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Labeling

9.1 Introduction; Graceful Labelings

In general, a labeling (or valuation) of a graph is a map that carries some set of graph
elements to numbers, most often to the positive or nonnegative integers. The most
common choices of domain are the set of all vertices and edges (such labelings are
called totallabelings), the vertex-set alone (vertex-labelings), or the edge-set alone
(edge-labelings). Other domains are possible.

We shall call two labelings of the same graph automorphism-equivalent if one can
be transformed into the other by an automorphism of the graph.

Rosa ([102, 78]) introduced the idea of ,B-valuations, or as they are now called
gracefullabelings. A graceful labeling of a graph G is a one-to-one mapping y from
the set of all vertices to the integers So = {a, 1, ... , IE(G)!} such that every non
zero member of Sc occurs as the difference between the labels on the endpoints of an
edge. That is, if we extend y to edges by defining y(xy) = Iy(x) - y(y)l, then every
member of 1, 2, ... , IE(G)I} arises (exactly) once among the edge-labels. A graph is
called graceful if it has a graceful labeling.

Figure 9.1 shows a graceful labeling of K 4 . In the right-hand diagram, the corre
sponding edge-labels are shown.

Fig. 9.1. Graceful labeling of K4

If y is a graceful labeling on G, define another labeling y * by
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y*(x) = IE(G)I - y(x)

for every vertex x. Then y* is also graceful; in fact, y and y* induce the same edge
labeling. y* is called the complementary labeling or dual of y. We formally define
two graceful labelings y and 8 to be equivalent if 8 is automorphism-equivalent to
either y or y*.

When testing a small graph with e edges to see whether it is graceful, first notice
that there must be adjacent vertices labeled °and e in order for edge-label e to occur.
Similarly there must be an edge from °to e - 1 or from 1 to e.

Fig.9.2.Finding a graceful labeling of K4 - e

Example. We shall find a graceful labeling of K4 - e. This graph has two types of
edge. Initially there are three ways of labeling an edge with °and 5, as shown in
Figure 9.2. However the third is clearly dual to the second.

In order to achieve edge-label 1 in the first case, one of the remaining vertices must
be labeled 1 or 4. Assume the vertex marked * is labeled 1 (the 4 case is dual). Then
labeling the other vertex 3 results in a graceful labeling.

The reader should check that the partial labeling in the second part of the diagram
can also be completed.

Theorem 9.1. There is no graceful labeling of K; when v > 4.

Proof. Suppose there is a graceful labeling of K v , where v :::: 5. Let S be the set of
vertex-labels used in the labeling. We write e for 1v(v - 1), the number of edges in
Ku- It causes no confusion if we use the symbol x for the vertex that receives label x.

The vertex labels must include °and e and (to achieve edge-label 1) either 1 or
e - 1; the choices {a, 1, e} and {a, e - 1, e} lead to duallabelings, so we can assume
labels {a, 1, e} < S.

There can be no vertex labeled 2, for if there were, two edges would receive label
1: 2 '" 1 and 1 '" 0. Also label e - 1 is impossible: we would have e '" (e - 1) and
1'" 0. So (e - 2, e) is the only possible edge with label 2, and {a, 1, e - 2, e} <; S.

These vertex labels induce edges labeled 1,2, e - 3, e - 2, e - 1 and e. Since
e > 6, edge label e - 4 is still needed. An argument similar to those above shows that
the only suitable new vertex label is 4, and the edge labels are

1, 2, 3, 4, e - 6, e - 4, e - 3, e - 2, e - 1, e.

When e :::: 10, label e - 5 is not in this list. To obtain e - 5 we need vertex-label
3,5, e - 5, e - 4 or e - 1. But each of these possibilities leads to a duplicated edge
label: 3 - 0= 3,5 - 1 = 4, (e - 5) - 1 = 4, e - (e - 4) = 4, e - (e - 1) = 1. So no
labeling is possible. D



9.1 Introduction' Graceful Labelings 125

Theorem 9.2. Suppose G is an Eulerian graph with e edges. If G is graceful, then
e == 0 or 3(mod 4).

Proof. Suppose Y is a graceful labeling of G. Write ZI, Z2, .•. , Ze for the edges of G;
and denote the endpoints of z, by Xi and Y;, where y(x;) > Y(Yi)' Then

e e e

LY(Z;) = LY(x;) - LY(Yd
;=1 ;=1 i = 1

e e e

= LY(x;)+ LY(Yi) -2LY(Yd .
i=1 ;= 1 ;= 1

In the list XI, X2, . . . , Xe, YI, Y2, ... , Ye the number of times each vertex occurs is
equal to its degree. Since G is Eulerian, each of these degrees is even. SOL~=I y(x;)+
L~=I y(y;) is even. Therefore L~=I Y( Zi) is even.

On the other hand, since Y is graceful , L~=I Y(z.) is the sum of the first e positive
integers, !e(e - 1). This is even only if e == 0 or 3(mod 4). 0

There has been considerable interest in graceful labelings of trees; Kotzig
(quoted in [102]) conjectured that all trees are graceful. However, this conjecture is
far from settled. All stars and paths are graceful (see the exercises) .

A caterpillar is a tree for which, if all leaves (vertices of degree I and their asso
ciated edges) were removed , the result is a path.

Theorem 9.3. [102] All caterpillars are graceful.

Proof. Suppose T is a caterpillar with v vertices and H is the path formed from T by
deleting all the leaves. Select an endpoint of H (a vertex of degree I in the path) and
name it XQ; the vertex adjacent to it in H is called XI, and so on along H . Write X for
the set of all vertices of T whose distance from XQ is even (including XQ itself), and Y
for the set of vertices of odd distance . Every edge connects two vertices, one in X and
the other in Y.

Assign label v-I to XQ. Label the neighbors of Xo with 0, 1,2, ... , where the
neighbor receiving the greatest label is XI , the neighbor of XQ in H . Assign labels
v - 2, v - 3, ... , to the neighbors of XI other than Xo ; the largest label goes to X2.

Continue as follows: after X2; receives its label, assign increasing integer labels to
its neighbors other than X2i- I starting with the smallest unused label, assigning the
largest label to X2i+l; then assign labels to the neighbors of X2i+1 other than X2; in
decreasing order, starting with the largest unused integer smaller than v, ending by
labeling X2;+2.

The result will be a labeling in which members of X receive labels v -I , v 
2, ... , v - IXI and members of Y receive labels 0, 1, . . . , IYI . It is easily checked to
be graceful. 0

An example is shown in Figure 9.3.
Gracefullabelings of trees were first studied in an attempt to prove a conjecture of

Ringel [100). He conjectured that, given any tree T with n edges, it is possible to write
the complete graph K 2n+1 as a union of edge-disjoint copies of T. The connection is
shown in the following theorem.
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Fig. 9.3. Graceful labeling of a caterpillar

Theorem 9.4. Suppose T is a graceful tree on 11 + I vertices. Then K2n+1 is a union
of2n + I edge-disjoint copies ofT.

Proof We use a K 211 + 1 whose vertices are the integers {o. J. . . . , 2n} modulo 2n + 1.
Suppose y is a graceful labeling of T. We identify the vertex x of T with the vertex
y (x ) of the K 2n+ I. Then T is a subgraph of K 211+ I with vertices {O, I , . . . , n} .

For each integer s E {O, I, ... , 2n} we construct a tree T, as follows. Edge x y
belongs to T, if and only if (x - s) (y - s ) is an edge of T. Thus To = T, and if the
vertices of K 211+1 are written in order equally placed around a circle, T, is obtained by
rotating To through s / (2n + I) of a revolution. Each T, is isomorphic to T .

Now each edge x y of K 2n+1 will belong to precisely one of the trees Ts , becau se
there is precisely one edge of T that receives label ±(x - y ) under y. So we have the
required decomposition.

If Kotzig 's conjecture is true, that all trees are graceful , this will prove Ringel's
conjecture. However, the Kotzig conjecture is stronger. A decomposition of K211+1

into copie s of an n-edge tree need not be of a cyclic nature .

Exercises 9.1

9.1.1 Find gracefullabelings of P3 and K3•

9.1.2 Verify that the partial graceful labeling in Figure 9.2 can be completed.
A9.\.3 Find a graceful labeling of P 3 U K 4 .

H9.1.4 Find a graceful labelin g of P3 U K3•

9.1.5 Show that P2 U K3 and P3 U K3 have no graceful labelings.
A9.1.6 Show that no nontrivial forest (that is, a forest containing at least two trees) is

graceful.
9.1.7 Show that the star K1•n is graceful for every n.

A9.1.8 Show that the path P; is graceful for every v.
9.1.9 Suppose G is a graceful graph with e edges. Write X and Y for the sets of vertices

with even and odd labels respectively. Show that the set [X , Y] contains precisely
! (e + I) edges.

9.2 Edge-Magic Total Labeling

A magic square of side n is an n x n array whose entrie s are an arrangement of the
integers {I, 2, ... , n2 }, in which all elements in any row, any column, or either the
main diagonal or main back-diagonal, add to the same sum. Small examples include



1 15 8 10
12 6 13 3
14 4 11 5
7 9 2 16
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I 7 13 19 25
18 24 5 6 12
10 II 23 7 4
22 1 9 15 16
142023 2 8

wt(x) = L a (x y ).

An excellent reference on magic squares is [2].
Various authors have introduced graph labelings that generalize the idea ofa magic

square; there has been a lot of duplic ation of terminology. To avoid confusion we de
fine a label ing to be edge -magic if the sum of all labels associated with an edge equals
a constant independent of the choice of edge, and vertex-magic if the same property
hold s for vertices. (This termin ology could be extended to other substructures: face
magic, for example.) The domain of the labeling is specified by a modifier on the
word "labeling." We shall always require that the labeling is a one-to-one map onto
the appropriate set of consecutive integers starting from 1.

For example, Kotzig and Rosa [78] defined a magic labeling to be a total labeling in
which the labels are the integers from I to IV (G) I+IE (G) Iand the sum of labels on an
edge and its two endpoints is constant. In 1996 Ringe l and Llado [101] redefined this
type of labeling and called the labelings edge-magic. We shall call them edge-magic
total labelings. On the other hand, Stewart (see, for example, ri l lD, called such a
label ing supermagic. Sedlacek [110] originally proposed the study of edge-Iabelings
with the magic property on vertices, but did not restrict the values of the labels in any
way; they could be any reals.

To discuss these labelings, we define the weight of a graph element to be the sum
of all label s associated with the element. For example , the weight of vertex x under an
edge labeling a is

The weight of x under a total labeling "A is

wt(x) = "A(x) + I>(x y ),
y~x

while
wt(xy) = "A (x) + "A(xy) + "A(y ).

If necessary, the labeling can be specified by a subscript, as in w tA(x).
We formally define an edge-magic total labeling or EMTL on a graph G to be a

one-to-one map A from V (G ) U E (G) onto the integers I, 2, . . . , v + e, where v =
IV (G) I and e = IE( G)I, with the property that, given any edge (xy) ,

"A(x) + "A(xy) + "A(y) = k

for some constant k . In other words, wt(xy) = k for any choice of edge xy. k is
called the magic sum of G. A graph is called edge-magic if it has an edge-magic total
labeling.

As an example, Figure 9.4 shows an edge-magic total labeling of K 4 - e.
We shall frequentl y refer to the sum of consecutive integers, so we define
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Fig. 9.4. An EMTL of K4 - e with k = 12.

a/ = (i + I) + (i + 2) + . . . + j = i (j - i) + eil (9.1)

Suppose the graph G has v vertices (XI, X2 , •. • , x v} and e edges. Vertex x, has
degree d, and rece ives label ai . Among the label s, write S for the set (aj : I ~ i ~ v}
of vertex label s, and s for the sum of elements of S. Then S can con sist of the v
smallest labels, the v large st labels, or somewhere in betw een, so

a V < s < a v+e
o - - e '

( V+ I) (V+I)2 ~ s ~ ve + 2 . (9.2)

Cle arly, L xyEE (A(XY) + A(X) + A(Y» = ek. This sum contains each label once,
and each vertex label a, an additional d, - 1 times. So

ke =ar e+L (d; - 1)0;. (9.3)

If e is even, every d, is odd and v + e == 2( mod 4), then (9.3) is impossi ble. We have

Theorem 9.5. [101] l fG has e even and v + e == 2( mod 4), and every vertex ofG
has odd degree, then G has no EMTL.

Corollary 9.6. The complete graph K; is not edge-magic when n == 4(mod 8). The
n-spoke wheel WIl is not edge-magic when n == 3(mod 4).

(We shall see in Section 9.9.3 that KII is never edge-magic for n > 6, so the first part
of the Corollary really only elimin ates K 4 . )

Equation (9.3) may be used to provide bounds on k . Suppose G has Vj vertices of
degree i . for each i up to tl , the largest degree represented in G. Then the ke cannot
be smaller than the sum obtained by applying the Vt. small est labels to the vertices of
degree tl, the next-smallest values to the vertices of degree tl - I , and so on; in other
words,

ke > (d _ l)a v" + (d __ l)a ll,,+(v,,-Il + a v"+(v,,. Il+···+v2 + (v+ e + 1).
- t. 0 t. J v" v,,+(v,,_,)+"+ 1I3 2

An upper bound is achieved by giving the largest labels to the vertices of highest
degree, and so on.

In particular, suppose G is regular of degree d. Then (9.3) becomes

ke = (d - 1)s + a;+e= (d - I)s + 1(v + e) (v + e + I) (9.4)

. Idor, smce e = '2 v ,



and for any edge xy,
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kdv = 2(d - l)s + (v + e)(v + e + 1). (9.5)

Given a labeling A, its dual labeling A' is defined by

A'(X;) = (v + e + 1) - A(X;),

A'(xy) = (v + e + 1) - A(XY).

It is easy to see that if A is an edge-magic labeling with magic sum k, then A' is an
edge-magic labeling with magic sum k' = 3(v + e + 1) - k. The sum of vertex labels
in the dual is s' = v(v + e+ 1) - s. Just as in the case of gracefullabelings, we define
two EMTLs A and fl to be equivalent if A is automorphism-equivalent to either u.
or u',

Either s or s' will be less than or equal to !v(v + e + 1). This means that, in order
to see whether a given graph has an EMTL, it suffices to check either all cases with
s :::: !v(v + e + 1) or all cases with s ::: !v(v + e + 1) (equivalently, either check all

cases with k :::: ~(v + e + 1) or all with k ::: ~(v + e + 1)).
The cycle Cv is regular of degree 2 and has v edges. In that case, (9.2) becomes

v(v + 1) :::: 2s :::: 2v2 + v(v + 1) = v(3v + 1),

and (9.4) is
kv = s + v(2v + 1),

whence v divides s; in fact s = (k - 2v - l)v. When v is odd, s has v + 1 possible
values !v(v + 1), !v(v + 3), ..., !v(v + 2i -1), ..., !v(3v + 1), with corresponding

magic sums !(5v + 3), !(5v + 5), ... , !(5v + 2i + 1), ..., !(7v + 3). For even v,
h 1 1 2 1 2 2 1 2· 3 2 . h dit ere are v va ues s ="2v + v'"2v + v""'"2v + IV, ... , "2v .wit correspon mg

. 5 2 5 3 5 . 1 7 1magic sums "2v + '"2v + ""'"2v + I + ""'"2v + .
Kotzig and Rosa [78] proved that all cycles are edge-magic, producing examples

with k = 3v + 1 for v odd, k = ~v + 2 for v == 2(mod4) and k = 3v for v ==
O(mod4). In [55], 1abelings are exhibited for the minimum values of k in all cases.
We present two proofs here, and leave another as an exercise. In each case the proof
consists of exhibiting a labeling.

Theorem 9.7. If v is odd, then Cv has an edge-magic total labeling with
k = !(5v + 3).

Proof Say v = 2n + 1. Consider the cyclic vertex labeling (l, n + 1, 2n + 1, n, ... ,
n + 2), where each label is derived from the preceding one by adding n (mod 2n + 1).
The successive pairs of vertices have sums n + 2, 3n + 2, 3n + 1, ... , n + 3, which
are all different. If k = 5n +4, the edge labels are 4n + 2, 2n + 2, 2n + 3, ... ,4n + 1,
as required. We have an edge-magic total labeling with k = 5n + 4 = !(5v + 3) and

s = !v(v + 1) (the smallest possible values).

By duality, we have:

Corollary 9.8. Every odd cycle has an edge-magic total labeling with k
!(7v + 3).
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Theorem 9.9. If v is even, then Cv has an edge-magic total labeling with k

4(5v +4).

Proof. Write v = 2n. If n is even,

while if n is odd,

A(UJ =

(i + 1)/2
3n

(2n + i)/2
(i+2)/2
(2n + i - 1)/2

(i + 1)/2
3n

(2n +i + 2)/2
(n + 3)/2
(i +3)/2
(2n + i)/2
n+2

fori = 1,3, ... ,n+ 1
for i = 2
fori =4,6, ... ,n
for i = n + 2, n + 4, , 2n
for i = n + 3, n + 5, , 2n - 1,

for i = 1, 3, ... , n

for i = 2
fori =4,6, ... ,n - 1
for i = n + 1
for i = n + 2, n + 4, , 2n - 1
for i = n + 3, n + 5, , 2n - 2
fori=2n. D

Corollary 9.10. Every even cycle has an edge-magic total labeling with
k=4(7v+2).

Figure 9.5 shows examples with v = 7 and v = 8 of the constructions in Theorems
9.7 and 9.9; they have k = 19 and 22 respectively. (Only the vertex labels are shown
in the figure; the edge labels can be found by subtraction.)

k =19 k=22

Fig. 9.5. Edge-magic totallabelings of C7 and Cg.

Theorem 9.11. Every cycle of length divisible by 4 has an edge-magic total labeling
with k = 3v.
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The path P; can be viewed as a cycle C; with an edge deleted. Say A is an EMTL
of Cn with the property that label 2n appears on an edge. If that edge is deleted, the
result is a P; with an EMTL.

For every n, there is a labeling of Cn in which 2n appears on an edge. Deleting this
edge yields a path, on which the labeling is edge-magic. So:

Theorem 9.12. All paths have EMTLs.

Theorem 9.13. [78] The complete bipartite graph Km,n is edge-magic for any m
andn.

Proof. The sets S, = {n + 1, 2n + 2, ... , men + I)}, S2 = {I, 2, ... , n}, define an
EMTL with k = (m + 2)(n + 1). 0

In particular, all EMTLs of stars K1,n are easily described.

Lemma 9.14. In any EMTL ofa star, the center receives label I, n + 1 or 2n + 1.

Proof. Suppose the center receives label x. Then

kn = en: 2) + (n - 1)x.

Reducing (9.6) modulo n we find

x == (n + I)(2n + 1) == 1

and the result follows.

Theorem 9.15. There are 3 . 2n EMTLs of K1,n, up to equivalence.

(9.6)

o

Proof. Denote the center of a K l,n by c, the peripheral vertices by VI, V2, ... , Vn and
edge (c, Vi) by e.. From Lemma 9.14 and (9.6), the possible cases for an EMTL are
A(c) = 1, k = 2n + 4, A(c) = n + 1, k = 3n + 3 and A(c) = 2n + 1, k = 4n + 2. As
the labeling is edge-magic, the sums A(vi) + A(eJ must all be equal to M = k - A(c)
(so M = 2n + 3, 2n + 2 or 2n + 1). Then in each case there is exactly one way to
partition the 2n + 1 integers 1, 2, ... , 2n + 1 into n + 1 sets

where every a, + b, = M. For convenience, choose the labels so that a, < hi for
every i and al < a2 < ... < an, Then up to isomorphism, one can assume that
{A(vi), A(ed} = {ai, bd. Each of these n equations provides two choices, according
as A(vi) = ai or b., so each of the three values of A(c) gives 2n EMTLs of Kl,n. 0

It is conjectured ([78], also [101]), that all trees are edge-magic. Unfortunately, this
has proven just as intractible as the corresponding conjecture for graceful labelings.
Kotzig and Rosa [78] proved that all caterpillars are edge-magic. The proof is left as
an exercise; as a hint, we give an example of an EMTL of a caterpillar in Figure 9.6.

Enomoto et al [38] carried out a computer search to show that all trees with fewer
than 16 vertices are edge-magic.
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9 10

2

Fig. 9.6. An EMTL of a caterpillar

Vertex-magic total labelings, in which the sum of the labels of all edges adjacent
to the vertex x, plus the label of x itself, is constant, have also been studied (see [85]) .
It is conceivable that the same labeling could be both vertex-magic and edge-magic
for a given graph (not necessarily with the same constant). In that case the labeling,
and the graph, are called totally magic. Totally magic graphs appear to be very rare.

Exercises 9.2

A9.2.1 Find all edge-magic totallabel ings of K3.
A9.2.2 Show that every odd cycle has an edge-magic total labeling with k = 3v + 1.
9.2.3 Prove that the graph t K4 , consisting of t disjoint copies of K4 , has no edge-magic

total labeling when t is odd.
9.2.4 Suppose a regular graph G of degree d is edge-magic. Prove

ke = (d - l)s + are= (d - l )s + ~(v + e)(v + e + 1),

kd v = 2(d - l )s + (v + e)(v + e + 1).

A9.2.5 A triangul ar book B3•n consists of n triangles with a common edge. Prove that all
triangular books are edge-magic.

9.2.6 An n-sun is a cycle C; with an edge terminating in a vertex of degree 1 attached
to each vertex. Show that all suns are edge-magic. [7]

A9.2.7 What is the range of possible magic sums for an edge-magic total labeling of the
Petersen graph P ? Prove that P is edge-magic.

9.2 .8 [7] An (n, t)-kite consists of a cycle of length n with a t -edge path (the tail)
attached to one vertex. Show that an (n, l j-kite (a kite with tail length 1) is edge
magic. [7]

9.2 .9 Prove that all caterpillars are edge-magic.
9.2.10 Find a vertex-magic total labeling of K4 - e.
9.2.11 Prove that Cs has no totally magic labeling.

9.3 Edge-Magic Labelings of Complete Graphs

The discussion of edge-magic label ings of complete graphs is significantly harder than
the "graceful" case, so we devote a section to it.
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Suppose the graph G has an edge-magic total labeling A, and suppose G contains
a complete subgraph (or clique) H on n vertices. Let us write XI , X2, . . . , Xn for the
vertices of H, and denote A(Xi ) by ai. Without loss of generality we can assume the
names Xi to have been chosen so that al < a2 < ... < an'

Uk is the magic sum, then A(XiXj) = k - ai - aj , so the sums a, + aj must
all be distinct. This property is called being well-spread; this property will be used in
discussing EMTLs of complete graphs. A well-spread set A = {aI, a2, . . . , all ) is a set
of integer s in which, if ai, aj, at, ae are all different , it never happens that ai + aj =
ak + ai. If the elements are arranged in order, so that 0 < al < a2 < . . . < an, A is
called a well-spread sequence or Sidon sequence of length n, Such sequences arise are
related to the work of S. Sidon ; their study was initiated by Erdos and Turan [40].

In discussing Sidon sequences (or, equivalently, cliques in edge-magic graphs),
we write dij for laj - ad , the absolute difference between the i-th and j-th terms (the
labels on the endpoints of the edge XiX j ).

Lemma 9.16. Suppose A is a Sidon sequence of length n. If dij = dpq , then {ai, aj}
and {ap , aq } have a common member. No three ofthe differences dij are equal.

Proof. Suppose dij = dpq ' We can assume that i > j and p > q . Without loss of
generality we can also assume p :::: i. Then a, - aj = ap - aq , so a, + aq = aj + ap .

Therefore a, = aq and i = q (aj = ap is impossible ), and p > i > j - the common
element is the middle one in order of magnitude.

Now suppose three pairs have the same difference . By the above reasoning there
are two possibilities: the pairs must have a common element, or form a triangle. In the
former case, suppose the differences are dij' dik and die. From dij = dik we must have
either k > i > j or j > i > k; let us assume the former. Then dij = die implies
that i > j > e. So j is greater than both k and e. But dik = die must mean that either
k > j > eor e> j > k, both of which are impossible. On the other hand, suppose the
three pairs form a triangle, say dij = dik = djk. We can assume i > j. Then dij = djk
implies i > j > k, and j > k and dik = djk imply k > i , again a contradiction. 0

Lemma 9.17. Suppose A is a Sidon sequence oflength n. Ifdij = dib then dij ~ ~dln .

Proof. Suppose dij = dit, and assume j < k. Then djk = ak-aj = ai -aj +ak -ai =
dij = dik = 2dij. But aJ ~ a - j and ak ~ an, so djk ~ dIn, giving the result. 0

Theorem 9.18. In any Sidon sequence of length n, G) ~ L~dlnJ, or equivalently

d In:::: r~n (n -l)l

Proof. There are (~) unordered pairs of elements in the sequence, so there are (~)

differences. From Lemmas 9.16 and 9.17, the collection of values of these difference s
can contain the integers 1,2, .. . , L ~ rJ at most twice each, and L ~ rJ+ I , .. . .di« at
most once each. The result follows . 0

We now use Sidon sequences to show that only five complete graphs are edge
magic.
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Theorem 9.19. The complete graph K v does not have an edge- magic tota l labelin g if
v > 6.

Proof. One can show that K7 has no EMTL by a complete searc h (or see Exercise
9.3.4 below). So we assume v ::: 8, and suppose there is an edge-magic total labeling
of K u- The vertex label s will form a Sidon sequence of length v, A say. Let us denote
the edge labels by b, , bz, ... , be' where b, < b: < ... < be; of course, e = (~). If the
magic sum is k, then

Subtracting (9.7) from (9.8),

while (9.9) and (9.10) yield

k =a,+ az + be

=0,+ a 3+ be-'
= 0 v + a v-I + b,

=Ov + Ov-z + bz·

(9.7)

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

Suppose label s I, 2, v + e - I and v + e are all edge labels. Then b, = I , bi =
2, b. :; = v+e- l and be = v+e. So, from (9. 11) and (9. 12), 0 3 - Oz = Ov- ' -Ov- z =
1. But 2, 3, v - 2 and v - I are all distinct, so this contradicts Lemma 9.16. So one
of 1, 2, v + e - I , v + e is a vertex label. Without loss of genera lity we can assume
either I or 2 is a vertex label (otherwise. the dual labeling will have this property). So
0 , = lor2.

Equations (9.7) and (9.9) give

(9.13)

Since (oz, 0 3, .. . , ov-d is a Sidon sequence of length v - 2 (any subsequence of a
Sidon sequence is also well- spread), Lemma 9.18 applies to it. and (ov-' - oz) :::
r1(v - 2)(v - 3)1, which is at least 10 because v::: 8. Also (b l - ad ::: - 1, (b - I
is at least I and 01 is at most 2), and be S v + e. So, from (9. 13),

Ov S v + e - 9.

So the six largest labels are all edge labels:

be- 5 = v + e - 5, be- 4 = v + e - 4, .. . , be = V + e.

From (9.7) and (9.8) we get

k = al + az + v + e = 0, + 03 + V + e - 1,

so 0 3 = az + 1. The next smalles t sum of two vertex-labels, after 01 +az and 0 1 + a 3,

may be either az + a 3 or 01+ 04 .

If it is 0z + 0 3 , then
k = az+ 03 + V + e - 2

and by comparison with (9.8), 0z = 01+ I . The next-smallest sum is 0, + 0 4 , so
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k = al + a4 + v + e - 3

and a4 = a3 + 2. Two cases arise. If al = I, then az = 2, a3 = 3, a4 = 5. Also, as

cannot equal 6, because that would imply al + as = 7 = a2 + a4, contradicting the
well-spread property. Every integer up to v + e must occur as a label, so b, = 4 and
b: = 6. So (9.12) is av-I - av- 2 = bi - b, = 2. But a4 - a3 = 2, so dv-I ,v-z = d34,
in contradiction of Lemma 9.16. In the other case, al = 2, we obtain a2 = 3, a3 =
4, a4 = 6, so b, = I, bz = 5, and av- I - av- 2 = 4 = a4 - aI , again a contradiction.

If aJ + a4 is the next-smallest difference , we have

k = a1 + a4 + v + e - 2,

so a4 = a3 + I. If al = I and ai = 3, it is easy to see that b, = 2, bi = 6, and we get
the contradiction av-I - av- 2 = a4 - al = 4. Otherwise a2 ::: 4, so 3 is an edge-label.
If a1 = I, then b l = 2, b2 = 3, and av-I - av-2 = I = a3 - a2. If al = 2, then
b, = I, bz = 3, and av-I - av-z = 2 = a4 - az. In every case, a contradiction is
obtained. Therefore we have the result. 0

This theorem was first proven in [79]; the above proof follows that in [32].
We know K4 is not edge-m agic; edge-magic totallabelings of K I , Kz and K3 are

easy to find. One solution for Ks is to use vertex labels {I, 2, 3, 5, 9}; one for K6 is
{I , 3,4,5,9, 14}. (A complete list of solutions is given in [126].)

If A = (a i, ai . ... , an) is any Sidon sequence of length n, we define the size of A
as 0' (A) = an - al + 1. One usually assumes al = I when constructing a sequence,
and then the size equals the largest element. Another useful parameter is

peA ) = a" + an-I - a2 - al + I = O' (A ) + a,,_ } - a-:

We denote by O' * (n ) and p* (n ) the minimum values of 0' (A) and peA) respectively,
taken over all Sidon sequence s A of length n.

It is useful to know that there exist Sidon sequences of all positive lengths. The
recursive construction al = I, az = 2, all = an-I +a,, - 2 gives a well-spread sequence.
This is the well-known Fibonacci sequence, except that the standard notation for the
Fibonacci numbers has I I = [z = I, h = 2, .... So we have a well-spread sequence
with its largest element equal to the (n + l)-th term of the Fibonacci sequence: all =
I n+I ' Therefore O'*(n) S 1//+], and

p*(n ) S 1//+1 + In - 2 = In+z - 2.

It is well known (see texts such as [19]) that

= _I (I +J5)// __I (1 -J5) //
In J5 2 J5 2 '

so we have

and

(
1:)//+1 ( 1:) //+1* I l+v5 I l-v5

0' (n) < - -- -----J5 2 J5 2
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a * (3) = 3
a * (4) = 5
a * (5) = 8
a * (6) = 13
a*(7) = 19
a * (8) = 25
a*(9) = 35

a *(lO) = 46

f4 = 3
fs = 5
f 6 = 8
17 = 13
is = 21
h = 34

flO = 55
fI, = 81

p*(3) = 3
p*(4) = 6
p*(5) = II
p*( 6) = 19
p*(7) = 30
p*(8) = 43
p*(9) = 62

p*(I 0) = 80

fs -2 = 3
f6 - 2 = 6
17 -2 = II
fg-2 = 19
h - 2 = 32

flO - 2 = 53
f l ' - 2 = 79
Iv: - 2 = 134

Table 9.1. Sidon sequence bounds compared to Fibonacci numbers

p'(n) < ~C+2vrsf'-~C-2vrsf' -2.

However these are not the best-possible values. Table 9. 1 shows the results of
exhaustive computations.

Suppose G has an edge-m agic total labeling Aand G contains a complete subgraph
H on n vertices Xl, Xz, ... , Xn; denote A(xd by a.. Assume a, < az < .. . < an, so
A = (a i , ai . ... , an) is a Sidon sequence of length n. Then

A(X"X,,_I) = k - a" - a,,_I ,

and since A(X"X,,_I) is a label,

Similarl y

and since ).(XZX I) is a label,

k - an - an-l :::: 1.

k - az - a, .:s v + e.

(9.14)

(9.15)

Combining (9.14) and (9.15) we have

v + e :::: a" +a,,_) - az - al + I = peA) :::: p*(n) .

Theorem 9.20. [79] I f the edge-magic graph G contains a complete subgraph with n
vertices , then the number of vertices and edges in G is at least p* (n) .

Suppose G = K; + t K,. In other words, G consists of K" together with t isolated
vertices. The smallest t such that G is edge-magic is called the magic number M(n) .
Theorem 9.20 enables us to find a lower bound

M (n ) :::: p*(n) - n - G)'
(See Exercise 9.9.3.1, and also Exercise 9.9.3.2.)

An edge-magic injection is like an edge-magic total labeling, except that the labels
can be any positive integers. We define an [m] -edge-m agic injection of G to be an
edge-magic injection of G in which the largest label is m, and call m the size of the
injection. The edge deficiency defe(G) of G is the minimum value of m -v(G) - e(G ),
such that an [m]-edge-m agic injec tion of G exists.
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Theorem 9.21. Every graph has an edge -magic injection.

Proof. Suppose G is a graph with v vertices and e edges. The empty graph is trivially
edge-magic, so we assume that G has at least one edge. Let(al ' a2, . .. , av) be any
Sidon sequence of length v with first element al = 1. Define k = av- l + La; + 1.

We now construct a labeling A as follows. Select any edge of G and label its end
points with av- l and av, and label the remaining vertices with the other members of
the Sidon sequence in any order. If xy is any edge, define A(XY) = k - A(X) - A(y).
Every edge weight will be equal to k. The smallest edge label will be k - aV- l - av =
av + 1, which is greater than any vertex label. If two edge labels were equal , say
A(Xy) = A(Zt), then A(X) + A(Y) = A(Z) + A(t ), and since the label s of vertices are
members of a Sidon sequence this implies that xy = u . The vertex labels are distinct
by definition. So Ais an edge-magic injection. 0

The proof of Theorem 9.21 gives us an upper bound on the deficiency:

Corollary 9.22. If G is a graph with v vertices and (aI , a2, ... , av) is any Sidon se
quence of length v with a I = 1, then

def e(G ) .::: av- I + Za; - a2 - v - e( G) .

Proof. In the above construction, no label can be greater than k - 1 - a2. 0

This upper bound will not usually be very good. For example, consider the graph
constructed from Cs by joining two inadjacent vertices. Using the Sidon sequen ce
(1,2,3,5 , 8), a labelin g with k = 22 is obtained, and the best assignment of the
sequence to the vertice s gives largest label 17, and deficiency 6. However, the graph is
actually edge-magic. See Figure 9.7.

4

13 16 9 8

8 cr-- - ..."....-----'b

2 0------0

5 2

Fig. 9.7. Deficiency 6 on the left; magic on the right

Theorem 9.23. The edge-magic deficiency of K; equals the magic num ber M (v).

Proof. Consider a edge-magic total labeling A of K v + M (v) K 1. This graph has
v+M(v ) vertices and e( K v) edges , so the largest label is v + M (v)+e(K v), and clearl y
this label occurs on a vertex or edge of K u- The labeling constructed by restricting Ato
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K; is an [v + M( v) + e(K v)]-edge-m agic injection of Kv. Obviously any injection of
size v +m + e( Kv) gives rise to an edge-magic total labeling of Kv +m K I (apply the
m unused labels to the extra vertices), so v + M (v) + e( Kv ) is the smallest possible
size, and def e(K v ) = M (v). 0

Exercises 9.3

A9.3.l Suppose G = K; + t K I. Prove that if G is edge-magic, then

t ~ p een) - n - (;).

That is, M (n) :::: p een) - n - G).
A9.3.2 Find an upper bound for M (n ) . (It does not have to be a good upper bound. The

point is to show that some upper bound exists.)
9.3.3 If G is an incomplete graph with v vertices and (aI , a2, ... , av) is any Sidon

sequence of length v with al = I, prove that

defe(G ) < av-l + Za; - a2 - v - e(G) .

H9.3.4 (i) Suppose K; has an edge-magic total labeling with magic sum k. The number
p of vertices that receive even labels satisfies the following condition s:
(i) If v = 0 or 3( mod 4) and k is even, then p = 4(v - I ± .JV+l).

(ii) If v = lor 2( mod 4) and k is even, then p = ~(v - I ± .JV=I).
(iii) Ifv = 0 or 3( mod 4) and k is odd, then p = {(v + I ± .JV+l).
(iv) If v = lor 2( mod 4) and k is odd, then p = 1(v + I ± Jl}+3).

(ii) Prove the following necessary conditions for K; to have an edge-magic total
labeling : if v = 0 or 3(mod4), then v + 1 is a perfect square; if v = 1
or 2(mod 4), then either v - I is a perfect square and the magic sum of the
labeling is even, or v+3 is a perfect square and the magic sum of the labeling
is odd.

(iii) Deduce that K7 is not edge-magic. [118]
9.3.5 Suppose G is a graph with v vertices. Prove that

def e(G ) ::: M(v) + G) -e(G) .
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