
Chapter 14

A Guide to the Literature

Our goal here is to give a brief overview of results on Ginzburg–Landau,
and point towards suitable references (in thematic, rather than chrono-
logical or hierarchical order). We apologize for not being able to be com-
pletely exhaustive.

There have been a few review-type papers on Ginzburg–Landau that
one can also refer to, notably [40, 155, 85, 68].

14.1 Ginzburg–Landau without Magnetic Field

14.1.1 Static Dimension 2 Case in a Simply Connected
Domain

The first studies of that model, i.e., of the functional

Eε(u) =
1
2

∫
Ω

|∇u|2 +
(1 − |u|2)2

2ε2

and its critical points, seem to date back to Elliott–Matano–Tang Qi [92]
who proved that energy-minimizers have isolated zeroes, and to Fife and
Peletier [96], who gave a formal justification of the “vanishing gradient
property” for solutions.

The energy Eε was then studied in details by Bethuel–Brezis–Hélein,
in [42] for the case without vortices and in [43] for the case with vortices,
both times with a fixed Dirichlet boundary data g of modulus one. They
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derived the “renormalized energy” (or the Γ-limit) of the problem:

W ((a1, d1), . . . , (an, dn)) = −π
∑
i	=j

didj log |ai − aj |

− π
∑

i

diR(ai) +
1
2

∫
∂Ω

Φ0

(
ig,

∂g

∂τ

)
.

where Φ0 is the solution with zero average on the boundary of⎧⎪⎪⎨⎪⎪⎩
ΔΦ0 = 2π

∑
i

diδai in Ω

∂Φ0

∂ν
= (ig,

∂g

∂τ
) on ∂Ω

and R(x) = Φ0(x) − ∑
i di log |x − ai|. Convergence of minimizers and

critical points under the assumption Eε(uε) ≤ C| log ε|, and of their
vortices, was established, with the derivation of the renormalized energy
and of the “vanishing gradient property” presented here in Chapter 13.
We sum up some of their results below:

Theorem 14.1. (Bethuel–Brezis–Hélein [43]). Let Ω be a strictly star-
shaped simply connected domain of R

2 and g : ∂Ω → S
1 a smooth map

of degree d > 0.
If uε minimizes Eε among maps with values g on ∂Ω. Then, as ε → 0,

up to extraction of a subsequence, there exist d distinct points a1, . . . , ad ∈
Ω such that uε → u∗ in Ck

loc(Ω\ ∪i {ai}) where

1. u∗ is an S
1-valued harmonic map from Ω\{a1, . . . , ad} to S

1 with
u∗ = g on ∂Ω and with degree di = 1 around each ai.

2. (a1, . . . , ad) is a minimizer of the renormalized energy W with di =
1.

3. Eε(uε) ≥ πd| log ε| + W (a1, . . . , ad) + dγ + o(1).

If uε is a sequence of solutions with uε = g on ∂Ω and Eε(uε) ≤ C| log ε|,
then, as ε → 0 and up to extraction of a subsequence, there exist distinct
points a1, . . . , an ∈ Ω, and degrees d1, . . . , dn with

∑n
i=1 di = d, such

that uε → u∗ in Ck
loc(Ω\ ∪i {ai}) where u∗ is a harmonic map from

Ω\{a1, . . . , an} to S
1 with u∗ = g on ∂Ω and with degree di around each

ai. Moreover ((a1, d1), . . . , (an, dn)) is a critical point of W (the di’s being
fixed) and satisfies the “vanishing gradient property.”
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Their starshapedness assumption on the domain was removed and
replaced for minimizers by simple-connectedness by Struwe [189].

A large literature followed, which we review in thematic rather than
chronological order. Note that all the results we mention below in this
section without magnetic field are under the assumption that Eε(uε) ≤
C| log ε|, i.e., concern bounded (as ε → 0) numbers of vortices, and that
this is one of the main limitations to adapting them to the case with
magnetic field.

14.1.2 Vortex Solutions in the Plane

The existence of radial vortex solutions in the plane, i.e., solutions of the
form fn(r)einθ in polar coordinates, where fn satisfies a certain ODE,
was established by Hervé and Hervé [111] via the study of the ODE
(note that these solutions have infinite energy for n �= 0). As we saw in
Theorem 3.2, it was established by Mironescu [142] that the only solution
of degree ±1 at infinity is the radial one (up to translation). For general
solutions in the plane, the quantization result

∫
Ω(1−|u|2)2 = 2πd2 where

d is the total degree, was established by Brezis–Merle–Rivière [61], see
Theorem 3.4; other qualitative results were obtained by Sandier and
Shafrir [165, 186].

It is not yet fully known whether there can exist nonradial vortex
solutions in the plane. These solutions would have a finite number of
vortices of degree di which would have to satisfy the relation (related to
the result of [61] and the Pohozaev identity)∑

i

d2
i = (

∑
i

di)2.

Ovchinnikov and Sigal conjectured the existence of such solutions (having
some rotational symmetry) and gave heuristic arguments to support this
statement in [147] (see also Open Problem 4 in Chapter 15).

14.1.3 Other Boundary Conditions

More general Dirichlet data (of modulus not equal to one and even pos-
sibly vanishing) were studied by André–Shafrir [26]. Neumann boundary
conditions were also considered, see for example Spirn [188] for a deriva-
tion of the renormalized energy in that case.
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14.1.4 Weighted Versions

Versions of the energy with different potential terms, or weighted ver-
sions, meant to include possible pinning effects, such as

1
2

∫
Ω

|∇u|2 +
(a(x) − |u|)2

2ε2

or
1
2

∫
Ω

p(x)|∇u|2 +
(1 − |u|2)2

2ε2

were studied by André–Shafrir [25], Hadiji–Beaulieu [33, 34], Du–Lin
[86].

14.1.5 Construction of Solutions

Once the main result of [43] is known, namely that critical points/mini-
mizers of Eε have vortices which converge to critical points/minimizers of
the renormalized energy, it is natural to examine the interesting inverse
problem: given a critical point of the renormalized energy, can one find
sequences of solutions of (1.3) whose vortices converge as εn → 0 to these
points? This has been solved under the restriction that vortices all be of
degree ±1; first for the case of local minimizers and min-max solutions
by Lin [128] then more completely in the book by Pacard and Rivière
[148] by a method of local inversion in weighted Hölder spaces, which
also allowed them to establish a very nice uniqueness result, i.e., a one-
to-one correspondance between solutions on the one hand, and critical
points of the renormalized energy on the other hand, at least under this
d = ±1 degree assumption. Another proof (via local inversion methods),
which lifts the assumption of nondegeneracy of the renormalized energy,
was recently given by Del Pino–Kowalczyk–Musso [82].

In the case of zero degree (or no vortices), a uniqueness result had
been previously established by Ye and Zhou in [196].

Other unstable solutions were obtained by Almeida–Bethuel through
topological methods [14].

14.1.6 Fine Behavior of the Solutions

The location and rate of convergence of the zeroes of solutions to the
limiting vortices, was established by Comte–Mironescu [78] (results also
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follow from the study done in [148]). Also, the precise asymptotic ex-
pansion of the energy of (nonminimizing) solutions was established by
Comte–Mironescu in [77, 79], through a minimality property of the so-
lutions outside of their zero-set established in [79].

One may also mention a result of Bauman–Carlsson–Phillips [30]
who proved that minimizing solutions with specific boundary data have
a single zero.

14.1.7 Stability of the Solutions

In the case with Neumann boundary conditions, conditions on Ω for
existence/nonexistence of nontrivial stable solutions (i.e., solutions with
vortices) were given in [122, 123].

It was established in [183] that stable (resp. unstable) solutions of
(1.3) have vortices which converge as ε → 0 to stable (resp. unstable)
critical points of the renormalized energy. A corollary of this result is
that, for ε small enough, there does not exist a stable solution with vor-
tices of (1.3) with Neumann boundary condition (in a simply connected
domain), i.e., (1.3) with Neumann boundary condition cannot stabilize
vortices. This had already been established but under the assumption
that Ω is convex, and for every ε, by Jimbo and Sternberg in [125].

14.1.8 Jacobian Estimates

We saw in Chapter 6 that a crucial tool in the analysis of Ginzburg–Lan-
dau is the closeness between the Jacobian determinant μ = curl(iu,∇u)
and vortex densities 2π

∑
i diδai measured in terms of the Ginzburg–Lan-

dau energy (see again Chapter 6 and [119]). A recent result of Jerrard
and Spirn [120] gives improved estimates showing that the Jacobian can
be made very close to some vortex density (where the vortices found this
way are no longer the same ones as those given by the ball-construction
method).

14.1.9 Dynamics

Heat-flow

Under the heat-flow for 2D Ginzburg–Landau, the limiting dynamical
law of vortices, which is the gradient-flow of the renormalized energy
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(up to collision time)

dai

dt
= − 1

π
∇iW (a1, . . . , an)

was proved, under a well-prepared data assumption, by Lin [129] and
Jerrard–Soner [117], after slow motion had been observed by Rubinstein–
Sternberg [161]. This result was retrieved through a more Γ-convergence
or energy-based method in [174]. After the work of Bauman–Chen–
Phillips–Sternberg [31], a few recent papers, by Bethuel–Orlandi–Smets
[47, 48, 49] and by Serfaty [184], have extended the dynamical law passed
collision and splitting times.

Schrödinger flow

This is also called the Gross–Pitaevskii equation, and is considered in su-
perfluids, nonlinear optics and Bose–Einstein condensation. The limiting
dynamical law of vortices

dai

dt
= − 1

π
∇⊥

i W (a1, . . . , an)

was established, still with well-prepared assumptions, by Colliander–Jer-
rard in [76] on a torus, and by Lin–Xin [134] in the whole plane. A recent
result of Jerrard and Spirn [121] derives the same dynamical law for ε
small but nonzero.

In the whole plane again, Bethuel and Saut [53] established the exis-
tence of some travelling wave solutions with vortices, as conjectured in
the physics literature on the Gross–Pitaevskii equation, while Gravejat
[104] proved the nonexistence of such solutions at supersonic speed.

Wave flow

In the case of the wave flow, the analogous limiting dynamical law was
established by Lin in [130] and Jerrard in [114].

14.2 Higher Dimensions

14.2.1 Γ-Convergence Approach

In dimension 3, vortices become vortex-lines and in higher dimension,
they become codimension 2 objects. The right way to capture them is to
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consider the analogue of the vorticity measure considered in this book
(see Chapter 6.1), which is then a current, the Jacobian determinant of
the function u. A result analogous to what is stated here in Theorem 6.1
was established by Jerrard–Soner in [119]. It served to prove similarly
that these higher-dimensional vorticity-currents or weak Jacobians, Ju =
d(iu, du), are compact in the same weak norm, and that

lim inf
ε→0

Eε(uε)
| log ε| ≥ 1

2
‖J‖

where ‖J‖ is the total mass of the (rectifiable and integer-multiplicity)
limiting Jacobian J ; in other words, the Ginzburg–Landau functional is
bounded below by | log ε| times half the mass of the limiting Jacobian,
which is the mass (length, surface) of the limiting vortex lines or sur-
faces. A full Γ-convergence result (i.e., including the corresponding upper
bound) was then established by Alberti–Baldo–Orlandi [12]. Some im-
provement of the lower bound, named “product-estimate”, also used to
estimate vortex velocities for vortex-dynamics, was established in [173].

14.2.2 Minimizers and Critical Points Approach

Even before the Γ-convergence approach, it was established that vortex-
lines (in dimension 3 or higher) of minimizers should converge to mini-
mal lines (or minimal connections): see Rivière [154], Sandier [167], Lin–
Rivière [131]. It was also established that for critical points, they converge
to stationary varifolds, see Lin–Rivière [132] and Bethuel–Brezis–Orlandi
[44].

The case of the most general boundary data in 3D, i.e., boundary
data in H

1
2 was examined in Bourgain–Brezis–Mironescu [57], in link

with results on lifting of S
1-valued maps in Sobolev spaces.

14.2.3 Inverse Problems

The inverse problem: given a curve which minimizes or is a critical point
of length, construct solutions whose vortices converge to that curve,
is beginning to be investigated. Montero–Sternberg–Ziemer [140] have
proved that there exists such a locally minimizing solution (with Neu-
mann boundary condition) if one starts from a straight line which is a
local minimizer of length with endpoints on the boundary of the do-
main (hence the domain should be nonconvex), it was generalized to the



290 Chapter 14. A Guide to the Literature

case with magnetic field by Jerrard–Montero–Sternberg in [116]. By local
inversion or Lyapounov–Schmidt type methods, Felmer–Kowalczyk–Del
Pino [95] have established the existence of a critical point if one starts
from a straight line whose endpoints are on the boundary, which is only
a critical point of the length.

14.2.4 Dynamics

In dimension ≥ 3, the vortex-set of solutions of the Ginzburg–Landau
heat-flow converges to a solution of mean curvature flow in the sense of
Brakke (as for solutions to the Allen–Cahn equation). The first result in
that direction was obtained in Lin–Rivière [133], and then a full proof
was given by Bethuel–Orlandi–Smets [46].

As concerns the Schrödinger or Gross–Pitaevskii flow, of particular
interest is the motion of a closed vortex loop. Such loops are expected to
flow under binormal flow in the ε → 0 limit of Gross–Pitaevskii. Results
in that direction (but complete results only for the case of a travelling
vortex circle) were obtained by Jerrard [115] and Bethuel–Orlandi–Smets
[45]. Also, Chiron constructed travelling wave solutions, in particular
helix-shaped ones [73, 74].

14.3 Ginzburg–Landau with Magnetic Field

14.3.1 Dependence on κ

As we saw in the phase diagram in Chapter 2, the qualitative behavior
of the Ginzburg–Landau energy depends crucially on κ, the “Ginzburg–
Landau parameter” which is a material constant.

The situation is most of the time divided into two cases: κ < 1√
2

corresponding to type-I superconductivity, and κ > 1√
2

corresponding

to type-II superconductivity. The limiting situation κ = 1√
2

is called
the self-dual case. In that famous case, as observed by Bogomoln’yi,
the functional can be rewritten into a sum of squares which can all be
made equal to zero, and the Ginzburg–Landau equations decouple into
a system of first order self-dual equations. For more on that case, refer
to the book of Jaffe and Taubes [112].

The type of the superconductor is crucial for the behavior of vor-
tices. Roughly speaking, when κ < 1√

2
, vortices (of same degree) would
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attract each other, hence they are not really observed but rather one ob-
serves interfaces (one-dimensional interfaces in 2D) between regions of
superconducting phase |u| � 1 and regions of normal phase |u| � 0 (see
for example [75] and references therein). In the self-dual case κ = 1√

2
,

vortices do not interact and it was shown by Jaffe and Taubes in [112]
that solutions with arbitrarily located vortices could be observed.

Then, for κ > 1√
2

vortices of opposite sign attract and vortices of
same sign repel, this is the regime where vortices and lattices of vortices
are observed, as seen in this book. In this regime and in the context of the
Yang–Mills–Higgs model on all R

2, Rivière [156] showed that the unique
(up to gauge-equivalence and reflection) minimizer is radially symmetric
and of degree one.

However, the above classification is not completely accurate because
it neglects size effects. The described classification with separation at the
self-dual point κ = 1√

2
corresponds rather to the situation for the whole

plane (as in Abrikosov’s study [1]) or large samples. In small samples,
the scaling is such that the same behavior as for type-II superconduc-
tors (i.e., vortices) can be observed in superconductors with κ < 1√

2
,

see for example Akkermans–Mallick [8] (and Schweigert–Peeters–Singha
Deo [180] for corresponding numerical and experimental results) where
branches of vortex-solutions such as in Chapter 11.1 are described. An-
other example of small size sample effect is described by Aftalion and
Dancer in [3].

For a global picture, one may also refer to the paper by Aftalion and
Du [4] which reviews the different regimes as a function of the parame-
ters.

14.3.2 Vortex Solutions in the Plane

As we saw in Chapter 2, Section 2.5.1, the existence of the n-vortex,
that is a finite-energy radial solution of the full Ginzburg–Landau equa-
tions (2.4) in R

2, whose only zero is at the origin and of degree n, was
first proved by Plohr [151, 152] and Berger–Chen [35]. Later on, their
uniqueness (among radial solutions) was proved by Alama–Bronsard–
Giorgi [10]. The stability of these vortex-solutions is crucially related to
the type of the superconductor, as expected from the previous subsection.
It was conjectured by Jaffe and Taubes and proved by Gustafson–Sigal
[106] that
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— for |n| ≤ 1 the n-vortex is always stable
— for |n| ≥ 2 the n-vortex is stable if κ < 1√

2
and unstable if κ > 1√

2
.

The instability result had been previously established by Almeida–Beth-
uel–Guo [41] in the case of large enough κ. The stability of the degree
1 radial solution had also been established by Mironescu [141] (without
magnetic field).

One can also search for possibly nonradial solutions in the plane,
classifying them according to their homotopy class n, the homotopy class
of a configuration being its topological degree at infinity, or its total
degree. Jaffe and Taubes conjectured in [112] that for κ > 1√

2
, if |n| > 1

there are no finite action stable critical points in the n-homotopy class,
and that for n = 0,±1 the only stable critical point is the radial n-
vortex solution described above. Rivière proved in [155] part of this in
the strongly repulsive case of κ � 1. More precisely, he showed that for
κ large enough, there is an energy-minimizer in the n-homotopy class if
and only if n = 0,±1, and that in that case it is the radial solution.

14.3.3 Static Two-Dimensional Model

Here we will restrict ourselves to the study of type-II superconductivity
(κ > 1√

2
) and in particular, the London limit κ → +∞. There is abun-

dant mathematical literature on 1-D solutions to the Ginzburg–Landau
equations with studies of bifurcations, critical fields and asymptotics; we
will not go into much detail, but refer to the works of Bolley–Helffer (for
example [54]) and Aftalion–Troy [6].

Bethuel–Rivière [52] were the first to study vortices for the full Ginz-
burg–Landau model with magnetic-field, but with a Dirichlet type bound-
ary condition (leading to a type of analysis similar to [43]). From now on,
we restrict our attention to the standard full Ginzburg–Landau equations
(GL), as studied in this book.

Critical fields and bifurcations

Here we will present the situation with decreasing applied fields.
Around Hc3: As we already mentioned, above a third critical field

Hc3 , the only solution is the (trivial) normal one u ≡ 0, h ≡ hex. Giorgi
and Phillips have proved in [102] that this is the case for hex ≥ Cκ2,
which implies the upper bound Hc3 ≤ Cκ2 for that constant C.
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At Hc3: Decreasing the applied field to Hc3 , a bifurcation from the
normal solution of a branch of solutions with surface superconductiv-
ity occurs. The linear analysis of this bifurcation was first performed
in the half-plane by De Gennes [80], then by Bauman–Phillips–Tang Qi
[32] in the case of a disc (they thus analyze what is known as the “giant
vortex” — a unique zero of u with very large degree); and for general do-
mains, formally by Chapman [67], Bernoff–Sternberg [39], then rigorously
by Lu and Pan [137], Del Pino–Felmer–Sternberg [81], Helffer–Morame
[109], Helffer–Pan [108], see improved results in Fournais–Helffer [97, 98].
The nucleation of surface superconductivity takes place near the point
of maximal curvature of the boundary, and the asymptotics for Hc3 is

Theorem 14.2.

Hc3 ∼
κ2

β0
+

C1

β
3/2
0

max(curv(∂Ω))κ,

where β0 is the smallest eigenvalue of a Schrödinger operator with mag-
netic field in the half-plane.

Between Hc2 and Hc3 : The behavior of energy minimizers for Hc2 ≤
hex ≤ Hc3 has been studied by Pan [149], who showed that, as known by
physicists, minimizers present surface superconductivity which spreads
to the whole boundary, with exponential decay of |u| from the boundary
of the domain. More qualitative results of this type were obtained by
Almog in [20, 17, 19].

Around Hc2: At Hc2 , one goes from surface superconductivity to bulk-
superconductivity. It was established by Pan [149] that

Hc2 = κ2.

Qualitative results on bulk-superconductivity below Hc2 were obtained
in [172], establishing, in particular, how bulk-superconductivity increases
(average) as hex is lowered immediately below Hc2 . Results of successive
bifurcations and of almost periodic behavior were obtained recently by
Almog [19, 21].

Regime log κ 	 hex 	 Hc2: In this situation, a uniform density of
vortices fills the domain, as presented in Chapter 8 (and first established
in [170]). This is where the Abrikosov lattice is expected.

Around Hc1: The value of Hc1 and the behavior of minimizers around
Hc1 were presented in details in this book, and previously established in
the references quoted in Chapters 7, 11, 12.
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Special solutions

Meissner solution:
The existence and stability of the Meissner solution (solution with-
out vortices) up to the “superheating field” was studied by Bonnet–
Chapman–Monneau [55], its uniqueness was also studied in [182]. The
superheating field is defined precisely as the value of the applied field for
which the Meissner solution loses its stability, and it is of order κ.
Vortex-solutions below the subcooling field:
The existence of branches of vortex-solutions was presented in Chapter
11. Previously, the existence of vortex-solutions for small applied fields
hex = O(1) had been established formally by Rubinstein [157, 158], and
rigorously by Du and Lin [86]. The “subcooling field” is defined as the
smallest applied field for which there exist stable vortex solutions. It is
thus of order of a constant.
Radial solutions:
The radial degree-d (or d-vortex) solutions in a disc were studied by
Sauvageot [177], for all values of κ. She established the existence and
critical field for existence of these branches of solutions, as well as their
stability and loss of stability through bifurcation of a branch of nonradial
degree-d solutions.

Periodic solutions

We already mentioned the study of vortex solutions in the plane. In ad-
dition, periodic solutions naturally arise for the Ginzburg–Landau sys-
tem, they are of critical importance to study the Abrikosov lattice. Since
Abrikosov’s original work [1], many periodic vortex solutions were ex-
hibited, in general as bifurcating from the normal solution, in particular
by Chapman [67] and Almog [16].

On the other hand, the study of the Ginzburg–Landau energy func-
tional over periodic configurations (i.e., on a torus) was carried out by
Dutour [89] and Aydi [28]. Dutour established a bifurcation diagram
and studied in particular the bifurcation from the normal solution at
Hc2 = Hc3 (in the periodic case, there are no boundary effects). Aydi
established that Hc1 = 1

2 log κ in the periodic setting, and studied the
vorticity of minimizers for that order of applied fields, like in Chapter
7. He also constructed particular solutions which have vortices which
concentrate on a finite number of lines.
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14.3.4 Dimension Reduction

Chapman–Du–Gunzburger [70] have derived the two-dimensional limit
of the 3D Ginzburg–Landau energy for thin films (when the thickness
goes to 0). The limiting energy is like the 3D one but where the magnetic
potential is prescribed, and the (possibly varying) thickness of the film
results in a pinning term in the 2D model, see also Chapman–Héron [71]
for a review of formal derivations. Jimbo and Morita [124] then proved
that if there exists a nondegenerate solution of the two-dimensional prob-
lem, then the original 3D problem also has a local minimizer nearby.

Ginzburg–Landau in thin superconducting loops was also considered
and Rubinstein and Schatzman (see [159] and references therein) derived
the corresponding 1D model, with interpretation of the Little–Parks ex-
periment. See also Rubinstein–Schatzman–Sternberg [160] for a model of
thin loops including constrictions in order to model the Josephson effect.

14.3.5 Models with Pinning Terms

Various models containing weights were studied to take into account
pinning effects: see Chapman–Héron [71] and the references therein,
Aftalion–Sandier–Serfaty [5], Du–Ding [83], André–Bauman–Phillips [24]
(who allowed zeroes of the pinning term). As mentioned just above, pin-
ning terms arise naturally as a result of thin-film limits of the 3D Ginz-
burg–Landau model, they also serve to model impurities in the material.
The analysis is also close to that done for the model without magnetic
field and described above in Section 14.1.4.

14.3.6 Higher Dimensions

The full Ginzburg–Landau model in higher dimensions has not been
studied as much as the two-dimensional one.

The main focus has been on the 3D analogue of the bifurcation study
around Hc3 , on surface superconductivity and the influence of the geom-
etry of the domain on its nucleation, see Pan [150], Almog [18], Helffer–
Morame [110].

We already mentioned the inverse-type existence result of Jerrard–
Montero–Sternberg [116]. More recently, Alama–Bronsard–Montero [11]
derived a candidate for the first critical field in a ball in the presence
of a uniform field, and constructed locally minimizing solutions with
vortices. In the regime Gε(uε, Aε) ≤ C| log ε|, one may mention the result
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of Liu [136], which gives a curvature condition on the limiting vortex-lines
of solutions, analogous to a result in Bethuel–Orlandi–Smets [45].

14.3.7 Dynamics

Here, again, the studies are quite similar in nature to the ones without
magnetic field. For specific magnetic field results, see Du–Lin [86] and
Spirn [187, 188] for the motion of a finite number of vortices in small
applied fields, and Sandier–Serfaty [174] in large applied fields.

14.3.8 Mean-Field Models

A mean-field model describing the dynamics of a large number of vor-
tices in the heat flow of Ginzburg–Landau was derived formally and
through heuristic arguments by Chapman–Rubinstein–Schatzman [72]
(see also similar work by E [90]). This model describes the evolution of
vortices through an evolution-problem for the density-measure. Several
mathematical papers were then interested in solving rigorously the evo-
lution problem: see Schätzle–Styles [179], Lin–Zhang [135], Du–Zhang
[87], Masmoudi–Zhang [139], Ambrosio–Serfaty [22].

The stationary case of the model is quite similar to the limiting con-
ditions we obtained (rigorously) in Theorem 13.1. This stationary prob-
lem, in particular the regularity of the free-boundary (boundary of the
support of the vorticity measure), was studied by Schätzle–Stoth [178],
Bonnet–Monneau [56], Caffarelli–Salazar–Shagholian [66]. A higher di-
mensional-dynamical model was also proposed by Chapman [69], and
later shown to be ill-posed by Richardson–Stoth [153].

14.4 Ginzburg–Landau in Nonsimply Connected Domains

In domain with holes, interesting phenomena of different qualitative na-
ture occur, and many open problems remain. Due to the nontrivial topol-
ogy, the order parameter can have a nonzero degree without vortices, in
other words there can be vorticity (and permanent currents) without
vortices.

For a review of such phenomena, we refer to the book edited by
Berger and Rubinstein [36] completely devoted to the subject.

Let us mention that in the case with magnetic field, the existence and
quantization of nontrivial solutions was studied by Rubinstein–Stern-
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berg [162] and Almeida [13] (see also [15]). Also, Berger and Rubinstein
[37] proved that in multiply-connected domains, the zero-set of the order
parameter u can be of codimension 1, contrarily to the property of iso-
lated zeroes for minimizers in simply-connected domains established by
Elliott–Matano–Tang Qi. For a discussion on the Aharonov–Bohm effect
see Helffer [107].

There is also some interesting dependence on the behavior of mini-
mizers on the precise geometry of the domain, in particular on the con-
formal type in case of an annulus: see the results (obtained in the case
without magnetic field) of Golovaty and Berlyand [103] (uniqueness of
minimizer) and Berlyand and Mironescu [38].

Alama and Bronsard [9] have started to investigate the behavior of
minimizers of the full energy Gε under an applied magnetic field, i.e., the
analogue of what is presented in this book but for nonsimply-connected
domains. They establish, in particular, the existence and value of the
first critical field for which vortices appear.




