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Preface to the Second Edition

In this second edition although I have added two chapters that reflect new directions
in graph theory, this presentation still remains relatively compact and concise.

Chapter 9 now focuses on graph labeling problems, which is an area of graph
theory that has grown significantly in recent years. It can be approached without a
great deal of background, but some of the problems and results presented will provide
further insights into graph structure. (This change means that the former Chapters 9
through 13 are now numbered 10 through 14.)

Chapter 15 examines large random graphs, such as the internet and World Wide
Web. These graphs have been studied for several years, but the topic received a boost
in 1998 when the paper Collective dynamics of ‘small-world” networks by Watts and
Strogatz, appeared in Nature [129]'. Moreover, this field in general has since moved
into the public eye with the popularity of the Kevin Bacon game (see [134]) and the
publication of popular books by Watts [127, 128], Barabasi [6], and others. This chap-
ter is studied in more detail than some others in the book, which I hope will lead to
increased discussion rather than just to problem-solving.

There are some other minor changes. More examples are given in the earlier chap-
ters in order to make this book more accessible to less experienced students. In partic-
ular, universities in Britain and Australasia often begin graph theory at a lower level
than is common in North America. And, of course, I have corrected a number of mis-
prints, hopefully not engendering others.

I received a good deal of feedback on the text of the First Edition; in particular,
John George, Gébor Hetyei, Saad El-Zanati and Lane Clark made extensive com-
ments, and Professors George and Hetyei have also reviewed and commented on this
Second Edition. I am very grateful for their help.

June 2006 W.D. Wallis

! Citations refer to the references at the back of the book.



Preface to the First Edition

Many colleges and universities provide a first course in graph theory at about the senior
level, intended primarily for mathematics majors but accessible to other students. This
book is intended as a text for such a course, which I have given many times .

Over the years my classes have included mainly mathematics and computer sci-
ence majors, but there have been several engineers and occasional psychologists. Often
undergraduate and graduate students are in the same class. Many instructors today will
find similar mixed group of students in their classes.

It is to be expected that anybody enrolling in a senior-level mathematics course
will be comfortable with mathematical ideas and notations. In particular, I assume
that the reader is familiar with the basic concepts of set theory, has seen mathematical
induction, and has a passing acquaintance with matrices and algebra. However, one
cannot assume that the students in a first graph theory will have a good knowledge of
any specific advanced area. My reaction to this is to avoid too many specific prereq-
uisites. The main requirement, namely a little mathematical maturity, may have been
acquired in a variety of ways.

My students’ reasons for studying graph theory have also been mixed. Some have
seen graph theory as an area of pure mathematics to be studied for its own sake, others
as an adjunct to such mathematical studies as combinatorics, algebra, or functional
analysis, and others as an applied area. Even within a single area of application, there
are diverse reasons: one electrical engineer, for example, may use graph theory to study
circuits, while another may see it as a foundation for neural networks. Taking this into
account, I have concentrated on the topics that appeal to the majority of users, and
generally I have omitted those with a smaller readership. I have included a few more
specialized chapters dealing with material that students seem to enjoy, and (frankly)
ones that I like to teach. Readers can supplement the selection with other topics to
meet their specific needs.
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Outline of Topics

The first four chapters introduce the main ideas of graph theory and conclude with a
short discussion of the minimal spanning tree problem. The idea is to introduce graph-
theoretic reasoning, and also introduce an easy algorithm.

The fifth chapter deals with the application of vector space ideas to graphs. This
is one of three specialized excursions, and could be omitted or deferred; in particular
anybody who has not seen a formal linear algebra course (including at least the general
definition of a vector space) should probably skip this chapter. But I have found that
students with an algebraic background often like this material, and if it is to be included
at all, then this is probably the best place for it.

Chapter 6 explores another special topic, one-factorizations of graphs. All students
should read the first section, and most will enjoy the second. The rest is a little spe-
cialized, but introduces some good examples of graph-theoretic reasoning.

There follows an exposition of coloring and planarity. A discussion of edge-
coloring is included, and should particularly interest those who read all of Chapter
6. Ramsey’s Theorem is studied in Chapter 9? given later will especially appeal to
those with a wider combinatorial background. The later parts of this chapter are quite
difficult.

Chapter 10? introduces directed graphs. The two following chapters are devoted to
two important application areas that will appeal to students of management science,
namely critical paths and network flows. Students who do not know a little statistical
theory — enough to use the normal distribution, and to look up values in a table of the
normal probability function — should skip Section 11.3%.

A chapter on graph-theoretic algorithms concludes the book. I believe that com-
puter scientists will see more than enough of these topics in other courses, and that
graph algorithms are more appropriately studied among other algorithms, not among
other aspects of graphs. Moreover, a proper study of algorithms would require some
study of computational complexity, which would probably not interest the majority of
readers. So my treatment here is intentionally short and quite superficial, but should
satisfy the needs of those who are not likely to revisit the topic.

I thought of including several further topics of pure graph theory — covering the-
orems, line graphs, general problems on cycles, various extremal problems — but
rejected them because of their specialized appeal; three specialized topics (graphs and
linear spaces, one-factorizations, Ramsey theory) should be enough, and these are
my own preferences. A pure-mathematically minded instructor could easily replace
Chapters 11 through 13 with other appropriate topics; of course, her/his interpretation
of what is “appropriate” could certainly be different from mine.

2 Chapter 10 in this edition
3 Chapter 11 in this edition
4 Now Section 12.3
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Further Reading

I have made frequent reference to the papers where results first appeared, and to the
research literature in general. Those who want to go further into a topic can consult
the papers cited. For general reading, the student may wish to consult one of the more
advanced volumes on graph theory: one excellent example is West’s book [131], an
introduction to the subject that goes much deeper than we do here. Volumes of surveys
of specific topics include three volumes edited by Beineke and Wilson [10, 11, 12] and
two edited by Fulkerson [49, 50]. One very readable book is Tutte’s Connectivity in
Graphs [117], now 35 years old but still an excellent research resource. Yap’s collec-
tion [135] of short monographs on three topics of graph theory includes an excellent
introduction to edge-coloring. Haynes, Hedetneimi and Slater [69] have recently writ-
ten a first-class introduction to a current hot topic, domination theory. The reader inter-
ested in graph matchings and factorization may wish to consult [84] or [125]. Biggs,
Lloyd and Wilson provide a good deal of historical information, and some classical
papers, in [14].

Exercises

I have tried to include a reasonable number of problems, but not so many that the
student is overwhelmed. They range from the easy to the difficult. In a few cases,
hints are included, and there are answers and solutions to selected exercises. A hint is
indicated by H preceding the exercise number, while box.02inA announces an answer
or solution.

Acknowledgments

This book has grown out of graph theory courses that I have taught at the University
of Newcastle and Southern Illinois University over the past 30 years. A number of
students have made comments and contributions; I hope they will forgive me if I do
not mention them by name, but if I tried to do so, I would surely (unintentionally) omit
some.

My friend and colleague Roger Eggleton used a draft version of the text for a
course at Illinois State University. He made a large number of intelligent and informed
comments and corrections, including the discovery of at least two instances where a
widely-published, accepted “proof” was in need of amendment. I am very grateful to
him and his students for their assistance.

Finally, the book would not exist without the support of George Anastassiou, of
the University of Memphis, who recommended it to the publisher, and of Birkhauser’s
Ann Kostant, who suggested the title, Elizabeth Loew, and Tom Grasso. Thanks to all
of you.

May 2000 W.D. Wallis
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Graphs

1.1 Sets, Binary Relations and Graphs

We shall use the standard concepts and notations of set theory. We write x € S
and y ¢ S to indicate that x is a member of S, and that y is not a member of S.
|S] denotes the number of elements of S, also called the order of S. If all elements
of § are also elements of T, then S is a subset of T, written S € 7. The notation
S C T means that S is a subset of T but is not identical to T, so that T has at least one
element that is not in S.

A set can be specified by writing a description (“the set of positive perfect squares
less than 20”) or by listing its members (“{1, 4, 9, 16}”*). One can also state a mem-
bership law: for example, {x? | x is an integer, x> < 20}. This is called setbuilder
notation. The | is read as “such that”; it is equally common to use a colon instead of |.
Other mathematical abbreviations are often employed in setbuilder notation — for ex-
ample, Z usually represents the set of integers, so one might replace “x is an integer”
by “x € Z.”

If S and T are any two sets, then S U T means the union of S and T, the set of
everything that is either a member of S or a member of T (or both), and § N T is the
intersection, the set common elements. The set-theoretic difference S\T, also called
the relative complement of T in §, consists of all elements of S that are not members
of T. The cartesian product S x T is the set of all ordered pairs {x, y}, where x is a
member of S and y is a member of T'.

Various identities between sets can be proved. For example, both union and inter-
section satisfy the commutative laws

SUT=TUS (1.1)
SNT=TnNS (1.2)

for any sets S and 7', and the associative laws
RUSUT)=(RUSHUT (1.3)
RNENT)=RNNT 1.4)

for any sets R, Sand T'.
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To prove that two sets are equal, one often proves that every member of one set
is an element of the other, and conversely. In other words, to show that A = B, first
prove A € B and then prove B C A.

Example. To prove RN (SN T) = (RN S)N T, first observe that any member x of
RN (SNT)isboth a member of R and a member of S N T, and the latter means that
x belongs to both S and T. So aliof x € R, x € Sand x € T are true. From these
we see that both x € R and x € S are true, so x € RN S, and also x € T; therefore
x € (RN S)N T. We have actually shown that

RNENTYS(RNS)NT.

One proves RN (SN T) € (RN S)NT in the same way, and equality has been
established.

Example. Prove R\(S U T) = (R\S) N (R\T)for any sets R, S and T.
R\(SUT) consists of precisely those members of R that are not members of SUT,
in other words those elements of R that do not belong to S or to T. That is,

R\(SUT)={x|xeRandx ¢ Sandx ¢ T}.

On the other hand, (R\S) consists of all the things in R that are not in §, and
(R\S) N (R\T) consists of all the things in R that are not in T'; the common ele-
ments of these sets are all the things in R but not in § and not in 7', which is the same
as the description of R\(S U T).

Binary relations occur frequently in mathematics and in everyday life. For exam-
ple, the ordinary mathematical relations <, =, >, < and > are binary relations on
number sets, C and C are binary relations on collections of sets, and so on. If § is the
set of all living people, “is the child of” is a typical binary relation on §.

Formally, a binary relation ~ on a set S is a rule that stipulates, given any elements
x and y of S, whether x bears a certain relationship to y (written x ~ y) or not (written
X % y). Alternatively, one can define a binary relation ~ on the set § to consist of a
set ~ (§) of elements from S x § (the set of ordered pairs of elements of S), with the
notation x ~ y meaning that (x, y) belongs to ~ (S).

One important class of binary relations is arithmetical congruence. Two integers
a and b are congruent modulo n (written a = b(modn)) if a — b is divisible by n.
The congruence class of a(mod n) is the set of all integers congruent to a modulo 7.
There are n different congruence classes modulo n.

One can represent any binary relation by a diagram. The elements of the set S are
shown as points (vertices), and if x ~ y is true, then a line (edge) is shown from x to
y, with its direction indicated by an arrow. Provided the set S is finite, all information
about any binary relation on § can be shown in the diagram. The diagram is a directed
graph or digraph; if x ~ x is ever true, the diagram is a looped digraph.

The binary relation ~ on § is called reflexive if x ~ x is true for all x in S, and
antireflexive if x ~ x is never true (or, equivalently, if x # x is true forall x). If y ~ x
is true whenever x ~ y is true, then ~ is called symmetric. If the relation is symmetric,
the arrows can be omitted from its diagram. The diagram of a symmetric, antireflexive
binary relation on a finite set is called a graph.
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% 1><2
1 2 3 4 4 3

Diagram for < Diagram for =
| :I | | g//o 2
4 3 4 O3
Diagram for ~ Diagram for =

Fig. 1.1. Diagrams of binary relations

Example. Suppose the binary relations <, =, ~ and = are defined on the set § =
{1, 2, 3, 4} as follows:

x <y means x is less than y;
X =y means x iscongruenttoy (mod 2)and x # y;

x~y means x =y=+1;

x Ay means y = x>,

Then the corresponding subsets of S x § are

<(8)=1{(1.2).(1,3),(1,4),(2,3), (2,4, 3, H};
= ={(1,3,6,1,2,4, 42}

~ (9 ={(1,2,2,1,23),3,2), 3,4, 43k
~(8) = {(1, D), 2,9}

The diagrams are shown in Figure 1.1. Relations = and ~ yield graphs, < gives a
digraph, and =~ a looped digraph.

In more general situations, it might make sense to use two or more lines to join
the same pair of points. For example, suppose we want to describe the roads joining
various townships. For many purposes we do not need to know the topography of
the region, or whether different roads cross, or various other things. The important
information is whether or not there is a road joining two towns. In these cases we
could use a complete road map with the exact shapes of the roads and various other
details shown, but it would be less confusing to make a diagram, as shown in Figure
1.2, that indicates two roads joining B to C, one road from A to each of B and C and
one road from C to D with no direct roads joining A to D or B to D. We say that there

is a multiple edge (of multiplicity 2) joining B to C. If any of the roads were one-way,
an arrow could be employed.



4 1. Graphs

Cc D

Fig. 1.2. Graphical representation of a road network

Example. Consider a football competition in which every team plays every other team
once. At any point of the tournament we can represent the games that have been played
by a graph. The vertices represent the teams; edge xy is included if and only if the
teams x and y have already played each other. Figure 1.3 is the representation of a
6-team league after matches A v. B, Av. C, Av. D, B v. E and E v. F have been
completed.

Fig. 1.3. Graphical representation of a football competition

Example. Suppose there are four jobs vacant and five men apply for them. Each man
is capable of performing one or more of the jobs. The usual question is whether or not
one can allocate jobs to four of the men so that all four jobs are allocated.

This situation can conveniently be represented by a graph. All the applicants and
all the jobs are represented by vertices; two vertices are joined if and only if one
represents an applicant, the other represents a job, and the applicant is capable of
doing the job. Figure 1.4 shows the situation where A, B and C can all handle jobs 1
and 2, Dcando 1 and 3 and E can do 2 and 4.

Fig. 1.4. Who is qualified for which job?
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Exercises 1.1

1.1.1 Prove that the following identities hold for any sets R, S and T.
i RUSUT)=(RUS)UT.
(i) RN(SUT)=(RNS)U(RNT).
(iii) R\(SNT) = (R\S) U(R\T).
A1.1.2 In each part below, a binary relation ~ is defined on
{-3,-2,-1,0,1,2,3}.
In each case, is the relation reflexive? Antireflexive? Symmetric?
(1) x ~ymeans x +y <4,
(i) x ~ ymeans x + y < 6.
(iii) x ~ ymeansx =y + 1.
(iv) x ~ y means x = Ly.
1.1.3 Repeat Exercise 1.1.2 for the following binary relations defined on
{-3,—2,-1,0,1,2, 3}
(i) x ~ y means x < y%.
(i) x ~ ymeans x +y > 0.
(ili) x ~ y means x 4+ y is odd.
(iv) x ~ y means xy is odd.
1.1.4 Draw graphical representations of the relations in Exercise 1.1.2.
1.1.5 Draw graphical representations of the relations in Exercise 1.1.3.
A1.1.6 Repeat Exercise 1.1.2 for the following relations defined on the positive integers.
(1) x ~ymeansx +y <4,
(i) x ~ y means x divides y.
(iii) x ~ y means x and y have greatest common divisor 1.
(iv) x ~ y means x + y is odd.
1.1.7 Repeat Exercise 1.1.2 for the following relations defined on the positive integers.
(i) x ~ y means x and y are both prime numbers.
(ii) x ~ y means x = +y.
(iii) x ~ y means xy is odd.
1.1.8 A relation is called transitive if every time (x, y) and (y, z) are in the relation,
then (x, z) is also.
(i) Describe the graph of a symmetric, transitive relation.
(i) Which, if any, of the relations in Exercises 1.1.2, 1.1.3, 1.1.6 and 1.1.7 are
transitive?
1.1.9 Suppose the binary relation ~ is defined on the set of real numbers as follows: x ~
y means x = y(mod 7). Is ~ reflexive? Antireflexive? Symmetric? Transitive?
1.1.10 A basketball league contains seven teams, denoted by A, B, C, D, E, E, G. Team
A has played against each other team once; team B has played against C, E and
G; and teams D, E and F have all played. Draw a graph to illustrate this situation.
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1.2 Some Definitions

We start by formalizing some of the discussion and definitions from the preceding
section. A graph G consists of a finite set V (G) of objects called vertices together with
a set £(G) of unordered pairs of vertices; the elements of £(G) are called edges. We
write v(G) and ¢(G) for the orders of V(G) and E(G), respectively; these are often
called the order and size of G. In terms of the more general definitions sometimes
used, we can say that “our graphs are finite and contain neither loops nor multiple
edges.”

Graphs are usually represented by diagrams in which the vertices are points. An
edge xy is shown as a line from (the point representing) x to (the point representing)
y. To distinguish the vertices from other points in the plane, they are often drawn as
small circles or large dots.

Example. A graph has five vertices, a, b, ¢, d, e, and edges ab, ac, ad, be, de. So its
representation is

Often the same graph can give rise to several drawings that look quite dissimilar.
For example, the three diagrams in Figure 1.5 all represent the same graph. Although
the two diagonal lines cross in the first picture, their point of intersection does not
represent a vertex of the graph.

The edge containing x and y is written xy or (x, y); x and y are called its end-
points. We say this edge joins x to y. If A and B are subsets of V(G), then [A, B]
denotes the set of all edges of G with one endpoint in A and the other in B:

[A,Bl={xy:x € A,y € B,xy € E(G)}. (1.5)

If A consists of the single vertex a, it is usual to write {a, B] instead of [{a}, B].

An isomorphism of a graph G onto a graph H is a one-to-one map ¢ from V(G)
onto V(H) with the property that a and b are adjacent vertices in G if and only if
a¢ and b¢ are adjacent vertices in H; G is isomorphic to H if and only if there is
an isomorphism of G onto H. An isomorphism from a graph G to itself is called an
automorphism of G.

d c

Because graphs are finite, one can prove that a map ¢ is an isomorphism of G onto
H by showing that the two graphs have the same numbers of vertices and edges, that
a¢ is a vertex of H whenever a is a vertex of G, and that a¢ and b¢ are adjacent
vertices in H whenever a and b are adjacent in G.

Given a set S of v vertices, the graph formed by joining each pair of vertices in
S is called the complete graph on S and denoted by K. We also write K, to mean
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any complete graph with v vertices. From the definition of isomorphism it follows that
all complete graphs on v vertices are isomorphic. The notation K, can be interpreted
as being a generic name for the typical representative of the isomorphism class of
all v-vertex complete graphs. The three drawings in Figure 1.5 are all representations
of K 4.

A multigraph is defined in the same way as a graph except that there may be more
than one edge corresponding to the same unordered pair of vertices. The underlying
graph of a multigraph is formed by replacing all edges corresponding to the unordered
pair {x, y} by a single edge xy. Unless otherwise mentioned, all definitions and con-
cepts pertaining to graphs will be applied to multigraphs in the obvious way.

Fig. 1.5. Three representations of K4

In some cases a direction is imposed on each edge. In this case we call the graph a
directed graph or digraph. Directed edges are usually called arcs. An arc is an ordered
pair of vertices, the first vertex is the start (or tail or origin) of the arc, and the second
is the finish (or head or terminus). Directed graphs can have two arcs with the same
endpoints, provided they have opposite directions. The underlying graph of a digraph
is constructed by ignoring all directions and replacing any resulting multiple edges by
single edges.

G — xy denotes the graph produced by deleting edge xy from G. If xy is not an
edge of G, then G + xy is the graph constructed from G by adding an edge xy (one
often refers to this process as joining x to y in G). Figure 1.6 illustrates these ideas.
Similarly, G — x means the graph derived from G by deleting one vertex x (and all
the edges on which x lies). More generally, G — § is the graph resulting from deleting
some set S of vertices.

X y X y X y
z a z a z a
b b b

G G-yz G+ab

Fig. 1.6. Adding and deleting edges
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If vertices x and y are endpoints of one edge in a graph or multigraph, then x and y
are said to be adjacent to each other, and it is often convenient to write x ~ y. Vertices
adjacent to x are called neighbors of x, and the set of all vertices adjacent to x is called
the neighborhood of x, and denoted by N (x). If G has v vertices, so that its vertex set
is,

V(G) ={x1,x2, ..., X},

then its adjacency matrix Mg is the v x v matrix with entries m;;, such that

e = 1 ifxifvxj,
710 otherwise.
The particular matrix will depend on the order in which the vertices are listed.

Example. Consider the graph G shown in Figure 1.6. If its vertices are taken in the
order x, y, z, a, b, then its adjacency matrix is

01 1 0 O
1 0 1 1 0
1 1 0 1 1
01 1 0 O
0 01 0 0

Some authors define the adjacency matrix of a multigraph to be the adjacency
matrix of the underlying graph; others set m;; equal to the number of edges joining x;
to x;. We shall not need to use adjacency matrices of multigraphs in this book.

A vertex and an edge are called incident if the vertex is an endpoint of the edge, and
two edges are called adjacent if they have a common endpoint. A set of edges is called
independent if no two of its members are adjacent, and a set of vertices is independent
if no two of its members are adjacent. The independence number (G) of a graph G is
the number of elements in the largest independent set in G. For example, the graph G
of Figure 1.6 has independence number 3; its largest independent set (which happens
to be unique) is {a, b, x}.

If the edge set of G is

E(G) = {a17a27 . '7a2}7
then the incidence matrix N of G is the v x e matrix with entries n;;, such that

S 1 if vertex x; is incident with edge a;,
Y710 otherwise.

(The adjacency and incidence matrices depend on the orderings chosen for V(G) and
E(G); they are not unique, but vary only by row and/or column permutation.)

Example. Here are two copies of the graph of Figure 1.6, with the edges labeled 1, 2,
3,4, 5, 6 in two different ways.
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XY Oy
1 4
z a a
z O
6
b
G, G,

The incidence matrix for the labeling G, with edges taken in numerical order and
vertices in the order x, y, z, @, b, is

1 1.0 0 0 O
o 1 1 1 0 0
i 01 0 1 1
0 0 0 1 1 O
0O 0 0 0 0 1
while the corresponding incidence matrix for the labeling G, is

0 1 1 0 0 O
0O 0 1 1 0 1

1 1 0 0 1 1
0O 0 0 1 1 0

1 0 0 0 0 O

If G is a graph, it is possible to choose some of the vertices and some of the edges
of G in such a way that these vertices and edges again form a graph, say H. H is
then called a subgraph of G; one writes H < G. Clearly every graph G has itself as a
subgraph; we say a subgraph H is a proper subgraph of G, and write H < G, if it does
not equal G. The 1-vertex graph (which we shall denote by K) is also a subgraph of
every graph. If U is any set of vertices of G, then the subgraph consisting of U and all
the edges of G that join two vertices of U is called an induced subgraph, the subgraph
induced by U, and is denoted by (U) or G[U]. A subgraph G of a graph H is called a
spanning subgraph if V(G) = V(H). Clearly any graph G is a spanning subgraph of
Ky G)-

In particular, a clique in a graph G is a complete subgraph. In other words, it is a
subgraph in which every vertex is adjacent to every other. A clique H in G is called
maximal if no vertex of G outside of H is adjacent to all members of H. The clique
structure of G can be illustrated by forming a new graph C(G) called the clique graph
of G. The vertices of this graph are in one-to-one correspondence with the maximal
cliques of the original, and two vertices are adjacent if and only if the corresponding
cliques have a common vertex. The size of the largest clique in G is called the cligue
number of G and denoted by w(G).

Example. Figure 1.7 shows a graph G and its clique graph C(G). The maximal cliques
of G have vertex sets {0, 1, 3, 4}, {1, 2, 4, 5}, {5, 8}, {7, 8, 10}, {7, 9, 10} and {6, 7, 9},
and are represented in C(G) by a, b, ¢, d, e and f respectively.
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2
b

3 . O
5

6 / cO e
8

3 10 d f

G C(G)

Fig. 1.7. A graph and its clique graph

Given any graph G, the set of all edges of Ky (¢, that are not edges of G will form
a graph with V(G) as vertex set; this new graph is called the complement of G, and
written G. More generally, if G is a subgraph of H, then the graph formed by deleting
all edges of G from H is called the complement of G in H, denoted by H — G. The
complement K s of the complete graph Ks on vertex set S is called a null graph; we
also write K, for a null graph with v vertices.

A graph is called disconnected if its vertex set can be partitioned into two subsets,
Vi and V5, that have no common element, in such a way that there is no edge with
one endpoint in V; and the other in V;; if a graph is not disconnected, then it is con-
nected. A disconnected graph consists of a number of disjoint subgraphs; a maximal
connected subgraph is called a component. As an example, instead of three repre-
sentations of the same graph, Figure 1.5 might show one 12-vertex graph with three
4-vertex components. In a way, connectedness generalizes adjacency. In a connected
graph, not all vertices are adjacent, but if x and y are not adjacent, then there must
exist vertices xi, X3, ..., X, such that x is adjacent to xy, x; is adjacent to x,, ...and
x, is adjacent to y; such a sequence is called an xy-walk. Conversely, if every pair of
nonadjacent vertices is joined by such a walk, the graph is connected. These ideas will
be further explored and generalized in Chapters 2 and 3.

The complete bipartite graph on V; and V, has two disjoint sets of vertices, V)
and V,; two vertices are adjacent if and only if they lie in different sets. We write
K., » to mean a complete bipartite graph with m vertices in one set and n in the other.
Figure 1.8 shows K4 3; K| , in particular is called an n-star. Any subgraph of a com-
plete bipartite graph is called bipartite. More generally, the complete r-partite graph
Ky, ny....n, 18 a graph with vertex set V, U V, U ... U V,, where the V; are disjoint sets
and V; has order n;, in which xy is an edge if and only if x and y are in different sets.
Any subgraph of this graph is called an r-partite graph. If ny = n, = ... = n, = n,
we use the abbreviation K.
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Fig. 1.8. K, 3

Example. Prove that the graph G|, formed by deleting an edge from K4, and the
graph G, constructed by adding to K, » an edge joining two inadjacent vertices, are

isomorphic.
a b X y
d m c z 1 i 13
Gl GZ

Suppose the graphs are as shown. G is formed by deleting edge ac from the
complete graph with vertices a, b, c, d. (If instead edge ab were deleted, for example,
the graph formed would be isomorphic to the one shown under the mapping ¢ — a,
b — c¢,¢c - b,d — d.) Gy was formed from the complete bipartite graph with
vertex-sets {x, y} and {z, ¢} by joining one pair — we have joined x to y, but the result
of joining z to ¢ is isomorphic. The two have the same numbers of vertices and of
edges. On inspection it is seen thata — z,b — x, ¢ — t,d — y maps the vertices
of G| to the vertices of G, and maps the edges of G, to the edges of G, so it is an
isomorphism.

Several ways of combining two graphs have been studied. The union G U H of
graphs G and H has as vertex set and edge set the unions of the vertex sets and edge
sets, respectively, of G and H. The intersection G N H is defined similarly, using the
intersections {but G N H is defined only when G and H have a common vertex). If G
and H are edge-disjoint graphs on the same vertex set, then their union is often also
called their sum and written G @ H. (A & B is often written for the union of disjoint
sets A and B; in this notation, the graph G @& H has edge set E(G) & E(H).) At the
other extreme, disjoint unions can be discussed, and the union of » disjoint graphs all
isomorphic to G is denoted by nG.

The notation G + H denotes the join of G and H, a graph obtained from G and H
by joining every vertex of G to every vertex of H. (This notation is not consistent with
the earlier use of the + symbol; G + xy is not the join of G and the K, with vertex set
{x, y}. Unfortunately, these two uses of + are common in the graph theory literature.)
G + H is also used when G and H represent isomorphism-classes of graphs, with the
assumption that G and H are disjoint, so that for example

Kpn=Kn+K,.
The cartesian product G x H of graphs G and H is defined as follows:
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(i) label the vertices of H in some way;

(i) in a copy of G, replace each vertex of G by a copy of H;

(iii) add an edge joining vertices in two adjacent copies of H if and only if they have
the same label.

In other words, if G has vertex set V(G) = {a1, a2, ..., a,} and H has vertex set

V(H) = {b1,ba, ..., by}, then G x H has vertex set V(G) x V(H), and (a;, b;)

is adjacent to (az, by) if and only if either i = k and b; is adjacent in H to b, or

Jj = £ and qg; is adjacent in G to a;. Itis clear that G x H and H x G are isomorphic.

Similarly (G x H) x J and G x (H x J) are isomorphic, so one can omit parentheses

and define cartesian products of three or more graphs in a natural way. An example is

shown in Figure 1.9.

a, O

a,

a; @ @
G H GxH

Fig. 1.9. The cartesian product of two graphs

Exercises 1.2

A1.2.1 Write down the incidence and adjacency matrices of the graphs G and H of Figure
1.9.
1.2.2 For each antireflexive symmetric relation in Exercise 1.1.2, write down the inci-
dence and adjacency matrices of the corresponding graph.
1.2.3 Up to isomorphism, there are exactly six connected graphs, and exactly eleven
graphs in total, on four vertices. Prove this.

1.2.4 If G is any graph, show that G = G (that is, the complement of a complement
equals the original graph).
A1.2.5 Prove that if G is not a connected graph, then G is connected.
1.2.6 Suppose G and H are any two graphs. Show that G + H (the complement of the
join of G and H) is not connected.
1.2.7 A graph G is self-complementary if G and G are isomorphic. Prove that the num-
ber of vertices in a self-complementary graph must be congruent to 0 or 1 (mod
4).
1.2.8 For any graph G, prove that G — x = G — x, for any vertex x of G.
A1.2.9 G is a bipartite graph with v vertices. Prove that G has at most %2 edges.
1.2.10 G is the graph shown in Figure 1.9 and H is the triangle K3 ; G and H have
disjoint vertex sets. Sketch the following graphs:
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(i) 3G
(ii) 2H
(i) GUH
(ivy GO H
v) G+ H
(vi) G x H
(vi) G x G
1.2.11 How many edges does the star K , have? Write down the adjacency and incidence

matrices of K s.

A1.2.12 The graph W,, called an n-wheel, has n + 1 vertices {xo, xi, ..., x,}; xg is joined
to every other vertex and the other edges are

X1X2, X2X3, « .., Xp—1Xn, XnX1.

How many edges does W, have? Write down the adjacency and incidence matrices

of W5.
1.2.13 The n-ladder L, has 2n vertices {x, X2, ..., Xn, Y1, Y2, - . . » Yn}; X; is joined to y;
for every i; x; is joined to x;,1, and y; is joined to y; . fori =1,2,...,n —1.

(i) How many edges does L, have?
(ii) Write down the adjacency and incidence matrices of L.
1.2.14 Suppose G is the graph with vertices x, y, z, t and edges xy, yz, z¢; H is the graph
with vertices x, z and edge xz; K is a graph K, with vertex-set disjoint from G.
Show that no two of the graphs G + xz, G + H and G + K are isomorphic.
1.2.15 A directed multigraph is a structure similar to a directed graph, in which multiple
arcs in the same direction are allowed. Write down a formal definition of a directed
multigraph in terms of a vertex set and an edge set. Give two practical examples
of situations that are best modeled by directed multigraphs.

1.3 Degree

We define the degree or valency d(x) of the vertex x to be the number of edges that
have x as an endpoint. If d(x) = 0, then x is called an isolated vertex while a vertex of
degree 1 is called pendant. The edge incident with a pendant vertex is called a pendant
edge. A graph is called regular if all its vertices have the same degree. If the common
degree is r, it is called r-regular. In particular, a 3-regular graph is called cubic. We
write 8(G) for the smallest of all degrees of vertices of G, and A(G) for the largest.
(One also writes either A(G) or §(G) for the common degree of a regular graph G.)
The degree d(x) of x will equal the sum of the entries in the row of Mg or of Ng
corresponding to x.

Theorem 1.1. In any graph or multigraph, the sum of the degrees of the vertices equals
twice the number of edges.

Proof. It is convenient to work with the incidence matrix: we sum its entries. The sum
of the entries in row i is just d(x;); the sum of the degrees is ) ;_, d(x;), which equals
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the sum of the entries in N. The sum of the entries in column j is 2, since each edge
is incident with two vertices; the sum over all columns is thus 2e, so that

2”: d(x;) = 2e,
i=1

giving the result. g
Corollary 1.1.1 In any graph or multigraph, the number of vertices of odd degree is

even. In particular, a regular graph of odd degree has an even number of vertices.

Example. A graph with the degrees of vertices marked is shown in Figure 1.10. Ob-
serve that there are six odd vertices. The isolated vertex has degree 0.

Fig. 1.10. Degrees of vertices

A collection of v nonnegative integers is called graphical if and only if there is
a graph on v vertices whose degrees are the members of the collection. A graphical
collection is called valid if and only if there is a connected graph with those degrees.
(This is one situation where the distinction between graphs and multigraphs is very
important: see Exercise 1.3.16.)

Theorem 1.2, [68, 61] A collection
S=ldo,di,....dy_1}

of v integers with dy > dy > ... > d,_1, where dy > 1 and v > 2, is graphical if and
only if the collection

S/Z{dl_17"'9dd0_ladd0+]a"‘7dl}*]}
is graphical.

Proof. (i) Suppose §’ is graphical. Let H be a graph with vertices uy, uz, ..., u,_1,
where

duw;) =d;i —1, 1=<i=<dy,
d(u;) =d;, dy+1<i<v-—1.

Append a new vertex ug, and join it to uy, uy, ..., #4. The resulting graph has
degree sequence S.
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(ii) Suppose the collection S is graphical. Let G be a graph with vertex set
V(G) = {x0, x1, ..., xy—1}

such that d(x;) = d; for 0 <i < v — 1. Two cases arise:

Case 1. Suppose G contains a vertex y of degree dp, such that y is adjacent to
vertices having degrees dy, dy, ..., dy,. In this case, we remove y and all the edges
incident with it. The resulting graph has degree sequence S’, whence S’ is graphical.

Case 2. Suppose there is no such vertex y. We have the vertex set

x07x17x27x37x47~--9-xd07-xd0+17"'7-xka-~*vxv—l
with degrees
dy>2di>dry>dy>dy> ... >dg >dg1>...>dp > ... >dy .

Let X = {x;,xj,,...,x;,} be the set of all vertices among x, ..., x4, to which xg is
not adjacent. Then n > 1. Because x is adjacent to dy vertices altogether, there must
be exactly n vertices in the set

Y = {xkl,xkz,...,xkn}

among Xg,+1, - - . , Xy—1 to which xo is adjacent. We show that there is a vertex x; in X
and a vertex x; in ¥ such that d(x;) > d(x;). Suppose otherwise. Then all the vertices
in X and all the vertices in Y have the same degree. Then interchanging x;, and x;, in
the sequence of vertices foreach i, i = 1, .., n, produces a reordering of S, satisfying
the conditions of the theorem, in which x; is adjacent to vertices having degrees d;,
dy, ..., dg,. So G falls into Case 1, which we assumed was not true.

So there exist vertices x; and x; such that xo is not adjacent to x > Xo 1s adjacent to
x; and d(x;) > d(x). Since the degree of x; is greater than that of x;, there must be
a vertex x,, that is adjacent to x; but not to x.

We delete the edges xoxx and x;x,, from G and add edges xox ; and xgx,,. The
result is a graph G’ having the same degree sequence s as G. However, the sum of
the degrees of the vertices adjacent to xy in G’ is larger than that in G. If G’ falls
into Case 1, then §' is graphical. If not, apply the argument to G’, obtaining a new
graph G” with the same degree sequence as G, but such that the sum of the degrees of
the vertices adjacent to xq is larger than the corresponding sum in G'. If G” falls into
Case 1, then §’ is graphical; otherwise repeat again. Continuing this procedure must
eventually result in a graph satisfying the hypothesis of Case 1, because the total sum
of all the degrees remains the same for each new graph, while the sum of the degrees
of vertices adjacent to x( increases. a

Example. Consider the sequence
§=16,3,3,3,3,2,2,2,2,1,1}.
This sequence is graphical if and only if
§'=1{2,2,2,2,1,1,2,2,1,1}
=1{2,2,2,2,2,2,1,1,1,1}
is graphical; equivalently
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Fig. 1.11. Constructing a graph with given degrees

S"=1{1,1,2,2,2,1,1,1, 1}
=1{2,2,2,1,1,1,1, 1,1}

must be graphical, as must
§"={1,1,1,1,1,1,1, 1}.

Now S8 is easily seen to be graphical: the corresponding graph consists of four
independent edges. So S is graphical. The method of constructing a suitable graph is
illustrated in Figure 1.11, where G corresponds to S, G’ to §’, and so on. For example,
S’ was derived from S by subtracting 1 from six of the degrees, and the six resulting
degrees are {2,2,2,2,1, 1}, so we select any six vertices in G whose degrees are
{2,2,2,2,1, 1}, and join a new vertex to them. In each case the new edges are shown
with heavy lines.

As was shown by the above example, application of Theorem 1.2 not only finds
whether a sequence is graphical, it also enables us to find a graph with the given degree
sequence, if one exists. However, there is no guarantee of uniqueness. In fact, one can
often find two graphs with the same degree sequence.

Example. Find three nonisomorphic graphs with degree sequence 3, 3, 2, 2, 2, 2.
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SOM

The three graphs are obviously not isomorphic: they have different numbers of sub-
graphs K3.

Exercises 1.3

A1.3.1 In each case, find the degrees of the vertices:

W s KR

(i) (iii) (iv)

HA1.3.2 Suppose G has v vertices and §(G) > (v — 1)/2. Prove that G is connected.
1.3.3 Prove that a regular graph of odd degree can have no component with an odd
number of vertices.
A1.3.4 Prove that the collection {3, 2, 2, 2, 1} is valid. Find a graph with this collection
of degrees.
1.3.5 Prove that the collection {3, 3,2, 1, 1} is valid. Find a graph with this collection
of degrees.
H1.3.6 Find two nonisomorphic graphs with degree collection 2, 2, 2, 1, 1.
1.3.7 Find two nonisomorphic graphs with degree collection 3, 3, 3, 3, 3, 3.
H1.3.8 Prove that there do not exist nonisomorphic graphs on four vertices with the same
degree collection.
1.3.9 Prove that (up to isomorphism) there is exactly one graph with degree collection
{5,5,4,4,3,3)}.
A1.3.10 Which of the following are graphical?
1) {5,5,4,4,2,2};
Gi) {5,4,4,3,3,3}
(iii) {5,4.4,4,3,3};
Gv) {2,2,1,1,1, 1}?
1.3.11 Which of the following are graphical?
(i) 4,3,2,2,2,1};
(i) {3,3,2,2,2,1};
(iii) {5,4,4,4,2, 1}
Giv) {2,2,2,2,1,1}?
A1.3.12 Find a graph on six vertices that has at least one vertex of each degree 1, 2, 3, 4,
5.
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1.3.13 For each v, show that there exists a graph on v vertices that has at least one vertex
of eachdegree 1,2,...,v—2,v — 1.
1.3.14 Prove that no graph has all its vertices of different degrees.
A1.3.15 Find a multigraph on four vertices that has all its vertices of different degrees.
1.3.16 Prove that there is a multigraph with degree sequence, {4, 3, 1, 1, 1}, but there is
no multigraph with degree sequence {2, 0, 0, 0}. Deduce that Theorem 1.2 does
not apply to multigraphs.
A1.3.17 Prove: if d and v are natural numbers, not both odd, with v > d, then there there
is a regular graph of degree d with exactly v vertices.
A1.3.18 In alooped multigraph, each loop is defined to add 2 to the degree of its vertex.
(i) Do Theorem 1.1 and Corollary 1.3 hold for looped multigraphs?
(ii) Suppose D is any finite sequence of nonnegative integers such that the sum
of all its members is even. Show that there is a looped multigraph with degree
sequence D.
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Walks, Paths and Cycles

2.1 Basic Ideas

A walk in a graph G is a finite sequence of vertices xg, x1,...,x, and edges
ai, az, ...,a, of G:

X0, A1, X1,42, ...,0y, Xy,
where the endpoints of g; are x;_ and x; for each i. A simple walk is a walk in which
no edge is repeated. If it is desired to specify the terminal vertices, the above walk is
called an xox,-walk. The length of a walk is its number of edges.

A path is a walk in which no vertex is repeated. A walk is closed when the first
and last vertices, xq and x,, are the same. Closed walks are also called circuits. A cycle
of length » is a closed walk of length n, n > 3, in which the vertices xg, x1, ..., X,—
are all different. In specifying a path or cycle, it is sufficient to list only the sequence
of vertices, because the edges are then uniquely determined. For example, a path con-
sisting of vertices a, b, ¢, d and edges ab, bc, cd will simply be denoted by abcd.
The cycle formed by adding edge da to path abcd is often written (abcd). Of course,
(abcd), (beda), (cdab) and (dabc) all represent the same cycle.

e f g h
Fig. 2.1. A sample graph for walks and paths

Example. Consider the graph in Figure 2.1. Both abefgbch and abgdh are walks

from a to &, but only the latter is a path. (bcdgfe) and (bedg) are cycles of lengths 6
and 4 respectively.
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The following observation, although very easy to prove, will be useful.

Theorem 2.1. If there is a walk from vertex y to vertex 7 in the graph G, where y is
not equal to z, then there is a path in G with first vertex y and last vertex z.

Proof. Say the yz-walk is
Wi =xp, a1, x1,02, ..., a5, Xn,

as above, where y = x¢ and z = x,,. If the vertices xq, xi, ..., x,, are all different, W,
is a path and we are done. If not, select a vertex that appears twice: say x; = x;, where
i < j.Write

Wo = X0, a1, X1, oo, Xiys Qi1 Xjads - -+ Gy X
Then W, is a walk from y to z and is shorter than W;.

If W, contains no repeated vertex, then it is the required path. Otherwise, select a
repeated vertex, and proceed as above. Again a shorter walk is constructed.

This process must stop at some stage, because each walk is shorter than the preced-
ing one and the length can never be less than 1. So, for some &, W, cannot be reduced
in length. It must be that W, contains no repeated vertex and is the required path. [J

In fact, we have proved a little more than the theorem. We have shown that if there
is a yz-walk of length n, there is a yz-path of length at most n.

We say that two vertices are connected when there is a walk joining them. (The-
orem 2.1 tells us we can replace the word “walk” by “path.”) Two vertices of G are
connected if and only if they lie in the same component of G; G is a connected graph
if and only if all pairs of its vertices are connected. (Observe that this definition of
“connected graph” is consistent with the one given in Section 1.2.) If vertices x and
y are connected, then their distance D(x, y) is the length of the shortest path joining
them; by definition D(x, x) = 0.

Example. In Figure 2.1, there are several paths from b to h: bedh, beh, bgdh, bgdch,
befgdh and befgdch. The shortest is bch, of length 2, so D(b, h) = 2.
Cycles give the following useful characterization of bipartite graphs.

Theorem 2.2. A graph is bipartite if and only if it contains no cycle of odd length.

Proof. (i) Suppose G is a bipartite graph with disjoint vertex sets U and V. Suppose
G contains a cycle of odd length, with 2k + 1 vertices

X1, X2, X3y oo oy X2%+1»

where x; is adjacent to x;4) fori =1, 2, ..., 2k, and x4 is adjacent to x;. Suppose
x; belongs to U. Then x; 1| must be in V, since otherwise we would have two adjacent
vertices in U; and conversely. So, if we assume x; € U we get, successively, x» €
V,x3 e U,...,xpq4 € U. Now x4 € U implies x; € V, which contradicts the
disjointness of U and V.

(ii) Suppose that G is a graph with no cycle of odd length. Without loss of general-
ity we need only consider the case where G is connected. Choose an arbitrary vertex x
in G, and partition the vertex set by defining Y to be the set of vertices whose distance
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from x is even, and Z to be the set of vertices whose distance from x is odd; x itself
belongs to Y.

Now select two vertices y; and y, in Y. Let P be a shortest path from x to y; and
Q a shortest path from x to y,. Denote by u the last vertex common to P and Q. Since
P and Q are shortest paths, so are their sections from x to u, which therefore have the
same length. Since the lengths of both P and Q are even, the lengths of their sections
from u to y; and u to y, respectively have equal parity, so the path from y; to u (in
reverse direction along P) to y, (along Q) has even length.

If y; ~ y», then this path together with the edge y,y, gives a cycle of odd length,
which is a contradiction. Hence no two vertices in Y are adjacent. Similarly no two
vertices in Z are adjacent, and G is bipartite. g

A graph that contains no cycles at all is called acyclic; a connected acyclic graph
is called a tree. Trees will be discussed further in Chapter 4. In general, acyclic graphs
are called forests.

It is clear that the set of vertices and edges that constitute a path in a graph is itself
a graph. We define a path P, to be a graph with v vertices xy, x5, ...,x, and v — 1
edges x1x2, X2X3, ..., Xy_1X,. A cycle C, is defined similarly, except that the edge
xyX; is also included, and (to avoid the triviality of allowing K, to be defined as a
cycle) v must be at least 3. This convention ensures that every C, has v edges. Figure
2.2 shows P4 and Cs.

Fig. 2.2. P4 and Cs

As an extension of the idea of a proper subgraph, we shall define a proper tree to
be a tree other than Ky, and similarly define a proper path. (No definition of a “proper
cycle” is necessary.)

Exercises 2.1

A2.1.1 Find all paths from s to ¢ in the graph shown in Figure 2.3(i). What is the length
of each? What is the distance from s to ¢?
A2.1.2 Find the distances between all pairs of vertices in the graph of Figure 2.3(i).
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A2.13
214
2.15

2.19

2.1.10

2.1.11

2. Walks, Paths and Cycles

) (ii)
Fig. 2.3. Find all paths from s to ¢

Repeat Exercises 2.1.1 and 2.1.2 for the graph of Figure 2.3(ii).

Find the distances between all pairs of vertices in the graph of Figure 2.1.

Figure 2.4 shows the Petersen graph, which arises in several contexts in the study
of graphs. Find cycles of lengths 5, 6, 8 and 9 in this graph.

Fig. 2.4. Petersen graph

Show that the graph Cs x K, (called a pentagonal prism) contains cycles of lengths
4,5,6,7,8,9and 10.

Find a graph on 10 vertices with 13 edges that contains cycles of all orders 3, 4,
5,6,7,8,9, 10. Can this be done with fewer edges?

The graph G contains two different paths from x to y, namely

-x9t17t27"'atmvy

and
X UL Uy ey U, Y

(i) If the vertices t; and u; are different, prove that G contains a cycle that passes

through x.
(i1) Prove that the condition “¢; and u; are different” is necessary.
A graph contains at least two vertices. There is exactly one vertex of degree 1, and
every other vertex has degree 2 or greater. Prove that the graph contains a cycle.
Would this remain true if we allowed graphs to have infinite vertex sets?
The graph G has adjacency matrix A. Denote the (i, j) entry of the matrix Ak by
alkj. Prove that there are exactly a{‘j different walks of length k from x; to x;.
The square G of a graph G has the same vertex set as G; x is adjacent to y in G*
if and only if D(x, y) = 1 or 2 in G. A graph is a perfect square if and only if it
is the square of some graph.
(i) What are the squares of K ,, Ps and Cs?



2.2 Radius, Diameter and Eccentricity 23

(ii) Find all the connected graphs on four or five vertices that are perfect squares.
2.1.12 If G is a connected graph, show that the distance function D(x, y) has the follow-

ing properties for all vertices x, y and z:

(1) D(x,y) =0ifand onlyif x = y;

(i) D(x,y) = D(y, x);

(i) D(x,y) + D(y, 2) = D(x, 2).

(A mapping to the nonnegative integers that has these properties is called a met-

ric.)

2.2 Radius, Diameter and Eccentricity

In this section we introduce some graph parameters related to distance.

Suppose G is a connected graph and x is a vertex of G. The eccentricity e(x) of x
is the largest value of D(x, y), where y ranges through all the vertices. The diameter
D = D(G) of G is the maximum value of ¢(x) for all vertices x of G, while the radius
R = R(G) is the smallest value of £(x).

Example. Find e(x) for every vertex x of the graph G of Figure 2.5. What are the
diameter and radius of this graph? The vertices most distant from a are ¢ and e, so
e(a) = D(a,¢) = D(a,e) = 3. Similarly e(b) = D(b,c) = D(b,e) = 2, g(c) =
D(c,a) = D(c,d) = 3, e(d)y = D{d,c) = 3, ee) = D(e,a) = 3, e(f) =
D(f,a) = D(f,d) =2.S0 D(G) =3 and R(G) =2.

d e f

Fig. 2.5. Find eccentricities, diameter and radius

Example. Find the diameter and radius of the cycle C,.
Every vertex of C,, is distance n from its opposite vertex, and the distance is
smaller for all other vertices. So ¢ = n for all vertices, and D = R = n.

Theorem 2.3. In any graph G,
R(G) = D(G) = 2R(G).

Proof. By definition D(G) equals the maximum distance between any two vertices
in G. Say x and y attain this maximum distance so that D(x, y) = D(G), and say
z 1s a vertex for which ¢(z) = R(G). Since R is a distance between two vertices,
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necessarily R < D. But by definition D(z,t) < &(z) = R(G) for every vertex ¢, so
D(G) = D(x,y) < D(x,z) + D(z, y) <2R(G). O

The center C(G) of a finite graph G of radius R is the set of all vertices x that
have eccentricity e(x) = R.

Example. The graph shown in Figure 2.5 has center { f}. The center of the cycle Cs,
is the whole graph.

The girth g(G) of a graph G is the length of the shortest cycle contained in G; the
circumference c(G) of G is the length of the longest cycle on G. If G is acyclic, then
g(G) and ¢(G) are not defined.

Example. Find a graph G with D(G) = g(G) = ¢(G).
Consider a cycle C,,. To one vertex, attach a path P,,; containing n new vertices.
The resulting graph has diameter, girth and circumference 2n.

Theorem 2.4. Suppose G is a graph which contains a cycle. Then
2(G) <2D(G) + 1.

Proof. Suppose g(G) > 2D(G) + 2. Consider a cycle C of length g(G) in G; label
the vertices of C as xy, x2, .. ., xg(g) around the cycle.

Suppose P = x1y2¥3 ... Y1 Xp(G)+2 15 a shortest path from x; to xp)4+2. P must
contain fewer than D(G)+ 1 edges, by the definition of diameter. If P does not contain
any of the vertices xp()+3, Xp(G)+4> - - - » Xg(G), then the cycle

(X1Y2)3 -+ - YiIXDG)+2XDG+3XD(G)+4 - - - Xg(6))
has length less than g(G). Otherwise, suppose x; is the highest-numbered member of

C that belongs to P; say x; = ys. Again, (X1 ¥2¥3 ... ¥sXa1Xk42 - - - Xg()) 1S a cycle
shorter than g(G). In either case, we have contradicted the definition of g(G). U

Exercises 2.2

2.2.1 Find the girth, radius and diameter of the following graphs.
(i) The n-vertex path P,.
(i) The complete bipartite graph K,,, ,.
(iii) The ladder L,, (see Exercise 1.2.13).
(iv) The Petersen graph (see Exercise 2.1.4).
(v) The pentagonal prism (see Exercise 2.1.5).
A2.2.2 Find the girth, circumference, radius and diameter of the following graphs.

() @ (i) (iii@
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2.2.3 Find the girth, circumference, radius and diameter of the following graphs.

() (i) (iit)

A2.2.4 Find centers of the graphs in Exercise 2.2.2.
2.2.5 Find centers of the graphs in Exercise 2.2.3.
2.2.6 Give an example of a graph other than K3 with a center of size 3.
2.2.7 Suppose G is connected and suppose every x € V(G) satisfies §(x) > ”T_l Show
that G has diameter no greater than 2.
2.2.8 A graph G is called self-centered if C(G) = G. (We observed that C, is self-
centered.)
(i) Prove that a complete graph is self-centered.
(ii) Give an example of a self-centered graph with four vertices other than Kj.
H(iii) Prove that if G is a self-centered graph, then so is the Cartesian product
K2 x G.
HA2.2.9 Suppose G is a connected graph, not K, which has no induced subgraph isomor-
phic to K 3. Show that G contains a pair of adjacent vertices x and y such that
G — {x, y} is connected. [112]
2.2.10 Suppose G has an automorphism f (as defined in Section 1.2) that takes vertex x
of G to vertex y. Show that if x is in the center of G, then so is y.

2.3 Weighted Distance

In many applications it is appropriate to define a positive function called a weight
w(x, y) associated with each edge (x, y). For example, if a graph represents a road
system, a common weight is the length of the corresponding stretch of road. In the
underlying graph of a multigraph, w(x, y) might be the multiplicity of (x, y) in the
multigraph. Weights also often represent costs or durations. The weight of a path P
is the sum of the weights of the edges in P. Similarly, one can define the weights
of walks, cycles, subgraphs and graphs. Weights can also be defined on the vertices;
vertex weight will be used in Section 12.2.

Example. The routes traveled by an airline can conveniently be shown in a graph, with
vertices representing cities and edges representing services. Several different weights
might be used: the distance, the flying time and the airfare are all possibilities.

If x and y are connected vertices, then the weighted distance from x to y is the
minimum among the weights of all the paths from x to y, and is denoted by W (x, y).

Theorem 2.5. Suppose G is a connected graph. The weighted distance function
W(x, y) has the following properties:
O W,y)=0ifandonly ifx = y;
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(i) Wx,y) = W(y, x);
(iil) W(x, y) + W(y,2) = W(x, z);
for all vertices x, vy, zin G.

The proof is left as an exercise. The corresponding theorem for the unweighted
distance function appears as Exercise 2.1.12.

In many applications it is desirable to know the path of least weight between two
vertices. This is usually called the shortest path problem, primarily because a common
application is one in which weights represent physical distances. We shall describe an
algorithm due to Dijkstra [34] that finds the shortest path from vertex s to vertex ¢
in a finite connected graph G. Informally stated, the algorithm arranges the vertices
of G in order of increasing weighted distance from s. This algorithm is most easily
described if w is defined for all pairs of vertices, so we write w(x, y) = oo if x and
y are not adjacent. (In a computer implementation, co can be replaced by some very
large number.)

The algorithm actually orders the vertices of G as so(= ), 51, 52, ... so that the
weighted distances W(s, s1), W(s, s2), ... are in nondecreasing order. To do so, it
attaches a temporary label £(x) to each member x of V(G). £(x) is an upper bound
on the weighted length of the shortest path from s to x. To start the algorithm, write
so = s and Sy = {s}. Define £(sy) = 0 and for every other vertex y, £(y) = oc. Call
this step 0. After step k the set

St = {50, 51, ..., Sk}

has been defined. In the next step, for each x not in S, the algorithm changes the value
£(x) to the weighted length of the shortest (s, x) path that has only one edge not in
Sk, if this is an improvement. Then s, is chosen to be a vertex x such that £(x) is
minimized. (In practice, it does not matter whether the new value of £(x) is used or the
old value is retained for those vertices x other than sy ;. Moreover, for each member
s; of S, it is only necessary to consider one new vertex, a vertex x such that w(s;, x)
is minimal.)

e 5)iSs;

e 5 is the vertex x for which w(s, x) is smallest, the vertex “closest” to s;

¢ to find s one selects, for every vertex x other than s or sy, either the lowest weight

edge sx or the lowest weight path ss|x, whichever is shorter, and then chooses the
shortest of all these to be s»;

and so on. After a vertex has been labeled s;, its £-value never changes, and this final
value of £(x) equals W (s, x). Eventually the process must stop, because a new vertex
is added at each step and the vertex set is finite. So W (s, t) must eventually be found.
Finally, whenever a vertex is labeled s, 1, one can define a unique vertex s; that “pre-
ceded” it in the process — the vertex before s;1.; in the ss¢1y path that had length
£(s¢41). By working back from ¢ to the vertex before it, then to the one before that and
so on, one eventually reaches s, and reversing the process gives a shortest s¢ path. For
convenience, the predecessor of each new vertex s, is recorded at the step when s, is
selected.
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(b)

Fig. 2.6. Find the path of minimum weight from s to ¢

Example. The left-hand part of Figure 2.6 shows a graph with weighted edges. We
shall find the minimum weight path from s to ¢.

Initially set s = 5, So = {s} and £(s) = 0. s has no predecessor.

The nearest vertex to s is a (w(s, a) = 5, w(s,¢) =6). Sos; = a, $; = {s,a} and
£(a) = 5. a has predecessor s.

We consider each member of S;. The nearest vertex in V\ S to s (in fact, the only
one) is ¢, and w(s, ¢) = 6. The nearest vertex to a is b (w(a,b) = 2, w(a,c) =
4, w(a, d) = 3). The candidate values are £(c) = 6 (reached through s) and £(b) = 7
(through a). The smaller is chosen. So s; = ¢, S; = {s,a,c} and £(c) = 6. ¢ has
predecessor s.

We now process S». There is no vertex in V\ S; adjacent to s, so s can be ignored in
this and later iterations. The nearest vertex to a is b; w(a, b) = 2 so £{a) + w(a, b) =
7. The nearest vertex to ¢ is d; w(c,d) = 4 so £(c) + w(c,d) = 10. So s3 = b,
S3 = {s,a,c, b} and £(b) = 7. b has predecessor a.

The nearest vertex to a is d; w(a,d) = 3 so £(a) + w(a,d) = 8. The nearest
vertex to ¢ is d; w(c,d) = 4 so £(c) + w(c, d) = 10. The nearest vertex to b is e;
w(b,e) =5s0L(b)+w(b,e) =12.S0s4 =d, S4 = {s,a,c,b,d}and £(d) = 8. d
has predecessor a.

a need not be considered, as all its neighbors are in S4. The nearest vertex to ¢ is
frw(e, f) =5s0£(c) + w(c, f) = 11. The nearest vertex to b is e¢; w(b,e) = 5 so
£(b)Y+w(b, e) = 12. The nearest vertex to d is e; w(d, ) = 2 s0 £(d)+w(d, e¢) = 10.
Soss=e,S5 ={s,a,c,b,d, e} and £(e) = 10. e has predecessor d.

From now on b need not be considered. The nearest vertex to c is f; w(c, f) =5
so £(c)+w(c, f) = 11. The nearest vertex to d is g; w(d, g) = 3so€(d)+w(d, g) =
11. The nearest vertex to e is i; w(e, h) = 2 so £(e) + w(e, h) = 12. Either f or
g could be chosen. For convenience, suppose the earlier member of the alphabet is
always chosen when equal £-values occur. Then s¢ = f, S¢ = {s,a.¢,b,d, e, f} and
£(f) = 11. f has predecessor c.

Now c¢ can be ignored. The nearest vertex to d is g; w(d, g) = 3 so £(d) +
w(d, g) = 11. The nearest vertex to e is h; w(e,h) = 2 so0 £(e) + w(e, h) = 12.
The nearest vertex to f is g; w(f, g) = 2s0 £(f) + w(f,g) = 13. So s7 = g,
Si=1{s,a,c,b,d,e, f, g} and £(g) = 11. g has predecessor d.
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The nearest vertex to d is h; w(d, g) = 4 so £(d) + w(d, g) = 12. The nearest
vertex to e is h; w(e, h) = 2 s0 £(e) + w(e, h) = 12. The nearest vertex to f is i;
w(f,i) = 450 £(f) + w(f,i) = 15. The nearest vertex to g is h; w(g, h) = 3 so
£(g) +w(g,h) = 14.S0s3 = h, Ss = {s,a,c,b,d,e, f, g, h}and £(h) = 12. We
shall say h has predecessor d (e could also be used, but d is earlier in alphabetical
order).

d and e are now eliminated. The nearest vertex to f is i; w(f, i) = 4 s0 £(f) +
w(f,i) = 15. The nearest vertex to g is j; w(g, j) = 6 s0 £(g) + w(g, j) = 17. The
nearest vertex to i is t; w(h, t) = 3so £(h) +w(h, t) = 15. We always choose ¢ when
it has the equal-smallest £-value. So sy = ¢, and the algorithm stops with £(z) = 15.
Since ¢ has predecessor &, the minimum weight path is sadht, with weight 15. On the
right-hand side of Figure 2.6, all links to predecessors are emphasized. It is easy to
read off the minimum weight path from this figure, as well as the minimum weight
paths fromstoa, b, c,d, e, f, g and h.

Exercises 2.3

2.3.1 Prove Theorem 2.5.

A2.3.2 In the weighted graphs in Figure 2.7, find the minimum weight paths from s to z.

® s a b (i)

Fig. 2.7. Graphs for Exercise 2.3.2

2.3.3 Repeat the preceding exercise for the weighted graphs in Figure 2.8.

Fig. 2.8. Graphs for Exercise 2.3.3
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2.4 Euler Walks

Unlike many parts of mathematics, the theory of graphs has a definite birthdate. The
first paper on graphs was published by Euler in 1736, and had been delivered by him
to the St. Petersburg Academy one year earlier.

Euler’s paper grew out of a famous old problem. The town of Kénigsberg in Prus-
sia is built near the mouth of the river Pregel. The river divides the town into four parts,
including an island called The Kneiphof, and in the eighteenth century the town had
seven bridges; the layout is shown in Figure 2.9. The question under discussion was
whether it is possible from any point on Kénigsberg to take a walk in such a way as to
cross each bridge exactly once.

Fig. 2.9, Konigsberg bridges

Euler set himself the more general problem: given any configuration of river, is-
lands and bridges, find a general rule for deciding whether there is a walk that covers
each bridge precisely once.

We first show that it is impossible to walk over the bridges of Konigsberg. For
suppose there was such a walk. There are three bridges leading to the area C: you can
traverse two of these, one leading into C and the other leading out, at one time in your
tour. There is only one bridge left: if you cross it going into C, then you cannot leave
C again, unless you use one of the bridges twice, so C must be the finish of the walk;
if you cross it in the other direction, C must have been the start of the walk. In either
event, C is either the place where you started or the place where you finished.

A similar analysis can be applied to A, B and D, since each has an odd number
of bridges. But the walk starts at one place and finishes at one place. Therefore it is
impossible for A, B, C and D all to be either the start or the finish.

The ideas we have just used can be applied to more general configurations of
bridges and islands, and to other problems. We start by finding a graphical model
— in fact, a multigraph — that contains the essential facts of the Konigsberg bridge
problem. We observe that the topography of C is really irrelevant. When considering C
we talked only about entering or leaving the area. For this purpose it would be the same
if C were shrunk to a point connecting the three bridges; and the same could be done
to A, B and D. The bridges themselves do not have any physical significance, and we
are concerned with them only as connections between the points. So we can discuss
the question just as well by constructing a multigraph with vertices A, B, C and D
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corresponding to the parts A, B, C and D of the town, and with an edge representing
each bridge, as shown in Figure 2.10. In terms of this model, the original problem
becomes: can a simple walk be found that contains every edge of the multigraph? A
simple walk with this property is called an Euler walk, and a graph containing such a
walk is Eulerian.

C

Fig. 2.10. A multigraph representing the K6nigsberg bridges

In proving that a solution to the Konigsberg bridge problem is impossible, we
used the fact that certain vertices had an odd number of edges incident with them.
(The precise number was not important; oddness was the significant feature.) Let us
call a vertex even if its degree is even, and odd otherwise. It was observed that an odd
vertex must be either the first or the last point in the walk. In fact, if a multigraph has
an Euler walk, then either the multigraph has two odd vertices, the start and finish of
the Euler walk, or the multigraph has no odd vertices, and the Euler walk starts and
finishes at the same point. Another obvious necessary condition is that the multigraph
must be connected. These two conditions are together sufficient.

Theorem 2.6. If a connected multigraph has no odd vertices, then it has an Euler walk
starting from any given point and finishing at that point. If a connected multigraph has
two odd vertices, then it has an Euler walk whose start and finish are the odd vertices.

Proof. Consider any simple walk in a multigraph that starts and finishes at the same
vertex. If one erases every edge in that walk, one deletes two edges touching any
vertex that was crossed once in the walk, four edges touching any vertex that was
crossed twice, and so on. (For this purpose, count “start” and “finish” combined as
one crossing.) In every case an even number of edges is deleted.

First, consider a multigraph with no odd vertex. Select any vertex x, and select
any edge incident with x. Go along this edge to its other endpoint, say y. Then choose
any other edge incident with y. In general, on arriving at a vertex, select any edge
incident with it that has not yet been used, and go along the edge to its other endpoint.
At the moment when this walk has led into the vertex z, where z is not x, an odd
number of edges touching z has been used up (the last edge to be followed, and an
even number previously). Since z is even, there is at least one edge incident with z that
is still available. Therefore, if the walk is continued until a further edge is impossible,
the last vertex must be x — that is, the walk is closed. It will necessarily be a simple
walk and it must contain every edge incident with x.
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Now assume that a connected multigraph with every vertex even is given, and a
simple closed walk has been found in it by the method just described. Delete all the
edges in the walk, forming a new multigraph. From the first paragraph of the proof
it follows that every vertex of the new multigraph is even. It may be that we have
erased every edge in the original multigraph; in that case we have already found an
Euler walk. If there are edges still left, there must be at least one vertex, say c, that
was in the original walk and that is still on an edge in the new multigraph — if there
were no such vertex, then there could be no connection between the edges of the walk
and the edges left in the new multigraph, and the original multigraph must have been
disconnected. Select such a vertex ¢, and find a closed simple walk starting from c.
Then unite the two walks as follows: at one place where the original walk contained
¢, insert the new walk. For example, if the two walks are

X, Veoeuy 2,C Uy X

and

then the resulting walk will be
Xy Yyeeeh 5,6, 8, oo, b, C U, oL, X

(There may be more than one possible answer, if ¢ occurred more than once in the first
walk. Any of the possibilities may be chosen.) The new walk is a closed simple walk
in the original multigraph. Repeat the process of deletion, this time deleting the newly
formed walk. Continue in this way. Each walk contains more edges than the preceding
one, so the process cannot go on indefinitely. It must stop: this will only happen when
one of the walks contains all edges of the original multigraph, and that walk is an Euler
walk.

Finally, consider the case where there are two odd vertices p and ¢ and every other
vertex is even. Form a new multigraph by adding an edge pq to the original. This new
multigraph has every vertex even. Find a closed Euler walk in it, choosing p as the
first vertex and the new edge pq as the first edge. Then delete this first edge; the result
is an Euler walk from ¢ to p. O

It is clear that loops make no difference in whether or not a graph has an Euler
walk. If there is a loop at vertex x, it can be added when the walk crosses x.

We can adapt the above proof of Theorem 2.6 to make an algorithm for finding a
closed Euler walk. All that is needed is to order the vertices in some way; whenever a
vertex is to be chosen, select the one earliest in the ordering from among those meeting
the requirements.

Example. Find an Euler walk in the road network represented by Figure 2.11.

We order the vertices by standard alphabetical ordering. Starting from A, we find
the walk ACBEA. When these edges are deleted (see Figure 2.12(a)) there are no
edges remaining through A, so a new walk is started. A and B are not available, so
we choose C, the first vertex from the first walk that still has edges adjacent to it,
and trace the walk CEDGEI FC, after which there are no edges available at C (see
Figure 2.12(a)). G is available, yielding walk GHILH JG. As is clear from Figure
2.12(c), the remaining edges form a walk JKLJ.
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~ a9 >

Fig. 2.11. Construct an Euler walk

We start with ACBEA. We replace C by CEDGEI FC, yielding
ACEDGEIFCBEA,
then replace the first £ by EGJ LI E, with the result
ACEDGHILHJGEIFCBEA.
Finally J is replaced by J K L J, and the Euler walk is
ACEDGHILHJKLJGEIFCBEA.

Ao Bo oC Ao By oC Ao By oC

Do E Dg Ey oF Do Eg oF

G I GoHy oI Go Hy ol

7R 7
(a) (b) ©

Fig. 2.12. Constructing an Euler walk

A good application of Euler walks is planning the route of a highway inspector or
mail contractor, who must travel over all the roads in a highway system. Suppose the
system is represented as a multigraph G, as was done in Section 1.1. Then the most
efficient route will correspond to an Euler walk in G.

If G contains no Euler walk, the highway inspector must repeat some edges of the
graph in order to return to his starting point. Let us define an Eulerization of G to be
a multigraph with a closed Euler walk, that is formed from G by duplicating some
edges. A good Eulerization is one that contains the minimum number of new edges,
and this minimum number is the Eulerization number eu(G) of G.

Example. Consider the multigraph G of Figure 2.13. What is eu(G)? Find an Euler-
ization of G that uses the minimum number of edges.

Look at the representation of the multigraph on the left of Figure 2.14. The black
vertices have odd degree, so they need additional edges. As there are four black ver-
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&
v

Fig. 2.13. Find an Eulerization

tices, at least two new edges are needed; but obviously no two edges will suffice.
However, there are solutions with three added edges — two examples are shown in
Figure 2.14 — so eu(G) = 3.

Fig. 2.14. Finding an Eulerization

Exercises 2.4

A2.4.1 Which of the following graphs contain Euler walks? If the graph contains an Euler
walk, find one. If not, how many edges are required for an Eulerization?

2.4.3 Suppose G is a connected graph with k vertices of odd degree. Show that G can
be decomposed into k/2 edge-disjoint simple walks.
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2.44 (1) Show that a connected graph has a closed Euler walk if and only if it can be
decomposed into a union of edge-disjoint cycles.
(ii) Show that a connected graph is a cycle, or a union of edge-disjoint cycles, if
and only if the degree of every vertex is even.
H2.4.5 Suppose G is a cubic graph (that is, regular of degree 3).
(i) Prove that the Cartesian product G x K is Eulerian.
(ii) Prove that G x G is Eulerian.
2.4.6 Suppose G is a cubic graph.
(i) Prove that the join G + K3 is Eulerian;
(i1) Prove that G + G is Eulerian.
2.4.7 Find the Eulerization numbers of the following graphs, and find good Euleriza-

tions of them.
(1) E (ii) E E

2.4.8 Find the Eulerization numbers of the following graphs, and find good Euleriza-

tions of them.
(i) @ Gi)@

2.5 Hamilton Cycles

A cycle that passes through every vertex in a graph is called a Hamilton cycle and a
graph with such a cycle is called Hamiltonian. Typically one thinks of a Hamiltonian
graph as a cycle with a number of other edges (called chords of the cycle). The idea of
such a spanning cycle was simultaneously developed by Hamilton [62] in the special
case of the icosahedron, and more generally by Kirkman [76]. A Hamilton path is a
path that contains every vertex.

It is easy to discuss Hamiltonicity in particular cases, and there are a number of
small theorems. However, no good necessary and sufficient conditions are known for
the existence of Hamilton cycles. The following result is a useful sufficient condition.

Theorem 2.7. If G is a graph with v vertices, v > 3, and d(x) + d(y) = v whenever
x and y are nonadjacent vertices of G, then G is Hamiltonian.
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Proof. Suppose the theorem is false. Choose a v such that there is a v-vertex coun-
terexample, and select a graph G on v vertices that has the maximum number of edges
among counterexamples. Choose two nonadjacent vertices p and gq: because of the
maximality of G, G + pg must be Hamiltonian. Moreover, pg must be an edge in
every Hamilton cycle of G + pgq, because otherwise the cycle would be Hamiltonian
in G. By hypothesis, d(p) + d(g) > v.

Consider any Hamilton cycle in G + pg:

p:xlyx2a ---,xv—2vQ-

If x; is any member of N(p), then x;_; cannot be a member of N(g), because if it
were, then

Py X1, X2, oo Xi1, gy Xy—2, Xp—=35 «+ -5 X
would be a Hamilton cycle in G. So each of the d(p) vertices adjacent to p in G must
be preceded in the cycle by vertices not adjacent to g, and none of these vertices can
be g itself. So there are at least d(p) + 1 vertices in G that are not adjacent to g. So
there are at least d(q) + d(p) + 1 vertices in G, whence

d(p)+d(g) <v—1,

a contradiction. O

Corollary 2.8. If G is a graph with v vertices, v > 3, and every vertex has degree at
least %, then G is Hamiltonian.

Theorem 2.7 was first proved by Ore [90] and Corollary 2.8 was proved some
years earlier by Dirac [35]. Both can in fact be generalized into the following result of
Pésa [97]: a graph with v vertices, v > 3, has a Hamilton cycle provided the number
of vertices of degree less than or equal to k does not exceed k, for each k satisfying
1<k <%t

Suppose a graph G contains a Hamilton cycle

x17x27~"7xv7-x1'

Since x; occurs only once in the cycle, only two of the edges touching x; can be in
the cycle. One can sometimes use this fact to prove that a graph contains no Hamilton
cycle. For example, consider the graph of Figure 2.15.

Suppose the graph contains a Hamilton cycle.

The vertices on the outer circuit are each of degree 3, and only two of the edges
touching any given vertex can be in a Hamilton cycle. Figure 2.16(a) shows as dotted
lines all the edges touching three of those vertices; of the nine edges, three are not in
the cycle. Similarly, Figure 2.16(b) shows the fifteen edges touching the three vertices
of degree 5; nine of these are out of the cycle. These sets of edges are disjoint, so
there are at least twelve edges not in the cycle. (If the sets were not disjoint, but had &
common elements, only 12—k edges would definitely be eliminated.) Similarly, one of
the edges touching the central vertex must be deleted in forming the cycle. So thirteen
edges are barred, and the Hamilton cycle must be chosen from the remaining fourteen
edges. Since the graph has sixteen vertices, a Hamilton cycle in it must contain sixteen
edges, which is impossible.
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Fig. 2.15. A graph with no Hamilton cycle

(@) (b)

Fig. 2.16. Steps in proving there is no Hamilton cycle

A similar argument could be used to prove the impossibility of a Hamilton path.

Another test is applicable only to bipartite graphs. As a bipartite graph is a sub-
graph of some K, ,, its vertices can be partitioned into two subsets, of sizes m and n,
such that the graph contains no edge that joins two vertices in the same subset.

Theorem 2.9. A bipartite graph with vertex sets of sizes m and n can contain a Hamil-
ton cycle only if m = n, and can contain a Hamilton path only if m and n differ by at
most 1.

Proof. Suppose a bipartite graph G has vertex sets V; and V5, and suppose it contains
a Hamilton path:

X1y X2y 0oy Xy
Suppose that x; belongs to V). Then x; must be in V,, x3 in V|, and so on. Since the
path contains every vertex, it follows that
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Vi ={x1,x3,...},

V2 = {XQ, X4,y .. }
If v is even, then V| and V, each contain v/2 elements; if v is odd, then |V|]| =
(v+1)/2 and | V3| = (v — 1)/2. In either case, the difference in orders is at most 1. If

G contains a Hamilton cycle
x11x27 AR 7x1)7'x17

and x) is in Vj, then x, must belong to V;; so |V| = |V, = v/2. i

Fig. 2.17. A bipartite graph with no Hamilton cycle

It should be realized that neither of these necessary conditions is sufficient; in
particular, Figure 2.17 shows that a bipartite graph with four vertices in each subset
contains no Hamilton cycle; this cannot be proven using the above methods.

Example. The result of Theorem 2.7 is good in the following sense: K, 441 has no
Hamilton cycle (by Theorem 2.9), but of its 2d + 1 vertices, d + 1 have degree d each
and d have degree d + 1 each. Theorem 2.7 shows that K; 4 has a Hamilton cycle.

Exercises 2.5

2.5.1 Prove that the following graphs contain no Hamilton paths.

e oy s

2.5.2 Prove that the following graphs contain no Hamilton cycles.

SeRsAS

A2.5.3 Find Hamilton cycles in the following graphs.
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(@) ; (i) g (iii)
(iv) < ™) i (vi)

2.5.4 Find Hamilton cycles in the following graphs.

(¥ g (ii) E
(iii) % (iv) §

2.5.5 Verify that the graph of Figure 2.17 has no Hamilton cycle.

2.5.6 Use Theorem 2.9 to prove that the graph of Figure 2.15 contains no Hamilton
path.

2.5.7 Prove that a spanning subgraph of K, , can have a Hamilton cycle only if m = n.

H2.5.8 Prove that for every v there exists a graph (other than K,) on v vertices such that

d(x) + d(y) = v — 1 for any two nonadjacent vertices x and y.

2.5.9 G is a graph with v vertices; x and y are nonadjacent vertices of G satisfying
d(x)+d(y) = v. Prove that G+xy is Hamiltonian if and only if G is Hamiltonian.
[16]

HA2.5.10 G is a graph with v vertices; v > 3.
(1) Prove that if G has at least 92—_—;—"19 edges, then G is Hamiltonian.
(ii) Find a non-Hamiltonian graph with w — 1 edges (thus proving that the
preceding result is best-possible).
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2.5.11 For which graphs is an Euler walk also a Hamilton path or cycle?

2.5.12 Suppose G contains a Hamilton path. Prove that both G x K3 and G + K contain
Hamilton cycles.

2.5.13 Suppose G is the graph

Find Hamiltonian cycles in the following graphs.

(i) G+ac (i) G + ae.
(iil) G + ag. @iv) G + ce.
v) G+cg. vi) G + eg.

Show that G itself is not Hamiltonian.

2.5.14 Eleven people plan to have dinner together on a number of different occasions.
They sit at a round table. No person has the same neighbor at any two different
dinners.

A(i) Show that this can be done for 5 days.
(i1) Generalize to the case of any prime number 2n + 1 of people, and n days.
(iii) Find a solution for 9 people and 4 days.

(See Theorem 6.3, later, for a general solution.)

2.6 The Traveling Salesman Problem

Suppose a traveling saleman wishes to visit several cities. If the cities are represented
as vertices and the possible routes between them as edges, then the salesman’s itinerary
is a Hamilton cycle in the graph.

In most cases one can associate a cost with every edge. Depending on the sales-
man’s priorities, the cost might be a dollar cost such as airfare, a number of miles,
or a number of hours. The most desirable itinerary will be the one for which the sum
of costs is a minimum. The problem of finding this cheapest Hamilton cycle is called
the Traveling Salesman Problem. Without loss of generality it can be assumed that
the graph is complete (if there is no direct route from x to y, associate with xy the
cheapest path from x to y).

Not surprisingly, the Traveling Salesman Problem is computationally difficult.
There is no algorithm for solving the Traveling Salesman Problem that is substan-
tially better than listing all Hamilton cycles. In K24, for example, there are about 10%
such cycles (see Exercise 2.6.1). So some fast methods of solution have been devel-
oped. Although they are not guaranteed, these methods have been found to be better
than random on average.
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The nearest neighbor method works as follows. Starting at some vertex x, one first
chooses the edge incident with x whose cost is least. Say that edge is xy. Then an edge
incident with y is chosen in accordance with the following rule: if y is the vertex most
recently reached, then eliminate from consideration all edges incident with y that lead
to vertices that have already been chosen (including x), and then select an edge of
minimum cost from among those remaining. This rule is followed until every vertex
has been chosen. The cycle is completed by going from the last vertex chosen back to
the starting position x. This algorithm produces a directed cycle in the complete graph,
but not necessarily the cheapest one, and different solutions may come from different
choices of initial vertex x.

The sorted edges method does not depend on the choice of an initial vertex. One
first produces a list of all the edges in ascending order of cost. At each stage, the
cheapest edge is chosen with the restriction that no vertex can have degree 3 among
the chosen edges, and the collection of edges contains no cycle of length less than v,
the number of vertices in the graph. This method always produces an undirected cycle,
and it can be traversed in either direction.

Fig. 2.18. Example of Traveling Salesman Problem

Example. Suppose the costs of travel between St. Louis, Evansville, Nashville and
Memphis are as shown in dollars in Figure 2.18. The nearest neighbor algorithm, ap-
plied starting from Evansville, starts by selecting the edge EM, because it has the least
cost of the three edges incident with E. The next edge must have M as an endpoint, and
ME is not allowed (one cannot return to E, it has already been used), so the cheaper
of the remaining edges is chosen, namely MN. The cheapest edge originating at N
is NE, with cost $110, but inclusion of this edge would lead back to E, a vertex that
has already been visited, so NE is not allowed, and similarly NM is not available. It
follows that NS must be chosen. So the algorithm finds route EMNSE, with cost $520.

A different result is achieved if one starts at Nashville. Then the first edge selected
is NE, with cost $110. The next choice is EM, then MS, then SN, and the resulting
cycle NEMSN costs $530.

To apply the sorted edges algorithm, first sort the edges in order of increasing
cost: EM($100), EN($110), ES($120), MN($130), MS($150), NS($170). Edge EM is
included, and so is EN. The next choice would be ES, but this is not allowed because
its inclusion would give degree 3 to E. MN would complete a cycle of length 3 (too
short), so the only other choices are MS and NS, forming route EMSNE (or ENSME)
at a cost of $530.
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In this example, the best route is ENMSE, with cost $510, and it does not arise
from the nearest neighbor algorithm, no matter which starting vertex is used.

Exercises 2.6

A2.6.1 How many different Hamilton cycles are there in K,?

Fig. 2.19. Graphs for Exercise 2.6.2

2.6.2 For the graphs shown in Figure 2.19, find all Hamilton cycles.
2.6.3 Solve the Traveling Salesman Problem for the following graphs by finding all their
Hamilton cycles. The costs of the edges are listed.

a b C a b C

(i (i) m

d e f d e f
ab=14ad =12 ae =30 ab=19ad =16 bc =20
bc=19be =12bf =29 bd =18 be =22 bf =27
cf =20de = 16ef = 26. cf =16 de =18 ef = 22.

A2.6.4 We consider the complete graph K5 with vertices a, b, ¢, d, e. In each part we list
the set of costs associated with the edges. Find the costs of the routes generated by
the nearest neighbor algorithm starting at a and by the sorted edges algorithms.

@) ab=24ac=21ad =30ae =28 bc = 19
bd =32 be =29 cd = 18 ce =20 de = 26.
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(i1) ab=28ac=7%9ad =70 ae =48 bc =57
bd =94 be =66 cd =72 ce =83 de = 81.
(i) ab=24ac=23ad =20ae=21bc =27
bd =22 be =30 cd =26 ce =27de =28.
@iv) ab=24ac=22ad =30ae =29 bc =17
bd =19be =30cd =18 ce =21 de =25.
A2.6.5 For the costs in Exercise 2.1.4, find the routes generated by the nearest neighbor
algorithm starting at each of the five vertices in turn.
2.6.6 Repeat Exercises 2.1.4 and 2.1.4 for the following lists of costs.
(i) ab =59 ac =69 ad =60 ae =58 bc =56
bd =69 be =54 cd = 58 ce =66 de = 61.
(ii) ab=16ac =24 ad =30 ae =48 bc =27
bd =29 be =44 ¢d = 16 ce = 46 de = 51.
(111) ab=91lac=7%9ad =75 ae =82 bc =87
bd =64 be =78 cd =68 ce =81 de = 88.
@iv) ab=45ac =28 ad =50 ae =36 bc =21
bd =42 be =34 cd =44 ce =39 de = 25.
2.6.7 Suppose one could process 10, 000 Hamilton cycles per second. How long would
it take to solve the Traveling Salesman Problem for Ko by complete enumeration?
A2.6.8 Suppose that for some pairs of cities x and y, the cost of travel from x to y is not
the same as the cost from y to x. What modification is required in the Traveling
Salesman Problem?
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Connectivity

3.1 Cutpoints and Bridges

Among connected graphs, some are connected so slightly that removal of a single
vertex or edge will disconnect them. Such vertices and edges are quite important.
A vertex x is called a cutpoint in G if G — x contains more components than G
does; in particular if G is connected, then a cutpoint is a vertex x such that G — x
is disconnected. Similarly, a bridge (or cutedge) is an edge whose deletion increases
the number of components. As an example, consider the graphs in Figure 3.1; the
left-hand graph has cutpoints # and y and cutedge uy, while the right-hand graph has
cutpoint x and no cutedge.

t u 1% t u v
-
X y Z w X y

Fig. 3.1. Graphs whose cutpoints and cutedges are listed

A minimal collection of edges whose deletion disconnects G is called a cutset in
G. A cutset partitions the vertex-set V(G) into two nonempty components, say A and
B, such that the edges joining vertices in A to vertices in B are precisely the edges of
the cutset. This is the set of edges [A, B], as defined in Section 1.2, and we refer to
“the cutset [A, B].” (The two sets A and B are not uniquely defined — for example,
if there is an isolated vertex in G, it could be allocated to either set — but the cutset
will be well defined.) We omit set brackets when no confusion arises: for example, if
A = {x, y}, we might write [A, B] or [xy, B], but not [{x, v}, B].

If A is the set of all vertices of G other than x, so that A = V(G)\{x}, then

the cutset [A, x], consisting of all edges incident with the vertex x, is called a trivial
cutset.
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Example. Consider the graph

a b ¢ d
- T 1]
e f g h

Three of the cutsets in this graph are
C = lae, bedfgh],
D = [abef, cdgh],
E = [b,acdefgh].

As graphs, the cutsets and their complements are

e A

(with vertex labels omitted). E is a trivial cutset.

The notation [A, B] can be used to represent the set of edges with one endpoint in
A and the other in B, even when A and B are not complements. In that case [A, B]
does not necessarily disconnect the graph. In the example graph G, [bf, cg] is the cut-
set D, but [ab, cg] is not a cutset. On the other hand, when A and B are complements,
[A, B} might not be a cutset: its removal will always disconnect G, but the set of edges
might not be minimal. Again referring to our example, [bf, bed fgh] consists of the
four edges ab, bc, ef, fg, but the deletion of ab and ef is sufficient to disconnect G.

Lemma 3.1. An edge xy in a connected graph G is a bridge if and only if it belongs
to no cycle in the graph.

Proof. Recall that a graph is connected if and only if any two vertices have a walk
joining them. Write H for the graph resulting when xy is deleted from C.

(i) Suppose xy is a bridge. G is connected but H is not. So there must exist vertices
w and z that are joined by a walk in G but not in H. Then xy must lie on every walk
from w to z in G. Consider a walk from w to z that includes xy. If xy lies on a cycle
in G, then delete the edge xy from the walk and replace it by the rest of the cycle. The
result is a walk from w to z in H, which is a contradiction. So xy belongs to no cycle
in G.

(ii) Suppose xy is not a bridge. Then H is connected. Select a walk from x to y
in H. By Theorem 2.1, this walk contains an x-y path; since xy is not an edge of H,
it is not an edge of the path, and the union of edge xy with the path is a cycle that
contains xy. O
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The deletion of a cutpoint from a connected graph may yield a graph with any
number of components. As an example, consider the star K ,; deletion of its central
vertex yields n components. However, the situation with bridges is different.

Lemma 3.2. The deletion of a bridge from a connected graph yields a graph with
exactly two components.

Proof. Suppose G is a connected graph with bridge xy; write H for G with xy deleted.
Define H (x) to be the set of all vertices connected to x in H, and H (y) to be the set of
all vertices connected to y. If w is any vertex that does not lie in H (x), then the walk
from x to w in G must have contained the edge xy, and w must still be connected to
y. So H(x) U H(y) equals the vertex-set of G. The induced subgraph of H spanned
by H(x) is connected: if w and z are any two members of H(x), there is a walk from
w to z via x in H. Similarly (H (y)) is connected. So H has at most two components.
Since xy is a bridge, H is not connected, so it has exactly two components. O

Exercises 3.1

A3.1.1 Find all cutpoints in the following graphs.

@ & (i1) m (iii) [ ]i

3.1.2 Find all cutpoints in the following graphs.

() { } (ii) C (iii) [ ]i

3.1.3 What is the maximum number of bridges in a graph on v vertices?
A3.1.4 Prove that a graph in which every vertex has even degree can have no bridge.
H3.1.5 Prove that if x is a cutpoint of G, then x is not a cutpoint of G.
A3.1.6 Listall cutsets in the graphs in Figure 3.2.

(i) oG b (ii) @ c
CILA e bMd

Fig. 3.2. Find all cutsets in these graphs

3.1.7 Repeat the preceding exercise for the graphs in Figure 3.3.
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@ a b (i) a b
c
S
f g c d
(iii) a b (iv) a b c d
c d e e ? g h

Fig. 3.3. Find all cutsets in these graphs

3.1.8 Let x be a vertex of a connected graph G. Prove that the following statements are
equivalent:
(i) x is a cutpoint of G.
(ii) There exist vertices y and z, neither equal to x, such that x lies on every path
from y to z.
(iii) There exists a partition of V(G)\{x} into subsets ¥ and Z such that for any
vertices y € Y and z € Z, x lies on every y-z path.

A3.1.9 The center C(G) of a finite graph G of radius R was defined in Section 2.2 to
consist of all those vertices x that have eccentricity e¢(x) = R; the graph G is
called self-centered if C(G) = G. Show that a connected self-centered graph can
contain no cutpoint.

A3.1.10 In the graph G, given in the example earlier, which of the following are cutsets?

(i) [ae, bef] (ii) [abf, cdh]

(iii) [ade, bf] @iv) [ade, bc]

) [ad, bce] (vi) [abcd, efgh]
3.2 Blocks

A graph is called nonseparable if it is connected, nontrivial and contains no cutpoints.
A block in a graph G is a maximal nonseparable subgraph — that is, a nonseparable
subgraph that is not properly contained in any other nonseparable subgraph of G. A
nonseparable graph is itself often called a block. K is a block, but obviously no other
block can contain a bridge.

Any graph can be considered as a collection of blocks hooked together by its cut-
points. The other vertices are often called internal to their blocks, or simply internal
vertices.

Example. Partition the following graph into blocks.
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P P Q
- b
x@<>o—o y x y
p, ¢ ‘ e \_J
(a) (b)
Fig. 3.4. Proof that (i) = (ii) in Theorem 3.3
The partition is

CINEIN L

Theorem 3.3. Suppose G is a connected graph with at least three vertices. Then the
following are equivalent:

(1) G is a block.

(ii) Any two vertices of G lie on a common cycle.

(iii) Any vertex and edge of G lie on a common cycle.

(iv) Any two edges of G lie on a common cycle.

Proof. We prove (i) = (ii), (ii) = (iii) and (iv) = (i). (The proof that (iii) = (iv) is
similar to the proof that (ii) = (iii).)

(i) = (ii) Assume G is a block. Suppose x and y are distinct vertices of G, and
write X for the set of all vertices other than x that lie on a cycle passing through x.
Since G has at least three vertices and no cutpoint, it contains no bridge. So every
vertex adjacent to x is in X, and X is not empty.

Assume y is not in X; we shall derive a contradiction. Select a vertex z in X
such that the distance d(y, z) is minimal; let Py be a shortest y-z path, and write P,
and P, for the two disjoint x-z paths that make up a cycle containing x and z. (See
Figure 3.4(a).) Since z is not a cutpoint, there will be an x-y path not containing z (see
Exercise 3.1.8); say Q is such a path. Let b be the vertex nearest to x in Q that is also
in Py, and a the last vertex in the x-b section of Q that lies in P; U P»; without loss of
generality we can assume @ is in Pj. This is illustrated in Figure 3.4(b).

We now construct two x-b paths R and S. To form R, follow P; from x to a and
Q from a to b. S consists of P, followed by P, from z to b. Then R U § is a cycle
containing x and b, whence b is in X. The only vertex in PpU X isz,s0 b = z,and
is in Q — a contradiction.

(ii) = (iii) Select a vertex x and an edge yz of G. Let C be a cycle containing x
and y. If z is also on C, the required cycle is constructed from the edge yz together
with a y-z path that is part of C. Otherwise, select a z-x path that does not contain
y (this must be possible since y is not a cutpoint). Let a be the point of P N C that



48 3. Connectivity

Fig. 3.5. Proof that (ii) = (iii) in Theorem 3.3

is nearest to z. Then a cycle is formed as follows: take edge yz, followed by the z-a
section of P, and the g-y path of C that includes x. (See Figure 3.5.)

(iv) = (i) Suppose x is a cutpoint in G, and p is an edge containing x. From (iv),
p lies in a cycle, so x is on a cycle. But this contradicts Lemma 3.1. Therefore G
contains no cutpoint, so it certainly contains no bridge. O

The block graph B(G) of G has as its vertices the blocks of G; two vertices are
adjacent if the corresponding blocks have a common vertex.

Theorem 3.4, [64] A graph H is the block graph of some graph if and only if every
block of H is complete.

Proof. Let H = B(G), and assume there is a block H; of H that is not complete. Then
there are two vertices in H; that are nonadjacent and lie on a shortest common cycle C
of length at least 4. But the union of the blocks of G corresponding to the points of H;
that lie on C is then connected and has no cutpoint, so it is itself contained in a block,
contradicting the maximality property of a block of a graph.

On the other hand, let H be a graph in which every block is complete. Form B(H),
and then form a graph G by adding to each vertex H; of B(H) a number of pendant
edges equal to the number of vertices of the block H; that are not cutpoints of H. Then
it is easy to see that B(G) is isomorphic to H. O

Exercises 3.2

A3.2.1 Partition the following graphs into blocks.
® (i) A
o o)

3.2.2 Partition the following graphs into blocks.

(1) ] ] J I (i) © : [

A3.2.3 Prove that a connected graph with at least two edges is a block if and only if any
two adjacent edges lie on a cycle.
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3.2.4 The square G? of the graph G was defined in Exercise 2.1.11. If G is a nontrivial
connected graph, prove that G? is a block.
HA3.2.5 Write b(G) for the number of blocks of G, and b (x) for the number of blocks of
G that contain the vertex x. If G is connected, prove that

b(G) = 1= [be(x) — 1]

(the sum is taken over all vertices x of G). [63]

3.2.6 G is a nontrivial connected graph. C(G) is the number of cutpoints of G; ¢(B) is
the number of cutpoints of G that are vertices of the block B.
(i) Prove that ¢(B) = C(B) ifand only if B = G.

(i1) Prove that
C(G)—1= Z[C(B) —-1]

where the sum is over all blocks B of G. [51]

3.2.7 A graph G is a critical block if G is a block but G — p is not a block for any edge
p of G. A chord of G is an edge joining two vertices that lie on a cycle but are not
adjacent in the cycle. If G is a critical block with v(G) > 4, prove:

(1) G has no chords.

(ii) G contains no subgraphs isomorphic to K3.

(iil) v(G) < e(G) <20(G) — 4.

(iv) If G is not a cycle, and if all vertices of degree 2 are deleted from G, the
resulting graph is disconnected. [93]

3.3 Connectivity

Generalizing the idea of a cutpoint, we define the connectivity « (G) of a graph G to be
the smallest number of vertices whose removal from G results in either a disconnected
graph or a single vertex. (The latter special case is included to avoid problems when
discussing complete graphs.) If k(G) > k, then G is called k-connected. The edge-
connectivity k'(G) is defined to be the minimum number of edges whose removal
disconnects G (no special case is needed). In other words, the edge-connectivity of
G equals the size of the smallest cutset in G. From the definition, it is clear that the
connectivity and edge-connectivity of a graph is at least as great as that of any of its
subgraphs.

The following theorem is due to Whitney [133]. Recall that §(G) denotes the min-
imum degree of vertices of G.

Theorem 3.5. For any graph G,
k(G) < «'(G) < 3(G).

Proof. It is clear that k '(G) < 8(G), because one can disconnect G by removing all
edges incident with any one given vertex.

Suppose T = [X, Y] is a cutset of minimal size in G, where X UY = V(G) and
XNY =0.Then«'(G) = |T|.
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If every vertex in X is adjacent in G to every vertex in Y, then the number of edges
in G is at least k'(G) > |X|-|Y| = v — 1 = 8(K,), where v = |V(G)|. But trivially
k'(G) < 8(G) < 8(K,),s0 G = K,, and in this case the theorem is easily seen to be
true.

So let us assume that there exist vertices x € X and y € Y that are not adjacent.
Define

S={p:peY,pxeT}U{g:ge X,q#x,qycT}
Then G — § is a subgraph of G — T. Both x and y are vertices of G — S, and they are
in different components of G — T, so they are in different components of G — S, and
G — S is not connected. Therefore «(G) < |S|. But |S| < |T|, since each vertex of §
is incident with at least one edge of T, and each edge of T is incident with exactly one
vertex in S. Therefore x (G) < |S]| < |T| = §(G). a

Fig. 3.6. A graph G with k(G) = 1,k (G) = 2, 8(G) = 3

It is easy to see that all combinations of strictness are possible in Theorem 3.5:
both of the inequalities can be strict, or one of them, or neither. For example, Figure
3.6 shows a graph G with k(G) < k’(G) < 6(G). Graph H in Figure 3.7 has « (H) =
«'(H) = 8(H), while K has x(K) < «'(K) = §(K). Chartrand and Harary [24]
proved that if £, m and n are any integers such that 0 < £ < m < n, then there is a
graph with «(G) = £, k'(G) = m and §(G) = n. However, if the minimum degree
is restricted in terms of the number of vertices in the graph, the amount of freedom
in assigning connectivities is considerably less; see Exercises 3.3.5 and 3.3.6. Apart
from the trivial case of K, a graph is 1-connected if and only if it is connected. All
2-connected graphs are blocks, and K is the only block that is not 2-connected. So
we have the following corollary to Theorem 3.3.

H K

Fig. 3.7.«(H) =« (H) = 8(H) = 2;x(K) = 1,k (K) = 8(K) =2
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Theorem 3.6. G is 2-connected if and only if every two vertices of G lie on a cycle.
Corollary 3.7. All Hamiltonian graphs are 2-connected.

Dirac [36] proved that if G is n-connected, then any 7 vertices lie on a cycle, but
the converse is obviously false for n > 2. In fact, the characterization of n-connected
graphs in general is a difficult problem. Tutte found a characterization of 3-connected
graphs; for details see [116].

Exercises 3.3

A3.3.1 Find the connectivity and edge-connectivity of the following graphs.

A

3.3.2 Find the connectivity and edge-connectivity of the following graphs.
Z

A3.3.3 Find examples, different from those in the text, of graphs with:
(@) k(G) =«'(G) = 8(G);
(i) k(G) < «'(G) = 8(G);
(iil) x(G) =«'(G) < 8(G).
3.3.4 Find a graph G with x(G) = 2, «'(G) = 3, §(G) = 3.
3.3.5 Prove that if §(G) > v(G) — 2, then x(G) = §(G). Find a graph with §(G) =
v(G) — 3 and k(G) < 8(G).
A3.3.6 Prove that if §(G) > %U(G), then «'(G) = 8(G). Find a graph with §(G) =
|3v(G) — 1] and k'(G) < 8(G).
3.3.7 As an extension of Exercise 3.3.6, prove that for every v > 3 there exists a graph
on v vertices with §(G) = [3v — 1] and «(G) < 8(G).
3.3.8 Prove that if §(G) > %(v(G) +k —2), then x(G) > k.

-
=

e
Sp



Trees

4.1 Characterizations of Trees

A tree is a connected graph that contains no cycle. Figure 4.1 contains three examples
of trees. It is also clear that every path is a tree, and the star Ky , is a tree for every n.

A tree is a minimal connected graph in the following sense: if any vertex of degree
at least 2, or any edge, is deleted, then the resulting graph is not connected. In fact it
is easy to prove the following stronger theorem; the proof is left as an exercise.

Theorem 4.1. A connected graph is a tree if and only if every edge is a bridge.
Trees are also characterized among connected graphs by their number of edges.

Theorem 4.2. A finite connected graph G with v vertices is a tree if and only if it has
exactly v — 1 edges.

Proof. (i) Suppose that G is a tree with v vertices. We proceed by induction on v. The
theorem is true for v = 1, since the only graph with one vertex is K, which is a tree.
Suppose it is true for w < v, and suppose G is a tree with v vertices. Select an edge
(G must have an edge, or it will be the unconnected graph K,) and delete it. The result
1s a union of two disjoint components, each of which is a tree with less than v vertices;
say the first component has v vertices and the second has v,, where vy 4+ v; = v.
By the induction hypothesis, these graphs have v; — 1 and v, — 1 edges respectively.

A B C

Fig. 4.1. Three trees
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Adding one edge for the one that was deleted, we find that the number of edges in G
is
wv-D+@w-DH+l=v-1

(i1) Conversely, suppose G is not a tree. Select an edge that is nor a bridge, and
delete it. If the resulting graph is not a tree, repeat the process. Eventually there will
be only bridges left, and the graph is a tree. From what we have just said it must have
v — 1 edges, and the original graph had more than v — 1 edges. O

The word “leaf” is used to refer to a vertex of degree 1 in a tree, together with the
edge incident with it.

Corollary 4.3. Every tree other than K, has at least two leaves.

Proof. Suppose the tree has v vertices. It then has v — 1 edges. So, by Theorem 1.1,
the sum of all degrees of the vertices is 2(v — 1). There can be no vertex of degree 0,
since the tree is connected; if v — 1 of the vertices have degree at least 2, then the sum

of the degrees is at least 1 + 2(v — 1), which is impossible. (]
The corollary does not hold if we allow our graphs to have infinite vertex-sets. One
elementary example consists of the infinitely many vertices 0, 1, 2, ..., n, ... and the

edges 01, 12,23, ..., (n,n 4+ 1), .... The only vertex with degree 1 is vertex 0; every
other vertex in the “tree” has degree 2.
The following interesting theorem uses Corollary 4.3.

Theorem 4.4. Suppose T is a tree with k edges and G is a graph with minimum degree
8(G) = k. Then G has a subgraph isomorphic to T.

Proof. The proof uses induction on k. If k¥ = O, then T = K, which is a subgraph
of every graph. Suppose & > 0, and suppose the theorem is true for all nonnegative
integers less than k. Select a vertex x of degree 1 in T (the existence of such a vertex
is guaranteed by Corollary 4.3). Say wx is the edge of T containing x.

The graph T — x is a tree with k — 1 edges, so it is isomorphic to some subgraph
H of G (since 8(G) > k > k — 1). Suppose y is the vertex of G corresponding to w.
Since y has degree at least k in G, and H contains only K — 1 edges, there must be
at least one edge adjacent to y, say yz, which is not an edge of H. Then H + yz is
isomorphic to 7. g

Exercises 4.1

4.1.1 Show that there are exactly six nonisomorphic trees on six vertices.
4.1.2 Prove Theorem 4.1.
A4.1.3 Prove that a finite graph on v vertices that contains no cycle is connected if and
only if it has v — 1 edges.
4.1.4 Prove that a connected graph is a tree if and only if it has the following property:
if x and y are distinct vertices, then there is a unique path in G from x to y.
A4.1.5 A perfect square was defined in Exercise 2.1.11. Prove that no tree other than K
or K is a perfect square.
A4.1.6 Give an example of an infinite “tree” that contains no vertex of degree 1.
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H4.1.7 Let T be a tree on v vertices, v > 5, with precisely four vertices of degree 1 each
and precisely one vertex of degree 4. Find the degrees of the remaining vertices of
T, and show that T can be written as the union of two edge-disjoint simple walks.

H4.1.8 Let the vertices of a tree T be labeled with the integers 1, 2, ..., v. As usual,
D(i, j) denotes the distance between vertices i and j. Let My be the v x
v matrix with (i, j) entry x?®7). Show that the determinant of My equals
(1 _ x2)n—l_

A4,1.9 A tree T with v vertices has a vertex of degree k. Prove that the longest path in T
has at most v — k + 1 edges.

4.1.10 Prove that a graph is a tree if and only if every vertex of degree greater than 1 is a
cutpoint.

4.1.11 The center C(G) of a finite graph G of radius R was defined in Section 2.2 to
consist of all those vertices x that have eccentricity e(x) = R.
H(i) Prove that the center of a tree consists of either one vertex or two adjacent

vertices. [73]

(ii) Give examples of trees with centers of size 1 and size 2.

4.1.12 Recall that a graph G is called self-centered if C(G) = G. Which trees are self-
centered?

4.1.13 Let A be the incidence matrix of a tree on ¢ vertices. Consider the ¢ rows of A
as vectors over GF[2], by interpreting 0 and 1 as the elements of the two-element
field GF[2]. Show that any  — 1 rows of A are linearly independent over GF[2].

4.2 Spanning Trees

Recall that a subgraph of a graph G spans G if it contains every vertex of G. A span-
ning tree is a spanning subgraph that is a tree when considered as a graph in its own
right.

Theorem 4.5. Every connected graph G has a spanning tree.

Proof. If G is a tree, then the whole of G is itself the spanning tree. Otherwise G
contains a cycle. Let a be an edge in the cycle. Then « is not a bridge in G, so the
graph G’ obtained by deleting a from G is still connected. We have not deleted any
vertex, so G’ is a spanning subgraph. If G’ contains a cycle, we delete an edge from
that cycle. The new graph we obtain is again a connected spanning subgraph of G.
This process may be continued until the remaining graph contains no cycle — that is,
it is a tree. So, when the process stops, we have found a spanning tree. But the process
must stop since G is finite and there are only finitely many edges that could be deleted.

O

It is easy to see that Theorem 4.5 generalizes to graphs with loops and multiple
edges.

It is clear from the above proof that a given multigraph may have many different
spanning trees. In certain applications it is useful to know the exact number. We shall
write 7(G) for the number of spanning trees of a graph G.
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One can sometimes calculate t(G) quite quickly. If G is a tree, then t(G) = 1. If
G is acycle of length n, then n spanning trees can be constructed, each by deleting one
edge, so 7(G) = n. We can consider a general multigraph G: the existence of loops
does not change 7(G), as no loop can contribute to a tree; if one edge is multiple,
of multiplicity k, then each spanning tree includes at most one of the & edges, and
replacing one edge joining the two vertices by another gives another spanning tree.

IO

Fig. 4.2. Multigraphs whose trees are to be counted

Example. Figure 4.2 shows multigraphs G, G,, G3. We find the number of spanning
trees for each.

A spanning tree in G| must contain one of the edges xy and one of the edges yz.
The number of choices is 2 x 3 = 6. So t(G;) = 6. Since loops do not affect the
function 1, t(G;) = t(C4) = 4. To calculate 7(G3), one first observes that three pairs
of vertices must be joined. This can be done in four ways. In each case there are eight
trees. So 1(G3) =4 x § = 32.

ENENN
AN AN
G G-a G*

Fig. 4.3. The multigraphs used in counting trees

Calculation of 7(G) by counting becomes very tedious when G is large. In order
to derive a formula for 7(G), we first introduce a new multigraph G,,. If a is any edge
of a multigraph G, G, is formed by identifying the endpoints of a: if a = xy, then G,
is formed by deleting both x and y, inserting a new vertex, and replacing every edge
zx and every edge zy by an edge from z to the new vertex. For convenience we assume
that every edge from x to y is deleted; alternatively, we could introduce these edges
as loops in G, but this is unnccessary, as G, will be used only in counting trees, and
loops are immaterial in that context. We also use the multigraph G — a, formed from
G by deleting a. Examples of G, and G — a are shown in Figure 4.3.
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Suppose a is an edge of G. Then the spanning trees of G either contain a or they
do not. A spanning tree that does not contain g is a subgraph of G — a, and is still a
spanning subgraph, so it is a spanning tree of G — a; conversely, the spanning trees
of G — a are spanning trees of G and do not contain a. So the two sets, the spanning
trees of G — g and the spanning trees of G that do not contain a, are in one-to-one
correspondence. So the sets are equal in size, and there are 7(G — a) spanning trees of
G that do not contain a. Similarly, the number of spanning trees of G that do contain
a is 1(G,); Exercise 4.2.1 asks for a proof of this fact, but we look first at the special
case shown in Figure 4.3. The spanning trees of G that contain a must also contain
either b and c only, or one of b and ¢ together with one of d, e, and f. Exactly the
same is true of the spanning trees of G,: they contain b and ¢ only, or one of b and ¢
together with one of d, e, and f.

Thus, summing the number of spanning trees of G that do or do not contain edge
a, we obtain:

Theorem 4.6.
(G)=1(G —a) + 1(G,).

An n-fold path is formed from a path by replacing each edge with a multiple
edge of multiplicity n. An n-fold cycle is defined similarly. These multigraphs recur
frequently in applications of Theorem 4.6, so it is helpful to know their numbers of
spanning trees.

Theorem 4.7. The number of spanning trees in an n-fold path is
t(nP,) =n""".
The number of spanning trees in an n-fold cycle is
t(nC,) = vn* .

Proof. For the multiple path, one has » choices of edge for each edge of the underlying
path, giving n°~' paths in all. For the multiple cycle, each spanning tree is a path; there
are v choices for the pair of adjacent vertices that will not be adjacent in the spanning
tree, and for each choice there are again n”~! paths. g

Example. Calculate 7(G), where G is the graph of Figure 4.3.

The method of decomposing the relevant graphs is indicated in Figure 4.4 (next
page).

It is clear that T (G4) = 3 (since G4 is a cycle), that T(Gs) = 1 (since G5 is a tree),
that 7(Gg) = 2, that T(G7) = 3 and that 7 (Gg) = 4. So:

1(G2)=1(G7) + 1(Gg)=3+4= T,
7(G3)=1(Gs) + 1(Ge)=1+2= 3;
(G =1(G3) + 1(Gy)=3+3= 6;
7(G) =1(G)+1(Gr)=6+T7=13.

Suppose G is a graph with v vertices, T is any spanning tree in G, and a is any
edge of G that is not in T. Then T + a has v vertices, so it must contain a cycle.
Moreover, a must be an edge in that cycle. Select an edge b of the cycle, other than a.
Then T + a — b will be acyclic, and it is still connected, so it is a tree.
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In particular, suppose R is a spanning tree of G that has k edges in common with
t, and suppose a is an edge of R (but not of T'). The cycle in T + a must contain an
edge that is not in R, because otherwise R would contain a cycle. If such an edge is
chosen as b, then the tree T — a + b will have k + 1 edges in common with R. Call
this tree 77. One can then construct another tree 75 that shares k + 2 edges with R, and
so on. Eventually the number of shared edges will be v — 1, so the tree must be R. We
have proved:

Theorem 4.8. If T and R are spanning trees of the v-vertex graph G, then there exists
a sequence of spanning trees,

T=TyT,....T, =R,

where T; and T;,\ have v — 2 common edges for every i.

Exercises 4.2

4.2.1 Prove that there is a one-to-one correspondence between the trees of G containing
edge a and the trees of G,,.

4.2.2 A multigraph G consists of a multigraph H, together with one new vertex x and
an edge from x to one of the vertices of H. Show that 7(G) = t(H).

6) = 1G)) +1G,) - J 1 ‘

N

G G G

i 2
1G) = 1G,) + G, T\D N N
b o &
G, Gy G,
Gy = 1G,) + UGy) ¢ T 7 T
N
G, G, Gq
1G,) = 1G,) + UGy) \ @R
D,
G, G, Gy

Fig. 4.4. Counting trees
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Show that K, contains a pair of edge-disjoint spanning trees if and only if v > 4.
Find the number of spanning trees in each of the graphs and multigraphs shown
in Figure 4.5.

(©) (i) (1ii)

Fig. 4.5. Count the spanning trees

Repeat the preceding exercise for the graphs and multigraphs shown in Figure 4.6.

Recall that a graph is called cubic if every vertex has degree 3.

(i) Prove that if a cubic graph on n vertices contains two edge-disjoint spanning
trees, then n < 8.

(i) Is there a cubic graph on four vertices containing two edge-disjoint spanning
trees? Is there one which does not contain two edge-disjoint spanning trees?

(iii) Repeat part (ii) for n = 6 and for n = 8.

Let G be the graph with four vertices 1, 2, 3, 4 and two edges (1, 2), (3, 4). Con-

struct multigraphs Ny, N, N3, N4, with the following properties: each N; consists

of four edges, and four, five or six vertices; each N; contains G as a subgraph;

r(N)=i—1,fori =1,2,3,4.

Prove that every bridge in a connected graph lies on every spanning tree of the

graph.

Find 7(K4) and 7(K5).

Suppose a graph G is formed by taking two disjoint connected graphs G, and

G- and identifying a vertex in G; with a vertex in G,. Show that 7(G) =

1(G1)1(G)).

Suppose G is formed by taking two disjoint connected graphs G; and G, and

inserting an edge connecting some vertex of G; with some vertex of G,. Use

Theorem 4.5 and the result of the preceding Exercise to find an expression for

7(G).

Let Ty and T, be spanning trees of a connected graph G; show that if a is any

edge of T1, then there exists an edge b of T, such that (T; — {a}) U {b} (the graph

obtained from 7T} on replacing a by b) is also a spanning tree. Show also that T;

can be “transformed” into T, by replacing the edges of T} one at a time by edges

of T5 in such a way that at each stage we obtain a spanning tree.

(1) Show that in any connected graph, any cycle must have at least one edge in
common with the complement of any spanning tree.

(ii) Show that in any connected graph, any cutset must have at least one edge in
common with any spanning tree.

Let H be a subgraph of a connected graph G. Show that H is a subgraph of some

spanning tree T of G if and only if H contains no cycle.

If G is any connected graph or multigraph with v vertices, the tree graph of G has

as its vertices the spanning trees of G; two vertices are adjacent if and only if the
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®) (i) (ii1) %

Fig. 4.6. Count the spanning trees

trees have v — 2 edges in common. Prove that the tree graph of a graph is always
connected.

4.3 Minimal Spanning Trees

Consider applications of the kind discussed in Section 2.3, where each edge of a graph
has a weight associated with it. It is sometimes desirable to find a spanning tree such
that the weight of the tree — the total of the weights of its edges — is minimum. Such
a tree is called a minimal spanning tree.

It is clear that a finite graph can contain only finitely many spanning trees, so it
is possible in theory to list all spanning trees and their weights, and to find a minimal
spanning tree by choosing one with minimum weight. This process could take a very
long time however, since 7(G) can be very large. So efficient algorithms that find a
minimal spanning tree are useful. We present here an example due to Prim [96].

We assume that G is a graph with vertex-set V and edge set E, and suppose there is
associated with G amap w: E — R called the weight of the edge; when xy is an edge
of G we write w(x, y) for the image of xy under w. We could quite easily modify the
algorithm to allow for multiple edges, but the notation is slightly simpler in the graph

case. The algorithm consists of finding a sequence of vertices xg, xy, X2, ..., of G and
a sequence of sets Sp, S1, Sz, .. ., where
Si = {x0, %1, ..., Xi—1}.

We choose xg at random from V. When n > 0, we find x, inductively using S, as
follows.

1. Giveni, 0 <i <n — 1, choose y; to be a member of V \ S, such that w(x;, ;) is
minimum, if possible. In other words:
a) if there is no member of V \ S, adjacent to x;, then there is no y;;
b) if V \ S, contains a vertex adjacent to x;, then y; is one of those vertices
adjacent to x;, and if x; ~ y, then w(x;, y;) < w(x;, ¥).
2. Provided that at least one y; has been found in Step (1), then define x, to be a y;
such that w(x;, y;) is minimal; in other words, x, is the y; that satisfies

w(x;, yi) < w(x;, y;) forall j.
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3. Put Sppi = S, U {x,).

This process stops only when there is no new vertex y;. If there is no new vertex y;,
it must be true that no member of V \ §, is adjacent to a vertex of S,. It is impossible
to partition the vertices of a connected graph into two nonempty sets such that no
edge joins one set to the other, and S, is never empty, so the process stops only when
Sh=V.

When we reach this stage, so that S, = V, we construct a graph T as follows:

(i) T has vertex-set V;

(ii) if x, arose as y;, then x; is adjacent to x in T';

(iii) no edges of T exist other than those that may be found using (ii).

It is not hard to verify that T is a tree and that it is minimal; see Exercise 4.3.3.

Observe that x X, may not be defined uniquely at Step (2) of the algorithm, and
indeed y; may not be uniquely defined. This is to be expected: after all, there may be
more than one minimal spanning tree.

a b c a b c
VT
b-1-0-6-0
d e f d e f

Fig. 4.7. An example of Prim’s algorithm

Example. Consider the graph G shown in Figure 4.7. Weights are shown next to the
edges.

Select xg = a. Then S} = {a}. Now yo = b, and this is the only choice for x;. So
S> = {a, b}. The tree will contain edge ab.

Working from §,, we get yo = d and y; = e. Since be (= x;y;) has smaller weight
than ad (= xoyo), we select xo = e. Then S; = {a, b, e} and edge be goes into the
tree. Similarly, from S3, we get x3 = d and S; = {a, b, d, e}, and the new edge is de.

Now there is a choice. Working from S4, y; = ¢ and y, = f. In both cases the
weight of the edge to be considered is 6. So either may be used. Let us choose ¢, and
use edge bc.

The final vertex is f, and the edge is cf. So the tree has edges ab, bc, be, cf, de
and weight 16.

The algorithm might be described as follows. First, choose a vertex xo. Trivially
the minimum weight tree with vertex-set {xy} — the only tree with vertex-set {xo} —is
the K; with vertex xo. Call this the champion. Then find the smallest weight tree with
two vertices, one of which is xp; in other words, find the minimum weight tree that
can be formed by adding just one edge to the current champion. This tree is the new
champion. Continue in this way: each time a champion is found, look for the cheapest
tree that can be formed by adding one edge to it. One can consider each new tree to be
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an approximation to the final minimal spanning tree, with successive approximations
having more and more edges.

Prim’s algorithm was a refinement of an earlier algorithm due to Kruskal [81]. In
that algorithm, one starts by listing all edges in order of increasing weight. The first
approximation is the K, consisting of the edge of least weight. The second approxi-
mation is formed by appending the next edge in the ordering. At each stage the next
approximation is formed by adding on the smallest edge that has not been used, pro-
vided only that it does not form a cycle with the edges already chosen. In this case the
successive approximations are not necessarily connected, until the last one. The advan-
tage of Prim’s algorithm is that, in large graphs, the initial sorting stage of Kruskal’s
algorithm can be very time consuming.

Exercises 4.3

4.3.1 Find minimal spanning trees in the following graphs, using both Kruskal’s and

Prim’s methods.
o1 (i) o—2 1 (iii) 4
7? AV \ 7 TN
3 2 3 3p
2
gz 1 VY N4
A4.3.2 Find minimal spanning trees in the following graphs, using both Kruskal’s and
Prim’s methods.

(i) (i1) 4
7 ?ﬁ 3

6%<>%
%%H%%

VY, Lo L N0

4.3.3 Prove that the graph T constructed in Prim’s algorithm is in fact a minimal span-
ning tree.
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4.3.4 Find minimal spanning trees in the following graphs, using both Kruskal’s and
Prim’s methods.

i% X\ ® 71T
e %v* y
%%% LY
VRV SNV

@ gy O sy
4 B
NEmES
Lol L

(v) /YS 27& (vi) /OT4T6
gzif} K/;%_zi\/}

H4.3.5 It is required to find a maximal spanning tree in a graph. Suggest a modification
of Prim’s algorithm for this problem.

)

A4.3.6 (i) On graph A below, a weight function is shown. Find a minimal spanning tree
in A.
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‘F“?‘fz W?S

%#& %%%
. OLJZHL

A
(ii) B is similar, except that no weight is specified for one edge. Find a minimal

spanning tree in B if that edge has weight
@1 (b) 4; ©7.
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Linear Spaces Associated with Graphs

5.1 Finite Fields and Vector Spaces

The reader will be familiar with vector spaces over the rational, real and complex fields
and with vectors as ordered n-tuples of these numbers. These ideas can be extended to
more general fields.

We write G F[k] for the (unique) finite field with £ elements. In particular, the
two-element field G F[2] is defined by the addition and multiplication tables

+/01 x|01
0{01 0100
1110 1101

A finite-dimensional vector space over a finite field will be called a finite vector
space. The vector space of dimension n over G F[k] has k" elements.

As an example, consider the n-dimensional vector space V over G F[2].

To choose a basis for V, one must choose n vectors that form a linearly inde-
pendent set. First we count the number of ordered linearly independent sets. The first
vector x; may be chosen in 2" — 1 ways, since one may choose any vector except
the zero vector. The second vector x; may be chosen in 2" — 2 ways, since zero is
excluded and so is the vector x| already chosen. The third vector, x3, may not equal
Zero, x| Of X3, nor may it equal the sum x, + x,. Hence x3 may be chosen in 2" — 22
ways. Continuing, x4 may be chosen in 2" — 2° ways, and so on; x,, may be chosen in
2" — 27~1 ways. Hence the number of ways to choose an ordered basis is

b=(2"= D" =2)(2" =22 ... (2" = 27D, (5.1

and if the order of the vectors is ignored, there are b/(n!) ways to choose the basis.
These arguments can also be used to count the number of subspaces in a given
vector space.

Example. Let V be a vector space of dimension 5 over G F[2]. Let us count the
number of two-dimensional subspaces of V.
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To choose a basis for a two-dimensional subspace it is necessary to choose a set of
two linearly independent vectors in V, which can be done in %9 ways. But each of
the two-dimensional subspaces has three different bases, so each of the subspaces is
found three times in the above choice process. Hence there are 33% = 155 two-dim-

32
ensional subspaces in V.

Exercises 5.1

5.1.1 If pis a prime, then Z,, the set of integers modulo p, forms a field with respect to
addition and multiplication modulo p. Construct the addition and multiplication
for fields with:

A(1) three elements;
(i1) five elements.

5.1.2 Show that the integers {0, 2, 4, 6, 8} form a field under addition and multiplication
modulo 10.

A5.1.3 Let V be a vector space of dimension 4 over G F[2]. How many subspaces does
V contain of dimensions 0, 1, 2, 3, 4 and 5?

5.1.4 Let V be a vector space of dimension 3 over G F[2]. How many subspaces does
V contain of dimensions 0, 1, 2, 3 and 47

5.1.5 Let V be a vector space of dimension 3 over the field Z; = G F[3].

(i) How many subspaces does V contain of dimensions 1 and 2?

(iiy Choose one particular 2-dimensional subspace. How many 1-dimensional
subspaces does it contain?

(iii) Choose one particular 1-dimensional subspace. How many 2-dimensional
subspaces contain it?

5.2 The Power Set as a Vector Space

If S is a finite set, then its power set P(S) is the set of all subsets of S. Let F be the field
G F[2]. Then we can consider P(S) as a vector space over F in the following way:
vector addition is the operation of symmetric difference X + Y = (X UY)\(X NY);
scalar multiplication is defined by

00X=0and1- X =X

for every X € P(S). We verify that this is a vector space, and find a basis for it.
Clearly P(S) is closed under symmetric difference, which is an associative and
commutative binary operation. Since

X4+0=XUD\XNG) =X\P=X=0+X,

@ is an identity under addition. It is easy toseethat X + Y = P ifandonlyif X = Y,
so each element has a unique negative (additive inverse); in fact each element is its
own negative. Hence P(S) is an abelian group of order 7.

Now consider scalar multiplication: forany X C Sand Y C §,

0-(X+Y)=0=0+0=0X+0Y
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and
I X+Y)=X+Y=1.X+17,

S0
X +Y)=rAX+21Y
for any scalar A. Also
0+0)-X=0X=29
O+HX=1X=X X=0X+1X,
1+0)-X=1X=X +0 =1-X+40-X,
+D-X=0X=0=X+X=1X+1X,

+0 =0-X+0-X,
+

Y/
@
X

I

so that
A+ X=r2X+uX

for any scalars A and p. Finally for any scalar p,
Ou)-X =0-X =8 =0-(u-X),
(Ap)- X =p X = 1-(p- X),

$0
) - X =A-(u-X)

for any scalar A. Since 1-X = X by definition, P(S) is a vector space.

Let B be the collection of all one-element subsets of §. If S is {51, 52, ..., 5.}, the
typical linear combination of members of B is
Aifsit+ Ao {xed + - 4 Ay {sa)- (5.2)
HA;, =i, =--- =4, =1, and all the other A’s are zero, then expression (5.2)
equals

i)+ {sp) + -+ {s) = {siosiyn s )
This reduces to @, the zero vector of P(S), if and only if A; =0 foreachi =1,...,n
in (5). Hence {s1}, {52}, - - ., {s,} are linearly independent. Since T € S has the form
T = {Si|7 sizv v ysik}v
which can be written as
T ={s;}+ s} + ...+ {3},

the set B is also a spanning set. Hence B is a basis for P(S).

Exercises 5.2

5.2.1 If S has n elements, then P(S) has 2" elements. Is it always true that a vector
space over G F[2] has 2" elements, for some n?
A5.2.2 Does the set of (n — 1)-element subsets of an n-set S form a basis for P(S5)?
5.2.3 Verify that the operation of symmetric difference is associative. (In other words,
prove that if X, ¥ and Z are any three sets, then (X + V) + Z =X+ (Y + Z2)))
5.2.4 Let P(S) = V be a vector space, where § is a finite set. Suppose that W C V,
W # @, and W is closed under vector addition. Show that W is a subspace of V.
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5.3 The Vector Spaces Associated with a Graph

Suppose the graph G has edge-set E. Consider the power set P(E) of E. We write £
to mean the subset of P(E) whose members are the singleton sets:

€= {{ai}la; € E},

and P(E) is treated as a vector space over G F[2] just as was done for the power set
of an arbitrary set in the previous section.

The subgraph H of a graph G is often identified with its edge-set. For example, if
G 1is the graph shown in Figure 5.1, and if H is the subgraph consisting of the triangle
contained in G, then one can think of H as {ab, bc, ac}. However, when P(E) is
treated as a vector space, it is convenient to treat subgraphs as spanning subgraphs,
containing every vertex in G. In the example, H is treated as the set of edges ab, bc,
ac together with the vertices a, b, ¢ and d.

Fig. 5.1. An example graph G

Example. Let G be the graph shown in Figure 5.1. The 16 vectors of P(E) are G
itself, the subgraphs shown in Figure 5.3, the four one-edge subgraphs, and . (More
strictly, the vectors are the edge-sets of these subgraphs.)

SN
@)
Fig. 5.2. Subgraphs of G with two edges.

b NN

Subgraphs of G with three edges.
Fig. 5.3. Subgraphs of G.
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By the definition of symmetric difference,
{ac, bc) + {ab, ac, cd} = {ab, bc, cd},
since the edge ac belongs to both subsets. This is illustrated in Figure 5.4.

a od a d a d
St N =
b c b c b c
Fig. 5.4. Addition of subgraphs

The other two important vector spaces associated with a graph are subspaces of
P(E), the cycle subspace and cutset subspace of G. There is a duality relation between
the spaces, so that often a theorem relating to one of them implies a corresponding
theorem relating to the other. We shall deal with the cycle subspace here and the cutset
subspace in the next section.

If E is the edge-set of a graph G, we continue to identify a subset S of E with the
subgraph H such that E(H) = S. In particular, in the next theorem, cycles are iden-
tified with their sets of edges. We shall frequently mention “unions of edge-disjoint
subgraphs,” by which we mean the sum of subgraphs that have no edge in common.
For instance, in Figure 5.3, the graph with edges ab, ac and cd can be considered as
the unton of the edge-disjoint graphs {ab, cd} and {ac}.

Theorem 5.1. The set of all cycles and unions of edge-disjoint cycles in G is a sub-
space of P(E), known as the cycle subspace F(G).
(Observe that the empty set @ belongs to F(G), since it is the union of no cycles.)

Proof. By Exercise 5.2.4, it is sufficient to show that 7(G) is nonempty (which is true
since it contains @) and closed under vector addition.

From Exercise 2.4.4(ii), a connected graph is a cycle or a union of edge-disjoint
cycles if and only if all its vertices are of even degree. Suppose x is any vertex of G,
and S and T are any two members of F(G). Let Y and Z be the sets of edges incident
with X in § and T respectively. Then the set of edges of S + T incident with x is the
symmetric difference ¥ + Z. Now |Y + Z| = |Y|+ |Z| —2|Y N Z|. Both |Y| and | Z|
are even, so |Y + Z| is even also. O

Example. Consider the graph G of the preceding example. Its only cycle is the triangle
abc; hence its cycle subspace is

{9, {ab, bc, ca}},
of dimension 1.

Exercises 5.3

A5.3.1 Show that the cycle subspace of K, has dimension 3.
5.3.2 The graph G is formed from the cycle Cs by joining two nonadjacent vertices.
List the members of the cycle space of G. What is its dimension?
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5.4 The Cutset Subspace

Cutsets serve as the dual of cycles in the linear algebra associated with graphs. The-
orem 5.3 below is the dual of Theorem 5.1. In order to prove it we use the following
lemma:

Lemma 5.2. If S is a set of vertices of the graph G, let 5(S) denote the set of edges of
G with precisely one endpoint in S. Then

S(S+T)=48(8)+46(T)
for any subsets S and T of V(G).

Proof. It is a standard result of set theory that
RNES+T)=RNS)+(RNT) (5.3)

for any sets R, Sand T.

Select any edge xy of G; write R = {x, y}. Then xy € §(S + T) if and only if
|[RN (S + T)| is odd, which by (5.3) will be true if and only if exactly one of |(R N §)|
and [(R N T)| is odd — that is, xy belongs to precisely one of §(S) and &(T), or
equivalently xy € 8(S) + §(T). So for any edge xy,

xy€d(S+T) e xyed(S)+8(T),

proving the Lemma. O

Theorem 5.3. Let G be a graph with edge set E. Then the set of all cutsets and unions
of edge-disjoint cutsets in G is a subspace of P(E), known as the cutset subspace
B(G).

Note that @ € B(G), since ¥ can be considered as the union of no cutsets.

Proof. By analogy with Theorem 5.1, it is sufficient to prove that the sum of two
cutsets is a cutset or a union of edge-disjoint cutsets. But this follows easily from the
lemma. O

Example. Consider again the graph of Figure 5.1. Among its cutsets are {ab, bc},
{ab, ac}, and {cd}. Checking all partitions of its vertex-set into two disjoint subsets
one finds that all its cutsets and unions of edge-disjoint cutsets can be written as linear
combinations of these. Hence its cutset subspace is {#, {ab, bc}, {ab, ac}, {bc, ac},
{cd}, {ab, bc, cd}, {ab, ac, c¢d}, {ac, bc, cd}} of dimension 3.

Lemma 5.4. Every cycle has an even number of edges in common with every cutset.

Proof. Consider the cutset C that induces the partition of V = V(G) into
V=ViuV,

where the two subsets V| and V, are those in the two components of G remaining after
C has been deleted.

Say L is acycle in G. If L meets only vertices in V; or only vertices in V3, so that
LNC = @,then |L N C| = 0 which is certainly even. Otherwise L must meet vertices
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in both V; and V,. Follow L from a vertex x in V|, and suppose y is the first vertex
encountered in V,. Then the path from x to y must cross from V; to V; using exactly
one edge of C. Since the cycle must finish at x, it must cross from V; to V| and then
possibly back and forth from V; to V, to V| and so on. However, each time L leaves
V1 for V; and returns to V/, it uses two edges of C. So |L N C| must be even. (]

Corollary 5.5. Every vector in the cycle subspace has an even number of edges in
common with every vector in the cutset subspace.

Corollary 5.6. Every vector in the cutset subspace has an even number of edges in
common with every vector in the cycle subspace.

N

Fig. 5.5. Cycle and cutset spaces are not disjoint

Exercises 5.4

A5.4.1 For the graph of Figure 5.1, the cycle subspace and the cutset subspace intersect
in (3. But this is not necessarily true for all graphs. Show that the graph in Figure

5.5 has a nonzero vector common to the cycle and the cutset subspaces. Name a

property of the graph that is necessary for this to happen.

A5.4.2 Consider the graphs in Figure 5.6(a) and (b).

(1) Find the cycle subspace and the cutset subspace for each.

(i1) For each of the graphs, show that the sum of the dimension of the cycle sub-
space and the dimension of the cutset subspace equals the dimension of the
vector space P(E) (that is, the number of edges in the graph).

5.4.3 Repeat the above exercise for the graphs in Figures 5.6(c) and 5.5.

(a) (b) ©

Fig. 5.6. More cycle and cutset subspaces
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5.5 Bases and Spanning Trees

Bases for the cycle and cutset subspaces of a graph are closely related to spanning
trees in the graph. For this reason we shall now discuss spanning trees. We shall make
the convention that if T is a spanning tree of the graph G, then T will denote the
complement of T in G (not in the corresponding complete graph).

Example. Consider the graph shown in Figure 5.7(a), which has five vertices and
eight edges. Any of its spanning trees must contain four edges and the complement of
a spanning tree must therefore contain 8 — 4 = 4 edges. One particular spanning tree
is shown in Figure 5.7(b).

Fig. 5.7. A graph, and a spanning tree

If one edge of its complement is adjoined to a spanning tree, the resulting graph
contains exactly one cycle. Figure 5.8 shows the spanning tree of Figure 5.7(b) with
each edge of its complement adjoined in turn; in each case the cycle formed is shown

below.
A oO—o0 O—f&
O

Fig. 5.8. Forming a basis for the cycle subspace

If, instead of adjoining an edge from the complement, one deletes an edge from
a spanning tree, the tree becomes exactly two subtrees. The upper half of Figure 5.9
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illustrates this: the spanning tree of Figure 5.7(b) is shown with each of its edges
deleted in turn. Disconnecting the spanning tree in this way induces a partition of the
vertex-set V of G into two disjoint subsets, namely those vertices incident with each
of the two sub-trees, and this partition corresponds to a cutset. The lower part of Figure
5.9 shows the corresponding cutsets in each case.

In general, deleting the edge xy from a spanning tree of G partitions the vertex-set
V(G) as

V=VuUV,

where V; and V;, are the vertex-sets of the two subtrees, and x € V; and y € V,. Define
C to be the set of edges of G such that

C={pqlp € Vi,q € V2}.

Then C, the set associated with the edge xy in the given spanning tree 7T, is a cutset.

If a connected graph G has e edges and v vertices, and if 7 is any one of its
spanning trees, then T contains v — 1 edges and T contains e — (v — 1) =e —v + 1
edges. To each edge of T there corresponds a cycle formed by adjoining the edge to
T; the set of these e — v 4 1 cycles is called the fundamental system of cycles of G
with respect to T, and any cycle in the system is called a fundamental cycle. To each
edge of T, there corresponds a cutset inducing the same partition of the vertices of G
as is induced by deleting the edge from T'; the set of these v — 1 cutsets is called the
Sfundamental system of cutsets of G with respect to T and any cutset in the fundamental
system is called a fundamental cutset.

We shall determine the bases and characterize the members of the cycle and cutset
subspaces of a graph in a series of three theorems. Each theorem has two parts, which
are duals; in each case we shall prove the first part and leave the other as an exercise.

Theorem 5.7. Suppose T is a spanning tree in a connected graph G.

() Say L = {ay,aa, ...,ax}) is a fundamental cycle, where a; is an edge of T
and ay, . .., a, are edges of T. Then a| is contained in the fundamental cutset
corresponding to a; for each i = 2,3,...,k, and is in no other fundamental
cutset.

: %EO\Q

SN
N

Fig. 5.9. Forming a basis for the cutset space
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@ii) Say C = {a;,as, ..., ak_} is a fundamental cutset, where a, is an edge of T
and ay, . . .a; are edges of T. Then a, is contained in the fundamental cycle cor-
responding to a; for eachi = 2,3, ..., k, and in no other fundamental cycles.

Proof of (i). Choose i such that 2 < i < k and let C; ‘tE the fundamental cutset
corresponding to the edge a;. Now a is the only edge of T in L and g; is the only
edge of T in C;. Hence
la;} SLNC; C{ay, ai}.
But by Lemma 5.4, |L N C;| is even, and therefore
LNC ={ay,a},

so that a; € C;.
Now let ay ;, for some j > 1, be an edge of T, and let Cy, ; be the corresponding
cutset. Since Cy; contains no other edge of 7', we have

P < LNCryj € {ar}.
Again by Lemma 5.4, |L N Cy4] is even, and therefore
LNCyyj =9,

whence a1 ¢ Ciy ;. a

Theorem 5.8. Let T be a spanning tree in the connected graph G. _
(i) The fundamental system of cycles relative to T is a basis for the cycle subspace.
(ii) The fundamental system of cutsets relative to T is a basis for the cutset sub-
space.

Proof of (i). Each cycle in the fundamental system with respect to 7' contains an edge
of T not contained in any other fundamental cycle. Hence no fundamental cycle can
be written as a linear combination of the other cycles in the fundamental system, so
the fundamental system is an independent set of cycles.

To show that it is a spanning set, consider any cycle L in G. Say

L=Aaa,...,a;,aj+1.8j42, ..., a4},
where the edges in L have been labeled so that a;, az, . . ., a; are edges of T anda il
aj+42, - - -, ai are edges of T. Now in the fundamental system of cycles with respect to

T, we have a cycle, say L;, containing the edge g; of T foreachi =1,2,...,j. We
define L’ as
L/=L1+L2+'--+Lj

and we show that L = L’. Consider L + L'; it is a sum of cycles, so it belongs to the
cycle subspace and is either a cycle or a union of edge-disjoint cycles. But the edges
of T contained in L are precisely those contained in L'; hence L + L' consists entirely
of edges of T, which implies that the tree T contains a cycle. The only member of
JF(G) contained in T is @; hence

L+L =0

which means that
L=L

and the fundamental system is a spanning set. U
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Corollary 5.9. The dimension of the cycle subspace ise — v + 1.
Corollary 5.10. The dimension of the cutset subspace is v — 1.

Theorem 5.11. Let G be a connected graph.
(1) A set of edges is a vector in the cycle subspace if and only if it has an even
number of edges in common with every vector in the cutset subspace.
(ii) A set of edges is a vector in the cutset subspace if and only if it has an even
number of edges in common with every vector in the cycle subspace.

Proof of (i). By Lemma 5.4 and its corollaries, it is sufficient to choose a set L of
edges aj, ..., a; that has an even number of edges in common with every vector in
the cutset subspace and to show that L belongs to the cycle subspace. We choose an
arbitrary spanning tree 7 of G and list the edges of L, renumbering if necessary, so
that

L={ai,a2,...,a5,a541,aj42, ..., 0}
where a1, ay, ..., a; are edges of T and aj+1, Gjy2, - - . 4 are edges of T. Again let
L; be the fundamental cycle corresponding to the edge a; of T fori = 1,2,..., j,

and define L' by
L/=L1 +L2++LJ
Consider L + L’. Since L’ belongs to the cycle subspace, it has an even number of
edges in common with every vector of the cutset subspace. So does L, by hypothesis,
and hence so does L + L'.
Now L + L’ contains only edges of T. Let a be one such edge of T and let C be
the fundamental cutset containing a. Since C contains no other edge of T, we have

(L+LYNC = {a},

so that |(L + L’) N C| is odd, which is impossible. Hence no such edge a of T can
exist, which implies that
L+L =9,
S0
L=1L,
and L belongs to the cycle subspace. g

Exercises 5.5

A5.5.1 Prove Theorem 5.7(ii).
5.5.2 Prove Theorem 5.8(ii).
5.5.3 Prove Theorem 5.11(ii).

A5.5.4 The Petersen graph, P, was mentioned in Section 2.1 and is shown in Figure 2.4,
(i) Find a spanning tree T in P.
(i1) Describe the fundamental system of cycles with respect to 7.
(iii) Describe the fundamental system of cutsets with respect to 7.
(iv) Describe the intersection of the cycle and cutset subspaces of P.
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5.5.5 Select spanning trees in K4 and K 3. Find bases for the cycle and cutset subspaces
in each case.

5.5.6 Suppose the vertices of K, are labeled 1,2, ..., v.

(i)

(i)

(ii1) Hence prove that 7(K,) = v

Let T be a spanning tree of K,. If s; is the vertex of degree 1 in T with
smallest label, let ; denote the vertex adjacent to s;. Now let s, be the vertex
of degree 1in T — s; with smallest label, and let 7, denote the vertex adjacent
to s;. Continue in this way, thus defining a sequence (11, f;, ..., f,_2). Show
that different spanning trees give different sequences, and that if vertex x has
degree dr(x) in T, then x appears (d7(x)—1) times in the sequence associated
with T.

Let (1, £z, ..., ty_2) be a given (v — 2)-sequence on N = {1,2, ..., v}, and
consider v vertices labeled 1 to v. Let s; be the smallest element of N outside
the set {t1, 1, . .., t,_2}; join vertex s to vertex #. Now let s, be the smallest
element of N\{s;} outside the set {r, ..., #,_2}; join s, to #. Continue in
this way to get v — 2 edges 511, Saf, ..., Sy—2f,—2. Adjoin a further edge
connecting the two remaining vertices in N\{si, 53, ..., S,_3}. Show that the
graph so constructed is a spanning tree of K, and that different sequences give

different spanning trees.
v—-2
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Factorizations

6.1 Definitions; One-Factorizations

If G is any graph, then a factor or spanning subgraph of G is a subgraph with vertex-
set V(G). A factorization of G is a set of factors of G that are pairwise edge-disjoint
— no two have a common edge — and whose union is all of G.

Every graph has a factorization, quite trivially: since G is a factor of itself, {G}
is a factorization of G. However, it is more interesting to consider factorizations in
which the factors satisfy certain conditions. In particular a one-factor is a factor that
is a regular graph of degree 1. In other words, a one-factor is a set of pairwise disjoint
edges of G that between them contain every vertex. Similarly, a two-factor in a graph
G is a union of disjoint cycles that together contain all vertices of G.

A one-factorization of G is a decomposition of the edge-set of G into edge-disjoint
one-factors.

Example. We find the one-factors of the graph
a b

e f

Each factor must contain one edge through a, which must be ab, ac or af. If it

is ab, the rest of the factor consists of two edges covering {c, d, e, f}, and the only

possibilities are cd, ef and ce, df. So there are two factors containing ab. In the same

way we find two factors containing ac, and two with af. The factors are
ab,cd,ef ac,be,df af, bd,de

ab,ce,df ac,bd,cf af, be, cd. CRY

To find one-factorizations that include ab, cd, ef, we check through this list to find ail
factors that are edge-disjoint from ab, cd, ef. In this small example it is easy to see
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that there are exactly two such factors, and together with ab, ¢d, ef they form a one-
factorization that is shown in the first line of (6.1). There is one other one-factorization,
shown in the second line.

This graph is one of the two nonisomorphic regular graphs of degree 3 on six
vertices. The one-factors and one-factorizations of the other such graph are discussed
in Exercise 6.1.3.

Another approach to the study of one-factors is through matchings. A matching
between sets X and Y is a set of ordered pairs, one member from each of the two
sets, such that no element is repeated. Such a matching is a set of disjoint edges of the
K » with vertex-sets X and Y. The matching is called perfect if every member occurs
exactly once, so a perfect matching is a one-factor in a complete bipartite graph. One
can then define a matching in any graph to be a set of disjoint edges in that graph; in
this terminology “perfect matching” is just another phrase for “one-factor.”

It is sometimes useful to impose an ordering on the set of one-factors in a one-
factorization, or a direction on the edges of the underlying graph. In those cases the
one-factorization will be called ordered or oriented respectively.

Not every graph has a one-factor. In Section 6.3 we shall give a necessary and suf-
ficient condition for the existence of a one-factor in a general graph. For the moment,
we note the obvious necessary condition that a graph with a one-factor must have an
even number of vertices. However, this is not sufficient; Figure 6.1 shows a 16-vertex
graph without a one-factor (see Exercise 6.1.2).

Fig. 6.1. N, the smallest cubic graph without a one-factor

In order to have a one-factorization, a graph not only needs an even number of
vertices, but it must also be regular: if G decomposes into d disjoint one-factors, then
every vertex of G must lie on precisely d edges. However, the following theorem
shows that these conditions are not sufficient.

Theorem 6.1. A regular graph with a bridge cannot have a one-factorization (except
for the trivial case where the graph is itself a one-factor).
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Proof. Consider a regular graph G of degree d, d > 1, withabridge t = xy;in G —e,
label the component that contains x as E and label the component that contains y as
F. The fact that ¢ is a bridge implies that £ and F are distinct. Suppose G is the edge-
disjoint union of d one-factors, G|, G», ..., G4; and say G, is the factor that contains
t. Now 1 is the only edge that joins a vertex of E to a vertex of F, so every edge of G,
with one endpoint in £ has its other endpoint in £. So G, contains an even number of
vertices of E. Since G, contains every vertex of the original graph, it contains every
vertex of E; so E must have an even number of vertices.

On the other hand, consider G|\ E. This contains a number of edges and the iso-
lated vertex y, since ¢ is in G;. So G\ E has an odd number of vertices, and accord-
ingly E has an odd number of vertices. We have a contradiction. [

This theorem can be used, for example, to show that the graph M of Fig-
ure 6.2 has no one-factorization, although it is regular and possesses the one-factor
{ac, be,dg, fi, hj}. However, it clearly does not tell the whole story: the Petersen
graph P (see Figure 2.4) has no one-factorization, but it also contains no bridge. The
Petersen graph does contain a one-factor, however. In fact Petersen [94] showed
that every bridgeless cubic graph contains a one-factor. We shall give a proof in
Section 6.3.

oc
a d g J
L e h

Fig. 6.2. M, the smallest cubic graph without a one-factorization

If the degree increases with the number of vertices, the situation is different. It has
been conjectured that a regular graph with 2n vertices and degree greater than n will
always have a one-factorization; this has only been proved in a very few cases, such
as degree 2n — 4, degree 2n — 5, and degree at least 12n/7 (for further details see
[103, 25]). On the other hand, one can find regular graphs with degree near to half the
number of vertices that do not have one-factorizations.

However, we can prove the existence of one-factorizations in many classes of
graphs. Of basic importance are the complete graphs. There are many one-factorizat-
ions of K;,. We present one that is usually called GK;,. To understand the construc-
tion, look at Figure 6.3. This represents a factor that we shall call Fy. To construct the
factor F,, rotate the diagram through a (2n — 1)-th part of a full revolution. Similar
rotations provide Fy, Fs, ..., Fy,_».

Theorem 6.2. The complete graph K, has a one-factorization for all n.

Proof. We label the vertices of K,, as xs, Xo, X1, X2, ..., X2,—>. The spanning sub-
graph F; is defined to consist of the edges
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X0
O
X342 O Ox
X130 O x,
Oxw
Xnt+l O O-xn-Z
xn C O xn—l

Fig. 6.3. The factor Fy in GICy,,

XooXis Xi+1Xiels ooy XigjXi—jy oo oy Xign—1Xi—n+1 (6.2)

where the subscripts other than oo are treated as integers modulo 2n — 1. Then F;
is a one-factor: every vertex appears in the list (6.2) exactly once. We prove that
{Fy, F1, ..., F5,—;} form a one-factorization. First, observe that every edge involv-
ing xo, arises precisely once: x.x; is in F;. If neither p nor g is co, then we can
write p + g = 2i in the arithmetic modulo 2n — 1, because either p + ¢ is even or
p+q+2n—1iseven. Theng =i — (p — i), and x,x, is x;;x;—; in the case
J = p —1i. Since i 18 uniquely determined by p and g, this means that x,x, belongs
to precisely one of the F;. So {Fy, Fy, ..., Fa,_»} is the required one-factorization. (J

The complete bipartite graph K, , is easily shown to have a one-factorization. If
K, » is defined to have vertex-set {1, 2, ..., 2nr} and edge-set {(x,y):1 < x < n,
n+ 1 <y < 2n}, then the factors Fy, F,, ..., F,, defined by

FF={x,x+n+i):1<x <n}

(where x 4+ n + i is reduced modulo # to lie between n + 1 and 2r), form a one-fac-
torization. This will be called the standard factorization of K, ,,.

Another important case is the family of cycles C,: these have a one-factorization if
and only if » is even. This fact will be useful — for example, one common way to find
a one-factorization of a cubic graph is to find a spanning subgraph that is a union of
disjoint even cycles: a Hamilton cycle will suffice. The complement of this subgraph is
a one-factor, so the graph has a one-factorization. Reversing this reasoning, the union
of two disjoint one-factors is always a union of disjoint even cycles; if the one-factors
are not disjoint, the union consists of some even cycles and some isolated edges (the
common edges of the two factors).

The use of unions in the preceding paragraph can be generalized. If G and H both
have one-factorizations, then so does G @ H, the factorization being formed by listing
all factors in the factorizations of each of the component graphs. At the other extreme,
if G has a one-factorization, then so does nG. However, care must be exercised. If G
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and H have some common edges, nothing can be deduced about the factorization of
G U H from factorizations of G and H.

A number of other types of factorization have been studied. One interesting pro-
blem is to decompose graphs into Hamilton cycles. Since each Hamilton cycle can
be decomposed into two one-factors, such a Hamiltonian factorization gives rise to a
special type of one-factorization. We give only the most basic result.

Theorem 6.3. If v is odd, then K, can be factored into ”—;l Hamilton cycles. If v is
even, then K, can be factored into 5 — 1 Hamilton cycles and a one-factor.

Proof. First, suppose v is odd: say v = 2n + 1. If K, has vertices 0, 1, 2, ..., 2n, then
a suitable factorization is Z1, Z,, ..., Z,, where

Zi=@,i,i+1,i—1,i+2i—2,....i+ji—j ...,i+n,0).

(If necessary, reduce integers modulo 2x to the range {1,2, ..., 2n}.)

In the case where v is even, let us write v = 2n 4 2. We construct an example
for the K, with vertices 00, 0, 1,2, ..., 2n. The factors are the cycles Zy, Z,, ..., Z,,
where

Z;,=(o,i,i—1,i+1,i—-2,i+2,...,i+n—1,00),
and the one-factor

(00,0),(1,2n),(2,2n - 1),...,(n,n+1). a

Exercises 6.1

6.1.1 Verify that every connected graph on four vertices, other than K| 3, contains a
one-factor.
A6.1.2 Prove that the graph N of Figure 6.1 contains no one-factor.

e f
Fig. 6.4. Graph for Exercise 6.1.3

6.1.3 Find all one-factors and one-factorizations in the graph shown in Figure 6.4. Ver-
ify that it contains a one-factor that does not belong to any one-factorization.
6.1.4 Verify that the Petersen graph has no one-factorization.
A6.1.5 Find all one-factors in the following graphs.
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6.1.6

6.1.7

H6.1.8
6.1.9
HA6.1.10

6.1.11

6.1.12

6.1.13

6. Factorizations

U

(i) a b ¢ d (i) a

R O—O0

=

e f g h e

Repeat the preceding exercise for the following graphs.

(i) a b d (i) a b

I XA

The n-cube @, is defined as follows. @ consists of two vertices and one edge;
Q> is the cycle Cy; in general Q, is formed by taking two copies of Q,_; and

joining each vertex in one copy to the corresponding vertex in the other copy.

(i) How many vertices does Q, have?
(ii) Prove that Q, is regular. What is the degree?
(iii) Prove that Q, has a one-factorization.
(iv) Prove that Q, has a Hamilton cycle, forn > 1.
Prove that a tree contains at most one one-factor.
What is the number of distinct one-factors in K>, ?
Suppose G is a connected graph with an even number of vertices, and no induced
subgraph of G is a star K 3. Prove that G has a one-factor. [112, 113]
In each case either prove the statement or find a counterexample.
(i) If G has a one-factor, then so does its complement G.
(ii) If G has a one-factorization, then so does its complement G.
G is a regular graph and every edge of G is contained in at least one one-factor of
G. Does G necessarily have a one-factorization? Prove that it does, or provide a
counterexample.
We say a two-factor of a graph is of type [a, b, ..., c] if it consists of one cycle
each of lengths g, b, ..., c. (Repetitions in the list correspond to several cycles
of the same length.) For example, a graph on 6 vertices could perhaps have two-
factors of types [6] or [3, 3], but no others; for 7 vertices, only {7] and [4, 3]
(i) What are the possible types of two-factors of graphs on 8 vertices?
H(ii) The graph G is formed from K¢ by deleting the edges of a one-factor. Show
that G has two-factorizations of the following kinds:
e two factors of type [6];
e one factor of type [6] and one of type [3, 3];
but it has no two-factorization consisting of two factors of type {3, 3].

(iii) Show that K7 has two-factorizations of the following kinds:

o three factors of type [7];

o three factors of type [4, 3];

e two factors of type [7] and one of type [4, 3];
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but it has no two-factorization consisting of two factors of type [4, 3] and one
of type [7].

6.2 Tournament Applications of One-Factorizations

Suppose several baseball teams play against each other in a league. The competition
can be represented by a graph with the teams as vertices and with an edge xy rep-
resenting a game between teams x and y. We shall refer to such a league — where
two participants meet in each game — as a tournament. (The word “tournament” is
also used for the directed graphs derived from this model by directing the edge from
winner to loser. We shall consider these graphs in Section 11.2.)

Sometimes multiple edges will be necessary; sometimes two teams do not meet.
The particular case where every pair of teams plays exactly once is called a round
robin tournament, and the underlying graph is complete.

A very common situation is when several matches must be played simultaneously.
In the extreme case, when every team must compete at once, the set of games held at
one time is called a round. Clearly the games that form a round form a one-factor in
the underlying graph. If a round robin tournament for 2r teams is to be played in the
minimum number of sessions, we require a one-factorization of K,,, together with an
ordering of the factors (this ordering is sometimes irrelevant). If there are 2n — 1 teams,
the relevant structure is a near-one-factorization of K,,_. In each case the (ordered)
factorization is called the schedule of the tournament.

In many sports a team owns, or regularly plays in, one specific stadium or arena.
We shall refer to this as the team’s “home field.” When the game is played at a team’s
home field, we refer to that team as the “home team” and the other as the “away
team.” Often the home team is at an advantage; and more importantly, the home team
may receive a greater share of the admission fees. So it is usual for home and away
teams to be designated in each match. We use the term home-and-away schedule (or
just schedule) to refer to a round robin tournament schedule in which one team in each
game is labeled the home team and one the away team. Since this could be represented
by orienting the edges in the one-factors, a home-and-away schedule is equivalent to
an oriented one-factorization. It is very common to conduct a double round robin, in
which every team plays every other team twice. If the two matches for each pair of
teams are arranged so that the home team in one is the away team in the other, we
shall say the schedule and the corresponding oriented one-factorization of 2K, are
balanced.

For various reasons one often prefers a schedule in which runs of successive away
games and runs of successive home games do not occur (although there are exceptions:
an east coast baseball team, for example, might want to make a tour of the west, and
play several away games in succession). We shall define a break in a schedule to be a
pair of successive rounds in which a given team is at home, or away, in both rounds. A
schedule is ideal for a team if it contains no break for that team. Oriented factorizat-
ions are called ideal for a vertex if and only if the corresponding schedules are ideal
for the corresponding team.
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Theorem 6.4. [130] Any schedule for 2n teams is ideal for at most two teams.

Proof. For a given team x, define its ground vector v* to have v; = 1 if x is home
in round j and vv; = 0 if x is away in round j. If teams x and y play in round j,
then v} # v7, so different teams have different ground vectors. But the ground vector
corresponding to an ideal schedule must consist of alternating zeroes and ones. There
are only two such vectors possible, so the schedule can be ideal for at most two teams.

O

The following theorem shows that the theoretically best possible case can be at-
tained.

Theorem 6.5. {130] There is an oriented one-factorization of K, with exactly 2n — 2
breaks.

Proof. We orient the one-factorization P = {Py, P, ..., Py,_1} based on the set
{oo} U Zy,—_1, defined by
Po={(co,b)}U{tk+i,k—i):1<i<n-—1}L (6.3)

Edge (00, k) is oriented with co at home when k is even and k at home when k is odd.
Edge (k + i, k — i) is oriented with £ — i at home when i is even and k£ + { at home
when { is odd.

It is clear that oo has no breaks. For team x, where x is in Z,,_;, we can write
x =k + (x — k) = k — (k — x). The way that x occurs in the representation (6.3) will
be:asx whenk=x,ask+(x—k)when1 < x—k < n—1, and as k— (k—x) otherwise.
The rounds other than P, where x is at home are the rounds k£ where x — k is odd and
1<x—k<n-—1,andtherounds k where k —xisevenand | <k—x <n-—1.Itis
easy to check that factors P,;_; and P,; form a break for symbols 2j — 1 and 2, and
these are the only breaks. O

Exercises 6.2

A6.2.1 Two chess clubs, each of n members, wish to play a match over n nights. Each
player will play one game per night against a different opponent from the other
team. What mathematical structure is used? Give an example for n = 4.

6.2.2 v = 3n card players wish to play for several nights. Each night, players sit three at
a table, and play together for the full session. No two players are to play together
(at the same table) on two nights. The players wish to play for as many nights as
possible.

A1) Describe the problem in terms of graph factorizations.

(ii) Prove that no more than L”%IJ nights of play are possible.

(iii) Show that the maximum can be achieved by nine players.

(iv) Show that twelve players cannot achieve five nights of play.
If v = 3 mod 6, an optimal solution for v players is called a Kirkman triple
system, and one exists for all such v. An optimal solution when v = 0 mod 6
is called a nearly Kirkman triple system, and one exists for all v except 6 and
12. See, for example, [80, 123].
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6.3 A General Existence Theorem

If W is any subset of the vertex-set V (G) of a graph or multigraph G, we write G — W
to denote the graph constructed by deleting from G all vertices in W and all edges
touching them. One can discuss the components of G — W; they are either odd (have
an odd number of vertices) or even. Let & (W) denote the number of odd components
of G- W.

Theorem 6.6. [115] G contains a one-factor if and only if
ds(W) < |W| whenever W C V(G). (6.4)

Proof (after [83].) First, suppose G contains a one-factor F. Select a subset W of
V(G), and suppose ®;(W) = k; label the odd components of G — W as Gy, G»,
..., Gg. Since G; has an odd number of vertices, G;\ F cannot consist of % |G| edges;
there must be at least one vertex, say x, of G; that is joined by F to a vertex y; that is
not in G;. Since components are connected, y; must be in W. So W contains at least
the k vertices yy, y2, ..., Y, and

k=dg(W) < |W|.

So the condition is necessary.

To prove sufficiency, we assume the existence of a graph G that satisfies (6.4)
but has no one-factor; a contradiction will be obtained. If such a G exists, we could
continue to add edges until we reached a maximal graph G * such that no further edge
could be added without introducing a one-factor. (Such a maximum exists: it follows
from the case W = @ that G has an even number of vertices; if we could add edges
indefinitely, eventually an even-order complete graph would be reached.)

Moreover the graph G * also satisfies (6.4) — adding edges may reduce the number
of odd components, but it cannot increase them. So there is no loss of generality in
assuming that G is already maximal. We write U for the set of all vertices of degree
[V(G)|=1in G.If U = V(G), then G is complete, and has a one-factor. So U # V(G).
Every member of U is adjacent to every other vertex of G. We first show that every
component of G — U is a complete graph. Let G be a component of G — U that is not
complete. Not all vertices of G are joined, but G is connected, so there must exist
two vertices at distance 2 in G1, say x and z; let y be a vertex adjacent to both. Since
d(y) # |V(G)| — 1 there must be some vertex ¢ of G that is not adjacent to y, and ¢
isin V(G — U) (since every vertex, y included, is adjacent to every member of U).
So G — U contains the configuration shown in Figure 6.5 (a dotted line means “no
edge”).

Since G is maximal, G + xz has a one-factor — say F| — and G + yt also has a
one-factor — call it F,. Clearly xz belongs to F; and yf belongs to F»; and also xz is
notin F;.

Consider the graph F| U F»; let H be the component that contains xz. As xz is not
in F,, H is a cycle of even length made up of alternate edges from F; and F. Either

yt belongs to H or else yt belongs to another even cycle of alternate edges. These two
cases are illustrated in Figure 6.6.
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F=— Fy= e
X t
(a) (b)

Fig. 6.6. Two cases needed in Theorem 6.6

In Case (a) we can assume that vertices x, y, t and z appear in that order along the
cycle H, as shown in the figure (if not, interchange x and z). Then we can construct
a one-factor of G as follows: take the edges of Fj in the section y, ¢, ...,z of H, the
edges of F; in the rest of G, and yz. In Case (b) we can construct a one-factor in G by
taking the edges of F| in H and the edges of F; in G — H. So in both cases we have
a contradiction. So G| cannot exist — every component of G — U must be complete.

Now ®¢(U) < |U|, so G — U has at most |U| odd components. We associate with
each odd component G; of G — U a different member u; of U. We then construct a
one-factor of G as follows. From every even component of G — U select a one-factor
(possible because the components are complete graphs); for each odd component G;,
select a one-factor of G; + u; (again, G; + u; is an even-order complete graph). Since
G has an even number of vertices, there will be an even number of vertices left over,
all in U; as they are all connected, a one-factor can be chosen from them. The totality
is a one-factor in G, contradicting the hypothesis. O

Suppose G has v vertices and suppose the deletion of the w-set W of vertices
results in a graph with & odd components; then v — w = k (mod 2). If v is even,
then w = k (mod 2), and k¥ > w will imply that & > w + 2. So we have a slight
improvement on Theorem 6.6.
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Theorem 6.7. [121] If the graph or multigraph G has an even number of vertices,
then G has no one-factor if and only if there is some w-set W of vertices such that
G — W has at least w 4 2 odd components.

As an application of Theorem 6.6 we prove the following result.

Theorem 6.8. [31] Ifn is even, then any regular graph of degree n — 1 on 2n vertices
has a one-factor.

Proof. If n = 2 or n = 4, then the result is easily checked by considering all cases.
So we assume G is a regular graph of degree n — 1 on 2n vertices, where n is even and
n > 4, and W is any set of w vertices of G, and we prove that the graph G — W has at
most w odd components.

If w > n, then G — W has at most w vertices, so it has at most w components. If
w = 0, then G has an odd component, which is impossible since w has odd degree.
Soweassume | <w <n - 1.

The deletion of W cannot reduce the degree of a vertex of G by more than w, so
every vertex of G — W has degree at least n — 1 — w, and each component has at
least n — w vertices. If there are w + 1 or more components, then G — W has at least
(w 4+ 1)(n — w) vertices, and

(w+1D(n—-w) <2n—w,

which simplifies to )

w'—wn+n>0.
For fixed n, this is a quadratic inequality which will have the solution
w =< wporw > wp

where w; and w, are the roots of w? — wn + n = 0: that is,

w = %(n —vn2—4n), wy = %(n +vn?—4n).

Now when n > 4,
n—=3<+vn?—4n <n-2,

l<w <2, n—2<wy<n-—1,

SO

and the only integer values in the range 1 < w < n — 1 that satisfy the inequality are
w=1landw=n—1.

If w = 1, then G — W has every vertex of degree at least n — 2, so every component
has at least n — 1 vertices. The only possible case is two components, one with n —
1 vertices and one with n. Only one is odd, so G — W has at most w (= 1) odd
components.

If w=n—1,then G — W has n + 1 vertices. To get w + 1 odd components, the
only possibility is n + 1 components, each of one vertex. So G — W is empty: deletion
of W has removed all n(n — 1) edges of G. Since each vertex of W had degree n — 1,
at most (n — 1)? edges can have been removed, which is a contradiction. [l



88 6. Factorizations

Another application is Petersen’s theorem that every bridgeless cubic graph con-
tains a one-factor, which we promised in Section 6.1. In fact we prove the more general
result, due to Schénberger [108], that there is a factor containing any specified edge.
This obviously has Petersen’s theorem as a corollary.

If W is any set of vertices of a graph G, define z(W) to be the number of edges
of G with precisely one endpoint in W.

Lemma 6.9. If G is a regular graph of degree d and S is any set of vertices of G, then
d|S| = 2e((S)) + z6(S). (6.5)

Proof. The sum of the degrees of vertices in S, and 2¢((S}) is the contribution from
edges with both endpoints in S; (6.5) follows. O

Corollary 6.10. If G is a bridgeless cubic graph and S is a set of vertices of G whose
order is odd, then z5(S) > 3.

Proof. Apply (6.5). Since d and |S| are both odd, z5(S) must be odd also. If z5(S)
= 1, then the unique edge joining S to G — S would be a bridge, which is impossible
in G. So zg(S) > 3. O

Theorem 6.11. [108] If G is a bridgeless cubic graph and e is any edge of G, then G
has a one-factor that contains e.

Proof. Suppose ¢ = xy. We prove that H = G — {x, y} has a one-factor. Then this
factor together with xy is the required one-factor.
Suppose H has no one-factor. From Theorem 6.7, ®4(X) > |X]| + 2 for some
subset X of V(H). So
Q6(W) = W]
where W is the subset X U{x, y} of V(G). (W) contains at least one edge, xy, so from
6.5)
z2g(W) <3|W|—-2. 6.6)
Now if § is any odd component of G — W, then z(S) > 3, and the three edges coming
from S must all have their other endpoints in W, so the number of edges into W from
outside is at least 3 times the number of such subsets:

26(W) = 30g(W) = 3|W|, (6.7)

s0 (6.6) and (6.7) together give a contradiction. a

Exercises 6.3

A6.3.1 Does Theorem 6.8 apply to multigraphs?
6.3.2 Prove that there are exactly three regular graphs of degree 3 on eight vertices (up
to isomorphism), and that each has a one-factor.
HA6.3.3 Prove that if a cubic graph has fewer than three bridges, then it has a one-factor.
[108]
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6.3.4 Suppose G is a regular graph of degree d that has a one-factorization. Prove that
z6(W) > d —1 for every odd-order subset W of V (G). Is this necessary condition
sufficient?

6.3.5 G is n-connected, regular of degree n, and has an even number of vertices. Prove
that G has a one-factor.

6.3.6 Suppose G is a graph with 2n vertices and has minimum degree § < n. Prove that

if
SN (m—25—1
2n><2>+(" ) >+5(2n—8),

then G has a one-factor. [17]

6.3.7 G is a cubic graph without a bridge. Prove that if xy is any edge of G, then G
contains a one-factor that does not include xy.

6.3.8 Suppose G is a r-connected graph (r > 1) with an even number of vertices, and
no induced subgraph of G is a star K ;1. Prove that G has a one-factor. [113]
(Compare with Exercise 6.1.10.)

6.4 Graphs Without One-Factors

Suppose G is a regular graph of degree d and suppose G — W has a component with p
vertices, where p is no greater than d. The number of edges within the component is at
most % p{(p — 1). This means that the sum of the degrees of these p verticesin G — W
is at most p(p — 1). But in G each vertex has degree d, so the sum of the degrees of
the p vertices is pd, whence the number of edges joining the component to W must
be at least pd — p(p — 1). For fixed d and for integer p satisfying 1 < p < d, this
function has minimum value d (achieved at p = 1 and p = d). So any odd component
with d or fewer vertices is joined to W by d or more edges.

We now assume that G is a regular graph of degree d on v vertices, where v is
even. If G has no one-factor, then by Theorem 6.7 there is a set W of w vertices
whose deletion leaves at least w + 2 odd components. We call a component of G — W
large if it has more than d vertices, and small otherwise. The numbers of large and
small components of G — W are ay and By, or simply « and B, respectively. Clearly

at+pf>w+2 (6.8)

There are at least d edges of G joining each small component of G — W to W, and
at least one per large component, so there are at least « + df edges attached to the
vertices of W; by regularity we have

a+df <wd. 6.9)

Each large component has at least d -+ 1 vertices if d is even, and at least d + 2 if v is
odd, so

v>w+ (d+ a4+ Bifdiseven, (6.10)
v>w+4 (d+ a4+ Bif dis odd. (6.11)
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Since « is nonnegative, (6.9) yields 8 < w, so from (6.8) we have « > 2; but applying
this to (6.9) again we get 8 < w, so from (6.8) we have & > 3. So from (6.10) and
(6.11) we see that if w > 1, then

v > 3d +4if d is even, (6.12)
v > 3d + 7if d is odd. (6.13)

In the particular case d = 4, the bound in (6.12) cannot be attained. Suppose P is
an odd component of G — W with p vertices. Then the sum of the vertices in G of
members of P is 4p, which is even. On the other hand, if there are r edges joining
W to P in G and s edges internal to W, the sum of the degrees is r + 2s. So r is
even. So there are at least two edges from each large component to W, and (6.9) can
be strengthened to

200 + 48 < 4¢,
whence 28 < 4k — (2a + 28); substituting from (6.8) we get
28 <2k —4
and a > 4. So (6.10) yields
v>2+454=22

Summarizing this discussion, we have:

Theorem 6.12. [121] If a regular graph G with an even number v of vertices and with
degree d has no one-factor and no odd component, then

v>3d+7 if disodd, d>3;
v>3d+4 if diseven d > 6; (6.14)
v>22 if d=4.

The condition of “no odd component” is equivalent to the assumption that w > 1.
The cases d = 1 and d = 2 are omitted, but in fact every graph with these degrees that
satisfies the conditions has a one-factorization.

It follows from the next result that Theorem 6.12 is best possible.

Theorem 6.13. If v is even and is at least as large as the bound of Theorem 6.12, then
there is a regular graph of the relevant degree on v vertices that has no one-factor.

Proof. We use two families of graphs. The graph G(h, k, s) has 25 + 1 vertices,
and is formed from Ky, as follows. First factor K, into Hamilton cycles, as in
Theorem 6.3. Then take the union of 4 — 1 of those cycles. Finally, take another of the
cycles, delete k disjoint edges from it, and adjoin the remaining edges to the union.
This construction is possible whenever 0 < # < sand(0 < k < s.Ifagraphhas 2s +1
vertices, of which 2k have degree 24 — 1 and the rest have degree 24, let us call it a
1-(h, k, s) graph; for our purposes, the essential property of G (A, k, s) is that it is a
1-(h, k, s) graph.

The graph G, (h, k, s) has 25 + 1 vertices. We construct it by taking a Hamilton
cycle decomposition of K, and taking the union of # of the cycles. Then another
cycle is chosen from the factorization; from it are deleted paths with 2k-+1 vertices and
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s — k edges that contain each of the remaining 2s — 2k vertices once each. We define a
2-(h, k, s) graph to be a graph on 2s 4 1 vertices with 2k — 1 vertices of degree 24 and
the rest of degree 2h + 1. Then G, (h, k, s) is a 2-(h, k, s) graph whenever 0 < h < s
and 0 < k <.

Finally, we define the composition [G, H, J] of three graphs G, H and J, each of
which have some vertices of degree d and all other vertices of degree d — 1, to be the
graph formed by taking the disjoint union of G, H and J and adding to it a vertex x
and edges joining all the vertices of degree d — 1 in G, H and J to x. It is clear that if
d iseven, say d = 2h, and h > 3, then

[(Gi(h, 1, ), Gi(h, 1, 1), Gi(h,h =2, h +1)]

is a connected regular graph of degree d on 3d + 4+ 2t vertices that has no one-factor,
since the deletion of x results in three odd components. Similarly, if d = 2h + 1, then

[Ga(h, L+ 1), Go(h, 1, h + 1), Goth, b, h + 1 + 1)]

is a connected regular graph of degree d on 3d 4 7 4 2t vertices that has no one-factor.

The first construction does not give a connected graph when 4 = 2, so another
construction is needed for the case d = 4. Take three copies of G(2, 1, 2), each
of which has five vertices, two of degree 3 and three of degree 4, and one copy of
G1(2, 1,2 4+ 1), which has two vertices of degree 3 and 3 + 27 of degree 4. Add two
new vertices, x and y; join one vertex of degree 3 from each of the four graphs to x
and the other to y. The result has 22 4 2¢ vertices, degree 4 and no one-factor. d

Exercises 6.4

6.4.1 Prove that G (h, k, h) is uniquely defined up to isomorphism and that it is the
only 1-(k, k, h) graph. Is the corresponding result true of 2-(A, k, A + 1)-graphs?

A6.4.2 What is the smallest value s such that there is a 1-(k, 1, s) graph not of the type
Gi(h, 1,5)?

A6.4.3 Consider the graph G constructed as follows. Take two copies of Ks. Select one
edge from each; join the four endpoints of those edges to a new vertex. Then
delete the two edges, and delete one further edge from one Ks. Prove that G is an
1-(2, 1, 5) graph but is not of type G1(2, 1, 5).
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Graph Colorings

7.1 Vertex Colorings

In this chapter we discuss partitions of the vertex-set, or edge-set, of a graph into
subsets such that no two elements of the same subset are adjacent. Such partitions are
called colorings for historical reasons (which will become clearer in Section 8.3).

Suppose C = {cy, ¢y, ...} is a set of undefined objects called colors. A C-coloring
(or C-vertex coloring) & of a graph G is a map

£:V(G) -~ C.

The sets V; = {x:§(x) = ¢;} are called color classes. Alternatively, a coloring could
be defined as a partition of V (G) into color classes.

A proper coloring of G is a coloring in which no two adjacent vertices belong to
the same color class. In other words,

x~y=>Ex) #EQ).

A proper coloring is called an n-coloring if C has n elements. If G has an n-coloring,
then G is called n-colorable.

The chromatic number x (G) of a graph G is the smallest integer # such that G has
an n-coloring. A coloring of G in x (G) colors is called minimal. We use the phrase
“G is n-chromatic” to mean that x(G) = n (but note that a minority of authors use
n-chromatic as a synonym for n-colorable).

Figure 7.1 shows four ways of assigning colors to the Petersen graph. Assignments
A and B are proper, a 4-coloring and a 3-coloring respectively. C is not a coloring
because one vertex is not assigned a color. D is a coloring, but it is not proper because
two adjacent vertices receive color 2.

Of course, G is n-colorable for every n such that n > x(G). If the vertices of G
are sorted into n color classes, it is clear that no edge of G lies entirely within one
color class, so G is an n-partite graph with n = x (G). Obviously x (G) is the smallest
integer n for which G is n-partite.

Some easy small cases of chromatic number are
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Fig. 7.1. Four color assignments

x(Ky) =,
x(Py) =2.

A cycle of length v has chromatic number 2 if v is even and 3 if v is odd. The star K ,
has chromatic number 2; this is an example of the next theorem.
Clearly x(G) = 1 if G has no edges and x(G) = 2 if G has at least one edge.

Theorem 7.1. x(G) = 2 if and only if G is not null and G contains no cycles of odd
length.

Proof. x(G) = 2 is equivalent to G being bipartite. So the theorem follows from the
characterization of bipartite graphs in Theorem 2.2. g

Suppose G is a graph with a subgraph H, and suppose G has been n-colored. If all
the vertices and edges that are not in H were deleted, there would remain a copy of H
that is colored in at most n colors. So x (H) < x(G) whenever H is a subgraph of G.

Theorem 7.2. If A = A(G) is the maximum degree in G, then

x(G) < A+1.
Proof. Suppose G has v vertices {x;, x3, ..., x,}. Then color the vertices with colors
¢y, Cy, - - -, Ca by the following inductive process. Color x; with co. If x1, x2, ..., xi—|

have been colored, then write C; for the set of all colors that have been assigned to
vertices x;, where x; ~ x; and j < i. Then C\C; is nonempty, since |C;| < d(x;) <
A. Color x; with the element of C\C; that has smallest subscript. a
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Fig. 7.2. A graph with chromatic number 3

The algorithm used in proving Theorem 7.2 is an example of a greedy algorithm,
so this coloring is called a greedy coloring, ot the greedy coloring with respect to the
given vertex ordering.

Example. Consider the graph in Figure 7.2. Applying Theorem 7.2 we obtain a 4-
coloring with

Vo = {x1, 23}, Vi ={x2, x4}, Vo= {xs5}, V3= {xs).

Theorem 7.2 does not necessarily provide a minimal coloring. In fact the graph of
Figure 7.2 can be colored in three colors:

Vo = {XI,X4}, V] = {X2,X5}, V2 = {x3,x6}.

Changing the order in which the vertices are processed can change the coloring,
and even change the number of colors needed; see Exercises 7.1.7 and 7.1.8.

We have already noted that if H is a subgraph of G, then x(H) < x(G). In some
cases equality may hold. If x (H) < x(G) for every proper subgraph H of G, then
G is called critical with respect to chromatic number, or vertex-critical. When there
is no risk of confusion (for example, in the rest of this section), “critical” will mean
“vertex-critical.” A critical graph G for which x(G) = » is called n-critical.

Example. The only 1-critical and 2-critical graphs are K; and K, respectively. The
3-critical graphs are precisely the odd cycles.

Suppose x(G) = n. If G is not n-critical, then it must contain a proper subgraph
G such that x (G1) = n. Either G, is n-critical or it has a proper subgraph G, with
x(G2) = n. Proceeding in this way, we obtain a sequence

G>G,>Gy> -

where every term has chromatic number n. This sequence must terminate, since G
is finite. So there must be a graph G, that is n-critical. So every graph of chromatic
number # has an n-critical subgraph.

Theorem 7.3. If G is an n-critical graph, then §(G) > n — 1.
Proof. Suppose G is an n-critical graph and x is a vertex of G. Then G — x is a

proper subgraph of G, so x(G — x) < n — 1. Select an (n — 1)-coloring & of G — x.
Write N (x) for the neighborhood of x in G, the set of vertices adjacent to x in G.
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If IN(x)| < n — 1, then there is at least one color used in & that is not allocated to
any member of N(x). Apply that color to x, and use & to color every other vertex of
G. The result is an (n — 1)-coloring of G, which is impossible. So |[N(x)| = n — 1.

Therefore
dg(x) = [N(x)| 2n—1

for every vertex x of G, and §(G) > n — 1. O
Corollary 7.4. [114] If G is not critical, then
x(G) <1+ max{§(H): H < G}.
Proof. Select a x (G)-critical subgraph G, of G. Then Theorem 7.3 implies that
x(G) —1=<48(Gy)

and obviously
3(G1) <max{8(H): H < G},

giving the result. EI

Exercises 7.1

7.1.1 Which of the following assignments are colorings? Which are proper colorings?

1 2 1 2 1 2 1 2
3%5 2%3 3%1 3%4
4 6 1 2 1 2 2 1

A7.1.2 P is the Petersen graph. What is x (P)?
7.1.3 For each of the graphs in Figure 7.3, find the chromatic number and find a coloring
that uses the minimum number of colors.

P e, <P

< 1 W

Fig. 7.3. What are the chromatic numbers of these graphs?

A7.1.4 The independence number B(G) of a graph G was defined in Section 1.2. If G
has v vertices, prove:
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(@) v = B(G)-x(G);
(i) x(G) =v-B(G)+ 1.
7.1.5 The wheel W, was defined in Section 1.2 to consist of an n-cycle together with a
further vertex adjacent to all n vertices. What is x (W,)?
7.1.6 G is the union of two graphs G and G, that have one common vertex. Show that
x(G) = max{x(G1), x(G2)}.
A7.1.7 Find a way of ordering the vertices of the graph of Figure 7.2 so that the resulting
greedy coloring uses only three colors.
7.1.8 Prove that for any graph G there is a way of ordering the vertices such that the
greedy coloring with respect to the ordering uses only x (G) colors.
A7.1.9 A graph G contains exactly one cycle of odd length. Show that x (G) = 3.
H7.1.10 Suppose £ is a coloring of a graph G. Show that the statement

x~y &= &x) #§()

holds if and only if £ is a proper coloring and G is a complete x (G)-partite graph.
7.1.11 The cartesian product of graphs was defined in Section 1.2.
(i) Draw the graph K 3 x P;. Find its chromatic number.
(ii) Prove that
x(G x H) = max{x(G), x (H)}.
(iii) Prove that G is n-colorable if and only if G x K, contains a set of |V(G)|
vertices, no two of which are adjacent.
A7.1.12 Suppose x is a vertex of G whose degree is less than n. Show that G is n-colorable
ifand only if G — x is.
7.1.13 A graph G with chromatic number n is called n-minimal if x (G —e) < n for each
edge e of G.
(i) Prove that a connected n-critical graph must be n-minimal.
(i) Prove that every 2-minimal graph is 2-critical.
(iii) Prove that every 3-minimal graph is 3-critical.
(iv) Prove that not every 4-graph is 4-critical (construct a 4-minimal graph that is
not 4-critical).

7.2 Brooks’ Theorem

It is clear that the complete graph K, requires v colors, and its maximum degree is
v — 1, 50 equality holds in Theorem 7.2 for those graphs. The odd cycles also have this
property (with chromatic number 3 and maximum degree 2). However, Brooks [18]
proved that these are the only connected graphs that require more than A colors.

If G is any graph and £ is a proper coloring of G, the Kempe chains of G (with
respect to &) are the graphs induced by all the vertices that receive one of two given
colors under &. In other words, if ¢; and ¢; are two colors, then the Kempe chain is
the graph G;; with vertex-set {x:£(x) = ¢; or ¢;} and edge-set all the edges of G that
join two such vertices. If H is a connected component of G;;, exchanging colors c;
and c; on all the vertices of H produces another proper coloring. A proof using this
technique is called a Kempe chain argument.
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Theorem 7.5. [18] If G is a connected graph other than a complete graph or an odd

cycle, then
x(G) = A(G).

Proof. Suppose G is a connected v-vertex graph, other than K, or an odd cycle, and
suppose A(G) = n. The only possible case when n < 2 is for G to be a path or even
cycle, in which cases x (G) = A(G) = 2, so we assume n > 3.

We now proceed by induction on v. Assume the result is true for all graphs with
fewer than v vertices. This is easy to check in the case v = 4, because there are only
three connected incomplete graphs with v = 4 and A = 3, and all can be 3-colored
(see Exercise 7.2.2).

(i) Suppose G is not regular. Select a vertex x such that d(x) < n. Then G — x has
fewer than v vertices, so by the induction hypothesis it can be colored in A(G — x) <
A(G) colors. Certainly it can be colored in at most n colors. n-color G — x. Since
d(x) < n there will be fewer than n colors on vertices that were adjacent to x in G,
so there is a color not used on any of those vertices. Apply that color to x. We have
colored G in n colors.

(i) Now consider a regular graph G of degree n, and suppose G cannot be colored
in n colors. Select any vertex x; by induction, G — x has an n-coloring &. Moreover,
we can assume the neighbors of x receive all n colors (or else we could proceed as
in Case (i)). Say the neighbors are xi, xo, ..., X, and £(x;) = ¢;. Select two of these
neighbors, x; and x;, and consider the Kempe chain G;;. If x; and x; were in different
components of G;;, one could exchange colors ¢; and c; on all the vertices in the
component containing x; and still have a proper coloring; but in this new coloring
there would be no vertex of color ¢; adjacent to x, so x could receive ¢;. So we need
only consider the case in which x; and x; belong to the same component of G, for
every { and ;. This means that for every pair of neighbors x; and x; of x there is a path
P;; from x; to x; made up entirely of vertices colored ¢; and c; under §.

We next show that G;; = P;;. Suppose x; has degree 2 or greater in Gij. Then
x; has two neighbors of color ¢;, and some color ¢ is not adjacent to x;. We could
recolor x; in ¢; and x in ¢;, and n-color G. So x;, and similarly x;, has degree 1 in
Gi;. Say x; has neighbor x;; in Gij; either x;; = x5 or x;; has degree greater than 2 or
x;1 has a unique neighbor x;; other than X — | in Gij; and so on. If G;; is not a path,
there will be a well-defined vertex y of degree 3 or greater that is nearest (in Gij) to
x;. If £(y) = c;, then y is adjacent to three ¢; vertices, so there must be a color, say
cx, that is not adjacent to y. We can recolor x; with c;, x;1 with ¢;, x;2 with ¢;, ..., y
with ¢, and x with C — i, giving an n-coloring of G. The case where £(y) = ¢; can
be eliminated similarly.

Each Gj; is a path from X; to x;. Suppose z were a member of both G;; and G,
where k # j. Then £(z) = ¢;, and unless z = x;, z has two neighbors colored c; and
two colored ¢;. Again, there is a color not adjacent to z and recoloring is possible as
in the preceding paragraph. So the Kempe chains intersect only at their endpoints.

Now suppose two neighbors of x, x; and x;, are not adjacent in G. Then they are
not adjacent in G — x, and the path G;; contains a vertex other than x;, say y, adjacent
to x;. £(y) = c;. Select some color ¢ (not ¢; or c;) and interchange the colors of
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vertices in G;k, so that now x; receives color c;. Consider the Kempe chains for this
new coloring of G — x. Clearly z belongs to the jk-chain, because it is adjacent to
x;, which is an endpoint of the jk-chain. Similarly, y belongs to the ij-chain. This

contradicts the preceding paragraph.
So all the neighbors of x are adjacent. Since x could be any vertex, and G is
connected, G must be a complete graph. But this contradicts the original assumptions.
O

Exercises 7.2

7.2.1 Prove that the only (n — 1)-regular n-critical graphs are the complete graphs and
the odd cycles.

7.2.2 Verify that there are exactly three connected incomplete graphs on 4 vertices with
maximum degree 3, and all can be 3-colored.

7.2.3 G is formed from the complete graph K, by deleting one edge. Prove that x (G) =
v — 1 and describe a way of coloring G in v — 1 colors.

7.2.4 Prove that the following statement is equivalent to Brooks” Theorem: if G is an
n-critical graph (n > 4) with v vertices and e edges, and G is not complete, then
2e > v(n—1).[17]

7.3 Counting Vertex Colorings

So far we have looked most closely at coloring vertices with the minimum number of
colors. Another problem is, given a set of colors, how many ways are there to color
a given graph? We count all possible colorings that are not identical, whether or not
any two are isomorphic. For example, consider K3, a single edge with vertices y and
z. Write (A, B) to mean the coloring in which y is colored A and z is colored B. K>
requires two colors, and there are two different colorings, (A, B) and (B8, A). If three
colors were available, there would be the six colorings (A, B), (A, C), (B, A), (B, C),
(C, A) and (C, B). (Not all available colors actually have to be used.)

We write pg(x) for the number of different colorings of G with x colors. gg(x)
will denote the number of these colorings in which all x colorings are actually used. So
P (@) = qx, (D) = 2. px,(3) = 6 and g, (3) = 0. Clearly ps(x) = 0if x < x(G).
For the null graph on v vertices, K, any color may be assigned to any vertex, so

pr,(x) = x".

Example. To count the proper colorings of K, suppose the vertices have been ordered
in some way. The first vertex can be assigned any of the x colors. There are then x — 1
colors for the second vertex, x — 2 for the third, and so on, so

x!
(x —v)!
Example (continued). Consider the cycle C4. x(C4) = 2, so p¢,(0) = pc, (1) = 0.

Using two colors, first select any vertex. It can be colored in two ways. The rest of the
coloring is then determined. So

Pr,x)=x(x-Dx-=-2)---(x—v+1)=
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pc(2) = qc,(2) =2.

With three colors, there are six colorings in which only two of the colors are used —
there are three ways to select the color to be omitted, and two ways to apply the re-
maining colors. If all three colors are actually used, there must be a pair of nonadjacent
vertices that receive the same color. The color can be chosen in three ways, and the
nonadjacent pair in two ways. The other two colors can be applied to the remaining
vertices in two ways. So

pc,(3) =64+3x2x2 =18

The calculation of p¢,(3) in the example could be described as follows. To enu-
merate colorings in which only two colors appear, multiply the number of ways of
choosing two of the three colors ((;), or 3) by the number of colorings using precisely
two colors (gc, (2), or 2). Then add the number of colorings using precisely three col-

ors (g¢,(3)). So 3
pc,(3) = <2>QC4(2) +qc,(3).

This approach can be generalized. The number of proper colorings of G that use pre-

cisely k of x available colors is
x
<k>qG(k)- (7.1)

The total number of proper colorings in x colors is found by summing this term over
k. It will be zero if k < x(G) (no proper colorings exist) or k£ > v(G) (the number of
colors actually used cannot exceed the number of vertices). So

v(G)
pe =Y (i)qc(k)- (12)

k=x(G)

Example (continued). There are 24 ways to color C4 using only four colors. (In gen-
eral, if G is any graph with v vertices, g (v) = v!.) So

B =(Noe.@ + (Nae.d + (o
pe@) = <2>61C4( )+ <3>QC4( )+ <4>qc4( )
=6x2+4x12+1x24

= 12 + 48 + 24
— 84.

In general, we have

_(x 5 x 3 x A
pc,(x) = <2)4C4( )+ (3>qC4( )+ <4>6]c4( )
=2x(x — 1)/24+ 12x(x — 1)(x — 2)/6

+24x(x — D(x — 2)(x — 3)/24
=x(x — )(x*=3x +3).
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The function defined in (7.2) is a polynomial in x of degree v(G), called the chro-
matic polynomial of G. It is clear that isomorphic graphs have the same chromatic
polynomial. The converse is not true; in fact, all trees of the same order have the same
polynomial.

Theorem 7.6. If T is a tree with v vertices, then
prx) =x(x — D'

Proof. Say T is to be properly colored with x colors. Select any vertex of T, say
a;. There are x ways to color a;. Now select any vertex a, adjacent to a;. There are
x — 1 colors available for ay, all colors except the one applied to a;. Choose one. Now
continue in this way. After k vertices have been colored, select a vertex a; that has
not yet been colored but is adjacent to one of the colored vertices. It cannot be adjacent
to two of them, or else T would contain a cycle. If g, is adjacent to g;, it may receive
any of the x — 1 colors other than the one given to g;. This process may be continued
until all vertices are colored. There were x choices at the first stage, and x — 1 at each
of the other v — 1, so there are x(x — 1)?~! colorings. O

There are also examples of graphs other than trees that have the same chromatic
polynomial — see Exercises 7.3.3 and 7.3.8(ii).

Multiple edges can obviously be ignored in calculating the chromatic polynomial.
If M is a multigraph with underlying graph H, then py(x) = pg(x). The multigraph
G, formed from the graph G by identifying the endpoints of edge a, was introduced
in Section 4.2. G — a is defined as usual by removing the edge a from the edge-set.
G, and G — a occurred together in Theorem 4.6, and they do so again in the following
lemma.

Lemma 7.7. If a is any edge of the graph G, then
PG (x) = pG—a(x) — pg,(x). (7.3)

Proof. Consider the proper colorings of G —a. They are of two types — those in which
the two endpoints of a receive the same color, and those in which they receive differ-
ent colors. Colorings of the first type are in one-to-one correspondence with proper
colorings of G,, while those of the second type are in one-to-one correspondence with
proper colorings of G. So

PG6-a(x) = pg,(x) + pc(x),
and the lemma follows. O

Example. Deletion of any edge from the cycle Cs produces a path Ps, and contraction
of any edge produces a cycle Cy4. So

pCs(x) = PP5(x) - PC4(X)-

Since Ps is a tree, pp,(x) = x(x — 1)*, and pc,(x) = x(x — 1)(x> — 3x + 3) from our
previous calculation, so
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pes(x) = x(x — D* —x(x — 1)()(2 —3x+3)
=x(x—D(x—1° =" =3x+3))
=x(x — D> —4x* +6x — 4).
(See also Exercise 7.3.7.)

Theorem 7.8. Suppose G is a graph with v vertices and e edges. Its chromatic poly-
nomial pg(x) =Y arx* has integer coefficients that satisfy:
(1) pg(x) is of degree v,

()a, =1;
(iii) ap = 0;
av) ay,_1 = —e;

(v) the coefficients alternate in sign;
(vi) the smallest k such that a; # 0 equals the number of components of G.

Proof. We have already observed that (7.2) implies (i). The only term in (7.2) involv-

ing x¥ is . b
(i)qc(w:x(x D s,

so the coefficient of x” is g (v)/v! = 1. One cannot color with no colors, so ap = 0.

We prove parts (iv) and (v) by induction on e. Suppose they are true for all graphs
with less than e edges. In particular, if a is any edge of G, then both G — a and G,
have fewer edges than G. By induction, there exist nonnegative integers aj, az, ... ,
ay_» and by, by, ..., by_», such that

P6—a(X) =x" — (e — Dx" 4 ayox¥? —ap_ax 2 4ok (D agx
and
PG, (x) = 27N = byax" 2+ by 3x T 4 (1) hyx.
So, from (7.3),

p(x) = po—a(x) — pg,(x)
=x' —ex'" '+ (@2 + by2) X" F — (@y-3 + By_3) X
+ o+ (=" ar + b)) x,

which has the required form.
Part (vi) can also be proved by induction, but another proof is indicated in Exercise
73.2. O

A number of other properties of the chromatic polynomial are easy to prove. One
property that is easy to check is that only an empty graph can be properly colored with
one color, so the sum of the coefficients of ps(x) must be zero whenever G has an
edge. Another, not so easy to apply when testing a particular polynomial, is that pg (x)
can never be negative for integer x.
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Exercises 7.3

7.3.1 Show that if G is a connected graph, then the chromatic polynomial of G satisfies

a 7+— 0.
7.3.2 The graph G is the union of two disjoint subgraphs H and K. Prove that

pc(x) = pu(x)-pg(x).
Hence prove Theorem 7.8(vi).

<> <P

Fig. 7.4. Graphs with the same chromatic polynomial

A7.3.3 Consider the graphs in Figure 7.4.
(i) Verify that the graphs are not isomorphic.

(ii) Show that they have the same chromatic polynomial. (This exercise is signif-
icant because it was once conjectured that 2-connected graphs with the same
chromatic polynomial might necessarily be isomorphic.)

7.3.4 For each of the following polynomials, either prove that it is not a chromatic poly-
nomial or find a graph G for which it is pg(x):
(1) x° —3x* +3x° — x2.

(i) x° — 6x* +5x% — 2x% + 3x.

(iii) x° — 6x* + 13x> — 12x% + 4x.

(v) x> —4x* + 4x3 — x2.

(v) x° —2x% + %3,

(vi) x> —5x* + 8x3 — 10x% + 6.

(vil) x° —4x* 4 5x3 — 2x2.

HA7.3.5 Prove that there is no graph with chromatic polynomial x* — 4x* + 3x2.
7.3.6 Find the chromatic polynomials of the following graphs.

sloB RN

(i1) (1ii) @iv)

A< <

(vi) (vii) (viii) (ix)
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7.3.7 In general, deleting an edge of C, produces a P, and contracting an edge produces
a Cy,_;. (The multigraph C, has the same chromatic polynomial as a K,, namely
x(x — 1).) Use these facts to prove that

pe,@) = (x =1 ((x = D"+ (=1)")

for every v > 2.

7.3.8 Given a graph G, a new graph H is formed from G by adding a single pendant
vertex adjacent to some vertex of G. Find an expression for py(x) in terms of
pc(x).

7.3.9 Suppose a graph G is formed by taking two disjoint connected graphs G| and G,
and choosing one vertex in & and one vertex in G, and identifying the two. Find
a formula for p(G) in terms of p(G,) and p(G,), using a counting argument.

7.3.10 Suppose G is formed by taking two disjoint connected graphs G, and G, and
inserting an edge connecting some vertex of G; with some vertex of G,. Use
Lemma 7.6 and the results of Exercises 7.3.1 and 7.3.7 to find an expression for
p(G) in terms of p(G) and p(G,).

7.4 Edge-Colorings

We now consider partitions of the edge-set of a graph. Again, the terminology of
colors is customarily used. A k-edge-coloring m of a graph G is a map from E(G)
to {1,2, ..., k}, with the property that if e and f are edges with a common vertex,
then m(e) # 7 (f). G is k-edge-colorable if there is a k-ecdge-coloring of G; the
edge-chromatic number x ’(G) of G is the smallest number & such that G is k-edge-
colorable. x'(G) is also called the chromatic index of G. Given an edge-coloring 7 of
G, the spectrum S, (x) (or simply S(x)) is the set of size d(x) defined by

Sy (x) ={i:w(xy) =i for some y ~ x}.

We write s, (x) for | S, (x)| (we simply write s(x) when it is clear that the edge-color-
ing 7 is being discussed). The color classes under  are the k sets

E; = Ei(n) ={y:y € E(G), n(y) = i}.

The sets E; partition E{G) (in much the same way as the color classes V;, defined for
vertex coloring, partition V(G)).

It is clear that it requires d(x) colors to color the edges at x, so x '(G) > A(G).
However we can say rather more. To do this we introduce a slightly more general type
of coloring called a painting, and we extend the preceding notations to paintings. A
k-painting of G is any way of allocating k colors to the edges of G. There might be
more than one edge in a given color touching a vertex x. If & is a k-painting but not
necessarily an edge-coloring, then s(x) < d(x). A painting is an edge-coloring if and
only if s(x) = d(x) for all x. The order |m| of a painting 7 equals the sum »_ s(x)
over all vertices x; 7 is a maximal k-painting if |7 | equals the maximum for the value
of k.



7.4 Edge-Colorings 105

Lemma 7.9. If G is a connected graph other than an odd cycle, then there is a 2-
painting of G in which s(x) = 2 whenever d(x) > 2.

Proof. First, suppose G is Eulerian. If G is an even cycle, the obvious one-factorizat-
ion provides an appropriate painting. Otherwise G has at least one vertex x of degree
4 or more. Select an Euler walk with start-finish vertex x whose consecutive edges are
Y1, ¥2, - - - » Ye. Then the painting

Er=1{y,ys...}5, E2=1{y,y4...}

has the required property, because every vertex (including x) is internal to the walk.
If G is a path of odd length, say x;x,x3 .. ., then a suitable painting is

Ey = (x1x2, x3x4, ...}, Eo = {xpx3, x4%5, ...}

Finally, suppose G is not Eulerian but is not an odd path. Construct a new graph H
by adding a vertex y to G and adding an edge yz whenever z is a vertex of odd degree.
Then H is Eulerian, by Theorem 2.6. Moreover H will not be an odd cycle (if it were,
then G would be an odd path). Carry out a painting of H using the Euler walk, and
then restrict this painting to G. It is easy to see that if x has degree 2 or greater in G,
then the Euler path traverses x at least once using two edges that do not touch y, and
those edges will receive different colors. O

Lemma 7.10. Suppose 7 is a maximal k-painting of G and suppose vertex x lies on
two edges of color 1 and no edges of color 2. Then the component of E| U E, that
contains x is an odd cycle.

Proof. Suppose E; U E; is not an odd cycle. Then by Lemma 7.9 it has a 2-coloring
p in which every vertex of degree at least 2 lies on edges of both colors. Replace E;
and E; in by the two color classes of p, and denote the new k-painting by ¢. Then

Se(X) = sz (x) + 1,

and
5o (y) = 5. ()

forevery y # x. So |o| > |m|, which contradicts the maximality of 7. ]
Theorem 7.11. If G is a bipartite graph, then

x'(G) = A(G).
Proof. Suppose G is a graph for which x'(G) > A(G). Let 7 be a maximal A-
painting of G, and select a vertex x for which s(x) < d(x). (Such a vertex x must
exist because no painting with fewer than x’(G) colors can be an edge-coloring.)

Then x must satisfy the conditions of Lemma 7.10. Consequently G contains an odd
cycle, so it is not bipartite. U

Corollary 7.12. Every regular bipartite graph has a one-factorization.

The following theorem is due to Vizing [119] and was independently discovered
by Gupta [58].
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Theorem 7.13. For any graph G,
A(G) < x'(G) < A(G) + 1.

Proof. The edges incident with a vertex of maximum degree require A(G) colors,
$0 A(G) < x'(G). Let us assume that x '(G) > A + 1. Select a maximal (A + 1)-
painting 7 of G and a vertex x such that s(x) < d(x). (Again, such a vertex x must
exist because no painting with fewer than x '(G) colors can be an edge-coloring.)
There must exist colors ¢ and ¢ such that x is incident with two edges of color ¢,
and no edge of color ¢y.

Let xy; be an edge of color ¢. Since d(y;) < A + 1, there is some color ¢; that
is not represented at y;; define a new painting m; that is identical to 7 except that
1 (xy)) = c;. Clearly there must be an edge x that is of color ¢, in 7, for otherwise
71 would be a (A 4 1)-painting of greater order than . Now select a vertex y, such
that 1 (xy2) = ¢, and select a color ¢3 missing at y, in ;. Construct a painting 7,
from ; by changing the color of xy; to c3. Again x must have been incident with an
edge of color ¢; in 775, and 7, is maximal. Continuing this process we obtain sequences
7wy = m, Ty, ... of maximal paintings, ¢, ¢z, ... of colors and y|, ys, ... of vertices
such that

mi(xy) =c¢i, wixy) =cip, m@) =mo(2)if 7 #xy;

and no edge incident with y; has color ¢; 4 in ;.

The sequence cy, ¢z, ... must eventually contain repetitions, because the set of
colors incident with x is the same in each 7;, and the set of colors incident with x is
finite. Say ¢, is the first such repetition: g is the smallest integer such that, for some p
less than ¢, ¢, = ¢4.

Consider the maximal paintings 7,_; and 7r,_;. By Lemma 7.10, the edges receiv-
ing colors ¢p and ¢, in w,_ form a cycle in G, say C, that contains x, and the edges
receiving colors ¢g and ¢, (= ¢,) in 7,y form a cycle in G, say C’, that also contains
x. These cycles are different, because xy,, is in C but not in C'. Now m,_ differs from
7,1 only in the colors assigned to edges xy,, Xyp415 - - ., XYq—1, and only the first of
these is in C. So all the other edges of C must belong to C’; in particular, y,, is a vertex
of C’. On the other hand, the only edge incident with y, that receives different colors
in 7,_; and y,_1 is xy,, so y, must have degree 1 in C’. So C’ is not a cycle — a
contradiction. O

Graphs that satisfy x'(G) = A are called class I; those with x '(G) = A + 1
are called class 2. Clearly, for regular graphs, being class 1 is equivalent to having a
one-factorization. The class 2 graphs include the odd-order complete graphs and the
odd cycles.

Exercises 7.4

7.4.1 Prove that x '(K,) = vif visodd and x '(K,) = v — 1 if v is even.
A7.4.2 Up to isomorphism, there are two graphs with five vertices and eight edges. Prove
that each is class 1.
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A7.4.3 Prove that every graph with five vertices and seven edges has edge-chromatic
number 4.
7.4.4 Up to isomorphism, there are two graphs with five vertices and eight edges. Prove
that each is class 1.
7.4.5 Prove that if P is a color class in an edge-coloring of a graph G, then

P < PV(GNJ
<| 55|

1A7.4.6 Suppose G is a graph with km edges, where k > x’(G). Prove that G can be

factored into k factors, each of which is a matching with m edges. [22]

7.4.7 Prove that all trees are of class 1.

7.4.8 Prove that every nonempty regular graph with an odd number of vertices is of
class 2.

A7.4.9 Find the edge-chromatic numbers of:

(i) the Petersen graph P;
(i) the graph derived from P by deleting one edge;
(iii) the graph derived from P by deleting one vertex.

7.4.10 A k-edge-colorable graph is called uniquely k-edge-colorable if every k-edge-
coloring results in the same set of color classes. Prove that every uniquely 3-edge-
colorable 3-regular graph is Hamiltonian.

7.4.11 Suppose 6(G) > 2. Show that G has a (§(G) — 1)-painting in which every color
is used at least once at every vertex. [58]

7.5 Class 2 Graphs

In general, class 2 graphs appear to be relatively rare, and for that reason we shall
investigate some properties of class 2 graphs.

Theorem 7.14. [8] If G has v vertices and e edges and
e> 4] AG), (7.4)

then G is class 2.

Proof. Suppose G satisfies (7.4) and is class 1. Select a A(G)-coloring of G. Obvi-
ously no color class can contain more than | 5 | edges, so

e=) |P|<|3]AG),

which is a contradiction. O

The edge e is called edge-critical (with respect to edge-coloring) if
x'(G—e) < x'(G).

An edge-critical graph is defined to be a connected class 2 graph in which every
edge is edge-critical. An edge-critical graph of maximum degree A is often called A-
edge-critical. The importance of this index follows from the obvious fact that every
class 2 graph contains a A-edge-critical subgraph. In fact we can say more:
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Theorem 7.15. If G is a graph of class 2, then G contains a k-edge-critical subgraph
for each k such that2 < k < A(G).

Proof. We prove that any class 2 graph G contains an edge-critical graph G, with
A(G1) = A(G). We then prove that G| contains a class 2 graph H with A(H) = k
for each k satisfying 2 < k < A(G). Then H contains a k-edge-critical graph Hi, and
H, is of course a subgraph of G. If we simply write A, we shall mean A(G).

First, suppose G is not edge-critical. Then there will be an edge e; such that

x'(G —e) = x'(G).

Write G| = G —e;. Clearly A(G) = A, and G is class 2. Either G is edge-critical
or we can delete another edge, say e,, and continue. Eventually the process must stop
because of finiteness, so eventually a A-edge-critical subgraph is constructed.

Now consider G;. Let k be any integer satisfying 2 < k < A. Select any edge
uv in G1, and let  be a A-edge-coloring of G| — uv. (Such a 7 exists because G
is edge-critical.) Clearly S(x) U S(v) must equal {1, 2, ..., A} — if any color were
missing we could color uv in that color, and A-color G;. But |S(u)| < A because
u had degree at most A in G and therefore degree at most A — 1 in G ; so there is
some color, say i, not in S(u), and similarly there is some color, say j, not in S(v),
and j # i. Without loss of generality we can assume i = 1 and j = 2. Then write H
for the subgraph

H=PUPU---U P U{uv}.

Clearly x'(H) = k + 1:if H could be colored in k colors, then G, could be colored
in A. But no vertex has degree greater than & in H: if x is not u or v, then it lies on at
most one edge in each of Py, Py, ..., P, while u lies on at most k — 1 of those (none
in P;) plus uv, and similarly for v. So A(H) < k. It follows from Theorem 7.13 that
A(H) = k, x'(H) = k+ 1, and H is the required class 2 subgraph of maximum
degree k. |

In the discussion of A-edge-critical graphs, the vertices of degree A are of special
significance. Such vertices are called major. A vertex x for which d(x) < A is called
minor.

Suppose xy is an edge-critical edge in a class 2 graph G, and = is a A-coloring
of G — xy. We define a (7, x, y)-fan, or simply fan, in G to be a sequence of distinct
edges xy1, xya, ..., Xy, such that the color on edge xy; does not appear in S(y;-1),
where, in particular, y, is interpreted as y. We write F(x) for the set of all y; that
appear in any (7, x, y)-fan. In the following proofs it is convenient to write 7 (v) for
the complement of S(v), so T(v) is the set of all colors not represented at vertex v,
and we define P to be the set of all colors not represented on edges from x to F(x).

Lemma 7.16. The set P is disjoint from T (y) and from each T (z), z € F(x).

Proof. Suppose i € T(y). There must be an edge xz that is colored i, because oth-
erwise we could extend 7 to a A-coloring of G by setting m(xy) = i. Now xz is a
(one-edge) fan, soi ¢ P. So P and T (y) are disjoint.

Suppose P and T (z) have a common element i. Let us denote a fan containing z
by
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x)’l’x)’Z’ ---vxyny

where y, = z, and say mw(xy;) = i;. If i € T(x), then one could carry out the
recoloring

m(xy) =i, w(xy) =iz, ..., WXYn_1) = in, Wxyp) =1,

with other edges unchanged. This yields a A-coloring of G. Butif i ¢ T (x), there is
some edge xw such that 7 (xw) = i, and i belongs to no fan. However

XY, XY2y ey XYp, XW

is clearly a fan — a contradiction. So P is disjoint from each 7 (z). O

Lemma 7.17. Suppose i € T(x) and j € T(z), where z € F(x) U {y}. Thenx and y
belong to the same component of P; U P;.

Proof. In the case z = y this is easy, because otherwise we could exchange colors i
and j in the component that contained x and then color xy with color j. So we assume
z € F(x).

We call a fan xy;, xys, ..., xy, deficient if there exist colors i and j such that
i € T(x), j € T(y,)andx and y, belong to different components of P; U P;. Among
all deficient fans, consider one for which » has the minimum value. For the relevant
i and j, exchange colors i and j in the component containing x. The result is a A-
coloring of G — xy in which y, is still a member of F(x) — the minimality of the
fan ensures that it is still a fan in the new coloring — and j belongs to P N T(y,),
contradicting Lemma 7.16. O

Lemma 7.18. The sets T (z), where z € F(x) U {y}, are pairwise disjoint.

Proof. Suppose j € T(v) N T(w), where v and w are in F(x) U {y}, and select
i € T(x).(Since |T(x)| =d(x) — 1 < A, such a color i exists.) Then x, v and w all
belong to the same component of P; U P;. But the components of this graph are all
paths and cycles. Since x, v and w are all of degree 1 in P; U P;, we must have a path
with three endpoints, which is impossible. d

Theorem 7.19. Suppose xy is an edge-critical edge in a class 2 graph G. Then x is
adjacent to at least A — d(y) + 1 major vertices other than y.

Proof. In the preceding notation we have, from the lemmas, that P, T(y) and the
T(z),z € F(x), are pairwise disjoint. Now P has A — |F(x)| elements, T(y) has
A — d(y) + 1 (since the edge xy received no color), and each T(z) has A — d(2).
Since these are disjoint sets of colors,

A= [PI+ITWI+ Y, IT@!
zeF(x)
=20 - [F@)|—d) +1+ Y (A-d@)

zeF(x)

whence
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A—dy)+1< ) (1+d@) - A).
zeF(x)
Since none of the terms on the right-hand side can be greater than 1, and all are inte-
gral, it follows that at least A —d(y) + 1 of them must equal 1. So at least A —d(y)+1
of the vertices z in F (x) satisfy d(z) = A, and are major. a

Corollary 7.20. In an edge-critical graph, every vertex is adjacent to at least two
major vertices.

Proof. In the notation of the theorem, either d(y) < A (and A — d(y) +1 > 2) or
d(y) = A (and x is adjacent to at least one major vertex other than y and also to y).

O

If we take x to be a major vertex in the preceding corollary, we see that every
edge-critical graph contains at least three major vertices. If G is any class 2 graph,
then considering the A(G)-edge-critical subgraph we see:

Corollary 7.21. Every class two graph contains at least three major vertices.
Corollary 7.22. An edge-critical graph G has at least A(G)—8(G)+2 major vertices.

Proof. In the theorem, take x to be a major vertex and y to be a vertex of degree §(G).

]

Theorem 7.19 and the corollaries were essentially proven by Vizing [119] and are
collectively known as Vizing’s Adjacency Lemma.

Corollary 7.23. A A-edge-critical graph on v vertices has at least —2A—” major vertices.

Proof. Let us count the edges adjacent to the major vertices. There are at least 2v, by
Corollary 7.20, but there are exactly A per major vertex. O

Corollary 7.24. Suppose w is a vertex of a graph G that is adjacent to at most one
major vertex, and e an edge containing w. Then
A(G —e) =AG) = x'(G~e) = x'(G)
and )
AG —w) = A(G) = x (G —w) = x'(G).

Proof. G is either class 1 or class 2. We treat the two cases separately. If G is of class
1, then
A(G) = x'(G) 2 x'(G —e) 2 A(G — e) = A(G)
and therefore x (G — e) = x(G). Similarly, x (G — w) = x(G).
If G is of class 2, then by Theorem 7.15, G contains a A(G)-edge-critical sub-
graph, say H. By Corollary 7.23, w cannot be a vertex of V(H). So H is a subgraph
of G — w, and

1+ AG) = x'(H) < x'(G—w) < x'(G)=1+A(G),
s0 x (G — w) = x'(G). Similarly, x (G — e) = x '(G). [:l

We will later need to use the idea of the core of a graph. If G is a graph of maximal
degree A, the core G A is the subgraph induced by the set of all vertices of degree A.
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Lemma 7.25. Suppose the core G 5 of G satisfies the following description.
(1) V(GA) = U UV UW, adisjoint union into three parts, where
U={uyuy,...;uptandV ={v,v2,...,v,}.
(ii) Wheneveri < j, there is an edge (u;, v;).
(iii) Every other edge joins a member of V to a member of VU W.
Then G is class 1.

The proof is left as an exercise.

Exercises 7.5

H7.5.1 Verify that the following graph is 3-edge-critical.

7.5.2 Suppose G is a A-edge-critical graph and vw is an edge of G. Prove that d(v) +
dw) > A+2.
A7.5.3 Show that any edge-critical graph is 2-connected.
7.5.4 Suppose G has maximal degree A. Prove that G\ G 4, the graph obtained by delet-
ing the edges of G, from G, can be A-colored.
7.5.5 Prove Lemma 7.25. [26]
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Planarity

8.1 Representations and Crossings

The two diagrams in Figure 8.1 represent the same graph, a K, with vertices a, b, c
and d. As diagrams they are quite different: in the version K4 (1), the edges ac and bd
cross; in K4(2) there are no crossings. We shall refer to the two diagrams as different
representations of the graph in the plane. The crossing number of a representation is
the number of different pairs of edges that cross; the crossing number v(G) of a graph
G is the minimum number of crossings in any representation of G. A representation
is called planar if it contains no crossings, and a planar graph is a graph that has a
planar representation. In other words, a planar graph G is one for which v(G) = 0.
Figure 8.1 shows that v(K4) = 0.

KD K,2)

Fig. 8.1. Two representations of K4

There are many applications of crossing numbers. An early use was in the design
of railway yards, where it is inconvenient to have the different lines crossing, and it is
better to have longer track rather than extra intersections. An obvious extension of this
idea is freeway design. At a complex intersection, fewer crossings means fewer expen-
sive flyover bridges. More recently, small crossing numbers have proven important in
the design of VLSI chips; if two parts of a circuit are not to be connected electrically,
but they cross, a costly insulation process is necessary.

In 1944, during the Second World War, Turan (see [60]) was forced to work in a
brick factory, using hand-pulled carts that ran on tracks to move bricks from kilns to
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stores. When tracks crossed, several bricks fell from the carts and had to be replaced by
hand. The tracks were modeled by a complete bipartite graph with one set of vertices
representing kilns and the other representing stores, so to minimize the man-hours lost
in replacing bricks, it was necessary to find v(K,, ,) (and find a representation of K,,, ,
that realized the minimum number of crossings). This problem is called “Turén’s brick
factory problem,” and is still unsolved. The best-known bound, which is conjectured
to be the best possible, is given in Theorem 8.1.

Theorem 8.1. The crossing number of K, , satisfies

W(Kna) < | 5 | L’"T_IJ H L” - IJ . @®.1)

For a proof, see Exercise 8.1.8.
Kleitman [77] proved that equality holds in (8.1) when m < 6. In particular,

v(Ken) = 6 L%J V > IJ : (8.2)

The crossing numbers of complete graphs also present difficulties. A very simple
(but very bad) upper bound is easily found. If the v vertices of K, are arranged in
a circle, and all the edges are drawn as straight lines, then every set of four vertices
contributes exactly one crossing. So

v(K,) < (Z)

More sophisticated constructions (see, for example, [60]) can be used to prove

Theorem 8.2. vl v—2 v—3

v
5“’2“2“‘2J'

It is easy to calculate the crossing numbers of some small graphs. For example, the
crossing number of any tree is 0. To see this, we show how to draw a tree in the plane
using ordinary Cartesian coordinates. Select any vertex x of the tree, and represent it
by the point with coordinates (0, 0). Suppose the vertices adjacent to x are yg, y2, - . ..
They are represented by (0, 1), (1, 1), (2, 1), .. .. If there are k vertices other than x
adjacent to y;, they are represented by (i, 2), (i + %, 2), (i + % 2, ..., 0+ %, 2).
This process of subdividing continues and provides a representation of the tree with
no crossings.

To prove that v(Ks) = 1, we start by considering smaller complete graphs. The
representation of K3 as a triangle is essentially unique: one can introduce a crossing
only by a fanciful, twisting representation of one or more edges. If the K3 with vertices
a, b, ¢ is drawn as a triangle, we obtain a representation of K4 by introducing a new
vertex d and joining it to the other three. If it is inside the triangle, we get the repre-
sentation shown as K4(2) in Figure 8.1; if it is outside, it is easy to draw the edges ad,
bd, cd so that they do not cross the triangle: for example,

1
v(Ky) < ZL
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This representation K,(3) is essentially equivalent to K4(2), with the vertices re-
labeled. (Remember, the shape of the edges is unimportant; only the connections mat-
ter.). So any planar representation of K5 can be obtained by introducing another vertex
into K4(2). If a new vertex e is introduced inside the triangle abd, then the represen-
tation of ce must cross one of ab, ad or bd. Similarly, the introduction of e inside
any triangle causes a crossing involving the edge joining e to the vertex that is not on
the triangle. (The “outer area” is considered to be the triangle abc.) So v(Ks) > 1. A
representation with one crossing is easy to find, so v(Ks) = 1.

Another graph with crossing number 1 is K3 3; proving this is left as an exercise.

Suppose G is planar. If a new graph were constructed by inserting a new vertex
of degree 2 into the middle of an edge (dividing an edge), or by deleting a vertex of
degree 2 and joining the two vertices adjacent to it (eliding a vertex), that new graph
will also be planar. Graphs that can be obtained from each other in this way are called
homeomorphic.

Since K5 and K3 3 are not planar, it follows that a graph having either as a subgraph
could not be planar. Moreover, a graph that is homeomorphic to one with a subgraph
homeomorphic to Ks or K33 cannot be planar. In fact, Kuratowski [82] proved that
this necessary condition for planarity is also sufficient.

Theorem 8.3. G is planar if and only if G is homeomorphic to a graph containing no
subgraph homeomorphic to Ks or K3 3.

The proof can be found, for example, in [17] or [66].

Exercises 8.1

H8.1.1 Prove that a graph G is planar if and only if every block of G is planar.
8.1.2 Prove that v(K| ,) = v(K3,) = O for any n.

A8.1.3 Prove that v(K33) = 1.
8.1.4 What is U(K3,4)?

A8.1.5 Prove that the Petersen graph is not planar. What is its crossing number?
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8.1.6 Which of the following graphs are planar?

% (n)

(i) a (iv)
| %

c

8.1.7 Suppose the graph G has seven or fewer vertices. Prove that either G or its com-
plement G is planar.

8.1.8 Consider the complete bipartite graph K, ,. In a Cartesian coordinate system,
select | %] points on the positive x-axis, [5] points on the negative x-axis, | 5]
points on the positive y-axis and [3] points on the negative y-axis. The figure
formed by joining all pairs with one point on the x-axis and one on the y-axis is a
representation of K, ,,. Use this representation to prove Theorem 8.1.

[

8.2 Euler’s Formula

In each plane representation of a connected graph, the plane is partitioned into regions
called faces: a face is an area of the plane entirely surrounded by edges of the graph,
that contains no edge. It is convenient to define one exterior face, corresponding to
the plane outside the representation. For example, the exterior face is abyz in Figure
8.2(a), and abxyz in Figure 8.2(b). The cycle abxyz is not a face in Figure 8.2(a),
because it contains the edge bz.

(a) (b)

Fig. 8.2. Different faces in different representations
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Special care must be taken with bridges. The representations shown in Figure 8.3
have exterior faces abcx, abcxyz and abx respectively, and abcx is a face in the third
case. A tree has exactly one face.

The edges touching a face are said to bound that face, and are collectively called
the boundary. It is common to think of the boundary as a cycle, but in the case of
bridges this need not be true. In particular, any cycle must have at least three edges,
but there are three connected graphs (K, K, and P;) with faces having boundary
smaller than three edges.

a b a c y a b
c x b X z c
Fig. 8.3. Graphs with bridges

The following theorem was proved by Euler in the eighteenth century.

Theorem 8.4. Suppose that a plane representation of the connected planar graph G
has v vertices, e edges and f faces. Then

v—e+ f=2 8.3)

Proof. By induction on e. It is easy to see that the theorem holds when e is small: if
e = 0, then the graph must be K|, whichhasv =1land f = 1;ife =1ore =2, we
have a path with e + 1 vertices and one face. Now assume the theorem is true for all
graphs with E or less edges, and suppose e = E + 1.

IfGisatree,thenv=¢+ land f = |, so

v—e+ f=e+l—e+1=2

Otherwise G contains a cycle. Select an edge that lies in this cycle. That edge will lie

separating two faces (one possibly being the exterior face). If it is deleted, one obtains

a graph with one fewer edge and one fewer face than the original. It has E edges so,

by induction, equation (8.3) is satisfied; in terms of the original graph,
v—(e—-1D+(f-1) =2,

and (8.3) follows. O

Corollary 8.5. All plane representations of the same connected planar graph have the
same number of faces.

Proof. Suppose a graph has v vertices and e edges; suppose it has two plane repre-
sentations, with f and f’ faces respectively. Then
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v—e+f=2=v—e+f,
so f = f. O

Because of Corollary 8.5, one speaks of the number of faces of a connected planar
graph, instead of the number of faces in a particular representation of it.
In a planar graph there are various restrictions on the values of v, e and f.

Theorem 8.6. Suppose a connected planar graph G has v vertices, e edges and f
faces, and no component has fewer than three vertices. Then

3f < 2e. (8.4)

Proof. The result is true for P, (¢ = 2, f = 1) so we can assume each face of G has
at least three edges. The edge-face adjacency matrix A of G is the e x f matrix with
entries ¢;; defined by

0 = 1 if the i-th edge lies in the boundary of the j-th face,
7] 0 otherwise.

Let ¢ be the sum of all the entries of A. Each edge bounds at most two faces, so the
sum of each row is at most 2. There are e rows, so ¢ < 2e. As each face has at least
three edges in its boundary, 3 f < o. The result follows. 0

Theorem 8.7. If a connected planar graph has v vertices and e edges, where v > 3,
thene < 3v —6.

Proof. Suppose the graph has f faces. By Theorem 8.6, 3f < 2e,s0 f < 2{ By
Theorem 84, v—e+ f =2,50v—e+ 2{ > 2. But this implies that 3v — e > 6, and
the theorem is proved. g

Example. The complete graph, K, is not planar for v > 5. If v > 5, then K, contains
Ks as a subgraph. Hence it is sufficient to show that K5 is not planar. We already
saw this fact in the preceding section, but the following neat proof is now available:
Suppose Ks is planar. We have v = 5, ¢ = 10, so that e > 3v — 6, contradicting
Theorem 8.7.

One can refine this example. Suppose G, a graph with v vertices and e edges, can
be drawn with ¢ crossings. Suppose you replace each crossing by a new vertex: in
other words, if edges xy and z¢ cross, introduce a new vertex w and replace xy and
zt by edges xw, wy, zw and wt. The new graph has v + ¢ vertices and e + 2c edges
and is planar, so e + 2¢ < 3(v +¢) — 6, and ¢ > 6 + e — 3v. For example, K has 6
vertices and 15 edges, so ¢ > 3. K¢ can be drawn with 3 crossings, so v(Kg) = 3.

The following useful consequence of Theorem 8.7 is left as an exercise (see Exer-
cise 8.2.4).

Corollary 8.8. Every planar graph has at least one vertex of degree smaller than 6.
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Exercises 8.2

8.2.1 Find the values of v, e and f for the following graphs, and verify Euler’s formula
for them.

) (ii) (iii)

A
W 1

H8.2.2 Prove that a connected planar graph with v vertices, v > 3, has at most 2v — 4
faces.
8.2.3 Prove that if a connected planar graph has v vertices, v > 3, and every face in
a certain plane representation has four edges, then the graph has 2v — 4 edges.
Hence prove:
(i) If a planar graph with v vertices contains no triangles, then it has at most
2v — 4 edges;
(ii) The complete bipartite graph K, , is not planar whenm > 3 and n > 3.
A8.2.4 Suppose G is a graph with v vertices and e edges, and suppose every vertex of G
has degree at least 6. Prove that
e > 3.
Hence prove that every planar graph contains a vertex of degree at most 5.
8.2.5 Prove that in a planar bipartite graph with v vertices, ¢ edges and f faces,

2f <e.
8.2.6 Verify that K can be drawn with 3 crossings.

8.3 Maps, Graphs and Planarity

By a map we mean what is usually meant by a map of a continent (showing countries)
or a country (showing states or provinces). However we make one restriction. Some-
times one state can consist of two disconnected parts (in the United States, Michigan
consists of two separate land masses, unless we consider man-made constructions such
as the Mackinaw Bridge). We exclude such cases from consideration.

Given a map, we can construct a graph as follows: the vertices are the countries or
states on the map, and the two vertices are joined by an edge precisely when the cor-
responding countries have a common border. As an example, Figure 8.4 shows a map
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of the mainland of Australia, divided into states and territories, and its corresponding
graph.

Suppose two states have only one point in common. This happens for example,
in the United States, where Utah and New Mexico meet at exactly one point, as do
Colorado and Arizona. We shall say that states with only one point in common have
no border, and treat them as if they do not touch.

Fig. 8.4. The map and graph of mainland Australia

It is always possible to draw the graph corresponding to a map without crossings.
To see this, draw the graph on top of the map by putting a vertex inside each state and
joining vertices by edges that pass through common state borders so the graph of any
map is planar. Conversely, any planar graph is easily represented by a map. Therefore
the theory of maps (with the two stated restrictions) is precisely the theory of planar
graphs.

In 1852, William Rowan Hamilton wrote to Augustus de Morgan concerning a
problem that had been posed by a student, Frederick Guthrie. (Part of the correspon-
dence is quoted in [14].) Guthrie said: cartographers know that any map (our defini-
tion) can be colored using four or less colors; is there a mathematical proof? (Guthrie
[59] later pointed out that the question had come from his brother, Francis Guthrie.)

Kempe [75] published a purported proof in 1879. It was thought that the matter
was over, but in 1890 Heawood pointed out a fallacy in Kempe’s proof. (We explore
the problem in Exercise 8.3.3.) Heawood did however repair the proof sufficiently to
prove the following weaker result.

Theorem 8.9. [70] Every planar graph can be colored in five colors.

Clearly Theorem 8.9 is the five-color analog of Guthrie’s four-color map problem.

Proof. We assume the theorem is false, so some planar graphs require six colors.
From these, select one that has the minimum number of vertices and has no isolated
vertices; call it G. By Corollary 8.8, there is a vertex x in G whose degree is at most 5.
G —x has fewer edges than G, so it is 5-colorable. Select a 5-coloring & of G. Observe
that every color used in § must be represented among the neighbors of x: if color ¢
were missing, one could set £(x) = ¢ and thus extend £ to a S-coloring of G, which is
impossible. So d(x) = 5. We shall write x;, x2, x3, x4, x5 for the five vertices adjacent
to x in G, and assume £(x;) = ¢;. Without loss of generality we shall assume that the
vertices X1, Xa, X3, X4, X5 occur in order around x in some plane representation of G,
as shown in Figure 8.5(a).



8.3 Mapls, Graphs and Planarity 121

Pl 3 P24

Fig. 8.5. A neighborhood used in the 5-color proof

Consider the induced subgraph G;; of G whose vertex-set consists of all vertices
that receive color ¢; or color c¢; under &. If x; and x; lie in different components
of G;, then one could exchange colors among all the vertices in one component —
say the component containing x; — and the result would still be a 5-coloring of G.
However there would be no vertex of color ¢; adjacent to x, so the new coloring could
be extended to a 5-coloring of G by allocating ¢; to x. This is impossible. Therefore
x; and x; must lie in the same component of G;;, and there must exist a path P;; from
x; to x; in G, all of whose vertices receive either ¢; or ¢; under &.

Now consider the paths Pj3 and Py4. It is clear from Figure 8.5(b) that these two
paths must cross. But the only way two paths in a plane representation can cross is at
a common vertex, which is impossible because the vertices in P53 do not receive the
same colors as those in Py4. O

After Heawood’s paper appeared, there was renewed interest in the 4-color prob-
lem. Because it was easy to state and tantalizingly difficult to prove, it became one
of the most celebrated unsolved problems in mathematics, second only to Fermat’s
Last Theorem. In 1976, Appel and Haken [3] finally proved that any planar graph —
and therefore any planar map — can be colored in at most four colors. Their proof
involved computer analysis of a large number of cases, so many that human analysis
of all the cases is not feasible. We state their theorem as

Theorem 8.10. Every planar graph can be colored using at most four colors.

For details of the proof, see [4] or [106].

Exercises 8.3

8.3.1 Find the graph of the mainland provinces and territories of Canada. (Treat Labrador
as a province.) How many colors does it need?
A8.3.2 Use the result of Exercise 8.2.4 to prove that any planar graph can be colored in
at most six colors (without using any results from this section).
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8.3.3 In Kempe’s attempted proof of the four color theorem, it is assumed that G is
a minimal planar graph requiring five colors, and that x is a vertex of degree 5.
A 4-coloring & of G — x is chosen. Kempe shows that if the coloring cannot be
extended to a 4-coloring of G, it must happen that the neighbors of x receive all
four colors under &, and are arranged as in Figure 8.6. Vertex x; receives color ¢;;
both x4 and y, receive c4. G; denotes the subgraph induced by vertices receiving
colors ¢; or ;.

Fig. 8.6. A neighborhood in Kempe’s proof

Kempe argues that there must be a path Py, from x| to x; in G1, or else one could
interchange colors ¢; and ¢; in the component of G, that contains x;, and then
color x with ¢;. Similarly there must be a path P53 from x| to x3 in G 3.

By planarity, there can be no path from x; to y4 in G4, because such a path would
need to cross Py3. So one can exchange colors ¢; and ¢4 in the component of G4
that contains y4. Similarly, one can exchange colors ¢3 and ¢4 in the component of
G 34 containing x4. Now x can receive color cy.

What is wrong with this argument?
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Labeling

9.1 Introduction; Graceful Labelings

In general, a labeling (or valuation) of a graph is a map that carries some set of graph
elements to numbers, most often to the positive or nonnegative integers. The most
common choices of domain are the set of all vertices and edges (such labelings are
called rotal labelings), the vertex-set alone (verfex-labelings), or the edge-set alone
(edge-labelings). Other domains are possible.

We shall call two labelings of the same graph automorphism-equivalent if one can
be transformed into the other by an automorphism of the graph.

Rosa ([102, 78}) introduced the idea of B-valuations, or as they are now called
graceful labelings. A graceful labeling of a graph G is a one-to-one mapping y from
the set of all vertices to the integers S¢ = {0, 1,..., |E(G)|} such that every non-
zero member of S occurs as the difference between the labels on the endpoints of an
edge. That is, if we extend y to edges by defining y (xy) = |y (x) — y(¥)|, then every
member of 1,2, ..., |E(G)|} arises (exactly) once among the edge-labels. A graph is
called graceful if it has a graceful labeling.

Figure 9.1 shows a graceful labeling of Kj4. In the right-hand diagram, the corre-
sponding edge-labels are shown.

Fig. 9.1. Graceful labeling of K4

If y is a graceful labeling on G, define another labeling y* by
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Y (x) = |E(G)| — y(x)

for every vertex x. Then y* is also graceful; in fact,  and y* induce the same edge-
labeling. y* is called the complementary labeling or dual of y. We formally define
two graceful labelings y and § to be equivalent if § is automorphism-equivalent to
either y or y*.

When testing a small graph with e edges to see whether it is graceful, first notice
that there must be adjacent vertices labeled 0 and e in order for edge-label e to occur.
Similarly there must be an edge fromO0toe — 1 or from 1 to e.

0 0 5 5 0

Fig. 9.2. Finding a graceful labeling of K4 — ¢

Example. We shall find a graceful labeling of K4 — e. This graph has two types of
edge. Initially there are three ways of labeling an edge with 0 and 5, as shown in
Figure 9.2. However the third is clearly dual to the second.

In order to achieve edge-label 1 in the first case, one of the remaining vertices must
be labeled 1 or 4. Assume the vertex marked * is labeled 1 (the 4 case is dual). Then
labeling the other vertex 3 results in a graceful labeling.

The reader should check that the partial labeling in the second part of the diagram
can also be completed.

Theorem 9.1. There is no graceful labeling of K,, when v > 4.

Proof. Suppose there is a graceful labeling of K,,, where v > 5. Let S be the set of
vertex-labels used in the labeling. We write e for %v(v — 1), the number of edges in
K. It causes no confusion if we use the symbol x for the vertex that receives label x.

The vertex labels must include 0 and ¢ and (to achieve edge-label 1) either 1 or
e — 1; the choices {0, 1, ¢} and {0, ¢ — 1, e} lead to dual labelings, so we can assume
labels {0, 1, e} C S.

There can be no vertex labeled 2, for if there were, two edges would receive label
1: 2~ 1and ! ~ 0. Also label ¢ — 1 is impossible: we would have ¢ ~ (¢ — 1) and
1 ~ 0. So (e — 2, e) is the only possible edge with label 2, and {0, 1,e — 2, ¢} C S.

These vertex labels induce edges labeled 1,2,e — 3,¢ — 2,e — 1 and e. Since
e > 6, edge label e — 4 is still needed. An argument similar to those above shows that
the only suitable new vertex label is 4, and the edge labels are

1,2,3,4,¢e—6,¢e—4, ¢e—3,¢e—-2,e—1, e.

When e > 10, label e — 5 is not in this list. To obtain ¢ — 5 we need vertex-label
3,5,e—5,e—4ore— 1. But each of these possibilities leads to a duplicated edge-
label: 3—~0=3,5—1=4,(¢e-5~-1=4,e—(e—4)=4,e—(¢e—1)=1.Sono
labeling is possible. O
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Theorem 9.2. Suppose G is an Eulerian graph with e edges. If G is graceful, then
e = 0or3(mod 4).

Proof. Suppose y is a graceful labeling of G. Write z;, 25, .. ., z. for the edges of G;
and denote the endpoints of z; by x; and y;, where y(x;) > y(¥;). Then

Yoy =)y =Y v
i=1 i=1 i=l
= iy(x,-) +Y v =2) vy
i=1 i=1 i=1

In the list x1, x2, . .., Xe, ¥1, ¥2, . . ., ¥ the number of times each vertex occurs is
equal to its degree. Since G is Eulerian, each of these degrees iseven. So Y ;_, ¥ (x;)+
Y i_1 ¥ () is even. Therefore Y _, y(z;) is even.

On the other hand, since y is graceful, ) ;_, y(z;) is the sum of the first e positive
integers, %e(e — 1). This is even only if e = 0 or 3(mod 4). a

There has been considerable interest in graceful labelings of trees; Kotzig
(quoted in [102]) conjectured that all trees are graceful. However, this conjecture is
far from settled. All stars and paths are graceful (see the exercises).

A caterpillar is a tree for which, if all leaves (vertices of degree 1 and their asso-
ciated edges) were removed, the result is a path.

Theorem 9.3. [102] All caterpillars are graceful.

Proof. Suppose T is a caterpillar with v vertices and H is the path formed from T by
deleting all the leaves. Select an endpoint of H (a vertex of degree 1 in the path) and
name it xo; the vertex adjacent to it in H is called x;, and so on along H. Write X for
the set of all vertices of T whose distance from xj is even (including x, itself), and ¥
for the set of vertices of odd distance. Every edge connects two vertices, one in X and
the otherin V.

Assign label v — 1 to x¢. Label the neighbors of xo with 0, 1,2, ..., where the
neighbor receiving the greatest label is x, the neighbor of x4 in H. Assign labels
v—2,v—3,..., to the neighbors of x; other than xg; the largest label goes to x,.

Continue as follows: after x,; receives its label, assign increasing integer labels to
its neighbors other than xy;_; starting with the smallest unused label, assigning the
largest label to xz;41; then assign labels to the neighbors of xy;,; other than x; in
decreasing order, starting with the largest unused integer smaller than v, ending by
labeling x5; 5.

The result will be a labeling in which members of X receive labels v — 1, v —
2,..., v~ |X]| and members of ¥ receive labels 0, 1, ..., |¥|. It is easily checked to
be graceful. l

An example is shown in Figure 9.3.

Graceful labelings of trees were first studied in an attempt to prove a conjecture of
Ringel [100]. He conjectured that, given any tree T with n edges, it is possible to write
the complete graph K, as a union of edge-disjoint copies of 7. The connection is
shown in the following theorem.
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1m 1 8 2 6

0 109 7345

Fig. 9.3. Graceful labeling of a caterpillar

Theorem 9.4. Suppose T is a graceful tree on n + 1 vertices. Then Ky, is a union
of 2n + 1 edge-disjoint copies of T

Proof. We use a K,,.) whose vertices are the integers {0, 1, ..., 2rn} modulo 2n + 1.
Suppose y is a graceful labeling of T. We identify the vertex x of T with the vertex
y(x) of the Ky, 1. Then T is a subgraph of K, with vertices {0, 1, ..., n}.

For each integer s € {0, 1, ..., 2n} we construct a tree T, as follows. Edge xy
belongs to Ty if and only if (x — s)(y — s) is an edge of T. Thus Ty = T, and if the
vertices of K,,, are written in order equally placed around a circle, Tj is obtained by
rotating T through s/(2n + 1) of a revolution. Each T is isomorphic to 7.

Now each edge xy of K, will belong to precisely one of the trees T;, because
there is precisely one edge of T that receives label £(x — y) under y. So we have the
required decomposition.

If Kotzig’s conjecture is true, that all trees are graceful, this will prove Ringel’s
conjecture. However, the Kotzig conjecture is stronger. A decomposition of Ky,
into copies of an n-edge tree need not be of a cyclic nature.

Exercises 9.1

9.1.1 Find graceful labelings of P; and K.
9.1.2 Verify that the partial graceful labeling in Figure 9.2 can be completed.
A9.1.3 Find a graceful labeling of P; U Kj.
H9.1.4 Find a graceful labeling of P; U K3.
9.1.5 Show that P, U K3 and P; U K3 have no graceful labelings.
A9.1.6 Show that no nontrivial forest (that is, a forest containing at least two trees) is
graceful.
9.1.7 Show that the star K , is graceful for every n.
A9.1.8 Show that the path P, is graceful for every v.
9.1.9 Suppose G is a graceful graph with e edges. Write X and Y for the sets of vertices
with even and odd labels respectively. Show that the set [X, Y] contains precisely
%(e + 1) edges.

9.2 Edge-Magic Total Labeling

A magic square of side n is an n x n array whose entries are an arrangement of the
integers {1,2,..., n?}, in which all elements in any row, any column, or either the
main diagonal or main back-diagonal, add to the same sum. Small examples include
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1 7131925
115 810

1824 5 612
12 613 3

101123 7 4
14 411 5
79 216 22 1 91516

142023 2 8

An excellent reference on magic squares is [2].

Various authors have introduced graph labelings that generalize the idea of a magic
square; there has been a lot of duplication of terminology. To avoid confusion we de-
fine a labeling to be edge-magic if the sum of all labels associated with an edge equals
a constant independent of the choice of edge, and verfex-magic if the same property
holds for vertices. (This terminology could be extended to other substructures: face-
magic, for example.) The domain of the labeling is specified by a modifier on the
word “labeling.” We shall always require that the labeling is a one-to-one map onto
the appropriate set of consecutive integers starting from 1.

For example, Kotzig and Rosa [78] defined a magic labeling to be a total labeling in
which the labels are the integers from 1 to |V (G)|+|E(G)| and the sum of labels on an
edge and its two endpoints is constant. In 1996 Ringel and Llado [101] redefined this
type of labeling and called the labelings edge-magic. We shall call them edge-magic
total labelings. On the other hand, Stewart (see, for example, [111]), called such a
labeling supermagic. Sedlacek [110] originally proposed the study of edge-labelings
with the magic property on vertices, but did not restrict the values of the labels in any
way; they could be any reals.

To discuss these labelings, we define the weight of a graph element to be the sum
of all labels associated with the element. For example, the weight of vertex x under an

edge labeling « is
wt(x) = Za(xy).

yox

The weight of x under a total labeling X is
we(x) = Ax) + Y Axy),

y~x
while
wt(xy) = A(x) + A(xy) + A(y).
If necessary, the labeling can be specified by a subscript, as in wi; (x).
We formally define an edge-magic total labeling or EMTL on a graph G to be a
one-to-one map A from V(G) U E(G) onto the integers 1,2, ..., v + e, where v =
|[V(G)| and e = |E(G)|, with the property that, given any edge (xy),

A(x) + Alxy) + Aly) =k

for some constant k. In other words, wt(xy) = k for any choice of edge xy. k is
called the magic sum of G. A graph is called edge-magic if it has an edge-magic total
labeling.

As an example, Figure 9.4 shows an edge-magic total labeling of K, — e.

We shall frequently refer to the sum of consecutive integers, so we define
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1 8 3
5 E91 7
6 4 2
Fig. 9.4. An EMTL of K4 — e withk = 12.

ol =G+ D)+ G+ 4+ =i =D+ (F), 0.1

Suppose the graph G has v vertices {x;, x2, ..., x,} and e edges. Vertex x; has
degree d; and receives label ¢;. Among the labels, write S for the set {a; : 1 <i < v}
of vertex labels, and s for the sum of elements of S. Then § can consist of the v
smallest labels, the v largest labels, or somewhere in between, so

v vte
0y, <s<o,,

(v;1>§s§ve+<v;1>. 9.2)

Clearly, nye g(A(xy) + A(x) + A(y)) = ek. This sum contains each label once,
and each vertex label a; an additional d; — 1 times. So

ke=o0*+ > (di = Dai. 9.3)
If e is even, every d; is odd and v + ¢ = 2(mod 4), then (9.3) is impossible. We have

Theorem 9.5. [101] If G has e even and v + ¢ = 2(mod 4), and every vertex of G
has odd degree, then G has no EMTL.

Corollary 9.6. The complete graph K,, is not edge-magic when n = 4(mod 8). The
n-spoke wheel W, is not edge-magic when n = 3(mod 4).

(We shall see in Section 9.9.3 that K, is never edge-magic for n > 6, so the first part
of the Corollary really only eliminates K4.)

Equation (9.3) may be used to provide bounds on k. Suppose G has v; vertices of
degree j, for each i up to A, the largest degree represented in G. Then the ke cannot
be smaller than the sum obtained by applying the v, smallest labels to the vertices of
degree A, the next-smallest values to the vertices of degree A — 1, and so on; in other
words,

vat+(va-++u3

1
ke > (dp — 1)of® + (da—y — Dolatas)) 4 gt 4 <v et )

2

An upper bound is achieved by giving the largest labels to the vertices of highest
degree, and so on.
In particular, suppose G is regular of degree d. Then (9.3) becomes

ke=(d—Ds+o;™=d-Ds+30+e)v+e+1) 9.4)

or, since e = %dv,
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kdv=2d—-1Ds+@w+e)v+e+1). 9.5)
Given a labeling A, its dual labeling A’ is defined by
A’(x,-) = (U +e+ 1) - )\.(X,‘),

and for any edge xy,

Ny = @ +e+ 1) —Axy).
It is easy to see that if A is an edge-magic labeling with magic sum k, then A’ is an
edge-magic labeling with magic sum k" = 3(v + ¢ + 1) — k. The sum of vertex labels
in the dual is s’ = v(v + e + 1) — 5. Just as in the case of graceful labelings, we define
two EMTLs A and u to be equivalent if A is automorphism-equivalent to either p
or u'.

Either s or s’ will be less than or equal to %v(v + e + 1). This means that, in order
to see whether a given graph has an EMTL, it suffices to check either all cases with
s < %v(v + e + 1) or all cases with s > %v(v + e + 1) (equivalently, either check all
cases with k < %(v + e+ 1) or all with k > %(v +e+1)).

The cycle C, is regular of degree 2 and has v edges. In that case, (9.2) becomes

v+ 1) <2s <20 +vw+ 1) =v@Buv+1),

and (9.4) is

kv=s4+vQv+1),
whence v divides s; in fact s = (k — 2v — 1)v. When v is odd, s has v + 1 possible
values %v(v +1), %v(v +3),..., %v(v +2i-1),..., %v(3v + 1), with corresponding
magic sums %(51} + 3), %(SU +35,..., %(SU +2i+1),..., %(71} + 3). For even v,
there are v values s = %vz + v, %vz +2v,..., %v2 +iv, ..., 3v?, with corresponding
magic sums %v+2, %v+3,..., %v—l—i-{-l,..., %v-&— 1.

Kotzig and Rosa [78] proved that all cycles are edge-magic, producing examples
with k = 3v + 1 for v odd, k = %v+2forv = 2(mod4) and k = 3v forv =
0(mod 4). In [55], labelings are exhibited for the minimum values of & in all cases.
We present two proofs here, and leave another as an exercise. In each case the proof
consists of exhibiting a labeling.

Theorem 9.7. If v is odd, then C, has an edge-magic total labeling with
k= 3(5v+3).

Proof. Say v = 2n + 1. Consider the cyclic vertex labeling (1,n + 1,2r + 1,1, ...,
n + 2), where each label is derived from the preceding one by adding n (mod 2n + 1).
The successive pairs of vertices have sums n +2,3n 4+ 2,3n 4+ 1, ..., n + 3, which
are all different. If X = 5n + 4, the edge labelsare 4n +2,2n+2,2n+3,...,4n+1,
as required. We have an edge-magic total labeling with k = 5n 4 4 = %(51} + 3) and
5= %v(v + 1) (the smallest possible values).

By duality, we have:

Corollary 9.8. Every odd cycle has an edge-magic total labeling with k =
3(Tv +3).
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Theorem 9.9. If v is even, then C, has an edge-magic total labeling with k =
3(5v +4).

Proof. Write v = 2n. If n is even,

i+ 1/2 fori=1,3,...,n+1
3n fori =2
Au;)) =1 @2n+1i)/2 fori =4,6,...,n
i+2)/2 fori=n+2,n+4,...,2n
@n+i-10/2 fori=n+3,n+5,...,2n—-1,
while if n is odd,
i+1)/2 fori=1,3,...,n
3n fori =2
2n+i+2)/2 fori=4,6,...,n—1
Au;)) =143 (n+3)/2 fori=n+1
i+3)/2 fori=n+2,n+4,...,2n—1
2n+1i)/2 fori=n+3,n+5,....,2n =2
n+2 fori = 2n. O

Corollary 9.10. Every even cycle has an edge-magic total labeling with
k=2(Tv+2).

Figure 9.5 shows examples with v = 7 and v = 8 of the constructions in Theorems
9.7 and 9.9; they have k = 19 and 22 respectively. (Only the vertex labels are shown
in the figure; the edge labels can be found by subtraction.)

2) Q, O (2
O—) O—
k=19

k=22

Fig. 9.5. Edge-magic total labelings of C7 and Cs.

Theorem 9.11. Every cycle of length divisible by 4 has an edge-magic total labeling
with k = 3v.
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The path P, can be viewed as a cycle C,, with an edge deleted. Say A is an EMTL
of C, with the property that label 2n appears on an edge. If that edge is deleted, the
result is a P, with an EMTL.

For every n, there is a labeling of C,, in which 2» appears on an edge. Deleting this
edge yields a path, on which the labeling is edge-magic. So:

Theorem 9.12. All paths have EMTLs.

Theorem 9.13. [78] The complete bipartite graph K,,, is edge-magic for any m
andn.

Proof. Thesets S\ ={n+1,2n4+2,...,m(n+ 1)}, S ={1,2,...,n}, define an
EMTL with k = (m + 2)(n + 1). |

In particular, all EMTLSs of stars K, are easily described.
Lemma 9.14. In any EMTL of a star, the center receives label I, n + 1 or 2n + 1.

Proof. Suppose the center receives label x. Then

kn = (2" 2+ 2) ¥ (n—Dr. 9.6)

Reducing (9.6) modulo n we find
x=nm+DC2n+1DH=1

and the result follows. (]
Theorem 9.15. There are 3 - 2" EMTLs of K ,,, up to equivalence.

Proof. Denote the center of a K , by c, the peripheral vertices by vy, vs, ..., v, and
edge (c, v;) by e;. From Lemma 9.14 and (9.6), the possible cases for an EMTL are
AMo=1Lk=2n+4,1Mc)=n+1,k=3n+3andr(c) =2n+ 1,k =4n +2. As
the labeling is edge-magic, the sums A(v;) + A(e;) must all be equal to M = k — A(c)
(so M = 2n+3,2n+ 2 or 2n + 1). Then in each case there is exactly one way to
partition the 2n + 1 integers 1,2, ...,2n + 1l into n + 1 sets

{)‘-(C)}’ {Cl], b1}7 {a2v b2}’ ceey {anv bn}

where every a; + b; = M. For convenience, choose the labels so that a; < b; for
every i and a; < a; < .-+ < a,. Then up to isomorphism, one can assume that
{A(vi), A(e;)}) = {a;, bi}. Each of these n equations provides two choices, according
as A(v;) = a; or b;, so each of the three values of A(c) gives 2" EMTLs of K| ,. U

It is conjectured ([78], also [101]), that all trees are edge-magic. Unfortunately, this
has proven just as intractible as the corresponding conjecture for graceful labelings.
Kotzig and Rosa [78] proved that all caterpillars are edge-magic. The proof is left as
an exercise; as a hint, we give an example of an EMTL of a caterpillar in Figure 9.6.

Enomoto et al [38] carried out a computer search to show that all trees with fewer
than 16 vertices are edge-magic.
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9 10 1213 14

?
24\ /23 17\16/15
o w\ By N
26 3 21/1\19 7
260

1 2 4 56

Fig. 9.6. An EMTL of a caterpillar

Vertex-magic total labelings, in which the sum of the labels of all edges adjacent

to the vertex x, plus the label of x itself, is constant, have also been studied (see [85]).
It is conceivable that the same labeling could be both vertex-magic and edge-magic
for a given graph (not necessarily with the same constant). In that case the labeling,
and the graph, are called fotally magic. Totally magic graphs appear to be very rare.

A0.2.1
A92.2
9.23

924

A9.25

9.2.6

A9.2.7

9.2.8

Exercises 9.2

Find all edge-magic total labelings of K.

Show that every odd cycle has an edge-magic total labeling with k = 3v + 1.
Prove that the graph 1 K4, consisting of ¢ disjoint copies of K4, has no edge-magic
total labeling when ¢ is odd.

Suppose a regular graph G of degree d is edge-magic. Prove

ke:(d—1)s+ag+€=(d—1)s+%(v+e)(v+e+1),
kdv=2(d — D)s+ (v +e)v+e+1).

A triangular book Bs ,, consists of n triangles with a common edge. Prove that all
triangular books are edge-magic.

An n-sun is a cycle C, with an edge terminating in a vertex of degree 1 attached
to each vertex. Show that all suns are edge-magic. [7]

What is the range of possible magic sums for an edge-magic total labeling of the
Petersen graph P? Prove that P is edge-magic.

[7] An (n, t)-kite consists of a cycle of length n with a f-edge path (the rail)
attached to one vertex. Show that an (n, 1)-kite (a kite with tail length 1) is edge-
magic. [7]

9.2.9 Prove that all caterpillars are edge-magic.
9.2.10 Find a vertex-magic total labeling of K4 — e.
9.2.11 Prove that Cs has no totally magic labeling.

9.3 Edge-Magic Labelings of Complete Graphs

The discussion of edge-magic labelings of complete graphs is significantly harder than

the “graceful” case, so we devote a section to it.
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Suppose the graph G has an edge-magic total labeling A, and suppose G contains
a complete subgraph (or cligue) H on n vertices. Let us write x, xa, ..., x, for the
vertices of H, and denote A(x;) by g;. Without loss of generality we can assume the
names x; to have been chosen so thata; < a; < -+ < g,,.

If k is the magic sum, then A(x;x;) = k — a; — a;, so the sums g; + a; must
all be distinct. This property is called being well-spread; this property will be used in
discussing EMTLs of complete graphs. A well-spread set A = {a;, ay, ..., a,) isaset
of integers in which, if a;, aj, ax, a, are all different, it never happens that a; + a; =
ar + a;. If the elements are arranged in order, sothat 0 < a; < ay < -+ < a,, A is
called a well-spread sequence or Sidon sequence of length n. Such sequences arise are
related to the work of S. Sidon; their study was initiated by Erd6s and Turan [40].

In discussing Sidon sequences (or, equivalently, cliques in edge-magic graphs),
we write d;; for |a; — a;], the absolute difference between the i-th and j-th terms (the
labels on the endpoints of the edge x;x;).

Lemma 9.16. Suppose A is a Sidon sequence of length n. If d;; = d,, then {a;, a i}
and {a, a;} have a common member. No three of the differences d;; are equal.

Proof. Suppose d;; = dp,;. We can assume that i > j and p > g. Without loss of
generality we can also assume p > i. Thena; —a; =a, —a,,s0a; +a, = a; +ap.
Therefore a; = a, and i = g (a; = a, is impossible), and p > i > j — the common
element is the middle one in order of magnitude.

Now suppose three pairs have the same difference. By the above reasoning there
are two possibilities: the pairs must have a common element, or form a triangle. In the
former case, suppose the differences are d;;, dix and d;,. From d; ; = dix we must have
eitherk > i > jorj > i > k; let us assume the former. Then di; = d;; implies
thati > j > £. So j is greater than both k and £. But d;; = d;; must mean that either
k> j > {£orf > j> k,bothof which are impossible. On the other hand, suppose the
three pairs form a triangle, say d;; = dj, = dji. We can assume i > j. Then dij =dji
implies i > j > k,and j > k and dix = dj; imply k > i, again a contradiction. [

Lemma 9.17. Suppose A is a Sidon sequence of length n. Ifdi; = dy, then d;; < %dl,,.

Proof. Suppose d;; = di, and assume j < k. Thendj; = Gq—a; =a;—aj+a—a; =
dij = dy = 2d;;. Buta; <a — jand a; < a,,s0dj; <di,, giving the result. O

Theorem 9.18. In any Sidon sequence of length n, (;) < L%dlnj, or equivalently
din 2 [3n(n — 1)1,

Proof. There are (3) unordered pairs of elements in the sequence, so there are (3)
differences. From Lemmas 9.16 and 9.17, the collection of values of these differences
can contain the integers 1,2, ..., L%rj at most twice each, and ]_%rj +1,...,d;, at

most once each. The result follows. O

We now use Sidon sequences to show that only five complete graphs are edge-
magic.
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Theorem 9.19. The complete graph K, does not have an edge-magic total labeling if
v > 6.

Proof. One can show that K7 has no EMTL by a complete search (or see Exercise
9.3.4 below). So we assume v > 8, and suppose there is an edge-magic total labeling
of K,. The vertex labels will form a Sidon sequence of length v, A say. Let us denote
the edge labels by by, by, ..., b,, where b < by < .- < b,; of course, e = (;) If the
magic sum is k, then

k=a +a +b, 9.7)
=a +a3+ b 9.8)
=a,+ay-| +b 9.9
=a,+a,_;+ by (9.10)

Subtracting (9.7) from (9.8),
as—ay =b, — b,_y, 9.11)

while (9.9) and (9.10) yield
dy—| — Qy—n = by — by. (9.12)

Suppose labels 1, 2, v 4+ ¢ — | and v + ¢ are all edge labels. Then by = 1,5, =
2,b,.y =v+e—1land b, = v+e. So, from (9.11)and (9.12), a3 —a; = ay_1—a,-2 =
1. But 2, 3, v — 2 and v — 1 are all distinct, so this contradicts Lemma 9.16. So one
of 1,2,v+e — 1,v + e is a vertex label. Without loss of generality we can assume
either 1 or 2 is a vertex label (otherwise, the dual labeling will have this property). So
a=1or?2.

Equations (9.7) and (9.9) give

ay = b, — (ay-1 — @) — (by — ay). (9.13)
Since (a», as, ..., a,_1) is a Sidon sequence of length v — 2 (any subsequence of a
Sidon sequence is also well-spread), Lemma 9.18 applies to it, and (@,—1 — a2) >

(%(U — 2)(v — 3)], which is at least 10 because v > 8. Also (b —a;) = —1, (b — 1
is at least 1 and a, is at most 2), and b, < v + e. So, from (9.13),

a, <v+e—09.
So the six largest labels are all edge labels:
bps=v+e—-5b,_s=v+e—4,....,b,=v+e.
From (9.7) and (9.8) we get
k=ait+ay+v+e=a +a3+v+e—1,

$0 a3 = a; + 1. The next smallest sum of two vertex-labels, after a; + a;, and a; + a3,
may be either a, + a3 or a; + aa.
If it is ap + a3, then
k=ay+a3+v+e—2

and by comparison with (9.8), a; = a; + 1. The next-smallest sum is a; + a4, s0
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k=a+as+v+e-3

and a4 = a3 + 2. Two cases arise. [f a; = 1, then @y = 2, a3 = 3, a4 = 5. Also, as

cannot equal 6, because that would imply a; + as = 7 = ay + a4, contradicting the

well-spread property. Every integer up to v 4+ e must occur as a label, so b; = 4 and

b, =6.S0(9.12)isay,_y —ay—» =by — by =2. Butay ~ az =2, s0 du—l,v—2 = dx4,

in contradiction of Lemma 9.16. In the other case, a; = 2, we obtain ay = 3, a3 =

4,a4 =6,50b =1,by =5, and a,_; — a,» =4 = a4 — ay, again a contradiction.
If a; + a4 is the next-smallest difference, we have

k=a+as+v+e—2,

soas =a3+1.1fay = 1 and @, = 3, itis easy to see that by = 2, b, = 6, and we get

the contradiction a,_; — a,_2 = a4 — a; = 4. Otherwise a; > 4, so 3 is an edge-label.
Ifay =1,thenb =2,b =3, anda,_| —ay_» =1 = a3 —ay. If a; = 2, then
by =1,by =3, and ay-| —a,_, = 2 = a4 — a;. In every case, a contradiction is
obtained. Therefore we have the result. O

This theorem was first proven in [79]; the above proof follows that in [32].

We know K, is not edge-magic; edge-magic total labelings of K, K, and K3 are
easy to find. One solution for K5 is to use vertex labels {1, 2, 3, 5, 9}; one for Ky is
{1,3,4,5,9, 14}. (A complete list of solutions is given in [126].)

If A =(a;,az,...,a,) is any Sidon sequence of length n, we define the size of A
as 0(A) = a, — a; + 1. One usually assumes a; = 1 when constructing a sequence,
and then the size equals the largest element. Another useful parameter is

p(A)=a,+ a1 —m—ar+1=0(A)+a,_) —ay.

We denote by o*(n) and o*(n) the minimum values of 0 (A) and p(A) respectively,
taken over all Sidon sequences A of length n.

It is useful to know that there exist Sidon sequences of all positive lengths. The
recursive constructiona; = 1, a» = 2, a, = a,_1+4a,— gives a well-spread sequence.
This is the well-known Fibonacci sequence, except that the standard notation for the
Fibonacci numbers has fi = f, =1, f3 =2, .... So we have a well-spread sequence
with its largest element equal to the (n + 1)-th term of the Fibonacci sequence: a,, =
fa+1. Therefore 6*(n) < f,41, and

) < for+ fu—2= fop2 — 2.

It is well known (see texts such as [19]) that
p_ L (145 Yo (1-5)
n — ﬁ 2 \/g 2 )

U*()<—1— 1+\/§ n-H_L ]—\/3 n+l1
V=752 NAWE

so we have

and
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¥ =3 fu=3 p*B@=3 fs—-2= 3
o) =5 fs=5 p(4)— 6 fo—2= 6
o*(5)= 8 fo= 8 p*G)=11 f-2= 1]
c*®)=13 f =13 p*© =19 fr—2= 19
(N =19 fg=21 p*N=30 fo—-2= 32

o*®) =25 fo=34 p*®) =43 fip—-2= 53
o*9) =35 flo=55 PN =62 fi1~-2= 79
o*(10) =46 f1; =81 p*(10) =80 fi, -2 =134

Table 9.1. Sidon sequence bounds compared to Fibonacci numbers

o < 1+5\" 1 1—¢§"+2_2
pn [ T NAWE '

However these are not the best-possible values. Table 9.1 shows the results of
exhaustive computations.

Suppose G has an edge-magic total labeling A and G contains a complete subgraph
H on n vertices xi, X3, ..., X,; denote A(x;) by a;. Assume a;, < a» < -+ < a,, SO
A = (ay, ay, ..., a,) is a Sidon sequence of length n. Then

Mxnxp—1) =k — ay — ay-1,
and since A(x,x,_1) is a label,
k—a,—a,_1>1. (9.14)
Similarly
Axpx)) =k —az —ay,

and since A(x,x;) is a label,

k—a—a <v+te. (9.15)
Combining (9.14) and (9.15) we have

vte>a,+a, —a—a+1=p(A) > p*(n).

Theorem 9.20. [79] If the edge-magic graph G contains a complete subgraph with n
vertices, then the number of vertices and edges in G Is at least p*(n).

Suppose G = K, + ¢K. In other words, G consists of K, together with ¢ isolated
vertices. The smallest ¢ such that G is edge-magic is called the magic number M(n).
Theorem 9.20 enables us to find a lower bound

n
M(n) = p*(n) —n — (2)

(See Exercise 9.9.3.1, and also Exercise 9.9.3.2.)

An edge-magic injection is like an edge-magic total labeling, except that the labels
can be any positive integers. We define an [m]-edge-magic injection of G to be an
edge-magic injection of G in which the largest label is m, and call m the size of the
injection. The edge deficiency def ,(G) of G is the minimum value of m —v(G) —e(G),
such that an [m]-edge-magic injection of G exists.



9.3 Edge-Magic Labelings of Complete Graphs 137
Theorem 9.21. Every graph has an edge-magic injection.

Proof. Suppose G is a graph with v vertices and e edges. The empty graph is trivially
edge-magic, so we assume that G has at least one edge. Let(ay, ay, ..., a,) be any
Sidon sequence of length v with first element a; = 1. Define k = a,_; + 2a, + 1.
We now construct a labeling X as follows. Select any edge of G and label its end-
points with a,_; and a,,, and label the remaining vertices with the other members of
the Sidon sequence in any order. If xy is any edge, define A(xy) = k — A(x) — A(y).
Every edge weight will be equal to k. The smallest edge label willbe k —a,_; —a, =
ay + 1, which is greater than any vertex label. If two edge labels were equal, say
Alxy) = A(zt), then A(x) + A(y) = A(z) + A(¢), and since the labels of vertices are
members of a Sidon sequence this implies that xy = z¢. The vertex labels are distinct
by definition. So A is an edge-magic injection. O

The proof of Theorem 9.21 gives us an upper bound on the deficiency:

Corollary 9.22. If G is a graph with v vertices and (a|, ay, .. ., a,) is any Sidon se-
quence of length v with ay = 1, then

def (G) < ay—1 +2a, —a; — v — e(G).
Proof. In the above construction, no label can be greater than k — 1 — a,. d

This upper bound will not usually be very good. For example, consider the graph
constructed from Cs by joining two inadjacent vertices. Using the Sidon sequence
(1,2,3,5, 8), a labeling with k = 22 is obtained, and the best assignment of the
sequence to the vertices gives largest label 17, and deficiency 6. However, the graph is
actually edge-magic. See Figure 9.7.

Fig. 9.7. Deficiency 6 on the left; magic on the right

Theorem 9.23. The edge-magic deficiency of K, equals the magic number M (v).

Proof. Consider a edge-magic total labeling A of K, + M(v)K;. This graph has
v+M (v) vertices and e(K,) edges, so the largest label is v+ M (v)+e(K,), and clearly
this label occurs on a vertex or edge of K. The labeling constructed by restricting A to
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K, isan[v+ M(v) + e¢(K,)]-edge-magic injection of K. Obviously any injection of
size v+ m + e(K,) gives rise to an edge-magic total labeling of K, +m K (apply the
m unused labels to the extra vertices), so v + M (v) + e(K,) is the smallest possible
size, and def ,(K,) = M (v). 0

Exercises 9.3

A9.3.1 Suppose G = K, + 1K . Prove that if G is edge-magic, then

t>p* (n
- v (7).

That is, M(n) > p*(n) —n — (}).
A9.3.2 Find an upper bound for M(n). (It does not have to be a good upper bound. The
point is to show that some upper bound exists.)
9.3.3 If G is an incomplete graph with v vertices and (ay, a2, ..., a,) is any Sidon
sequence of length v with @) = 1, prove that

def (G) < ay—| + 2a, —ay — v — e(G).

H9.3.4 (i) Suppose K, has an edge-magic total labeling with magic sum k. The number
p of vertices that receive even labels satisfies the following conditions:
(1) If v = 0 or 3(mod 4) and £ is even, then p = %(v —1xJuv+1).
(ii) If v = 1 or 2(mod 4) and k is even, then p = %(v —1E£4v-1).
(iii) If v = 0 or 3(mod 4) and & is odd, then p = %(v +1£Jv+1).
(iv) If v =1 or 2(mod 4) and & is odd, then p = %(v +1£+v+3).

(ii) Prove the following necessary conditions for K, to have an edge-magic total
labeling: if v = 0 or 3(mod4), then v + 1 is a perfect square; if v = 1
or 2(mod 4), then either v — 1 is a perfect square and the magic sum of the
labeling is even, or v+ 3 is a perfect square and the magic sum of the labeling
is odd.

(iii) Deduce that K7 is not edge-magic. [118]

9.3.5 Suppose G is a graph with v vertices. Prove that

def (G) < M(v) + (;) —e(G).
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Ramsey Theory

10.1 The Graphical Case of Ramsey’s Theorem

Suppose the edges of a graph G are painted in k colors. We say a subgraph H of G
is monochromatic if all its edges receive the same color. We say a k-painting of G is
proper with respect to H if G contains no monochromatic subgraph isomorphic to H
in that painting. If no subgraph is specified, “proper” will mean proper with respect to
triangles — graphs isomorphic to K3.

For example, suppose G is a complete graph and its vertices represent people at
a party. An edge xy is colored red if x and y are acquaintances, and blue if they are
strangers. An old puzzle asks: given any six people at a party, prove that they contain
either a set of three mutual acquaintances or a set of three mutual strangers. In graph-
theoretic terms, the puzzle asks for a proof that there is no proper 2-painting of K.

To observe that the result is not true for fewer than six people, consider the com-
plete graph Ks. It is easy to see that K5 has a proper 2-painting: take all edges of a
copy of Cs in red and all other edges (they will form another copy of Cs) in blue. (See
Figure 10.1.)

On the other hand, there is no proper 2-painting of K. To see this, select a vertex x
in any 2-painting of K¢. There are five edges touching x, so there must be at least three
of them that receive the same color, say red. Suppose xa, xb and xc are red edges. Now
consider the triangle abc. If ab is red, then xab is a red triangle. Similarly, if ac or bc
is red, there will be a red triangle. But if none are red, then all are blue, and abc is a
blue triangle.

This proves that any 2-painting of K, must contain a monochromatic triangle
whenever v > 6:if v > 6, simply delete all but six vertices. The resulting 2-painted K¢
must contain a monochromatic triangle, and that triangle will also be a monochromatic
triangle in K.

The same argument can be used when there are more than two colors, and applies
to general graphs, not only to triangles. The general result is the graphical version of
Ramsey’s theorem. We first prove a particular case.
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Red Blue

Fig. 10.1. Proper 2-painting of K5

Lemma 10.1. There exists a number R(p, q) such that any painting of K, 4 in two
colors c1 and c; must contain either a K, with all its edges in color c¢1 or a K, with
all its edges in c;.

Proof. We proceed by induction on p +¢. The lemma is clearly true when p +¢q = 2,
since the only possible case is p = ¢ = 1 and obviously R(1, 1) = 1. Suppose it is
true whenever p 4+ g < N, for some integer N. Consider any two positive integers P
and Q thataddto N.Then P+ Q — 1 < N,soboth R(P — 1, Q)and R(P,Q — 1)
exist.

Consider any painting of the edges of K, in two colors ¢; and c;, where
v> R(P—1, Q)+ R(P, Q—1), and select any vertex x of K,. Then x must either lie
on R(P — 1, Q) edges of color ¢; or on R(P, Q — 1) edges of color ¢;. In the former
case, consider the Kg(p—),g) whose vertices are the vertices joined to x by edges of
color ¢;. Either this graph contains a K p_; with all edges of color ¢, in which case this
K p_, together with x forms a K, with all edges in ¢, or it contains a K with all edges
in ¢3. In the latter case, the K, again contains one of the required monochromatic com-
plete graphs. So R(P, Q) exists, and in fact R(P, Q) < R(P, Q— 1D+ R(P -1, Q).

g

Theorem 10.2. Suppose H\, H,, ..., Hy are any k graphs. Then there exists an inte-
ger R(Hy, Ha, ..., Hy) such that whenever v > R(Hy, Ha, ..., Hy), any k-painting
of K, must contain a subgraph isomorphic to H; that is monochromatic in color i, for
somei, 1 <i <k

The numbers R(H;, Hy, ..., Hy) are called Ramsey numbers. In particular, if all
the H; are complete graphs, say H; = K, , H, = K,,, ..., then the Ramsey num-
ber R(K,,, K,,, ..., Kp,,) is written R(p, p2, ..., po)- If the p; are all equal, with
common value p, the notation Ry (p) is used.

Proof of Theorem 10.2. It is sufficient to prove the theorem in the case where all the
H; are complete. Then, if v is sufficiently large that a k-painted K, must contain a
monochromatic K,¢g,) in color ¢;, for some i, it must certainly contain a monochro-
matic copy of H; in color ¢;, so

R(Hy\, H,, ..., H) < R(v(H\), v(H2), ..., v(Hy)).

We proceed by induction on & to prove that R(p;, pa, ..., pi) exists for all param-
eters. In the case k = 2, the result follows from Lemma 10.1. Now suppose it is true
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() 3

H

Fig. 10.2. Decomposition of Kg proving R(3,4) > 9

fork < K, and suppose integers pi, py, ..., pg are given. Then R(py, p2, ..., px-1)
exists.

Suppose
v = R(R(p1, p2s---» Pk-1), Pk)-

Select any k-painting of K,. Then recolor by assigning a new color cq to all edges
that received colors other than ¢;. The resulting graph must contain either a mono-
chromatic Kg(p, p,....px_,) 10 color ¢o or a monochromatic K, in color ck. In the
former case, the corresponding Kz, p,,...pc_,) in the original painting has edges in
the K — 1 colors ¢y, ¢, ..., ck—1 only, so by induction it contains a monochromatic
K p, in color ¢; for some i. 0

In discussing individual small Ramsey numbers, it is often useful to consider the
graphs whose edges are precisely those that receive a given coloring in a painting of a
complete graph. These are called the monochromatic subgraphs.

As an example, consider R(3, 4). Suppose K, has been colored in red and blue so
that neither a red K3 nor a blue K, exists. Select any vertex x. Define R, to be the
set of vertices connected to x by red edges — that is, R, is the neighborhood of x in
the red monochromatic subgraph, and similarly define B, in the blue monochromatic
subgraph.

If [R.| > 4, then either (R,) contains a red edge yz, whence xyz is a red triangle,
or else all of its edges are blue, and there is a blue K4. So |R,| < 3 for all x.

Next suppose |B,| > 6. Then (B, ) is a complete graph on six or more vertices, so
it contains a monochromatic triangle. If this triangle is red, it is a red triangle in K. If
it is blue, then it and x form a blue K4 in Kj.

It follows that every vertex x has |R,| < 3 and |B,| < 5,s0v < 9. Butv = 9 is
impossible. If v = 9, then | R, | = 3 for every x, and the red monochromatic subgraph
has nine vertices each of (odd) degree 3, in contradiction of Corollary 1.3.

On the other hand, K3 can be colored with no red K3 or blue K. The graph G
of Figure 10.2 has no triangle, and can be taken as the red monochromatic subgraph,
while its complement G is the blue graph. (The construction of this graph will be
discussed in Section 10.3, below.) So we have

Theorem 10.3. R(3,4) = 9.
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The case where all the forbidden subgraphs are complete graphs is called classical
Ramsey theory; if more general graphs are considered, the study is called generalized
Ramsey theory. A great number of Ramsey numbers involving small graphs have been
investigated; in particular, Burr [21] found the value of R(G, G) whenever G is a
graph with six or fewer edges and no isolated vertices.

Many results of generalized Ramsey theory have been obtained by ad hoc methods.
We illustrate by finding R(K3, Cy). Clearly R(K3, C4) < R(3,4) = 9. However, we
can do rather better. Suppose K, has been colored with no red K3 and no blue Cs. As
in the discussion of R(3, 4), we see that no vertex can belong to more than three red
edges. Suppose some vertex x was on four blue edges (if R(K3, C4) = 9, then every
vertex must have this property). The graph generated by the other four endpoints of
those edges can contain no blue path of length 2 and no red triangle. It is easy to see
that the graph is the union of a red C4 and two independent blue edges, as is shown in
Figure 10.3(a) (blue edges are solid, red edges broken). Now suppose another vertex,
v, is added. Since xy must be red, y can be joined to at most two other vertices by red
edges, and those vertices cannot be adjacent in the red cycle. So y must lie on at least
two blue edges of the type shown in Figure 10.3(b). But that graph contains a blue Cy.
It follows that if any vertex lies on four blue edges, the graph has at most five vertices.
If there is a solution for v = 7, then every vertex lies on three red and three blue edges,
and both monochromatic subgraphs have an odd number of vertices and are regular of
odd degree, which is impossible. So the maximum is v = 6. This can be attained: take
the red subgraph to be K3 3 and the blue one to be 2K3. So R(K3, C4) =T7.

Fig. 10.3. Proving R(K3, C4) < 8

A good many families of Ramsey numbers have been found, but many more re-
main to be discussed. We give one example below. Further examples are given in the
exercises, and in surveys of generalized Ramsey theory such as [20], [92] and [65].

Theorem 10.4. [28] . If T is a tree with m vertices, then
R(TK)=m-DHn-1+1.

Proof. To see that R(T, K,,) > (m—1)(n—1), consider a graph consisting of m —1 dis-
joint copies of K,,_1, with all edges colored red. Complete this graph to a K,—1y;—1)
by coloring all remaining edges blue. Since the red subgraph contains no m-vertex
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component, it contains no copy of T. The blue graph is (n — 1)-partite, so it can con-
tain no K,,.

Equality is proved using induction on n. The case n = 1 is trivial. Suppose n > 1
and suppose the theorem is true of R(T, K;) whenever s < n. Suppose there is a
coloring of the edges of K,_1y—1)+1 in red and blue that contains neither a red T
nor a blue K,, and examine some vertex x. If x lies on more than (m — 1)(n — 2)
blue edges, then the subgraph of G induced by the “blue” neighbors of x contains
either a red copy of T or a blue K,,_|, by the induction hypothesis. In the former case
Kn—1)(n—1)+1 contains a red T'; in the latter the blue K,,_; together with x forms a
blue K,. Therefore x lies on at most (m — 1)(n — 2) blue edges, so it lies on at least
m — 1 red edges. Since x could be any vertex of the K,_y(n—1)+1, the red subgraph
has minimum degree at least m — 1. Since T has m — 1 edges, this red subgraph will
contain a subgraph isomorphic to 7', by Theorem 4.4. So the K;,—1)(x—1)+1 contains a
red copy of T, a contradiction. O

Exercises 10.1

A10.1.1 Consider R(Ps, K3).
(i) Show that R(P;, K3) <6.
(i1) Prove that any graph containing no P; consists of some disjoint edges together
with some isolated vertices.
(iii) Prove that if the graph described in part (ii) has at least four vertices and
contains an isolated vertex, then its complement contains a triangle.
(iv) Find R(Ps, K3).
10.1.2 Find R(P;, K4).
10.1.3 Find R(Ps, Py), R(P4, Cy), R(Ps, K4) and R(Cy4, Cy).
10.1.4 Prove that R(3,5) < 14.

A10.1.5 Prove that R(4,4) < 18.

10.1.6 Suppose K, can be colored in red and blue so that there is no red K3 or blue K ,.
(i) Prove that the red monochromatic subgraph has maximum degree s.
(ii) Prove that the blue monochromatic subgraph has maximum degree s — 1.
(iii) Prove that R(K3, K1) =2s + 1.

A10.1.7 Prove that if m or n is odd, then R(K ,u, K1) = m + n, and that if both m and n
are even, then R(K| », Ky ,) =m +n — 1. [65]

10.1.8 Chvétal and Harary [29] conjectured that if G and H are graphs with no isolated
vertices, then
R(G, H) > min{R(G, G), R(H, H)}.
Disprove this conjecture by using G = K| 3 and H = Ps. (This result is due to
Galvin; see [65].)

H10.1.9 If M is any matrix, its principal k x k submatrices are the submatrices formed by
the intersection of rows iy, i, ..., iy with columns iy, i», ..., i for some selection
of k indices. (The principal submatrices are also called the symmetrically placed
submatrices.) Prove that if k is an integer > 2, and s is sufficiently large, then any
s x s matrix M with entries from {0, 1} contains a k x k principal submatrix with
one of the following forms:
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all entries off the main diagonal are 0;
all entries above the main diagonal are 0, all entries below the main diagonal
are 1;

o all entries above the main diagonal are 1, all entries below the main diagonal
are 0;

e all entries off the main diagonal are 1.

10.2 Ramsey Multiplicity

We know that any 2-painting of K¢ must contain a monochromatic triangle. However,
it is not possible to find a painting with exactly one triangle. (This is easily checked
by exhaustion, and follows from Theorem 10.5 below.) More generally, one can ask:
what is the minimum number of monochromatic triangles in a k-painting of K,?

Such questions are called Ramsey multiplicity problems. The k-Ramsey multiplic-
ity Ny »(H) of H in K, is defined to be the minimum number of monochromatic
subgraphs isomorphic to H in any k-painting of K,. Clearly N, ,(H) = 0 if and only
if v < Ry(H).

The 2-Ramsey multiplicity of K3 was investigated by Goodman, who proved the
following Theorem in [56]. Our proof follows that given by Schwenk [109].

wano=()- 35

Proof. Suppose K, is colored in two colors, red and blue. Write R for the number
of red triangles, B for the number of blue triangles, and P for the number of partial
triangles — triangles with at least one edge of each color. There are (';) triangles in

K,, so
R+B+P:(§).

Since N3 ,(K3) equals the minimum possible value of R 4 B,

Theorem 10.5.

Noo(K3) = (g) — max(P),

Suppose the vertices of K, are xi, x2, ..., Xy, and x; is incident with r; red edges.
Then it is adjacent to v — 1 — r; blue edges. Therefore the K, contains r;(v — 1 — r;)
paths of length 2 in which one edge is red and the other blue. Let us call these mixed
paths. The total number of mixed paths in the K, is

v
Y orw—1-r).
i=1

The triangle xyz can be considered as the union of the three paths xyz, yzx and
zxy. Moreover, the paths corresponding to different triangles will all be different. If
the triangle is monochromatic, no path is mixed, but a partial triangle gives rise to two
mixed paths. So there are 2 P mixed paths in the K, and
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v

1
P = E;ri(v —1-=r).

If v is odd, the maximum value of r;(v — 1 — r;) is (v — 1)?/4, attained when
ri = (v — 1)/2. If v is even, the maximum of v(v — 2)/4 is given by r;, = v/2 or
(v — 2)/2. In either case, the maximum is

(Y]

SO

and since P is an integer,

wamr=()- |55}

It remains to show that equality can be attained.

If v is even, say v = 2, then partition the vertices of K, into the two sets
{x1,x2, ..., x;} and {x,11, X,42, ..., X2} Of size £, and color an edge red if it has one
endpoint in each set, blue if it joins two members of the same set. (The red edges form
acopy of K, ;.) Each r; equals v/2. If v = 2¢+1, carry out the same construction for 2¢
vertices, except color edge x;x,.; blue for 1 < i < L%J. Then add a final vertex x,,,.
The edges x;x2,+1 and x; 1, x5, arered when 1 <i < [%J and blue otherwise. In both
cases it is easy to check that the number of triangles equals the required minimum. O

Substituting into the formula gives N,,(K3) = 0 when v < 5, Ny 4(K3) = 2,
N, 7(K3) =4, and so on.

The 3-Ramsey multiplicity of K3 has not been fully investigated. We know that
R3(3) = 17, so the number N 17(K3) is of special interest. It is shown in [107] that
N3.17(K3) = 5; the argument involves discussion of many special cases. A sketch of a
proof that N3 17(K3) > 3 appears in Exercise 10.2.1.

The following theorem, which appears in a simplified form in [120], provides a
recursive bound on Ny ,(K3).

v—1 3
Nivi1(K3) < {TJ + [(1 + ;) Nk,v(KS)J-

Theorem 10.6.
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Proof. Suppose F is a k-painting of K, that contains Ny ,(K3) monochromatic trian-
gles. Select a vertex x of F that lies in the minimum number of monochromatic tri-
angles. Since there are v vertices, one can assume that x lies on at most L%Nk,U(K 3)]
monochromatic triangles. Since x has degree v — 1 in K, there will be a color — say
R — such that x lies on at most L”T*IJ edges of color R.

Construct a k-painting of K,,| from F by adjoining a new vertex y. If z is any
vertex other than x, then yz receives the same color as xz, and xy receives color R.
Then xy lies in L”;lj or fewer monochromatic triangles, all in color R. The original
K, contained N; ,(K3) monochromatic triangles, so this is the number not containing
x. Finally, the number of monochromatic triangles with y as a vertex but not x is at
most L%Nk,v(K 3)]. So the maximum number of monochromatic triangles in the K,

1S
1 3
Ln - J + {(1 + ;)Nk.v(Kg)J. 0

This theorem provides the upper bounds 2 and 5 for N, ¢(K3) and N3 17(K3), both
of which can be met.

Exercises 10.2

10.2.1 Prove that N, 3(P3) = 1 and N, 4(P3) = 4. Suppose there exists a painting of K7
in the three colors red, blue and green that contains two or less monochromatic
triangles. If v is any vertex, write R(v), B(v) and G(v) for the sets of vertices
joined to v by red, blue and green edges respectively, and write r(v) = |R(v)|,
and so on.

(1) Select a vertex x that lies in no monochromatic triangle. Prove that one of
{r(x), b(x), g(x)} equals 6 and the other two each equal 5.

(ii) Without loss of generality, say r(x) = 6. Let S be the set of all vertices of
K7 that lie in monochromatic triangles. Prove that S € R(x).

(iii) If y is any member of B(x), it is clear that S lies completely within R(y),
B(y) or G(y). Prove that, in fact, S € R(y).

(iv) Prove that there must exist two vertices y; and y, in B(x) such that y,y, is
red.

(v) Use the fact that S € R(y;) N R(y,) to prove that K7 contains more than two
red triangles. So N3 17(K3) > 3. [120]

A10.2.2 It follows from Exercise 10.1.7 that R(K; ,, K1 ,) = 2n when n is odd and that
R(K;,, K1,) =2n — 1 when n is even. Prove that

Noo2u(Kin) =21 —1,n 0dd,
Ny on—1(Ki,) = 1,n even.

10.3 Application of Sum-Free Sets

To introduce this section we derive the construction of the red graph of Figure 10.2.
The vertices of the graph are labeled with the elements of the cyclic group Zg. The set
Z; of nonzero elements of Zg is partitioned into two sets:
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Zg =1{3,4,5}U{1,2,6,7}.

Call the two sets R and B respectively. Then x ~ yin G ifandonlyifx —y € R. It
follows that two vertices are joined in G if and only if their difference is in B. Observe
that both R and B contain the additive inverses of all their elements; this is important
because the differences x — y and y — x both correspond to the same edge xy. (This
property might be relaxed for some applications to directed graphs.)

Notice that R contains no solution to the equation

a+b=c

no element of R equals the sum of two elements of R. We say R is a sum-free set. By
contrast, B is not sum-free; notonly is 1 +6 = 7, but also 1 + 1 = 2 (a, b and ¢ need
not be distinct). If xyz were a triangle in G, then x — y, y — z and x — z would all be
members of R; but
X—y+ty-z=x—-2

s0 R would not be sum-free.

In general, suppose G is any group, written additively. A nonempty subset S of
G is a sum-free set if there never exist elements a, b of § such that a + b € S. (This
means that 0 cannot belong to S, since 040 = 0.) § is symmetric if —x € S whenever
x is in S. A symmetric sum-free partition of G is a partition of G* into symmetric
sum-free sets. As examples,

7t = (1,4} U (2,3}
Zt=1{3,4,5/U{1, 7} U{2,6)

are symmetric sum-free partitions.
If S is a symmetric sum-free set in G, the graph of S is the graph with vertex-set

G, where x and y are adjacent if and only if x — y € §. From our earlier discussion, it
follows that

Theorem 10.7. If S is a symmetric sum-free set of order s in a group G of order g,
then the graph of S is a triangle-free regular graph of degree s on g vertices.

If there is a symmetric sum-free partition S; US, U - - U S, of G*, then one obtains
a k-painting of K¢, that contains no monochromatic triangle, by applying ¢; to all the
edges of the graph of S; fori =1,2,...,%. So

Corollary 10.8. [f there exists a sum-free partition of a g-element group into k parts,
then R, (3) > g.

For example, the partition
Zz ={1,4} U {2,3}

provides the well-known partition of Zs into two 5-cycles that is used in proving that
R,(3) = 6. The partition

Zi=1{3,4,5)U{1, 71U {2, 6}
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yields a (not very interesting) triangle-free 3-painting of K.

There are two abelian groups of order 16 that have symmetric sum-free partitions.
The group Z4 x Z4 can be written as the set of all ordered pairs xy where both x and
y come from {0, 1, 2, 3} and

xy+za =+ +1)
(additions modulo 4). Then

(Zy x Z4)* = RUBUG
where

R = {02, 10, 30, 11, 33},
B = {20, 01, 03, 13, 31}, (10.1)
G ={22,21,23,12,32}.

(Zo x Zy x Zy x 7n)* has a similar partition

R = {1000, 1100, 1010, 1111, 0001},
B = {0010, 0011, 1011, 0111, 1101}, (10.2)
G = {0100, 0110, 0101, 1110, 1001}.

The existence of these partitions proves of course that R3(3) > 17. To see that
R3(3) = 17, we use the following argument. Suppose K7 could be colored in three
colors. Select any vertex x. Since there are sixteen edges incident with x, there must
be at least six in one color, red say. Consider the subgraph generated by the other
endpoints of those edges. If it has a red edge, then there is a red triangle; if not, the
subgraph is a K¢ colored in the two remaining colors, and it must contain a monochro-
matic triangle.

The above argument can be used to show that R4(3) < 66, but there is no sum-free
partition of a 65-element group into four parts. In fact, we know that 51 < R4(3) < 65
(127, 43, 132]). The lower bound was proven by exhibiting a triangle-free coloring of
K 50, while the upper bound comes from a lengthy argument proving that if a triangle-
free 4-painting of K5 existed, then the adjacency matrices of the monochromatic sub-
graphs would have eigenvalues of irrational multiplicities.

The method of sum-free sets can be generalized to avoid larger complete sub-
graphs. For example, consider the subset B = {1, 2, 6, 7} of Ky that arose in discussing
R(3, 4). This set is not sum-free, and its graph will contain triangles. However, sup-
pose there were a K4 in the graph, with vertices a, b, ¢ and d. Then B would contain
a solution to the following system of three simultaneous equations in six unknowns:

Xab + Xpe = Xac
Xac + Xea = Xad
Xpe + Xed = Xpa

(in each case, x;; will be either i — j or j — ). But a complete search shows that B
contains no solution to these equations. So the graph contains no K4. (The graph is G
in Figure 10.2.)
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Exercises 10.3

10.3.1 Prove that R(3,5) > 13 by choosing R = {4,6,7,9}, B = {1,2,3,5,8, 10,
11, 12} in Z13.

10.3.2 Show that R(4,4) > 17, by choosing R = {1,2,4,8,9,13, 15,16}, B = {3, 5,
6,7,10,11, 12,14} in Z;7.

10.3.3 Verify that the partitions in (10.1) and (10.2) are in fact symmetric sum-free par-
titions.

10.4 Bounds on Classical Ramsey Numbers

Very few Ramsey numbers are known. Consequently much effort has gone into prov-
ing upper and lower bounds.

Lemma 10.9. If p and q are integers greater than 2, then
R(p,¢) = R(p—1,9)+ R(p,q = D).

Proof. Write m = R(p — 1, q¢) + R(p, g — 1). Suppose the edges of K,, are colored
in red and blue. We shall prove that K,, contains either a red K, or a blue K,,. Two
cases arise.

(1) Suppose that one of the vertices x of K, has at least s = R(p — 1,q) red
edges incident with it, connecting it to vertices xy, xa, ..., x;. Consider the K; on
these vertices. Since its edges are colored red or blue, it contains either a blue K,
in which case the lemma is proved, or a red K,_;. Let the set of vertices of the red
Kp—1 be {y1, y2,...,¥p—1}. Then the vertices x, y|, ..., y,— are those of ared K,
and again the lemma holds.

(i1) Suppose that no vertex of K,, has R(p — 1, ¢) red edges incident with it. Then
every vertex must be incident with atleastmm — 1 —[R(p — 1,9) — 1] = R(p,q — 1)
blue edges. The argument is then analogous to that of part (i). O

Theorem 10.10. For all integers, p,q > 2,

p+q—2>

R(p,q)s(
p—1

Proof. Write n = p + g. The proof proceeds by induction on n. Clearly R(2,2) =

2 = (2*2'3;2) Since p,q > 2, we can have n = 4 only if p = g = 2. Hence the

given bound is valid for n = 4. Also for any value of g, R(2,9) = ¢ = (2+q—2), and

2-1
r ﬁ;z), so the bound is valid if p = 2

similarly for any value of p, R(p,2) = p = (
orqg =2.
Without loss of generality assume that p > 3, ¢ > 3 and that
’ r_9
R(p'.q") < (p +a )
p—1
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for all integers p’, ¢’ and n satisfying p' > 2,4’ > 2, p'+ ¢’ < nand n > 4. Suppose
the integers p and q satisfy p + g = n.
We apply the induction hypothesis to the case p’ = p — 1, ¢’ = ¢, obtaining
pt+q-3
R(p—-1,9) < ( )
p-—2

and to p’ = p,q’ = q — 1, obtaining

R(p,q—l)s(”+q‘3).

p—1
But by the properties of binomial coefficients,

pt+q-3 p+q-3 ptq-2
+ = El
p—2 p—1 p—1
and from Lemma 10.9

R(p,q) <R(p—1,9)+R(p,q—1),

R(p.q) < p+q—3)+ p+q—3\_ p+q—2' 0
"\ p-2 p—1 p—1

If p=2o0rg =2orif p = g = 3, this bound is exact. But suppose p = 3,
g = 4. Then ("+47%) = (3) = 10, and the exact value of R(3, 4) is 9. Again if p = 3,

g =5, then (“‘1‘2) = (g) = 15, whereas the exact value of R(3, 5) is 14. In general,

-1
Theorem 10.16 shows that

SO

g+1\_qg+D _4a’+q
2 2 2 7

But for the case p = 3, this result can be improved [9]. It is shown there that for
every integer g > 2,

R(3,q) = <

g>+3

R(3,9) <
The following lower bound for R, (k) was proved by Abbott [1].

Theorem 10.11. For integers s, t > 2,
Ry(st —s —t+2) > (Ry(s) — D(Ry(1) - D + L.

Proof. Write p = R,(s) — 1 and ¢ = R,(¢) — L. Consider a K, with vertices x{, x2,
..., x, and a K, with vertices y, y2, ..., y,. Color the edges of K, and K, in n colors
€1, ¢z, - .., ¢y in such a way that K, contains no monochromatic K and K, contains
no monochromatic K; (such colorings must be possible by the definitions of p and g).

Now let K ,; be the complete graph on the vertices z;;, wherei € 1,2,..., p and
je€1,2,...,q.Color the edges of K, as follows:

(i) Edge wgy;wgy is given the color y;y, received in K.
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(i) If i # g, wijwyy, is given the color y; yj, received in K .

Now write r = st —s —t + 2 and let G be any copy of K, contained in K.
Suppose G is monochromatic, with all its edges colored ;. Two cases arise:

(i) There are s distinct values of i for which the vertex w;; belongs to G. Then from
the coloring scheme K, contains a monochromatic K, which is a contradiction;

(i) There are at most s — 1 distinct values of i for which w;; belongs to G. Suppose
there are at most ¢ — 1 distinct values of j such that w;; belongs to G. Then G has
atmost (s — 1){(t — 1) = st —s —t +1 = r — 1 vertices, which is a contradiction.
So there is at least one value of / such that at least ¢ of the vertices w;; belong to
G. Applying the argument of Case (i), K, contains a monochromatic K, which is
again a contradiction.

Thus K, contains no monochromatic K,. O

In order to develop the ideas of sum-free sets and obtain some bounds for R, (3),
we define the Schur function, f(n), to be the largest integer such that the set

1,2,..., f(n)
can be partitioned into #n mutually disjoint nonempty sets S, Sz, ..., S,, each of which
is sum-free. Obviously f(1) = 1, and f(2) = 4 where {1,2,3,4} = {1,4} U {2, 3} is
the appropriate partition. Computations have shown that f(3) = 13 with

{1,2,...,13} =1{3,2,12,11} U {6,5,9,8} U {1,4,7, 10, 13}
as one possible partition, that f(4) = 44 and f(5) > 138.
Lemma 10.12. For any positive integer n
fa+1)=3f0)+1,
and since (1) = 1,

¥ -1
fn) = .
Proof. Suppose that the set § = {1, 2, ..., f(n)} can be partitioned into the n sum-free
sets S1 = {x11, x12, ..., xlgl}, ey Sy = 1{x01, X2, .-, x,,g"}. Then the sets

Ty = {3x11,3x11 — 1, 32, 3x2 = 1, ..., 3xqg,, 3x1¢, — 1},

To = {3x21, 3x1 — 1, 3%, 330 — 1, ..., 3x2¢,, 3x2¢, — 1},

T, = {3x01,3x01 — 1, 3x02, 3xp2 — 1, ..., 3xpe,, 3X0e, — 1},
T =1{1,4,7,....3f(n) + 1}
form a partition of {1, 2,...,3 f(n) + 1} into n + 1 sum-free sets. So
fin+1)=3f(n)+1.
Now f(1) = 1, so equation 10.4 implies that

-1

f) = 143432 4... 43 =
2



152 10. Ramsey Theory

Theorem 10.13. For any positive integer
3"+3

< R,(3) =n(R,-i3)—D+2.

Proof. (i) The proof of the upper bound is a generalization of the method used to
establish R3(3) < 17.

(i) Let K £(5)41 be the complete graph on the f(n) + 1 vertices xg, X, ..., X ).
Color the edges of K f(,y41 in n colors by coloring x;x; in the k-th color if and only if
li — j| € S.

Suppose the graph contains a monochromatic triangle. This must have vertices x,,,
Xp, Xc witha.b.c,suchthata—b,b—c,a—c € S;. Butnow (a —b)+(b—c¢) =a—c,
contradicting the fact that Sy is sum-free. Hence

fm)+1=<R,3)—1,

so that
3" -1 3 -3
2= < R,(3),
5 + 5 < 3)

which proves the lower bound. O

Exercises 10.4

A10.4.1 Verify that, for any p > 2 and any ¢ > 2,
R(2,q9)=gq, R(p,2) = p.

10.4.2 Is it possible to 2-color the edges of K35 so that no red K4 or blue K5 occurs?

A10.4.3 Is it possible to 2-color the edges of K»s so that no monochromatic K5 occurs?
10.4.4 Verify that the sets 7y, T3, . .., T+ of Lemma 10.12 form a sum-free partition.
10.4.5 Verify the upper bound in Theorem 10.13.

10.5 The General Case of Ramsey’s Theorem

In its general (finite) form, Ramsey’s Theorem deals with the partition of the collection
of all r-sets on a set. The graphical case is the case r = 2. The case r = 1 is the
well-known pigeonhole principle: if n objects are distributed among more than n sets,
some set will contain at least two objects. This obvious statement has some less-than-
obvious applications.

We state Ramsey’s Theorem in its general form as Theorem 10.14. The proof is
left to the exercises.

Theorem 10.14. (Ramsey’s Theorem) Suppose S is an s-element set. Write I1,(S) for
the collection of all r-element subsets of S, r > 1. Suppose the partition
M,(S) = A UAU---UA4,

is such that each r-subset of S belongs to exactly one of the A;, and no A; is empty. If
the integers p1, P2, --., Pu Satisfyr < p; <, fori = 1,2,...,n, then there exists
an integer
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R(p1,p2, ..., Dus 1),

depending only onn, py, pa, ..., ppandr, such thatifs > R(py1, pa, ..., Pns 1), then
for at least one i, 1 < i < n, there exists a p;-element subset T of S, all of whose
r-subsets belong to A;.

Exercises 10.5

10.5.1 Suppose p, g and r are integers satisfying 1 <r < p, q. Prove:
@ R(p,g:H=p+g—-1
(i) R(r.q;r) =g;
(i) R(p,r;r)=p.

10.5.2 Prove Ramsey’s Theorem for n = 2.

10.5.3 Prove Ramsey’s Theorem.
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Digraphs

11.1 Basic Ideas

Recall from Chapter 1 that a digraph is a finite set v of objects called vertices together
with a finite set of directed edges, or arcs, which are ordered pairs of vertices. It is
like a graph except that each edge is allocated a direction — one vertex is designated
a start and the other is a finish. An arc directed from start s to finish ¢ is denoted by
(s, 1), or simply s¢. It is important to observe that, unlike a graph, a digraph can have
two arcs with the same endpoints, provided they are directed in opposite ways. But we
shall not allow multiple arcs or loops.

The idea of adjacency needs further consideration in digraphs. Associated with a
vertex x are the two sets

A(x) = {y : (x,y) is an arc}
B(x) = {y : (¥, x) is an arc}.

(A(x) consists of the vertices after x, and B(x) means before x.) A vertex x is called
a start or source in the digraph if B(x) is empty and a finish or sink if A(x) is empty.
The indegree and outdegree of a vertex are the numbers of arcs leading into and
leading away from that vertex respectively, so if multiple arcs are not allowed, then
the indegree and outdegree of v equal | B(v)| and |A(v)| respectively.
The notation of (1.5) is extended to directed graphs in the obvious way, so that if
X and Y are any sets of vertices of G, then [X, Y] consists of all arcs with start in X
and finish in Y. If X or Y has only one element, it is usual to omit the set brackets in
this notation. Observe that, if V is the vertex set of G, then
[x, A(x)] = [x, V] = set of all arcs leading out of x,
[B(x),x] = [V, x] = setofall arcs leading into x.

A (directed) walk of length » in a directed multigraph is a sequence (xg, a1, x1, ay,
X2, ... Xp_1, Gy, X,) Of vertices and arcs such that a; = (x;_1, x;). (This is analogous
to the definition of a walk in a graph, but takes into account the direction of each arc.
Each arc must be traversed in its proper direction.) A directed path is a directed walk
in which the vertices are all different. Not every path is a directed path. If a directed
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path is considered as a digraph, then x; is a source, and is unique, and a, is the unique
sink, so we call x¢ and x,, the start or source and finish or sink of the path respectively.
We say x; precedes x; (and x; succeeds x;) wheni < j.

A directed circuit (x1,x3, ..., X,) is a directed walk in which the first and last
vertex are the same. A directed cycle is a directed circuit in which all of the members
are distinct. A digraph is called acyclic if it contains no directed cycle.

Most of the above reads as though we are applying the word “directed” to many of
the terms that were used in describing undirected walks, paths and cycles. However,
you should notice that there can be a directed cycle of length 2, or digon, which does
not occur in the undirected case.

Example. Consider the digraph of Figure 11.1. It has

A(a) = {b, c}, B(a) =0,

Ab) =9, B(b) = {a, c,d},
A(c) = {b, d}, B(c) = la},
A(d) = {b}, B(d) = {ck;

a is a source and b is a sink. [{a, ¢}, {b, d}] = {ab, cb, cd}. There are various
directed paths, such as (a, ¢, d, b), but no directed cycle.

c d

Fig. 11.1. A typical digraph

Lemma 11.1. If a digraph contains an infinite sequence of vertices (xop, X1, . ..) such
that x; _1x; is an arc for every i, then the digraph contains a cycle.

Proof. Any digraph has finitely many vertices, so the sequence (xg, xy, ...) must

contain repetitions. Suppose x; is the first repetition — that is, x; = x; for some
i < j,and no vertex x; with k < j has this property. Then (x;, x;4+1,..., x;) isacycle
in g. O

In a similar way we can prove

Lemma 11.2. If a digraph contains an infinite sequence of vertices (xg, X1, .. .) such
that x;1x; is an arc for every i, then the digraph contains a cycle.

Theorem 11.3. Every acyclic digraph has a source and a sink.

Proof. Suppose the digraph D contains no sink. Select any vertex xp of D. Since xp is
not a sink, A(xp) is not empty; select a vertex x; in A(x). Similarly, select x in A(x1},
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x31n A(xy), and so on. Then Lemma 11.1 implies there is a cycle in D, a contradiction.
The proof in the case of a digraph with no source is similar (but uses Lemma 11.2). [

The following theorem provides an unexpected link between directed paths and
chromatic numbers. Notice that the concepts relating to vertex-coloring do not depend
on whether or not the edges are directed, so one can define the chromatic number of a
digraph to be the chromatic number of its underlying graph.

Theorem 11.4. [104] A digraph D contains a directed path of length x (D) — 1.

Proof. Let A be a set of smallest possible size of arcs of the digraph D such that
D" = D — Ais acyclic. If k is the length of the longest directed path in D', we shall
color the vertices of D with colors 1,2, ..., k as follows: if the longest directed path
in D’ with start x has length i, then x receives color i. We shall show that this is a
proper coloring of V (D).

Suppose there is a directed path P from x to y in D’. Then it is clear that x and y
receive different colors: if () is a longest directed path in D’ with start y, then Q can
contain no vertex of P other than y (if it contained z, then there would be a cycle in
D', formed by following P from z to y and then Q from y to z), so P U Q is a path
in D’ with start x, and it is longer than Q. So the endpoints of any directed path in D’
receive different colors under the coloring.

We now observe that the endpoints of every arc xy of D receive different colors.
If the arc is in D', then it constitutes a directed path (of length 1) in D', and the result
follows from the preceding paragraph. If not, xy is in A; the minimality of A implies
that D’ + xy must contain a cycle, and deleting xy from that cycle yields a directed
path from y to x in D’. So the coloring is proper.

This means that x (D) < k+ 1. So D’ contains a directed path of length x (D) —1;
certainly D will contain a directed path of this length. ]

The concept of a complete graph generalizes to the directed case in two ways. The
complete directed graph on vertex set V, denoted by DKy, has as its arcs all ordered
pairs of distinct members of V, and is uniquely determined by V. On the other hand,
one can consider all the different digraphs that can be formed by assigning directions
to the edges of the complete graph on V; these are called tournaments, and will be
discussed in Section 11.2.

In those cases where a directed graph is fully determined, up to isomorphism, by
its number of vertices, notation is used that is analogous to the undirected case. The
directed path, directed cycle and complete directed graph on v vertices are denoted by
DP,, DC, and DK, respectively.

We shall say vertex x is reachable from vertex y if there is a walk (and conse-
quently a directed path) from y to x. (When x is reachable from y, some authors say
“x is a descendant of y” and “y is an ancestor of x”.) Two vertices are strongly con-
nected if each is reachable from the other, and a digraph (or directed multigraph) is
called strongly connected if every vertex is strongly connected to every other vertex.
For convenience, every vertex is defined to be strongly connected to itself. We shall
say a directed graph or multigraph is connected if the underlying graph is connected,
and disconnected otherwise. However, some authors reserve the word “connected’ for
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a digraph in which, given any pair of vertices x and y, either x is reachable from y or
y is reachable from x.

It is clear that strong connectivity is an equivalence relation on the vertex set of
any digraph D (see Exercise 11.1.3). The equivalence classes, and the subdigraphs
induced by them, are called the strong components of D.

Exercises 11.1

Al1.1.1 For each of the digraphs in Figure 11.2:
(1) write down the list of arcs;
(i1) write down A(x) and B(x) for every vertex x;
(iii) find all directed paths from s to f;
(iv) write down a directed cycle of maximum length in the digraph;
(v) write down [X, Y], where X = {s, @, b}, and ¥ = V\ X.

(a) (b)

Fig. 11.2. Digraphs for analysis in Exercise 11.1.1.

11.1.2 Repeat the preceding exercise for the digraphs in Figure 11.3.

(a)
Fig. 11.3. Digraphs for analysis in Exercise 11.1.2.

H11.1.3 Prove (the directed analog of Theorem 2.1) that if there is a walk from x to y in
the digraph D, then there is a directed path from x to y in D. Hence prove that
strong connectivity is a transitive relation on the vertex set of a digraph.

11.1.4 The reachability digraph R(D) of D is the digraph whose vertices are the vertices
of D, in which yx is an arc if and only if x is reachable from y.
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(i) Prove that the strong components of D are complete subdigraphs of R(D),
and are maximal (that is, they are not contained in any larger complete subdi-
graph).

(ii) Prove that not every digraph is the reachability digraph of some digraph.

A11.1.5 For each of the digraphs in Figure 11.2:
(i) construct the reachability digraph (as defined in the preceding exercise);
(ii) list the strong components of the original digraph.
11.1.6 Do the same for the digraphs in Figure 11.3.
11.1.7 Prove that, in any digraph with vertex set V,

Y AW =Y |BW)!.
veV veV
A11.1.8 Human blood comes in four main types — O, A, B and AB. A person with type
O can give blood to anybody; type A or B can give to their own type or to AB;
AB can give only to AB. Draw a diagram to illustrate these relationships. Is it a
digraph?

11.2 Orientations and Tournaments

If G is any graph, it can be converted to a digraph by assigning a direction to each
edge. This process is called orientation. An oriented graph is a digraph that can be
obtained by orienting a graph; in other words, it is a digraph that never contains both
arcs xy and yx for any pair of vertices x and y.

If G has e edges, it can be oriented in 2¢ ways, but these orientations will not
usually be nonisomorphic. For example, there are eight different orientations of K3,
but only two different ones up to isomorphism.

An important practical problem is to orient edges so that the resulting digraph is
strongly connected. Such an orientation will be called strong. For example, consider a
communications network in which messages along any given link can be sent in only
one direction. If every node is to be able to send messages to every other node, the
directions chosen must form a strong orientation.

Theorem 11.5. A connected graph G has a strong orientation if and only if every edge
of G belongs to at least one cycle.

Proof. The necessity is obvious. Now suppose every edge of G belongs to at least
one cycle. We give an algorithm, similar to the Euler walk algorithm, which produces
a strong orientation.

Suppose S is some set of edges of G that can be oriented in such a way that the
resulting digraph D(S) is strongly connected. If S contains all edges of G, we are
done. Otherwise, select an edge xy that has not yet been oriented, where x is a vertex
of a member of §. (This must be possible, since G is connected.) Find a cycle that
contains xy, and orient it consistently, except that if an edge has already been assigned
a direction (that is, the edge is common to S and the new cycle), the orientation is
not changed. Call the new cycle, together with its orientations, C. Then either C is a
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directed cycle or it consists of a number of arcs of D(S) together with a number of
directed paths that lead from one vertex of D(S) to another.

We verify that D(§) U C is strongly connected. Suppose z and ¢ are two vertices
of the union. If z and ¢ are both vertices of D(S), each is reachable from the other
because D(S) is strongly connected. If z lies in C but not in D(S), say z lies on a
directed path P that leads from a to b, both of which are vertices of D(S); then one
can get from z to any vertex t of D(S) by traversing P from z to b, and then traversing
D(S) from b to ¢, and to get from ¢ to z one travels through D(S) from ¢ to a and then
along P to z. To travel between any two vertices not in D(S), one can find a walk that
passes through some point of D(S).

If there are edges that have not yet received orientations, one replaces D(S) by
D(S)UC and proceeds as above. Eventually the process halts because of the finiteness
of G, and the result is a strong orientation.

It remains to show that this whole process can be started — that is, the initial set
S must be found. But one can select any cycle in G, and orient its edges to form a
directed cycle. O

Suppose a competition is conducted in a sport such as tennis, where every match
results in a win or loss — ties and draws are impossible. Then the results can be
represented graphically as follows: if x beats y, there is an arc xy. If the competition
is a (single) round robin tournament, the possible result diagrams are precisely the
orientations of the complete graph whose vertices are the contestants. For this reason
an oriented complete graph is called a fournament, and the outdegree of a vertex is
called its score. If xy is an arc in a tournament, it is usual to say x dominates (or
beats) y.

Several special kinds of tournaments have been defined. A fransitive tournament
is one in which, whenever x dominates y and y dominated z, x dominates z. This
implies a linear “dominance” structure from which the whole structure of a transitive
tournament can be deduced, and there is exactly one transitive tournament on v ver-
tices, up to isomorphism. A reducible tournament is one in which the vertex set can be
partitioned into two nonempty sets S and 7 such that each vertex of S dominates each
vertex of T'; if no such partition exists, then the tournament is irreducible. A transitive
tournament can be viewed as a very special kind of reducible tournament.

Theorem 11.6. A tournament is irreducible if and only if it is strongly connected.

Proof. Suppose D is a reducible tournament, and every vertex in S dominates every
vertex in 7. Then no vertex in S is reachable from any vertex in 7', so D is not strongly
connected. Now assume D is not strongly connected; say vertex y is not reachable
from vertex x. Write S for the set of all vertices that are not reachable from x, and
T for the set of all vertices reachable from x. Then neither set is empty (y € S and
x € T), and every member of S must dominate every member of 7. So D is reducible.

O

Corollary 11.7. Every vertex of an irreducible tournament lies in a directed cycle of
length 3.
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Proof. Say vertex x lies in no directed triangle. If A(x) is empty, then every other
vertex dominates x. Otherwise, B(x) U {x} dominates A(x). O

A tournament is called regular if every vertex has the same score.
Hamilton paths and cycles in digraphs are defined in the obvious way, as directed
paths and cycles that contain all the vertices. Then we have

Theorem 11.8. [99] Every tournament contains a Hamilton path.

Proof. Consider a tournament D on v vertices. Since its underlying graph is K,,
Xx (D) = v. So by Theorem 11.4, D contains a path of length v — 1. t

Theorem 11.9. [88] Every vertex of any strongly connected tournament on v vertices,
v > 3, lies on a directed cycle of length k forevery k,3 <k < v.

Proof. We proceed by induction on k. The theorem is true for k = 3 by Corollary 11.7.
Suppose it is true for k < ¢, where ¢ < v. Select a vertex xo and a directed cycle

C = ('x()vxla--"xt—laxo)

containing it. Define sets of vertices R, S, T as follows: S is the set of vertices that
dominate all vertices in C, T is the set of vertices that are dominated by all vertices in
C, and R consists of all vertices notin C, Sor T.

First suppose R is empty. If there is a vertex ¢ in T and a vertex s in S such that ¢
dominates s, then

(x0, X1, -+ X1—2, 1, 8, Xg)

is a directed cycle of length 7 + 1. But such a vertex must exist: if S is empty, then
T is not empty and V(C) dominates T'; if T is empty, or if no arc ts exists, then S
dominates all other vertices. In either case, D is reducible and therefore not strongly
connected.

On the other hand, suppose R contains a vertex, say r. Suppose x; dominates r.
Going around C from x; in the direction x;, x; 11, .. ., find the first vertex x ; such that
r dominates x;. (If no such vertex existed, r would not be in R.) Then

(‘x()!xla "‘vxj—17r7-xj7"'7xt717x0)

is a directed cycle of length ¢ + 1, as required. (If j = 0, r is inserted between x,_;
and x.) [l

Corollary 11.10. Every strongly connected tournament contains a Hamilton cycle.

Exercises 11.2

11.2.1 Find strong orientations for:
AGQ) Ky (v > 3);
(1) K (m,n>2);
(iii) the Petersen graph.
11.2.2 Prove Theorem 11.8 by induction, without using Theorem 11.4.
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11.2.3 Given a reducible tournament, must the sets S and 7 be unique? Provide a proof
or counterexample.
11.2.4 D is any tournament. Prove that one can produce an irreducible tournament by
changing the direction of at most one arc of D.
A11.2.5 The score sequence of a tournament is formed by arranging the set of scores of its
vertices in nondecreasing order. Find the score sequences of the tournaments in
Figure 11.4.

(i) * (ii) <
| @ | | @ |
c d c d

Fig. 11.4. Tournaments for Exercises 11.2.5 and 11.2.9

11.2.6 If the score sequence (as defined in Exercise 11.2.5) of the tournament D is
(a1, as, ...,a,), prove:
() Yia = jv(v—1)
(1) if k < v, then Zf;l a; > 1k(k — 1), and the inequality is strict for every k if
and only if D is strongly connected.
11.2.7 Prove by induction, without using Theorem 11.9, that every strongly connected
tournament contains a Hamilton cycle.
11.2.8 C is a directed cycle in a strongly connected tournament D. Prove that D has a
Hamilton cycle in which the cyclic order of the vertices of C is preserved. [37]
A11.2.9 Find cycles through x of lengths 3, 4 and 5 in the tournaments shown in Figure
11.4.
11.2.10 Repeat Exercises 11.2.5 and 11.2.9 for the following tournaments.

(1) * (i1) «
| @ | | @ |
c d c d

11.2.11 Prove that a tournament is transitive if and only if it contains no directed 3-cycle.
A11.2.12 A regular tournament in which the common score of all the vertices is s is called
s-regular.
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(i) Prove that an s-regular tournament must have 2s + 1 vertices.

(ii) Prove that there exists an s-regular tournament for every positive integer s.
1.2.13 Prove that every regular tournament, as defined in the preceding exercise, is

strongly connected.

11.3 Directed Euler Walks

We use the phrase “Euler walk” when discussing directed graphs and multigraphs in
the obvious way. It means a walk (in the directed sense) that covers each arc exactly
once. There is a directed analog of Theorem 2.6.

Theorem 11.11. A directed multigraph has an Euler walk if and only if it is connected,
and the indegree of every vertex equals its outdegree, with the possible exception of
two vertices. For these two vertices, the indegree of one is 1 greater than its outdegree,
and the indegree of the other is 1 less than its outdegree.

Theorem 11.12. A directed multigraph has a closed Euler walk if and only if it is
connected, and the indegree of every vertex equals its outdegree.

Good [54] gave the following application of Euler walks to the construction of an
automated generalized switch. Suppose a machine carries out several different tasks
in sequence: an example is a washing machine, which will first fill with water, then
agitate, then spin, and so on. The switch is in the form of a rotating drum divided into
a number of sectors — let us say 16. The construction is illustrated in Figure 11.5,
where the shaded areas are made of conducting material and the white areas are made
of nonconducting material. A small electric motor makes the drum rotate, and the
position of the drum determines whether the terminals a, b, ¢, d are connected to the
earth or insulated from it. This is the information necessary for the machine to carry
out a specific type of operation. For example, when the drum position is as shown in
Figure 11.5, a, ¢ and d are connected to earth, while b is not.

b

d

earth

Fig. 11.5. A generalized switch
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Fig. 11.6. Directed multigraph corresponding to a generalized switch

For each of the 16 positions of the drum to give a distinct signal to the machine, the
sectors must be constructed so that no two conducting and nonconducting patterns of
four consecutive sectors are the same. We wish to know whether such an arrangement
exists, and, if so, how to construct it.

Label the earthed (conducting) sectors with 0 and the insulating (nonconducting)
sectors with 1. The setting in the Figure 11.5 would read 1011. If the drum were
rotated clockwise one position, it would read 1101. (Terminals a, b, ¢ and d are fixed
in position.) The problem becomes:

Arrange 16 binary digits in a circular array such that every sequence of four con-
secutive digits is distinct.

We construct a directed multigraph with eight vertices labeled with the eight 3-
digit binary numbers:

000, 001, o010, o011, 100, 101, 110, 111.

We construct the arcs of the multigraph and label each with a 4-digit binary number
as follows:

We draw one arc from the vertex o;asa3 to the vertex aa30 and another to the ver-
tex a3 1, labeling the arc from oy oa03 to acr30 by ajaa30 and the arc from oy orpa3
to apas1 by ajper3 1. Since there are eight distinct vertices labeled with eight distinct
3-digit binary numbers, this process will yield a multigraph with 16 arcs labeled with
16 distinct 4-digit binary numbers, shown in Figure 11.6.

In any walk in the multigraph, the labels for any two consecutive arcs must be of
the form o a3 and ana3asas; that is, the final three digits of the label of the first
arc are the same as the first three digits of the label of the next arc. Thus, corresponding
to any closed Euler walk in this directed multigraph is a (circular) arrangement of 16
binary digits that will give all the 16 four-digit combinations. For example, the closed

Euler walk
0000, 0001, 0010, 0101, 1010, 0100, 1001, 0011,

0110, 1101, 1011, 0111, 1111, 1110, 1100, 1000
corresponds to the arrangement
0000101001101111.

A circuit is obtained by joining the ends of this arrangement. This is the circuit that
was used to construct the drum shown in Figure 11.5; the start of the sequence is
shown by an arrow in that diagram.
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A closed Euler walk exists because the indegree of each vertex equals its outde-
gree.

It is possible by a similar construction to arrange 2" binary digits in a circular
array so that 2" sequences of n consecutive digits in the arrangement are all distinct.
We construct a directed multigraph by 2"~ vertices labeled with 2"~ (n — 1)-digit
binary numbers and draw arcs from vertex ojon0s---a,—11 to opos - - - a,—10 and
a0 - - -, 1 respectively. This multigraph then contains a closed Euler walk.

Sequences of this type are called de Bruijn sequences, after the mathematician who
introduced them. More recently they have been called universal sequences.

Exercises 11.3

11.3.1 Find a digraph with four vertices that has no Euler walk, although its underlying
graph has an Euler walk.

11.3.2 Suppose the graph G has an Euler walk. Prove that it is possible to orient G in
such a way that the resulting digraph has an Euler walk.

11.3.3 Prove Theorem 11.11.

11.3.4 Find a cyclic sequence of length 27 that contains the digits 0, 1, 2, nine times
each, such that each of the 27 strings of length three chosen from the set {0, 1, 2}
appears exactly once.
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Critical Paths

12.1 Activity Digraphs

One application of digraphs is in the scheduling of compound activities, ones that are
made up of various tasks. One easy example is building a house. There are several
different tasks — roofing, assembling walls, carpeting and so on. Sometimes there is a
strict priority relationship (you cannot lay carpet until the floors are done); sometimes
the tasks are independent (carpeting can be done before, after or during the exterior
painting). We shall assume that these are the only possibilities: given two tasks a and
b, either one must precede the other or they are independent.

c

Fig. 12.1. Illustration of precedence relations

We shall set up a digraph, called an activity digraph, to represent the precedence
requirements of a compound activity. The various tasks are represented by vertices.
The digraph contains a path in which vertex a precedes vertex b if and only if task
a must be completed before task b is started. For example, in Figure 12.1, tasks b
and ¢ must precede task d, but tasks b and ¢ are independent. We assume that all the
required tasks are included in the digraph — if it is possible to perform all the tasks
that precede x, then task x can be performed.

In order for this representation of tasks to be a digraph, there can be no loops or
multiple arcs. This is no problem. A loop will never occur, because it would represent
a task that is a prerequisite for itself; such a task could never be performed. Multiple
arcs have no sensible interpretation.
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In constructing an activity digraph, it is not always clear that there is a “starting-
point” s and an “endpoint” or “finish” ¢; so, for convenience, we formalize the fol-
lowing rules to ensure that the digraph represents a task with a well-defined start and
finish:

e If the digraph contains more than one source, define a new vertex s; and add an arc
sx to the digraph whenever x is a source;

e If the digraph contains more than one sink, define a new vertex ¢; and add an arc
yt to the digraph whenever x is a sink.

We refer to this process as initializing the digraph. If necessary, we shall assume that
any activity digraph we discuss has been initialized.

Example. In building a barn one must first build the frame. The outside walls must be
erected before painting, and also before any inside fittings are installed. The roof must
also be in place before the inside fittings are done. Let us denote the tasks by:

a: build frame

b: build walls

c: fitroof

d: paint

e: do inside fittings.

Then we have:

a must precede b, ¢, d, e;
b must precede d, e;
¢ must precede e.

The digraph in Figure 12.2 is easily constructed. The unique source a serves as a start;
a finish ¢ has been added.

c e t

Fig. 12.2. Digraph for the barn example

Clearly some digraphs represent impossible sets of prerequisites — for example,
a directed cycle ab of length 2 means that a is prerequisite for b and b is prerequisite
for a. More generally, if a digraph contains a directed cycle, the corresponding project
cannot be completed. We shall now prove that the converse is true.

Theorem 12.1. A set of tasks can be completed if its activity digraph D is acyclic.
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Proof. By Theorem 11.3, D has at least one source and at least one sink. Assume we
have initialized the digraph, providing a unique start s and a unique finish ¢ for the
activity. Now define sets Sp, Si, ... as follows:

So = {s},
and for all positive integers i,
Si ={A(x);x € i1}V Si-1.
We prove by induction that it is possible to perform every task represented by a vertex
in any of the sets S;.

Trivially, s can be performed, so the statement is true for i = 0. Now suppose every
vertex in S;.; can be performed. Then the prerequisites of every task in {A(x); x €
S;—1} can be performed, so every task in S; can be performed.

It remains to show that 7 € §; for some j. Now suppose the contrary. The finiteness
of digraphs tells us that there must be some integer # such that §, = S, = ---. By
assumption ¢ ¢ S,. Sot ¢ Sn+ 1, whence B(f) contains an element that is not in
Su. Call this element vy; vy # ¢. Applying the same argument to v, instead of ¢, one
obtains a vertex v,; v; # vy or ¢. In this way an infinite sequence (¢, v1, v, ...) may
be constructed, and therefore D contains a cycle by Lemma 11.2 — a contradiction.

O

Exercises 12.1

12.1.1 Set up a digraph that represents the priorities involved in the following set of tasks
a,b,c,d,e, fandg.
a must precede b, ¢, e and g.

b must precede d and e.
f must precede ¢ and ¢ must precede d.
12.1.2 Draw a digraph to represent the complex of tasks a to k, where
a and b precede d and h.
c and f precede g.
b precedes e and f.
e and h precede i.
¢,d, f and i precede j.
g and j precede k.

12.1.3 Construct a digraph for a project comprising tasks a to p that satisfy the following

precedence relationships. )
a, b and c, the first tasks, can start simultaneously.

d, e and f can start immediately after a is completed.
i and g can start after both b and d are completed.

h starts after both ¢ and g are completed.

k and k both succeed i.

J succeeds both e and &.

e, f and h precede m and n.

m and { precede o.

p succeeds j, £ and o.

k, n and p are the final tasks of the project.
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12.2 Critical Path Analysis

A major consideration in scheduling a project is the time needed to perform the var-
ious tasks. To represent this we associate with each vertex x a weight w(x). Vertex
weights are defined similarly to edge weights, so that w is a mapping from the vertices
of a digraph to the nonnegative real numbers. w(x) is called the duration of x, and
represents the time needed to complete the task x. A digraph with a weight on the
vertices or the arcs is often called a network, and the network formed by attaching a
weight to an order requirement digraph is called an activity network.

In this section we shall define a technique, critical path analysis, for minimizing
the total time taken to carry out a project. It will be assumed that manpower is no
problem, in the following sense. Suppose a and b have the same prerequisites, and both
are prerequisites for the same set of tasks. Say a takes seven days and b takes five days.
It is assumed that there is enough manpower to perform both tasks simultaneously. If
this is not so — if, for example, a and b must be performed by the same person — it
may be necessary to regard the two as one task x, and write w(x) = 12.

If some parts of a project are delayed, this could cause delays in the project as
a whole. For example, suppose task @ must precede task b, a takes three days and b
takes six days. If the rest of the activity can be carried out in nine or less days, then
it is necessary to schedule a at the very beginning of the activity and b to start at the
beginning of day 4, if unnecessary delays are to be avoided. On the other hand, if
the other parts of the activity take more than nine days, there may be some leeway
(“slack”) in scheduling the start of a or of b, or in the transition from completing a to
starting b.

We illustrate the technique using an example. Suppose there are five tasks, called
a, b, c,d and e. Task a must precede c; b and ¢ must precede e¢; b must precede d. The
durations of the task are:

a takes 13 minutes.
b takes 25 minutes.
c takes 15 minutes.
d takes 22 minutes.
e takes 27 minutes.

The activity network, with start s and finish ¢ added, is shown in Figure 12.3.

5 (0) 0)

Fig. 12.3. Activity network example
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We ask, “given a task, what is the earliest time that it can start and finish?” The
task a, for example, conld be started immediately (at time 0). It could finish 13 minutes
after the start, so the earliest possible finish time would be time 13. We denote this by
writing 0 before, and 13 after, the vertex a. Since ¢ cannot start until a is completed,
this “earliest finish time” for a is also an “earliest start time” for ¢, and ¢ cannot be
completed until a further 15 minutes have elapsed — time 28. Similarly, the earliest
finish time for b is 25.

Now consider vertex e. Since b is a prerequisite, e cannot start before time 25. But
¢ is also a prerequisite, so e cannot start before 28. Clearly the later time, 28, is the
important one. So the earliest start time for e is 28, and its earliest finish time is 55.

Continuing in this way, Figure 12.4 is obtained.

The earliest start (and finish) time for ¢ is 55, so the whole procedure must take at
least 55 minutes.

a [ €
013 1328 28

@ 5
s o) SOOI
025 2547

b

Fig. 12.4. Activity network with earliest start and finish times

A path in the order requirement digraph is a list of tasks such that each is a prereq-
uisite of the rest. So the total time required to finish the set of tasks on a path will be
at least as great as the sum of the individual durations of the tasks on the path. Let us
call this the length of the path. The total time required to finish the project will be at
least as long as the longest path.

Look at the arcs shown with heavy lines in the above diagram. In each case the arc
leads from a vertex with a certain finish time to a vertex with the same start time. If
there is any delay in completing the first task, or in the transition from the first to the
second task, the second task will be delayed. In particular, there is a path sacet from
s to t, with every arc a heavy line. If any task or transition along this path is delayed,
the whole project will be held up. Such a path is called a critical path. Finding critical
paths is very important in the elimination of bottlenecks, the design of assembly lines,
and so on.

To find all critical paths, proceed as follows. First, calculate the earliest start and
finish times of each task: for S, both times equal O; for any other task X, the earliest
start time will be the maximum among all the finish times of prerequisites of X, and
the finish time is the start time plus the duration. An arc is critical if the finish time of
its first vertex equals the start time of its second vertex. A critical path is a path from
s to ¢, all of whose arcs are critical.

This is easily done for small networks. In general it is necessary to express this
procedure as an algorithm, which is done as follows. e(x) is defined to be the earliest
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start time of x, the shortest time in which all tasks in the network necessary to reach x
can be carried out. Then the earliest finish time for x is f(x) = e(x) 4+ w(x). It follows
that:

e(x) = maxyep) f(¥)
= maxyep(x)(e(y) + w(y)). (12.1)

The slack in arc xy is defined as
s(x, y) = e(y) — f(x).

In this terminology, a critical arc is one with zero slack. A critical path is a path in
which any delay must cause a delay in the whole project, and critical path analysis is
the process of finding all critical paths. Once every critical path has been found, one
can identify the tasks most likely to cause delays and bottlenecks in the system, and
devote resources to trying to speed these tasks, rather than others.

Clearly e(x) cannot be calculated until e(y) (and f(y))is known for all y in B(x).
So the following algorithm is used. First, select a vertex x such that e(x) is known
for all y € B(x). Then calculate e(x) using (12.1). Then select another vertex. The
process starts at s, the only vertex with no prerequisite. So the algorithmfor calculating
the values of the function e is as follows (at any stage, S denotes the set of all vertices
y such that e(y) has already been calculated):

e(s) «< {0}

S <« {s}

select x such that B(x) € S,x ¢ S
e(x) < maxyep (e(y) + w(y))
S« SUx

if x # r then goto [3]

A e e

The algorithm is illustrated in the following small example (which would, of
course, be solved in practice by constructing the diagram).

Example. To paint a door. The tasks are as follows (time is shown in minutes):
j. Remove old paint (75).
k. Sand the door (30).
£. Open can and stir paint (4).
m. Prepare brushes (5).
n. Clean up paint scrapings (4).
p. Paint the door (30).
g. Clean equipment and put brushes away (15).

j must precede k. j and k must precede n. £, m and n must precede p. p must precede
q. A suitable digraph is shown in Figure 12.5.
The algorithm proceeds:
[1]e(s) = {0}
(2] § = {s}
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Fig. 12.5. Network for door painting.

(B]lx =j,form,butx #nask € B(n) butk ¢ S.Say x = j. B(a) = {s}
[4] e(j) = maxyepa (e(y) + w(y)) =e(s) + w(s) =0+0=0

(51 S ={s, j}
[6] go to [3]
131 x =k, £ orm.Say x = k. B(k) = {j}
4letk)y =e(jD+w(j)=04+75=175
(51 S ={s, j, k}
(6] go to [3]
[3] Say x = £. B(¢) = {s}
[4le(f) =e(s)+w(s) =04+0=0
[51S =1{s, j,k, £}
[6] go to [3]
[31Say x =m. B(m) =s
[Ale(m) =e(s) + w(s) =0+0=0
[5]1S =1{s, j,k, £, m}
[6] go to [3]
[3]1 x = n. B(n) = {k}
[4] e(n) = e(k) + w(k) =75+ 30 = 105
51S={s, j.k, &, m,n}
[6] go to [3]
Blx = p. B(p) ={¢,m, n}
[4le(@) +wf)=0+4=4
e(m)+w(m)=0+5=5
e(n) +wn) =105 +4 =109
e(p) = max{44, 5, 109} = 109
[51S=1{s,j.k, £, m,n, p}
[6] go to [3]
Blx =gq. B(g) = {p}
[4] e(q) = e(p) + w(p) = 109 4 30 = 139
[5] S= {s,j,k,f,m,n, qu}
[6] go to [3]
Blx=f.B(f)=1{q}
4e(f) =e(@) +wlg) =139+ 15 =154
B1S=1{s,j, k. &,m,n, p,q,t}
[6] stop

173
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The earliest start times are now all known. The earliest finish times are now easily
computed:

fG)y=-ces) + wis) = 04+ 0=0
fGr=e() +w() = 0+75=75
fk) = etk) + wk) = 75+30=105
J) =e) +uw) = 04 4=4
fm)=em)+wim)= 04 5=95
f(n) = en) + win) =105+ 4=109
f(p) =elp) + w(p) =109 + 30 = 139
flg) = e(q) + w(g) =139 +15=154
f@)y =e@®) + wit) =154+ 0=154

The slacks for the arcs are:

s(s,j) =e(j) —fls)= 0-0=0
s(s,0) =ell) — f(s) = 0-0=0
s(s,m)=em) — f(s) = 0—-0=0
s(s,n) =e(n) — f(s) =105 — 0= 105
s(j.k)y =ek) — f()H=75 = 15= 0
stk,n) = e(n) — fk) =105-105= O
s(¢,p) =e(p) — f(£) =109 — 4=105
s(m, p) = e(p) — f(m) =109 — 5=104
stn,p) =e(p) — f(n) =109 -109= 0
s(p,q) =e(@) — f(p) =139-139= 0
s(g, 1) =e(f)— flg) =154-154= 0

The critical arcs are sj, s€, sm, jk, kn, np, pq, qf, and the (unique) critical path
is(s, j,k,n, p,q,t).

Exercises 12.2

12.2.1 Draw a network to represent a compound activity that is made up of tasks a, b, c,
d, e with the requirements
a must precede ¢ and d,
b must precede ¢ and d,
¢ must precede e,
d must precede e.
Find a critical path in the network on the assumption that a, b, c, d, e take 1, 3, 2,
1, 1 hours respectively.
12.2.2 For each of the following problems, construct an activity network. Find the short-
est time for completion, and identify all critical paths and tasks.
(1) To shine a pair of boots. (Time in minutes.)
Clean mud from boot A (2); clean mud from boot B (2); apply polish to boot
A (1); apply polish to B (1); wait for polish on A to dry (1); wait for polish on
B to dry (2); rub A (1); rub B (1).
A(ii) To send a letter. (Time in minutes.)
Letter dictated to secretary (10); letter typed by secretary (10); envelope ad-
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dressed by clerk (2); envelope stamped by clerk (1); clerk places letter in
envelope and seals (1); letter taken to mailbox (8).

(iii) To make a wooden box. (Time in minutes.)
Mark out pieces on sheet of wood (15); cut out pieces (12); glue body together
(10); screw hinges to lid (5); wait for glue to dry (15); screw hinges (with lid)
to box (6).

(iv) To replace a flat tire. (Time in seconds.)
Get jack and tools (60); remove hubcap (30); loosen wheelnuts (120); place
jack under car (25); lift car (80); get spare (25); remove wheelnuts and wheel
(40); place spare on studs (30); put wheelnuts (half-tight) on studs (60); lower
car and remove jack (45); put jack away (20); tighten wheelnuts on studs (30);
put away tools and punctured tire (50); replace hubcap (20).

12.2.3 Construct a network to represent the following data, find out how early you can
finish the project, and find all critical paths.

Task Time Prerequisites

a 4 nil

b 3 a

c 3 a

d 3 b

e 3 a

f 3 b
g 3 ef
h 3 d,g

12.2.4 The following networks represent projects (times for the tasks are shown on the
arcs). Find all critical paths.

@

O o o
(i)

00 S o
@) @>@>0

Ol b

12.2.5 Activities r, u, v, x, y, z are necessary to produce a certain product. » must pre-
cede # and y, v must precede x, x and y must precede z. The numbers of days
necessary to carry out the activities are:

wr)=4wu)=4wkw) =4, wkx) =4 w(y) =4, w(z) =4.

The cost of carrying out all the activities in this way is $3,500. It is possible
to reduce the time for x by one, two or three days, at a cost of $150 per day’s
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reduction. You are offered a contract to produce the product in 17 days, for a price

of $4,000. There is a bonus of $200 for each day by which you finish before the

deadline, but your product will not be accepted if you take more than 17 days.

Should you accept the contract? If so, how long should you take over activity x?
A12.2.6 The following tasks are to be subcontracted in building a house; the times quoted

by the subcontractors are shown in brackets. Construct the activity network and

find all critical paths.

a. Site preparation; foundations (5 days)

b. Underground plumbing; sewer and water connections (7 days)

¢. Internal plumbing; hot and cold water pipes and faucets (4 days)

d. Brickwork and piers to floor level (5 days)

e. Timber frame, flooring, walls, roof (10 days)

/. Roof tiling and gutters (5 days)

g. Electrical: all exterior connections and internal wiring (8 days)

h. Exterior construction: siding, glazing, doors (10 days)

i. Exterior painting (10 days)

Jj. Internal drywall and plastering (3 days)

k. Internal finishing, painting etc. (8 days)

12.3 Critical Paths Under Uncertainty

Often the tasks represented by the arcs of a digraph do not have a fixed duration; there
are variables x,, the “time it takes to carry out task a,” and one cannot predict with
certainty the value of x, in the particular case.

The x, are random variables in the usual statistical sense. Each x, will have a
mean, p,, the (theoretical) expected value of x,, and a variance, var(x,) or oaz, the
(theoretical) expected value of (x, — u,)?. We write g, to denote the positive square
root of 2. The values of 11 and o are not usually known, but often they can be es-
timated. For example, if records are available showing the time it has taken to per-
form a under similar conditions previously, then the average X, of those times is
an estimate of u,. If there are n records, the sample variance s> = Z(x, — X4)?/
(n — 1) provides an estimate of o2. In any event, we shall assume that some estimates
X, and s2 of u, and o2 are available. If these estimates are used in critical path com-
putations, the values that are obtained — values of e(x) and f(x) for each vertex x
and of the slack for each arc — are estimates of the actual values of these quantities in
the project.

We make the assumption that the times taken to carry out the different tasks are
independent. If a, b, . .., f are different tasks, this assumption implies that the time to
carry out the sequence a, b, ..., f will have mean p, + pp + - - - + f1 and variance
o2+ 0} +--- + o} Estimates can be found by replacing each 1, by X, and each o’
by s2.

The particular model to be discussed is called Program Evaluation and Review
Technique, or PERT. This makes allowance for the fact that variances are nearly al-
ways hard to estimate and that means are often difficult also. One first estimates the
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shortest and longest durations that are likely for the task a. These are called “opti-
mistic” and “pessimistic” times for a, and are denoted by «, and B, respectively. In
general, a fair guide is that the probabilities of x,, being less than «, or greater than 8,
should be about .01. Then s? = ((B, — 4)/6)* is a reasonable approximation to o 2.
If no estimate of x, is available, we use an estimate m, of the mode of x,, the value
that x, takes most frequently. Although modes and means can differ considerably (see
Exercise 12.3.1), we can compensate by putting

Xag = (4/'La + o, + ﬂa)/6

Given estimates x, of each p,, we proceed to write down an activity network with
x, shown as the duration of ¢ and find the (estimated) earliest start and finish times
and the slacks. The estimated variance of the earliest start and finish times can then be
calculated.

Once an earliest time e(a), and an optimal path to a (the path to a that actually
takes the earliest time), have been discovered, then the estimated variance of the ear-
liest time is ) o2, where the sum is taken over the vertices b in the maximal path. (If
there are two such paths, use the larger variance.)

In the case where task durations were fixed, one could calculate whether or not a
scheduled deadline could be met. In the case of uncertainty one can ask what is the
probability of meeting a schedule. To calculate this, we must make certain assumptions
— essentially, we assume that the earliest times have a normal distribution. In most
cases this is reasonably close to the truth, particularly for the later tasks, and typically
the most important case is the finish state ¢.

Suppose there is a deadline d. We wish to calculate the probability that e(z) < d.
We assume that e(t) is normally distributed with true mean e(r) and variance var[e(t)].
Then § = (d — e(t))/+/(var[e()]) will be a normal variable with mean 0 and standard
deviation 1, which is called a unit ( or standardized) normal variable, and denoted by
N(0, 1). So the probability that e(¢) < d equals the probability that a unit normal
variable should be less than §. This probability function is tabulated, and is readily
available in any volume of statistical tables.

Fig. 12.6. Digraph for the example

Example. Consider the digraph of Figure 12.6(a). (Arcs are directed from left to right.)
After a source and sink are added, the resulting digraph is shown in Figure 12.6(b).
Suppose estimates have been made as shown in the first three columns of Table 12.1.
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task][ a[b]c[d]e|f[g] h] i
o [ 10]15]20] 10] 8] 5] 1] 10] 8
m || 15[ 18] 26] 14]13] 8 2| 15]10
7 | 26]33]56] 24| 30[23] 9] 26[24
% [ 16/20[30] 15]15]10] 3] 16]12

Table 12.1. Estimated times for the example

Then the mean and variance estimates can be calculated: for example, in the case

of a, the mean estimate is
10+ (4 x15)+26 96
6 "6
Similar calculations yield the other means shown in the last column of the table. In-
serting these into the digraph and solving as an ordinary critical path problem we

obtain the earliest and latest times as shown in Figure 12.7. The unique critical path is
s,b,e, h,t,sothe critical tasks are b, e and 4.

= 16.

a d

016 16~ 31
00 0 _ 20 20,35 35,38 38150 51,51
f

Fig. 12.7. Digraph for the example with earliest and latest times

We need the variance estimates for b, ¢ and /. They are

2 (331592 _ 3
% = 3 = 36
o? = (0-82 484

e 6 - 36 °
o2 = 26-1)2 256

= 6 = 36

and the estimated variance of the completion time is

324 +484+256 1064
36 36

So the estimated completion time for the project is distributed approximately as a nor-
mal variable with mean 51 days and variance 5.437% days. Suppose there is a penalty if
the project is not completed within 55 days. To calculate the probability of completion
within that time, we use the conversion

d =(d —51)/5.437,

29.55... = (5.437)%.
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d = 55 yields § = 0.7357 approximately, so the probability of completion before
55 days equals the probability that N(0,1) < 0.736, which is found from tables to be
0.769. There is a 77% chance of completion without penalty.

12.3.1

12.3.2

A12.33

1234

A12.3.5

Exercises 12.3

A random variable can attain the values 1, 2 and 3; it equals 1 in 60% of trials, 2

in 30% and 3 in 10%.

(i) Find the mean m and the mode m of this variable.

(ii) Using @ = 1 and 8 = 3, calculate (o 4 4m + §)/6. How does this compare
to m as an estimate of ©?

Consider the project described in Exercise 12.2.1. Suppose the durations given in

that exercise are actually means, and the variance estimates are 1.0 for task b and

0.5 for each other task. What is the probability of completing the task within 5

hours?

Suppose the times given in Exercise 12.2.6 are optimistic estimates; the most

likely times are 25% longer than those given, and pessimistic estimates are twice

the suggested times. What is the probability that the building will be completed

within 65 days?

A project consists of tasks a, b, ¢, d, e, f, g, h and i. a must precede ¢, b must

precede d and e, ¢ and d must each precede f and g, ¢ and f must precede 4, and

g must precede i. The optimistic, most likely and pessimistic times (in days) of

the tasks are

ltask] a| bfc[d]e[f] g[h]i]
o 20 1131 212 6] 2| 5|1
mi| 5| 4| 8| 716] 91 5| 6|2
g 6 7/13| 12{10{ 12| 11| 7|3

(i) Construct a network and find all critical paths.
(i1) What is the expected length of the project?
(ii1) What is the probability of completion within 30 days? Within 24 days?
A project has tasks a, b, ¢, d, e, f, g, h, i and j with estimated durations as
follows:

task a| b c[d]e| f[ g]h[i] ]
o ]| 14] 10] 13] 7] 16]20] 7] 8]13] 6
m || 6] 14| 18] 8| 16/26] 810[17] 9
B | T8[ 15] 23] 9 [ 16| 38| 12| 12[21]15

The precedence relations are that a must precede ¢, b must precede d, e and f, ¢,

f and A must precede j, d must precede g, and e and g must precede & and i.

(i) Construct a network and find all critical paths. What is the expected length of
the project?

(ii) The project is allocated 52 days. What is the probability of completion on or
before the deadline?
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Flows in Networks

13.1 Transportation Networks and Flows

Graphs are used to model situations in which a commodity is transported from one
location to another. A common example is the water supply, where the pipelines are
edges, vertices represent water users, pipe joins, and so on. In the example of an air-
line, given in Section 2.3, we can interpret freight or passengers as commodities to be
transported. Highway systems can be thought of as transporting cars. In many exam-
ples it is natural to interpret some or all edges as directed (some roads are one-way,
water can flow only in one direction at a time in a given pipe, and so on). A common
feature of transportation systems is the existence of a capacity associated with each
edge — the maximum number of cars that can use a road in an hour, the maximum
amount of water that can pass through a pipe, and so on.

Example. A communications network connects the n centers xy, x2, . . ., x,. The max-
imum number of messages, ¢;;, that can be sent from x; to x; per minute depends on
the number of lines between x; and x;. Given the n x n matrix C = (c;;), it is impor-
tant to to know the maximum amount of information that can be transmitted between
a given pair of centers per minute. The appropriate model is a graph with vertices
representing centers, edges representing direct communication lines and capacities
representing the maximum rates of information transfer. This is an example where
directions are not attached to the edges.

Normally there will exist several places where new material can enter the system.
These will be modeled by vertices called sources. Material leaves at vertices called
sinks. The usual model has one source and one sink; it will be shown that this involves
no loss of generality. We are primarily concerned with the amount of material that
flows through the system; the classical problem is to maximize this quantity.

We define a transportation network to be a digraph with two distinguished vertices
called the source and the sink, and with a weight ¢ defined on its arcs. c(x, y) is called
the capacity of the arc xy.

Example. An oil company pumps crude oil from three wells wy, w, and ws to a central
terminal z. The oil passes through a network of pipelines that has pumping stations at
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all three wells and also four intermediate stations p,, p2, p3 and p4. The digraph of this
network, along with the capacities of the pipelines (in units of ten thousand barrels) is
shown in Figure 13.1. There are three sources, wy, w;, w3, and one sink, ¢.

Fig. 13.1. Network for the oil pipeline problem

This example is not a transportation network, because of the multiple sources. The
usual way to deal with this case is to add a new (dummy) vertex, say s, together with
arcs of infinite capacity from s to every source. The new network has one source, s.
Multiple sinks are handled similarly. The resulting single-source, single-sink network
is often called the augmented or completed network.

Sometimes there is a capacity constraint on the vertices of a system. For example,
say vertex x can process at most ¢ units of a commodity per day. To embody this
constraint, replace x by two vertices x; and x,. All arcs that previously led into x
now lead into x, all those that previously were directed out of x now leave x,, and
there is an arc from x; to x, with capacity c(x, x) = ¢. The most common type of
vertex capacity is when the vertex x is a source, and in that case one can simply set
¢(s, x) = ¢ when defining the new source s.

Example (continued). Suppose the maximum possible amounts that oil wells w;, w;
and wj can produce are 120,000, 100,000, and 105,000 barrels per day respectively,
and p; can process at most 150,000 barrels each day. Then an appropriate network is
shown in Figure 13.2.

A flow f of value v = v(f) on a transportation network with source s and sink ¢
is a weight f satisfying

0 < f(x,y) <c(x, y) for every arc xy, (13.1)
and
Yo fen=Y f@s) = v (13.2)
yeA(s) z€B(s)
Yofen=) f@n = -v, (133)
yeA(l) ZE€B(1)

Z flx,y)— Z f(z,x) = O for other vertices x. (13.4)

yeA(x) z€B(x)
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P2 P
12 o 15 A

Fig. 13.2. Augmented network for the oil pipeline problem

The flow f is called a flow from s to t.

The quantity Y s f (6, ¥) = 2 oy f(z, x) is called the net flow at x. The
source and sink of a transportation network are often called terminal vertices, and the
other vertices are interior, so (13.4) says that the net flow at any interior vertex is zero.

Recall that [A, B] denotes the set of all edges of a graph with one endpoint in A
and the other in B. The same notation is used in digraphs. If f is a function defined

on edges, it is common to write f[A, Blfor ) ., > yes (%, y). In that notation, the
net flow at x is

F(x)= flx, V] = fIV.x],
where V is the vertex-set of the network. (One could replace V by V — x, but as there
is no flow from x to itself, this makes no difference.)

Example. The following diagram shows a real-valued function f on a network with
source s and sink 7. For convenience we assume that the capacity of each arc is suffi-
ciently large that (13.1) is satisfied.

oo %,

3

To verify that f is a flow, it suffices to check the net flow at each vertex:

F(s) = f@.a)+ f(s,b) = 545 = 10
Fla) = flab+ fao+ flad—fs,a) = 14+3+1-5 = 0
Fb) = fb,d)+ fhe)—fs,b)—flab) = 3=3-5-1 = 0
Fic) = fl,t)—fla,o—fd) = 7-3-4 = 0
Fd) = fd,¢)—flad —fbd —fled = 4-1-3-0 = 0
Fe) = f(e,d)— fle,t)— f(b,e) = 0+3-3 = 0
F@) = —flc.t)— fle1) = -7-3 = —10

so f is a flow from s to ¢ of value v(f) = 10.
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Generalization to flows in networks with multiple sources and sinks will be con-
sidered in Exercise 13.2.3.

Exercises 13.1

A13.1.1 The network N is shown below. The numbers on each arc give the value of the

function g.
a
/0\ !
5
3 b 7
s C< 2 {P 6 d
5 4 4 8
N
1 6
c [4 t
7
(i) Give an example of a directed (s, t)-path.

(ii) Give an example of an (s, t)-path that is not a directed (s, ¢)-path.
(iii) Consider the subsets X ={s,a,d}, Y ={c, e, f} and Z = {c, ¢}. Find:

O~

@ [X, f]; (b) [X,el; (© glXx,r];
(d) glX, Z]; (e) g[X,YNZ]; () glX, Y UZ].

13.1.2 Water is sent from the main dam D to a metropolitan reservoir R through a
pipeline network containing five pumping stations P;, P, P3, P4 and Ps. The
maximum number of gallons that can flow between the various stations per day is
given by the table

D P P,Ps Py Ps R
D|05040350 0 O
PO 0200400 0O

9

PO 0 0 O 0333
P00 000300
P40 0 0 O 0 040
Psj0 0 0 0 0 050

R{0OO0OO0OOOO.

The problem is to maximize the amount of water flowing from the dam to the

reservoir per day.

(i) Construct the network.

(ii) Suppose a new reservoir Q is added to the network, and pipelines are con-
structed joining Q to Pz, P, and Ps with maximum daily flow capacities of
10, 15 and 20 million gallons respectively. How does the network in Part (i)
change? What optimization problems arise?

(iii) Suppose P, has a maximum capacity of 55 million gallons per day. How can
the network in (i) be changed to reflect this?
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A13.1.3 In the following networks two numbers are assigned to each arc: the capacity is
followed by the value, in brackets, of a function f. In each case, is f a flow from
s to r?If f is a flow, what is its value?

@ s

a b c d

5(4) 3(3) 4(1) 3(3)
SRR A A S
3(3)

2(1) \%(51) 3(1) 2(1)
5 2(1) 33)-0 4(4)6—%35(3
h j t

€ 8

(i1) s a b c
3(3) 6(6)
? 22) @\3(3) //F
6(4) 7(6) 3(2)  9®)
6(4) 4(1) <J.>
d e g t

13.1.4 Suppose g is a real-valued function defined on the arcs of a network N, and X, Y
and Z are subsets of the vertex-set of N. Show that

glX, YUZ}=g[X,Y]+glX, Z] —glX, Y NZ].

13.1.5 In the following network, the two numbers on an arc again represent the capacity
and the value, in brackets, of a nonnegative function f.

a c
10(y)
8(5) 5(x) 42)  10(u)
s t
10(7) 4(z) 10(6)
6(4)
b d

(i) List all directed paths from s to ¢.
(ii) Suppose u =5. Can f define a flow from s to ¢?
(iii) Describe the possible values of x, y, z and u such that f is a flow from s
tot.
13.1.6 Repeat Exercise 13.1.3 for these networks:
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i s a b c d
5(4) 3(2) 41) 3(3)
{ 2(2) ? ? 2(1)
2(1) \%(f 3(1) (1) 3(3)
b 21) 3(3)Q} 4(4)45%—3(3)
e g h j t
(i) s a b ¢
33)-Q
43 3(2) 43)
3(2) 5(0)
d e 5) h
6 ‘me) 6(4)
v 42)
44 ——O—>—22)
k l t
(i) s a b c
SO 3(2) 3(1)@\
%(3) 3(?\ A(1)
3(3) W 5(1)
d 3(3) 0L 483"
2) 41y A 60) 63

)

13.2 Maximal Flows

In most flow problems, the main object is to find the maximum value of a flow in
a given network, and to find a flow that attains the maximum value. It is moreover

R 4(1) v 4(3) \\i
A1)~ 4(4) —>—O—>—2(1)
j k / t

desirable to find an efficient algorithm for constructing such a flow.

A restriction on the maximum flow value is illustrated in Figure 13.3. In Figure
13.3(a), if an amount v is input at s and output at ¢, then the flow in the arc ab must be v
also. A similar situation arises in Figure 13.3(b); the total flowing through the network
must pass through ab or cd, and the flow through those arcs must also counterbalance

any flow in da. In other words,
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a b a b

(a) (b)

Fig. 13.3. Restrictions on the maximum flow.

v= f(a,b)+ f(c,d)— f(d,a).

To generalize these examples, observe that in each case the arcs discussed were
those in the set [S, T'], where S = {s,a,c} and T = {b, d, t}. The observation was
that the value of the flow equaled the net flow from S to T. This applies in general.

If A and B are disjoint sets containing all vertices of a graph or digraph G, the set
[A, B] is often called a cut. We define a separating cut in a transportation network to
be one in which the source and sink are in different parts; conventionally, if [S, T'] is
a separating cut, then s € S and ¢ € T (that is, the two parts of the cut are written in
order, with the part containing the source being written first).

Lemma 13.1. If [S, T] is a separating cut in a transportation network, and f is a flow
of value v from s to f, then

v = f[S,T1— fIT, Sl, (13.5)

and
v <c[S, T (13.6)

Proof. Denote the set of vertices of the network by V. Since ¢ is not in S, then
flx, V] — fIV,x] = O forevery x € S, except for f[s, V] — f[V,s] =v.So

Y flx V= fIV.x]=v,

xe§
ie., fIS,V]— fIV,S]=v,andsince V=SUT,
fIS,SUT]— fISUT,S]=v. (13.7)

Since S and T are disjoint, f[S, SUT] = f[S, S1+ f[S, T], and similarly f[SU
T, 81 = fIS, S1+ fIT, S]. So (13.7) becomes

IS, T1 = fIT, ST =v. (13.8)
Now f is nonnegative, so f[T, S] >> 0. Also f[S,T] > ¢[S, T]. So
FIS, T1— fIT, S]1 = c[S, T,

establishing the lemma. UJ

It is clear that a finite network contains only a finite number of separating cuts, so
there will be a well-defined minimum among the capacities of separating cuts. Any
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a b t
3(3) —Q+4(3)
4(2)

4(3) 5(5)

g+5(0) 6(5H£
s d

c

Fig. 13.4. A network with a flow

separating cut realizing this capacity will be called minimal. Similarly, if there is a
maximum flow value, any flow attaining that value will be called maximal.

Example. Figure 13.4 shows a transportation network with a flow f on it. On each
arc is shown the capacity, followed by the flow in parentheses. The flow f has value
6. This is not the maximum possible, because the flow g with

gls,cy=4,gb,c)=1,gb,t) =2,

and g = f elsewhere, has value 7.

The network contains a cut of value 7, namely [{s, a}, {b, ¢, d, ¢}]. By Lemma
13.1, no flow can have value greater than 7. So the maximum has been attained, and g
is a maximal flow.

It should be observed that g is not unique. Figure 13.5 shows a set of values on
the arcs of the network that form a flow of value 7 for any real x, 0 < x < 1. So the
network has infinitely many maximal flows.

—Q—>~2+x?x
]

Fig. 13.5. Maximal flows in the network of Figure 13.4

In the preceding example, the flow g was obtained from the flow f by changing
the flow in the three arcs sc, cb and bt, and those arcs form a path from s to t. We shall
now generalize this example.

Suppose f is a flow from s to ¢ in a transportation network. Consider a path P,

P = (xo,xl,...,xn),

where s = xp and ¢t = x,. This path is not directed, so the edge joining x; to x;41
might be the arc x;x; ;1 or the arc x;,1x;; say the arc is forward if its direction is from
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X; 10 x;11, and backward otherwise. Loosely speaking, forward arcs are those in the
direction from s to ¢ along the path.

The path P is called an augmenting path for P if it has the following properties:

1. If x;x; 4 is a forward arc, then f(x;, x;11) < ¢(x;, Xi41);
2. If x;x; 4y is a backward arc, then f(x;, x;11) > 0.

One commonly calls an arc “full” if the flow in it equals its capacity, and “empty” if
its flow is zero. So an augmenting path is one that contains no full arcs in the forward
direction (the direction from s to ¢), and no empty backward arcs.

Example (continued). The flow shown in Figure 13.4 has value 6. Since arc ab is
operating at capacity, it cannot be in any augmenting path, and neither can dt, but
there is one augmenting path, namely scbt.

Lemma 13.2. If a transportation network with a flow f of value v has an augmenting
path, then it has a flow whose value is greater than v.

Proof. Suppose (xg, x3, ..., X,) is an augmenting path, with x; = s and x,, = ¢. If the
arc joining x; to x; 4| i8 x;X; 41, then define

8 = c(xi, xip1) — f(xi, Xig1);

if it is x; 1 x;, then
i = c(Xig1, X;).
Finally define § = minj<;, §;.
A new flow g is now constructed: if x;x; is a forward arc of the augmenting path,
then
g(xi, xiv1) = f(x xiy1) +6;
if x;x; 41 is a backward arc of the augmenting path, then

g(xir1, xi) = f(Xiqg1, x;) — 8;

and in all other cases, when xy does not lie on the augmenting path,

g(x,y) = f(x,y).

It is clear that
0<glx,y)<clx,y)

for every arc xy. If x is not a vertex on the augmenting path, then the net flow at x is
unchanged, so it is still zero. Now consider the effect of the change in flow in the arc
x;x;+1. If the arc is directed out of x;, then the flow in the arc is increased by &, and if
the direction is info x;, the flow is decreased by 8. In either case, the net flow out of
x; is increased by 8, and the net flow out of x;; is decreased by the same amount. If
i # 0 or n, the net effect on x; of the flow changes in x; _|x; and x;x; is zero. The net
flow out of the source x¢(= s) is increased by 4, and the net flow into the sink x, (= ¢)
is decreased by 8. So g is a flow, of value v + 4. O
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Exercises 13.2

13.2.1 Suppose a network has v vertices, a single source and a single sink. How many
separating cuts does it have?
A13.2.2 On the following network, arc capacities shown and values of an arc weight f in

parentheses.

5(1)
3(0)

7(3) 22) 7(1)

N u v w t
4(1)-0—3(0) XL 4(2) 9 303)
4(1) 2(0) A1)

74 2
( % iy 2<0)i 2
X 0-4(3) 4(3) 2

(i) Verify that f is a flow.
(i1) Find the value of the flow.
(iii) Find an augmenting path in the network.
(iv) Find a new flow of greater value than the original.
(v) If the flow is not maximal, find a better flow.
(vi) Find a maximal flow in the network.
13.2.3 Repeat the preceding exercise for the networks shown below.

a
5(5) 3(3)

LS50 o),
32) <62 -0 () ~<0 5(2)

@

6(5) 3(1)
\‘% i) i 36)
e 0-4(1) f
a b
(i) 6(6)
3(0) 7(6)

12(8) 4(2)
M u v

4(0) 3(0)-4(2) w3(3)
4(0); 2(0) ;2(1)

7(6) 3(0) y2(0) 8(5)
x o 4(1) 2(1) z

5(5)
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13.2.4 Consider a network N with a capacity function ¢ whose vertex-set V contains a

13.2.5

13.2.6

set S of p sources and a set T of ¢ sinks, where S and T are disjoint; say
S = {s1,5 = 2,..., 5,1,
T = {tlvtazs"~vtq}‘

Define a flow g on N to be a function that satisfies (13.1), satisfies (13.4) for every
vertex x not in S U T, and for which

glS. Vl—glVv, 8] = v,
glT, V] =gV, T} = —v

for some nonnegative real number v. In the completed network (with source s and
sink ¢), a flow f is defined from g as follows. If x and y are vertices of the original
network, then f(x, y) = g(x, y).

gls,s) = flsi, V1— fIV,s;] foreveryi,
g(t;, 1) = fLV,t;1— flt;, V] forevery j.

Assuming that ¢(s, s;) > c[s;, V]and c(¢;,¢) = c[V, ¢;] for every i and j, prove
that f is a flow in the completed network, and that f is maximal if and only if g
is maximal in N.

In the following networks, the number on each arc represents the capacity of that
arc. In each case find all cuts separating s and ¢ and their capacities. What is
the minimum cut capacity of the network? Determine the maximum flow in the
network.

(l) S 8 a (11) A 4 a
4 5
& §—O A—ys\%
b t b c t

Repeat the preceding exercise for these networks:

(i) S a e 17_¢ (i) S a b t
1 3 2 4
N 3o< ? A%
20 10 4 5
17% \&3%6/

b t c d
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A13.2.7 Suppose vertex x in a transportation network N has the property that no more than
d units of material can flow through x per unit time. (The vertex might represent a
pump in a sewage system, for example.) How could you model this feature in the
network?

13.3 The Max Flow Min Cut Theorem

Lemma 13.1 tells us that the value of any flow in a network must be equal to or less
than the capacity of any separating cut. So the maximum flow value is no greater
than the minimum capacity of a separating cut. Ford and Fulkerson [45] showed that
equality can be attained. We prove this result, using Lemma 13.2 and the following,
which is essentially its converse.

Lemma 13.3. If a transportation network has a flow f of value v from source s to
sink t, then either the network contains an augmenting path for f or else it contains a
separating cut whose capacity is v.

Proof. We construct a series Sy, 5. . .. of sets of vertices of the network
So = {s}.

When & > 0, S; consists of all vertices y that do not belong to Sy, S), ... or S;_; such
that either there is an arc xy such that f(x, y) < c(x, y), or else there is an arc yx
such that f(y, x) > 0, for some vertex x € S;_;. In words, y must be a new vertex
(not already in any of the S;) such that either there is an edge into y from S;_; that is
not full, or there is an edge from y to S;_ that is not empty.

The number of vertices is finite, so the number of (nonempty) sets constructed is
finite. Either ¢ € S, for some n or not.

If + € S,, there must be a vertex x,_; € S,—; such that either f(x,_;,f) <
c(x,_1,1),0r f(t, x,_1) > 0. Similarly there must be a vertex x,_» € S,_, such that
either f(x,_2, Xn_1) < ¢(Xy—2, Xn—1), OF f(Xp_1, X,—2) > 0. Continuing in this way ,
s is eventually reached, and the sequence

S7-x1’x2v"'sxn7]7[

forms an augmenting path for f.

If t ¢ S, for any n, write S for the union of the nonempty S;, and ¢ for its comple-
ment. Then [§, T] is a separating cut. If x € S and y € T, then any arc xy satisfies
f(x,y) < c(x,y), and any arc yx satisfies f(y, x) > 0, or else y would be in §. So

fIS, TY= fIT,S]=c[S, T]1-0=c[S, T],

and thus
c[S, T]=v

from (13.5). O

Theorem 13.4. [45] In any transportation network, the maximum flow value equals
the minimum capacity of any separating cut.



13.4 The Max Flow Min Cut Algorithm 193

Proof. Suppose v is the maximum flow value, and suppose f is a flow of value v.
By Lemma 13.2, f has no augmenting path. So Lemma 13.3 shows that the network
contains a separating cut of capacity v. Lemma 13.1 says that no separating cut can
have a capacity less than v. So v equals the minimum capacity. O

Since a flow that attains the theoretical maximum value is called a maximal flow,
and a separating cut that has the minimum capacity is called a minimal cut, Theorem
13.4 is usually called the Max Flow Min Cut Theorem.

In proving this result, we have essentially used the following characterization of
maximal flows:

Theorem 13.5. A flow is maximal if and only if it has no augmenting path.
The following characterization of minimal cuts is left as an exercise:
Theorem 13.6. A separating cut {S, T is minimal if and only if every maximal flow

makes every edge of [ S, T1 full and every edge of [T, S] empty.

Exercises 13.3

13.3.1 Prove Theorem 13.6.
13.3.2 Suppose [S, T] and [X, Y] are two minimal cuts in a network N. Prove that both

(SuX, TNY]and [SN X, T U Y] are also minimal cuts of N.

13.3.3 Refer to Exercise 13.2.4. A separating cut in a network with a set § of sources
and a set T of sinks is defined by a partition {X, Y} where S C X and T C Y.
State and prove the appropriate version of the Max Flow Min Cut Theorem for
such networks.

[3.3.4 Consider a transportation network N with vertex-set and arc-set V (N) and A(N).

A set D of arcs is called a blocking set if every directed path from s to r must
contain an arc of D.

(i) Prove that every separating cut in N is a blocking set.
(i1) Given a blocking set D in N, a set S is constructed as follows:
1. s€s;
2. ifxeSandxy e Abutxy ¢ D,theny € S;
3. every member of S can be found using rules 1 and 2.
Prove that [S, S] is a subset of D, and is a cut in N.
(iii) A blocking set D is called minimal if no proper subset D’ of D is a blocking
set. Prove that every minimal blocking set is a separating cut.

13.4 The Max Flow Min Cut Algorithm

Suppose one wishes to find a maximal flow in a network. One technique is to start with
any flow (if necessary, use the trivial case of zero flow in each arc). If the given flow
admits of an augmenting path, then by Lemma 13.2 it can be improved. Find such a
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path and find the improved flow. Then repeat the procedure for the new flow. Continue
until no augmenting path exists. Theorem 13.5 says that the resulting flow is maximal.

Example. Consider the network shown in Figure 13.6(a). As usual, the capacity is
shown on each arc, followed by a flow f, of value 7, in parentheses. It will be observed
that this flow has an augmenting path, s, a, b, ¢, t, with § = 1. If the flow is augmented
accordingly, adding 1 to f(s, @), f(a, b) and f(c,t) and subtracting 1 from f(c, b},
the new flow (shown in Figure 13.6(b)) has value 8. It can be shown that this flow is
maximal.

s a b
(a) O 5(4) 43 4(1)
4(3) 1(13 1(1) 3(3

W 2(2) 6(4)
A3 5(5)04 330

d e f t

(b) 5(5) O 44 4(0)
4(3) 11y 1(1y 33

% 650" 1) 6(5)
4(3) 5(5) 3(3)<5
1

Fig. 13.6. Augmenting a flow

Clearly it is desirable to have an algorithm that will either find an augmenting
path or prove that no such path exists. Such an algorithm was constructed by Ford
and Fulkerson [46]. Given a transportation network N and a flow f on N, it either
produces a flow g on N with value greater than that of f, or proves that f is maximal.

To each vertex u, the algorithm assigns a label of the form (z*, §) or (z~, 8), where
8 is a positive real number or co. If one of these labels is assigned to a vertex u, this
means that we can construct an (undirected) (s, «)-path P in which:

(i) c(x, y) — f(x,y) > 8 for every forward arc of P;
(it) f(y, x) > § for every backward arc of P.

The z in the label is a vertex adjacent to u; + means that the forward arc zu is the last
edge in the path; — means it is the backward arc uz.

The labeling process ends when either the sink ¢ is labeled or no further labels
can be assigned. (Labeling of the sink is called breakthrough.) If termination occurs
because ¢ has been labeled, then f has an augmenting path, as described in (i) and
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(ii) above. If ¢ does not receive a label, there is no possible augmenting path and f is
maximal.

To simplify the description of labeling, we use the following definition: to scan
a labeled vertex z means to label every unlabeled vertex y that is adjacent to x and
satisfies either f(x,y) < c(x,y)or f(y,x) > 0.

Labeling Algorithm:

1. Label the source vertex s with (—, 00).
2. Select any labeled, unscanned vertex x. Suppose it is labeled (z*, &(x)) or

(z7, &(s)). (In this potation, we could say £(s) = 00.) Scan x and assign labels
according to the rules:

e if xy is an arc in which f(x, y) < c(x, y) and y is unlabeled, assign y the
label (x%, e(y)), where £(y) = min{e(x), c(x, y) — f(x, y)};
e if yx is an arc with f(y,x) > O and y is unlabeled, assign y the label
(x7, &(y)), where e(y) = min{e(x), f(y, x)}.
3. Repeat Step 2 until either ¢ is labeled (breakthrough), or until no more labels
can be assigned and ¢ is unlabeled. In the latter case there is no augmenting path.
If breakthrough occurs, then f admits a flow augmenting path, which can be con-
structed by backtracking from ¢.

Example. The first diagram in Figure 13.4 shows a network with a flow f of value 8
from s to . As usual, on each edge the number in parentheses indicates the edge flow
and the other number indicates the edge capacity. The labeling algorithm will be used
to find an augmenting path.

The construction of an augmenting path is illustrated in the remainder of Figure
13.4. The labeling algorithm terminates in breakthrough. Backtracking from ¢ obtains
the augmenting path; the arcs of this path are indicated in the final diagram by heavy
lines.

When the labeling routine ends in breakthrough, an improved flow is constructed.
This is done using another algorithm, the Flow Augmentation Algorithm. This al-
gorithm takes a flow augmenting path P and processes the vertices along the path
sequentially. It increases the flow along each forward edge of P by &(¢) and decreases
the flow along each reverse edge of P by £(z).

Flow Augmentation Algorithm:

1. First process ¢:
o if ¢ is labeled (y*, £(1)), define g(y, t) = f(y.t) + &(t);
e if r is labeled (y~, (1)), define g(y, t) = f(t, y) — &(¢t);
e next, process vertex y.

2. To process vertex u, where u # t:
e if u is labeled (x¥, £(u)), define g(x, u) = f(x,u) + &(t);
o if uislabeled (x 7, e(u)), define g(u, x) = f(u, x) — &(1);
® next, process vertex x.
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a

4
5(5) 6(6)
2(0) ¥ 400 | )
403)
6(4) 2(1) i
3Q) 5(5)
d t
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Network for which the maximal flow is to be found

Initial configuration:

+3(2)
%2 d t
a®-D) e

3(2) —>
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Fig. 13.7. The Labeling Algorithm
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After scanning a (no result) and c:

5(5) 6(6)
2(0) ? 40) 4(3)
4(3)
4(1) 6(4) 21) ¥ %
3(1) 3(2) —>—O—>—5(5)
d

b(s_’l) C(S 2) (8

S(—_oo) a (b+ ,1) e(d_,l)

5(5) 6(6)
2(0) % 4(0) 4(3)
4(3)
4D 6(4) 2(1) ¥
3(D 3(2) 5(5)

pED o552 4D ¢
After scanning e; breakthrough occurs:

S(—y“’) a(b+ :1) e(d_vl)

5(5) 6(6)
2(0] 4(0) l 33)

4(3)
Al 6(4) 2(1) I
3(D 3(2) 5(5)

HED G FIGas £

Figure 13.7, continued

3. Repeat Step 2 until the source vertex s is reached. If we take g(x, y) to be equal

to f(x, y) for all edges not on the augmenting path, then g defines a flow from s
to ¢ of value v(f) + e(t).

Example (continued). Applying the flow augmentation algorithm to the flow aug-

menting path found in our earlier example, we get the revised flow indicated in Figure
13.8.

If the labeling algorithm does not reach breakthrough, then the current flow f
is maximal. According to Theorem 13.4 the value v of f is equal to the capacity
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N a 4

5(5) 6(6)
2(0) } 4(0) 4(4)
4(2)
4(1) 6(5) 2(1)
3(D 3(3) 5(5)
c d

Fig. 13.8. Augmented flow for the example

of the minimal cut separating s and ¢. A minimal cut (S, T) can be identified from
the labeling process: take S as the set of all vertices that receive labels and T as the
set of unlabeled vertices. As an example, when the labeling routine is applied to the
network of Figure 13.8, it terminates with the labeling shown in Figure 13.9. Define
S = {s,a, b, c} (the set of labeled vertices) and T = {d, e, t}. Then

[S,T] = {ae, cd}

is a cut with capacity 9, the value of the current flow. So [, T is a minimal cut.

Ky (=09 a (b+ 1) e

5(5) 6(6) W
2(0) 4(0) 4(4)
4(2)

4(1) 6(5) 2(1)

3(1) 3(3) 5(5)
@D d t

Fig. 13.9. Finding the minimal cut

Exercises 13.4

A13.4.1 Prove that the flow in Figure 13.6(b) is maximal.
A13.4.2 In Exercise 13.1.1, if g is interpreted as a capacity function, find a maximal flow
in the network.

13.4.3 Apply the labeling algorithm to find maximal flows in the networks in Exercises
13.2.2,13.2.3, 13.2.5 and 13.2.6. (Compare your results with the results for those
exercises.)

H13.4.4 In the following street network, the numbers are the traffic flow capacities. The
problem is to place one-way signs on the streets not already oriented (the streets
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marked ?) so as to maximize the traffic flow from s to ¢. Solve this problem using
the labeling algorithm.

a ¢
6
8 ‘{f\
SO< i ?4 ) 9 10>Ot
4 XL;/6
6\é}—>—8
b d

13.4.5 For each network, find a maximal flow from s to ¢, starting from a zero flow.

i) S a b

(1t) %10?97{?—»7
6 6 7
5 6 i
8 9
d e

13.4.6 Repeat the preceding exercise for these networks.

@73

™
3TN

t

(i)
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13.4.7 If the maximum flow algorithm discovers a flow augmenting path that contains
an edge directed back along the path, then some flow will be removed from this
backward edge and rerouted.

(1) Is is possible for the maximum flow algorithm never to reroute any flow? If
so, what conditions generate such a situation?

(ii) Under what conditions can you be certain that the flow assigned to a specific
edge will not be rerouted during a subsequent iteration of the maximum flow
algorithm?

13.5 Supply and Demand Problems

Consider the situation where goods are made in several factories and shipped to re-
tailers. Often they will be sent to intermediate depots, such as distributors and ware-
houses. The number of items that can be shipped per day over part of the route will be
restricted and some places cannot be reached directly from others.

Every factory will have a certain maximum amount that it can produce, and every
retailer will have a certain minimum amount that it needs. The total of these needs is
called the demand in the system. The basic problem here is whether or not the factories
can produce at such a level as will cause supply to meet demand.

To model this situation, define a supply-demand network to be a transportation net-
work with a set X of sources (suppliers) x|, X2, ..., X, and a set ¥ of sinks (retailers)
Y1, Y2, ..., ¥gs X NY = ¢. With every source x; is associated a positive real number
a(x;), the maximum input at x;, and with every sink y; is associated a positive real
number b(y;), the demand at y;. If x ¢ X, thena(x) =Oandify ¢ Y, thenb(y) = 0.
(For convenience it has been assumed that no factory also acts as a retailer. In practice
this is not an important restriction.)

It is said that supply can meet demand if the network has a flow whose output is at
least equal to the demand at each sink. Clearly, such a flow must meet the following
constraints:

flx, V1= fIV,x] <a(x) if x € X; (13.9)
fIV,x]— flx,V]=bx) if x €Y; (13.10)
flx, V1= fIV,x] =0 for other x; (13.11)

0< flx,y) sclx, y). (13.12)

Suppose S and T are sets of vertices that partition the vertex-set V. The total
demand from the retailers that are members of T is b(T'), and the maximum amount
that can be produced by the suppliers in T is a(T). The rest of the demand must be
supplied from vertices in . Given a flow f, the net amount that flows from § to T is
fIS,T1— fIT, S1, and this cannot exceed c[S, T]. So, if supply is to meet demand,

b(T) —a(T) =[S, T]

for every such partition S, T. We now prove that this necessary condition is also suffi-
cient.
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Theorem 13.7. If N is a supply-demand network with vertex-set V, then supply can
meet demand if and only if

b(T)—a(T) <clS,T] (13.13)
for every partition {S, T} of V.

Proof. We know the condition is necessary. To prove sufficiency, suppose N satisfies
(13.13) for every subset S. We construct a new network N’, whose vertices and arcs
are the vertices and arcs of N together with two new vertices s and ¢ and arcs sx for
all x in § and yr for all y in T. The capacity function ¢’ is defined by

(s, x) = a(x) if xes§,
cy,t)y = by ifxeT,
d(x,y) = clx,y) if x,yeV.

N’ is treated as a network with one source s and one sink ¢.

Define @ = {t}, and P = {s} U V. Then [P, Q] is a separating cut in N’. Select
any separating cut [G, H] in N’ and write S for G\{s} and T for H\{¢} (so that T
is the complement of S as a set of vertices of the original network N). We evaluate
c'[G, H1—-c'[P, Q]. We use equations (13.1) to (13.4) and various other facts: ¢'[s, Q]
is zero because there is no edge st; ¢'[S, Q] = b(S), and '[P, Q] = b(V);[s, T] =
a(T).

c'[G, H1 - ('[P, Q] = SU{s}, TUQ]-b(V)
= IS, T1+ s, T1+ IS, Q] — b(V)
e[S, T1+a(T) 4+ b(S) — b(V). (13.14)

Now § and T are disjoint, so b(S) + b(T) = b(SUT) = b(V), since all members
of T are in S U T. Therefore b(S) — b(V) equals —b(T'), and (13.14) is

c[S, T1+a(T) — b(T).
This expression is nonnegative by (13.13), so
c'[G, H1 < '[P, Ql.

Thus the separating cut [P, Q] is minimal.

Suppose f’is a maximal flow in N'. Then ' must make every edge in [P, Q] full
and f'(x,t) = ¢'(x,t) = b(x). The function f, defined on N by putting f(x,y) =
f'(x,y), is a flow that satisfies (13.11) and (13.12). If x is in 7 then (13.13) yields

flx, Vi=f'(x,0) ~ f'[V,x]1 =0,
since there is no edge xs, sx oOr tx; S0
fIV,x1= fx, V] = fi(x, 1) = b(x).
Similarly, one can prove that

flx, V1= flV.xI = f'(s, x) < a(x)

when x lies in S. So supply meets demand under the flow f. ]
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Fig. 13.10. Figures for the example
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This theorem provides a method to find out whether supply can meet demand in a
network. First set up the network N’, and then find a maximal flow in it. If the flow
fills all the edges into ¢, then it induces a solution to the supply-demand problem,; if
not, then the problem is insoluble.

Example. A company has two factories F; and F;, producing a commodity sold at two
retail outlets M; and M,. The product is marketed by four distributors «, b, ¢ and d.
Each factory can produce 50 items per week. The weekly demand at M, and M, are
35 and 50 units respectively. The distribution network is given in Figure 13.10(a); the
number on an arc indicates its weekly capacity. Can the weekly demands at the retail
outlets be met?

The problem amounts to maximizing the flow from s to ¢ in the network of Figure
13.10(b). Applying the algorithm yields the maximum flow f given in Figure 13.10(c).
(Verifying this is left as an exercise.)

Since v(f) = 71 is less than the requirement, the demand cannot be met. The
labeled vertices at the conclusion of the algorithm are s, Fy, F;, a, b and M If § =
{F1, Fp,a,b,M\}and T = {c, ¢, M}, then a(T) = 0, b(T) = 85 and ¢(S, T) = 36.
Thus (13.13) is violated.

Note that when the problem is not feasible a violation of (13.13) can always be
found, as occurred in this example.

Exercises 13.5

13.5.1 Verify that the flow f given in Figure 13.10(c) is a maximal flow for the network.

13.5.2 Two factories F; and F, produce a commodity that is required at three markets
M;, M, and M;. The commodity is transported from the factories to the markets
through the network shown below. (Capacities are indicated.) Use the maximal
flow algorithm to determine the maximum amount of the commodity that can be
supplied to the markets from the factories.

30 M
25 w
20
Fl
25 40
35 25
20 35>O M,

40

1
F, 40 0

30\@/ 15—15—\0 M,

[3.5.3 A supply-demand network is shown below. It has two factories x; and x, and two
retailers y; and y,. Capacities are shown in thousands of units per week. x; can
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output 6000 units per week, x» can output 8000 units per week, y; needs 7000
units per week and y, needs 4000 units per week. Can supply meet demand?

X Yy
G40
2 4 3
b
X Y
13.5.4 A manufacturing company has two factories F and F, producing a certain com-
modity that is required at three retail outlets or markets M,, M, and M. Once
produced, the commodity is stored at one of the five company warehouses Wi,
Wa, ..., Ws from where it is distributed to the various retail outlets. Because
of location, it is not feasible to move the commodity from any factory to any
warehouse, and from any warehouse to any outlet. Information is given in Figure
13.11; the maximum weekly amount of the commodity that can be moved from
F; to W;, and from W; to M, are given by the appropriate entries in the matrices,
and movement of the commodity is possible through the network shown.
Factory 1 has a weekly production capacity of 60 units and Factory 2 has a weekly
production rate of 40 units. Using an appropriate flow algorithm, determine the

maximum amount of the commodity that can be supplied to the markets. (Assume
that the demand is unlimited.)

W,
||W1 Wy, W3 Wy Ws
2535 0 0 O
0 40 30 0 O

Fy
%)

=

My My M3

W,

)
<

b

Fig. 13.11. Matrices and network for Exercise 13.5.4
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Computational Considerations

14.1 Computation Time

In this chapter we very briefly discuss the theory of computability and the relationship
between graphs and algorithms. In this book we can only introduce the ideas very
sketchily. For a more thorough introduction to complexity and NP-completeness, see
[52]; an excellent treatment of algorithmic graph theory is found in [53].

We first consider the question: How long does it take to carry out a computation?
An answer in terms of seconds or minutes is of no use: not only does this depend on
the computer used, but it does not take into account the difference between apparently
similar instances of a problem.

Suppose one needs to input # pieces of data to define a particular case (an instance)
of a problem. The number of steps required to produce a solution will be a function
of n. We shall call this function the complexity of the solution process. In many graph
algorithms, a graph G can be described by listing its vertices and edges, so a common
measure of the size of the problem is #(G) = |V (G)+|E(G)!. The number of vertices,
v, is also a useful measure of input size for some problems.

For example, suppose one wants to find the length of the shortest path between two
specified vertices in a graph G. G can be described by listing its vertices and edges,
so the size of the input is #(G). To find the complexity, one could count the number of
arithmetical or logical steps required for the computation.

Complexity is ordinarily used to discuss algorithms, not specific instances. Ra-
ther than calculating the complexity of one computation, it is usual to ask what is
the largest number of steps required to apply a certain algorithm. For example, if
Dijkstra’s algorithm is applied to the above problem, we ask what is the largest number
of steps required to solve the problem for any instance with a given value of n =
[V(G) + |E(G)|. This is called the worst-case complexity of the algorithm, and is
expressed as a function of n. Different algorithms for the same problem may have
different complexities.

We are not usually interested in the precise value of the complexity. Suppose, for
example, that one algorithm takes n” steps in the worst case, another takes 2n? steps
and a third takes n? + n. All of these algorithms are comparable, in the sense that if
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a problem can be solved using any one, it can be solved using the others — maybe it
will take twice as long to run, but this is usually feasible. On the other hand, suppose
two algorithms take n? and n* — 99n? steps respectively. A problem of size 100 can be
solved in the same time using either algorithm, but a problem of size 10° will take a
thousand times as long using the second algorithm — three years, perhaps, compared
to one day.

Suppose there exist a value ng and a positive constant K such that functions f (n)
and g(n) satisfy f(n) < Kg(n) whenever n > ng. (It does not matter whether n is
restricted to the integers, the rational numbers or the reals; but we shall usually be
interested in integer n.) Then we say f is of order less than or equal to that of g, and

write
f=0(g).

When both f = O(g) and g = O(f), we say f and g are of the same order, and
write f = ©(g). (More precisely, one should define two sets of functions, O(g) being
the set of all functions of order less than or equal to that of g, and ®(g) the set of all
functions of the same order as g, and write things like f € O(g) and f € ®(g), but
the “=" notation is customarily used.) For example, 2n% = @ (n?) and n>+n = O(n?),
and n° — 99n2 # @ (n?); n? = O(n® — 99n?) but not conversely. We say n? is of lower
order than n° — 99,2, and write n> = o(n® — 99n?).

Alternatively, if there exists a value ng and a positive constant K such that func-
tions f(n) and g(n) satisfy f(n) > Kg(n) whenever n > ny, then we say f is of
order greater than or equal to that of g, and write

f=2(g).

Itis easy to see that f = €(g) if and only if g = O(f) (the proof is left as an exercise),
and we could define f = ®(g) to mean that both f = Q(g) and g = Q(f).

To test the order of functions f and g, it is often most convenient to examine
lim, o f(n)/g(n). If the limit is a nonzero constant, then f = ©O(g); if it is zero,
then f = o(g), and if it is oo, then g = o(f).

The following theorem provides a hierarchy of orders of functions.

Theorem 14.1. The relations f = O(g) and f = o(g) are transitive. The relation
[ = ©(g) is an equivalence relation. Moreover:

(i) logn = o(n);

(ii) n* = o(n”) whenever x < y;

(ii1) If f and g are polynomials in n of the same degree, then f = 6(g);

(iv) n* = o(x™) for any constants k and x both greater than I;

(v) x" = o(n!) if x is a positive constant.

Proof. The first part is left as an exercise.

(i) One can use L’Hopital’s rule to evaluate k’%, since both terms tend to occ. So
. logn ) % )
lim =lim £ = lim — =0
n—o0o n n—oo | n->00 1

(i) Since y — x > 0,
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X

lim — = lim =0
n—>o00 pY n—oo p¥—*

(iii) Say f = ax*+ (terms of degree lower than k) and g = bx*+ (terms of degree
lower than k), where a and b are nonzero. Then
. f . a+termsthat > 0 a
lim = = lim = —,
n—oo0 g n—oo b+termsthat -0 b

which is a nonzero consktant.
(iv) Write h(n) = % Then

hn+ D+ Dfx" (142

h(i’l) - nkxntl - X
Now k£ is constant, SO h(n+1) 1
—_— =< 1
n—oc  h(n) X

so h(n) — 0.
(v) Write h(n) = ;. Then
h(n+1) " n! X
h(n) x4+ 1) n+1
Again, h(n) — 0. O

< 1 for sufficiently large n.

To make the orders of complexity more concrete, suppose a computer can carry out
25 steps per second. Table 14.1 shows how long it would take to carry out n%, 2" and
n! steps, for n = 2, 10, 20 and 50. To put these numbers into perspective, remember
that the universe is about 1.5 x 10'* years old.

n|Time for n? Time for 2" Time for n!
2(.000004 seconds|.000004 seconds|.000002 seconds
10{.0001 seconds |.001 seconds 3.6 seconds

20(.0004 seconds {1 second almost 1000 centuries
50{.0025 seconds |35 years about 10°? years

Table 14.1. Running times at one million steps per second

For obvious reasons, an algorithm of complexity f(n) is called linear if f (n) =
O(n), polynomial if f(n) = ©(p(n)) for some polynomial function p(r), and so
on. If f(n) = o(n), f is sublinear. Because of the explosion in running-times illus-
trated in Table 14.1, an algorithm whose complexity f satisfies p(n) = o(f(n)) for

every polynomial function p is called hard; hard algorithms include exponential and
factorial algorithms.

Exercises 14.1

14.1.1 Prove thatif f = O(g) and g = O(h), then f = O(h).
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14.1.2 Prove thatif f = o(g) and g = o(h), then f = o(h).

14.1.3 Prove that f = ®(g) is an equivalence relation.

14.1.4 Prove that f = Q(g) if and only if g = O(f).

14.1.5 Suppose your present computer can solve a problem of size n = 10 in one hour.
You are given a computer that is 100 times as fast as your present machine. Cal-
culate the maximum (integer) value of n for which your new computer can solve
the problem in one hour, if the size of the computation is a constant multiple of:

() n%
(i) 2
(iii) n!.

14.1.6 Two algorithms for the same problem have running times 2” and n?. For which
values of 7 is the second algorithm faster?

H14.1.7 Give an example of functions f and g with the property that f = ©(g) but
lim,_, o f(n)/g(n) does not exist.

A14.1.8 “Testing whether n is prime is supposed to be hard, but one needs only to test
potential divisors up to /n, so the complexity of the problem is \/n.” What is
wrong with this argument?

14.2 Data Structures

Common data structures used to specify a graph in a computer program include the
adjacency and incidence matrices, which were defined in Section 1.2. If the vertex-set
and edge-set of G are ordered in some way, say

V(G) = {xl,X2, e ,XU}

and
E(G) ={y1, y2, .-, Yebs
then the adjacency matrix M with respect to this ordering is the v X v matrix with
entries m;;, where
m_{ 1 ifx,~~xj,
Y100 otherwise,

and the incidence matrix Ng is the v x e matrix with entries #;;,

I 1 if vertex x; is incident with edge a;,
710 otherwise.

In many cases, one of these matrices will be the most convenient way to describe
a graph. However, observe that checking all elements of the adjacency matrix of a
graph G with v vertices and e edges requires v? steps, and checking the incidence
matrix requires ve steps. If nearly all pairs of vertices of G are adjacent, then e will be
close to %vz, so that n = ®(v?) and processing the adjacency and incidence matrices

will take ®(n) and @(n%) steps respectively. But if e is ®(v) (such graphs are called
sparse), then processing either matrix takes ©(n?) steps. This seems to suggest that
no graph algorithm can be carried out in o(n?) steps.
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Less complex algorithms are in fact possible, but a different data structure must
be used. With each vertex x of G is associated a list AL(x) of vertices adjacent to
x. AL(x) is called the adjacency list of x. The adjacency list of G is a list AL(G)
made up of v sublists, each consisting of a vertex x followed by AL(x). AL(x) has
d(x) elements, so AL(G) has ), d(x) + 1 =v + Y ,(x) = v + 2e elements (using
Theorem 1.1). So the complexity of specifying G is of order v 4 2e. Since v + e <
v+ 2e < 2(v + e), this is B(n).

Many algorithms involve graphs with weighted edges. Weights are easily repre-
sented in matrices. If x;x; has weight w;;, then the weighted adjacency matrix has
(i, j) entry w;;. The weighted incidence matrix has an additional row, whose entry in
a given column equals the weight of the edge represented by that column.

In the place where the adjacency list of vertex x; has entry x; (to indicate edge
x;x;), the weighted adjacency list of x; has the ordered pair (x;, w;;). The weighted
adjacency list of G is formed from these lists in the same way as in the unweighted
case.

It is easy to see that the complexity of describing a graph is not significantly in-
creased by the addition of weights (see Exercise 14.2.1).

Exercises 14.2

14.2.1 For each of the three data structures discussed in this section (adjacency matrix, in-
cidence matrix, adjacency list), prove that the complexity of describing a weighted
graph is of the same order as describing an unweighted graph.

14.2.2 Suggest a definition of an adjacency list for a digraph. What is the complexity of
describing a digraph using your definition?

14.3 Some Graph Algorithms

In this section we shall study a few graph algorithms, which we find it convenient to
write in a pseudocode. We shall present implementations by writing “programs” in a
simplified language rather like Pascal or C, but without any details. An experienced
programmer will find it easy to construct programs from these outlines, and they will
be an aid in working out the complexity of the algorithms.

Example. Dijkstra’s algorithm

Dijkstra’s algorithm for finding shortest paths in a weighted graph was discussed
in Section 2.3. Edge weights are interpreted as lengths, and the length of a path is the
sum of its edge lengths. For a given source vertex s, the algorithm produces the length
of the shortest weighted path from s to each other vertex. In order to implement it we
introduce a function P(x). At any time during the running of the algorithm, P(x) is
the length of the shortest known path from s to x. We define a function W(x, y) on
pairs of vertices as follows: W(x, x) = 0 for every vertex; if x; and x; are adjacent,
then W (x;, x;) = w;;, the weight of edge x;x;; and if x; and x; are not adjacent, then
W (x;, x;) = oo (on the computer, oo is replaced by some large number). At any stage,
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F will be the set of vertices whose processing is finished. A pseudocode program for
implementing the algorithm is given in Figure 14.1.

algorithm

1. for all vertices x, P(x) < W(s, x)

2. F < {u}

3. while T # V(G) do

4. begin

5. find y in V(G)\F such that P(y) is minimal
(i.e.forallx ¢ F, P(y) < P(x))

6. F <« FU{y}

7. forall x ¢ F

8. if P(x) > P(y)+ W(y.x)

then P(x) < P(y)+ W(y, x)
9. end

Fig. 14.1. Pseudocode for Dijkstra’s algorithm

The complexity of Dijkstra’s algorithm is easily calculated. Step 1 is of order v.
Both Step 5 and Step 7 are also of order v, and because Step 7 is nested within Step 5,
the complexity is v2. So the complexity is O(v? + v), which is O(v?).

Example. All shortest paths

Suppose one needs the lengths of the shortest paths between every pair of edges in
a graph. One possible method would be to run Dijkstra’s algorithm v times, once for
each vertex. The following algorithm [53, p.19] appears more efficient.

Assume the vertices have been labeled x|, x5, ..., x, in some order. Write W for
the matrix of all weights of edges: w;; is the weight of x;x;, and if there is no edge
joining x; and x;, then w;; = oo (in practice, it is given a very large value). w;; = 0 for
every i. Then a sequence of matrices Wy, Wy, ..., W, is defined recursively. Wy = W,
and if wy;; is the (i, j) entry in Wy, then

Wi = MIn{wi_1.5, We—1:ik + We—1:kj}- (14.1)

It is easy to prove that w,; is the length of the shortest path from x; to x; (sce
Exercise 14.3.1). An implementation is given is Figure 14.2. Its complexity is easily
seen to be O(v*), because each of the nested Steps 4, 5 and 6 have complexity v. (Steps
1 and 2 , between them, are quadratic, and can be ignored.)

Example. Depth-first search

In many graph problems, it is necessary to go through all the vertices of the graph
and to process them. An algorithm to visit all the vertices of a graph in a systematic
manner is called a search. The output from a search is a list of all the vertices of the
graph, in some order. Two important kinds of search are the depth-first search or DFS
and the breadth-first search or BFS. We examine DFSs; BFSs are left to the exercises.
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algorithm
l. fori=1tovdo
forj=i+1tovdo
Wo:ij <= Wij
fork =1tovdo
fori =1tovdo
for j =1tovdo
W;5 < MIn{wi— 1355, We—1:ik + Wik—1;45}

Nk W

Fig. 14.2. Pseudocode for the all paths algorithm.

To define depth-first searches, consider a search algorithm being applied to a con-
nected graph G, and suppose it is currently visiting vertex x. In a DFS, the next step if
possible is to visit a vertex that is adjacent to x and has not yet been visited. If no such
vertex exists, the algorithm returns to the vertex visited just before x and looks for
a new vertex adjacent to it; and so on. This returning process is called backtracking.
Whenever the algorithm goes from vertex x to a new vertex y, we say it traverses the
edge xy; similarly, if it backtracks from x to z, we say it traverses xz. If a DFS visits
vertex x twice, then the edge traversed in going to x the second time must be one that
was already traversed earlier, in moving from x. For this reason the edges traversed by
a DFS form a spanning tree in G, called a depth-first spanning tree. More generally,
if a DFS is applied to a disconnected graph, it produces a depth-first spanning forest.
Edges not in this forest (or tree) are called back-edges.

Suppose a DFS is applied to G. The algorithm will assign to each vertex x a label
L(x);if L{x) = i, this means that x will be the i-th element in the output list. L(x) is
the depth-first index of x. The edges of the spanning forest will be denoted by F, and
the set of all back-edges will be B. Initially vertex x receives label £(x) = 0; by the
end of the run, £(x) = L(x) for each x.

We describe the algorithm using a procedure that we call process. Suppose § — 1
vertices have so far been processed, and the algorithm is examining vertex x for the
first time. There will be a counter that holds the value i. To process x, assign to £(x)
the value i, and increment the counter by 1. Then, for each vertex y adjacent to x: if
£(y) # 0, do nothing, but if £(y) = 0, then add xy to F and process y. It will be seen
that this gives label i + 1 to v, label i 4 2 to the first new vertex encountered that is
adjacent to y (if there are any), and so on. When y and the new vertices that came from
it are exhausted, the next new neighbor of x will be processed.

The algorithm starts by setting i < 1, F <« @ and £(x) <« O for each x. Then,
while there is any vertex y with £(x) = 0, process(y) is carried out. Observe that this
ensures that all components are searched, in the case of a disconnected graph.

A pseudocode program is given in Figure 14.3. The input is the set of all adjacency
lists A(x) of vertices x of G.

To calculate the complexity of this algorithm, observe that execution of line 3
requires v steps, and so does execution of line 4. The output is also of this order.
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The procedure process is called v times, once for each vertex (after the first call for
a given x, £(x) is nonzero). Running process(x) requires O(d(x)) steps, so the total
complexity of calling it once for each vertex is O(3_ d(x)), or O(2e¢). So the whole
algorithm is O(n). (In fact, if v and e are of different orders, the complexity equals the
greater of ®(v) and O(e).)

This is one case where it was very important to have a linear way of representing
the graph. For sparse graphs, if the adjacency matrix were used, the resulting algorithm
would be quadratic.

All of the above algorithms are polynomial. There are, however, many important
problems where no polynomial algorithm is known. Two of the most important ex-
amples are the Traveling Salesman Problem and the problem of deciding whether two
given graphs are isomorphic. It is not known for certain whether these problems are
hard — that is, no polynomial algorithm exists — but in both cases the majority of
researchers believe a polynomial algorithm is impossible.

Exercises 14.3

14.3.1 Consider the algorithm to find all shortest paths. Prove, by induction, that wy;;;
is the weight of the shortest path from x; to x; among all paths that contain no
intermediate vertices other than members of {x|, xo, ..., x;}. Hence show that the
algorithm does in fact provide the shortest paths.

A14.3.2 As an alternative to the “all shortest paths” algorithm, one could construct a se-
quence Wy, Wa, ..., W, where wy,;; is the length of the shortest path from x; to

procedure process(x)
P1. begin
P2. L(x) «i
P3. i «—i+1
P4. forall y € A(x) do
P5. if £(y) = 0 then
Pé. begin
P7. F « FU{xy}
P8. process(y)
P9. end
P10. end
algorithm
1. i<«1
2. F<4{
3. forallx € V(G)do é(x) <« 0
4. while there exists y € V(G), £(y) < O do
5. process(y)
6. forall x € V(G) output {£(x)}

Fig. 14.3. Pseudocode for depth-first search
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x; among all paths that contain at most k edges: in this case W; = W (again, if
there is no edge joining x; and x, then w;; = 00), and (14.1) is replaced by

Wy.;; = min{wi_r,;, mhin{wk—l;ih + wy;}).

(i) Prove that W, is the matrix of shortest paths;
(ii) Give a pseudocode implementation of this algorithm.
(iii) What is the complexity of this algorithm?
Use the result of Exercise 2.1.10 to construct an algorithm to find the number of
walks of length at most k between each pair of vertices of a graph. What is the
complexity of:
(i) finding all paths of length equal to or less than v;
(i) finding all paths of length less than 5.
A breadth-first search of the vertices of a tree is carried out as follows. First, a
counter i is set to 1 and some vertex x is chosen. An ordered set Q (called a
queue) is then constructed. The members are the vertices that are adjacent to x.
When this is done, x is assigned label 1, i is incremented to 2 and x is consid-
ered to have been processed. Then the first member of the queue is chosen to be
processed (and all other members move one place nearer to the beginning of the
queue). To process a vertex y, one selects neighbors of y that are not already in
the queue or already processed, and puts them at the end of the queue. Then y
receives label i, i is implemented and the first member of the queue is chosen for
processing.
Produce the pseudocode for this algorithm. Prove that the BFS and DFS algo-
rithms are of the same complexity.
Write a pseudocode algorithm to implement Prim’s algorithm for finding a mini-
mal spanning tree (see Section 4.3). What is the complexity of your implementa-
tion? (A quadratic algorithm is easily found.)
Write pseudocode for the following algorithms, and calculate their complexity:
(i) the nearest neighbor algorithm for the Traveling Salesman Problem in Section

2.6;
(i1) the sorted edges algorithm for the Traveling Salesman Problem in Section 2.6;
(iii) the algorithm used to prove that x (G) < AG + 1 in Section 7.1;
(iv) the max flow min cut algorithm in Section 13.4.

4 Intractability

Our description of intractability and of the classes P and NP will be somewhat infor-
mal. A more rigorous development can be found in [52] or [53, Chapter 8].

The study of intractability arises from the following consideration. Suppose an

algorithm takes f(n) = n* steps. Then a small increase in the problem size produces
a relatively small increase in the computation time. For example, increasing from n =
1000 to n = 1005 increases f from 108 to 1.015 x 10°, an increase of 1.5%. On the
other hand, if f(n) were 2", the increase would be 3100%. In general, if your present
computer can handle a certain instance of a polynomial problem, then a slightly larger
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instance of the problem can also be solved with at worst a slightly faster machine. On
the other hand, even a small increase in the size of a problem can render its solution
by a hard algorithm impractical. A problem with no polynomial algorithm is therefore
called intractable.

For convenience, we initially restrict our attention to decision problems, problems
with a yes-or-no answer. This is not an important restriction, as most problems can
be recast as decision problems. For example, the problem of finding the shortest path
from s to ¢ can be recast in terms of the decision problem: is there an s¢-path of length
less than k7

The set P of decision problems consists of those decision problems for which there
is a polynomial time algorithm. For example, we saw in the preceding section that the
shortest path algorithm is in P . However, the Traveling Salesman Problem and the
Graph Isomorphism Problem are not known to be in P.

Even if a problem cannot be solved in polynomial time, it may be possible to check
a solution very quickly. For example, no polynomial algorithm is known that will
answer the question, “Is G isomorphic to H?”, where G and H are arbitrary graphs.
On the other hand, if you are given a mapping ¢: V(G) — V(H) that purports to
be a graph isomorphism, to test whether it is really an isomorphism can be done in
linear time. One might say that the Graph Isomorphism Problem is polynomial time
verifiable. This process is nondeterministic; the solution is given, not determined. So
the Traveling Salesman Problem is nondeterministically polynomially verifiable. We
write NP for the set of all nondeterministically polynomially verifiable problems.

Obviously, every member of P is in NP. The fundamental question in the study of
the complexity of algorithms is: Does P = NP? Many theorists believe that NP is a
much larger set than P, but this has not been proved.

Suppose P # NP. Then there may be problems that can be verified in polyno-
mial time — problems that look easy — that cannot be solved in polynomial time.
Identifying such problems is important.

To discuss this, we introduce the idea of a polynomial transformation. If P, and
P, are two decision problems, we say that there is a polynomial transformation from
Py to Py, and write Py < P, if there exists a function F, which can be computed
in polynomial time, with the property that, if / is any instance of Py, then F([) is
an instance of P,, and the answer to / is “yes” if and only if the answer to F(I) is
“yes.” If P; < P,, then there is a polynomial algorithm for P, if there is a polynomial
algorithm for P;.

The set NPC consists of all members Q of NP such that, if P € NP, then P < Q.
Members of NPC are called NP-complete. The importance of this concept follows
from the following observations:

(1) if Q is NP-complete and Q € P, then NP=P;
(i1) if P is NP-complete, Q € NPand P < Q, then Q is NP-complete.

The fundamental paper on intractability was [30].

Graph theory has provided many examples of NPC problems. We list some exam-
ples, without proof. (For proofs, see [52] and [53, Chapter 8].)
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Example. A dominating set of vertices of a graph G is a subset S of V(G) such that
every vertex of G is adjacent to at most one member of S. The domination problem is:
does G have a dominating set with k or fewer vertices? This problem is NPC.

Example. The clique problem is: does G contain a clique of k or more vertices? This
problem is NPC.

Example. The problem: does G have a proper (vertex)-coloring in k or fewer colors?
is NPC.

Example. The Traveling Salesman Problem is NPC.

Exercises 14.4

14.4.1 Prove that the relation < is transitive.
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Communications Networks and Small-Worlds

15.1 Preliminaries

A communications network consists of a number of users, or nodes, a number of links
through which they can communicate, and some special links that facilitate communi-
cation. There are usually various weights associated with the nodes or links.

As an example, you and all your friends are the nodes of a network, and acquain-
tanceship forms the links. This sort of network is an amalgam of local clusters, such as
cliques of friends or coworkers, and random long range links that might occur through
a vacation or when close friends work for different companies.

Another example is the internet. One special class of user is the internet service
provider, or ISP; an oversimplified model is that all ISPs are always connected to each
other, while other users must connect to an ISP in order to participate in the network.
Another class of user is the server; often many users are connected by one server,
which in turn connects to the ISP. This is particularly common in office settings; nodes
on a server form a local network, and messages between them do not necessarily go
through the ISP. Similarly the World Wide Web is a communications network, with
pages as nodes and links existing when one page references another. (In fact, such
references are commonly called “links.”)

If nodes are interpreted as vertices and links as edges, a communications network
defines a graph, the underlying graph of the network. (Sometimes a digraph is more
appropriate, as for example in the World Wide Web.) However, there may be more than
one underlying graph. For example, in the case of the internet, one could take servers,
or ISPs, as vertices. For many purposes one can assume that the underlying graph
of a communications network is connected (at least when the network is functioning
propetly; breakdowns in the network may cause it to be disconnected).

In 1929, the Hungarian author Frigyes Karithny [74] published a short story,
“Lancszemek” (“Chains”) based on the idea that at most six intermediaries are needed
to link any two people in the world by a chain of acquaintances. This idea was called
“six degrees of separation,” which has been used as the title of a play and the subse-
quent movie.
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Milgram [87] describes an experiment in which people in Omaha, Nebraska, were
given a letter intended for delivery to a stranger in Massachusetts, and asked to pass
it along to someone they thought might know the intended recipient, with instructions
for that person to do the same. Only about 20% of the letters ever reached the “target.”
For those that did, though, it rarely took more than six intermediate steps, just as
Karithny’s story predicts. Milgram’s phenomenon — that the number of edges in the
shortest path between two nodes is on average quite short — is called the small-world
effect, and networks that exhibit it are called small-world networks; the underlying
graph of a small-world network is a small-world graph.

Subsequent studies have revealed that other networks based on acquaintanceship
or collegiality also exhibit the small-world effect. For example, there is the “Kevin Ba-
con” game, in which actors are the nodes and two are linked if they have appeared to-
gether in a movie [134]; the actor Bacon was the first one chosen because “six degrees
of separation” rhymes with “six degrees of Kevin Bacon” (almost). Similarly, mathe-
maticians have invented the “Erd8s number” [57]: mathematicians are the nodes, links
mean that the two have coauthored a paper, and your Erd6s number is the length of
your shortest path to the late mathematician Paul Erdds, whose 1500 publications is
the largest of any mathematician. (Coincidentally, Erd6s was Hungarian.)

The theory of small-world networks was developed in order to track how infor-
mation and ideas spread through a community, but it serves to model many other
situations, such as the spread of infectious diseases. The mathematical discussion of
the small-world phenomenon has focussed on the underlying graph of the network.
This study received impetus in 1998 in a paper by Watts and Strogatz [129].

15.2 Functions on Graphs

In order to study the small-world phenomenon we shall introduce two functions on
graphs: the characteristic path length and the clustering coefficient.

We wish to know the typical distance between two vertices in a graph. One ob-
vious parameter is the mean path length, the average value of D(x, y) where x and
y range through the vertices. While this is a useful parameter when known, its cal-
culation is impractical for large graphs. It is necessary to estimate the average. Such
estimation must be carried out by sampling. As calculating a median is much faster
than calculating a mean, there are better sampling techniques available for accurately
estimating medians than for means, so Watts and Strogatz [129] considered the median
path length as a measure.

One might think that the median would be a significantly less reliable measure of
average distance than the mean. However, Huber [72] studied the sampling technique
for estimating medians, and estimated its accuracy. The results are summarized in
[127, pp. 29-30] and show that the median is quite a good estimator.

Another theoretical advantage is that medians can be calculated even if the graph
is disconnected, provided the number of disconnected pairs of vertices is not too large.
(A disconnected pair corresponds to an “infinite” path, which is longer than any finite
path. Provided fewer than half the paths are “infinite,” the median can be calculated.)
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Newman [89] suggests ignoring disconnected pairs, but we believe the “infinite” dis-
tance technique is more appropriate.

To approximate a median of a set is straightforward, because the sample median is
an unbiased estimator of the median (and of the mean, in normal or near-normal data).
One simply takes a number of readings, and finds their median.

If § is a set with n elements, its median is defined as that value M (S) such that n/2
members of S have value < M(S) and n/2 members have value > M(S). Let us say
that an estimate M of M (S) is “of accuracy ” § if at least n/2 members have value
< M and én/2 members have value > M. Huber proved:

Theorem 15.1. [72] Suppose § (usually near 1) and € (usually small) are positive
constants. Approximation of the median M (S) of a set S by sampling s readings yields
a value of accuracy at least § with probability 1 — €, where

2
s=gm2 (Y.
e\1-§

The median of a finite set of readings is a discrete-valued function: it either takes
one of the reading values or the average of two of them. This leads to some inaccu-
racies. Consider for example two sets of readings: A contains 49 readings 0 and 50
readings 1, while B contains 50 readings 0 and 49 readings 1. These sets are very
similar, but the medians are 0 and 1 respectively. To avoid such chaotic leaps in value,
the following definition is used.

The characteristic path length L(G) of a graph G is calculated as follows. First,
for each vertex x, the median D, of all the values D(x, y), where y is a vertex, is
calculated. Then L(G) is the mean of the values D,, for varying x. In the sampling
procedure suggested by Huber, one calculates a number of values of D, and then takes
their median.

People do not make friends completely at random; the people you know tend
to know each other. This illustrates a phenomenon called clustering. One distinctive
property of small-world graphs is the clustering behavior.

The neighborhood (or open neighborhood) N(x) of a vertex x was defined in
Chapter 1 to consist of all the vertices adjacent to x. The graph generated by N (x),
denoted by (N (x)), has vertex-set N (x), and its edges are all edges of the graph with
both endpoints in N (x). We write d(x) and e(x) for the numbers of vertices and edges
respectively, in (N (x)). (d(x) is of course the degree of x.) Then the clustering coef-
ficient y, of x is o) 2e()

(@) T d@d@) - 1)’

In other words, it equals the number of connections between the neighbors of x, di-
vided by the maximum possible number of connections.

The clustering coefficient of a graph G equals the mean of the clustering coeffi-
cients of all vertices of G, and is denoted by y (G) or simply y.

The value y(G) = 1 occurs if and only if G consists of a number of disjoint
complete graphs of the same order (each has k 4 1 vertices, where every vertex has

Yx =
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the same degree k); otherwise y(G) < 1. The value y (G) = 0 is attained if and only
if the graph G contains no triangles; otherwise y (G) > 0.

The theory of both these measures, the characteristic path length and the cluster-
ing coefficient, is much the same if directed graphs are considered. However, when
calculating the clustering coefficient in a digraph, the formula

_oelx) e(x)
T2y T AW - 1)
should be used. In other words the result should be halved, corresponding to the fact
that there are k(k — 1) possible directed edges between k vertices.

Exercises 15.2

15.2.1 Find the characteristic path length and clustering coefficient of the cycle C,.
15.2.2 Find the characteristic path length and clustering coefficient of the wheel W,,.
15.2.3 Find the characteristic path length and clustering coefficient of K, ,,.
15.2.4 Find the characteristic path length and clustering coefficient of the Petersen graph.
A15.2.5 Consider the cycle Cg. Write Cg(n) for the graph derived from Cg by adding one
edge, joining two vertices whose distance in Cy is 7.
(1) Find the mean path length of Cg(n) forn = 2, 3, 4.
(i1) Find the characteristic path length L(Cg(n)) forn = 2,3, 4.
(iii) Find y(Cg(n)) forn =2,3,4.
15.2.6 Find the characteristic path lengths and clustering coefficients of the graphs in

Figure 15.1.
@ % Gy : (iid) :
@iv) % v) : (vi) E%
Fig. 15.1. Find the characteristic path lengths

15.3 Classes of Graphs

Two classes of “standard” graphs have been used in small-world studies. They are
lattice graphs and random graphs.
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A d-lattice is analogous to a Euclidean lattice of dimension d. The v vertices are
labeled with the integers modulo v, and where x is joined to all the vertices (x — i%)
and (x + id/) forl <i < %k,l < d' < d, where k is some integer (k > 2d).
In particular, many properties of 1-lattices have been studied in connection with the
small-world phenomenon. An example of a 1-lattice with k = 4 is shown in Figure
15.2.

Fig. 15.2. A 1-lattice with k = 4

Theorem 15.2. Suppose G is a 1-lattice with v vertices, for which k is even and at
least 2. Then

v+2k—1 v+4k—1
— < L(G _—
o SHO <=
Proof. We write k = 2¢, and identify the vertices of G with the labels 0,1,...,v —1

modulo v. From the definition, D, is the same for every vertex, so L(G) = Dy.
Suppose v = ak+1+d, where 0 < d < k. Then D(0,ai+j) = D0, —ai —j) =
i+ 1forther values j =1,2,...,¢, while D0, ak + j) = D0, —ak — j) =i+ 1
for the d values j = 1,2,...,d. When d = 1, such that £ divides v — 1, the average
of these v — 1 values equals the average of 1,2, ..., a, or %(a +1)=(w+2k—-1)/2k.
In any case, it is smaller than the average of 1,2,...,a+ 1, 0r (v +4k — 1)/(2k). O

Theorem 15.3. Suppose G is a 1-lattice with v vertices, for which k is even and at
least 2. Then 3k —2)

y(G) = D

independently of the value of v.

Proof. We use the same notation as in the preceding theorem. Each vertex of G has
the same clustering coefficient, so we consider vertex 0.
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The neighborhood of 0 consists of all the vertices {t,t — 1,...,1,v — 1,v —
2,...,v—1t.d0) =k =2t}.If0 < i <t, vertex i is adjacent in N(0) to ¢, ¢ —
1,....,1,v—1,...,v—1t+i, with { itself omitted, except that 7 is not adjacent to 0

(0 ¢ N(0)). Soi has degree 2t —i — 1. Thus the sum of degrees of vertices 1,2, ...,¢
in N(0) is

221‘—1—1'
i=1

1

1@t =1 =>"i

i=1

= tQ-1)-3t@+1) = 3@ -1)/2
The sum of degrees of vertices v — 1, v — 2,..., v — ¢ is the same. The number of
edges in N (0) is half the sum of the degrees, so

e(0) =3t(t — 1)/2.
Therefore the clustering coefficient is

) = 2¢(0) e =1/2 3@ -1
YU I0@o ) T @ - #@@i—1)
Since all vertices have the same value, this is the value of ¥ (G). |

In the directed case we define the directed version of a d-lattice by replacing every
edge xy in the undirected case by the pair of edges {xy, yx}. The given formulae
remain true in the directed case.

The second class of graph is the so-called “random graph.” There are two standard
models of random graphs in the mathematical literature (see, for example, [15]), and
others are possible.

A graph of type G (v, e) has v vertices and ¢ edges. The e edges are chosen from
the (3) possibilities in such a way that any of the possible e-sets is equally likely to
be the one chosen. In statistical terminology, the edges are a simple random sample of
size e from the set of possible edges.

A graph of type g(v, p) has v vertices. The probability that the vertex-pair xy is
an edge is p, and the (;) events “xy is an edge” are independent. This model was
proposed by ErdSs and Rényi [39], so they are called Erdds—Rényi graphs.

In studying most properties — in particular, the properties of interest for the small-
world phenomenon — these two models of random graphs are interchangeable, pro-
vided e is approximately p(;) When this is true, it is more usual to study g(v, p), as
the variability of the number of edges makes mathematical discussions simpler and
more realistic.

The expected average degree of vertices in a g(v, p) is clearly p(v — 1). The
expected value of the clustering coefficient is p; so, for a reasonably large random
graph of average degree d, the clustering coefficient will be approximately d/v.

15.4 Small-World Graphs

The clustering coefficient in completely random graphs with average degree d is ap-

proximately d/v. In a lattice graph of degree d, on the other hand, it is ig:f;, in-

dependent of v. So — if one looks only at the extremes — it would seem that tight
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local clusters correspond to long average distances, and that reducing average distance
requires abandoning local clustering.

However, Watts and Strogatz [129] discovered a class of graphs that combine
strong local clustering with relatively short average distance. They started from a
highly regular graph (a 1-lattice), and randomly changed a small fraction of the con-
nections: certain edges were deleted and replaced by edges with one endpoint the same
as in the original and the other chosen randomly. In these graphs the clustering coef-
ficient stays near 3/4, while the average distance between vertices is proportional to
log (v) rather than to v.

Small world networks evolve when links are made randomly in a sparse structured
network. The underlying graph of such a network is a blend of local clusters and
random long range links. For example, in a network representing acquaintanceship,
the clusters might be cliques of friends or coworkers, and long range links might occur
through a vacation or when close friends work for different companies.

Watts and Strogatz conjectured that the underlying graphs of small-world networks
would behave like their artificially constructed graphs, which they accordingly called
small-world graphs.

Three major examples of small-world graphs were studied in [129].

One example was the Internet Movie Database (IMDb), in which the vertices are
movie actors, with a connection between any two who have appeared in the same
movie. Analyzing the IMDb network, which then had an average of d = 61 connec-
tions per actor for v = 225, 226 actors (the IMDb has increased considerably in size
since their study), Watts and Strogatz found a clustering coefficient C = 0.79 — sur-
prisingly close to the theoretical value for a highly regular network — and an average
distance between actors of 3.65, which is much closer to In(v)/ In{d) = 2.998 than it
isto v/2d = 1846.

The other two networks analyzed were electrical in nature: the power grid for the
western United States and the neural system of the nematode C. elegans. The power
grid has v = 4941 vertices, consisting of generators, transformers, and substations,
with an average of k = 2.67 high-voltage transmission lines per vertex. C. elegans has
only v = 282 neurons (not counting 20 neurons in the worm’s throat, which biologists
have not yet completely mapped), with an average of d = 14 connections — synapses
and gap junctions — for each neuron.

The power grid has clustering coefficient y = 0.08, 160 times what would be
expected for a random network of the same size. As the power grid is inherently 2-
dimensional, it is reasonable to compare its distances to those of a hexagonal hon-
eycomb, for which most vertices have three links. The average distance between two
vertices in an m x m hexagonal honeycomb, which has v = 2m(m + 2) vertices
altogether, is approximately 2m. When v = 4941, that is approximately 98, but the
average distance between two vertices in the power grid is 18.7.

For C. elegans, the clustering coefficient is 0.28, against 0.05 for the random
model, and the average distance is 2.65, while 2.25 is the value calculated for the
random model and 10 for the corresponding lattice graph with v = 14.

All of these examples exhibited another interesting property. One can consider the
set of all degrees of vertices in a graph as if it were a statistical distribution. In the
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case of the Erd6s—Renyi random graphs, this approximates a Poisson distribution: for
a large v, the fraction of vertices with degree d is proportional to e~¢. However, in
large small-world graphs, the degrees follow a power law: the number of vertices of
degree d is proportional to d ¥ for some constant k.

Barabdsi et al [5] investigated the World Wide Web and found that the probability
that a given page has links to d other pages is approximately d=2*°. So the graph of
the World Wide Web follows a power law.

Exercises 15.4

15.4.1 A company has a CEO and three Departments. Each Department has a Head and
three junior employees. An e-mail system is set up in which the CEO communi-
cates with each Department Head, the Department Head communicates with the
three juniors in that Department, and the three juniors in a Department communi-
cate with each other. Find the characteristic path length and clustering coefficient
of the graph representing this email system. Then repeat this exercise if:

(i) the three Department Heads also communicate with each other;
(ii) three of the juniors — one from each Department — also communicate with
each other.

15.4.2 Repeat the preceding exercise if there are n junior employees in each Department.
If n is large, does this graph exhibit any small-world properties?
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Hints

132
1.3.6
1.3.8
228

229

245
258
2.5.10

3.15
3.25

4.1.7

4.1.8

4.1.11

Show that any two inadjacent vertices have a common neighbor.
The graphs need not both be connected.
Use the results of Exercise 1.2.3.

(iii) By definition, for any x € V(G) there is a y such that D(x,y) = R(G).
Write a and b for the vertices of K,. Then D((a, x), (b, y)) = R(G) + 1. (Note:
you must also show that there is no path from (a.x) to (b, y) that is shorter than
R(G)+1.)

Say G has diameter d. Choose a and ¢ of distance d. Say a, ..., s,t is a path of
length d. Show that if G — {s, ¢} is disconnected, then G — {x, y} is connected for
some other pair of vertices.

It is easy to express the degree d(a, b) as a function of d(a) and d(b).
Consider a complete bipartite graph with its two parts equal or nearly equal.

(i) From Theorem 2.7, it suffices to show that there do not exist nonadjacent ver-
tices x and y with d(x) + d(y) < v.

Use Exercise 1.2.5.

Suppose G contains r cutpoints. Use induction on r. Define an endblock in G to be
a block containing exactly one cutpoint y. Observe that G contains an endblock;
consider endblocks.

Write ¢ for the vertex of degree 4 and x, y, z, t for the four of degree 1. There are
unique paths cx, cy, cz, ct. Show that every vertex other than ¢ lies on exactly
one of those paths. If any of those vertices has degree > 2, prove there is another
vertex of degree 1.

consider a vertex of degree 1, and its unique neighbour. Now work by induction
on v.

(i1) Use induction on the number of vertices. Given a tree T, look at the tree derived
by deleting vertices of degree 1 from T'.



232

4.2.10

435
6.1.8

6.1.10
6.1.13

6.3.3

6.4.4
7.1.10
735
7.4.6

7.5.1

822
9.14
934

Hints

Find a one-to-one map from the set of pairs (7}, T;), where T; is a spanning tree
of G;, onto the set of spanning trees of G.

Think about trees in which the weights are the negative of those given.

Select a vertex x of degree 1. If yz is any edge of the tree, define the distance from
X to yz to be the smaller of D(x, y) and D(x, z). Prove that every one-factor of T
must contain preciselt the edges of even distance from x. If these form a one-factor,
T has one; otherwise it has none. (There are other proofs.)

Proceed by induction on the number of vertices. Use Exercise 2.1.9.

(i1) Finding a two-factorization consisting of two factors of type [3, 3] is equiva-
lent to factoring K into a one-factor two factors each consisting of two disjoint
triangles. But if you delete two disjoint triangles from Ky, the result is K3 3, which
is triangle-free.

Assuming G has 1 or 2 bridges, it is useful to notice that the proof of Theorem
6.11 works just as well if there were 2 edges joining the vertices x and y instead
of just one. Proceed by induction on the number of vertices of G.

Generalize Exercise 6.4.3.
One half of the statement is just the definition of a proper coloring.
Use Theorem 7.8.

Suppose G is a graph with km edges, k > x '(G). Write C for the set of all edge-
colorings of G in k colors. If © € C, define n(r) = Y _ |e; — m|, where ¢; is the
number of edges receiving color ¢; under,7r, and the sum is over all colors. Then
define ngp = min{n(r) : & € C}. Assume ng > 0 and derive a contradiction. Then
a coloring achieving n¢ has the required property.

Verify this exhaustively. But: (i) to prove that whenever an edge is deleted the result
can be 3-edge-colored, notice that there are only 3 different sorts of edge (chord,
outside edge with both endpoints degree 3, outside edge with one of degree 2) (in
fact, the first two are equivalent, but proving this is just as hard as checking one
more case); to prove the graph requires 4 colors, notice that there are only three
different ways to 3-color the top 5-cycle, and none can be completed.

Suppose a graph consists of two planar subgraphs with a common vertex x which
is a cutpoint. It is clea that this graph is planar (draw both subgraphs; make x the
leftmost point in one and the rightmost point on the other). Use induction on the
number of blocks.

Use Theorems 8.6 and 8.7.
Take the answer to Exercise 9.1.3; try to add one edge and delete another.

(1) Suppose X is an edge-magic total labeling of K, with magic sum k. Let V,
denote the set of all vertices x such that A(x) is even, and V, the set of vertices x
with A(x) odd; define p to be the number of elements of V,. Write E; for the set
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of edges with both endpoints in the same set, either V, or V,, and E; for the set of
edges joining the two vertex-sets, so that |E;| = (g) + (”;”) and |E>| = p(v—p).
If k is even, then A(yz) is even whenever yz is an edge in £ and odd when yz is
in E, so there are precisely p + (§) + (*,") even labels. But these labels must be
the even integers from 1 to (”erl), taken once each. A corresponding deduction can
be made if k is odd.

Use the fact that (*}") is even when v = 0 or 3(mod 4) and odd otherwise.

(ii) p is an integer, so the functions whose roots are taken must always be perfect
squares.

Form a graph whose vertices are the rows M, My, ..., M; of M If i < j, then
allocate a color to the edge M; M ; corresponding to the ordered pair (m;;, m ;).

Follow the proof of Theorem 2.1.
The maximum flow cannot exceed 14 because of the cut [s, abcdt].

Use a function f that oscillates finitely.
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Exercises 1.1
1.2 (@) S; (i) RS; (iii) A; (iv) RS.
1.6 (1) S; (1) R; (1) S; (iv) AS.

Exercises 1.2

10 0 1 0
21 G:r=| 1 1 |, a=]| 1 1
0 1 0 1 0

1 0 0 o0 0 1 0 0

11 10 10 1 1

Hel=\ "6 1 o 1 4= 0 1 o 1

0 0 1 1 0 1 1 0

2.5 Say Vi, V, are non-empty disjoint sets of vertices of G such that there is no edge
joining any vertex of V| to any vertex of V,. Concider vertices x, y of G. If one is
in V; and the other is in V3, then they are adjacent in G. If both are in the same set,
say V), then select any vertex z in V; xz and zy are edges in G.

2.9 Say the two parts of G contain p and g vertices respectively. Then G has at most
pq edges (it will have fewer unless G is complete bipartite). Moreover, p+g = v.

Sayp=1L4n,g=2—nThenpg=G+m)E-m=%-—a><?.

o 1 1 1 1 1
1 0 1 0 0 I
1 1 0 1 0 0
22 4= 0 1 o0 1 o
1 0 0 1 0 1

1 1 0 0 1 0 |
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-

SO = OO -
S, OO O
SO == OO0
S = = OO0
—_—— 0 O O O

S OO O = -
S OO = O
—_o OO O
SO = =0
— o oo - O

Exercises 1.3

(i) 222242222 (ii) 332233 (iii)1232222 (iv) 23122231

Suppose x and y are not adjacent. Then each of them is adjacent to at least ”—2_—‘— of
the remaining v — 2 vertices. So they have a common neighbor, say z, and xzy is
awalkin G.

{3,2,2,2, 1} is valid iff {1, 1, 1, 1} is valid. The latter corresponds to two disjoint
edges, so it is valid. Two examples are

vyl

(1) no (you get {2, 2, 0, 0}); (ii) yes; (iii) no (sum is odd); (iv) yes.

Say x; is a vertex of degree 1, x, has degree 2, ..., x5 has degree 5 (and one other
vertex, xo say, has as its degree one of the numbers already used). Then x5 must
be adjacent to all of x1, x3, x3, X4, xo. We now know the vertex adjacent to x;; it
isn’t x4. To have degree 4, x4 must be adjacent to x3, x3, X5, x9. We now know x;’s
neighbors (x4, x5). SO x3 is joined to x4, x5, xo. This defines a graph with degrees
5,4,3,3,2, 1.

Consider a K5 with vertices a, b, c. Duplicate edge ac and add edge cd.

Consider a graph with vertices xj, x5, ..., X,, where the subscripts are integers

modulo v. If d is even, say d = 2n, the edges are
xx;:1<igv,i+l1<j<i+n.

This will yield the required graph provided 2n < v.If d is odd, d = 2n + 1, then

v must be even. Use the same construction and add an edge XXty for each i.

(i) yes; yes. (il) Here is one construction. Assign a vertex to each member of the
sequence. Arbitrarily pair up the vertices corresponding to odd integers and join
the pairs. Then, to a vertex corresponding to integer d, assign |d /2] loops.

Exercises 2.1

sacht, sachdt, sact, sbct, sbdt, sbt, scbt, scbdt, sct; 2.
sa:l,sb:1,sc:1,sd:2,st:2,ab:2,ac:1,ad :3,at:2,bc:1,bd:1,
bt:1l,¢d:2,ct:1,de:1.

(i) Suppose i is the smallest integer such that u; = v; for some j. Then
X, Uy, ..., Ui Vjy, ..., V1, X is a cycle unless [ = j = 1. (ii) Consider u; =
Vy =Y.
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Exercises 2.2

g=3c=8D=3R=2(Gi)g=5c=8D=4R=3(Gi)g=4
8, D=4,R=3({v)g=4,c=5,D=5R=3(v)g=6,c=6,D=5

3
(@) @ (ii) (iif)

The result is clearly true if G is complete. Suppose not. If G has diameter D
(D > 1), choose two vertices a and ¢t whose distance is D. Leta,...,r,s,tbea
path of length D froma to ¢t in G. a = r is possible. r 7 ¢.

Suppose G* = G — {s, t} is not connected; say A is the component of G* that
contains a. Every vertex in G* — A must be adjacent in G to s. (If not, suppose
z were a vertex in G* — A whose distance from s is at least 2. Then the shortest
path from a to z must be of length at least D + 1, which is impossible.) If G* — A
contains any edge, say bc, then s is still connected to every vertex of G* — A —
{b, c}; moreover s is adjacent to ¢ and connected to every vertex in A (since A is
connected and s is connected to a). So G — {b, ¢} is connected and we could take
{x,y}=1{b,c}.

We need only consider the case where G* — A consists of isolated vertices, all
adjacent to s. If A has two elements, they together with r and s form an induced
Ky3.S0]A] =1.Say A = {w}. f w ~ 1 take {x, y} = {w, t}, and if b % ¢ then
r, s, t, w form an induced K 3.

Exercises 2.3

(i) seft (length 9); (ii) sebt (length 11).

Exercises 2.4

(1) No Euler walk, as there are 4 odd vertices; 2 edges are needed. (ii) There is a
closed Euler walk. (iii) There are two odd vertices, so there is an Euler walk, but
not a closed one. Two edges are needed.
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Exercises 2.5

253 ) (i) (i)

(iv) ) (vi)

2.5.8 (i) From Theorem 2.7, it suffices to show that there do not exist nonadjacent ver-
tices x and y with d(x) + d(y) < v. So, of the 2v — 3 pairs xz and yz, with

z € V(G), at most v — 1 are edges. So G has at most () — (v —2) = ”2;3”—14
edges.
(ii) If G is formed from K,_; by adding one vertex and one edge connecting it to

.. . 2_ . . .
one of the original vertices, then G has # edges and is not Hamiltonian.

2.5.10 (i) One solution is to seat the people in the following sequences, where the labels
are treated as integers mod 11: (1) 1,2,3,..,(2)1,3,5,..5(3) 1,4,7, .., (&)
1,5,9,...;(5 1,6, 11,.... In other words, on day i, the labels increase by i (mod
11). Over 5 days, x sits nextto x + 1, x £2, x £ 3, x £ 4 and x & 5, giving every
possible neighbor once.

Exercises 2.6

26.1  (v—D2
2.6.4 (i) SE: 115. NN: 118.
(ii) SE: 286. NN: 286.
(iii) SE: 117. NN: 117.
(iv) SE: 113. NN: 112.
2.6.5 (iyall8, b115,¢115,d 115, e 121.
(ii) a 286, b 286, ¢ 286, d 319, e 286.
(ii)a 117, 117,¢ 122,d 117, e 117.
(ivya 112,b 113, ¢ 112,d 113, e 116.
2.6.8 A directed graph model must be used. Replace each edge xy by two arcs xy and
yx, with the cost of travel shown on each. In the nearest neighbor algorithm, one
considers all arcs with tail x when choosing the continuation from vertex x.
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Exercises 3.1

@) (ii) none (iii)

If it did, deleting the bridge would yield components with exactly one odd vertex.
(i) [a,bcde]l = lac,ad} [abde,c] = {ac,cd}

lac,bde] = {ad, cd} lacd, be] = {de}
lacde,b] = {be}
(i) [a,bed] = {ab} lab,cd] = {bc, bd)

[abe,d] = {bd,cd} [abd,c] = {bc,cd)}

Suppose G is a connected self-centered graph with a cutpoint x. Select a vertex y
such that D(x, y) = e(x). Let P be a shortest xy-path. Then P lies completely
within some component of G — x. Select z, a vertex in some other component of
G — x. Clearly £(2) > D(z,y) > D(x, y) = g(x), contradicting the centrality of
X.

(1) Yes; (ii) no; (iii) yes; (iv) no; (v) no; (vi) yes. (Cases (ii) and (iv) do not discon-
nect the graph; case (v) is not minimal.)

Exercises 3.2

PPl @

Suppose G is a connected graph with at least two edges.

(i) G is connected and is not Ky, so each edge is adjacent to some other edge. So
“any two adjacent edges lie on a cycle” implies that each edge lies on a cycle. So
each point lies on a cycle, and there are no cutpoints.

(ii) Suppose xy and yz are adjacent edges that do not lie on any common cycle.
There can be no path from x to z that does not contain y (if there were, that path
plus xy and yz would be a cycle containing the two edges). So y is a cutpoint.

Suppose G contains r cutpoints. We proceed by induction on r. The case r = 0
is trivially true; the equation becomes —1 = —1. Assume the result is true for
graphs with r or fewer cutpoints, r > 0, and suppose G has r + 1 cutpoints. We
define an endblock in G to be a block containing exactly one cutpoint y. Clearly
G contains an endblock. Select an endblock E of G, and form a graph H by
deleting from G all vertices and edges of E except for the unique cutpoint. Then
b(H) = b(G) — 1. For each vertex x of H, by(x) = bg(x), except by(y) =
bs(y) — 1. The |V(E)| — 1 deleted vertices each belonged to 1 block of G. By
induction, b(H)—1 =} .y lba(x)—1] = erv(H)’x#y[bH(x)— +by(y)—
L= Y vty lb6@) = 11+ b (). S0 b(G) = 1 = X,y [b(x) = 1] =
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>, evie[bx) —1] (the vertices of G not in H all contribute 0 to the sum, because
they were all in one block of G).

Exercises 3.3

Each graph contains a spanning cycle, so each has « > 2. The third has § = 2, so
by Theorem 3.5 k" = 2. In the first, removing of any vertex leaves a Hamiltonian
graph, so at least two more must be deleted to disconnect, and « = 3, whence k' =
3. For the second graph, the preceding argument shows that the only candidates for
two vertices whose removal would disconnect it are the top two in the diagram, but
they do not work, so ¥ = «’ = 3. The answers are (i) 3,3, (ii) 3.3, (iii) 2,2.

k', §=0) L1,1 Gi)1,22 (i) 1,1,2:

oo el

Suppose G has §(G) > %U(G) but k(G) < 8(G). Select a set S of k'(G) edges
whose removal disconnects G; say G — § consists of disjoint parts with vertex-sets
X and Y. Every vertex of X has degree at least 8, and there are fewer than 4 edges
of G with exactly one endpoint in X (only the members of § fit this description),
so there is at least one vertex in X with all its neighbors in X. So | X| > §; similarly
|Y| > 8;s0 v(G) = |X| + |Y]| > 28, a contradiction.

An example with v = 6,8 = 2,x’ = 1 consists of two disjoint triangles plus an
edge joining a vertex of one to a vertex of the other.

Exercises 4.1

Suppose G is a finite acyclic graph with v vertices. If G is connected it is a tree, so
it has v — 1 edges by Theorem treesize. Now assume G has v — 1 edges. Suppose
G consists of ¢ components Gy, Gy, ..., G, where G; has v; vertices; ) v; = v.
Each G; is a tree, so it has v; — 1 edges,and G has > (v; — 1) =v—¢.Soc=1
and G is connected.

If G contains edges xy and yz then G contains triangle xyz. So, if G is a tree
then G consists of disjoint K;’s and K2’s = G? consists of disjoint K’s and K;’s.
The only trees like this are K; and K.

One example: vertices are integers, x ~ x + 1.

Suppose x has degree k. The longest path in T contains at most two edges incident
with x, so there are k—2 edges known not to be on the path. At most (v—1)—(k—2)
edges are available.

Exercises 4.2

The “only if” is obvious. When v > 4 there are many constructions. One example:
take the vertices as 1, 2, ..., v (mod v). One tree is the path 1,2, ..., v. If v is
even, take as the second tree the path 1, 3, ..., v, 2, ..., v— 1. If v is odd, take the
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path 1,3,...,v — 1,2,4, ..., v. Another example: select four different vertices
x,y,2z, w. One tree consists of all edges from x to another vertex other than xy,
plus zy. The other consists of all edges from y to another vertex other than yz, plus
wz

1
N

.Use '?z'f’+-_=_.=2+3

o A-Urd-A+s

(i) D=M+A=8+12=ZO

@ B =1 A O A HA D
=><I+.:4 +2(ﬂ\+ﬁ)+8
=.4+D<+m+2(ﬁ+)+®)+8
=3+2+4+2(5+3+4)+8=41

IfGiséI IionesolutionisD D I—i[_c D_I N

16; 125.

It is clearly necessary that H have no cycles, and if H = G the result is im-
mediate. So suppose H is acyclic and H < G. Say H has disjoint components
Hy, Hy, ..., H,. Since G is connected, there is in each H; some vertex x; that is
adjacent to some vertex, y; say, that is in G but not in H. Write § = V(G)\V (H),
and select a spanning tree 7 in (S). Then

3+5=8

TUHU{x,-y,»:lSiSn}

is a spanning tree in G.

Exercises 4.3

There are several solutions, but the minimum weight is (i) 55, (i) 28.
(1) 27, (ii) (a) 38 (b) 41 (c) 43.

Exercises 5.1

+ o 1 2 x o 1 2
(i oo 1 2 0o o 0
11t o 2 1o 1 2
22 0 1 200 2 1

There is exactly one of dimension 0 (4), one of dimension 4 (V), and none of
dimension 5. For dimension 1, the subspaces are 0, x where x # 0, so there are
[V]| — 1 = 15 of them. For dimension 2, any ordered pair x, y of distinct nonzero
elements determine the subspace 0, x, y, x + y. Each of these ordered bases arises
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6 times if all ordered pairs are listed, so there are 15-14/6 = 35. For dimension
3, there are 15-14-12 ordered bases. Each subspace has 8 elements, so by (5.1) it
has 7-6-4 ordered bases. So the number of subspaces is 15-14-12/(7-6-4) = 15.
(Those who know a little more linear algebra will see from perpendicularity that
the number of 3-dimensional subspaces must equal the number of 1-dimensional
subspaces.)

Exercises 5.2

They form a basis if and only if » is even. Write § = {x|, x2,...,x,}, and §; =
S\{x;}. 3.8 = (n — 1)S, where n is reduced mod 2. If # is odd, the sum is
zero, and the S; are not independent. If n is even, Y S; = S, and Zi £ S =
Si+ S+ Zi# Si = 8; + S = {x;}, so ({S;}) contains all the singletons, so it
contains all of S. Since there are n elements, {S;} is a basis.

Exercises 5.3

The cycles of K4 are 123, 145, 256, 364, 1264,
1563, 2345. The union of any two of these is an- /9\
other of them. So the cycle space has 8 = 23 ele-

5
e has -~
ments (don’t forget #), so it has dimension 3. é 4" g
3

Exercises 5.4

The cycle of length 4 belongs to both. A necessary (not sufficient!) property is that
the graph must have a cycle of even length.
(i) (a) Cycle subspace {4, 123, 456, 123456}, ?\ | 4/?
cutset subspace {0, 13, 23, 12, 4, 134, 234, 3 >O~7 -O< 5

124, 56, 1356, 2356, 1256, 456, 13456, g}/z 6%
13456, 23456, 12456, 57, 1357, 2357, 1257,

457, 13457, 23457, 12457, 67, 1367, 2367,

1267, 467, 13467, 23467, 12467}.

(b) Tree, so cycle subspace = f. Cutset subspace contains all 2° subsets of the
edges.

(ii) (a) Cycle subspace has 4 = 2? elements, dimension 2. Cutset subspace has
32 = 2’ elements, dimension 5. 2 + 5 = 7. (b) Cycle subspace has 1 = 2°
elements, dimension 0. Cutset subspace has 32 = 23 elements, dimension 5. 0 +
5=35.
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Exercises 5.5

Choose i such that 2 < i < k and let L; be the fundamental cycle corresponding to
the edge a;. Now a; is the only edge of T in C and g; is the only edge of T in L;.
So{a;} CCNL; C{aj,a}. ByLemma 5.4, |LNC;|iseven,so LNC; = {a;, a;}
whencea; € L;. Nowletayy;, j > 1, be anedge of T,and L, j the corresponding
cycle. Since L, ; contains no other edge of T, CCNLgy i € {a1}. Again by

Lemma 5.4, |L N Cryjliseven,so LNCyj =W, 50a+1¢ Cryj.

(i)2,3,4,5,6,7,8,9,T.

(i) (12345), (2347TA), (2379B), 1/3\2
(1268C), (348T D), (12369E)

(iii) (I15CE), (25ABCE), (35ABDE), 6 A LD g
(45AD), (6CE), (TAB), (8CD), (9BE), B
(TAD) 5 C 3

iv) Cycles of length 8. \ /
(iv) Cycles of length 8 T 9
4

Exercises 6.1

Suppose N has a one-factor. One edge from the center vertex must be chosen; say
it is the vertical one. Then the remaining edges of the factor must form a one-factor
in the following graph, which has two odd components:

AAA

Q) abcd ef gh; aebcdh fg.

(i)abced ef gh; abcgdhef ; aebf cd fg; ae bf cg dh

Suppose G has 2n vertices. We proceed by induction on n. The result is true for
n = 2 (see Exercise 6.1.1). Say it is true for n < N. Suppose v(G) = 2N + 2. By
Exercise 2.1.9, G has an edge xy such that G —{x, y} is connected. Now G —{x, y}
contains no induced K 3, and has 2N vertices. So by the induction hypothesis it
has a one-factor. Append xy to that factor to construct a one-factor in G.

Exercises 6.2

Use a one-factorization of K, ,. An example forn = 4 is
la 2b 3c 4d, 1b 2a 3d 4c, 1¢ 2d 3a 4b, 1d 2c 3b 4a.

(1) It is required to find the largest possible set of edge-disjoint factors of K, each
of which consists of v/3 triangles.

Exercises 6.3

No. For example, consider 3K3 U 3K5s.
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If G has no bridge, Theorem 6.11 gives the result. for the cases where G has 1 or
2 bridges, it is useful to notice that the proof of Theorem 6.11 works just as well if
there were 2 edges joining the vertices x and y instead of just one. We proceed by
induction on the number of vertices of G. The result is trivial for 4 vertices.

If G has 1 bridge, xy, write G, and G, for the components of G — xy, with
x € G,. Say the vertices adjacent to x in G — x are x; and x,. The (multi)graph
defined by adding edge x;x; to G, — x is cubic has no bridge, so it has a 1-factor
not containing the new edge. (Simply insist that it contains one of the other edges
incident with x;.) So does the graph similarly derived from G,. Add xy to the
union of these factors.

If G has 2 bridges, they cannot have a common endpoint (if they did, then the third
edge through that vertex would also be a bridge.) Say the bridges are xy and zz,
and say the three components of G —xy—z¢ are G, (containing x), G, (containing
y and z), and G, (containing ¢). Then G, has an even number of vertices, while
the others are odd. We can construct a one-factor containing yz in the bridgeless
(multi)graph G, + yz, and a one-factor including the bridge xt in G, U G, + xt.
Their union is the required factor.

Exercises 6.4

There is no example for s = 1. Fors =2, K3 U P;isal — (1, 1, 2) graph.

The degrees are clearly correct. But the new vertex is a cutpoint, so G is not Hamil-
tonian.

Exercises 7.1

3. (x > 2, because there is an odd cycle. 3 is realized in Figure 7.1.)

Write x for x(G), B for 8(G).

(i) Select a x-coloring of G. Write V; for the color classes. Each V; is an endepen-
dent set, so |Vi| < B,s0v =Y |V;| < x-B.

(i1)Select a maximal independent set S; |S| = B. G can be colored in x (G —S) +1
colors (just color all points of S in a new color). G — § has v — B vertices, so ob-
viously x(G—8§) <v—-B.s0x <x(G-8S)+1<v-8+1

X1, X6, X2, X3, X4, X5 works.

Select one edge in the cycle, say xy. By Theorem 7.1, x(G — xy) = 2. Select a
2-coloring of G —xy. Necessarily x and y will receive the same color, as they have
a common neighbor. Apply a third color to x.

Color G — x in n colors. There must be a color not on any vertex adjacent to x in
G. Apply that color to x. (The “only if” part is obvious.)
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Exercises 7.3

(i) Only one has a vertex of degree 2.

(ii) Neither graph has any coloring in 0, 1, 2 or 3 colors (each contains a K4), so
each has polynomial divisible by x(x — 1)}(x — 2)(x — 3). For 4 colors there are
48 colorings: if colors 1, 2, 3, 4 are applied to the K4 made up of the four left-
most vertices, as shown, then the other colors are determined as shown. In the first
graph, x can be 2 or 3, and in the second graph, (y, z) can be (2, 3) or (3, 2). This
gives 2 colorings each, and {1, 2, 3, 4} can be permuted in 24 ways. So each has a
polynomial of the form p(x) = x0—11x3+. . = x(x—1)(x=2) (x=3) (x> +ax+b)
=x%4 (- 6)x5 + .... Comparing coefficients of ,a—6=—11,a = —-5.
Then p(4) = 48 reduces to (4> + 4.5 + b) = 2, or b = 6. So the polynomial is
x(x = Dx —2)(x =32 =5x +6) = x(x — I)(x — 2)*(x — 3)?2, the same for

both graphs.
1 1
4 4

From Theorem 7.8, such a graph would have 4 vertices, 4 edges and 2 components.
There is no such graph.

Exercises 7.4

Any 8-edge graph on 5 vertices has A = 4 (sum of degrees = 16). There are
two such graphs, the complements of 2K, and P;. For the former, take a one-
factorization of K¢, delete the edges of one factor and then delete one vertex; the
remaining (partial) factors are the color classes in a 4-edge-coloring. In the latter,
consider the K5 on vertices 1, 2, 3, 4, 5 with edges 15 and 25 deleted. Suitable
color classes are {12, 34}, {13, 24}, {14, 35}, {23, 45}. So the graphs both have
edge-chromatic number 4, and both are class 1.

First, observe that any 7-edge graph on 5 vertices can be edge-colored in 4 colors,
because it can be embedded in an 8-edge graph on 5 vertices (and use the preceding
exercise). Now if a 7-edge graph can be edge-colored in 3 colors, one color would
appear on 3 edges. But you can’t have 3 disjoint edges on only 5 vertices.

Suppose G is a graph with km edges, k > x'(G). Write C for the set of all edge-
colorings of G in k colors. If # € C, define n(r) = ) |e; — m|, where e; is the
number of edges receiving color ¢; under,, and the sum is over all colors. Then
define ng = min{n(x) : w € C}. We prove that ny = 0. Then a coloring achieving
no has the required property.

Suppose ny > 0. Let mg be a coloring with n(mg) = ny > 0. Since G has km
edges, there exist color classes M; and M, under @ such that e; = M| < m
and ¢; = |M,| > m. Say the other color classes have sizes c3, ¢4, ..., ¢x. Now
M1 U M5 is a union of paths and cycles. e; > e; = the union includes at least one



246

74.9

753

8.1.3

8.24

8.3.2

Answers and Solutions

path P with its first and last edges from M,. Exchange the colors of edges in P.
The resulting edge-coloring 7’ has one more edge in color C| and one fewer in
color ¢z, so its color classes are of sizes c;—1,co—1, ¢3, . . ., e, and n(w’) < n(m),
a contradiction.

(i) By Exercise 6.1.4, x'(P) > 3, so by Theorem 7.13 x '(P) = 4.
(ii) 4. (iii) 4.
Exercises 7.5

Suppose G has cutpoint x and is edge critical with edge-chromatic number . Say
G — x consists of two subgraphs G| and G, with common vertex x. Select vertices
y in G| and 7z in G, adjacent to x. Choose edge-colorings 7; of G — xy and >
of G — xz in the n — 1 colors ¢y, ¢z, ..., ¢c,—1 (possible by criticality). Permute
the names of the colors in m; so that the m,-colors of edges joining x to vertices
of G, are different from the m;-colors of edges joining x to vertices of G (this
must be possible: G is class 2, so the degree of x is less than 7). Color the edges
of G| using 7; and the edges of G, using m,. This is an (n — 1)-edge-coloring —
contradiction.

Exercises 8.1

First, convince yourself that the drawing shown of K 3

is quite general. Now K33 can be constructed from

K> 3 by adding one vertex adjacent to all the black ver-

tices. Whichever face it is placed inside, one crossing

can be achieved and is unavoidable.

To see that P is not planar, delete the two*horizontal” edges from the representa-
tion in figure 2.4. When the vertices of degree 2 in this subgraph are elided, the
result 1s K3 3. The crossing number is 2 (this can be shown exhaustively, starting
from a representation of K3 3 with 1 crossing).

Exercises 8.2

From Theorem 1.1, 2¢ = Z (degrees) > 6v, so e > 3v. Suppose G is connected:
by Theorem 8.7, G is not planar, and the result follows. If G is not connected, the
above argument applies to its connected components (in fact, you could prove that
every component contains a vertex of degree at most five).

Exercises 8.3

Suppose there are connected planar graphs that cannot be colored in six colors,
and let G one with the minimum number of vertices. Let x be a vertex of G of
degree less than 6. G — x is 6-colorable; choose a 6-coloring & of G — x. There
will be some color, say c, that is not represented among the vertices adjacent to x
in G. Define n(x) = ¢, and n(y) = £(y) if y € V(G — x). Then 7 is a 5-coloring
of G — contradiction.
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Exercises 9.1

. 0 6 2
One solution 18 I:I
4 1 3 5

There are not enough numbers available for the labeling to be one-to-one.

Say the path has e edges.Call the vertices xg, x, ..., x,, where x; ~ x;4;. Set
Alxar) = k, Mxos1) = e — k. This is graceful: differences are e,e — 2,... on
edges of form xo, xop ande — 1, e — 3, ... on edges of form x4 11, X2442.

Exercises 9.2

The vertex labels are {1, 2, 3}, {1, 3, 5}, {2, 4, 6}, {4, 5, 6}

Write v = 2n + 1. Consider the cyclic vertex labeling (1,2n 4+ 1,4n + 1,2n —
1,...,2n 4+ 3); in this case each label is derived from the preceding one by
adding 2n(mod 4n + 2). The construction is such that the second, fourth, ..., 2n-
th vertices receive labels between 2 and 2n + 1 inclusive, while the third, fifth,
..., (2n 4 1)-th receive labels between 2n + 2 and 4n + 1. The successive pairs of
vertices have sums 2n+2,6n+2,6n,6n—2,...,2n+4;ifk = 3v+1 =6n+4,
the edge labels are 4n+-2, 2, 4, . .., 4n. We have an edge-magic total labeling with
k=3v+1ands = v? (the case i = %(v + 1) in the list).

Label the endpoints of the common edge with 1 and » 4 2, and the other vertices
2,3,...,n+1.

P is regular of degree 3 with v = 10, e = 15. 5020 + 02 < 15k < 20% + 02,
or 435 < 15k < 735. S0 29 < k < 49. To construct an example with k£ = 29,
consider the representation as a star shape within a cycle; label the outside vertices
1,3, 6,9, 4 and the inside vertices 10, 5, 8, 7, 2 (starting from the top, clockwise,
in both cases). Edge-labels can be found by subtraction.

Exercises 9.3
From Theorem 9.20, v(K,,+tK;)+e(K,+tKy) > p*(n). But v(K,+tK) = t+n
and e(K, + 1K) = (}).
We use the Fibonacci numbers
L= =2, fap1.

Write k = f,43 + | and define a labeling A of the K, with vertices {x;, x5, ..
X} by

M) = fio
fori =1,2,...,nand
Axix;) =k — A(x;) — Alx;).

The smallest edge label is the label on x,_1x,, namely f,y3+1— f, — fu41 =
Jat1 + for2 +1— fu — fus1 = fur1 + 1, and this is greater than any vertex label.
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The largest label used will be at most kK — f> — f3 = k — 3. So the labels are all
positive, and no label is repeated. For each number between 1 and k — 3 that has
not been used as a label, introduce a new vertex with that number as a label. The
result is a magic graph with magic sum k. There will be

t=k-3-n—in(n-1

new vertices, so 1
m(G) < fayz —2—n—jn(n—1).

Exercises 10.1

(i) Clearly R(Ps, K3) < R(K3, K3) = 6.

(ii) G contains no P; < G contains no vertex of degree 2. So the components of
G are disjoint vertices (degree 0) and edges (degree 1).

(iii) If G contains an isolated vertex and 4 or more components then it has 3 or
more components, so G has a triangle.

(iii) suppose Ks is colored so as to contain no red P; and no blue K3. Let G
be the subgraph of red edges. By (ii), (iii) G contains a K3 unless v < 4. So
R(P;, K3) < 5. But The K, with edges ab and cd red and the others blue is
suitable. So R(P3, K3) = 5.

Say K, contains no red or blue K4. Select a vertex x. R, (B,) is the set of vertices
joined to x by red (blue) edges. Then (R —x) can contain no red K3 or blue K4 and
|R:| < R(3,4) =9. Similarly |By| < 9.S0 |[V(x}| <14+0O-1D+0O-1)=17,
and R(4,4) < 18.

Suppose the edges of K, are colored in red and blue. Any vertex x has degree
m + n — 1, so if there are less than m red edges incident with x, there must be at
least n blue edges. So R(K |, K1n) <m+n.

If m or n is odd, then there exists a regular graph G of degreem —lonm +n —1
vertices (see Exercise 1.3.17. Its complement G is regular of degree n — 1. Color
the edges of G red and those of G blue. This painting avoids any red K, and any
blue K ,. Som or n odd - R(Ki,, K1,,) = m + n. In any painting of K1,
that avoids both red (K ,, and blue K ,, no vertex can have more than m — 1 red
and n — 1 blue incident edges, so each vertex has exactly m — 1 red and n — 1 blue,
so the red chromatic subgraph is regular of degree m — 1. This is impossible if m
and n are both even (degree and order can’t both be odd — Corollary 1.3). So m
and n even - R(K,, K| ,) < m + n. But a painting of K,,,_» is easy to find
—n —1is odd, so we can do it with no red K,, — 1 or blue K,,_;, let alone K,,. So
mand n even > R(Ky, Kip) =m+n—1.

Exercises 10.2

(1) Suppose n is odd. Suppose the edges of K>, are colored red and blue, and vertex
x is incident with r red and b blue edges. If » > n, x will be the center of at least
onered (K| ,,andif r < nthen b > n, and x is the center of at least one blue (K|, ,.



10.4.1

10.4.3

[1.1.1

Answers and Solutions 249

So each vertex is the center of a monochromatic star, and Ny 3,(K;,) > 2n — 1.
But if we select a regular graph of degree n on 2n vertices (possible by Exercise
1.3.17), and color all its edges red and insert blue edges between all inadjacent
pairs, the result has exactly 2n — 1 monochromatic (red) n-stars.

(i) Suppose n is even. Take a K,, with vertices xj, x2,...,x, and a K, with
vertices yi, ¥2, ..., Y1 disjoint from it. Color the following edges red: all the
edges of the K, except x|x3 X3Xs, ..., Xy—1%,, all the edges of the K,,, and the
edges x1y1 X3¥2, . - ., Xn—1Yn—1. The other edges of K, r are colored blue. Every
vertex of this graph has red and blue degree n — 1 except for x,, which has n
red and n — 2 blue edges. So there is exaclty one monochromatic K, n, namely
Xn—Xp—1Y1Y2 -+ Yn-1.

Exercises 10.4

If a graph is to contain no red K, it has no red edges, so it is a blue K. There is
no blue K, iff v < g. So R(2, g) = q. Similarly R(p, 2) = p.
Use Theorem 10.11 with s = ¢ = 3. This gives

Ry(5) =2 (R2(3) — D(R(3) — ) +1=26.

Exercises 11.1

(a) () sa, st, as,at, bs, bt, th.
(ii) A(s) = {a, t}, B(s) = {a, b}, A(a) = {5, 1}, B(a) = {5},
A(b) = (s, t}, B(b) = {1}, A(t) = {b}, B(t) = {a, b, s}.
(iii) sat, st. (iv) satb. (v) {st, at, bt}.

(b) (i) sb, as, be, ca, ce,dc, et, td.
(i) A(s) = {b}, B(s) = {a}, A(a) = {s}, B(a) = {c}, A(b) = {c},
B(b) = {s}, A(c) = {a, e}, B(c) = {b,d}, A(d) = {c}, B(d) = {1},
A(e) = {t}, B(e) = {c}, A(t) = {d}, B(t) = {e}.
(iii) sbcet. (iv) shca (not unique). (v) {bc}.

(¢) (i) sa, sc, se,ab, ac, bd, ce,dc,dt, et.
(i) A(s) = {a,c,e}, B(s) = @, A(a) = {b,c}, B(a) = {s},
A(b) = {d}, B(b) = {a}, A(c) = {d, e}, B(c) = {s,a}, A(d) = {1},
B(d) = {b, ¢}, A(e) = {t}, B(e) = {s,c}, A(t) = 8, B(t) = {d, e}.
(iii) sabdt, sacdt, sacet, scdt, scet, set. (iv) No cycles. (v)
{sc, se, ac, bd}.

(a) (1) DKy, (ii) one component.

(b) (i) DK, (ii) one component. os

(¢) (i) See the graph; in addition to arcs shown, ev- oa

ery vertex is joined to every lower vertex, (ii) each b d c e
O—»O<—0—»0

vertex a different component.
No, it has loops. ot
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Exercises 11.2

11.2.1 (i) Suppose the vertices are x|, X, . .., x,. Use the orientations x; — x3, x3 = X3,
v.o Xy —> Xy, Xy —> X1. The other edges may be oriented in any way.

11.2.5 (i) 12223, (i) 11233.

11.2.9 () (xcb), (xcda), (xcbda). (ii) (xdb), (xcdb), (xcdba).

11.2.12 (i) vs = sum of the scores = sum of outdegrees. On the other hand, the sum of the
outdegrees is (5). So vs = v(v — 1)/2and v = 25 + 1.
(i1) One example: decompose Ko,y into s cycles (see Theorem 6.3), and in each
cycle orient each edge so as to form a directed cycle.

Exercises 11.3

11.3.2 Select an Euler walk in G. Orient each edge in the direction of the walk.

Exercises 12.1

12.1.2 All arcs are directed
from left to right.

Exercises 12.2

QU

12.2.2 (i) 29; s 1s start;
is dictate;
is type; a is
address; [ is
stamp; m is
mail (and is
finish)

All  arcs are
directed  from
left to right.
12.2.6 All arcs are directed from left to right. ¢ is an added finish node. Critical path

abdehklt, duration 46.

~
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Exercises 12.3

Say the duration of a task in Exercise 12.2.6 was ¢. Then the expected time in
this problem is 4¢/3 and its variance is (£/6)>. The critical path is unchanged,
abdehkft, and the expected duration is 4-46/3 = 61.33 days. The variance is
336/62, so the probability of completion within 65 days is P(N(61.33,3.055) <

65 = P(N(0,1) < 36 P(N(0, 1) < 1.20 = .88.

Expected times: a : 16, b : 13.5, All arcs are directed from left to
c:18,d:8,e:16, f:27, g: right.
8.5, h:10,i:17, j:9.5. Critical
path sbfjt, length 50. Variances
b:(3)% f:3% j: ()% overall
11.9444 = 3.382.
P(N(50,3.38) <32
=P(N(©0,1) <
=P(N@O, 1)< .59 = .72,

Exercises 13.1

(i) sadt. (ii) sbdt.
(i) (a) {af, df}, (b) 4, (c) 11, (d) 8, (e) 5, (f) 14.
(i) No: imbalance at b, g. (ii) Yes.

(i) sact, sbact, shct, sbdct, sbdt. (ii) No (flow into ¢ would exceed flow out of s).
(ii)x =3—-2,y=8-20<z<3.

Exercises 13.2

(ii) 6. (iii) sabt. (iv) Change to f(sa) = 7, f(ab) = 5, f(bt) = 5, other flows
unchanged. This has value 10. (v) Augment along suxyzt: f(us) =0, f(xu) =0,
fxy) =4, f(yz) = 4, f(zt) = 3. Value is 11. (vi) 11 is maximal because
[saux, bvwyzt] is a cut of capacity 11.
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@) cls,abt] = 15, clsa,bt] = 14, O 5
i) cls,a = 15, clsa,0t] = 14, O—5
clsb,at] = 22, c[sab,t] = 12. 7 0 E
Minimum = 12. A flow of value 12 1 4
is shown. §—O
t

(i) c[s,abctl = 17, c[sa,bct] = 8,

b

s a
c[sb,act] = 8, c[sab,ct] = 7, f?) 4??\
c[sc,abt] = 13, c[sac, bt] = 10, 0 0o 3
c[sbc,at] = 13, c[sabc,t] = 8. \>O
Minimum = 7. A flow of value 7is  } 1 ¢ 4 f
shown.

Replace x by two vertices, x; and x,. Every arc into x becomes an arc into x;;
every arc out of x becomes an arc out of x,; and there is an arcx;x; of capacity d.

Exercises 13.3

First, observe that both are separating cuts:

TNY=SNT=SUT; TUY=SUT=8NT,

seES, X=>s5eSUX,SNX; teT,Y=teTNY,TNY.

It is easiest to draw a diagram and use single letters to represent the capacities of
edges between different sets of nodes. Write:

c[SNX, TNX]=e, c[SNY, TNY]=F,

c[SNX,SNY]=g, c[TNX, TNY]=h. X V4
Thenc[S, T]=e+ f,c[X,Y]=g+h,

so by minimality e+ f = g+ h = m, S g
where m is the minimal cut size. So e f
et+g+f+h=2m Nowc[SUX, TN I il
Y] = f + h < m, by minimality, and T K

also [SNX,TUY] =e+g < m. L4

The only possibility is that both capaci-
ties equal m.

Exercises 13.4

There is a cut, [sabde, cft], of capacity 8.

8 ([s, abcdeft] is a cut of capacity 8).

Max flow values are 9 and 16. Examples of flows realizing these (unmarked arcs
receive flow 0):

@ S$+4
5

a i) s
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Exercises 13.5

Since there is no restriction on production or sales, add vertices s and ¢ and put
infinite capacity on all arcs s Fi and Mit. Then carry out the algorithm.

The maximum flow is 115; an example is shown. To see that this is maximum,
observe the cut of capacity 115 shown by the heavy line.

&\

Yes. A suitable flow is shown

in the Figure. (Directions are O<6‘ ~ 4_Q\7
assumed to be as in the origi- § 4
S g

nal.)

Exercises 14.1

If f = O(g) and g = O(h) then there exist a values ng; and ng, and positive
constants K, and K, such that f(n) < K,g(n) whenever n > ng and g(n) <
K,h(n) whenever n > ng,. So, if n > max{ny;, nep}, f(n) < Kign) < g(n) <
K Kyh(n). So f = O(h) (using no = max{ng, noz}, K = K, K>).

In testing whether # is prime, one is answering the decision problem: Is n in the set
P,? where P, = {x : x < n, x is prime}. Since P, is asymptotically equal to \/n,
the input size of the problem is log n, not n. If we write t = logn then /n = ¢/,
so the problem is actually exponential in the input size.

Exercises 14.3

(i) It is easy to see that wy;; is the length of the shortest path from x; to x; among
all paths that contain at most k edges, as required (this can be written formally as
an induction). As no path can contain more than v — 1 edges, W, is the matrix of
shortest paths.

(ii) In the algorithm, replace line 4. by:

4.fork=1tov —1do

and replace line 7. by:

7. for h =1tovdo

8. Wii; < minf{wg_ g5, ming (w10 + wa;}}

(iii) Complexity is v*.
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14.3.5 xg is the arbitrarily chosen starting vertex. At any stage, S is the set of vertices and
T is the set of edges already selected for the tree. For each vertex y € V\S, W(y)
is the minimum weight of edges joining y to S.

. T<«9

2. § <« {xo}

3, forally € V\Sdo W(y) < minyecs w(x, y)
4. e, < anedge xy such that W(y) = w(x, y)
5. while § # V do

6. begin

7. select yo € V\S)

8. forall y € V\Sdo

9. if W(y < W(yo) then yg <y
10. S <« SU{yo}

11. T < TUl{ey,}

12. for all y € V\S do W(y) <« min{W(y), w(y, yo)
13. end

This is order v?: the main part, beginning with step 6, is of complexity v (steps 8
and 12 are both of order v, and 6 is carried out v — 1 times.

Exercises 15.2
: . _ 29, . _ 7. _ 2. . _ 4. _ 55
15.2.5 (%.)n=2. r.npl =4 n=3:mpl =73 n=4: mpl =35
(ii) cpl = 2 in each case
(iii) cc = é when n = 2, 0 otherwise.
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activity digraph, 167
activity network, 170
acyclic, 21, 53, 54, 57, 156
adjacency, §, 10
directed, 155
adjacency list, 209
adjacency matrix, 8, 12, 13, 22, 208, 212
edge-face, 118
weighted, 209
algorithm, 26, 95, 205-215
exponential, 207
hard, 207
intractable, 214
linear, 207
nondeterministic, 214
polynomial, 207
polynomial time verifiable, 214
sublinear, 207
algorithm for
x(G) < AG+ 1,213
all shortest paths, 210
critical path, 172
depth-first search, 211-212
max flow min cut, 194-200, 213
minimal spanning tree, 60, 213
nearest neighbor, 40, 213
shortest path, 26, 209-210
sorted edges, 40, 213
strong orientation, 159
Traveling Salesman Problem, 40
arc, 7, 155
empty, 189
full, 189

multiple, 155, 167
augmenting path, 189, 195
automorphism, 6

back-edge, 211
basis, 65, 66, 72
binary relation, 2-5, 12
antireflexive, 2, 12
graph of, 2
reflexive, 2
symmetric, 2, 12
transitive, 5
bipartite, 10, 12, 80
bipartite graph, 20, 94, 105, 119
block, 4649, 88
critical, 49
block graph, 48
blocking set, 193
book, 132
breadth-first search, 210, 213
breakthrough, 194
bridge, 4346, 48, 53, 54, 59, 78, 117
bridges of Konigsberg, 29

cartesian product, 1

of graphs, 11,97
caterpillar, 125
center, 24, 46, 55
characteristic path length, 218
chord, 34, 49
chromatic index, 104-111
chromatic number, 93-104, 157
chromatic polynomial, 99-104
circuit, 19
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directed, 156
class 1 graph, 106-111
class 2 graph, 106-111
classical Ramsey theory, 142
clique, 9, 133, 215
maximal, 9
clique graph, 9
clique number, 9
clique problem, 215
closed walk, 19
clustering coefficient, 218
color class, 93, 104, 107
coloring, 93-111
greedy, 95, 97
proper, 93
communications network, 217-224
complement, 10, 72
in a graph, 10
complete bipartite graph, 10, 80, 116, 119,
143
complete graph, 6, 13,79, 132-138
oriented, 160
complexity, 205
order of, 205
component, 10, 17, 43, 85, 87, 102
computation, 205-215
congruence, 2
connected, 10, 12, 20, 25, 43, 49, 53, 57, 157
graph, 20
strongly, 157
vertices, 20
connectedness, 43-51
connectivity, 49-51, 111
core, 110
critical
edge-, 107, 108, 110, 111
vertex, 171
vertex-, 95, 96, 99
critical block, 49
critical path, 171
critical path analysis, 167-179
crossing, 118, 120
crossing number, 114-122
of complete bipartite graph, 115
of complete graph, 114
of tree, 114
cube, 82
cubic graph, 13,59, 79, 88
cut, 187

minimal, 188-200
separating, 187, 192
cutedge, 4346
cutpoint, 4346, 49
cutset, 43, 45, 59, 70, 72, 73
cutset subspace, 68-76
cycle, 19-42, 44, 47, 51, 55, 59, 69, 72, 73,
94, 101, 129, 139, 142, 143, 147, 160
directed, 156, 160
Hamilton, 34-39, 41
length, 19
weight, 25
cycle subspace, 68-76

de Bruijn sequence, 165
degree, 13-18, 22, 54, 118, 119
indegree, 155
maximum, 94, 97, 105-111
minimum, 49, 54, 95
outdegree, 155
demand, 200
depth-first search, 210-212
diameter of graph, 23
digon, 156
digraph, 2, 7, 155-204
acyclic, 168
Dijkstra’s algorithm, see algorithm for
shortest path
dimension, 65, 66
of finite vector space, 65
directed cycle, 161
directed edge, 155
disconnected, 10, 157
distance, 20, 21, 23, 25
is metric, 23
weighted, 25
dominating set, 215
domination problem, 215

earliest finish time, 171
earliest start time, 171
eccentricity, 23, 46, 55
edge, 2,6, 117
adjacency, 8
capacity, 181
directed, 155
endpoint, 6
incidence, 8
independence, 8



pendant, 13

weight, 25
edge deficiency, 136
edge-coloring, 104-111
edge-connectivity, 49-51
edge-critical, 107, 108, 110, 111
edge-face adjacency matrix, 118
edge-magic injection, 136-138
edge-magic total labeling, 138
edge-weight, 209
empty arc, 189
endpoint, 6
equivalent labelings, 124, 129
Erd&s—Rényi graph, 222
Euler walk, 29-34

directed, 163-165
Euler’s formula, 116-119
Euler’s Theorem, 30-34
Eulerian graph, 105
Eulerization, 32
even vertex, 30
exponential algorithm, 207

face, 116-119

exterior, 116, 117
factor, 77-91
factorization, 77-91
fan, 108, 109
Fibonacci sequence, 135
finish, 155, 156, 168

of arc, 7
five color Theorem, 120-121
flow, 181-204

maximal, 186-200
forest, 21
four color Theorem, 120-122
full arc, 189
fundamental cutset, 73
fundamental cycle, 73, 74
fundamental system

of cutsets, 73-75

of cycles, 73-75

generalized Ramsey theory, 142-144

Goodman’s Theorem, 144-145
graceful labeling, 123-126
graph, 2,6

acyclic, 21
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as model, 3, 4, 13, 25, 83, 113, 160, 163,

167, 181
bipartite, 10, 20, 94, 105, 119
center, 24, 46, 55
complete, 6, 79, 132-138

complete bipartite, 10, 80, 116, 119, 143

connected, 10, 20
disconnected, 10
Eulerian, 105
infinite, 22, 54
nonseparable, 46
order, 6
radius, 46, 55
regular, 13, 78, 79, 87, 132
self-complementary, 12
size, 6
weight, 25
graph automorphism, 6
graph isomorphism, 6, 11
Graph Isomorphism Problem, 212
Graph labeling, 123-138
graphical sequence, 14, 17, 18
greedy coloring, 95, 97

Hamilton cycle, 34-39, 41, 51, 80, 82

directed, 161
Hamilton path, 34, 36-38
directed, 161
Hamiltonian, 34-39
hard algorithm, 207
head of arc, 7
homeomorphic, 115

incidence matrix, 8, 12, 13, 208

incidence matrmatrix
weighted, 209

indegree, 155, 163

independence number, 8, 96

induced subgraph, 45

initializing a digraph, 168

instance of a problem, 205

internal vertex, 46

internet service provider, 217

intersection of graphs, 11

intractability, 205, 213-215

isolate, 136

isolated, 13

isomorphism, 6, 11-13

ISP, 217
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join of graphs, 11 NPC, 214-215
null graph, 10
Kempe chain, 97-99

Kempe chain argument, 97-99 odd vertex, 30
Kempe’s proof, 120, 122 one-factor, 77-91
Kuratowski’s Theorem, 115 one-factorization, 77-91
Konigsberg bridges, 29 ordered, 78

oriented, 78, 84
ladder, 13 standard, 80
leaf, 54, 125 order of complexity, 205
length order requirement digraph, 170-179

of cycle, 19 orientation, 159

of walk, 19 strong, 159, 161
linear algorithm, 207 oriented complete graph, 160
loop, 155, 167 oriented graph, 159-163
magic injection, 136-138 ggtg(;:g(r)::r?j; 163

magic labeling, 126, 138
magic number, 136, 137

major vertex, 108, 110 Pt2¥3—215 '
map, 119-122 painting, see also edge-coloring, 104-107,
’ 139-152

matching, 78
perfect, see one-factor
max flow min cut Theorem, 192-200
maximal flow, 186-200
characterization, 193
maximum degree, 94, 97, 105-111

maximal, 104, 106
proper, 139-152

path, 19-42, 53, 101, 143
augmenting, 189, 195
directed, 155
Hamilton, 34, 36-38

mean, 176

metric, 23 proper, 21

minimal cut, 188-200 shortest, 23-29
characterization, 193 weight, 25

minimal spanning tree, 6064 pendant, 13

perfect matching, see one-factor

minimum degree, 49, 95
perfect square, 22, 23, 54

minor vertex, 108

mode, 177 PERT, 176-179
monochromatic, 139 Petersen graph, 22, 75, 79, 81, 107, 115
monochromatic subgraph, 139-152 Petersen’s Theorem, 79
multigraph, 7, 55, 57, 58, 85 Petersen’s theorem, 88
directed, 157, 163 Petersen’s Theorem, 88
multigraphs, 88 pigeonhole principle, 152
planar graph, 113
nearly Kirkman triple system, 84 planar representation, 113
neighbor, 8 planarity, 113-122
neighborhood, 8 plane representation, 117
network polynomial algorithm, 207
augmented, 182 polynomial transformation, 214
completed, 182 polynomial, chromatic, 99-104
nonseparable, 46 power set, 66-68

NP, 213-215 precede, 167
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Prim’s algorithm, see algorithm for minimal start, 155, 156, 168

spanning tree of arc, 7
principal submatrices, 143 strong component, 158
proper coloring, 93 strong orientation, 161
strongly connected, 157, 160
queue, 213 subgraph, 9, 49, 54, 68, 69
induced, 45, 82
radius, 46, 55 proper, 9
radius of graph, 23 spanning, 9, 55
Ramsey multiplicity, 144-146 weight, 25
Ramsey number, 140-144, 149

sublinear algorithm, 207
Ramsey theory, 139-153 subspace, 65, 66

classical, 142 sum

generalized, 142 of graphs, 11
random graphs, 217-224 sum-free set, 149, 151, 152
reachability, 157

in activity digraph, 168
reachability digraph, 158
regular graph, 13, 17,78, 79, 87, 132
representation of graph, 113

sum-free sets, 146

supply, 200

supply and demand, 200-204
supply-demand network, 200
symmetric difference, 66, 69

planar, 113 symmetric sum-free partition, 147-149, 151,
round, 83 152
schedule, 83 )
home-and-away, 83 tail of arc, 7
Schur function, 151 task, 167
score, 160 duration, 170
self-centered, 46, 55 in(.jependent, 167
separating cut, 187, 192 terminus of arc, 7
server, 217 tournament, 4, 83-84, 157, 159-163
shortest path, 23-29 competition, 83-84, 159, 160
Sidon sequence, 133 irreducible, 160, 162
length, 133 oriented graph, 157, 159-163
size, 135 reducible, 160
sink, 155, 156, 181, 200 regular, 161
multiple, 184 round robin, 83, 160
size, 136 strongly connected, 160-162
slack, 170, 172 transitive, 160, 162
small-world graph, 217, 224 transportation network, 181-204
source, 155, 156, 181, 200 Traveling Salesman Problem, 39-42,
multiple, 184 212-215
spanning subgraph, 77 nearest neighbor algorithm, 40
spanning tree, 55-64, 72-76, 211 Traveling Salesman problem
depth-first, 211 sorted edges algorithm, 40
minimal, 60-64, 213 tree, 21, 53, 54, 64, 72-76, 82, 211, 213
spectrum, 104 proper, 21
square spanning, 55-64, 72-76
of graph, 22, 49 tree graph, 59

star, 10, 13, 45, 53, 82 Tutte’s Theorem, 85-90
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underlying graph of digraph, 7
union of graphs, 11
universal sequence, 165

valency, 13-18

value of flow, 182

variance, 176

vector space, 65-76

verifiability, 214

vertex, 2, 6, 117, 155
eccentricity, 46, 55
even, 30
incidence, 8
interior, 183
internal, 46
isolated, 13
major, 108, 110
minor, 108
odd, 30

Printed in the United States of America

pendant, 13

terminal, 183

weight, 25, 170
vertex coloring, 93-104
vertex-critical, 95, 96, 99
Vizing’s Adjacency Lemma, 110
Vizing’s Theorem, 105-106

walk, 10, 19-42, 44, 55
closed, 19
directed, 155
Euler, 29-34
length, 19
weight, 25
weight, 25, 60, 217
vertex, 25
well-spread sequence, 133
wheel, 13
Whitney’s Theorem, 49
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