Chapter 11] and [56, Sections 2.6 and 3.6], a time-stretching argument is used.
An alternative proof in these references is by contradiction. One supposes that
for some ε > 0 there is an asymptotic discontinuity of magnitude ≥ ε > 0 in
zn(·) and then shows that (A2.1) and (A2.2) imply that such a discontinuity
implies that there is ε1 > 0 such that there is an asymptotic jump of xn(·) into
the interior of G at a distance ≥ ε1 > 0 from the boundary. This contradicts
the fact that a reflection can occur only on the boundary. The result will have
other uses in the book, and it is useful to phrase it in a way that is more
general than what is needed for the proof of Theorem 5.1. We will give the
proof of [56, Section 3.6] which is based on a time-stretching argument.

Assume the system

xn(t) = xn(0) + Fn(t) + zn(t), (5.5)

where zn(·) is a “reflection” process satisfying (A5.1) below. Suppose that
the right-continuous process Fn(·) has a discontinuity at t such that qn(t) =
xn(t−)+(Fn(t)−Fn(t−)) �∈ G. Then the reflection process increment (zn(t)−
zn(t−)) at t acts in one of the reflection directions at qn(t) in the sense of the
following condition.

A5.1. zn(·) is a reflection process satisfying (A2.1) and (A2.2) except possibly
at the times t where qn(t) �∈ G. The discontinuities of Fn(·) are less than
εn → 0 in magnitude. Thus zn(·) can change only at t where xn(t) is within
a distance of εn from the boundary ∂G. Let dε(x) denote the set of reflection
directions at all points on ∂G within a distance of ε from x /∈ G. Let zn(0) = 0
and suppose that there are µn → 0 such that for qn(t) /∈ G,
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zn(t) − zn(t−) ∈ cone(dµn
(qn(t))), (5.6a)

where cone(A) is the positive cone generated by the convex hull of A, and for
each T < ∞

sup
t≤T

|zn(t) − zn(t−)| → 0 in probability as n → ∞. (5.6b)

Note that xn(·)−qn(·) → 0 and that the process zn(·) might actually send
the path slightly interior to G. By (A2.1), (A2.2), and (A5.1), zn(·) can be
written as

zn(t) =
∑

i

yn
i (t)di, (5.7)

where yn
i (0) = 0 and the yn

i (·) are nondecreasing and can increase only at t
where xn(t) is within a distance εn of ∂Gi.

Theorem 5.5. Assume the form (5.5), and that Fn(·) satisfies the following
condition: for each ν > 0 and T > 0,

lim
δ→0

lim sup
n

P

{
sup
t≤T

sup
s≤δ

|Fn(t + s) − Fn(t)| ≥ ν

}
= 0. (5.8)

Assume (A2.1), (A2.2), that {xn(0)} is tight, and that zn(·) satisfies (A5.1).
Then {xn(·), zn(·)} is tight, the limit (x(·), z(·)) of any weakly convergent sub-
sequence is continuous with probability one, x(t) ∈ G, z(·) can change only at
t where x(t) ∈ ∂G, and

z(t + s) − z(t) ∈ cone {d(x(u)) : t ≤ u ≤ t + s} . (5.9)

Proof. Because the sequence Fn(·) is tight and asymptotically continuous,
using the Skorokhod representation of Theorem 2.1.6, without loss of gener-
ality for purposes of the proof we can suppose that Fn(·) converges uniformly
to a continuous function. Indeed, by working with sample functions, we can
suppose that the Fn(·) are not random. If the asymptotic continuity assertion
is false, then without loss of generality (taking a subsequence if necessary)
we can suppose that there is an asymptotic jump (say, of size ≥ ν0 > 0) in
some component yn

i (·) somewhere on an interval that we denote by [0, T ]. By
shifting the time origin, we can suppose that there are ν0 > 0 and δn → 0
such that yn

i (δn) ≥ ν0 for large n and some nonempty set of indices i.
Now, to prove a contradiction, we need only consider the functions on

the interval [0, δn]. Because δn → 0, we can suppose that Fn(t) converges
uniformly to zero. The condition (A5.1) implies that the asserted jump in
yn(·) cannot take the path xn(·) interior to the state space G, say more than
some νn → 0 from the boundary, at least for large n. So the problem reduces
to a consideration of the possible asymptotic behavior of yn(·) on or arbitrarily
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close to the boundary. It will be seen that (A2.1) and (A2.2) prohibit such
jumps on the boundary.

By taking a subsequence if necessary, we can suppose (without loss of gen-
erality) that xn(0) converges to a point x(0) ∈ ∂G. Now the timescale trans-
formation method that will be introduced will show that there is a solution
to the equation x(t) = x(0) + z(t), where x(0) ∈ ∂G, and z(t) =

∑
i yi(t)di,

where the yi(·) are the components of the process z(·), and at least one of the
yi(t) is positive for t > 0.

To prove the assertion, start by defining

Tn(t) = t +
∑

i

yn
i (t) (5.10)

and
T̃n(t) = inf{s : Tn(s) > t}. (5.11)

Define the time-stretched processes ỹn(t) = yn(T̃n(t)), and so forth. The
time-transformed set satisfies

x̃n(t) = x(0) + F̃n(t) +
∑

i

ỹn
i (t)di,

where F̃n(·) can be assumed to go to zero uniformly in t as n → ∞, and ỹn
i (·)

can increase only when the distance between x̃n(t) and ∂Gi is no greater than
εn. The time transformation stretches out any real-valued component of the
processes so that the distance between any discontinuities is at least equal
to the size of the jump, and between jumps the processes are all Lipschitz
continuous with Lipschitz constant no larger than unity.

Take a convergent subsequence with limits satisfying

x̃(t) = x(0) +
∑

i

ỹi(t)di. (5.12)

By the assumption concerning the existence of an asymptotic discontinuity,
for some nonempty set of indices i we must have ỹi(t) > 0 for t > 0. Suppose
that x(0) is interior to the bounding face ∂Gi and ỹi(t) > 0 for t > 0. For
the other components we must have ỹj(t) = 0, j �= i. The condition (A2.2)
implies that the vector di points inward, so that x̃(t) ∈ G0 for small t > 0,
which contradicts the impossibility of there being a jump to the interior of G.

Next, suppose that x(0) lies on the edge or corner that is the intersection
of ∂G1 and ∂G2. Then one or both of ỹ1(·), ỹ2(·) are nonzero, with ỹi(·) = 0,
i �= 1, 2. If only one of the ỹi(·) is nonzero, say ỹ1(t) > 0, then d1 points either
inward, outward, or into face 2. It cannot point outward, and if it points
inward or into face 2, we are back to the case of the previous paragraph.
Now, let both ỹ1(·) and ỹ2(·) be nonzero. The condition (A2.2) implies that
no positive linear combination of d1 and d2 can be zero. Hence we cannot
have x̃(t) = x(0). Also, we cannot move to the interior or exterior. Condition
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(A2.2) implies that 〈
∑

i ỹi(t)di, nj〉 > 0 for j being either one of or both 1,2,
which implies that we cannot stay on the edge or corner, which belongs to
both faces 1 and 2. Hence x̃(·) must move away from the edge onto one of the
adjoining faces. But then we are back to the case of the first paragraph. The
proof when x(0) lies on the intersection of more than two faces is done in the
same way.

The facts that z(·) can change only at t where x(t) ∈ ∂G and that (5.9)
holds follows from (A5.1) and the convergence and asymptotic continuity.

3.6 Singular and Impulsive Controls

3.6.1 Singular Controls

The model. Singular controls [64, 41, 88] appear in many areas of control
theory. Some applications to controlled routing and admission in communi-
cations and queueing systems are in [56]. Communication delays are often a
crucial part of the physics and can play a key role in the performance.

Define λ(·) = {λi(·), i = 1, . . .}, where each λi(·) is right-continuous, non-
decreasing, bounded w.p.1 on each bounded interval, adapted to the standard
Wiener process w(·) and with λi(0) = 0. If a function g(·) has a left-hand
(resp., right-hand) limit at t, then g(t−) (resp., g(t+)) denotes the left-hand
(resp., right-hand) limit. A simple form of the singular control problem with
boundary reflection and path delays takes the form 8

dx(t) = b(x̄(t))dt + q1(x̄(t−))dλ(t) + σ(x̄(t))dw(t) + dz(t). (6.1)

If there is a discontinuity in a component λi(·) at t, then dλi(t) = λi(t) −
λi(t−). The λi(·) are called singular controls because they are not necessarily
representable as dλi(t) = ui(t)dt for some ordinary control ui(·); i.e., λi(·),
when considered as a measure on the real line, might be singular with respect
to Lebesgue measure. If the singular control as well as the path is delayed,
then one possible analog of (2.11) and (2.12) is

dx(t) = dt

∫
U

c(x(t)) + dt

∫ 0

−θ̄

b(x(t + θ), θ)dµa(θ) + σ(x(t))dw(t)

+q0(x(t−))dλ(t) + dt

∫ 0

θ=−θ̄

q2(x((t + θ)−), θ)dθλ(t + θ) + dz(t).

(6.2)
Equation (6.2) can be modified in various ways. For example, we could use
only discrete delay values in the delayed singular control part of (6.2). The

8 The values b(x̄(t−)) and σ(x̄(t−)) can be used as well, with no change in the
solution.
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terms in (2.1), (2.4), (2.11), or (2.12) and in the cost functions (4.1) and (4.2)
that contain ordinary or relaxed controls can be added to the above models.
Also, delays in the reflection process can be included if desired. We use the
forms (6.1) and (6.2) in order to concentrate on the basic features associated
with the singular control problem.

It is a common occurrence in applications that the optimal singular control
acts to keep the state from leaving some (a priori unknown) region. In this
case finding the singular control is equivalent to finding the boundaries of that
region and the direction of action of the control there. With such controls, if
the initial condition x(0) is not in that region, there will be an initial jump
in the control, whose purpose is to return the path to that region, and after
that λ(·) would be continuous, but not necessarily absolutely continuous with
respect to Lebesgue measure. The lack of absolute continuity is due to the
need to counteract the role of the stochastic integral in pushing the path out
of the region.

One possible discounted cost function has the form, where λ(s) = 0, s ≤ 0,

W (x̂, λ) = Eλ
x̂

∫ ∞

0

∫
U

e−βt [k(x̄(t))dt + q′dy(t) + q′λdλ(t)] . (6.3)

We will use the following assumption.

A6.1. The functions b(·), c(·), q0(·), q2(·), and σ(·) in (6.2) are continuous.
The functions b(·), q1(·) and σ(·) in (6.1) and k(·) in (6.3) that might depend
on the path memory segment have the form b(x̂(−θi), i ≤ L), where −θ̄ ≤ θi ≤
0, L < ∞, and b(·) is continuous, and analogously for k(·), q1(·) and σ(·). The
components qλ,i of the vector qλ in (6.3) are positive. When (6.2) is used in
Chapter 9, the k(x̄(t)) in (6.3) is replaced by k(x(t)).

Suppose that, for some small δ > 0, the q2(·) in (6.2) has the form
q2(x, θ) = q2(x) for θ ∈ [−θ̄,−θ̄ + δ] and equals zero otherwise, and λ(s) = 0
for s ≤ 0. Then, if λ(·) is continuous on [t− θ̄, t− θ̄ + δ), the delayed singular
control term in (6.2) is approximated by

q2(x((t − θ̄)−))[λ(t − θ̄ + δ) − λ(t − θ̄)]dt.

In this way one can approximate point delays in the singular control.

3.6.2 Definition of and Existence of Solutions

Example of a potential problem. We need the assurance that there exists
a well-defined solution for each initial condition and singular control and that
there is an optimal control. When the qa(·), a = 0, 1, 2, depend on the path
there is a particular problem that requires a careful definition of the solution.
Consider, for example, the nondelay form dxn(t) = xn(t−)dλn(t), where λn(·)
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is a piecewise-constant function with λn(s) = 0, s ≤ t0, and that increases by
1/
√

n at times t0 + l/n, l = 1, 2, . . . , until the value J1 is reached (at J1
√

n
steps), after which it is constant. To simplify the discussion, until further
notice suppose that the singular control does not try to take the path out of
the set G, so that it does not cause any reflection terms. Then xn(t0−) = xn(0)
and xn(t0 + J1/

√
n) = x(0)(1 + 1/

√
n)J1

√
n → x(0) exp(J1), as n → ∞. On

the other hand, if the entire set of jumps in λ(·) was concentrated at t = t0
in that λ(·) had a jump of J1 at t = t0 and was constant thereafter, then we
would have x(t0) = x(0) + J1x(0) < x(0) exp(J1).

When some qa(·) depends on the path, the possible cumulative effect of
many small jumps that is illustrated by the example makes it difficult to prove
the existence of optimal controls by standard methods, where one takes lim-
its of minimizing sequences, and the minimizing sequence of controls (which
is not a priori known) could conceivably have the form in the example. A
very useful approach to resolving this complication involves a time change ar-
gument, where the asymptotic discontinuity phenomena that was illustrated
above is “smoothed out, ” effectively by replacing it by a control that is a Lip-
schitz continuous function. The method is analogous to the “time-stretching”
argument that was used in Theorem 5.5, and it works as follows.

Working with (6.1) and given λ(·), start by defining

Tλ(t) = t +
∑

i

λi(t) +
∑

i

yi(t),

T̃λ(t) = inf{s : Tλ(s) > t}.
(6.4)

Then we have the inverse relationship

Tλ(t) = inf{s : T̃λ(s) > t}. (6.5)

Define the time-stretched “tilde” processes as in x̃λ(t) = x(T̃λ(t)). Then

x̃(t) = x(0) +
∫ T̃ λ(t)

0

b(x̄(s))ds

+
∫ T̃ λ(t)

0

q1(x̄(s−))dλ(s) +
∫ T̃ λ(t)

0

σ(x̄(s))dw(s) + z(T̃λ(t)),

where we suppose that dλ(0) = 0. With a change of variable, we can write

x̃λ(t) = x(0) +
∫ t

0

b(˜̄xλ(s))dT̃λ(s) +
∫ t

0

q1(˜̄x
λ(s−))dλ̃(s)

+
∫ t

0

σ(˜̄xλ(s−))dw̃λ(s) + z̃λ(t).
(6.6)

With the new timescale the cost can be written as

W (x̂, λ) = Eλ
x̂

∫ ∞

0

∫
U

e−βT̃ λ(t)
[
k(˜̄xλ(t))dT̃λ(t) + q′dỹλ(t) + q′λdλ̃(t)

]
. (6.7)
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As defined, the transformed process λ̃(·) is the sum of a Lipschitz con-
tinuous process (Lipschitz constant unity) and a pure jump process, where
the time between two successive jumps is at least the magnitude of the first
jump. The process T̃λ(·) is Lipschitz continuous, with constant unity. If λ̃(·)
and T̃λ(·) are defined by (6.4) and (6.5), and there is a well-defined solution
to (6.1), then the inverse-transformed set of processes yield that solution.

The “stretched out” form (6.6) will be the fundamental equation, in lieu
of (6.1). Then to get the original model, use the inverse-transformed processes
x(t) = x̃λ(Tλ(t)) as the definition of the solution to (6.1), and analogously for
(6.2).

The time-transformation procedure will be illustrated via a simple exam-
ple. Consider the real-valued process x(·) on the state space G = [0, 1]:

dx(t) = x(t−)dλ(t) + σdw(t) + dz(t).

Refer to Figure 6.1 for an illustration. In this motivational discussion, we
suppose that z(·) = 0. Then by (6.4), λ(·) determines Tλ(·) and T̃λ(·) uniquely.
Figure 6.1a plots an example of λ(·). There is a jump of size J1 at time t0
and then it increases linearly with slope a1. Figure 6.1b plots the associated
Tλ(·), and Figures 6.1c and 6.1d plot the stretched out timescale T̃λ(·) and
the stretched-out process λ̃(·), resp.
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Figure 6.1a. An example of a singular control λ(·).
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Figure 6.1b. The corresponding function Tλ(·).
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T̃λ(t)
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slope = 1/(1 + a1)

t

Figure 6.1c. The stretched-out timescale corresponding with λ(·).

			

t0 t0 + J1 t

λ̃(t)

J1

Figure 6.1d. The stretched-out process λ̃(·).

Now consider the limit (λ(·), T̃ (·), T (·)) of the sequence (λn(·), T̃λn

(·),
Tλn

(·)) that is defined by the example at the beginning of the subsection.
The limit λ̃(·) of λ̃n(·) is plotted in Figure 6.2. The limit T̃ (·) has the form
in Figure 6.1c and the inverse process T (·) has the form in Figure 6.1b. Thus
the graphs of Tλ(·) and T̃λ(·) are the same as those for T (·) and T̃ (·), resp.,
and the limit of the the singular controls λn(·) has a jump of J1 at t = t0.
The graphs of λ̃(·) in Figure 6.1d (which is based on the example in Figure
6.1a) and that of λ̃(·) in Figure 6.2 are different. The first case entails an
instantaneous jump of magnitude J1, and in the second case λ̃(·) increases
linearly with slope unity until the value J1 is attained. Continue to suppose
that there are no reflection terms. For the first case, x̃(t0) = x̃(t0−)+J1, and
in the second case, in the limit, we have the form of (6.6):

x̃(t0 + J1) = x̃(t0−) +
∫ (t0+J1)

t0

x̃(s−)dλ̃(s),

where dλ̃(s) = ds in the range of concern for this example. This implies a
jump of x(t0−) exp(J1) at t0 in the limit, as in the example. If xn(t−)dλn(t)
were replaced by dλn(t), then the result would be the same in both cases.
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t0 t0 + J1

λ̃(t)
J1

t

Figure 6.2. The limit λ̃(·) of the stretched-out processes.

The definition of a solution. Note that, in the example, when the limit
T̃ (·) or T̃λ(·) is constant on an interval [t0, t0 + J1], and where the singular
control has only one component, the limit λ(·) of the singular control jumps
by J1 at t0. This holds whether the jump of λ(·) at t0 is of value J1 in just
one step or whether it is the limit of the sum of a sequence of small jumps.
In the second case, in the dynamical equation each of the small jumps was
multiplied by the current value of the state.

Now drop the assumption that z(·) = 0, but continue to suppose that λ(·)
has only one component, and suppose that T̃λ(·) is constant on an interval
[t1, t1 + J ]. If λ̃(·) does not try to take the path out of G on this interval,
then we are back to the previous case. If λ̃(·) does try to take the path out of
G on that interval, then the path is pushed back by the reflection term and
the jump in the singular control will be J1 ≤ J , with the increase in

∑
i ỹi(·)

on [t1, t1 + J ] being J − J1. Note that the constancy of T̃λ(·) on [t1, t1 + J ]
implies a jump of λ(·) (of value J1 in this one-dimensional example) at time
t0 defined by T̃λ(t1) = t0.

Now consider the (real-valued) form

dxn(t) = q1(x̄n(t−))dλn(t) + σdw(t) + dzn(t),

where λn(·) is of the type introduced at the beginning of the subsection, with
jumps 1/

√
n, and write the formal limit as

dx(t) = q1(x̄(t−))dλ(t) + σdw(t) + dz(t).

Suppose that the path stays in G so that there is no reflection term and that
the limit T̃λ(·) is constant on [t1, t1+J ]. Then, with t0 defined by T̃λ(t1) = t0,
the limit jump in the path x(·) would occur at t0 and be defined by x̃(t1 +
J) − x̃(t1−), where x̃(t1−) = x(t0−) and

x̃(t1 + J) = x̃(t1−) +
∫ t1+J

t1

q1(˜̄x(s−))dλ̃(s) = x̃(t1−) +
∫ t1+J

t1

q1(˜̄x(s−))ds.

(6.8)
The inverse transformation defined by (6.5) gives the correct value x(t) at

points t where λ(·) is continuous, and for all t if q1(·) is constant. If the singular
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control has more than one component, the method is analogous, except for a
minor change when several components jump simultaneously. In lieu of making
specific assumptions that ensure that there is a weak-sense unique solution,
we use the following condition.

A6.2. There is a unique weak-sense solution to (6.6) and its analog for (6.2)
for each singular control λ(·) that is bounded on each bounded time interval
and each initial condition. That is, for each admissible pair (λ(·), w(·)) and
initial condition, there is a probability space on which there are equivalent
processes and a nonanticipative solution to (6.6), and the distribution of the
(control, Wiener process, solution, reflection process) does not depend on the
probability space.

3.6.3 Existence of an Optimal Control

Theorem 6.1. Assume (A6.1), (A6.2), system (6.1) or (6.2), cost function
(6.3), and (A2.1), (A2.2), and (A4.3). Then there is an optimal control. If we
use the cost function

W (x̂, λ) = Eλ
x̂

∫ τG

0

∫
U

e−βt [k(x̄(t))dt + q′dy(t) + q′λdλ(t)]+Eλ
x̂e−βτGg0(x(τG))

and replace the boundary conditions by (A4.1) and (A4.2), then there is an
optimal control.

Proof. Recall the definition of the solution via the time-transformed model
that was discussed in the previous subsection. We will confine the development
to (6.1) with the reflecting boundary. The proof for the analog of (6.2) is nearly
identical. The new issues that are due to the use of singular controls are the
same in the other cases.

Let (xn(·), λn(·), wn(·), zn(·)) be a minimizing sequence. Theorem 5.5 used
a time-transformation method to show that the sequence of reflection pro-
cesses was asymptotically continuous for the ordinary or relaxed control case.
In the current case, there is no a priori assurance that {λn(·)} is tight, but the
time-transformation method can be used to get the desired result. The proof
follows the lines of the development in [56, Section 2.6]. See also [58, Section
11.1] and [60, Section 4], using the type of time transformation introduced in
Theorem 5.5 and in the previous subsection. The positivity of the components
of the weight vector qλ implies that, for the minimizing sequence, the tails

∫∞
T

of the costs goes to zero as T → ∞ and that the costs are bounded, uniformly
in n.

Analogously to what was done in Theorem 5.5 and in the previous sub-
section, define
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Tn(t) = t +
∑

i

yn
i (t) +

∑
i

λn
i (t), (6.9)

and
T̃n(t) = inf{s : Tn(s) > t}. (6.10)

Define the time-stretched processes x̃n(t) = xn(T̃n(t)), and so forth. Then

x̃n(t) = x(0) +
∫ t

0

b(¯̃xn(s))dT̃n(s)

+
∫ t

0

q1(˜̄x
n(s−))dλ̃n(s) +

∫ t

0

σ(˜̄xn(s))dw̃n(s) + z̃n(t),
(6.11)

W (x̂, λn) = Eλn

x̂

∫ ∞

0

∫
U

e−βT̃ n(t)
[
k(˜̄xn(t))dT̃n(t) + q′dỹn(t) + q′λdλ̃n(t)

]
.

(6.12)
The set of time-transformed processes (x̃n(·), λ̃n(·), w̃n(·), ỹn(·), T̃n(·)) is tight,
with T̃n(·) being Lipschitz continuous, with constant unity. Each of the pro-
cesses ỹn(·), λ̃n(·) is the sum of a Lipschitz continuous process (Lipschitz con-
stant unity) and a pure jump process, where the time interval between any
two jumps is at least the magnitude of the first jump.

Extract a weakly convergent subsequence, indexed also by n, and with limit
denoted by (x̃(·), λ̃(·), w̃(·), ỹ(·), T̃ (·)). Then w̃(·) is a continuous martingale
(with respect to the filtration induced by the full set of limit processes) and
has quadratic variation process IT̃ (·), where I is the identity matrix. Also,
the limit set satisfies (6.6) in that

x̃(t) = x(0) +
∫ t

0

b(˜̄x(s))dT̃ (s)

+
∫ t

0

q1(˜̄x(s−))dλ̃(s) +
∫ t

0

σ(˜̄x(s))dw̃(s) + z̃(t).
(6.13)

The proof of nonanticipativity and of the form of the limit of the stochastic
integrals is similar to that in Theorem 5.1.

Using Fatou’s Lemma and the fact that {λn(·)} is a minimizing sequence,
we have

lim
n

W (x̂, λn) = V (x̂)

≥ W̃ = Eλ̃
x̂

∫ ∞

0

∫
U

e−βT̃ (t)
[
k(˜̄x(t))dT̃ (t) + q′dỹ(t) + q′λdλ̃(t)

]
.

(6.14)

Hence there is an optimal control for (6.6), (6.7).
To relate (6.13) to (6.1), define the inverse transformation

T (t) = inf{s : T̃ (s) > t}. (6.15)

Because supn Eλn(t) < ∞ for each t, the inverse is finite for each t and goes to
infinity as t → ∞ (all w.p.1). Now define the inverse processes x(t) = x̃(T (t)),
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and so forth. Then w(·) is a standard Wiener process with respect to the
filtration induced by the set of inverse transformed processes.

Suppose that λ(·) = λ̃(T (·)) is continuous. Then so are the yi(·), and
the set (x(·), y(·), λ(·), w(·)) satisfies (6.1) with z(t) =

∑
i diyi(t). Also W̃ =

W (x̂, λ), which must equal V (x̂).
Now suppose that the process T (·) has a jump of magnitude J at t0. This

corresponds with the process T̃ (·) being constant on the interval [t1, t1 + J ]
where T (t0−) = t1. Thus one or more components of λ(·) jump at t0, and the
sum of the jumps is ≤ J . Suppose, for specificity, that λi(·) jumps Ji, i = 1, 2,
J ≥ J1 + J2. The value x(t0) is the solution at t = t1 + J of the differential
equation

x̃(t) − x̃(t1−) =
∫ t

t1

q1(x̃(s−))dλ̃(s) + z̃(t) − z̃(t1−), (6.16)

where z̃(·) is the boundary reflection process.

3.6.4 Impulsive Controls

By an impulsive control we mean a control that has the effect of a Dirac delta
function: It forces an instantaneous change in the system [13, 41, 70]. Such
controls occur as limits of systems operating in heavy traffic environments, as
the traffic intensity goes to unity. See, for example, [58, Example 5, Section
8.1.5]. They occur if the control action or external interruptions shut down or
alter part of the system for a period of time. They are also used as approx-
imations to problems where a large “force” can be applied over a relatively
short interval. The impulsive control problem differs from the singular control
problem in that there is a positive “setup” cost as well as a cost associated
with the magnitude of the control. When there is a setup cost, one is likely
to have few control moments, but with larger forces used.

Let the sequence of random variables {νi, τi} denote the values and the
times of the impulses, and define

F (t) =
∑

i:τi≤t

νi.

It is always assumed that F (·) is nonanticipative with respect to w(·) and that
τn ≤ τn+1 → ∞ with probability one. But some τn might be infinite with a
positive probability. The τi are Ft-stopping times and νi is Fτi-measurable.
For a matrix D, a simple “impulsively controlled” analog of (6.1) is

dx(t) = b(x̄(t))dt + DdF (t) + σ(x̄(t))dw(t) + dz(t). (6.17)

One can add delays in the control, as well, with analogs of either (2.3) or
(2.11) used.

Let g(x, ν) be a bounded and continuous function that is nondecreasing
in ν for each x and satisfying g(x, ν) ≥ c0 > 0 for all x, ν such that ν �= 0,
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and g(x, 0) = 0. This positivity for ν �= 0 corresponds with the setup cost. A
discounted cost function is

W (x̂, F ) = EF
x̂

[∫ ∞

0

e−βtk(x̄(t))dt +
∑

i

e−βτig(x(τi−), νi)

]
. (6.18)



4

Approximations to the Dynamical Models

4.0 Outline of the Chapter

Because the state space for the delay equation is infinite-dimensional, the nu-
merical problem can be quite difficult. A major part of the difficulty is due to
the size of the state space that is required for the numerical approximation.
Because of this, it is important to simplify the original dynamical model as
much as possible without sacrificing the essential aspects of the results. No
matter what the problem, the ability to get good numerical solutions depends
in no small part on the relative insensitivity of the model to small varia-
tions, as the numerical algorithm itself is an approximation to the original
model. This chapter is devoted to a set of model simplifications that have
considerable promise when the path or path and/or control are delayed. The
associated numerical algorithms are readily implementable, and the paths of
the approximating models are often close to those of the original model. Many
models with delays are very sensitive to variations in the delay or dynamics.
Because of this, it is essential to use any approximation with care.

Section 1 is concerned with generic approximations to the drift function
b(·) in the dynamics and k(·) in the cost rate. It is shown that the costs are
insensitive to small variations in these functions, and in the case where the
delays are continuously distributed, it allows us to discretize them. The results
justify working with simpler control-value spaces, say those with finitely many
points, and allow us to approximate the path memory segments in various
ways.

Section 2 is concerned with approximations when only the path values
(and not the control) are delayed. In the original model, the path memory
segment x̄(t) evolves continuously and, even if the delays are discretized to
be integral multiples of some basic value, one must still keep track of the
infinite-dimensional quantity x̄(t). In order to get a finite-dimensional ap-
proximation, one needs to alter the way that the memory segment evolves in
time. In the “periodic approximation,” the delays vary periodically in time,
oscillating about the true values with small variations. This resulting path
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memory segment is finite-dimensional. The changes in the cost functions are
minimal for small periods. This approximation can be used as a first step in
developing numerical procedures.

For such periodic approximations, one must keep track of the time that
has elapsed since the beginning of the current period. Depending on the nu-
merical algorithm, discretizing this elapsed might or might not be convenient.
In many cases, the number of points that are required for such a discretization
will be very large. To handle this, Approximations 4 and 5 introduce models
where the time advances randomly and that require only a finite (and usually
not too large) number of points to keep track of its evolution. The numerical
algorithms are readily adapted to such approximations. One can prove that
the costs converge (uniformly in the controls) to those of the original model
as the approximations are refined. The Bellman equation for the approxima-
tions involves the random renewal process that determines the evolution of
time only via averages, and for a fine enough approximation it is essentially
equivalent to that when the true elapsed time is used.

The simulations described in Section 3 illustrate the basic approximations.
Paths for the original process are compared with those for the approximations,
and it is seen that they can be quiet close, even with moderate levels of ap-
proximation. Evaluations of various cost functions support this conclusion.
Although the approximations were good for the tested problems, as noted
above one must always exercise care owing to the sensitivity to model varia-
tions that is common in systems with delays.

The model approximation problem is harder when the control or both
the path and control are delayed. Because the paths are continuous func-
tions, there are many ways of sampling and approximating them to get finite-
dimensional results. But it is not usually known a priori whether the control
processes have any regularity properties at all. Because of this there is an
advantage in approximating the relaxed control representation. Some possi-
bilities are discussed in Section 4. An alternative approach to systems with
delays in the control and path is discussed in Chapter 9. Section 5 is con-
cerned with system approximations when there is a delayed singular control.
The methods used in Sections 4 and 5 should be taken as being well moti-
vated and natural, but still preliminary. Much more work is needed on system
approximation methods when the control is delayed. In the numerical algo-
rithms (see Chapters 7 and 8), the path values are discretized and represented
in various ways to minimize the memory requirement.

Delay equations might have rapidly time-varying terms, even rapidly vary-
ing delays. This complicates the numerical problem. But, under suitable con-
ditions, there are limit and approximation theorems that allow us to replace
the system by a simpler averaged one. Some such results are developed in
Section 6.
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4.1 Approximations of the Dynamical Systems

4.1.1 A Basic Approximation

A first step in simplifying the numerical problem is to simplify the original
model. The idea is to work with a simpler model, but for which the val-
ues of the cost functions and the essential features are close to those for the
original model. Indeed such approximations are an important part of the de-
velopment of useful algorithms. The following theorems show that the cost
function does not change much, uniformly in the control, if the dynamics
are changed slightly, and they allow us to make the type of approximations
just suggested, as well as more useful ones. Eventually the simplifications will
lead to finite-dimensional approximations whose behavior is close to that of
the original model and for which numerical algorithms can be conveniently
developed.

We concentrate on the model (3.2.3), and cost function (3.4.4), and the
analogs of the approximation results also hold for the other models discussed
in Chapter 3. The next two theorems show that varying the memory struc-
ture slightly changes the costs only slightly, uniformly in the control. The
theorems are intended to be suggestive of the possibilities, and their proofs
use the methods of Theorem 3.5.1. In the system of concern in Theorem 1.1,
the dynamical terms b(·), σ(·), µc(·), and the cost rate k(·), are approximated
by bn(·), σn(·), µn

c (·), and kn(·), resp. In (A1.1), v(·) and vn(·) are used for
canonical paths in C(G; [−θ̄,∞)), and the canonical path memory segments
associated with them are denoted by v̄(t) and v̄n(t), resp.

A1.1. bn(·) and kn(·) are measurable IRr-valued functions on D(G; [−θ̄, 0])×
U × [−θ̄, 0]. Suppose that vn(·) → v(·) in C(G; [−θ̄,∞)). Let v̄n(t) (resp.,
v̄(t) ) denote the path memory segments at t associated with the paths vn(·)
and v(·), resp. Then bn(v̄n(t), α, θ) → b(v̄(t), α, θ) uniformly in α, θ on any
bounded time interval. The real-valued function kn(·) and the matrix-valued
function σn(·) are measurable and satisfy the analogous property. Also, µn

c (·)
converges weakly to µc(·).

Theorem 1.1. Use the model (3.2.3) with the cost function (3.4.4). Assume
(A3.1.2), (A3.1.3), (A3.2.1)–(A3.2.3), (A3.4.3) and (A1.1). Let Wn(x̂, r̂, r) de-
note the cost under (bn(·), σn(·), kn(·), µn

c (·)). Then Wn(x̂, r̂, r) → W (x̂, r̂, r)
uniformly in x̂, r̂ (where x̂ is confined to some compact set in C(G; [−θ̄, 0]) )
and in r(·) as n → ∞.

Now drop the conditions (A3.1.2) and (A3.1.3), and assume the model
(3.2.11) and (A3.2.4)–(A3.2.6). Then the conclusions continue to hold. Sup-
pose now that control stops when the boundary is reached, where the cost func-
tion is (3.4.2). Drop (A3.2.1) and (A3.2.2) and assume (A3.4.1) and (A3.4.2).
Then the conclusions continue to hold.
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Comment on the notation. Consider a solution to (3.2.3), with relaxed
control r(·) and Wiener process w(·). Because we are working with weak-
sense solutions, when we abuse the notation by saying that we apply the
same pair (r(·), w(·)) to the system that uses (bn(·), σn(·), kn(·), µn

c (·)) and
to the system with (b(·), σ(·), k(·), µc(·)), we mean that there is a probability
space on which are defined (rn(·), wn(·)) and a solution xn(·), with reflection
term zn(·), where (rn(·), wn(·)) has the probability law of (r(·), w(·)).

Proof. The proof is very similar to that for the existence of an optimal control
in Section 3.5, and we will only discuss the proof of the uniformity. Suppose
that the uniformity (in the controls and initial condition) of the approximation
does not hold as n → ∞. Then there is a sequence of initial conditions x̂n

(confined to some compact set) and r̂n, admissible pairs (rn(·), wn(·)), and
corresponding solutions xn(·) with reflection terms zn(·) such that

xn(t) = x̂n(0) +
∫ t

0

ds

∫ 0

−θ̄

∫
U

bn(x̄n(s), α, θ)rn,′(dα, s + θ)µn
c (dθ)

+
∫ t

0

σn(x̄n(s))dwn(s) + zn(t),
(1.1)

and, for some ε > 0 and as n → ∞,

|Wn(x̂n, r̂n, rn) − W (x̂n, r̂n, rn)| ≥ ε. (1.2)

Let (rn
0 (·), wn

0 (·)) have the distribution of (rn(·), wn(·)), and let xn
0 (·), zn

0 (·)
be the associated solution and reflection term, resp., to (3.2.3) under the initial
conditions x̂n, r̂n; i.e.,

xn
0 (t) = x̂n(0) +

∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄n
0 (s), α, θ)rn,′

0 (dα, s + θ)µc(dθ)

+
∫ t

0

σ(x̄n
0 (s))dwn

0 (s) + zn
0 (t).

(1.3)

Choose a weakly convergent subsequence of (xn(·), yn(·), rn(·), wn(·),
x̂n, r̂n) and (xn

0 (·), yn
0 (·), rn

0 (·), wn
0 (·), x̂n, r̂n) with limits (x(·), y(·), r(·), w(·),

x̂, r̂) and (x0(·), y0(·), r0(·), w0(·),x̂, r̂), resp. Let n index the subsequence. Use
the Skorokhod representation so that the convergence can be supposed to be
w.p.1 in the topology of the path spaces. By (A1.1), the continuity of the
limit processes, and the fact that rn(dα, ds + v)µn

c (dv) ⇒ r(dα, ds + v)µc(dv)
if rn(·) ⇒ r(·), the first integral in (1.1) converges to

∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄(s), α, θ)r′(dα, s + θ)µc(dθ).

The stochastic integrals are treated by the approximation procedure of The-
orem 3.5.1. Thus, the limit of (1.1) satisfies
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x(t) = x̂(0) +
∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄(s), α, θ)r′(dα, s + θ)µc(dθ)

+
∫ t

0

σ(x̄(s))dw(s) + z(t).

Analogously, the limit of (1.3) satisfies

x0(t) = x̂(0) +
∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄0(s), α, θ)r′0(dα, s + θ)µc(dθ)

+
∫ t

0

σ(x̄0(s))dw0(s) + z0(t).

The probability laws of (r(·), w(·)) and (r0(·), w0(·)) are identical and the
initial conditions are the same for both cases. Hence the weak-sense unique-
ness (A3.2.3) of the solution to (3.2.3) implies that (x0(·), y0(·), r0(·), w0(·))
and (x(·), y(·), r(·), w(·)) have the same probability laws. The proof that
Wn(x̂n, r̂n, rn) → W (x̂, r̂, r) and W (x̂n, r̂n, rn) → W (x̂, r̂, r) (which contra-
dicts (1.2)) is similar to the proof of the analogous result in Theorem 3.5.1
and the details are omitted.

Theorem 1.2. Assume the conditions of Theorem 1.1. Let (rn,ε(·), wn,ε(·))
be an ε-optimal (control, Wiener process) pair, under (bn(·), σn(·), kn(·), µn

c (·))
and initial conditions x̂, r̂. Then any weak-sense limit (rε(·), wε(·)) of (rn,ε(·),
wn,ε(·)) is an ε-optimal pair under (b(·), σ(·), k(·), µc(·)).

Comment on the proof. Let (xn,ε(·), zn,ε(·)) denote the solution under
(rn,ε(·), wn,ε(·)). Choose a weakly convergent subsequence (indexed by n)
of (xn,ε(·), zn,ε(·), rn,ε(·), wn,ε(·)) with limit (x(·), z(·), rε(·), wε(·)). By the ε-
optimality of rn,ε(·),

Wn(x̂, r̂, rn,ε) ≤ inf
r

Wn(x̂, r̂, r) + ε. (1.4)

We will use this and the weak convergence to show that

W (x̂, r̂, rε) ≤ inf
r

W (x̂, r̂, r) + ε. (1.5)

Suppose that (1.5) is false. Then there is a δ > 0 such that

inf
r

W (x̂, r̂, r) ≤ W (x̂, r̂, rε) − ε − δ,

and a pair (rδ(·), wδ(·)) such that

W (x̂, r̂, rδ) ≤ W (x̂, r̂, rε) − ε − δ/2. (1.6)

Now apply the pair (rδ(·), wδ(·)) to (1.1) with initial conditions (x̂, r̂). That is,
there is a probability space with processes (rn

δ (·), wn
δ (·), xn

δ (·), zn
δ (·)) defined

on it such that
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xn
δ (t) = x̂(0) +

∫ t

0

ds

∫ 0

−θ̄

∫
U

bn(x̄n
δ (s), α, θ)rn,′

δ (dα, s + θ)µn
c (dθ)

+
∫ t

0

σn(x̄n
δ (s))dwn

δ (s) + zn
δ (t),

(1.7)

and where the distribution of (rn
δ (·), wn

δ (·)) is that of (rδ(·), wδ(·)). By (1.6)
and the uniqueness of the solution to (3.1.3), the cost corresponding to the
limit of any weakly convergent subsequence of the processes in (1.7) must be ≤
W (x̂, r̂, rε)−ε−δ/2, which contradicts the ε-optimality (1.4) of (rn,ε(·), wn,ε(·))
for large n. Hence (1.5) holds.

The next theorem is a slight extension of Theorem 1.1. It will be used for
the approximation of the memory in the next section. It allows us to use an
approximation to the memory segment at time t that depends on the solution
over an interval [t − θ̄n(t), t] in lieu of the interval [t − θ̄, t] where, for each
T < ∞, supt≤T

∣∣θ̄n(t) − θ̄
∣∣ → 0 in probability as n → ∞. It is motivated

by approximations such as Approximations 2, 3, and 4 of the next section,
which in turn are motivated by approximations that reduce the memory re-
quirements of the numerical algorithms, such as those in Chapters 7–9. In
Approximation 3, defined by (2.6) and called the periodic approximation, the
maximum delay varies periodically between θ̄ − δ/2 and θ̄ + δ/2, and it is of
interest to know that as δ → 0, the costs converge to those for the original
model. In Approximation 4, defined by (2.7), the delays vary randomly and
are determined by a renewal process, whose intervals are exponentially dis-
tributed with mean δ. The memory is the path from the present time back
to θ̄/δ renewal times ago, mapped into a function on [−θ̄, 0], and we wish to
know that as δ → 0, the costs will converge to that for the original model.

In Approximation 5, defined by (2.8), the exponentially distributed inter-
vals are replaced by Erlang distributed intervals of order δ/δ0, of total mean δ.
This will be called the periodic-Erlang approximation. We wish to know that,
as δ0 → 0, the costs converge to those for the periodic delay approximation.
The motivation for this approximation, as a means of reducing the required
memory for the numerical algorithms, is given in Chapter 8. Simulations that
illustrate these approximations are in Section 3 where it is seen that they can
be quite good. The limit of the memory segments at time t for the approx-
imations mentioned in the previous paragraph is just the original memory
segment x̄(t) = {x(t + θ), θ ∈ [−θ̄, 0]}. But for the periodic-Erlang approxi-
mation noted in this paragraph, the limit (as δ0 → 0, with δ fixed) has the
form of the periodic memory segment that, for each t, is piecewise-constant
and not continuous. This motivates Assumption A1.3 and Theorem 1.4. and
was the motivation for the more general part of (A3.1.1) and (A3.1.3). The
importance of these approximations for the numerical problem will be seen in
Chapters 7–9.

In (A1.2), we use a sequence of approximations x̄n
a(t), n < ∞, to the path

memory segment x̄(t). The subscript “a” will later be used to indicate the
type of approximation.
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A1.2. Let the nonanticipative memory segment process x̄n
a(t) ∈ D(G; [−θ̄, 0])

be used in lieu of x̄(t), where x̄n
a(t) might depend on the path x(t + θ) for a

range θ ∈ [−θ̄n(t), 0] in lieu of the range [−θ̄, 0] (but mapped into a function on
[−θ̄, 0] ), for some nonanticipative process θ̄n(·). Let xn(·) denote the solution
under the memory segment x̄n

a(t), assumed to be weak-sense unique for each
initial condition and control. Suppose that, for each T < ∞, and as n → ∞,

sup
t≤T

sup
−θ̄≤θ≤0

|x̄n
a(t, θ) − xn(t + θ)| → 0 (1.8)

in probability, uniformly in the control and initial condition.

In Theorem 1.3, Wn
a (x̂, r̂, r) is the cost under the path memory segment x̄n

a(·).

Theorem 1.3. Assume the conditions of Theorem 3.5.1 and (A1.2). Use
b(x̄n

a(t), α, θ) instead of bn(x̄(t), α, θ), and use σ(x̄n
a(t)) and k(x̄n

a(t), α, θ).
Then Wn

a
¯

Comment on the proof. The proof follows that of Theorem 1.1. Consider
(3.2.3) under the current substitutions for the path memory segments:

xn(t) = x(0) +
∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄n
a(s), α, θ)r′(dα, s + θ)µc(dθ)

+
∫ t

0

σ(x̄n
a(s))dw(s) + zn(t),

which we write as

xn(t) = x(0) +
∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄n(s), α, θ)r′(dα, s + θ)µc(dθ)

+
∫ t

0

σ(x̄n(s))dw(s) + zn(t) + εn(t),

where

εn(t) =
∫ t

0

ds

∫ 0

−θ̄

∫
U

[b(x̄n
a(s), α, θ) − b(x̄n(s), α, θ)] r′(dα, s + θ)µc(dθ)

+
∫ t

0

[σ(x̄n
a(s)) − σ(x̄n(s))] dw(s).

By (A1.2), as n → ∞, the max of the error term εn(t) over any finite interval
goes to zero in mean, uniformly in the control and initial condition. The rest
of the details are as in Theorem 1.1.

An extension of Theorem 1.3. In Theorem 1.3, it was assumed that the
model used the path memory segment x̄(t), and it was x̄(t) that was approxi-
mated. But the original model might use a path memory that is different than

(x̂, r,̂ r) → W (x̂, r,̂ r) uniformly in x̂ in any compact set in C(G; [−θ,
0]),and in r,̂ r(·), as n → ∞.
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x̄(t). For example, it might be a piecewise-constant approximation to x̄(t), or
depend on the values of x(·) over a time interval that is different than that
used for x̄(t). Now let x̄a(t) ∈ D(G; [−θ̄, 0]) denote the value of the nonan-
ticipative memory segment process that is to be used in the original model
at time t. It is assumed to be piecewise-constant with intervals that do not
depend on t and can be represented as a measurable function Fa(t, x(s), s ≤ t)
of the path and time. It also is used for the argument in the cost rate k(·) and
in σ(·). Thus the original system is now

x(t) = x(0) +
∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄a(s), α, θ)r′(dα, s + θ)µc(dθ)

+
∫ t

0

σ(x̄a(s))dw(s) + z(t).
(1.9a)

If the control is not delayed, then the system reduces to

x(t) = x(0)+
∫ t

0

ds

∫
U

b(x̄a(s), α)r′(dα, s)+
∫ t

0

σ(x̄a(s))dw(s)+ z(t). (1.9b)

A1.3. Let the solution to (1.9) be weak-sense unique for each initial con-
dition and control. Let the nonanticipative path memory segment x̄n

b (t) ∈
D(G; [−θ̄, 0]) be used in lieu of x̄a(t) in the cost rate and in (1.9), with cor-
responding solution process xn(·), assumed to be weak-sense unique for each
initial condition and control. That is,

xn(t) = x(0) +
∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄n
b (s), α, θ)r′(dα, s + θ)µc(dθ)

+
∫ t

0

σ(x̄n
b (s))dw(s) + zn(t).

Suppose that, for each T < ∞, and as n → ∞,

sup
t≤T

sup
−θ̄≤θ≤0

|x̄n
b (t, θ) − x̄n

a(t, θ)| → 0 (1.10)

in probability, uniformly in the control and initial condition, where x̄n
a(t) =

Fa(t, xn(s), s ≤ t). Suppose further that if xn(·) converges to a process v(·)
then x̄n

a(t) converges to the memory segment process v̄a(t) = Fa(t, v(s), s ≤ t)
associated with v(·) in the sense that, for each T < ∞ and as n → ∞,

sup
t≤T

sup
−θ̄≤θ≤0

|v̄a(t, θ) − x̄n
a(t, θ)| → 0.

Theorem 1.4. Assume the conditions of Theorem 1.3 with (A1.3) replacing
(A1.2). Then the conclusions of of Theorem 1.3 continue to hold.
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4.2 Approximations by Time-Varying Delays: Only Path
Delayed

In this section, the path memory segments that approximate x̄(t) will be de-
noted by either x̄δ

a(t) or x̄δ0δa(t), where δ or (δ, δ0) are parameters of the ap-
proximation and the subscript “a” denotes the type of approximation. These
are nonanticipative functions of the solution to the system equation.

The numerical problem for delay equations involves a lot of memory be-
cause of the necessity of approximating the memory segments. In order to
reduce the memory requirements, it is necessary to simplify the model, with-
out sacrificing too much accuracy, and some approaches to attaining that goal
are discussed in this section for the case where only the path is delayed. We
use the models (3.2.1) or (in relaxed control form) (3.2.2). The approximations
(2.4)–(2.8) will be used in Chapters 7–9. Theorems 1.1–1.4 will be applied to
the various approximations in this section.

4.2.1 Discretized Delays

Discretized delays. Let δ > 0 be small and such that Qδ = θ̄/δ is an integer.
A simple way to approximate the delays is to discretize them to the finite set of
values {0, δ, 2δ, . . . , Qδδ}. Suppose, for concreteness, that we move any delays
on the interval (iδ, iδ + δ], i < Qδ, to the point delay iδ + δ, thus possibly
increasing delays slightly. The precise approximation is as follows. Let x̄δ

d(t)
denote the function on [−θ̄, 0] with values x̄δ

d(t, θ) given by

x̄δ
d(t, 0) = x(t)

x̄δ
d(t, θ) =

⎧⎪⎪⎨
⎪⎪⎩

x(t − δ), θ ∈ [−δ, 0),
...

x(t − θ̄), θ ∈ [−θ̄,−θ̄ + δ).

(2.1)

The system (3.2.2) is now replaced by

x(t) = x(0) +
∫ t

0

∫
U

b(x̄δ
d(s), α)r(dα ds) +

∫ t

0

σ(x̄δ
d(s))dw(s) + z(t). (2.2)

The solution corresponding to the memory segment x̄δ
d(·) will depend on δ,

but until further notice we suppress that dependence for notational simplicity.
Let W δ(x̂, r) denote the associated discounted cost and V δ(x̂) the minimal
value. This terminology will also be used for the other approximations that
are to follow that depend on a single parameter δ. If the delays were uniformly
distributed on [−θ̄, 0], then this approximation increases the average delay by
δ/2.
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Theorem 1.1 applies, so as δ → 0, the costs for the approximation converge
to the cost for the original model. Although this approach will simplify the
representation of the delays, it will not help the memory problem because in
order to compute the values x(t − iδ), iδ ≤ θ̄, for all t, we still need to track
the entire (infinite-dimensional) segments x̄(t).

The following approximations all yield processes with a finite-dimensional
representation. With them the effective delays vary either periodically or are
randomly varying in time. As seen in Section 3, they can be quite good.
But, given the sensitivity of the behavior of many models with delays to
slight variations in the dynamics, one must always exercise care in the use of
any approximation. There are numerous variations of each of the suggested
approximations. They vary in convenience of use, and the forms that are
described should be taken as one choice among many alternatives

Approximation 1. A direct approximation of x̄(t). Let lδ ≤ t < lδ + δ.
Redefine x̄δ

d(t) to be the restriction to the interval [−θ̄, 0] of a piecewise-
constant interpolation of the values(

x(t), x(lδ), . . . , x(lδ − θ̄)
)

(2.3)

instead of those in the set in (2.1). In particular, we use the restriction of the
piecewise-constant interpolation of the following points:

x̄δ
d(t, 0) = x(t),

x̄δ
d(t, θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(lδ), θ = −(t − lδ),

x(lδ − δ), θ = −(t − lδ) − δ,

...

x(lδ − Qδδ), θ = −(t − lδ) − Qδδ.

(2.4)

The construction is illustrated by the solid line in Figure 2.1
The maximum delay is θ̄ when t = lδ, and it increases to θ̄+δ as t → lδ+δ,

at which point it reverts back to θ̄. An approximation that yields better results
in the simulations is the linear interpolation, given by the dotted line in the
figure, although the advantage is slight for small values of δ, and it requires
more computation. To the extent that the linear interpolation is accurate, the
maximum effective delay with the linear interpolation used remains close to
θ̄. Either approximation can be used as basis for the numerical algorithms in
Chapters 7–9. There is a computational burden associated with the fact that
the approximation shifts continuously in time, and this is the motivation for
the Approximations 2 and 3. For the numerical approximations, the values of
the state are discrete. To use either of the forms of Figure 2.1, one needs to
keep track of the continuously varying quantity τ δ(t) = t− lδ = t(mod δ), for
lδ ≤ t < lδ + δ. This introduces a quantity that takes values in a continuum
and that must be approximated (as in Approximations 4 or 5 below) in order
to adapt the model for the numerical algorithms.
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θ

x(lδ)

x(lδ − δ)

x(t)
x(lδ − θ̄)

x̄δ
d(t, θ)

0
−(t − lδ)

−(t − lδ) − δ

−(t − lδ) − θ̄

−θ̄

Figure 2.1. Illustration of (2.4).

4.2.2 Periodic Delays

Approximation 2. A periodic finite-memory approximation. The fol-
lowing approximation is an alternative interpolation of the values (2.3), but
with the shift occurring at discrete times iδ, i = 1, 2, . . . ,, rather than contin-
uously. It requires less computation, although the effective delays vary peri-
odically. Let t ∈ [lδ, lδ + δ). More precisely, for lδ ≤ t < lδ + δ let the memory
segment be the function x̄δ

f (t) defined by:

x̄δ
f (t, 0) = x(t),

x̄δ
f (t, θ) =

⎧⎪⎪⎨
⎪⎪⎩

x(lδ), θ ∈ [−δ, 0),
...

x(lδ − θ̄ + δ), θ ∈ [−θ̄,−θ̄ + δ).

(2.5)

The construction is illustrated in Figure 2.2. If the delays are uniformly dis-
tributed on [−θ̄, 0], then this procedure decreases the average delay by δ/2.
A piecewise-linear form can be used as well. Any approximation based on the
set (2.3) and that converges in the sense of Theorems 1.1–1.3 can be used.

x̄δ
f (t, θ)

x(lδ − θ̄ + δ)

−θ̄
θ0−δ−2δ−θ̄ + δ

x(lδ − δ)

x(lδ)

x(t)

Figure 2.2. Path only delayed. Model (2.5), lδ ≤ t < lδ + δ.
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With the above model, we expect that the control at time t ∈ [lδ, lδ + δ)
should depend only on x̄δ

f (t) and t − lδ. For such controls, the process
Xδ

n = (x(nδ), x(nδ − δ), . . . , x(nδ − Qδδ + δ)) is Markov. Define Xδ(t) =
(x(t), x(lδ), . . . , x(lδ − Qδδ + δ)). The process defined by (Xδ(t), t − lδ) for
t ∈ [lδ, lδ + δ) is also Markov but with a periodic (period δ) transition func-
tion. The component τ δ(t) = t− lδ = t(mod δ) is necessary because (on each
interval [lδ, lδ + δ)) we need to keep track of the time that has elapsed since
lδ. For the numerical approximations in Chapters 7 and 8, the path values
are discretized. In order to obtain finite-state approximations, it will be nec-
essary to discretize the time as well. To prepare for this, we will introduce the
Approximations 4 and 5 below. This point will be returned to in Chapter 7.

Approximation 3: Delays periodic in θ̄ ± δ/2. In the model (2.5), the
delays varied between θ̄ − δ and θ̄. With the variation in the last paragraph,
they varied between θ̄ and θ̄ + δ. Simulations (see the next section) show that
the quality of the approximation is improved relative to those models if the
maximum delay oscillates periodically between θ̄−δ/2 and θ̄+δ/2. To get such
an approximation, define Q+

δ (assumed to be an integer) by θ̄ = (Q+
δ + 1/2)δ

and let lδ ≤ t < lδ + δ. Then define the memory segment x̄δ
p(t) as follows.

x̄δ
p(t, 0) = x(t),

x̄δ
p(t, θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x(lδ), θ ∈ [−δ/2, 0),

x(lδ − δ), θ ∈ [−δ/2 − δ,−δ/2),
...

x(lδ − Q+
δ δ), θ ∈ [−θ̄,−θ̄ + δ).

(2.6)

The form is illustrated in Figure 2.3, and it is seen that the maximum delay
varies periodically in the desired range. The value δ/2 for the length of the
rightmost interval was chosen because t− lδ varies from zero to δ as t → lδ+δ,
and the average value is δ/2. This also explains the use of δ/2 in (2.8) below.
Other choices that maintain the correct mean values could be used as well.
The use of a linear interpolation based on (2.6) gave slightly better results in
simulations but involved more computation.

Discussion of the approximations and intervals in (2.6). Suppose that
b(x̂, α) has the form b(x(t − θ̄), α). With the approximation (2.6), as t varies
from lδ and lδ+δ, the value b(x(lδ−Q+

δ δ), α) is used in the dynamical equation.
Thus the delay varies between θ̄ − δ/2 to θ̄ + δ/2, with an average value of θ̄.
Now consider the rightmost interval, whose length is δ/2. For t ∈ [lδ, lδ + δ),
we have x̄δ

p(t,−δ/2) = x(lδ). Thus the average delay of the approximation at
θ = −δ/2 is just δ/2. Such considerations motivate the choice of the intervals
in (2.6). With the particular form for b(·) in this example, the values of the
approximation on the interval θ ∈ [−δ/2, 0] and,
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x̄δ
p(t, θ)

x(lδ − Q+
δ δ)

−θ̄
θ

0−δ/2−3δ/2−θ̄ + δ

x(lδ − δ)

x(lδ)

x(t)

Figure 2.3. Illustration of x̄δ
p(t). Model (2.6), lδ ≤ t < lδ + δ.

indeed, on (−θ̄, 0) are irrelevant. But we need to keep track of the values
X̃δ(t) =

(
x(t), x(lδ), x(lδ − δ), . . . , x(lδ − Q+

δ δ)
)
, no matter how they are in-

terpolated.
Suppose now that the delay for the original problem is uniformly dis-

tributed on [0, θ̄] in that µc(·) is Lebesgue measure on [−θ̄, 0]. Let (2.6) (i.e.,
the form in Figure 2.3) be used for the approximation to the memory segment.
Thus the distribution on [−θ̄, 0] in Figure 2.3 is Lebesgue measure for each t.
The approximation (2.6) concentrates the delay at the following values:(

Q+
δ δ + (t − lδ), . . . , δ + (t − lδ), t − lδ

)
.

At time t, the interpolation effectively assigns a measure of value δ to each
of the values, except the rightmost, to which the value δ/2 is assigned. As t
varies between lδ and lδ + δ, the range of the delays that are associated with
the right-hand interval varies between [0, 0] and [0, δ], with an average value
δ/2, which again helps justify the interpolation (2.6).

4.2.3 Randomly Varying Delays

For Approximation 3 and lδ ≤ t < lδ + δ, one must keep track of the elapsed
time t−lδ since the last shift. This can be a problem when the model is adapted
for use with the numerical procedure. If the Markov chain approximation
is such that the “interpolation interval” is constant (which is not usually
the case) for each value of the discretization parameter, then we can get a
complete finite-state approximation for numerical purposes. This is discussed
in Chapter 7. Even then, when the interpolation interval is small, the number
of points required to keep track of time will be very large.

Such considerations imply that we need to modify our approach to the
measurement of the passage of time between shifts so that only a finite number
of values are required. Such modifications are described by Approximations 4
and 5. In these approaches, time advances “randomly,” and is determined by
a renewal process with either exponentially or Erlang distributed intervals.

Approximation 4. Continue to suppose that only the path is delayed. The
following model, where the delay varies randomly, is covered by Theorems 1.1
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and 1.3. Let time be divided into mutually independent and nonanticipative
intervals whose lengths are exponentially distributed and have mean length δ.
In detail, let {vδ

n} be i.i.d., random variables that are exponentially distributed
with mean δ. They are the intervals between jumps of a Poisson process
whose jump rate at time t, conditional on all data to t, is 1/δ. Thus they
are independent of the Wiener process. Define vδ

0 = 0 and σδ
n =

∑n−1
i=0 vδ

i . The
σδ

n are called the shift times or the δ-shift times for this approximation.
The memory will consist of the values of the path at the current time and

at the most recent Qδ = θ̄/δ renewal or shift times. Thus the effective delay is
randomly time-varying. In particular, define the path memory segment x̄δ

r(t)
as follows. For t ∈ [σδ

l , σδ
l+1),

x̄δ
r(t, 0) = x(t),

x̄δ
r(t, θ) =

⎧⎪⎪⎨
⎪⎪⎩

x(σδ
l ), −δ ≤ θ < 0,

...
x(σδ

l−Qδ+1), −θ̄ ≤ θ < θ̄ + δ.

(2.7)

See the illustration of x̄δ
r(t) in Figure 2.4.

If the subscript k in a term σδ
k in (2.7) is negative, then use the value of the

initial condition at θ = −kδ. The mean value of σδ
l − σδ

l−Qδ+1 is (Qδ − 1)δ =
θ̄ − δ. The time between t and the previous renewal moment is exponentially
distributed with mean δ [43, Chapter 5, Equation (6.5)]. Thus the average
maximum delay is θ̄.

For σδ
l ≤ t < σδ

l+1 and (2.7) used, we expect that it is sufficient to have the
control at time t dependent on Xδ

r (t) = (x(t), x(σδ
l ), x(σδ

l−1), . . . , x(σδ
l−Qδ+1))

only. Then Xδ
r (·) is Markov and so is the discrete-parameter processes Xδ

r,l =(
x(σδ

l ), x(σδ
l−1), . . . , x(σδ

l−Qδ+1)
)
, l = 0, 1, . . . . Because of the fact that the

intervals are exponentially distributed and i.i.d., we need not keep track of
the time since the last shift. Thus the state space is simpler than that for
the previous case. This advantage is offset by the fact that the intervals are
random.

Simulations indicate that there is too much randomness for such an ap-
proximation to be of general use, unless δ is small. The dimensionality of the
path representation is inversely proportional to δ, so we prefer to approximate
the passage of time by means other than by making δ very small. The following
elaboration addresses this issue, by using a “periodic delay” approximation
based on an Erlang distribution of high order.
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x̄δ
r(t, θ)

x(σδ
l−Qδ+1)

−θ̄
θ

0−δ−2δ−θ̄ + δ

x(σδ
l−1)

x(σδ
l )

x(t)

Figure 2.4. An illustration of x̄δ
r(t) defined by (2.7), for t ∈ [σδ

i , σδ
l+1).

4.2.4 Periodic-Erlang Delays

Approximation 5. A compromise between (2.6) and (2.7): A “finer”
random approximation. Equations (2.5) and (2.6) illustrated approxima-
tions that, for t ∈ [lδ, lδ + δ), required keeping track of the time t − lδ. The
approximation (2.7) did not require such a component of the memory, but
the effective delay intervals were random. For small δ, this might not be a
problem, but there are intermediate models between (2.5) (or (2.6)) and (2.7)
that are well worth considering. One such model replaces the exponentially
distributed intervals vδ

n by Erlang distributed intervals, so that there is less
randomness, although the memory requirement is increased.

Define the integer Q+
δ and the real number δ > 0 by θ̄ = (Q+

δ + 1/2)δ, as
above (2.6). Let δ > δ0 > 0 with L̄δ0,δ = δ/δ0, an integer. Each interval of
length δ will be approximated by a sum of L̄δ0,δ random subintervals, with the
length of each subinterval having an exponential distribution with mean δ0.
Thus the intervals between renewal times are sums of L̄δ0,δ of the subintervals
and have an Erlang distribution of order L̄δ0,δ and total mean δ.

Now we give the formal definition. Let the random variables {vδ0
n } have

the properties of the {vδ
n} defined above (2.7), but with mean δ0. Define

vδ0
0 = 0 and σδ0

n =
∑n−1

i=1 vδ0
i . We will divide {vδ0

n } into groups of L̄δ0,δ random
variables as follows. Define σ̄δ0,δ

0 = 0 and

σ̄δ0,δ
n =

nL̄δ0,δ∑
i=1

vδ0
i , n = 1, 2, . . . .

The intervals between renewal are σ̄δ0,δ
l+1 − σ̄δ0,δ

l , l = 0, 1 . . . . The intervals are
mutually independent and are intended to approximate the constant interval
of length δ. The renewal times σ̄δ0,δ

n are also called the shift times or δ-shift
times. Define the path memory segment x̄δ0,δ

e (t) as follows. For σ̄δ0,δ
l ≤ t <

σ̄δ0,δ
l+1 ,
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x̄δ0,δ
e (t, 0) = x(t),

x̄δ0,δ
e (t, θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x(σ̄δ0,δ
l ), −δ/2 ≤ θ < 0,

...
x(σ̄δ0,δ

l−Q+
δ

), −θ̄ ≤ θ < θ̄ + δ.

(2.8)

The average value of σ̄δ0,δ
l − σ̄δ0,δ

l−Q+
δ

is Q+
δ δ = θ̄−δ/2. Because the intervals

σ̄δ0,δ
n+1 − σ̄δ0,δ

n are Erlang distributed with mean δ and order L̄δ0,δ, the approx-
imation to a constant interval of length δ is better. The mean time between a
random time and the last renewal time σ̄δ0,δ

l before it is harder to calculate,
but it is between δ/2 and δ. As L̄δ0,δ → ∞, it converges to δ/2. This argument
provides additional support for our use of the interval δ/2 in the top line of
the brackets in (2.8).

Comment. When these approximations are adapted to the numerical prob-
lem in Chapters 7 and 8, a major concern is simplicity and the tracking of
a state that can be embedded into a finite-state Markov chain and used in
the dynamic programming equation. The representation of the path needs to
be simple, and our choices satisfy that need. We have tried to motivate the
particular choices that are made, but they are not exclusive and much more
thought is required. We will use similar interpolations when the delayed con-
trol problem is discussed in Section 4. But there is no intrinsic requirement
that the path and control have approximations of the same form.

The “Erlang” state. It will be helpful to formalize the process that marks
the passage of time. The right-continuous Erlang state Lδ0,δ(t) is defined to
be the number of δ0-intervals that have passed since the last δ-shift, and it
evolves as a cyclic Poisson process with L̄δ0,δ values, where the state moves
0 → 1 → 2 · · · → L̄δ0,δ − 1 → 0, with the rate for each transition being 1/δ0.
Equivalently, the Erlang process changes values at the times σδ0

n , n = 1, 2 . . ..

Let i and l be such that σ̄δ0,δ
l ≤ σδ0

i ≤ t < σδ0
i+1 ≤ σ̄δ0,δ

l+1 . If the control at

time t depends only on
(
x(t), x(σ̄δ0,δ

l ), . . . , x(σ̄δ0,δ

l−Q+
δ

)
)

and Lδ0,δ(t) (where, in

this case, Lδ0,δ(t) = i− lL̄δ0,δ), then this process is Markov. We will then need
to keep track of the Lδ0,δ(t), which takes only L̄δ0,δ values, and this is simpler
than keeping track of the continuous variable t, modulo δ. The intervals have
an Erlang distribution of high order, which is preferable to the exponential
distribution. Thus we have a compromise between (2.5) (or (2.6)) and (2.7).
The interpolations will be discussed further in the next section in connection
with the simulations.

Note that while the passage of time is determined by the renewal process,
the interpolations x̄δ

r(t) and x̄δ0,δ
e (·) defined by (2.7) or (2.8) are piecewise-

constant with interval δ (or δ/2 for the rightmost interval). In principle, one
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could construct interpolations by replacing these constant interpolation inter-
vals by the appropriate random renewal intervals, but this would entail the
use of a random (and potentially unbounded) number of path values and of
the associated values of the random intervals, all of which is to be avoided.

4.2.5 Convergence of Costs and Existence of Optimal Controls

The results of Section 3.5 concerning the existence of optimal controls for the
various approximations and those of Section 1 concerning the continuity of the
cost function with respect to the approximation parameters extend as follows,
for the case where only the path memory segment is approximated. The proofs
of existence of optimal controls are like that in Section 3.5. The proofs of the
convergence of the various approximations as the approximation parameters
go to their limits use Theorems 1.3 and 1.4. Theorem 1.4 is required for the
assertions concerning Approximation 5, the periodic-Erlang model, where the
memory segments and the path values at the shift times converge to those for
the periodic model (Approximation 3) as δ0 → 0. The details are omitted.

Theorem 2.1. Use the system (3.2.2) and cost function (3.4.3), with x̄δ
a(t)

replacing x̄(t), where x̄δ
a(t) (a = d, f, p, r) is defined by any of the approx-

imations given by (2.1) or (2.4)–(2.7). Let the cost and optimal cost be de-
noted by W δ(x̂, r) and V δ(x̂), resp., for all cases. Assume (A3.1.1), (A3.1.2),
(A3.2.1)–(A3.2.3) and (A3.4.3). Let δ be fixed. Then the conclusions of Theo-
rems 3.5.1–3.5.4 hold as they pertain to these models. As δ → 0, W δ(x̂, r) →
W (x̂, r) uniformly in r(·) and in x̂ in any compact set in C(G; [−θ̄, 0]). Also,
V δ(x̂) → V (x̂). Now suppose that the controls are restricted to depend on one
of these approximations to the path memory segment and consider ε′-optimal
controls with this dependence. Given ε > 0, there is ε′ > 0 that goes to zero
as ε → 0 such that for small enough δ (which can depend on ε), an ε′-optimal
control in any of the classes of approximations to the memory segments is
ε-optimal for (3.2.2).

Next suppose that control stops when the boundary is reached, as for (3.4.2).
Drop (A3.2.1) and (A3.2.2) and assume (A3.4.1) and (A3.4.2). Then the con-
clusions continue to hold.

Now assume the model (3.2.11) with conditions (A3.1.1), (A3.1.2) and
(A3.2.4)–(A3.2.6). Let any of the approximations (2.1) or (2.4)–(2.7) be used
to approximate the path component in the dynamical terms, and use µn

c (·)
such that µn

c (·) ⇒ µc(·). Then the conclusions continue to hold.
Now assume the approximation (2.8) and let W δ0,δ(x̂, r) and V δ0,δ(x̂)

denote the cost function and the optimal cost, resp. Then, as δ0 → 0,
V δ0,δ(x̂) → V δ(x̂) and W δ0,δ(x̂, r) → W δ(x̂, r), uniformly in the control and
initial condition. The analog of the assertion concerning ε, ε′-optimal controls
holds. Optimal controls exist in all cases.
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4.2.6 Differential Operator for the Periodic-Erlang Approximation

Let the path only be delayed and let t ∈ [σ̄δ0δl, σ̄
δ0δl+1) and Lδ0,δ(t) < L̄δ0,δ−

1. Define X̃δ0,δ
e (t) =

(
x(t), x(σ̄δ0,δ

l ), . . . , x(σ̄δ0,δ

l−Q+
δ

)
)
, where x(·) is the solution

process under the path memory segment x̄δ0δ
e (·) defined in (2.8). In the time

interval of concern, the only component of X̃δ0,δ
e (t) that can change is the

first, namely x(t). Define a(·) = σ(·)σ′(·). With control u(t) being used at
time t, define the differential generator Lu(t), acting on twice continuously
differential functions with compact support, as

Lu(t)f(X̃δ0,δ
e (t)) = f ′

x(t)(X̃
δ0,δ
e (t))b(x̄δ0,δ

e (t), u(t))

+
1
2

∑
i,j

fxi(t)xj(t)(X̃
δ0,δ
e (t))aij(x̄δ0,δ

e (t)).
(2.9)

With the periodic-Erlang approximation, we need to keep track of the
Erlang state Lδ0,δ(t) with values in 0, 1, . . . , L̄δ0,δ−1. Now let f(·) be a function
of X̃δ0,δ

e (t) and δ0L
δ0,δ(t), the elapsed time since the last shift, as it is counted

by the Erlang state Lδ0,δ(t). The differential operator of the joint process
(X̃δ,δ0

e (t), δ0L
δ0,δ(t)) is

Au(t)f(X̃δ0,δ
e (t), δ0L

δ0,δ(t)) = Lu(t)f(X̃δ0,δ
e (t), δ0L

δ0,δ(t))

+
1
δ0

[
f(X̃δ0,δ

e (t), δ0L
δ0,δ(t) + δ0) − f(X̃δ0,δ

e (t), δ0L
δ0,δ(t))

]
.

(2.10)
If f(X, ·) is continuously differentiable in the second variable, then, for small
δ0, the last term of (2.10) is close to the derivative of f(X̃δ0,δ

e (t), δ0L
δ0,δ(t))

in the second variable. This implies that in the interval of concern and for
small δ0, time effectively advances continuously, from the perspective of the
differential operator. In computing cost functionals or in solving the Bellman
equation, the actual exponentially distributed random variables do not occur.
It is only the distribution function of the process that matters, and its closeness
to that of the original model. The above observations give additional support
to the use of the approximation.

4.3 Simulations Illustrating the Model Approximations

4.3.1 Simulations Based on the Periodic Approximation

As previously noted, the behavior of delay systems is often quite sensitive to
variations in the model, and one always needs to experiment with the form of
the approximation before embarking on the numerical computations, keeping
in mind that the original model will often itself be only an approximation
to the physical model. But for many classes of problems, the approximations
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in the previous sections are very acceptable. This will be demonstrated for
one class, arising in the modeling of a “fluid approximation” to a form of
TCP (transfer control protocol) regulation of Internet congestion in [89]. The
system is ([89, Equation (4.2)])

dx(t) =
(1.3)x(t − θ̄)(1 − f(t − θ̄))

θ̄2x(t)
dt − .5x(t)x(t − θ̄)f(t − θ̄)dt

+σ
[
x(t − θ̄)f(t − θ̄)

]1/2
x(t)dw(t),

(3.1)

where the real-valued x(t) denotes a rate of transmission, θ̄ is the round-
trip delay between the source and the buffer/router, the “transmission rate
decrease” factor due to a lost packet is 1/2, and f(t) is a measure of packets
that are lost due to buffer overflows.

The origin of the model is a single-source system. A nonacknowledgment
of receipt of a packet at a router causes the source to reduce its rate of
transmission. The effect of the reduction is seen at the router after a delay
of the round-trip time θ̄. In this model, packets are queued at the router in
a buffer of size B0, and lost packets are due to buffer overflow. The function
f(t), the fraction of packets lost at time t, depends on the transmission rate,
system congestion due to other users, and the router service rate and buffer
size. Modifying [89, page 67 ] slightly, we use the loss probability for a M/M/1
queue with a buffer size B0 = 5, a service rate of c = 10, and exogenous (and
uncontrolled) input rate unity, and θ̄ = 0.4. Then, for ρ(t) = x(t) + 1,

f(t) =
1 − ρ(t)/c

1 − [ρ(t)/c]B0+1

[
ρ(t)
c

]B0+1

.

Let us start with the deterministic form, as the presence of noise can
confuse the comparison. So, first, let σ = 0. Figure 3.1 illustrates a typical
simulation for the periodic approximation (2.6), for which the average delay
is just θ̄. The outer curve is the original model and the other is for Q+

δ = 4,
δ = θ̄/(Q+

δ + 1/2). The relative behavior is similar for all initial conditions,
and we see that the path approximation is very good.

With the Approximation 2 of (2.5), the average delay is increased by δ/2
and the performance can be seriously affected. See Figure 3.2, where the delay
is increased by δ/2 and has the value 0.444. The upper curve is for the original
model, and the lower curve for the approximation, which is seen to be poor.
The periodic approximation form (2.6), maintaining the same mean delay, is
always superior.

Figure 3.3 is for the original model with σ = .1. We can see that even
a very small noise value changes the paths considerably. With the periodic
model (2.6) and Q+

δ = 4, the paths and cost values are very close, with
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Fig. 3.1. Deterministic case: Approximation (2.6): original and periodic delay mod-
els, Q+

δ = 4.
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Fig. 3.2. Deterministic case: original model and model with delay increased by δ/2.

sample differences in the means of the paths being 0.003 and in the variance
being 0.005. Figure 3.4 plots a typical path of the original model on a larger
time interval, to demonstrate the long-term behavior.

Figure 3.5 repeats the above for σ = .3. The sample mean and variance
of the difference of the sample paths of the original model and those for the
periodic model with Q+

δ = 4 are .003 and .002, resp., with the values using
Q+

δ = 3 being only slightly higher. To facilitate comparisons, the same random
numbers were used in the simulations of Figures 3.3–3.5, but the features of
interest are typical. The values of the sample mean, variance, and of other
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simple cost functionals, are also very close. The use of the linear interpolation
of Approximation 2 generally improves the approximation a little.
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Fig. 3.3. Added noise, original model.
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Fig. 3.4. Added noise, original model.
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Fig. 3.5. Added noise.

4.3.2. Simulations Based on the Periodic-Erlang Approximation

The approximation based on (2.8) is illustrated in Figures 3.6 and 3.7.1 Figure
3.6 compares the original model for σ = 0 with that for L̄δ0,δ = 20, Q+

δ = 4.
The comparisons are similar for different initial conditions. With other se-
quences of random numbers used to get the “Erlang” intervals, the curves are
still close with the slight shift of one over the other often reversed, so that
on the average the approximation is very good. Keep in mind that when an
approximation is used in the Bellman equation, there are no random num-
bers, only an average over the possibilities, which improves the quality of the
approximation.

The initial condition that is used in these plots is “averaged” in that it
uses a linear interpolation of the piecewise-constant approximation between
the sample points. Generally, interpolating in this way gives a slight advantage.
Figure 3.7 is for the same data, but with σ = .1. In the figure, the periodic-
Erlang model has the sharpest and more extreme points in the first two cycles.
This behavior is often reversed in plots based on other random numbers, so
that the distribution of the paths for the original model and that for the
approximation are close. With Q+

δ = 3, the comparisons are similar but not
as good.
1 The random numbers used in Figure 3.7 were independent of those used in Figures

3.3–3.5
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Fig. 3.6. Original model compared with periodic-Erlang delay approximation,
L̄δ0,δ = 20, Q+

δ = 4.
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Fig. 3.7. Original model compared with periodic-Erlang delay approximation,
L̄δ0,δ = 20, Q+

δ = 4.
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4.4 Approximations: Path and Control Delayed

In this section, we will allow both the path and control to be delayed and
discuss various approximations to the control memory segments. The approx-
imation parameters will be δ for the periodic approximation and the pair δ0, δ
for the periodic-Erlang approximation, analogously to the usage for these
forms in Section 2.

With ordinary controls used, the model with both the path and control
delayed is (3.2.3). In relaxed control notation, the drift term is (3.1.6) and the
full system is (3.2.4). If there are no boundary reflections, then delete the z(·)-
terms. The cost function is either (3.4.4) or (3.4.2). Unfortunately, in general,
the control process u(·) has no a priori available useful regularity properties
that can be exploited to get good approximations to the control memory
segments. Because of this, in general, the control memory segment cannot be
approximated in the manner that the path memory segment was, by using
a piecewise-constant approximation to the process u(·) over the “memory
interval.” On the other hand, the fact that the relaxed control representation is
continuous in time can be exploited and will be the basis of the approximation.

In the drift term (3.1.6), the control memory at time t can be repre-
sented as the derivative of the relaxed control over the time interval [t− θ̄, t),
namely {r′(dα, t + θ), θ ∈ [−θ̄, 0)}. Recall the representation (3.1.8) where
the derivative of the relaxed control was written as r̃′(dα, t, θ). Because the
approximation to the control memory segment at time t will depend on t,
it is this form that will be approximated. Then for the periodic (parameter
δ) approximations to the path and control memory segments, we write the
approximating drift term as∫ 0

−θ̄

∫
U

b(x̄δ
p(t), α, θ)r̃δ,′

p (dα, t, θ)µc(dθ). (4.1)

The representation for the periodic-Erlang approximations will be written
analogously.

The approximations that are to be used will yield a piecewise-constant
control memory segment, whose values are obtained by averaging the con-
trols over the intervals of constancy. This averaging procedure will yield the
derivative of the relaxed control that is to be the approximation of the mem-
ory segment. There are many variations of the basic idea, and the particular
forms that we describe are to be taken as suggestive of the possibilities. The
described forms are successively less complicated from a numerical point of
view. Analogs of Approximations 1 and 3 are described simply to illustrate
how they might be adapted for use on the control memory segment. But they
suffer from the same “memory” problems as when used for the path memory
segment. For the path memory segment, the periodic-Erlang approximation
resolved the main memory issues, but its adaptation to the control memory
segment is still too complicated. This is partly resolved with the periodic-
Erlang variant to be defined by Approximation 5a. All but Approximation 5a
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require tracking a quantity with values in a continuum and so would require
additional approximations if they are to be adapted for numerical purposes.

An analog of Approximation 1. The following construction is an analog
of what was done in Approximation 1 in Section 2 for the path memory
segment. For b > a, define r(dα, [a, b]) = r(dα, b) − r(dα, a). For δ > 0 and
lδ ≤ t < lδ + δ, define the process r̃δ,′

d (dα, t, θ) as the restriction to θ ∈ [−θ̄, 0]
of the following function:

r̃δ,′
d (dα, t, 0) = I{u(t)∈dα},

r̃δ,′
d (dα, t, θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r(dα, [lδ, t])/(t − lδ), θ ∈ [−(t − lδ), 0),

r(dα, [lδ − δ, lδ])/δ, θ ∈ [−(t − lδ) − δ,−(t − lδ)),
...
r(dα, [lδ − θ̄, lδ − θ̄ + δ])/δ,

θ ∈ [−(t − lδ) − θ̄,−(t − lδ) − θ̄ + δ).
(4.2)

A linear interpolation of (4.2) can be used as well. The process r′(dα, t) on
the right side of (4.2) will generally depend on the parameter δ as the con-
trol that is actually used will generally depend on the approximation to the
path memory segment that is used. But, to avoid excessive numbers of super-
scripts in the discussion of the various approximations, that dependence will
be suppressed unless otherwise noted.

The problems with the use of (4.2) as a basis of the numerical approxima-
tion are similar to those raised for Approximation 1 in Section 2. One needs to
keep track of the running time t− lδ, and of the values of the relaxed control
segment over this interval. The issues involved in the approximation of the
control memory segment by a finite-state process are similar to those associ-
ated with the tracking of the time t−lδ in Approximations 2 and 3, and whose
consideration led to the forms of Approximations 4 and 5, where time evolved
“randomly.” We next describe an analog of the periodic Approximation 3 and
then analogs of the periodic-Erlang Approximation 5.

An analog of the periodic Approximation 3. Recall the definition of the
integer Q+

δ : (Q+
δ + 1/2)δ = θ̄. Let lδ ≤ t < lδ + δ. Then define r̃δ,′

p (dα, t, θ) as
follows.

r̃δ,′
p (dα, t, 0) = I{u(t)∈dα},

r̃δ,′
p (dα, t, θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r(dα, [lδ, t])/(t − lδ), θ ∈ [−δ/2, 0),

r(dα, [lδ − δ, lδ])/δ, θ ∈ [−δ/2 − δ,−δ/2),
...

r(dα, [lδ − Q+
δ δ, lδ − Q+

δ δ + δ])/δ, θ ∈ [−θ̄,−θ̄ + δ).
(4.3)
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An analog of the periodic-Erlang approximation for the control
memory segment. Recall the notation of the periodic-Erlang Approximation
5 in Section 2. In this approximation, the passage of time was approximated by
a cyclic Poisson process, taking the values δ0 times 0, 1, . . . , L̄δ0,δ −1, 0, 1, . . . ,
in turn, with the value moving to the next step with rate 1/δ0. Let σ̄δ0,δ

l ≤ t <

σ̄δ0,δ
l+1 . An analogous approximation for the control memory segment is defined

by r̃δ0,δ,′
e (·), as follows.

r̃δ0,δ,′
e (dα, t, 0) = I{u(t)∈dα},

r̃δ0,δ,′
e (dα, t, θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r(dα, [σ̄δ0,δ
l , t])/(t − σ̄δ0δ

l ), θ ∈ [−δ/2, 0),

r(dα, [σ̄δ0,δ
l−1 , σ̄δ0,δ

l ])/δ, θ ∈ [−δ/2 − δ,−δ/2),
...

r(dα, [σ̄δ0,δ

l−Q+
δ

, σ̄δ0,δ

l−Q+
δ

+1
])/δ, θ ∈ [−θ̄,−θ̄ + δ).

(4.4)

Recall the discussion below Figure 2.3 concerning the motivation for the di-
vision of the interval [−θ̄, 0] that is used in (4.4). As noted there, this is
well motivated but is only one of many possibilities. Tracking the first line
in the bracketed term is still a problem, as it involves tracking a continuous
time variable. In the next approximation t − σ̄δ0δl will be approximated by
δ0L

δ0δ(t).

A numerically convenient form of the periodic-Erlang approxima-
tion for the control memory segment: Approximation 5a. The Ap-
proximation 5 of the path memory segment is useful for the numerical pro-
cedure. But the analog for the control memory segment is still too compli-
cated. Henceforth suppose that U contains only a finite number of points
(α1, . . . , αK). Then (4.4) requires tracking the time that control u(t) takes the
value αi, i ≤ K, on each of the random time intervals [σ̄δ0,δ

l , t] or [σ̄δ0,δ
l , σ̄δ0,δ

l+1 ].
This time takes values in a continuum and will have to be discretized. Such
issues will be addressed in Chapter 8, when the associated numerical problems
are discussed. In preparation for that discussion, we will describe a form of
the periodic-Erlang approximation for the discretization of the range of the
values of r̃δ0,δ,′

e (dα, t, θ).
Recall the definition of the Erlang state Lδ0δ(t) and its transitions, given

below (2.8). We will now define a right-continuous process, N δ0,δ
l (α, ·), whose

purpose is to count the number of times that the control takes the value α at
the moments of change in the Erlang state in the lth cycle, where σ̄δ0,δ

l ≤ t <

σ̄δ0,δ
l+1 . This quantity will be the basis of a feasible numerical approximation to

(4.4). The precise definition is as follows. If Lδ0,δ(t) increases at time t, then
define2

2 In the definitions, we supposed that the controls are ordinary and not relaxed
as that would be the case in the numerical approximations. If the controls are
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N δ0,δ
l (α, t) = N δ0,δ

l (α, t−) + I{uδ0,δ(t)=α}.

If
Lδ0,δ(t−) = L̄δ0,δ − 1 → Lδ0,δ(t) = 0,

then t = σ̄δ0δ
l+1, the lth cycle ends, the (l + 1)th cycle begins, we define

N̄ δ0δl(α) = N δ0,δ
l (α, t−), and start the new cycle with the value

N δ0,δ
l+1 (α, t) = I{u(t)=α}.

The first term in the brackets in (4.4) is to be approximated by

N δ0,δ
l (α, t)/[Lδ0,δ(t) + 1], (4.5)

which is the fraction of times from the beginning of the lth cycle until the
present at which the Erlang state has increased and the control took the value
α simultaneously. The rδ0δe(dα, [σ̄δ0,δ

l−1 , σ̄δ0,δ
l ])/δ terms in (4.4) are to replaced

by the terms
N̄ δ0,δ

l−1 (α)
L̄δ0,δ

, (4.6)

which is the fraction of times in (l− 1)st cycle that the control took the value
unity when the Erlang state increased.

Summarizing, for t ∈ [σ̄δ0,δ
l , σ̄δ0,δ

l+1 ), the approximation to the control mem-
ory segment that was just defined can be written as r̃δ0,δ,′

ee,l (·), where

r̃δ0,δ,′
ee,l (dα, t, 0) = I{u(t)}=α},

r̃δ0,δ,′
ee,l (dα, t, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N δ0,δ
l (α, t)

Lδ0,δ(t) + 1
, θ ∈ [−δ/2, 0),

N̄ δ0,δ
l−1 (α)
L̄δ0,δ

, θ ∈ [−δ/2 − δ,−δ/2),
...

N δ0,δ

l−Q+
δ

(α)

L̄δ0,δ
, θ ∈ [−θ̄,−θ̄ + δ).

(4.7)

Theorem 4.1. Assume the conditions of Theorem 2.1, but with the control
delayed as in this section, with µc(·), b(·), and k(·) satisfying (A3.1.3). For each
of the approximations of this section, with the analogous forms used for the
path memory segment, there is an optimal control. The cost and optimal cost
functions for the periodic Approximation 3 converge to those for the original
unapproximated model as δ → 0. If δ is fixed, then the cost and optimal cost

relaxed but not ordinary controls, then in the various constructions, at time t use
r′(dα, t) in (4.4). Theorem 4.1 will hold with this change.
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functions for the periodic-Erlang Approximations 5 and 5a ((5a) being used for
the control memory segment) converge to those for the periodic Approximation
3, as δ0 → 0. The assertions concerning (ε, ε′)-optimal controls in Theorem
2.1 hold.

Outline of the proof. We will outline the argument for the convergence of
the periodic-Erlang approximations, starting with Approximation 5 used for
both the path and control memory segments. Fix δ > 0. Then x̄δ0δ

e (t) and
r̃δ0,δ,′
e (dα, t, θ) denote the memory segments corresponding to (2.8) and (4.4)

at time t. In this proof, we will index the associated solution process and
relaxed control by the pair (δ0, δ). Thus xδ0,δ(·) denotes the solution process
and rδ,δ0(·) the relaxed control representation of the control process from
which the x̄δ0δ

e (t) and r̃δ0,δ,′
e (dα, t, θ) are derived via (2.8) and (4.4).

For notational convenience, we suppose that the same Wiener process can
be used for all δ0. Then we can write

xδ0δ(t) = x(0) +
∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄δ0δe(s), α, θ)r̃δ0,δ,′
e (dα, s, θ)µc(dθ)

+
∫ t

0

σ(x̄δ0δe(s))dw(s) + zδ0δ(t).
(4.8)

The set (
xδ0δ(·), rδ0δ(·), zδ0δ(·), w(·), {σ̄δ0δl, l < ∞}

)
(4.9)

is tight. Extract a weakly convergent subsequence (indexed by δ0 for conve-
nience) and with limit (xδ(·), rδ(·), zδ(·), w(·), {lδ, l < ∞}). Use the Skorokhod
representation so that we can assume w.p.1 convergence. By the convergence,
the continuity of xδ(·) and the fact that σ̄δ0δl → lδ, we have the convergence
x̄δ0δe(t) → x̄δ

p(t) for all t, where x̄δ
p(·) is defined by (2.6), with xδ(·) replacing

x(·) on the right-hand side of (2.6).
By the above arguments and the continuity properties of b(·) in (A3.1.3),

the difference between the drift term in (4.8) and

∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄δ
p(s), α, θ)r̃δ0,δ,′

e (dα, s, θ)µc(dθ) (4.10)

goes to zero as δ0 → 0. We would like to show that, asymptotically, we can
replace the r̃δ0,δ,′

e (dα, s, θ) in (4.10) by r̃δ,′
p (dα, s, θ), where r̃δ,′

p (·) is obtained
from rδ(·). To do this we need to show that

∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄δ
p(s), α, θ)

[
r̃δ0,δ,′
e (dα, s, θ) − r̃δ,′

p (dα, s, θ)
]
µc(dθ)

goes to zero as δ0 → 0. But this follows from the fact that b(x̄δ
p(s), α, θ) is

continuous in (s, α, θ) for s ∈ (lδ, lδ + δ), l = 0, 1, . . ., the fact that σ̄δ0,δ
l → lδ,

both w.p.1 and in mean, and the constructions (4.3) and (4.4). From this point
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on, the details of the proof for Approximation 5 follow the lines of Theorem
3.5.1, and are omitted.

Now we turn to the case where (2.8) is used for the path memory segment
and Approximation 5a, defined by (4.7), is used for the control memory seg-
ment. Let the processes in (4.9) now denote those resulting from the use of
these approximations (2.8) and (4.7). As above, the set (4.9) is tight and we
use the same notation (xδ(·), . . .) for the limits. Assume Skorokhod represen-
tation.

The numerators of the terms in the brackets in (4.7) are values of point
processes, as is Lδ0,δ(t). We will decompose (δ0 times) these terms in terms of
compensators and martingales. For the zeroth cycle, where t < σ̄

δ),δ
1 , we can

write the compensator-martingale decomposition as

δ0L
δ0,δ(t) = t + M δ0δL(t),

δ0N
δ0δ0(α, t) =

∫ t

0

I{uδ0δ(s)=α}ds + M δ0δN (t),

where the quadratic variation of the martingale Mδ0δL(·) is δ0t, and that of
the martingale M δ0δN (·) is δ0

∫ t

0
I{uδ0δ(s)=α}ds. There is an analogous decom-

position on any interval [σ̄δ0δl, σ̄
δ0δl+1). For σ̄δ0,δ

l ≤ t < σ̄δ0,δ
l+1 , we have

∫ t

σ̄
δ0,δ

l

I{uδ0δ(s)=α}ds = rδ0δ(dα, [σ̄δ0,δ
l , t]).

This, the weak convergence, and the fact that the quadratic variations of the
martingales are proportional to δ0, implies that for all l = 0, 1, . . . , as δ0 → 0
we have the convergence

N δ0,δ
l (α, t)

Lδ0,δ(t) + 1
→ rδ(dα, [lδ, t])

t − lδ
,

N̄ δ0,δ
l (α)
L̄δ0,δ

→ rδ(dα, [lδ, lδ + δ])
δ

,

(4.11)

in mean, and this limit is the periodic approximation defined by (4.3).
Let r̃δ0,δ,′

e (·) denote the process that is computed from (4.4), but based on
the relaxed control that is a consequence of the use of the memory segments
defined by (2.8) and (4.7). Redefine x̄δ

p(·) to be the process computed from
(2.6), but based on the new limit xδ(·), and redefine x̄δ0,δ

e (·) to be the process
computed from (2.8), but based on the solution that is a consequence of the
use of (4.7). As with (4.10), as δ0 → 0 the difference between the drift term
with the use of x̄δ0,δ

e (·) and

∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄δ
p(s), α, θ)r̃δ0,δ,′

ee (dα, s, θ)µc(dθ) (4.12)
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goes to zero. The main issue concerns the relaxed control term in (4.12).
Using the above compensator-martingale decompositions and (4.11), we

can write (4.12) as

∫ t

0

ds

∫ 0

−θ̄

∫
U

b(x̄δ
p(s), α, θ)r̃δ0,δ,′

e (dα, s, θ)µc(dθ) + εδ0,δ(t), (4.13)

where the error term is a consequence of the martingale error terms Mδ0δL(·)
and Mδ0

N δ(·) in the above expansions. The sets of integrals (indexed by δ0)
in (4.12) and (4.13) are tight. Hence the set {εδ0δ(·)} indexed by δ0 is tight.
It follows from this and the fact that E|εδ0δ(t)| → 0 as δ0 → 0 that εδ0,δ(·)
converges to zero. We now proceed as for the first case of the proof.

4.5 Singular Controls

Approximations analogous to those of the previous section can be written for
the singular control models of Section 3.6. In the model (3.6.1), the singular
control does not appear in delayed form, so only the path memory segment
needs to be approximated, and this can be done with the methods of Section 2.
We will briefly consider the model (3.6.2) where the singular control is delayed
and at time t the control memory segment is λ̄(t) = {λ(t) − λ(t + θ), θ ∈
[−θ̄, 0)}. Analogs of the periodic and periodic-Erlang approximations will be
briefly commented on. The motivation for these approximations, as part of
an effort to reduce the memory requirements, is the same as that for the case
where the control is not singular.

A periodic approximation to the singular control memory segment.
Let λ̄δ

p(t, θ), θ ∈ [−θ̄, 0) denote the periodic approximation to the control
memory segment at time t, to be defined below. We extend the domain of
the definition to the closed interval [−θ̄, 0] by defining dλ̄δ

p(t, 0) = dλ(t). For
lδ ≤ t < lδ + δ, a simple analog of the periodic approximation (4.3) to the
control memory segment is defined by the piecewise-constant function whose
differences at the change points are given by

dθλ̄
δ
p(t, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ(t), θ = 0,

λ([lδ, t]), θ = −δ/2,

λ([lδ − δ, lδ]), θ = −δ/2 − δ,

...

λ([lδ − Q+
δ , lδ − Q+

δ + δ]), θ = −θ̄.

(5.1)

The associated solution is
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dx(t) = dt

∫
U

c(x(t)) + dt

∫ 0

−θ̄

b(x(t + θ), θ)dµa(θ) + σ(x̄(t))dw(t)

+q0(x(t−))dλ(t) + dt

∫ 0

θ=−θ̄

q2(x((t + θ)−), θ)dθλ̄
δ
p(t, θ) + dz(t).

(5.2)
Using the conditions and methods of Theorem 3.6.1, it can be proved that

the solutions, controls, and costs converge to those for (3.6.2), as δ → 0. As
for case of an ordinary control, one needs to keep track of the time that has
elapsed since the start of the current cycle, and the next approximation is a
first attempt to deal with this.

An analog of the periodic-Erlang Approximation 5. Recall the discus-
sion concerning (4.4). Let λ̄δ

e(t, θ), θ ∈ [−θ̄, 0), denote the approximation to
the control memory segment at time t. Extend the domain of definition to
[−θ̄, 0] by using the first line of (5.1). Let σ̄δ0δ

l ≤ t < σ̄δ0δ
l+1. Then an analog of

(4.4) is

dθλ̄
δ0,δ
e (t, θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dλ(t), θ = 0,

λ([σ̄δ0,δ
l , t]), θ = −δ/2,

λ([σ̄δ0,δ
l−1 , σ̄δ0,δ

l ]), θ = −δ/2 − δ,

...

λ([σ̄δ0,δ

l−Q+
δ

, σ̄δ0,δ

l−Q+
δ

+1
]), θ = −θ̄.

(5.3)

Using the conditions and methods of Theorem 3.6.1, it can be proved that
the solutions, controls, and costs with the use of (5.3) converge to those for the
periodic approximation (5.2), as δ0 → 0. The next approximation completes
the analog of (4.7), where both time and value advance discretely.

An analog of the periodic-Erlang Approximation 5a in (4.7). The
approximation (5.3) needs to be simplified so that the memory has only a
finite number of values. One major difference with the situation dealt with in
the approximation (4.7) is that here there is no a priori bound on the incre-
ment in the singular control on any given time interval, so that an additional
truncation will have to be done when the numerical approximation is dealt
with. We also need to adjust the way that the memory increment is updated.

Let us consider a case where the singular control has only one component.
Suppose that we only allow increments of size kδ1, k = 0, 1, . . . . Then it can be
shown that as δ1 → 0, the costs will converge to those for the model without
the discretization. With such a discretization, the procedure of Approximation
5a in (4.7) can be carried over. Drop the denominators in (4.7). Let σ̄δ0,δ

l ≤
t < σ̄δ0,δ

l+1 . Let N δ0,δ
l (α, t) in (4.7) be replaced by the δ1 times the number

of times since the start of the current (lth) cycle that the singular control
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increased. For arbitrary l, replace N̄ δ0,δ
l (α) by δ1 times the number of times

in the lth cycle that the singular control has increased.

4.6 Rapidly Varying Delays

In this section, we will illustrate one way in which models with distributed
delays arise. The delays in the physical model to be considered are time-
varying and vary rapidly. It is shown that the model can be approximated by
one with distributed delays, where the distribution is an asymptotic average
of the delays in the physical models.

Rapidly time-varying delays in the drift function. Consider the model
(3.2.4) with time varying delays. The rapidly varying delays in the path will
be separated from the control and we use the system

dxε(t) = b1(xε(t + θε
k(t)), k ≤ K) dt

+dt

∫ 0

−θ̄

∫
U

b2(x̄ε(t), α, v)r′(dα, t + v)µc(dv) + σ(x̄ε(t))dwε(t) + dzε(t).

(6.1)
The first term on the right models the time variations in the delays in the
path. Rapidly varying delays in the control are much harder to deal with and
are omitted. The cost function will be (3.4.4), but with cost rate

k1(xε(t + θε
k(t)), k ≤ K)

+
∫ 0

−θ̄

∫
U

k2(x̄ε(t), α, v)r′(dα, t + v)µc(dv).
(6.2)

In addition to the cost rate (6.2), there is the cost rate q′dy(t) associated
with the reflection terms, if the boundary is reflecting. Let Eε

t denote the
expectation given the data to time t for all of the processes in (6.1).

A6.1. The process θε(·) = (θε
i (·), i = 1, . . . , K) is nonanticipative with respect

to the Wiener process wε(·) and takes the form θε
i (s) = θi(s/ε), where θi(t) ∈

[−θ̄, 0]. The process θ(·) is asymptotically stationary with stationary measure
ν(·) in the sense that the following mixing condition holds: Uniformly in g(·)
in any compact set in C(G; [−θ̄, 0]), and for any ∆ > 0, as ε → 0,

εEε
n∆

∫ (n∆+∆)/ε

n∆/ε

b1(g(θj(s)), j ≤ K)ds → ∆b̂1(g(·))

= ∆

∫ 0

−θ̄

b1(g(θj), j ≤ K)ν(dθ)
(6.3)

in mean, uniformly in n. The analogous condition holds for k1(·), with the
definition k̂1(g(·)) =

∫ 0

−θ̄
k1(g(θj), j ≤ K)ν(dθ).



4.6 Rapidly Varying Delays 93

A6.2. b1(·) is a continuous IRr-valued function and k1(·) is a continuous real-
valued function, both on on [IRr]K .

A6.3. b2(·) (IRr-valued) and k2(·) (real-valued) satisfy the continuity and
boundedness condition on b(·) in (A3.1.3) and µc(·) satisfies (A3.1.3).

A6.4. The system

dx(t) = dt

∫
b̂1(x(t − θi), i ≤ K)ν(dθ)

+dt

∫ 0

−θ̄

∫
U

b2(x̄(t), α, v)r′(dα, t + v)µc(dv) + σ(x̄(s))dw(s) + dz(t)

(6.4)
has a unique weak-sense solution for each initial condition and relaxed control.

Let Ŵ (x̂, r̂, r) denote the discounted cost with the model (6.4) and cost rate
k̂1(·) + k2(·) with reflection term cost rate q′dy(t). Let W ε(x̂, r̂, r) denote the
cost with the model (6.1) and cost rate (6.2) with reflection term cost rate
q′dy(t). The theorem is written for reflected diffusions. The analog for the
boundary absorption case is similar.

Theorem 6.1. Use the system model (6.1) and let the cost function be
(3.4.2) with the rate given in the previous paragraph. Assume (A6.1)–(A6.4),
(A3.2.1)–(A3.2.2) and (A3.4.3). Let σ(·) satisfy (A3.1.2). Then, as ε → 0,
W ε(x̂, r̂, r) → Ŵ (x̂, r̂, r) uniformly in (x̂, r̂), where x̂ is confined to some
compact set in C(G; [−θ̄, 0]).

Now, suppose that σ(·) has the form σ(xε(t + θε
i (t)), i ≤ K). Define a(·) =

σ(·)σ′(·). Suppose that there is â(·) such that, for any ∆ > 0 and continuous
function g(·), as ε → 0,

εEε
n∆

∫ (n∆+∆)/ε

n∆/ε

a(g(θi(s)), i ≤ K)ds → ∆â(g(·))

=
∫

â(g(θi), i ≤ K)ν(dθ)

in mean, uniformly in n. Let â(·) have a continuous square root σ̂(·) and
suppose that weak-sense uniqueness holds with σ̂(·) used. Then the theorem
holds with σ̂(·) replacing σ(·) in (6.4).

Proof. When uniformity in x̂ is referred to, it is always assumed that x̂
lies in some compact set. We will use the martingale method to identify the
limit process. The proof is based on that of Theorem 3.5.1. Let x̂ε, r̂ε, rε(·)
denote the initial conditions and relaxed control that are applied to the ε-
system. We can suppose that there are x̂, r̂ such that x̂ε → x̂, r̂ε → r̂ in their
respective topologies. Let f(·) be a real-valued function on IRr with compact
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support and whose first and second partial derivatives are continuous. For
h(·), φ(·), si, t, T, I, J, as in (3.5.2), Itô’s Lemma applied to (6.1) implies that

Eh (xε(si), yε(si), wε(si), 〈φj , r
ε(si)〉, i ≤ I, j ≤ J)

[
f(xε(t + T )) − f(xε(t))

−
∫ t+T

t

f ′
x(xε(s))b1(xε(s + θε

i (s)), i ≤ K)ds

−
∫ t+T

t

∫
U

∫ 0

−θ̄

f ′
x(xε(s))b2(x̄ε(s), α, v)rε,′(dα, s + v)µε

c(dv, s)ds

−
∫ t+T

t

f ′
x(xε(s))dzε(s) − 1

2

∫ t+T

t

σ′(x̄ε(s))fxx(xε(s))σ(x̄ε(s))ds
]

= 0.

(6.5)
As in Theorem 3.5.1, the set {xε(·), yε(·), rε(·), wε(·), ε > 0} is tight and all
weak-sense limit processes are continuous. Now take a weakly convergent sub-
sequence, and abusing notation, index it by ε as well, and denote the limit by
(x(·), y(·), r(·), w(·)). We will use the Skorokhod representation.

Next we derive the limit of the term involving b1(·) in (6.5). Thus, consider
the component of (6.5) defined by

Eh (xε(si), yε(si), wε(si), 〈φj , r
ε(si)〉, i ≤ I, j ≤ J)

×
[∫ t+T

t

f ′
x(xε(s))b1(xε(s + θε

j(s)), j ≤ K)ds

]
.

(6.6)

For ∆ > 0 (and assuming, w.l.o.g., that t and T are integral multiples of ∆),
write the integral in (6.6) as

t+T−∆∑
i: i∆=t

∫ i∆+∆

i∆

f ′
x(xε(s))b1(xε(s + θε

j(s)), j ≤ K)ds.

By the weak convergence, given ρ > 0 there is ∆ > 0 such that for small ε > 0
the sum can be approximated within ρ, in the mean, by

t+T−∆∑
i: i∆=t

∫ i∆+∆

i∆

f ′
x(xε(i∆))b1(xε(i∆ + θε

j(s)), j ≤ K)ds. (6.7)

For the purpose of evaluating the expectation (6.6), we can use the approxi-
mation (6.7) and evaluate the conditional expectations in the sum

Eε
t

t+T−∆∑
i: i∆=t

Eε
i∆

∫ i∆+∆

i∆

f ′
x(xε(i∆))b1(xε(i∆ + θε

j(s)), j ≤ K)ds, (6.8)

where the ith summand can be written as

f ′
x(xε(i∆))Eε

i∆

∫ i∆+∆

i∆

b1(xε(i∆ + θj(s/ε)), j ≤ K)ds

= εf ′
x(xε(i∆))Eε

i∆

∫ (i∆+∆)/ε

i∆/ε

b1(xε(i∆ + θj(s)), j ≤ K)ds.

(6.9)
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The proof of tightness in Theorem 3.5.1 can also be used to show that
the doubly indexed set {xε(t + ·); ε, t} is tight in D(G; [−θ̄,∞)). Because the
processes in this set are all continuous, the set is tight in C(G; [−θ̄,∞)). Then,
for each γ > 0, there is a compact set Kγ ∈ C(G; [−θ̄, 0]) such that

inf
t,ε

P
{(

xε(t + θ),−θ̄ ≤ θ ≤ 0
)
∈ Kγ

}
≥ 1 − γ. (6.10)

For fixed small γ > 0 and δ > 0, choose a finite number of disjoint sets
Sγ,δ

l ⊂ C(G; [−θ̄, 0]), l = 1, 2, . . . , Aγ,δ, each of which has diameter less than
δ and are such that Kγ ⊂ ∪lS

γ,δ
l . For each l, choose any gl(·) ∈ Sγ,δ

l . We have

sup
−θ̄≤s≤0

|xε(iδ + s) − gl(s)| I{(xε(i∆+s),s∈[−θ̄,0])∈Sγ,δ
l

}

≤ δI{(xε(i∆+s),s∈[−θ̄,0])∈Sγ,δ
l

}.
(6.11)

Using the fact that the values of (xε(i∆+s), s ∈ [−θ̄, 0]) are known at time
i∆, and that the delays on the interval [i∆, i∆ + ∆] depend on the “future”
values θε(s), s ≥ i∆, for small enough γ and δ, (6.11), and the continuity of
b1(·) implies that we can approximate (6.9) uniformly in i by

∑
l

I{(xε(i∆+s),s∈[−θ̄,0])∈Sγ,δ
l

}f
′
x(xε(i∆))

[
Eε

i∆

∫ i∆+∆

i∆

b1(gl(θε
j(s)), j ≤ K)ds

]
,

which equals∑
l

I{(xε(i∆+s),s∈[−θ̄,0])∈Sγ,δ
l

}×

f ′
x(xε(i∆))

[
εEε

i∆

∫ (i∆+∆)/ε

i∆/ε

b1(gl(θj(s)), j ≤ K)ds

]
.

(6.12)

Using the approximations (6.7), (6.8), (6.11) and (6.12), the arbitrariness
of γ,∆, and δ, condition (A6.1) (which implies that the convergence of the
conditional expectation in (6.12) is uniform in l), and the weak convergence
yields that, as ε → 0, (6.6) converges to

Eh (x(si), y(si), w(si), 〈φj , r(si)〉, i ≤ I, j ≤ J)

×
∫ t+T

t

∫
f ′

x(x(s))b̂1(x(s + θi), i ≤ K)ν(dθ)ds.

We omit the details concerning the convergence of the reflection term in
(6.5) and of the approximation when σ(·) depends on rapidly varying delays.
Finally, we have
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Eh (x(si), y(si), w(si), 〈φj , r(si)〉, i ≤ I, j ≤ J)
[
f(x(t + T )) − f(x(t))

−
∫ t+T

t

∫
f ′

x(x(s))b̂1(x(s + θi), i ≤ K)ν(dθ)ds

−
∫ t+T

t

∫ 0

−θ̄

∫
U

f ′
x(x(s))b2(x̄(s), α, v)r′(dα, s + v)µc(dv)ds

−
∫ t+T

t

f ′
x(x(s))dz(s) − 1

2

∫ t+T

t

σ′(x̄(s))fxx(x(s))σ(x̄(s))ds
]

= 0

(with σ̂(·) used in lieu of σ(·) if σ(·) has rapidly varying delays). By the remarks
connected with (2.2.6), there is a Wiener process such that (6.4) holds. With
the above convergence results available, the proof of the convergence of the
cost functions is similar to that in Theorem 3.5.1, and the details are omitted.



5

The Ergodic Cost Problem

5.0 Outline of the Chapter

This chapter is concerned with the average cost per unit time (ergodic cost)
problem. For such problems, one generally prefers to work with feedback con-
trols, and we use a generalized form of such controls, called relaxed feedback
controls, that are analogous to the extension of ordinary controls to relaxed
controls in Section 3.1. We assume that the systems are nondegenerate in
that the noise covariance matrix σ(x)σ′(x) is positive definite. The Girsanov
transformation method of Section 3.3 is used to define the process in terms of
an uncontrolled model.

Because our aim is the preparation for the needs of the numerical algo-
rithms, the issues of model complexity and simplification that were of concern
in Chapter 4 are also of concern for the ergodic cost problem. This is compli-
cated by the fact that there is not much relevant ergodic theory for nonlinear
controlled delay equations. We will develop ergodic theorems for the process
x̄(t), and for various finite-dimensional approximations that are, in fact, suffi-
cient for the model approximations and the numerical problem. Only the case
where the path is delayed is considered. Nothing seems to be known about
the problem where the control is delayed as well.

Section 1 is devoted to the construction of the controlled process via the
Girsanov transformation and to showing the mutual absolute continuity of
the measures of x̄(t) for the controlled process, with respect to those for the
uncontrolled process, and the irreducibility and aperiodicity of the process
x̄(t). These results are used in Section 2 to show that a Doeblin condition
holds, and hence that x̄(t) is geometrically ergodic, all uniformly in the control.
Using this, it is then shown that the costs per unit time converge to the
ergodic cost and that the normalized discounted costs converge as well, as the
discount factor goes to zero. This latter fact justifies the use of the discounted
cost function as a substitute for the ergodic cost function, when the discount
factor is small. The proofs of all of these facts depend heavily on estimates
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of the Radon–Nikodym derivatives in the measure transformations that are
used in the Girsanov transformation.

Section 3 is concerned with general approximations of the models. It is
shown that one can approximate the dynamics and control value space U ,
while sacrificing little in the value of the cost. In essence, continuity proper-
ties of the invariant measures and ergodic costs as functions of the dynamical
terms are proved. Approximations such as dealt with in Chapter 4, where the
delays vary either periodically or periodically with time intervals determined
by a renewal process, are of great interest due to their role in reducing the
memory requirements for the numerical problem. The relevant ergodic theo-
rems and approximations to the cost functions for the periodic approximation
are discussed in Section 4, and those for the periodic-Erlang approximations
are discussed in Section 5.

It is shown that the optimal ergodic cost for the original model can be well
approximated by the cost for any of these model approximations, which justi-
fies their use in the numerical algorithms. It is also shown that nearly optimal
controls for any of these approximations are nearly optimal for the original
problem where the memory segment in the dynamics is not approximated.

The development in this chapter is for the case where there is no delay
in the diffusion coefficient σ(·): At time t, it depends only on x(t). How to
handle the case where there is past dependence in this term is shown at the
end of Section 4. But, for the most part, we stick to the simpler case to avoid
overcomplicating the development.

Unfortunately, little is known at present concerning the general nonlin-
ear control problem when there are delays, particularly for the ergodic cost
problem. For example, it is not known whether there is a feedback optimal
control. Because this is not the place to develop such results, we make vari-
ous assumptions to cover our ignorance. The key assumption is that the use
of relaxed feedback controls cannot be improved upon by the use of relaxed
controls. This property holds if there are no delays, and it seems very likely
that it holds quite generally in the delay case. The methods that were used
in the proof of this result for the no-delay case do not seem to be able to be
carried over.

5.1 The Basic Model

5.1.1 Relaxed Feedback Controls

The system of interest for the bulk of the chapter, when ordinary feedback
controls are used, is the reflected diffusion model

dx(t) = b(x̄(t), u(x̄(t)))dt + σ(x(t))dw(t) + dz(t),

with cost function
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lim
T→∞

1
T

Eu
x̂

[∫ T

0

k(x̄(t), u(x̄(t)))dt + q′y(T )

]
.

where x̂ = x̄(0) is the initial condition. Since the ergodic cost problem is of
concern over an infinite time interval, and there is no discounting of the future,
it is important for the numerical problem that we can ensure boundedness of
the path throughout. This is one motivation for the use of a reflected diffusion
model. If the reflecting boundaries are added for numerical purposes, to bound
the state space, then one must experiment with the boundaries to ensure that
they have only a minimal effect on the results.

When working with average cost per unit time control problems over an
infinite interval, it is common to suppose that the controls are feedback so
that the process is Markov, and appropriate ergodic theorems can be applied
to show the convergence of the average cost per unit time to the “stationary”
or “ergodic” cost and to obtain optimality and approximation results. For the
discounted or finite-time problem we saw that the use of relaxed controls facil-
itated the proofs of approximation and existence theorems. Analogously, for
the ergodic cost problem, the use of relaxed feedback controls [9, 56] facilitates
the proofs of such results.

Suppose that m(x̂, ·) is a probability measure on the Borel sets of U for
each x̂ ∈ D(G; [−θ̄, 0]) and that m(·, A) is Borel measurable for each Borel
set A ⊂ U . Then we say that m(·) is a relaxed feedback control. Any ordinary
feedback control u(x̂) has a representation as the relaxed feedback control
m(·), where m(x̂, B) = I{u(x̂)∈B}. In terms of the relaxed feedback control,
the system is

dx(t) =
∫

U

bm(x̄(t))dt + σ(x(t))dwm(t) + dz(t), (1.1)

where wm(·) is a standard vector-valued Wiener process, and we define

bm(x̄(t)) =
∫

U

b(x̄(t), α)m(x̄(t), dα). (1.2)

The subscript m is used on the Wiener process in (1.1) as the solutions will
be constructed by the Girsanov transformation method. The corresponding
cost function is

γ(m) = lim
T→∞

1
T

Em
x̄

[∫ T

0

∫
U

km(x̄(t))dt + q′y(T )

]
, (1.3)

where km(·) is defined analogously to bm(·). Under the conditions to be im-
posed, the limit in (1.3) will exist uniformly in the initial condition and m(·).

The system (1.1) will be constructed using the Girsanov transformation,
starting with the uncontrolled system

dx = σ(x)dw + dz, (1.4)
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where w(·) is a standard vector-valued Wiener process. Unless mentioned oth-
erwise, throughout the chapter we always assume the conditions (A3.2.1) and
(A3.2.2) on the set G, condition (A3.1.1) on the function k(·), and the follow-
ing assumption on b(·), σ(·) and the solution to (1.4). Additional assumptions
will be stated as neeeded. Whenever the convergence or approximations of the
cost functions are involved, we also assume the additional condition (A3.4.3)
on the reflection directions {di}.

A1.1. σ(·) is continuous on G, σ−1(·) exists and is continuous, and a(·) =
σ(·)σ′(·) is Hölder continuous. The system (1.4) is defined on a complete prob-
ability space (Ω,F , Px) with filtration {Ft, t < ∞}, F = limt Ft, and Ω is
the set of continuous functions on [0,∞) with the local sup norm topology.
The system (1.4) has a unique weak-sense solution for each initial condition
x ∈ G. The initial condition x̂ = x̄(0) for the system with delays is continuous
on [−θ̄, 0], and x̂(θ) ∈ G for θ ∈ [−θ̄, 0]. The function b(·) is bounded and
measurable.

In (A1.1) and in the (uncontrolled and controlled, resp.) system equations
(1.4) and (1.9), the function σ(·) does not depend on delayed arguments. See
the comments at the end of Section 4 concerning the approach that is to be
taken when σ(x̂) is used in lieu of σ(x).

Construction of the controlled system. Recall the discussion of the Gir-
sanov transformation method in Section 3.3. The controlled system will be
constructed as follows. We start with the uncontrolled model (1.4) and con-
struct the desired solution via the Girsanov transformation. Let ΩT denote
the restriction of Ω to functions on [0, T ] and let m(·) be a relaxed feedback
control. For T > 0 define

ζ(T, m) =
∫ T

0

[
σ−1(x(s))bm(x̄(s))

]′
dw(s) − 1

2

∫ T

0

∣∣σ−1(x(s))bm(x̄(s))
∣∣2 ds,

(1.5)
and set

R(T, m) = eζ(T,m). (1.6)

The process x(·) in (1.5) is the solution of (1.4), whose initial condition is
simply x(0) ∈ G. There are no delays. But to coordinate notation with the
delay case, we will sometimes write the initial condition as x̂, with x̂(0) = x(0).
There are two ways of writing the transition probability for (1.4) that will be
used, depending on the application. The standard transition probability for
the uncontrolled x(·) is denoted by P0(x, t, B) = Px{x(t) ∈ B}, for B ∈ B(G),
the Borel sets in G. When we are concerned with segments of the uncontrolled
path, for A ∈ B(C(G; [−θ̄, 0])) and t ≥ 0, we will also have use for the form
P (x̂, t, A) = Px̂{x̄(t) ∈ A}. For t > θ̄ this is Px(0){x̄(t) ∈ A}. For t > θ̄, we
will also use the definition P (x, t, A) = Px{x̄(t) ∈ A} where x ∈ G. Let Px̂,T

denote the measure induced by (1.4) on B(C(G; [−θ̄, T ])).
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For each (x̂, T, m(·)), define the probability measure Pm
x̂,T on (ΩT ,FT ) via

the Radon–Nikodym derivative R(T, m):

dPm
x̂,T = R(T, m)dPx̂,T . (1.7)

For each (x̂, m(·)), the family Pm
x̂,T of measures indexed by T can be extended

uniquely to a measure Pm
x̂ on (Ω,F) that is consistent with the Pm

x̂,T . When
there is no control (i.e., where the system is (1.4)), we omit the superscript
or subscript m. The process wm(·) defined by

dwm(t) = dw(t) −
[
σ−1(x(s))bm(x̄(s))

]
dt (1.8)

is an Ft-standard Wiener process on (Ω, Pm
x ,F) [42]. Now, as in Section 3.3,

rewrite the uncontrolled model (1.4) as

dx(t) = bm(x̄(t))dt + σ(x(t))dwm(t) + dz(t). (1.9)

Under the measures {Pm
x̂ , x̂ ∈ C(G; [−θ̄, 0])}, the process x̄(·) obtained from

the solution x(·) of (1.9) is a Markov process and we use Pm(x̂, t, ·) for its
transition function.

The reference [83] contains a wealth of material on ergodic problems for
infinite-dimensional systems. Most of the work concerning particular sys-
tems of stochastic differential equations involve Hilbert space valued processes
driven by an infinite-dimensional Wiener process (the cylindrical Wiener pro-
cess). Ergodic theorems for nondegenerate finite-dimensional linear delay sys-
tems (nonreflected) are dealt with, but the material concerning nonlinear
systems requires that the linear part dominate and that the nonlinear part
satisfies a Lipschitz condition, which would exclude general relaxed feedback
controls. See also [12] for similar work for Hilbert space valued processes.

The work that is closest to ours is [86], which also uses Girsanov transfor-
mation methods to construct the solutions and verify the ergodic properties.
The development supposes that σ(·) is a constant and it does not deal with
control problems, approximations, or with reflected diffusions (so that the
diffusions are unbounded). But it does show the Doeblin condition and con-
vergence to the invariant measure. From a numerical point of view, one needs
to work in a bounded space, either directly or via an appropriate transforma-
tion. We follow the procedure that was used in [56, Chapter 4]. The paper
[18] also uses Girsanov transformation techniques (for the nonreflected model)
and shows, under its assumptions, that the transition probabilities converge
to the invariant measure, and that the cost and invariant measure are contin-
uous functions of the control. The conditions are more restrictive than what
is needed here. We note that the first work to deal with the continuity of the
invariant measure and stationary costs in the control for a diffusion process
is [54]. See also [56, Section 4.5].

5.1.2 Density Properties and Preliminary Results

The proof of convergence of the measures Pm(x̂, t, ·) to an invariant measure
as t → ∞ depends on the fact that for any t1 > θ̄, the measures defined
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by Pm
x̂ {x(t) ∈ B}, B ⊂ G, t ≥ t1, are absolutely continuous with respect to

Lebesgue measure, uniformly in m(·), t and in x̂ in any compact set. This fact
will be proved in the next few theorems.

Theorem 1.1. The process defined by (1.4) is a Feller process in that
Exf(x(t)) is continuous for each bounded and continuous function f(·). It
is also a strong Markov process. For each relaxed feedback control, the process
(1.9) is a strong Markov process and the solution is weak-sense unique for
each initial condition x̂ ∈ C(G; [−θ̄, 0]).

Comments on the proof. The Feller property of (1.4) is a consequence of its
weak-sense uniqueness for each initial condition and the continuity of σ(·). The
strong Markov property and the weak-sense uniqueness of the solution to (1.9)
is a consequence of the strong Markov property and weak-sense uniqueness of
the solution to (1.4) and the Girsanov transformation method of constructing
(1.9).

For the uncontrolled system (1.4), the next result is Theorem 4.2.1 of [56].
The proof depended only on the properties ((A3.2.1), (A3.2.2)) of G, the
boundedness of the drift terms, and the nondegeneracy of σ(·)σ′(·). Hence it
remains valid for the problem with delays. The result for the controlled system
follows from the fact that for any set A ∈ FT such that Px̂{A} = 0, we have
Pm

x̂ {A} = Ex̂R(T, m)IA = 0.

Theorem 1.2. Let Nδ(∂G) denote a δ-neighborhood of the boundary ∂G.
Then, for 0 < t1 < t2 < ∞,

Pm
x̂ {x(t) ∈ ∂G} = 0 for t > 0 and all m(·) and x̂,

lim
δ→0

sup
t1≤t≤t2

sup
x̂

sup
m

Pm
x̂ {x(t) ∈ Nδ(∂G)} = 0. (1.10)

The next result is Theorem 4.2.2 and Theorem 4.3.3 of [56]. The proof de-
pends on the properties of the uncontrolled system (1.4) and the boundedness
of the second moment of the Radon–Nikodym derivative R(T, m) that is used
in the Girsanov transformation. So the delays in the drift term play no role.
The symbol l(B) denotes the Lebesgue measure of the set B. .

Theorem 1.3. For t > 0 the transition probability Pm
x̂ {x(t) ∈ ·} is uniformly

mutually absolutely continuous with respect to Lebesgue measure in the fol-
lowing sense. Let 0 < t1 < t2 < ∞. Given δ > 0 there is ε > 0 such that, if
l(B) ≤ ε for B ∈ B(G), then

sup
t1≤t≤t2

sup
m

sup
x̂

Pm
x̂ {x(t) ∈ B} ≤ δ. (1.11)

Also, for any ε > 0 there is δ > 0 such that
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inf
t1≤t≤t2

inf
x̂

inf
m

inf
{B:l(B)≥ε}

Pm
x̂ {x(t) ∈ B} ≥ δ. (1.12)

The control m(·) can depend on time as well as on the path. By using the
Markov property of the process x̄(t), we can replace t ≤ t2 by t < ∞.

Comment on Theorem 1.3. The theorem implies that P0(x, t, ·) and l(·) are
mutually absolutely continuous, uniformly in x and t ≥ t1 > 0. In particular,
for each ε > 0 and t ≥ t1, there are ∞ > ε2 > ε1 > 0 such that for each
initial condition x0 there is a set Bε(x0, t) with l(Bε(x0, t)) ≤ ε such that, for
x �∈ Bε(x0, t),

ε2 ≥ P0(x0, t, dx)/dx ≥ ε1.

This implies that for x �∈ Bε(xi, t), i = 1, 2,

ε2
ε1

≥ P0(x0, t, dx)
P0(x1, t, dx)

≥ ε1
ε2

. (1.13)

Theorem 1.4. Let 0 = t0 < t1 < · · · < tk < ∞, with ti+1 − ti ≥ δ1 > 0. Let
Bi ∈ B(G). Then for δ > 0 and k < ∞, there is ε > 0 (that does not depend
on the {ti}) such that l(Bi) ≤ ε for any i implies that

Pm
x̂ {x(t1) ∈ B1, . . . , x(tk) ∈ Bk} ≤ δ, all m(·), x̂. (1.14)

Also, for any ε > 0 there is δ > 0 such that

inf
ti,i≤k

inf
x̂

inf
m

inf
{Bi:l(Bi)≥ε,i≤k}

Pm
x̂ {x(t1) ∈ B1, . . . , x(tk) ∈ Bk} ≥ δ. (1.15)

The control m(·) can depend on time as well as on the path.

Comment. (1.14) and (1.15) are obtained by using the Markov property

Pm
x̂ {x(t1) ∈ B1, . . . , x(tk) ∈ Bk}

= Em
x̂ Pm

{
x(t1) ∈ B1, . . . , x(tk) ∈ Bk | Ftk−1

}
= Em

x̂ Pm
{
x(t1) ∈ B1, . . . , x(tk−1) ∈ Bk−1 | Ftk−1

}
×Pm {x(tk) ∈ Bk | x(tk−1)} ,

then bounding the right-hand term above or below, as required, by Theorem
1.3, and iterating backwards.

Comment on an extension to random times. By the strong Markov
property of (1.4), the times t and ti in Theorems 1.2–1.4 can be replaced by
random times. In particular, for each n, let φn

i , i = 1, . . . , k, be mutually in-
dependent and identically distributed random variables that are independent
of the process x(·) of (1.4) and such that
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lim
ε→0

sup
i,n

P{φn
i ≤ ε, or φn

i ≥ 1/ε} = 0

Then the theorems continue to hold, uniformly in n, for φn
1 replacing t in

Theorem 1.1 and
∑i

j=1 φn
j replacing ti otherwise.

Theorem 1.5. Let A ∈ B(C(G; [−θ̄, 0])). For any t > 0 there are ε > 0, ε1 >
0, and x0 ∈ G, such that P (x0, t + θ̄, A) = Px0{x̄(t + θ̄) ∈ A} ≥ ε1 implies
that P (x, t + θ̄, A) = Px{x̄(t + θ̄) ∈ A} ≥ ε for all x ∈ G.

Proof. The proof follows from the comments after Theorem 1.3. Consider the
set B0(A) = {ψ(−θ̄) : ψ(·) ∈ A}. If Px0{x̄(t + θ̄) ∈ A} ≥ ε1, then we must
have P0(x0, t, B0(A)) ≥ ε1. Hence there is ε2 > 0 such that l(B0(A)) ≥ ε2 no
matter what A. By the discussion after Theorem 1.3, for any ∞ > ε4 > ε3 > 0,
ε4 ≥ P0(x1, t, dx)/P0(x0, t, dx) ≥ ε3, except possibly on a set Bε3,ε4(x0, x1, t)
whose Lebesgue measure goes to zero uniformly in x0, x1 as ε3 → 0 and
ε4 → ∞. Since the distribution of the paths on [t, t + θ̄] is determined by
the initial condition x(t), we can conclude that there is ε > 0 such that
Px{x̄(t + θ̄) ∈ A} ≥ ε for all x.

The next theorem is a consequence of the irreducibility and aperiodicity of
the process x̄(t) obtained from the uncontrolled form (1.4) and the absolute
continuity of the measure Pm

x̂ (·) with respect to P (x̂, t, ·) for t > θ̄.

Theorem 1.6. The process x̄(t) is irreducible and aperiodic for each relaxed
feedback control m(·) and initial condition x̂.

Theorem 1.7. Let t > 2θ̄. Then Pm(x̂, t, ·) is absolutely continuous with
respect to P (x, t, ·), for any x ∈ G and x̂ ∈ C(G; [−θ̄, 0]), and conversely.
The absolute continuity is uniform in m(·) and x̂. [The measures are all on
B(C(G; [−θ̄, 0])).] In particular, for each ε > 0 such that the set A satisfies
P (x0, t, A) ≥ ε for some x0, there is ε2 > 0 such that Pm(x̂, t, A) ≥ ε2 for all
x̂ and m(·). Also, if Pm(x̂, t, A) ≥ ε for some x̂ and m(·), then there is ε2 > 0
such that Pm1(x̂1, t, A) ≥ ε2 for all x̂1 and m1(·). In both cases, the ε2 will
depend on ε and t, but it will be positive for all t > 2θ̄.

Proof. We will only prove that if P (x0, t, A) ≥ ε for some x0, then there is
ε2 > 0 such that Pm(x̂, t, A) ≥ ε2 for all x̂ and m(·). The other assertions are
proved similarly. Recall that Pm(x̂, t, A) = Ex̂R(t, m)I{x̄(t)∈A} and define the
set Bm

k = {ζ(t, m) ≥ −k}. Then

Ex̂R(t, m)I{x̄(t)∈A} ≥ e−kEx̂I{Bm
k
}I{x̄(t)∈A}

≥ e−k
[
Ex̂(0)I{x̄(t)∈A} − Ex̂I{Ω−Bm

k
}

]
.

(1.16)

By the hypothesis and Theorem 1.5, we can suppose that there is ε1 > 0
depending only on ε and such that Ex̂(0)I{x̄(t)∈A} = P (x̂(0), t, A) ≥ ε1 for all
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x̂(0). Thus
Pm(x̂, t, A) ≥ e−k

[
ε1 − Ex̂I{Ω−Bm

k
}

]
.

Finally, choose k so that Ex̂I{Ω−Bm
k
} ≤ ε1/4 for all m(·) and x̂.

Recurrence. Let φ(·) be a probability measure on B(C(G; [−θ̄, 0])) We say
that x̄(·) is φ-recurrent under m(·) if for some δ > 0 and φ(A) > 0.

∞∑
n=1

Pm(x̂, nδ, A) = ∞, for all x̂. (1.17)

The next theorem is a direct consequence of Theorem 1.7 and the Markov
property of x̄(t).

Theorem 1.8. For each m(·), the process x̄(t) is φ-recurrent for φ(·) =
P (x0, t, ·) for any x0 ∈ G and t > θ̄.

The existence of an invariant measure for each m(·). In order to prove
that the measures P m(x̂, t, ·) converge to an invariant measure, we need to
know that there is at least one invariant measure for each m(·).

Theorem 1.9. For each m(·) there is at least one invariant measure for the
process x̄(t).

Proof. Let f(·) be a continuous and bounded real-valued function on the
space C(G; [−θ̄, 0]). Then Em

x̂ f(x̄(t)) is continuous in x̂ by the weak-sense
uniqueness of the solution to (1.9). Hence x̄(t) is a Feller process for each
m(·). By Lemma 3.2.2, for each m(·) and initial condition x̂, the set of pro-
cesses {x(t + ·); t < ∞} is tight in C(G; [0,∞)). Hence the set of random
variables {x̄(t); t < ∞} is tight and there is a sequence tn → ∞ such that∫ tn

0
Pm(x̂, t, ·)dt/tn converges weakly to some measure ν(·). Then by [83, The-

orem 3.1.1], ν(·) is an invariant measure under m(·).

5.2 The Doeblin Condition

Consider a discrete-parameter Markov chain {Yn} with values in a complete
separable metric space. If there is a measure φ(·) such that for some integer
n0 and 0 < ε0 < 1, δ0 > 0,

φ(A) > ε0 ⇒ P (Y, n0, A) ≥ δ0 (2.1)

for all Y in the state space, then we say that the chain satisfies a Doeblin
condition.
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The Doeblin condition implies the following [71, Theorems 16.0.2 and
16.2.3], [85, Chapter 4].

Theorem 2.1. Let the chain {Yn} be aperiodic and φ-irreducible and let there
exist an invariant measure π(·). Then the chain is geometrically ergodic in the
sense that there are R > 0 and ρ < 1 such that

||P (Y, n, ·) − π(·)|| ≤ Rρn, (2.2)

where ||ν(·)|| is the variation norm. The measure π(·) is unique and is abso-
lutely continuous with respect to φ(·). The values of R and ρ depend only on
ε0, δ0, n0 and not on other properties of the process {Yn}.

Theorem 2.2. The Doeblin condition holds for the process x̄(t) for any m(·),
where φ(·) = P (x0, t, ·) for any x0 ∈ G and t > 2θ̄. The invariant measure
µm(·) is unique for each m(·) and there are C < ∞ and ρ ∈ (0, 1), not
depending on x̂ or m(·), such that

||Pm(x̂, t, ·) − µm(·)|| ≤ Cρt. (2.3)

The µm(·) are mutually absolutely continuous.

Proof. The process is φ-irreducible and aperiodic by Theorem 1.6, and by
Theorem 1.9, there is at least one invariant measure. By Theorem 1.7 and the
definition (2.1), the constants C and ρ can be taken to be the same for all
m(·) and x̂. The mutual absolute continuity assertion follows from the mutual
absolute continuity of the Pm(x̂, t, ·) for all m(·), x̂, and any t > 2θ̄.

The cost function. Define

γ(x̂, T, m) = Em
x̂

1
T

[∫ T

0

∫
U

k(x̄(t), α)m(x̄(t), dα)dt + q′y(T )

]
(2.4)

and

γ(m) =
∫ ∫

U

k(v̂, α)m(v̂, dα)µm(dv̂) +
∫

Em
v̂ [q′y(1)]µm(dv̂). (2.5)

Theorem 2.3. γ(x̂, T, m) → γ(m), uniformly in x̂ and m(·) as T → ∞.

Proof. By Theorem 2.2, ||Pm(x̂, t, ·)− µm(·)|| → 0, uniformly in x̂ and m(·).
Then, for fn(·) being measurable and uniformly bounded,

∫
fn(v̂)[Pm(x̂, t, dv̂)

−µm(δv̂)] → 0, uniformly in x̂ and m(·), no matter what the fn(·). For the
component involving k(·), the theorem statement then follows from
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Em
x̂

∫
U

k(x̄(t), α)m(x̄(t), dα) =
∫ ∫

U

k(v̂, α)m(v̂, dα)Pm(x̂, t, dv̂)

→
∫ ∫

U

k(v̂, α)m(v̂, dα)µm(dv̂).

Write
Em

x̂ q′[y(t + 1) − y(t)] =
∫

Pm(x̂, t, dv̂)Em
v̂ q′y(1),

where Em
v̂ q′y(t) is a measurable function of v̂. By the moment bounds in

Lemma 3.2.1, supm,x̂ Em
x̂ |y(1)|2 < ∞. This uniform integrability and the uni-

form convergence ||Pm(x̂, t, ·) − µm(·)|| → 0 implies that the limit of the
average reflection costs per unit time is the second term in (2.5).

Convergence of the discounted costs to the stationary cost. The proof
of Theorem 2.3 yields the following result.

Theorem 2.4. In addition to the assumptions of Section 1, assume the cost
function (3.4.3) but with a relaxed feedback control and where we now denote
the discounted cost by Wβ(x̂, m). Then as β → 0

βWβ(x̂, m) → γ(m) (2.6)

uniformly in x̂ and m(·).

5.3 Approximations of the Models

For the discounted cost case in Chapter 4, various results were proved con-
cerning the continuity of the costs in the model parameters, and some “finite-
memory” approximations were developed, all for the purpose of facilitating
the numerical approximations. Similar considerations are important to the er-
godic cost problem. Some preliminary results will be presented in this section,
where it is shown that the transition probabilities, invariant measures, and
ergodic costs are continuous in the dynamical term b(·), uniformly in m(·) and
x̂. We will make use of the inequality∣∣ea − eb

∣∣ ≤ ∣∣ea + eb
∣∣ |a − b| . (3.1)

Theorem 3.1. Let bn(·) be measurable functions of x̂ and α for each n.
Let supn supx̂,α |bn(x̂, α)| < ∞ and bn(x̂, α) → b(x̂, α), uniformly in α ∈ U
for each continuous function x̂. Let Pm

n (x̂, t, ·) denote the measure of x̄(t)
associated with bn(·) replacing b(·) and with control m(·) and initial condition
x̂. Then, for each t > 2θ̄,
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||Pm
n (x̂, t, ·) − Pm(x̂, t, ·)|| → 0 (3.2)

for each continuous x̂. The convergence is uniform in m(·). The convergence
is also uniform in any compact x̂-set of continuous initial conditions if the
convergence of bn(·) → b(·) is uniform on each such compact set.

Proof. Define Rn(t, m) = exp ζn(t, m), where

ζn(t, m) =
∫ t

0

[
σ−1(x(s))bn

m(x̄(s))
]′

dw(s) − 1
2

∫ t

0

∣∣σ−1(x(s))bn
m(x̄(s))

∣∣2 ds,

where bn
m(x̂) =

∫
U

bn(x̂, α)m(x̂, dα). We have

[Pm
n (x̂, t, A) − Pm(x̂, t, A)] = Ex̂ [Rn(t, m) − R(t, m)] I{x̄(t)∈A}.

Because supm,n supx̂ Ex̂[Rm
n (t, m)]2 < ∞, using (3.1), the boundedness of b(·)

and bn(·) and Schwarz’s inequality yields

||Pm
n (x̂, t, ·) − Pm(x̂, t, ·)||

≤ KtE
1/2
x̂

∫ t

0

ds

∫
U

|(bn(x̄(s), α) − b(x̄(s), α))m(x̄(s), dα)|

≤ KtE
1/2
x̂

∫ t

0

sup
α

|bn(x̄(s), α) − b(x̄(s), α)| ds,

(3.3)

for some constant Kt. The process x̄(t) in (3.3) is from the uncontrolled form
(1.4). As n → ∞, the expression (3.3) goes to zero for each continuous x̂, as
the path segments x̄(t) are continuous for all t w.p.1.

The assertion concerning uniformity of convergence on each compact set of
initial conditions can be proved by a weak convergence argument. Let x̂n → x̂
uniformly on [−θ̄, 0], and let xn(·) denote the solution to (1.4) under initial
condition x̂n. We need to show that

E
1/2
x̂n

∫ t

0

sup
α

|bn(x̄n(s), α) − b(x̄n(s), α)| ds → 0. (3.4)

The set {xn(·)} is tight in D(G; [−θ̄,∞)) and because all the paths are contin-
uous, it is tight in C(G; [−θ̄,∞)). Extract a weakly convergent subsequence,
indexed also by n, and use the Skorokhod representation so that we can sup-
pose that the convergence is w.p.1, uniformly on each bounded time interval.
Then, using the fact that the set of segments {x̄n(t), 0 ≤ t < ∞} is tight
in C(G; [−θ̄, 0]) and the uniform convergence of bn(·) on each compact set,
(3.4) holds, which implies the uniformity assertion, as each subsequence has
a further subsequence that is weakly convergent.

Theorem 3.2. Let bn(·) be as in Theorem 3.1. Define
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γn(x̂, T, m) = Em
x̂

1
T

[∫ T

0

∫
U

k(x̄n(t), α)m(x̄n(t), dα)dt + q′yn(T )

]
, (3.5)

where xn(·) is the solution to (1.1) or, equivalently, to (1.9), under bn(·) and
control m(·), with associated reflection process components yn(·) and invariant
measure µm

n (·). Then, as n → ∞, ||µm
n (·) − µm(·)|| → 0. Also ||Pm

n (x̂, t, ·) −
µm(·)|| → 0 and

γn(x̂, t,m) → γ(m) (3.6)

no matter how n → ∞ and t → ∞. The convergence is uniform in m(·). It is
also uniform in x̂, if the convergence of bn(·) is uniform on each compact set.

Proof. By Theorem 2.2, ||Pm
n (x̂, t, ·)−µm

n (·)|| → 0 uniformly in n, x̂ and m(·),
as t → ∞. By Theorem 3.1, for each t and x̂, ||Pm

n (x̂, t, ·) − Pm(x̂, t, ·)|| → 0
uniformly in m(·) as n → ∞. We have

||µm
n (·) − µm(·)|| ≤ ||µm

n (·) − µm(·) ∓ Pm
n (x̂, t, ·) ± Pm(x̂, t, ·)||. (3.7)

This is bounded by

||µm
n (·)−Pm

n (x̂, t, ·)||+||µm(·)−Pm(x̂, t, ·)||+||Pm
n (x̂, t, ·)−Pm(x̂, t, ·)||. (3.8)

Given ε > 0, choose t large enough so that the first two terms in (3.8) are
less than ε/3 for all m(·), n, x̂. Then, for that t, the third term goes to zero
as n → ∞, uniformly in m(·) by the computations in Theorem 3.1. If the
convergence of bn(·) is uniform on compact x̂-sets, then so is the convergence
of the third term, by Theorem 3.1. This compactness requirement on the
initial condition can be dropped, by noting that the set {x̄n(t), n < ∞, t > θ̄}
is tight in C(G; [−θ̄, 0]) (see the last part of the proof of Theorem 3.1), and
using x̄n(t0) in lieu of x̂ in (3.7) and (3.8), where t0 > θ̄.

These computations imply that ||µm
n (·) − µm(·)|| → 0. By Theorem 2.2,

||Pm
n (x̂, t, ·) − µm

n (·)|| → 0, uniformly in m(·), n, and x̂, as t → ∞. Thus,

||Pm
n (x̂, t, ·) − µm(·)|| → 0

as t → ∞ and n → ∞ in any way at all. The convergence of the cost com-
ponent involving k(·) follows from this. If the convergence of bn(·) is uniform
on compact x̂-sets, then so is the convergence of this cost component for each
compact set of initial conditions.

Recall that if ||νn(·) − ν(·)|| → 0 for measures νn(·) and ν(·), then∫
[νn(dx̂) − ν(dx̂)] f(x̂) → 0, uniformly in f(·), if the functions f(·) are

measurable and uniformly bounded. Thus, using the uniform integrability in
Lemma 3.2.1, ∫

[µm(dv̂) − Pm
n (x̂, t, dv̂)]Em

n,v̂yn(1) → 0



110 5 The Ergodic Cost Problem

as n → ∞ and t → ∞, where Em
n,v̂ denotes the expectation under initial con-

dition v̂ and the use of bn(·) and control m(·). Since for each initial condition
v̂ (and uniformly on any compact v̂-set), Em

n,v̂y(1) → Em
v̂ y(1) as n → ∞, the

convergence of the reflection term component of the costs follows.

The theorem implies that we can approximate U by a finite subset. It also
implies that we can approximate x̄(t) in both b(·) and k(·) by the piecewise-
constant interpolation (intervals δ) of the δ-samples x(t − δ), . . . , x(t − θ̄),
with x̄(t, 0) = x(t) and θ̄/δ is an integer. The full Markov state of the process
at time t is still x̄(t). Further approximations will be discussed in the next
section.

Note on Theorem 3.2 and the order of taking the limits. The fact that
t and n can go to their limits in any way at all is important in applications. If
as n grew to infinity we required an ever larger value of t for the approximation
of the invariant measure by the transition probability, or if the t, n required
for a good approximation depended on m(·) or on x̂, then the result would not
be very useful. The result says that for large enough n, t, the approximation
is good, uniformly in m(·) and x̂.

5.4 Approximations with Periodic Delays

5.4.1 Limit and Approximation Results for Periodic Delays

The general assumptions of this section are those of Section 1 and that
b(·) satisfies (A3.1.1). Recall the periodic Approximation 3 that was de-
fined by (4.2.6). We will consider an analog for the ergodic cost prob-
lem. Let lδ ≤ t < lδ + δ and, as in Subsection 4.2.2, define X̃δ(t) =(
x(t), x(lδ), x(lδ − δ), . . . , x(lδ − Q+

δ δ)
)

and τ δ(t) = t−lδ = t(mod δ), where δ

and the integer Q+
δ satisfy θ̄ = (Q+

δ +1/2)δ. Recall the definition of x̄δ
p(t) from

(4.2.6) and that the full system state at time t is (x̄δ
p(t), τ

δ(t)) or, equivalently,
(X̃δ(t), τ δ(t)). Define X̃δ

l =
(
x(lδ), x(lδ − δ), . . . , x(lδ − Q+

δ δ)
)
, the vector of

terms in the brackets in (4.2.6).
Relaxed feedback controls m(·) of the form defined above (1.1) will be

used, as well as extensions that are periodic in time (period δ) and depend on
(X̃δ(t), τ δ(t)). For a (nonperiodic) relaxed feedback control m(·) and memory
segment x̄δ

p(t) used, the controlled process is (1.9) with control m(x̄δ
p(t), dα),

where x̄δ
p(t) is obtained from x(·), and is defined from (1.4) via the mea-

sure P δ,m
x̂ obtained from the Girsanov transformation with Radon–Nikodym

derivative Rδ(t, m) = exp ζδ(t, m), where
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ζδ(t, m) =
∫ t

0

[
σ−1(x(s))

∫
U

b(x̄δ
p(s), α)m(x̄(s), dα)

]′
dw(s)

−1
2

∫ t

0

∣∣∣∣σ−1(x(s))
∫

U

b(x̄δ
p(s), α)m(x̄(s), dα)

∣∣∣∣
2

ds.

(4.1)

The system is

dx(t) = dt

∫
U

b(x̄δ
p(t), α)m(x̄(t), dα) + σ(x(t))dwm(t) + z(t). (4.2a)

With the periodic relaxed feedback control used, the system is defined as
above, but with drift term∫

U

b(x̄δ
p(t), α)m(x̄δ

p(t), τ
δ(t), dα),

and it is written as

dx(t) = dt

∫
U

b(x̄δ
p(t), α)m(x̄δ

p(t), τ
δ(t), dα) + σ(x(t))dwm(t) + z(t). (4.2b)

That is, m(x̄δ(s), τ δ(s), dα) is used in lieu of m(x̄(s), dα) in (4.1). In the
analysis we will also need the system (1.9) with a periodic relaxed feedback
control, namely,1

dx(t) = dt

∫
U

b(x̄(t), α)m(x̄δ
p(t), τ

δ(t), dα) + σ(x(t))dwm(t) + z(t). (4.2c),

For a control m(·) that is periodic or not, let P δ,m(x̂, t, ·) denote the pe-
riodic transition probability for the process x̄(t) defined by either (4.2a) or
(4.2b). It will be periodic because the memory segment is the periodic function
x̄δ

p(t). For either a periodic or a nonperiodic control m(·) and models (4.2),
define the finite time-average cost γδ(x̂, T, m) analogously to (2.4). Since the
maximum delay varies from θ̄ − δ/2 to θ̄ + δ/2, w.l.o.g., we can suppose that
the transition probability is defined for x̂ being a function on an interval
[−θ̄ − δ̄, 0], where δ̄ is an integral multiple of δ and is larger than any of the
(small) values of δ/2 that are of concern.

The next theorem follows from Theorem 2.2 and shows that the transition
probabilities of the δ-sampled processes converge to the associated invariant
measures.

Theorem 4.1. The process x̄(nδ), n = 1, 2, . . ., where x(·) is defined by either
(4.2a) or (4.2b), satisfies the Doeblin condition, uniformly in the control m(·)
1 For simplicity, we use the same symbol wm(·) for the Wiener processes in (4.2a)–

(4.2c). They are not the same, since the actual Wiener process would depend
on the form of the controlled drift term. The analysis involves only the Wiener
process w(·).
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and in x̂, whether the control is relaxed feedback or periodic relaxed feedback.
For the reference measure, we can use φ(·) = P (x0, t0, ·) for any x0 ∈ G, as in
Theorem 2.2, where we can suppose that t0 is a multiple of δ. For each δ > 0
and periodic or nonperiodic relaxed feedback control m(·), there is a unique
invariant measure µδ,m(·) for x̄(nδ) and

||P δ,m(x̂, nδ, ·) − µδ,m(·)|| ≤ Cρnδ, (4.3)

where C < ∞ and ρ ∈ (0, 1) do not depend on m(·), x̂, or δ.

The next theorem shows that the finite-time costs converge to the ergodic
cost.

Theorem 4.2. As T → ∞, for both models (4.2a) and (4.2b), γδ(x̂, T, m) →
γδ(m) for each δ. The convergence is uniform in periodic and nonperiodic
m(·) and in x̂ and δ.

Comment on the proof. Let δ1 be an integral multiple of δ. It is bounded
but might depend on δ. Consider (4.2b) and a periodic relaxed feedback con-
trol. The average cost on [0, Nδ1] that corresponds to the rate k(·) can be
written as

1
Nδ1

N−1∑
n=0

∫
P δ,m(x̂, nδ1, dŷ)

∫ δ1

0

ds P δ,m(ŷ, s, dv̂)
∫

U

k(v̂δ
p, α)m(v̂δ

p, τ δ(s), dα),

(4.4)
where, at time s, v̂δ

p is the periodic memory segment derived from the current
path segment v̂ and the time τ δ(s) since the last shift. Then the proof for the
component of the cost that contains k(·) follows from (4.3), which implies that
P δ,m(x̂, nδ, ·) converges to µδ,m(·) in variation norm as nδ → ∞, uniformly in
δ, m(·), and x̂. The argument for the reflection term component of the cost is
similar and is omitted.

The next theorem shows that if the dynamics and cost rate depend on the
memory segment form x̄δ

p(t), but the control is a nonperiodic relaxed feedback
control, then as δ → 0, the costs converge to those for the case where the
dynamics and cost rate depend on the full memory segment x̄(t).

Theorem 4.3. Consider the model (4.2a). For each nonperiodic relaxed feed-
back control m(·), and as δ → 0, ||µδ,m(·) − µm(·)|| → 0 and γδ(m) → γ(m),
uniformly in m(·).

Proof. The proof uses arguments like that of Theorems 3.1 and 3.2. We have

P δ,m(x̂, t, A) − Pm(x̂, t, A) = Ex̂

[
Rδ(t, m) − R(t, m)

]
I{x̄(t)∈A}. (4.5)

As in Theorem 3.1, there are constants Kt such that
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||P δ,m(x̂, t, ·) − Pm(x̂, t, ·)||

≤ KtE
1/2
x̂

∫ t

0

ds

∫
U

∣∣(b(x̄δ
p(s), α) − b(x̄(s), α)

)
m(x̄(s), dα)

∣∣
≤ KtE

1/2
x̂

∫ t

0

sup
α

∣∣b(x̄δ
p(s), α) − b(x̄(s), α)

∣∣ ds,

(4.6)

where both x̄(t) and x̄δ
p(t) are from the uncontrolled process (1.4). For each

continuous x̂, this expression goes to zero by the continuity condition (A3.1.1)
on b(·), as x̄δ

p(t) → x̄(t) for each path, uniformly on any bounded time interval.
Thus, uniformly in m(·) and for each continuous x̂, as δ → 0

||P δ,m(x̂, t, ·) − Pm(x̂, t, ·)|| → 0. (4.7)

The convergence in (4.7) is also uniform on any compact x̂-set of initial con-
ditions.

Using (4.7), the method of Theorem 3.2 can be used to show that

||µδ,m(·) − µm(·)|| → 0 (4.8)

uniformly in m(·). Using the expressions (4.3), (4.7), (4.8), and the represen-
tation (4.4) of the finite-time cost (but with control form m(x̄(t), dα) used)
yields that the cost component corresponding to k(·) converges as asserted.
We omit the details concerning the reflection term.

Suppose that, for a sequence of periodic relaxed feedback controls {mδ(·)},
we apply mδ(·) to both the system (4.2b) where the dynamics and cost rate
depend on the memory segment x̄δ

p(t) and to the system (1.9) or (4.2c) where
x̄(t) is used for the memory segment in the dynamics and cost rate. Then
the next theorem shows that the difference between the costs goes to zero as
δ → 0, uniformly in the selected sequence of controls.

Theorem 4.4. Let mδ(·) be a periodic relaxed feedback control. Then, uni-
formly in the sequence {mδ(·), δ → 0}, for each x̂ and as δ → 0

||P δ,mδ

(x̂, t, ·) − Pmδ

(x̂, t, ·)|| → 0 (4.9)

uniformly on any bounded time interval. The convergence is uniform in any
compact x̂-set. Also, as δ → 0,

||µδ,mδ

(·) − µmδ

(·)|| → 0,

γδ(mδ) − γ(mδ) → 0.
(4.10)

Proof. The proof of the assertions concerning convergence is like that of
similar assertions in Theorems 4.2 and 4.3. We need only replace the middle
line of (4.6) by
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KtE
1/2
x̂

∫ t

0

ds

∫
U

∣∣(b(x̄δ
p(s), α) − b(x̄(s), α)

)
mδ(x̄δ

p(s), τ
δ(s), dα)

∣∣ ,
where x(·) and x̄δ

p(·) are obtained from the uncontrolled process (1.4).

The next theorem implies that the periodic model (4.2b) is a good approx-
imation to (1.1) in that good periodic relaxed feedback controls for (4.2b) are
also good for (1.1). Define γ̄ = infm γ(m), where the inf is over all relaxed
feedback controls, and γ̄δ = infm γδ(m), where the inf is over all periodic
relaxed feedback controls. We will require the following two assumptions.

A4.1. The infimum γ̄δ of γδ(m) over periodic relaxed feedback controls (for
system (4.2b)) is at least as small as the infimum over nonperiodic relaxed
controls (for system (4.2a)).

A4.2. The infimum of γ(m) over periodic relaxed feedback controls (for system
(4.2c)) is no smaller than the infimum γ̄ over nonperiodic relaxed controls (for
system (1.9)).

The next assumption is stronger than (A4.1). It will be needed in Section
5 to show that the optimal costs for the memory segment and control pro-
cesses used there converge to the optimal cost for the periodic relaxed controls
and periodic memory segment of this section. It will also be needed to prove
the convergence of the numerical algorithms for the ergodic cost criterion in
Chapter 8. We expect that both (A4.1) and (A4.3) hold in general, although
a proof is lacking.2 3

A4.3. Consider the class of admissible relaxed controls r(·) such that there
is a controlled process x(·) with periodic memory segment x̄δ

p(t), and that is
stationary in the sense that the distribution of (x(t + ·), r(t + ·) − r(t), z(t +

2 Consider (A4.1). Suppose that at time t the dynamics and cost rate depend only
on x̄δ

p(t) and τ δ(t), as in the periodic approximation defined by (4.2.6). Then is
it possible that a control that depends on the full x̄(t) would yield a smaller cost
than the best one that depended only on x̄δ

p(t) and τ δ(t)? The answer to this
question is not known at present. But it is highly plausible that it is not the case.

3 For each relaxed feedback control with values m(x̄δ
p(t), τ δ(t), dα) at time t, there

is a unique stationary process and invariant measure. This is the process that
starts at a (uniformly distributed) random time in [0, δ], with the initial condition
associated with starting at t having the distribution

∫
µδ,m(dv̂)P δ,m(v̂, t, ·). The

starting points of the renewal (still interval δ) cycles depend on the path. The
associated cost is still γδ(m). The reason for the restriction to stationary processes
in (A4.3) is that the limit processes will have this form. Using results for the
problem with no delays as a guide, where one cannot do better than with relaxed
feedback controls [56, Chapter 4, Theorem 6.1], it seems very likely that the
assumption (A4.3) is not restrictive. However, the methods that were used in the
proof of [56, Chapter 4, Theorem 6.1] for the problem with no delays do not seem
to carry over to the problem with delays.
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·) − z(t)) does not depend on t. Then the infimum of the costs over periodic
relaxed feedback controls is at least as small as the infimum over this class of
relaxed controls.

For the relaxed control r(·) in (A4.3), for future use let γδ(r) denote the
average cost per unit time, which must exist due to the stationarity.

Theorem 4.5. Assume the conditions of this section and (A4.1), (A4.2). Then
γ̄δ → γ̄ as δ → 0. For each ε > 0, there is an ε1 > 0 such that an ε1-optimal
periodic relaxed feedback control for (4.2b) is ε-optimal for both (1.1) and
(4.2c), where the memory segment is x̄(t).

Proof. Let mε(·) be an ε-optimal relaxed feedback control for (1.9). Then by
Theorem 4.3, (A4.1), and the minimality of γ̄δ and γ̄ for (4.2a,b) and (1.9),
resp.,

γ̄δ ≤ γδ(mε) → γ(mε) ≤ γ̄ + ε.

Because ε is arbitrary, lim supδ γ̄δ ≤ γ̄. Next, let mδ,ε(·) be an ε-optimal peri-
odic relaxed feedback control for the δ-periodic model (4.2b). Thus γδ(mδ,ε) ≤
γ̄δ + ε. By Theorem 4.4, γδ(mδ,ε)− γ(mδ,ε) → 0 as δ → 0 . Since γ(mδ,ε) ≥ γ̄
by (A4.2) and ε > 0 is arbitrary, lim infδ γ̄δ ≥ γ̄, which completes the proof
that γ̄δ → γ̄.

The last assertion of the theorem follows from limδ→0 |γδ(mδ,ε)−γ(mδ,ε)| =
0 and lim supδ→0 |γ(mδ,ε) − γ̄| ≤ ε, both of which follow from the previous
computations.

The next two theorems will be useful for proving convergence of the nu-
merical algorithms.

Discrete approximation to U . Let Un be a set with finitely many points
such that Un → U . Define bn(x̂, α) by dividing U into a finite number of
disjoint subsets Un

i whose diameters are less than 1/n, selecting a point αn
i ∈

Un
i and letting bn(x̂, α) = b(x̂, αn

i ) for α ∈ Un
i . Define kn(·) analogously.

The use of bn(·) and kn(·) is equivalent to exchanging U for Un. Then the
arguments in Theorems 3.1, 3.2, 4.3, and 4.4 imply that the costs change
little if the control-value set U is approximated by Un. This is stated in the
following theorem.

Theorem 4.6. Let Un replace U in either the model (1.9) or (4.2a,b). Then,
for large n, the invariant measures and costs change little, uniformly in δ and
m(·), for either relaxed feedback or periodic relaxed feedback controls.

5.4.2 Smoothed Nearly Optimal Controls

Let U contain only finitely many points. For α ∈ U , write m(x̄δ
p(t), τ

δ(t), {α})
for the weight that the measure puts on the point α. For lδ ≤ t < lδ + δ,
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x̄δ
p(t) is a function of X̃δ(t). Thus, without confusion, we can use the notation

m(X̃δ(t), τ δ(t), dα) for m(x̄δ
p(t), τ

δ(t), dα). Let X̃δ denote the canonical value
of X̃δ(t), and τ δ the canonical value of τ δ(t). For the purposes of proving the
convergence of the numerical procedures, it will be helpful to know that for
each δ and ε > 0, there is an ε-optimal periodic relaxed control for (4.2) that
is continuous in X̃δ and τ δ, and this is shown in the next theorem. See [56,
Equation 4.3.17] for a related result, where the

√
2πε should be to the power

r, which is the dimension of the state variable x there.

Theorem 4.7. Let U contain only finitely many points and let ε > 0. For any
δ and a periodic relaxed feedback control m(·) for (4.2b), there is a periodic
relaxed feedback control mε(·) such that, for each α ∈ U , mε(X̃δ, τ δ, {α}) is
continuous in X̃δ and τ δ. Also |γδ(m) − γδ(mε)| ≤ ε.

Proof. Fix δ > 0 and m(·). Each component of X̃δ takes values in G, and
τ δ takes values in [0, δ). Let us extend the definition of m(X̃δ, τ δ, {α}) so
that for each α ∈ U it is defined for all values of the other variables in the
Euclidean space of the appropriate dimension. Suppose that there are pe-
riodic relaxed feedback controls mn(X̃δ, τ δ, dα), with associated transition
probabilities P δ,mn

(·), such that for almost all τ ∈ (0, δ) and each α ∈ U ,
mn(X̃δ, τ δ, {α}) → m(X̃δ, τ δ, {α}) for almost all (Lebesgue measure) X̃δ

whose components have values in G. By a computation analogous to (4.6), for
some constant Kt we have

||P δ,m(x̂, t, ·) − P δ,mn

(x̂, t, ·)|| ≤

KtE
1/2
x̂

∫ t

0

ds

∫
U

∣∣∣b(x̄δ
p(s), α)

[
m(X̃δ(s), τ δ(s), dα) − mn(X̃δ(s), τ δ(s), dα)

]∣∣∣ .
(4.11)

By the convergence of mn(X̃δ, τ δ, α) for almost all (Lebesgue measure) X̃δ

whose components have values in G, for almost all τ δ ∈ [0, δ) and each α ∈ U ,
together with the density properties of X̃δ in Theorem 1.4, the expression
(4.11) goes to zero as n → ∞. Then the arguments of Theorems 4.3 and 4.4
imply that γδ(mn) → γδ(m) as n → ∞. We have only to show that there are
such mn(X̃δ, τ, α) that are continuous in (X̃δ, τ δ).

Constructing the smoothed control. The approximations mn(X̃δ, τ δ, α)
are constructed via a smoothing procedure. Let ρ → 0 replace n → ∞ and let
d=number of real values needed to specify X̃δ. Define the smoothed control
mρ(X̃δ, τ δ, {α}), α ∈ U, by

mρ(X̃δ, τ δ, {α})

=
1

(2πρ)d/2

1
(2πρ)1/2

∫
IRd

∫ ∞

−∞
e−|X−X̃δ|2/2ρe−|τ−τδ|2/2ρm(X, τ, {α})dXdτ.

(4.12)
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mρ(X̃δ, τ δ, {α}) is continuous in X̃δ and τ δ for each α ∈ U . Now restrict
the domain to (X̃δ, τd)-values such that the components of X̃δ have values
in G, and the values of τ δ are in [0, δ). For each α ∈ U , it converges to
m(X̃δ, τ δ, {α}) for almost all values in the desired range.

5.4.3 Delays in the Variance Term

Up to now, we have assumed that the variance term σ(·) did not depend on
the delayed path. The reason had to do with the method of constructing the
solutions to the controlled problem via the Girsanov transformation method,
which allows only the drift term to be changed, so that we would not be able
to change σ(x̄(t)) for σ(x̄δ

p(t)) when deriving the periodic approximation, and
similarly for other approximations.

Delay-dependent noise terms can be handled under stronger assumptions.
This will be illustrated for the example of periodic delays. Consider the pro-
cesses

dxδ(t) = σ(x̄δ
p(t))dw(t) + dzδ(t), (4.13a)

dx(t) = σ(x̄(t))dw(t) + dz(t), (4.13b)
where x̄δ

p(t) is the periodic approximation to the memory segment correspond-
ing to the solution xδ(·), and zδ(·) is the reflection term, with the analogous
definitions for (4.13b). Suppose that, for any initial condition, (4.13a) and
(4.13b) have unique strong-sense solutions that are also weak-sense unique.
That is, given a Wiener process w(·), for any δ > 0 and initial condition x̂ we
can construct solutions that are functionals of w(·) and the initial condition.
The density properties in Section 1 can still be shown to hold. Given any
relaxed feedback control, whether periodic or nonperiodic, we can construct
solutions via the Girsanov transformation method of Subsection 1.1, where
σ(x(t)) is replaced by either σ(x̄(t)) or σ(x̄δ

p(t)), according to the case. The
Doeblin condition continues to hold as do the results on convergence of the
costs and of the transition probabilities to the invariant measure, for each fixed
m(·) and δ. But the proofs of results such as in Theorems 4.3 and 4.6, which
compare solutions with different memory segments, need to be modified.

Consider the proof of Theorem 4.3. Equation (4.5) holds as all uncontrolled
processes can be defined in terms of the same Wiener process w(·), no matter
what δ is. Using the inequality (3.1) yields the bounds

||P δ,m(x̂, t, ·) − Pm(x̂, t, ·)|| ≤

KtE
1/2
x̂

∫ t

0

ds

∫
U

∣∣(σ−1(x̄δ
p(s))b(x̄

δ
p(s), α) − σ−1(x̄(s))b(x̄(s), α)

)
m(x̄(s), dα)

∣∣ .
(4.14)

Using the uniqueness hypotheses, under appropriate continuity conditions on
b(·) and σ(·), this expression will go to zero as δ → 0. Using such results, we can
obtain the foregoing convergence and approximation results. For simplicity of
development, we will continue with only weak-sense existence and uniqueness
of the uncontrolled model and use the form σ(x(t))dw(t).
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5.5 The Periodic-Erlang Approximation

To use the periodic approximation of the previous section, one needs to keep
track of the elapsed time since the beginning of the current cycle, as was
the case in Subsection 4.2.2. The periodic-Erlang approximation defined by
(4.2.8) in Subsection 4.2.4 was a useful way of approximating this elapsed
time, and the method can be carried over to the ergodic cost problem. It will
be a convenient basis for the numerical approximations.

Definitions. The general assumptions of this section are those of Section 1
and that b(·) satisfies (A3.1.1). We will use the notation of Subsection 4.2.4.
Recall the Erlang state Lδ0,δ(t) (which is independent of the x(·) and w(·) in
(1.4)), the random times σ̄δ0,δ

l and σδ0
l , and the memory segments x̄δ,δ0

e (t) of
(4.2.8) and their limits (as L̄δ0,δ → ∞) x̄δ

p(t) of (4.2.6). For σ̄δ,δ0
l ≤ t < σ̄δ,δ0

l+1 ,
recall the definitions X̃δ,δ0

e (t) =
(
x(t), x(σ̄δ,δ0

l ), . . . , x(σ̄δ,δ0

l−Q+
δ

)
)

with canonical

value X̃δ,δ0 , and the vector X̃δ,δ0
l =

(
x(σ̄δ,δ0

l ), . . . , x(σ̄δ,δ0

l−Q+
δ

)
)
. We will use

relaxed feedback controls of the form m(x̄(t), dα), and also controls of the form
m(x̄δ0,δ

e (t), Lδ0,δ(t), dα) that depend on the Erlang state and the periodic-
Erlang path memory approximation. We suppose that the σ-algebra Ft has
been augmented so that it measures {Lδ0,δ(s), s ≤ t}.

Construction of the controlled process. In analogy to (4.1), for a relaxed
feedback control m(x̄(t), dα), the process with memory segment x̄δ0δ

e (t) is de-
fined from (1.4) via the measure P δ0,δ.m

x̂ obtained from the Girsanov transfor-
mation with Radon–Nikodym derivative Rδ0,δ(t, m) = exp[ζδ0,δ(t, m)], where

ζδ0,δ(t, m) =
∫ t

0

[
σ−1(x(s))

∫
U

b(x̄δ0,δ
e (s), α)m(x̄(s), dα)

]′
dw(s)

−1
2

∫ t

0

∣∣∣∣σ−1(x(s))
∫

U

b(x̄δ0,δ
e (s), α)m(x̄(s), dα)

∣∣∣∣
2

ds,

(5.1)

where x(·) is the process (1.4) and x̄δ0,δ
e (·) is obtained from it via the definition

(4.2.8). Write the transformed process as

dx(t) = dt

∫
U

b(x̄δ,δ0
e (t), α)m(x̄(t), dα) + σ(x(t))dwm(t) + dz(t). (5.2a)

If the control m(·) depends on the memory segment x̄δ0,δ
e (t) and the Erlang

state, then the system is

dx(t) = dt

∫
U

b(x̄δ,δ0
e (t), α)m(x̄δ0δ

e (t), Lδ0δ(t), dα) + σ(x(t))dwm(t) + dz(t),

(5.2b)
and m(x̄δ0,δ

e (s), Lδ0,δ(s), dα) is used in (5.1) in lieu of m(x̄(s), dα). Finally, if
the memory segment in the dynamics and cost rate is x̄(t) but the control
depends on the approximation, then the system is
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dx(t) = dt

∫
U

b(x̄(t), α)m(x̄δ0δ
e (t), Lδ0δ(t), dα)+σ(x(t))dwm(t)+dz(t), (5.2c)

and b(x̄(s), α)m(x̄δ0δ
e (t), Lδ0δ(t), dα) is used in (5.1). In all cases, we use the

same expression P δ0,δ,m(x̂, t, ·) for the transition function.
The next theorem shows that the properties of Lδ0,δ(t) do not change

under the measure transformation.

Theorem 5.1. Under P δ0,δ,m
x̂ and for all cases of (5.2), for each t ≥ 0 the

process Lδ0,δ(t + ·) − Lδ0,δ(t) is independent of Ft, and its distribution is
unchanged.

Proof. For t ≥ 0, ti > 0, and T ≥ t + ti, i = 1, . . . , k, and a measurable set A
consider

Eδ0,δ,m
x̂ I{(Lδ0,δ(t+ti)−Lδ0,δ(t),i=1,...,k)∈A}

= Ex̂Rδ0,δ(T, m)I{(Lδ0,δ(t+ti)−Lδ0,δ(t),i=1,...,k)∈A}.
(5.3)

Because w(·) and x(·) (from (1.4)) are independent of Lδ0,δ(·) under the
original measure, the two factors of the right-hand term of (5.3) are mu-
tually independent. Since the expectation of Rδ0,δ(T, m) is unity, the expec-
tation on the right side is just the probability of the event {(Lδ0,δ(t + ti) −
Lδ0,δ(t), i = 1, . . . , k) ∈ A} under the original measure. This computation im-
plies that the distribution of Lδ0,δ(·) is unchanged. To get the independence
of Lδ0,δ(t + ·) − Lδ0,δ(t) and Ft repeat the computation with a conditioning
on Ft. The theorem follows from this and the arbitrariness of the T, ti and k.

The next theorem is an analog of Theorems 1.3 and 1.4 for the un-
controlled process, where ti is replaced by σ̄δ0,δ

i . It follows from the com-
ments after Theorem 1.4 concerning random times, as, for each δ > 0,
{σ̄δ,δ0

l+1 − σ̄δ,δ0
l , l < ∞} are mutually independent with uniformly bounded vari-

ances, limε→0 supδ0
P{σ̄δ,δ0

1 ≤ ε} = 0, and the set is independent of both w(·)
and the process x(·) defined by (1.4).

Theorem 5.2. Let ε1 > 0 and let x(·) be the process defined by (1.4).
Then there is ε2 > 0 such that for any B ∈ B(G) with l(B) ≥ ε1 we have
P0(x, σ̄δ,δ0

1 , B) = Px{x(σ̄δ,δ0
1 ) ∈ B} ≥ ε2 for all x ∈ G and all δ0 such that

δ/δ0 is an integer, and conversely. Thus the P0(x, σ̄δ,δ0
1 , ·) are mutually abso-

lutely continuous with respect to Lebesgue measure, uniformly in δ0 and x.
For l = Q+

δ +1, the analogous result holds for the measures Px{X̃δ,δ0
l ∈ A}

and the Lebesgue measure l(A), where A is a Borel set in GQ+
δ

+1, the range
space of X̃δ,δ0

l .

The next result extends Theorem 5.2 to the controlled process. Define
a ∧ b = min{a, b}, and for arbitrary t define the “stopped” processes σ̄δ,δ0

t(l) =
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σ̄δ,δ0
l ∧ t and X̃δ0δ

l(t) :

X̃δ0δ
t(l) =

(
x(σ̄δ,δ0

l ∧ t), . . . , x(σ̄δ,δ0

l−Q+
δ

∧ t)
)
.

These stopped processes will be useful as we cannot use the Girsanov trans-
formation on the unbounded interval [0, σ̄δ0δl]. If the relaxed feedback control
depends on both the Erlang state and the periodic-Erlang approximation to
the memory segment, then we call it a relaxed periodic-Erlang feedback con-
trol.

Theorem 5.3. Let P δ,δ0,m
x̂ {X̃δ,δ0

l ∈ ·} replace Px{X̃δ,δ0
l ∈ ·} in Theorem

5.2 for l = Q+
δ + 1. Then the conclusions of that theorem hold, uniformly in

m(·), x̂ and δ0, where m(·) is either a relaxed feedback control or a relaxed
periodic-Erlang feedback control; i.e., for any of the models (5.2a,b,c).

Proof. Let l = Q+
δ + 1. Because for any Borel set A,

P δ,δ0,m
x̂ {X̃δ,δ0

l ∈ A} = lim
t→∞

P δ,δ0,m
x̂ {X̃δ,δ0

t(l) ∈ A},

where the limit is uniform in x̂, δ0 and m(·), it is sufficient to prove the theorem
for X̃δ,δ0

t(l) replacing X̃δ,δ0
l with t large. The proof with this replacement is

analogous to that of Theorem 1.7. We have

P δ,δ0,m
x̂ {X̃δ0,δ

t(l) ∈ A) = Ex̂Rδ,δ0(σ̄δ,δ0
t(l) , m)I{X̃

δ,δ0
t(l) ∈A}.

Define the set Bδ,δ0,m
k (t) = {ζ(σ̄δ,δ0

t(l) , m) ≥ −k}. Analogously to (1.16), we
have the following lower bound to the above expression:

e−k

[
Ex̂(0)I{X̃

δ,δ0
t(l) ∈A} − Ex̂I{Ω−B

δ,δ0,m

k
(t)}

]
.

Let l(A) ≥ ε1 > 0. Then, by Theorem 5.2, there is ε2 > 0, depending only on
ε1, such that for large enough t and all δ0 and x̂, Ex̂I{X̃

δ,δ0
t(l) ∈A} ≥ ε2. Thus

P δ,δ0,m
x̂ {X̃δ,δ0

t(l) ∈ A} ≥ e−k
[
ε2 − Ex̂I{Ω−B

δ,δ0,m

k
(t)}

]
.

Finally, choose k so that Ex̂I{Ω−B
δ,δ0,m

k
(t)} ≤ ε2/2 for all m(·), x̂, and all large

t.

The next theorem is a consequence of Theorem 5.3.

Theorem 5.4. With Lebesgue measure as the reference, the process X̃δ,δ0
l

obtained from (5.2b) is recurrent, aperiodic, and irreducible and satisfies a
Doeblin condition, uniformly in the initial condition, in the periodic-Erlang
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relaxed feedback control, and in δ0, for small δ0. There is a unique invariant
measure µδ0,δ,m(·) for each periodic-Erlang relaxed feedback control m(·).

In Theorem 5.4, the invariant measure is defined on the range space of the
process of samples X̃δ,δ0

l and this is the interpretation that we will use unless
mentioned otherwise. It could also be considered to be a measure on the set
of interpolations of X̃δ,δ0

l on [−θ̄, 0), as defined by the terms in the brackets
in (4.2.8).

By Theorems 5.3 and 5.4, there are C < ∞ and ρ ∈ (0, 1), not depending
on m(·), x̂, or on δ0, for small δ0, such that

||P δ0,δ,m
x̂ {X̃δ0,δ

l ∈ ·} − µδ0,δ,m(·)|| ≤ Cρl. (5.4)

For periodic-Erlang relaxed feedback controls, define the finite-time costs

γδ0,δ(t, m) =

1
t
Eδ0,δ.m

x̂

[∫ t

0

ds

∫
U

k(x̄δ0,δ
e (s), α)m(x̄δ0,δ

e (s), Lδ0,δ(s), dα) + q′y(t)
]

.

(5.5)

Theorem 5.5. For any periodic-Erlang relaxed feedback control m(·) and sys-
tem (5.2b), the limit

γδ0,δ(m) = lim
t→∞

γδ0,δ(t, m) (5.6)

exists, uniformly in x̂, m(·), and small δ0.

Proof. Consider the cost component involving k(·). Define n(t) = min{i :
σ̄δ0,δ

i ≥ t}. It is sufficient to work with the sum, as t → ∞,

Eδ0,δ,m
x̂

n(t)
t

1
n(t)

n(t)−1∑
i=0

∫ σ̄
δ0,δ

i+1

σ̄
δ0,δ

i

ds

∫
U

k(x̄δ0,δ
e (s), α)m(x̄δ0,δ

e (s), Lδ0,δ(s), dα).

Because the expression is uniformly bounded and n(t)/t → 1/δ in proba-
bility as t → ∞, uniformly in δ0, we need only evaluate the limit as i → ∞
of

1
δ
Eδ0,δ.m

x̂

∫ σ̄
δ0,δ

i+1

σ̄
δ0,δ

i

ds

∫
U

k(x̄δ0,δ
e (s), α)m(x̄δ0,δ

e (s), Lδ0,δ(s), dα).

By (5.4) for small δ0 this goes to the limit

1
δ

∫
µδ0,δ,m(dv̂)Eδ0,δ,m

v̂

∫ σ̄
δ0,δ

1

0

ds

∫
U

k(x̄δ0,δ
e (s), α)m(x̄δ0,δ

e (s), Lδ0,δ(s), dα)

uniformly in the initial condition, m(·), and δ0, as i → ∞. This is the compo-
nent of γδ0,δ(m) that involves k(·).
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For the component of the cost that involves the reflection term, we will
prove the uniform integrability of {y(σ̄δ0,δ

i+1 ) − y(σ̄δ0,δ
i )} and leave the rest of

the details to the reader. For fixed t, write

y(σ̄δ0,δ
1 ) = y(σ̄δ0,δ

t(1) ) + (y(σ̄δ0,δ
1 ) − y(σ̄δ0,δ

t(1) )),

where t(1) = min{t, σ̄δ0,δ
1 }. The uniform (in m(·), x̂, δ0) integrability of the

first term follows from Lemma 3.2.1, which also implies that the expectation
of the second term can be bounded as

Eδ0,δ,m
x̂

∣∣∣y(σ̄δ0,δ
1 ) − y(σ̄δ0,δ

t(1) )
∣∣∣ ∞∑

p=0

I{t+p≤σ̄
δ0,δ

1 <t+p+1}

≤ K

∞∑
p=0

P 1/2{t + p ≤ σ̄δ0,δ
1 < t + p + 1},

where K does not depend on x̂, δ0, or m(·), and the sum goes to zero as
t → ∞. These computations together with the fact that {σ̄δ0δ

l+1 − σ̄δ0δ
l , l} are

i.i.d., imply the uniform integrability of the {y(σ̄δ0,δ
i+1 − y(σ̄δ0,δ

i )}.

The following result is an analog of Theorems 4.6 and 4.7 and the proof is
omitted.

Theorem 5.6. Consider system (5.2b). Let Un contain only a finite number
of points with Un → U as n → ∞. Then if Un is used in lieu of U , for large
n the invariant measures and costs change little, uniformly in δ, δ0, and in the
periodic-Erlang relaxed feedback control m(·).

Let ε > 0 and suppose that U contains only finitely many points. For
any δ, δ0, and a periodic-Erlang relaxed feedback control mδ0,δ(·), there is
a periodic-Erlang relaxed feedback control mδ0,δ,ε(·) such that the expression
mδ0,δ,ε(X̃δ0,δ, Lδ0,δ, α) is continuous in X̃δ0,δ, for each α ∈ U and each value
of the Erlang state Lδ0,δ. Also |γδ,δ0(mδ0,δ) − γδ,δ0(mδ0,δ,ε)| ≤ ε.

Define γ̄δ0,δ to be the infimum of γδ0δ(m) over the relaxed periodic-Erlang
feedback controls. Fix δ > 0. The next result shows that as δ0 → 0, the
costs γ̄δ0,δ are no larger than γ̄δ, the infimum of the costs for the periodic
model. Let m(·) be a periodic control for the model in Section 4 with values
m(x̄δ

p(t), τ
δ(t), dα), and suppose that U has only finitely many points. Suppose

that m(·) is ε-optimal for the periodic model and is continuous in the variables
x̄δ

p(t), τ
δ(t), as allowed by Theorem 4.7. In the next theorem, we will need to

apply this control to the model of this section, where the memory segment is
periodic-Erlang and the Erlang state measures the passage of time. This can
be done by using m(x̄δ0,δ

e (t), τ δ0,δ(t), dα) at time t, where we set τ δ0,δ(t) = kδ0

if Lδ0,δ(t) = k.
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Theorem 5.7.
lim sup

δ0→0
γ̄δ0,δ ≤ γ̄δ. (5.7)

Proof. Let m(·) be the control for the periodic model that was described above
the theorem statement, and adapted for use on the periodic-Erlang model as
noted there. The first step is to show the convergence µδ0,δ,m(·) → µδ,m(·)
as δ0 → 0. Restrict the invariant measure µδ,m(·) to the sampled process
X̃δ

n =
(
x(nδ), . . . , x(nδ − Q+

δ δ)
)
. Then we can write

||µδ,m(·) − µδ0,δ,m(·)|| ≤ ||µδ0,δ,m(·) − P δ0,δ,m
x̂ {X̃δ0,δ

l ∈ ·}||

+||µδ,m(·) − P δ,m
x̂ {X̃δ

l ∈ ·}||

+||P δ0,δ,m
x̂ {X̃δ0,δ

l ∈ ·} − P δ,m
x̂ {X̃δ

l ∈ ·}||.

(5.8)

For small δ0 and l large enough, the first two terms on the right side can be
made arbitrarily small. For each l, as t → ∞, P{σ̄δ0,δ

t(l) �= σ̄δ0,δ
l } → 0, and as

δ0 → 0, σ̄δ0,δ
l → lδ w.p.1. Thus, analogously to what was done in Theorem 5.3,

to evaluate the last term on the right side of (5.8), it is sufficient to evaluate∣∣∣Ex̂ exp(ζδ0,δ(σ̄δ0,δ
t(l) , m)) − Ex̂ exp(ζδ(lδ, m))

∣∣∣ . (5.9)

for large l and large t > lδ.
Because Ex̂

∣∣∣exp(ζδ0,δ(σ̄δ0,δ
t(l) , m)) − exp(ζδ0,δ(lδ, m))

∣∣∣ → 0 as δ0 → 0, it is

sufficient to replace σ̄δ0,δ
l with lδ in (5.9). Using (3.1), for each l there is a

Kl < ∞ and the following upper bound to this revised (5.9):

Kl

∫ lδ

0

ds

∫
U

∣∣∣b(x̄δ0,δ
e (s), α)m(x̄δ0,δ

e (s), τ δ0,δ(s), dα)

−b(x̄δ
p(s), α)m(x̄δ

p(s), τ
δ(s), dα)

∣∣∣,
where τ δ0,δ(t) is defined above the theorem, and the memory segments x̄δ

p(·)
and x̄δ0,δ

e (·) are based on the uncontrolled model (1.4). As δ0 → 0, x̄δ0,δ
e (t) →

x̄δ
p(t) and τ δ0,δ(t) → τ δ(t) for almost all t. Then by the continuity of m(·) and

b(·) for each of the discrete values of α, the last expression goes to zero as
δ0 → 0. These computations imply the convergence of the invariant measures,
as asserted. We omit the proof of convergence of the associated costs as it is
similar to what was done in Theorem 5.5.

Because m(·) is ε-optimal for the δ-periodic model and is not necessarily
optimal for the periodic-Erlang model, γ̄δ ≥ γδ(m)−ε and γ̄δ0,δ ≤ γδ0,δ(m) →
γδ(m). The proof is completed as ε is arbitrary.

Theorem 5.8. Assume (A4.3) in addition to the assumptions of this section.
Then γ̄δ0,δ → γ̄δ as δ0 → 0.
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Proof. In view of Theorem 5.7, we need to show that

lim inf
δ0→0

γ̄δ0,δ ≥ γ̄δ. (5.10)

For arbitrary ε > 0, let mδ0δ(·) be ε-optimal periodic-Erlang relaxed feedback
controls for model (5.2b), and consider the stationary systems that are associ-
ated with these controls. Let rδ0δ(·) denote the relaxed control representation
of the m(x̄δ0,δ

e (·), Lδ0,δ(·), dα), for the stationary system. The costs for the
stationary systems are still γδ0δ(m). Index the path, reflection, and Wiener
process by δ0, δ. Then the set (xδ0δ(·), rδ0δ(·), zδ0δ(·), wδ0δ(·)) is stationary in
the sense used in (A4.3). It is also tight. Extract a weakly convergent subse-
quence as δ0 → 0, indexed also by δ0 for notational convenience, with limit
denoted by (x(·), r(·), z(·), w(·)). Then the set is stationary in the sense used
in (A4.3) and satisfies

dx(t) = dt

∫
U

b(x̄δ
p(t), α)r′(dα, t) + σ(x(t))dw(t) + dz(t).

The process x̄δ
p(·) is obtained from the solution x(·) via the definition (4.2.6).

The cost rate converges to k(x̄δ
p(t), α). The limit cost is γδ(r), and, by the

convergence, ε-optimality of the mδ0δ(·), and (A4.3),

ε + γ̄δ0δ ≥ γδ0δ(mδ0δ) → γδ(r) ≥ γ̄δ.

This yields the theorem.

Theorem 5.9. Assume (A4.1)–(A4.3) in addition to the other assumptions
of this section. Then, as δ0 → 0 and then δ → 0,

γ̄δ0δ → γ̄.

Proof. By Theorem 5.8, γ̄δ0δ → γ̄δ as δ0 → 0. By Theorem 4.5, γ̄δ → γ̄ as
δ → 0.

Theorem 5.9 says that the optimal cost for (5.2b) approximates that for
(1.9) and justifies using a numerical procedure based on (5.2b) to approximate
the costs for (1.9). It is plausible that a nearly optimal control for (5.2b) will
be nearly optimal for (1.9), but it has not yet been proved.
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Markov Chain Approximations: Introduction

6.0 Outline of the Chapter

The Markov chain approximation for the no-delay case will be briefly outlined
in this chapter. The chapter is essentially a review of the key parts of [58]
that will be needed in the sequel. The reader is referred to that reference
for a full development for the no-delay case of the methods for getting the
approximations, the numerical algorithms, and the convergence proofs. The
method will be adapted to the problem with delays in the following chapters,
which will be organized so that the methods and results of [58] can be taken
advantage of wherever possible. For the most part, in this chapter we will use
the no-delay specialization of the reflected diffusion model (3.2.1), which is the
standard diffusion process with boundary reflection. All of the usual process
models and cost functions can be handled. For example, if the model of concern
is stopped when first hitting the boundary, then ignore the reflections and add
a stopping cost. The model is then the no-delay form of (3.1.1).

The numerical methods are based on approximations of the controlled
process x(·) by a simpler controlled process, for which the evaluation of either
the cost function for a fixed control or of the optimal cost can be done with
an acceptable amount of computational work. If the approximating controlled
process is close to the original process x(·) in an appropriate statistical sense
and the cost function is suitably approximated, then we would expect that
the value of the cost function for the approximating process for a fixed control
(or its optimal value over all controls), and possibly the optimal control itself,
will be close to those for the original model. The most useful approximating
process is a Markov chain.

The closeness of the chain to the original diffusion is quantified by the lo-
cal consistency conditions, and this is described in Section 2, which also gives
a dynamical representation of the approximating chain that emphasizes its
closeness to the diffusion. The numerical algorithms are based on the finite-
state Markov chain approximation. But the convergence proofs are based on
continuous-time interpolations of the approximating chains, and two such

© Birkhäuser Boston, a part of Springer Science + Business Media, LLC 2008 
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(asymptotically equivalent) interpolations are discussed in Section 3. There
are two types of approximating chains, called the “explicit” and “implicit”
approximations, respectively. They differ in the way that the time variable is
treated, each can be obtained from the other, and both will play important
roles in treating the delay case. The explicit approximation case is discussed
in Section 4 and the implicit in Section 5, which also proves the asymptotic
equivalence between them and of the various timescales that are used. Sec-
tion 6 is concerned with the singular and impulsive control forms, and some
comments on the ergodic cost function are in Section 7. The notation will be
slightly different from that in the references [58, 31, 50], as we wish to adapt
or simplify it for the particular purposes of this book.

6.1 The System Model

Most of the discussion in this chapter will focus on the reflected diffusion
model (3.2.1) but without delays, namely,

dx(t) = b(x(t), u(t))dt + σ(x(t))dw + dz(t), (1.1)

where x(t) is confined to a compact polyhedral constraint set G (with bound-
ary ∂G) by the reflection term z(·) and (A3.2.1)–(A3.2.2) hold. The control
u(·) takes values in a compact set U , b(·) and σ(·) are bounded and con-
tinuous, and there is a unique weak-sense solution for each relaxed control.
Focusing on (1.1) will allow us to concentrate on the essential ideas without
the complications inherent in an exhaustive review, but other models will be
commented on from time to time. Let r(·) be an admissible relaxed control
with derivative r′(dα, t). Then the relaxed control representation is

dx(t) =
∫

U

b(x(t), α)r′(dα, t)dt + σ(x(t))dw + dz(t). (1.2)

If the boundary is absorbing, then drop z(·).

A discounted cost function. For a vector q and continuous real-valued k(·),
the restriction of the cost function (3.4.3) to the no-delay case is

W (x, u) = Eu
x

∫ ∞

0

e−βt [k(x(t), u(t))dt + q′dy(t)] , (1.3)

with relaxed control form

W (x, r) = Er
x

∫ ∞

0

e−βt

[∫
U

k(x(t), α)r′(dα, t)dt + q′dy(t)
]

. (1.4)

Define V (x) = infr W (x, r), where the infimum is over all admissible controls.
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Stopping on hitting a boundary. For most of the book, we will concentrate
on the discounted cost function. But all of the standard cost functions that are
used in stochastic could be used instead. Consider the form of the discounted
cost function for a process that is stopped when first hitting the boundary
∂G. Let g0(·) be a continuous real-valued stopping cost and define τG = inf{t :
x(t) �= G0}, where G0 is the interior of G. Then (3.4.1) becomes

W (x, r) = Er
x

∫ τG

0

e−βt

∫
U

k(x(t), α)r′(dα, t)dt + Er
xe−βτGg0(x(τ)). (1.5)

6.2 Approximating Chains and Local Consistency

Approximating chains. The basis of the approximation is a discrete-time
finite-state controlled Markov chain whose “local properties” are “consistent”
with those of (1.1), as described below. This chain will be interpolated into
a continuous-time process that will turn out to be a good approximation to
(1.1). Let h denote the approximation parameter. For simplicity, we suppose
that it is real-valued and positive, although a vector-valued parameter could
be used as well, as noted in [58]. The reference [58, Chapter 5] describes
many convenient methods for constructing chains that satisfy the required
properties.

For each h > 0, let {ξh
n, n < ∞} be a controlled discrete-parameter

Markov chain on a discrete state space Sh ⊂ IRr with transition probabil-
ities ph(x, x̃|α), where Sh becomes dense in IRr as h → 0. The variable α is
the canonical value of the control and takes values in U. More generally, all
that is needed is that α take values in a set Uh where the closed convex hull
of (b(x, Uh), k(x, Uh)) converges to the closed convex hull of (b(x, U), k(x, U))
as h → 0. Define Gh = Sh ∩ G.

Local consistency in G. Let uh
n denote the actual control action for the

chain at discrete time n. Define ∆ξh
n = ξh

n+1 − ξh
n. Let Eh,α

x,n denote the con-
ditional expectation given all data to step n and that ξh

n = x and uh
n = α.

Suppose that the following “local consistency” conditions hold in Gh:1

Eh,α
x,n ∆ξh

n ≡ bh(x, α)∆θ(x, α) = b(x, α)∆th(x, α) + o(∆th(x, α)),

Eh,α
x,n [∆ξh

n − Eh,α
x,n ∆ξh

n][∆ξh
n − Eh,α

x,n ∆ξh
n]′ ≡ ah(x, α)∆th(x, α)

= a(x)∆th(x, α) + o(∆th(x, α)),

a(x) = σ(x)σ′(x),

supn,ω |ξh
n+1 − ξh

n|
h→ 0,

(2.1)

1 (2.1) defines the functions bh(·) and ah(·)
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for some function ∆th(x, α) > 0, which we call an “interpolation interval.” We
assume that limh→0 supx∈Gh,α∈Uh ∆θ(x, α) = 0, but infx∈Gh,α∈Uh ∆θ(x, α) >
0 for each h > 0.

We see that the chain has the local conditional drift and covariance prop-
erties of (1.1). The local consistency (2.1) is essentially all that is required
of the approximating chain, together with analogous conditions for the re-
flecting boundary or when dealing with impulsive or singular controls. The
interpolation intervals are obtained automatically when the transition func-
tions ph(x, x̃|α) are constructed [58, Chapter 5]. The local consistency need
not hold everywhere. See the example in [58, Section 5.5].

A control policy uh = {uh
n, n < ∞} for the chain is said to be admissible

if
P{ξh

n+1 = x̃|ξh
i , uh

i , i ≤ n} = ph(ξh
n, x̃|uh

n).

It is always assumed that the controls are admissible. Let Euh

x denote the
expectation, given that ξh

0 = x and that either an admissible control sequence
uh = {uh

n, n < ∞} or a feedback control denoted by uh(·) is used.

Local consistency on the reflecting boundary. Let ∂G+
h ⊂ Sh denote

the set of points not in Gh to which the chain might move from points in Gh;
i.e., the set of points x̃ �∈ Gh for which ph(x, x̃|α) > 0 for some x ∈ Gh and
α ∈ Uh. This set is referred to as the “reflecting boundary” for the chain, and
the points in it are called reflecting points. Keep in mind that if the process
is absorbed on the boundary or when it leaves G, then there is no reflection
process.

In analogy to the boundary reflection properties of the process (1.1), we
need to specify the transition probabilities of the approximating chain when
it escapes the set G; i.e., when at points in ∂G+

h . Recall the definition of d(x)
given below (A3.2.1), as the set of reflection directions at the point x. From
points in ∂G+

h , the transitions of the chain are such that they move to Gh,
with the conditional mean direction being a reflection direction at x. This
is codified as the local consistency condition on the reflecting boundary as
follows. We require limh→0 distance(∂G+

h , Gh) = 0, and there are θ1 > 0 and
θ2(h) → 0 as h → 0 such that for all x ∈ ∂G+

h , the conditional mean reflection
directions satisfy

Eh,α
x,n

[
ξh
n+1 − x

]
∈ {aγ : γ ∈ d(x) and θ2(h) ≥ a ≥ θ1h} ,

∆th(x, α) = 0 for x ∈ ∂G+
h .

(2.2)

The last line of (2.2) says that the reflection from states on ∂G+
h is instanta-

neous.
Figure 2.1 illustrates the sets Gh and ∂G+ for a two-dimensional problem.

The set G is the triangle, Gh are the grid points in G, and it is assumed that
from points in Gh, the state can transit one unit in any direction, including
the diagonals. The set ∂G+

h consists of the points labeled r, and the reflection
directions on the three boundaries are given by the arrows.
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Figure 2.1. Illustration of the sets Gh and ∂G+
h .

Figure 2.2 illustrates how the reflection direction can be approximated for
a simple case. The set G is the rectangle bounded by the boundary lines that
are labeled ∂G. The reflection direction vector from the left-hand boundary
is d1, and to attain it from the point x, the chain goes to points {a, b} with
probabilities such that the average direction is d1.
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�� G
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∂G+
h

x

a

b

Figure 2.2. Reflection direction and state transitions.

A dynamical representation of the chain. Define ∆thn = ∆th(ξh
n, uh

n),
and ∆zh

n = [ξh
n+1 − ξh

n]I{ξh
n 	∈G} and let Fh

n denote the minimal σ-algebra
that measures the system data to step n. Let the expectation conditioned
on Fh

n be denoted by Eh
n. Define the vector ∆yh

n with components ∆yh
n,i by
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∆zh
n =

∑
i di∆yh

n,i.
2 Define the martingale difference3

βh
n =

[
∆ξh

n − Eh
n∆ξh

n

]
I{ξh

n∈Gh}. (2.3)

By centering around the conditional expectation, we can write

ξh
n+1 = ξh

n + ∆thnb(ξh
n, uh

n) + βh
n + ∆zh

n + o(∆thn), (2.4)

where βh
n has conditional (on Fh

n ) covariance ah(ξh
n, uh

n)∆thn. The o(∆thn) term
is due to the use of b(·) in lieu of bh(·) (see (2.1)).

A discounted cost function for the approximating chain. By the defi-
nition, di∆yh

n,i = ∆zh
nI{refl is through ith face}. If the reflection goes through a

corner or edge of G, then the face might not be defined uniquely, and we select
any one of the possibilities. Define the interpolated time thn =

∑n−1
i=0 ∆thi . An

analog of (1.3) for the chain is

Wh(x, uh) = Euh

x

∞∑
n=0

e−βth
n
[
k(ξh

n, uh
n)∆thn + q′∆yh

n

]
. (2.5)

It follows from Lemma 3.1 in the next section, together with the fact that
k(·) is bounded, that the discounted cost functions are well defined. There is
a function Y h(·) such that, for ξh

n ∈ ∂G+
h , q′[∆yh

n] = Y h(ξh
n, ξh

n+1). If x is on
the reflecting boundary, then the transitions are not controlled and the α in
ph(x, x̃|α) is irrelevant and will usually be dropped. Then, we can write the
Bellman equation for the cost function (2.5) as

V h(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
α∈U

[∑
x̃

e−β∆th(x,α)ph(x, x̃|α)V h(x̃) + k(x, α)∆th(x, α)
]
, x ∈ Gh,

∑
x̃

ph(x, x̃)
[
V h(x̃) + Y h(x, x̃)

]
, x /∈ Gh.

(2.6)
The discount factor e−β∆th(x,α) can be expensive to compute. One can simplify
by using, for example, [1−β∆th(x, α)]. The exact form of the discount factor is
not critical. Various alternatives and numerical simplifications of the discount
factor are discussed in [58, Chapter 5]. All are asymptotically equivalent, in
that the limits of the solutions as h → 0 are the same.
2 Strictly speaking, as noted in Chapter 4, for the decomposition to hold for ξh

n �=
∂G, the di would have to be replaced by di plus an error that goes to zero as
h → 0, as (A3.2.2) and (2.2) only guarantee that the directions converge as the
state converges to the boundary (from the outside). But for notational simplicity
we always ignore this difference, which has no effect, asymptotically.

3 Here and in the sequel, when we say that some process derived from the chain is
a martingale or martingale difference, the relevant filtration is that generated by
the path and control data.
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Constant interpolation interval. An interpolation interval ∆th(·) that
does not depend on the state or control is sometimes useful to simplify
the coding and will he helpful in the next chapter. This is easily obtained,
and the modified transition probabilities and interpolation interval are read-
ily obtained from the ph(·) and ∆th(·) in the following way. Define the
new interpolation interval ∆

h
= infα∈Uh,ξ∈Gh

∆th(ξ, α). The possibility that

∆
h

< ∆th(x, α) at some (x, α) is compensated for by allowing the state x to
communicate with itself at that point. Let p̄h(x, x̃|α) denote the new transi-
tion probabilities. Conditioned on the event that a state does not communicate
with itself on the current transition, the transition probabilities are the ph(·).
Thus, the general formula for getting p̄h(x, x̃|α) from the ph(·) is ([58, Section
7.7])

p̄h(x, x̃|α) = ph(x, x̃|α)(1 − p̄h(x, x|α)), for x �= x̃,

p̄h(x, x|α) = 1 − ∆
h

∆th(x, α)
.

(2.7)

The transition probabilities from the reflecting states are not affected.
Transforming the transition probabilities so that the interpolation interval

is constant has some advantages, notably for proving convergence for the
ergodic cost problem. Allowing a state to communicate with itself can slow
down the convergence of the numerical computations. But when coding for
the Bellman equation and using a policy improvement algorithm, it is possible
to normalize such that the actual computations are all in terms of the original
data and there is no slow down. See [58, Section 7.7].

6.3 Continuous-Time Interpolations

6.3.1 The Continuous-Time Interpolation ξh(·)
The numerical algorithms are those for the Markov chain approximation. But
the proofs of convergence are based on continuous-time interpolations of the
chain that approximate the controlled process x(·). These interpolations are
not needed for the numerical algorithms. There are two interpolations that
will be needed. The first interpolation, called ξh(·), uses the interpolation
intervals ∆thn = ∆θ(ξh

n, uh
n). Recall the definition of the interpolated time

thn =
∑n−1

0 ∆thi . Then define the continuous-parameter interpolations ξh(·)
by

ξh(t) = ξh
n, uh(t) = uh

n, t ∈ [thn, thn+1). (3.1)

The definition in Equation (3.1) is clear if ξh
n ∈ Gh, as then ∆thn > 0. If

ξh
n ∈ ∂G+

h , the set of reflecting states, then ∆thn = 0 and the interval [thn, thn+1)
is empty. Thus, in the construction of the interpolation, the reflecting states
are ignored and, if ξh

n is a reflecting state, then ξh(thn) = ξh
n+1, the state

that the reflecting state ξh
n goes to. The reflections are “instantaneous” in the

interpolation. Figure 3.1 illustrates the construction.
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Figure 3.1. The interpolation ξh(·).

The interpolated process ξh(·) is piecewise-constant. Given the value of
the current state and control action, the current interval is known.

Discussion. The similarity of the cost function (2.5) to (1.3) and the simi-
larity of the local properties of the interpolation ξh(·) to those of the original
controlled diffusion x(·) suggest that the V h(x) defined by (2.6) would be a
good approximation to V (x) for small values of h. This turns out to be true.
Any sequence ξh(·) has a subsequence that converges to a controlled diffu-
sion of the type (1.1). Suppose that ūh(·) is the optimal control for the chain
{ξh

n, n < ∞} with cost function (for example) (2.5), and suppose that some
subsequence (denoted by ξh(·)) converges to a limit diffusion x(·) with admis-
sible control ũ(·). Then the cost functionals V h(x) for the sequence of chains
will converge to the cost functional W (x, ũ) for the limit process. Because
V (x) is the optimal value function, we have that W (x, ũ) ≥ V (x) and, hence,
lim infh V h(x) ≥ V (x). The reverse inequality can be proved by another ap-
proximation procedure [58, Chapters 10,11], which uses the fact that V h(x)
is the minimal cost function for the controlled chain. See also the details of
the proofs for the models with delays in Chapter 8. The Markov chain ap-
proximation method is thus quite straightforward: (a) get a locally consistent
chain; (b) get a suitable approximation to the original cost function for the
chain; (c) solve the Bellman equation for the optimal value and control for
the approximating chain. Generally, there would not be a subsequence of the
ūh(·) that converges, but there is always a subsequence of the set of relaxed
control representations that converges, and this is sufficient for the proof.

A dynamical representation. For each t ≥ 0, define the time index, where∑−1
0 = 0,

dh(t) = max

{
n :

n−1∑
i=0

∆thi = thn ≤ t

}
.

Note that dh(t) will never be the index of a reflecting state, as the time
intervals for those are zero. Then
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ξh(t) = ξh(0) +
dh(t)−1∑

i=0

bh(ξh
i , uh

i )∆thi + Bh(t) + zh(t), (3.2)

where

Bh(t) =
dh(t)−1∑

i=0

βh
i , zh(t) =

dh(t)−1∑
i=0

∆zh
i , yh(t) =

dh(t)−1∑
i=0

∆yh
i .

Let r(·) denote the relaxed control representation of uh(·). Then in inter-
polated and relaxed control form, and modulo an asymptotically negligible
error,

ξh(t) = x(0) +
∫ t

0

∫
Uh

bh(ξh(s), α)rh(dα ds) + Bh(t) + zh(t). (3.3)

Although the fact will not be used in the sequel, it is interesting to note that
Bh(·) is an approximation to a stochastic integral in the following sense. There
are martingale differences ∆wh

n whose continuous-time interpolation (intervals
∆thn) converges weakly to a standard Wiener process and βh

n ≈ σ(ξh
n)∆wh

n in
the sense that [53, Section 6.6]

dh(t)−1∑
n=1

βh
n =

dh(t)−1∑
n=1

σ(ξh
n)∆wh

n + asymptotically negligible error.

6.3.2 A Markov Continuous-Time Interpolation

By the construction of ξh(·), its interpolation intervals are ∆θ(ξh
n, uh

n), which
are known when ξh

n and uh
n are known. With the cost function (2.5) and

Bellman equation (2.6), the control uh
n depends only on ξh

n, in which case the
discrete parameter process {ξh

n} is Markov, but ξh(·) is not. A very useful
(for the convergence proofs) alternative continuous-parameter interpolation
of {ξh

n, n < ∞} is a Markov (if the control is feedback) process itself. This is
constructed as follows. Let {νn} be random variables that are independent of
the {ξh

n, uh
n} and are mutually independent and identically distributed, with

νn being exponentially distributed with mean unity. Define ∆τh
n = ∆thnνn and

τh
n =

∑n−1
i=0 ∆τh

i . Define ψh(·) by

ψh(t) =
∑

i:τh
i+1≤t

∆ξh
i + ξh

0 . (3.4)

Thus ψh(t) = ξh
n on [τh

n , τh
n+1). ψh(·) is a continuous-time Markov chain,

whose holding times ∆τh
n , given ξh

n, uh
n, are exponentially distributed with

mean ∆thn. The construction is illustrated in Figure 3.2. Let uh
τ (·) denote the

interpolation of the uh
n with intervals ∆τh

n , and relaxed control representation
rh
τ (·).



134 6 Markov Chain Approximations: Introduction

� �� �� �� �

ψh(t)

t

ξh
0

ξh
1

ξh
2

∆τh
0 ∆τh

1 ∆τh
2 ∆τh

3

Figure 3.2. Illustration of the interpolation ψh(·).

Local properties of ψh(·) in Gh. Let Eh,α
x,t (with associated conditional

probability Ph,α
x,t ) denote the expectation given the data

{
ψh(s), uh

τ (s), s ≤ t; τh
n : τh

n ≤ t;ψh(t) = x, uh
τ (t) = α

}
,

where x ∈ Gh. Because the intervals between jumps are ∆thnνn, where νn is
exponentially distributed and independent of Fh

n , the jump rate of ψh(·), when
it is in state x and the control value is α, is 1/∆th(x, α). Given a jump, the
distribution of the next state is given by the ph(x, x̃|α), and the conditional
mean change, for x ∈ Gh and control value α used, is bh(x, α)∆th(x, α). Thus

Ph,α
x,t { jump on [t, t + δ)} =

δ

∆θ(x, α)
+ o(δ).

For δ > 0, define ∆ψh(t) = ψh(t + δ) − ψh(t). The local properties of ψh(·)
are

Ph,α
x,t {ψh(t + δ) = x̃, jump on [t, t + δ)} =

δ

∆θ(x, α)
ph(x, x̃|α) + o(δ), (3.5)

Eh,α
x,t ∆ψh(t) = Ph,α

x,t { jump on [t, t + δ)}
∑

x̃

ph(x, x̃|α)(x̃ − x)

= Ph,α
x,t { jump on [t, t + δ)}bh(x, α)∆θ(x, α)

=
δ

∆th(x, α)
b(x, α)∆θ(x, α) + δo(∆θ(x, α)) + o(δ)

= δ b(x, α) + δo(∆θ(x, α)) + o(δ),

(3.6)

Eh,α
x,t [∆ψh(t)][∆ψh(t)]′ = a(x)δ + δo(∆θ(x, α)) + o(δ). (3.7)
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The behavior at the reflection states is the same as that for ξh(·). Thus,
from the point of view of control, the discrete parameter chain and the two
interpolations are asymptotically equivalent.

Let zh
τ (·) denote the interpolation of

∑n−1
i=0 ∆zh

i with intervals ∆τh
n . We

can decompose ψh(·) in terms of the continuous-time compensator, reflection
term, and martingale as

ψh(t) = x(0) +
∫ t

0

bh(ψh(s), uh
τ (s))ds + Bh

τ (t) + zh
τ (t), (3.8)

where the quadratic variation process of the martingale4 Bh
τ (t) is

∫ t

0

ah(ψh(s), uh
τ (s))ds.

In terms of the relaxed controls,∫ t

0

bh(ψh(s), uh
τ (s))ds =

∫ t

0

∫
Uh

bh(ψh(s), α)rh,′
τ (s, dα)ds.

It can be shown that ([58, Section 10.4.1]) there is a martingale wh(·) (with
respect to the filtration generated by the path and control processes, possibly
augmented by an “independent” Wiener process) such that

Bh
τ (t) =

∫ t

0

σh(ψh(s))dwh(s) =
∫ t

0

σ(ψh(s))dwh(s) + εh(t),

where σh(·)[σh(·)]′ = ah(·) (recall the definition of ah(·) in (2.1)), wh(·) has
quadratic variation process It and converges weakly to a standard (real or
vector-valued, according to the case) Wiener process. The martingale εh(·) is
due to the difference between σ(x) and σh(x, α) and

lim
h→0

sup
uh

E sup
s≤t

|εh(s)|2 = 0 (3.9)

for each t. Thus

ψh(t) = x(0) +
∫ t

0

∫
U

bh(ψh(s), α)rh,′
τ (dα, s)ds

+
∫ t

0

σ(ψh(s))dwh(s) + zh
τ (t) + εh(t).

(3.10)

Estimates of the reflection terms. The following result [58, Theorem 1.3,
Chapter 11] is an analog of Lemma 3.2.1 for application to the approximating
chains.
4 In [58], Mh(·) was used for Bh

τ (·).
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Lemma 3.1. Assume (A3.2.1)–(A3.2.2). Suppose that the chain is modified so
that we still have limh→0 supn ∆ξh

n = 0, but in (2.1), bh(ξh
n, uh

n) and ah(ξh
n, uh

n)
are replaced by general measurable processes b̃h(n) and ãh(n), resp., that are
Fh

n measurable and bounded in norm by some constant K. Suppose that local
consistency continues to hold on the reflecting boundary. Then the correspond-
ing reflection terms satisfy

lim
T→0

lim sup
h→0

sup
b̃h,ãh,x(0)

E
∣∣zh
∣∣2 (T ) = 0.

For any T < ∞,
lim sup

h→0
sup

b̃h,ãh,x(0)

E
∣∣zh
∣∣2 (T ) < ∞.

The conclusions hold if zh
τ (·) replaces zh(·).

Note on convergence. For any subsequence h → 0, there is a further subse-
quence (also indexed by h for simplicity) such that (ψh(·), rh

τ (·), wh(·), zh
τ (·))

converges weakly to random processes (x(·), r(·), w(·), z(·)), where r(·) is a
relaxed control, (x(·), r(·), w(·), z(·)) is nonanticipative with respect to the
standard vector-valued Wiener process w(·), and the set satisfies

x(t) = x(0) +
∫ t

0

∫
U

b(x(s), α)r′(dα, s)ds +
∫ t

0

σ(x(s))dw(s) + z(t),

where z(·) is the reflection term. Along the selected subsequence, Wh(x, rh) →
W (x, r). The proofs of these facts are in [58, Chapters 10, 11]. It is sufficient
to require local consistency, continuity of the various dynamical and cost rate
functions (this can be weakened, see the reference), and weak-sense uniqueness
of the solution for any relaxed control. For the problem with boundary reflec-
tions, (A3.2.1) and (A3.2.2) are needed, whereas for the absorbing boundary
case, we need (A3.4.1) and (A3.4.2).

The dynamic programming equation for cost (2.5) and process
ψh(·). One natural analog of the cost function (2.5) for the process ψh(·),
with continuous discounting and using the fact that ψh(·) is constant on the
intervals [τh

n , τh
n+1), is

Wh(x, uh) = Euh

x

∞∑
n=0

e−βτh
n

[(∫ τh
n+1−τh

n

0

e−βtdt

)
k(ξh

n, uh
n) + q′∆yh

n

]

= Euh

x

∫ ∞

0

e−βt
[
k(ψh(t), uh

τ (t))dt + q′dyh
τ (t)

]
.

(3.11)
The dynamic programming equation is the same as (2.6) except for an

asymptotically negligible difference in the discount factor. Because
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Eh,α
x,n

∫ ∆τh
n

0

e−βsds =
∆θ(x, α)

1 + β∆θ(x, α)

and
Eh,α

x,n e−β∆τh
n =

1
1 + β∆θ(x, α)

,

the effective average discount factor from time τh
n to time τh

n+1, given that
ξh
n = x and uh

n = α, is

1
1 + β∆θ(x, α)

= exp[−β∆θ(x, α)](1 + O(∆θ(x, α))).

Then the dynamic programming equation for the controlled chain {ξh
n, n <

∞} and cost (3.11) is

V h(x) =

min
α∈U

[
1

1 + β∆θ(x, α)

∑
x̃

ph(x, x̃|α)V h(x̃) + k(x, α)
∆θ(x, α)

1 + β∆θ(x, α)

]
,

(3.12)
for x ∈ Gh. For x ∈ ∂G+

h , it is the same as in (2.6). As h → 0, the differences
between the solutions to (2.6) and (3.12) goes to zero.

6.4 The “Explicit” Approximation Procedure

Numerous approaches to the construction of the transition probabilities
ph(x, x̃|α) of the approximating chains are discussed in [58, Chapters 5 and
12] and the reader is referred to that reference for full details. However, to
motivate some of the terminology that is to be used, a brief description of a
simple procedure for the construction in G will be given, for a one-dimensional
model (hence G is an interval). The procedure is intended to be illustrative
of one possibility. The method is based on finite-difference approximations.
But these are used in a purely formal way to get the transition probabilities.
The methods of proof are purely probabilistic and no analysis based on finite
differences is used. What matters is only that the end result satisfies (2.1).

Example of the construction of the transition probabilities. Consider
the one-dimensional problem dx = b(x, u)dt + σ(x)dw. For an arbitrary con-
tinuous function k(·), let us formally consider the partial differential equation

LαW (x, α) + k(x, α) = 0, x ∈ (0, B), (4.1)

where Lα is the differential operator of x(·) when the control is fixed at α;
namely,

Lαf(x) = b(x, α)
∂f(x)

∂x
+

1
2
σ2(x)

∂2f(x)
∂x2

.



138 6 Markov Chain Approximations: Introduction

Suppose that
inf

α∈Uh,x∈G
[σ2(x) − h|b(x, α)|] > 0 (4.2)

for the values of h of concern. The function k(·) is just a “place holder.” Its
exact values are irrelevant.

Let us use the finite-difference approximations

fx(x) → f(x + h) − f(x − h)
2h

(4.3)

for the first derivative, and

fxx(x) → f(x + h) + f(x − h) − 2f(x)
h2

(4.4)

for the second derivative. Letting W (x, α) replace f(x), substitute (4.3) and
(4.4) into (4.1) and collect terms to yield the approximation to (4.1) with
solution Wh(x, α):

Wh(x + h, α) − Wh(x − h, α)
2h

b(x, α)

+
Wh(x + h, a) + Wh(x − h, α) − 2Wh(x, α)

h2

σ2(x)
2

+ k(x, a) = 0,

or (which defines the functions ph(·) and ∆th(·))

Wh(x, α) =
σ2(x) + hb(x)

2σ2(x)
Wh(x + h, α) +

σ2(x) − hb(x, a)
2σ2(x)

Wh(x − h, α)

+k(x, α)
h2

σ2(x)
= ph(x, x + h|α)Wh(x + h, α) + ph(x, x − h|α)Wh(x − h, α)

+k(x, a)∆th(x, α).
(4.5)

For x̃ �= x ± h, set ph(x, x̃|α) = 0. The ph(·) are transition probabilities for
a Markov chain and are locally consistent with the process x(·), in the sense
that (2.1) holds. We can see that the interpolation interval ∆th(·) appeared
as a consequence of the derivation of the transition probabilities.

If the condition (4.2) does not hold, then use the noncentral (“upwind”)
differences

fx(x) → f(x + h) − f(x)
h

, if b(x, α) ≥ 0,

fx(x) → f(x) − f(x − h)
h

, if b(x, α) < 0.

(4.6)

That is, if the velocity at a point is nonnegative, then use the forward dif-
ference, and if the velocity at a point is negative, then use the backward
difference.
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Schemes such as (4.6) are known as the “upwind” approximation method
in numerical analysis. Define the positive and negative parts of a real number
by: a+ = max[a, 0], a− = max[−a, 0]. Using (4.6) in lieu of (4.3) and collecting
terms yields

ph(x, x + h|α) =
σ2(x)/2 + hb+(x, α)
σ2(x) + h|b(x, α)| ,

ph(x, x − h|α) =
σ2(x)/2 + hb−(x, α)
σ2(x) + h|b(x, α)| , (4.7)

∆th(x, α) =
h2

σ2(x) + h|b(x, α)| .

For x̃ �= x ± h, set ph(x, x̃|α) = 0. Then the constructed ph(·) are locally
consistent transition probabilities in G for a controlled Markov chain. We see
that in either case, the formal finite-difference approximation can be written
as

Wh(x, α) =
∑

x̃

ph(x, x̃|α)Wh(x̃, α) + k(x, α)∆θ(x, α) (4.8)

for x ∈ Gh.
We emphasize that no claim is made that the convergence of the finite-

difference approximations can be proved via the classical methods of numerical
analysis. The finite-difference approximation is used only to get the transition
probabilities of a Markov chain that is locally consistent in G.

A multidimensional example. For illustrative purposes, here is another
special case from [58, Chapter 5]. Let the matrix a(·) be diagonal with entries
aii(x). First suppose that

inf
x,α

[aii(x) − h|bi(x, α)|] ≥ 0, for all i. (4.9)

Let ei denote the unit vector in the ith coordinate direction and define A(x) =∑
j ajj(x). Then a development analogous to what led from (4.1) to (4.5)

yields the locally consistent transition probabilities. for x ∈ Gh,

ph(x, x ± eih|α) =
aii(x) ± hbi(x, α)

2A(x)
, ∆th(x, α) =

h2

A(x)
. (4.10)

If for a point x ∈ Gh, (4.9) fails at coordinates i ∈ I, then “upwind” forms
analogous to (4.6) can be used for the first derivatives at coordinates i ∈ I to
yield the locally consistent values

∆th(x, α) =
h2

A(x) +
∑

j∈I h|bj(x, α)| ,

ph(x, x ± eih|α) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

aii(x)/2 ± hbi(x, α)/2
A(x) +

∑
j∈I h|bj(x, α)| , i �∈ I,

aii(x)/2 + hb±i (x, α)
A(x) +

∑
j∈I h|bj(x, α)| , i ∈ I,

(4.11)
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where the nonlisted ph(x, x̃|α) are zero.

6.5 The “Implicit” Approximating Processes

We will call processes that satisfy the local consistency condition (2.1) explicit
approximating processes. The name derives partly from the so-called explicit
finite-difference approximations that were used in the example of the previous
subsection. But the name also derives from the fact that the advance of time is
explicit: at step n, interpolated time advances by ∆th(ξh

n, uh
n) or ∆τh(ξh

n, uh
n),

according to whether the interpolation ξh(·) or ψh(·) is used.
There is another approach, leading to what we will call an implicit ap-

proximating procedure. The fundamental difference between the explicit and
implicit approaches to the Markov chain approximation lies in the fact that
in the latter the time variable is treated as just another state variable. It
is discretized in the same manner as are the other state variables. For the
no-delay case, the approximating Markov chain has a state space that is a
discretization of the (x, t)-space, and the component of the state of the chain
that comes from the original time variable does not necessarily increase its
value at each step. The idea is analogous when there are delays, and leads to
some interesting and possibly more efficient numerical schemes, as will be seen
in the next three chapters. The idea will be motivated by an example based
on finite-difference approximations. Keep in mind that the finite-difference
method is used only as one convenient method of constructing the transition
probabilities. As for the explicit method, the proofs of convergence are purely
probabilistic, and no “finite-difference” analysis is used. A form of the so-called
implicit finite-difference approximation will be used to construct the transi-
tion probabilities in the example below, which provides another motivation
for calling the general procedure “implicit.”

An example. As noted above, the essential difference between what are
called the explicit and implicit approximation approaches to the Markov chain
approximation lies in the fact that in the former the time variable is treated
differently than the state variables: It records interpolated time and its value
increases by ∆thn or ∆τh

n at step n if ξh
n ∈ Gh. In the implicit approximation

approach, the time variable is just another state variable, and its value does
not necessarily increase at each step where ξh

n ∈ Gh. The following example,
analogous to the one based on finite differences in the previous section, will
illustrate the differences.

Continue to use the special one-dimensional model x(·) in the first example
of the previous section. Fix the control at the value α and for fixed T < ∞
and any 0 ≤ t < T, consider the cost function

W (x, t, α) = Eα
x,t

∫ T

t

k(x(s), α)ds + Eα
x,tg(x(T )), (5.1)
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where g(·) is an arbitrary continuous function (which will serve only as a place
holder). Formally, W (·) satisfies the partial differential equation:

Wt(x, t, α) + LαW (x, t, α) + k(x, α) = 0, t < T, (5.2)

with the boundary condition W (x, T, α) = g(x). As usual in the dynamic
computation of cost functions, (5.2) has a terminal condition and is solved
backwards in time.5

Let δ > 0 denote the discretization interval for time, and suppose that T
is an integral multiple of δ. Use the approximations

ft(x, t)→ f(x, t + δ) − f(x, t)
δ

,

fx(x, t)→ f(x + h, t) − f(x − h, t)
2h

,

fxx(x, t)→ f(x + h, t) + f(x − h, t) − 2f(x, t)
h2

.

(5.3)

Note that the last two equations of (5.3) use the argument t (rather than t+δ)
on the right side.

Suppose that σ2(x) > h|b(x, α)| for all (x, α). Using (5.3) to approximate
the partial differential equation (5.2), we obtain the finite-difference approxi-
mation [

1 + σ2(x)
δ

h2

]
Wh,δ(x, nδ, α)

=
[
σ2(x)

2
δ

h2
+

b(x, α)δ
2h

]
Wh,δ(x + h, nδ, α)

+
[
σ2(x)

2
δ

h2
− b(x, α)δ

2h

]
Wh,δ(x − h, nδ, α)

+Wh,δ(x, nδ + δ, α) + k(x, α)δ.

With the obvious definitions of ph,δ(·) and ∆th,δ(·), let us divide the terms
in the above expression by the coefficient of Wh,δ(x, nδ, α) and rewrite it as

Wh,δ(x, nδ, α)=
∑

x̃

ph,δ(x, nδ; x̃, nδ|α)Wh,δ(x̃, nδ, α)

+ ph,δ(x, nδ; x, nδ + δ|α)Wh,δ(x, nδ + δ, α)

+ k(x, α)∆th,δ(x, α),

(5.4)

with boundary condition Wh,δ(x, T, α) = g(x). The values of the undefined
ph,δ(x, nδ; x̃, nδ|α) are set to zero. The ph,δ(·) are nonnegative and satisfy

5 (5.2) is an equation on a finite time interval [0, T ], but the derived transition
probabilities will be useable on [0,∞).
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x̃

ph,δ(x, nδ; x̃, nδ|α) + ph,δ(x, nδ; x, nδ + δ|α) = 1.

It can be seen from the last two expressions that we can consider the ph,δ(·|α)
to be one-step transition probabilities of a Markov chain {ζh,δ

n , n < ∞} on
the “(x, t)-state space”

{0,±h,±2h, . . .} × {0, δ, 2δ, . . .},

under control value α. The ph,δ(x, nδ; x̃, nδ|α) is the probability that the
path state goes from x to x̃ and the time state does not advance, and
ph,δ(x, nδ;x, nδ + δ|α) is the probability that the path state does not change
but the time state advances by δ, all under control value α. The value of T
does not appear in (5.4) and its value is irrelevant.

It is evident that time is being treated as just another state variable. It
can be shown that for x �= x̃ we have

ph,δ(x, nδ; x̃, nδ|α) = ph(x, x̃|α) × normalization(x), (5.5)

where the ph(x, x̃|α) are the transition probabilities defined by (4.5).
Write ζh,δ

n = (φh,δ
n , ξh,δ

n ), where φh,δ
n represents the time variable, and ξh,δ

n

represents the “spatial” state. Let uh,δ
n denote the control that is used at step

n. Let Eh,δ,α
x,n denote the expectation conditioned on the data to step n, with

ξh,δ
n = x and uh,δ

n = α. Define ∆ξh,δ
n = ξh,δ

n+1 − ξh,δ
n and ∆φh,δ

n = φh,δ
n+1 − φh,δ

n .
Then for the above example we have

Eh,δ,α
x,n ∆ξh,δ

n = b(x, α)∆th,δ(x, α),

covh,δ,α
x,n ∆ξh,δ

n = σ2(x)∆th,δ(x, α) + ∆th,δ(x, α)O(h),

Eh,δ,α
x,n ∆φh,δ

n = ∆th,δ(x, α).

Thus, the “spatial” component of the controlled chain is locally consistent in
the sense of (2.1), but with interpolation intervals ∆th,δ

n = ∆th,δ(ξh,δ
n , uh,δ

n ).
The conditional mean increment of the “time” component of the state is
∆th,δ(x, α), where ξh,δ

n = x and uh,δ
n = α. We have constructed an approxi-

mating Markov chain via an “implicit” method. In the traditional use of the
approximation (5.3) in numerical analysis, it was called an implicit approxi-
mation method because (5.4) cannot be solved by a simple backward iteration.
At each n, (5.4) determines the values of the {W h,δ(x, nδ, u)} implicitly.

6.5.1 The General Implicit Approximation Method

The above special case illustrated one method of getting the implicit ap-
proximation. However, there is a general method for getting the transition
probabilities for the implicit approximation method that starts with any set
ph(·), ∆th(·) satisfying (2.1) and does not require the use of any particular



6.5 The “Implicit” Approximating Processes 143

method of construction. It is based simply on an extension of the representa-
tion (5.5). Suppose that at the current step the time variable does not advance.
Then, conditioned on this event and on the value of the current spatial state,
the distribution of the next spatial state is just ph(x, x̃|α). So one needs only
determine the probability that the time variable advances, conditioned on the
current state. This is obtained by a “local consistency” argument, and no mat-
ter how the ph(·) were derived, the (no-delay) transition probabilities ph,δ(·)
and interpolation interval ∆th,δ(·) for the implicit approximation procedure
can be determined from the ph(·) and ∆th(·) by the formulas [58, Section
12.4], for x ∈ Gh,

ph(x, x̃|α) =
ph,δ(x, nδ; x̃, nδ|α)

1 − ph,δ(x, nδ; x, nδ + δ|α)
,

ph,δ(x, nδ; x, nδ + δ|α) =
∆th(x, α)

∆th(x, α) + δ
,

∆th,δ(x, α) =
δ∆th(x, α)

∆th(x, α) + δ
.

(5.6)

The reader is referred to the reference for the full details of the derivation.
For x ∈ Gh, the general local consistency equations for the implicit ap-

proximation are (these formulas define bh,δ(·) and ah,δ(·))

Eh,δ,α
x,n ∆ξh,δ

n = bh,δ(x, α)∆th,δ(x, α)

= b(x, α)∆th,δ(x, α) + o(∆th,δ(x, α)),

covh,δ,α
x,n ∆ξh,δ

n (x, α) = ah,δ(x, α)∆th,δ(x, α)

= a(x)∆th,δ(x, α) + o(∆th,δ(x, α)),

Eh,δ,α
x,n ∆φh,δ

n = ∆th,δ(x, α),

(5.7a)

sup
x∈Gh,α

∆th(x, α)/δ → 0 as h, δ → 0. (5.7b)

Because the reflection is instantaneous if the spatial state leaves G, the tran-
sition probabilities at the reflecting states are unchanged and the local consis-
tency condition for the reflecting states is the analog of (2.2). In the no-delay
case, the implicit approximation procedure was used in [58] largely to deal
with control problems that were defined over a fixed finite time interval. It
will be used in a quite different way in the delay case in the following chapters,
where it will be helpful in dealing with the memory requirements.

Figure 5.1 illustrates the explicit and the implicit state transitions for a
one-dimensional example. The horizontal axis denotes interpolated time, and
the vertical axis denotes the spatial variable. For the explicit approximation
procedure, the time interval at point x and control value α is ∆th(x, α), and
the point x transits to either point a or b. For the implicit approximation
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procedure, the point (space, time)= (x, φ) goes to either (a, φ) or (b, φ) if
time does not advance and to (x, φ + δ) if time advances.

�
�

�
���

�
�

�
��	

x
∆th(x, α) t

a

b





�

�(x, φ) t

(a, φ)

(b, φ)

(x, φ + δ)δ

(a) Explicit approximation. (b) Implicit approximation.
Figure 5.1.

6.5.2 Continuous-Time Interpolations

Let ∆zh,δ
n denote the reflection term for the ξh,δ

n process, and define the com-
ponents ∆yh,δ

i,n by ∆zh,δ
n =

∑
i di∆yh,δ

i,n . Define ∆th,δ
n = ∆th,δ(ξh,δ

n , uh,δ
n ) and

the martingale differences

βh,δ
n =

[(
ξh,δ
n+1 − ξh,δ

n

)
− bh,δ(ξh,δ, uh,δ

n )∆th,δ
n

]
I{ξh,δ

n ∈Gh},

βh,δ
0,n =

(
φh,δ

n+1 − φh,δ
n

)
− ∆th,δ

n .

The conditional covariance of βh,δ
0,n is o(∆th,δ

n ) and that of βh,δ
n is a(ξh,δ

n )∆th,δ
n +

o(∆th,δ
n ). We can write

ξh,δ
n+1 = ξh,δ

n + b(ξh,δ
n , uh,δ

n )∆th,δ
n + o(∆th,δ

n ) + βh,δ
n + ∆zh,δ

n ,

φh,δ
n+1 = φh,δ

n + ∆th,δ
n + βh,δ

0,n.
(5.8)

Define the “interpolated” times th,δ
n =

∑n−1
0 ∆th,δ

i . Define the continuous-
parameter interpolations ξh,δ(·), etc., as follows. For t ∈ [th,δ

n , th,δ
n+1), set

ξh,δ(t) = ξh,δ
n , φh,δ(t) = φh,δ

n uh,δ(t) = uh,δ
n ,

zh,δ(t) =
n−1∑
i=0

∆zh,δ
i , yh,δ(t) =

n−1∑
i=0

∆yh,δ
i , Bh,δ(t) =

n−1∑
i=0

βh,δ
i .

(5.9)

Set ζh,δ(·) = (ξh,δ(·), φh,δ(·)). With rh,δ(·) denoting the relaxed control rep-
resentation of uh,δ(·), we have the analog of (3.3), modulo an asymptotically
negligible error,
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ξh,δ(t) = x(0) +
∫ t

0

∫
Uh

bh,δ(ξh,δ(s), α)rh,δ(dα ds) + Bh,δ(t) + zh,δ(t). (5.10)

A Markov process interpolation. Analogously to what was done in Section
3 for the explicit approximation case, let {νn} be random variables that are in-
dependent of the {ξh,δ

n , uh,δ
n , n < ∞} and are mutually independent and iden-

tically distributed, with νn being exponentially distributed with mean unity.
Define ∆τh,δ

n = νn∆th,δ
n , and τh,δ

n =
∑n−1

i=0 ∆τh,δ
i . Define the continuous-

parameter interpolations: For t ∈ [τh,δ
n , τh,δ

n+1),

ψh,δ(t) = ξh,δ
n , φh,δ

τ (t) = φh,δ
n uh,δ

τ (t) = uh,δ
n ,

zh,δ
τ (t) =

n−1∑
i=0

∆zh,δ
i , yh,δ

τ (t) =
n−1∑
i=0

∆yh,δ
i , Bh,δ

τ (t) =
n−1∑
i=0

βh,δ
i .

(5.11)

Set ζh,δ
τ (·) = (ψh,δ(·), φh,δ

τ (·)). With rh,δ
τ (·) denoting the relaxed control rep-

resentation of uh,δ
τ (·), we have the analog of (3.10):

ψh,δ(t) = x(0)+
∫ t

0

∫
Uh

bh,δ(ψh,δ(s), α)rh,δ
τ (dα ds)+Bh,δ

τ (t)+zh,δ
τ (t). (5.12)

If the control is feedback, then ψh,δ(·) is a continuous-time Markov chain.
As noted in connection with (3.10), there is a martingale ([58, Section

10.4.1]) wh,δ(·) (with respect to the filtration generated by the state and
control processes, possibly augmented by an “independent” Wiener process)
such that

Bh,δ
τ (t) =

∫ t

0

σ(ψh,δ(s))dwh,δ(s) + εh,δ(t),

where wh,δ(·) has quadratic variation process It and converges weakly to
a standard Wiener process. The martingale εh,δ(·) satisfies (3.9), with h, δ
replacing h.

An alternative approximating chain. There is an alternative way of in-
terpolating the ξh,δ

n that will be used in Chapters 7 and 8, which looks at
the process only at those times that the time variable φh,δ

n advances. Define
vh,δ
0 = 0 and for n > 0 define

vh,δ
n = min{i > vh,δ

n−1 : φh,δ
i − φh,δ

i−1 = δ}. (5.13)

Then define ξ̃h,δ
n = ξh,δ

vh,δ
n

. Define the continuous-parameter interpolation

ξ̃h,δ(t) = ξ̃h,δ
n for t ∈ [nδ, nδ + δ). Define ũh,δ(·) analogously. It will be seen in

Theorem 5.1 that ξ̃h,δ(·) is asymptotically equal to ξh,δ(·) in the sense that
the difference converges to zero.
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6.5.3 Representations of the Cost Function

The timescale based on φh,δ(·) will be useful in Chapters 7 and 8. To prepare
for that, we now give some representations of the cost functions in terms of
it.

Control on [0, T ]. Recall the cost criterion (5.1) and the equation (5.4) whose
solution formally approximates (5.1). The solution to (5.4) can be represented
in terms of the path up to the first time that the time component φh,δ

n reaches
or exceeds the value T. To do this we start by defining the stopping time

Nh,δ(T ) = min{n : φh,δ
n ≥ T}. (5.14)

Let uh,δ = {uh,δ
n , n < ∞} be an admissible control sequence and let

Eh,δ,uh,δ

x,n denote the expectation given the data to step n, that uh,δ is used,
and that ξh,δ

n = x. Then the solution to (5.4) for the general vector-valued
state case, with use of the control sequence uh,δ in place of the constant value
α, and with the boundary condition Wh,δ(x, T, u) = g(x) and φh,δ

n = t, can
be written as

Wh,δ(x, t, uh,δ) = Eh,δ,uh,δ

x,n

⎡
⎣Nh,δ(T )−1∑

i=n

k(ξh,δ
i , uh,δ

i )∆th,δ
i + g(ξh,δ

Nh,δ(T )
)

⎤
⎦

= Eh,δ,uh,δ

x,n

[ ∞∑
i=n

k(ξh,δ
i , uh,δ

i )∆th,δ
i I{φh,δ

i
<T} + g(ξh,δ

Nh,δ(T )
)

]
.

(5.15)
Because ∆th,δ(x, α) = Eh,δ,α

x,i [φh,δ
i+1 − φh,δ

i ], (5.15) equals

Eh,δ,uh,δ

x,n

⎡
⎣Nh,δ(T )−1∑

i=n

k(ξh,δ
i , uh,δ

i )[φh,δ
i+1 − φh,δ

i ] + g(ξh,δ
Nh,δ(T )

)

⎤
⎦ . (5.16)

We can write this last expression as

Eh,δ,uh,δ

x,t

[∫ T

t

k(ξ̃h,δ(s), ũh,δ(s))ds + g(ξ̃h,δ(T ))

]
.

The discounted cost function: Reflecting diffusion. Consider the dis-
counted cost

Wh,δ(x, uh,δ) = Eh,δ,uh,δ

x

∞∑
n=0

e−βth,δ
n
[
k(ξh,δ

n , uh,δ
n )∆th,δ

n + q′∆yh,δ
n

]
. (5.17)

By the results of the next subsection, (5.17) is asymptotically equal to
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Eh,δ,uh,δ

x

∞∑
n=0

e−βφh,δ
n

[
k(ξh,δ

n , uh,δ
n )

(
φh,δ

n+1 − φh,δ
n

)
+ q′∆yh,δ

n

]
. (5.18)

Modulo an asymptotically negligible interpolation error and in relaxed control
notation, (5.17) is also equal to

Eh,δ,uh,δ

x

∫ ∞

0

∫
Uh

e−βt
[
k(ξh,δ(s), α)rh,δ(dα ds) + q′dyh,δ(s)

]
. (5.19)

By the results of the next subsection, this is asymptotically equal to

Eh,δ,uh,δ

x

∫ ∞

0

∫
Uh

e−βt
[
k(ψh,δ(s), α)rh,δ

τ (dα ds) + q′dyh,δ
τ (s)

]
. (5.20)

The errors in all cases go to zero as h, δ → 0, uniformly in the initial data
and control. Recalling from (5.6) that ph,δ(x, nδ, x, nδ + δ|α)δ = ∆th,δ(x, α),
we can write the Bellman equation for (5.18) as follows (the current value of
the time variable φh,δ is irrelevant): For x ∈ Gh,

V h,δ(x) = min
α

[∑
x̃

ph,δ(x, nδ, x̃, nδ|α)V h,δ(x̃)

+e−βδph,δ(x, nδ, x, nδ + δ|α)V h,δ(x) + k(x, α)∆th,δ(x, α)
]
.

(5.21)

Recall the definition of the function Y h(·) above (2.6) and that the transitions
from the reflecting states are not controlled. Then, for x ∈ ∂G+

h , the set of
reflecting states,

V h,δ(x) =
∑

x̃

ph(x, x̃)
[
V h,δ(x̃) + Y h(x, x̃)

]
. (5.22)

In (5.22), we use the expression ph(x, x̃) for the transition probabilities as the
transitions for the reflecting states do not depend on δ or α. Theorem 5.1
implies that the optimal values determined by (2.6) and ((5.21), (5.22)) are
asymptotically equal.

6.5.4 Asymptotic Equivalence of the Timescales

For each t ≥ 0, define the time indices:

dh(t) = max

{
n :

n−1∑
i=0

∆thi = thn ≤ t

}
,

dh,δ(t) = max

{
n :

n−1∑
i=0

∆th,δ
i = th,δ

n ≤ t

}
,

dh
τ (t) = max

{
n : τh

n ≤ t
}

, dh,δ
τ (t) = max

{
n : τh,δ

n ≤ t
}

.

(5.23a)
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As noted above (3.2), dh(t) will never be the index of a reflecting state, as the
interpolation intervals for those are zero. Define the stopping times

d̃h(t) = min

{
n :

n−1∑
i=0

∆thi = thn ≥ t

}
,

d̃h,δ(t) = min

{
n :

n−1∑
i=0

∆th,δ
i = th,δ

n ≥ t

}
,

d̃h
τ (t) = min

{
n : τh

n ≥ t
}

, d̃h,δ
τ (t) = min

{
n : τh,δ

n ≥ t
}

.

(5.23b)

Theorem 5.1. For each t > 0,

lim
h→0

sup
uh,x

Eh,uh

x sup
s≤t

⎡
⎣d̃h(s)∑

i=0

(∆τh
i − ∆thi )

⎤
⎦

2

= 0. (5.24)

Also,

lim
h→0, δ→0

sup
uh,δ,x

Eh,δ,uh,δ

x sup
s≤t

⎡
⎣d̃h,δ(s)∑

i=0

(∆τh,δ
i − ∆th,δ

i )

⎤
⎦

2

= 0. (5.25)

Equation (5.24) holds with d̃h
τ (·) replacing d̃h(·), and (5.25) holds with d̃h,δ

τ (·)
replacing d̃h,δ(·). Let Ih,δ

n be the indicator function of the event that time
advances for the implicit approximation procedure at step n. Then (5.25) also
holds with d̃h,δ

τ (·) used and ∆thn(1 − Ih,δ
n ) replacing ∆th,δ

n and ∆τh
n (1 − Ih,δ

n )
replacing ∆τh,δ

n .
Let φh,δ(·) denote the interpolation of the φh,δ

n with the intervals ∆th,δ
n .

Then φh,δ(·) converges weakly and in mean square (uniformly on any finite
time interval) to the process with value t at time t. The result of the last
sentence holds if the intervals are ∆τh,δ

n .

Proof. Owing to the mutual independence of the exponentially distributed
random variables {νn} and their independence of everything else, the discrete
parameter process Ln =

∑n
i=0(∆τh

i − ∆thi ) is a martingale. By Doob’s in-
equality for martingales, the expectation of the sups≤t of the squared term in
(5.24), conditioned on {∆thi }, satisfies

Eh,uh

x sup
s≤t

⎡
⎣d̃h(s)∑

i=0

[
∆τh

i − ∆thi
]2 ∣∣∣∣∆thi , i < ∞

⎤
⎦

≤ 4Eh,uh

x

⎡
⎣d̃h(t)∑

i=0

[
∆τh

i − ∆thi
]2 ∣∣∣∣∆thi , i < ∞

⎤
⎦

= 4
d̃h(t)∑
i=0

[∆thi ]2 ≤ 4(t + sup
n

∆thn) sup
n

∆thn
h→ 0,
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which yields (5.24). Equation (5.25) and the rest of the first paragraph of the
theorem are proved in the same way.

To prove the assertions concerning the asymptotic behavior of φh,δ(·),
write

φh,δ(t) =
dh,δ(t)−1∑

i=0

∆th,δ
i +

dh,δ(t)−1∑
i=0

βh,δ
0,i .

The first sum equals t, modulo supn ∆th,δ
n . The variance of the martingale

term is bounded by δt, modulo δ +supn ∆th,δ
n , and the term converges weakly

to the zero process. This yields the next to last assertion of the theorem. This
and (5.25) yield the last assertion of the theorem.

6.5.5 Convergence

The proofs of convergence for the explicit approximation procedure for the no-
delay case of this chapter are in [58, Chapter 10 and 11]. The main difference
in the proofs of the explicit and implicit approximation procedures lies in the
fact that the timescales are different. These are shown to be asymptotically
equal by Theorem 5.1, and the results are summarized in the next theorem.
See the proofs of convergence for the delay case in Chapter 8 for more detail.

Theorem 5.2. Let {ξh
n} and {ξh,δ

n } be locally consistent. Assume the model
((1.1), (1.3)), or ((1.2), (1.4)) in relaxed control notation. Assume (A3.2.1),
(A3.2.2) and (A3.4.3). Let b(·), σ(·), k(·) be continuous, U compact, and Uh →
U as h → 0. Let (1.2) have a unique weak-sense solution for each admissible
relaxed control. Then V h(·) given by (2.6) and V h,δ(·) given by (5.21) converge
to the optimal cost for ((1.2), (1.4)), as h → 0 and (h, δ) → 0, respectively.
The analogous results hold for the cost function (1.5) if (A3.4.1) and (A3.4.2)
replace the conditions (A3.2.1) and (A3.2.2).

6.6 Singular and Impulsive Controls

6.6.1 Singular Controls

Consider the specialization of the model (3.6.1):

dx(t) = b(x(t))dt + q1(x(t−))dλ(t) + σ(x(t))dw(t) + dz(t), (6.1)

where
dλ(t) = λ(t) − λ(t − dt) =

∑
i

vidλi(t),

where the vi are direction vectors and the λi(·) are real-valued and right
continuous. Let the cost function be
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W (x, λ) = Eλ
x

∫ ∞

0

e−βt [k(x(t))dt + q′dy(t) + q′λdλ(t)] . (6.2)

The components qλ,i of the vector qλ are all positive. The development of
the Markov chain approximation for the singular control model is in [58,
Section 8.3] and the proof of convergence is in [58, Section 11.2].6 One can
use ordinary and singular controls together, but we confine the discussion to
the strictly singular control problem for expositional simplicity. Let ph(x, x̃)
and ∆th(x) denote a transition probability and interpolation interval that are
locally consistent for the uncontrolled problem, which is (6.1) with λ(·) = 0.
Let ∆λh

n, with components ∆λh
i,n, denote the increment in the control at step

n. The cost function for the chain is

Wh(x, λh) = Eh,λh

x

∞∑
n=0

e−βθn
[
k(ξh

n)∆θn + q′λ∆λh
n + q′∆yh

n

]
. (6.3)

The case where q1(·) is constant. Until further notice, suppose that q1(·)
does not depend on x, which is the case considered in [58]. Then the controls
in (6.1) and (6.2) appear in a purely additive fashion. Hence, if we wish to
realize some ∆λh

n > 0 at step n, whatever its value, we can consider it to be
the sum of a sequence of very small impulses occurring instantaneously. This
idea will be used for the construction of the approximating Markov chain for
the controlled problem. Divide the behavior of the chain at a typical iterate
n into the following three mutually exclusive types:

1. Suppose that ξh
n = x ∈ ∂G+

h . Then we have a “reflection step,” and
∆θ(x) = 0. The next value ξh

n+1 is determined in accordance with the
local consistency condition (2.2).

Otherwise, we are at x ∈ Gh ⊂ G and there are the following two choices,
only one of which can be exercised at a time:

2. Do not exercise control and get ξh
n+1 from x = ξh

n by using the uncontrolled
transition probability ph(x, x̃) with the associated interpolation interval
being ∆θ(x).

3. Exercise control and choose the increment in the singular control, with the
interpolation interval being ∆th(x) = 0.

For x ∈ Gh, the Bellman equation is (replacing the first equation in (2.6))

V h(x)=min
{

e−β∆θ(x)
∑

x̃

ph(x, x̃)V h(x̃) + k(x)∆θ(x),

min
∆λ

[∑
x̃

ph(x, x̃|∆λ)V h(x̃) +
∑

i

qi,λ∆λi

]}
.

(6.4)

6 To help reference to the book [58], note that F (·) was used there for our λ(·).
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In (6.4), ∆λ = (∆λ1, . . .) denotes the increment in the singular control at
the current step, and ph(x, x̃|∆λ) is the transition probability under control
action ∆λ. Owing to the current assumption that the q1(·) in (6.1) does not
depend on x, we need only increment one component of λ(·) at a time and
can suppose that the increments ∆λh

i in the components go to zero as h → 0.
Then we can replace the Bellman equation by

V h(x)=min
{

e−β∆θ(x)
∑

x̃

ph(x, x̃)V h(x̃) + k(x)∆θ(x),

min
i,∆λi

[∑
x̃

ph(x, x̃|∆λi)V h(x̃) + qi,λ∆λi

]}
.

(6.5)

The ph(x, x̃|∆λi) in (6.5) is the probability that the next state is x̃, given
the increment ∆λi in the ith component of the singular control, with the
increments in the other components being zero. So, first one checks to see
which component of the control it is best to increment, with an interpolation
interval zero, and then compares this with the value of not having any singular
control increment, in which case the process evolves with ph(x, x̃) and ∆th(x).
The values of ∆λi will depend on h. For x ∈ ∂G+

h , the Bellman equation is
the second expression in (2.6).

The possible values for the ∆λi were not specified. The actual values are
not important for convergence provided only that they go to zero as h → 0
and take the current state to another grid point. Convenience of coding is
a primary concern, and we will illustrate one useful procedure with a two-
dimensional problem.

Choosing the control when q1(·) is constant: An example. Because
q1(·) is now constant, replace it by unity in (6.1). A general procedure will
be illustrated via a two-dimensional example. Suppose that there are two
directions for the control effects, namely, v1 and v2. A control value in only
one of the directions will be chosen at each control step. This is not required
for the convergence but is convenient for the coding. Thus we must choose
the direction and the magnitude in that direction. It is best if the state moves
only “locally.” But a direction vi might not take any point x ∈ Gh through
any nearby point on the grid. Because of this the choice of the control value
and transition probability is a little indirect. Refer to Figure 6.1. Let us scale
the vector vi, i = 1, 2, so that the vector hvi takes the point x to the point
xi on the left hand or lower lines. The vi and qi,λ can always be scaled so
that there is no loss of generality in making this supposition. In the example,
neither point x1 or x2 is in Gh.

Suppose that the direction v2 is selected and denote the corresponding
transition probabilities by ph(x, x̃|hv2). Then to attain the mean value x2,
ph(x, x̃|hv2) would randomize among the points y1 and y2, and the value of
∆λ2 that takes x to x2 would be used for the increment in the cost.
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On the randomization to attain the desired conditional mean. Let
Jh

n denote the indicator function of the event that step n is a control step,
and augment Fh

n so that it also measures {Jh
i , i ≤ n}. With n being a control

step and ∆λh
n being the chosen value of the conditional (given the system

data to step n) expectation of the control increment at the nth step, we have
Eh

n∆ξh
nJh

n = ∆λh
nJh

n . In the limit, as h → 0, the effects of the randomizations
that are used to attain the desired conditional means disappear, as we will
now see. The randomization errors (∆ξh

n−∆λh
n)Jh

n are a martingale difference
sequence and
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Figure 6.1. Choosing the singular control values.

E sup
n≤N

∣∣∣∣∣∣
n−1∑
j=0

[∆ξh
j Jh

j − ∆λh
j Jh

j ]

∣∣∣∣∣∣
2

= O(h)E
N−1∑
j=0

|∆λh
n|.

This implies that the effects of the randomization errors go to zero if the
sequence of the costs that are due to the control are bounded, which must be
the case in any optimization problem.

The procedure with q1(·) being x-dependent. Recall the discussion in
Section 3.6 concerning the problems that can arise when q1(·) depends on
x. In particular, there was an example that illustrated the difference in the
effects of a single jump of magnitude J in some component of λ(·) on one
hand, and what would happen if that jump were the limit of many small
jumps occurring in a sequence, one after the other. Because of this potential
complication, when q1(·) depends on x, the Bellman equation (6.4) must be
used in lieu of (6.5). The main complication from a coding point of view is
that the transitions will not always be local. To date, for the bulk of problems
of interest, the singular control does not depend on the state.
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6.6.2 Impulsive Control

The numerical algorithms for the no-delay form of the impulsively controlled
model (3.6.17)

dx(t) = b(x(t))dt + DdF (t) + σ(x(t))dw(t) + dz(t)

with cost function (3.1.18)

W (x̂, F ) = EF
x̂

[∫ ∞

0

e−βtk(x(t))dt +
∑

i

e−βτig(x(τi−), νi)

]

is handled as is the general singular control problem, and similarly for the
boundary absorption version. What distinguishes the impulsively controlled
problem is the strict positivity of the function g(x, ν) for ν �= 0. This “setup”
cost ensures that the problem is well defined and that there are only a finite
number of impulses on any finite time interval.

6.7 The Ergodic Cost Function

6.7.1 Introduction

A brief overview of the setup for the ergodic cost criterion will be presented.
A fuller treatment is in [58, Chapters 7 and 11]. Let {Xn} be a finite-state
controlled Markov chain, with transition probabilities p(x, x̃|α), where the
control parameter α takes values in the compact set U . Suppose that, for
each feedback control u(·), the state space consists of a single ergodic set and
a transient set. The cost criterion is taken to be

γ(u) = lim
n→∞

1
n

Eu
x

n−1∑
i=0

C(Xi, u(Xi)). (7.1)

The limit exists and does not depend on the initial condition x.
There is a vector-valued function W (u) with values W (x, u) such that

W (x, u) =
∑

x̃

p(x, x̃|u(x))W (x̃, u) + C(x, u(x)) − γ(u). (7.2)

The solution to (7.2) is not unique, because if we added a constant k to each
component of W (u), the result would also solve (7.2). One candidate for W (u)
is

W (x, u) =
∞∑

n=0

Eu
x [C(ξn, u(ξn)) − γ(u)],

where the sum is well defined as the summands go to zero geometrically.
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Suppose that p(x, x̃|α) and C(x, α) are continuous functions of α for each
x in the state space. Then the Bellman equation is

V (x) = min
α∈U

[∑
x̃

p(x, x̃|α)V (x̃) + C(x, α) − γ̄

]
. (7.3)

Under our conditions, there is a solution (V (·), γ̄), where γ̄ is unique and is
the minimal value of the ergodic cost.

Approximation in policy space. A standard way of solving (7.3) is via the
approximation in policy space algorithm. One recursively computes a mini-
mizing sequence of feedback controls un(·), n = 0, 1, . . .. Suppose that un(·)
has been computed. Then solve (7.2) with u(·) = un(·) to obtain the cost
γ(un) and the function W (un). Then compute un+1(·) by

un+1(x) = arg min
α∈U

[∑
x̃

p(x, x̃|α)W (x̃, un) + C(x, α)

]
. (7.4)

A difficulty in solving (7.3) is that there is no contraction operator, as
there would be for the discounted cost problem. There are convenient ways
of circumventing this difficulty by “centering” procedures, and methods of
solution are discussed in [58], as are methods for accelerating the convergence.
Under the given conditions γ(un) ↓ γ̄, the minimal cost.

6.7.2 The Markov Chain Approximation Method

Consider the model (1.1), where a(x) = σ(x)σ′(x) is strictly positive definite
and has a continuous inverse, and let {ξh

n} denote a locally consistent Markov
chain approximation. Recall that the state space G is a convex polyhedron.
With the usual methods of construction of the chain, it is an ergodic process
for each feedback control, and the transition probabilities are continuous in
the control, and we make these assumptions. The system is (1.1) with cost
function, under a relaxed control,

γ(x, r) = lim sup
T

1
T

Eh,r
x

∫ T

0

[∫
U

k(x(t), α)r′(dα, t)dt + q′dy(t)
]

. (7.5)

The limit might depend on x. For a relaxed feedback control the form is

γ(m) = lim sup
T

1
T

Eh,m
x

∫ T

0

[∫
U

k(x(t), α)m(x(t), dα)dt + q′dy(t)
]

. (7.6)

If the relaxed feedback control is equivalent to an ordinary feedback control
u(·), then write γ(u).

Let γ̄ denote the infimum of the cost over all admissible controls, and
suppose that it does not depend on the initial condition. Conditions for this
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to be the case, as well as the proof that we cannot do better by using relaxed
controls over relaxed feedback controls and that there is an optimal relaxed
feedback control, are in [56, Chapter 4].

The cost for the approximating chain. If the current state ξh
n is reflecting,

then ∆zh
n = O(h). It is convenient to represent the associated cost q′Eh

ξh
n
∆yh

n

in the form kh
0 (ξh

n)h, where kh
0 (x) = 0 for x ∈ G

For an arbitrary admissible control sequence u = {uh
n}, the cost for the

chain is

γh(x, u) = lim sup
n

Eh,u
x

∑n
i=0

[
k(ξh

i , uh
i )∆thi + kh

0 (ξh
i )h
]

Eh,u
x
∑n

i=0 ∆thi
. (7.7)

Suppose that the feedback control u(·) is used. Then there is a unique invariant
measure that we denote by πh(u), with values πh(x, u). Then γh(x, u) does
not depend on the initial condition x, and by the ergodic theorem for Markov
chains [14] there is a limit in (7.7) and it equals

γh(u) =
∑

x

[
k(x, u(x))∆θ(x, u(x)) + kh

0 (x)h
]
πh(x, u)∑

x ∆θ(x, u(x))πh(x, u)
. (7.8)

Weighing the invariant measure with respect to the time ∆th(x, α) that
the chain spends in a state x yields the measure µh(u) with values

µh(x, u) =
∆θ(x, u(x))πh(x, u)∑
x̃ ∆θ(x̃, u(x̃))πh(x̃, u)

. (7.9)

Using (7.9), the component of (7.8) that involves k(·) can be written as∑
x

k(x, u(x))µh(x, u). (7.10)

It turns out that if the feedback control u(·) is continuous and the diffu-
sion is well-defined under it, then µh(·, u) converges weakly to the invari-
ant measure of the diffusion. Note that µh(x, u) = 0 if x is a reflecting
state. The measure on the set of reflecting states ∂G+

h that is defined by
µh

R(x, u) = hπh(x, u)/
∑

x̃ ∆θ(x̃, u(x̃))πh(x̃, u) converges to the local time
measure on the boundary.

For any feedback control u(·), there is a vector-valued function Wh(u) with
values Wh(x, u) such that

Wh(x, u) =∑
x̃

ph(x, x̃|u(x))Wh(x̃, u) +
[
k(x, u(x)) − γh(u)

]
∆θ(x, u(x)) + kh

0 (x)h.

(7.11)
As for the situation at the beginning of the section, W (u) is unique only up
to additive constant. One solution is
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Wh(x, u) =
∞∑

n=0

Eh,u
x

([
k(ξh

n, uh
n) − γh(u)

]
∆θn + kh

0 (ξh
n)h
)
.

To see that any pair (Wh(u), γ) that solves (7.11) yields that γ = γh(u),
multiply each side by πh(x, u), sum over x, and use the invariance of πh(u)
(which cancels the terms involving Wh(u)). The result is that γ equals the
expression in (7.8).

With γ̄h denoting the infimum of the costs, the Bellman equation is

V h(x) = min
α∈U

[∑
x̃

ph(x, x̃|α)V h(x̃) +
[
k(x, α) − γ̃h

]
∆θ(x, α) + kh

0 (x)h

]
.

(7.12)
Methods for solving this equation for the optimal control and cost are covered
in [58, Chapter 7].

Convergence. For a feedback control u(·), the ergodic theorem for Markov
chains implies the following (the first four limits are w.p.1):

γh(u)=lim
n

1
thn

n−1∑
i=0

[
k(ξh

i , uh
i )∆thi + kh

0 (ξh
i )h
]

= lim
n

1
τh
n

n−1∑
i=0

[
k(ξh

i , uh
i )∆τh

i + kh
0 (ξh

i )h
]

=lim
n

1
τh
n

∫ τh
n

0

[
k(ψh(s), u(ψh(s)))ds + q′dyh

τ (s)
]

=lim
t

1
t

∫ t

0

[
k(ψh(s), u(ψh(s)))ds + q′dyh

τ (s)
]

=lim
t

1
t

∫ t

0

Eh,u
x

[
k(ψh(s), u(ψh(s)))ds + q′dyh

τ (s)
]
.

(7.13)

The first two lines of (7.13) equal the cost for the chain that would be obtained
if we started at time zero with the stationary distribution of the chain ξh

n. The
last line is the cost that would be obtained for the process ψh(·), if we started
with its stationary distribution, given by (7.9). These costs are equal.

Now let ūh(·) be the optimal control and consider the cost for the associ-
ated stationary process. This can be written as

γ̄h = γh(ūh) = Eh,ūh

∫ 1

0

[
k(ψh(t), uh(ψh(t)))dt + q′dyh

τ (t)
]
,

where ψh(0) has the stationary distribution of the continuous parameter pro-
cess ψh(·). Let rh

τ (·) denote the relaxed control representation of the control
uh(ψh(·)) for the stationary process, and rewrite the above expression as

γ̄h = γh(ūh) = Eh,ūh

∫ 1

0

[∫
U

k(ψh(t), α)rh,′
τ (dα, t)dt + q′dyh

τ (t)
]

,
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We will now give an outline of the proof of convergence. More de-
tails on the weak convergence are in Section 8.5. Let wh(·) be defined as
below (3.8). The set of processes (ψh(·), rh

τ (·), zh
τ (·), wh(·)) associated with

the stationary system is tight. Let (x(·), r(·), z(·), w(·)) denote the limit
of a weakly convergent subsequence, indexed by h for notational conve-
nience. Then the limit is stationary in the sense that the probability law
of (x(t+ ·), r(t+ ·)− r(t), z(t+ ·)− z(t), w(t+ ·)−w(t)) does not depend on t.
The process w(·) is Wiener, and the other processes are nonanticipative with
respect to w(·). The limit set satisfies

dx(t) =
∫

U

b(x(t), α)r′(dα, t)dt + σ(x(t))dw(t) + dz(t).

We have γ̄h → γ(r) ≥ γ̄, where γ(r) is the stationary cost associated with the
limit system. Thus

lim inf
h

γ̄h ≥ γ̄. (7.14)

To prove that γ̄h → γ̄, we need to show that

lim sup
h

γ̄h ≤ γ̄. (7.15)

To prove this, we need the fact that for any ε > 0, there is an ε-optimal
feedback control uε(·) for the diffusion that is continuous in x.7 Apply
this control to the chain, and consider the resulting stationary system. Let
(ψh(·), zh

τ (·), wh(·)) denote the interpolated processes for this system. The set
is tight, and any weak-sense limit (x(·), z(·), w(·)) is stationary in the sense
used above, and satisfies

dx(t) = b(x(t), uε(x(t)))dt + σ(x(t))dw(t) + dz(t).

Then by the minimality of γ̄h, the ε-optimality of uε(·) for the original system,
the weak convergence and the stationarity of the limit, we have

γ̄h ≤ γh(uε)

= Eh,uε

∫ 1

0

[
k(ψh(t), uε(ψh(t)))dt + q′dyh

τ (t)
]

→ Euε

∫ 1

0

[k(x(t), uε(x(t)))dt + q′dy(t)]

= γ(uε) ≤ γ̄ + ε.

(7.16)

This and the arbitrariness of ε yield (7.15). Hence γ̄h → γ̄.

7 A proof of this fact is in [56, Chapter 4].
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Markov Chain Approximations: Path and
Control Delayed

7.0 Outline of the Chapter

This chapter adapts the Markov chain approximation methods that were in-
troduced in Chapter 6 to the problem with delays. The approximating chains
are constructed almost exactly as they are for the no-delay case, except that
the transition probabilities must take the delays into account. Various numer-
ical approximations are developed. They are reasonable and well motivated.
But in view of the fact that rather little is known about either approximation
or numerical methods for delay equations, the algorithms are to be viewed
as a first step and will hopefully encourage additional work. When construct-
ing an algorithm, there are two large issues of concern, and both must be
kept in mind. One is numerical feasibility. The other concerns the proof of
convergence, as the approximating parameter goes to zero.

Because the basic state space of the problem with delays is infinite-
dimensional, one must work with approximations. One can devise “Markov
chain like” approximations that converge to the original model and for which
the optimal value functions converge to that for the original model. Alterna-
tively, one can first approximate the original model, say along the lines done
in Chapter 4, so that the resulting problem is finite-dimensional. Then ap-
proximate the result for numerical purposes. Both approaches are taken in
this chapter, although the latter one is more realistic, as the memory require-
ments are much less. As seen in Chapter 4, the suggested finite-dimensional
approximations are often quite good. Further approximations are developed
in Chapters 8 and 9 when the path or control values are delayed, and they
will often be advantageous.

The validity of an approximation to the original model depends on the
relative insensitivity of the values and controls to the quantities that are being
approximated, whether it is the path, path and delay, control, and so forth.
The greater the sensitivity, the finer the approximation needs to be. This is
a particularly difficult problem for the delay model, as the behavior can be
quite sensitive to the delay, and little is known about this in general.
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The proofs of convergence in [58] are purely probabilistic, being based
on weak convergence methods. The idea is to interpolate the chain to a
continuous-time process in a suitable manner, show that the Bellman equa-
tion for the interpolation is the same as for the chain, and then show that the
interpolated processes converge to an optimal diffusion as the approximating
parameter goes to zero. The approach is parallel to this for the problem with
delays, and we try to arrange the development with an eye to using the pow-
erful methods and results of [58] to the extent possible, so as to simplify the
proof of convergence.

Section 1 introduces the unapproximated model and the main assump-
tions. As for the nondelay case, the main assumption is local consistency.
This condition is the same as that for the nondelay problem, with the ap-
propriate delay-dependent drift and diffusion terms used. The state of the
problem, as needed for the numerical procedure, consists of a segment of the
path (over the delay interval) and of the control path as well (if the control is
also delayed). The only change in the local consistency condition is the use of
the “memory segment” arguments in the drift and diffusion functions. As in
Chapter 6, the local consistency condition says no more than that the condi-
tional mean change (resp, covariance) in the state of the approximating chain
is proportional to the drift (resp, covariance) of the original diffusion process,
modulo small errors. It need not hold everywhere (see, e.g., [58, Section 5.5]).
Transition probabilities for the approximating chain are readily obtained from
the formulas that are used for the nondelay case in [58].

For pedagogical purposes, in much of the development, we divide the dis-
cussion into a part where only the path is delayed in the dynamics and a part
where both the control and path are delayed, for which the algorithms are
much more complicated The delay system analogs of all of the cost functions
covered in [58] can be dealt with. But for simplicity of exposition, most of
the discussion is confined to the discounted case, with boundary reflection. If
the process is stopped on reaching a boundary then, with the model of Sec-
tion 3.1 and the cost function (3.4.1), all of the approximation methods and
convergence results will hold, and the necessary theorems are stated. Section
1 concludes with the discussion of the continuous time interpolations. These
interpolations, which are used for the convergence proofs only and not for
the numerical algorithms, are a little more complicated than those used for
the no-delay case in Chapter 6, owing to the need to represent the “memory
segment” argument in a way that can be used in the development of efficient
approximation methods.

In Section 2, some particular Markov chain approximations are introduced,
with the aim of efficiency in the use of memory. The implicit approximation
method of Chapter 5 has some advantages in dealing with the memory prob-
lem, and this is discussed in Section 3. Section 4 deals with various details
concerning the relation between the implicit approximation procedure and
the model with randomly varying delays in Subsection 4.2.3. Keep in mind
that these randomly varying delays are not a feature of the original model,
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but appear in the numerical approximation as a consequence of the use of the
implicit approximation procedure to simplify the memory problem. One could
treat the case where the original model has randomly time varying delays as
well, as noted in the comments below (3.1.8), but at the expense of increased
memory requirements.

Chapter 8 continues the development of the ideas in this chapter and
contains the proofs of the convergence theorems.

7.1 The Model and Local Consistency

The approach to numerical approximation is analogous to what was done for
the no-delay case in Chapter 6. The main new issues concern accounting for
the fact that b(·), σ(·), and k(·) depend on the “memory” segments of the
solution path and/or the control, whichever is delayed in the dynamics. We
will construct an “approximating” controlled finite-state process {ξh

n, n ≥ 0}
and interpolation intervals {∆thn, n ≥ 0} in much the same way as was done in
Chapter 6. This approximating process will serve as the basis of the numerical
procedure. It will be seen that these processes are constructed as easily as they
are for the no-delay problem in [58]. Although {ξh

n} itself is not a Markov chain
due to the memory, one can embed it into a finite-state Markov chain. It is
the Bellman equation for the embedded chain that needs to be solved to get
the optimal cost. Indeed a main concern are representations for such Markov
chains that are efficient from the point of view of computation. In this section,
a generic approximation will be constructed. Although it often requires too
much memory to be of practical use, it will provide the foundation for the
alternative and more practical approximations in Section 3 and in the next
chapter.

7.1.1 The Models

The model is the controlled reflected diffusion of Section 3.2. Assumptions
(A3.2.1) and (A3.2.2) on the constraint set G are always used. Other con-
ditions will be given when needed. Rewriting the equations for convenience,
when both the path and control are delayed and in terms of ordinary controls,
the model is (3.2.3):

x(t) = x(0) +
∫ t

0

b(x̄(s), ū(s))ds +
∫ t

0

σ(x̄(s))dw(s) + z(t), (1.1)

where the conditions (A3.1.2) and (A3.1.3) hold. For notational simplicity, we
suppose that, if both the path and control are delayed, then the maximum
delay is the same for both. The case where they are not the same is a simple
and obvious modification. In relaxed control notation, (1.1) is
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x(t) = x(0) +
∫ t

0

b̄(x̄(s), r̄(t))ds +
∫ t

0

σ(x̄(s))dw(s) + z(t), (1.2)

where, as in (3.1.6),

b̄(x̄(t), r̄(t)) =
∫ 0

−θ̄

∫
U

b(x̄(t), α, θ)r′(dα, t + θ)µc(dθ), (1.3)

and ∫ t

0

b̄(x̄(s), r̄(s))ds =
∫ 0

−θ̄

[∫ t

0

ds

∫
U

b(x̄(s), α, θ)r′(dα, s + θ)
]

µc(dθ).

The discounted cost function (3.4.4) is

W (x̂, r̂, r)

= Er
x̂,r̂

∫ ∞

0

ds

∫ 0

−θ̄

∫
U

e−βt [k(x̄(t), α, θ)r′(dα, t + θ)µc(dθ)dt + q′dy(t)] ,

(1.4)
where x̂ and r̂ denote the initial memory segments of the path and control,
resp. The existence of an optimal control was shown in Theorem 3.5.1.

If the path only is delayed, then we drop the control memory segment
term, and the model specializes to

x(t) = x(0) +
∫ t

0

ds

∫
U

b(x̄(s), α)r′(dα, s) +
∫ t

0

σ(x̄(s))dw(s) + z(t), (1.5)

W (x̂, r) = Er
x̂

∫ ∞

0

∫ 0

−θ̄

∫
U

e−βt [k(x̄(t), α)r′(dα, t)dt + q′dy(t)] . (1.6)

As usual, if the process stops on hitting the boundary, then drop (A3.1.2)
and (A3.1.3) and add (A3.4.1) and (A3.4.2).

7.1.2 Delay in Path Only: Local Consistency and Interpolations

The approximating chain ξh
n takes values in the set Sh, and the definitions of

Sh, Gh = Sh ∩G and ∂G+
h from the beginning of Section 6.2 are used. As for

the no-delay problem, the key requirement that is placed on the approximat-
ing chain is that it satisfy a local consistency condition analogous to (6.2.1).
The dynamics of (1.5) at time t involve the memory segment x̄(t) of the path
on the delay interval [t − θ̄, t]. An analogous dependence must hold for the
dynamics of the ξh

n process. The definition of the memory segment of the
approximating chain will depend on the particular continuous-time interpola-
tion of the ξh

n values that is used, and several useful forms will be developed
in the sequel and in the next chapter. For simplicity, we will start by using
an analog of the explicit approximation procedure of Sections 6.2–6.4. This
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will not usually yield the best form of the memory segment, but it provides a
convenient introduction to the overall approximation method. Suppose that
ξh
n, ∆thn are available (these will be constructed below) and, as in Section 6.2,

define the interpolated time thn =
∑n−1

i=0 ∆thi . The process ξh(·) is defined to
be the piecewise-constant continuous-time interpolation of {ξh

n} with intervals
{∆thn}, as in (6.3.1). Recall the discussion below (6.3.1) concerning the inter-
polation at the reflecting states. In particular, if ξh

n is a reflecting state, then
ξh(thn) = ξh

n+1, which is the state that the reflecting state ξh
n is instantaneously

sent to.

Path memory segments. Define the segment ξ̄h
n of the path ξh(·) by

ξ̄h
n(θ) = ξh(thn + θ) for θ ∈ [−θ̄, 0), and ξ̄h

n(0) = ξh
n. (1.7a)

This is the segment of the interpolated path on [thn − θ̄, thn) with the value ξh
n

at θ = 0. If ξh
n ∈ Gh, then ξh

n(θ) = ξh(thn + θ) for all θ ∈ [−θ̄, 0]. Define the
process ξ̄h(t) by

ξ̄h(t) = ξ̄h
n, for thn ≤ t < thn+1. (1.7b)

Let ξ̂ denote the canonical value of ξ̄h
n.

To construct the dynamics of the approximating chain, we will need to
define a path memory segment that plays the role of x̄(t). There is a great
deal of flexibility in the way that this approximation is constructed from the
{ξh

n}. The choice influences the computational complexity, and we return to
this issue in subsequent sections. Until further notice, we use ξ̄h

n. This choice
is not always suitable for numerical purposes, and will later be modified in
various ways to simplify the numerical computations. The exact form of the
approximation is not important at this point.

The initial condition x̄(0) = {x(t) : −θ̄ ≤ t ≤ 0} for (1.5) is an arbi-
trary continuous function. This will have to be approximated for numerical
convenience. Until further notice, we simply assume that we use a sequence
ξ̄h
0 ∈ D(Gh; [−θ̄, 0]), that is piecewise-constant and that converges to x̄(0)

uniformly on [−θ̄, 0] as h → 0.

Local consistency in Gh. For numerical purposes it is often useful to ap-
proximate the set U . Thus, as in Section 6.2, let Uh be a sequence of compact
sets that converges to U as h → 0 in the sense that the closed convex hull
of (b(x, Uh), k(x, Uh)) converges to the closed convex hull of (b(x, U), k(x, U))
as h → 0. Each Uh might contain only a finite set of points.

Let ξh
n ∈ Gh. Analogously to the no-delay case in Section 6.2, the chain and

intervals are assumed to satisfy the following local consistency properties. Let
uh

n (with values in Uh) denote the control applied at time n. The distribution
of ξh

n+1, given the initial data and {ξh
i , uh

i , i ≤ n}, will depend only on the
current path memory segment ξ̄h

n and current control uh
n and not otherwise on

n, analogously to the case in Chapter 6. Recall the definition ∆ξh
n = ξh

n+1−ξh
n

and that of the martingale difference βh
n in (6.2.3), and let Eh,α

ξ̂,n
denote the
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expectation given all data to time n, with uh
n = α and ξ̄h

n = ξ̂. Analogously to
the definition for the no-delay case in (6.2.1), local consistency is said to hold
if there is a function ∆th(·) such that, for ξ̂(0) = ξh

n ∈ Gh,1

Eh,α

ξ̂,n
∆ξh

n = bh(ξ̂, α)∆th(ξ̂, α) = b(ξ̂, α)∆th(ξ̂, α) + o(∆th(ξ̂, α)),

Eh,α

ξ̂,n
βh

n[βh
n]′ = ah(ξ̂)∆th(ξ̂, α) = a(ξ̂)∆th(ξ̂, α) + o(∆th(ξ̂, α)),

a(ξ̂) = σ(ξ̂)σ′(ξ̂),

supn,ω |ξh
n+1 − ξh

n|
h→ 0, supξ̂,α ∆th(ξ̂, α) h→ 0.

(1.8)

The reflecting boundary is treated the same as in Section 6.2. If ξh
n is a re-

flecting state, then it is sent to a state in Gh, with no control applied. The
mean of ξh

n+1 − ξh
n, conditioned on the data to time n, is a reflection direction

at the point ξh
n. In particular, (6.2.2) holds. Define ∆thn = ∆th(ξ̄h

n, uh
n).

We have the analog of (6.2.4)

ξh
n+1 = ξh

n + ∆thnb(ξ̄h
n, uh

n) + βh
n + ∆zh

n + o(∆thn). (1.9)

Constructing the transition probabilities. For simplicity in the devel-
opment, we will suppose that Sh is a regular h-grid. Hence the points in Gh

are h units apart in each direction. This is done only to simplify the nota-
tion. Any of the state spaces Gh that are allowed in [58] can be used here. In
particular, the state space approximation parameter can depend on the coor-
dinate direction. The simple example of the construction in Section 6.4 and,
indeed, any of the methods in [58] for obtaining the transition probabilities
and interpolation intervals for the no-delay case can be readily adapted to the
delay case.

For the no-delay problem and x ∈ Gh, all of the methods in [58] for gener-
ating the controlled transition probabilities ph(x, x̃|α) when the grid spacing
was uniform in each coordinate direction gave results that depended only on
the grid spacings, the “next state” x̃, and on the drift and covariance func-
tions b(x, α) and a(x) = σ(x)σ′(x), resp. They did not depend on the state
and control values in any other way. In addition the transition probability
for the chains in [58] for the no-delay case could be written as a ratio in the
following way. There are functions Nh(·) and Dh(·) such that for x ∈ Gh,

P{ξh
1 = x̃|ξh

0 = x, uh
0 = α} = ph(x, x̃|α) =

Nh(b(x, α), a(x), x̃)
Dh(b(x, α), a(x))

,

∆th(x, α) = Th(b(x, α), a(x)) =
h2

Dh(b(x, α), a(x))
.

(1.10)

1 (1.8) defines bh(·) and ah(·).
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The particular forms of Nh(·) and Dh(·) depend on the actual approximation
method.2 The function Dh(·) is simply a normalization, so that the sum of
the probabilities over x̃ is unity. The transition probability from a state x to
a state x̃ must be a function of b(·), a(·), and x̃, only, because that is the only
information that is available. Hence, the representation (1.10) is unrestrictive.
The values of Nh(·) and Dh(·) for the two examples of construction in Section
6.4 are obvious from (6.4.5) or (6.4.7).

For the delay case, we can use the identical forms. For any of the approxi-
mation methods in [58] or elsewhere for getting the Nh(·), Dh(·) in (1.10) that
yield locally consistency in the sense of (6.2.1), for ξ̂(0) ∈ Gh we can use the
forms

ph(ξ̂, x̃|α) = P{ξh
1 = x̃|ξ̄h

0 = ξ̂, uh
0 = α} =

Nh(b(ξ̂, α), a(ξ̂), x̃)

Dh(b(ξ̂, α), a(ξ̂))
,

∆th(ξ̂, α) =
h2

Dh(b(ξ̂, α), a(ξ̂))
.

(1.11)

In particular,

ph(ξ̄h
n, x̃|uh

n) = P{ξh
n+1 = x̃|ξ̄h

n, uh
n} =

Nh(b(ξ̄h
n, uh

n), a(ξ̄h
n), x̃)

Dh(b(ξ̄h
n, uh

n), a(ξ̄h
n))

. (1.12)

With the use of (1.11), local consistency in the sense of (6.2.1) implies the local
consistency (1.8). It is only the dependence on b(·), a(·), x̃, and h that matters,
no matter what the form of the memory segment ξ̂. The above discussion is
formalized by the following assumption. The assumption is not needed if local
consistency is otherwise assured.

A1.1. The transition probabilities and interpolation intervals are given in the
form (1.10) with the delay dependencies incorporated (yielding (1.11)), where
(1.10) is locally consistent for the no-delay case.3

A discounted cost function. Let Eh,uh

ξ̂
denote the expectation given initial

condition4 ξ̂ = ξ̄h
0 and control sequence uh = {uh

n, 0 ≤ n < ∞}. Define ∆zh
n

2 The form of T h(·) in (1.10) supposes that Sh is a grid with the same spacing in
each coordinate direction, so that h is real-valued. This is chosen for simplicity
in the development. For more general forms of Sh, the functions T h(·), Nh(·) and
Dh(·) might also depend on the current state x and the local spacing of the states.
But whatever they are, they are functions of the drift and diffusion functions. See
[58, Section 5.2]. With the delay-dependencies of these functions incorporated,
the resulting transition probabilities and interpolation interval would yield the
desired local consistency. All that is needed is local consistency.

3 The form is usually N(hb(x, α), a(x), x̃)/D(hb(x, α), a(x)) for some functions
N(·), D(·).

4 The approximation ξ̂ of the initial condition will depend on h in general.
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and ∆yh
n as above (6.2.3). An approximation to the discounted cost function

(3.4.3) for the chain is

Wh(ξ̂, uh) = Eh,uh

ξ̂

∞∑
n=0

e−βth
n
[
k(ξ̄h

n, uh
n)∆th(ξ̄h

n, uh
n) + q′∆yh

n

]
,

V h(ξ̂) = inf
uh

Wh(ξ̂, uh).
(1.13)

By Lemma 6.3.1 (which is [58, Theorem 11.1.3]), the costs are well defined.
Let yh(·) denote the continuous-time interpolation of {∆yh

n} with intervals
{∆thn}.

A “Markov” continuous-time interpolation. One continuous-time in-
terpolation, namely ξh(·), has already been defined. We will now define the
analog of the interpolation ψh(·) that was defined in Subsection 6.3.2. Let the
random variables {νn}, the interval ∆τh

n = νn∆thn, and τh
n =

∑n−1
i=0 ∆τh

n , be
defined as in the first paragraph of Subsection 6.3.2. Then define ψh(t) by
(6.3.4) or (6.3.8), using the intervals ∆τh

n , all based the processes ξh
n and ∆thn

of this chapter. Because the timescale of the ψh(·) uses the intervals ∆τh
n ,

and that of the memory segment ξ̄h
n uses the intervals ∆thn, the dynamical

equation for ψh(·) will be a little awkward. But keep in mind that this dy-
namical equation will be used only in the proofs of convergence and not for
the numerical computations. As for the no-delay case, the chains ξh

n are used
for the numerics, with whatever approximation to the path memory segment
is used.

Recall the definitions of the interpolations uh
τ (·), Bh

τ (·), rh
τ (·), and zh

τ (·), in
Subsection 6.3.2, and the definition dh

τ (s) = max{n : τh
n ≤ s} in (6.5.23).

Define the function qh
τ (s) = thdh

τ (s). Given interpolated time s in the scale
determined by the ∆τh

n , the function dh
τ (s) is the index of the process ξh

n

that gives ψh(s) in the sense that we have ψh(s) = ξh
dh

τ (s) = ξh(qh
τ (s)).

With this notation, the conditional drift rate of the process ψh(·) at time
s is bh(ξ̄h(qh

τ (s)), uh
τ (s)) (bh(·) was defined in (1.8)). Decomposing the process

ψh(·) into a compensator, martingale, and reflection term as in (6.3.8), and
using relaxed control terminology, leads to the representation

ψh(t) = ξh
0 +

∫ t

0

∫
Uh

bh(ξ̄h(qh
τ (s)), α)rh

τ (dα ds) + Bh
τ (t) + zh

τ (t), (1.14)

where ξh
0 = ξ̄h

0 (0) and Bh
τ (·) is a martingale with quadratic variation process

∫ t

0

ah(ξ̄h(qh
τ (s)))ds.

As noted below (6.3.8), there is a martingale wh(·) with quadratic variation
It and that converges weakly to a Wiener process such that
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Bh
τ (t) =

∫ t

0

σ(ξ̄h(qh
τ (s)))dwh(s) + εh(t)

where limh→0 E sups≤t |εh(s)|2 → 0 for each t < ∞
Modulo an asymptotically negligible error due to the “continuous time”

approximation of the discount factor, the cost function (1.13) can be written
as

Wh(ξ̂, uh) = Eh,uh

ξ̂

∫ ∞

0

∫
Uh

e−βt
[
k(ξ̄h(qh

τ (s)), α)rh
τ (dα ds) + q′dyh

τ (s)
]
.

(1.15)
The following theorem says that any method for solving the control prob-

lem for any locally consistent approximation will yield an approximation to
the value for the original model (1.5). The proof is in Section 5 of the next
chapter. The absorbing boundary case is dealt with in Theorem 1.3.

Theorem 1.1. Let ξh
n, ∆thn be locally consistent with the model (1.5) whose

initial condition is x̄(0), a continuous function, and with cost function (1.6)
and its approximation

Eh,uh

ξ̂

∞∑
n=0

e−βth
n
[
k(ξ̄h

n, uh
n)∆thn + q′∆yh

n

]
(1.16)

being used. Let ξ̄h
0 ∈ D(Gh; [−θ̄, 0]) be any piecewise-constant sequence that

converges to x̄(0) uniformly on [−θ̄, 0]. Assume (A3.1.1), (A3.1.2), (A3.2.1)–
(A3.2.3), and (A3.4.3). Then V h(ξ̄h

0 ) → V (x̄(0)) as h → 0.

7.1.3 Delay in the Path and Control

Now consider the model (relaxed control form) (1.2), with cost (1.4), where
both the path and control are delayed. As for the case where only the path is
delayed, one constructs an approximating chain {ξh

n, n ≥ 0} and interpolation
intervals {∆thn, n ≥ 0}. The initial data for (1.2) is x̄(0) = {x(s),−θ̄ ≤ s ≤
0} ∈ C(G; [−θ̄, 0]) and ū(0) = {u(s),−θ̄ ≤ s ≤ 0} ∈ L2(U ; [−θ̄, 0]), where the
control segment is needed due to the delay in the control. The control memory
segment for the approximating chain is slightly different. For the process (1.2),
either the segment {u(s), s ∈ [−θ̄, 0]} or the segment {u(s), s ∈ [−θ̄, 0)} will
do for the initial control data. But for the chain, the control at time 0, namely,
uh

0 , which is used to get ξh
1 , is to be determined at time 0, and should not

be given as part of the initial data. This fact accounts for our use of the
control segment on the half open [−θ̄, 0) as the initial data. Let û denote
the canonical value of the control memory segment on the half open interval.
With α denoting the canonical value of the current value of the control, we can
write terms such as b̄(ξ̂, û, α) without ambiguity, depending on the memory
segments and the current control value.
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Definitions of the control memory segments. In the remainder of this
section, we continue to use the full path memory segment ξ̄h

n from the previous
subsection. Given the initial control data ū(0), we need to approximate it for
use on the chain, and, analogously, obtain a control memory segment for each
step of the chain. In this subsection, we will use a form for the control memory
segment that is analogous to ξ̄h

n. It will usually be very costly in terms of the
required memory, but serves as a useful introduction. Alternative, and more
efficient, approximations will be discussed in the next chapter. The control
memory segment will be denoted by ūh

n, with canonical value û, and is defined
in terms of the continuous-time interpolation of the control process, as follows.
Let uh

n denote the control that is used on step n. An interpolation interval
∆th(ξ̂, û, α) will be defined in the local consistency condition (1.23). Redefine
∆thn = ∆th(ξ̄h

n, ūh
n, uh

n) and thn =
∑n−1

i=0 ∆thi , and define the interpolation uh(·)
of {uh

n} with intervals {∆thn}. Then define the full control memory segment
ūh

n = {uh(thn + θ), θ ∈ [−θ̄, 0)}. It is the segment of uh(·) on [thn − θ̄, thn).
Then (û, α) denotes the canonical value of the control on a closed interval
[t− θ̄, t] for any t. Let ūh

0 be any piecewise-constant function in D(Uh; [−θ̄, 0))
that converges to the function ū(0) in the L2-sense as h → 0 and extend the
definition of uh(·) to [−θ̄,∞).

Summarizing, in this section the memory state at time n of the approx-
imating chain and the associated dynamic program is ξ̄h

n, ūh
n, the value of

ξh(·) on the closed interval [thn − θ̄, thn], together with the segment of uh(·) on
[thn − θ̄, thn).

The distribution of ξh
n+1, given the initial data and {ξh

i , uh
i , i ≤ n}, will

depend only on the current memory segments ξ̄h
n, ūh

n, and the current control
uh

n, and not on n otherwise. Let Eh,α

ξ̂,û,n
denote the expectation given all data

to step n, and that ξ̄h
n = ξ̂, ūh

n = û, with control value α used at time n.
Keep in mind that if control value α is used at step n for the chain, then it is
used on [thn, thn+1) for the interpolation ξh(·). Letting rh(·) denote the relaxed
control representation of uh(·) and with the memory segment ūh

n being used,
we can write the drift term as

b̄(ξ̄h
n, ūh

n, uh
n) =

∫ 0

−θ̄

∫
Uh

b(ξ̄h
n, α, θ)rh,′(dα, thn + θ)µc(dθ). (1.17)

Example. Before proceeding with the general definition of local consistency
when the control is delayed, which is essentially that used in Chapter 6 and
in the previous subsection, let us consider a simple example. In (1.1), let

b(x̄(t), ū(t)) = b1(x̄(t), u(t − θ̄)) + b0(x̄(t), u(t)). (1.18)

Then the measure µc(·) is concentrated on the points −θ̄ and 0. The analog
of the first line of (1.8) will be

E
h,uh

n

ξ̄h
n,ūh

n,n
∆ξh

n =
[
b1(ξ̄h

n, u(thn − θ̄)) + b0(ξ̄h
n, uh

n)
]
∆thn + o(∆thn). (1.19)



7.1 The Model and Local Consistency 169

Notation. Recall the definition of r̃′(dα, t, θ) above (3.1.8) and in (4.4.2) and
its role in the development of the approximating models in Chapter 4. Analo-
gous definitions will be useful in the proofs of convergence in dealing with the
various approximations to the piecewise constant control memory segments,
as it will be the control memory segment at each t that is being approxi-
mated. For this purpose, define the relaxed control derivatives r̃h,′

τ (dα, t, θ)
and r̃h,′(dα, t, θ), for t ∈ [0,∞) and θ ∈ [−θ̄, 0], by

r̃h,′
τ (dα, t, θ) = rh,′(dα, τh

n + θ), for t ∈ [τh
n , τh

n+1),

r̃h,′(dα, t, θ) = rh,′(dα, thn + θ), for t ∈ [thn, thn+1).
(1.20)

Define the relaxed control derivative r̄h,′
n with values r̄h,′

n (dα, θ), for θ ∈ [−θ̄, 0),
by

r̄h,′
n (dα, θ) = rh,′(dα, thn + θ). (1.21)

The r̄h,′
n is a representation of the control memory segment in terms of

the derivative of its relaxed control representation, which we will find to
be very useful. Using (1.20) and the fact that r̃h,′

τ (dα, s, θ) is constant for
s ∈ [τh

n , τh
n+1), we can write

b̄(ξ̄h
n, ūh

n, uh
n)∆τh

n = b̄(ξ̄h
n, r̄h,′

n , uh
n)∆τh

n

=
∫ τh

n+1

τh
n

∫ 0

−θ̄

∫
Uh

b(ξ̄h
n, α, θ)r̃h,′

τ (dα, s, θ)µc(dθ)ds.
(1.22)

Equation (1.22) defines b̄(ξ̄h
n, r̄h,′

n , uh
n), and we will use this notation when

working in terms of relaxed controls.

The general definition of local consistency when the control is de-
layed. The local consistency condition for the chain is that there exists a
function ∆th(·) such that for ξ̂ = ξ̄h

n, with ξ̂(0) ∈ Gh, and û = ūh
n, α = uh

n,

Eh,α

ξ̂,û,n
∆ξh

n = b̄h(ξ̂, û, α)∆th(ξ̂, û, α) = b̄(ξ̂, û, α)∆th(ξ̂, û, α) + o(∆th(ξ̂, û, α)),

Eh,α

ξ̂,û,n
βh

n[βh
n]′ = ah(ξ̂, û, α)∆th(ξ̂, û, α) = a(ξ̂)∆th(ξ̂, û, α) + o(∆th(ξ̂, û, α)),

a(ξ̂) = σ(ξ̂)σ′(ξ̂),

supn,ω |ξh
n+1 − ξh

n|
h→ 0, supξ̂,û,α ∆th(ξ̂, û, α) h→ 0.

(1.23)
The relations in (1.23) define the functions bh(·) and ah(·). The reflecting
boundary is treated exactly as it was when only the path was delayed, using
transition probabilities satisfying (6.2.2).5

5 Recall that ∆th
n = ∆th(ξ̄h

n, ūh
n, uh

n) when the control is delayed.



170 7 Markov Chain Approximations: Path and Control Delayed

The transition probabilities. The following analogs of (1.11) and (1.12)
ensure the local consistency, if the same functions Nh(·) and Dh(·) are used.
As for (1.11) and (1.12), it is only the dependence on b(·), a(·), x̃, and h that
matters, no matter what the form of the memory segments ξ̂, û.

ph(ξ̂, û, x̃|α) = P{ξh
1 = x̃|ξ̄h

0 = ξ̂, ūh
0 = û, uh

0 = α} =
Nh(b̄(ξ̂, û, α), a(ξ̂), x̃)

Dh(b̄(ξ̂, û, α), a(ξ̂))
,

∆th(ξ̂, û, α) = Th(b̄(ξ̂, û, α), a(ξ̂)) =
h2

Dh(b̄(ξ̂, û, α), a(ξ̂))
,

(1.24)
and

ph(ξ̄h
n, ūh

n, x̃|uh
n) = P{ξh

n+1 = x̃|ξ̄h
n, ūh

n, uh
n} =

Nh(b̄(ξ̄h
n, ūh

n, uh
n), a(ξ̄h

n), x̃)
Dh(b̄(ξ̄h

n, ūh
n, uh

n), a(ξ̄h
n))

.

The notation ph(ξ̄h
n, r̄h,′

n , x̃|uh
n) will also be used for ph(ξ̄h

n, ūh
n, x̃|uh

n). We for-
malize the above discussion as follows. The assumption is not needed if local
consistency is otherwise ensured.

A1.2. The transition probabilities and interpolation intervals are given in the
form (1.24), where (1.10) is locally consistent for the nondelay case.

Continuous-time interpolations. The continuous-time interpolations are
defined as for the case where only the path is delayed, dealt with in the
previous subsection. We will write out the expressions for the interpolation
ψh(·) and the associated discounted cost that are analogous to (1.14) and
(1.15). Extend the definition of uh

τ (t) to the interval [−θ̄,∞) by letting it equal
ūh

0 (θ) for θ ∈ [−θ̄, 0), and let rh
τ (·) denote the relaxed control representation of

this extended uh
τ (·). Recalling the definition (1.20), for ξh

0 ∈ Gh the continuous
time interpolation (1.14) is replaced by

ψh(t) = ξh
0 +

∫ 0

−θ̄

[∫ t

0

∫
Uh

bh(ξ̄h(qh
τ (s)), α, θ)r̃h,′

τ (dα, s, θ)ds

]
µc(dθ)

+Bh
τ (t) + zh

τ (t).
(1.25)

Let Eh,uh

ξ̂,û
denote the expectation under initial data ξ̄h

0 = ξ̂ and control se-

quence uh = {uh
n, n ≥ 0}, with initial control segment (on [−θ̄, 0)) being û.

The analog of the cost function (1.13) is

Wh(ξ̂, û, uh) = Eh,uh

ξ̂,û

∞∑
n=0

e−βth
n
[
k̄(ξ̄h

n, ūh
n, uh

n)∆thn + q′∆yh
n

]
,

V h(ξ̂, û) = inf
uh

Wh(ξ̂, û, uh),
(1.26)

where k̄(·) is defined analogously to b̄(·) in (1.17).
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In integral and relaxed control form, and modulo an asymptotically negli-
gible error due to the approximation of the discount factor, (1.26) equals

Wh(ξ̂, û, uh)

= Eh,uh

ξ̂,û

∫ 0

−θ̄

µc(dθ)
[∫ ∞

0

dt

∫
Uh

e−βtk(ξ̄h(qh
τ (t)), α, θ)r̃h,′

τ (dα, t, θ)
]

+Eh,uh

ξ̂,û

∫ ∞

0

e−βtq′dyh
τ (t).

(1.27)
The following convergence theorem, whose proof is in Section 5 of the

next chapter, says that any method for solving the control problem for any
locally consistent approximation will yield an approximation to the value for
the original model (1.1) or (1.2).

Theorem 1.2. Let ξh
n, ∆thn be locally consistent with (1.1) or (1.2) in the

sense of (1.23), with initial data x̄(0), a continuous function on [−θ̄, 0], and
ū(0) ∈ L2(U ; [−θ̄, 0)). The cost function for (1.2) is (1.4) and that for the ap-
proximating chain is (1.26). Let ξ̄h

0 ∈ D(Gh; [−θ̄, 0]) be piecewise-constant, and
converge to x̄(0) uniformly on [−θ̄, 0]. Let ūh

0 ∈ D(Uh; [−θ̄, 0)) be piecewise-
constant and converge to ū(0) in the sense of L2. Assume (A3.1.2), (A3.1.3),
and (A3.2.1)–(A3.2.3), (A3.4.3). Then V h(ξ̄h

0 , ūh
0 ) → V (x̄(0), ū(0)) as h → 0.

7.1.4 Absorbing Boundaries and Other Cost Functions

The next theorem covers the case where the boundary is absorbing rather
than reflecting. The proof will be discussed in Section 5 of the next chapter.

Theorem 1.3. Assume the conditions of either Theorems 1.1 or 1.2, except
those on the reflection directions. Use the cost function (3.4.1) if the control
is not delayed and (3.4.2) if the control is delayed. Assume (A3.4.1) and
(A3.4.2). For the chain let Nh

G denote the first time that it leaves G0, the
interior of G, and use either the cost function

Wh(ξ̂, uh) = Eh,uh

ξ̂

⎡
⎣Nh

G−1∑
n=0

e−βth
nk(ξ̄h

n, uh
n)∆th(ξ̄h

n, uh
n) + e−βNh

Gg0(ξh
Nh

G
)

⎤
⎦ ,

(1.28)
or

Wh(ξ̂, û, uh)

= Eh,uh

ξ̂,û

⎡
⎣Nh

G−1∑
n=0

e−βth
n k̄(ξ̄h

n, ūh
n, uh

n)∆th(ξ̄h
n, ūh

n, uh
n) + e−βNh

Gg0(ξh
Nh

G
)

⎤
⎦ ,

(1.29)
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according to the case. Then, according to the case, as h → 0, V h(ξ̄h
0 ) →

V (x̄(0)) or V h(ξ̄h
0 , ūh

0 ) → V (x̄(0), ū(0)).

Optimal stopping. Suppose that we have the option of stopping before G0

is exited. Then replace Nh
G by the minimum of Nh

G and the stopping time.
The theorem continues to hold. Similarly, Theorems 1.1 and 1.2 hold if we
allow stopping with a continuous stopping cost. See the development of the
optimal stopping problem in [58].

7.1.5 Approximations to the Memory Segments

In applications, keeping the full computed memory segments ξ̄h
n, ūh

n (or r̄h,′
n )

might be too costly in terms of memory. Specific approximations based on
truncations and discretizations will be discussed in the next chapter, and an
approximation if only the path is delayed is discussed in Section 3. Consid-
erable flexibility is possible in the modeling of the memory segments. It is
preferable to use relaxed control notation for the control memory segments,
and this will be done in terms of its derivative. So, following the notation for
the control memory segment in (1.21), when the full memory segments6 are
used, let us rewrite the equation below (1.24):

ph(ξ̄h
n, r̄h,′

n , x̃|uh
n) =

Nh(b̄(ξ̄h
n, r̄h,′

n , uh
n), a(ξ̄h

n), x̃)

Dh(b̄(ξ̄h
n, r̄h,′

n , uh
n), a(ξ̄h

n))
, (1.30a)

where b̄(ξ̄h
n, r̄h,′

n , uh
n) is defined in (1.22).

Approximations: Definitions. The approximations to the full memory seg-
ments (ξ̄h

n, r̄h,′
n ) will be denoted by (ξ̄h,κ

a,n , r̄h,κ,′
a,n ), where, for θ ∈ [−θ̄, 0), r̄h,κ,′

a,n (θ)
is a probability measure on Uh, and ξ̄h,κ

a,n(θ) is Gh-valued for θ ∈ [−θ̄, 0), and
ξ̄h,κ
a,n(0) will have values either in Gh or in the set of reflecting states ∂G+

h .
The variable κ → 0 is a parameter of the approximation. It will also be used
to index the associated chain, control, interpolation interval, and so forth,
and in the applications will generally take the values δ or (δ0, δ), analogously
to the parameters of the approximations used in Chapter 4. The subscript
“a” denotes the type of memory segment approximation, analogously to the
usage with the approximations in Chapter 4 (e.g., random, periodic, periodic-
Erlang), and, unless noted otherwise, it will be used to index only the ap-
proximating memory segments and the relaxed control representation of the
approximating control memory segment.

With these approximations used, the true transition probabilities are
6 The full memory segments at iterate n are the interpolations (with intervals
{∆th

n}) of the paths and control, resp., over the intervals [th
n−θ̄, th

n] and [th
n−θ̄, th

n),
resp.
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ph(ξ̄h,κ
a,n , r̄h,κ,′

a,n , x̃|α = uh,κ
n ) =

Nh(b̄(ξ̄h,κ
a,n , r̄h,κ,′

a,n , uh,κ
n ), a(ξ̄h,κ

a,n), x̃)

Dh(b̄(ξ̄h,κ
a,n , r̄h,κ,′

a,n , uh,κ
n ), a(ξ̄h,κ

a,n))
, (1.30b)

where b̄(ξ̄h,κ
a,n , r̄h,κ,′

a,n , uh,κ
n ) is defined by (1.22) with (ξ̄h,κ

a,n , r̄h,κ,′
a,n , uh,κ

n ) replacing
(ξ̄h

n, r̄h,′
n , uh

n). Define ∆th,κ
n = ∆th(ξ̄h,κ

a,n , ūh,κ
a,n, uh,κ

n ), th,κ
n =

∑n−1
i=0 ∆th,κ

i , with
analogous definitions for ∆τh,κ

n and τh,κ
n .

For whatever the type “a” of the approximation, let the relaxed control
that is defined by the controls {uh,κ

n } with interpolation intervals {∆τh,κ
n } be

denoted by rh,κ
τ (·), and let that defined by the interpolation with intervals

{∆th,κ
n } be denoted by rh,κ(·). Define the following function of α, t and θ,

where θ ∈ [−θ̄, 0):

r̄h,κ,′
n (dα, θ) = rh,κ,′(dα, th,κ

n + θ). (1.31a)

r̄h,κ,′
n (·) is the full memory segment defined by the actual realized control on

the interval [th,κ
n − θ̄, th,κ

n ). Keep in mind that it is not necessarily equal to
the approximating memory segment r̄h,κ,′

a,n (·), which is the one that is actually
used in the dynamics and cost function at step n of the chain when the
approximation type is “a.”

The following functions of α, t and θ, where θ ∈ [−θ̄, 0], will be useful in
analyzing the approximations and their convergence:

r̃h,κ,′
a (dα, t, θ) = r̄h,κ,′

a,n (dα, θ), for θ ∈ [−θ̄, 0)

r̃h,κ,′
a (dα, t, 0) = I{uh,κ

n ∈dα},

}
for t ∈ [th,κ

n , th,κ
n+1),

r̃h,κ,′
a,τ (dα, t, θ) = r̄h,κ,′

a,n (dα, θ), for θ ∈ [−θ̄, 0)

r̃h,κ,′
a,τ (dα, t, 0) = I{uh,κ

n ∈dα},

}
for t ∈ [τh,κ

n , τh,κ
n+1).

(1.31b)
We will always use the definitions:

ξ̄h,κ
a (·) is the interpolation of {ξ̄h,κ

a,n}, with intervals {∆th,κ
n },

ξ̄h,κ
n is the full memory path segment {ξh,κ(th,κ

n + θ), θ ∈ [−θ̄, 0]}.
(1.32)

The interpolated process ψh,κ(·) with the memory segment approx-
imation. With the above definitions, we can write the analog of the interpo-
lation (1.14) with the approximating memory segments used as

ψh,κ(t) = ξh
0 +

∫ 0

−θ̄

[∫ t

0

∫
Uh

bh(ξ̄h,κ
a (qh,κ

τ (s)), α, θ)r̃h,κ,′
a,τ (dα, s, θ)

]
µc(dθ)ds

+Bh,κ
τ (t) + zh,κ

τ (t),
(1.33)

where the martingale Bh,κ
τ (·) has quadratic variation process
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0

ah(ξ̄h,κ
a (qh,κ

τ (s)))ds.

General assumptions on the approximating memory segments and a
convergence theorem. In subsequent sections and in Chapter 8, particular
approximations will be proposed. But for maximum usefulness and simplicity
of the proofs, it is convenient to state a convergence theorem in terms of some
general properties. Suppose that

lim
h→0

sup
control

sup
n

E sup
−θ̄≤θ≤0

∣∣ξ̄h,κ
a,n(θ) − ξ̄h,κ

n (θ)
∣∣ = 0 (1.34)

and (note that the upper limit of integration is 0−)

sup
control

sup
n

E

∣∣∣∣
∫ 0−

−θ̄

∫
Uh

f(α, θ)
[
rh,κ,′(dα, thn + θ) − r̄h,κ,′

a,n (dα, θ)
]
µc(dθ)

∣∣∣∣→ 0

(1.35)
for each bounded and continuous real-valued function f(·), as h → 0 and
κ → 0. Then, the approximations and the full memory segments are close for
small κ and h, and the drift rate at iterate n of the chain is approximated as
follows:

Drift rate under the approximating memory segments =∫ 0−

−θ̄

∫
Uh

b(ξ̄h,κ
a,n , α, θ)r̄h,κ,′

a,n (dα, θ)µc(dθ) + b(ξ̄h,κ
a,n , uh,κ

n , 0)µc({0})

≈
∫ 0−

−θ̄

∫
Uh

b(ξ̄h,κ
n , α, θ)r̄h,κ,′

n (dα, θ)µc(dθ) + b(ξ̄h,κ
n , uh,κ

n , 0)µc({0}).

(1.36)
Condition (1.35) is quite strong because it concerns the behavior at each

iterate. Consider the following weaker condition, which allows us to consider
averages of the differences between the full control memory segment and its
approximations over a finite time interval. For bounded and continuous f(·),
replace (1.35) by the assumption that

E

∣∣∣∣∣
∫ t+∆

t

ds

∫ 0

−θ̄

∫
Uh

f(s, α, θ)
[
rh,κ,′(dα, s + θ) − r̃h,κ,′

a (dα, s, θ)
]
µc(dθ)

∣∣∣∣∣→ 0

(1.37)
as h → 0, uniformly in the control and in t for each ∆ > 0. Using this, (1.34),
and the timescale equivalences in Theorem 3.1 will allow us to asymptotically
approximate the drift term in (1.33) by∫ 0

−θ̄

[∫ t

0

∫
Uh

bh(ξ̄h,κ(qh,κ
τ (s)), α, θ)rh,κ,′

τ (dα, s + θ)
]

µc(dθ)ds. (1.38)

Let V h,κ(x̂, û) denote the optimal cost function for the model modified as
above, using approximating memory segments ξ̄h,κ

a,n and r̄h,κ,′
a,n . Then we have

the following result.
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Theorem 1.4. Assume the conditions of Theorems 1.1, 1.2, or 1.3, but with
the use of memory segment approximations ξ̄h,κ

a,n and r̄h,κ,′
a,n satisfying (1.34)

and (1.37), resp. Then V h,κ(ξ̄h
0 , ūh

0 ) → V (x̄(0), ū(0)) as h → 0 and then κ → 0.

7.2 Computational Procedures

7.2.1 Delay in the Path Only: State Representations and the
Bellman Equation

Theorem 1.1 gave sufficient conditions for a numerical approximation to the
optimal control problem for system (1.5) and cost function (1.6) to converge
to the optimal value as the approximation parameter h goes to zero. But it
does not give any hint as to how the approximation might be constructed
so that the numerical procedure is actually reasonable from a computational
perspective. Suppose that the process ξh

n is locally consistent and the transi-
tion probabilities satisfy (1.11). Because the transition probabilities in (1.11)
depend on ξ̂, a key problem is that the state space must include the informa-
tion that is needed to define ξ̂, and this might require considerable memory.
The effective use of dynamic programming methods requires that the system
(i.e., the memory) state be embedded into a finite-state Markov chain. The
size and structure of this chain determines the numerical feasibility of the
algorithm, and this is the subject of the rest of this section. The next section
and Chapter 8 show some advantages of the implicit approximation method
as well as of methods motivated by it. Keep in mind that the reflection direc-
tions depend only on the reflecting point, as the reflection directions do not
depend on delayed values and are not controlled.

A first and crude Markov chain representation. We will begin the
discussion of representations and approximations of the path memory segment
with a rather crude form. Until further notice, continue to use the interpolation
ξh(·) defined above (1.7a). Let us start with the memory state at step n being
ξ̄h
n, defined in (1.7b), which we recall is a piecewise-constant function with

ξ̄h
n(θ) = ξh(thn + θ), for θ ∈ [−θ̄, 0]. All of its values must be in Gh, except

possibly the most recent one, ξ̄h
n(0) = ξh

n, which can take values in either Gh

or ∂G+
h .

The ξ̄h
n can be represented in terms of a finite-state Markov process as

follows. Let ∆
h

= infα,ξ̂ ∆th(ξ̂, α), where α ∈ Uh and ξ̂ ∈ D(Gh; [−θ̄, 0]).

Suppose (w.l.o.g.) that θ̄/∆
h

= Kh is an integer. The interpolated time inter-
val [thn − θ̄, thn] is covered by at most Kh intervals of length ∆̄h. The reflection
states do not appear in the construction of ξ̄h

n(θ), for θ < 0, but it is possible
that ξ̄h

n(0) ∈ ∂G+
h . Suppose that ξh

n ∈ Gh. Let ξh
n,i, i > 0, denote the ith non-

reflection state before step n, and ∆thn,i the associated interpolation interval.
Then we can represent ξ̄h

n in terms of {(ξh
n,Kh , ∆thn,Kh), . . . , (ξh

n,1, ∆thn,1), ξ
h
n}.
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If ξh
n �∈ Gh, so that it is a reflecting state, then to compute the transition prob-

ability to the next state the values of the path before step n are not needed
and the above vector is still a complete description of the needed memory.

This new representation clearly evolves as a (2Kh + 1)-dimensional con-
trolled Markov chain, although it will usually be much too complicated to be
of any practical use for computation. If the interpolation interval ∆th(ξ̂, α) is
not constant, then the construction of the ξ̄h

n requires that we keep a record
of the values of both the ξh

i , ∆thi , for the indices i that contribute to ξ̄h
n. The

use of constant interpolation intervals simplifies this problem. Consider the
special case where ∆th(ξ̂, α) is a constant. This would be the case if σ(·) were
a constant and an approximation analogous to that in the example in Section
6.4 were used. Then the vector {(ξh

n,Kh , . . . , ξh
n,1, ξ

h
n} evolves as a Markov pro-

cess and ξ̄h
n is a piecewise-constant and right-continuous (except possibly at

θ = 0) interpolation of these values, with ξ̄h
n(0) = ξh

n. We can identify ξ̄h
n with

this vector without ambiguity.

Transforming to a constant interpolation interval. If ∆th(ξ̂, α) is not
constant, then (6.2.7) showed how to transform the transition probabilities to
yield a chain with a constant interpolation interval for the no-delay case, and
we now write the analogous equations for the delay case. Let p̄h(·) denote the
transition probabilities for the constant interpolation interval case and use
the form (1.11) for ph(ξ̂, x̃|α). Suppose (w.l.o.g.) that a state does not transit
to itself in that ph(ξ̂, ξ̂(0)|α) = 0. To get the transition probabilities p̄h(·) for
the delay case with the constant interpolation interval ∆̄h, use the analog of
(6.2.7):

p̄h(ξ̂, x̃|α) = ph(ξ̂, x̃|α)
(
1 − p̄h(ξ̂, ξ̂(0)|α)

)
p̄h(ξ̂, ξ̂(0)|α) = 1 − ∆̄h

∆th(ξ̂, α)
.

(2.1)

A one-dimensional example with a constant interpolation interval.
Let ∆th(ξ̂, α) = ∆̄h, so that the interpolation interval is constant. Detailed
examination of the memory vector suggests various ways of simplifying the
state space. To simplify the presentation, until further notice we let x(t) be
one-dimensional with G = [0, B], where B > 0 is assumed to be an integral
multiple of the approximation parameter h. We assume that nonreflection
states move only to their nearest neighbors. Then Gh = {0, h, . . . , B} and the
reflection states are {−h, B + h}.

For ξ̂(0) ∈ Gh, the Bellman equation for the process defined by this chain
with cost (1.13) can be written as

V h(ξ̂) = inf
α∈Uh

[
e−β∆̄h ∑

±
ph(ξ̂, ξ̂(0) ± h|α)V h(ŷ±) + k(ξ̂, α)∆̄h

]
. (2.2a)
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The terms ŷ± denote the functions on [−θ̄, 0] that represent the memory
segment at the next step, where the state of the chain is ξh

1 = ξ̂(0) ± h. The
values are obtained as follows:

ŷ±(θ) = ξ̂(θ + ∆̄h), −θ̄ ≤ θ < −∆̄h,

ŷ±(θ) = ξ̂(0), −∆̂h ≤ θ < 0, ŷ±(0) = ξ̂(0) ± h.

If ξ̂(0) is a reflecting state, then there is no shift and only the value ξ̂(0)
changes. It becomes ξh

1 . In particular, if ξ̂(0) = −h, then ∆th(ξ̂, α) = 0 and

V h(ξ̂) = V h(ξ̂+) + q1h, (2.2b)

where ξ̂+(θ) equals ξ̂(θ), except at θ = 0 where ξ̂+(0) = 0. If ξ̂(0) = B + h,
then ∆th(ξ̂, α) = 0 and

V h(ξ̂) = V h(ξ̂−) + q2h, (2.2c)

where ξ̂−(θ) = ξ̂(θ), except for θ = 0, where ξ̂−(0) = B. Owing to the
contraction due to the discounting, there is a unique solution to (2.2).

More simply, as noted above we can represent ξ̄h
n unambiguously as

ξ̄h
n = (ξh

n,Kh , . . . , ξh
n,1, ξ

h
n).

If ξh
n ∈ Gh, then we can represent ξ̄h

n+1 unambiguously as

ξ̄h
n+1 = (ξh

n,Kh−1, . . . , ξ
h
n,1, ξ

h
n, ξh

n+1).

If ξh
n = −h, then we can represent ξ̄h

n+1 unambiguously as

ξ̄h
n+1 = (ξh

n,Kh , · · · , ξh
n,1, 0),

and analogously if ξh
n = B+h. With this representation, the maximum number

of possible values can be very large, up to (B/h + 1)Kh

(B/h + 3) where,
typically, Kh = O(1/h2).

Simplifying the state representation by using differences. The repre-
sentation that is used for the memory segment in the above one-dimensional
example requires a state space of enormous size. This can be reduced by using
the standard data compression method of using only the current ξh

n and the
differences between successive values. This gives the representation

ξ̄h
n = (ch

n,Kh , · · · , ch
n,1, ξ

h
n),

where
ch
n,1 = ξh

n,1 − ξh
n

ch
n,i = ξh

n,i − ξh
n,i−1, for 1 < i ≤ Kh.

(2.3)
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If the path can move only its nearest neighbors, then the ch
n,i take at

most two values, and the number of values in the state space is reduced to
2Kh

(B/h + 3). The two values and the reconstruction of the ξh
n,i from them

are easily determined by an iterative procedure. For example, if ξh
n = −h, then

ξh
n,1 = 0. If ξh

n = 0, then ξh
n,1 ∈ {0, h}. If ξh

n is not a reflecting or boundary
value then ξh

n,1 = ξh
n−1 = ξh

n ±h. If ξh
n,i = 0, then ξh

n,i−1 ∈ {0, h}. If ξh
n,i is not

a boundary value (it cannot be a reflecting state), then ξh
n,i−1 = ξh

n,i ± h, and
so forth.

If ∆th(ξ̂, α) is not constant, so that we need to use (2.1) to transform
the transition probabilities, we then have the possibility of transitions from a
state to itself, since p̄h(ξ̂, ξ̂(0)|α) might not now be zero. Because ξh

n+1 − ξh
n ∈

{−h, 0, h}, each of the ch
n,i can take as many as three values and we have at

most (B/h+3)3Kh

points in the state space. Theorem 1.1 holds. Keep in mind
that the memory state at time n + 1 must be computable from the memory
state at time n and the new value ξh

n+1. The use of differences reduces the
memory requirements, but at the price of increased computation. It would
be worthwhile to evaluate other data coding and compression schemes, even
those with a small loss of information.

The approaches in Section 3 and in the next chapter use fewer intervals to
cover [−θ̄, 0] and have the promise of being more efficient in terms of mem-
ory requirements as they use approximations to the path over interpolation
intervals that are larger than ∆̄h.

7.2.2 Delay in Both Path and Control

Now suppose that both the control and the path are delayed, with the max-
imum delay being θ̄ for each. The memory requirements can be greatly in-
creased. In this subsection, we suppose that ∆thn = ∆̄h, a constant, and give a
representation of the memory segment of the control process that is an analog
of the representation that was used for the path in the previous subsection.
The general case will be dealt with in the next chapter.

For illustrative purposes, let us continue to work with a one-dimensional
example and the notation of the previous subsection. Let uh

n,i denote the
control action that was used in the ith no-reflection step before step n. Let
ph(ξ̂, û; x̃|α) denote the probability P{ξh

1 = x̃|ξ̄h
0 = ξ̂, ūh

0 = û, uh
0 = α}. Anal-

ogously to what was done in the previous subsection, the memory variables
can be embedded into a Markov process, with values at time n being{

(ξh
n,Kh , uh

n,Kh), . . . , (ξh
n,1, u

h
n,1), ξ

h
n

}
.

The analog of (2.2a) with cost function (1.29) is, for ξ̂(0) ∈ Gh,

V h(ξ̂, û) = inf
α∈Uh

[
e−β∆̄h ∑

±
ph(ξ̂, û; ξ̂(0) ± h|α)V h(ŷ±, ûα) + k̄(ξ̂, û, α)∆̄h

]
,

(2.4)
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where ŷ± denotes the new “path memory sections” defined below (2.2a). The
new “control memory segment” depends on the current choice of control,
namely α. The interpolated form is ûα, defined by

ûα(θ) = û(θ + ∆̄h), −θ̄ ≤ θ < −∆̄h,

ûα(θ) = α, −∆̄h ≤ θ < 0.

It can be unambiguously represented in the form

ûα =
(
uh

n,Kh−1, . . . , u
h
n,1, α

)
.

The reflecting states are treated as for the no-delay case. Because of the con-
traction due to the discounting, there is a unique solution to (2.4).

We can use the more efficient representation (2.3) for the path variable.
However, the total memory requirements with this approach would be large,
unless Uh itself can be approximated by only a few values. Suppose that
U = Uh consists of only the two points {0, 1}. Then the number of points
needed to represent the control memory segment is 2Kh

, comparable to what
was needed for the one-dimensional problem of the previous subsection where
only the path was delayed. If only the control were delayed, then this crude
representation for the control memory would be more acceptable.

The dynamics depend on delayed values of the control, but not the
current value. In this case, ph(ξ̂, û; x̃|α) does not depend on the current
control choice α, and (2.4) simplifies to

V h(ξ̂, û) = inf
α∈Uh

[
e−β∆̄h ∑

±
ph(ξ̂, û; ξ̂(0) ± h)V h(ŷ±, ûα) + k̄(ξ̂, û, α)∆̄h

]
.

(2.5)

7.2.3 A Comment on Higher-Dimensional Problems

The discussion in the previous subsection concentrated on one-dimensional
models. The representations of the memory all extend to higher-dimensional
problems, but the required memory grows exponentially in the dimension.
When the path only is delayed, there are representations that are analogous
to (2.3). Consider a two-dimensional problem in a box [0, B1] × [0, B2], with
the same path delay in each coordinate, no control delay, and discretization
level h in each coordinate. The ξh

n in (2.3) is replaced by vector containing the
current two-dimensional value of the chain. The difference ci = ξh

n,i − ξh
n,i−1

is now a two-dimensional vector. The values can be computed iteratively, as
for the one-dimensional case, but the somewhat boring details will not be
presented here.
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7.3 The Implicit Numerical Approximation: Path
Delayed

The implicit method of constructing the approximating chain that was intro-
duced in Section 6.5 can play an important role in reducing the memory re-
quirements and state space size. It also serves as the basis of a variety of other
useful approximations with memory requirements that are less than what was
needed in Section 2.7 The equations (6.5.6) provided a simple way of getting
the transition probabilities and interpolation interval for the implicit approxi-
mation method directly from those for the explicit approximation method for
the no-delay problem. The approach is the same for the problem with delays.
In this section, we concentrate on the model where only the path is delayed.
Further developments are in the next chapter.

Let δ > 0 be the discretization interval for the time variable, with h2/δ → 0
as h → 0, δ → 0. As in Section 6.5, let ξh,δ

n denote the state process for
the spatial component, φh,δ

n that for the time variable, and define ζh,δ
n =

(φh,δ
n , ξh,δ

n ). To get the transition probabilities, one starts with the delay form
of (6.5.6), where the ph(·) are defined as in Section 1.

7.3.1 Local Consistency and the Memory Segment

Transition probabilities. In this section, let ξ̄h,δ
r,n denote the path memory

segment that is used at iterate n for the chain. It will replace the ξ̄h
n that was

used in Sections 1 and 2 and will be defined precisely in (3.8) after defining
the transition probabilities and interpolations. As for the method of Sections 1
and 2, it is a function on [−θ̄, 0] with the value at θ = 0 being ξ̄h,δ

r,n(0) = ξh,δ
n .

The canonical value of ξ̄h,δ
r,n is again denoted by ξ̂. The subscript r is used

owing to the relationship with the random delay approximation of (4.2.7).
With the implicit approximation method, there are several possibilities for
the interpolation that defines the memory segment, and the choice affects the
computational complexity.

Let ph,δ(ξ̂, iδ; x̃, iδ|α) denote the probability that ξh,δ
n+1 = x̃ and that

φh,δ
n+1 = iδ, given all past data and ξ̄h,δ

r,n = ξ̂, φh,δ
n = iδ, uh,δ

n = α (i.e., the
time variable is not advancing). Let ph,δ(ξ̂, iδ; ξ̂(0), iδ + δ|α) denote the prob-
ability that ξh,δ

n+1 = ξh,δ
n and φh,δ

n+1 = iδ + δ, given all past data and the values
uh,δ

n = α, and ξ̄h,δ
r,n = ξ̂, φh,δ

n = iδ, with ξ̂(0) = ξh,δ
n (i.e., the time variable is

advancing, and the spatial state does not change). These probabilities depend
on the past only via the value of the current path memory segment ξ̂.
7 Since we do not know the rate of convergence as a function of the parameters of

the various approximations, this assertion is not quantifiable at the present time,
except by computations and simulations for selected problems.
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Now, adapting the procedure that led to (6.5.6) to the delay case yields the
transition probabilities and interpolation intervals ∆th,δ(ξ̂, α) for the ζh,δ

n =
(φh,δ

n , ξh,δ
n ) process in terms of those for the ξh

n process as:

ph,δ
(
ξ̂, iδ; x̃, iδ

∣∣α) = ph
(
ξ̂, x̃
∣∣α)(1 − ph,δ

(
ξ̂, iδ; ξ̂(0), iδ + δ

∣∣α))
ph,δ

(
ξ̂, iδ; ξ̂(0), iδ + δ

∣∣α) =
∆th(ξ̂, α)

∆th(ξ̂, α) + δ
,

(3.1)

∆th,δ(ξ̂, α) =
δ∆th(ξ̂, α)

∆th(ξ̂, α) + δ
. (3.2)

Redefine

∆th,δ
n = ∆th,δ(ξ̄h

n, uh
n), th,δ

n =
n−1∑
i=0

∆th,δ
i . (3.3)

An alternative form of the implicit process. An alternative construction
allows both the spatial and time variable to change simultaneously. Then
the transition probabilities for the spatial component is just (1.11), (1.12),
the conditional probability that time advances at step n is just ∆th(ξ̂, α)/δ,

and the interpolation interval is ∆th(ξ̂, α). This procedure is equivalent to
reindexing the process determined by (3.1) by omitting the indices at which
the time variable advances. The corresponding spatial path is that of the
explicit procedure. This variation will be useful in Chapter 8.

Local consistency and dynamical representations. Define ∆ξh,δ
n =

ξh,δ
n+1 − ξh,δ

n and the martingale differences

βh,δ
n =

[
∆ξh,δ

n − Eh,δ
n ∆ξh,δ

n

]
I{ξh,δ

n ∈Gh},

βh,δ
0,n = (φh,δ

n+1 − φh,δ
n ) − Eh,δ

n (φh,δ
n+1 − φh,δ

n ),

where Eh,δ
n is the expectation conditioned on the data to step n. Let Eh,δ,α

ξ̂,n

denote the expectation conditioned on the data to step n with uh,δ
n = α and

ξ̄h,δ
r,n = ξ̂. Then, for ξh,δ

n ∈ Gh, the definitions (3.1), (3.2), and (1.8) yield the
analog of (6.5.7):

Eh,δ,α

ξ̂,n
∆ξh,δ

n = bh(ξ̂, α)∆th,δ(ξ̂, α) = b(ξ̂, α)∆th,δ(ξ̂, α) + o(∆th,δ(ξ̂, α)),

Eh,δ,α

ξ̂,n
βh,δ

n [βh,δ
n ]′ = ah(ξ̂)∆th,δ(ξ̂, α) = a(ξ̂)∆th,δ(ξ̂, α) + o(∆th,δ(ξ̂, α)),

Eh,δ,α

ξ̂,n

[
φh,δ

n+1 − φh,δ
n

]
= ∆th,δ

n .

(3.4)
The reflecting states are dealt with as in Section 1. The use of the process ζh,δ

n

leads to some intriguing possibilities for efficient representation of the memory
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data for the delay problem. Note that either the spatial variable ξh,δ
n changes

or the time variable φh,δ
n advances at each iteration, but not both. There are

several choices for the timescale of the continuous-time interpolations. We
will start by using the ∆th,δ

n defined in (3.3) as the interpolation intervals,
and construct ξh,δ(·). Then we will define an interpolation with which it will
be convenient to define the memory segment ξ̄h,δ

r,n .
Let ∆zh,δ

n denote the reflection term at step n, with components ∆yh,δ
i,n .

Recall the definition of the time dh,δ(·) given in (6.5.23). Let ξh,δ(·) and φh,δ(·)
denote the continuous-time interpolations of the {ξh,δ

n } and {φh,δ
n }, resp., with

the intervals {∆th,δ
n } when the path memory segments {ξ̄h,δ

r,n} are used. We
always define φh,δ

0 = 0. Then we can write

ξh,δ
n+1 = ξh,δ

n + bh(ξ̄h,δ
r,n , uh,δ

n )∆th,δ
n + βh,δ

n + ∆zh,δ
n , (3.5)

ξh,δ(t) = ξh,δ
0 +

dh,δ(t)−1∑
i=0

bh(ξ̄h,δ
r,i , uh,δ

i )∆th,δ
i +

dh,δ(t)−1∑
i=0

βh,δ
i +

dh,δ(t)−1∑
i=0

∆zh,δ
i ,

(3.6)
φh,δ

n+1 = φh,δ
n + ∆th,δ

n + βh,δ
0,n. (3.7)

Interpolations using φh,δ(·) as the timescale. Definition of the
memory segment ξ̄h,δ

r,n. In analogy to the definition (1.7a), define ξ̄h,δ
n =

{ξh,δ(th,δ
n + θ), θ ∈ [−θ̄, 0]}. If ξ̄h,δ

r,n were simply a segment of the interpolated
process ξh,δ(·), say ξ̄h,δ

n , then the issues concerning the number of required
values of the memory variable that arose in Section 2 would arise here in the
same way, and there would be no advantage in the use of the implicit approx-
imation procedure. Consider the alternative where the time variables φh,δ

n

determine interpolated time, in that real (i.e., interpolated) time advances
(by an amount δ) only when the time variable is incremented and it does not
advance otherwise. This will be an analog of the “random” Approximation 4
defined by (4.2.7).

To make this precise, consider ξh,δ
n at only the times that φh,δ

n changes.
Suppose that θ̄/δ = Qδ is an integer. Recall the definition (6.5.13) where
vh,δ
0 = 0, and, for n > 0,

vh,δ
n = inf{i > vh,δ

n−1 : φh,δ
i − φh,δ

i−1 = δ}.

The path memory segment denoted by ξ̄h,δ
r,n is defined to be the function on

[θ̄, 0], with the following values: For any l and n satisfying vh,δ
l ≤ n < vh,δ

l+1,
set
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ξ̄h,δ
r,n(0) = ξh,δ

n ,

ξ̄h,δ
r,n(θ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξh,δ

vh,δ
l

, θ ∈ [−δ, 0),
...
ξh,δ

vh,δ
l−Qδ+1

, θ ∈ [−θ̄,−θ̄ + δ).

(3.8)

Figure 3.1 illustrates the construction of ξh,δ(·) and ξ̄h,δ
r,n(·) for θ̄/δ = 3 and

vh,δ
l ≤ n < vh,δ

l+1, and where we define σh,δ
l = th,δ

vh,δ
l

.

ξh,δ(t)

tth,δ
nσh,δ

lσh,δ
l−1σh,δ

l−2σh,δ
l−3

ξh,δ

vh,δ
l

ξh,δ

vh,δ
l−1

ξh,δ

vh,δ
l−2

ξ̄h,δ
r,n(θ)

−2δ −δ−θ̄ 0
θδδδ

ξh,δ

vh,δ
l

ξh,δ

vh,δ
l−1

ξh,δ

vh,δ
l−2

ξh,δ

vh,δ
l−3

ξh,δ
n

ξh,δ
n

Figure 3.1. Illustration of ξ̄h,δ
r,n(θ), for vh,δ

l ≤ n < vh,δ
l+1, θ̄/δ = 3.

Recall that, in this section, ξ̂ denotes the canonical value of the memory
ξ̄h,δ
r,n . It can be represented as the piecewise-constant right-continuous interpo-

lation with interval δ of its values(
ξ̂(−θ̄), . . . , ξ̂(−δ), ξ̂(0)

)
with a discontinuity at θ = 0, and we can unambiguously call the above set ξ̂.

The possible transitions are as follows. If the time variable advances at the
current step, then we have the shift(

ξ̂(−θ̄), . . . , ξ̂(−δ), ξ̂(0)
)
→
(
ξ̂(−θ̄ + δ), . . . , ξ̂(−δ), ξ̂(0), ξ̂(0)

)
. (3.9a)

This implies that ξ̂(0) ∈ Gh, as otherwise there must be a reflection at the
current step and the time variable could not advance. Let ξ̂(0) ∈ Gh and
suppose that the time variable does not advance. Then

ξ̂ =
(
ξ̂(−θ̄), . . . , ξ̂(−δ), ξ̂(0)

)
→
(
ξ̂(−θ̄), . . . , ξ̂(−δ), ξ1

)
, (3.9b)
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where, conditioned on the time variable not advancing and the use of control
value α, the probability that ξ1 = x̃ is ph(ξ̂, x̃|α). Suppose that ξ̂(0) �∈ Gh, so
that it is a reflecting point. Then

ξ̂ =
(
ξ̂(−θ̄), . . . , ξ̂(−δ), ξ̂(0)

)
→
(
ξ̂(−θ̄), . . . , ξ̂(−δ), ξ1

)
, (3.9c)

where ξ1 ∈ Gh is the state that the reflecting state ξ̂(0) moves to, with the
transition probabilities satisfying (6.2.2).

Size of the state space. For the one-dimensional problem discussed at the
end of Section 2, the maximum size of the state space that is required with
the use of ξ̄h,δ

r,n for the path memory segment is

(B/h + 1)θ̄/δ(B/h + 3) (3.10)

compared with (B/h+1)Kh

(B/h+3) there, where commonly Kh = O(1/h2).
This saving is partly due to the fact that, for the implicit approximation pro-
cedure, the memory consists of the samples at iterates separated by many
steps, and not the set of values or differences in the values for each of those
individual steps. One could approximate the values of the ξ̂(−iδ), i > 0, fur-
ther by discretizing to a coarser set of values. Further reductions in the size
of the state space will be dealt with in the next chapter, where we discuss the
advantages of using differences of the values in lieu of the values themselves,
and also develop alternative constructions that are motivated by the implicit
approximation procedure and are likely to be advantageous.

Note on the interpolation interval. An important additional point to
note is that the implicit approximation procedure does not require the use
of a constant interpolation time interval. It allows us to use the original time
intervals ∆th,δ

n ≈ ∆thn, and not the minimal value ∆
h
. This is computationally

advantageous when the values ∆th(ξ̂, α) vary a great deal, as for example when
the upper bound on the control is large or when a(·) is not constant. In the
example of Section 6.4, ∆th(x) = h2/σ2(x), and if σ2(·) varies a great deal,
the transformation to a constant interval might entail a considerable increase
in the dimension of the memory segment ξ̄h

n that was used in Section 2. The
implicit approximation procedure does not have this disadvantage.

The effective maximum delay. The approximation procedure that we have
just illustrated has replaced the true maximum delay by a random delay. The
actual effective maximum delay for the example in the figure is th,δ

n −σh,δ
l−2. In

general, for σh,δ
l ≤ th,δ

n < σh,δ
l+1, the maximum delay is th,δ

n −σh,δ
l−Qδ+1. As δ → 0,

the delays converge to their values for the original model (1.5). Let δ be fixed.
It is shown in Theorem 4.1 that, as h → 0, the interpolated times between
increases in the time variable φh,δ(·) are exponentially distributed with mean
δ. The interval between a random time and the most recent time before it
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that φh,δ(·) increased is also (asymptotically) exponentially distributed with
mean δ, and these intervals are asymptotically mutually independent. Thus,
as h → 0, the maximum delay is the sum of Qδ exponentially distributed and
mutually independent random variables, each with mean δ. Hence it has an
Erlang distribution of order Qδ, and with total mean θ̄.

7.3.2 The Cost Function and Bellman Equation

With the use of the process ζh,δ
n , with ξ̄h,δ

r,0 = ξ̂ and the control sequence
uh,δ = {uh,δ

n , n < ∞} used, an approximation to the discounted cost function
(3.4.3) is

Wh,δ(ξ̂, uh,δ) = Eh,δ,uh,δ

ξ̂

∞∑
n=0

e−βφh,δ
n

[
k(ξ̄h,δ

r,n , uh,δ
n )δI{φh,δ

n+1 	=φh,δ
n } + q′∆yh,δ

n

]
.

(3.11)
By using the last line of (3.4) and taking a conditional expectation, the term
δI{φh,δ

n+1 	=φh,δ
n } can be replaced by ∆th,δ

n . It will be shown in Theorem 3.2 that

(3.11) is well defined and is asymptotically equal to

Eh,δ,uh,δ

ξ̂

∞∑
n=0

e−βth,δ
n
[
k(ξ̄h,δ

r,n , uh,δ
n )∆th,δ

n + q′∆yh,δ
n

]
. (3.12)

With the form (3.12), the effective canonical cost rate when the memory
segment is ξ̂ and control value α is used is just k(ξ̂, α) times δ times the prob-
ability that the time variable advances, and the product is k(ξ̂, α)∆th,δ(ξ̂, α).

The Bellman equation. The Bellman equation can be based on either (3.11)
or (3.12). They might yield different results but will be asymptotically equal
by Theorem 3.2. For (3.11) and ξ̂(0) = ξh,δ

0 ∈ Gh, the Bellman equation is8

V h,δ(ξ̂) = inf
α∈Uh

[∑
x̃

ph,δ
(
ξ̂, φ; x̃, φ

∣∣α)V h,δ
(
ξ̂(−θ̄), . . . , ξ̂(−δ), x̃

)

+e−βδph,δ
(
ξ̂, φ; ξ̂(0), φ + δ

)
V h,δ

(
ξ̂(−θ̄ + δ), . . . , ξ̂(−δ), ξ̂(0), ξ̂(0)

)

+k(ξ̂, α)∆th,δ(ξ̂, α)

]
,

(3.13)
where V h,δ(ξ̂) is the optimal value. The analog for (3.12) can be written as
(using a more succinct notation)

8 The time variable φ does not appear in the state as the dynamical terms are
time-independent.
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V h,δ(ξ̂) = inf
α∈Uh

Eh,δ,α

ξ̂

[
e−β∆th,δ(ξ̂,α)V h,δ

(
ξ̄h,δ
r,1

)
+ k(ξ̂, α)∆th,δ(ξ̂, α)

]
,

(3.14)
where ξ̄h,δ

r,1 is the successor memory segment to ξ̂ under control value α. If
ξ̂(0) �∈ Gh, then for either (3.11) or (3.12)

V h,δ(ξ̂) = Eh,δ,α

ξ̂

[
V h,δ(ξ̄h,δ

r,1 ) + q′∆yh,δ
0

]
, (3.15)

where ∆yh,δ
0 is the vector of the components of the reflection term from state

ξ̂(0). These equations make it clear that the full state at iterate n is ξ̄h,δ
r,n ,

namely, the current values of the spatial variable ξh,δ
n , together with its value

at the last Qδ = θ̄/δ times that the time variable advances.

7.3.3 The Use of Averaging in Constructing the Path Memory
Approximation

One might be tempted to use an average of the path values over the intervals in
lieu of the samples ξh,δ

vh,δ
i

in (3.8). This can be done, but it entails a considerable

increase in the memory requirements. One possibility is as follows. Let vh,δ
l ≤

n < vh,δ
l+1. Define

ξh,δ
av,l,n =

∑n
i=vh,δ

l
+1 ξh,δ

i ∆th,δ
i∑n

i=vh,δ
l

+1 ∆th,δ
i

, ξh,δ
av,l =

∑vh,δ
l+1−1

i=vh,δ
l

+1
ξh,δ
i ∆th,δ

i∑vh,δ
l+1−1

i=vh,δ
l

+1
∆th,δ

i

.

Then replace the ξh,δ

vh,δ
l

in (3.8) by ξh,δ
av,l,n, the path average over the interval

[vh,δ
l + 1, n]. Replace ξh,δ

vh,δ
l−i

by ξh,δ
av,l−i. The ratio can be computed recursively

on each interval: At the beginning of the lth cycle, set ξh,δ

av,l,vh,δ
l

+1
= ξh,δ

vh,δ
l

+1
,

and for n > vh,δ
l + 1, use

ξh,δ
av,l,n+1 =

ξh,δ
n+1∆th,δ

n+1∑n+1

i=vh,δ
l

+1
∆th,δ

i

+
ξh,δ
av,l,n

1 + ∆th,δ
n+1/

∑n
i=vh,δ

l
+1 ∆th,δ

i

.

The computation is simpler if the interpolation interval is constant. In
general, one needs to keep track of the running sums of the weighted path
variables and the accumulated time, which introduces two new variables, one
whose dimension is that of G. The set of such values will have to be discretized.
For example, discretize the possible values and update the approximations by
randomization if the new values fall between the allowable discrete points. The
randomization method could be analogous to what is to be done in Section
8.4 for the periodic-Erlang approximation for the control variables. This will,
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in any case, yield a value that is a close to a convex combination of a subset
of values within the interval, so it might be worth considering. Similar consid-
erations apply to the approximations that are used for the path in Chapter
8, but the issue will not be pursued further.

A simpler procedure is to use a linear interpolation of the values in (3.8),
which would not entail any increase in the required memory.

7.3.4 Timescales

The Interpolation ψh,δ(·) and its timescale. The discrete-parameter
process {ξh,δ

n } with memory segments {ξ̄h,δ
r,n} (or the variations discussed in

the next chapter) are used for the numerical computations. The proofs of
convergence in Section 8.5 will be based on a continuous-time process ψh,δ(·)
that is analogous to those defined by (1.14), (6.3.10), and (6.5.12), analogously
to what was done in [58, Chapters 10 and 11]. Next, recalling the method of
defining (1.14), let us define the interpolation ψh,δ

n (·). Let νn, n < ∞, be
mutually independent and identically and exponentially distributed with unit
mean (as above (6.3.4)), and independent of {ζh,δ

n , uh
n}. Then set ∆τh,δ

n =
νn∆th,δ

n and τh,δ
n =

∑n−1
i=0 ∆τh,δ

n . Recall the definition of dh,δ
τ (s) from (6.5.23)

and let rh,δ
τ (·) denote the relaxed control representation of the interpolation

(intervals ∆τh,δ
n ) of the control process. Analogously to what was done in

getting (1.14), define the interpolation ξ̄h,δ
r (·) (with intervals {∆th,δ

n }) of the
memory segment by ξ̄h,δ

r (s) = ξ̄h,δ
r,n , for th,δ

n ≤ s < th,δ
n+1, and set qh,δ

τ (s) =
th,δ

dh,δ
τ (s)

. With these definitions, ξ̄h,δ

r,dh,δ
τ (s)

= ξ̄h,δ
r (qh,δ

τ (s)). Let ψh,δ(·) denote

the interpolation of the sequence ξh,δ
n using the random intervals ∆τh,δ

n . Then,
analogously to (1.14),

ψh,δ(t) = ξh,δ
0 +

∫ t

0

∫
Uh

bh(ξ̄h,δ

r,dh,δ
τ (s)

, α)rh,δ
τ (dα ds) + Bh,δ

τ (t) + zh,δ
τ (t), (3.16)

where the drift term can be written as∫ t

0

∫
Uh

bh(ξ̄h,δ
r (qh,δ

τ (s)), α)rh,δ
τ (dα ds),

and the quadratic variation of the martingale Bh,δ
τ (·) is

∫ t

0

ah(ξ̄h,δ
r (qh,δ

τ (s)))ds.

Asymptotic equivalence of the timescales. It follows from the proof of
Theorem 6.5.1 that the timescales used in the ξh,δ(·) and the ψh,δ(·) processes
coincide asymptotically. That is, qh,δ(s)−s → 0, φh,δ(s)−s → 0 and qh,δ

τ (s)−
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s → 0. The following theorem reasserts this result in the context of the current
chapter.

Theorem 3.1. Assume local consistency, (A3.1.1), (A3.1.2), (A3.2.1), (A3.2.2)
and (A3.4.3), with system (1.5) and memory segment (3.8). Let φh,δ(·) denote
the interpolation of the φh,δ

n with the intervals ∆th,δ
n , and suppose that h/δ is

bounded as h → 0 and δ → 0. Then Theorem 6.5.1 holds and for each T < ∞,

lim
h,δ→0

sup
ξ̂,uh,δ

Eh,δ,uh,δ

ξ̂
sup

−θ̄≤θ≤0,t≤T

∣∣∣ψh,δ(t + θ) − ξ̄h,δ

dh,δ
τ (t)

(θ)
∣∣∣ = 0. (3.17)

If the memory segments ξ̄h
n are used, as in Section 2, then the index δ is

redundant and we have

lim
h→0

sup
ξ̂,uh

Eh,uh

ξ̂
sup

−θ̄≤θ≤0,t≤T

∣∣∣ψh(t + θ) − ξ̄h
dh

τ (t)(θ)
∣∣∣ = 0. (3.18)

An alternative construction of the implicit procedure. Time and
spatial variables changing simultaneously. Recall the comments on the
alternative construction of an implicit procedure below (3.3), where we allowed
the possibility that both the path and time variables change simultaneously.
With the memory segment taking any of the forms that were discussed, the
resulting processes and costs are asymptotically equivalent to those for the
implicit procedure.

7.3.5 Convergence Theorems

The next theorem asserts that the cost functions (3.11) and (3.12) are well
defined and asymptotically equal.

Theorem 3.2. Assume local consistency, (A3.1.1), (A3.1.2), (A3.2.1), (A3.2.2),
and (A3.4.3), and the model (1.5) with memory segment (3.8). Then (3.11)
is asymptotically equal to (3.12) uniformly in the control and in the initial
condition ξ̂, where the function ξ̂ is piecewise-constant, with intervals δ and
with values in Gh.

Proof. To show that the sum involving k(·) in (3.11) is well defined, first note
that it can be bounded by a constant times the expectation of

∫∞
0

e−βφh,δ(s)ds.
By Theorem 3.1 or Theorem 6.5.1, for each K > 0 there is an ε1 > 0, which
does not depend on the controls, initial conditions, or T , such that for small
enough h, δ,

P
{
φh,δ(T + K) − φh,δ(T ) ≥ ε1

∣∣data to T
}

> ε1, w.p.1.
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Hence, for each K > 0 there is ε2 > 0, not depending on the controls, initial
conditions, or T , such that for small enough h, δ,

E
[
e−β(φh,δ(T+K)−φh,δ(T ))

∣∣data to T
}
≤ e−ε2 w.p.1.

This implies that the “tail” of the sum (3.11) can be neglected and we need
only consider the sum

∑Nh,δ(t)
i=0 where Nh,δ(t) = min{n : th,δ

n ≥ t} for arbi-
trary t. But, by Theorem 3.1 or Theorem 6.5.1, for such a sum the asymptotic
values are the same if φh,δ

i is replaced by th,δ
i for i ≤ Nh,δ(t). Hence the terms

involving k(·) in (3.11) and (3.12) are asymptotically equal. The above esti-
mates and Lemma 6.3.1 yield the same result for the terms involving ∆yh,δ

n .

The convergence theorem. As in Theorem 1.1, approximate the initial
condition x̄(0) by ξ̄h,δ

0 (in the sense of uniform convergence as h → 0, δ → 0),
and let it be constant on the Qδ intervals [−θ̄,−θ̄ + δ), . . . , [−δ, 0), with all
values being in Gh. Because by Theorem 3.2 we can use (3.12) for the cost
function when proving convergence, the proof of the next theorem is nearly
identical to that of Theorem 1.1, which is to be given in Section 8.5.

Theorem 3.3. Assume local consistency, (A3.1.1), (A3.1.2), (A3.2.1)–(A3.2.3),
and (A3.4.3), with system (1.5) and cost function (3.4.3). The memory seg-
ment for the numerical approximation is (3.8). Let ph,δ(·) be derived via
(3.1)–(3.3) from the transition probabilities ph(·) that are locally consistent
(in the sense of (1.8)). Let ξ̄h,δ

0 approximate the continuous initial condition
x̂ as in Theorem 1.1. Let h/δ be bounded. With either (3.11) or (3.12) used,
V h,δ(ξ̄h,δ

0 ) → V (x̂) as h → 0, δ → 0. The analogous result holds for the ana-
log of the cost functional (1.28) if (A3.4.1) and (A3.4.2) are assumed and the
conditions on the reflection directions are dropped.

7.4 The Implicit Approximation Procedure and the
Random Delay Model

The intervals between time advances, δ fixed. Consider the implicit
approximation procedure of Section 3, with the value of δ fixed and only
h → 0. The following theorem shows that the sequence of times between
shifts in the time variable converges to a sequence of i.i.d. random variables,
each of which is exponentially distributed with mean δ. Define σ̂h,δ

l = τh,δ

vh,δ
l

,

where vh,δ
l was defined above (3.8). Recall the definition of σh,δ

l = th,δ

vh,δ
l

below

(3.8).
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In the theorem, we ignore the time-shift steps in the indexing. This does
not change the distribution of the quantities of interest. The resulting path is
that for the explicit procedure if the same controls are used.

Theorem 4.1. Assume the model of Section 3 and that ∆th(ξ̂, α) = O(h2),
with the assumptions of Theorem 3.3, but with δ fixed. As h → 0, φh,δ(·) con-
verges to a Poisson process with rate 1/δ and jump size δ, and this process on
[t,∞) is independent of the other weak-sense limits on [0, t]. The conditional
distribution of σh,δ

l+1 − σh,δ
l , given the data to time σh,δ

l , converges to an expo-
nentially distributed random variable with mean δ, and the conditional mean
value converges to δ, all uniformly in the data and l. Now let δ = O(h) and
replace σh,δ

l+1−σh,δ
l by [σh,δ

l+1−σh,δ
l ]/δ. Then the results of the previous sentence

hold, but with mean unity. The analogous results hold if the σ̂h,δ
l are used in

lieu of the σh,δ
l .

Proof. Fix δ > 0. Let R(·) be a Poisson process with rate 1/δ and jump size
δ. Approximate φh,δ(·) as follows. For each n, if R(·) has multiple jumps on
[th,δ

n , th,δ
n+1), then ignore any jump beyond the first, and assign the remaining

jump (if any) to time th,δ
n . The difference between this process and both φh,δ(·)

and R(·) converges weakly to zero as h → 0. This yields the first two assertions
of the theorem. The assertion concerning the convergence of the conditional
mean follows from this and the uniform integrability of {σh,δ

l+1 − σh,δ
l ; h, l, δ}.

If δ = O(h), then the result for the [σh,δ
l+1 − σh,δ

l ]/δ follows by a rescaling of
time and amplitude. A similar argument is used if the σ̂h,δ

l are used in lieu of
the σh,δ

l .

Convergence to the random delay model if δ is fixed. If δ > 0 is fixed
and only h → 0, then the limit is the optimal value for the Approximation
4 of Section 4.2. This assertion follows from Theorem 4.1 and the proof of
Theorem 3.3 (see Section 8.5) and is stated in the following theorem.

Theorem 4.2. Let the initial condition for (1.1) be x̄(0), assumed to be con-
tinuous and G-valued. Let the G-valued piecewise constant x̄δ(0) (intervals δ)
converge to x̄(0) uniformly on [−θ̄, 0]. Assume the conditions of Theorem 3.3,
but with the memory segment defined by (4.2.7), the random case. Hence the
model is (4.1.9b), with x̄a = x̄δ

r, for which we suppose that there is a weak-
sense unique solution for each control and initial condition x̄δ(0). Let V δ(ξ̂)
denote the optimal cost for this model. Let ξ̄h,δ

0 approximate x̄δ(0) (in the
sense of uniform convergence as h → 0), with values in Gh, and use (3.1) and
(3.2) for the transition probabilities and interpolation intervals. Then, with
δ > 0 fixed, V h,δ(ξ̄h,δ

0 ) → V δ(x̄δ(0)). As δ → 0, V δ(x̄δ(0)) → V (x̄(0)). The
same results hold for the analog of the cost function (1.28) for the implicit
procedure.
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Consider the analog of Theorem 1.4 for the implicit procedure. Then, under
the analogs of its conditions for the implicit method and the path memory
segment ξ̄h,δ

r,n used in lieu of ξ̄h
n, its conclusions hold.

Comment. The implicit approximation algorithm illustrates one way of re-
ducing the memory requirement over that needed for the procedure of Sections
1 or 2. In addition, one does not need the interval ∆th(ξ̂, α) to be constant,
which is a considerable advantage when σ(·) is either small or is not a constant.
The motivation for the implicit approximation procedure was the desire for
a simpler representation of the path memory segment for the approximating
process. However, the randomness of the effective delays with this procedure
might be too large unless δ is small. Approximations that aim at compromises
between the explicit procedure of Section 1 and the implicit approximation
procedure will be discussed in the next chapter. Reliable numerical compar-
isons are still lacking, however.
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Path and Control Delayed: Continued

8.0 Outline of the Chapter

It is clear that one needs to start with good approximations to the original
model in order to deal effectively with the memory problem, and this led to the
implicit procedure in Section 7.3 and to general conditions on approximations
in Theorem 7.1.4. The development is continued in this chapter. Chapter 4
developed a variety of approximations for the original model. The “random
delay” form (4.2.7) led to the implicit approximation of Section 7.3. Other
interesting approximations were the periodic (4.2.6) and the periodic-Erlang
in (4.2.8). The periodic model in Chapter 4 was developed as a first step to
a finite-dimensional memory for the case where the path only was delayed.
In that model, for each t the path memory segment x̄δ

p(t) that is used in
the dynamics is a function on [−θ̄, 0] with values x̄δ

p(t, θ). It is piecewise-
constant in θ, but with a discontinuity at θ = 0, where it takes the value
x(t). In each of the time intervals [lδ, lδ + δ), l = 0, 1 . . . , only the value at
θ = 0 changed, as it is x(t). At times lδ, l = 1, 2 . . ., the entire segment
shifted left, dropping the “oldest” part. An issue was the measurement of
the passage of time between the “shifts” of the memory vector. Because this
variable takes values in the continuum [0, δ), it needed to be discretized in some
way. One way was via the periodic-Erlang method, where time advanced at
random moments, and which was motivated by the anticipated demands of the
numerical problem. It was seen in Section 4.3 that both the periodic and the
periodic-Erlang approximation to the original model can be quite good. But,
as noted previously, given the great sensitivity of many problems with delays,
one always needs to exercise care in the use of any particular approximation,
although the numerical problem will be very hard for any model with great
sensitivity.

This chapter adapts these approximations to the numerical problem. The
periodic model is introduced in Section 1, when only the path is delayed.
Although the method does reduce the memory requirements for the path
memory segment, it still has the problem of tracking the time since the last
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shift. A step to remedying this is developed in Section 2, where an analog of
the periodic-Erlang method is introduced. This handles the measurement of
the passage of time when only the path is delayed, and it is seen that there
can be considerable savings in memory. The periodic approximation that was
used in Chapter 4 was based on the particular discretization of the delay
interval [−θ̄, 0] that was illustrated in Figure 4.2.3, where the last interval on
the right has length δ/2, and the others have length δ. As noted below (4.2.6)
and (4.2.8), the choice of δ/2 for the rightmost interval was made because
the effective delay over the interval varied between zero and δ due to the
periodicity, and its mean value is δ/2. Other choices that maintain the correct
mean could be used as well. For ease of reference to the models and results of
Chapter 4, we keep this form.

With these methods, one needs to keep track of the path values at the
shift times as well as the current path value. Memory can be saved by working
with the differences of the path values at the successive shift times, and this
is discussed in Section 3.

Owing to the continuity properties of the solution path, there are many
useful ways to approximate the path memory segment. Whatever the means
of doing it, the approximation becomes a state variable for the problem, and it
must be able to be embedded into a finite-state Markov chain so that dynamic
programming methods can be used. This fundamental fact limits our freedom
and was a consideration in the choice of the methods that are discussed.

The control process does not necessarily have the continuity properties of
the path. In fact, little is usually known about it a priori. Because of this, when
the control is delayed, one cannot approximate the control memory segment
by simply sampling the control and interpolating, unless all the control values
are used as in Subsection 7.2.2. However, the relaxed control representation is
continuous in time and can provide a useful approach to approximation. This
idea is developed in Section 4 for the periodic and periodic-Erlang models. The
methods that are presented should be taken as suggestive and tentative. Much
more work is needed. Section 5 contains proofs of the theorems of Chapter 7
and of Sections 1, 2, and 4 of this chapter. Section 6 concerns the singular
control problem. If the singular control is not delayed in the dynamics, then
the numerical approximations are essentially a simple combination of what
was done in Chapter 6 and in this chapter. When the singular control is
delayed in the dynamics, then one needs an additional approximation step.
Section 7 contains some remarks on neutral equations. It is seen that the
approximations developed previously can be carried over. Section 8 concerns
the ergodic cost problem.

8.1 Periodic Approximations to the Delay: Path Delayed

For simplicity in the development, we start with a chain approximation to the
periodic approximation of the original model that was given in Section 4.2,
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where the maximum delay was periodic in [θ̄ − δ/2, θ̄ + δ/2], and extend it
in subsequent sections. It is to be based on the explicit procedure of Section
7.1. Define Q+

δ by θ̄ = Q+
δ δ + δ/2 and suppose that it is an integer. We start

by supposing that ∆th(ξ̂, α) = ∆̄h, a constant. This assumption will be com-
mented on later and dropped in the next section. Define L̄h,δ = δ/∆̄h and
suppose that it is an integer. Because the processes involved in the approxi-
mating chain will depend on the two parameters h and δ, they will be indexed
by both. So we use the terminology ξh,δ

n , uh,δ
n , and so forth. Hopefully, there

will be no confusion with the implicit approximation procedure of Section 7.3.
The memory segment for the approximating chain is based on the con-

struction in (4.2.6) and Figure 4.2.3. Its value at step n is denoted by ξ̄h,δ
p,n,

and is defined as follows. Define th,δ
n =

∑n−1
i=0 ∆th(ξ̄h,δ

p,i , uh
i ) and νh,δ

l = lδ/∆̄h,
the number of (nonreflection, if any) iterates of the chain that are required for
an interpolated time interval of length lδ. Let lδ ≤ th,δ

n < lδ + δ. Then define
the memory segment by:

ξ̄h,δ
p,n(0) = ξh,δ

n ,

ξ̄h,δ
p,n(θ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ξh,δ(lδ) = ξh,δ

νh,δ
l

, θ ∈ [−δ/2, 0),

ξh,δ(lδ − δ) = ξh,δ

νh,δ
l−1

, θ ∈ [−δ/2 − δ,−δ/2),

...

ξh,δ(lδ − Q+
δ δ) = ξh,δ

νh,δ

l−Q
+
δ

, θ ∈ [−θ̄,−θ̄ + δ).

(1.1)

The construction is illustrated in Figure 1.1 and is only one of the many
asymptotically consistent possibilities for constructing an approximation with
the desired period.

ξ̄h,δ
p,n(θ)

ξh,δ(lδ − Q+
δ δ)

−θ̄
t

0−δ/2−3δ/2−θ̄ + δ

ξh,δ(lδ − δ)

ξh,δ(lδ)

ξh,δ
n

Figure 1.1. Illustration of ξ̄h,δ
p,n, periodic delay model, lδ ≤ th,δ

n < lδ + δ.

For lδ ≤ th,δ
n < lδ + δ, the path memory segment can be unambiguously

identified with the vector

(
ξh,δ

νh,δ

l−Q
+
δ

, . . . , ξh,δ

νh,δ
l

, ξh,δ
n

)
.

Notes on computation. For the random memory segment model of (7.3.8),
we needed to keep track only of the values of the state at the current iterate
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n, namely, ξh,δ
n , and at the previous Qδ iterates at which the time variable

φh,δ
i increased. Owing to the random way that the time variable advanced,

there was no need to keep track of the elapsed time since the last time shift
as it provided no information on the time of the next increase in the time
variable. For the model of this section, at iterate n, where lδ ≤ th,δ

n < lδ + δ,
we need to keep track of n − lδ/∆̄h, the number of (nonreflection, for the
reflecting boundary model) iterates that have passed since the last time shift,
the last time that th,δ

n equalled δ times an integer. This new variable takes L̄h,δ

values. This increases the size of the state space for the dynamic programming
problem, but it reduces the randomness in the algorithm.

Let Lh,δ
n = n(mod L̄h,δ) denote the number of iterates since the last shift.

For lδ ≤ th,δ
n < lδ + δ, ξh

n ∈ Gh, and Lh,δ
n < L̄h,δ − 1, the state transitions are(

ξh,δ

νh,δ

l−Q
+
δ

, . . . , ξh,δ

νh,δ
l

, ξh,δ
n

)
→
(

ξh,δ

νh,δ

l−Q
+
δ

, . . . , ξh,δ

νh,δ
l

, ξh,δ
n+1

)
; Lh,δ

n+1 = Lh,δ
n + 1.

(1.2a)
For Lh,δ

n = L̄h,δ − 1 , th,δ
n+1 = lδ + δ and the transitions are(

ξh,δ

νh,δ

l−Q
+
δ

, . . . , ξh,δ

νh,δ
l

, ξh,δ
n

)
→
(

ξh,δ

νh,δ

l−Q
+
δ

+1

, . . . , ξh,δ

νh,δ
l

, ξh,δ
n+1, ξ

h,δ
n+1

)
; Lh,δ

n+1 = 0.

(1.2b)

Nonconstant ∆th(ξ̂, α). Suppose that the values of ∆th(ξ̂, α) can be ap-
proximated as integral multiples of some number ∆̄h, with δ/∆̄h = L̄h,δ being
an integer. Then the same procedure can be used, the only change being that
the value of Lh,δ

n might increase by more than one at some steps. It is set to
zero when it reaches or exceeds L̄h,δ. If its assumptions are adjusted to the
model of this section, then Theorem 7.3.3 holds, where the limit as h → 0
(and δ is fixed) is the model with memory segment (4.2.6). If, for the chosen
value of ∆̄h, there are values of ξ̂ and α where ∆th(ξ̂, α) is not an integral
multiple of it, then one can update Lh,δ

n there by a randomization procedure,
so that the mean increase is ∆th(ξ̂, α)/∆̄h,δ. We omit the details, as it is partly
covered by the procedure in the next section, which requires less memory.

8.2 A Periodic-Erlang Model

The increase in the required memory for the periodic memory segment form
(1.1) (over what is needed for the random memory segment model of Section
7.3) is due to the need to keep track of the time that has elapsed since the
last shift. If the interpolation interval is constant and L̄h,δ is very large, then
the memory requirements might be quite large. If the interpolation interval is
not constant and/or we don’t wish to transform the problem into the constant



8.2 A Periodic-Erlang Model 197

interval form, then we can approximate the time variable part of the memory
state by a randomization procedure that will be described shortly.

In Section 7.3, the transition probability (7.3.1) was used to determine the
process of shifts of the time variable that was used to construct the interpo-
lated path memory segment. The probability that time advanced by δ at any
step was the second line of (7.3.1), which is approximated by ∆th(ξ̂, α)/δ if
this quantity is small. For the process that was constructed with the tran-
sition probabilities (7.3.1), either the spatial or time component changed at
each step, but not both. In the paragraph below (7.3.3), the modification
where both the spatial state and the time variable could change simultane-
ously was noted, in which case the conditional probability that time advances
is ∆th(ξ̂, α)/δ, always assumed to be no larger than unity.. This variation will
be adapted for use in this section.

The memory approximation procedure. Divide the interval [0, δ] into
subintervals of length δ0, where δ/δ0 = L̄δ0,δ is an integer. In the first part
of Section 1, where the explicit procedure was used, the time interval was
the constant ∆̄h, hence interpolated time advanced by ∆̄h at each step. In
this section, we use an adaptation of the method of Section 7.3, but with
δ0 replacing δ and allow the possibility that the spatial and temporal states
change simultaneously. After each L̄δ0,δ of the δ0-shifts, time is advanced by
δ and the memory segment structure shifts. By Theorem 7.4.1, for δ and δ0

fixed, as h → 0 the time between the main δ-shifts becomes Erlang of order
L̄δ0,δ and total mean δ. Because the chain, control, and time processes depend
on the three quantities h, δ and δ0, we index them by this triple and use the
notation ξh,δ.δ0

n , and so forth, and

∆th,δ0,δ
n = ∆th(ξ̄h,δ0,δ

n , uh,δ0,δ
n ).

More precisely, we use the following procedure, guided by the periodic-
Erlang model of Approximation 5 in (4.2.8). Use the explicit approximation
procedure for the evolution of the ξh,δ0,δ

n . Set Lh,δ0,δ
0 = 0 and let Lh,δ0,δ

n ∈
{0, 1, . . . , L̄δ0,δ−1} denote the number of δ0-shifts (mod L̄δ0,δ) up to iterate n.
Let supξ̂,α ∆th(ξ̂, α)/δ0 ≤ 1. For Lh,δ0,δ

n < L̄δ0,δ−1, we have Lh,δ0,δ
n+1 = Lh,δ0,δ

n +

1 with conditional probability ∆th,δ0,δ
n /δ0, and Lh,δ0,δ

n+1 = Lh,δ0,δ
n otherwise. For

Lh,δ0,δ
n = L̄δ0,δ − 1, Lh,δ0,δ

n+1 = 0 with conditional probability ∆th,δ0,δ
n /δ0, and

Lh,δ0,δ
n+1 = Lh,δ0,δ

n otherwise. Define mh,δ0,δ
0 = 0 and, for i > 0, define

mh,δ0,δ
i = min

{
n > mh,δ0,δ

i−1 : Lh,δ0,δ
n = 0, Lh,δ0,δ

n−1 = L̄δ0,δ − 1
}

.

Let mh,δ0,δ
l ≤ n < mh,δ0,δ

l+1 . If mh,δ0,δ
l is used as a subscript, then we might

write it simply as ml. The path memory segment ξ̄h,δ0,δ
e,n that is analogous to

(4.2.8) is defined by:
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ξ̄h,δ0,δ
e,n (0) = ξh,δ0,δ

n ,

ξ̄h,δ0,δ
e,n (θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ξh,δ0,δ
ml

, θ ∈ [−δ/2, 0),

ξh,δ0,δ
ml−1

, θ ∈ [−δ/2 − δ,−δ/2),
...

ξh,δ0,δ
m

l−Q
+
δ

, θ ∈ [−θ̄,−θ̄ + δ).

(2.1)

This construction is illustrated in Figure 2.1.

ξ̄h,δ0,δ
e,n (θ)

ξh,δ0,δ
m

l−Q
+
δ

−θ̄
θ

0−δ/2−3δ/2−θ̄ + δ

ξh,δ0,δ
ml−1

ξh,δ0,δ
ml

ξh,δ0,δ
n

Figure 2.1. Illustration of ξ̄h,δ0,δ
e,n , Erlang delay model, mh,δ0,δ

l ≤ n < mh,δ0,δ
l+1 .

For mh,δ0,δ
l ≤ n < mh,δ0,δ

l+1 , we can unambiguously identify the path memory
segment with the vector of values in (2.1):

X̃h,δ0δ
e,n =

(
ξh,δ0,δ
m

l−Q
+
δ

, . . . , ξh,δ0,δ
ml

, ξh,δ0,δ
n

)
.

For Lh,δ0,δ
n < L̄δ0,δ − 1, the transitions of the path memory variables are

X̃h,δ0δ
e,n → X̃h,δ0δ

e,n+1 =
(

ξh,δ0,δ
m

l−Q
+
δ

, . . . , ξh,δ0,δ
ml

, ξh,δ0,δ
n+1

)
, (2.2a)

and

Lh,δ0,δ
n → Lh,δ0,δ

n+1 =

{
Lh,δ0,δ

n + 1, w.p. ∆th,δ0,δ
n /δ0,

Lh,δ0,δ
n , w. p. 1 − ∆th,δ0,δ

n /δ0.
(2.2b)

For Lh,δ0,δ
n = Lδ0,δ − 1,

X̃h,δ0δ
e,n → X̃h,δ0δ

e,n+1 =
(

ξh,δ0,δ
m

l−Q
+
δ

, . . . , ξh,δ0,δ
ml

, ξh,δ0,δ
n+1

)

Lh,δ0,δ
n+1 = Lh,δ0,δ

n

⎫⎪⎬
⎪⎭ w.p. 1 − ∆th,δ0,δ

n

δ0
,

(2.3a)
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and

X̃h,δ0δ
e,n → X̃h,δ0δ

e,n+1 =
(

ξh,δ0,δ
m

l−Q
+
δ

+1
, . . . , ξh,δ0,δ

ml
, ξh,δ0,δ

n+1 , ξh,δ0,δ
n+1

)

Lh,δ0,δ
n+1 = 0

⎫⎪⎬
⎪⎭ w.p.

∆th,δ0,δ
n

δ0
.

(2.3b)
We call Lh,δ0,δ

n the Erlang state, and the times that it goes from the value
L̄δ0,δ − 1 to the value zero are called the shift or δ-shift times.

Comments. The periodic-Erlang model is a compromise between the random
delay model of Section 7.3 and the periodic delay model of the last section.
For any fixed δ, the quality of the approximation is better than for the random
model, but it requires more memory. The random delay model would require
a smaller value of δ for an equivalent accuracy. But keep in mind that the
dimension of the state space for the random model is Qδ + 1, implying an ex-
ponential increase in memory as δ → 0 (see Section 7.2 and the next section on
this point). The quality for the periodic-Erlang model would not be as good
as that for the periodic model of the previous subsection, but the memory
requirements are less, perhaps much less, and as δ0 → 0, the two models con-
verge to each other. Simulations indicate that there will often be considerable
savings with little loss of accuracy with the periodic-Erlang model. Obvious
analogs of asymptotic timescale equivalence results of Theorems 6.5.1 and
7.3.1 hold, and the details are left to the reader.

The next theorem follows from Theorem 7.1.4. The cost function is ei-
ther (7.3.12) or (7.1.28) with the current memory segment ξ̄h,δ0,δ

e,n used. In
particular, the analog of (7.3.12) with control u = {uh,δ0,δ

n } used is

Eh,δ0,δ,u

ξ̂

∞∑
n=0

e−βt
h,δ0,δ
n

[
k(ξ̄h,δ0,δ

e,n , uh,δ0,δ
n )∆th,δ0,δ

n + q′∆yh,δ0,δ
n

]
. (2.4)

Theorem 2.1. Assume the conditions of Theorem 7.3.3, but with memory
segment for the original model defined by (4.2.8), the periodic-Erlang case.
Hence the original model is (4.1.9b), with x̄a = x̄δ0,δ

e , for which we suppose that
there is a weak-sense unique solution for each control and initial condition.
Assume the form of this section for the numerical procedure with V h,δ0,δ(ξ̂)
denoting the optimal cost for the numerical model, V δ0,δ(ξ̂) for that of (4.2.8),
and V δ(ξ̂) when the periodic memory segment (4.2.6) is used. Let the
piecewise-constant x̄δ(0) approximate x̄(0), and let ξ̄h,δ0,δ

0 → ξ̄δ0,δ
0 → x̄δ(0) in

the sup norm as h → 0 and then δ0 → 0, where all the functions are Gh-valued.
Then as h → 0 and then δ0 → 0, V h,δ0,δ(ξ̄h,δ0,δ

0 ) → V δ0,δ(ξ̄δ0,δ
0 ) → V δ(x̄δ(0)).
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8.3 The Number of Points in the State Space: Path Only
Delayed

The value of δ. Consider solving a parabolic PDE on a finite time interval
via finite differences with spatial interval h and (for the implicit approxima-
tion procedure) time interval δ, and with the classical estimates of rate of
convergence holding. The rate of convergence is O(h2) + O(δ2) for the im-
plicit approximation procedure, vs. O(h2) + O(max time increment) for the
explicit approximation procedure [91, Chapter 6]. For the explicit approxima-
tion procedure, the value of the time increment is O(h2). Thus, for δ = O(h),
the rates of convergence would be of the same order. There is no proof that
such estimates hold for the control problem of concern here. But numerical
data for the no-delay problems suggests that one should use δ = O(h). In this
chapter, the value of δ is either constant or of this order.

8.3.1 The Implicit and Periodic-Erlang Approximation Methods:
Reduced Memory

Reduced memory requirements. We will work with the random delay
approximation method of Section 7.3, but identical estimates hold for the
periodic-Erlang model of Section 2. To illustrate the memory issues, con-
sider the one-dimensional model mentioned in the example in the para-
graph below (7.3.9c). Recall the definition Qδ = θ̄/δ, an integer. The vector
ξ̂ = (ξ̂(−θ̄), ξ̂(−θ̄ + δ), · · · , ξ̂(−δ), ξ̂(0)), which represents the canonical value
of the memory segment ξ̄h,δ

r,n for the approximating chain, as in the left-hand
sides of (7.3.9), can be represented in terms of the vector of differences

D̂ =
(
ξ̂(−θ̄) − ξ̂(−θ̄ + δ), . . . , ξ̂(−δ) − ξ̂(0), ξ̂(0)

)
≡ (D(Qδ), . . . , D(0)).

(3.1)
If ξ̂(0) is a reflection point, then it moves immediately to the closest point

in Gh. Otherwise, for the example of concern, with this representation and
if the time variable does not advance, the transitions are to one of the two
values

(D(Qδ), . . . , D(2), D(1) ∓ h, D(0) ± h).

If the time variable advances, then the transition is to

(D(Qδ − 1), . . . , D(1), 0, D(0)).

The variable D(0) takes B/h + 3 possible values. Because there are a poten-
tially unbounded number of steps between successive increases of the time
variable, the differences D(i), i ≥ 2, can take values in the set Gh −Gh, which
is the set of points {B, B−h, . . . ,−B}. Hence there are 2B/h+1 possible val-
ues. The value of D(1) is in the set Gh−G+

h = {B +h, B,B−h, . . . ,−B−h},
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as ξ̂(0) takes values in Gh ∪ ∂G+
h and ξ̂(−δ) takes values in Gh. This set has

(2B/h + 3) points. The maximum required number of points is therefore

(B/h + 3)(2B/h + 3)(2B/h + 1)θ̄/δ−1. (3.2)

This is smaller than that for the explicit approximation procedure for the
same value of h, but larger than (7.3.10), which is that for the representation
(7.3.9). The advantage of the representation (3.1) in terms of differences is
that the sizes of the components can be truncated, as we will now see.

An approximation result. We will use the following version of the approx-
imation method of Theorem 7.1.4. Suppose that we approximate the path
memory segment for the numerical process as follows. Let κ be the approx-
imation parameter and let the associated chain be denoted by {ξh,δ,κ

n }, with
controls {uh,δ,κ

n }. In the development below, κ will be a truncation parame-
ter. The approximation to the path memory segment at step n is a nonan-
ticipative function ξ̄h,δ,κ

a,n = {ξ̄h,δ,κ
a,n (θ), θ ∈ [−θ̄, 0]}, which can be embedded

into a finite-state Markov chain, and with the value ξ̄h,δ,κ
a,n (0) = ξh,δ,κ

n . Define
∆th,δ,κ

n = ∆th,δ(ξ̄h,δ,κ
a,n , uh

n). The continuous-time interpolation analogous to
(7.3.16) is

ψh,δ,κ(t) = ξh,δ
0 +

∫ t

0

∫
Uh

bh(ξ̄h,δ,κ
a (qh,δ,κ

τ (s)), α)rh,δ,κ
τ (dα ds)

+Bh,δ,κ
τ (t) + zh,δ,κ

τ (t).
(3.3)

The exact form of ξ̄h,δ,κ
a,n will be defined below. The quadratic variation of the

martingale Bh,δ,κ
τ (·) is ∫ t

0

ah(ξ̄h,δ,κ
a (qh,δ,κ

τ (s)))ds.

The process ξ̄h,δ,κ
a (·) (resp., ξh,δ,κ(·)) is the interpolation of {ξ̄h,δ,κ

a,n } (resp., of
{ξh,δ,κ

n }) with intervals {∆th,δ,κ
n }. The processes rh,δ,κ

τ (dα ds), and qh,δ,κ
τ (s)

are defined analogously to those without the κ, but under the condition that
the modified path memory segment ξ̄h,δ,κ

a,n is used in the dynamics and cost
rate at step n of the chain. See the discussion above (7.1.14) concerning the
role of qh,δ

τ (·).
Suppose that

lim
δ→0

lim
κ→0, h→0

sup
t≤T,control

P

{
sup

−θ̄≤θ≤0

∣∣ξh,δ,κ(t + θ) − ξ̄h,δ,κ
a (t, θ)

∣∣ ≥ ε

}
= 0,

(3.4)
for each T < ∞ and ε > 0. Then it follows from Theorem 7.1.4, under appro-
priate conditions on the boundaries and the cost rate and dynamical functions,
that as h → 0, κ → 0, and then δ → 0, the limit of the processes (3.3) and the
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associated costs are processes and costs for the original model (7.1.5) where
the path memory segment at time t is x̄(t).

Now fix δ. Consider the variant where as κ → 0, the sup over any arbitrary
time interval of the absolute value of the difference between the path memory
segment process ξ̄h,δ,κ

a (·) and that based on the approximation (7.3.8) goes
to zero in probability as κ → 0 and h → 0. Then, as h → 0 and κ → 0, the
optimal processes and costs will converge to those where the path memory
segment at time t is x̄δ

r(t), defined by (4.2.7).

Truncated state variables. We now exploit these approximation results
to reduce the memory requirement by truncating the range of the values of
the D(i). The basic idea behind the approximation is that over the number of
steps that are required for the time variable to advance, with a high probability
(for small h), the sample number of values taken by the D(i) will be much
less than 2B/h due to cancellations of positive and negative steps. Thus one
can truncate the range of values of the D(i), i ≥ 1, leaving N1 < 2B/h
allowed values, where the probability that any of the D(i), i ≤ Qδ, over the
approximating delay interval is not one of the N1 allowed values is smaller than
some predetermined number. We will only indicate the possibilities. Much
further work is needed to get the best truncations.

One possible approach is to use the martingale properties of the Bh,δ,κ
τ (·)

process to get bounds on the path excursions. A cleaner approach is to use
the properties of weak convergence, as will now be done. Let σh,δ,κ

n be defined
as σh,δ

n was above Figure 7.3.1, but where the spatial chain is {ξh,δ,κ
n }. Define

γh,δ,κ
l+1 = min

{
t > σh,δ,κ

l :
∣∣∣ξh,δ,κ(t) − ξh,δ,κ(σh,δ,κ

l )
∣∣∣ ≥ κ

}
∧ σh,δ,κ

l+1 .

The idea is to use ξh,δ,κ(γh,δ,κ
l+1 )−ξh,δ,κ(σh,δ,κ

l ) in lieu of ξh,δ(σh,δ
l+1)−ξh,δ(σh,δ

l )
for the components of the representation (3.1) of (7.3.9) in terms of differences.

An estimate based on a Wiener process approximation. Fix δ, with
only h → 0. As h → 0, the process Bh,δ

τ (·) in (7.3.16) converges weakly to the
stochastic integral

∫ t

0
σ(x̄δ

r(s))dw(s). Hence the distribution of the first time
than |Bh,δ

τ (·)| exceeds κ will converge weakly to that of the stochastic integral.
Start by supposing that the process is one-dimensional and that σ(x̂) = 1, so
that the limit is a Wiener process with unit variance.

The density of the time of escape of a Wiener process starting at time zero
from the interval [−κ, κ] is bounded by [42, Chapter 2, remark 8.3, adjusted
for the double-sided barrier]1

e−κ2/2t 4κ√
2πt3/2

. (3.5)

1 This is a crude upper bound. We have added the density of the escape time from
(−∞, κ) to that for the escape time from (−κ,∞).
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The probability that the truncated process will not equal the untruncated
process over a time interval [0, τδ] is asymptotically bounded by

4κ√
2π

∫ τδ

0

e−κ2/2t 1
t3/2

dt =
8√
2π

∫ ∞

κ/
√

τδ

e−v2/2dv ≤ 8e−(κ2/2τδ)

[√
τδ

κ

]
, (3.6)

where the right-hand inequality is taken from [24, Chapter 7, (1.8)]. Because
in our application τδ is asymptotically a random variable that is exponentially
distributed with mean δ, the expectation of the right side of (3.6) is

8Ee−(κ2/2τδ)

[√
τδ

κ

]
= 8

∫ ∞

0

e−(κ2/2u)

[√
u

κ

]
1
δ
e−u/δdu, (3.7)

which can be written as

A(κ, δ) ≡ 8
∫ ∞

0

√
uδ

κ
e−κ2/2δue−udu. (3.8)

Because there are Qδ intervals in the construction of each memory segment,
the probability that there is a truncation in the construction of the path
memory segment at an arbitrary time is asymptotically bounded by

1 − (1 − A(κ, δ))Qδ ≤ QδA(κ, δ). (3.9)

Let us use the form κ = kB, where 0 < k < 1. Suppose for example that
B = 10, θ̄ = .1, δ = .01, κ = .8. Then the left side of (3.9) is 0.0012 and
the right side is 0.0187. If κ = .6, then the left side is 0.0225. A bound on
the required number of points is (3.2), where B is replaced by κ in the two
right-hand factors.

If σ2(·) is not constant, then use a time change argument and the largest
value of the variance to get an upper bound. The estimate is unchanged if the
drift term b(·) is included. We have supposed that δ is constant while h → 0.
But the results will continue to hold if δ → 0 sufficiently slowly as h → 0.

An alternative procedure for memory reduction. The use of cruder
approximations can also be helpful to reduce the memory requirements. For
example, for the above special case, suppose that the differences are to be
approximated by values in S = {0,±2h,±4h, . . . ,±B}. If a difference falls
between a pair of any such points, then assign by a randomization. One could
also approximate such intermediate values by alternating the assignments,
first to the closest higher point, then to the closest lower point, and so forth.
Smaller sets than S can be used as well, with appropriate assignment policies.

8.4 Control and Path Delayed

Subsection 7.2.2 contained some comments on the case where the control was
also delayed. It was assumed in that section that the interpolation interval
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∆th(·) was a constant ∆̄h. At step n, the control memory segment involved
the entire history of the control over interpolated time [thn−θ̄, thn]. The required
memory can be excessive if ∆̄h is very small or the control takes more than
two or three values. In this section, we will develop analogs of the approxi-
mation methods of Section 1, where the delays are periodic, and of Section
7.3 and of Section 2 of this chapter, where the time intervals defining the
piecewise-constant memory segments were random. These methods required
less memory and allowed the use of arbitrary ∆th(·), and these advantages
will also hold for the control memory segment.

The continuous-time interpolations of the control process uh
n have no reg-

ularity properties that are analogous to the (asymptotic) continuity of the
interpolations of the ξh

n. Because of this, it is natural to work with the relaxed
control representations. It is supposed that local consistency (7.1.23) holds.
This will be the case if the transition probabilities are defined by (7.1.24),
where the functions Nh(·), Dh(·) yield local consistency for the nondelay prob-
lem. The system is (3.2.4) and we start with the cost function (3.4.4). The cost
function for the numerical problem is (7.1.26). Also, for ease of visualizing the
various constructions, suppose that U = Uh contains only a finite number of
points.

8.4.1 A Periodic Approximating Memory Segment

We start with an analog of the periodic memory segment of Section 1, as it
is relatively simple and will provide a good introduction to the other forms.
Recall the definition (Q+

δ + 1/2)δ = θ̄ and suppose, for notational simplicity,
that µc([−δ/2, 0)) = 0; that is, there are no delays in the control memory with
values on the half open interval [−δ/2, 0). Until the last paragraph of this
subsection, it is assumed that, for ξ̂(0) ∈ Gh, ∆th(ξ̂, û, α) = ∆̄h, a constant.
This assumption will be dropped in the last paragraph and in subsequent
subsections. If we have a reflecting boundary and ξh

n �∈ Gh, then there is
no control at step n. To simplify the notation, we will ignore such steps in
computing the control memory segment below. Recall the definitions L̄h,δ =
δ/∆̄h, νh,δ

l = lδ/∆̄h, and Lh,δ
n = n(mod(L̄h,δ)). Thus for νh,δ

l ≤ n < νh,δ
l+1 we

have Lh,δ
n = n− νh,δ

l . To construct the approximation to the control memory
segment, we use the method and notation of Section 1 and divide the interval
[−θ̄, 0] into Q+

δ + 1 segments, as depicted in Figure 1.1. The control memory
segment will be represented as a relaxed control whose derivative r̄h,δ,′

p,n (dα, θ)
at step n of the chain is constant in θ on each of the θ-intervals [−θ̄,−θ̄ +
δ), . . . , [−3δ/2,−δ/2), [−δ/2, 0) on the horizontal axis in Figure 1.1. For lδ ≤
th,δ
n < lδ + δ, we use the notation rh,δ,′

p,l,n(dα) for the value of r̄h,δ,′
p,n (dα, θ) for

θ ∈ [−δ/2, 0), rh,δ,′
p,l−1(dα) for the value of r̄h,δ,′

p,n (dα, θ) for θ ∈ [−3δ/2,−δ/2),
and so forth. These control terms will now be defined.

Until the last paragraph of this subsection, it will be assumed that n and
l are such that νh,δ

l ≤ n < νh,δ
l+1. Define
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rh,δ,′
p,l−i(dα) =

νh,δ
l−i+1−1∑
j=νh,δ

l−i

I{uh,δ
j

=α}

/
L̄h,δ, i = 1, . . . , Q+

δ . (4.1)

This is the average of the relaxed control representations of the actual control
values that are used on the interpolated time interval [lδ − iδ, lδ − iδ + δ), or,
equivalently, on the set [vh,δ

l−i, v
h,δ
l−i+1) of iterates. Keep in mind that, at iterate

n, the value of ξh,δ
n is known, but the value of uh,δ

n is to be computed. Define
(where 0/0 = 0)

rh,δ,′
p,l,n(dα) =

n−1∑
j=νh,δ

l

I{uh,δ
j

=α}

/
Lh,δ

n . (4.2)

Summarizing, the values of r̄h,δ,′
p,n (θ, dα) are given by

r̄h,δ,′
p,n (dα, θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

rh,δ,′
p,l,n(dα), θ ∈ [−δ/2, 0),

rh,δ,′
p,l−1(dα), θ ∈ [−δ/2 − δ,−δ/2),

...

rh,δ,′
p,l−Q+

δ

(dα), θ ∈ [−θ̄,−θ̄ + δ).

(4.3)

This construction is illustrated in Figure 4.1, where νh,δ
l ≤ n < νh,δ

l+1. In the
figure, the top line gives the derivative of the relaxed control in each of the
subintervals, and the lowest line indicates the ranges of the iterates that were
used to compute the values.

The expression (4.2) is the average of the relaxed control representations
of the controls computed over the set of iterates [νh,δ

l , n − 1]. With this ap-
proximation, on each set [νh,δ

l , νh,δ
l+1) of iterates we need to track n(mod(L̄h,δ))

and the numerator of (4.2). The first of these quantities takes L̄h,δ possible
values {0, 1, . . . , L̄h,δ − 1}, which can be large if h is small.

rh,δ,′
p,l−Q+

δ

−θ̄

r̄h,δ,′
p,n (θ)

νh,δ

l−Q+
δ

θ
0

n

−δ/2

νh,δ
l

−3δ/2

νh,δ
l−1

−θ̄ + δ

νh,δ

l−Q+
δ

+1

rh,δ,′
p,l−1 rh,δ,′

p,l,n

Figure 4.1. Illustration of the control memory segment.
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Since Uh has only a finite number of points, the total number of possible
values for the numerator of (4.2) is finite, but can be very large. The represen-
tation does not use significantly less memory than the method of Subsection
7.1.3, but it provides a basis for the further approximations that will be given
below.

The transitions of the control memory segment. Analogously to (1.2a),
for Lh,δ

n < L̄h,δ − 1 the control memory-state and its transition can be unam-
biguously represented by the form

r̄h,δ,′
p,n (dα) =

(
rh,δ,′
p,l−Q+

δ

(dα), . . . , rh,δ,′
p,l−1(dα), rh,δ,′

p,l,n(dα)
)

−→ r̄h,δ
p,n+1(dα) =

(
rh,δ,′
p,l−Q+

δ

(dα), . . . , rh,δ,′
p,l−1(dα), rh,δ,′

p,l.n+1(dα)
)

,
(4.4)

which involves only an updating of the index in (4.2) from n to (n + 1) .
Now suppose that Lh,δ

n = L̄h,δ − 1. Then Lh,δ
n+1 = 0, th,δ

n+1 = lδ + δ and
νh,δ

l+1 = n + 1. The numerator of (4.2) becomes

n−1∑
j=νh,δ

l

I{uh,δ
j

=α} + I{uh,δ
n =α} =

vh,δ
l+1−1∑

j=νh,δ
l

I{uh,δ
j

=α}.

Dividing this by L̄h,δ yields rh,δ,′
p,l (dα), we begin the next cycle, and the control

memory state transits as the following analog of (1.2b):

r̄h,δ,′
p,n (dα) =

(
rh,δ,′
p,l−Q+

δ

(dα), . . . , rh,′
p,l−1(dα), rh,δ,′

p,l,n(dα)
)

−→ r̄h,δ,′
p,n+1(dα) =

(
rh,δ,′
p,l−Q+

δ
+1

(dα), . . . , rh,δ,′
p,l−1(dα), rh,δ,′

p,l (dα), 0
)

.
(4.5)

The last value is zero, as th,δ
n+1 = lδ + δ and no control values for the interval

of interpolated time [lδ + δ, lδ + 2δ) have yet been computed.

A representation of the drift term. Let uh,δ(·) denote the continuous-
time interpolation of the controls {uh,δ

n }, with relaxed control representation
rh,δ
p (·), and r̄h,δ,′

p (·) the continuous-time interpolation of the memory segments
{r̄h,δ,′

p,n }, all with intervals ∆̄h. Then, for t ∈ [lδ, lδ + δ) and µc([−δ/2, 0)) = 0,
and the periodic memory segment ξ̄h,δ

p,n used for the path, we can represent
the drift term at time t in the form

b̄h,δ(ξ̄h,δ
p (t), r̄h,δ,′

p (t), uh,δ(t)) = µc({0})
∫

Uh

b(ξ̄h,δ
p (t), α, 0)rh,δ,′

p (dα, t)

+
Q+

δ∑
i=1

∫ (−iδ+δ−δ/2)−

−iδ−δ/2

µc(dθ)
∫

Uh

b(ξ̄h,δ
p (t), α, θ)rh,δ,′

p,l−i(dα).
(4.6)
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The analog of (4.1)–(4.3) for arbitrary ∆th(·). Let us now write the
analog of (4.1)–(4.3) when the interpolation intervals ∆th(·) are not constant.
The expressions are hard to use for the memory segments in a numerical
procedure but will be approximated by the method in the next subsection.
Because the number of iterates between the successive δ-shifts is now random,
a weighting over the appropriate random intervals will replace (4.1) and (4.2).
Redefine ∆th,δ

n = ∆th(ξ̄h,δ
p,n, r̄h,δ,′

p,n , uh
n) and ν̃h,δ

l = min{n : th,δ
n ≥ lδ}.

For i = 1, . . . , Q+
δ , redefine

rh,δ,′
p,l−i(dα) =

ν̃h,δ
l−i+1−1∑
j=ν̃h,δ

l−i

I{uh,δ
j

=α}∆th,δ
j

/ ν̃h,δ
l−i+1−1∑
j=ν̃h,δ

l−i

∆th,δ
j . (4.7)

For ν̃h,δ
l ≤ n < ν̃h,δ

l+1, redefine

rh,δ,′
p,l,n(dα) =

n−1∑
j=ν̃h,δ

l

I{uh,δ
j

=α}∆th,δ
j

/ n−1∑
j=ν̃h,δ

l

∆th,δ
j =

Nh,δ
l,n (dα)

Dh,δ
l.n

. (4.8)

With these definitions, for n = ν̃h,δ
l+1,

rh,δ,′
p,l (dα) =

Nh,δ
l,n (dα)

Dh,δ
l,n

. (4.9)

With the definition σ̄h,δ
l = th,δ

ν̃h,δ
l

, (4.7) can be written as

∫ σ̄h,δ
l−i+1

σ̄h,δ
l−i

rh,δ,′
p (dα, s)ds

σ̄h,δ
l−i+1 − σ̄h,δ

l−i

, (4.10)

and (4.8) can be written as

∫ th,δ
n

σ̄h,δ
l

rh,δ,′
p (dα, s)ds

th,δ
n − σ̄h,δ

l

, (4.11)

where we continue to let rh,δ,′
p (dα, t) denote the derivative of the relaxed con-

trol corresponding to the interpolation of {uh,δ
n } with intervals {∆th,δ

n }.

8.4.2 A Periodic-Erlang Approximation

When ∆th(ξ̂, û, α) is not constant, in principle the expressions (4.7)–(4.11)
could be used in (4.3) for the approximation to the control memory segment.
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Unfortunately, they are no simpler than (4.1) and (4.2) and generally would
require more memory. In this subsection, the ideas of the periodic-Erlang
approach of Section 2 and Approximation 5a of Section 4.4 will be adapted
to reduce these memory requirements. The method that is to be proposed is
well motivated and promising, but it is only one among many possibilities for
dealing with the memory requirements.

It will no longer be necessary that ∆th(·) be constant. Recall the defini-
tions of δ0, L̄

δ0,δ, Lh,δ0,δ
n , and mh,δ0,δ

l from Section 2. As in the previous sub-
section, the approximation to the control memory segment will be in terms
of the derivative of a relaxed control, and it will be piecewise-constant. In
the previous subsection, the intervals of constancy in θ of the relaxed control
derivative r̄h,δ,′

p,n (dα, θ) were of length δ, except the top one, whose length was
δ/2. In Section 2, the θ-subintervals where the memory segment ξ̄h,δ0,δ

p,n (θ) was
constant were of these same lengths, and the values that were taken were
determined by a sampling of the interpolated chain at intervals that were
determined (at least asymptotically, as h → 0) by an Erlang distribution.
The variable that measured the passage of time since the last δ-shift took
L̄δ0,δ values. This is opposed to the much larger value L̄h,δ = δ/∆̄h (as in
the first part of the previous subsection), where, if we need to transform the
transition probabilities to get a constant interpolation interval, we would have
∆̄h = minξ̂,û,α ∆th(ξ̂, û, α).

There are several issues of concern. The first is that of Section 2, in sim-
plifying the measurement of the passage of time since the last δ-shift. The
next issue is similar, it concerns the problem that (4.2) and (4.8) are updated
at each step of the chain, which might also require an enormous memory.
These problems will be dealt with by an adaptation of the method of Section
2 and the form of the periodic-Erlang approximation (4.4.7). We will use the
subscript ee, as in (4.4.7), to denote the approximation.

The approximation method. At step n of the chain, the approximation to
the path memory segment will be ξ̄h,δ0,δ

e,n defined in (2.1), and the approxima-
tion r̄h,δ0,δ,′

ee,n to the control memory segment will be defined below. Redefine
∆th,δ0,δ

n = ∆th(ξ̄h,δ0,δ
e,n , r̄h,δ0,δ,′

ee,n , uh,δ0,δ
n ), and th,δ0,δ

n =
∑n−1

i=0 ∆th,δ0,δ
i . Define

σ̄h,δ0,δ
l = th,δ0,δ

m
h,δ0,δ

l

, where the renewal time mh,δ0,δ
l was defined above (2.1), but

use the current interpolation intervals.
Let mh,δ0,δ

l ≤ n < mh,δ0,δ
l+1 or, equivalently, σ̄h,δ0,δ

l ≤ th,δ0,δ
n < σ̄h,δ0,δ

l+1 . When
using mh,δ0,δ

l as an index of summation, we will write it simply as ml. We will
approximate (4.8) by the form

r̃h,δ,δ0,′
ee,l.n (dα) =

Ñh,δ0,δ
l,n (dα)

D̃h,δ0,δ
l,n

, (4.12)

where the functions Ñ and D̃ will now be defined. For convenience rewrite
(2.2b) and the second lines of (2.3a) and (2.3b) as follows. For Lh,δ0,δ

n <
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L̄δ0,δ − 1,2

Lh,δ0,δ
n → Lh,δ0,δ

n+1 =

{
Lh,δ0,δ

n , w.p. (1 − ∆th,δ0,δ
n /δ0),

Lh,δ0,δ
n + 1, w.p. ∆th,δ0,δ

n /δ0.
(4.13)

If Lh,δ0,δ
n = L̄δ0,δ − 1, then

Lh,δ0,δ
n → Lh,δ0,δ

n+1 =

{
Lh,δ0,δ

n , w.p. (1 − ∆th,δ0,δ
n /δ0),

0, w.p. ∆th,δ0,δ
n /δ0.

(4.14)

The two lines of (4.13) correspond to, respectively,

Ñh,δ0,δ
l,n (dα) → Ñh,δ0,δ

l,n+1 (dα) =

{
Ñh,δ0,δ

l,n (dα),

Ñh,δ0,δ
l,n (dα) + I{u

h,δ0,δ
n =α}.

(4.15)

In the event of the first line of (4.14), Ñh,δ0,δ
l,n+1 (dα) = Ñh,δ0,δ

l,n (dα). In the event
of the second line, Ñh,δ0,δ

l,n+1 (α) = 0, the lth cycle is completed, and we define

r̃h,δ,δ0,′
ee,l (dα) =

Ñh,δ0,δ
l,n (dα) + I{u

h,δ0,δ
n =α}

L̄δ0,δ
. (4.16)

Let Ih,δ0,δ
n denote the indicator function of the event Lh,δ0,δ

n �= Lh,δ0,δ
n+1 ; i.e.,

that the Erlang state changes at step n. Then the ratio (4.16) can be written
as

r̃h,δ,δ0,′
ee,l (dα) =

∑ml+1−1
i=ml

I{u
h,δ0,δ

i
=α}I

h,δ0,δ
i∑ml+1−1

i=ml
Ih,δ0,δ
i

. (4.17a)

The expression (4.12) will be

r̃h,δ,δ0,′
ee,l,n (dα) =

∑n−1
i=ml

I{u
h,δ0,δ

i
=α}I

h,δ0,δ
i∑n−1

i=ml
Ih,δ0,δ
i

. (4.17b)

The denominator of the last expression defines D̃h,δ0,δ
l,n .

The control memory segment of the approximating chain. Summariz-
ing the above discussion, for mh,δ0,δ

l ≤ n < mh,δ0,δ
l+1 , the values of the control

memory segment for the periodic-Erlang approximation are given by the pro-
cess r̄h,δ0,δ,′

ee,n (dα, θ) defined by

2 The probabilities in (4.13) and (4.14) are the conditional probabilities, given the
path and control data to and including iterate n.
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r̄h,δ0,δ,′
ee,n (dα, θ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r̃h,δ0,δ,′
ee,l,n (dα), θ ∈ [−δ/2, 0),

r̃h,δ0,δ,′
ee,l−1 (dα), θ ∈ [−δ/2 − δ,−δ/2),

...

r̃h,δ0,δ,′
ee,l−Q+

δ

(dα), θ ∈ [−θ̄,−θ̄ + δ).

(4.18)

For θ = 0, we define, as usual, r̄h,δ0,δ,′
ee,n (dα, 0) = I{u

h,δ0,δ
n =α}.

Evaluating the randomization errors in (4.17). By (4.13) and (4.14),
∆th,δ0,δ

n /δ0 is the conditional expectation of Ih,δ0,δ
n given the data to and

including iterate n. Hence (4.17a) can be written as[∑ml+1−1
i=ml

I{u
h,δ0,δ

i
=α}∆th,δ0,δ

i /δ0 + ρh,δ0,δ
l,N

]
[∑ml+1−1

i=ml
∆th,δ0,δ

i /δ0 + ρh,δ0,δ
l,D

] ,

which equals

=

[∑ml+1−1
i=ml

I{u
h,δ0,δ

i
=α}∆th,δ0,δ

i + δ0ρ
h,δ0,δ
l,N

]
[∑ml+1−1

i=ml
∆th,δ0,δ

i + δ0ρ
h,δ0,δ
l,D

] , (4.19)

where the ρ-terms represent the randomization noise. In particular,

δ0ρ
h,δ0,δ
l,D =

ml+1−1∑
i=ml

δ0

[
Ih,δ0,δ
i − ∆th,δ0,δ

i /δ0

]
,

whose summands are martingale differences with conditional variance

δ0∆th,δ0,δ
i (1 − ∆th,δ0,δ

i /δ0).

The conditional (given the data to the start of the lth cycle) variance of the
randomization error in the denominator of (4.19) is bounded by the condi-
tional expectation (given the same data) of δ0[σ̄

h,δ0,δ
l+1 − σ̄h,δ0,δ

l ]. The sum in
the denominator of (4.19) is [σ̄h,δ0,δ

l+1 −σ̄h,δ0,δ
l ]. Thus as h → 0 and then δ0 → 0,

the effect of the randomization error in (4.17a) goes to zero. The analogous
result holds for (4.17b). These facts will be essential to the proof of Theorem
4.1.

Comment on the memory requirements. Suppose that U = Uh = {0, 1}.
Then we need only keep track of the values for α = 1. The denominator in
(4.17b) is the value of the Erlang state at iterate n− 1, and the numerator is
the number of times that the control has taken the value unity at the steps
up to and including (n− 1) where the Erlang state has advanced since it last
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had the value zero. Thus, (4.17b) is the fraction of times in the current cycle
up to and including iterate (n− 1) that the control has taken the value unity
at the times when the Erlang state advanced.

The expression (4.17a) takes L̄δ0,δ + 1 values, as the number of times
that the control can take the value α per cycle can be any of 0, 1, . . . , L̄δ0,δ.
The denominator of (4.17b) is the current Erlang state and takes the values
(0, 1, . . . , L̄δ0,δ − 1). If the value is k, then the numerator can take any of
the values (0, 1, . . . , k). Thus it requires L̄δ0,δ(L̄δ0,δ + 1)/2 points to record
the evolution of (4.17b). Summarizing, with the representation (4.17), the
function that represents the entire control memory segment takes [L̄δ0,δ +
1]Q

+
δ [L̄δ0,δ][L̄δ0,δ+1]/2 values. This quantity does not depend on the value of h.

For the direct method of Subsection 7.2.2, the total number of required points
would be 2θ̄/∆̄h

, which would be substantially larger as, typically, ∆̄h = O(h2).
The required number can be reduced further if we discretize the r̃h,δ0,δ,′

ee,l−i (dα)
more coarsely.

The evolution of the control memory segment. In the event of (4.13) or
the first line of (4.14), we can represent the transitions of the control memory
vector as follows:

r̄h,δ0,δ,′
ee,n (dα) =

(
r̃h,δ0,δ,′
ee,l−Q+

δ

(dα), . . . , r̃h,δ0,δ,′
ee,l−1 (dα), r̃h,δ0,δ,′

ee,l,n (dα)
)

−→ r̄h,δ0,δ
ee,n+1(dα) =

(
r̃h,δ0,δ,′
ee,l−Q+

δ

(dα), . . . , r̃h,δ0,δ,′
ee,l−1 (dα), r̃h,δ0,δ,′

ee,l,n+1(dα)
)

,

(4.20)
In the event of the second line of (4.14),

r̄h,δ0,δ
ee,n (dα) −→ r̄h,δ0,δ

ee,n+1(dα)

=
(
r̃h,δ0,δ,′
ee,l−Q+

δ
+1

(dα), . . . , r̃h,δ0,δ,′
ee,l−1 (dα), r̃h,δ0,δ,′

ee,l (dα), 0
)

.
(4.21)

A continuous time interpolation. Definitions. Let rh,δ0δ(·) denote the
continuous time interpolation (with intervals {∆th,δ0δ

n }) of the relaxed control
representation of the controls {uh,δ0,δ

n }. Let rh,δ0δ
τ (·) denote the interpolation

with intervals {∆τh,δ0δ
n }. In the current context, the κ in the form (7.1.31)

becomes the pair (δ0, δ), and the subscript “a” is ee for the control memory
segments. For future use, let us define the following alternative notation for
the control memory segments. The full memory segment at iterate n, based
on the actual controls that are used, is the function of α, t, and θ ∈ [−θ̄, 0)
defined by

r̄h,δ0,δ,′
n (dα, θ) = rh,δ0,δ,′(dα, th,δ0,δ

n + θ).

Define the functions of α, t, and θ ∈ [−θ̄, 0] that are based on the actual control
memory segments that are used:
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r̃h,δ0,δ,′
ee (dα, t, θ) = r̄h,δ0,δ,′

ee,n (dα, θ), for θ ∈ [−θ̄, 0)

r̃h,δ0,δ,′
ee (dα, t, 0) = I{u

h,δ0,δ
n =α}

}
t ∈ [th,δ0,δ

n , th,δ0,δ
n+1 ),

(4.22a)
r̃h,δ0,δ,′
ee,τ (dα, t, θ) = r̄h,δ0,δ,′

ee,n (dα, θ), for θ ∈ [−θ̄, 0)

r̃h,δ0,δ,′
ee,τ (dα, t, 0) = I{u

h,δ0,δ
n =α}

}
t ∈ [τh,δ0,δ

n , τh,δ0,δ
n+1 ).

(4.22b)
For future use, for each θ ∈ [−θ̄, 0], let r̃h,δ0,δ

ee,τ (dα, t, θ) denote the relaxed
control process whose derivative at time t is r̃h,δ0,δ,′

ee,τ (dα, t, θ). It is piecewise-
constant in θ (on the intervals [−d/2, 0), [−3δ/2,−δ/2), . . .).

Recall the definitions

ξ̄h,δ0,δ
n is the path segment {ξh,δ0,δ(th,δ0,δ

n + θ), θ ∈ [−θ̄, 0]},
ξ̄h,δ0,δ
e (·) is the interpolation of {ξ̄h,δ0,δ

e,n } with intervals {∆th,δ0,δ
n }.

(4.23)

A continuous time interpolation. With the path memory segment (2.1)
and control memory segment (4.18), the interpolated path process (with in-
tervals {∆τh,δ0,δ

n }) can be written as

ψh,δ0,δ(t) = ξh
0

+
∫ 0

−θ̄

[∫ t

0

∫
Uh

bh(ξ̄h,δ0,δ
e (qh,δ0,δ

τ (s)), α, θ)r̃h,δ0,δ,′
ee,τ (dα, s, θ)ds

]
µc(dθ)

+Bh,δ0,δ
τ (t) + zh,δ0,δ

τ (t),
(4.24)

where the martingale Bh,δ0,δ
τ (·) has quadratic variation process∫ t

0

ah(ξ̄h,δ0,δ
e (qh,δ0,δ

τ (s)))ds,

and, as below (6.5.12), it can be represented as (modulo an asymptotically
negligible error)

Bh,δ0,δ
τ (t) =

∫ t

0

σ(ξ̄h,δ0,δ
e (qh,δ0,δ

τ (s)))dwh,δ0,δ(s), (4.25)

where the martingale wh,δ0,δ(·) has quadratic variation It and converges
weakly to a standard Wiener process as either h → 0, (h, δ0) → 0, or
(h, δ0, δ) → 0.

The convergence theorem. Let V δ(x̂, û) denote the optimal cost for system
(7.1.2) and cost (7.1.4), but with the periodic memory segments, where that
for the control is given in (4.4.3), and that for the path is given in (4.2.6). Let
V h,δ(x̂, û) denote the analogous value for the numerical approximation, where
the approximation for the path and control memory segments are (1.1) and
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(4.3), resp. Let V δ0,δ(x̂, û) denote the optimal cost when the control and path
memory segments are the periodic-Erlang forms (4.2.8) and (4.4.7), resp. Let
V h,δ0,δ(x̂, û) denote the optimal cost for the numerical approximation when
the path memory segment is that of (2.1) and that for the control is that of
this section in (4.18).

Theorem 4.1. Assume local consistency, (A3.1.2), (A3.1.3), (A3.2.1)–(A3.2.3),
and (A3.4.3), with system (7.1.2) and cost function (7.1.4). For the chain, let
the memory segment for the path be as in (2.1) and that for the control as in
(4.18), with cost function (2.4). Let h = o(δ0) and let ξ̄h,δ0,δ

0 ∈ D(Gh; [−θ̄, 0])
be piecewise-constant, and converge to x̄δ(0), as h → 0 and δ0 → 0, where
x̄δ(0) is piecewise-constant as for the path memory segments for the periodic
approximation in (4.2.6). Similarly, let ūh,δ0,δ

0 ∈ D(Uh; [−θ̄, 0)) be piecewise-
constant, have values ūh,δ0,δ

0 (θ) ∈ Uh, and converge in D(U ; [−θ̄, 0)) to ūδ(0)
as h → 0 and δ0 → 0. Let δ be fixed. Then as h → 0 and δ0 → 0,

V h,δ0,δ(ξ̄h,δ0,δ
0 , ūh,δ0,δ

0 ) → V δ(x̄δ(0), ūδ(0)). (4.26)

The analogous result holds for the analog of the cost functional (7.1.28) if
(A3.4.1) and (A3.4.2) are assumed and the conditions on the reflection direc-
tions are dropped.

8.5 Proofs of Convergence

8.5.1 Proofs of Theorems from Chapter 7

Proof of Theorem 7.1.3. Until further notice, suppose that only the path
is delayed. Thus the cost function for the chain is (7.1.28). Let uh = {uh

n, n <
Nh

G} be the optimal control sequence for the process {ξh
n}. The control stops

at time Nh
G. But for convenience in the notation of the proof we suppose

that some arbitrary admissible control is used for n ≥ Nh
G. Let rh

τ (·) denote
the relaxed control representation of the interpolation of {uh

n} with intervals
{∆τh

n}. In all cases, ξh(·) and ψh(·) are constructed from the approximating
chain ξh

n, via the appropriate interpolation.
The main new issue in the delay case (over that for the no-delay case

in [58]) is that the memory-segment process ξ̄h(t) appears in the functions
b(·), σ(·), k(·). For s ≥ 0, recall the definitions dh

τ (s) = max{n : τh
n ≤ s} and

qh
τ (s) = thdh

τ (s) from (6.5.23), and recall the representation (7.1.14):

ψh(t) = ξh
0 +

∫ t

0

∫
Uh

bh(ξ̄h(qh
τ (s)), α)rh

τ (dα ds) + Bh
τ (t) + zh

τ (t), (5.1)

where Bh
τ (·) is a martingale with quadratic variation process
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0

ah(ξ̄h(qh
τ (s)))ds.

Because we are starting with the case where the process stops on hitting the
boundary, there is no reflection term, but we include the term zh

τ (·) in (5.1)
for future use.

There is martingale wh(·) with quadratic variation process It, where I is
the identity matrix if x(t) is vector-valued, and it is just unity for the scalar
case,3 such that [58, Section 10.4.1]4

Bh
τ (t) =

∫ t

0

σh(ξ̄h(qh
τ (s)), uh

τ (s))dwh(s) =
∫ t

0

σ(ξ̄h(qh
τ (s)))dwh(s) + εh(t),

(5.2)
where the martingale error term εh(·) converges weakly and in mean square (on
any bounded time interval) to the zero process as h → 0. The discontinuities
of wh(t) go to zero as h → 0, and it converges to a standard Wiener process.
The proofs of these assertions are the same as for the no-delay case in [58,
Section 10.4]. Theorem 7.3.1 applies and shows that the timescales for ξh(·)
and ψh(·) are asymptotically equal and that sups≤T |qh

τ (s) − s| → 0 for any
T < ∞.

The sequence of processes {ψh(·), ξh(·), rh
τ (·), Bh

τ (·), wh(·), qh
τ (·)} is tight

and all weak-sense limits are continuous. Take a weakly convergent subse-
quence, which (abusing notation) we also index by h, and with limit de-
noted by (x(·), ξ(·), r(·), B(·), w(·), q(·)). Assume the Skorokhod representa-
tion (Theorem 2.1.6) so that the limits can be assumed to be w.p.1. By the
timescale equivalence of Theorem 7.3.1, x(·) = ξ(·). Thus the memory segment
process ξ̄h(·) converges to x̄(·), which is continuous in time. By the continuity
assumption (A3.1.1) and the weak convergence, we can write∫ t

0

∫
Uh

bh(ξ̄h(qh
τ (s)), α)rh

τ (dα ds) →
∫ t

0

∫
U

b(x̄(s), α)r(dα ds). (5.3)

To prove that∫ t

0

σ(ξ̄h(qh
τ (s)))dwh(s) →

∫ t

0

σ(x̄(s))dw(s) (5.4)

we need to work with a discretized form as in the proof of Theorem 3.5.1.
For any function f(·) of a real variable and κ > 0, define fκ(s) = f(nκ) for
nκ ≤ s < nκ + κ. By the martingale and quadratic variation properties of
wh(·), the mean square value of the martingale process∫ t

0

σ(ξ̄h(qh
τ (s)))dwh(s) −

∫ t

0

σ(ξ̄h
κ(qh

τ (s)))dwh(s)

=
∫ t

0

[
σ(ξ̄h(qh

τ (s))) − σ(ξ̄h
κ(qh

τ (s)))
]
dwh(s)

(5.5)

3 The probability space might have to be augmented by adding an “independent”
Wiener process to construct wh(·) if ah(ξ̂) is degenerate at any point.

4 In using the reference [58], note that our Bh
τ (·) is called Mh(·) there.
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is just the integral of the mean value of the square of the term in brackets in
the right-hand integrand, and the lim suph→0 goes to zero as κ → 0, due to
the convergence of ξh(·) and qh

τ (·) to continuous processes. It follows that the
supremum over any finite time interval of the expression (5.5) goes to zero in
mean square as h → 0 and then κ → 0.

For fixed κ > 0, the integral in the right side of the first line of (5.5) can
be written as a sum, and the weak convergence implies that its limit as h → 0
is
∫ t

0
σ(x̄κ(s))dw(s). These arguments imply that, for small κ, the left side of

(5.4) is arbitrarily close to
∫ t

0
σ(x̄κ(s))dw(s) as h → 0. The completion of the

proof of (5.4) involves taking the limit as κ → 0 in this last expression. To
justify this last step, we must show that x(·) is nonanticipative with respect
to w(·).

The nonanticipativity of (x(·), y(·), r(·)) with respect to the Wiener process
w(·) is proved by using the method of Theorem 3.5.1. The analog of (3.5.2)
for the current case is

Eh
(
ψh(si), wh(si),

〈
rh
τ , φj

〉
(si), i ≤ I, j ≤ J

)(
wh(t + T ) − wh(t)

)
= 0.

(5.6)
By the weak convergence and uniform integrability of {wh(t), h > 0} for each
t,

Eh (x(si), w(si), 〈r, φj〉 (si), i ≤ I, j ≤ J) (w(t + T ) − w(t)) = 0. (5.7)

The nonanticipativity is a consequence of this expression and the arbitrari-
ness of the functions and times in (5.7), analogously to the situation dealt
with in Theorem 3.5.1. With the nonanticipativity proved, let κ → 0 in∫ t

0
σ(x̄κ(s))dw(s) to get (5.4). Thus we have proved that the limit satisfies

(7.1.5), but without the z(·) term, for some relaxed control r(·).
By the convergence ψh(·) → x(·) and (A3.4.2), ξh

Nh
G

→ x(τ), where τ is

the first time that x(·) touches ∂G. By the definitions of Wh(·) and V h(·)
we have V h(ξ̄h

0 ) = Wh(ξ̄h
0 , uh). By the weak convergence, the convergence of

the initial condition ξ̄h
0 to x̄(0), and the continuity properties of k(·) and g0(·)

in (A3.4.1), it follows that Wh(ξ̄h
0 , uh) → W (x̄(0), r). By the minimality of

V (x̄(0)), we must have lim infh V h(ξ̄h
0 ) ≥ V (x̄(0)).

To complete the proof of the convergence V h(ξ̄h
0 ) → V (x̄(0)), we need only

prove that
lim sup

h
V h(ξ̄h

0 ) ≤ V (x̄(0)). (5.8)

For the no-delay case this was proved in [58, Chapters 10,11], based on [58,
Theorem 10.3.1], and the form of this theorem for the delay case was given in
Theorem 3.5.4. The method can be readily adapted to our needs. First, The-
orem 3.5.4 will be restated in slightly simpler form for the model (3.1.1) and
cost function (3.4.1). [By Theorem 3.5.4, there is an analogous construction
when the control is delayed and/or if the boundary is reflecting.] By Theorem
3.5.4, for each ε > 0 there is an ε-optimal control uε(·) of the following type.
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There are finite sets Uε ⊂ U (and we can suppose w.l.o.g. that Uε ⊂ Uh) and a
κ > 0 such that uε(·) is Uε-valued, right-continuous, and constant on intervals
[nκ, nκ + κ), n = 0, 1, . . .. Let w(·) denote the driving Wiener process. The
control can be represented as follows, for α ∈ Uε:

P
{
uε(nκ) = α

∣∣data to time nκ
}

= P
{
uε(nκ) = α

∣∣x̄(0), w(iκ), i ≤ n;uε(iκ), i < n
}

,
(5.9)

where the probability on the right side is continuous in the initial condition
and in the samples w(iκ), i < n, for each value of the set of controls in the
conditioning, and there are only a finite number of such control values for
each n. This construction is only for use in the convergence proof. It has no
value for numerical purposes.

The next step is to apply this control to the ξh
n process. The adaptation

will be denoted by {uh,ε
n }, and the timing (to be described below) will be

determined by the scale of the corresponding continuous-time interpolation
ψh(·). The continuous-time interpolation of {uh,ε

n } with (intervals {∆τh
n}) will

be called uh,ε(·). This adaptation is done by following [58, Theorem 10.5.2],
with a slightly altered notation. For n = 0, 1, . . . , define ηh

n = min{τh
k : τh

k ≥
nκ}, the first jump of ψh(·) at or after interpolated time nκ. Thus ηh

0 = 0.
The control uh,ε(·) will be constant on the intervals [ηh

n, ηh
n+1), with values

determined by the adaptation of (5.9):

P
{
uh,ε(ηh

n) = α
∣∣data to time ηh

n

}
= P

{
uε(ηh

n) = α
∣∣ξ̄h(0), wh,ε(ηh

i ), i ≤ n : uε(ηh
i ), i < n

}
,

(5.10)

where wh,ε(·) is the analog of the process wh(·) in (5.2) that corresponds to
the use of this control. Now, applying this control to ψh(·) and using a weak
convergence argument and the continuity of the law (5.9) in the initial condi-
tion and the samples of the w(·), implies that Wh(ξ̄h(0), uh,ε) → W (x̄(0), uε).
Because W (x̄(0), uε) ≤ V (x̄(0)) + ε and V h(ξ̄h(0)) ≤ Wh(ξ̄h(0), uh,ε) and ε is
arbitrary, (5.8) follows. This completes the proof of Theorem 7.1.3 when only
the path is delayed.

Delay in the control. Now let there be delays in the control and use the
system model (7.1.2). By the weak convergence, the bracketed term in (7.1.25)
converges to ∫ t

0

∫
U

b(x̄(s), α, v)r(dα, ds + v)

for all v ∈ [−θ̄, 0], and the analogous convergence holds for the bracketed term
in (7.1.27). The rest of the details are as for the case where only the state is
delayed.

Theorems 7.1.1 and 7.1.2. Reflecting boundaries. Now replace the ab-
sorbing boundary by a reflecting boundary. The main new issue in the proof
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concerns the asymptotic properties of the reflection process. Under (A3.2.1)
and (A3.2.2), it is shown in Theorem 3.5.5 (see also [56, Theorem 3.6.1] and
[58, Theorem 11.1.2]) that {zh(·)} is tight with all weak-sense limits being
continuous. This implies that {ψh(·), ξh(·)} is tight and that the weak-sense
limit processes are continuous. Let h index a weakly convergent subsequence
of {ψh(·), ξh(·), rh

τ (·), Bh
τ (·), wh(·), qh

τ (·), zh(·)}. Then the proof that the weak-
sense limit (x(·), x(·), r(·), w(·), z(·)) of {ψh(·), ξh(·), rh

τ (·), wh(·), zh(·)} satis-
fies (7.1.2) is the same as what was done above for the absorbing boundary
case, except for the addition of the term z(·). The proof that the limit z(·) is
a reflecting process for the limit x(·) is shown in Theorem 3.5.5 (see also [58,
Theorem 11.1.2]).

Now consider the convergence of the cost functionals and recall (A3.4.3).
Define z(·) =

∑
i diyi(·). Under the first part of (A3.4.3), the processes yh

i (·)
converge to yi(·). If the reflection directions on the faces adjoining some edge
or corner are linearly dependent, then some of the components yi(·) of the limit
z(·) might not be uniquely defined. In this case, the second part of (A3.4.3)
supposes that the coefficients qi corresponding to any such linearly dependent
set are identical. Then the sum of the associated yh

i (·) would converge to the
sum of the limit values. The proof is completed using these observations and
the uniform integrability implied by the estimates in Lemma 6.3.1.

Proof of Theorem 7.1.4. The proof is essentially a consequence of the
proofs of the previous theorems and the properties (7.1.34) and either (7.1.35),
(7.1.36), or (7.1.37). We will use (7.1.35). The arguments under (7.1.36) and
(7.1.37) are similar. Recall the definition of r̃h,κ,′

a,τ (·) in (7.1.31b).
Let rh,κ

τ (·) denote the relaxed control representation of the interpolation
(intervals {∆τh,κ

n }) of the actual controls {uh,κ
n } that are used. Write equation

(7.1.33) as

ψh,κ(t) = ξh
0 +

∫ 0

−θ̄

[∫ t

0

∫
Uh

bh(ξ̄h,κ(qh,κ
τ (s)), α, θ)rh,κ,′

τ (dα, s + θ)ds

]
µc(dθ)

+Bh,κ
τ (t) + zh,κ

τ (t) + εh,κ(t),
(5.11)

where the error term εh,κ(·) accounts for the use of the ξ̄h,κ(t) and rh,κ,′
τ (dα, s+

θ) in lieu of the ξ̄h,κ
a (t) and r̃h,κ,′

a,τ (dα, s, θ) processes that are actually used for
the memory segments in the dynamics. Analogously to the expressions below
(7.1.14), we can write

Bh,κ
τ (t) =

∫ t

0

σ(ξ̄h,κ(qh,κ
τ (s)))dwh,κ(s) + εh,κ

1 (t), (5.12)

where the error term is due to the use of σ(·) and ξ̄h,κ(·) in lieu of σh(·)
and ξ̄h,κ

a (·), resp. By (7.1.34) and (7.1.35), the asymptotic continuity of
ξ̃h,κ(qh,κ

τ (·)), the timescale equivalence shown in Theorem 7.3.1, and the fact
that σh(x̂)−σ(x̂) → 0 uniformly in x̂, the sups of the error terms in (5.11) and
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(5.12) over any finite time interval go to zero in mean square as h → 0 and
then κ → 0. It then follows that the limits of ψh,κ(·) and V h,κ(·) as h → 0 and
then κ → 0 are the same as if the memory segment processes were ξ̄h,κ(·) and
r̃h,κ,′(·). From this point on, the proof is just that of Theorems 7.1.1–7.1.3.

Proof of Theorem 7.3.3. Owing to the asymptotic equivalences of the
timescales shown in Theorem 7.3.1,

lim
h→0,δ→0

sup
control

sup
n

E sup
−θ̄≤θ≤0

∣∣ξ̄h,δ
r,n(θ) − ξ̄h,δ

n (θ)
]

= 0.

Because the control is not delayed, the proof follows from Theorem 7.1.4 with
δ, r replacing κ, a.

Comment on Theorem 7.4.2. Theorem 7.4.1 implies that the sequence
of intervals between shifts converges to a sequence of i.i.d. random variables,
each of which is exponentially distributed with mean δ. Using this fact, the
details are similar to those of Theorems 7.1.1–7.1.3 and are omitted.

8.5.2 Proof of Theorem 4.1

We will discuss only the problem with a reflecting boundary. Let h → 0, δ0 →
0, with h = o(δ0) and δ fixed. Recall the definition of the (piecewise-constant
in θ) relaxed control r̃h,δ0,δ

ee,τ (dα, t, θ) that was given below (4.22) and that of
rh,δ0δ
τ (·) that was given above (4.22). It follows from Theorem 7.4.1 that the

intervals between the δ-shifts converge to the constant δ. The set, indexed by
(h, δ0), {

ψh,δ0,δ(·), ξh,δ0,δ(·), rh,δ0,δ
τ (·), wh,δ0,δ(·), yh,δ0,δ(·);

r̃h,δ0,δ
ee,τ (·, θ), θ ∈ [−θ̄, 0]; σ̄h,δ0,δ

l , l < ∞
}

is tight. Let(
xδ(·), xδ(·), rδ(·), wδ(·), yδ(·); r̃δ

p(·, θ), θ ∈ [−θ̄, 0]; lδ, l < ∞
)

denote the limit of a weakly convergent subsequence (also indexed by h, δ0

for notational convenience). Suppose that the Skorokhod representation is
used, so that we can suppose that the convergence is w.p.1 in the appropriate
topologies. Then qh,δ0,δ

τ (t) → t and ξ̄h,δ0,δ
e (t) → x̄δ

p(t), where x̄δ
p(t) is now

obtained from xδ(·) as it was obtained from x(·) in (4.2.6).
By the w.p.1 convergence, the difference between the drift term in (4.24)

and ∫ 0

−θ̄

[∫ t

0

∫
Uh

b(x̄δ
p(s), α, θ)r̃h,δ0,δ,′

ee,τ (dα, s, θ)ds

]
µc(dθ) (5.13)

goes to zero as h → 0. Let σ̄h,δ0,δ
l ≤ th,δ0,δ

n < σ̄h,δ0,δ
l+1 . Then neglecting the

randomization errors in the representation (4.19) of (4.17a), (4.19) can be
written as
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∫ σ̄
h,δ0,δ

l+1

σ̄
h,δ0,δ

l

rh,δ0,δ,′(dα, s)ds

σ̄h,δ0,δ
l+1 − σ̄h,δ0,δ

l

,

whose limit (as h → 0, δ0 → 0) is

rδ(dα, lδ + δ) − rδ(dα, lδ)
δ

. (5.14)

Similarly, neglecting the randomization errors in (4.17b), it can be written as

∫ t
h,δ0,δ
n

σ̄
h,δ0,δ

l

rh,δ0,δ,′(dα, s)ds

th,δ0,δ
n − σ̄h,δ0,δ

l

,

whose limit (as h → 0, δ0 → 0) is

rδ(dα, t) − rδ(dα, lδ)
t − lδ

. (5.15)

The comments below (4.19) concerning the randomization errors imply that
they can be neglected as h → 0, δ0 → 0.

Recalling the form (4.4.3), where the periodic approximation r̃δ
p(·) to the

control memory segment was obtained in terms of the relaxed control repre-
sentation of the actual control u(·) that was used, we see that the relationship
between our limits rδ(·) and r̃δ

p(·) is just that between the terms r(·) and r̃δ
p(·)

in (4.4.3). Thus the limit of the control memory segment is just the periodic
approximation. By the above convergence of the r̃h,δ0,δ

ee,τ (·), the asymptotic
difference between (5.13) and

∫ 0

−θ̄

[∫ t

0

∫
U

b(x̄δ
p(s), α, θ)r̃δ,′

p (dα, s, θ)ds

]
µc(dθ) (5.16)

is zero. The rest of the details are like those for Theorem 7.1.3 and are omitted.

8.6 Singular Controls

Only a few comments will be made. Some additional comments are in Chapter
9. First consider the model (3.6.1):

dx(t) = b(x̄(t))dt + q1(x̄(t−))dλ(t) + σ(x̄(t))dw(t) + dz(t). (6.1)

In (6.1) there is no delay in the singular control λ(·). The methods of Section
6.6 for the no-delay problem can be carried over, but where the path memory
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segment is approximated by any of the methods of this chapter or of Chapter
7, and nothing more will be said about it.

Now suppose that there is a delay in the singular control, say with the
model

dx(t) = c(x(t))dt + dt

∫ 0

−θ̄

b(x(t + θ), θ)dµa(θ) + σ(x(t))dw(t)

+q0(x(t−))dλ(t) + dt

∫ 0

θ=−θ̄

q2(x((t + θ)−), θ)dθλ(t + θ) + dz(t).

(6.2)
Now the memory issue for the delayed control enters. The methods that have
been used to approximate the memory segment for the control can all be
adapted to the singular control problem, but there are some significant differ-
ences.

To introduce these differences, consider an analog of the periodic approxi-
mations (1.1) for the original system (4.4.3). Let lδ ≤ thn < lδ +δ. Then define
an approximation to the control memory segment as follows.

λ̃h(t, θ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

λh([lδ, t)), θ ∈ [−δ/2, 0),

λh([lδ − δ, lδ)), θ ∈ [−3δ/2,−δ/2),
...

λh([lδ − Q+
δ δ, lδ − Q+

δ δ + δ)), θ ∈ [−θ̄,−θ̄ + δ).

(6.3)

The first issue is that the differences λh([lδ − δ, lδ)), and so forth, are not
necessarily bounded, so they will have to be truncated. A second issue is that
their values are not necessarily confined to a finite set. Thirdly, one needs
to track the passage of time in [lδ, t), as for the ordinary control case. The
truncation issue can be handled by estimating the likely maximum values of
the differences, and would in any case be done adaptively in that the level
would be adjusted until further increases had a negligible effect on the results.

To deal with the problem of the range of values of the increments, one
could restrict the jumps in the components of λ(·) to be integral multiples of
some small c0 > 0. The passage of time could be dealt with by an adaptation
of the periodic-Erlang procedure of Section 4. Convergence theorems can be
proved for such methods.

8.7 Neutral Equations

The approximation methods of Chapter 7 and of this chapter can be carried
over to neutral equations, and we will comment only briefly on the forms. The
results are only a beginning, and much further work is required. Consider, in
particular, the model (3.2.17), which we rewrite as
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x(t) − F (x̄(t)) = x(0) − F (x̄(0)) +
∫ t

0

b(x̄(s), u(s))ds + σ(x̄(s))dw(s) + z(t).

(7.1)
Assume (A3.2.7), the continuity, boundary, and uniqueness of solutions condi-
tions used in Theorem 2.1, and that F (·) is a continuous IRr-valued function
on C(G; [−θ̄, 0]). One can add delays in the control, if desired. The approx-
imation results of Chapter 4 carry over for the various approximations used
there.

We will only describe the numerical algorithm for the simplest path mem-
ory segment approximation, that defined in Section 7.1, and illustrate the
modifications that are necessary for this case. The forms for other cases of
interest are modified similarly. Let ξh

n and ∆th(·) denote the approximating
chain and interpolation interval with ξ̄h

n denoting the path memory segment,
as in Section 7.1. If ξh

n is a reflection state, then it is sent to a state in Gh,
and the mean of ξh

n+1 − ξh
n, conditioned on the data to time n, is a reflection

direction at the point ξh
n. In particular, (6.2.2) holds.

If ξh
n ∈ Gh, then we take a slightly indirect approach. The basic transition

probabilities are first defined for the variables

Ξh
n = ξh

n − F (ξ̄h
n),

and the transition probabilities for the chain will then be obtained from these.
First, let us rewrite the form (7.1.12). Define x̃ = x + δx, and write the right
side of (7.1.12) as

Nh(b(ξ̄h
n, uh

n), a(ξ̄h
n), ξh

n + δx)
Dh(b(ξ̄h

n, uh
n), a(ξ̄h

n))
. (7.2)

Now, given ξ̄h
n, compute Ξh

n . Then in lieu of using the transition probabili-
ties (7.1.12) to compute the conditional distribution of ξh

n+1, we use them to
compute the conditional distribution of Ξh

n+1, as follows:

P
{
Ξh

n+1 − Ξh
n = δΞ

∣∣ξ̄h
n, ξh

n, α
}

=
Nh(b(ξ̄h

n, α), a(ξ̄h
n), ξh

n + δΞ)
Dh(b(ξ̄h

n, α), a(ξ̄h
n))

. (7.3)

The range of values of δΞ in (7.3) is taken to be the same as that of the δx̃ in
(7.2). Because ξh

n is determined by ξ̄h
n, it is redundant on the left side of (7.3).

Analogously to the situation in Section 7.1, we have local consistency in
G in that the conditional mean of Ξh

n+1 − Ξh
n (with uh

n = α) is

bh(ξ̄h
n, α)∆thn = b(ξ̄h

n, α)∆thn + o(∆thn),

and its conditional covariance is

ah(ξ̄h
n)∆thn = a(ξ̄h

n)∆thn + o(∆thn).

By definition
ξh
n+1 − F (ξ̄h

n+1) = Ξh
n+1, (7.4)
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where the conditional distribution of Ξh
n+1 is obtained from (7.3). By the

“gap” condition (A3.2.7), for small h, F (ξ̄h
n+1) is a function of ξ̄h

n. Hence
from (7.3) and (7.4) we can compute the conditional probabilities P{ξh

n+1 =
x̃|ξ̄h

n, α} = ph(ξ̄h
n, x̃|α).

In the above development, it was supposed that the values of ξh
n+1 that are

computed from (7.4) are on the grid. If that is not the case, then we get the
actual ξh

n+1 by randomizing between nearest neighbors to attain the desired
conditional means, although this procedure will add “numerical noise.”

The dynamical system for the chain can be written as (neglecting the
numerical noise due to any randomization that might be required)

ξh
n − F (ξ̄h

n) = ξh
0 − F (ξ̄h

0 )

+
n−1∑
i=0

bh(ξ̄h
i , uh

i )∆thi +
n−1∑
i=0

βh
i +

n−1∑
i=0

∆zh
i ,

(7.5)

where the conditional covariance of the martingale difference term βh
n is

ah(ξ̄h
n)∆thn. The analog of the continuous time interpolation (7.1.14) is (again,

neglecting the numerical noise)

ψh(t) − F (ξ̄h(qh
τ (t))) = ξh

0 − F (ξ̄h
0 )

+
∫ t

0

∫
Uh

bh(ξ̄h(qh
τ (s)), α)rh

τ (dα ds) + Bh
τ (t) + zh

τ (t),
(7.6)

where Bh
τ (·) is a martingale with quadratic variation process

∫ t

0

ah(ξ̄h(qh
τ (s)))ds.

Working with (7.6) and using (A3.2.7) where needed, the various approxi-
mations to the path memory segments of this and of Chapter 7 can all be
adapted.

8.8 The Ergodic Cost Problem

Assume the conditions on the model and cost function that were used in
Chapter 5. In particular, the cost function is (5.1.2). For the numerical ap-
proximation, we use the periodic-Erlang form of Section 2 for the path mem-
ory segment, and the control is not delayed in either the dynamics or the cost
function. At step n of the chain, the Markov state is Λh,δ0,δ

n ≡ (ξ̄h,δ0,δ
e,n , Lh,δ0,δ

n ).
This can also be written as Λh,δ0,δ

n ≡ (X̃h,δ0,δ
e,n , Lh,δ0,δ

n ). where X̃h,δ0,δ
e,n is the

vector of values of ξ̄h,δ0,δ
e,n , as defined in (2.1), and we will use both forms.

Because the controls are feedback, suppose that the control at step n has the
form un = u(ξ̄h,δ0,δ

e,n , Lh,δ0,δ
n ) for some feedback control u(·).
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The transition probability can be partitioned as (with uh,δ0,δ
n = α)

P
{

ξh,δ0,δ
n+1 = ξ1, L

h,δ0,δ
n+1 = L1

∣∣ξ̄h,δ0,δ
e,n , Lh,δ0,δ

n , α
}

= P
{

ξh,δ0,δ
n+1 | = ξ1

∣∣ξ̄h,δ0,δ
e,n , Lh,δ0,δ

n , α
}

P
{

Lh,δ0,δ
n+1 = L1

∣∣ξ̄h,δ0,δ
e,n , Lh,δ0,δ

n , α
}

.

The transition probabilities for the current state ξh,δ0δ
n is (7.1.12), where, for

the no-delay problem, the transition probabilities defined by the ratios

Nh(b(x, α), a(x), x̃)
Dh(b(x, α), a(x))

are assumed to be locally consistent. The transition probabilities for the Er-
lang and memory segment states are given by (2.2) and (2.3).

Under the assumed conditions on the model and state space G for the no-
delay problem (in particular, the nondegeneracy condition), the usual methods
(say those discussed in [58]) of getting the transition probabilities ensure that
the approximating chain is ergodic for each feedback control. Owing to this
and to the random way that the Erlang state changes, w.l.o.g. we can suppose
that for each feedback control the state space of the process {Λh,δ0,δ

n } consists
of a transient set and a single ergodic set.

The cost function for the chain is the analog of (6.7.7) and (6.7.8); namely,
for an arbitrary admissible control sequence u = {uh,δ0δ

n },

γh,δ0,δ(ξ̂, u) = lim sup
n

Eh,δ0,δ,u

ξ̂

∑n
i=0

[
k(ξ̄h,δ0δ

e,i , uh,δ0δ
i )∆th,δ0δ

i + kh
0 (ξh,δ0δ

i )h
]

Eh,δ0,δ,u

ξ̂

∑n
i=0 ∆th,δ0δ

i

,

(8.1)
where kh

0 (x) is the cost at a reflection state x �∈ Gh, and it is zero for x ∈ Gh.
For a feedback control u(·), the chain Λh,δ0δ

n has a unique invariant measure
that we denote by πh,δ0δ(u), with values πh,δ0δ(ξ̂, L, u). Then (8.1) has a limit
that is

γh,δ0δ(u) =

∑
ξ̂,L

[
k(ξ̂, u(ξ̂, L))∆th(ξ̂, u(ξ̂, L)) + kh

0 (ξ̂(0))h
]
πh,δ0δ(ξ̂, L, u)∑

ξ̂.L ∆th(ξ̂, u(ξ̂, L))πh,δ0δ(ξ, L, u)
.

(8.2)
The Bellman equation for the optimal cost and control for the chain is anal-
ogous to that in Section 6.7, and the comments made there concerning the
necessity of the centering procedure to get a suitable contraction operator in
this equation all hold. See [58, Chapter 7]. Let γ̄h,δ0δ denote the optimal cost
over all feedback controls.

Theorem 8.1. Assume the conditions of this section and that h = o(δ0). As
h → 0 and δ0 → 0, with δ fixed, we have γ̄h,δ0δ → γ̄δ, the minimal cost for
the periodic approximation of Section 5.4.
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Proof. The proof follows that for the no-delay case, which is outlined at the
end of Section 6.7.5 Let uh,δ0δ(·) be the optimal control. Write the interpola-
tion that is analogous to (7.1.14):

ψh,δ0,δ(t) = ξh,δ0,δ
0

+
∫ t

0

∫
Uh

bh(ξ̄h,δ0,δ
e (qh,δ0,δ

τ (s)), α)rh,δ0,δ
τ (dα ds) + Bh,δ0,δ

τ (t) + zh,δ0,δ
τ (t),

(8.3)
where rh,δ0,δ

τ (dα ds) is the relaxed control representation of the interpolation
(intervals {∆τh,δ0δ

n }) of the control sequence uh,δ0δ
n = uh,δ0δ(ξ̄h,δ0δ

e,n , Lh,δ0δ
n ). As

noted below (6.3.8) and (7.1.14), there is a martingale wh,δ0δ(·) with quadratic
variation It and that converges weakly to a Wiener process such that, modulo
an asymptotically negligible error,

Bh,δ0δ
τ (t) =

∫ t

0

σ(ψh,δ0δ(s))dwh,δ0δ(s). (8.4)

Now consider the stationary process ψh,δ0δ(·); i.e., where the distribution
of the initial value of the Markov state is the invariant distribution. Then the
cost can be written as

γ̄h,δ0δ = E

∫ 1

0

[∫
Uh

k(ξ̄h,δ0,δ
e (qh,δ0,δ

τ (s)), α)rh,δ0,δ
τ (dα ds) + q′dyh,δ0δ

τ (s)
]

.

(8.5)
For each fixed δ > 0, the set of processes (ψh,δ0,δ(·), rh,δ0,δ

τ (·), zh,δ0,δ
τ (·),

wh,δ0,δ(·)) associated with the stationary system is tight. Let (x(·), r(·), z(·),
w(·)) denote the limit of a weakly convergent subsequence as h → 0 and
δ0 → 0. Then the limit is stationary in that the distribution of (x(t + ·), r(t +
·) − r(t), z(t + ·) − z(t), w(t + ·) − w(t)) does not depend on t. The w(·) is a
Wiener process, and the other processes are nonanticipative with respect to
it. The timescale equivalence Theorem 7.3.1 does not cover the current case
the way that it is written. But a very similar proof, where (h, δ0) → 0 and δ is
fixed, shows that the process ξ̄h,δ0,δ

e (qh,δ0,δ
τ (·)) converges weakly to x̄δ

p(·), the
periodic memory segment that is obtained from the stationary limit process
x(·).

The limit set satisfies

dx(t) =
∫

U

b(x̄δ
p(t), α)r′(dα, t)dt + σ(x(t))dw(t) + dz(t), (8.6)

where as in the proof in Section 5 of Theorems 7.1.1 and 7.1.2 for the reflecting
boundary case, z(·) is the reflection process. The limit of (8.5) is

E

∫ 1

0

[∫
U

k(x̄δ
p(s), α)r′(dα, s)ds + q′dy(s)

]
,

5 See [58, Chapter 11] for fuller details for the no-delay problem.
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which is the cost γδ(r) associated with the stationary limit system. By
(A5.4.3), the infimum γ̄δ of the costs over periodic relaxed feedback controls
cannot be improved by using general relaxed controls. Thus γδ(r) ≥ γ̄δ. It
follows that

lim inf
h,δ0→0

γ̄h,δ0δ ≥ γ̄δ. (8.7)

To prove that limh,δ0→0 γ̄h,δ0δ → γ̄δ, we need to show that

lim sup
h,δ0→0

γ̄h,δ0δ ≤ γ̄δ. (8.8)

Consider the periodic model in Section 5.4. Theorem 5.4.6 says that the cost
for the original system with a periodic memory segment can be well approxi-
mated by using a subset of U that contains only finitely many points. Recall
the definitions τ δ(t) = t(mod δ) and that of X̃δ from the beginning of Sec-
tion 5.4. If U contains only finitely many points, then Theorem 5.4.7 says
that for each ε > 0 there is a periodic relaxed feedback control with values
mε(X̃δ, τ δ, {α})6 that is ε/2-optimal and is continuous in the variables X̃δ

and τ δ for each value of α. By first discretizing U , and then using Theorem
5.4.7, we can suppose that we have an ε-optimal control mε(X̃δ, τ δ, dα) that
is continuous in (X̃δ, τ δ) for each value of α. Also, without loss of generality,
we can suppose that Uh = U .

Let us adapt this control for use on the chain. First, note that the inter-
polation intervals for the reflecting states is zero, and no control is applied
there. Hence we can work with the revised chain that omits these states.
Their effects will still be contained in the processes zh,δ0δ(·) and zh,δ0δ

τ (·). For
use on the chain, the control will take the values mε(X̃h,δ0δ

n , δ0L
h,δ0δ
n , dα),

which might also be written as mε(ξ̄h,δ0δ
e,n , δ0L

h,δ0δ
n , dα), without ambigu-

ity. Let us work with the stationary system associated with this control.
The system can be written as (8.3), except that the control with values
mε(ξ̄h,δ0,δ

e (qh,δ0,δ
τ (s)), Lh,δ0δ

τ (s), dα) replaces rh,δ0δ,′
τ (dα, s). The initial condi-

tion has the stationary distribution associated with the control mε(·) used on
the chain. Then the cost can be written as

γh,δ0δ(mε) =

E

∫ 1

0

[ ∫
Uh

k(ξ̄h,δ0,δ
e (qh,δ0,δ

τ (s)), α)mε(ξ̄h,δ0,δ
e (qh,δ0,δ

τ (s)), δ0L
h,δ0δ
τ (s), dα)ds

+q′dyh,δ0δ
τ (s)

]
.

(8.9)
The sequence of stationary processes δ0L

h,δ0δ
τ (·) converges to the station-

ary process τ δ(·), where the initial value τ δ(0) is the limit of the sequence
δ0L

h,δ0δ
τ (0). Now take a weakly convergent subsequence of the new processes

6 Recall the convention concerning notation that was discussed below Theorem
5.4.6, where m(X̃δ(t), τ δ(t), dα) and m(x̄δ

p(t), τ δ(t), dα) are used interchangeably.
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(ψh,δ0δ(·), wh,δ0δ(·), zh,δ0δ
τ (·), δ0L

h,δ0δ
τ (·)), with limit (x(·), w(·), z(·), τ δ(·)).

Due to the continuity of mε(·), the limit is the unique stationary process
under the control mε(·). The limit system can be written as

dx(t) =
∫

U

b(x̄δ
p(t), α)mε(x̄δ

p(t), τ
δ(t), dα)dt + σ(x(s))dw(s) + dz(t), (8.10)

where z(·) is the reflection term. The cost (8.9) converges to the stationary
cost

γδ(mε) = E

∫ 1

0

[∫
U

k(x̄δ
p(s), α)mε(x̄δ

p(s), τ
δ(s), dα)ds + q′dy(s)

]
.

Because γh,δ0δ(mε) ≥ γ̄h,δ0δ and ε > 0 is arbitrary, (8.8) follows.
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A Wave Equation Approach

9.0 Outline of the Chapter

In Chapters 7 and 8, the state of the model, as needed for the numerical
procedure, consists of the segment of the path over the delay interval and of
the control path as well (if the control is also delayed). Delayed reflection terms
were not dealt with. Convergence theorems were proved, and “numerically
efficient” representations of the state data were developed that reduced the
memory requirements to manageable size for low-dimensional problems, if
the path only were delayed. If the control and/or reflection terms are also
delayed, and the control can take more than two or three values, then the
memory requirements with those methods can be prohibitive at this time. In
particular, one would have to keep track of the values of the control (relaxed
control representation) or the reflection terms, whichever appear in delayed
form, over the delay intervals and approximate them by finite-valued discrete-
time processes that do not lose too much information. These approximations
become part of the state space of the approximating chain and can lead to
very large state spaces.

In this chapter we will take an alternative approach that reduces the mem-
ory requirements for general nonlinear stochastic problems where the control
and reflection terms, as well as the path variables, might be delayed. The
approach was suggested by the work in [94],1 which dealt only with the lin-
ear deterministic system with a quadratic cost function, and the development
depended heavily on the linear structure. The idea can be extended to the
problems of concern here. With this method, the delay equation is replaced
by a type of stochastic wave equation with no delays, and its numerical solu-
tion yields the optimal costs and controls for the original model. It appears
that, with the use of appropriate numerical algorithms, the memory require-
ments are much reduced over more direct methods, although there is little
practical numerical experience with such methods at present.
1 The author would like to thank Kasi Itô for bringing [94] to his attention.
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As in Chapters 7 and 8, we work mainly with the reflecting boundary
case. The modifications that are required when the boundary is absorbing
are minor. One drops the conditions on the reflection directions and adds
the conditions on the time of first contact with the boundary. The optimal
stopping problem is treated similarly.

The model and assumptions are in Section 1. Section 2 is concerned with
a representation of the solution in terms of a type of stochastic wave equation
without delay terms. This is an extension to the general nonlinear stochastic
system of the idea in [94] for the deterministic linear problem, and the refer-
ence contains a history of the idea for that problem. With this representation,
the delays are eliminated, but one must solve a PDE. It is shown that the rep-
resentation is equivalent to the original problem in that any solution to one
yields a solution to the other. To prepare ourselves for what will be required
for the numerical approximations, a discrete-time approximation is developed
in Section 3. This will suggest the correct scaling and illustrate the type of al-
gebraic manipulations that are required. The adaptation of the Markov chain
approximation method and the local consistency conditions are discussed in
Section 4. Motivated by the ideas in Section 3, it is shown how to construct
the approximating chains for the representation introduced in Section 2.

In Section 5, the size of the state space that is needed for the solution
of the Bellman equation is discussed, and it is seen that the approach does
moderate the requirements considerably. Although the form of the algorithm
is motivated by those that are used for the no-delay problem, it is more com-
plicated. But then the delay problem is substantially more complicated and
the proposed algorithm appears to be quite promising in the sense of con-
siderably reducing the memory requirements, if the control and/or reflection
terms are delayed. The proof of convergence of the numerical procedure is
started in Section 6, where various representations of the interpolated chains
are derived. These are used in Section 7 where the proof of convergence is
completed.

The periodic and periodic-Erlang approximations of Chapters 4 and 8 can
be profitably adapted to the format of this chapter, and this is discussed in
Section 8. Little detail concerning these particular adaptations is given as
the approach of this chapter is in its infancy, and a great deal of detail had
been provided in the earlier chapters for the problems of interest there. Some
comments on the singular control problem are in Section 9.

9.1 The Model and Assumptions

The model. Recall the definition of the measure µa(·) given at the beginning
of Subsection 3.2.2, and that dµa(θ) = µa(θ+dθ)−µa(θ). Until further notice,
we will concentrate on the model (3.2.11), which we rewrite for convenience:
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dx(t) = c(x(t), u(t))dt

+dt

∫ 0

−θ̄

b(x(t + θ), u(t + θ), θ)dµa(θ) + σ(x(t))dw(t) + dz(t)

+dt

∫ 0

θ=−θ̄

p(x(t + θ), θ)dθy(t + θ).

(1.1)

As noted in Chapter 3, the last integral in (1.1) is with respect to dθ in the
sense that the interpretation

p(x(t + θ), θ)dθy(t + θ) = p(x(t + θ), θ) [y(t + θ + dθ) − y(t + θ)]

is used. Conditions (A3.2.1) and (A3.2.2) on the boundary and reflection
directions and (A3.2.4)–(A3.2.6) on the dynamical functions are assumed to
hold. The model with drift term (3.2.13) can be treated with only notational
changes.

The relaxed control form of (1.1) is

dx(t) = dt

∫
U

c(x(t), α)r′(dα, t)

+dt

∫ 0

−θ̄

∫
U

b(x(t + θ), α, θ)r′(dα, t + θ)dµa(θ) + σ(x(t))dw(t)

+dz(t) + dt

∫ 0

θ=−θ̄

p(x(t + θ), θ)dθy(t + θ).

(1.2)

If the boundary is absorbing rather than reflecting, then drop the reflection
term and (A3.2.1) and (A3.2.2), and add (A3.4.1) and (A3.4.2).

A discounted cost function. Recall that x̂ and û denote the canonical value
of the path and control memory segments, resp., on [−θ̄, 0]. Let r̂ denote the
relaxed control representation of the initial control segment û. For simplicity,
the initial control segment will always be an ordinary control. Let ẑ denote
the initial segment {z(s), s ≤ 0}. Let Eu

x̂,û,ẑ denote the expectation given the
initial condition (x̂, û, ẑ) and that control u(·) is used on [0,∞). We concen-
trate the following discounted cost function. For β > 0, some vector q with
nonnegative components and satisfying (A3.4.3), and control process u(·) on
[0,∞), the cost function is to be the special case of (3.4.5):

W (x̂, û, ẑ, u) = Eu
x̂,û,ẑ

∫ ∞

0

e−βt [k(x(t), u(t))dt + q′dy] . (1.3)

If a relaxed r(·) control is used on [0,∞), then we write W (x̂, û, ẑ, r) and
Er

x̂,û,ẑ.
One could proceed with the general form (3.4.2), but (1.3) is usually ade-

quate in applications. Lemma 3.2.1 implies that the reflection term component
of the cost is well defined. Let V (x̂, û, ẑ) denote the infimum of the costs over
all controls.
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Existence of an optimal control. Under (A3.2.1), (A3.2.2), (A3.2.4)–
(A3.2.6), and (A3.4.3), there is an optimal relaxed control. The proof is similar
to that of Theorem 3.5.1. One takes a minimizing sequence of controls and
then a weakly convergent subsequence of the (path, relaxed control, Wiener
process, reflection term) and shows that the limit satisfies (1.2) and that the
minimizing sequence of costs converges to the cost for the limit processes.
Furthermore ([31, Theorem 2.3]), the infimum of the cost over the relaxed
controls is equal to the infimum of the costs over ordinary controls. If we
replace the reflecting boundary and its conditions by an absorbing boundary
with cost function (3.4.2) and conditions (A3.4.1) and (A3.4.2), then there is
an optimal control as well.

9.2 A Key Representation of x(·)

Delay equations and the wave equation. There is a close connection
between delay equations and certain forms of the wave equation, as seen in
Chapter 1. Recall the example in Chapter 1 of a system of temperature reg-
ulation. Hot water from a source flows into a pipe of length θ̄. At the en-
trance to the pipe the hot water is mixed with a fixed flow of cold water.
The flow in the pipe has unit velocity. There are no thermal losses, and the
only mixing occurs at the beginning of the pipe. The temperature is mea-
sured at the end of the pipe. Based on the measurement, a signal is sent
(instantaneously) to a valve that controls the flow of hot water into the pipe.
The goal is to reach and maintain a given temperature at the end of the
pipe. Let T (t, θ) denote the temperature in the pipe at time t at a distance
θ from the entry point. Then, for small δ > 0, T (t + δ, θ) = T (t, θ − δ) or
T (t+δ, θ)−T (t, θ) = T (t, θ−δ)−T (t, θ). Dividing by δ and letting δ → 0, we
formally obtain the partial differential equation ∂T (t, θ)/∂t = −∂T (t, θ)/∂θ.
This PDE represents the effects of the time delay. An extension of this exam-
ple that effectively allows for additional inputs along the length of the pipe
will play an important role in the development of this chapter.

9.2.1 A Representation of the Solution

Next we formally define a pair of processes (χ0(·), χ1(·)) that will be the basis
of the approximation procedure. The process χ0(·) is parameterized by time.
The process χ1(·) is parameterized by both time and a variable θ ∈ [−θ̄, 0].
For θ ∈ [−θ̄, 0], formally define χ0(·) and χ1(·) by

dχ0(t) = χ1(t, 0)dt + c(χ0(t), u(t))dt + σ(χ0(t))dw(t) + dz0(t), (2.1)

dtχ
1(t, θ) = −dθχ

1(t, θ) + b(χ0(t), u(t), θ) [µa(θ + dt) − µa(θ)]

+p(χ0(t), θ)dy0(t).
(2.2)
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The cost function is (1.3) with χ0(t) replacing x(·).
The stochastic partial differential equation (2.2) is in “symbolic” form.

Its precise interpretation will be given by (2.7), (2.8), which redefines it in
terms of the “shift” semigroup of the wave equation component dtχ

1(t, θ) =
−dθχ

1(t, θ). The process χ0(·) takes values in the constraint set G, which is
subject to the boundary conditions (A3.2.1) and (A3.2.2), and z0(·) is the
reflection term for χ0(·). With the interpretation (2.7), (2.8), Theorem 2.1
shows that χ0(·) = x(·). If there is no delayed reflection term, then the values
of χ1(t, θ) will be seen to be bounded. If this process is not bounded, then for
numerical purposes, “numerical” bounds will have to be added, and this issue
is discussed in Section 5. With the use of relaxed controls, (2.1) and (2.2) are
rewritten as

dχ0(t) = χ1(t, 0)dt+
∫

U

c(χ0(t), α)r′(dα, t)dt+σ(χ0(t))dw(t)+dz0(t), (2.3)

dtχ
1(t, θ) = −dθχ

1(t, θ) +
∫

U

b(χ0(t), α, θ)r′(dα, t) [µa(θ + dt) − µa(θ)]

+p(χ0(t), θ)dy0(t).
(2.4)

These processes will be the basis of the numerical method that is to be de-
veloped. Instead of delays in the state, control, and reflection terms, we have
the additional variable θ and the process χ1(·). The numerical approximations
will not be simple, but we avoid the difficulties encountered in Chapter 8 in
representing the memory segments of the control (and what would be the
more difficult problem of representing a delayed reflection term, if any).

The initial conditions for (2.1) and (2.2) are χ0(0) = x(0) and, for arbitrary
z0(s), s ≤ 0,

χ1(0, θ) =
∫ θ

−θ̄

b(x(γ − θ), u(γ − θ), γ)dµa(γ) +
∫ θ

−θ̄

p(x(γ − θ), γ)dγy0(γ − θ).

(2.5)
Additionally, we have the boundary condition χ1(t,−θ̄) = 0.

The linear and deterministic forms of (2.1), (2.2) were introduced in [94]
for the treatment of the linear deterministic problem with a quadratic cost
function and no constraint set G. Numerical approximations were not a con-
cern. See the references in [94] for a history of the idea for linear systems.

9.2.2 Comments on the Dimension and the System State

The dimension of the component χ0(·) is that of x(·), but there are no delayed
terms in (2.1). The dimension of χ1(·) is equal to the number of components of
x(·) whose dynamical terms contain delays. This dimension does not otherwise
depend on the number of controls or on the number of individual terms that
appear in a delayed form. Thus, if the expression for only one component of
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x(·) in (1.1) or (1.2) contains (any number of) dynamical terms with delays,
the process χ1(·) has only one component. For the components xi(·) whose
dynamical terms do not have delays, simply define χ1

i (·) = 0, and define χ0
i (·)

by the ith component of (2.1) with χ1
i (t, 0) = 0.

Suppose that delayed values of components xi(·), i = 1, . . . , r1, ui(·), i =
1, . . . , r2, and yi(·), i = 1, . . . , r3, are required. For the original problem, the
full system state consists of the initial condition x(0) and the memory seg-
ments of the xi(·), i = 1, . . . , r1, ui(·), i = 1, . . . , r2, and yi(·), i = 1, . . . , r3. In
general, we know little a priori of the regularity properties of the controls, and
a numerical approximation of the control memory segment might require a lot
of memory, as seen in Chapter 8. The same thing can be said for the memory
segments of the delayed reflection terms, if any. On the other hand, the full
system or memory state for (2.1), (2.2) at time t is just χ0(t) and the current
values χ1(t, θ), −θ̄ ≤ θ ≤ 0. These considerations illustrate the promise of the
representation (2.1), (2.2). But keep in mind that there is very little practical
experience with the type of approximations that will be developed in the later
sections.

To develop the idea a little further, suppose that the dynamics of only one
component of x(·), say x1(·), contains delayed path, control, and/or reflection
terms. The delayed path or reflection terms that appear in that component
of x(·) might arise from other components of x(·), and the control might
be vector-valued. The state space for the representation (1.1) or (1.2) would
consist of the memory segments of all of these processes. Working directly
with the system (1.1) requires that we discretize these memory segments. The
implicit, periodic, and periodic-Erlang approximation procedures that were
discussed in Chapters 7 and 8 greatly alleviated the problem when only the
path is delayed and in some cases where the control is delayed, but where the
control takes only a few values. On the other hand, in this example χ1(t, θ)
is real-valued. The procedure to be discussed will not eliminate the memory
problem, as the variable θ will have to be discretized. But it does provide an
alternative that has the potential of greatly reducing the needed memory. The
main question is how to approximate χ1(·). This will be dealt with in Section
4, and the relative memory requirements are discussed in Section 5.

9.2.3 Proof of the Representation

The precise definition of (2.1), (2.2). The part dtχ
1(t, θ) = −dθχ

1(t, θ)
of the expression (2.2) is a type of wave equation, and its semigroup will play
a major role in defining the solutions. Let f(·) be either a real or vector-valued
function of θ ∈ [−θ̄, 0]. Following the idea in [94], define the semigroup Φ(·)
by the constrained shift

Φ(t)f(θ) =
{

f(θ − t), for − θ̄ ≤ θ − t ≤ 0,
0, otherwise. (2.6)
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In expressions of the form Φ(t)f(t, θ), Φ(·) will act only on the argument θ.
The system (2.1), (2.2) is always defined by the “variation of constants

solution” form

dχ0(t) = χ1(t, 0)dt + c(χ0(t), u(t))dt + σ(χ0(t))dw(t) + dz0(t), (2.7)

χ1(t, θ) = Φ(t)χ1(0, θ) +
∫ t

0

Φ(t − s)b(χ0(s), u(s), θ) [µa(θ + ds) − µa(θ)]

+
∫ t

0

Φ(t − s)p(χ0(s), θ)dy0(s).

(2.8)
The construction of the numerical approximations will use the formal dynam-
ical representation (2.1), (2.2) as a heuristic guide, but the precise interpre-
tations will always have a form such as (2.7), (2.8).

The integral involving µa(·) in (2.8). The integration with respect to the
measure µa(·) is to be done after the operation by Φ(t − s). The integral is
well defined by the interpretation∫ t

0

Φ(t − s)b(χ0(s), u(s), θ) [µa(θ + ds) − µa(θ)] =∫ t

0

b(χ0(s), u(s), θ − t + s)I{−θ̄≤θ−t+s≤0} [µa(θ − t + s + ds) − µa(θ − t + s)] .

(2.9)
On the right-hand side of (2.9) the integration is with respect to the variable
s, with the quantity θ − t fixed. A change of variable in (2.9) leads to∫ θ

max{θ−t,−θ̄}
b(χ0(γ + t − θ), u(γ + t − θ), γ)dµa(γ). (2.10)

For the relaxed control form of the control term in (2.8), use the expression∫ t

0

∫
U

Φ(t − s)b(χ0(s), α, θ)r′(dα, s) [µa(θ + ds) − µa(θ)] ,

and in (2.7 ) replace c(χ0(t), u(t))dt with dt
∫

U
c(χ0(t), α)r′(dα, t).

On the θ-dependence of χ1(t, θ). The smoothness of χ1(t, θ) in θ and t
depends heavily on the measure µa(·). Consider the expression (2.10) and, for
simplicity in the notation, suppose that t is large enough so that the lower
limit of integration is −θ̄. First, let µa(·) be Lebesgue measure on [−θ̄, 0].
Then (2.10) can be written as∫ θ

−θ̄

b(χ0(γ + t − θ), u(γ + t − θ), γ)dγ =
∫ t

−θ̄+t−θ

b(χ0(τ), u(τ), τ − t + θ)dτ,

(2.11)
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which is continuous in θ. If b(x, u, ·) is Lipschitz continuous, uniformly in x, α,
then (2.11) is Lipschitz continuous in θ, uniformly in the values of χ0(·) and
u(·).

If µa(·) is concentrated on a finite number of points, the situation is quite
different, and (2.10) has no continuity properties in general. To see this, con-
sider the special case where µa(·) is concentrated on −θ̄. Then (2.10) can be
written as

b(χ0(−θ̄ + t − θ), u(−θ̄ + t − θ),−θ̄), (2.12)

and unless the control is continuous, it will not be continuous.

The next theorem shows that ((2.7), (2.8)) is indeed a representation of
(1.1) (or, in relaxed control notation, of (1.2)).

Theorem 2.1. Assume (A3.2.1), (A3.2.2), and (A3.2.4)–(A3.2.6). Then, for
initial condition (2.5) with arbitrary z0(s), s ≤ 0, and χ0(0) = x(0), (2.7) and
(2.8) have the weak-sense unique solution

χ0(·) = x(·), (2.13)

χ1(t, θ) =
∫ θ

−θ̄

b(χ0(γ + t − θ), u(γ + t − θ), γ)dµa(γ)

+
∫ θ

−θ̄

p(χ0(γ + t − θ), γ)dγy0(γ + t − θ).
(2.14)

The analogous result holds for the relaxed control form, where we use
∫ θ

−θ̄

∫
U

b(χ0(γ + t − θ), α, γ)r′(dα, γ + t − θ)dµa(γ)

in place of the first term on the right side of (2.14). The result continues
to hold if the reflecting boundary and the conditions on it are replaced by an
absorbing boundary and (A3.4.1), (A3.4.2).

Comment on the uniqueness of the solution to ((2.7), (2.8)). Note
that if t = 0, then (2.14) reduces to the initial condition (2.5). By the proof
of the theorem, any solution to ((2.7), (2.8)) must have the form ((2.13),
(2.14)).. We assumed (in (A3.2.6)) that (1.1) and (1.2) have unique weak-
sense solutions for each admissible ordinary or relaxed control and initial
condition. Hence, the solution to ((2.7), (2.8)) is also weak-sense unique for
each admissible control and initial condition of the form (2.5).

Proof. To keep the notation relatively simple, we will work with ordinary
rather than relaxed controls. The development for relaxed controls involves
only minor notational changes. From the remarks above regarding uniqueness
we need only show that if (χ0(·), χ1(·)) are measurable and nonanticipative
processes satisfying ((2.7), (2.8)), then (2.13) and (2.14) hold. Consider the
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representation (2.8) and define χ0(t) = x(t) for −θ̄ ≤ t ≤ 0. The component
of (2.8) that is due to the initial condition in (2.5) is

Φ(t)χ1(0, θ) =
∫ θ−t

−θ̄

b(χ0(γ + t − θ), u(γ + t − θ), γ)I{−θ̄≤θ−t≤0}dµa(γ)

+
∫ θ−t

−θ̄

p(χ0(γ + t − θ), γ)I{−θ̄≤θ−t≤0}dγy0(γ + t − θ)

=
∫ max{θ−t,−θ̄}

−θ̄

b(χ0(γ + t − θ), u(γ + t − θ), γ)dµa(γ)

+
∫ max{θ−t,−θ̄}

−θ̄

p(χ0(γ + t − θ), γ)dγy0(γ + t − θ).

(2.15)
At θ = 0, (2.15) is

∫ max{−t,−θ̄}

−θ̄

b(χ0(γ + t), u(γ + t), γ)dµa(γ)

+
∫ max{−t,−θ̄}

−θ̄

p(χ0(γ + t), γ)dγy0(γ + t).
(2.16)

Now consider the delayed reflection term in (2.8), namely,∫ t

0

Φ(t − s)p(χ0(s), θ)dy0(s) =
∫ t

0

p(χ0(s), θ − t + s)I{−θ̄≤θ−t+s≤0}dy0(s)

=
∫ θ

θ−t

p(χ0(γ + t − θ), γ)I{−θ̄≤γ≤0}dγy0(γ + t − θ)

=
∫ θ

max{θ−t,−θ̄}
p(χ0(γ + t − θ), γ)dγy0(γ + t − θ).

(2.17)
The (noninitial condition part of the) term in (2.8) involving the measure
µa(·) was dealt with in (2.9), (2.10). Adding (2.15), (2.17), and (2.10) yields
(2.14). Setting θ = 0 in (2.14) and substituting it into (2.7) yields

dχ0(t) = c(χ0(t), u(t))dt + dt

∫ 0

−θ̄

b(χ0(t + γ), u(t + γ), γ)dµa(γ)

+dt

∫ 0

−θ̄

p(χ0(t + γ), γ)dγy0(t + γ) + σ(χ0(t))dw(t) + dz0(t),

which is the equation for x(·). The same computations yield (2.14).

9.2.4 Extensions

Suppose that the form (3.2.13) replaces the b(·) term in (1.1) and (1.2). Then,
with the obvious modifications in the notation, the result and proof are the
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same. The model (1.1) does not cover drift dynamical terms such as x(t +
θ1)x(t+θ2) or x(t+θ1)u(t+θ2), where θ1 �= θ2. Terms such as x(t+θ1)x(t+θ2)
could be accommodated by adding a term c0(x̄(t), u(t)). This entails adding
c0(χ̄0(t), u(t)) to (2.1), in which case we will need to track the memory segment
χ̄0(t) as well as χ1(t, θ), θ ∈ [−θ̄, 0], and this would require much more memory
in the numerical approximations. One can deal with delayed Wiener process
values by adding the term

dt

∫ 0

−θ̄

pw(x(t + θ), θ)dθw(t + θ)

to (1.1).

9.3 A Discrete-Time Approximation

We will use the dynamical equations (2.1) and (2.2) as the basis of the nu-
merical algorithms by approximating them by suitable Markov chains, anal-
ogously to the way that the model (6.1.1) was approximated in Chapter 6.
But to verify the convergence to the correct values, we will need to show that
the processes associated with the numerical approximations converge to the
representations defined by (2.7) and (2.8), with χ0(·) = x(·). Then, by Theo-
rem 2.1, the resulting limit solves solves (1.1) or (1.2), depending on whether
ordinary or relaxed controls are used.

The basic forms of the numerical algorithms for getting the costs or optimal
costs will be discussed in Section 4. To prepare ourselves for that discussion
and the types of algebraic manipulations that will be needed, it is useful to
start with a formal finite-difference approximation to (2.1) and (2.2), and that
will be done in this section. This approximation is not suitable for numerical
computation of the cost functions, but it will provide helpful insights and
guides and might be useful for simulations.

We now formally approximate (2.1) and (2.2) by a simple form, by dis-
cretizing time and θ. Because the purpose is motivational, for simplicity we
will drop the x(t)-dependence of p(·). As (2.2) is in a “symbolic” form, the
appropriate discrete-time approximation is not a priori clear, but we will use
a form that will lead to the correct results, when adapted to the numerical
procedure. Let δ be the discretization interval for θ and ∆ the discretization
interval for the time variable, with θ̄ being an integral multiple of δ. We are
partly guided by the need to keep χ1,δ,∆(t,−θ̄) = 0. The interpolations in
time will be piecewise-constant and right continuous. Because we are inter-
ested in only the general idea of the approximation, let us suppose that the
control u(·) is continuous and let u∆(·) denote the piecewise-constant approx-
imation of u(·). In the subsequent sections, the controls are arbitrary. Then,
for −θ̄ < θ ≤ 0, t = n∆, n = 0, 1, . . ., and letting χ0,δ,∆(·) and χ1,δ,∆(·) denote
the approximations to χ0(·) and χ1(·), resp., the approximating processes are
given by the recursions
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χ0,δ,∆(t + ∆) − χ0,δ,∆(t) = ∆χ1,δ,∆(t, 0) + ∆c(χ0,δ,∆(t), u∆(t))+

σ(χ0,δ,∆(t))[w(t + ∆) − w(t)] + [z0,δ,∆(t + ∆) − z0,δ,∆(t)],

χ1,δ,∆(t + ∆, θ) − χ1,δ,∆(t, θ) = −
[
χ1,δ,∆(t, θ) − χ1,δ,∆(t, θ − δ)

] ∆

δ
+b(χ0,δ,∆(t), u∆(t), θ − δ) [µa(θ) − µa(θ − δ)]

+p(θ − δ)
[
y0,δ,∆(t + ∆) − y0,δ,∆(t)

]
.

(3.1)

The initial condition is an appropriate discrete-time and discrete-θ approxi-
mation of (2.5), and the boundary condition is χ1,δ,∆(t,−θ̄) = 0. The bound-
ary conditions (A3.2.1) and (A3.2.2) are imposed on χ0,δ,∆(·), and z0,δ,∆(·)
is the associated reflection process. That is, if χ0,δ,∆(·) ever leaves the set
G, then it is immediately reflected back in accordance with the local re-
flection direction as defined in (A3.2.1), (A3.2.2). We use the representation
z0,δ,∆(·) =

∑
i diy

0,δ,∆
i (·), where diy

0,δ,∆
i (·) is the component of z0,δ,∆

i (·) due
to reflection on the ith face of G. Note that the backward difference in θ is
used for the θ-discretization, which is consistent with the discussion at the
beginning of Section 2.

Solving (3.1) by iteration in time and letting δ, ∆ → 0 shows that we must
have ∆ = δ if there is to be convergence to the correct limit. So, henceforth,
let ∆ = δ and rewrite (3.1), for θ ≥ −θ̄ + δ, as (now, t = nδ, n = 0, 1, . . .)

χ0,δ(t + δ) = χ0,δ(t) + δχ1,δ(t, 0) + δc(χ0,δ(t), uδ(t))

+σ(χ0,δ(t)) [w(t + δ) − w(t)] +
[
z0,δ(t + δ) − z0,δ(t)

]
,

(3.2)

χ1,δ(t + δ, θ) = χ1,δ(t, θ − δ) + b(χ0,δ(t), uδ(t), θ − δ) [µa(θ) − µa(θ − δ])]

+p(θ − δ)
[
y0,δ(t + δ) − y0,δ(t)

]
,

(3.3)
with the boundary condition χ1,δ(t,−θ̄) = 0.

Comment on a special case. Suppose that there is no delayed reflection
term and µa(·) is the distribution function of a point mass concentrated at
θ = −θ̄. Thus, for this example we can suppose that p(·) = 0 and µa(−θ̄ +
δ) − µa(−θ̄) = 1 and dµa(θ) = 0 for all −θ̄ < θ ≤ 0. Then, for θ − δ > −θ̄,
χ1,δ(t + δ, θ) = χ1,δ(t, θ − δ). The drift term enters only when θ = −θ̄ + δ.
An analogous result holds if there is a delayed reflection term and p(θ) = 0
outside of a small neighborhood of −θ̄.

A representation in terms of a semigroup. A very convenient representa-
tion of the solution to (3.2) and (3.3) is in terms of an analog of the semigroup
Φ(t) that was defined in (2.6). For functions f(t, θ), where −θ̄ ≤ θ ≤ 0, define
the operator Φδ by

Φδf(t, θ) =

{
f(t, θ − δ), for − θ̄ ≤ θ − δ ≤ 0,

0, otherwise.
(3.4)
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Φδ acts only on the θ argument. Iterating (3.4) k times yields

[Φδ]kf(t, θ) = f(t, θ − kδ)I{−θ̄≤θ−kδ≤0}. (3.5)

Using Φδ, rewrite (3.3) as

χ1,δ(t + δ, θ) = Φδχ1,δ(t, θ) + b(χ0,δ(t), uδ(t), θ − δ) [µa(θ) − µa(θ − δ)]

+p(θ − δ)
[
y0,δ(t + δ) − y0,δ(t)

]
.

(3.6)
Iterating (3.6), starting at time zero, yields (where [Φδ]0 is the identity)

χ1,δ(nδ, θ) = [Φδ]nχ1,δ(0, θ)

+
n−1∑
i=0

[Φδ]n−i−1
[
b(χ0,δ(iδ), uδ(iδ), θ − δ)

]
[µa(θ) − µa(θ − δ)]

+
n−1∑
i=0

[Φδ]n−i−1p(θ − δ)
[
y0,δ(iδ + δ) − y0,δ(iδ)

]
,

(3.7)
and

χ0,δ(nδ) = χ0,δ(0) + δ

n−1∑
i=0

χ1,δ(iδ, 0) + δ

n−1∑
i=0

c(χ0,δ(iδ), uδ(iδ))

+
n−1∑
i=0

σ(χ0,δ(iδ)) [w(iδ + δ) − w(iδ)] + z0,δ(nδ).

(3.8)

Approximating the cost function. Let us use the following analog of the
approximation (7.1.13):

W δ(x̂δ, ûδ, ẑδ, uδ) = Eδ,uδ

x̂δ,ûδ,ẑδ

∞∑
n=0

e−βnδ
[
k(χ0,δ(nδ), uδ(nδ))δ

+q′
(
y0,δ(nδ + δ) − y0,δ(nδ)

) ]
,

(3.9)

where x̂δ, ûδ, and ẑδ, are piecewise-constant and right-continuous approxima-
tions to the (initial data) path, control, and reflection processes on [−θ̄, 0],
with intervals δ. Let χ0,δ(·) and uδ(·) denote piecewise-constant and right-
continuous interpolations of {χδ(nδ)} and {uδ(nδ)}, resp., with intervals δ.
The following theorem states that the costs converge to the correct value as
δ → 0.

Theorem 3.1. Assume (A3.2.1), (A3.2.2), and (A3.2.4)–(A3.2.6). Let the
admissible controls uδ(·) converge to the continuous admissible control u(·),
uniformly on each bounded time interval, and let the initial conditions converge
uniformly to continuous limits. Then, as δ → 0, χ0,δ(·) converges to x(·) and
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the costs converge to that for the process (1.1) with cost rate k(x(t), u(t)) and
boundary reflection cost rate q′dy(t).

Proof. Let ε(t, δ) denote a function that goes to zero as δ → 0, uniformly in
(t, ω) on any bounded t-interval. Its value might change each time that it is
used. For t = nδ, the first sum in (3.7) is

n−1∑
i=0

b(χ0,δ(iδ), uδ(iδ), θ − t + iδ)I{−θ̄≤θ−t+iδ+δ≤0}

× [µa(θ − t + iδ + δ) − µa(θ − t + iδ)] .

(3.10)

Using the continuity of b(·) to approximate the θ-dependence in (3.10), we
can write (3.10) as∫ t

0

b(χ0,δ(s), uδ(s), θ − t + s)I{−θ̄≤θ−t+s≤0}

× [µa(θ − t + s) − µa(θ − t + s − ds)] + ε(t, δ)

=
∫ θ

max{θ−t,−θ̄}
b(χ0,δ(γ + t − θ), uδ(γ + t − θ), γ)dµa(γ) + ε(t, δ).

(3.11)

Because the χ0,δ(·) and uδ(·) are piecewise-constant on the intervals [kδ, kδ+δ)
and θ is a (negative) integral multiple of δ, the error term ε(t, δ) arises from
the θ dependence of b(x, u, θ).

The second sum in (3.7) is

n−1∑
i=0

p(θ − t + iδ)
[
y0,δ(iδ + δ) − y0,δ(iδ)

]
I{−θ̄≤θ−t+iδ+δ≤0},

which equals ∫ θ

max{θ−t,−θ̄}
p(γ)dγy0,δ(γ + t − θ), (3.12)

modulo an error that is due to the approximation of p(·) by a piecewise-
constant function. The error is bounded by ε(t, δ) times the variation of y0,δ(·)
on the interval [t−θ̄, t−θ̄0], where θ̄ > θ̄0 > 0 is defined in (A3.2.4). The initial
condition is treated similarly. Analogously to the development in Theorem 2.1,
the effect of the initial condition is to add terms of the form

∫max{θ−t,−θ̄}
−θ̄

to
the expressions computed above.

Using (3.11), (3.12), and adding the contribution of the initial condition
yields

χ1,δ(t, θ) =
∫ θ

−θ̄

b(χ0,δ(t + γ − θ), uδ(t + γ − θ), γ)dµa(γ)

+
∫ θ

−θ̄

p(γ)dγy0,δ(t + γ − θ)

+ε(t, δ)
[
1 + |z0,δ|(t − θ̄0) − |z0,δ|(t − θ̄)

]
.
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The value at θ = 0 is

χ1,δ(t, 0) =
∫ 0

−θ̄

b(χ0,δ(t + γ), uδ(t + γ), γ)dµa(γ)

+
∫ 0

−θ̄

p(γ)dγy0,δ(t + γ)

+ε(t, δ)
[
1 + |z0,δ|(t − θ̄0) − |z0,δ|(t − θ̄)

]
.

(3.13)

By (3.8), for t = nδ,

χ0,δ(t) = x(0) +
∫ t

0

χ1,δ(s, 0)ds

+
∫ t

0

c(χ0,δ(s), uδ(s))ds +
∫ t

0

σ(χ0,δ(s))dw(t) + z0,δ(t).
(3.14)

Substituting (3.13) into (3.14), and letting t be arbitrary, yields that (χ0,δ(·),
uδ(·), w(·), z0,δ(·)) satisfies (1.1), modulo the error terms. It follows from
Lemma 3.2.1 that the error terms go to zero as δ → 0 in that for each T < ∞

lim
δ→0

E sup
t≤T

ε(t, δ)
[
1 + |z0,δ|(t − θ̄0) − |z0,δ|(t − θ̄)

]
= 0.

A weak convergence argument can be used to complete the proof. It
follows from Lemma 3.2.2 that the sequence {z0,δ(·)} is tight in the Sko-
rokhod topology and that all limit processes are continuous. Then the set
of processes {(χ0,δ(·), uδ(·), w(·), z0,δ(·))} is tight in the Skorohod topology
and all limits are continuous. One needs to show that the weak-sense limit
(x̃(·), ũ(·), w̃(·), z̃(·)) of any weakly convergent subsequence satisfies (1.1),
where z̃(·) is the reflection term, and all processes are nonanticipative with
respect to the standard Wiener process w̃(·). The nonanticipativity is shown
by the method used in the proof of Theorem 7.1.3 in Section 8.5. See also the
proof of Theorem 3.5.1 in Chapter 3. That z̃(·) is the reflection process fol-
lows from Lemma 3.2.2. Clearly, the weak-sense limit (ũ(·), w̃(·)) has the same
probability law as (u(·), w(·)). This and the weak-sense uniqueness of solutions
implies that the original sequence (χ0,δ(·), uδ(·), w(·), z0,δ(·)) converges to the
weak-sense unique solution to(1.1).

The nonreflection part of the costs in (3.9) converges due to this weak
convergence and the continuity and boundedness of the function k(·). The
reflection component converges due to the weak convergence of z0,δ(·) and
the fact that, for any T < ∞, Lemma 3.2.1 implies that the sequence of
differences {z0,δ(lT + T ) − z0,δ(lT ); l, δ} of the reflection terms is uniformly
(for small δ and l ≥ 0) integrable.

9.4 The Markov Chain Approximation

The forms of the numerical approximations are to be motivated by the repre-
sentations (2.3) and (2.4). With this representation, there are no issues with
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delays, but the variable θ needs to be discretized. The approximation of this
system by a Markov chain follows the general procedure laid out in Chapter
6. As in Chapter 6, one first gets an approximating chain and cost function,
then solves the associated control or optimal control problem, and finally
shows that the cost functionals converge as the discretization parameter goes
to zero. For simplicity in the notation, we will suppose that z(s) = 0, s ≤ 0,
although the general case can be treated by the same methods as well.

The main issue involves the treatment of the variable θ. It is seen from
the discussion in Section 3 that the discretization of the time variable and
of θ are closely connected. This is manifest particularly in the “shift” term
Φδχ1,δ(t, θ) in (3.6) where the increase in time is associated with a shift in
the value of θ, by the same amount. Thus the discretization level of the time
variable and of θ had to be the same if there was to be convergence to the
correct limit. Such a requirement would usually be onerous for the classical
Markov chain approximation of, say, Section 6.4.2 Nevertheless, we will use
(3.2) and (3.6) as guides. The use of the implicit method of approximation in
Section 7.3 alleviated the small time-interval problem for the approximation
of the path memory values, by use of the interpolation based on the timescale
implied by the interpolated “time” process φh,δ(·). The use of the implicit
method of approximation in the current case will allow us to coordinate the
discretization of time and of θ. The periodic and periodic-Erlang approxima-
tion procedures in Section 8.1 and 8.2 appear to have advantages over the pure
implicit approximation method, and analogs will be developed in Section 8
for the model of this chapter.

The basic condition required for convergence is still local consistency, but
for the pair χ0(·), χ1(·). The discretization of χ0(·) is similar to that of x(·) in
Chapter 6, as it does not contain any delays. Let h denote the discretization
level for the χ0(·) and, until further notice, for the χ1(·, θ) for the values of θ
that will be used.3

For numerical purposes, the approximating chains must be bounded. This
is discussed in the next subsection. Subsection 4.2 gives the local consistency
condition for the implicit approximation procedure. It might look complicated
but is actually a straightforward adaptation of the method of Chapter 6.
The subsections that follow after these give the dynamical representations of
the evolution of the chains, an approximation to the cost function, and the
associated Bellman equation.
2 This would require a constant interpolation interval. If h is the discretization level

for the state variables and ∆th
n = O(h2), then this would entail a level of order

h2 for the discretization of θ, which yields a state space that might be too large
for practical use.

3 The discretization level can depend on the coordinate and is quite flexible pro-
vided only that the local consistency condition holds. See [58] for a discussion of
the possibilities in the no-delay problem. The same considerations apply here.
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9.4.1 Preliminaries and Boundaries

Notation. Let θ̄ be an integral multiple of δ > 0 and let the discretization
of the variable θ take values in the set T δ = {−θ̄ + δ, . . . ,−δ, 0}. Owing to
the boundary condition χ1(t,−θ̄) = 0, there is no need for the value θ = −θ̄.
The Markov chain approximating (χ0(t), χ1(t, θ), θ ∈ T δ) will be denoted by
(ξ0,h,δ

n , ξ1,h,δ
n (θ), θ ∈ T δ). The component ξ0,h,δ

n will take values in Gh ∪ ∂G+
h

with instantaneous reflection back if it leaves Gh, in accordance with (A3.2.1)
and (A3.2.2). For simplicity in the development, we suppose that for each
θ ∈ T δ, ξ1,h,δ

n (θ) takes values in a regular grid with spacing h1 = O(h).

Boundaries and bounds for ξ1,h,δ
n (θ). The ξ0,h,δ

n take values in G+
h ,

hence they are bounded. If p(·) = 0, then there is no delayed reflection
term, and (2.14) shows that |χ1(t, θ)| is bounded by B(θ) = |b|µa(θ) where
|b| = supx,α |b(x, α)|, and |ξ1,h,δ

n (θ)| can be taken to be bounded by a slightly
higher value, say Bε(θ) = B(θ) + ε, for some small ε > 0. In the limit,
as h, δ → 0, the values of ξ1,h,δ

n (θ) would not exceed Bε(θ). If the process
|ξ1,h,δ

n (θ)| ever exceeded Bε(θ), then one could either stop it or inject it back.
However, if there is a delayed reflection term, then the value of ξ1,h,δ

n (θ) is
influenced by the last term in (2.14). This term is bounded by a constant times
the variation of z(·) on [t− θ̄, t− θ̄0], which satisfies Lemma 6.3.1 and, in the
limit, Lemma 3.2.1. For numerical purposes, we need to bound |ξ1,h,δ

n (θ)|, and
this entails an approximation and tradeoff: the larger the bound the more
the computation, but the better the approximation. For specificity and to
allow us to proceed, we will use the following simple procedure. Set a level
B̄(θ) > Bε(θ) such that the probability is small that B̄(θ) is exceeded by
|χ1(t, θ)| on some time interval [0, T ]. If the value of |ξ1,h,δ

n (θ)| exceeds B̄(θ),
then immediately reflect it back to the boundary. Until Theorem 7.1, ignore
these boundaries.

9.4.2 Transition Probabilities and Local Consistency: An Implicit
Approximation Procedure

We will develop a slightly different version of the implicit approximation
method of Section 7.3, one that will be suitable for the problem of this chapter.
As in Section 7.3, let δ denote the discretization level for the time variable, and
let φh,δ

n denote the value of the time component of the approximating chain at
step n. As there, the steps can be divided into two classes, corresponding to
whether the time variable advances or not. First we give the transition prob-
abilities of ξ1,h,δ

n (θ) when the time variable advances, then give the general
form of the transition probabilities for ξ0,h,δ

n , and finally we define the local
consistency property and the transition probabilities for ξ1,h,δ

n (θ) when the
time variable does not advance. The reader should be familiar with Section
7.3 before proceeding further.
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The transitions in the Markov state. Introductory comments. Re-
call the forms (3.3) or (3.6), which exhibited the coordination between the
advance of time and the shift in the value of θ. The approximating Markov
chain will attempt to duplicate this behavior, although it will be done rather
indirectly. The transitions in (ξ0,h,δ

n , ξ1,h,δ
n (θ), θ ∈ T δ) depend on whether the

time variable advances at step n or not and can be outlined as follows. If
the time variable does advance at step n, then the transitions aim to dupli-
cate the effects of the shift term χ1,δ(t + δ, θ) = χ1,δ(t, θ − δ) of (3.3), with
the drift and diffusion terms ignored. If the time variable does not advance,
then the transitions are guided by the drift and diffusion terms in (3.2), (3.3),
with the shift term in (3.3) ignored, in the sense that the χ1,δ(t, θ − δ) on
the right side is dropped and the χ1,δ(t + δ, θ) on the left side is replaced by
χ1,δ(t+ δ, θ)−χ1,δ(t, θ). The approximation must be done so that it is locally
consistent with (2.7), (2.8). The following description fills in the details.

The transitions when the time variable advances. If the time variable
advances at step n, then the transitions are, for θ ≥ −θ̄ + δ,

ξ1,h,δ
n+1 (θ) = ξ1,h,δ

n (θ − δ), ξ0,h,δ
n+1 = ξ0,h,δ

n , φh,δ
n+1 = φh,δ

n + δ. (4.1a)

Thus the transition can be represented as

ξ1,h,δ
n ≡ {ξ1(−θ̄ + δ), . . . , ξ1(0)} → ξ1,h,δ

n+1 = {0, ξ1(−θ̄ + δ), . . . , ξ1(−δ)}.
(4.1b)

The transition in ξ0,h,δ
n if the time variable does not advance at step n will be

defined next.

The transition probabilities for ξ0,h,δ
n when the time variable does

not advance. In the no-delay case of Chapter 6, the transition probabili-
ties and interpolation interval for the explicit approximation procedure were
given first. Then, in Subsection 6.5.1, Equation (6.5.6) defined the transition
probabilities and interpolation interval for the implicit approximation proce-
dure simply in terms of those for the explicit approximation procedure. This
process was repeated for the model in Chapter 7. It was noted that, for the
explicit approximation procedure for the no-delay case, the transition prob-
abilities and interpolation interval can be expressed as ratios as in (7.1.10).
This form was adapted to the explicit approximation procedure for the delay
problem in (7.1.11). Then the transition probabilities and interpolation inter-
val for the implicit approximation procedure were computed in terms of these
in (7.3.1) and (7.3.2).

The identical (and unrestrictive) approach will be used here to get the
transition probabilities for the approximating chain component ξ0,h,δ

n . The
only difference between the drift term of the model for x(·) in Chapter 6
and that of χ0(·) in this chapter is the presence of the χ1(t, 0) component
in the equation for χ0(·). Suppose that we have a transition probability and
an interpolation interval for the model without delays that satisfy (7.1.11)
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and are locally consistent for the no-delay problem, in the sense of (6.2.1). To
adapt this formula to the current case, define ξ0,h,δ

n = x0 ∈ Gh, ξ1,h,δ
n (0) = x1

and let control value α be used. Then the probability that ξ0,h,δ
n+1 takes the

value x̃0, conditioned on the event that the time variable does not advance at
step n, is

ph
(
x0, x̃0

∣∣α, x1
)

=
Nh

(
x1 + c(x0, α), a(x0), x̃0

)
Dh (x1 + c(x0, α), a(x0))

,∣∣x̃0 − x0
∣∣ = O(h).

(4.2)

Thus, if the time variable does not advance at a step, then the transition
probability for ξ0,h,δ

n has the same dependence on the drift vector and covari-
ance matrix as in the nondelay case; the quantity x1+c(x0, α) simply replaces
b(x, α) or b(x̂, α). Any of the algorithms in [58, Chapter 5] can be used to get
the functions Nh(·) in (4.2). (The function Dh(·) is just a normalization.)

The probability that the time variable advances. In analogy to the
definition in (7.1.10), define the interval

∆th(x0, x1, α) =
h2

Dh(x1 + c(x0, α), a(x0))

Then, in analogy to (7.3.1), the probability that the time variable advances
at step n is

ph,δ(x0, nδ; x0, nδ + δ|α, x1) =
∆th(x0, x1, α)

∆th(x0, x1, α) + δ
. (4.3)

Also, analogously to (7.3.2), define the interpolation interval

∆th,δ(x0, x1, α) =
δ∆th(x0, x1, α)

∆th(x0, x1, α) + δ
. (4.4)

Let uh,δ
n denote the control applied at step n, and redefine the interpolation

intervals
∆thn = ∆th(ξ0,h,δ

n , ξ1,h,δ
n (0), uh,δ

n ),

∆th,δ
n = ∆th,δ(ξ0,h,δ

n , ξ1,h,δ
n (0), uh,δ

n ).

An assumption on the delayed reflection term. Let Fh,δ
n denote the

minimal σ-algebra that measures the system data to step n, with the asso-
ciated conditional expectation denoted by Eh,δ

n . Define ∆z0,h,δ
n = [ξ0,h,δ

n+1 −
ξ0,h,δ
n ]I{ξ0,h,δ

n 	∈Gh}, and define ∆y0,h,δ
n by ∆z0,h,δ

n =
∑

i di∆y0,h,δ
n . To simplify

the discussion, we will make the following assumption on the delayed reflec-
tion term p(χ0(t), θ)dy0(t). In applications in communication theory, the part
of the reflection term that is delayed is usually that due to buffer overflows.
In this case the boundary of concern represents a (scaled) buffer level and
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the reflection is directly back to the value that corresponds to a full buffer.
Then, the corresponding components of ∆z0,h,δ

n and ∆y0,h,δ
n are known when

ξ0,h,δ
n is known. With this motivation, we suppose that, if ξ0,h,δ

n �∈ Gh, then
p(ξ0,h,δ

n , θ)∆y0,h,δ
n is known at step n and included in Fh,δ

n . Otherwise, the
conditional (on Fh,δ

n ) expectation of ∆y0,h,δ
n would be used in (4.8) below.

The local consistency condition. If ξ0,h,δ
n = x0 �∈ Gh, then the reflection

back to Gh is instantaneous in that ∆th(x0, x1, α) = 0, and it is in accord
with (6.2.2).

Let Ih,δ
n denote the indicator function of the event that the time variable

advances at step n. By the local consistency of the transition probabilities
(4.2) when the time variable does not advance, for ξ0,h,δ

n ∈ Gh it follows that

E
[
ξ0,h,δ
n+1 − ξ0,h,δ

n

∣∣Ih,δ
n = 0,Fh,δ

n

]
= ∆thn

[
ξ1,h,δ
n (0) + c(ξ0,h,δ

n , uh,δ
n )
]
+ o(∆thn),

covar
[
ξ0,h,δ
n+1 − ξ0,h,δ

n

∣∣Ih,δ
n = 0,Fh,δ

n

]
= a(ξ0,h,δ

n )∆thn + o(∆thn).
(4.5)

By averaging over Ih,δ
n , given Fh,δ

n , the ∆thn changes to ∆th,δ
n and we have

E
[
ξ0,h,δ
n+1 − ξ0,h,δ

n

∣∣Fh,δ
n

]
= ∆th,δ

n

[
ξ1,h,δ
n (0) + c(ξ0,h,δ

n , uh,δ
n )
]
+ o(∆th,δ

n ),

covar
[
ξ0,h,δ
n+1 − ξ0,h,δ

n

∣∣Fh,δ
n

]
= a(ξ0,h,δ

n )∆th,δ
n + o(∆th,δ

n ).
(4.6)

The transitions for ξ1,h,δ
n when the time variable does not advance.

The rule for the transition probabilities of the component ξ0,h,δ
n was easy to

establish as χ0(t) evolves as a diffusion, so the methods of Chapter 6 and any
of the algorithms in [58] could be readily adapted. The rules for the transitions
of the ξ1,h,δ

n (θ) are only a little more complicated. If the time variable advances
then, as stated by (4.1), we simply shift as ξ1,h,δ

n+1 (θ) = ξ1,h,δ
n (θ − δ). The local

consistency condition for the transition in ξ1,h,δ
n (θ) when the time variable does

not advance is obtained similarly to what was done for ξ0,h,δ
n : In particular,

the conditional mean of the change in ξ1,h,δ
n (θ) must be the nonshift part of

(3.3) or (3.6), rescaled to a single step of the chain, namely, for θ ≥ −θ̄ + δ,

E
[
ξ1,h,δ
n+1 (θ) − ξ1,h,δ

n (θ)
∣∣Ih,δ

n = 0,Fh,δ
n

]
= qh,δ

n (θ), (4.7)

where

qh,δ
n (θ) = b(ξ0,h,δ

n , uh,δ
n , θ − δ)

[µa(θ) − µa(θ − δ)]
δ

∆thn + p(ξ0,h,δ
n , θ − δ)∆y0,h,δ

n .

(4.8)
This need hold only modulo o(∆thn) + o(∆y0,h,δ

n ). Hence, in view of the θ-
continuity of b(ξ0, α, ·) and p(ξ0, ·), the θ − δ arguments in b(·) and p(·) will
be replaced by θ, for notational simplicity. The motivation for the form (4.8)
will be apparent in the proof of convergence in Sections 6 and 7.
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Only one of the terms on the right side of (4.8) can be nonzero at a time.
The boundary condition is ξ1,h,δ

n (−θ̄) = 0. The complexity of the computation
of the transition probabilities is the same whether the path, control, reflection
term, or any combination of them are delayed. Both the cases where δ is fixed
and is of order O(h) are of interest.

On averaging out the conditioning event Ih,δ
n = 0 in (4.7), the ∆thn in (4.8)

is replaced by the interval ∆th,δ
n . The expression (4.7) defines local consistency

for ξ1,h,δ
n (θ) when the time variable does not advance at step n. Any transition

probabilities that satisfy (4.5) and (4.7) (modulo the allowed small errors)
when the time variable does not advance can be used.

Example. Suppose that there is no delayed reflection term and that there
is only a point delay of θ̄ for the path and/or control. Then µa(·) is the
distribution function of a point mass at −θ̄, and for the approximation we
can suppose that µa(θ + δ) − µa(θ) = 1 for θ = −θ̄ + δ and it is zero for
θ > −θ̄ + δ. Then

qh,δ
n (−θ̄ + δ) = b(ξ0,h,δ

n , uh,δ
n ,−θ̄ + δ)

∆thn
δ

and it is zero otherwise. In this case the computation of the transition proba-
bilities and the Bellman equation is particularly simple as we need to update
ξ1,h,δ
n (θ) only for θ = −θ̄ + δ between updates of the time variable.

Realizing (4.7). The transition probability that is used to attain (4.7) can be
viewed as being a randomization among neighboring grid points. The simplest
approach is to randomize independently in θ at each step n. One could also
consider any set of grid points in whose convex hull {qh.δ

n (θ), θ ∈ T δ} lies, and
randomize among those points. A useful method for coordinating the updates
for all θ is discussed at the end of the subsection.

A note on the rule for updating ξ1,h,δ
n (θ). The method for updating the

ξ1,h,δ
n (θ) when the time variable does not advance, based on (4.7), (4.8), was

chosen because at this time it seemed to be about as simple as possible from a
numerical point of view. One way or another, between the steps at which the
time variable advances, one would have to keep track of the approximations
to the integrals

∫
b(χ0(s), u(s), θ) [µa(θ + ds) − µa(θ)] and

∫
p(χ0(s), θ)dy0(s)

from (2.2) between those steps. This needs to be done with a reasonable
requirement on the system memory. If we sought to add the effects of the
approximations to these terms only at the steps when the time variable is
advanced, we would need to keep track of the running sums of the qh,δ

n (θ)
between such time variable advances, which would amount to an additional
state component. Clearly, much more work is needed to find the best forms.

Summary: The full method for the transition probabilities for the
implicit approximation procedure. At the current step n we first decide,
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according to the probability (4.3), whether the time variable advances or not.
If the time variable advances, then the transitions are given by (4.1). Now
suppose that the time variable does not advance at the current step. Then
(4.5) is all that ξ0,h,δ

n+1 − ξ0,h,δ
n must satisfy. This is assured if the transition

probabilities are any ones that are locally consistent for the no-delay problem,
with drift term x1+c(x, α) replacing b(x, α). The transitions of the component
ξ1,h,δ
n (θ) need only satisfy (4.7), (4.8), modulo an error whose conditional mean

and covariance are o(∆thn) + o(∆y0,h,δ
n ). The transitions for the components

ξ0,h,δ
n and ξ1,h.δ

n = {ξ1,h.δ
n (θ), θ ∈ T δ} are determined simultaneously and

independently.

Randomization errors. Using (4.6)–(4.8), define the martingale difference
term ρh,δ

n (θ) by

ρh,δ
n (θ) =

[(
ξ1,h,δ
n+1 (θ) − ξ1,h,δ

n (θ)
)
− Eh,δ

n

(
ξ1,h,δ
n+1 (θ) − ξ1,h,δ

n (θ)
)] (

1 − Ih,δ
n

)
=
[(

ξ1,h,δ
n+1 (θ) − ξ1,h,δ

n (θ)
)
− qh,δ

n (θ)
] (

1 − Ih,δ
n

)
.

(4.9)
The variance of ρh,δ

n (θ) for each θ is minimized by realizing the condi-
tional mean (4.7) by randomizing between the grid points that are closest
to ξ1,h,δ

n (θ) + qh,δ
n (θ). When analyzing the processes ξh

n or ξh,δ
n in Chapters 6

and 7, the errors due to any randomization that was done to attain the con-
ditional mean vanished asymptotically, whereas those due to the attainment
of the correct local covariance led to the diffusion term in the limit. Due to
the θ-shift term when the time variable advances, the analysis of the asymp-
totic effects of ρh,δ

n (θ) needs to be treated differently, and this will be done in
Section 6. Since there is no term in (2.2) that is due to a Wiener process, it
will be seen that the effects of the randomization will vanish asymptotically.

A method for coordinating the updates of ξ1,h,δ
n (θ) for all θ simul-

taneously. Let {γn} be a sequence of i.i.d. random variables, each uniformly
distributed on [0, 1], and with γi, i ≥ n, being independent of the systems
data up to time n. We can work with one component of ξ1,h,δ

n (θ) at a time,
so assume that it is real-valued in this paragraph. To attain the conditional
mean qh,δ

n (θ), we first center so that qh,δ
n (θ) can be taken to lie in [0, h1]. Then,

with this centering, the probability that ξ1,h,δ
n+1 (θ) = h1 is qh,δ

n (θ)/h1, and it
takes the value zero otherwise. Choose ξ1,h,δ

n+1 (θ) = h1 if qh,δ
n (θ)/h1 ≤ γn. The

same γn is used for all θ ∈ T δ. This method is not needed for the convergence
proofs, but it will be useful in Section 6 and is one way of controlling the
randomization errors. If this method is used, the γn themselves do not appear
in the algorithms; only their distribution appears.
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9.4.3 Dynamical Representations, the Cost Function and Bellman
Equation

In preparation for the convergence proof in Section 7, let us write a dynamical
representation of the evolution of the approximating chain.

Note that, as in (6.5.7),

Eh,δ
n

[
φh,δ

n+1 − φh,δ
n

]
= ∆th,δ

n .

Analogously to the definitions above (6.5.8), define the martingale differences

β̃0,h,δ
n =

(
ξ0,h,δ
n+1 − ξ0,h,δ

n − E
[
ξ0,h,δ
n+1 − ξ0,h,δ

n

∣∣Fh,δ
n , Ih,δ

n = 0
])

I{ξ0,h,δ
n ∈Gh},

β0,h,δ
n =

(
ξ0,h,δ
n+1 − ξ0,h,δ

n − E
[
ξ0,h,δ
n+1 − ξ0,h,δ

n

∣∣Fh,δ
n

])
I{ξ0,h,δ

n ∈Gh}.

We have

covar
[
β̃0,h,δ

n

∣∣Fh,δ
n , Ih,δ

n = 0
]

= a(ξ0,h,δ
n )∆thn + o(∆thn),

covar
[
β0,h,δ

n

∣∣Fh,δ
n

]
= a(ξ0,h,δ

n )∆th,δ
n + o(∆th,δ

n ).
(4.10)

With the definition of βh,δ
0,n as above (6.5.8), we can write

φh,δ
n+1 = φh,δ

n + ∆th,δ
n + βh,δ

0,n. (4.11)

The conditional covariance of the martingale difference βh,δ
0,n is o(∆th,δ). Using

the above definitions, we can decompose ξ0,h,δ
n+1 − ξ0,h,δ

n as

ξ0,h,δ
n+1 = ξ0,h,δ

n

+
[
∆thnξ1,h,δ

n (0) + ∆thnc(ξ0,h,δ
n , uh,δ

n ) + β̃0,h,δ
n + ∆z0,h,δ

n

] (
1 − Ih,δ

n

)
+ o(∆thn).

Alternatively, by centering Ih,δ
n about its conditional expectation, the above

expression can be written as

ξ0,h,δ
n+1 = ξ0,h,δ

n +∆th,δ
n ξ1,h,δ

n (0)+∆th,δ
n c(ξ0,h,δ

n , uh,δ
n )+β0,h,δ

n +∆z0,h,δ
n +o(∆thn).

(4.12)

The cost function. Let x̂ = {x(s),−θ̄ ≤ s ≤ 0} be the initial path segment,
and û = {u(s),−θ̄ ≤ s < 0} the initial control segment. If the path is not
delayed, then write x = x̂(0) for x̂. If the control is not delayed, then drop û.
The cost function for the approximating chain is a discretization of (1.3), and
an analog of (3.9), but with z0(s) = 0 for s ≤ 0. The initial data χ0(0), χ1(0, ·)
for (2.1), (2.2), is the function of the initial path and control segments x̂, û,
resp., as given by (2.5). Keep in mind that it is only (2.5) that needs to be
discretized and not x̂ or û otherwise. Let ξ0 = ξ0,h,δ

0 and ξ1 = {ξ1,h,δ
0 (θ), θ ∈
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T δ} denote the discretization of the initial condition that is used for the
chain. As usual, we suppose that the reflection term is zero for t ≤ 0. If
control uh,δ = {uh,δ

n , 0 ≤ n < ∞} is used, then the cost function for the
approximating chain can be written in a form analogous to (7.3.12), namely,

Wh,δ(ξ0, ξ1, uh,δ)

= Eh,δ,uh,δ

ξ0,ξ1

∞∑
n=0

e−βth,δ
n
[
k(ξ0,h,δ

n , uh,δ
n )∆th,δ

n + q′∆y0,h,δ
n

]
,

(4.13)

where Eh,δ,uh,δ

ξ0,ξ1 denotes the expectation given the approximations ξ0, ξ1 to
the initial data, and the use of control sequence uh,δ on [0,∞). An alternative
form is an analog of (7.3.11), namely,

Ŵh,δ(ξ0, ξ1, uh,δ)

= Eh,δ,uh,δ

ξ0,ξ1

∞∑
i=0

e−βφh,δ
n

[
k(ξ0,h,δ

n , uh,δ
n )δI{φh,δ

n+1 	=φh,δ
n } + q′∆y0,h,δ

n

]
.

(4.14)
Without loss of generality, we can suppose that the values of ξ0 are on

the h-grid, and the values of ξ1(θ) are on the h1-grid for each θ of interest.
Let V h,δ(ξ0, ξ1) denote the infimum of the costs over all controls for initial
condition ξ0, ξ1.

A Bellman equation. Recall the definition (4.3) of the probability that
the time variable advances at the current step. Let (ξ0, ξ1) denote the initial
condition and (ξ0

1 , ξ1
1) the canonical value at the next step. Let the expression

ph,δ
(
ξ0, φ; ξ0, φ + δ|α, ξ1(0)

)
denote the probability that the time variable ad-

vances and ph,δ
(
ξ0, ξ1; ξ0

1 , ξ1
1 |α
)

the probability that time does not advance
and the next state is (ξ0

1 , ξ1
1), all given the initial data and control value α.

The Bellman equation that is based on the representation (4.14) has the
form, for ξ0 ∈ Gh,

V h,δ(ξ0, ξ1) = inf
α∈Uh

[ ∑
ξ0
1 ,ξ1

1

ph,δ
(
ξ0, ξ1; ξ0

1 , ξ1
1 |α
)
V h,δ

(
ξ0
1 , ξ1

1

)

+e−βδph,δ
(
ξ0, φ; ξ0, φ + δ|α, ξ1(0)

)
V h,δ

(
ξ0, ξ̃1

1

)
+k(ξ0, α)∆th,δ(ξ0, ξ1(0), α)

]
,

(4.15a)

where ξ̃1
1 is obtained from ξ1 by a shift, analogously to how ξ1,h,δ

n+1 was obtained
from ξ1,h,δ

n in (4.1b). Let ξ0 ∈ ∂G+
h , the set of reflecting states. Then as above

(6.2.6), we can define Y h,δ(ξ0, ξ0
1) = q′∆yh,δ

0 . Analogously to the second line
of (6.2.6), for ξ0 �∈ Gh the Bellman equation is

V h,δ(ξ0, ξ1) =
∑
ξ0
1

ph(ξ0, ξ0
1)
[
V h,δ(ξ0

1 , ξ1) + Y h,δ(ξ0, ξ0
1)
]
. (4.15b)
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We use the the transition probability notation ph(ξ0, ξ0
1) for the reflecting

states, as for those states the values of α, δ, and ξ1 play no role.
Note that a Bellman equation based on (4.13) can also be used, analogously

to (7.3.14), as by the timescale equivalences in Theorems 6.5.1 and 7.3.2, the
two forms are asymptotically equal. Due to the discounting, there is a unique
solution to the Bellman equation.

9.5 Size of the State Space for the Approximating Chain

The comments concerning dimension and memory in Subsection 2.2 all apply
to the numerical procedures. The complexity of the computation of ξ1,h,δ

n (θ) is
not heavily dependent on the dimension of the control variable, or on compo-
nents of x(·) that do not have delay components. The dimension of ξ1,h,δ(·) is
just the number of components of x(·) whose dynamical terms contain delays.
This is one of its key advantages. The size of the state space is the product of
what is needed for ξ0,h,δ

n and ξ1,h,δ
n (θ), where θ takes θ̄/δ values.

Consider a one-dimensional problem where p(·) = 0 and let the discretiza-
tion level for the ξ1,h,δ

n (θ) be h1 = O(h) for each θ. Then there is a C0 < ∞
such that |χ1(t, θ)| ≤ C0(θ̄ + θ),−θ̄ ≤ θ ≤ 0. Without loss of generality, sup-
pose that x(t) has been centered so that it lies in an interval [0, B0] for some
B0 < ∞. The state space for ξ0,h,δ

n has [B0/h+3] points. There are θ̄/δ values
for θ. Thus, if we bound ξ1,h,δ

n (θ) by C0(θ̄+θ), the maximum number of points
(which includes the reflecting states) is

[B0/h + 3]
C0θ̄

h1

C0(θ̄ − δ)
h1

· · · C0δ

h1
. (5.1)

Though large, this is better (in terms of memory, for given h, δ) than the
procedure in Chapter 8 when there are delays in the control, and the control
takes more than two or three values.

The approximation for fixed δ is discussed in Section 8, and, under its
assumptions, that approach requires a smaller memory than what we get
from (5.1) as the level of discretization of θ is fixed.

Using differences for the states, and a truncation procedure. The size
of the state space can be reduced by the use of differences and truncations. The
best approach is not clear, but the possibilities are suggested by the following
computations that make use of estimates of the randomization errors in the
realization of the ξ1,h,δ

n (θ).
Let δ = O(h), ∆th(·) = O(h2), and suppose that b(·) is Lipschitz con-

tinuous in its arguments. Because ξ1,h,δ
n (−θ̄) = 0, the state space can con-

sist of the differences ξ1,h,δ
n (θ) − ξ1,h,δ

n (θ − δ), −θ̄ + δ ≤ θ ≤ 0. Con-
sider the special case represented by (2.11). The expression (2.11) corre-
sponds to µa(·) being Lebesgue measure and the form is typical of the case
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where µa(·) is absolutely continuous with respect to Lebesgue measure. Then
qh,δ
n (θ) = ∆thnb(ξ0,h,δ

n , uh,δ
n , θ), which we can suppose (for small h) is bounded

by h2
1. We have

|χ1(t, θ) − χ1(t, θ − δ)| = O(δ). (5.2)

An analogous relation will be seen to hold for the approximating chain. Recall
the definition (6.5.13), where vh,δ

0 = 0 and, for n ≥ 0, vh,δ
n+1 = min{i > vh,δ

n :
φh,δ

i+1 − φh,δ
i = δ}. When vh,δ

l is used as a subscript, we write it simply as vl.
Neglecting the effects of the initial condition, w.l.o.g., we have the differ-

ence in the mean values at the time of (but not including) the nth shift:

E
[
ξ1,h,δ
vn

(θ) − ξ1,h,δ
vn

(θ − δ)
]

= E

n−1∑
i=0

[
Φδ
]n−i−1

vi+1−1∑
l=vi+1

[
qh,δ
l (θ) − qh,δ

l (θ − δ)
]
.

(5.3)

Only the most recent θ̄/δ shifts yield nonzero results in (5.3). Using this fact,
the fact that E[vh,δ

i+1 − vh,δ
i ] = O(1/h), and the Lipschitz condition on b(·), we

have the upper bound O(δ) (equivalently, O(h)).
The sum of the differences of the conditional means, given by the expres-

sion
n−1∑
i=0

[
Φδ
]n−i−1

vi+1−1∑
l=vi+1

[
qh,δ
l (θ) − qh,δ

l (θ − δ)
]
, (5.4)

is also O(δ). The next step is the estimation of the randomization errors in
the realization of the difference ξ1,h,δ

vn
(θ) − ξ1,h,δ

vn
(θ − δ), and it is given by

n−1∑
i=0

[
Φδ
]n−i−1

vi+1−1∑
l=vi+1

[ (
ξ1,h,δ
l+1 (θ) − ξ1,h,δ

l (θ) − qh,δ
l (θ)

)
−
(
ξ1,h,δ
l+1 (θ − δ) − ξ1,h,δ

l (θ − δ) − qh,δ
l (θ − δ)

) ]
.

(5.5)

This is the value of ξ1,h,δ
vn

(θ)− ξ1,h,δ
vn

(θ − δ), but where each of the summands
is centered about its conditional mean.

The summands in (5.5) are martingale differences. The mean square value
of (5.5) is the expectation of the squares of the summands as in

n−1∑
i=0

[
Φδ
]n−i−1

E

vi+1−1∑
l=vi+1

Eh,δ
l [lth term]2 .

This can be bounded by twice the sum of the expectations

n−1∑
i=0

[
Φδ
]n−i−1

E

vi+1−1∑
l=vi+1

Eh,δ
l

∣∣∣qh,δ
l (θ) − qh,δ

l (θ − δ)
∣∣∣2 (5.6)



252 9 A Wave Equation Approach

and

n−1∑
i=0

[
Φδ
]n−i−1

E

vi+1−1∑
l=vi+1

Eh,δ
l

∣∣∣(ξ1,h,δ
l+1 (θ) − ξ1,h,δ

l (θ)
)
−
(
ξ1,h,δ
l+1 (θ − δ) − ξ1,h,δ

l (θ − δ)
)∣∣∣2 .

(5.7)

The sum (5.6) is O(h4). To evaluate (5.7), we will use the method of choosing
the updates for ξ1,h,δ

n (θ) that was discussed at the end of Subsection 4.2,
and, w.l.o.g., we can suppose that ξ1,h,δ

n (θ) is real-valued. The probability
that different values are chosen for the two terms ξ1,h,δ

n+1 (θ) − ξ1,h,δ
n (θ) and

ξ1,h,δ
n+1 (θ − δ) − ξ1,h,δ

n (θ − δ) is the difference of the probabilities

Ph,δ
n (θ) =

∣∣qh,δ
n (θ)/h1 − qh,δ

n (θ − δ)/h1

∣∣ = O(h2). (5.8)

If the two terms do differ, then the difference is O(h). Thus the expression
(5.7) is O(h2). From the evaluations of (5.4), (5.6), and (5.7), we can conclude
that the mean of ξ1,h,δ

n (θ)− ξ1,h,δ
n (θ− δ) is bounded by O(h) and the variance

is bounded by O(h2). This yields the estimate

P
{∣∣ξ1,h,δ

n (θ) − ξ1,h,δ
n (θ − δ)

∣∣ ≥ Nh1

}
≤ O(h2)

N2h2
1

=
O(1)
N2

. (5.9)

Thus we can get a good approximation to the difference by letting N be large.
The estimates are crude but suggest ways of reducing the size of the

state space. One simple possibility is to save ξ1,h,δ
n (0) − ξ1,h,δ

n (−δ) in lieu
of ξ1,h,δ

n (−δ), and truncate the difference.

9.6 Proof of Convergence: Preliminaries

9.6.1 The Randomization Errors

For the convergence proof in the next section, we will need to know that the
effects of the martingale difference terms ρh,δ

n defined in (4.9) and due to the
realization of the conditional expectation in (4.7) by randomization between
adjacent grid points are asymptotically negligible. This is implied by (6.1)
in the next theorem. The expression (6.2) shows that ξ1,h,δ

n (0) changes little
between the steps that the time variable changes. Recall that, for the implicit
procedure, ξ0,h,δ

n does not change at the times vh,δ
i that the time variable

advances, that the components of ξ1,h,δ
n shift at these times, and that for each

θ ∈ T δ, ξ1,h,δ
n (θ) takes values in a regular grid with spacing h1 = O(h). We

continue to use z(s) = 0, s ≤ 0, for notational simplicity only.

Theorem 6.1. Assume (A3.2.1), (A3.2.2), and (A3.2.4)–(A3.2.6), and that
∆th(x0, x1, α) = O(h2). Then



9.6 Proof of Convergence: Preliminaries 253

lim
h,δ→0

sup
uh,δ,x̂,û,θ

sup
n

E

∣∣∣∣∣
n−1∑
i=0

[Φδ]n−i−1Rh,δ
i (θ)

∣∣∣∣∣
2

= 0, (6.1)

where

Rh,δ
i (θ) =

vh,δ
i+1−1∑

l=vh,δ
i

+1

ρh,δ
l (θ),

where ρh,δ
l (θ) is defined in (4.9). Also, for each t < ∞,

lim
h,δ→0

sup
uh,δ,x̂,û

sup
n:φh,δ

v
h,δ
n

≤t

E sup
vh,δ

n +1≤l≤vh,δ
n+1

∣∣∣ξ1,h,δ
l (0) − ξ1,h,δ

vh,δ
n +1

(0)
∣∣∣2 = 0. (6.2)

Proof. Write vh,δ
n as vn, for notational simplicity. We will get an upper

bound to the mean square error in (6.1) by considering the contributions
of the reflection term and the drift term separately. First, let ξ0,h,δ

n �∈ Gh,
so that we are at a reflection step, and consider the randomization noise
associated with realizing the conditional mean qh,δ

n (θ) = p(ξ0,h,δ
n , θ)∆y0,h,δ

n .
Without loss of generality, suppose that p(ξ0,h,δ

n , θ)∆y0,h,δ
n is real-valued and

lies in [ln(θ)h1, ln(θ)h1 + h1] where ln(θ) is an integer, either positive or neg-
ative. Then the transition probability gets ξ1,h,δ

n+1 (θ) by randomizing between
the end points of the interval so that the desired conditional mean value
p(ξ0,h,δ

n , θ)∆y0,h,δ
n is achieved. To evaluate the conditional (on Fh,δ

n ) variance,
we can suppose that we have shifted the means so that ln(θ) = 0. Then the
probability of selecting h1 is p(ξ0,h,δ

n , θ)∆y0,h,δ
n /h1, and, as ∆y0,h,δ

n = O(h),
the conditional variance of ρh,δ

n (θ) is

[
h1 − p(ξ0,h,δ

n , θ)∆y0,h,δ
n

]2 p(ξ0,h,δ
n , θ)∆y0,h,δ

n

h1

+
[
p(ξ0,h,δ

n , θ)∆y0,h,δ
n

]2 [
1 − p(ξ0,h,δ

n , θ)∆y0,h,δ
n

h1

]
= O(h)|p(ξ0,h,δ

n , θ)∆y0,h,δ
n |.

(6.3)
The contribution of the randomization error due to the reflection steps

between the nth and (n + 1)st update of the time variable is

Qh,δ
n (θ) =

vn+1−1∑
l=vn+1

[(
ξ1,h,δ
l+1 (θ) − ξ1,h,δ

l (θ)
)
− p(ξ0,h,δ

l , θ)∆y0,h,δ
l

]
I{ξ0,h,δ

l
	∈Gh}.

Then, because

ξ1,h,δ
vi+1(θ) = Φδξ1,h,δ

vi
(θ) = Φδ

⎡
⎣ξ1,h,δ

vi−1+1(θ) +
vi−1∑

vi−1+1

(
ξ1,h,δ
l+1 (θ) − ξ1,h,δ

l (θ)
)⎤⎦ ,
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the sum
n−1∑
i=0

[Φδ]n−i−1Qh,δ
i (θ) (6.4)

is the total contribution of the randomization errors due to the reflection steps
to the value of ξ1,h,δ

vn
(θ). For each n, the summands in (6.4) and the one for

Qh,δ
n (θ) above are martingale differences as

Eh,δ
vi+l

[(
ξ1,h,δ
vi+l+1(θ) − ξ1,h,δ

vi+l (θ)
)
− p(ξ0,h,δ

vi+l , θ)∆y0,h,δ
vi+l

]
×I{ξ0,h,δ

vi+l
	∈Gh}I{vi+l<vi+1} = 0.

By this martingale property, the mean square value of (6.4) can be written as

E
n−1∑
i=0

[Φδ]n−i−1

(
Eh,δ

vi

vi+1−1∑
l=vi+1

∣∣∣(ξ1,h,δ
l+1 (θ) − ξ1,h,δ

l (θ)
)
− p(ξ0,h,δ

l , θ)∆y0,h,δ
l

∣∣∣2 I{ξ0,h,δ
l

	∈Gh}

)
.

Now, using the evaluation of the conditional variance in (6.3) and the fact
that [Φδ]kf(θ) = 0 for k > θ̄/δ, we have that the mean square value of (6.4)
is bounded by

O(h)E
[∣∣z0,h,δ

∣∣ (th,δ
vn

) −
∣∣z0,h,δ

∣∣ (th,δ
vn−θ̄/δ

)
]
,

where z0,h,δ(·) is the interpolation of {∆z0,h,δ
n } with intervals {∆th,δ

n }. Lemma
6.3.1 does not directly apply to this expression, but a slight modification does.
Let t = nδ. Then using the random nature of the time shifts and Lemma
6.3.1, one can show that, as h → 0 and independently of δ, n, and the initial
conditions, the difference between the above expression and

O(h)E
[∣∣z0,h,δ

∣∣ (t) − ∣∣z0,h,δ
∣∣ (t − θ̄)

]
goes to zero, and that (6.1) holds for the reflection component.

Now consider the component of qh,δ
n (θ) in (4.8) that is defined by

q̂h,δ
n (θ) =

[µa(θ) − µa(θ − δ)]
δ

b(ξ0,h,δ
n , uh,δ

n , θ)∆thn.

Again, suppose that we have centered so that its values are in [0, h1]. Then
to attain the desired conditional (on Fh,δ

n ) mean of ξ1,h,δ
n+1 (θ) − ξ1,h,δ

n (θ),
the transition probability effectively selects the value h1 with probability
q̂h,δ
n (θ)/h1. The conditional variance of the difference between the true value

of ξ1,h,δ
n+1 (θ)− ξ1,h,δ

n (θ) and its conditional expectation is O(h)q̂h,δ
n (θ). Redefine

Qh,δ
n (θ) =

vn+1−1∑
l=vn+1

[(
ξ1,h,δ
l+1 (θ) − ξ1,h,δ

l (θ)
)
− q̂h,δ

l (θ)
]
I{ξ0,h,δ

l
∈Gh}. (6.5)
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The next step is to evaluate (6.4) with this new definition of Qh,δ
n (θ). For

each n, the summands are martingale differences in that

Eh,δ
vi+l

[(
ξ1,h,δ
vi+l+1(θ) − ξ1,h,δ

vi+l (θ)
)
− q̂h,δ

vi+l(θ)
]
I{ξ0,h,δ

vi+l
∈Gh}I{vi+l<vi+1} = 0.

With the new definition of Qh,δ
n (θ), the mean square value of (6.4) is

E
n−1∑
i=0

[Φδ]n−i−1Eh,δ
vi

vi+1−1∑
l=vi+1

∣∣∣(ξ1,h,δ
l+1 (θ) − ξ1,h,δ

l (θ)
)
− q̂h,δ

l (θ)
∣∣∣2 I{ξ0,h,δ

l
∈Gh}.

(6.6)
Now, using the above evaluation of the conditional variance, the orders of δ
and ∆thl in h, and the fact that Eh,δ

vi
(vi+1 − vi) = O(1/h), yields that the

(conditioned on Fh,δ
vn

) expectation of the inner sum in (6.6) is bounded by

O(h2) [µa(θ) − µa(θ − δ)]Eh,δ
vi

[vi+1 − vi] = O(h) [µa(θ) − µa(θ − δ)] .

Now taking the shift [Φδ]n−i−1 in (6.6) into account and noting that µa(θ) −
µa(θ−δ) = 0 for θ ≤ −θ̄, we see that (6.6) is O(h), uniformly in n. Thus (6.1)
holds. The verification of (6.2) is straightforward and the details are omitted.

9.6.2 Continuous Time Interpolations

Definitions. Recall the continuous time interpolation ψh,δ(·) in (6.5.12) and
the definition of the intervals ∆τh,δ

n . As there, define τh,δ
n =

∑n−1
i=0 ∆τh,δ

i . De-
fine the interpolation ψ0,h,δ(·) by setting ψ0,h,δ(t) = ξ0,h,δ

n for t ∈ [τh,δ
n , τh,δ

n+1),
and define the interpolations ψ1,h,δ(t, θ), uh,δ

τ (·), φh,δ
τ (·), z0,h,δ

τ (·), and y0,h,δ
τ (·),

analogously. Let rh,δ
τ (·) denote the relaxed control representation of uh,δ

τ (·),
with the derivative at t denoted by rh,δ,′

τ (·, t).
Analogously to (6.5.12), we can write

ψ0,h,δ(t) = ξ0,h,δ
0 +

∫ t

0

ψ1,h,δ(s, 0)ds

+
∫ t

0

∫
Uh

c(ψ0,h,δ(s), α)rh,δ,′
τ (dα, s)ds + Bh,δ

τ (t) + z0,h,δ
τ (t) + εh,δ

1 (t),

(6.7)
where Bh,δ

τ (·) is a martingale with quadratic variation process∫ t

0

a(ψ0,h,δ(s))ds + εh,δ
2 (t),

and the εh,δ
i (·) satisfy, for any T < ∞,

lim
h,δ→0

sup
uh,δ,x̂,û

sup
t≤T

E sup
t≤T

|εh,δ
i (t)| = 0. (6.8)
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As noted below (6.3.8) in Section 6.3, there is a martingale wh,δ(·) with
quadratic variation process It and that converges weakly to a Wiener pro-
cess as (h, δ) → 0 such that

Bh,δ
τ (t) =

∫ t

0

σ(ψ0,h,δ(s))dwh,δ(s) + εh,δ
3 (t), (6.9)

where εh,δ(·), satisfies (6.8). The εh,δ(·) error terms are due to the o(∆th,δ)
terms in (4.6). Recall the discussion of the boundaries on ξ1,h,δ

n (θ) at the begin-
ning of Subsection 4.1. They are ignored in the next theorem but reintroduced
in Theorem 7.1. For θ = 0, note the similarity of (6.10) to the integral over
time of (2.14).

Theorem 6.2. Assume (A3.2.1), (A3.2.2), and (A3.2.4)–(A3.2.6). Let ξ1,h,δ
n

be bounded, and suppose that ∆th(x0, x1, α) = O(h2), δ = O(h), and h1 =
O(h). Then∫ t

0

ψ1,h,δ(s, 0)ds =
∫ t

0

ds

∫ 0

−θ̄

dµa(γ)
∫

Uh

b(ψ0,h,δ(γ + s), α, γ)rh,δ,′
τ (dα, γ + s)

+
∫ t

0

ds

∫ 0

−θ̄

p(ψ0,h,δ(γ + s), γ)dγy0,h,δ
τ (γ + s) + ρh,δ

0 (t),

(6.10)
where ρh,δ

0 (t) satisfies, for each T < ∞,

lim
h,δ→0

sup
uh,δ,x̂,û

sup
t≤T

E|ρh,δ
0 (t)| = 0. (6.11)

Proof. For notational simplicity, we work with ordinary, rather than relaxed,
controls, and continue to use the notation vn = vh,δ

n in subscripts and super-
scripts. Recall that the nth shift occurs at index vh,δ

n , so it first affects the
value of the next iterate, and that the value at index vh,δ

n+1 is the sum of the
value at index vh,δ

n + 1 and the contributions of the iterates taken in the in-
terval [vh,δ

n +1, vh,δ
n+1). The value at iterate vh,δ

n +1 is Φξ1,h,δ
vn

(θ) = ξ1,h,δ
vn

(θ−δ).
Thus we can write

ξ1,h,δ
vn+1

(θ) = ξ1,h,δ
vn

(θ − δ) + Ph,δ
n (θ) + Bh,δ

n (θ) + Rh,δ
n (θ), (6.12)

where Rh,δ
n (θ) was defined below (6.1), and we define

Ph,δ
n (θ) =

vn+1−1∑
l=vn+1

p(ξ0,h,δ
l , θ)∆y0,h,δ

l ,

Bh,δ
n (θ) = [µa(θ) − µa(θ − δ)]

vn+1−1∑
l=vn+1

b(ξ0,h,δ
l , uh,δ

l , θ)
∆thl
δ

.
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Until further notice ignore the effects of the initial condition (2.5).
First, let us determine the contribution of the p(ξ0,h,δ

i , θ)∆y0,h,δ
l terms to

the value of ψ1,h,δ(s, θ). For n ≥ 1, their total contribution to ξ1,h,δ
vn

(θ) is

n−1∑
i=0

[Φδ]n−i−1Ph,δ
i (θ) =

n−1∑
i=0

Ph,δ
i (θ − nδ + iδ + δ). (6.13)

Recall the definition dh,δ
τ (s) = max{n : τh,δ

n ≤ s} from (6.5.23) and define
Nh,δ(t) = φh,δ

τ (t)/δ, the number of time advances that have occurred when
interpolated time (in the τh,δ

n -scale) t is reached.
The values of ψ1,h,δ(s, θ) and ξ1,h,δ

v
Nh,δ(s)+1(θ) differ by the sum of the differ-

ences ξ1,h,δ
l+1 (θ)− ξ1,h,δ

l (θ) for indices l in the interval [vh,δ
Nh,δ(s)

+1, dh,δ
τ (s)− 1],

those that occur before interpolated time s is reached but at or after the last
update of the time variable before interpolated time s is reached. By (6.2),
the contributions of these terms for θ = 0 is asymptotically negligible. Ignor-
ing these “end terms” and using n = Nh,δ(s) in (6.13) yields that (6.13) is
asymptotically equal to

dh,δ
τ (s)−1∑

l=0

p(ξ0,h,δ
l , θ − φh,δ(s) + φh,δ

l + δ)∆y0,h,δ
l , (6.14)

in the sense that the difference of the processes goes to zero as h, δ → 0.
By Theorem 6.5.1, φh,δ

l is asymptotically equal to th,δ
l and τh,δ

l in mean
square in that, for any T and th,δ

l ≤ T or τh,δ
l ≤ T , the mean square value of

the sup of the differences on [0, T ] goes to zero as h, δ → 0. This fact and the
continuity of p(·) imply that (6.14) equals

dh,δ
τ (s)−1∑

l=0

p(ξ0,h,δ
l , θ − s + τh,δ

l )∆y0,h,δ
l (6.15)

modulo an error that is bounded by ε(h, δ, s)
[
|z0,h,δ

τ |(s) − |z0,h,δ
τ |(s − θ̄ − δ)

]
,

where ε(h, δ)(s) → 0 uniformly in (ω, s) as h, δ → 0. It follows from Lemma
6.3.1 that this last error term satisfies (6.11). Then by a change of variable
and using the fact that p(x0, θ) = 0 for θ < −θ̄, we can write (6.15), for θ = 0,
as∫ s

0

p(ψ0,h,δ(v),−s+v)dy0,h,δ
τ (v) =

∫ 0

max{−s,−θ̄}
p(ψ0,h,δ(s+γ), γ)dγy0,h,δ

τ (s+γ).

(6.16)
It can be shown that adding the effects of the initial condition changes the
right-hand integral to

∫ 0

−θ̄
. Doing this and integrating the result over s ∈ [0, t]

yields the contribution of the reflection term to (6.10).
Now consider the contribution of the terms involving b(·) to the integral∫ t

0
ψ1,h,δ(s, 0)ds, ignoring the effects of the initial condition until later. Ignore
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the effects of the reflection term, which have already been accounted for. By
(6.2), to evaluate this integral we can suppose that ψ1,h,δ(·, 0) is constant on
the intervals (τh,δ

vn
, τh,δ

vn+1
] between successive increases of the time variable.

Then, making the piecewise-constant approximation, the integral is (modulo
an error satisfying (6.11)),

Nh,δ(t)−1∑
n=0

ξ1,h,δ
vn

(0)
[
τh,δ
vn+1

− τh,δ
vn

]
.

This equals
Nh,δ(t)−1∑

n=0

ξ1,h,δ
vn

(0)δ, (6.17)

modulo an error that satisfies (6.11). For n ≥ 1 and arbitrary θ,

ξ1,h,δ
vn

(θ) =
n−1∑
i=0

Bh,δ
i (θ − nδ + iδ + δ).

By the definition of Bh,δ
i (θ) below (6.12), this expression equals

ξ1,h,δ
vn

(θ) =
n−1∑
i=0

[µa(θ − nδ + iδ + δ) − µa(θ − nδ + iδ)]
δ

×
vi+1−1∑
l=vi+1

b(ξ0,h,δ
l , uh,δ

l , θ − nδ + iδ + δ)∆thl .

(6.18)

Let θ = 0. Then the sum (6.17) will only be changed by a quantity satisfying
(6.11) if we redefine ξ1,h,δ

vn
(0) by replacing the inner sum in (6.18) by

B̂h,δ
i (−nδ + iδ) =

vi+1−1∑
l=vi

b(ξ0,h,δ
l , uh,δ

l ,−nδ + iδ + δ)∆τh,δ
l .

By a change of variable n − i = q, the use of B̂h,δ
i (·), and a change in the

order of summation, we can write (6.17) as

Nh,δ(t)−1∑
q=1

[µa(−qδ + δ) − µa(−qδ)]
Nh,δ(t)−1∑

n=q

B̂h,δ
n−q(−qδ). (6.19)

We can write the inner sum of (6.19) as (modulo an error satisfying (6.11))

∫ t−qδ

0

b(ψ0,h,δ(s), uh,δ
τ (s),−qδ + δ)ds.
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Recall that b(·, θ) = 0 and µa(θ) = 0 for θ < −θ̄. Next, using this last
expression and the continuity of b(·), (6.19) can be approximated by (modulo
an error satisfying (6.11))

∫ 0

max{−t,−θ̄}
dµa(γ)

∫ t+γ

0

b(ψ0,h,δ(s), uh,δ
τ (s), γ)ds,

which is equal to∫ 0

max{−t,−θ̄}
dµa(γ)

∫ t

−γ

b(ψ0,h,δ(s + γ), uh,δ
τ (s + γ), γ)ds. (6.20)

By a change in the order of integration, (6.20) can be written as

∫ t

0

ds

∫ 0

max{−s,−θ̄}
b(ψ0,h,δ(s + γ), uh,δ

τ (s + γ), γ)dµa(γ). (6.21)

Adding the effects of the initial condition changes the lower limit max{−s,−θ̄}
to −θ̄. Then, reverting to relaxed control notation, we have the contribution
of the drift term to (6.10). By Theorem 6.1, the contribution of the random-
ization errors Rh,δ

l (θ) to (6.10) satisfies (6.11).

9.7 Convergence of the Numerical Algorithm

The next assumption is all that we require on the initial condition.

A7.1. The initial condition ξ1,h,δ
0 (θ) converges to χ1(0, θ) given by (2.5), uni-

formly in θ ∈ [−θ̄, 0], as h, δ → 0, and has values that that are on the discrete
grid for each θ. Also |ξ0,h,δ

0 − x(0)| → 0.

The cost function (4.13) can be written as (modulo an asymptotically
negligible error)

Wh,δ(ξ0,h,δ
0 , ξ1,h,δ

0 , uh,δ)

= Eh,δ,uh,δ

ξ0,h,δ
0 ,ξ1,h,δ

0

∫ ∞

0

∫
Uh

e−βs
[
k(ψ0,h,δ(s), α)rh,δ

τ (dα ds) + q′dy0,h,δ
τ (s)

]
.

(7.1)
The next theorem shows that the optimal values computed by the numerical
algorithm converge to the optimal value of the original problem as h, δ → 0.

Theorem 7.1. Assume (A7.1), (A3.2.1), (A3.2.2), (A3.2.4)–(A3.2.6), (A3.4.3),
and ∆th(x0, x1, α) = O(h2), δ = O(h), h1 = O(h). Suppose that there is no
delayed reflection term and that the boundaries on ξ1,h,δ

n (θ) are large enough
so that χ1(t, θ) would not reach them. For any sequence of controls for the
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chain, the set (ψ0,h,δ(·), rh,δ
τ (·), wh,δ(·), z0,h,δ

τ (·)) is tight, and any weakly con-
vergent subsequence converges to a solution to (1.2). The optimal costs for the
chain {ξ0,h,δ

n , ξ1,h,δ
n (θ), θ ∈ T δ} and cost function (7.1) (or (4.13) or (4.14))

converge to the optimal cost for original process (1.2) and cost function (1.3).
Now add the delayed reflection term and recall the discussion on boundaries

at the end of Subsection 4.1. The sequence (ξ0,h,δ(·), rh,δ
τ (·), wh,δ(·), z0,h,δ

τ (·))
is tight, and any weakly convergent subsequence converges to a solution to
(1.2). The limits of the optimal costs for the chain are arbitrarily close to that
for the original process if the boundaries are large enough.

Now consider the model with an absorbing rather than a reflecting bound-
ary. Drop the assumptions on the reflection directions and assume (A3.4.1),
(A3.4.2). Then the conclusions continue to hold.

Proof. With the preparation in Theorem 6.2 in hand, the proof follows those
in Section 8.5 closely. Fix a control sequence, with relaxed control represen-
tations (in the interpolation using intervals {∆τh,δ

n }) rh,δ
τ (·). We comment

only on the case with reflecting boundaries. The absorbing boundary case is
analogous, subject to the treatment of the absorbing boundary in the proof
of Theorem 7.1.3 in Section 8.5. The sequence of martingales Bh,δ

τ (·) in (6.7)
is tight in the Skorokhod topology. Then, as the increments β0,h,δ

n are O(h),
any weak-sense limit has continuous paths with probability one. The sequence
wh,δ(·) in (6.9) is tight and the weak sense limit is a standard vector-valued
Wiener process. The sequence of processes defined by the first two integrals
on the right of (6.7) are also tight, and any weak-sense limit must be con-
tinuous with probability one. By (6.8) the sequence εh,δ

1 (·) in (6.7) converges
to the “zero” process. Any sequence rh,δ

τ (·) of relaxed controls is tight. As in
Theorem 3.5.5, the sequence of reflection processes z0,h,δ

τ (·) is tight, and the
limit of any weakly convergent subsequence is continuous.

These facts and the boundedness of {ξ1,h,δ
n (0)} implies the tightness of

ψ0,h,δ(·) and the asymptotic continuity of any weak-sense limit. Now extract
a weakly convergent subsequence of {ψ0,h,δ(·), rh,δ

τ (·), wh,δ(·), z0,h,δ
τ (·)}. with

limit denoted by (x(·), r(·), w(·), z(·)). Abusing notation, let h, δ also index
this subsequence and use the Skorokhod representation so that we can sup-
pose that the convergence is w.p.1 in the topology of the path spaces. The
proof of nonanticipativity in the proof of Theorem 7.1.3 in Section 8.5 can
be used to show that (x(·), w(·), r(·), z(·)) is nonanticipative with respect to
w(·). Then the approximation argument in that proof yields the convergence∫ t

0
σ(ψh,δ(s))dwh,δ(s) →

∫ t

0
σ(x(s))dw(s). The argument of Theorem 3.5.5

yields that the limit process z(·) is a reflection process for x(·).
We have shown that the second line of (6.7) converges to

∫ t

0

∫
U

c(x(s), α)r′(dα, s)ds +
∫ t

0

σ(x(s))dw(s) + z(t). (7.2)
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The limit of the sequence of processes defined by
∫ t

0
ψ1,h,δ(s, 0)ds is continuous

as the integral terms on the right side of (6.10) converge to

∫ t

0

ds

∫ 0

−θ̄

dµa(γ)
∫

U

b(x(γ + s), α, γ)r′(dα, γ + s)

+
∫ t

0

ds

∫ 0

−θ̄

p(x(γ + s), γ)dγy(γ + s).
(7.3)

The last two sentences and (6.11) imply that the process ρh,δ
0 (·) in (6.10)

converges to the zero process (which is not implied by (6.11) alone). Finally,
the convergences (7.2) and (7.3) imply that x(·) solves (1.2) with relaxed
control r(·). The weak convergences and the integrability properties of y0,h,δ

τ (·)
implied by Lemma 6.3.1 imply that Wh,δ(ξ0,h,δ

0 , ξ1,h,δ
0 , uh,δ) → W (x̂, û, r).

If uh,δ(·) is an optimal control for the chain, then this last convergence
implies that

lim inf
h,δ→0

V h,δ(ξ0,h,δ
0 , ξ1,h,δ

0 ) ≥ V (x̂, û).

The reverse inequality

lim sup
h,δ→0

V h,δ(ξ0,h,δ
0 , ξ1,h,δ

0 ) ≤ V (x̂, û)

is proved just as it was in the proof of Theorem 7.1.3 in Section 8.5, which
used the representation (8.5.10) of a particular ε-optimal control for (1.2) that
is a continuous function of its arguments. That result was based on one for
the no-delay problem in [58, Chapters 11 and 12]. The presence of delays does
not materially change the structure of the proof.

9.8 Alternatives: Periodic and Periodic-Erlang
Approximations

9.8.1 A Periodic Approximation

There are analogs of the periodic and periodic-Erlang approximations of Sec-
tions 4.2, 8.1, and 8.2. We will drop the delay in the reflection term. There is
a similar result if a delayed reflection term is included, but the development
is more complicated. Let δ > 0 be fixed and consider a modification of (2.3),
(2.4) or, more formally, of (2.7), (2.8), where the shift occurs only at integral
multiples of δ, and θ̄ = Qδδ, where Qδ is an integer, as in Chapters 4 and 7.

The idea is to approximate the original processes χ0(·) and χ1(·) as follows.
Run the approximating processes with no shift on the time intervals [lδ, lδ +
δ), l = 0, 1, . . . , and then shift at time lδ, l = 1, 2 . . . . In particular, on [lδ, lδ+δ)
and for θ = 0,−δ, . . . ,−θ̄ + δ, define the processes χ0,δ(·) and χ1,δ(·, θ) by

dχ0,δ(t) = χ1,δ(t, 0)dt + c(χ0,δ(t), u(t))dt + σ(χ0,δ(t))dw(t) + dz0,δ(t), (8.1)
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dtχ
1,δ(t, θ) = b(χ0,δ(t), u(t), θ)

µa(θ) − µa(θ − δ)
δ

dt, (8.2)

or their relaxed control counterparts. At t = lδ we have the shift

χ1,δ(lδ, θ) = Φδχ1,δ(lδ−, θ) = χ1,δ(lδ−, θ − δ)I{−θ̄≤θ−δ≤0}. (8.3)

The first shift is at time δ.
The initial condition is (2.5), namely: χ0,δ(0) = x(0), z0,δ(s) = 0 for s ≤ 0,

and

χ1,δ(0, θ) =
∫ θ

−θ̄

b(x(γ − θ), u(γ − θ), γ)dµa(γ). (8.4)

Additionally, as in Section 2, we have the boundary condition χ1,δ(t,−θ̄) = 0.
It will be seen in the discussion after the proof that this format yields an
analog of the periodic Approximation 3 of Chapter 4, in which the maximum
delay varied periodically between θ̄ − δ/2 and θ̄ + δ/2.

The following assumption will be used. Under (A8.1), the main advantage
of the periodic approximation is that the dimension of the approximating
chain is fixed as h → 0, as δ is fixed. The value of δ is determined by the
tolerable errors in the approximation of the delays. See the comments in the
next subsection.

A8.1. µa(·) is concentrated on the points −θ̄,−θ̄ + δ, . . . ,−2δ, and p(·) = 0.
For the initial condition, x(·) and u(·) are constant on the intervals [−iδ,−iδ+
δ),−θ̄ ≤ −iδ ≤ −δ.

Theorem 8.1. Fix δ > 0. Assume (A8.1), (A3.2.1), (A3.2.2), (A3.2.4)–
(A3.2.6) and (A3.4.3). If the boundary is not reflecting, then drop the bound-
ary conditions and the process z0,δ(·) and add (A3.4.1) and (A3.4.2). For any
integer n ≥ 0, we have

χ0,δ(nδ) = x(0) +
∫ nδ

0

c(χ0,δ(s), u(s))ds+∫ nδ

0

ds

∫ 0

−θ̄

b(χ0,δ(s + θ), u(s + θ), θ)dµa(θ) +
∫ nδ

0

σ(χ0,δ(s))dw(s) + z0,δ(nδ),

(8.5a)
or its relaxed control counterpart. For nδ < t < nδ + δ, the second integral is
replaced by a linear interpolation of the values at nδ and nδ + δ. Thus χ0,δ(t)
equals (8.5a) plus the term

t − nδ

δ

∫ nδ+δ

nδ

ds

∫ 0

−θ̄

b(χ0,δ(s + θ), u(s + θ), θ)dµa(θ). (8.5b)

Proof. Define ∆µa(θ) = µa(θ)−µa(θ−δ). We will work with ordinary rather
than relaxed controls for notational simplicity. The form with relaxed controls
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should be obvious. For t ∈ [nδ, nδ+δ) (i.e., after n shifts from the start), (8.2)
and (8.3) yield

χ1,δ(t, θ) = [Φδ]nχ1,δ(0, θ) +
n−1∑
i=0

[Φδ]n−iBδ
i (θ)

∆µa(θ)
δ

+
∫ t

nδ

b(χ0,δ(s), u(s), θ)ds
∆µa(θ)

δ
,

(8.6)

where

Bδ
i (θ) =

∫ iδ+δ

iδ

b(χ0,δ(s), u(s), θ)ds.

Because it is χ1,δ(t, 0) that appears in the equation for χ0,δ(·), and ∆µa(0) =
µa(0) − µa(−δ) = 0 the term in the second line of (8.6) will equal zero when
we set θ = 0, and it can be ignored henceforth. Thus χ1,δ(·, θ) can be taken
to be constant on the intervals [nδ, nδ + δ), n = 0, 1, . . . .

The rest of the development has the form of the manipulations in Theo-
rem 6.2. Set θ = 0 and, until further notice, ignore the effects of the initial
condition. With these simplifications and θ = 0, (8.6) can be written as

n−1∑
i=0

Bδ
i (−nδ + iδ)

∆µa(−nδ + iδ)
δ

.

Let t ∈ [Nδ, Nδ + δ). Then

∫ t

0

χ1,δ(s, 0)ds =
∫ Nδ

0

χ1,δ(s, 0)ds + χ1,δ(Nδ, 0)(t − Nδ)

= δ
N−1∑
n=0

χ1,δ(nδ, 0) + χ1,δ(Nδ, 0)(t − Nδ),

which equals

N−1∑
n=0

n−1∑
i=0

Bδ
i (−nδ + iδ)∆µa(−nδ + iδ)

+
N−1∑
i=0

Bδ
i (−Nδ + iδ)∆µa(−Nδ + iδ)

(t − Nδ)
δ

.

With a change of variable and in the order of summation, this can be written
as

N−1∑
q=1

∆µa(−qδ)
N−1∑
n=q

Bδ
n−q(−qδ) +

(t − Nδ)
δ

N∑
q=1

Bδ
N−q(−qδ)∆µa(−qδ). (8.7)

The first term of (8.7) equals
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N−1∑
q=1

∆µa(−qδ)
∫ Nδ−qδ

0

b(χ0,δ(s), u(s),−qδ)ds. (8.8)

Because ∆µa(0) = 0, the lower index in the sum in (8.8) can be set to zero.
As µa(·) is concentrated on integral multiples of δ, we can write (8.8) as∫ 0

max{−Nδ+δ,−θ̄}
dµa(γ)

∫ Nδ+γ

0

b(χ0,δ(s), u(s), γ)ds,

which equals∫ 0

max{−Nδ+δ,−θ̄}
dµa(γ)

∫ Nδ

−γ

b(χ0,δ(s + γ), u(s + γ), γ)ds

=
∫ Nδ

0

ds

∫ 0

max{−s,−Nδ+δ,−θ̄}
b(χ0,δ(s + γ), u(s + γ), γ)dµa(γ).

(8.9)
Because µa(0) − µa(−δ) = 0, (8.9) involves the process χ0,δ(s) only for s ≤
Nδ − δ.

Now consider the effects of the initial condition. At the value θ = 0, we
have

δ
N−1∑
n=0

[Φδ]nχ1,δ(0, θ)
∣∣∣
θ=0

= δ

N−1∑
n=0

∫ max{−nδ,−θ̄}

−θ̄

b(x(γ+nδ), u(γ+nδ), γ)dµa(γ).

Because n ≤ N −1, we can change max{−nδ,−θ̄} to max{−nδ,−Nδ+δ,−θ̄}.
By the facts that x(·) and u(·) are piecewise-constant on [−θ̄, 0] with intervals
δ and that µa(·) is concentrated on integral multiples of δ, this last expression
can be written as∫ Nδ

0

ds

∫ max{−s,−Nδ+δ,−θ̄}

−θ̄

b(x(γ + s), u(γ + s), γ)dµa(γ). (8.10)

Using χ0,δ(s) = x(s) for s ≤ 0 and adding (8.10) to (8.9) yields the right side
of (8.9) with max{−s,−Nδ + δ,−θ̄} changed to −θ̄, which is∫ Nδ

0

ds

∫ 0

−θ̄

b(χ0,δ(s + γ), u(s + γ), γ)dµa(γ), (8.11)

the double integral in (8.5a) when n = N .
Now return to the term on the right of (8.7). The sum in this term can be

shown to equal∫ Nδ+δ

Nδ

ds

∫ 0

−θ̄

b(χ0,δ(s + γ), u(s + γ), γ)dµa(γ). (8.12)

Adding this term to (8.11) yields (8.11) with Nδ changed to Nδ+δ. Thus (8.7),
with the effects of the initial condition added, is just a linear interpolation of
the values at t = Nδ and t = Nδ + δ, and the proof is completed.
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9.8.2 The Effective Delay and Numerical Procedures

The effective delay. For t ∈ [nδ, nδ + δ), the term in (8.5) that contains the
delays is the double integral in (8.5a) plus (8.5b), and its time derivative4 is

1
δ

∫ nδ+δ

nδ

ds

∫ 0

−θ̄

b(χ0,δ(s + θ), u(s + θ), θ)dµa(θ). (8.13)

Suppose, for example, that µa(·) is concentrated (with unit mass) at −θ̄. Then
(8.13) equals

1
δ

∫ nδ+δ

nδ

b(χ0,δ(s − θ̄), u(s − θ̄),−θ̄)ds. (8.14)

The values of χ0,δ(·) that appear in (8.14) are those on the interval [nδ−θ̄, nδ+
δ − θ̄], no matter what t ∈ (nδ, nδ + δ) is. Thus, when t = (nδ)+, the effective
delay is uniformly distributed on the interval [θ̄ − δ, θ̄]. When t = (nδ + δ)−,
the effective delay is uniformly distributed on the interval [θ̄, θ̄+δ]. Hence the
delay is periodic, with values varying in the range [θ̄ − δ, θ̄ + δ].

Periodic-Erlang approximations. The procedure that was described in
this section required that the time since the last shift be monitored. This
can be discretized by using an approximation such as the periodic-Erlang
approximation of Chapter 4. Introduce the Erlang state process Lδ0,δ

n , with
δ/δ0 being an integer. Then do the shift at the renewal times for the Erlang
process. The resulting process will converge to that defined by (8.5) as δ0 → 0.

The numerical approximation. The Markov chain approximation method
of Section 4 is readily adapted to the problem at hand. Introduce the Erlang
state process Lh,δ0,δ

n as in Section 8.2, and let ξ0,h,δ0,δ
n , ξ1,h,δ0,δ

n (θ), θ = −θ̄ +
δ, , . . . ,−δ, 0, denote the approximating processes. One shifts ξ1,h,δ0,δ

n (·) at the
renewal times of the process Lh,δ0,δ

n as in Section 8.2. Between shifts, the
updates of ξ1,h,δ0,δ

n (·) are as in Section 4. The computed value and optimal
value functions converge to those for the model (8.5) as h → 0 and δ0 → 0.

9.9 Singular and Impulsive Controls

No delay in the singular control. Recall the model (8.6.2). Suppose that
the term q0(x(t−))dλ(t) is added to (1.1), there is no delayed singular con-
trol, and that

∫∞
0

e−βtq′λdλ(t) is added to the cost function. Then the only
change that is required in Section 2 is the addition of q0(χ0(t−))dλ(t) to (2.1).
The changes in the numerical approximations that are required in Section 4
4 It is the derivative that yields the dynamical term.
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are guided by the ideas for the singular control problem in Section 6.6. The
impulsive control is dealt with similarly, and the details are left to the reader.

Delay in the singular control. Now suppose that the terms

q0(x(t−))dλ(t) + dt

∫ 0

θ=−θ̄

q2(x((t + θ)−), θ)dθλ(t + θ)

from the model (8.6.2) are included in (1.1). Then add q0(χ0(t−))dλ(t) to (2.1)
and q2(χ0(t−), θ)dλ(t) to (2.2). If λ(s) = 0, s ≤ 0, then the initial condition
is (2.5). Otherwise one needs to modify the initial condition analogously to
what was done for the delayed reflection term in (2.5). Theorem 2.1 remains
valid with these additions. Obviously the numerical procedure will be more
complicated, as one has to adapt the methods of Section 6.6 to those of Section
4. This can be done. But we will not proceed further here as the approach of
this chapter, though intriguing and promising, is still in its infancy.
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201, 203,
periodic-Erlang approximation, 75,

86, 196, 208, 265
randomly varying approximation, 73

Discount factor
effective averaged, 137

Doeblin condition
definition, 105
uniform, 106, 108, 112, 120

δ-shift time, 74, 199

Ergodic cost
approximating chain, 223
approximating cost function, 223
approximation

periodic delays, 110
convergence of approximations, 107,

108, 156, 224
discretized control space, 115, 122
ε-optimal relaxed feedback controls,

115
Markov chain approximation, 156
periodic-Erlang approximation, 118

convergence, 123
limits, 121

invariant measure, 223
Erlang state, 76, 199
Explicit approximation procedure

example, 137
Exponential martingale, 38

Feller process, 102
Filtration, 19
Ft-adapted, 19

Girsanov transformation, 38, 100, 108,
110, 118

construction of controls, 39, 100
the controlled system, 101

Implicit approximation method
timescale, 182
dynamical representation, 182
approximating the random delay

model, 189
path delayed

Bellman equation, 185
cost function, 185
memory segment, 182

representation of solution, 146
representation of the cost function,

146
transition probabilities, 180
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Impulsive control, 58
Interpolated time, 131
Interpolation interval, 127, 128

constant, 176

Jump-diffusion, 38

Local consistency, 127
implicit approximation method

path delayed, 180
path and control delayed, 169
path delayed, 162
reflecting boundary, 128

Markov chain approximation, 127
convergence, 149
ergodic cost, 153, 155

convergence, 156
invariant measure, 155

impulsive controls, 153
singular controls, 149

Markov property, 127
Martingale, 19

criterion for, 20
Martingale method, 93, 94, 215
Measurable process, 19
Measure transformation, 39

Neutral equations, 37
approximating chain, 220

Nonanticipativity, 20
proof of, 45

Optimal stopping, 41
Optimal control

existence, 43, 230

Path memory segment
approximating chain, 163

Periodic delay approximation
approximating chain, 195
simulations, 79

Periodic-Erlang approximation, 197,
208

Bellman equation, 78
convergence, 87, 213
differential operator, 78
representation of controls, 87
simulations, 82

Poisson jumps, 37

Prohorov metric, 15
Prohorov’s theorem, 15
φ-recurrence, 105

Radon–Nikodym derivative, 39
Random delays, 24, 28
Rapidly varying delays

approximations, 92
averaging method, 92

Recurrence, 105
Recurrent process, 105
Reduced memory, 200, 250

Reflection process, 30
components, 30, 34

non-uniqueness, 42
delayed, 35
moment estimates, 32
properties of, 31, 32
tightness, 33,48

Relaxed control
compactness, 27
definition, 27
derivative, 27
feedback, 98
optimality in the class of, 46
representation of an ordinary control,

27
weak topology, 27

Relaxed feedback control, 98
smoothed, 115

Relaxed periodic-Erlang feedback
control, 120

Shift time, 74, 199
Singular control, 50, 90, 149

approximating chain, 220
convergent sequence, 51
periodic approximations, 90
periodic-Erlang approximations, 91

Skorohod problem
time on boundary, 102

Skorokhod representation, 16
Skorokhod metric, 17
Skorokhod problem, 23, 30

properties of state space, 30
Solution

strong sense, 29
weak sense, 29
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Stopped process, 19
Stopped σ-algebra, 19
Stopping time, 18

Tightness, 14, 15
criterion for, 18
of solutions, 34

Timescale equivalences, 148, 187
Time stretching method, 48
Time, interpolated, 130
Transition probabilities

absolute continuity, 103
approximating chain

path and control delayed, 170
path delayed, 164

neutral equation, 221

Upwind approximation, 139

Variance, controlled, 37, 38

Wave equation representation, 230
discrete-time approximation, 236

convergence, 238
semigroup representation, 237
uniqueness, 234
state space size, 250

Weak convergence, 14, 15
Weak-sense limit, 15
Wiener process

construction via the Girsanov
transformation, 39

Hölder continuity, 34
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Bh(t), 133
Bh

τ (·), 133
Bh,δ

τ (·), 145
C(S), 15
Cb(S), 15
C(S; I), 17
C(G; [−θ̄, 0]), 25
C(G; [a, b]), 18
Dh(·), 164
Df , 16
D(S; I), 17
D(S; [0,∞)), 17
Eε

t , 92
Eh

n, 129
Er

x̂,û, 41
Er

x̂, 40
Eh,α

ξ̂,û,n
, 168

Eh,α
x,t , 134

Eh,δ,α
x,n , 142

Eh,δ,u
x,n , 146

Eh,δ
n , 181

Eh,uh

ξ̂,û
, 170

Eh,uh

ξ̂
, 165

Eh,α

ξ̂,n
, 163

Eh,δ,α

ξ̂,n
, 181

EFt
, 19

F (t), 58
G, 25, 30
G0, 40, 127
Gh, 127
IK , 27
Ih,δ
n , 245

Ih,δ0,δ
n , 209

Lδ0,δ(t), 76
Lh,δ

n , 196
Lh,δ0,δ

n , 197, 209
Nh(·), 164
Nh

G, 171
Nh,δ(t), 257
Nδ(A), 102
Pm

x̂ , 101
Ph,α

x,n , 134
Ph,α

x,t , 134
PFt

, 19
P (x̂, t, A), 100
Pm(x̂, t, ·), 101
P δ,m(x̂, t, ·), 111
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P δ0,δ,m(x̂, t, ·), 119
P0(x, t, B), 100
Pn ⇒ P , 15
Px̂,T , 100
Q+

δ , 72, 195
Qδ, 69, 182
R(T, m), 100
Rn(t, m), 108
Sh, 127

T (t), 57
T δ, 242
Tλ(t), 52
Tn(t), 49
U , 25
Uh, 127, 163
V (x̂), 41
V (x̂, r̂), 41
V δ(x̂), 69, 190
V h,δ(ξ̂), 185
V δ(x̂, û), 212
V h,δ(x̂, û), 212
V δ0,δ,h(x̂, û), 213
V δ0,δ(x̂), 77
V δ0,δ(x̂, û), 213
W (x̂, r̂, r), 41, 42
W (x̂, r), 41, 42
W δ(x̂, r), 69
W ε(x̂, r̂, r), 93
W δ0,δ(x̂, r), 77
Xδ(t), 72
Xδ

r (t), 74
Xδ

r,l, 74
Xn ⇒ X, 15
Xδ

n, 72
Y h(·), 130

D̃h,δ0,δ
l,n , 208

L̄δ0,δ, 75, 197
L̄h,δ, 195
Ñh,δ0,δ

l,n , 208, 209
IRk, 14, 25
T̃λ(t), 52
T̃n(t), 49
Ŵ (x̂, r̂, r), 93

X̃δ,δ0 , 118
X̃δ(t), 73, 110
X̃δ,δ0

l , 118
X̃δ0,δ

e (t), 78
X̃h,δ0δ

e,n , 198

B(G), 100
B(S), 15
B(U ; [−θ̄, 0]), 26
F(A), 19
Fh

n , 129
Fh,δ

n , 244
Fτ , 19
P(S), 15
Tn(T ), 18

a(·), 93, 127
a ∧ b, 119
a±, 139
ah(·), 127, 164
ah,δ(·), 143
b(ξ̄h

n, r̄h,′
n , uh

n), 169
bh(·), 127, 164
bm(x̄), 99
bh,δ(·), 143
d(x), 30
dµa(θ), 35
dh(t), 132, 147
dh

τ (t), 147
dh,δ

τ (t), 147
g(t+), g(t−), 50
h1, 242
km(·), 99
l(B), 102
m(·), 98
m(X̃δ(t), τ δ(t), dα), 116
mh,δ0,δ

n , 197
ni, 42
[nt], 14
ph,δ(·), 141
ph(ξ̂, x̃, |α), 165
ph,δ(x, nδ; x̃, nδ|α), 143
ph,δ(x, nδ; x, nδ + δ|α), 143
ph,δ(x0, nδ; x0, nδ + δ|α, x1), 244
ph(ξ̂, û; x̃|α), 178
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ph,δ(ξ̂, iδ; ξ̂(0), iδ + δ|α), 180, 249
ph,δ(ξ̂, iδ; x̃, iδ|a), 180
ph,δ

(
ξ0, ξ1; ξ0

1 , ξ1
1 |α
)
, 249

ph
(
x0, x̃0

∣∣α, x1
)
, 244

qh
τ (s), 166

qh,δ
n (θ), 245

r(·), 27, 133
r′(dα, t), 27
r(dα, ds + θ), 27
rh,κ(·), 173
r(dα, [a, b]), 85
rh,δ0δ(·), 211
rh,δ0δ
τ (·), 211

rh,δ
τ (·), 145

rh,κ
τ (·), 173

rh,′(dα, θ), 169
rh,′
τ (dα, θ), 169

rδ0,δ,′
e (·), 89

rh,δ,′
p,l,n, 204, 207

rh,δ,′
p,l , 204, 207

t(l), 120
thn, 130, 131, 163
th,κ
n , 173

th,δ
n , 181

uh
n, 127

uh(·), 131, 168
uh

n,i, 178
uh,δ

τ (·), 145
uh,δ

n , 142
vδ

n, 74
vδ0

n , 75
vh,δ

n , 145, 182
w(·), 25
wh,δ(·), 145
wm(·), 101
x(t, θ), 25
yh(t), 133
yh,δ

τ (·), 145
yi(·), 30, 32
z(·), 30
z0(·), 230
zh(t), 133
zh,δ
τ (·), 145

b̄(x̄, ū), 27
b̄(ξ̂, û, α), 167
p̄h(·), 176
p̄h(ξ̂, x̃, |α), 176
p̄h(x, x̃, α), 131
r̄(t), 28
r̄h,δ,′
p,n (dα, θ), 204

r̄h,δ0,δ,′
ee,n , 209

r̄h,κ,′
n , 173

r̄h,κ,′
a,n , 172, 173

r̄h,′
n (·) , 169

r̃h,δ,δ0,′
ee,l.n , 208

r̃′(dα, t, θ), 28
r̃δ,′
d (dα, t, θ), 85

r̃δ0,δ,′
e (·), 86

r̃δ0,δ,′
ee,l (·), 87

r̃h,δ,δ0,′
ee,l , 209

r̃h,δ0,δ,′
ee,τ , 211

r̃h,δ0,δ,′
ee , 211

r̃h,δ0,δ
ee,τ (dα, t, θ), 212

r̃h,κ,′
a , 173

r̃h,κ,′
a,τ , 173

r̂, 28, 41
r̂δ,′
p , 85

th,δ
n , 144

ū(0), 167
ū(t), 26
ūh

0 , 168
ūh

n, 168
û , 26
x̄(0), 163
x̄(t), 25
x̄δ

a(t), 69
x̄δ

d(t), 69
x̄δ

f (t), 71
x̄δ

p(t), 72
x̄δ

r(t), 74
x̄δ0,δ

e (t), 75
x̄δ0δ

a (t), 69
x̂, 25
x̃λ(t), 52
ỹn(t), 49
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∆th,δ, 141
∆th(x0, x1, α), 244
∆thn, 144, 244
∆thn,i, 175
∆th,δ0,δ

n , 197, 208
∆th,δ

n , 144, 181, 244
∆th,κ

n , 173
∆th,δ(x0, x1, α), 244
∆th,δ(x, α), 143
∆τh,δ

n , 145, 187
∆τh

n , 133
∆τh,δ

n , 145
∆y0,h,δ

n , 244
∆yh,δ

n , 182
∆yh,δ

i,n , 144
∆z0,h,δ

n , 244
∆zh,δ

n , 182
∆zh

n, 129
∆λh

n, 150
∆ξh

n, 127
∆ξh,δ

n , 142
∆ξh

n, 127
∆φh,δ

n , 142
∆ψh(t), 134
∆

h
, 131, 175

∂B, 16
∂G, 30
∂G+

h , 128
∂Gi, 30
Φ(·), 232
Φδ, 237

βh
n, 130

βh,δ
n , 144, 181

βh,δ
0,n, 144, 181

γ(m), 106
γ(x̂, T, m), 106
γδ(x̂, T, m), 111
γδ(r), 115
γδ0,δ(t, m), 121
γ̄, 114
γ̄δ, 114
γ̄δ0,δ, 122
δ0, 75, 197

ζh,δ
n , 142, 180

ζ(T, m), 100
θ̄, 25
λ̄δ

p(t, θ), 90
λ(·), 50
µa(·), 35
µc(·), 26
νh,δ

l , 195
νn, 187
ξh(·), 132, 163
ξh
n,i, 175

ξ0,h,δ
n , 242

ξ1,h,δ
n , 242

ξh,δ(·), 144, 182
ξh,δ
n , 142, 180

ξ̄h(t), 163
ξ̄h
n, 163

ξ̄h,δ,κ(·), 201
ξ̄h,δ.δ0
n , 197, 212

ξ̄h,δ
n , 180, 182

ξ̄h,δ
r (·), 187

ξ̄h,δ
p,n, 195

ξ̄h,δ
r,n , 182

ξ̄h,κ
a,n , 172

ξ̄h,δ0,δ
e (·), 212

ξ̄h,δ0,δ
e,n , 197

ξ̃h,δ(t), 145
ξ̂, 163, 180

σδ
n, 74

σδ0
n , 75

σh,δ
l , 183

σ̄δ,δ0
t(l) , 120

σ̄δ0,δ
n , 75

σ̄h,δ0,δ
l , 208

σ̂h,δ
l , 189

τ δ(t), 70, 110
τh
n , 133

τh,δ
n , 145, 187

τG, 40, 127
φh,δ(·), 182, 188
φh,δ

n , 142, 180
χ0(·), 230, 233
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χ1(·), 230, 233
χ0,δ,∆(·), 236
χ1,δ,∆(·), 236
ψh(·), 133, 166

ψh,δ0,δ(t), 212
ψh,δ(·), 145, 187
ψ0,h,δ(t), 255
ψ1,h,δ(t), 255
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