
Chapter 8

Higher Values of the
Applied Field

The previous chapter dealt with minimizers of the Ginzburg–Landau
functional when the applied field was O(| log ε|). The applied field be-
having asymptotically like λ| log ε|, letting λ → ∞ in Theorem 7.2 in-
dicates that for energy-minimizers for applied fields hex � | log ε|, we
must have μ(uε,Aε)

hex
→ 1, and hε

hex
→ 1. But in this regime, Gε(uε,Aε)

hex
2 → 0

and the arguments of Chapter 7 do not give, even formally, the leading
order term of the minimal energy. Moreover, the tools which were at the
heart of the result, namely the vortex balls construction of Theorem 4.1
and the Jacobian estimate of Theorem 6.1 break down for higher values
of hex.

On the other hand, we recall from Chapter 2 the prediction by
Abrikosov that the transition from the mixed state, which we may as well
call the vortex state, to the normal state, should occur for hex ≈ 1/ε2, i.e.,
much higher fields. We will show in this chapter how our techniques still
allow us to find the minimum of the energy for applied fields satisfying
| log ε| 	 hex 	 1/ε2: in the scaling of Chapter 7 what we determine here
is the first nonzero lower-order correction term. We find that minimizers
have a uniform limiting density in the whole domain Ω, in agreement
with Abrikosov lattices. In fact, the test-configurations we use below to
obtain the upper bound on the minimal energy are constructed to be
periodic.

Theorem 8.1. Assume, as ε → 0, that | log ε| 	 hex 	 1/ε2. Then, let-
ting (uε, Aε) minimize Gε, and letting gε(u, A) denote the energy-density
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1
2

(|∇Au|2 + |h − hex|2 + 1
2ε2 (1 − |u|2)2), we have

2gε(uε, Aε)
hex log 1

ε
√

hex

⇀ dx as ε → 0 (8.1)

in the weak sense of measures, where dx denotes the 2-dimensional Le-
besgue measure, and

min
(u,A)∈H1×H1

Gε(u, A) ∼ |Ω|
2

hex log
1

ε
√

hex
as ε → 0, (8.2)

where |Ω| is the area of Ω.

Since in this regime hex log 1
ε
√

hex
	 hex

2, we deduce as an immediate
corollary:

Corollary 8.1. Assume that, as ε → 0, | log ε| 	 hex 	 1/ε2 and
(uε, Aε) minimize Gε, letting hε = curlAε and μ(uε, Aε) =
curl(iuε,∇Aεuε) + hε, we have

hε

hex
→ 1 in H1(Ω)

μ(uε, Aε)
hex

→ dx in H−1(Ω).

Proof. Since (uε, Aε) minimizes Gε, it is a solution of (GL) and thus,
using Lemma 3.3, we find

‖hε − hex‖2
H1(Ω) ≤ 2Gε(uε, Aε) 	 hex

2

hence hε/hex → 1 in H1(Ω). Since we have the relation −Δhε + hε =
μ(uε, Aε) obtained by taking the curl of the second Ginzburg–Landau
equation, the convergence of μ(uε, Aε)/hex follows.

The theorem is a direct consequence of Propositions 8.1 and 8.2 be-
low, but let us briefly explain what problem occurs for high fields and
how it is overcome. If hex is too high, say hex � 1/ε, then a minimizer
of Gε is expected to have a number of vortices n of the order of hex and
then the perimeter of the set where |u| < 1/2 should be of the order
nε � 1. This means that we can no longer hope that the a priori bound
on the energy satisfied by a minimizer excludes, say, a line where |u| = 0.
As we mentioned, the downside is that the vortex balls construction and
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the Jacobian estimate, which are based on covering the set {|u| = 0} by
small balls, will not work anymore.

On the other hand, for such large fields, the problem of minimizing
Gε reduces to that of minimizing it on any subdomain, in other words
the minimization problem becomes local. Thus we may perform blow-
ups which yield the right lower bound. The effect of the blow-ups will be
precisely to effectively reduce hex and allow our techniques to be applied
on the smaller scale. On the other hand, that the upper bound that we
need will demand a more rigid construction of a good test-configuration
than in Proposition 7.4.

The rescaling formula is:

Lemma 8.1. Given (u, A) and Ω, assuming 0 ∈ Ω, define uλ, Aλ and
Ωλ by

uλ(λx) = u(x), λAλ(λx) = A(x), Ωλ = λΩ. (8.3)

Then, for any hex, we have Gε(u, A, Ω) = Gλ
ε (uλ, Aλ, Ωλ), where

Gλ
ε (uλ, Aλ, Ωλ) =

1
2

∫
Ωλ

|∇Aλ
uλ|2 + λ2

(
curlAλ − hex

λ2

)2

+

(
1 − |uλ|2

)2
2(λε)2

. (8.4)

The proof is straightforward and we omit it.

8.1 Upper Bound

Proposition 8.1. Assume, as ε → 0, that 1 	 hex 	 1/ε2. Then for
any ε small enough

min
(u,A)∈H1×H1

Gε(u, A, Ω) ≤ hex
|Ω|
2

(
log

1
ε
√

hex
+ C

)
. (8.5)

Proof. The proof is done by constructing a test configuration (uε, Aε)
which is periodic, in the sense that gauge-invariant quantities are peri-
odic. Let

λ =

√
hex

2π
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and let Lε = λZ × λZ. We let hε be the solution in R
2 of

−Δhε + hε = 2π
∑
a∈Lε

δa. (8.6)

It is thus periodic with respect to Lε.
Then we define ρε by

ρε(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if |x − a| ≤ ε for some a ∈ Lε,

|x − a|
ε

− 1 if ε < |x − a| < 2ε for some a ∈ Lε,

1 otherwise.

(8.7)

Finally, as in the proof of Proposition 7.3, we define Aε to solve curl Aε =
hε and ϕε, well defined modulo 2π, to solve −∇⊥hε = ∇ϕε−Aε in R

2\Lε.
Then we let uε = ρεe

iϕε .
By construction, every gauge-invariant quantity is periodic with re-

spect to the lattice Lε, thus if we choose the origin carefully, the energy
Gε(uε, Aε) will be estimated by computing the energy per unit cell. In-
deed, let

Kε =
(
− 1

2λ
,

1
2λ

)
×
(
− 1

2λ
,

1
2λ

)
be the unit cell of Lε. For each x ∈ Kε we may define a translated lattice
Lx

ε , and a corresponding test configuration (ux
ε , Ax

ε ), with energy density
glxε (y) = glε(y − x). Then, applying Fubini’s theorem, we have∫

x∈Kε

Gε (ux
ε , Ax

ε , Ω) dx =
∫∫

x∈Kε
y∈Ω

glxε (y) dx dy = |Ω|Gε(uε, Aε, Kε),

since glε is periodic with respect to the lattice Lε. It follows, using the
mean value formula, that we may choose x such that

Gε (ux
ε , Ax

ε , Ω) ≤ |Ω|
|Kε|Gε(uε, Aε, Kε). (8.8)

We estimate Gε(uε, Aε, Kε), arguing as in Proposition 7.3: we have
|∇Aεuε|2 = |∇ρε|2 +ρε

2|∇ϕε −Aε|2 and ρε
2|∇ϕε −Aε|2 ≥ |∇hε|2. More-

over, writing Br for B(0, r) and using (8.7)

1
2

∫
B2ε

|∇ρε|2 +
1

2ε2

(
1 − ρε

2
)2 ≤ C.
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We deduce that

Gε(uε, Aε, Kε) ≤ 1
2

∫
Kε\Bε

|∇hε|2 +
1
2

∫
Kε

(hε − hex)2 dx + C. (8.9)

To estimate the right-hand side, we perform a change of variables
y = λx. Then∫

Kε\Bε

|∇hε|2 +
∫
Kε

(hε − hex)2 dx =
∫

K\Bλε

|∇h̃ε|2 +
2π

hex

∫
K

h̃2
ε dy (8.10)

where h̃ε(y) = hε(x)−hex and K = (−1
2 , 1

2)×(−1
2 , 1

2). Now we decompose
h̃ε − hex as

h̃ε(y) = gε(y) − log |y|, (8.11)

and we show that gε is bounded in W 1,q(K) independently of ε for any
q > 0.

First, by periodicity, the integral of hε in Kε is 2π, thus the integral
of h̃ε in K is 2πλ2 − hex = 0. Therefore gε and log | · | have the same
mean value in K, and that value does not depend on ε. We deduce from
Poincaré’s inequality that

‖gε‖2
L2(K) ≤ C

(
1 + ‖∇gε‖2

L2(K)

)
. (8.12)

Second note that hε, which is the solution to (8.6), is also the solution of
−Δhε+hε = 2πδ0 in Kε and ∂νhε = 0 on ∂Kε. Indeed, the problem (8.6)
is symmetric with respect to each line containing a side of the square Kε,
hence hε is equal to its symmetrized and ∂νhε = 0 on ∂Kε. Therefore
gε(y) = hε(y/λ) − hex + log |y| solves{

−Δgε + λ−2 (gε + hex − log) = 0 in K,
∂νgε = ∂ν log on ∂K.

Multiplying the equation by gε and integrating by parts in K yields∫
K

|∇gε|2 +
1
λ2

(
g2
ε + gεhex − gε log

)
=
∫

∂K

gε∂νgε.
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We deduce, replacing λ by its value and using the facts that ∂νgε = ∂ν log
on ∂K and that the average of gε on K does not depend on ε,

‖∇gε‖2
L2(K) ≤ C

(
1 + hex

−1‖gε‖2
L2(K) + ‖gε‖L2(∂K)

)
. (8.13)

Since 1 	 hex, if ε is small enough, then hex is large enough so that using
(8.12) and bounding the L2 norm of the trace of gε by the H1 norm,
the terms in the right-hand side of (8.13) are absorbed by ‖∇gε‖2

L2(K)

yielding ‖gε‖H1(K) ≤ C. We deduce that gε is bounded independently of
ε in Lq(K) for every q > 0 and then, using the equation satisfied by gε,
that for every q > 0

‖∇gε‖2
W 1,q(K) ≤ C.

Together with (8.11), this implies that∫
K\Bλε

|∇h̃ε|2 ≤ C +
∫

K\Bλε

|∇ log |2 ≤ C + 2π log
1
λε

,

and also 2π
hex

∫
K h̃2

ε ≤ C. Together with (8.8), (8.9), and (8.10), this yields,
since |Kε| = λ−2 = 2π/hex,

Gε (ux
ε , Ax

ε , Ω) ≤ |Ω|
|Kε|

(
π log

1
λε

+ C

)
≤ |Ω|

2
hex

(
log

1√
hexε

+ C

)
.

8.2 Lower Bound

We now wish to compute a lower bound for Gε(u, A) which matches the
upper bound of the previous section. In the course of the proof we will
see clearly that if (u, A) minimizes Gε, then its energy is accounted for
by the vortex-energy.

In what follows we denote Bx
λ = B(x, λ−1) and we will often omit

the subscript ε, where x is the center of the blow-up.

Proposition 8.2. Assume | log ε| 	 hex 	 1/ε2 and (uε, Aε) minimizes
Gε. Then there exists 1 	 λ 	 1

ε such that for every x ∈ Ω such that
Bx

λ ⊂ Ω, we have

Gε(uε, Aε, B
x
λ) ≥ |Bx

λ|
2

hex log
1

ε
√

hex
(1 − o(1)) . (8.14)
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Proof. As already mentioned, the proof is achieved by blowing up at the
scale λ.

Define uλ and Aλ as in (8.3), but taking the origin at x. From
Lemma 8.1, (8.4), again with the origin at x, and dropping the ε sub-
scripts, the left-hand side of (8.14) is equal to

1
2

∫
B1

|∇Aλ
uλ|2 + λ2

(
curlAλ − hex

λ2

)2

+

(
1 − |uλ|2

)2
2(λε)2

thus, letting u′ = uλ, A′ = Aλ, ε′ = λε and hex
′ = hex/λ2, the inequality

(8.14) that we wish to prove is equivalent to

1
2

∫
B1

|∇A′u′|2 + λ2
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2

≥ |B1|
2

hex
′ log

1
ε
√

hex
(1 − o(1)) . (8.15)

Now we choose λ such that

hex
′ = | log ε′|. (8.16)

Let us check that this is possible and give the behavior of λ as ε → 0. Con-
dition (8.16) is equivalent to ε2hex = f(ελ), where f(x) = x2 log(1/x).
Since ε2hex → 0 as ε → 0, it is easy to check that for ε small enough,
there is a unique xε ∈ (0, 1/2) satisfying f(xε) = ε2hex. Moreover from
| log ε| 	 hex 	 1/ε2 we deduce ε 	 xε 	 1. Therefore (8.16) can indeed
be verified, and the corresponding λ, ε′ satisfy

1 	 λ 	 1
ε
, ε′ 	 1, log

1
ε
√

hex
≈ | log ε′|,

the last identity being deduced from ε2hex = f(ελ) = f(ε′) by taking
logarithms. Thus with this choice of λ, (8.15) becomes

1
2

∫
B1

|∇A′u′|2 + λ2
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2

≥ |B1|
2

hex
′| log ε′| (1 − o(1)) . (8.17)
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Two cases may now occur, depending on the blow-up origin x. Either

1
2

∫
B1

|∇A′u′|2 + λ2
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2
� hex

′2

as ε → 0 and then, from (8.16), (8.17) is clearly satisfied, or

1
2

∫
B1

|∇A′u′|2 + λ2
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2
≤ Chex

′2.

This way, we have reduced to the case of configurations with a relatively
small energy, for which all the analysis of previous chapters apply.

In this case, since λ � 1 we find

curlA′ − hex
′

hex
′ → 0, in L2(B1). (8.18)

On the other hand, replacing ε by ε′ and hex by hex
′, the hypotheses of

Theorem 7.1, item 1) are satisfied and we deduce from (7.6), (7.8) that

lim inf
ε′→0

1

2hex
′2

∫
B1

|∇A′u′|2 +
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2
≥ ‖μ′‖

2
,

where μ′ = −Δh′ + h′ and h′ is the limit of curlA′/hex
′. From (8.18) we

have μ′ = 1, hence

lim inf
ε′→0

1

2hex
′2

∫
B1

|∇A′u′|2 +
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2
≥ π

2
,

and (8.17) is satisfied since for our choice of λ

π

2
hex

′2 =
|B1|
2

hex
′ log

1
ε′

.

We have shown for our particular choice of λ that (8.17), hence (8.15)
and then (8.14) are satisfied for every choice of blow-up origin x.
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To conclude the proof of Theorem 8.1, we integrate (8.14) with respect
to x. Letting U be any open subdomain of Ω, using Fubini’s theorem,
we have∫

x∈U

Gε(u, A, Bx
λ ∩ U) =

∫∫
x∈U

y∈Bx
λ∩U

gε(u, A)(y) dy dx

=
∫∫
x∈U

y∈Bx
λ∩U

gε(u, A)(y) dx dy

=
∫

y∈U

|By
λ ∩ U |gε(u, A)(y) dy ≤ π

λ2
Gε(u, A, U).

We deduce that

lim inf
ε→0

Gε(u, A, U)
hex log 1

ε
√

hex

≥ lim inf
ε→0

∫
x∈U

λ2Gε(u, A, Bx
λ ∩ U)

πhex log 1
ε
√

hex

≥ lim inf
ε→0

∫
x∈U,Bx

λ⊂U

λ2Gε(u, A, Bx
λ ∩ U)

πhex log 1
ε
√

hex

≥
∫

x∈U

lim inf
ε→0

(
1Bx

λ⊂U
Gε(u, A, Bx

λ)
hex|Bx

λ| log 1
ε
√

hex

)

≥ |U |
2

, (8.19)

where we have used Fatou’s lemma and (8.14). In view of Proposition 8.1,

we know that
(
hex log 1

ε
√

hex

)−1
gε(uε, Aε) is bounded in L1(Ω), hence has

a weak limit g in the sense of measures. Since continuous functions on Ω
can be uniformly approximated by characteristic functions, (8.19) allows
to say that g ≥ dx

2 . But since (8.5) holds, there must be equality, which
proves (8.1), and (8.2) immediately follows.

Bibliographic notes on Chapter 8: The result of this chapter was
obtained in [170], but the proof is presented here under a much simpler
form. The case of higher hex, of order b/ε2 with b < 1, was studied in
[172].




