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Université de Technologie de Compiègne
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of the publisher (Birkhäuser Boston, c/o Springer Science+Business Media LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

Printed on acid-free paper.

9 8 7 6 5 4 3 2 1

www.birkhauser.com

ISBN 978-0-8176-4464-2 e-ISBN 978-0-8176-4619-6

Library of Congress Control Number: 2007934439



Contents

Preface xix
Contributors xxi
List of Tables xxix
List of Figures xxxiii

Part I: Cox Models, Analyses, and Extensions

1 Extended Cox and Accelerated Models in Reliability,
with General Censoring and Truncation 3
C. Huber-Carol and M. Nikulin

1.1 Cox Model and Extensions 3
1.1.1 The simple Cox model 3
1.1.2 Nonhomogeneity in chronological time 4
1.1.3 Effect not constant in time 5
1.1.4 Omitted pertinent covariate: frailty models 5

1.2 General Censoring and Truncations 6
1.2.1 Definition 6
1.2.2 Maximum likelihood estimation for frailty models 7

1.3 Discrete Time: Logistic Regression Models for the
Retro-Hazard 8

1.4 Accelerated Failure Time Models (AFT) 9
1.4.1 Sedyakin principle 10
1.4.2 Definition of AFT models 10
1.4.3 Relationships between accelerated (AFT) and

proportional hazard (PH) models 11
1.4.4 Relationships between Sedyakin and PH:

MPH models 12
1.4.5 Generalized PH models (GPH) on E 12
1.4.6 General models 13
1.4.7 Modeling and homogeneity problem 13

1.5 Correlated Survivals 15
1.5.1 Introduction 15

v



vi Contents

1.5.2 Model in discrete time: Hierarchical dependencies 16
1.5.3 Definition of the models 16
1.5.4 Regression model 17
1.5.5 Estimation 17

References 18

2 Corrected Score Estimation in the Cox Regression
Model with Misclassified Discrete Covariates 23
D. M. Zucker and D. Spiegelman

2.1 Introduction 24
2.2 Review of the Corrected Score Technique 25
2.3 Application to the Cox Survival Model 26

2.3.1 Setup 26
2.3.2 The method 27

2.4 Example 29
References 31

3 A Varying-Coefficient Hazards Regression Model
for Multiple Cross-Effect 33
H-D. I. Wu

3.1 Introduction 33
3.2 Illustration of the Piecewise-Constant Model 35
3.3 Estimation Under the Piecewise-Constant Setting 36
3.4 The Tests 37

3.4.1 Some specific tests 37
3.5 Data Analysis 39
3.6 Discussion 41

References 42

4 Closure Properties and Diagnostic Plots for the
Frailty Distribution in Proportional Hazards Models 43
P. Economou and C. Caroni

4.1 Introduction 43
4.2 Closure Properties of the Individual Frailty Distribution 44
4.3 Diagnostic Plots 47
4.4 Application 48
4.5 Shared Frailty 49

References 53

5 Multivariate Survival Data with Censoring 55
S. Gross and C. Huber-Carol

5.1 Introduction 55



Contents vii

5.2 Definition of the Models 56
5.2.1 Bivariate continuous model 56
5.2.2 Generalization to p components 56
5.2.3 Properties of the bivariate family 57
5.2.4 General bivariate model 57
5.2.5 The purely discrete model 58
5.2.6 Simple examples of laws of type (5.1) 58

5.3 Some Usual Bivariate Models 59
5.3.1 Clayton bivariate distribution 59
5.3.2 Marshall-Olkin bivariate distribution 60
5.3.3 Our quasi-Marshall-Olkin bivariate distribution 61
5.3.4 Gumbel bivariate distribution 61

5.4 NPML Estimation 62
5.4.1 Likelihood for the bivariate case 62
5.4.2 NPML estimation 62

5.5 Concluding Remarks 64
References 64

Part II: Reliability Theory—Degradation Models

6 Virtual (Biological) Age Versus Chronological Age 69
M. Finkelstein

6.1 Introduction 69
6.2 The Black Box Virtual Age 71
6.3 Information-Based Virtual Age 73

6.3.1 Degradation curve 73
6.3.2 Mean remaining lifetime 75

6.4 Virtual Age in a Series System 77
6.5 Concluding Remarks 80

References 80

7 A Competing Risks Model for Degradation and
Traumatic Failure Times 83
V. Couallier

7.1 Introduction 83
7.2 The Degradation Failure—Estimation of FA and FT0 84
7.3 A Joint Model with Both Degradation and

Traumatic Failure Times 87
7.4 A Joint Model with Two Failure Modes 90
7.5 Conclusion 91

References 92



viii Contents

8 Generalized Birth and Death Processes
as Degradation Models 95
V. Rykov

8.1 Introduction and Motivation 95
8.2 Generalized B&D Process. Preliminary 96
8.3 Steady-State Distribution 98
8.4 Conditional Distribution Given Lifetime 99
8.5 An Example 103
8.6 Conclusion 106

References 106

9 Nonperiodic Inspections to Guarantee a Prescribed
Level of Reliability 109
C. T. Barker and M. J. Newby

9.1 Introduction 109
9.2 The Model 110

9.2.1 The considered processes 110
9.2.2 Maintenance actions and nonperiodic inspections 111
9.2.3 Features of the model 114

9.3 Expected Total Cost 116
9.3.1 Expression of the expected total cost 117
9.3.2 Obtaining the solutions 118

9.4 Numerical Results and Comments 120
9.5 Conclusion 123

Appendix 124
References 125

10 Optimal Incomplete Maintenance for Weibull
Failure Processes 127
W. Kahle

10.1 Introduction 127
10.2 Kijima-Type Repairs 128
10.3 Parameter Estimation 129
10.4 Optimal Maintenance as Time Scale Transformation 131
10.5 Conclusion 135
References 135

11 Are Nonhomogeneous Poisson Process Models
Preferable to General-Order Statistics Models
for Software Reliability Estimation? 137
S. Kundu, T. K. Nayak, and S. Bose

11.1 Introduction 137



Contents ix

11.2 Connections Between NHPP and GOS Models 140
11.3 Some Aspects of Inference 142
11.4 Simulation Results 143
11.5 Discussion 149
References 150

12 Multistate System Reliability Assessment by
Using the Markov Reward Model 153
A. Lisnianski, I. Frenkel, L. Khvatskin, and Y. Ding

12.1 Introduction 153
12.2 Model Description 154

12.2.1 Generalized MSS reliability measure 154
12.2.2 Markov reward model: General description 155
12.2.3 Rewards determination for MSS reliability

computation 156
12.3 Numerical Example 157
12.4 Conclusions 166
References 167

Part III: Inferential Analysis

13 Asymptotic Certainty Bands for Kernel Density
Estimators Based upon a Bootstrap Resampling
Scheme 171
P. Deheuvels and G. Derzko

13.1 Introduction and Results 171
13.2 An Example of Application 177
13.3 Proofs 182

13.3.1 Proof of Theorem 13.1.1 182
References 185

14 Estimation of Rescaled Distribution 187
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Preface

The material of this volume was inspired by papers presented at BIOSTAT2006,
an international conference organized by the University of Cyprus and the Eu-
ropean Seminar—“Mathematical Methods in Survival Analysis, Reliability and
Quality of Life.” The conference was a part of a series of conferences, work-
shops, and seminars organized or co-organized by the European Seminar over
the years. BIOSTAT2006 took place in Limassol, Cyprus between May 29 to 31,
2006 with great success. It attracted over 100 participants from 30 countries.
The aim of this event was to bring together scientists from all over the world
that work in statistics in general and advance knowledge in fields related to
biomedical and technical systems. The publication of this volume comes at a
very special time because this year we are celebrating the tenth anniversary of
the inauguration of the European Seminar.

The volume consists of selected papers presented at BIOSTAT2006 but it
also includes other invited papers. The included papers nicely blend current
concerns and research interests in survival analysis and reliability. There is a
total of 37 papers which for the convenience of the readers are divided into the
following nine parts.

• Cox Models, Analyses, and Extensions

• Reliability Theory - Degradation Models

• Inferential Analysis

• Analysis of Censored Data

• Quality of Life

• Inference for Processes

• Designs

• Measures of Divergence, Model Selection, and Survival
Models

• New Statistical Challenges

The editors would like to thank all the authors for contributing their work to
this book as well as all the anonymous referees for an excellent job in reviewing
the papers and making their presentation the best possible. We would also
like to thank Professor Alex Karagrigoriou whose help was invaluable during
the organization of the conference as well as the preparation of this volume.
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this volume in a camera-ready form. Special thanks are due to the Department
of Mathematics and Statistics of the University of Cyprus which financially
supported the publication of this volume.
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Extended Cox and Accelerated Models

in Reliability, with General Censoring

and Truncation

Catherine Huber-Carol1 and Mikhail Nikulin2

1 Université Paris 5 and Unité INSERM 870, Paris, France
2 IMB, Université Victor Segalen, Bordeaux, France

Abstract: We review recent developments in reliability or survival analysis. We
consider various models for the time to failure or survival time, by a law on IR+

that may depend on one or more factors. Inhomogeneity is taken into account
by way of frailty models. The presence of censoring and truncation of a general
type, more complex than the usual simple case of right censoring, induced the
most recent developments on these topics. In the case of clusters of items or
families of patients implying a possible dependence between multiple failure
times, shared frailty models or hierarchical dependency models are considered.

Keywords and Phrases: Accelerated failure time models, censoring, clus-
ters, correlated survival data, cross-effect, discrete time, extended Cox models,
inhomogeneity problems, logistic model, survival data, truncation

1.1 Cox Model and Extensions

Let the failure time X have survival function S(x) = P (X ≥ x), density f =
−dS/dx, hazard λ(x) = f(x)/S(x), and cumulative hazard Λ(x) =

∫ x
0 λ(u)du.

1.1.1 The simple Cox model

The basic Cox model assumes that conditional on a p-dimensional covariate
Z = z, the hazard rate verifies

λ(x|z) = λ0(x)e(<β,z>),

where β is an unknown p-dimensional parameter and λ0 an unknown function
of x. It is the most popular model because it leads to very easy interpretation of

3
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the impact of each component of the covariate, over all when they are constant
in time. But it suffers some limitations. Let the covariates be constant in time at
the moment. First, the multiplicative dependence on the covariate z, assumed to
be exponential, could be replaced by a function ϕ(z); the corresponding model
is called a proportional hazard (PH) model (see Definition 1.4.4). The second
limitation is that the model depends only on the time x elapsed between the
starting event (e.g., diagnosis) and the terminal event (e.g., death), and not on
the chronological time t; it is actually assumed to be homogeneous in chronolog-
ical time. One could introduce a dependence on x and t. The third limitation is
that the effect of a given covariate is constant in time. This leads to the fact that
the survival functions S(·|z) and S(·|z′) corresponding to two distinct values z
and z′ of Z are always ordered, for example, S(x|z) < S(x|z′)∀x, without any
possibility of crossing. A fourth limitation is that if one pertinent covariate is
omitted, even if it is independent of the other covariates in the model, averaging
on the omitted covariate gives a new model that is no longer of Cox type, and if
it is treated as such, this leads to (possibly very) biased estimates [Bretagnolle
and Huber (1988)] of the regression coefficients β. Frailty models take care of
this case, introducing heterogeneity in the Cox model.

1.1.2 Nonhomogeneity in chronological time

In order to take into account the effect of the initial time t, there are several
possibilities: either add it, possibly categorized, as a (p + 1)th component of
covariate Z = (Z1, . . . , Zp) or have a baseline hazard which is both a function
of x and t, λ0 = λ0(x; t). The second proposal is due to Pons (2000, 2002a) and
Pons and Visser (2000) who studied its asymptotic properties allowing for the
use of the following model,

λ(x|t, z) = λ0(x; t)e<β,z(t+x)>.

The usual Nelson–Aalen estimator for the cumulative hazard Λ is a kernel
estimate [Pons and Visser (2000)], with kernel K a continuous symmetric den-
sity, with support [−1,+1] and Khn(s) = (1/hn)K(s/hn), where hn −→ 0 at a
convenient rate

Λ̂n,X|S(x; s;β) =
∑

i

Khn(s− Si)δi1{Xi ≤ x}
nS(0)

,

where S(0) is defined as

S(0) = (1/n)
∑

j

Khn(s − Sj)Yj(x)e<β,Zj(Sj+x)>,

and β̂n maximizes the partial likelihood:

ln(β) =
∑

i

δi[< β,Zi(T 0
i ) > − ln{nS(0)(Xi; s;β)}]εn(Si),
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where εn(s) = 1{s ∈ [hn, τ − hn]}. Good asymptotic properties of those
estimators were proved. Also a goodness-of-fit test was derived, as well as a
test of H0; the model is Cox, homogeneous in time; λX|S(x; s) ≡ λX(x) against
H1; the model depends also on chronological time: λX|S(x; s).

1.1.3 Effect not constant in time

The simplest way to involve effects not constant in time of some covariates
is to consider that β is actually piecewise constant. This can be viewed as a
breakpoint problem with the step function β(x) having an unknown number k
of steps (known to be bounded by a fixed constant k0) as well as an unknown
localization of the jumps, depending on the admissible complexity of the model.
Another way is to consider that the constant ratio β may vary as a function
of an observed covariate Z0 ∈ IR: β = β(Z0), such that Z0 ∼ f0 for some
density f0. The corresponding model [Pons (2000)] is

λ(t|Z0, Z) = λ0(t)e<β(Z0),Z(t)>.

Observations are (Ti, δi, Zi0, Zi), Ti = T 0
i ∧Ci, δi = 1{T 0

i ≤ Ci}, i = 1, . . . , n.
The problem is to estimate β(z0) on a compact subset JZ0 of the support of Z0.
β̂n(z0) maximizes the partial likelihood

ln,z0(β) =
∑
i≤n

δiKhn(z0 − Zi0)

×

⎡⎣< β,Zi(Ti) > − ln

⎧⎨⎩∑
j≤n

Khn(z0 − Zj0)Yj(Ti)e<β,Zj(Ti)>

⎫⎬⎭
⎤⎦,

and hence we get the following estimator of the cumulative hazard Λ0

Λ̂n(t) =
∑

i:Ti≤t

δi

S
(0)
n (Ti)

,

where
S(0)

n (s) =
∑

j

Yj(s)1{Zj0 ∈ JZ0}e<β̂n(Zj0
),Zj(Ti)>.

1.1.4 Omitted pertinent covariate: frailty models

Let the Cox model be true, but one component of the covariate Z is omitted
or unobserved, say the (p + 1)th component. S(t|Z ′ = (z1, . . . , zp)) is equal to
S(t|Z = (z1, . . . , zp+1)) averaged on zp+1. Denoting

η = eβp+1zp+1 ,
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the corresponding model is a frailty model thus defined: η is a positive random
variable, the survival of subject i, i = 1, . . . , n, whose p-dimensional covariate zi

is observed and frailty ηi is not observed, but has known distribution function
Fη on IR+. The Xis are independent and their survival function S and hazard
function h obey the following frailty model, where β ∈ Rp is an unknown
regression parameter, λ(t) the unknown baseline hazard, and Λ(t) =

∫∞
0 λ(u)du

the baseline cumulative hazard.

h(t|z, η) = ηeβT zλ(t) (1.1)

S(t|z, η) = e−ηeβT zΛ(t)

S(t|z) =
∫ ∞

0
e−xeβT zΛ(t)dFη(x) = e−G(eβT zΛ(t)), (1.2)

where G is equal to − log of the Laplace transform of η:

G(y) = − ln
(∫ ∞

0
e−uydFη(u)

)
. (1.3)

The two most popular frailty distributions are the gamma [Clayton–Cuzick
(1985) frailty model] with mean 1 and variance c, and the inverse Gaussian with
mean 1 and variance 1/2b; see, for example, Bagdonavicius and Nikulin (1998,
2002). The respective functions G defined in (1.3) are equal to:

G(x, c) =
1
c

ln(1 + cx), c > 0

G(x, b) =
√

4b(b + x)− 2b, b > 0.

1.2 General Censoring and Truncation

1.2.1 Definition

Very often, the failure or survival time X is right-censored and classical sta-
tistical inference is obtained under this assumption. But it may also happen
rather frequently that X is both-censored, in a more general way than on its
right, and also truncated, so that the Xis are generally not observed. Instead,
one observes two intervals (Ai, Bi), which are, respectively, the censoring in-
terval, Ai = [Li;Ri], and the truncating interval ]Li;Ri[, such that Bi ⊃ Ai.
This means that Xi is not observed but is known to lie inside Ai, and Ai itself
is observed only conditionally on the fact that it is inside the truncating in-
terval Bi. Otherwise, the corresponding subject is said to be “truncated;” that
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is, it does not appear in the sample. Finally, for the n subjects who are not
truncated, the observations are (Ai, Bi, zi), i ∈ {1, 2, . . . , n}. When in model
(1.2), there is no covariate and G is the identity, the nonparametric maximum
likelihood estimate under general censoring and truncation is due to the early
work of Turnbull (1976). It was then extended to the semiparametric Cox model
by Alioum and Commenges (1996), and to the general frailty model (1.2) by
Huber-Carol and Vonta (2004). The consistency of the NPML estimate of the
density of X was proved [Huber-Carol et al. (2006)] under regularity conditions
on the laws of X and of the censoring and truncation schemes.

1.2.2 Maximum likelihood estimation for frailty models

Under the above censoring and truncation scheme, the likelihood is propor-
tional to

l(S) =
n∏

i=1

li(Si) =
n∏

i=1

PSi(Ai)
PSi(Bi)

=
n∏

i=1

{
Si(L−

i )− Si(R+
i )
}{

Si(L+
i )− Si(R−

i )
} . (1.4)

Following Turnbull (1976), we define the “beginning” set L̃ and the “finish-
ing” set R̃, in order to take advantage of the fact that the likelihood is maximum
when the values of Si(x) are the greatest possible for x ∈ L̃ and the smallest
possible for x ∈ R̃:

L̃ = {Li, 1 ≤ i ≤ n} ∪ {Ri, 1 ≤ i ≤ n} ∪ {0}

R̃ = {Ri, 1 ≤ i ≤ n} ∪ {Li, 1 ≤ i ≤ n} ∪ {∞}.

Let

Q = {[q′jp′j] : q′j ∈ L̃ , p′j ∈ R̃ , [q′jp
′
j ] ∩ L̃ = ∅ , [q′jp

′
j ] ∩ R̃ = ∅}

0 = q′1 ≤ p′1 < q′2 ≤ p′2 < · · · < q′v ≤ p′v = ∞.

Then,
Q = ∪v

j=1[q
′
j, p

′
j ] = C ∪W ∪D,

where

C = ∪[q′j, p
′
j] covered by at least one censoring set,

W = ∪[q′j, p
′
j] covered by at least one truncating set,

but not covered by any censoring set,
D = ∪[q′j, p

′
j] not covered by any truncating set.

The special case of G ≡ Id and β = 0 was studied in detail in Turnbull
(1976), followed by Frydman (1994) and Finkelstein et al. (1993). The above
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likelihood, for the general frailty model (1.2) as a function of the unknown β
and Λ, is equal to

l(Λ, β|(Ai, Bi, zi)i∈{1,..,n}) =
n∏

i=1

{
e−G(eβT ziΛ(L−

i )) − e−G(eβT ziΛ(R+
i ))
}{

e−G(eβT ziΛ(L+
i )) − e−G(eβT ziΛ(R−

i ))
} .

As in the special case where G = Id and β = 0 in (1.2), the NPML esti-
mator of Λ for the frailty model (1.1) is not increasing outside the set C ∪D
[Huber-Carol and Vonta (2004)]. Moreover, conditionally on the values of Λ(qj

−)
and Λ(pj

+), 1 ≤ j ≤ m, the likelihood does not depend on how the mass
Λ(pj

+)−Λ(qj
−) is distributed in the interval [qj , pj]. From this remark follows

the estimation of Λ and β. The special case of G = Id was studied by Alioum
and Commenges (1996).

1.3 Discrete Time: Logistic Regression Models
for the Retro-Hazard

A very classical example of censored and truncated survival data is the
retrospective AIDS induction time for patients infected by blood transfusion
[Kalbfleisch and Lawless (1989)]. See Figure 1.1. The starting date Y1, in-
fection time, is reached retrospectively from Y2, the time of onset of AIDS.
0 < Y1 + X ≤ b holds, which means that X is right-truncated by b−Y1. When,
moreover, one knows that Y1 took place after the first transfusion, Y0, X may
be also left-censored by Y2−Y0. We have there a censoring variable C = Y2−Y0

and a truncating variable T = b−Y1. We have there data that are left-censored
and right-truncated. The treatment of this kind of data is the same as the treat-
ment of right-censored left-truncated data, that is implied hereafter. Assuming
now that, for those censored and truncated data, time is discrete, with values
{1, 2, . . . , k}. X is the survival, C the right-censoring and T the left-truncating

a

0

bY1 Y2

Infection Time AIDS
X

X = Y2 − Y1 : AIDS induction time.

Figure 1.1. AIDS example of right-truncation.
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variable, they are independent, and the model for X is the logistic model for
the retro-hazard h∗(t)dt = [f(t)dt]/[1 − S(t)]:

log
h∗(t|Z(t) = z)

1− h∗(t|Z(t) = z)
= 〈β, z〉, t ∈ {1, 2, . . . , T}.

Gross and Huber (1992) obtain nonparametric estimators and tests for the
saturated model when all covariates are categorical, for the three laws of X,
the survival, C the censoring, and T the truncation, using a special partial
likelihood. In Figure 1.2, observations take place in the hatched triangle, due
to left-truncation, and the risk set at time i is the hatched rectangle.

0 1 2 i k X

1

2

i

k

T

Figure 1.2. Risk zone for right-censored and left-truncated discrete times.

1.4 Accelerated Failure Time Models (AFT)

Enforced controlled stresses are meant to reduce the time on test. It is used
in particular for tires, brakes, and more generally for planes and train equip-
ment, hence the need for a transfer functional [Bagdonavicius and Nikulin (1997,
1998)] allowing an interpolation from the time to failure under enforced stress
to the time to failure under regular stress, the Sedyakin principle.
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1.4.1 Sedyakin principle

Let E1 be the set of constant stresses and E2 the step stresses, thus defined:

E2 = {Z(·) : Z(t) = Z1 11{0 ≤ t ≤ t0}+ Z2 11{t > t0};Z1, Z2 ∈ E1}.

The Sedyakin principle may then be formulated as follows for step stresses.

Definition 1.4.1 (Sedyakin principle (AS) on E2) Let Z1(·) and Z2(·) be
two stresses. We say that t1 ∼ t2 if S(t1|Z1(·)) = S(t2|Z2(·)). If Z1(·) = Z1

constant, Z2(·) = Z2 constant, and Z(t) = Z1 11{0 ≤ t ≤ t1} + Z2 11{t > t1},
then the Sedyakin principle (AS) on E2 holds if

λ(t1 + s|Z(·)) = λ(t2 + s|Z2).

Let E be the set of the general stresses that are p-dimensional left-continuous
processes having right limits. Then, the Sedyakin principle for general stress is
the following.

Definition 1.4.2 (Generalized Sedyakin principle (AGS) on E). A model
obeys the generalized Sedyakin assumption (AGS) if there exists a function g
such that

λ(t|Z(s) 0 ≤ s ≤ t) = g(Z(t), S(t|Z(s) ; 0 ≤ s ≤ t)).

It means that the hazard rate λ(t|Z(·)) is independent of the past condi-
tionally on Λ(t|Z(s), 0 ≤ s < t):

Λ(t|Z(·))
(λ(t|Z(·))) ⊥ F t−

or equivalently on S(t|Z(s), 0 ≤ s < t) sometimes called the resource.

1.4.2 Definition of AFT models

Loosely speaking, an accelerated model is a model based on a given survival
function G and a transformation α(t) of time t, where α is a nondecreasing
function: S(t) = G(α(t)). This acceleration (α > Id) or deceleration (α < Id)
takes place through a positive function r of the stress Z(s); 0 < s ≤ t.

Definition 1.4.3 (AFT model on E) A model is AFT on E if there exists a
survival function G and a positive function r such that:

S(t|Z(s), 0 ≤ s ≤ t) = G(
∫ t

0
r(Z(s))ds) ∀Z ∈ E .

In the simple case of a constant stress Z ∈ E1 : Z = z0:

S(t|Z) = G(r(z0)t) ∀Z ∈ E1. (∗)
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There is a relationship between the Sedyakin (AGS) and AFT models [Meeker
and Escobar (1998), Bagdonavicius and Nikulin (2000b)]: AGS and (∗) hold
⇐⇒ ∃q > 0, r > 0 such that

λ(t|Z(·)) = r(Z(t)) ∗ q(S(t|Z(·))).

An AFT model on E2 is such that if Z1 and Z2 are constant stresses, and
Z(t) = Z1 11{0 ≤ t ≤ t1}+ Z2 11{t > t1}, then

t2 =
r(Z1)
r(Z2)

∼ t1

S(t|Z(·)) =
{

S(t|Z1), 0 ≤ t < t1
S(t− t1 + t2|Z2), t ≥ t1

.

1.4.3 Relationships between accelerated (AFT) and
proportional hazard (PH) models

The Cox model is a particular case of the more general proportional hazard
(PH) models:

Definition 1.4.4 (PH model) A PH model on E is such that, for two positive
functions r and λ0, the hazard rate verifies:

λ(t|Z(·)) = r(Z(t)) λ0(t) ∀Z(·) ∈ E .

Then Λ(t|Z(·)) =
∫ t
0 r(Z(s))dΛ0(s) and S(t|Z(·)) = e−

∫ t
0

r(Z(s))dΛ0(s), where
Λ0(t) =

∫ t
0 λ0(s)ds, and S0(t) = e−Λ0(t). The simple case of a PH model on

E1 gives λ(t|Z) = r(Z)λ0(t) ∀Z ∈ E1. The corresponding survival is then
S(t|Z) = S

r(Z)
0 (t) = e−r(Z)Λ0(t). Let ρ(Z1, Z2) = r(Z2)/r(Z1). Then S(t|Z2) =

S(t|Z1)ρ(Z1,Z2). If PH holds on E2, then ∀Z(·) ∈ E2 such that for two constant
stresses Z1 and Z2, Z(t) = Z1 11{0 ≤ t ≤ t1}+ Z2 11{t > t1},

λ(t|Z(·)) =

{
λ(t|Z1) = r(Z1)λ0(t), 0 ≤ t ≤ t1

λ(t|Z2) = r(Z2)λ0(t), t > t1

and

S(t|Z(·)) =

⎧⎨⎩ S(t|Z1), 0 ≤ t ≤ t1

S(t|Z2)
S(t1|Z1)
S(t1|Z2)

, t > t1
.
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1.4.4 Relationships between Sedyakin and PH: MPH models

Bagdonavicius and Nikulin (2002) define a proportional hazard model that
obeys the Sedyakin principle.

Definition 1.4.5 (Modified PH model: MPH) A model is Sedyakin
(AGS) on E and PH on E1 and called MPH if and only if, for two functions
r and λ0,

λ(t|Z(·)) = r(Z(t))λ0

(
Λ−1

0

(
Λ(t|Z(·))
r(Z(t))

))
.

If MPH holds on E2, then ∀Z(·) ∈ E2 such that for two constant stresses Z1

and Z2:

Z(t) = Z1 11{0 ≤ t ≤ t1}+ Z2 11{t > t1}

t2 = S−1((S(t1, Z1))ρ(Z2,Z1))

then

S(t|Z(·)) =

{
S(t|Z1), 0 ≤ t < t1

S(t− t1 + t2|Z2), t ≥ t1
.

1.4.5 Generalized PH models (GPH) on E
Bagdonavicius and Nikulin (1998, 2002) define two distinct generalized PH
models, GPH1 and GPH2.

Definition 1.4.6 (GPH1) A model is GPH1 if and only if, for two positive
functions r and λ0, the hazard λ verifies

λ(t|Z(·)) = r(Z(t)) ∗ q{Λ(t, Z(·))} ∗ λ0(t).

When q ≡ 1 this is simply a PH model, whereas λ0(t) ≡ λ0 constant gives
the AFT model.

Definition 1.4.7 (GPH2) A model is GPH2 if and only if, for two positive
functions u and λ0,

λ(t|Z(·)) = u(Z(t),Λ(t|Z(·))) ∗ λ0(t).

λ0(t) ≡ λ0 constant gives a GS model on E , and u(Z, s) = r(Z)q(s) gives a
GPH1 model. Model GPH1 holds on E if and only if there exist two survival
functions G and S0 such that

S(t|Z(·)) = G

{∫ t

0
r(Z(s))dH(S0(s))

}
,
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where H = G−1. Function fG defined as

fG(t|Z(·)) = H(S(t|Z(·)))

is called the transfer functional. It is the G-resource used until time t under
stress Z. It is actually a transfer of quantiles. More about these models and
other time transformation models can be found in Wu et al. (2002), Scheike
(2006), Nikulin and Wu (2006), Dabrowska and Doksum (1998), and Wu (2006),
among others.

1.4.6 General models

There are many relationships between those models. One can construct a general
model that contains most of the models defined above.

1. Accelerated model (AFT)

λ(t|Z) = r(Z)q{S(t|Z)}.

2. Generalized proportional models of type 1 (GPH1)

λ(t|Z) = r(Z)q{Λ(t)}

include the following submodels:

q(v) = 1 (PH)
q(v) = (1 + v)γ+1

q(v) = eγv

q(v) = 1
(1+γv) .

3. Generalized proportional models of type 2 (GPH2)

λ(t|Z) = u{Z,Λ(t|Z)}λ0(t)

whose submodels correspond to various choices of function u.

1.4.7 Modeling and homogeneity problem

General models, considered here, are very useful not only for construction of
goodness-of-fit tests for the PH model but they also give the possibility of
constructing goodness-of-fit tests for a data homogeneity hypothesis. Following
Bagdonavicius and Nikulin (2005) we give three models here, each including
the PH model.

Generalized proportional hazards (GPH) model on E1:

λ(t, |Z) = eβT Z(1 + γeβT ZΛ0(t))
1
γ
−1 ∗ λ0(t).
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This model has the following properties on E1: the ratios of the hazard
rates increase, decrease, or are constant; and the hazard rates and the survival
function do not intersect in the interval (0,∞).

Simple cross-effects (SCE) model E1:

λ(t, |Z) = eβT Z{1 + e(β+γ)T
Λ0(t)}e

−γT Z−1 ∗ λ0(t).

The SCE model has the following properties on E1: the ratios of the hazard
rates increase, decrease, or are constant; and the hazard rates and the survival
function do not intersect or intersect once in the interval (0,∞).

Multiple cross-effects (MCE) model E1:

λ(t, |Z) = eβT Z
(
1 + γT ZΛ0(t) + δT ZΛ2

0(t)
)
λ0(t).

The MCE model has the next properties on E1: the ratios of the hazard rates
increase, decrease, or are constant, the hazard rates and the survival function
do not intersect, intersect once or twice in the interval (0,∞).

The parameter γ is one-dimensional for the GPH model and m-dimensional
for the SCE model; the parameter δ is m-dimensional. The PH model is a
particular case with γ = 1 (GPH), γ = 0 (SCE), and δ = γ = 0 (MCE). The
homogeneity (no lifetime regression) takes place if γ = 1, β = 0 (GPH), γ = 0,
β = 0 (SCE), β = δ = γ = 0 (MCE). At the end let us consider the so-called
Hsieh model (2001), which is also a SCE model. According to the idea of Hsieh,
one possible way to obtain a cross-effect of hazard rates is to take a power
function of Λ0:

Λx(t) = r(x1)Λ
ρ(x2)
0 (t), λx(t) = r(x1)ρ(x2)Λ

ρ(x2)−1
0 (t)λ0(t),

where x = (x1, x2), x1, x2 ∈ E1, r(·), ρ(·) : E → R1
+. Using natural parameteri-

zation r(x1) = eβT x1 and ρ(x2) = eγT x2 we have the model

Λx(t) = eβT x1ΛeγT x2

0 (t).

In the particular case x1 = x2 = x the obtained model is

λx(t) = e(β+γ)T xΛeγT x−1
0 (t)λ0(t).

For any two covariates x, y the ratio λx(t)/λy(t) is increasing from 0 to ∞
or decreasing from ∞ to 0. So we have a cross-effect of the hazard rates. About
estimation, testing, and computational methods for all models considered here,
see, for example, Tsiatis (1981), Cheng et al. (1995), Dabrowska (2005, 2006),
Hsieh (2001), Wu (2004, 2006, 2007), Martinussen and Scheike (2006), Slud
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and Vonta (2004), Huber-Carol et al. (2006), and Zeng and Lin (2007), among
others.

1.5 Correlated Survivals

1.5.1 Introduction

We first present several examples of data having the structure of correlated sur-
vival data. In diabetic retinopathy, the cluster is constituted by each diabetic
patient. The survival time is the time to blindness onset for each eye sepa-
rately. Two types of covariates may have an impact on the time to onset: the
treatment, called a structural covariate, cluster covariates such as sex and age,
and individual covariates such as past history of each eye. The time to onset is
censored by death prior to blindness. In animal experiments on litters of rats,
each litter is a cluster, and the treatment is a supposed carcinogenic product
injected regularly into each rat. The survival time is the time to onset of a tu-
mor. Again the structural covariate is the treatment, the individual covariates
are sex, age, and weight. The censoring takes place when death occurs before
the onset of a tumor. In genetic epidemiology, the cluster is a pair of twins or a
family. The survival time is the age at onset of a specific chronic disease. The
structural covariates are the position inside the family (father, mother, male
sibling, etc.) and individual covariates are sex, and so on. Time is again cen-
sored by death or lost to followup. The following picture illustrates the data
structure.

��
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��
��

��
��

��
��

��
��

� � � �� � � �� � � �� � �

cluster 1 ... cluster k .................cluster K
n1................ nk ....................... nK

Classical proposals to take into account the correlation induced by the clus-
ters are frailty or copula models. There are two kinds of frailty well distin-
guished by Parner (1998). First, is shared frailty, which is more appropriate for
taking into account inhomogeneity than dependence, as it gives the possibility
of estimating the frailty distribution parameter when only one of two twins
is observed. Second is shared and correlated frailty. Gross and Huber (2002)
proposed a logisticlike family model in discrete time, related to hierarchical
log-linear models which is detailed in the next section.
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1.5.2 Model in discrete time: Hierarchical dependencies

Xki is the survival time of subject i in cluster k, and Cki is the associated
right-censoring time. Actually, what is observed is:

Tki = Xki ∧ Cki observed duration.
Dki = I{Xki ≤ Cki} death indicator.

Globally data are summarized by the pair of variables (T,D) or else the
two-dimensional process (R,Y ), where R is the couple of the “at risk” and
event processes:

T = {Tki; 1 ≤ k ≤ K ; 1 ≤ i ≤ nk}
D = {Dki; 1 ≤ k ≤ K ; 1 ≤ i ≤ nk}

Rki(t) =
{

1 if Tki ≥ t
0 otherwise

Yki(t) =
{

1 if DkiTki = t
0 otherwise.

In the case of discrete time, if N is the maximum size of the clusters, data are
summarized through two arrays of 0 and 1, of dimension T ×N ×K: RT×N×K ,
the at-risk array, and the event array YT×N×K .

1.5.3 Definition of the models

The model parameters are pr,y(t) such that

P (Y = y|R = r; t) =
1

c(r, t)
exp

{ ∑
0<r′≤r

0≤y′≤r′∧y

pr′,y′(t)

}

and the normalization constant is c(r,t):

c(r, t) = 1 +
∑
s′≤r

exp

{ ∑
0<r′≤r

0<y′′≤r′∧y′

pr′,y′′(t)

}
.

Each model is characterized by the set R of those parameters pr,y that are equal
to 0 and is thus denoted H(R); the saturated model is the one for which this set
is the empty set ∅. Especially interesting are the so-called hierarchical models
defined below.

Definition 1.5.1 (Hierarchical models H(R)) A model is said to be hier-
archical if all pr,y such that r /∈ R are equal to 0, where R is a family of subsets
of {1, 2, . . . , N}, such that for any R in R and R′ ⊂ R, R′ ∈ R.
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Definition 1.5.2 (Model of order k, Hk) If all pr,y such that
∑

i ri > k are
equal to 0, the corresponding model is called a model of order k and called
Hk, as all interactions up to order k are included, whereas interactions of order
greater than k are excluded.

Models Hk are a special case of hierarchical models. More generally, a model
may be defined by the pair (R,Y) such that pr,y = 0 except if r ∈ R and y ∈ Y,
y ⊂ Y.

1.5.4 Regression model

Let us now include covariates in the models: The pr,y are modeled linearly in
terms of time t and individual profiles, and the partial likelihood is a function
of the following counts of clusters at time t,

N(r, y, t) = count of clusters s.t.
{

risk set = r
jump set = y

N(r, t) = count of clusters s.t. risk set = r.

1.5.5 Estimation

Theorem 1.5.1 (Sufficient statistics) Under the general model of depen-
dence (R,Y) and with some regularity conditions fulfilled, the sufficient statis-
tics for the parameters of the model are the counts N(r, t) and N(r, y, t) for
t ∈ {1, 2, . . . , T} and (r, y) ∈ R⊗ Y.

Under right censoring, the same counts are the only statistics involved in
the partial likelihood. One can prove consistency and asymptotic normality: p∗

= true set of p parameters (R∗,Y∗) ⊂ (R,Y) ≡ (r∗, y∗) combinations, for which
P ∗(R = r∗) and P ∗(Y = y∗|R = r∗, t) are strictly positive. Σ = matrix of the
second derivatives of the log-likelihood with respect to the parameters pr∗,y∗ ,
whose general entry, for pr∗0 ,y∗

0
(t), pr∗1 ,y∗

1
(t), is, dropping the asterisk,

Σpr0,y0(t),pr1,y1(t)

=
∑

{r: r≥r0∨r1}
N(r, t){P{Y (t) ≥ (y0 ∨ y1)|R(i) = r}

− P{Y (t) ≥ y0|R(t) = r}P{Y (t) ≥ y1|R(t) = r}}.

As the number of clusters K tends to infinity,

N(r, t)
K

a.s.−→ P ∗(r, t),

the true probability that R(t) = r. Similarly,

N(r, y, t)
K

a.s.−→ P ∗(r, y, t),
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the true joint probability that R(t) = r and Y (t) = y, for t ∈ {1, 2, . . . , T}.
Consequently,

Σ
K

a.s.−→ Σ∗,

with typical entry:

Σ∗
pr0,y0(t),pr1,y1(t)

=
1
K

∑
{r: r≥r0∨r1}

P ∗(r, t){P ∗{Y (i) ≥ (y0 ∨ y1)|R(t) = r}

−P ∗{Y (t) ≥ y0|R(t) = r}P ∗{Y (t) ≥ y1|R(t) = r}} .

Theorem 1.5.2 (Consistency and as. normality) If

1. For all (r′, y′) included in the model there exists a pair (r, y), also included
in the model and such that r ⊇ r′ and s ⊇ s′, and P ∗(R = r) and
P ∗(Y = y|R = r, t) are strictly positive,

2. Σ is nonsingular in a neighborhood of the true value p∗ of the parameters,
as K tends to infinity; the partial likelihood estimate p̂K of the parameters
p is consistent and asymptotically normal:

√
K(p̂K − p0)

L−→ N(0,Σ∗−1
).
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David M. Zucker1 and Donna Spiegelman2

1Department of Statistics, Hebrew University, Jerusalem, Israel
2Departments of Epidemiology and Biostatistics, Harvard School of Public
Health, Boston, MA, USA

Summary: We consider Cox proportional hazards regression when the covari-
ate vector includes error-prone discrete covariates along with error-free covari-
ates that may be discrete or continuous. The misclassification in the discrete
error-prone covariates is allowed to be of arbitrary form. Building on work of
Nakamura and his colleagues, we develop a corrected score method for this set-
ting. The method can handle all three major study designs (internal validation
design, external validation design, and replicate measures design), both func-
tional and structural error models, and time-dependent covariates satisfying a
certain “localized error” condition. This chapter presents the method, briefly
describes its asymptotic properties, and illustrates it on data from a study of the
relationship between dietary calcium intake and distal colon cancer. Zucker and
Spiegelman (2007, 2008) present further details on the asymptotic theory and
a simulation study under Weibull survival with a single binary covariate having
known misclassification rates. In these simulations, the method presented here
performed similarly to related methods we have examined in previous work.
Specifically, our new estimator performed as well as or, in a few cases, better
than the full Weibull maximum likelihood estimator. In further simulations for
the case where the misclassification probabilities are estimated from an exter-
nal replicate measures study our method generally performed well. The new
estimator has a broader range of applicability than many other estimators pro-
posed in the literature, including those described in our own earlier work, in
that it can handle time-dependent covariates with an arbitrary misclassification
structure.

Keywords and Phrases: Errors in variables, nonlinear models, proportional
hazards
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2.1 Introduction

Many regression analyses involve explanatory variables that are measured with
error. It is well known that failing to account for covariate error can lead to
biased estimates of the regression coefficients. For linear models, theory for han-
dling covariate error has been developed over the past 50 or more years; Fuller
(1987) provides an authoritative exposition. For nonlinear models, theory has
been developing over the past 25 or so years. Carroll et al. (2006) provide a com-
prehensive summary of the development to date; currently, the covariate error
problem for nonlinear models remains an active research area. In particular,
beginning with Prentice (1982), a growing literature has developed on the Cox
(1972) proportional hazards survival regression model when some covariates are
measured with error. In this chapter, we focus on discrete covariates subject to
misclassification, which are of interest in many epidemiological studies.

Three basic design setups are of interest. In all three designs, we have a
main survival cohort for which surrogate covariate measurements and survival
time data are available on all individuals. The designs are as follows: (1) the
internal validation design, where the true covariate values are available on a
subset of the main survival cohort; (2) the external validation design, where the
measurement error distribution is estimated from data outside the main survival
study; and (3) the replicate measurements design, where replicate surrogate
covariate measurements are available, either on a subset of the survival study
cohort or on individuals outside the main survival study. Also, two types of
models for the measurement error are of interest [see Fuller (1987, p. 2) and
Carroll et al. (2006, Section 1.2)]: structural models, where the true covariates
are random variables, and functional models, where the true covariates are fixed
values. Structural model methods generally involve estimation of some aspect
of the distribution of the true covariate values; in functional model methods,
this process is avoided.

The Cox model with covariate error has been examined in various settings.
Zucker and Spiegelman (2007, 2008) give a detailed review of the existing work.
Much of this work focuses on the independent additive error model, under which
the observed covariate value is equal to the true value plus a random error whose
distribution is independent of the true value. For discrete covariates subject
to misclassification, this model practically never holds, and so the methods
built upon it do not apply. Other methods exist, but are subject to various
limitations. There is a need for a convenient method for all three study designs
that can handle general measurement error structures, both functional and
structural models, and time-dependent covariates. The aim of our work is to
provide such a method for the case where the error-prone covariates are discrete,
with misclassification of arbitrary form. Our method builds on a corrected score
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approach developed by Akazawa et al. (1998) for generalized linear models. We
begin by reviewing their work, and we then present our extension to the Cox
model.

2.2 Review of the Corrected Score Technique

We work with a sample of n independent individuals. Associated with each
individual i is a response variable Ti and a p-vector of covariates Xi. The con-
ditional density or mass function of Ti given Xi is denoted by f(t|Xi,θ), where
θ is a q-vector of unknown parameters, which includes regression coefficients
and auxiliary parameters such as error variances. We have in mind mainly gen-
eralized linear models such as linear, logistic, and Poisson regression, but we
present the theory in a general way. We denote the true value of θ by θ0. Ex-
tending Akazawa et al. (1998), we partition the vector Xi into Wi and Zi,
where Wi is a p1-vector of error-prone covariates and Zi is a p2-vector of error-
free covariates. We denote the observed value of Wi by W̃i. The vector Wi is
assumed to be discrete, with its possible values (each one a p1-vector) denoted
by w1, . . . ,wK . The range of values of W̃i is assumed to be the same as that
for Wi. We denote by k(i) the value of k such that W̃i = wk. The vector Zi of
error-free covariates is allowed to be either discrete or continuous. We denote
A

(i)
kl = Pr(W̃i = wl|Wi = wk,Zi, Ti), which defines a square matrix A(i) of

classification probabilities. As the notation indicates, we allow the classification
probabilities to depend on Zi and Ti (e.g., through a suitable model). This
feature can be useful in certain applications; in others, it is sensible to assume
that the same classification probabilities apply to all individuals. We assume
for now that A(i) is known. We denote by B(i) the matrix inverse of A(i). We
assume this inverse exists, which will be the case if the misclassification is not
too extreme [cf. Zucker and Spiegelman, (2004, Appendix A.1)]. When individ-
ual i is a member of an internal validation sample, for the estimation of θ we
set W̃i = Wi and replace A(i) by the identity matrix.

Define u(t,w, z,θ) = [∂/∂θ] log f(t|w, z,θ) and ui(θ) = u(Ti,Wi,Zi,θ).
The classical normalized likelihood score function when there is no covariate
error is then given by U(θ) = n−1

∑
i ui(θ), and the maximum likelihood es-

timate (MLE) is obtained by solving the equation U(θ) = 0. Under classical
conditions, Eθ0 [U(θ0)] = 0 and the MLE is consistent and asymptotically nor-
mal. The idea of the corrected score approach is to find a function u∗(t, w̃, z,θ)
such that

E[u∗(Ti,W̃i,Zi,θ)|Wi,Zi, Ti] = u(Ti,Wi,Zi,θ). (2.1)

Then, with u∗
i (θ) = u∗(Ti,W̃i,Zi,θ), we use the modified likelihood score

function U∗(θ) = n−1
∑

i u
∗
i (θ) in place of U(θ) as the basis for estimation.
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The estimation equation thus becomes U∗(θ) = 0. In the case of discrete error-
prone covariates, as shown by Akazawa et al. (1998), a function u∗ satisfying
(2.1) is given by a simple formula:

u∗
i (θ) =

K∑
l=1

B
(i)
k(i)lu(Ti,wl,Zi,θ). (2.2)

Let Ji(θ) be the matrix with elements Ji,rs(θ) = (∂/∂θs)ui,r(θ) and let J∗
i (θ)

be defined correspondingly with u∗
i in place of ui.

Under the typical conditions assumed in generalized estimation equations
(GEE) theory, the estimator θ̂ will be consistent and asymptotically normal.
The limiting covariance matrix V of

√
n(θ̂−θ0) can be estimated using the

sandwich estimator V̂ = D(θ̂)−1H(θ̂)D(θ̂)−1, where H(θ) = n−1
∑

i u
∗
i (θ)

u∗
i (θ)T and D(θ) = −n−1

∑
i J

∗
i (θ).

The case where there are replicate measurements W̃ij of W̃ on the individ-
uals in the main study can be handled in various ways. A simple approach is
to redefine the quantity u∗

i (θ) given in (2.2) by replacing B
(i)
k(i)l with the mean

of B
(i)
k(i,j)l over the replicates for individual i, with k(i, j) defined as the value

of k such that W̃ij = wk. The development then proceeds as before.

2.3 Application to the Cox Survival Model

2.3.1 Setup

We now show how to apply the foregoing corrected score approach to the
Cox model. Denote the survival time by T ◦

i and the censoring time by Ci.
The observed survival data then consist of the observed follow-up time Ti =
min(T ◦

i , Ci) and the event indicator δi = I(T ◦
i ≤ Ci). We let Yi(t) = I(Ti ≥ t)

denote the at-risk indicator. We assume the failure process and the censoring
process are conditionally independent given the covariate process in the sense
described by Kalbfleisch and Prentice (2002, Sections 6.2 and 6.3).

The covariate structure is as described in the preceding section, except that
the covariates are allowed to be time-dependent, so that we write k(i, t) and
Zi(t). We assume that the measurement error process is “localized” in the
sense that it depends only on the current true covariate value. More precisely,
the assumption is that, conditional on the value of Xi(t), the value of W̃i(t) is
independent of the survival and censoring processes and of the values of Xi(s)
for s �= t. This assumption is plausible in many settings, for example, when the
main source of error is technical or laboratory error, or reading/coding error,
as with diagnostic X-rays and dietary intake assessments. With no change in
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the theory, the classification probabilities A
(i)
kl can be allowed to depend upon t.

This extension permits accounting for improvements in measurement techniques
over time. In addition, if internal validation data are available, this extension
allows us to dispense with the localized error assumption.

In the proportional hazards model, the hazard function is taken to be of
the form λ(t|X(t)) = λ0(t)ψ(X(t);β), with λ0(t) being a baseline hazard func-
tion of unspecified form. The function ψ(x;β), which involves a p-vector β of
unknown regression parameters which are to be estimated, represents the rel-
ative risk for an individual with covariate vector x. The classical Cox model
assumes ψ(x;β) = eβT x. In line with Thomas (1981) and Breslow and Day
(1993, Section 5.1(c)), we allow a general relative risk function ψ(x;β) which
is assumed to be positive in a neighborhood of the true β for all x and to be
twice differentiable with respect to the components of β. We assume further
that ψ(x;0) = 1, which simply means that β = 0 corresponds to no covariate
effect. In many applications, it will be desirable to take ψ(x;β) to be a function
that is monotone in each component of x for all β. We let β0 denote the true
value of β.

2.3.2 The method

We now describe the method. Let ψ′
r(x;β) denote the partial derivative of

ψ(x;β) with respect to βr and define ξr(x;β) = ψ′
r(x;β)/ψ(x;β). Then the

classical Cox partial likelihood score function in the case with no measurement
error is given by

Ur(β) =
1
n

n∑
i=1

δi

(
ξr(Xi(Ti);β)− e1r(Ti)

e0(Ti)

)
, (2.3)

where

e0(t) =
1
n

n∑
j=1

Yj(t)ψ(Xj(t);β), e1r(t) =
1
n

n∑
j=1

Yj(t)ψ′
r(Xj(t);β).

Now define

ψ∗
i (t,β) =

K∑
l=1

B
(i)
k(i,t)lψ(wl,Zi(t);β), ηir(t,β) =

K∑
l=1

B
(i)
k(i,t)lψ

′
r(wl,Zi(t);β),

ξ∗ir(t,β) =
K∑

l=1

B
(i)
k(i,t)lξr(wl,Zi(t);β), e∗0(t) =

1
n

n∑
j=1

Yj(t)ψ∗
j (t,β),

e∗1r(t) =
1
n

n∑
j=1

Yj(t)ηjr(t,β).
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Then our proposed corrected score function is the following obvious analogue
of (2.3):

U∗
r (β) =

1
n

n∑
i=1

δi

(
ξ∗ir(Ti,β)− e∗1r(Ti)

e∗0(Ti)

)
. (2.4)

As before, the proposed corrected score estimator is the solution to U∗(β) = 0,
where U∗ denotes the vector whose components are U∗

r .
Using an iterated expectation argument, under the localized error assump-

tion, we can show that

E[Yi(t)ψ∗
i (t,β)|Xi(t)] = E[Yi(t)ψ(Xi(t);β)|Xi(t)], (2.5)

E[Yi(t)η∗ir(t,β)|Xi(t)] = E[Yi(t)ψ′
r(Xi(t),β)|Xi(t)], (2.6)

E[Yi(t)ξ∗ir(t,β)|Xi(t)] = E[Yi(t)ξr(Xi(t),β)|Xi(t)]. (2.7)

Thus, referring to the quantity in parentheses in (2.4), the first term and the
numerator and denominator of the second term all have the correct expectation.
It follows that U∗(β) is an asymptotically unbiased score function.

Accordingly, under standard conditions such as those of Andersen and
Gill (1982) and of Prentice and Self (1983), our corrected score estima-
tor will be consistent and asymptotically normal. The asymptotic covari-
ance matrix of

√
n(β̂ − β0) may be estimated by the sandwich formula V̂ =

D(β̂)−1H(β̂)D(β̂)−1. Here D(β) is −1 times the matrix of derivatives of U∗(β)
with respect to the components of β and H(β) is an empirical estimate of the
covariance matrix of

√
nU∗(β).

We note again that, for the internal validation design, the available true W
values can be used in the estimation of β by replacing W̃i with Wi and A(i)

by the identity matrix when individual i is in the internal validation sample.
Alternatively, the hybrid scheme of Zucker and Spiegelman (2004, Section 5)
can be used. Also, the case where there are replicate measurements W̃ij of W̃
on the individuals in the main study can be handled as described at the end of
the preceding section.

In Zucker and Spiegelman (2007, 2008) we give an outline of the asymptotic
argument, explicit expressions for the matrices H and D, an estimator of the
cumulative hazard function, and an extension of the theory to the case where
the classification matrix A(i) is estimated. We also give results of a finite-sample
simulation study under Weibull survival with a single binary covariate having
known misclassification rates. The performance of the method described here
was similar to that of related methods we have examined in previous work
[Zucker and Spielgelman (2004) and Zucker (2005)]. Specifically, our new esti-
mator performed as well as or, in a few cases, better than the full Weibull max-
imum likelihood estimator. We also present simulation results for our method
for the case where the misclassification probabilities are estimated from an ex-
ternal replicate measures study. Our method generally performed well in these
simulations.
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2.4 Example

We illustrate our method on data from the Nurses Health Study concerning the
relationship between dietary calcium (Ca) intake and incidence of distal colon
cancer [Wu et al. (2002, Table 4)]. The data consist of observations on female
nurses whose calcium intake was assessed through a food frequency question-
naire (FFQ) in 1984 and were followed up to May 31, 1996 for distal colon
cancer occurrence. Our analysis includes data on 60,575 nurses who reported in
1984 that they had never taken calcium supplements, and focuses on the effect
of baseline calcium intake after adjustment for baseline body mass index (BMI)
and baseline aspirin use. In line with Wu et al.’s analysis, we use the classical
Cox relative risk function ψ(β;x) = eβT x, and, as in Wu et al.’s Table 4, we
work with a binary “high Ca” risk factor defined as 1 if the calcium intake was
greater than 700 mg/day and 0 otherwise. Note that one glass of milk contains
approximately 300 mg of calcium. BMI is expressed in terms of the following
categories: <22 kg/m2, 22 to <25 kg/m2, 25 to <30 kg/m2, and 30 kg/m2 or
greater. Aspirin use is coded as yes (1) or no (0). Thus, our model has five ex-
planatory variables, one for the binary risk factor (W ), three dummy variables
for BMI (Z1, Z2, Z3), and one for aspirin use (Z4). BMI and aspirin use status
are assumed to be measured without error.

It is well known that the FFQ measures dietary intake with some degree of
error and more reliable information can be obtained from a diet record (DR)
[Willett (1998, Chapter 6)]. We thus take W to be the Ca risk factor indica-
tor based on the DR and W̃ to be the Ca risk factor indicator based on the
FFQ. The classification probabilities are estimated using data from the Nurse’s
Health Study validation study [Willett (1998, pp. 122–126)]. The estimates ob-
tained were Pr(W̃ = 0|W = 0) = 0.78 and Pr(W̃ = 1|W = 1) = 0.72, with
corresponding estimated standard errors of 0.042 and 0.046.

Table 2.1 presents the results of the following analyses: (1) a naive classical
Cox regression analysis ignoring measurement error, corresponding to an as-
sumption that there is no measurement error; (2) our method with A assumed
known and set according to the foregoing estimated classification probabilities,
ignoring the estimation error in these probabilities; and (3) our method with
A estimated as above with the estimation error in the probabilities taken into
account (main study/external validation study design).

The results followed the expected pattern. Adjusting for the misclassifica-
tion in calcium intake had a marked effect on the estimated relative risk for
high calcium intake. Accounting for the error in estimating the classification
probabilities increased (modestly) the standard error of the log relative risk
estimate. The relative risk estimates for high calcium intake and corresponding
95% confidence intervals obtained in the three analyses were as follows.
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Method Estimate 95% CI
Naive Cox 0.71 [0.51,0.99]
A known 0.49 [0.24,1.01]
A estimated 0.49 [0.23,1.04]

The misclassification adjustment had a small effect on the estimated regres-
sion coefficients for the BMI dummy variables and essentially no effect on the
estimated regression coefficient for aspirin use.

References

1. Akazawa, K., Kinukawa, N., and Nakamura, T. (1998). A note on the cor-
rected score function corrected for misclassification, Journal of the Japan
Statistical Society, 28, 115–123.

2. Andersen, P. K. and Gill, R. D. (1982). Cox’s regression model for counting
processes: A large sample study, The Annals of Statistics, 10, 1100–1120.

3. Breslow, N. and Day, N. E. (1993). Statistical Methods in Cancer Research,
Volume 2: The Design and Analysis of Cohort Studies, Oxford University
Press, Oxford.

4. Carroll, R. J., Ruppert, D., Stefanski, L. A., and Crainiceanu, C. M. (2006).
Measurement Error in Nonlinear Models: A Modern Perspective, 2nd ed.
Chapman and Hall/CRC, Boca Raton.

5. Cox, D. R. (1972). Regression models and life-tables (with discussion),
Journal of the Royal Statistical Society, Series B, 34, 187–220.

6. Fuller, W. A. (1987). Measurement Error Models, John Wiley & Sons, New
York.

7. Kalbfleisch, J. D. and Prentice, R. L. (2002). The Statistical Analysis of
Failure Time Data, 2nd ed. John Wiley & Sons, New York.

8. Prentice, R. (1982). Covariate measurement errors and parameter estima-
tion in a failure time regression model, Biometrika, 69, 331–342.

9. Prentice, R. L. and Self, S. G. (1983). Asymptotic distribution theory for
Cox-type regression models with general relative risk form, The Annals of
Statistics, 11, 804–812.

10. Thomas, D. C. (1981). General relative-risk models for survival time and
matched case-control analysis, Biometrics, 37, 673–686.



32 D. M. Zucker and D. Spiegelman

11. Willett, W. C. (1998). Nutritional Epidemiology, 2nd ed., Oxford University
Press, New York.

12. Wu, K., Willett, W. C., Fuchs, C. S., Colditz, G. A., and Giovannucci, E. L.
(2002). Calcium intake and risk of colon cancer in women and men, Journal
of the National Cancer Institute, 94, 437–446.

13. Zucker, D. M. (2005). A pseudo partial likelihood method for semi-
parametric survival regression with covariate errors, Journal of the Amer-
ican Statistical Association, 100, 1264–1277.

14. Zucker, D. M. and Spiegelman, D. (2004). Inference for the proportional
hazards model with misclassified discrete-valued covariates, Biometrics, 60,
324–334.

15. Zucker, D. M. and Spiegelman, D. (2007). Corrected score estimation in the
proportional hazards model with misclassified discrete covariates. Technical
Report, Hebrew University. Available online at http://pluto.mscc.huji.ac.il/
∼mszucker.

16. Zucker, D. M. and Spiegelman, D. (2008). Corrected score estimation in the
proportional hazards model with misclassified discrete covariates, Statistics
in Medicine, in press.



3

A Varying-Coefficient Hazards Regression Model

for Multiple Cross-Effect

Hong-Dar Isaac Wu
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Abstract: We consider a piecewise-constant varying-coefficient model to ac-
count for survival data with multiple crossings. Estimating procedures are pro-
vided, and a class of tests is constructed in order to impose varying coefficients
for some specific covariates, or for some other purposes. Analysis of the survival
of Taiwan’s stroke patients is reported to illustrate the applications.

Keywords and Phrases: Time-varying effect, heteroscedasticity, multiple
crossings, proportional hazards, nonproportional hazards

3.1 Introduction

In event-history data analysis where the effect of a specific variable is the main
interest, the problem of dealing with time-varying effects has become more im-
portant in recent years. In contrast with the proportional hazards (PH) model
[Cox (1972)], many authors have devoted themselves to the study of the varying-
coefficient PH (PHvc) model. For example, see Murphy and Sen (1991), Murphy
(1993), Martinussen and Scheike (2006), and Tian et al. (2005) among others.
Without regard to the space of time, the PHvc model basically still estimates the
homogeneity effect over the space of covariate(s). By homogeneity we mean that
there is a common effect between two covariate-specific subpopulations repre-
sented by different values of the covariate, say Z, or of the configurations of sev-
eral covariates. On the contrary, heterogeneity states that the effect is different
and diverse over the covariate space of Z. The variable Z can either be observed
or unobserved. Examples of modeling observed and unobserved heterogeneity
include the heteroscedastic hazards regression (HHR) model [Hsieh (2001)] and
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the frailty model [Vaupel (1979) and Hougaard (1986)], respectively. This study
focuses on the former case. In addition to capturing the heterogeneity effect, the
HHR model also has the merit of modeling time-varying effects by the hazard
function:

λ(t; z,x) = λ0(t)eγT x(t){Λ0(t)}e
γT x(t)−1eβT z(t), (3.1)

where z(t) and x(t) are two sets of predictable time-dependent covariates, and
Λ0(t) =

∫ t
0 λ0(u)du is the baseline cumulative hazard. In view of the intrinsic

time-varying property of the hazard ratio implied by (3.1), it is possible to
extend the HHR model to incorporate varying-coefficient settings. Hereafter
we denote the varying-coefficient HHR model as an HHRvc model with its
functional form stated in Section 3.2. Contrasting with the PH model, the most
significant goals are certainly to make feasible the incorporation of parameter
γ, and to convince us about the use of time-varying β(t) and γ(t) [see (3.2)
below]. Motivation of this extension can be interpreted as follows. First, the
inter-relation among groups in terms of survivor or cumulative hazard functions
may be diverse in time. An apparent phenomenon is the multiple cross-effect
(MCE) studied by Bagdonavičius and Nikulin (2005). Second, cure-fraction
(CF) appeared in many clinical and oncological studies in which the survival
of cancer patients receiving surgery followed by (or prior to) chemo- and/or
radiotherapies are of concern. However, the definition of “cure” still needs to be
clarified. The probability of cure needs to be handled. Finally, if the data cannot
be suitably described by a simpler model (such as the PH or PHvc model) and
can be well described by the extended model (such as the HHRvc), it is also
sensible to consider the extended class from the viewpoint of model fitting.

The HHRvc model can deal with survival data with time-diversity (e.g.,
MCE) and cure-fraction simultaneously, within a reasonable range of obser-
vational period. The purpose of this chapter is to study the applicability and
model validity problems of HHRvc. For the latter, we assume HHRvc as the
alternative hypothesis and test whether the varying-coefficient setting can be
further simplified. Section 3.2 introduces the piecewise-constant setting of the
HHRvc model. Estimation and model validity procedures are provided in Sec-
tions 3.3 and 3.4. In Section 3.5 we report actual data analysis concerning
the mortality of stroke patients with comorbidities. Finally, implications of the
varying-coefficient model and some practical issues of data analysis are dis-
cussed.
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3.2 Illustration of the Piecewise-Constant Model

Piecewise-constant setting

Model (3.1) can be extended to allow for varying coefficients:

λz,x(t) = λ0(t){Λ0(t)}e
γ(t)z−1eβ(t)z+γ(t)x, (3.2)

where eβ(t)z is referred to as the risk function, and eγ(t)x as the heteroscedas-
ticity component. For an easy exposition, we adopt notations only with the
univariate case and, in the sequel, z = x. Due to the fact that the partial like-
lihood does not eliminate the baseline hazard, there are three time-dependent
parameters, (Λ0(t) (or λ0(t)), β(t), and γ(t)) to be estimated simultaneously.
We use the piecewise-constant approximation method [Murphy and Sen (1991),
Murphy (1993), and Marzec and Marzec (1997)] to make it compatible with the
approach of Hsieh (2001). Let [0, τ ] be the observational period, and 0 = τ0 <
τ1 < · · · < τm = τ be a set of cutoff points. The following piecewise-constant
approximations are adopted.

Λ0(t) =
∫ t

0

m∑
1

αj1(τj−1<u≤τj)du,

β(t) =
m∑
1

βj1(τj−1<t≤τj),

γ(t) =
m∑
1

γj1(τj−1<t≤τj). (3.3)

Thus the HHRvc model considered in this chapter has the following “pieces”
of hazard and cumulative hazard.

λ(t; z) = αj{Λ0(t)}σj−1σjµj, τj−1 < t ≤ τj,

Λ(t; z) = Λ(τj−1; z) + [{Λ0(t)}σj − {Λ0(τj−1)}σj ]µj, τj−1 < t ≤ τj,

(3.4)

where λ(·) denotes the approximation of λ(·), σj = eγT
j z, µj = eβT

j z, and
Λ(τ0; z) = Λ0(τ0) = 0. Formula (3.4) is very useful in understanding the HHRvc

model and the accompanying random number generation in simulation studies
[because we can simply use the relation S(·) = exp{−Λ(·)}, and equate it to a
Uniform(0,1)-random number].

The reasons why we consider (3.2) [or (3.4)] for modeling multiple-crossings
are: (i) the HHR model without varying coefficient gives only a one-time cross-
ing; and (ii) although the PH model with varying-coefficient risk function
produces multiple crossings, the intersubpopulation effect is still homogeneous
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at any fixed time point. An example of data analysis in Section 3.5 illustrates
the feasibility, where the probability of “cure” is actually a heterogeneity ef-
fect. By model (3.2), suitably modulating the baseline hazard also contributes
to model “multiple cross-effects plus cure-fraction,” albeit a monotonic γ(t) is
inevitably demanded.

3.3 Estimation Under the Piecewise-Constant
Setting

Suppose there are n randomly right-censored observations T1 < T2 < · · · < Tn,
which can be survival or censoring times. Let λi(t; z(t),x(t)), Ni(t) and Yi(t))
be the intensity process, counting process, and the associated at-risk indicator
for the ith individual at time t, and denote

SJ(t) = (1/n)
n∑

i=1

Yi(t)J(t)eβ(t)zi+γ(t)xi{Λ0(t)}e
γ(t)xi−1, (3.5)

with possibly time-dependent covariates J(t) = 1, zi(t),xi(t), or vi(t) ≡ xi(t)
{1 + eγ(t)xi log Λ0(t)}. It is straightforward to use the following Breslow-type
equation (3.6) for the baseline cumulative hazard and estimating equations
(3.7) and (3.8) for βjs and γjs.

Λ0(t) =
n∑

i=1

∫ t

0

dNi(u)
nS1(u)

, (3.6)

M2j ≡
1
√

nj

n∑
i=1

∫ τj

τj−1

{
zi −

Sz

S1

}
dNi(u) = 0, j = 1, 2, . . . ,m, (3.7)

and

M3j ≡
1
√

nj

n∑
i=1

∫ τj

τj−1

{
vi −

Sv

S1

}
dNi(u) = 0, j = 1, 2, . . . ,m. (3.8)

In addition, Mj = (M2j ,M3j)T , and Aj with elements

Aj,ll′ = (1/n)
∑∫

E{dMlj(u)dMl′j(u)}du, (l, l′ = 2, 3)

is the covariation matrix between M2j and M3j . By imposing several technical
conditions, large-sample properties of {(β̂j , γ̂j)}mj=1 and Λ̂0(t) can be established.
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3.4 The Tests

In this section we study the HHRvc model, starting from the consideration of
the following statistic [Hsieh (2001) and Wu et al. (2002)]:

Tdegen =
m∑

j=1

{MT
j A−1

j Mj}(β̂j ,γ̂j ,Λ̂0)

with the parameters of interest being evaluated piecewise at (βj , γj) = (β̂j , γ̂j),
∀j, where β̂j and γ̂j are the piecewise estimates solved from (3.7) and (3.8).
The statistic Tdegen has a degenerate value of 0; named “degenerate” because
all degrees of freedom were consumed at each segment. However, it offers an
important clue to constructing tests for model validity. For example, the test
studied in Wu et al. (2002) can be viewed as a special case when the HHR
model is treated as a submodel of HHRvc. By this perspective, Tdegen can be
amended to augment the degrees of freedom to 2m−2 for the purpose of testing
the validity of the HHR model, simply by replacing all βjs and γjs with the
overall estimates β̂ and γ̂, respectively, and by using Ã◦

j (defined below) instead
of Aj.

3.4.1 Some specific tests

The test considered in this section is constructed by assuming that the HHRvc

model is true, and then testing for a subset of the parameters at a given
value. Now we define some notations used in the following context. For ex-
ample, if θ = (θ1, . . . , θp) and θk = (θ1, θ2) are a subset of θ, then θ(k) ≡
θ\θk = (θ3, θ4, . . . , θp), and θ = θk ∪ θ(k) = θ(k) ∪ θk. In this case, ωk = {1, 2},
and ω(k) = {3, 4, . . . , p}. Moreover M = (M21, . . . ,M2m,M31, . . . ,M3m), and, if
θk∗ = (θ1, θ3), then θk\θk∗ = θ2 and θk ∩ θk∗ = θ1. We say in this example that
θk is the k-component of θ. Hereafter let us define θ = (β1, . . . , βm, γ1, . . . , γm).
In order to test the hypothesis H0 : θk = θk0 versus Ha : θk �= θk0 at some θk0,
the proposed statistic is:

Tk =
m∑

j=1

{M̃T
j Ã◦−1

j M̃j}θ̂(k)∪θk0
,

for which M̃T
j = (M2j ,M3j) ∩ {Ml ∈ M : l ∈ ωk} and Ã◦−1

j = {Ãj,kk −
Ãj,k(k)Ã

−1
j,(k)(k)Ãj,(k)k}−1 with Ã◦

j being the covariation submatrix of M̃j asso-
ciated with the k-component. Here a submatrix Bk(k∗) of B is defined as only
keeping the k-component of B in row and with “deleting the k∗-component of
B” in column, and so on. Note that Tk is basically a score-type test. Another
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useful test to be compared with the above Tk-test is the (full-) likelihood ratio
test, which is not discussed in the present study.

Test for varying effect of a specific covariate

If the HHRvc is the underlying model and piecewise-constant approximation is
utilized, then the T{·}-statistic can be amended to test for varying effect with
respect to a specific covariate. For example, if we want to test for constant
heteroscedasticity [i.e., γ(t) = γ0,∀t, for some constant γ0], the test statistic
can be constructed as

T =
m∑

j=1

{M̃T
j Ã◦−1

j M̃j}(β̂j ,γ0,Λ̂0)
.

In practice γ0 is substituted by an overall estimate γ̂. That is, assuming the
HHRvc model, our hypotheses are H0 : γ1 = · · · = γm = γ0 versus Ha : γjs
are not all equal. If we set γ0 = γ̂, the statistic T{·} will be a χ2

m−1-variate
approximately.

Test for the varying-coefficient PH model

There are tests and diagnostic plots proposed to check for varying effects under
the PHvc-based framework [Murphy (1993), Valsecchi et al. (1996), Marzec and
Marzec (1997), and Martinussen and Scheike (2006)]. Here we propose a test
Tphvc for the PHvc model by assuming HHRvc as the alternative hypothesis.
This Tphvc-test can be compared with the performance of several tests proposed
in Marzec and Marzec (1997) (which are omnibus). To this purpose, Tphvc has
the same form with Tk, except for being evaluated at (β̂j , 0, Λ̂0) at the jth
segment. Under the hypotheses H0: γj = 0,∀j versus Ha: at least one of the γjs
is not equal to 0; Tphvc is distributed as χ2

m for large n.

Test for equality

A commonly used test for equality is the log-rank test in the K-sample prob-
lem. The current T{·} can now be modified to test for equality among groups
represented by different covariate values. Consider the hypotheses: H0: βj =
γj = 0,∀j; and Ha: at least one of βjs and γjs is not equal to 0. The statistic
(Tequal) evaluated at H0 is distributed as χ2

2m asymptotically. Note that the
proposed test for equality can be applied under a cure model. When the cure
probabilities are large for distinct groups, a genuine difference among groups
could be masked (or ignored) by these large probabilities of cure. However, the
proposed test may have good power in testing the difference. In this case, it is
also appealing to compare the performance of the present T with the modified
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score test studied by Bagdonavičius and Nikulin (2005) under their multiple
cross-effect (MCE) model.

3.5 Data Analysis

The methods discussed above are implemented on stroke patients’ survival data
collected retrospectively from six regional teaching hospitals (bed number larger
than 200) of central Taiwan during January 2002 to December 2003. These data
comprise 616 individuals who experienced acute stroke with subtypes of cere-
bral hemorrhage, cerebral infarct, or transient ischemic attack. The zero-time
point is defined as the time of an inpatient’s hospitalization; and potential vari-
ables for explaining mortality rate include age, sex, disease subtype, length of
hospital stay (LOS), comorbidity status of diabetes mellitus (DM) and/or hy-
pertension, and so on. Some of the patients also have the Glasgow coma scale
(GCS) and Barthel index data ascertained from hospital records. For a sim-
ple exposition, we only investigate the impact of comorbidity on the hazards.
The Kaplan–Meier (KM) survival estimates exhibit multiple crossings and a
high cure (or nonsusceptible to death) probability. For the other variables, sex
and LOS are not significant, age has a nonhomogeneous effect, and the haz-
ards among different stroke subtypes satisfy proportionality. Furthermore, the
GCS and Barthel functional index are not recorded in a unified manner and
are missing by a large proportion. So the subsequent analysis based on HHRvc

is basically univariate. The only variable used for interpreting the mortality is
“comorbid disease status”; it is dichotomized into two groups: those with and
without the coexistence of either DM or hypertension. The impact of comor-
bidity on the death rate of acute strokes is still inconclusive. Our analysis in
this section attempts to disclose the time-varying property of relative hazards
between the two groups of patients. However, the influential part of this kind
of data is: there is a very high proportion of patients who still survive at the
endtime of the study period.

The KM estimates are displayed in Figure 3.1, accompanied by a pair of
survival curves obtained from the HHRvc estimates. In order to give a clear
comparison, the KM and HHRvc survival estimates are plotted only within the
range of t ≤ 697 with 0.85 ≤ S(t) ≤ 1, because a large proportion of patients
survive beyond 697 days. The estimate proposed in the current study fits well
to the nonparametric KM survivals. If we denote the failure or censoring time
as T , the sample is divided into four segments (m = 4): those with T < 10,
10 ≤ T < 35, 35 ≤ T < 244, and 244 ≤ T ≤ 697. The selected four segments
contain 25, 13, 16, and 22 noncensored failure times in 25, 13, 16, and 562
observations. That means that the first three have no right-censoring cases, and
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Figure 3.1. Survival of 616 stroke patients in Taiwan.

the last one has 540 censored observations. As a whole, the data have 76 failures,
and censoring proportion is 540/616 = 87.7%. Here we do not put an artificial
adjustment to get a better fit. These four segments are selected to control
balanced sample sizes between segments as well as between the two groups,
so that each segment contains no less than four noncensored failures for both
groups. For group 1 (without comorbidity) [versus group 2 (with comorbidity)],
there are 4[21], 4[9], 8[8], and 5[17] failures. Table 3.1 reports the point estimates
of parameters (αj , βj , γj) for j = 1, 2, 3, 4 under the HHRvc model. According
to this result, the rate ratio [R̂R(t), for τJ−1 < t ≤ τJ ] can be calculated from
(3.3) and (3.4) as

eβJ+γJ {αJ(t− τJ−1) +
J−1∑
j=1

αj(τj − τj−1)}e
γJ −1.

The Thetvc-test for varying heteroscedasticity has a realized value of χ2
3 =

44.83 (p-value < 0.001); and the Tequal-statistic is χ2
8 = 11.72 (p-value = 0.164),

indicating that the acute stroke patients’ survival within two years is irrespec-
tive of the comorbid diseases discussed in this study and that, using HHRvc,
time-varying heteroscedasticity should be included.
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Table 3.1. Analysis of first-ever stroke patients’ two-year survivals

Segment(j =) 1 2 3 4 Test
αj 3.673 0.592 0.062 0.104 Thetvc = 44.83(p = 0.000)
βj 2.143 0.150 3.202 4.065 Tequal = 11.72(p = 0.164)
γj 0.628 0.010 −4.751 −6.654

3.6 Discussion

The results of Table 3.1 have some important implications. First, the baseline
parameter estimates α̂s are decreasing, revealing overall declination in the risk
of death of stroke patients. This phenomenon confounds with the time-varying
property of β and γ. In particular, the decreasing baseline hazard and the de-
creasing heteroscedasticity (to a large negative value) together result in the
large proportions of cured patients for each group. Second, the baseline-hazard
parameters modulate the overall trend of incidence of events, β(t) reflects the
relative location or strength, and γ(t) captures the shape or heterogeneity that
interacted with time. The global validity of HHRvc is only diagnosed by visu-
alized fitness in Figure 3.1. How to construct an omnibus (or global) test for
the goodness-of-fit of the HHRvc-model remains an issue.

For a regression set-up with multiple regressors, not all variables have vary-
ing effect, and not all the varying coefficients have the same crossing point(s).
This involves the strategy of data analysis. Here we propose plotting Kaplan–
Meier estimates for each specific covariate after an adequate grouping. The co-
variates without crossings in KM estimates are suggested not to be put in the
heteroscedasticity component. For those with cross-effect, practitioners need to
decide the cut-off points {τj}. In practice, the selected cut-off intervals (τj−1, τj ]
should not contain more than one crossing point. Finally, for the parametric
approach, we also suggest the application of a Weibull-type regression model
equipped with time-varying parameters to deal with multiple cross-effect prob-
lems possibly combined with a cure probability.
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Closure Properties and Diagnostic Plots

for the Frailty Distribution in Proportional

Hazards Models

P. Economou and C. Caroni

Department of Mathematics, National Technical University of Athens, Athens,
Greece

Abstract: Starting from the distribution of frailty amongst individuals with
lifetimes between t1 and t2, we construct a graphical diagnostic for the correct
choice of frailty distribution in a proportional hazards model. This is based on a
closure property of certain frailty distributions in the case t2 →∞ (i.e., among
survivors at time t1), namely that the conditional frailty distribution has the
same form as the unconditional, with some parameters remaining the same.
We illustrate the plot on the Stanford heart transplant data. We investigate
the application of the same principle to the case of shared frailty, where the
members of a cluster share a common value of frailty. A similar plot can be
used when the cluster lifetime is defined as the shortest lifetime of the cluster’s
members. Other definitions of cluster lifetime are less useful for this purpose
because the closure property does not apply.

Keywords and Phrases: Lifetime data, frailty, shared frailty, proportional
hazards, graphical diagnostics

4.1 Introduction

Frailty models are widely used in the analysis of lifetime data because they
provide a simple and convenient way of introducing heterogeneity between in-
dividuals or between groups. The frailty Z is an unobserved random effect which
affects the lifetime distribution in a similar way to any observed covariates. In
the proportional hazards framework, it has a multiplicative effect on some base-
line hazard function hb, so that the hazard function for an individual with frailty
Z = z is given by
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h (t|z;x) = zeβ′xhb(t), (4.1)

where x is a vector of possibly time-dependent covariates. An important ex-
tension is to the shared frailty model. This applies to data structures where
individuals are grouped naturally into clusters (e.g., members of a family, pa-
tients treated in the same unit, samples of material cut from the same piece)
and correlation is expected between the failure times within a cluster. The
model induces this correlation by assuming that the members of a cluster share
the same value of frailty. Individual failure times are conditionally independent
given the frailty. Assuming proportional hazards again, the hazard function hmj

of individual j = 1, . . . , qm in cluster m = 1, . . . , k which has frailty zm becomes
(without covariates)

hmj (t|zm) = zmhb(t). (4.2)

The conditional joint survivor function of the qm members of the mth
cluster is

S (t1, t2, . . . , tqm |zm) = e
−zm

∑qm
j=1

Hb(tmj )
, (4.3)

where Hb is the cumulative hazard function. If there are measured covari-
ates common to all members of the cluster, represented by the possibly time-
dependent vector x, then Hb is usually replaced by Hx

b (t) =
∫ t
0 eβ′xhb(u)du.

In order to apply the proportional hazards model for individual or shared
frailty, a specific frailty distribution has to be assumed. Diagnostic tools should
be available to enable the modeller to test the assumption. Our purpose in this
chapter is to discuss diagnostic plots for the frailty distribution in proportional
hazards models, both for individual frailty and shared frailty. Our method is
based on closure properties of the frailty distribution, which we extend in the
following section. We consider only fully parametric models for both the frailty
and the baseline hazard function.

4.2 Closure Properties of the Individual Frailty
Distribution

We assume that the frailty distribution in a proportional hazards individual
frailty model is given by the p.d.f.

g(z; η1(α), η2(α)) =
e−[z, ψ(z)][η1(α), η2(α)]′

Φ(α)
ξ(z), z > 0. (4.4)
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This is an exponential family distribution with z as one of its canonical
statistics. In general, η2 and α are vectors. We prove the following new result
on a conditional distribution of frailty among the subset of individuals whose
lifetime falls in the interval (t1, t2).

Theorem 4.2.1 If the p.d.f. of the frailty distribution G (η1(α), η2(α)) in the
population is given by (4.4), then the distribution of frailty among individuals
who die in the interval (t1, t2) is the negative mixture:

g (z|t1 < T < t2) = pg (z; η1(α) + Hx
b (t1), η2(α))

− (1− p)g (z; η1(α) + Hx
b (t2), η2(α)) , (4.5)

where p = ST (t1)
ST (t1)−ST (t2) and ST (t) is the unconditional survivor function.

Proof. The p.d.f. of frailty Z conditional on T ∈ (t1, t2) is given by

g (z|t1 < T < t2) =

∫ t2
t1

f(u, z)du∫∞
0

∫ t2
t1

f(u, z)dudz

=

∫ t2
t1

f(u|z)g(z)du∫∞
0

∫ t2
t1

f(u|z)g(z)dudz
, (4.6)

where f(t, z) is the joint p.d.f. of T and Z and f(t|z) is the p.d.f. of t conditional
on z. Noticing that∫ t2

t1
f(u, z)du = e−zHx

b
(t1) − e−zHx

b
(t2) (4.7)

we have

g (z|t1 < T < t2) =
g(z)e−zHx

b (t1) − e−zHx
b (t2)∫∞

0 e−zHx
b
(t1) − e−zHx

b
(t2)dz

(4.8)

which after some algebra leads to the relation

g (z|t1 < T < t2) =
Φ∗

1(α)
Φ(α) (ST (t1)− ST (t2))

g (z; η1(α) + Hx
b (t1), η2(α))

− Φ∗
1(α)

Φ(α) (ST (t1)− ST (t2))
g (z; η1(α) + Hx

b (t2), η2(α))

(4.9)

but Φ∗
i (α) is given by

Φ∗
i (α) =

∫ ∞

0
e−[z, ψ(z)][η1(α)+Hx

b
(ti), η2(α)]′ = Φ(α)ST (ti) (4.10)

and hence the required result.
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Corollary 4.2.1 The frailty distribution among survivors at time t has p.d.f.

f(z|T > t) =
e−[z, ψ(z)][η∗

1(α), η2(α)]′

Φ∗(α)
ξ(z), z > 0, (4.11)

where η∗1(α) = η1(α) + Hx
b (t) and Φ∗(α) = Φ(α)ST (t). It thus belongs to the

same family as the original frailty distribution, but with a different value for η1,
the element of the parameter vector corresponding to z.

Proof. Let t2 →∞ in Theorem 4.2.1. Then ST (t2)→ 0, p → 1 and the above
result follows.

Corollary 4.2.2 The p.d.f. of the frailty distribution among individuals dying
before time t is

g (z|T < t2) =
1

1− ST (t2)
fZ(z) − ST (t2)

1− ST (t2)
g(z; η1(a) + Hx

b (t2), η2(a)).

(4.12)

Proof. Let t1 = 0 in Theorem 4.2.1.

A third interesting special case could be obtained by letting t2 → t1, which
leads to the distribution of frailty among individuals dying at time t1. This
has a closure property similar to Corollary 4.2.1. However, this result is most
conveniently proved directly, as follows.

Theorem 4.2.2 If the frailty distribution G belongs to an exponential family
similar to (4.4) but with log z among its canonical statistics in addition to z,
then the distribution of frailty among those dying at time t is in the same family,
but with different values of the parameters.

Proof. The proportional hazards model implies that the lifetime distribution
conditional on Z = z is

f(t|z) = zhb(t)exp{−zHx
b (t)}. (4.13)

Hence write down the joint distribution of frailty and lifetime f(t, z) =
f(t|z)g(z), then integrate z out to obtain the unconditional f(z) and hence
obtain g(z|t) as f(t, z)/f(t).

Applied to the special case of gamma frailty with shape parameter θ and
scale parameter λ, this result shows that the distribution of frailty among in-
dividuals dying at time t is also gamma, with shape parameter θ + 1 and scale
parameter λ + Hx

b (t). Other popular frailty distributions can be fit into this
framework by adding log z as a canonical statistic but with parameter initially
equal to zero; the frailty distribution among those dying at time t then has
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a nonzero value of this parameter. For example, the inverse Gaussian distri-
bution can be regarded as a special case of the generalized inverse Gaussian
distribution, to which the closure property applies.

The distributions of frailty among survivors at time t and among those dying
at time t were first given by Vaupel et al. (1979), assuming a gamma distribu-
tion. The extension to exponential families was made by Hougaard (1984).

4.3 Diagnostic Plots

Corollary 4.2.1 states that the parameter η2 (α|t) of the frailty distribution
among survivors at time t, which for simplicity we now write as η2 (t), is the
same for all t. For gamma frailty, this is the shape parameter. A diagnostic plot
based on this property was developed by Economou and Caroni (2005). For an
earlier application of the idea of employing various degrees of truncation in order
to check a model, see Hougaard et al. (1992). The method of Economou and
Caroni (2005) is to fit the assumed model, such as gamma frailty with Weibull
lifetimes, firstly to the original full dataset and subsequently to survivors at
times t1, t2, . . . (these could be the observed lifetimes or just an arbitrary set
of time points). In these subsequent fits the lifetime distribution’s parameters
are taken as equal to the values estimated from the full data, instead of re-
estimating them each time. If the assumed frailty distribution is correct, and
assuming also that the Weibull lifetime distribution is correctly specified, then
the plot of each element of η2 (t) against time should be a horizontal line starting
from η2 (0), which is the estimate obtained upon fitting the model to the full
set of data. Note that in general η2 is a vector. For example, for the generalized
inverse Gaussian distribution with parameters (λ, δ, γ) with p.d.f.

g(z) =
(γ/δ)λ

2Kλ(δγ)
zλ−1e−

1
2(δ2z−1 + γ2z), (4.14)

where Kλ(.) is the modified Bessel function of the third kind with index λ, the
two components of η2 are λ2− 1 and δ2. A separate plot should be constructed
for each component of η2. As an alternative to plotting η2 (t), we may plot
η2 (t) /η2 (0) against time: the points on this plot should be scattered around a
horizontal line starting from one. The advantage of this alternative plot is that it
is conceptually easy (although quite time-consuming computationally) to add
a simulated envelope to aid the assessment of whether the line is horizontal
[Economou and Caroni (2005)].

The other consequence of the closure property in Theorem 4.2.1 is that the
parameter η1 corresponding to the canonical statistic z changes to η1 + Hb(t)
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when the data are restricted to survivors at time t. If the baseline lifetime distri-
bution is Weibull with parameters β and α, then Hb(t) = (t/α)β . It seems that
it could be possible to base another diagnostic plot on this property, checking
that the estimate η1(t) based on survivors at time t does follow the correct form
when plotted against η1(0) + Hb(t). This would be checking simultaneously the
frailty distribution and the lifetime distribution. It is probably not very fruitful
to pursue this second plot because the plot already suggested does the job of
checking the frailty distribution assuming the lifetime distribution, and other
methods can be used to check the lifetime distribution. Furthermore, it is of-
ten necessary to place a constraint on the parameters for identifiability. For
example, in the case of the gamma–Weibull mixture, the two scale parameters
are not separately identifiable. Hence the gamma scale parameter might be set
equal to one, so in practice it would not be possible to construct this second
plot.

The other closure property, Theorem 4.2.2, does not seem to be practically
useful either. Any failure time will occur only once in a sample of continuous
data, or a small number of times because of rounding. Therefore, it is either
impossible to fit the distribution of frailty among those dying at a specified
time, or it has to be fit to such a small amount of data that random variation is
too large to allow the expected pattern in the parameter estimates to be seen.
Grouping nearby failure times to increase the sample size does not solve the
problem, because the correct result to apply in that case is given by Theorem
4.2.1, which does not have the simplicity of the closure result.

4.4 Application

In order to illustrate the use of the diagnostic plots and show their effectiveness,
we use the well-known Stanford heart transplant data on the survival times of
103 patients (28 right-censored). The data were obtained from Kalbfleisch and
Prentice (2002). We used only the survival or censoring time and ignored the
covariates that are available for some of the patients.

Figure 4.1 shows the Kaplan–Meier estimate of the survival function, to-
gether with the fitted curves obtained from the two parametric models, that
is, Weibull lifetimes mixed with either gamma frailty (this gives the Burr dis-
tribution of lifetimes) or inverse Gaussian frailty. In both models, the mean
of the frailty distribution was set equal to one. The Burr distribution seems to
be the better fit. Figure 4.2 shows two diagnostic plots. The upper one refers to
the mixture of Weibull lifetimes with gamma frailty. At each observed survival
time t we re-estimate the gamma shape parameter η(t) using the data from the
survivors beyond t. The quantity η(t)/η(0) [where η(0) is the value obtained
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Figure 4.1. Estimates of the survival function of the heart transplant data:
Kaplan–Meier (broken line), Weibull with gamma frailty (bold line), and
Weibull with inverse Gaussian frailty (lighter line).

using all the data, i.e., at time zero] is plotted against time. The envelopes
plotted on the graph are the smoothed 95% and 99% limits obtained by ap-
plying the same computational procedure to 200 sets of data of the same size,
simulated from the Burr distribution with parameters equal to the estimates at
time zero in the actual data [Economou and Caroni (2005)]. The plotted points
are visually very close to a horizontal line and after the first few values, which
fall on the lower confidence bound, are well inside the confidence limits. This
indicates that the gamma frailty distribution is an acceptable model (assuming
that the Weibull is the correct baseline survival distribution). The lower part of
Figure 4.2 shows the results of applying exactly the same procedure when the
inverse Gaussian distribution was used for frailty instead of the gamma. After
about t = 40, the plotted points follow a clear trend away from the value one
and fall consistently outside the simulated confidence limits. This indicates that
the inverse Gaussian frailty distribution is not acceptable for these data (again
assuming Weibull survival as the baseline).

4.5 Shared Frailty

In the case of shared frailty, the distribution of the random variable Z is over
the clusters, not the individuals. Therefore in order to extend the above ideas to
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Figure 4.2. Diagnostic plots for frailty distribution applied to the Stanford heart
transplant data. The plotted points are η(t)/η(0) against time; the envelopes
are simulated 95 and 99 percentage points. Upper plot: Weibull–gamma mixture
(=Burr distribution). Lower plot: Weibull–inverse Gaussian mixture.
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shared frailty, we need to define what is meant by saying that a cluster survives
at time t. Two possibilities are as follows.

Minimum definition

The “death” of a cluster occurs when any of its members dies. If the first event
in a cluster is a right-censoring, then the cluster has to be treated as right-
censored at that point in time, as if all its members were censored together [this
is homogeneous censoring; Hougaard (2000)]. Hence the lifetime distribution
of a cluster of size m is given by the random variable T(1) = mini=1,...,m Ti.
The survivor function of the cluster given frailty z and assuming that all the
members of a cluster share common values of the covariates, is

S(1)(t|z) = (S(t|z))m, (4.15)

hence properties at the cluster level are basically the same as those found al-
ready for individual frailty. In particular, the closure property of Corollary 4.2.1
to Theorem 4.2.1 applies. It is easy to see that the parameter denoted earlier
as η1 becomes η1 + mHx

b (t) and η2 remains unchanged.

Maximum definition

Another possible definition of the death of a cluster is that the cluster “dies”
when all its members have died. Any censoring therefore means that the cluster’s
lifetime is censored too. The lifetime distribution of a cluster of size m is given
by the random variable T(m) = maxi=1,...,m Ti. In this case the closure property
does not extend neatly. The statements in Theorem 4.2.1 concerning η1 and η2

still hold, but the term ξ(z) also changes, to

ξ∗(z) = ξ(z)
{
1−
(
1− e−zHx

b (t)
)m}

. (4.16)

Both of these definitions can be written as special cases of defining a cluster
as “surviving” if at least r of its members are alive. The maximum definition
corresponds to r = 1 and the minimum definition to r = m. The simple closure
property applies only to the minimum definition and for this reason we consider
only this definition from here onwards.

Whatever the definition of a cluster’s lifetime, the analysis for shared frailty
can be carried out in two ways, corresponding to two kinds of likelihood func-
tion. In the first, the cluster is the unit of analysis, and a surviving cluster
at time t enters the likelihood as one observation (the cluster’s lifetime). This
is called the cluster-level approach. In the second likelihood, we use the in-
dividual lifetimes of the surviving clusters’ surviving members. This is the
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individual-level approach. In both approaches, we consider only uninformative
right-censoring.

We assume that the dataset is ordered by ti < tu for i < u, where tm =
min1≤j≤qm tmj is the lifetime of the mth cluster under the minimum definition.
The likelihood for estimation among surviving clusters at time tm0 in the cluster-
level approach is given by

Ltm0
(η1(α), η2(α)) =

k∏
m=m0+1

hm(tm)δmSm(tm), (4.17)

where the censoring indicator δm is equal to one or zero for uncensored or
censored cluster lifetimes, respectively, Sm(t) is the survivor function of the mth
cluster conditional on its lifetime being greater than tm0 (but not conditional
on z), and hm(t) is the corresponding hazard function for this cluster given by
hm(t) = −∂/∂t log Sm(t), where Sm(t) = ST (t, t, . . . , t)/ST (tm0 , tm0 , . . . , tm0).
In the individual level approach, the likelihood at tm0 is

k∏
m=m0+1

⎡⎣ ∏
j∈Rm

(
− ∂

∂tmj

)
ST |T(1)>tm0

(tm1, tm2, . . . , tmqm)

⎤⎦, (4.18)

where Rm is the subset of uncensored observations in the mth cluster; that
is, Rm = {j : j ∈ {1, 2, . . . , qm}, and δmj = 1}, ST |T(1)>tm0

(tm1, tm2, . . . , tmqm)
is the joint survivor function of the mth cluster’s members given that their
minimum is bigger than tm0 . This is

ST |T(1)>tm0
(tm1, tm2, . . . , tmqm) =

ST (tm1, tm2, . . . , tmqm)
ST (tm0 , tm0 , . . . , tm0)

. (4.19)

Given particular survival functions and frailty distributions, direct maximi-
sation of the likelihoods can be carried out straightforwardly, in Mathematica,
for example.

Because we already know from the application of the idea to individual
frailty that these diagnostic plots work, the only question arising in the case
of shared frailty is which of the two likelihood functions should be used. The
first has the advantage of simplicity; the second uses more information and
should be substantially more powerful. The answer obviously depends on the
size of the sample, the degree of heterogeneity, and the amount of censoring.
It also depends on the frailty distribution (our experience so far is that it is
easier to reject gamma frailty than inverse Gaussian). Because the individual-
level approach is time-consuming to carry out, we recommend using it in large
samples only as a further check on a distribution which seems acceptable under
the cluster-level approach. For small samples, the individual-level approach is
recommended.
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Multivariate Survival Data With Censoring
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Abstract: We define a new class of models for multivariate survival data,
in continuous time, based on a number of cumulative hazard functions, along
the lines of our family of models for correlated survival data in discrete time
[Gross and Huber-Carol (2000, 2002)]. This family is an alternative to frailty
and copula models. We establish some properties of our family and compare it
to Clayton’s and Marshall–Olkin’s and derive nonparametric partial likelihood
estimates of the hazards involved in its definition.

Keywords and Phrases: Survival data, cluster data, right-censoring, contin-
uous time, hazard rates

5.1 Introduction

Much attention has been paid to multivariate survival models and inference
since the early work of Hougaard, and his recent book (2004) on the subject.
Studies on twins led to the development of papers on bivariate distributions and,
more generally, the analysis of family data or clusters data led to more general
models for correlated survival data. One way of dealing with this problem is
to use copula or frailty models [see, e.g., Bagdonavicius and Nikulin (2002) for
a review of those models]. Among the most usual bivariate models, one finds
Clayton’s, Marshall–Olkin’s, and Gumbel’s models. We present here a model
for continuous multivariate data based on the same idea as the one we used in
the discrete case [Gross and Huber-Carol (2002)], and which is closely related to
a multistate process. We define our class of models in detail for the special case
of bivariate data, and generalize this class to any dimension. We then obtain
properties of these models and compare them to the usual ones cited above.
We then derive NPML estimators for the functions involved and derive their
asymptotic properties.

55
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5.2 Definition of the Models

5.2.1 Bivariate continuous model

Let L be the class of continuous univariate cumulative hazard functions on IR+:

L = {Λ : IR+ → IR+, continuous, nondecreasing, Λ(0) = 0,Λ(t) −−−→
t→∞ ∞}.

Definition 5.2.1 (Bivariate continuous model) Given any five members
Λ01

11,Λ
10
11, Λ00

11,Λ
00
01,Λ

00
10 of L, we define a joint bivariate survival function S on

IR+ × IR+ by

for x < y , dS(x, y) = exp{−Λ01
11(x)− Λ10

11(x)− Λ00
11(x)}dΛ01

11(x)
× exp{−(Λ00

01(y)− Λ00
01(x))}dΛ00

01(y)

for y < x , dS(x, y) = exp{−Λ01
11(y)− Λ10

11(y)− Λ00
11(y)}dΛ10

11(y)
× exp{−(Λ00

10(x)− Λ00
10(y))}dΛ00

10(x)

for y = x , dS(x, y) = exp{−Λ01
11(x)− Λ10

11(x)− Λ00
11(x)}dΛ00

11(x). (5.1)

We propose the family (5.1) of bivariate distributions as an alternative to
the bivariate probabilities defined by frailties or copulas. It is easy to verify that
S thus defined is actually a bivariate survival function, and that a necessary
and sufficient condition for the corresponding probability to be absolutely con-
tinuous (AC) with respect to λ2, the Lebesgue measure on IR2, is that Λ00

11 ≡ 0.
Otherwise, part of the mass is on the diagonal of IR2.

5.2.2 Generalization to p components

When more than two components are involved, say p, then our hierarchical class
of models is defined in a similar way, involving now a number of cumulative
hazards K(p) equal to

K(p) =
p−1∑
k=0

Cp−k
p C1

p−k (5.2)

when the multivariate law is absolutely continuous with respect to λp, the
Lebesgue measure on IRp, and

K(p) =
p−1∑
k=0

Cp−k
p (2p−k − 1) (5.3)

when simultaneous jumps are allowed.
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5.2.3 Properties of the bivariate family

Theorem 5.2.1 For all bivariate survival functions defined above and such
that Λ00

11 ≡ 0, we have the following conditional hazard rates ∀s < t ∈ IR+.

P (X = dt, Y > t|X ≥ t, Y ≥ t) = dΛ01
11(t)

P (X > t, Y = dt|X ≥ t, Y ≥ t) = dΛ10
11(t)

P (X = dt|X ≥ t, Y < t) = dΛ00
10(t) = P (X = dt|X ≥ t, Y = ds)

P (Y = dt|Y ≥ t,X < t) = dΛ00
01(t) = P (Y = dt|Y ≥ t,X = ds).

Conversely, if there exist Λ10
11,Λ

01
11,Λ

00
10,Λ

00
01, cumulative hazard functions in

L such that the joint law satisfies the above equations, then the joint survival
function of (X,Y ) satisfies (5.1).

Theorem 5.2.2 If (X,Y ) has survival function S given by (5.1), then X and
Y are independent and S is absolutely continuous with respect to λ2 if and
only if

Λ00
11 ≡ 0; Λ01

11 ≡ Λ00
10; Λ10

11 ≡ Λ00
01.

5.2.4 General bivariate model

A version of our model (5.1), in discrete time, was introduced in Gross and
Huber-Carol (2000). The two models are embedded in the following general
model. Let L∗ be the set of cumulative hazards with possible jumps on an at
most denumerable set of points D ∈ IR+:

L∗ = {Λ : IR+ → IR+,Λ nondecreasing, Λ(0) = 0,Λ(t) −−−→
t→∞ ∞}.

Definition 5.2.2 (General bivariate model) Given any five members Λ01
11,

Λ10
11,Λ

00
11,Λ

00
01,Λ

00
10 of L∗ and D = {x1, . . . , xm, . . . } the ordered set of discon-

tinuity points of the Λs we define a joint bivariate survival function S on
IR+ × IR+ by
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For x < y

dS(x, y) =
∏
t<x

(1 − Λ01
11(dt)− Λ10

11(dt)− Λ00
11(dt)) Λ01

11(dx)

×
∏

x≤t<y

(1− Λ00
01(dt))Λ00

01(dy)

and for x > y

dS(x, y) =
∏
t<y

(1− Λ01
11(dt)− Λ10

11(dt)− Λ00
11(dt)) Λ10

11(dy)

×
∏

y≤t<x

(1− Λ00
10(dt))Λ00

10(dx). (5.4)

Finally for y = x

dS(x, x) =
∏
t<x

(1 − Λ01
11(dt)− Λ10

11(dt)− Λ00
11(dt)) ∆Λ00

11(x).

If D = ∅, then (5.4) simplifies to (5.1).

5.2.5 The purely discrete model

Definition 5.2.3 (Purely discrete model) Let λ(u) = Λ(u+) − Λ(u−), for
all five Λs involved in (5.4), assumed to be purely discontinuous, with jumps in
D = {xk, k ∈ IN}. Then define

For xi < xj ,

P (X = xi, Y = xj) =
∏

k<i(1− λ01
11(xk)− λ10

11(xk)− λ00
11(xk))λ01

11(xi)

×
∏

i<k<j(1− λ00
01(xk))λ00

01(xj).
For xi > xj ,

P (X = xi, Y = xj) =
∏

k<j(1− λ01
11(xk)− λ10

11(xk)− λ00
11(xk))λ10

11(xj)

×
∏

j<k<i(1− λ00
10(xk))λ00

10(xi).
For xi = xj ,

P (X = xi, Y = xi) =
∏

k<i(1− λ01
11(xk)− λ10

11(xk)− λ00
11(xk))λ00

11(xi).

5.2.6 Simple examples of laws of type (5.1)

Let a, b, c, d be four strictly positive constants and dΛ01
11(t) = a, dΛ10

11(t) = b,
dΛ00

10(t) = c, dΛ00
01(t) = d. Then, denoting S the bivariate survival, we have:

d2S(x,y)
dxdy = e−(a+b)xae−d(y−x)d if x < y

= e−(a+b)ybe−c(x−y)c if x > y.
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Although all four hazard rates are constant, the marginals of these distri-
butions are not exponential. Other simple examples arise from replacing the
above exponential hazards by other families, such as Weibull or Pareto.

5.3 Some Usual Bivariate Models

Among the most usual bivariate models, one finds Clayton’s, Marshall–Olkin’s,
and Gumbel’s models.

5.3.1 Clayton bivariate distribution

The Clayton survival function (1978), parametrized by Oakes (1989) is given by

S(x, y) = P (X1 > x,X2 > y) = [S1(x)−(θ−1) + S2(y)−(θ−1) − 1]
−1
θ−1 , (5.5)

where θ ∈]1,+∞[ and S1(x) and S2(y) are the marginal survival functions for
X1 and X2. The limiting distribution, when θ → 0 has independent components.
We change parameter, letting

a =
1

θ − 1
θ > 1; a > 0.

Genest et al. (1995) propose a pseudo-likelihood (PL) estimate for a. Their
PL is based on a copula defining the joint distribution function F (x, y) =
cα(F1(x), F2(y)). It is the product, for all observations (xi, yi), of the second
partial derivative of cα(u, v) with respect to u and v. u and v are further re-
spectively replaced by F̂1(x) and F̂2(y). With our copula acting on the survival
rather than on the d.f., the corresponding PL is derived below. If

Sa(u, v) = [u−1/a + v−1/a − 1]−a,

the pseudo-likelihood is equal to

n∏
i=1

[
∂2Sa(u, v)

∂u∂v

]
u=Ŝ1(xi),v=Ŝ2(yi)

.

As

∂2Sa(u, v)
∂u∂v

=
(

1 +
1
a

)
1
uv

e−
1
a

log(uv)[u− 1
a + v−

1
a − 1]−a−2

one can compute easily the PL substituting the Kaplan–Meier estimates Ŝ1 and
Ŝ2 for S1 and S2.
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5.3.2 Marshall–Olkin bivariate distribution

Let λ1, λ2 and λ12 be three positive constants and S the bivariate survival
function

S(x1, x2) = P (X1 ≥ x1,X2 ≥ x2) = e−λ1x1−λ2x2−λ12(x1∨x2). (5.6)

It is clear that the bivariate Marshall–Olkin is not absolutely continuous
with respect to λ2 as

P (X1 > X2) + P (X2 > X1) =
λ1 + λ2

λ1 + λ2 + λ12
. (5.7)

Moreover, denoting min = 1{x1 < x2}+ 2 ∗ 1{x2 < x1} and max = 1{x1 >
x2}+ 2 ∗ 1{x2 > x1}, the density at point (x1, x2);x1 �= x2 may be written as

f(x1, x2) = λmin(λmax + λ12)e−(λ1x1+λ2x2+λ12xmax). (5.8)

The deficit to one is due to the fact that there is a probability mass equal
to

λ12

λ1 + λ2 + λ12

on the diagonal. The linear density on the diagonal is equal to

f0(x) = λ12e
−(λ1x+λ2x+λ12x) (5.9)

as can be derived from looking at the following limit

lim
dt→0

1
dt

(S(t, t)− S(t, t + dt)− S(t + dt, t) + S(t + dt, t + dt)).

The corresponding hazards in our scheme would be

λ01
11(t) = P (X1=t,X2>t)

P (X1≥t,X2≥t) = λ1; λ00
10(t) = P (X1=t,X2≤t)

P (X1≥t,X2≤t) = λ1 + λ12

λ10
11(t) = P (X1>t,X2=t)

P (X1≥t,X2≥t) = λ2; λ00
01(t) = P (X2=t,X1≤t)

P (X1≤t,X2≥t) = λ2 + λ12

λ00
11(t) = λ12.

This can be seen from the following example of our class of distributions
defined below.
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5.3.3 Our quasi-Marshall–Olkin bivariate distribution

Let a bivariate distribution be defined as in (5.1), the hazards being equal to

(11)
λ01
11≡λ1≡α−→ (01)

λ00
01≡λ2+λ12≡β+γ−→ (00)

(11)
λ10
11≡λ2≡β−→ (10)

λ00
01≡λ1+λ12≡α+γ−→ (00)

and λ00
11 being identically null. Let us denote

Y = min(X1,X2)
Z = max(X1,X2).

Following the log-likelihood L derived earlier, we obtain

L(x1, x2)
= 1{x1 < x2} ∗ [−(α + β)y + log(α)− (β + γ)(z − y) + log(β + γ)]

+ 1{x2 < x1} ∗ [−(α + β)y + log(β)− (α + γ)(z − y) + log(α + γ)]
= − (α + β)y − γ(z − y) + 1{x1 < x2} ∗ [log(α(β + γ))− β(z − y)]

+ 1{x2 < x1} ∗ [log(β(α + γ))− α(z − y)].

In order to compare our distribution with that of Marshall–Olkin’s, let
g(x1, x2) be the density

g(x1, x2) = λmin(λmax + λ12)e−(λ1x1+λ2x2+λ12(xmax−xmin)). (5.10)

One can see that only xmax is replaced by xmax − xmin. As a result,∫ ∞

0
g(x1, x2)dx1dx2 = 1.

It is an A.C. distribution. If we add the λ00
11 as in the preceding paragraph,

we get the Marshall–Olkin distribution.

5.3.4 Gumbel bivariate distribution

The Gumbel bivariate exponential distribution is part of the general Morgen-
stern proposal for bivariate distributions

F (x, y) = F1(x)F2(y)[1 + α(1 − F1(x))(1 − F2(y))], (−1 ≤ α ≤ 1), (5.11)

where F1 and F2 are the respective marginal distribution functions for X and Y .
Gumbel bivariate exponential is thus equal to

F (x, y) = (1− e−x)(1− e−y)[1 + αe−xe−y] (x ≥ 0, y ≥ 0,−1 ≤ α ≤ 1). (5.12)
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In order to simulate this law, one may notice that the conditional distribu-
tion of Y with respect to X is given by

P (Y ≤ y|X = x) = (1−α(2e−x − 1))(1− e−y)+ α(2e−x− 1)(1− e−2y). (5.13)

5.4 NPML Estimation

5.4.1 Likelihood for the bivariate case

Let X = (Xi1,Xi2) be the bivariate survival time of cluster i, i ∈ {1, 2, . . . , n}.
The clusters are assumed to be independent. Xi1 and Xi2 may possibly be right-
censored by a bivariate censoring time C = (Ci1, Ci2), independent of X, so that
the observed bivariate time is T = (Xi1 ∧Ci1,Xi2 ∧Ci2) ≡ (Ti1, Ti2). The indi-
cator of noncensoring is denoted δ = (δi1, δi2) ≡ (1{Ti1 = Xi1}, 1{Ti2 = Xi2}).
Let then R(t) = (Ri1(t), Ri2(t)) and N(t) = (Ni1(t), Ni2(t)) be, respectively,
the associated at-risk and counting processes defined for i ∈ {1, 2, . . . , n} and
j ∈ {1, 2} as

Rij(t) = 1{t < Tij}
Nij(t) = δij1{t ≥ Tij}.

The likelihood will be expressed in terms of the following hazards defined
for X = (X1,X2).

λ01
11(t)dt = P (t ≤ X1 ≤ t + dt|X1 ≥ t,X2 > t)

λ10
11(t)dt = P (t ≤ X2 ≤ t + dt|X1 > t,X2 ≥ t)

λ00
10(t)dt = P (t ≤ X1 ≤ t + dt|X1 ≥ t,X2 < t)

λ00
01(t)dt = P (t ≤ X2 ≤ t + dt|X1 < t,X2 ≥ t).

The likelihood for the n clusters is the product V =
∏n

i=1 Vi where each Vi

may be written as

Vi =
∏

t(1− λ10
11(t)dt− λ01

11(t)dt)R1(t)R2(t)(λ10
11(t))

R1(t−)R2(t−)dN1(t)

× (λ01
11(t))

R1(t−)R2(t−)dN2(t)
∏

t(1− λ10
10(t)dt)R1(t)(1−R2(t))δ2

×
∏

t(1− λ01
01(t)dt)R2(t)(1−R1(t))δ1(λ10

10(t)dt)R1(t)(1−R2(t))δ2dN1(t)

× (λ01
01(t)dt)R2(t)(1−R1(t))δ1dN2(t).

5.4.2 NPML estimation

Maximization of the log-likelihood (NPML) implies jumps of the Λs at (ordered)
times Tk , k = 1, 2, . . . ,K when an event occurred [δij = 1 for some (i, j)]. Let
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us introduce the quantities

τ1(i) = 1{Ti1 < Ti2}; τ2(i) = 1{Ti2 < Ti1}
τ(i) = 1{Ti1 = Ti2}
ak = Λ01

11(T
+
k )− Λ01

11(T
−
k ); bk = Λ10

11(T
+
k )− Λ10

11(T
−
k )

ck = Λ00
10(T

+
k )− Λ00

10(T
−
k ); dk = Λ00

01(T
+
k�)− Λ00

01(T
−
k );

and the counts

s1(i) =
∑

i′ 1{Ti1 ≤ Ti′1 ∧ Ti′2}; s3(i) =
∑

i′ τ2(i′)1{Ti′2 ≤ Ti1 ≤ Ti′1}}
s2(i) =

∑
i′ 1{Ti2 ≤ Ti′1 ∧ Ti′2}; s4(i) =

∑
i′ τ1[i′]1{Ti′1 ≤ Ti2 ≤ Ti′2}}.

Then the log-likelihood is equal to

L = −
∑

i

aiδi1τ1(i)s1(i)−
∑

i

biδi2τ2(i)s2(i) +
∑

i

δi1τ1(i)log(ai)∑
i

δi2τ2(i) log(bi)−
∑

i

ciδi1τ2(i)bis3(i) −
∑

i

diδi2τ1(i)bis4(i)∑
i

δi1τ2(i) log(ci) +
∑

i

δi2τ1(i) log(di).

By the derivation of L with respect to the jumps ai, bi, ci, di, we obtain the
following NPML estimates,

âi = δi1τ1(i)
s1(i) ; b̂i = δi2τ2(i)

s2(i)
; ĉi = δi1τ2(i)

s3(i)
; d̂i = δi2τ1(i)

s4(i)
.

In order to derive the asymptotic properties of the NPML estimates, one
rewrites them in terms of the associated counting processes and martingales,
an example of which is given below. Let

F(t) = σ(Ni1(s), Ni2(s), Ri1(s), Ri2(s), s < t) (5.14)

be a filtration. We define four point processes N with associated presence at
risk processes Y , for each case: jump of individual 1 (respectively, 2) in the
presence (respectively, absence) of the other element of the pair. For the jumps
of X1 in the presence of X2, this gives rise to

Ni,11:01(t) = 1{Xi1 ≤ t,Xi1 < Xi2 ∧ Ci1 ∧ Ci2}

=
∫ t
0 Ri1(s)Ri2(s)dNi1(s)

Yi,11(t) = 1{Xi1 ∧Xi2 ∧Ci1 ∧ Ci2 ≥ t}
= Ri1(t)Ri2(t)

Mi,11:01(t) = Ni,11:01(t)−
∫ t
0 Yi,11(u)dΛ01

11(u).
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The corresponding results will appear in a further paper still in progress
together with simulations of our models and Clayton and Cuzick’s.

5.5 Concluding Remarks

The proposed model could be considered as a multistate model, where the
successive states are the actual composition of the subset of the cluster that is
still at risk after some members have experienced the expected event. In a future
work, we shall introduce covariates such as clusters and individual covariates
as well as the time elapsed between two successive states of the cluster. Let us
finally remark that the parallel with semi-Markov models for multistate models
is not straightforward. This is due to the fact that, for example, in the bivariate
case, when the pair is in state (0, 1) the cumulative hazard Λ00

01 starts from 0
and not from the time s at which the first member of the pair experienced the
event. Making the parallel perfect would lead to a new family of models having
all properties of semi-Markov multistate models, to which could be applied all
results already obtained, for example, by Huber-Carol et al. (2006).
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Virtual (Biological) Age Versus Chronological Age

Maxim Finkelstein
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Abstract: The age of a deteriorating object is described by the corresponding
process of degradation and is compared with the chronological age. A “black
box” approach is considered, when deterioration depends on the environment
and can be modeled by the accelerated life model. In, for example, the more
severe environment, deterioration is more intensive, which means that objects
are aging faster and, therefore, the corresponding virtual age is larger than the
chronological age in a baseline environment. The second approach is based on
considering an observed level of individual degradation and on its comparison
with some average, “population degradation.” The virtual age of the series
system is also defined via the corresponding weighting of individual virtual ages.

Keywords and Phrases: Virtual age, degradation, aging distributions, failure
rate, mean remaining lifetime

6.1 Introduction

According to numerous theories [see, e.g., Yashin et al. (2000) for references]
the nature of biological aging is in some “wearing” (damage accumulation). For
instance, damage accumulation can be due to nonideal repair mechanisms or
(and) accumulation of deleterious mutations. These processes are stochastic and
therefore it is natural to apply to organisms some concepts and approaches used
in stochastic modeling of degrading (aging) engineering systems. The analogies
should not be, however, interpreted too literally, which means that the impli-
cations of the corresponding stochastic modeling should be considered rather
carefully.

Stochastic deterioration is usually described by the increasing failure (mor-
tality) rate (IFR) lifetime distributions. For instance, adult mortality of humans
(and of some other species as well) follows the Gompertz distribution with

69
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exponentially increasing mortality rate. We implicitly assume in this chapter
the IFR-aging property of underlying lifetime distributions.

Virtual (biological) age of a degrading system can be probably considered
as some elusive concept, but it certainly makes sense, if reasonably defined, and
the goal of this chapter is to consider and to discuss different approaches to
defining this notion.

It should be noted that chronological age of a system or of an organism is
informative as some overall trivial marker of aging only for degrading objects.
This age is the same for all individuals in a cohort and the cohort setting is
especially important in Section 6.2, where different environments (regimes) are
considered, although some generalizations on the period setting can be also
performed in this case [Finkelstein (2006)].

Degradation in a more severe environment is usually more intensive, which
means that objects are aging faster in some appropriate statistical sense. There-
fore, in Section 6.2 we define and discuss a statistical (black box) virtual age and
compare it with the chronological age in some baseline environment. Environ-
ment is understood rather generally: it can be, for example, electrical stress
or temperature for engineering systems and, for example, climate, nutrition,
lifestyle, and so on for organisms.

Degradation, however, is a stochastic process and therefore individuals age
differently. Assume for simplicity that deterioration of an object can be modeled
by a single, predictable, increasing stochastic process. Observing its state at a
specific time can give under certain assumptions an indication of a “true” age
defined by the level of the observed deterioration. We call this characteristic an
information-based virtual (biological) age of a system or of an organism. If, for
instance, someone 50 years old looks like and has the vital characteristics (blood
pressure, level of cholesterol, etc.) of an “ordinary” 35 year-old one, we can say
that this observation indicates that his virtual (biological) age can be estimated
as 35. This is, of course, a rather vague statement, which can be made more
precise for some simple, specific model settings and under certain assumptions.
In Sections 6.2 and 6.3 we consider and discuss several possible approaches to
defining virtual (biological) age of objects.

Another really challenging problem is to define a virtual age of a system
with components in series having different virtual ages. An intuitive setting
of this problem in a biological aging context is given by Vaupel et al. (2004):
“Biological age may be better captured by the average age of individual, i.e., by
some appropriate measure of the average age of the organs, body parts or cells
of an individual-than by his chronological age.” Based on results of previous
sections, possible ways of solving this problem by specific weighting of virtual
ages of components are considered in Section 6.4.

It should be noted that there exist several dependent biomarkers of aging
in the organism (e.g., cell proliferation, metabolism, the rate of information
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processes), which can result in different estimates of the virtual age. A proper
weighting of these individual virtual ages presents an interesting problem for
future biological research and the corresponding stochastic modeling as well.

In this chapter we discuss some simple possibilities for a formal probabilistic
definition of “objective aging.” Evidently, other approaches can be also sug-
gested and discussed. Although numerous authors have mentioned a notion of
biological age, as far as we know, there are no papers with formal, stochastically
based definitions. From now on we mostly use for definiteness the term “virtual
age” omitting the term “biological.”

6.2 The Black Box Virtual Age

Consider a degrading object (or a cohort) in a fixed baseline environment with
a lifetime distribution Fb(t). Let another statistically identical individual (or a
cohort) be subject to, for example, a more severe environment (regime). Denote
the corresponding lifetime distribution by Fs(t). It is clear that degradation
under the second regime is more intensive, therefore, the biological age of an
individual, which survived under this regime in [0, t) will be larger than t. We
call this age the black box virtual age in the second regime.

To formalize the approach, assume that the lifetimes for two regimes com-
ply with a general accelerated life model (ALM) [Cox and Oakes (1984) and
Finkelstein (1999)] of the following form.

Fs(t) = Fb(W (t)), W (0) = 0,W (t) > t, t ∈ (0,∞), (6.1)

where W (t) is an increasing to infinity function and an evident condition W (t) >
t is due to the fact that the second regime is more severe than the baseline
one. In fact, W (t) is a scale transformation function. Note that only the linear
case of this model was thoroughly investigated in the literature. Equation (6.1)
explicitly suggests that the black box virtual age of an object, which has been
operating for time t in a more severe environment, is W (t), compared with the
baseline chronological age t.

Definition 6.2.1 Assume that an impact of a more severe environment on a
lifetime random variable can be described by the ALM (6.1), which is a widely
used assumption for deteriorating objects [Bagdonavicius and Nikulin (2002)].

Then the function W (t) defines the black box virtual age of an object in this
environment, whereas the age in the baseline environment is the chronological
one t.
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Given the corresponding mortality rates µb(t) and µs(t), the function W (t)
can be obtained from Equation (6.1):

exp
{
−
∫ t

0
µs(u)du

}
= exp

{
−
∫ W (t)

0
µb(u)du

}
,

therefore, ∫ t

0
µs(u)du =

∫ W (t)

0
µb(u)du. (6.2)

Remark 6.2.1 Under certain assumptions the function W (t) can be estimated
from the failure data [Bagdonavicius and Nikulin (2002)]. It should also be noted
that (6.1) follows immediately from the assumption that one environment is
more severe than the other: Fs(t) > Fb(t), t > 0; therefore (6.1) is not stringent
at all. The only restriction can come from the additional assumption that W (t)
should be an increasing function.

Remark 6.2.2 It is worth noting that the well-known time-dependent propor-
tional hazards model

µs(t) = w(t)µb(t), w(t) > 1, (6.3)

which is also often used for modeling the impact of environment, is not usually
suitable for modeling deterioration [Bagdonavicius and Nikulin (2002)] due to
its memoryless property, whereas the future behavior of degrading objects usu-
ally should, at least, depend on the accumulated damage. One can explicitly
see the difference between the two models by differentiating Equation (6.2) and
comparing the obtained mortality rate with (6.3):

µs(t) = w(t)µb(W (t)), (6.4)

where w(t) = W ′(t).

Example 6.2.1 (a) Let mortality rates in both regimes be increasing power
functions (Weibull law):

µb(t) = αtβ , µs(t) = µtν , α, β, µ, ν > 0.

Assume that ν > β;µ > α. This will be sufficient for µs(t) > µb(t), t > 1,
which describes in terms of mortality rates that the second regime is more severe
than the baseline one (the case 0 < t ≤ 1 can be considered in a similar way).
Then the corresponding statistical virtual age is defined by Equation (6.2) as
an increasing function:

W (t) =
(

µ(β + 1)
α(ν + 1)

)1/(β+1)

t
ν+1
β+1 .
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In order for inequality W (t) > t for t > 1 to hold, the following additional
restriction on parameters is sufficient: µ(β + 1)/α(ν + 1) > 1.

Let mortality rates in both regimes be ordered exponential functions
(Gompertz law):

µb(t) = abe
bbt, µs(t) = ase

bst, as > ab > 0, bs > bb > 0;
µs(t) > µb(t), t > 0.

Then, similar to the previous example:

W (t) =
log[(abbs − asbb) + asbbe

bst]− log(abbs)
bb

.

Thus, W (t) is an increasing function and W (0) = 0. Condition W (t) > t
can be met by some additional assumptions on the constants involved.

When as = kab, bs = kbb, where k > 1, we arrive at a linear ALM with
W (t) = kt, which is a simplified example that speaks for itself.

6.3 Information-Based Virtual Age

In the previous section no additional information on a system’s deterioration
was available. However, deterioration is a stochastic process and individuals age
differently. Observation of a state of a system at time t under certain assump-
tions can give an indication of its virtual (but, in fact, real) age defined by
the level of deterioration. Two possible ways of defining the information-based
virtual age are considered in this section.

6.3.1 Degradation curve

We start with a meaningful example, which helps us to understand the issue of
the information-based virtual age.

Example 6.3.1 Consider a system of n+1 components (one initial component
and n cold standby identical ones) with constant mortality rates µ. The failure
occurs when the last component fails. The possible biological interpretation is
the limited number of repairs [Vaupel and Yashin (1987)] or cell replications.
When a cell divides, one of the daughter cells will have a maintained telomere
length; the other will have a shorter length [Olofsson (2000)]. When this length
is shorter than some critical value, the cell stops dividing. It is clear that this
process can be modeled in the suggested way, whereas the assumption of con-
stant mortality rates on each stage can be relaxed (see later). Alternatively,
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one can think about a redundant biological organ or a part. In this case the
model can be easily modified from cold standby (switched off) to hot standby
(functioning) redundant components.

The mortality rate of the described system is an increasing function of the
following form [Hoyland and Rausand (1993)]:

µn+1(t) =
µe−µt(µt)n/n!

e−µt
∑n

0
(µt)i

i!

. (6.5)

The number of failed components observed at time t is a natural measure
of accumulated degradation in [0, t] for this setting. Denote by Tn+1 the time
to failure of the described system. Consider the following conditional expecta-
tion (in fact, this is a conditional compensator for the corresponding counting
process).

D(t) ≡ E[N(t), |N(t) ≤ n] = E[N(t) |Tn+1 > t]

=
e−λt

∑n
0 i (λt)i

i!

e−λt
∑n

0
(λt)i

i!

,
(6.6)

where N(t) is a number of events in the interval [0, t] for the Poisson process with
rate µ. As we observe an operable system, relation (6.6) defines the expected
value of the number of its failures (measure of degradation) on condition of
survival in [0, t]. The function D(t) is monotonically increasing, D(0) = 0,
and limt→∞ D(t) = n. This function defines an average degradation curve for
the defined system. If our observation is 0 ≤ k ≤ n (the number of failed
components at time t lies on this curve), then the information-based virtual
age is just equal to the chronological age t.

Denote the corresponding information-based virtual age by V (t). Our defi-
nition for this specific model is:

V (t) = D−1(k), (6.7)

where D−1(t) is an inverse function of D(t). If k = D(t), then V (t) = D−1(D(t)) =
t, which means that if the observation lies on the degradation curve, then the
corresponding virtual age is equal to the chronological one. Similarly,

k < D(t) ⇒ V (t) < t, k > D(t) ⇒ V (t) > t.

Thus, in this example, the information-based virtual age is obtained via the
average degradation curve D(t).

We can simplify the model even further, assuming that n is sufficiently
large. Then D(t) = µt (in fact, this equality is approximate) and in accordance
with (6.7):

V (t) =
k

µ
.
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Let, for instance, µ = 0.001(hr)−1 and the observation at time t (chrono-
logical age) is k = 2. This means that the virtual age is 200hr and it obviously
does not depend on t.

Remark 6.3.1 As operation of convolution preserves the IFR property, the
approach of this example can be generalized to the case of IFR components.
Due to this fact, the mortality rates µn(t), n = 1, 2, . . . are also increasing in
this case and therefore the corresponding function D(t) as well.

The general case of degrading objects can be considered in the same line.
Let Dt be an increasing stochastic process of degradation with a mean D(t).
Assume for simplicity that this is a process with independent increments, and
therefore it possesses the Markov property. Similar to (6.7), observation dt at
time t defines the information-based virtual age. Formally:

Definition 6.3.1 Let Dt be an increasing, with independent increments, sto-
chastic process of degradation with a mean D(t), and let dt be an observation
at time t.

Then the information-based virtual age is defined as

V (t) = D−1(dt).

Remark 6.3.2 It is clear that it is reasonable to apply the suggested approach
to smoothly varying (predictable) stochastic processes of deterioration. Most of
the aging processes in organisms are of this kind. However, Example 6.3.1 shows
that formally the approach can also be used for the jump processes as well. The
natural assumption in this case is that the jumps should be relatively small in
comparison with the values of D(t).

6.3.2 Mean remaining lifetime

The alternative way of defining V (t) is via the information-based remaining life-
time [Finkelstein (2001)]. The mean remaining lifetime (MRL) at t of an object
with a lifetime distribution F (x) (in demographic and biological literature this
notion is called the life expectancy at t) is defined in a standard way [Barlow
and Proschan (1975)] as

M(t) =
∫ ∞

0
F (x|t)dx ≡

∫ ∞

0

F̄ (t + x)
F̄ (t)

dx. (6.8)

We must compare M(t) with the mean information-based remaining life-
time, denoted by MI(t). Let, as previously, dt denote the observed level of
degradation at time t. We now consider this value as a new initial value for a
degradation process and denote by MI(t) the mean time to failure in this case.
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For instance, in Example 6.3.1: dt = k, the number of the failed components,
which means that MI(t) = (n+1−k)/µ, as the mean lifetime of one component
is 1/µ.

Definition 6.3.2 The information-based virtual age of a degrading system is
given by the following equation,

V (t) = t + (M(t)−MI(t)). (6.9)

Thus, the information-based virtual age is the chronological one plus the
difference between the “ordinary” and the information-based mean remaining
lifetimes. If, for example, M(t) = t1 < t2 = MI(t), then V (t) = t − (t2 −
t1) < t and we have an additional expected t2 − t1 years of life for an object,
compared with the “no information” version. It can be shown that under natural
assumptions MI(t)−M(t) < t [Finkelstein and Vaupel (2006)], which ensures
that V (t) is positive.

Example 6.3.2 Consider a system of two independent, statistically identical
components in parallel (hot redundancy) with exponential lifetime distribu-
tions. The time-to-failure survival function is F̄ (t) = exp{−2µt} − 2 exp{−µt}
and

M(t) =
∫ ∞

0

2 exp{−µt} − exp{−2µt}exp{−µx}
2− exp{−µx} dx. (6.10)

Assume that our observation at time t is two operable components. Then

MI(t) = M(0) =
∫ ∞

0
F̄ (x)dx =

1.5
µ

.

It is clear that M(t) is monotonically decreasing from 1.5/µ to 1/µ as t→∞.
Therefore it follows from Definition (6.9) that 0 < V (t) < t, which means that
the information-based virtual age in this case is smaller than the calendar age t.
If observation is one operable component, then the virtual age is larger than t:
V (t) > t. For given values of µ the exact values of M(t) [and therefore of V (t)]
can be easily numerically calculated using Equation (6.10).

Remark 6.3.3 An obvious question arises: what measure of virtual age to
use? In accordance with our reasoning, the suggested possibility in the absence
of information on the state of the object is the black box virtual age, which
is defined for different regimes. When this information is available, the choice
depends on the description of the aging process. If the degradation curve can
be modeled by an observed, increasing stochastic process and the criterion of
failure (death) is not well defined, then the first choice is the approach based on
Equation (6.7). On the other hand, when the failure time distribution based on
the corresponding stochastic process with different initial values (and therefore
the corresponding mean remaining lifetime) can be defined, then Equation (6.9)
should be preferably used.
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6.4 Virtual Age in a Series System

As already mentioned in the introduction, defining the age of an organism,
which consists of differently aging parts is a challenging unsolved problem
[Vaupel et al. (2004)]. For instance, assume that there are two components
in series and the first one has a much higher relative level of degradation than
the second one, meaning that the corresponding virtual ages are also different.
How do we define the virtual age of a system as a whole? It is clear that some
averaging should be performed on the basis of the corresponding survival prob-
abilities. We approach this problem using different definitions of virtual age.

We start with considering the statistical virtual age discussed in Section 6.2.
In accordance with Equation (6.1), the survival functions of a series system of
n statistically independent components under the baseline and a more severe
environment are

F̄b(t) =
n∏
1

F̄bi(t); F̄s(t) =
n∏
1

F̄bi(Wi(t)), (6.11)

respectively, where Wi(t) is the virtual age of the ith component and we assume
that the model (6.1) holds for every component. The virtual age of the system
W (t) is obtained from the following equation,

F̄b(W (t)) =
n∏
1

F̄bi(Wi(t)) (6.12)

or, equivalently, ∫ W (t)

0

n∑
1

µbi(u)du =
n∑
1

∫ Wi(t)

0
µbi(u)du. (6.13)

Therefore, this is a rather formal solution of the problem based on Equa-
tion (6.2).

Example 6.4.1 Let n = 2. Assume that W1(t) = t, W2(t) = 2t, which means
that the first component is somehow protected from the stress (environment).
Equation (6.13) turns into∫ W (t)

0
(µb1(u) + λb2(u))du =

∫ t

0
µb1(u)du +

∫ 2t

0
µb2(u)du.

Assume that the mortality rates are linear: µb1(t) = µ1t, µb2(t) = µ2t. Then

W (t) = t

√
µ1 + 4µ2

µ1 + µ2
. (6.14)
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The result is similar for mortality rates increasing as arbitrary power func-
tions. If the components are statistically identical in the baseline environment
(µ1 = µ2), then W (t) =

√
5/2t ≈ 1.6t, which means that the statistical virtual

age of a system with chronological age t is approximately 1.6t. It is clear that
the weight of components is eventually defined by the relationship between µ1

and µ2. When, for example, the ratio of µ1 and µ2 tends to 0, the virtual age
of a system tends to 2t; the virtual age of the second component.

A similar example can be easily considered, when all mortality rates are
exponential functions with different parameters, but in this case there is no
analytical solution and W (t) should be obtained numerically.

As in the previous section, two approaches for defining the information-
based virtual age of a system are considered. First, we weight ages in the series
system of n degrading components in accordance with the importance (sensitiv-
ity) of the components with respect to the failure of a system. The most critical
component is the one in which probability of failure is the highest. Let Vi(t)
denote the information-based virtual age of the ith component with mortality
rate µi(t) in a series system of n statistically independent components. Then
the virtual age of a system at time t can be defined as an expected value of the
virtual age of a failed in [t, t + dt) component:

V (t) =
n∑
1

µi(t)
µs(t)

Vi(t), (6.15)

where µs(t) =
∑n

1 µi(t) is the mortality rate of the series system. This def-
inition means, specifically, that the virtual age of a less reliable component
should be weighted with the highest probability. If all virtual ages are equal
Vi(t) = Ṽ (t), i = 1, 2, . . . , n, then V (t) = Ṽ (t), which shows the “consistency”
of Definition (6.15).

Example 6.4.2 Let

V1(t) = ν1t, V2(t) = ν2t, µ1(t) = µ1e
bt, µ2(t) = µ2e

bt,

where ν1, ν2, µ1, µ2, b > 0. Then

V (t) =
µ1ν1 + µ2ν2

µ1 + µ2
t.

The second approach is based on the notion of the MRL function (life ex-
pectancy). A positive feature of this approach is that unlike (6.15), there is no
direct link between the virtual age at the chronological time t and the prob-
ability of failure in [t, t + dt). The survival function of a series system n of
components and the survival function for a remaining lifetime are

F̄ (x) =
n∏
1

F̄i(x), F̄ (x|t) =
F̄ (x + t)

F̄ (x)
=

n∏
1

F̄i(x|t),
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respectively. The corresponding MRL can be obtained, using this definition
and Equation (6.8). Denote now by FI,i(x, t) the information-based distribution
function of the remaining lifetime for the ith component. Then the correspond-
ing MRL and the information-based MRL for the series system are defined
as

M(t) =
∫ ∞

0

n∏
1

F̄i(x|t), MI(t) =
∫ ∞

0

n∏
1

F̄I,i(x, t), (6.16)

respectively, where F̄I,i(x, t) denotes the survival function for the information-
based remaining lifetime with observation at time t. Finally, Equation (6.9)
should be used for obtaining the information-based virtual age of a series system
in this case.

Example 6.4.3 The functions M(t) and MI(t) can usually be easily obtained
numerically. But in certain cases some reasonable qualitative conclusions can be
made. Consider two systems of the type described in Example 6.3.1, connected
in series. The first system has parameters µ and n (as in Example 6.3.1), and
the second η and m, respectively. It is clear that

1
µ + η

< M(t) < M(0),

where M(t) for t ∈ [0,∞) can be obtained numerically using (6.16). Assume,
that for some time t, our observation is no standby components are left in
both systems, which means that the mean remaining lifetime is 1/(µ + η). In
accordance with Equation (6.9), the information-based virtual age of our series
system in this case is

V (t) = t +
(

M(t) =
1

µ + η

)
> t,

which obviously illustrates the fact that this observation indicates a higher level
of deterioration than the one that corresponds to the chronological age t.

Remark 6.4.1 The case of several biomarkers of aging, as mentioned in the
introduction, can be considered as a special important problem for future re-
search. It is clear that it should not necessarily be modeled by the corresponding
series system; therefore the weighting should be performed in some different
way. In addition, the dependence between the biomarkers is crucial for this
“multivariate” case.
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6.5 Concluding Remarks

Virtual (biological) age can be considered as some elusive concept, but it cer-
tainly makes sense, if properly defined. This chapter is probably the first step
in formalizing this important notion. It should be noted, however, that the de-
veloped approaches are considered under some simplifying assumptions, but it
is hoped that our reasoning can also be used for more general settings.

We described simple univariate models of deterioration just to illustrate
this reasoning. Several other well-known models of aging [see, e.g., the review
by Yashin et al. (2000)], described by stochastic processes, can also be used. It
is essential, especially for the developed information-based approach, that the
first passage time probabilities for the corresponding processes be well defined
for different initial conditions.

Further studies should be conducted both in the direction of a more ade-
quate stochastic modeling and, of course, in applying the developed reasoning
to organisms and their parts.
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A Competing Risks Model for Degradation

and Traumatic Failure Times

Vincent Couallier

Equipe Statistique Mathématique et ses Applications, Université Victor
Segalen Bordeaux 2, France

Abstract: We are interested here in some failure times due to wear or aging.
The main aim is to jointly model the degradation process and one (or more)
associated failure time(s). Two main joint models exist. The first one considers
a failure time which is directly defined by the degradation process (degradation
failure) as a hitting time of growth curve with random coefficients; the second
one considers that the degradation influences the hazard rate of a failure time by
a conditional definition of its survival function (traumatic failure). When both
modes of failure exist, only the first one is observed. Very often, longitudinal
observations of degradation values (measured with error) are available for each
item until the first failure. We are mainly interested here in the nonparametric
estimation of the cumulative intensity function of the traumatic failure time
and related reliability characteristics.

Keywords and Phrases: Degradation failure time, traumatic failure time,
nonlinear mixed regression, Nelson–Aalen estimator

7.1 Introduction

Degradation data modeling presents an attractive alternative in the assessment
and improvement of reliability of components from which the overall system
reliability can be deduced. If a component is monitored during its operation
time, periodical tests can provide either the simple information that the com-
ponent performs well (and thus is at risk for a failure) or quantitative in-
formation giving the level of degradation in a specified scale at every time
measurement. Thus the degradation process can sometimes be observed and
monitored through some quantitative characteristics. Examples of such degra-
dation characteristics for monitoring degradation processes include the wear of

83
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tires [de Oliveira and Colosimo (2004)], gain of transistors [Whitmore (1995)],
or degradation of fluorescent lamps [Tseng et al. (1995)] or catalytic converters
for automobiles [Barone et al. (2001)], among others.

The usual traumatic failure time then has to be related to the evolution of
the degradation process. Two main joint models exist. The first one considers
a failure time which is directly defined by the degradation process; the second
one considers that the degradation process influences the distribution of the
failure time through a conditional definition of its hazard rate.

Let us assume that the degradation of an item is given by the sample path
of a nondecreasing real-valued right-continuous and left-hand limited stochastic
process Z(t), t ∈ I. Lawless and Crowder (2004) and Couallier (2004) con-
sider gamma processes, Kahle and Wendt (2004) and Lehmann (2004) con-
sider marked point processes, and Whitmore and Schenkelberg (1997) consider
Wiener diffusion processes. In the following, we make the assumption that

Z(t) = D(t, A), t > 0, (7.1)

where D is a differentiable and nondecreasing parametric function of the time
and A is a random variable in Rp which takes account of the variability of the
degradation evolution. The model reduces here to a nonlinear growth curve
model with random coefficients where, for each individual i = 1, . . . , n the
unknown real degradation is Zi(t) = D(t, Ai) where Ai is the realization of A
for the ith item and the observed degradation values are

Z
i|obs
j = D(tij, Ai) + εi

j , (7.2)

measured at times tij , j = 1, . . . , ni where the εi
j are error measurements of the

degradation values.

7.2 The Degradation Failure—Estimation

of FA and FT0

We consider the lifetime T0 which is the first time of crossing a fixed ultimate
threshold z0 for Z(t),

T0 = inf{t ∈ I, Z(t) ≥ z0}.

The failure time T0 is sometimes called soft failure (or failure directly due to
wear) because in most industrial applications, z0 is fixed and the experiment
voluntarily ceases at the time the degradation process reaches the level z0 or just
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after this time. Known results about parametric models of degradation failure
time T0 give the distribution function of T0 with respect to the distribution
function of Z(t) or A.

For instance, Padgett and Tomlinson (2004) use the fact that if Z is a
Gaussian process with positive drift then T0 follows an inverse Gaussian distri-
bution; de Oliveira and Colosimo (2004) assume the path model Z(t) = a + bt
where a is fixed (unknown) and b is Weibull(α, β). Then T0 follows an inverse
Weibull whose parameters depend on z0, a, α, and β. Yu (2003) assumes the
decreasing path model Z(t) = −βtα where α is fixed and β ∼ LN(µ, σ2); then
T0 ∼ LN((ln(−z0)− µ)/α, σ2/α2).

As an example, we analyze the following 21 degradation curves describing
the fatigue crack propagation in aluminium alloy materials where at time t = 0;
the initial crack size is 0.9 inches for all items [Meeker and Escobar (1998)]. The
crack-lengths are measured every 10,000 cycles until the degradation level ex-
ceeds 1.6 inches. Figure 7.1 is a plot of the crack-length measurements versus
time (in million cycles) joined by straight lines. Denoting by g(.,m,C) the solu-
tion of a simple version of the deterministic Paris-rule model [Dowling (1993)]

dg

dt
(t,m,C) = C

√
πg(t,m,C)

m
,

it is found that

g(t,m,C) =
(
0.9

(2−m)
2 +

2−m

2
C
√

π
m

t
) 2

(2−m)
.

Each curve is well fit by a Paris curve with unit-to-unit coefficients Ai = (mi, Ci)
fit on each item. The failure due to degradation is defined as the time where
the curve reaches the threshold z0 = 1.6 inches. The aim is thus to estimate the
distribution functions F(m,C) and FT0 with the noisy measurements of degrada-
tion for each item without assuming that F(m,C) lies in a parametric family of
distribution functions. For purely parametric estimation of degradation curves
with maximum likelihood estimation of the d.f. of the failure time T0 only due
to wear, we refer to Meeker and Escobar (1998) and references therein.

Each individual path leads to a prediction (Âi) of unknown (Ai) by the
nonlinear least squares method. For all i, a predictor Âi is computed with the
nonlinear least squares method with observed degradation values Zobs

ij , j =
1, . . . , ni:

Âi = argmina∈Rp(Zobs
ij −D(tij , a))′Σ−1

i (Zobs
ij −D(tij , a)),

where Σ−1
i is the variance matrix of εi

1, . . . , ε
i
ni

. The simplest case of independent
and identically distributed random variables εi

j with common variance σ2 leads
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Figure 7.1. Fatigue crack size propagation for alloy-A data.

to the ni×ni diagonal matrix Σi = σ2Id. Several temporal correlation structures
can be included in the variance matrix [see Couallier (2006)].

Bagdonavicius and Nikulin (2004) have shown under technical assumptions
that the pseudo-empirical cumulative distribution function

ˆ̂
FA(a) = 1/n

n∑
i=1

1{Âi≤a},

is a uniformly consistent estimator of FA. Instead of plugging the Âis in the
unknown empirical measure P (E) = 1/n

∑n
i=1 1(Ai ∈ E), we propose here to

use the approximate distribution function of Âi around Ai which is asymp-
totically Gaussian with mean zero. Asymptotic results hold when ni tends to
infinity. The error terms can be assumed to be normally distributed but this is
not necessary to get the asymptotic normality of Âi [see Seber and Wild (2005)
for technical details]. Let us denote by Σ̂i the estimated variance matrix given
by the numerical least square method. If, for all i, Âi − Ai ∼ N (0, Σ̂i) then a
estimator of the cumulative distribution function FA is

F̃A(a) =
1
n

n∑
i=1

∫
Rp

1(u<a)fN (Âi,Σ̂i)
(u)du, (7.3)

and its estimated density function is a mixing of normal densities

f̃A(a) =
1
n

n∑
i=1

fN (Âi,Σ̂i)
(a).
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Marginal distributions are easily deduced. For each coordinate Ak of A, the
estimated cumulative distribution function is

F̃Ak
(a) =

1
n

n∑
i=1

Φ(
a− Âi

k

σ̂i
k

),

where σ̂2i
k is the estimated variance of Âi

k and Φ is the cumulative distribution
function of the standard normal law.

The distribution function of T0 is estimated either by calculating the pseudo-
failure times T̂ i

0 = h(z0, Âi) and plugging it in the unknown empirical cumula-
tive distribution function of T0i, i = 1 · · · n:

F̂T0(t) =
1
n

n∑
i=1

1{h(z0,Âi)≤t}, (7.4)

or by using P (T0 ≤ t) = P (D(t, A) ≥ z0) to obtain

F̃T0(t) =
∫

1{D(t,a)≥z0}dF̃A(a). (7.5)

The last formula requires numerical computation. We give a Monte Carlo pro-
cedure to calculate it. Because F̃A is a Gaussian mixture, F̃T0 is obtained by:

1. For large B, (B = 10,000), simulate B realizations (Ak){k=1,...,B} of A,
with d.f. F̃A; that is, B times do,

(a) Draw at random i in {1, . . . , n}.
(b) Simulate a random vector A with d.f. N(Âi, Σ̂i).

2. Compute the pseudo lifetimes T0k = h(z0, Ak), k = 1, . . . , B.

3. Compute F̂T0(t) ≈
Card{k|T0k≤t}

B .

7.3 A Joint Model with Both Degradation

and Traumatic Failure Times

As in Bagdonavicius and Nikulin (2004) and Couallier (2004), we define the
traumatic failure time T with the conditional survival function given the past
degradation process as

P (T > t|Z(s), 0 ≤ s ≤ t) = exp
(
−
∫ t

0
λT (Z(s))ds

)
. (7.6)
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Figure 7.2. (a) Predictors (m̂i, ĉi) of (mi, ci) for alloy-A data and 95% confidence
region for each estimation; (b) ecdf of predicted m̂i and F̃m.

0.05

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

cycles

P
ro

b(
T

0<
t)

0.10 0.15 0.20

Figure 7.3. Two estimations of FT0 according to (7.4) and (7.5).

λT is a nondecreasing function living in the degradation domain. The aim is to
estimate this failure rate which depends on the chronological time only through
the degradation process. The higher the degradation is, the higher the instan-
taneous probability of failure for an at-risk item will be. Also, the conditional
survival function depends on the whole past degradation process. In this model,
contrarily to T0, the traumatic failure time T can occur even if the degradation
level is low. Of course its survival function depends on the degradation function.
In fact, the hazard function for the traumatic failure time T is determined by
the value of the degradation process at time t because (7.6) involves

P (t < T ≤ t + ∆|T > t, Z(t) = z) = λT (z)∆ + ◦(∆), as ∆ −→ 0.



A Competing Risks Model for Degradation and Traumatic Failure Times 89

Thus λT (z) is proportional to the conditional probability of a traumatic failure
in the small interval (t, t + δ) given that the unit survives at time t and that
the degradation has reached the value z at time t.

We assume that T and T0 are two competing failure times whose distribution
functions are related to the degradation process Z(t) = D(t, A), t ≥ 0 defined in
(7.1). Thus each failure time can be considered as a censoring time for the other
because we only observe the minimum of T and T0. T and T0 are also assumed
to be conditionally independent given A = a where A is the random parameter
vector of the degradation curve. The observed failure time is U = min{T, T0}.
For instance, if U = T0, we do not observe the traumatic failure time T . The
function

ΛT (z) =
∫ z

0
λT (s)ds,

is the cumulative intensity function of T in the degradation space. The definition
(7.6) reduces here to

RT (t|A = a) = P (T > t|A = a) = exp
(
−
∫ t

0
λT (D(s, a))ds

)
.

For each item i = 1, . . . , n, by denoting T i
0 = inf{j ∈ {1, . . . , ni}|Zi

j ≥ z0},
we observe U i = min(T i, T i

0, t
i
ni

) and δi = 1(U i = T i) where tini
is the last time

of observation. The random coefficients (Ai)(i=1,...,n) are deduced from degrada-
tion measurements before the failure time. In fact, if observed degradation data
follow (7.2), nonlinear regression methods will provide predictors Âis which will
be assumed to be closed to the unknown Âis. In the following, in a first step,
we just assume that the Ais are known. In a second step, the Ais are replaced
with their predictors Âi.

In order to get nonparametric estimates of the cumulative intensity function
Λ, the conditional survival function RT (t|A = a) and the survival function
RT (t) = EA(R(t|A)), we use the fact that, denoting h(., a) the inverse function
of D(., a) we have

RT (t|Z(s), 0 ≤ s ≤ t) = P (T > t|A = a)

= exp
[
−
∫ D(t,a)

D(0,a)
h′(z, a)dΛT (z)

]
. (7.7)

Let us denote by Zi the last observed degradation value (reached at time Ui),
Zi = D(Ui, Ai); then a Doob–Meyer decomposition of some counting process in
the degradation space leads to a nonparametric estimator of ΛT [Bagdonavicius
and Nikulin (2004)]

Λ̂T (z) =
∑

δi=1,Zi≤z

( 1∑
j,Zj≥Zi

h′(Zi, Aj)

)
. (7.8)
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Formulae (7.7) and (7.8) lead to the following estimate for the conditional
survival function R̂T (t|A = a)

R̂T (t|A = a) = exp
[
−
∫ D(t,a)

D(0,a)
h′(z, a)dΛ̂(z)

]
= exp

(
−

∑
i:δi=1,Zi≤D(t,a)

h′(Zi, a)
1∑

j:Zj≥Zi
h′(Zi, Aj)

)
.

The estimation of the survival function RT requires integration with respect
to FA because RT (t) = P (T > t) =

∫
RT (t|A = a)dFA(a). By using the

empirical cumulative distribution function F̂A as an estimate of FA we get

R̂T (t) =
∫

exp
[
−
∫ D(t,a)

D(0,a)
h′(z, a)dΛ̂T (z)

]
dF̃A(a)

=
1
n

n∑
k=1

exp
(
−

∑
i:δi=1,Zi≤D(t,Ak)

h′(Zi, Ak)
1∑

j:Zj≥Zi
h′(Zi, Aj)

)
.

Note that because the degradation curves are measured with errors, the Ais
are not observed. In that case Ai has to be replaced by Âi and F̂A by ˆ̂

FA or F̃A

in the formulae; see Section 7.2.
The overall survival function RU of the failure time U = min(T0, T ) is

estimated by

R̂U (t) =
∫ [

exp−
∫ D(t,a)

0
h′(z, a)dΛ̂T (z)

]
1t<h(z0,a)dF̂A(a)

=
1
n

n∑
k=1

exp
[
−
∫ D(t,Ak)

0
h′(z,Ak)dΛ̂T (z)

]
1t<h(z0,Ak)

=
1
n

n∑
k=1

1t<h(z0,Ak)

× exp

⎛⎝− ∑
i:δi=1,Zi≤D(t,Ak)

h′(Zi, Ak)
1∑

j:Zj≥Zi
h′(Zi, Aj)

⎞⎠.

7.4 A Joint Model with Two Failure Modes

Consider that degradation data are not observable until the failure time U which
is the minimum of the degradation failure T0 and the traumatic failure T . In
that case we observe for i = 1 . . . n the failure times U i = min(T i, T i

0), the
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censoring indicators δi = 1(U i=T i), and Zi the degradation values at time Ui.
If we assume that items are new at time zero, it is natural to consider linear
degradation curves Zi(t) = Ai.t where Ai is a real-valued random variable
that can be obtained from the failure time Ui and the degradation value Zi by
Ai = Zi/Ui (of course, some situations might be better described by another
relationship than a linear trend; the only hypothesis here is that the random
coefficient Ai can be recovered with one degradation measurement). The results
of the last section hold and give

Λ̂T (z) =
∑

i:δi=1Zi≤z

1∑
j:Zj≥Zi

Uj/Zj
,

R̂(t|A = a) = exp

⎛⎝−1
a

∑
i:δi=1Zi≤at

1∑
j:Zj≥Zi

Uj/Zj

⎞⎠,

R̂T (t) = P (T > t) =
1
n

n∑
k=1

exp

⎛⎝−Uk

Zk

∑
i:δi=1Zi≤Zkt/Uk

1∑
j:Zj≥Zi

Uj/Zj

⎞⎠,

R̂U (t) = P (U > t) =
1
n

n∑
k=1

1(t<z0Uk/Zk)

× exp

⎛⎝−Uk

Zk

∑
i:δi=1Zi≤Zkt/Uk

1∑
j:Zj≥Zi

Uj/Zj

⎞⎠.

7.5 Conclusion

Some statistical approaches to model and estimate the relationship between
degradation and failure data were considered here. When the aging process due
to cumulated wear and tiredness is observed, longitudinal degradation data are
often a rich source of reliability information and offer many advantages over
failure time data: degradation data are observed before the failure; some infor-
mation about degradation status is available even for censored failure times.
The joint model includes either a traumatic failure time whose hazard function
is determined by the value of the degradation process [the essential point is
that given the value of Z(t), the hazard does not depend on t itself] or a degra-
dation failure time defined as a first hitting time of the degradation process.
Both failure time can obviously be considered in a competing risk model with
degradation data.
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Generalized Birth and Death Processes

as Degradation Models

Vladimir Rykov

Institute for Information Transmission Problems RAS, Bol’shoy Karetny,
Moscow, Russia

Abstract: To model degradation processes in technical and biological objects
generalized birth and death processes are introduced and studied.

Keywords and Phrases: Degradation models, generalized birth and death
processes, quasi-stationary state probabilities

8.1 Introduction and Motivation

Traditional studies of technical systems’ reliability mainly deal with their sur-
vival function (s.f.) and steady-state probabilities (s.s.p.) for renewable systems.
For biological objects the hazard rate function (h.r.f.) is a more informative
characteristic. Because there are no infinitely long living objects and any repair
is possible only from the state of partial failure, the modelling of the degrada-
tion process during the lifetime of an object is the most interesting topic. From
the mathematical point of view the degradation during the object’s lifetime can
be described by the birth and death (B&D) type process with absorbing state.
For this process the conditional state probability distribution given the object’s
lifetime is the most interesting characteristic. The closed form solution for this
characteristic is not a simple problem even for a usual B&D process. But it is
possible to calculate the limiting values at infinity (so-called quasi-stationary
distributions). The problem of existence of quasi-stationary distributions for
B&D processes has a long history [see, e.g., van Doorn (1991), Kijima et al.
(1997) and the bibliography therein], where this problem was considered for a
B&D process with absorbtion at the state {−1} with the help of the spectral
representation technique, proposed in Karlin and McGregor (1957). Recently
intensive attention to the aging and degradation models for technical and bio-
logical objects has been paid. The aging and degradation models suppose the
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study of systems with gradual failures for which multistate reliability mod-
els were elaborated [for the history and bibliography see, e.g., Lisniansky and
Levitin (2003)]. In some of our previous papers [see Dimitrov et al. (2002),
Rykov and Dimitrov (2002), Dimitrov et al. (2004)] the model of a complex
hierarchical system was proposed and the methods for its steady-state and time-
dependent characteristics investigation was done. Controllable fault-tolerance
reliability systems were considered in Rykov and Efrosinin (2004) and Rykov
and Buldaeva (2004).

In the present chapter a generalized B&D process as a model for degradation
and aging processes of technical and biological objects is proposed. Conditional
state probabilities given the object’s lifetime and their limiting values when
t → ∞ are calculated. The variation of the model parameters allows us to
consider various problems of aging and degradation control.

8.2 Generalized B&D Process. Preliminary

Most up-to-date complex technical systems as well as biological objects with
sufficiently high organization during their lifetime pass over different states of
evolution and existence. In the simplest case it can be modelled by the B&D
type process. Suppose that the states of an object are completely ordered,
its transitions only into neighboring states are possible, and their intensities
depend on the time spent in the present state. Consider firstly the general case
of the process with denumerable set of states E = {1, 2, . . .}. To describe the
object behavior by a Markov process let us introduce an enlarged state space
E = E × [0,∞) and consider the two-dimensional process Z(t) = {S(t), X(t)},
where the first component S(t) ∈ E shows the object’s state, and the second
one X(t) ∈ [0,∞) denotes the time spent in the state since the last entrance
into it. Denote by αi(x) and βi(x) (i ∈ E) the transition intensities from the
state i to the states i + 1 and i − 1, respectively under the condition that the
time spent at the state i equals to x.

Remark 8.2.1 If the staying time at state i is considered as a minimum of
two independent random variables (r.v): times Ai and Bi until the transition
into the states i + 1 and i− 1, respectively, with cumulative distribution func-
tions (c.d.f.) Ai(x), Bi(x), probability density functions (p.d.f.) ai(x), bi(x),
and mean values ai =

∫
[1−Ai(x)] dx, bi =

∫
[1−Bi(x)] dx, then the introduced

process can be considered as a special case of a semi-Markov process (SMP)
[see Korolyuk and Turbin (1976)], with conditional transition p.d.f.s αi(x) and
βi(x). Nevertheless, the above formalization opens new possibilities for their
investigations and, moreover, in the degradation models we are studying the
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conditional probability state distribution given the lifetime, that was not inves-
tigated previously.

Denote by πi(t, x) the p.d.f. of the process Z(t) at time t,

πi(t, x)dx = P{S(t) = i, x ≤ X(t) < x + dx} (i ∈ E).

These functions satisfy Kolmogorov’s system of differential equations

∂πi(t, x)
∂t

+
∂πi(t, x)

∂x
= −(αi(x) + βi(x))πi(t, x), 0 ≤ x ≤ t < ∞, (8.1)

with the initial and boundary conditions

π1(t, 0) = δ(t) +
t∫
0

π2(t, x)β2(x)dx

πi(t, 0) =
t∫
0

πi−1(t, x)αi−1(x)dx +
t∫
0

πi+1(t, x)βi+1(x)dx

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (8.2)

In the following we suppose the process to be nonreducible and nondegen-
erated. The conditions for this in terms of SMP might be found, for example,
in Jacod (1971) and McDonald (1978). For the nonreducible, nondegenerated
generalized B&D process Equation (8.1) with initial and boundary conditions
(8.2) has a unique solution over all time axes.

It is possible to show by the method of characteristics [Petrovsky (1952)],
that its solution has the form

πi(t, x) = gi(t−x)(1−Ai(x))(1−Bi(x)), 0 ≤ x ≤ t < ∞, i ∈ E, (8.3)

where functions gi(t) according to the initial and boundary conditions (8.2)
satisfy the system of equations

g1(t) = δ(t) +
t∫
0

g2(t− x)(1−A2(x)b2(x))dx,

gi(t) =
t∫
0

gi−1(t− x)ai−1(x)(1 −Bi−1(x))dx

+
t∫
0

gi+1(t− x)(1−Ai+1(x)bi+1(x))dx

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
. (8.4)

The form of these equations shows that their solution should be found in
terms of Laplace transforms (LTs). Therefore by passing to the LTs with respect
to both variables into relations (8.3) one can get

˜̃πi(s, v) ≡
∞∫
0

e−st

t∫
0

e−vxπ(t, x) dx dt = g̃i(s)γ̃i(s + v), (8.5)
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where g̃i(s) are the LTs of the functions gi(t), and the functions γ̃i(s) are

γ̃i(s) =
∞∫
0

e−st(1−Ai(t))(1 −Bi(t))dt (i ∈ E).

From the other side by passing to the LTs in the system (8.4) one gets

g̃1(s)− g̃2(s)ψ̃2(s) = 1
−g̃i−1(s)φ̃i−1(s) + g̃i(s)− g̃i+1(s)ψ̃i+1(s) = 0

}
, (8.6)

where the functions φ̃i(s) and ψ̃i(s) for all i ∈ E are given by the relations

φ̃i(s) =
∞∫
0

e−sxai(x)(1−Bi(x))dx, ψ̃i(s) =
∞∫
0

e−sx(1−Ai(x))bi(x)dx.

The closed-form solution of this system in the general case even in the
simplest case of the usual B&D process is not possible. Nevertheless, it provides
calculation of different characteristics of the process. Consider some of them.

8.3 Steady-State Distribution

For calculation of the process Z(t) stationary macrostate probabilities (m.s.p.)

πi(t) =
t∫

0

πi(t, x)dx =
t∫

0

gi(t− x)(1−Ai(x))(1 −Bi(x))dx, (8.7)

we use the connection between asymptotic behavior of functions at infinity and
their LTs at zero. Letting γ̃i(0) = γi and taking into account that according to
(8.5) π̃i(s) = ˜̃πi(s, 0), we find

πi = lim
t→∞πi(t) = lim

s→0
sπ̃i(s) = γi lim

s→0
sg̃i(s) = γigi, (8.8)

where gi = lims→0 sg̃i(s), which should be calculated for the problem solution.
For this we use Equations (8.6). Denote φi = φ̃i(0), ψi = ψ̃i(0), and note that
φi + ψi = 1, and φ1 = 1. The following theorem holds.

Theorem 8.3.1 For the generalized B&D process stationary regime existence
the convergence of the following series is necessary.

g−1
1 =

∑
1≤i<∞

γi

∏
1≤j≤i

φj−1

ψj
< ∞. (8.9)
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In this case the stationary m.s.p. are given by the formulas

π1 = g1γ1, πi = g1γi

∏
1≤j≤i

φj−1

ψj
, i = 2, 3, . . . . (8.10)

Proof. Suppose that the limits (8.8) exist. Multiplying Equations (8.6) by s,
passing to the limit when s → 0, and taking into account the above notations
and relations from these equations one gets the recursive relations

giφi − gi+1ψi+1 = gi−1φi−1 − giψi, i = 2, 3 . . . . (8.11)

Because of φ1 = 1, from the first of Equations (8.6) it follows that
g1φ1 − g2ψ2 = 0. With the help of the last recursive relation it is possible to
calculate coefficients gi and find the stationary m.s.p. in form (8.10), for which
the converges of the series (8.9) is necessary.

Moreover, from the form of the stationary m.s.p. the next important corol-
lary follows.

Corollary 8.3.1 The stationary m.s.p.of generalized B&D process are insen-
sitive to the shape of distributions Ai(x), Bi(x) and depend only on jump prob-
abilities up and down an embedded random walk, and mean time of the process
staying in the given states,

φi = P{Ai ≤ Bi}, ψi = P{Ai > Bi}, γi = E[min Ai, Bi].

Proof. Follows from the formulas (8.9) and (8.10).

In the case of exponential distributions Ai(x) = 1 − e−αix and Bi(x) =
1−e−βix the formulas (8.10) are reduced to the s.s.p. of the usual B&D process.

8.4 Conditional Distribution Given Lifetime

For many phenomena, especially for degradation processes, the absorbing pro-
cess model is more appropriate. For the generalized B&D process with absorbing
state n + 1 in Equations (8.1) one should put αn+1(x) = βn+1(x) ≡ 0. In this
case the equation for the p.d.f. πn+1(t) takes the form

∂πn+1(t, x)
∂t

+
∂πn+1(t, x)

∂x
= 0, (8.12)

with the initial and boundary condition

πn+1(t, 0) =
t∫

0

πn(t, x)αn(x)dx. (8.13)
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Thus, all p.d.f.s πi(t, x) (i = 1, n) have the same form (8.3) as before. But the
p.d.f. πn+1(t, x), being a constant over characteristics, is

πn+1(t, x) = gn+1(t− x), (8.14)

where due to the boundary conditions (8.13) it follows that

gn+1(t) =
t∫

0

gn(t− x)an(x)(1 −Bn(x))dx. (8.15)

From the systems of Equations (8.1), (8.2), (8.12), and (8.13) it follows that
the m.s.p.s πi(t) (i = 1, n) represent the probabilities of the object to be in
some state jointly with its lifetime T ,

πi(t) = P{S(t) = i, t < T}, (i = 1, n),

whereas the m.s.p. πn+1(t) represents the distribution of this period,

πn+1(t) = P{T ≤ t}.

For the degradation problem investigation, more useful and adequate character-
istics are the conditional state probabilities given the object lifetime for which
the following representations are true.

π̄i(t) ≡ P{S(t) = i |t < T} =
πi(t)
R(t)

, (i = 1, n),

where the s.f. of the object is

R(t) = 1− πn+1(t) = P{T > t}. (8.16)

We are interested in asymptotic behavior of these conditional probabilities
at infinity. To find their limits at infinity, it is necessary to show that the
asymptotic behavior of the s.f. R(t) coincide with the asymptotic behavior of
the m.s.p.s πi(t). We do that with the help of their LTs. The LTs π̃i(s) of
the m.s.p.s πi(t) have the same form (8.5) as before, and for m.s.p. π̃n+1(s)
according to (8.14) and (8.15) it holds

π̃n+1(s) =
∞∫
0

e−st

t∫
0

gn+1(t− x) dxdt =
1
s
g̃n+1(s) =

1
s
φ̃n(s)gn(s). (8.17)

For the functions g̃i(s) (i = 1, n) the first n of Equations (8.6) take place, the
matrix form of which is

Ψ(s) g̃(s)
−→

= e1, (8.18)
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where Ψ(s) is the matrix of coefficients of the n first equations of the system
(8.6). Denote also by Ψi(s) the matrix, obtained from this one by changing its
ith column with the vector of the right-hand side of the system (vector �e1),
and by ∆(s) and ∆i(s) the determinants of these matrices. Then taking into
account the expressions (8.5) and (8.17), and the solution of the system (8.18)
in terms of Kramer’s rule, one can get

π̃i(s) = γ̃i(s)g̃i(s) = γ̃i(s)
∆i(s)
∆(s) (i = 1, n)

π̃n+1(s) = φ̃n(s)
s g̃n(s) = φ̃n(s)

s
∆n(s)
∆(s)

⎫⎬⎭ . (8.19)

Due to the definition all functions π̃i(s) (i = 1, n) and R̃(s) are analytical in
right the half-plane, Res ≥ 0. Suppose that all these functions at the left
half-plane have only a finite number of singular points. [This is true, e.g., if all
functions φ̃i(s), ψ̃i(s) are meromorphic.] Therefore, according to the inverse LT
formulae the behavior of their originals is determined with their singularities in
the left half-plane [Lavrent’ev and Shabat (1958)].

πi(t) =
∑

res{π̃i(sk)eskt}, R(t) =
∑

res{R̃(sk)eskt},

where the summations go over all singularities of appropriate functions.
Suppose that for all these functions the singular point s1 with a minimal

module is defined with the root of the characteristic equation

∆(s) = 0, (8.20)

and suppose that in its neighborhood the function ∆(s) has a pole of the first
order.

Theorem 8.4.1 If the singular point s1 for all functions π̃i(s) (i = 1, n) and
R̃(s) with a minimal module is determined by the root of the characteristic
equation (8.20), then the asymptotic behavior of the m.s.p.s πi(t) and the s.f.
R(t) when t→∞ coincides. This provides the existence of the limits

π̄i = lim
t→∞ π̄i(t) =

π̃i(s1)
R̃(s1)

= γi(s1)
∆i(s1)
∆R(s1)

.

Proof. From the last of relations (8.19) it follows that the function π̃n+1(s)
can be represented in the form

π̃n+1(s) =
φ̃n(s)

s

∆n(s)
∆(s)

=
B

s
+

∆R(s)
∆(s)

,

with some coefficient B and some function ∆R(s). Let us show that the coeffi-
cient B equals one, B = 1. Really, from the definition it follows that

B = lim
s→0

sπ̃n+1(s) = lim
s→0

φ̃n(s)gn(s) = φngn(0) = φn
∆n(0)
∆(0)

.
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Denote Ψ = Ψ(0), Ψn = Ψn(0) and consider the matrix Ψ−φnΨn. Because
φ1 = 1 and φi+ψi = 1 for all i = 1, n, the sum of elements of rows of the matrix
Ψ except the last elements are equal to the zero row. Because the matrix Ψn

differs from Ψ only with the last column, thus the sum elements of all rows
of the matrix Ψ − φnΨn except elements of its last column are also zero row.
Consider now the elements of the last column. At the first place in it is an
element −φn, at the before-last one is an element −ψn, and at the last one is
an element 1 = φn + ψn. Thus, the rows of the matrix Ψ − φnΨn are linearly
dependent, and, therefore, its determinant equals zero. From this fact it follows
that φn∆n(0) = ∆(0) and consequently B = (φn∆n(0))/∆(0) = 1. At least
from this it follows that the function R̃(s) can be presented as

R̃(s) =
∆R(s)
∆(s)

.

Thus, the asymptotic behavior of the s.f. R(t) when t → ∞ also as all
m.s.p.s πi(t) is determined by the maximal root s1 of the characteristic equation
∆(s) = 0.

To evaluate the precise value of the limit it is necessary to note that the
values of the limit are determined by the residuals of the functions π̃i(s) and
R̃(s) at this point,

Ai1 = lim
s→s1

(s− s1)π̃i(s) = lim
s→s1

(s− s1)
∆i(s)
∆(s)

=
∆i(s1)
∆̇(s1)

;

AR1 = lim
s→s1

(s− s1)R̃(s) = lim
s→s1

(s− s1)
∆R(s)
∆(s)

=
∆R(s1)
∆̇(s1)

.

Therefore, when t→∞ the limiting value is

π̄i = lim
t→∞

πi(t)
R(t)

=
π̃i(s1)
R̃(s1)

= γ(s1)
∆i(s1)
∆R(s1)

.

To investigate the h.r.f. behavior at infinity it is necessary to remark that
the p.d.f. of an object’s lifetime due to (8.14)–(8.16) equals

f(t) = −Ṙ(t) = π̇n+1(t) = gn+1(t) =
t∫

0

gn(t− x)an(x)(1−Bn(x))dx.

Thus,

f̃(s) = φ̃n(s)g̃n(s) = φ̃n(s)
∆n(s)
∆(s)

.

Therefore, because in the conditions of the previous theorem the behavior of
p.d.f. f(t) and the s.f. R(t) at infinity coincide, the limit of h.r.f. h(t) at infinity
also exists. This consideration could be formulated as a theorem.
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Theorem 8.4.2 Under the conditions of Theorem 8.4.1 there exists the limit

h = lim
t→∞h(t) = φn(s1)

∆n(s1)
∆R(s1)

.

Proof. Follows from the above considerations.

To illustrate the above results let us consider an object with only three
states: normal functioning N , degradation D, and failure F .

8.5 An Example

Suppose for simplicity that the times-to-failure in the normal N and the de-
generation D states are exponentially distributed with parameters λ and ν,
respectively, but the repair times are generally distributed with c.d.f. B(x) and
the conditional p.d.f. β(x). Moreover suppose that the direct transition from
the normal state into the failure state are also possible with intensity γ. The
transition graph is presented in the figure below.

� � ��� �

�
����

���

N D F

λ ν

β(x)

γ

The marked transition graph of the process, for example.

In accordance with the given transition structure, Kolmogorov’s system of
differential equations for system state probabilities has the form

dπN (t)
dt = −(λ + γ)πN (t) +

t∫
0

β(x)πD(t, x)dx

∂πD(t,x)
∂t + ∂πD(t,x)

∂x = −(ν + β(x))πD(t, x)

dπF (t)
dt = γπN (t) + ν

t∫
0

πD(t, x) dx

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(8.21)

with the initial and the boundary conditions

πD(t, 0) = λπN (t),
πN (0) = 1, πD(0, 0) = πF (0) = 0.

}
. (8.22)
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The s.f. of the system is

R(t) = 1− πF (t) = 1−
∫ t

0
[γπN (u) + νπD(u)] du, (8.23)

where
πD(t) =

∫ t

0
πD(t, x) dx. (8.24)

The solution of the second equation from the system (8.21) according to
(8.3) can be given in the form

πD(t, x) = gD(t− x)e−νx(1−B(x)),

and using the boundary condition (8.22) gives

πD(t, x) = λπN (t− x)e−νx(1−B(x)). (8.25)

The following equation

dπN (t)
dt

= −(λ + γ)πN (t) + λ

t∫
0

β(x)πN (t− x)e−νx(1−B(x))dx (8.26)

is the result of the substitution of this solution into the first equation of the
system (8.21). In terms of LT with the initial condition (8.22) the last equation
is

sπ̃N(s)− 1 = −(λ + γ)π̃N (s) + λb̃(s + ν)π̃N (s),

where b̃(s) = b(x)dx is a LT of the p.d.f. b(x). Therefore

π̃N (s) =
[
s + γ + λ(1− b̃(s + ν))

]−1
. (8.27)

The calculation of the LT π̃D(s) of the function πD(t), using the formulae
(8.24), (8.25), and (8.27) gives

π̃D(s) =
∫ ∞

0
e−st

∫ t

0
πD(t, x) dx =

λ(1− b̃(s + ν))
(s + ν)(s + γ + λ(1− b̃(s + ν)))

. (8.28)

At least for the LT π̃F (s) of the function πF (t) from the last of equations
(8.21) one can find

sπ̃F (s) = γπ̃N (s) + νπ̃D(s) =
γ(s + ν) + λν(1− b̃(s + ν))

(s + ν)(s + γ + λ(1− b̃(s + ν)))
. (8.29)

Therefore, the LT of the s.f. (8.23) is

R̃(s) =
1
s
− π̃F (s) =

s + ν + λ(1− b̃(s + ν))
(s + ν)(s + γ + λ(1− b̃(s + ν)))

. (8.30)



Generalized Birth and Death Processes as Degradation Models 105

From the last expression one can find the mean lifetime of the object

mF = R̃(0) =
ν + λ(1− b̃(ν))

ν(γ + λ(1− b(ν)))
. (8.31)

For calculation of the limiting values of the conditional state probabilities
given the lifetime we use the above procedure. In the considered case the char-
acteristic equation (8.20) has a form

∆(s) = (s + ν)(s + γ + λ(1− b̃(s + ν))) = 0. (8.32)

One of its roots is s = −ν. The second root is determined by the equation
(s + γ + λ(1− b̃(s + ν))) = 0 or

b̃(s + ν) = 1 +
s + γ

λ
. (8.33)

Because the function b̃(s+ν) is a completely monotone one [Feller (1966)], that
is, monotonically decreases, concave upward, takes the value 1 at the point
s = −ν and b̃(ν) < 1 + γ/λ, then Equation (8.33) has a unique negative root,
and its value depends on the sign of the difference γ − ν. If γ ≥ ν the root of
this equation, which we denote by s1, is less than −ν, s1 ≤ −ν. On the other
hand if γ < ν the root of this equation s1 is greater than −ν, s1 > −ν. Thus,
when γ ≥ ν the maximal root of the equation (8.33) is −ν, and therefore,

π̄N = lim
t→∞ π̄N (t) = lim

t→∞
πN (t)
R(t) = lim

s→−ν

π̃N (s)

R̃(s)
= 1

1+λmB

π̄D = lim
t→∞ π̄D(t) = lim

t→∞
πD(t)
R(t) = lim

s→−ν

π̃D(s)

R̃(s)
= λmB

1+λmB

⎫⎪⎬⎪⎭ ; (8.34)

that is, if the death intensity from the normal state is greater than the death
intensity resulting from degradation, then the limiting distribution of the con-
ditional state probabilities is determined by the parameter ρ = λmB .

From another side, under condition γ < ν the greatest root of the charac-
teristic equation (8.32) is the root of Equation (8.33), and consequently

π̄N = lim
t→∞ π̄N (t) = lim

s→s1

π̃N (s)

R̃(s)
= s1+ν

s1+ν+λ(1−b̃(s1+ν))

π̄D = lim
t→∞ π̄D(t) = lim

s→s1

π̃D(s)

R̃(s)
= λ(1−b̃(s1+ν))

s1+ν+λ(1−b̃(s1+ν))

⎫⎪⎪⎬⎪⎪⎭ . (8.35)

Therefore, if the death intensity from the normal state is less than the same as a
degradation result, then the limiting distribution of the conditional probabilities
strongly depends on the value s1 of the Equation (8.33) root. Note that in the
case where direct transitions from the normal state to the failure state are
impossible (i.e., when γ = 0) the second case takes place.
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8.6 Conclusion

Generalized birth and death processes, which are a special class of semi-Markov
processes are introduced for modelling the degradation processes. The special
parametrization of the processes allows us to give a more convenient presenta-
tion of the results. Special attention is focused on the conditional state prob-
abilities given the lifetime, which are the most interesting for the degradation
processes.

In conclusion the author thanks the referee for his or her remarks, which
allowed us to improve the chapter’s presentation.
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Nonperiodic Inspections to Guarantee

a Prescribed Level of Reliability

C. T. Barker and M. J. Newby

The City University School of Engineering and Mathematical Sciences,
Northampton Square, London, England

Abstract: A cost-optimal nonperiodic inspection policy is derived for complex
multicomponent systems. The model takes into consideration the degradation
of all the components in the system with the use of a Bessel process with drift.
The inspection times are determined by a deterministic function and depend on
the system’s performance measure. The nonperiodic policy is developed by eval-
uating the expected lifetime costs and the optimal policy by an optimal choice
of inspection function. The model thus gives a guaranteed level of reliability
throughout the life of the project.

Keywords and Phrases: Wiener process, Bessel process, regenerative process

9.1 Introduction

The aim of the chapter is to derive a cost-optimal inspection and maintenance
policy for a multicomponent system whose state of deterioration is modelled
with the use of a Markov stochastic process. Each component in the sys-
tem undergoes a deterioration described by a Wiener process. The proposed
model takes into account the different deterioration processes by considering a
multivariate state description Wt. The performance measure Rt of the system
is a functional on the underlying process and is not monotone. Decisions are
made by setting a critical level for the process. Because it is nonmonotone the
performance measure can cross the critical level in both directions but will even-
tually grow without limit. Our decisions are thus based on the probability that
the performance measure never returns below the critical level. By choosing the
critical level appropriately we thus guarantee a minimum level of reliability.

109
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9.2 The Model

9.2.1 The considered processes

A system S consisting of N components (or subsystems) is considered. It is
assumed that each component experiences its own way of deteriorating through
time and that the N deteriorations are independent; that is, the deterioration
of any component has no influence on the deterioration of the N − 1 remaining
components. The proposed model takes into account the different N deteriora-
tion processes as follows. Each component undergoes a deterioration described
by a Wiener process. The components are labelled Ci, i ∈ {1, . . . , N} and the
corresponding Wiener processes are W

(i)
t , i ∈ {1, . . . , N}, where

W
(i)
t = µit + σB

(i)
t , ∀i ∈ {1, . . . , N}. (9.1)

The above Wiener processes have different drift terms (the µis) but for sim-
plicity the volatility terms (σ) are assumed identical and each component is
assumed to be new at time t = 0 : W

(i)
0 = 0. The independence is modelled by

considering N independent Brownian motions B
(i)
t s. The next step consists in

considering the following N -dimensional Wiener process:

Wt =
(
W

(1)
t ,W

(2)
t , . . . ,W

(N)
t

)
= µt + σBt

W0 = 0

(9.2)

with

µ =

⎛⎜⎝ µ1
...

µN

⎞⎟⎠ , Bt =

⎛⎜⎝ B
(1)
t
...

B
(N)
t

⎞⎟⎠ . (9.3)

Decisions are based on a summary measure of performance which corre-
sponds to a functional on the underlying process A(Wt), as in Newby and Barker
(2006). In this study the functional used to describe the system’s performance
measure is the Euclidean norm Rt,

Rt = ‖Wt‖2

=

√√√√ N∑
i=1

(W (i)
t )2

. (9.4)
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Rt is the radial part of a drifting Brownian motion starting at the origin; it
therefore corresponds to a Bessel process with drift Bes0(ν, µ) starting at the
origin with index ν and drift µ [Rogers and Pitman (1980)], where:

ν =
1
2
N − 1 and µ =

√√√√ N∑
i=1

µ2
i . (9.5)

Remark 9.2.1 The radial part of a Brownian motion with drift starting from
any other point R0 �= 0 does not correspond to a Bessel process with drift
BesX(ν, µ) [Rogers and Pitman (1980)].

9.2.2 Maintenance actions and nonperiodic inspections

The model proposed in this chapter aims at giving an optimal maintenance and
inspection policy. The efficiency of the policy entirely depends on the inspection
times and the type of maintenance on the system.

Maintenance actions are determined by comparing the observed system state
Rt with a critical level ξ. However, rather than considering the first hitting time
at this threshold, decisions are based on the last exit time from this critical level.
For a general process Xt the last exit time is

Hx
ξ = sup

t∈R+

{Xt ≤ ξ|X0 = x}.

In a monotone process both the first hitting time and last exit times are stopping
times and the distributions of these times are relatively straightforward to ob-
tain. The Bessel process Rt describing the performance measure is nonmonotone
so that the last exit time is not a stopping time but the probability P[H0

ξ ≤ t]
is known.

Decision rules for maintenance are made with the help of a maintenance
function. In our particular case, the process chosen is the Euclidean norm of
an n-dimensional Wiener process which corresponds to a Bessel process only
when the process starts from the initial state 0. Hence it is a necessity to always
consider the process starting from state 0. This rules out the usual repair model,
that describes the effect of maintenance on the system by determining a new
starting point for the process. The problem is tackled by considering changes
in the value of the critical threshold ξ, rather than a new starting point for the
process, and hence affects the time taken to traverse the distance to the critical
threshold. After a repair the system is described by the same process starting
from zero but with the critical threshold reduced to the distance between the
repaired state and the original threshold. We introduce a repair function which
models the amount by which the threshold is lowered after undertaking a repair
on the system. The function introduced is denoted by d and if {τ1, τ2, . . .} refer
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to the inspection times, d may be defined as

d : R+ → R+ Rτi �→ d (Rτi) . (9.6)

It is a function of the performance measure of the system at inspection times.
The choice for d is made among the set of bijective functions. The bijective
property for d is required when the derived cost functions are numerically eval-
uated with an appropriate choice of quadrature points. The idea is that rather
than considering Rt starting from a new initial state after the maintenance ac-
tion with the same threshold value ξ, we reset the value Rτi to 0 and consider
a lower threshold ξ

′
= ξ − d (Rτi). This may also be regarded as a shift of the

x-axis of amount d (Rτi) upwards. As far as the decision problem is concerned,
the Markov property of the process is exploited and allows a copy of the original
process to be considered:

P[Rt < ξ |R0 = x] = P[R′
t < ξ − x |R′

0 = 0] (9.7)

with

Rt = ‖Wt‖2
R′

t = ‖Wτ+
i + t −Wτ+

i
‖2

. (9.8)

Recall that Wt is the n-dimensional process describing the state of the system.
The process observed to be in state Wτi is repaired instantaneously and restarts
in state Wτ+

i
where ‖Wτ+

i
‖2 = x: the repair undertaken on the system can

therefore be interpreted as a componentwise repair. R′
t is an equivalent process

with the same probability structure and starting at the origin. In the more usual
notation

Px[Rt < ξ] = P0[R′
t < ξ − x] (9.9)

with the superscript indicating the starting point.
The proposed model considers a nonperiodic inspection policy, the reason

for this being that it is a more general approach and often results in policies with
lower costs, particularly in cases where high costs of lost production are taken
into consideration. Rather than considering a dynamic programming problem
as did Newby and Dagg (2004), the optimization problem is simplified by using
an inspection scheduling function m as introduced in Grall et al. (2002). The
scheduling function is a decreasing function of d (Rτi), the amount by which
the threshold is decreased, and determines the amount of time until the next
inspection time

m : R+ → [mmin,mmax]
d (Rτi) �→ m [d (Rτi)] .

(9.10)

With τi (i ∈ N) denoting the times at which the system is inspected and Rτi

its performance, the next inspection time τi+1 is deduced using the relation

τi+1 = τi + m [d (Rτi)] . (9.11)
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Consequently, it is the state of the performance measure that determines the
next inspection time. The choice for m is made among the set of decreasing
functions

∀ i, j ∈ N : d (Rτi) ≤ d
(
Rτj

)
⇔ m [d (Rτi)] ≥ m

[
d
(
Rτj

)]
. (9.12)

This allows us to model the fact that the worse the performance of the system
is (and hence the lower the value for the new critical threshold after repair
is) the more frequently it needs to be inspected. We note that the great ad-
vantage with this approach is that it preserves continuity within the model.
The approach here is to optimize the total expected cost with respect to the
inspection scheduling function. The inspection functions form a two-parameter
family and these two parameters, a and b, are allowed to vary to locate the
optimum values. The function can be thus written m [ . | a, b] leading to a total
expected cost function vξ (a, b) which is optimized with respect to a and b. The
two parameters are defined in the following way,

m [0 | a, b] = a,

m [Rt | a, b] = α, if Rt ≥ b,
(9.13)

for some fixed chosen value α ∈ [0, a]. From the above, we may deduce that
mmin = α and mmax = a. These parameters have physical interpretations:

(i) Parameter a corresponds to the amount of time elapsed before the first
inspection (i.e., when the system is new)

(ii) Parameter b controls changes in frequency of inspections.

As the choice of inspection scheduling functions is made among the set of
decreasing functions, one may deduce

∀ i ∈ N, τi+1 − τi ≤ a.

(That is, the amount of time between any two consecutive inspections will
not exceed a.) Moreover, the parameter b sets a lower bound for the process
Rt below which the system’s performance is assumed to be insufficient; this
therefore justifies a periodic inspection of the system of period α.

To ensure tractability of the optimization and of the effects of the chosen
function on the optimal cost, choices for m are confined within the set of poly-
nomials of order less than or equal to 2. We note, however, that the proposed
models are not restricted to this choice of inspection scheduling functions and
can be extended to any other type of function. Particular attention is paid to the
convexity or concavity property of m; this allows different rates of inspections
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as time passes to be considered. The following three expressions for m are in-
vestigated,

m1 [x| a, b ] = max
{

1, a− a− 1
b

x

}
(9.14)

m2 [x| a, b ] =

⎧⎨⎩ (x− b)2

b2
(a− 1) + 1, 0 � x � b

1, x > b
(9.15)

m3 [x| a, b ] =

⎧⎨⎩ −
(√

a− 1
b

x

)2

+ a, 0 � x � b

1, x > b

(9.16)

with a > 1 in all cases. Note that if a = 1 the policy becomes a periodic
inspection policy with period τ = a = 1 and in the case where a < 1 the policy
inspects less frequently for a more deteriorated system.

Remark 9.2.2 In the rest of the chapter, the notations m (x) and vξ−x are
used rather than m (x|a, b) and vξ−x (a, b), for clarity.

The function m1 resembles the inspection scheduling function considered in
the numerical example section of Grall et al. (2002) and constitutes a reference
for our numerical results. Note that whereas the time until the next inspection
decreases rather quickly when dealing with m2, m3 allows greater time between
the inspections when the state of the system is still small. The function m2

might be thought appropriate for a system experiencing early failures (infant
mortality), whereas m3 is more appropriate for a system that is unlikely to fail
in its early age.

9.2.3 Features of the model

Model assumptions

1. Without loss of generality, it is assumed that the system’s initial perfor-
mance is maximum (i.e., R0 = 0) with initial critical threshold ξ.

2. Inspections are nonperiodic, perfect (in the sense that they reveal the true
state of the system), and they are instantaneous.

3. Maintenance actions are instantaneous.

4. The system’s performance is only known at inspection times, however, the
moment at which the performance does not meet the prescribed criteria is
immediately known (self-announcing): the system is then instantaneously
replaced by a new one with cost Cf .

5. Each inspection incurs a fixed cost Ci.
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6. Each maintenance action on the system incurs a cost determined by a
function Cr. It is a function of the performance of the system at inspection
time.

Settings for the model

1. The state space in which the process Rt evolves is partitioned by the
critical threshold ξ as follows.

R+ = [0, ξ) ∪ [ξ,+∞) . (9.17)

Because the process Rt is nonmonotone, the first time at which the process
hits the threshold ξ is not considered as the time at which the system fails.
Instead, we use the transience and positivity properties of the process to
define the system as unsafe when it has escaped from the interval [0, ξ).
This time is the last exit time H0

ξ = supt∈R+{Rt ≤ ξ|R0 = 0}.

2. The system is inspected at inspection times {τ1, τ2, . . .}. The time between
inspections τi−1 and τi is Ti, i ∈ N and is determined by using an inspec-
tion scheduling function m, described in Section 9.2.2. The sequence of
inspection times (τi)i∈Z+ is strictly increasing and satisfies:

τ0 = 0

τi =
i∑

k=1

Tk

Ti = τi − τi−1, i ≥ 1.

(9.18)

At inspection time τi, the corresponding system’s state is Rτi and ap-
propriate maintenance action (repair or do nothing) is undertaken. Let
τ∗
i denote the times at which the system is replaced: at such times the

process (Rt)t≥0 is reset to zero. These times are regeneration times and
allow us to derive an expression for the total expected cost of inspection
and maintenance.

3. At inspection time t = τ (prior to any maintenance action), the system’s
performance is Rτ .

4. Given that the system’s initial performance is maximum (i.e., R0 = 0),
decisions on the level of maintenance (replacement or imperfect mainte-
nance) are made on the basis of the indicator function 1{H0

ξ >τ}. By this it
is meant that decisions on whether to replace the system are taken on the
basis of the process having definitively escaped from the interval [0, ξ).
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5. Deterministic maintenance at inspection time is modelled with the use of
the following maintenance function,

d (x) =

⎧⎨⎩ x, x < ξ
K

kx, x ≥ ξ
K

(9.19)

with corresponding cost function

Cr (x) =

⎧⎨⎩ 0, x < ξ
K

100, x ≥ ξ
K

(9.20)

with constants k ∈ (0, 1] and K ∈ (1,+∞). The constant k determines
the amount of repair undertaken on the system; K is arbitrarily chosen
and sets the region of repairs for the system.

9.3 Expected Total Cost

In this section we propose an expression for the expected total cost of inspec-
tions and maintenance. The Markov property of the Bessel process allows the
total cost to be expressed via a recursive approach: a conditioning argument
on the threshold value is considered. The notation Vξ−x is used to denote the
total cost of maintenance, where ξ− x refers to the threshold value. The main-
tenance decisions are made using the exit time from the region of acceptable
performance. The time H0

ξ−x can never be known by observation because ob-
serving any up-crossing of the threshold reveals a potential exit time but there
remains the possibility of a further down-crossing and up-crossing in the fu-
ture. This is the meaning of the fact that H0

ξ−x is not a stopping time. In a
nonprobabilistic context, the process H0

ξ−x is described by a noncausal model.
The difficulty is readily resolved because the probability that the last exit time
occurs before the next inspection is known. In the light of these observations
the decision rules are formulated as follows.

• 1{H0
ξ−x>m(x)} = 1: performance of the system (evaluated with respect to

the last time the process hits the critical threshold) meets the prescribed
criteria until the next scheduled inspection. Upon inspection, the system’s
performance is Rm(x). The system is inspected, and a cost of inspection
Ci is considered. The maintenance brings the system state of degradation
back to a lower level d

(
Rm(x)

)
with cost Cr

(
Rm(x)

)
. Future costs enter by

looking at the process starting from the origin and with the new critical
threshold set up equal to ξ−d

(
Rm(x)

)
. The system is then next inspected

after m
[
d
(
Rm(x)

)]
units of time.
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• 1{H0
ξ−x>m(x)} = 0: the performance fails to meet the prescribed criteria

between two inspections. The system is replaced with cost Cf and the
process restarts from the origin. Future costs are then taken into consid-
eration by looking at the process starting from the origin and with the
new critical threshold set up equal to ξ.

9.3.1 Expression of the expected total cost

We first give the expression for the total cost and then take the expectation.
This is done by considering the above different scenarios

Vξ−x =
(
Ci + Vξ−d(Rm(x)) + Cr

(
Rm(x)

))
1{performance acceptable}

+ (Cf + Vξ)1{performance not acceptable}

=
(
Ci + Vξ−d(Rm(x)) + Cr

(
Rm(x)

))
1{H0

ξ−x>m(x)}

+ (Cf + Vξ)1{H0
ξ−x≤(x)}.

(9.21)

Taking the expectation leads to:

vξ−x = E[Vξ−x]

= E

[
(Cf + Vξ)1{H0

ξ−x≤m(x)}
]

+ E

[(
Ci + Vξ−d(Rm(x)) + Cr

(
Rm(x)

))
1{H0

ξ−x>m(x)}
]

= (Cf + vξ) E

[
1{H0

ξ−x≤m(x)}
]

+ E

[(
Ci + Vξ−d(Rm(x)) + Cr

(
Rm(x)

))
1{H0

ξ−x>m(x)}
]

= (Cf + vξ) P
[
H0

ξ−x ≤ m(x)
]

+
∫ +∞

0

(
Ci + Cr (y) + vξ−d(y)

)
P
[
H0

ξ−x > m(x)
]
f0

m(x) (y) dy

= (Cf + vξ) P
[
H0

ξ−x ≤ m(x)
]

+
∫ +∞

0

(
Ci + Cr (y) + vξ−d(y)

)
P
[
H0

ξ−x > m(x)
]
f0

m(x) (y) dy.

(9.22)

Using the density of the last hitting time h0
ξ and the transition density f0

t

of the process Rt

vξ−x = (Cf + vξ)
∫ m(x)

0
h0

ξ−x (t) dt

+
∫ +∞

0

(
Ci + Cr (y) + vξ−d(y)

)(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)
f0

m(x) (y) dy
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= Ci

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)
+ (Cf + vξ)

∫ m(x)

0
h0

ξ−x (t) dt

+

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)∫ +∞

0
Cr (y) f0

m(x) (y) dy

+
∫ +∞

0
vξ−d(y)

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)
f0

m(x) (y) dy. (9.23)

In (9.22) the expected value E

[
Vξ−d(Rm(x))1{H0

ξ−x>m(x)}
]

is required. The

expected value is derived by using the conditional independence of H0
ξ−x and

Rτ . The independence allows the factorization of the integrals as shown in the
appendix.

Rearranging (9.23) above gives

vξ−x = Q (x) + λ (x) vξ +
∫ d−1(ξ)

0
vξ−d(y)K {x, y} dy, (9.24)

where

λ (x) =
∫ m(x)

0
h0

ξ−x (t) dt

Q (x) = (1− λ (x))
(

Ci +
∫ +∞

0
Cr (y) f0

m(x) (y) dy

)
+ Cfλ (x)

K {x, y} =

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)
f0

m(x) (y) .

(9.25)

Note that now the limit in the integral in (9.24) is finite. The justification for
this change of limit is that the expected cost vξ−x is assumed to be zero when
the critical threshold is negative. Indeed, a negative threshold in the model
would either mean that the system never reaches a critical state or that it is
always in a failed state; hence no maintenance action needs to be considered,
setting the expected cost of maintenance to zero.

9.3.2 Obtaining the solutions

The equation (9.24) is solved numerically: an approximation to the continuous
problem is constructed by discretizing the integrals giving a set of linear matrix
equations. The discrete problem is solved using the methods described in Press
et al. (1992). First, note that at t = 0 the system is new. Under this condition,
we rewrite Equation (9.24) as follows.

vξ−x = Q (x) + λ (x) vξ−x +
∫ d−1(ξ)

0
vξ−d(y)K {x, y} dy. (9.26)
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Yielding to the following Fredholm equation,

{1 − λ (x)}vξ−x = Q (x) +
∫ d−1(ξ)

0
vξ−d(y)K {x, y} dy. (9.27)

Rewriting (9.24) as (9.27) does not affect the solution to the equation and will
allow the required solution to be obtained by a homotopy argument based on ξ.
Indeed both Equations (9.24) and (9.27) are identical when x = 0; we therefore
solve Equation (9.27) and get the solution for x = 0. The Nystrom routine with
the N -point Gauss–Legendre rule at the points yj, j ∈ {1, . . . , N} is applied to
(9.27); we get

{1− λ (x)}vξ−x = Q (x) +
N∑

j=1

vξ−d(yj)K {x, yj}wj . (9.28)

We then evaluate the above at the following appropriate points xi = d (yi)
and obtain:

{1− λ (xi)}vξ−xi
= Q (xi) +

N∑
j=1

vξ−d(yj)K {xi, yj}wj , (9.29)

which, because vξ−xi
and vξ−d(yi) are evaluated at the same points, can be

rewritten in the following matrix form,

(D−K)v = Q, (9.30)

where:

vi = vξ−xi

Di,j = (1− λ (xi))1{i=j}
Ki,j = K {xi, yj}wj

Qi = Q (xi) .

(9.31)

Having obtained the solution at the quadrature points by solving inversion of
the matrix D − K, we get the solution at any other quadrature point x by
simply using Equation (9.28) as an interpolatory formula.

Remark 9.3.1 K{x, y} in (9.25) is the product of a density function by a
survival function hence it is bounded by the maximum of the density which,
by the Fredholm alternative, ensures that the equation in (9.30) has a solution
(i.e., D−K is invertible).

Because we are interested in a system which is new at time t = 0, we just
choose the quadrature point xi = 0, which justifies that rewriting (9.24) as
(9.27) does not affect the solution to the equation.
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9.4 Numerical Results and Comments

This section presents results from numerical experiments. The values of the
parameters for the process used to model the degradation of the system and
the different costs used were chosen arbitrarily to show some important features
of the inspection policy. The initial value for the critical threshold is ξ = 5,
the Bessel process considered is Bes0 (0.5, 1), and the values for the cost of
inspection and the cost of failure are Ci = 50 and Cf = 200.

The corresponding costs of repair are chosen to be dependent on the state
of the system found at inspection as follows.

Cr (y) =

⎧⎨⎩ 0, y < ξ
2

100, y ≥ ξ
2 .

(9.32)

The purpose of the present model is to find an optimal inspection policy
for the expected total cost of inspection and maintenance of the system. Three
different types of inspection policies are considered with the use of the three
inspection scheduling functions m1, m2, and m3 defined in Section 9.2.2. The
expected total costs are minimized with respect to the two parameters a and b.

The numerical results for the case of small maintenance on the system
(k = 0.9) are shown in Figure 9.1. In the case of a large amount of mainte-
nance (k = 0.1), the numerical results are shown in Figure 9.2. The optimal
values a∗i , b∗i , and v∗i (i = {1, 2, 3}) for a, b, and vξ, respectively, in the different
scenarios, are summarized in Table 9.1.

We first note that the surfaces obtained clearly show the presence of an
optimal policy for each inspection function considered. In the case k = 0.1 with
inspection function m2, the optimal inspection policy seems to strongly depend
on parameter a only, which is the first time of inspection of the system. The
choice for b does not seem to be of much importance.

Even if the optimal inspection policy gives a value b∗ which is less than ξ,
we note that the choice b > 5 (≡ ξ) is not meaningless: indeed the value Rτi of
the process at inspection time τi may be greater then ξ: it is the last hitting
time of ξ by the process that defines the process as unsafe.

From Table 9.1, we note that the optimal costs are smaller for k = 0.1 than
for k = 0.9. This makes sense, because in both cases the same values for the costs
were considered: the case k = 0.1 corresponding to more repair, the system will
tend to deteriorate slower and therefore will require less maintenance resulting
in a smaller total cost. In both cases k = 0.9 and k = 0.1, we note that the value
for v∗ increases with the convexity of the inspection function: v∗3 < v∗1 < v∗2.

Plots of the optimal inspection functions in Figure 9.3 show that the smallest
value for a is a3, corresponding to the first inspection time for a new system
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Figure 9.1. Surface representations of the expected total costs with different
inspection scheduling functions, k = 0.9.
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Figure 9.2. Surface representations of the expected total costs with different
inspection scheduling functions, k = 0.1.
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Table 9.1. Optimal values of the parameters a and b for the three inspection
scheduling functions

Inspection Policies k = 0.9 k = 0.1
a∗1 5.9 4.5

m1 b∗1 2.3 2.3
v∗1 1176.6 628.73

a∗2 6.1 4.5
m2 b∗2 3.8 4.7

v∗2 1310.8 631.71

a∗3 5.6 4.3
m3 b∗3 2.3 1.9

v∗3 1089.3 625.67

when inspection function m3 is used. However, when the value of the process
reaches some value (rather close to 0), the function m3 crosses m1 and m2 to lie
above them. It then crosses m2 a second time to return below it. We may deduce
that for this process an optimal policy is first to allow a long time between the
inspections, then to change strategy drastically to a small interval or an almost
periodic inspection policy of period 1. This change of inspection decision within
the same policy m3 happens earlier when k = 0.1.

9.5 Conclusion

The proposed model provides optimal nonperiodic inspection policies for a com-
plex multicomponent system whose state is described by a multivariate Wiener
process. Decisions are made on the basis of the state of a performance measure
defined by the Euclidean norm of the multivariate process and the last exit time
from an interval rather than the first hitting time. The models are optimized
in the sense that they result in a minimum expected maintenance cost, whose
expression uses a conditioning argument on the critical threshold’s value. The
nonperiodicity of the inspection times is modelled with the use of an inspection
scheduling function, introduced in Grall et al. (2002), which determines the
next time to inspect the system based on the value of the performance measure
at inspection time. The numerical results obtained show the presence of a cost-
optimal inspection policy in each of the six cases, where different inspection
functions and different amounts of repair are considered. Attention is paid to
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Figure 9.3. Optimal inspection scheduling functions.

the influence of the convexity of the inspection function on the optimal expected
total cost: the value for the optimal cost v∗ increases with the convexity of the
inspection function.

Appendix

Let fRm(x),H
0
ξ−x

be the joint probability density function of the process at time
m (x) and the last exit time from the interval [0, ξ − x). We may deduce:

E
[
Vξ−d(Rm(x)) × 1{H0

ξ−x>m(x)}
]

=
∫ +∞

0

∫ +∞

0
vξ−d(y) × 1{t>m(x)}fRm(x),H

0
ξ−x

(y, t) dydt

=
∫ +∞

0

∫ +∞

0
vξ−d(y) × 1{t>m(x)}fRm(x)|H0

ξ−x=t (y)h0
ξ−x (t) dydt

=
∫ +∞

m(x)

∫ +∞

0
vξ−d(y)fRm(x)|H0

ξ−x>m(x) (y)h0
ξ−x (t) dydt
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=
∫ +∞

m(x)
h0

ξ−x (t)
∫ +∞

0
vξ−d(y)fRm(x)|H0

ξ−x>m(x) (y) dydt

=
∫ +∞

m(x)
h0

ξ−x (t) dt

∫ +∞

0
vξ−d(y)fRm(x)

(y) dy

=

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)∫ +∞

0
vξ−d(y)fRm(x)

(y) dy

=

(
1−
∫ m(x)

0
h0

ξ−x (t) dt

)∫ +∞

0
vξ−d(y)f

0
m(x) (y) dy.

The conditional independence allows the replacement of fRm(x)|H0
ξ−x>m(x) by

fRm(x)
: as H0

ξ−x > m (x), the process may still be in the region [0, ξ − x) and
hence the region of integration remains [0,+∞).
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Optimal Incomplete Maintenance for Weibull

Failure Processes

Waltraud Kahle

Otto-von-Guericke-University, Institute of Mathematical Stochastics,
Magdeburg, Germany

Abstract: We consider an incomplete repair model; that is, the impact of repair
is not minimal as in the homogeneous Poisson process and not “as good as new”
as in renewal processes but lies between these boundary cases. The repairs are
assumed to affect the failure intensity following a virtual age process affect of the
general form proposed by Kijima. In previous works field data from an industrial
setting were used to fit several models. In most cases the estimated rate of
occurrence of failures was that of an underlying exponential distribution of the
time between failures. In this chapter it is shown that there exist maintenance
schedules under which the failure behavior of the failure–repair process becomes
a homogeneous Poisson process.

Keywords and Phrases: Incomplete repair, Poisson process, renewal process,
virtual age, hazard rate, optimal maintenance

10.1 Introduction

In this research, we are concerned with the statistical modeling of repairable
systems. Our particular interest is the operation of electrical generating systems.
As in repairable systems, we assume the failure intensity at a point in time
depends on the history of repairs. In the environment under investigation, it
was observed that maintenance decisions were regularly carried out. We assume
that such actions affected the failure intensity. Specifically, we assume that
maintenance actions served to adjust the virtual age of the system in a Kijima-
type manner [Kijima et al. (1988) and Kijima (1989)]. Kijima proposed that the
state of the machine just after repair can be described by its so-called virtual
age which is smaller (younger) than the real age. In his framework, the rate of
occurrence of failures (ROCOF) depends on the virtual age of the system.

127
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Our immediate interest was to obtain an operating/repair effects model con-
sistent with data obtained from a selected hydroelectric turbine unit within the
British Columbia Hydro-Electric Power Generation System. The data collected
over the period January 1977 to December 1999 contains 496 sojourns with 160
failures. Two types of repairs are recorded by maintenance personnel: major
repairs and minor repairs. The classification of repairs into these two categories
is made at the time of the repair. Within this period, 50 major repairs and
96 minor repairs were conducted. All 50 major repairs occurred from a cen-
sor decision (i.e., a decision to shut the system down). Furthermore, of the 96
minor repairs, 1 of them was undertaken immediately following a failure. The
remaining 95 were censored minor repairs. In addition to sojourn and censor
times of these stoppages, the data also included the times to repair the system.
These times ranged from a smallest of 1 minute to a largest of 66,624 minutes
(or approximately 46 days).

In this chapter, we assume that the baseline failure intensity of the system
follows a Weibull distribution

λ(x) =
β

α

(x

α

)β−1
, β > 0, α > 0.

10.2 Kijima-Type Repairs

Consider the impact of repairs. A system (machine) starts working with an
initial prescribed failure rate λ1(t) = λ(t). Let t1 denote the random time of
the first sojourn. At this time t1 the item will be repaired with the degree ξ1.
When the system is minimally repaired then the degree is equal to one, and if
the repair makes the system as good as new then this degree is zero. The virtual
age of the system at the time t1, following the repair, is v1 = ξ1t1, implying
the age of the system is reduced by maintenance actions. The distribution of
the time until the next sojourn then has failure intensity λ2(t) = λ(t− t1 + v1).
Assume now that tk is the time of the kth (k ≥ 1) sojourn and that ξk is the
degree of repair at that time. We assume that 0 ≤ ξk ≤ 1, for k ≥ 1.

After repair the failure intensity during the (k + 1)th sojourn is determined
by

λk+1(t) = λ(t− tk + vk), tk ≤ t < tk+1, k ≥ 0,

where the virtual age vk is for Kijima’s Type II imperfect repair model

vk = ξk(vk−1 + (tk − tk−1));

that is, the repair resets the intensity of failure proportional to the virtual age.
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Figure 10.1. The virtual age for Kijima-type repairs.

Kijima’s Type I imperfect repair model suggests that upon failure, the repair
undertaken could serve to reset the intensity only as far back as the virtual age
at the start of working after the last failure. That is:

vk = tk−1 + ξk(tk − tk−1).

The process defined by v(t, ξk, k = 1, 2, . . .) = t− tk + vk, tk ≤ t < tk+1, k ≥ 0
is called the virtual age process [Last and Szekli (1998)].

In Figure 10.1 the virtual age is shown for both types of repair. Figure 10.2
shows the mean number of failures over time for a minimal repair process (the
Weibull process) where the degree of repair is 1, for the Weibull renewal process,
where the degree of repair is 0, and, further, for some degrees of repair between
0 and 1 under Kijima Type II. In the two extreme cases, the expected number
of failures is the cumulative hazard function (t/α)β for the Weibull process
and the solution of the renewal equation for the Weibull renewal process. In
the general case an explicit calculation of the expected number of failures is
possible only for some very special cases. In the plot 100 failure processes with
50 failures were simulated with parameters α = 1, β = 1.5. Each line shows the
mean number of failures from these 100 simulations for the degrees of repair 1,
0.5, 0.3, 0.05, and 0.

10.3 Parameter Estimation

In Gasmi et al. (2003) a generalized Kijima-type model was considered, where
a major repair gives an additional impact. It was shown that the likelihood
function can be developed from the general likelihood function for observation of
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Figure 10.2. Mean number of failures under incomplete repair.

point processes [Liptser and Shiryayev (1978)]. Furthermore, the likelihood ratio
statistic can be used to find confidence estimates for the unknown parameters.

The numerical results for this data file are surprising. Under different as-
sumptions about the repair actions (renewals, Kijima Type I or II, mixture
of Kijima-type repairs and renewals in dependence on the time required for
repair) a value for β was estimated approximately to be 1; see Gasmi et al.
(2003). That is, the failure intensity is more or less constant. But in this case
the failure behavior does not depend on maintenance actions.

One of the reasons for this could be that for real systems, maintenance
actions depend on the state of the system. In Kahle and Love (2003) it was
assumed that each maintenance action has its own degree of repair which is
assumed to be

ξk = 1− Φ(log(rk)− 2.4),

where ξk is the degree of repair after the kth failure or shut down, rk is the
repair time after the kth sojourn, and Φ is the distribution function of the
standard normal distribution. The constant 2.4 is the estimated mean value of
the log repair times. The estimated variance of the log repair times is about 1.
It is easy to see that we get a degree of repair ξk of nearly 1.0 for very small
repair times (which means that the age of the system after repair is the same
as before the failure or shutdown) and a ξk of approximately 0.0 for long repair
times (the system is perfectly repaired).

For this model we get the following estimates for the parameters of the
baseline Weibull intensity:

β̂ = 2.305 α̂ = 134,645 min;
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that is, the assumption that each maintenance action has its own degree of repair
leads to an estimate of the shape parameter of β̂ = 2.305. This really increasing
failure rate is in agreement with the experiences of maintenence engineers.

10.4 Optimal Maintenance as Time Scale
Transformation

The results, mentioned in the previous sections, suggest that in practice the
engineers make a good maintenance policy; that is, they make repairs in con-
nection with the state of the system. The idea is that such a policy makes the
apparent failure behavior of a system to be that of an exponential distribu-
tion. This is consistent with our data. In Figure 10.3 we see the cumulative
distribution function of the operating time between failures together with the
fitted CDF of an exponential distribution and the Q–Q plot (observed quantiles
against the quantiles of the exponential model). These plots suggest reasonable
agreement with the exponential model if we consider only the failure process
and ignore all maintenance events.

Definition 10.4.1 A maintenance policy is called failure rate optimal, if the
state-dependent preventive maintenance actions lead to a constant ROCOF of
the failure process.

0e+00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf (failuretimes)

x

F
n(

x)

0

0e
+

00
1e

+
05

2e
+

05
3e

+
05

4e
+

05
5e

+
05

6e
+

05

Quantiles of standard exponential

O
rd

er
ed

 fa
ilu

re
 ti

m
es

1 2 3 4 52e+05 4e+05 6e+05

Figure 10.3. Operating time between failures: CDF and exponential Q–Q plot.
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Following an idea in Finkelstein (2000) we assume that by repair actions, the
time scale is transformed by a function W (t). Let Λ0(t) be the baseline cumu-
lative hazard function and let Λ1(t) = Λ0(W (t)) be the resulting hazard after
a transformation of the time scale. For the Weibull hazard

Λ0(t) = (t/α)β

and W (t) = t1/β we get

Λ1(t) = Λ0(t1/β) =
t

αβ
,

that is, the hazard function of an exponential distribution with parameter λ1 =
1/αβ .

In practice we have repair actions at discrete time points, which lead to the
question of the degrees of repair at these points. Let us consider two examples. In
both examples we assume that after a failure the system is repaired minimally.
In addition, maintenance decisions were regularly carried out. We assume that
maintenance actions served to adjust the virtual age of the system in a Kijima-
type manner.

Example 10.4.1 Assume that the distances between maintenance actions are
constant and all repair actions follow the Kijima Type I repair process. Let
t1, t2, . . . be the time points of maintenance actions and ∆ = tk − tk−1, k =
1, 2, . . . , where t0 = 0, be the constant distance between maintenances. Then
it is possible to find a discrete time transformation which consists of different
degrees of repair. Let the sequence of degrees be

ξk =
k1/β − (k − 1)1/β

∆1−1/β
.

Then the virtual age vn of the system at time tn = n ·∆ can be found to be

vn = ∆
n∑

k=1

ξk = ∆
n∑

k=1

k1/β − (k − 1)1/β

∆1−1/β
= (n ·∆)1/β .

Example 10.4.2 Again we assume that the distances between maintenance
actions are constant, but now we consider the Kijima Type II repair process.
In this case the appropriate sequence of degrees of repair is

ξk =
k1/β

(k − 1)1/β + ∆1−1/β
.

In both cases the sequence is decreasing; that is, with increasing time the
repairs must become better.
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It should be noted that in the case of time scale transformation it is not
necessary to make a difference between Kijima Type I and II. In both examples
the virtual age at maintenance points was re-set to those of the continuous time
transformation as shown in Figure 10.4.

In Figure 10.5 are shown the cumulative hazard functions for a Weibull
process without maintenance (solid line) and for maintenance actions every
∆ = .1 time units (broken line). For this, a Weibull process with parameters
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α = 1 and β = 2.5 and 30 failures was simulated. The difference ∆ = .1
between maintenance actions is relatively small, and the empirical cumulative
hazard function of the process with preventive maintenance is close to that
of a Poisson process. The dotted line shows the theoretical cumulative hazard
function of an homogeneous Poisson process.

There are many other possibilities for finding failure-rate optimal mainte-
nance policies. One other very simple policy is to consider constant degrees of
repair. It is easy to see that in this case the repair actions must take place more
often with increasing time.

By preventive maintenance it is always possible to get a ROCOF which lies
under that of the corresponding homogeneous Poisson process:

Theorem 10.4.1 Let be given a Weibull failure process with cumulative hazard
H0(t) = (t/α)β . We assume that after a failure the system is minimally repaired.
In addition, at times tk = ∆ ·k preventive maintenance actions are undertaken.
If the distance between maintenance actions ∆ < α and the virtual age v after
a maintenance is the solution of

(v + ∆)β − vβ = ∆, (10.1)

then for the resulting ROCOF H∗(t) holds

H∗(t) ≤ t

αβ
.

Proof. First, let us note that Equation (10.1) has a unique solution, because
the derivative of (v + ∆)β − vβ −∆ with respect to v is positive and its value
is less than 0 for v = 0 and greater than 0 for large v. The proposition of the
theorem then follows very simply from the following figure.

�������������

tk tk+1

k∆

(k + 1)∆

H(t)
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10.5 Conclusion

We have considered failure-rate optimal maintenance under the assumption,
that the maintenance action has an impact between the two extreme cases of
minimal repair and renewal. For finding cost-optimal maintenance it is necessary
to define a cost function which describes the costs of repair actions according
to the degree of repair. Furthermore, additional assumptions about times of
maintenance actions must be made, because there is the possibility of frequently
making small repairs or rarely large repairs that cause the same costs.
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Are Nonhomogeneous Poisson Process Models

Preferable to General-Order Statistics Models

for Software Reliability Estimation?
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DC, USA

Abstract: As alternatives to general order statistics (GOS) models, several
nonhomogeneous Poisson process (NHPP) models have been proposed in the
literature for software reliability estimation. It has been known that an NHPP
model in which the expected number of events (µ) over (0, ∞) is finite (called
an NHPP-I process) is a Poisson mixture of GOS processes. We find that the
underlying GOS model better fits the data in the sense that it has a larger
likelihood than the NHPP-I model. Also, among unbiased estimators for an
NHPP-I model, if an estimator is optimal for estimating a related feature of
the underlying GOS model, then it is also optimal for the NHPP-I estimation
problem. We conducted a simulation study to compare maximum likelihood
estimators for one NHPP-I model and for its corresponding GOS model. The
results show for small µ and small debugging time the estimators for NHPP-
I model are unreliable. For longer debugging time the estimators for the two
models behave similarly. These results and certain logical issues suggest that
compared to an NHPP-I model, its underlying GOS model may better serve for
analyzing software failure data.

Keywords and Phrases: Failure rate, maximum likelihood, Poisson mixture,
software debugging, software error

11.1 Introduction

Software is a critical part of the operational technology of all major organiza-
tions. Software has grown rapidly in size and complexity in recent years. This
greater size and complexity has been accompanied by an increase in the rate
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of software failures. Software errors (bugs) have caused various system failures
with severe consequences and economic losses; see Pham (2000, Section 1.1)
for some significant examples. In principle, software can be error-free, but in
reality, no method is available for creating perfect software, although existing
tools and guidelines are helpful in achieving high quality. Before a new piece of
software (a program) is put into operation, it is tested with diverse inputs to
detect the bugs hidden in the program. Whenever the program fails or gives a
wrong output, attempts are made to identify the error that caused the failure
and fix it. However, removal of all errors cannot be assured through testing.
Also, greater testing effort generally yields higher quality but costs more time
and money. One therefore wants to assess the reliability of software to help
decide when to release it. Statistical analysis of software failure data can help
in this assessment of reliability.

There are some fundamental differences between software and hardware reli-
ability. Software failure is due to imperfect code, whereas material deterioration
is a major cause of hardware failures. Hence technological advances can improve
the reliability of hardware, but not of software. On the other hand, software does
not deteriorate over time and, in fact, continued usage, resulting in bugs being
discovered and fixed, should improve the reliability of software. Furthermore,
hardware can be replicated to introduce redundancy, and thus improve relia-
bility, but this does not help with software as each copy of a program contains
exactly the same bugs. Thus, many of the methods of reliability theory that
work for modeling reliability of physical systems are not well suited for mod-
eling software reliability. For further discussion see the following books: Musa
et al. (1987), Xie (1991), Singpurwalla and Wilson (1999), and Pham (2000).

We focus on modeling of usual software failure data which are generated
by testing the software for a fixed amount of time τ with varied inputs and
recording the failure times. We also assume that upon each failure during the
testing period, efforts are made to detect and remove the error that caused the
failure, and time is measured in processor running time, excluding debugging
and idle time. Specifically, the random observables that constitute the data
are: the number of failures during testing (R) and the successive failure times
0 ≤ T(1) ≤ · · · ≤ T(R) ≤ τ . We do not consider other variations of testing such
as error seeding [Duran and Wiorkowski (1981)] or recapture debugging [Nayak
(1988, 1991)].

One of the earliest and most discussed software reliability models, intro-
duced by Jelinski and Moranda (1972), assumes perfect debugging and that
the detection times of the errors are independently and identically distributed
exponential random variables. These assumptions have been modified and gen-
eralized to produce many other models. One important class of models, called
the general order statistics (GOS) models [see, e.g., Miller (1986) and Raftery
(1987)], is based on the following two assumptions.
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Assumption 1. Whenever the software fails, the error causing the failure is
detected and corrected completely without inserting any new errors; that is,
the debugging process is perfect.

Assumption 2. The software initially contains an unknown number of errors
ν, and the detection times of those errors are independently and identically dis-
tributed (iid) with a common density fθ(x), where θ is an unknown parameter,
possibly vector-valued.

In the Jelinski and Moranda (J–M) model, fθ(x) is an exponential density
function. The assumptions of perfect debugging and independent and identical
distribution of detection times of the errors have been criticized as unrealistic
[see, e.g., Musa et al. (1987)].

Another class of software reliability models that has received considerable
attention in recent years postulates that the failure counts follow a nonhomoge-
neous Poisson process (NHPP). Let M(t) denote the number of failures observed
in the time interval (0, t] and let m(t) = E[M(t)], which is a nondecreasing func-
tion of t. An NHPP model specifies the functional form of the intensity function
λ(t) = d/dtm(t), letting it depend on some unknown parameters. The Goel and
Okumoto (1979) model (G–O) is one of the earliest NHPP models for software
reliability, in which the intensity function λ(t) is assumed to be

λ(t) = µθ exp(−θt), µ > 0, θ > 0.

The expected number of failures m(t) in time (0, t], which is also the cumulative
intensity rate Λ(t) =

∫ t
0 λ(u)du is given by Λ(t) = m(t) = µ(1− exp(−θt)).

The NHPP models in which m(∞) < ∞ (i.e., the expected number of fail-
ures in infinite testing is finite), are called NHPP-I models [Kuo and Yang
(1996)], and those with m(∞) = ∞ are called NHPP-II models. As we discuss
in the next section, all NHPP-I models can be expressed as mixtures of GOS
models. This suggests that inferences based on an NHPP-I model would be
closely related to those based on the underlying GOS model. In this chapter
we further explore the logical implications of the mixture representation and
compare the maximum likelihood estimators (MLE) for an NHPP-I model and
the MLEs for its underlying GOS model. In Section 11.2, we discuss the mix-
ture representation and argue that for software reliability estimation, it may be
more appropriate to use the underlying GOS model than the NHPP-I model.
In Section 11.3, we consider model selection via maximized likelihood and un-
biased estimation of parametric functions. We show that based on likelihood
comparison, the underlying GOS model better fits the data than the NHPP-I
model. We also find that unbiased estimation of a parametric function under an
NHPP-I model is closely connected to unbiased estimation of a related quantity
in the underlying GOS model. In Section 11.4, we present results from a sim-
ulation study evaluating certain maximum likelihood estimators for the G–O
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model and for the J–M model. We considered these two models because they are
the most commonly discussed NHPP-I and GOS models and they are closely
connected. The results show that choice of the model has little effect when the
sample information is large, otherwise the J–M estimators have smaller varia-
tion. We make some concluding remarks in Section 11.5.

11.2 Connections Between NHPP
and GOS Models

Some connections between NHPP-I and GOS models have already been dis-
cussed in the literature [Langberg and Singpurwalla (1985), Musa et al. (1987),
and Kuo and Yang (1996)]. Firstly, a Poisson (µ) mixture (on the initial num-
ber of errors ν) of a GOS model yields an NHPP-I model. The rate function
of the resulting NHPP-I model is λθ(t) = µfθ(t) where fθ(t) is the proba-
bility density function (pdf) of the detection time of each error in the GOS
model. It is also true that any given NHPP-I process with rate function λ(t)
and mean function m(t) can be expressed as a Poisson mixture of GOS pro-
cesses with µ = limt→∞ m(t) and f(t) = λ(t)/µ. In particular, the Goel–
Okumoto NHPP model can be expressed as a mixture of the Jelinski–Moranda
model, by allowing the parameter ν to have a Poisson distribution with pa-
rameter µ. Other examples of NHPP-I models include the models proposed
by Goel (1985) where λ(t) = µθαtα−1exp(−θtα), and Littlewood (1984) where
λ(t) = µ[1− (θ/(θ + t))]α among others.

The likelihood function for an NHPP-I model with λθ(t) = µfθ(t) is

fNHPP−I(r, t(1), . . . , t(r)|µ, θ) = µre−µFθ(τ)
r∏

i=1

fθ(t(i)),

and it is a Poisson mixture of the GOS likelihood:

fNHPP−I(r, t(1), . . . , t(r)|µ, θ) =
∞∑

ν=0

fGOS(r, t(1), . . . , t(r)|ν, θ)
e−µµν

ν!
, (11.1)

where

fGOS(r, t(1), . . . , t(r)|ν, θ) = fν,θ(r)fθ(t(1), . . . , t(r)|r)

=

[(
ν

r

)
{Fθ(τ)}r{1− Fθ(τ)}ν−r

]
×
[
r!

r∏
i=1

fθ(t(i))
Fθ(τ)

]

=
ν!

(ν − r)!

[
r∏

i=1

fθ(t(i))

]
[1− Fθ(τ)]ν−r

is the likelihood function for a GOS model.
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We just discussed that an NHPP-I model can be obtained as a Poisson
mixture of models. Conversely, a GOS process can be obtained from an NHPP
process by conditioning on M(∞) [see, e.g., Kuo and Yang (1996)]. Specifically,
let M(t) be an NHPP-I process with rate function λθ(t) = µfθ(t), where fθ(t)
is a pdf. Then, conditional on M(∞) = ν, M(t) is a GOS process with initial
number of errors ν and the pdf of detection time of each error fθ(t).

We now explore some logical implications of the above connections on the
choice between the two models for estimating software reliability. Among several
metrics for measuring software reliability we focus on γ1(k) = the probability
of failure-free operation of the debugged program between time τ and τ + k.
The length of the future time interval (k) depends on the usage of the software;
it is short for a specific mission and is much longer in commercial applications.
The theoretical expressions for γ1(k) under a GOS model and under an NHPP-I
model with rate function λ(t), respectively, are

γ1−GOS(k) =
(

1− Fθ(τ + k)
1− Fθ(τ)

)(ν−R)

(11.2)

γ1−NHPP (k) = exp[Λ(τ)− Λ(τ + k)], (11.3)

where Λ(t) =
∫ t
0 λ(u)du.

From the mixture representation, failures under an NHPP-I model may be
regarded as generated by a two-step process. First a quantity ν is generated
from a Poisson distribution with parameter µ. Once ν is chosen (generated),
failure times are generated from a GOS process with initial number of errors
ν and detection time pdf fθ(x). The parameter µ has no further role in fail-
ure occurrences over the entire time horizon (0,∞). From this viewpoint, the
observed data as well as all future failures occur according to a GOS process
with an unknown ν (generated from the Poisson (µ) distribution), and hence it
would be more reasonable to use the underlying GOS process for data analysis
and reliability estimation.

Another point to note is that for an NHPP-I model, the expression for γ1(k)
in (11.3) does not depend on the data. Logically, the reliability should depend
on how many errors are detected and removed during the testing period. In
contrast, Equation (11.2) shows that the reliability under a GOS model depends
on the data through R. From the connections between NHPP-I and GOS models
discussed earlier, it follows that γ1−NHPP (k) is the average, with respect to the
distribution of ν given the data, of γ1−GOS(k). Because the average, that is,
γ1−NHPP (k) is independent of the data, it may be more meaningful to use the
GOS model and estimate γ1−GOS(k). In the next section we provide a decision-
theoretic rationale for estimating parametric functions for the underlying GOS
model.
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11.3 Some Aspects of Inference

For choosing between two models, one may fit them to the observed data and
then select the better-fitting model. Between an NHPP-I model and its under-
lying GOS model, we find that the underlying GOS model gives a better fit in
the sense of having a larger likelihood. This follows from the mixture represen-
tation (11.1) of NHPP-I models. Let us write LNHPP and LGOS for the two
likelihoods. Then, from (11.1), we get

LNHPP (µ, θ) =
∞∑

ν=0

LGOS(ν, θ)
e−µµν

ν!
≤ sup

ν,θ
LGOS(ν, θ). (11.4)

From (11.4), it follows that supµ,θ LNHPP (µ, θ) ≤ supν,θ LGOS(ν, θ); that is, the
maximized likelihood for the underlying GOS model is at least as large as that
for the NHPP-I model. Thus, based on likelihood comparison, the underlying
GOS model is preferable to the NHPP-I model.

Let us now consider unbiased estimation of a function h(µ, θ) for an NHPP-I
model. In this section we use X to denote the data. Let δ(X) be an unbiased
estimator (UE) of h(µ, θ) and let gδ(ν, θ) = EX|ν,θ[δ(X)], where EX|ν,θ denotes
expectation under the corresponding GOS model. Now, unbiasedness of δ im-
plies that

Eν|µ[gδ(ν, θ)] = h(µ, θ) for all µ, θ, (11.5)

where Eν|µ denotes expectation with respect to the Poisson (µ) distribution of
ν. Because a Poisson (µ) random variable has a complete family of distributions
[for µ ∈ (0,∞) or in general µ taking all values in a set that contains a nonempty
open interval], there exists at most one function gδ(ν, θ) satisfying (11.5) and
hence gδ(ν, θ) does not depend on δ. In other words, if h(µ, θ) is unbiasedly
estimable, then there exists a unique function g(ν, θ) such that

Eν|µ[g(ν, θ)] = h(µ, θ) for all µ, θ (11.6)

and any UE δ(X) of h(µ, θ) satisfies the condition

EX|ν,θ[δ(X)] = g(ν, θ) for all ν, θ. (11.7)

Thus, all unbiased estimators of h(µ, θ) for an NHPP-I model are also unbiased
estimators of a related (and unique) quantity g(ν, θ) in the underlying GOS
model. The converse is obviously true. In particular, the classes of unbiased
estimators for θ for the two models are the same and the classes of unbiased
estimators of µ and ν are the same.

Equations (11.6) and (11.7) also imply that for any UE δ of h(µ, θ),

EX|µ,θ[{δ(X) − g(ν, θ)}{g(ν, θ) − h(µ, θ)}]
= Eν|µ[{g(ν, θ)− h(µ, θ)}EX|ν,µ{δ(X) − g(ν, θ)}] = 0
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and hence
MSE(δ;µ, θ) = EX|µ,θ[δ(X) − h(µ, θ)]2

= Eν|µEX|ν,θ[δ(X) − g(ν, θ)]2 + Eν|µ[g(ν, θ)− h(µ, θ)]2. (11.8)

Note that the first term in the MSE decomposition (11.8) is the expectation
[with respect to the Poisson (µ) distribution of ν] of the MSE of δ as an esti-
mator of g(ν, θ) under the GOS model. The second term does not involve the
observations and does not depend on the estimator δ as long as it is unbiased.
This has two implications. The first is that among all unbiased estimators of
h(µ, θ) [or equivalently of g(ν, θ) as noted earlier], if there exists δ that mini-
mizes EX|ν,θ[δ(X) − g(ν, θ)]2 for all ν and θ, then it has the smallest MSE as
an estimator of h(µ, θ). In other words, if δ is the best UE of g(ν, θ), then it is
also the best UE of h(µ, θ).

The second implication is that the MSE of any UE δ of h(µ, θ) is larger
than the average [with respect to the Poisson (µ) distribution of ν] MSE of
δ for estimating g(ν, θ), unless g(ν, θ) ≡ h(µ, θ); that is, h(µ, θ) is a function
only of θ. We may expect this phenomenon to hold more generally, especially
for slightly biased estimators. Note that if h(µ, θ) = θ then g(ν, θ) = θ and
the second term of (11.8) is 0. This suggests that an estimator of θ derived
under one of the two models would perform about equally well for the other
model. If h(µ, θ) = µ then g(ν, θ) = ν, in which case the second term of (11.8)
equals µ and we would expect an estimator of µ to have larger variation than
its variation as an estimator of ν. We may also note that the second term of
(11.8), Eν|µ[g(ν, θ)−h(µ, θ)]2, provides a lower bound of the MSE of any UE of
h(µ, θ). If the quantity Eν|µ[g(ν, θ) − h(µ, θ)]2 is difficult to calculate, one can
bound it below by the Cramer–Rao lower bound, which equals µ[∂/∂µh(µ, θ)]2,
assuming the derivative exists.

We have argued in the previous section that when an NHPP-I model is
assumed, in essence the data come from a GOS process and hence GOS models
should be used for analyzing software failure data. In this section we have shown
that according to likelihood comparison the underlying GOS model is preferable
to the NHPP-I model and that for estimating features of an NHPP-I process
it is sensible to estimate actually as closely as possible, related features of the
underlying GOS process. The next section presents results of simulations that
investigate this issue and the behavior of certain estimators.

11.4 Simulation Results

The probabilistic and inferential connections between an NHPP-I model and
its underlying GOS model make us wonder if the estimates of µ and θ under an
NHPP-I model are close to the estimates of ν and θ under the corresponding
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GOS model. In particular, we want to know how well the estimators of ν and
θ under a GOS model estimate the parameters µ and θ of the corresponding
NHPP-I model. Another question of natural interest is: how similar are the
reliability estimates under the two models? We conducted a simulation study to
investigate these questions for the Goel–Okumoto and Jelinski–Moranda pair
of models. The G–O model is the most commonly used NHPP-I model, and
its failure rate function is λ(t) = µθ exp(−θt). The J–M model is the most
commonly used GOS model and it underlies the G–O model; the G–O likelihood
is a Poisson mixture of J–M likelihoods. We examined the MLEs of the model
parameters and of the reliability measure γ1(k), whose theoretical expressions
under the G–O and the J–M models, respectively, are:

γ1{GO}(k) = exp[−µ(e−θτ − e−θ(τ+k))], (11.9)
γ1{JM}(k) = exp[−θk(ν −R)]. (11.10)

We investigated properties of the estimators under both models, that is, by
separately generating data from each of the two models. For the G–O model,
we experimented with various values of µ, τ , and k. As the likelihoods for both
G–O and J–M models depend on θ and τ only through τθ, we decided to hold θ
fixed at 0.01 and vary τ . For each µ and τ we generated 10,000 samples and for
each sample we calculated the MLEs µ̂, θ̂{GO}, and γ̂1{GO}(k) assuming the G–O
model, and the MLEs ν̂, θ̂{JM} and γ̂1{JM}(k) assuming the J–M model. We
should note that the MLEs of µ and ν may not exist and both can be infinite;
see Hossain and Dahiya (1993) for µ̂ and Blumenthal and Marcus (1975) and
Littlewood and Verrall (1981) for ν̂. If µ̂ = ∞ for the G–O model (or, ν̂ = ∞
for the J–M model), the MLEs of θ and γ1(k) are 0. For sample generation
we exploited the mixture representation of the G–O model. First we generate
a ν from the Poisson (µ) distribution and then we generated ν failure times
(observations) from the exponential distribution with pdf f(t) = θe−θt. The
failure times falling in the interval (0, τ ] constituted one sample.

Table 11.1 presents summary results for µ̂ and ν̂ for µ = 20, 60, and 100
and τ = 75, 150, and 300. In the context of the J–M model, the probability of
detecting any specific error [i.e., Fθ(τ)] with τ = 75, 150, and 300 are: 0.5276,
0.7769, and 0.9502, respectively. As both ν̂ and µ̂ are ∞ for some samples, we
report the quartiles [Q1, median (Me), and Q3] of their simulated distributions.
We also present the fraction of times µ̂ and ν̂ equal infinity, under the P (µ̂ = ∞)
and P (ν̂ = ∞) columns, respectively. Those numbers show that: (i) for both
models the probability that the estimate is ∞ decreases as µ and/or τ increases
and (ii) P (µ̂ = ∞) is much larger than P (ν̂ = ∞) unless both are very small.
One criticism of the J–M model is that the maximum likelihood method may
fail to estimate its parameters [see, e.g., Forman and Singpurwalla (1977)]. As
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Table 11.1. Empirical performance of the MLE of model parameters

Estimates based on G–O model Estimates based on J–M model
µ µ̂ ν̂

P (µ̂ =∞) Q1 Me Q3 P (ν̂ = ∞) Q1 Me Q3

τ = 75, Fθ(τ) = 0.5276
20 0.241 13.29 21.44 397.64 0.105 11 16 25
60 0.109 45.11 61.46 112.55 0.065 42 54 81
100 0.060 79.45 101.41 150.99 0.039 75 92 127

τ = 150, Fθ(τ) = 0.7769
20 0.051 16.48 21.16 28.89 0.018 15 19 25
60 0.004 52.91 61.12 71.53 0.002 52 59 68
100 0.000 90.82 101.09 113.79 0.000 89 99 111

τ = 300, Fθ(τ) = 0.9502
20 0.001 17.19 20.35 23.73 0.000 17 20 23
60 0.000 54.73 60.17 65.76 0.000 55 60 66
100 0.000 93.12 100.30 107.63 0.000 93 100 108

our results show, that situation occurs even more frequently for the G–O model.
We believe this phenomenon holds more generally for other pairs of NHPP-I
and GOS models.

We now discuss behavior of µ̂ and ν̂. Because ν̂ is integer-valued, its quartiles
are also integers. This is not so for µ̂. For τ = 300, all three quartiles of ν̂ are
very close to those of µ̂ for all values of µ reported in Table 11.1. Also, the
medians of µ̂ and ν̂ are very close to the true value of µ. For τ = 75, µ̂ has a
larger interquartile range (IQR) than ν̂. Although µ̂ is approximately median
unbiased in all cases, ν̂ has negative median bias (for estimating µ). Table 11.1
also shows that the differences in the behavior of µ̂ and ν̂ diminish gradually
as τ and/or µ increases. In summary, for small µ and small τ neither µ̂ nor ν̂
is a satisfactory estimator of µ. For large µ and large τ the two estimators are
equally good. For other cases, one may prefer ν̂ to µ̂ (for estimating µ) as ν̂ has
smaller sampling variation and lower probability of being ∞.

Table 11.2 gives summary results for the MLE of θ under the G–O and the
J–M models, when the true value of θ is 0.01. In all cases, the two estimators
differ very little in their means and standard deviations. For small τ and small
µ both estimators are positively biased and have large standard deviations. The
bias and variance of the two estimators decrease as τ and/or µ increase.

Table 11.3 gives a summary of certain performance characteristics of the
reliability estimators γ̂1{GO}(k) and γ̂1{JM}(k). As γ1(k) depends also on k, for
each µ and τ , we present results for three different values of k. For each setting,
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Table 11.2. Empirical performance of the MLEs of θ

Based on G–O Model Based on J–M model
τ µ Mean SD Mean SD

20 0.018 0.014 0.021 0.016
75 60 0.012 0.007 0.013 0.008

100 0.011 0.006 0.012 0.006
20 0.011 0.006 0.014 0.007

150 60 0.010 0.004 0.011 0.004
100 0.010 0.003 0.011 0.003
20 0.011 0.004 0.012 0.003

300 60 0.010 0.002 0.011 0.002
100 0.010 0.001 0.010 0.002

the true value of γ1(k) for the G–O model is given in the third column. For
each estimator, we report its mean and the three quartiles. We may recall that
γ̂1{JM}(k) estimates γ1{JM}(k) in (11.10) assuming that the data come from
a J–M process. However, we assess how well it estimates γ1{GO}(k) in (11.9),
denoted subsequently by γ1. The upper and lower quartiles show that both
estimators have large sampling variation, and in most cases γ̂1{JM}(k) has larger
IQR than γ̂1{GO}(k). Both estimators are quite unreliable when the true value of
γ1 is small. The median (Me) of γ̂1{GO}(k) is usually close to the true value of γ1.
For µ = 20, γ̂1{JM}(k) overestimates γ1, and as µ increases, the bias decreases.
For each of the two estimators, the mean and median differ noticeably in many
cases, indicating skewness. To give an idea about the correlation between the
estimators, in Figure 11.1 we plotted γ̂1{JM}(k) against γ̂1{GO}(k) along with
the 45-degree line for two settings of µ, τ , and k. In the scatterplots, each point
displays the two estimates for one sample. We may note that if ν̂ = r then
γ̂1{JM}(k) = 1, and if µ̂ = ∞ then γ̂1{GO}(k) = 0. Excluding those cases, which
occur considerably often in the case of µ = 20, τ = 150 but not in the case of
µ = 60, τ = 200, we see a strong linear relationship between the two estimators.
It is generally believed that reliability estimates based on the J–M model are
larger (and more optimistic) than those based on the G–O model [see, e.g., Goel
and Okumoto (1979) and Musa et al. (1987)]. However, that is not always true
as Figure 11.1 shows.

We also examined properties of the estimators by simulating data from the
J–M model. We kept θ fixed at 0.01 and varied ν and τ . For each sample we
computed parameter and reliability estimates assuming the G–O and the J–M
model, respectively. For each setup, the summary results were calculated from
5000 simulated samples. In Figure 11.2, we show the quartiles of µ̂ and ν̂ for
τ = 200 and 300 for different values of ν. The plots show good agreement
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Table 11.3. Empirical performance of reliability estimators

γ̂1{GO}(k) γ̂1{JM}(k)

τ k γ1 Mean Q1 Me Q3 Mean Q1 Me Q3

µ = 20
5 0.631 0.528 0.367 0.631 0.771 0.671 0.585 0.724 0.835

75 10 0.407 0.389 0.116 0.407 0.605 0.525 0.342 0.524 0.693
20 0.180 0.251 0.020 0.185 0.404 0.366 0.119 0.276 0.484
10 0.654 0.631 0.532 0.659 0.776 0.701 0.596 0.705 0.813

150 20 0.445 0.457 0.292 0.453 0.624 0.530 0.354 0.498 0.664
40 0.230 0.288 0.097 0.235 0.434 0.344 0.125 0.247 0.424
10 0.910 0.900 0.864 0.913 0.950 0.934 0.862 1.000 1.000

300 20 0.835 0.820 0.757 0.841 0.907 0.877 0.744 1.000 1.000
40 0.720 0.707 0.594 0.733 0.843 0.793 0.554 1.000 1.000

µ = 60
5 0.251 0.259 0.161 0.251 0.357 0.293 0.193 0.285 0.391

75 10 0.067 0.103 0.029 0.071 0.145 0.114 0.039 0.085 0.161
20 0.006 0.027 0.001 0.006 0.026 0.023 0.001 0.007 0.025
10 0.280 0.297 0.198 0.282 0.381 0.306 0.210 0.294 0.387

150 20 0.088 0.119 0.045 0.091 0.164 0.110 0.045 0.087 0.153
40 0.012 0.033 0.003 0.013 0.040 0.020 0.002 0.007 0.024
10 0.753 0.748 0.691 0.755 0.813 0.738 0.686 0.740 0.795

300 20 0.582 0.583 0.492 0.586 0.678 0.552 0.471 0.547 0.632
40 0.374 0.388 0.270 0.377 0.497 0.321 0.221 0.299 0.399

µ = 100
5 0.100 0.118 0.060 0.101 0.160 0.129 0.069 0.112 0.172

75 10 0.011 0.023 0.004 0.011 0.029 0.024 0.005 0.012 0.030
20 0.000 0.003 0.000 0.000 0.001 0.002 0.000 0.000 0.001
5 0.337 0.345 0.271 0.339 0.412 0.353 0.281 0.348 0.420

150 10 0.120 0.138 0.079 0.121 0.182 0.136 0.080 0.121 0.179
20 0.018 0.030 0.007 0.018 0.039 0.024 0.006 0.015 0.031
10 0.623 0.623 0.559 0.627 0.693 0.607 0.548 0.608 0.662

300 20 0.406 0.411 0.326 0.406 0.491 0.373 0.296 0.367 0.434
40 0.194 0.213 0.126 0.196 0.281 0.151 0.087 0.135 0.190

between the quartiles of the two estimators and they change almost linearly
with ν. It seems that µ̂ is estimating the parameter ν of the J–M model. These
plots also provide additional information on the behavior of µ̂ for estimating µ.
For example, if µ = 60, the distribution of ν is centered around 60, and the
interval [52, 68] has approximate probability 0.95. Figure 11.2a shows that µ̂
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Figure 11.1. Comparison of γ̂1{GO}(k) and γ̂1{JM}(k) for (a) µ = 20, τ =
150, k = 20, and (b) µ = 60, τ = 200, k = 20. Horizontal broken line rep-
resents the true value of γ1{GO}(k).
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Figure 11.2. Quartiles of µ̂ (solid line) and ν̂ (broken line) under the J–M model
for (a) τ = 200, and (b) τ = 300.

under- (over)estimates µ if ν is smaller (larger) than µ = 60 and the bias grows
with |µ− ν|.

Our discussion in Section 11.3 suggests that an estimator of h(µ, θ) for the
G–O model may actually be an estimator of a related parametric function g(ν, θ)
for the J–M model. We explored this aspect for γ̂1{GO}(k). We suspected that
γ̂1{GO}(k) would be in closer agreement with

g(ν, θ) = exp[−ν(e−θτ − e−θ(τ+k))], (11.11)
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Figure 11.3. Quartiles of γ̂1{GO}(k) (solid curves) and g(ν, θ) (broken curve) for
(a) τ = 200, k = 20, and (b) τ = 300, k = 40. Horizontal broken line represents
true γ1{GO}(k) for µ = 60 in plot (a) and for µ = 100 in plot (b).

which is obtained by replacing µ by ν in the expression of γ1{GO}(k) in (11.9),
than γ1{GO}(k). In other words, we felt it may be more appropriate to think
of γ̂1{GO}(k) as an estimator of g(ν, θ) in (11.11) rather than of γ1{GO}(k). To
explore this, we plot the quartiles of γ̂1{GO}(k) and g(ν, θ) for τ = 200, k =
20 and for τ = 300, k = 40 in Figure 11.3. We also show the true value of
γ1{GO}(k) for µ = 60 in plot (a) and for µ = 100 in plot (b). Note that the
ranges of ν values displayed in the two plots are compatible with the Poisson
(µ) distribution of ν with µ = 60 and 100, respectively. The plots show that
in both cases, the median of γ̂1{GO}(k) is very close to g(ν, θ) and the IQR
decreases as ν increases. Performance of γ̂1{GO}(k) for estimating γ1{GO}(k)
depends substantially on ν. It overestimates the reliability for ν smaller than µ
and underestimates for ν larger than µ. Also, the bias increases as the difference
between µ and ν increases. The graphs also illustrate the two sources of variation
for estimating a parametric function for an NHPP-I model, discussed in Section
11.3. Specifically, Figure 11.3 displays the variation of γ̂1{GO}(k) around g(ν, θ)
and the variation of g(ν, θ) around γ1{GO}(k).

11.5 Discussion

The assumptions of perfect debugging and iid error detection times of the J–M
model, and more generally of the GOS models, have been criticized as unrealis-
tic. However, Nayak (1986) showed that if one assumes perfect debugging, then
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the assumption that the detection times of the errors are identically distributed
is harmless. The NHPP models, most of which are NHPP-I, were proposed
as better models for analyzing software failure data. However, our results cast
further doubt on that suggestion. We showed that the principle of likelihood
maximization prefers the underlying GOS model, the probability of getting an
infinite estimate for an NHPP-I model is higher than that for the underly-
ing GOS model, and inferences derived under an NHPP-I model may be more
unreliable than those derived assuming the underlying GOS model. We also
identified important connections between estimation of parametric functions
under the two models.

Some logical implications of NHPP assumptions also raise concerns
about suitability of nonhomogeneous Poisson processes for modeling software
reliability. The NHPP-I models assume independence of the failure process in
nonoverlapping intervals, but one would expect debugging activities at any time
to affect the failure process subsequent to that time. One implication of this is
that the reliability of a program does not depend on past failures and associated
debugging activities. Logically, software reliability changes only when changes
are made in the code, for example, by detecting and fixing bugs. In between
such changes, the reliability does not change. Let M denote the total number of
failures in [0,∞); that is, M = limt→∞ M(t). Then, M has Poisson distribution
with mean µ (which is the same as the mixing distribution of ν). Because M is
unbounded for all values of the parameters µ and θ, NHPP-I models implicitly
assume imperfect debugging. Also, P (M = 0) = exp(−µ) > 0; that is, the prob-
ability of observing no failures in infinite testing is positive. Another drawback
of NHPP-I models is that their parameters cannot be estimated consistently as
the testing time τ goes to infinity [see, e.g., Zhao and Xie (1996) and Nayak
et al. (2008)]. The assumptions of GOS models may be unrealistic and faulty
but it is dubious that NHPP-I models offer any improvement.
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Abstract: The chapter considers reliability measures for a multistate system
where the system and its components can have different performance levels,
ranging from perfect functioning up to complete failure. The general approach
is suggested for computation of commonly used reliability measures. According
to the approach, the general Markov reward model should be built, so that
different reliability measures can be calculated by the corresponding reward
matrix determination. A numerical example is presented in order to illustrate
this approach.

Keywords and Phrases: Multistate system, reliability measure, Markov re-
ward model, demand

12.1 Introduction

Traditional binary-state reliability models allow for a system and its compo-
nents only two possible states: perfect functionality (up) and complete failure
(down). However, many real-world systems are composed of multistate compo-
nents, which have different performance levels and for which one cannot for-
mulate an “all or nothing” type of failure criterion. Failures of some system
elements lead, in these cases, only to performance degradation. Such systems
are called multistate systems (MSS). Traditional reliability theory, which is
based on a binary approach, has recently been extended by allowing compo-
nents and systems to have an arbitrary finite number of states. According to
the generic multistate system model [Lisnianski and Levitin (2003)], any system
element j∈ {1, 2, . . . , n} can have k j different states corresponding to the per-
formance rates, represented by the set gj = {gj1, gj2, . . . , gjk}, where g ji is the
performance rate of element j in the state i, i∈ {1, 2, . . . , kj}. The performance
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rate G j (t) of element j at any instant t≥ 0 is a discrete-state continuous-
time stochastic process that takes its values from g j :G(t) ∈ g j . The system
structure function G (t) = φ (G1 (t) , . . . , Gn (t)) produces the stochastic pro-
cess corresponding to the output performance of the entire MSS. In practice,
a desired level of system performance (demand) also can be represented by a
discrete-state continuous-time stochastic process W (t). The relation between
the MSS output performance and the demand represented by two correspond-
ing stochastic processes should be studied in order to define reliability measures
for the entire MSS. In practice the most commonly used MSS reliability mea-
sures are probability of failure-free operation during time interval [0 , t ] or MSS
reliability function R(t), MSS availability, mean time to MSS failure, mean ac-
cumulated performance deficiency for a fixed time interval [0, t], and so on. In
this chapter, a generalized approach for the computation of main MSS relia-
bility measures has been suggested. This approach is based on the application
of the Markov reward model. The main MSS reliability measures can be found
by corresponding reward matrix definitions for this model and then by using
a standard procedure for finding expected accumulated rewards during a time
interval [0, t] as a solution of system of differential equations.

12.2 Model Description

12.2.1 Generalized MSS reliability measure

The MSS behavior is characterized by its evolution in the space of states. The
entire set of possible system states can be divided into two disjoint subsets cor-
responding to acceptable and unacceptable system functioning. MSS entrance
into the subset of unacceptable states constitutes a failure. The system state
acceptability depends on the relation between the MSS output performance and
the desired level of this performance—demand W (t)—that is determined out-
side the system. Often the demand W (t) is also a random process that can take
discrete values from the set w = {w1, . . . , wM}. The desired relation between
the system performance and the demand at any time instant t can be expressed
by the acceptability function Φ(G(t),W (t)). In many practical cases, the MSS
performance should be equal to or exceed the demand. So, in such cases the
acceptability function takes the following form

Φ (G (t) ,W (t)) = G (t)−W (t) (12.1)

and the criterion of state acceptability can be expressed as Φ (G (t) ,W (t)) ≥ 0.
A general expression defining MSS reliability measures can be written in the
following form,

R = E {F [Φ (G (t) ,W (t))]} , (12.2)
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where E = expectation symbol, F = functional that determines corresponding
type of reliability measure, and Φ = acceptability function. Many important
MSS reliability measures can be derived from the expression (12.2) depending
on the functional F that may be determined in different ways. It may be a
probability Pr{Φ (G (t) ,W (t)) ≥ 0} that within specified time interval [0, t] the
acceptability function (12.1) will be nonnegative. This probability characterizes
MSS availability. It may be also a time up to MSS first entrance into the set
of unacceptable states, where Φ (G (t) ,W (t)) < 0, a number of such entrances
within time interval [0, t] and so on. If the acceptability function is defined as

F [Φ (G (t) ,W (t))] =
{

W (t)−G (t) , if W (t) > G (t)
0, if W (t) ≤ G (t)

a functional F [Φ (G (t) ,W (t))] =
∫ T
0 Φ (G (t) ,W (t)) dt will characterize an

accumulated performance deficiency during time interval [0, t].
In this chapter a generalized approach for main reliability measures compu-

tation is considered.

12.2.2 Markov reward model: General description

The general Markov reward model was introduced by Howard (1960). It con-
siders the continuous-time Markov chain with a set of states {1, . . . , k} and a
transition intensity matrix a = |aij|, i, j = 1, . . . , k. It is assumed that while
the process is in any state i during any time unit, some money r ii should be
paid. It is also assumed that if there is a transition from state i to state j the
amount rij will be paid. The amounts rii and rij are called rewards. They can
be negative while representing a loss or penalty. The main problem is to find
the total expected reward accumulated up to time instant T under specific ini-
tial conditions. Let Vi (t) be the total expected reward accumulated up to time
t at state i. According to Howard (1960), the following system of differential
equations must be solved under initial conditions Vi (0) = 0, i = 1, . . . , k in
order to find the total expected reward.

dVi (t)
dt

= rii +
k∑

j=1,j �=i

aijrij +
k∑

j=1

aijVj (t) , i = 1, . . . , k. (12.3)

Markov reward models are widely used in financial calculations and oper-
ations research [Hiller and Lieberman (1995)]. General Markov reward models
for system dependability and performability analysis one can find in Carrasco
(2003), Sahner et al. (1996), and Lisnianski et al. (2006). Here we present the
new approach where the main MSS reliability measures can be found by deter-
mination of the corresponding reward matrix. Such an idea was primarily in-
troduced for a binary-state system and constant demand in Volik et al. (1988).
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In this chapter, we extend the approach for multistate systems and variable
demand.

12.2.3 Rewards determination for MSS reliability computation

MSS instantaneous (point) availability A(t) is the probability that the MSS at
instant t > 0 is in one of the acceptable states: A (t) = Pr {Φ (G (t) ,W (t)) ≥ 0}.

The MSS average availability A(T ) is defined in Modarres et al. (1999) as
a mean fraction of time when the system resides in the set of acceptable states
during the time interval [0,T ], A (T ) = (1/T )

∫ T
0 A (t) dt.

In order to assess A(T ) for MSS the rewards in matrix r for the MSS model
should be determined in the following manner.

• The rewards associated with all acceptable states should be defined as
one.

• The rewards associated with all unacceptable states should be zeroed as
well as all rewards associated with all transitions.

The mean reward Vi(T ) accumulated during interval [0, T ] will define a time
that MSS will be in the set of acceptable states in the case when the state i is
the initial state. This reward should be found as a solution of a system (12.3).
After solving (12.3) and finding V i(t), MSS average availability can be obtained
for every initial state i = 1, . . . , k, Ai (T ) = (Vi (T ))/T.

Usually, the initial state is assumed as the best state.
Mean number Nf (t) of MSS failures during time interval [0, t ]. This measure

can be treated as the mean number of MSS entrances to the set of unacceptable
states during time interval [0, t ]. For its computation the rewards associated
with each transition from the set of acceptable states to the set of unacceptable
states should be defined as one. All other rewards should be zeroed. In this case
mean accumulated reward V i(t) will define the mean number of entrances in
the unacceptable area during time interval [0, t]: Nfi (t) = Vi (t).

Mean time to failure (MTTF) is the mean time up to the instant when the
MSS enters the subset of unacceptable states for the first time. For its com-
putation the combined performance-demand model should be transformed; all
transitions that return MSS from unacceptable states should be forbidden, be-
cause for this case all unacceptable states should be treated as absorbing states.
In order to assess MTTF for MSS the rewards in matrix r for the transformed
performance-demand model should be determined in the following manner.

• The rewards associated with all acceptable states should be defined as
one.

• The reward associated with unacceptable (absorbing) states should be
zeroed as well as all rewards associated with transitions.
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In this case mean accumulated reward Vi (t) will define the mean time ac-
cumulated up to the first entrance into the subset of unacceptable states or
MTTF.

Probability of MSS failure during time interval [0, t]. The model should be
transformed as in the previous case: all unacceptable states should be treated
as absorbing states and, therefore, all transitions that return MSS from un-
acceptable states should be forbidden. Rewards associated with all transitions
to the absorbing state should be defined as one. All other rewards should be
zeroed. Mean accumulated reward Vi(t) will define for this case probability of
MSS failure during time interval [0, t] if the state i is the initial state. There-
fore, the MSS reliability function can be obtained as Ri (t) = 1 − Vi (t), where
i = 1, . . . , k.

12.3 Numerical Example

Consider the air-conditioning system used in one Israeli hospital. The system
consists of two main online air conditioners and one air conditioner in cold
reserve. The reserve conditioner begins to work only when one of the main
conditioners has failed. Air conditioner failure rates are: λ = 3 year−1 for the
main conditioner and λ∗ = 10 year−1 for the conditioner in cold reserve (λ∗ > λ,
because the reserve conditioner is usually a secondhand device). The repair rates
for the main and reserve conditioners are the same, µ = µ∗. Repair rate depends
on the repair team and may be changed from 6 hours−1 to 7 days−1. Demand
is a discrete-state continuous-time Markov process with two levels: peak and
low. The mean duration of the peak-demand period is T d = 7 hours. The mean
duration of the low-demand period is equal to TN = 24 − T d = 17 hours. The
state–space diagram for this system is presented in Figure 12.1.

There are 12 states. States from 1 to 6 are associated with the peak demand
period, states from 7 to 12 are associated with the low-demand period. States
6 and 12 indicate both main air conditioners are online and the reserve air
conditioner is available. The system performance is g6 = g12 = 2. States 5
and 11 indicate one of the main air conditioners failed and is replaced by the
reserve air conditioner. The system performance is g5 = g11 = 2. States 4
and 10 indicate the second main air conditioner failed; only the reserve air
conditioner is online. The system performance is g4 = g10 = 1. States 3 and 9
indicate that the reserve air conditioner failed; only one main air conditioner
is online. The system performance is g3 = g9 = 1. States 2 and 8 indicate
the reserve air conditioner failed and two main air conditioners are online. The
system performance is g2 = g8 = 2. State 1 indicates full system failure. The
system performance is g1 = g7 = 0. If in the peak-demand period the required
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Figure 12.1. System with two online conditioners and one conditioner in cold
reserve.

demand level is w = 2 and in the low-demand period the required demand level
is w = 1, then there are eight acceptable states: 12, 11, 10, 9, 8, 6, 5, and 2.
States 7, 4, 3, and 1 are unacceptable. The transitions from state 6 to state 5,
from state 2 to state 3, from state 12 to state 11, and from state 9 to state 8
are associated with the failure of one of the main air conditioners and have an
intensity of 2λ. The transitions from state 5 to state 4, from state 3 to state 1,
from state 11 to state 10, and from state 9 to state 7 are associated with failure
of the second main air conditioner and have an intensity of λ.

The transitions from state 5 to state 3, from state 4 to state 1, from state
11 to state 9, and from state 10 to state 7 are associated with failure of the
reserve air conditioner and have an intensity of λ∗. The transitions from state
4 to state 5 and from state 1 to state 3, from state 10 to state 11 and from
state 7 to state 9 are associated with repair of one of the main air conditioners
and have an intensity of 2µ. The transitions from state 5 to state 6 and from
state 3 to state 2, from state 11 to state 12 and from state 9 to state 8 are
associated with failure of the main air conditioner and have an intensity of µ.
The transitions from state 3 to state 5, from state 2 to state 6 and from state 1
to state 4 and from state 9 to state 11, from state 8 to state 12 and from state
7 to state 10 are associated with repair of the reserve air conditioner and have
an intensity of µ∗.

The transitions from state 6 to state 12, from state 5 to state 11, from state
4 to state 10, from state 3 to state 9, from state 2 to state 8, and from state
1 to state 7 are associated with a variable demand and have an intensity of
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λd = 1/T d. The transitions from state 12 to state 6, from state 11 to state 5,
from state 10 to state 4, from state 9 to state 3, from state 8 to state 2, and from
state 7 to state 1 are associated with a variable demand and have an intensity
of λN = 1/TN = 1/(24 − T d).

In order to find the MSS average availability A (T ) we should present the
reward matrix rA in the following form.

rA = |rij| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (12.4)

In this matrix, rewards associated with all acceptable states are defined as
one and rewards associated with all unacceptable states are zeroed as well as
all rewards associated with all transitions.

The system of differential equations (12.5) can be written in order to find the
expected total rewards Vi (t), i = 1, . . . , 12. The initial conditions are Vi (0) = 0,
i = 1, . . . , 12.

After solving this system and finding Vi (t), MSS average availability can be
obtained as follows. A (t) = V6 (t) /t, where the sixth state is the initial state.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV1(t)
dt = −C1V1 (t) + 2µV3 (t) + µ∗V4 (t) + λdV7 (t)

dV2(t)
dt = 1− C2V2 (t) + 2λV3 (t) + µ∗V6 (t) + λdV8 (t)

dV3(t)
dt = λV1 (t) + µV2 (t)− C3V3 (t) + µ∗V5 (t) + λdV9 (t)

dV4(t)
dt = λ∗V1 (t)− C4V4 (t) + 2µV5 (t) + λdV10 (t)

dV5(t)
dt = 1 + λ∗V3 (t) + λV4 (t)− C5V5 (t) + µV6 (t) + λdV11 (t)

dV6(t)
dt = 1 + 2λV5 (t)− C6V6(t) + λdV12 (t)

dV7(t)
dt = λNV1 (t)− C7V7 (t) + 2µV9 (t) + µ∗V10 (t)

dV8(t)
dt = 1 + λNV2 (t)−C8V8 (t) + 2λV9 (t) + µ∗V10 (t)

dV9(t)
dt = 1 + λNV3 (t) + λV7 (t) + µV8 (t)− C9V9 (t) + µ∗V11 (t)

dV10(t)
dt = 1 + λNV4 (t) + λ∗V7 (t)− C10V10 (t) + 2µV11 (t)

dV11(t)
dt = 1 + λNV5 (t) + λ∗V9 (t) + λV10 (t)− C11V11 (t) + µV12 (t)

dV12(t)
dt = 1 + λNV6 (t) + 2λV11 (t)− C12V12 (t) ,

(12.5)
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where

C1 = 2µ + µ∗ + λd C7 = 2µ + µ∗ + λN

C2 = 2λ + µ∗ + λd C8 = 2λ + µ∗ + λN

C3 = λ + µ + µ∗ + λd C9 = λ + µ + µ∗ + λN

C4 = λ∗ + 2µ + λd C10 = λ∗ + 2µ + λN

C5 = λ + λ∗ + µ + λd C11 = λ + λ∗ + µ + λN

C5 = 2λ + λd C5 = 2λ + λN .

(12.6)

The results of the calculations are presented in Figures 12.2 and 12.3.

Figure 12.2. Calculation of the MSS average availability
(
µ = 100 year−1

)
.

The curve in Figure 12.3 supports the engineering decision making and
determines the area where required reliability/availability level of the air-
conditioner system can be provided. For example, from this figure we can con-
clude that the system can provide the required average availability level (0.999),
if mean time to repair is less than 3.6 days (µ > 120 year−1)

In order to find the mean total number of system failures Nf (t) we should
present the reward matrix rN in the form (12.7). In this matrix the rewards
associated with each transition from the set of acceptable states to the set
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Figure 12.3. MSS average availability dependent on mean time to repair.

of unacceptable states should be defined as one. All other rewards should be
zeroed.

rA = |rij| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (12.7)

The following system of differential equations (12.8) can be written in order
to find the expected total rewards Vi (t), i = 1, . . . , 12.
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV1(t)
dt = −C1V1 (t) + 2µV3 (t) + µ∗V4 (t) + λdV7 (t)

dV2(t)
dt = 2λ− C2V2 (t) + 2λV3 (t) + µ∗V6 (t) + λdV8 (t)

dV3(t)
dt = λV1 (t) + µV2 (t)− C3V3 (t) + µ∗V5 (t) + λdV9 (t)

dV4(t)
dt = λ∗V1 (t)− C4V4 (t) + 2µV5 (t) + λdV10 (t)

dV5(t)
dt = λ + λ∗ + λ∗V3 (t) + λV4 (t)− C5V5 (t) + µV6 (t) + λdV11 (t)

dV6(t)
dt = 2λV5 (t)− C6V6 (t) + λdV12 (t)

dV7(t)
dt = λNV1 (t)− C7V7 (t) + 2µV9 (t) + µ∗V10 (t)

dV8(t)
dt = λNV2 (t)− C8V8 (t) + 2λV9 (t) + µ∗V10 (t)

dV9(t)
dt = λN + λ + λNV3 (t) + λV7 (t) + µV8 (t)− C9V9 (t) + µ∗V11 (t)

dV10(t)
dt = λN + λ∗ + λNV4 (t) + λ∗V7 (t)− C10V10 (t) + 2µV11 (t)

dV11(t)
dt = λNV5 (t) + λ∗V9 (t) + λV10 (t)− C11V11 (t) + µV12 (t)

dV12(t)
dt = λNV6 (t) + 2λV11 (t)− C12V12 (t) .

(12.8)
Here C1–C12 are calculated via formulas (12.6).

The initial conditions are Vi (0) = 0, i = 1, . . . , 12 After solving this sys-
tem and finding Vi (t), the mean total number of system failures Nf (t) can be
obtained as follows: Nf (t) = V6 (t), where the sixth state is the initial state.

The results of the calculations are presented in Figures 12.4 and 12.5.

Figure 12.4. Calculation of the mean total number of system failures(
µ = 100 year−1

)
.

In order to calculate mean time to failure (MTTF), the initial model should
be transformed; all transitions that return MSS from unacceptable states should
be forbidden and all unacceptable states should be treated as absorbing states.
The transformed model is shown on Figure 12.6.
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Figure 12.5. Mean total number of system failures dependent on mean time to
repair.
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In order to assess MTTF for MSS, the rewards in matrix r for the trans-
formed model should be determined in the following manner. The rewards as-
sociated with all acceptable states should be defined as one and the rewards
associated with unacceptable (absorbing) states should be zeroed as well as all
rewards associated with transitions.

The reward matrix for the system with two online conditioners and one in
cold reserve is as follows.

r = |rij | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (12.9)

The following system of differential equations can be written in order to find
the expected total rewards Vi (t), i = 0, 2, 5, 6, 8, 9, 10, 11, 12.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV0(t)
dt = 0

dV2(t)
dt = 1 + 2λV0 (t)− C2V2 (t) + µ∗V6 (t) + λdV8 (t)

dV5(t)
dt = 1 + (λ + λ∗) V0 (t)− C5V5 (t) + µV6 (t) + λdV11 (t)

dV6(t)
dt = 1 + 2λV5 (t)− C6V6 (t) + λdV12 (t)

dV8(t)
dt = 1 + λNV2 (t)− C8V8 (t) + 2λV9 (t) + µ∗V10 (t)

dV9(t)
dt = 1 + (λ + λN )V0 (t) + µV8 (t)− C9V9 (t) + µ∗V11 (t)

dV10(t)
dt = 1 + (λ∗ + λN )V0 (t)−C10V10 (t) + 2µV11 (t)

dV11(t)
dt = 1 + λNV5 (t) + λ∗V9 (t) + λV10 (t)− C11V11 (t) + µV12 (t)

dV12(t)
dt = 1 + λNV6 (t) + 2λV11 (t)− C12V12 (t) ,

(12.10)
where

C2 = 2λ + µ∗ + λd C9 = λ + µ + µ∗ + λN

C5 = λ + λ∗ + µ + λd C10 = λ∗ + 2µ + λN

C6 = 2λ + λd C11 = λ + λ∗ + µ + λN

C8 = 2λ + µ∗ + λN C12 = 2λ + λN .

(12.11)

The initial conditions are Vi (0) = 0, i = 0, 2, 5, 6, 8, 9, 10, 11, 12.
After solving this system and finding Vi (t), the MTTF for MSS can be

obtained as V6 (t), where the sixth state is the initial state. The results of the
calculations are presented in Figures 12.7 and 12.8.
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Figure 12.7. Calculation of the mean time to system failure
(
µ = 100 year−1

)
.

Figure 12.8. Mean time to system failure dependent on mean time to repair.

To calculate the probability of MSS failure during time interval [0, t] the
model should be transformed as in the previous case: all unacceptable states
should be treated as absorbing states and, therefore, all transitions that return
MSS from unacceptable states should be forbidden. Rewards associated with all
transitions to the absorbing state should be defined as one. All other rewards
should be zeroed.

The reward matrix for the system with two online conditioners and one in
cold reserve will be as follows.
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r = |rij | =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (12.12)

Mean accumulated reward Vi (t) will define the probability Q(t) of MSS
failure during time interval [0, t].

The following system of differential equations can be written in order to find
the expected total rewards Vi (t), i = 0, 2, 5, 6, 8, 9, 10, 11, 12.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dV0(t)
dt = 0

dV2(t)
dt = 2λ + 2λV0 (t)−C2V2 (t) + µ∗V6 (t) + λdV8 (t)

dV5(t)
dt = λ + λ∗ + (λ + λ∗)V0 (t)− C5V5 (t) + µV6 (t) + λdV11 (t)

dV6(t)
dt = 2λV5 (t)− C6V6 (t) + λdV12 (t)

dV8(t)
dt = λNV2 (t)− C8V8 (t) + 2λV9 (t) + µ∗V10 (t)

dV9(t)
dt = λ + λN + (λ + λN ) V0 (t) + µV8 (t)− C9V9 (t) + µ∗V11 (t)

dV10(t)
dt = λ∗ + λN + (λ∗ + λN )V0 (t)−C10V10 (t) + 2µV11 (t)

dV11(t)
dt = λNV5 (t) + λ∗V9 (t) + λV10 (t)− C11V11 (t) + µV12 (t)

dV12(t)
dt = λNV6 (t) + 2λV11 (t)− C12V12 (t) .

(12.13)

Here Ci, i = 2, 5, 6, 8, 9, 10, 11, 12 are calculated via formulas (12.11). The initial
conditions are Vi(0) = 0, i = 0, 2, 5, 6, 8, 9, 10, 11, 12.

After solving this system and finding Vi (t), MSS reliability function can be
obtained as R (t) = 1 − V6 (t), where the sixth state is the initial state. The
results of the calculation are presented in Figure 12.9.

12.4 Conclusions

1. A generalized reliability measure for MSS that is an expectation of the func-
tional from two stochastic processes—MSS output performance G(t) and
demand W (t)—was suggested in this chapter. Many MSS reliability mea-
sures usually used in practice can be easily derived from this generalized
measure.
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Figure 12.9. Probability of MSS failure during one-year time interval depends
on mean time to repair.

2. The general method was suggested to compute main MSS reliability mea-
sures. The method is based on determination of different reward matrices
for the MSS model. Such a model is interpreted as a Markov reward model.

3. The approach suggested is well formalized and suitable for practical appli-
cations in reliability engineering.

4. The numerical example is presented in order to illustrate the suggested
approach.
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Asymptotic Certainty Bands for Kernel Density

Estimators Based upon a Bootstrap Resampling

Scheme

Paul Deheuvels1 and Gérard Derzko2

1LSTA, Université Paris VI, Bourg-la-Reine, France
2Sanofi-Aventis Recherche, Montpellier, France

Abstract: In this chapter, we show that a single bootstrap suffices to construct
sharp uniform asymptotic certainty (or asymptotically almost sure confidence)
bands for nonparametric kernel-type density estimators.

Keywords and Phrases: Kernel density estimators, nonparametric functional
estimation, bootstrap and resampling, confidence bands

13.1 Introduction and Results

Let X1,X2, . . . be a sequence of independent random replicæ of a random vari-
able X with distribution function F (x) = P(X ≤ x) for x ∈ R. We are con-
cerned with the estimation of the density f(x) = (d/dx)F (x) of X, assumed
to be continuous and positive on the interval J = [c′, d′], where c′ and d′ are
two constants such that −∞ < c′ < d′ < ∞. We consider here the classi-
cal Akaike–Parzen–Rosenblatt [refer to Akaike (1954), Rosenblatt (1956), and
Parzen (1962)] kernel estimator defined as follows. We first pick a kernel K(·),
defined as a function of bounded variation on R such that

(i) K(t) = 0 for |t| ≥ 1
2 and (ii)

∫
R

K(t)dt = 1. (13.1)

We then select a bandswidth h > 0, and estimate f(x) by the statistic

fn,h(x) =
1
nh

n∑
i=1

K
(x−Xi

h

)
.
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In the forthcoming Section 13.2, we also consider a discretized version f̂n,h(·)
of fn,h(·), which is defined, later on, in (13.23). We are concerned with the
limiting behavior of fn,h(x), uniformly over x ∈ I = [c, d] ⊂ J = [c′, d′], where
c, d are specified constants such that −∞ < c′ < c < d < d′ < ∞. Setting
h0 = {c − c′} ∧ {d′ − d}, we assume, unless otherwise specified, that h = hn

is a sequence depending upon n, and taking values within the interval (0, h0].
At times, we work under the variant, denoted by (H.b), of the above set of
hypotheses, denoted hereafter by (H.a). Under (H.b), we let K(·) fulfill (13.1)(ii)
only, and make the additional assumption on the distribution F (x) of X, that
there exists a version of the density f(x) = (d/dx)F (x), bounded on R [recall
that f(·) is only defined uniquely up to an a.e. equivalence].

The study of the uniform consistency of fn,h(x) to f(x) on I makes use of
the decomposition of fn,h(x)−f(x) into two components. The first one captures
the bias part

Efn,h(x)− f(x) =
∫

R

{f(x− hu)− f(x)}K(u), (13.2)

which is independent of the sample size n ≥ 1, and, under either (H.a) or (H.b),
converging uniformly to 0 over x ∈ I, as h→ 0. The corresponding rate of con-
vergence is a purely analytic problem, depending upon regularity assumptions
on f , which are not considered here, except in the application, presented in the
forthcoming Section 13.2 [refer to Deheuvels (2000), and Deheuvels and Mason
(2004), for details and references on this question]. We concentrate our interest
on the random part

fn,h(x)− Efn,h(x),

and investigate its limiting behavior over x ∈ I. We seek sharp uniform asymp-
totic certainty bands, defined as statistics θn = θn(X1, . . . ,Xn) ≥ 0, assumed to
be nonnegative measurable functions of n ≥ 1, and of the sample X1, . . . ,Xn,
such that, for each ε ∈ (0, 1), as n→∞,

P
(

sup
x∈I

|fn,h(x)− Efn,h(x)| ≤ θn(1 + ε) + ε
)
→ 1, (13.3)

and
P
(

sup
x∈I

|fn,h(x)− Efn,h(x)| ≤ θn(1− ε)− ε
)
→ 0. (13.4)

Following a suggestion of D. M. Mason, we use, for these upper and lower
functional bounds for Efn,h(x), the qualification of certainty bands, rather than
that of confidence bands, because there is here no preassigned confidence level
α ∈ (0, 1). Some authors [see, e.g., Härdle and Marron (1991)] have used the
alternate concept of simultaneous error bars, which is not quite equivalent to the
present definitions. Our approach differs, in particular, from that initiated by
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Bickel and Rosenblatt (1973), and giving rise to some recent refinements in Giné
et al. (2004) (see also the list of references of this last article). These authors
evaluate limiting distributions for weighted sup-norms of |fn,h(x)−Efn,h(x)|. As
mentioned in their paper, the convergence of such statistics to their limit laws is
so slow as to render their use difficult for small sample sizes. The methodology
we follow here should appear, therefore, less refined, but more applicable to
the usual statistical datasets. The practical interest of our asymptotic certainty
bands appears through the plots of the functions (fn,h(x)−θn)∨0 and (fn,h(x)+
θn) ∨ 0 on the interval I = [c, d]. Some examples of the kind are provided in
Figures 13.1 to 13.3, in the forthcoming Section 13.2. Assuming that the order
of uniform convergence to 0 of the bias part (13.2) is negligible, with respect
to the order of uniform convergence to 0 of θn, the asymptotic certainty bands
turn out to give a useful visual insight on the behavior of the exact density
f(·) on I. This density f(x) should then, with probability tending to 1, be in
between or close to (in the sense of (13.3)–(13.4)) the lower certainty bound
(fn,h(x) − θn) ∨ 0, and the upper certainty bound (fn,h(x) + θn) ∨ 0. We refer
to Deheuvels and Mason (2004) for additional details and references on this
methodology. Note here that our assumptions allow K(u) to be negative for
some values of u ∈ R, so that fn,h(x), or fn,h(x)± θn, may be negative for some
values of n ≥ 1 and x ∈ R. This explains why we use (fn,h(x)± θn) ∨ 0 instead
of fn,h(x)± θn.

Set log+ u = log(u∨ e) for u ∈ R. The limit law, stated in Fact 13.1.1 below,
is due to Deheuvels and Einmahl (2000) and Deheuvels (2000) [see also Stute
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(1982), Deheuvels (1992), and Deheuvels and Mason (1992), and the references
therein]. It shows that a possible choice for θn in (13.3)–(13.4) is given by

θn = θn,0 :=
{2 log+(1/hn)

nhn

(
sup
x∈I

f(x)
)∫

R

K2(t)dt
}1/2

. (13.5)

Fact 13.1.1 Let {hn : n ≥ 1} be a sequence such that, as n →∞,

(H.c) hn → 0 and nhn/log n →∞.
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Then, under either (H.a) or (H.b), as n →∞,

sup
x∈I

±
{
fn,hn(x)− Efn,hn(x)

}
(13.6)

= (1 + oP(1))
{2 log+(1/hn)

nhn

(
sup
x∈I

f(x)
) ∫

R

K2(t)dt
}1/2

.

The choice of θn = θn,0, given by (13.5), is not very useful to construct limit-
ing asymptotic certainty bands for supx∈I ±{fn,hn(x)− Efn,hn(x)} of practical
interest. The fact that θn,0 depends upon the unknown density f(·) is a minor
problem, because, as shown in Deheuvels (2000), and Deheuvels and Mason
(2004), an application of Slutsky’s lemma allows us to replace, without loss of
generality, this quantity by fn,hn(x) (or by any other estimator of f(x) which
is uniformly consistent on I), thus yielding

θn = θn,1 :=
{2 log+(1/hn)

nhn

({
sup
x∈I

fn,hn(x)
}
∨ 0
) ∫

R

K2(t)dt
}1/2

. (13.7)

The difficulty, in the practical use of setting either θn = θn,0 or θn = θn,1

in (13.3)–(13.4), is due to the factor log+(1/hn), in (13.5) and (13.7), which
is scale-dependent. Consider the change of scale replacing, respectively, hn by
λhn, and {Xi : 1 ≤ i ≤ n}, by {λXi + µ : 1 ≤ i ≤ n}, for some constants
λ > 0 and µ. This transformation leaves unchanged fn,hn, whereas θn,0 and θn,1

are each multiplied by the factor {(log+(1/(λhn)))/(log+(1/hn))}1/2. Thus, the
logarithmic terms in θn,0 and θn,1, which should be tending to infinity, are
truncated, and hence, unrealistic, when the above factor λ is chosen such that
λhn > 1.

The main purpose of the present chapter is to propose a simple and practical
way, based upon a resampling (or bootstrap) methodology, to override the above-
mentioned difficulty. There is a huge literature on the application of the boot-
strap methodology to nonparametric kernel density and regression estimation.
We refer, in particular to Härdle and Bowman (1988), Hall (1992), Härdle and
Marron (1991), Li and Datta (2001), and the references therein. Our method
is based on the introduction of random weights {Wi,n : 1 ≤ i ≤ n} defined, via
one of the following alternate resampling schemes, denoted hereafter by (RS.1)
and (RS.2).

Resampling Scheme 1 [(RS.1)] This is a version of the Mason–Newton boot-
strap [see, e.g., Mason and Newton (1992), and the references therein]. We
start by the introduction [on the original probability space (Ω,A, P) carrying
the dataset X1, . . . ,Xn, and, eventually, enlarged by products] of a sequence
{Zn : n ≥ 1} of independent and identically distributed random replicæ of
a random variable Z. We assume that {Xn : n ≥ 1} and {Zn : n ≥ 1} are
independent, and let the following additional conditions be satisfied.
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(A.1) E(Z) = 1; E(Z2) = 2 [or, equivalently, Var(Z) = 1].
(A.2) For some ε > 0, E(etZ) < ∞ for all |t| ≤ ε.

We denote by Tn = Z1 + · · · + Zn the partial sum of order n ≥ 1 of these
random variables, and denote by En = {Tn > 0} the event that Tn > 0. We
note for further use that P(En) → 1 as n → ∞ [the LLN in combination with
(A.1) implies that n−1Tn → 1 a.s.]. We define, further, the random weights, for
i = 1, . . . , n,

Wi,n =

⎧⎪⎨⎪⎩
Zi

Tn
=

Zi∑n
j=1 Zj

when Tn > 0,

1
n

when Tn ≤ 0.
(13.8)

Resampling Scheme 2 [(RS.2)] This corresponds to the classical Efron (or
multinomial) bootstrap [see, e.g., Efron (1979)]. We let (Y1, . . . , Yn) follow a
multinomial Mult(1/n, . . . , 1/n;n) distribution. Namely, for each n-tuple of in-
tegers k1 ≥ 0, . . . , kn ≥ 0, with k1 + · · · + kn = n, we let

P(Y1 = k1, . . . , Yn = kn) =
n−nn!

k1! . . . kn!
. (13.9)

We then define the random weights {Wi,n : 1 ≤ i ≤ n}, via

Wi,n =
Yi

n
=

Yi∑n
j=1 Yj

for i = 1, . . . , n. (13.10)

Under either (RS.1) or (RS.2), we define a resampled, or bootstrapped, version
of fn,h(·) by setting, for each h > 0 and x ∈ R,

f∗
n,h(x) =

1
h

n∑
i=1

Wi,nK
(x−Xi

h

)
. (13.11)

The following main result of the present chapter turns out to provide a solution
to our problem of constructing scale-free sharp uniform asymptotic certainty
bands for f(·).

Theorem 13.1.1 Let either (H.a) or (H.b) hold. Then, under (H.c) and (A.1–
A.2), we have, as n →∞,

sup
x∈I

±
{
f∗

n,hn
(x)− fn,hn(x)

}
(13.12)

= (1 + oP(1))
{2 log+(1/hn)

nhn

(
sup
x∈I

f(x)
) ∫

R

K2(t)dt
}1/2

.

A straightforward consequence of Theorem 13.1.1 and Fact 13.1.1 is stated
in Corollary 13.1.1 below.
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Corollary 13.1.1 Let either (H.a) or (H.b) hold. Then, under (H.c) and (A.1–
A.2), for any choice of ε1 = ±1 or ε2 = ±1, we have, as n →∞,

supx∈I ε1

{
fn,hn(x)− Efn,hn(x)

}
supx∈I ε2

{
f∗

n,hn
(x)− fn,hn(x)

} = 1 + oP(1). (13.13)

Proof. Observe that the factors on the RHS of (13.6) and (13.12) are identical.

As follows from (13.13), we may choose θn in (13.3)–(13.4), by setting either

θn = θn,2 := sup
x∈I

±
{

f∗
n,hn

(x)− fn,hn(x)
}

, (13.14)

or, preferably,
θn = θn,3 := sup

x∈I

∣∣∣f∗
n,hn

(x)− fn,hn(x)
∣∣∣. (13.15)

Corollary 13.1.1 implies that a single bootstrap suffices to obtain, via (13.14)
or (13.15), sharp asymptotic certainty bands fulfilling (13.3)–(13.4). Moreover,
the above-defined choices of θn = θn,2, or θn = θn,3, are, obviously, scale-free,
and improve upon θn,0 and θn,1 with respect to this property.

The remainder of our chapter is organized as follows. In Section 13.2, we
present an application of our results based upon simulated data. These results
give some empirical evidence of the practical interest of our methods. The gen-
eral ideas underlying our proofs are given in Section 13.3, the completion of
which will be published elsewhere.

13.2 An Example of Application

In this section we provide plots of density estimators corresponding to the
β(2, 4) distribution. We assume, therefore, and unless otherwise specified, that
f(x) is the β(2, 4) density, given by

f(x) =

{
1

β(2,4) x(1− x)3 = 20x(1 − x)3 when 0 ≤ x ≤ 1,

0 otherwise.
(13.16)

Because the density f(x) in (13.16) is polynomial on its support [0, 1], it has
bounded derivatives of all orders, so that the Taylor expansions of f and its
derivatives, which we use later on, will hold uniformly on this interval. This
property is used implicitly in the sequel. For numerical purposes, we work on a
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discretized, binned version f̃h(x) of f(x), defined, for each choice of the band-
width h > 0, and of the index j ∈ Z, by

f̃h(x) =
1
h

∫ jh

(j−1)h
f(t)dt for x ∈ ((j − 1)h, jh]. (13.17)

We work on the following intervals. We set throughout this section I = [0.2, 0.8]
and J = [0.1, 0.9]. Some calculus based upon (13.16) shows that, for 0 < x < 1,

f ′(x) = 20(1 − x)2(1− 4x) and sup
x∈I

|f ′(x)| = 5, (13.18)

f ′′(x) = 120(1 − x)(2x− 1) and sup
x∈[0,1]

|f ′′(x)| = 120. (13.19)

By Taylor’s formula and (13.18), it is readily checked that, when h → 0,

sup
x∈I

|f(x)− f̃h(x)| = (1 + o(1))
h

2
sup
x∈I

|f ′(x)| = (1 + o(1))
5h
2

. (13.20)

By combining Taylor’s formula with (13.17)–(13.19), we get that, for each spec-
ified � ∈ Z, uniformly over j ∈ Z with jh ∈ I, as h → 0,

f̃h(jh − �h)− f̃h(jh) =
1
h

∫ h

0

{
f(jh− t− �h)− f(jh− t)

}
dt

= − �f ′(jh) + �2h2f ′′(jh) + O(h3). (13.21)

in the forthcoming Figures 13.1 to 13.3, the kernel smoothed histogram f̃n,h(x),
defined below as a discretized version of the kernel estimator fn,h(x), is plotted.
The kernel smoothed histogram [KSH] was introduced by Derzko (1998), and
further investigated by Deheuvels et al. (2004). Given a choice of the bandwidth
h > 0, we first estimate f̃h(x), out of the sample X1, . . . ,Xn, by a classical
histogram f̃n,h(x), defined by setting

f̃n,h(x) = (nh)−1
n∑

i=1

1I{Xi∈((j−1)h,jh]}

for x ∈ ((j − 1)h, jh] and j ∈ N. (13.22)

Next, we smooth f̃n,h(·), to obtain the kernel smoothed histogram [KSH] [see,
e.g., Derzko (1998), and Derzko and Deheuvels (2002)], defined by

f̂n,h(x) =
∞∑

�=−∞
K(�)f̃n,h(x− �h), (13.23)
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where K(t) is a discrete kernel, constant on the intervals (�− 1
2 , �+ 1

2 ] for � ∈ Z,
and defined by setting, for each � ∈ Z,

K(t) = K(�) :=
1
2

∫ 1/2

0

x|�|dx

(1− x)2

=
1

2|�|+2

∞∑
k=0

k + 1
(|�|+ k + 1)2k

for t ∈ (�− 1
2 , � + 1

2 ].

(13.24)

It is noteworthy that K(t) = K(t), as defined by (13.24) for t ∈ R, is a kernel in
the usual sense, being of bounded variation on R and fulfilling (13.1)(ii). This
follows from the identity

∫
R

K(t)dt =
∑
�∈Z

K(�)

=
1
2

∫ 1/2

0

dx

(1− x)2
+

∞∑
�=1

∫ 1/2

0

x|�|dx

(1− x)2

= 1 +
∫ 1/2

0

dx

(1− x)3
−
∫ 1/2

0

dx

(1− x)2
= 1. (13.25)

Likewise, it is readily checked that the discrete kernel K(·) fulfills

∫
R

tK(t)dt =
∑
�∈Z

K(�)
∫ �+1/2

�−1/2
tdt =

∑
�∈Z

�K(�) = 0, (13.26)

and ∫
R

t2K(t)dt − 1
12 =

∑
�∈Z

�2K(�) = 2. (13.27)

We infer from (13.21), (13.23), (13.24), (13.26), (13.27), and the observations
at the beginning of the present section, that, uniformly over j ∈ Z, as h → 0,

Ef̂n,h(jh) − f̃h(jh)

=
∞∑

�=−∞
K(�)
{
f̃h(jh− �h)− f̃h(jh)

}
= h2f ′′(jh)

∞∑
�=−∞

�2K(�) + O(h3) = 2h2f ′′(jh) + O(h3). (13.28)
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By combining (13.19) and (13.28) with the triangle inequality, we see that the
bias part of the estimator f̃n,h(x) of f(x) fulfills, as h→ 0,∣∣∣ sup

x∈I
|Ef̂n,h(x)− f(x)| − sup

x∈I
|f̃h(x)− f(x)|

∣∣∣
≤ sup

x∈[0,1]
|Ef̂n,h(x)− f̃h(x)| = (1 + o(1))2h2 sup

x∈[0,1]
|f ′′(x)|

= (1 + o(1))240h2 .

In view of (13.20), this, in turn, implies that, as h→ 0,

sup
x∈I

|Ef̂n,h(x)− f(x)| = (1 + o(1))
5h
2

. (13.29)

In the forthcoming estimators of f(·), we make use of the bandwidth h = hn =
0.02, for which the above evaluation of the bias term yields

sup
x∈I

|Ef̂n,h(x)− f(x)|  5hn

2
= 0.05, (13.30)

which turns out to introduce a relatively small, and practically negligible, error
in the estimation process we consider (e.g., we show below in the example
considered in Figure 13.1, with a sample size of n = 2000, that the “right”
choice of θn is close to θn  0.35, so that the maximal bias of 0.05 remains
small with respect to this factor). We limit ourselves to the (relatively large)
sample sizes of n = 2000 (Figure 13.1) and n = 5000 (Figure 13.2). These are
chosen as to render meaningful the asymptotic formulæ, stated in Fact 13.2.1.

The bootstrapped version, f̂∗
n,h(x), of f̂n,h(x), is obtained by similar steps,

as in (13.22)–(13.23), making use of Resampling Scheme 1, with Z following a
Poisson distribution with mean 1 [denoted by Z

d= Po(1)]. Namely, we simu-
late, independently of the sample X1, . . . ,Xn, a sequence of independent Po(1)
Poisson random variables Z1, . . . , Zn, with, independently of i = 1, . . . , n,

P(Zi = m) =
e−1

m!
for m ∈ N. (13.31)

Second, we define random weights Wi = Zi/
∑n

j=1 Zj, for i = 1, . . . , n, as in
(13.8). We then set

f̃∗
n,h(x) =

(
h

n∑
i=1

Zi

)−1
n∑

i=1

ZiI{Xi∈((j−1)h,jh]} (13.32)

for x ∈ ((j − 1)h, jh] and j ∈ N,

and, with K(·) defined by (13.24), for each x ∈ R,

f̂∗
n,h(x) =

∞∑
�=−∞

K(�)f̃∗
n,h(x− �h). (13.33)
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The versions of (13.4) and (13.12) holding for the discretized versions f̂n,h(x)
and f̂∗

n,h(x) of the kernel estimators fn,h and f∗
n,h, are established by the same

arguments as Fact 13.1.1 and Theorem 13.1.1 [see Theorem 1 in Derzko (1998),
and, e.g., Deheuvels et al. (2004)]. The details are given elsewhere. We thus
obtain the following fact.

Fact 13.2.1 Under (H.c) and, either (H.a) or (H.b), as n →∞,

sup
x∈I

±
{

f̂n,hn(x)− Ef̂n,hn(x)
}

= (1 + oP(1))
{2 log+(1/hn)

nhn

(
sup
x∈I

f(x)
) ∞∑

�=−∞
K2(�)

}1/2
(13.34)

and

sup
x∈I

±
{
f̂∗

n,hn
(x)− f̂n,hn(x)

}
= (1 + oP(1))

{2 log+(1/hn)
nhn

(
sup
x∈I

f(x)
) ∞∑

�=−∞
K2(�)

}1/2
.

(13.35)

We readily obtain the following corollary of Fact 13.2.1.

Corollary 13.2.1 Let either (H.a) or (H.b) hold. Then, under (H.c) and (A.1–
A.2), for any choice of ε1 = ±1 or ε2 = ±1, we have, as n →∞,

supx∈I ε1

{
f̂n,hn(x)− Ef̂n,hn(x)

}
supx∈I ε2

{
f̂∗

n,hn
(x)− f̂n,hn(x)

} = 1 + oP(1). (13.36)

A numerical evaluation of the constants in the right-hand sides of (13.34) and
(13.35) is easily achieved (e.g., by a direct use of any one among the available
numerical mathematical software). We thus obtain that

∞∑
�=−∞

K2(�)  0.304806 . (13.37)

Moreover, by choosing I = [0, 1], and for f(·) as in (13.16), we get

sup
x∈I

f(x) = 20 × 1
4

(
1− 1

4

)3  2.10938. (13.38)

In Figures 13.1 and 13.2 we plot, over x ∈ [0, 1], the estimator, fn(x) =
fn,hn(x), the exact density f(x), the asymptotic bounds, (fn(x) − θn,4) ∨ 0
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and (fn(x) + θn,4) ∨ 0, in combination with the asymptotic bootstrap bounds,
(fn(x)− θn,5) ∨ 0 and (fn(x) + θn,5) ∨ 0, where

θn = θn,4 :=
{2 log(1/hn)

nhn

(
sup
x∈I

f(x)
) ∞∑

�=−∞
K2(�)

}1/2
,

and
θn = θn,5 := sup

x∈I

∣∣f̂∗
n,hn

(x)− f̂n,hn(x)
∣∣.

At this point, we note that the restriction, made to fit in the framework of
our assumptions, of studying our estimators on I = [0.2, 0.8] ⊂ J = [0.1, 0.9],
appears too restrictive. Our results seem to be unaffected if we plot the graphs
in Figures 13.1 to 13.3, on I = [0, 1], so that we have kept this choice. The
numerical values of θn = θn,4 are (up to a precision of 10−4) θn = 0.3546 for
n = 2000, and θn = 0.2243 for n = 5000. The bootstrap asymptotic certainty
bands in Figures 13.1 and 13.2 are obtained by using a single bootstrap, so that
the number of resamplings is set to Nboot = 1. In Figure 13.3, we plot, for
n = 5000, the variation of the bootstrap asymptotic certainty bands observed
when several bootstraps are used. The number of bootstraps is here chosen
equal to Nboot = 20.

Figures 13.1 to 13.3 give some empirical evidence to the fact that the boot-
strap asymptotic certainty bands θn,5 appear to behave in a quite satisfactory
way, with respect to the nonrandom “exact” asymptotic certainty bands θn,4,
based upon the asymptotic formulæ, making use of the exact knowledge of
f(·). Of course, when the underlying density is unknown, the derivation of θn,4

is more problematic, so that the bootstrap asymptotic certainty bands turn
out, in this case, to be easier to implement than the “exact” asymptotic ones.
In practice, for obvious reasons, when several bootstraps are available, the rec-
ommended value of θn should be taken as the median of the θn’s obtained for
these different resampled estimates.

13.3 Proofs

13.3.1 Proof of Theorem 13.1.1

We assume below that (K.a) is satisfied, and that the assumptions of the Re-
sampling Scheme (RS.1) hold. We limit ourselves to this case, and the details
concerning (RS.2) are given elsewhere. Namely, we let Wi,n be defined, for
i = 1, . . . , n, by (13.8). In this case, the proof of Theorem 13.1.1 relies on
a version of Theorem 3.1 and Corollary 3.1 of Deheuvels and Mason (2004).
A simplified version of these results, adapted to the present assumptions, is
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stated in Lemma 13.3.1 below. For the statement of this result, we need the
following notation. Denote by G(z) = P(Z ≤ z) the distribution function of
the random variable Z in (A.1–A.2), and let H(u) = inf{z : G(z) ≥ u},
for u ∈ (0, 1) denote the corresponding quantile function. Without loss of
generality, it is possible to enlarge the probability space (Ω,A, P) on which
{Xn : n ≥ 1} is defined, in order to carry a sequence {Vn : n ≥ 1} of indepen-
dent and identically distributed random variables, with a uniform distribution
on (0, 1), independent of {Xn : n ≥ 1}, and such that Zn = H(Vn) for n ≥ 1.
It is noteworthy that (X,V ) := (X1, V1) has then a joint continuous density
fX,V (x, v) = f(x)1 I[0,1](v) on J × [0, 1]. This is not quite sufficient for (X,V )
to fulfill the assumptions of Deheuvels and Mason (2004). For this, we use the
following trick. We denote by Φ(y) = (2π)−1/2

∫∞
−∞ ϕ(t)dt [resp., ϕ(t) = e−t2/2],

the standard normal N(0, 1) distribution (resp., density) function. The corre-
sponding quantile function is Φ−1(t) := inf{y : Φ(y) ≥ t} for t ∈ (0, 1). We then
set, for n ≥ 1, Yn = Φ−1(Vn), and observe that Zn−1 = ψ(Yn) = H(Φ(Yn))−1,
where ψ(y) := H(Φ(y))−1 for y ∈ R. By all this, we see that (X,Y ) := (X1, Y1)
has a joint continuous density fX,Y (x, y) = f(x)ϕ(y) on J ×R, fulfilling the as-
sumptions (F.1) and (F.2), on p. 226 in Deheuvels and Mason [DM] (2004). We
see also that our assumption (A.2) is tailored to ensure that Assumption (F.4),
on p. 226 in [DM] (2004) is fulfilled, with the choice of M(s) = eεs. Making use
of the notation of [DM] (2004), we see that under (A.1), for each x ∈ J ,

mψ(x) := E(ψ(Y )|X = x) = E(Z)− 1 = 0, (13.39)
and

σ2
ψ(x) := Var(ψ(Y )|X = x) = Var(Z) = 1. (13.40)

Set now, for each n ≥ 1 and h > 0,

r̂n,h(x) :=
1

nh

n∑
i=1

ψ(Yi)K
(x−Xi

h

)
=

1
nh

n∑
i=1

ZiK
(x−Xi

h

)
− fn,h(x) =

{ 1
n

n∑
j=1

Zi

}
f∗

n,h(x)− fn,h(x),

(13.41)

which holds on the event En of (13.8). Observe that, under (A.1),

rn,h(x) := Er̂n,h(x) = 0. (13.42)

Given the above notation, we may now cite in the following lemma the version
of Corollary 3.1, p. 248 in DM (2004), which is adapted to our setup. This
corollary is taken with λ1 = λ2 = 1.
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Lemma 13.3.1 Under (H.1), (K.a), and (A.1–2), we have, as n →∞,{ nhn

2 log(1/hn)

}1/2
sup
x∈I

±{r̂n,hn(x)− rn,hn(x)}

=
{

sup
x∈I

(
σ2

ψ(x)f(x)
) ∫

R

K2(t)dt
}1/2

+ oP(1). (13.43)

Proof of Theorem 13.1.1. As an application of (13.41), and (13.42)–(13.43),
we obtain that, under the assumptions of Fact 13.3.1, we have, on the event En

of (13.8), as n →∞,

{ nhn

2 log(1/hn)

}1/2
sup
x∈I

±
{{ 1

n

n∑
j=1

Zi

}
f∗

n,hn
(x)− fn,hn(x)

}
=
{

sup
x∈I

f(x)
∫

R

K2(t)dt
}1/2

+ oP(1). (13.44)

Next, we repeat the arguments above, with the formal change of ψ(·) into ψ(·)+
1, so that ψ(Yn) = Zn. We thus obtain, likewise, that, under the assumptions
of Fact 13.3.1, we have, as n →∞,

{ nhn

2 log(1/hn)

}1/2
sup
x∈I

±
{{ 1

n

n∑
j=1

Zi

}
f∗

n,hn
(x)− Efn,hn(x)

}
=
{

sup
x∈I

f(x)
∫

R

K2(t)dt
}1/2

+ oP(1). (13.45)

By combining (A.1) with the central limit theorem, we see that, as n →∞,

∣∣∣ 1
n

n∑
j=1

Zi − 1
∣∣∣ = OP

(
n−1/2

)
. (13.46)

Thus, by Slutsky’s lemma and the uniform convergence of Efn,h(x) to f(x) on
I, and making use of the observation that P(En) → 1, we obtain that

sup
x∈I

f∗
n,hn

(x) = (1 + oP(1)) sup
x∈I

f(x),

hence, by (13.46) and (H.1), as n →∞,

sup
x∈I

∣∣∣{ 1
n

n∑
j=1

Zi

}
f∗

n,hn
(x)− f∗

n,hn
(x)
∣∣∣ = OP(n−1/2)

= oP

({2 log(1/hn)
nhn

}1/2)
.



Asymptotic Certainty Bands for Kernel Estimators 185

This, when combined with (13.44), entails that, as n →∞,{ nhn

2 log(1/hn)

}1/2
sup
x∈I

±
{

f∗
n,hn

(x)− fn,hn(x)
}

(13.47)

=
{

sup
x∈I

f(x)
∫

R

K2(t)dt
}1/2

+ oP(1).

We thus obtain (13.12), as sought. The proof of the remaining parts of the
theorem are obtained by similar arguments, and are omitted.

Remark 13.3.1 The same arguments, in a slightly more involved setup,
allow us to derive bootstrap-based asymptotic certainty bands for the
Nadaraya–Watson regression estimators. The results are in the spirit of those
given in Deheuvels and Mason (2004). Likewise, we may apply this methodology
to randomly censored observations. This will be considered elsewhere.
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Abstract: In this chapter we propose a minimum distance estimator for rescaled
density from a totally bounded class and prove that the rate of convergence de-
pends only on Kolmogorov’s entropy of the class.
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14.1 Introduction

Let Z = (X,Y ) be a random vector, PZ be the distribution of Z, and PX , P Y

be the distributions of X,Y correspondingly. We consider the product measure

P×
Z = PX × PY .

We assume that the measure PZ is absolutely continuous with respect to the
measure P×

Z and set

p(x, y) =
dPZ

dP×
Z

(x, y).

We suppose that there exists the density function f(x, y) of the distribution
PZ with respect to the Lebesgue measure. The density function f can be rep-
resented in the form:

f(x, y) = p(x, y)fX(x)fY (x), (14.1)

where fX , fY are density functions of random variables X,Y .
We denote by FX , F Y the distribution functions of random variables X,Y

and put
q(x, y) = p

((
FX
)−1

(x),
(
F Y
)−1

(y)
)
, (14.2)

187
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where F−1 is the notation for the inverse function. The function q(x, y) is the
density function on [0, 1]×[0, 1]. It is the density function of the rescaled random
vector

U = (X∗, Y ∗) =
(
FX (X) , F Y (Y )

)
. (14.3)

The distribution of the vector U is denoted by Q. It is clear that the random
variables X∗, Y ∗ are uniformly distributed on [0, 1]. The density function q(x, y)
is called a copula density and is responsible for the type of dependence of
coordinates of vector Z.

So, we have

f(x, y) = q
(
FX(x), F Y (y)

)
fX(x)fY (y), (14.4)

Let Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) be i.i.d. random vectors with common
distribution PZ , PX

n and P Y
n be empirical measures constructed on samples

X1 . . . ,Xn and Y1 . . . , Yn, correspondingly,

PX
n {A} =

1
n

n∑
j=1

IA(Xj), P Y
n {A} =

1
n

n∑
j=1

IA(Yj),

and FX
n , F Y

n be the corresponding empirical distribution functions. Denote

Uj =
(
FX(Xj), F Y (Yj)

)
, Un,j =

(
FX

n (Xj), F Y
n (Yj)

)
, (14.5)

and set

Qn {A} =
1
n

n∑
j=1

IA(Uj) and Q̃n {A} =
1
n

n∑
j=1

IA

(
Un,j

)
.

Suppose we observe the sample Z1, . . . , Zn. If distributions of X and Y
are unknown, then it is impossible to construct the empirical measure Qn on
observations Z1, . . . , Zn. There are many reasons to think [see, for example,
Rüschendorf (1976)] that the observable empirical measure Q̃n is close (in a
certain sense) for large n to Qn.

14.2 Transportation Metric

Let (X, ρ) be a compact metric space. We consider the Kantorovich metric (one
of the most-used Vasserstein metrics) κ(µ1, µ2) [see Kantorovich (1942)],

κ(µ1, µ2) = inf
µ

∫∫
X×X

ρ(x, y)µ(dx, dy),
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where µ runs over all probability measures on X × X with marginal measures
µ1 and µ1. In the case which is considered in this work X = [0, 1] × [0, 1] and
x = (x1, x2), y = (y1, y2), ρ(x, y) = |x1 − y1| ∨ |x1 − y1|.

A function ψ is said to be C-Lipschitz if

‖ψ‖Lip = sup
x �=y

|ψ(x)− ψ(y)|
ρ(x, y)

≤ C,

where the supremum is taken over all x, y ∈ X, x �= y. We assume in this case:
ψ ∈ C-Lip. The Kantorovich–Rubinstein theorem states that

κ(µ1, µ2) = sup
ϕ∈1-Lip

∫
X

ϕd(µ1 − µ2).

Here and further integrals without the limits mean the integral over all space.
For two probability distributions µ1 and µ2 with densities f1, f2 with respect

to the measure ν = µ1 + µ2 we use the notation |µ1 − µ2| for the measure

|µ1 − µ2| {A} =
∫
A

|f1 − f2| dν.

For a collection C of functions, which is defined on a set X, we set

κC(µ1, µ2) = sup
ϕ∈C

∫
ϕd(µ1 − µ2),

where we assume that ϕ ∈ L1(d|µ1 − µ2|) for all ϕ ∈ C.

14.3 Entropy, Duality of Metric Entropy

In a Banach space (Y, ‖ · ‖) we denote by Vε(h) the ball of radius ε with center
in the point h. For a set D ⊂ X the covering number N = N(ε) = N (ε,D, ‖ · ‖)
is the minimum number N such that

D ⊂
N⋃

j=1

Vε(hj), where hj ∈ D, j = 1, . . . , N.

The value H(ε) = H (ε,D, ‖ · ‖) = log N (ε,D, ‖ · ‖) is called the entropy of D.
For β > 0 denote by r = r(β) the largest integer which is less than β and

α = α(β) = β − r(β). Thus

β = r + α, 0 < α ≤ 1.
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For any vector m = (m1, . . . ,md) of d integers denote |m| = m1 + · · · + md,
consider the differential operator

Dm =
∂|m|

∂m1 · · · ∂md
,

set G ⊂ Rd, and put

‖h‖(β) = max
|m|≤r

sup
x

Dm h(x) + max
|m|≤r

sup
x �=y

|Dm h(x)−Dm h(y)|
‖x− y‖α , (14.6)

where the supremum is taken over all x, y in the interior of G, x �= y. Let
Cβ

C = Cβ
C(G) be the set of all continuous functions h with ‖h‖(β) ≤ C.

Theorem 14.3.1 [Kolmogorov and Tihomirov (1959)] Let G be a bo-
unded, convex subset of Rd with nonempty interior. Then for a constant
K = K(G,β, d),

H
(
ε,Cβ

1 (G), ‖·‖∞
)
≤ K(G,β, d)

(
1
ε

) d
β

, (14.7)

For two convex bodies K and T in Rn, the covering number N(K,T ) is
defined as the minimal number of translates of T needed to cover K,

N(K,T ) = min{N : ∃x1, . . . , xN ∈ Rn, K ⊂
n⋃

j=1

{T + xj} . (14.8)

Denote by K0 the polar body of K,

K0 =

{
x : sup

y∈K
(x, y) ≤ 1

}
.

Here (x, y) is the scalar product in Rn. Let V be the unit ball in Rn.

Theorem 14.3.2 [Artstein et al. (2004)] There exist two universal con-
stants α and β such that for any n, ε > 0, and any centrosymmetric convex
body K ∈ Rn one has

N
(
V,

ε

α
K0
)1/β

≤ N (K, εV ) ≤ N
(
V, αεK0

)β
. (14.9)

Let us consider the case as in X = [0, 1] × [0, 1], x = (x1, x2), y = (y1, y2),
ρ(x, y) = |x1 − y1| ∨ |x1 − y1|,

C = {ϕ : ‖ϕ‖Lip ≤ 1}.
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Let P be a set of probability distributions P on X with densities f = θ(P )
with respect to a σ-finite measure µ. We set

F = {f : f = θ(P ) for some P ∈ P} ,

F∗ = {g : g = f1 − f2 for some f1, f2 ∈ F} .

We suppose that F ∈ L2(dµ) and denote by K the smallest convex centrosym-
metric body, which contains F. Introduce the following semi-norm, generated
by K

‖ϕ‖P = sup
h∈K

∫
ϕhdµ. (14.10)

Let Vr(h) be the ball in the space L2(dµ) of radius r > 0 and with center
in a point h. We would compare the entropy H(ε,C, ‖ · ‖P) and the entropy
H(ε,P, ‖ · ‖L2(dµ)). From the Artstein et al. theorem we obtain

Proposition 14.3.1 Suppose that C ⊂ Vr(h); then there exist two universal
constants c > 0 and C > 0 such that for any n, ε > 0

H (crε,C, ‖ · ‖P) ≤ CH
(
ε,F, ‖ · ‖L2(dµ)

)
. (14.11)

14.4 Expectation of κC(P, Pn)

For a centrosymmetric set C and two probability measures P and Q we use the
notation

κC(P,Q) = sup
ϕ∈C

∫
ϕd(P −Q).

Here we assume that ϕ ∈ L1(d|P −Q|).
Furthermore, for a set A we denote by |A| the cardinality of A. We set

EP ψ =
∫

ψ(x)P (dx).

Let X1, . . . ,Xn be i.i.d. elements with values in X and common distribution
P ∈ P, and Pn be the empirical distribution:

Pn {A} =
1
n

n∑
j=1

IA(Xj).

Suppose that there exists a semi-metric d such that for all ϕ ∈ C,

|ϕ(x)− ϕ(y)| ≤ d(x, y), (14.12)
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and for all P ∈ P, ∫∫
d(x, y)2 P (dx)P (dy) ≤ L(P,C). (14.13)

We use the following well-known lemma [see Massart (2000)].

Lemma 14.4.1 Let A be some finite subset of Rn of cardinality N , and
ε1, . . . , εn be independent Rademacher variables such that P {ε1 = 1} =
P {ε1 = −1} = 1/2, a = (a1, . . . , an) ∈ Rn,

R = sup
a∈A

‖a‖ =

√√√√sup
a∈A

n∑
j=1

a2
j .

Then

E sup
a∈A

n∑
j=1

ajεj ≤ R
√

2 ln N. (14.14)

Proposition 14.4.1 Suppose |C|= N ; then under conditions (14.12) and
(14.13),

EP κC(P,Pn) ≤
√

L(P,C)

√
2 ln N

n
. (14.15)

Proof.

First step: Symmetrization.

Let X•
1 , . . . ,X•

n be an independent copy of X1, . . . ,Xn. It is well known [see
Devroye and Lugosi (2001)] that

EP κC(P,Pn) = EP sup
ϕ∈C

1
n

n∑
j=1

(ϕ(Xj)−EP ϕ(Xj))

≤ EP sup
ϕ∈C

1
n

n∑
j=1

(
ϕ(Xj)− ϕ(X•

j )
)
. (14.16)

Second step: Rademacher variables.

Now we take n i.i.d. Rademacher variables ε1, . . . , εn independent of
X1, . . . ,Xn, X•

1 , . . . ,X•
n such that P {ε1 = 1} = P {ε1 = −1} = 1/2. It is clear

that

EP sup
ϕ∈C

1
n

n∑
j=1

(
ϕ(Xj)− ϕ(X•

j )
)

= EP sup
ϕ∈C

1
n

n∑
j=1

εj

(
ϕ(Xj)− ϕ(X•

j )
)
.

(14.17)
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Third step: We use Lemma 14.4.1.

We set

aj = aj(ϕ) =
1
n

(
ϕ(Xj)− ϕ(X•

j )
)
, A = {aϕ = (a1(ϕ), . . . , an(ϕ)), ϕ ∈ C} .

Under conditions (14.12) and (14.13) we obtain

EP R ≤
√

EP R2 ≤
√

1
n
EP d2(X1,X•

1 ) ≤
√

L(P,C)
n

. (14.18)

Thus, (14.15) follows from Lemma 14.4.1.

14.5 Minimum Distance Estimator

Let Z = (X,Y ), Z1 = (X1, Y1), . . . , Zn = (Xn, Yn), . . . be a sequence of in-
dependent, identically distributed random vectors with common distribution
PZ ∈ PZ and density fZ ∈ FZ . We assume that functions fZ ∈ FZ may be
represented in the form

f(x, y) = q
(
FX(x), F Y (y)

)
fX(x)fY (y). (14.19)

Here FX , F Y are the distribution functions, and fX(x)fY (y) are density func-
tions of random variables X,Y . So q(x, y) is the density function of the rescaled
random vector

U = (X∗, Y ∗) =
(
FX (X) , F Y (Y )

)
.

We denoted by Q the distribution of U . It is clear that Q = ϑ(PZ) for appro-
priately chosen function ϑ. In the following we use the notation

PU = {Q : Q = ϑ(PZ) for some PZ ∈ PZ},

FU =
{

q : q =
dQ

du
for some Q ∈ PU

}
,

where du is the Lebesgue measure on [0, 1] × [0, 1]. We construct an estimator
q̂n of q ∈ FU on observations Z1 = (X1, Y1), . . . , Zn = (Xn, Yn). We use the
notation Q̂n for the probability measure with density q̂n.

Recall the notation Q̃n for the observable empirical measure

Q̃n {A} =
1
n

n∑
j=1

IA

(
Un,j

)
,
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and Qn for the nonobservable empirical measure

Qn {A} =
1
n

n∑
j=1

IA(Uj).

Here
Uj =

(
FX (Xj) , F Y (Yj)

)
, Un,j =

(
FX

n (Xj) , F Y
n (Yj)

)
.

Let q̂n ∈ FU be the minimum distance estimator of q,

κC(Q̂n, Q̃n) ≤ κC(Q, Q̃n), Q ∈ FU .

Here for a centrosymmetric set C of functions ϕ, which is defined on [0, 1]×[0, 1],

κC(P,Q) = sup
ϕ∈C

∫
ϕdu.

Then from the triangle inequality for Q ∈ PU ,

κC(Q, Q̂n) ≤ κC(Q, Q̃n) + κC(Q̂n, Q̃n) ≤ 2κC(Q, Q̃n)

≤ 2κC(Q,Qn) + 2κC(Q̃n, Qn). (14.20)

So, in order to control the deviation of the estimated measure Q̂n from the
unknown true distribution Q we need to control the distribution of κC(Q,Qn)
and κC(Q̃n, Qn).

Lemma 14.5.1 Suppose that C ⊂ C-Lip. Then

P
{

κC(Q̃n, Qn) > t
}
≤ 4e−

2nt2

C2 . (14.21)

Proof. By definitions of Q̃n and Qn

κC(Q̃n, Qn) = sup
ϕ∈C

1
n

n∑
j=1

(
ϕ
(
FX

n (Xj), F Y
n (Yj)

)
− ϕ
(
FX(Xj), F Y (Yj)

))
.

(14.22)
Because ϕ ∈ C-Lip, then

|ϕ(x1, x2)− ϕ(y1, y2)| ≤ C {|x1 − y1| ∨ |x2 − y2|}.

Therefore,

κC(Q̃n, Qn) ≤ C

{
sup

x
|FX

n (x)− FX(x)|
}
∨
{

sup
y
|F Y

n (y)− F Y (y)|
}

. (14.23)
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So, we conclude

P
{

κC(Q̃n, Qn) ≥ t
}

≤ P

{
sup

x
|FX

n (x)− FX(x)| > t/C

}
+ P

{
sup

y
|F Y

n (y)− F Y (y)| > t/C

}
. (14.24)

Finally, from the Dvoretzky–Kiefer–Wolfowitz inequality [see Massart (1990)]

P

{
sup

x
|Fn(x)− F (x)| ≥ t

}
≤ 2e−2nt2

we obtain the statement of Lemma 14.5.1.

14.6 Empirical Process, Concentration Inequality

Let U1, . . . , Un be i.i.d. random elements with values in X = [0, 1] × [0, 1], with
common distribution Q ∈ PU and density q ∈ FU . For appropriately chosen
centrosymmetric set C consider the empirical process ξn(ϕ), ϕ ∈ C,

ξn(ϕ) =
1
n

n∑
j=1

(
ϕ(Uj)−

∫
ϕdQ

)
. (14.25)

We use the following result.

Lemma 14.6.1 [Massart (2003)] Let Ωn =
∏n

j=1 Ωj, where, for all j,
(Ωj , dj) is a metric space with diameter cj . Let P be some product measure
and ψ be some 1-Lip function:Ωn → R1,

|ψ(x) − ψ(y)| ≤
n∑

j=1

dj(xj , yj).

Then, for any x > 0

P {ψ −EP ψ > x} ≤ exp

{
− 2x2∑n

j=1 c2
j

}
. (14.26)

Proposition 14.6.1 Suppose that C ⊂ C-Lip. Then

P

{
sup
ϕ∈C

ξ(ϕ) −E sup
ϕ∈C

ξ(ϕ) > x

}
≤ e−2nx2/C2

. (14.27)
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Proof. For u = (u1, . . . , un) ∈ Xn we denote

ψ(u) =
1
C

sup
ϕ∈C

n∑
j=1

(
ϕ(uj)−

∫
ϕdQ

)
.

We suppose that C ⊂ C-Lip:

|ϕ(x1, x2)− ϕ(y1, y2)| ≤ C|x1 − y1| ∨ |x2 − y2|.

So, if uj = (xj
1, x

j
2), v

j = (yj
1, y

j
2), then

dj(uj , vj) = d(uj , vj) = |x1 − y1| ∨ |x2 − y2|,

and

ψ(u) =
1
C

sup
ϕ∈C

⎧⎨⎩
n∑

j=1

(
ϕ(vj)−

∫
ϕdQ

)
+

n∑
j=1

(ϕ(uj)− ϕ(vj))

⎫⎬⎭
≤ ψ(v) +

n∑
j=1

d(uj , vj).

From Lemma 14.6.1 we obtain

P {ψ −EP ψ > x} ≤ exp
{
−2x2

n

}
. (14.28)

From (14.28) we obtain (14.27).

14.7 The Main Result

Let Z = (X,Y ), Z1 = (X1, Y1), . . . , Zn = (Xn, Yn), . . . be a sequence of in-
dependent, identically distributed random vectors with common distribution
PZ ∈ PZ and density fZ ∈ FZ . We assume that the functions fZ ∈ FZ may be
represented in the form

f(x, y) = q
(
FX(x), F Y (y)

)
fX(x)fY (y). (14.29)

Here FX , F Y are the distribution functions, and fX(x)fY (y) are density func-
tions of random variables X,Y . So q(x, y) is the density function of the rescaled
random vector

U = (X∗, Y ∗) =
(
FX (X) , F Y (Y )

)
.



Estimation of Rescaled Distribution 197

We suppose that q ∈ FU . Denote by ϑ(q) the probability distribution on
X = [0, 1] × [0, 1] with density q and set

Q = {Q : Q = ϑ(q) for some q ∈ FU} .

We have to estimate q from observations Z1, . . . , Zn. We denote by q̂n the
minimum distance estimator,

κC(Q̃n, ϑ(q̂n)) ≤ κC(Q̃n, Q) for all Q ∈ Q. (14.30)

Here κC(P,Q) is defined by

κC(P,Q) = sup
ϕ∈C

∫
ϕd(P −Q),

Q̃n is the observable empirical measure,

Q̃n {A} =
1
n

n∑
j=1

IA

(
Un,j

)
, Un,j =

(
FX

n (Xj), F Y
n (Yj)

)
.

It is necessary to notice that these estimators are a version of the well-known
skeleton estimates of Yatracos (1985). Let C = CN ⊂ 1-Lip be a centrosymmet-
ric collection of functions ϕ of cardinality N . Suppose that C is optimal ε-net
in 1-Lip. That is,

N = N(ε, 1-Lip, L2), (14.31)

and

1-Lip ⊂
N⋃

j=1

Vε(ϕj), (14.32)

where
C = {ϕ1, . . . , ϕN} , Vε(ϕ) = {g : ‖ϕ− g‖P} .

Clearly, for any ϕ ∈ C there exists an element ϕ∗ ∈ CN such that
‖ϕ− ϕ∗‖P ≤ ε. Therefore, for any P,Q ∈ P,

κC(P,Q) ≤ ε + κCN
(P,Q). (14.33)

Suppose that there exist a function G on X = [0, 1] × [01] and a density q∗,
β > 1 such that ∫

G2 dx1dx2 < ∞, (14.34)

for any q ∈ Fu

q = Gg + q∗, where g ∈ C
β
L. (14.35)

Theorem 14.7.1 Suppose that the parametric set FU satisfies the conditions
(14.34) and (14.35). Then

EQ‖q̂ − q‖2 ≤ L(FU )n
− β

2β+2 .
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Nested Plans for Sequential Change Point

Detection—The Parametric Case

Paul Feigin,1 Gregory Gurevich,2 and Yan Lumelskii1

1Technion–Israel Institute of Technology, Haifa, Israel
2Shamoon College of Engineering, Beer Sheva, Israel

Abstract: We consider the problem of sequential quality control and propose
nested plans for the early detection, with low false alarm rate, of a change
in a stochastic system. The nested plan includes two phases: a variable plan
and an attributes plan. For the proposed specific nested plan we present exact
(nonasymptotic) expressions for the mean and for the standard deviation of the
run length, both for the in-control (time to false alarm) and out-of-control (time
to change detection) cases. We assume that the initial and the final distributions
come from an exponential family of distributions and show the existence of
optimal nested plans in the one-parameter case and for the multivariate normal
case.

Keywords and Phrases: Nested plan, change detection, exponential family
of distributions, multivariate normal distribution, average run length, optimal
nested plan

15.1 Introduction and Notation

There are extensive references in the statistics and engineering literature on the
subject of early detection, with low false alarm rate, of parameter changes in
stochastic systems on the basis of sequential observations from the system. Such
problems are very important in the context of quality assurance [see Gordon
and Pollak (1994), Lai (1995), and Zacks (1991)]. In this chapter we consider
nested plans for the early detection of a parameter change within the context of
an exponential family. We continue research which began in articles by Feigin
et al. (2005), Lumelskii and Feigin (2005), and Lumelskii et al. (2006).

Often instead of individual observations X1,X2, . . . one has a sequence of
samples, each of n observations. We assume that the process under investigation

199
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yields independent samples, each consisting of n independent observations
(X11, . . . ,X1n), (X21, . . . X2n), . . . . Initially these observations follow a distri-
bution F (x | θ1). At m, an unknown point in time, something happens to
the process, causing the distribution of the sample’s observations to change to
F (x | θ2); F (x | θ1) �= F (x | θ2). In this chapter we assume that the distribution
F (x | θ) is of exponential family form.

A common performance measure for an inspection scheme (or stopping rule)
is the average run length (ARL). Let T be the time when the scheme signals
that the process is out of control (i.e., that the distribution of the observations
has changed). The in-control or false alarm ARL is defined to be EF (x|θ1)T
where we define EF (x|θh)T ≡ E(T | θh) to be the expectation of the stopping
time T under the assumption that the observations come from the distribution
F (x | θh).

Clearly, one wants E(T | θ1) to be large and the out-of-control ARL E(T | θ2)
to be small. There are known optimal CUSUM and Shiryaev–Roberts control
charts which rapidly detect a change in distribution among all procedures with
a bounded in-control ARL. However, the practical design of such charts is not
simple because there are no simple explicit expressions for the in-control and
out-of-control ARLs [E(T | θh) for h = 1, 2, respectively]. As a result, these
schemes are geared toward detecting small changes, whereas for large changes
Shewhart control charts are typically preferred.

15.2 Definitions and Characteristics of Nested Plans

We propose nested plans, denoted
∏

nes(Π
G1 |ΠG2), for the quick detection of a

change in the distribution of observations. A nested plan consists of two steps,
ΠG1 and ΠG2, where ΠG1 is a variables plan and ΠG2 is an attributes plan [see
Feigin et al. (2005)].

We consider the first step of the nested plan with parameters n and C
(n is the sample size; C is a real constant). Using sequential observations
(X11, . . . ,X1n), (X21, . . . ,X2n), . . . with distribution F (x | θh), the first step
of the nested plan is defined by

Yi(θ1, θ2) = ln
n∏

j=1

f(Xij | θ2)
f(Xij | θ1)

, i = 1, 2, . . . (15.1)

and

Zi =
{

1, if Yi(θ1, θ2) > C,
0, if Yi(θ1, θ2) ≤ C.

(15.2)
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Defining

Ph ≡ P (Zi = 0 | θh) ≡ P (Yi(θ1, θ2) ≤ C | θh), Qh = P (Zi = 1 | θh),
(15.3)

we have a binary sequence of observations Z1, Z2, . . . with probability of zero
equal to Ph.

The second step is an attributes plan ΠG2 , which is based on Zi = 0 or
Zi = 1, i = 1, 2, . . . . We consider the plan Π2(d; 2) for which the stopping
rule is defined as T = min{n : Zn−d+1 + · · · + Zn = 2}; that is, the first time
that 2 ones appear among the last d observations. For nested sampling plans
it is possible to evaluate exact expressions for the ARLs. We demonstrate such
calculations for the multinormal case, and show that for this example the speed
of detection of a change is close to that of the CUSUM procedure.

The following results were obtained by Hald (1981, p. 291) and Lumelskii
and Chichagov (1983) for a different problem.

Theorem 15.2.1 For Π2(d; 2) the expectation E(T | Π2(d; 2); θh) ≡ Eh(T )
and standard deviation σ(T | Π2(d; 2); θh) ≡ σh(T ) of the stopping time T are
given by

Eh(T ) =
n
(
2− Ph

d−1
)

Qh

(
1− Ph

d−1
) , (15.4)

σh(T ) =
n
[
2Ph + Ph

2d−1 + Ph
d−1((2d + 1)Qh − 2)

]0.5

Qh

(
1− Ph

d−1
) . (15.5)

From Theorem 15.2.1 we immediately obtain that if Ph → 0 then

Eh(T ) → 2n , σh(T ) → 0 for all d ≥ 2.

15.3 Multivariate Normal Distributions

and Optimal Nested Plans

We consider a situation where the observations (Xi1, . . . Xin), i = 1, 2, . . . have
a k-variate normal distribution with means µ1 and µ2 and covariance matrices
Σ1 and Σ2. If Σ1 = Σ2 ≡ Σ then the logarithm of the likelihood ratio [from
(15.1)] is given by

Yi(µ1, µ2,Σ) = n(µ2 − µ1)
′
Σ−1X̄i − 0.5n(µ2 + µ1)

′
Σ−1(µ2 − µ1), (15.6)

where X̄i = 1
n

∑n
j=1 Xij .
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Theorem 15.3.1 Let µ1, µ2, and Σ be known. Then for any µh the probability
(15.3) is given by the following formula.

Ph = P (Zi = 0 | µh) = Φ

(
C + 0.5n(µ2 − µ1)

′
Σ−1(µ2 + µ1 − 2µh)√
nR2

)
. (15.7)

Here R2 = (µ2 − µ1)
′
Σ−1(µ2 − µ1) and Φ(x) is the cumulative distribution

function of the standard normal distribution.

Proof. By using (15.1) and (15.6) we obtain

Ph = P (n(µ2 − µ1)
′
Σ−1X̄i ≤ C + 0.5n(µ2 + µ1)

′
Σ−1(µ2 − µ1) | µh). (15.8)

If the Xij have mean vector µh then the random variable

ξhi ≡ n(µ2 − µ1)
′
Σ−1X̄i

has a normal distribution with the following expectation and variance [see An-
derson (1958)],

E(ξhi) = n(µ2 − µ1)
′
Σ−1µh ; σ2(ξhi) = n(µ2 − µ1)

′
Σ−1(µ2 − µ1) ≡ nR2.

That is,
ξhi − E(ξhi)

σ(ξhi)

has a standard normal distribution and the result follows.

Corollary 15.3.1

P1 = Φ
(

C√
nR2

+ 0.5
√

nR2

)
, P2 = Φ

(
C√
nR2

− 0.5
√

nR2

)
. (15.9)

Note that the probabilities P1 and P2 only depend on the parameters
(µ1, µ2,Σ) through R2. If µh �= µ1 and µh �= µ2 then according to (15.7) Ph

depends on all the parameters µh, µ1, µ2, and Σ.
Obviously, for each given n (individual sample size) and for known param-

eters µ1, µ2, µh, Σ, the probability Ph is specified by the value of the threshold
C. Therefore, the choice of the threshold C for the first step of the nested plan
determines the in-control and out-of-control means (E(T | µh)), and standard
deviations (σ(T | µh)) of the run length (when h = 1, 2, respectively). Moreover
the exact expressions (15.4) allow the a priori determination of any desirable in-
control or out-of-control ARL, by choosing the appropriate threshold value C at
the first step of the nested plan. More precisely, in order to attain a given value
of the in-control ARL for given parameters (n and d) of the nested plan and for
a given value of R, we solve the equation (15.4) to find the appropriate value of
the probability P1. Then, using (15.9) we may obtain the appropriate value of
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the threshold C. Finally, from (15.9) we evaluate P2 and by (15.4) the value
of the out-of-control ARL E(T | µ2).

The following theorem guarantees the possibility of an optimal choice of the
parameters n and d for a nested plan with any given in-control ARL (W ) and
value of R, in order to minimize the out-of-control ARL.

Theorem 15.3.2 Consider the multivariate normal case with fixed R2 and in-
control ARL W = E(T | µ1) > 2. Then there exists an optimal nested plan with
parameters n and d, which minimizes the out-of-control ARL E(T | µ2). The
parameters n and d are bounded:

1 ≤ n ≤ W/2, (15.10)

and there exists δ > 0 depending on W (see the proof) such that

2 ≤ d(n) <
log
[

δW−2n
δW−n

]
log(1− δ)

+ 1. (15.11)

Proof. Because n and d are natural numbers, for the proof of existence of the
optimal nested plan it is enough to prove that they are bounded.

From (15.4) we rewrite

E(T |P, s)
n

= f(P, s) =
1

1− P

(
1 +

1
1− P s

)
,

where s ≡ d − 1 ≥ 1. Let wn = W/n for any 1 ≤ n. Note that f(P, s) is
increasing in P and decreasing in s. In order to meet the in-control requirement
f(P1, s) = wn, P1 must satisfy lims→∞ f(P1, s) = 2/(1 − P1) ≤ wn, which in
turn implies that wn > 2 for all n. Therefore we have 1 ≤ n < W/2 and
because n is integral and W finite n ≤ n0 < W/2 and there exists ε > 0 such
that 2 + ε < wn < W .

Now fix n in the permitted (finite) range 1 ≤ n ≤ n0 < W/2. Writing
w = wn, denote the solution of

f(P, s) = w (15.12)

for given s by P (s,w) and note that P (s,w) is increasing in s ≥ 1. It can be
shown that

0 < 1− 1 +
√

1 + 4w
2w

= P (1, w) ≤ P (s,w) < P (∞, w) = 1− 2/w. (15.13)

Having established bounds for P (s,w) and for w, we can conclude that there
exists δ > 0 such that δ < P (s,w) < 1 − δ for all (s,w = wn); 1 ≤ n ≤ n0:
namely, choose

0 < δ < min

(
1− 1 +

√
1 + 4(2 + ε)

2(2 + ε)
,

2
W

)
. (15.14)



204 P. Feigin, G. Gurevich, and Y. Lumelskii

Returning to Equation (15.12), now consider the solution s(P,w) for s for
given P . This function is increasing in P for fixed n (implying fixed w = wn).
[The latter follows from the monotonicity properties of f(P, s).] In fact, one can
write:

s(P,w) =
log
[

(1−P )w−1
(1−P )w−2

]
log(1/P )

≤
log
[

δw−2
δw−1

]
log(1− δ)

. (15.15)

Thus we have shown that 1 ≤ n ≤ n0 and for each n, taking w = W/n, d = s+1
is bounded between 2 and[

log
(

δw − 2
δw − 1

)
/log(1− δ)

]
+ 1.

15.4 Nested Plans for One-Parameter Exponential

Distributions

We consider also the one-parameter exponential families of distributions with
density function

f(x | θ) = u(x) exp{a(θ)s(x) + b(θ)}. (15.16)

Here a(θ) and b(θ) are continuous functions of the parameter θ, θ ∈ Θ ⊂ R1,
x ∈ A ⊂ R1. Normal, Rayleigh, Pareto, Weibull, and other one-parameter
families of distributions have density functions of the form given in (15.16).

According to Equation (15.1) in this case

Yi(θ1, θ2) = ln
n∏

j=1

f(Xij | θ2)
f(Xij | θ1)

= Si(n)[a(θ2)− a(θ1)] + n[b(θ2)− b(θ1)], (15.17)

where Si(n) =
∑n

j=1 s(Xij) is the sufficient statistic for the family of distribu-
tions (15.17).

Using the distribution function (GSi(z) = P (Si(n) < z | θh)) or the density
function (g(z | θh)) of the sufficient statistic Si(n), the probability (15.3) has
the form

Ph = P (Si(n)[a(θ2)− a(θ1)] + n[b(θ2)− b(θ1)] ≤ C | θh) . (15.18)

We now present an extension of Theorem 15.3.2 to the one-parameter ex-
ponential case.

Theorem 15.4.1 Consider the one-parameter exponential family case with
fixed θ1 and θ2 and desired in-control ARL W = E(T | θ1) > 2. Then there
exists an optimal nested plan with parameters n and d, which minimizes the
out-of-control ARL E(T | θ2). The parameters n and d are bounded:

1 ≤ n ≤ W/2, (15.19)
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and there exists δ > 0 depending on W such that

2 ≤ d(n) <
log
[

δW−2n
δW−n

]
log(1− δ)

+ 1. (15.20)

Proof. The first part of the proof follows exactly that of Theorem 15.3.2.
Assume that a(θ2) > a(θ1); this can always be achieved by defining Si(n) ap-
propriately. As long as the support of Si(n) does not depend on θ—a property
of the exponential family of (15.16)—then we can still define the required δ as
in (15.14) and there will exist C such that

B(n) =
C − n[b(θ2)− b(θ1)]

a(θ2)− a(θ1)
(15.21)

will satisfy δ < P1 = Pr(Si(n) < B(n)|θ1) < 1− δ. The remainder of the proof
follows as before.

Example 15.4.1 Let the random variable Xij have the gamma distribution
[gamma(α, θ), α known] with the density function

f(x|θ) =
xα−1

Γ(α)θα
exp{−x

θ
}; x ≥ 0, θ > 0, α > 0, (15.22)

where Γ(a) =
∫∞
o ta−1e−tdt is the gamma function. Here a(θ) = −1/θ is in-

creasing in θ. In this case the sufficient statistic Si(n) =
∑n

j=1 Xij has the
gamma(nα,θ) distribution. If θ1 < θ2 then the probability (15.18) has the form

Ph = P (Si(n) < B(n) | θh) ; B(n) =
C − nα ln(θ1θ2

−1)
θ1

−1 − θ2
−1 .

We obtain finally:

Ph = G

(
B(n)
θh

)
. (15.23)

Here G(z) is the cumulative distribution function of the gamma(nα, 1) distri-
bution.

Example 15.4.2 Let the random variable Xij have the one-parameter Pareto
distribution (λ is known) with density function

f(x|θ) =
θ λθ

xθ+1
=

1
x

exp{−θ ln x + ln(θλθ)}; x ≥ λ > 0; θ > 0. (15.24)

In this case the sufficient statistic Si(n) =
∑n

j=1 ln(Xij) has the density function

g(z | θh) =
θh

n

Γ(n)
(z − n ln λ)n−1 exp{−θh(z − n ln λ)} ; z > n ln λ.
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If θ1 > θ2 then the probability (15.18) can be written in the form

Ph = G
(
θh

(
[C + n ln(θ1θ2

−1λθ1−θ2)](θ1 − θ2)−1 − n ln λ
))

. (15.25)

Here G(z) is the cumulative distribution function of the gamma(n, 1) distribu-
tion.

15.5 Numerical Examples and Comparisons

Example 15.5.1 Consider the nested plan with n = 4, d = 3, and the Xij

having a trivariate normal distribution with in-control and out-of-control means
µ1, µ2, respectively, and covariance matrix Σ given by:

µ1 = (0, 0.5, 0.7)′ ; µ2 = (0.8, 1.7, 1.5)′ ; Σ = diag(2, 4, 2).

We thus obtain

R2 = (µ2 − µ1)
′
Σ−1(µ2 − µ1) =

0.82

2
+

1.22

4
+

0.82

2
= 1.

For example, for setting the ARL at E1(T ) ≡ EF (x|µ1, Σ)(T ) = 1000, we use
(15.4) and n = 4, d = 3 to obtain

4
(
2− P1

2
)

Q1P1

(
1− P1

2
) = 1000,

and hence P1 = 0.95270. By (15.8) we get C = 1.343152 and P2 = 0.37130.
According to the formulas (15.4) and (15.5) E2(T ) = 13.74, σ1(T ) = 992.52,
and σ2(T ) = 7.67. If µ3 = (1.4 2.6 2.1)

′
then from (15.7) the probability P3 is

P3 = Φ

(
1.343152 + 2(0.8 1.2 0.8)

′
Σ−1(−2 − 3 − 2)

2

)
 Φ(−1.83) = 0.034.

In Table 15.1 we provide the results of computing, using (15.4), (15.5), and
(15.8), some values for the out-of-control mean and the standard deviation of
the run length for different (given) values of in-control ARL and for various
values of d, n, and R. From Table 15.1 we conclude that for a given value of
in-control ARL the influence of d on the out-of-control ARL is smaller than the
influence of n. Obviously, increasing R yields a decrease in the out-of-control
ARL. In addition, it is possible to see that, for small values of R, large values
of n are required in order to decrease the out-of-control ARL. We conclude also
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Table 15.1. Out-of-control mean and standard deviation of the run length of
nested plans when the initial and the final distributions are multivariate normal
with known different means and the same covariance matrix

E1(T) d R n E2(T) P1 C P2 σ1(T) σ2(T)
1000 3 0.5 8 40.58 0.9315 1.1032 0.5291 985.42 28.53
1000 3 0.5 12 40.17 0.9146 0.8723 0.3585 978.53 21.92
1000 3 0.5 16 43.12 0.8999 0.5618 0.2360 971.79 18.01
1000 4 0.5 6 43.56 0.9511 1.2773 0.6666 986.56 33.22
1000 4 0.5 8 40.83 0.9427 1.2313 0.5650 982.35 27.42
1000 4 0.5 12 40.86 0.9281 1.0324 0.3936 974.17 21.07
1000 3 1.0 2 16.66 0.9671 1.6018 0.6648 996.19 13.58
1000 3 1.0 4 13.74 0.9527 1.3432 0.3713 992.52 7.67
1000 3 1.0 6 15.06 0.9413 0.8359 0.1885 988.94 5.46
1000 4 1.0 2 16.41 0.9728 1.7206 0.6948 995.32 12.93
1000 4 1.0 4 13.92 0.9607 1.5178 0.4047 990.87 7.32
1000 4 1.0 6 15.33 0.9511 1.0545 0.2135 986.56 5.32
1000 3 2.0 1 4.64 0.9770 1.9909 0.4982 998.07 3.14
1000 3 2.0 2 4.83 0.9671 1.2036 0.1614 996.19 1.59
1000 3 2.0 4 8.08 0.9527 −1.3137 0.0099 992.52 0.58
1000 4 2.0 1 4.63 0.9811 2.1524 0.5304 997.61 2.97
1000 4 2.0 2 4.91 0.9728 1.4411 0.1828 995.32 1.55
1000 4 2.0 4 8.10 0.9607 −0.9644 0.0125 990.87 0.64
2000 3 0.5 8 51.54 0.9527 1.3640 0.6016 1985.05 39.39
2000 3 0.5 12 47.33 0.9413 1.2124 0.4341 1977.88 29.25
2000 3 0.5 16 48.32 0.9315 0.9744 0.3040 1970.84 23.71
2000 4 0.5 6 57.72 0.9663 1.4901 0.7272 1986.15 47.09
2000 4 0.5 8 51.35 0.9607 1.4874 0.6348 1981.74 37.71
2000 4 0.5 12 47.84 0.9511 1.3670 0.4694 1973.11 27.98
2000 3 1.0 2 21.91 0.9770 1.8220 0.7195 1996.14 18.77
2000 3 1.0 4 15.86 0.9671 1.6795 0.4363 1992.38 9.84
2000 3 1.0 6 16.27 0.9593 1.2697 0.2400 1988.69 6.87
2000 4 1.0 2 21.34 0.9811 1.9362 0.7460 1995.23 17.76
2000 4 1.0 4 15.95 0.9728 1.8475 0.4696 1990.63 9.34
2000 4 1.0 6 16.54 0.9663 1.4802 0.2675 1986.15 6.59
2000 3 2.0 1 5.52 0.9839 2.2825 0.5562 1998.05 4.01
2000 3 2.0 2 5.12 0.9770 1.6440 0.2024 1996.14 1.94
2000 3 2.0 4 8.13 0.9671 −0.6410 0.0154 1992.38 0.73
2000 4 2.0 1 5.45 0.9868 2.4377 0.5866 1997.58 3.77
2000 4 2.0 2 5.20 0.9811 1.8723 0.2260 1995.23 1.87
2000 4 2.0 4 8.15 0.9728 −0.3051 0.0189 1990.63 0.79
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that the standard deviation of the in-control run length is a little smaller than
the corresponding mean run length but, roughly, the values are quite similar.

The change point problem for multivariate normal observations was also
considered by Crosier (1988) in the context of the CUSUM procedure. We
compare in Table 15.2 the nested plan and the multivariate CUSUM proce-
dure [see Crosier (1988)] for detecting a change in the mean of the bivariate
normal distribution, assuming all parameters (µ1, µ2, and Σ) are known. From
Table 15.2 it turns out that for the considered situation the speed of detection
of a change for the proposed nested plan is approximately the same as for the
multivariate CUSUM chart. For the situation where the dimension of the ob-
servations is greater than two (k > 2), the nested plan may be preferable to
the multivariate CUSUM procedure presented in Crosier (1988) [see Lumelskii
et al. (2006)].

Table 15.2. Out-of-control ARL of the multivariate CUSUM parametric pro-
cedures (by simulation) and those of the proposed nested plan for detecting a
change in the mean of the bivariate normal distribution

R E1(T) Rule E2(T)
1 200 CUSUM 9.35
1 200

∏
nes(n = 2; d = 3) 9.43

2 200 CUSUM 3.48
2 200

∏
nes(n = 1; d = 3) 3.29

3 200 CUSUM 1.69
3 200

∏
nes(n = 1; d = 3) 2.19

Example 15.5.2 Consider the choice of the optimal nested plan for the mul-
tivariate normal distributions when E(T | µ1) = 1000, R = 1. In Table 15.3 we
present values of the out-of-control ARL of the proposed nested plan for this
example for different values of the parameters n and d. Note that the minimum
value of the out-of control ARL is E(T | µ2) = 2n. Therefore one can infer from
Table 15.3 that it is sufficient to consider only n < 7 because for n ≥ 7 we get
an out-of-control ARL E(T | µ2) ≥ 14 which exceeds 13.74. By examination
of all possibilities we find that optimal nested plan is attained for n = 4 and
d = 3.

Example 15.5.3 Consider the nested plan where the observations Xij are uni-
variate normal and parameters are given by: µ1 = 0, µ2 = 1 and σ2 = 1. For
this situation it is known that the CUSUM procedure provides a minimal out-
of-control ARL among all procedures with the same prescribed in-control ARL.
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Table 15.3. Comparison of out-of-control ARLs for nested plans for multivariate
normal distribution for different values of parameters n and d: in-control ARL =
1000, R = 1

d
n 2 3 4 5 6
1 30.69 27.55 26.48 26.05 25.90
2 18.10 16.66 16.41 16.49 16.69
3 15.02 14.17 14.21 14.45 14.75
4 14.29 13.74 13.92 14.23 14.55
5 14.53 14.17 14.41 14.74 15.05
6 15.29 15.06 15.33 15.64 15.91

It is interesting to compare the proposed nested plan with an optimal CUSUM
chart. In Table 15.4 we provide the results of such a comparison for which the
CUSUM procedure is tuned to the normal shift case of detecting a change from
µ1 = 0 to µ2 = 1. The table presents values for the out-of control ARL for vari-
ous true drifts R. For the normal parametric CUSUM procedure the tabulated
values were obtained by simulation using 10,000 replicated samples. The values
for the nested plan are exact. All procedures have critical values selected so
as to yield a nominal in-control ARL equal to 1000. The critical values of the
CUSUM procedure are evaluated by simulations. For the nested plan all values
are obtained by our explicit results for the in-control and out-of-control ARL.
From Table 15.4 it turns out that for this univariate normal example the speed
of detection of a change for the proposed nested plan is about 20–25 percent
worse than that of the optimal CUSUM procedure.

Example 15.5.4 Consider the nested plan with n = 9, d = 4, and univariate
observations Xij having a Pareto(θ, λ) distribution, where θ1 = 3, θ2 = 2, λ = 1.
For this case we compare the out-of control ARL of the CUSUM parametric
procedure with those of the proposed nested plan. In Table 15.5 we provide the
results of such a comparison for which the CUSUM procedure is tuned to the
case of detecting a change from Pareto(3, 1) to Pareto(2, 1). Table 15.5 provides
values for the out-of control ARL for various values of θ. For the parametric
CUSUM procedure the tabulated values were obtained by simulation using
10,000 replicated samples of T . The values for the nested plan are exact. All
procedures have critical values selected so as to yield a nominal in-control ARL
equal to 1000. The critical values of the CUSUM procedure are evaluated by
simulation. For the nested plan all values are obtained by our explicit results
for the in-control and out-of-control ARL.
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Table 15.4. Out-of-control expectation and standard deviation of the run length
of the CUSUM parametric procedures (by simulation) and those of the proposed
nested plan (exact) for detecting univariate normal shifts

µh Rule Eµh
(T) σµh

(T)
0.00 CUSUM 1005.08 995.19
0.00

∏
nes(n = 4; d = 3) 1000.00 992.52

0.25 CUSUM 146.59 138.93
0.25

∏
nes(n = 4; d = 3) 179.28 172.36

0.50 CUSUM 38.24 30.78
0.50

∏
nes(n = 4; d = 3) 52.26 45.91

0.75 CUSUM 17.31 11.30
0.75

∏
nes(n = 4; d = 3) 22.94 16.89

1.00 CUSUM 10.60 5.50
1.00

∏
nes(n = 4; d = 3) 13.74 7.67

1.25 CUSUM 7.50 3.28
1.25

∏
nes(n = 4; d = 3) 10.26 3.91

Table 15.5. Out-of-control expectation and standard deviation of the run length
of the CUSUM parametric procedures (by simulation) and those of the proposed
nested plan (exact) for detecting a change in the parameter of the Pareto (θ, λ)
distribution

θh Rule Eθh(T) σθh(T)
3.0 CUSUM 1018.24 998.11
3.0

∏
nes(n = 9; d = 4) 1000.00 980.28

2.5 CUSUM 130.32 115.13
2.5

∏
nes(n = 9; d = 4) 166.73 149.67

2.0 CUSUM 36.78 24.49
2.0

∏
nes(n = 9; d = 4) 49.55 34.39

1.5 CUSUM 16.16 9.29
1.5

∏
nes(n = 9; d = 4) 25.01 10.09

From Table 15.5 it turns out that these comparisons are rather similar to
the same comparisons of the previous example for the univariate normal obser-
vations. That is, the speed of detection of a change for the proposed nested plan
is about 20–25 percent worse than those of the optimal CUSUM procedure.
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Sampling in Survival Analysis and Estimation

with Unknown Selection Bias and Censoring

Agathe Guilloux

LSTA, Université Pierre et Marie Curie, Paris, France

Abstract: In a population of individuals, where the random variable (r.v.) σ
denotes the birth time and X the lifetime, we consider that an individual can
be observed only if its life-line L(σ,X) = {(σ + y, y), 0 ≤ y ≤ X} intersects a
general Borel set S in R×R+. Denoting by σS and XS the birth time and lifetime
for the observed individuals, we point out that the distribution function (d.f.)
FS of the r.v. XS suffers from a selection bias in the sense that FS =

∫
wdF/µS ,

where w and µS depend only on the distribution of σ and F is the d.f. of X.
Considering in addition that the r.v. XS is randomly right-censored, as soon
as the individual is selected, we construct a product-limit estimator F̂S for the
d.f. FS and a nonparametric estimator ŵ for the weighting function w. We
investigate the behavior of these estimators through a simulation study.

Keywords and Phrases: Lexis diagram, nonparametric inference, right-
censored data, selection-bias, weighting or biasing function

16.1 Introduction

Consider a population of individuals i ∈ I. Let the random variable (r.v.) σi

be the birth date of individual i and the nonnegative r.v. Xi its lifetime. As
described by Keiding (1990) and Lund (2000), such a population can be rep-
resented in the following way. Consider a coordinate system with the calendar
time as abscissa and the age as ordinate, which is referred to as the Lexis
diagram [Lexis (1875)]. In this diagram, a life-line L(σ,X) is defined by:

L(σ,X) = {(σ + y, y), 0 ≤ y ≤ X}.

213
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Hence the life-line L(σ,X) is a segment with slope 1 joining the point (σ, 0) of
birth and the point (σ + X,X) of death. The population I is then represented
in the Lexis diagram as the set of all life-lines L(σi,Xi) for i ∈ I; see Figure
16.1.

In classical survival analysis, one would consider that an i.i.d. sample (pos-
sibly censored) could be drawn from population I and then would estimate the
distribution of X on the basis of this i.i.d. sample. In practice, however, it may
happen that the way individuals are chosen for the study prevents observation
of an i.i.d. sample directly from population I.

As carefully described by Lund (2000), most of the sampling patterns in
survival analysis can be described as follows. Let S be a deterministic Borel set
in the Lexis diagram. Consider now that only the individuals whose life-lines
intersect the Borel set S can be included in the study, that is, the individuals
with a pair (σ,X) such that L(σ,X)∩S �= ∅. In Figure 16.1 only the individual
with bold life-lines is included in the study.

Let σS denote the birth time and XS the lifetime for the included indi-
viduals. From now on, the pair (σS ,XS) is referred to as the observable r.v.
as opposed to the unobservable pair (σ,X). Straightforwardly, we have for all
s ∈ R and t ≥ 0:

P(σS ≤ s,XS ≤ t) = P (σ ≤ s,X ≤ t|L(σ,X) ∩ S �= ∅) �= P(σ ≤ s,X ≤ t).

More precisely, we show in Section 16.2 that, under some condition on the
collection (σi)i∈I , we have, for all t ≥ 0:

FS(t) = P (XS ≤ t) =

∫
[0,t] w(v)dF (v)

µS
, (16.1)

where F is the distribution function (d.f.) of the r.v. X and w is a nonnegative
weight function, which depends only on the distribution of the r.v. σ and µS =∫∞
0 w(v)dF (v).

The r.v. XS with d.f. FS given in Equation (16.1) is usually said to suffer
from a selection bias. In the case where the weight function w is known, the
problem of estimating the cumulative distribution function (d.f.) F of X given
an i.i.d. biased sample XS,1, . . . ,XS,n has received a lot of attention. We refer to
Gill et al. (1988), Efromovich (2004), and de Uña-Àlvarez (2004a) for theoretical
results in the general case. The special case where w(x) = x for all x > 0, called
“length-biased sampling,” has received particular attention, see Vardi (1982), de
Uña-Àlvarez (2002), Asgharian et al. (2002), and de Uña-Àlvarez and Saavedra
(2004). Unfortunately these results cannot be applied here as w is not assumed
to be known.

On the other hand, Winter and Földes (1988) have constructed and studied
a product-limit type estimator of the d.f. F on the basis of a censored biased
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sample of (σS ,XS), without assuming that w is known. They still considered
the particular case where S = {(t0, y), y ≥ 0} and the censoring times are
deterministic.

Selection-biased data can also be considered as a special form of truncated
data, as (σ,X) is observed conditionally on L(σ,X)∩S �= ∅. There is an exten-
sive literature on nonparametric estimation for the cumulative distribution func-
tion under left truncation. We refer to Woodroofe (1985), Wang et al. (1986),
and Chen et al. (1995) among others.

The problem addressed here is to estimate the d.f. F of the r.v. X as well as
the weight function w on the basis of an i.i.d. censored (in a way defined later)
sample of (σS ,XS). The outline of this chapter is as follows. In Section 16.2, the
relations between the distributions of (σ,X) and (σS ,XS) for a general set S
are derived and the form of the censoring is introduced. An uniformly consistent
product-limit estimator for the d.f. F of the r.v. X is developed in Section 16.3
on the basis of a selection-biased sample and under censoring. Section 16.4 is
dedicated to the estimation of the weight function w and a consistency result
is stated. A simulation study is conducted in Section 16.5.

16.2 Sampling in the Lexis Diagram

16.2.1 Modeling the Lexis diagram

Consider the Lexis diagram for a population of individuals i ∈ I as described
in Section 16.1 and a Borel set S in BR×R+ (the Borel σ-algebra on R × R+)
describing the sampling pattern (see Figure 16.1). As mentioned earlier, an
individual i in the population, with birth date σi and lifetime Xi, is included
in the sample if its life-line L(σi,Xi) intersects the Borel set S.

Let the age aS(s) at inclusion for the birth time s in R be defined as{
aS(s) = inf{y ≥ 0, (s + y, y) ∈ S}
aS(s) = ∞ if the infinimum does not exist.

The individual i with birth date σi and lifetime Xi is then included in the
sample if:

L(σi,Xi) ∩ S �= ∅ ⇔ aS(σi) < ∞ and Xi ≥ aS(σi). (16.2)

See indeed in Figure 16.1 that individual 1 is included in the sample; individual
2 could have been included but he died before its inclusion x2 < aS(s2), whereas
individual 3 is not included because aS(s3) = ∞.

We assume that the point process η =
∑

i∈I εσi , with the collection of birth
times as occurrence times, is a nonhomogeneous Poisson process on R with
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Time

Age
S

s1

aS(s1)

xS,1

s2

x2

aS(s2)

s3

Figure 16.1. Age at inclusion.

intensity ϕ (where εa is the Dirac measure at point a), and that the lifetimes
Xi, for i ∈ I, are i.i.d. with common probability density function (p.d.f.) f .

As a consequence and from Equation (16.2), we have, for all s ∈ R and
t ∈ R+:

P (σS ≤ s,XS ≤ t) =

∫ ∫
]−∞,s]×[0,t] I ((u, v) ∈ S)ϕ(u)f(v)dudv∫ ∫

R×R+
I ((u, v) ∈ S)ϕ(u)f(v)dudv

=

∫ ∫
]−∞,s]×[0,t] I ({aS(u) < ∞}) I ({aS(u) ≤ v}) ϕ(u)f(v)dudv

µS
,

where

µS =
∫ ∫

R×R+

I ({aS(u) < ∞}) I ({aS(u) ≤ v}) ϕ(u)f(v)dudv.

Hence the marginal distribution of the r.v. XS is given, for all t ∈ R+, by:

FS(t) = P (XS ≤ t) =
1
µS

∫ t

0
w(s)f(s)ds

=
1

µS

∫
R

I ({aS(u) ≤ t}) ϕ(u){1 − F (aS(u))}du − 1
µS

w(t)(1 − F (t)),

with

w(t) =
∫ ∞

−∞
I ({aS(u) < ∞}) I ({aS(u) ≤ t})ϕ(u)du (16.3)

=
∫ ∞

−∞
I ({aS(u) ≤ t}) ϕ(u)du.
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On the other hand, the marginal distribution of the r.v. σS is given, for all
s ∈ R, by:

ΦS(s) = P(σS ≤ s) =
1

µS

∫ s

−∞
ϕ(u)F̄ (aS(u))du, (16.4)

where F̄ = 1 − F . Our aim is then to estimate the functions F and w on the
basis of a biased (censored) sample from (σS ,XS).

16.2.2 Censored observations

Now only the individuals whose life-lines intersect the Borel set S are included
in the study. For included individual i, with birth date σS,i and lifetime XS,i,
we assume that its age at inclusion aS(σS,i) is observable. The lifetime XS,i can
straightforwardly be written as follows.

XS,i = aS(σS,i)︸ ︷︷ ︸ + (XS,i − aS(σS,i))︸ ︷︷ ︸ .
age at inclusion time spent in the study

As the time spent in the study is given by XS,i− aS(σS,i), we assume that this
time can be censored. It would indeed be the case, for example, if individual i
leaves the study before its death. We follow here Asgharian (2003) and Winter
and Földes (1988).

For that matter, we introduce a nonnegative r.v. C with d.f. H and in-
dependent of XS and aS(σS), such that the observable time for individual i
is

Zi = aS(σS,i) + (XS,i − aS(σS,i)) ∧Ci.

As usual, we assume furthermore that the r.v. I ({XS,i − aS(σS,i) ≤ C}) [where
I(.) is the indicator function] is observable. As a consequence, the available data
are i.i.d. replications of:⎧⎨⎩

σS,i

Zi = aS(σS,i) + (XS,i − aS(σS,i)) ∧ Ci

δi = I ({XS,i − aS(σS,i) ≤ Ci})

for i = 1, . . . , n.
We seek to estimate the d.f. F of the unbiased r.v. X as well as the weight

function w defined in Equation (16.3) with the data described above. Remark
that the data described above are close to the left-truncated and right-censored
data or interval-censored data, however, with some modifications. First of all,
individuals with aS(σ) = ∞ are totally ineligible to enter the study irrespective
of the duration of their lifetimes. Moreover the particular form of censoring
considered here is strictly adapted to the selection mechanism.
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16.3 Inference for the Distribution of the r.v. X

Considering the situation of interest described in Section 16.2, we now introduce
the counting process D defined, for all t ≥ 0, as follows.

D(t) =
n∑

i=1

I ({Zi ≤ t,XS,i − aS(σS,i) ≤ Ci}) . (16.5)

Notice that, for t ≥ 0, the r.v. D(t) is the “number of observed deaths before
age t” in the sample. Let, furthermore, the process O be defined, for all t ≥ 0,
by:

O(t) =
n∑

i=1

I ({aS(σS,i) ≤ t ≤ Zi})

=
n∑

i=1

I ({aS(σS,i) ≤ t ≤ XS,i, t ≤ aS(σS,i) + Ci}) . (16.6)

The r.v. O(t) represents the “number of individuals at risk at age t.” In the
sampling situation considered here, to be at risk at age t for an individual means
that it was included in the study at an age less than t and it did not experience
death nor censoring before age t.

We are now in a position to define the estimator F̂n for the d.f. F of the
r.v. X. Mimicking the construction of the Kaplan–Meier estimator in classical
survival analysis, we define, for all t ≥ 0:

F̂n(t) = 1−
∏

i:Z(i)≤t

(
1− I ({XS,i − aS(σS,i) ≤ Ci})

O(Z(i)) + nεn

)
, (16.7)

where Z(1), . . . , Z(n) are the ordered statistics of the sample Z1, . . . , Zn and
(εn)n≥1 is a sequence of positive numbers such that εn → 0 as n → ∞. Notice
indeed that the process O is not a monotone process and may be null for some
s less than the largest observed Z(n). However, we have O(Zi) ≥ 1 for all
i = 1, . . . , n by definition. Consequently, to avoid the problem of multiplying
by zero in the estimator [it would be the case when O(Zi) = 1], it is necessary
to introduce the sequence nεn in the denominator. Such a slight modification
will not affect the asymptotic properties of the estimator.

Even though the construction of F̂n presented above is closely related to
the one of the product-limit type estimator introduced by Winter and Földes
(1988), our estimator generalizes theirs in the following ways. We consider here
a general sampling set S, an nonhomogeneous Poisson process, and a nondeter-
ministic censoring r.v. C or, equivalently, a unknown weight function w and a
nondeterministic censoring r.v. C.
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The following theorem states the uniform consistency of F̂n; see Guilloux
(2006) for a proof.

Theorem 16.3.1 Let τ be defined as τ = sup{t > 0, (1−F (t))(1−H(t)) > 0}
and assume that, for all t ≥ 0, we have w1 ≤ w(t). The following convergence
holds, for all τ ′ < τ , as n goes to infinity:

sup
t≤τ ′

|F̂n(t)− F (t)| P→ 0.

Remark. If the interior of S ∩{(x, 0), x ∈ R} is nonempty, the bound w1 exists.
This is, in particular, the case for the time-window and cohort studies when
t1 �= t2. The condition w1 ≤ w(t) could be replaced by

∫∞
0 dF (w)/w(x) < ∞,

as in de Uña-Àlvarez (2004b), which is uncheckable in practice.

16.4 Inference for the Weight Function w

The weighting function w has been defined, for all t ≥ 0, by:

w(t) =
∫ ∞

−∞
I ({aS(u) ≤ t}) ϕ(u)du.

From Equation (16.4), we have, for all t ≥ 0:

w(t)
µS

=
∫ ∞

−∞

I ({aS(u) ≤ t})
(1 − F )(aS(u))

dΦS(u).

A natural estimator for the function w/µS based on the i.i.d. sample described
in Section 16.2.2 is then given by:

ŵ(t)
µS

=
1
n

n∑
i=1

I ({aS(σS,i) ≤ t})
1− F̂n(aS(σS,i))

, (16.8)

where F̂n has been defined in Equation (16.7) of Section 16.3. From the con-
struction of F̂n, it follows that, for all t ≥ 0, we have:

(1− Fn(t)) ≥
(

1− 1
1 + nεn

)n

=
1
κn

. (16.9)

Because P(aS(σS,i) < XS,i) = 1, the estimator ŵ/µS is bounded. Equation
(16.8) is straightforwardly equivalent to:

ŵ(t)
µS

=
∫

I {aS(s) ≤ t}
1− F̂n(aS(s))

d
(
Φ̂S,n(s)

)
for all t ≥ 0,
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where, for all s ≥ 0:

Φ̂S,n(s) =
1
n

n∑
i=1

I ({σS,i ≤ s})

is the empirical counterpart of P (σS ≤ s).
The following theorem is then a consequence of the Glivenko–Cantelli the-

orem and the consistency of Theorem 16.3.1.

Theorem 16.4.1 Let τ be defined as τ = sup{t > 0, (1−F (t))(1−H(t)) > 0}.
The following convergence holds, for all τ ′ ≤ τ , as n goes to infinity,

sup
t≤τ ′

|ŵ(t)
µS

− w(t)
µS

| P→ 0.

16.5 Simulation Study

We present here an example of a sampling pattern, which can be described
through a Borel set in BR×R+: the time-window study. The individuals alive at
time t1 as well as those born between t1 and t2 are included in the study, where
t1 and t2 are fixed in advance; see Figure 16.2. In this case, the Borel set to be
considered is:

Stw = {(s, y), s ≤ t2, s + y ≥ t1}.

t1 t2

Figure 16.2. Time-window study.
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The age aStw at inclusion is then given by:⎧⎨⎩
aStw(σ) = t1 − σ if −∞ < σ ≤ t1
aStw(σ) = 0 if t1 < σ ≤ t2
aStw(σ) = +∞ if σ > t2

and finally the weight function w is given, for t ≥ 0, by:

w(t) =
∫ t2

t1−t
ϕ(u)du.

In the particular case where t1 = t2 and ϕ is a constant, such a sample
is referred to as a “length-biased sample;” see Asgharian et al. (2002) and de
Uña-Àlvarez (2002). We refer to Lund (2000) for an extensive review of studies
described via the Lexis diagram.

We now have to build an n-sample of (σS , Z, δ) and for this purpose, the
steps are the following:

1. Given t1, t2 > 0 with t1 < t2, draw N birth-times (σi)i=1,...,N on R+ as
realizations of a Poisson process with given intensity ϕ(s) ∝ s−2/3 (inhomoge-
neous Poisson process) resulting in a power bias (denoted by PB) w(t) ∝ t1/3.
For the simulations of an inhomogeneous Poisson process, we refer to Devroye
(1986). Moreover, the intensity ϕ is “calibrated” in functions of the values t1
and t2 such that the generated birth-times satisfy both conditions: with prob-
ability near 1, at least n lifetimes Xis fall in the time-window [t1, t2] and the
largest simulated birth-time σN would exceed t2. Notice that N is much greater
than n.

2. For each birth-time σi, draw the associated lifetime Xi with given d.f F .
3. Inclusion in the study: the age at inclusion aS(σS,i) in the study is given

by aS(σS,i) = t1 − σi if σi ≤ t1 and aS(σS,i) = 0 if t1 ≤ σi ≤ t2. So, choose
the Xi = XS,i such that aS(σS,i) ≤ t1 and Xi ≥ aS(σS,i). This mechanism of
inclusion in the study involves a bias selection and we keep only selected couples
(aS(σS,i),XS,i).

4. Draw an n-sample (σS,1,XS,1), . . . , (σS,n,XS,n) by uniform random sam-
pling among all the individuals falling in the time-window and selected in Step 3.

5. Draw the censoring variables C1, . . . , Cn with exponential d.f. E(c) for
several values of c > 0 involving different censoring proportions.

6. Put Zi = (t1−σS,i)+(XS,i−(t1−σS,i))∧Ci if σS,i ≤ t1 and Zi = XS,i∧Ci

if t1 ≤ σS,i ≤ t2.

We consider two distributions for the initial lifetime X: the gamma distri-
butions with parameters, respectively, Γ(1, 0.5) and Γ(1, 1.5). We conduct the
study for three sample sizes n = 50, 100, 150 and three levels of censoring, ap-
proximatively 0%, 25%, and 50%. The values of sup[0,∞] |F̂n−F | are reported in
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Table 16.1. X ∼ Γ(1, 0.5)

n Generalized K&M Forward Usual
W&F Censoring Censoring
0.1400 0.1216 0 0

50 0.1366 0.1221 0.1968 0.2516
0.1669 0.1654 0.5044 0.4544
0.0961 0.0857 0 0

100 0.1083 0.0908 0.2069 0.2583
0.1143 0.1223 0.5035 0.4492
0.0786 0.0690 0 0

150 0.0835 0.1030 0.1958 0.2605
0.0992 0.0993 0.5035 0.4563

Table 16.2. X ∼ Γ(1, 1.5)

n Generalized K&M Forward Usual
W&F Censoring Censoring
0.1489 0.1212 0 0

50 0.1531 0.1340 0.1798 0.2250
0.1658 0.1736 0.5020 0.5014
0.1016 0.0829 0 0

100 0.1045 0.0874 0.1786 0.2317
0.1234 0.1369 0.4942 0.5128
0.0796 0.0686 0 0

150 0.0853 0.0685 0.1786 0.2291
0.0991 0.1136 0.5025 0.5107

Tables 16.1 and 16.2, as well as the level of censoring, for each sample size. We
compare the deviation sup[0,∞] |F̂n −F | with the one obtained for the Kaplan–
Meier estimator in a standard situation, that is, without selection bias. We
called our estimator “generalized W&F” and the censoring in this situation
“forward censoring,” referring to Winter and Földes (1988). The Kaplan–Meier
estimator is referred to as “K&M” and the censoring as “usual censoring.”

In this biased case with censoring, we get very conforming results to those
obtained in the usual case, that is, with independent censoring and the Kaplan–
Meier estimator. Indeed, in the gamma case studied therein, the two deviation
measures are of the same order in each case studied. Besides, the censoring
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effect degrades the deviation measures in both cases. This confirms the theo-
retical results stated above, in the sense that our estimator is accurate even in
the presence of selection bias.
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Testing the Acceleration Function in Lifetime

Models
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Abstract: The accelerated lifetime model is considered. First, test procedures
for testing the parameter of a parametric acceleration function are investigated;
this is done under the assumption of parametric and nonparametric baseline
distribution. Furthermore, based on nonparametric estimators for regression
functions, tests are proposed for checking whether a parametric acceleration
function is appropriate to model the influence of the covariates. Resampling
procedures are discussed for the realization of these methods. Simulations com-
plete the considerations.

Keywords and Phrases: Accelerated lifetime model, parametric regression,
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17.1 Introduction

Let T be a random lifetime that depends on some explanatory variable X;
examples for X are the dose of a drug, temperature, or stress. To describe
the influence of the covariate X on the lifetime there are several proposals. A
well-known model is the accelerated lifetime model (ALT), which is intensively
studied in Bagdonavičius and Nikulin (2001). In distinction from the models
studied by these authors we assume throughout the chapter that the covariate
does not depend on time. We suppose that the covariate X reduces a basic
lifetime, say T0, by a factor ψ(X) and write the lifetime T as

T =
T0

ψ(X)
.

The conditional survival function of T given X = x is defined by

S(t|x) = P(T > t|X = x) = S0(tψ(x)),

225
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where S0(·) = P(T0 > ·) is the survival function of the baseline lifetime T0.
The distribution function is denoted by F0. It is assumed that T is an absolute
continuous random variable.

In the present chapter we study the problem of testing the acceleration
function ψ. Different assumptions on the baseline distribution and the con-
sidered class of acceleration functions require different test methods. We study
these different constellations of the underlying model. Given independent copies
(Ti,Xi), i = 1, . . . , n of the pair (T,X) we propose test statistics and consider
their limit distributions under the hypotheses. Test procedures formulated on
the basis of these limit statements are only asymptotic α-tests. Thus it seems
to be useful to discuss some resampling methods for the realization of these
tests in practice. We complete these discussions by simulations. The program
files (written in the R-language) for these simulations can be found on our Web
site http://www.mathematik.hu-berlin.de/liero/.

17.2 The Parametric ALT Model

We start with the simplest model, namely the completely parametric model,
where it is assumed that both the survival function S0 and the acceleration
function ψ belong to a known parametric class of functions. That is, there exist
parameters ν ∈ Rk and β ∈ Rd such that

S0(t) = S0(t; ν) and ψ(x) = ψ(x;β),

where the functions S0(·; ν) and ψ(·;β) are known except the parameters ν and
β. A hypothesis about the function ψ is then a hypothesis about the parameter
β, and we consider the test problem

H : β = β0 against K : β �= β0

for some β0 ∈ Rd.
The classical way for the construction of a test procedure is to estimate β

by the maximum likelihood estimator (m.l.e.) and to use the likelihood ratio
statistic (or a modification such as the Rao score statistic or the Wald statistic)
for checking H. In Bagdonavičius and Nikulin (2001) this approach is carried
out for several distributions, for ψ(x;β) = exp(−xT β), and for censored data.

Another possibility is to take the logarithm of the lifetime Y = log T . Then
with

m(x;ϑ) = µ − log ψ(x;β) ϑ = (µ, β)

we obtain the parametric regression model

Yi = m(Xi;ϑ) + εi (17.1)
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with
µ = E log T0 = µ(ν) and Eεi = 0.

Assuming ψ(0;β) = 1 the parameter β can be estimated by the least squares
estimator (l.s.e.).

In the case that T0 is distributed according to the log normal distribution
the resulting regression model is the normal model. Then the maximum likeli-
hood estimator and the least squares estimator coincide. Furthermore, assuming
ψ(x;β) = exp(−xT β) we have the linear regression, and for testing H we apply
the F -test, which is exact in this case.

Now, suppose that log T is not normally distributed. Then it is well known
that under regularity conditions the m.l.e. for β is asymptotically normal, and
an asymptotic α- test is provided by critical values derived from the correspond-
ing limit distribution.

Let us propose another method, a resampling method, to determine critical
values. We restrict our considerations here to the maximum likelihood method;
the regression approach is discussed in detail in the following section. For sim-
plicity of presentation we consider the case d = 1.

1. On the basis of the (original) data (ti, xi), i = 1, . . . , n, compute the
maximum likelihood estimates for ν and β, say ν̂ and β̂.

2. For r = 1, . . . , R

(a) Generate

t∗i =
t∗0i

ψ(xi; β̂)
where t∗0i ∼ F0(·; ν̂)

(b) Compute the m.l.e. β̂∗(r) for each sample.

3. (a) Naive approach. Take the quantiles of the empirical distribution of
these β̂∗(r)s as critical values; that is, let β̂∗[1], β̂∗[2], . . . , β̂∗[R] be the
ordered estimates, then reject the hypothesis H if

β0 < β̂∗[Rα/2] or β0 > β̂∗[R(1−α/2)].

(The number R is chosen such that Rα/2 is an integer.)
(b) Corrected normal approach. Estimate the bias and the variance of

the estimator by

bR = β∗ − β̂, vR =
1

R− 1

R∑
r=1

(β̂∗(r) − β∗)2,

where β∗ = 1
R

∑R
r=1 β̂∗(r) and accept the hypothesis H if β0 belongs

to the interval

[β̂ − bR −
√

vR u1−α/2 , β̂ − bR +
√

vR u1−α/2].
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Here u1−α/2 is the 1−α/2-quantile of the standard normal distribu-
tion.

(c) Basic bootstrap. As estimator for the quantiles of the distribution
of β̂ − β take β̂∗[Rα/2] − β̂ and β̂∗[R(1−α/2)] − β̂, respectively. Thus,
accept H if β0 belongs to[

β̂ − (β̂∗[R(1−α/2)] − β̂) , β̂ − (β̂∗[Rα/2] − β̂)
]
.

To demonstrate this proposal we have carried out the following simula-
tions: As the baseline distribution we have chosen the exponential distribution,
the covariates are uniformly distributed, and for computational simplicity the
acceleration function has the form ψ(x;β) = exp(−xβ).

We generated n realizations (ti, xi) of random variables (Ti,Xi). The Xis
are uniformly distributed over [2, 4]; the Tis have the survival function

S(t|xi) = exp(−tψ(xi;β0)/ν) with ψ(x;β0) = exp(−xβ0)

for the parameters
n = 12, β0 = 2, ν = 2.

As values of the m.l.e. we obtained β̂ = 1.82 and ν̂ = 3.42. The asymptotic
confidence interval based on the asymptotic normality of the m.l.e. was:

[0.839 , 2.800].

With R = 1000 resamples constructed by the methods given above we obtained
as confidence intervals (α = 0.05) for β:

Method Lower Bound Upper Bound
Naive approach 0.550 2.973
Corrected normal 0.681 2.979
Basic bootstrap 0.666 3.089

Figure 17.1 shows a histogram of the β̂∗(r)s. In this case the true parameter
β0 = 2 is covered by all intervals, also by that based on the limit distribution.
Moreover, this interval is shorter. We repeated this approach M = 1000 times.
The number of cases, where the true parameter was not covered, say w, was
counted. Here are the results.

Method w

Asymptotic distribution 87
Naive approach 48
Corrected normal 50
Basic bootstrap 49
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Figure 17.1. Histogram of the resampled betas.

Thus, the price for the shortness of the interval based on the normal ap-
proximation is that the coverage probability is not preserved. Furthermore, the
results show no difference between the proposed resampling methods.

17.3 The ALT Model with Nonparametric Baseline
Distribution

Consider the situation that the acceleration function ψ still has a known para-
metric form ψ(·;β), β ∈ Rd but the underlying distribution of the baseline
lifetime is completely unknown. Thus we have an infinite-dimensional nuisance
parameter and the application of the maximum likelihood method is not pos-
sible. We use the regression approach to estimate and to test the parameter β.
Using the asymptotic normality of the l.s.e. in the regression model, often con-
fidence intervals or tests for β are based on the quantiles of the normal (d = 1)
or χ2-distribution (d > 1). For large n the results will turn out satisfactorily.
But for small n this asymptotic approach is not justified. Here one can use
resampling procedures for regression; see, for example, Davison and Hinkley
(1997) or Efron and Tibshirani (1993).

For simplicity we consider the problem of testing a single component βj . In
our simulation study we compared the following methods.
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1. On the basis of the regression model (17.1) with the original data compute
the l.s.e. µ̂ and β̂ for µ and β, respectively. Derive the residuals ei and let

ri =
ei√

(1− hi)
=

yi − ŷi√
(1− hi)

be the modified residuals. Here the ŷis are the fitted values m(xi; µ̂, β̂),
and the his are the leverages.

Let V be a variance estimator for the Varβ̂.

2. For r = 1, . . . , R,

1. (a) Model-based resampling
For i = 1, . . . , n
i. Set x∗

i = xi.
ii. Randomly sample ε∗i from the centered modified residuals

r1 − r, . . . , rn − r.
iii. Set y∗i = m(x∗

i ; µ̂, β̂) + ε∗i .
(b) Resampling cases

i. Sample l∗1, . . . , l∗n randomly with replacement from the index
set {1, . . . , n}.

ii. For i = 1, . . . , n set x∗
i = xl∗i and y∗i = yl∗i .

2. Derive the l.s.e. β̂∗(r) and the variance estimator V
∗(r) based on the

observations (y∗i , x
∗
i ).

3. Compute the standardized

z
∗(r)
j =

β̂
∗(r)
j − β̂j√

V
∗(r)
jj

.

3. A confidence interval for the component βj is given by[
β̂j −

√
Vjj z

∗[R(1−α/2)]
j , β̂j −

√
Vjj z

∗[Rα/2]
j

]
.

For our simulation study we took the same parameter constellation as before.
As estimator for the variance we used

V =
∑

e2
i

n
∑

(xi − x)2
.
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Again this approach was repeated M times. In the following table confidence
intervals constructed by the methods above (R = 1000, M = 1) are given; in
the last column are the number of cases out of M = 1000, where the true
parameter is not covered.

Method Lower Bound Upper Bound w
Asymptotic normality 0.641 3.536 106
Model-based resampling 0.389 3.808 50
Resampling cases 0.752 4.00 58

We see that the resampling methods lead to much better results than the
approach based on the limiting distribution.

17.4 The ALT Model with Parametric Baseline
Distribution and Nonparametric Acceleration

Function

Now, consider an ALT model where it is not assumed that the acceleration
function has a parametric form, but we wish to check whether a prespecified
parametric function ψ(·;β) fits the influence of the covariates. In this section
we assume that the baseline distribution is known, except a finite-dimensional
parameter ν. The test problem can be formulated in the following way:

H : S ∈ Apar against K : S ∈ A, (17.2)

with
Apar = {S |S(t|x) = S0(tψ(x;β); ν) β ∈ Rd, ν ∈ Rk}

and
A = {S |S(t|x) = S0(tψ(x); ν) ψ ∈ Ψ, ν ∈ Rk},

where Ψ is a nonparametric class of acceleration functions.
A possible solution for this test problem is to apply a goodness-of-fit test

similar to the classical Kolmogorov test or the Cramér–von Mises test. The
conditional survival function S can be estimated by a conditional empirical
survival function Ŝ, which is a special case of the so-called U -statistics con-
sidered by Stute (1991) and Liero (1999). Such a test would compare Ŝ with
S0(·ψ(·; β̂); ν̂). But this approach seems to be inadequate. Namely the alter-
native does not consist of “all conditional survival functions,” but of functions
defined by A, and Ŝ is an estimator, which is “good for all conditional survival
functions.”
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So we follow the regression approach. Instead of (17.2) we consider model
(17.1) and the test problem

H : m ∈M against K : m /∈M,

where

M = {m |m(x) = m(x;ϑ) = µ − log ψ(x;β), β ∈ Rd, µ ∈ R}.

Again, for simplicity we consider d = 1, and as test statistic we propose an
L2-type distance between a good estimator for all possible regression functions
m, that is, a nonparametric estimator, and a good approximation for the hypo-
thetical m ∈M. The general form of a nonparametric estimator is the weighted
average of the response variables

m̂n(x) =
n∑

i=1

Wbni(x,X1, . . . ,Xn)Yi,

where Wbni are weights depending on a smoothing parameter bn. The hypo-
thetical regression function can be estimated by m(·; β̂, µ̂), where β̂ and µ̂ are
estimators under the hypothesis. It is well known that nonparametric estima-
tors are biased; they are a result of smoothing. So it seems to be appropriate to
compare m̂n not with m(·; β̂, µ̂), but with the smoothed parametric estimator

m̃n(x) =
n∑

i=1

Wbni(x,X1, . . . ,Xn)m(Xi; β̂, µ̂).

A suitable quantity to measure the distance between the functions m̂n and
m̃n is the L2-distance

Qn =
∫ (

m̂n(x) − m̃n(x)
)2

a(x) dx

=
∫ ( n∑

i=1

Wbni(x,X1, . . . ,Xn)(Yi −m(Xi; β̂, µ̂))
)2

a(x) dx.

Here a is a known weight function, which is introduced to control the re-
gion of integration. The limit distribution of (properly standardized) integrated
squared distances is considered by several authors; we mention Collomb (1976),
Liero (1992), and Härdle and Mammen (1993). Under appropriate conditions
asymptotic normality can be proved.

For the presentation here let us consider kernel weights; that is, m is esti-
mated nonparametrically by

m̂n(x) =
∑n

i=1 Kbn(x−Xi)Yi∑n
i=1 Kbn(x−Xi)

,
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where K : R → R is the kernel function, Kb(x) = K(x/b)/b, and bn is a sequence
of smoothing parameters. To formulate the limit statement for Qn let us briefly
summarize the assumptions.1

1. Regularity conditions on kernel K and conditions on the limiting behavior
of bn

2. Smoothness of the regression function m and the marginal density g of
the Xis

3. Conditions ensuring the
√

n-consistency of the parameter estimators β̂
and µ̂

If these assumptions are satisfied we have under H,

nb1/2
n (Qn − en) D→ N(0, τ2)

with

en = (nbn)−1σ2 κ1

∫
g−1(x) a(x) dx τ2 = 2σ4 κ2

∫
g−2(x)a2(x) dx,

where
κ1 =

∫
K2(x) dx and κ2 =

∫
(K ∗K)2(x) dx

and
σ2 = σ2(ν) = Var(log T0).

On the basis of this limit theorem we can derive an asymptotic α-test: Reject
the hypothesis H if

Qn ≥ (nb1/2
n )−1 τ̂n zα + ên,

where ên and τ̂n are appropriate estimators of the unknown constants en and
τ2, and zα is the (1 − α)-quantile of the standard normal distribution. Note
that the unknown variance σ2 depends only on the parameter ν of the under-
lying baseline distribution. A simple estimator is σ̂2 = σ2(ν̂). The density g is
assumed to be known or can be estimated by the kernel method.

To demonstrate this approach we have carried out the following simula-
tions. First we simulated the behavior under H. We generated M = 1000
samples (ti, xi), i = 1, . . . , n, with ti = t0i exp(xiβ), where the t0is are values
of exponentially distributed random variables with expectation ν (β and ν as
before). The sample size was n = 100, because the application of nonparametric
curve estimation always requires a large sample size. In each sample the m.l.e.s
β̂ and ν̂ and the nonparametric kernel estimate were determined. To evaluate

1The detailed conditions can be found in Liero (1999).
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the nonparametric estimates we used the normal kernel and an adaptive proce-
dure for choosing bn. Based on these estimators Qn was computed. As weight
function a we took the indicator of the interval [2.25, 3.75]; so problems with
the estimation at boundaries were avoided. Note that in this case the variance
σ2 is known. It is σ2 = π2/6, independent of ν. Thus, in our simple simulation
example it is not necessary to estimate en and τ . The result of the simulations
was that H was rejected only once.

The error that occurs by approximating the distribution of the test statistic
by the standard normal distribution depends not only on the sample size n
but also on the smoothing parameter. Thus it can happen that this approxima-
tion is not good enough, even when n is large. So we considered the following
resampling procedures.

Carry out Steps 1 and 2(a) described in Section 17.2. Continue with:

3. Based on the resampled (y∗i , xi), y∗i = log(t∗i ) compute for r = 1, . . . , R
the nonparametric estimates m̂

∗(r)
n and the smoothed estimated hypo-

thetical regression m̃
∗(r)
n .

(a) Resampling Qn

Evaluate the distances Q
∗(1)
n , Q

∗(2)
n , . . . , Q

∗(R)
n .

(b) Resampling Tn

Compute

T ∗(r)
n = nb(r)

n

1/2
(
Q∗(r)

n − ê∗(r)n

)
/τ̂∗(r)

n .

4. From the ordered distances a critical value is given by Q
∗[(1−α)R]
n , and the

hypothesis H is rejected if

Qn > Q∗[(1−α)R]
n .

Or, based on the T
∗(r)
n s we obtain: the hypothesis H is rejected if

nb1/2
n (Qn − ên) /τ̂n = Tn > T ∗[(1−α)R]

n .

Histograms of resampled Q
∗(r)
n s and T

∗(r)
n s for our chosen simulation pa-

rameters and R = 1000 are shown in Figure 17.2. We repeated this resampling
procedure also M times. The numbers of rejections are given in the second
column of the following table.

Method Hypothesis True Hypothesis Wrong
Normal distribution 39 349
Resampling Qn 64 488
Resampling Tn 64 488
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Figure 17.2. Resampling under H, R = 1000.

Furthermore, we repeated the whole approach to demonstrate the behavior
under an alternative. That means, our original data (ti, xi) satisfy the model

ti = t0i exp(xiβ + sin(π ∗ xi/2)),

where the baseline times t0i are as above. The numbers of rejections in this sim-
ulation are also given in the table above. It turns out that the test based on the
asymptotic distribution already leads to satisfactory results. The significance
level α = 0.05 is not preserved by the tests based on resampling; the power of
the resampling procedures under the considered alternative is higher.

Furthermore, Figure 17.3 shows the simulation results for one resampling
procedure (M = 1). In the left figure you see the R resampled nonparamet-
ric curve estimates (thin lines) and the m̂n based on the original data (bold
line). The right figure shows the same, but here the nonparametric estimates
are resampled under the (wrong) hypothetical model, and the bold line is
the nonparametric estimate based on the original data from the alternative
model.

Note that our simulations under the alternative are only for illustration. A
further investigation of the power of these test procedures under alternatives is
necessary.
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Figure 17.3. Resampled nonparametric regression estimates under the hypoth-
esis and an alternative.

17.5 The Nonparametric ALT Model

Let us consider the same test problem as in the previous section, but with the
difference that we do not suppose the baseline distribution is parametric. Thus,
the underlying model is a completely nonparametric one. The test problem has
the form

H : S ∈ Cpar against K : S ∈ C,

with
Cpar = {S | S(t|x) = S0(tψ(x;β)) β ∈ Rd, S0 ∈ S}

and
C = {S |S(t|x) = S0(tψ(x)) ψ ∈ Ψ, S0 ∈ S},

where S is a nonparametric class of survival functions.
We apply the same idea of testing. The only difference is that the variance

σ2 in the standardizing terms en and τ2 has to be estimated nonparametrically.
The limit theorem gives the distribution under the hypothesis, thus σ2 can be
estimated by the usual variance estimator in the parametric regression model.

Furthermore, resampling methods for the determination of the empirical
critical values must take into account the lack of knowledge of the underlying
distribution in the hypothetical model. Thus we combine the methods described
in Section 17.3 with those from the previous section.

1. The parameter ϑ = (µ, β) is estimated by the least squares method.

2. (a) Based on the modified residuals ri, construct R samples of pairs
(y∗i , x

∗
i ), i = 1, . . . , n, by model-based resampling.
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(b) Generate R samples of pairs (y∗i , x
∗
i ) by the method “resampling

cases.”

3. Use these data to construct the nonparametric estimates m̂
∗(r)
n and the

smoothed estimated regression m̃
∗(r)
n .

4. Evaluate the distances Q
∗(r)
n and T

∗(r)
n . Reject the hypothesis as described

before on the basis of the ordered Q
∗[r]
n and T

∗[r]
n .

Using these procedures we obtained the following numbers of rejections.

Method Hypothesis True Hypothesis Wrong
Normal distribution 23 155
model-based resampling Qn 55 438
Resampling cases Qn 0 0
Model-based resampling Tn 66 458
Resampling cases Tn 0 0

The results concerning the “resampling cases” can be explained as follows:
If H is true Qn is small; the same holds for the resampled Q

∗(r)
n s. And under the

alternative Qn is large, and again, the same holds for the Q
∗(r)
n s. That is, with

this resampling method we do not mimic the behavior under the hypothesis.
Thus, this resampling method is not appropriate.

Moreover, we compare these results with those obtained in the previous
section. It turns out that the test in the completely nonparametric model dis-
tinguishes worse between hypothesis and alternative than in the model with
parametric baseline distribution.

A histogram for a simulation under the alternative is given in Figure 17.4.
Here we see that the values of the Q

∗(r)
n s are much larger for “resampling cases.”

Final remark. The resampling methods presented here are only first intuitive
ideas. The proposed methods were demonstrated by very simple examples; this
was done to avoid computational difficulties. But, nevertheless, the results show
that resampling can be a useful tool for testing the acceleration function. Of
course it is necessary to find a deeper theoretic insight into the methods. In
that sense our results are a starting point for further investigations.
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Figure 17.4. Histogram for simulations under the alternative. The histograms
in the bottom show the results for “resampling cases.”
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18.1 Introduction

The famous chi-squared goodness-of-fit test was discovered by Karl Pearson in
1900 [Pearson (1900)]. Today we know that his fantastically remarkable result
is true only for a simple null hypothesis when the hypothetical distribution
(a form of the distribution and parameters) is defined uniquely. The limit dis-
tribution of Pearson’s sum would not be chi-squared if the parameters were
unknown and were estimated by a sample [Fisher (1924)]. Moreover, this limit
distribution essentially depends on the method of estimation of the parameters.
In particular, if parameters are estimated by minimizing a chi-squared sum
for grouped data (MCSE) or by some other asymptotically equivalent method,
then the limit distribution will again be chi-squared but the number of de-
grees of freedom should be reduced by the number of estimated parameters.
Chernoff and Lehmann (1954) showed that replacing unknown parameters by,
say, their maximum likelihood estimates (MLEs) obtained by ungrouped data
would dramatically change the limit distribution of Pearson’s sum. In this case
it will follow a distribution which depends on unknown parameters and strictly
speaking may not be used for testing. Chernoff and Lehmann derived their result
considering grouping cells to be fixed. Roy (1956) and Watson (1959) extended

241
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this result to the case of random grouping cells. A problem of obtaining a
test statistic, the limit distribution of which would not depend on parameters,
arose. Dahiya and Gurland (1972) showed that for location and scale families
with properly chosen random cells the limit distribution of Pearson’s sum may
not depend on unknown parameter but instead depend on the null hypothesis.

Another possible way is to modify Pearson’s sum to make the modifica-
tion chi-squared distributed independent from the parameters in the limit. The
first officially unpublished evidence of solving this problem for a family of ex-
ponential distributions appeared in 1971 in a doctoral thesis [Rao (1971); see
citations in Moore and Spruill (1975) and Moore (1977)]). A published ver-
sion of the result appeared in Rao and Robson (1974). In the above-mentioned
unpublished doctoral thesis of Rao the author proposed a modification for Pear-
son’s sum, which for the exponential family of distributions follows in the limit
the chi-squared probability distribution and does not depend on unknown pa-
rameters. A first officially published result valid for any continuous probability
distribution (under some regularity conditions) was obtained by Nikulin (1973).
Nikulin’s result is formally the same as in Rao (1971) but it was obtained in
a much more general and universal way. Now this test is known as the Rao–
Robson–Nikulin (RRN) statistic [Drost (1988) and Van Der Vaart (1998)].

Nikulin (1973) thought that his general result would be true if an unknown
parameter were replaced by any consistent estimate obtained by ungrouped data
(e.g., by MLE), but in 1976 Hsuan and Robson (1976) showed that the resulting
modified statistic would be quite different in the case of moment-type estimates
(MME). Hsuan and Robson succeeded in deriving the limit covariance matrix of
generalized frequencies and proving the theorem that a corresponding quadratic
form will follow in the limit the chi-squared distribution, but were unable to
derive an explicit form of the modified test. Mirvaliev succeeded in deriving the
explicit form in 2001 [Mirvaliev (2001)]. In 1974 Dzhaparidze and Nikulin (1974)
proposed a modified chi-squared test, which possesses the limiting chi-squared
probability distribution for any square root of n consistent estimates of unknown
parameters based on ungrouped data. Later McCulloch (1985) for the MLE
case and Mirvaliev (2001) for the general case showed that the Dzhaparidze–
Nikulin (DN) statistic is an important independent part of any modified chi-
squared test. Later we show see that the power of the DN test would essentially
depend on the manner of constructing grouping intervals. Roy (1956), Moore
(1971), and Chibisov (1971) obtained a very important result, which shows that
the limit distribution of a vector of generalized grouped frequencies with any√

n-consistent estimator instead of unknown parameter, would be multivariate
normal and not depend on the fact that boundaries of grouping intervals are
fixed or random based on any consistent estimator of unknown parameter. It is
this result which was used by Nikulin (1973) to construct a modified test.

Moore and Spruill (1975) and Moore (1977) systemized all results concern-
ing construction of modified tests known by that date. In particular he showed
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that all modified chi-squared tests can be derived using a modification of Wald’s
(1943) approach [see, e.g., Greenwood and Nikulin (1996)]. Actually this ap-
proach was first used by Nikulin (1973). Moore (1977) also emphasized that an
explicit form of a modified Wald’s quadratic form (not only its limit probabil-
ity distribution) will not depend on the manner of obtaining a generalized, not
necessarily unique, matrix inverse [Moore (1977, p. 132)].

The next very important input to the theory of modified chi-squared
goodness-of-fit tests was done by Mirvaliev. He [Mirvaliev (2000, 2001)] thor-
oughly considered two types of a decomposition of chi-squared tests. The first is
a decomposition of a Pearson’s statistic on a sum of DN and another quadratic
form being asymptotically independent of DN in the case of MLEs, and asymp-
totically correlated in the case of MMEs. The second way decomposes a modified
test statistic on a sum of a classical Pearson’s test and a correcting term, which
makes it chi-squared distributed in the limit, and independent on unknown pa-
rameters. The second case was first described by McCulloch (1985), but only
for MLEs. The case of MMEs was first investigated by Mirvaliev (2001). The
decomposition of a modified chi-squared test on a sum of DN and an additional
term is of importance because later it was shown [see, e.g., Voinov and Pya
(2004)] that the DN part is in many cases insensitive to an alternative hypothe-
sis in the case of equiprobable cells and would be sensitive to it for example, for
nonequiprobable two Neyman–Pearson classes [Voinov et al. (2006a)]. The sec-
ond way also clearly shows that a correcting term takes into account the Fisher’s
information lost while grouping the data [McCulloch (1985), Mirvaliev (2001),
Voinov (2006)]. Mirvaliev has also derived explicitly a modified chi-squared
goodness-of-fit test, which can be used for any square root of n moment type
estimator. His result disproves the common opinion that only efficient MLEs
may be used when constructing modified chi-squared tests. Because Hsuan and
Robson first showed the validity of this fact, we suggest calling this test a
Hsuan–Robson–Mirvaliev (HRM) statistic. Recently [Voinov and Pya (2004)]
it has been shown that for the exponential family of distributions the HRM
modified statistic identically equals that of RRN. This is a consequence of the
well-known fact that MLEs coincide with MMEs for this family of distributions
[Dzhaparidze and Nikulin (1992)].

Many other interesting results concerning chi-squared testing have been ob-
tained during recent years, but, because they are beyond the scope of this
chapter, we would simply attract readers’ attention by listing some of the most
interesting from our point of view [Singh (1986), McLaren et al. (1994), Ander-
son (1994), Zhang (1999), Lemeshko et al. (2001), and Boero et al. (2004).

In Section 18.2 we briefly consider a contemporary status of the theory
of modified chi-squared goodness-of-fit tests. Section 18.3 is devoted to a
consideration of some examples which illustrate the theory and applications.
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In Section 18.4 we summarize results obtained and give recommendations on
implementations of modified chi-squared goodness-of-fit tests.

18.2 A Contemporary Status of the Theory

of Modified Chi-Squared Tests

Let X1, . . . ,Xn be i.i.d. random variables. Consider the problem of testing a
simple hypothesis H0, according to which a probability distribution function of
the Xi is supposed to be F (x). Denote by f(x) the density of the hypothetical
probability distribution function F (x) with respect to a certain σ-finite measure
µ. Let N

(n)
j = Card{i : Xi ∈ ∆j , i = 1, . . . , n}, pj =

∫
∆j

dF (x), j = 1, . . . , r,
where ∆j are nonintersecting fixed grouping intervals such that ∆1∪· · ·∪∆r =
R1, ∆i∩∆j = ∅, i �= j. Denote by V(n) a column r-vector of a standardized cell
frequency with components v

(n)
i = (npi)−1/2(N (n)

i − npi), i = 1, . . . , r. Under
these notations the standard Pearson’s chi-squared statistic X2

n for a simple
null hypothesis H0 can be written as

X2
n = V(n)T V(n) =

r∑
i=1

[N (n)
i − npi]2

npi
. (18.1)

Since Pearson (1900) it has been known that for a sufficiently large sample
size n P{X2

n ≥ x|H0} ≈ P{χ2
r−1 ≥ x}, where χ2

r−1 is a continuous random
variable possessing the chi-squared probability distribution with r − 1 degrees
of freedom.

In almost all practical situations a hypothetical distribution F (x) is not
known uniquely. In this case one has to test a composite null hypothesis ac-
cording to which a distribution of the Xi is a member of a parametric fam-
ily P{Xi ≤ x | H0} = F (x;θ), θ = (θ1, . . . , θs)T ∈ Θ ⊂ Rs, x ∈ R1,
where Θ is an open set. Denote by f(x;θ) the density of the probability dis-
tribution function F (x;θ). In this case the probability to fall into an inter-
val ∆j , components of a r-vector of standardized grouped frequencies, and
Pearson’s sum X2

n should be written as pj(θ) =
∫
∆j

dF (x;θ), j = 1, . . . , r,

v
(n)
i (θ) = [npi(θ)]−1/2(N (n)

i − npi(θ)), i = 1, . . . , r, and

X2
n(θ) = V(n)T (θ)V(n)(θ) =

r∑
i=1

[N (n)
i − npi(θ)]2

npi(θ)
(18.2)

correspondingly. For any composite null hypothesis a parameter θ is considered
to be unknown.

Suppose that θ̃n is an estimator of θ based on grouped data, which mini-
mizes the chi-squared sum (18.2). Fisher (1928) showed that the distribution of
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X2
n(θ̃n) possesses in the limit the chi-squared probability distribution χ2

r−s−1

with r − s− 1 degrees of freedom, where s is the number of estimating param-
eters. Later it was shown [McCulloch (1985)] that the limit distribution of the
Pearson–Fisher (PF) statistic based on grouped data is the same as that of the
DN test based on ungrouped data. Recently Voinov and Pya (2004) have shown
that in many particular cases PF and DN tests have no power with respect to
an alternative for equiprobable fixed or random cells and may even be biased.

Up to 1954 statisticians thought that estimating parameters by the well-
known method of maximum likelihood based on ungrouped data would give
the χ2 limit distribution of (18.2) with r− s− 1 degrees of freedom. Maximum
likelihood estimators (MLEs) are asymptotically normally distributed and effi-
cient. Despite these remarkable features of MLEs Chernoff and Lehmann (1954)
[see also LeCam et al. (1983)] proved that under some regularity conditions for
fixed classes

lim
n→∞P{X2

n(θ̂n) ≥ x | H0} = P{χ2
r−s−1 +

s∑
i=1

λi(θ)ξ2
i ≥ x}, (18.3)

where θ̂n is the MLE of θ, χ2
r−s−1, ξ1, . . . , ξs are independent, ξi ∼ N(0, 1), and

0 < λi(θ) < 1, i = 1, 2, . . . , s. From (18.3) we see that the limit distribution of
(18.2) with θ replaced by the MLE θ̂n does depend on unknown parameter θ
and, strictly speaking, is inapplicable for hypotheses testing.

Watson (1957) considered χ2 tests for normality with random boundaries
depending on consistent estimators of parameters. He showed that in this case
the limit distribution of (18.2) coincides with that of (18.3). Later on Wat-
son (1958, 1959) generalized this result for arbitrary continuous distributions.
Chibisov (1971) and Moore (1971) generalized Watson’s result for the multi-
variate case and gave a rigorous proof that standardized cell frequencies

v
(n)
i (θ̃n) = [npi(θ̃n)]−1/2(N (n)

i − npi(θ̃n)), i = 1, . . . , r, (18.4)

where θ̃n is any consistent estimator of θ, are asymptotically normally dis-
tributed. From this result it follows that the limit distribution of (18.2) with
θ̃n instead of θ will be the same if one used grouping intervals with fixed or
random boundaries. But again the limit distribution of the Pearson’s test will
depend on the unknown parameter θ and may not be used for testing.

Let {V(n)T (θ̃n)} be a sequence of statistics such that V(n)T (θ̃n) converges
in distribution to Nr(0,Σ), where Σ is of rank r. If {Σn} is a sequence of
consistent estimators of Σ, then asymptotically (n →∞) [Wald (1943)]

V(n)T(θ̃n)Σ−1
n V(n)(θ̃n) D→ χ2

r. (18.5)

Nikulin (1973) [see also Moore (1977) and Hadi and Wells (1990)] generalized
this result for the case when Σ is singular with a rank k < r. Moore (1977)
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noted that Σ−1
n in (18.5) can be replaced by an estimate Σ−

n of any generalized
Σ− matrix inverse of Σ and that the limit distribution of the quadratic form

V(n)T (θ̃n)Σ−
n V(n)(θ̃n) (18.6)

will follow χ2
k regardless of how matrix Σ is inverted. Moore (1971) showed that

the limit covariance matrix of standardized frequencies (18.4) with θ̃n = θ̂n is

Σ = I− qqT −BJ−1BT , (18.7)

where q = ((p1(θ))1/2, . . . , (pr(θ))1/2)T , and B = B(θ) is an r × s matrix with
elements

1√
pi(θ)

∂pi(θ)
∂ θj

, i = 1, 2, . . . , r, j = 1, 2, . . . , s. (18.8)

Using formula (18.7) Nikulin (1973) derived the generalized Σ− matrix inverse
of Σ as

Σ− = I + B(J− Jg)−1BT , (18.9)

where J is the information matrix of F (x;θ) and Jg = BT B is Fisher’s in-
formation matrix for grouped data. Nikulin presented his modified chi-squared
test for a continuous null hypothetical probability distribution in the case of
the efficient MLE as

Y 12
n(θ̂n) = X2

n(θ̂n) + V(n)T (θ̂n)B(Jn − Jgn)−1BT V(n)(θ̂n), (18.10)

where Jn and Jgn in (18.10) are MLEs of the corresponding matrices.
The matrix inverse (18.9) can be presented identically as [Moore and Spruill

(1975)] Σ− = (I−BJ−1BT )−1, but this representation has much less value for
the theory of modified chi-squared tests than the result (18.9) of Nikulin (see
a discussion of this below). Note also that the generalized Wald’s method is
universal. It may be used even for deriving the classical Pearson’s test [see, e.g.,
Greenwood and Nikulin (1996, p. 14)].

From the trivial orthogonal decomposition of the r-dimensional identity
matrix I = qqT + B(BTB)−BT + [I − qqT −B(BTB)−BT] and the relation
qqTV(n) = 0 it follows [Mirvaliev (2001)] that V(n) = U(n)(θ) + W(n)(θ),
where U(n)(θ) = [I− qqT −B(BTB)−BT]V(n) and W(n)(θ) = B(BTB)−BTV(n).

From this one gets the following decomposition of Pearson’s sum

X2
n(θ̃n) = U2

n(θ̃n) + W 2
n(θ̃n), (18.11)

where U2
n(θ̃n) = V(n)T (θ̃n)[I−Bn(BT

n Bn)−BT
n ]V(n)(θ̃n) is the well-known

Dzhaparidze and Nikulin (1974) (DN) statistic,

W 2
n(θ̃n) = V(n)T (θ̃n)Bn(BT

n Bn)−BT
n V(n)(θ̃n),
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and Bn = Bn(θ̃n) is the estimate of B. The idempotent quadratic forms U2
n(θ̃n)

and W 2
n(θ̃n) are generalized chi-squared type statistics, which are invariant with

respect to how matrix Jg = BTB is inverted. If an estimator θ̃n is efficient (e.g.,
MLE), then statistics U2

n(θ̂n) and W 2
n(θ̂n) will be asymptotically independent.

Otherwise (if, e.g., θ̃n is MME θ̄n) they will be asymptotically correlated [Mirva-
liev (2001)]. Note also that for any

√
n-consistent estimator θ̃n of θ obtained by

ungrouped data the DN statistic will be distributed in the limit as χ2
r−s−1. From

this we see that the DN test is asymptotically equivalent to the Pearson–Fisher
test, when the parameter θ is estimated by grouped data [see also McCulloch
(1985) and Mirvaliev (2001)].

From (18.10) and (18.11) it follows that the Rao–Robson–Nikulin statistic
can be written down as

Y 12
n(θ̂n) = U2

n(θ̂n) + W 2
n(θ̂n) + P 2

n(θ̂n) = X2
n(θ̃n) + P 2

n(θ̂n), (18.12)

where P 2
n(θ̂n) = V(n)T (θ̂n)Bn(Jn − Jgn)−1BT

nV(n)(θ̂n). The quadratic forms
U2

n(θ̂n) and W 2
n(θ̂n) + P 2

n(θ̂n) of (18.12) are statistically independent in the
limit and can be used as test statistics independently [McCulloch (1985) and
Mirvaliev (2001)]. Because U2

n(θ̂n) based on ungrouped data is asymptotically
distributed as χ2

r−s−1 like Pearson–Fisher’s test based on grouped data, the
sum W 2

n(θ̂n)+P 2
n(θ̂n) can be considered as a correcting term, which takes into

account the information lost while data grouping.
Consider now the case of MMEs. Let K = K(θ) be an s×s matrix with

elements ∫
xi ∂f(x;θ)

∂θj
dx i, j = 1, . . . , s. (18.13)

Let also
V = V(θ) = (mij −mimj), (18.14)

where mi = E
[
Xi
]
, mij = E

[
Xi+j

]
, i, j = 1, . . . , s, and C = C(θ) is an r × s

matrix with elements

p
−1/2
i (θ)

(∫
∆i

xjf(x;θ)dx− pi(θ)mj(θ)
)

, i = 1, . . . , r, j = 1, . . . , s.

(18.15)
Denote A = I−qqT +C(V−CTC)−1CT , and L = V+(C−BK−1V)T A(C−
BK−1V), where elements of matrices K and C are defined by formulas (18.13),
(18.15) and the elements of the s×s matrix V by (18.14), respectively, and
B ≡ B(θ).

Hsuan and Robson (1976) showed that if one replaced θ in (18.2) by
a
√

n-consistent MME θ̄n, then under the proper regularity conditions,
limn→∞ P{X2

n(θ̄n) ≥ x | H0} = P{
∑r−1

j=1 λj(θ)χ2
j ≥ x}, where λj(θ) are

nonzero characteristic roots of the limit covariance matrix

Σ1 = I− qqT + BK−1V(K−1)T BT −C(K−1)T BT −BK−1CT (18.16)
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of standardized cell frequencies (18.4) with θ̃n = θ̄n, χ2
j being independent

central χ2
1 random variables. Hsuan and Robson (1976) proved also that if one

substituted Σ−
n in (18.6) by a

√
n-consistent MME of any generalized matrix

inverse of Σ1, then the corresponding modified chi-squared test would follow a
χ2

r−1 limit distribution under H0. Unfortunately, they did not give the explicit
expression for Σ−

1 .
Mirvaliev (2001) derived the Moore–Penrose matrix inverse Σ−

1 of Σ1 as

Σ−
1 = A−A(C−BK−1V)L−1(C−BK−1V)T A. (18.17)

Taking into account (18.6), (18.17), and the fact that qqTV(n)(θ̄n) = 0 the
HRM modified chi-squared test can be written as

Y 22
n(θ̄n) = X2

n(θ̄n) + R2
n(θ̄n)−Q2

n(θ̄n), (18.18)

or
Y 22

n(θ̄n) = U2
n(θ̄n) + W 2

n(θ̄n) + R2
n(θ̄n)−Q2

n(θ̄n), (18.19)

where R2
n(θ̄n) = V(n)T (θ̄n)Cn(Vn −CT

nCn)−1CT
nV(n)

n (θ̄n), Q2
n(θ̄n) = V(n)T

n (θ̄n)An

(Cn − BnK−1
n Vn)L−1

n (Cn − BnK−1
n Vn)T AnV(n)

n (θ̄n) , Kn = K(θ̄n), Vn = V(θ̄n),
Cn = C(θ̄n), and An and Ln are the corresponding MMEs of A and L. Un-
der rather general conditions the statistic Y 2

n (θ̄n) will possess in the limit the
chi-squared probability distribution χ2

r−1, the sum W 2
n(θ̄n) + R2

n(θ̄n)−Q2
n(θ̄n)

being asymptotically independent on U2
n(θ̄n) and distributed as χ2

s [Mirvaliev
(2001)]. For the same reason as above, the statistic W 2

n(θ̄n)+R2
n(θ̄n)−Q2

n(θ̄n)
can be considered as a correcting statistic, which recovers the information lost
in estimating θ by grouped data instead of the MME based on the initial un-
grouped data. It is clear that due to the limit independence of Y 22

n(θ̄)−U2
n(θ̄) =

W 2
n(θ̄n) + R2

n(θ̄n) − Q2
n(θ̄n) on U2

n(θ̄n) it can be considered as a test, which
may be used separately from Dzhaparidze–Nikulin’s U2

n(θ̄n). It is worth noting
that the limit distribution of Y 22

n(θ̄) will be the same if one uses cells with
random boundaries. Note also that for the exponential family of distributions
Y 22

n(θ̃n) ≡ Y 12
n(θ̃n) [Voinov and Pya (2004)].

18.3 Some Recent Results

18.3.1 Testing for normality

Rao and Robson (1974) and McCulloch (1985) used Monte Carlo simulation
and showed that the power of the Rao–Robson–Nikulin statistic Y 12

n [Nikulin
(1973b)] is significantly higher than that of the Dzhaparidze–Nikulin U2

n. A
more detailed simulation study [Voinov (2006b)] shows that:
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(a) If one uses equiprobable random cells, then the power of U2
n is indeed

smaller or even much smaller than that of Y 12
n against the logistic, uniform,

triangular, and Laplace (double-exponential) alternatives in a rather wide range
of the number of cells r.

(b) The Dzhaparidze–Nikulin U2
n can be biased and, hence, inapplicable

when testing for normality against uniform and triangular alternatives.
(c) Among all modified tests considered, the test Y 12

n − U2
n is the most

powerful when testing for normality against the above-mentioned alternatives.
(d) The power of both Y 12

n and Y 12
n − U2

n is the largest for alternatives
considered if one uses r ∈ [10, 14] equiprobable fixed or random cells.

(e) The power of Y 12
n − U2

n becomes very small for four Neyman–Pearson-
type classes. At the same time the power of U2

n based on the same four classes
is slightly less or greater (depending on an alternative) than the power of Y 12

n

for two Neyman–Pearson classes and is significantly higher than the maximal
power of Y 12

n − U2
n for equiprobable cells.

18.3.2 Testing for the logistic probability distribution

Aguirre and Nikulin (1994) constructed the RRN test Y 12
n based on an approx-

imate solution of the maximum likelihood equations proposed by Harter and
Moore (1967). They gave the explicit form of the Y 12

n but have not investigated
the power of their test. Voinov et al. (2003) [see also Voinov et al. (2006b)] con-
structed in explicit form and investigated the power of the HRM Y 22

n test based
on MMEs. Explicit expressions for elements of matrices B,C,K, and V needed
to evaluate the test statistic (18.19) are given in the appendix.

(a) The HRM test Y 22
n based on inefficient but

√
n-consistent MMEs and

equiprobable random or fixed cells performs well. As in the case of normal
null the test Y 22

n − U2
n is the most powerful for those cells against the normal

alternative. Under the same conditions the DN test U2
n does not work (see Figure

18.1). The same results are observed for the triangular and Laplace alternative
hypotheses [Voinov et al. (2006b)].

(b) The power of Y 22
n − U2

n becomes very small for four Neyman–Pearson-
type classes. At the same time the power of U2

n based on the same four classes
is slightly less or greater (w.r.t. the normal alternative) than the power of Y 22

n

for two Neyman–Pearson classes and is significantly more than maximal power
of Y 22

n − U2
n for equiprobable cells (see Table 18.1).

Table 18.1. Power of Y 22
n, U2

n, and Y 22
n−U2

n for two and four Neyman–Pearson
classes

Power of Y 22
n Power of Y 22

n Power of U2
n Power of Y 22

n − U2
n

(r = 2) (r = 4) (r = 4) (r = 4)
0.334 0.204 0.357 ± 0.013 0.034
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Figure 18.1. Estimated powers as functions of the number of equiprobable cells
r of Y 22

n, U2
n, and Y 22

n − U2
n tests versus the normal alternative. Sample size

n = 200, type one error α = 0.05.

18.3.3 Testing for the three-parameter Weibull null hypothesis

Consider the three-parameter Weibull family with the probability density
function

f(x; θ, µ, p) =
p

θ

(
x− µ

θ

)p−1

exp
{
−
(

x− µ

θ

)p}
,

x > µ, θ > 0, p > 0, µ ∈ R1.

It is well known that sometimes there are serious problems with obtaining
MLEs for this probability distribution. If all three parameters are unknown,
the likelihood can be infinite. For some datasets there is no local maximum
for the likelihood [Lockhart and Stephens (1994)]. It has to be mentioned also
that Fisher’s information matrix for this probability distribution does not exist
for infinitely many values of the parameter p, namely for p = 1/2 + k and
p = 2/1 + k, where k = 0, 1, . . . . Because of this one can hardly implement the
RRN test.

Alternatively, one may use the HRM test Y 22
n based on inefficient MMEs,

because for this test it is enough if estimates are
√

n-consistent [Hsuan and
Robson (1976)]. Such a test was developed in Voinov et al. (2006a).

The HRM test Y 22
n based on MMEs and equiprobable random or fixed

cells performs well. Under the same conditions the DN test U2
n does not work

and the power of the test Y 22
n − U2

n is essentially higher than that of Y 22
n. A

typical example of these facts is presented in Figure 18.2. The same picture
is observed when testing for the three-parameter Weibull family against the
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Figure 18.2. Estimated powers as functions of the number of equiprobable cells
r of Y 22

n, U2
n, and Y 22

n − U2
n tests versus exponentiated Weibull alternative

F (x) =
[
1− exp(−(x/α)β)

]γ , x, α, β, γ > 0, of Mudholkar et al. (1995). Sample
size n = 200, type one error α = 0.05.

power-generalized Weibull alternative of Bagdonavičius and Nikulin (2002). It
is worth noting that the power of Y 22

n−U2
n is not very high w.r.t. these closed-

form alternatives and is very high versus alternatives of quite different form,
such as the generalized Weibull distribution of Mudholkar et al. (1996) [see
Voinov et al. (2006a)].

As in the case of testing for the logistic null hypothesis the power of the
test Y 22

n based on two Neyman–Pearson classes is higher than that of Y 22
n−U2

n

(See Table 18.2).

18.3.4 Testing for the power-generalized Weibull family

Bagdonavičius and Nikulin (2002) proposed a very nice family of the power-
generalized Weibull distributions to be used in survival analysis especially in
accelerated life studies. Depending on parameter values, the hazard rate for
the family can be constant, monotone increasing or decreasing,

⋂
-shaped, and⋃

-shaped. If all three parameters of the proposed distribution function

F (x; θ, ν, γ) = 1− exp
{

1−
[
1 +
(x

θ

)ν]1/γ
}

, x, θ, ν, γ > 0.

Table 18.2. Power of HRM test for two Neyman–Pearson classes

W-PGW ExpW GWeib
α = 0.05 0.141 0.294 ± 0.015 1.000
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are unknown, MLEs and MMEs would be inconsistent. Considering the shape
parameter γ to be fixed and using inefficient but

√
n-consistent MMEs, Allo-

yarova et al. (2006) constructed and analyzed the HRM test for this family.
It has been shown that the HRM test Y 22

n based on MMEs and equiprobable
random or fixed cells performs well but the test Y 22

n − U2
n as in all previously

considered examples is the best one.

18.4 Conclusion

Some important new results obtained during the last 20 years can be summa-
rized as follows.

(a) The structure of Pearson’s sum and modified chi-squared goodness-of-fit
tests was thoroughly investigated. It was shown that both proposed decomposi-
tions include as an essential part the DN statistic, which possesses in the limit
the same χ2

r−s−1 distribution as the PF test based on grouped data. The de-
composition of modified tests and the last fact permit us to understand that all
modified tests are sums of the DN statistic and a correcting term, which takes
into account the Fisher’s information lost while grouping the data.

(b) A modified chi-squared test Y 22
n based on inefficient

√
n-consistent

MMEs has been derived explicitly. This result shows that not only efficient
MLEs may be used for constructing tests. It does not mean that one should
necessarily use MMEs if there are problems with obtaining MLEs. Those inef-
ficient MMEs can be made efficient with the use of Fisher’s technique [Fisher
(1925), and Dzhaparidze (1983)] and, after that improvement, one may use the
RRN Y 12

n statistic [Voinov et al. (2006b)].
(c) The Y 12

n −U2
n and Y 22

n −U2
n statistics when testing for the normal and

the logistic null hypotheses are the most powerful for equiprobable cells because
they recover the largest part of Fisher’s information lost while grouping the
data. Under the same conditions the DN test does not work. On the contrary,
the DN test based on four Neyman–Pearson-type classes when testing for the
normal and the logistic nulls performs well and possesses even more power
compared to the highest power of Y 12

n −U2
n or Y 22

n −U2
n. This is explained by

the fact that for two or four Neyman–Pearson-type classes there is almost no
loss of Fisher’s information.

(d) Implementation of the modified chi-squared tests considered in the chap-
ter shows that shapes of the power generalized Weibull (PGW), exponentiated
Weibull (EW), and the three-parameter Weibull (W3) distributions are very
close to each other, although their hazard rate functions can be essentially dif-
ferent. Thus, to select one of these models for a survival analysis one needs
to have a test that will compare their hazard rate functions directly. At the
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same time to discriminate between different-shaped generalized Weibull (GW)
models [Mudholkar et al. (1996)] and three models mentioned above, any test
Y 22

n, Y 22
n − U2

n and even insensitive U2 can be used, because the power of all
those tests is very close to one. This suggests renaming the GW model as not
belonging to a Weibull family.
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Appendix

Let b0 = −∞, bi, i = 1, 2, . . . , r−1, br = +∞ be the borders of grouping intervals; then
the probabilities to fall into each interval are

pi =
(

1 + exp
(
−π(bi − θ1)√

3θ2

))−1

−
(

1 + exp
(
−π(bi−1 − θ1)√

3θ2

))−1

, i = 1, . . . , r.

Elements of r × 2 matrix B for i = 1, . . . , r are

Bi1 =
π√

3piθ2

⎡⎢⎣ exp
(
−π(bi−1−θ1)√

3θ2

)
(
1 + exp

(
−π(bi−1−θ1)√

3θ2

))2 −
exp
(
−π(bi−θ1)√

3θ2

)
(
1 + exp

(
−π(bi−θ1)√

3θ2

))2

⎤⎥⎦
and

Bi2 =
π√

3piθ2
2

⎡⎢⎣(bi−1 − θ1)exp
(
−π(bi−1−θ1)√

3θ2

)
(
1 + exp

(
−π(bi−1−θ1)√

3θ2

))2 −
(bi − θ1)exp

(
−π(bi−θ1)√

3θ2

)
(
1 + exp

(
−π(bi−θ1)√

3θ2

))2

⎤⎥⎦ .

Elements of the r × 2 matrix C are

C11 = − (b1 − θ1)
√

p1

(
1 + exp

(
π(b1−θ1)√

3θ2

)) − √
3θ2√
p1π

ln
(

1 + exp
(
−π(b1 − θ1)√

3θ2

))
,

Ci1 =
(bi−1 − θ1)

√
pi

(
1 + exp

(
π(bi−1−θ1)√

3θ2

)) − (bi − θ1)
√

pi

(
1 + exp

(
π(bi−θ1)√

3θ2

))
+
√

3θ2

π
√

pi
ln

(
1 + exp

(
−π(bi−1−θ1)√

3θ2

))
(
1 + exp

(
−π(bi−θ1)√

3θ2

)) , i = 2, . . . , r − 1,
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Cr1 =
(br−1 − θ1)

√
pr

(
1 + exp

(
π(br−1−θ1)√

3θ2

)) +
√

3θ2√
prπ

ln
(

1 + exp
(
−π(br−1 − θ1)√

3θ2

))
,

C12 =
(b2

1 − θ2
1 − θ2

2)
√

p1

(
1 + exp

(
−π(b1−θ1)√

3θ2

)) − 2
√

3θ2b1

π
√

p1
ln
(

1 + exp
(

π(b1 − θ1)√
3θ2

))

− 6θ2
2

π2√p1
Li2

(
−exp

(
π(b1 − θ1)√

3θ2

))
,

Ci2 = − b2
i − θ2

1
√

pi

(
1 + exp

(
π(bi−θ1)√

3θ2

)) +
b2
i−1 − θ2

1

√
pi

(
1 + exp

(
π(bi−1−θ1)√

3θ2

))
+

2
√

3θ2

π
√

pi
ln

⎡⎢⎣
(
1 + exp

(
−π(bi−1−θ1)√

3θ2

))bi−1

(
1 + exp

(
−π(bi−θ1)√

3θ2

))bi

⎤⎥⎦
+

6θ2
2

π2√pi
Li2

(
−exp

(
−π(bi − θ1)√

3θ2

))
− 6θ2

2

π2√pi
Li2

(
−exp

(
−π(bi−1 − θ1)√

3θ2

))
+

θ2
2

√
pi

(
1 + exp

(
−π(bi−1−θ1)√

3θ2

)) − θ2
2

√
pi

(
1 + exp

(
−π(bi−θ1)√

3θ2

)) ,

i = 2, . . . , r − 1,

Cr2 =
(b2

r−1 − θ2
1 − θ2

2)
√

pr

(
1 + exp

(
−π(br−1−θ1)√

3θ2

)) +
2
√

3θ2br−1

π
√

pr
ln
(

1 + exp
(

π(br−1 − θ1)√
3θ2

))

− 6θ2
2

π2√pr
Li2

(
− exp

(
π(br−1 − θ1)√

3θ2

))
,

where Li2(−x) is Euler’s dilogarithm, which can be evaluated by the series expansion

Li2(−x) =
∞∑

k=1

(−x)k

k2

for x ≤ (
√

5− 1)/2 and by formula

Li2(−x) =
∞∑

k=1

1
k2(1 + x)k

+
1
2

ln2(1 + x) − ln x ln(1 + x) − π2

6

for x > (
√

5− 1)/2 [Prudnikov et al. (1986)].
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Matrices K and V are

K =
(

1 0
2θ1 2θ2

)
and V =

(
θ2
2 2θ1θ

2
2

2θ1θ
2
2 4θ2

1θ
2
2 + 16

5 θ4
2

)
,

respectively.
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Goodness-of-Fit Tests for Pareto Distribution

Sneh Gulati and Samuel Shapiro

Department of Statistics, Florida International University, Miami, FL, USA

Abstract: The Pareto distribution can serve to model several types of datasets,
especially those arising in the insurance industry. In this chapter, we present
methods to test the hypothesis that the underlying data come from a Pareto
distribution. The tests presented for both the type I and type II Pareto distri-
butions are based on the regression test of Brain and Shapiro (1983) for the
exponential distribution. Power comparisons of the tests are carried out via
simulations.

Keywords and Phrases: Type I Pareto distribution, type II Pareto distribu-
tion, regression tests, extreme values

19.1 Introduction

Statisticians and engineers have been expanding the types of models used in
the analysis of measurement data. Initially the normal distribution was used
for most problems. Presently however, distributions such as the exponential,
Weibull, lognormal, gamma, and Pareto, have been used in the search for models
that more closely match the phenomenon under study. Because the choice of
a model can significantly affect the results of the analysis of a dataset, testing
model assumptions plays an important role. This chapter presents simplified
composite tests for the assumption that a set of data comes from type I and type
II Pareto populations. The test statistic for type I uses a chi-squared two degree
of freedom (exponential) as the null distribution, and the null distribution for
the test statistic for type II has a chi-squared one degree of freedom, in other
words, the square of the standard normal random variable distribution. These
null distributions are approximately independent of the unknown parameters
when n is large enough.

259



260 S. Gulati and S. Shapiro

The Pareto distribution originates from the work of Pareto (1897) and has
been used in many applications including modeling income distributions, hy-
drology, insurance claims, and in general populations representing extreme oc-
currences. Arnold (1983) stated that this model is useful for approximating data
that arise from distributions with “fat tails.” A comprehensive discussion of the
Pareto distribution can be found in this reference. Various modifications have
been made to the classical distribution proposed by Pareto. In Arnold’s book
he has labeled these as type I, type II, type III, and type IV.

This chapter discusses distributional tests for the first two of these. The esti-
mation of the Pareto parameters using the maximum likelihood method results
in biased estimators for the type I Pareto and is not straightforward for the other
types. Several authors have presented simplified corrections for the bias of the
maximum likelihood estimators for the type I model [see, e.g., Saksena (1978),
Baxter (1980), and Cook and Mumme (1981)]. Harris (1968) and Arnold and
Laguna (1977) proposed the technique of matching of moments for type II, and
maximum likelihood estimation and other alternative methods of estimation of
parameters were studied by Hosking and Wallis (1987) and Grimshaw (1993)
among others. Voinov and Nikulin (1993) also present unbiased estimators for
the Pareto distribution in addition to citing other references.

The classical or type I Pareto distribution is defined by the density function,

f(x) =
ασα

xα+1
, x ≥ σ > 0, α > 0. (19.1)

The parameter α is the shape parameter and σ is the scale parameter. Note
that the minimum value of X is equal to σ. It is easy to see that if X has a
type I Pareto distribution, then T = ln(X/σ) has an exponential distribution
with a mean of 1/α.

One reparametrization of the type II Pareto distribution which is used in
this chapter is defined by the distribution function

F (x) = 1− (1 + θx)−1/k, x ≥ 0, θ ≥ 0, k > 0. (19.2)

If one assumes that k < 1, then the distribution has a finite first moment. Also
note that T = ln(1 + X) has an exponential distribution with mean k.

Unlike other distributions there are few tests to assess whether it is rea-
sonable to use the Pareto model with a given set of data when the two pa-
rameters are unknown. When the parameters are known it is a simple matter
to transform the data to an exponential distribution and use one of the many
tests for the exponential. In the composite case, when there are no specific
tests known to the general public the classical chi-squared goodness-of-fit pro-
cedure using maximum likelihood estimates of the parameters is often used;
however, this procedure results in a test statistic that does not have a cen-
tral chi-square distribution and is only approximated by one [see Chernoff and
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Lehmann (1954) and Greenwood and Nikulin (1996)]. Moreover, the procedure
also has poor power properties for continuous distributions and small sam-
ple sizes. Choulakian and Stephens (2001) developed two composite hypothesis
tests for a generalized Pareto distribution based on the Anderson–Darling and
the Cramér–von Mises statistics. Their generalized Pareto is a type II distribu-
tion that has been reparametrized and where the parameter k can be negative.
These tests require using the maximum likelihood estimators for the two pa-
rameters. Using this test one estimates the parameters, applies the probability
integral transformation and uses either of the two tests to assess whether the
transformed data could have been sampled from a uniform distribution. The
critical value of the test statistic is compared to a table that is used to assess
whether the Pareto model fits the data. The null critical values depend on the
estimated parameters.

Beirlant et al. (2006) also proposed a test for the Pareto distribution. In
this procedure the data are transformed to an exponential distribution and a
modified Jackson (1967) statistic is used to test for the exponential distribution.
They then used a bootstrapping procedure to get the null distribution. This
chapter proposes a composite hypothesis test for the type I and type II Pareto
models that is based on transforming the data to an exponential distribution
and uses a modification of a test of exponentiality devised by Brain and Shapiro
(1983). The Brain and Shapiro test procedure has in the limit a chi-squared
distribution with two degrees of freedom and requires a correction factor that
is a function of the sample size. Simulation studies have indicated that the
null distribution of the proposed test statistic for the Pareto I distribution
can be approximated by the chi-squared two-degree distribution (exponential)
for sample sizes as small as 10 without use of the correction. For the type
II distribution simulation results indicate that the null percentiles for the test
statistic have an approximate chi-square distribution with one degree of freedom
square of a standard normal random variable, are independent of the scale
parameter, for all practical purposes are independent of the shape parameter
for samples sizes of 30 or higher, and are not strongly dependent on the sample
size. Because tests of distributional assumptions for models with an unknown
shape parameter have low power for small sample sizes the limitation of samples
of size 30 is not critical. Thus the advantages of the proposed procedure are
that a p value can be obtained directly without any special tables.

Section 19.2 discusses estimation of the parameters of the Pareto type I,
evaluates the bias and mean square error (MSE), describes the estimation pro-
cedure, and how the shape parameter affects these quantities. The third sec-
tion describes the test for the exponential distribution proposed by Brain and
Shapiro (1983) and gives the results of a study when using this with the Pareto
type I distribution, and demonstrates how the null distribution is affected by
estimating the Pareto shape parameter. The fourth section contains the results
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of a simulation study of the power of the procedure with a comparison to the
results using the standard chi-square goodness-of-fit procedure. Sections 19.5
through 19.7 give the corresponding procedures and comparisons for the type
II Pareto test. The final sections contain examples to illustrate the calculations
using actual examples with real insurance claim data, an example analyzed by
Choulakian and Stephens (2001), and some concluding remarks.

19.2 Type I Pareto Distribution

The first step in testing for either the type I or the type II Pareto distribution
is the estimation of the parameters. Maximum likelihood estimates for the type
I Pareto are easy to compute and are given by:

σmle = X(1) = the smallest observation (19.3)

αmle =
n∑n

i=1 ln ( X(i)

X(1)
)

. (19.4)

where X(1) ≤ X(2) ≤ · · · ≤ X(n). The estimator of α is biased which can be
corrected by multiplying by (n − 2)/n. Both these estimators are consistent
and mutually independent and their sampling distributions are given in Malik
(1970). A simulation study of the mean square error for the shape and scale
parameters shows that the MSEs are usually quite small (below 0.01 in most
cases) indicating that using the scale parameter estimate to transform the data
to an exponential distribution should yield satisfactory results. The simulation
was based on 10,000 trials using sample sizes between 10 and 100, a scale
parameter of 1.0, and shape parameters between 0.5 and 6.0. The meansquare
errors decrease for increasing sample size and increase for increasing value of the
shape parameter. Because the major concern in this study is the power of the
test procedure these results are quite adequate for the purpose of transforming
the data for use in the testing procedure.

The data are transformed as follows for use in the test procedure,

T = ln(X/X(1)) (19.5)

which is described in the next section.

19.3 Test for the Type I Pareto Distribution

Brain and Shapiro (1983) introduced a test procedure for assessing whether
a set of data could have come from an exponential distribution. The test was
based on using the Laplace test, a procedure suggested by Cox and Lewis (1966,
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p. 53), for assessing whether the failure rate function was constant in order to
assess whether a sample was drawn from an exponential distribution. The pro-
cedure uses the ordered weighted spacings and regresses these versus the order
number using first- and second-degree orthogonal polynomials. It then tests
whether the linear and/or quadratic terms are significantly different from zero
for each polynomial. Because the regression uses orthogonal polynomials, the
test statistics for each term are independent. Each statistic has an approximate
standard normal distribution. The test statistic for assessing the distributional
assumption uses the sum of the squares of the two individual test statistics
and hence the null distribution for the exponential test has in the limit a chi-
squared two degree of freedom distribution. The authors provided equations for
correcting the critical values for finite sample sizes.

Using the notation from Brain and Shapiro (1983) let n be the sample size
and denote the ordered statistics as X(1) ≤ X(2) ≤ · · · ≤ X(n). Let the ith
weighted spacing be given by Yi = (n − i + 1)(X(i) −X(i−1)); (i = 1, 2, . . . , n)
and X0 = 0. The n observations will generate n spacings. Let TYi =

∑i
j=1 Yj ,

i = 1, 2, . . . , n and Ui = TYi/TYn, i = 1, 2, . . . , n − 1; then the test statistic for
the linear component is given by:

Z1 =

√
12

n− 1
(Ū − 1/2) (19.6)

where

Ū =
n−1∑
i=1

Ui

n− 1
.

Similarly, Z2, the test statistic for the quadratic component is given by:

Z2 =

√
5

4(n + 2)(n − 1)(n − 2)
∗
(
n− 2 + 6nŪ − 12

n−1∑
i=1

iUi

n− 1

)
. (19.7)

The test statistic is

Z0 = Z2
1 + Z2

2 . (19.8)

The null distribution of Z0 is in the limit a chi-squared distribution with two
degrees of freedom. This is an upper-tail test with a critical region of Z0 > χ2

2,α

for an α-level test. It is also simply an exponential distribution with a mean of
2.0 and thus the p-value is given by

p = e−Z0/2. (19.9)

A Monte Carlo analysis was conducted to assess the null distribution of Z0

to determine the effect of using estimates in the transformation process. Values
of the shape parameter from 0.1 to 6.0 were used for sample sizes from 10 to 100.
Critical values of α = 0.025, 0.05, and 0.10 were used. The simulation was based
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on a sample of 10,000 for each combination of sample size and shape parameter.
A review of these results indicates that there was no systematic change in the
critical values as a function of either sample size or value of the shape parameter.
The empirical critical values fluctuated around the theoretical values for a chi-
squared two degree of freedom distribution deviating in most cases by less than
3σ from the theoretical value. Here σ =

√
pq/N where N = 10, 000. A further

analysis of the type I error of Z0 using the chi-squared distribution with two
degrees of freedom was conducted using simulations. Empirical type I errors for
Z0 were generated with α = 0.025, 0.05, and 0.10 for sample sizes from 10 to 100
and values of the shape parameter between 0.1 and 6.0 as before. Once again
the results indicated that the differences between the results and the nominal
values were trivial and did not vary as a function of parameter nor sample size.

Thus a test for the type I Pareto distribution is obtained via the following
steps.

1. Obtain the estimate of the scale parameter using the maximum likelihood
estimator from (19.3).

2. Transform the data to T = ln(X/X1) where X1 is the smallest data
value. Note that this transformation converts the shape parameter to a
scale parameter and the scale parameter to the origin parameter of zero.
As pointed out in Section 19.1, the transformed data will be exponential
with origin of zero and a scale parameter of α.

3. Compute Z1 from (19.6) and Z2 from (19.7) using the ordered T ′
i s for the

ordered X ′s to obtain the Y ′
i s, TY ′

i s, and the U ′
is in these equations.

4. Compute Z0 from (19.8).
5. Reject the null hypothesis of a Pareto type I distribution if Z0 > χ2

2,α for
an α-level test. The critical values of the chi-squared distribution with two
degrees of freedom for α = 0.025, 0.05, and 0.10 are 4.605, 5.991, and 7.378.
Note this is an upper-tail test and that this procedure is a modification
of the Brain and Shapiro (1983) procedure where a correction for sample
size was needed. In the Pareto test the origin parameter is known to be
zero and this places a constraint on the test statistic possibly resulting in
eliminating the need for the correction and increasing the power of the
procedure.

6. The p-value for the test is obtained from (19.9).

19.4 Power Study

The measure of the value of a test procedure is how well it performs when
used with a variety of alternative distributions. In order to assess the proposed
procedure a Monte Carlo study of the power of the test was conducted. The
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study was based on 10,000 Monte Carlo runs for each sample size and alternative
distribution. The following alternative distributions were used.

1. Weibull shape parameters 0.25, 0.5, 0.75, and 2.0
2. Half-normal σ = 1.0
3. Gamma shape parameter 0.5
4. Lognormal shape parameter 1.0

The results of the power study for these distributions are given in Table
19.1 for α = 0.05 which show that the power was more than 0.90 for samples
of size 20 and higher except in the case of the lognormal distribution where the
power was only 0.70 for a sample size of 20. The power reached 0.90 for the
lognormal for samples of 30 or higher.

The power of the chi-squared test was compared with the above procedure
in the following manner.

1. A sample of size n was generated from the alternate distribution.
2. The two parameters σ and α were estimated using Equations (19.3) and

(19.4) and the unbiased estimator of α was obtained by multiplying by
n/(n− 2).

3. The intervals (0, L1), (L1, L2), . . . , (L7,∞) were calculated, where

Li =
σmle

(1− 0.125i)
1

σmle

.

Thus the expected number for each interval is 0.125 ∗ n.
4. These intervals are constructed so that probability of being in each interval

is the same. The probability of observing a value in each interval is 0.125n
under the null hypothesis.

5. The chi-square test using five degrees of freedom was used.

The power study for the chi-square test was limited to samples of 40 or
higher in order to ensure that the expected number per cell was at least five.
The power of the two procedures was comparable (see Tables 19.1 and 19.2);
however, the proposed test can be used for smaller sample sizes and does not
require dividing the data into cells where the results may depend on the number
of cells chosen.

19.5 Type II Pareto Distribution

The first step in testing for the type II Pareto distribution involves the estima-
tion of the underlying parameters θ and k. The maximum likelihood estimates
of the parameters are obtained by solving the nonlinear equation for θ given
below:
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Table 19.1. Power of the Pareto test for various alternate distributions, type I
error = 0.05

N WE (0.25) WE (0.5) WE(0.75) WE(2) G(0.5) HN LN

20 0.9391 0.9408 0.9403 0.9383 0.9737 0.9707 0.7034
30 0.9971 0.9980 0.9998 0.9984 0.9993 0.9996 0.9515
40 0.9998 0.9999 1.000 1.000 1.000 1.000 0.9952
50 1.000 1.000 1.000 1.000 1.000 1.000 0.9992
60 1.000 1.000 1.000 1.000 1.000 1.000 1.000
70 1.000 1.000 1.000 1.000 1.000 1.000 1.000
80 1.000 1.000 1.000 1.000 1.000 1.000 1.000
90 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000

WE(η) = Weibull with shape parameter η.
G(η) = gamma shape parameter η.
HN = half-normal σ = 1.

LN = log-normal σ = 1.

Table 19.2. Power of the chi-square test for various alternate distributions, type
I error = 0.05

N WE(0.25) WE (0.5) WE (0.75) WE(2) G(0.5) HN LN

40 0.9997 0.9997 0.9997 0.9999 1.000 1.000 0.9851
50 1.000 1.000 1.000 1.000 1.000 1.000 0.9968
60 1.000 1.000 1.000 1.000 1.000 1.000 0.9995
70 1.000 1.000 1.000 1.000 1.000 1.000 1.000
80 1.000 1.000 1.000 1.000 1.000 1.000 1.000
90 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 1.000 1.000 1.000 1.000 1.000 1.000 1.000

WE(η) = Weibull with shape parameter η.
G(η) = gamma shape parameter η.
HN = half-normal σ = 1.

LN = log-normal σ = 1.

f(θ̂) =

(
1 + (1/n)

n∑
i=1

ln(1 + θXi)

)
�

(
(1/n)

n∑
i=1

(1 + θXi)−1

)
= 0. (19.10)

Using θ̂, the estimator of k, k̂ is given by:

k̂ =
∑n

i=1 ln(1 + θ̂Xi)
n

. (19.11)

To solve Equation (19.10), we used the iterative method proposed by
Grimshaw (1993). In some cases the procedure did not converge. In these cases
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we switched to using a probability weighted moment procedure developed by
Hosking and Wallis (1987). In these cases the model was reparametrized to
model (19.12). (The initial parameterization is given in Section 19.2.)

F (x) = 1−
(

1 +
k

α
x

)1/k

. (19.12)

The estimators for this model are

α̂ =
2α0α1

α0 − 2α1
(19.13)

k̂ =
α0

α0 − 2α1
− 2, (19.14)

where

α0 = X̄

α1 =
1
n

n∑
j=1

(1− p(j))X(j); X(1) ≤ X(2) ≤ · · · ≤ X(n)

and
pj =

j − 0.35
n

.

Thus the estimated parameters in terms of the original model (19.2) are
given by:

k̂ = −k̂∗ and θ̂ =
k̂

α̂
.

These estimators exist provided that 0 < k < 1 This assumption is not
overly restrictive because according to Hosking and Wallis (1987) values of
k > 1/2 rarely occur in practice.

The estimation procedure goes as follows.

1. Set θ equal to 1 to start. Hosking and Wallis (1987) indicate that the
estimation procedure is not affected by the initial value of θ.

2. Generate the Xs from the type II Pareto distribution.
3. Using the MLE procedure for model (19.2) estimate θ and k.
4. If the MLE does not exist use the probability weighted moment procedure

with (19.12).
5. In the case where the estimator of k using the method of Hosking and

Wallis is negative we set k̂ = 0.005 and let θ̂ = 0.005/α̂.
6. Transform the data using

Ti = ln(1 + θ̂Xi); i = 1, 2, . . . n.
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7. Use the T s as input to the test procedure as shown in Section 19.3 sub-
stituting the T s for the Xs in that section.

8. The p-value can be obtained as described in Section 19.6.

As in the case of the type I Pareto, a simulation study was conducted to
assess the performance of these estimators. Biases and mean square errors of
the estimators were computed for a total of 10,000 simulation runs. In all the
runs, the scale parameter was set at 1.0 and the shape parameter varied from
k = 1 down to k = 0.2 for samples ranging from 30 to 100. Note that the
only statistic of interest in this study is the estimator of the shape parameter
because the distributional test statistic is scale invariant.

The estimators for the shape parameter k were quite good with the highest
errors arising when k = 1; the maximum MSE was less than 0.15 when n = 30
and less than 0.11 for higher values of n. The maximum value of the MSE
for values of k of 0.5 or less was less than 0.07 and dropped to less than 0.02
for k = 0.2. The proportion of cases where the MLE did not converge and the
probability weighted moment estimators had to be used was also recorded. This
proportion was low when k = 1, less than 0.01, but increased as k decreased
to k = 0.2; reaching up to 0.3 in some cases. The proportion decreased with
increasing sample size.

In this study the important concern is not so much the MSE of the estima-
tors but how the estimation procedure affects the power of the test of the dis-
tributional assumption. This effect on the power is investigated in Section 19.7.

19.6 Null Distribution of the Proposed Procedure

and Power Study

A simulation of 10,000 runs was used to determine the null distribution of the
Shapiro–Brain statistic Z0 for values of n between 30 and 100 and k between
1.0 and 0.2. The scale parameter was set at 1.0. Critical values corresponding to
0.01, 0.075, 0.05, and 0.025 were determined. There was no systematic change in
the critical values as a function of either n or k. As a further check a regression
function for each of the critical values as a function of n and k showed little
relationship between them and the critical value. Therefore the critical values
for each value of n and k were averaged together to determine the critical
values of Z0 for each of the levels of the test. Unlike the results for the type I
case, these averages were closely approximated by a one degree of freedom chi-
squared distribution. In order to check on this supposition the critical values
from this distribution were used to compute the simulated critical values for
test levels of 0.1, 0.05, 0.025, and 0.01 for samples of size 30 to 100 and k from
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1.0 to 0.2. Once again the variation of the simulated critical values in the range
investigated is nominal and thus the approximation for the null distribution is
adequate. Note that the chi-squared distribution with one degree of freedom is
the square of a standard normal distribuiton and so the p-value of the test can
be obtained directly from normal tables.

19.7 Power of the Proposed Procedure

The power of the procedure for type II Pareto was studied against a variety of
alternative distributions. The study was based on 10,000 Monte Carlo runs for
each sample size and alternative distribution. The following alternative distri-
butions were used.

Weibull shape parameters 0.25–2.0 (0.25)
Half-normal σ = 1.0
Gamma shape parameters 0.25–2.0 (0.25)
Lognormal shape parameters 0.50–2.0 (0.25)

The results of the power study for these distributions are given in Tables
19.3–19.5 for α = 0.05.

For both the Weibull and the gamma distributions the power was extremely
high for values of the shape parameter far away from 1.0, reaching 1 for a
number of cases. For shape parameters of 0.75 and 1.25, the power dropped
down considerably ranging from 0.1555 (gamma, shape 0.75, n = 30) to 0.4760
(gamma, shape = 1.25, n = 100). In all these cases, the power for the Weibull
distribution was generally higher than that for the gamma. For shape parameter
equal to 1 (the case of the exponential distribution), the power was low for
both cases (staying between 0.095 to 0.1004 for all sample sizes). This is not
unexpected because in the limit as k → 0, the Pareto distribution approaches

Table 19.3. Power of the Pareto II test for the Weibull, type I error = 0.05

N WE (0 .25 ) WE (0 .5 ) WE (0 .75 ) WE (1 ) WE (1 .25 ) WE (1 .5 ) WE (2 .0 )
30 0.9121 0.5387 0.1555 0.0951 0.3790 0.7968 0.9975
40 0.9750 0.6915 0.2030 0.0957 0.4777 0.8949 0.9999
50 0.9935 0.8002 0.2480 0.0957 0.5604 0.9562 1.000
60 0.9989 0.8816 0.2920 0.0977 0.6253 0.9800 1.000
70 0.9996 0.9253 0.3432 0.0980 0.6873 0.9922 1.000
80 1.000 0.9557 0.3837 0.0977 0.7493 0.9966 1.000
90 1.000 0.9745 0.4283 0.1004 0.7984 0.9987 1.000
100 1.000 0.9854 0.4676 0.0965 0.8383 0.9988 1.000

WE (η) = Weibull with shape parameter η.
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Table 19.4. Power of the Pareto II test for the gamma, type I error = 0.05

N G(0.25) G(0.5) G(0.75) G(1.25) G(1.5) G(2.0)
30 0.9500 0.4658 0.1298 0.2201 0.4399 0.8270
40 0.9871 0.6009 0.1564 0.2573 0.5314 0.9222
50 0.9964 0.7147 0.1881 0.2906 0.6256 0.9677
60 0.9993 0.7989 0.2129 0.3298 0.6998 0.9847
70 1.000 0.8567 0.2476 0.3699 0.7636 0.9955
80 1.000 0.9039 0.2863 0.4038 0.8134 0.9973
90 1.000 0.9353 0.3048 0.4419 0.8502 0.9995
100 1.000 0.9534 0.3336 0.4761 0.8849 0.9998

G(η) = Gamma shape parameter η.

Table 19.5. Power of the Pareto II test for the half-normal and log-normal,
type I error = 0.05

N HN LN(0.5) LN(1.0) LN(1.5)
30 0.4449 1.000 0.3636 0.0360
40 0.5528 1.000 0.4586 0.0388
50 0.6515 1.000 0.5474 0.0363
60 0.7348 1.000 0.6287 0.0403
70 0.8027 1.000 0.7015 0.0377
80 0.8563 1.000 0.7561 0.0376
90 0.8928 1.000 0.8024 0.0397
100 0.9238 1.000 0.8445 0.0375

LN(η) = Lognormal with shape η.

HN = Half-normal distribution.

the exponential distribution.
In the case of the half-normal distribution, the power ranged from 0.4449

(n = 30) to 0.9238 (n = 100). Finally, for the lognormal, the power was ex-
tremely low for values of σ greater than 1; ranging from 0.0360 (n = 30, σ = 1.5)
to 0.2933 (n = 100, σ = 2). For values of σ below 1, the power increased rapidly
reaching almost 1 for almost all sample sizes for σ = 0.5. The results are not
surprising because the lognormal distribution becomes more heavily skewed as
σ increases making it very hard to differentiate between the two models.
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19.8 Examples

A random sample of 55 payments made by a reinsurance agency that pays
insurance companies the excess losses they suffered from their payout of claims
was used to investigate the tests described in Sections 19.3 and 19.5. The data
consist of payments made between 1990 and 1993 and include payments made
for pension actuaries and property and liability actuaries [see Tables 1.3 and 1.4
in Klugman et al. (1998)]. It was of interest to find out whether one could use one
Pareto model for both pension and property and liability claims. The following
steps illustrate the calculations necessary for testing the composite hypothesis
that the data came from a type I distribution with unspecified parameters.

1. The estimate of the scale parameter σ = X1 = 189 which is the smallest
payout.

2. Transform the data using T = ln[X/189].

3. Using (19.6) and (19.7) Z1 = 5.813 and Z2 = 2.497.

4. From (19.8) Z0 = 40.0267 and from (19.9) the p-value is close to zero.

5. Thus it is highly improbable that a type I Pareto distribution can be used
to model this dataset. The data cannot be combined or another model
must be found.

The type II model was also tested for use with the combined dataset. The
maximum likelihood equations converged and the estimates of k and θ were
2.8278 and 0.0001, respectively. This yielded a value of Z0 of 10.55 resulting in
a p-value close to zero. Thus a single Pareto model cannot be used to describe
this dataset.

In Choulakian and Stephens (2001) a dataset consisting of 72 exceedances of
flood peaks of the Wheatan River in the Yukon Territory, Canada was analyzed
to determine if a generalized Pareto model could be used to model the data.
They applied both of the two procedures given in that paper and obtained
p < 0.025 from one and p < 0.01 for the other. Using these data for the
proposed test, it was found that the maximum likelihood procedures did not
converge and hence the probability weighted moments were employed. This
resulted in estimates of k and θ of 0.10257 and 0.009358 yielding a value of Z0

of 6.4968. The p-value was 0.0108. Thus the results agreed closely with those
in the cited paper without use of special tables.
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19.9 Conclusions

This chapter has presented a simple test procedure for assessing the probability
that a random sample could have come from a Pareto type I distribution. The
procedure uses the log transformation to convert the data to an exponential
distribution with an origin of zero. A modification of a test for the exponential
proposed by Brain and Shapiro was used to assess this hypothesis where the
test statistic has a chi-squared two degrees of freedom distribution for sample
sizes of 10 or over. The p-value for a test can be obtained from tables of this
distribution or simply by using an exponential with a mean of 2.0. Monte Carlo
results showed that this approximation was close to a two degree of freedom
chi-square distribution and the type I errors were very close to the nominal
values. A Monte Carlo study indicated that the procedure had a high power
against almost all distributions included in the study.

The estimation of the parameters for the type II test procedure is more
complex because the maximum likelihood equations may not always converge.
An alternative procedure to handle these cases, the use of probability weighted
moments, was given. Once the estimates were obtained the same Brain and
Shapiro technique was used to test for exponentiality. The resulting null dis-
tribution could be approximated by chi-squared one degree of freedom or the
square of a standard normal random variable distribution. Simulations results
indicated that the approximation could be used to represent the test statistic
for samples of 30 or higher.

Thus both procedures have the advantage that no special tables are needed
to compute the test statistic or find the p-values.
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Application of Inverse Problems in Epidemiology

and Biodemography

A. Michalski

Institute of Control Sciences, Moscow, Russia

Abstract: Inverse problems play an important role in science and engineering.
Estimation of boundary conditions on the temperature distribution inside a
metallurgical furnace and reconstruction of tissue density inside a body on
plane projections obtained with x-rays are some examples. Different problems in
epidemiology, demography, and biodemography can be considered as solutions
of inverse problems as well: when using observed data one estimates the process
that generated the data. Examples are estimation of infection rate on dynamics
of the disease, estimation of mortality rate on the sample of survival times,
and estimation of survival in the wild on survival in the laboratory. A specific
property of the inverse problem—the instability of a solution—is discussed and
a procedure for the solution stabilization is presented. Examples of morbidity
estimation on incomplete data, HIV infection rate estimation on dynamics of
AIDS cases, and estimation of the survival function in a wild population on
survival of captured animals are presented.

Keywords and Phrases: Inverse problem, epidemiology, biodemography, in-
complete follow-up, HIV infection rate, AIDS, survival in wild

20.1 Introduction

Interpretation of observations in different disciplines of life science and engi-
neering can be considered as estimation of a process using observations from
another process related to the one estimated. Depending on the problem setting
the objective can be estimation of a signal in the presence of noise, numerical
calculation of derivatives, calculation of boundary conditions on the values of

275
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temperature distribution inside a metallurgical furnace, and reconstruction of
tissue density inside a body on plane projections obtained with x-rays. Similar
problems arise in epidemiology, when a disease prevalence (proportion of sick
people in different age groups) can be obtained but incidence rate (probability
of a healthy person to become sick during say, one year) is to be estimated.
In demography and biodemography calculation of mortality rates form similar
problems. The proportion of survived people is observed but the chance of dying
during one year is of primary interest. These chances influence the numbers of
survivors and are used in the calculation and projection of the life expectancy
and the population age structure.

In all these examples the value of the “effect” can be estimated on popula-
tion observations whereas the direct estimation of the “cause” is impossible or
expensive. On the other hand information about the cause often is important
for better understanding of the phenomenon investigated and mathematical
methods for estimation of cause on effect data are needed. All these problems
form a class of mathematical problems called inverse problems contrary to for-
ward problems when the estimation process follows the cause–effect line. Many
inverse problems important for practice have a solution which is very sensitive
to disturbances in the data. In epidemiology, demography, and biodemography
variations in data arise because of the probabilistic nature of the process and
the limited number of observed subjects. As a result one has extremely large
changes in the estimates even when the amount of data increases.

The inverse problems are presented in statistical analysis as well. Estimation
of the probability density function on the independent sample is an inverse
problem with an unstable solution. One has to apply additional constraints on
the estimate to guarantee the convergence of the estimate to the real probability
density function when the amount of data increases. In a histogram estimate
the restriction can be applied in the form of dependence between the number
of cells and the number of elements in the sample. In the kernel estimates the
restriction is applied in the form of dependence between the kernel width and
the sample size. The introduction of parametric estimation can be considered
as a way to stabilize an unstable estimate as well.

Formal consideration of inverse problems, statistical consideration, and pro-
cedures for solution stabilization are presented in the next section. Three ex-
amples with the results of calculations are presented in the other sections. They
are: estimation of morbidity on the results of incomplete follow-up, estimation
of HIV infection rate on the dynamics of AIDS cases, and estimation of survival
in a wild population on survival of the captured animals in the laboratory.
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20.2 Definition and Solution of Inverse Problem

In formal terms the inverse problem is a problem of the solution of an operator
equation

Ax = y, (20.1)

where A is a bounded linear operator between infinite-dimensional functional
Hilbert spaces X and Y ; x and y are elements from these spaces. Function
y plays the role of observations or effect; function x plays the role of cause-
produced observed effect. It is supposed that operator A makes one-to-one
mapping between spaces X and Y . The solution of Equation (20.1) is a function,
defined as

x = A−1y,

where A−1 is the inverse operator of A which is linear as well. It is proved
that if the range R (A) for A is nonclosed, then operator A−1 is unbounded
[Tikhonov and Arsenin (1977) and Engl et al. (1996)]. The latter means that
if one substitutes a “disturbed” function yδ ∈ Y such that ‖y − yδ‖ ≤ δ in
(20.1) then the disturbance in the corresponding solution A−1yδ may be infinite.
Here ‖y‖ denotes the norm of y. More precisely: for any small value δ and any
large value ∆ there exists a function yδ

∆ ∈ Y such that ‖y − yδ
∆‖ ≤ δ and

‖A−1y −A−1yδ
∆‖ > ∆. The unboundedness of the inverse operator makes it

impossible to guarantee that the solution found on the perturbed data will be
close to the solution, corresponding to the unperturbed data.

The general approach to the solution of equations with an unbounded inverse
operator, called ill-posed equations, was formulated in Tikhonov and Arsenin
(1977) as the minimization of a regularized functional Jα (x) = ‖Ax− yδ‖2 +
α‖Bx‖2, where α > 0 is a regularization parameter, and B is an unbounded
operator defined at functional set D (B) ⊆ X such that Bx ⊆ X. Minimization
is to be done in D (B), the region of definition of the operator B. The problem
of proper selection of the regularization parameter value is widely discussed in
the literature. For special case B = Ds, where D is a differential operator and
s is some nonnegative real number, Natterer (1984) has shown that under the
assumptions ‖DpA−1y‖ ≤ E and m‖D−αx‖ ≤ ‖Ax‖ ≤ M‖D−αx‖ with some
constants E, m, and M , regularized solution xα provides approximation of the
real solution with bound ‖xα −A−1y‖ = O

(
δp/(α+p)

)
for s ≥ (p− α) /2 if α is

chosen prior as α = cδ2(α+s)/(α+p) with some constant c. Posterior selection of
a regularization parameter can be done using Morozov’s discrepancy principle
[Morozov (1993)] which prescribes selecting parameter α as the solution of the
equation ‖Axα − yδ‖ = Cδ, where C ≥ 1 is a constant. The efficiency of this
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approach has been proved in many applications [Nair et al. (2003, 2005)]. Proce-
dures of regularization parameter selection in the case of stochastic disturbances
in yδ are considered in Lukas (1998), and Engl et al. (2005).

The statistical estimation as an inverse problem was considered in Vapnik
(1982), O’Sullivan (1986), and Evans and Stark (2002). The statistical esti-
mation procedure can be considered as the minimization of an averaged risk
functional on the empirical data. In nonparametric estimation the dimension of
the estimate is infinite and the result is unstable just as in the case of solution
of the ill-posed problem. The method of sieves [Geman and Hwang (1982) and
Shen (1997)], spline and ridge regressions, and penalized likelihood are regu-
larization methods for minimizing the empirical risk functional. The form of
the averaged risk functional depends on the problem under consideration. For
regression estimation the averaged risk functional is

J (x) =
∫

(y − x (t))2 dP (t, y),

where t and y are random variables with joint distribution function P (t, y),
and x (t) is a function from a functional class F . The averaged risk value can
be estimated using random sample T = {t1, y1, . . . , tm, ym} of independent re-
alizations of t and y by the empirical risk functional

Je (x) =
1
m

m∑
i=1

(yi − x (ti))
2.

Minimization of the empirical risk in F is the classical least square procedure
and can be used without supposition about conditional normality of the random
variable y. If the class F is restricted by the smoothed functions, then the
minimizer of Je (x) is the spline; the class F of polynomials corresponds to
estimation of the polynomial regression.

The other form for the averaged risk functional is the Kullback–Leibler
entropy

J (x) = −
∫

ln px (t, y) dP (t, y),

where px (t, y) is the probability density function for distribution of the random
pair (t, y), which corresponds to the function x (t). The empirical risk functional
is proportional to the log-likelihood functional, obtained from the independent
sample T ,

Je (x) =
−1
m

m∑
i=1

ln px (ti, yi),

minimization of which is the method of maximal likelihood. The constrained
maximization of the log-likelihood functional leads to the method of penalized
likelihood maximization.
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Many procedures are used for selection of the smoothing parameter value
which stands for the regularization parameter. The cross-validation technique
and Bayesian approach are among them. Different approaches and methods are
presented in Evans and Stark (2002). Vapnik (1982) described for this purpose
the method of structural risk minimization. The method operates by an estimate
for the uniform in subclass Fc ⊂ F deviation between the empirical risk and
the averaged risk, which can be obtained from the inequality

P

{
sup
x∈Fc

|J (x)− Je (x)| ≥ ε

}
≤ η,

which allows us to say that with probability not less than 1− η it holds

min
x∈Fc

J (x) < min
x∈Fc

Je (x) + ε (Fc, η) .

The right part of the last inequality can be used to build the procedure for
data-driven selection of the proper subclass Fc, which is equivalent to selection
of the regularized parameter value. The details can be found in Vapnik (1982,
1998) and Chapelle et al. (2002).

A simple procedure for regularization parameter selection using a finite sam-
ple of observations was described in Mikhal’skii (1987). Suppose that in the
sample T = {t1, y1, . . . , tm, ym} the elements tj are fixed and the elements yj

are random, y = Ax0 + ξ, y is a vector with coordinates yi, x0 is a vector with
n coordinates presenting the real solution for the undisturbed equation, A is an
m×n matrix, ξ is a random vector with m coordinates ξi such that E (ξi) = 0,
and var (ξi) = σ2, cov (ξi, ξj) = 0, and i, j = 1, . . . ,m. Denote xα the regularized
solution obtained by minimization of the functional ‖u−Ax‖2 + α‖Bx‖2 and
Aα = A

(
ATA + αBT B

)−1 AT . For α such that m > 2TrAα, with probability
no less than 1−η the inequality is valid [Mikhal’skii (1987)],

Eu,y‖y −Axα‖2 ≤
‖u−Axα‖2

1− 2TrAα/m
+ σ2 +

√
r/η. (20.2)

The constant r is defined by eigenvalues of matrices A and B, by the square
norm of vector x0, and by the second and the fourth moments of the random
values ξi. The left side of (20.2) is the mean value of disagreement between the
possible vectors of experimental and predicted data. The expectation is taken
over y and u. To reduce this value one can use parameter α, which minimizes
a criterion

Iα = ‖u−Axα‖2/ (1− 2TrAα/m) . (20.3)

The quantity ‖u−Axα‖2 is the square residual for empirical data.
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The criterion Iα shows a resemblance to the cross-validation criterion Icv
α =

‖u−Axα‖2/ (1− TrAα/m)2 [Stone (1974)]. For the large values of m these
two criteria are equivalent because (1− TrAα/m)2 = 1− 2TrAα/m + o (1/m).
For small values of m the criterion Iα produces better results than criterion Icv

α

[Mikhal’skii (1987)].

20.3 Estimation on Incomplete Follow-Up

In longitudinal studies a problem of incomplete response rate exists. This means
that not all members of the investigated cohort participate in surveys, con-
ducted in different years. In this case estimates should be corrected to avoid a
possible bias. Let λi be a probability to diagnose the disease of interest, nj is the
number of examined people who were healthy before the ith survey, and di is
the number of diagnosed cases in the ith survey. If all ni people were diagnosed
as being healthy in the (i− 1)th survey then the relationship is valid,

E (di) = λini.

If ni1 persons among ni were not observed in the (i− 1)th survey and were
diagnosed as being healthy in the (i − 2)th survey then the above relationship
takes the form

E (di) = λi (ni − ni1) + (λi + λi−1)ni1 + O (λiλi−1)
= λini + λi−1ni1 + O (λiλi−1) .

In the same way one can obtain the presentation

E (di) ≈
i∑

j=1

λjnij,

where nij is the number of persons investigated in the ith survey, which partici-
pated last time in the jth survey and were diagnosed as being healthy, nii = ni.
In this consideration we assume that nonresponses at different years are inde-
pendent events with constant probability and that there is no cure from the
disease. The last assumption corresponds to the case of incurable disease and
to the investigation of the first occurrence of the disease. Estimation for the
disease incidences in different years obtain from the relationships

di

nii
≈

i∑
j=1

nij

nii
λj , i = 1, . . . ,
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which leads to the solution of a matrix equation

u = Aλ

with u denoting the vector of the proportion of diagnosed cases among observed
people by years of investigation, and λ is a vector of probabilities for a healthy
person to become sick during one year by years. A is a triangular matrix with
1 at the main diagonal and below the diagonal elements equal to the proportion
of people, examined in the year i and healthy before, among those who skipped
the examination in the year j after the last examination. In the case of a com-
plete follow-up when all people participate in all surveys the matrix A is the
identity matrix and the morbidity estimates for different years are just the ratio
between the numbers of cases and the numbers of healthy people examined in
the same year. Stabilization of the matrix equation was made by minimization
of the functional

‖u−Aλ‖2 + αΩ (λ)

with regularization functional Ω (λ) = ‖Bλ‖2 = λT BTBλ, B is a matrix with
two nonzero diagonals. It holds −1 at the main diagonal and 1 at the second.
This structure of the regularization functional reflects the hypothesis that the
morbidity does not demonstrate sharp changes in subsequent years.

The described approach was applied for estimation of malignant neoplasm
(ICD9 140-208) morbidity among participants in the clean-up operations after
the accident at the Chernobyl Nuclear Power Station in 1986 [Michalski et al.
(1996)]. The results of the annual health examinations of the clean-up workers
were extracted from the database of the Russian National Medical-Dosimetric
Registry, which at the end of 1993 contained information about 159,319 clean-
up workers [Morgenstern et al. (1995)]. Each year in the period 1987–1993
about 70% of the registered people participated in the health examinations.
Some people skipped one, two, or more examinations and then participated
again. No correlation between nonparticipation in the health examination and
the health status or any other factors were observed. In addition every year
new people, who started work in the rectification zone, were registered and
joined the annual health examinations. It was supposed that at the beginning
of registration all people were healthy. The observed morbidity of malignant
neoplasms demonstrated the rapid growth from 0 in 1986 up to 326 per 100,000
in 1993. This growth can be attributed to the effect of radiation, absorbed
during work in the radiation-contaminated area, to other risk factors for health
and to the gaps between the health examinations. In the last case the event
of the disease is attributed to the year of the health examination even if it
took place before but was missed because of missing the health examination
in the proper year. The adjustment of the morbidity estimates to such follow-
up incompleteness allows us to reduce the deformations and clarify the role of
radiation and other risk factors in the morbidity dynamics.
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Table 20.1. Number of examined people, number of diagnosed malignant neo-
plasm cases, incidence estimates per 100,000 without and with adjustment for
missing observations

Year of Survey 1987 1988 1989 1990 1991 1992 1993
Examined people 2955 6343 6472 7100 7061 7512 7367
Diagnosed cases 1 3 5 6 11 14 24
Incidence estimate
(without adjustment)

34 47 77 84 156 186 326

Incidence estimate
(with adjustment)

24 40 62 85 119 150 184

Table 20.1 presents the results of estimation using a random sample of
records of 11,043 clean-up workers, registered in the Russian National Medical-
Dosimetric Registry up to 1993. The table includes the number of people
examined in different years, number of diagnosed cases, and two estimates for
malignant neoplasm incidence, without adjustment for missing observations and
with it. The value for the parameter α was selected using the criterion (20.3).
Estimates show that adjustment for the missing observations reduces the rate
of the malignant neoplasm morbidity growth in time. The effect of “morbid-
ity accumulation” is to be adjusted in estimations of the health effects on the
results of incomplete follow-up studies.

20.4 Estimation of HIV Infection Rate
on the Dynamics of AIDS Cases

HIV infection is a “cause” for development of the AIDS syndrome. Monitoring
of the HIV infection process is essential for control of HIV spread in different risk
groups, for elaboration of HIV spread protection measures, and for projection
of future development of an HIV/AIDS epidemic. One important characteristic
of the epidemic is the current number of HIV-infected people in the population.
Assessment of this number is difficult, needs big funds, and estimates made by
independent experts can be very different.

One of the possible approaches to estimation of the number of HIV-infected
people in a population or in a risk group is estimation of the HIV infection
rate using the dynamics of AIDS case diagnoses. This approach is known as
the backcalculation method and is widely applied in the statistical analysis of
the HIV/AIDS epidemic [Brookmeyer and Gail (1988), Bacchetti et al. (1993),
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Bellocco and Pagano (2001), and Sweeting et al. (2006)]. The main idea of the
approach is to use the epidemiological data on AIDS to find a solution for the
convolution equation, which describes the AIDS epidemic given HIV infection
process. Different authors use different assumptions to produce the solution for
the problem. Becker et al. (1991) considered HIV incidence at different years as
Poisson distributed random values from which the likelihood for the observed
AIDS counts was constructed and a smoothed EM algorithm was applied to
make the nonparametric estimate for HIV incidence. Tan and Ye (2000) ap-
plied the Kalman filter approach for estimation of the HIV infection process by
consideration of submodels: the stochastic model of the system, the model of the
HIV epidemic, and the observation model for available AIDS data. Aalen et al.
(1997) composed a discrete Markov chain model for HIV incidence estimation
which incorporated information about time of HIV diagnosis and treatment.
Sweeting et al. (2006) formulated the backcalculation method in a multistate
formulation using a Bayesian framework. Many authors use the penalized like-
lihood maximization approach for construction of HIV-related estimates [Liao
and Brookmeyer (1995) and Joly and Commenges (1999)].

In this section the method of estimating the HIV infection rate is constructed
as a method for the regularized solution of an ill-posed integral equation. Appli-
cation of the criterion (20.3) for regularization of the HIV infection rate estimate
when the number of observations is small is demonstrated by the results of a
simulation experiment. The number of people infected by HIV in year t at age
x Ψ(t, x) is related to the number of AIDS diagnoses in year t at age x U(t, x)
by an integral equation [Michalski (2005)]:

U (t, x) =

x∫
0

L (x, s)exp

⎛⎝− x∫
s

µc (t− x + τ, τ ) dτ

⎞⎠Ψ (t− x + s, s) ds, (20.4)

where µc(t, x) is mortality in year t at age x and L(x, s) is the probability density
function for distribution of AIDS diagnoses at age x if at age s a person was
infected with HIV. This function includes a time period for AIDS development,
time for AIDS “recognition” by the health care system, and probability to miss
the case as well. Age-specific mortality is supposed to be known, function L(x, s)
can be estimated from the clinical data, and data about AIDS cases among
patients who were infected with HIV during blood transfusion, from different
specialized studies. Construction of a proper distribution function L (x, s) is
a complex task. It should reflect the manner of infection, effect of possible
retroviral prevention, and lengthening of incubation period with time [Bacchetti
et al. (1993), Deuffic and Costagliola (1999), and Tan and Ye (2000)]. In this
chpater we do not consider all these problems and suppose the probability
density function L (x, s) to be given.
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Write Equation (20.4) in matrix form

U = AΨ,

where U and Ψ are vectors composed of values of functions U(.) and Ψ(.) for
corresponding birth cohorts, A is a block-diagonal matrix composed of trian-
gular matrices with elements for the kth cohort,

ak
ij =

⎧⎪⎨⎪⎩
0 sj > xk

i

L(xk
i , sj)exp

(
−

xk
i∫

sj

µc (dk + τ, τ) dτ

)
sj ≤ xk

i

.

The stabilized solution for (20.4) can be found by minimization of the
functional

‖y −AΨ‖2 + αΩ (Ψ) ,

and y is a vector composed of numbers of AIDS diagnoses in different years,

Ω (Ψ) =
∑

k

1
mk

mk∑
j=2

(
Ψk

j −Ψk
j−1

)2
.

The stabilized solution takes the form

Ψα =
(
ATA + αD

)−1
AT y,

and matrix D is a block-diagonal matrix composed of tridiagonal matrices. For
the kth cohort the matrix holds 2/mk at the main diagonal, −1/mk at the other
two diagonals, and 1/mk as the first and the last elements in the matrix.

Results of HIV infection rate estimation from AIDS diagnoses dynamics
were investigated using simulated data [Michalski (2005)]. In the simulations
the number of new HIV-infected people in year t at age x was given by a
hypothetical unimodal function

Ψ (t, x) =

{
0 x < 19

10−2exp
(
− (x−35)2

100

)
19 ≤ x ≤ 45

,

which supposes that there are no infection events at age younger than 19 years.
The probability density function for the incubation period was used in form

L (x, s) = 0.1 exp
(

x− s

10

)
,

which corresponds to 100% detection of the AIDS cases, constant intensity of
the AIDS case development for HIV-infected person, and mean duration of
incubation period equal to 10 years. The total mortality rate for ages 19–45
years was supposed to be 1% and independent of time and age. The role of
HIV infection in the total mortality was not included in the present model
because of its small effect on mortality for the countries with low prevalence of



Inverse Problems in Epidemiology and Biodemography 285

Table 20.2. Simulated number of HIV-infected people by age (per 100,000) and
its unstabilized and stabilized estimates

Age (Years) 31 32 33 34 35 36 37
Infected 852.1 913.9 960.7 990.0 1000.0 990.0 960.7
Not stabilized
(estimates)

873.8 955.3 962.9 958.4 1118.0 1039.3 862.6

Stabilized
(estimates)

939.5 953.2 972.6 989.8 995.6 976.1 935.0

Age (Years) 38 39 40 41 42 43 44
Infected 913.9 852.1 778.8 697.6 612.6 527.2 444.8
Not stabilized
(estimates)

700.1 122.16 724.3 326.6 674.5 788.8 76.4

Stabilized
(estimates)

885.2 828.8 740.3 652.0 593.9 548.2 508.9

HIV [United Nations (2003)]. The annual numbers of AIDS cases in ages 31–44
years was calculated by Equation (20.4). The calculated values were disturbed
by 5% random uniformly distributed noise with zero mean to simulate the
possible false-positive and false-negative AIDS diagnoses. All the parameters
and functions are presented here for illustrative purpose.

Table 20.2 presents results of the investigation. The stabilization parameter
value was selected using described criterion Iα (20.3). Comparison of the esti-
mates shows that the stabilized estimate is closer to the given annual numbers of
HIV-infected persons than the not stabilized. Application of the cross-validation
criterion [Stone (1974)] for the regularization parameter value selection led to
the solution which is close to the not stabilized one. This is a result of the small
number of observations for the annual numbers of AIDS cases which was equal
to 14.

20.5 Estimation of Survival in the Wild

Biodemography studies the effects of environmental and genetic factors on ag-
ing, disability, and mortality in animals [Carey and Vaupel (2005)]. The most
informative results are obtained in the laboratory under controlled conditions
and known date of the animal’s birth. The last is extremely important in stud-
ies of aging. Investigation of aging and survival in the wild is of great interest
as well because the organisms are observed in their natural surroundings which
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can be rather different from the artificial laboratory conditions [Finch and Aus-
tad (2001)]. Such investigations need a method to determine the age of capture
in the wild animal. The capture–recapture method can give information about
residual after capture survival but not about survival starting at birth. Muller
et al. (2004) proposed to apply a mathematical technique for estimation survival
in the wild population from the residual survival in the laboratory. Muller et al.
(2004) supposed that the animals are randomly captured in a stable, stationary,
and closed population. The probability to be captured does not depend on the
individual age. These assumptions are artificial but they can be realistic under
some conditions. The real population can be considered as stable, stationary,
and closed for the capturing period which is shorter than the period of signifi-
cant changes of population in number and in the age structure. In this case we
are investigating the survival which is specific to the population at that very
period. The assumption about equal probability for the animal to be captured
at different ages looks reasonable if capture is made with a trap as was done in
the investigation of Mediterranean fruit flies [Muller et al. (2004)].

Under the hypotheses of stationarity of wild population probability Pc (x)
to survive x days in the laboratory after capture is

Pc (x) = Ea (P {X > x|a}) =

ω∫
0

Slab (a + x)
Slab (a)

pw (a) da,

where Slab (a) is a probability to survive in the laboratory till the age at
capture a, pw (a) is the probability density function of age at capture in the
wild population, and ω is the maximal life span. In the stable wild population
pw (a) = 1/e0 Sw (a) and

Pc (x) =
1
e0

ω∫
0

Slab (a + x)
Slab (a)

Sw (a) da,

where e0 is the life expectancy at birth in the wild. Probability to survive in
the laboratory till the age a can be estimated from the reference cohort which,
in the case of fruit flies, can be reared in the laboratory from the fruit collected
in the same region where the flies were captured [Muller et al. (2004)]. The last
equation can be simplified under a hypothesis that mortality in the laboratory
does not differ from mortality in the wild, which does not look realistic but can
be used as a starting point if the reference cohort is not available. The resulting
equation is

Pc (x) =
1
e0

ω∫
0

Sw (x + a)da =
1
e0

ω∫
x

Sw (a)da. (20.5)

It is easy to obtain an analytical solution for this equation in the form

Sw (x) =
d

dx
Pc (x) /

d

dx
Pc (0) .
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This formula leads to the necessity to estimate the derivative from the proba-
bility to survive in the laboratory in captured animals Pc (x), which is unstable.
Muller et al. (2004) used the nonparametric kernel density estimate

d

dx
Pc (x) =

−1
nh (n)

n∑
i=1

K

(
x− x∗

i

h (n)

)
,

where x∗
1, . . . , x

∗
n is a sample of observed lifespans after capture; h (n) is a

sequence of proper selected values for bandwidth. The kernel functions were
defined as K (x) = 0.75

(
1− x2

)
, at [−1, 1] in the derivative estimation and

K0 (x) = 12 (x + 1) (x + 0.5) at [−1, 0] in estimation of the derivative value at
x = 0.

The alternative way of estimation survival in the wild is the numerical
solution of Equation (20.5) which leads to a matrix equation

Pc = ASw (20.6)

with triangular matrix

A =

⎛⎜⎜⎝
1/e0 1/e0 . . . 1/e0

0 1/e0 . . . 1/e0

0 0 . . . 1/e0

0 0 . . . 1/e0

⎞⎟⎟⎠ .

The diagonal and subdiagonal elements of the matrix A are the inverse of the
life expectancy e0, which can be estimated from the reference cohort survival.
The structure of matrix A is obtained from Equation (20.5) by a change from
integration to summation with a unit step.

Solution of Equation (20.6) was investigated by simulation. The “survival in
the wild” was modeled by the survival in the reference cohort of Mediterranean
fruit flies reared in the laboratory (J. Carey’s data, personal communication).
This survival is presented in Figure 20.1 by empty circles. The vector of survival
in the reference cohort was multiplied by the matrix A to model the residual
laboratory survival for randomly captured flies. Small random disturbances were
added to the residual survival to simulate an effect of estimation using a small
number of captured animals. The resulting survival curve is presented in Figure
20.1 by crosses.

Figure 20.1 presents the results of the solution of Equation (20.6) by regu-
larized functional minimization

Jα (S) = ‖Pc −AS‖2 + α‖BS‖2

where matrix B holds −1 at the main diagonal and 1 at the second diagonal.
The dashed line in Figure 20.1 presents the solution obtained for a = 0.001.
One can see instability in the solution. The solid line in Figure 20.1 presents
the solution obtained for α, which was selected by minimization on α of the
criterion (20.3).
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Figure 20.1. Survival in the wild (open circuits), calculated and randomly dis-
turbed survival among captured flies (crosses), estimate for survival in the wild
corresponding to small value (dashed line) and selected value for regularization
parameter (solid line).
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A Sampling-Based Chi-Squared Test

for Interval-Censored Data
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Abstract: The analysis of censored data has been mainly approached through
nonparametric or semiparametric methods. One of the reasons for the wide
use of these methods, as opposed to classical parametric approaches, lies in the
difficulty of checking the validity of a parametric model when data are censored.
In this work we propose a sampling-based chi-squared test of goodness-of-fit for
censored data. The proposed algorithm is an extension of the Bayesian quantile
chi-squared test proposed by Johnson (2004) for complete data.

Keywords and Phrases: Chi-squared test, goodness-of-fit test, interval cen-
soring, survival analysis

21.1 Introduction

Although the use of parametric models, both in a frequentist or in a Bayesian
framework, can be advisable in some situations, most applied methods in sur-
vival analysis are either non- or semiparametric. One of the reasons for the wide
use of these methods, as opposed to classical parametric approaches, lies in the
difficulty of checking the validity of a parametric model when data are cen-
sored. This is especially cumbersome under interval-censoring, which is a gen-
eral censoring scheme that includes the usual right-censoring and left-censoring
as special cases. Interval-censoring occurs when the exact survival time of each
individual cannot be observed and its value is only known to lie within a cer-
tain random interval. This kind of censoring often occurs in longitudinal studies
where patients are monitored periodically and the event of interest, for instance,
the recurrence of a tumor, is only detectable at specific times of observation such
as at the time of a medical examination.
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The problem considered in this chapter is to test the composite null hypoth-
esis that the survival time distribution belongs to a specific parametric family
of distributions based on interval-censored data. We propose a sampling-based
goodness-of-fit test based on a chi-squared statistic. Pearson’s chi-squared test
is one of the most classical tests of goodness-of-fit. As is well known, the appli-
cation of this test stands on a finite partition of the sample space in r classes
and in the discrepancy between the observed and the expected frequencies on
each member of the partition under the null hypothesis. There are two prob-
lems when trying to apply this statistic to our censoring situation. The first
one is that this statistic cannot be computed because the number of survival
times in each class is not observable if data are interval-censored. To avoid
this difficulty we propose the data-augmentation method for interval censor-
ing proposed in Calle (2003) based on sampling iteratively from the posterior
distribution of the parameter. The second problem that arises when trying to
apply Pearson’s statistic to a censoring situation relies on its asymptotic prop-
erties. Although the asymptotic distribution of Pearson’s statistic under the
simple null hypothesis is χ2 with r − 1 degrees of freedom, when the parame-
ter is unknown (composite hypothesis) and has to be estimated, its asymptotic
distribution depends on the estimation method. In particular, if the parameter
is estimated by maximum likelihood from the complete data the limit distribu-
tion of the statistic is no longer χ2. For this reason some modifications of the
classical Pearson’s test have been proposed [see Greenwood and Nikulin (1996)
for a detailed review of chi-squared testing methods]. In this work we base our
approach on a different version of the chi-squared test, the so-called quantile
chi-squared statistic which is more suitable for deriving asymptotical properties
in our interval-censoring situation than the classical one.

The goodness-of-fit test for interval-censored data proposed in this chapter
is an extension of the Bayesian quantile chi-squared test proposed by Johnson
(2004) for complete data, described in Section 21.2. In Section 21.3 we propose
a sampling-based goodness-of-fit test based on a quantile chi-squared statistic
for interval-censored survival data. The results of a small simulation study to
investigate the power of our test are presented in Section 21.4. A discussion
concludes the chapter.

21.2 Johnson’s Bayesian Chi-Squared Statistic

Let X1, . . . ,Xn be a random sample from a random variable X with cumulative
distribution FX . We wish to test the hypothesis H0 that FX ∈ C versus the
alternative hypothesis that FX /∈ C, where C = {F0(·, θ), θ ∈ Θ} is a specific
parametric family of distributions.
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Johnson’s quantile test fixes a vector (p1, . . . , pr) of probabilities such that∑r
j=1 pj = 1 and r > s+1 instead of considering a finite partition of the sample

space. Define ui = p1+· · ·+pj for j = 1, . . . , r−1 > s. For each value ui compute
the inverse distribution function F−1

0 (uj ; θ) which defines a partition of the
sample space: A1 = (−∞, F−1

0 (u1; θ)], A2 = (F−1
0 (u1; θ), F−1

0 (u2; θ)], . . . , Ar =
(F−1

0 (ur−1; θ),+∞).
The goodness-of-fit quantile statistic is given by

X2
n(θ) =

r∑
j=1

(mj(θ)− npj)2

npj
, (21.1)

where the count mj(θ) is the random number of observations that fall into the
jth class, Aj .

Note that the computation of X2
n(θ) requires the value of the unknown

parameter θ, which has to be somehow estimated. One of the good asymptotic
properties of the statistic X2

n(θ) given in (21.1) is that the value of θ can be
replaced by its maximum likelihood estimate and X2

n(θ) still behaves as a χ2

distribution with r − 1 degrees of freedom, independently of the dimension of
the parameter.

An alternative to maximum likelihood estimation would be to use, instead,
the posterior distribution of θ in a Bayesian parametric framework. Specifically,
Johnson (2004) proposed the following Bayesian quantile statistic,

X2
n(θ̃) =

r∑
j=1

(mj(θ̃)− npj)2

npj
, (21.2)

which corresponds to the statistic X2
n(θ) defined in (21.1) evaluated at a value

θ̃ of the posterior distribution

p(θ|X1, . . . ,Xn) =
n∏

i=1

f0(Xi; θ) · π(θ), (21.3)

where X1, . . . ,Xn is a random sample from F0(·; θ), f0(Xi; θ) denotes the cor-
responding density function, and π(θ) is the prior distribution of θ.

Using results on large sample properties of posterior distributions given in
Chen (1985), Johnson (2004) proves that under the null hypothesis, the asymp-
totic distribution of X2

n(θ̃) is a χ2 distribution independent of the dimension of
the underlying parameter vector as we state next.

Proposition 21.2.1 Under the null hypothesis, H0: FX ∈ C = {F0(·, θ), θ ∈
Θ}, the asymptotic distribution of the Bayesian quantile statistic X2

n(θ̃) is a χ2

distribution with r − 1 degrees of freedom, independent of the dimension of the
underlying parameter vector.
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Using Proposition (21.2.1), Johnson proposes the following algorithm to
test H0. Obtain a sample θ̃1, . . . , θ̃M from the posterior distribution of θ (21.3).
For each of the sampled parameter values compute the corresponding quantile
statistic and reject the null hypothesis H0 whenever the obtained sample of
quantiles, X2

n(θ̃1), . . . ,X2
n(θ̃M ), is not compatible with a chi-square distribution

with r−1 degrees of freedom. Johnson discusses several decision criteria, which
we extend in Section 21.3.3, such as to use a random selected value from the
posterior or to report the proportion of cases that exceed the critical value of
the χ2 test.

21.3 Sampling-Based Chi-Squared Test

for Interval-Censored Data

In an interval-censoring problem the values of the random sample X1, . . . ,Xn

are not observed and hence Johnson’s test X2
n(θ̃) cannot be directly applied. The

test we propose in this section, denoted by Y 2
n (θ̃), is a sampling-based procedure

which iteratively replaces X1, . . . ,Xn by imputed values T1, . . . , Tn derived from
the observed censoring intervals [L1, R1], . . . , [Ln, Rn] and applies Johnson’s test
(21.2) to T1, . . . , Tn. In what follows, we state formally the interval-censoring
scheme, establishing the notation as well as the required assumptions and de-
velop the sampling-based chi-squared test for this situation.

We assume that X is a positive random variable representing the time un-
til the occurrence of a certain event with unknown distribution function FX .
Under interval-censoring the potential survival times of n individuals, namely,
X1, . . . ,Xn, cannot be observed and, instead, we observe intervals that contain
them. Let D = {[Li, Ri], 1 ≤ i ≤ n} denote the observed censoring intervals.

This kind of censoring mechanism usually arises as a consequence of an
intermittent inspection of each individual, for instance, from a sequence of ex-
amination times in a medical longitudinal study. In this situation, Ri indicates
the time of the first visit where the event has been observed and Li is the time
of the previous visit.

We assume that the support of the inspection times is the positive real line
and that the random inspection censoring process occurs noninformatively in
the sense described in Gómez et al. (2004) and Oller et al. (2004). These assump-
tions are necessary for the consistent estimation of the whole time distribution
FX [Gentleman and Geyer (1994)].

To test the null hypothesis, H0: FX ∈ C, where C = {F0(·, θ), θ ∈ Θ},
we propose the following sampling-based chi-squared test based on the data
augmentation algorithm given in Calle (2003) to obtain a sample from the
posterior distribution of the parameter of interest followed by Johnson’s test.
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A survival time is sampled for each individual under the null distribution
with the restriction that the event occurred between Li and Ri and the parame-
ter θ is updated based on these complete imputed samples. Then, the proposed
Bayesian quantile statistic given by (21.2) is computed based on the imputed
sample. We denote this statistic by Y 2

n (θ̃) in order to distinguish it from X2
n(θ̃)

which would be computed from the real survival times, X1, . . . ,Xn. This pro-
cedure can be formalized in the following three-step algorithm.

21.3.1 Iterative algorithm

1. For every i = 1, . . . , n, impute a value Ti sampled from F0(x; θ) truncated
in the interval [Li, Ri]; that is, the conditional density of T given the
random interval [L,R] is given, under the null hypothesis, by

fT |L,R(t|l, r) =
f0(t; θ)

F0(r; θ)− F0(l; θ)
1{t: t∈[l,r]}(t). (21.4)

We obtain an imputed sample T1, . . . , Tn.

2. Sample a new value θ̃ of θ from its full conditional distribution given the
complete imputed sample T1, . . . , Tn:

p(θ|T1, . . . , Tn) =
n∏

i=1

f0(Ti; θ) · π(θ), (21.5)

where π(θ) is the prior distribution for θ.

3. Given the imputed sample, compute the statistic

Y 2
n (θ̃) =

r∑
j=1

(m̃j(θ̃)− npj)2

npj
, (21.6)

where θ̃ is the sampled value of θ obtained in Step 2 and m̃j is the number
of imputed values T1, . . . , Tn that fall into the jth class.

After iteratively performing the above algorithm and after a burn-in process
of discarding the first sampled values one obtains a sample Y 2

1n(θ̃1), . . . , Y 2
Kn(θ̃K)

of the statistic Y 2
n (θ̃) which is the base for testing the null hypothesis as it is

described in Section 21.3.3.

21.3.2 Asymptotic properties

The following propositions justify the use of the statistic Y 2
n (θ̃) as a goodness-

of-fit test for the distribution of X and give its asymptotic distribution.
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Proposition 21.3.1 At each iteration j of the proposed algorithm, for j suffi-
ciently large, the marginal distribution of an imputed value, T j

i , i ∈ {1, . . . , n},
is

FT (t) = F0(t; θ̃j)
∫∫

{(l,r): t∈[l,r]}
FX(r)− FX(l)

F0(r; θ̃j)− F0(l; θ̃j)
fL,R|X(l, r|t) dlr,

where FX is the true distribution of X and θ̃j is a value from the posterior
distribution of θ under the null distribution F0 given D.

Proof. For ease of notation, we only specify the parameter vector of the null
distribution. The marginal distribution of an imputed value, T j

i , i ∈ {1, . . . , n},
in Step j of the algorithm is

fT (t) =
∫ +∞

0

∫ +∞

0
fT |L,R(t|l, r)fL,R(l, r) dlr

=
∫ +∞

0

∫ +∞

0
fT |L,R(t|l, r)

∫ r

l
fL,R|X(l, r|x)fX(x)dx dlr. (21.7)

As detailed in Gómez et al. (2004) and in Oller et al. (2004), the noninfor-
mative censoring condition implies that the conditional distribution of L and
R given X satisfies

fL,R|X(l, r|x1) = fL,R|X(l, r|x2), for any x1, x2 ∈ [l, r]. (21.8)

Therefore, the term fL,R|X(l, r|x) in the right-hand side of (21.7) can be
factored out of the integral and fT (t) becomes:

fT (t) =
∫ +∞

0

∫ +∞

0
fT |L,R(t|l, r)fL,R|X(l, r|x)

∫ r

l
fX(x)dx dlr

=
∫ +∞

0

∫ +∞

0
fT |L,R(t|l, r)fL,R|X(l, r|x)(FX (r)− FX(l)) dlr.

By construction in the proposed iterative algorithm (see Section 21.3.1), the
conditional density of T given L and R is the truncated null distribution (21.4)
and fT (t) can be written as

fT (t) =
∫ +∞

0

∫ +∞

0
fT |L,R(t|l, r)fL,R|X(l, r|x)(FX (r)− FX(l)) dlr

=
∫ +∞

0

∫ +∞

0

f0(t; θ̃j) · 1{t: t∈[l,r]}(t)
F0(r; θ̃j)− F0(l; θ̃j)

(FX (r)− FX(l))fL,R|X(l, r|x) dlr

= f0(t; θ̃j)
∫∫

{(l,r): t∈[l,r]}
FX(r)− FX(l)

F0(r; θ̃j)− F0(l; θ̃j)
fL,R|X(l, r|x) dlr. (21.9)

Using again the noninformative censoring condition (21.8), fL,R|X(l, r|x) can be
substituted by fL,R|X(l, r|t) in expression (21.9) which proves the proposition.
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Proposition 21.3.2 If the support of the inspection times process is [0,∞) the
posterior distribution of θ is consistent.

Proof. We assume that the parameter of interest θ can be expressed as a
functional of F0; that is, there is a functional ψ such that θ = ψ(F0). Because the
support of the inspection times process is equal to [0,∞), it is guaranteed that
Turnbull’s nonparametric estimator F̂n consistently estimates the distribution
function FX , or F0 under H0. Then we can define the plug-in estimator θ̂n =
ψ(F̂n) which will converge in probability to θ = ψ(F0).

On the other hand, as stated in Schervish (1995, see Theorem 7.78), the
existence of a consistent estimate of θ implies the consistency of the posterior
distribution of θ in the following sense: the posterior probability measure asso-
ciated with p(θ|D) converges almost surely, as n tends to ∞, to the measure
that concentrates all the mass in the true value θ0 of θ.

Proposition 21.3.3 If the null hypothesis H0 : FX ∈ C is correct, that is, if
the true distribution function of X is FX = F0(· ; θ0) ∈ C, the statistic Y 2

n (θ̃)
follows a chi-square distribution with r − 1 degrees of freedom as n →∞.

Proof. If the true distribution function of X is FX = F0(· ; θ0) ∈ C it follows
from Proposition 21.3.1 that the marginal distribution of the imputed values,
T j

i , i ∈ {1, . . . , n}, is

FT (t) = F0(t; θ̃j)
∫∫

{(l,r): t∈[l,r]}
F0(r; θ0)− F0(l; θ0)
F0(r; θ̃j)− F0(l; θ̃j)

fL,R|X(l, r|t) dlr. (21.10)

From Proposition 21.3.2, F0(r; θ̃j) converges in probability to F0(r; θ0) as j
tends to infinity, and hence

F0(r; θ0)− F0(l; θ0)
F0(r; θ̃j)− F0(l; θ̃j)

(21.11)

converges to 1 in probability as j tends to infinity.
On the other hand, fL,R|X(l, r|x) is a density function in the support

{(l, r) : x ∈ [l, r]} and thus, the integral in (21.10) tends to 1, as j tends to
infinity.

Thus the asymptotic distribution of the posterior p(θ|T1, . . . , Tn) (21.5),
used in the computation of Y 2

n (θ̃), is the same as the asymptotic distribution of
p(θ|X1, . . . ,Xn) (21.3), used in the computation of Johnson’s statistic, X2

n(θ̃)
(21.2). Therefore, under the null hypothesis the statistic Y 2

n (θ̃) has the same
asymptotic distribution as X2

n(θ̃), which is a χ2 distribution with r− 1 degrees
of freedom (Proposition 21.2.1).
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Proposition 21.3.4 If the null hypothesis is false because the true distribu-
tion function of X is in fact given by FX = F1(· ; γ) /∈ C, then the marginal
distribution of the imputed values Ti is

FT (t) = F0(t; θ)
∫∫

{(l,r): t∈[l,r]}
F1(r; γ)− F1(l; γ)
F0(r; θ)− F0(l; θ)

fL,R|X(l, r|t) dlr.

Note that the integral represents the discrepancy between F0 and F1 that
we are able to detect using this approach. Thus, the power of the test depends
on one hand on the similarity between F0 and F1 and on the masses given by
F0 and F1 to the censoring intervals.

21.3.3 Decision criteria

Once we have derived a sample Y 2
1n(θ̃1), . . . , Y 2

Kn(θ̃K) from Y 2
n (θ̃) [see (21.6)],

and keeping in mind that the statistic Y 2
n (θ̃) follows a χ2 distribution with r−1

degrees of freedom if the null hypothesis is correct, we need a decision criterion
to calibrate the degree of similarity or dissimilarity of the sample’s distribution
with respect to a χ2

r−1 distribution.
Following Johnson (2004), the decision on whether to reject H0 is to be

based necessarily on the posterior distribution. Two different approaches are
possible.

1. Sample a random value Y 2
j = Y 2

jn(θ̃j) of the posterior distribution of
Y 2

n (θ̃) and reject H0 whenever Y 2
j > χ2

α(r − 1) where χ2
α(r − 1) denotes

the 100(1−α) percentile of a χ2 distribution with r−1 degrees of freedom.
Proposition 21.3.3 implies that such a test is an asymptotic α-level test
for H0 versus H1. The performance of the proposed approach has been
investigated through a simulation study where the null hypothesis of an
exponential distribution was tested for different underlying distributions
and different censoring levels (Section 21.4).

2. Alternatively to the above criteria we could base the decision on the pro-
portion π of values Y 2

j s, drawn from the posterior that exceed a specified
critical value, say χ2

0.95(r − 1), from the χ2(r − 1) distribution and reject
the null hypothesis if π is larger than a certain threshold, say 10%. Any
excess in this proportion can be attributed either to the dependency be-
tween the sampled values of the posterior or to lack of fit. The problem
with this approach is that so far there is no theoretical result on which to
base the choice of the appropriate threshold for a given level α.
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21.4 Simulation Study

We performed a small simulation study to analyze the power of the goodness-
of-fit test of an exponential null distribution; that is, H0 : FX ∼ exp (θ), with
unknown mean θ.

We considered three different alternative distributions:

1. Weibull (Weib(α, β)) with α = 3 and β = 1, 1.5, 2, 2.5
2. Gamma (Gam(α, β)) with α = 3 and β = 1, 1.8, 2.4, 3
3. Log-normal (Lnorm(µ, σ)) with µ = 0.5, 1, 1.5, 2 and σ = 0.7

We choose the parameters of the alternative distributions in such a way that
different degrees of similarity between the null and alternative distributions are
taken into account. When β = 1 both the Weibull and the gamma distributions
become the exponential distribution and as β increases they gradually drift
away from the null distribution. Something similar happens with the log-normal
distribution when σ = 0.7; for µ = 0.5 the log-normal and the exponential
distributions are relatively alike, however, their similarity decreases as the mean
µ increases.

We simulated 200 samples of size 100 from each alternative distribution.
The censoring process was generated independently of the lifetime process by
sampling a Poisson process of visits for each individual where the times between
consecutive visits followed an exponential distribution of mean parameter λ.
Three different levels of censoring—low, moderate, and high—were generated
according to λ = 1, λ = 1.5, and λ = 2, respectively. Note that the smaller the
value of λ, the more frequent visits and the shorter the censoring intervals.

For each of these scenarios we performed the proposed chi-squared statistic
[given in (21.6)] and rejected the null hypothesis following the first decision
criterion described in Section 21.3.3. The power of the test is given in Table
21.1. Actually, for the Weibull and gamma distributions, the first column of the
table corresponds to the significance level of the test. In addition, the results
for the Weibull distribution are depicted in Figure 21.1.

This small simulation study shows that the power of the sampling-based
goodness-of-fit test described in Section 21.3

1. Increases as the shape of the alternative distribution moves away from
the shape of an exponential distribution. In particular, we can see in
Figure 21.1 that the power to distinguish a Weibull distribution from an
exponential distribution increases as the shape parameter β moves far
from 1.

2. For low and moderate censoring the test performs very well, but for high
censoring it is much more difficult to reject the null hypothesis.
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Table 21.1. Power to reject the null hypothesis H0 : X ∼ exp(θ = 3)

H1 : Weib(α = 3, β)

Censoring level β = 1 β = 1.5 β = 2 β = 2.5
Low: λ = 1 0.05 0.52 1 1
Moderate: λ = 1.5 0.03 0.47 0.94 1
High: λ = 2 0.05 0.41 0.80 0.97

H1 : Gam(α = 3, β)

Censoring level β = 1 β = 1.8 β = 2.4 β = 3
Low: λ = 1 0.06 0.45 0.74 0.76
Moderate: λ = 1.5 0.07 0.37 0.68 0.85
High: λ = 2 0.05 0.3 0.53 0.69

H1 : Lognorm(µ, σ = 0.7)

Censoring level µ = 0.5 µ = 1 µ = 1.5 µ = 2
Low: λ = 1 0.40 0.72 0.91 0.87
Moderate: λ = 1.5 0.39 0.66 0.77 0.85
High: λ = 2 0.24 0.41 0.66 0.72

3. In the case of heavy censoring it would be more appropriate to base the
inferences on a nonparametric approach.

21.5 Discussion

This work presents a Bayesian method to test the fit of a given parametric dis-
tribution based on a sample of interval-censored observations. The methodology
proposed is based on the posterior distribution and one of its main advantages
is the ease of implementation. A second, and relevant, advantage is that the
distribution of the statistic, under the null, follows a χ2 distribution with k− 1
degrees of freedom independently of the dimension of the parameter space.

The simulation study to evaluate the power of the proposed statistic is so
far restricted to one null hypothesis, three alternatives, and three degrees of
censoring. This study should be extended by considering other null distribu-
tions, other alternative families, and different choices of both the dimension
and the values of the vector of probabilities (p1, . . . , pr). A second interesting
issue would be to study both theoretically and by simulation the properties of
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Figure 21.1. Power of the proposed quantile chi-squared test for interval-
censoring.

the test based on the second decision criterion, that is, of the test based on the
proportion of Ys above a certain value.

The assumption that the support of the inspection times process is [0,∞) is
obviously necessary for consistent estimation of the whole failure time distribu-
tion F0. One cannot estimate F0(t) at times where no individuals are inspected.
If the inspection times are not dense, then the MLE consistently estimates only
the restriction of F0 to the support of the inspection time process.

The procedure is developed for all models in which observations are con-
tinuous and conditionally independent given the value of finite-dimensional
parameter space, however, as discussed by Johnson (2004), the method could
be extended to discrete random variables.
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Semiparametric Regression Models

for Interval-Censored Survival Data,

With and Without Frailty Effects

Philip Hougaard

Biostatistics Department, H. Lundbeck A/S, Valby, Denmark

Abstract: Interval-censored survival data occur when the time to an event is
assessed by means of blood samples, urine samples, X-ray, or other screening
methods that cannot tell the exact time of change for the disease, but only
that the change has happened since the last examination. This is in contrast
to the standard (naive) thinking that assumes that the change happens at the
time of the first positive examination. Even though this screening setup is very
common and methods to handle such data nonparametrically in the one-sample
case have been suggested more than 30 years ago, it is still not a standard
method. However, interval-censored methods are needed in order to consider
onset and diagnosis as two different things, such as when we consider screening
in order to diagnose a disease earlier. The reason for the low use of interval-
censored methods is that in the nonparametric case, analysis is technically more
complicated than standard survival methods based on exact or right-censored
times. The same applies to proportional hazards models. This chapter covers
semiparametric regression models, both of the proportional hazards type and
of the corresponding frailty models, with proportional hazards conditional on
a gamma-distributed frailty. With today’s computing power, it is possible to
handle these models and we should consider using interval-censoring methods
in that case.

The whole approach can also be extended to handle truncation, differential
mortality with and without the disease, multivariate data, and time-dependent
covariates. However, various complexities appear in these models.

Keywords and Phrases: Frailty, interval-censoring, nonparametric estima-
tion
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22.1 Introduction

Interval-censored survival data refer to survival data where the times of events
are not known precisely; they are only known to lie in given intervals. This is
in contrast to the standard survival data setup, which assumes that all event
times are either known precisely, or they happen after the end of observation
(i.e., right-censored data).

For each subject one or more examinations are made over time to find out
if or when the subject gets the disease. It turns out that it is sufficient to know
that the event time is in an interval of the form (Li, Ri], where the left endpoint
is the time last seen without the disease, and the right endpoint is the first time
seen with the disease. Subjects with the disease at the first examination have
Li = 0 and subjects that are never found to have the disease have Ri = ∞, that
is, are right-censored. For many diseases (e.g., diabetes type II), the natural
time scale is age, whereas for other cases (e.g., HIV infection), the natural time
scale is calendar time, in order to follow the spread of the infection.

If all subjects are studied at the same times, the data are grouped and can
easily be analysed. Here, we consider the more general case of individual inspec-
tion times. The inspection times are supposed to be generated independently
of the response process and not informative of the parameters governing the
response process. The likelihood then has the following form,∏

i

{Si(Li)− Si(Ri)}. (22.1)

Strictly speaking, this likelihood is applicable when the inspection times are
fixed beforehand. If, instead, the inspection times are chosen randomly, the
density of this distribution enters as a factor. However, as this factor does not
influence the maximization, we may omit that term.

In the past, such data have often been analysed by various approximations.
Probably the most common approximation is to use the right endpoint for sub-
jects with the disease; that is, we naively consider the onset of disease equal
to the diagnosis of disease. This is obviously biased and may lead to faulty
conclusions in, for example, screening studies, because the screening leads to a
smaller delay from onset to diagnosis, which has been interpreted as a higher
incidence; and the automatically longer survival time with the disease has been
interpreted as a true improvement of survival, although it could partly, or com-
pletely, be a consequence of the shifting of the time of diagnosis. With methods
for interval-censored data, we can correct for these problems and make a more
valid evaluation of the effect of screening. A second approximation is to use the
midpoint in the interval for subjects that are observed with the disease. This is
clearly better than the right endpoint, but may still not be optimal, in particu-
lar when times between inspections are long, or the inspection frequency varies



Interval-Censored Data 309

in the population. Rather than using an approximate method that requires jus-
tification in each case, it makes sense to consider and implement methods that
account for the way that the data are collected.

22.2 Parametric Models

In the parametric case, the expression (22.1) can be directly optimized; all that
is needed is to insert the relevant expressions for Si(t). As in other cases, the
likelihood function is maximized by differentiating the expression with respect
to the parameters, and then setting these derivatives to 0.

Standard asymptotic results apply and the estimate is normally distributed
around the true value and with a variance that can be estimated by minus the
inverse of the second derivative of the log-likelihood (the so-called observed in-
formation), similar in idea to what we get with right-censored data. We need to
have some assumptions on the inspection times to make sure that all parame-
ters can be identified. For example, if, in the one-sample case, all subjects are
examined at the same time, say t0, we can only estimate S(t0) and that only
allows for identifying a single parameter.

It is easy to estimate in these models with standard software. For example, in
SAS, there is proc lifereg, which is set up to fit Weibull, log-normal, log-logistic,
and generalized gamma distributions. Other distributions can be handled by
proc nlmixed, which is not dedicated to handle interval-censored data, but we
only need to code the survivor function for the observations and this is easy in
many models.

Overall, the parametric case is so simple that there are no excuses for
not accounting for interval-censoring in a valid way. Indeed, it may in many
cases be preferable to use parametric models. This chapter also explores the
nonparametric case in order to evaluate precisely how far we can come in prac-
tice without a parametric assumption.

22.3 Nonparametric Models

By the nonparametric case, we refer to the one-sample case; that is, all times to
disease are assumed to follow the same distribution, or in formulas Si(t) = S(t).
It becomes much more complicated than the parametric case; and also more
complicated than the nonparametric case for right-censored data. First, it is
impossible to estimate the survivor function at all time points in a nonpara-
metric way. This corresponds to the problem that the Kaplan–Meier estimate
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cannot determine the tail of the distribution, when the largest time value cor-
responds to a censoring. For interval-censored data, this problem can occur at
any time point. We can only determine the values of the survivor function at
the interval endpoints, that is, the collection of Li and Ris, which we together
call x-values. In many cases, several consecutive x-values will show identical
survivor function values, and thus the survivor function between them is given
as the common value. When two consecutive values do not agree, we have an
interval with positive estimated probability and we cannot determine where in
the interval the probability mass lies. That is, we can only determine the total
probability of that interval. This was already realized by Peto (1973), who also
describes a procedure to select a subset of the intervals, which will contain all
the probability mass. It is those intervals between the x-values, which have a
lower endpoint among the L-observations and an upper endpoint among the R-
observations. To emphasize that these make up only a subset of the intervals,
they are denoted as intervals (Pj , Qj ], j = 1, . . . , k. Typically, the number of
intervals is much lower than the number of observations.

The likelihood is formally the same as described in Equation (22.1). When
the (P,Q]-intervals have been determined, the likelihood can be reformulated
as a function of the probabilities p1, . . . , pk. Estimation consists of optimising
the likelihood subject to the probabilities of these intervals being greater than
or equal to 0 and, of course, with the condition that

∑k
j=1 pj = 1. It is often the

case that some of these intervals have zero estimated probability. It is popular
to use the EM-algorithm to calculate the estimates as suggested by Turnbull
(1976), but an alternative is a modified Newton–Raphson approach suggested
by Peto (1973).

Regarding software, there is a SAS macro (called ice) and also Splus/R has
facilities to calculate this estimate. This implies that it is no longer a problem
to calculate the estimate.

During the last 15 years, a number of asymptotic results have become avail-
able, although mainly for current status data (only one inspection for each
subject). If the inspection times are chosen among a finite set of potential in-
spection times, all we can estimate is the survivor function at these time points.
These values follow standard asymptotics, that is, converge by order

√
n, and

the variance can be estimated as minus the inverse of the observed information.
If the inspection times are chosen according to a continuous distribution,

we can asymptotically determine S(t) in all points, where the inspection time
density is positive. However, asymptotic results are no longer standard. Con-
vergence of the survivor function only follows an asymptotic order of n1/3. For
the case of current status data, this problem was considered by Groeneboom
and Wellner (1992). To be precise, let the survivor function of T be S(t), with
density f(t) and let the inspection time distribution have density g(t). The
sample consists of n independent identically distributed inspection times Ui,
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and for each subject the indicator Di = 1{Ti ≤ Ui} is observed. The relation
to the (L,R]-intervals is that if Di = 1, the subject has the disease and thus
(Li, Ri] = (0, Ui], and when Di = 0, the subject is healthy at time Ui and
thus (Li, Ri] = (Ui,∞]. Conditions needed for the asymptotic results are that
0 < S(t) < 1, f(t) > 0, and g(t) > 0. It is then shown that as n →∞,

n1/3{Ŝn(t)− S(t)}/[1
2
S(t){1 − S(t)}f(t)/g(t)]1/3

converges in distribution to 2Q, where Q is the time point displaying the
maximum value of the stochastic process W (q) − q2, q ∈ #, where W (q) is
a standard two-sided Brownian motion, with W (0) = 0. This is a symmetric
distribution. Keiding et al. (1996) have simulated this distribution and tab-
ulated a number of quantiles. In particular for a 95% symmetric confidence
interval, the relevant quantiles are ±2.018. The asymptotic order is still n1/3,
when there is more than one inspection for each subject, under the additional
assumption that these inspections cannot be closer in time than some ε > 0.
If the inspections are allowed to happen closer in time, the results are more
complicated, but Groeneboom and Wellner (1992) have an example where they
find an asymptotic order of (n log n)1/3.

Despite the slow convergence of the survivor function, it has been shown
that the mean as well as other smooth functionals can be estimated under the
standard order of

√
n. This needs additional assumptions of the distribution

being concentrated on a finite interval (0, τ ] and g(t) > 0 almost everywhere.

22.4 Proportional Hazards Models

The nonparametric model can be extended to the semiparametric proportional
hazards model, defined as the hazard being of the form

λ(t; z) = λ0(t) exp(β′z), (22.2)

where z is a vector of covariates with corresponding regression coefficients β
and λ0(t) an arbitrary function describing the hazard as a function of time.
The regression parameter β is the interesting parameter, whereas the hazard
function is a nuisance parameter. This extends the proportional hazards model
of Cox (1972) to interval-censored data, but the nice estimation methods of
that paper cannot be used. This was already realized by Finkelstein (1986).
Instead, the estimates can be found by generalizing the procedure from the
nonparametric case. To do so, we need to express the model by means of the
survivor function, for example, as

S(t; z) = exp{−Λ0(t) exp(β′z)}, (22.3)
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where Λ0(t) =
∫ t
0 λ0(u)du is the integrated hazard function. This is then inserted

in Equation (22.1). The argument for selecting a subset of the intervals carries
over without modification, because the argument does not request that the
distributions be equal. This was noticed by Hougaard et al. (1994). Thus the
mass is concentrated on the (P,Q]-intervals. Instead of using the probability
parameters corresponding to each interval (p1, . . . , pk above), we may use the
contributions to the integrated hazards for each interval, say θj = Λ0(Qj) −
Λ0(Pj), j = 1, . . . , k. All of these need to be positive or zero. The condition
that the probabilities sum to 1, is here substituted with θ̂k = ∞.

Although dedicated software is not available for this model, it is possible to
maximize the likelihood by extension of the methods for nonparametric models,
either as a modified Newton–Raphson approach or by an EM algorithm.

Regarding asymptotics, Huang (1996) found the interesting result that the
regression coefficients β could be estimated according to the standard asymp-
totic order of

√
n, whereas the integrated hazard Λ0(t) only can be estimated

with an asymptotic order of n1/3. This was done for current status data, but
can probably be extended to general interval-censored data.

22.5 Conditional Proportional Hazards
(Frailty Model)

The proportional hazards model described above is very useful for finding the
effect of covariates as well as for testing their significance. However, it may still
be relevant to extend the model, first of all, in its own right to obtain a more
flexible model, when we think that the assumption of proportional hazards is
not fulfilled and second as a means of goodness-of-fit checking the assumption of
proportional hazards. A third purpose could be to perform a robustness check
for a proportional hazards analysis, seeing that it is the same covariates that
are influential in another regression model.

One choice is the gamma frailty model, which specifies that conditional on
the individual unobserved frailty, say Y , the hazard has the form

µ(t; z) = µ0(t)Y exp(β′z). (22.4)

This gives an interpretation of the population as consisting of subjects with
different risks. This heterogeneity is modelled by the random variable Y . For
our purpose here (for univariate data), this interpretation is not the key issue.
Instead, it is seen as a tool to generate nonproportional hazards. As Y is un-
observed, we have to assign a distribution to it and integrate it out, to obtain
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the marginal distribution. Here we use the gamma distribution with density

f(y) = δδyδ−1 exp(−δy)/Γ(δ), (22.5)

which is formulated to have a mean of 1. After integration, we obtain the
expression

S(t; z) = {1 + exp(β′z)M0(t)/δ}−δ , (22.6)

where M0(t) =
∫ t
0 µ0(u)du. This is then inserted into Equation (22.1). This

model will show converging hazards when Y has been integrated out. In that
sense it is an extension of the proportional hazards in only one direction. Specif-
ically, the hazard is

µ0(t) exp(β′z)/{1 + M0(t) exp(β′z)/δ}. (22.7)

The ratio of this hazard between two subjects with covariates z1, respectively,
z2 is exp{β′(z1 − z2)}, when t is small and 1, when t is large. The special case
δ = 1 gives the proportional odds model. More details on the frailty model are
described in Hougaard (2000).

The probability mass will be concentrated on the same (P,Q]-intervals as
in nonparametric and proportional hazards cases, and again only the proba-
bilities of these intervals can be determined. This model can be optimised in
the same way as for the proportional hazards model; there is just an additional
parameter δ. This model can be compared to the proportional hazards model
by the likelihood ratio test, whereas the Wald test does not make sense as the
hypothesis of proportional hazards is on the boundary corresponding to δ = ∞.

Detailed asymptotic theory is not yet available, but it seems natural to have
results similar to those of the proportional hazards model. Compared to that
case, we do, however, need an extra assumption, namely that β �= 0, in order
to be able to identify δ.

22.6 Extensions

The above sections describe the simplest cases, but indeed there are many
natural extensions that are important for practical applications. In most cases,
parametric models can be handled without complications compared to the right-
censored case. Therefore, the following comments are directed at the non- and
semiparametric cases.

Accelerated failure times make an alternative regression model, which is
easy to handle for parametric models. As expected from right-censored data,
nonparametric models become technically more complicated than the hazard-
based models, and therefore need a completely different set of methods. One
such approach is described by Rabinowitz et al. (1995).
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Left truncation means that observation starts conditional on the subject not
having had the event before some time Vi ≥ 0. For example, a dataset could con-
sist of the subjects having some disease at a given time point, and who are then
followed over time. The disease duration (time since diagnosis) may be more
interesting than time since study start, but to handle the time scale of duration,
we obtain truncated data. Turnbull (1976) mentions the possibility of trunca-
tion, but the suggested algorithm for finding intervals with positive mass is not
correct. Actually, the procedure to find intervals with positive mass becomes
more complex, and involves the truncation times as noted by Frydman (1994).
More precisely, we can apply the Peto procedure, but combining the truncation
times with the right-interval endpoints. Furthermore, it is possible that there
is a positive mass in the interval from 0 to Vmin = min{V1, . . . , Vn}. Outside
these intervals, the maximum likelihood method does not assign probability and
within these intervals we cannot identify where the mass lies. However, where
the case without truncation leads to the likelihood being continuously defined
on a closed parameter set and the interval probabilities being identifiable, this
is no longer the case.

With truncation, we may experience first that the set where the likelihood
is defined is not closed, which may imply that the supremum is not obtainable.
Second, it is possible that the interval probabilities are not identifiable. A typical
example of the first problem is that the first interval has a probability, say
p1, with a near-maximum likelihood estimate arbitrarily close to 1 and the
contribution from the later intervals being maximized relatively independent
of p1. More precisely 1 − p1 cancels out from the likelihood terms, but we can
only do that cancelling out when p1 < 1. To take a specific example, suppose
that one subject is truncated at time 0 and (L,R] is (0, 1] and that another
subject is truncated at time 2 and has an event in the interval (3, 6]. The
intervals with potential mass are then (0, 1] and (3, 6]. The likelihood becomes
p1p2/p2, which only makes sense if p2 > 0 (i.e., p1 < 1). The supremum of
the likelihood is 1, but this is only obtained under a limit of p1 → 1. The
second problem implies that in some cases, only the sum of probabilities for
two intervals can be determined, but not the individual interval probabilities.
Hudgens (2005) describes specific conditions for existence and uniqueness of
the maximum likelihood estimate. Asymptotic calculations are not much more
complicated than without truncation if Vmin = 0. However, if Vmin is positive,
some models (such as the proportional hazards models) will not depend on
the probability of the interval (0, Vmin] and thus this probability cannot be
identified, whereas other models (such as the frailty model with covariates) will
require determination of a parameter for that interval.
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General truncation, where the event is known to have happened within a
union of intervals and truncation to be within another (larger) union of intervals
is in many ways similar, although more complicated; and in particular there can
be more than one set outside the union of all truncation sets. For more details,
see Huber-Carol and Vonta (2004).

Mortality is often neglected, even though many of the events considered by
means of interval-censored data reflect the presence of diseases or complications
that may influence the risk of death. If the mortality is nondifferential (i.e., the
same with the disease as without the disease) the standard theory is applica-
ble, although we cannot talk about the probability (or survivor function) for
the disease, but have to consider the hazard or integrated hazard of disease in-
stead. Typically, we will expect a differential mortality in the direction so that
patients with the disease have higher mortality than subjects without disease.
This implies a risk of missing disease cases, because they have died without
being diagnosed with the disease. To handle this case, we need to describe the
life course as a multistate model of the illness–death type, and make a full
estimation of all the potential transition hazards.

Multivariate data can either be family data, or multivariate data for a single
subject. A common example of the second type is the age at eruption of teeth.
All teeth are then checked at visits to a dentist at one or more times. Such
data will also for the nonparametric estimation lead to a more complex interval-
finding procedure and it is still not possible to identify the interval probabilities
in all cases. As with truncated data, there are circumstances where only the
sum of probabilities from several intervals can be determined in the maximum
likelihood estimate. As for right-censored data, it can be difficult to illustrate
the survivor function estimate graphically and difficult to determine measures of
dependence, such as Spearman’s ρ. It may therefore be sensible to simplify to a
semiparametric model, such as describing the dependence by means of a frailty
model, and letting the nonparametric component describe only the univariate
distributions. In practice, this means that the frailty Y as defined above is
shared between the family members, respectively, the teeth of an individual.
Advantages of this approach are that the interval-finding procedure is reduced
to that of Peto described above and that Spearman’s ρ can be estimated, being
a function of the frailty distribution. This will also simplify the model in the
case of including covariates in a regression model.

Time-dependent covariates will spoil the interval-finding procedure if the
covariate can change within an observation interval. A further problem with
time-dependent covariates is that they can change in the period from the event
happening until it is observed to have happened. Thus it is unclear whether
a change in a covariate is a cause for the disease or a response to the disease
under study.
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22.7 Conclusion

The proportional hazards model has been suggested earlier for interval-censored
data, but many researchers have found it too complicated to calculate the esti-
mates and therefore, this has not yet become a standard model. However, with
modern computing facilities, estimation is not that difficult, so it is possible
to apply this model. Indeed, it is not difficult to extend to the gamma frailty
model, which is useful for setting the proportional hazards model in perspective.
So, we are now at a stage where the interval-censored data should be analysed
as such, rather than by means of some approximation such as assuming that
the disease started at the time of diagnosis.

Actually, the theory can be extended to many more interesting cases, both
in the parametric and non-/semiparametric case. This includes accounting for
truncation, differential mortality with and without the disease, multivariate
data, and time-dependent covariates.

Overall, the parametric models are quite tractable, whereas the non-
/semiparametric methods are more complicated than those used to form right-
censored data.
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Abstract: The purpose of this chapter is to propose two types of progressive
hybrid censoring schemes in life-testing experiments and develop exact inference
for the mean of the exponential distribution. The exact distribution of the
maximum likelihood estimator and an exact lower confidence bound for the
mean lifetime are obtained under both types of progressive hybrid censoring
schemes. Illustrative examples are finally presented.
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23.1 Introduction

Epstein (1954) considered a hybrid censoring scheme in the context of life-
testing experiments in which the experiment is terminated at time T ∗

1 =
min{Xm:n, T}, where T ∈ (0,∞) and 1 ≤ m ≤ n are fixed in advance, and
Xm:n denotes the mth failure time when n units are put on a life-test. By
assuming exponential lifetimes for the units, Chen and Bhattacharyya (1988)
derived the distribution of the maximum likelihood estimator (MLE) of the
mean lifetime and also obtained an exact lower confidence bound for the mean
lifetime. Because the termination time is at most T , as in a conventional Type-I
censoring scheme, we refer to the above-mentioned scheme as a Type-I hybrid
censoring scheme (Type-I HCS). Basic details on some of these developments
can be found in the book by Balakrishnan and Basu (1995).
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Recently, Childs et al. (2003) obtained a simplified form for the exact dis-
tribution of the maximum likelihood estimator of the mean of an exponen-
tial distribution based on a Type-I HCS. These authors also proposed a new
hybrid censoring scheme, called a Type-II hybrid censoring scheme (Type-II
HCS), in which the stopping time is T ∗

2 = max{Xm:n, T}. They also derived
some exact inference results for this new hybrid censoring scheme. In this chap-
ter, we generalize the above-mentioned hybrid censoring schemes to the case
when the observed sample is progressively censored. In Section 23.2, we con-
sider a Type-I progressive hybrid censoring scheme (Type-I PHCS), in which
n items are put on test with censoring scheme (R1, R2, . . . , Rm) and stopping
time T ∗

1 = min{Xm:m:n, T}, where X1:m:n ≤ X2:m:n ≤ · · · ≤ Xm:m:n are the
ordered failure times resulting from the progressively censored experiment; see
Balakrishnan and Aggarwala (2000). We then extend the results of Chen and
Bhattacharyya (1988) and Childs et al. (2003) to this more general situation.
In Section 23.3, we similarly generalize the results for the Type-II HCS by us-
ing the stopping time T ∗

2 = max{Xm:m:n, T}, where again T and m are fixed in
advance. This new progressive hybrid censoring scheme, which we call a Type-II
progressive hybrid censoring scheme (Type-II PHCS) guarantees that at least m
failure times will be observed. Some illustrative examples are presented finally
in Section 23.4.

We should mention here that both Type-II PHCS and Type-I PHCS have
some advantages and disadvantages. In the case of Type-I PHCS, the termina-
tion time is fixed by the experimenter which is a clear advantage. However, if θ
(the unknown mean lifetime) is not small compared to T (the pre-fixed termi-
nation time), then with a high probability the experimentation would terminate
at T . In addition, there is a disadvantage that far fewer than m failures may be
observed which may have an adverse effect on the efficiency of the inferential
procedure based on Type-I PHCS. In the case of Type-II PHCS, the termina-
tion time is unknown to the experimenter which is a disadvantage. In the case
when θ is not small compared to T , with a high probability the experimentation
would terminate at Xm:m:n thus resulting in a longer life-test. However, there is
a clear advantage that more than m failures may be observed which will result
in efficient inferential procedures based on Type-II PHCS.

23.2 Results for Type-I Progressive Hybrid
Censoring

Consider the following progressive Type-II censoring scheme. Experimentation
begins at time 0 with n units placed on a life-test. Immediately following the
first observed failure, R1 surviving items are removed from the test at ran-



Inference Based on Progressive Hybrid Censoring Schemes 321

dom. Similarly, following the second observed failure, R2 surviving items are
removed from the test at random. This process continues until, immediately
following the mth observed failure, all the remaining Rm = n − R1 − · · · −
Rm−1 − m items are removed from the experiment. In this experiment, the
progressive censoring scheme R = (R1, R2, . . . , Rm) is pre-fixed. The resulting
m ordered failure times, which we denote by X1:m:n,X2:m:n, . . . ,Xm:m:n, are
referred to as progressive Type-II right-censored order statistics. The special
case of R1 = R2 = · · · = Rm−1 = 0 (so that Rm = n−m) is the case of conven-
tional Type-II right-censored sampling. The joint probability density function
of (X1:m:n,X2:m:n, . . . ,Xi:m:n), i = 1, 2, . . . ,m, is given by [Balakrishnan and
Aggarwala (2000)]

f(x1, x2, . . . , xi) =

⎧⎨⎩
i∏

j=1

m∑
k=j

(Rk + 1)

⎫⎬⎭
i−1∏
j=1

f(xj){1− F (xj)}Rj

× f(xi){1− F (xi)}R
∗
i −1,

−∞ < x1 < x2 < · · · < xi < ∞, (23.1)

where R∗
i =
∑m

k=i(Rk + 1).
Suppose that the lifetimes of the n units put on test are independent and

identically distributed as exponential random variables with pdf

f(x; θ) =
1
θ
e−x/θ, x > 0, θ > 0.

Also suppose that the experiment is terminated at a random time T ∗
1 =

min{Xm:m:n, T}. Let D∗ denote the number of observed failures up to time
T ∗

1 . Then the likelihood function is given by

L(θ) ∝ 1
θD∗ e

− 1
θ

[∑D∗
i=1(Ri+1)xi:m:n+R∗

D∗+1
T ∗
1

]
,

and so the MLE is given by

θ̂ =
1

D∗

{
D∗∑
i=1

(Ri + 1)Xi:m:n + R∗
D∗+1T

∗
1

}
, D∗ ≥ 1.

Note that the MLE does not exist when D∗ = 0. Let D denote the number of
failures up to time T . Then,

θ̂ =

{
1
D

{∑D
i=1(Ri + 1)Xi:m:n + R∗

D+1T
}

if D = 1, 2, . . . ,m− 1
1
m {
∑m

i=1(Ri + 1)Xi:m:n} if D = m.

In order to derive the moment-generating function of the above MLE θ̂,
we first present two lemmas. The proof of Lemma 23.2.1 can be found in
Balakrishnan et al. (2002).
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Lemma 23.2.1 Let f(x) and F (x) denote the pdf and cdf of an absolutely
continuous random variable X, and let aj > 0 for j = 1, 2, . . . , r. Then for
r ≥ 1, we have∫ xr+1

−∞
· · ·
∫ x3

−∞

∫ x2

−∞

r∏
j=1

f(xj){1− F (xj)}aj−1dx1dx2 · · · dxr

=
r∑

i=0

ci,r(ar){1− F (xr+1)}bi,r(ar),

where ar = (a1, a2, . . . , ar);

ci,r(ar) =
(−1)i{∏i

j=1

∑r−i+j
k=r−i+1 ak

}{∏r−i
j=1

∑r−i
k=j ak

} , bi,r(ar) =
r∑

j=r−i+1

aj ,

with the usual conventions that
∏0

j=1 dj ≡ 1 and
∑i−1

j=i dj ≡ 0.

Lemma 23.2.2 (a) For d = 1, . . . ,m − 1, the conditional joint density of
X1:m:n,X2:m:n, . . . ,Xd:m:n, given D = d, is

f(x1, x2, . . . , xd|D = d)

=
c′(n, d){1 − F (T )}R∗

d+1

P (D = d)

d∏
j=1

f(xj){1 − F (xj)}Rj ,

−∞ < x1 < x2 < · · · < xd < T,

where c′(n, d) =
∏d

j=1

∑m
k=j(Rk + 1) for d = 1, 2, . . . ,m.

(b) The conditional joint density of X1:m:n,X2:m:n, . . . ,Xm:m:n, given D =
m, is

f(x1, x2, . . . , xm|D = m) =
c′(n,m)

P (D = m)

m∏
j=1

f(xj){1− F (xj)}Rj ,

−∞ < x1 < x2 < · · · < xd < T.

Proof. Part (a) is obtained by writing the event {D = d} as {Xd:m:n ≤
T, Xd+1:m:n > T} and integrating with respect to xd+1 (from T to ∞) in the
joint density function of X1:m:n,X2:m:n, . . . ,Xd+1:m:n obtained from (23.1). Part
(b) is straightforward, in view of (23.1). Hence, the lemma.

Theorem 23.2.1 The conditional moment-generating function of θ̂, given
D∗ ≥ 1, is given by

φ
θ̂
(w)

= (1− qn)−1
m∑

d=1

c′(n, d)
(1− wθ/d)d

d∑
i=0

ci,d(R1 + 1, . . . , Rd + 1)qR∗
d−i+1(1−wθ/d),
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where q = e−T/θ.

Proof. We first note that, conditional on D ≥ 1, we can write

E(ewθ̂) = (1− qn)−1

×
{

m−1∑
d=1

E(ewθ̂|D = d)P (D = d) + E(ewθ̂|D = m)P (D = m)

}
.

(23.2)

From Part (a) of Lemma 23.2.2, we have for d = 1, 2, . . . ,m− 1,

E(ewθ̂|D = d)P (D = d) = c′(n, d)qR*
d+1(1−wθ/d)

×
∫ T

0
· · ·
∫ x3

0

∫ x2

0

d∏
j=1

f(xj){1 − F (xj)}(Rj+1)(1−wθ/d)−1dx1dx2 · · · dxd.

We now apply Lemma 23.2.1 with aj = (Rj + 1)(1 − wθ/d) and then factor
(1− wθ/d) out of all of the ajs in order to obtain

E(ewθ̂|D = d)P (D = d)

=
c′(n, d)

(1− θw/d)d

d∑
i=0

ci,d(R1 + 1, . . . , Rd + 1)q(1−θw/d)R∗
d−i+1 . (23.3)

Similarly, when D = m, we obtain

E(ewθ̂|D = m)P (D = m)

= c′(n,m)
∫ T

0
· · ·
∫ x3

0

∫ x2

0

m∏
j=1

f(xj)

×{1− F (xj)}(Rj+1)(1−wθ/m)−1dx1dx2 · · · dxm

=
c′(n,m)

(1− θw/m)m

m∑
i=0

ci,m(R1 + 1, . . . , Rm + 1)q(1−θw/m)R∗
m−i+1 ,

(23.4)

where the first equality follows from Part (b) of Lemma 23.2.2 and the second
equality follows from Lemma 23.2.1. The theorem then follows readily upon
substituting (23.3) and (23.4) into (23.2).

Remark 23.2.1 If we set Rj = 0 for j = 1, 2, . . . ,m− 1 so that Rm = n−m,
then the Type-I progressive hybrid censoring scheme reduces to the classical
Type-I hybrid censoring scheme discussed earlier by Chen and Bhattacharyya
(1988). Hence, the above result is an extension of the results obtained by these
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authors, and gives a more elegant and compact representation of the moment-
generating function of the MLE. Indeed, Theorem 23.2.1 reduces in this case to
the one presented by Childs et al. (2003). In fact, in this case,

φ
θ̂
(w) = (1− qn)−1

[
m−1∑
d=1

(
n

d

)
q(n−d)(1−θw/d)

(1− wθ/d)d
(
1− q(1−θw/d)

)d

+ (1− θw/m)−m + m

(
n

m

)
(1− θw/m)−m

×
m∑

k=1

(−1)k

n−m + k

(
m− 1
k − 1

)
q(1−θw/m)(n−m+k)

]
.

Theorem 23.2.2 The conditional pdf of θ̂, given D ≥ 1, is given by

f
θ̂
(x) = (1− qn)−1

m∑
d=1

c′(n, d)

×
d∑

i=0

ci,d(R1 + 1, . . . , Rd + 1)qR∗
d−i+1γd(x,R∗

d−i+1T/d),

(23.5)

where

γk(x, a) =
(k/θ)k

(k − 1)!
〈x− a〉k−1e−

k
θ
(x−a),

is the translated gamma density function and 〈a〉 = max(a, 0).

Proof. Consider the moment-generating function of θ̂, given by

M
θ̂
(w) = (1− qn)−1

m∑
d=1

d∑
i=0

c′(n, d)ci,d(R1 + 1, . . . , Rd + 1)qR∗
d−i+1

× ewTR∗
d−i+1/d(1− θw/d)−d.

Because ewTR∗
d−i+1/d(1 − θw/d)−d is the moment-generating function of Y +

TR∗
d−i+1/d at w, where Y is a gamma random variable with pdf γd(x, 0), the

theorem readily follows.

Remark 23.2.2 Separating out the term corresponding to d = m and i = 0
in the density function in (23.5), we can write
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f
θ̂
(x)

= (1− qn)−1

[
γm(x, 0)

+
m−1∑
d=1

c′(n, d)
d∑

i=0

ci,d(R1 + 1, . . . , Rd + 1)qR∗
d−i+1γd(x,R∗

d−i+1T/d)

+ c′(n,m)
m∑

i=1

ci,m(R1 + 1, . . . , Rm + 1)qR∗
m−i+1γm(x,R∗

m−i+1T/m)

]
.

Note that as T →∞, the above Type-I PHCS reduces to the usual progressive
censoring scheme. In this case, the above-conditional pdf of θ̂ simply becomes
γm(x, 0). Therefore, the above result generalizes the result of Viveros and Bal-
akrishnan (1994) that (2mθ̂)/θ has a chi-square distribution with 2m degrees
of freedom when the sample is progressively censored.

Corollary 23.2.1 The mean and mean squared error of θ̂ are given by

(i) Eθ(θ̂) = θ + T
(1−qn)

∑m
d=1

c′(n,d)
d

∑d
i=0 ci,d(R1 + 1, . . . , Rd + 1)

×R∗
d−i+1q

R∗
d−i+1

and

(ii) MSE(θ̂) = (1− qn)−1
∑m

d=1
c′(n,d)

d

∑d
i=0 ci,d(R1 + 1, . . . , Rd + 1)

× qR∗
d−i+1{θ2 + T 2

(
R∗

d−i+1

)2
/d}.

In order to derive a lower confidence bound for θ, we need the expression
for P (θ̂ > t) which is presented in the following theorem.

Theorem 23.2.3 Given that D∗ ≥ 1,

P (θ̂ > t) = (1− qn)−1
m∑

d=1

c′(n, d)
(d− 1)!

×
d∑

i=0

ci,d(R1 + 1, . . . , Rd + 1)qR∗
d−i+1Γ(d,Ad(R∗

d−i+1T/d)),

where Γ(a, z) =
∫∞
z ta−1e−tdt is the incomplete gamma function and

Ak(a) = (k/θ)〈t− a〉.

Proof. Let

gk(x, a) =
(k/θ)k

(k − 1)!
(x− a)k−1e−

k
θ
(x−a).
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Then, ∫ ∞

t
γk(x, a)dx

=
∫ ∞

max(t,a)
gk(x, a)dx

=
∫ ∞

k
θ
<t−a>

yk−1

(k − 1)!
e−ydy

(upon making the substitution y = (k/θ)(x− a))

=
Γ(k,Ak(a))

(k − 1)!
.

23.3 Results for Type-II Progressive

Hybrid Censoring

In the Type-II progressive hybrid censoring situation, the experiment is termi-
nated at the random time T ∗ = max(Xm:m:n, T ). Let D denote the number of
failures that occur up to time T . If Xm:m:n > T , then the experiment is termi-
nated at the mth failure with the withdrawals occurring after each failure ac-
cording to the prespecified progressive censoring scheme R = (R1, R2, . . . , Rm).
However, if Xm:m:n < T , then instead of terminating the experiment by remov-
ing the remaining Rm units after the mth failure, we continue to observe failures
(without any further withdrawals) up to time T . Therefore, Rm = Rm+1 = · · · =
Rd = 0, where d is the observed value of D. In this case, we denote the resulting
failure times by X1:m:n,X2:m:n, . . . ,Xm:m:n,Xm+1:n, . . . ,Xd:n.

The MLE of θ in this case is given by

θ̂ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
m

∑m
i=1(Ri + 1)Xi:m:n if D = 0, 1, . . . ,m− 1

1
D

[∑m
j=1(Rj + 1)Xj:m:n

+
∑D

j=m+1 Xj:n + R′
DT
]

if D = m, . . . , n−
∑m−1

i=1 Ri,

where R′
D = n−D −R1 − · · · −Rm−1, and Rm = 0 if D ≥ m.

The proofs of the following lemma and theorems, which give the moment-
generating function and pdf of θ̂, as well as the corresponding expression for
P (θ̂ > t), are similar to those presented in the last section, and hence are
omitted for brevity.



Inference Based on Progressive Hybrid Censoring Schemes 327

Lemma 23.3.1 (a) For d = 1, . . . ,m − 1, the conditional joint density of
X1:m:n,X2:m:n, . . . ,Xm:m:n, given D = d, is

f(x1, x2, . . . , xm|D = d) =
c′(n,m)

P (D = d)

m∏
j=1

f(xj){1 − F (xj)}Rj ,

−∞ < x1 < · · · < xd < T < xd+1 < · · · < xm < ∞.

(b) For d = m,m + 1, . . . , n−R1− · · · −Rm−1, the conditional joint density of
X1:m:n,X2:m:n, . . . ,Xm:m:n,Xm+1:n, . . . ,Xd:n, given D = d, is

f(x1, . . . , xd|D = d) =
c′(n, d)qR′

d

P (D = d)

d∏
j=1

f(xj){1 − F (xj)}Rj ,

−∞ < x1 < · · · < xd < T ,

where Rm = Rm+1 = · · · = Rd = 0 and R′
d = n− d−R1 − · · · −Rm−1.

Theorem 23.3.1 The moment-generating function of θ̂ is given by

φ
θ̂
(w) = E(ewθ̂)

=
m−1∑
d=0

c′(n, d)
(1− wθ/m)m

d∑
i=0

ci,d(R1 + 1, . . . , Rd + 1)qR∗
d−i+1(1−wθ/m)

+
n−R1−···−Rm−1∑

d=m

c′(n, d)
(1− wθ/d)d

×
d∑

i=0

ci,d(R1 + 1, . . . , Rd + 1)q[R′
d+bi,d(R1+1,...,Rd+1)](1−wθ/d),

where bi,r is as defined in Lemma 23.2.1.

Theorem 23.3.2 The pdf of θ̂ is given by

f
θ̂
(x)

=
m−1∑
d=0

d∑
i=0

c′(n, d)qR∗
d−i+1ci,d(R1 + 1, . . . , Rd + 1)γm(x,R∗

d−i+1T/m)

+
n−R1−···−Rm−1∑

d=m

c′(n, d)
d∑

i=0

ci,d(R1 + 1, . . . , Rd + 1)

× qR′
d+bi,d(R1+1,...,Rd+1)γd

(
x, [R′

d + bi,d(R1 + 1, . . . , Rd + 1)]T/d
)
,

where, as in the last section, γk(x, a) is the translated gamma density function.
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Corollary 23.3.1 The mean and mean squared error of θ̂ are given by

(i) Eθ(θ̂) = θ +
T

m

m−1∑
d=0

d∑
i=0

c′(n, d)R∗
d−i+1q

R∗
d−i+1ci,d(R1 + 1, . . . , Rd + 1)

+ T

n−R1−···−Rm−1∑
d=m

c′(n, d)
d

d∑
i=0

ci,d(R1 + 1, . . . , Rd + 1)

× [R′
d + bi,d(R1 + 1, . . . , Rd + 1)]qR′

d+bi,d(R1+1,...,Rd+1)

and

(ii) MSE(θ̂)

=
1
m

m−1∑
d=0

c′(n, d)
d∑

i=0

qR∗
d−i+1ci,d(R1 + 1, . . . , Rd + 1)

× [θ2 + T 2(R∗
d−i+1)

2/m]

+
n−R1−···−Rm−1∑

d=m

c′(n, d)
d

d∑
i=0

ci,d(R1 + 1, . . . , Rd + 1)

× qR′
d+bi,d(R1+1,...,Rd+1)

{
θ2 + T 2[R′

d + bi,d(R1 + 1, . . . , Rd + 1)]2/d
}

.

Theorem 23.3.3 We have

P (θ̂ > t)

=
m−1∑
d=0

c′(n, d)
(m− 1)!

d∑
i=0

qR∗
d−i+1ci,d(R1 + 1, . . . , Rd + 1)

×Γ
(
m,Am(R∗

d−i+1T/m)
)

+
n−R1−···−Rm−1∑

d=m

c′(n, d)
(d− 1)!

d∑
i=0

ci,d(R1 + 1, . . . , Rd + 1)

× qR′
d+bi,d(R1+1,...,Rd+1)Γ

(
d,Ad([R′

d + bi,d(R1 + 1, . . . , Rd + 1)]T/d)
)
,

where, as in the last section, Γ(a, z) denotes the incomplete gamma function. It
needs to be mentioned here that in the second sum of all the above results, we
have Rm = Rm+1 = · · · = Rd = 0.

23.4 Examples

Assuming that Pθ(θ̂ > b) is a monotone increasing function of θ, a 100(1−α)%
lower confidence bound for θ is obtained by solving the equation α = PθL

(θ̂ >

θ̂obs) for θL. To illustrate this method, as well as the corresponding method for
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confidence intervals, we consider the data reported by Nelson (1982, p. 228)
on times to breakdown of an insulating fluid in an accelerated test conducted
at various voltages. Viveros and Balakrishnan (1994) generated the following
Type-II progressively censored sample from these data.

i 1 2 3 4 5 6 7 8
xi:8:19 0.19 0.78 0.96 1.31 2.78 4.85 6.50 7.35
Ri 0 0 3 0 3 0 0 5

In order to illustrate both cases of Type-I and Type-II progressive hybrid
censoring schemes, we take T = 6.0. Table 23.1 presents the lower confidence
bounds and 100(1−α)% confidence intervals for θ with α = 0.05, 0.1 for values of
m selected so as to illustrate both cases of progressive hybrid censoring schemes.
We have also included the mean square error and standard error calculated from
Corollaries 23.2.1 and 23.3.1. Note that when m = 6, we take Rm = 7 in the
case of Type-I progressive hybrid censoring, and Rm = 0 in the case of Type-II
progressive hybrid censoring (as described in Section 23.3).

Table 23.1. Inference for θ

Type-I PHCS

LCB for θ CI for θ

m θ̂obs MSE s.e. α = .05 α = .1 α = .05 α = .1
6 9.3400 23.032 4.786 5.330 6.042 (4.802, 25.519) (5.330, 21.472)
8 10.6817 35.100 5.833 6.004 6.766 (5.434, 26.093) (6.004, 22.212)

Type-II PHCS
6 10.6817 16.600 4.045 6.019 6.781 (5.448, 26.084) (6.019, 22.232)
8 9.0863 9.493 3.078 5.513 6.157 (5.027, 20.935) (5.513, 18.167)

In Table 23.1, we see that the MLE for m = 8 in the case of Type-I PHCS
is the same as for the Type-II PHCS when m = 6. The reason for this is that,
in both these cases, the experiment is terminated at time T = 6 after observing
the first 6 failures.
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Abstract: Early stopping of clinical trials in the case of either beneficial or
deleterious effect of a treatment on quality of life (QoL) is an important issue.
QoL is usually evaluated using self-assessment questionnaires and responses
to the items are usually combined into QoL scores assumed to be normally
distributed. However, these QoL scores are rarely normally distributed and
usually do not satisfy a number of basic measurement properties. An alternative
is to use item response theory (IRT) models such as the Rasch model for binary
items which takes into account the categorical nature of the items. In this
framework, the probability of response of a patient on an item depends upon
different kinds of parameters: the “ability level” of the person (which reflects
his or her current QoL) and a set of parameters characterizing each item.

Sequential analysis and mixed Rasch models were combined in the context
of phase II or III comparative clinical trials. The statistical properties of the tri-
angular test (TT) were compared using mixed Rasch models and the traditional
method based on QoL scores by means of simulations.

The type I error of the TT was correctly maintained for the methods based
on QoL scores and the Rasch model assuming known item parameter values, but
was higher than expected when item parameters were assumed to be unknown.
The power of the TT was satisfactorily maintained when Rasch models were
used but the test was underpowered with the QoL scores method. All methods
allowed substantial reductions in average sample numbers as compared with
fixed sample designs, especially the method based on Rasch models. The use of
IRT models in sequential analysis of QoL endpoints seems to provide a more
powerful method to detect therapeutic effects than the traditional QoL scores
method and to allow for reaching a conclusion with fewer patients.

Keywords and Phrases: Quality of life, item response theory, Rasch models,
triangular test, clinical trials, mixed models
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334 V. Sébille, J.-B. Hardouin, and M. Mesbah

24.1 Introduction

Many clinical trials attempt to measure health-related Quality of Life (QoL)
which refers to “the extent to which one’s usual or expected physical, emotional
and social well-being are affected by a medical condition or its treatment” [Cella
and Bonomi (1995), and Fairclough (2002)]. Early stopping of clinical trials ei-
ther in the case of beneficial or deleterious effect of treatment on QoL is an
important issue. However, each domain of health can have several components
(e.g., symptoms, ability to function, disability) and translating these various
domains of health into quantitative values to measure quality of life is a com-
plex task, drawing from the field of psychometrics, biostatistics, and clinical
decision theory. In clinical trials in which specific therapeutic interventions
are being studied, a patient’s QoL is usually evaluated using self-assessment
questionnaires which consist of a set of questions called items (which can be
dichotomous or polytomous) that are frequently combined to give scores. The
common practice is to work on average scores which are generally assumed to
be normally distributed. However, these average scores are rarely normally dis-
tributed and usually do not satisfy a number of basic measurement properties
including sufficiency, unidimensionality, or reliability. An alternative is to use
item response theory (IRT) models [Fischer and Molenaar (1995)], such as the
Rasch model for binary items, which takes into account the categorical nature
of the items by introducing an underlying response model relating those items
to a latent parameter interpreted as the true individual QoL.

Early stopping of a trial can occur either for efficacy, safety, or futility
reasons. Several early termination procedures have been developed to allow for
repeated statistical analyses on accumulating data and for stopping a trial as
soon as the information is sufficient to conclude. Among the sequential methods
that have been developed over the last few decades [Pocock (1977), O’Brien and
Fleming (1979), and Lan and De Mets (1983)], the sequential probability ratio
test (SPRT) and the triangular test (TT), which were initially developed by
Wald (1947) and Anderson (1960) and later extended by Whitehead to allow
for sequential analyses on groups of patients [Whitehead and Jones (1979), and
Whitehead and Stratton (1983)] have some of the interesting following features.
They allow for: (i) early stopping under H0 or under H1; (ii) the analysis of
quantitative, qualitative, or censored endpoints; (iii) type I and II errors to be
correctly maintained at their desired planning phase values; and (iv) substantial
sample size reductions as compared with the single-stage design (SSD).

Although sequential methodology is often used in clinical trials, IRT mod-
elling, as a tool for scientific measurement, is not quite well established in the
clinical trial framework despite a number of advantages offered by IRT to ana-
lyze clinical trial data [Holman et al. (2003a)]. Moreover, it has been suggested
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that IRT modelling offers a more accurate measurement of health status and
thus should be more powerful to detect treatment effects [McHorney et al.
(1997), Kosinski et al. (2003)]. The benefit of combining sequential analysis
and IRT methodologies using mixed Rasch models for binary items has already
been studied in the context of noncomparative phase II trials and seems promis-
ing [Sébille and Mesbah (2005)]. The joint use of IRT modelling and sequential
analysis is extended to comparative phase II and phase III trials using the TT.
The test statistics (score statistics and Fisher information for the parameter
of interest) used for sequential monitoring of QoL endpoints are derived and
studied through simulations.

24.2 IRT Models

Item response theory or more precisely parametric IRT, which was first mostly
developed in educational testing, takes into account the multiplicity and cate-
gorical nature of the items by introducing an underlying response model [Fischer
and Molenaar (1995)] relating those items to a latent parameter interpreted as
the true individual QoL. In this framework, the probability of response of a
patient on an item depends upon two different kinds of parameters: the “ability
level” of the person (which reflects his or her current QoL) and a set of pa-
rameters characterizing each item. The basic assumption for IRT models is the
unidimensionality property stating that the responses to the items of a ques-
tionnaire are influenced by one underlying concept (e.g., QoL) often called the
latent trait and noted θ. In other words, the person’s ability or the person’s
QoL should be the only variable affecting individual item response. Another
important assumption of IRT models, which is closely related to the former, is
the concept of local independence, meaning that items should be conditionally
independent given the latent trait θ. Hence, the joint probability of a response
pattern given the latent trait θ can be written as a product of marginal probabil-
ities. Let Xij be the answer for subject i to item j and let θi be the unobserved
latent variable for subject i (i = 1, . . . , N ; j = 1, . . . , J):

P (Xi1 = xi1, . . . ,XiJ = xiJ/θi) =
J∏

j=1

P (Xij = xij/θi). (24.1)

A last assumption for IRT models is the monotonicity assumption stating
that the item response function P (Xij > k/θi) is a nondecreasing function of
θi, for all j and all k.
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24.2.1 The Rasch model

For binary items, one of the most commonly used IRT models is the Rasch
model, sometimes called the one-parameter logistic model [Rasch (1980)]. The
Rasch model specifies the conditional probability of a patient’s response Xij

given the latent variable θi and the item parameters βj :

P (Xij = xij/θi, βj) = f(xij/θi, βj) =
exij(θi−βj)

eθi−βj
, (24.2)

where βj is often called the difficulty parameter for item j (j = 1, ..., J). Con-
trasting with other IRT models, in the Rasch model, a patient’s total score,
Si =

∑J
j=1 is a sufficient statistic for a specific latent trait θi.

24.2.2 Estimation of the parameters

Several methods are available for estimating the parameters (the θs and βs)
in the Rasch model [Fischer and Molenaar (1995)] including: joint maximum
likelihood (JML), conditional maximum likelihood (CML), and marginal max-
imum likelihood (MML). JML is used when person and item parameters are
considered as unknown fixed parameters. However, this method gives asymptot-
ically biased and inconsistent estimates [Haberman (1977)]. The second method,
CML, consists in maximizing the conditional likelihood given the total score in
order to obtain the item parameter estimates. The person parameters are then
estimated by maximizing the likelihood using the previous item parameter es-
timates. This method has been shown to give consistent and asymptotically
normally distributed estimates of item parameters [Andersen (1970)]. The last
method, MML, is used when the Rasch model is interpreted as a mixed model
with θ as a random effect having distribution h(θ/ξ) with unknown parameters
ξ. The distribution h(.) is often assumed to belong to some family distribution
(often Gaussian) and its parameters are jointly estimated with the item param-
eters. As with the CML method, the MML estimators for the item parameters
are asymptotically efficient [Thissen (1982)]. Furthermore, because MML does
not presume existence of a sufficient statistic (unlike CML), it is applicable to
virtually any type of IRT model.

24.3 Sequential Analysis

24.3.1 Traditional sequential analysis

Let us assume a two-group parallel design with two treatment groups (g = 1
for the control group and g = 2 for the experimental treatment group) and that
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the primary endpoint is QoL at the end of the treatment period which is mea-
sured using a QoL questionnaire with J dichotomous items. In the traditional
framework of sequential analysis [Wald (1947), Whitehead (1997), Jennison
and Turnbull (1999)], QoL is assumed to be observed (not to be a latent vari-
able) in each treatment group and the QoL score Sig is used in place of the
true latent trait θig (g = 1, 2) at each sequential analysis. In that setting, the
observed scores in each group (s11, s12, . . .) and (s21, s22, . . .) are assumed to
follow some distribution often assumed to be Gaussian with unknown parame-
ters µg (g = 1, 2) and common σS . Suppose we are testing the null hypothesis
H0 : µ1 = µ2 = µ against the one-sided alternative H1 : µ2 > µ1. The fol-
lowing parameterization is often used for the measure of treatment difference
(parameter of interest) φS = (µ2 − µ1)/σS . The log-likelihood, which can be
expressed according to both independent samples, and its derivatives can be
used to derive the test statistics Z(S) and V (S), both evaluated under the null
hypothesis. The test statistic Z(S) is the efficient score for φ depending on the
observed scores S, and the test statistic V (S) is Fisher’s information for φ.

More precisely, the test statistics Z(S) and V (S) are given by:

Z(S) =
n1n2

(n1 + n2)D
(s2 − s1) (24.3)

and

V (S) =
n1n2

(n1 + n2)
− Z2(S)

2(n1 + n2)
(24.4)

in which:

• ng is the cumulated number of patients (since the beginning of the trial)
in group g (g = 1, 2).

• sg = (
∑ng

j=1 sgj)/ng where sgj denotes the observed scores of patient j in
group g.

• D is the maximum likelihood estimate of σS under the null hypothesis

D =

√
Q

n1 + n2
−
(

R

n1 + n2

)2

with Q =
∑n1

j=1 s2
1j +

∑n2
j=1 s2

2j and R =
∑n1

j=1 s1j +
∑n2

j=1 s2j .

Details of the computations are described at length by Whitehead (1997).

24.3.2 Sequential analysis based on Rasch models

We are now interested in the latent case, that is, the case where θig (g = 1, 2)
is unobserved in each treatment group. Let us assume that the latent traits
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θ1 and θ2 are random variables that follow normal distributions N(ψ1, σ
2
θ) and

N(ψ2, σ
2
θ), respectively, and that we are testing H0 : ψ1 = ψ2 = ψ against

H1 : ψ1 < ψ2. A reparameterization can be performed so that ϕ = (ψ2 − ψ1)/2
is the parameter of interest and the nuisance parameter is made up of φ =
(ψ1 + ψ2)/2 and η = (σ, β1, . . . , βJ ) such that ϕ = 0 under H0, ψ1 = φ − ϕ,
and ψ2 = ϕ + φ. Assuming that n1 + n2 = N data have been gathered so far in
the two treatment groups, the log-likelihood of ϕ, φ, and η can be written as
l(ϕ, φ, η) = l(1)(ψ1, σθ, β1, . . . , βJ ) + l(2)(ψ2, σθ, β1, . . . , βJ ). Assuming a Rasch
model for patient’s items responses, we can write:

l(g)(ψg, σθ, β1, . . . , βJ)

=
N∑

i=1

log

⎧⎨⎩ 1
σθ

√
2π

∫ +∞

−∞
e
− (θ−ψg)2

2σ2
θ

J∏
j=1

exijg(θ−βj)

1 + eθ−βj
dθ

⎫⎬⎭ , g = 1, 2. (24.5)

Let φ∗ and η∗ = (σ∗
θ , β

∗
1 , . . . , β∗

J ) be the estimates of φ and η = (σθ, β1, . . . ,
βJ) under the assumption that both series of data are drawn from the same
distribution. There is no analytical solution for φ∗ and η∗ and numerical integra-
tion methods have to be used to estimate these parameters. The identifiability
constraint

∑J
j=1 βj = 0 is used.

The test statistics Z(X) and V (X), which were previously noted as Z(S)
and V (S), are depending this time directly on X, the responses to the items.
They can be derived in the following way.

Z(X) =
∂l(0, φ∗, σ∗

θ , β
∗
1 , . . . , β∗

j )
∂ϕ

=
∂l(2)(φ∗, σ∗

θ , β
∗
1 , . . . , β∗

j )
∂ψ2

−
∂l(1)(φ∗, σ∗

θ , β∗
1 , . . . , β∗

j )
∂ψ1

. (24.6)

That is, we need to evaluate

N∑
i=1

∂

∂ψg

⎡⎣log
⎛⎝∫ +∞

−∞
hψg ,σθ

(θ)
J∏

j=1

f(xijg/θ;βj)dθ

⎞⎠⎤⎦ (24.7)

at (φ∗, σ∗
θ , β

∗
1 , . . . , β∗

J ) for g = 1, 2 where hψg ,σθ
is the density of the normal

distribution.
The test statistic V (X) can sometimes be approximated under H0 by

V (X) = −∂2l(0, φ∗, σ∗
θ , β

∗
1 , . . . , β∗

J )
∂ϕ2

= −∂2l(2)(φ∗, σ∗
θ , β

∗
1 , . . . , β∗

J )
∂ψ2

2

− ∂2l(1)(φ∗, σ∗
θ , β

∗
1 , . . . , β∗

J )
∂ψ2

1

(24.8)

when the two samples are large, of about the same size, and when ϕ is small.
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Estimation of the statistics Z(X) and V (X) is done by maximising the
marginal likelihood, obtained from integrating out the random effects. Quasi-
Newton procedures can be used, for instance, to maximise the likelihood and
adaptive Gaussian quadrature can be used to integrate out the random effects
[Pinheiro and Bates (1995)].

24.3.3 The triangular test

For ease of general presentation of the sequential test we use the conventional
notations Z and V . The TT uses a sequential plan defined by two perpendic-
ular axes: the horizontal axis corresponds to Fisher’s information V , and the
vertical axis corresponds to the efficient score Z which represents the benefit as
compared with H0. For a one-sided test, the boundaries of the test delineate a
continuation region (situated between these lines), from the regions of nonrejec-
tion of H0 (situated beneath the bottom line) and of rejection of H0 (situated
above the top line). The boundaries depend on the statistical hypotheses (val-
ues of the expected treatment benefit, α, and β) and on the number of subjects
included between two analyses. They can be adapted at each analysis when
this number varies from one analysis to the other, using the “Christmas tree”
correction [Siegmund (1979)]. The expressions of the boundaries for a one-sided
test are well known [Sébille and Bellissant (2001)]. At each analysis, the values
of the two statistics Z and V are computed and Z is plotted against V , thus
forming a sample path as the trial goes on. The trial is continued as long as the
sample path remains in the continuation region. A conclusion is reached as soon
as the sample path crosses one of the boundaries of the test: nonrejection of H0

if the sample path crosses the lower boundary, and rejection of H0 if it crosses
the upper boundary. This test and other types of group sequential tests are im-
plemented in the computer program PEST 4 [MPS Research Unit (2000)] that
can be used for the planning, monitoring, and analysis of comparative clinical
trials.

24.4 Simulations

24.4.1 Simulation design

The statistical properties of the TT were evaluated with simulated data. We
studied the type I error (α), the power (1 − β), and the average sample num-
ber (ASN) of patients required to reach a conclusion. A thousand comparative
clinical trials were simulated. The latent trait in the control group θi1 was as-
sumed to follow a normal distribution with mean λ1 and variance σ2 = 1 and
the latent trait in the experimental group θi2 was assumed to follow a normal
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distribution with mean λ2 = λ1 + d and the same variance. The trial involved
the comparison of the two hypotheses: H0 : d = 0 against H1 : d > 0.

We first assumed that the items under consideration formed part of a cal-
ibrated item bank, meaning that item parameters were assumed to be known
[Holman et al. (2003b)]. We also investigated the more extreme case where all
item parameters were assumed to be totally unknown and had therefore to be
estimated at each sequential analysis. For both cases, the item parameters were
uniformly distributed in the interval [−2, 2] with

∑J
j=1 βj = 0.

The traditional method consisted in using the observed QoL scores S, given
by the sum of the responses to the items, which were assumed to follow a
normal distribution. The Z(S) and V (S) statistics were computed within the
well-known framework of normally distributed endpoints [Sébille and Bellissant
(2001)].

We compared the use of Rasch modelling methods with QoL scores meth-
ods. To evaluate the effect of the number of items used for measuring QoL,
we investigated QoL questionnaires with five or ten items. Moreover, different
expected effect sizes (noted ES equal to (λ2 − λ1)/σ = d) ranging from small
(0.4) to large (0.8) were investigated. The sequential analyses were performed
every 40 included patients and α = β = 0.05 for all simulations.

The simulations were performed using a C++ program, and the data anal-
ysed with the SAS software [Hardouin and Mesbah (2007)].

24.4.2 Results

Table 24.1. Type I error and power for the triangular test (TT) using the method
based on QoL scores or the Rasch model for different values of the effect size
and of the number of items (nominal α = β = 0.05, 1000 simulations)
Effect Number Type I Error Power
Size of QoL Scores Rasch Model QoL Scores Rasch Model

Items β Known β Unknown β Known β Unknown
0.4 5 0.027 0.039 0.058 0.758 0.951 0.926
0.4 10 0.045 0.044 0.082 0.852 0.952 0.926
0.5 5 0.039 0.048 0.077 0.736 0.944 0.908
0.5 10 0.057 0.064 0.088 0.838 0.951 0.931
0.6 5 0.045 0.056 0.072 0.736 0.934 0.907
0.6 10 0.052 0.057 0.083 0.846 0.952 0.934
0.7 5 0.044 0.046 0.076 0.743 0.938 0.912
0.7 10 0.054 0.049 0.079 0.844 0.947 0.932
0.8 5 0.049 0.041 0.069 0.741 0.943 0.924
0.8 10 0.055 0.049 0.080 0.836 0.949 0.941

Table 24.1 shows the type I error and power for the TT for different values
of the effect size and of the number of items using the method based on QoL
scores or the Rasch modelling method assuming either known or unknown item
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parameter values. The significance level was usually close to the target value
of 0.05 for the QoL scores method and the Rasch modelling method assuming
known item parameter values. However, the significance level was always higher
than the target value of 0.05 for the Rasch modelling method assuming unknown
item parameter values for all effect sizes and number of items considered. The
TT was quite close to the nominal power of 0.95 when the Rasch modelling
method assuming known item parameter values was used, and a little lower
than expected when unknown item parameter values were assumed. However,
the TT was notably underpowered when the QoL scores method was used.
Indeed, for the QoL scores method, as compared with the target power value of
0.95, there were decreases in power of approximately 22% and 11% with five and
ten items, respectively. By contrast, for the Rasch modelling method assuming
unknown item parameter values, the decrease in power was of about only 4%
and 2% with five and ten items, respectively.

Table 24.2. Sample size for the single-stage design (SSD) and average sample
number (ASN) required to reach a conclusion under H0 and H1 for the triangu-
lar test (TT) using the method based on QoL scores or the Rasch model for dif-
ferent values of the effect size and of the number of items (nominal α = β = 0.05,
1000 simulations)

Effect Number SSD TT* QoL Scores Rasch Model
Size of β Known β Unknown

Items H0/H1 H0/H1 H0/H1 H0/H1

0.4 5 271 155/155 140/178 140/148 135/145
0.4 10 271 155/155 141/167 117/122 114/119
0.5 5 174 103/103 104/128 102/103 102/92
0.5 10 174 103/103 103/121 84/85 83/84
0.6 5 121 74/74 76/95 77/76 77/77
0.6 10 121 74/74 76/91 62/63 64/63
0.7 5 89 57/57 60/72 61/60 63/60
0.7 10 89 57/57 60/70 51/51 53/52
0.8 5 68 46/46 50/58 51/51 52/52
0.8 10 68 46/46 50/56 45/45 47/45

*Approximate ASN for the TT for a normally distributed endpoint.

Table 24.2 shows the ASN of the number of patients required to reach a con-
clusion under H0 and H1 for the TT for different values of the effect size and of
the number of items using the method based on QoL scores or the Rasch mod-
elling method assuming either known or unknown item parameter values. We
also computed for comparison purposes the number of patients required by the
single-stage design (SSD) and the approximate ASN for the TT computed with
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PEST 4 when a normally distributed endpoint was assumed when planning the
trial. As expected, the ASNs all decreased as the expected effect sizes increased
whatever the method used. The ASNs under H0 and H1 were always smaller
for all sequential procedures based either on QoL scores or Rasch modelling
methods than the sample size required by the SSD for whatever values of effect
size or number of items considered. The decreases in the ASNs under H0 and
H1 were usually more marked when the Rasch modelling methods were used,
assuming either known or unknown item parameter values, as compared with
the methods based on QoL scores. Indeed, under H0 (H1) as compared with
the SSD, there were decreases of approximately 37% (25%) and 41% (42%)
in sample sizes for the QoL scores method and the Rasch modelling methods,
respectively.

24.5 Discussion—Conclusion

We evaluated the benefit of combining sequential analysis and IRT method-
ologies in the context of phase II or phase III comparative clinical trials using
QoL endpoints. We studied and compared the statistical properties of a group
sequential method, the TT, using either mixed Rasch models assuming either
known or unknown item parameter values or the traditional method based on
QoL scores. Simulation studies showed that: (i) the type I error α was cor-
rectly maintained for the QoL scores method and the Rasch modelling method
assuming known item parameter values but was always higher than expected
for the Rasch modelling method assuming unknown item parameter values; (ii)
the power of the TT was correctly maintained for the Rasch modelling method
assuming known item parameter values and a little lower than expected when
item parameters were assumed to be unknown, but the TT was particularly
underpowered for the QoL scores method; and (iii) as expected, using group
sequential analysis all methods allowed substantial reductions in ASNs as com-
pared with the SSD, the largest reduction being observed with the Rasch mod-
elling methods.

The different results that were obtained using the mixed Rasch models as-
suming either known or unknown item parameter values or the method based
on QoL scores might be partly explained by looking at the distributions of
the test statistics Z(S), V (S), Z(X), and V (X). According to asymptotic dis-
tributional results, we might expect the sequences of test statistics (Z1(S),
Z2(S), . . . , ZK(S)) and (Z1(X), Z2(X), . . . , ZK(X)) to be multivariate normal
with: Zk(S) ∼ N(ES ∗ Vk(S), Vk(S)) and Zk(X) ∼ N(ES ∗ Vk(X), Vk(X)),
respectively, where ES denotes the effect size, for k = 1, 2, . . . ,K analyses
[Whitehead (1997), and Jennison and Turnbull (1999)]. Table 24.3 shows the



Sequential Analysis Using Item Response Models 343

distribution of the standardized test statistics under H0 and H1 (effect size
equal to 0.5) that were estimated using the method based on QoL scores or the
Rasch models assuming either known or unknown item parameter values. The
estimation of the test statistics was performed at the second sequential analysis
corresponding to a sample size of 80 patients. The normality assumption was
not rejected using a Kolmogorov–Smirnov test, whatever the method used. Un-
der H0 or H1, the null hypothesis of unit standard deviation (SD) was rejected
when the estimation was performed with the mixed Rasch model assuming un-
known item parameter values, the estimated SD being larger than expected.
This feature might be to some extent responsible for the inflation of the type
I error α under H0 and might also partly explain the bit of underpowering of
the TT that was observed under most H1 hypotheses. Under H1, the null hy-
pothesis of 0 mean was rejected when the estimation was performed with the
QoL scores method, the estimated mean value being lower than expected. This
might explain why the TT was notably underpowered using the QoL scores
method.

Table 24.3. Distribution of the standardized test statistics estimated using the
method based on QoL scores or the Rasch model for different values of the
number of items and for an effect size equal to 0.5, assuming that the vector of
item parameter values β is either known or unknown (nominal α = β = 0.05,
1000 simulations)

Number H0 H1

of QoL Scores Rasch Model QoL Scores Rasch Model
Items β Known β Unknown β Known β Unknown

Z′(S) Z′(X) Z′(X) Z′(S) Z′(X) Z′(X)

5 −0.034 −0.005 −0.028 −0.654* −0.009 −0.006
(0.995) (0.972) (1.090)** (1.014) (0.978) (1.086)**

10 −0.037 −0.003 −0.016 −0.423* 0.007 0.029
(0.995) (1.017) (1.143)** (1.009) (0.996) (1.131)**

Z′(S) and Z′(X) are the standardized test statistics for the method based on
QoL scores and the Rasch model, respectively:

Z ′(S) =
Z(S)− ES.V√

V
and Z ′(X) =

Z(X)− ES.V√
V

,

where ES is the effect size. Data are means (SD).
∗p < 0.001 for testing the mean equal to 0.
∗∗p < 0.05 for testing the standard deviation equal to 1.

Another important aspect is also to be noted for the mixed Rasch model
assuming unknown item parameter values. The use of this model corresponds
to a rather extreme case where no information is assumed to be known about
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the item parameters. This can be the case if no data have ever been collected
using the corresponding QoL questionnaire, which is rarely the case. Otherwise,
one could use data from another study using that specific QoL questionnaire to
estimate the item parameters and then use these estimates in the Rasch model,
because the item parameters are assumed to be parameters related only to
the questionnaire and are therefore supposed to be invariant from one study to
another (using the same QoL questionnaire). In our simulation study and in the
example using the data from the phase III oncology trial, the item parameters
were estimated at each sequential analysis, that is on 40, 80, 120,. . . patients
because the group sequential analyses were performed every 40 patients. It is
very likely that the amount of available data at each sequential analysis might
be quite insufficient to satisfactorily estimate the item difficulty parameters,
especially when estimating five or ten items with only 40 patients. The simu-
lations were also performed using 80 patients for the first sequential analysis
to estimate the item parameters and 40 more patients at each subsequent se-
quential analysis and this resulted in a type I error closer to the target value
of 0.05 and higher power (data not shown). However, it has to be mentioned
that such a feature might not be interesting for larger effect sizes (over 0.6)
because the benefit in terms of ASNs offered by sequential analyses might then
be overwhelmed by the fact that it will not be possible to stop the study before
80 patients have been included.

Other types of investigations on incorporating IRT methodologies in sequen-
tial clinical trials could also be interesting to perform such as: evaluating the
impact on the statistical properties of the sequential tests of the amount of
missing data (often encountered in practice and not investigated in our study)
and missing data mechanisms (missing completely at random, missing at ran-
dom, nonignorable missing data). In addition, other group sequential methods
could also be investigated such as spending functions [Lan and De Mets (1983)]
and Bayesian sequential methods [Grossman et al. (1994)], for instance. Finally,
we only worked on binary items and polytomous items more frequently appear
in health-related QoL questionnaires used in clinical trial practice. Other IRT
models such as the partial credit model or the rating scale model [Fischer and
Molenaar (1995)] would certainly be more appropriate in this context.

Item response theory usually provides more accurate assessment of health
status as compared with the QoL scores method [McHorney et al. (1997), and
Kosinski et al. (2003)]. The use of IRT methods in the context of sequential
analysis of QoL endpoints provides a more powerful method to detect thera-
peutic effects than the traditional method based on QoL scores. Finally, there
are a number of challenges for medical statisticians using IRT that may be
worth mentioning. IRT was originally developed in educational research using
samples of thousands or even ten thousands. Such large sample sizes are very
rarely (almost never) attained in medical research where medical interventions
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are often assessed using less than 200 patients. The problem is even more cru-
cial in the sequential analysis framework where the first interim analysis is often
performed on fewer patients. Moreover, IRT and associated estimation proce-
dures are conceptually more difficult than the QoL scores method often used in
medical research. Perhaps one of the biggest challenges for medical statisticians
will be to explain these methods well enough so that clinical researchers will
accept them and use them. As in all clinical research but maybe even more
in this context, there is a real need for good communication and collaboration
between clinicians and statisticians.
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Abstract: Development of an instrument to measure subjective concepts is a
long process involving only marginally effective participation of statisticians.
Most of the time, the main work is done by sociologist, psychologist, or health
policy decision makers even if statistical methodology is always the main scien-
tific foundation. In this chapter, using the opportunity of a real epidemiological
and environmental study, we mainly present the methodology used of construc-
tion of a quality of life instrument specific to air pollution disturbance with a
large emphasis on its statistical part. These methods are based on classical and
modern psychometrical measurement models chosen in order to select questions
measuring a few clear unidimensional latent traits (subjective concepts).

Keywords and Phrases: Air quality, annoyances, perception quality of life,
psychometrical models, pluridiciplinarity

25.1 Introduction

Air pollution may cause cardiorespiratory diseases, and more often annoyance
reactions. Despite the large populations exposed to air pollution in our cities
and numerous epidemiological studies demonstrating relationships between air
pollution and health, few studies have been published on the quantitative rela-
tions between the exposure to pollution and the public perception of air quality.
The SEQAP epidemiological study has for its main objective the measurement
of the relationships between adults’ perception of air pollution and air pollu-
tant concentrations measured by monitoring networks in several French towns.
Around 3000 subjects will be randomly selected from adults living in seven
cities having different levels of air pollutant exposure. From each city, 450 sub-
jects adults (age >18) will be chosen. Interviews will be conducted by phone,
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including questions on sociodemographic characteristics, occupation, smoking
habits, household members, access to a car, health, plus a specific quality of life
scale taking into account air pollution annoyance.

In this chapter, using the opportunity of a real ongoing epidemiological
study, we mainly present the methodology of construction of a quality-of-life
instrument specific to air pollution disturbance.

25.2 Material and Methods

25.2.1 Finding questions, using previous knowledge,
and focus groups

During a preliminary step, the main goal was to answer the question: what
do we want to measure? We found only few bibliographical references on the
subject. Unlike most of the studies on perception of air pollution mainly based
on assessment of satisfaction about air quality, we focused on assessment of
degradation of quality of life explained by air pollution. The first step was to
identify questions (qualitative items) related to that subjective concept. These
questions (items) were chosen using a preliminary deep bibliographical research
and four focus group meetings. Two different focus groups involved students
in environmental health, another one included teachers known as experts on
health environment and the last one included general people without any a
priori knowledge of environmental science.

After this preliminary step, we created a form containing questions on
annoyance reactions for different fields: health, daily life, local environment,
and quality of life. The set of items (questions) analyzed here is presented in
Appendix Table 25A.1.

25.2.2 Selecting questions, using a real sample,
and psychometric methods

The second step consisted of testing this questionnaire on a small group of 83
subjects. All interviews were done by telephone. In order to get a preliminary
sample including people living in places with contrasting levels of air pollution
three different cities were chosen. Twenty-six interviews were obtained from
people living in Le Havre, 16 inhabitants of Lyon, and 41 from people living
in Rennes. We present in this chapter preliminary results of the analysis of
the obtained data. The main interest of this preliminary study is to test the
acceptability of the questionnaire and to eliminate very bad questions. The final
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validation study, and the selection of items will be based on the data of the large
main survey, available later.

25.2.3 From principal component analysis to Cronbach
alpha curves

Statistical validation of questionnaire methods are generally based on factorial
models such as principal component analysis, that we do not explain in detail
here (a lot of good books are easily available) and more recently on use of spe-
cific unidimensional psychometric measurement models. The most famous are
classical parallel models or modern item response theory models. Without a
clear a priori knowledge of the structure of the concepts that we want to mea-
sure, principal component analysis followed by a varimax is very helpful as an
exploratory analysis. It allows us to find a subset of unidimensional items, that
is, a set of observed items measuring the same latent unobserved “construct.”
Statistical validation of a questionnaire is generally based on an internal val-
idation (based only on the information given by observed items data) and an
external validation (based on joint information given by the observed items
and other variables known as highly related to the measured construct).

The parallel model describing the unidimensionality of a set
of variables

Let X1,X2, . . . ,Xk be a set of observed quantitative variables measuring the
same underlying unidimensional latent (unobserved) variable. We define Xij

as the measurement of subject i, i = 1, . . . , n, given by a variable j, where
j = 1, . . . , k. The model underlying Cronbach’s alpha is just a mixed one-way
ANOVA model: Xij = µj + αi + εij , where µj is a varying fixed (nonrandom)
effect and αi is a random effect with zero mean and standard error σα cor-
responding to subject variability. It produces the variance of the true latent
measure (τij = µj + αi). εij is a random effect with zero mean and standard
error σ corresponding to the additional measurement error. The true measure
and the error are uncorrelated: cov(αi, εij) = 0. This model is called a parallel
model, because the regression lines relating any observed item Xj , j = 1, . . . , k
and the true unique latent measure τj are parallel.

These assumptions are classical in experimental design. This model defines
relationships among different kinds of variables: the observed score Xij , the
true score τij, and the error εij . It is interesting to make some remarks about
assumptions underlying this model. The random part of the true measure of
individual i is the same whatever variable j might be. αi does not depend on j.
The model is unidimensional. One can assume that, in their random part, all
variables measure the same thing (αi).
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Reliability of an instrument

A measurement instrument gives us values that we call the observed measure.
The reliability ρ of an instrument is defined as the ratio of the variance of the
true over the variance of the observed measure. Under the parallel model, one
can show that the reliability of any variable Xj (as an instrument to measure
the true value) is given by:

ρ =
σ2

α

σ2
α + σ2

,

which is also the constant correlation between any two variables. This coefficient
is also known as the intraclass coefficient. The reliability coefficient ρ can be
easily interpreted as a correlation coefficient between the true and the observed
measure.

When the parallel model is assumed, the reliability of the sum of k variables
equals:

ρ̃ =
kρ

kρ + (1 − ρ)
.

This formula is known as the Spearman–Brown formula. Its maximum likeli-
hood estimator, under the assumption of a normal distribution of the error and
the parallel model, is known as Cronbach’s alpha coefficient (CAC) [Cronbach
(1951)]:

α =
k

k − 1
(1−

k∑
j=1

S2
j

S2
tot

),

where

S2
j =

1
n− 1

n∑
i=1

(Xij −Xj)2 and S2
tot =

1
nk − 1

n∑
i=1

k∑
j=1

(Xij −X)2.

Backward Cronbach alpha curve

The Spearman–Brown formula indicates a simple relationship between CAC
and the number of variables. It is easy to show that the CAC is an increasing
function of the number of variables. This formula is obtained under the parallel
model.

A step-by-step curve of CAC can be built to assess the unidimensionality
of a set of variables. The first step uses all variables to compute CAC. Then,
at every successive step, one variable is removed from the scale. The removed
variable is that one which leaves the scale with its maximum CAC value. This
procedure is repeated until only two variables remain. If the parallel model is
true, increasing the number of variables increases the reliability of the total
score which is estimated by Cronbach’s alpha. Thus, a nondecrease of such
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curves after adding a variable would cause us to suspect strongly that
the added variable did not constitute a unidimensional set with the
other variables.

25.2.4 Modern measurement models and graphical modeling

Modern ideas about measurement models are more general. Instead of arbitrar-
ily defining the relationship between observed and truth as an additive function
(of the true and the error), they just focus on the joint distribution of the ob-
served and the true variables f(X, gθ). We do not need to specify any kind of
distance between X and θ. The residual error E and its relation to X and θ
could be anything! E is not equal to X − gθ. E could be any kind of distance
between the distributions of X and θ.

This leads us naturally to graphical modeling. Graphical modeling [Lau-
ritzen and Wermuth, (1989), and Whittaker (1990)] aims to represent the mul-
tidimensional joint distribution of a set of variables by a graph. We focus on
conditional independence graphs. The interpretation of an independence graph
is easy. Each multivariate distribution is represented by a graphic, which is
built up by nodes and edges between nodes. Nodes represent one-dimensional
random variables (observed or latent, i.e., nonobserved) whereas a missing edge
between two variables means that those two variables are independent condi-
tionally on the rest (all other variables in the multidimensional distribution).
Such graphical modeling is also known as a Bayesian network, where, instead of
latent variables, unknown parameters with a priori distribution are represented
in the graphic.

The Rasch model [Fischer and Molenaar (1995)] in the psychometric context
is probably the most popular of modern measurement models. It is defined for
the outcome X taking two values (coded for instance 0 or 1):

P (Xij = 1/θi, βj) =
exp(θi − βj)

1 + exp(θi − βj)
.

θi is the person parameter; it measures the ability of an individual i on the
latent trait. It is the true latent variable in a continuous scale. It is the true
score that we want to obtain, after the reduction of the k items to 1 dimension.
βj is the item parameter. It characterizes the level of difficulty of the item (the
question). The Rasch model is a member of the item response models. The
partial credit model [Fischer and Molenaar (1995), Andrich, et al. (1997), and
Dorange et al. (2003)] is another member of the family of item response models;
it is the equivalent of the Rasch model for ordinal categorical responses. Let
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Pijx = P (Xij = x); then

Pijx =
exp
(

xθi −
x∑

l=1

βjl

)
mj∑
h=0

exp
(

hθi −
h∑

l=1

βjl

) ,

for x = 1.2, . . . ,mj (mj is the number of levels of item j); i = 1, . . . , N (number
of subjects); j = 1, . . . , k (number of items). Under these models a reliability co-
efficient such as the Cronbach alpha can be derived [Hamon and Mesbah (2002)]
and used in the same way as in parallel models, and a backward Cronbach alpha
curve can be used as a first step followed by a goodness-of-fit test of the Rasch
model. The Rasch model can be easily interpreted as a graphical model (see
Figure 25.1) with observed items conditionally independent of the unobserved
latent and any other external covariate. Moreover, another nice measurement
property can be read from the graphics: with a good instrument (questionnaire)
there is no differential item functioning. All external covariates must be
conditionally independent with the observed items of the latent, and so, there
are no edges between items and external covariates.

25.3 Results

Fifty-four ordinal items were used in the original form to measure the annoy-
ance of air pollution. Four response levels were used for each item: “pas du
tout” (never), “parfois” (sometimes), “souvent” (often), and “toujours” (al-
ways). Nine items (Seqap 18 to Seqap 26, adapted from the famous generic
quality of life instrument SF36, were excluded from the current analysis. This
set of items forms a clear separate dimension (psychological well-being, quality
of life) already validated in various studies. Moreover, the original set of nine
items was also used in a different place (end) of the questionnaire (Seqap 59 to
Seqap 67). The only difference between the two formulations was the beginning
of each question. In the new formulation, all questions (Seqap 18 to Seqap 26,
started by, “Cette dernière semaine á cause de la pollution de l’air, avez-vous
été,” (“Last week, because of air pollution, have you been,”) instead of the old
formulation, “Au cours de ces 4 dernières semaines, y a-t-il eu des moments où
vous vous êtes senti(e)” “In the course of the last four weeks have there been
times when you felt.”

At the first step, eight items with ceiling effects (more than 90% of persons
answering “never”) were excluded from the analysis. The descriptive analysis
of the remaining items was carefully examined. For example, about 66% of
questioned persons declared they noticed that the windows of their home were
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Figure 25.1. Graphical interpretation of the Rasch model.

dirty due to air pollution. It is interesting to underline that about a half of the
sample of questioned persons declared having paid attention to air quality infor-
mation. Then all remaining items were recoded in binary code: “never” versus
all the other levels of possible response; the responses “sometimes”, “often,”
and “always” were grouped together because of too small numbers of response
per level. The list of items is presented in Appendix Table 25A.1.

25.3.1 Rotated principal component analysis

On this set of items, a principal component analysis was performed. The per-
centage of variance corresponding to the first latent root is 24%. The second
latent root equals 7.6% and the third 6.4% of variance. Eleven latent roots were
higher than one. A forced (limited to three factors) factorial analysis followed
by a varimax rotation allowed us to identify three different groups of items.
The number of factors was chosen coherently with the a priori chosen structure
of the questionnaire (i.e., the number of constructs that one need to measure).
More precisely, this part of the questionnaire was built in three sections each
including questions about three separate concepts: air pollution annoyances
(i) on own health, (ii) on own daily activities, or (iii) on own environment.
Results are presented in Appendix Table 25A.2. For each item, only the maxi-
mum correlation between that item and the three factors is shown. So, a simple
fast clustering of the items into factors can be derived by defining a cluster of
items attached to any factor as those items with nondeleted correlation (see Ap-
pendix Table 25A.2). This fast clustering needs to be confirmed using the notion
of unidimensionality and separability as below. Other, more sophisticated,
methods related to Rasch models [Hardouin and Mesbah (2004)] could be used.
So, this notion of unidimensionality of a set of items is the core of our meth-
ods. Rotated principal analysis is just an exploratory and preliminary analysis
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used in order to identify fast clustering of items of which unidimensionality
and separability must be checked carefully by the following analyses.

25.3.2 Backward Cronbach alpha curve

A backward Cronbach alpha curve was built using a set of items from each group
in order to ensure the unidimensionality of the subset. Few items were deleted
to allow the Cronbach alpha curve to be an increasing curve: all of the items were
conserved in the first group, two items were deleted in the second (Seqap 28
and Seqap 51), and three items in the third group (Seqap 11, Seqap 31 and
Seqap 32). Final curves are presented in Figure 25.2. The first group and the
second are both characterized by 12 items and the third dimension by only
7 items. The Cronbach α coefficients, higher than the reference value 0.70,
indicate a good reliability in each group. The Cronbach α coefficient is lower
in group 3 than in other groups because of fewer items in this group. The
SAS� macro ANAQOL [Hardouin and Mesbah (2007)] was used to perform
the backward Cronbach alpha curves.

25.3.3 Scoring procedure

A score has been estimated in each group: Score1, Score2, and Score3 for the
first, second, and third group of items. For each group, and for each individ-
ual, a score is just the sum of item responses divided by the maximum total
number of the same observed items. So, missing items are partly treated as
missing at random. When the number of items is larger than the half number
of the items in the groups, the score is considered as missing. A high score
means many annoyances due to air pollution perceived by an individual (many
items are coded “one” meaning “sometimes,” “often,” or “always”). A low score
means few annoyances due to air pollution (many items are coded zero meaning
“never”).

25.3.4 Correlation items to scores

Correlations among each item and the three scores are shown in Appendix
Table 25A.3. This can be considered as part of the internal validation done to
ensure the separability of the subsets. We much check that for any item:

1. There is a strong correlation between that item and its own score.

2. Item correlations between that item and its own score are higher than the
correlation between the same item and other scores.

The first property is another view of the internal consistency condition of the
subscale. The Cronbach alpha coefficient and intraclass coefficients are indicated
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Cronbach alpha step–by–step procedure
Maximal Cronbach Alpha

0.85

0.84

0.83

0.82

0.81

0.80

0.79

0.78

0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.70

0.69

0.68

2 3

seqap_53

seqap_2

seqap_42

seqap_9

seqap_52

seqap_6
seqap_46

seqap_45
seqap_30

seqap_50

4 5 6 7
Number of Items

8 9 10 11

Maximal Cronbach Alpha
0.84

0.83

0.82

0.81

0.80

0.79

0.78

0.77

0.76

0.75

0.74

2

seqap_40

seqap_10
seqap_39

seqap_4

seqap_3

seqap_5

seqap_13

seqap_35
seqap_34

seqap_47

3 4 5 6 7

Number of Items

8 9 10 11 12

Cronbach alpha step–by–step procedure
Maximal Cronbach Alpha

0.73

0.72

0.71

0.70

0.69

0.68

0.67

0.66

0.65

2 3 4 5

Number of Items

6 7

seqap_38

seqap_36

seqap_48

seqap_49

seqap_37

Figure 25.2. Cronbach alpha curves for the three final groups.
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Table 25.1. Rasch item parameter estimates for group 1

Item Location SE Residual DF Chisq DF Prob
Seqap 1 0.218 0.282 −2.590 65.89 7.294 2 0.026
Seqap 2 −0.209 0.278 −0.698 65.89 4.636 2 0.098
Seqap 6 0.278 0.283 0.414 65.89 1.444 2 0.486
Seqap 9 0.978 0.304 −1.085 65.89 1.725 2 0.422
Seqap 27 1.281 0.318 −0.849 65.89 2.045 2 0.360
Seqap 30 −0.679 0.279 1.606 65.89 0.093 2 0.955
Seqap 42 −1.240 0.289 0.012 64.98 0.269 2 0.874
Seqap 45 −1.626 0.300 0.255 64.98 0.643 2 0.725
Seqap 46 0.286 0.290 0.072 63.18 2.721 2 0.257
Seqap 50 0.089 0.289 1.167 61.37 5.288 2 0.071
Seqap 52 −1.044 0.285 −0.473 64.98 5.921 2 0.052
Seqap 53 1.668 0.354 −0.539 63.18 0.733 2 0.693

for each subscale in Appendix Table 25A.3. A deeper rigorous analysis involves
use of adequate tests and methods, taking into account the multiplicity of those
tests (FDR or Bonferoni). This is certainly an improvement that must be done.
Anyway, the rule in the scientific area is to consider this step of the analysis as
an exploratory step, which needs to be confirmed in a second step. So, we focus
more on the strength of the associations than on the significance of the tests.

25.3.5 Rasch model

In our study, the item responses are categorical (ordinal), so unidimensionality
must be better assessed using Rasch models. Original item response levels in
our data were ordinal. So, the partial credit model must be used. Nevertheless,
because we decided to dichotomize the item coding, only a simple Rasch model
was used in this work. Results of Rasch analysis are partly shown in Table 25.1
and Figure 25.3. One can see that item Seqap 1 has an extreme fit residual
value which indicates, that regarding Rasch model measurement that item is
questionable. One can also see that items Seqap 45 and Seqap 53 are the most
extremal in terms of difficulty in the first latent trait.

All groups were deeply analyzed with the Rasch model, but only a few results
of group 1 are presented here. RUMM (Rasch unidimensional measurement
models) software was used to perform the Rasch analysis and to produce the
Table 25.1 and Figure 25.3.
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No. ICCs selected = 12

Label   Locn   Slope
seq45 −1,63    0,25
seq42 −1,24    0,25
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seq1    0,22    0,25
seq6    0,28    0,25
seq46   0,29   0,25
seq9    0,98   0,25
seq27   1,28   0,25
seq53   1,67   0,25
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Figure 25.3. Item characteristic curves for the group 1.

25.3.6 External validation

Four external validations using available covariates in the questionnaire were
also performed. Results of ANOVAs are in Appendix Table 25A.4. We can see
that the individual’s perception of air quality is strongly associated with the
built degradation scores. There is a clear trend between degradation of the
quality of life as described by the scores and their own perception of the air
quality in general, or comparing (i) to the past, (ii) other areas, or (iii) other
cities. More precisely, we can note that:

• About 40% of individuals think that the air quality they breathe is good;
only 3.7% think that the air quality is excellent. We observed an increasing
of the means score in the three groups with the increasing of air quality
degradation perceived. This increase is statistically significant for the first
two groups only (p < 0.0001 for group 1 and p < 0.008 for group 2).

• About 43% think that the air quality stays the same or becomes better.
All three scores are higher when one thinks that the air quality become
worse.

• 38% think that the air quality in their city is better than in other cities.
All three scores are higher when one thinks that the air quality of his own
city is worse.

• 41% think that the air quality of their area is better than in other areas
of their cities. All three scores are higher when one thinks that the air
quality of her own area is worse.

These results confirm those of the internal validation part and the preliminary
work done by the team, including the focus groups. The built scores integrate
the individual perception of the quality of the air. Scores 2 and 3 are significantly
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negatively correlated with the quality-of-life score based on items from the
SF36 instrument, but no significant correlation appeared with the prognostic
of depression in this study.

25.4 Discussion

Development of a quality-of-life questionnaire is a long and hard process. We
need more than a single study to evaluate the quality of the instrument. We also
need more than one simple statistical analysis to confirm the good reliability of
such instrument. This is only the beginning.

In fact, the validation results in Appendix Table 25A.4 suggest that the
three scales corresponding to these three components all behave in more or less
the same way. Perhaps a single scale would have been enough? We decided to
postpone the answer to this question. The previous results were based on a
small pilot study. The big problem is that multivariate analysis of data was
based on only 83 subjects. A subject-to-variable ratio of about 2 : 1 is surely
insufficient for reliable multivariate analysis. So results are only useful to exclude
“very bad” items to get a smaller questionnaire (items with low acceptability by
people or low variability in the responses) and to reformulate some questions.
The three identified dimensions here need to be confirmed by the final study
based on the planned large study with a first part conducted between June
and August 2006 to characterize summer pollution and a second part that will
begin in November 2006 and finish in January 2007 to take into account winter
pollution.

After the pilot study, it was easy to understand that some questions were
very poor in their linguistic formulation: sometimes interviewers or, even, in-
terviewees were very helpful in finding the obvious, that no one from the devel-
opment team saw previously during the long phase of preparation!

So a long and careful preparation in the development of a questionnaire
is very important. It must include exhaustive documentary research, planning
and management of focus groups (often necessary), and organization of an un-
avoidable pilot study.

The goal of this chapter is to present the statistical part of the method-
ology of construction of a quality-of-life questionnaire specific to air pollution
disturbance.

It is clear that building such a questionnaire in a field where no such ques-
tionnaire is available is not easy. Generally, when we want to develop a new
instrument to measure some psychological dimension, we choose items (ques-
tions) from different available similar questionnaires.
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So, the preliminary exhaustive documentary research is very important and
very useful. Unfortunately, in this field, which is very new as a scientific research
field, it is very difficult to find helpful material to build an instrument.

Most of the publications including key words “Air Pollution” and “Percep-
tion” are publications about people’s satisfaction on “the Quality of Air.” They
include a lot of “public policy” researchers mainly interested in immediate peo-
ple satisfaction. Our current work is in the intersection of epidemiology and
sociology. So we focused on measurement of the individual perception of air
pollution and its effect on individual quality of life.

The new list of questions on perception of air pollution is in Appendix Ta-
ble 25A.5. It was used in the new large study. The statistical analysis, including
the validation of the new version of the instrument, is in progress. Final results
will be available elsewhere soon.
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Appendix

Table 25A.1. Original item list with French labels: 37 items
Cette dernière semaine, avez vous:

seqap 1 Été inquiet pour votre santé ACPA
seqap 2 Été inquiet pour la santé de vos proches ACPA
seqap 3 Eu les yeux qui piquent ACPA
seqap 4 Eu les yeux rouges ACPA
seqap 5 Eu le nez qui pique ACPA
seqap 6 Éternué ACPA
seqap 7 Ressenti des picotements dans la gorge ACPA

(continued)



362 S. Deguen, C. Segala, and M. Mesbah

(continued)
seqap 8 Eu la gorge sèche ACPA
seqap 9 Toussé ACPA
seqap 10 Eu du mal à respirer ACPA
seqap 11 Eu la peau sèche ACPA
seqap 13 Eu des maux de tête ACPA
seqap 17 Eu autres problèmes ACPA
Cette dernière semaine, ACPA:

seqap 27 Avez-vous changé certaines de vos habitudes?
seqap 28 Avez-vous modifié vos moyens de transports?
seqap 30 Avez vous été attentif aux informations sur la qualité de l’air?
seqap 31 Avez vous promené avec des enfants à l’extérieur?
seqap 32 Avez-vous pratiqué un sport à extérieur?
seqap 33 Êtes vous resté dans votre logement?
seqap 34 Avez vous aéré votre logement?
seqap 35 Avez-vous fermé les volets de votre logement?
seqap 36 Avez-vous parfumé l’intérieur de votre logement?
seqap 37 Avez-vous mis en marche la ventilation de votre logement?
seqap 38 Avez-vous évité d’ouvrir les fenêtres?
seqap 39 Avez-vous éprouve le besoin de vous laver plus fréquemment?
seqap 40 Avez-vous bu plus que d’habitude?
seqap 42 Avez-vous senti de mauvaises odeurs à l’extérieur de

votre logement?
seqap 43 Avez-vous senti de mauvaises odeurs à l’intérieur de

votre logement?
seqap 45 Avez-vous constaté que les fenêtres étaient sales?
seqap 46 Avez-vous constaté que vos rideaux sont sales?
seqap 47 votre maison était-elle pleine de poussière?
seqap 48 Avez-vous vu de la poussière en suspension dans l’air

à l’extérieur?
seqap 49 Avez-vous vu de la poussière en suspension dans l’air

à l’intérieur?
seqap 50 Le ciel a-t’il été gris?
seqap 51 Y a-t-il eu du brouillard?
seqap 52 Avez vous pensé que votre qualité de vie est dégradée

par pollution?
Cette dernière question, ne concerne pas la dernière semaine, ACPA:

seqap 53 Avez-vous envisagé de déménager?
ACPA = à cause de la pollution de l’air.
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Table 25A.2. Rotated factors pattern
Items Factor1 Factor2 Factor3
seqap 1 0.75744
seqap 2 0.66529
seqap 3 0.51318
seqap 4 0.69372
seqap 5 0.48161
seqap 6 0.47825
seqap 7 0.44177
seqap 8 0.45219
seqap 9 0.54641
seqap 10 0.51783
seqap 11 0.29986
seqap 13 0.51745
seqap 17
seqap 27 0.70434
seqap 28 0.38806
seqap 30 0.60029
seqap 31 −0.35862
seqap 32 −0.47117
seqap 33 0.79712
seqap 34 0.64588
seqap 35 0.67352
seqap 36 0.48367
seqap 37 0.47392
seqap 38 0.57005
seqap 39 0.42328
seqap 40 0.55086
seqap 42 0.56447
seqap 43 0.58047
seqap 45 0.47847
seqap 46 0.47497
seqap 47 0.34992
seqap 48 0.47846
seqap 49 0.50076
seqap 50 0.38471
seqap 51 0.30685
seqap 52 0.53886
seqap 53 0.57123
Variance 8.930 2.817 2.381
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Table 25A.3. Pearson correlation coefficient among items and scores

Group Item
SCORE

Score 1 Score 2 Score 3

Group 1: α = 0.84; ρ = 0.30

seqap 1 0.770 0.495 0.262
seqap 2 0.679 0.346 0.314
seqap 6 0.562 0.502 0.289
seqap 9 0.661 0.667 0.458
seqap 27 0.622 0.261 0.440
seqap 30 0.526 0.146 0.077
seqap 42 0.626 0.341 0.204
seqap 45 0.576 0.352 0.284
seqap 46 0.553 0.322 0.352
seqap 50 0.521 0.350 0.194
seqap 52 0.634 0.366 0.362
seqap 53 0.542 0.344 0.200

Group 2: α = 0.83; ρ = 0.29

seqap 3 0.391 0.632 0.227
seqap 4 0.231 0.685 0.232
seqap 5 0.400 0.522 0.262
seqap 7 0.519 0.602 0.389
seqap 8 0.514 0.693 0.512
seqap 10 0.432 0.625 0.342
seqap 13 0.301 0.574 0.355
seqap 34 0.082 0.435 0.145
seqap 35 0.225 0.537 0.360
seqap 39 0.451 0.598 0.450
seqap 40 0.347 0.636 0.414
seqap 47 0.356 0.494 0.250

Group 3: α = 0.72; ρ = 0.28

seqap 33 0.294 0.402 0.696
seqap 36 0.203 0.280 0.579
seqap 37 0.075 0.302 0.505
seqap 38 0.534 0.349 0.714
seqap 43 0.373 0.364 0.596
seqap 48 0.249 0.416 0.624
seqap 49 0.232 0.328 0.582
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Table 25A.4. External validation

Response level Frequency
Score 1 Score 2 Score 3
Meana (sd) Mean (sd) Mean (sd)

The quality of the air that you inhale is:
Excellent 3 2.78 (4.8) 0.00 (0) 4.76 (8.2)
Very good 4 2.08 (4.2) 2.08 (4.2) 0.00 (0.0)
Good 33 29.78 (22.5) 17.17 (20.2) 16.45 (21.7)
Poor 30 53.67 (27.7) 23.81 (23.6) 20.47 (24.5)
Bad 11 62.72 (21.3) 39.39 (27.7) 25.11 (28.7)
Do you think that the quality of the air:

Became better 9 33.33 (25.0) 12.04 (13.2) 6.88 (11.7)
Stayed the same 25 27.54 (23.2) 9.81 (12.6) 16.00 (24.1)
Became worse 45 51.16 (29.1) 30.23 (23.4) 21.59 (24.5)
Compared to the other cities, the quality of the air of your city is:

Better 29 28.18 (24.1) 16.09 (21.7) 15.76 (22.4)
Similar 17 35.34 (28.6) 21.07 (25.5) 18.49 (24.6)
Worse 30 54.64 (28.7) 24.44 (25.1) 19.20 (25.1)
Compared to the other districts of your city, the quality of the air of
your district is:

Better 33 31.19 (24.1) 15.19 (16.6) 16.45 (24.7)
Similar 32 39.94 (28.6) 21.35 (25.7) 16.22 (20.9)
Worse 15 94.00 (28.7) 29.29 (25.7) 23.81 (25.1)
Quality of Life Score is:

Less than 75 40 34.75 (29.6) 25.69 (21.6) 24.00 (27.5)
More than 75 43 27.68 (23.6) 11.31 (13.7) 10.34 (19.3)
SALSA Prognostic of Depression is:

Negative 60 27.68 (26.3) 16.69 (18.5) 14.43 (22.7)
Positive 17 32.87 (22.5) 18.46 (17.6) 23.33 (28.2)
a Mean (standard deviation) of the scores by level response.
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Table 25A.5. New list of questions produced after the analysis: 32 items
Cette dernière semaine, avez-vous
Seqap 1 Été inquiét pour votre santé ACPA?a

Seqap 2 Été inquiét pour la santé de vos proches ACPA?
Seqap 3 Eu les yeux qui piquent (ou qui pleurent) ACPA?
Seqap 4 Eu les yeux rouges ACPA?
Seqap 5 Eu le nez qui pique ACPA?
Seqap 6 Éternuez ACPA?
Seqap 7 Ressenti des picotements dans la gorge ACPA?
Seqap 8 Eu la gorge sèche ACPA?
Seqap 9 Toussé ACPA?
Seqap 10 eu du mal à respirer ACPA?
Seqap 11 Eu des problèmes de peau (sècheresse, rougeurs ACPA?
Seqap 13 Eu des maux de tête ACPA?
Seqap 16 Eu des allergies déclenchées par la pollution de l’air?
Seqap 30 Été attentif aux informations sur la qualité de l’air?
Seqap 28 Modifié vos moyens de transports ACPA?
Seqap 27 Changé vos habitudes de loisirs ACPA
Seqap 33 Cette dernière semaine, êtes-vous resté dans votre

logement ACPA?
Seqap 34 Aéré ou ventillé votre logement ACPA?
Seqap 35 Fermé les volets de votre logement ACPA?
Seqap 36 Parfumé l’intérieur de votre logement ACPA?
Seqap 38 Évité d’ouvrir les fénêtres ACPA?
Seqap 40 bu Plus que d’habitude ACPA?
Seqap 39 éprouvé le besoin de vous laver plus fréquemment

(mains, visage)
Seqap 42 Senti de mauvaises odeurs à l’extérieur de votre

logement ACPA?
Seqap 43 Senti de mauvaises odeurs à l’intérieur de votre

Logement ACPA?
Seqap 45 constaté que les fenêtres de votre logement étaient sales ACPA?
Seqap 46 Constaté que vos rideaux étaient sales ACPA?
Seqap 55 Vu de la poussière noire à l’intérieur de votre

logement ACPA?
Seqap 56 Vu de la poussière noire à l’extérieur de votre

logement ACPA?
Seqap 50 Constaté que le ciel était gris ACPA?
Seqap 52 Pensé que votre qualité de vie était dégradée par la pollution

de l’air?
Seqap 53 Envisagé de déménager ACPA?
a ACPA = À cause de la pollution de l’air.
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Abstract: The notion of quality of life (QoL) has recently received a high
profile in the biomedical, the bioeconomic, and the biostatistical literature. This
is despite the fact that the notion lacks a formal definition. The literature on
QoL is fragmented and diverse because each of its constituents emphasizes its
own point of view. Discussions have centered around ways of defining QoL, ways
of making it operational, and ways of making it relevant to medical decision
making. An integrated picture showing how all of the above can be brought
together is desirable. The purpose of this chapter is to propose a framework that
does the above. This we do via a Bayesian hierarchical model. Our framework
includes linkages with item response theory, survival analysis, and accelerated
testing. More important, it paves the way for proposing a definition of QoL.

This is an expository chapter. Our aim is to provide an architecture for
conceptualizing the notion of QoL and its role in health care planning. Our ap-
proach could be of relevance to other scenarios such as educational, psychomet-
ric, and sociometric testing, marketing, sports science, and quality assessment.

Keywords and Phrases: Health care planning, hierarchical modeling, infor-
mation integration, survival analysis, quality control, utility theory

26.1 Introduction and Overview

A general perspective on the various aspects of the QoL problem can be gained
from the three-part paper of Fitzpatrick et al. (1992). For an appreciation of the
statistical issues underlying QoL, the recent book by Mesbah, et al. (2002) is a
good starting point. In the same vein is the paper of Cox et al. (1992) with the
striking title, “Quality of Life Assessment: Can We Keep It Simple?” Reviewing
the above and other related references on this topic, it is our position that QoL
assessment can possibly be kept simple, but not too simple! To get a sense as
to why we come upon this view, we start by selectively quoting phrases from

369
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the writings of several prominent workers in the field. These quotes give a feel
for the diverse issues that the topic of this chapter spawns, and this in turn
helps us conceptualize what the notion of QoL could be. The quotes also set
the stage for developing a foundation for the Bayesian framework we propose.
Our sense is that Bayesian involvement in this arena is practically nonexistent
[cf. Mesbah et al. (2002)]. Yet, as we hope to show here, it is only a Bayesian
framework that is able to:

(i) Pull together the several apparently conflicting issues that the QoL prob-
lem raises.

(ii) Provide a foundation for defining QoL.

(iii) Formally place the notion of QoL in the context of medical decision
making.

Quotations (a) through (d) below pertain to a characterization of QoL,
whereas quotes (e) through (j) pertain to the properties that a metric for QoL
should possess; quotes (k) through (l) pertain to the uses of QoL. The emphases
(in italics) are ours.

26.1.1 Selective quotations on QoL

(a) “QoL can be considered as a global holistic judgment,” Cox et al. (1992).

(b) “The term QoL misleadingly suggests an abstract and philosophical ap-
proach,” Fitzpatrick et al. (1992).

(c) “QoL is defined as an individual’s perception of their position in life in the
context of the culture and the value system in which they live in relation
to their goals, standards, and concerns,” WHOQoL Group (1994).

(d) “We need to look at the QoL measure from individual as well as population
perspectives,” Sen (2002).

(e) “Patients’ judgments of QoL differ substantially from clinicians,” Fitz-
patrick et al. (1992).

(f) “Who Should Measure QoL, Doctor or Patient?” Slevin et al. (1988).

(g) “Although the concept of QoL is inherently subjective and definitions vary,
the content of the various instruments shows similarities,” Fitzpatrick
et al. (1992).

(h) “. . . process may be enhanced by including people with a wide range
of backgrounds in the assessment process; for example, doctors, nurses,
patients, etc.,” Fitzpatrick et al. (1992).
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(i) “Many instruments reflect the multidimensionality of QoL,” Fitzpatrick
et al. (1992).

(j) “Summing disparate dimensions is not recommended, because contrary
trends for different aspects of QoL are missed,” Fitzpatrick et al. (1992).

(k) “In health economics QoL measures have . . . more controversially (be-
come) the means of prioritizing funding,” Fitzpatrick et al. (1992).

(l) “The best understood application of QoL measures is in clinical trials,
where they provide evidence of the effects of interventions,” Fitzpatrick
et al. (1992).

There is a variant of the notion of QoL, namely, the quality adjusted life
(QAL). This variant is designed to incorporate the QoL notion into an anal-
ysis of survival data and history. A motivation for introducing QAL has been
the often expressed view that medical interventions may prolong life, but that
the discomfort that these may cause could offset any increase in longevity. The
following four quotes provide some sense of the meaning of QAL.

(m) “QAL is an index combining survival and QoL . . . ,” Fitzpatrick et al.
(1992).

(n) “QAL is a measure of the medical and psychological adjustments needed
to induce an affordable QoL for patients undergoing problems,” Sen (2002).

(o) “QAL is a patients’ survival time weighted by QoL experience where the
weights are based on utility values – measured on the unit interval,” Cole
and Kilbridge (2002).

(p) “QAL has emerged as an important yardstick in many clinical studies;
this typically involves the lifetime as the primary endpoint with the in-
corporation of QAL or QoL measures through appropriate utility scores
that are obtained through appropriate item analysis schemes,” cf. Zhao
and Tsiatis (2000).

26.1.2 Overview of this chapter

The above quotes encapsulate the essence of the QoL and its variant, the QAL.
They indicate the diverse constituencies that are attracted to a QoL metric and
the controversies that each constituency raises. For our objectives, the quotes
provide ingredients for proposing a definition of QoL and developing a metric for
measuring it. As a first step, it appears to us that any satisfactory discourse on
QoL should encompass the involvement of three interest groups, the clinicians,
the patients (or their advocates), and an economic entity, such as managers of
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health care programs. How do these three parties interact with one another?
Are they adversarial, or do clinicians and patients engage in a co-operative
game against a health care provider? The Bayesian paradigm is able to provide
a general framework for articulating the above decision-making/game-theoretic
scenario with linkages to statistical inference, life-data analysis, and information
integration. The three-party framework, perhaps the first of its kind in the lit-
erature on QoL, is a central aspect of this chapter. Its architecture is discussed
in Section 26.2, with Figure 26.1 providing an overall perspective. Sections 26.3
and 26.4 pertain to a treatment of a QoL-related questionnaire and bear rela-
tionship to the work on statistical aspects of item response theory [cf. Johnson
and Albert (1999)]. What is special here is a strategy for integrating informa-
tion from the clinician and the patient. The architecture of Section 26.2, and
the material of Sections 26.3 and 26.4 open the door for proposing a definition
of QoL, and a metric for assessing it. Our proposed metric is probability, and
this may be seen as a key contribution of this chapter; it is discussed in Section
26.5. Section 26.6 concludes the chapter by summarizing its key contributions;
the chapter ends with a few words about our choice of its title.

In proposing a unique probability-based approach for defining QoL, we rec-
ognize that some may prefer to define QoL in different ways, each definition
relevant to a specific context. The WHO interpretation comes closest to ours
in the sense that it is a composite, context-independent definition, such as the
one we are proposing here.

26.2 The Three-Party Architecture

To facilitate a normative discourse on the topic of QoL and QAL, we need to
introduce a three-party setup involving a decision-maker D, a patient P, and a
clinician C. We see D as a health management organization, or some economic
entity. In principle P could also serve as a decision maker, but undesirable as
it may sound, this these days is not the case. Health care decisions tend to be
made by others, albeit in consultation with clinicians and patients. Inputs to D
are provided by P via a set of responses to QoL questionnaires, and also by C
via clinical and psychological assessments. The responses of P and C could also
be interpreted as their decisions, but in the architecture we propose, it is D’s
actions that we are aiming to prescribe. Thus even though our setup entails
three parties (each of whom can be seen as a decision maker), it is the decisions
of D that we strive to consider. In order that D’s actions be coherent, D needs
to integrate (or fuse) the inputs of C and P, and a strategy for facilitating
this integration is another key element of this chapter; see Section 26.4. The
interplay among P, C, and D, described above, is illustrated by the decision
tree of Figure 26.1.
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Figure 26.1. D’s decision tree using QAL consideration (the unifying perspective
of QAL).

The quantities θ(P), θ(C), and θ(D) are explained later in Sections 26.3
through 26.5. The hexagon denotes D’s decision node and the triangle is a
random node R. At the decision node D takes one of several possible actions
available to D; let these actions be denoted by a generic d. At R, we would see
the possible outcomes of decision d. The quantity U(d, c) at the terminus of the
tree represents to D the utility of a decision d when the outcome is c. With
medical decisions it is often the case that d influences c.

The quantity Q(D) is P’s QoL assessed by D subsequent to fusing the inputs
of P and C; Q(D) ∈ [0, 1]. Let P (X ≥ x) denote P’s survival function; this is
assessed via survival data history on individuals judged exchangeable with P,
plus other covariate information that is specific to P. Together with P (X ≥ x)
and θ(D), D is able to assess P’s QAL. There are two strategies for doing this.
One is through the accelerated life model whereby QAL(x) = P (XQ(D) ≥
x). The other is via a proportional life model whereby QAL(x) = (P (X ≥
x))1/Q(D). Note that the QAL metric is, like the survival function, indexed by
x. The effect of both of the above is to dampen the survival function of the
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life-time X towards degeneracy at 0. If Q(D) = 1, then D uses P (X ≥ x) as is,
without making adjustments to it. We see in the above a linkage with survival
analysis and accelerated testing for developing the QAL metric. The remainder
of this chapter is devoted to D’s assessment of Q(D) and a definition of QoL.

26.3 The Rasch Model for Ps Input to QoL

An approach for eliciting P’s inputs to his or her QoL assessment is via the
Rasch model of item response theory; see, for example, Fischer and Molenaar
(1995). In stating the above we have put the cart before the horse, because QoL
has not as yet been formally defined. However, as we show, the Rasch model
can help us define QoL. Specifically, P is asked for binary (yes/no) responses
to a battery of k questions pertaining to a certain dimension, say mobility, of
P’s life. Let Xij = 1(0) if P responds in the affirmative (negative) to the ith
question, i = 1, . . . , k of the jth dimension, j = 1, . . . ,m. Then according to
the Rasch model

P (Xij = xij|θj, βij) =
exij(θj−βij)

1 + eθj−βij
,

where the parameter θj encapsulates P’s ability to undertake the dimension
of interest (such as mobility), and βij is a nuisance parameter that reflects, in
some sense, the intensity of the ith question. For example, with mobility as a
dimension, the first question may pertain to walking and the second to climbing
a flight of stairs. The second is more intense than the first. Accordingly, we
assume that the βijs are ordered and take values in R, so that −∞ < β1j <
β2j < · · · < βkj < ∞. In the standard Rasch model θj ∈ R, but for reasons that
become clear later, we modify the model and require that θj ∈ [0, 1]. Letting

P (Xij = 1|θj, βij)
def= p(θj, βij),

we see that the said restriction on θj forces p(θj, βij) to lie in the envelope
shown by the shaded region of Figure 26.2.

The S-shapedness of the envelope is merely illustrative. But the point we
wish to make here is that because θj encapsulates P’s ability regarding a partic-
ular dimension, θj must clearly be an ingredient of P’s QoL, loosely interpreted;
it is therefore a key parameter that is of interest to us. In what follows, our
focus is on θj.

Whereas the discussion so far has focused on questions to P regarding m
specific dimensions, the QoL questionnaire also includes a question that is
all-encompassing such as, “How would you rate your overall quality of life?”
or a question such as, “How would you rate your overall condition?” Generally
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Figure 26.2. Envelope showing the range of values for p(θj, βij).

such omnibus questions generate a response on a multinomial scale, but here we
assume that P’s response takes values in the continuum [0, 1], with 1 denoting
excellent. Let θ(P) denote P’s response to an omnibus question.

26.3.1 The case of a single dimension: D’s assessment of θj

Given the responses x∼j = (x1j , . . . , xkj) to a set of k questions pertaining to

dimension j, the likelihood of θj and β
∼

j = (β1j
, . . . , βkj

) under the Rasch model

is

L(θj , β
∼

j ; x∼j) =
k∏

i=1

exij(θj−βij)

1 + e
θj−βij

, (26.1)

for θj ∈ [0, 1] and −∞ < β1j < · · · < βkj < +∞.
If we suppose, as is reasonable to do so, that θj and β

∼
j are a priori inde-

pendent with π(θj) and π(β
∼

j) denoting their respective prior densities, then

by treating β
∼

j as a nuisance parameter and integrating it out, the posterior

distribution of θj is

π(θj ; x∼j) ∝
∫

β
∼j

L(θj, β
∼

j ; x∼j)π(θj)π(β
∼

j)dβ
∼

j . (26.2)

The question now arises as to what should π(θj) and π(β
∼

j) be? In order to

answer this question we first need to ask who specifies these priors, P, C, or
D? The answer has to be either C or D, because P cannot satisfy a prior and
then respond to a questionnaire. Furthermore, in principle, these priors have to
be D’s priors because it is D’s decision process that we are describing. Thus,
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the posterior of Equation (26.2) pertains to D, and to underscore this feature
we denote the left-hand side of Equation (26.2) by πD(θj; x∼j), and also index
the two priors in question by the subscript D. Because D’s conduct has to be
altruistic, πD(θj) has to reflect neutrality, and following standard convention
we take πD(θj) to be uniform over [0, 1]. D’s choice of πD(β

∼
j) is more involved

because β
∼

j is a constrained set. One possibility is that πD(β
∼

j) is an Ordered

Dirichlet ; the specifics remain to be explored. We suggest here mere possibilities.

26.4 The Case of Multiple Dimensions: Fusing
Information

Based on P’s responses to the QoL questionnaire covering the m dimensions of
interest, D has at hand the m posterior distributions πD(θj ; x∼j), j = 1, . . . ,m,

and also θ(P ).
Because each θj encapsulates P’s ability with respect to dimension j, it

makes sense to suppose that the θjs are positively dependent. One way to
conceptualize this positive dependence is that each θj bears a relationship to
some parameter, say θ(D), where θ(D) encapsulates the overall quality of life,
as perceived by D. Because all the θjs are related to the same θ(D), they are
positively dependent. The two questions that now arise are: how should D assess
θ(D), and how should D encode the positive dependence between the θjs. The
first question is addressed below in Section 26.4.1; the second in Section 26.4.2.

26.4.1 D’s assessment of θ(D)

We have mentioned, in Section 26.3, that the QoL questionnaire to P encom-
passes an overall quality of life question, and that P’s response to this question
is a number θ(P), where 0 ≤ θ(P) ≤ 1. The role of the clinician C has yet to
enter our discussion. Accordingly, D also elicits from C an assessment of P’s
overall quality of life via a number θ(C), where as with θ(P), the values taken
by θ(C) are in the continuum [0, 1]. The number θ(C) declared by C is based on
clinical and psychological assessments conducted by C on P. In order to avoid
C being biased by P’s responses, D must ensure that C does not have access
to θ(P) and also the x∼js, j = 1, . . . ,m. With θ(P) and θ(C) at hand, D is now

able to fuse these two quantities via Bayes’ law to obtain an assessment of θ(D)
as follows.

PD ((θ(D); θ(P), θ(C))) def= π̂D(θ(D))

∝ L(θ(D); θ(P), θ(C))πD(θ(D)).
(26.3)



A Bayesian Ponders “The Quality of Life” 377

The quantity L(θ(D); θ(P), θ(C)) denotes D’s likelihood that P will declare
a θ(P), and C will declare a θ(C), were θ(D) to be a measure of P’s overall
quality of life. This likelihood will encapsulate any biases that P and C may
have in declaring their θ(P) and θ(C), respectively, as perceived by D, and also
any correlations between the declared values by P and C. The nature of this
likelihood remains to be investigated. The quantity πD(θ(D)) is D’s prior for
θ(D), and following our previous convention, we assume that it is uniform on
[0, 1]. This completes our discussion on D’s assessment of θ(D). It involves a
θ(P), θ(C) and connotes information integration by D at one level.

26.4.2 Encoding the positive dependence between the θjs

One way to capture the positive dependence between the θjs is through mixtures
of independent sequences. Specifically, we suppose, as if is reasonable to do so,
that given θ(D) the θjs are independent, with θj having a probability density
function of the form fD(θj|θ(D)), j = 1, . . . ,m. The subscript D associated
with f denotes the fact that the probability density in question is that of D. A
strategy for obtaining fD(θj |θ(D)) is described later, subsequent to Equation
(26.5).

With πD(θj; x∼j), j = 1, . . . ,m, and π̂D(θ(D)) at hand, D may extend the

conversation to θ(D) and obtain the joint distribution of θ1, . . . , θm as

PD(θ1, . . . , θm; x∼j1, . . . , x∼jm, θ(P), θ(C))

=
∫

θ(D)

P (θ1, . . . , θm|θ(D); x∼1, . . . , x∼m)π̂D(θ(D))dθ(D); (26.4)

in writing out the above, we have assumed that the x∼js, j = 1, . . . ,m, have

no bearing on θ(D), once θ(P) and θ(C) have been declared by P and C, re-
spectively. Applying the multiplication rule, and supposing that the x∼is, i �= j

have no bearing on θj , j = 1, . . . ,m, the right-hand side of the above equation
becomes ∫

θ(D)

m∏
j=1

fD(θj|θ(D); x∼j)π̂D(θ(D))dθ(D). (26.5)

We now invoke Bayes’ law to write

fD(θj |θ(D); x∼j) ∝ fD(θ(D)|θj; x∼j)πD(θj; x∼j),

where fD(θ(D)|θj; x∼j) is D’s probability density of θ(D) were D to know θj ,
and in the light of x∼j . A strategy for specifying this probability density is to

suppose that θ(D) is uniform and symmetric around θj, with endpoints θj ± ε,
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for some ε > 0; furthermore with θj assumed known, x∼j has no role to play.

The quantity πD(θj ; x∼j) has been obtained in Section 26.3.1. With the above

in place, we may now write Equation (26.4) as

PD(θ1, . . . , θm; x∼1, . . . , x∼m, θ(P), θ(C))

∝
∫ 1

0

m∏
j=1

fD(θ(D)|θj)πD(θj; x∼j)π̂D(θ(D))dθ(D). (26.6)

This expression entails the impact of responses of all questions in the QoL
questionnaire, dimension-specific and overall, and also C’s assessment of P’s
overall quality of life. Furthermore, it entails D’s uniform priors on θj, j =
1, . . . ,m, and θ(D). We have therefore provided here a hierarchical Bayesian
mechanism that fuses all sources of information available to D, from both the
patient and the clinician. The architecture is quite general in the sense that
if besides the clinician, inputs of others − such as the clergy, the nurses, and
the sociologists − are desired by D, then these too can be incorporated. All D
needs to do here is prescribe a likelihood of the form given by Equation (26.3).
The main issues that remain to be addressed, but only from a technical point
of view, are the specification of a prior for the ordered β

∼
is, and a model for θ’s

likelihood for θ(D), with θ(P) and θ(C) fixed. The conceptual setup poses no
obstacles.

26.5 Defining the Quality of Life

Once D is able to obtain PD(θ1x∼1, . . . , x∼m, θ(P), θ(C)) via Equation (1.4), a
definition of QoL emerges naturally. Specifically, for some given constants ai,
ai ∈ [0, 1], i = 1, . . . ,m, the QoL as assessed by C, is defined as

Q(D) = PD(θ1 ≥ a1, . . . , θm ≥ am; x∼1, . . . , x∼m, θ(P), θ(C)). (26.7)

Thus Q(D), the QoL is a probability. It is specific to D (but based on inputs
from P and C), and is indexed by constants ai, i = 1, . . . ,m.

There is a precedence for our definition, in the sense that reliability is also
defined as a probability, and it is indexed by a mission time. The definition
(26.7) can be invoked in other contexts as well; the one that comes to mind
immediately is in quality control, wherein one needs to define quality in terms
of multiple attributes. The metric for QoL is therefore a number between zero
and one, the number being deduced via definition (26.7), and as such, it is
unique. The expression for Q(D) is attractive because it incorporates inputs
from P and C, and this it does coherently via the calculus of probability.



A Bayesian Ponders “The Quality of Life” 379

There could be other possible ways for defining QoL. A few of these would
be to consider minj(θj), maxj(θj), or meanj(θj), and to let QoL be a quantity
such as

QoL = PD(min
j

(θj) ≥ a)

for some a ∈ [0, 1]. Whereas the proposed definition(s) are appropriate in all
situations, it is not clear whether a unique definition of QoL is palatable to all
constituents. We see some merits to having a unique yardstick.

26.6 Summary and Conclusions

In this chapter we have proposed an approach for addressing a contemporary
problem that can arise in many scenarios, the one of interest to us coming from
the health sciences vis-a-vis the notion of “quality of life.” What seems to be
common to these scenarios is information from diverse sources that needs to
be integrated, considerations of multidimensionality, and the need to make de-
cisions whose consequences are of concern. Previous work on problems of this
type has been piecemeal with statisticians mainly focusing on the frequentist
aspects of item response models. Whereas such approaches have the advantages
of “objectivity”, they do not pave the path of integrating information from mul-
tiple sources. The approach of this chapter is based on a hierarchical Bayesian
architecture. In principle, our architecture is able to do much, if not all, that is
required by the users of QoL indices. The architecture also leads to a strategy
by which QoL can be defined and measured in a formal manner. The current
literature on this topic does not address the matter of definition. This chapter is
expository in the sense that it outlines an encompassing and unifying approach
for addressing the QoL and QAL problem. The normative development of this
chapter has the advantage of coherence. However, this coherence is gained at
the cost of simplicity. Some multidimensional priors with a restricted sample
space are involved, and these remain to be articulated. So do some likelihoods.
Finally, there is the matter of computations. However, all these limitations are
only of a technical nature and these can eventually be addressed. We are con-
tinuing our work on such matters, including an application involving real data
and real scenarios. The purpose of this chapter was to show how a Bayesian
approach can address a contemporary problem, and the overall strategy that
can be used to develop such an approach. The novel aspects of this chapter
are: the conceptualization of the QoL problem as a scenario involving three
groups of individuals, a structure whereby information from several sources can
be integrated, and a definition of the notion of QoL.
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Finally, there is the matter of our choice of a title for this chapter. As
remarked by a colleague, our choice of the singular for the title of a chapter with
two co-authors seems intriguing. A few words about this would be a nice way
to close this chapter. The first co-author (MM) has been deeply involved in the
QoL problem for a long time, and has contributed much to its (non-Bayesian)
literature; the references attest to this fact. The second co-author (NS) with
much guidance from the first about the state of the art of the work in this field,
has brought in the Bayesian perspective, more as a matter of curiosity than a
challenge. The title reflects the disposition of the second co-author.
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On the Goodness-of-Fit Tests for Some
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Abstract: We present a review of several results concerning the construction
of the Cramér–von Mises and Kolmogorov–Smirnov type goodness-of-fit tests
for continuous time processes. As the models we take a stochastic differential
equation with small noise, ergodic diffusion process, Poisson process, and self-
exciting point processes. For every model we propose the tests which provide the
asymptotic size α and discuss the behaviour of the power function under local
alternatives. The results of numerical simulations of the tests are presented.

Keywords and Phrases: Hypotheses testing, diffusion process, Poison pro-
cess, self-exciting process, goodness-of-fit tests

27.1 Introduction

The goodness-of-fit tests play an important role in classical mathematical statis-
tics. Particularly, the tests of Cramér–von Mises, Kolmogorov–Smirnov, and
chi-squared are well studied and allow us to verify the correspondence of the
mathematical models to the observed data [see, e.g., Durbin (1973) or Green-
wood and Nikulin (1996)]. A similar problem, of course, exists for the continuous-
time stochastic processes. The diffusion and Poisson processes are widely used as
mathematical models of many evolution processes in biology, medicine, physics,
financial mathematics, and in many other fields. For example, some theory can
propose a diffusion process

dXt = S∗ (Xt) dt + σ dWt, X0, 0 ≤ t ≤ T

as an appropriate model for description of the real data {Xt, 0 ≤ t ≤ T} and
we can try to construct an algorithm to verify if this model corresponds well
to these data. The model here is totally defined by the trend coefficient S∗ (·),

385
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which is supposed (if the theory is true) to be known. We do not discuss here the
problem of verification if the process {Wt, 0 ≤ t ≤ T} is Wiener. This problem
is much more complicated and we suppose that the noise is white Gaussian.
Therefore we have a basic hypothesis defined by the trend coefficient S∗ (·) and
we have to test this hypothesis against any other alternative. Any other means
that the observations come from stochastic differential equation

dXt = S (Xt) dt + σ dWt, X0, 0 ≤ t ≤ T,

where S (·) �= S∗ (·). We propose some tests which are in some sense similar
to the Cramér–von Mises and Kolmogorov–Smirnov tests. The advantage of
classical tests is that they are distribution-free; that is, the distribution of the
underlying statistics does not depend on the basic model and this property
allows us to choose the universal thresholds which can be used for all models.

For example, if we observe n independent identically distributed random
variables (X1, . . . ,Xn) = Xn with distribution function F (x) and the basic
hypothesis is simple, F (x) ≡ F∗ (x), then the Cramér–von Mises W 2

n and
Kolmogorov–Smirnov Dn statistics are

W 2
n = n

∫ ∞

−∞

[
F̂n (x)− F∗ (x)

]2
dF∗(x), Dn = sup

x

∣∣∣F̂n (x)− F∗ (x)
∣∣∣ ,

respectively. Here

F̂n (x) =
1
n

n∑
j=1

1{Xj<x}

is the empirical distribution function. Let us denote by {W0 (s) , 0 ≤ s ≤ 1} a
Brownian bridge, that is, a continuous Gaussian process with

EW0 (s) = 0, EW0 (s)W0 (t) = t ∧ s− st.

Then the limit behaviour of these statistics can be described with the help of
this process as follows.

W 2
n =⇒

∫ 1

0
W0 (s)2 ds,

√
nDn =⇒ sup

0≤s≤1
|W0 (s)| .

Hence the corresponding Cramér–von Mises and Kolmogorov–Smirnov tests

ψn (Xn) = 1{W 2
n>cα}, φn (Xn) = 1{√nDn>dα}

with constants cα, dα defined by the equations

P
{∫ 1

0
W0 (s)2 ds > cα

}
= α, P

{
sup

0≤s≤1
|W0 (s)| > dα

}
= α
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are of asymptotic size α. It is easy to see that these tests are distribution-free
[the limit distributions do not depend of the function F∗ (·)] and are consistent
against any fixed alternative [see, e.g., Durbin (1973)].

It is interesting to study these tests for a nondegenerate set of alternatives,
that is, for alternatives with limit power function less than 1. It can be realized
on the close nonparametric alternatives of the special form making this problem
asymptotically equivalent to the signal in Gaussian noise problem. Let us put

F (x) = F∗ (x) +
1√
n

∫ x

−∞
h (F∗ (y)) dF∗(y),

where the function h (·) describes the alternatives. We suppose that∫ 1

0
h (s) ds = 0,

∫ 1

0
h (s)2 ds < ∞.

Then we have the following convergence [under a fixed alternative, given by the
function h (·)],

W 2
n =⇒

∫ 1

0

[∫ s

0
h (v) dv + W0 (s)

]2
ds,

√
nDn =⇒ sup

0≤s≤1

∣∣∣∣∫ s

0
h (v) dv + W0 (s)

∣∣∣∣ .
We see that this problem is asymptotically equivalent to the following signal in
Gaussian noise problem,

dYs = h∗ (s) ds + dW0(s), 0 ≤ s ≤ 1. (27.1)

Indeed, if we use the statistics

W 2 =
∫ 1

0
Y 2

s ds, D = sup
0≤s≤1

|Ys|

then under hypothesis h (·) ≡ 0 and alternative h (·) �= 0 the distributions of
these statistics coincide with the limit distributions of W 2

n and
√

nDn under
the hypothesis and alternative, respectively.

Our goal is to see how such kinds of tests can be constructed in the case
of continuous-time models of observation and particularly in the cases of some
diffusion and point processes. We consider the diffusion processes with small
noise, ergodic diffusion processes, and Poisson processes with Poisson and self-
exciting alternatives. For the first two classes we just show how Cramér–von
Mises and Kolmogorov–Smirnov type tests can be realized using some known
results and for the last models we discuss this problem in detail.
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27.2 Diffusion Process with Small Noise

Suppose that the observed process is the solution of the stochastic differential
equation

dXt = S (Xt) dt + εdWt, X0 = x0, 0 ≤ t ≤ T, (27.2)

where Wt, 0 ≤ t ≤ T is a Wiener process [see, e.g., Liptser and Shiryayev
(2001)]. We assume that the function S (x) is two times continuously differen-
tiable with bounded derivatives. These are not the minimal conditions for the
results presented below, but this assumption simplifies the exposition. We are
interested in the statistical inference for this model in the asymptotics of small
noise: ε→ 0. The statistical estimation theory (parametric and nonparametric)
was developed in Kutoyants (1994).

Recall that the stochastic process Xε = {Xt, 0 ≤ t ≤ T} converges uniformly
in t ∈ [0, T ] to the deterministic function {xt, 0 ≤ t ≤ T}, which is a solution of
the ordinary differential equation

dxt

dt
= S(xt), x0, 0 ≤ t ≤ T. (27.3)

Suppose that the function S∗ (x) > 0 for x ≥ x0 and consider the following
problem of hypotheses testing,

H0 : S (x) = S∗(x), x0 ≤ x ≤ x∗
T

H1 : S (x) �= S∗(x), x0 ≤ x ≤ x∗
T ,

where we denoted by x∗
t the solution of equation (27.3) under hypothesis H0:

x∗
t = x0 +

∫ t

0
S∗ (x∗

v) dv, 0 ≤ t ≤ T.

Hence, we have a simple hypothesis against the composite alternative.
The Cramér–von Mises

(
W 2

ε

)
and Kolmogorov–Smirnov (Dε) type statistics

for this model of observations can be

W 2
ε =

[∫ T

0

dt

S∗ (x∗
t )

2

]−2 ∫ T

0

(
Xt − x∗

t

εS∗ (x∗
t )

2

)2

dt,

Dε =

[∫ T

0

dt

S∗ (x∗
t )

2

]−1/2

sup
0≤t≤T

∣∣∣∣Xt − x∗
t

S∗ (x∗
t )

∣∣∣∣ .
It can be shown that these two statistics converge (as ε → 0) to the following
functionals,

W 2
ε =⇒

∫ 1

0
W (s)2 ds, ε−1Dε =⇒ sup

0≤s≤1
|W (s)| ,
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where {W (s) , 0 ≤ s ≤ 1} is a Wiener process [see Kutoyants (1994)]. Hence the
corresponding tests

ψε (Xε) = 1{W 2
ε >cα}, φε (Xε) = 1{ε−1Dε>dα}

with the constants cα, dα defined by the equations

P
{∫ 1

0
W (s)2 ds > cα

}
= α, P

{
sup

0≤s≤1
|W (s)| > dα

}
= α (27.4)

are of asymptotic size α. Note that the choice of the thresholds cα and dα does
not depend on the hypothesis (distribution-free). This situation is quite close
to the classical case mentioned above.

It is easy to see that if S (x) �= S∗ (x), then sup0≤t≤T |xt − x∗
t | > 0 and

W 2
ε → ∞, ε−1Dε → ∞. Hence these tests are consistent against any fixed

alternative. It is possible to study the power function of this test for local
(contiguous) alternatives of the following form,

dXt = S∗ (Xt) dt + ε
h (Xt)
S∗ (Xt)

dt + ε dWt, 0 ≤ t ≤ T.

We describe the alternatives with the help of the (unknown) function h (·).
The case h (·) ≡ 0 corresponds to the hypothesis H0. One special class of such
nonparametric alternatives for this model was studied in Iacus and Kutoyants
(2001).

Let us introduce the composite (nonparametric) alternative

H1 : h (·) ∈ Hρ,

where

Hρ =
{

h(·) :
∫ xT

x0

h (x)2 µ (dx) ≥ ρ

}
.

To choose the alternative we have to make precise the “natural for this problem”
distance described by the measure µ (·) and the rate of ρ = ρε. We show that
the choice

µ (dx) =
dx

S∗ (x)3

provides for the test statistic the following limit,

W 2
ε −→

∫ 1

0

[∫ s

0
h∗ (v) dv + W (s)

]2
ds,

where we denoted

h∗ (s) = u
1/2
T h
(
x∗

uT s

)
, uT =

∫ T

0

ds

S∗ (x∗
s)

2 .
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We see that this problem is asymptotically equivalent to the signal in white
Gaussian noise problem:

dYs = h∗ (s) ds + dW (s) , 0 ≤ s ≤ 1, (27.5)

with the Wiener process W (·). It is easy to see that even for fixed ρ > 0
without further restrictions on the smoothness of the function h∗ (·), uniformly
good testing is impossible. For example, if we put

hn (x) = c S∗ (x)3 cos [n (x− x0)]

then for the power function of the test we have

inf
h(·)∈Hρ

β (ψε, h) ≤ β (ψε, hn) −→ α.

The details can be found in Kutoyants (2006). The construction of the uniformly
consistent tests requires a different approach [see Ingster and Suslina (2003)].

Note as well that if the diffusion process is

dXt = S (Xt) dt + εσ (Xt) dWt, X0 = x0, 0 ≤ t ≤ T,

then we can put

W 2
ε =

[∫ T

0

(
σ (x∗

t )
S∗ (x∗

t )

)2

dt

]−2 ∫ T

0

(
Xt − x∗

t

εS∗ (x∗
t )

2

)2

dt

and have the same results as above [see Kutoyants (2006)].

27.3 Ergodic Diffusion Processes

Suppose that the observed process is the one-dimensional diffusion process

dXt = S (Xt) dt + dWt, X0, 0 ≤ t ≤ T, (27.6)

where the trend coefficient S (x) satisfies the conditions of the existence and
uniqueness of the solution of this equation and this solution has ergodic prop-
erties; that is, there exists an invariant probability distribution FS (x), and for
any integrable w.r.t. this distribution function g (x) the law of large numbers
holds

1
T

∫ T

0
g (Xt) dt −→

∫ ∞

−∞
g (x) dFS (x) .

These conditions can be found, for example, in Kutoyants (2004).
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Recall that the invariant density function fS (x) is defined by the equality

fS (x) = G (S)−1 exp
{

2
∫ x

0
S (y) dy

}
,

where G (S) is the normalising constant.
We consider two types of tests. The first one is a direct analogue of the

classical Cramér–von Mises and Kolmogorov–Smirnov tests based on empirical
distribution and density functions and the second follows the considered-above
(small noise) construction of tests.

The invariant distribution function FS (x) and this density function can be
estimated by the empirical distribution function F̂T (x) and by the local time
type estimator f̂T (x) defined by the equalities

F̂T (x) =
1
T

∫ T

0
1{Xt<x} dt, f̂T (x) =

2
T

∫ T

0
1{Xt<x} dXt,

respectively. Note that both of them are unbiased,

ESF̂T (x) = FS(x), ES f̂T (x) = fS(x),

admit the representations

ηT (x) = − 2√
T

∫ T

0

FS (Xt ∧ x)− FS (Xt)FS (x)
fS (Xt)

dWt + o(1),

ζT (x) = −2fS (x)√
T

∫ T

0

1{Xt>x} − FS (Xt)
fS (Xt)

dWt + o(1),

and are
√

T asymptotically normal (as T →∞)

ηT (x) =
√

T
(
F̂T (x)− FS (x)

)
=⇒N

(
0, dF (S, x)2

)
,

ζT (x) =
√

T
(
f̂T (x)− fS (x)

)
=⇒N

(
0, df (S, x)2

)
.

Let us fix a simple (basic) hypothesis

H0 : S (x) ≡ S∗(x).

Then to test this hypothesis we can use these estimators for construction of the
Cramér–von Mises and Kolmogorov–Smirnov type test statistics

W 2
T = T

∫ ∞

−∞

[
F̂T (x)− FS∗ (x)

]2
dFS∗(x),

DT = sup
x

∣∣∣F̂T (x)− FS∗ (x)
∣∣∣ ,
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and

V 2
T = T

∫ ∞

−∞

[
f̂T (x)− fS∗ (x)

]2
dFS∗(x),

dT = sup
x

∣∣∣f̂T (x)− fS∗ (x)
∣∣∣ ,

respectively. Unfortunately, all these statistics are not distribution-free even
asymptotically and the choice of the corresponding thresholds for the tests
is much more complicated. Indeed, it was shown that the random functions
(ηT (x) , x ∈ R) and (ζT (x) , x ∈ R) converge in the space (C0,B) (of continuous
functions decreasing to zero at infinity) to the zero mean Gaussian processes
(η (x) , x ∈ R) and (ζ(x), x ∈ R), respectively, with the covariance functions [we
omit the index S∗ of functions fS∗ (x) and FS∗ (x) below]:

RF (x, y) = ES∗ [η (x) η (y)]

= 4ES∗

(
[F (ξ ∧ x)− F (ξ)F (x)] [F (ξ ∧ y)− F (ξ)F (y)]

f (ξ)2

)
Rf (x, y) = ES∗ [ζ (x) ζ (y)]

= 4f (x) f (y)ES∗

([
1{ξ>x} − F (ξ)

] [
1{ξ>y} − F (ξ)

]
f (ξ)2

)
.

Here ξ is a random variable with the distribution function FS∗ (x). Of course,

dF (S, x)2 = ES

[
η (x)2

]
, df (S, x)2 = ES

[
ζ (x)2

]
.

Using this weak convergence it is shown that these statistics converge in distri-
bution (under hypothesis) to the following limits (as T →∞),

W 2
T =⇒

∫ ∞

−∞
η (x)2 dFS∗(x), T 1/2DT =⇒ sup

x
|η (x)| ,

V 2
T =⇒

∫ ∞

−∞
ζ (x)2 dFS∗(x), T 1/2dT =⇒ sup

x
|ζ (x)| .

The conditions and the proofs of all these properties can be found in Kutoyants
(2004), where essentially different statistical problems were studied, but the
calculus is quite close to what we need here.

Note that the Kolmogorov–Smirnov test for ergodic diffusion was studied in
Fournie (1992) [see as well Fournie and Kutoyants (1993) for further details],
and the weak convergence of the process ηT (·) was obtained in Negri (1998).

The Cramér–von Mises and Kolmogorov–Smirnov type tests based on these
statistics are

ΨT

(
XT
)

= 1{W 2
T >Cα}, ΦT

(
XT
)

= 1{T 1/2DT >Dα},

ψT

(
XT
)

= 1{V 2
T >cα}, φT

(
XT
)

= 1{T 1/2dT >dα}
with appropriate constants.
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The contiguous alternatives can be introduced in the following way,

S (x) = S∗ (x) +
h (x)√

T
.

Then we obtain for the Cramér–von Mises statistics the limits [see Kutoyants
(2004)]:

W 2
T =⇒

∫ ∞

−∞

[
2ES∗

([
1{ξ<x} − FS∗ (x)

] ∫ ξ

0
h (s) ds

)
+ η (x)

]2
dFS∗(x),

V 2
T =⇒

∫ ∞

−∞

[
2fS∗(x)ES∗

∫ x

ξ
h (s) ds + ζ (x)

]2
dFS∗(x).

Note that the transformation Yt = FS∗ (Xt) simplifies the writing, because
the diffusion process Yt satisfies the differential equation

dYt = fS∗ (Xt) [2S∗ (Xt) dt + dWt] , Y0 = FS∗ (X0)

with reflecting bounds in 0 and 1 and (under hypothesis) has uniform on [0, 1]
invariant distribution. Therefore,

W 2
T =⇒

∫ 1

0
V (s)2 ds, T 1/2DT =⇒ sup

0≤s≤1
|V (s)| ,

but the covariance structure of the Gaussian process {V (s) , 0 ≤ s ≤ 1} can be
quite complicated.

To obtain an asymptotically distribution-free Cramér–von Mises type test
we can use another statistic, which is similar to that of the preceding section.
Let us introduce

W̃ 2
T =

1
T 2

∫ T

0

[
Xt −X0 −

∫ t

0
S∗ (Xv) dv

]2
dt.

Then we have immediately (under hypothesis)

W̃ 2
T =

1
T 2

∫ T

0
W 2

t dt =
∫ 1

0
W (s)2 ds,

where we put t = sT and W (s) = T−1/2WsT . Under the alternative we have

W̃ 2
T =

1
T 2

∫ T

0

[
Wt +

1√
T

∫ t

0
h (Xv) dv

]2
dt

=
1
T

∫ T

0

[
Wt√

T
+

t

T

1
t

∫ t

0
h (Xv) dv

]2
dt.
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The stochastic process Xt is ergodic, hence

1
t

∫ t

0
h (Xv) dv −→ ES∗h (ξ) =

∫ ∞

−∞
h (x) fS∗ (x) dx ≡ ρh

as t →∞. It can be shown [see Section 2.3 in Kutoyants (2004), where we have
the similar calculus in another problem] that

W̃ 2
T =⇒

∫ 1

0
[ρh s + W (s)]2 ds.

Therefore the power function of the test ψ
(
XT
)

= 1{W̃ 2
T >cα} converges to

the function

βψ (ρh) = P
(∫ 1

0
[ρh s + W (s)]2 ds > cα

)
.

Using standard calculus we can show that for the corresponding Kolmogorov–
Smirnov type test the limit will be

βφ (ρh) = P
(

sup
0≤s≤1

|ρh s + W (s)| > cα

)
.

These two limit power functions are the same as in the next section devoted
to self-exciting alternatives of the Poisson process. We calculate these functions
with the help of simulations in Section 27.5 below.

Note that if the diffusion process is

dXt = S (Xt) dt + σ (Xt) dWt, X0, 0 ≤ t ≤ T,

but the functions S (·) and σ (·) are such that the process is ergodic then we
introduce the statistics

Ŵ 2
T =

1

T 2 ES∗

[
σ (ξ)2

] ∫ T

0

[
Xt −X0 −

∫ t

0
S∗ (Xv) dv

]2
dt.

Here ξ is a random variable with the invariant density function

fS∗ (x) =
1

G (S∗) σ (x)2
exp
{

2
∫ x

0

S∗ (y)
σ (y)2

dy

}
.

This statistic under hypothesis is equal to

Ŵ 2
T =

1

T 2 ES∗

[
σ (ξ)2

] ∫ T

0

[∫ t

0
σ (Xv) dWv

]2
dt

=
1

T ES∗

[
σ (ξ)2

] ∫ T

0

[
1√
T

∫ t

0
σ (Xv) dWv

]2
dt.
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The stochastic integral by the central limit theorem is asymptotically normal

ηt =
1√

tES∗

[
σ (ξ)2

] ∫ t

0
σ (Xv) dWv =⇒ N (0, 1)

and moreover it can be shown that the vector of such integrals converges in
distribution to the Wiener process(

ηs1T , . . . , ηskT

)
=⇒ (W (s1) , . . . ,W (sk))

for any finite collection of 0 ≤ s1 < s2 < · · · < sk ≤ 1. Therefore, under mild
regularity conditions it can be proved that

Ŵ 2
T =⇒

∫ 1

0
W (s)2 ds.

The power function has the same limit,

βψ (ρh) = P
(∫ 1

0
[ρh s + W (s)]2 ds > cα

)
.

but with

ρh =
ES∗h (ξ)√
ES∗

[
σ (ξ)2

] .
Similar consideration can be done for the Kolmogorov–Smirnov type test too.

We see that both tests cannot distinguish the alternatives with h (·) such
that ES∗h (ξ) = 0. Note that for ergodic processes usually we have ESS (ξ) = 0
and ES∗+h/

√
T

[
S∗ (ξ) + T−1/2h (ξ)

]
= 0 with corresponding random variables

ξ, but this does not imply ES∗h (ξ) = 0.

27.4 Poisson and Self-Exciting Processes

The Poisson process is one of the simplest point processes and before taking
any other model it is useful first of all to check the hypothesis that the observed
sequence of events, say, 0 < t1, . . . , tN < T corresponds to a Poisson process.
It is natural in many problems to suppose that this Poisson process is periodic
of known period, for example, many daily events, signal transmission in optical
communication, season variations, and so on. Another model of point processes
frequently used as well is the self-exciting stationary point process introduced
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in Hawkes (1972). As any stationary process it can also describe the periodic
changes due to the particular form of its spectral density.

Recall that for the Poisson process Xt, t ≥ 0 of intensity function S (t) , t ≥ 0
we have (Xt is the counting process)

P {Xt −Xs = k} = (k!)−1 (Λ (t)− Λ (s))k exp{Λ(s)− Λ(t)},

where we suppose that s < t and put

Λ (t) =
∫ t

0
S (v) dv.

The self-exciting process Xt, t ≥ 0 admits the representation

Xt =
∫ t

0
S (s,X) ds + πt,

where πt, t ≥ 0 is a local martingale and the intensity function

S (t,X) = S +
∫ t

0
g (t− s) dXs = S +

∑
ti<T

g (t− ti) .

It is supposed that

ρ =
∫ ∞

0
g (t) dt < 1.

Under this condition the self-exciting process is a stationary point process with
the rate

µ =
S

1− ρ

and the spectral density

f (λ) =
µ

2π |1−G (λ)|2
, G (λ) =

∫ ∞

0
eiλtg (t) dt

[see Hawkes (1972) or Daley and Vere-Jones (2003) for details].
We consider two problems: Poisson against another Poisson and Poisson

against a close self-exciting point process. The first one is to test the simple
(basic) hypothesis

H0 : S (t) ≡ S∗(t), t ≥ 0

where S∗ (t) is a known periodic function of period τ , against the composite
alternative

H1 : S (t) �= S∗(t), t ≥ 0,

but S (t) is always τ -periodic.
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Let us denote Xj (t) = Xτ(j−1)+t − Xτ(j−1), j = 1, . . . , n, suppose that
T = nτ , and put

Λ̂n (t) =
1
n

n∑
j=1

Xj (t) .

The corresponding goodness-of-fit tests of Cramér–von Mises and
Kolmogorov–Smirnov type can be based on the statistics

W 2
n = Λ∗ (τ)−2 n

∫ τ

0

[
Λ̂n (t)− Λ∗ (t)

]2
dΛ∗ (t) ,

Dn = Λ∗ (τ)−1/2 sup
0≤t≤τ

∣∣∣Λ̂n (t)− Λ∗ (t)
∣∣∣ .

It can be shown that

W 2
n =⇒

∫ 1

0
W (s)2 ds,

√
n Dn =⇒ sup

0≤s≤1
|W (s)| ,

where {W (s) , 0 ≤ s ≤ 1} is a Wiener process [see Kutoyants (1998)]. Hence
these statistics are asymptotically distribution-free and the tests

ψn

(
XT
)

= 1{W 2
n>cα}, φn

(
XT
)

= 1{√nDn>dα}

with the constants cα, dα taken from Equations (27.4), are of asymptotic size α.
Let us describe the close contiguous alternatives which asymptotically re-

duce this problem to the signal in the white Gaussian noise model (27.5). We
put

Λ (t) = Λ∗ (t) +
1√

nΛ∗ (τ)

∫ t

0
h (u (v)) dΛ∗(v), u (v) =

Λ∗ (v)
Λ∗ (τ)

.

Here h (·) is an arbitrary function defining the alternative. Then if Λ (t) satisfies
this equality we have the convergence

W 2
n =⇒

∫ 1

0

[∫ s

0
h (v) dv + W (s)

]2
ds.

This convergence describes the power function of the Cramér–von Mises
type test under these alternatives.

The second problem is to test the hypothesis

H0 : S (t) = S∗, t ≥ 0

against nonparametric close (contiguous) alternative

H1 : S (t) = S∗ +
1√
T

∫ t

0
h (t− s) dXt, t ≥ 0.
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We consider the alternatives with the functions h (·) ≥ 0 having compact sup-
port and bounded.

We have Λ∗ (t) = S∗ t and for some fixed τ > 0 we can construct the same
statistics

W 2
n =

n

S∗τ2

∫ τ

0

[
Λ̂n (t)− S∗ t

]2
dt, Dn = (S∗ τ)−1/2 sup

0≤t≤τ

∣∣∣Λ̂n (t)− S∗ t
∣∣∣ .

Of course, they have the same limits under hypothesis

W 2
n =⇒

∫ 1

0
W (s)2 ds,

√
nDn =⇒ sup

0≤s≤1
|W (s)| .

To describe their behaviour under any fixed alternative h (·) we have to find
the limit distribution of the vector

wn =
(
wn

(
t1
)
, . . . , wn (tk)

)
, wn (tl) =

1√
S∗τ n

n∑
j=1

[Xj (tl)− S∗tl] ,

where 0 ≤ tl ≤ τ . We know that this vector under hypothesis is asymptotically
normal

L0 {wn} =⇒N (0,R)

with covariance matrix

R = (Rlm)k×k , Rlm = τ−1 min (tl, tm) .

Moreover, it was shown in Dachian and Kutoyants (2006) that for such alterna-
tives the likelihood ratio is locally asymptotically normal; that is, the likelihood
ratio admits the representation

Zn (h) = exp
{

∆n (h,Xn)− 1
2

I (h) + rn (h,Xn)
}

,

where

∆n (h,Xn) =
1

S∗
√

τn

∫ τn

0

∫ t−

0
h (t− s) dXs [dXt − S∗dt] ,

I (h) =
∫ ∞

0
h (t)2 dt + S∗

(∫ ∞

0
h (t) dt

)2

and
∆n (h,Xn) =⇒ N (0, I (h)) , rn (h,Xn)→ 0. (27.7)

To use the third Le Cam’s lemma we describe the limit behaviour of the vector
(∆n (h,Xn) ,wn). For the covariance Q = (Qlm) , l,m = 0, 1, . . . , k of this vector
we have

E0∆n (h,Xn) = 0, Q00 = E0∆n (h,Xn)2 = I (h) (1 + o (1)) .
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Furthermore, let us denote dπt = dXt − S∗dt and H (t) =
∫ t−
0 h (t− s) dXs;

then we can write

Q0l = E0 [∆n (h,Xn)wn (tl)]

=
1

nS
3/2
∗ τ

E0

⎛⎝ n∑
j=1

∫ τj

τ(j−1)
H (t) dπt

n∑
i=1

∫ τ(i−1)+tl

τ(i−1)
dπt

⎞⎠
=

1
nτ
√

S∗

n∑
j=1

∫ τ(j−1)+tl

τ(j−1)
E0H (t) dt =

tl
τ

√
S∗
∫ ∞

0
h (t) dt (1 + o (1)) ,

because

E0H (t) = S∗
∫ t−

0
h (t− s) ds = S∗

∫ ∞

0
h (s) ds

for the large values of t [such that [0, t] covers the support of h (·)].
Therefore, if we denote

h̄ =
∫ ∞

0
h (s) ds

then
Q0l = Ql0 =

tl
τ

√
S∗ h̄.

The proof of Theorem 1 in Dachian and Kutoyants (2006) can be applied
to the linear combination of ∆n (h,Xn) and wn (t1) , . . . , wn (tk) and this yields
the asymptotic normality

L0

(
∆n (h,Xn) ,wn

)
=⇒ N (0,Q) .

Hence by the third lemma of Le Cam we obtain the asymptotic normality of
the vector wn,

Lh

(
wn

)
=⇒ L

(
W (s1) + s1

√
S∗ h̄, . . . ,W (sk) + sk

√
S∗ h̄
)
,

where we put tl = τ sl. This weak convergence together with the estimates such
as

Eh |wn (t1)− wn (t2)|2 ≤ C |t1 − t2|
provides the convergence (under alternative)

W 2
n =⇒

∫ 1

0

[√
S∗ h̄ s + W (s)

]2
ds.

We see that the limit experiment is of the type

dYs =
√

S∗ h̄ds + dW (s), Y0 = 0, 0 ≤ s ≤ 1.
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The power β(ψn, h) of the Cramér–von Mises type test ψn(Xn) = 1{W 2
n>cα}

is a function of the real parameter ρh =
√

S∗ h̄,

β (Wn, h) = P
(∫ 1

0
[ρh s + W (s)]2 ds > cα

)
+ o (1) = βψ (ρh) + o (1) .

Using the arguments of Lemma 6.2 in Kutoyants (1998) it can be shown
that for the Kolmogorov–Smirnov type test we have the convergence

√
nDn =⇒ sup

0≤s≤1
|ρh s + W (s)| .

The limit power function is

βφ (ρh) = P
(

sup
0≤s≤1

|ρh s + W (s)| > dα

)
.

These two limit power functions are obtained by simulation in the next
section.

27.5 Simulation

First, we present the simulation of the thresholds cα and dα of our Cramér–
von Mises and Kolmogorov–Smirnov type tests. Because these thresholds are
given by the equations (27.4), we obtain them by simulating 107 trajectories
of a Wiener process on [0,1] and calculating empirical 1 − α quantiles of the
statistics

W 2 =
∫ 1

0
W (s)2 ds and D = sup

0≤s≤1
|W (s)| ,

respectively. Note that the distribution of W 2 coincides with the distribution
of the quadratic form

W 2 =
∞∑

k=1

ζ2
k

(πk)2
, ζk i.i.d. ∼ N (0, 1)

and both distributions are extensively studied [see (1.9.4(1)) and (1.15.4) in
Borodin and Salmienen (2002)]. The analytical expressions are quite compli-
cated and we would like to compare by simulation cα and dα with the real
(finite time) thresholds giving the tests of exact size α, that is, cT

α and dT
α given

by equations

P
{
W 2

n > cT
α

}
= α and P

{√
nDn > dT

α

}
= α,
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Figure 27.1. Threshold choice.

respectively. We choose S∗ = 1 and obtain cT
α and dT

α by simulating 107 tra-
jectories of a Poisson process of intensity 1 on [0,T ] and calculating empirical
1 − α quantiles of the statistics W 2

n and
√

nDn. The thresholds simulated for
T = 10, T = 100, and for the limiting case are presented in Figure 27.1. The
lower curves correspond to the Cramér–von Mises type test, and the upper
ones to the Kolmogorov–Smirnov type test. As we can see, for T = 100 the
real thresholds are already indistinguishable from the limiting ones, especially
in the case of the Cramér–von Mises type test.

It is interesting to compare the asymptotics of the Cramér–von Mises and
Kolmogorov–Smirnov type tests with the locally asymptotically uniformly most
powerful (LAUMP) test

φ̂n (Xn) = 1{δT >zα}, δT =
Xnτ − S∗nτ√

S∗nτ

proposed for this problem in Dachian and Kutoyants (2006). Here zα is the
1−α quantile of the standard Gaussian law, P (ζ > zα) = α, ζ ∼ N (0, 1). The
limit power function of φ̂n is

βφ̂ (ρh) = P (ρh + ζ > zα) .

In Figure 27.2 we compare the limit power functions βψ (ρ), βφ (ρ), and βφ̂ (ρ).
The last one can clearly be calculated directly, and the first two are obtained by
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Figure 27.2. Limit power functions.

simulating 107 trajectories of a Wiener process on [0,1] and calculating empirical
frequencies of the events{∫ 1

0
[ρ s + W (s)]2 ds > cα

}
and

{
sup

0≤s≤1
|ρ s + W (s)| > dα

}
,

respectively.
The simulation shows the exact (quantitative) comparison of the limit power

functions. We see that the power of the LAUMP test is higher than the two
others and this is of course evident. We see also that the Kolmogorov–Smirnov
type test is more powerful that the Cramér–von Mises type test.
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Abstract: This chapter is concerned with moment calculus and estimation of
integral functionals of semi-Markov processes. We prove that the nth moment
performance function verifies the Markov renewal equation and we derive a sim-
ple formula for the first two moments of the integral functional in the finite-state
semi-Markov case. We propose an estimator for each one of the two quantities.
Then we prove their asymptotic properties. We end this chapter by proposing
the confidence intervals for the first moment. As an illustration example, we
give a numerical application.

Keywords and Phrases: Integral functional, semi-Markov process, nonpara-
metric estimation, hitting time moments, consistency, asymptotic normality,
confidence interval, reliability, performability

28.1 Introduction

Integral functionals are very important in stochastic theory and applications.
They are used as compensators in martingale theory [see, e.g., Koroliuk and
Limnios (2005)]. In particular, in some applications they are very useful, for ex-
ample, in statistics as empirical estimators for stationary distributions in semi-
Markov processes [Limnios (2006)], in some reliability studies including avail-
ability, in performance evaluation of computer systems [Ciardo et al. (1990),
Csenki (1995), and Limnios and Oprişan (2001)], in performability analysis
[Meyer (1981)], in storage processes [Prabhu (1980)], in economics/rewards
[Papadopoulou (2004)], in survival analysis [Heutte and Huber (2002)], and
so on.
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Let us consider a stochastic process Zt, t ≥ 0, with state space a set E.
Define a real-valued measurable function v defined on E. Define the following
process

Φ(t) :=
∫ t

0
v(Zs)ds, t ≥ 0.

In this chapter we give estimation results concerning the process Φ(t), t ≥ 0.
In particular we give explicit formulas for all moments and estimation of the
first two.

The chapter is organized as follows. Section 28.2 presents a short background
on semi-Markov processes needed in the sequel of the chapter. Section 28.3 gives
the derivation of all moments of the functional Φ. Section 28.4 gives estimation
results of the first two moments of the functional Φ, and Section 28.5 gives
confidence interval results for these moments. Finally, Section 28.6, presents a
numerical example of a three-state semi-Markov process.

28.2 The Semi-Markov Setting

Let us give in this section the essential background on semi-Markov processes,
needed in the next sections for integral functional estimation of semi-Markov
processes. Here we follow closely Limnios and Oprişan (2001).

Consider a finite set, say E, and an E-valued stochastic process Z =
(Zt)t∈IR+ . Let 0 = S0 < S1 < · · · < Sn < Sn+1 < · · · be the jump times
of Z, and J0, J1, J2, . . . the successive visited states of Z. Note that S0 may
also take positive values.

If the stochastic process (Jn, Sn)n∈IN is a Markov renewal process (MRP),
with state space E, that is, it verifies a.s. the following equality

IP(Jn+1 = j, Sn+1 − Sn ≤ t | J0, . . . , Jn;S1, . . . , Sn)
= IP(Jn+1 = j, Sn+1 − Sn ≤ t | Jn)

for any j ∈ E, n ∈ IN, and any t ∈ IR+, then Z is called a semi-Markov process
(SMP). Thus the process (Jn, Sn) is a Markov chain with state space E × IR+

and transition kernel Qij(t) := IP(Jn+1 = j, Sn+1 − Sn ≤ t | Jn = i) called
the semi-Markov kernel. Let α be the initial distribution row vector of Z; that
is, α(i) = IP(Z0 = i), i ∈ E. The process (Jn) is the embedded Markov chain
(EMC) of Z with state space E and transition probabilities P (i, j) := Qij(∞) =
IP(Jn+1 = j | Jn = i).

The semi-Markov process Z is connected to the MRP (Jn, Sn) through

Zt = Jn, if Sn ≤ t < Sn+1, t ≥ 0, and Jn = ZSn , n ≥ 0.
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For example, a Markov process with state space E = IN and Q-matrix
A = (aij)i,j∈E is a special semi-Markov process with semi-Markov kernel

Qij(t) =
aij

ai
(1− e−ait),

where ai := −aii, i ∈ E.
Define also Xn := Sn − Sn−1, n ≥ 1, the interjump times, and the process

(N(t))t∈IR+ , which counts the number of jumps of Z in the time interval (0, t].
Let us also define the number Ni(t) of visits of Z to state i ∈ E up to time t.
To be specific,

N(t) := sup {n ≥ 0 : Sn ≤ t} , Ni(t) :=
N(t)∑
k=1

1{Jk=i} =
∞∑

k=1

1{Jk=i,Sn≤t}.

If we consider the (possibly delayed) renewal process (Si
n)n≥0 of successive times

of visits to state i, then Ni(t) is the counting process of renewals. Denote by
µii the mean recurrence time of (Si

n); that is, µii = IE[Si
2 − Si

1].
Let us denote by Q(t) = (Qij(t), i, j ∈ E), t ≥ 0, the semi-Markov kernel

of Z. Then we can write:

Qij(t) := IP(Jn+1 = j,Xn+1 ≤ t | Jn = i) = P (i, j)Fij(t),
t ≥ 0, i, j ∈ E, (28.1)

where P (i, j) := IP(Jn+1 = j | Jn = i) is the transition kernel of the EMC (Jn),
and Fij(t) := IP(Xn+1 ≤ t | Jn = i, Jn+1 = j) is the conditional distribution
function of the interjump times. Let us define also the distribution function
Hi(t) :=

∑
j∈E Qij(t) and its mean value mi, which is the mean sojourn time

of Z in state i.
Generally Hi is a distribution function, hence Qij is a subdistribution; that

is, Qij(∞) ≤ 1 and Hi(∞) = 1, with Qij(0−) = Hi(0−) = 0. In the case where
Fij(t) does not depend on the arrival state j, then we write Fi(t), instead of
Fij(t), and we have Fi(t) = Hi(t).

Let us define, for any i and j in E, the instantaneous transition rate λij(t)
of a semi-Markov kernel, under absolute continuity of Qij(t), by:

λij(t) =

{
qij(t)

1−Hi(t)
if pij > 0 and Hi(t) < 1

0 otherwise,

where qij(t) is the Radon–Nikodym derivative of Qij(t), with respect to Lebesgue
measure on IR+. Let us set

Λij(t) =
∫ t

0
λij(u)du
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and
Λi(t) = Σs

j=1Λij(t),

the cumulative transition rates.
For every i, j ∈ E and t ∈ IR+, we have:

Qij(t) :=
∫ t

0
exp(−Λi(u))λij(u)du.

So, its derivative, with respect to t, is

Q′
ij(t) = pijfij(t) = exp(−Λi(t))λij(t).

Consider now the n-fold convolution of Q by itself. For any i, j ∈ E,

Q
(n)
ij (t) =

⎧⎪⎨⎪⎩
∑

k∈E

∫ t
0 Qik(ds)Q(n−1)

kj (t− s) n ≥ 2
Qij(t) n = 1
δij1{t≥0} n = 0.

It is easy to prove (e.g., by induction) that

Q
(n)
ij (t) = IPi(Jn = j, Sn ≤ t). (28.2)

Let us define the Markov renewal function ψij(t), i, j ∈ E, t ≥ 0, by

ψij(t) := IEi[Nj(t)] =
∞∑

n=0

Q
(n)
ij (t) =: (I −Q(t))(−1)(i, j). (28.3)

Another important function is the semi-Markov transition function

Pij(t) := IP(Zt = j | Z0 = i), i, j ∈ E, t ≥ 0,

which is the conditional marginal distribution of the process. In matrix form,
we have

P (t) = (I −Q(t))(−1) ∗ (I −H(t)), (28.4)

where H(t) is the diagonal matrix diag(Hi(t), i = 1, . . . , s) and ∗ stands for the
Stieltjes convolution (here in matrix form).

In the sequel, we suppose that the state space E = {1, . . . , s} is a finite set
and that the distribution functions Hi are not degenerated. Let us suppose also
that the mean sojourn times are finite; that is, mi < ∞ for any i ∈ E. Further-
more, let us suppose that the distribution functions Gii, of the recurrence time
in state i, i ∈ E, are not arithmetic, that is, not concentrated on {ka : k ∈ IN},
for some a > 0.

Let us define also the stationary distribution π(i), i ∈ E, of the semi-Markov
process Z. We get from the Markov renewal theorem [see, e.g., Limnios and
Oprişan (2001)]

Pij(t) −→ π(j), t→∞, i, j ∈ E. (28.5)
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28.3 Integral Functionals

Let us consider a right-continuous semi-Markov process Zt, t ≥ 0, with state
space E and a function v : E → R. Define the following integral functional

Φ(t) =
∫ t

0
v(Zs)ds, t ≥ 0. (28.6)

For a fixed time t > 0, define now the moments of this functional

φn(i, t) = EiΦ(t)n, n = 1, 2, . . . . (28.7)

Then we have the following result.

Proposition 28.3.1 The nth moment of the performance function verifies the
Markov renewal equation

φn(i, t) −
∑
i∈E

∫ t

0
Qij(ds)φn(j, t − s) = Gn(i, t), (28.8)

where

Gn(i, t) := (v(i)t)nF i(t) +
n∑

k=1

(n

k

)
(v(i))k

∑
i∈E

∫ t

0
skφn−k(j, t− s)Qij(ds).

Proof. For fixed i ∈ E and t ≥ 0, let us define the characteristic function of
Φ(t),

ϕλ(i, t) := IEi[eιλΦ(t)], (ι =
√
−1). (28.9)

So, we have

φn(i, t) = (−ι)n
∂n

∂λn
ϕλ(i, t)

∣∣∣
λ=0

. (28.10)

By a renewal argument we get

ϕλ(i, t) = eıλv(i)tF i(t) +
∑
i∈E

∫ t

0
eıλv(i)sϕλ(j, t − s)Qij(ds). (28.11)

By differentiating n times the above equation, with respect to λ, and putting
λ = 0, we get the claimed result.

For a finite state space E = {1, 2, . . . , s} define the vector

φn(t) = (φn(1, t), . . . , φn(s, t)).

Then we have the following special result.
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Corollary 28.3.1 The first two moments of the integral functional are given
by:

φn(t) = α(I − Q)(−1) ∗ Gn(t), n = 1, 2,

where Gn(t) = diag(gn(1, t), . . . , gn(s, t)), n = 1, 2,

g1(i, t) = v(i)[tF i(t) +
∫ t

0
uFi(du)],

g2(i, t) = (v(i)t)2F i(t) + (v(i))2
∫ t

0
u2Fi(du)

+ 2v(i)
∑
j∈E

∫ t

0
uφ1(j, t − u)Qij(du).

Proof. By solving the above Markov renewal equation (28.8), we get the de-
sired result.

28.4 Nonparametric Estimation of Moments

In this section we give estimators of the first two moments for the integral func-
tional based on the explicit formulas given in Corollary 28.3.1 and derive their
asymptotic properties, that is, consistency and asymptotic normality. Consider
a censored MRP history at fixed time T , which is described by

H(T ) = (J0, J1, . . . , JNT
,X1,X2, . . . ,XNT

).

The likelihood function associated with H(T ) is

L = α(J0)(1 − K(UT , JNT
))

NT −1∏
l=0

p(Jl, Jl+1)f(Jl, Jl+1,Xl+1),

where

UT = T − SNT
,

1 − K(x, j) = IP(XNT +1 > x|JNT
= j);

then

l1(T ) = log L1(T ) =
NT−1∑
k=0

[
log λJk,Jk+1

(Xk+1) − ΛJk
(Xk+1)

]
− ΛJNT

(UT ).
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Let (vk)0≤k≤M be a regular subdivision of [0, T ], with step ∆T = T/M and
M = [T 1+ε], 0 < ε < 1 and [x] is the integer part of x. We approximate the
transition rate λij(t) by

λ∗
ij(t) =

M−1∑
k=0

λijk1[vk,vk+1[(t).

So, the log-likelihood is given by

l1(T ) =
∑
i,j

M−1∑
k=0

(dijk log λijk − λijkνik),

where

νik =
NT−1∑
l=0

(Xk+1 ∧ vk+1 − vk)1{Jl=i,Xk+1≥vk} + (UT ∧ vk+1 − vk)1{JNT
=i,UT≥vk}

and

dijk =
NT−1∑
l=0

1{Jl=i,Jl+1=j,Xl+1∈Ik}.

Hence the MLE of λijk is given by

λ̂ijk =
{

dijk/νik if νik > 0
0 otherwise.

We define the semi-Markov kernel estimator

Q̂ij(t, T ) =
∫ t

0
exp(−Λ̂i(u, T ))λ̂ij(u, T )du.

Then the estimator of the Markov renewal matrix is given by

ψ̂(t, T ) =
∞∑
l=0

Q̂(l)(t, T ).

Define now the following estimators for the first two moments of the integral
functional φn(t), n = 1, 2,

φ̂n(t, T ) := αψ̂ ∗ Ĝn(t, T ), n = 1, 2,

where
φ̂n(t, T ) = (φ̂n(1, t, T ), . . . , φ̂n(s, t, T ))�

and
Ĝn(t, T ) = diag(ĝn(1, t, T ), . . . , ĝn(s, t, T )),
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n = 1, 2, and

ĝ1(i, t, T ) = v(i)
1

Ni(T )

Ni(T )∑
l=1

(Xil ∧ t), (28.12)

with Xil the lth sojourn time in state i, and

ĝ2(i, t, T ) = (v(i))2
1

Ni(T )

Ni(T )∑
l=1

[Xil ∧ t]2

+ 2v(i)
∑
j∈E

∫ t

0
uφ̂1(j, t − u, T )Q̂ij(du, T ). (28.13)

Theorem 28.4.1 (Consistency) The estimators φ̂n(t, T ), n = 1, 2 of the first
two moments of the integral functional are strongly uniformly consistent on
[0, L], for any L > 0; that is,

sup
0≤t≤L

∥∥∥φ̂n(t, T ) − φn(t)
∥∥∥ IPi−a.s.−→ 0, T → ∞, n = 1, 2,

where ‖·‖ is the Euclidean norm in IRs.

Proof. Let us prove that the first moment of the integral functional is strongly
uniformly consistent. Firstly observe that

g1(i, t) = v(i)[tF i(t) +
∫ t

0
uFi(du)] = v(i)IE[t ∧ Xil].

We have that [see Theorem 3 in Ouhbi and Limnios (1999)],

sup
t∈[0,∞)

∣∣∣F i(t) − F̂ i(t)
∣∣∣

converges to zero. Then

sup
t∈[0,L]

∣∣∣v(i)[tF i(t) − tF̂ i(t)]
∣∣∣+ sup

t∈[0,L]

∣∣∣∣∫ t

0
u[Fi(du) − F̂i(du)]

∣∣∣∣ IPi−a.s.−→ 0, T → ∞.

(28.14)
On the other hand, from Theorem 5 in Ouhbi and Limnios (1999), we have that

sup
0≤t≤T

∣∣∣ψ̂ij(t, T ) − ψij(t)
∣∣∣ IPi−a.s.−→ 0, T → ∞. (28.15)

From (28.14) and (28.15) we get the desired result for the first moment.
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For the second moment, observe that

g2(i, t) := (v(i)t)2F i(t) + (v(i))2
∫ t

0
u2Fi(du)

+ 2v(i)
∑
j∈E

∫ t

0
uφ1(j, t − u)Qij(du)

= [v(i)]2IE[(Xil ∧ t)2] + 2v(i)
∑
j∈E

∫ t

0
uφ1(j, t − u)Qij(du).

So, estimator (28.13) of g2(i, t) can be written

(v(i))2
1

Ni(T )

Ni(T )∑
l=1

[Xil ∧ t]2 + 2v(i)
∑
j∈E

∫ t

0
uφ̂1(j, t − u, T )Q̂ij(du, T ).

In the same manner as in the first part of the proof we get the desired result.

Theorem 28.4.2 (Normality) For any fixed t, t ∈ [0,∞), T 1/2(φ̂1(t, T ) −
φ1(t)) converges in distribution to a centered normal random variable with vari-
ance

σ2(t) =
s∑

i=1

s∑
j=1

μii{(Wij)2 ∗ Qij − (Wij ∗ Qij)2

+
∫ ∞

0
[
∫ ∞

0
v(j)(x ∧ (t − u))dAi(u)]2dQij(x)

− [
∫ ∞

0

∫ ∞

0
v(j)(x ∧ (t − u))dAi(u)dQij(x)]2

+ 2
∫ ∞

0
Wij(t − x)

∫ ∞

0
v(j)(x ∧ (t − u))dAi(u)dQij(x)

− 2(Wij ∗ Qij)(t)(Ai ∗ (v(j)(x ∧ .)))(t)},

where for t ∈ IR+:

Ai(t) =
s∑

k=1

αkv(i)ψki(t),

Wkl(t) =
s∑

i=1

s∑
j=1

αiv(i)(ψik ∗ ψlj ∗ Ij)(t),

Ij(t) =
∫ t

0
F j(u)du.



414 N. Limnios and B. Ouhbi

Proof. It is easy to see that

T 1/2(φ̂1(t, T )− φ1(t))

=
∑
i∈E

∑
j∈E

αiv(j)T 1/2[(Îj ∗ ψ̂ij)(t)− (Ij ∗ ψij)(t)]

=
∑
i∈E

∑
j∈E

αiv(j)T 1/2[(Îj − Ij) ∗ (ψ̂ij − ψij)(t)

+ (Îj − Ij) ∗ ψij(t) + Ij ∗ (ψ̂ij − ψij)(t)]. (28.16)

The first term on the right-hand side of (28.16) converges to zero. Then
T 1/2(φ̂1(t)− φ1(t)) has the same limit as the r.v.

s∑
i=1

∑
j∈U

αiv(j)T 1/2

[
1

Nj(T )

Nj(T )∑
r=1

((Xjl ∧ t)− Ij) ∗ ψij(t)

+

(
s∑

k=1

s∑
l=1

Ij ∗ ψik ∗ ψlj

)
∗ (Q̂kl −Qkl)(t)

]
,

which can be written as

s∑
k=1

s∑
l=1

T 1/2

Nk(T )

Nk(T )∑
r=1

[1{Jr=k,k∈U,Jr+1=l}(Xr ∧ t− Ik) ∗ Ak(t)

+ (Wkl ∗ (1{Jr+1=l,Xr≤.} −Qkl)(t))1{Jr=k}].

Because T/Nk(T ) → µkk (a.s.) (the mean recurrence time in state k), we
get the desired result by the central limit theorem for semi-Markov process of
Pyke and Schaufele (1964) applied to the function

f(Jr, Jr+1,Xn) = µkkAk ∗ ((Xn ∧ t)− Ik)1{Jr=k,k∈U,Jr+1=l}
+ µkkWkl ∗ (1{Jr+1=l,Xr≤.} −Qkl)(t)1{Jr=k}.

28.5 Confidence Intervals for the Moments

An estimator of σ2(t), denoted σ̂2(t, T ), is obtained by replacing Q and ψ by
their estimators Q̂ and ψ̂, respectively, in the above expression. Then it is easy
to prove the following theorem.
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Theorem 28.5.1 For any fixed t ≥ 0, the estimator σ̂2(t, T ) is uniformly
strongly consistent in the sense that

sup
t∈[0,L]

|σ̂2(t, T ) − σ2(t)]| −→ 0 a.s., as T → ∞,

for any fixed L > 0.

We can construct confidence intervals for the first moment of the integral
functionals.

Theorem 28.5.2 The r.v. (
√

T/σ̂(t, T ))(φ̂1(t, T ) − φ1(t)) converges in distri-
bution to a standard normal random variable.

Hence for α ∈ (0, 1), an approximate 100(1−α)% confidence interval for φ1(t))
is

φ̂1(t, T ) − zα
2

σ̂(t, T )√
T

≤ φ1(t, T ) ≤ φ̂1(t, T ) + zα
2

σ̂(t, T )√
T

,

where zα/2 is the upper α/2 quantile of the standard normal distribution.

28.6 Numerical Application

Let us consider a three-state semi-Markov system as illustrated in Figure 28.1,
where F12(x) = 1 − exp(−λ1x), F21(x) = 1 − exp[−(x/α1)β1 ], F23(x) = 1 −
exp[−(x/α2)β2 ], and F31(x) = 1 − exp(−λ2x), for x ≥ 0. λ1 = 0.1, λ2 = 0.2,
α1 = 0.3, β1 = 2, α2 = 0.1, and β2 = 2.

The transition probability matrix of the embedded Markov chain (Jn) is:

P =

⎛⎝ 0 1 0
p 0 1 − p
1 0 0

⎞⎠ ,

where p is given by

p =
∫ ∞

0
[1 − F23(x)]dF21(x).

The function v is defined by v(1) = 1.0, v(2) = 0.6, and v(3) = 0.
If we simulate one trajectory for different censored times T1 < T2 < · · · < Tr,

we see that φ̂1(i, t, Tk) converges to the true curve of φ1(i, t) as k increases.
See Figure 28.2.
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21

3

exp(λ1)

W(α1, β1)

W(α2, β2)exp(λ2)

Figure 28.1. A three-state semi-Markov system.
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Figure 28.2. Mean value of the integral functional estimation of the three-state
semi-Markov system and its 95% and 80% nonparametric interval confidence.
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Estimators for Partially Observed Markov Chains
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Abstract: Suppose we observe a discrete-time Markov chain only at certain
periodic or random time points. Which observation patterns allow us to identify
the transition distribution? In the case where we can identify it, how can we
construct (good) estimators? We discuss these questions both for nonparametric
models and for linear autoregression.

Keywords and Phrases: Markov chain, linear autoregression, partial obser-
vation, periodic skipping, random skipping, empirical estimator, deconvolution

29.1 Introduction

For Markov chains only observed at certain periodic or random time points we
discuss when one can identify the underlying transition distribution, and how
one can construct estimators of linear functionals of the stationary distribution
in nonparametric models, and of the innovation density in linear autoregression.
By Markov chain we mean a Markov process in discrete time, with arbitrary
state space.

In Section 29.2 we consider nonparametric estimators of linear functionals of
the form E[h(X0,X1)] of a real-valued first-order stationary Markov chain. We
introduce different periodic and random partial observation patterns. If nothing
is known about the structure of the transition distribution, consistent estimation
of E[h(X0,X1)] is, in general, impossible unless one occasionally sees adjacent
pairs (Xj−1,Xj). We can use these pairs to construct an empirical estimator of
E[h(X0,X1)]. In the simplest such situation, with every third of the realizations
of the chain unobserved, we show how to use the information across the gaps
for improving the empirical estimator. The approach carries over to the other
observation patterns, and to higher-order Markov chains. In Section 29.3 we
assume that the Markov chain is a first-order linear autoregressive process. In
this case we can even treat observation patterns in which we never see adjacent

419
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pairs, assuming only that we know the sign of the autoregression parameter. In
the simplest such situation, only every second realization of the process is ob-
served. We construct deconvolution-type estimators for the innovation density
in this case. Again the approach carries over to more complicated observation
patterns, and to higher-order linear autoregressive processes.

29.2 Nonparametric Estimators

29.2.1 Full observations

Let X0, . . . ,Xn be observations of a real-valued stationary and uniformly er-
godic first-order Markov chain with transition distribution Q(x, dy). We can
identify Q from the stationary distribution of an adjacent pair (X0,X1), which
in turn is identified from sufficiently many linear functionals E[h(X0,X1)], for
example, from the distribution function (s, t) �→ E[1(X0 ≤ s,X1 ≤ t)] of
(X0,X1). It suffices therefore to study estimation of such functionals. Let h be a
bounded measurable function on R2. A natural estimator of Eh = E[h(X0,X1)]
is the empirical estimator

Eh =
1
n

n∑
j=1

h(Xj−1,Xj).

It admits the martingale approximation

n1/2(Eh− Eh) = n−1/2
n∑

j=1

(Ah)(Xj−1,Xj) + op(1) (29.1)

with

(Ah)(x, y) = h(x, y) −Qxh +
∞∑

k=1

(Qk
yh−Qk+1

x h),

where Qxh =
∫

h(x, y)Q(x, dy) and Qk
xh =

∫
QyhQk−1(x, dy) for k = 2, 3, . . . .

Hence by the martingale central limit theorem, n1/2(Eh − Eh) is asymptot-
ically normal with variance E[(Ah)2(X0,X1)]. See Meyn and Tweedie (1993,
Chapter 17), for these results and for generalizations. In nonparametric mod-
els, with nothing known about the structure of the transition distribution, Eh
is efficient in the sense of Hájek and LeCam; see Penev (1991), Bickel (1993),
Greenwood and Wefelmeyer (1995), and Bickel and Kwon (2001) for different
proofs.
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29.2.2 Periodic skipping

Suppose now that we observe only some of the realizations, in a deterministic
pattern that repeats itself periodically, say with period m. Specifically, in the
first period we observe at k times 1 ≤ i1 < · · · < ik ≤ m and then at times
m + i1, . . . , 2m + i1, . . . , for n + 1 periods, say. Then we observe up to time
(n + 1)m and have (n + 1)k observations. Here it is understood that we know
how many realizations we skip. The skip lengths are

s1 = i2 − i1, . . . , sk−1 = ik − ik−1, sk = m + i1 − ik.

1. In the simplest case, some of the skip lengths are 1. For example, let m = 3,
k = 2, i1 = 1, i2 = 2. Then every third realization is missing. A simple
estimator of E[h(X0,X1)] is the empirical estimator based on observed pairs
(X3j−2,X3j−1) of successive realizations of the chain. Such an estimator does
not use the information in the nonadjacent pairs (X3j−1,X3j+1), and we
should be able to find better estimators, in the sense of smaller asymptotic
variance (unless the observations happen to be independent). In the next
section we describe how one could use the information in the nonadjacent
pairs to improve on the empirical estimator.

2. Suppose that none of the skip lengths is 1, but they have no common divisor.
Then we can represent 1 as a linear combination of skip lengths. Suppose,
for example, that m = 5, k = 2, i1 = 1, i2 = 3. Then the skip lengths are
s1 = 2, s2 = 3, and, because 1 = 3 − 2, we can write Q = Q−2Q3. We can
therefore identify Q from Q2 and Q3, which in turn can be estimated from
the pairs (X5j+1,X5j+3) and (X5j−2,X5j+1), respectively. To estimate the
inverse of a transition distribution, decompose the state space into a finite
number of sets and invert the corresponding empirical transition matrix.

3. If the skip lengths have a common divisor, Q is not identifiable. Suppose,
for example, that m = 2, k = 1, i1 = 1. Then we skip every second real-
ization. The remaining observations allow us to estimate Q2, but this does
not identify the root Q uniquely. In certain parametric and semiparametric
models we can, however, still (nearly) identify Q, for example, if the chain
follows a first-order linear autoregressive model; see Section 29.3.

29.2.3 Observing two out of three

Suppose we observe (X3j−2,X3j−1) for j = 1, . . . , n. A simple estimator for
E[h(X0,X1)] is the empirical estimator

Eh =
1
n

n∑
j=1

h(X3j−2,X3j−1).
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The information in the nonadjacent pairs (X3j−1,X3j+1) can be used as fol-
lows. Write (X,Y,Z) for (X3j−1,X3j ,X3j+1). We want to estimate E[h(X,Y )].
Introduce the conditional expectations

h�(X,Z) = E(h(X,Y )|X,Z) and hr(X,Z) = E(h(Y,Z)|X,Z).

We have
E[h�(X,Z)] = E[hr(X,Z)] = E[h(X,Y )].

If we knew h� and hr, we could estimate E[h(X,Y )] by empirical estimators

1
n

n∑
j=1

h�(X3j−1,X3j+1) and
1
n

n∑
j=1

hr(X3j−1,X3j+1)

or smoothed versions of these. We do not know h� and hr and suggest replacing
them by estimators as follows. Assume that the finite-dimensional stationary
distributions of the chain have Lebesgue densities. Let p1, p2, p3 denote the
densities of X, (X,Y ), (X,Y,Z), respectively. Write g for the density of (X,Z).
Note that

g(x, z) =
∫

p3(x, y, z) dy.

We have

h�(x, z) =
∫

h(x, y)p3(x, y, z) dy

g(x, z)
.

Write
p3(x, y, z) =

p2(x, y)p2(y, z)
p1(y)

.

Estimate p2 by a kernel estimator based on the adjacent pairs (X3j−2,X3j−1),

p̂2(x, y) =
1
n

n∑
i=1

kb(x−X3j−2)kb(y −X3j−1),

where kb(x) = k(x/b)/b with k a kernel and b a bandwidth. Estimate p1 by

p̂1(y) =
1
2

( ∫
p̂2(x, y) dx +

∫
p̂2(y, z) dz

)
.

Then we can estimate p3 by

p̂3(x, y, z) =
p̂2(x, y)p̂2(y, z)

p̂1(y)

and g by

ḡ(x, z) =
∫

p̂3(x, y, z) dy.
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We arrive at the following estimator for h�,

ĥ�(x, z) =
∫

h(x, y)p̂3(x, y, z) dy

ḡ(x, z)
.

Rather than looking at the empirical estimator (1/n)
∑n

j=1 ĥ�(X3j−1,X3j+1), it
is technically convenient to look at the smoothed version

E�h =
∫

ĥ�(x, z)ĝ(x, z) dx dz,

where ĝ is a kernel estimator of g based on nonadjacent pairs (X3j−1,X3j+1),

ĝ(x, z) =
1
n

n∑
j=1

kb(x−X3j−1)kb(z −X3j+1).

Similarly,

ĥr(x, z) =
∫

h(y, z)p̂3(x, y, z) dy

ḡ(x, z)

and
Erh =

∫
ĥr(x, z)ĝ(x, z) dx dz.

Under appropriate conditions, the three estimators Eh, E�h, and Erh can be
shown to be asymptotically normal. We can take linear combinations of them
to obtain estimators with smaller asymptotic variance than the empirical esti-
mator Eh. The best weights are expressed in terms of the variances and covari-
ances of the three estimators. They depend on the unknown distribution but
can be estimated empirically. Consider, for example, the empirical estimator
Eh = (1/n)

∑n
j=1 h(X3j−2,X3j−1) based on the observations (X3j−2,X3j−1),

j = 1, . . . , n. The observations follow a Markov chain with transition distribu-
tion of (X3j+1,X3j+2) given (X3j−2,X3j−1) = (v,w) not depending on v and
defined by

R(w, dy, dz) = Q2 ⊗Q(w, dy, dz) = Q2(w, dy)Q(y, dz).

We can apply the martingale approximation (29.1) to obtain

n1/2(Eh− Eh) = n−1/2
n∑

j=1

(Bh)(X3j−1,X3j+1,X3j+2) + op(1)

with

(Bh)(w, y, z) = h(y, z) −Rwh +
∞∑

k=1

(Rk
zh−Rk+1

w h).
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By the martingale central limit theorem, Eh is asymptotically normal with
variance E[(Bh)2(X2,X4,X5)] of the form

Eh2 − (Eh)2 + 2
∞∑

k=1

E[(h(X1,X2)− Eh)h(X3k+1,X3k+2)].

This variance can be estimated empirically, by

Eh2 − (Eh)2 + 2
m(n)∑
k=1

1
n− k

n−k∑
j=1

(h(X3j−2,X3j−1)− Eh)h(X3(j+k)−2,X3(j+k)−1)

with m(n) slowly increasing to infinity. [Compare Müller et al. (2001).] Similar
martingale approximations can be obtained for Eh� and Ehr, and their variances
and the covariances of the three estimators can be estimated similarly as the
variance of Eh.

29.2.4 Random skipping

Suppose that, after an observation at time j, we make the next observation at
time j +s with probability as. Then the skip lengths are i.i.d. random variables
Si, i = 0, 1, . . . , with values in N and distribution given by A({s}) = as, s ∈ N.
Set T0 = 0 and Tj =

∑j−1
i=0 Si, and write Yj = XTj . Suppose we observe the

pairs (Sj, Yj) for j = 0, . . . , n, say. They form a Markov chain with transition
distribution

R(x, ds, dy) = A(ds)Qs(x, dy).

Let Ns denote the observed number of skip lengths Sj = s. We can estimate
as by Ns/n. Estimation of E[h(X0,X1)] is similar to the case of periodic skip-
ping considered above. In particular, if a1 is positive, a simple estimator of
E[h(X0,X1)] is the empirical estimator

1
N1

∑
Sj=1

h(Yj , Yj+1).

The information in the pairs (Yj , Yj+1) with skip lengths Sj = 2, 3, . . . can be
exploited similarly as for periodic skipping.

29.2.5 Skipping at random

In the previous section we have assumed that the skip lengths are independent
of the Markov chain. It is, however, conceivable that the skip lengths depend on
the previous state. Let A(x, ds) denote the skip length distribution out of state
x. Then we observe pairs (Sj, Yj) for j = 0, . . . , n with transition distribution

R(x, ds, dy) = A(x, ds)Qs(x, dy).
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This factorization is analogous to the factorization Q(x, dy)A(x, y, ds) of the
transition distribution of a Markov renewal process; for efficient estimation in
semiparametric models of the corresponding semi-Markov process see Green-
wood et al. (2004). The name “skipping at random” is chosen because of the
similarity with responses “missing at random” in regression models; for efficient
semiparametric estimation see Müller et al. (2006). Recent monographs treat-
ing missing data are Little and Rubin (2002), van der Laan and Robins (2003),
and Tsiatis (2006). Random skipping as considered above, with A not depend-
ing on x, would correspond to “missing totally at random”. We can estimate
as(x) = A(x, {s}) by the kernel estimator

âs(x) =
∑n

i=1 kb(x− Yi)1(Si = s)∑n
i=1 kb(x− Yi)

,

where kb(x) = k(x/b)/b with k a kernel and b a bandwidth. Again, if a1(x) =
A(x, {1}) is positive with positive probability, a simple estimator of the expecta-
tion E[h(X0,X1)] can be based on the observed pairs of successive observations:

n−1∑
j=0

1(Sj = 1)
â1(Yj)

h(Yj , Yj+1).

Again, the information in the pairs (Yj , Yj+1) with skip lengths Sj = 2, 3, . . .
can be exploited similarly as for periodic skipping.

29.3 Linear Autoregression

29.3.1 Full observations

Let X0, . . . ,Xn be observations from a stationary first-order autoregressive lin-
ear model

Xj = ϑXj−1 + εj (29.2)

with |ϑ| < 1 and i.i.d. innovations εj that have mean zero, finite variance,
and density f . This is a first-order Markov chain with transition distribution
Q(x, dy) = f(y − ϑx) dy, parametrized by ϑ and f . A simple estimator for ϑ is
the least squares estimator

ϑ̄ =

∑n
j=1 Xj−1Xj∑n

j=1 X2
j−1

.

We can use it to estimate the innovation εj by the residual ε̄j = Xj − ϑ̄Xj−1.
An estimator for the innovation density f is the residual-based kernel estimator

f̂(x) =
1
n

n∑
j=1

kb(x− ε̄j),

where kb(x) = k(x/b)/b with k a kernel and b a bandwidth.



426 U. U. Müller, A. Schick, and W. Wefelmeyer

29.3.2 Observing one out of two

As mentioned in Section 29.2, the transition distribution of a Markov chain is
not identifiable if observations are skipped periodically with skip lengths having
a common divisor. In the simplest such case, only every second of the realiza-
tions of the chain is observed. The situation is much better for autoregression
(29.2). Then the transition distribution is still identifiable, up to the sign of ϑ.
To see this, suppose that we observe X0,X2, . . . ,X2n and write

X2j = ϑ2X2j−2 + η2j (29.3)

with
η2j = ε2j + ϑε2j−1. (29.4)

The X2j again follow a first-order linear autoregressive model, now with autore-
gression parameter s = ϑ2 and innovation η2j . The nonuniqueness of the square
root of the two-step transition distribution Q2 reduces to the nonuniqueness
of the square root of ϑ2. Let us assume that we know the sign of ϑ; say ϑ is
positive. This knowledge is realistic in many applications. We can estimate ϑ2

by the least squares estimator

ŝ =

∑n
j=1 X2j−2X2j∑n

j=1 X2
2j−2

.

Then ϑ̂ = ŝ1/2 estimates ϑ.
It remains to estimate f . We introduce three different approaches. All are

solutions of certain deconvolution problems. Write ϕY (t) = E[exp(itY )] for the
characteristic function of a random variable Y .

1. The most straightforward estimator for f uses only the autoregressive rep-
resentation (29.2), which implies

ϕX(t) = ϕϑX(t)ϕε(t) = ϕX(ϑt)ϕε(t).

Estimate ϕX by the empirical characteristic function

ϕ̂X(t) =
1
n

n∑
j=1

exp(itX2j).

An estimator for ϕε is then given by

ϕ̂ε,1(t) =
ϕ̂X(t)

ϕ̂X(ϑ̂t)
.

Let K be a kernel, ϕK its characteristic function, and b a bandwidth that
tends to zero as n tends to infinity. By Fourier inversion we arrive at an
estimator for f ,

f̂1(x) =
1
2π

∫
exp(−itx)ϕK(bt)ϕ̂ε,1(t) dt.
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2. Another estimator for f uses only the moving average representation (29.4)
of the η2j . It is based on the approach of Belomestny (2003); see also Be-
lomestny and Prokhorov (2003) and Belomestny (2005). Belomestny consid-
ers i.i.d. random variables Y1 and Y2 and estimates their density on the basis
of i.i.d. observations distributed as ϑY1+Y2. The moving average representa-
tion (29.4) is of this form, but we do not know ϑ and do not observe the η2j

and must replace them by an estimator ϑ̂ and residuals η̂2j = X2j − ŝX2j−2.
From (29.4) we obtain

ϕη(t) = ϕε(t)ϕϑε(t) = ϕε(t)ϕε(ϑt).

Iteratively solving for ϕε we arrive at the representation

ϕε(t) =
ϕη(t)
ϕε(ϑt)

=
∞∏

r=0

ϕη(ϑ2rt)
ϕη(ϑ2r+1t)

.

Estimate ϕη by the residual-based empirical characteristic function

ϕ̂η(t) =
1
n

n∑
j=1

exp(itη̂2j).

An estimator for ϕε is then given by

ϕ̂ε,2(t) =
N∏

r=0

ϕ̂η(ŝrt)

ϕ̂η(ϑ̂2r+1t)

with N tending to infinity. By Fourier inversion we arrive at a second esti-
mator for f ,

f̂2(x) =
1
2π

∫
exp(−itx)ϕK(bt)ϕ̂ε,2(t) dt.

3. A third estimator for f uses (29.2) together with the autoregression repre-
sentation (29.3) of the observations X2j . They give

ϕX(t) = ϕX(ϑt)ϕε(t) and ϕX(t) = ϕX(ϑ2t)ϕη(t)

and hence

ϕε(t) =
ϕX(ϑ2t)ϕη(t)

ϕX(ϑt)
.

An estimator for ϕε is therefore given by

ϕ̂ε,3(x) =
ϕ̂X(ŝt)ϕ̂η(t)

ϕ̂X(ϑ̂t)
.

By Fourier inversion we arrive at a third estimator for f ,

f̂3(x) =
1
2π

∫
exp(−itx)ϕK(bt)ϕ̂ε,3(t) dt.
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The estimator f̂1 is the easiest to calculate. However, the representation of
ϕε as a ratio ϕX/ϕϑX does not lead to a good estimator of ϕε and f . It is
comparable with the usual deconvolution estimators treated in the literature;
see Fan (1991) for their convergence rates, which can be very slow. The estima-
tors f̂2 and f̂3 do not have this disadvantage, at least not to the same extent.
This is easier to explain for f̂3, which is based on the representation of ϕε as
ϕϑ2Xϕη/ϕϑX whose tail behavior is governed by the numerator. Of course, ϕ̂ε,3

and f̂3 are preferable because they are simpler than ϕ̂ε,2 and f̂2. Apart from
this, f̂2 and f̂3 have similar convergence rates.

Let g denote the density of the innovation η2j . Paradoxically, it can be
estimated at a better rate than the density of the innovation εj of the fully
observed time series. From (29.4) we have the representation

g(y) =
∫

f(y − ϑx)f(x) dx

and can estimate g by the plug-in estimator

ĝ(y) =
∫

f̂(y − ϑ̂x)f̂(x) dx,

where f̂ is f̂2 or f̂3. The estimator ĝ can be root-n consistent; compare Frees
(1994), Schick and Wefelmeyer (2004a, 2007), and Giné and Mason (2007) for
related results.

29.3.3 Higher lags

Versions of the three estimators f̂1, f̂2, f̂3 can also be constructed if we observe
the AR(1) process each kth time only. We have seen that an AR(1) process, ob-
served every second time, is again AR(1), with different innovation distribution
and autoregression parameter. If we observe the process each kth time only, we
also have an AR(1) process

Xkj = ϑkXk(j−1) + ηkj (29.5)

with innovations

ηkj =
k−1∑
i=0

ϑiεkj−i. (29.6)

Suppose we observe X0,Xk, . . . ,Xkn. Then ϑk can be estimated by the least
squares estimator

ŝ =

∑n
j=1 Xk(j−1)Xkj∑n

j=1 X2
k(j−1)

.

If k is even, we cannot identify the sign of ϑ and will again assume that we
know ϑ to be positive. Then ϑ̂ = ŝ1/k estimates ϑ.



Partially Observed Markov Chains 429

A version of f̂1 is obtained by using again the Fourier inverse of

ϕ̂ε,1(t) =
ϕ̂X(t)

ϕ̂X(ϑ̂t)
,

now with the empirical characteristic function

ϕ̂X(t) =
1
n

n∑
j=1

exp(itXkj).

In view of (29.5) and (29.6) we obtain

ϕX(t) = ϕη(t)ϕX (ϑkt) (29.7)

and then, by the representation (29.2),

ϕε(t) =
ϕX(t)
ϕX(ϑt)

=
ϕη(t)ϕX(ϑkt)

ϕX(ϑt)
. (29.8)

A version of ϕ̂ε,3 is therefore

ϕ̂ε,3(t) =
ϕ̂η(t)ϕ̂X(ŝt)

ϕ̂X(ϑ̂t)
,

now with empirical characteristic function

ϕ̂η(t) =
1
n

n∑
j=1

exp(itη̂kj)

based on residuals η̂kj = Xkj − ŝXk(j−1). An estimator for f is now obtained
by Fourier inversion of ϕ̂ε,3.

For a version of the second estimator, f̂2, we apply (29.7) repeatedly to
(29.8) and obtain

ϕε(t) =
ϕη(t)ϕX(ϑkt)

ϕη(ϑt)ϕX(ϑk+1t)
=

ϕη(t)
ϕη(ϑt)

∞∏
r=1

ϕη(ϑkrt)
ϕη(ϑkr+1t)

.

From this we obtain a version of ϕ̂ε,2 and hence of f̂2.

29.3.4 Higher-order autoregression

Generalizations of our results to higher-order autoregression are not straight-
forward. In general we lose the Markov property. Consider an AR(2) process

Xj = ϑ1Xj−1 + ϑ2Xj−2 + εj ,
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with innovations εj as before. Assume that the polynomial 1− ϑ1z− ϑ2z
2 does

not have zeroes on the closed complex unit disk. Suppose we observe the process
at even times only. We have

X2j = ϑ1X2j−1 + ϑ2X2j−2 + ε2j .

Replacing X2j−1 by its AR(2) representation, we obtain

X2j = (ϑ2
1 + ϑ2)X2j−2 + ϑ1ϑ2X2j−3 + ε2j + ϑ1ε2j−1. (29.9)

Iterating this for odd-numbered indices, we arrive at an ARMA(∞,∞) repre-
sentation for X2j ,

X2j = (ϑ2
1 + ϑ2)X2j−2 +

∞∑
i=1

ϑ2
1ϑ

i
2X2j−2i−2 + ε2j + ϑ1ε2j−1 +

∞∑
i=1

ϑ1ϑ
i
2ε2j−2i−1.

If we replace all X2j−i by their AR(2) representations, we arrive at an AR(∞)
representation for X2j .

A simpler representation is obtained if we subtract

ϑ2X2j−2 = ϑ2(ϑ1X2j−3 + ϑ2X2j−4 + ε2j−2)

from (29.9). This gives the ARMA(2,2) representation

X2j − (ϑ2
1 + 2ϑ2)X2j−2 + ϑ2

2X2j−4 = ε2j + ϑ1ε2j−1 − ϑ2ε2j−2.

The parameters are identifiable if we know their signs.
Such a representation can be obtained for arbitrary ARMA(p,q) processes

observed at even times. Introduce polynomials �(z) = 1 + �1z + · · ·+ �pz
p and

ϕ(z) = 1 + ϕ1z + · · · + ϕqz
q. Assume that � does not vanish on the closed

complex unit disk. Define the backshift operator by BXj = Xj−1. Consider the
ARMA(p,q) process

�(B)Xj = ϕ(B)εj ,

with εj as before. Let �∗1, . . . , �∗p denote the zeroes of �. They lie outside the
unit disk. Factor � as

�(z) =
p∏

i=1

(z − �∗i ).

Introduce the polynomials

�2(z) =
p∏

i=1

(z − �∗2i ), �+(z) =
p∏

i=1

(z + �∗i ).

We can write

�2(z2) =
p∏

i=1

(z2 − �∗2i ) =
p∏

i=1

(z + �∗i )(z − �∗i ) = �+(z)�(z)
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and obtain an ARMA(p,p + q) representation for the ARMA(p,q) process ob-
served at even times only:

�2(B2)X2j = �+(B)ϕ(B)ε2j .

We retain a Markovian representation if we have observations in blocks of
length at least equal to the order of the process. For example, suppose we do
not see every third observation of the AR(2) process, so our observations are
(X3j−2,X3j−1) for j = 1, . . . , n, say. Then we can write

X3j+1 = (ϑ2
1 + ϑ2)X3j−1 + ϑ1ϑ2X3j−2 + ε3j+1 + ϑ1ε3j

and
X3j+2 = ϑ1X3j+1 + ϑ1ϑ2X3j−1 + ϑ2

2X3j−2 + ε3j+2 + ϑ2ε3j .

This means that the observations (X3j−2,X3j−1) follow an alternating autore-
gressive process, with orders alternating between 2 and 3, and independent
innovations η3j+1 = ε3j+1 + ϑ1ε3j , j = 1, . . . , n, and η3j+2 = ε3j+2 + ϑ2ε3j ,
j = 1, . . . , n, respectively. Note, however, that for fixed j the innovations η3j+1

and η3j+2 depend on each other. The observations (X3j−2,X3j−1) can also be
viewed as a two-dimensional autoregressive process of order 3.

In both cases described above we have obtained ARMA(p,q) representations
for the partially observed process. Such representations can again be used to
construct estimators for the innovation density. Consider an ARMA(2,2) process
of the form

Xj + aXj−1 + bXj−2 = εj + cεj−1 + dεj−2 = ηj .

To construct an estimator analogous to f̂2, write

ϕε(t) =
ϕη(t)

ϕε(ct)ϕε(dt)
,

replace ϕε(ct) and ϕε(dt) by such ratios to obtain

ϕε(t) =
ϕη(t)ϕε(c2t)ϕε(d2t)ϕ2

ε(cdt)
ϕη(ct)ϕη(dt)

,

and iterate these steps to obtain an infinite product in terms of ϕη. An estimator
for ϕη can be based on residuals η̂j = Xj + âXj−1 + b̂Xj−2.
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30.1 Introduction

The problems of the calculation of optimal point estimates for characteristics of
random process functionals, characteristics of scattering of these estimates, and
also estimates of observed significance levels for a criteria adequacy of model and
experimental data occasionally can be successfully solved by using the sufficient
empirical averaging (SEA) method that has been proposed by Chepurin (1994,
1995, 1999). The method of obtaining statistical results on the basis of the SEA
method consists of the following steps. Let a statistical model (Y,B,P) generate
sample data y ∈ Y and admit a complete sufficient statistic S(y). Here Y is a
sampling space, B = {A} is a sigma-algebra on Y , P = {P{A; θ}, θ ∈ Θ} is a
family of probability measures, and Θ is the parametric space. It is proposed
that y is generated by a probability measure with the unknown parameter θ0, y
is a trajectory of Y (t), 0 ≤ t ≤ T , and Y (t) is a random process. Let us define
the conditional distribution Q(A; s0) = P{A|S(y) = s0; θ0}. Note that Q(·; s0)
is free of θ0 ∈ Θ. Suppose also that we can simulate a sequence of data variants
y∗1, . . . , y∗B , where i.i.d. random variables y∗i are generated by Q(·; s0). It is well
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known [Lehmann (1983)] that each data variant y∗i is statistically equivalent
to y.

Consider at first problems of unbiased point estimation of g(θ0) =
E{G(T, Y (t) for 0 ≤ t ≤ T ); θ0}, where G(T, Y (t), 0 ≤ t ≤ T ) is interesting for
the functional of Y (t). Let z(y) be an easily calculated unbiased estimator for
g(θ0); that is, E{z(y); θ0} = g(θ0). Then the SEA estimate of g(θ0) is

ĝB(S) = B−1
B∑

i=1

z(y∗i ). (30.1)

Let ĝ0(S) = E{z(y)|S}. It is the uniformly minimum variance unbiased
estimator of g(θ). If V {z(y); θ0} < ∞ then Equation (30.1) gives the consistent
estimate of ĝ0(S) as B → ∞, E{ĝB(S); θ} = g(θ) and calculated by means of
B data variance

VB{ĝB(S); θ0} = V {ĝ0(S); θ0}+
1
B

(V {z(y); θ0} − V {ĝ0(S); θ0}). (30.2)

From Equation (30.2) it is easy to choose B for desired proximity of ĝB(s) and
ĝ0(s). Often one can also get an unbiased estimator for V {ĝ0(s); θ} and other
scattering characteristics of ĝ0(s). Notice that many of the unbiased estimation
problems can be solved without difficult calculation of probability measures
Q(·; s0) and E{G(T, Y (t) for 0 ≤ t ≤ T ); θ0}.

Furthermore, everywhere it is supposed that

z(y) = G(T, Y (t) for 0 ≤ t ≤ T ).

The chapter is organized as follows. The next section contains a description
of the base model. The further two sections are devoted to plans of observations.
Procedures of data variant generation are considered in Section 30.5. Numerical
examples are given in the last section.

30.2 Base Model

We consider the labelled random process Y (t) that is determined by the se-
quence {τn, ηn}, n = 1, 2, . . . , where τn ∈ R1

+ is a moment of the process
events (of the process jumps) and ηn = (ηn,1, ηn,2, . . . , ηn,m)T is the corre-
sponding label ηn ∈ Rm. Note that a part of ηn can be integers. It is sup-
posed that the sequences {τn} and {ηn} are independent. Furthermore let
K(t) = max{n : τn ≤ t} be a number of the process events on the interval
[0, t]. It is known that the sample trajectory of the process K(t) is statisti-
cally equivalent to an evolution of the sequence {τn}, the jump moments of the
process K(t).
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Many problems of queueing theory, reliability, insurance, inventory, and so
on can be presented as search problems of the expectation for a functional
G(T, Y (t), 0 < t ≤ T ) where T is a fixed time moment. Let θ0 be a generating
parameter of the process Y (t). If its value is unknown then there arises a search
problem of the optimal unbiased estimate for E{G(T, Y (t), 0 < t ≤ T ); θ0}.
Note that the corresponding unbiased estimate exists for special observation
plans about the process Y (t) only. Thus it exists for the following plans, for
example.

– Plan of A-type: the process Y (t) is observed in the interval {0, T}.
– Plan of B-type: a time moment of observation ending coincides with τn(0),

where n(0) is such that

P{K(T ) ≤ n(0); θ0} = 1. (30.3)

Unfortunately for the substantial practical problems usually it is impossible
to find an analytical expression for the optimal unbiased estimate. On the other
hand it is often possible to find the unbiased estimate that is very close to the
optimal one. These estimates can be obtained by using the sufficient empirical
averaging method.

30.3 On a Class of Processes with the Complete

Sufficient Statistics for the Plans of A-Type

In the current section it is supposed that θ0 = (θ0,1, θ0,2) where θ0,1 deter-
mines the distribution of the sequence {τn}, θ0,2 determines the distribution
of the label sequence {ηn}. We suppose that the statistical model generating
the process Y (t) admits a complete sufficient statistic S1 = K(T ) for the se-
quence {τ1, τ2, . . . , τK(T )}. It means that joint probability density of the random
sequence {τ1, τ2, . . . , τK(T );K(T )} can be represented in the following way,

Lc′(τ1, τ2, . . . , τK(T );K(T )) = V (t1, t2, . . . , tk)exp{−θ0,1k + a1(θ0,1) + b1(k)},

where V (t1, t2, . . . , tk) is an arbitrary joint probability density of the vector
{τ1, τ2, . . . , τk} on the set 0 < t1 < t2 < · · · < tk ≤ T .

Here and below ai(.) and bi(.) are components of density representation for
the one-index exponential family.

Furthermore let S2 be a restricted complete sufficient statistic for the family
of the conditional random sequence of the labels {η1, η2, . . . , ηK(T )|K(T ) = k}.
It is simple to show that S = (S1, S2) is the complete sufficient statistic for θ0 =
(θ0,1, θ0,2). As for a structure of Y ∗(t) (a date variant for the labelled random
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process), it is described in the following way. Y ∗(t) is determined uniquely by
the sequence

(t∗1, η
∗
1), (t∗2, η

∗
2), . . . , (t

∗
k, η

∗
k),

where (t∗1, t∗2, . . . , t∗k) are generated by the probability density V (.) and (η∗1 ,
η∗2 , . . . , η∗k) are a date variant for the sequence of the labels (η1, η2, . . . , ηk) pro-
vided fixed values of the complete sufficient statistic S2.

Let us consider an important particular example of the point process, for
which K(t) is the complete sufficient statistic.

Example. Mixed Poisson process. Let K(t), 0 ≤ t ≤ T , be the standard
Poisson process with the parameter λ > 0, with λ a realization of the random
variable Λ with the probability density from the one-index exponential family:

Lc′(Λ) = exp{−λ/σ0 + a2(λ) + b2(σ0)},

so θ0,1 = 1/σ0.
Let us show that K(T ) is the complete sufficient statistic and the condi-

tional probability density Lc′(τ1, τ2, . . . , τK(T )|K(T ) = k) coincides with the
probability density of the order statistic set for a sample from k independent
but distributed on [0, T ] random variables. Actually (below t0 = 0)

Lc′(τ1, τ2, . . . , τK(T );K(T ) = k) =
∞∫
0

(
k∏

i=1

λe−λ(ti−ti−1)

)
exp{−λ (T − tk)}

exp
{
− λ

σ0
+ a2(λ) + b2(σ0)

}
dλ

=
k!
T k

∞∫
0

1
k!

(λT )ke−λT exp
{
− λ

σ0
+ a2(λ) + b2(σ0)

}
dλ.

If we keep in mind that

Lc′(POIS(ΛT )) =
∞∫
0

1
k!

(λT )ke−λT exp
{
− λ

σ0
+ a2(λ) + b2(σ0)

}
dλ

is the unconditional probability density of the random variable K(T ) then the
above formulated statement about the structure of Lc′(τ1, τ2, . . . , τK(T )|K(T ) =
k) becomes obvious.

Note that if we get

a2(λ) = ln
λa0−1

Γ(a0)
, b2(σ0) = − lnσa0

0 ,
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in other words if we assume Λ has gamma distribution with known form param-
eter a0 and unknown scale parameter σ0, then for the unconditional probability
we have the negative binomial distribution:

PS{K(T ) = k; θ0,1} =

(
a0 + k − 1

k

)(
1

σ0T + 1

)k ( σ0T

σ0T + 2

)a0

.

Let us show the completeness of the unconditional distribution of K(T ). Actu-
ally let us have E{dK(T ); θ0,1} ≡ 0 for some sequence {d0, d1, . . .} and for all
θ0,1 = σ0. Then

∞∑
k=0

dk

∞∫
0

(λT )k

k!
e−λT exp

{
− λ

σ0
+ a2(λ) + b2(σ0)

}
dλ

=
∞∫
0

( ∞∑
k=0

dk
(λT )k

k!
e−λT

)
exp
{
− λ

σ0
+ a2(λ) + b2(σ0)

}
dλ.

Now from the completeness of the distribution of the random variable Λ follows
that ∞∑

k=0

dk
1
k!

(λT )keλT = 0 almost probably for all λ.

In turn, from the completeness of the Poisson distribution it follows that dk = 0
for k = 0, 1, . . . , so K(T ) is the complete sufficient statistic.

30.4 On Complete Sufficient Statistics for a Class of
Labeled Processes with the Plans of B-Type

Let the sequence {τn} correspond to a recurrent flow for which sequential in-
tervals ςn = τn− τn−1 are independent identically distributed random variables
with the distribution density

Lc′(ςn) =

{
0, u ≤ µ0,

σ−1
0 exp{−(u− µ0)/σ0}, u > µ0,

(30.4)

where σ0 > 0, µ0 > M .
Here µ0 and σ0 are unknown parameters but M is a known value. We have

a sample ς1, ς2, . . . , ςr of size r for corresponding random variables {ςn}, by that

r = n(0) ≥
[

T

M

]
+ 1. (30.5)
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It is well known that the complete sufficient statistic for parameters µ0 and
σ0 is the pair S1 = (ςmin,Ξ), where ςmin = min{ς1, ς2, . . . , ςr},

Ξ =
r∑

i=1

(ςi − ςmin).

Furthermore let labels {ηn} be a sequence of independent identically distributed
random variables having complete sufficient statistics. Let S2 be that value
calculating the base of a sample of size at least n(0). Obviously S = (S1, S2) is
the complete sufficient statistic for the considered random process.

Now we are able to generate the data variants of the described random
process Y ∗(t) using statistics S1 and S2.

30.5 On Procedures of Data Variant Generation

The problem of a data variant generation is crucial for the possibility of real-
ization of the considered method. To simulate the data variant it is necessary
to know the conditional distribution of the data variant and to generate corre-
sponding random variables. Usually it is very difficult to find an explicit form
for the conditional distribution, because it is a distribution on the hypersurface
in a space of high dimension [see Andronov et al. (2005)]. On the other hand,
to generate corresponding random variables is a complicated problem too. Here
two ways are possible. Firstly, often we can generate the random variables of
interest directly, without knowledge of the corresponding distribution. Such ex-
amples were given by Chepurin (1995, 1999) and Engen and Lillegard (1997).
Let us illustrate this approach.

We consider a procedure of data variant generation for distribution (30.4)
on a base of the complete sufficient statistic S1 = (ςmin,Ξ), that has been
calculated on a sample of size r. We want to show how it is possible to generate
a typical data variant ς∗1 , ς∗2 , . . . , ς∗r .

We generate a random integer number N that has the uniform distribution
on set {1, 2, . . . , r} and set ς∗N = ςmin. Furthermore, r − 1 independent expo-
nentially distributed with parameter 1 random variables ϑ1, ϑ2, . . . , ϑr−1 are
generated and their sum Ξ̃ = ϑ1 + ϑ2 + · · ·+ ϑr−1 is calculated. Finally we end
the generation procedure setting

ς∗n =

⎧⎨⎩ ϑnΞ/Ξ̃ + ςmin, n < N,

ϑn−1Ξ/Ξ̃ + ςmin, n > N.

Secondly, it is possible to apply Gibbs sampling; see Gentle (2002). This
approach uses a decomposition of the multivariate probability density into a



On Solving Statistical Problems 441

marginal and then a sequence of conditionals. We begin with the univariate
marginal distribution (provided fixed value of the corresponding complete suffi-
cient statistic) and generate the first random variable χ∗

n. Then we recount the
value of the statistic and use one for the generation of the next random variable
χ∗

n−1 and so on.
We illustrate this approach for a sample χ1, χ2, . . . , χn from the normal

population N(µ, σ). In this case the complete sufficient statistic is S = (µ∗
n, σ2∗

n ),

µ∗
n =

1
n

n∑
i=1

χi, σ2∗
n =

1
n− 1

n∑
i=1

(χi − µ∗
n)2.

The conditional random variable χ∗
n by the condition S = (µ∗

n, σ2∗
n ) has the

following probability density.

Lc′
(
χ∗

n|µ∗
n, σ2∗

n

)
=

√
nΓ
(

n−1
2

)
(n− 1)

√
πσ2∗

n Γ
(

n−2
2

) (1− n

(n− 1)2σ2∗
n

(x− µ∗
n)2
)n

2
−2

,

µ∗
n −

n− 1√
n

√
σ2∗

n ≤ x ≤ µ∗
n +

n− 1√
n

√
σ2∗

n .

Now we generate χ∗
n using, for example, acceptance/rejection or inverse cumu-

lative distribution function methods. Furthermore, we recount the value of the
statistic S by the formulas

µ∗
n−1 =

1
n− 1

(nµ∗
n − χ∗

n), σ2∗
n−1 =

n− 1
n− 2

(
σ2∗

n − 1
n

(χ∗
n − µ∗

n−1)
2
)

.

The consequent iterations give the sequence χ∗
n, χ∗

n−1, . . . , χ
∗
4, χ

∗
3. Two last val-

ues are calculated by formulas

χ∗
2 = µ∗

2 +
√

1
2
σ2∗

2 , χ∗
2 = µ∗

1 −
√

1
2
σ2∗

2 .

30.6 Numerical Examples

Example 1 (Ruin problem) We consider the following modification of the
classical model of an insurance risk business [Grandell (1991)]. An insurance
company has initial capital of size u. The claims occur according to a mixed
Poisson process as described in the third section. The costs of the claims are
described by a sequence {η1, η2, . . .} of independent and identically distributed
random variables, having normal distribution. The premium income of the com-
pany is defined by a positive real constant c.
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Table 30.1. Estimates Ψ̂(u, 50) of ruin probability Ψ(u, 50)

u 100 110 120 130 140 150 160 170 180
Ψ̂(u, 50) 0.996 0.988 0.966 0.927 0.844 0.812 0.727 0.643 0.529

u 190 200 210 220 230 240 250 260 270
Ψ̂(u, 50) 0.445 0.327 0.263 0.195 0.135 0.111 0.070 0.051 0.026

The risk process Y is defined by

Y (t) = ct−
K(t)∑
n=1

ηn. (30.6)

The ruin probability till time moment T for the company having initial
capital u is defined by

Ψ(u, T ) = P{u + Y (t) < 0 for some moment t ∈ (0, T )}.

Constants T and c are known. Parameters of the mixed Poison process and
the normal distribution are unknown, but complete sufficient statistics K(T )
and (µ∗

n, σ2∗
n ) are given. Our aim is to estimate ruin probability Ψ(u, T ).

For that we apply the usual simulation. Necessary random variables are
generated as described in Section 30.5.

The results we received are presented in Table 30.1. They correspond to the
following values of the constants and statistics: c = 0.01, T = 50, K(T ) = 20,
n = 20, µ∗

20 = 40, and σ2∗
20 = 10. Number B of the simulation runs equals 2000.

With respect to the above-considered statements, the presented values are
close to minimum variance unbiased estimates of the ruin probabilities.

Example 2 (Queueing system) Let us consider a queueing system with two
servers. Interarrival times of customers ς1, ς2, . . . are i.i.d. random variables,
which have shifted exponential distribution (30.4).

The servers are different (nonhomogeneous). Service times are i.i.d. random
variables having exponential distribution with various parameters σ

(1)
0 and σ

(2)
0

for the servers. These parameters are unknown. If both servers are busy when a
customer arrives, then the customer must join a queue (i.e., wait in line). From
the queue customers go to the server in accordance with their own arrival times.
If both servers are empty when a customer arrives then the customer goes to a
server that has been cleared earlier. Let’s find the nonstationary distribution of
the number Y (t) of customers in the system at the time moment t, 0 < t < T :

Pj(t) = P{Y (t) = j}, j = 0, 1, . . . .
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Table 30.2. Estimates for probabilities {Pj(t)} of the number of customers in
the system

t 0 1 2 3 4 5 6 7
P̂0(t) 1 0.556 0.348 0.247 0.219 0.198 0.186 0.178
P̂1(t) 0 0.444 0.478 0.466 0.412 0.409 0.402 0.370
P̂2(t) 0 0 0.163 0.229 0.266 0.263 0.261 0.272
P̂3(t) 0 0 0.011 0.053 0.084 0.096 0.105 0.123
P̂4(t) 0 0 0 0.005 0.018 0.030 0.037 0.042
P̂≥5(t) 0 0 0 0 0.001 0.004 0.009 0.015
t 8 9 10 11 12 13 14 15
P̂0(t) 0.170 0.158 0.156 0.157 0.155 0.157 0.154 0.159
P̂1(t) 0.365 0.366 0.356 0.367 0.355 0.340 0.353 0.341
P̂2(t) 0.266 0.272 0.265 0.259 0.265 0.264 0.257 0.265
P̂3(t) 0.127 0.125 0.136 0.127 0.131 0.139 0.135 0.134
P̂4(t) 0.050 0.054 0.058 0.060 0.064 0.062 0.061 0.060
P̂≥5(t) 0.022 0.026 0.028 0.031 0.032 0.038 0.040 0.041

We assume that originally the system was empty.
Let us remember that parameters µ0 and σ0 of distribution (30.4) and σ

(1)
0

and σ
(2)
0 are unknown but we have three samples of sizes r, n1, n2: interarrival

times, and service times of the first and the second servers. Let T < rM , r ≤
n1 ≤ n2. The complete sufficient statistics for the interarrival time distribution
(30.4) and data variant generation have been considered earlier. The complete
sufficient statistics for parameters of exponential distribution of server times
are the sums S(1) and S(2).

Our example corresponds to a general outline of Section 30.2. The random
process Y (t) is univariate and means the number of customers in the system
at the time moment t. The probabilities of interest {Pj(t)} are expectations of
indicator functions {χj(t)} of events {Y (t) = j} : χj(t) = 1 if event {Y (t) = j}
takes place and χj(t) = 0 otherwise.

As usual these expectations are estimated by simulation of a corresponding
queueing process. The received results are given in Table 30.2. They correspond
to the following input data: r = 30, n1 = 22, n2 = 22, ςmin = 0.5, Ξ = 20,
S(1) = 30, S(2) = 40, T = 15, B = 1000. According to the above, the presented
values are close to minimum variance unbiased estimates of {Pj(t)}.

Finally it is possible to conclude that the supposed approach effectively
applies to various models of queueing theory, reliability, inventory, insurance,
and so on for practical problem solving [see, e.g., Kopytov and Zhukovskaya
(2006)].



444 A. Andronov, E. Chepurin, and A. Hajiyev

References

1. Andronov, A., Zhukovskaya, C., and Chepurin, E. (2005). On application
of the sufficient empirical averaging method to systems simulation, In Pro-
ceedings of the 12th International Conference on Analytical and Stochastic
Modelling Technique and Applications, pp. 144–150, Riga, Latvia.

2. Chepurin, E. V. (1994). The statistical methods in theory of reliability,
Obozrenije Prikladnoj i Promishlennoj Matematiki, Ser. Verojatnost i Statis-
tika, 1, 279–330. (In Russian)

3. Chepurin, E. V. (1995). The statistical analysis of the Gauss data based on
the sufficient empirical averaging method, In Proceedings of the Russian Uni-
versity of People’s Friendship. Series Applied Mathematics and Informatics,
pp. 112–125. (In Russian)

4. Chepurin, E. V. (1999). On analytic-computer methods of statistical infer-
ences of small size data samples, In Proceedings of the International Con-
ference Probabilistic Analysis of Rare Events, (Eds., V. V. Kalashnikov and
A. M. Andronov), pp. 180–194, Riga Aviation University, Riga, Latvia.

5. Engen, S. and Lillegard, M. (1997). Stochastic simulations conditioned of
sufficient statistics, Biometrica, 84, 235–240.

6. Gentle, J. E. (2002). Elements of Computational Statistics, Springer-Verlag,
New York.

7. Grandell, J. (1991). Aspects of Risk Theory, Springer-Verlag, New York.

8. Kopytov, E. and Zhukovskaya, C. (2006). Application of the sufficient em-
pirical averaging method for inventory control problem solving, In Proceed-
ing of the International Conference Statistical Methods for Biomedical and
Technical Systems (Ed., F. Vonta), pp. 340–346, Limassol, Cyprus.

9. Lehmann, E. L. (1983). Theory of Point Estimation, John Wiley & Sons,
New York.



PART VII

Designs



31

Adaptive Designs for Group Sequential Clinical

Survival Experiments

Eric V. Slud

Statistics Program, University of Maryland, College Park, MD, USA

Abstract: Randomized two-group clinical survival experiments now commonly
allow at least one interim look, enabling possible early stopping in order to meet
ethical concerns. Various authors have also studied the possibility of interim
design modifications to adapt to unexpected accrual or control-group mortality
rates. This chapter formulates trial design as a decision-theoretic problem with
a finite number of interim looks and a large class of loss functions, in the setting
of a statistic with the asymptotic behavior of Brownian motion with drift, as
in Leifer and Slud (2002). A more general action space can specify adaptive
designs allowing the option of continued follow-up without new accrual past
an interim look, as was introduced in Koutsoukos et al. (1998). An optimal
two-look design is displayed in the first formulation, and a seven-look design in
the second, and both types of adaptation are given a unified decision-theoretic
motivation.

Keywords and Phrases: Accrual stopping, Bayesian decision theory, nonran-
domized decision rule, loss function, nuisance parameter, stopping boundary

31.1 Introduction

Group sequential designs are designs in which experimental data on two-group
treatment comparisons can be scrutinized at a finite number of interim look-
times with the possibility of early termination of the experiment in such a way
as to maintain a prescribed experimentwise significance level and power against
a fixed alternative. Such designs first appeared for two-group randomized clin-
ical trials with normally distributed quantitative responses in the mid-1960s.
By the late 1970s, methods had appeared which took explicit account of the
staggered entry, follow-up time, and delayed response of clinical trials with

447
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survival-time endpoints. By the early 1980s, such methods were firmly estab-
lished theoretically. Tsiatis (1982) showed that the repeatedly computed log-
rank–numerator statistic at a series of fixed scheduled interim look-times would
under standard conditions behave in large two-sample trials as a sequence of
independent-increment Gaussian variables, with mean 0 under the null hypoth-
esis H0 of no treatment effect and with steady positive drift proportional to
variance under local proportional-hazard alternatives. As the theory developed,
look-times were allowed to be random (stopping-times for the observed infor-
mation process), and additional classes of statistics including weighted log-rank
statistics (with weight functions also estimated from pooled two-group Kaplan–
Meier survival function estimators) were justified to be usable in the same way
as the log-rank, although the log-rank is the heavy practical favorite.

Slud and Wei (1982) showed how variance increments could be progressively
estimated while allowing early stopping by means of an α -spending schedule.
In a (one-sided) trial of sample size n, with the statistic Sk/

√
n calculated at

the kth look-time tk, a threshold or boundary bk is used to stop the trial early
with rejection of H0 if Sk/

√
n ≥ bk, where bk is found inductively, in terms of

the estimated large-sample variance Vk of Sk/
√

n, to satisfy

αk ≈ Pr(Sj/
√

n < bj for 1 ≤ j < k, Sk/
√

n ≥ bk), (31.1)

where the values α1, . . . , αK are prescribed and sum to the experimentwise
significance level α. The times at which interim looks might be taken can be
allowed to be random stopping-times, for example, to be level-crossing times
for the proportional-hazard parameter’s information, which is proportional to
the log-rank variance and thus also to the number of observed failure events.
Moreover, the choice of the specific value αk need not be made until the k−1th
look-time [Lan and DeMets (1983)]. The asymptotic theory underlying this
extension was given by Slud (1984) and other authors, establishing that under
local (contiguous) proportional-hazard alternatives the repeatedly computed
log-rank statistic considered as a stochastic process behaves asymptotically in
large samples as a time-changed Brownian motion with drift. The history of
these developments from the viewpoint of trial design, along with practical
recommendations on the choice among early-stopping designs as of 1984, can
be found in Fleming et al. (1984). The context of these results in the setting
of repeated significance testing within exponential families can be found in
Siegmund (1985).

Later progress on the specification of early-stopping boundaries included
generalizations beyond our scope here (more general statistics, adjustment for
covariates, modified formulations of repeated significance testing, etc.), but also
developed optimization methods. Tsiatis and co-authors restricted attention to
parametrically restricted families of boundaries and computed the ones that
minimized expected trial duration over boundaries with prescribed size and
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average power against specified alternatives, whereas Jennison (1987) undertook
a brute-force (grid-search) computation of optimal boundaries in the sense of
minimizing a weighted linear combination of type-II error probabilities and
expected sample sizes over specified alternatives, for given significance level.

Clinical investigators often find at the times of interim looks in clinical trials
that planned accrual goals have not been met, or that due to noncompliance,
lower than expected tolerated doses, or better survival than expected in the
control group, power will be less than planned for against clinically meaningful
alternatives. For this and other, ethical, reasons, there has been a perceived need
for adaptive (group-) sequential trial designs accommodating flexibility in ac-
crual rates through the spacing of look-times. However, the designs must explic-
itly take account of such flexibility: Proschan et al. (1992) nicely illustrate the
adverse effects on the significance level of modifying look-time definitions and
other trial assumptions in midtrial. Various authors [Bauer and Köhne (1994),
Proschan and Hunsberger (1995), and others cited in Burman and Sonesson
(2006)] have proposed methods of accommodating design changes (usually in
sample size) after an interim look, resulting in procedures with valid experimen-
twise significance levels based on weighted combinations of statistic increments
calculated up to and after the design changes. But there is active controversy
[see Burman and Sonesson (2006), with discussion] concerning whether such
adaptations are a good idea, or are even ethical, considering the loss of power
they entail against the originally envisioned alternatives.

The accelerating pace of biomedical discovery due to the genomics revolu-
tion, discussed by Sen (2008) in this volume, highlights the dramatic oppor-
tunity costs from protracted clinical trials and from incorrect decisions based
on them. A principled statistical response should take account of those costs,
as well as the important ethical costs that arise from clinical trial errors. The
approach followed in this chapter is decision-theoretic. We consider clinical trial
designs which “adapt” to interim results subject to experimentwise type I and II
error probability constraints, in such a way as to minimize the expected values
of realistically structured loss functions.

This chapter has three objectives: first, in Section 31.2, to describe the
Bayesian decision problem of Leifer and Slud (2002) incorporating multi-look
trials with general loss components which penalize trial length and incorrect
decisions as a function of the treatment-group difference parameter ϑ; second
(Section 31.3), to describe how optimal decision procedures require later look-
times and stopping-boundaries to depend on earlier observed statistic values,
especially in the two-look case; and third, to describe a decision problem (in
Section 31.2.2) motivating new design elements including those of Koutsoukos
et al. (1998) described in Section 31.4, allowing group-sequential trials an option
to stop accrual with or without early stopping, while maintaining experiment-
wise significance level.
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31.2 Decision-Theoretic Formulation

Many theoretical results [Tsiatis (1982), Slud (1984), and Siegmund (1985)]
justify that the sequence of two-sample (weighted-)log-rank statistics calculated
at interim looks of a multi-look staggered-accrual clinical trial with survival
endpoints under local proportional-hazard alternatives (and also more general
classes of alternatives) is asymptotically equivalent in large datasets to sampled
values of a Wiener process with drift, X(t) = W (t)+ϑ t. Here ϑ is an unknown
real parameter quantifying positive or negative relative prognosis for treatment-
versus control-group patients in the trial. The natural timescale for estimation of
the treatment difference parameter ϑ is information time [Siegmund (1985), and
Andersen et al. (1993)], that is, the information about ϑ in the data up to time
t. Increments of time are transformed by this statistical timescale, regarded as
a function of nuisance parameters under near-null alternatives (i.e., those with
ϑ ≈ 0). The nuisance parameters—all statistical parameters of the accrual,
censoring, and survival mechanisms of the trial other than ϑ—are assumed to
be consistently estimated at times of interim analysis of the data.

The objective of the trial is inference on ϑ to distinguish the null hypothesis
ϑ ≤ 0 against alternatives with ϑ > 0: process data X(τj) may be observed
(only) at an increasing sequence of discrete times τj, 1 ≤ j ≤ K, with τj allowed
to be determined from (τi,X(τi), i < j) (and, possibly, auxiliary randomizations
independent of the data). The upper-bound K on the number of look-times is
generally nonrandom and fixed, and the trial ends at the first time τν for which
either ν = K or τν+1 = τν , at which time a binary decision χ ∈ {0, 1} is
made as a function of all observable data (τi, X(τi), i ≤ ν). When actions
(τi, 1 ≤ i ≤ ν) and χ have been taken, losses are measured in terms of τν = t
and χ = z ∈ {0, 1}, when ϑ is the correct alternative (drift) parameter assumed
distributed according to a prior distribution π on R, by

L(t, z, ϑ) =

{
c1(t, ϑ) + z c2(ϑ) + (1− z) c3(t, ϑ), if ϑ ≤ 0 ,

c1(t, ϑ) + (1− z) c2(ϑ) + z c3(t, ϑ), if ϑ > 0 .
(31.2)

Here z denotes the indicator of rejection of the null hypothesis H0 : ϑ ≤ 0. The
functions c1, c2, and c3 represent, respectively, the costs of trial duration, of
incorrect terminal decision, and of correct, but late, terminal decision. These
costs are general enough to apply to realistic clinical trial scenarios, both from
the point of view of public health and of the drug developer. The interim looks
are not assigned direct costs, because data-monitoring committees do in any
case monitor the interim results of clinical trials for treatment-safety issues and
ethically driven early stopping.
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The cost functions are assumed to be π-integrable for each (t, z), nonde-
creasing and piecewise smooth in t, and to satisfy for all (t, z, ϑ):

c1(0, ϑ) = c3(0, ϑ) = 0, c3(t, ϑ) < c2(ϑ) . (31.3)

In addition, π is assumed to place positive mass in small neighborhoods of ϑ = 0
and ϑ = ϑ1 > 0, and c1(·, ϑ) is assumed to grow to ∞ for π-almost all ϑ.

In this setting, the decision problem is to choose decision rules

δ =
(
{τj}Kj=1, ν, χ

)
(31.4)

to minimize the expected loss or risk function

r(δ) =
∫

Eϑ(L(τν , χ, ϑ) ) dπ(ϑ) (31.5)

subject for fixed α, β > 0 to the type I and II error probability constraints

Eϑ=0(χ) ≤ α, Eϑ=ϑ1(1− χ) ≤ β, (31.6)

where ϑ1 > 0 is a fixed alternative deemed to be sufficiently distant from the
null hypothesis value ϑ = 0 to be a medically significant treatment difference.

This decision-theoretic problem is the one defined by Leifer and Slud (2002).
It can be analyzed, standardly, in terms of Lagrange multipliers (Berger 1985)
so that the constraints (31.6) are omitted and the loss-function is replaced [after
a reduction showing there is no loss of generality in assuming π0 ≡ π({0}) > 0
and π1 ≡ π({ϑ1}) > 0] by

Lλ0,λ1(t, z, ϑ) ≡ L(t, z, ϑ) +
λ0

π0
I[ϑ=0] +

λ1

π1
I[ϑ=ϑ1]. (31.7)

Up to this point, “adaptivity” of the clinical trial design is embodied in
the flexibility of actions ({τj}Kj=1, χ): because data are re-examined at all of
the look-times τ1, . . . , τν , especially good or bad performance of the treatment
group can lead to early decision (rejection or acceptance of H0 with ν < K),
and nuisance parameters such as accrual rates and control group survival distri-
bution can be re-estimated. Flexibility of clinical trial design has two aspects:
first, that action–space coordinates permit decision at many possible times, but
second, that investigators’ actions defining the times of later interim looks at
the data may depend functionally on aspects of the nuisance parameters that
do not directly appear in the reward or cost functions driving the trial, but
which do affect expected costs.

Although the interim look-times {τi, 1 ≤ i ≤ K} that are designed into a
clinical trial add logistical complexity, they can be justified not only because of
the economy in expected sample size and other costs common to all sequential
methods [Siegmund (1985)], but also because of the range of surprises—lower
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than expected accrual, or higher than expected treatment-group survival, re-
flected in a lower than expected rate of increase of statistical information about
ϑ as a function of calendar time—under which the trial can still achieve desired
experimentwise type I and type II error probabilities.

This last feature of group-sequential trials is underappreciated. In the stark-
est comparison, that between sequential and fixed-sample trials, the group-
sequential trial is not only more economical on average under expected rates
of accrual, but more robust in maintaining acceptable power under a variety of
erratic accrual rates and other unexpected trial characteristics leading to slow
increase of information with calendar time. We formulate the issue mathemat-
ically in the following brief section.

31.2.1 Inference in a random-information environment

Again let the action–space consist of elements ({τj}Kj=1, χ)—stopping-times and
final binary decision—based upon data available only at times τj from a Wiener
process with drift X(t) = W (A(t)) + ϑA(t), conditionally given the variance
function A(t). However, we now view A(·) itself as a smoothly increasing random
function of time independent of W (·), with A(t) observable at time t, and with
a known or conjectured probability law µA but with the trajectory definitely
not known in advance. Note that the conditional statistical information about
ϑ given A(t), based on any subset of the data history (X(s), s ≤ t) which
includes the observation X(t), coincides with A(t). This is our idealized model
of all of the surprises in a clinical trial which may have an impact on statistical
information about ϑ. The observability of A(t) at look-time t corresponds to
the large-sample estimability of nuisance parameters.

Assume that the loss-function for the inference problem is exactly as given
in (31.2)–(31.3) and either (31.6) or (31.7), but even a very simple cost struc-
ture such as c1(t, ϑ) = t, c2(ϑ) = 0 = c3(t, ϑ) can be used to convey the main
idea. The prior probability law π(·) for ϑ must now be coupled with a proba-
bility law µA for A(·) regarded as an independent “parameter” of the decision
problem. Then risks (31.5) must be replaced by expectations taken jointly over
(ϑ,A(·)) with respect to the product prior measure π × µA, in order to define
the problem anew as a Bayesian decision problem, and again the constraints
(31.6) are replaced by Lagrange multipliers when L in (31.5) is replaced by
(31.7). A slightly different form of the decision-theoretic problem would aver-
age in Bayesian fashion over dπ(ϑ) but treat unknown A(·) in minimax fashion,
that is, would replace (31.5) by its maximum or supremum over functions A(·)
in some class.

The point of this section is that an essentially nondeterministic and unknown
A(·) makes even an otherwise “fixed-sample” procedure—one with K = 1 and
τ1 deterministic—depend on an uncertain amount of statistical information.
Evidently a group-sequential procedure that makes use of one or more looks at
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the data to estimate features of a very uncertain A(·) can be found which will
outperform such a fixed-sample procedure: the logistical costs of interim looks
should be borne in order that adequate power be available under an ensemble of
possible trajectories for A(·). The desirability of a multi-look procedure would
derive from the requirement for robustness against alternative models A(·), even
if we would have been satisfied, scientifically and ethically, with a fixed-sample
one-look procedure under the common assumptions of uniform accrual and
approximately constant withdrawal rates and control-group failure rate often
used to derive the power of clinical trials.

Intuitively speaking, the observability of (A(s), s ≤ t) at look-times t will
force optimal Bayes decision procedures to allow more interim look-times than
they would under the same cost structures with deterministic A(·). Finding
simple examples in which this can be proved is an attractive current research
problem. In any case, it is intuitively clear that in problems with random A(·),
independent of ϑ and with histories observable at interim look-times, all optimal
Bayes decisions must necessarily, under mild restrictions on µA, have number ν
of interim looks equal to the upper bound K with positive probability. [If not, we
could reason by contradiction and find a procedure that alters an existing deci-
sion rule δ by including an interim look before τ1, thereby narrowing the class of
possible A(·) trajectories, and later employs this information to improve on δ.]

31.2.2 Extended actions affecting information growth

We can imagine other sorts of violations of standard clinical trial assumptions
that still other aspects of design flexibility might overcome. For example, there
might be time trends in patient prognosis, occurring in random fashion but
with overall effect estimable at interim look-times. This kind of violation of
the usual iid assumptions about accrued patients will again have the effect
of randomizing the information process A(t): if these trends have no effect on
treatment difference, then nothing new is needed beyond the formulation of the
previous section. However, we can also imagine that at interim looks, a pattern
of nonconstant treatment-to-control group hazard ratios might begin to emerge,
such as an indication of treatment group differences occurring only at later
times-on-test. In that case, a new degree of design freedom might be desirable: to
prolong follow-up of already accrued patients without allowing any new patients
to be accrued. Here again the motivation might be not primarily power under
standard conditions but robustness of trial size and power characteristics under
nonstandard ones.

One apparent obstacle to the exercise of this kind of design freedom is the
need to show how a group-sequential design might allow an option to terminate
accrual but extend follow-up, while maintaining a fixed experimentwise signifi-
cance level. However, the design of Koutsoukos et al. (1998) described below in
Section 31.4 does show this, and therefore serves as a “proof of concept.”
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31.3 Two-Look Optimal Decision Rules

Leifer and Slud (2002, revised 2007) show that optimal Bayesian decision rules
for (31.7), in the standard setting of Section 31.2 without randomized informa-
tion function or observable data other than X, have the following properties.

1. There is a finite, nonrandom constant t∗ > 0, which may be made uniform
with respect to compact sets of pairs (λ0, λ1) ∈ R2

+, such that τν ≤ t∗.

2. For each triple (α, β, r) lying on the (closed) lower boundary of the three-
dimensional convex set of triples(

Eϑ=0(χ), Eϑ=ϑ1(χ),
∫

Eϑ(L(τν , χ, ϑ))π(dϑ)
)

(31.8)

of randomized decision rules, there exists a possibly randomized decision
rule for which (α, β, r) is exactly equal to the triple (31.8).

3. Every minimum risk, possibly randomized, decision rule for the decision
problem with the loss-function (31.7) has a terminal decision χ which is a.s.
equal to a nonrandom function of the form χ = I[X(τν)≥w(τν)], with w(·)
uniquely defined implicitly through the equation∫

a1(y, λ0, λ1, ϑ) eϑw(y)−ϑ2y/2 π(dϑ) = 0,

where

a1(t, λ0, λ1, ϑ) = (c2(ϑ)− c3(t, ϑ)) (2I[ϑ≤0] − 1) +
λ0

π0
I[ϑ=0] −

λ1

π1
I[ϑ=ϑ1] .

4. Generically for the loss-function (31.7), that is, after a small random pertur-
bation of the cost-function c1 preserving the assumptions, for almost every
pair (λ0, λ1), the optimal decision rule minimizing the Bayesian risk for
loss function (31.7) is unique and nonrandomized and can be computed by
backward induction.

We provide an example of such an optimized nonrandomized Bayes two-look
decision rule, taken from Leifer and Slud (2002). Consider α = .025, β = .1,
and ϑ1 = log(1.5), with time scaled so that a fixed-sample (K = 1) trial with
this size and type II error probability has duration τ1 = 1. We exhibit an
optimal rule, with K = 2, for the discrete prior and loss-function defined (after
taking c3(t, ϑ) ≡ 0) through the following table:

eϑ = Hazard Ratio 0.9 1.0 1.25 1.5 1.75
1.51 · π({ϑ}) 0.2 1.0 0.2 0.1 0.01
c1(t, ϑ) t t t t t
c2(ϑ) 200 100 50 250 500
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Total Trial Time

normalized first-look statistic U1

3210
0.4

0.6

0.8

1

0.56 2.56

Figure 31.1. Second look-time τ2 in example of Section 31.3, for fixed τ1 = 0.42,
as a function of normalized statistic U1 = X(τ1)/

√
τ1.

The optimized (nonrandomized) procedure has three elements: an initial look-
time at τ1 = .42, a second look-time τ2(U1) defined as a function of U1 ≡
X(τ1)/

√
τ1 and displayed in Figure 31.1, and a final rejection boundary b(U1)

displayed in Figure 31.2 defining the rejection indicator as χ = I[X(τ2)/
√

τ2 ≥ b(U1)].
These functions do completely describe the group-sequential procedure: the
time-τ1 rejection and acceptance boundaries are determined in Figure 31.1
through the observation that termination with ν = 1 occurs whenever τ2 = τ1,
that is, when U1 < 0.56 or U1 > 2.56, and the time-τ1 decision (rejection-
indicator) χ is 1 on [U1 > 2.56] and 0 on [U1 < 0.56].

31.4 Modified Trial Designs with Accrual-Stopping

We conclude by describing a clinical trial design of Koutsoukos et al. (1998)
extending that of Section 31.2, which allows the flexibility of modifying accrual
without stopping follow-up, effectively reducing, but not to 0, the rate at which
information about the survival difference parameter ϑ unfolds. (As was men-
tioned in our motivating discussion in Section 31.2.2, the continuing increment
of information relates primarily to large times on test, which may be particularly
valuable information under some circumstances.) The notation concerning the
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Second Look Critical Value

normalized first-look statistic U1

1.0

1.75

1.8

1.85

1.9

1.95

2

2.560.56
1.5 2.0

Figure 31.2. Rejection boundary at τ2 as a function of U1 = X(τ1)/
√

τ1 in the
optimized two-look procedure of Section 31.3.

repeatedly calculated statistic Sj/
√

n with (estimated) variance Vj is as in the
introduction. In this design, the look-times τj = j are evenly spaced, because
at most one time-unit of further follow-up is allowed when accrual is stopped,
and at the end of such a follow-up period the trial is stopped. Immediate termi-
nation of the trial, respectively, with acceptance or rejection, is determined by
extreme boundaries CU,j and CL,j of fixed shape (here, CU,j = CU is constant
and CL,j of the form CL + c0Vj for suitably chosen constants CL, c0); but ac-
crual is also stopped when Sj/

√
n crosses a less extreme boundary CA,j < CU

(or in any case, when j = K − 1), and rejection or acceptance is determined at
the look-time following accrual-termination by a different boundary CR,j .

The trial is stopped outright at j, with rejection, if Sj/
√

n ≥ CU ,
and with acceptance of H0, if Sj/

√
n ≤ CL,j.

The accrual (i.e., entry) of new patients is disallowed at time j if
CA,j ≤ Sj/

√
n < CU , in which case the trial is stopped at time j+1,

with final rejection if Sj+1/
√

n ≥ CR,j+1 and acceptance otherwise.

Boundaries of this type can be computed to have fixed size and power
against a fixed alternative, and the free parameters in CU , CA,j, CR,j+1 can
be optimized with respect to a loss function containing costs for wrong deci-
sions and trial durations under a range of alternatives weighted by a prior π.
Details of calculation of such optimized boundaries can be found in Koutsoukos
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et al. (1998). An example of the resulting boundaries, in a trial with exper-
imentwise significance level α = 0.025 and power 0.8 against a hazard-ratio
alternative of 1.4, is exhibited in Figures 31.3 and 31.4, which are taken from
slides prepared by L. Rubinstein. In these figures, the boundaries plotted are
those corresponding to the normalized statistics Sj/

√
nVj, and the variances

Figure 31.3. Immediate rejection and acceptance boundaries, respectively,
CU/
√

Vj (plotted with filled dots) and CL,j/
√

Vj (filled triangles) for nor-
malized log-rank statistics Sj/

√
nVj in a particular case of the Koutsoukos

et al. (1998) boundaries described in Section 31.4.

Figure 31.4. Accrual-stopping and final rejection boundaries, respectively,
CA,j/

√
Vj (plotted with filled squares) and CR,j/

√
Vj (filled diamonds) for

normalized log-rank statistics Sj/
√

nVj in the same example of the Koutsoukos
et al. (1998) boundaries as in Figure 31.3.
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Vj for log-rank statistics Sj/
√

n were calculated under an assumption of con-
stant failure rates for a two-armed clinical trial with patient arrivals following
a homogeneous Poisson process.
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2. Bauer, P. and Köhne, K. (1994). Evaluation of experiments with adaptive
interim analyses, Biometrics, 50, 1029–1041.

3. Berger, J. (1985). Statistical Decision Theory and Bayesian Analysis,
Springer-Verlag, New York.

4. Burman, C.-F. and Sonesson, C. (2006). Are flexible designs sound?, Bio-
metrics, 62, 664–669, including discussion.

5. Fleming, T., Harrington, D., and O’Brien, P. (1984). Designs for group
sequential tests, Controlled Clinical Trials, 5, 348–361.

6. Hald, A. (1975). Optimum double sampling tests of given strength I: The
normal distribution, Journal of the American Statistical Association, 70,
451–456.

7. Jennison, C. (1987). Efficient group sequential tests with unpredictable
group sizes, Biometrika, 77, 577–513.

8. Koutsoukos, A., Rubinstein, L., and Slud, E. (1998). Early accrual-stopping
sequential designs for clinical trials, US National Cancer Institute, preprint.

9. Lan, G. and DeMets, D. (1983). Discrete sequential boundaries for clinical
trials, Biometrika, 70, 659–663.

10. Leifer, E. and Slud, E. (2002, rev. 2007). Optimal time-adaptive repeated
significance tests, preprint.

11. Liu, Q., Proschan, M., and Pledger, G. (2002). A unified theory of two-
stage adaptive designs, Journal of the American Statistical Association,
97, 1034–1041.

12. Proschan, M. and Hunsberger, S. (1995). Designed extension of studies
based on conditional power, Biometrics, 51, 1315–1324.



Adaptive Clinical Trials 459

13. Proschan, M., Follmann, D., and Waclawiw, M. (1992). Effects of assump-
tion violations on Type I error rate in group sequential monitoring, Bio-
metrics, 48, 1131–1144.

14. Sen, P. K. (2008). Clinical trials and the genomic evolution: some statis-
tical perspectives. In Statistical Models and Methods for Biomedical and
Technical Systems, F. Vonta, M. Nikulin, N. Limnios and C. Huber eds.,
537–551, Birkhäuser, Boston.
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Abstract: Repeated measurement designs, with t = 2 treatments, n (exper-
imental) units, and p = 2 periods are examined. The parameters of interest
are the difference of direct treatment effects and the difference of residual ef-
fects. Discrete optimal designs, that minimize the variance of the parameters
of interest, are given for all values of n. D-optimal designs for the difference of
direct as well as for the difference of residual effects are also given. The model
examined is with uncorrelated observations following a continuous distribution
with constant variance. Optimal designs are also derived when treatment-period
interactions are included in the model.

Keywords and Phrases: Direct effects, residual effects, treatment-period in-
teraction, projection matrix

32.1 Introduction

In repeated measurement or crossover or changeover designs, every unit is ex-
posed, in every one of p consecutive periods, to one out of t treatments; we
keep the term repeated measurement designs. Let RMD(t, n, p) denote this
class of repeated measurement designs. Here we restrict our attention to the
case t = 2 and p = 2. Hedayat and Zhao (1990) examine optimal two-period,
t-treatment designs and prove the existence of universal optimality of direct
treatment effects. Mathews (1987, 1990) and Kushner (1997) investigate opti-
mal two-treatment designs and give some optimal designs for three and four
periods in the presence of autocorrelated errors. Carriere and Reinsel (1992,
1993) and Carriere and Huang (2000) study a nearly optimal four-sequence
two-period design and investigate the effect of correlation between measure-
ments within subjects. Many workers, for example, Grizzle (1965), focused on
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the AB,BA design in which patients effects are random. Hedayat and Yang
(2003, 2004), Cheng and Wu (1980), Kunert (1983, 1984), Kunert and Stufken
(2002), Laska and Meisner (1985), and Kushner (1997, 1998) have studied uni-
versally optimal designs. The review paper by Stufken (1996) and the revised
edition of Jones and Kenward (2003) give valuable information and many ref-
erences on the subject. For applications in clinical research see Senn (1993).

32.2 Sequence Enumeration and the Model

32.2.1 Enumeration of sequences

With two treatments A and B there are 2p treatment sequences. A very con-
venient way of enumerating them is to use the binary system, setting 0 for A
and 1 for B. Then the enumeration is 0, . . . , 2p − 1. So in five periods to the
sequence BABBA corresponds the number 13 because 1 · 20 + 0 · 21 + 1 · 22 +
1 · 23 + 0 · 24 = 13. In two periods we have the one-to-one correspondence
AA ↔ 0, BA ↔ 1, AB ↔ 2, BB ↔ 3. Let ui, i = 0, 1, . . . , 2p − 1, denote the
number of units allocated to the ith sequence. In this setting a design d is de-
fined if the sequences contained in d and the number of units allocated to each
sequence are given. Hence in four periods, the design d, that consists of the
sequences: 12 ↔ AABB with five units and 10 ↔ ABAB with four units, is
denoted by d = {u12 = 5, u10 = 4}.

32.2.2 The model

The model, without treatment-period interaction, is:

Yijk = µ + τij + πj + δi,j−1 + γik + eijk, (32.1)

i = 0, 1, . . . , 2p− 1, j = 1, 2, . . . , p, k = 1, 2, . . . , ni, δi,0 = 0 where i refers to the
sequence employed, j to the period, and k to the unit within the ith sequence.
τij ∈ {τA, τB} is the direct effect of the treatment applied in the jth period of
the ith sequence, δi,j−1 ∈ {δA, δB} is the residual effect of the treatment applied
in the (j−1)th period of the ith sequence, πj is the jth period effect, and γik is
the effect of the kth unit of the ith sequence. The errors are independent within
each sequence and among sequences and have 0 mean and constant variance σ2;
eijk has a continuous distribution. It does not make any difference, as regards
the optimality of designs, if instead of γik we set γi in the model as the effect
of the ith sequence, which is proved in Theorem 32.2.2.

The model (32.1) in vector form is Y = Xb + e, where Y is (pn) × 1, the
design matrix X is (pn) × s, b is s × 1, e is the (pn) × 1 vector, and s is the
number of unknown parameters. From now on, for convenience, we use the same
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symbol for the parameter and the corresponding vector of the design matrix in
(32.1); from the context it is clear what is meant each time.

Theorem 32.2.1 In the model (32.1) the parameters τA, τB , δA, δB are not es-
timable. Also the parameters (τA + τB), (δA + δB) are not estimable.

Proof. It is known that if some vectors in the design matrix are linearly
dependent, then the corresponding parameters are not estimable. Observe that
the vectors π1, δA, δB are linearly dependent because π1 + δA + δB = µ = 1pn,
hence none of these parameters is estimable. Similarly τA + τB = 1pn, so the
parameters τA, τB , (τA + τB) are not estimable.

If we are interested in some and not in all the parameters, then we write the
vector of parameters b = (b′1, b′2)′ where b1 are the r parameters of interest and
X = (X1|X2), then Xb = X1b1 + X2b2. The following relation gives the least
squares estimate of the parameter vector b1,

X ′
1(Ipn − P (X2))X1b̂1 = X ′

1(Ipn − P (X2))Y, (32.2)

where X1 is (pn) × r, P (X2) = X2(X ′
2X2)−X ′

2 is the (pn) × (pn) projection
matrix onto the linear space of the columns of X2, and the variance matrix of
the estimated parameters is

var(b̂1) = σ2(X ′
1(Ipn − P (X2))X1)−1 = σ2Q−1, (32.3)

where Q = X ′
1(Ipn − P (X2))X1. In the case of one parameter Q is the square

of the distance of X1 from the linear space L(X2) of the columns of X2.

32.2.3 Calculation of Q

The difficulty in calculating Q is the computation of P (X2) and this is done in
two steps. First reparameterise the model and second get rid of the nuisance
parameters, that is, the sequence effects γ0, γ1, . . . , γm, m = 2p − 1.

Reparameterising we end up with the p + 1 parameters (τA − τB), (δA −
δB)/2, π̃1, . . . , π̃p−1 and the 2p−1 = m nuisance parameters γ̃0, . . . , γ̃m, with cor-
responding vectors in the design matrix (τA, (δA−δB), π1, . . . , πp−1, γ0, . . . , γm).

To get rid of the nuisance parameters γ̃0, . . . , γ̃m we write X2 = (Z|W ),
where X1 contains r vectors, corresponding to the r parameters of interest,
the (np) × m matrix Z contains the vectors γ0, . . . , γm and W contains the
remaining p + 1− r vectors. The p + 1 vectors are (τA, (δA − δB), π1, . . . , πp−1).

To calculate P (X2) use the form of the generalized inverse of a block matrix
given in Searle (1971, p. 27). An equivalent form was given by Kunert (1984);
that is,

P (X2) = P (Z) + P ((I − P (Z))W )⇔ pr([Z|W ]) = pr(Z) + pr(pr⊥(Z)W ).
(32.4)
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The (np) × r matrix X1 is written X ′
1 = {(1u0 ⊗ X10)′ · · · (1um ⊗ X1m)′},

where X1i is p × r and ⊗ is the Kronecker product. The (np) × m matrix
Z is written Z ′ = {(Z1 ⊗ (1u0 ⊗ 1p))′ · · · (Zm+1 ⊗ (1um ⊗ 1p))′}, where Z1 =
(1, 0, . . . , 0), . . . , Zm = (0, . . . , 0, 1) are 1×(m+1). The (np)×(p+1−r) matrix
W is written W ′ = {(1u0⊗W20)′ · · · (1um⊗W2m)′}, where W2i is p× (p+1−r),
i = 0, 1, . . . ,m.

Lemma 32.2.1 If X1, Z,W are as given above, then

Q = X ′
1(Ipn − P (X2))X1 = (R− q′M−q)/p (32.5)

R =
m∑

i=0

ui{pX ′
1iX1i − (X ′

1i1p)(1′pX1i)} (32.6)

q′ =
m∑

i=0

ui{pX ′
1iW2i − (X ′

1i1p)(1′pW2i)} (32.7)

M =
m∑

i=0

ui{pW ′
2iW2i − (W ′

2i1p)(1′pW2i)}. (32.8)

Proof. Q = (X1)′(Ipn−P (X2))X1 and X2 = (Z|W ), where Z = (np)x(m+1);
then from (32.4) we have P (X2) = P (Z) + P ((Ipn − P (Z))W ) and then Q =
(X1)′(Ipn − P (Z))X1 − q′M−q. P (Z) is easily computed,

R/p = (X1)′(Ipn − P (Z))X1, (X1)′(Ipn)X1 =
m∑

i=0

ui(X1i)′X1i,

(X1)′P (Z)X1 =
m∑

i=0

ui((X1i)′1p)((1p)′X1i)/p,

q′/p = (X1)′(Ipn − P (Z))W =
m∑

i=0

ui{p(X1i)′W2i − ((X1i)′1p)((1p)′W2i)}/p,

M/p = W ′(Ipn − P (Z))W =
m∑

i=0

ui{p(W2i)′W2i − ((W2i)′1p)((1p)′W2i)}/p.

Remark 32.2.1 (i) M is nonnegative definite as is clear from (32.4).
(ii) By taking the dual design (i.e., interchanging A and B in all the se-

quences of the design), the values of R, q,M remain invariant because ui ↔
um−i, X1i ↔ X1,m−i, and W2i ↔ W2,m−i. Hence if a design is optimal so is its
dual design.
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Theorem 32.2.2 If in the model (32.1) the unit effect γik is replaced by the
sequence effect γi, then the values of Q,R, q,M given in (32.5)–(32.8) remain
invariant.

Proof. Replacing ui,X1i,W2i in the relations (32.5)–(32.8), with 1,X1ik =
X1i,W2ik = W2i and summing over k, we end up at the same results.

32.3 Optimal Designs for Two Periods

Here p = 2 and there exist the following four treatment sequences in two periods,
AA,BA,AB,BB. Let ui, i = 0, 1, 2, 3 be the number of units allocated respec-
tively to the four sequences. When u0 = u3 = 0, then (τA − τB), (δA − δB)/2
are not estimable because the vector τA + (δA − δB) + γ2 is a vector of 0s.
If u1 = u2 = 0, then τA − τB is not estimable because the vectors τA and
γ0 are identical. When u0 = u2 = 0 or u1 = u3 = 0, then (δA − δB)/2 is
nonestimable, because the vectors (δA − δB), π1, µ are linearly dependent, then
M is singular and taking its generalized inverse we find Q = u1(n − u1)/(2n),
Q = u2(n− u2)/(2n), respectively.

32.3.1 Optimal designs for direct effects

The (2n) × 1 vector X1 = τA corresponds to the parameter τ = (τA − τB) of
the difference of direct effects, then X10 = (1 1)′, X11 = (0 1)′, X12 = (1 0)′,
X13 = (0 0)′.

Also the (2n) × 2 matrix W contains the vectors π1, (δA − δB) associated
with the parameters π1, (δA − δB)/2. The first column of W is the (2n) × 1
vector ((1 0), (1 0), . . . , (1 0))′ and the second column corresponds to (δA− δB).
Hence W20 = (0 1)′, W21 = (0 − 1)′, W22 = (0 1)′, and W23 = (0 − 1)′.

From (32.6)–(32.8) we obtain R = u1 + u2 = n − (u0 + u3), q′ = (q1, q2) =
{(u1 − u2), (u1 + u2)}, M = mij, i, j = 1, 2, m11 = m22 = n, m12 = m21 =
−(u0 − u1 + u2 − u3), and from (32.5) obtain

Q = {(u0u2)/(u0 + u2) + (u1u3)/(u1 + u3)}/2. (32.9)

The maximum value of Q is denoted by Q∗.

Theorem 32.3.1 The optimal design for estimating the difference of direct
effects is:

(a) n even: u0 = u2 = k, u1 = u3 = (n− 2k)/2, k = 0, 1, . . . , n/2 with

var(τ̂A − τ̂B) = σ2(Q∗)−1 = σ2(8/n).
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(b) n odd: |u0 − u2| = 1, u0 + u2 = n, u1 = u3 = 0 or |u1 − u3| = 1,
u1 + u3 = n, u0 = u2 = 0 with

var(τ̂A − τ̂B) = σ2(Q∗)−1 = σ2(8n)/(n2 − 1).

Proof. Because u0, u1, u2, u3 are nonnegative integers with u0+u1+u2+u3 = n,
then (uiuj)/(ui+uj) ≤ (ui+uj)/4 if ui+uj is even, with equality if ui = uj and
(uiuj)/(ui + uj) ≤ ((ui + uj)/4)− (1/(ui + uj)) if ui + uj is odd, with equality
if |ui − uj| = 1, and the result follows.

If u0 = u2 = 0 or u1 = u3 = 0, M is singular and taking its generalized
inverse we find Q = u1(n− u1)/(2n), Q = u2(n− u2)/(2n), respectively. Hence
Q∗ = n/8 if n is even and Q∗ = (n/8) − 1/(8n) for n odd.

Hence by taking the sequences AA,AB in equal or almost equal numbers,
the design is optimal for estimating the difference of direct effects.

32.3.2 Optimal designs for residual effects

Here X1 is the (np) × 1 vector (δA − δB), thus X10 = (0 1)′, X11 = (0 − 1)′,
X12 = (0 1)′, X13 = (0 −1)′. Also the first column of W20,W21,W22,W23 is the
vector π1 = (1 0)′ and the second column, which corresponds to the vector τA,
is, respectively, (1 1)′, (0 1)′, (1 0)′, (0 0)′; then from (32.6)–(32.8) we obtain
R = n, q′ = (q1, q2) = (u0 − u1 + u2 − u3, u1 + u2), M = (mij), i, j = 1, 2,
m11 = n, m12 = m21 = −u1 + u2, m22 = u1 + u2, and then from (32.5)

Q = 2(u0u3(u1 + u2) + u1u2(u0 + u3))/((u0 + u3)(u1 + u2) + 4u1u2). (32.10)

Note that when u1 = u2 = 0, then M is singular and its generalized inverse has
the elements: m11 = 1/n, m12 = m21 = m22 = 0; then Q = 2u0u3/(u0 + u3).

Theorem 32.3.2 The optimal design for estimating (δA − δB)/2 is:
n even: u0 = u3 = n/2, u1 = u2 = 0, then var((δ̂A − δ̂B)/2) = σ2(Q∗)−1 =

σ2(2/n).
n odd: |u0 − u3| = 1, u0 + u3 = n, u1 = u2 = 0, var((δ̂A − δ̂B)/2) =

σ2(Q∗)−1 = σ2(2n)/(n2 − 1)).

Proof. If u1u2 > 0, then from (32.10), Q < 2u0u3/(u0 + u3). If u1u2 = 0, then
from (32.10), Q = 2u0u3/(u0 + u3). The maximum value Q∗ of Q is attained
when

n even: u0 = u3 = n/2, then Q∗ = n/2.
n odd: u0 + u3 = n, |u0 − u3| = 1; then Q∗ = (n2 − 1)/(2n).

From this theorem we conclude that the optimal design for estimating (δA−
δB)/2 is to take the sequences AA,BB with equal or almost equal number
of units. For estimating (δA − δB), the optimal design is the same but with
var(δ̂A − δ̂B) = 4 var((δ̂A − δ̂B)/2)
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32.3.3 Optimal designs for direct and residual effects

Theorem 32.3.3 If, in the model (32.1), we are estimating {(τA − τB), (δA −
δB)/2}, Q = (qij) is a 2× 2 matrix and the D optimal design, maximizing the
determinant |Q| of Q, is:

n = 0 mod 4, u0 = u1 = u2 = u3 = n/4, |Q∗| = max|Q| = n2/16,
n = 1 mod 4, u0 = (n + 3)/4, u1 = u2 = u3 = (n− 1)/4,

|Q∗| = (n− 1)2(n + 2)/(16n),
n = 2 mod 4, u0 = u1 = (n + 2)/4, u2 = u3 = (n− 2)/4,

|Q∗| = (n2 − 4)/16,
n = 3 mod 4, u0 = (n− 3)/4, u1 = u2 = u3 = (n + 1)/4,

|Q∗| = (n + 1)2(n− 2)/(16n).

Any permutation of u0, u1, u2, u3 gives also a D optimal design.

Proof. Here b1 = {(τA − τB), (δA − δB)/2} and var(b̂1) = σ2Q−1, where Q =
(qij) is a 2×2 matrix. In this case X1 = (τA, (δA− δB)) is a (2n)×2 matrix and
W = π1 is a (2n)×1 vector. From (32.5)–(32.8) find q11 = {(u1 +u2)(u0 +u3)+
4u1u2}/(2n), q12 = q21 = −(u0u1 + u2u3 + 2u1u2)/(2n), q22 = (u0 + u2)/(2n).

The D optimal design maximizes |Q| = (q11q22 − (q12)2); then |Q| =
(u0u1u2 + u0u1u3 + u0u2u3 + u1u2u3)/(4n). The maximum is attained if
u0, u1, u2, u3 are as near to each other as possible, hence we have the result.

Because the D optimal design remains invariant under a linear transforma-
tion of the parameters, the D optimal design for estimating {(τA−τB), (δA−δB)}
is the same with the design given in the above theorem.

Note that in the D optimal design the number of units, allocated to each one
of the sequences AA,AB,BA,BB, must be as near to each other as possible.

Theorem 32.3.4 If, in the model (32.1), we are interested in estimating θ =
(1 1)b1 = {(τA − τB) + (δA − δB)/2}, the optimal design is:

n = 0 mod 2, u0 = u1 = k, u2 = u3 = (n− 2k)/2 with varθ̂ = σ2(8/n).
n = 1 mod 2, |u0− u1| = 1, u0 + u1 = n or |u2− u3| = 1, u2 + u3 = n with

varθ̂ = σ2(8n)/(n2 − 1)).

Proof. varθ̂ = σ2g where g = (11)Q−1(11)′ = (q11 + q22 − 2q12)/|Q|; that is,
g = 2(u0 + u1)(u2 + u3)/{u0u1(u2 + u3) + u2u3(u0 + u1)}.

If n = 0 mod 2, g ≥ 8/n with equality only if u0 = u1 = k, u2 = u3 =
(n− 2k)/2, k = 1, 2, . . . , n/2.

If n = 1 mod 2, then g ≥ 8/(n − (1/n)) with equality only if |u0 − u1| =
1, u0 + u1 = n or |u2 − u3| = 1, u2 + u3 = n.

In the above design use the pair of sequences AA,BA or AB,BB with the
number of allocated units as near to each other as possible.
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32.3.4 The model with interaction

The model, with treatment-period interaction, is:

Yijk = µ + τij + πj + δi,j−1 + (τπ)τ(ij),j + γi + eijk (32.11)

with (τπ)τ(ij),j ∈ {(τπ)A1, (τπ)A2, (τπ)B1, (τπ)B2}.
Take the transformation (τπ) = ((τπ)A1−(τπ)A2−(τπ)B1+(τπ)B2), (τπ)A2,

(τπ)B1, (τπ)B2; then the corresponding vectors in the design matrix will be,
respectively, (τπ)A1, ((τπ)A1 + (τπ)A2), ((τπ)A1 + (τπ)B1), and (−(τπ)A1 +
(τπ)B2).

Theorem 32.3.5 (i) In the model (32.9) the parameters (τA− τB), (δA− δB),
(τπ)A1, (τπ)A2, (τπ)B1, (τπ)B2 are not estimable.

(ii) The optimal design for estimating ((τA − τB) + (τπ)A2 − (τπ)B1) is the
same with the optimal design for estimating (τA − τB) in the model (32.1) and
with the same variance.

(iii) The optimal design in (32.9) for estimating ((δA − δB)/2− (τπ)/2) is
the same with the optimal design for estimating (δA−δB)/2 in the model (32.1)
and with the same variance.

Proof. (i) The column vectors (τπ)A1, (τπ)A2, (τπ)B1, (τπ)B2, add up to
µ = 12n, so the corresponding parameters (τπ)A1, (τπ)A2, (τπ)B1, (τπ)B2, are
not estimable. Also to the parameters (τA − τB), (δA − δB)/2, (τπ)A1, (τπ)B2

the corresponding vectors τA, (δA − δB), (τπ)A1, (τπ)B2 add up to 2(γ0 + γ2),
hence the parameters (τA − τB), (δA − δB)/2, are also not estimable.

(ii), (iii) The vectors of the design matrix corresponding to the parameters
((τA − τB) + (τπ)A2 − (τπ)B1), ((δA − δB)/2− (τπ)/2)) are τA and (δA − δB).
The matrices X1i, W2i used in (32.6)–(32.8) to calculate Q from (32.5), are the
same as in Section 32.3.1, hence we have the result. We have used the following
vector relations τA−π1− (τπ)A2 + (τπ)B1 = 0 and (δA− δB)− π1 + 2(τπ)A1 =
γ0 − γ1 + γ2 − γ3.

Theorem 32.3.6 In the model (32.9) the D optimal design for estimating the
parameters ((τA−τB)+(τπ)A2− (τπ)B1, ((δA−δB)/2− (τπ)/2)) is the same as
the optimal design for estimating ((τA − τB), (δA − δB)/2)in the model (32.1).

Proof. The vectors of the design matrix corresponding to the parameters
((τA − τB) + (τπ)A2 − (τπ)B1, ((δA − δB)/2 − (τπ)/2)) are τA, (δA − δB) so
the proof follows the same steps as in Theorem 32.3.3.

Remark 32.3.1 (i) The model (32.9) with treatment-period interaction is
equivalent to the model (32.1) without interaction where the parameters ((τA−
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τB), (δA − δB)/2) have been replaced by the parameters ((τA − τB) + (τπ)A2 −
(τπ)B1, ((δA − δB)/2 − (τπ)/2)), which are estimable.

(ii) The D optimal design remains invariant under a nonsingular linear trans-
formation of the parameters.
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Abstract: A model selection criterion is often formulated by constructing an
approximately unbiased estimator of an expected discrepancy, a measure that
gauges the separation between the true model and a fitted approximating model.
The expected discrepancy reflects how well, on average, the fitted approximating
model predicts “new” data generated under the true model. A related measure,
the estimated discrepancy, reflects how well the fitted approximating model
predicts the data at hand.

In general, a model selection criterion consists of a goodness-of-fit term
and a penalty term. The natural estimator of the expected discrepancy, the
estimated discrepancy, corresponds to the goodness-of-fit term of the criterion.
However, the estimated discrepancy yields an overly optimistic assessment of
how effectively the fitted model predicts new data. It therefore serves as a
negatively biased estimator of the expected discrepancy. Correcting for this
bias leads to the penalty term.

Cross-validation provides a technique for developing an estimator of an ex-
pected discrepancy which need not be adjusted for bias. The basic idea is to
construct an empirical discrepancy that evaluates an approximating model by
assessing how accurately each case-deleted fitted model predicts the deleted
case.

The preceding approach is illustrated in the linear regression framework
by formulating estimators of the expected discrepancy based on Kullback’s I-
divergence and the Gauss (error sum of squares) discrepancy. The traditional
criteria that arise by augmenting the estimated discrepancy with a bias ad-
justment term are the Akaike information criterion and Mallows’ conceptual
predictive statistic. A simulation study is presented.

Keywords and Phrases: AIC, Mallows’ Cp, PRESS
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33.1 Introduction

A model selection criterion is often formulated by constructing an approxi-
mately unbiased estimator of an expected discrepancy, a measure that gauges
the separation between the true model and a fitted approximating model. The
natural estimator of the expected discrepancy, the estimated discrepancy, cor-
responds to the goodness-of-fit term of the selection criterion.

The expected discrepancy reflects how well, on average, the fitted approx-
imating model predicts “new” data generated under the true model. On the
other hand, the estimated discrepancy reflects how well the fitted approximat-
ing model predicts the data at hand. By evaluating the adequacy of the fitted
model based on its ability to recover the data used in its own construction, the
estimated discrepancy yields an overly optimistic assessment of how effectively
the fitted model predicts new data. Thus, the estimated discrepancy serves as
a negatively biased estimator of the expected discrepancy. Correcting for this
bias leads to the penalty term of the selection criterion.

Cross-validation provides a technique for developing an estimator of an ex-
pected discrepancy which need not be adjusted for bias. The basic idea involves
constructing an empirical discrepancy that evaluates an approximating model
by assessing how accurately each case-deleted fitted model predicts the deleted
case.

Cross-validation facilitates the development of model selection procedures
based on predictive principles. In this work, we attempt to establish a more
explicit connection between cross-validation and traditional discrepancy-based
model selection criteria, such as the Akaike (1973) information criterion and
Mallows’ (1973) conceptual predictive statistic.

In Section 33.2, we outline the framework for discrepancy-based selection
criteria. In Section 33.3, we discuss the bias-adjustment approach for developing
a model selection criterion, and in Section 33.4, we present the cross-validatory
approach. Section 33.5 features examples of discrepancy-based selection criteria
developed using both approaches. The linear regression framework is considered.
In Section 33.6, we present simulation results to evaluate the performance of the
criteria. Our results show that the cross-validatory criteria compare favorably
to their traditional counterparts, offering greater protection from overfitting in
small-sample settings.
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33.2 Framework for Discrepancy-Based Selection
Criteria

Suppose we have an n-dimensional data vector y = (y1, . . . , yn)
′
, where the yis

may be scalars or vectors and are assumed to be independent. A parametric
model is postulated for y. Let θ denote the vector of model parameters.

Let F (y) denote the joint distribution function for y under the generating
or “true” model, and let Fi(yi) denote the marginal distribution for yi under
this model. Let G(y, θ) denote the joint distribution function for y under the
candidate or approximating model.

A discrepancy is a measure of disparity between F (y) and G(y, θ), say
∆(F,G), which satisfies

∆(F,G) ≥ ∆(F,F ).

A discrepancy is not necessarily a formal metric, which would additionally re-
quire that ∆(F,F ) = 0, that ∆(F,G) is symmetric in F (y) and G(y, θ), and
that ∆(F,G) satisfies the triangle inequality. However, the measure ∆(F,G)
serves the same basic role as a distance; that is, as the dissimilarity between
F (y) and G(y, θ) becomes more pronounced, the size of ∆(F,G) should increase
accordingly.

We consider discrepancies of the following form:

∆(F,G) = ∆(θ) =
n∑

i=1

EFi {δi(yi; θ)} .

In the preceding, δi(yi; θ) represents a function that gauges the accuracy with
which the ith case yi is predicted under the approximating model (parameter-
ized by θ).

Let θ̂ denote an estimator of θ. The overall discrepancy results from evalu-
ating the discrepancy between F (y) and G(y, θ) at θ = θ̂:

∆(θ̂) =
n∑

i=1

EFi {δi(yi, θ)} |
θ=θ̂

.

The expected (overall) discrepancy results from averaging the overall discrep-
ancy over the sampling distribution of θ̂:

EF

{
∆(θ̂)

}
=

n∑
i=1

EF

{
EFi {δi(yi, θ)} |

θ=θ̂

}
.

The estimated discrepancy is given by

∆̂(θ̂) =
n∑

i=1

δi(yi, θ̂).
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Model selection criteria are often constructed by obtaining a statistic that
has an expectation which is equal to EF

{
∆(θ̂)

}
(at least approximately). In

the next two sections, we explore the bias-adjustment and cross-validatory ap-
proaches to obtaining such statistics.

33.3 The Bias-Adjustment Approach to Developing
a Criterion

The overall discrepancy ∆(θ̂) is not a statistic because its evaluation requires
knowledge of the true distribution F (y). The estimated discrepancy ∆̂(θ̂) is
a statistic and can be used to estimate the expected discrepancy EF

{
∆(θ̂)

}
.

However, ∆̂(θ̂) serves as a biased estimator.
Consider writing EF

{
∆(θ̂)

}
as follows,

EF

{
∆(θ̂)

}
= EF

{
∆̂(θ̂)

}
+
[
EF

{
∆(θ̂)− ∆̂(θ̂)

}]
.

The bracketed quantity on the right is often referred to as the expected optimism
in judging the fit of a model using the same data as those which were used to
construct the fit. The expected optimism is positive, implying that ∆̂(θ̂) is a
negatively biased estimator of EF

{
∆(θ̂)

}
. In order to correct for the negative

bias, we must evaluate or approximate the bias adjustment represented by the
expected optimism.

There are numerous approaches for contending with the bias adjustment.
These approaches include deriving an asymptotic approximation for the ad-
justment [e.g., Akaike (1973)], deriving an exact expression [e.g., Hurvich and
Tsai (1989)], or obtaining an approximation using Monte Carlo simulation [e.g.,
Bengtsson and Cavanaugh (2006)].

We now introduce a general cross-validatory estimate of the expected dis-
crepancy that need not be adjusted for bias. As a model selection criterion,
such an estimate has several advantages over a bias-adjusted counterpart.

First, the form of a cross-validatory criterion facilitates a convenient inter-
pretation of the statistic as a measure of predictive efficacy. Broadly speaking,
such a criterion evaluates an approximating model by gauging how accurately
each case-deleted fitted model predicts a “new” datum, represented by the
deleted case. The criterion provides a composite measure of accuracy result-
ing from the systematic deletion and prediction of each case. In contrast, the
form of a bias-adjusted criterion is more esoteric, consisting of an additive com-
bination of a goodness-of-fit term and a penalty term. These terms work in
opposition to balance the competing modeling objectives of conformity to the
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data and parsimony. However, the connection between achieving such a balance
and predictive efficacy is not transparent.

Second, a cross-validatory criterion serves as an exactly unbiased estimator
of a cross-validatory expected discrepancy that may be viewed as a natural ana-
logue of the expected discrepancy EF

{
∆(θ̂)

}
. This unbiasedness holds without

imposing conditions that may restrict the applicability of the resulting criterion,
conditions which are routinely required for the justifications of bias corrections.

Third, the difference between the cross-validatory expected discrepancy and
its traditional counterpart converges to zero. Thus, in large sample settings, the
cross-validatory criterion estimates the traditional expected discrepancy with
negligible bias.

The key assumption for establishing the asymptotic equivalence of the cross-
validatory and traditional expected discrepancies is that the difference in ex-
pectation between the full-data estimator and any case-deleted estimator is
o(n−1). The proof is provided in the appendix. For settings where the method
of estimation is maximum likelihood and the approximating model is correctly
specified or overspecified, the asymptotic condition on the estimators is verified.

33.4 The Cross-Validatory Approach to Developing

a Criterion

Let y[i] denote the dataset y with the ith case yi excluded. Let θ̂[i] denote an
estimator of θ based on y[i].

Recall that the overall discrepancy is defined as

∆(θ̂) =
n∑

i=1

EFi {δi(yi, θ)} |
θ=θ̂

. (33.1)

Now consider the following variant of the overall discrepancy:

∆∗(θ̂[1], . . . , θ̂[n]) =
n∑

i=1

EFi {δi(yi, θ)} |
θ=θ̂[i]

. (33.2)

The expected (overall) discrepancy corresponding to (33.1) is given by

EF

{
∆(θ̂)

}
=

n∑
i=1

EF

{
EFi {δi(yi, θ)} |

θ=θ̂

}
; (33.3)

the expected (overall) discrepancy corresponding to (33.2) is given by

EF

{
∆∗(θ̂[1], . . . , θ̂[n])

}
=

n∑
i=1

EF

{
EFi {δi(yi, θ)} |

θ=θ̂[i]

}
. (33.4)
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Under the assumption that the difference in expectation between the full-
data estimator θ̂ and any case-deleted estimator θ̂[i] is o(n−1), it can be estab-
lished that the difference between EF

{
∆(θ̂)

}
and EF

{
∆∗(θ̂[1], . . . , θ̂[n])

}
is

o(1). (The proof is outlined in the appendix.) Hence, an unbiased estimator of
(33.4) is approximately unbiased for (33.3).

Now the estimated discrepancy

∆̂(θ̂) =
n∑

i=1

δi(yi, θ̂)

is negatively biased for (33.3). However, the empirical discrepancy defined as

∆̂∗(θ̂[1], . . . , θ̂[n]) =
n∑

i=1

δi(yi, θ̂[i]) (33.5)

is exactly unbiased for (33.4). The justification of this fact is straightforward.
Due to the fact that EF

{
∆∗(θ̂[1], . . . , θ̂[n])

}
≈ EF

{
∆(θ̂)

}
, it follows that

∆̂∗(θ̂[1], . . . , θ̂[n]) is approximately unbiased for EF

{
∆̂(θ̂)

}
. Thus, the empirical

discrepancy ∆̂∗(θ̂[1], . . . , θ̂[n]):

(a) Estimates EF

{
∆∗(θ̂[1], . . . , θ̂[n])

}
without bias.

(b) Estimates EF

{
∆(θ̂)

}
with negligible bias for large n.

33.5 Examples in the Linear Regression Setting

Consider a setting where a continuous response variable is to be modeled using
a linear regression model.

Under the approximating model, assume the yi are independent with mean
xi

′ β and variance σ2. Let θ = (β′σ2)′. Furthermore, let g(y, θ) denote the
approximating density for y, and let gi(yi, θ) denote the approximating density
for yi.

Kullback’s I-divergence and the Gauss (error sum of squares) discrepancy
have applicability to many modeling frameworks, including linear regression. In
the context of model selection, the I-divergence may be defined as

∆I(θ) = EF {−2 ln g(y, θ)} =
n∑

i=1

EFi {δ I
i (yi; θ)} , (33.6)
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where δ I
i (yi; θ) = −2 ln gi(yi, θ). [See Linhart and Zucchini (1986, p. 18) and

Hurvich and Tsai (1989, p. 299).] For the linear regression framework, the Gauss
discrepancy may be expressed as

∆G(θ) = EF

{
n∑

i=1

(yi − x
′
iβ)2
}

=
n∑

i=1

EFi {δ G
i (yi; θ)} , (33.7)

where δ G
i (yi; θ) = (yi − x

′
iβ)2. [See Linhart and Zucchini (1986, p. 118).]

Provided that the approximating model of interest is correctly specified
or overspecified, the Akaike information criterion provides an asymptotically
unbiased estimator of the expected discrepancy corresponding to (33.6). In the
present setting, AIC is given by

AIC = −2 ln g(y, θ̂) + 2(p + 1),

where p denotes the number of regression parameters, and θ̂ denotes the max-
imum likelihood estimator (MLE) of θ. Under the additional assumption that
the errors are normally distributed, the “corrected” Akaike information crite-
rion, AICc, provides an exactly unbiased estimator of the expected discrepancy
[Hurvich and Tsai (1989)]. AICc is given by

AICc = −2 ln g(y, θ̂) +
2(p + 1)n
n− p− 2

.

Provided that the largest approximating model in the candidate collection
is correctly specified or overspecified, a simple variant of Mallows’ conceptual
predictive statistic (with identical selection properties) provides an exactly un-
biased estimator of the expected discrepancy corresponding to (33.7). Mallows’
statistic is given by

Cp =
SSE

MSEL
+ (2p − n),

where SSE denotes the error sum of squares. The aforementioned variant is
given by (Cp + n)MSEL, where MSEL denotes the error mean square for the
largest approximating model.

The cross-validatory criterion (33.5) based on the I-divergence (33.6) is
given by

n∑
i=1

−2 ln gi(yi, θ̂[i]),

where θ̂[i] represents the case-deleted MLE of θ. Assuming normal errors, the
preceding reduces to

n∑
i=1

ln σ̂2
−i +

n∑
i=1

(yi − ŷi,−i)2

σ̂2
−i

,
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where ŷi,−i denotes the fitted value for yi based on the case-deleted dataset y[i],
and σ̂2

−i denotes the case-deleted MLE for σ2. Davies et al. (2005) refer to the
preceding criterion as the predictive divergence criterion, PDC. [See also Stone
(1977).]

The cross-validatory criterion (33.5) based on the Gauss discrepancy (33.7)
is given by

n∑
i=1

(yi − ŷi,−i)2,

the well-known PRESS (predictive sum of squares) statistic [Allen (1974)].
The preceding development indicates that PDC and PRESS may be respec-

tively viewed as the cross-validatory analogues of AIC and Cp. In simulation
studies, such cross-validatory criteria compare favorably to their traditional
counterparts. In settings where the generating model is among the collection
of candidate models under consideration, the cross-validatory criteria tend to
select the correctly specified model more frequently and to select overspecified
models less frequently than their bias-adjusted analogues. In the next section,
we present representative sets from the simulation studies we have conducted.

33.6 Linear Regression Simulations

Consider a setting where samples of size n are generated from a true linear
regression model of the form yi = 1 + xi1 + xi2 + xi3 + xi4 + xi5 + xi6 + εi,
where εi ∼ iid N(0, 4). For every sample, nested candidate models with an
intercept and k regressor variables (k = 1, . . . , 12) are fit to the data. (Note that
p = k + 1.) Specifically, the first model fit to each sample is based on only the
covariate xi1, the second is based on the covariates xi1 and xi2, and so on. The
sixth fitted model (k = 6, p = 7) is correctly specified. Subsequent fitted models
are overspecified, because they contain the regressor variables for the generating
model (xi1 through xi6) in addition to extraneous covariates (xi7, . . . , xi,12). All
regressor variables are generated as iid replicates from a uniform distribution
over the interval (0, 10).

Suppose our objective is to search the candidate collection for the fitted
model which serves as the best approximation to the truth. The strength of the
approximation is reflected via the expected discrepancy, either (33.3) or (33.4).

We present six simulation sets based on the preceding setting. In the first
three sets, we examine the effectiveness of AIC, AICc, and PDC in selecting the
correctly specified model. In the next three sets, we examine the effectiveness
of Cp and PRESS in achieving the same objective. We group the criterion
selections into three categories: underfit (UF), correctly specified (CS), and
overfit (OF).
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Table 33.1. Selection results for AIC, AICc, PDC

Criterion

Set n Selections AIC AICc PDC
UF 0 1 18

1 25 CS 418 913 929
OF 582 86 53
UF 0 0 0

2 50 CS 606 815 870
OF 394 185 130
UF 0 0 0

3 75 CS 685 789 833
OF 315 211 167

The results of sets 1–3 are presented in Table 33.1. These sets feature sample
sizes of n = 25, 50, and 75, respectively. In each set, PDC obtains the most
correct selections, followed by AICc. The performance of AIC is relatively poor.
In general, AIC favors overspecified models in settings where the sample size is
insufficient to ensure the adequacy of the criterion’s bias correction.

For the results from set 3, Figure 33.1 features a plot of criterion averages
versus k. The expected overall discrepancies (33.3) and (33.4) are also plotted.
The plot illustrates the exact unbiasedness of PDC for (33.4) and AICc for
(33.3), yet also indicates the negative bias of AIC for (33.3) resulting from the
poor bias approximation. This negative bias creates the criterion’s propensity
to favor over parameterized models.

Figure 33.1 also reflects the similarity of the curves for the expected over-
all discrepancies (33.3) and (33.4). As the sample size increases, the difference
between these curves becomes negligible. Thus, in large sample settings, the
selections of PDC, AICc, and AIC should agree. However, in smaller sample
settings, where the predictive accuracy of the selected model may be greatly
diminished by the inclusion of unnecessary covariates, PDC and its target dis-
crepancy favor more parsimonious models.

The results of sets 4–6 are presented in Table 33.2. These sets feature sample
sizes of n = 15, 20, and 25, respectively. In sets 4 and 5, PRESS obtains more
correct selections than Cp. This is mainly due to the difference in the behaviors
of the targeted discrepancies: in smaller sample settings, (33.4) penalizes more
heavily than (33.3) to protect against the inflation in predictive variability that
accompanies the incorporation of extraneous regressors. However, in this set-
ting, the asymptotic equivalence of (33.3) and (33.4) takes effect for relatively
small n: in the third set, where n is 25, the selection patterns are the same for
the two criteria.



482 J. E. Cavanaugh, S. L. Davies, and A. A. Neath

Average Criterion Values: Simulation Set 3
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Figure 33.1. Expected discrepancies and criterion averages versus number of
regressors (set 3).

Table 33.2. Selection results for Cp and PRESS

Criterion

Set n Selections Cp PRESS
UF 22 19

4 15 CS 491 587
OF 487 394
UF 4 1

5 20 CS 634 671
OF 362 328
UF 0 0

6 25 CS 668 668
OF 332 332

The simulation results presented constitute a small yet representative sam-
ple from a larger simulation study. In general, our results show that cross-
validatory criteria perform well relative to their traditional counterparts, offer-
ing greater protection from overfitting in smaller-sample settings, and exhibiting
similar behavioral tendencies in larger-sample settings.

In conclusion, cross-validatory model selection criteria provide an appealing
alternative to traditional bias-adjusted selection criteria (such as AIC and Cp).
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For many traditional expected discrepancies, a cross-validatory criterion may
be easily formulated. Such a criterion is approximately unbiased for the tradi-
tional expected discrepancy, and exactly unbiased for an analogous expected
discrepancy based on cross-validation. The preceding unbiasedness properties
hold without requiring stringent conditions that may limit applicability. More-
over, the form of a cross-validatory criterion facilitates a convenient, intuitive
interpretation of the statistic as a measure of predictive efficacy.
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Appendix

In what follows, we establish the asymptotic equivalence of (33.3) and (33.4);
specifically

EF {∆(θ̂)} − EF {∆∗(θ̂[1], . . . , θ̂[n])} = o(1). (33.8)

We assume that the estimator θ̂ converges weakly to some interior point θ∗
of the parameter space Θ; that is, θ̂ = θ∗ + op(1). Thus, we should also have
θ̂[i] = θ∗ + op(1) for each i = 1, . . . , n.

Let ∆i(θ) = EFi {δi(yi, θ)} , so that

∆(θ̂) =
n∑

i=1

∆i(θ̂), ∆∗(θ̂[1], . . . , θ̂[n]) =
n∑

i=1

∆i(θ̂[i]),

and

∆(θ̂)−∆∗(θ̂[1], . . . , θ̂[n]) =
n∑

i=1

[
∆i(θ̂)−∆i(θ̂[i])

]
. (33.9)

Our approach is to show that for each i,

EF{∆i(θ̂)−∆i(θ̂[i])} = o(n−1). (33.10)

Clearly, (33.10) in conjunction with (33.9) will establish (33.8).
We assume that ∆i(θ) has continuous first-order derivatives with respect to

θ. Let Di(θ) = ∂∆i(θ)/∂θ. Using a first-order Taylor series expansion, we have

∆i(θ̂) = ∆i(θ̂[i]) + Di(ξ)′(θ̂ − θ̂[i]), (33.11)

where ξ = θ̂[i] + λ(θ̂ − θ̂[i]) for some 0 ≤ λ ≤ 1. Thus, ξ converges to θ∗, and
Di(ξ) converges to Di(θ∗). From (33.11), we therefore have

∆i(θ̂)−∆i(θ̂[i]) = [Di(θ∗) + op(1)]′(θ̂ − θ̂[i]). (33.12)
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Now assume that
EF {(θ̂ − θ̂[i])} = o(n−1). (33.13)

Because Di(θ∗) = O(1), (33.13) together with (33.12) implies (33.10).
We now verify that (33.13) holds in a specific setting, namely one in which

the method of estimation is maximum likelihood, and the approximating model
is correctly specified or overspecified.

The latter assumption implies that the joint distribution function F (y) un-
der the generating model belongs to the same class as the joint distribution
function G(y, θ) under the approximating model. We may therefore write F (y)
as F (y, θo), where θo is an interior point of Θ. Thus, θo defines the “true”
parameter vector.

Let L(θ|y) =
∏n

i=1 gi(yi, θ) denote the likelihood function for θ based on y.
Assume that each of the likelihood contributions gi(yi, θ) is differentiable and
suitably bounded: specifically, that for some function h(·) with

∫
h(u) du < ∞,

we have ∣∣∣∣∂gi(u, θ)
∂θ

∣∣∣∣ < h(u) for all (u, θ). (33.14)

For the overall likelihood L(θ|y), assume that ln L(θ|y) has first- and second-
order derivatives which are continuous and bounded over Θ. Let

Vn(θ) = − 1
n

ln L(θ|y), V (1)
n (θ) =

∂Vn(θ)
∂θ

, and V (2)
n (θ) =

∂2Vn(θ)
∂θ∂θ′

.

Here, θ̂ = argminθ∈ΘVn(θ); that is, θ̂ is the maximum likelihood estimator of θ.
Let Wn(θ) = EF {Vn(θ)}. Assume that as n→∞, Wn(θ) converges to a func-

tion W (θ) uniformly in θ over Θ, and that W (θ) has a unique global minimum
at θo. Furthermore, suppose that W (θ) has first- and second-order derivatives
which are continuous and bounded over Θ. Let W (2)(θ) = (∂2W (θ))/(∂θ∂θ′).
Assume that W (2)(θ) is positive definite in a neighborhood of θo.

Finally, assume that Vn(θ) converges to W (θ), that V
(2)
n (θ) converges to

W (2)(θ), and that the convergence is uniform in θ over Θ.
The preceding regularity conditions are typical of those used to ensure the

consistency and the asymptotic normality of the maximum likelihood estimator
of θ̂. [See, for instance, Section 3 of Cavanaugh and Neath (1999).] In the setting
at hand, the point of convergence θ∗ for the estimator θ̂ corresponds to the true
parameter vector θo.

Expand V
(1)
n (θ̂) about θo to obtain

0 = V (1)
n (θ̂)

= V (1)
n (θo) + V (2)

n (θ̃)(θ̂ − θo),

where θ̃ = θo + γ(θ̂ − θo) for some 0 ≤ γ ≤ 1. Then,

θ̂ = θo − [V (2)
n (θ̃)]−1V (1)

n (θo).
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The preceding relation along with the assumed regularity conditions and the
consistency of θ̂ leads to

θ̂ = θo − [W (2)(θo) + op(1)]−1V (1)
n (θo).

Now without loss of generality, take θ̂[i] = θ̂[1]. Then we have

θ̂ − θ̂[1] = −[W (2)(θo) + op(1)]−1[V (1)
n (θo)− V

(1)
n−1(θo)], (33.15)

where

V (1)
n (θ) = − 1

n

n∑
i=1

∂ ln gi(yi, θ)
∂θ

and V
(1)
n−1(θ) = − 1

n− 1

n∑
i=2

∂ ln gi(yi, θ)
∂θ

.

Note that

V (1)
n (θo)− V

(1)
n−1(θo) = − 1

n

∂ ln g1(y1, θo)
∂θ

− 1
n

V
(1)
n−1(θo). (33.16)

Using (33.16) in conjunction with (33.15), we obtain

n(θ̂ − θ̂[1]) = [W (2)(θo) + op(1)]−1

[
∂ ln g1(y1, θo)

∂θ
+ V

(1)
n−1(θo)

]
. (33.17)

Now the assumed regularity conditions along with the consistency of the
maximum likelihood estimator allow us to conclude that the difference between
V

(1)
n−1(θo) and V

(1)
n−1(θ̂[1]) = 0 is op(1), which implies that V

(1)
n−1(θo) = op(1).

Moreover, one can argue that EF {(∂ ln g1(y1, θo))/(∂θ)} = 0. This result is es-
tablished by exchanging the order of differentiation and integration, which is
permissible via the Lebesgue dominated convergence theorem under the im-
posed assumption (33.14). The preceding results along with (33.17) allow us to
argue

EF {n(θ̂ − θ̂[1])} = o(1).

Thus, (33.13) is established.
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Focused Information Criteria for the

Linear Hazard Regression Model
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Abstract: The linear hazard regression model developed by Aalen is becoming
an increasingly popular alternative to the Cox multiplicative hazard regression
model. There are no methods in the literature for selecting among different
candidate models of this nonparametric type, however. In the present chapter a
focused information criterion is developed for this task. The criterion works for
each specified covariate vector, by estimating the mean squared error for each
candidate model’s estimate of the associated cumulative hazard rate; the finally
selected model is the one with lowest estimated mean squared error. Averaged
versions of the criterion are also developed.

Keywords and Phrases: Aalen’s linear model, covariate selection, focused
information criterion, hazard regression, model selection

34.1 Introduction: Which Covariates to Include?

We consider survival regression data of the usual form (Ti, δi, xi) for individuals
i = 1, . . . , n, where xi is a vector of say r covariates, among which one wishes to
select those of highest relevance. Also, Ti = min{T 0

i , Ci} is the possibly censored
life-length and δi = I{T 0

i < Ci} the associated noncensoring indicator, in terms
of underlying life-length T 0

i and censoring time Ci for individual i.
Our framework is that of the linear hazard regression model introduced by

Aalen (1980); see; for example, the extensive discussion in Andersen et al. (1993,
Ch. 8) and Martinussen and Scheike (2006, Ch. 5), where the hazard rate for
individual i may be represented as

hi(u) = xt
iα(u) =

r∑
j=1

xi,jαj(u) for i = 1, . . . , n,
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in terms of regressor functions α1(u), . . . , αr(u). These need to satisfy the re-
quirement that the linear combination xtα(u) stays nonnegative for all x sup-
ported by the distribution of covariate vectors. In other words, the associated
cumulative hazard function

H(t |x) =
∫ t

0
xtα(u) du = xtA(u) =

r∑
j=1

xjAj(t) (34.1)

is nondecreasing in t, for all x in the relevant covariate space; here we write
Aj(t) =

∫ t
0 αj(u) du for j = 1, . . . , r.

Among questions discussed in this chapter is when we might do better with
only a subset of the x covariates than with keeping them all. We focus specif-
ically on the problem of estimating H(t |x) of (34.1) well, for a specified indi-
vidual carrying his given covariate information x. The full-model estimator

Ĥ(t |x) = Ĥfull(t |x) = xtÂ(t) =
r∑

j=1

xjÂj(t) (34.2)

is one option, using the familiar Aalen estimators for A1, . . . , Ar in the full
model, keeping all covariates on board. Pushing some covariates out of the
model leads to competing estimators of the type

H̃I(t |x) =
∑
j∈I

xjÃI,j(t), (34.3)

where the index set I is a subset of {1, . . . , r}, representing those covariates
that are kept in the model, and where the ÃI,j(t)s for j ∈ I are the Aalen
estimators in the linear hazard rate model associated with the I covariates.
Using H̃I(t |x) instead of Ĥ(t |x) will typically correspond to smaller variances
but to modelling bias. Slightly more generally, bigger index sets I imply more
variance but less modelling bias, and vice versa. Thus the task of selecting
suitable covariates amounts to a statistical balancing game between sampling
variability and bias.

In Section 34.2 we fix the framework and give proper definitions of full-
model and submodel estimators. These are also expressed in terms of counting
processes and at-risk processes. Links with martingale theory make it possible
in Section 34.3 to accurately assess the bias and variance properties associated
with a given candidate model. This is followed up in Section 34.4 by explicit
methods for estimating bias and variance from the data. The focused infor-
mation criterion (FIC) introduced in Section 34.5 acts by estimating the risk
associated with each candidate model’s estimator of the cumulative hazard
function; the model we suggest being used in the end is the one with the lowest
estimated risk. Weighted versions are also put forward. In an extended version
of the present work the use of the methods for real data and in some simulation
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setups will be reported. This chapter ends with a list of concluding remarks in
Section 34.7.

The brief introduction has so far taken model comparison as correspond-
ing to accuracy of estimators of cumulative hazard rates H(t |x). By a delta
method argument this is also nearly equivalent to ranking models in terms of
accuracy of estimates of survival probabilities S(t |x) = exp{−H(t |x)}, where
the estimates in question take the form

Ŝfull(t |x) =
∏
[0,t]

{1− xt Â(u)} and S̃I(t |x) =
∏
[0,t]

{
1−
∑
j∈I

xj dÃI,j(u)
}
.

[For details regarding notation for and properties of the product integral used
on the right; see, for example, Andersen et al. (1993, Ch. II.6).] It is important
to realise that a submodel I may work better than the full model, even if the
submodel in question is not ‘fully correct’ as such; this is determined, among
other aspects, by the sizes of the αj(u) regressor functions that are left out of
a model. This makes model selection different in spirit and operation than, for
example, performing goodness-of-fit checks on all candidate models.

Aalen’s linear hazard model is in many important respects different from
Cox’s proportional hazard model, also regarding the mathematical treatment
of estimators and their properties; see Andersen et al. (1993, Ch. II.6). We note
that focused information criteria and a general theory for model averaging esti-
mators for the Cox model have been developed in Hjort and Claeskens (2006).
Based on research in that and in the present chapter methods may be devised
that can help select between ‘the best Cox model’ and ‘the best Aalen model’,
in situations where that question is of relevance, but that theme is not pursued
here.

34.2 Estimators in Submodels

This section properly defines the Aalen estimators Â and ÃI involved in (34.2)
and (34.3). It is convenient to define these in terms of the counting process and
at-risk process

Ni(t) = I{Ti ≤ t, δi = 1} and Yi(u) = I{Ti ≥ u}

for individuals i = 1, . . . , n. We also need the martingales Mi(t) = Ni(t) −∫ t
0 Yi(u) dHi(u), for which

dNi(u) = Yi(u)xt
i dA(u) + dMi(u). (34.4)

These are orthogonal and square integrable with variance processes

〈Mi,Mi〉(t) =
∫ t

0
Yi(u)hi(u) du =

∫ t

0
Yi(u)xt

i dA(u). (34.5)



490 N. L. Hjort

In other words, Mi(t)2−〈Mi,Mi〉(t) is another zero-mean martingale, implying
in particular that the mean of (34.5) is equal to the variance of Mi(t).

Now introduce the r × r-size matrix function

Gn(u) = n−1
n∑

i=1

Yi(u)xix
t
i . (34.6)

The Aalen estimator Â = (Â1, . . . , Âr)t in the full model corresponds to

dÂ(u) = Gn(u)−1n−1
n∑

i=1

xi dNi(u),

with integrated version

Â(t) =
∫ t

0
Gn(u)−1n−1

n∑
i=1

xi dNi(u) for t ≥ 0. (34.7)

This also defines Ĥfull(t |x) of (34.2). It is assumed here that at least r linearly
independent covariate vectors xi remain in the risk set at time t, making the
inverse of Gn well defined for all u ≤ t; this event has probability growing
exponentially quickly to 1 as sample size increases, under mild conditions.

To properly define the competitor H̃I(t |x) of (34.3), we use the notation
xI = πIx for the vector of those xj components for which j ∈ I, for each given
subset I of {1, . . . , r}. In other words, πI is the projection matrix of size |I|× r,
with |I| the number of covariates included in I. For the given I, we partition
the Gn function into blocks,

Gn(u) =
(

Gn,00(u), Gn,01(u)
Gn,10(u), Gn,11(u)

)
,

where

Gn,00(u) = πIGn(u)πt
I = n−1

n∑
i=1

Yi(u)xi,Ix
t
i,I

is of size |I| × |I|, and Gn,11(u) is of size q × q with q = r− |I|, and so on. The
Aalen estimator for the vector of Aj functions where j ∈ I is

ÃI(t) =
∫ t

0
Gn,00(u)−1n−1

n∑
i=1

xi,I dNi(u).

These are those at work in (34.3).
Using (34.4) we may write

n−1
n∑

i=1

xi,I dNi(u) = n−1
n∑

i=1

Yi(u)xi,Ix
t
i dA(u) + n−1

n∑
i=1

xi,I dMi(u),
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which further leads to

dÃI(u) = Gn,00(u)−1
{
Gn,00(u) dAI(u) + Gn,01(u) dAII(u)

+ n−1
n∑

i=1

xi,I dMi(u)
}
,

(34.8)

along with its integrated version. Here II = Ic is the set of indexes not in I.
This representation, basically in terms of a mean term plus martingale noise,
is used in the next section to characterise means and variances of the (34.3)
estimators. It again assumes that the Gn is invertible on [0, t], an event having
probability growing exponentially to 1 and therefore not disturbing the main
analysis.

We remark that when the I model is used, then the Aalen estimator ÃI(t)
does not directly estimate AI , but rather the function AI(t) +

∫ t
0 G−1

00 G01 dAII .

34.3 Bias, Variance, and Mean Squared Error
Calculations

In this section we develop useful approximations for the mean squared error of
each of the (34.3) estimators H̃I(t |x) = xt

IÃI(t). We assume that the censoring
variables C1, . . . , Cn are i.i.d. with some survival distribution C(u) = Pr{Ci ≥
u}, and that they are independent of the lifetimes T 0

i ; the case of no censoring
corresponds to C(u) = 1 for all u. It is furthermore convenient to postulate that
x1, . . . , xn stem from some distribution in the space of covariate vectors. These
assumptions imply, for example, that the Gn function of (34.6) converges with
increasing sample size, say

Gn(u) → G(u) = E∗Y (u)xxt = E∗ exp{−xtA(u)}xxt C(u), (34.9)

where E∗ refers to expectation under the postulated covariate distribution. Also
the mean function

Ḡn(u) = EGn(u) = n−1
n∑

i=1

pi(u)xix
t
i

converges to the same limit G(u); here pi(u) = EYi(u) = exp{−xt
iA(u)}C(u).

We finally assume that the r × r-function G(u) is invertible over the time ob-
servation window u ∈ [0, τ ] of interest; this corresponds to C(τ) positive and
to a nondegenerate covariate distribution. As in Section 34.2 there is a need to
partition the G(u) function into blocks G00(u), G01(u), and so on; G00(u) has,
for example, size |I| × |I|. A similar remark applies to Ḡn(u).
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Consider as in Section 34.1 a given individual with covariate information x.
From representation (34.8),

xt
I dÃI(u) = xt

I dAI(u) + xt
IGn,00(u)−1Gn,01(u) dAII(u)

+ n−1/2xt
IGn,00(u)−1 dVn,I(u)

= xt dA(u) + bI,n(u)t dAII(u) + n−1/2xt
IGn,00(u)−1 dVn,I(u),

in which Vn is the r-dimensional martingale process with increments

dVn(u) = n−1/2
n∑

i=1

xi dMi(u), (34.10)

whereas bI,n, defined by

bI,n(u) = Gn,10(u)Gn,00(u)−1xI − xII , (34.11)

can be seen as a bias function (omitting at the moment x in the notation for
this function). Its dimension is q = r − |I|. This leads to the representation

√
n{xt

I ÃI(t)− xtA(t)} =
√

n

∫ t

0
bt
I,n dAII + xt

I

∫ t

0
G−1

n,00 dVn,I . (34.12)

The second term is a zero-mean martingale whereas the first term is a bias
term, stemming from using model I that does not include all the components.
We use (34.12) to develop good approximations to

msen(I) = msen(I, t) = n E{H̃I(t |x)−H(t |x)}2,

the normalised mean squared error of the (34.3) estimator. We treat the co-
variate vectors x1, . . . , xn as given; that is, our approximations are expressed
directly in terms of these.

In view of the assumptions made in the beginning of this section, a first-order
approximation to the mean of (34.12) is

√
n
∫ t
0 b̄t

I,n dAII , because the second
term has zero mean; here b̄I,n(u) = Ḡn,10(u)Ḡn,00(u)−1. Also,

∫ t
0 bt

I,n dAII and∫ t
0 b̄t

I,n dAII are both close to the limit
∫ t
0 bt

I dAII , with high probability for large
n, where bI(u) = G10(u)G−1

00 xI − xII .
To study the second term of (34.12), note that Vn of (34.10) is a zero-

mean martingale with variance process 〈Vn, Vn〉(t) = Jn(t), with r × r-matrix
increments

dJn(u) = n−1
n∑

i=1

Yi(u)xix
t
i xt

i dA(u).

There is a well-defined limit function J(u) with increments

dJ(u) = E∗Y (u)xxt xt dA(u) = E∗ exp{−xtA(u)}xxt xt dA(u)C(u)
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under the conditions stated above. Thus Vn converges in distribution to a Gaus-
sian martingale V with increments dV (u) having zero mean and variance matrix
dJ(u). It also follows that the second term of (34.12) converges in distribution,

xt
I

∫ t

0
G−1

n,00 dVn,I →d xt
I

∫ t

0
G−1

00 dVI ,

which is normal with variance

var(I, t) = xt
I

∫ t

0
G−1

00 dJ00 G−1
00 xI .

The integral here is defined in the appropriate and natural Riemannian sense,
and is also equivalent to a finite sum of ordinary integrals, found by writing out
the quadratic form.

The first term of (34.12) is essentially nonrandom when compared with the
second term. A more formal statement can be put forward in a framework of
local asymptotic neighbourhoods, where dAII(u) = dD(u)/

√
n, say; in this

case,

√
n{H̃I(t |x)−H(t |x)} →d

∫ t

0
b(u)t dD(u) + N(0, var(I, t)).

Our main use of these considerations is the approximation to the normalised
mean squared error;

msen(I, t) .= sqb(I, t) + var(I, t), (34.13)

where var(I, t) is defined above and

sqb(I, t) = n
(∫ t

0
b̄t
I,n dAII

)2
.

Remark There are often situations where it pays to exclude some covariates,
even though their associated αj(u) functions are nonzero. This is a consequence
of the squared bias versus variance balancing game. For example, a submodel
I is better than the full set, for the given covariate x, if sqb(I, t) + var(I, t) ≤
0 + var(full, t), which translates to

n
{∫ t

0
(G10G

−1
00 xI−xII)t dAII

}2
≤ xt

∫ t

0
G−1 dJ G−1 x−xt

I

∫ t

0
G−1

00 dJ00 G−1
00 xI .

This effectively describes a ‘tolerance radius’ around a given model, inside which
the model is preferable to the full model, even when not perfectly valid. The
inequality says that a certain linear combination of the αj(u) functions for j /∈ I
should not be too big, compared also to the sample size; for large n even small
biases are costly, and the full model becomes preferable.
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34.4 Estimating the Risks

We have seen that each candidate model I has an associated risk msen(I, t) of
(34.13) when estimating the cumulative hazard function using H̃I(t |x). Here
we deal with the consequent task of estimating these risk quantities from data.

For the variance part we use

v̂ar(I, t) = xt
I

∫ t

0
G−1

n,00(u) dĴn,00(u)Gn,00(u)−1 xI ,

wherein

dĴn(u) = n−1
n∑

i=1

Yi(u)xix
t
i xt

idÂ(u),

engaging the full-model Aalen estimator. The |I|×|I| block used for the variance
estimation is πI dĴn(u)πt

I .
For the squared bias part, consider in general terms the quantity β2, where

β =
∫ t
0 gt dAII , for a specified q-dimensional function g; again, q = r − |I|.

Considering β̂ =
∫ t
0 gt dÂII , employing the II part of the full-model Aalen

estimator, we have

E β̂
.= β and Var β̂

.= n−1
∫ t

0
g(u)t dQ(u) g(u),

from results above, where we write

dQ(u) = {G(u)−1 dJ(u)G(u)−1}11

for the lower right-hand q × q block of the matrix within brackets, the block
associated with subset II = Ic. Thus E β̂2 .= β2 + n−1

∫ t
0 gt dQ g, in its turn

leading to the natural and nearly unbiased estimator(∫ t

0
gt dÂII

)2
− n−1

∫ t

0
g(u)t dQ̂n(u) g(u)

for β2, where

dQ̂n(u) = πII{Gn(u)−1 dĴn(u)Gn(u)−1}πt
II

is the empirical counterpart to dQ(u).
These considerations lead to the risk estimator

R̂(I, t) = m̂sen(I, t) = max{ŝqb(I, t), 0} + xt
I

∫ t

0
G−1

n,00 dĴn,00 G−1
n,00 xI ,

where
ŝqb(I, t) = n

(∫ t

0
bt
I,n dÂII

)2
−
∫ t

0
bt
I,n dQ̂n bI,n.
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34.5 The FIC and the Weighted FIC

Here we show how risk estimation methods developed above lead to natural
information criteria for model selection.

The first such is a focused information criterion that works for a given
individual and a given time point at which we wish optimal precision for her
survival probability estimate. For the given covariate x and time point t we
calculate

FIC = FIC(I, x, t) = max{ŝqb(I, x, t), 0} + v̂ar(I, x, t) (34.14)

for each candidate model I, where

ŝqb(I, x, t) = n
(∫ t

0
bt
I,n dÂII

)2
−
∫ t

0
bt
I,n dQ̂n bI,n,

v̂ar(I, x, t) = xt
I

∫ t

0
G−1

n,00 dĴn,00 G−1
n,00 xI .

We note that bI,n(u) of (34.11) depends on x and that the submatrices Gn,00

and so on of (34.9) depend on I. In the end one selects the model with smallest
value of the FIC score number.

Note that FIC is sample-size dependent. In a situation with a given amount
of nonzero bias

∫ t
0 b̄t

I dAII , the ŝqb component of FIC will essentially increase
with n, whereas the variance component remains essentially constant. This goes
to show that the best models will tolerate less and less bias as n increases, and
for sufficiently large n only the full model (which has zero modelling bias) will
survive FIC scrutiny.

There are various variations on the FIC above. For a given individual who
has survived up to time t1 it is the conditional survival probabilities

Pr{T 0 ≥ t2 |T 0 ≥ t1, x} = exp[−{H(t2 |x)−H(t1 |x)}]

that are of interest. The development and formulae above can be repeated mu-
tatis mutandis with a given interval [t1, t2] replacing [0, t]. This gives a machin-
ery for selecting models that yield optimal estimation precision for conditional
survival probabilities. It will also be useful in many applications to monitor FIC
scores for important candidate models in terms of a ‘gliding time window’, say
[t − δ, t + δ]; successful models should then have good FIC scores across time.
We stress that it is not a paradox that one model might be particularly good
at explaining the survival mechanisms involved for short life-lengths, whereas
another model might be much better for understanding the survival of the
longer life-lengths. Our FIC takes this on board, and makes an explicit model
recommendation for each given time interval of interest.
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Suppose now that a model is called for that works well in an average sense
across a given set of (x, t) values, as opposed to a given (x, t). Consider in
general terms

En(I) = n

∫
{H̃I(t |x)−H(t |x)}2 dw(t, x),

where w(t, x) is a weight measure in the (x, t) space. This could, for example,
take the form

En(I) = (1/K)
K∑

j=1

n{H̃I(t |xj)−H(t |xj)}2, (34.15)

averaging across given covariate vectors x1, . . . , xK . From (34.12), the random
loss incurred using I is

En(I) =
∫ {√

n

∫ t

0
bI,n(u, x)t dAII(u) + xt

I

∫ t

0
Gn,00(u)−1 dVn,I(u)

}2
dw(t, x),

writing now
bI,n(u, x) = Gn,10(u)Gn,00(u)−1xI − xII

with explicit mention of x in the notation.
Its associated risk, the expected loss, is by previous efforts closely approxi-

mated by the w-weighted risk

Rn(I) = E
∫ [

n
{∫ t

0
bI,n(u, x)t dAII(u)

}2
+xt

I

∫ t

0
G−1

n,00 dJn,00 G−1
n,00 xI

]
dw(t, x).

We estimate the w-weighted squared bias and w-weighted variance contribu-
tions in turn. Define

w-ŝqb(I) = n

∫ {∫ t

0
bI,n(u, x)t dÂII(u)

}2
dw(t, x)

−
∫ ∫ t

0
bI,n(u, x)t dQ̂n(u) bI,n(u, x) dw(t, x),

which is an approximately unbiased estimator of the w-weighted squared bias
term; and

w-v̂ar(I) =
∫

v̂ar(I, x, t) dw(t, x).

Our wFIC score, to be computed for each candidate model, is

wFIC(I) = max{w-ŝqb(I), 0} + w-v̂ar(I). (34.16)

Again, in the end the model achieving the lowest wFIC score is selected. This
scheme in particular gives rise to an algorithm associated with the (34.15) loss,
weighting evenly across a finite set of covariate vectors.
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A special case worth recording is when t is fixed and w describes the covari-
ate distribution. It is unknown, but may be approximated with the empirical
distribution of covariates x1, . . . , xn. This leads to wFIC(I) as in (34.16) with

w-v̂ar(I) = n−1
n∑

i=1

v̂ar(I, xi, t)

= Tr
{(∫ t

0
G−1

n,00 dĴn,00 G−1
n,00

)(
n−1

n∑
i=1

xi,Ix
t
i,I

)}
,

whereas w-ŝqb(I) may be written

n∑
i=1

{xt
i,IB̂I(t)− xt

i,IIÂII(t)}2 − n−1
n∑

i=1

∫ t

0
bI,n(u, xi)t dQ̂n(u) bI,n(u, xi),

where
B̂I(t) =

∫ t

0
Gn,00(u)−1Gn,01(u) dÂII(u).

Remark Note that the wFIC method as defined here is subtly but crucially dif-
ferent from simply w-weighting of the individual pointwise FIC scores, regard-
ing how the truncation of the squared bias estimate is carried out. In (34.16),
the truncation to achieve nonnegativity of the estimate takes place after the
w-weighting, making it different from w-weighting the collection of truncated
sqb(I, x, t) terms. See in this connection also Claeskens and Hjort (2007).

34.6 Exact Risk Calculations

In the previous sections we were able to (i) develop formulae for risk functions
and (ii) construct estimators for these. This led to model selection methods that
may be used in any given application. The present section has a different aim,
namely that of providing classes of case studies where the risk function formulae
can be computed explicitly, thereby establishing a fair testing ground for model
selection and model averaging methods. For reasons of space we are content to
derive certain formulae under certain conditions, for biases and variances; these
may then be used to form concrete illustrations and test cases that for reasons
of space cannot be reported on in the present chapter.

Assume that the components x1, . . . , xr of the covariate vector x are dis-
tributed independently of each other, with Laplace transforms E∗exp(−θjxj) =
exp{−Mj(θj)}, say. Then

E∗ exp(−θtx) = exp{−M1(θ1)− · · · −Mr(θr)},



498 N. L. Hjort

from which follows, taking second-order derivatives with respect to the θ com-
ponents, that

E∗ exp(−θtx)xjxk = exp
{
−

r∑
l=1

Ml(θl)
}
{−M ′′

j (θj)δj,k + M ′
j(θj)M ′

k(θk)},

in terms of first- and second-order derivatives of the Mj functions. This implies
that the r × r limit function G of (34.9) may be expressed as

G(u) = f(u){D(u) + z(u)z(u)t}C(u).

Here f(u) = exp{−∑r
l=1 Ml(Al(u))}; D(u) is the diagonal matrix with elements

Dj(u) = −M ′′
j (Aj(u)); and z(u) is the vector with elements zj(u) = M ′

j(Aj(u)).
For a candidate set I of covariates to include, the blocks of G(u) can be read
off from

G(u) = f(u)C(u)
{(D0 0

0 D1

)
+
(

z0

z1

)(
z0

z1

)t}
,

where D0 and D1 have components Dj(u) where, respectively, j ∈ I and j /∈ I,
and similarly z0 and z1 have components zj(u) where j ∈ I and j /∈ I. In
particular,

G00(u) = f(u)C(u)(D0 + z0z
t
0) and G01(u) = f(u)C(u)z0z

t
1,

leading in turn, via the matrix inversion formula

(D0 + z0z
t
0)

−1 = D−1
0 − 1

1 + zt
0D

−1
0 z0

D−1
0 z0z

t
0D

−1
0 ,

to a formula for G00(u)−1G01(u) and then to

bI(u) = G10(u)G00(u)−1xI − xII

= z1z
t
0

(
D−1

0 − 1
1 + zt

0D
−1
0 z0

D−1
0 z0z

t
0D

−1
0

)
xI − xII

= z1
zt
0D

−1
0 xI

1 + zt
0D

−1
0 z0

− xII .

Assume for a concrete example that xj ∼ gamma(aj , bj) for j = 1, . . . , r, for
which the Laplace transforms are {bj/(bj+θj)}aj with Mj(θj) = ajlog(1+θj/bj).
Then

M ′
j(θj) =

ξj

1 + θj/bj
and M ′′

j (θj) = − ξj/bj

(1 + θj/bj)2
,

with ξj = E∗xj = aj/bj . This yields a bias function bI(u) with components

bI,j(u) =
gI(u)

1 +
∑

j∈I bjξj

ξj

1 + Aj(u)/bj
− xj for j ∈ II = Ic,
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where gI(u) =
∑

j∈I{bj + Aj(u)}xj . It follows that the important bias compo-
nent of (34.12) may be written

√
n

∫ t

0
bt
I dAII =

√
n
{∫ t

0

gI(u)
1 +
∑

j∈I bjξj

∑
j∈II

ξjαj(u)
1 + Aj(u)/bj

du− xt
IIAII(t)

}
.

These bias functions are easily computed and displayed, for given covariate
distributions and given hazard regression functions.

To handle the variance part of (34.13) we need an explicit formula for dJ(u)
and then for

G−1
00 dJ00 G−1

00 and G(u)−1 dJ(u)G(u)−1.

We start with

E∗exp(−sθtx)xjxk = exp
{
−

r∑
l=1

Ml(sθl)
}
{−M ′′

j (sθj)δj,k + M ′
j(sθj)M ′

k(sθk)},

and then take the derivative w.r.t. s, and set s = 1 in the resulting equations.
This yields

E∗ exp{−θtx)xjxk θtx = f∗(θ)[{M ′′′
j (θj)θj − g∗(θ)M ′′

j (θj)}δj,k

−M ′
j(θj)M ′′

k (θk)θk −M ′′
j (θj)M ′

k(θk)θj

+ g∗(θ)M ′
j(θj)M ′

k(θk)],

where

f∗(θ) = exp
{
−

r∑
l=1

Ml(θl)
}

and g∗(θ) =
r∑

l=1

M ′
l (θl)θl.

Let now Aj(t) = αjt for j = 1, . . . , r; that is, the αj regressor functions are
taken constant. The above leads with some further work to a formula for

E∗exp{−xtA(u)}xxt xt dA(u) = f(u){E(u) + F (u)}du,

where the E(u) and F (u) matrix functions are described below; also, f(u) =
exp{−∑r

l=1 Ml(Al(u))} is as for the bias calculations above. The E(u) is diag-
onal with elements

Ej(u) = M ′′′
j (Aj(u))αj − g(u)M ′′

j (Aj(u)),

where g(u) =
∑r

l=1 M ′
l (Al(u))αl. Next, F (u) has (j, k) element

−M ′
j(Aj(u))M ′′

k (Ak(u))αk − M ′′
j (Aj(u))M ′

k(Ak(u))αj

+ g(u)M ′
j(Aj(u))M ′

k(Ak(u)).
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These results may be used to compute the variance terms

xt
I

∫ t

0
G−1

00 dJ00 G−1
00 xI

and thereby the mean squared errors for different candidate models. These
formulae may in particular be used for the case mentioned earlier, with in-
dependent gamma(aj , bj) distribution for the xj components, and for which
M ′′′

j (θj) = 2(ξj/b
2
j )/(1 + θj/bj)3.

Various concrete illustrations may now be given, for the specific case of inde-
pendent gamma distributed covariates, to exhibit and examine various aspects
and issues involved in model selection and model averaging. These relate in var-
ious ways to modelling bias versus estimation variance. We may, for example,
show that when αj(u)s are small in size, then it may be best not to include these
in the selected model, depending also on the sizes of xI and xII . We would also
be able to illustrate how the complexity of the best model increases with higher
sample size, and how the qualitative results depend on the relative spread of
the distributions of covariates.

34.7 Concluding Remarks

Here we offer some concluding comments, some pointing to natural extensions
of the material and methods we have presented above.

1. In a planned extended version of this chapter space will be given to anal-
ysis of a real dataset and to instructive simulation setups.

2. We have throughout used ‘vanilla weights’ for the Aalen estimators Â of
(34.7). With more sophisticated weighting the estimator

Â(t, k) =
∫ t

0

{
n−1

n∑
i=1

Yi(u)ki(u)xix
t
i

}−1
n−1

n∑
i=1

xiki(u) dNi(u)

may perform slightly better; see Huffer and McKeague (1991). Also for
such schemes a FIC and wFIC methodology may be developed, general-
ising methods given in the present chapter.

3. A local asymptotic framework may be put up for the Aalen model, similar
in spirit to that employed in Hjort and Claeskens (2003) and Claeskens
and Hjort (2003) for purely parametric models. Here one would use hazard
rates

hi(u) =
p∑

j=1

xi,jαj(u) +
q∑

j=1

zi,jδj(u)/
√

n,
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with xi,js protected covariates considered important to include in all can-
didate models, and zi,js the potentially discardable ones. A precise asymp-
totic description may now be given of all limiting risk functions, in terms
of the δ1, . . . , δq functions.

4. A fair question to ask is the behaviour of the final estimator, say

H∗(t |x) = H̃
Î
(t |x),

where Î is the data-dependent set of finally included covariates. This is a
complicated question without any easy answer. Inside the local asymptotic
framework of (3), methods of Hjort and Claeskens (2003) may be used to
describe the limit distribution of

√
n{H∗(t |x) − H(t |x)}, in terms of a

nonlinear mixture of biased normals. This also opens the door to general
model average strategies, as opposed to limiting inference methods to
those that rely on deciding on only one model.

5. We have developed machinery for answering the question, “Should co-
variate j be included in the nonparametric Aalen model, or not?”. More
ambitiously and more laboriously, one can give not only two but three
potential outcomes for each covariate: it might be excluded; it might be
included nonparametrically; or it might be included parametrically. The
latter possibility refers for example, to the model where αj(u) is constant;
see McKeague and Sasieni (1994) for treatment of such models. Again a
FIC and a wFIC apparatus may be developed, requiring, however, more
mathematical vigour.
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Abstract: In this chapter we discuss measures of information and divergence
and model selection criteria. Three classes of measures, Fisher-type, divergence-
type, and entropy-type measures, are discussed and their properties are pre-
sented. Information through censoring and truncation is presented and model
selection criteria are investigated including the Akaike information criterion
(AIC) and the divergence information criterion (DIC).
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35.1 Introduction

Measures of information appear everywhere in probability and statistics. They
also play a fundamental role in communication theory. They have had a long
history since the papers of Fisher, Shannon, and Kullback. There are many
measures each claiming to capture the concept of information or simply being
measures of (directed) divergence or distance between two probability distribu-
tions. Also there exist many generalizations of these measures. One may mention
here the papers of Lindley and Jaynes who introduced entropy-based Bayesian
information and the maximum entropy principle for determining probability
models, respectively.

Broadly speaking there are three classes of measures of information and di-
vergence: Fisher-type, divergence-type, and entropy (discrete and differential)-
type measures. Some of them have been developed axiomatically (see, e.g.,
Shannon’s entropy and its generalizations), but most of them have been
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established operationally in the sense that they have been introduced on the
basis of their properties.

There have been several phases in the history of information theory: Initially
we have (i) the development of generalizations of measures of information and
divergence [f -divergence, (h-f)-divergence, hypoentropy, etc.], (ii) the synthesis
(collection) of properties they ought to satisfy, and (iii) attempts to unify them.
All this work refers to populations and distributions. Later on we have the
emergence of information or divergence statistics based on data or samples and
their use in statistical inference primarily in minimum distance estimation and
for the development of asymptotic tests of goodness-of-fit or model selection
criteria. Lately we have had a resurgence of interest in measures of information
and divergence which are used in many places, in several contexts, and in new
sampling situations.

The measures of information and divergence enjoy several properties such as
nonnegativity, maximal information, and sufficiency, among others and statis-
ticians do not agree on all of them. There is a body of knowledge known as
statistical information theory which has made many advances but not achieved
wide acceptance and application. The approach is more operational rather than
axiomatic as is the case with Shannon’s entropy.

There are several review papers that discuss the above points. We men-
tion the following: Kendall (1973), Csiszar (1977), Kapur (1984), Aczel (1986),
Papaioannou (1985, 2001), and Soofi (1994, 2000).

The aim of this chapter is to present recent developments on measures of in-
formation and divergences and model selection criteria. In particular, in Section
35.2 we present a number of measures of information and divergence and in Sec-
tion 35.3 we discuss the most important properties of these measures. In Section
35.4 we review information and divergence under censoring including measures
associated with weighted distributions and truncated data. Finally in Section
35.5 we cover issues related to model selection by discussing the well-known AIC
criterion [Akaike (1973)] and introducing the divergence information criterion
(DIC).

35.2 Classes of Measures

As mentioned earlier there are three classes of measures of information and
divergence: Fisher-type, divergence-type, and entropy-type measures. In what
follows assume that f(x, θ) is a probability density function (pdf) corresponding
to a random variable X and depending on a parameter θ. At other places X
follows a distribution with pdf f1 or f2.
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35.2.1 Fisher-type measures

The Fisher measure of information introduced in 1925 is given by

IF
X(θ) =

⎧⎨⎩ E
[

∂
∂θ ln f(X, θ)

]2 = −E
[

∂2

∂θ2 ln f(X, θ)
]
, θ univariate∥∥∥E [ ∂

∂θi
ln f(X, θ) ∂

∂θj
ln f(X, θ)

]∥∥∥ , θ k − variate
,

where ||Ai,j || denotes a k × k semidefinite matrix with Ai,j the (i, j) element
of the matrix. The above is the classical or expected information whereas the
observed Fisher information where θ̂ an estimate of θ, is given by

ÎF
X(θ) =

⎧⎪⎨⎪⎩
−∂2 ln f(X,θ̂)

∂θ2 , 1 observation

−∂2 ln f(θ̂|x1,...,xn)
∂θ2 , n observations.

Finally the Fisher information number is given by

IF
X = E

[
∂ ln f(X)

∂X

]2
or equivalently by

JF
X(θ) = −E

[
∂2 ln f(X)

∂X2

]
= E

[
∂ ln f(X)

∂X

]2
− [f ′(b)− f ′(a)],

where a and b are the endpoints of the interval of support of X.
Vajda (1973) extended the above definition by raising the score function to

a power a, a ≥ 1 for the purpose of generalizing inference with loss function
other than the squared one which leads to the variance and mean squared error
criteria. The corresponding measure for a univariate parameter θ is given by

IV
X(θ) = E

∣∣∣∣ ∂

∂θ
ln f(X, θ)

∣∣∣∣a , a ≥ 1.

In the case of a vector-parameter θ, Ferentinos and Papaioannou (1981)
proposed as a measure of information IFP

X (θ) any eigenvalue or special func-
tions of the eigenvalues of Fisher’s information matrix, such as the trace or its
determinant.

Finally Tukey (1965) and Chandrasekar and Balakrishnan (2002) discussed
the following measure of information,

ITB
X (θ) =

⎧⎨⎩
(∂µ/∂θ)2

σ2 , X univariate ∼ f(x, θ), θ scalar

(∂µ/∂θ)′Σ−1(∂µ/∂θ), X vector,

where µ and σ2 (matrix Σ for the vector case) are the mean and the variance
of the random variable X.
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35.2.2 Measures of divergence

A measure of divergence is used as a way to evaluate the distance (divergence)
between any two populations or functions. Let f1 and f2 be two probability
density functions which may depend on an unknown parameter of fixed fi-
nite dimension. The most well-known measure of (directed) divergence is the
Kullback–Leibler divergence which is given by

IKL
X (f1, f2) =

∫
f1ln(f1/f2)dµ

for a measure µ. If f1 is the density of X = (U, V ) and f2 is the product of
the marginal densities of U and V , IKL

X is the well-known mutual or relative
information in coding theory.

The additive and nonadditive directed divergences of order a were intro-
duced in the 1960s and the 1970s [Renyi (1961), Csisczar (1963), and Rathie
and Kannappan (1972)]. The so-called order a information measure of Renyi
(1961) is given by

IR
X(f1, f2) =

1
a− 1

ln
∫

fa
1 f1−a

2 dµ, a > 0, a �= 1.

It should be noted that for α tending to 1 the above measure becomes the
Kullback–Leibler divergence. Another measure of divergence is the measure of
Kagan (1963) which is given by

IKa
X (f1, f2) =

∫
(1− f1/f2)2f2 dµ.

Csiszar’s measure of information [Csiszar (1963)] is a general divergence-type
measure, known also as ϕ-divergence based on a convex function ϕ. Csiszar’s
measure is defined by

IC
X(f1, f2) =

∫
ϕ(f1/f2)f2 dµ,

where ϕ is a convex function in [0,∞) such that 0ϕ(0/0) = 0, ϕ(u) →
u→0

0 and

0ϕ(u/0) = uϕ∞ with ϕ∞ = limu→∞[ϕ(u)/u].
Observe that Csiszar’s measure reduces to Kullback–Liebler divergence if

ϕ(u) = u ln u. If ϕ(u) = (1−u)2 or ϕ(u) = sgn(a− 1)ua, a > 0, a �= 1 Csiszar’s
measure yields the Kagan (Pearson’s X2) and Renyi’s divergence, respectively.

Another generalization of measures of divergence is the family of power
divergences introduced by Cressie and Read (1984) which is given by

ICR
X (f1, f2) =

1
λ (λ + 1)

∫
f1 (z)

[(
f1 (z)
f2 (z)

)λ

− 1

]
dz, λ ∈ R,
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where for λ = 0,−1 is defined by continuity. Note that the Kullback–Leibler
divergence is obtained for λ tending to 0.

One of the most recently proposed measures of divergence is the BHHJ
power divergence between f1 and f2 [Basu et al. (1998)] which is denoted by
BHHJ, indexed by a positive parameter a, and defined as

IBHHJ
X (f1, f2)

=
∫ {

f1+a
2 (z)−

(
1 +

1
a

)
f1 (z) fa

2 (z)+
1
a
f1+a
1 (z)

}
dz, a > 0.

Note that the above family which is also referred to as a family of power diver-
gences is loosely related to the Cressie and Read power divergence. It should be
also noted that the BHHJ measure reduces to the Kullback–Leibler divergence
for α tending to 0 and to the standard L2 distance between f1 and f2 for α = 1.

The above measures can be defined also for discrete settings. Let P =
(p1, p2, . . . , pm) and Q = (q1, q2, . . . , qm) be two discrete finite probability distri-
butions. Then the discrete version of Csiszar’s measure is given by IC

X (P,Q) =∑m
i=1 qiϕ (pi/qi) and the Cressie and Read divergence is given by

ICR
X (P,Q) =

1
λ(λ + 1)

m∑
i=1

pi

[(
pi

qi

)λ

− 1

]
, λ ∈ R,

where again for λ = 0,−1 is defined by continuity. The discrete version of the
BHHJ measure can be defined in a similar fashion.

For a comprehensive discussion about statistical inference based on measures
of divergence the reader is referred to Pardo (2006).

35.2.3 Entropy-type measures

Let P = (p1, p2, . . . , pm) be a discrete finite probability distribution associated
with a r.v. X. Shannon’s entropy is defined by

HS
X = −

∑
piln pi.

It was later generalized by Renyi (1961) as entropy of order a:

HR
X =

1
1− a

ln
∑

pa
i , a > 0, a �= 1.

A further generalization along the lines of Csiszar’s measure based on a
convex function ϕ, known as ϕ-entropy, was proposed by Burbea and Rao (1982)
and is given by Hϕ

X = −
∑k

i=1 ϕ(pi). Finally, it is worth mentioning the entropy
measure of Havrda and Charvat (1967):

HC
X =

1−
∑

pa
i

a− 1
, a > 0, a �= 1
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which for a = 2 becomes the Gini–Simpson index. Other entropy-type measures
include the γ-entropy given by

Hγ
X =

1−
(∑

p
1/γ
i

)γ

1− 2γ−1
, γ > 0, γ �= 1

and the paired entropy given by

HP
X = −

∑
piln pi −

∑
(1− pi)ln(1− pi),

where pairing is in the sense of (pi, 1− pi) [see, e.g., Burbea and Rao (1982)].

35.3 Properties of Information Measures

The measures of divergence are not formal distance functions. Any bivariate
function IX(·, ·) that satisfies the nonnegativity property, namely IX(·, ·) ≥ 0
with equality iff its two arguments are equal can possibly be used as a measure
of information or divergence. The three types of measures of information and
divergence share similar statistical properties. Several properties have been in-
vestigated some of which are of axiomatic character and others of operational.
Here we briefly mention some of these properties. In what follows we use IX

for either IX(θ1, . . . , θk), k ≥ 1, the information about (θ1, . . . , θk) based on the
r.v. X or IX(f1, f2), the measure of divergence between f1 and f2.

One of the most distinctive properties is the additivity property. The weak
additivity property is defined as

IX,Y = IX + IY , if X is independent of Y

and the strong additivity is defined by

IX,Y = IX + IY |X ,

where IY |X = E(IY |X=x) is the conditional information or divergence of Y |X.
The subadditivity and superadditivity properties are defined through weak ad-
ditivity when the equal sign is replaced with an inequality:

IX,Y ≤ IX + IY (subadditivity)

and
IX,Y ≥ IX + IY (superadditivity).
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Observe that super- and subadditivity are contradictory. Subadditivity
is not satisfied for any known measure except Shannon’s entropy [see, e.g.,
Papaioannou (1985)]. Superadditivity coupled with equality iff X and Y in-
dependent is satisfied by Fisher’s information number (Fisher’s shift-invariant
information) and mutual information [see, e.g., Papaioannou and Ferentinos
(2005) and Micheas and Zografos (2006)]. Superadditivity generates measures
of dependence or correlation whereas subadditivity stems from the conditional
inequality (entropy).

Three important inequality properties are the conditional inequality given
by

IX|Y ≤ IX ,

the nuisance parameter property given by

IX(θ1, θ2) ≤ IX(θ1),

where θ1 is the parameter of interest and θ2 is a nuisance parameter and the
monotonicity property (maximal information property) is given by

IT (X) ≤ IX

for any statistic T (X). Note that if T (X) is sufficient then the monotonicity
property holds as equality which shows the invariance property of the measure
under sufficient transformations.

Let α1 and α2 be positive numbers such that α1 + α2 = 1. Also let f1 and
f2 be two probability density functions. The convexity property is defined as

IX(α1f1 + α2f2) ≤ α1IX(f1) + α2IX(f2).

The order-preserving property has been introduced by Shiva et al. (1973) and
shows that the relation between the amount of information contained in a r.v
X1 and that contained in another r.v. X2 remains intact irrespective of the
measure of information used. In particular, if the superscripts 1 and 2 represent
two different measures of information then

I1
X1
≤ I1

X2
→ I2

X1
≤ I2

X2
.

The limiting property is defined by

fn → f iff IX(fn) → I(f) or IX(fn, f)→ 0,

where fn is a sequence of probability density functions, f is a limiting probabil-
ity density function, and I(fn) and I(fn, f) are measures of information based
on one or two pdfs, respectively.
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We finally mention the Ali–Silvey property: If f(x, θ) (or simply fθ) has the
monotone likelihood ratio property in x then

θ1 < θ2 < θ3 → IX(fθ1 , fθ2) < IX(fθ1 , fθ3).

Other important properties concern loss of information and sufficiency in ex-
periments. For details see Ferentinos and Papaioannou (1981) and Papaioannou
(1985).

35.4 Information Under Censoring and Truncation

Let X be the variable of interest and Y the censoring variable. We observe
(Z, δ) where Z = min(X,Y ) and δ = I[X≤Y ] an indicator function. The full
likelihood for (Z, δ) is

L(z, δ) = [f(z, θ)Ḡ(z, θ)]δ[g(z, θ)F̄ (z, θ)]1−δ ,

where f and g are the pdfs of X and Y , F and G are the cdfs of X and Y ,
Ḡ = 1−G, and F̄ = 1−F . The Fisher information about θ contained in (Z, δ)
is given by

IF
(Z,δ)(θ) = E

(
∂

∂θ
log L(Z, δ)

)2

=

+∞∫
−∞

(
∂

∂θ
log fḠ

)2

dz +

+∞∫
−∞

(
∂

∂θ
log gF̄

)2

dz.

Consider now f1 and f2 two different pdfs for the random variable X. Then the
Csiszar’s ϕ-divergence between f1 and f2 based on (Z, δ) is defined as

IC
(Z,δ)(f1, f2) =

+∞∫
−∞

f2Ḡϕ

(
f1

f2

)
dz +

+∞∫
−∞

gF̄2ϕ

(
F̄1

F̄2

)
dz.

The basic properties of the above (under censoring) measures of information
have been investigated by Tsairidis et al. (1996).

In random censoring two additional properties introduced by Hollander et al.
(1987, 1990) and called the “acid test properties” are appropriate. They are the
maximal information property given by

(i) E[Information(X)] ≥ E[Information(Z, δ)] for every X,Y

and the censoring property given by

(ii) E[Information(Z1, δ1)] ≥ E[Information(Z2, δ2)] for every X,
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where (Zi, δi) is the censored variable associated with Yi, and Y1 <st Y2. The
censoring property indicates that as censoring increases, namely when Y1 <st Y2,
information decreases. The acid test properties are satisfied for any classical
measure of information when censoring is noninformative.

Sometimes, particularly in quality control, random censoring is coarser (i.e.,
qualitative), where when we randomly inspect the items we record the value
of δ (i.e., whether the item has failed before and we do not record the exact
lifetime) and the inspection (censoring) time Y . This type of censoring is called
quantal random censoring [Nelson (1982)]. For quantal random censoring, the
distribution of δ given Y = y is Bernoulli with probability of success p = F (y, θ).
The conditional Fisher information is

I
C(qrc)
(δ,Y )|Y =y(θ) =

(F ′(y, θ))2

F (y, θ)(1 − F (y, θ))

and Csiszar’s conditional divergence between f1 and f2 is

I
C(qrc)
(δ,Y )|Y =y(f1, f2) = F2(y)ϕ

(
F1(y)
F2(y)

)
+ F̄2(y)ϕ

(
F̄1(y)
F̄2(y)

)
,

where F̄i(·) = 1 − Fi(·), i = 1, 2. Unconditionally we have the following Fisher
and Csiszar quantal random censoring informations based on (δ, Y ).

IF
qrc(θ) ≡ I

F (qrc)
(δ,Y ) (θ) =

∫ ∞

0
g(y)

(F ′(y, θ))2

F (y, θ)(1 − F (y, θ))
dy

and

IC
qrc(f1, f2) ≡ I

C(qrc)
(δ,Y ) (f1, f2) =

∞∫
0

{
g(y)F2(y)ϕ

(
F1(y)
F2(y)

)
+F̄2(y)ϕ

(
F̄1(y)
F̄2(y)

)}
dy,

respectively. The following results have been established [Tsairidis et al. (2001)],

IF
qrc(θ) ≤ IF

(Z,δ)(θ) and IC
qrc(f1, f2) ≤ IC

(Z,δ)(f1, f2),

that is, quantal random censoring, although less expensive, is less informative
than complete random censoring.

Comparison of various statistics in terms of their information content has
not received much attention or use in the statistical literature and practice. Be-
low we report some recent results in the areas of weighted distributions, order
statistics, and truncated data [see, e.g., Papaioannou et al. (2006)]. A weighted
distribution is a distribution which has a density in its pdf; that is, if f(x, θ)
is a density, we use a density proportional to w(x)f(x, θ) to make inferences
about θ. Weighted distributions are used to model ascertainment bias. Iyengar
et al. (1999) studied conditions under which the Fisher information about θ
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obtained from a weighted distribution, is greater than the same information
obtained from the original density f(x, θ), where f(x, θ) belongs to the expo-
nential family of distributions. This is clearly a result on information. Thus,
there are cases where the Fisher information about θ contained in an order
statistic, is greater than the same information contained in a single observa-
tion. This follows from the fact that the distribution of an order statistic is
a weighted distribution. It turns out that for the normal distribution with σ2

known, IF
X(k)

(θ) ≥ IF
X(θ), where X(k) is the kth order statistic of a random sam-

ple X1,X2, . . . ,Xk from N(θ, σ2). This result is in agreement with our intuition,
because the order statistic essentially involves the whole sample.

Several studies have shown that the tails of an ordered sample from a sym-
metric distribution contain more Fisher information about the scale parame-
ter than the middle portion. Zheng and Gastwirth (2000, 2002) examined the
Fisher information about the scale parameter in two symmetric fractions of or-
der statistics data from four symmetric distributions. They showed that for the
Laplace, logistic, and normal distributions, the extreme tails usually contain
most of the Fisher information about the scale parameter, whereas the middle
portion is less informative. For the Cauchy distribution the most informative
two symmetric fractions are centered at the 25th and 75th percentiles.

Similar results as in the previous paragraph exist when we deal with trun-
cated data, and in particular samples from truncated exponential distributions.
Bayarri et al. (1989) give conditions under which for the Fisher information
IF
X ≥ IF

Y or IF
X ≤ IF

Y , where X follows an arbitrary exponential distribution of
the form

f(x, θ) = a(x) exp(b(θ)u(x)/c(θ), θ ∈ Θ

and Y follows the truncated distribution

g(y, θ) =
{

f(y, θ)/s(θ), for y ∈ S
0, otherwise.

The set S, a subset of the sample space of X, is the truncation or selection
set with s(θ) = Pθ(X ∈ S) =

∫
S f(x, θ)dx. A selection sample from the right

tail of the normal distribution contains less Fisher information about the mean
than an unrestricted random sample when the variance is known, but more
information about the variance than an unrestricted random sample when the
mean is known.

Other interesting informativity applications appear with the residual life-
time of a stationary renewal process or with truncated distributions. For details
see Iyengar et al. (1999).
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35.5 Model Selection Criteria

The measures of divergence are used as indices of similarity or dissimilarity
between populations. They are also used either to measure mutual informa-
tion concerning two variables or to construct model selection criteria. A model
selection criterion can be considered as an approximately unbiased estimator
of an expected “overall divergence,” a nonnegative quantity that measures the
“distance” between the true unknown model and a fitted approximating model.
If the value of the criterion is small then the approximated model is good. The
Kullback–Leibler measure was the one used by Akaike (1973) to develop the
Akaike information criterion (AIC). Here we apply the same methodology used
for AIC to the BHHJ divergence in order to develop the divergence information
criterion (DIC).

Consider a random sample X1, . . . ,Xn from the distribution g (the true
model) and a candidate model fθ from a parametric family of models {fθ},
indexed by an unknown parameter θ ∈ Θ. To construct the new criterion for
goodness-of-fit we consider the quantity:

Wθ =
∫ {

f
1+a

θ (z)−
(
1 + a−1

)
g (z) f

a

θ (z)
}

dz, a > 0 (35.1)

which is the same as the BHHJ divergence without the last term that remains
constant irrespective of the model fθ used. Observe that (35.1) can also be
written as

Wθ = Efθ

(
f

a

θ (Z)
)
−
(
1 + a−1

)
Eg

(
f

a

θ (Z)
)
, a > 0. (35.2)

35.5.1 The expected overall discrepancy

The target theoretical quantity that needs to be estimated is given by

EWθ̂ = E
(
Wθ

∣∣∣θ = θ̂
)

, (35.3)

where θ̂ is any consistent and asymptotically normal estimator of θ. This quan-
tity can be viewed as the average distance between g and fθ up to a constant
and is known as the expected overall discrepancy between g and fθ.

Observe that the expected overall discrepancy can be easily evaluated. More
specifically, the derivatives of (35.2) in the case where g belongs to the family
{fθ} are given by [see Mattheou and Karagrigoriou (2006)]:

(a)
∂Wθ

∂θ
= (a + 1)

[∫
uθ (z) f

1+a

θ (z) dz −Eg

(
uθ (z) f

a

θ (z)
)]

= 0,
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(b)
∂2Wθ

∂θ2
= (a + 1)

{
(a + 1)

∫
[uθ (z)]2 f

1+a

θ (z) dz −
∫

iθf
1+a
θ dz

+ Eg

(
iθ (z) f

a

θ (z)
)
− E g

(
a [uθ (z)]2 f

a

θ (z)
)}

= (a + 1)J ,

where uθ = ∂/(∂θ) (log(fθ)), iθ = −∂2/(∂θ2) (log(fθ)) and J =
∫

[uθ (z)]2

f1+a
θ (z) dz.

Using a Taylor expansion of Wθ around the true point θ0 and for a p-
dimensional row-vector parameter θ, we can show that (35.3) at θ = θ̂ takes the
form

EWθ̂ = Wθ0 +
(a + 1)

2
E

[(
θ̂ − θ0

)
J
(
θ̂ − θ0

)′]
. (35.4)

Observe that in the p-dimensional case iθ and [uθ(z)]2 represent p× p matrices.

35.5.2 Estimation of the expected overall discrepancy

In this section we construct an unbiased estimator of the expected overall dis-
crepancy (35.4). First though we deal with the estimation of the unknown den-
sity g. An estimate of (35.2) w.r.t. g is given by replacing Eg

(
f

a

θ (Z)
)

by its
sample analogue

Qθ =
∫

f
1+a

θ (z) dz −
(

1 +
1
a

)
1
n

n∑
i=1

f
a

θ (Xi) (35.5)

with derivatives given by

(a)
∂Qθ

∂θ
= (a + 1)

[∫
uθ (z) f

1+a

θ (z) dz − 1
n

n∑
i=1

uθ (Xi) f
a

θ (Xi)

]
, a > 0,

(b)
∂2Qθ

∂θ2
= (a + 1)

{
(a + 1)

∫
[uθ (z)]2 f

1+a

θ (z) dz −
∫

iθf
1+a
θ (z) dz

+
1
n

n∑
i=1

iθ (z) f
a

θ (z)− 1
n

n∑
i=1

a [uθ (z)]2 f
a

θ (z)

}
.

It is easy to see that by the weak law of large numbers, as n→∞, we have:[
∂Qθ

∂θ

]
θ0

P−→
[
∂Wθ

∂θ

]
θ0

and
[
∂2Qθ

∂θ2

]
θ0

P−→
[
∂2Wθ

∂θ2

]
θ0

. (35.6)

The consistency of θ̂, expressions (35.5) and (35.6), and a Taylor expansion
of Qθ around the point θ̂ can be used to evaluate the expectation of the estimator
Qθ evaluated at the true point θ0:

EQθ0 ≡ E (Qθ |θ = θ0 ) = EQθ̂ +
a + 1

2
E

[(
θ̂ − θ0

)
J
(
θ̂ − θ0

)′]
≡ Wθ0.
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As a result (35.4) takes the form: EWθ̂ = E
{

Qθ̂+(a+1)
[(

θ̂ − θ0

)
J
(
θ̂ − θ0

)′]}
.

It can be shown that under normality,

J = (2π)−
a
2

(
1 + a

1 + 2a

)1+ p
2

Σ−α
2

[
Var
(
θ̂
)]−1

,

where Σ is the asymptotic variance matrix of θ̂. Taking also into consideration

that
(
θ̂ − θ

)
Σ−α

2

[
Var
(
θ̂
)]−1 (

θ̂ − θ
)′

has approximately a X 2
p distribution,

the divergence information criterion defined as the asymptotically unbiased es-
timator of EWθ̂ is given by

DIC = Qθ̂ + (a + 1) (2π)−
a
2

(
1 + a

1 + 2a

)1+ p
2

p.

Note that the family of candidate models is indexed by the single parameter
a. The value of a dictates to what extent the estimating methods become more
robust than the maximum likelihood methods. One should be aware of the fact
that the larger the value of a the bigger the efficiency loss. As a result one
should be interested in small values of a ≥ 0, say between zero and one.

The proposed DIC criterion could be used in applications where outliers or
contaminated observations are involved. The prior knowledge of contamination
may be useful in identifying an appropriate value of a. Preliminary simula-
tions with a 10% contamination proportion show that DIC has a tendency of
underestimation in contrast with AIC which overestimates the true model.

35.6 Discussion

In this chapter we attempted an overview of measures of information and diver-
gence. We discussed several types of measures and several of the most important
properties of these measures. We also dealt with measures under censoring and
truncation as well as weighted distributions and order statistics. Finally we pre-
sented results related to the use of the measures of divergence in model selection
criteria and presented a new divergence information criterion.

The measures of information and divergence have attracted the interest of
the scientific community recently primarily due to their use in several contexts
such as in communication theory and sampling situations. As a result, statis-
ticians need to refocus on these measures and explore further their theoretical
characteristics as well as their practical implications which constitute the main
contributions in the field.
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Entropy and Divergence Measures for Mixed

Variables

Konstantinos Zografos

Department of Mathematics, University of Ioannina, Ioannina, Greece

Abstract: The roles of entropies and divergences in statistics and related fields
are well known as indices of the diversity or variability and as pseudo-distances
between statistical populations. The definition of these measures is extended in
the case of mixed continuous and categorical variables, a case which is common
in practice in the fields of medicine, behavioural sciences, and so on. The role
of these indices in testing statistical hypothesis and as descriptive measures in
the location model is clarified.

Keywords and Phrases: Location model, mixed variables, entropy, diver-
gence

36.1 Introduction

Many times in practice the statistician is faced with mixed, continuous, and cat-
egorical variables. In medicine, for instance, variables such as sex, profession,
smoking, and drinking are categorical whereas variables such as age, weight,
height, and time per week for gymnastics are continuous. In this and similar
situations, the vector random variables include both continuous and categorical
components. There are several options to treat mixed data. If, for example, the
qualitative variables can be subjected to some scoring system, then all vari-
ables can be treated as quantitative. In a similar manner, all the variables can
be treated as qualitative if the quantitative variables might be categorized by
grouping. Another approach is to analyze separately the continuous and the
categorical parts of the data and then to combine the results. But all of the
above procedures involve, according to Krzanowski (1983), some element of
subjectivity. If, for example, we treat the continuous variables as categorical
by grouping them, then this procedure results in a loss of information due to
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the grouping of observations. If we treat the continuous and the categorical
variables separately and combine the results of the individual analyses then we
will ignore possible associations and dependencies between the continuous and
the categorical variables which may cause a false final decision. These reasons
motivated several authors to adopt or generalize the location model, introduced
by Olkin and Tate (1961) [cf. also Schafer (1997)], to study this type of mixed
data. The location model helps to handle the joint distribution of mixed con-
tinuous and categorical variables and it has been used to formulate statistical
tests, as well as discrimination and classification rules. Representative work
in testing statistical hypothesis with mixed data are the papers by Afifi and
Elashoff (1969), Bar-Hen and Daudin (1995), Morales et al. (1998), de Leon
and Carrière (2000), Nakanishi (2003), and de Leon (2007). Allocation rules on
this model were investigated, among others, by Krzanowski (1975), Vlachoniko-
lis (1985), Balakrishnan et al. (1986), Cuadras (1989), Nakanishi (1996), Daudin
and Bar-Hen (1999), and Boumaza (2004).

On the other hand, information-theoretic procedures are well known in
statistics and related fields, and entropy and divergence measures provide use-
ful tools in developing, for instance, statistical tests and allocation rules. We
mention the review papers by Soofi (2000), Papaioannou (2001), and the recent
book by Pardo (2006) for a discussion about several measures of information
which appeared in the literature of the subject, the axiomatic characterization
of the said measures, and statistical applications that are based on entropy and
divergence measures. The use of entropies and divergences in the case of mixed
variables is the subject of the papers by Krzanowski (1983), and recently by
Bar-Hen and Daudin (1995), Morales et al. (1998), and Nakanishi (1996, 2003).
To handle the joint distribution of mixed continuous and categorical variables,
Krzanowski (1983) has considered the location model as it is introduced by
Olkin and Tate (1961), whereas Bar-Hen and Daudin (1995) considered a gen-
eralization of the location model.

In Section 36.2, some preliminary concepts are presented with respect to the
location model. This model is applied in Section 36.3 in order to derive measures
of entropy and divergence in the mixed variables case. Sampling properties of
the measures are investigated in the last section, 36.4, and applications for
testing statistical hypothesis are also outlined.

36.2 The Model

The location model has been introduced by Olkin and Tate (1961) and has
since been used in several disciplines in statistics and related fields. In order
to present this model consider q continuous random variables X1, . . . ,Xq and
d categorical random variables Y1, . . . , Yd, where each Yi is observed at ki,
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i = 1, . . . , d, possible states yij, i = 1, . . . , d and j = 1, . . . , ki. Following
Krzanowski (1983) and Bar-Hen and Daudin (1995), the d qualitative random
variables define a multinomial vector Z with c possible states z1, . . . , zc, where
each of the c = k1× k2× · · · × kd states is associated with a combination of the
values yij, i = 1, . . . , d and j = 1, . . . , ki of the qualitative variables. Denote by
pm the probability of observing the state zm, m = 1, . . . , c,

pm = Pr(Z = zm), m = 1, . . . , c, with
c∑

m=1

pm = 1.

Conditionally on Z = zm, m = 1, . . . , c, the q continuous random variables
X = (X1, . . . ,Xq)T are described by a parametric density denoted by fξm

(x);
that is,

fξm
(x) = f(x|Z = zm),

for m = 1, . . . , c. In this context, the joint density, if it exists, with parameter
θ of the random variables X = (X1, . . . ,Xq)T and Z is

fθ(x, z) =
c∑

m=1

f(x|Z = zm) Pr(Z = zm)Izm(z)

=
c∑

m=1

fξm
(x)pmIzm(z), (36.1)

with z ∈ {z1, . . . , zc}, and

Izm(z) =
{

1, if z = zm

0, otherwise
, for m = 1, . . . , c.

The conditional density fξm
(x) = f(x|Z = zm), m = 1, . . . , c, can be any para-

metric family of probability distributions. The classic location model, defined
by Olkin and Tate (1961), considers that conditionally on Z = zm, m = 1, . . . , c,
the q continuous random variables X = (X1, . . . ,Xq)T jointly follow the mul-
tivariate normal distribution with location and scale parameters, respectively,
µm and Σm, with Σm a positive definite matrix of order q, for m = 1, . . . , c. If
we denote by fξm

(x) this conditional density, then

fξm
(x)=f(x|Z=zm)=(2π)−

q
2 |Σm|−

1
2 exp

{
−1

2
(x− µm)T Σ−1

m (x− µm)
}

,

(36.2)

where ξm is the (q(q + 3)/2)-dimensional parameter ξm = (µm,Σm). Bar-
Hen and Daudin (1995) generalized the classic location model by considering
fξm

(x) = f(x|Z = zm) to be any parametric family of probability distributions
and not necessarily the multivariate normal model (36.2). Hence, the joint den-
sity fθ(x, z), given by (36.1), generalizes the well-known classic location model.
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36.3 Entropy and Divergence in the Location Model

In this section the ϕ-entropy and the φ-divergence are defined and studied in
the generalized location model which has been defined previously by (36.1). The
ϕ-entropy is a general measure introduced by Burbea and Rao (1982), among
others. In the discrete case, ϕ-entropy has appeared previously in information-
theoretic literature. In fact, it is the relative entropy introduced independently
by Perez (1967) and Ben-Bassat (1978).

36.3.1 ϕ-entropy in the location model

Let µ1 be the countable measure on Z = {z1, . . . , zc} and µ2 be the Lebesgue
measure on Rq. Denote by µ = µ1 ⊗ µ2 the product measure on Z ×Rq. Then,
for a continuous concave function ϕ, ϕ : (0,∞) → R, the ϕ-entropy, if it exists,
of the joint density fθ(x, z), given by (36.1), is defined by

Hϕ(fθ) =
∫

ϕ(fθ(x, z))dµ, (36.3)

and it can be considered as a descriptive measure of the variability or diversity
of the mixed variables and hence of their joint distribution. If we apply (36.1),
then the ϕ-entropy is reduced to

Hϕ(fθ) =
c∑

m=1

∫
ϕ(pmfξm

(x))dµ2. (36.4)

If ϕ(x) = −x ln x, x > 0, then (36.3) leads to the well-known Shannon entropy
which is immediately obtained by (36.4) and it is given by

HSh(fθ) = −
c∑

m=1

pm ln pm −
c∑

m=1

pm

∫
fξm

(x) ln fξm
(x)dµ2. (36.5)

Taking into account that −
∑c

m=1 pm ln pm is the Shannon entropy
HSh(P ) of the discrete probability distribution P = (p1, . . . , pc) and
−
∫

fξm
(x)ln fξm

(x)dµ2 is the Shannon entropy HSh(fξm
) of the parametric

density fξm
, we conclude from (36.5) that the Shannon entropy HSh(fθ) in the

location model (36.1), is analysed as

HSh(fθ) = HSh(P ) +
c∑

m=1

pmHSh(fξm
). (36.6)

Equation (36.6) means that Shannon entropy in the location model is parti-
tioned into two parts: the first is the Shannon entropy due to the qualitative
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part of the data and the other is the convex combination of the Shannon en-
tropies of the quantitive variables at the c states of the location model.

A more general entropy measure is Rényi’s entropy of order λ which includes
as a special case the Shannon entropy. Rényi’s entropy and other important
measures of entropy are not derived by a direct application of the ϕ-entropy
(36.3). For this reason Pardo (2006, p. 21) has proposed the (h,ϕ)-entropy
which is defined by

Hh,ϕ(fθ) = h

(∫
ϕ(fθ(x, z))dµ

)
, (36.7)

where either ϕ : (0,∞) → R is concave and h : R → R, is differentiable and
increasing or ϕ : (0,∞) → R is convex and h : R → R, is differentiable and
decreasing. Rényi’s entropy is obtained from (36.7) for ϕ(x) = xλ, x > 0,
and h(x) = (1/(1 − λ))log x, for λ > 0, λ �= 1; that is, Rényi’s entropy is
given by

HR(fθ) =
1

1− λ
ln
∫

(fθ(x, z))λdµ. (36.8)

Shannon entropy HSh(fθ) = −
∫

fθ(x, z) ln fθ(x, z)dµ, is obtained from (36.8)
for λ ↑ 1. Other important entropy measures in the location model can be
obtained from (36.7) for particular choices of the functions h and ϕ and appear
in Table 1.1 of Pardo (2006, p. 20).

Example 36.3.1 As an example consider the Shannon entropy in the classic
location model where conditionally on the state Z = zm, m = 1, . . . , c, the q
continuous random variables X = (X1, . . . ,Xq)T jointly follow the multivariate
normal distribution (36.2) with location and scale parameters, respectively, µm

and Σm, for m = 1, . . . , c. In this case the mixed Shannon entropy (36.6) is
analysed as follows,

HSh(fθ) = −
c∑

m=1

pm ln pm +
c∑

m=1

pm

(
p

2
+

p

2
ln(2π) +

1
2

ln |Σm|
)

.

It does not depend on the mean vectors µm, m = 1, . . . , c, of the multi-
variate normal distributions which describe the continuous random variables
X1, . . . ,Xq at the states Z = zm, m = 1, . . . , c. In the homoscedastic normal
case, Σ1 = Σ2 = · · · = Σc = Σ, the Shannon entropy is simplified

HSh(fθ) = −
c∑

m=1

pm ln pm +
p

2
+

p

2
ln(2π) +

1
2

ln |Σ|.

Similar examples can be derived for the case where the conditional densities
fξm

(x), m = 1, . . . , c, are members of the elliptic family of multivariate distri-
butions. Explicit expressions of HSh(fξm

) for members of the elliptic family are
available in Zografos (1999) and Zografos and Nadarajah (2005).
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36.3.2 φ-divergence in the location model

In order to define measures of divergence in the location model, suppose that the
continuous and the categorical variables X1, . . . ,Xq and Y1, . . . , Yd are observed
on the members of two populations π1 and π2. Each of the populations is
described by the generalized location model (36.1) with joint density

fθi
(x, z) =

c∑
m=1

fi(x|Z = zm)pimIzm(z)

=
c∑

m=1

fξim
(x)pimIzm(z), (36.9)

respectively, where pim denotes the probability of observing the state zm in the
population πi, and fξim

the joint density of X1, . . . ,Xq at the state zm of the
population πi, i = 1, 2 and m = 1, . . . , c.

The φ-divergence of fθ1 and fθ2 is defined by

Dφ(fθ1 , fθ2) =
∫

fθ2(x, z)φ
(

fθ1(x, z)
fθ2(x, z)

)
dµ, (36.10)

where φ is a real convex function defined on (0,∞), which, moreover, satisfies
appropriate conditions that ensure the existence of the above integral [cf. Pardo
(2006, p. 5)]. An application of (36.9) leads to the equivalent expression

Dφ(fθ1, fθ2) =
c∑

m=1

p2m

∫
fξ2m

(x)φ
(

p1mfξ1m
(x)

p2mfξ2m
(x)

)
dµ2. (36.11)

Special choices of the convex function φ lead to the Kullback–Leibler di-
rected divergence, the Cressie and Read’s power divergence, and the distances
considered by Krzanowski (1983), as well. Dφ is a measure of the distance be-
tween populations π1 and π2 in the sense that Dφ(fθ1 , fθ2) attains its minimum
value φ(1) if and only if fθ1(x, z) = fθ2(x, z).

For φ(x) = x ln x, (36.11) is reduced to the Kullback–Leibler divergence in
the mixed variables case, which is given by

DKL(fθ1 , fθ2) =
c∑

m=1

p1mln
p1m

p2m
+

c∑
m=1

p1m

∫
fξ1m

(x)ln
fξ1m

(x)
fξ2m

(x)
dµ2. (36.12)

Taking into account thatDKL(P1, P2) =
∑c

m=1 p1mln(p1m/p2m) is the Kullback–
Leibler divergence of the discrete probability distributions Pi = (pi1, . . . , pic),
i = 1, 2, and DKL(fξ1m

, fξ2m
) =

∫
fξ1m

(x)ln[fξ1m
(x)/fξ2m

(x)]dµ2 is the
Kullback–Leibler divergence of the distributions fξ1m

and fξ2m
, the above equa-

tion is equivalently stated

DKL(fθ1
, fθ2

) = DKL(P1, P2) +
c∑

m=1

p1mDKL(fξ1m
, fξ2m

),
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and therefore the Kullback–Leibler divergence in the mixed variables case shares
common property with the Shannon entropy, as formulated by (36.6).

In a similar manner, for φ(x) = [xλ+1 − x− λ(x− 1)]/[λ(λ + 1)], λ �= 0,−1,
(36.11) is reduced to the Cressie and Read (1984) power divergence family in
the mixed variables case. This generalized divergence is formulated as follows,

DCR(fθ1, fθ2) =
1

λ(λ + 1)

{
c∑

m=1

pλ+1
1m

pλ
2m

∫ fλ+1
ξ1m

(x)

fλ
ξ2m

(x)
dµ2 − 1

}
. (36.13)

An interesting divergence measure which is not included in the φ-divergence
is the density power divergence which has been recently introduced by Basu
et al. (1998) for developing a robust estimation procedure. This divergence
between fθ1 and fθ2 is defined by

Da(fθ1, fθ2) =
∫ {

f1+a
θ2

(x, z)−
(

1 +
1
a

)
fθ1(x, z)fa

θ2
(x, z) +

1
a
f1+a

θ1
(x, z)

}
dµ,

or

Da(fθ1 , fθ2) =
c∑

m=1

∫ {
p1+a
2m f1+a

ξ2m
(x)−

(
1 +

1
a

)
p1mpa

2mfξ1m
(x)fa

ξ2m
(x)

+
1
a
p1+a
1m f1+a

ξ1m
(x)
}

dµ2,

in view of the generalized location models (36.9). For a→ 0, Da(fθ1, fθ2) leads
to the Kullback–Leibler divergence DKL(fθ1 , fθ2).

Example 36.3.2 Suppose that conditionally on the state Z = zm, m = 1, . . . , c,
the q continuous random variables X = (X1, . . . ,Xq)T jointly follow the multi-
variate normal distribution (36.2) with location and scale parameters, respec-
tively, µim and Σim, for m = 1, . . . , c, in the ith population πi, i = 1, 2.
This means that the joint densities fξ1m

and fξ2m
are the densities of the

Nq(µ1m,Σ1m) and Nq(µ2m,Σ2m) distributions, respectively. In this case, based
on results of Pardo (2006, p. 45–47), it can be shown that the mixed Kullback–
Leibler divergence is obtained from (36.12) for∫

fξ1m
(x)ln

fξ1m
(x)

fξ2m
(x)

dµ2 =
1
2
(µ1m − µ2m)T Σ−1

2m(µ1m − µ2m)

+
1
2
tr
(
Σ−1

2mΣ1m − I
)

+
1
2
ln
|Σ2m|
|Σ1m|

,

(36.14)
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whereas the Cressie–Read power divergence is obtained from (36.13), for∫
fλ+1

ξ1m
(x)f−λ

ξ2m
(x)dµ2 =

|(λ + 1)Σ2m − λΣ1m|−1/2

|Σ1m|λ/2 |Σ2m|−(λ+1)/2

× exp
{

λ(λ + 1)
2

υT
m [(λ + 1)Σ2m − λΣ1m]−1 υm

}
,

where υm = µ1m − µ2m, m = 1, . . . , c.

36.4 Sampling Properties

In practice, training samples are available from the population described by
fθ(x, z) or the populations πi, which are described by fθi

(x, z), i = 1, 2. Based
on these samples, we are interested in the study of the sampling behaviour of
Hϕ(fθ), or to test the hypothesis of homogeneity of the two populations or to
construct minimum distance rules for the allocation of a new observation as
coming from one of the populations considered. In these cases an estimator of
Hϕ(fθ) or Dφ(fθ1 , fθ2) can be used as a test statistic for testing homogeneity or
it can be used as the main tool in order to define a minimum distance allocation
rule. An estimator of Hϕ(fθ) or Dφ(fθ1 , fθ2) can be obtained, on the basis of
a random sample of size n from fθ(x, z), or on the basis of two independent
random samples of sizes ni, from the populations fθi

(x, z), i = 1, 2. Let θ̂ denote
the maximum likelihood estimator (m.l.e.) of θ and θ̂i denote the m.l.e. of θi,
i = 1, 2. Then, the sample estimators Hϕ(f

θ̂
) and Dφ(f

θ̂1
, f

θ̂2
) of Hϕ and Dφ

are obtained from (36.3) and (36.10), if we replace the unknown parameters by
their m.l.e., in the formulas for Hϕ(fθ) and Dφ(fθ1 , fθ2). The said estimators are
the ϕ-entropy of f

θ̂
and the φ-divergence of f

θ̂1
and f

θ̂2
, defined, respectively,

by

Ĥϕ = Hϕ(f
θ̂
) =
∫

ϕ(f
θ̂
(x, z))dµ, (36.15)

and

D̂φ = Dφ(f
θ̂1

, f
θ̂2

) =
∫

f
θ̂2

(x, z)φ

(
f

θ̂1
(x, z)

f
θ̂2

(x, z)

)
dµ. (36.16)

In the next sections we derive the asymptotic distributions of the statistics
Hϕ(f

θ̂
) and Dφ(f

θ̂1
, f

θ̂2
).

36.4.1 Asymptotic distribution of H ϕ(f θ̂)

Assume that the probability vector P = (p1, . . . , pc) depends on a τ -dimensional
parameter η; that is, P = P (η), with η ∈ Rτ . Suppose also that the joint
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parametric density fξm
(x) of X = (X1, . . . ,Xq)T at the state Z = zm, m =

1, . . . , c, depends on the κ-dimensional parameter ξm ∈ Rκ, m = 1, . . . , c. Under
this notation the generalized location model is formulated as

fθ(x, z) =
c∑

m=1

fξm
(x)pm(η)Izm(z),

and it depends on the (τ + κc)-dimensional parameter

θ = (ηT , ξT
1 , . . . , ξT

c )T = (θ1, θ2, . . . , θτ+κc)T .

In order to estimate Hϕ(fθ), consider a random sample of size n from the mixed
population fθ(x, z). Denote by

θ̂ = (η̂T , ξ̂
T

1 , . . . , ξ̂
T

c )T = (θ̂1, θ̂2, . . . , θ̂τ+κc)T ,

the m.l.e. of the parameter θ, and the sample estimator of Hϕ(fθ) is now de-
fined by (36.15). The asymptotic distribution of Hϕ(f

θ̂
) is stated in the next

proposition. The proof is obtained by following partly the lines of the proof of
Theorem 2.1 in Pardo (2006, p. 60) and it is outlined in the sequel.

Proposition 36.4.1 Under the classical regularity conditions of the asymptotic
statistics [cf. for instance, Pardo (2006, p. 58–60)],

√
n
(
Ĥϕ −Hϕ

) L−→
n→∞ N

(
0, σ2

ϕ(θ)
)
,

where

σ2
ϕ(θ) = T T IF (θ)−1T

= T T
0 IF (η)−1T0 +

c∑
m=1

1
pm(η)

T T
mIF (ξm)−1Tm,

with T being the (τ + κc)-dimensional vector with elements ti = ∂
∂θi

Hϕ(fθ) =∫
ϕ′(fθ(x, z)) ∂

∂θi
fθ(x, z)dµ, i = 1, . . . , τ + κc, T0 the τ -dimensional vector with

elements

T0i =
c∑

m=1

(
∂

∂ηi

pm(η)
)∫

ϕ′ (pm(η)fξm
(x)
)
fξm

(x)dµ2, 1 ≤ i ≤ τ ,

and Tm a κ-dimensional vector with elements

Tmi = pm(η)
∫

ϕ′ (pm(η)fξm
(x)
) ∂

∂ξmi

fξm
(x)dµ2,

for i = 1, . . . , κ and m = 1, . . . , c. IF (η) is used to denote the Fisher information
matrix of the discrete probability distribution P (η) = (p1(η), . . . , pc(η)) and
IF (ξm) is the Fisher information matrix of the parametric family fξm

(x), m =
1, . . . , c.
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Proof. The first-order Taylor expansion of Ĥϕ, considered as a function of θ̂,
around θ gives

Ĥϕ −Hϕ =
τ+κc∑
i=1

ti(θ̂i − θi) + o(||θ̂ − θ||).

Simple algebra leads to ti = T0i, 1 ≤ i ≤ τ and ti = Tmj , for i = τ +(m−1)κ+j,
m = 1, . . . , c and j = 1, . . . , κ. Hence, the (τ + κc)-dimensional vector T can be
equivalently written as T = (T T

0 , T T
1 , . . . , T T

c )T where the vectors T0 and Tm,
m = 1, . . . , c, have been defined in the proposition. Hence

Ĥϕ −Hϕ = T T (θ̂ − θ) + o(||θ̂ − θ||). (36.17)

Taking into account that θ̂ is the m.l.e. of θ,

√
n(θ̂ − θ) L−→

n→∞ N
(
0, IF (θ)−1

)
, (36.18)

and, based on Pardo (2006, p. 61),
√

no(||θ̂− θ||) = oP (1). After some algebraic
manipulations it can be shown that the Fisher information matrix IF (θ) of the
parametric family fθ(x, z) is the block diagonal matrix,

IF (θ) = diag (IF (η), p1(η)IF (ξ1), . . . , pc(η)IF (ξc)) ,

which completes the proof of the proposition, in view of (36.17) and (36.18).

Remark 36.4.1 (a) If we consider Shannon entropy HSh(fθ), then the propo-
sition is valid with

T0i =
c∑

m=1

HSh(fξm
)

∂

∂ηi

pm(η)−
c∑

m=1

(
∂

∂ηi

pm(η)
)

ln pm(η),

for 1 ≤ i ≤ τ and HSh(fξm
) = −

∫
fξm

(x)ln fξm
(x)dµ2. Moreover,

Tmi = −pm(η)
∫ (

∂

∂ξmi

fξm
(x)
)

ln fξm
(x)dµ2, i = 1, . . . , κ, m = 1, . . . , c.

(b) Following the steps of the proof of Corollary 2.1 in Pardo (2006, p. 61)
the asymptotic distribution of the (h,ϕ)-entropy, defined by (36.7), is

√
n
(
Ĥh,ϕ −Hh,ϕ

)
h′ (∫ ϕ(fθ(x, z))dµ

) L→
n→∞ N

(
0, σ2

ϕ(θ)
)
,

where σ2
ϕ(θ) is given in Proposition 36.4.1.

(c) Proposition 36.4.1 can be used in various settings in order to construct
confidence intervals and to test various statistical hypotheses in the location
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model, expressed by means of the ϕ-entropy Hϕ. In this context, all the testing
procedures of Section 2.3 of Pardo (2006) can be presented by means of the
generalized location model. In this direction, presented in the sequel is a test
for the equality of entropies of r independent mixed populations. It is well known
that Shannon entropy and other general entropic indices may be regarded as
descriptive quantities such as the median, mode, and variance [cf., among others,
Guerrero-Cusumano (1996) and Song (2001)]. Hence a test for the equality
of entropies can be considered as a test procedure for testing the equality of
descriptive measures of two or more populations which are discriminated by
means of a set of continuous and categorical variables.

In this case we are interested in testing the hypothesis,

H0 : Hϕ(fθ1) = Hϕ(fθ2) = · · · = Hϕ(fθr),

against the alternative

Ha : There are i, j ∈ {1, . . . , r}, i �= j, such that Hϕ(fθi
) �= Hϕ(fθj

).

For testing the above hypotheses we can use the test statistic

r∑
i=1

ni(Hϕ(f
θ̂i

)−D)2

σ2
ϕ(θ̂i)

,

with a chi-square null distribution with r − 1 degrees of freedom, and

D =

(
r∑

i=1

ni

σ2
ϕ(θ̂i)

)−1 r∑
i=1

niHϕ(f
θ̂i

)

σ2
ϕ(θ̂i)

.

36.4.2 Asymptotic distribution of Dφ(f θ̂1
, f θ̂2

)

Assume as above that under the population πi, i = 1, 2, the probability
vector Pi = (pi1, . . . , pic) depends on a τ -dimensional parameter ηi; that
is, Pi = Pi(ηi) = (p1(ηi), . . . , pc(ηi)), with ηi ∈ Rτ and pim = pm(ηi),
i = 1, 2, m = 1, . . . , c. Suppose also that the joint parametric density fξim

(x)
of X = (X1, . . . ,Xq)T at the state Z = zm, m = 1, . . . , c, depends on the
κ-dimensional parameter ξim ∈ Rκ, m = 1, . . . , c and i = 1, 2. Following
ideas in Bar-Hen and Daudin (1995), we can distinguish between two kinds
of parameters in the model: those which depend on the populations and noisy
parameters which are independent from the populations. To see this let’s con-
sider the next example.

Example 36.4.1 Suppose that conditionally on the state Z = zm, m =
1, . . . , c, the q continuous random variables X = (X1, . . . ,Xq)T jointly fol-
low the multivariate normal distribution (36.2) with location parameters µim,
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m = 1, . . . , c, and common scale matrix Σ, in the ith population πi, i = 1, 2.
This means that the joint densities fξ1m

and fξ2m
are the densities of the

Nq(µ1m,Σ) and Nq(µ2m,Σ) distributions, respectively. In this case taking into
account (36.12) and (36.14),

DKL(fθ1
,fθ2

)

=
c∑

m=1

pm(η1) ln
pm(η1)
pm(η2)

+
1
2

c∑
m=1

pm(η1)(µ1m − µ2m)T Σ−1(µ1m − µ2m).

In this framework, suppose that the mean is modeled with an analysis of vari-
ance model, µim = µ + αi + βm, i = 1, 2, m = 1, . . . , c, where α is the popu-
lation effect and β is the categorical state effect. In this case we observe that
β is not included in the expression of the divergence DKL(fθ1, fθ2) because
µ1m−µ2m = α1−α2. Therefore βm, m = 1, . . . , c, can be considered as a noisy
parameter.

Motivated by the above example, suppose that the τ -dimensional parame-
ter ηi includes a noisy and a structural part; that is, ηi = ((η0

i )
T , (η1

i )
T )T =

(ηi1, . . . ηia, ηi(a+1), . . . , ηi(a+r))T , where η0
i = (ηi1, . . . ηia)T are the noisy param-

eters and η1
i = (ηi(a+1), . . . , ηi(a+r))T are the structural parameters. Moreover,

we assume that the noisy parameters coincide, η1j = η2j , j = 1, . . . , a, in the
two populations π1 and π2. In a similar manner we suppose that the param-
eters ξim, i = 1, 2, m = 1, . . . , c, include a noisy and a structural part, ξim =
((ξ0

im)T , (ξ1
im)T )T = (ξim1, . . . ξim�, ξim(�+1), . . . , ξim(�+s))T and ξ1mj = ξ2mj ,

j = 1, . . . , �, are noisy parameters that coincide in the two populations. Under
this notation, the generalized location model

fθi
(x, z) =

c∑
m=1

fξim
(x)pm(ηi)Izm(z),

in the ith population, i = 1, 2, depends on the [(a + r) + (� + s)c]-dimensional
parameter θi =

(
(η0

i )
T , (η1

i )
T , (ξ0

i1)T , (ξ1
i1)T , . . . , (ξ0

ic)T , (ξ1
ic)T
)T , i = 1, 2. Hence

populations π1 and π2 depend on the parameters θT
1 = (θ11, . . . , θ1k, θ1(k+1), . . . ,

θ1M ) and θT
2 = (θ21, . . . , θ2k, θ2(k+1), . . . , θ2M ), respectively, with M = [(a+r)+

(� + s)c], k = a + �c and θ1j = θ2j , j = 1, . . . , k, are noisy parameters.
In order to estimate Dφ(fθ1 , fθ2), consider two random samples of sizes n1

and n2 from the mixed populations fθ1(x, z) and fθ2(x, z), respectively. Denote
by θ̂i = (θ̂i1, . . . , θ̂ik, θ̂i(k+1), . . . , θ̂iM )T the m.l.e. of the parameter θi, i = 1, 2,
and the sample estimator of Dφ(fθ1 , fθ2) is now defined by (36.16). The asymp-
totic distribution of Dφ(f

θ̂1
, f

θ̂2
) is stated in the next proposition. The proof

is obtained by an application of Theorem 3.1 of Morales et al. (1998) and it is
therefore omitted.
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Proposition 36.4.2 Assume that the classical regularity conditions of the
asymptotic statistics are satisfied. Under the hypothesis of homogeneity of the
populations π1 and π2, that is, under the null hypothesis H0 : θ1 = θ2, we have
for n1, n2 →∞, that

2n1n2

n1 + n2

Dφ(f
θ̂1

, f
θ̂2

)− φ(1)

φ′′(1)
L−→

n1,n2→∞ χ2
r+sc,

provided that φ′′(1) �= 0.

Similar asymptotic results have been obtained previously by Bar-Hen and
Daudin (1995) and Nakanishi (2003), considering Jeffreys’ divergence which is
defined [cf. Kullback (1959, p. 6)] by J(fθ1,fθ2) = DKL(fθ1,fθ2)+DKL(fθ2 ,fθ1).

Proposition 36.4.2 can be used in several disciplines and contexts in order to
state and test various statistical hypotheses which are formulated on the basis
of the parameters of the location model. We present, in the examples which
follow, two applications of the above proposition. For more details we refer to
the paper by Morales et al. (1998).

Example 36.4.2 Consider the case s = 0. This is the case where the param-
eters ξim coincide for i = 1, 2 and m = 1, . . . , c, and therefore the populations
π1 and π2 are discriminated on the basis of their probabilities of observing the
state Z = zm, m = 1, . . . , c. In this case the estimated φ-divergence is reduced
to

D̂φ =
c∑

m=1

pm(η̂2)φ
(

pm(η̂1)
pm(η̂2)

)
,

and under the null hypothesis H0 : η1 = η2,

2n1n2

n1 + n2

D̂φ − φ(1)
φ′′(1)

L−→
n1,n2→∞ χ2

r,

where r is the number of the structural parameters.

Example 36.4.3 Suppose now that r = 0; that is, pm(η1) = pm(η2), or p1m =
p2m, m = 1, . . . , c. In this case the null hypothesis H0 : θ1 = θ2 is equivalent to
the hypothesis H0 : ξ1m = ξ2m, m = 1, . . . , c and

D̂φ =
c∑

m=1

p̂2m

∫
f

ξ̂2m
(x)φ

(
f

ξ̂1m
(x)

f
ξ̂2m

(x)

)
dµ2.

The asymptotic distribution of D̂φ is χ2
sc, according to the Proposition 36.4.2.

In the particular case where X|Z = zm follows a multivariate normal distri-
bution Nq(µ,Σim) under the ith population πi, i = 1, 2 and m = 1, . . . , c, then
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the null hypothesis H0 : θ1 = θ2 is equivalent to the hypothesis of homogeneity
of the dispersion matrices H0 : Σ1m = Σ2m, m = 1, . . . , c, and under this
hypothesis,

2n1n2

n1 + n2

D̂φ − φ(1)
φ′′(1)

L−→
n1,n2→∞ χ2

c[q(q+1)/2].

36.5 Conclusions

The previous asymptotic results are based on the assumption that the sam-
ple sizes n1 and n2 from the populations π1 and π2 are large relative to the
possible states c of the location model. In the opposite case some of the fre-
quencies will be small or zero and the corresponding parameter estimates will
be poor or unobtainable. Iterative estimation procedures have been proposed
by Krzanowski (1975) in order to overcome this problem. Moreover, Nakanishi
(2003) performed a simulation study in order to get an idea about the sample
size which is necessary to test some hypotheses. According to this study more
than 10 × q observations are necessary in each of the c-cells, where q is the
number of the continuous variables. This idea is very rough, but it is perhaps
a precept for applications.

Acknowledgements

A part of this chapter was done while the author was visiting the department
of mathematics and statistics of the University of Cyprus the spring semester
of 2006.

References

1. Afifi, A. A. and Elashoff, R. M. (1969). Multivariate two sample tests with
dichotomous and continuous variables. I. The location model, Annals of
Mathematical Statistics, 40, 290–298.

2. Balakrishnan, N., Kocherlakota, S., and Kocherlakota, K. (1986). On the er-
rors of misclassification based on dichotomous and normal variables, Annals
of the Institute of Statistical Mathematics, 38, 529–538.

3. Bar-Hen, A. and Daudin, J. J. (1995). Generalization of the Mahalanobis
distance in the mixed case, Journal of Multivariate Analysis, 53, 332–342.



Entropy and Divergence in Mixed Variables 533

4. Basu, A., Harris, I. R., Hjort, N. L., and Jones, M. C. (1998). Robust and
efficient estimation by minimising a density power divergence, Biometrika,
85, 549–559.

5. Ben-Bassat, M. (1978). f -entropies, probability of error, and feature selec-
tion, Information and Control, 39, 227–242.

6. Boumaza, R. (2004). Discriminant analysis with independently repeated
multivariate measurements: An L2 approach, Computational Statistics and
Data Analysis, 47, 823–843.

7. Burbea, J. and Rao, C. R. (1982). On the convexity of some divergence
measures based on entropy functions, IEEE Transactions on Information
Theory, 28, 489–495.

8. Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests,
Journal of the Royal Statistical Society, Series B, 46, 440–464.

9. Cuadras, C. M. (1989). Distance analysis in discrimination and classification
using both continuous and categorical variables, In Recent Developments
in Statistical Data Analysis and Inference. (Ed., Y. Dodge), pp. 459–473,
North-Holland, Amsterdam.

10. Daudin, J. J. and Bar-Hen, A. (1999). Selection in discriminant analysis
with continuous and discrete variables, Computational Statistics and Data
Analysis, 32, 161–175.

11. de Leon, A. R. (2007). One-sample likelihood ratio tests for mixed data,
Communications in Statistics—Theory and Methods, 36, 129–141.

12. de Leon, A. R. and Carriere, K. C. (2000). On the one sample location
hypothesis for mixed bivariate data, Communications in Statistics—Theory
and Methods, 29, 2573–2561.

13. Guerrero-Cusumano, J. (1996). A measure of total variability for the mul-
tivariate t distribution with applications to finance. Information Sciences,
92, 47–63.

14. Krzanowski, W. J. (1975). Discrimination and classification using both bi-
nary and continuous variables. Journal of the American Statistical Associ-
ation, 70, 782–790.

15. Krzanowski, W. J. (1983). Distance between populations using mixed con-
tinuous and categorical variables, Biometrika, 70, 235–243.

16. Kullback, S. (1959). Information Theory and Statistics, John Wiley & Sons,
New York.



534 K. Zografos

17. Morales, D., Pardo, L., and Zografos, K. (1998). Informational distances and
related statistics in mixed continuous and categorical variables, Journal of
Statistical Planning and Inference, 75, 47–63.

18. Nakanishi, H. (1996). Distance between populations in a mixture of cate-
gorical and continuous variables. J. Japan Statist. Soc., 26, 221–230.

19. Nakanishi, H. (2003). Tests of hypotheses for the distance between popula-
tions on the mixture of categorical and continuous variables, Journal of the
Japanese Society of Computational Statistics, 16, 53–62.

20. Olkin, I. and Tate, R. F. (1961). Multivariate correlation models with mixed
discrete and continuous variable, Annals of Mathematical Statistics, 32,
448–465.

21. Papaioannou, T. (2001). On distances and measures of information: A case
of diversity, In Probability and Statistical Models with Applications (Eds.,
C. A. Charalambides, M. V. Koutras, and N. Balakrishnan), pp. 503-515,
Chapman & Hall, New York.

22. Pardo, L. (2006). Statistical Inference Based on Divergence Measures, Chap-
man & Hall, New York.

23. Perez, A. (1967). Risk estimates in terms of generalized f -entropies, In
Proceedings of the Colloquium on Information Theory, Vol. II, János Bolyai
Mathematical Society, Budapest, pp. 299–315.

24. Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data, Chapman
& Hall, New York.

25. Song, K-S. (2001). Rényi information, loglikelihood and an intrinsic distri-
bution measure, Journal of Statistical Planning and Inference, 93, 51–69.

26. Soofi, E. S. (2000). Principal information theoretic approaches, Journal of
the American Statistical Association, 95, 1349–1353.

27. Vlachonikolis, I. G. (1985). On the asymptotic distribution of the location
linear discriminant function, Journal of the Royal Statistical Association,
Series B, 47, 498–509.

28. Zografos, K. (1999). On maximum entropy characterization of Pearson’s
type II and VII multivariate distributions, Journal of Multivariate Analysis,
71, 67–75.

29. Zografos, K. and Nadarajah, S. (2005). Expressions for Rényi and Shannon
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Abstract: During the past four decades, clinical trials, having their genesis
in biometric and epidemiologic studies, have been going through an evolution-
ary transition from simple biometric type to (randomized) multiphase placebo-
controlled trials to active controlled equivalence trials to adaption of dynamic
treatment regimens, all generally relating to symptomatic diagnostics. In this
scenario, a newcomer is bioinformatics with its battery of thousands of genes,
interacting with the disease/disorder complexities as well as with environmental
stressors of diverse types. Although the impact of genomics is not yet totally
clear, statistical challenges are mounting, and there is a dire need for develop-
ment of novel and largely nonstandard methodology to cope with the basic sta-
tistical modeling and inference tasks. Some of these perspectives are appraised
here with due consideration of their impact on modern clinical trials.

Keywords and Phrases: ACET, CSI, cost-benefit, FDR, interim analysis,
meta analysis, PCS, PCT, RST

37.1 Introduction

In a little over a period of three decades, clinical trials (CT) have mushroomed
in a variety of human health studies, with a variety of objectives, having a
variety of interdisciplinary perspectives, and diverse implementational motives.
CT are designed by human beings, mostly for human beings, incorporating
mostly human subjects, and supposedly for human benefit. Yet in this human
venture there are some inhuman features that warrant critical appraisal. Using
human subjects in scientific (and mostly exploratory) studies may generally
trigger medical ethics, cost-benefit perspectives, and a variety of other concerns.
In order to control some of these disturbing concerns, often, subhuman primates
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are advocated as precursors or surrogates of human beings with usually different
dose levels as well as periods of exposure, albeit there remains a basic query:
How to extrapolate stochastics from mice to man? Can the basic principles of
animal studies or dosimetry be validated in clinical trials designated for human
being?

There is a basic qualm on the main objective of a clinical trial: symp-
tomatic effects versus true disease–disorder detection and cure. Drug devel-
opers, pharmaceutical groups, and regulatory agencies focus on treatments to
relieve symptoms which may not totally or adequately match treatment objec-
tives. Bioethics and public advocates have voiced concern on clinical trials in
third-world countries, the affordability of usual high-cost drugs being a major
issue in this cost-benefit context. WHO and public health authorities all over
the world are trying to identify effective and affordable regimens for many de-
veloping countries. These medical ethics, economic resources, and operational
restraints often mar the routine use of standard statistical tools for drawing
valid conclusions from CT.

The last but not the least important factor with profound impact on CT is
the ongoing genomics evolution where the search for disease genes and gene–
environment interaction has posed challenging statistical as well as computa-
tional tasks for coping with the basic need for development of valid and effective
statistical tools for modeling and drawing conclusions from such complex trials.
There is a shift of emphasis from symptomatic endpoints to genetic undercur-
rents, mostly in an oligogenic setup, for which standard statistical tools are of
limited utility. In this study, the complexity of modern CT and the genomics
undercurrents are highlighted with due special emphasis on statistical perspec-
tives.

37.2 Biometry to Clinical Trial Methodology

There are some basic differences between dosimetry or animal studies and CT.
The former can be conducted in a fairly controlled laboratory setup, validating
the use of standard statistical inference tools. However, in a CT, human be-
ings cannot be put under such controlled laboratory setups, and as such, the
enormous disparity in physical characteristics and many other epidemiologic
endpoints call for highly nonstandard statistical modeling and analysis. That
is why placebo-controlled trials (PCT) are used extensively in development of
new pharmaceuticals. In the early phase of development of CT, such PCTs
were mostly advocated and underlying constraints were validated, at least to a
certain extent. However, there are allegations that PCT are invariably unethi-
cal when known effective therapy is available for the condition being treated or
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studied, regardless of the condition or the consequences of deferring treatments.
The 1997 Helsinki Declaration by the World Medical Association (WMA) has
clearly laid down the basic ethical principles for clinical trials: In any medical
study, every patient, including those of a control group, if any, should be assured
of the best proven diagnostic and therapeutic methods. Most often, in a PCT,
this ethics is violated by the very composition of the placebo group. Based on
this declaration, patients asked to participate in a PCT must be informed of the
existence of any effective therapy, must be able to explore the consequences of
deferring such therapy with the investigator, and must provide fully informed
consent. To eliminate some of these drawbacks, active controlled equivalence
trials (ACET) have therefore been advocated for comparing an existing treat-
ment with a targeted one. They may show whether a new therapy is superior (or
inferior) to an existing one, but may not possess other characteristics of PCTs
[Temple and Ellenberg (2000) and Sen (2001)]. Basically, in ACET, statistical
reasoning has to be adapted with due respect to most of these complexities.

In many chronic disease and carcinogenic studies, the same treatment may
not be followed through the entire period following the detection of the disease
or disorder. For example, in breast cancer studies, initially after the disease has
been detected for a patient, a particular treatment may be allotted. If over a
specified period of time, say a month, the drugresponse is not within an expected
limit, the treatment regimen is changed or a different dose may be used to suit
the protocol better. In an extreme case, no treatment is allotted due to the
prevailing health condition which may not allow the patient to be subjected to
such high-potency drugs with identified side effects. This scenario has led to the
development of the so-called randomized clinical trials for dynamic regimens.
Dynamic treatment regimens are adjusted to the need and prevailing conditions
(progress) of a patient but are governed by the principles of medical ethics,
cost-benefit (i.e., affordability and efficacy), and other clinical constraints and
adaptable optimality considerations. This is not a cross-over design but more in
line with outcome-dependent longitudinal (or follow-up) data models. Clearly,
much of the simplicity of randomized clinical trials may be lost in this complex
constrained environment and as a result, statistical modeling as well as analysis
could be generally much more complex.

No matter if it is a PCT or an ACET, or even a randomized clinical trial
with dynamic treatment regimens, there are numerous underlying constraints
calling for novel constrained statistical inference (CSI) tools [Silvapulle and Sen
(2004)] for statistical analysis. There is another feature common to both PCT
and ACETs. In CT, it is typically a longitudinal data model, so it may be
desirable in such a follow-up study to have interim analysis to monitor the
accumulating clinical evidence in the light of statistical perspectives. Although
this feature has led to the evolution of time-sequential statistical methodology,
there remains much to update this novel branch of CSI (constrained statistical
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inference) in light of the underlying constraints and complications. It is usually
desirable to look into the accumulating datasets at regular time intervals, and
statistically deciding whether an early termination of the trial can be made in
favor of the new therapy (if that is to be advocated in the drug market) so that
patients can be switched to a better health perspective. Thus, usually, a re-
peated significance testing (RST) scheme, often in a restrained setup, underlies
statistical modeling and analysis of clinical trials. In conventional group sequen-
tial tests (GST) usually one assumes independent and homogeneous increments
for the associated stochastic processes. This is generally not the case in interim
analysis related RST. Progressively censoring schemes (PCS) were introduced
by Chatterjee and Sen (1973) to formulate the general methodology of time-
sequential procedures; suitable martingale characterizations underlie most of
these developments [Sen (1981, 1999a, 2001)]. Faced with a need to update this
approach in a more general framework to suit the ACET, let us consider the
following statistical scenario.

37.3 Interim Analysis and Statistical Tests

Consider a typical constrained statistical interim analysis scheme relating to a
comparative CT where an existing therapy and a new one are to be compared
with respect to their therapeutic efficacy, side effects as well as cost-benefit
perspectives. Although a trial may be planned for a predetermined duration
of time, the above considerations usually advocate a monitoring of the trial,
either on a continual time basis or more conveniently at regular time intervals
when no drastic effect is anticipated within a small time interval. The interim
analysis relates to monitoring of the accumulating evidence at time points

t1 < · · · < tK for some specified K, (37.1)

spanning a preplanned period of study T = (0, tK). If, at an early (or interme-
diate) time point tk, there appears to be a significant difference (in favor of the
new drug), then the trial is to be terminated at that point. The null hypothesis
(H0) relates to no difference over the entire period T and the alternative (H1)
to the new being better than the existing. We frame the null hypothesis H0r

that up to the time point tr there is no difference between the two therapies,
and let H1r be the alternative that for the first time, at time point tr, there is
a difference in favor of the new drug, for r = 1, . . . ,K. Then, restricted to the
time domain T , we may note that there is a nested nature of these hypotheses.
The null hypothesis H0 is accepted only when all the H0r are accepted, whereas
the alternative hypothesis H1 is accepted when at least one of the K exclusive
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hypotheses H1r, 1 ≤ r ≤ K is accepted. Hence we write

H0 =
K⋂

r=1

H0r, H1 =
K⋃

r=1

H1r. (37.2)

Note that the tenacity of the null hypothesis up to an intermediate point tr
may not preclude a significant difference at a later time, whereas a significant
difference at any time point precludes a no-difference scenario over the entire
span of the study. That is why the acceptance of the null hypothesis is deferred
to the end of the trial although rejection may occur earlier. Furthermore, based
on the accumulating data set up to the time point tr, we construct a suitable
test statistic Lr for testing H0r versus H1r, r = 1, . . . ,K. This is essentially
a RST problem in a constrained environment, and the nature of the null and
alternative hypotheses immediately calls for the [Roy (1953)] UIP (union in-
tersection principle). There are, however, some notable differences between the
clinical trial and usual multiple hypothesis testing problems. The UIP has a
finite intersection/union mode that makes it more cumbersome to incorporate
appropriately. Furthermore, accumulating datasets have a nested structure that
may preclude independence and homogeneity of increments. Because of clinical
and ethical undercurrents, first we appraise the potential constraints.

Restraint 1: The component hypotheses are nested. For each r(= 1, . . . ,K),
H1r is a one-sided alternative.

Restraint 2: For different r(= 1, . . . ,K), the different test statistics Lr are not
independent, and the pattern of their dependence may not follow a Markov
chain.

Restraint 3: Early termination of the trial is associated with the acceptance of
H1r, for some r < K. It might be also due to significant adverse side effects
of the treatment, irrespective of the accumulating statistical evidence.

Restraint 4: Explanatory variables provide useful statistical information, and
hence, need to be included as far as possible, albeit increasing model
complexity and CSI protocols.

Restraint 5: Conventional (log-)linear regression models may not be appropri-
ate. Some of the explanatory variables (viz., smoking, physical exercise,
diabetic, etc.) may be binary, or at best, categorical. Even if they were
quantitative, often for data recording, they are reported as categorical.

Restraint 6: Informative censoring: Censoring due to noncompliance (e.g.,
dropout or failure due to other causes) may not be independent of the
placebo-treatment setup.
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Restraint 7: Surrogate endpoint: Often, the primary endpoint may be costly
from data collection perspectives, and some closely related or associated
(by symptoms, e.g.) variables, termed surrogate endpoints are used as
substitutes. The statistical model for the surrogate endpoint could be
quite different from the primary one. Furthermore, multiple endpoints
may also crop up in such studies. Standard parametric multivariate CSI
tools may not be properly usable.

Restraint 8: Assessment of statistical quality of accumulating data with due
respect to the underlying clinical and statistical restraints could be a
major task.

Restraint 9: Parametric models may not suit the purpose. Nonparametrics and
semiparametrics may perform better. However, the underlying restraints
in semiparametrics may generally need critical appraisal. Nonparametrics
may fare better but may require larger sample sizes to be of good quality
and efficacy.

Restraint 10: Data mining: The advent of genomics is increasingly advocating
for a large number of endpoints and explanatory variables, and knowledge
discovery and data mining (KDDM) tools are being advocated more and
more. This does not, however, diminish the primary concern: to what
extent is statistical inference not compromised or invalidated by data
mining?

Suppose now that taking into account most of these restraints, albeit in
approximate forms, it is possible to observe the partial dataset Dt up to the
time point t, so that Dt is nondecreasing (accumulating) in t ∈ T . Let Ft

be the history process up to the time point t, so that Ft is nondecreasing in
t ∈ T . Furthermore, suppose that if all the (n) observations were available
(i.e., the dataset includes all responses and all explanatory variables), then
for testing H0 against a restricted alternative H1, we would have a desirable
test statistic which we denote by Ln. In a parametric setup, Ln could be a
version of the likelihood ratio statistic or some of its variants such as the partial
likelihood (score), penalized likelihood score, and so on. In semiparametrics,
pseudo-likelihood, quasi-, or profile likelihood statistics might be usable. In
nonparametrics, rank statistics have more appeal. At this stage, it might be
better to force a distinction between PCT and ACET with respect to underlying
statistical models. In PCT, the placebo or control group having no drugs or
treatments may often qualify for the Cox (1972) proportional hazards model
(PHM) and as such, semiparametrics, based on the PHM structure may have a
natural appeal. On the other hand, in ACET, in the presence of existing drugs,
the control group structure may be largely compromised, and as a result, a
PHM needs to be justified in the specific context under study. The advantage
of the PHM lies in more efficient inference for the finite-dimensional regression
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parameters at the cost of reduced efficiency for the baseline (unknown) survival
function. Thus, if the objective is to infer on the baseline hazard function, a
PHM-based analysis may be misleading unless the PHM structure can be at
least approximately justified. Thus, depending on the objectives of a trial, the
choice of nonparametric versus semiparametric models has to be decided, there
being no clear-cut option, in general. Available sample size has a basic role to
play in this context too.

With a suitable choice of a model and relating statistical perspectives, we
may set without any loss of generality E(Ln|H0) = 0. Let us then define

Ln(t) = EH0{Ln | Ft}, t ≥ 0. (37.3)

Then, under fairly general regularity assumptions, under H0,

{Ln(t),Ft; t ≥ 0} is a zero mean martingale (array), (37.4)

although this martingale characterization may not generally hold when the null
hypothesis is not true. Typically, we may construct the partial sequence (ar-
ray) of projected statistics at every successive failure point, resulting in a dis-
crete time parameter process, or more generally, we can construct a continuous
time parameter process by usual linear segmenting between successive failure
points. Even so, under such reconstructions, Ln(t) may not have independent
and stationary increments, even under the null hypothesis. Our task is to set a
time sequential or RST procedure based on the reduced and discretized time-
parameter process {Ln(tj), j ≤ K}. Thus, we are confronted with suitable CSI
procedures amenable to RST or interim analysis. Intuitively, we could conceive
of an array of cut-off points: {Cnr, r = 1, . . . ,K}, such that if Ln(t1) ≥ Cn1, we
stop the trial along with the rejection of H0; if not, we go to the next time period
t2 and then if Ln(t2) ≥ Cn2, we stop at that time along with the rejection of
the null hypothesis. Otherwise we proceed to the next time period. In this way,
the process continues, and if for the first time, for some k ≤ K, Ln(tk) ≥ Cnk,
we reject the null hypothesis at that point and stop the trial. Thus, we proceed
to accept the null hypothesis only when Ln(tj) < cnj ,∀j ≤ K after continuing
the trial to its target time tK .

The basic problem is to control the type I error rate (i.e., the probability
of rejecting the null hypothesis when it is actually true) without sacrificing
much power in such an interim analysis scheme. This, in turn, requires a skilful
choice of the cut-off points Cnr, r ≤ K, which generally depend not only on
the tk, k ≤ K but also on the accumulated statistical information at these
points, and the latter is generally unknown or, at least, not properly estimable
at the start of the trial. In this respect, we appraise the role of UIP along
with other competitors. Group sequential tests, formulated mostly in the late
1970s, make explicit use of normal distribution and equal increment assumptions
which may not be generally true in such a time-sequential setup. Even so,
they needed extensive computation of the cut-off points. For some of these
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details, we refer to Sen (1999a). Led by the basic weak convergence results for
progressively censored linear rank statistics [Chatterjee and Sen (1973)] some
of these computational complexities have been eliminated considerably.

Typically, by virtue of the martingale property, there exists a (random)
time-parameter transformation (induced by the partial information) by which
the process {Ln(t), t ∈ T} can be written as Wn,T = {Wn,T (u), u ∈ [0, 1]} such
that under the null hypothesis, Wn,T converges weakly to a Brownian motion
on [0, 1]. By the same transformation, the usual calendar time points tr, r =
1, . . . ,K are converted into (random) information time points u1 < · · · < uK .
Thus, we reduce the problem to a multivariate one-sided alternative hypothesis
testing the CSI problem for which the UIT sketched in detail in Silvapulle and
Sen (2004, Chapters 3–5) works out well. Basically, we have to construct the
Wn,T (ur), r ≥ 1, and find a suitable cut-off point τα∗ and a significance level α∗

such that for a chosen α,

P{Wn,T (ur)/
√

ur < τα∗ ,∀r |H0} ≤ α. (37.5)

Because a Brownian motion process W (t), t ∈ [0, 1] has irregular behavior with
respect to the square root boundary as t → 0, technically, we need that u1 is
away from 0. If the ur are scattered over (0, 1] and K is large, a more conve-
nient way of computing the cut-off points would be to appeal to the boundary-
crossing probability of standard Brownian motion over one-sided square root
boundaries; DeLong (1981) has provided detailed tables for these. This approx-
imation is quite good when K is larger than 10, as is often the case of clinical
trials with long-range follow-up time. Here also, the tabulated critical values
correspond to some small truncation at 0 [i.e., over the range [ε, 1], for some
positive ε (small)]. This weak invariance principle also avoids the need to specify
the exact information times needed for the GST. There is an allied RST pro-
cedure considered by Chatterjee and Sen (1973) [and DeMets and Lan (1983)]
where the weak convergence to Brownian motion has been incorporated in the
utilization of (one-sided) linear boundaries (and a more general spending func-
tion approach). If a square root boundary is chosen then for the DeMets–Lan
spending function approach too, their formula works out only when a truncation
point ε > 0 is fixed in advance, and the critical level depends on this point: the
smaller the value of is ε, the larger will be the critical value. In many studies,
the flat boundary considered in Chatterjee and Sen (1973) works out well. For
rank-based procedures, often, for not so large samples, under suitable hypothe-
ses of invariance, permutation tools provide scope for good approximations. The
spirit of UIP is inherent in such interim analysis too.

There is a basic difference in this setup with the classical (group) sequen-
tial procedure. In the latter case, when the null hypothesis is not true, we may
have a drifted Wiener process with a linear drift, so that well-known results
on boundary crossing of a Wiener process with linear boundaries can be used
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to confer on power properties. In the present case, even for contiguous or local
alternatives, we do not have a linear drift function, and as a result, most of
these results are not directly applicable. Furthermore, the nature of alternative
hypotheses may depend on the difference pattern, if any, of the two survival
functions (viz., early difference but no significant difference at a later point
versus accumulated curvilinear difference over time), so that nothing in general
can be said about power optimality even in an asymptotic setup. Fortunately,
the weak invariance principle, discussed above, has opened the doors for ex-
tensive simulation work for studies of performance characteristics of different
boundaries under different alternatives. Some of these findings also apply for
ACET’s with minor modifications.

In the above setup, if we consider more complex designs, such as random-
ized clinical trials with dynamic treatment regimens, the test statistic Ln will
generally be more complex, and as a result, although the definition in (37.3)
remains intact and the martingale property in (37.4) may still be true, the
Ln(t) may not be attracted to a Gaussian process (in distribution and under
null hypothesis). For example, in a CSI setup, the terminal statistic Ln may
have the so-called chi-square bar distribution, and as a result, the projected
Ln(t) may not be (asymptotically) normal even under suitable null hypothesis.
Thus, much of the present research interest centers around such CSI problems
in complex clinical trials so as to effectively institute interim analysis in a valid
statistical manner. Multiplicity of treatment regimens and CSI environments
with all other restraints of clinical trials indeed constitutes a challenging sta-
tistical task. Furthermore, there could be a totally different interpretation of
early termination of the trial under such dynamic regimens. It could be due
to the fact that none of the treatment regimens may suit a patient who may
therefore need special treatment violating the general principles that govern
randomized clinical trials. Moreover, if prolongation of life, even under com-
promised health conditions, is the main objective of a treatment protocol then
treatment preference could be on different grounds, and a comparative clinical
trial methodology would be of limited utility. Thus, cancer clinical trials have
been modeled and analyzed in a somewhat different manner, and there is still
ample room for development of further statistical methodology. Some of these
points are further elaborated in the next section.

37.4 Genomics Impact

With the advent of genomics and bioinformatics, in general, clinical trials are
also encountering some challenging tasks. Instead of the conventional symp-
tomatic effect approach, there is a new emphasis on pharmacogenomics dealing
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with the drug responses and the detection of disease genes along with the gene-
environment interaction. Recalling that there may be thousands of genes which
in a polygenic mode may not have individually significant impact but a large
number of them in synergy may have significant (joint) impact, clinical trials
are charged with not only finding the genes associated (causally or statistically)
with a specific (group of) disease(s) but also their pharmacokinetics and phar-
macodynamics with specific drug development. Instead of clinical trials with
human subjects it calls for additional refinements: microarray and proteomics
studies in clinical trials setup at the molecular level with tissues or cells. For
example, in the IBD (inflammatory bowel disease), in a microarray setup, gene
expression levels (for a large number of genes) for people not afflicted with the
disorder may be compared with similar microarrays for afflicted groups at var-
ious level of afflictions, resulting in a very high-dimensional MANOVA model
with low sample size (as such microarray studies are excessively expensive).
Although this subject matter is beyond the scope of the present study, at least
it could be emphasized that because of the enormous cost in conducting such
trials, multicenter trials are needed for pooling relatively smaller information
from the individual centers and also multiple endpoints typically arise in such
composite studies. Typically, we encounter a matrix of statistics, individually
from the centers and within each center, for the multiple endpoints. Although
these centers may be treated as independent, the intracenter responses for the
different endpoints are not. Confined to within-center perspectives, typically, we
have a vector-valued stochastic process, and as before, we have a constrained
environment (probably in greater complexity due to large dimensions). There-
fore, even if we are able to construct a martingale array (in a multidimensional
setup), formulating CSI procedures in a proper manner could be a formidable
task. Bessel process approximations for multidimensional stochastic processes in
clinical trials have been studied in the literature [viz., Sen (1981, Chapter 11)].

There is a challenging task of incorporating such distributional approxi-
mations in the formulation of statistical inference procedures for restrained
environments. The prospects for multivariate CSI analysis, displayed in detail
in Silvapulle and Sen (2004) need to be appraised further. In such genomics-
oriented clinical trials, interim analysis rests on a totally different base, and
the main concern is the proper accommodation of high-dimensional low sample
size scenarios. Even in the conventional case of multivariate normal distribu-
tions when the dimension p is large and the sample size n is smaller than p,
usual multivariate analysis of variance tests are not usable, and a dimension
reduction may throw away some statistical information and thereby reduce the
precision of statistical conclusions. It is our belief that UIP, because of its flex-
ibility and amenity to more complex models, would be a trump card in this
context too. For some related work, we may refer to Sen (2006) where other
pertinent references are cited.
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We conclude with some pertinent remarks on the role of UIP in meta-
analysis, as is currently adapted in multicenter clinical trials and genomic
studies. Multicenter clinical trials, although generally conducted under not-so-
homogeneous environments (e.g., different geographical or demographic strata,
age/culture differences), have a common objective of drawing statistical conclu-
sions that pertain to a broader population. Consider in this vein, C(≥ 2) centers,
each one conducting a clinical trial with the common goal of comparing a new
treatment with an existing one or a control or placebo. Because such centers
pertain to patients with possibly different cultural and racial demographic pro-
files, diet and physical exercise habits, and so on, and they may have somewhat
different clinical norms too, the intracenter test statistics Lc, c = 1, . . . , C, used
for CSI/RST, although they could be statistically independent, might not be
homogeneous enough to pull directly. This feature may thus create some im-
passes in combining these statistics values directly into a pooled one to enhance
the statistical information. Meta-analysis, based on observed significance levels
(OSL) or p-values, is commonly advocated in this context. Recall that under
the null hypothesis (which again can be interpreted be the intersection of all the
center null hypotheses), the p-values have the common uniform (0, 1) distribu-
tion, providing more flexibility to adopt UIP in meta-analysis. Under restricted
alternatives, these OSL values are left-tilted (when appropriate UIT are used)
in the sense that the probability density is positively skewed over (0, 1) with
high density at the lower tail and low at the upper. Let us denote the p-values by

Pc = P{Lc ≥ the observed value |H0}, c = 1, . . . , C. (37.6)

The well-known Fisher’s test is based on the statistic

Fn =
C∑

c=1

{−2 log Pc}, (37.7)

which, under the null hypothesis, has the central chi-square distribution with
2C degrees of freedom. This test has some desirable asymptotic properties.
There are many other tests based on the OSL values. The well-known step-down
procedure [Roy (1958)] has also been adapted in this vein [cf. Subbaiah and
Mudholkar (1980) and Sen (1983)], and they have been amended for CSI and
RST as well [cf. Sen (1988)]. One technical drawback observed in this context is
the insensitivity (to small to moderate departures from the null hypothesis) of
such tests (including the Fisher’s) when C is large, resulting in nonrobust and,
to a certain extent, inefficient procedures. Thus, alternative approaches based
on the OSL values have been explored more recently in the literature.

In the evolving field of bioinformatics and genomics, generally, we encounter
an excessively high-dimensional dataset with inadequate sample size to induce
the applicability of standard CSI or even conventional statistical inference tools.
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On top of that, in genomics, the OSL values to be combined (corresponding to
different genes) may not be independent, creating another layer of difficulty
with conventional meta-analysis. This led to the development of multiple hy-
pothesis testing in large dependent data models based on OSL values. This field
is going through an evolution, and much remains to be accomplished. It is pos-
sible to use Bonferroni-type inequalities wherein for each gene a test statistic
is formulated separately and its p-value computed. If we are to judge these p-
values simultaneously for all the K genes, we need to fix the individual level of
significance as α∗ = α/K. Thus, if K is large, α∗ will be so small that virtually
it would be powerless for detecting any significant ones. One way to minimize
this conservative property is to consider the information contained in the or-
dered p-values with cut-off points dependent on the orders. In this spectrum,
the Simes (1986) theorem occupies a focal point. Simes (1986) was probably
unaware of the classical Ballot theorem in stochastic processes [Karlin (1969)],
which is the same result in terms of the empirical distribution, and hence, we
refer to this as the Ballot–Simes theorem. Let there be K null hypotheses (not
necessarily independent) H0k, k = 1, . . . ,K with respective alternatives (which
possibly could be restricted or constrained as in clinical trials or microarray
studies) H1k, k = 1, . . . ,K. We thus come across the same UIP scheme by let-
ting H0 be the intersection of all the component null hypotheses, and H1 be the
union of the component alternatives. Let Pk, k = 1, . . . ,K be the OSL values
associated with the hypotheses testing H0k versus H1k, for k = 1, . . . ,K. We
denote the ordered values of these OSL values by PK:1, . . . , PK:K . If the indi-
vidual tests have continuous null distributions then the ties among the Pk (and
hence, among their ordered values) can be neglected, in probability. Assuming
independence of the Pk, the Simes theorem states that

P{PK:k > kα/K,∀k = 1, . . . ,K|H0} = 1− α. (37.8)

It is a nice illustration of how the UIP is linked to the extraction of extra sta-
tistical information through ordered OSL values, albeit the strong assumption
of independence of the p-values (under H0) needs to be critically appraised in
any specific application.

It did not take long time for applied mathematical statisticians to make
good use of the Simes–Ballot theorem in CSI and multiple hypothesis testing
problems. The above results pertain to tests for an overall null hypothesis in the
UIP setup. Among others, Hochberg (1988) considered a variant of the above
result:

P{PK:j ≥ α/(K − j + 1),∀j = 1, . . . ,K|H0} = 1− α, (37.9)

and incorporated this result in a multiple testing framework. Benjamini and
Hochberg (1995) introduced the concept of false discovery rate (FDR) in the
context of multiple hypothesis testing, and illustrated the role of the
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Ballot–Simes theorem in that context. The past ten years have witnessed a
phenomenal growth of research literature in this subfield with applications to
genomics and bioinformatics. The basic restraint in this respect is the assump-
tion of independence of the Pj , j = 1, . . . ,K, and in bioinformatics, this is
hardly the case. Sarkar (1998) and Sarkar and Chang (1997) incorporated the
MTP2 (multivariate total positivity of order 2) property to relax the assump-
tion of independence to a certain extent. Sarkar (2000, 2002, 2004) has added
much more to this development with special emphasis on controlling FDR in
some dependent cases. The literature is too large to cite adequately, but our pri-
mary emphasis here is to stress how UIP underlies some of these developments
and to focus on further potential work.

Combining OSL values, in whatever manner, may generally involve some
loss of information when the individual tests are sufficiently structured to have
coherence that should be preserved in the meta-analysis. We have seen earlier
how guided by the UIP, progressive censoring in clinical trials provided more
efficient and interpretable testing procedures. The classical Cochran–Mantel–
Haenszel (CMH) procedure is a very notable example of this line of attack.
In a comparatively more general multiparameter CSI setting, Sen (1999b) has
emphasized the use of the CMH procedure in conjunction with the OSL values
to induce greater flexibility. The field is far from being saturated with appli-
cable research methodology. The basic assumption of independence or specific
type of dependence is just a part of the limitations. A more burning question
is the curse of dimensionality in CSI problems. Typically, there K is large and
the sample size n is small (i.e., K >> n). In the context of clinical trials in
genomics setups, Sen (2007) has appraised this problem with due emphasis on
the UIP. Conventional test statistics (such as the classical LRT) have awkward
distributional problems so that usual OSL values are hard to compute and im-
plement in the contemplated CSI problems. Based on the Roy (1953) UIP but
on some nonconventional statistics, it is shown that albeit there is some loss
of statistical information due to the curse of dimensionality, there are suitable
tests that can be implemented relatively easily in high-dimension low sample
size environments. In CSI for clinical trials in the presence of genomics un-
dercurrents, there is tremendous scope for further developments of statistical
methodology along this line.
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