8

Planarity

8.1 Representations and Crossings

The two diagrams in Figure 8.1 represent the same graph, a K, with vertices a, b, c
and d. As diagrams they are quite different: in the version K4 (1), the edges ac and bd
cross; in K4(2) there are no crossings. We shall refer to the two diagrams as different
representations of the graph in the plane. The crossing number of a representation is
the number of different pairs of edges that cross; the crossing number v(G) of a graph
G is the minimum number of crossings in any representation of G. A representation
is called planar if it contains no crossings, and a planar graph is a graph that has a
planar representation. In other words, a planar graph G is one for which v(G) = 0.
Figure 8.1 shows that v(K4) = 0.

KD K,2)

Fig. 8.1. Two representations of K4

There are many applications of crossing numbers. An early use was in the design
of railway yards, where it is inconvenient to have the different lines crossing, and it is
better to have longer track rather than extra intersections. An obvious extension of this
idea is freeway design. At a complex intersection, fewer crossings means fewer expen-
sive flyover bridges. More recently, small crossing numbers have proven important in
the design of VLSI chips; if two parts of a circuit are not to be connected electrically,
but they cross, a costly insulation process is necessary.

In 1944, during the Second World War, Turan (see [60]) was forced to work in a
brick factory, using hand-pulled carts that ran on tracks to move bricks from kilns to
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stores. When tracks crossed, several bricks fell from the carts and had to be replaced by
hand. The tracks were modeled by a complete bipartite graph with one set of vertices
representing kilns and the other representing stores, so to minimize the man-hours lost
in replacing bricks, it was necessary to find v(K,, ,) (and find a representation of K,,, ,
that realized the minimum number of crossings). This problem is called “Turén’s brick
factory problem,” and is still unsolved. The best-known bound, which is conjectured
to be the best possible, is given in Theorem 8.1.

Theorem 8.1. The crossing number of K, , satisfies

W(Kna) < | 5 | L’"T_IJ H L” - IJ . @®.1)

For a proof, see Exercise 8.1.8.
Kleitman [77] proved that equality holds in (8.1) when m < 6. In particular,

v(Ken) = 6 L%J V > IJ : (8.2)

The crossing numbers of complete graphs also present difficulties. A very simple
(but very bad) upper bound is easily found. If the v vertices of K, are arranged in
a circle, and all the edges are drawn as straight lines, then every set of four vertices
contributes exactly one crossing. So

v(K,) < (Z)

More sophisticated constructions (see, for example, [60]) can be used to prove

Theorem 8.2. vl v—2 v—3

v
5“’2“2“‘2J'

It is easy to calculate the crossing numbers of some small graphs. For example, the
crossing number of any tree is 0. To see this, we show how to draw a tree in the plane
using ordinary Cartesian coordinates. Select any vertex x of the tree, and represent it
by the point with coordinates (0, 0). Suppose the vertices adjacent to x are yg, y2, - . ..
They are represented by (0, 1), (1, 1), (2, 1), .. .. If there are k vertices other than x
adjacent to y;, they are represented by (i, 2), (i + %, 2), (i + % 2, ..., 0+ %, 2).
This process of subdividing continues and provides a representation of the tree with
no crossings.

To prove that v(Ks) = 1, we start by considering smaller complete graphs. The
representation of K3 as a triangle is essentially unique: one can introduce a crossing
only by a fanciful, twisting representation of one or more edges. If the K3 with vertices
a, b, ¢ is drawn as a triangle, we obtain a representation of K4 by introducing a new
vertex d and joining it to the other three. If it is inside the triangle, we get the repre-
sentation shown as K4(2) in Figure 8.1; if it is outside, it is easy to draw the edges ad,
bd, cd so that they do not cross the triangle: for example,

1
v(Ky) < ZL
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This representation K,(3) is essentially equivalent to K4(2), with the vertices re-
labeled. (Remember, the shape of the edges is unimportant; only the connections mat-
ter.). So any planar representation of K5 can be obtained by introducing another vertex
into K4(2). If a new vertex e is introduced inside the triangle abd, then the represen-
tation of ce must cross one of ab, ad or bd. Similarly, the introduction of e inside
any triangle causes a crossing involving the edge joining e to the vertex that is not on
the triangle. (The “outer area” is considered to be the triangle abc.) So v(Ks) > 1. A
representation with one crossing is easy to find, so v(Ks) = 1.

Another graph with crossing number 1 is K3 3; proving this is left as an exercise.

Suppose G is planar. If a new graph were constructed by inserting a new vertex
of degree 2 into the middle of an edge (dividing an edge), or by deleting a vertex of
degree 2 and joining the two vertices adjacent to it (eliding a vertex), that new graph
will also be planar. Graphs that can be obtained from each other in this way are called
homeomorphic.

Since K5 and K3 3 are not planar, it follows that a graph having either as a subgraph
could not be planar. Moreover, a graph that is homeomorphic to one with a subgraph
homeomorphic to Ks or K33 cannot be planar. In fact, Kuratowski [82] proved that
this necessary condition for planarity is also sufficient.

Theorem 8.3. G is planar if and only if G is homeomorphic to a graph containing no
subgraph homeomorphic to Ks or K3 3.

The proof can be found, for example, in [17] or [66].

Exercises 8.1

H8.1.1 Prove that a graph G is planar if and only if every block of G is planar.
8.1.2 Prove that v(K| ,) = v(K3,) = O for any n.

A8.1.3 Prove that v(K33) = 1.
8.1.4 What is U(K3,4)?

A8.1.5 Prove that the Petersen graph is not planar. What is its crossing number?
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8.1.6 Which of the following graphs are planar?

% (n)

(i) a (iv)
| %

c

8.1.7 Suppose the graph G has seven or fewer vertices. Prove that either G or its com-
plement G is planar.

8.1.8 Consider the complete bipartite graph K, ,. In a Cartesian coordinate system,
select | %] points on the positive x-axis, [5] points on the negative x-axis, | 5]
points on the positive y-axis and [3] points on the negative y-axis. The figure
formed by joining all pairs with one point on the x-axis and one on the y-axis is a
representation of K, ,,. Use this representation to prove Theorem 8.1.

[

8.2 Euler’s Formula

In each plane representation of a connected graph, the plane is partitioned into regions
called faces: a face is an area of the plane entirely surrounded by edges of the graph,
that contains no edge. It is convenient to define one exterior face, corresponding to
the plane outside the representation. For example, the exterior face is abyz in Figure
8.2(a), and abxyz in Figure 8.2(b). The cycle abxyz is not a face in Figure 8.2(a),
because it contains the edge bz.

(a) (b)

Fig. 8.2. Different faces in different representations
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Special care must be taken with bridges. The representations shown in Figure 8.3
have exterior faces abcx, abcxyz and abx respectively, and abcx is a face in the third
case. A tree has exactly one face.

The edges touching a face are said to bound that face, and are collectively called
the boundary. It is common to think of the boundary as a cycle, but in the case of
bridges this need not be true. In particular, any cycle must have at least three edges,
but there are three connected graphs (K, K, and P;) with faces having boundary
smaller than three edges.

a b a c y a b
c x b X z c
Fig. 8.3. Graphs with bridges

The following theorem was proved by Euler in the eighteenth century.

Theorem 8.4. Suppose that a plane representation of the connected planar graph G
has v vertices, e edges and f faces. Then

v—e+ f=2 8.3)

Proof. By induction on e. It is easy to see that the theorem holds when e is small: if
e = 0, then the graph must be K|, whichhasv =1land f = 1;ife =1ore =2, we
have a path with e + 1 vertices and one face. Now assume the theorem is true for all
graphs with E or less edges, and suppose e = E + 1.

IfGisatree,thenv=¢+ land f = |, so

v—e+ f=e+l—e+1=2

Otherwise G contains a cycle. Select an edge that lies in this cycle. That edge will lie

separating two faces (one possibly being the exterior face). If it is deleted, one obtains

a graph with one fewer edge and one fewer face than the original. It has E edges so,

by induction, equation (8.3) is satisfied; in terms of the original graph,
v—(e—-1D+(f-1) =2,

and (8.3) follows. O

Corollary 8.5. All plane representations of the same connected planar graph have the
same number of faces.

Proof. Suppose a graph has v vertices and e edges; suppose it has two plane repre-
sentations, with f and f’ faces respectively. Then
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v—e+f=2=v—e+f,
so f = f. O

Because of Corollary 8.5, one speaks of the number of faces of a connected planar
graph, instead of the number of faces in a particular representation of it.
In a planar graph there are various restrictions on the values of v, e and f.

Theorem 8.6. Suppose a connected planar graph G has v vertices, e edges and f
faces, and no component has fewer than three vertices. Then

3f < 2e. (8.4)

Proof. The result is true for P, (¢ = 2, f = 1) so we can assume each face of G has
at least three edges. The edge-face adjacency matrix A of G is the e x f matrix with
entries ¢;; defined by

0 = 1 if the i-th edge lies in the boundary of the j-th face,
7] 0 otherwise.

Let ¢ be the sum of all the entries of A. Each edge bounds at most two faces, so the
sum of each row is at most 2. There are e rows, so ¢ < 2e. As each face has at least
three edges in its boundary, 3 f < o. The result follows. 0

Theorem 8.7. If a connected planar graph has v vertices and e edges, where v > 3,
thene < 3v —6.

Proof. Suppose the graph has f faces. By Theorem 8.6, 3f < 2e,s0 f < 2{ By
Theorem 84, v—e+ f =2,50v—e+ 2{ > 2. But this implies that 3v — e > 6, and
the theorem is proved. g

Example. The complete graph, K, is not planar for v > 5. If v > 5, then K, contains
Ks as a subgraph. Hence it is sufficient to show that K5 is not planar. We already
saw this fact in the preceding section, but the following neat proof is now available:
Suppose Ks is planar. We have v = 5, ¢ = 10, so that e > 3v — 6, contradicting
Theorem 8.7.

One can refine this example. Suppose G, a graph with v vertices and e edges, can
be drawn with ¢ crossings. Suppose you replace each crossing by a new vertex: in
other words, if edges xy and z¢ cross, introduce a new vertex w and replace xy and
zt by edges xw, wy, zw and wt. The new graph has v + ¢ vertices and e + 2c edges
and is planar, so e + 2¢ < 3(v +¢) — 6, and ¢ > 6 + e — 3v. For example, K has 6
vertices and 15 edges, so ¢ > 3. K¢ can be drawn with 3 crossings, so v(Kg) = 3.

The following useful consequence of Theorem 8.7 is left as an exercise (see Exer-
cise 8.2.4).

Corollary 8.8. Every planar graph has at least one vertex of degree smaller than 6.
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Exercises 8.2

8.2.1 Find the values of v, e and f for the following graphs, and verify Euler’s formula
for them.

) (ii) (iii)

A
W 1

H8.2.2 Prove that a connected planar graph with v vertices, v > 3, has at most 2v — 4
faces.
8.2.3 Prove that if a connected planar graph has v vertices, v > 3, and every face in
a certain plane representation has four edges, then the graph has 2v — 4 edges.
Hence prove:
(i) If a planar graph with v vertices contains no triangles, then it has at most
2v — 4 edges;
(ii) The complete bipartite graph K, , is not planar whenm > 3 and n > 3.
A8.2.4 Suppose G is a graph with v vertices and e edges, and suppose every vertex of G
has degree at least 6. Prove that
e > 3.
Hence prove that every planar graph contains a vertex of degree at most 5.
8.2.5 Prove that in a planar bipartite graph with v vertices, ¢ edges and f faces,

2f <e.
8.2.6 Verify that K can be drawn with 3 crossings.

8.3 Maps, Graphs and Planarity

By a map we mean what is usually meant by a map of a continent (showing countries)
or a country (showing states or provinces). However we make one restriction. Some-
times one state can consist of two disconnected parts (in the United States, Michigan
consists of two separate land masses, unless we consider man-made constructions such
as the Mackinaw Bridge). We exclude such cases from consideration.

Given a map, we can construct a graph as follows: the vertices are the countries or
states on the map, and the two vertices are joined by an edge precisely when the cor-
responding countries have a common border. As an example, Figure 8.4 shows a map
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of the mainland of Australia, divided into states and territories, and its corresponding
graph.

Suppose two states have only one point in common. This happens for example,
in the United States, where Utah and New Mexico meet at exactly one point, as do
Colorado and Arizona. We shall say that states with only one point in common have
no border, and treat them as if they do not touch.

Fig. 8.4. The map and graph of mainland Australia

It is always possible to draw the graph corresponding to a map without crossings.
To see this, draw the graph on top of the map by putting a vertex inside each state and
joining vertices by edges that pass through common state borders so the graph of any
map is planar. Conversely, any planar graph is easily represented by a map. Therefore
the theory of maps (with the two stated restrictions) is precisely the theory of planar
graphs.

In 1852, William Rowan Hamilton wrote to Augustus de Morgan concerning a
problem that had been posed by a student, Frederick Guthrie. (Part of the correspon-
dence is quoted in [14].) Guthrie said: cartographers know that any map (our defini-
tion) can be colored using four or less colors; is there a mathematical proof? (Guthrie
[59] later pointed out that the question had come from his brother, Francis Guthrie.)

Kempe [75] published a purported proof in 1879. It was thought that the matter
was over, but in 1890 Heawood pointed out a fallacy in Kempe’s proof. (We explore
the problem in Exercise 8.3.3.) Heawood did however repair the proof sufficiently to
prove the following weaker result.

Theorem 8.9. [70] Every planar graph can be colored in five colors.

Clearly Theorem 8.9 is the five-color analog of Guthrie’s four-color map problem.

Proof. We assume the theorem is false, so some planar graphs require six colors.
From these, select one that has the minimum number of vertices and has no isolated
vertices; call it G. By Corollary 8.8, there is a vertex x in G whose degree is at most 5.
G —x has fewer edges than G, so it is 5-colorable. Select a 5-coloring & of G. Observe
that every color used in § must be represented among the neighbors of x: if color ¢
were missing, one could set £(x) = ¢ and thus extend £ to a S-coloring of G, which is
impossible. So d(x) = 5. We shall write x;, x2, x3, x4, x5 for the five vertices adjacent
to x in G, and assume £(x;) = ¢;. Without loss of generality we shall assume that the
vertices X1, Xa, X3, X4, X5 occur in order around x in some plane representation of G,
as shown in Figure 8.5(a).
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Pl 3 P24

Fig. 8.5. A neighborhood used in the 5-color proof

Consider the induced subgraph G;; of G whose vertex-set consists of all vertices
that receive color ¢; or color c¢; under &. If x; and x; lie in different components
of G;, then one could exchange colors among all the vertices in one component —
say the component containing x; — and the result would still be a 5-coloring of G.
However there would be no vertex of color ¢; adjacent to x, so the new coloring could
be extended to a 5-coloring of G by allocating ¢; to x. This is impossible. Therefore
x; and x; must lie in the same component of G;;, and there must exist a path P;; from
x; to x; in G, all of whose vertices receive either ¢; or ¢; under &.

Now consider the paths Pj3 and Py4. It is clear from Figure 8.5(b) that these two
paths must cross. But the only way two paths in a plane representation can cross is at
a common vertex, which is impossible because the vertices in P53 do not receive the
same colors as those in Py4. O

After Heawood’s paper appeared, there was renewed interest in the 4-color prob-
lem. Because it was easy to state and tantalizingly difficult to prove, it became one
of the most celebrated unsolved problems in mathematics, second only to Fermat’s
Last Theorem. In 1976, Appel and Haken [3] finally proved that any planar graph —
and therefore any planar map — can be colored in at most four colors. Their proof
involved computer analysis of a large number of cases, so many that human analysis
of all the cases is not feasible. We state their theorem as

Theorem 8.10. Every planar graph can be colored using at most four colors.

For details of the proof, see [4] or [106].

Exercises 8.3

8.3.1 Find the graph of the mainland provinces and territories of Canada. (Treat Labrador
as a province.) How many colors does it need?
A8.3.2 Use the result of Exercise 8.2.4 to prove that any planar graph can be colored in
at most six colors (without using any results from this section).
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8.3.3 In Kempe’s attempted proof of the four color theorem, it is assumed that G is
a minimal planar graph requiring five colors, and that x is a vertex of degree 5.
A 4-coloring & of G — x is chosen. Kempe shows that if the coloring cannot be
extended to a 4-coloring of G, it must happen that the neighbors of x receive all
four colors under &, and are arranged as in Figure 8.6. Vertex x; receives color ¢;;
both x4 and y, receive c4. G; denotes the subgraph induced by vertices receiving
colors ¢; or ;.

Fig. 8.6. A neighborhood in Kempe’s proof

Kempe argues that there must be a path Py, from x| to x; in G1, or else one could
interchange colors ¢; and ¢; in the component of G, that contains x;, and then
color x with ¢;. Similarly there must be a path P53 from x| to x3 in G 3.

By planarity, there can be no path from x; to y4 in G4, because such a path would
need to cross Py3. So one can exchange colors ¢; and ¢4 in the component of G4
that contains y4. Similarly, one can exchange colors ¢3 and ¢4 in the component of
G 34 containing x4. Now x can receive color cy.

What is wrong with this argument?
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