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Graphs

1.1 Sets, Binary Relations and Graphs

We shall use the standard concepts and notations of set theory. We write XES

and y ~ S to indicate that x is a member of S, and that y is not a member of S.
lSI denotes the number of elements of S, also called the order of S. If all elements
of S are also elements of T, then S is a subset of T, written S S; T. The notation
SeT means that S is a subset of T but is not identical to T, so that T has at least one
element that is not in S.

A set can be specified by writing a description ("the set of positive perfect squares
less than 20") or by listing its members ("{I, 4, 9, 16}"). One can also state a mem­
bership law: for example, {x2 I x is an integer, x 2 < 20}. This is called setbuilder
notation. The I is read as "such that"; it is equally common to use a colon instead of I.
Other mathematical abbreviations are often employed in setbuilder notation - for ex­
ample, Z usually represents the set of integers, so one might replace "x is an integer"
by "x E Z."

If Sand T are any two sets, then S U T means the union of Sand T, the set of
everything that is either a member of S or a member of T (or both), and S nTis the
intersection, the set common elements. The set-theoretic difference S\T, also called
the relative complement of Tin S, consists of all elements of S that are not members
of T. The cartesian product S x T is the set of all ordered pairs {x, y}, where x is a
member of Sand y is a member of T.

Various identities between sets can be proved. For example, both union and inter­
section satisfy the commutative laws

SUT=TUS

SnT=TnS

for any sets Sand T, and the associative laws

R U (S U T) = (R U S) U T

R n (S n T) = (R n S) n T

for any sets R, Sand T.

(Ll)

(1.2)

(1.3)

(1.4)
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To prove that two sets are equal, one often proves that every member of one set
is an element of the other, and conversely. In other words, to show that A = B, first
prove A ~ B and then prove B ~ A.

Example. To prove R n (5 n T) = (R n 5) n T, first observe that any member x of
R n (5 n T) is both a member of R and a member of 5 n T, and the latter means that
x belongs to both 5 and T. So all of x E R, x E 5 and x E T are true. From these
we see that both x E R and x E 5 are true, so x E Rn 5, and also x ET ; therefore
x E (R n 5) n T . We have actually shown that

R n (5 n T) ~ (R n 5) n T .

One proves R n (5 n T ) ~ (R n 5) n T in the same way, and equality has been
established .

Example. Prove R\(5 U T) = (R\5) n (R \T)for any sets R, 5 and T.
R\ (5 UT) consists of precisely those members of R that are not members of 5 UT,

in other words those elements of R that do not belong to 5 or to T . That is,

R\(5 U T ) = (x I x E R and x rf- 5 and x rf- Tj .

On the other hand, (R\5) consists of all the things in R that are not in 5, and
(R\5) n (R\T) consists of all the things in R that are not in T ; the common ele­
ments of these sets are all the things in R but not in 5 and not in T , which is the same
as the description of R\C5 U T) .

Binary relation s occur frequentl y in mathematics and in everyday life. For exam­
ple, the ordinary mathematical relations < , = , >, ::::: and > are binary relations on
number sets, C and <::;; are binary relations on collections of sets. and so on. If S is the
set of all living people , "is the child of' is a typical binary relation on S.

Formally, a binary relation r- on a set S is a rule that stipulates, given any elements
x and y of 5, whether x bears a certain relationship to y (written x '" y ) or not (written
x f y). Alternatively, one can define a binary relation r- on the set S to consist of a
set >- (5) of elements from 5 x 5 (the set of ordered pairs of elements of 5), with the
notation x '" y meaning that (x, y ) belongs to '" (5) .

One important class of binary relations is arithmetical congruence. Two integers
a and b are congruent modulo 11 (written a == b(modn » if a - b is divisible by n,
The congruence class of a (m od n ) is the set of all integer s congruent to a modulo n,
There are n different congruen ce classes modulo n.

One can represent any binary relation by a diagram. The elements of the set 5 are
shown as points (vertice s), and if x '" y is true, then a line (edge) is shown from x to
y, with its direction indicated by an alTOW. Provided the set 5 is finite, all information
about any binary relation on 5 can be shown in the diagram. The diagram is a directed
graph or digraph; if x '" x is ever true, the diagram is a looped digraph.

The binary relation r- on 5 is called reflexive if x '" x is true for all x in 5, and
antireflexive if x '" x is never true (or, equivalently, if x f x is true for all x). If y '" x
is true whenever x '" y is true, then r- is called symmetric. If the relation is symmetric,
the arrows can be omitted from its diagram. The diagram of a symmetric, antireftexive
binary relation on a finite set is called a graph.
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Fig. 1.1. Diagrams of binary relations

Example. Suppose the binary relations <, ==, ,....., and ~ are defined on the set S
(1,2,3 , 4} as follows:

x<y means x is less than y;

x ==y means x is congruent to y

x"""' y means x = y± 1;
?

x ~ y means y =.c.

(mod 2) and x i= y ;

Then the corresponding subsets of S x S are

< (S) = {(l , 2), (l , 3) , (1, 4), (2, 3), (2, 4), (3, 4)};

== (S) = {(l , 3), (3, I) , (2, 4), (4, 2)};

,....., (S) = {(I , 2), (2, I), (2, 3), (3, 2), (3, 4), (4, 3)};

~ (S) = {(l, I) , (2, 4)}.

The diagrams are shown in Figure 1.1. Relations == and ,....., yield graphs, < gives a
digraph, and ~ a looped digraph.

In more general situations, it might make sense to use two or more lines to join
the same pair of points. For example, suppose we want to describe the roads joining
various townships. For many purposes we do not need to know the topography of
the region, or whether different roads cross, or various other things. The important
information is whether or not there is a road joining two towns. In these cases we
could use a complete road map with the exact shapes of the roads and various other
details shown, but it would be less confusing to make a diagram, as shown in Figure
1.2, that indicates two roads jo ining B to C, one road from A to each of Band C and
one road from C to D with no direct roads joining A to D or B to D . We say that there
is a multiple edge (of multiplicity 2) joining B to C. If any of the roads were one-way,
an arrow could be employed.
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B

A~
C D

Fig. 1.2. Graphical representation of a road network

Example. Consider a football competition in which every team plays every other team
once. At any point of the tournament we can represent the games that have been played
by a graph. The vertices represent the teams; edge xy is included if and only if the
teams x and y have already played each other. Figure 1.3 is the representation of a
6-team league after matches A v. B, A v. C, A v. D, B v. E and E v. F have been
completed.

A B

c D

E F

Fig. 1.3. Graphical representation of a football competition

Example. Suppose there are four jobs vacant and five men apply for them. Each man
is capable of performing one or more of the jobs. The usual question is whether or not
one can allocate jobs to four of the men so that all four jobs are allocated.

This situation can conveniently be represented by a graph. All the applicants and
all the jobs are represented by vertices; two vertices are joined if and only if one
represents an applicant, the other represents a job, and the applicant is capable of
doing the job. Figure 1.4 shows the situation where A, Band C can all handle jobs 1
and 2, D can do 1 and 3 and E can do 2 and 4.

ABC D E

~
2 3 4

Fig. 1.4. Who is qualified for which job?
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Exercises 1.1

1.1.1 Prove that the following identities hold for any sets R, Sand T.
(i) R U (S U T) = (R U S) U T.

(ii) R n (S U T) = (R n S) U (R n T).

(iii) R\(S n T) = (R\S) U (R\T).
A1.1.2 In each part below, a binary relation rv is defined on

{-3, -2, -1,0,1,2, 3}.
In each case, is the relation reflexive? Antireflexive? Symmetric?
(i) x rv y means x + y .::: 4.

(ii) x rv y means x + y .::: 60
(iii) x rv y means x = y + 1.
(iv) x rv y means x = ±y.

1.1.3 Repeat Exercise 1.1.2 for the following binary relations defined on
{-3, -2, -1,0,1,2, 3}:

(i) x rv y means x .::: l.
(ii) x rv y means x + y 2: 0.
(iii) x rv y means x + y is odd.
(iv) x rv y means xy is odd.

1.104 Draw graphical representations of the relations in Exercise 1.1.2.
101.5 Draw graphical representations of the relations in Exercise 1.1.3.

A1.1.6 Repeat Exercise 1.1.2 for the following relations defined on the positive integers.
(i) x rv y means x + y .::: 40
(ii) x rv y means x divides yo
(iii) x rv y means x and y have greatest common divisor 1.
(iv) x rv y means x + y is odd.

1.1.7 Repeat Exercise 101.2for the following relations defined on the positive integers.
(i) x rv y means x and yare both prime numbers.
(ii) x rv y means x = ±y.
(iii) x rv y means xy is odd.

1.1.8 A relation is called transitive if every time (x, y) and (y, z) are in the relation,
then (x, z) is also.
(i) Describe the graph of a symmetric, transitive relation.
(ii) Which, if any, of the relations in Exercises 1.1.2, 1.1.3, 1.1.6 and 1.107 are

transitive?
1.1.9 Suppose the binary relation rv is defined on the set of real numbers as follows: x rv

y means x == y(mod 7). Is rv reflexive? Antireflexive? Symmetric? Transitive?
1.1.10 A basketball league contains seven teams, denoted by A, B, C, D, E, F, G. Team

A has played against each other team once; team B has played against C, E and
G; and teams D, E and F have all played. Draw a graph to illustrate this situation.
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1.2 Some Definitions

We start by formalizing some of the discussion and definitions from the preceding
section. A graph G consists of a finite set V (G) of objects called vertices together with
a set E (G) of unordered pairs of vertices; the elements of E (G) are called edges. We
write v(G) and e(G) for the orders of V(G) and E(G), respectively; these are often
called the order and size of G. In terms of the more general definitions sometimes
used, we can say that "our graphs are finite and contain neither loops nor multiple
edges."

Graphs are usually represented by diagrams in which the vertices are points. An
edge xy is shown as a line from (the point representing) x to (the point representing)
y. To distinguish the vertices from other points in the plane, they are often drawn as
small circles or large dots.

Example. A graph has five vertices, a, b, c, d, e, and edges ab, ac, ad, be, de. So its
representation is

Often the same graph can give rise to several drawings that look quite dissimilar.
For example, the three diagrams in Figure 1.5 all represent the same graph. Although
the two diagonal lines cross in the first picture, their point of intersection does not
represent a vertex of the graph.

The edge containing x and y is written xy or (x, y); x and y are called its end­
points. We say this edge joins x to y. If A and B are subsets of V(G), then [A, B]
denotes the set of all edges of G with one endpoint in A and the other in B:

[A, B] = {xy:x E A, y E B,xy E E(G)}. (l.5)

If A consists of the single vertex a, it is usual to write [a, B] instead of [{a}, B].
An isomorphism of a graph G onto a graph H is a one-to-one map ¢ from V (G)

onto V(H) with the property that a and b are adjacent vertices in G if and only if
a¢ and b¢ are adjacent vertices in H; G is isomorphic to H if and only if there is
an isomorphism of G onto H. An isomorphism from a graph G to itself is called an
automorphism of G.

a

e b

Because graphs are finite, one can prove that a map ¢ is an isomorphism of G onto
H by showing that the two graphs have the same numbers of vertices and edges, that
a¢ is a vertex of H whenever a is a vertex of G, and that a¢ and b¢ are adjacent
vertices in H whenever a and b are adjacent in G.

Given a set S of v vertices, the graph formed by joining each pair of vertices in
S is called the complete graph on S and denoted by Ks. We also write K; to mean
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any complete graph with v vertices. From the definition of isomorphism it follows that
all complete graphs on v vertices are isomorphic. The notation Kv can be interpreted
as being a generic name for the typical representative of the isomorphism class of
all v-vertex complete graphs. The three drawings in Figure 1.5are all representations
of K 4 .

A multigraph is defined in the same way as a graph except that there may be more
than one edge corresponding to the same unordered pair of vertices. The underlying
graph of a multigraph is formed by replacing all edges corresponding to the unordered
pair {x, y} by a single edge xy. Unless otherwise mentioned, all definitions and con­
cepts pertaining to graphs will be applied to multigraphs in the obvious way.

Fig. 1.5. Three representations of K4

In some cases a direction is imposed on each edge. In this case we call the graph a
directed graph or digraph. Directed edges are usually called arcs. An arc is an ordered
pair of vertices, the first vertex is the start (or tail or origin) of the arc, and the second
is the finish (or head or terminus). Directed graphs can have two arcs with the same
endpoints, provided they have opposite directions. The underlying graph of a digraph
is constructed by ignoring all directions and replacing any resulting multiple edges by
single edges.

G - xy denotes the graph produced by deleting edge xy from G. If xy is not an
edge of G, then G + xy is the graph constructed from G by adding an edge xy (one
often refers to this process as joining x to y in G). Figure 1.6 illustrates these ideas.
Similarly, G - x means the graph derived from G by deleting one vertex x (and all
the edges on which x lies). More generally, G - S is the graph resulting from deleting
some set S of vertices.

x

z

b

G

y

a

x

z

b

G-yz

y

a

x

z

b

G+ab

y

a

Fig. 1.6. Adding anddeleting edges
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If vertices x and y are endpoints of one edge in a graph or multigraph, then x and y
are said to be adjacent to each other, and it is often convenient to write x "" y. Vertices
adjacent to x are called neighbors of x, and the set of all vertices adjacent to x is called
the neighborhood of x, and denoted by N(x). If G has v vertices, so that its vertex set
is,

V(G) = {Xl, X2, ... , xv},

then its adjacency matrix MG is the v x v matrix with entries m.], such that

{
I if Xi ""Xj,

mu = 0 otherwise.

The particular matrix will depend on the order in which the vertices are listed.

Example. Consider the graph G shown in Figure 1.6. If its vertices are taken in the
order x, y, Z, a, b, then its adjacency matrix is

o I
I 0
I I
o I
o 0

100
I I 0
o I I
100
I 0 0

Some authors define the adjacency matrix of a multigraph to be the adjacency
matrix of the underlying graph; others set mij equal to the number of edges joining Xi

to xi- We shall not need to use adjacency matrices of multigraphs in this book.
A vertex and an edge are called incident if the vertex is an endpoint of the edge, and

two edges are called adjacent if they have a common endpoint. A set of edges is called
independent if no two of its members are adjacent, and a set of vertices is independent
if no two of its members are adjacent. The independence number f3 (G) of a graph G is
the number of elements in the largest independent set in G. For example, the graph G
of Figure 1.6 has independence number 3; its largest independent set (which happens
to be unique) is {a, b, x}.

If the edge set of G is

then the incidence matrix NG of G is the v x e matrix with entries nij, such that

n .. _ {I if vertex Xi is incident with edge ai-
IJ - 0 otherwise.

(The adjacency and incidence matrices depend on the orderings chosen for V (G) and
E(G); they are not unique, but vary only by rowand/or column permutation.)

Example. Here are two copies of the graph of Figure 1.6, with the edges labeled I, 2,
3, 4, 5, 6 in two different ways.



1.2SomeDefinitions 9

The incidence matrix for the labeling G 1, with edges taken in numerical order and
vertices in the order x, y, Z, a, b, is

I
o
I
o
o

100
1 1 1
o 1 0
o 0 1
o 0 0

o 0
o 0
1 1
1 0
o 1

while the corresponding incidence matrix for the labeling G2 is

0 1 1 0 0 0
0 0 1 1 0 1
1 1 0 0 1 1
0 0 0 1 1 0
1 0 0 0 0 0

If G is a graph, it is possible to choose some of the vertices and some of the edges
of G in such a way that these vertices and edges again form a graph, say H. H is
then called a subgraph of G; one writes H :::: G. Clearly every graph G has itself as a
subgraph; we say a subgraph H is a proper subgraph of G, and write H < G, if it does
not equal G. The l-vertex graph (which we shall denote by Kl) is also a subgraph of
every graph. If U is any set of vertices of G, then the subgraph consisting of U and all
the edges of G that join two vertices of U is called an induced subgraph, the subgraph
induced by U, and is denoted by (U) or G[U]. A subgraph G of a graph H is called a
spanning subgraph if V(G) = V(H). Clearly any graph G is a spanning subgraph of

KV(G)'

In particular, a clique in a graph G is a complete subgraph. In other words, it is a
subgraph in which every vertex is adjacent to every other. A clique H in G is called
maximal if no vertex of G outside of H is adjacent to all members of H. The clique
structure of G can be illustrated by forming a new graph C(G) called the clique graph

of G. The vertices of this graph are in one-to-one correspondence with the maximal
cliques of the original, and two vertices are adjacent if and only if the corresponding
cliques have a common vertex. The size of the largest clique in G is called the clique

number of G and denoted by w(G).

Example. Figure 1.7 shows a graph G and its clique graph C(G). The maximal cliques
of G have vertex sets {O, 1,3, 4}, {I, 2, 4, 5}, {5, 8}, p, 8, 1O}, p, 9, 1O} and {6, 7, 9},
and are represented in C(G) by a, b, c, d, e and f respectively.
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0 a

2

3 b

5

6 c e

8

3 d f
C(G)

Fig. 1.7.A graphand its clique graph

Given any graph G, the set of all edges of K V(G) that are not edges of G will form
a graph with V( G) as vertex set; this new graph is called the complement of G, and
written G. More generally, if G is a subgraph of H , then the graph formed by deleting
all edges of G from H is called the complement of G in H , denoted by H - G. The
complement K s of the complete graph Ks on vertex set S is called a null graph; we
also write K v for a null graph with v vertices.

A graph is called disconnected if its vertex set can be partitioned into two subsets,
VI and V2, that have no common element, in such a way that there is no edge with
one endpoint in VI and the other in V2; if a graph is not disconnected, then it is con­
nected . A disconnected graph consists of a number of disjoint subgraphs; a maxima l
connected subgraph is called a component. As an example, instead of three repre ­
sentations of the same graph , Figure 1.5 might show one 12-vertex graph with three
4-vertex components. In a way, connectedness generali zes adjacency. In a connected
graph , not all vertices are adjacent , but if x and y are not adjacent, then there must
exist vertices XI , X2, . • . , Xn such that x is adjacent to XI . X I is adjacent to X2, . .• and
x" is adjacent to y ; such a sequence is called an x y- walk. Conversely. if every pair of
nonadjacent vertices is joined by such a walk, the graph is connected. These ideas will
be further explored and generalized in Chapters 2 and 3.

The comp lete bipartite graph on VI and V2 has two disjoint sets of vertices, VI
and V2; two vertices are adjacent if and only if they lie in different sets. We write
Kill,,, to mean a complete bipartite graph with m vertices in one set and n in the other.
Figure 1.8 shows K4,3 ; K I ,,, in particular is called an n-star. Any subgraph of a com­
plete bipartite graph is called bipartite. More generally, the complete r-partite graph
KIl I ,1l2, ....n, is a graph with vertex set VI U V2 U . . . U V" where the Vi are disjoint sets
and Vi has order n., in which xy is an edge if and only if X and yare in different sets.
Any subgraph of this graph is called an r-partite graph . If n I = n i = ... = n; = n ,
we use the abbreviation K,~r) .
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Fig. 1.8. K4,3

Example. Prove that the graph G], formed by deleting an edge from K 4, and the
graph G2, constructed by adding to K 2,2 an edge joining two inadjacent vertices, are
isomorphic.

al7l b XK/1Y
d~C zV\St

Suppose the graphs are as shown. G] is formed by deleting edge ac from the
complete graph with vertices a, b, c, d. (If instead edge ab were deleted, for example,
the graph formed would be isomorphic to the one shown under the mapping a ---+ a,
b ---+ C, C ---+ b, d ---+ d.) G2 was formed from the complete bipartite graph with
vertex-sets {x, y} and (z, t} by joining one pair - we have joined x to y, but the result
of joining z to t is isomorphic. The two have the same numbers of vertices and of
edges. On inspection it is seen that a ---+ Z, b ---+ x, C ---+ t, d ---+ Y maps the vertices
of G] to the vertices of G2 and maps the edges of G] to the edges of G2, so it is an
isomorphism.

Several ways of combining two graphs have been studied. The union G U H of
graphs G and H has as vertex set and edge set the unions of the vertex sets and edge
sets, respectively, of G and H. The intersection G n H is defined similarly, using the
intersections (but G n H is defined only when G and H have a common vertex). If G
and H are edge-disjoint graphs on the same vertex set, then their union is often also
called their sum and written G E9 H. (A E9 B is often written for the union of disjoint
sets A and B; in this notation, the graph G E9 H has edge set E(G) E9 E(H).) At the
other extreme, disjoint unions can be discussed, and the union of n disjoint graphs all
isomorphic to G is denoted by nG.

The notation G + H denotes the join of G and H, a graph obtained from G and H
by joining every vertex of G to every vertex of H. (This notation is not consistent with
the earlier use of the + symbol; G +xy is not the join of G and the K2 with vertex set
{x, y}. Unfortunately, these two uses of + are common in the graph theory literature.)
G + H is also used when G and H represent isomorphism-classes of graphs, with the
assumption that G and H are disjoint, so that for example

The cartesian product G x H of graphs G and H is defined as follows:
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(i) label the vertices of H in some way;
(ii) in a copy of G, replace each vertex of G by a copy of H;
(iii) add an edge joining vertices in two adjacent copies of H if and only if they have

the same label.
In other words, if G has vertex set V(G) = {at, a2, ... , ag } and H has vertex set
V(H) = {b],b2 , •.• ,bh } , then G x H has vertex set V(G) x V(H), and (ai,b j )

is adjacent to (ak, be) if and only if either i = k and bj is adjacent in H to be or
j = £ and a, is adjacent in G to ai, It is clear that G x Hand H x G are isomorphic.
Similarly (G x H) x J and G x (H x J) are isomorphic, so one can omit parentheses
and define cartesian products of three or more graphs in a natural way. An example is
shown in Figure 1.9.

G H GxH

Fig. 1.9. The cartesian product of two graphs

Exercises 1.2

A1.2.1 Write down the incidence and adjacency matrices of the graphs G and H of Figure
1.9.

1.2.2 For each antireflexive symmetric relation in Exercise 1.1.2, write down the inci­
dence and adjacency matrices of the corresponding graph.

1.2.3 Up to isomorphism, there are exactly six connected graphs, and exactly eleven
graphs in total, on four vertices. Prove this.

1.2.4 If G is any graph, show that G = G (that is, the complement of a complement
equals the original graph).

A1.2.S Prove that if G is not a connected graph, then G is connected.
1.2.6 Suppose G and H are any two graphs. Show that G + H (the complement of the

join of G and H) is not connected.
1.2.7 A graph G is self-complementary if G and G are isomorphic. Prove that the num­

ber of vertices in a self-complementary graph must be congruent to 0 or 1 (mod
4).

1.2.8 For any graph G, prove that G - x = G - x, for any vertex x of G.
A1.2.9 G is a bipartite graph with v vertices. Prove that G has at most ~ edges.
1.2.10 G is the graph shown in Figure 1.9 and H is the triangle K 3 ; G and H have

disjoint vertex sets. Sketch the following graphs:
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(i) 3G
(ii) 2H
(iii) G U H
(iv) G Ef7 H
(v) G + H
(vi) G x H
(vii) G x G

1.2.11 How many edges does the star KI,n have? Write down the adjacency and incidence
matrices of K 1,5.

A1.2.12 The graph Wn , called an n-wheel, has n + 1 vertices {xo, X I, . . • ,xn }; Xo is joined
to every other vertex and the other edges are

How many edges does Wn have? Write down the adjacency and incidence matrices
of Ws.

1.2.13 The n-ladder L; has 2n vertices {XI, X2, • • . , Xn, Y I , Y2 , . . . , Yn }; Xi is joined to Yi

for every i ; Xi is jo ined to Xi+ (, and Yi is joi ned to Yi+1 for i = 1, 2, . . . , n - 1.
(i) How many edges does L; have?

(ii) Write down the adjacency and incidence matrices of L4 •

1.2.14 Suppose G is the graph with vertices x , Y, z, t and edges x y , vz, zt ; H is the graph
with vertices x , z and edge xz : K is a graph K 2 with vertex-set disjoint from G.
Show that no two of the graphs G + XZ, G + H and G + K are isomorphic.

1.2.15 A directed multigraph is a structure similar to a directed graph, in which multiple
arcs in the same direction are allowed. Write down a formal definition of a directed
multigraph in terms of a vertex set and an edge set. Give two practical examples
of situations that are best modeled by directed multigraphs.

1.3 Degree

We define the degree or valency d(x) of the vertex X to be the number of edges that
have X as an endpoint. If d(x) = 0, then x is called an isolated vertex while a vertex of
degree 1 is called pendant. The edge incident with a pendant vertex is called a pendant
edge. A graph is called regular if all its vertices have the same degree. If the common
degree is r , it is called r-regular. In particular, a 3-regular graph is called cubic. We
write 8(G) for the smallest of all degrees of vertices of G, and !l (G) for the largest.
(One also writes either !le G) or 8(G) for the common degree of a regular graph G.)
The degree d (x) of x will equal the sum of the entries in the row of MG or of NG

corresponding to x .

Theorem 1.1. In any graph or multigraph, the sum ofthe degrees of the vertices equals
twice the number ofedges.

Proof. It is convenient to work with the incidence matrix: we sum its entries. The sum
of the entries in row i is just d (xi ) ; the sum of the degrees is I:;'= Id (x i ), which equals
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the sum of the entries in N. The sum of the entries in column j is 2, since each edge
is incident with two vertices; the sum over all columns is thus 2e, so that

v

Ld(Xi) = 2e,
i=l

giving the result. o
Corollary 1.1.1 In any graph or multigraph, the number of vertices of odd degree is
even. In particular, a regular graph ofodd degree has an even number of vertices.

Example. A graph with the degrees of vertices marked is shown in Figure 1.10. Ob­
serve that there are six odd vertices. The isolated vertex has degree O.

3

3

Fig. 1.10. Degrees of vertices

00

A collection of v nonnegative integers is called graphical if and only if there is
a graph on v vertices whose degrees are the members of the collection. A graphical
collection is called valid if and only if there is a connected graph with those degrees.
(This is one situation where the distinction between graphs and multi graphs is very
important: see Exercise 1.3.16.)

Theorem 1.2. [68,61] A collection

S = {do, di ; ... , dv-d

ofv integers with do :::: d, :::: ... :::: dv- 1, where do :::: 1 and v :::: 2, is graphical if and
only if the collection

Sf = {d1 - 1, ... , ddo - 1, ddo+ ] , ..• , dV- 1}

is graphical.

Proof. (i) Suppose Sf is graphical. Let H be a graph with vertices u" Uz, ... , Uv-l,
where

d(Ui) = di - 1,
d(Ui) = d.,

I::;i::;do,
do+ l ::; i ::; v - 1.

Append a new vertex uo, and join it to Ul, ua, ... , Udo' The resulting graph has
degree sequence S.
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(ii) Suppose the collection S is graphical. Let G be a graph with vertex set

V (G ) = {x o , XI,·· · , Xv- I }

such that d (Xi) = d, for 0 ::: i ::: v - I. Two cases arise:
Case I . Suppose G contains a vertex y of degree d o, such that y is adjacent to

vertices having degrees d. , d 2, ... , ddo' In this case, we remove y and all the edges
incident with it. The resulting graph has degree sequence S' , whence S' is graphical.

Case 2. Suppose there is no such vertex y . We have the vertex set

with degrees

d o ~ d, ~ di ~ d 3 ~ d 4 ~ • •• ~ d do ~ d do+1 ~ • •• ~ d k ~ •• • ~ d v- I •

Let X = {xj\ ' Xh »... , Xjn} be the set of all vertices among X l , .. . , Xdo to which Xo is
not adjacent. Then n ~ I. Because Xo is adjacent to d o vertices altogether, there must
be exactly 11 vertices in the set

Y = {Xk1 ' Xkz' • •• , Xkn}

among Xdo+l , •. . ,Xv- I to which Xo is adjacent. We show that there is a vertex Xj in X
and a vertex Xk in Y such that d (x j ) > d (x d. Suppose otherwise. Then all the vertices
in X and all the vertices in Y have the same degree. Then interchanging X j, and Xk

i
in

the sequence of vertices for each i , i = I, .. ., 11, produces a reordering of S, satisfying
the condit ions of the theorem, in which Xo is adjacent to vertices having degrees d l ,

da . ... , d do' So G falls into Case I, which we assumed was not true.
So there exist vertices x j and Xk such that Xo is not adjacent to Xi» Xo is adjacent to

Xk and d (x j ) > d(Xk). Since the degree of Xj is greater than that of xi , there must be
a vertex Xm that is adjacent to X j but not to x i ,

We delete the edges XOXk and XjXm from G and add edges XOXj and XkX m ' The
result is a graph G' having the same degree sequence s as G. However, the sum of
the degrees of the vertices adjacent to Xo in G' is larger than that in G. If G' falls
into Case I, then S' is graphical. If not, apply the argument to G', obtaining a new
graph Gil with the same degree sequence as G, but such that the sum of the degrees of
the vertices adjacent to Xo is larger than the corresponding sum in G' . If Gil falls into
Case I , then S' is graphical; otherwise repeat again. Continuing this procedure must
eventually result in a graph satisfying the hypothesis of Case I, because the total sum
of all the degrees remains the same for each new graph, while the sum of the degrees
of vertices adjacent to Xo increases. 0

Example. Consider the sequence

S = {6, 3, 3, 3, 3, 2, 2, 2, 2, 1. I}.

This sequence is graphical if and only if

S' = {2, 2, 2, 2, I , I , 2, 2, I , I}

= {2, 2,2,2,2,2, I, I , I , l}

is graphical ; equivalently
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G'"
0----0

0----0

0----0

0----0

G'

0----0

0----0

G

Fig. 1.11. Constructing a graph with given degrees

5" = {l, 1,2, 2, 2, 1, 1, 1, I}

= {2, 2, 2, 1, 1, 1, 1, 1, I}

must be graphical, as must

5"' = {I, 1, 1, 1, 1, 1, 1, I}.

Now 5"' is easily seen to be graphical: the corresponding graph consists of four
independent edges. So 5 is graphical. The method of constructing a suitable graph is
illustrated in Figure 1.11, where G corresponds to 5, G' to 5', and so on. For example,
5' was derived from 5 by subtracting 1 from six of the degrees, and the six resulting
degrees are {2, 2, 2, 2, 1, I}, so we select any six vertices in G' whose degrees are
{2, 2, 2, 2,1, I}, and join a new vertex to them. In each case the new edges are shown
with heavy lines.

As was shown by the above example, application of Theorem 1.2 not only finds
whether a sequence is graphical, it also enables us to find a graph with the given degree
sequence, if one exists. However, there is no guarantee of uniqueness. In fact, one can
often find two graphs with the same degree sequence.

Example. Find three nonisomorphic graphs with degree sequence 3, 3, 2, 2, 2, 2.
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The three graphs are obviously not isomorphic: they have different numbers of sub­
graphs K3.

Exercises 1.3

A1.3.l Ineach case, find the degrees of the vertices:

(i) (ii) (iii) (iv)

HA1.3.2 Suppose G has v vertices and 8(G) ::: (v - 0/2. Prove that G is connected.
1.3.3 Prove that a regular graph of odd degree can have no component with an odd

number of vertices.
A1.3.4 Prove that the collection {3, 2, 2, 2, l} is valid. Find a graph with this collection

of degrees.
1.3.5 Prove that the collection {3, 3, 2,1, I} is valid. Find a graph with this collection

of degrees.
H1.3.6 Find two nonisomorphic graphs with degree collection 2,2,2, 1, 1.

1.3.7 Find two nonisomorphic graphs with degree collection 3,3,3,3,3,3.
H1.3.8 Prove that there do not exist nonisomorphic graphs on four vertices with the same

degree collection.
1.3.9 Prove that (up to isomorphism) there is exactly one graph with degree collection

{5, 5, 4, 4, 3, 3}.
A1.3.10 Which of the following are graphical?

(i) {5, 5, 4, 4, 2, 2};
(ii) {5, 4, 4, 3, 3, 3};
(iii) {5, 4, 4, 4,3, 3};
(iv) {2, 2,1,1,1, I}?

1.3.11 Which of the following are graphical?
(i) {4, 3, 2, 2, 2, I};

(ii) {3, 3, 2, 2, 2, I};
(iii) {5, 4, 4, 4, 2, I};
(iv) {2,2,2,2,1,I}?

A1.3.12 Find a graph on six vertices that has at least one vertex of each degree 1,2,3,4,
5.
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1.3.13 For each v, show that there exists a graph on v vertices that has at least one vertex
of each degree I , 2, .. . , v - 2, v - 1.

1.3.14 Prove that no graph has all its vertices of different degrees.
AI.3.15 Find a multigraph on four vertices that has all its vertices of different degrees.

1.3.16 Prove that there is a multigraph with degree sequence, {4, 3, I , 1, I}, but there is
no multigraph with degree sequence {2, 0, 0, OJ. Deduce that Theorem 1.2 does
not apply to multigraphs.

A1.3.17 Prove: if d and v are natural numbers , not both odd, with v > d, then there there
is a regular graph of degree d with exactly v vertices.

A1.3.18 In a looped multigraph, each loop is defined to add 2 to the degree of its vertex.
(i) Do Theorem 1.1 and Corollary 1.3 hold for looped multigraphs?

(ii) Suppose D is any finite sequence of nonnegative integer s such that the sum
of all its members is even. Show that there is a looped multigraph with degree
sequence D.


	1 Graphs

	1.1 Sets, Binary Relations and Graphs
	1.2 Some Definitions
	1.3 Degree




