
4

Trees

4.1 Characterizations of Trees

A tree is a connected graph that contains no cycle. Figure 4.1 contains three examples
of trees. It is also clear that every path is a tree, and the star K1,n is a tree for every n,

A tree is a minimal connected graph in the following sense: if any vertex of degree
at least 2, or any edge, is deleted, then the resulting graph is not connected, In fact it
is easy to prove the following stronger theorem; the proof is left as an exercise.

Theorem 4.1. A connected graph is a tree ifand only if every edge is a bridge.

Trees are also characterized among connected graphs by their number of edges.

Theorem 4.2. A finite connected graph G with v vertices is a tree if and only if it has
exactly v-I edges.

Proof. (i) Suppose that G is a tree with v vertices. We proceed by induction on u, The
theorem is true for v = 1, since the only graph with one vertex is K I, which is a tree,
Suppose it is true for w < v, and suppose G is a tree with v vertices. Select an edge
(G must have an edge, or it will be the unconnected graph Kv) and delete it. The result
is a union of two disjoint components, each of which is a tree with less than v vertices;
say the first component has VI vertices and the second has V2, where v, + V2 = V.

By the induction hypothesis, these graphs have VI - 1 and V2 - 1 edges respectively.

A B c

Fig. 4.1. Three trees

54 4. Trees

Adding one edge for the one that was deleted, we find that the number of edges in G
IS

(V I - 1) + (V2 - 1) + 1 = v - I.

(ii) Conversely, suppose G is not a tree. Select an edge that is not a bridge, and
delete it. If the resulting graph is not a tree, repeat the process. Eventually there will
be only bridges left, and the graph is a tree. From what we have just said it must have
v-I edges, and the original graph had more than v-I edges. 0

The word "leaf" is used to refer to a vertex of degree I in a tree, together with the
edge incident with it.

Corollary 4.3. Every tree other than K] has at least two leaves.

Proof. Suppose the tree has v vertices. It then has v-I edges. So, by Theorem 1.1,
the sum of all degrees of the vertices is 2(v - I). There can be no vertex of degree 0,
since the tree is connected; if v - I of the vertices have degree at least 2, then the sum
of the degrees is at least 1 + 2(v - I), which is impossible. 0

The corollary does not hold if we allow our graphs to have infinite vertex-sets. One
elementary example consists of the infinitely many vertices 0, 1,2, ..., n, ... and the
edges 01, 12,23, ..., (n, n + 1), The only vertex with degree I is vertex 0; every
other vertex in the "tree" has degree 2.

The following interesting theorem uses Corollary 4.3.

Theorem 4.4. Suppose T is a tree with k edges and G is a graph with minimum degree
8(G) 2: k. Then G has a subgraph isomorphic to T.

Proof. The proof uses induction on k. If k = 0, then T = K], which is a subgraph
of every graph. Suppose k > 0, and suppose the theorem is true for all nonnegative
integers less than k. Select a vertex x of degree 1 in T (the existence of such a vertex
is guaranteed by Corollary 4.3). Say wx is the edge of T containing x.

The graph T - x is a tree with k - 1 edges, so it is isomorphic to some subgraph
H of G (since 8(G) 2: k > k - I). Suppose y is the vertex of G corresponding to w.
Since y has degree at least k in G, and H contains only K - 1 edges, there must be
at least one edge adjacent to y, say yz, which is not an edge of H. Then H + yz is
isomorphic to T. 0

Exercises 4.1

4.1.1 Show that there are exactly six nonisomorphic trees on six vertices.
4.1.2 Prove Theorem 4.1.

A4.1.3 Prove that a finite graph on v vertices that contains no cycle is connected if and
only if it has v-I edges.

4.1.4 Prove that a connected graph is a tree if and only if it has the following property:
if x and yare distinct vertices, then there is a unique path in G from x to y.

A4.1.5 A perfect square was defined in Exercise 2.1.11. Prove that no tree other than K I

or K2 is a perfect square.
A4.1.6 Give an example of an infinite "tree" that contains no vertex of degree I.

4.2 Spanning Trees 55

H4.1.7 Let T be a tree on v vertices, v ~ 5, with precisely four vertices of degree 1 each
and precisely one vertex of degree 4. Find the degrees of the remaining vertices of
T, and show that T can be written as the union of two edge-disjoint simple walks.

H4.1.8 Let the vertices of a tree T be labeled with the integers 1, 2, ..., v. As usual,
D(i, j) denotes the distance between vertices i and j. Let M T be the v x
v matrix with (i, j) entry xD(i,j). Show that the determinant of MT equals
(l_x 2)n- l .

A4.1.9 A tree T with v vertices has a vertex of degree k. Prove that the longest path in T
has at most v - k + 1 edges.

4.1.10 Prove that a graph is a tree if and only if every vertex of degree greater than 1 is a
cutpoint.

4.1.11 The center C(G) of a finite graph G of radius R was defined in Section 2.2 to
consist of all those vertices x that have eccentricity .s(x) = R.
H(i) Prove that the center of a tree consists of either one vertex or two adjacent

vertices. [73]
(ii) Give examples of trees with centers of size 1 and size 2.

4.1.12 Recall that a graph G is called self-centered if C(G) = G. Which trees are self
centered?

4.1.13 Let A be the incidence matrix of a tree on t vertices. Consider the t rows of A
as vectors over GF[2], by interpreting 0 and 1 as the elements of the two-element
field GF[2]. Show that any t - 1 rows of A are linearly independent over GF[2].

4.2 Spanning Trees

Recall that a subgraph of a graph G spans G if it contains every vertex of G. A span
ning tree is a spanning subgraph that is a tree when considered as a graph in its own
right.

Theorem 4.5. Every connected graph G has a spanning tree.

Proof. If G is a tree, then the whole of G is itself the spanning tree. Otherwise G
contains a cycle. Let a be an edge in the cycle. Then a is not a bridge in G, so the
graph G' obtained by deleting a from G is still connected. We have not deleted any
vertex, so G' is a spanning subgraph. If G' contains a cycle, we delete an edge from
that cycle. The new graph we obtain is again a connected spanning subgraph of G.
This process may be continued until the remaining graph contains no cycle - that is,
it is a tree. So, when the process stops, we have found a spanning tree. But the process
must stop since G is finite and there are only finitely many edges that could be deleted.

D

It is easy to see that Theorem 4.5 generalizes to graphs with loops and multiple
edges.

It is clear from the above proof that a given multigraph may have many different
spanning trees. In certain applications it is useful to know the exact number. We shall
write T (G) for the number ofspanning trees of a graph G.

56 4. Trees

One can sometimes calculate r(G) quite quickly. If G is a tree, then r(G) = 1. If
G is a cycle of length n, then n spanning trees can be constructed, each by deleting one
edge, so r(G) = n. We can consider a general multigraph G: the existence of loops
does not change r(G), as no loop can contribute to a tree; if one edge is multiple,
of multiplicity k, then each spanning tree includes at most one of the k edges, and
replacing one edge joining the two vertices by another gives another spanning tree.

Fig. 4.2. Multigraphs whose trees are to be counted

Example. Figure 4.2 shows multigraphs G I, Gz, G3. We find the number of spanning
trees for each.

A spanning tree in G 1 must contain one of the edges xy and one of the edges yz.
The number of choices is 2 x 3 = 6. So r (G 1) = 6. Since loops do not affect the
function r , r(Gz) = r(C4) = 4. To calculate r(G3) , one first observes thatthree pairs
of vertices must be joined. This can be done in four ways. In each case there are eight
trees. So r(G3) = 4 x 8 = 32.

~a---{\

I a If
L~

G G-a

Fig. 4.3. The multigraphs used in counting trees

Calculation of r(G) by counting becomes very tedious when G is large. In order
to derive a formula for r(G), we first introduce a new multigraph Ga. If a is any edge
of a multigraph G, Ga is formed by identifying the endpoints of a: if a = x y, then Ga

is formed by deleting both x and y, inserting a new vertex, and replacing every edge
zx and every edge zy by an edge from z to the new vertex. For convenience we assume
that every edge from x to y is deleted; alternatively, we could introduce these edges
as loops in Ga, but this is unnecessary, as Ga will be used only in counting trees, and
loops are immaterial in that context. We also use the multigraph G - a, formed from
G by deleting a. Examples of G a and G - a are shown in Figure 4.3.

4.2 Spanning Trees 57

Suppose a is an edge of G. Then the spanning trees of G either contain a or they
do not. A spanning tree that does not contain a is a sub graph of G - a, and is still a
spanning subgraph, so it is a spanning tree of G - a; conversely, the spanning tree s
of G - a are spanning trees of G and do not contain a. So the two sets, the spanning
trees of G - a and the spanning tree s of G that do not contain a, are in one-to-one
correspondence. So the sets are equal in size, and there are r eG - a) spanning trees of
G that do not contain a. Similarly, the number of spanning tree s of G that do contain
a is r (Ga); Exercise 4.2.1 asks for a proof of this fact , but we look first at the special
case shown in Figure 4.3. The spanning tree s of G that contain a must also contain
either band c only, or one of band c together with one of d , e, and f . Exactly the
same is true of the spanning trees of Ga: they contain band c only, or one of band c
together with one of d, e, and f .

Thus, summing the number of spanning trees of G that do or do not contain edge
a, we obtain:

Theorem 4.6.
reG) = reG - a) + r(G a) .

An n-fold path is formed from a path by replacing each edge with a multiple
edge of multiplicity n. An n-fold cycle is defined similarly. The se multigraphs recur
frequently in applications of Theorem 4.6 , so it is helpful to know their numbers of
spanning tree s.

Theorem 4.7. The numb er ofspanning trees in an n-fold path is

r (nPv) = n v -
1•

The number of spanning trees in an n-fold cycle is

r (nC v) = vnv- 1•

Proof. For the multiple path, one has n choices of edge for each edge of the under! ying
path, giving n v- I paths in all. For the multiple cycle, each spanning tree is a path; there
are v choices for the pair of adjacent vertices that will not be adjacent in the spanning
tree , and for each choice there are again nv- 1 paths. 0

Example. Calculate reG), whe re G is the graph of Figure 4.3.
The method of decomposing the relevant graphs is indicated in Figure 4.4 (next

page) .
It is clear that r(G4) = 3 (since G4 is a cycle), that reGs) = I (since Gs is a tree),

that r(G6) = 2, that r(G7) = 3 and that r(G8) = 4. So:
r(G2) =r(G7) + r (G8)=3 + 4 = 7;
r (G3)= reGs) + r (G6) = 1 + 2 = 3;
r (Gd=r (G3)+r(G4)=3+3= 6;
reG) =r (G1)+r(G2)=6+7=13.

Suppose G is a graph with v vertices, T is any spanning tree in G , and a is any
edge of G that is not in T . Then T + a has v vertices, so it must contain a cycle.
Moreover, a must be an edge in that cycle. Select an edge b of the cycle, other than a.
Then T + a - b will be acyclic, and it is still connected, so it is a tree .

58 4. Trees

In particular, suppose R is a spanning tree of G that has k edges in common with
t , and suppose a is an edge of R (but not of T). The cycle in T + a must contain an
edge that is not in R, becau se otherwise R would contain a cycle. If such an edge is
chosen as b, then the tree T - a + b will have k + I edges in common with R. Call
this tree T). One can then construct another tree T2 that shares k +2 edges with R, and
so on. Eventuall y the number of shared edges will be v - I, so the tree must be R. We
have proved:

Theorem 4.8. 1fT and R are spanning trees of the v-vertex graph G. then there exists
a sequence ofspanning trees,

T = To, T1• • •• , T; = R,

where T; and Ti+1 have v - 2 common edges for every i.

Exercises 4.2

4.2.1 Prove that there is a one-to-one correspondence between the trees of G containing
edge a and the trees of Ga.

4.2.2 A multigraph G consists of a muitigraph H, together with one new vertex x and
an edge from x to one of the vertices of H . Show that r (G) = r (H) .

1(Gt) = 1«J3) + 1(G4) DJ tJ -.
G1 G3 G4

1(G3) = 't(Gs) + 1(G6) DJ T T T

LJ I
0===0

G3 Gs G6

1(G2) = 1(G7) + 1(Gg)

~ -, ~
Fig. 4.4. Counting trees

4.2 Spanning Trees 59

A4.2.3 Show that K v contains a pair of edge-di sjoint spanning trees if and only if v :::: 4.
A4.2.4 Find the number of spanning trees in each of the graphs and muitigraphs shown

in Figure 4.5.

(i) lZI (ii)0 (iii)M
Fig. 4.5. Count the spanning trees

4.2.5 Repeat the preceding exercise for the graphs and mult igraphs shown in Figure 4.6.
4.2.6 Recall that a graph is called cubic if every vertex has degree 3.

(i) Prove that if a cubic graph on 11 vertices contain s two edge-di sjoint spanning
trees, then 11 :::: 8.

(ii) Is there a cubic graph on four vertices containing two edge-disjoint spanning
trees? Is there one which does not contain two edge-disjoint spanning trees?

(iii) Repeat part (ii) for 11 = 6 and for 11 = 8.
A4.2.7 Let G be the graph with four vertices 1, 2,3,4 and two edges (l , 2), (3, 4) . Con

struct multigraphs N" Ni . N3 , N4 , with the following properties: each N, consists
of four edges, and four, five or six vertices; each N, contains G as a subgraph;
T(Ni) = i -I , for i = 1,2,3, 4.

4.2.8 Prove that every bridge in a connected graph lies on every spanning tree of the
graph.

A4.2.9 Find r (K4) and r(Ks).
H4.2.l0 Suppose a graph G is formed by taking two disjoint connected graphs G 1 and

G2 and identifying a vertex in G 1 with a vertex in G2• Show that r eG) =
r (G,)T(G 2) .

4.2.11 Suppose G is formed by taking two disjoint connected graphs G I and G2 and
inserting an edge connecting some vertex of G, with some vertex of G 2. Use
Theorem 4.5 and the result of the preceding Exercise to find an expression for
r eG).

4.2.12 Let T] and T2 be spanning trees of a connected graph G; show that if a is any
edge of Ti, then there exists an edge b of T2 such that (T, - {a}) U {b} (the graph
obtained from T, on replacing a by b) is also a spanning tree. Show also that T,
can be "transformed" into T2 by replacing the edges of T, one at a time by edges
of Tz in such a way that at each stage we obtain a spanning tree .

4.2.13 (i) Show that in any connected graph, any cycle must have at least one edge in
common with the complement of any spanning tree.

(ii) Show that in any connected graph, any cutset must have at least one edge in
common with any spanning tree.

A4.2.14 Let H be a subgraph of a connected graph G. Show that H is a subgraph of some
spanning tree T of G if and only if H contains no cycle.

4.2.15 If G is any connected graph or mult igraph with v vertices, the tree graph of G has
as its vertices the spanning trees of G; two vertice s are adjacent if and only if the

60 4. Trees

(i)~ (ii) lZSl (iii)~

(iv) 'W (v) '00'
Fig. 4.6. Countthe spanning trees

trees have v - 2 edges in common. Prove that the tree graph of a graph is always
connected.

4.3 Minimal Spanning Trees

Consider applications of the kind discussed in Section 2.3, where each edge of a graph
has a weight associated with it. It is sometimes desirable to find a spanning tree such
that the weight of the tree - the total of the weights of its edges - is minimum. Such
a tree is called a minimal spanning tree.

It is clear that a finite graph can contain only finitely many spanning trees, so it
is possible in theory to list all spanning trees and their weights, and to find a minimal
spanning tree by choosing one with minimum weight. This process could take a very
long time however, since T (G) can be very large. So efficient algorithms that find a
minimal spanning tree are useful. We present here an example due to Prim [96].

We assume that G is a graph with vertex-set V and edge set E, and suppose there is
associated with G a map w: E ---+ R called the weight of the edge; when xy is an edge
of G we write w(x, y) for the image of xy under w. We could quite easily modify the
algorithm to allow for multiple edges, but the notation is slightly simpler in the graph
case. The algorithm consists of finding a sequence of vertices xo, Xl, X2, ... , of G and
a sequence of sets So, Sl, S2, ... , where

Si = {Xo, Xl, ... , Xi-d·

We choose Xo at random from V. When n > 0, we find Xn inductively using Sn as
follows.

1. Given i, 0 :'S i :'S n - 1, choose Yi to be a member of V \ S; such that W(Xi, Yi) is
minimum, if possible. In other words:
a) if there is no member of V \ Sn adjacent to Xi, then there is no Yi;

b) if V \ S; contains a vertex adjacent to Xi, then Yi is one of those vertices
adjacent to Xi, and if Xi ~ y,thenw(xi,Yi):S W(Xi,Y).

2. Provided that at least one Yi has been found in Step (1), then define Xn to be a y,
such that W(Xi, Yi) is minimal; in other words, Xn is the Yi that satisfies

4.3 MinimalSpanningTrees 61

This process stops only when there is no new vertex Yi. If there is no new vertex Yi,
it must be true that no member of V \ S; is adjacent to a vertex of Sn' It is impossible
to partition the vertices of a connected graph into two nonempty sets such that no
edge joins one set to the other, and S; is never empty, so the process stops only when
Sn = V.

When we reach this stage, so that S; = V, we construct a graph T as follows:
(i) T has vertex-set V;

(ii) if Xk arose as Yi, then Xi is adjacent to Xk in T;
(iii) no edges of T exist other than those that may be found using (ii).
It is not hard to verify that T is a tree and that it is minimal; see Exercise 4.3.3.

Observe that x X; may not be defined uniquely at Step (2) of the algorithm, and
indeed Yi may not be uniquely defined. This is to be expected: after all, there may be
more than one minimal spanning tree.

abc

CD
abc
C(4-y6y
523

6-1~6---<S
de/ d e /

Fig. 4.7. An exampleof Prim's algorithm

Example. Consider the graph G shown in Figure 4.7. Weights are shown next to the
edges.

Select Xo = a. Then Sl = {a}. Now Yo = b, and this is the only choice for Xl. So
S: = {a, b}. The tree will contain edge abo

Working from Sz, we get Yo = d and Yl = e. Since be (= Xl Yl) has smaller weight
than ad (= xoyo), we select Xz = e. Then S3 = {a, b, e} and edge be goes into the
tree. Similarly, from S3, we get X3 = d and S4 = {a, b, d, e}, and the new edge is de.

Now there is a choice. Working from S4, Yl = c and yz = I. In both cases the
weight of the edge to be considered is 6. So either may be used. Let us choose c, and
use edge be.

The final vertex is I. and the edge is cf. So the tree has edges ab, be, be, c], de
and weight 16.

The algorithm might be described as follows. First, choose a vertex Xo. Trivially
the minimum weight tree with vertex-set {xo} - the only tree with vertex-set {xo} - is
the K, with vertex Xo. Call this the champion. Then find the smallest weight tree with
two vertices, one of which is Xo; in other words, find the minimum weight tree that
can be formed by adding just one edge to the current champion. This tree is the new
champion. Continue in this way: each time a champion is found, look for the cheapest
tree that can be formed by adding one edge to it. One can consider each new tree to be

62 4. Trees

an approximation to the final minimal spanning tree, with successive approximations
having more and more edge s.

Prim 's algorithm was a refinement of an earlier algorithm due to Kruskal [81]. In
that algorithm, one starts by listing all edges in order of increasing weight. The first
appro ximation is the K2 consi sting of the edge of least weight. The second approxi
mation is formed by appending the next edge in the ordering. At each stage the next
approximation is formed by adding on the smallest edge that has not been used, pro
vided only that it does not form a cycle with the edges already chosen. In this case the
successive approximations are not necessarily connected, until the last one. The advan
tage of Prim 's algorithm is that, in large graphs , the initial sorting stage of Kruskal's
algorithm can be very time consuming.

Exercises 4.3

4.3.1 Find minimal spanning trees in the following graphs, using both Kruskal's and
Prim's methods.

(i) rl7J
1) 3

~2-l

(iii) 514/1'3
~ T/ 3 5 P
4~4Jr2

A4.3 .2 Find minimal spanning trees in the following graphs, using both Kruskal's and
Prim 's method s.

4.3.3 Prove that the graph T constructed in Prim's algorithm is in fact a minimal span
ning tree.

4.3 Minimal SpanningTrees 63

4.3.4 Find minimal spanning trees in the following graphs , using both Kruskal 's and
Prim' s methods.

H4.3.5 It is required to find a maximal spanning tree in a graph. Suggest a modification
of Prim's algorithm for this problem.

A4.3.6 (i) On graph A below, a weight function is shown. Find a minimal spanning tree
inA.

64 4. Trees

i 4T 2i i4~8i

f--k6~ ~9~ 6~

~3+~~ f:+~
5 ---L 3 8 ~ 3L I 6--1 L I 6--1

A B
(ii) B is similar, except that no weight is specified for one edge . Find a minimal

spanning tree in B if that edge has weight
(a) 1; (b) 4; (c) 7.

	4 Trees
	4.1 Characterizations of Trees
	4.2 Spanning Trees
	4.3 Minimal Spanning Trees

