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Preface

More than ten years have passed since the book of F. Bethuel, H. Brezis
and F. Hélein, which contributed largely to turning Ginzburg-Landau
equations from a renowned physics model into a large PDE research
field, with an ever-increasing number of papers and research directions
(the number of published mathematics papers on the subject is certainly
in the several hundreds, and that of physics papers in the thousands).

Having ourselves written a series of rather long and intricately in-
terdependent papers, and having taught several graduate courses and
mini-courses on the subject, we felt the need for a more unified and
self-contained presentation.

The opportunity came at the timely moment when Haim Brezis sug-
gested we should write this book. We would like to express our gratitude
towards him for this suggestion and for encouraging us all along the way.

As our writing progressed, we felt the need to simplify some proofs,
improve some results, as well as pursue questions that arose naturally but
that we had not previously addressed. We hope that we have achieved a
little bit of the original goal: to give a unified presentation of our work
with a mixture of both old and new results, and provide a source of
reference for researchers and students in the field.

We are also grateful to all the colleagues who over the years have
shared with us their knowledge and ideas on Ginzburg—Landau and
on related topics, in particular: Fabrice Bethuel, Haim Brezis, Frédéric
Hélein, Tristan Riviere, Fanghua Lin, Peter Sternberg, Jacob Rubinstein,
Bernard Helffer, Robert Jerrard, Mete Soner, Petru Mironescu, Robert
Kohn, Amandine Aftalion, Lia Bronsard, Stan Alama, Frank Pacard,
Raphaél Danchin, Stephen Gustafson, Daniel Spirn, Yaniv Almog, Luigi
Ambrosio, Itai Shafrir, Didier Smets, Sisto Baldo, Giandomenico Or-
landi, Patricia Bauman, and Dan Phillips.

This book would not have been possible without numerous visits to
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our respective institutions; we would thus like to thank the Courant
Institute and the University of Paris XII for their hospitality, and ac-
knowledge in particular support from Paris XII, the National Science
Foundation and the Sloan foundation.

Many thanks to the referees for their careful reading of the manuscript
and their useful suggestions. Thanks also to Amandine Aftalion, Ian Tice
and Nam Le for providing us with feedback on the early versions, and
to Suzan Toma for her technical assistance.

Etienne Sandier
Sylvia Serfaty
October 2006



Chapter 1

Introduction

This book is devoted to the mathematical study of the two-dimensional
Ginzburg-Landau model with magnetic field. This is a model of great im-
portance and recognition in physics (with several Nobel prizes awarded
for it: Landau, Ginzburg, and Abrikosov). It was introduced by Ginzburg
and Landau (see [101]) in the 1950s as a phenomenological model to de-
scribe superconductivity. Superconductivity was itself discovered in 1911
by Kammerling Ohnes. It consists in the complete loss of resistivity of
certain metals and alloys at very low temperatures. The two most strik-
ing consequences of it are the possibility of permanent superconducting
currents and the particular behavior that, when the material is submit-
ted to an external magnetic field, that field gets expelled from it. Aside
from explaining these phenomena, and through the very influential work
of A. Abrikosov [1], the Ginzburg-Landau model allows one to predict
the possibility of a mized state in type II superconductors where triangu-
lar vortex lattices appear. These vortices—in a few words a vortex can
be described as a quantized amount of vorticity of the superconducting
current localized near a point — have since been the objects of many ob-
servations and experiments. The first observation dates back from 1967,
by Essman and Trauble, see [93]. For pictures of lattice observations in
superconductors and more references to experimental results, refer to the
web page http://www.fys.uio.no/super/vortex/.

The Ginzburg-Landau theory has also been justified as a limit of the
Bardeen—Cooper—Schrieffer (BCS) quantum theory [29], which explains
superconductivity by the existence of “Cooper pairs” of superconducting
electrons.

In addition to its importance in the modelling of superconductivity,
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the Ginzburg-Landau model turns out to be the simplest case of a gauge
theory, and vortices to be the simplest case of topological solitons (for
these aspects see [138, 112, 194, 190] and the references therein); more-
over, it is mathematically extremely close to the Gross—Pitaevskii model
for superfluidity (see for example [191, 185]), and models for rotating
Bose—Einstein condensates (see [2]), in which quantized vortices are also
essential objects, and to which the Ginzburg—Landau techniques have
been successfully exported.

1.1 The Model

After a series of reductions, which are described in Chapter 2, the 2D
Ginzburg-Landau model leads to describing the state of the supercon-
ducting sample submitted to the external field heyx, below the critical
temperature, through its Gibbs energy:

(1= JuP)?

o (1.1)

1
Gl A) = 5 [ IVaul + = o +
Q

In this expression, €2 is a two-dimensional open subset of R?, which in our
study is always assumed for simplicity to be smooth, bounded and simply
connected. One can imagine that it represents the section of an infinitely
long cylinder. Certain authors also use this as a simplified model for thin
films.

The first unknown u is a complea-valued function, called an “order
parameter” in physics, where it is generally denoted as 1. It is a sort of
“wave function”, indicating the local state of the material or the phase in
the Landau theory of phase transitions: |u|? is the density of Cooper pairs
of superconducting electrons in the BCS approach. With our normaliza-
tion, |u| < 1 and where |u| ~ 1 the material is in the superconducting
phase, while where |u| = 0, it is in the normal phase (i.e., behaves like a
normal conductor); the two phases are able to coexist in the sample.

The second unknown is A, the electromagnetic vector-potential of
the magnetic-field, a function from © to R%. The magnetic field in the
sample is deduced by h = curl A = 01 Ay — 0o A1, it is thus a real-valued
function in 2. The notation V 4 denotes the covariant gradient V — iA4;
V au is thus a vector with complex components.

The superconducting current is a real vector given by (iu, V 4u) where
(-,-) denotes the scalar-product in C identified with R2. It may also be



1.1. The Model 3

written as )
1 = -
3 (uVAu — uVAu) ,

where the bar denotes the complex conjugation. The energy admits a
gauge-invariance: it is invariant under the action of the unitary group
U(1) in the form u — ue’f, A — A + Vf; we will come back to this in
Chapters 2 and 3.

The parameter hex > 0 represents the intensity of the applied field
(assumed to be perpendicular to the plane of Q). Finally, the parameter
€ is the inverse of the “Ginzburg-Landau parameter” usually denoted &,
a non-dimensional parameter depending only on the material, ratio of
the penetration depth (scale of variation of h) and the coherence length
(scale of variation of u), also see Chapter 2. We will be interested in the
regime of small ¢, corresponding to large-x (or extreme type-II) super-
conductors. The limit e — 0 or kK — oo that we will consider is also called
the London limit. In this limit, the characteristic size of the vortices, ¢,
tends to 0 and vortices become point-like.

The stationary states of the system are the critical points of G., or
the solutions of the Ginzburg—Landau equations:

1 :
—(Va)u = ?u(l —|uf*) inQ

(GL) ~Vth = (iu, Vau) inQ
h = hexy on 0f)
v-Vaiau=0 on 09,

where V= denotes the operator (—=02,01), and v the outer unit normal
to 0). For more on the model and on the physics, we refer to Chapter 2
and the physics literature, in particular [192, 164, 80].

1.1.1 Vortices

We now need to more precisely explain a vortex. A vortex is an object
centered at an isolated zero of u, around which the phase of u has a
nonzero winding number, called the degree of the wvortezx, cf. Fig. 1.1
where vortices of degree 1 and —1 are represented.

When ¢ is small, it is clear from (1.1) that |u| prefers to be close to
1, and a scaling argument hints that |u| is different from 1 in regions
of characteristic size €. A typical behavior for u at a vortex of degree
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| |

e
] iR

Figure 1.1: Vortices of degree +1 and —1, at the arrows represent u in
the complex plane, top and below they represent the current.

d is u(r,0) = f(r)e'® in polar coordinates, with f(0) = 0. Of course
this is an intuitive picture and several mathematical notions will be used
to describe the vortices; one of our tasks will consist in relating these
descriptions.

1.1.2 Critical Fields

Given ¢, the behavior of minimizers and critical points of (1.1) is deter-
mined by the value of the external field hey.

There are three main critical values of hey or critical fields H.,, He,,
and H,,, for which phase-transitions occur. Below the first critical field,
which is of order O(|loge|) (as first established by Abrikosov), the su-
perconductor is everywhere in its superconducting phase |u| ~ 1 and
the magnetic field does not penetrate (this is called the Meissner ef-
fect or Meissner state). At H,,, the first vortice(s) appear. Between H,,
and H,, the superconducting and normal phases (in the form of vortices)
coexist in the sample, and the magnetic field penetrates through the vor-
tices. This is called the mized state, see for example Fig. 1.2. The larger
hex > H, is, the more vortices there are. Since they repel each other,
they tend to arrange in triangular Abrikosov lattices in order to minimize
their repulsion. When H,., ~ 6%, the vortices are so densely packed that
they overlap each other, and at H., a second phase transition occurs,
after which |u| ~ 0 inside the sample, i.e., all superconductivity in the
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hex
hex |

Figure 1.2: Schematic representation of a superconducting cylinder with
vortices.

bulk of the sample is lost.

In the interval [H,,, H.,| however, superconductivity persists near
the boundary, this is called surface superconductivity, and after H., =
O(E%), superconductivity is completely destroyed and u = 0, that is the
sample is completely in the normal phase, the magnetic field completely
penetrates and all superconductivity is lost (the phase transition really
happens while decreasing the field below H.,).

For more on the critical fields and what results have been proved, we
refer to Chapters 2 and 14.

1.2 Questions Addressed in this Book

Our goal is to describe, through rigorous mathematical analysis, in the
asymptotic limit of ¢ small, the minimizers of (1.1) and their critical
points in terms of their vortices. This comprises, in particular, determin-
ing their precise optimal vortex-locations. When the number of vortices
becomes large (or blows up as ¢ — 0), then, we describe the solutions
through their vortex-densities (or “vorticity”). We give asymptotic ex-
pansions of the energy of solutions in terms of their vortices, and derive
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rigorously and with more precision the values of the critical fields which
were known in the physics literature.

We deal with two aspects of the ¢ — 0 limit. One is to establish the
variational convergence of G; in all regimes of applied fields. Via energy-
based methods, we are able to identify the I'-limits of the energy, i.e.,
derive reduced problems, which can be solved, thus deducing the optimal
limiting vortex repartitions for global minimizers. The second aspect is
in passing to the limit as ¢ — 0 in the Ginzburg-Landau equations (GL).
This yields necessary stationarity conditions for a given measure to be
an € — ( limit of vorticity measures of critical points of G..

1.3 Ginzburg-Landau with and without
Magnetic Field: A Comparison

As we shall see in this book, the full Ginzburg-Landau energy G. is
closely related to the simpler Ginzburg—Landau model without magnetic
field:

(1= JuP)?®

1
B =5 [ 1vaf + 55

Q

(1.2)

In order to pass from one to the other, it suffices to set the magnetic
potential A and the applied field hey to be zero in G..

This model has been studied by numerous authors, after the pioneer-
ing work of Bethuel, Brezis, and Hélein in [43] (see also Chapter 14 for
more details). The equation associated with (1.2) is

—Au = %(1 — |uf?). (1.3)

It is a complex-valued version of the Allen—Cahn model for phase tran-
sitions (see [143]), leading to codimension 2, instead of codimension 1,
singularities (the vortices).

The techniques developed for (1.1) follow the spirit of those devel-
oped for (1.2). Techniques and concepts were often first developed for
the model without magnetic field, such as: renormalized energies, the
Pohozaev identities, lower bounds for the energy in terms of the vortices,
and stationarity conditions like in Theorem 1.7. In fact, the program is
roughly the same for both energies, and the mathematical tools (pre-
sented here in Chapters 4 to 6) can be used for either energy, for that
reason we will often present results for (1.1) and (1.2) in parallel.



1.4. Plan of the Book 7

The results concerning the local behavior and profile of solutions
are also valid for both since at small scales the magnetic field (when
not too large) has almost no effect in the equation, as we shall see in
Proposition 3.12.

On the other hand, understanding the model with magnetic field
raises the specific questions of understanding the influence of the applied
field and determining the critical fields. Because large applied fields force
large numbers of vortices, we need to be able to handle numbers of vor-
tices which are unbounded as € — 0. This is a crucial difference between
our analysis and the one originally developed for (1.2). This leads to de-
veloping specific techniques such as the vortex-ball construction, and the
approach consisting in analyzing vortices through the averaged vorticity
MEASUTES.

Moreover, the model without magnetic field does not exhibit all the
phenomena observed in superconductors: first, vortices always repel each
other but it is the presence of the magnetic field which confines them
near the center of the domain, as seen for example in Theorem 1.3;
second, the applied field induces phase transitions and selects the number
of vortices. In contrast, minimizing F. without constraint leads to the
natural Neumann boundary condition but to trivial minimizers. In order
to induce vorticity, one has to either consider nonminimizing solutions
(which are generally unstable — see Section 14.1.7) or to replace the effect
of the applied field by a fixed Dirichlet boundary condition with nonzero
degree as in [43]. However, this condition does not allow for unbounded
numbers of vortices and hence for lattices of vortices. In fact, without
specifying any boundary condition, if solutions of (1.3) have unbounded
numbers of vortices as € — 0, as we shall see in Theorem 13.2, their
limiting density is 0 in the domain (under some regularity assumption),
vortices tend to go to the boundary to minimize their repulsion, thus
ruling out the possibility of vortex lattices.

1.4 Plan of the Book

The book consists of three parts: the first part (Chapters 3 through 6)
presents the essential tools developed to answer these questions, the sec-
ond part (Chapters 7 through 12) presents results obtained through min-
imization (I'-convergence type results), and the third part (Chapter 13)
contains results for nonminimizing solutions.

Let us now briefly describe our main results (more information is
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given in each chapter). The focus of the book is the limit as ¢ — 0 and
throughout, the notation a ~ b will mean lim._,ga/b =1, and a < b will
mean lim._,ga/b = 0.

1.4.1 Essential Tools

The book starts in Chapter 2 with a heuristic presentation of the model
and of the phase diagrams (critical fields) for type-II superconductors,
aimed at nonspecialists, and almost completely independent from the
rest of the book.

Chapter 3 gathers basic mathematical results on the Ginzburg-Lan-
dau equation (existence of solutions, a priori estimates, particular solu-
tions).

After these two introductory chapters come a series of chapters pre-
senting the essential mathematical tools, which are used in all the re-
maining chapters.

Chapter 4 presents what is now known as the “ball-construction
method”. It is a method introduced independently by Jerrard [113] and
Sandier [166], which allows one to obtain universal lower bounds for
Ginzburg-Landau energies (either (1.1) or (1.2)) in terms of the vortices
and their degrees, with possibly unbounded numbers of vortices, through
a ball-growth method. Here we present an improved version of the esti-
mate which can be phrased in the following way:

Theorem 1.1. For any o € (0,1) there exists eo(ar) > 0 such that,
for any € < eq, if (u, A) is a configuration such that E.(|u|) < e*71,
then for any r € (5%, 1), there exists a finite collection of disjoint closed
balls {B;}; of the sum of the radii r, covering {Ju| < 1—ei}n{z ¢
Q, dist(z,00) > €} such that

(L= Ju*)

1 2 2
5 / |V aul” + | curl A]” + 522

U; B;

> D <log DLE - C’) (1.4)

where D =Y. |d;|, d; = deg(u,0B;), and C is a universal constant.

In this way, the balls we construct have small radii (the parameter
of choice r), and, whatever definition we take of the vortex-region, they
cover it. Moreover, we bound from below the energy contained in the
vortex balls in terms of the degrees on the boundary of the balls, i.e., the
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degrees of the vortices, which is consistent with the known fact that vor-
tices of degree d; cost at least an order 7|d;|log % of energy. The estimate
(1.4) is slightly different due to possibly large numbers of vortices which
can get very close to one another, but it is optimal as stated. Observe
that this lower bound is very general, it does not require any hypothesis
on (u, A) other than a reasonable (but quite large) upper bound on its
energy.

In Chapter 5, we present an application of the ball-growth method,
which can be read independently. It consists in coupling the ball-growth
method with an energy-estimate obtained through the “Pohozaev iden-
tity”. This coupling provides different lower bounds for the energy in
terms of the potential term of the type

1— 2\2
Ge(u, A) 20/(5‘2u|)llog€\.
Q

In this case the estimates are not for arbitrary maps but for solutions of
the Ginzburg—Landau equations (GL) or (1.3). We give applications of
these estimates in describing the fine behavior of solutions of (GL).

In Chapter 6 we present another crucial tool that has been widely
used in the literature for Ginzburg-Landau in any dimension since the
work of Jerrard and Soner [119]: the Jacobian estimate. This estimate
allows one to relate the vorticity measures 27 ) . d;d,,, naturally derived
from the ball-construction method (here a; are the centers of the balls,
d;’s their degrees, and ¢ the Dirac mass), to a quantity which is more
intrinsic to u: a gauge-invariant version of the Jacobian determinant of w

p(u, A) = curl(iu, V qu) 4+ curl A

or curl(iu, Vu) without magnetic field. This is really the intrinsic vor-
ticity quantity associated with (u, A) (exactly like the vorticity in fluid
mechanics). The result expresses that if the balls are constructed not too
large (as measured by r), then these two quantities are close in a weak
norm:

Theorem 1.2. Under the hypotheses of the previous theorem, for any
B € (0,1), we have

< rﬁGEO(uv A)v (15)

w(u, A) — 2w Z d;da,
' o (@)

(2
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where G20 is the energy when he, = 0.

The previous theorem allowed for a control on the mass of
21y, did,; as measures. Combining these two results yields compact-
ness results on the vorticities p(u, A). The relation (1.5), in which the
right-hand side term is usually small, allows one to control the error be-
tween p(u, A) and a density of vortices, and ensures that the limiting
vorticities are measures.

1.4.2 Minimization Results

Assuming the main a priori bounds of Chapter 3 and the results of The-
orems 1.1 and 1.2, the reader may skip to the more concrete applications
of these results, beginning in Chapter 7.

With Chapter 7, we start to give results on the minimization of (1.1).
This chapter contains the main I'-convergence (in the sense of De Giorgi)
result for G, expressed in terms of

A= lim frex .
e—0 | log €]

=0, / IVl + [y — 11

defined over bounded Radon measures in H—1(Q), where ||u|| is the total
mass of p and
—Ahy +hy = pin Q
{ hy =1 on 04

The meaning of I'-convergence is specified in Chapter 7, the most
important fact being that for (ue, A;) minimizing G, the rescaled vor-
ticities % converge in Co’ﬁ (Q)* to a limiting measure ,u* which
minimizes F) with mmGE — min E, implying also that ;- — hy,.
FE) has a unique mlmmlzer and it turns out that it can be identified

through the solution of an obstacle problem

1
min /\Vh|2 + h?
h—1eHL(Q) 2

h>1—5%
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by the fact that h,, is the minimizer of the above problem.

Thus the limiting measure p, is determined by A, and existing knowl-
edge on the obstacle problem (which is a particular case of a free-
boundary problem) tells us that it is a uniform measure supported in
a subdomain wy of €2, see Fig. 1.3. Moreover, there exists a critical value

Figure 1.3: Optimal density of vortices according to the obstacle problem.

C(€2) such that w) is empty when A < C(€2) and wy has positive measure
if A > C(2), hence in this case pu, # 0. When A = C(£2) the set w) is
finite—we denote it by A—hence the measure p, is zero in this case
since it is the restriction of the Lebesgue measure to a set of measure
Zero.

Both A and C(f2) are defined in terms of the solution hg to

—Ahg+hog=0in Q
{ ho = 1 on 99, (1.6)
A is the set where hg achieves its minimum and
1
c(Q) (1.7)

~ 2maxq |ho — 1]

Starting from A = C(£2) and increasing A, the set w)y grows, first around
the points of A, and wy — Q as A — oc.

Fixing £ > 0, the first critical field H,, (¢) is usually defined by the
fact that for hex < H., minimizers of the Ginzburg-Landau functional do
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not have vortices, while they do if hex > H,,, even though the existence
of such a value for every € > 0 remains to be proved. Theorem 1.3 and
the above remarks tell us instead that

Hg, = C()|loge]

is an asymptotic critical value for hey in the sense that according to
whether (hex(e) — HC)/|loge| tends to a negative (resp. positive) num-
ber, the limiting vorticity measure is zero (resp. nonzero), meaning that
for small e the number of vortices is negligible (resp. not negligible) com-
pared to hex. In Chapter 12, Theorem 12.1, we will see that if H,, (¢) is
defined as above, we have H,, ~ HQ as e — 0 (see also (1.8) below),
with an explicit expansion up to o(1).

In Chapter 8, we extend this study to higher applied fields such that
|loge| < hex < 6%, i.e., almost up to H.,. We show that in this situation
the energy-minimization problem becomes local and can be solved by
blowing up and using the result of Theorem 1.3. The energy-density and
the vortex repartition are thus found to be uniform, as seen in:

Theorem 1.4. Assume, ase — 0, that |loge| < hey < 1/€2. Then, let-
ting (ue, Ac) minimize Ge, and letting g-(u, A) denote the energy-density
3 (IVaul + |h = hea® + 55 (1 = |u]?)?), we have

29. (us ) As)
heslog

—~dxr ase—0

in the weak sense of measures, where dx denotes the two-dimensional
Lebesgue measure; and

Q
min G:(u, A) ~ |2|h6$ log as e — 0,

(u,A)eH1x H! eV hes
where || is the area of Q. Moreover

he —1 in HY(Q)

EeT

M(Uav Ae)
h€$

In both Theorems 1.3 and 1.4 we find an optimal limiting density
which is constant on its support. This provides a first (but very incom-
plete) confirmation of the Abrikosov lattices of vortices observed and
predicted in physics (see Chapter 2).

—dz in H1(Q).
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In Chapter 9, probably the most technical of all, we refine the study
around the value hey ~ Hgl, assuming for simplicity that A is reduced
to a single point p. In this regime, vortices concentrate around the point
p, the limiting vortex density is 0 if rescaled by heyx but not if suitably
rescaled by the actual number of vortices n.. We study the intermedi-
ate regime where 1 < n. < hex, which requires very precise estimates
(since it combines the difficulties of the unbounded number of vortices,
and the ones of relatively small numbers of vortices). We again derive
a I'-convergence result and a limiting energy in this case, under the as-
sumption that A is reduced to one point p: G¢/n? T-converges to

1) =—n [ logle ~ yldu(e)du(y) + 7 [ Q) du)
R2xR2 R2

defined over the set of probability measures on R?, and where Q is a
positive definite quadratic function (the Hessian of hy at p). In what
follows, for any measure u, fi denotes the push-forward of p under the

rescaling x +— 1/%"@ — p). Also, f-(n) denotes an explicit quantity
depending only on n, hex, € and 2.

Theorem 1.5. Assuming A = {p}, let {(ue, Ac)}c be a family of config-
urations such that Ge(ue, As) < e~ V4 with hey < C|log e|. Defining n.
as Y. |d;| where the d;’s are the degrees of some collection of vortex-balls

of total radius r = \/}ll— constructed by Theorem 1.1, assume that

1 < ne K heg

and G (uz, Ac) < fo(ne) +Cn2, as e — 0. Then there exists a probability

Blue,Ae)

measure (s« such that, after extraction of a subsequence, =5== s
€

in (CS7(R2))* for each v > 0 and

Ge(us, Ac) — fe(ne) > ngf(/t*) + 0(722)

Conversely, for each probability measure p with compact support in R>
and each 1 < ng < hey < Cllogel, there exists {(ue, Ac)}e such that

fluede) _, fts in (CO7V(R2))* for each v > 0 and such that

2mne

Ge(u57A5> - fs(ne) < ngI(M) + 0(”2)
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As a consequence, in the regime log |loge| < hex — HY < |loge| we
are able to determine to leading order the number 1 < n. < hey of vor-
tices of the minimizers of G as a function of hex (see below) and to show
that the limiting optimal vortex repartition (after rescaling/division by
n) is po, the unique minimizer of I, also see Fig. 1.8 below.

Chapter 10 is a preparation for Chapter 11 for dealing with the diffi-
culties of bounded numbers of vortices (these are similar to those of [43]
except that the vortices can get very close to one another). In Chapter 11
and the following, we complete the picture for minimizers of the energy
by dealing with the regime hex — HY = O(log|logel). In this case we
prove the optimal number of vortices is bounded, and their limits are
simply limiting vortex-points.

We characterize, again through a limiting (discrete) energy, the most

hex
n

(see Fig. 1.8), the vortices converge to a minimizer of the following lim-

favorable vortex-locations. After blow-up around p by the factor

iting energy:

n
W (X1, ..y xy) = —WZlog |z — ] +7mZQ(:U,~),
i#j i=1

a discrete version of I, reminiscent of the “renormalized energy” of
[43]. When Q(x) = C|z|?, the minimization of w, has been studied
by Gueron—Shafrir in [105] — replacing the term > ; Q(x;) by the con-
straint Y 1 ; |z;|> = 1. Their theoretical and numerical results indicate
that for n < 3, the minimizers are regular polygons centered at the origin;
for 7 < mn < 10 they are regular stars (= regular polygon + center); for
4 < n <6 both are locally minimizing and can be numerically obtained.
In Figs. 1.4 and 1.5 we reproduce some of the shapes of minimizers ob-
tained in their numerical simulations for higher n’s.

These shapes are quite close to those observed in rotating superfluid
helium (see [195, 191]) which, as we mentioned, is described through a
similar model.

For all cases of hexy — H., < |loge|, the optimal number of vortices
for minimizers is given as follows: we exhibit an increasing sequence H,
of values of hey such that if hex € [Hy,, Hyy1), the optimal number is n,
and we show that

H, ~C(9Q)|loge|+ (n —1)C(2) log

1
|log €| + lower order terms (1.8)
n
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16 Chapter 1. Introduction

0.25 T T T T T
° ; o
0.2 o ‘ 3 1
0.15 ] 4
L4
' <
0.1k ¢ © : o -
0.05 | ] 4
9 1
b e o P <
0 R ° ‘ °
-0.05 | : -
-0.1F o © : s S -
¢
-0.15 = : -
0.2k L4 . 4 -
'] '] o ; o '] ']
-0.25
-0.3 -0.2 -0.1 0 0.1 0.2 0.3
0'25 L] L] L] L] L L] L] L] L]
&
oo b ° . ° |
' L4
0.15 © . E
.
4 .
0.1 I -
o : M °
6 .
0.05 ° X L
' <
Of--@-----crerree e R EEREEEE R ¢ Q.-
14 X
-0.05 IS N o
; o M
-0.1F 4 ' b
3 1
I 4
,0.15 3 6 : 6 -
-0.2f N ; ® !
[
_0 25 '] '] '] '] ; '] '] '] ']
-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

Figure 1.5: Results of the numerical optimization of [105] for wy,, n = 24
(top) and n = 29 (bottom).



1.4. Plan of the Book 17

(see (1.7), and (9.88), (12.2) for the precise formulae with expansions up
to o(1)). These can be considered as successive critical fields H; = H,,,
H,, Hs, ... at which an additional nth vortex appears in minimizing
configurations. The number of vortices found in minimizers increases
rapidly after H.,, and more and more rapidly until it becomes ~ hex
when hey > |loge| (see Fig. 1.6).

2nn

U e N
0 HHHHH ex
¢ 2345

Figure 1.6: Schematic representation of the optimal number of vortices
n with respect to hey.

1.4.3 Branches of Local Minimizers

While we describe energy-minimizers for relatively small n’s, we con-
struct local minimizers of the energy which have prescribed numbers
of vortices n. This solves an inverse-type problem: given a minimizer
of wy,, show that there exist stable solutions of Ginzburg—Landau with
n vortices of degree one, converging after blow-up to the minimizer of
wy,. These solutions are obtained by a local minimization procedure: we
minimize the energy over suitable subsets of the functional space. This
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corresponds, roughly speaking, to a way of minimizing the energy over
configurations with a prescribed number n of vortices.

This construction is possible for n bounded, or n unbounded but not
too large, and for a wide range of hex.

Theorem 1.6. For Q as above and for any n and he; belonging to ap-
propriate intervals, there exists €y such that for any € < €g, there exists
a locally minimizing critical point (uc, Ac) of G. such that u. has ex-
actly n zeroes ai,...,a5 and there exists R > 0 such that |us| > % m
O\U; B(a, Re), with deg(us,0B(a3, R)) = 1. Moreover,

1. If n and hey are constants independent of €, up to extraction of a
subsequence, the configuration (a5, ..., a;) converges as e — 0 to a
minimizer of the function

n

Ry h,, = —T Zlog |z —xj|+m ZSQ((I)Z',LUj)‘i‘QWheI (ho—1)(z;).
i#] i i=1

where Sq is the reqular part of a Green’s function associated with

Q.

2. If n is independent of € and hep — 00, up to extraction of a sub-

sequence, the configuration of the ai = \/%(ai — p) converges as

e — 0 to a minimizer of wy,.

3. If n. — 00 and hey, — 00, then again denoting a; = 1/%(@? - D),

n
1 €
— " das — po,
ne 4

=1

the unique minimizer of I.

Thus, we have shown the multiplicity of stable solutions coexisting for
a given hey. We also have the explicit expression of the energy along these
branches, so that we can determine among them, the energy-minimizing
one is the one with n vortices, if hey is in the interval [Hy,, Hy,41); but
the other ones, being stable, can still be observed, see Fig. 1.7.

The lower (resp. upper) bound of the interval of values of hex over
(resp. below) which a given branch of solutions is linearly stable is usu-
ally referred to as the subcooling (resp. superheating) field. Let us more
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precisely state Theorem 1.6 when n is independent of e: the branch of lo-
cally minimizing solutions with n vortices exists for any € small enough
(depending on n) if hex is in a range [cp, e~ "], where ¢, and oy, are
independent of . Thus we get estimates for the subcooling and super-
heating fields of the branch of solutions with n vortices as ¢ — 0, since
these solutions are locally minimizing, hence stable. These estimates are
probably not optimal: for instance the superheating field when n =1 is
expected to be of order 1/e, but we are not able to prove that the branch
with one vortex exists for such large values of hex. Also note that we do
not prove that our n vortex solutions depend smoothly on the parameter
hex, which is often implied when speaking of a branch of solutions. We
believe however that this is the case.

G
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Figure 1.7: Branches of solutions with n = 0 vortex (Meissner solution),
n = 1 vortex, n = 2, 3,4 vortices ... with their energy.

Let us also point out that we have derived a series of limiting energies:
Ey, I, wy, Ry p,,, each of them corresponding to a different regime in
(n, hex): Ry p, for both n and hey bounded, w, for n bounded and
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hex — 00, I for 1 € n <K hex and FE) for 1 <« n ~ Chey, sort of
limits of each other as summed up in the following chart:

n — o0 n — 00
I N < hox Rn,hex 1 ~ Chex E)\
\ Pex — 00
n— oo
Wn,

Fig. 1.8 below is a rough picture of the vortices in such cases.

minimizer of R .
n,

ex

blowup o
@) @)
o O
©o
%50 minimizer of w,

minimizer of I

Figure 1.8: Schematic picture of the vortices for minimizers in the cases
n and hex bounded, n bounded and hexy — +00, and 1 € n K hex
respectively.
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1.4.4 Results on Critical Points

Chapter 13 can be read independently from Chapters 7 to 12: it gives
necessary conditions on limiting vorticities for arbitrary solutions of the
Ginzburg-Landau equations, stable or unstable. It is a way of passing
to the limit ¢ — 0 in the Ginzburg-Landau equations, and to get a
criticality condition on the limiting vorticities. The method consists in
passing to the limit in the relation on the “stress-energy tensor” being
divergence-free, i.e., in the conservative form of the Ginzburg—Landau
equations.

Theorem 1.7. Let {(us, Az)}e>0 be solutions of the Ginzburg—Landau
equations such that GO(ue, Ac) < Ce™ with o < 1/3. Then for any
e > 0, there exists a measure v. of the form 2w, d;dqs where the sum
is finite, a € Q and d; € Z for every i, such that letting ne =), |dZ|,

Gg(ug, Ae)

ne < C
|loge|

9

[ 1e — VEHW*LP(Q)HME - VEHC’U(Q)* — 0, (1.9)

for some p € (1,2).
Moreover, if {ve}e are any measures satisfying (1.9) and n. is defined
as above, then, possibly after extraction, one of the following holds.

0. n.=0 for every e small enough and then p. tends to 0 in W—1P(Q).

1. ne = o(heg), and then, for some p € (1,2), pe/ne converges in
W=LP(Q) to a measure p such that

(Vho =0, (1.10)

hence u is a linear combination of Dirac masses supported in the
finite set of critical points of hg.

2. heg ~ Ane, with X > 0, then for some p € (1,2), pe/hey converges in
W=LP(Q) to a measure p and he/he; converges strongly in WP (Q)
to the solution of

—Ahy, + hy, = pin
hy, =1 on 0Q.
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Moreover the symmetric 2-tensor T, with coefficients
1
Tij = =0ihyuOjhy, + 9 (|th|2 + hu2) 0ij

is divergence-free in finite part.

3. hey = o(ne), and then for some p € (1,2), p-/ne converges in
W=LP(Q) to a measure u and he/n. converges strongly in W1P(Q)
to the solution of

—AU, +U, = pin Q
U, =0 on 0Q.

Moreover, the symmetric 2-tensor T, with coefficients
1
Tij = =0Uu0;Up + 5 (IVULI* + U,*) 83

is divergence-free in finite part.

We will give in Chapter 13, Theorem 13.1, a version of this theorem
applicable to general boundary conditions, which allows one to localize
this result.

When T}, € L', the fact that T, 1 is divergence-free in finite part means
that div7), = 0 in the sense of distributions, i.e., that 01T;1 4 02132 = 0
for i =1,2. If T), is not integrable, which is the case if y is a Dirac mass
for instance, the precise definition is a bit more complicated. If (but only
if) hy, is smooth enough, this is equivalent to the fact that

uVh, =0.

This is the desired necessary condition on the limiting vorticity measure:
it is a stationarity condition on the vortices, saying that on the support
of u, the limiting average current Vh, must be 0 (see one possibility
of density u sketched in Fig. 1.9). If on the other hand, the number of
vortices is small compared to the applied field (case 1), then (1.10) shows
that vortices can only concentrate near the critical points of hg (defined
in (1.6)), i.e., a finite set of points, see Fig. 1.10.

The analysis we develop in Chapter 13 allows us to treat the case of
Ginzburg-Landau without magnetic field as well and find an analogue
of this theorem.
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Figure 1.9: A possible limiting density.

Figure 1.10: Critical points of hg.

We have not cited much of the large mathematical literature here,
but we refer to the end of the book, where we included a (necessar-
ily incomplete) “guide to the literature” which schematically describes
the results that have been obtained in the various branches of studies
on Ginzburg-Landau problems. The book also ends with a list of open
problems.

Let us sum up with a chart of results (and questions):
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Regime Type of Solutions Limiting Measure Reference Result
hex = A logel, minimizers minimizers of Ey Theorem 7.2
n ~ Chex.
hex > |loge], minimizers uniform measure dx Theorem 8.1
2mn ~ hex.
hex > 1, critical points stationary points of Theorem 13.1
n ~ Chex. Ey\ordivl, =0
1 <K n <K hex. minimizers minimizers of I Theorem 9.2
n < hex. critical points uVho = 0, what Theorem 13.1
after blow-up?
n = 0(1). (local) minimizers | minimizers of wy, or Theorem 11.1
Rn,hex
hex = O(1), critical points “vanishing gradient Theorem 13.1
n = 0(1). property”
7> hex. critical points = 0 where regular Theorem 13.1




Chapter 2

Physical Presentation of the
Model — Critical Fields

We begin by describing how the expression (1.1) for the Ginzburg-Lan-
dau functional is deduced from the expression (2.1) below, more com-
monly found in the physics literature. We will also give a nonrigorous
introduction to critical fields in R?, in the spirit of Abrikosov, and draw
a corresponding phase diagram in the (g, hex) plane, i.e., qualitatively
describe minimizers of the Ginzburg-Landau energy for different values
of € and hey, emphasizing the role of the vortices. Three areas of the
parameter plane will be found: the normal, superconducting and mixed
states, separated by what are usually called critical lines.

This chapter is meant to make the reader more familiar with the
problems dealt with in the later chapters, and can either be read inde-
pendently, or skipped by the reader wishing to get more quickly to the
point.

2.1 The Ginzburg—Landau Model

Let us start with some notation. Given two complex numbers z, w, we
let (z,w) = (2w + 2w), which is the inner product of z and w seen as
vectors in R?. Partial derivatives are written 0yu, Oou, . ... We will also
write 8,;4 for Oy — 1 Ayg.

Consider a domain © in R3?. In the Ginzburg-Landau model, the

energy of a superconductor occupying 2 in the presence of a constant
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applied field H,, when the exterior region is insulating, is

|curl A — H,|?

81
(w — wA) u
C

/ 1
2m*
Q

In this expression, u : 2 — C is the order parameter whose physical
meaning is that of a “wave function” for superconducting electron pairs
and A : R? — R3 is the electromagnetic vector potential, whose curl
is the induced magnetic field. Besides the physical constants i and ¢,
additional constants m* and e* are present (see [192] for an explanation
of these constants) as well as two quantities o and 3 that depend on the
temperature 1" and on the superconducting material. Near the so-called
critical temperature Ty, it is assumed that § is a positive constant and
« is proportional to T — T, and has the same sign. The quantity Gg
represents the energy of the normal state and, most important to us,
does not depend on u or A.

Glu, A) :G0+/

RS

2
+ alul* + Blul*. (2.1)

2.1.1 Nondimensionalizing

The following changes of variable (assuming 0 € ) make (2.1) more
pleasant:

. B =
u(zx) = mu(/\m), Az) = e

where A is the penetration depth defined by

\o [ Pmre
4| cu|ex?

We also introduce the coherence length

& = hn/m*|al.

The energy then takes the form

2+;/((V—iA)a2

Q

e* —~ e*

MNA(Az), H.=_—H., (22)

éo+C ;/)curlfl—ﬁ;
R3
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over a rescaled domain Q = Q/\, where k = 1/e = \/£ is the Ginzburg—
Landau parameter which depends on the material and varies little vvlth
temperature, and Gy is independent of @ and A. The sign in (1= |ul )
is the sign of the parameter «, i.e.,is +1if T'> T, and —1 if T' < T,. In
the first case, the functional is strlctly convex hence clearly has a unique
critical point, namely @ = 0 and A such that curl A = H,. We are in-
terested in the second case, where the phenomenon of superconductivity
appears.

From now on we take T' < T, assume the rescaling (2.2) and write
u, A, H, instead of @, A, I?e for the rescaled quantities. In this scaling the
unit length is the penetration depth. The object of our study is therefore

GL(u, A) = 1/]cur1A Ho|* + = /] —iA)ul* + (1—]u\ )

RS

Here (V —iA)u is the complex vector (9{'u,04'u, 95'u), where 0fu =
Opu — 1Apu.

The local state of the material at a point z is described by u(x),
the so-called order parameter. In this nondimensional form, |u|?(z) is
the local density of superconducting electrons (the “Cooper pairs” of
electrons). As in Landau theories, the state of the material is described
through “phases”, |u| ~ 1 corresponds to the superconducting phase and
|u| ~ 0 to the normal phase.

2.1.2 Dimension Reduction

Since the full 3D model is quite complex, we wish to reduce to 2 di-
mensions. A natural special case is that of the domain being an infinite
cylinder in R® and H, parallel to the axis (like an infinitely long insu-
lated wire). Assuming translational invariance of (u, A) and invariance
with respect to reflections across a plane perpendicular to the axis, we
have, taking the cylinder’s axis as the third coordinate axis,

He = hex(0,0,1), u(x,y, 2) = u(z,y), Alx,y,2) = (A1(x,y), As(z,y),0).

Then, the Ginzburg-Landau energy of (u, A) per unit length is

_ ;/]curlA—hexF /| V—id)uf? + (1— ul?)?,
RQ

(2.3)
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where Q C R? is the cross section of the cylinder, hex > 0 is the in-
tensity of the applied field, and h := curl A = 01 As — 0 A1 is the in-
duced magnetic field. Our main goal will be to study the minimizers
and critical points of this functional, i.e., the solutions of the associated
Euler-Lagrange equations, derived below in Proposition 3.6:

1 .
—(Va)u = ?u(l — |u|?) in Q
—Vth = (iu, Vau) in Q
h = hex in R? \ Q

v-Vau=0 on 0f).

\

for different values of €, hex.

2.1.3 Gauge Invariance

The Ginzburg-Landau functional (1.1), hence the system (2.4), is invari-
ant under the so-called gauge transformations

u—uef, A— A+ VY,

where f is any smooth real-valued function. What is more, configurations
which are deduced from one another by a gauge transformation describe
the same physical state, hence the physical quantities associated to a
configuration (u, A) are invariant under these transformations. It is quite
clear that h = curl A and |u| are gauge invariant. It is also the case for
the superconducting current

(uVAu — EVAu) ,

N | .

Jj = (iu, Vau) =

(or the vector with components (iu, O1u — iAju) and (iu, au — i Asu)).
It is not difficult to check that if |u| does not vanish, then |ul|, h and j
determine (u, A) up to a gauge transformation (in a simply connected
domain). If u vanishes or in nonsimply connected domains, this is not
completely the case, since the missing information is the topological de-
gree of u.
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2.2 Notation

For any smooth bounded domain in R? and any v : Q — C, A : Q — R?
we let

1 1 2
F.(u,A,Q) = 5 / |V qul? + h? + 53 (1—|u)”, (2.5)
Q

1

5o (1- w?)?,  (2:6)

1
Gelun, 4,0) = / IV atl? + (h— hee)® +
Q

where hey > 0 is the intensity of the applied magnetic field, and
Vau=Vu—iAu, h=curld:=0As — DA;.

When there is no ambiguity, we denote Fi(u,A) = F.(u,A,Q) and
Ge(u, A) = G:(u, A, Q). Note that in the following chapter we will see
that the minimization of GL reduces to the minimization of GG. when 2
is simply connected.

Even though G. depends on the parameter hey as well as on e(= k1),
we do not reflect this in our notation because our main interest is in the
asymptotics of the functional as € tends to zero. In this limit, heyx will
be a function of € and not an independent parameter. When it bears no
importance, the subscript ¢ itself will be dropped.

We denote by || the two-dimensional Lebesgue measure of any mea-
surable set €.

2.3 Constant States in R?

In the rest of the chapter, unless stated otherwise, we suppose for sim-
plicity that the superconductor occupies the domain Q = R2?, which
corresponds to an infinitely large sample. We do not aim at mathemati-
cal rigor, but rather at explaining by formal calculations the notions of
“critical fields” and “phase transitions”.

If O = R?, boundary conditions should be ignored and the system
(2.4) reduces to the first two equations. We distinguish two solutions.

The superconducting solution for which |u| =1 and h = curl A = 0.
It has infinite energy if hex > 0, but its energy density is R /2. Note
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that all configurations satisfying the above are equivalent modulo gauge
transformations, which is why we speak of one solution.

The normal solution. If © = 0 and h = curl A is also a constant, then
(u, A) is a solution. Its energy density is §(h — hex)? + 422, thus among
these solutions, the least energetic is the one for which A = heyx. If u =0
and A is such that curl A = hey, then (u, A) is called the normal solution.

Therefore we find a first critical line

H(e) (2.7)

_ 1
T eVv2 )

meaning that if for a given value of ¢ we have hexy < H,(g), then the
superconducting solution is more favorable than the normal one, whereas
if hex > Hc(g), it is the reverse.

2.4 Periodic Solutions

The normal solution satisfies u = 0 everywhere. Abrikosov (see [1]) in-
vestigated the existence of solutions near the normal solution (in mathe-
matical language, bifurcated solutions). He first showed that given ¢, the
largest value of hey for which the linearized equations about the normal
solution admit solutions is the critical value

H.(e) = 6% .

Moreover, from formal calculations which amount to a bifurcation anal-
ysis he argued that when € < /2 these solutions give rise to a branch of
solutions of the nonlinear equations when hey decreases below H,,, and
that on these branches, the Ginzburg-Landau energy was lower than
that of the normal solution. Recently, Dutour [89] rigorously showed the
existence of these branches.

The Abrikosov solutions are periodic, or rather are such that the
gauge-invariant quantities, such as |u| and h = curl A are periodic. The
zeroes of u form a lattice and around each zero w has a nonzero degree
(or winding number). That is, writing v = |u|e’?, and working in polar
coordinates (r,0) centered at a zero of u, if » > 0 is small enough, the
integer

1 dy 1 1 .
I 7(7’, 9) df = % / W(ZU, 8»,—“)
0=0 oB(0,r)
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is not zero. The points where u vanishes are called vortices and the integer
above, the degree of the vortex. At a vortex the induced magnetic field
h = curl A has a local maximum.

There are many such solutions corresponding to different lattices in
R?. Abrikosov [1] guessed that the one corresponding to a square lattice
was the most favorable energetically, based on the fact that its expression
as a power series was the simplest, but later numeric computations [127]
showed that the hexagonal lattice was slightly better. We will see be-
low that Abrikosov accurately predicted the hexagonal lattice near H.,,
based on different considerations.

Remark 2.1. Note that when writing u = |u|e’, the phase ¢ is not
gauge-invariant, however the degree of a vortex is.

2.5 Vortex Solutions

Assume now € < /2. If hey is large, the normal solution is more favor-
able than the superconducting or Abrikosov solutions. Then, lowering
hex below H,,, the Abrikosov solutions become less energetic and the
minimizer of the Ginzburg—Landau energy is supposedly one of them.
The question is then to compute the critical value of hey below which
the superconducting solution becomes in turn more favorable than the
Abrikosov solutions. There is no reason why this value should be given
by (2.7), which was computed by comparing the normal and supercon-
ducting solutions. We call the new value H,,, it should be smaller than
H..

To simplify matters we will not compare the superconducting solution
to an Abrikosov type solution, but rather to a single vortex solution,
or rather approximate solution. This replacement of a doubly periodic
configuration with a rotationally symmetric one may seem a bit strange,
but we will justify it at the end of this chapter. The price to pay for all
these approximations and the ones to come is that the computations will
yield results valid only if € is small, the so-called high-x limit (or London
limit).

2.5.1 Approximate Vortex

Our approximate solution will have —except for the constant states—
the maximal symmetry allowed by the equations, i.e., rotational symme-
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try. We will look for (u, A) in the form
u(r,0) = f(r)e?, A(r,0) = g(r)(—sin8, cos f). (2.8)

Remark 2.2. True radial solutions in R? of the Ginzburg-Landau equa-
tions of degree n, of the form

up(r,0) = fn(r)eme, Ap(r,0) = gn(r)(—sinb, cos 0)

have been shown to exist by Plohr [151, 152], and Berger and Chen [35].
Their linear stability was investigated by Gustafson and Sigal in [106]
who proved that, as conjectured by Jaffe and Taubes in [112], they are
stable if n = %1, and if [n| > 2 they are stable if £ > /2 and unstable if

< V2.

Next, we argue that if € is small, then for G.(u, A) to be as small as
possible, |u| should be close to 1 except on a small set. Moreover, scaling
arguments suggest that the area of this set should be of the order of €.
For this reason we let

I ifr<e

r)=4°% 29
/(r) {1 otherwise. (2:9)

We now need to define g in a reasonable way. Since the definition
of u was rather arbitrary, or so it may seem, we will try to do a better
job with A. The best would be of course to solve the Ginzburg-Landau
equation for A, i.e.,

—Vth = (i, Vau),
where h = curl A. If we write u = pe’¥,— we will use the ansatz (2.8) in
a while — then 4 ' '
Vu = Vpe'? +ipVpe'? —iApe'?

therefore (iu, Vau) = p?(Vy — A).

Thus when p = 1, the second Ginzburg-Landau equation is —V+h =
Ve — A, and taking the curl yields

—Ah+h=0. (2.10)

When p varies, the equation for h is more complicated, but since this
happens in a very small area, we will account for it in a simplified way.

We compute
— / Ah = — / v-Vh= / 7-V=th.
B(0,¢)

OB(0,e) 0B(0,¢)
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Assuming the second Ginzburg-Landau equation is satisfied together
with (2.8) and (2.9), we find

B(i)Ah: / T (Vo — A) = / T-ve/h.

0B(0,¢) 0B(0,e) B(0,e)
Therefore
/ —Ah+ h = 2. (2.11)
B(0,e)

In view of (2.10)—(2.11), which we recall are consequences of our ansatz,
together with the second Ginzburg-Landau equation, we define h to be
the positive solution to

—Ah + h = 270, (2.12)

where § is the Dirac mass at 0. The solution is a radial function in R?. We
deduce A in the form (2.8) from the relation h = curl A by integrating
it over the ball B(0,r). This yields

A-T= / h

OB(0,r) B(0,r)
and then, together with (2.12),
Lo
g(r) = - + h(r). (2.13)
2.5.2 The Energy of the Approximate Vortex

We compute the energy of the configuration (u, A) defined by (2.8), (2.9),
(2.12), (2.13). The energy in R? is infinite, but we are really interested
in the difference between the energy of (u, A) and that of the supercon-
ducting solution. Thus, writing B, for B(0,r), we let

1
A(R) = GL(u, A, Bg) — GL(1,0, Bg) = GL(u, A, BR) — §|BR|heX2,

and try to compute the limit of this quantity as R tends to +o00. As in
(2.6), we have used the notation G¢(u, A, Bg) for the Ginzburg-Landau
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energy density integrated over the ball Br. We split A(R) by writing
A(R) = a+ B(R) for any R > ¢, where

a = GL(u, A, B:) — GL(1,0, B.),
ﬁ(R) = Gé(ua Av BR \ BE) - GL(L 07 BR \ BE)

To evaluate o and B(R) we will need the following (see [192]):

Lemma 2.1. Let h be the positive solution to —Ah + h = 2n6. Then
h(r) = |logr| 4+ C 4+ o(1) as r — 0 and the corresponding behavior for
the derivative also holds, i.e., W' (r) = —1/r 4+ o(1) as r — 0. Moreover
h(r),h (r)=0(e™") as r — +o0.

Now we can prove:

Lemma 2.2. Assuming he, < 1/€2, there exists a constant C indepen-
dent of € < 1 such that |a| < C.

Proof. We let C' denote a generic constant independent of ¢ < 1. From
(2.8), (2.9) we have |Vu| < C/e in R2. From (2.8), (2.13) and Lemma 2.1,
we find [A| < C in By and ||h||pep,) < C for any ¢ > 1. Therefore, in

B,

C 1 2 C
2 2

and since —2hex < (A — hex)? — hex® < b2,
/ |(h = hex)® — hex®| < C.
Be

It follows that

hex”
2

la] = |GL(u, A, Be) — GL(1,0, B.)| = ‘GL(u,A, B.) — |Be|| < C.

O
Concerning 3(R) we have:

Lemma 2.3. Let f(heg, ) = limp_ 4o B(R). Then
B(hes ) =7 ([loge| = 2he) (1 +0(1)) + O(1),

where o(1) and O(1) are meant as € — 0 and are independent of heg.
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Proof. In R?\ B. we have |u| = 1. Therefore as noted above, the second
Ginzburg-Landau equation becomes —V+h = Vi — A, thus

1
GL(u, A, Br \ B) = 5 / VA2 + (h — hex)?.
BR\BE
Therefore 1
B(R) = / IVA|? + h? — 2hhes.
BR\BE

Integrating by parts and using (2.12) yields

/ |Vh|? + h? = / hgi - / hglj = 21 Rh(R)R'(R) — 2meh ()l (€)
BR\BE 8BR 835

and using (2.12) again,

/ h = / Ah = 2% R/(R) — 2reh(e).
Br\Be Br\B:
Therefore B(R) = RV (R)(h(R) — 2hex) — weh/(g)(h(g) — 2hex). From
Lemma 2.1, h/(R) goes to zero exponentially fast and as R — +oo and
as € — 0 we have h/(¢) = —=1/e+0(1), h(e) = |loge| + O(1). The lemma
follows. O

2.5.3 The Critical Line H,
In view of Lemmas 2.2, 2.3, We find that

1
lim A(R)=mlog — — 2mhex + C,
R——+o00 e

where C' is bounded independently of . Clearly this result is meaningful
only for small values of ¢, but shows that in this case, as established by
Abrikosov, there exists a critical value

H,,(e) ~ 1l (2.14)

such that if hey is below H,, (¢), the superconducting solution is ener-
getically favorable compared to the approximate vortex whereas it is the
opposite if hex > He, (€).
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Several remarks can be made at this point. First, the equivalent for
H., as e — 0 that we computed is not very sensitive to the way we con-
struct the approximate vortex. We see from Lemma 2.2 for instance that
the contribution of B. is negligible when computing the value |loge|/2.

The second remark is that the approximate vortex is quite different
from the Abrikosov solutions, should not there be other critical values
of hex marking the transition from one vortex to two vortices and so
on? The answer is positive in the case of a bounded domain; but in R2,
although the approximate vortex allows one to compute the right critical
value, the least energy configuration when hey crosses the line should look
more like a vortex lattice similar to an Abrikosov solution. The reason
for this is that if adding a vortex to the superconducting solution allows
one to gain some energy, then adding many vortices allows one to gain
more energy. The minimizer will then be a lattice of vortex solutions
glued together. As hey decreases to H., the density of the lattice will
decrease to 0: vortices grow infinitely far from each other. For rigorous
results on the analysis of periodic solutions to Ginzburg—Landau around
the critical field H.,, see [28].

It is interesting to note that near H,.,, Abrikosov guessed that the
energy minimizers would exhibit vortices arranged in a hexagonal lattice,
the one for which given the cell area of the lattice, the closest points are
the farthest away possible. Indeed, putting vortices far apart makes their
gluing together more efficient in terms of energy. This was inconsistent
with his prediction of a square lattice near H.,, raising the question of
the transition from square to hexagonal, but the hexagonal lattice finally
proved better near H., as well.

2.6 Phase Diagram

We may sum up the previous analysis in the diagram of Fig. 2.1, where we
have plotted the critical lines in the plane (z,y), where z = k = 1 /¢ is the
Ginzburg-Landau parameter and y = hey/k. To the left of k = 1/v/2,
the Abrikosov solutions do not exist and there is a single critical line
separating the domains where the energy minimizer is respectively the
normal and superconducting solution. When x > 1/v/2, the critical line
H, divides into two: the critical line H,, (k) = 2 above which the normal
solution is the minimizer, and the critical line H,, (k) which behaves for
large x as %logm and below which the superconducting solution is the
minimizer. In between these two lines we expect the minimizer to be an
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hex /K1

1/v/2

Figure 2.1: Phase diagram in R2.

Abrikosov type solution, i.e., a lattice of vortices. This state where the
superconducting phase |u| ~ 1 and the normal phase |u| ~ 0 (under the
form of vortices) coexist, is called in physics the “mixed state”.

The separation at € = /2 or k = % (recall that ¢ = 1/k is a ma-

terial constant) corresponds to the distinction between type-I (k < %)

and type-II (k > %) superconducting materials, which have different
qualitative behavior (as we just saw there is no mixed state in type-I
superconductors). However, the value of this threshold of separation is

really valid for infinite samples. At k = %, the Ginzburg—Landau equa-

tions become self-dual and decouple into two first order equations (see
[112]).

2.6.1 Bounded Domains

In the case of bounded domains, which will be our focus, the situation is
roughly similar, except for various boundary effects. In particular, there
is a third critical field H,, larger than H., at which the bifurcation from
the normal solution happens through surface superconductivity. We refer
to Chapter 14 for references on this. Another finite size effect is that,
even though there still exists a pure superconducting solution, called
the Meissner solution, it is no longer a constant. There still exist vortex
solutions, but these of course can no longer be truly periodic nor found
explicitly. At the first critical field H.,, which is larger than the one
found for the infinite domain, there exists a similar phase-transition from
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superconducting state to vortex state except that the vortices appear one
by one, near the center. This will be described in detail in the book.

The rest of this book will be devoted, roughly speaking, to the study
of minimizers and critical points of the Ginzburg—Landau functional in
the range of parameters « large and heyx well below H,,, that is well
below 1/e2. As a byproduct we will, for instance, provide a rigorous
derivation of (2.14) (or rather of its analogue for bounded domains — we
will thus observe the influence of boundary) from the minimization of
the Ginzburg-Landau functional.

BIBLIOGRAPHIC NOTES ON CHAPTER 2: The material presented in this
chapter is fairly standard in the physics literature. The reader may refer
to the standard textbooks on superconductivity, such as Tinkham [192],
Saint-James—Sarma-Thomas [164], and DeGennes [80]. One may also see
the lectures of Rubinstein [158].



Chapter 3

First Properties of Solutions
to the GGinzburg—Landau
Equations

In this chapter, we start to investigate the mathematical aspects of the
Ginzburg-Landau energy and equations. Whereas the material in the
first three sections is relatively easy or standard (existence of minimiz-
ers, regularity of solutions, apriori estimates...) and used throughout
the later chapters, the material of the last two sections is more advanced,
contains several results stated without proofs, and is only used in Chap-
ter 5 and then Chapters 10 to 12. However, we feel that the material
is important enough, like the uniqueness result of P. Mironescu (Theo-
rem 3.2), or basic enough to deserve to be stated early on.

Here and in the rest of the book, D’'(€2) denotes the space of dis-
tributions on Q; H}(Q) denotes the closure of smooth functions with
compact support in € in the H' norm HU||12L11(Q) = ||u||%2(m + HVUH%Q(Q).
Similarly VVO1 P(Q) denotes the closure of smooth functions with compact
support in © in the WP norm while W~ denotes the dual of W& e
where 1/p+1/q =1, and H~! the dual of H}.

3.1 Minimizing the Ginzburg-Landau Energy

From now on, (2 is a smooth bounded simply connected domain in R2.
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3.1.1 Coulomb Gauge

2.(R? R) function f,
any u € H'(Q,C) and any A € H'(R?,R?) we define

v=uef, B=A+Vf

Definition 3.1. [Gauge equivalence] For any H?

and we say the configuration (v, B) is gauge-equivalent to (u, A). The
transformation from (u, A) to (v, B) is called a gauge transformation. If
A is only defined in €2, then we require f only to be defined in 2 and to
be in H%(Q).

Proposition 3.1. If (v, B) and (u, A) are gauge-equivalent (in R?), then
GL(v, B) = GL(u, A). If they are defined and gauge-equivalent in 2, then
G:(v,B) = G(u, A).

Proof. If v = ue' and B = A+ V f for some real-valued function f, then
curl B = curl 4, |v| = |u| and

Vo= (Vu+iuVf)e, iBv=(iAu+iuVf)e’

hence (V —iB)v = e/ (V —iA)u. Replacing this in (2.3) and (2.6)
proves the proposition. ]

Remark 3.1. As stated before, essential gauge invariant quantities are
|u|, h, and the superconducting current j = (iu, V4u). It is an exercise
to check that if (u, A) and (v, B) are such that |u| = |[v| > 0, (iu, V qu) =
(iv, Vo) in a simply connected domain € and curl A = curl B in R?,
then they are gauge-equivalent.

This invariance of the energy by a large group of transformation (all
smooth real-valued functions) poses a problem for the minimization of
GL. Indeed if {(un,, An) }n is a minimizing sequence, then for any sequence
of functions {fy}n, {(une’*, A, + V£,)}n is also minimizing, however
wild the functions f,, may be. Thus no good bounds on {(uy, 4,)}, can
be deduced from the fact that GL(u,, A;,) is bounded independently of
n. The use of a particular gauge, namely the Coulomb gauge, solves this
problem.

Definition 3.2. [Coulomb gauge| Let Q2 be a smooth bounded domain
in R?. We say A : Q — R? satisfies the Coulomb gauge condition in € if

divA=0in Q
A-v=0o0n 01,

where v is the outward pointing unit normal to 0f2.

(3.1)
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We have:

Proposition 3.2. For any smooth bounded domain Q C R? and for any
A € HY(Q,R?), there exists a gauge transformation f € H*(Q) such that
B = A+ Vf satisfies the Coulomb gauge condition in ).

Proof. Let f solve
Af=—divA inQ
o,f =—A-v on 9.

This is possible since fQ divA = | g A - v and the solution is unique
modulo a constant. Then A + V f satisfies the desired conditions. O

The following estimate is crucial for the minimization of (2.3):

Proposition 3.3. Let ) be a smooth, bounded, simply connected domain
in R2. There exists a constant C > 0 such that if A : Q — R? satisfies
the Coulomb gauge condition, then

1Al @pey < Cllcwrl A7)

and
1Al Fr2 2y < Cll curl Al -

Proof. Since 2 is simply connected and divA = 0 in , by Poincaré’s
lemma there exists a function f such that A = (=02 f,01f). Then A-v =0
on 0f2 implies that f is constant on 92 and, subtracting the constant,
we may assume f = 0 on 0€2. Moreover curl A = Af. Standard elliptic
regularity then implies that \|f||12r{2(9) < curlAH%Q(Q) and HfH?{S(Q) <
|l curlAHl%Il(Q), from which the result follows. O

3.1.2 Restriction to

The natural space for the minimization of (2.3) is
X = {(u,A) € H'(Q,C) x H} .(R? R?) | (curl A — hey) € L*(R?)}.

To avoid the technical difficulties of minimizing GL, as defined in
(2.3), over X, we instead minimize G, as defined in (2.6) over the space

Xo ={(u,A) € H'(Q,C) x H'(,R?)}. (3.2)
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It is clear that if (u, A) € X, then its restriction to 2 is in Xq and
Ge(u, A) < GL(u, A). (3.3)
Conversely we have:

Lemma 3.1. Let (u, A) € Xq. Then A can be extended to R? in such a
way that Ge(u, A) = GL(u, A).

Proof. There exists B € HL_(R% R?) such that curl B = curl 4 in 2 and
curl B = hey outside . For example, we can take B = V+¢ where ¢
solves —A¢ = g with g(z) = curl A(z) if z € Q and g(x) = hex if not.
Then, since € is simply connected, there exists a function f € H?(1)
such that B = A + Vf in Q. It follows that G.(u, A) = Ge(ue'/, B)
and since curl B = hex outside Q, we find G.(u, A) = GL(ue/, B). By
extending f to R? in an arbitrary way to a function f € HZ_(R?) and
gauge transforming (ueif ,B) by —f, the lemma is proved. ]

This lemma together with (3.3) proves:

Proposition 3.4. The minimum of GL over X is equal to the minimum
of G¢ over Xq. Moreover, minimizers of GL restrict to minimizers of G
and conversely, minimizers of G. can be extended to minimizers of GL.

We prove below that a minimizer of G, hence a minimizer of GL,
exists.

3.1.3 Minimization of GL
Proposition 3.5. The minimum of GL over X is achieved.

Proof. From Proposition 3.4 it suffices to prove that the minimum of G,
over Xgq is achieved. Let {(uy, A,)}n be a minimizing sequence for Ge.
We may assume by density that the terms of the sequence are smooth.
Also, using Proposition 3.2, we may assume A, satisfies the Coulomb
gauge condition in Q for all n. Using the bound G¢(uy, A,) < C, where
C is independent of n, we find that ||1 — |un|2||Lz(Q), [(V —iAn)unl 20
and || curl A, — hex|[r2(q) are bounded independently of n. Therefore
{curl A, },, is bounded in L?(Q) and thus, from Proposition 3.3, {4},
is bounded in H'().

Note that Vu, = (V —iA,)u, + iA,u,. Since {A,}, is bounded
in H'(Q), it is bounded in every LY for ¢ < oo by Sobolev embedding.
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Because {uy}, is bounded in L* we find that {iA,u,}, is bounded in
LA for any 7 > 0 and in particular in L. Thus {Vu,}, is bounded in
L? and {uy}, is bounded in H!(Q).

We may then extract a subsequence such that {u,}, and {A,},
converge to some (ug, Ag) weakly in H'(Q) and, by compact Sobolev
embedding, strongly in every L? for ¢ < co. We now show that (ug, Ag)
is a minimizer of G..

By strong L* convergence, lim inf,, ||1— ]un|2H%Q(Q) =|1- |u0|2||L2(Q).
Also, || curl A — hex||32 is a convex function of A which is continuous in
the H' norm, hence it is weakly lower semicontinuous in H'. Therefore
lim inf, || curl A — hex||72 > || curl Ag — hex||5. It remains to check that

lim inf |[(V — iAp)unl|2e > ||(V — ido)uol|2s. (3.4)
Note that
(V —iA)u* = |Vu|? = 2(A- Vu,iu) + |A]*|ul? (3.5)

From the weak H' convergence of u,, to ug, we first deduce

liminf/\Vun\2 Z/\Vuolz.
Q Q

Secondly, combining the strong LY convergence of u,, and A,, to the weak
L? convergence of Vu,,, we find

1im/ (A - Vuy, tuy,) = /(Ao - Vug, tug)
n
Q Q

and thirdly, by strong LY convergence of wu, and A, again, that
limy, [q [An]?|un|® = [q Ao|*|uo|?. Combining the three and (3.5), we
find (3.4). O

3.2 Euler-Lagrange Equations

Definition 3.3. [Critical point] We say that (u, A) € X is a critical
point of GL if for every (v, B) smooth and compactly supported we have

%GL(U +tv, A+ tB)— = 0.
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Clearly, a minimizer of GL is a critical point.

Proposition 3.6. If (u,A) € X is a critical point of GL then, letting
h = curl A, we have

1 :
—(Va)u= €—2u(1 — |ul?) inQ

—Vth = (iu, Vau) in Q (3.6)
h = heg in R*\ Q
v-Vaiau=0 on 0f).

If (u, A) € Xq is a critical point of G then the same equations are
satisfied, with h = he, satisfied on 0Q instead of R? \ Q.

Note that the covariant Laplacian is defined by
(V.4)%u = 0 Ofh) + 05 (95'u),
where we recall that 83-4u = 0ju — iAju. The covariant gradient is
Vau= (V—-iA)u
and the current is the vector in R? defined by
(tu, Vau) = ((iu,@f‘u), (tu, 8§4u)) ,

where, for complex numbers z = z + iy, w = 2’ + iy, we let (z,w) =
xx' + yy'. Finally,
v-Vau = ot + 1204

The derivation of (3.6) is made very close to, say, the derivation of
the Laplace equation from the minimization of the Dirichlet energy, by
using the following lemma, the proof of which is left to the reader.

Lemma 3.2. For arbitrary complex-valued functions u, v and any A,
3k(U, U) = (al?u7 U) + (’LL, 81;42})

Proof of the Proposition. We have

%GL(U +tv, A+ tB)—o = /(VAU, V av) + (Vau, —iBu)

Q

B / @:2@)(1— ) + / (curl A — hey) curl B,

Q R2
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where (V au, V 4v) = (9{*u, 0{'v)+(04'u, d5'v). Using the lemma, we have

2
(Vau, Vav) =Y 0(0fu,v) — (05 u,v) = div (V au,v) — (Va)?u,v),
k=1

where (V qu,v) = ((Oflu, v), (Ofu,’u)). Therefore, integrating by parts

d
%GL(U +tv, A+ tB)—o = /(V -V au,v)
o0

(u,v)

+/_((VA)2U,U)_(z’u,vAu)'B— 5 (1= [uf?)
Q

— /Vl(cuﬂA — hex) - B.
R2

Since this is true for any (v, B), we find —V*(h — heyx) = (iu, V.4u) and
u
~(Va)u = 50— fuf?)

in ©, while V*(h—hey) = 0 outside 2. Since hey is constant, h is constant
outside 2 and this constant must be hey since the configuration has finite
energy. The boundary conditions follow as well. O

A different but useful form of the system (3.6) is expressed by the
fact that the divergence of the stress-energy tensor is zero.

Definition 3.4. [Stress-energy tensor] The stress-energy tensor associ-
ated to a configuration (u, A) for a given € > 0 is the symmetric 2 x 2
tensor T" with coefficients

1 1 9
A A
Tz‘j = ((9@- u, 8]- u) - 3 <]VAU|2 — K2 + @ (1 _ ]u‘Q) ) 5ij7

where h = curl A.
We have:

Proposition 3.7 (The stress-energy tensor is divergence-free).
Assume (u, A) is a critical point of G.. Then the stress-energy tensor
T associated to (u, A) satisfies fori=1,2,

OWT1; + 015 =0

i Q and we write in shorthand divT = 0.



46 Chapter 3. First Properties

Proof. Using Lemma 3.2 we find
(05'u, (V.a)*u) = %aﬂaf*uﬁ + 05(07 u, 03'w) — (9507 u, 03'w).

But
(05 07\, o) = Sonlogul + (9507 — 00 yu, 05'w)

and it is a simple computation to check that (95'9{* — 995 )u = iuh,
with h = curl A. Therefore we find

(05, (Va)?u) = %al (101 uf® = 105" ul*) + 02(0{ u, D3'u) — (iu, D5'u)h.

From the second Ginzburg-Landau equation —(iu, 5u) = +0;h there-
fore

1 1
(01'u, (Va)*u) = 501 (107 ul? — 105'ul?) + 0a(05u, B3 u) + 581112.

Now if we take the scalar product of the first Ginzburg—Landau equation
with 07'u, we find

— S0 (100 —05uf?) — (05w, o) — Lonn® =
S (Ot u) (1 ).
Since (9{'u,u) = (d1u, u) = A |u|?/2, we finally obtain that
—%al (101 uf? — |08 u]?) — (0 u, B5'u) — %alfﬁ + 4%231 (1—[uP)?=0

which is exactly 01711 + O2T51 = 0. The relation 01115 + 92To9 = 0 is
proved in the same way. O

3.3 Properties of Critical Points

Proposition 3.8 (Regularity). Let Q be a smooth bounded domain in
R2. If (u, A) is a critical point of G- and if A satisfies the Coulomb gauge
condition (3.1), then u and A are smooth in Q.
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Proof. Together with the Coulomb gauge condition, the Ginzburg—Lan-
dau equations (3.6) become

1 . .
—Au = ?u(l — |ul?) = 2i(A-V)u — |A]Pu inQ

—AA = (iu, Vu — i Au) in (3.7)
h = hex on 0f)
v-Vu=20 on 0f).

The first equation is obtained by expanding (V 4)?u. To obtain the second
equation from (2.4), note that

—Vth = (05(01 A5 — B2 A1), —01 (01 As — Dz A1)) . (3.8)

Differentiating 01 A1 + 02A2 = 0 with respect to both variables we find
01245 = —011A41 and 012041 = —022A5. Replacing this in (38) yields
—~V+h =—AA and thus (3.7).

But (3.7) is a couple of elliptic equations for which we easily derive
regularity by bootstrapping arguments. Since (u, A) are both in H*(£2),
hence in every L7, the right-hand side of the equations (3.7) are in LP
for any p < 2 and therefore (u, A) are both in W?P by standard elliptic
theory, and therefore in every W14, etc. O

Boundary regularity can be recovered in a similar way, once it is
checked that the boundary conditions above satisfy the so-called com-
plementing condition (see [7]). To see why they do, assume for sim-
plicity that Q is the half space {(z,y) € R? | # > 0}. Then, writing
A = (A1, Ay), the Coulomb gauge condition A - v = 0 at the boundary
becomes A1 = 0 on 0N and then curl A = hex becomes 9,49 = hey.
Therefore we have a Dirichlet condition for A; and a Neumann condi-
tion for As. This is almost a proof that the complementing condition is
satisfied. The rest of the proof of the boundary regularity consists in a
bootstrapping argument as above.

The reference [85] discusses these issues, without however giving a
complete proof of the boundary regularity.

Proposition 3.9. Let Q be a smooth bounded domain in R?. If (u, A)
is a critical point of G, then |u| <1 in Q.

Proof. This is a consequence of the maximum principle. Taking the scalar
product of the first equation in (3.7) with v we find
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1 )
—(Au,u) = ;QIUIQ(l — [uf?) = 2(i(A - V)u,u) — |A]|ul>.
Therefore
1
LA = (Au,w) + [VuP
-1 9 2 . 2112 2
= 6—2|u\ (1 —|u®) +2(i(A - V)u,u) + |A]7|ul” + |Vul~.
Noting that
IVaul® = [Vul® + 2(i(A - V)u, u) + |A*|uf?
we find
L app = L - ) - (Vaup? 3.9
Al = a1 = [ul") = [Vaul” (3.9)

Let us now consider x( a point of maximum of |u| in Q. Since u is smooth
in view of Proposition 3.8, we can write that if z¢g € Q, V|u|(x9) = 0 and
Alul(zg) < 0, hence we deduce from (3.9) that 1 — |u|?(xg) > 0 and thus
|u|(zop) < 1. If on the other hand zy € 01, then %(:po) = 0. Moreover,
the Neumann boundary condition v -V 4u = 0 implies, taking the scalar
product with w, that 9,|u|(z¢) = 0. Therefore, V|u|(z¢) = 0 and we can
argue similarly that Alul(zo) < 0, implying |u|(z) < 1. We conclude in
all cases that max |u| < 1. O

The following result follows directly.

Lemma 3.3. If (u, A) is a solution to (3.6), then
) = V] < |V aul.

Proof. From the second Ginzburg-Landau equation we have pointwise
|[Vh| < |(iu,Vau)| and since |u| < 1 from Proposition 3.9, we find
|[Vh| < |V 4ul. O

This will often be used combined with the result.
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Lemma 3.4. Assume u is defined and differentiable in a neighborhood
of © and takes values in C. If u(z) # 0, then u can be written in a
neighborhood of x as pe'¥, where p, ¢ are real valued and p is positive.
Then in this neighborhood

Vau = pie® (Vi — A) + € Vp.

In particular
Vaul® = p*|Vp — AP +|Vpl?,

and
j=p(Ve—A).

Proposition 3.10. Let Q be a smooth bounded domain in R?. If (u, A)
is a critical point of G, then

1 = heall 1 (0 < 2G<(u, A)
12y < 2P (u, 4)
A0y < CFulu, A),
where we recall F. is defined in (2.5).
Proof. Using Lemma 3.3, squaring and integrating, adding [, (h — hex)?
or [o, h? on both sides yields

/|Vh|2 + |h — hex|? < 2G.(u, A)
Q
/|Vhy2 + h? < 2F.(u, A),
Q

and the third assertion follows from Proposition 3.3. O

Let us mention here a property of the zeroes of energy-minimizers
(for simply-connected domains):

Theorem 3.1 (Elliott—Matano—Tang Qi [92]). Let (u, A) be a min-
imizer of G.. Then the set of zeroes of u consists only of isolated points.



50 Chapter 3. First Properties

3.4 Solutions in the Plane

The parameter € in the Ginzburg-Landau equations is the lengthscale on
which the order parameter u varies. It is therefore interesting to study
the blow-ups of solutions at this scale. It turns out that if one chooses
to work in the Coulomb gauge, the blow-up limits as ¢ — 0 satisfy
~Au = u(1l — |ul?) in R2. In this section, we list some properties of
these limits before proving the convergence of blow-up sequences in the
following section. We begin by collecting some facts about the topological
degree.

3.4.1 Degree Theory
Degree of S'-valued maps

Assume € is a bounded domain in R? with smooth boundary, with its
natural orientation. We let 7 denote the unit tangent vector to 02 com-
patible with this orientation.

Definition 3.5. If u : 9Q — S! is a sufficiently regular map, the degree
of u is defined by

deg(u,00) = 2i /(iu,@Tu) ds. (3.10)
T
o0

Assuming u to be smooth, it can be written locally as u = exp(ip) for
some smooth real-valued function ¢ (a “lifting” of ). Then the integrand
in (3.10) is O;¢, in particular the degree is an integer. For example u(z) =
2% has degree d on the boundary of the unit disk.

It is standard to check that the degree seen as a function defined on
C>(05,S') is continuous in the C° norm, or in other words, the degree
is preserved by homotopy. It can thus be continuously extended to an
integer-valued function on the space of continuous S'-valued maps: this
is the classical setting of degree theory (see [88] for a treatment of the
classical degree theory between manifolds).

Recently, the notion of degree has been extended to certain discon-
tinuous maps. Results of this type may be found in the work of B.
White [193]. In our particular setting, Boutet-de-Monvel and Gabber
(see appendix in [58]) made the crucial observation that the formula
(3.10) still makes sense if u € H'Y2(99,S'), by duality between the
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space H'/2(9Q) and H~1/2(9Q) (observe that if u € H'/2(9Q, R?), then
d-u € H=/2(9Q,R?)). The degree may also be defined using the Fourier
coefficients of u and it is then transparent that it makes sense in H/2.
Brezis-Nirenberg [62, 63] extended the definition of the degree to the
space VMO, in any dimension.

Note that, assuming u € H'/2(9Q,S'), an alternative to (3.10) is
obtained by extending u to a Sobolev map @ € H'(2, C) such that @ = u
on 9f). Then, considering the 1-form w = (iu, &1 4)dz1 + (i, Dru)dzy that
we write in shorthand (ia, du), we have

1 1
deg(u, 00) = o /w =5 dw.
onN Q

But dw = (ida,du) = 2 jact where jac@ is the Jacobian determinant of
@ (seen as a map from 2 to R?), thus

1 1
deg(u, 002) = ﬂ/jac u(x)de = o /Curl(i&, Va) (3.11)
Q Q

where, in the last expression, we have returned to our usual notation
without differential forms. The definition of the degree is independent of
the extension % chosen.

If u € HY/2(09,C) and |u| > o > 0 on 99, then deg(u, dN) is defined
as deg(u/|ul,0). If u € H'(Q, C) satisfies |u| > a > 0 on 99, then by
the trace theorem u € H'/2(9Q, C) and the previous definition applies.

Properties

The properties of the degree for maps in HY/2(9Q,S') are similar to
those of the degree for smooth maps (refer to [62, 63] for proofs).

1. The degree is an integer.

2. deg(u,09) can be computed by (3.11) for any extension
@€ HY(Q,C) of u.

3. For u € H%(aﬁ, St there exists @ € H'(£2,S') coinciding with u
on 0N if and only if deg(u,9Q) = 0.

The last property is easily deduced from the case where ) is the unit disk
D, and from the corresponding well-known statement in the continuous
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setting: if u € C°(AD,S!) then u can be continuously extended to @ €

C°(D,S") if and only if deg(u, D) = 0. It explains in a way why vortices

need to form if a nonzero degree is prescribed on the boundary of €.

3.4.2 The Radial Degree-One Solution

Definition 3.6. We say u is a degree-one radial solution of
—Au=u(l—|u?  inR? (3.12)

if w is a solution of the form

u(r,0) = f(r)e”
where (7,6) are the polar coordinates in R? and f: R, — Ry,

Observe that f then has to satisfy the ODE

f e fh s f=fA- ) J0) =0 (33)

This ODE, supplemented by the condition f(oo) = 1, was studied in
[111].
It holds that:

Proposition 3.11. There exists a unique nonconstant degree-one radial
solution wy of (3.12) such that, letting f(r) = |ug(r,8)|, it holds that
f(r) =1 as r — +oo. Moreover f is increasing and

1
1—f(7“)~2—7a2 as r — 400,

;/(1—\u0]2)2:7r (3.14)

RQ
and there exists a constant v > 0 such that
1 1 — |ugl?)?
= / |Vuo|? + (= luo)” =mlogR+7v+0(l) as R— +oo.

2 2
B(0,R)

(3.15)
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The existence and uniqueness of wg is proved in [111]. The assertion
(3.14) was proved in [61] and follows from a Pohozaev type identity
satisfied by the solutions in a large ball Bg together with the asymptotic
behavior of f. The constant 7 was introduced in [43] with a slightly
different definition.

Remark 3.2. The above solution is a degree-one solution in the sense

that for any R large enough, the topological degree of |Z—8| as a map from

0B(0,R) to S! (as defined in Definition 3.5) is equal to 1.
This solution is also unique in the following sense:

Definition 3.7. We say u is a locally minimizing solution of —Au =
u(1 — |ul?) in R? if for any w : R? — C supported in a compact subset
K C R2, we have

1 1 1 1
2/|V(u+w)|2+2(1—\u+w\2)2 > 2/|vuy2+2(1—|uy2)2.
K K

Theorem 3.2 (Uniqueness of locally minimizing solutions). Ifu
is a nonconstant solution of —Au = u(1 — |u|?) in R? and if we make
the additional assumption that either u is locally minimizing or that
Sz (1 = [ul*)? < +00 and deg(u) = £1, then there exists x9 € R? and
0o € R such that u(x) = eug(x — x0) or u(z) = e 0% (x — x0).

This result is a combination of a theorem proved by P. Mironescu in
[146] which states that solutions such that [p.(1 — |u[*)? < 400 and of
degree one are radial; a result of I. Shafrir [186] stating that nonconstant
locally minimizing solutions with [ (1 — |u[?)? < +oc are of degree +1;
and a result of E. Sandier [166] stating that locally minimizing solutions
satisfy [g2(1 — |ul?)? < +oo.

We will also use the following result on solutions on the half-plane
Ra_:

Theorem 3.3 (Sandier [166]). Let u be a locally minimizing solution
of —Au = u(l — |ul?) on R%, such that u is constant of modulus 1 on
8]1%1, then u is a constant of modulus 1 on all of ]R%r.

3.4.3 Solutions of Higher Degree

Similarly as the radial solution of degree 1, for every d € Z there exists
(see [111] again) a radial solution of (3.12) with a unique zero of degree d,
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i.e., of the form A
u(r,0) = fa(r)e"®”

with f; a real-valued function vanishing at the origin and solving an
ODE analogous to (3.13):

2
G0 o =0

However, it is not known whether there are other solutions of degree
d > 1, which would vanish in more than one point (see Open Problem
4 in Chapter 15). The only result we have is the following quantization
result:

Theorem 3.4 (Brezis—Merle—Riviére [61]). Let u be a solution of
—Au = u(l — |ul?) in R? such that [5,(1 — |u|?)* < oo, then

/(1 — |u?)? = 27d?

R2

where d € 7 is the degree of ﬁ on large enough circles.

3.5 Blow-up Limits

Definition 3.8. [Very local minimizer] Given a family of configurations
{(ue, As)}eso defined in Q and a family of points {z:}. in Q, we say
that {(ue, Ac)}eso “very locally minimizes” G. around {z.}. if for any
compactly supported and smooth w : R? — C, there exists g such that
for e < €9, Ge(ue, Ac) < Ge(ue + we, Ac), where

we(x) = w (x ;”3) .

Remark 3.3. The variation on u. can affect the value of u. on the
boundary of €2, but this is allowed.

Proposition 3.12 (Behavior of blow-up limits). Assume he; < %
as € — 0, and that for every e > 0 we are given a solution (uc, A:) of
(3.6) satisfying the Coulomb gauge condition and such that

1
Fo(ue, As) < = (3.16)
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as ¢ — 0. Then, for any family of points {x.}., defining the rescaled
configuration (ve, B:) by

Ve(x) = ue(xe + ), Be(x) =cA (2 +ex),

if dist(zz, 0Q) > e, then after extraction of a subsequence, (v, Be) con-
verges in CL (R?) to (v,0), where v solves —Av = v(1 — |v]?) in R%;
if dist(ze,0Q) = O(e), (ve, Be) converges, after extraction of a subse-
quence, in CL_(R?) to (v,0) where v solves —Av = v(1 — |v|*) in a
half-plane with boundary condition g—fj =0.

Moreover, if {(ue, Ac)}eso very locally minimizes G. around {z}e,
then in the case dist(xzc, 0Q) > e, v is a locally minimizing solution of
(3.12), hence one of the solutions described in Theorem 3.2; in the case

dist(zz,00Q) = O(e), v is a constant of modulus 1 in the half-plane.

The analogous result also holds for the Ginzburg-Landau equation
without magnetic field:

Proposition 3.13. The exact same result holds for solutions of —Au, =
Y5 (1 — |ue|?) with Dirichlet (ue = g on Q) or Neumann boundary con-
ditions, assuming E.(u.) < 1/2.

Note that the convergence is easily improved by bootstrapping argu-

ments but C}

loc convergence is all we will need.

Proof of Proposition 3.12. — Step 1: Convergence in the general case.
Using Propositions 3.3 and 3.10, the hypothesis (3.16) implies that, let-
ting h. = curl A,

;li% ”6h5HH1(Q) =0, ;13(1) H‘SAEHHQ(Q) =0.

In particular we find that €A, tend to 0 in L* norm. In terms of the
rescaled quantity B. we get

lim || Be | e () = O- (3.17)

Assuming for simplicity that z. = 0; in terms of the rescaled config-
uration (ve, Be), the system (3.7) becomes

—Ave + 2i(B. - V)ve = ve(1 — |[v:]*) — |Bc*v-  in Q/e
—AB, = &*(iv., Vv, — iB:v:) in Q/e
curl Be = €%hex outside /e
v-Vp.v. =0 on 0f)/e.

(3.18)
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We now invoke elliptic regularity for the first equation. From (3.17) and
Proposition 3.9, the right-hand side is bounded in L*° and we may apply
LP estimates (see for instance [100] Theorem 9.11) to find that for any
fixed ball Bg, the family {v.}. is bounded in W?P?(Bg), for any p > 1,
hence in C1 for any 0 < o < 1. From the compactness of the embedding
of C1* into C', and using larger and larger balls together with a diagonal
argument, we may extract a subsequence, still denoted {e}, such that
{ve}e converges locally in C'! norm to some v.

The right-hand side of —~AB, = £2(iv., Vv, — iB.v.) is now known
to be bounded in L*°. Then from (3.17) and elliptic regularity we find
as above that after extraction of a subsequence, {B:}. converges locally
in C! norm to some B. From (3.17) the limit B is necessarily 0.

Passing to the limit in the equations we find that v solves —Av =
v(1 — |vf?).

— Step 2: proof of the last assertion. We prove that if the solutions
are very local minimizers, then their limit v is locally minimizing. Assume
w : R? — C is supported in a compact subset K C R?. Scale back w to
define we(z) = w ((z — zc) /e) .

We define
2 , 1 2\2
Flu) = [ 1Vaf?+5 (1= Juf?)
K
2 1 2 9 1 2\ 2
F.(u)= [ |Vp.u|*+ 6—2(Cur1B<E — e hex)” + 3 (1= Jul?)”.
K

From the C! convergence of v. and B, and the relations (3.18), it is
easy to check that

F(v+w) — F(v) :ii_r%Fs(Us"‘w) — Fe(ve).

But the right-hand side is equal to G (us + we, Ae) — Ge(ue, A:) and is
therefore positive for e small enough since {uc}e>¢ is very locally min-
imizing around {z.}.. It follows that F(v + w) — F(v) > 0 and the
proposition is proved.

For the case where dist(z.,0Q) < Ceg, it is easy to see that up to
translation and extraction, B, converges to 0 as before, and v. converges
to a solution of —Av = v(1 — |v|?) on the half-plane R with boundary

o . 81} _
condition W= 0.
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Reflecting that solution with respect to 8R2+ yields a solution with
degree 0 on all of R%. Moreover, by the same arguments as above, this
solution is locally minimizing in R?, hence by the result of Sandier [165]
mentioned above, it satisfies [;,(1— [v|*)? < cc. Then, from the result of
[61], such a solution with total degree 0 has to be constant: its modulus
is constant equal to 1 from Theorem 3.4, which implies that Av = 0, and
thus that v, being harmonic and bounded in R?, is constant. O

Proof of Proposition 3.13. The proof in the Neumann case is identical to
the one above. The proof in the Dirichlet case follows exactly the same
lines. The only difference is that if dist(z.,9Q) = O(g), the limiting v
is a solution of —Av = v(1 — |v|?) in the half-plane R? with |[v| =1 on
the boundary of the half-plane. In the case of very local minimizers, the
result of Theorem 3.3 allows us to conclude that v is also constant. [

Remark 3.4. In the case where the solutions are not very local mini-
mizers, the limit v can a priori be any solution of (3.12) as described in
Section 3.4. It can be one of the solutions such that [(1 — |u|?)? < oo
considered in Theorem 3.4. It can also be a solution that does not sat-
isfy this condition, such as the solution u = 0. This can be achieved by
considering solutions with a unique zero of degree d. — o0 as ¢ — 0
(such as in [30]): fa.(r/€)e’®? in the notation of Section 3.4.3, for which
fa. — 0 ae. ase — 0.

Corollary 3.1. If (ue,A:) is a solution of (3.6) such that
Fo(us, Ac, Q) < a%, then there exists a constant C' such that

C
|VAEU5| < —.
13

Proof. Since |V qu| is a gauge-invariant quantity, we may assume that
we are in the Coulomb gauge. Using the same notation as above, we have
elVa.us| = |Vp.ve| — |Vo| in view of the C}., convergence of (ve, B:).
We deduce that |V qu|(z) < %, where we claim that C is bounded inde-
pendently of the point and of the solution. If it were not, then we could
find a sequence of solutions (u., A.) of (3.6) and a sequence of points .
such that €|V 4_uc|(x:) — +00. Arguing as in the proof of Proposition
3.12, we would find that, up to extraction, (v., B;) converges in ClloC to
some (v,0) and thus €|V a_u.| = |Vp.ve| is convergent, and this would
contradict the assumption. O



58 Chapter 3. First Properties

Remark 3.5. Adjusting the proof of Proposition 3.12, we can easily
show that, if we only assume F_.(u., Ac,Q) < E% and hex < E%, then we
still have |V 4_u.| < 8%

BIBLIOGRAPHIC NOTES ON CHAPTER 3: The material of the first parts
of this chapter (existence of minimizers, derivation of the equations, reg-
ularity) is fairly standard. For the case with magnetic field, one may
refer to Bethuel-Riviere [52] and references therein, also to the survey
paper of Du-Gunzburger—Peterson [85]; and for the case without mag-
netic field to Bethuel-Brezis—Hélein [42]. For solutions in the plane the
most important references are (in chronological order) Hervé-Hervé [111],
Brezis-Merle-Riviere [61] and Mironescu [142]. Results on blow-up of so-
lutions can be found in a scattered way in the literature on the functional
without magnetic field (see, e.g., the works of Bethuel-Brezis—Hélein and
Comte-Mironescu). We included here a version more specific to the case
with magnetic field, including the possibility of very large energies and
the notion of very local minimizers.



Chapter 4

The Vortex-Balls Construction

The aim of this chapter is to provide one of the basic tools for the analysis
of the Ginzburg-Landau functional in terms of vortices.

When studying critical fields in R2?, we have constructed an approx-
imate vortex for which v had a zero of degree one. The energy of this
solution was approximately the sum of a term depending on hey and
m|loge|. The former represents the interaction of the vortex with the
applied field and the latter —although we did not explicitly state this
result — corresponds to the free energy of the vortex, i.e., its energy when
hex 1s taken to be zero.

Given an arbitrary configuration (u, A), we will show that one can
describe it energetically as a collection of vortices glued together, as
long as its Ginzburg—Landau energy is not extremely large, but without
assuming that it solves any equation. More precisely we construct a set
of disjoint balls of sufficiently small radii (how small depends on which
construction) which cover the “bad set” where |u| is smaller than some
threshold < 1, hence which contains the zero-set of v and all possible
vortices. Moreover, each ball B will contain an amount of energy at least
of (typically) m|d|logZ where d = deg(u/|u|,0B), and r is the radius
of B.

The construction requires only a weak control on the energy of wu,
essentially it must be < % This is much larger than the energy of one
vortex which is approximately 7|loge|, hence it allows a number of vor-
tices which is unbounded as ¢ — 0. It uses a ball growing argument
which was introduced independently in [113] and [166]; we give here a
presentation close to [166, 170], with sharper estimates. All the results
can be used for the functional without magnetic field (1.2) simply by
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setting the magnetic potential A to 0.

The main result of the chapter, namely Theorem 4.1 will be used
repeatedly in Chapters 7 to 12, which deal with the minimization of the
Ginzburg-Landau functional, but its proof can safely be skipped to read
them. Chapter 5 only uses the ball-growth mechanism described in the
second section of the chapter, and Chapter 13 uses only Propositions 4.3
and 4.8.

The most delicate part of the chapter is the proof of Proposition 4.7,
which occupies the last section. The refinements there are motivated
by the fact that we need to obtain the optimal error term, namely a
constant times the total degree, for later applications. This aside, the
proof of Theorem 4.1 is essentially contained in sections 2—4.

4.1 Main Result

Here and in the rest of this chapter, £ is an open subset of R? and
u:Q—C,A:Q— R?are CL.
We recall that if u: Q — C and A4 : Q — R2,

(1= [uP)*

o (4.1)

1
F.(u,A,Q) = 2/|VAu|2+|cur1A]2+
Q

For any function p: Q — R we set
1 (1-p%)?
F.(p, Q) == 2y L2
e(pv ) 9 / |Vp| + 2e2
Q

Note that the notation above is consistent in the sense that if u = p is
real-valued, then F.(p,Q) = F.(u,0,Q).
We denote

Q. = {z € Q| dist(z, 0Q) > €}. (4.2)

If B is a collection of balls, then r(B) denotes the sum of the radii of the
balls in the collection.

Theorem 4.1 (Lower bound through the ball-construction).
For any o € (0,1) there exists eg(a) > 0 such that, for any € < eo, if
(u, A) is a configuration such that F.(|u|,Q) < 2=, the following holds.

Forany1l>r> Ce®/2, where C is a universal constant, there exists
a finite collection of disjoint closed balls B = {B;}icr such that



4.2. Ball Growth 61

1. r(B) =r.
2. Letting V = Q. N U;c1 B,

{z € Q| |lu(@)| -1 >ei}C V.
3. Writing d; = deg(u,dB;), if B; C Q¢ and d; = 0 otherwise,

L % u]Q—H"2|cur1A|2—|—uLU‘Z)2 > 7D (lo L —C’)
2 4 22 | = ® De ’
%

(4.3)

where D =), |d;| is assumed to be nonzero and C is a universal
constant.

4. If the stronger assumption F.(u, A,Q) < ! holds, then

FE(U7 A’ Q)

D<C
alloge|

, (4.4)

where C is a universal constant.

Finally, if 1 > 1 > 19 > €*? and By, Ba are the corresponding families
of balls, then every ball in Bs is included in one of the balls of By.

Remark 4.1. The term log ;- in (4.3) is optimal, as can be seen by
taking D identical vortices of degree 1; the total radius of the balls being

r, we can expect D final balls of radius r/D each, each containing an
r/D

energy mlog ~—.

The proof of this theorem will occupy the rest of this chapter.

4.2 Ball Growth

In essence, the theorem is proved by adding up lower bounds for the
energy of (u, A) on annuli which avoid the set where |u| is different from
1. For these lower bounds to add up, they need to be computed on
conformally identical annuli, and we describe here the tool which allows
us to do this.

Notation: If B is a ball, r(B) denotes its radius. If B is a collection of
balls, then r(B) is the sum of the radii of the balls in the collection. For
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A > 0 the ball AB is the ball with same center as B and radius multiplied
by A. If B is a collection of balls, then A\B = {A\B | B € B}. With an
abuse of notation, we will also write [, to denote fUBeBB’ write BN U
to denote the collection {B N U} pgep, and U\B to denote U\(UpepB).

Theorem 4.2 (Ball growth). Let By be a finite collection of disjoint
closed balls. There exists a family {B(t)}icr, of collections of disjoint
closed balls such that B(0) = By and

1. For every s >t >0,

U Bc U B
)

BeB(t) BeB(s

2. There exists a finite set T C Ry such that if [to,t1] C Ry \ T, then
B(tl) = etl_tOB(to).

3. r(B(t)) = e'r(By) for everyt € R,.

Lemma 4.1 (Merging). Assume By and By are closed balls in R™ such
that B1 N By # &. Then there exists a closed ball B such that r(B) =
r(By) + r(Bg) and B;1 U By C B.

Proof. If By = B(a1,r1) and By = B(aga,r2), let

B—B(W“+W?n+m>. O
1+

Proof of the theorem. We first perform growing, starting from By. We let
B(t) = e'By for every t > 0 and let ¢y be the supremum of the times such
that B(t) is a collection of disjoint closed balls. If ¢y = 400, we are done.

If not, then the balls in B(ty) have disjoint interiors but some have
intersecting closures. Then we perform merging. Assume By, By € B(to)
have intersecting closures and call r1, ro their radii. Then we group them
into a larger ball B with radius r = r{ + r2 using Lemma 4.1. We then
remove Bi, By from the collection B(ty) and add to it B. Repeating this
operation enough times, we get a family B'(¢y) of balls with nonintersect-
ing closures. Moreover 7(B(to)) = r(B'(t0)) and Upep(y) B C Upep () B-
Finally B'(ty) contains strictly fewer balls than B(ty). We then define
B(to) = B'(to), and perform growing starting from B(t).

We may repeat this process to define a family B(t) of disjoint closed
balls for every ¢ > 0. Indeed the merging process can occur only a finite
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number of times since it strictly decreases the number of balls in the
collection which was finite to begin with. Property 1 is clearly satisfied.
If we define T" to be the set of times at which merging occurs, Property 2
is satisfied as well. Property 3 is obvious for ¢ = 0 and is clearly preserved
during growing and merging, hence it is true for all ¢ > 0. O

Remark 4.2. We cannot ensure uniqueness in this construction because
there is a choice in the order in which we merge the balls if there are
more than two intersecting balls at a given t.

B(0)

Figure 4.1: Ball growth starting from an initial set w.

Additional properties of this construction follow.

Definition 4.1. [and notation] Let F(x,7) be a function defined on R? x
R, . We will also see F as a function defined on the set of all closed balls,
and write F(B) for F(x,r) if B = B(z,r). We will also write F(B) as a
shorthand for ) 5.z F(B) if B is a collection of balls.

We say that F is monotonic if F is continuous with respect to r and
for any families of disjoint closed balls B, B’ such that UgegB C Ugep' B

F(B) < F(B).

This implies, in particular, that F is nondecreasing in r.
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Proposition 4.1. Let F : R? x R, — Ry be monotonic in the above
sense. Let By be a finite collection of disjoint closed balls and {B(t)}icr,
satisfying the results of Theorem 4.2, then, for every s > 0,

S

F(B(s)) — F(By) > > r%’:(x,r) dt, (4.5)
t=0 B(z,r)eB(t)

and for every B € B(s), we have

F(B) - F(ByNB) > > r%f(x, r)dt. (4.6)

t—0 B(z,r)eB(t)NB

Remark 4.3. If F is C! with respect to r, then (4.5) clearly makes
sense. If F is only continuous, then the integral still makes sense if we
see %—f(w, .) as a measure, which we can do since F is monotonic with
respect to r. Note that in this case, and since F is continuous with
rebsgect to r, this measure has no atoms and therefore the meaning of
f F

o - (x,7)dt is unambiguous; that is, does not depend on whether the

endpoints are included or excluded.

Proof. Let T be the finite set of Theorem 4.2. Then (0,s) \ 7" may be
written as a disjoint union U¥_,(s;_1,s;), where so = 0 and s, = s.
Writing B(t) = {Bi(t),..., Bn(t)} we have B;(t) = /7% B;(0) for t €
[s0, s1). Letting B;(t) = B(xi,ri(t)) we thus have r;/(t) = r;(¢t) and then

B0 =3 G () = S Feorio)
Integrating on (sg, s1) we find
F(B(s1))™ — F(B(so)) = > r%f(x,r) dt,

t=so Bla,r)eB(t)
where we have written F(B(s1))” for the limit of F(B(t)) as ¢ increases
to s1. By the monotonicity of F, this is smaller than F(B(s1)) hence

S1

F(B(s1)) — F(B(s0)) > S

t—so Blz,r)EB(t)
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Repeating this in every interval (s;—1,s;) and summing yields the result
(4.5).

Let now B be a ball in B(s). Observe that from assertion 1 of Theorem
4.2 that for ¢ < s, the balls in B(t) found before are either included in
B, or do not intersect B. Starting from the initial collection By N B, we
get that for ¢ < s, the collection B(t) N B still satisfies the results of
Theorem 4.2 (in other words, we can redo the construction starting from
the initial collection By N B and obtain the collection B(t) N B).

We may then apply the result (4.5) with this new restricted family.
It yields

F(B(s) N B) — F(ByN B) > 3 r%i:(x, r) dt.
t—0 B(z,r)eB(t)NB
But for t = s, the only ball in the new collection B(s) N B is B, hence
by definition F(B(s) N B) = F(B) and (4.6) is proved. O

4.3 Lower Bounds for S'-valued Maps

The construction of the previous section allows us to obtain a result very
similar to Theorem 4.1 if we assume |u| = 1.
Notation: We let

Vau=Vu—idu, 9tu=v -Vu—i(A-v)u,

where v is a vector.
For a bounded domain © ¢ R2 and u : Q — C we let

B = ; [ 1Vul’.

Q
If A:Q — R?, we let
1
Ba(w) = [ IVaul? (4.7
Q
and
1
H(AQ) = B / | curl AJ? (4.8)
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Also, given a map u defined in €2 and a ball B such that u does not
vanish on 0B, we let

deg(u,0B) if BC
dg =
0 otherwise.

For the definition of the degree, see Definition 3.5.
We begin with a simple lemma.

Lemma 4.2. Assume §) is an open subset of R and w a compact subset
of Q. Assume v:Q\w — St is CL. If B, B’ are two finite collections of
disjoint closed balls such that w C UgepB and UgepB C Ugiep' B’, then

S ldsl = Y ldsl.

BeB B'eB’

Proof. First note that under our assumptions, every ball in B is included
in one and only one ball of B’. Then for every B’ € B’ such that B’ C Q

deg(v,0B') = Z deg(v,0B).
BeB
BcCB’
Taking absolute values and summing over balls B’ € B’ such that B’ C Q
proves the lemma. ]

The lower bound which is used later on is Proposition 4.3 rather than
the following one, simply bounding the Dirichlet energy of S'-valued
maps. However, this one is included because it illustrates the method
without being obscured by technicalities.

Proposition 4.2. Assume ) is an open subset of R? and By is a finite
collection of disjoint closed balls. Let w = Upep,B and let {B(t)}ier.,
be defined by Theorem 4.2. Then for any v : Q\ w — St in C! and any
s >0, for every B € B(s), we have

E(v,(BNQ)\w) >7r/||DB|]2(t) dt (4.9)
0

and

E(v,(BNQ)\w) > r|ds|log :i (4.10)
0
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where ro = r(By), r1 = r(B(s)) = e’ry, and

IDsl*(t) = > di.
B’eB(t)nB

Proof. We define
1
Fan=y5 [ 9P

B(z,r)NQ
We have
oOF 1 9
— == 4.11
an=3 [ vl (411)
OB(z,r)NQ

and the crucial inequality (which we prove below):

Lemma 4.3. For any v : 0B — S, where B is a ball of radius r in R?,
we have

1 2
2/|W|2 > 7rd7, (4.12)
oB

where d = deg(v,0B).

We now apply Proposition 4.1. Inserting (4.12) and (4.11) into (4.6)
we find, for every B € B(s),

F(B) - F(BO)NB)>n > dpdt, (4.13)
+Zo B'eB(t)NB

proving (4.9). But

Yo odb = ) ldgl,

B’eB(t)NB B'eB(t)nB

and from Lemma 4.2, using the fact that B(s) N B = { B},

Yo oldel= > ldel = ldsl.

B'eB(t)NB B'eB(s)NB
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Replacing this in (4.13) yields F(B) — F(B(0) N B) > mw|dpls. Since
s =log (r1/rp), and since

F(B)-F(B(0)NB) = E(v, BHQ)—ZE(U, B'NQ) < E(v,(BNQ)\w),
B’eBy
B'CB

the inequality (4.10) is proved. O

Proof of Lemma 4.3. Let (1,v) be respectively a unit tangent and unit
normal vector to 0B. Then

|Vo|? = |0,0]? + |0;0]?
1 1
2/’V”|2 > 2/\%\?.
0B 0B

/\&-v\ > /(iv,BTv) = 2m|d|,
0B

B

therefore,

thus, using the Cauchy—Schwarz inequality,

1 d|?
2/|V’U|2 Zwuv

T
0B

which proves the lemma. ]

We also prove the following variant of Proposition 4.2 which includes
the magnetic potential A.

Proposition 4.3. Assume Q is an open subset of R? and By is a finite
collection of disjoint closed balls. Let w = Upep, B and let {B(t)}icr, be
defined by Theorem 4.2. Then for any v : Q\w — S' and any A : Q — R?
in C1, for any s > 0 such that r(B(s)) < 1, and for any B € B(s),

Ep(v,(BNQ)\w)+ri(r1 —ro)H(A, BN Q) >

A t:10),
Wt/o IDsI2(®) (1 2(7“1—7“0)) dt. (4.14)
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and
Ex (U, (B N Q) \w) + ?"1(?”1 — ’l“())H(A, BN Q)
> mldp| <10g . log 2) , (4.15)
o
where 7o = r(By), m1 = r(B(s)) = e*rg, and
IDslP(t) = Y di
B'eB(t)NB
The proof relies on:

Lemma 4.4. If B is a ball of radius v in R?, then for any v : 0B — S!,
any A : B — R? in C', and any X\ > 0,

/ IV av[? + / (curl 4)2 > ‘df|2 <1+12A> (4.16)

Proof of Lemma 4.4. Let
X = /curlA.

B

Writing v = €??, choosing the right orientation for the unit vector 7
tangent to 0B, from Stokes’s formula, we have

/T-(Vgp—A)zQWdB—X
0B

From Lemma 3.4 and since |[v| = 1 on 0B we have |7- (Ve —A)| < |V 40|
on 0B. Then the Cauchy—Schwarz inequality yields

/VA > > M. (4.17)

On the other hand, by Cauchy—Schwarz again,

A 5 A X?
— > —— .
5 /|curlA] 53" (4.18)

Summing (4.17) and (4.18) and minimizing with respect to X yields
(4.16). O
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Proof of Proposition 4.3. We define
F(z,r) = Es(v,B(x,r)NQ) +7r(r1 —ro)H(A, B(z,r) N Q).

We apply Proposition 4.1 with F defined above. We have

oF

rL—To
Vav|? +
87'( [Vavl

5 / (curl A)2. (4.19)

OB(z,r)NQ QNB(z,r)

z,r) >

Inserting (4.16) with A = r1 — 79 and (4.19) into (4.6) we find that for
every B € B(s),

F(B) — F(B(0)N B) 277/ Y& <1+1(B)> dt.
NnB

Lo B'EB(t) o

But 1/(1+2) >1—z if 2 > 0, hence for ¢t € (0,s) and every B’ € B(t),
r(B(t) _,  r(B{1)

! >1 T(B/) >1 P
1+% B 20 T 2 2(7“1—7“0)'

We deduce (4.14). Moreover, using Lemma 4.2,

S oz Y JdegwoB)z Y ldw| = ldsl

B’eB(t)nB B’eB(t)NB B’eB(s)NB

If log :—(1) < log 2, then the desired inequality is trivially true. If not, then
r(B(t))

2(r1—7ro) > 0.

Therefore, replacing with the previous relation in (4.14), we are led to

r1 > 2rg and then, since r(B(t)) < r1, we always have 1 —

F(B) — F(B(0)N B) > n|dg| / (1 - T(l;gt))) dt.
t=0

But from Theorem 4.2, item 3, the antiderivative of r(B(t)) is itself.
Hence the integral of r(B(t)) over [0, s] is equal to 71 — rg, which is equal
to A and the above reduces to

F(B) — F(B(0) N B) > =|dg|(s — 1/2).

Since s = log (r1/r0) and replacing as in the proof of Proposition 4.2,
the inequality (4.15) follows. O
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4.4 Reduction to S'-valued Maps

The proof of Theorem 4.1 can be reduced to proving a similar lower

bound for u/|u| on various sets. In this section, we will state this propo-

sition precisely and show how Theorem 4.1 follows from it. The proof of

the proposition itself will occupy the remaining sections of this chapter.
First we need to introduce the following notion.

4.4.1 Radius of a Compact Set

Definition 4.2. The radius of a compact set w C R? is the infimum over
all finite coverings of w by closed balls By, ..., By of 7(By)+ - -+ 7(By).
We write it r(w).

Remark 4.4. 1) Note that in this definition we may assume the covering
is by disjoint balls. Indeed if By and By satisfy By N By # &, then
Lemma 4.1 ensures the existence of a ball B such that B; UBy C B and
r(B) = r(Bi1) + r(Bsz). Using this to group together intersecting balls,
a finite covering may be replaced by a covering by disjoint balls leaving
the sum of radii unchanged.

2) Clearly, if A C B, then r(A) <r(B).

3) The infimum which defines the radius is not necessarily achieved.

There is a relationship between radius and perimeter:

Proposition 4.4. Assume w is a compact subset of R?. Then 2r(w) <
H(Ow), where H' denotes the 1-dimensional Hausdorff measure.

Proof. By definition of the Hausdorff measure, it suffices to show that
if {B;}icn is any covering of dw by open balls, then r(w) < Y. r(B;).
Since Ow is compact it suffices to work with a finite covering, and then
taking the closures and using Lemma 4.1, we may assume the balls are
closed and disjoint. In particular A = R?\ UleBi is connected. Now
if By,...,Bg cover Ow, we claim they cover w and therefore r(w) <
>, 7(Bj), from which the result follows by definition of the Hausdorff
measure. The claim follows by noting that A—which is connected —
intersects the complement of w because w is bounded. Thus, if A in-
tersected w it would also intersect dw, which is impossible from the
definition of A. Thus w C R?\ A = U | B;. O
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We will use the following variant. Define for any open set ) and any
compact set w in R?

ro(w) = ;u% r(K Nw). (4.20)
IR =2

In a way, rq(w) counts the radius of the set obtained from w by discarding
the connected components which intersect 0.

Proposition 4.5. Assume € is open and w is compact in R?. Then
2rg(w) < HY (Ow N Q).

Proof. Let K be a compact subset of €2 such that 0K Nw = @&. Then
Od(wNK) = (0w)N K C 2 hence from Proposition 4.4,

2r(K Nw) < HY (0w N Q).
The result follows by taking the supremum over K. O

Finally we have:

Proposition 4.6. Assume wi, wy are compact subsets of R%. Then
r(wp Uws) < r(wy) + r(wa).

Proof. If By and By are finite coverings of w; and ws respectively by
closed balls, then B; U Bs is a covering of wi U ws. ]
4.4.2 Lower Bound on Initial Balls

Proposition 4.7. For any o € (0,1) there exists eo(a)) > 0 such that,
for any € < eo, if F-(Ju|,Q) < &L, the following holds.

There exists a finite collection By = {B;}ier of disjoint closed balls
such that, letting Vo = Q. N Upep, B we have

1. 7(Bo) < Ce*/2, where C is a universal constant.
2. {z € Q| ||u(z)| — 1| > 6} C Vo, where § = /4,

3. Let v =u/|u| and for anyt € (0,1 —9) let wy = {x € Q. | |u(z)| <

t}. Then
1 2 T(Bo)? / 2 r(Bo)
- U > _ .
5 / |V av|” + 5 (curl A)* > wDy | log ro () C
Vo\wt Vo

(4.21)
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Here Dy =), |d;|, where d; = deg(v,0B;) if B; C Q. and d; =0
otherwise, C' is a universal constant.

The above result would be true and simpler to prove if we replaced
the quantity rq_(w;) in the above result by r(w;), which is larger. However
7(wi) cannot be compared to H!(Aw; N ), which is what we need in the
proof of Theorem 4.1.

4.4.3 Proof of Theorem 4.1

Let By be given by Proposition 4.7. Applying Theorem 4.2 we get a
family {B(t)}er, of collections of disjoint closed balls. Let 1 > r >
r(Bp) and B = B(s), with s such that 7(B) = r or equivalently r =
e*r(Bp). Then items 1 and 2 of Theorem 4.1 follow directly from the
corresponding items in Proposition 4.7. It is also obvious that if By, Bo
are the collections of balls corresponding to 71, ro with r; > 79, then
every ball in By is included in one of the balls in B;. This follows from
item 1 in Theorem 4.2.

We turn to the proof of (4.3).

Since from item 2) the map u does not vanish in €. \ Vy, we may
apply Proposition 4.3 in Q. to v = u/|u| and A, to find for every B € B,

Ea(v,(BNQ)\ Vo) +r(r —r(Bo))H(A, BN Q) = |dp|log ﬁ,

where dp = deg(v,0B) if B C Q. and dp = 0 otherwise. Note that if
we let D = ) 5 pldp|, then D < Dy from Lemma 4.2. Summing this
lower bound over all the balls in B and adding this to (4.21) yields for
any t € (0,1 —9)

1 g 72 9 r
= — 1 > 1 — 4.
2V/\VAU| +5 ‘/(cur A)*>nD <og o () C> , (4.22)

where

V=Q.NUgeB, Vi=V\w={xeV||ulx)| >t}

The rest of the proof of (4.3) consists in integrating (4.22) with re-
spect to t. It relies heavily on the coarea formula. Let U be the interior
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of V. Integrating on U or V is equivalent but the coarea formula is best
formulated on an open set. As above we let v = u/|u| and

1
Up=U\wr={z €U ful >t} m={z e Ulul=t}, B(t) = 5 / Va0,
Ut

From the Cauchy—Schwarz inequality, we have

Vol -2
—a)

(1—1¢%)?

VIull® + 55— = [V]ul]

Therefore, using the coarea formula,

1 1 1 VR -
2 2\ 2 — 1
=\ — - > [ == . i
2/I [ull® + 1= (1—[u)?)” > 5 / ——H'(w)dt. (4.23)
U U 0

Also, from Fubini’s theorem,

+oo
1
Q/yu\vaAvP— / _20'(t) dt,
U 0

which yields, after integration by parts,

“+00
1
2/]u|2]VAU|2 > /2t@(t) dt. (4.24)
U 0

Let

1 ) 1 2\ 2 TQ 2
I= 2/|VAu| iz (1—[ul?) +2/(cur1A) )
U U U

Summing (4.23), (4.24) and since, in view of Lemma 3.4, |Vau? =
[u|2|V 402 + |V]u||?, we have

1
I> /Qt o(t) +r22/(cur1A)2 e —*)
U

J e H (v, dt. (4.25)

For any t € (0,8) we claim that H!(y;) > 2rq_(w:). Indeed, from Propo-
sition 4.5 we have 2rq_(w;) < HY(Qe N dw;). But Q. N dw; is included
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in the set of z € €, such that |u(z)| = t. In turn, from Proposition 4.7
and the hypothesis t € (0,0), this set is included in U. It follows that
Q. N Ow C 7+ and then

2rq. (wi) < H (). (4.26)

Now, from (4.22),

2

o(t) + % /(curlA)2 > 7D <log U c) .

o, (Wt)
U

Inserting the above and (4.26) into (4.25), we find

1-6
1> / 2tm D <log " __¢
/ ro. (we)

For each ¢, let us minimize the integrand with respect to rq, (w¢). The
minimum is achieved for

ro. (w) dt.

> L V21—t

_ 2tmeD
o) = 5
which gives
1-6
T
I> 2tD(l - t)dt,
> D (log —5 + f(t)

0

where f(t) = 10g(1\[_7ft) — C. Therefore

I>nD ((1—5)210g€%—(7>,

where C' is a universal constant, namely the integral of the function
t — —2tf(t) on [0, 1].

If 7D (log 5 — C) < 0, then the relation (4.3) is trivially true. If
not, then we can write

[>7D (1og€%—2510g5%—0).

Since 7 < 1 and D > 1 (the case D = 0 was excluded), the contribution
of —20log(r/D) to the right-hand side is positive. On the other hand,
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6 = £/ therefore, if ¢ is small enough depending on «, then & |loge| <1

and
IZWD(loggLD—l—C>.

This proves (4.3); it remains to prove (4.4).

Let M = F.(u,A,). To prove (4.4), we may use (4.23) together
with a mean value argument to find a regular value ¢t € (1/2,3/4) of |u]
such that 2rg_(w;) < H!(v) < CeM, where C is a universal constant.
Applying (4.26) and Proposition 4.7 we find

1 9 r? 9 T

— — > — .

2/|VAU| + 5 /(curlA) >nD (log el C’)
Uy U

but since t € (1/2,3/4) and |u| > t on Uy it holds that |V 4v|? < 4|V qul?
on Uy therefore

1 2
AM > 2/\VAU|2 + 742/((:ur1A)2 > 7D (log
Ui U

e C) . 427)

We conclude by noting that r/eM > £~/ which together with (4.27)
implies
CM > D(a|loge| — 1)

hereby proving (4.4) if € is small enough depending on «.
The rest of the chapter is devoted to the proof of Proposition 4.7.

4.5 Proof of Proposition 4.7

4.5.1 Initial Set

Proposition 4.8. For any M,e,6 > 0 satisfying €,0 < 1, any u €
CY(Q,C) satisfying F.(|u|,) < M, we have

eM
52

for some universal constant C, where Q. = {x € Q | dist(x,0Q) > }.

r({z € Qe [Ju(z)] - 1] = 0}) <C

Proof. Let p = |u|. Then

1 1

— VPP +—=1-p)2<M

5 [ IVol 4 s 1= 2 <
Q
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and thus using the Cauchy—Schwarz inequality as before

11— p?|
v < M.
Q/! ol Jae S

Using the coarea formula, we find

/'1 H1 ({z € Q,p(z) =t}) dt < V2M. (4.28)

teR

Then from (4.28) and the mean value theorem there exists ¢t € (1—6,1—
d/2) such that

Me Me
1 — = < — < -
H {ze]|1—p(x) t})_2\/§5|1_t2| < 4V2 52

indeed |1 — 2| >§/2ift € (1 —6,1—6/2).
Letting w = {|p — 1| > t}, we have

HY (OwN Q) < C—-. (4.29)

It follows from

and (1 — t?)2 > §2/4 that

Therefore there exists some s € (0,¢) such that the length of v = {z €
w | dist(x,00) = s} is less than 16eM /2. Letting Qs = {z € Q |
dist(z,0Q) > s}, we have w N IN C ~ hence

HY (w N a9y) < 05—2. (4.30)
Then (4.29) and (4.30) yield H}(d(w N Qs)) < CMe/§?. Hence from
Proposition 4.4,

M
rwnNQs) < 05—;

Since {z € Q. | |p(z) — 1| > 1 -} C wN Qg the proposition is proved.
O
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4.5.2 Construction of the Appropriate Initial Collection

In this proof C denotes a generic universal constant. By a collection of
balls, we will always mean a finite collection of disjoint closed balls.

From Proposition 4.8 applied to v with M = e and § = £*/* the
set {x € Q. | |Ju(z)| — 1| > 8} has radius less than Ce®/? and thus may
be covered by a union of disjoint closed balls U such that

R:=r(U) < Ce®/2, (4.31)

The difficulty here consists in finding a collection of balls which works
for each t and contains enough energy, so we split the energy we wish
to bound from below as the energy on By\U plus the energy over U\w.
We choose a set K in order to maximize the first contribution (this is
independent of ¢). We add to it U and balls obtained by growing the w;
with smallest total degree, and we finally cover the whole set by balls
which are the desired By. Let us now go into details.

— Step 1: We may write U as a disjoint union UyUU7, where Uy con-
tains those balls in U which intersect 0€2., and U7 contains the remaining
balls. Then we define (see Fig. 4.2)

Q =0\ Up.
Now for any ¢ € (0,1 — §), we claim that
ra. (wi) > r(we N Q). (4.32)

Indeed, since w; is contained in the interior of U, the set w; N Q is con-
tained in the interior of Uj, which is a compact subset of .. Thus
r(we N Q) = r(w; NUp) and from (4.20) we have rq_(w;) > r(w; N UY).
The inequality (4.32) follows.

— Step 2: For every t € (0,1 —46), the set w; N may be covered by
a collection of balls BY of total radius no greater than 2r(w; N €2). Then
using Theorem 4.2 and since 7(w; N Q) < R, these balls may be grown
into a collection B; such that

r(B;) = 2R (4.33)

and, from Proposition 4.3 applied in Q to v = u/|u| and A, we have
summing (4.15) over all balls in By,

2
Eu(v, Vi \wy) +4R2H(A,V;) > 7D, <log _ e 2) . (4.34)
2r(we N Q)
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Figure 4.2: Q

where we have used the notation (4.7), (4.8), where V; is the union of
balls in B; intersected with Q and where D; = 3" 5 |deg(u, dB)|, the sum
running over the balls B € B; which are included in .

There exists ¢ € (0,1 — 0) such that Dy is minimal. We let

B = B;. (4.35)
— Step 3: Letting m denote the supremum of
F(K) = E4 <v, (KNQ)\ U) VAR H(A, K N ),

where the supremum runs over compact sets K & 2 such that r(K) <
2R; we can find such a K such that r(K) < 2R and F(K) > m — 1.
Note, in particular, that from (4.33) we have

F(K)+1>F(V,), foreveryte (0,1—09).
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We define By to be a collection of disjoint closed balls which cover the
balls in B defined by (4.35), as well as K and U. There exists such a
collection with total radius 5R. Clearly, from (4.31), item 1 of Proposi-
tion 4.7 is satisfied and item 2 is satisfied as well. It remains to check
(4.21).

— Step 4: Let Ko be the union of balls in By intersected with €)..
We have

I:=Ea(v, Ko\ wy) + r(Bo)*H (A, Ko) > F(K) + Ea(v,U \ wy).
It follows, by the definition of K and (4.34), that for every ¢t € (0,1 — )

I+1>F(Vi)+Ea(v,U\w) > Ea(v,V; \wy) + 4R H(A, V)
2R

= Thros dr(w N Q)

From (4.32) and since r(Bp) = 5R, the right-hand side is larger than

o <l°g )™ C) ’

thus (4.21) will be satisfied if we prove that Dy > Dy for every t. By
definition of B, we have Dy > Dg(B), where we have used the notation
Dg(B) for the sum ) p |de~g(u, 0B)|, where the sum runs over the balls
in B which are included in 2. But since By covers the balls in B, we have
from Lemma 4.2 that Dg(B) > Dg(Bo) and therefore Dy > Dg(Bp). It
remains to remark that

Dy := Dg,(Bo) = Dg(Bo).

Indeed if B € By and B C (), then the balls of U which are included in
B are included in €., hence are in Uy. Therefore BNUy = @ and B C ().

BIBLIOGRAPHIC NOTES ON CHAPTER 4: As we mentioned, the material
presented here is an improvement of the results of the sequence [166, 169,
170, 175], using the ball-growth idea first introduced independently by
Jerrard and Sandier in [113, 166]. The construction of [113] yields results
in n dimensions for the corresponding n-energy.

Several ball-constructions were previously introduced in the litera-
ture, all dealing with numbers of vortices bounded independently of ¢.
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First, in Bethuel-Brezis—Hélein [43], the balls are defined as a disjoint
covering of |u] < % by balls of radius less than C¢e, in number bounded
independently of . This requires u to be a solution of (1.3) and the upper
bound on the energy E.(u:) < Clloge| to hold. In Bethuel-Riviere [52]
appears the idea of using lower bounds on annuli of larger size than the
balls of [43]. The method again crucially uses the energy upper bound,
and the equation through the Pohozaev identity. It yields balls of radii
¥ a < 1 with corresponding energy lower bounds. This method was
later extended to nonsolutions by Almeida—Bethuel [14] via a parabolic
regularisation of the map wu.



Chapter 5

Coupling the Ball Construction
to the Pohozaev Identity
and Applications

The key ingredient here is the Pohozaev identity for solutions of Ginz-
burg-Landau. This identity was already used crucially in Bethuel-Brezis—
Hélein [43], Brezis—-Merle—Riviere [61], and its first use on small balls goes
back to Bethuel-Riviere [52] and Struwe [189]. Its consequences were also
explored further in the book of Pacard-Riviere [148]. Here, the idea is
to combine it with the ball-construction method in order to obtain lower
bounds for the energy in terms of the potential term [(1 — |u|?)? in-
stead of the degree, or equivalently, upper bounds of the potential by
the energy divided by |loge|. This method works for solutions of the
Ginzburg-Landau equation, without magnetic field as well as with. We
will present the two situations in parallel, in Sections 5.1 and 5.2. In the
third section of the chapter, we present applications to the microscopic
analysis of vortices of solutions of (GL) or (1.3). Among all these re-
sults, only Theorem 5.4 will be used later, for the study of solutions with
bounded numbers of vortices: for Proposition 10.2 and in the course of
the proof of Theorem 11.1.

5.1 The Case of Ginzburg—Landau without Magnetic Field
For simplicity we start with the case of solutions of Ginzburg-Landau

without magnetic field, i.e., we consider u which satisfies

u .
—Au = 6—2(1 — |u|*) in Q (5.1)
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with either Dirichlet boundary condition v = g on 9%, |g| = 1, and Q
starshaped, or Neumann boundary condition % = 0 on 992. We recall

the Ginzburg—Landau energy without magnetic field is written

/]V 2+ |U’)'

The Pohozaev identity consists in multiplying the equation (5.1) by
x - Vu where x is the coordinate centered at some point, and integrating
over the ball of radius r. If B(zg,r) N 0Q = @, it gives

— lul?)2 2 — lul?)2
i/(l €|2|>: / ( >+<1 WP 5

2e2
B(xzo,r) 0B(xo,T)

@2
or

_|ou
ov

Integrating this relation over r will yield bounds on the energy on annuli

2\2
in terms of [ % The main difficulty is to deal with the case of
balls intersecting 0€2. To handle this, we will perform a reflection in the

Neumann case.

Theorem 5.1 (Pohozaev ball construction). Let u be a solution
of (5.1). Let By be a finite collection of disjoint closed balls and let
{B(t)}ter., satisfy the results of Theorem 4.2. Then, letting ro = r(Bo),
there exists a constant C(Q) such that Vro < r1 < C(Q), and s being
such that r(B(s)) = r1, we have

1. For every B € B(s) such that B C ),
1 o, (L—u?)? (1 / (1 —Juf*)? r
= - > | = ——F— | log— (5.3
2 / [Vl + 2¢2 —\2 g2 o8 70 (5:3)
B\BO BonB

2. If Q is strictly starshaped and u satisfies the fixed Dirichlet bound-
ary condition u = g, |g| = 1, for every B € B(s) intersecting 02,

1 1— 2\2
/|V >+ ‘UH >3 / (=) g‘g’) log%—Cm,

B\BO BoNB
(5.4)

where C' depends on €2 and g.
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3. If u satisfies the Neumann boundary condition, there exists a finite
collection of disjoint closed balls B' covering UBes(s)B such that
r(B') < Cry, and for every B € B’ such that B C Q, (5.8) holds,
while for every B € B’ intersecting OS2,

C/W“F ’U|) > ;/(1_|u|2)2 logr—l, (5.5)

52 T0
BonB
where C' depends on €.

Remark 5.1. 1. Since the balls are disjoint, these estimates can be
summed over all the balls to give a single estimate over the union.

2. We do not need any assumption of the energy of u, rather this
proves a lower bound for it.

We start with a lemma, which is a generalization of (5.2). Let us
denote by

1 1
T;; = (Opu, Ou) — 3 <|vuy2 + 2—52(1 - |u|2)2> Sijs (5.6)

the “stress-energy tensor” as in Definition 3.4, but without magnetic
field. As in Proposition 3.7, a direct calculation yields that

01T + 02Ty = (@'% (Au + = (1 = |uf )))
hence if u is a solution of (5.1), we have
O1T1; + D915, =0 for every ¢ =1,2. (5.7)

Lemma 5.1. Let u be a solution of (5.1) and U be an open subset of 2,
then, for every vector-field X,

/ZXjViTij Z/Z(ain)Tij, (5.8)
where the indices i,j run over 1,2 and v denotes the outer unit normal

to OU.

Proof. This relation comes from multiplying (5.7) by X;, summing over
1 and integrating over U. In short notation, it yields fU XqdivTy +
Xodiv Tjo = 0. Integrating by parts leads to (5.8). O



86 Chapter 5. Pohozaev Balls

Observe that, 7 denoting the unit tangent vector to OU, we have on oU

> XjuTy = X, Ty + X, Ty (5.9)
irj
in obvious notation (with X, = X -v and X; =X - 7).
The Pohozaev identity (5.2) follows by taking the particular choice
X(x) = . —x9 and U = B(xg,r). It was used in [43] to obtain the
following result.

Lemma 5.2 (Boundedness of the potential [43]). Assume € is
strictly starshaped and u is a solution of (5.1) with w = g on 0 and
lg| = 1 (g independent of €), then there exists a constant C depending
only on g and 0 such that

Q/ U=pl?, |

o0

ou|?

— < (. .
| <c (5.10)

Proof. Assume that € is strictly starshaped around zg and apply Lemma
5.1 in Q with the particular choice X (x) = x —xo. We then have 0;X; =
di;, and hence

1

252(1 — |u?)2 (5.11)

Z(@‘Xg‘)Tij =Ty +Thy = —
i,J

Also on 99, X, T, + X T,; is equal to

(L Ju*)?

1
2 ('a”u|2 1ol -

> (x —x0) - v+ (Oru, Opu)(z — xo) - T.

Combining this with (5.8) and (5.9), we are led to
(1 —Jul)? 2 |ou|?
/ = Joa(z —z0) v — |5

52
Q
9z —zo) - T (%%) (5.12)

9g

or

Since 2 is strictly starshaped around xg, there exists a constant a > 0
such that (z — zp) - v > « on 99Q. Using this and a Cauchy Schwarz
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inequality in (5.12), we find

/ (1 —Jul*)?
g2 -
)

/ 09 on
or’ ov

‘- /%2_
@ ov

o0
dg 8u dg|?
< A ZJ
=¢ / ‘(‘37’ “ / ‘ 8V ¢ / or
o0 oN
where the constant C' depends only on ). Consequently,
/ (1- !u\ / ‘
Q
where C depends on (2 and g, and thus the lemma is proved. O

Proof of Theorem 5.1, interior result and Dirichlet case. The method
consists in a ball-growth procedure, as in Chapter 4.
Following Chapter 4, let us denote by

1 (1 — [ul?)?
B(z,r)NQ

It is easy to check that F is monotonic (in the sense of Definition 4.1).
Given the family {B(t)}, s > 0 and r; = r(B(s)), applying Proposi-
tion 4.1, we obtain that for every B € B(s),

S

oF
- > — : .
F(B) = F(BNBy) > >, g (wr)dt (5.13)
o B(z,r)eB(t)NB
But,
OF . _T 2, (1= |uP)?
OB(z,r)NQ

Now let zy be any point in Q and let us apply Lemma 5.1 in B(xq, )
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with X (z) = z—x¢. Using (5.11) and (5.9) as before, we find the relation

(L —Juf*)®
2
B(zo,r)NQ
2

%
or

%
ov

Py
2e2

o
— 2z —x) - T (g’z, g:f) . (5.15)

Observe that (5.2) follows if B(zg,r) N 0Q = &. Therefore, if B € B(s)
is such that B C €, it does not intersect 02 and, combining (5.2) and
(5.14), we can write that

O(B(z0,r)NQ)

2

ra—}—(a} r) = L / 7(1 ~ [uP)” +r / @
or 2 g2 ov
B(z,r) 0B(z,r)
1 (1 —[ul?)?
> — - .
>5[ 5 (5.16)
B(z,r)

Inserting this into (5.13), and using the fact that B(t) always contains
By N B, we are led to

1 , (—P?_ [1 (1= |uf?)?
- RS bl BV - RS hed BV
5 / Vul® + 5 _/2 / 5 dt

B\Bg 0 B(t)NB

2 (1~ [uf2)?

-2 g2

BonB

1o (1= Ju)?

= —log — - 5.17

20gr0/ = (617
BoNB

in view of the definition of 1. This concludes the proof of item 1).

Let us now prove item 2). In the Dirichlet case, let us return to (5.15).
U

Since % then depends only on g, |u| = 1 on 992, and since (5.10) holds,
we see that the contributions on 92 N B(xp,r) are O(|x — xo|) = O(r)
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as r — 0 and thus

ou |

/%:,/<

or
B(z,r)NQ OB(z,r)NQ

ou
v

2e2

>+(1 —W 4 o)

In the case where B intersects 0f), we can write in place of (5.16),

OF 1 (1 — |uf?)? ou|?
rﬁ(x,r)—i / — tr / W + O(r)
B(z,r)NQ OB (z,r)NQ
1 O—M)

B(z,r)N

Then, in place of (5.17),

u / — |ul?)?
/\V >+ H) >/; / w—()(r(w))dt

€
B\BO 0  B(t)NB
s (1 — [ul*)
SNES ey
BoNB 0
1 (L—Ju)?, m
Y S Sl A P .
5 [ s - o)
BoNB
And since r(B(s)) = r1, we conclude that (5.4) holds. O

Proof of Theorem 5.1 in the Neumann case. In this case, we need to ex-
tend u to a slightly larger domain  through a reflection. Thus let
denote the tubular neighborhood of size R of €, i.e., Q C Q. The proce-
dure is as follows: let @) be a smooth mapping of 2 onto the unit disc.
It can be extended to a mapping from Q to a domain strictly contain-
ing the unit disc. Then let R denote the reflection with respect to the
unit circle defined in complex coordinates by R(z) = @ The mapping

@ = 97! o R o then maps Q\Q to €2. One can check that it is the
identity on 0Q, that it is C? in Q\Q, and that Dy(x) converges to the
orthogonal reflection relative to the tangent to OS2 at xg as ¢ — xg € OS2,
at a rate bounded by Clz — zg|.
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We can then extend u, the solution of (5.1) with ?TZ = 0 on 012, by
7 =wuin ) and
a(z) = u(p(z)) if z € Q\Q.
Since Dy converges to a reflection with respect to the boundary as x —
0 and %% = 0 on 9Q, we find that @ is C* in Q.
The method is the same as before, i.e., we define

1 o (L= [ul?)?
B(z,r)
Again F is monotonic and
or _T N e L
OB (z,r)

Again, given {B(t)}, we consider s such that r1 = r(B(s)) < R.
We need to add to the collection of balls B(s) the (B N (Q\Q)) for all
B € B(s) which intersect 9. The (B N (Q\Q)) are not balls, however
their total radius is controlled by Cry, and thus they can be covered by
a finite collection of disjoint closed balls of total radius < Cry. Let us
add them to the collection B(s). These new balls may intersect some
of the balls in B(s). If this is the case, then we perform merging of the
intersecting balls according to Lemma 4.1, until we obtain a family of
disjoint closed balls, still of radius < C'r;. This is the final family we
need, it is denoted B’. Observe that by construction, any ball in B’ that
did not belong to the collection B(s) has to intersect 2. Hence, all the
balls B € B’ which do not intersect 99 are balls of B(s) and for them,
the proof of item 1) applies and gives the result.

We now only need to deal with the final balls which intersect 0f).
Since r(B’) < Cry, they will always remain inside Qifr; < R/C. We
claim that

Lemma 5.3. For every B(zg,r) C Q, we have

3

_ [@l2)2
/ 7(1 ‘2|) + O (rF(zo,r)) =

B(zo,r)

.

0B (zo,r)

o |

ar

(‘Lﬂ
ov

2 ==12)2
(1— [ul*) 2 0F
toam O @) ) (5.19)
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The proof is postponed until later in this section.
Now let B € B(s) be a ball possibly intersecting 0f2. Applying Propo-
sition 4.1 to (5.18), we obtain that

S

F(B)— F(BNBy) > > r%i(x, 7 dt. (5.20)
o BlameBONB O

OF r o (= [*)?
r—~(x,r) == / |Vu| +T.

But

OB (z,r)

In view of Lemma 5.3, we can then write that

OF 1 (1 — [a|?)?
Tﬁ(ﬂ?, 'I") = 5 / T +r /

B(xﬂ“) 8B(x,r)

o (W(x r>> +0 (rF (1))

@2
ov

or

1 (1 —[a*)? 2 0F
> > / 2 +0|(r o (x,r) ] +O (rF(z,r1)).
B(z,r)

Let us sum these relations over the balls B(x,r) € B(t) which are
included in B, and integrate this relation for ¢t € [0,s]. After inte-
gration, the errors on the right-hand side are bounded respectively by
r(B(s))F(B) (this follows from (5.20)) and by F(B) [ e'r(B(0))dt =
r(B(s))F(B) = r1F(B). Finally, inserting this into (5. 20) we are led to

;/\vuﬂ ’“' / / 1““' dt — CrF(B)

B\Bo
s (1 — [al*)
BoNB

And since s = log :—(1), we conclude that

1 o (I—fa?)? _ 1 / 1—[a*?,
- oD s o 2T gt (521
(2 +C’r1)/]Vu\ + 52 Z 5 = og o (5.21)
B

BoNB
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but

2, ‘U’ ) _} / 5 (- ’U‘2)2
/w\ =2 [ wup+ S EEE

1 _o (1—[aP)?

BA(O\Q)

Moreover, doing a change of variables, from the properties of ¢,

[ v T < 1+ 00) [ e U Ui

2e2
BA(O\Q) @(BN(\Q))

Returning to (5.21) we may write that

1— =12)2
/(E‘gy)logiég (5.22)
BonB
o (1= Ju?)? / o (1—ul*)?
C / Va2 + S5+ Va2 + =20
5o (BN(\Q)

Now let B; be a ball belonging to the final family B’ and intersecting 9€2.
We may add up the relations (5.22) obtained for all of the balls B € B(s)
contained in B(s) such that B C By or ¢(B) C Bj. Since these B’s are
disjoint (and so are the ¢(B)’s), each point in B; belongs to at most one
ball B € B(s) and/or one ¢(B), so is at most counted twice. This means
we can write

[ oo <c/ww (- by

Bon(Upcr, B)

Since By is covered by the collection B(s), we have By N (Ugcp, B) =
By N By, and we may conclude that (5.5) holds for B;. O

Proof of Lemma 5.3. If B(xo,r) does not intersect OS2, then this was
already established. Let thus B(xg,r) be a ball intersecting 0.

Let D1 = B(zo,7) N Q and Dy = B(zg,7) N (R?\Q). We may apply
directly (5.15) in D; and get
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Py
22

noN

B(z0,m)N B(zo,r)
oul®  [oul®  (1—|ul?)?
+ / r ( E 8V + 7282 (523)
OB (z0,r)NQ

where the terms in % on 0f2 have vanished due to the Neumann bound-
ary condition.

Let us now write a Pohozaev type identity on D} = p(D2) C Q. We
define y = ¢(z) and Y (y) = Dp(x)(x — x0), i.e., the push-forward of the
vector field X (x) = x — x¢ by ¢. Applying Lemma 5.1 to the vector field
Y on D), we find

/Zay =
/ “J

Let us study each of the terms in (5.24). First, since Yj(y) -
Zkak@j(iU)X( )=k 8% Xi(z), we have

/ ZYVZ - (5.24)

aD),

0? Yj &m (2) %8)@ ox;
(9yZ 8xk8xl y; X Oxy, Ox; Oy;
But %)il’“ = 0y, hence we find
0%y; Ox
;s
ayl 83%896; ayz k(aj) * ’

In view of the behavior of y = ¢(x) mentioned above (bounded second
derivative, invertible first differential), the first term on the right-hand
side is bounded by a constant times | X| = |« — x| = r. In other words

&'Yj = 52']‘ + O(T).

Inserting this into (5.24) and using the expression of Tj;, we find that
the left-hand side of (5.24) is

*UQQ
-5 [ S v ourm).

22
Dy



94 Chapter 5. Pohozaev Balls

Since |Tj;| < C <|Vu]2 + %) this can be written

~ ul2)2
/Z(aiyjmj - —;/(1’2‘)+0(7~E€(u,3(m0,7~))), (5.25)

T 13
A D

/,V py O E)

Let us now deal with the right-hand side of (5.24). We recall that

where E.(u,U) denotes

/ZYVz ij = /YTVI/+YTI/T
oDy " dD}

There are two contributions to this term, the one on 02 and the one on
0D, N K. For the term on 9€, observe that from the Neumann boundary
condition we have T, = 0 on 9Q. Also Y, =Y -v = —(z — xg) - v by
definition of Y = Dp(z — xg) (since Dy coincides with the reflection
with respect to 9Q on 9€). Thus the contribution of that part is

2 1 — |ul?)?
J e

0QNB(xo,r)
For the contribution on 9D} NS, we use the fact that Dy is the reflection
relative to the tangent to 92 up to O(r), hence Y, =Y - v = r + O(1?)
and Y, = O(r?). We finally obtain that

87u
or

ou|? 1 — |ul?)?
/ZYJ'ViTz‘j: / (90—1‘0)"/<87 +(2‘€2|)>
oD, I 8QNB (zo,r)
o / @ ou |? n (1 — |ul?)?
2 or v 2e2
0DLNQ
1— 2\2
2e

aD,NQ
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Combining this with (5.25) and inserting into (5.24), we find

_ ul?)?
/(1||)+O(rE€(u,B(£U0J’)))

£2
Dy
oul® | (1= |u})?
- / “”“"”0)'”((97 M=
QN B(xo,r)
o | duf* |ouf’ | (L= [uP)?
" or ov 2e2
aDLNQ
2 2 (1- |U’2)2
+0|r / |Vul +T

aD,NQ

Adding up this relation to (5.23), and observing that the contributions
on Jf) cancel out, we are led to

a2 ~ul2)2
(1 \QI) +/(1 |2’) + O (rE.(u, B(zo,r)))

5 5
B(zo,r)NQ D),
/ oul®  |oul*  (1—|u?)?
—r = =] +—
or ov 2e2
OB (z0,r)NQ
I (T
" or v 2¢e2
ODLNQ
1
2 2 2\2
+o|r / Vul? + 55 (1~ [uf?)

oD,NQ

Then, we need to do a change of variables, writing z = p(z’). We claim

that Q- [P? [ (=R
/ - [E=F a0,

52
D} Do
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Oul_0ul s L jupey =
or| |ov DA N
aDyNQ
gul® _|oa|® (- [a?)
or ov 2e2
OB(z0,7)N(R2\Q)
(1 —Ju/*)?

+0|r / |Vu|? +
ODLNQ

2¢2?

Indeed, the change of variables involves the Jacobian |det Dy| =
1+ O(r) and modifications of the terms in Vu. The result follows since
D¢y approaches the reflection with respect to the tangent to 9€) at the
rate r. We finally are left with

)2 — 17[2)2
/(1 Jul?) +/<1 T 40 (4B, Blao, 1))

g2 g2
D1 D2
/ oul®  |oul®  (1—|ul?)?
=T —_ _ | — _|_ =~ v vz
or v 22
OB (z0,r)NQ
oul* |oul* (1—[u?)?
+r bk I Ll L
or v 2e2
0B(z0,mr)N(R2\Q)
2 o (1—[aP)?
+O0|r / |Vul|* + S
9B(zg,r)
Since D1 U Dy = B(xg,r), we have established (5.19). O

5.2 The Case of Ginzburg—Landau
with Magnetic Field

We now consider (u, A) to be a solution to the Ginzburg-Landau equa-
tions with magnetic field (GL). The Pohozaev identity is again a direct
consequence of Proposition 3.7.

Lemma 5.4. Let (u, A) be a solution of (GL) and U be an open subset
of €1, then, for every vector field X, T;; denoting the stress-energy tensor
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with magnetic field (see Definition 3.4), we have
/ZXsz’Tz‘j :/Z(ain)Tija
ou b U b

where the indices i,j run over 1,2 and v denotes the outer unit normal
to OU.

The proof is exactly the same as for Lemma 5.1. Choosing X = x—x
and replacing the Tj;’s by their expressions as we did in the proof of
(5.15), we find the Pohozaev identity

[OOSRy

52
B(zo,r)NQ

_ 2\2
- / (z —x0) - v <|VAU'T’2 - ’VAU-V]2+M —h2>

2e2
O(B(x0,r)NQ)
—2(x —x9) -7 (Vau-1,Vau-v). (5.26)

Using the same growing and merging of balls method, we deduce the
analogue of Theorem 5.1, where we recall F; is defined in (4.1).

Theorem 5.2. Pohozaev ball construction — case with magnetic
field. Let (u, A) be a solution of (GL). Let By be a finite collection of
disjoint closed balls and let {B(t)}cr, satisfy the results of Theorem 4.2.
Then, letting ro = r(Bo) and r1 = r(B(s)), there exists a constant C(12)
depending only on Q such that for any s > 0 such that r1 < C(Q), we
have

1. For any B € B(s) such that B C €,

1 1 — |ul?)?

2e2
B\Bo

1 (1 — [uf?)?
> (5 / S - Cr(B)F(u, A, B)
BoNB

dog =L — Cr(B)F.(u, A, B). (5.27)
0
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2. There exists a finite collection of disjoint closed balls B' covering
Upen(s)B such that r(B') < Cry, and for every B € B’ such that
B C Q, (5.27) holds, while, for every B € B’ intersecting 052,

¢ [ s O

B\Bo

RO n
> 5 [ S - ormRwa D) s
BoNB

—Cr(B)F:(u,A,B), (5.28)
where C' is some constant depending only on w.

Proof. The proof follows the same lines as that of the Neumann case of
Theorem 5.1.

— Step 1: extension of (u, A). Rather than extending u and A, we extend
lu| and V q4u. We use the same mapping ¢ as before, which maps Q\Q
to Q. We define [u|(z) = |u|(p(z)) if z € Q\Q (and = |u|(z) if z € Q),
and

Vau(z) = (Dp) " p(@))Vau(p(x)) if 2 € Q\Q.

Since v - Vau = 0 on 02, and Dy is the orthogonal reflection with re-
spect to the tangent to OS2 there, we find that V 4u extends continuously
to Q. We also extend h by h = h(p(z)) in Q\Q.

— Step 2: Ball-growth. We denote by

F(a,r) :; / [V aul® + A=l ) 2|;2L|2)2.
B(z,r)
It is monotonic, and
OF r =@, (- WQ)Q
TE(ZL‘,T) =3 / |V au|* + oo

OB(z,r)

Given the family {B(t)}, s > 0, and r, = r(B(s)), let B € B(s). If B C
then, we can work in Q without the extension, and (5.26) yields for any
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B(xzg,7) C B,
1— 2\2
[ Oy
€
B(zo,r)
1— 2\2
=r |V au T|2— |V au - v —i—( [ul") h.
2e2
0B (zo,r)
We deduce
OF 1 (1 —[u*)? 2 r 2
> ~ ) 9 - .
rar(:rr) 2/( = h t3 /h
B(z,r) 0B(z,T)
Applying Proposition 4.1 as before, we find
/ |V aul? + |u| / Z r%—f(m,r) dt
B\Bo (z,r)eB(t)NB
1 (L= Ju®)?,
> = ——log —
-2 / g2 o8 0
BoNB
/ Z / h? —g / K2 | dt
(zr)eB(t (z,r) OB(z,r)

We claim that

S

/ 3 /hQ—g/hQ dt

0 B(LL’,T‘)GB(t)ﬂB (3371") aB(J?,T‘)

1
<0 (s+3) BN

<C <log:(1) + 1) r(B)F.(u, A, B). (5.29)

This concludes the proof in the case B C . Let us now prove (5.29).
Observe that if h? is constant over B, then the left-hand side of (5.29)
is identically 0. We may thus prove the inequality with h? — k2 in the
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left-hand side instead of h?, where h2 denotes the average of h? over B.
Let us now observe that

/ > / — h2)dt <s/\h2—f22\

(x,r)eB(t) ﬂBB B

while using Proposition 4.1 applied to F(z,r) = fB(z r) |h? — h~2| we get

/ > g/(h — h2)dt| < = /|h2 R2|.

B(z,r)eB(t)NB 8B(z,r) B
We deduce
2 T 2 1 2 7
Z h =5 W lde< s+ ) [ [h*=h2.
(z,r)eB(t (z,7) 0B(z,r) B

(5.30)

But, by Poincaré’s inequality, we have

[ =iz < o) 19021 < orw) [1nval < onm) [ [wnpe

On the other hand, since (u, A) is a solution of (2.4) we have |Vh| <
|V au| from Lemma 3.3 and thus 3 [, |VA|*> + h? < F.(u, A, B). Insert-
ing this into (5.30), we find (5.29).

— Step 3: case of B intersecting 0. We claim that for any B(xz,r) C €,
we have as r — 0

a2 _ _1,12)2
=T _giofr [ oy AlPP e
g2 3

B(z,r) B(z,r)NQ
—2
_ _ 1— 2
=17 / |TVAU|2_|VVAU|2+w— 2

OB(z,r)

2\2
—l—O T'2 / ‘V U‘Q (1 J:u| ) +T‘h2
OB(z,r)NQ
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The proof is similar to that of Lemma 5.3. We deduce

oOF 1 A—fa?)? =2\ 72
el > RS bl BV Z
. (x,r) > 5 / ( = 207 | + 5 / h

B(I,’I’) 8B(:Jc,r)

+0 TQ?a—f(x,r)Jrrz / R | +0 | rF(z,r)+r / h?
OB(z,r)NQ B(z,r)NQ

Integrating between 0 and s as before, we are led to the fact that for any

B € B(s),

5 S / (I_W—C(s+;>r(3)/|Vh|2+h2
B

OF
-C Z 7“25—1—7“2 / h2+r]-'(:r:,r)+r / R | dt.

o B(zr)eB()NB OB (z,r)NQ B(z,r)n§2

The last error term on the right-hand side can be controlled as follows:

Z 1“288—]:+r2 / W2 +rF +r / h2 | dt
T

0 B(z,r)eB(t)nB OB(z,r)NQ B(z,r)NQ
r OF 2
<1(B) / 2, gt / ) dt
0 B(z,r)eB(t)NB 8B (x,r)NQ

BNQ 0

+ (f(B)+ / h2>/r(5(t)ﬂ3)dt
< 2r(B) (]—"(B) + h2)



102 Chapter 5. Pohozaev Balls

where the last inequality follows by applying Proposition 4.1 to F(z,r)+
fB(x ") h?, and from the fact that »(B(t) N B) = e'r(B(0) N B). On the

other hand, [ |Vh[* + R < C [gnq [VR|? + h? and we conclude that

L[ o ru\ ?

B\Bo
1 (1—1|u®?, 1
> = = og— — - .
Z 5 / 2 log o Cls+ 5 r(B)F:(u, A, B)
BoNB

Modifying the collection of balls and finishing as in the proof of Theorem
5.1, we deduce that (5.28) holds. O

5.3 Applications

Once these results are known, we apply them to a collection By covering
w={z € Qu(z)] <1-—0} where § < 1 may depend on ¢, and we
deduce the following result.

Theorem 5.3 (An upper bound for the potential term). Let u
be a solution of (5.1) or respectively (u, A) a solution of (GL), and write

F.(|ul, Q) /\V| 12 + |“| Y (5.31)

Then

1. If u solves (5.1), for every r and § such that % < =5, with B < 1,
there exists a finite collection of disjoint closed balls B with r(B) <
Cr such that

Q- _ ¢ BE(uwB)
g2 —1-70 |loge|

{z€Q,,|u|<1-5}

where §, denotes {x € ,dist(z,002) > r} and C is a universal
constant.

2. If u solves (5.1) with fized Dirichlet boundary condition and

is strictly starshaped, or with Neumann boundary condition, for
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every r and d such that % < siﬁ’ with B < 1, there exists a finite
collection of disjoint closed balls B with r(B) < Cr such that

(1-P? _ C BB
g2 ~1-08 |loge|

{zeQ,|u|<1-6}

3. If (u, A) solves (2.4), for every r < @ and 6 such that % < E%,
with B < 1, there exists a finite collection of disjoint closed balls B

with r(B) < Cr such that
(1-JuPP _ C F(wAB)

5.32
g2 —1-p |loge| (5:32)
{zeQ,|u|<1-6}
Proof. Let us first prove that
eM
r({z € D fu(@)] £1-6}) < Oy (5.33)

We have the estimate |V|u|| < g, which follows from Corollary 3.1 (or
the analogue for (5.1)). Therefore, arguing as in [43], if |u(zo)| < 1-9, we
have |u(z)| < 1—$ in B(wg, Ad¢) for some well-chosen A > 0 independent
of € and J. We deduce that

/ (el Ul > pod? (5.34)

22

B(zg,\o¢)
for some constant pg > 0 independent of € and . Let us consider the
union of all such balls B(zg, Ade) over all 29 € w = {z € Q,|u(x)| <
1—0}, which cover w. Extracting a Besicovitch covering, we may assume
that each point is in at most 3 such balls, and we deduce

_ 2)\2
Q

where n is the number of the balls in the covering. We deduce that
n < %4” and thus r(w) is bounded by the total perimeter of the balls
hence by Cnde < C% )

For the case of (5.1), we directly apply Theorem 5.1 to By, a finite

collection of disjoint balls covering w = {zx € Q,|u(z)| < 1 -0}, and s
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such that 7(B(s)) = r. From (5.33), we have r(w) < C’%—Af, hence we can
have r(Bp) < C’%/[. Theorem 4.2 yields a family {B(t)}icr, , and given r
small enough, Theorem 5.1 allows us to construct from B(s) (such that
r(B(s)) = r) a finite family of disjoint closed balls B covering By such
that r(B) < Cr. Restricting to By N Q, instead of By, we are sure that
all the balls in the collection are in a tubular neighborhood of size r of
UBeB, B and hence are included in 2. We may thus apply the estimates
(5.3) and add them up over all the balls in B, getting

1 (1-— |u]2)2 ré3
D RS bl BV
Eelu,B) 2 2 / g2 log CeM
wN2yr

hence in view of the assumptions on r and 4,

1 (1 — |uf?)? 1 CM

> — - R —_—

E.(u,B) > 5 / 3 log 5 log 53
w2y

2)2
> 5 [ S - siosel - o)
£
wNy

and the result easily follows. The Dirichlet case works exactly the same
way, using (5.4) instead of (5.3).

For the case of (GL), apply Theorem 5.2 with By covering the same
w. This yields a finite collection of disjoint closed balls B with r(B) = r
such that, adding up over all the balls the estimates found in (5.27) or
(5.28), we have

1 1 — |ul?)?
CY%(UrAag)Ei fZJI(L‘)

w

— Or(B)F(u, A, B) | log %w)
— Cr(B)F:(u, A, B).

e

Arguing as above, we deduce

L[ (1= Ju?)?
CF.(u,A,B) > 5 =~ Cr(B)F.(u, A,B) |((1-8)|loge|-C)
and if r(B) < |kga| we conclude that (5.32) holds. O



5.3. Applications 105

As a main application, we obtain that if u is a solution of (5.1) with
Dirichlet boundary condition and FE.(u) <  C|loge|, then
ﬁU\S%(l — |ul?)? < C. This in turn suffices to bound by a uniform con-
stant the number of vortices of u. Then, below we use Theorem 5.1 again
to get improved lower bounds in terms of the degrees of the vortices. In
order to obtain an analogous result for the situation with magnetic field,
we need to anticipate a bit on the forthcoming chapters, and introduce
hg the solution of

—Ahg+ hg=0in
{ ho = 1 on 0f2.

Once hy is defined, for any A, we define A’ = A — hex V> ho.

Theorem 5.4 (Microscopic lower bound). Let {u.}. be solutions of
(5.1), such that E.(uc) < C|loge|, with Dirichlet boundary condition
(and QU strictly starshaped) or Neumann boundary condition, or let re-
spectively { (ue, Ac) }e be solutions of (GL) such that F.(us, AL) < C|loge|
and hey < 8 with 3 < 1. Then the following holds as € — 0.

For every n > 0, there exists R > 0 and for any € small enough a
finite collection of disjoint balls B(a1, Re), ..., B(ak, Re) (a; depending
on €) with k bounded independently of € such that

1. {Juc| < 3} C UL B(a;, Re).
2. |a; — aj| > ¢ fori# j, and dist(a;, 0Y) > € for every i.
3. The d; = deg(u.,dB(a;, Re)) are all nonzero.

4. For every 1l >r > ¢,

r
E(ue) > Z (mdf — ) log (5.35)
1€[1,k]
dist(a;,00Q)>r
respectively for any r < min <| loge|™t, (1/]log dhex)*l),
T
Fo(ue,AL)> > (wd} —n)log oz o). (5.36)

1€[1,k]
dist(a;,0Q)>r

Moreover, if us (resp. (ue, Ac)) is a very local minimizer (as in Defini-
tion 3.8) of E., resp. G, around any point, then ViB(a;, Re) contains a
unique zero of us of degree d; = +1 in 3).
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Before we give the proof let us state a simple lemma, a consequence
of Theorem 3.4.

Lemma 5.5. Let {u.}c~0 be solutions of (5.1) with Ec(u:) < 6%, respec-
tively (ue, Ac) solutions of (GL) with F.(ue, A;) < 6%, in a domain .
For every ¢ > 0 and every n > 0 there exists R > ¢ such that if |uc| > %
in B(ze, Re)\B(ze, ce), letting d. = deg(ue, 0B(xo, ce)), we have

B 2\2
/ (i 5 P B

g2
B(ze,Re)

Proof. We start by observing that the degree d. is bounded indepen-
dently of . Indeed, recall the definition

[ (e
2 lu|? "ar )

OB (ze,ce)

With the a priori bounds for solutions |u.| < 1 and |Vu.| < g resp.
|V ue| < g (see Corollary 3.1), we easily deduce that d. is bounded
independently of €.

If the desired property were not true, this would mean that we can
find n > 0, ¢ > 0, and a sequence u. of such solutions and of points z.,
such that for every R, |uc| > 3 in B(z., Re)\B(zo, cg), and

1— 2\2
/ (8’2‘5’) <2rd? —n (5.37)
B(ze,Re)

where d. = deg(ue, 0B(z.,ce)). Since we saw that d. remains bounded,
we deduce that [, ( (A—fue?)?

Ze,Re) €2
R. Rescaling and considering U.(x) = u.(zc + ez), from Proposition
3.12 we find that, after extraction of a subsequence, U. converges in
CL.(R?) to U, the solution of (3.12), with [U| > 1 in R*\ B(0,¢) and

—|ue 2\2
Jar (1= U < €. Indeed, [5, p S = [0 (- [U?2 < C,

2

< C where C is independent of € and

so by strong CL  convergence fB(O R) (1—|U|?)? < C and since this is true
for every R and C'is independent of R, we deduce that [,(1—|U|?)* < C.
Moreover, we may assume d. — d = deg(U,0B(0, c)) (because the d.

form a bounded sequence of integers). From Theorem 3.4, we find that
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Jg2(1—|U[*)? = 2wd?. By the strong convergence of U, this implies that

1— 2\2

2
B(z¢,Re)

for € small enough and R large enough, a contradiction with (5.37). O

Proof of Theorem 5.4.

— Step 1: Boundedness of the potential. For the case without magnetic
field, we deduce from Theorem 5.3, combined with the bound F.(u) <
Clloge|, that

/ Al _ o (5.38)

g2 -
{z€Q,ul<1— o}

In the case with magnetic field, we observe that since hg is a smooth
function, for any collection of disjoint closed balls, we have

Fe(u, A, B) < Fo(u, A') + Chex® Y 1(B)? + Chex Y 1(B)/Fo(u, A')
BeB BeB

< Fo(u, A") + Chex’r(B)? + Chexr(B)\/Fe(u, A").  (5.39)

Also observe that M < F.(u,A’) < Clloge| in (5.31). So choosing in
1
llogel2 1

hex 7 |loge|

/ A=)’ _

e2
1
{|u|§1—‘10g5‘}

Theorem 5.3 r = min(

), we also find that

— Step 2: Boundedness of the number of balls and properties of the
balls. This step is as in [43] and [77]. From (5.34) applied to § = 3, if
|u(zo)| < %, then

(L Ju*)

o > po (5.40)

B(Z‘o,)\s)

for some p > 0 and A > 0 independent of €. Thus, combining this with
(5.38), we see that there can only be a uniformly bounded number of
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disjoint balls of radius Ae which intersect {|u| < %} Using a covering
argument as in [43], we deduce that the set {|u| < 5} can be covered by
a finite number of disjoint balls of radius Ae centered at a;, the number
of balls remaining bounded independently of €. Merging the balls into
larger balls if necessary we can always assume that |a; — aj| > ¢ for
i # j. Moreover, we have dist(a;,0€2) > e, because otherwise (5.40)
would be in contradiction with the last part of Proposition 3.12 (valid,
as we mentioned, without magnetic field).

Finally, let us assume by contradiction that d; = deg(u, dB(a;, Ae)) =
0. We may assume |u(a;)| < 3 (otherwise the ball could be removed from
the collection) and, considering U.(x) = u(a; + €x), we may assume that
U. converges in C (R?) to a solution U of (3.12), of total degree 0 on
large circles. Passing to the limit in (5.38), we find that [, (1 —|U[?)? <
oo. It is known (see [61]) that such solutions of degree 0 are constants
of modulus 1. This is in contradiction with |u(a;)| < 3 and the uniform
convergence of U.. Thus, the degrees d; are all nonzero.

— Step 3: Lower bound. We may now apply Theorems 5.1 or 5.2 to
By = {B(ai, Re),i € [1,k],dist(a;, 02) > 4r} and s such that r(B(s)) =
r. This ensures that the balls we obtain, being of radius less than r, do
not intersect {x € Q, dist(x,9Q) < r}. Combining the result of Theorems
5.1 to the result of Lemma 5.5, we find that (5.35) hold.

For (5.36), combining the result of Theorem 5.2 to Lemma 5.5, we
find

F.(u,A,B) > (Wzd? —n—CrF.(u, A, B)) log é — CrFg(u, A, B).

)

i 1 1
Choosing r < Moge] and r < he/ oz ]

F.(u,A,B) < F.(u,A") + 0o(1) and rF.(u, A, B) < o(1) hence

and using (5.39), we have

Fe(uv A/) > <7Tzdz2 - 77) logé - 0(1)

7

and (5.36) is proved.
The last assertion follows from Proposition 3.12. O

Remark 5.2. 1. Our results (5.35)—(5.36) are easy consequences of
Theorems 5.1 and 5.2. A stronger result is proved by Comte and
Mironescu in [77, 79], using more specific arguments: for solutions
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of (5.1) with Dirichlet boundary conditions, the equality E.(u) =
7Y, d?|loge| + O(1) holds.

2. By a diagonal argument, one can obtain o(1) instead of 7 in the
lower bounds above.

3. In the case of (5.1) with Dirichlet boundary condition, it was proved
in [43] that

k

(1 — |ul*)? 2

2w didy
i=1

in the sense of measures, where the a?’s are the limits of the vortex-

points a; as € — 0, and belong to €2. Therefore, it means that

uiﬂ — 0 in the sense of measures in a neighborhood of 0f2,
hence there can be no a$ above converging to 02 because it would
contradict (5.40). Thus the condition dist(a;,02) > C > 0 for
small € is always satisfied in that case, and one may take r =
min(C, 3) in the theorem above.

The previous theorem does not apply to unbounded numbers of vor-
tices. However, we may return to the setting of Chapter 4 and link the
regular ball-construction with this Pohozaev ball-construction. In the
same spirit as Theorem 5.4, this yields details on the microscopic behav-
ior of local minimizers in the case of an unbounded number of vortices.

In the next propositions, we take advantage of the fact that the lower
bounds of Propositions 4.2 and 4.3 really include the squares of the de-
grees, to say that if the energy grows like the total degree times log during
the ball growth, then the degrees at appropriate small scales should be
+1.

In what follows, as in Chapter 4, if B is a ball, dg denotes the degree
of the map on the boundary of the ball if B C €2, and 0 otherwise.

Proposition 5.1. (Microscopic analysis of very local minimizers
— case without magnetic field). Let {uc}eso be very local mini-
mizers, in the sense of Definition 3.8, of E. (around every point), and
such that E:(u:) < E% Let B(s) be a collection of disjoint closed balls
obtained by ball growth from an initial collection By, as in Theorem 4.2;
such that, as € — 0,

1. s > fB|loge| for some 1> > 0.
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2. There exists 6 = o(1) such that
lue| >1—4¢ in Q\ Upep, B, (5.41)
and 0E.(u:) < o(|logel).
5. Where D =} peps) ldBl,

E-(us,B(s)) — Ec(ue, By) < mDs + o(]logel). (5.42)

Then, for e small enough, in the union of the balls of B(s) that do not
intersect OSY, u. has exactly D zeroes, more precisely each B € B(s) such
that B C § contains exactly |dp| zeroes, all of degree £1 = sign(dp).

Proof. — Step 1: Use of the ball-construction.

Let v denote |Zi| in Q\ Upep, B. Let B(t) be the collection of balls in

the ball growth for ¢ € [0, s]. For every B € B(s), we recall the notation

IDEIP6) = > di.

B'eB(t)nB
B'cQ

From Proposition 4.2, we have

1 S
! / Vo2 ZW/HDBH%) . (5.43)
B\B(0) 0

Summing over all B € B(s), and comparing with (5.41) and (5.42), we
deduce

Y [ IDslPt)dt < (1426) > (B-(uc, B) = E-(uc, By N B))
BeB(s) BeB(s)

<ms »  |dg|+o(|logel). (5.44)
BeB(s)

On the other hand, we always have (see Lemma 4.2), for every B € B(s),
ID5[*(t) > |dp] (5.45)

with equality if and only if dg: = sign(dg) (or 0) for every B’ €
B(t) N B. If there is not equality, since the inequality involves inte-
gers, we have ||Dg|%(t) > |dg| + 1. Let us assume by contradiction
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that, given 0 < a1 < ag < 3, for every t € [a1]logel, az|logel], there
exists a ball B € B(s) such that we have |[Dp||?(t) # |dg|, hence
|Dg|I%(t) > |dg|+ 1. Plugging this into (5.44), we find (ag — )| loge| <
o(]logel), a contradiction. Hence, for every 0 < a; < g < 3, there ex-
ists t € [a1]loge|, az|loge|] such that for all B € B(s), |Dg|*(t) = |dg|
and thus dp = deg(v,0B’) = sign(dg) (or 0) for every B’ € B(t) N B.
In other words, picking such a t, there are |dp| balls of nonzero degree
in the collection B(t) N B, they all have degree dp = sign(dp), and

Z dg = dg.

B'eB(t)NB

Moreover, comparing (5.45) with (5.44), we must have for every B €
B(s),

E.(ue, B) — Ec(us, Bo N B) = wldp|s + o(|log g]). (5.46)
On the other hand, using the ball-construction as above, we have, for
every B’ € B(t) N B,
E.(ue, B') — E-(us, By N B') > 7|dp/|t + o(|loge), (5.47)
while

Ec(uz, B) — Ec(ue, B(t) N B) + o(|logel) >

/HDBH?(k) dk > 7|dg|(s —t) (5.48)

where we have used (5.45). Combining (5.48) to (5.46), we find
E.(us,B(t) N B) — E-(us, By N B) < m|dp|t + o(] loge]).
Comparing this to (5.47) which we sum over all B’ C B, we have

™ Y |dpl|t < Ec(ue, B(t) N B) — Ec(ue, By N B) + o(| loge])
B'eB(t)CB

<wldglt=7 > |dplt.
B’eB(t)CB
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We deduce that there must be equality for each B’, that is, for every
B’ € B(t),

E-(us, B") — E(us, By N B') = w|dp|t + o(| loge|) = 7t + o(|loge|)
(5.49)

(or = o(|logel|) if dg = 0) since, as we established, dp: = sign(dpg).

— Step 2: Use of the Pohozaev ball-construction.
We still consider a t > 1 which satisfies the conclusions of Step 1. The-
orem 5.1 applied with By and B(t) yields, for every B’ € B(t) such that
B’ c Q,

2 g2 - 2e2
B'NBy B/\BO

— 2)2 _ 2)2
E / (1 |’LL5| ) <1 / ‘VUg‘Z‘i‘ (1 |Us| ) 7

hence from (5.49),

1 (1- |u€|2)2
B'NBy

or <o(l)if dg = 0.
— Step 3: Blow-up analysis.

Now let a; be the zeroes of u.. According to Proposition 3.13, since
E.(us) < E%, for any such af, the rescaled maps w.(z) = us(a + €x)
converge as € — 0, up to extraction, to a radial solution of (3.12) as
described in Theorem 3.2, i.e., a solution with a unique zero of degree
+1 or —1. We deduce that any two zeroes of u. are at a distance > ¢
from each other and from the boundary. Moreover, from Theorem 3.4,
we have

1— 2)\2
lim lim 7( ‘gs‘ )
R—o00e—0 IS
B(a$,Re)

= 2m,

and we deduce as in Lemma 5.5 that for every n > 0, there exists R > 0
such that the B(a$, Re)’s are disjoint, and, using the notation above,

[ Uttt / (1 uef?
g2 - e2 ]
B'NBo Ui /as e B ,Re)N{Jul <13} i/a;eB’

\Y
(]
Y
E



5.3. Applications 113

Comparing with (5.50), we immediately deduce

Z (2mr —n) <27

ifaSeB’

hence, choosing 1 < 1, we find that each B’ € B(t) N B which does not
intersect 02 contains at most one zero of u, of degree sign(dp). Since,
for every B € B(s) included in 2, B(t) N B contains exactly |dg| balls
of nonzero degree, we find that B contains exactly |dp| zeroes of degree
sign(dp), hence the result. O

The following version with magnetic field will be used in Chapter 11.

Proposition 5.2. (Microscopic analysis of very local minimizers
— case with magnetic field). Let {(uc, A:)}es0 be very local min-
imizers of G (around every point) in the sense of Definition 3.8. Let
B(s) be a collection of disjoint closed balls obtained by ball growth from
an initial collection By, as in Theorem 4.2; as € — 0,

1. s > B|loge| for some 1> [ > 0.

2. There exists 3 < 3 such that

1
Fo(ue, Ag) < e (5.51)
3. There exists 6 = o(1) such that
lue| >1—4¢ in Q\ Upep, B, (5.52)

and 0F;(us, A;) < o(]logel).
4. Where D =3 peps ldBl,

F.(ue, Ac, B(8)) — Fe(ue, Az, By) < wDs + o(] logel). (5.53)

Then, for e small enough, in the union of the balls of B(s) that do not
intersect O8Y, u. has exactly D zeroes, more precisely each B € B(s) such
that B C § contains exactly |dp| zeroes, all of degree +1 = sign(dp).
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Proof. The proof is along the same lines as for the case without magnetic
field. We present the main adjustments that need to be made.

In the first step, we replace (5.43) by (4.14) which, denoting r =
r(B(s)) and ro = r(By), yields

1 1
3 / ]VAUQ—l—2T(B)(r1—r0)/|cur1A]2

B\Bo B
T (B
> !u%ww(l )ﬁ

L —To

From (5.53), we deduce by (5.52) that

1
mDs + o(|logel|) > 5 Z |V 40|% + | curl AJ?
BEB(S)B\BO
> [1Ds10) (1- 220) ar
T —7To
0

Assume by contradiction that there exists 0 < a1 < ag < 3 such that for
t € [a1]logel, an|logel|], we have || Dp(t)||* > dp + 1, then, since as < 3,
we have r(B(t)) < 71 in this interval; thus we find, arguing as in the case
without magnetic field,

azl|loge]
oflloge) = [ (IDalP(O1 = o(1)) - dn) de >

ai|loge|

(a2 — a1)|logel,

N

a contradiction. The rest of the step follows as in the case without mag-
netic field.

For the second step, we pick ¢ < alloge| with o < 8 — /', and use
Theorem 5.2 which yields, if B’ C Q,

l (1 ]u5]2)2 1 / 2, (1 ‘u€‘2>2

— -~ =7 < \V/ ~ vt = s

2 / g2 -2 IV 4. e €
B'NBy B'\Bo

+ C(t+ 1)r(B")F.(ue, Ac, B')
< 7t + o(|logel)
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Now, r(B') < r(B(s))et™® < et < &P~ < &, thus #(B') F.(u, A., B)
< 1 from (5.51), hence we find

t 1— 2\2
5 / (€|g€|) < 7wt + o(|logel)
B'NBy

and o(]logel) if dgr = 0, and thus the same result (5.50) holds. The third
step is the same. ]

BIBLIOGRAPHIC NOTES ON CHAPTER 5: The results of this chapter
and the idea of coupling the ball construction method to Pohozaev are
new; however, as we mentioned, the Pohozaev identity has always been
used for Ginzburg-Landau starting with Bethuel-Brezis—Hélein, Brezis—
Merle-Riviere [43, 61] and Bethuel-Riviere [52], Struwe [189] on small
balls, in particular for deducing bounds on the potential from bounds
on the energy. In this respect, Bethuel-Orlandi-Smets [50] have some
related and general result valid in any dimension.



Chapter 6

Jacobian Estimate

In this chapter we show that the vortex balls provided by Theorem 4.1,
although they are constructed through a complicated process and are
not completely intrinsic to (u, A) (and not unique), have in the end
a simple relation to the configuration (u, A), namely that the measure
> 2md;dq, is close in a certain norm to the gauge-invariant version of
the Jacobian determinant of w, an intrinsic quantity depending on (u, A).
This will allow us, in the next chapters, to extract from G.(u, A), in
addition to the vortex energy m ). |d;||loge| contained in the vortex
balls, a term describing vortex-vortex interactions and vortex-applied
field interactions in terms of the measure ), 2md;dq,.

The results of this chapter are used throughout the remainder of the
book, in the form of Theorems 6.1 and 6.2.

Notation: For u: Q — C and A : Q — R? we let

w(u, A) = curl(iu, V q4u) + curl A. (6.1)

wu(u, A) will most often be abbreviated in u. This is a gauge-invariant
quantity that will play the role of the Jacobian determinant of u (d(u x
du) when A = 0). Again, it suffices to set A = 0 below to get the
corresponding result relating the Jacobian to (1.2).

For any domain €2 and € > 0 we let again

Q. = {z € Q| dist(z,00) > €}.

Definition 6.1. For § € (0, 1] we let Cg’ﬂ(Q) denote the space of func-
tions in C%#(Q) that vanish on the boundary and (C’g’ﬁ(Q))* its dual.



118 Chapter 6. Jacobian Estimate

We use as a norm for f € Cg’ﬁ(ﬂ) the quantity

wp @ =IW)|
z,yeN |z — y”g
T#Y

and the standard dual norm on (Cg”g(Q))*. Note that in the case f =1,
the norm on C’g B () is simply the Lipschitz norm.

Theorem 6.1. Let u:Q — C and A: Q — R? be C, let B = {B;}icr
be a finite collection of disjoint closed balls and let € > 0 be such that

{z € Qg ||u(z)] — 1| > 1/2} C U;B;.

Then, letting r = r(B) and M = F.(u,A), and defining p by (6.1)
we have, assuming €,7 < 1,

w— 2w Z d;0q, < Cmax(r,e)(1+ M). (6.2)
1€l
Bi A (Co (V)

where a; is the center of B;, d; = deg(u/|u|,0B;), and C' is a universal
constant.
Moreover, using the same notation,

el (coy- < CM. (6.3)

This result was proved by Jerrard—Soner in [119] under a slightly
different form. The proof we present here is closer to that of a result of
similar nature we obtained in [169, 168].

6.1 Preliminaries

Definition 6.2. We define x : Ry — R as follows.
If z € [0,1/2], then x(x) = 2z. If = € [1/2,3/2], then x(x) = 1. If
x € [3/2,2] then x(z) = 1+ 2(x — 3/2). Finally if x > 2, then x(z) = =.

We have:



6.1. Preliminaries 119

Lemma 6.1. For anyt € Ry the function x above satisfies
x(t) <2t X() <2, Ix@)—t|<—t, |x(t) -1 <1t (64)
and

‘X(t)Z - tQ‘ < 3t)1 — 1. (6.5)

Proof. Properties in (6.4) follow directly by inspecting the graph of the
function y while (6.5) follows by noting that

X = 22| = [x(®) + ] x(8) — 8] < 31— 1] =

To prove the theorem, we assume its hypotheses are satisfied for some
(u, A), some collection of balls B and some ¢ > 0. We define

p=lul, u= wu, i = curl(ia, V au) + curl A. (6.6)
p

Observe that the main point of this construction is that |i| = 1 wherever
|u| is close enough to 1.
We claim that:

Lemma 6.2. For some universal constant C > 0 we have

l— NH(CSJ(Q))* < CeM.
Proof. Let j = (iu,Vau) and j = (i@i, V). Then for any function
(e Cg’l(ﬂ) we have

/cm—m - /v%-u-j') < IVClolli =l (6.7)
Q Q

But, writing u = pe’? and @ = pe'?, we get (see Lemma 3.4)

p* = p?
P

=il =0 — ) (Ve — 4) s\ '|vAu|.
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Since from (6.5), [p?—p2|/p < 3|1—p] it follows that |1 —j| < 3]1—p||V a1
and this has a meaning even if p vanishes. From the Cauchy—Schwarz
inequality we deduce

15 = Fll@) < 311 = pllr2o I Vaull 2 < 6v2eM.

Together with (6.7) this proves

/ C(u— )| < CeM(VC] oo
Q

for some universal constant C', hence the lemma. ]

6.2 Proof of Theorem 6.1

Throughout the proof C' denotes a universal constant. In fact if the
constant C was allowed to depend on the domain €, the proof would be
a bit simplified.

Proof of (6.2)

Using the above lemma, the proof of (6.2) reduces to proving that f
defined in (6.6) satisfies

I — VH(C((J),I(Q))* < Cmax(r,e)(1+ M), (6.8)

where v = 27 ) . d;0,, and the sum extends over those balls in B that
are included in €. This is equivalent to proving that for any Lipschitz
function ¢ vanishing on 0f2,

/Cﬂ - /Cdv < O(r+ )| Cllup (M +1).
Q

The following lemma explains the advantage of working with & rather
than p.

Lemma 6.3. 1. Assume u and A are C' and |u| = 1 identically.
Then =0, where p is defined by (6.1).
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2. Assume u and A are C* in a ball B and |u| = 1 on the boundary

of B. Then
/,u:27rdeg(u,aB).
B
Proof. Since |u| = 1, we have pu = curl((iu, Vu—iAu)+ A) =

curl(iu, Vu). But writing u = €*# locally for a C! function ¢, we have
curl(iu, Vu) = curl Vo = 0. The second assertion is an integration by
parts:

/,u:/T-((iu,VAu)—i-A):/T-(iu,VU)ZQWdeg(u,ﬁB). 0

B oB oB

Now recall that if |p — 1| < 1/2, then |a| = x(p) = 1. Therefore
|| =11in Q. \ U;B;. If we let U = {x € Q\ Qg, |p(x) — 1] > 1/2}, then
|a] =1 in (2\ Q) \ U. From the above lemma it follows that & = 0
outside U U (U; B;) and therefore for any Lipschitz function ¢, we have

/Cu /CM+Z/CM+Z / Chiy

i€hging i€l2gnn

where I; is the set of indices ¢ such that B, ¢ Q. and I» = I\ I
is the complement of I;. If ¢ € I, then the previous lemma implies
that the integral of fi over B; is 2wd;. Using this and writing ((x) =

C(a;) + (¢(z) = ¢(ai)) in B; we find

/cu 2r 3 dicla) = /cwz/cwz/c C(a)i

ichging iclping
(6.9)

The left-hand side of this equality is the integral of { with respect to the
measure [i(z) dr —v, where v is defined in (6.8). We need to estimate the
right-hand side for any Lipschitz function ¢ vanishing on 9€2. Our basic
tool is the following remark:

Lemma 6.4. If u and A are C' on Q and p is defined by (6.1), then
for any U C Q,

/|M| < A(Fu(u, A,U) + Fo(u, A, U5 [U]3). (6.10)
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Proof. Tt is easy to check that p = 204u x 8&411 + h and therefore |u| <
2|V au|?+|h|. Integrating on 2 and using the Cauchy—Schwarz inequality
to estimate the integral of |h| yields the result. O

Now we note that any = € U is also in Q \ €2, hence at a distance
less than ¢ from 0Q. Thus, if ( = 0 on 99, we find [{(z)| < l/¢]|Lip-
In the same spirit if ¢ € I;, then B; intersects the complement of €2,
and therefore contains a point at a distance less than € from 9€). Since
the radius of B; is less than r(B) = r, we find that any x € B; satisfies
dist(z, 02) < 2r + ¢ and thus [((z)| < 2(r + €)||(||Lip. Finally if ¢ € Iy
and z € By, then |((x) — ((a;)| < 7||¢||Lip, since B; has radius less than
r. Inserting this in (6.9) and using the previous lemma we find, letting
V = User B;,

[ [ cav| < 0t +2)chun(Pe@ A.0) + (@ AY)
Q

+ VIUTE(a A,0) + V/IVIF(@, A, V) (6.11)

for some universal constant C. Note that from (6.4) and the defini-
tion of f it follows that |Vau| < 2|Vaul and |1 — |a|| < |1 — |u|.
This implies that F.(4, A,w) < CF.(u, A,w). Also, since ||[u(z)| — 1| >
1/2 for # € U, the integral of (1 — |u|?)? on U is greater than |U|/4.
Therefore |U| < Ce?F.(u, A,U). It is clear that |[V| < Cr? These re-
marks show that the right-hand side of (6.11) is bounded above by
C(r+e)||¢||uip(Fe(u, A, Q) + (r+e)F(u, A, Q)%) and then, remembering
that r and € are less than 1 and /z <1+ z we get

/C/l - /Cdv < O(r+ )| Cllp (M +1).
Q

Since this inequality is true for any ¢ vanishing on OS2, we have proved
(6.2).

Proof of (6.3)

Of course, if the constant in (6.3) was allowed to depend on 2, this would
be a trivial consequence of (6.10), but here additional work is required.
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To prove (6.3), we take a continuous bounded function ¢. Then

[ el <€l [ 101
Q Q

We write = i + (u — fi). It is easy to check that |u — fi| < C|Vul?
hence ||p — fil[ 1) < CM. From (6.10) and Lemma 6.3, we have

/‘ﬂ‘ _/‘:&" S4(F5(11,A,w)—|—F€<’L~L,A,W)%’W‘%)y
Q w

where w = {|a| # 1} = {|Ju| — 1| > 1/2}. Arguing as above, we have
lw| < Ce?F.(u, A,w) and F. (4, A,w) < CF.(u, A,w) therefore

[ < cor+enn <o,
Q
since we have assumed ¢ < 1. It follows that

/ cu| < OM|Coo,
Q

which proves (6.3).

6.3 A Corollary

Using the very nice interpolation argument of Jerrard—Soner [119] we
have:

Theorem 6.2. Assume o € (0,1) and € < go(a), where eo(a) is given
by Theorem 4.1. Assume F.(u, A,Q) < e*~! and let B = {B(a;,7;)}Yier
denote a collection of balls given by Theorem 4.1 for some £*/% < r < 1.

We let
v=2r Z didg,
iEI/BiCQs
where d; = deg(u, 0B;), and p = curl(iu, V au) + h. Then, writing M =
F.(u, A, Q), we have
M
alloge|’

||l — VHCS’I(Q)* <Cr(M+1) and |vl]cogqy <C
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where C' is a universal constant. Moreover for any 3 € (0,1) there exists
a constant Cg depending on [ and Q and eo(a, 3) such that if € < eo,

then

Il <o Ml
Hlegr ey = falloge|’

and
6= Vlggsay- < Cro00 +1).

In particular, if F.(u, A, 2) is bounded by C|log ¢/, then y is bounded
in Cg”g(Q)* independently of €.
The proof relies on the following lemma, taken from [119]:

Lemma 6.5. Assume v is a Radon measure on 2. Then for any 8 €
(0,1),
1-p B
P et A 12 Lo
Proof of the theorem. The fact that ||v|coq)« < CM/(alloge|) follows
from Theorem 4.1 (4.4). The bound |ju — VHCO,I(Q)* < COr(M +1) is
0

Theorem 6.1, (6.2).
From now on, C' denotes a constant depending possibly on 8 and €.
To prove the last assertion we write y = v + (u — v). Then

||N‘|Cgvﬁ(g)* < ”V”Cgﬂ(g)* + |l — V”cgﬂ(g)*-

But
1]+ < Cll gy (6.12)

and
I =vlcanay <l = vllggiay-le = ¥lgos g (6:13)

But we have already proved that ||u — I/||Co,1(ﬂ)* < Cr(M +1) and using
0
(6.2) in Theorem 6.1, we have

M
I =vlco@y < lklleoy- + Ivlleoy- < CM + C'm <CM,
(6.14)
if £ is small enough depending on «. It follows from (6.12), (6.13) and

(6.14) that
= vll o5y < CM + 1)r”
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and

M
< M +1)r8.
H’LLHCS”B(Q)* - Coz|log5\ oM+ 1)r

Since 1 does not depend on r we may choose r = ¢/2 and then, if ¢ is

small enough depending on «a, 3 we have % < 1/(a|loge|), hence

M

< () —
lillcgs - = € Frog el

proving the proposition. O

BIBLIOGRAPHIC NOTES ON CHAPTER 6: The relation between weak
Jacobians and the Ginzburg—Landau energy was first emphasized by Jer-
rard and Soner in [119], where the result was also extended to higher di-
mensions through a formulation involving currents. However, the method
of linking the measures v to curl(iu, Vu) already appeared in Bethuel-
Riviere [51], and also in [52, 181]. A result similar to Theorem 6.1 but
with W 1P estimates instead of (C%%)* was also contained in [168].



Chapter 7

The Obstacle Problem

In this chapter, we start studying the question of minimizing the energy
G. and we prove the main result of ['-convergence of G.. As already
mentioned, configurations have a vorticity pu(ue, A:), which, according
to Chapter 6, is compact as ¢ — 0 (under a suitable energy bound) and
the result we obtain below shows that minimizers of G. have vorticities
which converge to a measure which minimizes a certain convex energy.
This measure, by convex duality, is shown to be the solution to a simple
obstacle problem.

The optimal vortex-density and number of vortices will thus be iden-
tified as well as the leading order of the energy of minimizers. The I'-
convergence method consists of two steps. First, given a measure u, we
construct a suitable sequence of test-configurations {(ue, Ac)}e with vor-
ticities converging to p and which, to leading order as € — 0, have the
expected optimal energy. Secondly, we obtain a matching lower bound
for the energy of configurations {(u., Ac)}. with vorticities converging
to p.

We introduce some definitions that will be used throughout the re-
mainder of the book. The function hg is the solution of

—Ahg+ho=0in Q
ho =1 on 012,

and we let

§o="ho—1. (7.2)



128 Chapter 7. The Obstacle Problem

We also set

1 1
Jo= [ 1Vl +1ho = 112 = Sl (73)
Q

Since 0 < hg < 1 (by maximum principle), the function & is negative
in ©Q and smooth. We let

& = miné, (7.4)

A= o e &) =&} (7.5)
The following result is proved in [171].
Lemma 7.1. The set

{z € Q| Véo(x) =0}
is finite, hence A also.
We recall that we write
Jj = (iu,Vau), p(u,A)=curlj+ curl A.

We also denote by M(Q2) the space of bounded Radon measures
on Q, ie., (CJ(Q))*. We denote by |u| the total variation of p, i.e., if
= e — p— is the canonical representation of y as the difference of two
positive measures, |u| = py + p—. We write ||p|| for |p](€2).

7.1 TI'-Convergence

In this theorem, H{(Q) denotes the affine space of functions of H'(Q)
whose trace on the boundary is 1 (or 1+ Hg(Q)).

Theorem 7.1 (I'-convergence of G.). Assume

hea}
|log €|

—A>0 ase—0.

Then,

G r 1
52 — E\(n) = “2/;‘+2/\th\2+|/1“—1|2, (7.6)
Q

exr



7.1. I-Convergence 129

where E is defined over M(Q) N H1(Q) and where hy, is the solution
of

{ —Ahy 4+ hy = pin Q (77)

hy, =1 on 0.

More specifically,

1) If {(ue, Ac)}e are such that Ge(ue, Ac) < Che® and ||uclloo <
1 then, up to extraction, denoting jo = (ius,Va us) and he =
curl A,

p(ue, Ae)

— o m (CY(Q)* ase—0
h‘efl?

for every v € (0,1) and
Je.
h’e[E

— 7, <= —~h, ase—0

hem
weakly in L*(Q)). Moreover y = curlj + h and

A 1
liIEni(I)lfCTYE(;:EE‘E) > E,\(u)—i-z/]j—l—VJ‘h“]Q—i-]h—h#P. (7.8)
exr 0
2) For every u € M(Q) N H=Y(Q), there exist {(uc, Ac)}e such that
[uelloo <1,
p(ue, Ac)

— i (C(Q)* ase—0
h‘e(lj

for every v € (0,1) and

he

— — h ase — 0
hex N

weakly in Hi(Q)) and strongly in WP (Q) for every p < 2, and such

that o 1
lim sup E(L’QE) < Ex(p).
e—0 heg
The functional E) defined over M(2) N H~1(£) is strictly convex
and continuous, therefore it has a unique minimizer u,. From the I'-
convergence result, it is standard to deduce:
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Theorem 7.2 (Convergence of minimizers). Let ¢ — 0 and
{(uE,Aeg}s be a family of minimizers of G-, with |IZ§;IS| — A > 0. Then,
ase — 0,

A
MU A) L in (COQ) for every 7 € (0.1),
::x — hy,, weakly in H{(Q) and strongly in W'P(Q), Vp < 2,

where [ is the unique minimizer of E. Moreover, letting g-(u, A) denote
the energy density % (]VAu]2 +h — he* + 2%2(1 — \u|2)2),

ge(“s» As)

1 1

he
‘V <hex "‘ﬂ*)

in the weak sense of measures.

and

2
— — L 1
A (7.10)

The only statements which do not follow directly from Theorem 7.1
are (7.9) and (7.10). They describe the defect measure in the weak con-
vergence of he/hex to hy, .

7.2 Description of .,

We have the following result:

Proposition 7.1 (Dual problem, see [59, 64]). Given a continuous
function p > 0, the minimizer of

1
min A — Au+u+p| +/|vu|2+u2 (7.11)
ueHL(Q) 2
—AutueM(Q) Q

is the minimizer of the dual problem

1
min /(|Vv|2+v2+2pv), (7.12)
veHL(Q) 2

TS



7.2. Description of p. 131

or equivalently if p is constant, u + p is the minimizer of

1
min /]Vf|2+f2.
FEH(©) 2
fep=x Q
It always satisfies —Au—+u+p > 0.

Here H}(Q2) denotes the affine space p + H{(€2).

Proof. The result relies on the following result of convex duality (see [91]
for example):

Lemma 7.2. Let ® be convex lower semi-continuous from a Hilbert
space H to (—oo,400], and let ®* denote its conjugate, i.e.,

®*(f)= sup (f,9)u — ®(9), (7.13)
g/®(g)<o0

then
in (< ullyy + ®(u) ) = —min ( 5 [8% + ()
e \ 2HE TR )= R \ g

and minimizers coincide.

Now we apply this to H = Hg(€2) with the norm ||h[|}; = [, [VA|* +
h?, and ®(u) = Al| — Au + u + p|| p(q) defined over the set of u € Hy
such that —Au +u € M(Q). Using the definition (7.13), we find

—/pf if [f] <X ae.
(I)*(f): Q

+00 otherwise.
Indeed,
sup /Vg-Vf+gf—A\|—Ag+g+pll=

geH ()
—Agt+geM(Q)

sup | /fd(—Angngp)—M—Ag+g+pll—/pf
Q

g€ Hy( A
zcsgg@zg/fc—kﬂ/d—/pf-

—Ag+gemM(©) &
Q
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We deduce ®*(f) = +oo if |f| < A is not satisfied a.e. and in any
case ®*(f) > — [ pf (take ¢ = 0). If | f| < A the converse inequality
D*(f) < — Jopf is clear.

Thus, applying the lemma, we find that the minimizer of (7.11) is
the minimizer of (7.12). The remaining assertions are easy consequences
of (7.12) and the maximum principle. O

Applying Proposition 7.1 with v = h — 1 and p = 1, we deduce the
following:

Corollary 7.1. The function hy, introduced in Theorem 7.2 is also the
unique minimizer of the following obstacle problem

1
h>1— g

1
min 2/\Vh\2+h2. (7.14)
heHI(Q)

in Q and the following variational inequality (see [126] for references on
such variational inequalities)

/ (= Ay, + ) (v — hy) >0
Q

for every v € H{ () such that v >1—1/(2)).

It is characterized by the fact that h,, € H{(Q), and that h,,, > 1—1/(2))

From this we deduce, in particular, that
s = _Ahu* + hyu, >0,

i.e., the limiting measure is positive.

The obstacle problem (7.14) is well studied (see [126] for further
reference), in particular the regularity of solutions is well understood.
The function hy,, belongs to Ch*(Q) for every a < 1 (see [99]). The
measure p, can be described in terms of the coincidence set

1
wA:{x€Q|hM*($):1—2)\}

by the following relation, where 1, dr denotes the Lebesgue measure
restricted to wy:

1
e = (1 - 2)\> 1,, dz| (7.15)
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This follows from the fact that where h,, > 1—1/(2X), the function h,,
satisfies the unconstrained Euler-Lagrange equations for the problem,
ie., =Ahy, + h,, = 0. We thus see that p, is constant on its support,
i.e., there is a uniform limiting density of vortices in wy, a first step
towards the Abrikosov lattice.

The regularity of the free boundary dw) is a delicate question, how-
ever in dimension 2 there is a rather complete theory. It is known (see
[65]) that the free boundary is analytic except at a finite number of sin-
gular points and that ([144, 56]) for almost every A there are no singular
points at all. For further results we refer to the survey [145]. Note that
if Ow)y is smooth then h,, can be characterized as the solution of the
over-determined system

—Ahy, +hy, =0 in Q\wy
1
hy, =1~— o\ in wy
h
885* =0 on Jwy
\ hu, =1 on 99.

Such a system was derived by Chapman, Rubinstein and Schatzman
in [72] by formal arguments, and we may see Theorem 7.2 as giving a
rigorous derivation of it from the minimization of the Ginzburg—Landau
functional.

Below, we collect some facts about wy, h«, p«, whose proofs rely
entirely on the maximum principle.

Proposition 7.2. We have the following.

1. wy is increasing with respect to A and Uysowy = 2. Moreover Q\wy
18 connected.

‘H

2. For A < we have hy,, = hg, px =0, wy = .

(%)
‘R
=N

‘H

3. For A\ = we have hy,, = hg, px =0, wy = A.

|
iy
© |

4. For A > 21 we have py # 0, wy strictly contains A, and (7.15)
holds.

‘R
© |
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The above motivates the introduction of the following notation

0 1

= ——|logel|. 7.16
5 = g loee (7.16)

In view of Proposition 7.2, the value Hgl appears critical in the sense
that below Hgl, the limiting vortex-density u, for energy-minimizers
(after rescaling by hey) is 0. Above HY , the limiting vortex-density (after
rescaling by hey) is nonzero, it has a uniform density 1 — % > 0 in the
subdomain wy of €2, that is there should be vortices uniformly scattered in
w) — hence a number of vortices proportional to Ay, itself proportional
to |loge|—and a peripheral region without vortices (see again Fig. 1.3).

The usual notion of first critical field is more like the following,
though. For a fixed value of ¢, it is the value H,, (¢) such that if hex <
H,, (g), then there exists a minimizer (u, A) of G. such that |u| > 0 in
2 while if hex > H,,(¢) and (u, A) is a minimizer, then v must vanish
in Q. A priori H,, and HY, could be very different numbers. This would
be the case if for a wide range of hey minimizers of G, had vortices, but
few of them compared to heyx, because the rescaled limiting measure p
would still be zero. We will prove in Chapter 12 that this cannot happen
and that H 21 is the leading order of H,., as e — 0, confirming the physics
knowledge.

We now present the full proof of Theorem 7.1.

7.3 Upper Bound

In this section we will prove item 2) in Theorem 7.1, which we state
as Proposition 7.5 below. However, the intermediate results will also be
useful in subsequent chapters.

First, we show that given a set {(a;,d;)}; of points and degrees, and
e > 0, we may associate to it a configuration (u, A) having {(a;,d;)}; as
vortices, and express G:(u, A) as a function of ¢ and {(a;,d;)};. Second
we show that using the above with a well chosen family {(a;,d;)}; yields
the desired upper bound.
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7.3.1 The Space H' and the Green Potential

We introduce the (modified) Green’s function G, associated to a smooth
bounded domain € in R?, as the solution of

A, Go(z,y) + Go(z,y) =0, in (7.17)
Gao(z,y) =0 on 09, '
and let
Sa(z,y) = 2rGo(z,y) + log |z — yl. (7.18)

It is a standard fact that G is symmetric, positive, and the function Sq
is O in Q x Q. Note however that Sq is not bounded up to the boundary.

In addition to (7.7), if © € H~1(R), we introduce the notation U, for
the solution of

{—AUu+U = pin Q (7.19)

U, =0 on 9.

In addition, when p is a bounded Radon measure we have

Up(z) = /Ga(x,y) du(y).

Indeed Fubini’s theorem shows that the integral defines an L' function
for any measure p, and it can be checked that when p € H~! this function
is the solution of (7.19).

The following property is also true (this follows from [60], Theorem
1). If p, v are positive Radon measures in H (), then U, € L'(dv) and

WUy = [ [ Gale.v) dutw) dvt). (7.20)
Thus, if 4 = p4 — p— is a signed measure with g4 and p_ positive mea-

sures belonging to H~1(f2), writing the above relations for the couples
(thgs pg ), (—, po—), (p4, u—) and combining them, we find that

[Ivu+v2= [[ Gate) dute)duty). (20
Q
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7.3.2 The Energy-Splitting Lemma

Here we describe an elementary way of splitting the energy relating G,
and F., which we will use many times in the sequel, in particular in
Chapters 9, 10, and 11. It was first observed by Bethuel and Riviere in
[51].

Lemma 7.3 (Energy-splitting). For any (u, A), denoting A’ = A —
heeVTho, we have

Go(u, A) = hey?Jo + Fo(u, A') + hw/ﬁo,u(u, A') + Ry, (7.22)
Q

where Jy was defined in (7.3), & in (7.2), Fe in (4.1), and

1
RO = 2/h€x2(|ul2 - 1)|Vh0‘2 < CghechE(‘uD%'
Q

Proof. Let us write A as hex V-ho+ A’, plug it into G, (u, A) and expand
the square terms. This easily yields, using the fact that curl V'hg =
Aho = h() (from (7.1)),

1
Gelu A) = / IV 4l + hex2 2|V hol — 2hex(V aru, i) - V4o
Q

(1— o)

1
+3 / | curl A')? 4 hex?|ho — 1|2 + 2hex (ho — 1) curl A’ + 5e7
9

Q

Therefore, grouping terms, writing |u|? as 1 + (Ju|?> — 1), and integrating
by parts, we find

1
Gelut, A) = Felt, A') + hes®Jo + / hex(Jul® = 1)[Vho[?
Q
+ /hex(ho — 1) curl(iu, V gru) + hex(ho — 1) curl A’
Q

This is the result, the upper bound for Ry following from the Cauchy—
Schwarz inequality applied to the integral of (1 — |u|?). O
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7.3.3 Configurations with Prescribed Vortices

Proposition 7.3. Given ¢ € (0,1) and a set of n points a; € Q and
degrees d; = £1 such that |a; — a;| > 8ce for i # j and dist(a;, 0) > 8¢
for some ¢ > 0, there exists a configuration (u, A) such that, u; being the
uniform measure on 0B(a;, ce) of mass 2nd;, and letting

n
M= Zui,
i=1

we have
F.(u, A") = mn|log ¢ (7.23)
1
+ 22// Gal(z,y) dpi(z) dpi(y) + O(n),
i#£]
Ge(u, A) = F.(u, A) + hes2Jo + hex/&)(x) du(x) (7.24)
+0 (nahw 4 ne2he? + (0 2ehes + che?) Fe(u, A/)W) ,
and
1
1 F.(u,A")\ 2
n Hﬂ(ua A) - NH(COW(Q))* < ¢’ (1 +ehes + <n

VO<y<1. (7.25)

Here A’ = A — he;V'ho and the O’s depend on © and ¢ only.

The proof is in four steps.

Step 1: Construction of the test-configuration.

Let p; denote the uniform measure on 9B(a;, ce) of mass 2md;. We define
h to be the solution of

—Ah—l—h:u:Zm in
i=1
h = hex on 0f),

(7.26)
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Then, we let A be any vector field such that curl A = A in Q and we
define u = pe’¥ as follows. First we let

0 if |z — a;] < ce for some i,
p(z) = lr=ail _ 1 if ce < |z —a;| < 2ce for some 1, (7.27)
ce
1 otherwise,

and for any z € Q. = Q \ U; B(a, ce),

o(z) = 7{ (A—Vth)-Tde, (7.28)

(wo,)
vahere o is a base point in (ng, (g, x) is any curve joining zp to x in
., and 7 is the unit tangent vector to the curve. From (7.26), we see
that this definition of ¢(z) does not depend modulo 27 on the particular

curve (xg,z) chosen, hence e'? is well-defined. Indeed, if v = OU is a
boundary in ()., then using Stokes’s theorem and curl A = h, we find

/(A—VLh)‘Tdﬁz/—Ah-l-h:QWZdiEQWZ,
U

~ a; €U

since v does not intersect the B(a;,ce)’s. From (7.28), the function ¢
satisfies

—Vih=Vp- A (7.29)

in ﬁa. Finally, we define '
u = pe'?.

Observe that the fact that ¢ is not defined on U; B(a;, ce) is not important
since p is zero there.

Step 2: Free energy of (u, A).
Having defined (u, A) as above, we estimate F.(u, A’). Recall that

1 1 2
Fo(u, A') = 2/|Vp|2+p2|V90—A'|2+|h|2+262 (1- %)%, (7.30)
Q
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From (7.27) we have

5 | ek m - e
B(ai,Qca)

Then, using the fact that the number of points is n and that p = 1 in
O\ U; B(aj, 2ce), it follows that

— — — < . .
5 [ IVol+ o (1= ) < O (7.31)

Also, from (7.27)-(7.29) and the facts that A’ = A—he, V+ho and Ahg =
hg, we have

P}V — A2 < |V — AP = |V(h — hexho)|?

in Q.. Therefore, replacing this in (7.30) and in view of (7.31) we find

Fu(u, A') /|v (h = hoeho)2 + [h = hexho2+ O).  (7.32)

Because h is the solution of (7.26), referring to (7.19) and (7.1), we
have h — hexho = U,,. Thus, using (7.21), the inequality (7.32) becomes

Fu(u, ) < 5 [[ Gaa) duta) duty) + O). (7.33)
We now decompose the double integral by writing p = Zl w; to find,
/ Ga(z,y) du(z) duly Z/ Go(z,y) dui(w) dui(y) +
+) did, / Galx,y) dui(x) dp;(y). (7.34)

i#]
We now check that

Z/ Ga(z,y) dui(z) du;(y) = 2mn|loge| + O(n). (7.35)

To prove this, recall that Sq = 27Gq(x,y) + log |z — y| is C! in Q x Q,
hence it is locally bounded. Thus there exists a constant C' depending
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only on  and ¢ such that |Sq(z,y)| < C for any z,y € U; B(a;, ce) since
the points a; are at a distance at least 8c from the boundary. It follows
that for any (x,y) € supp p; X supp p; we have |2n1Gq(z,y) —log |z —y|| <
C' and then, since

// log |z —y|dui(x) dui(y) = // log |cee® —cee'®| df dg = 4n*loge+C,
[0,27]2

we have proved (7.35). In view of (7.33)—(7.34), we have constructed a
configuration such that

F.(u,A") < 7n|loge| + % Z/ Gal(z,y) dpi(z) dp;(y) + O(n).
i#]

In order to find the desired configuration, if the inequality above is
not an equality, we just need to “add” some energy to (u, A’). In order
to do so, we keep the same p but modify ¢ outside of the B(a;,2ce),
adding oscillations to it in such a way that [|V¢ — A’|> becomes large
enough and reaches the desired value.

Step 3: Proof of (7.25).

Let us still denote by ¢ the phase that was constructed in Step 1, and
let us denote by % the oscillations that were possibly added in the end of
Step 2 (recall ¢ is compactly supported in Q\U; B(a;, 2ce)). By definition,
w(u, A) = curl ((iu, Vau) + A), and thus from (7.29) for example

wlu, A) =curl (V(p+¢) — A)+A)=Ah+h =0 in Q\ U; B(a;, 2ce).

Thus, p(u, A) and > ;| u; are both zero in Q\ U; B(a;, 2¢ce), moreover
they have the same mass in each B(a;, 2ce) since

_ o _ 9¢
B(a;,2ce) OB(a;,2ce) OB(a;,2ce) B(a;,2ce)

= / —Ah + h = pi(B(a;, 2ce)).
B(ai,QC&‘)
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Letting £ be a smooth compactly supported test-function, we have

/( (u, 4) - Zm)g Z [t ) = e

Q a'u C
2e2) (7.36)
- Z [t ) = e ~ €a.
B(a;,2ce)
But, recalling that
u, A) = curl(iu, V g4u) + curl A
i 4) = cur(in, ¥ ) 2 )
=Vp - (Vo —A)+ (1-p)h,
we have
Z / — il
B(a;,2ce)

< 2mn+ / |Vp||Vh| + |h|

UiB(ai,QCE)

hex
<Cn+ / (\Vh’HC +|h’|+Chex>

U;B(ai,2ce)

where we used the fact that [Vp| < 1. Using the Cauchy-Schwarz in-
equality, we find

Z / — ] < Cn+ Cneheyx + \/nF-(u, A').
B(a;,2ce)

Combining this with (7.36) and using the fact that & € Cg’V(Q), we
conclude that

1 " F.(u, A/
-/ <u<u,A>—§jm>e < oo <1+ehex+ ‘n)> I€llcnn o
=1

Q

i.e., (7.25) holds.
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Step 4: Proof of (7.24).

The relation follows from the energy-splitting lemma, Lemma 7.3, which
yields

Ge(u, A) = hex 2 Jo + F.(u, A") + hex/&)u(u, AN+ 0 <£hex2Fg(|u])%> .
Q

In order to conclude, we essentially need to estimate p(u, A’) — p. First
we recall (see (7.37)) that p(u, A) = curl(p?(Ve — A) + A) and sim-
ilarly p(u, A') = curl(p?(Vyp — A') + A'). Thus u(u, A) — u(u, A') =
curl ((1 — p?)(A—4')) = curl (1 — p?)hex V1 hg) . We deduce, after in-
tegration by parts, that

hox [ €olnlu, A) = p(u, A)) = [ he(1 = p?)|Vhol
/ / .
= O(cheF(Ju)) /).

On the other hand, from (7.25) and the fact that & € C’g’l(Q), we find
that

n

he"/ So(p(u, A) = )| < nhexe <1+ghex+ F(“A)>
Q

Combining this with (7.38) we conclude that (7.24) holds and Proposi-
tion 7.3 is proved.

Remark 7.1. With the same arguments as in this proof, we could easily
prove another estimate on the energy of the configuration constructed in
Step 1: namely that

1
G-(u,A) < mnlloge| + = Ga(z,y) dui(z) du;(y)
29|
+m£%+h@/&@MM@+0m)

7.3.4 Choice of the Vortex Configuration

Proposition 7.4. Assume that i is continuous, compactly supported in
Q and different from 0. Assume that {n(c)}e>0 are integers such that
1<<n§€g2 as € — 0.
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Then, there exists ¢ > 0 and for every € € (0,1) a family of points
a; € 2 and degrees d; = £1 such that |ai — a5 > 8ce for every i # j,
dist(ag, 02) > 8c and such that

— Z s = 27rﬁ in the weak sense of measures,
1

for ué any measure supported in B(af,ce), of constant sign, and such
that ps (Q2) = 2nd;. Moreover,

tig 5 3 [ [1ogla — ylau (o) dus ) (739

i#£]
e / [ 10812~y duo) du(w).

lim — ) Z// Ga(z,y)du; ( )d,u]( ) (7.40)

e—0
i#]

w / Gala,y) du() du(y).

Let M = [|p[| oo (q)- Let us partition  into squares K of sidelength
d where 0(¢) is chosen such that

1
— <0 1. 7.41
N (6) < (7.41)
(Recall that n depends on € and n(e) > 1.) Let us denote by K(e) the

family of those squares that lie entirely inside ). The next step is to
determine how many points to put in each square.

Lemma 7.4. Given n € N and nonnegative numbers (\;)i<i<¢ with
Zle Ai =mn, we can find integers (m;)1<i<¢ such that
25:1 m; =n,
|mi — )\1| <1l Vie [1,6]

Proof. We let [z] denote the largest integer less than or equal to x.
Letting o = M+ -+ X if i > 1and 0g = 0, we let s; = [o;] for 0 < ¢ < ¢
and define m; = s; — s;_1, for 1 < ¢ < . Then my + -+ my = [0y] = n,
and it follows from the inequalities

o—1<s <oy, 0i-1—1<8-1=<0;1

that \; — 1 <m; < X\ + 1. O
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We may apply this lemma to the family of real numbers { i} xeic(c)
defined by
(K|

M.’
where M, is the sum of the numbers |u(K)| for K € K(e). Hence the sum

of the Ag’s is n. Note that since p is continuous with compact support
in Q and since the sidelength § tends to 0 as € — 0, we have

AK=n

M= S |u(K) — ull ase—o0. (7.42)
KeK(e)

We deduce from Lemma 7.4 that there exist integers m.(K) such
that

> me(K)=n (7.43)

and

‘ <1. (7.44)

Since ||pllooc < M we have |p|(K) < M§? and therefore m.(K) <
1+ nMé&%/||u|| = O(nMé?). Thus we may pick m.(K) points a5 evenly
scattered in K such that

o —atl> 20> C (7.45)

c
me(K) — v
Therefore, from the hypothesis on n, there exists ¢ > 0 such that
|a; — a5| > 8ce.

Moreover, since 1 is compactly supported in 2 and making ¢ smaller
if necessary, we may assume that the support of u is at a distance greater
than 16¢ from 0€2. Then, for £ small enough, we will have, again using
the fact that ¢ goes to zero

dist(a$, D) > 16¢ — V26 > 8c,

as required for Proposition 7.3 to apply.
If p(K) > 0 we assign the degree d; = 1 to each a € K, otherwise
the degree d; = —1.
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Claim: Let p; denote a measure of constant sign supported in
B(a$, ce) and such that pj(2) = 2nd;. If i # j, then pf and 5 have
disjoint supports and we have

- L= (740

in the sense of measures.

Proof. From (7.42), it suffices to prove that
pe —ve — 0 (7.47)

in the sense of measures, where

7

£

Ve =27

Let f be in ngQ). For any K € K., we may decompose f as
(f — f) + f, where f is the average of f on K with respect to v., which
yields

[ e === [(7= D+ 0 = p ).

K K
Using (7.44) and the fact that by construction nu.(K) = £2rm.(K),
the sign being that of u(K), we deduce

me(K)

/fd ~ pe)| < 2moself, K)™EE 4 2 g

where osc(f, K) = sup, ek |f(x) — f(y)|. Summing over K € K, using
(7.43) and the fact that the number of squares is smaller than C/6%, we

find
' [ raw.

where 7 = supei(e) 05c(f, K). But 7 is o(1) as € — 0 since § < 1 and
from (7.41) we have 1 < né2. Therefore the right-hand side is o(1) as
e — 0, proving (7.47) and the claim. O

C
)| < WHfHoo + 277,
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Proof of (7.39)-(7.40). 1t suffices to prove (7.39). Indeed, from (7.46)
and the continuity of Sq in €2 we have

e Z//SQ ) 0) ) = //SQ 7>4) diu(@) duly),

and the sum of the diagonal terms ¢ = j in the above double sum goes
to zero, since it is less than C'/n. Therefore

lim QZ/ Sa(z,y) dp; (z) dp;(y) = HMHQ/ Sa(z,y) du(z) du(y).

e—=0MNn
17

Adding to (7.39) yields (7.40), since 2rGq = Sq — log.
We now prove (7.39). Given a > 0 and letting

Ao ={(z,9) | [z —y| < a},

by continuity of log |z — y| in (2 x ) \ Ay, we have

lim, — Z//log:v—y!duz( ) dps(y)

e—0
1759 )e
log |x — y| du(x) du
H”P// ‘ ’ ) ( )

Therefore (7.39) will be proved if we show that

lim lim sup — = Z// log |z — y| dpi (x) du5(y) = 0, (7.48)

a=0 <0
i#] Aq

lim // log |z — y| du(z) duly) =
A

The second limit is clearly equal to zero since |u| < Clgdx and since
log |z — y| is in L'(Q x Q). The first limit follows from (7.45).
Indeed from (7.45) we may choose A > 0 such that if ¢ # j, then

4N
a5 — a3l = —=.

B
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We may now define disjoint balls

A
Moreover, if 2 and y belong respectively to Bf and B5, then

[z — |
C

<laj —a;| < Clz —y|, (7.49)

and we already know that if 2’ and ¢’ belong respectively to the support
of pif and the support of 4,

2" — o]

8 < a§ —a§| < Cla" — /| (7.50)

This last inequality follows from the fact that xS is supported in B(ag, ce)
for any i and 8ce < |af — a5, if i # j.

Using (7.49) and (7.50) we deduce that |z —y| < Cla’ — ¢/| and
|2 — | < Clo —y| for any (z,y) € Bf x B; and (2',y') € B(as, ce) x
E(aj, ce). It follows that

1
i [ hosle? /1| i)

1
Si\B?xBﬁ?] // |(log |z — y[| + C) dz dy.
© BB

Summing over indices (7, j) such that the support of yf x 5 intersects
A, and using the fact that |Bf x Bj| = C/n? we deduce

1
a2 [ hogle’ 1| awie) s <€ [ [ 1ol — yll+1) daay,
N Aq.NO

where a. = a + C/4/n converges to a as ¢ — 0. Taking limsups with
respect to £ and passing to the limit o — 0 yields (7.48), and then
(7.39)~(7.40). O

As an application, we obtain:
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Proposition 7.5. Assume heg/|loge]l — A > 0 as € — 0. Given p €
M(Q) N HY(Q), there exists configurations {(u.,A:)}- such that
llucllpe <1 and

E)AE - *
M A Ly in (C37@) e (0.1) (751)
and
: Ge(ue, 5) [ ] 2 2
hI;l_S)(l)lp T > j + = / |th| + |hﬂ - 1| 5 (752)

Q
where hy, is given by (7.7).

Proof. We first assume p # 0 is a continuous and compactly supported
function.

Let n = [hCXH M”] where [-] denotes the integer part, and apply
Proposition 7.3 combined with Proposition 7.4. It yields the existence of
(ue, Ac) such that £ 37" | pf — 27p/||p| in the sense of measures, and
therefore

1 n
flo = Y = g,
hex i

with (7.23), (7.24), (7.40) and (7.25) holding. From (7.23) combined with
(7.40), we have

Fo(u., AL) < 7l loge] + S / Gale,y) du(x) dpu(y) + o(n?)

|| ||2

that is, inserting the particular choice of n,

Rex
F.(ue, A7) < T3

=[lull| loge] ) du(z) du(y) + o(hex?).

Since hex = O(|loge|), we have F.(u., AL) < O(]loge|?) and thus the
remainder terms in (7.24) are o(1), leading to
2 hex 2
Ge(usaAe) < hex"Jo + 7H,U/H| 10g€! + Dex o dpte

+ hex2

/ Gal,y) du(x) du(y) + o(he?). (7.53)
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Using the continuity of £y together with the convergence of u. to u, we
deduce from (7.53) that

hex
Guliies A0) < hoc®Jo + 5% [l og | + s? [ 6o

2
hex

T

[[ Gotw.v) dut@) duts) + o). (750

But hy, U, and hg being defined respectively by (7.7), (7.19), and (7.1),
we have h, = U, + ho and therefore h, —1 = U, + &. Then expanding
U + £o||%{1(9) and using (7.20) we deduce

1 1
3 [ 19+l =12 = o+ [ odu+ 5 [[ Gata,y) duta) duto).
Q
Replacing in (7.54) and using hex ~ A|loge| yields (7.52).
Moreover, since (7.25) holds and F.(u., AL) < O(|loge|?), we have

1
hex

!/

s A2) = el oy < €2 <1 - F(“n’“> <o)
We conclude that (7.51) holds, which finishes the proof in the case where
1 is a continuous and compactly supported function.

For the general case we use an approximation argument. Assume
p € M(Q) N H(Q) and consider a sequence {u}ren of continuous
functions compactly supported in 2 which converge to u in the narrow
sense of convergence of measures and in H~1(£2). In particular

: ol 1 2 2

lim —— + = Vh +lh,, —1

k 1+ 2)\ 2 ‘ p“k‘ ‘ HE ‘
Q

[l 1/ 2 2
= — 4 = h h, — 1|%. .
o g [ Vil I =1 (755)
Q

We may then apply the proposition to each up, and get configurations
{uk, A¥)}. which satisfy (7.51)—(7.52), with yy, instead of .

Then, a diagonal argument, together with (7.55), yields a sequence
e — 0—that we write in shorthand {e} —such that, writing (u., A.)
instead of (u¥ A’gk), both (7.51) and (7.52) hold. O

EK)
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Remark 7.2. In Chapter 8 we will obtain a sharper upper bound in the
case X = +00, i.e., hey > |loge|. Observe also that an upper bound
min G, < 4%2 (useful when hey > a%) is easy to obtain by considering the
normal configuration uw = 0,h = he, (see Chapter 2).

7.4 Proof of Theorems 7.1 and 7.2

Item 2) of Theorem 7.1, stated above as Proposition 7.5, has already
been proved.

7.4.1 Proof of Theorem 7.1, Item 1)

We assume G- (ue, Ae) < Chey? and ||ue oo < 1. Then from Lemma 3.4,
’vA5u5|2 > |U6|2|VA5U€|2 > |j5|2,

with j. = (iue, Va,u:). From the upper bound G.(uc, A.) < Cheyx?, we
deduce that j./hex and he/hex are bounded in L?(Q), hence up to ex-
traction they converge weakly in L?(2) as ¢ — 0 to some j, h. Moreover,
since p(ue, Ae) = curl j. + he, we have

87A€ .
e ::M(uh)—>u:curl]+h

weakly in H~1(£2). It remains to prove the convergence of y. in (C’g T(Q))*
and the lower bound (7.8).

Since hex < Clloge|, we have G(ue, As) < Chex’? < C|logel?. We
deduce that F.(u.,A:) < C|logel? too since F.(u,A) < 2G-(u,A) +
2hex 2|, which follows from (h — heyx)? < 2(h2 + hex?).

Let U be an open subdomain of 2. Working in U rather than in
2 will be useful in order to prove (7.9) and (7.10) in Theorem 7.2 in
the next section. Applying Theorem 4.1 in U with » < 1 such that
|logr| < |loge|, we get a family of disjoint closed balls B(a;,r;) with
> 7 < Cr. We call the union of these balls V.. From Theorem 4.1 we
have

O RARE o loge) ).

1 —
5Zi|di\

Moreover, since Fy(us, A:) < Clloge|? and from (4.4) we have Y, |d;| <
C|logel|, hence the above may be rewritten, since |loge| and hey are
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comparable
Feue, Ac, Vo) = m > _ |di||loge| — o(hex?). (7.56)

In the above we want to replace F. with G.. The difference between

the two is the integral of hex? — 2hheyx over V. which, using Cauchy—

Schwarz, is less than |Ve|hex? + /|Ve|hex||hel 12, hence is o(hey?) since

|he||r2 < Chex and the area of V. tends to 0. Therefore, using (7.56)
Ge(u57 Ae, U) = Ga(“a Ae, Vs) + Gs(usa AU \ Vs)

> 1) |dil|loge| + Ge(ue, Ac, U\ Ve) — o(hex®),  (7.57)

and then, dividing by hex2,
Ge(ue, A, U)

hex
s Tl llose

2
—o(1). (7.58)

T hex  hex

U\V:

Let us now examine the limit as ¢ — 0 of the right-hand side of this
inequality. Since ), r; — 0 we may extract a sequence &,, — 0 such that,
denoting

AN = Up>NVe,,

we have |Ay| — 0 as N — oo. By weak convergence of j, /hex and
he,, /hex, we have for any fixed N

2 2 2 2

. . jsn han . . jen han
_ > _
gt U v B Ve B S A e B
U\Ve,, U\Ax
> / 2 + | — 12
U\AN
Passing to the limit N — oo, we find
JANCET 2
lim inf e R R = / 151? + |h — 1)2. (7.59)
n—0oo hex hex
U\V, U
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On the other hand, returning to (7.57) and using the a priori bound
Ge(ue, Ac) < Chex?, we find that (1/hex) Y, |di| remains bounded. Thus,
(27 /hex) Y ; didq, is weakly compact in the sense of measures, and we
may assume it converges to a measure in (CJ(U))*. Using the Jacobian
estimate Theorem 6.1 in U, this limit is also the limit of u., i.e., is
@ = curlj + h or to be precise the restriction of p to U. Note that
Theorem 6.2 applied in € implies that p. converges to p in (C’g T(Q))*.
Passing to the limit in (7.58) and inserting (7.59), we find

. 2Gelug, AL, U) 1
hnnllcgf ho2 Zﬁ

ex

1 :
@)+ 5 [P+ =17 (760)
U

Denoting by h,, the solution of (7.7), writing j as ~V4th,+(j+V1th,)
and h as hy, + (h — hy), and observing that

curl(j + V*h,) + h—h, =0, (7.61)
we have

J13P =1 = [ B+ = 1P 415+ TP+ [ P
Q Q

+ 2/(—Vlhu) G4 V) + (= 1)(h = hy)
Q

=/|th|2+|hu—12+u+thu|2+|h—huP
(9]

where we have used an integration by parts and (7.61). Inserting this into
(7.60) with U = Q, we deduce that (7.8) holds, completing the proof of
Theorem 7.1, item 1).

7.4.2 Proof of Theorem 7.2

Combining 1) and 2) of Theorem 7.1, if {(ue, Ac)}- are minimizers of G-
we must have

inG
lim "o = min By, (7.62)
e—0 ex
together with j = —VLhM, and h = h,. Hence the vorticity of minimizers

of G must converge, after extraction, to the unique minimizer p, of E}.
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The uniqueness of p, implies that the whole sequence p(u., A;) converges
to p and he/hex to hy,. Also, since (ug, A;) minimizes G, it is a critical
point and solves the second Ginzburg—Landau equation

—Vithe = (iue, Vaue) = e, (7.63)

which implies that |[Vhe| < |V4_ uc| (see Lemma 3.3) and thus he/hex
is bounded in H!(f2). Taking the curl of (7.63) we also deduce that
—Ah. + he = p(ue, A:). Since (C%7(Q))* convergence is stronger than
W=LP(Q) convergence for p < 2, by elliptic regularity we deduce that
he /hex converges strongly in W1P(Q) for p < 2, and weakly in H'(Q).
Returning to (7.60), we have for any open subdomain U of 2

n—oo h 2 - 2\

G JA U 1 1
timing Fe B0 o L) + 5 [ 902+ b - 1P
ex ir
but there must be equality from (7.62), therefore since this is true for
any U, (7.9) holds.
From (7.9), the fact that |V a_uc| > |je| = |Vhe| and the strong L?
convergence of h., we have
Vaul? . [Vh 1
22l > liminf ; S > |Vh, |+ 3 H

2
ex e—0 ex

lim inf
e—0

and conversely, from the energy upper-bound,

1 2 _ el 2
hex2/|vzz€| < WLy [ 1on,. .
Q Q

Combining the two, we must have

Vhe|? 1
| 52| - |th*|2 + XN*

ex

as measures, and (7.10) follows from the Brezis-Lieb lemma.

BIBLIOGRAPHIC NOTES ON CHAPTER 7: The results of this chapter were
for the most part obtained in [168]: the statement there, was not exactly
in the I'-convergence framework, however the structure of the proof es-
sentially was. A version with pinning term in the energy can be found in
[5] (some of the presentation here is borrowed more from [5]). Analogous
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results for the Ginzburg-Landau energy without magnetic field, dealing
also with nonsimply connected domains, were given by Jerrard—Soner in
[118].

Concerning the derivation of the value of H, gl, the result in (7.16)
confirms the formal derivation in the physics literature (Abrikosov [1],

DeGennes [80]), and by Bethuel-Riviere in [51].



Chapter 8

Higher Values of the
Applied Field

The previous chapter dealt with minimizers of the Ginzburg-Landau
functional when the applied field was O(|loge|). The applied field be-
having asymptotically like A|loge|, letting A — oo in Theorem 7.2 in-
dicates that for energy-minimizers for applied fields hex > |loge|, we
must have % — 1, and ,?5 — 1. But in this regime, M%AE) — 0
and the argumcgnts of Chaptercx7 do not give, even formally, the leading
order term of the minimal energy. Moreover, the tools which were at the
heart of the result, namely the vortex balls construction of Theorem 4.1
and the Jacobian estimate of Theorem 6.1 break down for higher values
of hey.

On the other hand, we recall from Chapter 2 the prediction by
Abrikosov that the transition from the mixed state, which we may as well
call the vortex state, to the normal state, should occur for hex = 1/£2, i.e.,
much higher fields. We will show in this chapter how our techniques still
allow us to find the minimum of the energy for applied fields satisfying
|loge| < hex < 1/€%: in the scaling of Chapter 7 what we determine here
is the first nonzero lower-order correction term. We find that minimizers
have a uniform limiting density in the whole domain €2, in agreement
with Abrikosov lattices. In fact, the test-configurations we use below to
obtain the upper bound on the minimal energy are constructed to be
periodic.

Theorem 8.1. Assume, as e — 0, that |loge| < hey < 1/€2. Then, let-
ting (ue, Ac) minimize G¢, and letting g-(u, A) denote the energy-density
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3 (IVaul? 4+ |h = heal® + 52 (1 — [ul?)?), we have

29 (Ua ) Aa)

T —~dx ase—0 (8.1)
heslog 27

in the weak sense of measures, where dx denotes the 2-dimensional Le-
besgue measure, and

. || 1
(u,A)rél;II}XHl Ge(u,A) ~ Thex log 57\/@ as e — 0, (8.2)

where Q] is the area of 2.

1

=< hex?, we deduce as an immediate
ex

Since in this regime hey log

corollary:

Corollary 8.1. Assume that, as ¢ — 0, |loge| < hey < 1/€% and

(ug, Ae) minimize Ge, letting he = curlA. and p(us, Ae) =
curl(iue, Va_ue) + he, we have
k—>1 in HY(Q)
f(ue, Ac)

—dx in H1(Q).

h€$
Proof. Since (us, Ac) minimizes Ge, it is a solution of (GL) and thus,
using Lemma 3.3, we find

Hhe - h’eXH%{I(Q) < 2G6(u67AE> < hex2

hence h./hex — 1 in H'(£2). Since we have the relation —Ah. + h. =
w(ue, Ac) obtained by taking the curl of the second Ginzburg-Landau
equation, the convergence of p(uc, Ac)/hex follows. O

The theorem is a direct consequence of Propositions 8.1 and 8.2 be-
low, but let us briefly explain what problem occurs for high fields and
how it is overcome. If hey is too high, say hex > 1/¢, then a minimizer
of G, is expected to have a number of vortices n of the order of hex and
then the perimeter of the set where |u| < 1/2 should be of the order
ne > 1. This means that we can no longer hope that the a priori bound
on the energy satisfied by a minimizer excludes, say, a line where |u| = 0.
As we mentioned, the downside is that the vortex balls construction and
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the Jacobian estimate, which are based on covering the set {|u| = 0} by
small balls, will not work anymore.

On the other hand, for such large fields, the problem of minimizing
G reduces to that of minimizing it on any subdomain, in other words
the minimization problem becomes local. Thus we may perform blow-
ups which yield the right lower bound. The effect of the blow-ups will be
precisely to effectively reduce hey and allow our techniques to be applied
on the smaller scale. On the other hand, that the upper bound that we
need will demand a more rigid construction of a good test-configuration
than in Proposition 7.4.

The rescaling formula is:

Lemma 8.1. Given (u, A) and Q, assuming 0 € §, define uy, Ay and
Q\ by

ux(Az) =u(z), Mi(Az) =A(x), Q\= Q. (8.3)
Then, for any hez, we have Ge(u, A, Q) = G2 (uy, Ay, Qy), where

GQ\(UA; A)\a Q)\) -

2
1 2 2 hex 2 (1 - ‘U)\|2)
Q/VAAU)\’ + A <curlA>\—)\2> +W (84)
Qx

The proof is straightforward and we omit it.

8.1 Upper Bound

Proposition 8.1. Assume, as € — 0, that 1 < he, < 1/€2. Then for
any € small enough

. Y
g ,A, Q S hexi 1
AR Ge(t A ) < hea 7 | log

+C|. 8.5
eVhes > (85)
Proof. The proof is done by constructing a test configuration (u, A;)
which is periodic, in the sense that gauge-invariant quantities are peri-
odic. Let
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and let L, = A\Z x A\Z. We let h. be the solution in R? of

—Ahe +he =21 Y ba. (8.6)
a€L.

It is thus periodic with respect to L.
Then we define p. by

0 if |x — a| < € for some a € L.,
pe(x) = [z —al _ 1 ife < |z —al < 2e for some a € L, (8.7)
1 otherwise.

Finally, as in the proof of Proposition 7.3, we define A, to solve curl A, =
he and @, well defined modulo 27, to solve —V+h. = V. — A, in R?\ L.
Then we let u, = p.e'¥e

By construction, every gauge-invariant quantity is periodic with re-
spect to the lattice L., thus if we choose the origin carefully, the energy
Ge(ue, A;) will be estimated by computing the energy per unit cell. In-

deed, let
1 1 1 1
fe= <_2)\2)\) g (‘mm)

be the unit cell of L.. For each x € K. we may define a translated lattice
L?, and a corresponding test configuration (u?, AZ), with energy density
glZ(y) = gl(y — x). Then, applying Fubini’s theorem we have

[ Gtz do= [[ gzt dedy = |00G-u-. A2, K

TEKe IEIS{ZE
ye

since gl. is periodic with respect to the lattice L.. It follows, using the

mean value formula, that we may choose = such that

Ge (uf, AL, Q) < ||I£(2‘\ c(ue, Ac, Ko). (8.8)

We estimate G.(ue, Ae, K), arguing as in Proposition 7.3: we have
‘VAEUE‘Z = ‘VPEP +Psz‘v905 - Ae’2 and p62’v806 _As‘Q > ‘Vhs‘Z- More-
over, writing B, for B(0,r) and using (8.7)

1 1 2
B / ‘Vp5’2+27€2(1_p62) <C.
B2€
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We deduce that

1 1
Gl An ) < / Vel + 5 /(hs Che2dr+C. (8.9)
K\B: K.

To estimate the right-hand side, we perform a change of variables
y = Az. Then

B 9 s
/ !Vh€|2+/(h€—hex)2d:c: / Vh€]2+h7r/h§dy (8.10)

KE\BE Ke K\BAE

he — hex as

he(y) = g:(y) —log |yl (8.11)

and we show that g. is bounded in W4(K) independently of ¢ for any
q > 0.

First, by periodicity, the integral of h. in K. is 27, thus the integral
of he in K is 2702 — hex = 0. Therefore g- and log| - | have the same
mean value in K, and that value does not depend on . We deduce from
Poincaré’s inequality that

192132y < € (14 1992y ) - (8.12)

Second note that h., which is the solution to (8.6), is also the solution of
—Ahg+he = 216y in K, and 9,h. = 0 on OK.. Indeed, the problem (8.6)
is symmetric with respect to each line containing a side of the square K.,
hence h. is equal to its symmetrized and 0,h. = 0 on JK.. Therefore

9= (y) = he(y/A) — hex + log |y| solves

~Ag: + A2 (ge + hex —log) =0 in K,
81/.96 =0, log on 0K.

Multiplying the equation by g. and integrating by parts in K yields

1
/|v9€|2 + 2 (gg + gehex — ge IOg) = /gsauge-
K oK
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We deduce, replacing A by its value and using the facts that 9,g9. = 0, log
on 0K and that the average of g. on K does not depend on ¢,

IVgellZoy < € (1 + hex N19ell72 (x) + ”geHL?(aK)) : (8.13)

Since 1 K hey, if € is small enough, then hey is large enough so that using
(8.12) and bounding the L? norm of the trace of g. by the H' norm,
the terms in the right-hand side of (8.13) are absorbed by HVQEH%Q(K)

yielding [|ge|l g1 (k) < C. We deduce that g. is bounded independently of
¢ in LY(K) for every g > 0 and then, using the equation satisfied by g,
that for every g > 0

HV95||12/V1,q(K) <C.

Together with (8.11), this implies that
~ 1
/ |Vhe|? < C + / ]Vlog\QSC—i-Zwlog)\—g,
K\B). K\B)¢

and also ,3—07; Jx h? < C. Together with (8.8), (8.9), and (8.10), this yields,
since |K.| = A72 = 27/ ey,

Q
Ge (uf, AL, Q) < it] <ﬂ10g€+0> <

8.2 Lower Bound

We now wish to compute a lower bound for G.(u, A) which matches the
upper bound of the previous section. In the course of the proof we will
see clearly that if (u, A) minimizes G, then its energy is accounted for
by the vortex-energy.

In what follows we denote BY = B(z,A™!) and we will often omit
the subscript ¢, where z is the center of the blow-up.

Proposition 8.2. Assume |loge| < hey < 1/2 and (u., A.) minimizes
Ge. Then there exists 1 € A < % such that for every x € 0 such that
BY C Q, we have

| By 1

hezlo
9 ex g&_ T

G (ue, Ac, BY) > (1-o(1)). (8.14)



8.2. Lower Bound 161

Proof. As already mentioned, the proof is achieved by blowing up at the
scale A.

Define uy and Ay, as in (8.3), but taking the origin at x. From
Lemma 8.1, (8.4), again with the origin at x, and dropping the & sub-
scripts, the left-hand side of (8.14) is equal to

hex)2 + (1 - |U)\‘2)2

1 2 2
5 / ’VA)\U)\’ + A <Curl A)\ — ﬁ 2(}\8)2
B1

thus, letting u' = uy, A’ = Ay, &’ = Ae and hey' = hex /N2, the inequality
(8.14) that we wish to prove is equivalent to

2
1 12 2 / N2 (1 B ’ul|2)
- , 1A — hey AN bl BV
2/|VAu] + A% (cur hex')” + 572
B
|Bl, / 1
> ———hex 1 1—-o0(1)). (8.15
> e Tog ——= (1= o(1)). (815
Now we choose A such that
hex' = |logé’|. (8.16)

Let us check that this is possible and give the behavior of A as e — 0. Con-
dition (8.16) is equivalent to e2he, = f(e)), where f(z) = z%log(1/x).
Since €2hey — 0 as € — 0, it is easy to check that for € small enough,
there is a unique z. € (0,1/2) satisfying f(x.) = £2hex. Moreover from
|loge| < hex < 1/e% we deduce € < z. < 1. Therefore (8.16) can indeed
be verified, and the corresponding A, ¢’ satisfy

1 1
l< A=, ¢x1, log—— ~|logé|,
the last identity being deduced from e2hex = f(e\) = f(¢') by taking
logarithms. Thus with this choice of A, (8.15) becomes
1— |u/|2)2

1
3 / V|2 4+ N2 (curl A — he)” + ( 2

By

B
> |21|hex'|log5’| (1-o(1)). (8.17)
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Two cases may now occur, depending on the blow-up origin x. Either

1— [u')?)?
/ |VA'U/|2 + )2 (CurlA' — hex’)2 + (21:2”

B

1 2
5 > hex,

as € — 0 and then, from (8.16), (8.17) is clearly satisfied, or

1—u

2¢!?

1 2 2 / 72 ( /’2>2 12
2/|VA/u| + A (CurlA —heX) + < Chex ©.
By

This way, we have reduced to the case of configurations with a relatively
small energy, for which all the analysis of previous chapters apply.
In this case, since A > 1 we find

curl A’ — hey'

T — 0, in L*(By). (8.18)

On the other hand, replacing € by €’ and heyx by hey’, the hypotheses of
Theorem 7.1, item 1) are satisfied and we deduce from (7.6), (7.8) that

1 1_u122 /
1mmfﬂ/me+@mm_mﬁmf ||)>Mw
X
By

&—0 2k, 2¢/? - 2

where p/ = —AR + 1/ and }/ is the limit of curl A’/hey’. From (8.18) we
have p/ = 1, hence

1 [u/]?)?

.. 1
lim inf / ]VA/u’]2 + (curl A — hex/)z + ( 572 >
By

&0 2he”

™
27

and (8.17) is satisfied since for our choice of A

m B 1
§hex/2 = ‘ 21| hex/ IOg g
We have shown for our particular choice of A that (8.17), hence (8.15)
and then (8.14) are satisfied for every choice of blow-up origin x. O]
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To conclude the proof of Theorem 8.1, we integrate (8.14) with respect
to z. Letting U be any open subdomain of {2, using Fubini’s theorem,
we have

[ Gwasinv) = [[ swawdyds

zelU zelU
yeBINU

- / / g-(u, A)(y) da dy

zelU
yeBINU

— / IBY N Ulg-(u, A)(y) dy <
yeU

s

)\ZGa(%A,U)-

We deduce that
A \2G A BYNU
lim inf 7&5(% U) > liminf / e(u, 4, By )

e—0  hey log

1 1
e—0 Thex lo
eV hex xelU ex g eV hex

/ X2G.(u, A, BE N U)

Thex log lh
T€U,BICU &V tex

G:(u, A, BY

> /liminf <1B§CU 5(:’ d )‘1) )
s £—0 hex| B3| log - e
Ll

- 2

> lim inf

e—0

(8.19)

where we have used Fatou’s lemma and (8.14). In view of Proposition 8.1,

we know that (hex log ﬁ) : ge(ue, Ac) is bounded in L!(2), hence has
a weak limit g in the sense of measures. Since continuous functions on €2
can be uniformly approximated by characteristic functions, (8.19) allows
to say that g > d—;. But since (8.5) holds, there must be equality, which
proves (8.1), and (8.2) immediately follows.

BIBLIOGRAPHIC NOTES ON CHAPTER 8: The result of this chapter was
obtained in [170], but the proof is presented here under a much simpler
form. The case of higher hey, of order b/c? with b < 1, was studied in
[172].



Chapter 9

The Intermediate Regime

0 : _hex - _1
When hey ~ H ie., Moge] A= 2[&o]”

that the limiting minimizer is hg hence p, = 0. Moreover, comparing
the lower bounds (7.58) and (7.59) to the upper bound of Theorem 7.1,

we find % — 0, which means that the number of vortices is 0(hex).

heX
[Tog <]

ﬁ, and next to A (defined in (7.5)), and the vorticity
mass is much smaller than hec. The analysis of Chapter 7 does not give
us the optimal number n of vortices nor the full asymptotic expansion
of the first critical field. Thus, a more detailed study will be necessary

in this regime hey ~ l;ngOEH, in which n < hex. We will prove that the

then from Theorem 7.2, we get

In other words, for energy-minimizers, vortices first appear for —

or hex ~ HY

c1?

vortices, even though their number may be diverging, all concentrate
around A (generically a single point) but that after a suitable blow-up,
they tend to arrange in a uniform density on a subdomain of R?, in
order to minimize a limiting interaction energy I defined on probability
measures.

Many of the elements of the proof in this chapter will be useful in
the following chapters.

9.1 Main Result

In this chapter, we assume for simplicity that 2 is a domain such that
defining &y as in (7.2), the minimum of £y is achieved at a single point
(recall Lemma 7.1) and that moreover D?{y(p) is a positive definite
quadratic form. This is the case if €2 is a ball or a convex set, for in-
stance.
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Throughout the chapter, we denote by p the unique point where
o achieves its minimum, by {p its minimum value, and let Q(z) =

<D2§0(p)a;, .CC>

9.1.1 Motivation

The analysis which follows is best introduced by some formal calcula-
tions. Assume we are given solutions {(us, A;)} to the Ginzburg-Landau
equations with an applied field hex which is of the order of |loge|. We
drop the subscript ¢ for the clarity of notation. To (u, A) is associated the
vorticity measure u(u, A) = curl(iu, Vgu) + h and also, with the help of
Theorem 4.1, a family of vortex balls with centers and degrees {(a;, d;)}i,
and total radius to be chosen later. We assume for simplicity that the
degrees are all equal to +1 and let n denote the number of vortices. We
also assume that every vortex ball has the same radius r. We wish to
guess as precisely as possible where it is energetically favorable to place
the vortices, if we know n to be small compared to hex.

Since (u, A) is a solution of the Ginzburg-Landau equations (GL),
we know from Proposition 3.9 that |u| < 1 and therefore, writing j =
(iu, Vau), we have |V qu| > [j|. On the other hand we have —V+h = j,
where h = curl A, thus

1 1
G, )2 5 [ IVA 4= hof? = 510 = .
Q

In this section we will make the assumption (which will be a posteriori
justified) that minimizing the right-hand side or minimizing the left-
hand side with respect to the number and/or positions of the vortices,
is equivalent.

We decompose h as h = hechg + hi, where hg solves (7.1). The H'
norm of h — hex decomposes as

Ih = hexllF = hex*ho = l7p + 2hex(h ho = 1)+ [halfp. (9.1)

Taking the curl of the second Ginzburg—Landau equation we find —Ah;+
hi = p(u, A) and from the boundary conditions for h and hg we get
h1 = 0 on 0f). Integrating by parts the scalar product we then find,
using the notation (7.2) and (7.3),

1 1
3 Ih = hexllf = heX2Jo+hex/§ou(u, A)+2/\Vh1|2+h12. (9.2)
Q Q
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To make the vortex positions appear, we recall that the vorticity
p(u, A) is close to 2w ) ", dq, (see Theorem 6.1), and therefore hy is close
to solving the “London equation” (as called in physics)

—Ah1 + hy =27 Zl (5[“ in
hl =0 on 0f).

Of course the true h; is smooth near the vortices, thus this approxi-
mation is valid only away from the vortices. We make the simplifying
assumption that defining Gq as in (7.17), for = ¢ U;B(a;,r) we have
hi(z) = 2n ), Ga(z,a;). It is standard to check then that, using the
notation (7.18),

1 1
- h|* +h® ~ mnlog = — 7Y log|a; — a; > i)
/ |Vhi|*+ hy ™ ogr T ogla; —aj| +m Sa(ai, aj)

2 — —
O\U; B; i#j i,J

As for the energy in each B(a;,r), in view of Theorem 4.1, we take it
to be mlog(r/e). Together with (9.1), (9.2), where we replace u(u, A) by
271y, 0q;, we find that G.(u, A) can be approximated by

hex>Jo+7n|log e| 4+ 27 hex ng(ai) - Z log |a; —aj|+7 Z Salai,aj).
i i#j i

We know that if n is small compared to hey, then the vortices will tend
to concentrate near the minimum p of ;. Therefore we are entitled to
approximate &g(a;) by &o + %Q(ai —p). We find

Ge(u,A) ~ hex’Jo + mn|loge| + 2mhexnéy

+ Thex Y Q(ai —p) — Y _logla; — aj| + 7n*Sa(p,p). (9.3)
i i#j

What kind of information can we get from such considerations? Let ¢

denote the typical inter-vortex distance or rather the typical distance of

a vortex to p. Three terms can be distinguished in the above sum. First

the term
hexJo + mn|loge| + 2mhexnéo + m%Sq(p,p),

which depends only on the number, not the positions of the vortices.
Then the term mhex Y ; Q(a; — p) which favors concentration of the vor-
tices near p, it is of the order of nhey??. Finally the term — Z#j log |a; —
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a;| which is a repulsive term, is of the order of —n?log¢. To minimize
G, we should then minimize nhexl? — n?log ¢ and therefore choose

n
b=/ —.
hex

Note that we are interested here in orders of magnitude, hence the con-
stants are irrelevant. The natural next step is then to express (9.3) at a
different scale, by letting a; = (a; — p)/¢. We get

G:(u, A) = hex’Jo + mn|loge| + 2mnhexéo + 70 Sa(p, p)

— m(n? —n)logl + TI'TLZ Q(a;) — leog la; — ajl.
i i#]
This expansion is the sum of a term independent of the positions of the

points,

1
fe(n) = hex2<]0 + (| 10g5| - 2hex|£70‘) + 7Tn2SQ(p,p) + 77(”2 - TL) log Z7

(9.4)

1
and a term best written in terms of the probability measure i = — g da,;
n =
(2
as n?I (i), where

1) =~ [ [ogle ~ yldie) o) + 7 [ Q) dit(o)

9.1.2 TI'-Convergence in the Intermediate Regime
Throughout this chapter, we are given configurations {(uc, A:)}- to which
we associate certain quantities that we define below.

Notation

Assume {(uc, Ac)}e satisfy, for some a € (0,1),
Fo(ue, AL) <71 Chex <79, (9.5)

where AL = A, — hexV+*ho and C > 0 is a universal constant that we
choose below.
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From Theorem 4.1 applied to (u., AL), we may construct vortex balls
of radius Ce®/2, for some universal constant C. We define these to be
the small balls, denoted by B’ = {B}};. Their centers and degrees are
denoted by a and d}, or more precisely d; is the degree of B} if B} C Q.
and d; = 0 otherwise. We let

P =Ce?, n = Z |d]. (9.6)

()

Under the hypothesis (9.5) and choosing the constant large enough,
we have 1’ < 1/v/hex, and therefore, using Theorem 4.2, we can grow the
family of small balls B’ into a family of large balls denoted by B = {B;},,
of total radius 1/v/hex. We write a; for the center of B; and d; for its
degree, we also use the notation

1
r= T n:;|dl| (9.7)

Note that r,n,r’,n’ all depend on e. Also note that since every ball in
B’ is included in one of the balls in B, Lemma 4.2 implies that n’ > n.
The previous section motivates the following definitions. We let

= .
. (9.8)
and write
fe(n) = hex’Jo + 7T logg — 2mnhex|&o|
2 2, 1
+ m™*Sq(p,p) + ™n” log 7 (9.9)
1 1

f2(n) = mnlog R + m2Sa(p, p) + mn’log 7 (9.10)

Also, recalling that p denotes the unique point of minimum of &y, we let
© be the blow-up centered at p for the scale ¢, defined by

olz) =2 zp. (9.11)

If p is a measure we will denote by [ its push-forward by the mapping
¢, defined by i(U) = u(p~1(U)), and if x is a point, then we will let
T = ¢(x).



170 Chapter 9. The Intermediate Regime

Finally we denote by P the set of probability measures on R? and for
u € P we let

Im=—w//b@x—mdM@@ww+w/Q®ﬁw®% (9.12)

Results

We may now state the precise I'-convergence result in the intermediate
regime:

Theorem 9.1. (I'-convergence in the intermediate regime, lower
bound). Assume that {(ue, Ac)}e satisfies Fr(ue, As) < e~ 1/4 and that
hew < e~ Y8. In particular (9.5) is satisfied with o = 3/4. We also assume
that 1 K n K hey as e — 0, that

Ge(ue, Ac) < fe(n) +Cn®,
and we make one of the following two assumptions:
her < Clloge| or n' =n,
where n and n' are defined by (9.6)—(9.7). Then the following holds.

1. There exists a probability measure p. such that, after extraction of
a subsequence,
(e, Ae)
2mn

as € — 0, in the dual of C,?’W(RQ) for some v > 0.

- lu/*

2. Ase — 0,
Ge(ue, Ac) > fe(n )+n21 (1) + 0(n?), (9.13)
Fa(ue, A) > fO(n ”W//ng—wWw(WM()

+ o(n? (9.14)
where I was defined in (9.12) and f. in (9.9).

The corresponding upper bound also holds, with less restrictive as-
sumptions on hey.
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Proposition 9.1. Given a probability measure p with compact support
in R? such that I(p) < oo and given 1 < ng < heg(e) < e P with B < 1
as € — 0, there exists {(ue, Ac)}e such that ’1(;;77’;25) — pin (CV(R2))*
for every v > 3/2 and such that moreover

Fu(us, AY) = f2(n2) — n’n / / log [ — | du(x) du(y) + o(n2)  (9.15)
where AL = A; — he;V'ho, and

Ge(ue, A) = f=(ne) +nZI(p) + o(n?). (9.16)

We have therefore identified the right limiting object in this regime.
It is the limit u. of the rescaled and normalized vorticity measures

ﬁ(u& AE)

21N,

To leading order, minimizing the energy of a configuration with n vortices
reduces to minimizing 1. We describe below some of what is known about
this minimization problem, and then give precisions on the behavior of
{(ue, Az) }e as € — 0.

Minimization of [

The solution to the minimization of I is known. It falls into the more
general problem of minimizing functionals of the type

[ o8 dute) duty) + [ Qo) duto)

|z — yl

over probability measures, when e~ ¢ decreases fast enough at infinity.
We cite the following result from [163]:

Proposition 9.2 (See [163]). inf,cpl(p) is finite and there is a
unique minimizer pg, which has compact support. It is uniquely char-
acterized by the fact that there exists a constant F' such that

1
Uko + 5@ = F quasi-everywhere on Supp po

1
UHo + QQ > F  quasi-everywhere in R>
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where UM (x) = [po —log |z — y| dpuo(y).
If Q is a positive definite quadratic form, then ug is a measure sup-
ported on a compact set of R? of constant density %AQ (the Laplacian

of Q).

Corollary 9.1. Under the hypotheses of Theorem 9.1,

Ge(ueaAs> - fs(n) > 7T771210 + 0(n2) (9'17)

where
Ip =minI(un). 1
o = min I(p) (9.18)

Moreover, if n > 1 and if there is equality in (9.17), then we must have

ﬂ(uEa AE) N . 0,y 2\ *
2N Mo n (Cc (R )) ; Vy>0
where o is the minimizer of (9.18).

Proof. The result is immediate and follows from the uniqueness of the
minimizer of Ij. O

Since @ is a quadratic function in our case, we also know from Proposi-
tion 9.2 that the minimizer pg has a constant density %AQ.
We now turn to the proofs of these main results.

9.2 Upper Bound: Proof of Proposition 9.1

Let us assume that the support of u is included in B(0, R). The fact that
I(11) < oo and p > 0 implies that u € H~(B(0, R)). Indeed, introducing
Sp(o,r) and Gp(o,r) With the notation (7.17)—(7.18), we have

/ Go,r)(2,y) du(z) duly) =
;ﬂ// Spo,r) () du(x) du(y) — % // log |z — y| du(z) du(y).

The first term in the right-hand side is finite because Sp(g ) is a con-
tinuous function, and the second term by finiteness of I(x). We deduce
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that [[ Gp,r)dpdp < oo and hence that p € H~1(B(0, R)). We may
then apply Proposition 7.4 in B(0, R) with € replaced by

E=—,

1M

(remark that ¢ < ev/hex < C) we obtain the existence of n. points
b5 € B(0, R) such that

1 .
- Zg; — 21 (9.19)
ne 4

in the weak sense of measures, and

1 il (z) dji!
g =5 Y / / log|a — y| diit(«) djit(y)

e—0
i#]
= —4r? // log |z —y|dp(z) du(y), (9-20)

where the measures il are the uniform measures on dB(b5,€) and of
mass 27 (hence also n% >i0p: — ). Let us now rescale and consider
as = o 1(b5) (where ¢ is defined in (9.11)) and ! the pull-back under ¢
of the measures fil, i.e., uniform measures on dB(a5,e). We may apply
Proposition 7.3 to those {a$}. We get a configuration (u., A;) for which
(7.23), (7.24) and (7.25) hold.

But, clearly n% > pi — 270y, the Dirac mass at p, and thus, by
continuity of Sgq,

=3 [ o) duia) i) = mn2Salp.) + ol

On the other hand, using the change of variables y = ¢(x) and (9.20),
we find

1 Z. .
~ X [ ogle - sl dii @) duity
i
1
— n(n2 o) log ; — mn? [ [ og o — yl due) duy) + o?)

Finally, inserting these relations into (7.23), we get (9.15). Next, observe

that n. > 1 and hex < e ! thus 2 = }Zi > h%x > e. We deduce
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that log < [loge|, and that f2(n.) < O(n2|logel), so F.(uc, AL) <
O(n?|loge|). Inserting that into (7.24) and using he, < e~ % and (9.19)
we get that

Ge(ue, Ae) = Fe(uz-:»A,a) + heX2J0 + Z hex/ﬁo(l’) d:ué(l') + O(Hg)
Z (9.21)

But by definition of the pi’s and smoothness of &y, we easily have that
> hex / So(z) dpi(z) = 2mhex Y _ &o(as) + O(nchexe).

Then, using a Taylor expansion at p, since a; = p+ £b, V& (p) = 0 and
Q is the Hessian of & there, we have

62
27 hex Zfo(af) = 2mhex ' <§0(p) + EQ(bf) to (52)>

()

= —27Tn5hex|£7(J| + e Z Q(bze) + O(ng)

7

= —2mnchex|éo] + an/Q(a:) du(x) + o(n?).

Inserting this into (9.21), then using (9.15) and the definition of f. and
I, we conclude that (9.16) holds.

We now turn to the convergence of fi(uc, Ac). Using (7.25) and rescal-
ing, we find

=1 (COY(R2))~
1 S
<07 ; (M(Usa As) - ZM&)
c i=1 (COv ()"
F(ue, A/e)

<CUT7EY | 1+ cehex +
Ne
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Using again F.(ue, AL) < O(n2|logel), we have

FE(UEvAf-:)

Ne

7Y | 1+ chex + < O he Y27 (1402 1og e|V/?)

<o(1)+ 0O (ngl”’)mhexw%ﬂ log 5|1/2> .
Next, we insert n. < hex < ¢ 2 and find

Fa(uauA,e)

Uz

T [ 1+ ehex + < 0(1) + o(hex /?e7)

< o(1) + o(7 | loge|'/?)

which is o(1) as soon as v > (/2. Combining this with (9.22) and (9.19),
fi(ue, Ac)

™,
The rest of the chapter is devoted tosproving Theorem 9.1.

we get the stated convergence for

9.3 Proof of Theorem 9.1

Before presenting the proof, let us explain the main steps and ingredi-
ents.
The first step is to split the energy in the following way, which corre-
sponds to (9.2) and Lemma 7.3. We let A’ = A — he, V-hg and show
that

Ge(u, A) = hex”Jo + Fo(u, A') + 2hex Y dio(ai) + o(1).  (9.23)

Then, we recover as a lower bound all the energy contributions found
in the upper bound (9.16), beginning with the terms which constitute
fe(n). First the main order ones: mn log(¢/e) coming from the vortex-core
energy, and —2mnhex|&o| the main order term of 27hey Y ; diéo(a;) coming
from the interaction with the magnetic field; then the term 7n?log(1/¢)
will come from a more delicate lower bound on the energy on an annulus
centered at p (Proposition 9.4).

Finally, when all these terms are obtained and yield f.(n), comparing
with the upper bound proves that whatever remains is of the lower order
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n?. This allows us to get compactness and pass to the limit in the re-
maining terms, like in a renormalized energy procedure, bounding them
from below by the limiting (“renormalized energy”) I.

In this process, it is crucial to locate the energy contributions and
retrieve them where they are, because the terms have different orders
of magnitude. More precisely, the vortex-core energy will come as usual
from the energy in the vortex-balls constructed to be large enough but
still small (total radius hex '/?). Then, we will split € into three regions:
a ball B(p, K¥), an annulus A = B(p, d)\B(p, K{), and the complement
of B(p,d) (see Fig. 9.1).

B(p,Kl)

Figure 9.1: The annulus.

Essentially, the contribution of the annulus A gives the mn?log(1/¢)
term, and ensures that almost all the vortices remain confined in the
inner disc B(p, K¢) if K (independent of ¢) is large enough. Then, the
energy of I(u) will come from the contributions of the complement of \A.

One of the first technical difficulties to overcome is that the splitting
(9.23) is only valid if the vortices a;’s correspond to small enough balls.
On the other hand, to retrieve the total energy of the vortex cores, we
need larger balls. A first step in the analysis will thus consist in going
from small to large balls.
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9.3.1 Energy-Splitting Lower Bound
In this section we prove the following:

Proposition 9.3. Under the hypothesis (9.5) and using the above no-
tation, there exist points {b;}; such that b; € B; for every i and, letting

v=> . di,,

Gs(usaAe) > hemQJO + 27Thex/£0 dv + Fs(uaAlg)

—CO(n' —n)rheg Chex€7_1 Chex e® (9.24)
F.(ue, AL) > 7rnlogniE + F.(ue, AL,Q\ B) + / (curl A")?
B
a !/
+ 7T§(7”L —n)|loge| — Cn. (9.25)

Note that in the above we have abused the notation by writing
Fe(ue, AL, Q\ B) instead of F.(ue, AL, Q\ U;B;) and [ instead of [, 5

Using the energy-splitting lemma, Lemma 7.3, the proof of (9.24)
consists in approximating p(u, A") by the measure 27 ). d;dp,. Unfortu-
nately, 7 = 1/v/hex is too large for Theorem 6.1 to apply. We must then
play with small and large balls. We first need the following:

Lemma 9.1. We have, assuming (9.5),

/|VA/u| +— (1— |u ) 72 (curl A)?

T«
> — 4+ =(n' — —
> (n log - + 5 (n" —n)|log 5|> Cn, (9.26)

where we have dropped the subscript € for u and A’.

Proof. In this proof, we add up the lower bounds found on the small
balls of B’ to the lower bound in the large annuli B\B' (with an abuse
of notation). From Theorem 4.1 we have, with the notation of (9.6):

1 2 2 N2
2/|VA/u| T 252 (1= [uf?)? + r2(curl )
B/
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On the other hand, applying Proposition 4.3 in Q. (see (4.2)) to v = u/|u|
with By = B’ and final radius r we get, restricting every integral below
to Q,

1
3 / |V 40| + r(r — 1) (curl A")? > 7nlog % (9.28)
T
B\B'

Now recall that from Theorem 4.1 we have |u| > 1 —&** in Q. \ B’ and
therefore
IV aul? > [ul[V ]2 > (1= 259/4)|9 yof?

there. Therefore, multiplying (9.28) by (1 — 2e%/%) we get

1
5 / |V au)? +7r(r — ") (curl A)? > 7n log% — Chn, (9.29)
B\B'

where we have used the fact that since r/r’" < Ce=%/2 the quantity
£*/*log(r/r") is bounded by a constant.
Adding (9.27) and (9.29) yields

1 1
3 / |V arul?® + 222 (1- |u|2)2 + r%(curl A)?
B

/

> <nlogr5 + (n' —n) log% —n'logn’ +nlogn — Cn’> . (9.30)
n

Now,

n/

n’'logn’ —nlogn = /(logt +1)dt < (n' —n) (logn'+1),  (9.31)

n

and from Theorem 4.1 we know that n’ < CF.(u,A")/(a|loge|) <
Ce® 1 It follows that logn’ < (1 — a)|loge| + C. Inserting into (9.31)
and using the fact that /e = Ce2 ™! we find

/

(n' —n) log%—n’logn’Jrnlogn—Cn' > (n'—n) (%|10g5| — C) —Cn/.

Thus, for € small enough, the above allows us to write (9.30) as (9.26),
hereby proving the lemma. O
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We also have:

Lemma 9.2. Assuming (9.5), we may choose points in the large balls,
i.e., {b;}i such that b; € B;, such that letting

v = Zdiébi’ Vo= Zd}éa;
i J

be respectively the measures relative to the large (v) and small (V') balls,
we have

/50 dv' = /50 dv — Ry, (9.32)

where

Ry <C(n' —n)r.

Proof. What we are trying to do is to bound from above /50 d(v—1").

To get rid of the problem of balls intersecting the boundary, we define 14
as the part of v/ which corresponds to small balls which are included in a
large ball that does not intersect the boundary, and vo as the remaining
part. More precisely, we let J; be the set of indices j such that for some
7 we have B; C B; with B; C €. and we define

V1 = E d;da;, I/QZV/—I/l.
jeJ1

We begin by showing that 15 can be ignored. Indeed if j & Ji, then
this means that the point a; is at a distance smaller than r + ¢ from the
boundary of Q hence [¢y(a})| < C(r + ¢). It follows that

' [ o

where we have used the fact that r > ¢ and we have bounded } .. ; |d’]
by n’ —n.

From (9.33), we are reduced to proving the lemma, but with v/ re-
placed by v, which we do now. First we choose the points b;. We have

/fo dv —11) = Zdi€0(bi) — Y di&o(d)).

JEN

<C(r+e)n —n) <Cr(n' —n), (9.33)
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But for every ¢ such that B; C Q. we have d; = Zd;-, where the sum
runs over the indices j such that B; C B, while if B; ¢ Q. then d; = 0.
Thus we may rewrite the above as

/fodl/—l/l DY i (&lbi) — &old))) -

B;CQe BCB;
This sum is made the smallest by choosing b; € B; such that

ming, § ifd; >0
So(bi) = (9.34)
maxp, §o otherwise.
Then we have d; <§o(bi) - 50((1;-)) < 0 whenever B} C B; and djd; > 0.

Therefore, assuming from now on (9.34),

/go v—v)< Y Y di (Slby) — &o(d))) - (9.35)

B;CQ. B’CB
d;-di<0

Now we observe that

> 2 |d§‘\_* Z\d'I—Z\dI < 2_ : (9.36)

BiCQe BiCB; je€J1
d;di<0

while for every j such that B;- C B;, since a;- and b; both belong to B;
which has radius less than r,

[S0(bi) — €o(aj)] < Cr[[Vo|lo-
Inserting the above and (9.36) into (9.35) we get
/50 d(v —v1) < Cr(n' —n)||V&]loo-

Together with (9.33), this proves the lemma. O

Proof of Proposition 9.3. Let us write in shorthand p = u(u, A’) and
h = curl A'.
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In view of (7.22), and noticing that e F.(u, A") < Ce?®, proving (9.24)
reduces to proving that

/§0M> /éodV—C(n/—n)r—C€?_1,
Q

which from Lemma 9.2 in turn reduces to proving that

[en> [qar-cs%
Q

This last inequality follows from Theorem 6.1, by noticing that
' Fy(u, A') < Ceztol,

It remains to prove (9.25), but this is a direct consequence of Lemma
9.1, if we write Fy(u,A") = F.(u, A", Q\ B) + F.(u, A’, B) and further
split this expression by writing F.(u, A’, B) as

1 2 1 2\ 2 2712 1 2 2
2/ <|VA/’LL| + 2762 (1 — ‘U| ) +r h + 5(1 —T ) h, . t
B B

9.3.2 Lower Bound on the Annulus

The next step, after (9.24)-(9.25) are obtained, is to retrieve from it
the remaining terms in f.(n). Roughly speaking, these will come from
a lower bound of F.(u,A’, A), where A is a carefully chosen annulus.
Recall that p denotes the unique point where &y achieves its minimum.

We still assume that (9.5) is satisfied and we use the same notation
as above for the small balls, large balls, and related quantities. We also
denote by {b;}; points chosen inside the large balls, i.e., b; € B; for
every 1.

Recall that n is the sum of the absolute values of the degrees of
the large balls. Given arbitrary positive numbers K, 4, if the length ¢ as
defined by (9.8) is small enough, then K¢ < § and we may define our
annulus A as follows (see Fig. 9.1).

A= B(p,m1)\ B(p,r0), r0=K¢{, r1=0. (9.37)

We will assume that K > 1 and that § is small enough so that
A C Q.. We insist that K and ¢ are chosen independent of ¢, whereas n,
hex and therefore £ may or may not depend on ¢, the latter being useful in
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later chapters. We will also sometimes write in shorthand By = B(p, 1)
and BO = B(p, 7“0).
It will also be useful to define the function D : [rg,m1] — Z by

D)= > d (9.38)

|b;—p|<t
Note that if ¢ is such that OB(p,t) does not intersect the large balls, then
D(t) = deg (u/|ul, 0B(p,1)) .

Finally we let

D™ =>|dl, De= > d. (9.39)

d;<0 d; >0
b;¢B(p,0)

We bound from below the contribution of the energy in the annulus
A, using the method we had introduced in [171] which consists in inte-
grating over circles centered at p (the core of the idea is in Lemma 9.4).
Since the degree of u on the annulus will be shown to be approximately
constant equal to n, this will yield a lower bound of the free-energy in
mn?log :—(1) up to error terms.

Proposition 9.4. Assume (9.5) is satisfied. There exist positive num-
bers Ko, dg depending on ) such that if K > Ko, § < &g, and if £ is small
enough depending on K,0, Q, letting v =", d;0y,, we have

1 1
3 / |VA/U’2+ 1 / (curlA’)2+27rhem/§gdy

A\B B(p,9)
1)
> n? log Vi + 2mnhe o
n3/2
+2mhes > di (So(bi) — &) — mn26% — T+ o(n?). (9.40)
b;€B(p,Kl)
d; >0

Moreover, if the difference between the left-hand side and the right-hand
side is less than Mn?, then D~ and D, are bounded by CnQ/hez, and for
any t € [ro,m1],

n

‘ DM —n| _ (fz +£2> . (9.41)
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In this case we also have

1)
ul? + 1412 > 7?1
/\VAu] /(cur ) ™ 0gK€
A\B

1
— Cn? (52 +zt 0(1)> . (9.42)
In the above, C' depends on M,€), 9, K.

We begin with the following:

Lemma 9.3. Under the same hypotheses as above,

T1
2
/ |V qau? + = /(curlA')2 Zﬂ/Dt(t)dt

.A\B ro
3/2
— mn?§? — Wn? — Cn?c*/*log :—;. (9.43)
Proof. Let T = {t € (ro,r1) | 0B(p,t) N B # &}. Then the Lebesgue
measure of T, denoted by |T'|, is less than twice the total radius of the
balls, i.e., |T'| < 2r, where we recall that r = 1/v/hex. Moreover for any
t ¢ T, Lemma 4.4 applied with A = 1/(20) yields

B / ’ A ’U‘ + 5 | curl A | Tl : 1 Iy D (t) 7 1) y
OB(p,t) B(p,t)

where v = u/|u|. Integrating with respect to t € (ro,71) \ T we find

/|VA/U| 41 /|Cur1A’|2
A\B
I 1 1
> /WD2(t) (t - 5) dt — /wDQ(t) <t — 5) dt.
T

0o

The integral over T can be estimated by bounding |D| above by n, and
noting that since |T| < r,

ro+7

2 2

/”dt< / ndt:n210g<1+r>.
t t To

T

T0
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This yields

T
1 1 D(t
/]VA/U\2+/|curlA’\22/7r()dt—an 6% +log 1+~
2 4 t To
0

A\B By
o2 3/2
t
Z/TI‘ ()dt—ﬂ'n252—7TL
o

t K’

where we have used the fact that n?r/rg = n®2/K, which follows from
(9.37), (9.8) and (9.7).

Now we use again the fact that in A\ B, we have |u| > 1 — &%/, and
therefore

IV aru? > [u2|V 40]? > (1 — 26%4)|V 40

This implies using the above that

1 2 1 N2
. / IV +4/(cur1A)

A\B By

"t p2 3/2
t
>7r/ ( )dt—wn252—7rn——0n26a/4logr—l,
t K o
ro
and therefore (9.43) is proved. O
We now estimate the right-hand side of (9.43).

Lemma 9.4. Assume (9.5) is satisfied. There exist positive numbers
Ky, 0y depending only on  such that if § < 0y, K > Ky, and £ is
small enough depending on K, §, ), then

T1
D?(t
T / t( ) at + 27rhedei§0(bi) >
ro g
2 1
mn*log % + 2mnheo + 2mhey Z d; (50(131-) - @) . (9.44)

b;€Bg
d;>0
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Moreover, if the difference between the left-hand side and the right-hand
side is O(n?), then D~ and D are O (n?/hey) and for any t € [ro, 1],

‘ D) —n

<C <£2 + €2> (9.45)

Proof. First we write D? —n? = (n — D)? + 2n(D — n) > 2n(D — n).
Then

"2 2
Dt(t) dt — / DA =0 4y o / DO =n 4y (9.46)

If we write r; = [b; — p|, we have D(t) = >_ _,d; while n = }_, |d;|.
Therefore, letting 7; = max(rg, min(ry,7;)),

T1
Dt)-n , 1 ™
/t dt=> (dz log T |d;| log TO) : (9.47)
T0

7

We now partition the set of indices for which d; # 0 into the following
sets.

I™ ={i|d; <0}, Io={i|d; >0,7; > 1},
I():{Z"dz‘>0,7'i§7"()}, IA:{i’di>0,T0<T’Z‘<T1}.

Then, letting

T1
D?(t T
A=n / t< ) dt — 72 log é + 27 hex (Z di&o(b;) — n§0>

o

we have using (9.46), (9.47) and the fact that &y is a negative function

A
7 2 > hexdi(€o(bi) — &) + Y |dil <—2n 10%% - hex&))

i€l i€l—

r
+ Z d; <—nlog % + hexCOr12>

i€l

T
+ Z d; (—nlog - + hexcori2> . (9.48)

1€l g
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Here we have also used the fact that since we assumed D?&y(p) is positive
definite, there exists ¢y > 0 such that if |b; —p| < § and ¢ is small enough,
then &(b;) — & > colbi — p|*.

It remains to bound from below each of the above four sums, that
we call respectively Sy, S_, S, and S4. We leave Sy unchanged since it
corresponds to a term we wish to see in the right-hand side of (9.40).

Concerning S_ and S., we first note that since r/rg = 6/K¢ and
from the definition of ¢ we have

n T1 9 )

T log . = (“log 7k
which is smaller than both |y|/2 and ¢y62/2 if £ small enough depending
on K,6,Q. Assuming this, and factoring hex in S_ and S, we get

1 1
S- = SheD-|&l,  Se > 5hexDecoa? (9.49)
It remains to investigate S 4. For this we factor hel? to find

S 4 > hexl? Z d; (co(m/f)2 —log %) ,

i€l 4

and thus if K is chosen large enough we find

Sa>h EQZd'C—Oﬁ:nZd'C—Oﬁ (9.50)
- ex ‘ (2 2 62 (2 2 £2 . .
1€l 4 Iel g

From (9.48) and the positivity of the right-hand sides of (9.49) and
(9.50) we immediately deduce (9.44).

Now if we assume that the difference between the left-hand side and
the right-hand side of (9.44) is less than Cn?, then this means that
A—278y < Cn? and therefore in view of (9.48) that S_+S.+S4 < On?.
In this case we deduce from (9.49) that, as claimed,

n? n?

D_<C—, D.<C—.

T hex 7 hex

To get (9.45) we note that
n? 72
ID(t) =n|<D_+De+ > di<Co—+Cn—,
di>0 frex ¢
t<7l'7;<’r‘1

where we have used (9.50) to bound »_,_, _, [di|. Then noting that
(%2 = n/hex proves (9.45) and the lemma. O
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Proof of Proposition 9.4. Proposition 9.4 follows straightforwardly
from Lemmas 9.3 and 9.4 if we take note that in (9.43), the term
Cn?e**1og(ry /1) is o(n?). The only statement which does not follow
directly is the last assertion (9.42). It is proved using Lemma 9.3 together
with the information from (9.41) that we have on the function D(t).
Indeed since n? — D? < 2n(n — D), we deduce from (9.41) that

02— D2(t) 11/
/ﬁgcﬁ/‘(2+ﬂ>ﬁ
t t\t

o

o
1 1
242
< Cn“¢ <ﬂ+log>
0 o
2
n
=g

if ¢ is small enough depending on K, where we have used the fact that
—2logrg = —£?log(K¥¢) — 0 as £ — 0, and therefore can be made
smaller than 1/K? by choosing ¢ small enough. Inserting this into (9.43),
we find (9.42) and the proposition is proved. O

9.3.3 Compactness and Lower Bounds Results

Notation. We need to introduce some more notation before we proceed.
We define, in addition to A’ = A — he;VTho, and dropping the € sub-
scripts,

§' = (iu,Vu—iAd'v), h =curld, j=f(lu))j, (9.51)

where f(z) =1ifx <1 and f(z) = % if x > 1. Otherwise stated, j = j'
if lu| < 1 and otherwise j = p(Vo — A), where we have written u = pe'?.
Given 6 > 0, we write

Bs = B(p,5), Qs =\ B (9.52)

Finally, we denote by G, the solution of

{—m%+@:@ in Q (0.53)

Gp,=0 onoQ

As in the previous sections, B' and B denote the small and large balls
respectively.
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Proposition 9.5. Assume that {(uc, A.)}. satisfies Fe(uz, A.) < e~ 1/*
and that hey < eV, In particular (9.5) is satisfied with o = 3/4. We
also assume that

Ge(u, A) < fo(n) + Cn?, (9.54)
1 € n K hey, and we make one of the following two assumptions:
her < Clloge| or n' =n. (9.55)

Then the following holds.
A) Using the notation (9.51), there exists j. and hy such that up to
extraction of a subsequence, as € — 0,

B2 s, (9.56)

weakly in L? (Q\ {p}), weakly in L?(QY) and in the dual of CS’V(Q) for

loc

some v € (0,1), respectively. Moreover j, € L4(Q) for any q < 2 and
curl j, + hy = 276, (9.57)

Finally, as § — 0,

/
lim g 22 (AL ; (B;U5)) > 7rlog1 + mSa(p. p)
e—0 n 5
1
+5 / js + 20VLEG 2 + |he — 270G |? + 05(1). (9.58)
O\Bj

B) Defining ¢ as in (9.11), denoting by [i the push-forward of the
measure p(u, A') by o, and letting also j = £(j1q\p) © oL, where ¢ was
defined in (9.8); we have

1-
ey N AN, (9.59)
n

weakly in L? (R?) and in the dual of Cg’V(RQ) respectively, for some

loc
v € (0,1). Moreover p, is a probability measure and

curl J, = 27 . (9.60)
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Finally, as K — 400,

oo 1 2
llgglf o3 / |V arul
B(p,K)\B

> mlog K — 7T// log |z — y| dp«(z)dps (y) + ok (1). (9.61)

The rest of this section is devoted to the proof of this proposition.
The first step in the proof is to compare the lower bounds given by
Proposition 9.3 with the upper bound (9.54). In our case, o = 3/4 while
hex < & 1/8. This implies that the terms Chexa%fl and Chex2e® in
(9.24) are O(1) hence o(n?). Noting that r = hex_%, we may then rewrite
(9.24) as

Gty A) > hex2Jo + 2mhex / Eodv

+ Fo(u, A') — C(n' = n)Vhex + 0(n?). (9.62)

We may also simplify (9.25) by recalling that r = ¢//n hence log(r/ne) =
log(¢/e) — 3 logn. Thus (9.25) yields

2
Fa(u,A’)27mlog§+F€(u,A’,Q\B)+1 - /h’2
B
+ C(n/ —n)|loge| + o(n?), (9.63)

where C' > 0 does not depend on e. Also recall hypothesis (9.55): If
n # n/, then hex = O(|loge|) hence vhex < |loge| and C(n'—n)|loge|—
C(n' — n)vhex > 3C(n' —n)|loge| > 0. Comparing (9.62), (9.63) with
(9.54), we then deduce

1
2mnhex8o + n? log 7 + Cn?

1— 2
> 2whex/§0du+F€(u,A’,Q\B)+ 4

/h’2 + C(n' — n)|logel.
B

(9.64)
Since 2mheyx [ &0 dv = 2mhex y; di&o(bi) > 2mnhexp, it follows that

n?log +
'_n)< £ _ 9.65
(0 =) < Co= = o(n), (9.65)
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hex _

” = 0(1) in view of the assumption n < hey.

because nﬁ < C™1lo
|loge| — hex g n

Convergence of u(u, A’) and [

First, from Lemma 9.2 there exists points {b;}; in the large balls such
that (9.32) holds. As in Lemma 9.2, we let

v=> diby, V= Zd&daz.
i J

In our case, the radius of the small balls is ' = Ce%/® since (9.5) is
satisfied with o = 3/4. Thus applying Theorem 6.2 yields

| p(u, A") — 27TV/”(C((]),')/)* < Cr'"F.(u, A) < 37/8e71/4,

In other words, for any test-function & € C’g (),

3y—2
[€dutu a) - 2m)| < CF €lcoer (960)
Q

Let us now change scales, and consider ji and o/, the measures pushed
forward under . Let ¢ be a compactly supported test-function. We have,
using (9.66),

[ ¢ 2m7)| = '/C <w2p> d (= 2m/)| < CL7E T oo
2 Q

hence we deduce, for v € (0, 1) close enough to 1 that

3v—2

[ fi(u, A) = 277'|| oy < CLTYe5™ = 0(1), (9.67)

That the right-hand side is o(1) follows from the fact {77 < he)ﬂ/ 2 <

£77/16 hence the right-hand side is bounded above by 5%, which is
o(1) if v > 4/5.
Secondly, we claim that

—

A

—0 (9.68)
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weakly as measures. Indeed, given any continuous compactly supported
test function f, we have

dif () = Y & (F(@) + F(b) - £(@)) (9.69)
a}EBi

where @} = ¢(a}), bi = ¢(b;). Using the fact that f is uniformly contin-
uous and that, if a); € B;, then

we obtain, since n tends to +oo,

STNT dlf) — £(@)] = o) = o(n),

i a;-EBi

in view of (9.65), which together with (9.69) yields
LS dif ) = £ S df(@) +o(1)
n - (A (] n - 1 1 b

hence the weak convergence of (7 — ') /n to zero.

Third, we prove the narrow convergence of {r//n}. to a probability
measure. We apply Proposition 9.4. The right-hand side of (9.64) is
greater than the left-hand side of (9.40) while the upper bound in (9.64)
and the lower bound in (9.40) differ by at most O(n?). It then follows
from Proposition 9.4 that (9.41) is satisfied. From the definitions (9.38)
and (9.39),

> ldil <n—D(t)+2D",
[bi—p[>t

hence it follows from (9.41) and the fact that D~ = o(n) that

7/(R2\ BO,M)) = > \dilgC%—Fo(n).
|b;—p|>ME

This proves the narrow convergence of {7/n}.. Moreover, since D~ =
o(n), the negative part of 7/n goes to zero, hence the limit p, of 7/n is
a probability measure.
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To conclude, from (9.68), (9.67) and the above, the measures QL
™m

converge, in (C’éJ 7(R?))* to p. which is a probability measure, proving
the second part of (9.59). The convergence of the original (i.e., before
blow-up) measures p(u, A’)/(27n) as stated in (9.56) follows by blow-
down, since ¢ = o(1).

Convergence of j, i/ and

Comparing (9.64) and (9.40) again, we find

> / |h/|2
AUB

K
< Cn? 4 m?log 5 (9.70)

1 1
4 2he

F.(u, A,Q\ (AUB)) + (

Since heyx > 1, we find that A’ /n is bounded in L?(£2) and up to extraction
b p, weakly in L2(Q).

n

We turn to j and j. We know that |j’| < |u||V 4u|. Therefore, we
have |j] < |V aru|, and, in view of (9.70),

/ 3P < / IV au?

O\ (AUB) O\ (AUB)

< 2F.(u, A", Q\ (AUB)) < Cn? (1 +log§) .

Keeping § and K fixed, and since A C By, this implies that

|a/mitos

<C <1og]§ + 1) . (9.71)

L2(Qs)
Using a diagonal argument, this implies the convergence of a subsequence
to some j, weakly in L2 (2\ {p}). That j. € LI(Q) for any ¢ < 2 follows
as in [189] by writing Q\ {p} = U,U,, where U, is the set of z € Q such
that 27"~! < |z —p| < 27", and then estimating in each U,, the L? norm
of j, in terms of the L? norm using Holder’s inequality. Using (9.71) this
allows us to prove that > Hj*Hqu(Un) converges, hence that j, € L9(2).
We leave the details to the reader.
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As for 7, the above also tells us that for any K > K,

/ jI? = / j1o\s/% < Cn?,

B(p,K0)\B B(p,K?)

where the constant depends on K. But since j = £ (}19\8 o 90_1), this

is the integral of |j|? over B(0, K), hence again using a diagonal argu-
ment, this implies the convergence of a subsequence to some J, weakly
in L2 (R?), which is the first part of (9.59).

loc

Proof of curl j, + h, = 27),.

We begin with the following preliminary result:

Proposition 9.6. Let f : R? — R be a smooth function. For any finite
collection of disjoint closed balls { B;}ics in R? there exists f : R> — R2,
constant on each ball, such that

V’y € [0’ 1]7 H]E_ f“COW(Q) S Cer_’y, (972)
IV(Uf = Pl < Ca, IIV(f = Dz < Car, (9.73)

for any bounded Q C R2, where Cq depends on f, q, and  only, and r
is the sum of the radii of the balls {B;}icr. .
Moreover, if f is constant in B(x,\/2r), then f(z) = f(x).

Proof. Let us write the projection A; of U;crB; on the first coordinate
axis as a disjoint union of closed intervals [ay, 51] U -+ U [, Bn]. The
sum of their lengths ). 3; — ¢ is smaller than 2r. We define the function
v1: R — R by p1(0) =0 and

,( ) _ {0 ifz e U?Zl[ozi,ﬁi]

T
1 1 otherwise.

Hence ¢ is constant on each interval [ay, 3;] and approximates the iden-
tity in the sense that |p1(x) — 2| < 2r, while |pi’(z)] < 1 for any .
Similarly we can define @9 by using the projection Az of U;B; on the
second coordinate axis, and @9 will satisfy the same properties.

We set p(z,y) = (¢1(x), v2(y)). It is clear that ¢(x) is constant on
each B; and that |¢(z) — x| < 2v/2r. Moreover, Dy(z) = Id outside
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A = (A1 x R) U (A2 x R), while [Dp(x)] < 1 in A. Note also that
|A N Q| < Caqr.

Given a smooth function f, we let f = f o . Then using the fact
that |p(z) — z| < Cv/2r, we easily deduce that ||f — fllco@) < Car (we
can take Cq to be 2v/2 times the Lipschitz norm of f in ) and that if f
vanishes in B(z,/2r), then f(z) = 0. To prove the gradient bound, we
write

V(f=f) = (D)'Vf(p)-Vf = (D) (Vf(p) = V)+((Dy)' —1d) V.

The first term is bounded above in Q by Cqr, where Cq is 2v/2 times
the Lipschitz norm of Df in . The second term is bounded in A N
and 0 in the complement. Therefore, the sum is bounded in L*°, and its
L' norm is bounded by Cqor + Cq|A N Q| < Cqr. The C%7 convergence
of f — f follows immediately by interpolation between C° and C%!. [

We now prove (9.57), i.e., that for any f € D(Q),

=[5 Vir [ g =2m s,

Q Q

By approximation, we can assume that f is constant in a neighborhood
of p and then using (9.56) we are reduced to proving that

1 .
lim = [ —1g\gj - V=f + ' f =27 f(p).
e—=0n
Q
Since we already know that (curlj’ + h')/n = u(u, A’)/n converges to
27dp, the above equality is true if we replace 1g\z7 with 7'. It remains
to show that
1 N
lim = (1Q\Bj - j’) Vif=o. (9.74)

e—=0n
Q

Let us define f' through Proposition 9.6, using the large balls U;B;
as the collection of balls. Note that since the collection of balls depends
on €, so does f, even though f does not. We write

(19\35 - j') Vif=1qsi V' (f -+ Aas—1)j V' f
+ (=4 VHf+7 -VEF = F) (9.75)
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and prove that the contribution of each of the four terms to the limit
(9.74) is null.

Since the total radius of the balls goes to zero as € — 0 and since f
is constant in a neighborhood of p, the last assertion of Proposition 9.6
ensures that if 6 is chosen small enough, then f and f are constant in
B(p, ) for any e. Thus, using (9.71) and (9.73) we find

i/lg\zsj"VL(f—fT) =o(1).

Q

Also, since f is constant on each of the balls, (lo\s — 1)j-VEif=o0.

Concerning the term j' - V(f — f), we know from (9.72) that f — f
tends to zero in C'g’7 for any v € [0,1]. But we know that (curlj’)/n
converges in the dual of Cg 7, for some v therefore,

L[5 = o),
Q

Finally, and in view of (9.75) this will conclude the proof of (9.74) and
(9.57), we show that

=0 = (9.76)

Q

The proof follows arguments used in the proof of Theorem 6.2. We ob-
serve that j' — j = x(Ju|)j where x(z) =0if z <1 and x(z) =z — 1 if
x > 1. It follows that, where |u] > 1,

7" =31 < (Jul = 1)]5] < (juf® = 1)[3].

Integrating over the set {|u| > 1} and using the Cauchy-Schwarz in-
equality together with the inequality |j| < |V 4u| we obtain that

/ ' = j| < CeFu(u, A')s = o(1),
Q

hereby proving (9.76).
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Proof of curl J, = 27 p,.

We already proved that % i — 27y in the dual of c? 7 for appropriate .

Let f be a smooth compactly-supported test-function. We approximate

as above, f, using Proposition 9.6 by functions f which are constant

on each of the rescaled balls ¢(B;). Since the total radius of the balls

{B;}i is hex /2, the total radius of {¢(B;)}; is n~/2 which is o(1) and

therefore we have that f f converges to 0 locally in H' and in C%7.
From the (C27)* convergence of - ~fL to 27, we have

;/f/]—ﬂw/fdu*. (9.77)
But, by definition of fi,
/fﬂ—/ﬁo@m%Av—/—v%hwyf+@oww
where ¢(y) = (y — p)/¢. Changing variables, we get
/fu—t/—%f@+€@-v5ﬂ@+%2/ff@+£@f@)

()

Therefore, dividing by n, using (9.77) and the fact that f is constant on
the balls,

14 - -
/ —519\6 (p+1Lx)j (p+Llx) VEf(z)+ hl / B (p+ lx) f(z)
©(£2) ©(£2)

o 27r/fd,u*(m).

In other words, we have

1- 1 -
[ i@ Vi@ [ K e fa) -2 [ fdu).
ex
#(€) e(©)
The second term in the left-hand side tends to 0 from the bound [ |n 12 <

Cn? and a rescaling. Then, using the strong H' convergence of f to f
and the weak L? convergence of j/n, we are led to

—/J*'VLf:%/fdu*(x)

R2
which proves (9.60).
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Lower bounds on the energy

It remains to prove (9.58) and (9.61).
It follows from the weak L? convergence of % Jlo\s and %h’ that for
any ¢ > 0 small enough

o1 A 1 .
imint [ [F1ael? + 0P = 5 [ 15+ B2
Qs Qs

where we recall €5 is defined by (9.52). Then, using again the inequality
|V aru| > 7], this yields

P | 1 2 .2

hrsn_}élf ?FE(U,A',Qg\B) > 5 / |77 + h%. (9.78)
Qs

Let us estimate the right-hand side of (9.78). We decompose j. and h,

by writing

je =X —27VEGy, hi = f+ 271G, (9.79)

From (9.53) and (9.57) we have curl X + f = 0 in © and, since b’ = 0
on 012, f = 0 on 9N also, thus if we introduce a Hodge decomposition
X = Va+ Vs, where a € HY(Q) and 3 € H}(Q), the divergence-free
part (3 satisfies AB + f = 0 in Q. We recall that G, is in L? for every
q < +oo and VG, is in LP for every p < 2. Therefore, f € L? and by
elliptic regularity 3 € W22, Then by Sobolev embedding, 3 € W4 for
any 1 < g < +o0.

We decompose the right-hand side of (9.78) according to (9.79) to
fi

nd
Sz =E [(XP 4 24 209RG, P 4 120G, P
g [ LT+ h= o JUIXE + 7+ [20VEG" + 276Gy [7)
Qs Qs

+ 277/(—X VLG, + fGp). (9.80)

Qs

The first integral will give us the desired lower bound, but let us first
check that the cross terms tend to zero with §. For this we use the Hodge
decomposition of X. From the above considerations, both V13 - VLGp
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and fG, are integrable in (2, therefore

/(_vLﬁ ’ VLGp + pr) =
Qs

/ (V48 V4G + £Gy) + 0a(1) = 05(1),  (9.81)
Q

since AG+ f = 0in Q and G = 0 on 9. On the other hand, from (7.18)
we have 2mG,(z) = —log |z — p| + Sa(p, ), where z — Sq(p, ) is C! in
Q and up to the boundary. It follows, using Proposition 9.6 for instance,
that we may write G, = go + g1, where g is constant on 0B(p,d) U 02
and [|Vg1l[z2(s) = 05(1). Then we have

/Va-Vle:/Voz-VLgo—i-/Va-VLgl =04o0s(1). (9.82)
Qs Qs Qs

Summing (9.81) and (9.82) we find that the right-hand side of (9.80) is
equal to

1 .
3 / (]j* +20VEG? + |he — 270Gy |2 + |20VEGL 2 + |277Gp\2) + o5(1).
Qs

To conclude that (9.58) holds, it remains to note that
1
s / 27V G, 2 + 27, |2 = —mlog 5 + 7Sa(p,p) + 0s(1),
Qs

which is a direct computation, using 2rG,(x) = —log|z — p| + Sa(z,p).
The proof of (9.61) follows similar lines. Using |V 4ru| > |7, we find,

for K > K,
[ wo

B(p,K0)\B B(p,K?)

Rescaling, we find, writing Bg for B(0, K),

.. 1 2 A 1 ~12
— ] > — >
ity [ Va2t [

B(p,Kt)\B Bk By

. 2
.71(2\8‘

1P
.8
L 083)
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by weak L2 _ convergence of (1/n)j to Ji.
Let us estimate the right-hand side of (9.83). Using complex coordi-
nates in the plane, we introduce

K(x

Bk

Then, as is well known, we have AU = 27wu, in Bg and U = 0 on
OBf. Again let us write a Hodge decomposition J, = Y + V+U. Since
curl VAU = AU = 27, = curl J, we have curl Y = 0. We compute

/|J*\2=/|Y|2+2Y-VLU+|VLU|22/\VLUP, (9.84)

where the cross-term has vanished through integration by parts. Now

/\VLUQ /UAU——ZW // log )‘
Bk

BKXBK

and the integrand of the double integral may be rewritten as
—2m(log |z — y| —log K —log |1 — 237/ K?|). Changing variables v = z/K,
w =y/K, we have

//bgl—xy/ff?rdu* ) dps (y //mgu—vwwm)w()
BKXBK B1><Bl

where pg is the push-forward of p, under the mapping x — z/K. In
particular limg o i = 0. We deduce that the above integral is o (1)
and then, that

J1wtur = [[ —2nogla - o] = tog 1) dis () (o) + o (),

BK BKXBK

We deduce, recalling that p, is a probability measure,

1
3 / IVIUP = -7 // log |z — y| dp«(y)dp«(x) + mlog K + ox (1).
Bk

Combining this with (9.84) and inserting into (9.83) proves (9.61).
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9.3.4 Completing the Proof of Theorem 9.1

Item 1 in Theorem 9.1 follows from Proposition 9.5. We prove item 2.
As in Proposition 9.5, and since the hypotheses of Theorem 9.1 are
identical, we again have that (9.62), (9.63) hold. We split the term

/ 1_7“2 /2
Fe(u, A Q\ B) + —5 h
B

in (9.63) by writing
Q\B=(Q\ (BsuB))U(A\B)U (B(0,K¢)\ B).

Then we may add up the lower bounds (9.40), (9.58) and (9.61) to obtain

o) + O = Gl ) = folm) = [ [[log o~ y] dpe () e 0

+2mhee > di(So(bi) — &) — Cn?6% + o(n?) + 05(1) + ok (1).

bi—p|<K{
d;>0

(9.85)

As a byproduct of the fact that the upper and lower bounds match up to
O(n?), we obtain that the left- and right-hand side in (9.40) also match
up to O(n?) and therefore that (9.41)—(9.42) hold.

To prove (9.14) it then suffices to add up (9.42), (9.58) and (9.61)
and to insert the result into (9.63). Letting K tend to 4+o0o0 and ¢ tend
to 0 yields the result.

To prove (9.13) and finish the proof of Theorem 9.1 it remains to
show that

o 2mhex
timinf 277 X ) )z | Q@ duo) +oxr),
i —P|<
df>0 B(0,K)
(9.86)

Indeed inserting (9.86) into (9.85) and letting 6 — 0 and K — +o0
proves (9.13). .
To prove (9.86), we rescale, letting b; = (b;) as before, or equiv-

- 1
alently b; = p + (b;. Then, letting 7 = — Y d;; and recalling that
n — g
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02 = n/hex we have

M ORI N

—p|<K
oo pl S B(0.K)

Since €72 (&o(p+ fx) — &(p)) converges locally uniformly to 3Q(z),
where Q = (D?¢y(p)z, ) and since 7 converges narrowly to i, (as seen
in the proof of Proposition 9.5), the right-hand side converges as ¢ — 0
to

r [ Q@) du
B(0,K)
and (9.86) follows.

9.4 Minimization with Respect to n

Theorem 9.1 and Proposition 9.1 already tell us what the limiting nor-
malized vorticity measure is for minimizers of the Ginzburg-Landau
functional, and even what the blow-up limit is. But we can also de-
termine the normalizing factor n, i.e., the actual number of vortices. We
begin by defining the function which is the leading term as € — 0 of the
minimal energy of a configuration with n vortices.

By analogy with (9.9), we write

1
g:(n) = hex?Jo + mn|loge| — 2mnhex|&o| + 7r(n2 —n)log 7

+mn*Sa(p,p) + n*Io
= f-(n) + n’Iy (9.87)

where we recall that p is the unique minimum of & in €2 and where &,
& and Sq are defined respectively in (7.2), (7.4) and (7.18). Finally Iy is
defined by (9.18), Jo in (7.3) and £ = /n/hey. We also let g-(0) = hex 2 Jo.

Theorem 9.1 and Proposition 9.1 described the minimization of the
energy when n and hey are fixed. They imply (see Corollary 9.1) that
the minimal energy is precisely g.(n) plus lower order terms under the
hypothesis that 1 < n < hex < Cllogel|. Our present problem is to min-
imize for given heyx, but not n. It seems then that it suffices to minimize
ge(n) with respect to n to find the optimal number of vortices, but this is
rigorous only if we are able to derive the a priori estimate 1 < n < hey,
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and if we minimize under this constraint. Indeed g.(n) tends to —oo as
n — +00.
We begin with some facts about the minimization of g.. We recall

from (7.16) the definition H) = 2é0| |logel.

Lemma 9.5. There exist constants a,eq > 0 and for each 0 < € < g9
an increasing sequence { Hy},, defined for integers 0 < n < a|loge|, such
that if hey > H21/2, then n minimizes g. over the integers in the interval
[0, allogel] if and only if

hez < [Hn, Hn+1].

Moreover if n is a function of € satisfying 1 < n < |loge|, then the
following asymptotic expansion holds as e — 0

n—1 |log e
H, ~ HY, + lo : 9.88
A A (9.88)
and if hey € [Hp, Hpi1],
1
ge(n) ~ hex?Jo — 02 log 7 e~ 0. (9.89)

We can then characterize the behavior of minimizers in this regime.

Theorem 9.2. (Behavior of minimizers in the intermediate
regime). Assume hey is such that

log|loge| < hes(e) — HY < |loge],

let N. be a corresponding minimizer of g-(n) over [0,allogel|] and let
(ue, Ae) minimize G. Then for any v € (0,1)

fiue, Ac)

R . 0,y RZ * .
G po in (CV(R?))", (9.90)

where po is the unique minimaizer of I and
Ge(ue, Ac) = ge(N:) + o(N2). (9.91)
Proof of Lemma 9.5. We let, for any integer n > 0,

A, = gz—:(n) - gs(n - 1)7
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and we see A, as a function of hey, € being fixed.

First, the function A; is decreasing on Ry and if n > 1, then A,
is first increasing and then decreasing. It is not difficult to check that if
hex = Hgl/Q, n < alloge| and «, e are small enough, then A, is strictly
positive. Since A, tends to —oo as hex — +00, we may then define H,
to be the only value of hex in the interval [HY /2, +oo| for which A,

vanishes. If hex > H, 31 /2 and n, e are as above, then

(A, <0) < (hex > Hp), (An>0)< (hex < Hy).

Second it is easy to check, taking a smaller « if necessary, assuming
hex > H31/2 and n < aloge|, that for any ¢ > 0 we have A, 11 —A,, > 0.
In particular the sequence {H,},, is increasing.

It follows that if we assume hey € [Hy,, Hyq1], then

A< <AL <0< Appg <o < Ay,

if k < a|loge|. Recalling that A,, = g-(n) — g-(n — 1), this means that
for any integer m € [0, a|loge|] we have g.(m) > g.(n). Conversely, if n
minimizes g. in the interval [0, o] logel], then A, < 0 < A, 4; therefore
assuming hex > HQ /2 we must have hex € [Hy, Hpy1).

To obtain the asymptotic expansion of H,, we write down A, (H,) =0
and we get

-1
logn

H -1
m|loge| - 2mHyg| + m(n — 1) log — + ﬁn(nz )

+ (2n — 1)(7Sa(p,p) + o) = 0.

Dividing by 27|&| and adding H,, — H? we find that as n — +o0

n—1 H, 0
log—— + O =H,—H_ . 9.92

But we know that H, > H; and it is straightforward to check that
Hy ~ HY as e — 0. Therefore if we assume 1 < n(e) < |loge|, then
n = o(H,) and dividing (9.92) by H,, we find that

H, — H?

= ol),



204 Chapter 9. The Intermediate Regime

and then that H, ~ H, (91 as € — 0. Plugging this and the expression of
H? into (9.92), we get (9.88). Obviously, when hex € [Hy, Hp41] in this
regime 1 < n <K hex, we may also write

1 1
hex = HY + ’g—d log 7 +0 <log E) + O(n). (9.93)

Plugging this into the expression of g.(n) (9.87), we find

1 1 1
ge(n) = hex2Jy — 27n? log 7 + 7(n? —n)log 7 +0 <n log €> +O0(n?)

1 1
= hex?Jy — mnlog ;10 <n log E) + O(n?). (9.94)

This proves (9.89). O

Proof of the theorem. In a first step, we prove that for minimizers, the
total degree is < hex. Let (ue, Ac) be a minimizer of G¢. From Theorem
7.2 and Proposition 7.2, the hypothesis hex — HY = o(|loge|) implies

_ 1 w(ue,Ae) . : 0,
that \ = el and S3== tends to 0 in (CY")* as ¢ — 0. Moreover,

comparing lower bounds and upper bounds in (7.58) and (7.59), we find
that >, |d;| = o(|loge|), where the d;’s are the degrees of the balls
constructed by Theorem 4.1 of size r, for any r such that |logr| < |loge|.

We deduce that if we consider vortex balls of radius r = \/%, and denote

by n their total degree, we have n < hex.
In a second step, we prove that n > 1. Proposition 9.3 provides a
lower bound for G.:

14
Ge(ue, Ag) > hes? Jo + 27 hex Z d;&o(b;) + mnlog - C(1+ nlogn).

Using the fact that d;&o(b;) > |d;|&o, we are led to
Ge(Uz, Ae) > hex®Jo — 2mnhex|€o| + 70| log €|

+O(nlog %) +0(1) +o(n?). (9.95)

On the other hand, we may construct a comparison map by applying
Proposition 9.1 to any 1 < N; < hex and to pg the minimizer of I, and
find

inf G. < f.(N.) 4+ N2Iy + o(N?),
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and since (ug, A.) is a minimizer of G. and f-(n) + n?ly = g.(n) (see
(9.87)) we deduce that

Ge(ue, Ae) < ge(Ne) + O(Ng)a (9.96)

where N is chosen to be the minimizer of g. over [0, «|loge|], hence
N. > 1 in our regime. Using (9.94), and comparing to (9.95), we find

— 2mnhex|§o| + mn|log €|

1 1 1
< —walog—+O <N€log+N§+nlog

L L e) +o(n?),

where we have let L = /N./hex. Inserting the expansion (9.93), and
replacing L by its value we find

hex hex
— 7 <N510g N +0 <log i >>
hex
Ne
h

N which is > N., we are led to

hex Pex
< —ENflog + O [ N.log == + nlog —= + N2 +n? .
2 N; n

Dividing by N¢log

N, n n log hex n?
N> 2240t 14 ) o(N. 4 ),
2 N NEIOgNi: N

Writing log 2ex = log % + log % we find

n

n2

N¢ n n N¢
>—4+0(1+— —log— + N+ —|.
nz- + ( +Na>+O<N5 og o + E+NE>
We can deduce from this relation that N% remains bounded below by a
positive constant as € — 0, hence n > 1.
Once this is known, we deduce from Theorem 9.1 and Corollary 9.1

the improved estimate
G-(ue, A2) > g-(n) + o(n?).

Comparing with (9.96), we deduce g-(N:) < g:(n) < g-(N:) + o(N2) +
o(n?). This implies from (9.94) that

Pex Pex
—anlog—i—O(nlog >
2 n n
T hex hex
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hex

Writing once more log <= = log hex = +log e and dividing by log fe hex > 1,

we find
2 2 Ne 2 2
n® — NZ :O(Ng+n)+o<nlogn+n +N€>.

We can finally obtain from this relation that 3+ — 1 as ¢ — 0.

From Theorem 9.1 and Corollary 9.1, we deduce (9.90), at least for
some v € (0,1). Also, G.(us, Ac) = g=(n )+o( %) = g:(N:) + o(n?) and
(9.91) is proved.

The fact that (9.90) is true for any v € (0,1) follows from Theo-
rem 6.2. Indeed in this regime we have F.(u., A.) < Cn|loge| < |loge|?
and thus applying Theorem 6.2 with » = /¢ we find for any v € (0, 1)
that

lia(ue, Ac) = vl gy < €22 logel?,
where v = 27}, d;d,, and (a;, d;) are the centers and degrees of the
vortex balls of total radius y/e. Letting n’ = )", |d;| we have moreover,
F.(u,A) > Cn/|loge| and therefore n’ < Cn. Thus {v/n}. is bounded as
Radon measures. If we now rescale and take the push-forwards of p and
v by z — (x —p)/¢, we find that ||f(ue, Ae) — I;H(Cg,'y)* still goes to zero
as € — 0 while, of course, {¥7/n}. remains bounded as Radon measures.
Hence fi(u, A)/n does converge in the dual of C2"7 as claimed. O

BIBLIOGRAPHIC NOTES ON CHAPTER 9: The energy-splitting result was
first observed by Bethuel-Riviere in [51]. The calculation of the first
critical field and of the fields H,, was first done in [181]. The other results
of the chapter concerning the I'-convergence in the intermediate regime
are new.



Chapter 10

The Case of a Bounded Number
of Vortices

In this chapter, we prove upper bound and lower bound estimates for
configurations with a number of vortices bounded as ¢ — 0 which reduces
to considering a number of vortices independent of €. These estimates
will be useful in the next chapter. The fact that the number of vortices
is bounded independently of ¢ allows us to obtain much more precise
information with specific techniques: the upper and lower bounds will
match up to an error which is o(1) as ¢ — 0.

10.1 Upper Bound

In all that follows, by “bounded away from the boundary” we mean “at a
distance from the boundary bounded below by some positive constant”.

Proposition 10.1. (Upper bound for a bounded number of vor-
tices). Assume n € N and, for every e > 0, let {a5}1<i<n be points in Q
bounded away from the boundary and such that |ai —a| > € ifi # j. As-
sume also that hey(€) < 1. Then for any choice of degrees d; € {+1,—1}
there exists a family of configurations {(ue, Ac)}e such that, as e — 0,

wlue, Ag) — 27Tzdi5ai —0 n (Cg’ﬁ(Q))*, V3 >0,
i=1
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and
F.(ue, AL) = 7n|loge| — WZdidj log |a; — a
i#]
+7 Z did;Sa(as,a3) +ny+o(1), (10.1)
i’j

Ge(ue, Ac) = he”Jo + 7l loge| + 27hes Y | dio(af)

-7 Z didjlog|a; — a5| + 7 Z did;Sa(as,aj) +ny+o(1), (10.2)
i#] 1,J
where v was introduced in (3.15).

The proof of this proposition uses a construction which is very close
to the construction of Proposition 7.3. It differs mainly in the way we
define |u|, and in the precision with which we estimate the energy of the
test-configuration.

The Test-Configuration
Let @, be the solution of

{ —AD. + @ =271 difs: in Q

(10.3)
®. =0 on 0},

Dropping the subscript &, we define A’ to be such that curl A’ = ®. Then
curl(A' = V@) = 21> " dida,
i
and therefore, denoting by © the phase of
ﬁ (z —a;)%
i=1 |2 — ag| 4

the curl of A’—V-L®— V0O vanishes in €, in the sense of distributions and
thus is the gradient of some function g. It follows that, letting ¢ = ©+g,
the function ¢ is well defined modulo 27 in 2\ {a1, ..., a,} and satisfies

Veo=A-V'o. (10.4)
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Fixing R > 1, we define the test configuration (u. g, A: r) that we
denote in shorthand (u, A) as follows. We let A = A’ + he, V1o and we
let u(x) = ) in Q\ U; B(a;, Re) and for = € B(a;, Re),

1 |z — ai]> -
u(x) = f ew(””), 10.5
@ =t (5 (10.5)
where f is the modulus of the radial degree-one vortex ug introduced in

Proposition 3.11. Note that from (3.15) and since ug(r,0) = f(r)e’ we
have, as R — 400,

R
;/ (!f/|2 + ﬁ + (1 _2f2)2) 2rrdr =mlogR+v+o0(1). (10.6)

0

Asymptotics for P,

Let {a;} satisfy the hypotheses of Proposition 10.1 and ®. be defined
by (10.3). Dropping the subscript ¢ where convenient, we define for
1<i1<n

Di(y) = Pe(ai +cy).

Then we claim that for any 1 <17 < n,

®;(y) = —dilogley| — Y djlogla; — aj| + > d;Sa(ai,a;) + Aic(y),
J#i J

L (R?) as e — 0. Note that the sums
in (10.7) do not depend on y but do depend on € through the points a;.

The proof is straightforward. From the definition of S (7.18), the
function ®. can be written more explicitly as

(10.7)
where {A; .} converges to zero in C

O (x) =— Z d;log |z — a;| + Z d;Sa(z,a;) (10.8)

i=1 i=1

and therefore

+ VI
Z d 10 ‘ﬁy a_a | —I—Zd SQ a],aﬁ—ay) SQ(CLj,CLi)).
J#

The first sum converges to zero in CIOC(]R2) because we assumed |a; —
aj| > . For the second sum, we use the fact that Sq is C! in Q x Q and
that the points ai,...,a, are bounded away from the boundary. The
claim is proved.
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Energy Inside the Balls
From (10.4) we have

Vaul? = [uff[Vo — AP+ | V]ul* = [u*| VO] + | V]ul[

while curl A’ = ®. Using (10.5), it follows, by letting B; = B(a;, Re),
and r = |z — a;| /e, that

! 2 r 2
1 f( ) + f( )2]V<I>(x)\2+\<1>(x)\2

2 2f(R? T f(R)
1 f)?N
= (l f<R>2) -

B;
Using the change of variables y = (x — a;)/e, we have r = |y| and the
above becomes

FE(U7 Al? BZ) -

! 2 r 2
R,y =5 [ T S v

B(0,R)

T 2 2
+€2\<I>i(y)|2+% <1— J{((R))2> d

From (10.7) we deduce that |V®;(y)|>—1/r? and £2|®;(y)|? both converge
to zero uniformly in B(0, R), using the fact that d; = +1. Therefore, as
e — 0,

R
, 1 '(r)? r)? 1 2\
R a8y =5 | (;((R;Z + e+ 31 fe) ) Frrdrtolt)
0

From (10.6) and the fact that lim ., f = 1, the integral on the right-hand
side is asymptotic as R — +oo to wlog R + «. Therefore

lim lim (F:(u, A’ ,U;B;) — mnlog R — ny) = 0. (10.9)

R—+400e—0
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Energy Outside the Balls

Outside U; B; and since |u| = 1 there, we have |V gu|? = [Vp — A'|2 =
|V®|2. Thus, using again the equality curl A’ = ®, we find

F. (u, A, Q\ U;By) :% / V|2 + |
Q\UiBi
1 0P
== d— 10.1
22/ ov’ (10.10)

v aB;

where we have used an integration by parts and the fact that —A®+d =
0in Q\ U;B; and & = 0 on 99Q. Here v is the unit normal pointing
outwards to the ball.

Changing variables as above we have

0P 0,
Q)(?V N / ®i ov’
9B, aB(0,R)
This integral is easily estimated using the convergence of (10.7). Up to
a term converging uniformly to zero on dB(0,R) as ¢ — 0, the nor-
mal derivative of ®; is equal to —d;/R and ®; is equal to —d; log |eR)|
— Y jzidjloglai — aj| + 32, djSa(ai, aj). Therefore, as e — 0,

ov

D,
/ @ia— = 2rlog|eR| + 27 > _ did;log |a; — aj
8B(0,R) J#

— 27 Z didjSQ(CLZ‘, aj) +o(1).
J
Replacing in (10.10) we get

1
lim (FE (u, A, Q\ U;B;) — mnlog — + mnlog R
e—0 1S

+ Wzdidj log |al- — aj| — WZdidjSQ(ai,aj)> =0. (10.11)

J# 2
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Convergence of pi(u, A')

Using (10.4) and curl A’ = ®, we have p(u, A’') = — curl(|u|?V+®) + ®.
Since A® = @ in Q\ U;{a;} this becomes pu(u, A’') = —V]u[> A V- +
(1 — |u*)® and, letting y = (z — a;)/e and r = |y|, we find

. Vf(r)2 A\ VJ‘CI)Z
f(R)?

Using (10.7) the factor in front of dy converges uniformly in B(0, R)
!
as e — 0 to 2diw and we deduce that u(u, A’) has the constant
r
sign d; in B; if ¢ is small enough. Moreover, since |u| = 1 on 0B;, from
Lemma 6.3, the integral of u(u, A") over B; is 2wd;. It follows that the
integral of any continuous function ¢ against u(u, A’) in B; is equal to
27d;¢(x;), for some x € B;. Finally, since |u| = 1 outside U; B;, we have

p(u, A') = 0 there. We deduce that

p(u, A') dz = ( +e? (1—|ul?) @i) dy.

[ entu, ) ~2n 3 dica)| <€ max [¢@) - Cw). (10,12
Q 7

|x—y|<Re

In particular pu(u, A") — 27", d;8,, goes to zero in the dual of C§(Q) and
its norm in the dual of C’g 1(Q) is smaller than CRe.

Bounds for G,

To evaluate G:(u, A) we invoke Lemma 7.3, which states that

Ge(u, A) = hex®Jo + hex / Eop(u, A") + Fo(u, A') + Ry, (10.13)
Q

where
Ry < Chey? /(1 — [u)?).
Q

From the definition of |u| we have |u| = 1 outside U;B;, while if = €
B(a;, ) and letting y = (z—az),, r = |y|, we have [u(z)] = /(r)/f(R) >
f(r). Then, a change of variables yields

/(1 — ]u\2)2 < g2 / (1 — f(r)?)2 < 27e?,

B; B(0,R)
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where we have used (3.14). So with the Cauchy-Schwarz inequality, since
n is independent of ¢, we find

1
2
/(1 ~|u?) < CRe / (1—JuP)?| <CRe.
Q iBi
This, together with (10.12) applied to &, and (10.13) yields

Ge(u, A) — Fe(u, A') = hex® Jo + 2mhex Y _ dio(as)

7

+ O (Re*hex® + Rehey) - (10.14)

Diagonal Argument

It follows from (10.9) and (10.11) that we may define radii R. tend-
ing to 400 as € goes to zero and such that, denoting by (u., Ac) the
configuration (u r., Ac r.) we have, as ¢ — 0,

F-(ue, AL) < 7mn log1 -7 Z did;log |a; — ajl
© A
+ Z did;Sa(ai, a;) + ny +o(1),
i
hereby proving (10.1). We may also assume, since ehex tends to zero
and by changing R, if necessary, that R.e, Rgshex, R.chey and thus also
R.hey? tend to 0 with . Then in view of (10.14) and (10.1) we have
proved (10.2).

To finish, note that from (10.12) and since e R. tends to zero, we have
((ue, AL) =27 S, d;d,, converges to zero in (CJ(€2))”, hence in (Cg’ﬁ(ﬂ))*
for any # € (0,1). The same is true for p(ue, Ac). Indeed p(ue, Ac) —
(e, AL) = —hey curl(Jue|2V4Ep) 4 hex Ay = hey curl((1 — |us|2)V+&),
the latter being easily bounded in L* norm by Chey /e, we deduce by
integrating over U;B; that p(ue, Ac) — p(ue, AL) is bounded in L' by
CR2chey, which tends to 0 with e. Thus it converges to 0 in (CS(Q))*,
hence in (08’6 (©))*. This concludes the proof of Proposition 10.1.

10.2 Lower Bound

Proposition 10.2. (Lower bound for solutions with a bounded
number of vortices). Let {(u., A:)}e be solutions of (GL) such that
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F.(ue, AL) < Clloge| with hey < e and B < 1. If all the (a5,d;)’s
given by the result of Theorem 5.4 are bounded away from 0f), and are
such that d; = 1 for every i, and ), d; =n, then ase — 0

Fe(ue, AL) > mn|loge| + W(ag, ..., a5) + ny + o(1), (10.15)
where

Wi(ai,...,an) = 7W210g|ai — aj +7rZSQ(ai,aj)

1#] 2
and vy 1is the constant defined by (3.15).

The hypotheses are such that we may apply Theorem 5.4 and thus
find balls B(a§, Ro¢), . .., B(a$, Roe), with n independent of € such that
la; — a5| > e for i # j, dist(af,0Q) > e and such that |u| > in
Q\ U; B(a$, Roe). Moreover, our assumptions are that the points are
bounded away from 0f2 uniformly in ¢, and that deg(u, 0B(a;, Roe)) = 1
for every ¢, i.

From the blow-up analysis of Proposition 3.12 and assuming we are
in the Coulomb gauge, the function wu.(a; + €y) converges modulo a
subsequence and in CL_(R?) to a solution v of (3.12) and respectively
eA.(a;+ey) to 0. Moreover, as in the proof of Theorem 5.4 and using the
upper bound F(u., AL) < C|loge|, we deduce from Theorem 5.2 that

/(1 — [0]?)? < 4o,

RQ

and from our hypothesis v must be of degree 1. Therefore modulo a
translation and multiplication by a complex number of modulus one, v
is equal to wg, in view of Theorem 3.2, while e AL(a; + ey) converges in
CL. to 0. Shifting the points a$ by an order O(e), we may cancel the
translation and find that there exist complex numbers {\;}; of modulus

one such that u.(a; +¢.) — \jug converges to 0 in Cf. (R?) for any . Thus

lim we(a; + £.) = Aiug = lim eAl(a;+¢e)=0 in CL.(R?), (10.16)
E— E—

where we recall that we are in the Coulomb gauge.
Now we fix R > Ry and let B; = B(a;, Re).
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Lower Bound for the Energy Inside the Balls
From (10.16), we have

.1 2 1 ov2 1 o, (1-— ’U0|2)2
;1_1{(1)2/|VA;“6| +@(1— ue|?)” = B / |Vl +f-

(10.17)

This bounds the energy inside the balls.

Lower Bound Outside of the Balls

We follow the method of [61]. Define Q = Q\ U;B;, let p = |u.| and "
be such that u. = pe’?. The function ¢ is well defined modulo 27 in €2
since |ue| does not vanish there. Let us then define j by

j=Vp— A -V, (10.18)

in Q, where @, is defined in (10.3).

To estimate Fy(ue, AL, Q) we write Vo — A’ = j + V+®, where we
have dropped the subscript ¢ for A’ and ®, and note that —curl A’ =
A® + curlj = & 4 curlj in Q. Tt follows that

/pQIVgo — A2+ |curl A =
Q
/pQ\VCI)]2 + |®)2 + p?|j 2 + | curl j|? + 20°VE® - j 4+ 2d curl 5. (10.19)

Q

On the one hand

Jo-pwepse| [C25 | [
Q

NI
NI

Q Q

and from (10.8) we have,

C

min; |z — a;|’

IV (z)| < (10.20)
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Therefore .
2mr dr C
4
[ver<c [T < o
Q Re
Thus
1
2
C 1_p2 2
/(p2 —~1)|Ve|* = = /(52) : (10.21)
Q Q

Similarly, using the fact that |[V®||, @ < C/(Re), which is deduced
from (10.20), we have

1
) 1—p?)? )
[ - 0vre ) <cvel | (S5 ([
Q Q

Q
¢ (1-p%)? /-2
< Z
<G| S
O Q

Q

V]
[NIES

Therefore in view of (10.19), and choosing R large enough we have,
absorbing the terms in (10.21)-(10.22),

-1
F.(ue, AL, Q) > /|V<I>\2+\¢y2+2vlq>-j+2cbcur1j. (10.22)

Q

O |

On the other hand, integrating by parts, we have

/v%-j+c1>cur1j_2/q>j-r. (10.23)

Q " 9B,
But, denoting by ® the average of ® on dB; we have, in view of (10.18),

/(I)j"r— /(@-@)j-wra/@(ngrgf—A’-T). (10.24)

i
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First of all, from the convergence of (10.7) we have ||® — ®|| 1 9p,) =
o(1). Also, in view of (10.18) and Lemma 3.4, using the fact that p > 1/2
outside the balls, and combining (10.7) with (10.16) we find that

1 C
7| < |7V Vo| < —
| < Gl V] +V8] < -

on 9B;. It follows that
/(@ —®)j-7=o0(1). (10.25)
0B;
Second of all, using (10.3) and keeping in mind that d; = 1, we have that

dp 0P , _ o '
/(ar+au A >_27r+/(13 o /curlA. (10.26)

But in view of (10.7), we have |®| < C|loge| in B; and from the energy

upper bound F.(u, A’) < C|loge| and the Cauchy—Schwarz inequality
we find

/curlA’ < CRe|logelz.
B;
Replacing in (10.26) we get

]
/aﬁa — A" 7| < Clloge] (Jlog | R2* + Relloge| ) = of1).

Together with (10.25) this implies that the integral in (10.24) is o(1) and
then, in view of (10.22)—(10.23) that

Fulue AL 2 [ V0P + [0 + o(0).

Then, using the same calculation as in (10.10)-(10.11) and adding
(10.17), we find

1
F.(ue, AL, Q) > Wnlogﬁ +W(ay,...,an)

n
2
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Since this is true for any R and since

(1 — |ug|?)?

1
lim = Vuol?
R oo 2 / Vuol" + ——

B(0,R)

—(rlogR+~v) =0

we obtain (10.15).

BIBLIOGRAPHIC NOTES ON CHAPTER 10: This chapter uses the tools
and concepts (renormalized energy, canonical harmonic map, energy of
the radial solution) used in the analysis of (1.2) for bounded numbers of
vortices, by Bethuel-Brezis-Hélein and Brezis—Merle-Riviere in [43, 61],
extended by Comte-Mironescu in [77, 79] and finally extended to the
case with magnetic field by Bethuel-Riviere and Serfaty in [52, 181].

The specificity of the results presented in this chapter comes from
the fact that the vortex-locations may depend on € and may be very
close to each other (due to the magnetic field), whereas previous results
were expansions of the energy with respect to the limiting positions of
the vortices. In this respect, these results are new.



Chapter 11

Branches of Solutions

In this chapter, we establish the existence of multiple branches of sta-
ble solutions of (GL) which have an arbitrary number of vortices n, with
both n bounded and n unbounded, but not too large, in a wide regime of
applied fields. These solutions are obtained by minimizing the energy G.
over subsets U, of the functional space which correspond, very roughly
speaking, to configurations with n vortices (or only allow for such when
minimizing); the heart of the matter consists in proving that the mini-
mum is achieved in the interior of U, thus yielding locally minimizing
solutions of the equations. These solutions turn out to be global energy
minimizers in some narrow intervals of values of hex.

The setting is as in Chapter 9, i.e., we assume &gy achieves its minimum
at a unique point p € Q and Q(z) = (D?*¢y(p)x, z) is a positive definite
quadratic form.

11.1 The Renormalized Energy w,
Since () is positive definite, we may write
Q(z) > cola? (11.1)

for some positive constant cg.
Given n € N, we introduce the “renormalized energy’
(R?)™ by

)

w,, defined on

n

wp(x1, ... xp) = —ﬂZlog |z — x| + wnZQ(mi) ) (11.2)

i#j i=1
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Note that wg = 0 and w;(x) = 7Q(x). In all that follows, we will
also use the convention that o(n?) and O(n?) mean o(1) and O(1) when
n = 0. It is clear that w,, tends to +o00 as two x;’s tend to each other,
or as any of the z;’s tends to +00. The minimum of w,, is achieved. The
function w,, will correspond to the effective interaction between vortices
which governs their positions. It contains two terms of opposite effects:
the first term is a repulsive term, the second is a (quadratic) confinement
term. For some results on the minimization of wy,, we refer again to [105]
and Fig. 1.4.

Proposition 11.1 (I'-convergence of w,). We have
— — 1 asn— o0

(where I was introduced in (9.12)), in the sense that

1. For every n-tuple of points (af,...,al) such that wy(a¥,...,al') <
Cn?, up to extraction %Z?:l dap — 4 @0 the narrow sense of mea-
sures and

.. wp(al, .. al)
hnnllor.}f AL A 3 — > I(p). (11.3)

2. For every measure p € P such that I(pu) < oo, there exist families
of points a?, ..., a) such that % Sy dap — p in the narrow sense
of measures and

lim sup
n2
n—oo

An immediate consequence is:

Corollary 11.1.

minggzyn Wy

5 —>10:Hgnl as n — +00,

n

and if i, ..., a; minimize wy, then

1 n
*5 6(1?4“0
n -

=1

where po is the minimizer of I described in Chapter 9.
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Proof of the proposition. The upper bound 2 closely follows the proof of
Proposition 7.4, hence we leave it to the reader.
Conversely, assume af,...,a?" are such that wy(al,...,a?) < Cn?.

Then the measures 1
Hn = ﬁ Z 5(1?
(A

converge weakly, up to extraction, to a measure pu. It remains to prove
that the convergence is narrow, i.e., that p is a probability measure,
and that (11.3) holds. We start by proving the latter, assuming narrow
convergence.

We begin by noting that, denoting by A the diagonal in R? x R? and
by A€ its complement we have

Sl sa) = = [ [1og o~y din(a) dion() 7 [ @) ).
AC

n2

Moreover, since p,, is a probability measure, this may be rewritten as

1
Sn(alsosa) = [ [ logle — yldua o) dia()
Ac

+5 [ @@ + @) din(@) duate). (110

Now fix M > 0 and R > 0, and let —log™ (t) = min(—logt, M).
Then — log™ is continuous in Kp = [~R, R] x [~ R, R] and therefore

i [ = log o~ 41+ 5 (@) + Q) diale) dina(y)

n—-+00
KRXKR

1
=[] “1o 1z =4l + 5 (@) + Q) dute) duty).
KRXKR
Note that if R is larger than some Ry and since @) is positive definite,

the function (z,y) — —log™ |z —y| + (Q(x) +Q(y))/2 is positive outside
Kr x Kpg, and of course less than —log |z — y| + (Q(z) + Q(y))/2. We
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deduce that

//—loglfﬁ yldpn () dpn(y // )) dpin(2) dpin(y)

> // —log" |z — yldpn () dpn(y)

KrxKp\A
3 [] @)+ QW) dunte) iy
KrxKp
=7 // (—logM |z —y|+ % (Qz) + Q(y))) dpin () dpin (y) — %

KRXKR

It follows that for any M > 0 and any R > Ry we have

1
liminf —wp(ay, ..., ay)

» Y
n—+oo N

>r [[ (=108 o= ul+ 5 QW) + Q) ) duto) it

KRXKR

Taking the supremum over R > Ry and M yields (11.3), noting that,
since we have assumed narrow convergence, the measure p is a probabil-
ity measure and again

//;(Q(xHQ(y)) dp(x) du(y) Z/Q(x) dp(z)

It remains to prove narrow convergence, but this is an easy conse-
quence of the expression (11.4) for w,. Using —loglr — y| >
—log (2max(|z|, |y|)) and (11.1), we find

~loglw — gl + 3 (Qe) + Q) > ~ 1082l 9)llxe) + Ll )%,

and there exists Ry such that if ||(z,y)||cc > Ro, then the right-hand
side is greater than (co/4)|/(z,y)|%, in particular positive. Now, given
R > Ry, splitting R? x R? into Kgr, x Kg,, (Kr x Kg)°¢ and
(Kr x Kp)\(Kg, x Kg,) and denoting by kr the number of couples
(a} ,aj) not belonging to Kr x Kgr, we deduce that

wp(al, ..., a") > —mn*log(2Ry) + 7T]€R O R?,
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and then dividing by n?, that kr/n? < C/R?, where C does not depend
on n or R. Therefore u,(R?\ Kr) < C/R, which implies the claimed
narrow convergence. O

The following will be useful:

Lemma 11.1. Assume heg(e) and n(e) are such that n < hey ase — 0
and let & be defined by (7.2). Then we have, as € — 0,

lgzlnf —W;bg la; — aj| + 27Thea;Z(§0(az‘) —&o)
i#£] i

= g( 2 _n) log% + (%3)131 wy, + o(n?).

Moreover, if n is assumed to be independent of € and {(a3, ..., a5)}. are
n-tuples of points such that

— 7Y loglai — af| + 2mhes Y (So(af) — &)

i#£j i
2
n-—n heq . 2
= log — + min w, + o(n”),
2 B n (R2)n " (%)
then, letting
n N ai —p
g = —, aE = L
hex ! ¢
the n-tuple (a5, ..., a;) converges to a minimizer of wy, as € — 0.

Proof. For any n-tuple (aq,...,a,), and letting a; = (a; — p) /¢, we have
—WZlog la; — aj| = —m(n* — n)log{ — WZlog la; — aj) .
i#j i#]

Moreover, writing a Taylor expansion of &, around its minimum point p
we have

2 =12
£O(Cli) = fo(p+€dl) = fo(p) + %Q(dz) +o <7’L}|ICL'L| > ‘
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Combining the two relations, we find

— 7Y logla; — a;| + 2mhex Y _(o(ai) — &o)

i#j i
1
= n(n? —n)logz +wp(ay,...,an) +o0 <nzi:|d,-]2> ,
from which the result easily follows. O

11.2 Branches of Solutions

We now consider hex > 0, N, an integer, and € > 0, and we try to show
the existence of solutions to the Ginzburg-Landau equations with the
given parameters hey, € which have the prescribed number of vortices V.
These solutions will be obtained by minimizing the Ginzburg-Landau
energy among configurations with IV vortices. We let
L= ﬁ (11.5)
hex
Note that from the results of Chapter 9 we expect L to be the typical
distance between the vortices and p for our solutions.
Let us state precisely the conditions under which we will be able to
show the existence of such solutions.

Definition 11.1. We say hegy(¢), N(g) are admissible if the following
conditions hold.

1. There exists oy < 1/2 such that he, < e~90.
2. If N #0, then
N2 < nheg, NQIOg% Snlogg, (11.6)
for some n small enough depending on 2 and «q, to be specified
later.

Several remarks can be made on the definition above.

e Writing the second relation in (11.6) as (N? 4+ n)log + < nlog?
and replacing L by its definition, we find that (11.6) is equivalent
to

__2n
N? < fhex,  hex < Ne  N24n,
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e If we assume hey < C|logel, (11.6) is satisfied for example if N2 <
nhex and 1 < N < |logel|?, for some v < 1/2. This is seen by
noting that in this case and from the very definition of L we have
C|loge|~1/? < L < C, and plugging this into (11.6).

e Since for N # 0 we always have N > 1, we deduce from (11.6) that
L? <n/N <. Thus also, N?log(N/n) < 2nlog(L/¢). Using again
that L is bounded we find N2log(N/n) < C|loge| which implies

N < +/|loge|.

We will distinguish three cases in our proofs. Firstly the case where
L does not tend to zero. In this case, after extraction, N = O(1) and
hex = O(1). Indeed if hex — 400, then (11.6) implies N < v/Nhex < Nex,
contradicting the assumption, hence we may assume that hey remains
bounded and thus N from (11.6) also. Secondly the case where L tends
to zero and N = O(1). The vortices then concentrate around p but their
number is bounded independently of €. The last case is the one where L
tends to zero and N — oo.

Our main result is the following:

Theorem 11.1 (Branches of stable solutions). Given ap€(0,1/2),
choosing 1 small enough depending on 0 and ag, and given admissible
N(e) and heg(€) in the sense of Definition 11.1, there exists eg > 0 such
that for any 0 < & < gq, there exists (us, Ac) with the following proper-
ties.

First, (us, Ac) is a locally minimizing critical point of G- hence a sta-
ble solution of (GL). Also, u. has exactly N zeroes a5, ...,a% and there
exists R > 0 such that |u.| > % in Q\U; B(af, Re) and deg(ue, 0B(af, Re))
= 1. Moreover, the following holds.

1. If N and he, are independent of €, then, possibly after extraction,
the n-tuple (a,...,a%) converges as € — 0 to a minimizer of
Ry p,,, where

RN,hez(xla . ,JUN) = —WZlog \xl — xj]
i#£]
+ WZ Sa(xi,xj) + QWhemZE()(xi),

1,J )
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and defining v by (3.15),

Ge(ue, As) = he? Jo+7N|log 5|+m]ivn Ry p,,+Nv+o(1) ase — 0.
Q

If N is independent of € and he, — 400, then, possibly after extrac-
tion and letting a; = (a5 —p)/{, the n-tuple (@i, ...,a%) converges
as € — 0 to a minimizer of

N

wN(T1, ..., TN) = —ﬂzlog |z; — ] +7TNZQ($1‘),

i#j i=1
and defining f-(N) by (9.4),

Ge(ug, Ae) = fo(N) + (%lzi)r}v wy + Nv+o(l), ase—0. (11.7)

If N — oo and hey — +o00, then, defining a5 as above, we have

| N

D0 = o, Gelue, A) = L(N)+ NIy +0(N?),  ase—0
i=1

where g is the unique minimizer of I, Iy = I(puo) and where the
convergence is in the narrow sense of measures.

. In the case N =0, we have |us| — 1 in L>(Q). (This is called the

Meissner solution.)

Remark 11.1. There is a sort of continuity between the multiple renor-
malized energies found above, since w, can be considered as a limit of
R, 1., when hey — 400, and I as a limit of w, as n — oo, as seen in
Proposition 11.1.

11.3 The Local Minimization Procedure

We introduce the following sets

Uo = {(u, A) € Xq | Fa(u, A') < £}, (11.8)

where X was defined in (3.2), A’ = A — hex V-t ho and g € (0,1) is to be
specified later. For N > 1, we let

Un = {(u, A) € Xq,|F.(u, A") — f2(N)| < BN?}, (11.9)



11.4. The Case N =0 227

where B > 0 is a constant to be determined later, and f9 is as in (9.10),
ie., fO(N)=rNlogZ + 7N2log + + nN2Sq(p, p).

The branches of solutions will be obtained by minimizing the Ginz-
burg-Landau energy in Upy. We will first show that the infimum is
achieved, and then that it is a critical point. The rest of the statements
in the theorem will follow rather easily. In the course of the proof we will
define the constants 7, ¢ and B in (11.6), (11.8) and (11.9).

11.4 The Case N =0

We prove the theorem in this particularly simple case. Consider a min-
imizing sequence {(un, Ap)}n in Up. Arguing as in Proposition 3.5 we
may assume that A, satisfies the Coulomb gauge condition and deduce
that the sequence is bounded in H' x H'. Then a subsequence converges
weakly to (u, A). Arguing again as in Proposition 3.5, we have F;(u, A") <
lim inf,, F.(un, AL) hence (u, A) € Up and G (u, A) < liminf, Ge(un, Ay)
hence (u, A) is a minimizer of G over Up.

To prove that (u,A) € Up, we consider the test-configuration
(1, hex V+E€0). It belongs to Ug since F.(1, hex V& — hex VE€0) = F.(1,0)
= 0. Thus infy, G- < Ge(1,hex V&) = hex?Jo. Since (u, A) € Uy, we
have F.(u,A’) < ¢ with ¢ > 0, and we may apply Theorem 4.1 with
r = &% . The upper bound F;(u, A’) < &7 implies that if ¢ is small
enough, the degrees of the balls we obtain are all equal to zero. Thus,
applying Theorem 6.1, we find

hexl|1(u, A')|( o ()yr < Chexe™ Fo(u, A') < Ce?,

where we have again used the bound on F;(u, A’) together with the as-
sumption hex < -, with ap < 1/2. Applying the energy-decomposition
lemma, Lemma 7.3, we obtain

Gulu, 4) = hoi? o + Fulu, 4) + 0 (¥ 4 120043

Since ag < % we may choose ¢ € (0,1) such that 1 — 2ag + ¢/2 > ¢q and
then
Ge(u, A) = hex2Jo + Fo(u, A') + o(e9).

But Ge(u, A) < hex?Jo therefore F.(u, A') = o(¢?) and (u, A) € Uy for &
small enough.
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Now, since Uy is open in H' x H!, the minimizer (u, A) must be
a critical point of G.. Then we know from Corollary 3.1 that |V|u|| <
|V au| < C/e and together with the fact that

5 [ IVIel? + o (1= [uP)? < Fufu, 4) = o(0)
Q

this implies by standard arguments (see [43], Theorem III.1) that
lu| = 1]|p = o(1) as € — 0. This completes the proof of the theo-
rem in the case N = 0.

11.5 Upper Bound for inf;, G.

We prove:

Proposition 11.2. There exists By, Ly > 0 depending only on £ such
that the following holds.

Assume N(g), heg(€) are such that L < Lo and hey < %, where L is
defined in (11.5). Assume in addition, if N tends to 400 as € — 0, that
N < heg. (All these conditions are satisfied in particular for admissible
her and N.) Then, defining Uy by (11.9) with B > By we have, if € is

small enough,

inf G < fo(N) + ByN?, (11.10)
N
where f. is as in (9.4), i.e.,

L 1
fo(N) = hei? Jo — 20 Nheg|éo| + 7N log -+ 7N?log T+ TN?Sa(p, p).

Proof. This upper bound is obtained through constructions which we
have already performed.

We begin with the case where N is independent of €. We define for
0<k<N

21k e
ap=¢€e N, a;=p+ Lag,

where p is the minimum point of & and L is defined in (11.5), i.e.,
equidistributed points on the circle of center p and radius L. If L is
small enough depending on €2, then for any e the points {af }, are inside
Q2 and bounded away from 0f). Moreover the distance between them
is proportional to L/N which, under our hypotheses, is much greater
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than €. Then from Proposition 10.1, there is a family of configurations
{(ue, Ac) }< satisfying (10.1)—(10.2) with n replaced by N and d; =1 for
every 0 <¢ < N —1.

Since |a — af| = Ll|a; — aj|, we have

Zlog|af —a;| = N(N - 1)10gL—i—Zlog‘e%f]yr — e
i#] kAl
But, given [, Hkﬂ <emﬁ _62%77) ‘HN ! 1—6211(677") and using
N1 (x—e“z@") — 2 — 144+ 2V we find that

2ikm 2ilm

Hk7,gl (6 N —eN ) = N and thus that
> loglaf — af| = N(N — 1)log L + Nlog N.
i#]

Moreover, since Sq is locally C! in €2, we have
ZSQ a5, a5) — N*Sq(p,p)| < CLN?,

where C' denotes a generic constant depending only on 2. Finally, we
may write

72 §o(p + La;) — &o(p)

hex&)(af) = hex@ + hex 12

< hex€o + CN,
since V& (p) = 0 and hey L2 = N, where C is another constant depending
only on €.

The above, together with (10.1)—(10.2) yield for ¢ small enough (in
view of the definitions of f. and f?)

|Fx(ue, AL) — f2(N)] < BoN?,

GE(ueaAs) < fs(N) + BoN27

with By a constant depending only on 2. The first inequality ensures
that if B is chosen large enough depending on €, then (u., A;) € Uy
and then the second inequality implies (11.10).

The case where N tends to 400 is similar. In this case we have
1 € N < hex and hey < C/e. Then using Proposition 9.1, taking as
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the measure p any fixed compactly supported probability measure such
that I(u) < 400, we find that there exists a family of configurations
{(ue, Ac) }e satisfying

F.(ue, AL) = fO(N) + O(N?) (11.11)
and
Ge(ue, Ao) = fo(N) + N?I(p) + o(N?). (11.12)

The relation (11.11) immediately yields that if B is large enough, then for
e small enough (ug, Ac) € Uy, and then using (11.12) that if By > I(u),
then (11.10) is true for € small enough. O

11.6 Minimizing Sequences Stay Away from 0Uy

In this section we prove the “hard” analysis part of the proof that the
minimum of G, over Uy is achieved.

Proposition 11.3. Given g € (0,1/2) we may choosen > 0 and B > 0
depending on §, o such that if N(€), heg(e) are admissible and Uy is
defined by (11.9), the following holds.

There exists eg > 0 such that for any € < eg there exists d. € (0,1)
such that for any (u, A) € Xq,

G:(u, A) < i[}lf Ge+1 = dist((u,A),UpN) > 6.
N

Here we use d ((u1, A1), (ug, A2)) = ||[u1 — uzl|g + [|[A1 — As|| g as
the distance in Xq.

Once this result is proved, it will follow from Ekeland’s variational
principle that for € small enough there exists a minimizing sequence in
Upn which is a Palais—Smale sequence bounded away from OUp. Then
this sequence will converge strongly to a minimizer of G, in Uy, hence
a locally minimizing critical point of G¢. The rest of this section is de-
voted to proving Proposition 11.3. Throughout the proof, we assume that
ag € (0,1/2), that N(g), hex(e) are admissible and that G.(u, A) <
infUN Gg + 1.

We already noted that (11.6) implies that N < +/|loge| as e — 0, for
any choice 1. Thus the very definition of Uy implies that if (u, A) € Uy,
then F.(u, A’) = O(|loge|?) as ¢ — 0. In particular for any a € (0,1),
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if £ is small enough, then F.(u, A") < 21, Since hex < 7% for some
ag € (0,1/2), it follows that (9.5) is satisfied for any o € [ap,1). In
particular we may choose « such that 1 4+ oy < 3a/2 and 2ay < «,
implying

3a

hex€ 2 L =0(1), he’e® = o(1). (11.13)
This choice will prove useful below. Note that « is chosen depending on
«p, thus depending on « or g means the same thing.

In any case, it follows from (9.5) that as in Chapter 9, if (u, A) € Uy,
we may associate to it a family of large balls B of total radius r = iex
and total degree d defined by (9.7), and small balls B’ of total radius
and degree defined by (9.6). The first and elementary link between n,
n’ and N is given by the fact that F.(u, A) > C,n/|loge|, which follows
from Theorem 4.1, together with n’ > n and F.(u,A) < CN|loge|,
which follow from the definition of B and B’ and the definition of Uy
respectively. It follows that

n<n' <C,N < Cyy/|loge|, (11.14)

where C,, is a constant depending only on «.

— Step 1: n+ §(n' —n) < N. We improve (11.14). From the definition
of Un and (11.5) we have

VN 1
F&(u7Al) S WNIOgg\/T; +7TN210gf +BN2

while since (9.5) is satisfied, Proposition 9.3 applies and (9.25) yields

+ wg(n' —n)|loge| — Cn.

F.(u, A" > mnl
(u, A") > 7 g _ ™ 5

We divide the above inequalities by D = log 6\/%, which is greater

than 3|loge|. Noting that from (11.6) and (11.14), (NlogN)/D and
(nlogn)/D are o(1) as € — 0, we find

N2%log 1+ + BN?
%z Yo(l).  (11.15)

log T

w<n+%(n'—n)> < 7N +
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If N and hex are bounded independently of €, then the right-hand side is
equal to 7N +0(1) and therefore for € small enough we find n+§ (n'—n) <
N, as claimed.

If not, then L = o(1) and therefore N?log + + BN? ~ N?log +. But
from (11.6) we have

7rN2log% WNQIOg% -

log . lth log 2

and therefore, assuming
n<a/2, (11.16)

we deduce from (11.15) that if  is small enough, then n 4 §(n' —n) <
N + /2, and thus n + §(n' —n) < N in this case also. O

— Step 2: n=n' = N, and the vortices are bounded away from OUy .
Assuming

B> By, L<lL (1117)
where By, Lg are defined in Proposition 11.2, we have

Ge(u, A) < iJLNng +1 < fo(N) + ByN? + 1. (11.18)
On the other hand, (9.24) in Proposition 9.3 yields
Ge(u, A) = hexJo + 2Thex Y dilo(bi)
+ F.(u, A) Z— C(n' — n)rhex + o(1)
L
> hex2Jo 4 27 hex EZ: di&o(b;) + mN log -
+ N2 log% — BN?2 —C(n/ = n)vhex +0(1), (11.19)

where we have bounded F.(u, A’) from below using the definition of Uy,
and used (11.13). Comparing the above inequalities yields

27 hex (Z di&o(bi) — N&))

<2BN?+ C(n = n)Vhex +1+0(1). (11.20)
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Using the fact that 1 < N2 < nhex and n,n’ < CN (see (11.14)), and
choosing

1 (7€l [l

the right-hand side of (11.20) is bounded above for € small enough by
Thex|€o|. But the function & is negative and we know from Step 1 that
n = > |dj] < N. Thus the left-hand side can be written as a sum of
positive terms

2hex > di (§0(bi) — &0) + 2mhexe Y di(So(bi) + &o) + 2Thex(N —n)|&ol,

d;>0 d; <0

and dividing (11.20) by 2mhey thus yields

(N = mléol + 3 di (66 — &) + 3 dilcob) + &) < 5ol

d; >0 d; <0
(11.22)

where all the terms are positive. It follows that, for € small enough,
N—-n< % or N < n which together with Step 1 proves that n =n’ = N,
as claimed. In particular £ = L. Moreover, from (11.22), for every i such
that d; < 0 we find |(b;) + & < 3|&|, which is impossible, and for
every i such that d; > 0 we have &y(b;) — & < 3|&|. Therefore, we have
shown that if (u, A) € Xq is such that G.(u, A) < infy,, G- + 1, then

d; 75 0 = d;>0, b€ {JL‘ e ‘ §0(x) < ;&)} . (11.23)

This implies that the vortices are bounded away from 0f) since &y van-
ishes there. O

— Step 3: Conclusion. We apply Proposition 9.4, choosing K = Ky and
d = do. It follows that if L is small enough depending on Q then (9.40)
holds. Together with (9.25) it implies that

L 1
Fe(u, A') + 2mhey Y _ di&o(bi) > mN log —+ wN?log 7 +2nNhes§o + R,

(2
where, denoting Cq as a positive constant depending only on 2,

3N K N3/2
R=—r (2 log N + N? 1og6—° + N26p2 + S tCON| > —CoN2.
0 0
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Together with (9.24), we deduce from the above and (11.19) that
Ge(u, A) > f-(N) — nSq(p, p)N? — CqoN2.

This lower bound matches the upper bound of (11.10) up to CN?; there-
fore (9.42) in Proposition 9.4 is satisfied, and yields together with (9.25)

L 1
F.(u, A") > N log — + 7N?log 7o CaN?. (11.24)
9

From (9.24) we have F.(u, A') < G:(u, A) — hex®Jo — 2 Nhex&o + 0(1),
which together with (11.18) implies

F.(u,A') < fO(N) 4+ BoN? +1 4+ o(1),
and thus
|Fe(u, A') — f2(N)| < BoN? + 24 CoN? + nSa(p,p)N*.  (11.25)

If (v, B) € OUp, then since F; is continuous with respect to the distance
we have chosen on Xgq,

|F-(v,B') — f2(N)| = BN?,
thus if we choose
B > Cq + By + nSa(p, p) + 3, (11.26)

then we deduce from (11.24)-(11.25) that if (v,B) € 90Uy, then
|Fe(v, B') — F-(u, A")| > N?. From the uniform continuity of F. in Uy
this proves that

dist ((v, B), (u, A)) > 0,

for some number 0. which does not depend on the choice of (u, A) sat-
isfying the hypothesis. Proposition 11.3 is proved, with B chosen large
enough depending on  to satisfy (11.17), (11.26), and 1 chosen small
enough as to satisfy (11.16), (11.17) and (11.21). Indeed, from the def-
inition of L, we have L? < n, thus if 7 is small enough, then L < Ly is
satisfied. O
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11.7 infy, G. is Achieved

The rest of the proof that inf;;,, G. is achieved relies on rather well-known
arguments. We recall Ekeland’s variational principle (see for example
[27]):

Ekeland’s principle: Assume X is a metric space and F : X —
RU{+o00} is a proper lower semicontinuous function bounded from below.
Assume that for some integer n we are given x, such that F(x,) <
infx F' 4+ 1/n. Then for any A > 0, there exists Z,, € X such that

A, in) <N, F(#n) < F(zn),

and for every = € X,

F(z) = F(n)

>
d(z, z,) -

1
-

We apply this to the metric space U, consisting of those (u, A) € Uyn
satisfying the Coulomb gauge condition, endowed with the distance func-
tion d ((u1, A1), (ug2, A2)) = |lur — ue||mn + |41 — Az||g1. The function
(u, A) — Ge(u, A) is continuous, and even differentiable. We choose
B, n as in Proposition 11.3, and & small enough. We let A = §./2
and consider a sequence {(vn,By)}n in Uf such that G.(v,, Bn) <
infyr, G + 1/n. Then from Ekeland’s principle there exists a sequence
{(un, An)}n in Uf; such that Go(un, Ayn) < infy, Ge +1/n and such that
d ((vn, Bn), (un, Ay)) < d-/2. Using Proposition 11.3, this implies that
(un, Ay) remains at a distance at least d./2 from OUy. The last prop-
erty of (un, Ayn) given by Ekeland’s principle implies, since G is in fact
C*', that the norm of the differential of G. at (un, A,) tends to 0 as
n — +00.

To summarize, {(up, A,)}n is & minimizing sequence for G¢ in Uy
which satisfies the Coulomb gauge condition, which remains bounded
away from OUy and which is a Palais—Smale sequence. It remains to
show that such a sequence converges strongly in H! x H'. Its limit will
belong to the interior of Uy and minimize G., as claimed.

We now sketch the proof of strong convergence of Palais—Smale se-
quences. First {(uy, A,)}n is bounded in H! x H' using the arguments in
Proposition 3.5 because G¢(uy, Ay,) is bounded and (u,, A,) satisfies the
Coulomb gauge condition. Thus, it has a subsequence which converges



236 Chapter 11. Branches of Solutions

weakly to some (u, A) and (DG¢)y,, A,) (¥ — un, A — Ap) tends to zero:
this is the Palais—Smale condition. This reads

(1 = funl?)

52 Un (u—up) +

Q
/curl Apcurl(A—Ap) + jn - (A— An)> =0,
Q

where j, = (iup, Va,uy,). Since A and A, satisfy the Coulomb gauge
condition we may replace curl by V in the second integral. Then the
weak H' convergence and strong L9 convergence (up to extraction), for
q > 0, of both u,, and A,, allows us to deduce from the above that

lim /]Vun]2+]VAn]2 :/yvu|2+|VAy2.
n—-+0o0o

Q Q
On the other hand, by weak convergence, we have the inequalities
Jo IVul? < liminfeo [, [Vu,|* and [, [VA|? < liminf._o|VA[* hence
there must be equality in each, which proves the strong convergence of
the sequences, and the fact that infy, G. is achieved.

11.8 Proof of Theorem 11.1

Until now we have shown under suitable hypothesis the existence of a
minimizer (u., Ac) for infy;, G¢, which is an interior point of Uy hence
a local minimizer of G and then a stable solution of (GL). This allows
us to give a more detailed description of (ug, A¢).

{Jus| < 1/2} is bounded away from 0}

Let w = {& < &/4}. Then, as seen in (11.23), the points b; such that
d; # 0 are inside w and bounded away from 9%, and d; > 0. We apply
Theorem 4.1 in w to (ue, AL) with » = L, and call the resulting collection
of balls the new balls. They satisfy (4.3). We claim their total degree D
(sum of absolute values of the degrees) satisfies D > N. Indeed since
the total radius of the old and new balls both go to zero as ¢ — 0, we
may find for each £ small enough a simple closed curve v which is inside
w, which does not intersect the new or the old vortex balls, and which
encloses every b; such that d; # 0.
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Then deg(ue,7) is equal to the sum of the degrees of the old balls
enclosed by v, i.e., N (since d; > 0 and n = N), but also to the (algebraic)
sum of the degrees of the new balls enclosed by  which is smaller than D.
Thus N < D as claimed. Also note that, since F.(u., AL) < CN|loge|,
in view of (4.4), D is bounded by C'N. Combining this to the relation
(4.3), we get

L
F.(ue, AL,w) > 7N logN—6 — CN.

Comparing this to the upper bound coming from the definition of Uy,
we find

1
F (e, AL, 2\ w) < TN?log 7 + O(N?) < | loge| + o loge),
(11.27)

where we have inserted (11.6). This suffices to conclude that |u| > 1/2
in Q\ w if n was chosen small enough depending on 2. Indeed, using
Proposition 4.8, the set {z € Q | |us(x)| < 1/2} may be covered by a
collection of disjoint closed ball By of total radius ro < Ce|loge|, and
such that (using Corollary 3.1) for each B € By,

2
(1 —Jucl)
~ 7 >C
/ 2e2 -
B
where C' is a constant dependinglon ). Then we apply Theorem 5.2 to
(ue, A;) with a final radius r; = e2. It yields a collection of balls B;. The
radius 7 is small enough so that for every B € By we have

F(ue, A;—:’ B) > F(us, A, B) (1 = o(1)) — O(1), (11.28)

but large enough so that (5.27) and (5.28) imply that for every B € By
we have

F.(ue, Ac, B) > C|loge]. (11.29)

Then (11.27), (11.28) and (11.29) show that if 7 is small enough, then
By contains no ball which is included in 2\ w and therefore |u| > 1/2 in
Q\ @, where @ is the set of = € 2 which are at distance less than r; from
w. This proves that {|uc| < 1/2} is bounded away from 9. From now
on we define w to be a fixed subdomain of Q such that {|u.| < 1/2} C w,
and is bounded away from 0f).
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The case N — +o0

In this case, we assume the Coulomb gauge condition is satisfied. Then
we note that {(u., Ac)}e is “very locally minimizing” in the sense of
Definition 3.8, i.e., for any family {z.}. of points in Q and any w : R? —
C compactly supported, we have G.(u: + we, Ae) > Ge(ue, Ae), where
we(z. +2y) = w(y).

Indeed, since (u,, A;) is a solution of (GL), we have from Corollary 3.1
and Propositions 3.9 and 3.10 that |Vau| < C/e, |u| < 1 and |A] <
C'/e, the last estimate requiring the Coulomb gauge condition. Moreover
|welloo = ||w]|oo and ||Vwe||oo = || Vwl||oo/e. We easily deduce that

C
{Fs(us +we, AL) — Fz—:(usaA/e)’ < 22 [{w: # 0} < C,

since [{w. # 0}| = €2{w # 0}|. From (11.25) and since N — +oo,
this implies that for € small enough, (ue + we, A;) € Un and therefore
Ge(ue +we, As) > Ge(ue, Az), proving that {(ue, Ac)}- very locally min-
imizes Ge.

(ue, Ae) has exactly N zeroes of degree +1. We need to compare more
precisely the upper and lower bounds satisfied by G¢(ue, A.). Comparing
(9.24), (9.40) with the upper bound (11.10) we deduce that

1 A’ 2 1—lu 2)2 L
/’vA’EUf’Q"‘ (Cur2 s) + ( 2| 2€| ) §7erog—+O(N2)
& 3
B

= 7N log - + O(N?).
€
On the other hand, using the lower bound given by Theorem 4.1 we have

2
o plcurl A2 (1= |uf?) r’

/\VA/EUE +r 5 =4 522 szlogN—g—CN.

8/

Comparing the two and using N? < |loge| implies that

F-(ue, AL, B) — F-(ue, AL, B') < N log :(([lj/)) + o(|logel).

This allows us to apply Proposition 5.2 (it is not difficult to check that
its other hypotheses are satisfied) and to deduce that in each ball B; in
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B included in ©, u. has exactly d; zeroes of degree +1 (recall d; > 0).
Since there are no zeroes close to 0, the claim is proved. Moreover it
follows that if we denote by {ax} the zeroes, then

1 1
k i

where a, = (ax, — p)/L and by = (bx —p)/L. 0

Identification of the limit measure. From Theorem 9.1 we have the con-
vergence of a subsequence of {ji(us, AL)/N}. to a probability measure
p such that Ge(ue, Ae) > fo(N) + N2I(ps) + o(N?). But from Proposi-
tion 9.1 applied to pg, the minimizer of I, we can construct a configura-
tion (ve, B:) which belongs to Uy and such that Ge(ve, Be) < fe(N) +
N2I(pg)+o(N?). Using the fact that (u., A.) minimizes G in Uy, we de-
duce the same upper bound on G, (u., A.) hence I (1) < I(p0) and ps =
o- Since every subsequence converges to the same limit, {fi(u., AL)/N}.
converges to g, and Ge(ue, Ac) = fo(N) + N2I(up) + o(N?).
It remains to check that

1
N Z 5&k — Mo
k
From (11.30) this reduces to proving that

1 /
e, A7) NZd &, —

We omit the proof since it was done in the course of the proof of Proposi-
tion 9.5, where it resulted from (9.68) and (9.67). This finishes the proof
of the theorem in the case N — +oo. O

The case of bounded N

We now assume that N is independent of . In this case, the definition of
Un implies that F.(u., AL) < C|loge|, thus we may apply Theorem 5.4
choosing n = 7/2N and the radius

. 1 1
r=min | ——, — | .
|loge| hex
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We find balls { B(a;, Re) }1<i<x which depend on ¢ that cover the zero set
of uc, that are inside €2, and such that the degree d; of u. on dB(a;, Re)
is nonzero for every i. Moreover, the lower bound (5.36) holds and from
the previous step all the balls are inside w, since each ball contains at
least a point where u. = 0.

We have as before

N <> |di, (11.31)
and we use (5.36) together with the definition of Uy to find
1 r L 1
2 — < = Zlog — .
w?(dz QN) log o 77?N10g€ + 7N logL+O(1)

Together with (11.31), this implies that d; = 1 for every i and ), d; =
N. We omit the details of the proof which involves a careful study of
remainder terms using (11.6) but is not difficult.

Now, since the degrees have been proven to be equal to +1 and since
the points are bounded away from 0f2, we may apply Proposition 10.2,
to find

F.(us, AL) > ©N|loge]| —ﬂZlog la; —ajl +7TZ Sa(ai,a;)+Nvy+o(1).
i#] 1,

Plugging this into the energy-splitting lemma (7.22), we have

Ge(te, AL) > hex?Jo + mN|loge| — leog la; — aj| + WZ Sal(ai,a;)

i#] ,J
+ hex/u(u, ANéo + Ny +o(1). (11.32)
Q
We claim that
Pex / p(u, Ao = 2mhex Y difo(ai) + o(1). (11.33)
Q 7

Indeed, we know from Theorem 6.1 that this would hold if the a;’s
were the centers a) of the balls of small radius ' = Ce*/2. But we
can easily check (as in the proof of Proposition 9.5 for example) that
2Thex Y ; diba; —2Thex ) ; d;5a; — 0 as measures, which proves the claim.
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Inserting this into (11.32), for hex = O(1), we deduce that

Ge(ug, Ae) > hex?Jo + nN|loge| + Ry p, (a1,...,an) + Ny +o(1)
> hex?Jy + mN|loge| + min Ry p,, + N7+ o(1).
Q

A matching upper bound also holds, with the help of Proposition 10.1,
hence we deduce that we have equality and that (aq,...,ay) must con-
verge to a minimizer of Ry, as e — 0.

If hex — 00, then we claim that the a;’s converge to p. The proof
is as above: using (7.22) with (11.33) and the lower bound for F.(u., A%)
coming from the definition of Uy, we have

Gs(usa As) > hex2J0 + 27rhex Z dl&)(az) + fg(N) - BN2 + 0(1)
and comparing it with the upper bound (11.10), we find

27 hex (Z di€o(a;) — N&,) < CN? +0(1).

Using » ., d; = N and hex — 400, we deduce §y(a;) — & and thus the
claim.

It follows that 7}, ; Sa(ai, a;) = 7N%So(p,p) + o(1). Thus, (11.32)
becomes

Ge(ue, Ag) > hex2Jo + 7N |loge| — 2mNhex|§o| — leog la; — aj|
i#£j
+2mhex Y di6o(as) — &) + Ny +7N>Sa(p, p) + o(1).

Using Lemma 11.1, this entails

Ge(uz, Ac) > hex®Jo + N |loge| — 2N hex |0
N2 _-N

h
+ ﬂTlog% +minwy + 7N?Sq(p, p) + Ny + o( N?).

Again with the help of Proposition 10.1, the matching upper bound also
holds, hence there is equality above. Thus from Lemma 11.1, the a;’s
have to converge to a minimizer of wy, where a; = p + a@;4/ TJL This

proves assertion 2) and (11.7).
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The fact that for € small enough there are exactly IV zeroes of u. may
be obtained by a blow-up argument around each a;. Since |a; — a;j| > €
(they are given by Theorem 5.4) and the a;’s are bounded away from
09, the blow-ups at the scale € around each point converge to an entire
solution of —Au = u(1 — |u|?) of degree 1 such that

/ (1= Juf?)? < 400,

RQ

i.e., to the radial degree +1 vortex which has a single zero. Therefore for
¢ small enough, u. has a single zero in B(a;, Re). This finishes the proof
of the theorem in the case of N bounded.

BIBLIOGRAPHIC NOTES ON CHAPTER 11: The existence of solutions of
the type of Case 1 in the theorem was conjectured by Rubinstein in [158]
and first established by Du-Lin in [86]. Their range of existence is here
extended.

The main result of existence of branches of solutions for a wide range
of hex, through the local minimization method, in Case 2, was established
in [182] in the case of a disc, following [181] which already contained the
minimal energy case. Case 3 is new.



Chapter 12

Back to Global Minimization

In this chapter, we establish which solutions, among the ones found in
Theorem 11.1, minimize the energy globally. This of course depends on
the value heyx. As hey increases, we will see that the minimizers have one,
then two, then more and more vortices, as predicted by the physics. This
allows us to give precise expansions of the critical fields.

Again we only need to concentrate on the case of hex close to Hgl
since, for hey greater than H, 21 by at least an order of | log |, the situation
is precisely described by Theorem 7.2, while for hex — H, 31 much greater
than log |logel, it is described by Theorem 9.2.

12.1 Global Minimizers Close to H,,

Loosely speaking, from Theorem 11.1 we know that the minimal energy
of a solution with n vortices, when n is independent of ¢, is equal to
g:(n) + o(1), where

ge(n) = fo(n) + (1%121)2 wy, + ny. (12.1)
Lemma 12.1 (Critical fields). For every ¢ > 0, there ezists an in-

creasing sequence {Hy,(g)}n, Ho = 0, such that the following holds.
Given n > 0 independent of €, if heg(€) > 1 is such that

ge(n) < min (ge(n — 1), ge(n + 1)) + o(1),

then
Hy, —0(1) < hey < Hpy1 + 0o(1).
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Moreover, the following asymptotic expansion holds as € — 0

|loge]

H =
! 2l

+ K, | +o(1) (12.2)

1
— ||loge| 4+ (n — 1) log
M[\ [+ (n-1)

where

1 n?-3n+2 -1
Kn:(n—l)log——i—n nt logn
n 2 n

L (i i 2n — 1)7S,
+— (%QI)I}LM”_(RI%LQ1,LU”_1+’Y+( n—1L)7rSa(p,p) | ,

v was defined in (8.15), Sq in (7.18), wy in (11.2), and & in (7.4)).

This was illustrated in Fig. 1.7 where the branches of stable solutions
with n vortices intersect (i.e., have equal energy) at the H),’s.

Proof. As in the proof of Lemma 9.5, we let A,, = g-(n) — g-(n — 1) and
we have, using (12.1) and (9.4),

hex
Appr=m (nlog n—T— . + | loge| + 2hex§o> + R(n+1), (12.3)
with
R(n+1) = U T (2n + 1)Sa(p, p)
n =7 B gn—|—1 m(an Qlp,p

+K§%gilwn+1—-&gﬁgun+—v.
As a function of hey, the function A; is affine decreasing on Ry and
A1(0) > 0. If n > 1, then A, is first increasing and then decreasing.
Also, for € small enough depending on n, if hexy = 1, then A, is strictly
positive. Since A, tends to —oo as hex — +00, we may again define
H,(g) to be the only value of hey in the interval [1,+oo[ for which A,
vanishes. This allows us to define H,,(¢) for any n € N and any £ < go(n).
The definition of H,, allows us to easily compute the expansion (12.2)
from (12.3). It is easy to check that if 1 < hex and n is fixed, then for any
€ > 0 small enough we have A,,;1 — A, > 0. In particular the sequence
{Hp}» is increasing.
Now assume hey () > 1. If

ge(n) < min (ge(n — 1), ge(n + 1)) + o(1),



12.1. Global Minimizers Close to H,, 245

then A,, < o(1) and A,41 > o(1). But the derivative of A, w.r.t hex
is negative and bounded away from 0, thus H,, — o(1) < hex < Hpy1 +
o(1). O

We deduce:

Theorem 12.1. (Global minimizers and critical fields for bound-
ed numbers of vortices). Assume N € N. There exists cc — 0 as
e — 0 such that if e < eo(N) and

Hy +cc <he < HN+1 — Cg,

any global minimizer of G. is a solution with N vortices described in
Theorem 11.1.

We prove the theorem. Let {(ue, A-)}. be global minimizers of the
energy with Hy + ¢ < hex < Hyi1 — ¢ for some fixed N € N. Our
assumption implies hex < HY + O(log |loge|) where H) was defined in
(7.16). We wish to prove that for € small enough we have (u., A;) € Un,
for a suitable choice of c.. However it suffices to prove that (u., A;) € U,
for some integer n. Indeed, this will prove that it is a minimizer in U,,
hence its energy is g-(n) 4+ o(1). Moreover, by global minimality, this
energy will be smaller than the energy of the minimizers in U,_; and
U, 41 respectively, i.e.,

g=(n) < min (g-(n — 1), g=(n + 1)) + o(1),

which by Lemma 12.1 implies H, — d: < hex < Hpy1 + J for some
d: = o(1) and then n = N, choosing c. = /2.

Note that from hey < C|loge|, and the fact that G.(ue, A:) <
G.(1,hex V&) = hex2Jy we immediately get G-(us, Az) < C|logel?
and F.(ue, A:) < C|logel?. In particular, as in Chapter 9 we may apply
Theorem 4.1 to (ue, Ac) to construct, for any a < %, small balls B’ with
total radius ' = ¢* and grow them using Theorem 4.2 into large balls
B of total radius r = \/% We again denote by {d;}; the degrees of the

X

large balls and let n := ). |d;|. We now prove that (u., A.) € U,, which
will conclude the proof of Theorem 12.1.

— Step 1: n < heg. This is Step 1 of the proof of Theorem 9.2. O
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— Step 2: n = 0O(1). Indeed, assume on the contrary that along a subse-
quence {e} we have n > 1. Then, from Theorem 9.1 and Proposition 9.1,
and since {(ug, ¢) }e are global minimizers, we have G.(u., Az) = fo(n)+
n?I (o) +o(n?), where f.(n) is defined in (9.9). Moreover, by global mini-
mality, this must be less than g.(/N)+o0(1). But, computing and inserting
the inequality Hy + cc < hex < Hy41 — ¢e, we find

Pex
mn|loge| — 2mnhe|&o| + (n —n) log = 1+ 0(n?)
< 7TN\ loge| — 27rNheX]§70| + O(N?log | logel)
hence
hex 2
—CnNlog|loge| + = (n —n) log— < CN?log|loge| + Cn?.

Using n — +o0 and dividing by log h—;" — 400, we find

ey CnN log |log e\ CnN log hex
o log < hex — log %

and writing log heyx as log % +logn, we find n? < CnN(1+logn) from
which we easily deduce a contradiction with n > 1. O

From now on, we assume that n is independent of £ and we show
that for ¢ small enough, we have (uc, Ac) € U,.

— Step 3: The case n =0. If n = 0 then d; = 0 for all 4, hence using
Proposition 9.3 and since G¢(ue, Az) < hex’Jy we deduce that d; =0,
for every ¢. Then applying Theorem 6.1 to the small balls, we find that
the norm of p(u,A’) in the dual of C’g’l(Q) is less than CeP for any
p < 1/2. Using Lemma 7.3 and bounding again G¢(ue, Ac) by hex>Jo
we find Fy(ug, AL) < CeP for any p < 1/2, and we may bootstrap this
information using Theorem 6.1 and Lemma, 7.3, taking larger o’s, to find
F.(ue, AL) < Ce? for any ¢ € (0,1), proving that (u., A:) € Uy if ¢ is
small enough. O

— Step 4: The case n > 0. Comparing the minimizer to the solution
with n vortices found in Theorem 11.1, we find that

G:-(us, A2) < fo(n) + O(n?). (12.4)
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On the other hand, we may apply Proposition 9.4 and (9.40) together
with (9.24)-(9.25) yield

Ge(ue, Ac) > fo(n) + O(n?).

Comparing to (12.4) we obtain that the difference between the left- and

right-hand sides of (9.40) is O(1) and therefore since ¢ = /7= — 0,

D(t) = n for all t € [rg,r1] which implies that d; > 0 for all 7 and a; — p
for every i such that d; # 0. We also obtain from (9.24)—(9.25) that
n = n' since rhex = O(y/|loge|) and log(r/r") ~ a|loge|.

Proceeding exactly as in Step 3 of the proof of Proposition 11.3, we
deduce that (u., A;) € U, in this case also.

In all cases we have proved (uc, A:) € Uy, which concludes the proof
of Theorem 12.1. O

Remark 12.1. Note that for N = 0 and since we have let Hy = 0, the
condition above reduces to

|loge| v+ mSa(p,p)
204 27|&o

h —CEIHl—Ce.

In this case, the global minimizer of G. is the Meissner (vortex-free)
solution. We have thus shown that if we define the first critical field either
as the one below which minimizers are such that |u| does not vanish or
as the one above which minimizers have exactly one zero, we have the
refined expansion as e — 0

|loge| v+ wSa(p,p)
H, =H, =
P T ol 2m[&o|

+o(1) |

Remark 12.2. The minimizers of the energy for hey € [Hy, Hpt1] have
exactly n vortices. This does not mean that if one increases the applied
field hey to pass Hy11, an n + 1-th vortex will really be observed exper-
imentally. Indeed, each configuration with n vortices found in Theorem
11.1 remains a local minimum even for hey < Hy or hey > Hpy1. There
is an energy barrier to pass continuously from a configuration with n vor-
tices to a configuration with a different number of vortices. This allows
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for hysteresis phenomena as observed in experiments, i.e., where the sys-
tem keeps the “memory” of the situation it is coming from, remaining
trapped in local minima instead of going to a global minimum.

The lower and upper fields for which the solutions of Theorem 11.1
lose their linear stability are called respectively the subcooling Hy. and
superheating Hyy, fields. Theorem 11.1 shows that Hy. = O(n?) and also
that Hgp, is much larger than H,, or than each H,,. In fact, it is expected
that Hy, = O(e™1) (it was established for the vortex-free solution in [55],
see Chapter 1/).

12.2 Possible Generalization: The Case where A is not
Reduced to a Point

The most general case is that of general domains with A not reduced
to one point, or A = {p1,...,p;}. Let us still assume that D?&y(p;) are
definite positive. Looking for solutions with NV vortices, we can minimize
G. again over Uy. It is clear that with the same arguments as used
in Proposition 11.3, the minimum is achieved in Uy and yields a locally
minimizing solution of (GL), with vortices of degree 1. If hey = O(1) and
N = O(1), then its vortices converge to a minimizer of Ry 4., just like
in Theorem 11.1. If N/hex — 0, then the situation has more structure,
and we will show what happens, for example, for the case of N bounded
(or fixed) and hex — +00. As in the proof of Theorem 11.1, we can check
that the vortices should all be of degree 1 and tend to A. Let us consider
that n; of them converge to p1, n2 to pa, etc. Let us denote by aq, ..., an,
those converging to p1, and by ap,+1,- .., an, those converging to ps. We

may check that writing ¢ = ’/h%x and rescaling by a; = %(ai — pg) for

ng—1 + 1 <i < ny, if we denote

wi(T1,...,Tp,,) = —7 Z log |z; — x|
i#j€[Lng]

ng
+ 7N Y (D& (pr)i, i),
=1
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we have

—w210g|az—aj\+2ﬂhexz gO a‘l @)
i#]j

1
1
= Wan(nk — 1)logz -7 Z nin;log |p; — pj|
k=1 i#j€[1,]]
l

+ Z Wi (&n1+~-~+nk,1+1> e 7C~Ln1+--~+nk) + 0(1) (125)
k=1

We are thus led to minimizing to leading order
l
> nk(ng —1)
k=1
under the constraint n; + - - - + n; = N. This is equivalent to finding

M 12.6
N= n1+m4i21 Nznk ( )

Lemma 12.2. If N = ml +r with m and r integers, r < I, then My is
achieved for ny = m in | —r sites and np = m+ 1 in r sites. Then

My = (m* —m)l + 2mr.

Proof. Assume ny,...,n; is a minimizer. Let m = min;<;<; ny and m’ =
maxi<k<] ;. Relabelling if necessary, we may assume that n; = m and
ny = m’. Since the configuration is minimizing, it has less energy than

that consisting of nq + 1,n9 — 1,n3,...,n;. Thus
(n1+1) (ng — 1) +an>2nk,
k>3
that is,

2n1+1—-2n9+1>0

or m—m'+1 > 0. Hence we must have m’ < m -+ 1. Since m and m' are
respectively, the min and the max, we must have ny = m or np = m+1
for every k. Let r be the number of k’s for which ny = m + 1. We have
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r < [ otherwise ny = m + 1 for every k and this would contradict the
minimality of m. We have [ — r indices such that ny = m, therefore we
have

(l—rym+r(m+1)=N

or Im~+r = N. Thus m is indeed the integer part of N/l and the minimizer
is as described. O

Inserting this into (12.5) and taking into account all the terms that
depend on the pi’s, we are thus led to minimizing

Wi(p1,- . ,pu a1, . on) = —m > ninglog|p; — pjl
iJ€[L]]
! !

2
+ Zwk (Trygednp 1415 - - s Ty gomyy) + T Z n.Sa Pk, Pk)
k=1 k=1

with the constraint that the nj,...,n; are minimizers for (12.6). We
therefore find an analogue of Theorems 11.1, 12.1:

Theorem 12.2. Let us assume that A = {p1,...,pi}. Under the same
hypotheses as Theorem 11.1, there exists eg > 0 such that for 0 < & < &g,
there exists (ue, Ac) which is a locally minimizing critical point of Ge,
hence a stable solution of (GL), which has exactly N zeroes of degree
ag,...,a% of degree one. Moreover,

1. If N and hey are independent of €, then, possibly after extraction,
(af,...,a%) converges as € — 0 to a minimizer of Ry .,

2. If N is independent of € and he, — 400, then there are ny points
converging to p1, ne to pa,...,n; to p;, and ni,...,n; minimize
(12.6). Moreover, after possible extraction, the configuration of the
pr’s and a;° = (ai — px)/l (for ng—1 +1 < i < ny) converge to a
minimizer of Wy under this constraint, and

Ge(ue, Ac) = min G = hertJo + N (| log g — 2|&o|hes)
N

1
+7(My — N)logz + min Wy + Ny + o(1).

Next, in order to find the critical fields, one can observe that M, 41 —
M,, = 2m where again m is the integer part of n/l. Comparing, we find
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that the solution with n vortices has the least energy between H,, and
Hn+1 with

1 1 |log
Hn:[logs—i—(m—)log —I—Kn}—l—ol
aleo] L 8¢ 2) % 3lg, @

n—1

1 1
K, = <m—2) log— + (M1 —n+1)log
n
1
+ = (min W,, — min Wy,_1 +7),
T

where m is the integer part of "Tfl

It would not be very hard to also generalize Case 3 of Theorem 11.1
to this situation; one would obtain [ pockets of vortices centered at each
pi, with ~ 7 vortices in each.

One can also think of generalizing to the case where D2&; is not
positive definite (see the open problems section).

BIBLIOGRAPHIC NOTES ON CHAPTER 12: The existence of the successive
critical fields H,, was first established in [181], the asymptotic expansion
obtained here is more precise though, since it is up to o(1). The fact
that these solutions are global minimizers was established in [169] for
hex below H., and in [171] for hey above H,,. Finally, the generalization
to other domains is new.
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Asymptotics for Solutions

The problem we have dealt with until now was to understand the € — 0
limits of the vorticity measures associated to minimizers of the Ginz-
burg—Landau functional. We now wish to derive a criticality condition
for a limiting vorticity measure associated to a family {(us, Ac)}c of
solutions of the Ginzburg-Landau system (G L) which are not necessarily
minimizing.

Intuitively, the force acting on a vortex in the limit ¢ — 0 is the
gradient of the potential generated by the vortices and the boundary
condition. Assume we are in a domain 2 with external magnetic field
hex. We denote by {a;}; the limiting locations of the vortices and by
{d;}; their degrees. Then the (limiting) potential & is the solution of the
London equation

—Ah+h=2m),did, inQ
h = hex on 0f).

The criticality condition in this case should be Vh(a;) = 0 for every i.
Another formulation, letting = 27y, d;d,,, is

uVh, =0, (13.1)
where h, is the solution of

—Ahy, +hy,=p in Q
hy, = hex on 0.

This formulation can be extended to vortex densities by considering ar-
bitrary measures p in (13.1).
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Of course the meaning of (13.1) is not clear in many important cases,
including that of u equal to a Dirac mass at p: then h, has a logarithmic
singularity at p and Vh,(p) is not defined. Another example would be
when p is the measure of arclength along a smooth closed curve ~ in
2. Then h,, is Lipschitz but Vh, is discontinuous on v, i.e., the support
of . These types of measures may actually occur as limits of vorticity
measures, we will come back to this and give other examples below.

If h, € H'(Q), or equivalently if the measure p is in H1(Q)—
which is the case in the curve example above — then a weak formulation
of (13.1) is at hand. This comes naturally by computing the derivative
of ||ht||%[1(9) with respect to t for variations of h, of the form h(z) =
hu(x+tX(x)), where X is a smooth compactly supported vector field in
Q, also called “inner variations”. The vanishing of

d
%HhtH?ﬂ(Q)

at t = 0 for any such X is equivalent to the fact that for ¢ = 1,2, we
have 01T;1 + 0212 = 0 in the sense of distributions, where

1
Tij = =0ihudihy + 5 (IVhu* + hy?) 645. (13.2)

We write, in shorthand, these two equations as divT = 0. This is ex-
pressing the fact that h, is stationary with respect to inner variations
for the functional HhH%fl(Q)'

The coefficients T;; are in L' if hy is in H I and therefore divT = 0
makes sense in D'(€2) (the space of distributions). It is a straightforward
calculation to check that, if A, is smooth enough, C? for instance, then

div T = (=Ahy, + hy)Vhy, = pVhy,,

hence divT = 0 is the same as (13.1). The relation divT = 0 is thus a
weak formulation of (13.1) for nonsmooth fields.

If h, ¢ H', then the tensor T" with coefficients T;; need not be in
L', this is the case if p is a Dirac mass. In this case we resort to a
finite part formulation. More precisely we consider measures p such that
there exists a family {FEs}s~o of sets which become “small” as § tends
to zero and such that h,, Vh, € L*(Q\ E;s) for every § > 0. Then the
criticality condition for pu will be that for every ¢ € D(Q2) we have, letting
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/ TV =0,

O\Fs
where T'V( is the vector with components T;101( +T;202C. If p is a Dirac
mass at p, we could take E5 = B(p,d), for instance.
The method to obtain this weak formulation div 7T = 0 of the limiting
condition (13.1) is to pass to the limit in the analogous relation on the
stress-energy tensor, denoted here by S. (see Definition 3.4)

Fs = (71 (C(Bs),

div S, = 0 (13.3)

holding for solutions of (GL), as seen in Proposition 3.7. This relation is
a “conservative form” of the Ginzburg—Landau equations, or a corollary
of Noether’s theorem, again coming naturally from the fact that (u., Ac)
is critical for G with respect to inner variations as described above.
The task will thus consist in passing to the limit ¢ — 0 in the nonlinear
relation (13.3).

This problem is very similar to that of passing to the weak limit in
solutions of the 2D incompressible Euler equation, if we consider Vh as
the fluid velocity and p as the fluid vorticity. It is therefore not surprising
that the core of our argument is quite similar to that found in DiPerna—
Majda [84] in that it uses something analogous to the “concentration-
cancellation” property of the weak limits of solutions to 2D Euler. Two
specific difficulties we encounter are first the lack of L' control of the
vorticity, and second the difference between S, and (13.2). Note that in
our case we are able to prove that “concentration” always occurs whereas
it was a hypothesis in [84].

Note that since we have considered an applied field hey depending on
e, and possibly tending to 400, and a number of vortices also possibly
tending to +oo, there is a normalization issue that we will discuss be-
low. Let us simply mention that if the number of vortices is negligible
compared to hey, then the effect of the boundary is predominant and
the criticality condition is simply uVho = 0, where hg is as in (7.1) the
solution of —Ahg+ hg = 0in Q and hg = 1 on 92. This makes sense for
any measure j since hg is smooth.

13.1 Results and Examples

Before stating our results, we need to introduce some definitions.
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13.1.1 The Divergence-Free Condition

Definition 13.1 (Divergence-free in finite part). Assume X is a
vector field in Q. We say X is divergence-free in finite part if there exists
a family of sets {Es}s=o such that

1. For any compact K C Q, we have limgs_,g cap, (K N Es) = 0.
2. For every 6 >0, X € L'(Q\ E;).

/X-VC:O,

O\Fs

where Fs = (™1 (C(Es)).

3. For every ¢ € C°(9),

If T is a 2-tensor with coefficients {T;;}1<i j<2, we say that T is diver-
gence-free in finite part if the vectors T; = (Tj1,Ti2) are, for i =1,2.

Proposition 13.1. Assume that X is divergence-free in finite part in
and that X € L*(Q\ E). Then for every ( € C(Q),

/X-vg:o,

O\F
where F' = (7Y (C(E)). In particular if X € LY(Q), then F = & in the
above and therefore div X =0 in D'(Q).

Remark 13.1. A consequence of this proposition is that if X is diver-
gence-free in finite part and is continuous in a neighborhood U of a
smooth curve v = 0K, where K is a compact subset of €, then
fv X -v=0.

Indeed, let {¢,}n be a sequence of functions in C2°(2) converging in
BV (Q) to 1k, the characteristic function of K, and equal to 1x outside
of U. Then letting £ = Q\ U we have Q\ ;! ((o(E)) = {¢, #0,1} C U
and applying Proposition 13.1, we have

U/X.vcnzo.

Passing to the limit n — +o0o proves the desired result.

It will be convenient to use the following:
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Definition 13.2. We say (with some abuse of notation) that a sequence
{ X} in LY(Q) converges in LE(Q) to X if X, — X in Ll () except on
a set of arbitrarily small 1-capacity, or precisely if there exists a family
of sets {Es}s>o such that for any compact K C €,

%iH(l) cap;(K N Es) =0, Vo >0 lim / | X, — X|=0. (13.4)
— n—oo
K\Es

We define similarly the convergence in Lg by replacing L' by L? in the
above.

Note that the limit X need not be in L' (£2).

The rest of this section is devoted to the proof of Proposition 13.1.
We recall from Evans—Gariepy [94] that the p-capacity (1 < p < 2) of
E C R? is defined as

cap,(F) = inf /!Vg0|p;<p € LV (R?),Vp € LP(R*),E Cint (p > 1) p,
R2
where int(A) denotes the interior of A and p* = 2p/(2 — p).

Lemma 13.1. Any bounded set A C R? may be covered by balls
{B(xi,ri) }ien such that Y, r; < Ccap;(A), where C is a universal con-
stant. In particular for any Lipschitz function ¢, ((A) has Lebesgue mea-
sure bounded above by C||C||Lip cap, (A).

Proof. This is a restatement of the proof of the property relating cap,
and H" ! in [94]. Let a = cap;(A4) and f be a test function in the
definition of « such that

/ IVf] <2a.

R2
We assume moreover that f is compactly supported. The coarea formula
for BV functions (see [94]) applied to f implies that there exists t €
(1/2,1) such that E; = {f > t} satisfies per(E;) < 4a. But A is included
in the interior of {f > 1}, hence in the interior of E;. Therefore for any
x € A, the quotient |B(x,r) N E|/|B(z,7)| is equal to 1 for r small and
tends to 0 as 7 — +o00. Thus there exists r, such that it is equal to 1/2.
The relative isoperimetric inequality (see [94]) for sets of finite perimeter
then asserts that for any x € A we have, using the notation of [94],

10E||(B(2,72)) = Cra,
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where C' > 0 is a universal constant. Extracting a Besicovitch subcov-
ering of A from {B(x,r;)}.ca, and denoting it by {B(xz;,r;)}ien, we
obtain, by summing the inequalities above,

Zm < Cper(E;) < Ca.

The property that [((A)| < C||¢||Lip cap; (A) results by summing the
corresponding inequality for each of the balls B(z;,r;). O

Proof of Proposition 13.1. Let ( be a smooth function compactly sup-
ported in Q and 7, = {¢ = t}. For any regular value ¢ of ¢, let

fo= [T

Yt

where v = V(/|V(].

Assuming the hypotheses of Proposition 13.1 are satisfied, T' is di-
vergence free in finite part hence there exist sets {FEs}s satisfying the
properties stated in Definition 13.1. We let F5 = (~!({(Fjs)). We begin
by proving that for every 6 > 0

f(t) = 0 for almost every t ¢ ((Ej). (13.5)

Indeed, for any smooth g : R — R, the coarea formula gives, for any
d > 0 (using div7T = 0 in finite part),

[ rvee0= [ dwswd-o
Q\F5 tEC(Es)
thus f(t) = 0 for a.e. ¢ such that t ¢ ((Es).

Using the coarea formula again, we then have, letting A = R\ ((F),
and for any § > 0,

/T-VC:/f(t)dt: / £t dt+ / £(t) dt.
A )

O\F A\((Es AN¢(Es)

The integral over A \ ((Es) is zero from (13.5). Moreover, since
lims_gcap; (K N Es) = 0, where K is the support of ¢, and using the
previous lemma, the measure of ((Fs) goes to zero with ¢ and thus the
integral over A N ((E5) also tends to zero as § — 0. It follows that
fQ\FT - V¢ = 0, proving the proposition. O
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13.1.2 Result in the Case with Magnetic Field

We consider {(u., A¢)}eso a family of solutions of the Ginzburg-Landau
equations in 2. For the sake of generality, we do not impose boundary
conditions (this way Q can be taken to be a subregion of the original
domain where the solution is defined), but we assume that |u.| <1 in Q
and that

2
F.(ue, A) < Coe®™ ', a> 3 (13.6)

for every € > 0, where « is independent of £ and where F. is the free-
energy as defined in (4.1). The value 2/3 is a technical limitation. As in
the previous chapters, we denote by pe == p(ue, A:) = curl(ius, Va_u:)+
curl Az, h. = curl A.. Also, recall that from Proposition 3.8, any gauge-
invariant quantity is smooth in .

In what follows we split the magnetic field h. in two pieces: hY the
field generated by the boundary conditions and h! the field generated
by the vorticity. More precisely, taking the curl of the second Ginzburg-
Landau equation —V=+h, = Je we have

—Ahg + he = pe in Q. (13.7)
Then we define Y and h! by
—AR+hl=p. inQ
BT . hY = h. — Rl (13.8)
h:; =0 on 0S.

Theorem 13.1. (Limiting vorticities for critical points — case
with magnetic field).

A) Let {(uc, Ac)}eso be solutions of the Ginzburg—Landau equations as
above. Then for any € > 0, there exists a measure vs of the form
21 Y, di 64 where the sum is finite, ai € Q and di € Z for every i,
such that, letting n. =, |d3],

Fe(usa A, Bs)

<C 13.9
e = |log €] (13.9)
where B, is a union of balls of total radius less than Ce?/®, and
such that
e = vellw-10(0) e = vellco) — 0, (13.10)

for some p € (1,2).
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B) Let {v:}. be any measures of the form 2w ), d:das satisfying (13.10),
let ne =), |d5|, and let {M.}. be positive real numbers such that
{nY/M.} converges in L} .(Q) to a function Hy. Then —AHy +
Hy = 0 in Q and, possibly after extraction, one of the following
holds.

0. ne = 0 for every € small enough and then p. tends to 0 in
w-tr(Q).

1. ne = o(M,) is nonzero for ¢ small enough, and then p./n.
converges in W 1P (Q) to a measure p such that

,LLVHO =0.

hence the support of p is contained in the set of critical points
Of HO .

2. M. ~ Mg, with A > 0, and then p. /M. converges in W ~5P(Q)
to a measure u, and he /M. converges in Wlif(Q) to a solution
of =Ahy +h, = pin Q. Moreover the symmetric 2-tensor T},
with coefficients T;; given by (13.2) is divergence-free in finite
part in the sense of Definition 15.1.

3. M. = o(n.), and then u./n. converges in W=1P() to a mea-
sure p, and he/ne converges in Wllo’cp(Q) to the solution of

—Ahy, + hy = pin Q
hy =0 on OS2

Moreover, the symmetric 2-tensor T, with coefficients Tj;
given by (13.2) is divergence-free in finite part.

In Cases 2) and 3), if p € HY(), then T, is in L} () and
divergence-free in the sense of distributions. Moreover ]thlz 18
then in Wlicq(Q) for any q € [1,4+00), implying that hy, is locally

Lipschitz. If we assume that p € LP(Q2) for some p > 1, then
pVh, =0 (13.11)

almost everywhere in Q. In Case 3) this implies y1 = 0 and h,, = 0.
In Case 2) we get

n = hN1{|Vh,u|:0}' (1312)
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Note that since Hy satisfies —AHg + Hg = 0 in €2, it is necessarily
smooth inside €.

Application 1 (Natural boundary conditions). In the case where
(ue, A;) solves the full system (GL), i.e., the Ginzburg—Landau equations
together with the natural boundary conditions j. - v =0 and he = heg(€)
on 09, we may choose M. = he, and then h?/M. does not depend on
e: it is equal to the function hg which solves —Ahy + hg = 0 in  and
ho =1 on 9Q (as in (7.1)), and Hy = hg. The results in that case are
stated in the introduction, Theorem 1.7. We already noted in Lemma 7.1
that in the case where € is bounded, smooth and simply connected, this
function only has a finite number of critical points, and thus in Case 1),
the measure u is a finite linear combination of Dirac masses.

In Case 2), we may be more precise about h,,: dividing (13.7) by heg
and passing to the limit, we find it solves

—Ahy +h,=p inQ
h,=1 on 0.

Moreover, assuming that p € LP(Q2), we claim that 0 < hy, < 1, thus
using (13.12) we find that p is in fact a nonnegative L function.

Proof of the claim. To prove that 0 < hy,, one may multiply (13.12) by
h— = min(h,,0) and integrate by parts to obtain

/|Vh|2+h2: / h_2
Q

{IVhu|=0}

It follows that h_ is supported in the set where Vh, vanishes, which in
turn implies that h_ = 0 for if there existed xo € €2 such that h,(z¢) <0,
then considering an arc joining xo to x1 € 0, and since h, (1) = 1, this
would imply the existence of some point in the arc where Vh, # 0 and
h, <0, a contradiction. Therefore h, > 0 in €.

Similarly, to prove that h, < 1, we let h; = max(0, h, — 1), multiply
(13.12) by h; and integrate by parts. This yields

/!Vh1\2+(1+h1)h1: / (14 hy)hi,
o {1V =0}

implying that h; is supported in {|Vh,| = 0}. Arguing by contradiction
as above and using the fact that h1 = 0 on 92, we obtain hy = 0in Q. O
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Application 2. (Minimizers of the Ginzburg—Landau func-
tional). The above result also allows to get a bit more information for
example on the minimizers of the Ginzburg—Landau functional described
in Chapter 7. Let hey = M loge| and assume (ue, Az) minimizes G in €.
In this case pie/hey converges to a limiting measure uniquely determined
by A and denoted .. Moreover

1
My = <1 — 2)\> 1., dz,

where wy is a subdomain of Q0 (see Chapter 7 for these results).

Let us show what more can be said. Here we assume that we are above
the first critical field and wy # .

The argument is as follows: first we construct vortex balls using The-
orem 4.1, with total radius €'/? for instance, and let v, = 27 > d:0qs -
This is small enough so that (13.10) is true and large enough so that
(13.9) is true (note that €* would do for any a € (0,1)). Then we
apply Theorem 13.1 in a subdomain w C Q\ wy, with M; = heye).
In this case Hy = hy,, since —Ahy,, + h,, = 0 in w. Moreover we
claim that ne = o(M,). Indeed from Theorem 7.2, the weak limit of the
normalized energy densities g (u., A,E)/hegc2 in w is the smooth function
2(|Vhy.|? +hy.?). Therefore, in (13.9), the quantity F(uc, A., Be) must
be o(hef) since Bz has measure tending to 0. Dividing (13.9) by hey then
yields ng/hey = o(1).

We thus have a better normalization of p. by restricting to w C Q\wj,
and we then fall into Case 1) of the previous theorem. If we assume n.
to be nonzero for arbitrarily small values of €, we find that u./n. tends
to a measure p supported in the set of critical points of h,,. We recall
that hy,, solves an obstacle problem (cf. Chapter 7), and if we assume
to strictly convex for example, we can check that the gradient of h,, does
not vanish outside wy. We deduce that p =0 in w.

Recall that p is the limit of ve/n.. Thus, assuming for example that
every d: is positive, this implies that for every w C 0\ wy, the vortices
in w (if there are any) can only accumulate on the boundary of w. This
excludes for instance a vortexr density outside wy that would be small
compared to he, but uniform.

Application 3. When p is a Dirac mass or a finite linear combina-
tion of Dirac masses at ai,...,an, and using the fact that in this case
T, is smooth in Q\ {ai,...,a,}, Remark 13.1 implies that if T, is
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divergence-free in finite part, then, for r > 0 small enough, the fluz
of T,y on 0B(a;,r) is zero. This is precisely the equivalent for the case
with magnetic field of the “vanishing gradient property” derived in [43].

Proof. Indeed, assume p has a Dirac mass at the origin, of mass 27 for
ease of notation. Then, using polar coordinates (r, ), and letting

9 _1o
or’ T

UV =

we compute 7}, - v in the basis (7,v) to find

1
Ty-v= ) (Orhy)? = (Ouhy)® + h®) v — (Bl Drhy) 7.
But, we may write h, = G + H, where G is the positive solution in R?
of —AG 4+ G = 27§ and H is smooth in a neighborhood of 0. Then we
have 0,G = —1/r and 9,G = 0 and we get, as r — 0

1 1 o H 0-H
T,L-u_2(—+2 . >u+< . >T+O(1).

r2

Now we use the fact that the integral I(r) of T),-v over the circle 0B(0, )
is zero. Therefore, as r — 0,

0= VH(0)-I(r) ~ 2x|VH(0)[> + o(1),

hence VH(0) = 0. O

Examples and interpretation

Here we gather examples pertaining to the case of natural boundary
conditions. Many examples are provided by minimizers of the Ginzburg—
Landau functional in various regimes of the applied field hey, they all
correspond to positive measures. It is an open problem to find solutions
with a changing-sign limiting vorticity, if they exist.

We have seen that if hexy — He, < |loge| then the limiting measure
associated to a family of minimizers of the Ginzburg-Landau functional
is supported at the minima of hg, and that in this case n. is a o(hex). This
falls into Case 1) of our theorem. Recall that, more generally, this case
shows that if the number of vortices is small compared to hey, then they
should all concentrate at the critical points of hg, which is a finite set of
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points in 2, as mentioned in Lemma 7.1. This means that in Case 1),
the limiting u is always a finite linear combination of Dirac masses. This
rules out the possibility of nontrivial nonsingular limiting densities of
vortices, for example the possibility of lattices of n. vortices if n. < hex.

The result of Theorem 7.2 enters in Case 2) and in this case (13.12)
is satisfied. Observe that the relation we obtain, weak form of (13.11)
can be seen as another rigorous derivation of the mean-field model of
Chapman-Rubinstein-Schatzman [72].

Recently Aydi showed in [28] that when (2 is the unit disc, a nonzero
vorticity p which is supported in a finite union of concentric circles can
actually arise as limit of the vorticity of some families of solutions. Such
measures are in H~! but in this case Vh, is no longer continuous, al-
though |Vh,|? is, thus the strong form (13.11) does not make sense.
These examples are constructed by minimizing the Ginzburg—Landau
energy among configurations having a well-chosen discrete rotational
Symmetry.

Further examples where p is a linear combination of Dirac masses
could in principle be of two types: either they would correspond to a
number of vortices, as well as an applied field, bounded independently
of €; or to hex tending to +0o as € — 0 and to a number of vortices
of the order of hey, but concentrating around a finite number of points
only. Examples belonging to the first case have been shown to exist in
Chapter 11, but it is not known whether the second case can actually
occur.

The above examples show that Cases 1) and 2) of the above theorem
are not empty, and do not reduce to minimizers of the Ginzburg-Landau
functional. It is not known whether Case 3) of the theorem can occur.
Against this possibility is the intuition that if the number of vortices is
too large compared to the confining field hey, then they would rather
exit €). Observe that already we know that 1 would have to be singular,
because we saw that if u € LP, p > 1, in some subdomain of €2, then
h;, = 0 and then p = 0 there. However a very symmetric situation may
provide an example of such an atypical behavior.

Several more remarks can be made on this theorem.

Remark 13.2. The definition of n., number of vortices, is not com-
pletely natural, or at least not intrinsic. This may be a problem for Case
1, since if one normalizes by a large enough factor, then the limiting
measure [ is zero and everything is trivial.
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There are good cases however, for example when hey(e) = C|loge|
and G (us, A.) < C|logel|?, such as in the case of the obstacle problem in
Theorem 7.2. In this case, it is straightforward to check that F.(uc, A:) <
C|loge|? and from (13.9) we find

ne < Clloge|.

Thus, in this situation ne < Cheg, and in Cases 1 or 2. In Case 2, the
normalization is by he, which is more intrinsic.

For higher values of the energy however, in Case 3, letting a. =
\|hell g1, we have, modulo a subsequence, that h./a. converges weakly
in H', hence pi./oe converges weakly in H™', but it could in principle
happen that ae = o(nz). In this case, normalizing by n. would yield zero
in the limit, whereas normalizing by a. could yield a nonzero limit. Such
a situation would correspond to solutions with many vortices, the degrees
of which are either positive of negative and for the most part cancel out
in the limit, leaving however a residual distribution. We do not know if
this can actually happen, but if it does, our techniques do mot allow us
to say anything about the residue, i.e., the limit of pe/o.

Remark 13.3. Concerning the regularity implied by the criticality con-
dition on u, the statements we present do not pretend to be a reqularity
theory for the equation divT, = 0, but rather the direct consequences
of the equation, in the spirit of bootstrapping arguments. A variant may
be found in [175] where it is proven that (13.12) is satisfied assuming
Vhy, € C° |Vhy| € BV. A bold conjecture would be that divT,, = 0 in
finite part implies that the support of u is of Hausdorff dimension 0, 1
or 2.

13.1.3 The Case without Magnetic Field

We now consider a family {u.}.~o of solutions of
() .
—Au, = 8—;(1 —|ue)?)  inQ
and again we assume that |u.| <1 in Q and

2
E.(uc) < Coe®™t, o> 3 (13.13)
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for every € > 0, where E, was first defined in (1.2). We let j. = (iue, Vue)
and p. = curl je.

Taking the scalar product of the equation with iu. yields (Aue, iu:) =
0, which by a direct calculation is div j. = 0, hence we may write j. =
V-t he, where he is the solution of

Ah, = in 0
e fe W (13.14)
Ovhe = je -7 on 0f.

Here and below v is the outward pointing normal to 992 and 7 = v+. By
the solution to (13.14) or to any other Neumann problem, we will mean
the solution with zero average in €). As in the case with magnetic field,
we split he into two pieces. We define h? and h! by

—Ahl =p. inQ
{ o _06 g h = h. —hl. (13.15)
= .

Theorem 13.2. (Limiting vorticities for critical points — case
without magnetic field).

A) Let {uc}eso be solutions of (1.3) as above. Then for any e > 0, there
ezists a measure Ve of the form 2mwy ", d; dqs where the sum is finite,
a; € Q and d; € Z for every i, such that, letting ne =), |d:|,

E
ne < o BelueBe). (13.16)
|loge|
where B, is a union of balls of total radius less than Ce?/3, and
such that
(e — VEHW—LP(Q)HNE - Va”CO(Q)* — 0, (13.17)

for some p € (1,2).

B) Let {v:}. be any measures of the form 2m ), d:das satisfying (13.17),
let ne =), |d5|, and let {M.}. be positive real numbers such that
{nY/M_}. converges in L}, .(Q) to a function Hy. Then Hy is har-
monic and, possibly after extraction, one of the following holds.

0. ne = 0 for every € small enough and then p. tends to 0 in
W=LP(Q).
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1. ne = o(M,) is nonzero for ¢ small enough, and then p./n.
converges in W 1P (Q) to a measure p such that

,LLVHQ = 0,

hence the support of u is contained in the set of critical points
Of HO .

2. M. ~ An., with X > 0, and then p. /M. converges in W 1P ()
to a measure u, and he /M. converges in Wi)f(Q) to a solution

of Ahy, = p in 2. Moreover the symmetric 2-tensor T, with
coefficients T;; given by

1
T;j = —0;h,05h,, + E\th\%ij (13.18)

is divergence-free in finite part.
3. M. = o(n.), and then pi./n. converges in W—1P(Q) to a mea-
sure w, and he/ne converges in Wllocp(Q) to the solution of

Ahy, =p  inQ
hy, =0 on 0.

Moreover the symmetric 2-tensor T}, with coefficients T;; given
by (13.18) is divergence-free in finite part.

In Cases 2) or 3), if u € H (), then T, is in L} (Q) and
divergence-free in the sense of distributions and \Vh“\Q 18 smooth,
hence hy, is locally Lipschitz in Q. If there exists a subdomain

of Q such that p is in LP(QY) for some p > 1, then u =0 in .

Let us look in detail at the case where wu. satisfies a Dirichlet bound-
ary condition. Similar results could be proved for Neumann boundary
conditions but we prefer Dirichlet for the sake of variety and in order to
connect our results to those in [43].

Application 4 (Dirichlet boundary condition). Assume
lue| =1 on 00 (13.19)

and that there exist normalizing factors {M:}e>0, and a function ® €
H'Y2(09Q) such that

lim Je T
e—0 || M,

— <I>H =0. (13.20)
H1/2(0Q)
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From (13.14) and (13.15), the function hY is harmonic in Q and such
that O,hY = j.-7—08,hL on Q. In Case 1) we have hl/M. — 0 therefore
Hy, which is the limit of h /M., solves

AH() =0 mn
O,Hy=® on ON.

In Case 2), dividing (13.14) by M. and passing to the limit, we find
that h,, solves
Ah,=p in Q
Oyhy, =@  on 0NQ.

Examples

The case where M, = 1 and n, is bounded independently of €, which falls
into Case 2) of the above theorem, was treated by Bethuel-Brezis—Hélein
in [43] under the stronger hypothesis E.(u:) < C|loge|. In this case, the
limiting measure p is of the type 27 )", d;dq,, where d; € Z for every i,
and it is proved in [43] that the configuration (a;,d;); is then a critical
point of a “renormalized energy” associated to the problem (see [43]),
and that this is in turn equivalent to the fact that the function H(z) =
hu(x) +d;log |z — a;], which is smooth near a;, satisfies VH (a;) = 0 (the
so-called “vanishing gradient property”). Our function h, is denoted by
g in [43]. We recover this result since as in the case with magnetic field,
the vanishing gradient property is equivalent to T}, being divergence-free
in finite part as proved in Application 3.

In the case of a diverging number of vortices, we establish that wher-
ever u is regular enough (i.e., does not concentrate), then it is 0. This
means that, contrary to the case with magnetic field, the Ginzburg—
Landau model without magnetic field cannot confine a large number of
vortices (in particular, cannot capture Abrikosov lattices). An intuitive
justification of this fact is provided by the analysis of Sandier—Soret in
[176], where it is shown that when the number of points becomes large,
the minimizers of the renormalized energy of [43] tend to the bound-
ary of €. This can be seen as a double limit ¢ — 0, then n — 400,
whereas Theorem 13.2 treats a simultaneous limit (¢,n.) — (0, +00),
and includes the case of critical points.

The possibility, in this case without magnetic field, of having singular
limiting measures, supported on a line for instance, is an open question.
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13.2 Preliminary Results

We begin by a result which is a modification of a result whose proof was
given to us by A. Ancona [23].

Proposition 13.2. Assume {a,}n is a sequence of measures such that
for some p € (1,2)
Jmlanllw -1 @llanllco@)- =0,

where ||y ||coq)« denotes the total variation of oy, [q lam|. Then, letting
hy, be the solution of

—Ahp+hy=a, nQ
h,=0 on 011,

it holds that hy, and Vh,, converge to 0 in L3(SY) (see Definition 13.2).

Proof. First note that, since W4 (for ¢ > 2) embeds into C?, the (C?)*
norm dominates the W~ norm for p < 2, and thus the hypothesis
implies that ||ay,|/y-1,» tends to zero as n — +oc.

We let

1/
[l llw -1
Oop=|m—7— ., Fo={xe Q| |hn| >} 13.21
<H%Hco<m*+1 { [ |hn| = 6n}. (13.21)

Then we have the well-known bound on the p-capacity of F,, (see [94] or
[197])

Hh‘n H%/Lp
cap,(Fp) < C’T. (13.22)

Now we note that by elliptic regularity ||y ||y1.0 < C|low|yw-1.» so from
(13.21)—(13.22), we have

2
cap,(Fn) < Cllanl®/2., (lanllcogy: + 1),

and therefore tends to 0 as n — +oo. This implies in turn that
lim;,— 4 cap; (Fy,) = 0.



270 Chapter 13. Asymptotics for Solutions

Also, from a well-known property of Sobolev gunctions, the truncated
function h,, = max(—d,, min(h,, d,)) satisfies Vh,, = 0 a.e. in F,, hence

/ th|2:/th-v7zn.
Q

O\F,

It follows that

/ |Vha|? + hy? < /th-th+hnhn = /hn douy,
Q

Q\F, Q

where the last equality follows from —Ah,+h,, = a,. The right-hand side
is bounded above by 8, |/ctn|co(q)-, hence by ([lanllw -1 [lanllcoy-)
and therefore tends to zero as n — +o0o. Thus

lim thHL2(Q\Fn) -

lim
n—-4oo n—-+o0o

To conclude, since lim, o cap;(F,) = 0, there is a subsequence,
still denoted by {n} such that ) cap;(F,) < +oo. We define

Es = U F,.

1
TL>§

Then cap, (FEs) tends to zero as § — 0 since it is bounded above by the tail
of a convergent series. Moreover, for any § > 0 we have F,, C F5 when n is
large enough and therefore (13.23) implies that limp— oo [|in | 20\ ) =

IV | 1200\ 1) = O-

Proposition 13.3. Assume {X,}nen is a sequence of divergence-free
vector fields which converges to X in L%(Q) Then X 1is divergence-free
in finite part.

Proof. Consider sets {Es}s such that (13.4) is satisfied and assume ( is
a smooth function supported in a compact subset K of €). Then, letting

Fs5 = ("Y(¢(Es)) and for any n, we have from Proposition 13.1 applied
to X, and Ejs that

/Xn-VC:O.

Q\F;
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Since E5 C Fs and {X,,}nen converges to X in L'(K \ Es), we may pass
to the limit in the above using the fact that { is supported in K to find

/X.vg:o.

Q\ Fs

Hence X is divergence-free in finite part. O

Proposition 13.4. Let {(uc, Ac)}e be solutions of (GL) satisfying (13.6)
and let as usual he = curl A. For any € > 0 we introduce the symmetric
2-tensors I and Se whose coefficients are

1
Tij = —8ih8jh + 5 (’Vh’Z + hz) 51']‘7

1 1
Sij = (97'u, 0;'u) <|VAU|2 — R+ — (1- |u|2)2> Sij,  (13.24)

2 2e2
where we have dropped the subscripts € for T, S, h, v and A for read-
ability.

Then T, — S tends to 0 in L}(S2).

Proof. From Proposition 4.8, the set of z in Q. (defined in (4.2)) such
that |u(z)] < 1 — e'/3 has radius smaller than Ce® 2/3 and therefore

there exists a finite union of balls containing this set, with total perimeter
bounded by Ce®~2/3. We let Z. be this union of balls. Then

lim cap,(Z.) = 0.
e—0

Indeed, since the 1-capacity of B(z,r) is 2mr and the capacity is count-
ably subadditive, cap;(Z.) < Ce®2/3.

The difference between the tensors T, and S; has a simple expression.
We use the notation u.(x) = p(x)e?®) for u.. Now we use the identity
dju—iAju = (9jp+1i(djp — Aj)) e together with the second Ginzburg—
Landau equation —V+h = p?(Vy — A) to obtain

OLhoth
(8{4u, a;‘u) = 8Z‘paj,0 + %,
where we have used the notation 9i- = 95 and 82l = —0. It follows that
[Vp|? (1-p%)?
(p°S =T)ij = p* (Majp B Ayl
h2
+(p* —1)=0;;. (13.25)

2
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Let f. denote the free-energy density i (|Vaul®+h%+ 28%(1 — |uf*)?).
The terms on the right-hand side of (13.25) can be bounded by either
C|Vp|? or Ce=2(1 — p?)? or, for the last term, by C(1 — p?) f.. Moreover,
the coefficients of (1 — p?)S are also clearly bounded by C(1 — p?)f.. But
1—p2 < CeY/3 on Q. \ Z., therefore

’T —S|<C 1/3 2 (1_p2)2
r— 5 < e fe + |Vl + T (13.26)
holds in Q. \ Z..

Now let K be a compact subset of (). For € small enough we have
K C Q. therefore (13.26) holds on K \ Z.: we integrate it on this set.
Since 51/3F5(u5, A < Ce®2/3 and o > 2/3, the integral of e1/3 f. tends
to zero with €. We now prove the same for the integral of the remaining
terms.

Taking the scalar product of the first Ginzburg-Landau equation
with u we obtain

—Ap+p|Ve — AP = 5%(1 - p%).

Now we define x : [0,1] — [0, 1] as the affine interpolation between the
values x(0) = 0, x(1/2) = 1/2 and x(1 — €!/?) = x(1) = 1, then we
multiply the above equation by the nonnegative function x(p) — p and
integrate in K, that we can assume smooth by enlarging it if necessary.
Integrating by parts we obtain

/ IVol> (X' (p) = 1) + p(x(p) — p) Ve — A]?
K

=/p(1 —p2)><(p22_/)+ / (x(p) = p) Qup.  (13.27)

K oK

Now, using a mean value argument, we may find a larger compact set
K such that H@,,pHQLQ(aK) is bounded above by CF.(uc, Ac), where C
depends on K. Then the boundary term in (13.27) may be bounded
above using Cauchy-Schwarz by CF.(u., A:)'/?c'/3, hence tends to 0 as
e — 0. It follows that
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/ Vol + p(1 — p;)(l =) o(1)

Kn{x(p)=1}

< /W;ﬂvw — AP+ / Vol (X'(p) =1) . (13.28)
K Kn{x(p)#1}

Now we notice that {x(p) = 1} contains the set where p € (1 — /3 1)
and therefore €. \ Z, hence K \ Z. if ¢ is small enough. Moreover when
p > 1/2, which is true on the set {x(p) = 1}, the integrand of the left-
hand side is bounded below by C|Vp|? + Ce~2(1 — p*)? with C > 0.
Therefore the left-hand side of (13.28) bounds from above the integral of
the right-hand side of (13.26) on K \ Z., for a suitable choice of constant
C, and if we want to prove that the latter goes to zero with ¢, it suffices to
prove the same for the right-hand side of (13.28). For this, we note that
Ix(p) — p|/p is bounded above by Ce'/3 and that where x(p) # 1, then
IX'(p) — 1| is also bounded above by Ce'/3. Tt follows that the right-hand
side of (13.28) is bounded above by Ce'/3F.(u., A.), which is smaller
than Ce®2/3 and therefore tends to zero as ¢ tends to zero.

We now have defined sets Z. such that, as ¢ — 0 and for any compact
K CQ,

capy(Z.) — 0, / T, — S| = 0.
K\Z.

We choose a decreasing subsequence {e,} tending to zero such that
> ncapi(Ze,) < +oo and let

Es = U Z.,.

1
n>g

Then clearly, 7., —S., tends to zero in L' (K \ Es) along the subsequence,
for any § > 0, and
KnEs=|JEnz

1
TL>S

n’

and therefore cap, (K N Es) tends to zero, since it is bounded above by
the tail of a convergent series. The proposition is proved. ]

We write as a proposition Part A) of Theorem 13.1.
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Proposition 13.5. Assuming that {(us, A:)}eso satisfy (13.6), there
exists for any € > 0 a measure v. of the form 2w, d:dqc where the sum
is finite, a € Q and d; € Z for every i such that, letting n. =, |dZ|,

FE(“S? Asa Bs)

ne < C
[loge|

)

where B, is a union of balls of total radius less than Ce?/3, and such that

[[pee — VaHW—l»P(Q)HMa - VEHCO(Q)* — 0, (13.29)
for some p € (1,2).

Proof. Applying Proposition 4.8 with § = %, there exists a finite collec-
tion B2 of disjoint closed balls such that Q. N {|uc| < 1/2} C UpepoB
and
r(BY) < Ce?,

where we have used the inequality F.(|uc|) < F.(ue, Ac) < Coe® L. Then
defining B.(t) using Theorem 4.2 with B? as the initial collection, we let
B. = B.(t1), where t; is such that r(B.) = e¥/3~r(B2) < Ce?/3.

Now we write B, = {Bf = B(a$,r5)}; and let di = deg(ue, 0B5) if
B; C Q. and d; = 0 otherwise. We then let

ve=2m Y dibes, me=>» I|dil.
i i

From Proposition 4.3 applied to v. = u./|uc| and using the fact that
|V ave|? < 4]V quc|? outside the balls of BY we get

4F€(u5, A, BE) > TN (10g(52/3_a) — log 2)
and dividing by |loge| yields n. < CF.(ue, A, B:)/|loge|.
It remains to check (13.29). From Theorem 6.1, and writing M =
F.(ue, A.), we have
[ pte — V&H(Cg’l(ﬂ))* < 052/3M7 [ pe — VEH(C’O)* < CM,

the second inequality coming from the bound ||p||(co)« < CM of Theo-
rem 6.1 added to the bound ||ve[[(coy» = ne < CM/|loge|. Then interpo-

lating by Lemma 6.5 and using r(B2) < Ce?/3 we find for any 3 € (0, 1),

[ 12e — VE”(CS”B(Q))* |11 — VEH(CO)* < CM?*e*/3,
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Since M < Ce®~! for some a > 2/3, it follows that, choosing 3 close
enough to 1, the right-hand side is bounded above by a positive power
of € and thus tends to 0 as ¢ — 0.

We conclude by recalling that there exists ¢ > 2 such that WO1 4
embeds into Cg”g and therefore by duality (Cg’ﬂ )* embeds into W 1P,
for some p € (1,2). For such a p, (13.29) is satisfied. O

13.3 Proof of Theorem 13.1, Criticality Conditions

Let {(ue, Ac)}es0 be solutions of the Ginzburg-Landau equations sat-
isfying (13.6) and as usual let h. = curl A;, j. = (iue, Vau:) and
e = curl jo + he.

If n. = 0 for every small enough &, then (13.10) implies that the
W= norm of . goes to zero since v. = 0 in this case and moreover,
the (C°)* norm is stronger than the W~ norm.

Otherwise, (ye — v:)/ne tends to zero in W=1? for some p € (1,2)
while by definition v, /n. is a bounded sequence of measures. Therefore
a subsequence converges in the weak sense of measures. On the other
hand, by Ascoli’s theorem, for any o > 0, C%*(Q2) embeds compactly
into C%(Q), thus (C°)* embeds compactly into (C%*)* and into W 1P
for p < 2 (by embedding of W14 into C%* for ¢ > 2 and appropriate
«). We may thus assume, after extraction of a subsequence, that v./n.
converges strongly in W~1P(Q) for p € (1,2), and then j./n. converges
to a measure, strongly in WP, for some p € (1,2). If M. ~ An. with
A > 0, then the same is true for p./M..

Assume M. ~ An. with A > 0. From (13.8), and since u./M. con-
verges to pu in W~1P we deduce that hl/M. converges in WP to the
solution of —Ah; + h1 = p in Q and h; = 0 on 92. On the other hand
hY/M., which is a solution to Af = f from (13.8) and converges in
L} (Q) to Hy, in fact, converges in CF () for any k. Therefore h. /M.
converges in VVlif(Q) to h, = Hy+ hi, which satisfies —Ah, + h, =
in Q.

If M. = o(n.), then h?/n. tends to 0 in CF () for any k, while as
above hl/n. converges in WP to the solution of —Ah, + h, = p in Q
and h, = 0 on 09, where p is the limit of u./n.. Thus h./n. converges
in W,5P(Q) to hy,.

We now derive the criticality conditions satisfied by pu.
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Proof of Theorem 13.1, Items 2 and 3.

Since (ue, A:) is a solution of the Ginzburg-Landau equations and from
Proposition 3.4, the symmetric 2-tensor S, with coefficients defined by
(13.24) is divergence-free. Moreover, from Proposition 13.4, we get that

T. — S. converges to 0 in L}(€). (13.30)
where T, is the symmetric 2-tensor with coefficients
T;j = —0;he0jhe + 1/2 (|Vhe|* + he?) 6.

From (13.8), we have the decomposition h. = h? + hl. We further
decompose hi as U, + V., where

—AU+U. =p: — v, in
U.=0 on 0f?

and
{—AVs—l—V;:VE in

V.=0 on 09.

In Case 2) of the Theorem, we have M. ~ An. with A > 0 and
w is the limit of either p./M. or v./M.. From (13.10) we may apply
Proposition 13.2 to ae = (e — v=)/Me and find that

U U R
7 and V (Ms> tend to 0 in L3(£2). (13.31)

Also, since {v./M_.}. is a bounded sequence of measures, it converges
in CJ(2)* hence in W~1? and we may apply Proposition 13.2 to 3. =
(ve/M;) — p to find that

V. V. .
ﬁe —hy and V (ME - h1> tend to 0 in L3(Q), (13.32)

€ 3
where hy is the limit of hl/M..
In view of (13.31)—(13.32) and since {h2/M.}. converges in CF _(€2)

to Ho, hence in L?(Q) also, we deduce that h. /M, and its gradient both
converge to h, = Ho + hy in L3(£2). In particular, defining 7, as the
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tinsor with coefficients TZ’; = —0ihuOihu+1/2 ([Vhy|* + h,?) 85, we get
that

T:
M2

converges to T), in L5(12). (13.33)

In Case 3) of the theorem, where M, = o(n.), u is the limit of p./n.
or v./ne, and we proceed as above, normalizing by n. instead of M. to
find that

(e

ng2

In Case 2) (resp. case 3)), from (13.30), (13.33) (resp. (13.34)) we
find that S./(M.?) (resp. S./(n.2)) converges to T}, in L}(£2). Moreover,
Proposition 13.3 allows us to conclude that since S; is divergence-free,
the tensor T}, is divergence-free in finite part.

converges to T}, in L§(Q). (13.34)

Proof of Theorem 13.1, Item 1.

We use again the decomposition
he =hY+hnl, hl=U.+V..
We have a corresponding decomposition for the tensor 7
Te =T + 12 + 720 - 71, (13.35)
where 7% denotes the tensor with coefficients
T8 = —9;he0;ht + % (Vhe - VRE+n2ht) 8.
From (13.31)—(13.32) above, we deduce that hl/n., Vh!/n. converge

to hy, Vh, in L3(Q), where —Ah, + h, = p in Q and h, = 0 on 9.
Since n. = o(M;), this implies that

both converge to 0 in L2(2) and then that

Tll

converges to 0 in L}(€). (13.36)
NelVie
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On the other hand, we know that h2/M. converges in CF () to Hy and
that hl/n. converges to h, in W1P(Q). We deduce that

70! 4 710

/s 1
A converges to T}, in Lj,.(£2), (13.37)

where T;/; is the tensor with coefficients
(T;L)ij = —aiH()@jhu — ajHUc‘?,-h# + (VHO . th + Hohu) 52’]’-

It follows from (13.35), (13.36), (13.37) that (T. —T2°)/(n.M.) converges
to T}, in L(€2) and then using Proposition 13.4 that (S — T9)/(n.M.)
converges to T}, in L(€2). But we know that S. is divergence-free and,
using the fact that —AA? + h% = 0 in © and in particular, smooth, it is
straightforward to compute div T2° = 0. It follows that T;’l is divergence-
free in finite part, hence divergence-free in the sense of distributions since
it belongs to L () (see Proposition 13.1).

Now since Hy is smooth in €2, the Leibnitz rule may be used to
compute the distributional divergence of Tl; and it is easy to check that
div T}, = tVho, hence we have established 1Vho = 0.

13.4 Proof of Theorem 13.1, Regularity Issues

We now proceed to proving the remaining assertions of Theorem 13.1,
which describe some consequences of the fact that T}, is divergence-free
in finite part in special cases.

Properties Assuming € H!

In this case, the limit of hl/n. belongs to H'(2) while Hy is smooth
inside Q. Therefore in Case 2), the limit h,, of he/M. is in HL _(Q) while
in Case 3), h, is in H'(Q). In any case, T,, € L () and Proposition 13.1
tells us that div7,, = 0 in the sense of distributions in €.

Assuming we are in Case 2), we let

1
X = 5 ((02hu)? = (01h)?, —201hy0ahy)
Then X = (Tll — hﬂ2/27T12) and X = (_T22 _ hu2/2,T21), Where the

T;j’s are the coefficients of T),. It follows from div7),, = 0 that div X =
—h,O1hy, curl X = h,02h,,.
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Let now fi be a solution of Af; = —h,01h, in Q and f3 a solution
of Afy = —h,d2h,,. Since h, € HL (), by Sobolev embedding we have
huVh, € LP (Q) for any p € [1,2) and therefore f; and fa are in WP (1)
for any p € [1,2), and thus in W-9(Q) for any ¢ € [1, +-00).

Then, since Af; = divX and Afs = curl X, we have X = Vf| +
Vi fo + Y, where Y satisfies divY = curlY = 0 in D’(Q2). Thus Y is a
harmonic, hence smooth, vector field in Q. It follows that X € L{ ()
for any ¢ € [1,+00). On the other hand, a direct calculation yields
41X|? = |Vh,|*, hence we get |Vh,| € LL (Q), for any q € [1,+00).
Bootstrapping the argument, we find h,Vh, € Lfoc for any ¢, then
fi, fa € VVI?)’(?, and X € VVliCq and finally |Vh,|? = 2|X| € VVI})(? for any
q € [1,400). By Sobolev embedding, this implies that |Vh,| is bounded
locally in €2, hence h,, is locally Lipschitz in 2.

The case where M. = o(n.) is identical.

Properties Assuming p € LP(Q), p > 1

Note that this is a subcase of the previous one. Indeed, the embedding
of H! into any L9, ¢ < 400 implies the embedding of any LP, p > 1
into H~!. Thus in this case the previous section implies that Vh, is in
Liz (%),

In Cases 2) or 3) of the Theorem, we define a sequence p,, = p * pp
obtained by convolution of p with a regularizing kernel {py, },. We define
hn = hy * pp, and let T;, be the tensor with coefficients —d;h,,0;h, +
1/2 (]th|2 + hn2) dij. Then py, tends to p in LP and, since Vh, € LS,
Vhy, tends to Vh, in L{ (Q), for any ¢ € [1, +00), implying that

loc

in L, (9.

It follows that div7, — divI, = 0 and that p,Vh, — puVh, in
D'(Q). Moreover divT,, = (—Ahy, + hy)Vhy, from usual calculus, and
—Ahy+h, = py, by the properties of convolution, hence div T, = p,, Vh,,.
Passing to the limit, we get uVh, = lim, divT;,, = 0 in L] (), hence
a.e.

Now, from a well-known property of Sobolev functions we have Ah,, =
0 a.e. on the set F' = {Vh, = 0}. Thus 1 = hy, a.e. on the set F', while
p# = 0 a.e. on the complement of F' from the identity uVh, = 0. We
conclude that

f = hylgn, =0}
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In the case M. = o(n.), multiplying this equation by h, and integrating
by parts the left-hand side, we find h, = 0 in 2, and thus p = 0.

13.5 The Case without Magnetic Field

The proof of Theorem 13.2 follows very closely that of Theorem 13.1. We
will therefore leave some of the details to the reader. We begin by very
close versions of the Propositions 13.2, 13.4 which we do not prove. Note
that Proposition 13.3 and 13.5 may be used as such in the case without
magnetic field.

Proposition 13.6. Assume {ay}, is a sequence of measures such that
for some p € (1,2)

Sl lw e lanllco@)- = 0,

where ||om || o)« denotes the total variation of an, [ |an|. Then, letting
hy be the solution of

—Ah, =a, inf)
h, =0 on 052,
it holds that hy, and Vh, converge to 0 in L2(S2).

Proposition 13.7. Let {uc}e~o be solutions of —Aue = e~ 2us(1—|ue|?)
satisfying (13.13), (13.19) and (13.20). We define h: by (13.14) and for
any € > 0 we define the symmetric 2-tensors 1., Se with coefficients

1
T;; = —0ihdjh + 5|Vh|25ij,
1 1 2
Sij = (0w, Oju) — 5 <|vuy2 + 53 (1= [ul?) > Sij, (13.38)

where we have dropped the subscripts € for T, S, h and u for readability.
Then T, — S tends to 0 in L}(S2).
Criticality Conditions

Let {uc}e=0 be solutions of —Au, = e 2u.(1 — |uc|?). We let j. =
(iue, Vue) and pu. = curl jo. The function h. is defined by (13.14). We
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assume the energy bound (13.13), and the boundary conditions (13.19)
and (13.20) are satisfied.

Proposition 13.5 may be applied to (us, A = 0) to yield measures
{ve}e satisfying (13.16), (13.17).

If n. = 0 for € small, we find as in the case with magnetic field that
pe converges to 0 in W~LP, for some p € (1,2). Otherwise, exactly as in
the case with magnetic field, we find that, modulo a subsequence, . /n.
converges to a measure in WP for some p € (1,2). In Case 2) the
same is true of u./M.. We now derive the criticality conditions satisfied
by the limiting measure pu.

Proof of Theorem 13.2, Items 2 and 3. We already saw in (5.6)—(5.7)
that, for solutions of —Au. = e 2u.(1 — |uc|?), the symmetric 2-tensor
Se with coefficients defined by (13.38) is divergence-free. As in the case
with magnetic field, Proposition 13.7 implies the existence of a subse-
quence that we still denote by {e} such that S, — T tends to 0 in L}(Q),
where T is the symmetric 2-tensor with coefficients Tj; = —0;h:0;he +
1/2|Vhe|?6;;.

We use the decomposition (13.15), and decompose h! again as U.+ V-
as in the case with magnetic field, replacing the operator —A + 1 by A.
Then, in Case 2), using (13.17) and Proposition 13.6, we find that (13.31)
and (13.32) are true, implying (13.33), where T}, now denotes the tensor
with coefficients —d;h,0;h,, + |Vh,|*8;;. Similarly we obtain (13.34) in
Case 1). Together with the fact that S. — 7T tends to 0 in L}(£2), we then
obtain that T}, is divergence-free in finite part in both cases. O

Proof of Theorem 13.2, Item 1. We now assume n. = o(M.). We keep the
same notation as above, and decompose T, again as in (13.35), defining
the T as the tensor with coefficients

1
T = ~0ih20;ht + S VhE - Vhisi;.

The rest of the argument follows as in the case with magnetic field, and
proves that
ne M.

converges to T, in Lj, (Q), where T}, is the tensor with coefficients

(T/i)ij = —81'Hoajhu — 8jH03ihu + VHy - Vh,uéij,
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and that Tl: is divergence-free, implying that
uVHy=0. O

Regularity issues. As in the case with magnetic field, if 4 € H~!, then
T € L (9) and therefore divT = 0 in the sense of distributions. Denot-
ing by X the first column of 7" this means that div X = 0 and curl X =0
in the sense of distributions. Thus X is smooth in Q. But |X| = [Vh,|?
therefore |Vh,,|? is smooth. In particular |[Vh,| is locally bounded in
hence h,, is locally Lipschitz.

If o is in LP(Q)) for some subdomain ', then, exactly as in the
case with magnetic field, the relation pVh, = 0 is true in ', and since

p = Ahy, and Ah, = 0 a.e. on the set {Vh, =0}, weget p =0in Q. O

BIBLIOGRAPHIC NOTES ON CHAPTER 13: In the case without magnetic
field, and when the number of vortices (and the boundary condition) re-
main bounded independently of €, the questions dealt with in this chapter
were studied in the book of Bethuel-Brezis—Hélein [43]. The criticality
condition for the limiting points and degrees was given in [43], following
the derivation through matched asymptotics by Fife and Peletier [96].
Later work focused on the inverse problem, namely given points and
degrees satisfying the condition, is it possible to find a corresponding
sequence of solutions? We give relevant references in Chapter 14.

The results with magnetic field and with possibly unbounded num-
bers of vortices were obtained in [175], under more restrictive assump-
tions on the energy implying that the coefficients T;; of the limiting
tensors were in L! (the finite-part formulation was then not needed).
The other cases dealt with here, in particular Case 1 of Theorem 13.2,
and the finite-part formulation, are thus new extensions of these results.



Chapter 14

A Guide to the Literature

Our goal here is to give a brief overview of results on Ginzburg-Landau,
and point towards suitable references (in thematic, rather than chrono-
logical or hierarchical order). We apologize for not being able to be com-
pletely exhaustive.

There have been a few review-type papers on Ginzburg—Landau that
one can also refer to, notably [40, 155, 85, 68].

14.1 Ginzburg-Landau without Magnetic Field

14.1.1 Static Dimension 2 Case in a Simply Connected
Domain

The first studies of that model, i.e., of the functional

1 1 — |ul?)?
Es(u) = 2/’vu‘2+( 21:2| )
Q

and its critical points, seem to date back to Elliott—Matano-Tang Qi [92]
who proved that energy-minimizers have isolated zeroes, and to Fife and
Peletier [96], who gave a formal justification of the “vanishing gradient
property” for solutions.

The energy E. was then studied in details by Bethuel-Brezis—Hélein,
in [42] for the case without vortices and in [43] for the case with vortices,
both times with a fixed Dirichlet boundary data g of modulus one. They
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derived the “renormalized energy” (or the I'-limit) of the problem:

W((ar,dr), ..., (an,dn)) = =7 Y _ did;log|a; — a;]
i#]

1 .0
— nZdiR(ai) + 2/‘1)0 <’Lg, 83) .

o0

where @ is the solution with zero average on the boundary of
A®g =27 dide, inQ
i

% = (ig, %) on 0f)

and R(x) = ®o(z) — ), d;log|z — a;|. Convergence of minimizers and
critical points under the assumption E.(u.) < C|loge|, and of their
vortices, was established, with the derivation of the renormalized energy
and of the “vanishing gradient property” presented here in Chapter 13.
We sum up some of their results below:

Theorem 14.1. (Bethuel-Brezis—Hélein [43]). Let 2 be a strictly star-
shaped simply connected domain of R? and g : 99 — S' a smooth map
of degree d > 0.

If u. minimizes E. among maps with values g on 0. Then, ase — 0,
up to extraction of a subsequence, there exist d distinct points ay,...,aq €
Q such that u. — u, in CF_(Q\ U; {a;}) where

1. uy is an S'-valued harmonic map from Q\{a1,...,aq} to S' with
Usx = g on 0N and with degree d; = 1 around each a;.

2. (ay,...,aq) is a minimizer of the renormalized energy W with d; =
1.

3. E.(ug) > mwd|loge| + W(ai,...,aq) + dy+ o(1).

If uc is a sequence of solutions with u. = g on 9 and E;(u:) < Clloge]|,
then, as € — 0 and up to extraction of a subsequence, there exist distinct
points ai,...,an € Q, and degrees di,...,d, with > d; = d, such
that ue — uy in CE_(Q\ U; {a;}) where u, is a harmonic map from
ON\{a1,...,a,} to St with u, = g on O and with degree d; around each
a;. Moreover ((a1,d1), ..., (an,dy)) is a critical point of W (the d;’s being
fized) and satisfies the “vanishing gradient property.”
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Their starshapedness assumption on the domain was removed and
replaced for minimizers by simple-connectedness by Struwe [189].

A large literature followed, which we review in thematic rather than
chronological order. Note that all the results we mention below in this
section without magnetic field are under the assumption that FE.(u.;) <
C|logel, i.e., concern bounded (as ¢ — 0) numbers of vortices, and that
this is one of the main limitations to adapting them to the case with
magnetic field.

14.1.2 Vortex Solutions in the Plane

The existence of radial vortex solutions in the plane, i.e., solutions of the
form f,,(r)e in polar coordinates, where f, satisfies a certain ODE,
was established by Hervé and Hervé [111] via the study of the ODE
(note that these solutions have infinite energy for n # 0). As we saw in
Theorem 3.2, it was established by Mironescu [142] that the only solution
of degree +1 at infinity is the radial one (up to translation). For general
solutions in the plane, the quantization result [,(1—|u|?)? = 27d? where
d is the total degree, was established by Brezis-Merle-Riviere [61], see
Theorem 3.4; other qualitative results were obtained by Sandier and
Shafrir [165, 186].

It is not yet fully known whether there can exist nonradial vortex
solutions in the plane. These solutions would have a finite number of
vortices of degree d; which would have to satisfy the relation (related to
the result of [61] and the Pohozaev identity)

de = (Zdi)z.

Ovchinnikov and Sigal conjectured the existence of such solutions (having
some rotational symmetry) and gave heuristic arguments to support this
statement in [147] (see also Open Problem 4 in Chapter 15).

14.1.3 Other Boundary Conditions

More general Dirichlet data (of modulus not equal to one and even pos-
sibly vanishing) were studied by André-Shafrir [26]. Neumann boundary
conditions were also considered, see for example Spirn [188] for a deriva-
tion of the renormalized energy in that case.
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14.1.4 Weighted Versions

Versions of the energy with different potential terms, or weighted ver-
sions, meant to include possible pinning effects, such as

/v oy o)

1 s, (1 JuPy?
5 [ vl + RS

Q

were studied by André-Shafrir [25], Hadiji-Beaulieu [33, 34|, Du-Lin
[86].

or

14.1.5 Construction of Solutions

Once the main result of [43] is known, namely that critical points/mini-
mizers of E. have vortices which converge to critical points/minimizers of
the renormalized energy, it is natural to examine the interesting inverse
problem: given a critical point of the renormalized energy, can one find
sequences of solutions of (1.3) whose vortices converge as &,, — 0 to these
points? This has been solved under the restriction that vortices all be of
degree +1; first for the case of local minimizers and min-max solutions
by Lin [128] then more completely in the book by Pacard and Riviere
[148] by a method of local inversion in weighted Hélder spaces, which
also allowed them to establish a very nice uniqueness result, i.e., a one-
to-one correspondance between solutions on the one hand, and critical
points of the renormalized energy on the other hand, at least under this
d = £1 degree assumption. Another proof (via local inversion methods),
which lifts the assumption of nondegeneracy of the renormalized energy,
was recently given by Del Pino—Kowalczyk—Musso [82].

In the case of zero degree (or no vortices), a uniqueness result had
been previously established by Ye and Zhou in [196].

Other unstable solutions were obtained by Almeida—Bethuel through
topological methods [14].

14.1.6 Fine Behavior of the Solutions

The location and rate of convergence of the zeroes of solutions to the
limiting vortices, was established by Comte—Mironescu [78] (results also
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follow from the study done in [148]). Also, the precise asymptotic ex-
pansion of the energy of (nonminimizing) solutions was established by
Comte-Mironescu in [77, 79], through a minimality property of the so-
lutions outside of their zero-set established in [79].

One may also mention a result of Bauman—Carlsson—Phillips [30]
who proved that minimizing solutions with specific boundary data have
a single zero.

14.1.7 Stability of the Solutions

In the case with Neumann boundary conditions, conditions on 2 for
existence /nonexistence of nontrivial stable solutions (i.e., solutions with
vortices) were given in [122, 123].

It was established in [183] that stable (resp. unstable) solutions of
(1.3) have vortices which converge as ¢ — 0 to stable (resp. unstable)
critical points of the renormalized energy. A corollary of this result is
that, for € small enough, there does not exist a stable solution with vor-
tices of (1.3) with Neumann boundary condition (in a simply connected
domain), i.e., (1.3) with Neumann boundary condition cannot stabilize
vortices. This had already been established but under the assumption
that € is convex, and for every e, by Jimbo and Sternberg in [125].

14.1.8 Jacobian Estimates

We saw in Chapter 6 that a crucial tool in the analysis of Ginzburg—Lan-
dau is the closeness between the Jacobian determinant p = curl(iu, Vu)
and vortex densities 27 ) . d;6,, measured in terms of the Ginzburg-Lan-
dau energy (see again Chapter 6 and [119]). A recent result of Jerrard
and Spirn [120] gives improved estimates showing that the Jacobian can
be made very close to some vortex density (where the vortices found this
way are no longer the same ones as those given by the ball-construction
method).

14.1.9 Dynamics

Heat-flow

Under the heat-flow for 2D Ginzburg—Landau, the limiting dynamical
law of vortices, which is the gradient-flow of the renormalized energy
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(up to collision time)

da; 1
i — —;ViW(al, .- -aa’ﬂ)

was proved, under a well-prepared data assumption, by Lin [129] and
Jerrard—Soner [117], after slow motion had been observed by Rubinstein—
Sternberg [161]. This result was retrieved through a more I'-convergence
or energy-based method in [174]. After the work of Bauman-Chen—
Phillips—Sternberg [31], a few recent papers, by Bethuel-Orlandi-Smets
[47, 48, 49] and by Serfaty [184], have extended the dynamical law passed
collision and splitting times.

Schrodinger flow

This is also called the Gross—Pitaevskii equation, and is considered in su-
perfluids, nonlinear optics and Bose—Einstein condensation. The limiting
dynamical law of vortices
% = —%V%W(al, PN ,an)

was established, still with well-prepared assumptions, by Colliander—Jer-
rard in [76] on a torus, and by Lin—Xin [134] in the whole plane. A recent
result of Jerrard and Spirn [121] derives the same dynamical law for e
small but nonzero.

In the whole plane again, Bethuel and Saut [53] established the exis-
tence of some travelling wave solutions with vortices, as conjectured in
the physics literature on the Gross—Pitaevskii equation, while Gravejat
[104] proved the nonexistence of such solutions at supersonic speed.

Wave flow

In the case of the wave flow, the analogous limiting dynamical law was
established by Lin in [130] and Jerrard in [114].

14.2 Higher Dimensions

14.2.1 TI'-Convergence Approach

In dimension 3, vortices become vortex-lines and in higher dimension,
they become codimension 2 objects. The right way to capture them is to
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consider the analogue of the vorticity measure considered in this book
(see Chapter 6.1), which is then a current, the Jacobian determinant of
the function u. A result analogous to what is stated here in Theorem 6.1
was established by Jerrard—Soner in [119]. It served to prove similarly
that these higher-dimensional vorticity-currents or weak Jacobians, Ju =
d(iu,du), are compact in the same weak norm, and that

E 1
iminf Z20%) 5 Ly gy
=0 |loge| — 2

where ||.J]| is the total mass of the (rectifiable and integer-multiplicity)
limiting Jacobian J; in other words, the Ginzburg-Landau functional is
bounded below by |loge| times half the mass of the limiting Jacobian,
which is the mass (length, surface) of the limiting vortex lines or sur-
faces. A full I'-convergence result (i.e., including the corresponding upper
bound) was then established by Alberti-Baldo—Orlandi [12]. Some im-
provement of the lower bound, named “product-estimate”, also used to
estimate vortex velocities for vortex-dynamics, was established in [173].

14.2.2 Minimizers and Critical Points Approach

Even before the I'-convergence approach, it was established that vortex-
lines (in dimension 3 or higher) of minimizers should converge to mini-
mal lines (or minimal connections): see Riviere [154], Sandier [167], Lin—
Riviere [131]. It was also established that for critical points, they converge
to stationary varifolds, see Lin-Riviere [132] and Bethuel-Brezis-Orlandi
[44].

The case of the most general boundary data in 3D, i.e., boundary
data in H2 was examined in Bourgain-Brezis—Mironescu [57], in link
with results on lifting of S!'-valued maps in Sobolev spaces.

14.2.3 Inverse Problems

The inverse problem: given a curve which minimizes or is a critical point
of length, construct solutions whose vortices converge to that curve,
is beginning to be investigated. Montero—Sternberg—Ziemer [140] have
proved that there exists such a locally minimizing solution (with Neu-
mann boundary condition) if one starts from a straight line which is a
local minimizer of length with endpoints on the boundary of the do-
main (hence the domain should be nonconvex), it was generalized to the
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case with magnetic field by Jerrard—Montero—Sternberg in [116]. By local
inversion or Lyapounov—Schmidt type methods, Felmer-Kowalczyk—Del
Pino [95] have established the existence of a critical point if one starts
from a straight line whose endpoints are on the boundary, which is only
a critical point of the length.

14.2.4 Dynamics

In dimension > 3, the vortex-set of solutions of the Ginzburg-Landau
heat-flow converges to a solution of mean curvature flow in the sense of
Brakke (as for solutions to the Allen-Cahn equation). The first result in
that direction was obtained in Lin-Riviere [133], and then a full proof
was given by Bethuel-Orlandi-Smets [46].

As concerns the Schrodinger or Gross—Pitaevskii flow, of particular
interest is the motion of a closed vortex loop. Such loops are expected to
flow under binormal flow in the € — 0 limit of Gross—Pitaevskii. Results
in that direction (but complete results only for the case of a travelling
vortex circle) were obtained by Jerrard [115] and Bethuel-Orlandi-Smets
[45]. Also, Chiron constructed travelling wave solutions, in particular
helix-shaped ones [73, 74].

14.3 Ginzburg-Landau with Magnetic Field

14.3.1 Dependence on «

As we saw in the phase diagram in Chapter 2, the qualitative behavior
of the Ginzburg-Landau energy depends crucially on k, the “Ginzburg-
Landau parameter” which is a material constant.

The situation is most of the time divided into two cases: kK < %
corresponding to type-1 superconductivity, and k£ > % corresponding

to type-II superconductivity. The limiting situation x = % is called

the self-dual case. In that famous case, as observed by Bogomoln’yi,
the functional can be rewritten into a sum of squares which can all be
made equal to zero, and the Ginzburg—Landau equations decouple into
a system of first order self-dual equations. For more on that case, refer
to the book of Jaffe and Taubes [112].

The type of the superconductor is crucial for the behavior of vor-
tices. Roughly speaking, when xk < %, vortices (of same degree) would
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attract each other, hence they are not really observed but rather one ob-
serves interfaces (one-dimensional interfaces in 2D) between regions of
superconducting phase |u| ~ 1 and regions of normal phase |u| ~ 0 (see

for example [75] and references therein). In the self-dual case k = -1

9y
vortices do not interact and it was shown by Jaffe and Taubes in [1\1/%]
that solutions with arbitrarily located vortices could be observed.
Then, for x > % vortices of opposite sign attract and vortices of
same sign repel, this is the regime where vortices and lattices of vortices
are observed, as seen in this book. In this regime and in the context of the
Yang-Mills-Higgs model on all R?, Riviere [156] showed that the unique
(up to gauge-equivalence and reflection) minimizer is radially symmetric
and of degree one.
However, the above classification is not completely accurate because
it neglects size effects. The described classification with separation at the

self-dual point x = % corresponds rather to the situation for the whole

plane (as in Abrikosov’s study [1]) or large samples. In small samples,
the scaling is such that the same behavior as for type-II superconduc-

tors (i.e., vortices) can be observed in superconductors with x < -

27
see for example Akkermans—Mallick [8] (and SchweigertfPeetersfSinéga
Deo [180] for corresponding numerical and experimental results) where
branches of vortex-solutions such as in Chapter 11.1 are described. An-
other example of small size sample effect is described by Aftalion and
Dancer in [3].

For a global picture, one may also refer to the paper by Aftalion and
Du [4] which reviews the different regimes as a function of the