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Abstract: The linear hazard regression model developed by Aalen is becoming
an increasingly popular alternative to the Cox multiplicative hazard regression
model. There are no methods in the literature for selecting among different
candidate models of this nonparametric type, however. In the present chapter a
focused information criterion is developed for this task. The criterion works for
each specified covariate vector, by estimating the mean squared error for each
candidate model’s estimate of the associated cumulative hazard rate; the finally
selected model is the one with lowest estimated mean squared error. Averaged
versions of the criterion are also developed.
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34.1 Introduction: Which Covariates to Include?

We consider survival regression data of the usual form (Ti, δi, xi) for individuals
i = 1, . . . , n, where xi is a vector of say r covariates, among which one wishes to
select those of highest relevance. Also, Ti = min{T 0

i , Ci} is the possibly censored
life-length and δi = I{T 0

i < Ci} the associated noncensoring indicator, in terms
of underlying life-length T 0

i and censoring time Ci for individual i.
Our framework is that of the linear hazard regression model introduced by

Aalen (1980); see; for example, the extensive discussion in Andersen et al. (1993,
Ch. 8) and Martinussen and Scheike (2006, Ch. 5), where the hazard rate for
individual i may be represented as

hi(u) = xt
iα(u) =

r
∑

j=1

xi,jαj(u) for i = 1, . . . , n,
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in terms of regressor functions α1(u), . . . , αr(u). These need to satisfy the re-
quirement that the linear combination xtα(u) stays nonnegative for all x sup-
ported by the distribution of covariate vectors. In other words, the associated
cumulative hazard function

H(t |x) =
∫ t

0
xtα(u) du = xtA(u) =

r
∑

j=1

xjAj(t) (34.1)

is nondecreasing in t, for all x in the relevant covariate space; here we write
Aj(t) =

∫ t
0 αj(u) du for j = 1, . . . , r.

Among questions discussed in this chapter is when we might do better with
only a subset of the x covariates than with keeping them all. We focus specif-
ically on the problem of estimating H(t |x) of (34.1) well, for a specified indi-
vidual carrying his given covariate information x. The full-model estimator

̂H(t |x) = ̂Hfull(t |x) = xt
̂A(t) =

r
∑

j=1

xj ̂Aj(t) (34.2)

is one option, using the familiar Aalen estimators for A1, . . . , Ar in the full
model, keeping all covariates on board. Pushing some covariates out of the
model leads to competing estimators of the type

˜HI(t |x) =
∑

j∈I
xj ˜AI,j(t), (34.3)

where the index set I is a subset of {1, . . . , r}, representing those covariates
that are kept in the model, and where the ˜AI,j(t)s for j ∈ I are the Aalen
estimators in the linear hazard rate model associated with the I covariates.
Using ˜HI(t |x) instead of ̂H(t |x) will typically correspond to smaller variances
but to modelling bias. Slightly more generally, bigger index sets I imply more
variance but less modelling bias, and vice versa. Thus the task of selecting
suitable covariates amounts to a statistical balancing game between sampling
variability and bias.

In Section 34.2 we fix the framework and give proper definitions of full-
model and submodel estimators. These are also expressed in terms of counting
processes and at-risk processes. Links with martingale theory make it possible
in Section 34.3 to accurately assess the bias and variance properties associated
with a given candidate model. This is followed up in Section 34.4 by explicit
methods for estimating bias and variance from the data. The focused infor-
mation criterion (FIC) introduced in Section 34.5 acts by estimating the risk
associated with each candidate model’s estimator of the cumulative hazard
function; the model we suggest being used in the end is the one with the lowest
estimated risk. Weighted versions are also put forward. In an extended version
of the present work the use of the methods for real data and in some simulation
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setups will be reported. This chapter ends with a list of concluding remarks in
Section 34.7.

The brief introduction has so far taken model comparison as correspond-
ing to accuracy of estimators of cumulative hazard rates H(t |x). By a delta
method argument this is also nearly equivalent to ranking models in terms of
accuracy of estimates of survival probabilities S(t |x) = exp{−H(t |x)}, where
the estimates in question take the form

̂Sfull(t |x) =
∏

[0,t]

{1− xt
̂A(u)} and ˜SI(t |x) =

∏

[0,t]

{

1−
∑

j∈I
xj d ˜AI,j(u)

}

.

[For details regarding notation for and properties of the product integral used
on the right; see, for example, Andersen et al. (1993, Ch. II.6).] It is important
to realise that a submodel I may work better than the full model, even if the
submodel in question is not ‘fully correct’ as such; this is determined, among
other aspects, by the sizes of the αj(u) regressor functions that are left out of
a model. This makes model selection different in spirit and operation than, for
example, performing goodness-of-fit checks on all candidate models.

Aalen’s linear hazard model is in many important respects different from
Cox’s proportional hazard model, also regarding the mathematical treatment
of estimators and their properties; see Andersen et al. (1993, Ch. II.6). We note
that focused information criteria and a general theory for model averaging esti-
mators for the Cox model have been developed in Hjort and Claeskens (2006).
Based on research in that and in the present chapter methods may be devised
that can help select between ‘the best Cox model’ and ‘the best Aalen model’,
in situations where that question is of relevance, but that theme is not pursued
here.

34.2 Estimators in Submodels

This section properly defines the Aalen estimators ̂A and ˜AI involved in (34.2)
and (34.3). It is convenient to define these in terms of the counting process and
at-risk process

Ni(t) = I{Ti ≤ t, δi = 1} and Yi(u) = I{Ti ≥ u}
for individuals i = 1, . . . , n. We also need the martingales Mi(t) = Ni(t) −
∫ t
0 Yi(u) dHi(u), for which

dNi(u) = Yi(u)xt
i dA(u) + dMi(u). (34.4)

These are orthogonal and square integrable with variance processes

〈Mi,Mi〉(t) =
∫ t

0
Yi(u)hi(u) du =

∫ t

0
Yi(u)xt

i dA(u). (34.5)
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In other words, Mi(t)2−〈Mi,Mi〉(t) is another zero-mean martingale, implying
in particular that the mean of (34.5) is equal to the variance of Mi(t).

Now introduce the r × r-size matrix function

Gn(u) = n−1
n
∑

i=1

Yi(u)xixt
i . (34.6)

The Aalen estimator ̂A = ( ̂A1, . . . , ̂Ar)t in the full model corresponds to

d ̂A(u) = Gn(u)−1n−1
n
∑

i=1

xi dNi(u),

with integrated version

̂A(t) =
∫ t

0
Gn(u)−1n−1

n
∑

i=1

xi dNi(u) for t ≥ 0. (34.7)

This also defines ̂Hfull(t |x) of (34.2). It is assumed here that at least r linearly
independent covariate vectors xi remain in the risk set at time t, making the
inverse of Gn well defined for all u ≤ t; this event has probability growing
exponentially quickly to 1 as sample size increases, under mild conditions.

To properly define the competitor ˜HI(t |x) of (34.3), we use the notation
xI = πIx for the vector of those xj components for which j ∈ I, for each given
subset I of {1, . . . , r}. In other words, πI is the projection matrix of size |I|× r,
with |I| the number of covariates included in I. For the given I, we partition
the Gn function into blocks,

Gn(u) =
(

Gn,00(u), Gn,01(u)
Gn,10(u), Gn,11(u)

)

,

where

Gn,00(u) = πIGn(u)πt
I = n−1

n
∑

i=1

Yi(u)xi,Ixt
i,I

is of size |I| × |I|, and Gn,11(u) is of size q × q with q = r− |I|, and so on. The
Aalen estimator for the vector of Aj functions where j ∈ I is

˜AI(t) =
∫ t

0
Gn,00(u)−1n−1

n
∑

i=1

xi,I dNi(u).

These are those at work in (34.3).
Using (34.4) we may write

n−1
n
∑

i=1

xi,I dNi(u) = n−1
n
∑

i=1

Yi(u)xi,Ixt
i dA(u) + n−1

n
∑

i=1

xi,I dMi(u),
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which further leads to

d ˜AI(u) = Gn,00(u)−1
{

Gn,00(u) dAI(u) +Gn,01(u) dAII(u)

+n−1
n
∑

i=1

xi,I dMi(u)
}

,
(34.8)

along with its integrated version. Here II = Ic is the set of indexes not in I.
This representation, basically in terms of a mean term plus martingale noise,
is used in the next section to characterise means and variances of the (34.3)
estimators. It again assumes that the Gn is invertible on [0, t], an event having
probability growing exponentially to 1 and therefore not disturbing the main
analysis.

We remark that when the I model is used, then the Aalen estimator ˜AI(t)
does not directly estimate AI , but rather the function AI(t) +

∫ t
0 G

−1
00 G01 dAII .

34.3 Bias, Variance, and Mean Squared Error
Calculations

In this section we develop useful approximations for the mean squared error of
each of the (34.3) estimators ˜HI(t |x) = xt

I
˜AI(t). We assume that the censoring

variables C1, . . . , Cn are i.i.d. with some survival distribution C(u) = Pr{Ci ≥
u}, and that they are independent of the lifetimes T 0

i ; the case of no censoring
corresponds to C(u) = 1 for all u. It is furthermore convenient to postulate that
x1, . . . , xn stem from some distribution in the space of covariate vectors. These
assumptions imply, for example, that the Gn function of (34.6) converges with
increasing sample size, say

Gn(u) → G(u) = E∗Y (u)xxt = E∗ exp{−xtA(u)}xxt C(u), (34.9)

where E∗ refers to expectation under the postulated covariate distribution. Also
the mean function

Ḡn(u) = EGn(u) = n−1
n
∑

i=1

pi(u)xixt
i

converges to the same limit G(u); here pi(u) = EYi(u) = exp{−xt
iA(u)}C(u).

We finally assume that the r × r-function G(u) is invertible over the time ob-
servation window u ∈ [0, τ ] of interest; this corresponds to C(τ) positive and
to a nondegenerate covariate distribution. As in Section 34.2 there is a need to
partition the G(u) function into blocks G00(u), G01(u), and so on; G00(u) has,
for example, size |I| × |I|. A similar remark applies to Ḡn(u).
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Consider as in Section 34.1 a given individual with covariate information x.
From representation (34.8),

xt
I d ˜AI(u) = xt

I dAI(u) + xt
IGn,00(u)

−1Gn,01(u) dAII(u)

+n−1/2xt
IGn,00(u)

−1 dVn,I(u)

= xt dA(u) + bI,n(u)t dAII(u) + n−1/2xt
IGn,00(u)

−1 dVn,I(u),

in which Vn is the r-dimensional martingale process with increments

dVn(u) = n−1/2
n
∑

i=1

xi dMi(u), (34.10)

whereas bI,n, defined by

bI,n(u) = Gn,10(u)Gn,00(u)−1xI − xII , (34.11)

can be seen as a bias function (omitting at the moment x in the notation for
this function). Its dimension is q = r − |I|. This leads to the representation

√
n{xt

I
˜AI(t)− xtA(t)} =

√
n

∫ t

0
btI,n dAII + xt

I

∫ t

0
G−1
n,00 dVn,I . (34.12)

The second term is a zero-mean martingale whereas the first term is a bias
term, stemming from using model I that does not include all the components.
We use (34.12) to develop good approximations to

msen(I) = msen(I, t) = nE{ ˜HI(t |x)−H(t |x)}2,

the normalised mean squared error of the (34.3) estimator. We treat the co-
variate vectors x1, . . . , xn as given; that is, our approximations are expressed
directly in terms of these.

In view of the assumptions made in the beginning of this section, a first-order
approximation to the mean of (34.12) is

√
n
∫ t
0 b̄

t
I,n dAII , because the second

term has zero mean; here b̄I,n(u) = Ḡn,10(u)Ḡn,00(u)−1. Also,
∫ t
0 b

t
I,n dAII and

∫ t
0 b̄

t
I,n dAII are both close to the limit

∫ t
0 b

t
I dAII , with high probability for large

n, where bI(u) = G10(u)G−1
00 xI − xII .

To study the second term of (34.12), note that Vn of (34.10) is a zero-
mean martingale with variance process 〈Vn, Vn〉(t) = Jn(t), with r × r-matrix
increments

dJn(u) = n−1
n
∑

i=1

Yi(u)xixt
i x

t
i dA(u).

There is a well-defined limit function J(u) with increments

dJ(u) = E∗Y (u)xxt xt dA(u) = E∗ exp{−xtA(u)}xxt xt dA(u)C(u)
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under the conditions stated above. Thus Vn converges in distribution to a Gaus-
sian martingale V with increments dV (u) having zero mean and variance matrix
dJ(u). It also follows that the second term of (34.12) converges in distribution,

xt
I

∫ t

0
G−1
n,00 dVn,I →d x

t
I

∫ t

0
G−1

00 dVI ,

which is normal with variance

var(I, t) = xt
I

∫ t

0
G−1

00 dJ00G
−1
00 xI .

The integral here is defined in the appropriate and natural Riemannian sense,
and is also equivalent to a finite sum of ordinary integrals, found by writing out
the quadratic form.

The first term of (34.12) is essentially nonrandom when compared with the
second term. A more formal statement can be put forward in a framework of
local asymptotic neighbourhoods, where dAII(u) = dD(u)/

√
n, say; in this

case,

√
n{ ˜HI(t |x)−H(t |x)} →d

∫ t

0
b(u)t dD(u) + N(0, var(I, t)).

Our main use of these considerations is the approximation to the normalised
mean squared error;

msen(I, t)
.= sqb(I, t) + var(I, t), (34.13)

where var(I, t) is defined above and

sqb(I, t) = n
(

∫ t

0
b̄tI,n dAII

)2
.

Remark There are often situations where it pays to exclude some covariates,
even though their associated αj(u) functions are nonzero. This is a consequence
of the squared bias versus variance balancing game. For example, a submodel
I is better than the full set, for the given covariate x, if sqb(I, t) + var(I, t) ≤
0 + var(full, t), which translates to

n
{

∫ t

0
(G10G

−1
00 xI−xII)t dAII

}2 ≤ xt
∫ t

0
G−1 dJ G−1 x−xt

I

∫ t

0
G−1

00 dJ00G
−1
00 xI .

This effectively describes a ‘tolerance radius’ around a given model, inside which
the model is preferable to the full model, even when not perfectly valid. The
inequality says that a certain linear combination of the αj(u) functions for j /∈ I
should not be too big, compared also to the sample size; for large n even small
biases are costly, and the full model becomes preferable.
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34.4 Estimating the Risks

We have seen that each candidate model I has an associated risk msen(I, t) of
(34.13) when estimating the cumulative hazard function using ˜HI(t |x). Here
we deal with the consequent task of estimating these risk quantities from data.

For the variance part we use

v̂ar(I, t) = xt
I

∫ t

0
G−1
n,00(u) d ̂Jn,00(u)Gn,00(u)−1 xI ,

wherein

d ̂Jn(u) = n−1
n
∑

i=1

Yi(u)xixt
i x

t
id ̂A(u),

engaging the full-model Aalen estimator. The |I|×|I| block used for the variance
estimation is πI d ̂Jn(u)πt

I .
For the squared bias part, consider in general terms the quantity β2, where

β =
∫ t
0 g

t dAII , for a specified q-dimensional function g; again, q = r − |I|.
Considering ̂β =

∫ t
0 g

t d ̂AII , employing the II part of the full-model Aalen
estimator, we have

E ̂β .= β and Var ̂β .= n−1
∫ t

0
g(u)t dQ(u) g(u),

from results above, where we write

dQ(u) = {G(u)−1 dJ(u)G(u)−1}11
for the lower right-hand q × q block of the matrix within brackets, the block
associated with subset II = Ic. Thus E ̂β2 .= β2 + n−1

∫ t
0 g

t dQg, in its turn
leading to the natural and nearly unbiased estimator

(

∫ t

0
gt d ̂AII

)2 − n−1
∫ t

0
g(u)t d ̂Qn(u) g(u)

for β2, where

d ̂Qn(u) = πII{Gn(u)−1 d ̂Jn(u)Gn(u)−1}πt
II

is the empirical counterpart to dQ(u).
These considerations lead to the risk estimator

̂R(I, t) = m̂sen(I, t) = max{̂sqb(I, t), 0} + xt
I

∫ t

0
G−1
n,00 d ̂Jn,00G−1

n,00 xI ,

where
̂sqb(I, t) = n

(

∫ t

0
btI,n d ̂AII

)2 −
∫ t

0
btI,n d ̂Qn bI,n.
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34.5 The FIC and the Weighted FIC

Here we show how risk estimation methods developed above lead to natural
information criteria for model selection.

The first such is a focused information criterion that works for a given
individual and a given time point at which we wish optimal precision for her
survival probability estimate. For the given covariate x and time point t we
calculate

FIC = FIC(I, x, t) = max{̂sqb(I, x, t), 0} + v̂ar(I, x, t) (34.14)

for each candidate model I, where

̂sqb(I, x, t) = n
(

∫ t

0
btI,n d ̂AII

)2 −
∫ t

0
btI,n d ̂Qn bI,n,

v̂ar(I, x, t) = xt
I

∫ t

0
G−1
n,00 d ̂Jn,00G−1

n,00 xI .

We note that bI,n(u) of (34.11) depends on x and that the submatrices Gn,00
and so on of (34.9) depend on I. In the end one selects the model with smallest
value of the FIC score number.

Note that FIC is sample-size dependent. In a situation with a given amount
of nonzero bias

∫ t
0 b̄

t
I dAII , the ̂sqb component of FIC will essentially increase

with n, whereas the variance component remains essentially constant. This goes
to show that the best models will tolerate less and less bias as n increases, and
for sufficiently large n only the full model (which has zero modelling bias) will
survive FIC scrutiny.

There are various variations on the FIC above. For a given individual who
has survived up to time t1 it is the conditional survival probabilities

Pr{T 0 ≥ t2 |T 0 ≥ t1, x} = exp[−{H(t2 |x)−H(t1 |x)}]

that are of interest. The development and formulae above can be repeated mu-
tatis mutandis with a given interval [t1, t2] replacing [0, t]. This gives a machin-
ery for selecting models that yield optimal estimation precision for conditional
survival probabilities. It will also be useful in many applications to monitor FIC
scores for important candidate models in terms of a ‘gliding time window’, say
[t − δ, t + δ]; successful models should then have good FIC scores across time.
We stress that it is not a paradox that one model might be particularly good
at explaining the survival mechanisms involved for short life-lengths, whereas
another model might be much better for understanding the survival of the
longer life-lengths. Our FIC takes this on board, and makes an explicit model
recommendation for each given time interval of interest.
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Suppose now that a model is called for that works well in an average sense
across a given set of (x, t) values, as opposed to a given (x, t). Consider in
general terms

En(I) = n

∫

{ ˜HI(t |x)−H(t |x)}2 dw(t, x),

where w(t, x) is a weight measure in the (x, t) space. This could, for example,
take the form

En(I) = (1/K)
K
∑

j=1

n{ ˜HI(t |xj)−H(t |xj)}2, (34.15)

averaging across given covariate vectors x1, . . . , xK . From (34.12), the random
loss incurred using I is

En(I) =
∫

{√
n

∫ t

0
bI,n(u, x)t dAII(u) + xt

I

∫ t

0
Gn,00(u)−1 dVn,I(u)

}2
dw(t, x),

writing now
bI,n(u, x) = Gn,10(u)Gn,00(u)−1xI − xII

with explicit mention of x in the notation.
Its associated risk, the expected loss, is by previous efforts closely approxi-

mated by the w-weighted risk

Rn(I) = E
∫

[

n
{

∫ t

0
bI,n(u, x)t dAII(u)

}2
+xt

I

∫ t

0
G−1
n,00 dJn,00G−1

n,00 xI
]

dw(t, x).

We estimate the w-weighted squared bias and w-weighted variance contribu-
tions in turn. Define

w-̂sqb(I) = n

∫

{

∫ t

0
bI,n(u, x)t d ̂AII(u)

}2
dw(t, x)

−
∫ ∫ t

0
bI,n(u, x)t d ̂Qn(u) bI,n(u, x) dw(t, x),

which is an approximately unbiased estimator of the w-weighted squared bias
term; and

w-v̂ar(I) =
∫

v̂ar(I, x, t) dw(t, x).

Our wFIC score, to be computed for each candidate model, is

wFIC(I) = max{w-̂sqb(I), 0} + w-v̂ar(I). (34.16)

Again, in the end the model achieving the lowest wFIC score is selected. This
scheme in particular gives rise to an algorithm associated with the (34.15) loss,
weighting evenly across a finite set of covariate vectors.
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A special case worth recording is when t is fixed and w describes the covari-
ate distribution. It is unknown, but may be approximated with the empirical
distribution of covariates x1, . . . , xn. This leads to wFIC(I) as in (34.16) with

w-v̂ar(I) = n−1
n
∑

i=1

v̂ar(I, xi, t)

= Tr
{(

∫ t

0
G−1
n,00 d ̂Jn,00G−1

n,00

)(

n−1
n
∑

i=1

xi,Ix
t
i,I

)}

,

whereas w-̂sqb(I) may be written

n
∑

i=1

{xt
i,I
̂BI(t)− xt

i,II
̂AII(t)}2 − n−1

n
∑

i=1

∫ t

0
bI,n(u, xi)t d ̂Qn(u) bI,n(u, xi),

where
̂BI(t) =

∫ t

0
Gn,00(u)−1Gn,01(u) d ̂AII(u).

Remark Note that the wFIC method as defined here is subtly but crucially dif-
ferent from simply w-weighting of the individual pointwise FIC scores, regard-
ing how the truncation of the squared bias estimate is carried out. In (34.16),
the truncation to achieve nonnegativity of the estimate takes place after the
w-weighting, making it different from w-weighting the collection of truncated
sqb(I, x, t) terms. See in this connection also Claeskens and Hjort (2007).

34.6 Exact Risk Calculations

In the previous sections we were able to (i) develop formulae for risk functions
and (ii) construct estimators for these. This led to model selection methods that
may be used in any given application. The present section has a different aim,
namely that of providing classes of case studies where the risk function formulae
can be computed explicitly, thereby establishing a fair testing ground for model
selection and model averaging methods. For reasons of space we are content to
derive certain formulae under certain conditions, for biases and variances; these
may then be used to form concrete illustrations and test cases that for reasons
of space cannot be reported on in the present chapter.

Assume that the components x1, . . . , xr of the covariate vector x are dis-
tributed independently of each other, with Laplace transforms E∗exp(−θjxj) =
exp{−Mj(θj)}, say. Then

E∗ exp(−θtx) = exp{−M1(θ1)− · · · −Mr(θr)},
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from which follows, taking second-order derivatives with respect to the θ com-
ponents, that

E∗ exp(−θtx)xjxk = exp
{

−
r
∑

l=1

Ml(θl)
}

{−M ′′
j (θj)δj,k +M ′

j(θj)M
′
k(θk)},

in terms of first- and second-order derivatives of the Mj functions. This implies
that the r × r limit function G of (34.9) may be expressed as

G(u) = f(u){D(u) + z(u)z(u)t}C(u).

Here f(u) = exp{−∑r
l=1Ml(Al(u))}; D(u) is the diagonal matrix with elements

Dj(u) = −M ′′
j (Aj(u)); and z(u) is the vector with elements zj(u) = M ′

j(Aj(u)).
For a candidate set I of covariates to include, the blocks of G(u) can be read
off from

G(u) = f(u)C(u)
{

(

D0 0
0 D1

)

+
(

z0
z1

)(

z0
z1

)t}

,

where D0 and D1 have components Dj(u) where, respectively, j ∈ I and j /∈ I,
and similarly z0 and z1 have components zj(u) where j ∈ I and j /∈ I. In
particular,

G00(u) = f(u)C(u)(D0 + z0z
t
0) and G01(u) = f(u)C(u)z0zt

1,

leading in turn, via the matrix inversion formula

(D0 + z0z
t
0)

−1 = D−1
0 − 1

1 + zt
0D

−1
0 z0

D−1
0 z0z

t
0D

−1
0 ,

to a formula for G00(u)−1G01(u) and then to

bI(u) = G10(u)G00(u)−1xI − xII
= z1z

t
0

(

D−1
0 − 1

1 + zt
0D

−1
0 z0

D−1
0 z0z

t
0D

−1
0

)

xI − xII

= z1
zt
0D

−1
0 xI

1 + zt
0D

−1
0 z0

− xII .

Assume for a concrete example that xj ∼ gamma(aj , bj) for j = 1, . . . , r, for
which the Laplace transforms are {bj/(bj+θj)}aj withMj(θj) = ajlog(1+θj/bj).
Then

M ′
j(θj) =

ξj
1 + θj/bj

and M ′′
j (θj) = − ξj/bj

(1 + θj/bj)2
,

with ξj = E∗xj = aj/bj . This yields a bias function bI(u) with components

bI,j(u) =
gI(u)

1 +
∑

j∈I bjξj
ξj

1 +Aj(u)/bj
− xj for j ∈ II = Ic,
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where gI(u) =
∑

j∈I{bj +Aj(u)}xj . It follows that the important bias compo-
nent of (34.12) may be written

√
n

∫ t

0
btI dAII =

√
n
{

∫ t

0

gI(u)
1 +
∑

j∈I bjξj

∑

j∈II

ξjαj(u)
1 +Aj(u)/bj

du− xt
IIAII(t)

}

.

These bias functions are easily computed and displayed, for given covariate
distributions and given hazard regression functions.

To handle the variance part of (34.13) we need an explicit formula for dJ(u)
and then for

G−1
00 dJ00G

−1
00 and G(u)−1 dJ(u)G(u)−1.

We start with

E∗exp(−sθtx)xjxk = exp
{

−
r
∑

l=1

Ml(sθl)
}

{−M ′′
j (sθj)δj,k +M ′

j(sθj)M
′
k(sθk)},

and then take the derivative w.r.t. s, and set s = 1 in the resulting equations.
This yields

E∗ exp{−θtx)xjxk θtx = f∗(θ)[{M ′′′
j (θj)θj − g∗(θ)M ′′

j (θj)}δj,k
−M ′

j(θj)M
′′
k (θk)θk −M ′′

j (θj)M ′
k(θk)θj

+ g∗(θ)M ′
j(θj)M

′
k(θk)],

where

f∗(θ) = exp
{

−
r
∑

l=1

Ml(θl)
}

and g∗(θ) =
r
∑

l=1

M ′
l (θl)θl.

Let now Aj(t) = αjt for j = 1, . . . , r; that is, the αj regressor functions are
taken constant. The above leads with some further work to a formula for

E∗exp{−xtA(u)}xxt xt dA(u) = f(u){E(u) + F (u)}du,

where the E(u) and F (u) matrix functions are described below; also, f(u) =
exp{−∑r

l=1Ml(Al(u))} is as for the bias calculations above. The E(u) is diag-
onal with elements

Ej(u) = M ′′′
j (Aj(u))αj − g(u)M ′′

j (Aj(u)),

where g(u) =
∑r
l=1M

′
l (Al(u))αl. Next, F (u) has (j, k) element

−M ′
j(Aj(u))M

′′
k (Ak(u))αk − M ′′

j (Aj(u))M ′
k(Ak(u))αj

+ g(u)M ′
j(Aj(u))M

′
k(Ak(u)).
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These results may be used to compute the variance terms

xt
I

∫ t

0
G−1

00 dJ00G
−1
00 xI

and thereby the mean squared errors for different candidate models. These
formulae may in particular be used for the case mentioned earlier, with in-
dependent gamma(aj , bj) distribution for the xj components, and for which
M ′′′
j (θj) = 2(ξj/b2j )/(1 + θj/bj)3.
Various concrete illustrations may now be given, for the specific case of inde-

pendent gamma distributed covariates, to exhibit and examine various aspects
and issues involved in model selection and model averaging. These relate in var-
ious ways to modelling bias versus estimation variance. We may, for example,
show that when αj(u)s are small in size, then it may be best not to include these
in the selected model, depending also on the sizes of xI and xII . We would also
be able to illustrate how the complexity of the best model increases with higher
sample size, and how the qualitative results depend on the relative spread of
the distributions of covariates.

34.7 Concluding Remarks

Here we offer some concluding comments, some pointing to natural extensions
of the material and methods we have presented above.

1. In a planned extended version of this chapter space will be given to anal-
ysis of a real dataset and to instructive simulation setups.

2. We have throughout used ‘vanilla weights’ for the Aalen estimators ̂A of
(34.7). With more sophisticated weighting the estimator

̂A(t, k) =
∫ t

0

{

n−1
n
∑

i=1

Yi(u)ki(u)xixt
i

}−1
n−1

n
∑

i=1

xiki(u) dNi(u)

may perform slightly better; see Huffer and McKeague (1991). Also for
such schemes a FIC and wFIC methodology may be developed, general-
ising methods given in the present chapter.

3. A local asymptotic framework may be put up for the Aalen model, similar
in spirit to that employed in Hjort and Claeskens (2003) and Claeskens
and Hjort (2003) for purely parametric models. Here one would use hazard
rates

hi(u) =
p
∑

j=1

xi,jαj(u) +
q
∑

j=1

zi,jδj(u)/
√
n,
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with xi,js protected covariates considered important to include in all can-
didate models, and zi,js the potentially discardable ones. A precise asymp-
totic description may now be given of all limiting risk functions, in terms
of the δ1, . . . , δq functions.

4. A fair question to ask is the behaviour of the final estimator, say

H∗(t |x) = ˜H
̂I
(t |x),

where ̂I is the data-dependent set of finally included covariates. This is a
complicated question without any easy answer. Inside the local asymptotic
framework of (3), methods of Hjort and Claeskens (2003) may be used to
describe the limit distribution of

√
n{H∗(t |x) − H(t |x)}, in terms of a

nonlinear mixture of biased normals. This also opens the door to general
model average strategies, as opposed to limiting inference methods to
those that rely on deciding on only one model.

5. We have developed machinery for answering the question, “Should co-
variate j be included in the nonparametric Aalen model, or not?”. More
ambitiously and more laboriously, one can give not only two but three
potential outcomes for each covariate: it might be excluded; it might be
included nonparametrically; or it might be included parametrically. The
latter possibility refers for example, to the model where αj(u) is constant;
see McKeague and Sasieni (1994) for treatment of such models. Again a
FIC and a wFIC apparatus may be developed, requiring, however, more
mathematical vigour.
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