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Chapter 1

Introduction

This book is devoted to the mathematical study of the two-dimensional
Ginzburg–Landau model with magnetic field. This is a model of great im-
portance and recognition in physics (with several Nobel prizes awarded
for it: Landau, Ginzburg, and Abrikosov). It was introduced by Ginzburg
and Landau (see [101]) in the 1950s as a phenomenological model to de-
scribe superconductivity. Superconductivity was itself discovered in 1911
by Kammerling Ohnes. It consists in the complete loss of resistivity of
certain metals and alloys at very low temperatures. The two most strik-
ing consequences of it are the possibility of permanent superconducting
currents and the particular behavior that, when the material is submit-
ted to an external magnetic field, that field gets expelled from it. Aside
from explaining these phenomena, and through the very influential work
of A. Abrikosov [1], the Ginzburg–Landau model allows one to predict
the possibility of a mixed state in type II superconductors where triangu-
lar vortex lattices appear. These vortices — in a few words a vortex can
be described as a quantized amount of vorticity of the superconducting
current localized near a point — have since been the objects of many ob-
servations and experiments. The first observation dates back from 1967,
by Essman and Trauble, see [93]. For pictures of lattice observations in
superconductors and more references to experimental results, refer to the
web page http://www.fys.uio.no/super/vortex/.

The Ginzburg–Landau theory has also been justified as a limit of the
Bardeen–Cooper–Schrieffer (BCS) quantum theory [29], which explains
superconductivity by the existence of “Cooper pairs” of superconducting
electrons.

In addition to its importance in the modelling of superconductivity,
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the Ginzburg–Landau model turns out to be the simplest case of a gauge
theory, and vortices to be the simplest case of topological solitons (for
these aspects see [138, 112, 194, 190] and the references therein); more-
over, it is mathematically extremely close to the Gross–Pitaevskii model
for superfluidity (see for example [191, 185]), and models for rotating
Bose–Einstein condensates (see [2]), in which quantized vortices are also
essential objects, and to which the Ginzburg–Landau techniques have
been successfully exported.

1.1 The Model

After a series of reductions, which are described in Chapter 2, the 2D
Ginzburg–Landau model leads to describing the state of the supercon-
ducting sample submitted to the external field hex, below the critical
temperature, through its Gibbs energy:

Gε(u, A) =
1
2

∫
Ω

|∇Au|2 + |h − hex|2 +
(1 − |u|2)2

2ε2
. (1.1)

In this expression, Ω is a two-dimensional open subset of R
2, which in our

study is always assumed for simplicity to be smooth, bounded and simply
connected. One can imagine that it represents the section of an infinitely
long cylinder. Certain authors also use this as a simplified model for thin
films.

The first unknown u is a complex-valued function, called an “order
parameter” in physics, where it is generally denoted as ψ. It is a sort of
“wave function”, indicating the local state of the material or the phase in
the Landau theory of phase transitions: |u|2 is the density of Cooper pairs
of superconducting electrons in the BCS approach. With our normaliza-
tion, |u| ≤ 1 and where |u| � 1 the material is in the superconducting
phase, while where |u| = 0, it is in the normal phase (i.e., behaves like a
normal conductor); the two phases are able to coexist in the sample.

The second unknown is A, the electromagnetic vector-potential of
the magnetic-field, a function from Ω to R

2. The magnetic field in the
sample is deduced by h = curlA = ∂1A2 − ∂2A1, it is thus a real-valued
function in Ω. The notation ∇A denotes the covariant gradient ∇− iA;
∇Au is thus a vector with complex components.

The superconducting current is a real vector given by (iu,∇Au) where
(· , ·) denotes the scalar-product in C identified with R

2. It may also be
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written as
i

2
(
u∇Au − ū∇Au

)
,

where the bar denotes the complex conjugation. The energy admits a
gauge-invariance: it is invariant under the action of the unitary group
U(1) in the form u → ueif , A → A + ∇f ; we will come back to this in
Chapters 2 and 3.

The parameter hex > 0 represents the intensity of the applied field
(assumed to be perpendicular to the plane of Ω). Finally, the parameter
ε is the inverse of the “Ginzburg–Landau parameter” usually denoted κ,
a non-dimensional parameter depending only on the material, ratio of
the penetration depth (scale of variation of h) and the coherence length
(scale of variation of u), also see Chapter 2. We will be interested in the
regime of small ε, corresponding to large-κ (or extreme type-II) super-
conductors. The limit ε → 0 or κ → ∞ that we will consider is also called
the London limit. In this limit, the characteristic size of the vortices, ε,
tends to 0 and vortices become point-like.

The stationary states of the system are the critical points of Gε, or
the solutions of the Ginzburg–Landau equations:

(GL)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−(∇A)2u =

1
ε2

u(1 − |u|2) in Ω

−∇⊥h = (iu,∇Au) in Ω
h = hex on ∂Ω

ν · ∇Au = 0 on ∂Ω,

where ∇⊥ denotes the operator (−∂2, ∂1), and ν the outer unit normal
to ∂Ω. For more on the model and on the physics, we refer to Chapter 2
and the physics literature, in particular [192, 164, 80].

1.1.1 Vortices

We now need to more precisely explain a vortex. A vortex is an object
centered at an isolated zero of u, around which the phase of u has a
nonzero winding number, called the degree of the vortex, cf. Fig. 1.1
where vortices of degree 1 and −1 are represented.

When ε is small, it is clear from (1.1) that |u| prefers to be close to
1, and a scaling argument hints that |u| is different from 1 in regions
of characteristic size ε. A typical behavior for u at a vortex of degree
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+1 –1

Figure 1.1: Vortices of degree +1 and −1, at the arrows represent u in
the complex plane, top and below they represent the current.

d is u(r, θ) = f(r)eidθ in polar coordinates, with f(0) = 0. Of course
this is an intuitive picture and several mathematical notions will be used
to describe the vortices; one of our tasks will consist in relating these
descriptions.

1.1.2 Critical Fields

Given ε, the behavior of minimizers and critical points of (1.1) is deter-
mined by the value of the external field hex.

There are three main critical values of hex or critical fields Hc1 , Hc2 ,
and Hc3 , for which phase-transitions occur. Below the first critical field,
which is of order O(| log ε|) (as first established by Abrikosov), the su-
perconductor is everywhere in its superconducting phase |u| ∼ 1 and
the magnetic field does not penetrate (this is called the Meissner ef-
fect or Meissner state). At Hc1 , the first vortice(s) appear. Between Hc1

and Hc2 the superconducting and normal phases (in the form of vortices)
coexist in the sample, and the magnetic field penetrates through the vor-
tices. This is called the mixed state, see for example Fig. 1.2. The larger
hex > Hc1 is, the more vortices there are. Since they repel each other,
they tend to arrange in triangular Abrikosov lattices in order to minimize
their repulsion. When Hc2 ∼ 1

ε2 , the vortices are so densely packed that
they overlap each other, and at Hc2 a second phase transition occurs,
after which |u| ∼ 0 inside the sample, i.e., all superconductivity in the
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hex hex

hex hex

Ω

Figure 1.2: Schematic representation of a superconducting cylinder with
vortices.

bulk of the sample is lost.
In the interval [Hc2 , Hc3 ] however, superconductivity persists near

the boundary, this is called surface superconductivity, and after Hc3 =
O( 1

ε2 ), superconductivity is completely destroyed and u ≡ 0, that is the
sample is completely in the normal phase, the magnetic field completely
penetrates and all superconductivity is lost (the phase transition really
happens while decreasing the field below Hc3).

For more on the critical fields and what results have been proved, we
refer to Chapters 2 and 14.

1.2 Questions Addressed in this Book

Our goal is to describe, through rigorous mathematical analysis, in the
asymptotic limit of ε small, the minimizers of (1.1) and their critical
points in terms of their vortices. This comprises, in particular, determin-
ing their precise optimal vortex-locations. When the number of vortices
becomes large (or blows up as ε → 0), then, we describe the solutions
through their vortex-densities (or “vorticity”). We give asymptotic ex-
pansions of the energy of solutions in terms of their vortices, and derive
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rigorously and with more precision the values of the critical fields which
were known in the physics literature.

We deal with two aspects of the ε → 0 limit. One is to establish the
variational convergence of Gε in all regimes of applied fields. Via energy-
based methods, we are able to identify the Γ-limits of the energy, i.e.,
derive reduced problems, which can be solved, thus deducing the optimal
limiting vortex repartitions for global minimizers. The second aspect is
in passing to the limit as ε → 0 in the Ginzburg–Landau equations (GL).
This yields necessary stationarity conditions for a given measure to be
an ε → 0 limit of vorticity measures of critical points of Gε.

1.3 Ginzburg–Landau with and without
Magnetic Field: A Comparison

As we shall see in this book, the full Ginzburg–Landau energy Gε is
closely related to the simpler Ginzburg–Landau model without magnetic
field:

Eε(u) =
1
2

∫
Ω

|∇u|2 +
(1 − |u|2)2

2ε2
. (1.2)

In order to pass from one to the other, it suffices to set the magnetic
potential A and the applied field hex to be zero in Gε.

This model has been studied by numerous authors, after the pioneer-
ing work of Bethuel, Brezis, and Hélein in [43] (see also Chapter 14 for
more details). The equation associated with (1.2) is

−Δu =
u

ε2
(1 − |u|2). (1.3)

It is a complex-valued version of the Allen–Cahn model for phase tran-
sitions (see [143]), leading to codimension 2, instead of codimension 1,
singularities (the vortices).

The techniques developed for (1.1) follow the spirit of those devel-
oped for (1.2). Techniques and concepts were often first developed for
the model without magnetic field, such as: renormalized energies, the
Pohozaev identities, lower bounds for the energy in terms of the vortices,
and stationarity conditions like in Theorem 1.7. In fact, the program is
roughly the same for both energies, and the mathematical tools (pre-
sented here in Chapters 4 to 6) can be used for either energy, for that
reason we will often present results for (1.1) and (1.2) in parallel.
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The results concerning the local behavior and profile of solutions
are also valid for both since at small scales the magnetic field (when
not too large) has almost no effect in the equation, as we shall see in
Proposition 3.12.

On the other hand, understanding the model with magnetic field
raises the specific questions of understanding the influence of the applied
field and determining the critical fields. Because large applied fields force
large numbers of vortices, we need to be able to handle numbers of vor-
tices which are unbounded as ε → 0. This is a crucial difference between
our analysis and the one originally developed for (1.2). This leads to de-
veloping specific techniques such as the vortex-ball construction, and the
approach consisting in analyzing vortices through the averaged vorticity
measures.

Moreover, the model without magnetic field does not exhibit all the
phenomena observed in superconductors: first, vortices always repel each
other but it is the presence of the magnetic field which confines them
near the center of the domain, as seen for example in Theorem 1.3;
second, the applied field induces phase transitions and selects the number
of vortices. In contrast, minimizing Eε without constraint leads to the
natural Neumann boundary condition but to trivial minimizers. In order
to induce vorticity, one has to either consider nonminimizing solutions
(which are generally unstable — see Section 14.1.7) or to replace the effect
of the applied field by a fixed Dirichlet boundary condition with nonzero
degree as in [43]. However, this condition does not allow for unbounded
numbers of vortices and hence for lattices of vortices. In fact, without
specifying any boundary condition, if solutions of (1.3) have unbounded
numbers of vortices as ε → 0, as we shall see in Theorem 13.2, their
limiting density is 0 in the domain (under some regularity assumption),
vortices tend to go to the boundary to minimize their repulsion, thus
ruling out the possibility of vortex lattices.

1.4 Plan of the Book

The book consists of three parts: the first part (Chapters 3 through 6)
presents the essential tools developed to answer these questions, the sec-
ond part (Chapters 7 through 12) presents results obtained through min-
imization (Γ-convergence type results), and the third part (Chapter 13)
contains results for nonminimizing solutions.

Let us now briefly describe our main results (more information is
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given in each chapter). The focus of the book is the limit as ε → 0 and
throughout, the notation a ∼ b will mean limε→0 a/b = 1, and a 	 b will
mean limε→0 a/b = 0.

1.4.1 Essential Tools

The book starts in Chapter 2 with a heuristic presentation of the model
and of the phase diagrams (critical fields) for type-II superconductors,
aimed at nonspecialists, and almost completely independent from the
rest of the book.

Chapter 3 gathers basic mathematical results on the Ginzburg–Lan-
dau equation (existence of solutions, a priori estimates, particular solu-
tions).

After these two introductory chapters come a series of chapters pre-
senting the essential mathematical tools, which are used in all the re-
maining chapters.

Chapter 4 presents what is now known as the “ball-construction
method”. It is a method introduced independently by Jerrard [113] and
Sandier [166], which allows one to obtain universal lower bounds for
Ginzburg–Landau energies (either (1.1) or (1.2)) in terms of the vortices
and their degrees, with possibly unbounded numbers of vortices, through
a ball-growth method. Here we present an improved version of the esti-
mate which can be phrased in the following way:

Theorem 1.1. For any α ∈ (0, 1) there exists ε0(α) > 0 such that,
for any ε < ε0, if (u, A) is a configuration such that Eε(|u|) ≤ εα−1,
then for any r ∈ (ε

α
2 , 1), there exists a finite collection of disjoint closed

balls {Bi}i of the sum of the radii r, covering {|u| ≤ 1 − ε
α
4 } ∩ {x ∈

Ω, dist(x, ∂Ω) ≥ ε} such that

1
2

∫
∪iBi

|∇Au|2 + | curlA|2 +
(1 − |u|2)2

2ε2
≥ πD

(
log

r

Dε
− C

)
(1.4)

where D =
∑

i |di|, di = deg(u, ∂Bi), and C is a universal constant.

In this way, the balls we construct have small radii (the parameter
of choice r), and, whatever definition we take of the vortex-region, they
cover it. Moreover, we bound from below the energy contained in the
vortex balls in terms of the degrees on the boundary of the balls, i.e., the
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degrees of the vortices, which is consistent with the known fact that vor-
tices of degree di cost at least an order π|di| log 1

ε of energy. The estimate
(1.4) is slightly different due to possibly large numbers of vortices which
can get very close to one another, but it is optimal as stated. Observe
that this lower bound is very general, it does not require any hypothesis
on (u, A) other than a reasonable (but quite large) upper bound on its
energy.

In Chapter 5, we present an application of the ball-growth method,
which can be read independently. It consists in coupling the ball-growth
method with an energy-estimate obtained through the “Pohozaev iden-
tity”. This coupling provides different lower bounds for the energy in
terms of the potential term of the type

Gε(u, A) ≥ C

∫
Ω

(1 − |u|2)2
ε2

| log ε|.

In this case the estimates are not for arbitrary maps but for solutions of
the Ginzburg–Landau equations (GL) or (1.3). We give applications of
these estimates in describing the fine behavior of solutions of (GL).

In Chapter 6 we present another crucial tool that has been widely
used in the literature for Ginzburg–Landau in any dimension since the
work of Jerrard and Soner [119]: the Jacobian estimate. This estimate
allows one to relate the vorticity measures 2π

∑
i diδai , naturally derived

from the ball-construction method (here ai are the centers of the balls,
di’s their degrees, and δ the Dirac mass), to a quantity which is more
intrinsic to u: a gauge-invariant version of the Jacobian determinant of u

μ(u, A) = curl(iu,∇Au) + curlA

or curl(iu,∇u) without magnetic field. This is really the intrinsic vor-
ticity quantity associated with (u, A) (exactly like the vorticity in fluid
mechanics). The result expresses that if the balls are constructed not too
large (as measured by r), then these two quantities are close in a weak
norm:

Theorem 1.2. Under the hypotheses of the previous theorem, for any
β ∈ (0, 1), we have∥∥∥∥∥μ(u, A) − 2π

∑
i

diδai

∥∥∥∥∥
C0,β

0 (Ω)∗
≤ rβGε

0(u, A), (1.5)
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where Gε
0 is the energy when hex = 0.

The previous theorem allowed for a control on the mass of
2π

∑
i diδai as measures. Combining these two results yields compact-

ness results on the vorticities μ(u, A). The relation (1.5), in which the
right-hand side term is usually small, allows one to control the error be-
tween μ(u, A) and a density of vortices, and ensures that the limiting
vorticities are measures.

1.4.2 Minimization Results

Assuming the main a priori bounds of Chapter 3 and the results of The-
orems 1.1 and 1.2, the reader may skip to the more concrete applications
of these results, beginning in Chapter 7.

With Chapter 7, we start to give results on the minimization of (1.1).
This chapter contains the main Γ-convergence (in the sense of De Giorgi)
result for Gε expressed in terms of

λ = lim
ε→0

hex

| log ε| .

Theorem 1.3. As ε → 0, Gε

hex
2 Γ-converges to

Eλ(μ) =
‖μ‖
2λ

+
1
2

∫
Ω

|∇hμ|2 + |hμ − 1|2,

defined over bounded Radon measures in H−1(Ω), where ‖μ‖ is the total
mass of μ and {−Δhμ + hμ = μ in Ω

hμ = 1 on ∂Ω.

The meaning of Γ-convergence is specified in Chapter 7, the most
important fact being that for (uε, Aε) minimizing Gε, the rescaled vor-
ticities μ(uε,Aε)

hex
converge in C0,β

0 (Ω)∗ to a limiting measure μ∗ which
minimizes Eλ with min Gε

hex
2 → min Eλ, implying also that h

hex
→ hμ∗ .

Eλ has a unique minimizer, and it turns out that it can be identified
through the solution of an obstacle problem

min
h−1∈H1

0 (Ω)

h≥1− 1
2λ

1
2

∫
Ω

|∇h|2 + h2
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by the fact that hμ∗ is the minimizer of the above problem.
Thus the limiting measure μ∗ is determined by λ, and existing knowl-

edge on the obstacle problem (which is a particular case of a free-
boundary problem) tells us that it is a uniform measure supported in
a subdomain ωλ of Ω, see Fig. 1.3. Moreover, there exists a critical value

λ

Ω

μ∗=1−1/(2λ)

μ∗=0

ω

Figure 1.3: Optimal density of vortices according to the obstacle problem.

C(Ω) such that ωλ is empty when λ < C(Ω) and ωλ has positive measure
if λ > C(Ω), hence in this case μ∗ �= 0. When λ = C(Ω) the set ωλ is
finite — we denote it by Λ — hence the measure μ∗ is zero in this case
since it is the restriction of the Lebesgue measure to a set of measure
zero.

Both Λ and C(Ω) are defined in terms of the solution h0 to{−Δh0 + h0 = 0 in Ω
h0 = 1 on ∂Ω,

(1.6)

Λ is the set where h0 achieves its minimum and

C(Ω) =
1

2 maxΩ |h0 − 1| . (1.7)

Starting from λ = C(Ω) and increasing λ, the set ωλ grows, first around
the points of Λ, and ωλ → Ω as λ → ∞.

Fixing ε > 0, the first critical field Hc1(ε) is usually defined by the
fact that for hex < Hc1 minimizers of the Ginzburg–Landau functional do
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not have vortices, while they do if hex > Hc1 , even though the existence
of such a value for every ε > 0 remains to be proved. Theorem 1.3 and
the above remarks tell us instead that

H0
c1 = C(Ω)| log ε|

is an asymptotic critical value for hex in the sense that according to
whether (hex(ε) − H0

c1)/| log ε| tends to a negative (resp. positive) num-
ber, the limiting vorticity measure is zero (resp. nonzero), meaning that
for small ε the number of vortices is negligible (resp. not negligible) com-
pared to hex. In Chapter 12, Theorem 12.1, we will see that if Hc1(ε) is
defined as above, we have Hc1 ∼ H0

c1 as ε → 0 (see also (1.8) below),
with an explicit expansion up to o(1).

In Chapter 8, we extend this study to higher applied fields such that
| log ε| 	 hex 	 1

ε2 , i.e., almost up to Hc2 . We show that in this situation
the energy-minimization problem becomes local and can be solved by
blowing up and using the result of Theorem 1.3. The energy-density and
the vortex repartition are thus found to be uniform, as seen in:

Theorem 1.4. Assume, as ε → 0, that | log ε| 	 hex 	 1/ε2. Then, let-
ting (uε, Aε) minimize Gε, and letting gε(u, A) denote the energy-density
1
2

(|∇Au|2 + |h − hex|2 + 1
2ε2 (1 − |u|2)2), we have

2gε(uε, Aε)
hex log 1

ε
√

hex

⇀ dx as ε → 0

in the weak sense of measures, where dx denotes the two-dimensional
Lebesgue measure; and

min
(u,A)∈H1×H1

Gε(u, A) ∼ |Ω|
2

hex log
1

ε
√

hex
as ε → 0,

where |Ω| is the area of Ω. Moreover

hε

hex
→ 1 in H1(Ω)

μ(uε, Aε)
hex

→ dx in H−1(Ω).

In both Theorems 1.3 and 1.4 we find an optimal limiting density
which is constant on its support. This provides a first (but very incom-
plete) confirmation of the Abrikosov lattices of vortices observed and
predicted in physics (see Chapter 2).
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In Chapter 9, probably the most technical of all, we refine the study
around the value hex ∼ H0

c1 , assuming for simplicity that Λ is reduced
to a single point p. In this regime, vortices concentrate around the point
p, the limiting vortex density is 0 if rescaled by hex but not if suitably
rescaled by the actual number of vortices nε. We study the intermedi-
ate regime where 1 	 nε 	 hex, which requires very precise estimates
(since it combines the difficulties of the unbounded number of vortices,
and the ones of relatively small numbers of vortices). We again derive
a Γ-convergence result and a limiting energy in this case, under the as-
sumption that Λ is reduced to one point p: Gε/n2

ε Γ-converges to

I(μ) = −π

∫
R2×R2

log |x − y| dμ(x) dμ(y) + π

∫
R2

Q(x) dμ(x)

defined over the set of probability measures on R
2, and where Q is a

positive definite quadratic function (the Hessian of h0 at p). In what
follows, for any measure μ, μ̃ denotes the push-forward of μ under the
rescaling x �→

√
hex
nε

(x − p). Also, fε(n) denotes an explicit quantity
depending only on n, hex, ε and Ω.

Theorem 1.5. Assuming Λ = {p}, let {(uε, Aε)}ε be a family of config-
urations such that Gε(uε, Aε) < ε−1/4 with hex < C| log ε|. Defining nε

as
∑

i |di| where the di’s are the degrees of some collection of vortex-balls
of total radius r = 1√

hex
constructed by Theorem 1.1, assume that

1 	 nε 	 hex

and Gε(uε, Aε) ≤ fε(nε)+Cn2
ε, as ε → 0. Then there exists a probability

measure μ∗ such that, after extraction of a subsequence, μ̃(uε,Aε)
2πnε

→ μ∗
in (C0,γ

c (R2))∗ for each γ > 0 and

Gε(uε, Aε) − fε(nε) ≥ n2
εI(μ∗) + o(n2

ε).

Conversely, for each probability measure μ with compact support in R
2

and each 1 	 nε 	 hex ≤ C| log ε|, there exists {(uε, Aε)}ε such that
μ̃(uε,Aε)

2πnε
→ μ∗ in (C0,γ

c (R2))∗ for each γ > 0 and such that

Gε(uε, Aε) − fε(nε) ≤ n2
εI(μ) + o(n2

ε).
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As a consequence, in the regime log | log ε| 	 hex −H0
c1 	 | log ε| we

are able to determine to leading order the number 1 	 nε 	 hex of vor-
tices of the minimizers of Gε as a function of hex (see below) and to show
that the limiting optimal vortex repartition (after rescaling/division by
n) is μ0, the unique minimizer of I, also see Fig. 1.8 below.

Chapter 10 is a preparation for Chapter 11 for dealing with the diffi-
culties of bounded numbers of vortices (these are similar to those of [43]
except that the vortices can get very close to one another). In Chapter 11
and the following, we complete the picture for minimizers of the energy
by dealing with the regime hex − H0

c1 = O(log | log ε|). In this case we
prove the optimal number of vortices is bounded, and their limits are
simply limiting vortex-points.

We characterize, again through a limiting (discrete) energy, the most

favorable vortex-locations. After blow-up around p by the factor
√

hex
n

(see Fig. 1.8), the vortices converge to a minimizer of the following lim-
iting energy:

wn(x1, . . . , xn) = −π
∑
i	=j

log |xi − xj | + πn

n∑
i=1

Q(xi),

a discrete version of I, reminiscent of the “renormalized energy” of
[43]. When Q(x) = C|x|2, the minimization of wn has been studied
by Gueron–Shafrir in [105] — replacing the term

∑n
i=1 Q(xi) by the con-

straint
∑n

i=1 |xi|2 = 1. Their theoretical and numerical results indicate
that for n ≤ 3, the minimizers are regular polygons centered at the origin;
for 7 ≤ n ≤ 10 they are regular stars (= regular polygon + center); for
4 ≤ n ≤ 6 both are locally minimizing and can be numerically obtained.
In Figs. 1.4 and 1.5 we reproduce some of the shapes of minimizers ob-
tained in their numerical simulations for higher n’s.

These shapes are quite close to those observed in rotating superfluid
helium (see [195, 191]) which, as we mentioned, is described through a
similar model.

For all cases of hex − Hc1 	 | log ε|, the optimal number of vortices
for minimizers is given as follows: we exhibit an increasing sequence Hn

of values of hex such that if hex ∈ [Hn, Hn+1), the optimal number is n,
and we show that

Hn ∼ C(Ω)| log ε| + (n − 1)C(Ω) log
| log ε|

n
+ lower order terms (1.8)
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Figure 1.4: Results of the numerical optimization of [105] for wn, n = 16
(top) and n = 21 (bottom).
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Figure 1.5: Results of the numerical optimization of [105] for wn, n = 24
(top) and n = 29 (bottom).
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(see (1.7), and (9.88), (12.2) for the precise formulae with expansions up
to o(1)). These can be considered as successive critical fields H1 = Hc1 ,
H2, H3, . . . at which an additional nth vortex appears in minimizing
configurations. The number of vortices found in minimizers increases
rapidly after Hc1 , and more and more rapidly until it becomes ∼ hex

when hex � | log ε| (see Fig. 1.6).

H H HHHc 2 3 4 51

hex

nπ2

π2
0

Figure 1.6: Schematic representation of the optimal number of vortices
n with respect to hex.

1.4.3 Branches of Local Minimizers

While we describe energy-minimizers for relatively small n’s, we con-
struct local minimizers of the energy which have prescribed numbers
of vortices n. This solves an inverse-type problem: given a minimizer
of wn, show that there exist stable solutions of Ginzburg–Landau with
n vortices of degree one, converging after blow-up to the minimizer of
wn. These solutions are obtained by a local minimization procedure: we
minimize the energy over suitable subsets of the functional space. This



18 Chapter 1. Introduction

corresponds, roughly speaking, to a way of minimizing the energy over
configurations with a prescribed number n of vortices.

This construction is possible for n bounded, or n unbounded but not
too large, and for a wide range of hex.

Theorem 1.6. For Ω as above and for any n and hex belonging to ap-
propriate intervals, there exists ε0 such that for any ε < ε0, there exists
a locally minimizing critical point (uε, Aε) of Gε such that uε has ex-
actly n zeroes aε

1, . . . , a
ε
n and there exists R > 0 such that |uε| ≥ 1

2 in
Ω\∪i B(aε

i , Rε), with deg(uε, ∂B(aε
i , R)) = 1. Moreover,

1. If n and hex are constants independent of ε, up to extraction of a
subsequence, the configuration (aε

1, . . . , a
ε
n) converges as ε → 0 to a

minimizer of the function

Rn,hex = −π
∑
i	=j

log |xi−xj |+π
∑
i,j

SΩ(xi, xj)+2πhex

n∑
i=1

(h0−1)(xi).

where SΩ is the regular part of a Green’s function associated with
Ω.

2. If n is independent of ε and hex → ∞, up to extraction of a sub-

sequence, the configuration of the ãε
i =

√
hex
n (aε

i − p) converges as
ε → 0 to a minimizer of wn.

3. If nε → ∞ and hex → ∞, then again denoting ãε
i =

√
hex
nε

(aε
i − p),

1
nε

nε∑
i=1

δãε
i

⇀ μ0,

the unique minimizer of I.

Thus, we have shown the multiplicity of stable solutions coexisting for
a given hex. We also have the explicit expression of the energy along these
branches, so that we can determine among them, the energy-minimizing
one is the one with n vortices, if hex is in the interval [Hn, Hn+1); but
the other ones, being stable, can still be observed, see Fig. 1.7.

The lower (resp. upper) bound of the interval of values of hex over
(resp. below) which a given branch of solutions is linearly stable is usu-
ally referred to as the subcooling (resp. superheating) field. Let us more
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precisely state Theorem 1.6 when n is independent of ε: the branch of lo-
cally minimizing solutions with n vortices exists for any ε small enough
(depending on n) if hex is in a range [cn, ε−αn ], where cn and αn are
independent of ε. Thus we get estimates for the subcooling and super-
heating fields of the branch of solutions with n vortices as ε → 0, since
these solutions are locally minimizing, hence stable. These estimates are
probably not optimal: for instance the superheating field when n = 1 is
expected to be of order 1/ε, but we are not able to prove that the branch
with one vortex exists for such large values of hex. Also note that we do
not prove that our n vortex solutions depend smoothly on the parameter
hex, which is often implied when speaking of a branch of solutions. We
believe however that this is the case.

G

h

0

1
2 3 4

ε

exH H
2 3 4

H
1c

H etc.0

Figure 1.7: Branches of solutions with n = 0 vortex (Meissner solution),
n = 1 vortex, n = 2, 3, 4 vortices . . . with their energy.

Let us also point out that we have derived a series of limiting energies:
Eλ, I, wn, Rn,hex , each of them corresponding to a different regime in
(n, hex): Rn,hex for both n and hex bounded, wn for n bounded and
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hex → ∞, I for 1 	 n 	 hex and Eλ for 1 	 n ∼ Chex, sort of
limits of each other as summed up in the following chart:

Fig. 1.8 below is a rough picture of the vortices in such cases.

blowup

blowup

minimizer of I

minimizer of wn

minimizer of R
hn, ex

Figure 1.8: Schematic picture of the vortices for minimizers in the cases
n and hex bounded, n bounded and hex → +∞, and 1 	 n 	 hex

respectively.
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1.4.4 Results on Critical Points

Chapter 13 can be read independently from Chapters 7 to 12: it gives
necessary conditions on limiting vorticities for arbitrary solutions of the
Ginzburg–Landau equations, stable or unstable. It is a way of passing
to the limit ε → 0 in the Ginzburg–Landau equations, and to get a
criticality condition on the limiting vorticities. The method consists in
passing to the limit in the relation on the “stress-energy tensor” being
divergence-free, i.e., in the conservative form of the Ginzburg–Landau
equations.

Theorem 1.7. Let {(uε, Aε)}ε>0 be solutions of the Ginzburg–Landau
equations such that G0

ε(uε, Aε) ≤ Cε−α with α < 1/3. Then for any
ε > 0, there exists a measure νε of the form 2π

∑
i d

ε
i δaε

i
where the sum

is finite, aε
i ∈ Ω and dε

i ∈ Z for every i, such that letting nε =
∑

i |dε
i |,

nε ≤ C
G0

ε(uε, Aε)
| log ε| ,

‖με − νε‖W−1,p(Ω)‖με − νε‖C0(Ω)∗ → 0, (1.9)

for some p ∈ (1, 2).
Moreover, if {νε}ε are any measures satisfying (1.9) and nε is defined

as above, then, possibly after extraction, one of the following holds.

0. nε =0 for every ε small enough and then με tends to 0 in W−1,p(Ω).

1. nε = o(hex), and then, for some p ∈ (1, 2), με/nε converges in
W−1,p(Ω) to a measure μ such that

μ∇h0 = 0, (1.10)

hence μ is a linear combination of Dirac masses supported in the
finite set of critical points of h0.

2. hex ∼ λnε, with λ > 0, then for some p ∈ (1, 2), με/hex converges in
W−1,p(Ω) to a measure μ and hε/hex converges strongly in W 1,p(Ω)
to the solution of {−Δhμ + hμ = μ in Ω

hμ = 1 on ∂Ω.
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Moreover the symmetric 2-tensor Tμ with coefficients

Tij = −∂ihμ∂jhμ +
1
2
(|∇hμ|2 + hμ

2
)
δij

is divergence-free in finite part.

3. hex = o(nε), and then for some p ∈ (1, 2), με/nε converges in
W−1,p(Ω) to a measure μ and hε/nε converges strongly in W 1,p(Ω)
to the solution of {−ΔUμ + Uμ = μ in Ω

Uμ = 0 on ∂Ω.

Moreover, the symmetric 2-tensor Tμ with coefficients

Tij = −∂iUμ∂jUμ +
1
2
(|∇Uμ|2 + Uμ

2
)
δij

is divergence-free in finite part.

We will give in Chapter 13, Theorem 13.1, a version of this theorem
applicable to general boundary conditions, which allows one to localize
this result.

When Tμ ∈ L1, the fact that Tμ is divergence-free in finite part means
that div Tμ = 0 in the sense of distributions, i.e., that ∂1Ti1 + ∂2Ti2 = 0
for i = 1, 2. If Tμ is not integrable, which is the case if μ is a Dirac mass
for instance, the precise definition is a bit more complicated. If (but only
if) hμ is smooth enough, this is equivalent to the fact that

μ∇hμ = 0.

This is the desired necessary condition on the limiting vorticity measure:
it is a stationarity condition on the vortices, saying that on the support
of μ, the limiting average current ∇hμ must be 0 (see one possibility
of density μ sketched in Fig. 1.9). If on the other hand, the number of
vortices is small compared to the applied field (case 1), then (1.10) shows
that vortices can only concentrate near the critical points of h0 (defined
in (1.6)), i.e., a finite set of points, see Fig. 1.10.

The analysis we develop in Chapter 13 allows us to treat the case of
Ginzburg–Landau without magnetic field as well and find an analogue
of this theorem.
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Ω

μ= c

μ=

μ=

c

01

2

Figure 1.9: A possible limiting density.

Figure 1.10: Critical points of h0.

We have not cited much of the large mathematical literature here,
but we refer to the end of the book, where we included a (necessar-
ily incomplete) “guide to the literature” which schematically describes
the results that have been obtained in the various branches of studies
on Ginzburg–Landau problems. The book also ends with a list of open
problems.

Let us sum up with a chart of results (and questions):



24 Chapter 1. Introduction

Regime Type of Solutions Limiting Measure Reference Result

hex = λ| log ε|,
n ∼ Chex.

minimizers minimizers of Eλ Theorem 7.2

hex � | log ε|,
2πn ∼ hex.

minimizers uniform measure dx Theorem 8.1

hex � 1,
n ∼ Chex.

critical points stationary points of
Eλ or div Tμ = 0

Theorem 13.1

1 � n � hex. minimizers minimizers of I Theorem 9.2

n � hex. critical points μ∇h0 = 0, what
after blow-up?

Theorem 13.1

n = O(1). (local) minimizers minimizers of wn or
Rn,hex

Theorem 11.1

hex = O(1),
n = O(1).

critical points “vanishing gradient
property”

Theorem 13.1

n � hex. critical points μ = 0 where regular Theorem 13.1



Chapter 2

Physical Presentation of the
Model — Critical Fields

We begin by describing how the expression (1.1) for the Ginzburg–Lan-
dau functional is deduced from the expression (2.1) below, more com-
monly found in the physics literature. We will also give a nonrigorous
introduction to critical fields in R

2, in the spirit of Abrikosov, and draw
a corresponding phase diagram in the (ε, hex) plane, i.e., qualitatively
describe minimizers of the Ginzburg–Landau energy for different values
of ε and hex, emphasizing the role of the vortices. Three areas of the
parameter plane will be found: the normal, superconducting and mixed
states, separated by what are usually called critical lines.

This chapter is meant to make the reader more familiar with the
problems dealt with in the later chapters, and can either be read inde-
pendently, or skipped by the reader wishing to get more quickly to the
point.

2.1 The Ginzburg–Landau Model

Let us start with some notation. Given two complex numbers z, w, we
let (z, w) = 1

2(z̄w + zw̄), which is the inner product of z and w seen as
vectors in R

2. Partial derivatives are written ∂1u, ∂2u, . . . . We will also
write ∂A

k for ∂k − iAk.
Consider a domain Ω in R

3. In the Ginzburg–Landau model, the
energy of a superconductor occupying Ω in the presence of a constant
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applied field He, when the exterior region is insulating, is

G(u, A) = G0 +
∫
R3

| curlA − He|2
8π

+
∫
Ω

1
2m∗

∣∣∣∣(�∇− ie∗

c
A

)
u

∣∣∣∣2 + α|u|2 + β|u|4. (2.1)

In this expression, u : Ω → C is the order parameter whose physical
meaning is that of a “wave function” for superconducting electron pairs
and A : R

3 → R
3 is the electromagnetic vector potential, whose curl

is the induced magnetic field. Besides the physical constants � and c,
additional constants m∗ and e∗ are present (see [192] for an explanation
of these constants) as well as two quantities α and β that depend on the
temperature T and on the superconducting material. Near the so-called
critical temperature Tc, it is assumed that β is a positive constant and
α is proportional to T − Tc and has the same sign. The quantity G0

represents the energy of the normal state and, most important to us,
does not depend on u or A.

2.1.1 Nondimensionalizing

The following changes of variable (assuming 0 ∈ Ω) make (2.1) more
pleasant:

ũ(x) =

√
β

|α|u(λx), Ã(x) =
e∗

�c
λA(λx), H̃e =

e∗

�c
He, (2.2)

where λ is the penetration depth defined by

λ =

√
βm∗c

4π|α|e∗2 .

We also introduce the coherence length

ξ = �
√

m∗|α|.
The energy then takes the form

G̃0 + C

⎡⎢⎣1
2

∫
R3

∣∣∣curl Ã − H̃e

∣∣∣2 +
1
2

∫
Ω̃

∣∣∣(∇− iÃ
)

ũ
∣∣∣2 +

1
2ε2

(
1 ± |ũ|2)2

⎤⎥⎦
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over a rescaled domain Ω̃ = Ω/λ, where κ = 1/ε = λ/ξ is the Ginzburg–
Landau parameter which depends on the material and varies little with
temperature, and G̃0 is independent of ũ and Ã. The sign in

(
1 ± |u|2)2

is the sign of the parameter α, i.e., is +1 if T > Tc and −1 if T < Tc. In
the first case, the functional is strictly convex hence clearly has a unique
critical point, namely ũ ≡ 0 and Ã such that curl Ã ≡ H̃e. We are in-
terested in the second case, where the phenomenon of superconductivity
appears.

From now on we take T < Tc, assume the rescaling (2.2) and write
u, A, He instead of ũ, Ã, H̃e for the rescaled quantities. In this scaling the
unit length is the penetration depth. The object of our study is therefore

GL(u, A) =
1
2

∫
R3

|curlA − He|2 +
1
2

∫
Ω

|(∇− iA) u|2 +
1

2ε2

(
1 − |u|2)2 .

Here (∇− iA) u is the complex vector (∂A
1 u, ∂A

2 u, ∂A
3 u), where ∂A

k u =
∂ku − iAku.

The local state of the material at a point x is described by u(x),
the so-called order parameter. In this nondimensional form, |u|2(x) is
the local density of superconducting electrons (the “Cooper pairs” of
electrons). As in Landau theories, the state of the material is described
through “phases”, |u| � 1 corresponds to the superconducting phase and
|u| � 0 to the normal phase.

2.1.2 Dimension Reduction

Since the full 3D model is quite complex, we wish to reduce to 2 di-
mensions. A natural special case is that of the domain being an infinite
cylinder in R

3 and He parallel to the axis (like an infinitely long insu-
lated wire). Assuming translational invariance of (u, A) and invariance
with respect to reflections across a plane perpendicular to the axis, we
have, taking the cylinder’s axis as the third coordinate axis,

He = hex(0, 0, 1), u(x, y, z) = u(x, y), A(x, y, z) = (A1(x, y), A2(x, y), 0).

Then, the Ginzburg–Landau energy of (u, A) per unit length is

GL(u, A) =
1
2

∫
R2

|curlA − hex|2 +
1
2

∫
Ω

|(∇− iA) u|2 +
1

2ε2

(
1 − |u|2)2 ,

(2.3)
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where Ω ⊂ R
2 is the cross section of the cylinder, hex ≥ 0 is the in-

tensity of the applied field, and h := curlA = ∂1A2 − ∂2A1 is the in-
duced magnetic field. Our main goal will be to study the minimizers
and critical points of this functional, i.e., the solutions of the associated
Euler–Lagrange equations, derived below in Proposition 3.6:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

−(∇A)2u =
1
ε2

u(1 − |u|2) in Ω

−∇⊥h = (iu,∇Au) in Ω

h = hex in R
2 \ Ω

ν · ∇Au = 0 on ∂Ω.

(2.4)

for different values of ε, hex.

2.1.3 Gauge Invariance

The Ginzburg–Landau functional (1.1), hence the system (2.4), is invari-
ant under the so-called gauge transformations

u → ueif , A → A + ∇f,

where f is any smooth real-valued function. What is more, configurations
which are deduced from one another by a gauge transformation describe
the same physical state, hence the physical quantities associated to a
configuration (u, A) are invariant under these transformations. It is quite
clear that h = curlA and |u| are gauge invariant. It is also the case for
the superconducting current

j = (iu,∇Au) =
i

2
(
u∇Au − ū∇Au

)
,

(or the vector with components (iu, ∂1u − iA1u) and (iu, ∂2u − iA2u)).
It is not difficult to check that if |u| does not vanish, then |u|, h and j
determine (u, A) up to a gauge transformation (in a simply connected
domain). If u vanishes or in nonsimply connected domains, this is not
completely the case, since the missing information is the topological de-
gree of u.



2.2. Notation 29

2.2 Notation

For any smooth bounded domain in R
2 and any u : Ω → C, A : Ω → R

2

we let

Fε(u, A, Ω) =
1
2

∫
Ω

|∇Au|2 + h2 +
1

2ε2

(
1 − |u|2)2 , (2.5)

Gε(u, A, Ω) =
1
2

∫
Ω

|∇Au|2 + (h − hex)2 +
1

2ε2

(
1 − |u|2)2 , (2.6)

where hex > 0 is the intensity of the applied magnetic field, and

∇Au = ∇u − iAu, h = curlA := ∂1A2 − ∂2A1.

When there is no ambiguity, we denote Fε(u, A) = Fε(u, A, Ω) and
Gε(u, A) = Gε(u, A, Ω). Note that in the following chapter we will see
that the minimization of GL reduces to the minimization of Gε when Ω
is simply connected.

Even though Gε depends on the parameter hex as well as on ε(= κ−1),
we do not reflect this in our notation because our main interest is in the
asymptotics of the functional as ε tends to zero. In this limit, hex will
be a function of ε and not an independent parameter. When it bears no
importance, the subscript ε itself will be dropped.

We denote by |Ω| the two-dimensional Lebesgue measure of any mea-
surable set Ω.

2.3 Constant States in R
2

In the rest of the chapter, unless stated otherwise, we suppose for sim-
plicity that the superconductor occupies the domain Ω = R

2, which
corresponds to an infinitely large sample. We do not aim at mathemati-
cal rigor, but rather at explaining by formal calculations the notions of
“critical fields” and “phase transitions”.

If Ω = R
2, boundary conditions should be ignored and the system

(2.4) reduces to the first two equations. We distinguish two solutions.

The superconducting solution for which |u| ≡ 1 and h = curlA ≡ 0.
It has infinite energy if hex > 0, but its energy density is hex

2/2. Note
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that all configurations satisfying the above are equivalent modulo gauge
transformations, which is why we speak of one solution.

The normal solution. If u ≡ 0 and h = curlA is also a constant, then
(u, A) is a solution. Its energy density is 1

2(h − hex)2 + 1
4ε2 , thus among

these solutions, the least energetic is the one for which h = hex. If u ≡ 0
and A is such that curlA ≡ hex, then (u, A) is called the normal solution.

Therefore we find a first critical line

Hc(ε) = 1
ε
√

2
, (2.7)

meaning that if for a given value of ε we have hex < Hc(ε), then the
superconducting solution is more favorable than the normal one, whereas
if hex > Hc(ε), it is the reverse.

2.4 Periodic Solutions

The normal solution satisfies u = 0 everywhere. Abrikosov (see [1]) in-
vestigated the existence of solutions near the normal solution (in mathe-
matical language, bifurcated solutions). He first showed that given ε, the
largest value of hex for which the linearized equations about the normal
solution admit solutions is the critical value

Hc2(ε) = 1
ε2 .

Moreover, from formal calculations which amount to a bifurcation anal-
ysis he argued that when ε <

√
2 these solutions give rise to a branch of

solutions of the nonlinear equations when hex decreases below Hc2 , and
that on these branches, the Ginzburg–Landau energy was lower than
that of the normal solution. Recently, Dutour [89] rigorously showed the
existence of these branches.

The Abrikosov solutions are periodic, or rather are such that the
gauge-invariant quantities, such as |u| and h = curlA are periodic. The
zeroes of u form a lattice and around each zero u has a nonzero degree
(or winding number). That is, writing u = |u|eiϕ, and working in polar
coordinates (r, θ) centered at a zero of u, if r > 0 is small enough, the
integer

1
2π

2π∫
θ=0

∂ϕ

∂θ
(r, θ) dθ =

1
2π

∫
∂B(0,r)

1
|u|2 (iu, ∂τu)



2.5. Vortex Solutions 31

is not zero. The points where u vanishes are called vortices and the integer
above, the degree of the vortex. At a vortex the induced magnetic field
h = curlA has a local maximum.

There are many such solutions corresponding to different lattices in
R

2. Abrikosov [1] guessed that the one corresponding to a square lattice
was the most favorable energetically, based on the fact that its expression
as a power series was the simplest, but later numeric computations [127]
showed that the hexagonal lattice was slightly better. We will see be-
low that Abrikosov accurately predicted the hexagonal lattice near Hc1 ,
based on different considerations.

Remark 2.1. Note that when writing u = |u|eiϕ, the phase ϕ is not
gauge-invariant, however the degree of a vortex is.

2.5 Vortex Solutions

Assume now ε <
√

2. If hex is large, the normal solution is more favor-
able than the superconducting or Abrikosov solutions. Then, lowering
hex below Hc2 , the Abrikosov solutions become less energetic and the
minimizer of the Ginzburg–Landau energy is supposedly one of them.
The question is then to compute the critical value of hex below which
the superconducting solution becomes in turn more favorable than the
Abrikosov solutions. There is no reason why this value should be given
by (2.7), which was computed by comparing the normal and supercon-
ducting solutions. We call the new value Hc1 , it should be smaller than
Hc.

To simplify matters we will not compare the superconducting solution
to an Abrikosov type solution, but rather to a single vortex solution,
or rather approximate solution. This replacement of a doubly periodic
configuration with a rotationally symmetric one may seem a bit strange,
but we will justify it at the end of this chapter. The price to pay for all
these approximations and the ones to come is that the computations will
yield results valid only if ε is small, the so-called high-κ limit (or London
limit).

2.5.1 Approximate Vortex

Our approximate solution will have — except for the constant states —
the maximal symmetry allowed by the equations, i.e., rotational symme-
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try. We will look for (u, A) in the form

u(r, θ) = f(r)eiθ, A(r, θ) = g(r)(− sin θ, cos θ). (2.8)

Remark 2.2. True radial solutions in R
2 of the Ginzburg–Landau equa-

tions of degree n, of the form

un(r, θ) = fn(r)einθ, An(r, θ) = gn(r)(− sin θ, cos θ)

have been shown to exist by Plohr [151, 152], and Berger and Chen [35].
Their linear stability was investigated by Gustafson and Sigal in [106]
who proved that, as conjectured by Jaffe and Taubes in [112], they are
stable if n = ±1, and if |n| ≥ 2 they are stable if ε >

√
2 and unstable if

ε <
√

2.

Next, we argue that if ε is small, then for Gε(u, A) to be as small as
possible, |u| should be close to 1 except on a small set. Moreover, scaling
arguments suggest that the area of this set should be of the order of ε2.
For this reason we let

f(r) =

{
r
ε if r < ε

1 otherwise.
(2.9)

We now need to define g in a reasonable way. Since the definition
of u was rather arbitrary, or so it may seem, we will try to do a better
job with A. The best would be of course to solve the Ginzburg–Landau
equation for A, i.e.,

−∇⊥h = (iu,∇Au),

where h = curlA. If we write u = ρeiϕ, — we will use the ansatz (2.8) in
a while — then

∇u = ∇ρeiϕ + iρ∇ϕeiϕ − iAρeiϕ

therefore (iu,∇Au) = ρ2(∇ϕ − A).
Thus when ρ = 1, the second Ginzburg–Landau equation is −∇⊥h =

∇ϕ − A, and taking the curl yields

−Δh + h = 0. (2.10)

When ρ varies, the equation for h is more complicated, but since this
happens in a very small area, we will account for it in a simplified way.
We compute

−
∫

B(0,ε)

Δh = −
∫

∂B(0,ε)

ν · ∇h =
∫

∂B(0,ε)

τ · ∇⊥h.
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Assuming the second Ginzburg–Landau equation is satisfied together
with (2.8) and (2.9), we find

−
∫

B(0,ε)

Δh =
∫

∂B(0,ε)

τ · (∇ϕ − A) =
∫

∂B(0,ε)

τ · ∇θ −
∫

B(0,ε)

h.

Therefore ∫
B(0,ε)

−Δh + h = 2π. (2.11)

In view of (2.10)–(2.11), which we recall are consequences of our ansatz,
together with the second Ginzburg–Landau equation, we define h to be
the positive solution to

−Δh + h = 2πδ, (2.12)

where δ is the Dirac mass at 0. The solution is a radial function in R
2. We

deduce A in the form (2.8) from the relation h = curlA by integrating
it over the ball B(0, r). This yields∫

∂B(0,r)

A · τ =
∫

B(0,r)

h

and then, together with (2.12),

g(r) =
1
r

+ h′(r). (2.13)

2.5.2 The Energy of the Approximate Vortex

We compute the energy of the configuration (u, A) defined by (2.8), (2.9),
(2.12), (2.13). The energy in R

2 is infinite, but we are really interested
in the difference between the energy of (u, A) and that of the supercon-
ducting solution. Thus, writing Br for B(0, r), we let

Δ(R) = GL(u, A, BR) − GL(1, 0, BR) = GL(u, A, BR) − 1
2
|BR|hex

2,

and try to compute the limit of this quantity as R tends to +∞. As in
(2.6), we have used the notation Gε(u, A, BR) for the Ginzburg–Landau
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energy density integrated over the ball BR. We split Δ(R) by writing
Δ(R) = α + β(R) for any R > ε, where

α = GL(u, A, Bε) − GL(1, 0, Bε),
β(R) = Gε(u, A, BR \ Bε) − GL(1, 0, BR \ Bε).

To evaluate α and β(R) we will need the following (see [192]):

Lemma 2.1. Let h be the positive solution to −Δh + h = 2πδ. Then
h(r) = | log r| + C + o(1) as r → 0 and the corresponding behavior for
the derivative also holds, i.e., h′(r) = −1/r + o(1) as r → 0. Moreover
h(r), h′(r) = O(e−r) as r → +∞.

Now we can prove:

Lemma 2.2. Assuming hex ≤ 1/ε2, there exists a constant C indepen-
dent of ε < 1 such that |α| < C.

Proof. We let C denote a generic constant independent of ε < 1. From
(2.8), (2.9) we have |∇u| < C/ε in R

2. From (2.8), (2.13) and Lemma 2.1,
we find |A| < C in B1 and ‖h‖Lq(B1) < C for any q ≥ 1. Therefore, in
Bε,

|∇Au|2 ≤ C

ε2
,

1
2ε2

(
1 − |u|2)2 ≤ C

ε2

and since −2hex ≤ (h − hex)2 − hex
2 ≤ h2,∫

Bε

∣∣(h − hex)2 − hex
2
∣∣ ≤ C.

It follows that

|α| = |GL(u, A, Bε) − GL(1, 0, Bε)| =
∣∣∣∣GL(u, A, Bε) − hex

2

2
|Bε|

∣∣∣∣ ≤ C.

Concerning β(R) we have:

Lemma 2.3. Let β(hex, ε) = limR→+∞ β(R). Then

β(hex, ε) = π (| log ε| − 2hex) (1 + o(1)) + O(1),

where o(1) and O(1) are meant as ε → 0 and are independent of hex.
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Proof. In R
2 \Bε we have |u| = 1. Therefore as noted above, the second

Ginzburg–Landau equation becomes −∇⊥h = ∇ϕ − A, thus

GL(u, A, BR \ Bε) =
1
2

∫
BR\Bε

|∇h|2 + (h − hex)2.

Therefore
β(R) =

1
2

∫
BR\Bε

|∇h|2 + h2 − 2hhex.

Integrating by parts and using (2.12) yields∫
BR\Bε

|∇h|2 + h2 =
∫

∂BR

h
∂h

∂ν
−

∫
∂Bε

h
∂h

∂ν
= 2πRh(R)h′(R)− 2πεh(ε)h′(ε)

and using (2.12) again,∫
BR\Bε

h =
∫

BR\Bε

Δh = 2πRh′(R) − 2πεh(ε).

Therefore β(R) = πRh′(R)(h(R) − 2hex) − πεh′(ε)(h(ε) − 2hex). From
Lemma 2.1, h′(R) goes to zero exponentially fast and as R → +∞ and
as ε → 0 we have h′(ε) = −1/ε + o(1), h(ε) = | log ε|+ O(1). The lemma
follows.

2.5.3 The Critical Line Hc1

In view of Lemmas 2.2, 2.3, We find that

lim
R→+∞

Δ(R) = π log
1
ε
− 2πhex + C,

where C is bounded independently of ε. Clearly this result is meaningful
only for small values of ε, but shows that in this case, as established by
Abrikosov, there exists a critical value

Hc1(ε) ≈ | log ε|
2 (2.14)

such that if hex is below Hc1(ε), the superconducting solution is ener-
getically favorable compared to the approximate vortex whereas it is the
opposite if hex > Hc1(ε).
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Several remarks can be made at this point. First, the equivalent for
Hc1 as ε → 0 that we computed is not very sensitive to the way we con-
struct the approximate vortex. We see from Lemma 2.2 for instance that
the contribution of Bε is negligible when computing the value | log ε|/2.

The second remark is that the approximate vortex is quite different
from the Abrikosov solutions, should not there be other critical values
of hex marking the transition from one vortex to two vortices and so
on? The answer is positive in the case of a bounded domain; but in R

2,
although the approximate vortex allows one to compute the right critical
value, the least energy configuration when hex crosses the line should look
more like a vortex lattice similar to an Abrikosov solution. The reason
for this is that if adding a vortex to the superconducting solution allows
one to gain some energy, then adding many vortices allows one to gain
more energy. The minimizer will then be a lattice of vortex solutions
glued together. As hex decreases to Hc1 the density of the lattice will
decrease to 0: vortices grow infinitely far from each other. For rigorous
results on the analysis of periodic solutions to Ginzburg–Landau around
the critical field Hc1 , see [28].

It is interesting to note that near Hc1 , Abrikosov guessed that the
energy minimizers would exhibit vortices arranged in a hexagonal lattice,
the one for which given the cell area of the lattice, the closest points are
the farthest away possible. Indeed, putting vortices far apart makes their
gluing together more efficient in terms of energy. This was inconsistent
with his prediction of a square lattice near Hc2 , raising the question of
the transition from square to hexagonal, but the hexagonal lattice finally
proved better near Hc2 as well.

2.6 Phase Diagram

We may sum up the previous analysis in the diagram of Fig. 2.1, where we
have plotted the critical lines in the plane (x, y), where x = κ = 1/ε is the
Ginzburg–Landau parameter and y = hex/κ. To the left of κ = 1/

√
2,

the Abrikosov solutions do not exist and there is a single critical line
separating the domains where the energy minimizer is respectively the
normal and superconducting solution. When κ > 1/

√
2, the critical line

Hc divides into two: the critical line Hc2(κ) = κ2 above which the normal
solution is the minimizer, and the critical line Hc1(κ) which behaves for
large κ as 1

2 log κ and below which the superconducting solution is the
minimizer. In between these two lines we expect the minimizer to be an
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Figure 2.1: Phase diagram in R
2.

Abrikosov type solution, i.e., a lattice of vortices. This state where the
superconducting phase |u| ∼ 1 and the normal phase |u| ∼ 0 (under the
form of vortices) coexist, is called in physics the “mixed state”.

The separation at ε =
√

2 or κ = 1√
2

(recall that ε = 1/κ is a ma-

terial constant) corresponds to the distinction between type-I (κ < 1√
2
)

and type-II (κ > 1√
2
) superconducting materials, which have different

qualitative behavior (as we just saw there is no mixed state in type-I
superconductors). However, the value of this threshold of separation is
really valid for infinite samples. At κ = 1√

2
, the Ginzburg–Landau equa-

tions become self-dual and decouple into two first order equations (see
[112]).

2.6.1 Bounded Domains

In the case of bounded domains, which will be our focus, the situation is
roughly similar, except for various boundary effects. In particular, there
is a third critical field Hc3 larger than Hc2 at which the bifurcation from
the normal solution happens through surface superconductivity. We refer
to Chapter 14 for references on this. Another finite size effect is that,
even though there still exists a pure superconducting solution, called
the Meissner solution, it is no longer a constant. There still exist vortex
solutions, but these of course can no longer be truly periodic nor found
explicitly. At the first critical field Hc1 , which is larger than the one
found for the infinite domain, there exists a similar phase-transition from
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superconducting state to vortex state except that the vortices appear one
by one, near the center. This will be described in detail in the book.

The rest of this book will be devoted, roughly speaking, to the study
of minimizers and critical points of the Ginzburg–Landau functional in
the range of parameters κ large and hex well below Hc2 , that is well
below 1/ε2. As a byproduct we will, for instance, provide a rigorous
derivation of (2.14) (or rather of its analogue for bounded domains — we
will thus observe the influence of boundary) from the minimization of
the Ginzburg–Landau functional.

Bibliographic notes on Chapter 2: The material presented in this
chapter is fairly standard in the physics literature. The reader may refer
to the standard textbooks on superconductivity, such as Tinkham [192],
Saint-James–Sarma–Thomas [164], and DeGennes [80]. One may also see
the lectures of Rubinstein [158].



Chapter 3

First Properties of Solutions
to the Ginzburg–Landau
Equations

In this chapter, we start to investigate the mathematical aspects of the
Ginzburg–Landau energy and equations. Whereas the material in the
first three sections is relatively easy or standard (existence of minimiz-
ers, regularity of solutions, apriori estimates . . . ) and used throughout
the later chapters, the material of the last two sections is more advanced,
contains several results stated without proofs, and is only used in Chap-
ter 5 and then Chapters 10 to 12. However, we feel that the material
is important enough, like the uniqueness result of P. Mironescu (Theo-
rem 3.2), or basic enough to deserve to be stated early on.

Here and in the rest of the book, D′(Ω) denotes the space of dis-
tributions on Ω; H1

0 (Ω) denotes the closure of smooth functions with
compact support in Ω in the H1 norm ‖u‖2

H1(Ω) = ‖u‖2
L2(Ω) +‖∇u‖2

L2(Ω).

Similarly W 1,p
0 (Ω) denotes the closure of smooth functions with compact

support in Ω in the W 1,p norm while W−1,p denotes the dual of W 1,q
0 ,

where 1/p + 1/q = 1, and H−1 the dual of H1
0 .

3.1 Minimizing the Ginzburg–Landau Energy

From now on, Ω is a smooth bounded simply connected domain in R
2.
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3.1.1 Coulomb Gauge

Definition 3.1. [Gauge equivalence] For any H2
loc(R

2, R) function f ,
any u ∈ H1(Ω, C) and any A ∈ H1(R2, R2) we define

v = ueif , B = A + ∇f

and we say the configuration (v, B) is gauge-equivalent to (u, A). The
transformation from (u, A) to (v, B) is called a gauge transformation. If
A is only defined in Ω, then we require f only to be defined in Ω and to
be in H2(Ω).

Proposition 3.1. If (v, B) and (u, A) are gauge-equivalent (in R
2), then

GL(v, B) = GL(u, A). If they are defined and gauge-equivalent in Ω, then
Gε(v, B) = Gε(u, A).

Proof. If v = ueif and B = A+∇f for some real-valued function f , then
curlB = curlA, |v| = |u| and

∇v = (∇u + iu∇f) eif , iBv = (iAu + iu∇f) eif

hence (∇− iB) v = eif (∇− iA) u. Replacing this in (2.3) and (2.6)
proves the proposition.

Remark 3.1. As stated before, essential gauge invariant quantities are
|u|, h, and the superconducting current j = (iu,∇Au). It is an exercise
to check that if (u, A) and (v, B) are such that |u| = |v| > 0, (iu,∇Au) =
(iv,∇Bv) in a simply connected domain Ω and curlA = curlB in R

2,
then they are gauge-equivalent.

This invariance of the energy by a large group of transformation (all
smooth real-valued functions) poses a problem for the minimization of
GL. Indeed if {(un, An)}n is a minimizing sequence, then for any sequence
of functions {fn}n, {(uneifn , An + ∇fn)}n is also minimizing, however
wild the functions fn may be. Thus no good bounds on {(un, An)}n can
be deduced from the fact that GL(un, An) is bounded independently of
n. The use of a particular gauge, namely the Coulomb gauge, solves this
problem.

Definition 3.2. [Coulomb gauge] Let Ω be a smooth bounded domain
in R

2. We say A : Ω → R
2 satisfies the Coulomb gauge condition in Ω if{

div A = 0 in Ω
A · ν = 0 on ∂Ω,

(3.1)

where ν is the outward pointing unit normal to ∂Ω.
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We have:

Proposition 3.2. For any smooth bounded domain Ω ⊂ R
2 and for any

A ∈ H1(Ω, R2), there exists a gauge transformation f ∈ H2(Ω) such that
B = A + ∇f satisfies the Coulomb gauge condition in Ω.

Proof. Let f solve {
Δf = −div A in Ω
∂νf = −A · ν on ∂Ω.

This is possible since
∫
Ω div A =

∫
∂Ω A · ν and the solution is unique

modulo a constant. Then A + ∇f satisfies the desired conditions.

The following estimate is crucial for the minimization of (2.3):

Proposition 3.3. Let Ω be a smooth, bounded, simply connected domain
in R

2. There exists a constant C > 0 such that if A : Ω → R
2 satisfies

the Coulomb gauge condition, then

‖A‖2
H1(Ω,R2) ≤ C‖ curlA‖2

L2(Ω)

and
‖A‖2

H2(Ω,R2) ≤ C‖ curlA‖2
H1(Ω).

Proof. Since Ω is simply connected and div A = 0 in Ω, by Poincaré’s
lemma there exists a function f such that A = (−∂2f, ∂1f). Then A·ν = 0
on ∂Ω implies that f is constant on ∂Ω and, subtracting the constant,
we may assume f = 0 on ∂Ω. Moreover curlA = Δf . Standard elliptic
regularity then implies that ‖f‖2

H2(Ω) ≤ C‖ curlA‖2
L2(Ω) and ‖f‖2

H3(Ω) ≤
C‖ curlA‖2

H1(Ω), from which the result follows.

3.1.2 Restriction to Ω

The natural space for the minimization of (2.3) is

X = {(u, A) ∈ H1(Ω, C) × H1
loc(R

2, R2) | (curlA − hex) ∈ L2(R2)}.

To avoid the technical difficulties of minimizing GL, as defined in
(2.3), over X, we instead minimize Gε as defined in (2.6) over the space

XΩ = {(u, A) ∈ H1(Ω, C) × H1(Ω, R2)}. (3.2)
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It is clear that if (u, A) ∈ X, then its restriction to Ω is in XΩ and

Gε(u, A) ≤ GL(u, A). (3.3)

Conversely we have:

Lemma 3.1. Let (u, A) ∈ XΩ. Then A can be extended to R
2 in such a

way that Gε(u, A) = GL(u, A).

Proof. There exists B ∈ H1
loc(R

2, R2) such that curlB = curlA in Ω and
curlB = hex outside Ω. For example, we can take B = ∇⊥φ where φ
solves −Δφ = g with g(x) = curlA(x) if x ∈ Ω and g(x) = hex if not.
Then, since Ω is simply connected, there exists a function f ∈ H2(Ω)
such that B = A + ∇f in Ω. It follows that Gε(u, A) = Gε(ueif , B)
and since curlB = hex outside Ω, we find Gε(u, A) = GL(ueif , B). By
extending f to R

2 in an arbitrary way to a function f ∈ H2
loc(R

2) and
gauge transforming (ueif , B) by −f , the lemma is proved.

This lemma together with (3.3) proves:

Proposition 3.4. The minimum of GL over X is equal to the minimum
of Gε over XΩ. Moreover, minimizers of GL restrict to minimizers of Gε

and conversely, minimizers of Gε can be extended to minimizers of GL.

We prove below that a minimizer of Gε, hence a minimizer of GL,
exists.

3.1.3 Minimization of GL

Proposition 3.5. The minimum of GL over X is achieved.

Proof. From Proposition 3.4 it suffices to prove that the minimum of Gε

over XΩ is achieved. Let {(un, An)}n be a minimizing sequence for Gε.
We may assume by density that the terms of the sequence are smooth.
Also, using Proposition 3.2, we may assume An satisfies the Coulomb
gauge condition in Ω for all n. Using the bound Gε(un, An) ≤ C, where
C is independent of n, we find that ‖1−|un|2‖L2(Ω), ‖(∇− iAn)un‖L2(Ω)

and ‖ curlAn − hex‖L2(Ω) are bounded independently of n. Therefore
{curlAn}n is bounded in L2(Ω) and thus, from Proposition 3.3, {An}n

is bounded in H1(Ω).
Note that ∇un = (∇ − iAn)un + iAnun. Since {An}n is bounded

in H1(Ω), it is bounded in every Lq for q < ∞ by Sobolev embedding.
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Because {un}n is bounded in L4 we find that {iAnun}n is bounded in
L4−η for any η > 0 and in particular in L2. Thus {∇un}n is bounded in
L2 and {un}n is bounded in H1(Ω).

We may then extract a subsequence such that {un}n and {An}n

converge to some (u0, A0) weakly in H1(Ω) and, by compact Sobolev
embedding, strongly in every Lq for q < ∞. We now show that (u0, A0)
is a minimizer of Gε.

By strong L4 convergence, lim infn ‖1−|un|2‖2
L2(Ω) = ‖1−|u0|2‖L2(Ω).

Also, ‖ curlA − hex‖2
L2 is a convex function of A which is continuous in

the H1 norm, hence it is weakly lower semicontinuous in H1. Therefore
lim infn ‖ curlA − hex‖2

L2 ≥ ‖ curlA0 − hex‖2
L2 . It remains to check that

lim inf
n

‖(∇− iAn)un‖2
L2 ≥ ‖(∇− iA0)u0‖2

L2 . (3.4)

Note that

|(∇− iA)u|2 = |∇u|2 − 2 (A · ∇u, iu) + |A|2|u|2. (3.5)

From the weak H1 convergence of un to u0, we first deduce

lim inf
n

∫
Ω

|∇un|2 ≥
∫
Ω

|∇u0|2.

Secondly, combining the strong Lq convergence of un and An to the weak
L2 convergence of ∇un, we find

lim
n

∫
Ω

(An · ∇un, iun) =
∫
Ω

(A0 · ∇u0, iu0)

and thirdly, by strong Lq convergence of un and An again, that
limn

∫
Ω |An|2|un|2 =

∫
Ω |A0|2|u0|2. Combining the three and (3.5), we

find (3.4).

3.2 Euler–Lagrange Equations

Definition 3.3. [Critical point] We say that (u, A) ∈ X is a critical
point of GL if for every (v, B) smooth and compactly supported we have

d

dt
GL(u + tv, A + tB)|t=0 = 0.
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Clearly, a minimizer of GL is a critical point.

Proposition 3.6. If (u, A) ∈ X is a critical point of GL then, letting
h = curlA, we have⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−(∇A)2u =
1
ε2

u(1 − |u|2) in Ω

−∇⊥h = (iu,∇Au) in Ω

h = hex in R
2 \ Ω

ν · ∇Au = 0 on ∂Ω.

(3.6)

If (u, A) ∈ XΩ is a critical point of Gε then the same equations are
satisfied, with h = hex satisfied on ∂Ω instead of R

2 \ Ω.

Note that the covariant Laplacian is defined by

(∇A)2u = ∂A
1 (∂A

1 u) + ∂A
2 (∂A

2 u),

where we recall that ∂A
j u = ∂ju − iAju. The covariant gradient is

∇Au = (∇− iA)u

and the current is the vector in R
2 defined by

(iu,∇Au) =
(
(iu, ∂A

1 u), (iu, ∂A
2 u)

)
,

where, for complex numbers z = x + iy, w = x′ + iy′, we let (z, w) =
xx′ + yy′. Finally,

ν · ∇Au = ν1∂A
1 u + ν2∂A

2 u.

The derivation of (3.6) is made very close to, say, the derivation of
the Laplace equation from the minimization of the Dirichlet energy, by
using the following lemma, the proof of which is left to the reader.

Lemma 3.2. For arbitrary complex-valued functions u, v and any A,

∂k(u, v) = (∂A
k u, v) + (u, ∂A

k v).

Proof of the Proposition. We have

d

dt
GL(u + tv, A + tB)|t=0 =

∫
Ω

(∇Au,∇Av) + (∇Au,−iBu)

−
∫
Ω

(u, v)
ε2

(1 − |u|2) +
∫
R2

(curlA − hex) curlB,
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where (∇Au,∇Av) = (∂A
1 u, ∂A

1 v)+(∂A
2 u, ∂A

2 v). Using the lemma, we have

(∇Au,∇Av) =
2∑

k=1

∂k(∂A
k u, v)−((∂A

k )2u, v) = div (∇Au, v)−((∇A)2u, v),

where (∇Au, v) =
(
(∂A

1 u, v), (∂A
2 u, v)

)
. Therefore, integrating by parts

d

dt
GL(u + tv, A + tB)|t=0 =

∫
∂Ω

(ν · ∇Au, v)

+
∫
Ω

− (
(∇A)2u, v

)− (iu,∇Au) · B − (u, v)
ε2

(1 − |u|2)

−
∫
R2

∇⊥(curlA − hex) · B.

Since this is true for any (v, B), we find −∇⊥(h − hex) = (iu,∇Au) and

−(∇A)2u =
u

ε2
(1 − |u|2)

in Ω, while ∇⊥(h−hex) = 0 outside Ω. Since hex is constant, h is constant
outside Ω and this constant must be hex since the configuration has finite
energy. The boundary conditions follow as well.

A different but useful form of the system (3.6) is expressed by the
fact that the divergence of the stress-energy tensor is zero.

Definition 3.4. [Stress-energy tensor] The stress-energy tensor associ-
ated to a configuration (u, A) for a given ε > 0 is the symmetric 2 × 2
tensor T with coefficients

Tij = (∂A
i u, ∂A

j u) − 1
2

(
|∇Au|2 − h2 +

1
2ε2

(
1 − |u|2)2) δij ,

where h = curlA.

We have:

Proposition 3.7 (The stress-energy tensor is divergence-free).
Assume (u, A) is a critical point of Gε. Then the stress-energy tensor
T associated to (u, A) satisfies for i = 1, 2,

∂1T1i + ∂2T2i = 0

in Ω and we write in shorthand div T = 0.
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Proof. Using Lemma 3.2 we find(
∂A

1 u, (∇A)2u
)

=
1
2
∂1|∂A

1 u|2 + ∂2(∂A
1 u, ∂A

2 u) − (∂A
2 ∂A

1 u, ∂A
2 u).

But
(∂A

2 ∂A
1 u, ∂A

2 u) =
1
2
∂1|∂A

2 u|2 +
(
(∂A

2 ∂A
1 − ∂A

1 ∂A
2 )u, ∂A

2 u
)
,

and it is a simple computation to check that (∂A
2 ∂A

1 − ∂A
1 ∂A

2 )u = iuh,
with h = curlA. Therefore we find(

∂A
1 u, (∇A)2u

)
=

1
2
∂1

(|∂A
1 u|2 − |∂A

2 u|2)+ ∂2(∂A
1 u, ∂A

2 u) − (iu, ∂A
2 u)h.

From the second Ginzburg–Landau equation −(iu, ∂A
2 u) = +∂1h there-

fore(
∂A

1 u, (∇A)2u
)

=
1
2
∂1

(|∂A
1 u|2 − |∂A

2 u|2)+ ∂2(∂A
1 u, ∂A

2 u) +
1
2
∂1h

2.

Now if we take the scalar product of the first Ginzburg–Landau equation
with ∂A

1 u, we find

− 1
2
∂1

(|∂A
1 u|2 − |∂A

2 u|2)− ∂2(∂A
1 u, ∂A

2 u) − 1
2
∂1h

2 =

1
ε2

(
∂A

1 u, u
) (

1 − |u|2)2 .

Since (∂A
1 u, u) = (∂1u, u) = ∂1|u|2/2, we finally obtain that

−1
2
∂1

(|∂A
1 u|2 − |∂A

2 u|2)− ∂2(∂A
1 u, ∂A

2 u)− 1
2
∂1h

2 +
1

4ε2
∂1

(
1 − |u|2)2 = 0

which is exactly ∂1T11 + ∂2T21 = 0. The relation ∂1T12 + ∂2T22 = 0 is
proved in the same way.

3.3 Properties of Critical Points

Proposition 3.8 (Regularity). Let Ω be a smooth bounded domain in
R

2. If (u, A) is a critical point of Gε and if A satisfies the Coulomb gauge
condition (3.1), then u and A are smooth in Ω.
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Proof. Together with the Coulomb gauge condition, the Ginzburg–Lan-
dau equations (3.6) become⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−Δu =
1
ε2

u(1 − |u|2) − 2i(A · ∇)u − |A|2u in Ω

−ΔA = (iu,∇u − iAu) in Ω
h = hex on ∂Ω

ν · ∇u = 0 on ∂Ω.

(3.7)

The first equation is obtained by expanding (∇A)2u. To obtain the second
equation from (2.4), note that

−∇⊥h = (∂2(∂1A2 − ∂2A1),−∂1(∂1A2 − ∂2A1)) . (3.8)

Differentiating ∂1A1 + ∂2A2 = 0 with respect to both variables we find
∂12A2 = −∂11A1 and ∂12A1 = −∂22A2. Replacing this in (3.8) yields
−∇⊥h = −ΔA and thus (3.7).

But (3.7) is a couple of elliptic equations for which we easily derive
regularity by bootstrapping arguments. Since (u, A) are both in H1(Ω),
hence in every Lq, the right-hand side of the equations (3.7) are in Lp

for any p < 2 and therefore (u, A) are both in W 2,p by standard elliptic
theory, and therefore in every W 1,q, etc.

Boundary regularity can be recovered in a similar way, once it is
checked that the boundary conditions above satisfy the so-called com-
plementing condition (see [7]). To see why they do, assume for sim-
plicity that Ω is the half space {(x, y) ∈ R

2 | x > 0}. Then, writing
A = (A1, A2), the Coulomb gauge condition A · ν = 0 at the boundary
becomes A1 = 0 on ∂Ω and then curlA = hex becomes ∂νA2 = hex.
Therefore we have a Dirichlet condition for A1 and a Neumann condi-
tion for A2. This is almost a proof that the complementing condition is
satisfied. The rest of the proof of the boundary regularity consists in a
bootstrapping argument as above.

The reference [85] discusses these issues, without however giving a
complete proof of the boundary regularity.

Proposition 3.9. Let Ω be a smooth bounded domain in R
2. If (u, A)

is a critical point of Gε, then |u| ≤ 1 in Ω.

Proof. This is a consequence of the maximum principle. Taking the scalar
product of the first equation in (3.7) with u we find
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−(Δu, u) =
1
ε2

|u|2(1 − |u|2) − 2(i(A · ∇)u, u) − |A|2|u|2.

Therefore

1
2
Δ|u|2 = (Δu, u) + |∇u|2

=
−1
ε2

|u|2(1 − |u|2) + 2(i(A · ∇)u, u) + |A|2|u|2 + |∇u|2.

Noting that

|∇Au|2 = |∇u|2 + 2(i(A · ∇)u, u) + |A|2|u|2

we find

−1
2
Δ|u|2 =

1
ε2

|u|2(1 − |u|2) − |∇Au|2. (3.9)

Let us now consider x0 a point of maximum of |u| in Ω. Since u is smooth
in view of Proposition 3.8, we can write that if x0 ∈ Ω, ∇|u|(x0) = 0 and
Δ|u|(x0) ≤ 0, hence we deduce from (3.9) that 1− |u|2(x0) ≥ 0 and thus
|u|(x0) ≤ 1. If on the other hand x0 ∈ ∂Ω, then ∂|u|

∂τ (x0) = 0. Moreover,
the Neumann boundary condition ν · ∇Au = 0 implies, taking the scalar
product with u, that ∂ν |u|(x0) = 0. Therefore, ∇|u|(x0) = 0 and we can
argue similarly that Δ|u|(x0) ≤ 0, implying |u|(x0) ≤ 1. We conclude in
all cases that max |u| ≤ 1.

The following result follows directly.

Lemma 3.3. If (u, A) is a solution to (3.6), then

|j| = |∇h| ≤ |∇Au|.

Proof. From the second Ginzburg–Landau equation we have pointwise
|∇h| ≤ |(iu,∇Au)| and since |u| ≤ 1 from Proposition 3.9, we find
|∇h| ≤ |∇Au|.
This will often be used combined with the result.
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Lemma 3.4. Assume u is defined and differentiable in a neighborhood
of x and takes values in C. If u(x) �= 0, then u can be written in a
neighborhood of x as ρeiϕ, where ρ, ϕ are real valued and ρ is positive.
Then in this neighborhood

∇Au = ρieiϕ(∇ϕ − A) + eiϕ∇ρ.

In particular
|∇Au|2 = ρ2|∇ϕ − A|2 + |∇ρ|2,

and
j = ρ2(∇ϕ − A).

Proposition 3.10. Let Ω be a smooth bounded domain in R
2. If (u, A)

is a critical point of Gε, then

‖h − hex‖2
H1(Ω) ≤ 2Gε(u, A)

‖h‖2
H1(Ω) ≤ 2Fε(u, A)

‖A‖2
H2(Ω) ≤ CFε(u, A),

where we recall Fε is defined in (2.5).

Proof. Using Lemma 3.3, squaring and integrating, adding
∫
Ω(h− hex)2

or
∫
Ω h2 on both sides yields∫

Ω

|∇h|2 + |h − hex|2 ≤ 2Gε(u, A)

∫
Ω

|∇h|2 + h2 ≤ 2Fε(u, A),

and the third assertion follows from Proposition 3.3.

Let us mention here a property of the zeroes of energy-minimizers
(for simply-connected domains):

Theorem 3.1 (Elliott–Matano–Tang Qi [92]). Let (u, A) be a min-
imizer of Gε. Then the set of zeroes of u consists only of isolated points.
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3.4 Solutions in the Plane

The parameter ε in the Ginzburg–Landau equations is the lengthscale on
which the order parameter u varies. It is therefore interesting to study
the blow-ups of solutions at this scale. It turns out that if one chooses
to work in the Coulomb gauge, the blow-up limits as ε → 0 satisfy
−Δu = u(1 − |u|2) in R

2. In this section, we list some properties of
these limits before proving the convergence of blow-up sequences in the
following section. We begin by collecting some facts about the topological
degree.

3.4.1 Degree Theory

Degree of S
1-valued maps

Assume Ω is a bounded domain in R
2 with smooth boundary, with its

natural orientation. We let τ denote the unit tangent vector to ∂Ω com-
patible with this orientation.

Definition 3.5. If u : ∂Ω → S
1 is a sufficiently regular map, the degree

of u is defined by

deg(u, ∂Ω) =
1
2π

∫
∂Ω

(iu, ∂τu) ds. (3.10)

Assuming u to be smooth, it can be written locally as u = exp(iϕ) for
some smooth real-valued function ϕ (a “lifting” of u). Then the integrand
in (3.10) is ∂τϕ, in particular the degree is an integer. For example u(z) =
zd has degree d on the boundary of the unit disk.

It is standard to check that the degree seen as a function defined on
C∞(∂Ω, S1) is continuous in the C0 norm, or in other words, the degree
is preserved by homotopy. It can thus be continuously extended to an
integer-valued function on the space of continuous S

1-valued maps: this
is the classical setting of degree theory (see [88] for a treatment of the
classical degree theory between manifolds).

Recently, the notion of degree has been extended to certain discon-
tinuous maps. Results of this type may be found in the work of B.
White [193]. In our particular setting, Boutet-de-Monvel and Gabber
(see appendix in [58]) made the crucial observation that the formula
(3.10) still makes sense if u ∈ H1/2(∂Ω, S1), by duality between the
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space H1/2(∂Ω) and H−1/2(∂Ω) (observe that if u ∈ H1/2(∂Ω, R2), then
∂τu ∈ H−1/2(∂Ω, R2)). The degree may also be defined using the Fourier
coefficients of u and it is then transparent that it makes sense in H1/2.
Brezis–Nirenberg [62, 63] extended the definition of the degree to the
space VMO, in any dimension.

Note that, assuming u ∈ H1/2(∂Ω, S1), an alternative to (3.10) is
obtained by extending u to a Sobolev map ũ ∈ H1(Ω, C) such that ũ = u
on ∂Ω. Then, considering the 1-form ω = (iũ, ∂1ũ)dx1+(iũ, ∂2ũ)dx2 that
we write in shorthand (iũ, dũ), we have

deg(u, ∂Ω) =
1
2π

∫
∂Ω

ω =
1
2π

∫
Ω

dω.

But dω = (idũ, dũ) = 2 jac ũ where jac ũ is the Jacobian determinant of
ũ (seen as a map from Ω to R

2), thus

deg(u, ∂Ω) =
1
π

∫
Ω

jac ũ(x) dx =
1
2π

∫
Ω

curl(iũ,∇ũ) (3.11)

where, in the last expression, we have returned to our usual notation
without differential forms. The definition of the degree is independent of
the extension ũ chosen.

If u ∈ H1/2(∂Ω, C) and |u| > α > 0 on ∂Ω, then deg(u, ∂Ω) is defined
as deg(u/|u|, ∂Ω). If u ∈ H1(Ω, C) satisfies |u| > α > 0 on ∂Ω, then by
the trace theorem u ∈ H1/2(∂Ω, C) and the previous definition applies.

Properties

The properties of the degree for maps in H1/2(∂Ω, S1) are similar to
those of the degree for smooth maps (refer to [62, 63] for proofs).

1. The degree is an integer.

2. deg(u, ∂Ω) can be computed by (3.11) for any extension
ũ ∈ H1(Ω, C) of u.

3. For u ∈ H
1
2 (∂Ω, S1) there exists ũ ∈ H1(Ω, S1) coinciding with u

on ∂Ω if and only if deg(u, ∂Ω) = 0.

The last property is easily deduced from the case where Ω is the unit disk
D, and from the corresponding well-known statement in the continuous
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setting: if u ∈ C0(∂D, S1) then u can be continuously extended to ũ ∈
C0(D, S1) if and only if deg(u, ∂D) = 0. It explains in a way why vortices
need to form if a nonzero degree is prescribed on the boundary of Ω.

3.4.2 The Radial Degree-One Solution

Definition 3.6. We say u is a degree-one radial solution of

−Δu = u(1 − |u|2) in R
2 (3.12)

if u is a solution of the form

u(r, θ) = f(r)eiθ

where (r, θ) are the polar coordinates in R
2 and f : R+ → R+.

Observe that f then has to satisfy the ODE

−f ′′ − 1
r
f ′ +

1
r2

f = f(1 − f2) f(0) = 0. (3.13)

This ODE, supplemented by the condition f(∞) = 1, was studied in
[111].

It holds that:

Proposition 3.11. There exists a unique nonconstant degree-one radial
solution u0 of (3.12) such that, letting f(r) = |u0(r, θ)|, it holds that
f(r) → 1 as r → +∞. Moreover f is increasing and

1 − f(r) ∼ 1
2r2

as r → +∞,

1
2

∫
R2

(
1 − |u0|2

)2 = π (3.14)

and there exists a constant γ > 0 such that

1
2

∫
B(0,R)

|∇u0|2 +
(1 − |u0|2)2

2
= π log R + γ + o(1) as R → +∞.

(3.15)
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The existence and uniqueness of u0 is proved in [111]. The assertion
(3.14) was proved in [61] and follows from a Pohozaev type identity
satisfied by the solutions in a large ball BR together with the asymptotic
behavior of f . The constant γ was introduced in [43] with a slightly
different definition.

Remark 3.2. The above solution is a degree-one solution in the sense
that for any R large enough, the topological degree of u0

|u0| as a map from
∂B(0, R) to S

1 (as defined in Definition 3.5) is equal to 1.

This solution is also unique in the following sense:

Definition 3.7. We say u is a locally minimizing solution of −Δu =
u(1 − |u|2) in R

2 if for any w : R
2 → C supported in a compact subset

K ⊂ R
2, we have

1
2

∫
K

|∇(u + w)|2 +
1
2
(
1 − |u + w|2)2 ≥ 1

2

∫
K

|∇u|2 +
1
2
(
1 − |u|2)2 .

Theorem 3.2 (Uniqueness of locally minimizing solutions). If u
is a nonconstant solution of −Δu = u(1 − |u|2) in R

2 and if we make
the additional assumption that either u is locally minimizing or that∫

R2(1 − |u|2)2 < +∞ and deg(u) = ±1, then there exists x0 ∈ R
2 and

θ0 ∈ R such that u(x) = eiθ0u0(x − x0) or u(x) = e−iθ0u0(x − x0).

This result is a combination of a theorem proved by P. Mironescu in
[146] which states that solutions such that

∫
R2(1 − |u|2)2 < +∞ and of

degree one are radial; a result of I. Shafrir [186] stating that nonconstant
locally minimizing solutions with

∫
R2(1− |u|2)2 < +∞ are of degree ±1;

and a result of E. Sandier [166] stating that locally minimizing solutions
satisfy

∫
R2(1 − |u|2)2 < +∞.

We will also use the following result on solutions on the half-plane
R

2
+:

Theorem 3.3 (Sandier [166]). Let u be a locally minimizing solution
of −Δu = u(1 − |u|2) on R

2
+, such that u is constant of modulus 1 on

∂R
2
+, then u is a constant of modulus 1 on all of R

2
+.

3.4.3 Solutions of Higher Degree

Similarly as the radial solution of degree 1, for every d ∈ Z there exists
(see [111] again) a radial solution of (3.12) with a unique zero of degree d,
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i.e., of the form
u(r, θ) = fd(r)eidθ

with fd a real-valued function vanishing at the origin and solving an
ODE analogous to (3.13):

−f ′′ − 1
r
f ′ +

d2

r2
f = f(1 − f2) f(0) = 0.

However, it is not known whether there are other solutions of degree
d > 1, which would vanish in more than one point (see Open Problem
4 in Chapter 15). The only result we have is the following quantization
result:

Theorem 3.4 (Brezis–Merle–Rivière [61]). Let u be a solution of
−Δu = u(1 − |u|2) in R

2 such that
∫

R2(1 − |u|2)2 < ∞, then∫
R2

(1 − |u|2)2 = 2πd2

where d ∈ Z is the degree of u
|u| on large enough circles.

3.5 Blow-up Limits

Definition 3.8. [Very local minimizer] Given a family of configurations
{(uε, Aε)}ε>0 defined in Ω and a family of points {xε}ε in Ω, we say
that {(uε, Aε)}ε>0 “very locally minimizes” Gε around {xε}ε if for any
compactly supported and smooth w : R

2 → C, there exists ε0 such that
for ε < ε0, Gε(uε, Aε) ≤ Gε(uε + wε, Aε), where

wε(x) = w

(
x − xε

ε

)
.

Remark 3.3. The variation on uε can affect the value of uε on the
boundary of Ω, but this is allowed.

Proposition 3.12 (Behavior of blow-up limits). Assume hex 	 1
ε2

as ε → 0, and that for every ε > 0 we are given a solution (uε, Aε) of
(3.6) satisfying the Coulomb gauge condition and such that

Fε(uε, Aε) 	 1
ε2

(3.16)
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as ε → 0. Then, for any family of points {xε}ε, defining the rescaled
configuration (vε, Bε) by

vε(x) = uε(xε + εx), Bε(x) = εAε(xε + εx),

if dist(xε, ∂Ω) � ε, then after extraction of a subsequence, (vε, Bε) con-
verges in C1

loc(R
2) to (v, 0), where v solves −Δv = v(1 − |v|2) in R

2;
if dist(xε, ∂Ω) = O(ε), (vε, Bε) converges, after extraction of a subse-
quence, in C1

loc(R
2) to (v, 0) where v solves −Δv = v(1 − |v|2) in a

half-plane with boundary condition ∂v
∂ν = 0.

Moreover, if {(uε, Aε)}ε>0 very locally minimizes Gε around {xε}ε,
then in the case dist(xε, ∂Ω) � ε, v is a locally minimizing solution of
(3.12), hence one of the solutions described in Theorem 3.2; in the case
dist(xε, ∂Ω) = O(ε), v is a constant of modulus 1 in the half-plane.

The analogous result also holds for the Ginzburg–Landau equation
without magnetic field:

Proposition 3.13. The exact same result holds for solutions of −Δuε =
uε
ε2 (1 − |uε|2) with Dirichlet (uε = g on ∂Ω) or Neumann boundary con-
ditions, assuming Eε(uε) 	 1/ε2.

Note that the convergence is easily improved by bootstrapping argu-
ments but C1

loc convergence is all we will need.

Proof of Proposition 3.12. — Step 1: Convergence in the general case.
Using Propositions 3.3 and 3.10, the hypothesis (3.16) implies that, let-
ting hε = curlAε,

lim
ε→0

‖εhε‖H1(Ω) = 0, lim
ε→0

‖εAε‖H2(Ω) = 0.

In particular we find that εAε tend to 0 in L∞ norm. In terms of the
rescaled quantity Bε we get

lim
ε→0

‖Bε‖L∞(Ω) = 0. (3.17)

Assuming for simplicity that xε = 0; in terms of the rescaled config-
uration (vε, Bε), the system (3.7) becomes⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−Δvε + 2i(Bε · ∇)vε = vε(1 − |vε|2) − |Bε|2vε in Ω/ε

−ΔBε = ε2(ivε,∇vε − iBεvε) in Ω/ε

curlBε = ε2hex outside Ω/ε

ν · ∇Bεvε = 0 on ∂Ω/ε.

(3.18)
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We now invoke elliptic regularity for the first equation. From (3.17) and
Proposition 3.9, the right-hand side is bounded in L∞ and we may apply
Lp estimates (see for instance [100] Theorem 9.11) to find that for any
fixed ball BR, the family {vε}ε is bounded in W 2,p(BR), for any p > 1,
hence in C1,α for any 0 < α < 1. From the compactness of the embedding
of C1,α into C1, and using larger and larger balls together with a diagonal
argument, we may extract a subsequence, still denoted {ε}, such that
{vε}ε converges locally in C1 norm to some v.

The right-hand side of −ΔBε = ε2(ivε,∇vε − iBεvε) is now known
to be bounded in L∞. Then from (3.17) and elliptic regularity we find
as above that after extraction of a subsequence, {Bε}ε converges locally
in C1 norm to some B. From (3.17) the limit B is necessarily 0.

Passing to the limit in the equations we find that v solves −Δv =
v(1 − |v|2).

— Step 2: proof of the last assertion. We prove that if the solutions
are very local minimizers, then their limit v is locally minimizing. Assume
w : R

2 → C is supported in a compact subset K ⊂ R
2. Scale back w to

define wε(x) = w ((x − xε)/ε) .
We define

F (u) =
∫
K

|∇u|2 +
1
2
(
1 − |u|2)2

Fε(u) =
∫
K

|∇Bεu|2 +
1
ε2

(curlBε − ε2hex)2 +
1
2
(
1 − |u|2)2 .

From the C1 convergence of vε and Bε, and the relations (3.18), it is
easy to check that

F (v + w) − F (v) = lim
ε→0

Fε(vε + w) − Fε(vε).

But the right-hand side is equal to Gε(uε + wε, Aε) − Gε(uε, Aε) and is
therefore positive for ε small enough since {uε}ε>0 is very locally min-
imizing around {xε}ε. It follows that F (v + w) − F (v) ≥ 0 and the
proposition is proved.

For the case where dist(xε, ∂Ω) ≤ Cε, it is easy to see that up to
translation and extraction, Bε converges to 0 as before, and vε converges
to a solution of −Δv = v(1 − |v|2) on the half-plane R

2
+ with boundary

condition ∂v
∂ν = 0.
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Reflecting that solution with respect to ∂R
2
+ yields a solution with

degree 0 on all of R
2. Moreover, by the same arguments as above, this

solution is locally minimizing in R
2, hence by the result of Sandier [165]

mentioned above, it satisfies
∫

R2(1−|v|2)2 < ∞. Then, from the result of
[61], such a solution with total degree 0 has to be constant: its modulus
is constant equal to 1 from Theorem 3.4, which implies that Δv = 0, and
thus that v, being harmonic and bounded in R

2, is constant.

Proof of Proposition 3.13. The proof in the Neumann case is identical to
the one above. The proof in the Dirichlet case follows exactly the same
lines. The only difference is that if dist(xε, ∂Ω) = O(ε), the limiting v
is a solution of −Δv = v(1 − |v|2) in the half-plane R

2
+ with |v| = 1 on

the boundary of the half-plane. In the case of very local minimizers, the
result of Theorem 3.3 allows us to conclude that v is also constant.

Remark 3.4. In the case where the solutions are not very local mini-
mizers, the limit v can a priori be any solution of (3.12) as described in
Section 3.4. It can be one of the solutions such that

∫
(1 − |u|2)2 < ∞

considered in Theorem 3.4. It can also be a solution that does not sat-
isfy this condition, such as the solution u ≡ 0. This can be achieved by
considering solutions with a unique zero of degree dε → ∞ as ε → 0
(such as in [30]): fdε(r/ε)eidεθ in the notation of Section 3.4.3, for which
fdε → 0 a.e. as ε → 0.

Corollary 3.1. If (uε, Aε) is a solution of (3.6) such that
Fε(uε, Aε, Ω) 	 1

ε2 , then there exists a constant C such that

|∇Aεuε| ≤ C

ε
.

Proof. Since |∇Au| is a gauge-invariant quantity, we may assume that
we are in the Coulomb gauge. Using the same notation as above, we have
ε|∇Aεuε| = |∇Bεvε| → |∇v| in view of the C1

loc convergence of (vε, Bε).
We deduce that |∇Au|(x) ≤ C

ε , where we claim that C is bounded inde-
pendently of the point and of the solution. If it were not, then we could
find a sequence of solutions (uε, Aε) of (3.6) and a sequence of points xε

such that ε|∇Aεuε|(xε) → +∞. Arguing as in the proof of Proposition
3.12, we would find that, up to extraction, (vε, Bε) converges in C1

loc to
some (v, 0) and thus ε|∇Aεuε| = |∇Bεvε| is convergent, and this would
contradict the assumption.
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Remark 3.5. Adjusting the proof of Proposition 3.12, we can easily
show that, if we only assume Fε(uε, Aε, Ω) ≤ C

ε2 and hex ≤ C
ε2 , then we

still have |∇Aεuε| ≤ C
ε2 .

Bibliographic notes on Chapter 3: The material of the first parts
of this chapter (existence of minimizers, derivation of the equations, reg-
ularity) is fairly standard. For the case with magnetic field, one may
refer to Bethuel–Rivière [52] and references therein, also to the survey
paper of Du–Gunzburger–Peterson [85]; and for the case without mag-
netic field to Bethuel–Brezis–Hélein [42]. For solutions in the plane the
most important references are (in chronological order) Hervé-Hervé [111],
Brezis–Merle–Rivière [61] and Mironescu [142]. Results on blow-up of so-
lutions can be found in a scattered way in the literature on the functional
without magnetic field (see, e.g., the works of Bethuel–Brezis–Hélein and
Comte–Mironescu). We included here a version more specific to the case
with magnetic field, including the possibility of very large energies and
the notion of very local minimizers.



Chapter 4

The Vortex-Balls Construction

The aim of this chapter is to provide one of the basic tools for the analysis
of the Ginzburg–Landau functional in terms of vortices.

When studying critical fields in R
2, we have constructed an approx-

imate vortex for which u had a zero of degree one. The energy of this
solution was approximately the sum of a term depending on hex and
π| log ε|. The former represents the interaction of the vortex with the
applied field and the latter — although we did not explicitly state this
result — corresponds to the free energy of the vortex, i.e., its energy when
hex is taken to be zero.

Given an arbitrary configuration (u, A), we will show that one can
describe it energetically as a collection of vortices glued together, as
long as its Ginzburg–Landau energy is not extremely large, but without
assuming that it solves any equation. More precisely we construct a set
of disjoint balls of sufficiently small radii (how small depends on which
construction) which cover the “bad set” where |u| is smaller than some
threshold < 1, hence which contains the zero-set of u and all possible
vortices. Moreover, each ball B will contain an amount of energy at least
of (typically) π|d| log r

ε where d = deg(u/|u|, ∂B), and r is the radius
of B.

The construction requires only a weak control on the energy of u,
essentially it must be 	 1

ε . This is much larger than the energy of one
vortex which is approximately π| log ε|, hence it allows a number of vor-
tices which is unbounded as ε → 0. It uses a ball growing argument
which was introduced independently in [113] and [166]; we give here a
presentation close to [166, 170], with sharper estimates. All the results
can be used for the functional without magnetic field (1.2) simply by
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setting the magnetic potential A to 0.
The main result of the chapter, namely Theorem 4.1 will be used

repeatedly in Chapters 7 to 12, which deal with the minimization of the
Ginzburg–Landau functional, but its proof can safely be skipped to read
them. Chapter 5 only uses the ball-growth mechanism described in the
second section of the chapter, and Chapter 13 uses only Propositions 4.3
and 4.8.

The most delicate part of the chapter is the proof of Proposition 4.7,
which occupies the last section. The refinements there are motivated
by the fact that we need to obtain the optimal error term, namely a
constant times the total degree, for later applications. This aside, the
proof of Theorem 4.1 is essentially contained in sections 2–4.

4.1 Main Result

Here and in the rest of this chapter, Ω is an open subset of R
2 and

u : Ω → C, A : Ω → R
2 are C1.

We recall that if u : Ω → C and A : Ω → R
2,

Fε(u, A, Ω) =
1
2

∫
Ω

|∇Au|2 + | curlA|2 +
(1 − |u|2)2

2ε2
. (4.1)

For any function ρ : Ω → R we set

Fε(ρ, Ω) =
1
2

∫
Ω

|∇ρ|2 +
(1 − ρ2)2

2ε2
.

Note that the notation above is consistent in the sense that if u = ρ is
real-valued, then Fε(ρ, Ω) = Fε(u, 0, Ω).

We denote

Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε}. (4.2)

If B is a collection of balls, then r(B) denotes the sum of the radii of the
balls in the collection.

Theorem 4.1 (Lower bound through the ball-construction).
For any α ∈ (0, 1) there exists ε0(α) > 0 such that, for any ε < ε0, if
(u, A) is a configuration such that Fε(|u|, Ω) ≤ εα−1, the following holds.

For any 1 > r > Cεα/2, where C is a universal constant, there exists
a finite collection of disjoint closed balls B = {Bi}i∈I such that
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1. r(B) = r.

2. Letting V = Ωε ∩ ∪i∈IBi,

{x ∈ Ωε | ||u(x)| − 1| ≥ ε
α
4 } ⊂ V.

3. Writing di = deg(u, ∂Bi), if Bi ⊂ Ωε and di = 0 otherwise,

1
2

∫
V

[
|∇Au|2 + r2| curlA|2 +

(
1 − |u|2)2

2ε2

]
≥ πD

(
log

r

Dε
− C

)
,

(4.3)

where D =
∑

i∈I |di| is assumed to be nonzero and C is a universal
constant.

4. If the stronger assumption Fε(u, A, Ω) ≤ εα−1 holds, then

D ≤ C
Fε(u, A, Ω)

α| log ε| , (4.4)

where C is a universal constant.

Finally, if 1 > r1 > r2 > εα/2 and B1, B2 are the corresponding families
of balls, then every ball in B2 is included in one of the balls of B1.

Remark 4.1. The term log r
Dε in (4.3) is optimal, as can be seen by

taking D identical vortices of degree 1; the total radius of the balls being
r, we can expect D final balls of radius r/D each, each containing an
energy π log r/D

ε .

The proof of this theorem will occupy the rest of this chapter.

4.2 Ball Growth

In essence, the theorem is proved by adding up lower bounds for the
energy of (u, A) on annuli which avoid the set where |u| is different from
1. For these lower bounds to add up, they need to be computed on
conformally identical annuli, and we describe here the tool which allows
us to do this.

Notation: If B is a ball, r(B) denotes its radius. If B is a collection of
balls, then r(B) is the sum of the radii of the balls in the collection. For
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λ ≥ 0 the ball λB is the ball with same center as B and radius multiplied
by λ. If B is a collection of balls, then λB = {λB | B ∈ B}. With an
abuse of notation, we will also write

∫
B to denote

∫
∪B∈BB, write B ∩ U

to denote the collection {B ∩ U}B∈B, and U\B to denote U\(∪B∈BB).

Theorem 4.2 (Ball growth). Let B0 be a finite collection of disjoint
closed balls. There exists a family {B(t)}t∈R+ of collections of disjoint
closed balls such that B(0) = B0 and

1. For every s ≥ t ≥ 0, ⋃
B∈B(t)

B ⊂
⋃

B∈B(s)

B.

2. There exists a finite set T ⊂ R+ such that if [t0, t1] ⊂ R+ \T , then
B(t1) = et1−t0B(t0).

3. r(B(t)) = etr(B0) for every t ∈ R+.

Lemma 4.1 (Merging). Assume B1 and B2 are closed balls in R
n such

that B1 ∩ B2 �= ∅. Then there exists a closed ball B such that r(B) =
r(B1) + r(B2) and B1 ∪ B2 ⊂ B.

Proof. If B1 = B(a1, r1) and B2 = B(a2, r2), let

B = B

(
r1a1 + r2a2

r1 + r2
, r1 + r2

)
.

Proof of the theorem. We first perform growing, starting from B0. We let
B(t) = etB0 for every t ≥ 0 and let t0 be the supremum of the times such
that B(t) is a collection of disjoint closed balls. If t0 = +∞, we are done.

If not, then the balls in B(t0) have disjoint interiors but some have
intersecting closures. Then we perform merging. Assume B1, B2 ∈ B(t0)
have intersecting closures and call r1, r2 their radii. Then we group them
into a larger ball B with radius r = r1 + r2 using Lemma 4.1. We then
remove B1, B2 from the collection B(t0) and add to it B. Repeating this
operation enough times, we get a family B′(t0) of balls with nonintersect-
ing closures. Moreover r(B(t0)) = r(B′(t0)) and ∪B∈B(t0)B ⊂ ∪B∈B′(t0)B.
Finally B′(t0) contains strictly fewer balls than B(t0). We then define
B(t0) = B′(t0), and perform growing starting from B(t0).

We may repeat this process to define a family B(t) of disjoint closed
balls for every t ≥ 0. Indeed the merging process can occur only a finite
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number of times since it strictly decreases the number of balls in the
collection which was finite to begin with. Property 1 is clearly satisfied.
If we define T to be the set of times at which merging occurs, Property 2
is satisfied as well. Property 3 is obvious for t = 0 and is clearly preserved
during growing and merging, hence it is true for all t ≥ 0.

Remark 4.2. We cannot ensure uniqueness in this construction because
there is a choice in the order in which we merge the balls if there are
more than two intersecting balls at a given t.

ω

B(0)

B(t)

Figure 4.1: Ball growth starting from an initial set ω.

Additional properties of this construction follow.

Definition 4.1. [and notation] Let F(x, r) be a function defined on R
2×

R+. We will also see F as a function defined on the set of all closed balls,
and write F(B) for F(x, r) if B = B(x, r). We will also write F(B) as a
shorthand for

∑
B∈B F(B) if B is a collection of balls.

We say that F is monotonic if F is continuous with respect to r and
for any families of disjoint closed balls B,B′ such that ∪B∈BB ⊂ ∪B∈B′B

F(B) ≤ F(B′).

This implies, in particular, that F is nondecreasing in r.
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Proposition 4.1. Let F : R
2 × R+ → R+ be monotonic in the above

sense. Let B0 be a finite collection of disjoint closed balls and {B(t)}t∈R+

satisfying the results of Theorem 4.2, then, for every s ≥ 0,

F(B(s)) −F(B0) ≥
s∫

t=0

∑
B(x,r)∈B(t)

r
∂F
∂r

(x, r) dt, (4.5)

and for every B ∈ B(s), we have

F(B) −F(B0 ∩ B) ≥
s∫

t=0

∑
B(x,r)∈B(t)∩B

r
∂F
∂r

(x, r) dt. (4.6)

Remark 4.3. If F is C1 with respect to r, then (4.5) clearly makes
sense. If F is only continuous, then the integral still makes sense if we
see ∂F

∂r (x, .) as a measure, which we can do since F is monotonic with
respect to r. Note that in this case, and since F is continuous with
respect to r, this measure has no atoms and therefore the meaning of∫ b
a

∂F
∂r (x, r) dt is unambiguous; that is, does not depend on whether the

endpoints are included or excluded.

Proof. Let T be the finite set of Theorem 4.2. Then (0, s) \ T may be
written as a disjoint union ∪k

i=1(si−1, si), where s0 = 0 and sk = s.
Writing B(t) = {B1(t), . . . , Bn(t)} we have Bi(t) = et−s0Bi(0) for t ∈
[s0, s1). Letting Bi(t) = B(xi, ri(t)) we thus have ri

′(t) = ri(t) and then

d

dt
F(B(t)) =

n∑
i=1

d

dt
F(xi, ri(t)) =

n∑
i=1

ri(t)
∂

∂r
F(xi, ri(t)).

Integrating on (s0, s1) we find

F(B(s1))− −F(B(s0)) =

s1∫
t=s0

∑
B(x,r)∈B(t)

r
∂F
∂r

(x, r) dt,

where we have written F(B(s1))− for the limit of F(B(t)) as t increases
to s1. By the monotonicity of F , this is smaller than F(B(s1)) hence

F(B(s1)) −F(B(s0)) ≥
s1∫

t=s0

∑
B(x,r)∈B(t)

r
∂F
∂r

(x, r) dt.
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Repeating this in every interval (si−1, si) and summing yields the result
(4.5).

Let now B be a ball in B(s). Observe that from assertion 1 of Theorem
4.2 that for t ≤ s, the balls in B(t) found before are either included in
B, or do not intersect B. Starting from the initial collection B0 ∩ B, we
get that for t ≤ s, the collection B(t) ∩ B still satisfies the results of
Theorem 4.2 (in other words, we can redo the construction starting from
the initial collection B0 ∩ B and obtain the collection B(t) ∩ B).

We may then apply the result (4.5) with this new restricted family.
It yields

F(B(s) ∩ B) −F(B0 ∩ B) ≥
s∫

t=0

∑
B(x,r)∈B(t)∩B

r
∂F
∂r

(x, r) dt.

But for t = s, the only ball in the new collection B(s) ∩ B is B, hence
by definition F(B(s) ∩ B) = F(B) and (4.6) is proved.

4.3 Lower Bounds for S
1-valued Maps

The construction of the previous section allows us to obtain a result very
similar to Theorem 4.1 if we assume |u| = 1.

Notation: We let

∇Au = ∇u − iAu, ∂A
v u = v · ∇u − i(A · v)u,

where v is a vector.
For a bounded domain Ω ⊂ R

2 and u : Ω → C we let

E(u, Ω) =
1
2

∫
Ω

|∇u|2.

If A : Ω → R
2, we let

EA(u, Ω) =
1
2

∫
Ω

|∇Au|2, (4.7)

and

H(A, Ω) =
1
2

∫
Ω

| curlA|2. (4.8)
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Also, given a map u defined in Ω and a ball B such that u does not
vanish on ∂B, we let

dB =

{
deg(u, ∂B) if B ⊂ Ω
0 otherwise.

For the definition of the degree, see Definition 3.5.
We begin with a simple lemma.

Lemma 4.2. Assume Ω is an open subset of R
2 and ω a compact subset

of Ω. Assume v : Ω \ ω → S
1 is C1. If B, B′ are two finite collections of

disjoint closed balls such that ω ⊂ ∪B∈BB and ∪B∈BB ⊂ ∪B′∈B′B′, then∑
B∈B

|dB| ≥
∑

B′∈B′
|dB′ |.

Proof. First note that under our assumptions, every ball in B is included
in one and only one ball of B′. Then for every B′ ∈ B′ such that B′ ⊂ Ω

deg(v, ∂B′) =
∑
B∈B
B⊂B′

deg(v, ∂B).

Taking absolute values and summing over balls B′ ∈ B′ such that B′ ⊂ Ω
proves the lemma.

The lower bound which is used later on is Proposition 4.3 rather than
the following one, simply bounding the Dirichlet energy of S

1-valued
maps. However, this one is included because it illustrates the method
without being obscured by technicalities.

Proposition 4.2. Assume Ω is an open subset of R
2 and B0 is a finite

collection of disjoint closed balls. Let ω = ∪B∈B0B and let {B(t)}t∈R+

be defined by Theorem 4.2. Then for any v : Ω \ ω → S
1 in C1 and any

s ≥ 0, for every B ∈ B(s), we have

E (v, (B ∩ Ω) \ ω) ≥ π

s∫
0

‖DB‖2(t) dt (4.9)

and

E (v, (B ∩ Ω) \ ω) ≥ π|dB| log
r1

r0
, (4.10)
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where r0 = r(B0), r1 = r(B(s)) = esr0, and

‖DB‖2(t) =
∑

B′∈B(t)∩B

d2
B′ .

Proof. We define

F(x, r) =
1
2

∫
B(x,r)∩Ω

|∇v|2.

We have

∂F
∂r

(x, r) =
1
2

∫
∂B(x,r)∩Ω

|∇v|2 (4.11)

and the crucial inequality (which we prove below):

Lemma 4.3. For any v : ∂B → S
1, where B is a ball of radius r in R

2,
we have

1
2

∫
∂B

|∇v|2 ≥ π
d2

r
, (4.12)

where d = deg(v, ∂B).

We now apply Proposition 4.1. Inserting (4.12) and (4.11) into (4.6)
we find, for every B ∈ B(s),

F(B) −F(B(0) ∩ B) ≥ π

s∫
t=0

∑
B′∈B(t)∩B

d2
B′ dt, (4.13)

proving (4.9). But ∑
B′∈B(t)∩B

d2
B′ ≥

∑
B′∈B(t)∩B

|dB′ |,

and from Lemma 4.2, using the fact that B(s) ∩ B = {B},∑
B′∈B(t)∩B

|dB′ | ≥
∑

B′∈B(s)∩B

|dB′ | = |dB|.
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Replacing this in (4.13) yields F(B) − F(B(0) ∩ B) ≥ π|dB|s. Since
s = log (r1/r0), and since

F(B)−F(B(0)∩B) = E(v, B∩Ω)−
∑

B′∈B0
B′⊂B

E(v, B′∩Ω) ≤ E (v, (B ∩ Ω) \ ω) ,

the inequality (4.10) is proved.

Proof of Lemma 4.3. Let (τ, ν) be respectively a unit tangent and unit
normal vector to ∂B. Then

|∇v|2 = |∂νv|2 + |∂τv|2

therefore,
1
2

∫
∂B

|∇v|2 ≥ 1
2

∫
∂B

|∂τv|2.

But ∫
∂B

|∂τv| ≥
∣∣∣∣∣∣
∫

∂B

(iv, ∂τv)

∣∣∣∣∣∣ = 2π|d|,

thus, using the Cauchy–Schwarz inequality,

1
2

∫
∂B

|∇v|2 ≥ π
|d|2
r

,

which proves the lemma.

We also prove the following variant of Proposition 4.2 which includes
the magnetic potential A.

Proposition 4.3. Assume Ω is an open subset of R
2 and B0 is a finite

collection of disjoint closed balls. Let ω = ∪B∈B0B and let {B(t)}t∈R+ be
defined by Theorem 4.2. Then for any v : Ω\ω → S

1 and any A : Ω → R
2

in C1, for any s ≥ 0 such that r(B(s)) ≤ 1, and for any B ∈ B(s),

EA (v, (B ∩ Ω) \ ω) + r1(r1 − r0)H(A, B ∩ Ω) ≥

π

s∫
t=0

‖DB‖2(t)
(

1 − r(B(t))
2(r1 − r0)

)
dt. (4.14)
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and

EA (v, (B ∩ Ω) \ ω) + r1(r1 − r0)H(A, B ∩ Ω)

≥ π|dB|
(

log
r1

r0
− log 2

)
, (4.15)

where r0 = r(B0), r1 = r(B(s)) = esr0, and

‖DB‖2(t) =
∑

B′∈B(t)∩B

d2
B′ .

The proof relies on:

Lemma 4.4. If B is a ball of radius r in R
2, then for any v : ∂B → S

1,
any A : B → R

2 in C1, and any λ > 0,

1
2

∫
∂B

|∇Av|2 +
λ

2

∫
B

(curlA)2 ≥ π
|dB|2

r

(
1

1 + r
2λ

)
. (4.16)

Proof of Lemma 4.4. Let

X =
∫
B

curlA.

Writing v = eiϕ, choosing the right orientation for the unit vector τ
tangent to ∂B, from Stokes’s formula, we have∫

∂B

τ · (∇ϕ − A) = 2πdB − X.

From Lemma 3.4 and since |v| = 1 on ∂B we have |τ · (∇ϕ−A)| ≤ |∇Av|
on ∂B. Then the Cauchy–Schwarz inequality yields

1
2

∫
∂B

|∇Av|2 ≥ 1
2

(2πdB − X)2

2πr
. (4.17)

On the other hand, by Cauchy–Schwarz again,

λ

2

∫
B

| curlA|2 ≥ λ

2
X2

πr2
. (4.18)

Summing (4.17) and (4.18) and minimizing with respect to X yields
(4.16).
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Proof of Proposition 4.3. We define

F(x, r) = EA(v, B(x, r) ∩ Ω) + r(r1 − r0)H(A, B(x, r) ∩ Ω).

We apply Proposition 4.1 with F defined above. We have

∂F
∂r

(x, r) ≥ 1
2

∫
∂B(x,r)∩Ω

|∇Av|2 +
r1 − r0

2

∫
Ω∩B(x,r)

(curlA)2. (4.19)

Inserting (4.16) with λ = r1 − r0 and (4.19) into (4.6) we find that for
every B ∈ B(s),

F(B) −F(B(0) ∩ B) ≥ π

s∫
t=0

∑
B′∈B(t)∩B

d2
B′

(
1

1 + r(B′)
2λ

)
dt.

But 1/(1 + x) ≥ 1 − x if x ≥ 0, hence for t ∈ (0, s) and every B′ ∈ B(t),

1

1 + r(B′)
2λ

≥ 1 − r(B′)
2λ

≥ 1 − r(B(t))
2λ

= 1 − r(B(t))
2(r1 − r0)

.

We deduce (4.14). Moreover, using Lemma 4.2,∑
B′∈B(t)∩B

d2
B′ ≥

∑
B′∈B(t)∩B

|deg(v, ∂B′)| ≥
∑

B′∈B(s)∩B

|dB′ | = |dB|.

If log r1
r0

≤ log 2, then the desired inequality is trivially true. If not, then

r1 ≥ 2r0 and then, since r(B(t)) ≤ r1, we always have 1 − r(B(t))
2(r1−r0) ≥ 0.

Therefore, replacing with the previous relation in (4.14), we are led to

F(B) −F(B(0) ∩ B) ≥ π|dB|
s∫

t=0

(
1 − r(B(t))

2λ

)
dt.

But from Theorem 4.2, item 3, the antiderivative of r(B(t)) is itself.
Hence the integral of r(B(t)) over [0, s] is equal to r1 − r0, which is equal
to λ and the above reduces to

F(B) −F(B(0) ∩ B) ≥ π|dB|(s − 1/2).

Since s = log (r1/r0) and replacing as in the proof of Proposition 4.2,
the inequality (4.15) follows.
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4.4 Reduction to S
1-valued Maps

The proof of Theorem 4.1 can be reduced to proving a similar lower
bound for u/|u| on various sets. In this section, we will state this propo-
sition precisely and show how Theorem 4.1 follows from it. The proof of
the proposition itself will occupy the remaining sections of this chapter.

First we need to introduce the following notion.

4.4.1 Radius of a Compact Set

Definition 4.2. The radius of a compact set ω ⊂ R
2 is the infimum over

all finite coverings of ω by closed balls B1, . . . , Bk of r(B1)+ · · ·+ r(Bk).
We write it r(ω).

Remark 4.4. 1) Note that in this definition we may assume the covering
is by disjoint balls. Indeed if B1 and B2 satisfy B1 ∩ B2 �= ∅, then
Lemma 4.1 ensures the existence of a ball B such that B1 ∪B2 ⊂ B and
r(B) = r(B1) + r(B2). Using this to group together intersecting balls,
a finite covering may be replaced by a covering by disjoint balls leaving
the sum of radii unchanged.

2) Clearly, if A ⊂ B, then r(A) ≤ r(B).
3) The infimum which defines the radius is not necessarily achieved.

There is a relationship between radius and perimeter:

Proposition 4.4. Assume ω is a compact subset of R
2. Then 2r(ω) ≤

H1(∂ω), where H1 denotes the 1-dimensional Hausdorff measure.

Proof. By definition of the Hausdorff measure, it suffices to show that
if {Bi}i∈N is any covering of ∂ω by open balls, then r(ω) ≤ ∑

i r(Bi).
Since ∂ω is compact it suffices to work with a finite covering, and then
taking the closures and using Lemma 4.1, we may assume the balls are
closed and disjoint. In particular A = R

2 \ ∪k
i=1Bi is connected. Now

if B1, . . . , Bk cover ∂ω, we claim they cover ω and therefore r(ω) ≤∑
i r(Bi), from which the result follows by definition of the Hausdorff

measure. The claim follows by noting that A — which is connected —
intersects the complement of ω because ω is bounded. Thus, if A in-
tersected ω it would also intersect ∂ω, which is impossible from the
definition of A. Thus ω ⊂ R

2 \ A = ∪k
i=1Bi.
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We will use the following variant. Define for any open set Ω and any
compact set ω in R

2

rΩ(ω) = sup
K�Ω

∂K∩ω=∅

r(K ∩ ω). (4.20)

In a way, rΩ(ω) counts the radius of the set obtained from ω by discarding
the connected components which intersect ∂Ω.

Proposition 4.5. Assume Ω is open and ω is compact in R
2. Then

2rΩ(ω) ≤ H1(∂ω ∩ Ω).

Proof. Let K be a compact subset of Ω such that ∂K ∩ ω = ∅. Then
∂(ω ∩ K) = (∂ω) ∩ K ⊂ Ω hence from Proposition 4.4,

2r(K ∩ ω) ≤ H1(∂ω ∩ Ω).

The result follows by taking the supremum over K.

Finally we have:

Proposition 4.6. Assume ω1, ω2 are compact subsets of R
2. Then

r(ω1 ∪ ω2) ≤ r(ω1) + r(ω2).

Proof. If B1 and B2 are finite coverings of ω1 and ω2 respectively by
closed balls, then B1 ∪ B2 is a covering of ω1 ∪ ω2.

4.4.2 Lower Bound on Initial Balls

Proposition 4.7. For any α ∈ (0, 1) there exists ε0(α) > 0 such that,
for any ε < ε0, if Fε(|u|, Ω) ≤ εα−1, the following holds.

There exists a finite collection B0 = {Bi}i∈I of disjoint closed balls
such that, letting V0 = Ωε ∩ ∪B∈B0B we have

1. r(B0) ≤ Cεα/2, where C is a universal constant.

2. {x ∈ Ωε | ||u(x)| − 1| ≥ δ} ⊂ V0, where δ = εα/4.

3. Let v = u/|u| and for any t ∈ (0, 1− δ) let ωt = {x ∈ Ωε | |u(x)| ≤
t}. Then

1
2

∫
V0\ωt

|∇Av|2 +
r(B0)2

2

∫
V0

(curlA)2 ≥ πD0

(
log

r(B0)
rΩε(ωt)

− C

)
.

(4.21)
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Here D0 =
∑

i |di|, where di = deg(v, ∂Bi) if Bi ⊂ Ωε and di = 0
otherwise, C is a universal constant.

The above result would be true and simpler to prove if we replaced
the quantity rΩε(ωt) in the above result by r(ωt), which is larger. However
r(ωt) cannot be compared to H1(∂ωt ∩Ω), which is what we need in the
proof of Theorem 4.1.

4.4.3 Proof of Theorem 4.1

Let B0 be given by Proposition 4.7. Applying Theorem 4.2 we get a
family {B(t)}t∈R+ of collections of disjoint closed balls. Let 1 > r >
r(B0) and B = B(s), with s such that r(B) = r or equivalently r =
esr(B0). Then items 1 and 2 of Theorem 4.1 follow directly from the
corresponding items in Proposition 4.7. It is also obvious that if B1, B2

are the collections of balls corresponding to r1, r2 with r1 > r2, then
every ball in B2 is included in one of the balls in B1. This follows from
item 1 in Theorem 4.2.

We turn to the proof of (4.3).
Since from item 2) the map u does not vanish in Ωε \ V0, we may

apply Proposition 4.3 in Ωε to v = u/|u| and A, to find for every B ∈ B,

EA (v, (B ∩ Ω) \ V0) + r(r − r(B0))H(A, B ∩ Ω) ≥ π|dB| log
r

2r(B0)
,

where dB = deg(v, ∂B) if B ⊂ Ωε and dB = 0 otherwise. Note that if
we let D =

∑
B∈B |dB|, then D ≤ D0 from Lemma 4.2. Summing this

lower bound over all the balls in B and adding this to (4.21) yields for
any t ∈ (0, 1 − δ)

1
2

∫
Vt

|∇Av|2 +
r2

2

∫
V

(curlA)2 ≥ πD

(
log

r

rΩε(ωt)
− C

)
, (4.22)

where

V = Ωε ∩ ∪B∈BB, Vt = V \ ωt = {x ∈ V | |u(x)| > t}.

The rest of the proof of (4.3) consists in integrating (4.22) with re-
spect to t. It relies heavily on the coarea formula. Let U be the interior
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of V . Integrating on U or V is equivalent but the coarea formula is best
formulated on an open set. As above we let v = u/|u| and

Ut = U\ωt = {x ∈ U, |u| > t}, γt = {x ∈ U, |u| = t}, Θ(t) =
1
2

∫
Ut

|∇Av|2.

From the Cauchy–Schwarz inequality, we have

|∇|u||2 +
(1 − t2)2

2ε2
≥ |∇|u||

√
2|1 − t2|

ε
.

Therefore, using the coarea formula,

1
2

∫
U

|∇|u||2 +
1

4ε2

∫
U

(
1 − |u|2)2 ≥ 1

2

+∞∫
0

√
2|1 − t2|

ε
H1(γt) dt. (4.23)

Also, from Fubini’s theorem,

1
2

∫
U

|u|2|∇Av|2 =

+∞∫
0

−t2Θ′(t) dt,

which yields, after integration by parts,

1
2

∫
U

|u|2|∇Av|2 ≥
+∞∫
0

2tΘ(t) dt. (4.24)

Let

I =
1
2

∫
U

|∇Au|2 +
1

4ε2

∫
U

(
1 − |u|2)2 +

r2

2

∫
U

(curlA)2.

Summing (4.23), (4.24) and since, in view of Lemma 3.4, |∇Au|2 =
|u|2|∇Av|2 + |∇|u||2, we have

I ≥
1∫

0

2t

⎡⎣Θ(t) +
r2

2

∫
U

(curlA)2

⎤⎦+
(1 − t2)√

2ε
H1(γt) dt. (4.25)

For any t ∈ (0, δ) we claim that H1(γt) ≥ 2rΩε(ωt). Indeed, from Propo-
sition 4.5 we have 2rΩε(ωt) ≤ H1(Ωε ∩ ∂ωt). But Ωε ∩ ∂ωt is included
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in the set of x ∈ Ωε such that |u(x)| = t. In turn, from Proposition 4.7
and the hypothesis t ∈ (0, δ), this set is included in U . It follows that
Ωε ∩ ∂ωt ⊂ γt and then

2rΩε(ωt) ≤ H1(γt). (4.26)

Now, from (4.22),

Θ(t) +
r2

2

∫
U

(curlA)2 ≥ πD

(
log

r

rΩε(ωt)
− C

)
.

Inserting the above and (4.26) into (4.25), we find

I ≥
1−δ∫
0

2tπD

(
log

r

rΩε(ωt)
− C

)
+

√
2(1 − t2)

ε
rΩε(ωt) dt.

For each t, let us minimize the integrand with respect to rΩε(ωt). The
minimum is achieved for

rΩε(ωt) =
2tπεD√
2(1 − t2)

which gives

I ≥
1−δ∫
0

2tπD
(
log

r

εD
+ f(t)

)
dt,

where f(t) = log( 1−t2√
2πt

) − C. Therefore

I ≥ πD
(
(1 − δ)2 log

r

εD
− C

)
,

where C is a universal constant, namely the integral of the function
t → −2tf(t) on [0, 1].

If πD
(
log r

εD − C
) ≤ 0, then the relation (4.3) is trivially true. If

not, then we can write

I ≥ πD
(
log

r

εD
− 2δ log

r

εD
− C

)
.

Since r ≤ 1 and D ≥ 1 (the case D = 0 was excluded), the contribution
of −2δ log(r/D) to the right-hand side is positive. On the other hand,
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δ = εα/4 therefore, if ε is small enough depending on α, then δ| log ε| ≤ 1
and

I ≥ πD
(
log

r

εD
− 1 − C

)
.

This proves (4.3); it remains to prove (4.4).
Let M = Fε(u, A, Ω). To prove (4.4), we may use (4.23) together

with a mean value argument to find a regular value t ∈ (1/2, 3/4) of |u|
such that 2rΩε(ωt) ≤ H1(γt) ≤ CεM , where C is a universal constant.
Applying (4.26) and Proposition 4.7 we find

1
2

∫
Ut

|∇Av|2 +
r2

2

∫
U

(curlA)2 ≥ πD
(
log

r

CεM
− C

)
.

but since t ∈ (1/2, 3/4) and |u| > t on Ut it holds that |∇Av|2 ≤ 4|∇Au|2
on Ut therefore

4M ≥ 1
2

∫
Ut

|∇Av|2 +
r2

2

∫
U

(curlA)2 ≥ πD
(
log

r

CεM
− C

)
. (4.27)

We conclude by noting that r/εM ≥ ε−α/2 which together with (4.27)
implies

CM ≥ D(α| log ε| − 1)

hereby proving (4.4) if ε is small enough depending on α.
The rest of the chapter is devoted to the proof of Proposition 4.7.

4.5 Proof of Proposition 4.7

4.5.1 Initial Set

Proposition 4.8. For any M, ε, δ > 0 satisfying ε, δ < 1, any u ∈
C1(Ω, C) satisfying Fε(|u|, Ω) ≤ M , we have

r ({x ∈ Ωε, ||u(x)| − 1| ≥ δ}) ≤ C
εM

δ2
,

for some universal constant C, where Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε}.
Proof. Let ρ = |u|. Then

1
2

∫
Ω

|∇ρ|2 +
1

2ε2
(1 − ρ2)2 ≤ M
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and thus using the Cauchy–Schwarz inequality as before∫
Ω

|∇ρ| |1 − ρ2|√
2ε

≤ M.

Using the coarea formula, we find∫
t∈R

|1 − t2|
ε

H1 ({x ∈ Ω, ρ(x) = t}) dt ≤
√

2M. (4.28)

Then from (4.28) and the mean value theorem there exists t ∈ (1− δ, 1−
δ/2) such that

H1 ({x ∈ Ω | |1 − ρ(x)| = t}) ≤ 2
√

2
Mε

δ|1 − t2| ≤ 4
√

2
Mε

δ2
,

indeed |1 − t2| ≥ δ/2 if t ∈ (1 − δ, 1 − δ/2).
Letting ω = {|ρ − 1| ≥ t}, we have

H1(∂ω ∩ Ω) ≤ C
Mε

δ2
. (4.29)

It follows from
1

4ε2

∫
Ω

(1 − ρ2)2 ≤ M

and (1 − t2)2 ≥ δ2/4 that

|ω| ≤ 16Mε2

δ2
.

Therefore there exists some s ∈ (0, ε) such that the length of γ = {x ∈
ω | dist(x, ∂Ω) = s} is less than 16εM/δ2. Letting Ωs = {x ∈ Ω |
dist(x, ∂Ω) > s}, we have ω ∩ ∂Ωs ⊂ γ hence

H1(ω ∩ ∂Ωs) ≤ C
Mε

δ2
. (4.30)

Then (4.29) and (4.30) yield H1(∂(ω ∩ Ωs)) ≤ CMε/δ2. Hence from
Proposition 4.4,

r(ω ∩ Ωs) ≤ C
Mε

δ2
.

Since {x ∈ Ωε | |ρ(x) − 1| ≥ 1 − δ} ⊂ ω ∩ Ωs, the proposition is proved.
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4.5.2 Construction of the Appropriate Initial Collection

In this proof C denotes a generic universal constant. By a collection of
balls, we will always mean a finite collection of disjoint closed balls.

From Proposition 4.8 applied to u with M = εα−1 and δ = εα/4 the
set {x ∈ Ωε | ||u(x)| − 1| ≥ δ} has radius less than Cεα/2 and thus may
be covered by a union of disjoint closed balls U such that

R := r(U) ≤ Cεα/2. (4.31)

The difficulty here consists in finding a collection of balls which works
for each t and contains enough energy, so we split the energy we wish
to bound from below as the energy on B0\U plus the energy over U\ωt.
We choose a set K in order to maximize the first contribution (this is
independent of t). We add to it U and balls obtained by growing the ωt

with smallest total degree, and we finally cover the whole set by balls
which are the desired B0. Let us now go into details.

— Step 1: We may write U as a disjoint union U0∪U1, where U0 con-
tains those balls in U which intersect ∂Ωε, and U1 contains the remaining
balls. Then we define (see Fig. 4.2)

Ω̃ = Ωε \ U0.

Now for any t ∈ (0, 1 − δ), we claim that

rΩε(ωt) ≥ r(ωt ∩ Ω̃). (4.32)

Indeed, since ωt is contained in the interior of U , the set ωt ∩ Ω̃ is con-
tained in the interior of U1, which is a compact subset of Ωε. Thus
r(ωt ∩ Ω̃) = r(ωt ∩ U1) and from (4.20) we have rΩε(ωt) ≥ r(ωt ∩ U1).
The inequality (4.32) follows.

— Step 2: For every t ∈ (0, 1− δ), the set ωt ∩ Ω̃ may be covered by
a collection of balls B0

t of total radius no greater than 2r(ωt ∩ Ω̃). Then
using Theorem 4.2 and since r(ωt ∩ Ω̃) ≤ R, these balls may be grown
into a collection Bt such that

r(Bt) = 2R (4.33)

and, from Proposition 4.3 applied in Ω̃ to v = u/|u| and A, we have
summing (4.15) over all balls in Bt,

EA (v, Vt \ ωt) + 4R2H(A, Vt) ≥ πDt

(
log

2R

2r(ωt ∩ Ω̃)
− log 2

)
, (4.34)
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~Ω
Ω

ε

ε
Ω

Figure 4.2: Ω̃

where we have used the notation (4.7), (4.8), where Vt is the union of
balls in Bt intersected with Ω̃ and where Dt =

∑
B |deg(u, ∂B)|, the sum

running over the balls B ∈ Bt which are included in Ω̃.
There exists t̄ ∈ (0, 1 − δ) such that Dt̄ is minimal. We let

B = Bt̄. (4.35)

— Step 3: Letting m denote the supremum of

F(K) = EA

(
v, (K ∩ Ω̃) \ U

)
+ 4R2H(A, K ∩ Ω̃),

where the supremum runs over compact sets K � Ω such that r(K) <
2R; we can find such a K such that r(K) < 2R and F(K) ≥ m − 1.
Note, in particular, that from (4.33) we have

F(K) + 1 ≥ F(Vt), for every t ∈ (0, 1 − δ).
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We define B0 to be a collection of disjoint closed balls which cover the
balls in B defined by (4.35), as well as K and U . There exists such a
collection with total radius 5R. Clearly, from (4.31), item 1 of Proposi-
tion 4.7 is satisfied and item 2 is satisfied as well. It remains to check
(4.21).

— Step 4: Let K0 be the union of balls in B0 intersected with Ωε.
We have

I := EA(v, K0 \ ωt) + r(B0)2H(A, K0) ≥ F(K) + EA(v, U \ ωt).

It follows, by the definition of K and (4.34), that for every t ∈ (0, 1− δ)

I + 1 ≥ F(Vt) + EA(v, U \ ωt) ≥ EA(v, Vt \ ωt) + 4R2H(A, Vt)

≥ πDt log
2R

4r(ωt ∩ Ω̃)
.

From (4.32) and since r(B0) = 5R, the right-hand side is larger than

πDt

(
log

r(B0)
rΩε(ωt)

− C

)
,

thus (4.21) will be satisfied if we prove that Dt ≥ D0 for every t. By
definition of B, we have Dt ≥ DΩ̃(B), where we have used the notation
DΩ̃(B) for the sum

∑
B |deg(u, ∂B)|, where the sum runs over the balls

in B which are included in Ω̃. But since B0 covers the balls in B, we have
from Lemma 4.2 that DΩ̃(B) ≥ DΩ̃(B0) and therefore Dt ≥ DΩ̃(B0). It
remains to remark that

D0 := DΩε(B0) = DΩ̃(B0).

Indeed if B ∈ B0 and B ⊂ Ωε, then the balls of U which are included in
B are included in Ωε, hence are in U1. Therefore B∩U0 = ∅ and B ⊂ Ω̃.

Bibliographic notes on Chapter 4: As we mentioned, the material
presented here is an improvement of the results of the sequence [166, 169,
170, 175], using the ball-growth idea first introduced independently by
Jerrard and Sandier in [113, 166]. The construction of [113] yields results
in n dimensions for the corresponding n-energy.

Several ball-constructions were previously introduced in the litera-
ture, all dealing with numbers of vortices bounded independently of ε.
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First, in Bethuel–Brezis–Hélein [43], the balls are defined as a disjoint
covering of |u| ≤ 1

2 by balls of radius less than Cε, in number bounded
independently of ε. This requires u to be a solution of (1.3) and the upper
bound on the energy Eε(uε) ≤ C| log ε| to hold. In Bethuel–Rivière [52]
appears the idea of using lower bounds on annuli of larger size than the
balls of [43]. The method again crucially uses the energy upper bound,
and the equation through the Pohozaev identity. It yields balls of radii
εα, α < 1 with corresponding energy lower bounds. This method was
later extended to nonsolutions by Almeida–Bethuel [14] via a parabolic
regularisation of the map u.



Chapter 5

Coupling the Ball Construction
to the Pohozaev Identity
and Applications

The key ingredient here is the Pohozaev identity for solutions of Ginz-
burg–Landau. This identity was already used crucially in Bethuel–Brezis–
Hélein [43], Brezis–Merle–Rivière [61], and its first use on small balls goes
back to Bethuel–Rivière [52] and Struwe [189]. Its consequences were also
explored further in the book of Pacard–Rivière [148]. Here, the idea is
to combine it with the ball-construction method in order to obtain lower
bounds for the energy in terms of the potential term

∫
(1 − |u|2)2 in-

stead of the degree, or equivalently, upper bounds of the potential by
the energy divided by | log ε|. This method works for solutions of the
Ginzburg–Landau equation, without magnetic field as well as with. We
will present the two situations in parallel, in Sections 5.1 and 5.2. In the
third section of the chapter, we present applications to the microscopic
analysis of vortices of solutions of (GL) or (1.3). Among all these re-
sults, only Theorem 5.4 will be used later, for the study of solutions with
bounded numbers of vortices: for Proposition 10.2 and in the course of
the proof of Theorem 11.1.

5.1 The Case of Ginzburg–Landau without Magnetic Field

For simplicity we start with the case of solutions of Ginzburg–Landau
without magnetic field, i.e., we consider u which satisfies

−Δu =
u

ε2
(1 − |u|2) in Ω (5.1)
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with either Dirichlet boundary condition u = g on ∂Ω, |g| = 1, and Ω
starshaped, or Neumann boundary condition ∂u

∂ν = 0 on ∂Ω. We recall
the Ginzburg–Landau energy without magnetic field is written

Eε(u) =
1
2

∫
Ω

|∇u|2 +
(1 − |u|2)2

2ε2
.

The Pohozaev identity consists in multiplying the equation (5.1) by
x · ∇u where x is the coordinate centered at some point, and integrating
over the ball of radius r. If B(x0, r) ∩ ∂Ω = ∅, it gives

1
r

∫
B(x0,r)

(1 − |u|2)2
ε2

=
∫

∂B(x0,r)

(∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2
)

+
(1 − |u|2)2

2ε2
. (5.2)

Integrating this relation over r will yield bounds on the energy on annuli
in terms of

∫ (1−|u|2)2

ε2 . The main difficulty is to deal with the case of
balls intersecting ∂Ω. To handle this, we will perform a reflection in the
Neumann case.

Theorem 5.1 (Pohozaev ball construction). Let u be a solution
of (5.1). Let B0 be a finite collection of disjoint closed balls and let
{B(t)}t∈R+ satisfy the results of Theorem 4.2. Then, letting r0 = r(B0),
there exists a constant C(Ω) such that ∀r0 < r1 < C(Ω), and s being
such that r(B(s)) = r1, we have

1. For every B ∈ B(s) such that B ⊂ Ω,

1
2

∫
B\B0

|∇u|2 +
(1 − |u|2)2

2ε2
≥
⎛⎝1

2

∫
B0∩B

(1 − |u|2)2
ε2

⎞⎠ log
r1

r0
(5.3)

2. If Ω is strictly starshaped and u satisfies the fixed Dirichlet bound-
ary condition u = g, |g| = 1, for every B ∈ B(s) intersecting ∂Ω,

1
2

∫
B\B0

|∇u|2 +
(1 − |u|2)2

2ε2
≥
⎛⎝1

2

∫
B0∩B

(1 − |u|2)2
ε2

⎞⎠ log
r1

r0
− Cr1,

(5.4)

where C depends on Ω and g.
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3. If u satisfies the Neumann boundary condition, there exists a finite
collection of disjoint closed balls B′ covering ∪B∈B(s)B such that
r(B′) ≤ Cr1, and for every B ∈ B′ such that B ⊂ Ω, (5.3) holds,
while for every B ∈ B′ intersecting ∂Ω,

C

∫
B

|∇u|2 +
(1 − |u|2)2

2ε2
≥
⎛⎝1

2

∫
B0∩B

(1 − |u|2)2
ε2

⎞⎠ log
r1

r0
, (5.5)

where C depends on Ω.

Remark 5.1. 1. Since the balls are disjoint, these estimates can be
summed over all the balls to give a single estimate over the union.

2. We do not need any assumption of the energy of u, rather this
proves a lower bound for it.

We start with a lemma, which is a generalization of (5.2). Let us
denote by

Tij = (∂iu, ∂ju) − 1
2

(
|∇u|2 +

1
2ε2

(1 − |u|2)2
)

δij , (5.6)

the “stress-energy tensor” as in Definition 3.4, but without magnetic
field. As in Proposition 3.7, a direct calculation yields that

∂1T1i + ∂2T2i =
(
∂iu,

(
Δu +

u

ε2
(1 − |u|2)

))
hence if u is a solution of (5.1), we have

∂1T1i + ∂2T2i = 0 for every i = 1, 2. (5.7)

Lemma 5.1. Let u be a solution of (5.1) and U be an open subset of Ω,
then, for every vector-field X,∫

∂U

∑
i,j

XjνiTij =
∫
U

∑
i,j

(∂iXj)Tij , (5.8)

where the indices i, j run over 1, 2 and ν denotes the outer unit normal
to ∂U .

Proof. This relation comes from multiplying (5.7) by Xi, summing over
i and integrating over U . In short notation, it yields

∫
U X1div Ti1 +

X2div Ti2 = 0. Integrating by parts leads to (5.8).
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Observe that, τ denoting the unit tangent vector to ∂U , we have on ∂U∑
i,j

XjνiTij = XνTνν + XτTντ (5.9)

in obvious notation (with Xν = X · ν and Xτ = X · τ).
The Pohozaev identity (5.2) follows by taking the particular choice

X(x) = x − x0 and U = B(x0, r). It was used in [43] to obtain the
following result.

Lemma 5.2 (Boundedness of the potential [43]). Assume Ω is
strictly starshaped and u is a solution of (5.1) with u = g on ∂Ω and
|g| = 1 (g independent of ε), then there exists a constant C depending
only on g and Ω such that∫

Ω

(1 − |u|2)2
ε2

+
∫
∂Ω

∣∣∣∣∂u

∂ν

∣∣∣∣2 ≤ C. (5.10)

Proof. Assume that Ω is strictly starshaped around x0 and apply Lemma
5.1 in Ω with the particular choice X(x) = x−x0. We then have ∂iXj =
δij , and hence∑

i,j

(∂iXj)Tij = T11 + T22 = − 1
2ε2

(1 − |u|2)2. (5.11)

Also on ∂Ω, XνTνν + XτTντ is equal to

1
2

(
|∂νu|2 − |∂τu|2 − (1 − |u|2)2

2ε2

)
(x − x0) · ν + (∂τu, ∂νu)(x − x0) · τ.

Combining this with (5.8) and (5.9), we are led to∫
Ω

(1 − |u|2)2
ε2

=
∫
∂Ω(x − x0) · ν

(∣∣∣ ∂g
∂τ

∣∣∣2 − ∣∣∂u
∂ν

∣∣2)
−2(x − x0) · τ

(
∂g
∂τ , ∂u

∂ν

)
. (5.12)

Since Ω is strictly starshaped around x0, there exists a constant α > 0
such that (x − x0) · ν > α on ∂Ω. Using this and a Cauchy Schwarz
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inequality in (5.12), we find

∫
Ω

(1 − |u|2)2
ε2

≤ C

∫
∂Ω

∣∣∣∣∂g

∂τ

∣∣∣∣2 − α

∫
∂Ω

∣∣∣∣∂u

∂ν

∣∣∣∣2 − C

∫
∂Ω

(
∂g

∂τ
,
∂u

∂ν

)

≤ C

∫
∂Ω

∣∣∣∣∂g

∂τ

∣∣∣∣2 − α

∫
∂Ω

∣∣∣∣∂u

∂ν

∣∣∣∣2 +
α

2

∫
∂Ω

∣∣∣∣∂u

∂ν

∣∣∣∣2 + C

∫
∂Ω

∣∣∣∣∂g

∂τ

∣∣∣∣2
where the constant C depends only on Ω. Consequently,∫

Ω

(1 − |u|2)2
ε2

+
α

2

∫
∂Ω

∣∣∣∣∂u

∂ν

∣∣∣∣2 ≤ C

where C depends on Ω and g, and thus the lemma is proved.

Proof of Theorem 5.1, interior result and Dirichlet case. The method
consists in a ball-growth procedure, as in Chapter 4.

Following Chapter 4, let us denote by

F(x, r) =
1
2

∫
B(x,r)∩Ω

|∇u|2 +
(1 − |u|2)2

2ε2
.

It is easy to check that F is monotonic (in the sense of Definition 4.1).
Given the family {B(t)}, s > 0 and r1 = r(B(s)), applying Proposi-

tion 4.1, we obtain that for every B ∈ B(s),

F(B) −F(B ∩ B0) ≥
s∫

0

∑
B(x,r)∈B(t)∩B

r
∂F
∂r

(x, r) dt. (5.13)

But,

r
∂F
∂r

(x, r) =
r

2

∫
∂B(x,r)∩Ω

|∇u|2 +
(1 − |u|2)2

2ε2
. (5.14)

Now let x0 be any point in Ω and let us apply Lemma 5.1 in B(x0, r)
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with X(x) = x−x0. Using (5.11) and (5.9) as before, we find the relation∫
B(x0,r)∩Ω

(1 − |u|2)2
ε2

=

∫
∂(B(x0,r)∩Ω)

(x − x0) · ν
(∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2 +
(1 − |u|2)2

2ε2

)

− 2(x − x0) · τ
(

∂u

∂ν
,
∂u

∂τ

)
. (5.15)

Observe that (5.2) follows if B(x0, r) ∩ ∂Ω = ∅. Therefore, if B ∈ B(s)
is such that B ⊂ Ω, it does not intersect ∂Ω and, combining (5.2) and
(5.14), we can write that

r
∂F
∂r

(x, r) =
1
2

∫
B(x,r)

(1 − |u|2)2
ε2

+ r

∫
∂B(x,r)

∣∣∣∣∂u

∂ν

∣∣∣∣2

≥ 1
2

∫
B(x,r)

(1 − |u|2)2
ε2

. (5.16)

Inserting this into (5.13), and using the fact that B(t) always contains
B0 ∩ B, we are led to

1
2

∫
B\B0

|∇u|2 +
(1 − |u|2)2

2ε2
≥

s∫
0

1
2

∫
B(t)∩B

(1 − |u|2)2
ε2

dt

≥ s

2

∫
B0∩B

(1 − |u|2)2
ε2

=
1
2

log
r1

r0

∫
B0∩B

(1 − |u|2)2
ε2

, (5.17)

in view of the definition of r1. This concludes the proof of item 1).

Let us now prove item 2). In the Dirichlet case, let us return to (5.15).
Since ∂u

∂τ then depends only on g, |u| = 1 on ∂Ω, and since (5.10) holds,
we see that the contributions on ∂Ω ∩ B(x0, r) are O(|x − x0|) = O(r)
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as r → 0 and thus∫
B(x,r)∩Ω

(1 − |u|2)2
ε2

= r

∫
∂B(x,r)∩Ω

(∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2
)

+
(1 − |u|2)2

2ε2
+O(r)

In the case where B intersects ∂Ω, we can write in place of (5.16),

r
∂F
∂r

(x, r) =
1
2

∫
B(x,r)∩Ω

(1 − |u|2)2
ε2

+ r

∫
∂B(x,r)∩Ω

∣∣∣∣∂u

∂ν

∣∣∣∣2 + O(r)

≥ 1
2

∫
B(x,r)∩Ω

(1 − |u|2)2
ε2

+ O(r).

Then, in place of (5.17),

1
2

∫
B\B0

|∇u|2 +
(1 − |u|2)2

2ε2
≥

s∫
0

1
2

∫
B(t)∩B

(1 − |u|2)2
ε2

− O(r(B(t)) dt

≥ s

2

∫
B0∩B

(1 − |u|2)2
ε2

− O

⎛⎝ s∫
0

(etr(B0)) dt

⎞⎠
=

1
2

∫
B0∩B

(1 − |u|2)2
ε2

log
r1

r0
− O(r(B(s))).

And since r(B(s)) = r1, we conclude that (5.4) holds.

Proof of Theorem 5.1 in the Neumann case. In this case, we need to ex-
tend u to a slightly larger domain Ω̃ through a reflection. Thus let Ω̃
denote the tubular neighborhood of size R of Ω, i.e., Ω ⊂ Ω̃. The proce-
dure is as follows: let ψ be a smooth mapping of Ω onto the unit disc.
It can be extended to a mapping from Ω̃ to a domain strictly contain-
ing the unit disc. Then let R denote the reflection with respect to the
unit circle defined in complex coordinates by R(z) = z

|z|2 . The mapping

ϕ = ψ−1 ◦ R ◦ ψ then maps Ω̃\Ω to Ω. One can check that it is the
identity on ∂Ω, that it is C2 in Ω̃\Ω, and that Dϕ(x) converges to the
orthogonal reflection relative to the tangent to ∂Ω at x0 as x → x0 ∈ ∂Ω,
at a rate bounded by C|x − x0|.
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We can then extend u, the solution of (5.1) with ∂u
∂ν = 0 on ∂Ω, by

u = u in Ω and
u(x) = u(ϕ(x)) if x ∈ Ω̃\Ω.

Since Dϕ converges to a reflection with respect to the boundary as x →
∂Ω and ∂u

∂ν = 0 on ∂Ω, we find that u is C1 in Ω̃.
The method is the same as before, i.e., we define

F(x, r) =
1
2

∫
B(x,r)

|∇u|2 +
(1 − |u|2)2

2ε2
. (5.18)

Again F is monotonic and

r
∂F
∂r

(x, r) =
r

2

∫
∂B(x,r)

|∇u|2 +
(1 − |u|2)2

2ε2
.

Again, given {B(t)}, we consider s such that r1 = r(B(s)) < R.
We need to add to the collection of balls B(s) the ϕ(B ∩ (Ω̃\Ω)) for all
B ∈ B(s) which intersect ∂Ω. The ϕ(B ∩ (Ω̃\Ω)) are not balls, however
their total radius is controlled by Cr1, and thus they can be covered by
a finite collection of disjoint closed balls of total radius ≤ Cr1. Let us
add them to the collection B(s). These new balls may intersect some
of the balls in B(s). If this is the case, then we perform merging of the
intersecting balls according to Lemma 4.1, until we obtain a family of
disjoint closed balls, still of radius ≤ Cr1. This is the final family we
need, it is denoted B′. Observe that by construction, any ball in B′ that
did not belong to the collection B(s) has to intersect ∂Ω. Hence, all the
balls B ∈ B′ which do not intersect ∂Ω are balls of B(s) and for them,
the proof of item 1) applies and gives the result.

We now only need to deal with the final balls which intersect ∂Ω.
Since r(B′) ≤ Cr1, they will always remain inside Ω̃ if r1 < R/C. We
claim that

Lemma 5.3. For every B(x0, r) ⊂ Ω̃, we have∫
B(x0,r)

(1 − |u|2)2
ε2

+ O (rF(x0, r)) =

r

∫
∂B(x0,r)

∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2 +
(1 − |u|2)2

2ε2
+ O

(
r2 ∂F

∂r
(x0, r)

)
. (5.19)
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The proof is postponed until later in this section.
Now let B ∈ B(s) be a ball possibly intersecting ∂Ω. Applying Propo-

sition 4.1 to (5.18), we obtain that

F(B) −F(B ∩ B0) ≥
s∫

0

∑
B(x,r)∈B(t)∩B

r
∂F
∂r

(x, r) dt. (5.20)

But

r
∂F
∂r

(x, r) =
r

2

∫
∂B(x,r)

|∇u|2 +
(1 − |u|2)2

2ε2
.

In view of Lemma 5.3, we can then write that

r
∂F
∂r

(x, r) =
1
2

∫
B(x,r)

(1 − |u|2)2
ε2

+ r

∫
∂B(x,r)

∣∣∣∣∂u

∂ν

∣∣∣∣2

+ O

(
r2 ∂F

∂r
(x, r)

)
+ O (rF(x, r))

≥ 1
2

∫
B(x,r)

(1 − |u|2)2
ε2

+ O

(
r2 ∂F

∂r
(x, r)

)
+ O (rF(x, r)) .

Let us sum these relations over the balls B(x, r) ∈ B(t) which are
included in B, and integrate this relation for t ∈ [0, s]. After inte-
gration, the errors on the right-hand side are bounded respectively by
r(B(s))F(B) (this follows from (5.20)) and by F(B)

∫ s
0 etr(B(0)) dt =

r(B(s))F(B) = r1F(B). Finally, inserting this into (5.20), we are led to

1
2

∫
B\B0

|∇u|2 +
(1 − |u|2)2

2ε2
≥

s∫
0

1
2

∫
B(t)∩B

(1 − |u|2)2
ε2

dt − Cr1F(B)

≥ s

2

∫
B0∩B

(1 − |u|2)2
ε2

− Cr1F(B).

And since s = log r1
r0

, we conclude that(
1
2

+ Cr1

)∫
B

|∇u|2 +
(1 − |u|2)2

2ε2
≥ 1

2

∫
B0∩B

(1 − |u|2)2
ε2

log
r1

r0
(5.21)
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but ∫
B

|∇u|2 +
(1 − |u|2)2

2ε2
=

1
2

∫
B∩Ω

|∇u|2 +
(1 − |u|2)2

2ε2

+
1
2

∫
B∩(Ω̃\Ω)

|∇u|2 +
(1 − |u|2)2

2ε2
.

Moreover, doing a change of variables, from the properties of ϕ,∫
B∩(Ω̃\Ω)

|∇u|2 +
(1 − |u|2)2

2ε2
≤ (1 + O(r))

∫
ϕ(B∩(Ω̃\Ω))

|∇u|2 +
(1 − |u|2)2

2ε2
.

Returning to (5.21) we may write that∫
B0∩B

(1 − |u|2)2
ε2

log
r1

r0
≤ (5.22)

C

⎛⎜⎝ ∫
B∩Ω

|∇u|2 +
(1 − |u|2)2

2ε2
+

∫
ϕ(B∩(Ω̃\Ω))

|∇u|2 +
(1 − |u|2)2

2ε2

⎞⎟⎠ .

Now let B1 be a ball belonging to the final family B′ and intersecting ∂Ω.
We may add up the relations (5.22) obtained for all of the balls B ∈ B(s)
contained in B(s) such that B ⊂ B1 or ϕ(B) ⊂ B1. Since these B’s are
disjoint (and so are the ϕ(B)’s), each point in B1 belongs to at most one
ball B ∈ B(s) and/or one ϕ(B), so is at most counted twice. This means
we can write∫

B0∩(∪B⊂B1
B)

(1 − |u|2)2
ε2

log
r1

r0
≤ C

∫
B1

|∇u|2 +
(1 − |u|2)2

2ε2
.

Since B0 is covered by the collection B(s), we have B0 ∩ (∪B⊂B1B) =
B0 ∩ B1, and we may conclude that (5.5) holds for B1.

Proof of Lemma 5.3. If B(x0, r) does not intersect ∂Ω, then this was
already established. Let thus B(x0, r) be a ball intersecting ∂Ω.

Let D1 = B(x0, r) ∩ Ω and D2 = B(x0, r) ∩ (R2\Ω). We may apply
directly (5.15) in D1 and get
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∫
B(x0,r)∩Ω

(1 − |u|2)2
ε2

=
∫

B(x0,r)∩∂Ω

(x − x0) · ν
(∣∣∣∣∂u

∂τ

∣∣∣∣2 +
(1 − |u|2)2

2ε2

)

+
∫

∂B(x0,r)∩Ω

r

(∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2 +
(1 − |u|2)2

2ε2

)
(5.23)

where the terms in ∂u
∂ν on ∂Ω have vanished due to the Neumann bound-

ary condition.
Let us now write a Pohozaev type identity on D′

2 = ϕ(D2) ⊂ Ω. We
define y = ϕ(x) and Y (y) = Dϕ(x)(x−x0), i.e., the push-forward of the
vector field X(x) = x−x0 by ϕ. Applying Lemma 5.1 to the vector field
Y on D′

2, we find ∫
D′

2

∑
i,j

(∂iYj)Tij =
∫

∂D′
2

∑
i,j

YjνiTij . (5.24)

Let us study each of the terms in (5.24). First, since Yj(y) =∑
k ∂kϕj(x)Xk(x) =

∑
k

∂yj

∂xk
Xk(x), we have

∂Yj

∂yi
=
∑
k,l

∂2yj

∂xk∂xl

∂xl

∂yi
Xk(x) +

∂yj

∂xk

∂Xk

∂xl

∂xl

∂yi
.

But ∂Xk
∂xl

= δkl, hence we find

∂Yj

∂yi
=

⎛⎝∑
k,l

∂2yj

∂xk∂xl

∂xl

∂yi
Xk(x)

⎞⎠+ δij .

In view of the behavior of y = ϕ(x) mentioned above (bounded second
derivative, invertible first differential), the first term on the right-hand
side is bounded by a constant times |X| = |x − x0| = r. In other words

∂iYj = δij + O(r).

Inserting this into (5.24) and using the expression of Tij , we find that
the left-hand side of (5.24) is

−1
2

∫
D′

2

(1 − |u|2)2
ε2

+ O(r|Tij |).
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Since |Tij | ≤ C
(
|∇u|2 + (1−|u|2)2

2ε2

)
this can be written∫

D′
2

∑
i,j

(∂iYj)Tij = −1
2

∫
D′

2

(1 − |u|2)2
ε2

+ O(rEε(u, B(x0, r))), (5.25)

where Eε(u, U) denotes

1
2

∫
U

|∇u|2 +
(1 − |u|2)2

2ε2
.

Let us now deal with the right-hand side of (5.24). We recall that∫
∂D′

2

∑
i,j

YjνiTij =
∫

∂D′
2

YνTνν + YτTντ .

There are two contributions to this term, the one on ∂Ω and the one on
∂D′

2∩Ω. For the term on ∂Ω, observe that from the Neumann boundary
condition we have Tντ = 0 on ∂Ω. Also Yν = Y · ν = −(x − x0) · ν by
definition of Y = Dϕ(x − x0) (since Dϕ coincides with the reflection
with respect to ∂Ω on ∂Ω). Thus the contribution of that part is∫

∂Ω∩B(x0,r)

(x − x0) · ν
(∣∣∣∣∂u

∂τ

∣∣∣∣2 +
(1 − |u|2)2

2ε2

)
.

For the contribution on ∂D′
2∩Ω, we use the fact that Dϕ is the reflection

relative to the tangent to ∂Ω up to O(r), hence Yν = Y · ν = r + O(r2)
and Yτ = O(r2). We finally obtain that

∫
∂D′

2

∑
i,j

YjνiTij =
1
2

∫
∂Ω∩B(x0,r)

(x − x0) · ν
(∣∣∣∣∂u

∂τ

∣∣∣∣2 +
(1 − |u|2)2

2ε2

)

− r

2

∫
∂D′

2∩Ω

∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2 +
(1 − |u|2)2

2ε2

+ O

⎛⎜⎝r2

∫
∂D′

2∩Ω

|∇u|2 +
(1 − |u|2)2

2ε2

⎞⎟⎠ .
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Combining this with (5.25) and inserting into (5.24), we find∫
D′

2

(1 − |u|2)2
ε2

+ O (rEε(u, B(x0, r)))

= −
∫

∂Ω∩B(x0,r)

(x − x0) · ν
(∣∣∣∣∂u

∂τ

∣∣∣∣2 +
(1 − |u|2)2

2ε2

)

+ r

∫
∂D′

2∩Ω

∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2 +
(1 − |u|2)2

2ε2

+ O

⎛⎜⎝r2

∫
∂D′

2∩Ω

|∇u|2 +
(1 − |u|2)2

2ε2

⎞⎟⎠
Adding up this relation to (5.23), and observing that the contributions
on ∂Ω cancel out, we are led to∫

B(x0,r)∩Ω

(1 − |u|2)2
ε2

+
∫
D′

2

(1 − |u|2)2
ε2

+ O (rEε(u, B(x0, r)))

= r

∫
∂B(x0,r)∩Ω

∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2 +
(1 − |u|2)2

2ε2

+ r

∫
∂D′

2∩Ω

(∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2 +
(1 − |u|2)2

2ε2

)

+ O

⎛⎜⎝r2

∫
∂D′

2∩Ω

|∇u|2 +
1

2ε2
(1 − |u|2)2

⎞⎟⎠ .

Then, we need to do a change of variables, writing x = ϕ(x′). We claim
that ∫

D′
2

(1 − |u|2)2
ε2

=
∫
D2

(1 − |u|2)2
ε2

(1 + O(r)),
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∫
∂D′

2∩Ω

∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2 +
1

2ε2
(1 − |u|2)2 =

∫
∂B(x0,r)∩(R2\Ω)

∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2 +
(1 − |u|2)2

2ε2

+ O

⎛⎜⎝r

∫
∂D′

2∩Ω

|∇u|2 +
(1 − |u|2)2

2ε2

⎞⎟⎠ .

Indeed, the change of variables involves the Jacobian |det Dϕ| =
1 + O(r) and modifications of the terms in ∇u. The result follows since
Dϕ approaches the reflection with respect to the tangent to ∂Ω at the
rate r. We finally are left with∫

D1

(1 − |u|2)2
ε2

+
∫
D2

(1 − |u|2)2
ε2

+ O (rEε(u, B(x0, r)))

= r

∫
∂B(x0,r)∩Ω

∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2 +
(1 − |u|2)2

2ε2

+ r

∫
∂B(x0,r)∩(R2\Ω)

∣∣∣∣∂u

∂τ

∣∣∣∣2 − ∣∣∣∣∂u

∂ν

∣∣∣∣2 +
(1 − |u|2)2

2ε2

+ O

⎛⎜⎝r2

∫
∂B(x0,r)

|∇u|2 +
(1 − |u|2)2

2ε2

⎞⎟⎠ .

Since D1 ∪ D2 = B(x0, r), we have established (5.19).

5.2 The Case of Ginzburg–Landau
with Magnetic Field

We now consider (u, A) to be a solution to the Ginzburg–Landau equa-
tions with magnetic field (GL). The Pohozaev identity is again a direct
consequence of Proposition 3.7.

Lemma 5.4. Let (u, A) be a solution of (GL) and U be an open subset
of Ω, then, for every vector field X, Tij denoting the stress-energy tensor
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with magnetic field (see Definition 3.4), we have∫
∂U

∑
i,j

XjνiTij =
∫
U

∑
i,j

(∂iXj)Tij ,

where the indices i, j run over 1, 2 and ν denotes the outer unit normal
to ∂U .

The proof is exactly the same as for Lemma 5.1. Choosing X = x−x0

and replacing the Tij ’s by their expressions as we did in the proof of
(5.15), we find the Pohozaev identity∫

B(x0,r)∩Ω

(1 − |u|2)2
ε2

− 2h2

=
∫

∂(B(x0,r)∩Ω)

(x − x0) · ν
(
|∇Au · τ |2 − |∇Au · ν|2 +

(1 − |u|2)2
2ε2

− h2

)
− 2(x − x0) · τ (∇Au · τ,∇Au · ν) . (5.26)

Using the same growing and merging of balls method, we deduce the
analogue of Theorem 5.1, where we recall Fε is defined in (4.1).

Theorem 5.2. Pohozaev ball construction — case with magnetic
field. Let (u, A) be a solution of (GL). Let B0 be a finite collection of
disjoint closed balls and let {B(t)}t∈R+ satisfy the results of Theorem 4.2.
Then, letting r0 = r(B0) and r1 = r(B(s)), there exists a constant C(Ω)
depending only on Ω such that for any s > 0 such that r1 < C(Ω), we
have

1. For any B ∈ B(s) such that B ⊂ Ω,

1
2

∫
B\B0

|∇Au|2 +
(1 − |u|2)2

2ε2

≥
⎛⎝1

2

∫
B0∩B

(1 − |u|2)2
ε2

− Cr(B)Fε(u, A, B)

⎞⎠
· log

r1

r0
− Cr(B)Fε(u, A, B). (5.27)
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2. There exists a finite collection of disjoint closed balls B′ covering
∪B∈B(s)B such that r(B′) ≤ Cr1, and for every B ∈ B′ such that
B ⊂ Ω, (5.27) holds, while, for every B ∈ B′ intersecting ∂Ω,

C

∫
B\B0

|∇Au|2 +
(1 − |u|2)2

2ε2

≥
⎛⎝1

2

∫
B0∩B

(1 − |u|2)2
ε2

− Cr(B)Fε(u, A, B)

⎞⎠ log
r1

r0

− Cr(B)Fε(u, A, B), (5.28)

where C is some constant depending only on ω.

Proof. The proof follows the same lines as that of the Neumann case of
Theorem 5.1.
— Step 1: extension of (u, A). Rather than extending u and A, we extend
|u| and ∇Au. We use the same mapping ϕ as before, which maps Ω̃\Ω
to Ω. We define |u|(x) = |u|(ϕ(x)) if x ∈ Ω̃\Ω (and = |u|(x) if x ∈ Ω),
and

∇Au(x) = (Dϕ)−1(ϕ(x))∇Au(ϕ(x)) if x ∈ Ω̃\Ω.

Since ν · ∇Au = 0 on ∂Ω, and Dϕ is the orthogonal reflection with re-
spect to the tangent to ∂Ω there, we find that ∇Au extends continuously
to Ω̃. We also extend h by h = h(ϕ(x)) in Ω̃\Ω.

— Step 2: Ball-growth. We denote by

F(x, r) =
1
2

∫
B(x,r)

|∇Au|2 +
(1 − |u|2)2

2ε2
.

It is monotonic, and

r
∂F
∂r

(x, r) =
r

2

∫
∂B(x,r)

|∇Au|2 +
(1 − |u|2)2

2ε2
.

Given the family {B(t)}, s > 0, and r1 = r(B(s)), let B ∈ B(s). If B ⊂ Ω
then, we can work in Ω without the extension, and (5.26) yields for any
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B(x0, r) ⊂ B,∫
B(x0,r)

(1 − |u|2)2
ε2

− 2h2

= r

∫
∂B(x0,r)

|∇Au · τ |2 − |∇Au · ν|2 +
(1 − |u|2)2

2ε2
− h2.

We deduce

r
∂F
∂r

(x, r) ≥ 1
2

∫
B(x,r)

(
(1 − |u|2)2

ε2
− 2h2

)
+

r

2

∫
∂B(x,r)

h2.

Applying Proposition 4.1 as before, we find

1
2

∫
B\B0

|∇Au|2 +
(1 − |u|2)2

2ε2
≥

s∫
0

∑
B(x,r)∈B(t)∩B

r
∂F
∂r

(x, r) dt

≥ 1
2

∫
B0∩B

(1 − |u|2)2
ε2

log
r1

r0

−
s∫

0

∑
B(x,r)∈B(t)∩B

⎛⎜⎝ ∫
B(x,r)

h2 − r

2

∫
∂B(x,r)

h2

⎞⎟⎠ dt.

We claim that

s∫
0

∑
B(x,r)∈B(t)∩B

⎛⎜⎝ ∫
B(x,r)

h2 − r

2

∫
∂B(x,r)

h2

⎞⎟⎠ dt

≤ C

(
s +

1
2

)
r(B)‖h‖2

H1(B)

≤ C

(
log

r1

r0
+ 1

)
r(B)Fε(u, A, B). (5.29)

This concludes the proof in the case B ⊂ Ω. Let us now prove (5.29).
Observe that if h2 is constant over B, then the left-hand side of (5.29)
is identically 0. We may thus prove the inequality with h2 − h̃2 in the
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left-hand side instead of h2, where h̃2 denotes the average of h2 over B.
Let us now observe that∣∣∣∣∣∣∣

s∫
0

∑
B(x,r)∈B(t)∩B

∫
B(x,r)

(h2 − h̃2) dt

∣∣∣∣∣∣∣ ≤ s

∫
B

|h2 − h̃2|

while using Proposition 4.1 applied to F(x, r) =
∫
B(x,r) |h2 − h̃2| we get∣∣∣∣∣∣∣

s∫
0

∑
B(x,r)∈B(t)∩B

r

2

∫
∂B(x,r)

(h2 − h̃2)dt

∣∣∣∣∣∣∣ ≤
1
2

∫
B

|h2 − h̃2|.

We deduce
s∫

0

∑
B(x,r)∈B(t)∩B

⎛⎜⎝ ∫
B(x,r)

h2 − r

2

∫
∂B(x,r)

h2

⎞⎟⎠ dt ≤
(

s +
1
2

)∫
B

|h2 − h̃2|.

(5.30)

But, by Poincaré’s inequality, we have∫
B

|h2−h̃2| ≤ Cr(B)
∫
B

|∇h2| ≤ Cr(B)
∫
B

|h||∇h| ≤ Cr(B)
∫
B

|∇h|2+h2.

On the other hand, since (u, A) is a solution of (2.4) we have |∇h| ≤
|∇Au| from Lemma 3.3 and thus 1

2

∫
B |∇h|2 + h2 ≤ Fε(u, A, B). Insert-

ing this into (5.30), we find (5.29).

— Step 3: case of B intersecting ∂Ω. We claim that for any B(x, r) ⊂ Ω̃,
we have as r → 0

∫
B(x,r)

(1 − |u|2)2
ε2

− 2h
2 + O

⎛⎜⎝r

∫
B(x,r)∩Ω

|∇Au|2 +
(1 − |u|2)2

2ε2
+ h2

⎞⎟⎠
= r

∫
∂B(x,r)

|τ · ∇Au|2 − |ν · ∇Au|2 +
(1 − |u|2)2

2ε2
− h

2

+ O

⎛⎜⎝r2

∫
∂B(x,r)∩Ω

|∇Au|2 +
(1 − |u|2)2

2ε2
+ rh2

⎞⎟⎠ .
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The proof is similar to that of Lemma 5.3. We deduce

r
∂F
∂r

(x, r) ≥ 1
2

∫
B(x,r)

(
(1 − |u|2)2

ε2
− 2h

2
)

+
r

2

∫
∂B(x,r)

h
2

+ O

⎛⎜⎝r2 ∂F
∂r

(x, r) + r2

∫
∂B(x,r)∩Ω

h2

⎞⎟⎠+ O

⎛⎜⎝rF(x, r) + r

∫
B(x,r)∩Ω

h2

⎞⎟⎠ .

Integrating between 0 and s as before, we are led to the fact that for any
B ∈ B(s),

1
2

∫
B\B0

|∇Au|2 +
(1 − |u|2)2

2ε2

≥ s

2

∫
B0∩B

(1 − |u|2)2
ε2

− C

(
s +

1
2

)
r(B)

∫
B

|∇h|2 + h
2

−C

s∫
0

∑
B(x,r)∈B(t)∩B

⎛⎜⎝r2 ∂F
∂r

+ r2

∫
∂B(x,r)∩Ω

h2 + rF(x, r) + r

∫
B(x,r)∩Ω

h2

⎞⎟⎠ dt.

The last error term on the right-hand side can be controlled as follows:

s∫
0

∑
B(x,r)∈B(t)∩B

⎛⎜⎝r2 ∂F
∂r

+ r2

∫
∂B(x,r)∩Ω

h2 + rF + r

∫
B(x,r)∩Ω

h2

⎞⎟⎠ dt

≤ r(B)

s∫
0

⎛⎜⎝ ∑
B(x,r)∈B(t)∩B

r
∂F
∂r

+ r

∫
∂B(x,r)∩Ω

h2

⎞⎟⎠ dt

+

⎛⎝F(B) +
∫

B∩Ω

h2

⎞⎠ s∫
0

r(B(t) ∩ B) dt

≤ 2r(B)

⎛⎝F(B) +
∫

B∩Ω

h2

⎞⎠
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where the last inequality follows by applying Proposition 4.1 to F(x, r)+∫
B(x,r) h2, and from the fact that r(B(t) ∩ B) = etr(B(0) ∩ B). On the

other hand,
∫
B |∇h|2 + h

2 ≤ C
∫
B∩Ω |∇h|2 + h2 and we conclude that

1
2

∫
B\B0

|∇Au|2 +
(1 − |u|2)2

2ε2

≥ 1
2

∫
B0∩B

(1 − |u|2)2
ε2

log
r1

r0
− C

(
s +

1
2

)
r(B)Fε(u, A, B).

Modifying the collection of balls and finishing as in the proof of Theorem
5.1, we deduce that (5.28) holds.

5.3 Applications

Once these results are known, we apply them to a collection B0 covering
ω = {x ∈ Ω, |u(x)| ≤ 1 − δ} where δ < 1 may depend on ε, and we
deduce the following result.

Theorem 5.3 (An upper bound for the potential term). Let u
be a solution of (5.1) or respectively (u, A) a solution of (GL), and write

Fε(|u|, Ω) =
1
2

∫
Ω

|∇|u||2 +
(1 − |u|2)2

2ε2
= M. (5.31)

Then

1. If u solves (5.1), for every r and δ such that M
rδ3 ≤ 1

εβ , with β < 1,
there exists a finite collection of disjoint closed balls B with r(B) ≤
Cr such that ∫

{x∈Ωr,|u|≤1−δ}

(1 − |u|2)2
ε2

≤ C

1 − β

Eε(u,B)
| log ε|

where Ωr denotes {x ∈ Ω, dist(x, ∂Ω) ≥ r} and C is a universal
constant.

2. If u solves (5.1) with fixed Dirichlet boundary condition and Ω
is strictly starshaped, or with Neumann boundary condition, for



5.3. Applications 103

every r and δ such that M
rδ3 ≤ 1

εβ , with β < 1, there exists a finite
collection of disjoint closed balls B with r(B) ≤ Cr such that∫

{x∈Ω,|u|≤1−δ}

(1 − |u|2)2
ε2

≤ C

1 − β

Eε(u,B)
| log ε| .

3. If (u, A) solves (2.4), for every r ≤ C
| log ε| and δ such that M

rδ3 ≤ 1
εβ ,

with β < 1, there exists a finite collection of disjoint closed balls B
with r(B) ≤ Cr such that∫

{x∈Ω,|u|≤1−δ}

(1 − |u|2)2
ε2

≤ C

1 − β

Fε(u, A,B)
| log ε| . (5.32)

Proof. Let us first prove that

r ({x ∈ Ω, |u(x)| ≤ 1 − δ}) ≤ C
εM

δ3
. (5.33)

We have the estimate |∇|u|| ≤ C
ε , which follows from Corollary 3.1 (or

the analogue for (5.1)). Therefore, arguing as in [43], if |u(x0)| ≤ 1−δ, we
have |u(x)| ≤ 1− δ

2 in B(x0, λδε) for some well-chosen λ > 0 independent
of ε and δ. We deduce that∫

B(x0,λδε)

(1 − |u|2)2
ε2

≥ μ0δ
4 (5.34)

for some constant μ0 > 0 independent of ε and δ. Let us consider the
union of all such balls B(x0, λδε) over all x0 ∈ ω = {x ∈ Ω, |u(x)| ≤
1−δ}, which cover ω. Extracting a Besicovitch covering, we may assume
that each point is in at most 3 such balls, and we deduce

nμ0δ
4 ≤ C

∫
Ω

(1 − |u|2)2
ε2

≤ CM

where n is the number of the balls in the covering. We deduce that
n ≤ CM

δ4 and thus r(ω) is bounded by the total perimeter of the balls
hence by Cnλδε ≤ CMε

δ3 .
For the case of (5.1), we directly apply Theorem 5.1 to B0, a finite

collection of disjoint balls covering ω = {x ∈ Ω, |u(x)| ≤ 1 − δ}, and s
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such that r(B(s)) = r. From (5.33), we have r(ω) < C εM
δ3 , hence we can

have r(B0) < C εM
δ3 . Theorem 4.2 yields a family {B(t)}t∈R+ , and given r

small enough, Theorem 5.1 allows us to construct from B(s) (such that
r(B(s)) = r) a finite family of disjoint closed balls B covering B0 such
that r(B) ≤ Cr. Restricting to B0 ∩ Ωr instead of B0, we are sure that
all the balls in the collection are in a tubular neighborhood of size r of
∪B∈B0B and hence are included in Ω. We may thus apply the estimates
(5.3) and add them up over all the balls in B, getting

Eε(u,B) ≥
⎛⎝1

2

∫
ω∩Ωr

(1 − |u|2)2
ε2

⎞⎠ log
rδ3

CεM

hence in view of the assumptions on r and δ,

Eε(u,B) ≥
⎛⎝1

2

∫
ω∩Ωr

(1 − |u|2)2
ε2

⎞⎠(
log

1
ε
− log

CM

rδ3

)

≥
⎛⎝1

2

∫
ω∩Ωr

(1 − |u|2)2
ε2

⎞⎠ ((1 − β)| log ε| − C)

and the result easily follows. The Dirichlet case works exactly the same
way, using (5.4) instead of (5.3).

For the case of (GL), apply Theorem 5.2 with B0 covering the same
ω. This yields a finite collection of disjoint closed balls B with r(B) = r
such that, adding up over all the balls the estimates found in (5.27) or
(5.28), we have

CFε(u, A,B) ≥
⎛⎝1

2

∫
ω

(1 − |u|2)2
ε2

− Cr(B)Fε(u, A,B)

⎞⎠ log
r

r(ω)

− Cr(B)Fε(u, A,B).

Arguing as above, we deduce

CFε(u, A,B) ≥
⎛⎝1

2

∫
ω

(1 − |u|2)2
ε2

− Cr(B)Fε(u, A,B)

⎞⎠((1−β)| log ε|−C
)

and if r(B) ≤ C
| log ε| we conclude that (5.32) holds.
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As a main application, we obtain that if u is a solution of (5.1) with
Dirichlet boundary condition and Eε(u) ≤ C| log ε|, then∫
|u|≤ 1

2
(1 − |u|2)2 ≤ C. This in turn suffices to bound by a uniform con-

stant the number of vortices of u. Then, below we use Theorem 5.1 again
to get improved lower bounds in terms of the degrees of the vortices. In
order to obtain an analogous result for the situation with magnetic field,
we need to anticipate a bit on the forthcoming chapters, and introduce
h0 the solution of {−Δh0 + h0 = 0 in Ω

h0 = 1 on ∂Ω.

Once h0 is defined, for any A, we define A′ = A − hex∇⊥h0.

Theorem 5.4 (Microscopic lower bound). Let {uε}ε be solutions of
(5.1), such that Eε(uε) ≤ C| log ε|, with Dirichlet boundary condition
(and Ω strictly starshaped) or Neumann boundary condition, or let re-
spectively {(uε, Aε)}ε be solutions of (GL) such that Fε(uε, A

′
ε) ≤ C| log ε|

and hex ≤ ε−β with β < 1. Then the following holds as ε → 0.
For every η > 0, there exists R > 0 and for any ε small enough a

finite collection of disjoint balls B(a1, Rε), . . . , B(ak, Rε) (ai depending
on ε) with k bounded independently of ε such that

1. {|uε| ≤ 1
2} ⊂ ∪k

i=1B(ai, Rε).

2. |ai − aj | � ε for i �= j, and dist(ai, ∂Ω) � ε for every i.

3. The di = deg(uε, ∂B(ai, Rε)) are all nonzero.

4. For every 1 > r � ε,

Eε(uε) ≥
∑

i∈[1,k]
dist(ai,∂Ω)≥r

(πd2
i − η) log

r

Cε
(5.35)

respectively for any r 	 min
(
| log ε|−1, (

√| log ε|hex)−1
)
,

Fε(uε, A
′
ε) ≥

∑
i∈[1,k]

dist(ai,∂Ω)≥r

(πd2
i − η) log

r

Cε
− o(1). (5.36)

Moreover, if uε (resp. (uε, Aε)) is a very local minimizer (as in Defini-
tion 3.8) of Eε, resp. Gε, around any point, then ∀iB(ai, Rε) contains a
unique zero of uε of degree di = ±1 in 3).



106 Chapter 5. Pohozaev Balls

Before we give the proof let us state a simple lemma, a consequence
of Theorem 3.4.

Lemma 5.5. Let {uε}ε>0 be solutions of (5.1) with Eε(uε) 	 1
ε2 , respec-

tively (uε, Aε) solutions of (GL) with Fε(uε, Aε) 	 1
ε2 , in a domain Ω.

For every c > 0 and every η > 0 there exists R > c such that if |uε| ≥ 1
2

in B(xε, Rε)\B(xε, cε), letting dε = deg(uε, ∂B(x0, cε)), we have∫
B(xε,Rε)

(1 − |uε|2)2
ε2

≥ 2πd2
ε − η.

Proof. We start by observing that the degree dε is bounded indepen-
dently of ε. Indeed, recall the definition

d =
1
2π

∫
∂B(xε,cε)

1
|u|2

(
iu,

∂u

∂τ

)
.

With the a priori bounds for solutions |uε| ≤ 1 and |∇uε| ≤ C
ε resp.

|∇Aεuε| ≤ C
ε (see Corollary 3.1), we easily deduce that dε is bounded

independently of ε.
If the desired property were not true, this would mean that we can

find η > 0, c > 0, and a sequence uε of such solutions and of points xε,
such that for every R, |uε| ≥ 1

2 in B(xε, Rε)\B(x0, cε), and∫
B(xε,Rε)

(1 − |uε|2)2
ε2

≤ 2πd2
ε − η (5.37)

where dε = deg(uε, ∂B(xε, cε)). Since we saw that dε remains bounded,
we deduce that

∫
B(xε,Rε)

(1−|uε|2)2

ε2 ≤ C where C is independent of ε and
R. Rescaling and considering Uε(x) = uε(xε + εx), from Proposition
3.12 we find that, after extraction of a subsequence, Uε converges in
C1

loc(R
2) to U , the solution of (3.12), with |U | ≥ 1

2 in R
2\B(0, c) and∫

R2(1−|U |2)2 ≤ C. Indeed,
∫
B(xε,Rε)

(1−|uε|2)2

ε2 =
∫
B(0,R)(1−|Uε|2)2 ≤ C,

so by strong C1
loc convergence

∫
B(0,R)(1−|U |2)2 ≤ C and since this is true

for every R and C is independent of R, we deduce that
∫

R2(1−|U |2)2 ≤ C.
Moreover, we may assume dε → d = deg(U, ∂B(0, c)) (because the dε

form a bounded sequence of integers). From Theorem 3.4, we find that
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∫
R2(1−|U |2)2 = 2πd2. By the strong convergence of Uε this implies that∫

B(xε,Rε)

(1 − |uε|2)2
ε2

− 2πd2
ε ≥ −η/2,

for ε small enough and R large enough, a contradiction with (5.37).

Proof of Theorem 5.4.
— Step 1: Boundedness of the potential. For the case without magnetic
field, we deduce from Theorem 5.3, combined with the bound Eε(u) ≤
C| log ε|, that ∫

{x∈Ω,|u|≤1− 1
| log ε|}

(1 − |u|2)2
ε2

≤ C. (5.38)

In the case with magnetic field, we observe that since h0 is a smooth
function, for any collection of disjoint closed balls, we have

Fε(u, A,B) ≤ Fε(u, A′) + Chex
2
∑
B∈B

r(B)2 + Chex

∑
B∈B

r(B)
√

Fε(u, A′)

≤ Fε(u, A′) + Chex
2r(B)2 + Chexr(B)

√
Fε(u, A′). (5.39)

Also observe that M ≤ Fε(u, A′) ≤ C| log ε| in (5.31). So choosing in

Theorem 5.3 r = min( | log ε| 12
hex

, 1
| log ε|), we also find that∫

{|u|≤1− 1
| log ε|}

(1 − |u|2)2
ε2

≤ C.

— Step 2: Boundedness of the number of balls and properties of the
balls. This step is as in [43] and [77]. From (5.34) applied to δ = 1

2 , if
|u(x0)| ≤ 1

2 , then ∫
B(x0,λε)

(1 − |u|2)2
ε2

≥ μ0 (5.40)

for some μ > 0 and λ > 0 independent of ε. Thus, combining this with
(5.38), we see that there can only be a uniformly bounded number of
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disjoint balls of radius λε which intersect {|u| ≤ 1
2}. Using a covering

argument as in [43], we deduce that the set {|u| ≤ 1
2} can be covered by

a finite number of disjoint balls of radius λε centered at ai, the number
of balls remaining bounded independently of ε. Merging the balls into
larger balls if necessary we can always assume that |ai − aj | � ε for
i �= j. Moreover, we have dist(ai, ∂Ω) � ε, because otherwise (5.40)
would be in contradiction with the last part of Proposition 3.12 (valid,
as we mentioned, without magnetic field).

Finally, let us assume by contradiction that di = deg(u, ∂B(ai, λε)) =
0. We may assume |u(ai)| ≤ 1

2 (otherwise the ball could be removed from
the collection) and, considering Uε(x) = u(ai + εx), we may assume that
Uε converges in C1

loc(R
2) to a solution U of (3.12), of total degree 0 on

large circles. Passing to the limit in (5.38), we find that
∫

R2(1−|U |2)2 <
∞. It is known (see [61]) that such solutions of degree 0 are constants
of modulus 1. This is in contradiction with |u(ai)| ≤ 1

2 and the uniform
convergence of Uε. Thus, the degrees di are all nonzero.

— Step 3: Lower bound. We may now apply Theorems 5.1 or 5.2 to
B0 = {B(ai, Rε), i ∈ [1, k], dist(ai, ∂Ω) ≥ 4r} and s such that r(B(s)) =
r. This ensures that the balls we obtain, being of radius less than r, do
not intersect {x ∈ Ω, dist(x, ∂Ω) ≤ r}. Combining the result of Theorems
5.1 to the result of Lemma 5.5, we find that (5.35) hold.

For (5.36), combining the result of Theorem 5.2 to Lemma 5.5, we
find

Fε(u, A,B) ≥
(

π
∑

i

d2
i − η − CrFε(u, A,B)

)
log

r

Cε
− CrFε(u, A,B).

Choosing r 	 1
| log ε| and r 	 1

hex

√
| log ε| and using (5.39), we have

Fε(u, A,B) ≤ Fε(u, A′) + o(1) and rFε(u, A,B) ≤ o(1) hence

Fε(u, A′) ≥
(

π
∑

i

d2
i − η

)
log

r

Cε
− o(1)

and (5.36) is proved.
The last assertion follows from Proposition 3.12.

Remark 5.2. 1. Our results (5.35)–(5.36) are easy consequences of
Theorems 5.1 and 5.2. A stronger result is proved by Comte and
Mironescu in [77, 79], using more specific arguments: for solutions
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of (5.1) with Dirichlet boundary conditions, the equality Eε(u) =
π
∑

i d
2
i | log ε| + O(1) holds.

2. By a diagonal argument, one can obtain o(1) instead of η in the
lower bounds above.

3. In the case of (5.1) with Dirichlet boundary condition, it was proved
in [43] that

(1 − |u|2)2
ε2

⇀ 2π

k∑
i=1

d2
i δa0

i

in the sense of measures, where the a0
i ’s are the limits of the vortex-

points aε
i as ε → 0, and belong to Ω. Therefore, it means that

(1−|u|2)2

ε2 ⇀ 0 in the sense of measures in a neighborhood of ∂Ω,
hence there can be no aε

i above converging to ∂Ω because it would
contradict (5.40). Thus the condition dist(ai, ∂Ω) ≥ C > 0 for
small ε is always satisfied in that case, and one may take r =
min(C, 1

2) in the theorem above.

The previous theorem does not apply to unbounded numbers of vor-
tices. However, we may return to the setting of Chapter 4 and link the
regular ball-construction with this Pohozaev ball-construction. In the
same spirit as Theorem 5.4, this yields details on the microscopic behav-
ior of local minimizers in the case of an unbounded number of vortices.

In the next propositions, we take advantage of the fact that the lower
bounds of Propositions 4.2 and 4.3 really include the squares of the de-
grees, to say that if the energy grows like the total degree times log during
the ball growth, then the degrees at appropriate small scales should be
±1.

In what follows, as in Chapter 4, if B is a ball, dB denotes the degree
of the map on the boundary of the ball if B ⊂ Ω, and 0 otherwise.

Proposition 5.1. (Microscopic analysis of very local minimizers
— case without magnetic field). Let {uε}ε>0 be very local mini-
mizers, in the sense of Definition 3.8, of Eε (around every point), and
such that Eε(uε) 	 1

ε2 . Let B(s) be a collection of disjoint closed balls
obtained by ball growth from an initial collection B0, as in Theorem 4.2;
such that, as ε → 0,

1. s ≥ β| log ε| for some 1 ≥ β > 0.
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2. There exists δ = o(1) such that

|uε| ≥ 1 − δ in Ω\ ∪B∈B0 B, (5.41)

and δEε(uε) ≤ o(| log ε|).
3. Where D =

∑
B∈B(s) |dB|,

Eε(uε,B(s)) − Eε(uε,B0) ≤ πDs + o(| log ε|). (5.42)

Then, for ε small enough, in the union of the balls of B(s) that do not
intersect ∂Ω, uε has exactly D zeroes, more precisely each B ∈ B(s) such
that B ⊂ Ω contains exactly |dB| zeroes, all of degree ±1 = sign(dB).

Proof. — Step 1: Use of the ball-construction.
Let v denote uε

|uε| in Ω\ ∪B∈B0 B. Let B(t) be the collection of balls in
the ball growth for t ∈ [0, s]. For every B ∈ B(s), we recall the notation

‖DB‖2(t) =
∑

B′∈B(t)∩B
B′⊂Ω

d2
B′ .

From Proposition 4.2, we have

1
2

∫
B\B(0)

|∇v|2 ≥ π

s∫
0

‖DB‖2(t) dt. (5.43)

Summing over all B ∈ B(s), and comparing with (5.41) and (5.42), we
deduce

π
∑

B∈B(s)

s∫
0

‖DB‖2(t) dt ≤ (1 + 2δ)
∑

B∈B(s)

(Eε(uε, B) − Eε(uε,B0 ∩ B))

≤ πs
∑

B∈B(s)

|dB| + o(| log ε|). (5.44)

On the other hand, we always have (see Lemma 4.2), for every B ∈ B(s),

‖DB‖2(t) ≥ |dB| (5.45)

with equality if and only if dB′ = sign(dB) (or 0) for every B′ ∈
B(t) ∩ B. If there is not equality, since the inequality involves inte-
gers, we have ‖DB‖2(t) ≥ |dB| + 1. Let us assume by contradiction
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that, given 0 < α1 < α2 ≤ β, for every t ∈ [α1| log ε|, α2| log ε|], there
exists a ball B ∈ B(s) such that we have ‖DB‖2(t) �= |dB|, hence
‖DB‖2(t) ≥ |dB|+1. Plugging this into (5.44), we find (α2−α1)| log ε| ≤
o(| log ε|), a contradiction. Hence, for every 0 < α1 < α2 ≤ β, there ex-
ists t ∈ [α1| log ε|, α2| log ε|] such that for all B ∈ B(s), ‖DB‖2(t) = |dB|
and thus dB′ = deg(v, ∂B′) = sign(dB) (or 0) for every B′ ∈ B(t) ∩ B.
In other words, picking such a t, there are |dB| balls of nonzero degree
in the collection B(t) ∩ B, they all have degree dB′ = sign(dB), and∑

B′∈B(t)∩B

dB′ = dB.

Moreover, comparing (5.45) with (5.44), we must have for every B ∈
B(s),

Eε(uε, B) − Eε(uε,B0 ∩ B) = π|dB|s + o(| log ε|). (5.46)

On the other hand, using the ball-construction as above, we have, for
every B′ ∈ B(t) ∩ B,

Eε(uε, B
′) − Eε(uε,B0 ∩ B′) ≥ π|dB′ |t + o(| log ε|), (5.47)

while

Eε(uε, B) − Eε(uε,B(t) ∩ B) + o(| log ε|) ≥
s∫

t

‖DB‖2(k) dk ≥ π|dB|(s − t) (5.48)

where we have used (5.45). Combining (5.48) to (5.46), we find

Eε(uε,B(t) ∩ B) − Eε(uε,B0 ∩ B) ≤ π|dB|t + o(| log ε|).

Comparing this to (5.47) which we sum over all B′ ⊂ B, we have

π
∑

B′∈B(t)⊂B

|dB′ |t ≤ Eε(uε,B(t) ∩ B) − Eε(uε,B0 ∩ B) + o(| log ε|)

≤ π|dB|t = π
∑

B′∈B(t)⊂B

|dB′ |t.
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We deduce that there must be equality for each B′, that is, for every
B′ ∈ B(t),

Eε(uε, B
′) − Eε(uε,B0 ∩ B′) = π|dB′ |t + o(| log ε|) = πt + o(| log ε|)

(5.49)

(or = o(| log ε|) if dB′ = 0) since, as we established, dB′ = sign(dB).
— Step 2: Use of the Pohozaev ball-construction.

We still consider a t � 1 which satisfies the conclusions of Step 1. The-
orem 5.1 applied with B0 and B(t) yields, for every B′ ∈ B(t) such that
B′ ⊂ Ω,

t

2

∫
B′∩B0

(1 − |uε|2)2
ε2

≤ 1
2

∫
B′\B0

|∇uε|2 +
(1 − |uε|2)2

2ε2
,

hence from (5.49),

1
2

∫
B′∩B0

(1 − |uε|2)2
ε2

≤ π + o(1), (5.50)

or ≤ o(1) if dB′ = 0.
— Step 3: Blow-up analysis.

Now let aε
i be the zeroes of uε. According to Proposition 3.13, since

Eε(uε) 	 1
ε2 , for any such aε

i , the rescaled maps wε(x) = uε(aε
i + εx)

converge as ε → 0, up to extraction, to a radial solution of (3.12) as
described in Theorem 3.2, i.e., a solution with a unique zero of degree
+1 or −1. We deduce that any two zeroes of uε are at a distance � ε
from each other and from the boundary. Moreover, from Theorem 3.4,
we have

lim
R→∞

lim
ε→0

∫
B(aε

i ,Rε)

(1 − |uε|2)2
ε2

= 2π,

and we deduce as in Lemma 5.5 that for every η > 0, there exists R > 0
such that the B(aε

i , Rε)’s are disjoint, and, using the notation above,∫
B′∩B0

(1 − |uε|2)2
ε2

≥
∫

∪i/aε
i
∈B′B(aε

i ,Rε)∩{|u|≤1−δ}

(1 − |uε|2)2
ε2

≥
∑

i/aε
i∈B′

2π − η.
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Comparing with (5.50), we immediately deduce∑
i/aε

i∈B′
(2π − η) ≤ 2π

hence, choosing η < 1, we find that each B′ ∈ B(t) ∩ B which does not
intersect ∂Ω contains at most one zero of u, of degree sign(dB). Since,
for every B ∈ B(s) included in Ω, B(t) ∩ B contains exactly |dB| balls
of nonzero degree, we find that B contains exactly |dB| zeroes of degree
sign(dB), hence the result.

The following version with magnetic field will be used in Chapter 11.

Proposition 5.2. (Microscopic analysis of very local minimizers
— case with magnetic field). Let {(uε, Aε)}ε>0 be very local min-
imizers of Gε (around every point) in the sense of Definition 3.8. Let
B(s) be a collection of disjoint closed balls obtained by ball growth from
an initial collection B0, as in Theorem 4.2; as ε → 0,

1. s ≥ β| log ε| for some 1 ≥ β > 0.

2. There exists β′ < β such that

Fε(uε, Aε) ≤ 1
εβ′ . (5.51)

3. There exists δ = o(1) such that

|uε| ≥ 1 − δ in Ω\ ∪B∈B0 B, (5.52)

and δFε(uε, Aε) ≤ o(| log ε|).
4. Where D =

∑
B∈B(s) |dB|,

Fε(uε, Aε,B(s)) − Fε(uε, Aε,B0) ≤ πDs + o(| log ε|). (5.53)

Then, for ε small enough, in the union of the balls of B(s) that do not
intersect ∂Ω, uε has exactly D zeroes, more precisely each B ∈ B(s) such
that B ⊂ Ω contains exactly |dB| zeroes, all of degree ±1 = sign(dB).
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Proof. The proof is along the same lines as for the case without magnetic
field. We present the main adjustments that need to be made.

In the first step, we replace (5.43) by (4.14) which, denoting r1 =
r(B(s)) and r0 = r(B0), yields

1
2

∫
B\B0

|∇Av|2 +
1
2
r(B)(r1 − r0)

∫
B

| curlA|2

≥ π

s∫
0

‖DB‖2(t)
(

1 − r(B(t))
r1 − r0

)
dt.

From (5.53), we deduce by (5.52) that

πDs + o(| log ε|) ≥ 1
2

∑
B∈B(s)

∫
B\B0

|∇Av|2 + | curlA|2

≥ π

s∫
0

‖DB‖2(t)
(

1 − r(B(t))
r1 − r0

)
dt.

Assume by contradiction that there exists 0 < α1 < α2 < β such that for
t ∈ [α1| log ε|, α2| log ε|], we have ‖DB(t)‖2 ≥ dB +1, then, since α2 < β,
we have r(B(t)) 	 r1 in this interval; thus we find, arguing as in the case
without magnetic field,

o(| log ε|) ≥
α2| log ε|∫

α1| log ε|

(‖DB‖2(t)(1 − o(1)) − dB

)
dt ≥ 1

2
(α2 − α1)| log ε|,

a contradiction. The rest of the step follows as in the case without mag-
netic field.

For the second step, we pick t ≤ α| log ε| with α < β − β′, and use
Theorem 5.2 which yields, if B′ ⊂ Ω,

t

2

∫
B′∩B0

(1 − |uε|2)2
ε2

≤ 1
2

∫
B′\B0

|∇Aεuε|2 +
(1 − |uε|2)2

2ε2

+ C(t + 1)r(B′)Fε(uε, Aε, B
′)

≤ πt + o(| log ε|)
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Now, r(B′) ≤ r(B(s))et−s ≤ et−s ≤ εβ−α 	 εβ′
, thus r(B′)Fε(uε, Aε, B

′)
	 1 from (5.51), hence we find

t

2

∫
B′∩B0

(1 − |uε|2)2
ε2

≤ πt + o(| log ε|)

and o(| log ε|) if dB′ = 0, and thus the same result (5.50) holds. The third
step is the same.

Bibliographic notes on Chapter 5: The results of this chapter
and the idea of coupling the ball construction method to Pohozaev are
new; however, as we mentioned, the Pohozaev identity has always been
used for Ginzburg–Landau starting with Bethuel–Brezis–Hélein, Brezis–
Merle–Rivière [43, 61] and Bethuel–Rivière [52], Struwe [189] on small
balls, in particular for deducing bounds on the potential from bounds
on the energy. In this respect, Bethuel–Orlandi–Smets [50] have some
related and general result valid in any dimension.



Chapter 6

Jacobian Estimate

In this chapter we show that the vortex balls provided by Theorem 4.1,
although they are constructed through a complicated process and are
not completely intrinsic to (u, A) (and not unique), have in the end
a simple relation to the configuration (u, A), namely that the measure∑

i 2πdiδai is close in a certain norm to the gauge-invariant version of
the Jacobian determinant of u, an intrinsic quantity depending on (u, A).
This will allow us, in the next chapters, to extract from Gε(u, A), in
addition to the vortex energy π

∑
i |di|| log ε| contained in the vortex

balls, a term describing vortex-vortex interactions and vortex-applied
field interactions in terms of the measure

∑
i 2πdiδai .

The results of this chapter are used throughout the remainder of the
book, in the form of Theorems 6.1 and 6.2.

Notation: For u : Ω → C and A : Ω → R
2 we let

μ(u, A) = curl(iu,∇Au) + curlA. (6.1)

μ(u, A) will most often be abbreviated in μ. This is a gauge-invariant
quantity that will play the role of the Jacobian determinant of u (d(u×
du) when A = 0). Again, it suffices to set A = 0 below to get the
corresponding result relating the Jacobian to (1.2).

For any domain Ω and ε > 0 we let again

Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε}.

Definition 6.1. For β ∈ (0, 1] we let C0,β
0 (Ω) denote the space of func-

tions in C0,β(Ω) that vanish on the boundary and (C0,β
0 (Ω))∗ its dual.
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We use as a norm for f ∈ C0,β
0 (Ω) the quantity

sup
x,y∈Ω
x 	=y

|f(x) − f(y)|
|x − y|β ,

and the standard dual norm on (C0,β
0 (Ω))∗. Note that in the case β = 1,

the norm on C0,β
0 (Ω) is simply the Lipschitz norm.

Theorem 6.1. Let u : Ω → C and A : Ω → R
2 be C1, let B = {Bi}i∈I

be a finite collection of disjoint closed balls and let ε > 0 be such that

{x ∈ Ωε, ||u(x)| − 1| ≥ 1/2} ⊂ ∪iBi.

Then, letting r = r(B) and M = Fε(u, A), and defining μ by (6.1)
we have, assuming ε, r ≤ 1,∥∥∥∥∥∥∥μ − 2π

∑
i∈I

Bi⊂Ωε

diδai

∥∥∥∥∥∥∥
(C0,1

0 (Ω))∗

≤ C max(r, ε)(1 + M). (6.2)

where ai is the center of Bi, di = deg(u/|u|, ∂Bi), and C is a universal
constant.

Moreover, using the same notation,

‖μ‖(C0)∗ ≤ CM. (6.3)

This result was proved by Jerrard–Soner in [119] under a slightly
different form. The proof we present here is closer to that of a result of
similar nature we obtained in [169, 168].

6.1 Preliminaries

Definition 6.2. We define χ : R+ → R+ as follows.
If x ∈ [0, 1/2], then χ(x) = 2x. If x ∈ [1/2, 3/2], then χ(x) = 1. If

x ∈ [3/2, 2] then χ(x) = 1 + 2(x − 3/2). Finally if x ≥ 2, then χ(x) = x.

We have:



6.1. Preliminaries 119

Lemma 6.1. For any t ∈ R+ the function χ above satisfies

χ(t) ≤ 2t, χ′(t) ≤ 2, |χ(t) − t| ≤ |1 − t|, |χ(t) − 1| ≤ |1 − t| (6.4)

and ∣∣∣χ(t)2 − t2
∣∣∣ ≤ 3t|1 − t|. (6.5)

Proof. Properties in (6.4) follow directly by inspecting the graph of the
function χ while (6.5) follows by noting that∣∣∣χ(t)2 − t2

∣∣∣ = |χ(t) + t| |χ(t) − t| ≤ 3t|1 − t|.

To prove the theorem, we assume its hypotheses are satisfied for some
(u, A), some collection of balls B and some ε > 0. We define

ρ = |u|, ũ =
χ(ρ)

ρ
u, μ̃ = curl(iũ,∇Aũ) + curlA. (6.6)

Observe that the main point of this construction is that |ũ| = 1 wherever
|u| is close enough to 1.

We claim that:

Lemma 6.2. For some universal constant C > 0 we have

‖μ − μ̃‖
(C0,1

0 (Ω))∗ ≤ CεM.

Proof. Let j = (iu,∇Au) and j̃ = (iũ,∇Aũ). Then for any function
ζ ∈ C0,1

0 (Ω) we have∣∣∣∣∣∣
∫
Ω

ζ(μ − μ̃)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

∇⊥ζ · (j − j̃)

∣∣∣∣∣∣ ≤ ‖∇ζ‖∞‖j − j̃‖L1(Ω). (6.7)

But, writing u = ρeiϕ and ũ = ρ̃eiϕ, we get (see Lemma 3.4)

|j − j̃| =
∣∣(ρ2 − ρ̃2)(∇ϕ − A)

∣∣ ≤ ∣∣∣∣ρ2 − ρ̃2

ρ

∣∣∣∣ |∇Au|.
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Since from (6.5), |ρ2−ρ̃2|/ρ ≤ 3|1−ρ| it follows that |j−j̃| ≤ 3|1−ρ||∇Au|
and this has a meaning even if ρ vanishes. From the Cauchy–Schwarz
inequality we deduce

‖j − j̃‖L1(Ω) ≤ 3‖1 − ρ‖L2(Ω)‖∇Au‖L2(Ω) ≤ 6
√

2εM.

Together with (6.7) this proves∣∣∣∣∣∣
∫
Ω

ζ(μ − μ̃)

∣∣∣∣∣∣ ≤ CεM‖∇ζ‖∞

for some universal constant C, hence the lemma.

6.2 Proof of Theorem 6.1

Throughout the proof C denotes a universal constant. In fact if the
constant C was allowed to depend on the domain Ω, the proof would be
a bit simplified.

Proof of (6.2)

Using the above lemma, the proof of (6.2) reduces to proving that μ̃
defined in (6.6) satisfies

‖μ̃ − ν‖
(C0,1

0 (Ω))∗ ≤ C max(r, ε)(1 + M), (6.8)

where ν = 2π
∑

i diδai and the sum extends over those balls in B that
are included in Ωε. This is equivalent to proving that for any Lipschitz
function ζ vanishing on ∂Ω,∣∣∣∣∣∣

∫
Ω

ζμ̃ −
∫

ζ dν

∣∣∣∣∣∣ ≤ C(r + ε)‖ζ‖Lip (M + 1) .

The following lemma explains the advantage of working with μ̃ rather
than μ.

Lemma 6.3. 1. Assume u and A are C1 and |u| = 1 identically.
Then μ = 0, where μ is defined by (6.1).
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2. Assume u and A are C1 in a ball B and |u| = 1 on the boundary
of B. Then ∫

B

μ = 2π deg(u, ∂B).

Proof. Since |u| = 1, we have μ = curl ((iu,∇u − iAu) + A) =
curl(iu,∇u). But writing u = eiϕ locally for a C1 function ϕ, we have
curl(iu,∇u) = curl∇ϕ = 0. The second assertion is an integration by
parts:∫

B

μ =
∫

∂B

τ · ((iu,∇Au) + A) =
∫

∂B

τ · (iu,∇u) = 2π deg(u, ∂B).

Now recall that if |ρ − 1| ≤ 1/2, then |ũ| = χ(ρ) = 1. Therefore
|ũ| = 1 in Ωε \ ∪iBi. If we let U = {x ∈ Ω \ Ωε, |ρ(x) − 1| ≥ 1/2}, then
|ũ| = 1 in (Ω \ Ωε) \ U . From the above lemma it follows that μ̃ = 0
outside U ∪ (∪iBi) and therefore for any Lipschitz function ζ, we have∫

Ω

ζμ̃ =
∫
U

ζμ̃ +
∑
i∈I1

∫
Bi∩Ω

ζμ̃ +
∑
i∈I2

∫
Bi∩Ω

ζμ̃,

where I1 is the set of indices i such that Bi �⊂ Ωε and I2 = I \ I1

is the complement of I1. If i ∈ I2, then the previous lemma implies
that the integral of μ̃ over Bi is 2πdi. Using this and writing ζ(x) =
ζ(ai) + (ζ(x) − ζ(ai)) in Bi we find∫

Ω

ζμ̃ − 2π
∑
i∈I2

diζ(ai) =
∫
U

ζμ̃ +
∑
i∈I1

∫
Bi∩Ω

ζμ̃ +
∑
i∈I2

∫
Bi∩Ω

(ζ − ζ(ai))μ̃.

(6.9)

The left-hand side of this equality is the integral of ζ with respect to the
measure μ̃(x) dx−ν, where ν is defined in (6.8). We need to estimate the
right-hand side for any Lipschitz function ζ vanishing on ∂Ω. Our basic
tool is the following remark:

Lemma 6.4. If u and A are C1 on Ω and μ is defined by (6.1), then
for any U ⊂ Ω,∫

U

|μ| ≤ 4(Fε(u, A, U) + Fε(u, A, U)
1
2 |U | 12 ). (6.10)
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Proof. It is easy to check that μ = 2∂A
x u × ∂A

y u + h and therefore |μ| ≤
2|∇Au|2+|h|. Integrating on Ω and using the Cauchy–Schwarz inequality
to estimate the integral of |h| yields the result.

Now we note that any x ∈ U is also in Ω \ Ωε, hence at a distance
less than ε from ∂Ω. Thus, if ζ = 0 on ∂Ω, we find |ζ(x)| ≤ ε‖ζ‖Lip.
In the same spirit if i ∈ I1, then Bi intersects the complement of Ωε

and therefore contains a point at a distance less than ε from ∂Ω. Since
the radius of Bi is less than r(B) = r, we find that any x ∈ Bi satisfies
dist(x, ∂Ω) ≤ 2r + ε and thus |ζ(x)| ≤ 2(r + ε)‖ζ‖Lip. Finally if i ∈ I2

and x ∈ Bi, then |ζ(x) − ζ(ai)| ≤ r‖ζ‖Lip, since Bi has radius less than
r. Inserting this in (6.9) and using the previous lemma we find, letting
V = ∪i∈IBi,∣∣∣∣∣∣

∫
Ω

ζμ̃ −
∫

ζ dν

∣∣∣∣∣∣ ≤ C(r + ε)‖ζ‖Lip

(
Fε(ũ, A, U) + Fε(ũ, A, V )

+
√
|U |Fε(ũ, A, U) +

√
|V |Fε(ũ, A, V )

)
(6.11)

for some universal constant C. Note that from (6.4) and the defini-
tion of μ̃ it follows that |∇Aũ| ≤ 2|∇Au| and |1 − |ũ|| ≤ |1 − |u||.
This implies that Fε(ũ, A, ω) ≤ CFε(u, A, ω). Also, since ||u(x)| − 1| ≥
1/2 for x ∈ U , the integral of (1 − |u|2)2 on U is greater than |U |/4.
Therefore |U | ≤ Cε2Fε(u, A, U). It is clear that |V | ≤ Cr2. These re-
marks show that the right-hand side of (6.11) is bounded above by
C(r+ε)‖ζ‖Lip(Fε(u, A, Ω)+(r+ε)Fε(u, A, Ω)

1
2 ) and then, remembering

that r and ε are less than 1 and
√

x ≤ 1 + x we get∣∣∣∣∣∣
∫
Ω

ζμ̃ −
∫

ζ dν

∣∣∣∣∣∣ ≤ C(r + ε)‖ζ‖Lip (M + 1) .

Since this inequality is true for any ζ vanishing on ∂Ω, we have proved
(6.2).

Proof of (6.3)

Of course, if the constant in (6.3) was allowed to depend on Ω, this would
be a trivial consequence of (6.10), but here additional work is required.
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To prove (6.3), we take a continuous bounded function ζ. Then∣∣∣∣∣∣
∫
Ω

ζμ

∣∣∣∣∣∣ ≤ C‖ζ‖∞
∫
Ω

|μ|.

We write μ = μ̃ + (μ − μ̃). It is easy to check that |μ − μ̃| ≤ C|∇Au|2
hence ‖μ − μ̃‖L1(Ω) ≤ CM . From (6.10) and Lemma 6.3, we have∫

Ω

|μ̃| =
∫
ω

|μ̃| ≤ 4(Fε(ũ, A, ω) + Fε(ũ, A, ω)
1
2 |ω| 12 ),

where ω = {|ũ| �= 1} = {||u| − 1| > 1/2}. Arguing as above, we have
|ω| ≤ Cε2Fε(u, A, ω) and Fε(ũ, A, ω) ≤ CFε(u, A, ω) therefore∫

Ω

|μ̃| ≤ C(M + εM) ≤ CM,

since we have assumed ε ≤ 1. It follows that∣∣∣∣∣∣
∫
Ω

ζμ

∣∣∣∣∣∣ ≤ CM‖ζ‖∞,

which proves (6.3).

6.3 A Corollary

Using the very nice interpolation argument of Jerrard–Soner [119] we
have:

Theorem 6.2. Assume α ∈ (0, 1) and ε < ε0(α), where ε0(α) is given
by Theorem 4.1. Assume Fε(u, A, Ω) ≤ εα−1 and let B = {B(ai, ri)}i∈I

denote a collection of balls given by Theorem 4.1 for some εα/2 < r < 1.
We let

ν = 2π
∑

i∈I/Bi⊂Ωε

diδai

where di = deg(u, ∂Bi), and μ = curl(iu,∇Au) + h. Then, writing M =
Fε(u, A, Ω), we have

‖μ − ν‖
C0,1

0 (Ω)∗ ≤ Cr(M + 1) and ‖ν‖C0(Ω)∗ ≤ C
M

α| log ε| ,
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where C is a universal constant. Moreover for any β ∈ (0, 1) there exists
a constant Cβ depending on β and Ω and ε0(α, β) such that if ε < ε0,
then

‖μ‖
C0,β

0 (Ω)∗ ≤ Cβ
M + 1
α| log ε| ,

and
‖μ − ν‖

C0,β
0 (Ω)∗ ≤ Crβ(M + 1).

In particular, if Fε(u, A, Ω) is bounded by C| log ε|, then μ is bounded
in C0,β

0 (Ω)∗ independently of ε.
The proof relies on the following lemma, taken from [119]:

Lemma 6.5. Assume ν is a Radon measure on Ω. Then for any β ∈
(0, 1),

‖ν‖
C0,β

0 (Ω)∗ ≤ ‖ν‖1−β
C0

0 (Ω)∗‖ν‖
β

C0,1
0 (Ω)∗

.

Proof of the theorem. The fact that ‖ν‖C0(Ω)∗ ≤ CM/(α| log ε|) follows
from Theorem 4.1 (4.4). The bound ‖μ − ν‖

C0,1
0 (Ω)∗ ≤ Cr(M + 1) is

Theorem 6.1, (6.2).
From now on, C denotes a constant depending possibly on β and Ω.

To prove the last assertion we write μ = ν + (μ − ν). Then

‖μ‖
C0,β

0 (Ω)∗ ≤ ‖ν‖
C0,β

0 (Ω)∗ + ‖μ − ν‖
C0,β

0 (Ω)∗ .

But

‖ν‖
C0,β

0 (Ω)∗ ≤ C‖ν‖C0
0 (Ω)∗ (6.12)

and

‖μ − ν‖
C0,β

0 (Ω)∗ ≤ ‖μ − ν‖1−β
C0

0 (Ω)∗‖μ − ν‖β

C0,1
0 (Ω)∗

. (6.13)

But we have already proved that ‖μ−ν‖
C0,1

0 (Ω)∗ ≤ Cr(M +1) and using
(6.2) in Theorem 6.1, we have

‖μ − ν‖C0
0 (Ω)∗ ≤ ‖μ‖C0

0 (Ω)∗ + ‖ν‖C0
0 (Ω)∗ ≤ CM + C

M

α| log ε| ≤ CM,

(6.14)

if ε is small enough depending on α. It follows from (6.12), (6.13) and
(6.14) that

‖μ − ν‖
C0,β

0 (Ω)∗ ≤ C(M + 1)rβ
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and
‖μ‖

C0,β
0 (Ω)∗ ≤ C

M

α| log ε| + C(M + 1)rβ.

Since μ does not depend on r we may choose r = εα/2 and then, if ε is
small enough depending on α, β we have rβ < 1/(α| log ε|), hence

‖μ‖
C0,β

0 (Ω)∗ ≤ C
M

α| log ε| ,

proving the proposition.

Bibliographic notes on Chapter 6: The relation between weak
Jacobians and the Ginzburg–Landau energy was first emphasized by Jer-
rard and Soner in [119], where the result was also extended to higher di-
mensions through a formulation involving currents. However, the method
of linking the measures ν to curl(iu,∇u) already appeared in Bethuel–
Rivière [51], and also in [52, 181]. A result similar to Theorem 6.1 but
with W−1,p estimates instead of (C0,β)∗ was also contained in [168].



Chapter 7

The Obstacle Problem

In this chapter, we start studying the question of minimizing the energy
Gε and we prove the main result of Γ-convergence of Gε. As already
mentioned, configurations have a vorticity μ(uε, Aε), which, according
to Chapter 6, is compact as ε → 0 (under a suitable energy bound) and
the result we obtain below shows that minimizers of Gε have vorticities
which converge to a measure which minimizes a certain convex energy.
This measure, by convex duality, is shown to be the solution to a simple
obstacle problem.

The optimal vortex-density and number of vortices will thus be iden-
tified as well as the leading order of the energy of minimizers. The Γ-
convergence method consists of two steps. First, given a measure μ, we
construct a suitable sequence of test-configurations {(uε, Aε)}ε with vor-
ticities converging to μ and which, to leading order as ε → 0, have the
expected optimal energy. Secondly, we obtain a matching lower bound
for the energy of configurations {(uε, Aε)}ε with vorticities converging
to μ.

We introduce some definitions that will be used throughout the re-
mainder of the book. The function h0 is the solution of{−Δh0 + h0 = 0 in Ω

h0 = 1 on ∂Ω,
(7.1)

and we let

ξ0 = h0 − 1. (7.2)
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We also set

J0 =
1
2

∫
Ω

|∇h0|2 + |h0 − 1|2 =
1
2
‖ξ0‖2

H1(Ω). (7.3)

Since 0 ≤ h0 ≤ 1 (by maximum principle), the function ξ0 is negative
in Ω and smooth. We let

ξ0 = min
Ω

ξ0, (7.4)

Λ =
{
x ∈ Ω | ξ0(x) = ξ0

}
. (7.5)

The following result is proved in [171].

Lemma 7.1. The set

{x ∈ Ω | ∇ξ0(x) = 0}
is finite, hence Λ also.

We recall that we write

j = (iu,∇Au), μ(u, A) = curl j + curlA.

We also denote by M(Ω) the space of bounded Radon measures
on Ω, i.e., (C0

0 (Ω))∗. We denote by |μ| the total variation of μ, i.e., if
μ = μ+ −μ− is the canonical representation of μ as the difference of two
positive measures, |μ| = μ+ + μ−. We write ‖μ‖ for |μ|(Ω).

7.1 Γ-Convergence

In this theorem, H1
1 (Ω) denotes the affine space of functions of H1(Ω)

whose trace on the boundary is 1 (or 1 + H1
0 (Ω)).

Theorem 7.1 (Γ-convergence of Gε). Assume

hex

| log ε| → λ > 0 as ε → 0.

Then,

Gε

hex
2

Γ−→Eλ(μ) =
‖μ‖
2λ

+
1
2

∫
Ω

|∇hμ|2 + |hμ − 1|2, (7.6)
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where Eλ is defined over M(Ω) ∩ H−1(Ω) and where hμ is the solution
of {−Δhμ + hμ = μ in Ω

hμ = 1 on ∂Ω.
(7.7)

More specifically,

1) If {(uε, Aε)}ε are such that Gε(uε, Aε) ≤ Chex
2 and ‖uε‖∞ ≤

1 then, up to extraction, denoting jε = (iuε,∇Aεuε) and hε =
curlAε,

μ(uε, Aε)
hex

−→ μ in (C0,γ(Ω))∗ as ε → 0

for every γ ∈ (0, 1) and

jε

hex
⇀ j,

hε

hex
⇀ h, as ε → 0

weakly in L2(Ω). Moreover μ = curl j + h and

lim inf
ε→0

Gε(uε, Aε)
hex

2 ≥ Eλ(μ)+
1
2

∫
Ω

|j +∇⊥hμ|2 + |h−hμ|2. (7.8)

2) For every μ ∈ M(Ω) ∩ H−1(Ω), there exist {(uε, Aε)}ε such that
‖uε‖∞ ≤ 1,

μ(uε, Aε)
hex

−→ μ in (C0,γ(Ω))∗ as ε → 0

for every γ ∈ (0, 1) and

hε

hex
→ hμ as ε → 0

weakly in H1
1 (Ω) and strongly in W 1,p(Ω) for every p < 2, and such

that
lim sup

ε→0

Gε(uε, Aε)
hex

2 ≤ Eλ(μ).

The functional Eλ defined over M(Ω) ∩ H−1(Ω) is strictly convex
and continuous, therefore it has a unique minimizer μ∗. From the Γ-
convergence result, it is standard to deduce:
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Theorem 7.2 (Convergence of minimizers). Let ε → 0 and
{(uε, Aε)}ε be a family of minimizers of Gε, with hex

| log ε| → λ > 0. Then,
as ε → 0,

μ(uε, Aε)
hex

−→ μ∗ in (C0,γ(Ω))∗ for every γ ∈ (0, 1),

hε

hex
→ hμ∗ weakly in H1

1 (Ω) and strongly in W 1,p(Ω), ∀p < 2,

where μ∗ is the unique minimizer of Eλ. Moreover, letting gε(u, A) denote
the energy density 1

2

(|∇Au|2 + |h − hex|2 + 1
2ε2 (1 − |u|2)2),

gε(uε, Aε)
hex

2 → 1
2λ

|μ∗| + 1
2
(|∇hμ∗ |2 + |hμ∗ − 1|2) (7.9)

and ∣∣∣∣∇(
hε

hex
− hμ∗

)∣∣∣∣2 → 1
λ

μ∗ (7.10)

in the weak sense of measures.

The only statements which do not follow directly from Theorem 7.1
are (7.9) and (7.10). They describe the defect measure in the weak con-
vergence of hε/hex to hμ∗ .

7.2 Description of μ∗

We have the following result:

Proposition 7.1 (Dual problem, see [59, 64]). Given a continuous
function p ≥ 0, the minimizer of

min
u∈H1

0 (Ω)
−Δu+u∈M(Ω)

λ‖ − Δu + u + p‖ +
1
2

∫
Ω

|∇u|2 + u2 (7.11)

is the minimizer of the dual problem

min
v∈H1

0 (Ω)
|v|≤λ

1
2

∫
Ω

(|∇v|2 + v2 + 2pv
)
, (7.12)
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or equivalently if p is constant, u + p is the minimizer of

min
f∈H1

p(Ω)
f≥p−λ

1
2

∫
Ω

|∇f |2 + f2.

It always satisfies −Δu + u + p ≥ 0.

Here H1
p (Ω) denotes the affine space p + H1

0 (Ω).

Proof. The result relies on the following result of convex duality (see [91]
for example):

Lemma 7.2. Let Φ be convex lower semi-continuous from a Hilbert
space H to (−∞, +∞], and let Φ∗ denote its conjugate, i.e.,

Φ∗(f) = sup
g/Φ(g)<∞

〈f, g〉H − Φ(g), (7.13)

then

min
u∈H

(
1
2
‖u‖2

H + Φ(u)
)

= −min
h∈H

(
1
2
‖h‖2

H + Φ∗(−h)
)

and minimizers coincide.

Now we apply this to H = H1
0 (Ω) with the norm ‖h‖2

H =
∫
Ω |∇h|2 +

h2, and Φ(u) = λ‖ − Δu + u + p‖M(Ω) defined over the set of u ∈ H1
0

such that −Δu + u ∈ M(Ω). Using the definition (7.13), we find

Φ∗(f) =

⎧⎪⎨⎪⎩
−
∫
Ω

pf if |f | ≤ λ a.e.

+∞ otherwise.

Indeed,

sup
g∈H1

0 (Ω)
−Δg+g∈M(Ω)

∫
Ω

∇g · ∇f + gf − λ‖ − Δg + g + p‖ =

sup
g∈H1

0 (Ω)
−Δg+g∈M(Ω)

∫
Ω

f d(−Δg + g + p) − λ‖ − Δg + g + p‖ −
∫
Ω

pf

≥ sup
ζ∈L2

∫
Ω

fζ − λ

∫
Ω

|ζ| −
∫
Ω

pf.
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We deduce Φ∗(f) = +∞ if |f | ≤ λ is not satisfied a.e. and in any
case Φ∗(f) ≥ − ∫

Ω pf (take ζ = 0). If |f | ≤ λ the converse inequality
Φ∗(f) ≤ − ∫

Ω pf is clear.
Thus, applying the lemma, we find that the minimizer of (7.11) is

the minimizer of (7.12). The remaining assertions are easy consequences
of (7.12) and the maximum principle.

Applying Proposition 7.1 with u = h − 1 and p = 1, we deduce the
following:

Corollary 7.1. The function hμ∗ introduced in Theorem 7.2 is also the
unique minimizer of the following obstacle problem

min
h≥1− 1

2λ

h∈H1
1 (Ω)

1
2

∫
Ω

|∇h|2 + h2. (7.14)

It is characterized by the fact that hμ∗ ∈ H1
1 (Ω), and that hμ∗ ≥ 1−1/(2λ)

in Ω and the following variational inequality (see [126] for references on
such variational inequalities)∫

Ω

(−Δhμ∗ + hμ∗)(v − hμ∗) ≥ 0

for every v ∈ H1
1 (Ω) such that v ≥ 1 − 1/(2λ).

From this we deduce, in particular, that

μ∗ = −Δhμ∗ + hμ∗ ≥ 0,

i.e., the limiting measure is positive.
The obstacle problem (7.14) is well studied (see [126] for further

reference), in particular the regularity of solutions is well understood.
The function hμ∗ belongs to C1,α(Ω) for every α < 1 (see [99]). The
measure μ∗ can be described in terms of the coincidence set

ωλ =
{

x ∈ Ω | hμ∗(x) = 1 − 1
2λ

}
by the following relation, where 1ωλ

dx denotes the Lebesgue measure
restricted to ωλ:

μ∗ =
(

1 − 1
2λ

)
1ωλ

dx . (7.15)
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This follows from the fact that where hμ∗ > 1− 1/(2λ), the function hμ∗
satisfies the unconstrained Euler–Lagrange equations for the problem,
i.e., −Δhμ∗ + hμ∗ = 0. We thus see that μ∗ is constant on its support,
i.e., there is a uniform limiting density of vortices in ωλ, a first step
towards the Abrikosov lattice.

The regularity of the free boundary ∂ωλ is a delicate question, how-
ever in dimension 2 there is a rather complete theory. It is known (see
[65]) that the free boundary is analytic except at a finite number of sin-
gular points and that ([144, 56]) for almost every λ there are no singular
points at all. For further results we refer to the survey [145]. Note that
if ∂ωλ is smooth then hμ∗ can be characterized as the solution of the
over-determined system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−Δhμ∗ + hμ∗ = 0 in Ω\ωλ

hμ∗ = 1 − 1
2λ

in ωλ

∂hμ∗
∂ν

= 0 on ∂ωλ

hμ∗ = 1 on ∂Ω.

Such a system was derived by Chapman, Rubinstein and Schatzman
in [72] by formal arguments, and we may see Theorem 7.2 as giving a
rigorous derivation of it from the minimization of the Ginzburg–Landau
functional.

Below, we collect some facts about ωλ, h∗, μ∗, whose proofs rely
entirely on the maximum principle.

Proposition 7.2. We have the following.

1. ωλ is increasing with respect to λ and ∪λ>0ωλ = Ω. Moreover Ω\ωλ

is connected.

2. For λ < 1
2|ξ0| we have hμ∗ = h0, μ∗ = 0, ωλ = ∅.

3. For λ = 1
2|ξ0| we have hμ∗ = h0, μ∗ = 0, ωλ = Λ.

4. For λ > 1
2|ξ0| we have μ∗ �= 0, ωλ strictly contains Λ, and (7.15)

holds.
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The above motivates the introduction of the following notation

H0
c1 =

1
2|ξ0| | log ε| . (7.16)

In view of Proposition 7.2, the value H0
c1 appears critical in the sense

that below H0
c1 , the limiting vortex-density μ∗ for energy-minimizers

(after rescaling by hex) is 0. Above H0
c1 , the limiting vortex-density (after

rescaling by hex) is nonzero, it has a uniform density 1 − 1
2λ > 0 in the

subdomain ωλ of Ω, that is there should be vortices uniformly scattered in
ωλ — hence a number of vortices proportional to hex, itself proportional
to | log ε|— and a peripheral region without vortices (see again Fig. 1.3).

The usual notion of first critical field is more like the following,
though. For a fixed value of ε, it is the value Hc1(ε) such that if hex <
Hc1(ε), then there exists a minimizer (u, A) of Gε such that |u| > 0 in
Ω while if hex > Hc1(ε) and (u, A) is a minimizer, then u must vanish
in Ω. A priori Hc1 and H0

c1 could be very different numbers. This would
be the case if for a wide range of hex minimizers of Gε had vortices, but
few of them compared to hex, because the rescaled limiting measure μ
would still be zero. We will prove in Chapter 12 that this cannot happen
and that H0

c1 is the leading order of Hc1 as ε → 0, confirming the physics
knowledge.

We now present the full proof of Theorem 7.1.

7.3 Upper Bound

In this section we will prove item 2) in Theorem 7.1, which we state
as Proposition 7.5 below. However, the intermediate results will also be
useful in subsequent chapters.

First, we show that given a set {(ai, di)}i of points and degrees, and
ε > 0, we may associate to it a configuration (u, A) having {(ai, di)}i as
vortices, and express Gε(u, A) as a function of ε and {(ai, di)}i. Second
we show that using the above with a well chosen family {(ai, di)}i yields
the desired upper bound.
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7.3.1 The Space H1 and the Green Potential

We introduce the (modified) Green’s function GΩ associated to a smooth
bounded domain Ω in R

2, as the solution of{
−ΔxGΩ(x, y) + GΩ(x, y) = δy in Ω

GΩ(x, y) = 0 on ∂Ω,
(7.17)

and let

SΩ(x, y) = 2πGΩ(x, y) + log |x − y|. (7.18)

It is a standard fact that GΩ is symmetric, positive, and the function SΩ

is C1 in Ω×Ω. Note however that SΩ is not bounded up to the boundary.
In addition to (7.7), if μ ∈ H−1(Ω), we introduce the notation Uμ for

the solution of {−ΔUμ + Uμ = μ in Ω
Uμ = 0 on ∂Ω.

(7.19)

In addition, when μ is a bounded Radon measure we have

Uμ(x) =
∫

GΩ(x, y) dμ(y).

Indeed Fubini’s theorem shows that the integral defines an L1 function
for any measure μ, and it can be checked that when μ ∈ H−1 this function
is the solution of (7.19).

The following property is also true (this follows from [60], Theorem
1). If μ, ν are positive Radon measures in H−1(Ω), then Uμ ∈ L1(dν) and

〈Uμ, Uν〉H1(Ω) =
∫∫

GΩ(x, y) dμ(x) dν(y). (7.20)

Thus, if μ = μ+ −μ− is a signed measure with μ+ and μ− positive mea-
sures belonging to H−1(Ω), writing the above relations for the couples
(μ+, μ+), (μ−, μ−), (μ+, μ−) and combining them, we find that∫

Ω

|∇Uμ|2 + Uμ
2 =

∫∫
GΩ(x, y) dμ(x) dμ(y). (7.21)
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7.3.2 The Energy-Splitting Lemma

Here we describe an elementary way of splitting the energy relating Gε

and Fε, which we will use many times in the sequel, in particular in
Chapters 9, 10, and 11. It was first observed by Bethuel and Rivière in
[51].

Lemma 7.3 (Energy-splitting). For any (u, A), denoting A′ = A −
hex∇⊥h0, we have

Gε(u, A) = hex
2J0 + Fε(u, A′) + hex

∫
Ω

ξ0μ(u, A′) + R0, (7.22)

where J0 was defined in (7.3), ξ0 in (7.2), Fε in (4.1), and

R0 =
1
2

∫
Ω

hex
2(|u|2 − 1)|∇h0|2 ≤ Cεhex

2Fε(|u|) 1
2 .

Proof. Let us write A as hex∇⊥h0 +A′, plug it into Gε(u, A) and expand
the square terms. This easily yields, using the fact that curl∇⊥h0 =
Δh0 = h0 (from (7.1)),

Gε(u, A) =
1
2

∫
Ω

|∇A′u|2 + hex
2|u|2|∇h0|2 − 2hex(∇A′u, iu) · ∇⊥h0

+
1
2

∫
Ω

| curlA′|2 + hex
2|h0 − 1|2 + 2hex(h0 − 1) curlA′ +

(1 − |u|2)2
2ε2

.

Therefore, grouping terms, writing |u|2 as 1 + (|u|2 − 1), and integrating
by parts, we find

Gε(u, A) = Fε(u, A′) + hex
2J0 +

1
2

∫
Ω

hex
2(|u|2 − 1)|∇h0|2

+
∫
Ω

hex(h0 − 1) curl(iu,∇A′u) + hex(h0 − 1) curlA′.

This is the result, the upper bound for R0 following from the Cauchy–
Schwarz inequality applied to the integral of (1 − |u|2).
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7.3.3 Configurations with Prescribed Vortices

Proposition 7.3. Given ε ∈ (0, 1) and a set of n points ai ∈ Ω and
degrees di = ±1 such that |ai − aj | ≥ 8cε for i �= j and dist(ai, ∂Ω) ≥ 8c
for some c > 0, there exists a configuration (u, A) such that, μi being the
uniform measure on ∂B(ai, cε) of mass 2πdi, and letting

μ =
n∑

i=1

μi,

we have

Fε(u, A′) = πn| log ε| (7.23)

+
1
2

∑
i	=j

∫∫
GΩ(x, y) dμi(x) dμj(y) + O(n),

Gε(u, A) = Fε(u, A′) + hex
2J0 + hex

∫
ξ0(x) dμ(x) (7.24)

+ O
(
nεhex + nε2hex

2 + (n1/2εhex + εhex
2)Fε(u, A′)1/2

)
,

and

1
n
‖μ(u, A) − μ‖(C0,γ(Ω))∗ ≤ Cεγ

(
1 + εhex +

(
Fε(u, A′)

n

) 1
2

)
∀ 0 < γ ≤ 1. (7.25)

Here A′ = A − hex∇⊥h0 and the O’s depend on Ω and c only.

The proof is in four steps.

Step 1: Construction of the test-configuration.

Let μi denote the uniform measure on ∂B(ai, cε) of mass 2πdi. We define
h to be the solution of⎧⎪⎨⎪⎩−Δh + h = μ =

n∑
i=1

μi in Ω

h = hex on ∂Ω,

(7.26)
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Then, we let A be any vector field such that curlA = h in Ω and we
define u = ρeiϕ as follows. First we let

ρ(x) =

⎧⎪⎨⎪⎩
0 if |x − ai| ≤ cε for some i,

|x − ai|
cε

− 1 if cε < |x − ai| < 2cε for some i,

1 otherwise,

(7.27)

and for any x ∈ Ω̃ε = Ω \ ∪iB(ai, cε),

ϕ(x) =
∮

(x0,x)

(A −∇⊥h) · τ d�, (7.28)

where x0 is a base point in Ω̃ε, (x0, x) is any curve joining x0 to x in
Ω̃ε, and τ is the unit tangent vector to the curve. From (7.26), we see
that this definition of ϕ(x) does not depend modulo 2π on the particular
curve (x0, x) chosen, hence eiϕ is well-defined. Indeed, if γ = ∂U is a
boundary in Ω̃ε, then using Stokes’s theorem and curlA = h, we find∫

γ

(A −∇⊥h) · τ d� =
∫
U

−Δh + h = 2π
∑
ai∈U

di ∈ 2πZ,

since γ does not intersect the B(ai, cε)’s. From (7.28), the function ϕ
satisfies

−∇⊥h = ∇ϕ − A (7.29)

in Ω̃ε. Finally, we define
u = ρeiϕ.

Observe that the fact that ϕ is not defined on ∪iB(ai, cε) is not important
since ρ is zero there.

Step 2: Free energy of (u, A).

Having defined (u, A) as above, we estimate Fε(u, A′). Recall that

Fε(u, A′) =
1
2

∫
Ω

|∇ρ|2 + ρ2|∇ϕ − A′|2 + |h|2 +
1

2ε2

(
1 − ρ2

)2
. (7.30)
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From (7.27) we have

1
2

∫
B(ai,2cε)

|∇ρ|2 +
1

2ε2

(
1 − ρ2

)2 ≤ C.

Then, using the fact that the number of points is n and that ρ = 1 in
Ω\ ∪i B(ai, 2cε), it follows that

1
2

∫
Ω

|∇ρ|2 +
1

2ε2

(
1 − ρ2

)2 ≤ Cn. (7.31)

Also, from (7.27)–(7.29) and the facts that A′ = A−hex∇⊥h0 and Δh0 =
h0, we have

ρ2|∇ϕ − A′|2 ≤ |∇ϕ − A′|2 = |∇(h − hexh0)|2

in Ω̃ε. Therefore, replacing this in (7.30) and in view of (7.31) we find

Fε(u, A′) ≤ 1
2

∫
Ω

|∇(h − hexh0)|2 + |h − hexh0|2 + O(n). (7.32)

Because h is the solution of (7.26), referring to (7.19) and (7.1), we
have h − hexh0 = Uμ. Thus, using (7.21), the inequality (7.32) becomes

Fε(u, A′) ≤ 1
2

∫∫
GΩ(x, y) dμ(x) dμ(y) + O(n). (7.33)

We now decompose the double integral by writing μ =
∑

i μi to find,∫∫
GΩ(x, y) dμ(x) dμ(y) =

n∑
i=1

∫∫
GΩ(x, y) dμi(x) dμi(y) +

+
∑
i	=j

didj

∫∫
GΩ(x, y) dμi(x) dμj(y). (7.34)

We now check that
n∑

i=1

∫∫
GΩ(x, y) dμi(x) dμi(y) = 2πn| log ε| + O(n). (7.35)

To prove this, recall that SΩ = 2πGΩ(x, y) + log |x − y| is C1 in Ω × Ω,
hence it is locally bounded. Thus there exists a constant C depending
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only on Ω and c such that |SΩ(x, y)| ≤ C for any x, y ∈ ∪iB(ai, cε) since
the points ai are at a distance at least 8c from the boundary. It follows
that for any (x, y) ∈ suppμi×suppμi we have |2πGΩ(x, y)−log |x−y|| ≤
C and then, since∫∫

log |x−y|dμi(x) dμi(y) =
∫∫

[0,2π]2

log |cεeiθ−cεeiφ| dθ dφ = 4π2 log ε+C,

we have proved (7.35). In view of (7.33)–(7.34), we have constructed a
configuration such that

Fε(u, A′) ≤ πn| log ε| + 1
2

∑
i	=j

∫∫
GΩ(x, y) dμi(x) dμj(y) + O(n).

In order to find the desired configuration, if the inequality above is
not an equality, we just need to “add” some energy to (u, A′). In order
to do so, we keep the same ρ but modify ϕ outside of the B(ai, 2cε),
adding oscillations to it in such a way that

∫ |∇ϕ − A′|2 becomes large
enough and reaches the desired value.

Step 3: Proof of (7.25).

Let us still denote by ϕ the phase that was constructed in Step 1, and
let us denote by ψ the oscillations that were possibly added in the end of
Step 2 (recall ψ is compactly supported in Ω\∪iB(ai, 2cε)). By definition,
μ(u, A) = curl ((iu,∇Au) + A), and thus from (7.29) for example

μ(u, A) = curl ((∇(ϕ + ψ) − A) + A) = Δh + h = 0 in Ω\ ∪i B(ai, 2cε).

Thus, μ(u, A) and
∑n

i=1 μi are both zero in Ω\ ∪i B(ai, 2cε), moreover
they have the same mass in each B(ai, 2cε) since∫

B(ai,2cε)

μ(u, A) =
∫

∂B(ai,2cε)

∂ϕ

∂τ
=

∫
∂B(ai,2cε)

∂ϕ

∂τ
− A · τ +

∫
B(ai,2cε)

h

=
∫

B(ai,2cε)

−Δh + h = μi(B(ai, 2cε)).
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Letting ξ be a smooth compactly supported test-function, we have∫
Ω

(
μ(u, A) −

n∑
i=1

μi

)
ξ =

n∑
i=1

∫
B(ai,2cε)

(μ(u, A) − μi)ξ

=
n∑

i=1

∫
B(ai,2cε)

(μ(u, A) − μi)(ξ − ξ(ai)).

(7.36)

But, recalling that

μ(u, A) = curl(iu,∇Au) + curlA

= ∇⊥ρ2 · (∇ϕ − A) + (1 − ρ2)h,
(7.37)

we have
n∑

i=1

∫
B(ai,2cε)

|μ(u, A) − μi|

≤ 2πn +
∫

∪iB(ai,2cε)

|∇ρ||∇h| + |h|

≤ Cn +
∫

∪iB(ai,2cε)

(
C

ε
|∇h′| + Chex

ε
+ |h′| + Chex

)

where we used the fact that |∇ρ| ≤ 1
ε . Using the Cauchy–Schwarz in-

equality, we find

n∑
i=1

∫
B(ai,2cε)

|μ(u, A) − μi| ≤ Cn + Cnεhex +
√

nFε(u, A′).

Combining this with (7.36) and using the fact that ξ ∈ C0,γ
0 (Ω), we

conclude that∣∣∣∣∣∣ 1n
∫
Ω

(
μ(u, A) −

n∑
i=1

μi

)
ξ

∣∣∣∣∣∣ ≤ Cεγ

(
1 + εhex +

√
Fε(u, A′)

n

)
‖ξ‖C0,γ(Ω)

i.e., (7.25) holds.
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Step 4: Proof of (7.24).

The relation follows from the energy-splitting lemma, Lemma 7.3, which
yields

Gε(u, A) = hex
2J0 + Fε(u, A′) + hex

∫
Ω

ξ0μ(u, A′) + O
(
εhex

2Fε(|u|) 1
2

)
.

In order to conclude, we essentially need to estimate μ(u, A′) − μ. First
we recall (see (7.37)) that μ(u, A) = curl(ρ2(∇ϕ − A) + A) and sim-
ilarly μ(u, A′) = curl(ρ2(∇ϕ − A′) + A′). Thus μ(u, A) − μ(u, A′) =
curl

(
(1 − ρ2)(A − A′)

)
= curl

(
(1 − ρ2)hex∇⊥h0

)
. We deduce, after in-

tegration by parts, that

hex

∫
Ω

ξ0(μ(u, A′) − μ(u, A)) =
∫
Ω

hex
2(1 − ρ2)|∇h0|2

= O(εhex
2Fε(|u|)1/2).

(7.38)

On the other hand, from (7.25) and the fact that ξ0 ∈ C0,1
0 (Ω), we find

that ∣∣∣∣∣∣hex

∫
Ω

ξ0(μ(u, A) − μ)

∣∣∣∣∣∣ ≤ nhexε

(
1 + εhex +

√
Fε(u, A′)

n

)
.

Combining this with (7.38) we conclude that (7.24) holds and Proposi-
tion 7.3 is proved.

Remark 7.1. With the same arguments as in this proof, we could easily
prove another estimate on the energy of the configuration constructed in
Step 1: namely that

Gε(u, A) ≤ πn| log ε| + 1
2

∑
i	=j

∫∫
GΩ(x, y) dμi(x) dμj(y)

+ hex
2J0 + hex

∫
ξ0(x)dμ(x) + O(n).

7.3.4 Choice of the Vortex Configuration

Proposition 7.4. Assume that μ is continuous, compactly supported in
Ω and different from 0. Assume that {n(ε)}ε>0 are integers such that
1 	 n ≤ C

ε2 as ε → 0.
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Then, there exists c > 0 and for every ε ∈ (0, 1) a family of points
aε

i ∈ Ω and degrees dε
i = ±1 such that |aε

i − aε
j | > 8cε for every i �= j,

dist(aε
i , ∂Ω) > 8c and such that

1
n

n∑
i=1

με
i ⇀ 2π

μ

‖μ‖ in the weak sense of measures,

for με
i any measure supported in B(aε

i , cε), of constant sign, and such
that με

i (Ω) = 2πdi. Moreover,

lim
ε→0

− 1
n2

∑
i	=j

∫∫
log |x − y|dμε

i (x) dμε
j(y) (7.39)

= − 4π2

‖μ‖2

∫∫
log |x − y| dμ(x) dμ(y).

lim
ε→0

1
n2

∑
i	=j

∫∫
GΩ(x, y)dμε

i (x) dμε
j(y) (7.40)

=
4π2

‖μ‖2

∫∫
GΩ(x, y) dμ(x) dμ(y).

Let M = ‖μ‖L∞(Ω). Let us partition Ω into squares K of sidelength
δ where δ(ε) is chosen such that

1√
n
	 δ(ε) 	 1. (7.41)

(Recall that n depends on ε and n(ε) � 1.) Let us denote by K(ε) the
family of those squares that lie entirely inside Ω. The next step is to
determine how many points to put in each square.

Lemma 7.4. Given n ∈ N and nonnegative numbers (λi)1≤i≤� with∑�
i=1 λi = n, we can find integers (mi)1≤i≤� such that∑�

i=1 mi = n,

|mi − λi| < 1 ∀i ∈ [1, �].

Proof. We let [x] denote the largest integer less than or equal to x.
Letting σi = λ1+· · ·+λi if i ≥ 1 and σ0 = 0, we let si = [σi] for 0 ≤ i ≤ �
and define mi = si − si−1, for 1 ≤ i ≤ �. Then m1 + · · ·+ m� = [σ�] = n,
and it follows from the inequalities

σi − 1 < si ≤ σi, σi−1 − 1 < si−1 ≤ σi−1

that λi − 1 < mi < λi + 1.
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We may apply this lemma to the family of real numbers {λK}K∈K(ε)

defined by

λK = n
|μ(K)|

Mε
,

where Mε is the sum of the numbers |μ(K)| for K ∈ K(ε). Hence the sum
of the λK ’s is n. Note that since μ is continuous with compact support
in Ω and since the sidelength δ tends to 0 as ε → 0, we have

Mε =
∑

K∈K(ε)

|μ(K)| −→ ‖μ‖ as ε → 0. (7.42)

We deduce from Lemma 7.4 that there exist integers mε(K) such
that ∑

K∈K(ε)

mε(K) = n (7.43)

and ∣∣∣∣mε(K) − n
|μ(K)|

Mε

∣∣∣∣ < 1. (7.44)

Since ‖μ‖∞ ≤ M we have |μ|(K) ≤ Mδ2 and therefore mε(K) ≤
1 + nMδ2/‖μ‖ = O(nMδ2). Thus we may pick mε(K) points aε

i evenly
scattered in K such that

|aε
i − aε

j | ≥
Cδ√

mε(K)
≥ C√

n
. (7.45)

Therefore, from the hypothesis on n, there exists c > 0 such that

|aε
i − aε

j | ≥ 8cε.

Moreover, since μ is compactly supported in Ω and making c smaller
if necessary, we may assume that the support of μ is at a distance greater
than 16c from ∂Ω. Then, for ε small enough, we will have, again using
the fact that δ goes to zero

dist(aε
i , ∂Ω) ≥ 16c −

√
2δ ≥ 8c,

as required for Proposition 7.3 to apply.
If μ(K) ≥ 0 we assign the degree di = 1 to each aε

i ∈ K, otherwise
the degree di = −1.
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Claim: Let με
i denote a measure of constant sign supported in

B(aε
i , cε) and such that με

i (Ω) = 2πdi. If i �= j, then με
i and με

j have
disjoint supports and we have

με :=
1
n

∑
i

με
i ⇀ 2π

μ

‖μ‖ (7.46)

in the sense of measures.

Proof. From (7.42), it suffices to prove that

με − νε ⇀ 0 (7.47)

in the sense of measures, where

νε = 2π
μ

Mε
.

Let f be in C0
0 (Ω). For any K ∈ Kε, we may decompose f as

(f − f̄) + f̄ , where f̄ is the average of f on K with respect to νε, which
yields ∫

K

f d (νε − με) = −
∫
K

(f − f̄) dμε + (νε − με)(K)f̄ .

Using (7.44) and the fact that by construction nμε(K) = ±2πmε(K),
the sign being that of μ(K), we deduce∣∣∣∣∣∣

∫
K

f d (νε − με)

∣∣∣∣∣∣ ≤ 2π osc(f, K)
mε(K)

n
+

2π

n
‖f‖∞,

where osc(f, K) = supx,y∈K |f(x) − f(y)|. Summing over K ∈ Kε, using
(7.43) and the fact that the number of squares is smaller than C/δ2, we
find ∣∣∣∣∫ f d(νε − με)

∣∣∣∣ ≤ C

nδ2
‖f‖∞ + 2πγε,

where γε = supK∈K(ε) osc(f, K). But γε is o(1) as ε → 0 since δ 	 1 and
from (7.41) we have 1 	 nδ2. Therefore the right-hand side is o(1) as
ε → 0, proving (7.47) and the claim.
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Proof of (7.39)–(7.40). It suffices to prove (7.39). Indeed, from (7.46)
and the continuity of SΩ in Ω we have

lim
ε→0

1
n2

∑
i,j

∫∫
SΩ(x, y) dμε

i (x) dμε
j(y) =

4π2

‖μ‖2

∫∫
SΩ(x, y) dμ(x) dμ(y),

and the sum of the diagonal terms i = j in the above double sum goes
to zero, since it is less than C/n. Therefore

lim
ε→0

1
n2

∑
i	=j

∫∫
SΩ(x, y) dμε

i (x) dμε
j(y) =

4π2

‖μ‖2

∫∫
SΩ(x, y) dμ(x) dμ(y).

Adding to (7.39) yields (7.40), since 2πGΩ = SΩ − log.
We now prove (7.39). Given α > 0 and letting

Δα = {(x, y) | |x − y| ≤ α},

by continuity of log |x − y| in (Ω × Ω) \ Δα, we have

lim
ε→0

1
n2

∑
i	=j

∫∫
(Δα)c

log |x − y| dμε
i (x) dμε

j(y)

=
4π2

‖μ‖2

∫∫
(Δα)c

log |x − y| dμ(x) dμ(y).

Therefore (7.39) will be proved if we show that

lim
α→0

lim sup
ε→0

1
n2

∑
i	=j

∫∫
Δα

log |x − y| dμε
i (x) dμε

j(y) = 0, (7.48)

lim
α→0

∫∫
Δα

log |x − y| dμ(x) dμ(y) = 0.

The second limit is clearly equal to zero since |μ| ≤ C1Ω dx and since
log |x − y| is in L1(Ω × Ω). The first limit follows from (7.45).

Indeed from (7.45) we may choose λ > 0 such that if i �= j, then

|aε
i − aε

j | ≥
4λ√
n

.
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We may now define disjoint balls

Bε
i = B

(
aε

i ,
λ√
n

)
.

Moreover, if x and y belong respectively to Bε
i and Bε

j , then

|x − y|
C

< |aε
i − aε

j | < C|x − y|, (7.49)

and we already know that if x′ and y′ belong respectively to the support
of με

i and the support of με
j ,

|x′ − y′|
C

< |aε
i − aε

j | < C|x′ − y′|. (7.50)

This last inequality follows from the fact that με
i is supported in B(aε

i , cε)
for any i and 8cε < |aε

i − aε
j |, if i �= j.

Using (7.49) and (7.50) we deduce that |x − y| ≤ C|x′ − y′| and
|x′ − y′| ≤ C|x − y| for any (x, y) ∈ Bε

i × Bε
j and (x′, y′) ∈ B(aε

i , cε) ×
B(aε

j , cε). It follows that

1
4π2

∫∫ ∣∣log |x′ − y′|∣∣ dμε
i (x

′) dμε
j(y

′)

≤ 1
|Bε

i × Bε
j |

∫∫
Bε

i ×Bε
j

|(log |x − y|| + C) dx dy.

Summing over indices (i, j) such that the support of με
i × με

j intersects
Δα and using the fact that |Bε

i × Bε
j | = C/n2 we deduce

1
n2

∑
i	=j

∫∫
Δα

∣∣log |x′ − y′|∣∣ dμε
i (x

′) dμε
j(y

′) ≤ C

∫∫
Δαε∩Ω

|(log |x − y||+1) dx dy,

where αε = α + C/
√

n converges to α as ε → 0. Taking limsups with
respect to ε and passing to the limit α → 0 yields (7.48), and then
(7.39)–(7.40).

As an application, we obtain:
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Proposition 7.5. Assume hex/| log ε| → λ > 0 as ε → 0. Given μ ∈
M(Ω) ∩ H−1(Ω), there exists configurations {(uε, Aε)}ε such that
‖uε‖L∞ ≤ 1 and

μ(uε, Aε)
hex

⇀ μ in (C0,γ
0 (Ω))∗ ∀γ ∈ (0, 1) (7.51)

and

lim sup
ε→0

Gε(uε, Aε)
hex

2 ≤ ‖μ‖
2λ

+
1
2

∫
Ω

|∇hμ|2 + |hμ − 1|2, (7.52)

where hμ is given by (7.7).

Proof. We first assume μ �= 0 is a continuous and compactly supported
function.

Let n =
[

hex
2π ‖μ‖], where [ · ] denotes the integer part, and apply

Proposition 7.3 combined with Proposition 7.4. It yields the existence of
(uε, Aε) such that 1

n

∑n
i=1 με

i ⇀ 2πμ/‖μ‖ in the sense of measures, and
therefore

με :=
1

hex

n∑
i=1

με
i ⇀ μ,

with (7.23), (7.24), (7.40) and (7.25) holding. From (7.23) combined with
(7.40), we have

Fε(uε, A
′
ε) ≤ πn| log ε| + 2π2n2

‖μ‖2

∫∫
GΩ(x, y) dμ(x) dμ(y) + o(n2)

that is, inserting the particular choice of n,

Fε(uε, A
′
ε) ≤

hex

2
‖μ‖| log ε| + hex

2

2

∫∫
GΩ(x, y) dμ(x) dμ(y) + o(hex

2).

Since hex = O(| log ε|), we have Fε(uε, A
′
ε) ≤ O(| log ε|2) and thus the

remainder terms in (7.24) are o(1), leading to

Gε(uε, Aε) ≤ hex
2J0 +

hex

2
‖μ‖| log ε| + hex

2

∫
ξ0 dμε

+
hex

2

2

∫∫
GΩ(x, y) dμ(x) dμ(y) + o(hex

2). (7.53)
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Using the continuity of ξ0 together with the convergence of με to μ, we
deduce from (7.53) that

Gε(uε, Aε) ≤ hex
2J0 +

hex

2
‖μ‖ | log ε| + hex

2

∫
ξ0 dμ

+
hex

2

2

∫∫
GΩ(x, y) dμ(x) dμ(y) + o(hex

2). (7.54)

But hμ, Uμ and h0 being defined respectively by (7.7), (7.19), and (7.1),
we have hμ = Uμ + h0 and therefore hμ − 1 = Uμ + ξ0. Then expanding
‖Uμ + ξ0‖2

H1(Ω) and using (7.20) we deduce

1
2

∫
Ω

|∇hμ|2 + |hμ − 1|2 = J0 +
∫

ξ0 dμ +
1
2

∫∫
GΩ(x, y) dμ(x) dμ(y).

Replacing in (7.54) and using hex ∼ λ| log ε| yields (7.52).
Moreover, since (7.25) holds and Fε(uε, A

′
ε) ≤ O(| log ε|2), we have

1
hex

‖μ(uε, Aε) − με‖(C0,γ
0 (Ω))∗ ≤ Cεγ

(
1 +

√
Fε(uε, A′

ε)
n

)
≤ o(1).

We conclude that (7.51) holds, which finishes the proof in the case where
μ is a continuous and compactly supported function.

For the general case we use an approximation argument. Assume
μ ∈ M(Ω) ∩ H−1(Ω) and consider a sequence {μk}k∈N of continuous
functions compactly supported in Ω which converge to μ in the narrow
sense of convergence of measures and in H−1(Ω). In particular

lim
k→+∞

‖μk‖
2λ

+
1
2

∫
Ω

|∇hμk
|2 + |hμk

− 1|2

=
‖μ‖
2λ

+
1
2

∫
Ω

|∇hμ|2 + |hμ − 1|2. (7.55)

We may then apply the proposition to each μk, and get configurations
{uk

ε , A
k
ε)}ε which satisfy (7.51)–(7.52), with μk instead of μ.

Then, a diagonal argument, together with (7.55), yields a sequence
εk → 0 — that we write in shorthand {ε}— such that, writing (uε, Aε)
instead of (uk

εk
, Ak

εk
), both (7.51) and (7.52) hold.
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Remark 7.2. In Chapter 8 we will obtain a sharper upper bound in the
case λ = +∞, i.e., hex � | log ε|. Observe also that an upper bound
min Gε ≤ 1

4ε2 (useful when hex ≥ C
ε2 ) is easy to obtain by considering the

normal configuration u ≡ 0, h ≡ hex (see Chapter 2).

7.4 Proof of Theorems 7.1 and 7.2

Item 2) of Theorem 7.1, stated above as Proposition 7.5, has already
been proved.

7.4.1 Proof of Theorem 7.1, Item 1)

We assume Gε(uε, Aε) ≤ Chex
2 and ‖uε‖∞ ≤ 1. Then from Lemma 3.4,

|∇Aεuε|2 ≥ |uε|2|∇Aεuε|2 ≥ |jε|2,

with jε = (iuε,∇Aεuε). From the upper bound Gε(uε, Aε) ≤ Chex
2, we

deduce that jε/hex and hε/hex are bounded in L2(Ω), hence up to ex-
traction they converge weakly in L2(Ω) as ε → 0 to some j, h. Moreover,
since μ(uε, Aε) = curl jε + hε, we have

με :=
μ(uε, Aε)

hex
→ μ = curl j + h

weakly in H−1(Ω). It remains to prove the convergence of με in (C0,γ
0 (Ω))∗

and the lower bound (7.8).
Since hex ≤ C| log ε|, we have Gε(uε, Aε) ≤ Chex

2 ≤ C| log ε|2. We
deduce that Fε(uε, Aε) ≤ C| log ε|2 too since Fε(u, A) ≤ 2Gε(u, A) +
2hex

2|Ω|, which follows from (h − hex)2 ≤ 2(h2 + hex
2).

Let U be an open subdomain of Ω. Working in U rather than in
Ω will be useful in order to prove (7.9) and (7.10) in Theorem 7.2 in
the next section. Applying Theorem 4.1 in U with r 	 1 such that
| log r| 	 | log ε|, we get a family of disjoint closed balls B(ai, ri) with∑

i ri ≤ Cr. We call the union of these balls Vε. From Theorem 4.1 we
have

Fε(uε, Aε, Vε) ≥ π
∑

i

|di|
(

log
1

ε
∑

i |di| − o(| log ε|)
)

.

Moreover, since Fε(uε, Aε) ≤ C| log ε|2 and from (4.4) we have
∑

i |di| ≤
C| log ε|, hence the above may be rewritten, since | log ε| and hex are
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comparable

Fε(uε, Aε, Vε) ≥ π
∑

i

|di|| log ε| − o(hex
2). (7.56)

In the above we want to replace Fε with Gε. The difference between
the two is the integral of hex

2 − 2hhex over Vε which, using Cauchy–
Schwarz, is less than |Vε|hex

2 +
√|Vε|hex‖hε‖L2 , hence is o(hex

2) since
‖hε‖L2 ≤ Chex and the area of Vε tends to 0. Therefore, using (7.56)

Gε(uε, Aε, U) = Gε(uε, Aε, Vε) + Gε(uε, Aε, U \ Vε)

≥ π
∑

i

|di|| log ε| + Gε(uε, Aε, U \ Vε) − o(hex
2), (7.57)

and then, dividing by hex
2,

Gε(uε, Aε, U)
hex

2

≥ π

∑
i |di|
hex

| log ε|
hex

+
∫

U\Vε

∣∣∣∣ jε

hex

∣∣∣∣2 +
∣∣∣∣ hε

hex
− 1

∣∣∣∣2 − o(1). (7.58)

Let us now examine the limit as ε → 0 of the right-hand side of this
inequality. Since

∑
i ri → 0 we may extract a sequence εn → 0 such that,

denoting
AN := ∪n≥NVεn ,

we have |AN | → 0 as N → ∞. By weak convergence of jεn/hex and
hεn/hex, we have for any fixed N

lim inf
n→∞

∫
U\Vεn

∣∣∣∣ jεn

hex

∣∣∣∣2 +
∣∣∣∣hεn

hex
− 1

∣∣∣∣2 ≥ lim inf
n→∞

∫
U\AN

∣∣∣∣ jεn

hex

∣∣∣∣2 +
∣∣∣∣hεn

hex
− 1

∣∣∣∣2

≥
∫

U\AN

|j|2 + |h − 1|2.

Passing to the limit N → ∞, we find

lim inf
n→∞

∫
U\Vεn

∣∣∣∣ jεn

hex

∣∣∣∣2 +
∣∣∣∣hεn

hex
− 1

∣∣∣∣2 ≥
∫
U

|j|2 + |h − 1|2. (7.59)
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On the other hand, returning to (7.57) and using the a priori bound
Gε(uε, Aε) ≤ Chex

2, we find that (1/hex)
∑

i |di| remains bounded. Thus,
(2π/hex)

∑
i diδai is weakly compact in the sense of measures, and we

may assume it converges to a measure in (C0
0 (U))∗. Using the Jacobian

estimate Theorem 6.1 in U , this limit is also the limit of με, i.e., is
μ = curl j + h or to be precise the restriction of μ to U . Note that
Theorem 6.2 applied in Ω implies that με converges to μ in (C0,γ

0 (Ω))∗.
Passing to the limit in (7.58) and inserting (7.59), we find

lim inf
n→∞

Gε(uεn , Aεn , U)
hex

2 ≥ 1
2λ

|μ|(U) +
1
2

∫
U

|j|2 + |h − 1|2. (7.60)

Denoting by hμ the solution of (7.7), writing j as −∇⊥hμ+(j+∇⊥hμ)
and h as hμ + (h − hμ), and observing that

curl(j + ∇⊥hμ) + h − hμ = 0, (7.61)

we have∫
Ω

|j|2 + |h − 1|2 =
∫
Ω

|∇hμ|2 + |hμ − 1|2 + |j + ∇⊥hμ|2 + |h − hμ|2

+ 2
∫
Ω

(−∇⊥hμ) · (j + ∇⊥hμ) + (hμ − 1)(h − hμ)

=
∫
Ω

|∇hμ|2 + |hμ − 1|2 + |j + ∇⊥hμ|2 + |h − hμ|2

where we have used an integration by parts and (7.61). Inserting this into
(7.60) with U = Ω, we deduce that (7.8) holds, completing the proof of
Theorem 7.1, item 1).

7.4.2 Proof of Theorem 7.2

Combining 1) and 2) of Theorem 7.1, if {(uε, Aε)}ε are minimizers of Gε

we must have

lim
ε→0

min Gε

hex
2 = minEλ, (7.62)

together with j = −∇⊥hμ, and h = hμ. Hence the vorticity of minimizers
of Gε must converge, after extraction, to the unique minimizer μ∗ of Eλ.
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The uniqueness of μ∗ implies that the whole sequence μ(uε, Aε) converges
to μ∗ and hε/hex to hμ∗ . Also, since (uε, Aε) minimizes Gε, it is a critical
point and solves the second Ginzburg–Landau equation

−∇⊥hε = (iuε,∇Aεuε) = jε, (7.63)

which implies that |∇hε| ≤ |∇Aεuε| (see Lemma 3.3) and thus hε/hex

is bounded in H1(Ω). Taking the curl of (7.63) we also deduce that
−Δhε + hε = μ(uε, Aε). Since (C0,γ(Ω))∗ convergence is stronger than
W−1,p(Ω) convergence for p < 2, by elliptic regularity we deduce that
hε/hex converges strongly in W 1,p(Ω) for p < 2, and weakly in H1(Ω).

Returning to (7.60), we have for any open subdomain U of Ω

lim inf
n→∞

Gε(uεn , Aεn , U)
hex

2 ≥ 1
2λ

|μ∗|(U) +
1
2

∫
U

|∇hμ∗ |2 + |hμ∗ − 1|2,

but there must be equality from (7.62), therefore since this is true for
any U , (7.9) holds.

From (7.9), the fact that |∇Aεuε| ≥ |jε| = |∇hε| and the strong L2

convergence of hε, we have

lim inf
ε→0

|∇Aεuε|2
hex

2 ≥ lim inf
ε→0

|∇hε|2
hex

2 ≥ |∇hμ∗ |2 +
1
λ

μ∗

and conversely, from the energy upper-bound,

1
hex

2

∫
Ω

|∇hε|2 ≤ ‖μ∗‖
λ

+
∫
Ω

|∇hμ∗ |2.

Combining the two, we must have

|∇hε|2
hex

2 → |∇hμ∗ |2 +
1
λ

μ∗

as measures, and (7.10) follows from the Brezis–Lieb lemma.

Bibliographic notes on Chapter 7: The results of this chapter were
for the most part obtained in [168]: the statement there, was not exactly
in the Γ-convergence framework, however the structure of the proof es-
sentially was. A version with pinning term in the energy can be found in
[5] (some of the presentation here is borrowed more from [5]). Analogous
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results for the Ginzburg–Landau energy without magnetic field, dealing
also with nonsimply connected domains, were given by Jerrard–Soner in
[118].

Concerning the derivation of the value of H0
c1 , the result in (7.16)

confirms the formal derivation in the physics literature (Abrikosov [1],
DeGennes [80]), and by Bethuel–Rivière in [51].



Chapter 8

Higher Values of the
Applied Field

The previous chapter dealt with minimizers of the Ginzburg–Landau
functional when the applied field was O(| log ε|). The applied field be-
having asymptotically like λ| log ε|, letting λ → ∞ in Theorem 7.2 in-
dicates that for energy-minimizers for applied fields hex � | log ε|, we
must have μ(uε,Aε)

hex
→ 1, and hε

hex
→ 1. But in this regime, Gε(uε,Aε)

hex
2 → 0

and the arguments of Chapter 7 do not give, even formally, the leading
order term of the minimal energy. Moreover, the tools which were at the
heart of the result, namely the vortex balls construction of Theorem 4.1
and the Jacobian estimate of Theorem 6.1 break down for higher values
of hex.

On the other hand, we recall from Chapter 2 the prediction by
Abrikosov that the transition from the mixed state, which we may as well
call the vortex state, to the normal state, should occur for hex ≈ 1/ε2, i.e.,
much higher fields. We will show in this chapter how our techniques still
allow us to find the minimum of the energy for applied fields satisfying
| log ε| 	 hex 	 1/ε2: in the scaling of Chapter 7 what we determine here
is the first nonzero lower-order correction term. We find that minimizers
have a uniform limiting density in the whole domain Ω, in agreement
with Abrikosov lattices. In fact, the test-configurations we use below to
obtain the upper bound on the minimal energy are constructed to be
periodic.

Theorem 8.1. Assume, as ε → 0, that | log ε| 	 hex 	 1/ε2. Then, let-
ting (uε, Aε) minimize Gε, and letting gε(u, A) denote the energy-density
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1
2

(|∇Au|2 + |h − hex|2 + 1
2ε2 (1 − |u|2)2), we have

2gε(uε, Aε)
hex log 1

ε
√

hex

⇀ dx as ε → 0 (8.1)

in the weak sense of measures, where dx denotes the 2-dimensional Le-
besgue measure, and

min
(u,A)∈H1×H1

Gε(u, A) ∼ |Ω|
2

hex log
1

ε
√

hex
as ε → 0, (8.2)

where |Ω| is the area of Ω.

Since in this regime hex log 1
ε
√

hex
	 hex

2, we deduce as an immediate
corollary:

Corollary 8.1. Assume that, as ε → 0, | log ε| 	 hex 	 1/ε2 and
(uε, Aε) minimize Gε, letting hε = curlAε and μ(uε, Aε) =
curl(iuε,∇Aεuε) + hε, we have

hε

hex
→ 1 in H1(Ω)

μ(uε, Aε)
hex

→ dx in H−1(Ω).

Proof. Since (uε, Aε) minimizes Gε, it is a solution of (GL) and thus,
using Lemma 3.3, we find

‖hε − hex‖2
H1(Ω) ≤ 2Gε(uε, Aε) 	 hex

2

hence hε/hex → 1 in H1(Ω). Since we have the relation −Δhε + hε =
μ(uε, Aε) obtained by taking the curl of the second Ginzburg–Landau
equation, the convergence of μ(uε, Aε)/hex follows.

The theorem is a direct consequence of Propositions 8.1 and 8.2 be-
low, but let us briefly explain what problem occurs for high fields and
how it is overcome. If hex is too high, say hex � 1/ε, then a minimizer
of Gε is expected to have a number of vortices n of the order of hex and
then the perimeter of the set where |u| < 1/2 should be of the order
nε � 1. This means that we can no longer hope that the a priori bound
on the energy satisfied by a minimizer excludes, say, a line where |u| = 0.
As we mentioned, the downside is that the vortex balls construction and
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the Jacobian estimate, which are based on covering the set {|u| = 0} by
small balls, will not work anymore.

On the other hand, for such large fields, the problem of minimizing
Gε reduces to that of minimizing it on any subdomain, in other words
the minimization problem becomes local. Thus we may perform blow-
ups which yield the right lower bound. The effect of the blow-ups will be
precisely to effectively reduce hex and allow our techniques to be applied
on the smaller scale. On the other hand, that the upper bound that we
need will demand a more rigid construction of a good test-configuration
than in Proposition 7.4.

The rescaling formula is:

Lemma 8.1. Given (u, A) and Ω, assuming 0 ∈ Ω, define uλ, Aλ and
Ωλ by

uλ(λx) = u(x), λAλ(λx) = A(x), Ωλ = λΩ. (8.3)

Then, for any hex, we have Gε(u, A, Ω) = Gλ
ε (uλ, Aλ, Ωλ), where

Gλ
ε (uλ, Aλ, Ωλ) =

1
2

∫
Ωλ

|∇Aλ
uλ|2 + λ2

(
curlAλ − hex

λ2

)2

+

(
1 − |uλ|2

)2
2(λε)2

. (8.4)

The proof is straightforward and we omit it.

8.1 Upper Bound

Proposition 8.1. Assume, as ε → 0, that 1 	 hex 	 1/ε2. Then for
any ε small enough

min
(u,A)∈H1×H1

Gε(u, A, Ω) ≤ hex
|Ω|
2

(
log

1
ε
√

hex
+ C

)
. (8.5)

Proof. The proof is done by constructing a test configuration (uε, Aε)
which is periodic, in the sense that gauge-invariant quantities are peri-
odic. Let

λ =

√
hex

2π
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and let Lε = λZ × λZ. We let hε be the solution in R
2 of

−Δhε + hε = 2π
∑
a∈Lε

δa. (8.6)

It is thus periodic with respect to Lε.
Then we define ρε by

ρε(x) =

⎧⎪⎪⎨⎪⎪⎩
0 if |x − a| ≤ ε for some a ∈ Lε,

|x − a|
ε

− 1 if ε < |x − a| < 2ε for some a ∈ Lε,

1 otherwise.

(8.7)

Finally, as in the proof of Proposition 7.3, we define Aε to solve curl Aε =
hε and ϕε, well defined modulo 2π, to solve −∇⊥hε = ∇ϕε−Aε in R

2\Lε.
Then we let uε = ρεe

iϕε .
By construction, every gauge-invariant quantity is periodic with re-

spect to the lattice Lε, thus if we choose the origin carefully, the energy
Gε(uε, Aε) will be estimated by computing the energy per unit cell. In-
deed, let

Kε =
(
− 1

2λ
,

1
2λ

)
×
(
− 1

2λ
,

1
2λ

)
be the unit cell of Lε. For each x ∈ Kε we may define a translated lattice
Lx

ε , and a corresponding test configuration (ux
ε , Ax

ε ), with energy density
glxε (y) = glε(y − x). Then, applying Fubini’s theorem, we have∫

x∈Kε

Gε (ux
ε , Ax

ε , Ω) dx =
∫∫

x∈Kε
y∈Ω

glxε (y) dx dy = |Ω|Gε(uε, Aε, Kε),

since glε is periodic with respect to the lattice Lε. It follows, using the
mean value formula, that we may choose x such that

Gε (ux
ε , Ax

ε , Ω) ≤ |Ω|
|Kε|Gε(uε, Aε, Kε). (8.8)

We estimate Gε(uε, Aε, Kε), arguing as in Proposition 7.3: we have
|∇Aεuε|2 = |∇ρε|2 +ρε

2|∇ϕε −Aε|2 and ρε
2|∇ϕε −Aε|2 ≥ |∇hε|2. More-

over, writing Br for B(0, r) and using (8.7)

1
2

∫
B2ε

|∇ρε|2 +
1

2ε2

(
1 − ρε

2
)2 ≤ C.
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We deduce that

Gε(uε, Aε, Kε) ≤ 1
2

∫
Kε\Bε

|∇hε|2 +
1
2

∫
Kε

(hε − hex)2 dx + C. (8.9)

To estimate the right-hand side, we perform a change of variables
y = λx. Then∫

Kε\Bε

|∇hε|2 +
∫
Kε

(hε − hex)2 dx =
∫

K\Bλε

|∇h̃ε|2 +
2π

hex

∫
K

h̃2
ε dy (8.10)

where h̃ε(y) = hε(x)−hex and K = (−1
2 , 1

2)×(−1
2 , 1

2). Now we decompose
h̃ε − hex as

h̃ε(y) = gε(y) − log |y|, (8.11)

and we show that gε is bounded in W 1,q(K) independently of ε for any
q > 0.

First, by periodicity, the integral of hε in Kε is 2π, thus the integral
of h̃ε in K is 2πλ2 − hex = 0. Therefore gε and log | · | have the same
mean value in K, and that value does not depend on ε. We deduce from
Poincaré’s inequality that

‖gε‖2
L2(K) ≤ C

(
1 + ‖∇gε‖2

L2(K)

)
. (8.12)

Second note that hε, which is the solution to (8.6), is also the solution of
−Δhε+hε = 2πδ0 in Kε and ∂νhε = 0 on ∂Kε. Indeed, the problem (8.6)
is symmetric with respect to each line containing a side of the square Kε,
hence hε is equal to its symmetrized and ∂νhε = 0 on ∂Kε. Therefore
gε(y) = hε(y/λ) − hex + log |y| solves{

−Δgε + λ−2 (gε + hex − log) = 0 in K,
∂νgε = ∂ν log on ∂K.

Multiplying the equation by gε and integrating by parts in K yields∫
K

|∇gε|2 +
1
λ2

(
g2
ε + gεhex − gε log

)
=
∫

∂K

gε∂νgε.
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We deduce, replacing λ by its value and using the facts that ∂νgε = ∂ν log
on ∂K and that the average of gε on K does not depend on ε,

‖∇gε‖2
L2(K) ≤ C

(
1 + hex

−1‖gε‖2
L2(K) + ‖gε‖L2(∂K)

)
. (8.13)

Since 1 	 hex, if ε is small enough, then hex is large enough so that using
(8.12) and bounding the L2 norm of the trace of gε by the H1 norm,
the terms in the right-hand side of (8.13) are absorbed by ‖∇gε‖2

L2(K)

yielding ‖gε‖H1(K) ≤ C. We deduce that gε is bounded independently of
ε in Lq(K) for every q > 0 and then, using the equation satisfied by gε,
that for every q > 0

‖∇gε‖2
W 1,q(K) ≤ C.

Together with (8.11), this implies that∫
K\Bλε

|∇h̃ε|2 ≤ C +
∫

K\Bλε

|∇ log |2 ≤ C + 2π log
1
λε

,

and also 2π
hex

∫
K h̃2

ε ≤ C. Together with (8.8), (8.9), and (8.10), this yields,
since |Kε| = λ−2 = 2π/hex,

Gε (ux
ε , Ax

ε , Ω) ≤ |Ω|
|Kε|

(
π log

1
λε

+ C

)
≤ |Ω|

2
hex

(
log

1√
hexε

+ C

)
.

8.2 Lower Bound

We now wish to compute a lower bound for Gε(u, A) which matches the
upper bound of the previous section. In the course of the proof we will
see clearly that if (u, A) minimizes Gε, then its energy is accounted for
by the vortex-energy.

In what follows we denote Bx
λ = B(x, λ−1) and we will often omit

the subscript ε, where x is the center of the blow-up.

Proposition 8.2. Assume | log ε| 	 hex 	 1/ε2 and (uε, Aε) minimizes
Gε. Then there exists 1 	 λ 	 1

ε such that for every x ∈ Ω such that
Bx

λ ⊂ Ω, we have

Gε(uε, Aε, B
x
λ) ≥ |Bx

λ|
2

hex log
1

ε
√

hex
(1 − o(1)) . (8.14)
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Proof. As already mentioned, the proof is achieved by blowing up at the
scale λ.

Define uλ and Aλ as in (8.3), but taking the origin at x. From
Lemma 8.1, (8.4), again with the origin at x, and dropping the ε sub-
scripts, the left-hand side of (8.14) is equal to

1
2

∫
B1

|∇Aλ
uλ|2 + λ2

(
curlAλ − hex

λ2

)2

+

(
1 − |uλ|2

)2
2(λε)2

thus, letting u′ = uλ, A′ = Aλ, ε′ = λε and hex
′ = hex/λ2, the inequality

(8.14) that we wish to prove is equivalent to

1
2

∫
B1

|∇A′u′|2 + λ2
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2

≥ |B1|
2

hex
′ log

1
ε
√

hex
(1 − o(1)) . (8.15)

Now we choose λ such that

hex
′ = | log ε′|. (8.16)

Let us check that this is possible and give the behavior of λ as ε → 0. Con-
dition (8.16) is equivalent to ε2hex = f(ελ), where f(x) = x2 log(1/x).
Since ε2hex → 0 as ε → 0, it is easy to check that for ε small enough,
there is a unique xε ∈ (0, 1/2) satisfying f(xε) = ε2hex. Moreover from
| log ε| 	 hex 	 1/ε2 we deduce ε 	 xε 	 1. Therefore (8.16) can indeed
be verified, and the corresponding λ, ε′ satisfy

1 	 λ 	 1
ε
, ε′ 	 1, log

1
ε
√

hex
≈ | log ε′|,

the last identity being deduced from ε2hex = f(ελ) = f(ε′) by taking
logarithms. Thus with this choice of λ, (8.15) becomes

1
2

∫
B1

|∇A′u′|2 + λ2
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2

≥ |B1|
2

hex
′| log ε′| (1 − o(1)) . (8.17)
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Two cases may now occur, depending on the blow-up origin x. Either

1
2

∫
B1

|∇A′u′|2 + λ2
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2
� hex

′2

as ε → 0 and then, from (8.16), (8.17) is clearly satisfied, or

1
2

∫
B1

|∇A′u′|2 + λ2
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2
≤ Chex

′2.

This way, we have reduced to the case of configurations with a relatively
small energy, for which all the analysis of previous chapters apply.

In this case, since λ � 1 we find

curlA′ − hex
′

hex
′ → 0, in L2(B1). (8.18)

On the other hand, replacing ε by ε′ and hex by hex
′, the hypotheses of

Theorem 7.1, item 1) are satisfied and we deduce from (7.6), (7.8) that

lim inf
ε′→0

1

2hex
′2

∫
B1

|∇A′u′|2 +
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2
≥ ‖μ′‖

2
,

where μ′ = −Δh′ + h′ and h′ is the limit of curlA′/hex
′. From (8.18) we

have μ′ = 1, hence

lim inf
ε′→0

1

2hex
′2

∫
B1

|∇A′u′|2 +
(
curlA′ − hex

′)2 +

(
1 − |u′|2)2

2ε′2
≥ π

2
,

and (8.17) is satisfied since for our choice of λ

π

2
hex

′2 =
|B1|
2

hex
′ log

1
ε′

.

We have shown for our particular choice of λ that (8.17), hence (8.15)
and then (8.14) are satisfied for every choice of blow-up origin x.
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To conclude the proof of Theorem 8.1, we integrate (8.14) with respect
to x. Letting U be any open subdomain of Ω, using Fubini’s theorem,
we have∫

x∈U

Gε(u, A, Bx
λ ∩ U) =

∫∫
x∈U

y∈Bx
λ∩U

gε(u, A)(y) dy dx

=
∫∫
x∈U

y∈Bx
λ∩U

gε(u, A)(y) dx dy

=
∫

y∈U

|By
λ ∩ U |gε(u, A)(y) dy ≤ π

λ2
Gε(u, A, U).

We deduce that

lim inf
ε→0

Gε(u, A, U)
hex log 1

ε
√

hex

≥ lim inf
ε→0

∫
x∈U

λ2Gε(u, A, Bx
λ ∩ U)

πhex log 1
ε
√

hex

≥ lim inf
ε→0

∫
x∈U,Bx

λ⊂U

λ2Gε(u, A, Bx
λ ∩ U)

πhex log 1
ε
√

hex

≥
∫

x∈U

lim inf
ε→0

(
1Bx

λ⊂U
Gε(u, A, Bx

λ)
hex|Bx

λ| log 1
ε
√

hex

)

≥ |U |
2

, (8.19)

where we have used Fatou’s lemma and (8.14). In view of Proposition 8.1,

we know that
(
hex log 1

ε
√

hex

)−1
gε(uε, Aε) is bounded in L1(Ω), hence has

a weak limit g in the sense of measures. Since continuous functions on Ω
can be uniformly approximated by characteristic functions, (8.19) allows
to say that g ≥ dx

2 . But since (8.5) holds, there must be equality, which
proves (8.1), and (8.2) immediately follows.

Bibliographic notes on Chapter 8: The result of this chapter was
obtained in [170], but the proof is presented here under a much simpler
form. The case of higher hex, of order b/ε2 with b < 1, was studied in
[172].



Chapter 9

The Intermediate Regime

When hex ∼ H0
c1 i.e., hex

| log ε| → λ = 1
2|ξ0| , then from Theorem 7.2, we get

that the limiting minimizer is h0 hence μ∗ = 0. Moreover, comparing
the lower bounds (7.58) and (7.59) to the upper bound of Theorem 7.1,
we find

∑
i |di|
hex

→ 0, which means that the number of vortices is o(hex).
In other words, for energy-minimizers, vortices first appear for hex

| log ε| →
1

2|ξ0| , or hex ∼ H0
c1 , and next to Λ (defined in (7.5)), and the vorticity

mass is much smaller than hex. The analysis of Chapter 7 does not give
us the optimal number n of vortices nor the full asymptotic expansion
of the first critical field. Thus, a more detailed study will be necessary
in this regime hex ∼ | log ε|

2|ξ0| , in which n 	 hex. We will prove that the
vortices, even though their number may be diverging, all concentrate
around Λ (generically a single point) but that after a suitable blow-up,
they tend to arrange in a uniform density on a subdomain of R

2, in
order to minimize a limiting interaction energy I defined on probability
measures.

Many of the elements of the proof in this chapter will be useful in
the following chapters.

9.1 Main Result

In this chapter, we assume for simplicity that Ω is a domain such that
defining ξ0 as in (7.2), the minimum of ξ0 is achieved at a single point
(recall Lemma 7.1) and that moreover D2ξ0(p) is a positive definite
quadratic form. This is the case if Ω is a ball or a convex set, for in-
stance.
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Throughout the chapter, we denote by p the unique point where
ξ0 achieves its minimum, by ξ0 its minimum value, and let Q(x) =
〈D2ξ0(p)x, x〉.

9.1.1 Motivation

The analysis which follows is best introduced by some formal calcula-
tions. Assume we are given solutions {(uε, Aε)} to the Ginzburg–Landau
equations with an applied field hex which is of the order of | log ε|. We
drop the subscript ε for the clarity of notation. To (u, A) is associated the
vorticity measure μ(u, A) = curl(iu,∇Au) + h and also, with the help of
Theorem 4.1, a family of vortex balls with centers and degrees {(ai, di)}i,
and total radius to be chosen later. We assume for simplicity that the
degrees are all equal to +1 and let n denote the number of vortices. We
also assume that every vortex ball has the same radius r. We wish to
guess as precisely as possible where it is energetically favorable to place
the vortices, if we know n to be small compared to hex.

Since (u, A) is a solution of the Ginzburg–Landau equations (GL),
we know from Proposition 3.9 that |u| ≤ 1 and therefore, writing j =
(iu,∇Au), we have |∇Au| ≥ |j|. On the other hand we have −∇⊥h = j,
where h = curlA, thus

Gε(u, A) ≥ 1
2

∫
Ω

|∇h|2 + |h − hex|2 =
1
2
‖h − hex‖2

H1 .

In this section we will make the assumption (which will be a posteriori
justified) that minimizing the right-hand side or minimizing the left-
hand side with respect to the number and/or positions of the vortices,
is equivalent.

We decompose h as h = hexh0 + h1, where h0 solves (7.1). The H1

norm of h − hex decomposes as

‖h − hex‖2
H1 = hex

2‖h0 − 1‖2
H1 + 2hex〈h1, h0 − 1〉H1 + ‖h1‖2

H1 . (9.1)

Taking the curl of the second Ginzburg–Landau equation we find −Δh1+
h1 = μ(u, A) and from the boundary conditions for h and h0 we get
h1 = 0 on ∂Ω. Integrating by parts the scalar product we then find,
using the notation (7.2) and (7.3),

1
2
‖h − hex‖2

H1 = hex
2J0 + hex

∫
Ω

ξ0μ(u, A) +
1
2

∫
Ω

|∇h1|2 + h1
2. (9.2)
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To make the vortex positions appear, we recall that the vorticity
μ(u, A) is close to 2π

∑
i δai (see Theorem 6.1), and therefore h1 is close

to solving the “London equation” (as called in physics){−Δh1 + h1 = 2π
∑

i δai in Ω
h1 = 0 on ∂Ω.

Of course the true h1 is smooth near the vortices, thus this approxi-
mation is valid only away from the vortices. We make the simplifying
assumption that defining GΩ as in (7.17), for x /∈ ∪iB(ai, r) we have
h1(x) = 2π

∑
i GΩ(x, ai). It is standard to check then that, using the

notation (7.18),

1
2

∫
Ω\∪iBi

|∇h1|2 + h1
2 ≈ πn log

1
r
− π

∑
i	=j

log |ai − aj | + π
∑
i,j

SΩ(ai, aj).

As for the energy in each B(ai, r), in view of Theorem 4.1, we take it
to be π log(r/ε). Together with (9.1), (9.2), where we replace μ(u, A) by
2π

∑
i δai , we find that Gε(u, A) can be approximated by

hex
2J0 +πn| log ε|+2πhex

∑
i

ξ0(ai)−π
∑
i	=j

log |ai−aj |+π
∑
i,j

SΩ(ai, aj).

We know that if n is small compared to hex, then the vortices will tend
to concentrate near the minimum p of ξ0. Therefore we are entitled to
approximate ξ0(ai) by ξ0 + 1

2Q(ai − p). We find

Gε(u, A) ≈ hex
2J0 + πn| log ε| + 2πhexnξ0

+ πhex

∑
i

Q(ai − p) − π
∑
i	=j

log |ai − aj | + πn2SΩ(p, p). (9.3)

What kind of information can we get from such considerations? Let �
denote the typical inter-vortex distance or rather the typical distance of
a vortex to p. Three terms can be distinguished in the above sum. First
the term

hex
2J0 + πn| log ε| + 2πhexnξ0 + πn2SΩ(p, p),

which depends only on the number, not the positions of the vortices.
Then the term πhex

∑
i Q(ai − p) which favors concentration of the vor-

tices near p, it is of the order of nhex�
2. Finally the term −π

∑
i	=j log |ai−
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aj | which is a repulsive term, is of the order of −n2 log �. To minimize
Gε we should then minimize nhex�

2 − n2 log � and therefore choose

� =
√

n

hex
.

Note that we are interested here in orders of magnitude, hence the con-
stants are irrelevant. The natural next step is then to express (9.3) at a
different scale, by letting ãi = (ai − p)/�. We get

Gε(u, A) ≈ hex
2J0 + πn| log ε| + 2πnhexξ0 + πn2SΩ(p, p)

− π(n2 − n) log � + πn
∑

i

Q(ãi) − π
∑
i	=j

log |ãi − ãj |.

This expansion is the sum of a term independent of the positions of the
points,

fε(n) = hex
2J0 + πn

(| log ε| − 2hex|ξ0|
)

+ πn2SΩ(p, p) + π(n2 − n) log
1
�
,

(9.4)

and a term best written in terms of the probability measure μ̃ =
1
n

∑
i

δãi

as n2I(μ̃), where

I(μ̃) = −π

∫∫
log |x − y| dμ̃(x) dμ̃(y) + π

∫
Q(x) dμ̃(x).

9.1.2 Γ-Convergence in the Intermediate Regime

Throughout this chapter, we are given configurations {(uε, Aε)}ε to which
we associate certain quantities that we define below.

Notation

Assume {(uε, Aε)}ε satisfy, for some α ∈ (0, 1),

Fε(uε, A
′
ε) ≤ εα−1, Chex ≤ ε−α, (9.5)

where A′
ε = Aε − hex∇⊥h0 and C > 0 is a universal constant that we

choose below.
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From Theorem 4.1 applied to (uε, A
′
ε), we may construct vortex balls

of radius Cεα/2, for some universal constant C. We define these to be
the small balls, denoted by B′ = {B′

i}i. Their centers and degrees are
denoted by a′i and d′i, or more precisely d′i is the degree of B′

i if B′
i ⊂ Ωε

and d′i = 0 otherwise. We let

r′ = Cεα/2, n′ =
∑

i

|d′i|. (9.6)

Under the hypothesis (9.5) and choosing the constant large enough,
we have r′ < 1/

√
hex, and therefore, using Theorem 4.2, we can grow the

family of small balls B′ into a family of large balls denoted by B = {Bi}i,
of total radius 1/

√
hex. We write ai for the center of Bi and di for its

degree, we also use the notation

r =
1√
hex

, n =
∑

i

|di|. (9.7)

Note that r, n, r′, n′ all depend on ε. Also note that since every ball in
B′ is included in one of the balls in B, Lemma 4.2 implies that n′ ≥ n.

The previous section motivates the following definitions. We let

� =
√

n

hex
(9.8)

and write

fε(n) = hex
2J0 + πn log

�

ε
− 2πnhex|ξ0|

+ πn2SΩ(p, p) + πn2 log
1
�
, (9.9)

f0
ε (n) = πn log

�

ε
+ πn2SΩ(p, p) + πn2 log

1
�
. (9.10)

Also, recalling that p denotes the unique point of minimum of ξ0, we let
ϕ be the blow-up centered at p for the scale �, defined by

ϕ(x) =
x − p

�
. (9.11)

If μ is a measure we will denote by μ̃ its push-forward by the mapping
ϕ, defined by μ̃(U) = μ(ϕ−1(U)), and if x is a point, then we will let
x̃ = ϕ(x).
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Finally we denote by P the set of probability measures on R
2 and for

μ ∈ P we let

I(μ) = −π

∫∫
log |x − y| dμ(x) dμ(y) + π

∫
Q(x) dμ(x) . (9.12)

Results

We may now state the precise Γ-convergence result in the intermediate
regime:

Theorem 9.1. (Γ-convergence in the intermediate regime, lower
bound). Assume that {(uε, Aε)}ε satisfies Fε(uε, Aε) < ε−1/4 and that
hex < ε−1/8. In particular (9.5) is satisfied with α = 3/4. We also assume
that 1 	 n 	 hex as ε → 0, that

Gε(uε, Aε) ≤ fε(n) + Cn2,

and we make one of the following two assumptions:

hex ≤ C| log ε| or n′ = n,

where n and n′ are defined by (9.6)–(9.7). Then the following holds.

1. There exists a probability measure μ∗ such that, after extraction of
a subsequence,

μ̃(uε, Aε)
2πn

−→ μ∗

as ε → 0, in the dual of C0,γ
c (R2) for some γ > 0.

2. As ε → 0,

Gε(uε, Aε) ≥ fε(n) + n2I(μ∗) + o(n2), (9.13)

Fε(uε, A
′
ε) ≥ f0

ε (n) − n2π

∫∫
log |x − y| dμ∗(x) dμ∗(y)

+ o(n2), (9.14)

where I was defined in (9.12) and fε in (9.9).

The corresponding upper bound also holds, with less restrictive as-
sumptions on hex.
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Proposition 9.1. Given a probability measure μ with compact support
in R

2 such that I(μ) < ∞ and given 1 	 nε 	 hex(ε) ≤ ε−β with β < 1
as ε → 0, there exists {(uε, Aε)}ε such that μ̃(uε,Aε)

2πnε
→ μ in (C0,γ

c (R2))∗

for every γ > β/2 and such that moreover

Fε(uε, A
′
ε) = f0

ε (nε) − n2
επ

∫∫
log |x − y| dμ(x) dμ(y) + o(n2

ε) (9.15)

where A′
ε = Aε − hex∇⊥h0, and

Gε(uε, Aε) = fε(nε) + n2
εI(μ) + o(n2

ε). (9.16)

We have therefore identified the right limiting object in this regime.
It is the limit μ∗ of the rescaled and normalized vorticity measures

μ̃(uε, Aε)
2πnε

.

To leading order, minimizing the energy of a configuration with n vortices
reduces to minimizing I. We describe below some of what is known about
this minimization problem, and then give precisions on the behavior of
{(uε, Aε)}ε as ε → 0.

Minimization of I

The solution to the minimization of I is known. It falls into the more
general problem of minimizing functionals of the type∫∫

log
1

|x − y| dμ(x) dμ(y) +
∫

Q(x) dμ(x)

over probability measures, when e−Q decreases fast enough at infinity.
We cite the following result from [163]:

Proposition 9.2 (See [163]). infμ∈PI(μ) is finite and there is a
unique minimizer μ0, which has compact support. It is uniquely char-
acterized by the fact that there exists a constant F such that

Uμ0 +
1
2
Q = F quasi-everywhere on Supp μ0

Uμ0 +
1
2
Q ≥ F quasi-everywhere in R

2
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where Uμ0(x) =
∫

R2 − log |x − y| dμ0(y).
If Q is a positive definite quadratic form, then μ0 is a measure sup-

ported on a compact set of R
2 of constant density 1

2ΔQ (the Laplacian
of Q).

Corollary 9.1. Under the hypotheses of Theorem 9.1,

Gε(uε, Aε) − fε(n) ≥ πn2I0 + o(n2) (9.17)

where

I0 = min
μ∈P

I(μ). (9.18)

Moreover, if n ≥ 1 and if there is equality in (9.17), then we must have

μ̃(uε, Aε)
2πn

⇀ μ0 in (C0,γ
c (R2))∗, ∀γ > 0

where μ0 is the minimizer of (9.18).

Proof. The result is immediate and follows from the uniqueness of the
minimizer of I0.

Since Q is a quadratic function in our case, we also know from Proposi-
tion 9.2 that the minimizer μ0 has a constant density 1

2ΔQ.
We now turn to the proofs of these main results.

9.2 Upper Bound: Proof of Proposition 9.1

Let us assume that the support of μ is included in B(0, R). The fact that
I(μ) < ∞ and μ ≥ 0 implies that μ ∈ H−1(B(0, R)). Indeed, introducing
SB(0,R) and GB(0,R) with the notation (7.17)–(7.18), we have∫∫

GB(0,R)(x, y) dμ(x) dμ(y) =

1
2π

∫∫
SB(0,R)(x, y) dμ(x) dμ(y) − 1

2π

∫∫
log |x − y| dμ(x) dμ(y).

The first term in the right-hand side is finite because SB(0,R) is a con-
tinuous function, and the second term by finiteness of I(μ). We deduce



9.2. Upper Bound: Proof of Proposition 9.1 173

that
∫∫

GB(0,R) dμ dμ < ∞ and hence that μ ∈ H−1(B(0, R)). We may
then apply Proposition 7.4 in B(0, R) with ε replaced by

ε̃ =
ε

�
,

(remark that ε̃ 	 ε
√

hex ≤ C) we obtain the existence of nε points
bε
i ∈ B(0, R) such that

1
nε

∑
i

μ̃i
ε → 2πμ (9.19)

in the weak sense of measures, and

lim
ε→0

− 1
nε

2

∑
i	=j

∫∫
log |x − y| dμ̃i

ε(x) dμ̃j
ε(y)

= −4π2

∫∫
log |x − y| dμ(x) dμ(y), (9.20)

where the measures μ̃i
ε are the uniform measures on ∂B(bε

i , ε̃) and of
mass 2π (hence also 1

nε

∑
i δbε

i
→ μ). Let us now rescale and consider

aε
i = ϕ−1(bε

i ) (where ϕ is defined in (9.11)) and μi
ε the pull-back under ϕ

of the measures μ̃i
ε, i.e., uniform measures on ∂B(aε

i , ε). We may apply
Proposition 7.3 to those {aε

i}. We get a configuration (uε, Aε) for which
(7.23), (7.24) and (7.25) hold.

But, clearly 1
nε

∑
i μ

i
ε ⇀ 2πδp, the Dirac mass at p, and thus, by

continuity of SΩ,

1
4π

∑
i,j

∫∫
SΩ(x, y) dμi

ε(x) dμj
ε(y) = πn2

εSΩ(p, p) + o(n2
ε).

On the other hand, using the change of variables y = ϕ(x) and (9.20),
we find

− 1
4π

∑
i	=j

∫∫
log |x − y| dμi

ε(x) dμj
ε(y)

= π(n2
ε − nε) log

1
�
− πn2

ε

∫∫
log |x − y| dμ(x) dμ(y) + o(n2

ε).

Finally, inserting these relations into (7.23), we get (9.15). Next, observe
that nε � 1 and hex ≤ ε−1 thus �2 = nε

hex
� 1

hex
� ε. We deduce
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that log 1
� ≤ | log ε|, and that f0

ε (nε) ≤ O(n2
ε| log ε|), so Fε(uε, A

′
ε) ≤

O(n2
ε| log ε|). Inserting that into (7.24) and using hex ≤ ε−β and (9.19)

we get that

Gε(uε, Aε) = Fε(uε, A
′
ε) + hex

2J0 +
∑

i

hex

∫
ξ0(x) dμi

ε(x) + o(n2
ε).

(9.21)

But by definition of the μi
ε’s and smoothness of ξ0, we easily have that∑

i

hex

∫
ξ0(x) dμi

ε(x) = 2πhex

∑
i

ξ0(aε
i ) + O(nεhexε).

Then, using a Taylor expansion at p, since aε
i = p + �bε

i , ∇ξ0(p) = 0 and
Q is the Hessian of ξ0 there, we have

2πhex

∑
i

ξ0(aε
i ) = 2πhex

∑
i

(
ξ0(p) +

�2

2
Q(bε

i ) + o
(
�2
))

= −2πnεhex|ξ0| + πnε

∑
i

Q(bε
i ) + o(n2

ε)

= −2πnεhex|ξ0| + πn2
ε

∫
Q(x) dμ(x) + o(n2

ε).

Inserting this into (9.21), then using (9.15) and the definition of fε and
I, we conclude that (9.16) holds.

We now turn to the convergence of μ̃(uε, Aε). Using (7.25) and rescal-
ing, we find∥∥∥∥∥ 1

nε

(
μ̃(uε, Aε) −

nε∑
i=1

μ̃i
ε

)∥∥∥∥∥
(C0,γ(R2))∗

≤ �−γ

∥∥∥∥∥ 1
nε

(
μ(uε, Aε) −

nε∑
i=1

μi
ε

)∥∥∥∥∥
(C0,γ(Ω))∗

≤ C�−γεγ

⎛⎝1 + εhex +

√
Fε(uε, A′

ε)
nε

⎞⎠ .

(9.22)
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Using again Fε(uε, A
′
ε) ≤ O(n2

ε| log ε|), we have

�−γεγ

⎛⎝1 + εhex +

√
Fε(uε, A′

ε)
nε

⎞⎠ ≤ Cn−γ/2
ε hex

γ/2εγ(1+n1/2
ε | log ε|1/2)

≤ o(1) + O
(
n(1−γ)/2

ε hex
γ/2εγ | log ε|1/2

)
.

Next, we insert nε 	 hex ≤ ε−β and find

�−γεγ

⎛⎝1 + εhex +

√
Fε(uε, A′

ε)
nε

⎞⎠ ≤ o(1) + o(hex
1/2εγ)

≤ o(1) + o(εγ−β/2| log ε|1/2)

which is o(1) as soon as γ > β/2. Combining this with (9.22) and (9.19),

we get the stated convergence for
μ̃(uε, Aε)

2πnε
.

The rest of the chapter is devoted to proving Theorem 9.1.

9.3 Proof of Theorem 9.1

Before presenting the proof, let us explain the main steps and ingredi-
ents.
The first step is to split the energy in the following way, which corre-
sponds to (9.2) and Lemma 7.3. We let A′ = A − hex∇⊥h0 and show
that

Gε(u, A) = hex
2J0 + Fε(u, A′) + 2πhex

∑
i

diξ0(ai) + o(1). (9.23)

Then, we recover as a lower bound all the energy contributions found
in the upper bound (9.16), beginning with the terms which constitute
fε(n). First the main order ones: πn log(�/ε) coming from the vortex-core
energy, and −2πnhex|ξ0| the main order term of 2πhex

∑
i diξ0(ai) coming

from the interaction with the magnetic field; then the term πn2 log(1/�)
will come from a more delicate lower bound on the energy on an annulus
centered at p (Proposition 9.4).

Finally, when all these terms are obtained and yield fε(n), comparing
with the upper bound proves that whatever remains is of the lower order
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n2. This allows us to get compactness and pass to the limit in the re-
maining terms, like in a renormalized energy procedure, bounding them
from below by the limiting (“renormalized energy”) I.

In this process, it is crucial to locate the energy contributions and
retrieve them where they are, because the terms have different orders
of magnitude. More precisely, the vortex-core energy will come as usual
from the energy in the vortex-balls constructed to be large enough but
still small (total radius hex

−1/2). Then, we will split Ω into three regions:
a ball B(p, K�), an annulus A = B(p, δ)\B(p, K�), and the complement
of B(p, δ) (see Fig. 9.1).

Figure 9.1: The annulus.

Essentially, the contribution of the annulus A gives the πn2 log(1/�)
term, and ensures that almost all the vortices remain confined in the
inner disc B(p, K�) if K (independent of ε) is large enough. Then, the
energy of I(μ) will come from the contributions of the complement of A.

One of the first technical difficulties to overcome is that the splitting
(9.23) is only valid if the vortices ai’s correspond to small enough balls.
On the other hand, to retrieve the total energy of the vortex cores, we
need larger balls. A first step in the analysis will thus consist in going
from small to large balls.
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9.3.1 Energy-Splitting Lower Bound

In this section we prove the following:

Proposition 9.3. Under the hypothesis (9.5) and using the above no-
tation, there exist points {bi}i such that bi ∈ Bi for every i and, letting
ν =

∑
i diδbi

,

Gε(uε, Aε) ≥ hex
2J0 + 2πhex

∫
ξ0 dν + Fε(uε, A

′
ε)

− C(n′ − n)rhex − Chexε
3α
2
−1 − Chex

2εα, (9.24)

Fε(uε, A
′
ε) ≥ πn log

r

nε
+ Fε(uε, A

′
ε, Ω \ B) +

1 − r2

2

∫
B

(curlA′)2

+ π
α

2
(n′ − n)| log ε| − Cn. (9.25)

Note that in the above we have abused the notation by writing
Fε(uε, A

′
ε, Ω \ B) instead of Fε(uε, A

′
ε, Ω \ ∪iBi) and

∫
B instead of

∫
∪iBi

.
Using the energy-splitting lemma, Lemma 7.3, the proof of (9.24)

consists in approximating μ(u, A′) by the measure 2π
∑

i diδbi
. Unfortu-

nately, r = 1/
√

hex is too large for Theorem 6.1 to apply. We must then
play with small and large balls. We first need the following:

Lemma 9.1. We have, assuming (9.5),

1
2

∫
B

|∇A′u|2 +
1

2ε2

(
1 − |u|2)2 + r2(curlA′)2

≥ π
(
n log

r

nε
+

α

2
(n′ − n)| log ε|

)
− Cn, (9.26)

where we have dropped the subscript ε for u and A′.

Proof. In this proof, we add up the lower bounds found on the small
balls of B′ to the lower bound in the large annuli B\B′ (with an abuse
of notation). From Theorem 4.1 we have, with the notation of (9.6):

1
2

∫
B′

|∇A′u|2 +
1

2ε2

(
1 − |u|2)2 + r′2(curlA′)2

≥ πn′
(

log
r′

n′ε
− C

)
. (9.27)
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On the other hand, applying Proposition 4.3 in Ωε (see (4.2)) to v = u/|u|
with B0 = B′ and final radius r we get, restricting every integral below
to Ωε,

1
2

∫
B\B′

|∇A′v|2 + r(r − r′)(curlA′)2 ≥ πn log
r

2r′
. (9.28)

Now recall that from Theorem 4.1 we have |u| ≥ 1− εα/4 in Ωε \ B′ and
therefore

|∇A′u|2 ≥ |u|2|∇A′v|2 ≥ (1 − 2εα/4)|∇A′v|2

there. Therefore, multiplying (9.28) by (1 − 2εα/4) we get

1
2

∫
B\B′

|∇A′u|2 + r(r − r′)(curlA′)2 ≥ πn log
r

r′
− Cn, (9.29)

where we have used the fact that since r/r′ < Cε−α/2, the quantity
εα/4 log(r/r′) is bounded by a constant.

Adding (9.27) and (9.29) yields

1
2

∫
B

|∇A′u|2 +
1

2ε2

(
1 − |u|2)2 + r2(curlA′)2

≥ π

(
n log

r

nε
+ (n′ − n) log

r′

ε
− n′ log n′ + n log n − Cn′

)
. (9.30)

Now,

n′ log n′ − n log n =

n′∫
n

(log t + 1) dt ≤ (n′ − n)
(
log n′ + 1

)
, (9.31)

and from Theorem 4.1 we know that n′ ≤ CFε(u, A′)/(α| log ε|) ≤
Cεα−1. It follows that log n′ ≤ (1 − α)| log ε| + C. Inserting into (9.31)
and using the fact that r′/ε = Cε

α
2
−1 we find

(n′−n) log
r′

ε
−n′ log n′ +n log n−Cn′ ≥ (n′−n)

(α

2
| log ε| − C

)
−Cn′.

Thus, for ε small enough, the above allows us to write (9.30) as (9.26),
hereby proving the lemma.
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We also have:

Lemma 9.2. Assuming (9.5), we may choose points in the large balls,
i.e., {bi}i such that bi ∈ Bi, such that letting

ν =
∑

i

diδbi
, ν ′ =

∑
j

d′jδa′
j

be respectively the measures relative to the large (ν) and small (ν ′) balls,
we have ∫

ξ0 dν ′ =
∫

ξ0 dν − R1, (9.32)

where
R1 ≤ C(n′ − n)r.

Proof. What we are trying to do is to bound from above
∫

ξ0 d(ν − ν ′).

To get rid of the problem of balls intersecting the boundary, we define ν1

as the part of ν ′ which corresponds to small balls which are included in a
large ball that does not intersect the boundary, and ν2 as the remaining
part. More precisely, we let J1 be the set of indices j such that for some
i we have B′

j ⊂ Bi with Bi ⊂ Ωε and we define

ν1 =
∑
j∈J1

d′jδa′
j
, ν2 = ν ′ − ν1.

We begin by showing that ν2 can be ignored. Indeed if j �∈ J1, then
this means that the point a′j is at a distance smaller than r + ε from the
boundary of Ω hence |ξ0(a′j)| ≤ C(r + ε). It follows that∣∣∣∣∫ ξ0 dν2

∣∣∣∣ ≤ C(r + ε)(n′ − n) ≤ Cr(n′ − n), (9.33)

where we have used the fact that r ≥ ε and we have bounded
∑

j 	∈J1
|d′j |

by n′ − n.
From (9.33), we are reduced to proving the lemma, but with ν ′ re-

placed by ν1, which we do now. First we choose the points bi. We have∫
ξ0 d(ν − ν1) =

∑
i

diξ0(bi) −
∑
j∈J1

d′jξ0(a′j).
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But for every i such that Bi ⊂ Ωε we have di =
∑

d′j , where the sum
runs over the indices j such that B′

j ⊂ Bi, while if Bi �⊂ Ωε, then di = 0.
Thus we may rewrite the above as∫

ξ0 d(ν − ν1) =
∑

Bi⊂Ωε

∑
B′

j⊂Bi

d′j
(
ξ0(bi) − ξ0(a′j)

)
.

This sum is made the smallest by choosing bi ∈ Bi such that

ξ0(bi) =

⎧⎨⎩minBi ξ0 if di ≥ 0

maxBi ξ0 otherwise.
(9.34)

Then we have d′j
(
ξ0(bi) − ξ0(a′j)

)
≤ 0 whenever B′

j ⊂ Bi and d′jdi ≥ 0.
Therefore, assuming from now on (9.34),∫

ξ0 d(ν − ν1) ≤
∑

Bi⊂Ωε

∑
B′

j⊂Bi

d′jdi<0

d′j
(
ξ0(bi) − ξ0(a′j)

)
. (9.35)

Now we observe that

∑
Bi⊂Ωε

∑
B′

j⊂Bi

d′jdi<0

|d′j | =
1
2

⎛⎝∑
j∈J1

|d′j | −
∑

i

|di|
⎞⎠ ≤ n′ − n

2
, (9.36)

while for every j such that B′
j ⊂ Bi, since a′j and bi both belong to Bi

which has radius less than r,∣∣ξ0(bi) − ξ0(a′j)
∣∣ ≤ Cr‖∇ξ0‖∞.

Inserting the above and (9.36) into (9.35) we get∫
ξ0 d(ν − ν1) ≤ Cr(n′ − n)‖∇ξ0‖∞.

Together with (9.33), this proves the lemma.

Proof of Proposition 9.3. Let us write in shorthand μ = μ(u, A′) and
h′ = curlA′.



9.3. Proof of Theorem 9.1 181

In view of (7.22), and noticing that εFε(u, A′) ≤ Cεα, proving (9.24)
reduces to proving that∫

Ω

ξ0μ ≥
∫

ξ0 dν − C(n′ − n)r − Cε
3α
2
−1,

which from Lemma 9.2 in turn reduces to proving that∫
Ω

ξ0μ ≥
∫

ξ0 dν ′ − Cε
3α
2
−1.

This last inequality follows from Theorem 6.1, by noticing that
r′Fε(u, A′) ≤ Cε

α
2
+α−1.

It remains to prove (9.25), but this is a direct consequence of Lemma
9.1, if we write Fε(u, A′) = Fε(u, A′, Ω \ B) + Fε(u, A′,B) and further
split this expression by writing Fε(u, A′,B) as

1
2

∫
B

(
|∇A′u|2 +

1
2ε2

(
1 − |u|2)2 + r2h′2

)
+

1
2
(1 − r2)

∫
B

h′2. �

9.3.2 Lower Bound on the Annulus

The next step, after (9.24)–(9.25) are obtained, is to retrieve from it
the remaining terms in fε(n). Roughly speaking, these will come from
a lower bound of Fε(u, A′,A), where A is a carefully chosen annulus.
Recall that p denotes the unique point where ξ0 achieves its minimum.

We still assume that (9.5) is satisfied and we use the same notation
as above for the small balls, large balls, and related quantities. We also
denote by {bi}i points chosen inside the large balls, i.e., bi ∈ Bi for
every i.

Recall that n is the sum of the absolute values of the degrees of
the large balls. Given arbitrary positive numbers K, δ, if the length � as
defined by (9.8) is small enough, then K� < δ and we may define our
annulus A as follows (see Fig. 9.1).

A = B(p, r1) \ B(p, r0), r0 = K�, r1 = δ. (9.37)

We will assume that K > 1 and that δ is small enough so that
A ⊂ Ωε. We insist that K and δ are chosen independent of ε, whereas n,
hex and therefore � may or may not depend on ε, the latter being useful in
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later chapters. We will also sometimes write in shorthand B1 = B(p, r1)
and B0 = B(p, r0).

It will also be useful to define the function D : [r0, r1] → Z by

D(t) =
∑

|bi−p|≤t

di. (9.38)

Note that if t is such that ∂B(p, t) does not intersect the large balls, then

D(t) = deg (u/|u|, ∂B(p, t)) .

Finally we let

D− =
∑
di<0

|di|, De =
∑
di>0

bi 	∈B(p,δ)

di. (9.39)

We bound from below the contribution of the energy in the annulus
A, using the method we had introduced in [171] which consists in inte-
grating over circles centered at p (the core of the idea is in Lemma 9.4).
Since the degree of u on the annulus will be shown to be approximately
constant equal to n, this will yield a lower bound of the free-energy in
πn2 log r1

r0
up to error terms.

Proposition 9.4. Assume (9.5) is satisfied. There exist positive num-
bers K0, δ0 depending on Ω such that if K ≥ K0, δ ≤ δ0, and if � is small
enough depending on K, δ, Ω, letting ν =

∑
i diδbi

, we have

1
2

∫
A\B

|∇A′u|2 +
1
4

∫
B(p,δ)

(curlA′)2 + 2πhex

∫
ξ0 dν

≥ πn2 log
δ

K�
+ 2πnhexξ0

+ 2πhex

∑
bi∈B(p,K�)

di>0

di

(
ξ0(bi) − ξ0

)− πn2δ2 − π
n3/2

K
+ o(n2). (9.40)

Moreover, if the difference between the left-hand side and the right-hand
side is less than Mn2, then D− and De are bounded by Cn2/hex, and for
any t ∈ [r0, r1], ∣∣∣∣D(t) − n

n

∣∣∣∣ ≤ C

(
�2

t2
+ �2

)
. (9.41)
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In this case we also have

1
2

∫
A\B

|∇A′u|2 +
1
4

∫
B1

(curlA′)2 ≥ πn2 log
δ

K�

− Cn2

(
δ2 +

1
K2

+ o(1)
)

. (9.42)

In the above, C depends on M, Ω, δ, K.

We begin with the following:

Lemma 9.3. Under the same hypotheses as above,

1
2

∫
A\B

|∇A′u|2 +
1
4

∫
B1

(curlA′)2 ≥ π

r1∫
r0

D2(t)
t

dt

− πn2δ2 − π
n3/2

K
− Cn2εα/4 log

r1

r0
. (9.43)

Proof. Let T = {t ∈ (r0, r1) | ∂B(p, t) ∩ B �= ∅}. Then the Lebesgue
measure of T , denoted by |T |, is less than twice the total radius of the
balls, i.e., |T | ≤ 2r, where we recall that r = 1/

√
hex. Moreover for any

t /∈ T , Lemma 4.4 applied with λ = 1/(2δ) yields

1
2

∫
∂B(p,t)

|∇A′v|2+ 1
4δ

∫
B(p,t)

| curlA′|2 ≥ π
D2(t)

t

1
1 + tδ

≥ πD2(t)
(

1
t
− δ

)
,

where v = u/|u|. Integrating with respect to t ∈ (r0, r1) \ T we find

1
2

∫
A\B

|∇A′v|2 +
1
4

∫
B1

| curlA′|2

≥
r1∫

r0

πD2(t)
(

1
t
− δ

)
dt −

∫
T

πD2(t)
(

1
t
− δ

)
dt.

The integral over T can be estimated by bounding |D| above by n, and
noting that since |T | ≤ r,∫

T

n2

t
dt ≤

r0+r∫
r0

n2

t
dt = n2 log

(
1 +

r

r0

)
.
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This yields

1
2

∫
A\B

|∇A′v|2 +
1
4

∫
B1

| curlA′|2 ≥
r1∫

r0

π
D2(t)

t
dt − πn2

(
δ2 + log

(
1 +

r

r0

))

≥
r1∫

r0

π
D2(t)

t
dt − πn2δ2 − π

n3/2

K
,

where we have used the fact that n2r/r0 = n3/2/K, which follows from
(9.37), (9.8) and (9.7).

Now we use again the fact that in A\B, we have |u| ≥ 1− εα/4, and
therefore

|∇A′u|2 ≥ |u|2|∇A′v|2 ≥ (1 − 2εα/4)|∇Av|2.
This implies using the above that

1
2

∫
A\B

|∇A′u|2 +
1
4

∫
B1

(curlA′)2

≥ π

r1∫
r0

D2(t)
t

dt − πn2δ2 − π
n3/2

K
− Cn2εα/4 log

r1

r0
,

and therefore (9.43) is proved.

We now estimate the right-hand side of (9.43).

Lemma 9.4. Assume (9.5) is satisfied. There exist positive numbers
K0, δ0 depending only on Ω such that if δ ≤ δ0, K ≥ K0, and � is
small enough depending on K, δ, Ω, then

π

r1∫
r0

D2(t)
t

dt + 2πhex

∑
i

diξ0(bi) ≥

πn2 log
r1

r0
+ 2πnhexξ0 + 2πhex

∑
bi∈B0
di>0

di

(
ξ0(bi) − ξ0

)
. (9.44)
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Moreover, if the difference between the left-hand side and the right-hand
side is O(n2), then D− and De are O

(
n2/hex

)
and for any t ∈ [r0, r1],∣∣∣∣D(t) − n

n

∣∣∣∣ ≤ C

(
�2

t2
+ �2

)
. (9.45)

Proof. First we write D2 − n2 = (n − D)2 + 2n(D − n) ≥ 2n(D − n).
Then

r1∫
r0

D2(t)
t

dt − n2 log
r1

r0
=

r1∫
r0

D2(t) − n2

t
dt ≥ 2n

r1∫
r0

D(t) − n

t
dt. (9.46)

If we write ri = |bi − p|, we have D(t) =
∑

ri≤t di while n =
∑

i |di|.
Therefore, letting r̄i = max(r0, min(r1, ri)),

r1∫
r0

D(t) − n

t
dt =

∑
i

(
di log

r1

r̄i
− |di| log

r1

r0

)
. (9.47)

We now partition the set of indices for which di �= 0 into the following
sets.

I− = {i | di < 0}, Ie = {i | di > 0, ri ≥ r1},
I0 = {i | di > 0, ri ≤ r0}, IA = {i | di > 0, r0 < ri < r1}.

Then, letting

Δ = π

r1∫
r0

D2(t)
t

dt − πn2 log
r1

r0
+ 2πhex

(∑
i

diξ0(bi) − nξ0

)

we have using (9.46), (9.47) and the fact that ξ0 is a negative function

Δ
2π

≥
∑
i∈I0

hexdi(ξ0(bi) − ξ0) +
∑
i∈I−

|di|
(
−2n log

r1

r0
− hexξ0

)

+
∑
i∈Ie

di

(
−n log

r1

r0
+ hexc0r1

2

)
+
∑
i∈IA

di

(
−n log

ri

r0
+ hexc0ri

2

)
. (9.48)
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Here we have also used the fact that since we assumed D2ξ0(p) is positive
definite, there exists c0 > 0 such that if |bi−p| < δ and δ is small enough,
then ξ0(bi) − ξ0 ≥ c0|bi − p|2.

It remains to bound from below each of the above four sums, that
we call respectively S0, S−, Se and SA. We leave S0 unchanged since it
corresponds to a term we wish to see in the right-hand side of (9.40).

Concerning S− and Se, we first note that since r1/r0 = δ/K� and
from the definition of � we have

n

hex
log

r1

r0
= �2 log

δ

K�
,

which is smaller than both |ξ0|/2 and c0δ
2/2 if � small enough depending

on K, δ, Ω. Assuming this, and factoring hex in S− and Se we get

S− ≥ 1
2
hexD−|ξ0|, Se ≥ 1

2
hexDec0δ

2. (9.49)

It remains to investigate SA. For this we factor hex�
2 to find

SA ≥ hex�
2
∑
i∈IA

di

(
c0(ri/�)2 − log

ri

K�

)
,

and thus if K is chosen large enough we find

SA ≥ hex�
2
∑
i∈IA

di
c0

2
r2
i

�2
= n

∑
I∈IA

di
c0

2
r2
i

�2
. (9.50)

From (9.48) and the positivity of the right-hand sides of (9.49) and
(9.50) we immediately deduce (9.44).

Now if we assume that the difference between the left-hand side and
the right-hand side of (9.44) is less than Cn2, then this means that
Δ−2πS0 ≤ Cn2 and therefore in view of (9.48) that S−+Se+SA ≤ Cn2.
In this case we deduce from (9.49) that, as claimed,

D− ≤ C
n2

hex
, De ≤ C

n2

hex
.

To get (9.45) we note that

|D(t) − n| ≤ D− + De +
∑
di>0

t<ri<r1

di ≤ C
n2

hex
+ Cn

�2

t2
,

where we have used (9.50) to bound
∑

t<ri<r1
|di|. Then noting that

�2 = n/hex proves (9.45) and the lemma.
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Proof of Proposition 9.4. Proposition 9.4 follows straightforwardly
from Lemmas 9.3 and 9.4 if we take note that in (9.43), the term
Cn2εα/4 log(r1/r0) is o(n2). The only statement which does not follow
directly is the last assertion (9.42). It is proved using Lemma 9.3 together
with the information from (9.41) that we have on the function D(t).

Indeed since n2 − D2 ≤ 2n(n − D), we deduce from (9.41) that

r1∫
r0

n2 − D2(t)
t

dt ≤ Cn2

r1∫
r0

1
t

(
�2

t2
+ �2

)
dt

≤ Cn2�2

(
1

r0
2

+ log
1
r0

)
= C

n2

K2
,

if � is small enough depending on K, where we have used the fact that
−�2 log r0 = −�2 log(K�) → 0 as � → 0, and therefore can be made
smaller than 1/K2 by choosing � small enough. Inserting this into (9.43),
we find (9.42) and the proposition is proved.

9.3.3 Compactness and Lower Bounds Results

Notation. We need to introduce some more notation before we proceed.
We define, in addition to A′ = A − hex∇⊥h0, and dropping the ε sub-
scripts,

j′ = (iu,∇u − iA′u), h′ = curlA′, ĵ = f(|u|)j′, (9.51)

where f(x) = 1 if x ≤ 1 and f(x) = 1
x if x ≥ 1. Otherwise stated, ĵ = j′

if |u| ≤ 1 and otherwise ĵ = ρ(∇ϕ−A), where we have written u = ρeiϕ.
Given δ > 0, we write

Bδ = B(p, δ), Ωδ = Ω \ Bδ. (9.52)

Finally, we denote by Gp the solution of{
−ΔGp + Gp = δp in Ω

Gp = 0 on ∂Ω
(9.53)

As in the previous sections, B′ and B denote the small and large balls
respectively.
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Proposition 9.5. Assume that {(uε, Aε)}ε satisfies Fε(uε, Aε) < ε−1/4

and that hex < ε−1/8. In particular (9.5) is satisfied with α = 3/4. We
also assume that

Gε(u, A) ≤ fε(n) + Cn2, (9.54)

1 	 n 	 hex, and we make one of the following two assumptions:

hex ≤ C| log ε| or n′ = n. (9.55)

Then the following holds.
A) Using the notation (9.51), there exists j∗ and h∗ such that up to

extraction of a subsequence, as ε → 0,

1
n

ĵ1Ω\B ⇀ j∗,
h′

n
⇀ h∗,

μ(u, A′)
2πn

⇀ δp, (9.56)

weakly in L2
loc(Ω \ {p}), weakly in L2(Ω) and in the dual of C0,γ

0 (Ω) for
some γ ∈ (0, 1), respectively. Moreover j∗ ∈ Lq(Ω) for any q < 2 and

curl j∗ + h∗ = 2πδp. (9.57)

Finally, as δ → 0,

lim inf
ε→0

Fε (u, A′, Ω \ (Bδ ∪ B))
n2

≥ π log
1
δ

+ πSΩ(p, p)

+
1
2

∫
Ω\Bδ

|j∗ + 2π∇⊥Gp|2 + |h∗ − 2πGp|2 + oδ(1). (9.58)

B) Defining ϕ as in (9.11), denoting by μ̃ the push-forward of the
measure μ(u, A′) by ϕ, and letting also j̃ = �(ĵ1Ω\B) ◦ ϕ−1, where � was
defined in (9.8); we have

1
n

j̃ ⇀ J∗
μ̃

2πn
⇀ μ∗ (9.59)

weakly in L2
loc(R

2) and in the dual of C0,γ
c (R2) respectively, for some

γ ∈ (0, 1). Moreover μ∗ is a probability measure and

curlJ∗ = 2πμ∗. (9.60)
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Finally, as K → +∞,

lim inf
ε→0

1
2n2

∫
B(p,K�)\B

|∇A′u|2

≥ π log K − π

∫∫
log |x − y| dμ∗(x)dμ∗(y) + oK(1). (9.61)

The rest of this section is devoted to the proof of this proposition.
The first step in the proof is to compare the lower bounds given by
Proposition 9.3 with the upper bound (9.54). In our case, α = 3/4 while
hex < ε−1/8. This implies that the terms Chexε

3α
2
−1 and Chex

2εα in
(9.24) are O(1) hence o(n2). Noting that r = hex

− 1
2 , we may then rewrite

(9.24) as

Gε(u, A) ≥ hex
2J0 + 2πhex

∫
ξ0 dν

+ Fε(u, A′) − C(n′ − n)
√

hex + o(n2). (9.62)

We may also simplify (9.25) by recalling that r = �/
√

n hence log(r/nε) =
log(�/ε) − 3

2 log n. Thus (9.25) yields

Fε(u, A′) ≥ πn log
�

ε
+ Fε(u, A′, Ω \ B) +

1 − r2

2

∫
B

h′2

+ C(n′ − n)| log ε| + o(n2), (9.63)

where C > 0 does not depend on ε. Also recall hypothesis (9.55): If
n �= n′, then hex = O(| log ε|) hence

√
hex 	 | log ε| and C(n′−n)| log ε|−

C(n′ − n)
√

hex ≥ 1
2C(n′ − n)| log ε| ≥ 0. Comparing (9.62), (9.63) with

(9.54), we then deduce

2πnhexξ0 + πn2 log
1
�

+ Cn2

≥ 2πhex

∫
ξ0 dν + Fε(u, A′, Ω \ B) +

1 − r2

2

∫
B

h′2 + C(n′ − n)| log ε|.

(9.64)

Since 2πhex

∫
ξ0 dν = 2πhex

∑
i diξ0(bi) ≥ 2πnhexξ0, it follows that

(n′ − n) ≤ C
n2 log 1

�

| log ε| = o(n), (9.65)
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because n
log 1

�
| log ε| ≤ C n

hex
log hex

n = o(1) in view of the assumption n 	 hex.

Convergence of μ(u, A′) and μ̃

First, from Lemma 9.2 there exists points {bi}i in the large balls such
that (9.32) holds. As in Lemma 9.2, we let

ν =
∑

i

diδbi
, ν ′ =

∑
j

d′jδa′
j
.

In our case, the radius of the small balls is r′ = Cε3/8 since (9.5) is
satisfied with α = 3/4. Thus applying Theorem 6.2 yields

‖μ(u, A′) − 2πν ′‖
(C0,γ

0 )∗ ≤ Cr′γFε(u, A) ≤ ε3γ/8ε−1/4.

In other words, for any test-function ξ ∈ C0,γ
0 (Ω),∣∣∣∣∣∣

∫
Ω

ξ d
(
μ(u, A′) − 2πν ′)∣∣∣∣∣∣ ≤ Cε

3γ−2
8 ‖ξ‖C0,γ(Ω). (9.66)

Let us now change scales, and consider μ̃ and ν̃ ′, the measures pushed
forward under ϕ. Let ζ be a compactly supported test-function. We have,
using (9.66),∣∣∣∣∣∣
∫
R2

ζ d(μ̃ − 2πν̃ ′)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
Ω

ζ

(
x − p

�

)
d
(
μ − 2πν ′)∣∣∣∣∣∣ ≤ C�−γε

3γ−2
8 ‖ζ‖C0,γ

hence we deduce, for γ ∈ (0, 1) close enough to 1 that∥∥μ̃(u, A′) − 2πν̃ ′∥∥
(C0,γ

c )∗ ≤ C�−γε
3γ−2

8 = o(1). (9.67)

That the right-hand side is o(1) follows from the fact �−γ ≤ hex
γ/2 ≤

ε−γ/16 hence the right-hand side is bounded above by ε
5γ−4

16 , which is
o(1) if γ > 4/5.

Secondly, we claim that

ν̃ − ν̃ ′

n
⇀ 0 (9.68)
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weakly as measures. Indeed, given any continuous compactly supported
test function f , we have

dif(b̃i) =
∑

a′
j∈Bi

d′j
(
f(ã′j) + f(b̃i) − f(ã′j)

)
, (9.69)

where ã′j = ϕ(a′j), b̃i = ϕ(bi). Using the fact that f is uniformly contin-
uous and that, if a′j ∈ Bi, then

|b̃i − ã′j | =
|bi − a′j |

�
≤ 1

�
√

hex
=

1√
n

,

we obtain, since n tends to +∞,∑
i

∑
a′

j∈Bi

d′j |f(b̃i) − f(ã′j)| = o(n′) = o(n),

in view of (9.65), which together with (9.69) yields

1
n

∑
i

dif(b̃i) =
1
n

∑
i

d′if(ã′i) + o(1),

hence the weak convergence of (ν̃ − ν̃ ′)/n to zero.
Third, we prove the narrow convergence of {ν̃/n}ε to a probability

measure. We apply Proposition 9.4. The right-hand side of (9.64) is
greater than the left-hand side of (9.40) while the upper bound in (9.64)
and the lower bound in (9.40) differ by at most O(n2). It then follows
from Proposition 9.4 that (9.41) is satisfied. From the definitions (9.38)
and (9.39), ∑

|bi−p|>t

|di| ≤ n − D(t) + 2D−,

hence it follows from (9.41) and the fact that D− = o(n) that

|ν̃|(R2 \ B(0, M)) =
∑

|bi−p|>M�

|di| ≤ C
n

M2
+ o(n).

This proves the narrow convergence of {ν̃/n}ε. Moreover, since D− =
o(n), the negative part of ν̃/n goes to zero, hence the limit μ∗ of ν̃/n is
a probability measure.
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To conclude, from (9.68), (9.67) and the above, the measures
μ̃

2πn
converge, in (C0,γ

c (R2))∗ to μ∗ which is a probability measure, proving
the second part of (9.59). The convergence of the original (i.e., before
blow-up) measures μ(u, A′)/(2πn) as stated in (9.56) follows by blow-
down, since � = o(1).

Convergence of ĵ, h′ and j̃

Comparing (9.64) and (9.40) again, we find

Fε(u, A′, Ω \ (A ∪ B)) +
(

1
4
− 1

2hex

) ∫
A∪B

|h′|2

≤ Cn2 + πn2 log
K

δ
. (9.70)

Since hex � 1, we find that h′/n is bounded in L2(Ω) and up to extraction
h′
n ⇀ h∗ weakly in L2(Ω).

We turn to ĵ and j̃. We know that |j′| ≤ |u||∇A′u|. Therefore, we
have |ĵ| ≤ |∇A′u|, and, in view of (9.70),∫

Ω\(A∪B)

|ĵ|2 ≤
∫

Ω\(A∪B)

|∇A′u|2

≤ 2Fε(u, A′, Ω \ (A ∪ B)) ≤ Cn2

(
1 + log

K

δ

)
.

Keeping δ and K fixed, and since A ⊂ Bδ, this implies that∥∥∥(1/n)ĵ1Ω\B
∥∥∥

L2(Ωδ)
≤ C

(
log

K

δ
+ 1

)
. (9.71)

Using a diagonal argument, this implies the convergence of a subsequence
to some j∗ weakly in L2

loc(Ω\{p}). That j∗ ∈ Lq(Ω) for any q < 2 follows
as in [189] by writing Ω \ {p} = ∪nUn, where Un is the set of x ∈ Ω such
that 2−n−1 ≤ |x−p| ≤ 2−n, and then estimating in each Un the Lq norm
of j∗ in terms of the L2 norm using Hölder’s inequality. Using (9.71) this
allows us to prove that

∑
n ‖j∗‖q

Lq(Un) converges, hence that j∗ ∈ Lq(Ω).
We leave the details to the reader.
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As for j̃, the above also tells us that for any K ≥ K0,∫
B(p,K�)\B

|ĵ|2 =
∫

B(p,K�)

|ĵ1Ω\B|2 ≤ Cn2,

where the constant depends on K. But since j̃ = �
(
ĵ1Ω\B ◦ ϕ−1

)
, this

is the integral of |j̃|2 over B(0, K), hence again using a diagonal argu-
ment, this implies the convergence of a subsequence to some J∗ weakly
in L2

loc(R
2), which is the first part of (9.59).

Proof of curl j∗ + h∗ = 2πδp.

We begin with the following preliminary result:

Proposition 9.6. Let f : R
2 → R be a smooth function. For any finite

collection of disjoint closed balls {Bi}i∈I in R
2 there exists f̃ : R

2 → R
2,

constant on each ball, such that

∀γ ∈ [0, 1], ‖f̃ − f‖C0,γ(Ω) ≤ CΩr1−γ , (9.72)

‖∇(f̃ − f)‖L∞(Ω) ≤ CΩ, ‖∇(f̃ − f)‖L1(Ω) ≤ CΩr, (9.73)

for any bounded Ω ⊂ R
2, where CΩ depends on f , q, and Ω only, and r

is the sum of the radii of the balls {Bi}i∈I .
Moreover, if f is constant in B(x,

√
2r), then f̃(x) = f(x).

Proof. Let us write the projection A1 of ∪i∈IBi on the first coordinate
axis as a disjoint union of closed intervals [α1, β1] ∪ · · · ∪ [αn, βn]. The
sum of their lengths

∑
i βi−αi is smaller than 2r. We define the function

ϕ1 : R → R by ϕ1(0) = 0 and

ϕ′
1(x) =

{
0 if x ∈ ∪n

i=1[αi, βi]
1 otherwise.

Hence ϕ1 is constant on each interval [αi, βi] and approximates the iden-
tity in the sense that |ϕ1(x) − x| ≤ 2r, while |ϕ1

′(x)| ≤ 1 for any x.
Similarly we can define ϕ2 by using the projection A2 of ∪iBi on the
second coordinate axis, and ϕ2 will satisfy the same properties.

We set ϕ(x, y) = (ϕ1(x), ϕ2(y)). It is clear that ϕ(x) is constant on
each Bi and that |ϕ(x) − x| ≤ 2

√
2r. Moreover, Dϕ(x) = Id outside
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A = (A1 × R) ∪ (A2 × R), while |Dϕ(x)| ≤ 1 in A. Note also that
|A ∩ Ω| ≤ CΩr.

Given a smooth function f , we let f̃ = f ◦ ϕ. Then using the fact
that |ϕ(x) − x| ≤ C

√
2r, we easily deduce that ‖f̃ − f‖C0(Ω) ≤ CΩr (we

can take CΩ to be 2
√

2 times the Lipschitz norm of f in Ω) and that if f
vanishes in B(x,

√
2r), then f̃(x) = 0. To prove the gradient bound, we

write

∇(f̃−f) = (Dϕ)t∇f(ϕ)−∇f = (Dϕ)t (∇f(ϕ) −∇f)+
(
(Dϕ)t − Id

)∇f.

The first term is bounded above in Ω by CΩr, where CΩ is 2
√

2 times
the Lipschitz norm of Df in Ω. The second term is bounded in A ∩ Ω
and 0 in the complement. Therefore, the sum is bounded in L∞, and its
L1 norm is bounded by CΩr + CΩ|A ∩ Ω| ≤ CΩr. The C0,γ convergence
of f̃ − f follows immediately by interpolation between C0 and C0,1.

We now prove (9.57), i.e., that for any f ∈ D(Ω),

−
∫
Ω

j∗ · ∇⊥f +
∫
Ω

h∗f = 2πf(p).

By approximation, we can assume that f is constant in a neighborhood
of p and then using (9.56) we are reduced to proving that

lim
ε→0

1
n

∫
Ω

−1Ω\B ĵ · ∇⊥f + h′f = 2πf(p).

Since we already know that (curl j′ + h′)/n = μ(u, A′)/n converges to
2πδp, the above equality is true if we replace 1Ω\B ĵ with j′. It remains
to show that

lim
ε→0

1
n

∫
Ω

(
1Ω\B ĵ − j′

)
· ∇⊥f = 0. (9.74)

Let us define f̃ through Proposition 9.6, using the large balls ∪iBi

as the collection of balls. Note that since the collection of balls depends
on ε, so does f̃ , even though f does not. We write(

1Ω\B ĵ − j′
)
· ∇⊥f = 1Ω\B ĵ · ∇⊥(f − f̃) + (1Ω\B − 1)ĵ · ∇⊥f̃

+ (ĵ − j′) · ∇⊥f̃ + j′ · ∇⊥(f̃ − f) (9.75)
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and prove that the contribution of each of the four terms to the limit
(9.74) is null.

Since the total radius of the balls goes to zero as ε → 0 and since f
is constant in a neighborhood of p, the last assertion of Proposition 9.6
ensures that if δ is chosen small enough, then f̃ and f are constant in
B(p, δ) for any ε. Thus, using (9.71) and (9.73) we find

1
n

∫
Ω

1Ω\B ĵ · ∇⊥(f − f̃) = o(1).

Also, since f̃ is constant on each of the balls, (1Ω\B − 1)ĵ · ∇⊥f̃ = 0.
Concerning the term j′ · ∇⊥(f̃ − f), we know from (9.72) that f̃ − f

tends to zero in C0,γ
0 for any γ ∈ [0, 1]. But we know that (curl j′)/n

converges in the dual of C0,γ
0 , for some γ therefore,

1
n

∫
Ω

j′ · ∇⊥(f̃ − f) = o(1).

Finally, and in view of (9.75) this will conclude the proof of (9.74) and
(9.57), we show that

1
n

∫
Ω

(ĵ − j′) · ∇⊥f̃ = o(1). (9.76)

The proof follows arguments used in the proof of Theorem 6.2. We ob-
serve that j′ − ĵ = χ(|u|)ĵ where χ(x) = 0 if x ≤ 1 and χ(x) = x − 1 if
x ≥ 1. It follows that, where |u| > 1,

|j′ − ĵ| ≤ (|u| − 1)|ĵ| ≤ (|u|2 − 1)|ĵ|.

Integrating over the set {|u| > 1} and using the Cauchy–Schwarz in-
equality together with the inequality |ĵ| ≤ |∇A′u| we obtain that∫

Ω

|j′ − ĵ| ≤ CεFε(u, A′)
1
2 = o(1),

hereby proving (9.76).
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Proof of curlJ∗ = 2πμ∗.

We already proved that 1
n μ̃ ⇀ 2πμ∗ in the dual of C0,γ

c , for appropriate γ.
Let f be a smooth compactly-supported test-function. We approximate
as above, f , using Proposition 9.6 by functions f̃ which are constant
on each of the rescaled balls ϕ(Bi). Since the total radius of the balls
{Bi}i is hex

−1/2, the total radius of {ϕ(Bi)}i is n−1/2 which is o(1) and
therefore we have that f̃ − f converges to 0 locally in H1 and in C0,γ .

From the (C0,γ
c )∗ convergence of 1

n μ̃ to 2πμ∗, we have

1
n

∫
f̃ μ̃ → 2π

∫
f dμ∗. (9.77)

But, by definition of μ̃,∫
f̃ μ̃ =

∫
Ω

(f̃ ◦ ϕ)μ(u, A′) =
∫
Ω

−∇⊥(f̃ ◦ ϕ) · j′ + (f̃ ◦ ϕ)h′,

where ϕ(y) = (y − p)/�. Changing variables, we get∫
f̃ μ̃ =

∫
ϕ(Ω)

−�j′ (p + �x) · ∇⊥f̃(x) + �2

∫
ϕ(Ω)

h′ (p + �x) f̃(x).

Therefore, dividing by n, using (9.77) and the fact that f̃ is constant on
the balls,∫

ϕ(Ω)

− �

n
1Ω\B (p + �x) j′ (p + �x) · ∇⊥f̃(x) +

1
hex

∫
ϕ(Ω)

h′ (p + �x) f̃(x)

→ 2π

∫
f dμ∗(x).

In other words, we have∫
ϕ(Ω)

− 1
n

j̃ (x) · ∇⊥f̃(x) +
1

hex

∫
ϕ(Ω)

h′ (p + �x) f̃(x) → 2π

∫
f dμ∗(x).

The second term in the left-hand side tends to 0 from the bound
∫ |h′|2 ≤

Cn2 and a rescaling. Then, using the strong H1 convergence of f̃ to f
and the weak L2 convergence of j̃/n, we are led to

−
∫
R2

J∗ · ∇⊥f = 2π

∫
f dμ∗(x)

which proves (9.60).
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Lower bounds on the energy

It remains to prove (9.58) and (9.61).
It follows from the weak L2 convergence of 1

n ĵ1Ω\B and 1
nh′ that for

any δ > 0 small enough

lim inf
ε→0

1
n2

∫
Ωδ

|ĵ1Ω\B|2 + |h′|2 ≥ 1
2

∫
Ωδ

|j∗|2 + h2
∗,

where we recall Ωδ is defined by (9.52). Then, using again the inequality
|∇A′u| ≥ |ĵ|, this yields

lim inf
ε→0

1
n2

Fε(u, A′, Ωδ \ B) ≥ 1
2

∫
Ωδ

|j∗|2 + h2
∗. (9.78)

Let us estimate the right-hand side of (9.78). We decompose j∗ and h∗
by writing

j∗ = X − 2π∇⊥Gp, h∗ = f + 2πGp. (9.79)

From (9.53) and (9.57) we have curlX + f = 0 in Ω and, since h′ = 0
on ∂Ω, f = 0 on ∂Ω also, thus if we introduce a Hodge decomposition
X = ∇α + ∇⊥β, where α ∈ H1(Ω) and β ∈ H1

0 (Ω), the divergence-free
part β satisfies Δβ + f = 0 in Ω. We recall that Gp is in Lq for every
q < +∞ and ∇Gp is in Lp for every p < 2. Therefore, f ∈ L2 and by
elliptic regularity β ∈ W 2,2. Then by Sobolev embedding, β ∈ W 1,q for
any 1 ≤ q < +∞.

We decompose the right-hand side of (9.78) according to (9.79) to
find

1
2

∫
Ωδ

|j∗|2 + h2
∗ =

1
2

∫
Ωδ

(|X|2 + f2 + |2π∇⊥Gp|2 + |2πGp|2)

+ 2π

∫
Ωδ

(−X · ∇⊥Gp + fGp). (9.80)

The first integral will give us the desired lower bound, but let us first
check that the cross terms tend to zero with δ. For this we use the Hodge
decomposition of X. From the above considerations, both ∇⊥β · ∇⊥Gp
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and fGp are integrable in Ω, therefore∫
Ωδ

(−∇⊥β · ∇⊥Gp + fGp) =

∫
Ω

(−∇⊥β · ∇⊥Gp + fGp) + oδ(1) = oδ(1), (9.81)

since Δβ+f = 0 in Ω and Gp = 0 on ∂Ω. On the other hand, from (7.18)
we have 2πGp(x) = − log |x− p|+ SΩ(p, x), where x �→ SΩ(p, x) is C1 in
Ω and up to the boundary. It follows, using Proposition 9.6 for instance,
that we may write Gp = g0 + g1, where g0 is constant on ∂B(p, δ) ∪ ∂Ω
and ‖∇g1‖L2(Ωδ) = oδ(1). Then we have∫

Ωδ

∇α · ∇⊥Gp =
∫
Ωδ

∇α · ∇⊥g0 +
∫
Ωδ

∇α · ∇⊥g1 = 0 + oδ(1). (9.82)

Summing (9.81) and (9.82) we find that the right-hand side of (9.80) is
equal to

1
2

∫
Ωδ

(
|j∗ + 2π∇⊥Gp|2 + |h∗ − 2πGp|2 + |2π∇⊥Gp|2 + |2πGp|2

)
+ oδ(1).

To conclude that (9.58) holds, it remains to note that

1
2

∫
Ωδ

|2π∇Gp|2 + |2πGp|2 = −π log δ + πSΩ(p, p) + oδ(1),

which is a direct computation, using 2πGp(x) = − log |x− p|+ SΩ(x, p).
The proof of (9.61) follows similar lines. Using |∇A′u| ≥ |ĵ|, we find,

for K ≥ K0, ∫
B(p,K�)\B

|∇A′u|2 ≥
∫

B(p,K�)

∣∣∣ĵ1Ω\B
∣∣∣2 .

Rescaling, we find, writing BK for B(0, K),

lim inf
ε→0

1
2n2

∫
B(p,K�)\B

|∇A′u|2 ≥ lim inf
ε→0

1
2n2

∫
BK

∣∣j̃∣∣2 ≥
∫

BK

|J∗|2
2

, (9.83)



9.3. Proof of Theorem 9.1 199

by weak L2
loc convergence of (1/n)j̃ to J∗.

Let us estimate the right-hand side of (9.83). Using complex coordi-
nates in the plane, we introduce

U(x) =
∫

BK

log
∣∣∣∣K(x − y)
K2 − xȳ

∣∣∣∣ dμ∗(y).

Then, as is well known, we have ΔU = 2πμ∗ in BK and U = 0 on
∂BK . Again let us write a Hodge decomposition J∗ = Y + ∇⊥U . Since
curl∇⊥U = ΔU = 2πμ∗ = curlJ∗ we have curl Y = 0. We compute∫

BK

|J∗|2 =
∫

BK

|Y |2 + 2Y · ∇⊥U + |∇⊥U |2 ≥
∫

BK

|∇⊥U |2, (9.84)

where the cross-term has vanished through integration by parts. Now∫
BK

|∇⊥U |2 = −
∫

BK

UΔU = −2π

∫∫
BK×BK

log
∣∣∣∣K(x − y)
K2 − xȳ

∣∣∣∣ dμ∗(y) dμ∗(x),

and the integrand of the double integral may be rewritten as
−2π(log |x− y| − log K − log |1−xȳ/K2|). Changing variables v = x/K,
w = y/K, we have∫∫
BK×BK

log |1 − xȳ/K2| dμ∗(x) dμ∗(y) =
∫∫

B1×B1

log |1 − vw̄| dμK(v) dμK(w),

where μK is the push-forward of μ∗ under the mapping x �→ x/K. In
particular limK→+∞ μK = δ0. We deduce that the above integral is oK(1)
and then, that∫

BK

|∇⊥U |2 =
∫∫

BK×BK

−2π (log |x − y| − log K) dμ∗(y)dμ∗(x) + oK(1).

We deduce, recalling that μ∗ is a probability measure,

1
2

∫
BK

|∇⊥U |2 = −π

∫∫
log |x − y| dμ∗(y)dμ∗(x) + π log K + oK(1).

Combining this with (9.84) and inserting into (9.83) proves (9.61).
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9.3.4 Completing the Proof of Theorem 9.1

Item 1 in Theorem 9.1 follows from Proposition 9.5. We prove item 2.
As in Proposition 9.5, and since the hypotheses of Theorem 9.1 are

identical, we again have that (9.62), (9.63) hold. We split the term

Fε(u, A′, Ω \ B) +
1 − r2

2

∫
B

h′2

in (9.63) by writing

Ω \ B = (Ω \ (Bδ ∪ B)) ∪ (A \ B) ∪ (B(0, K�) \ B) .

Then we may add up the lower bounds (9.40), (9.58) and (9.61) to obtain

fε(n) + Cn2 ≥ Gε(u, A) ≥ fε(n) − πn2

∫∫
log |x − y| dμ∗(x) dμ∗(y)

+ 2πhex

∑
|bi−p|<K�

di>0

di(ξ0(bi) − ξ0) − Cn2δ2 + o(n2) + oδ(1) + oK(1).

(9.85)

As a byproduct of the fact that the upper and lower bounds match up to
O(n2), we obtain that the left- and right-hand side in (9.40) also match
up to O(n2) and therefore that (9.41)–(9.42) hold.

To prove (9.14) it then suffices to add up (9.42), (9.58) and (9.61)
and to insert the result into (9.63). Letting K tend to +∞ and δ tend
to 0 yields the result.

To prove (9.13) and finish the proof of Theorem 9.1 it remains to
show that

lim inf
ε→0

2πhex

n2

∑
|bi−p|<K�

di>0

di(ξ0(bi) − ξ0) ≥ π

∫
B(0,K)

Q(x) dμ∗(x) + oK(1).

(9.86)

Indeed inserting (9.86) into (9.85) and letting δ → 0 and K → +∞
proves (9.13).

To prove (9.86), we rescale, letting b̃i = ϕ(bi) as before, or equiv-

alently bi = p + �b̃i. Then, letting ν̃ =
1
n

∑
i

diδb̃i
and recalling that
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�2 = n/hex we have

2πhex

n2

∑
|bi−p|<K�

di>0

di(ξ0(bi) − ξ0) ≥ 2π

∫
B(0,K)

1
�2

(ξ0(p + �x) − ξ0(p)) dν̃(x).

Since �−2 (ξ0(p + �x) − ξ0(p)) converges locally uniformly to 1
2Q(x),

where Q = 〈D2ξ0(p)x, x〉 and since ν̃ converges narrowly to μ∗ (as seen
in the proof of Proposition 9.5), the right-hand side converges as ε → 0
to

π

∫
B(0,K)

Q(x) dμ∗(x)

and (9.86) follows.

9.4 Minimization with Respect to n

Theorem 9.1 and Proposition 9.1 already tell us what the limiting nor-
malized vorticity measure is for minimizers of the Ginzburg–Landau
functional, and even what the blow-up limit is. But we can also de-
termine the normalizing factor n, i.e., the actual number of vortices. We
begin by defining the function which is the leading term as ε → 0 of the
minimal energy of a configuration with n vortices.

By analogy with (9.9), we write

gε(n) = hex
2J0 + πn| log ε| − 2πnhex|ξ0| + π(n2 − n) log

1
�

+ πn2SΩ(p, p) + n2I0

= fε(n) + n2I0 (9.87)

where we recall that p is the unique minimum of ξ0 in Ω and where ξ0,
ξ0 and SΩ are defined respectively in (7.2), (7.4) and (7.18). Finally I0 is
defined by (9.18), J0 in (7.3) and � =

√
n/hex. We also let gε(0) = hex

2J0.
Theorem 9.1 and Proposition 9.1 described the minimization of the

energy when n and hex are fixed. They imply (see Corollary 9.1) that
the minimal energy is precisely gε(n) plus lower order terms under the
hypothesis that 1 	 n 	 hex ≤ C| log ε|. Our present problem is to min-
imize for given hex, but not n. It seems then that it suffices to minimize
gε(n) with respect to n to find the optimal number of vortices, but this is
rigorous only if we are able to derive the a priori estimate 1 	 n 	 hex,
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and if we minimize under this constraint. Indeed gε(n) tends to −∞ as
n → +∞.

We begin with some facts about the minimization of gε. We recall
from (7.16) the definition H0

c1 = 1
2|ξ0| | log ε|.

Lemma 9.5. There exist constants α, ε0 > 0 and for each 0 < ε < ε0

an increasing sequence {Hn}n defined for integers 0 ≤ n ≤ α| log ε|, such
that if hex > H0

c1/2, then n minimizes gε over the integers in the interval
[0, α| log ε|] if and only if

hex ∈ [Hn, Hn+1].

Moreover if n is a function of ε satisfying 1 	 n 	 | log ε|, then the
following asymptotic expansion holds as ε → 0

Hn ∼ H0
c1 +

n − 1
2|ξ0| log

| log ε|
n

, (9.88)

and if hex ∈ [Hn, Hn+1],

gε(n) ∼ hex
2J0 − πn2 log

1
�

as ε → 0. (9.89)

We can then characterize the behavior of minimizers in this regime.

Theorem 9.2. (Behavior of minimizers in the intermediate
regime). Assume hex is such that

log | log ε| 	 hex(ε) − H0
c1 	 | log ε|,

let Nε be a corresponding minimizer of gε(n) over [0, α| log ε|] and let
(uε, Aε) minimize Gε. Then for any γ ∈ (0, 1)

μ̃(uε, Aε)
2πNε

⇀ μ0 in
(
C0,γ

c (R2)
)∗

, (9.90)

where μ0 is the unique minimizer of I and

Gε(uε, Aε) = gε(Nε) + o(N2
ε ). (9.91)

Proof of Lemma 9.5. We let, for any integer n > 0,

Δn = gε(n) − gε(n − 1),
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and we see Δn as a function of hex, ε being fixed.
First, the function Δ1 is decreasing on R+ and if n > 1, then Δn

is first increasing and then decreasing. It is not difficult to check that if
hex = H0

c1/2, n ≤ α| log ε| and α, ε are small enough, then Δn is strictly
positive. Since Δn tends to −∞ as hex → +∞, we may then define Hn

to be the only value of hex in the interval [H0
c1/2, +∞[ for which Δn

vanishes. If hex > H0
c1/2 and n, ε are as above, then

(Δn < 0) ⇔ (hex > Hn), (Δn > 0) ⇔ (hex < Hn).

Second it is easy to check, taking a smaller α if necessary, assuming
hex > H0

c1/2 and n ≤ α| log ε|, that for any ε > 0 we have Δn+1−Δn > 0.
In particular the sequence {Hn}n is increasing.

It follows that if we assume hex ∈ [Hn, Hn+1], then

Δ1 < · · · < Δn ≤ 0 ≤ Δn+1 < · · · < Δk,

if k ≤ α| log ε|. Recalling that Δn = gε(n) − gε(n − 1), this means that
for any integer m ∈ [0, α| log ε|] we have gε(m) ≥ gε(n). Conversely, if n
minimizes gε in the interval [0, α| log ε|], then Δn ≤ 0 ≤ Δn+1 therefore
assuming hex > H0

c1/2 we must have hex ∈ [Hn, Hn+1].
To obtain the asymptotic expansion of Hn we write down Δn(Hn) = 0

and we get

π| log ε| − 2πHn|ξ0| + π(n − 1) log
Hn

n − 1
+ π

n(n − 1)
2

log
n − 1

n

+ (2n − 1)(πSΩ(p, p) + I0) = 0.

Dividing by 2π|ξ0| and adding Hn − H0
c1 we find that as n → +∞

n − 1
2|ξ0| log

Hn

n − 1
+ O(n) = Hn − H0

c1 . (9.92)

But we know that Hn ≥ H1 and it is straightforward to check that
H1 ∼ H0

c1 as ε → 0. Therefore if we assume 1 	 n(ε) 	 | log ε|, then
n = o(Hn) and dividing (9.92) by Hn we find that

Hn − H0
c1

Hn
= o(1),
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and then that Hn ∼ H0
c1 as ε → 0. Plugging this and the expression of

H0
c1 into (9.92), we get (9.88). Obviously, when hex ∈ [Hn, Hn+1] in this

regime 1 	 n 	 hex, we may also write

hex = H0
c1 +

n

|ξ0| log
1
�

+ O

(
log

1
�

)
+ O(n). (9.93)

Plugging this into the expression of gε(n) (9.87), we find

gε(n) = hex
2J0 − 2πn2 log

1
�

+ π(n2 − n) log
1
�

+ O

(
n log

1
�

)
+ O(n2)

= hex
2J0 − πn2 log

1
�

+ O

(
n log

1
�

)
+ O(n2). (9.94)

This proves (9.89).

Proof of the theorem. In a first step, we prove that for minimizers, the
total degree is 	 hex. Let (uε, Aε) be a minimizer of Gε. From Theorem
7.2 and Proposition 7.2, the hypothesis hex − H0

c1 = o(| log ε|) implies
that λ = 1

2|ξ0| and μ(uε,Aε)
| log ε| tends to 0 in (C0,γ)∗ as ε → 0. Moreover,

comparing lower bounds and upper bounds in (7.58) and (7.59), we find
that

∑
i |di| = o(| log ε|), where the di’s are the degrees of the balls

constructed by Theorem 4.1 of size r, for any r such that | log r| 	 | log ε|.
We deduce that if we consider vortex balls of radius r = 1√

hex
, and denote

by n their total degree, we have n 	 hex.
In a second step, we prove that n � 1. Proposition 9.3 provides a

lower bound for Gε:

Gε(uε, Aε) ≥ hex
2J0 + 2πhex

∑
i

diξ0(bi) + πn log
�

ε
− C(1 + n log n).

Using the fact that diξ0(bi) ≥ |di|ξ0, we are led to

Gε(uε, Aε) ≥ hex
2J0 − 2πnhex|ξ0| + πn| log ε|

+ O(n log
1
�
) + O(1) + o(n2). (9.95)

On the other hand, we may construct a comparison map by applying
Proposition 9.1 to any 1 	 Nε 	 hex and to μ0 the minimizer of I, and
find

inf Gε ≤ fε(Nε) + N2
ε I0 + o(N2

ε ),
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and since (uε, Aε) is a minimizer of Gε and fε(n) + n2I0 = gε(n) (see
(9.87)) we deduce that

Gε(uε, Aε) ≤ gε(Nε) + o(N2
ε ), (9.96)

where Nε is chosen to be the minimizer of gε over [0, α| log ε|], hence
Nε � 1 in our regime. Using (9.94), and comparing to (9.95), we find

− 2πnhex|ξ0| + πn| log ε|

≤ −πN2
ε log

1
L

+ O

(
Nε log

1
L

+ N2
ε + n log

1
�

)
+ o(n2),

where we have let L =
√

Nε/hex. Inserting the expansion (9.93), and
replacing L by its value we find

− πn

(
Nε log

hex

Nε
+ O

(
log

hex

Nε

))
≤ −π

2
N2

ε log
hex

Nε
+ O

(
Nε log

hex

Nε
+ n log

hex

n
+ N2

ε + n2

)
.

Dividing by Nε log hex
Nε

which is � Nε, we are led to

n ≥ Nε

2
+ O

(
n

Nε
+ 1 +

n log hex
n

Nε log hex
Nε

)
+ o(Nε +

n2

Nε
).

Writing log hex
n = log hex

Nε
+ log Nε

n we find

n ≥ Nε

2
+ O

(
1 +

n

Nε

)
+ o

(
n

Nε
log

Nε

n
+ Nε +

n2

Nε

)
.

We can deduce from this relation that n
Nε

remains bounded below by a
positive constant as ε → 0, hence n � 1.

Once this is known, we deduce from Theorem 9.1 and Corollary 9.1
the improved estimate

Gε(uε, Aε) ≥ gε(n) + o(n2).

Comparing with (9.96), we deduce gε(Nε) ≤ gε(n) ≤ gε(Nε) + o(N2
ε ) +

o(n2). This implies from (9.94) that

− π

2
n2 log

hex

n
+ O

(
n log

hex

n

)
= −π

2
N2

ε log
hex

Nε
+ O

(
Nε log

hex

Nε

)
+ O(n2 + N2

ε ).
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Writing once more log hex
n = log hex

Nε
+log Nε

n and dividing by log hex
Nε

� 1,
we find

n2 − N2
ε = O (Nε + n) + o

(
n log

Nε

n
+ n2 + N2

ε

)
.

We can finally obtain from this relation that n
Nε

→ 1 as ε → 0.
From Theorem 9.1 and Corollary 9.1, we deduce (9.90), at least for

some γ ∈ (0, 1). Also, Gε(uε, Aε) = gε(n) + o(n2) = gε(Nε) + o(n2) and
(9.91) is proved.

The fact that (9.90) is true for any γ ∈ (0, 1) follows from Theo-
rem 6.2. Indeed in this regime we have Fε(uε, Aε) ≤ Cn| log ε| ≤ | log ε|2
and thus applying Theorem 6.2 with r =

√
ε we find for any γ ∈ (0, 1)

that
‖μ(uε, Aε) − ν‖

(C0,γ
0 )∗ ≤ Cεγ/2| log ε|2,

where ν = 2π
∑

i d
′
iδa′

i
, and (a′i, d

′
i) are the centers and degrees of the

vortex balls of total radius
√

ε. Letting n′ =
∑

i |d′i| we have moreover,
Fε(u, A) ≥ Cn′| log ε| and therefore n′ ≤ Cn. Thus {ν/n}ε is bounded as
Radon measures. If we now rescale and take the push-forwards of μ and
ν by x �→ (x− p)/�, we find that ‖μ̃(uε, Aε)− ν̃‖

(C0,γ
c )∗ still goes to zero

as ε → 0 while, of course, {ν̃/n}ε remains bounded as Radon measures.
Hence μ̃(u, A)/n does converge in the dual of C0,γ

c as claimed.

Bibliographic notes on Chapter 9: The energy-splitting result was
first observed by Bethuel–Rivière in [51]. The calculation of the first
critical field and of the fields Hn was first done in [181]. The other results
of the chapter concerning the Γ-convergence in the intermediate regime
are new.



Chapter 10

The Case of a Bounded Number
of Vortices

In this chapter, we prove upper bound and lower bound estimates for
configurations with a number of vortices bounded as ε → 0 which reduces
to considering a number of vortices independent of ε. These estimates
will be useful in the next chapter. The fact that the number of vortices
is bounded independently of ε allows us to obtain much more precise
information with specific techniques: the upper and lower bounds will
match up to an error which is o(1) as ε → 0.

10.1 Upper Bound

In all that follows, by “bounded away from the boundary” we mean “at a
distance from the boundary bounded below by some positive constant”.

Proposition 10.1. (Upper bound for a bounded number of vor-
tices). Assume n ∈ N and, for every ε > 0, let {aε

i}1≤i≤n be points in Ω
bounded away from the boundary and such that |aε

i −aε
j | � ε if i �= j. As-

sume also that hex(ε) 	 1
ε . Then for any choice of degrees di ∈ {+1,−1}

there exists a family of configurations {(uε, Aε)}ε such that, as ε → 0,

μ(uε, Aε) − 2π

n∑
i=1

diδai ⇀ 0 in (C0,β
0 (Ω))∗, ∀β > 0,
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and

Fε(uε, A
′
ε) = πn| log ε| − π

∑
i	=j

didj log |aε
i − aε

j |

+ π
∑
i,j

didjSΩ(aε
i , a

ε
j) + nγ + o(1), (10.1)

Gε(uε, Aε) = hex
2J0 + πn| log ε| + 2πhex

∑
i

diξ0(aε
i )

− π
∑
i	=j

didj log |aε
i − aε

j | + π
∑
i,j

didjSΩ(aε
i , a

ε
j) + nγ + o(1), (10.2)

where γ was introduced in (3.15).

The proof of this proposition uses a construction which is very close
to the construction of Proposition 7.3. It differs mainly in the way we
define |u|, and in the precision with which we estimate the energy of the
test-configuration.

The Test-Configuration

Let Φε be the solution of{
−ΔΦε + Φε = 2π

∑
i diδaε

i
in Ω

Φε = 0 on ∂Ω,
(10.3)

Dropping the subscript ε, we define A′ to be such that curlA′ = Φ. Then

curl(A′ −∇⊥Φ) = 2π
∑

i

diδai

and therefore, denoting by Θ the phase of
n∏

i=1

(z − ai)di

|z − ai|di
,

the curl of A′−∇⊥Φ−∇Θ vanishes in Ω, in the sense of distributions and
thus is the gradient of some function g. It follows that, letting ϕ = Θ+g,
the function ϕ is well defined modulo 2π in Ω \ {a1, . . . , an} and satisfies

∇ϕ = A′ −∇⊥Φ. (10.4)
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Fixing R > 1, we define the test configuration (uε,R, Aε,R) that we
denote in shorthand (u, A) as follows. We let A = A′ + hex∇⊥ξ0 and we
let u(x) = eiϕ(x) in Ω \ ∪iB(ai, Rε) and for x ∈ B(ai, Rε),

u(x) =
1

f(R)
f

( |x − ai|
ε

)
eiϕ(x), (10.5)

where f is the modulus of the radial degree-one vortex u0 introduced in
Proposition 3.11. Note that from (3.15) and since u0(r, θ) = f(r)eiθ we
have, as R → +∞,

1
2

R∫
0

(
|f ′|2 +

f2

r2
+

(1 − f2)2

2

)
2πr dr = π log R + γ + o(1). (10.6)

Asymptotics for Φε

Let {aε
i} satisfy the hypotheses of Proposition 10.1 and Φε be defined

by (10.3). Dropping the subscript ε where convenient, we define for
1 ≤ i ≤ n

Φi(y) = Φε(ai + εy).

Then we claim that for any 1 ≤ i ≤ n,

Φi(y) = −di log |εy| −
∑
j 	=i

dj log |ai − aj | +
∑

j

djSΩ(ai, aj) + Δi,ε(y),

(10.7)

where {Δi,ε}ε converges to zero in C1
loc(R

2) as ε → 0. Note that the sums
in (10.7) do not depend on y but do depend on ε through the points ai.

The proof is straightforward. From the definition of SΩ (7.18), the
function Φε can be written more explicitly as

Φε(x) = −
n∑

i=1

di log |x − ai| +
n∑

i=1

diSΩ(x, ai) (10.8)

and therefore

Δi,ε(y) =
∑
j 	=i

−dj log
|εy + ai − aj |

|ai − aj | +
∑

j

dj (SΩ(aj , ai + εy) − SΩ(aj , ai)) .

The first sum converges to zero in C1
loc(R

2) because we assumed |ai −
aj | � ε. For the second sum, we use the fact that SΩ is C1 in Ω×Ω and
that the points a1, . . . , an are bounded away from the boundary. The
claim is proved.
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Energy Inside the Balls

From (10.4) we have

|∇A′u|2 = |u|2|∇ϕ − A′|2 + |∇|u||2 = |u|2|∇Φ|2 + |∇|u||2

while curlA′ = Φ. Using (10.5), it follows, by letting Bi = B(ai, Rε),
and r = |x − ai|/ε, that

Fε(u, A′, Bi) =
1
2

∫
Bi

f ′(r)2

ε2f(R)2
+

f(r)2

f(R)2
|∇Φ(x)|2 + |Φ(x)|2

+
1

2ε2

(
1 − f(r)2

f(R)2

)2

dx.

Using the change of variables y = (x − ai)/ε, we have r = |y| and the
above becomes

Fε(u, A′, Bi) =
1
2

∫
B(0,R)

f ′(r)2

f(R)2
+

f(r)2

f(R)2
|∇Φi(y)|2

+ ε2|Φi(y)|2 +
1
2

(
1 − f(r)2

f(R)2

)2

dy.

From (10.7) we deduce that |∇Φi(y)|2−1/r2 and ε2|Φi(y)|2 both converge
to zero uniformly in B(0, R), using the fact that di = ±1. Therefore, as
ε → 0,

Fε(u, A′, Bi) =
1
2

R∫
0

(
f ′(r)2

f(R)2
+

f(r)2

r2f(R)2
+

1
2

(
1 − f(r)2

f(R)2

)2
)

2πr dr+o(1).

From (10.6) and the fact that lim+∞ f = 1, the integral on the right-hand
side is asymptotic as R → +∞ to π log R + γ. Therefore

lim
R→+∞

lim
ε→0

(
Fε(u, A′,∪iBi) − πn log R − nγ

)
= 0. (10.9)
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Energy Outside the Balls

Outside ∪iBi and since |u| = 1 there, we have |∇A′u|2 = |∇ϕ − A′|2 =
|∇Φ|2. Thus, using again the equality curlA′ = Φ, we find

Fε

(
u, A′, Ω \ ∪iBi

)
=

1
2

∫
Ω\∪iBi

|∇Φ|2 + |Φ|2

= −1
2

∑
i

∫
∂Bi

Φ
∂Φ
∂ν

, (10.10)

where we have used an integration by parts and the fact that −ΔΦ+Φ =
0 in Ω \ ∪iBi and Φ = 0 on ∂Ω. Here ν is the unit normal pointing
outwards to the ball.

Changing variables as above we have∫
∂Bi

Φ
∂Φ
∂ν

=
∫

∂B(0,R)

Φi
∂Φi

∂ν
.

This integral is easily estimated using the convergence of (10.7). Up to
a term converging uniformly to zero on ∂B(0, R) as ε → 0, the nor-
mal derivative of Φi is equal to −di/R and Φi is equal to −di log |εR|
−∑

j 	=i dj log |ai − aj | +
∑

j djSΩ(ai, aj). Therefore, as ε → 0,∫
∂B(0,R)

Φi
∂Φi

∂ν
= 2π log |εR| + 2π

∑
j 	=i

didj log |ai − aj |

− 2π
∑

j

didjSΩ(ai, aj) + o(1).

Replacing in (10.10) we get

lim
ε→0

(
Fε

(
u, A′, Ω \ ∪iBi

)− πn log
1
ε

+ πn log R

+ π
∑
j 	=i

didj log |ai − aj | − π
∑
i,j

didjSΩ(ai, aj)

)
= 0. (10.11)
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Convergence of μ(u, A′)

Using (10.4) and curlA′ = Φ, we have μ(u, A′) = − curl(|u|2∇⊥Φ) + Φ.
Since ΔΦ = Φ in Ω \ ∪i{ai} this becomes μ(u, A′) = −∇|u|2 ∧ ∇⊥Φ +
(1 − |u|2)Φ and, letting y = (x − ai)/ε and r = |y|, we find

μ(u, A′) dx =
(
−∇f(r)2 ∧∇⊥Φi

f(R)2
+ ε2

(
1 − |u|2)Φi

)
dy.

Using (10.7) the factor in front of dy converges uniformly in B(0, R)

as ε → 0 to 2di
f(r)f ′(r)
rf(R)2

and we deduce that μ(u, A′) has the constant

sign di in Bi if ε is small enough. Moreover, since |u| = 1 on ∂Bi, from
Lemma 6.3, the integral of μ(u, A′) over Bi is 2πdi. It follows that the
integral of any continuous function ζ against μ(u, A′) in Bi is equal to
2πdiζ(xi), for some x ∈ Bi. Finally, since |u| = 1 outside ∪iBi, we have
μ(u, A′) = 0 there. We deduce that∣∣∣∣∣∣

∫
Ω

ζμ(u, A′) − 2π
∑

i

diζ(ai)

∣∣∣∣∣∣ ≤ C max
|x−y|<Rε

|ζ(x) − ζ(y)|. (10.12)

In particular μ(u, A′)−2π
∑

i diδai goes to zero in the dual of C0
0 (Ω) and

its norm in the dual of C0,1
0 (Ω) is smaller than CRε.

Bounds for Gε

To evaluate Gε(u, A) we invoke Lemma 7.3, which states that

Gε(u, A) = hex
2J0 + hex

∫
Ω

ξ0μ(u, A′) + Fε(u, A′) + R0, (10.13)

where
R0 ≤ Chex

2

∫
Ω

(1 − |u|2).

From the definition of |u| we have |u| = 1 outside ∪iBi, while if x ∈
B(ai, R) and letting y = (x−ai)/ε, r = |y|, we have |u(x)| = f(r)/f(R) ≥
f(r). Then, a change of variables yields∫

Bi

(
1 − |u|2)2 ≤ ε2

∫
B(0,R)

(
1 − f(r)2

)2 ≤ 2πε2,
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where we have used (3.14). So with the Cauchy–Schwarz inequality, since
n is independent of ε, we find∫

Ω

(
1 − |u|2) ≤ CRε

⎛⎝ ∫
∪iBi

(1 − |u|2)2
⎞⎠ 1

2

≤ CRε2.

This, together with (10.12) applied to ξ0 and (10.13) yields

Gε(u, A) − Fε(u, A′) = hex
2J0 + 2πhex

∑
i

diξ0(ai)

+ O
(
Rε2hex

2 + Rεhex

)
. (10.14)

Diagonal Argument

It follows from (10.9) and (10.11) that we may define radii Rε tend-
ing to +∞ as ε goes to zero and such that, denoting by (uε, Aε) the
configuration (uε,Rε , Aε,Rε) we have, as ε → 0,

Fε(uε, A
′
ε) ≤ πn log

1
ε
− π

∑
j 	=i

didj log |ai − aj |

+ π
∑
i,j

didjSΩ(ai, aj) + nγ + o(1),

hereby proving (10.1). We may also assume, since εhex tends to zero
and by changing Rε if necessary, that Rεε, R2

εεhex, Rεεhex and thus also
Rεε

2hex
2 tend to 0 with ε. Then in view of (10.14) and (10.1) we have

proved (10.2).
To finish, note that from (10.12) and since εRε tends to zero, we have

μ(uε, A
′
ε)−2π

∑
i diδai converges to zero in

(
C0

0 (Ω)
)∗, hence in (C0,β

0 (Ω))∗

for any β ∈ (0, 1). The same is true for μ(uε, Aε). Indeed μ(uε, Aε) −
μ(uε, A

′
ε) = −hex curl(|uε|2∇⊥ξ0) + hexΔξ0 = hex curl((1 − |uε|2)∇⊥ξ0),

the latter being easily bounded in L∞ norm by Chex/ε, we deduce by
integrating over ∪iBi that μ(uε, Aε) − μ(uε, A

′
ε) is bounded in L1 by

CR2
εεhex, which tends to 0 with ε. Thus it converges to 0 in

(
C0

0 (Ω)
)∗,

hence in (C0,β
0 (Ω))∗. This concludes the proof of Proposition 10.1.

10.2 Lower Bound

Proposition 10.2. (Lower bound for solutions with a bounded
number of vortices). Let {(uε, Aε)}ε be solutions of (GL) such that
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Fε(uε, A
′
ε) ≤ C| log ε| with hex ≤ ε−β and β < 1. If all the (aε

i , di)’s
given by the result of Theorem 5.4 are bounded away from ∂Ω, and are
such that di = 1 for every i, and

∑
i di = n, then as ε → 0

Fε(uε, A
′
ε) ≥ πn| log ε| + W (aε

1, . . . , a
ε
n) + nγ + o(1), (10.15)

where

W (a1, . . . , an) = −π
∑
i	=j

log |ai − aj | + π
∑
i,j

SΩ(ai, aj)

and γ is the constant defined by (3.15).

The hypotheses are such that we may apply Theorem 5.4 and thus
find balls B(aε

1, R0ε), . . . , B(aε
n, R0ε), with n independent of ε such that

|aε
i − aε

j | � ε for i �= j, dist(aε
i , ∂Ω) � ε and such that |u| ≥ 1

2 in
Ω\ ∪i B(aε

i , R0ε). Moreover, our assumptions are that the points are
bounded away from ∂Ω uniformly in ε, and that deg(u, ∂B(ai, R0ε)) = 1
for every ε, i.

From the blow-up analysis of Proposition 3.12 and assuming we are
in the Coulomb gauge, the function uε(ai + εy) converges modulo a
subsequence and in C1

loc(R
2) to a solution v of (3.12) and respectively

εAε(ai+εy) to 0. Moreover, as in the proof of Theorem 5.4 and using the
upper bound Fε(uε, A

′
ε) ≤ C| log ε|, we deduce from Theorem 5.2 that∫

R2

(
1 − |v|2)2 < +∞,

and from our hypothesis v must be of degree 1. Therefore modulo a
translation and multiplication by a complex number of modulus one, v
is equal to u0, in view of Theorem 3.2, while εA′

ε(ai + εy) converges in
C1

loc to 0. Shifting the points aε
i by an order O(ε), we may cancel the

translation and find that there exist complex numbers {λi}i of modulus
one such that uε(ai +ε.)−λiu0 converges to 0 in C1

loc(R
2) for any i. Thus

lim
ε→0

uε(ai + ε.) − λiu0 = lim
ε→0

εA′
ε(ai + ε.) = 0 in C1

loc(R
2), (10.16)

where we recall that we are in the Coulomb gauge.
Now we fix R > R0 and let Bi = B(ai, Rε).
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Lower Bound for the Energy Inside the Balls

From (10.16), we have

lim
ε→0

1
2

∫
Bi

|∇A′
ε
uε|2 +

1
2ε2

(1 − |uε|2)2 =
1
2

∫
B(0,R)

|∇u0|2 +
(1 − |u0|2)2

2
.

(10.17)

This bounds the energy inside the balls.

Lower Bound Outside of the Balls

We follow the method of [61]. Define Ω̃ = Ω \ ∪iBi, let ρ = |uε| and ϕ
be such that uε = ρeiϕ. The function ϕ is well defined modulo 2π in Ω̃
since |uε| does not vanish there. Let us then define j by

j = ∇ϕ − A′
ε −∇⊥Φε (10.18)

in Ω̃, where Φε is defined in (10.3).
To estimate Fε(uε, A

′
ε, Ω̃) we write ∇ϕ − A′ = j + ∇⊥Φ, where we

have dropped the subscript ε for A′ and Φ, and note that − curlA′ =
ΔΦ + curl j = Φ + curl j in Ω̃. It follows that∫

Ω̃

ρ2|∇ϕ − A′|2 + | curlA′|2 =

∫
Ω̃

ρ2|∇Φ|2 + |Φ|2 + ρ2|j|2 + | curl j|2 + 2ρ2∇⊥Φ · j + 2Φ curl j. (10.19)

On the one hand

∫
Ω̃

(1 − ρ2)|∇Φ|2 ≤ ε

⎛⎜⎝∫
Ω̃

(1 − ρ2)2

ε2

⎞⎟⎠
1
2
⎛⎜⎝∫

Ω̃

|∇Φ|4
⎞⎟⎠

1
2

,

and from (10.8) we have,

|∇Φ(x)| ≤ C

mini |x − ai| . (10.20)
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Therefore ∫
Ω̃

|∇Φ|4 ≤ C

1∫
Rε

2πr dr

r4
≤ C

R2ε2
.

Thus

∫
Ω̃

(ρ2 − 1)|∇Φ|2 =
C

R

⎛⎜⎝∫
Ω̃

(1 − ρ2)2

ε2

⎞⎟⎠
1
2

. (10.21)

Similarly, using the fact that ‖∇Φ‖L∞(Ω̃) ≤ C/(Rε), which is deduced
from (10.20), we have∣∣∣∣∣∣∣

∫
Ω̃

(ρ2 − 1)∇⊥Φ · j

∣∣∣∣∣∣∣ ≤ ε‖∇Φ‖L∞(Ω̃)

⎛⎜⎝∫
Ω̃

(1 − ρ2)2

ε2

⎞⎟⎠
1
2
⎛⎜⎝∫

Ω̃

|j|2
⎞⎟⎠

1
2

≤ C

R

⎛⎜⎝∫
Ω̃

(1 − ρ2)2

ε2
+
∫
Ω̃

|j|2
⎞⎟⎠ .

Therefore in view of (10.19), and choosing R large enough we have,
absorbing the terms in (10.21)–(10.22),

Fε(uε, A
′
ε, Ω̃) ≥ 1

2

∫
Ω̃

|∇Φ|2 + |Φ|2 + 2∇⊥Φ · j + 2Φ curl j. (10.22)

On the other hand, integrating by parts, we have∫
Ω̃

∇⊥Φ · j + Φ curl j =
∑

i

∫
∂Bi

Φj · τ. (10.23)

But, denoting by Φ the average of Φ on ∂Bi we have, in view of (10.18),∫
∂Bi

Φj · τ =
∫

∂Bi

(Φ − Φ)j · τ +
∫

∂Bi

Φ
(

∂ϕ

∂τ
+

∂Φ
∂ν

− A′ · τ
)

. (10.24)
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First of all, from the convergence of (10.7) we have ‖Φ − Φ‖L∞(∂Bi) =
o(1). Also, in view of (10.18) and Lemma 3.4, using the fact that ρ ≥ 1/2
outside the balls, and combining (10.7) with (10.16) we find that

|j · τ | ≤ 1
2
|τ · ∇A′u| + |∇Φ| ≤ C

Rε

on ∂Bi. It follows that ∫
∂Bi

(Φ − Φ)j · τ = o(1). (10.25)

Second of all, using (10.3) and keeping in mind that di = 1, we have that∫
∂Bi

(
∂ϕ

∂τ
+

∂Φ
∂ν

− A′ · τ
)

= 2π +
∫
Bi

Φ − 2π −
∫
Bi

curlA′. (10.26)

But in view of (10.7), we have |Φ| ≤ C| log ε| in Bi and from the energy
upper bound Fε(u, A′) ≤ C| log ε| and the Cauchy–Schwarz inequality
we find ∣∣∣∣∣∣

∫
Bi

curlA′

∣∣∣∣∣∣ ≤ CRε| log ε| 12 .

Replacing in (10.26) we get∣∣∣∣∣∣Φ
∫

∂Bi

∂ϕ

∂τ
+

∂Φ
∂ν

− A′ · τ
∣∣∣∣∣∣ ≤ C| log ε|

(
| log ε|R2ε2 + Rε| log ε| 12

)
= o(1).

Together with (10.25) this implies that the integral in (10.24) is o(1) and
then, in view of (10.22)–(10.23) that

Fε(uε, A
′
ε, Ω̃) ≥

∫
Ω̃

|∇Φ|2 + |Φ|2 + o(1).

Then, using the same calculation as in (10.10)–(10.11) and adding
(10.17), we find

Fε(uε, A
′
ε, Ω) ≥ πn log

1
Rε

+ W (a1, . . . , an)

+
n

2

∫
B(0,R)

|∇u0|2 +
(1 − |u0|2)2

2
+ o(1).
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Since this is true for any R and since

lim
R→+∞

1
2

∫
B(0,R)

|∇u0|2 +
(1 − |u0|2)2

2
− (π log R + γ) = 0

we obtain (10.15).

Bibliographic notes on Chapter 10: This chapter uses the tools
and concepts (renormalized energy, canonical harmonic map, energy of
the radial solution) used in the analysis of (1.2) for bounded numbers of
vortices, by Bethuel–Brezis–Hélein and Brezis–Merle–Rivière in [43, 61],
extended by Comte–Mironescu in [77, 79] and finally extended to the
case with magnetic field by Bethuel–Rivière and Serfaty in [52, 181].

The specificity of the results presented in this chapter comes from
the fact that the vortex-locations may depend on ε and may be very
close to each other (due to the magnetic field), whereas previous results
were expansions of the energy with respect to the limiting positions of
the vortices. In this respect, these results are new.



Chapter 11

Branches of Solutions

In this chapter, we establish the existence of multiple branches of sta-
ble solutions of (GL) which have an arbitrary number of vortices n, with
both n bounded and n unbounded, but not too large, in a wide regime of
applied fields. These solutions are obtained by minimizing the energy Gε

over subsets Un of the functional space which correspond, very roughly
speaking, to configurations with n vortices (or only allow for such when
minimizing); the heart of the matter consists in proving that the mini-
mum is achieved in the interior of Un, thus yielding locally minimizing
solutions of the equations. These solutions turn out to be global energy
minimizers in some narrow intervals of values of hex.

The setting is as in Chapter 9, i.e., we assume ξ0 achieves its minimum
at a unique point p ∈ Ω and Q(x) = 〈D2ξ0(p)x, x〉 is a positive definite
quadratic form.

11.1 The Renormalized Energy wn

Since Q is positive definite, we may write

Q(x) ≥ c0|x|2 (11.1)

for some positive constant c0.
Given n ∈ N, we introduce the “renormalized energy” wn defined on

(R2)n by

wn(x1, . . . , xn) = −π
∑
i	=j

log |xi − xj | + πn

n∑
i=1

Q(xi) . (11.2)
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Note that w0 = 0 and w1(x) = πQ(x). In all that follows, we will
also use the convention that o(n2) and O(n2) mean o(1) and O(1) when
n = 0. It is clear that wn tends to +∞ as two xi’s tend to each other,
or as any of the xi’s tends to +∞. The minimum of wn is achieved. The
function wn will correspond to the effective interaction between vortices
which governs their positions. It contains two terms of opposite effects:
the first term is a repulsive term, the second is a (quadratic) confinement
term. For some results on the minimization of wn, we refer again to [105]
and Fig. 1.4.

Proposition 11.1 (Γ-convergence of wn). We have

wn

n2

Γ−→ I as n → ∞

(where I was introduced in (9.12)), in the sense that

1. For every n-tuple of points (an
1 , . . . , an

n) such that wn(an
1 , . . . , an

n) ≤
Cn2, up to extraction 1

n

∑n
i=1 δan

i
⇀ μ in the narrow sense of mea-

sures and

lim inf
n→∞

wn(an
1 , . . . , an

n)
n2

≥ I(μ). (11.3)

2. For every measure μ ∈ P such that I(μ) < ∞, there exist families
of points an

1 , . . . , an
n such that 1

n

∑n
i=1 δan

i
⇀ μ in the narrow sense

of measures and

lim sup
n→∞

wn(an
1 , . . . , an

n)
n2

≤ I(μ).

An immediate consequence is:

Corollary 11.1.

min(R2)n wn

n2
→ I0 = min

P
I as n → +∞,

and if an
i , . . . , an

n minimize wn, then

1
n

n∑
i=1

δan
i

⇀ μ0

where μ0 is the minimizer of I described in Chapter 9.
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Proof of the proposition. The upper bound 2 closely follows the proof of
Proposition 7.4, hence we leave it to the reader.

Conversely, assume an
1 , . . . , an

n are such that wn(an
1 , . . . , an

n) ≤ Cn2.
Then the measures

μn :=
1
n

∑
i

δan
i

converge weakly, up to extraction, to a measure μ. It remains to prove
that the convergence is narrow, i.e., that μ is a probability measure,
and that (11.3) holds. We start by proving the latter, assuming narrow
convergence.

We begin by noting that, denoting by Δ the diagonal in R
2 ×R

2 and
by Δc its complement we have

1
n2

wn(an
1 , . . . , an

n) = −π

∫∫
Δc

log |x− y| dμn(x) dμn(y)+π

∫
Q(x) dμn(x).

Moreover, since μn is a probability measure, this may be rewritten as

1
n2

wn(an
1 , . . . , an

n) = π

∫∫
Δc

− log |x − y|dμn(x) dμn(y)

+
π

2

∫∫
(Q(x) + Q(y)) dμn(x) dμn(y). (11.4)

Now fix M > 0 and R > 0, and let − logM (t) = min(− log t, M).
Then − logM is continuous in KR = [−R, R] × [−R, R] and therefore

lim
n→+∞

∫∫
KR×KR

− logM |x − y| + 1
2

(Q(x) + Q(y)) dμn(x) dμn(y)

=
∫∫

KR×KR

− logM |x − y| + 1
2

(Q(x) + Q(y)) dμ(x) dμ(y).

Note that if R is larger than some R0 and since Q is positive definite,
the function (x, y) �→ − logM |x−y|+(Q(x)+Q(y))/2 is positive outside
KR × KR, and of course less than − log |x − y| + (Q(x) + Q(y))/2. We
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deduce that

π

∫∫
Δc

− log |x− y|dμn(x) dμn(y)+
π

2

∫∫
(Q(x) + Q(y)) dμn(x) dμn(y)

≥ π

∫∫
KR×KR\Δ

− logM |x − y|dμn(x) dμn(y)

+
π

2

∫∫
KR×KR

(Q(x) + Q(y)) dμn(x) dμn(y)

= π

∫∫
KR×KR

(
− logM |x − y| + 1

2
(Q(x) + Q(y))

)
dμn(x) dμn(y)− πM

n
.

It follows that for any M > 0 and any R > R0 we have

lim inf
n→+∞

1
n2

wn(an
1 , . . . , an

n)

≥ π

∫∫
KR×KR

(
− logM |x − y| + 1

2
(Q(x) + Q(y))

)
dμ(x) dμ(y).

Taking the supremum over R > R0 and M yields (11.3), noting that,
since we have assumed narrow convergence, the measure μ is a probabil-
ity measure and again∫∫

1
2

(Q(x) + Q(y)) dμ(x) dμ(y) =
∫

Q(x) dμ(x).

It remains to prove narrow convergence, but this is an easy conse-
quence of the expression (11.4) for wn. Using − log |x − y| ≥
− log (2 max(|x|, |y|)) and (11.1), we find

− log |x − y| + 1
2

(Q(x) + Q(y)) ≥ − log(2‖(x, y)‖∞) +
c0

2
‖(x, y)‖2

∞,

and there exists R0 such that if ‖(x, y)‖∞ > R0, then the right-hand
side is greater than (c0/4)‖(x, y)‖2∞, in particular positive. Now, given
R > R0, splitting R

2 × R
2 into KR0 × KR0 , (KR × KR)c and

(KR × KR)\(KR0 × KR0) and denoting by kR the number of couples
(an

i , an
j ) not belonging to KR × KR, we deduce that

wn(an
1 , . . . , an

n) ≥ −πn2 log(2R0) + πkR
c0

4
R2,
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and then dividing by n2, that kR/n2 ≤ C/R2, where C does not depend
on n or R. Therefore μn(R2 \ KR) ≤ C/R, which implies the claimed
narrow convergence.

The following will be useful:

Lemma 11.1. Assume hex(ε) and n(ε) are such that n 	 hex as ε → 0
and let ξ0 be defined by (7.2). Then we have, as ε → 0,

inf
Ωn

⎛⎝−π
∑
i	=j

log |ai − aj | + 2πhex

∑
i

(ξ0(ai) − ξ0)

⎞⎠
=

π

2
(n2 − n) log

hex

n
+ min

(R2)n
wn + o(n2).

Moreover, if n is assumed to be independent of ε and {(aε
1, . . . , a

ε
n)}ε are

n-tuples of points such that

− π
∑
i	=j

log |aε
i − aε

j | + 2πhex

∑
i

(ξ0(aε
i ) − ξ0)

= π
n2 − n

2
log

hex

n
+ min

(R2)n
wn + o(n2),

then, letting

� =
√

n

hex
, ãε

i =
aε

i − p

�
,

the n-tuple (ãε
i , . . . , ã

ε
n) converges to a minimizer of wn as ε → 0.

Proof. For any n-tuple (a1, . . . , an), and letting ãi = (ai − p)/�, we have

−π
∑
i	=j

log |ai − aj | = −π(n2 − n) log � − π
∑
i	=j

log |ãi − ãj | .

Moreover, writing a Taylor expansion of ξ0 around its minimum point p
we have

ξ0(ai) = ξ0(p + �ãi) = ξ0(p) +
�2

2
Q(ãi) + o

(
n|ãi|2
hex

)
.
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Combining the two relations, we find

− π
∑
i	=j

log |ai − aj | + 2πhex

∑
i

(ξ0(ai) − ξ0)

= π(n2 − n) log
1
�

+ wn(ã1, . . . , ãn) + o

(
n
∑

i

|ãi|2
)

,

from which the result easily follows.

11.2 Branches of Solutions

We now consider hex ≥ 0, N , an integer, and ε > 0, and we try to show
the existence of solutions to the Ginzburg–Landau equations with the
given parameters hex, ε which have the prescribed number of vortices N .
These solutions will be obtained by minimizing the Ginzburg–Landau
energy among configurations with N vortices. We let

L =
√

N

hex
. (11.5)

Note that from the results of Chapter 9 we expect L to be the typical
distance between the vortices and p for our solutions.

Let us state precisely the conditions under which we will be able to
show the existence of such solutions.

Definition 11.1. We say hex(ε), N(ε) are admissible if the following
conditions hold.

1. There exists α0 < 1/2 such that hex < ε−α0.

2. If N �= 0, then

N2 ≤ ηhex, N2 log
1
L

≤ η log
L

ε
, (11.6)

for some η small enough depending on Ω and α0, to be specified
later.

Several remarks can be made on the definition above.

• Writing the second relation in (11.6) as (N2 + η) log 1
L ≤ η log 1

ε
and replacing L by its definition, we find that (11.6) is equivalent
to

N2 ≤ ηhex, hex ≤ Nε
− 2η

N2+η .
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• If we assume hex < C| log ε|, (11.6) is satisfied for example if N2 ≤
ηhex and 1 ≤ N ≤ | log ε|γ , for some γ < 1/2. This is seen by
noting that in this case and from the very definition of L we have
C| log ε|−1/2 ≤ L ≤ C, and plugging this into (11.6).

• Since for N �= 0 we always have N ≥ 1, we deduce from (11.6) that
L2 ≤ η/N ≤ η. Thus also, N2 log(N/η) ≤ 2η log(L/ε). Using again
that L is bounded we find N2 log(N/η) ≤ C| log ε| which implies

N 	
√

| log ε|.

We will distinguish three cases in our proofs. Firstly the case where
L does not tend to zero. In this case, after extraction, N = O(1) and
hex = O(1). Indeed if hex → +∞, then (11.6) implies N ≤ √

ηhex 	 hex,
contradicting the assumption, hence we may assume that hex remains
bounded and thus N from (11.6) also. Secondly the case where L tends
to zero and N = O(1). The vortices then concentrate around p but their
number is bounded independently of ε. The last case is the one where L
tends to zero and N → ∞.

Our main result is the following:

Theorem 11.1 (Branches of stable solutions). Given α0∈(0, 1/2),
choosing η small enough depending on Ω and α0, and given admissible
N(ε) and hex(ε) in the sense of Definition 11.1, there exists ε0 > 0 such
that for any 0 < ε < ε0, there exists (uε, Aε) with the following proper-
ties.

First, (uε, Aε) is a locally minimizing critical point of Gε hence a sta-
ble solution of (GL). Also, uε has exactly N zeroes aε

1, . . . , a
ε
N and there

exists R > 0 such that |uε| ≥ 1
2 in Ω\∪iB(aε

i , Rε) and deg(uε, ∂B(aε
i , Rε))

= 1. Moreover, the following holds.

1. If N and hex are independent of ε, then, possibly after extraction,
the n-tuple (aε

1, . . . , a
ε
N ) converges as ε → 0 to a minimizer of

RN,hex, where

RN,hex(x1, . . . , xN ) = −π
∑
i	=j

log |xi − xj |

+ π
∑
i,j

SΩ(xi, xj) + 2πhex

∑
i

ξ0(xi),
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and defining γ by (3.15),

Gε(uε, Aε) = hex
2J0+πN | log ε|+min

ΩN
RN,hex+Nγ+o(1) as ε → 0.

2. If N is independent of ε and hex → +∞, then, possibly after extrac-
tion and letting ãε

i = (aε
i − p)/�, the n-tuple (ãε

1, . . . , ã
ε
N ) converges

as ε → 0 to a minimizer of

wN (x1, . . . , xN ) = −π
∑
i	=j

log |xi − xj | + πN

N∑
i=1

Q(xi),

and defining fε(N) by (9.4),

Gε(uε, Aε) = fε(N) + min
(R2)N

wN + Nγ + o(1), as ε → 0. (11.7)

3. If N → ∞ and hex → +∞, then, defining ãε
i as above, we have

1
N

N∑
i=1

δãε
i

⇀ μ0, Gε(uε, Aε) = fε(N)+N2I0 +o(N2), as ε → 0

where μ0 is the unique minimizer of I, I0 = I(μ0) and where the
convergence is in the narrow sense of measures.

4. In the case N = 0, we have |uε| → 1 in L∞(Ω). (This is called the
Meissner solution.)

Remark 11.1. There is a sort of continuity between the multiple renor-
malized energies found above, since wn can be considered as a limit of
Rn,hex when hex → +∞, and I as a limit of wn as n → ∞, as seen in
Proposition 11.1.

11.3 The Local Minimization Procedure

We introduce the following sets

U0 = {(u, A) ∈ XΩ | Fε(u, A′) < εq}, (11.8)

where XΩ was defined in (3.2), A′ = A−hex∇⊥h0 and q ∈ (0, 1) is to be
specified later. For N ≥ 1, we let

UN =
{
(u, A) ∈ XΩ, |Fε(u, A′) − f0

ε (N)| < BN2
}

, (11.9)
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where B > 0 is a constant to be determined later, and f0
ε is as in (9.10),

i.e., f0
ε (N) = πN log L

ε + πN2 log 1
L + πN2SΩ(p, p).

The branches of solutions will be obtained by minimizing the Ginz-
burg–Landau energy in UN . We will first show that the infimum is
achieved, and then that it is a critical point. The rest of the statements
in the theorem will follow rather easily. In the course of the proof we will
define the constants η, q and B in (11.6), (11.8) and (11.9).

11.4 The Case N = 0

We prove the theorem in this particularly simple case. Consider a min-
imizing sequence {(un, An)}n in U0. Arguing as in Proposition 3.5 we
may assume that An satisfies the Coulomb gauge condition and deduce
that the sequence is bounded in H1×H1. Then a subsequence converges
weakly to (u, A). Arguing again as in Proposition 3.5, we have Fε(u, A′) ≤
lim infn Fε(un, A′

n) hence (u, A) ∈ U0 and Gε(u, A) ≤ lim infn Gε(un, An)
hence (u, A) is a minimizer of Gε over U0.

To prove that (u, A) ∈ U0, we consider the test-configuration
(1, hex∇⊥ξ0). It belongs to U0 since Fε(1, hex∇⊥ξ0−hex∇⊥ξ0) = Fε(1, 0)
= 0. Thus infU0 Gε ≤ Gε(1, hex∇⊥ξ0) = hex

2J0. Since (u, A) ∈ U0, we
have Fε(u, A′) ≤ εq with q > 0, and we may apply Theorem 4.1 with
r = ε

q+1
2 . The upper bound Fε(u, A′) ≤ εq implies that if ε is small

enough, the degrees of the balls we obtain are all equal to zero. Thus,
applying Theorem 6.1, we find

hex‖μ(u, A′)‖(C0,1(Ω))∗ ≤ Chexε
q+1
2 Fε(u, A′) ≤ Cε

3q
2 ,

where we have again used the bound on Fε(u, A′) together with the as-
sumption hex ≤ ε−α0 , with α0 < 1/2. Applying the energy-decomposition
lemma, Lemma 7.3, we obtain

Gε(u, A) = hex
2J0 + Fε(u, A′) + O

(
ε

3q
2 + ε1−2α0+ q

2

)
.

Since α0 < 1
2 we may choose q ∈ (0, 1) such that 1 − 2α0 + q/2 > q and

then
Gε(u, A) = hex

2J0 + Fε(u, A′) + o(εq).

But Gε(u, A) ≤ hex
2J0 therefore Fε(u, A′) = o(εq) and (u, A) ∈ U0 for ε

small enough.
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Now, since U0 is open in H1 × H1, the minimizer (u, A) must be
a critical point of Gε. Then we know from Corollary 3.1 that |∇|u|| ≤
|∇Au| ≤ C/ε and together with the fact that

1
2

∫
Ω

|∇|u||2 +
1

2ε2

(
1 − |u|2)2 ≤ Fε(u, A′) = o(1),

this implies by standard arguments (see [43], Theorem III.1) that
‖|u| − 1‖L∞ = o(1) as ε → 0. This completes the proof of the theo-
rem in the case N = 0.

11.5 Upper Bound for infUN
Gε

We prove:

Proposition 11.2. There exists B0, L0 > 0 depending only on Ω such
that the following holds.

Assume N(ε), hex(ε) are such that L < L0 and hex 	 1
ε , where L is

defined in (11.5). Assume in addition, if N tends to +∞ as ε → 0, that
N 	 hex. (All these conditions are satisfied in particular for admissible
hex and N .) Then, defining UN by (11.9) with B > B0 we have, if ε is
small enough,

inf
UN

Gε ≤ fε(N) + B0N
2, (11.10)

where fε is as in (9.4), i.e.,

fε(N) = hex
2J0 − 2πNhex|ξ0| + πN log

L

ε
+ πN2 log

1
L

+ πN2SΩ(p, p).

Proof. This upper bound is obtained through constructions which we
have already performed.

We begin with the case where N is independent of ε. We define for
0 ≤ k ≤ N

ak = e
2ikπ

N , aε
k = p + Lak,

where p is the minimum point of ξ0 and L is defined in (11.5), i.e.,
equidistributed points on the circle of center p and radius L. If L is
small enough depending on Ω, then for any ε the points {aε

k}k are inside
Ω and bounded away from ∂Ω. Moreover the distance between them
is proportional to L/N which, under our hypotheses, is much greater
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than ε. Then from Proposition 10.1, there is a family of configurations
{(uε, Aε)}ε satisfying (10.1)–(10.2) with n replaced by N and di = 1 for
every 0 ≤ i ≤ N − 1.

Since |aε
i − aε

j | = L|ai − aj |, we have∑
i	=j

log |aε
i − aε

j | = N(N − 1) log L +
∑
k 	=l

log
∣∣∣e 2ikπ

N − e
2ilπ
N

∣∣∣ .
But, given l,

∏
k 	=l

(
e

2ikπ
N − e

2ilπ
N

)
=

∣∣∣∏N−1
k=1 (1 − e

2ikπ
N )

∣∣∣ and using∏N−1
k=1

(
x − e

2ikπ
N

)
= xN−1

x−1 = 1 + x + · · · + xN−1, we find that∏
k 	=l

(
e

2ikπ
N − e

2ilπ
N

)
= N and thus that∑

i	=j

log |aε
i − aε

j | = N(N − 1) log L + N log N.

Moreover, since SΩ is locally C1 in Ω, we have∣∣∣∣∣∣
∑
i,j

SΩ(aε
i , a

ε
j) − N2SΩ(p, p)

∣∣∣∣∣∣ ≤ CLN2,

where C denotes a generic constant depending only on Ω. Finally, we
may write

hexξ0(aε
i ) = hexξ0 + hexL

2 ξ0(p + Lai) − ξ0(p)
L2

≤ hexξ0 + CN,

since ∇ξ0(p) = 0 and hexL
2 = N , where C is another constant depending

only on Ω.
The above, together with (10.1)–(10.2) yield for ε small enough (in

view of the definitions of fε and f0
ε )∣∣Fε(uε, A

′
ε) − f0

ε (N)
∣∣ < B0N

2,

Gε(uε, Aε) ≤ fε(N) + B0N
2,

with B0 a constant depending only on Ω. The first inequality ensures
that if B is chosen large enough depending on Ω, then (uε, Aε) ∈ UN

and then the second inequality implies (11.10).
The case where N tends to +∞ is similar. In this case we have

1 	 N 	 hex and hex 	 C/ε. Then using Proposition 9.1, taking as
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the measure μ any fixed compactly supported probability measure such
that I(μ) < +∞, we find that there exists a family of configurations
{(uε, Aε)}ε satisfying

Fε(uε, A
′
ε) = f0

ε (N) + O(N2) (11.11)

and

Gε(uε, Aε) = fε(N) + N2I(μ) + o(N2). (11.12)

The relation (11.11) immediately yields that if B is large enough, then for
ε small enough (uε, Aε) ∈ UN , and then using (11.12) that if B0 > I(μ),
then (11.10) is true for ε small enough.

11.6 Minimizing Sequences Stay Away from ∂UN

In this section we prove the “hard” analysis part of the proof that the
minimum of Gε over UN is achieved.

Proposition 11.3. Given α0 ∈ (0, 1/2) we may choose η > 0 and B > 0
depending on Ω, α0 such that if N(ε), hex(ε) are admissible and UN is
defined by (11.9), the following holds.

There exists ε0 > 0 such that for any ε < ε0 there exists δε ∈ (0, 1)
such that for any (u, A) ∈ XΩ,

Gε(u, A) < inf
UN

Gε + 1 =⇒ dist ((u, A), ∂UN ) > δε.

Here we use d ((u1, A1), (u2, A2)) = ‖u1 − u2‖H1 + ‖A1 − A2‖H1 as
the distance in XΩ.

Once this result is proved, it will follow from Ekeland’s variational
principle that for ε small enough there exists a minimizing sequence in
UN which is a Palais–Smale sequence bounded away from ∂UN . Then
this sequence will converge strongly to a minimizer of Gε in UN , hence
a locally minimizing critical point of Gε. The rest of this section is de-
voted to proving Proposition 11.3. Throughout the proof, we assume that
α0 ∈ (0, 1/2), that N(ε), hex(ε) are admissible and that Gε(u, A) <
infUN

Gε + 1.
We already noted that (11.6) implies that N 	 √| log ε| as ε → 0, for

any choice η. Thus the very definition of UN implies that if (u, A) ∈ UN ,
then Fε(u, A′) = O(| log ε|2) as ε → 0. In particular for any α ∈ (0, 1),
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if ε is small enough, then Fε(u, A′) < εα−1. Since hex ≤ ε−α0 for some
α0 ∈ (0, 1/2), it follows that (9.5) is satisfied for any α ∈ [α0, 1). In
particular we may choose α such that 1 + α0 < 3α/2 and 2α0 < α,
implying

hexε
3α
2
−1 = o(1), hex

2εα = o(1). (11.13)

This choice will prove useful below. Note that α is chosen depending on
α0, thus depending on α or α0 means the same thing.

In any case, it follows from (9.5) that as in Chapter 9, if (u, A) ∈ UN ,
we may associate to it a family of large balls B of total radius r = 1√

hex

and total degree d defined by (9.7), and small balls B′ of total radius
and degree defined by (9.6). The first and elementary link between n,
n′ and N is given by the fact that Fε(u, A) ≥ Cαn′| log ε|, which follows
from Theorem 4.1, together with n′ ≥ n and Fε(u, A) ≤ CN | log ε|,
which follow from the definition of B and B′ and the definition of UN

respectively. It follows that

n ≤ n′ ≤ CαN ≤ Cα

√
| log ε|, (11.14)

where Cα is a constant depending only on α.

— Step 1: n + α
2 (n′ − n) ≤ N . We improve (11.14). From the definition

of UN and (11.5) we have

Fε(u, A′) ≤ πN log
√

N

ε
√

hex
+ πN2 log

1
L

+ BN2

while since (9.5) is satisfied, Proposition 9.3 applies and (9.25) yields

Fε(u, A′) ≥ πn log
1

εn
√

hex
+ π

α

2
(n′ − n)| log ε| − Cn.

We divide the above inequalities by D = log 1
ε
√

hex
, which is greater

than 3
4 | log ε|. Noting that from (11.6) and (11.14), (N log N)/D and

(n log n)/D are o(1) as ε → 0, we find

π
(
n +

α

2
(n′ − n)

)
≤ πN +

πN2 log 1
L + BN2

log 1
ε
√

hex

+ o(1). (11.15)
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If N and hex are bounded independently of ε, then the right-hand side is
equal to πN+o(1) and therefore for ε small enough we find n+α

2 (n′−n) ≤
N , as claimed.

If not, then L = o(1) and therefore N2 log 1
L + BN2 ∼ N2 log 1

L . But
from (11.6) we have

πN2 log 1
L

log 1
ε
√

hex

∼ πN2 log 1
L

log L
ε

≤ πη

and therefore, assuming

η < α/2, (11.16)

we deduce from (11.15) that if ε is small enough, then n + α
2 (n′ − n) <

N + α/2, and thus n + α
2 (n′ − n) ≤ N in this case also.

— Step 2: n = n′ = N , and the vortices are bounded away from ∂UN .
Assuming

B > B0, L < L0 (11.17)

where B0, L0 are defined in Proposition 11.2, we have

Gε(u, A) ≤ inf
UN

Gε + 1 ≤ fε(N) + B0N
2 + 1. (11.18)

On the other hand, (9.24) in Proposition 9.3 yields

Gε(u, A) ≥ hex
2J0 + 2πhex

∑
i

diξ0(bi)

+ Fε(u, A′) − C(n′ − n)rhex + o(1)

≥ hex
2J0 + 2πhex

∑
i

diξ0(bi) + πN log
L

ε

+ πN2 log
1
L

− BN2 − C(n′ − n)
√

hex + o(1), (11.19)

where we have bounded Fε(u, A′) from below using the definition of UN ,
and used (11.13). Comparing the above inequalities yields

2πhex

(∑
i

diξ0(bi) − Nξ0

)
≤ 2BN2 + C(n′ − n)

√
hex + 1 + o(1). (11.20)
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Using the fact that 1 ≤ N2 ≤ ηhex and n, n′ ≤ CN (see (11.14)), and
choosing

η <
1
4

min
(

π|ξ0|
B + 1

,
|ξ0|
C

)
, (11.21)

the right-hand side of (11.20) is bounded above for ε small enough by
πhex|ξ0|. But the function ξ0 is negative and we know from Step 1 that
n =

∑ |di| ≤ N . Thus the left-hand side can be written as a sum of
positive terms

2πhex

∑
di>0

di

(
ξ0(bi) − ξ0

)
+ 2πhex

∑
di<0

di(ξ0(bi) + ξ0) + 2πhex(N − n)|ξ0|,

and dividing (11.20) by 2πhex thus yields

(N − n)|ξ0| +
∑
di>0

di

(
ξ0(bi) − ξ0

)
+
∑
di<0

di(ξ0(bi) + ξ0) ≤ 1
2
|ξ0|,

(11.22)

where all the terms are positive. It follows that, for ε small enough,
N −n ≤ 1

2 or N ≤ n which together with Step 1 proves that n = n′ = N ,
as claimed. In particular � = L. Moreover, from (11.22), for every i such
that di < 0 we find |ξ0(bi) + ξ0| ≤ 1

2 |ξ0|, which is impossible, and for
every i such that di > 0 we have ξ0(bi) − ξ0 ≤ 1

2 |ξ0|. Therefore, we have
shown that if (u, A) ∈ XΩ is such that Gε(u, A) < infUN

Gε + 1, then

di �= 0 =⇒ di > 0, bi ∈
{

x ∈ Ω | ξ0(x) ≤ 1
2
ξ0

}
. (11.23)

This implies that the vortices are bounded away from ∂Ω since ξ0 van-
ishes there.

— Step 3: Conclusion. We apply Proposition 9.4, choosing K = K0 and
δ = δ0. It follows that if L is small enough depending on Ω then (9.40)
holds. Together with (9.25) it implies that

Fε(u, A′) + 2πhex

∑
i

diξ0(bi) ≥ πN log
L

ε
+ πN2 log

1
L

+ 2πNhexξ0 + R,

where, denoting CΩ as a positive constant depending only on Ω,

R = −π

(
3N

2
log N + N2 log

K0

δ0
+ N2δ0

2 +
N3/2

K0
+ CN

)
≥ −CΩN2.



234 Chapter 11. Branches of Solutions

Together with (9.24), we deduce from the above and (11.19) that

Gε(u, A) ≥ fε(N) − πSΩ(p, p)N2 − CΩN2.

This lower bound matches the upper bound of (11.10) up to CN2; there-
fore (9.42) in Proposition 9.4 is satisfied, and yields together with (9.25)

Fε(u, A′) ≥ πN log
L

ε
+ πN2 log

1
L

− CΩN2. (11.24)

From (9.24) we have Fε(u, A′) ≤ Gε(u, A) − hex
2J0 − 2πNhexξ0 + o(1),

which together with (11.18) implies

Fε(u, A′) ≤ f0
ε (N) + B0N

2 + 1 + o(1),

and thus∣∣Fε(u, A′) − f0
ε (N)

∣∣ ≤ B0N
2 + 2 + CΩN2 + πSΩ(p, p)N2. (11.25)

If (v, B) ∈ ∂UN , then since Fε is continuous with respect to the distance
we have chosen on XΩ,∣∣Fε(v, B′) − f0

ε (N)
∣∣ = BN2,

thus if we choose

B > CΩ + B0 + πSΩ(p, p) + 3, (11.26)

then we deduce from (11.24)–(11.25) that if (v, B) ∈ ∂UN , then
|Fε(v, B′) − Fε(u, A′)| > N2. From the uniform continuity of Fε in UN

this proves that
dist ((v, B), (u, A)) > δε,

for some number δε which does not depend on the choice of (u, A) sat-
isfying the hypothesis. Proposition 11.3 is proved, with B chosen large
enough depending on Ω to satisfy (11.17), (11.26), and η chosen small
enough as to satisfy (11.16), (11.17) and (11.21). Indeed, from the def-
inition of L, we have L2 ≤ η, thus if η is small enough, then L < L0 is
satisfied.
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11.7 infUN
Gε is Achieved

The rest of the proof that infUN
Gε is achieved relies on rather well-known

arguments. We recall Ekeland’s variational principle (see for example
[27]):

Ekeland’s principle: Assume X is a metric space and F : X →
R∪{+∞} is a proper lower semicontinuous function bounded from below.
Assume that for some integer n we are given xn such that F (xn) ≤
infX F + 1/n. Then for any λ > 0, there exists x̃n ∈ X such that

d(xn, x̃n) ≤ λ, F (x̃n) ≤ F (xn),

and for every x ∈ X,

F (x) − F (x̃n)
d(x, x̃n)

≥ 1
nλ

.

We apply this to the metric space U c
N consisting of those (u, A) ∈ UN

satisfying the Coulomb gauge condition, endowed with the distance func-
tion d ((u1, A1), (u2, A2)) = ‖u1 − u2‖H1 + ‖A1 − A2‖H1 . The function
(u, A) �→ Gε(u, A) is continuous, and even differentiable. We choose
B, η as in Proposition 11.3, and ε small enough. We let λ = δε/2
and consider a sequence {(vn, Bn)}n in U c

N such that Gε(vn, Bn) ≤
infUN

Gε + 1/n. Then from Ekeland’s principle there exists a sequence
{(un, An)}n in U c

N such that Gε(un, An) ≤ infUN
Gε +1/n and such that

d ((vn, Bn), (un, An)) ≤ δε/2. Using Proposition 11.3, this implies that
(un, An) remains at a distance at least δε/2 from ∂UN . The last prop-
erty of (un, An) given by Ekeland’s principle implies, since Gε is in fact
C1, that the norm of the differential of Gε at (un, An) tends to 0 as
n → +∞.

To summarize, {(un, An)}n is a minimizing sequence for Gε in UN

which satisfies the Coulomb gauge condition, which remains bounded
away from ∂UN and which is a Palais–Smale sequence. It remains to
show that such a sequence converges strongly in H1 × H1. Its limit will
belong to the interior of UN and minimize Gε, as claimed.

We now sketch the proof of strong convergence of Palais–Smale se-
quences. First {(un, An)}n is bounded in H1×H1 using the arguments in
Proposition 3.5 because Gε(un, An) is bounded and (un, An) satisfies the
Coulomb gauge condition. Thus, it has a subsequence which converges
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weakly to some (u, A) and (DGε)(un,An)(u − un, A − An) tends to zero:
this is the Palais–Smale condition. This reads

lim
n→+∞

(∫
Ω

∇Anun · ∇An(u − un) −
(
1 − |un|2

)
2ε2

un · (u − un) +

∫
Ω

curlAn curl(A − An) + jn · (A − An)
)

= 0,

where jn = (iun,∇Anun). Since A and An satisfy the Coulomb gauge
condition we may replace curl by ∇ in the second integral. Then the
weak H1 convergence and strong Lq convergence (up to extraction), for
q > 0, of both un and An allows us to deduce from the above that

lim
n→+∞

∫
Ω

|∇un|2 + |∇An|2 =
∫
Ω

|∇u|2 + |∇A|2.

On the other hand, by weak convergence, we have the inequalities∫
Ω |∇u|2 ≤ lim infε→0

∫
Ω |∇un|2 and

∫
Ω |∇A|2 ≤ lim infε→0 |∇A|2 hence

there must be equality in each, which proves the strong convergence of
the sequences, and the fact that infUN

Gε is achieved.

11.8 Proof of Theorem 11.1

Until now we have shown under suitable hypothesis the existence of a
minimizer (uε, Aε) for infUN

Gε, which is an interior point of UN hence
a local minimizer of Gε and then a stable solution of (GL). This allows
us to give a more detailed description of (uε, Aε).

{|uε| < 1/2} is bounded away from ∂Ω

Let ω = {ξ0 < ξ0/4}. Then, as seen in (11.23), the points bi such that
di �= 0 are inside ω and bounded away from ∂Ω, and di > 0. We apply
Theorem 4.1 in ω to (uε, A

′
ε) with r = L, and call the resulting collection

of balls the new balls. They satisfy (4.3). We claim their total degree D
(sum of absolute values of the degrees) satisfies D ≥ N . Indeed since
the total radius of the old and new balls both go to zero as ε → 0, we
may find for each ε small enough a simple closed curve γ which is inside
ω, which does not intersect the new or the old vortex balls, and which
encloses every bi such that di �= 0.
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Then deg(uε, γ) is equal to the sum of the degrees of the old balls
enclosed by γ, i.e., N (since di > 0 and n = N), but also to the (algebraic)
sum of the degrees of the new balls enclosed by γ which is smaller than D.
Thus N ≤ D as claimed. Also note that, since Fε(uε, A

′
ε) ≤ CN | log ε|,

in view of (4.4), D is bounded by CN . Combining this to the relation
(4.3), we get

Fε(uε, A
′
ε, ω) ≥ πN log

L

Nε
− CN.

Comparing this to the upper bound coming from the definition of UN ,
we find

Fε(uε, A
′
ε, Ω \ ω) ≤ πN2 log

1
L

+ O(N2) ≤ πη| log ε| + o(| log ε|),
(11.27)

where we have inserted (11.6). This suffices to conclude that |u| > 1/2
in Ω \ ω if η was chosen small enough depending on Ω. Indeed, using
Proposition 4.8, the set {x ∈ Ω | |uε(x)| ≤ 1/2} may be covered by a
collection of disjoint closed ball B0 of total radius r0 ≤ Cε| log ε|, and
such that (using Corollary 3.1) for each B ∈ B0,∫

B

(
1 − |uε|2

)2
2ε2

≥ C,

where C is a constant depending on Ω. Then we apply Theorem 5.2 to
(uε, Aε) with a final radius r1 = ε

1
2 . It yields a collection of balls B1. The

radius r1 is small enough so that for every B ∈ B1 we have

Fε(uε, A
′
ε, B) ≥ Fε(uε, Aε, B) (1 − o(1)) − O(1), (11.28)

but large enough so that (5.27) and (5.28) imply that for every B ∈ B1

we have

Fε(uε, Aε, B) ≥ C| log ε|. (11.29)

Then (11.27), (11.28) and (11.29) show that if η is small enough, then
B1 contains no ball which is included in Ω \ω and therefore |u| > 1/2 in
Ω\ ω̃, where ω̃ is the set of x ∈ Ω which are at distance less than r1 from
ω. This proves that {|uε| < 1/2} is bounded away from ∂Ω. From now
on we define ω to be a fixed subdomain of Ω such that {|uε| < 1/2} ⊂ ω,
and is bounded away from ∂Ω.
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The case N → +∞
In this case, we assume the Coulomb gauge condition is satisfied. Then
we note that {(uε, Aε)}ε is “very locally minimizing” in the sense of
Definition 3.8, i.e., for any family {xε}ε of points in Ω and any w : R

2 →
C compactly supported, we have Gε(uε + wε, Aε) ≥ Gε(uε, Aε), where
wε(xε + εy) = w(y).

Indeed, since (uε, Aε) is a solution of (GL), we have from Corollary 3.1
and Propositions 3.9 and 3.10 that |∇Au| ≤ C/ε, |u| ≤ 1 and |A| ≤
C/ε, the last estimate requiring the Coulomb gauge condition. Moreover
‖wε‖∞ = ‖w‖∞ and ‖∇wε‖∞ = ‖∇w‖∞/ε. We easily deduce that∣∣Fε(uε + wε, A

′
ε) − Fε(uε, A

′
ε)
∣∣ ≤ C

ε2
|{wε �= 0}| ≤ C,

since |{wε �= 0}| = ε2|{w �= 0}|. From (11.25) and since N → +∞,
this implies that for ε small enough, (uε + wε, Aε) ∈ UN and therefore
Gε(uε + wε, Aε) ≥ Gε(uε, Aε), proving that {(uε, Aε)}ε very locally min-
imizes Gε.

(uε, Aε) has exactly N zeroes of degree +1. We need to compare more
precisely the upper and lower bounds satisfied by Gε(uε, Aε). Comparing
(9.24), (9.40) with the upper bound (11.10) we deduce that∫

B
|∇A′

ε
uε|2 +

(curlA′
ε)

2

2
+

(
1 − |uε|2

)2
2ε2

≤ πN log
L

ε
+ O(N2)

= πN log
r

ε
+ O(N2).

On the other hand, using the lower bound given by Theorem 4.1 we have∫
B′

|∇A′
ε
uε|2 + r′2

(curlA′
ε)

2

2
+

(
1 − |uε|2

)2
2ε2

≥ πN log
r′

Nε
− CN.

Comparing the two and using N2 	 | log ε| implies that

Fε(uε, A
′
ε,B) − Fε(uε, A

′
ε,B′) ≤ πN log

r(B)
r(B′)

+ o(| log ε|).

This allows us to apply Proposition 5.2 (it is not difficult to check that
its other hypotheses are satisfied) and to deduce that in each ball Bi in
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B included in Ω, uε has exactly di zeroes of degree +1 (recall di > 0).
Since there are no zeroes close to ∂Ω, the claim is proved. Moreover it
follows that if we denote by {ak} the zeroes, then

1
N

∑
k

δãk
− 1

N

∑
i

diδb̃i
→ 0, (11.30)

where ãk = (ak − p)/L and b̃k = (bk − p)/L.

Identification of the limit measure. From Theorem 9.1 we have the con-
vergence of a subsequence of {μ̃(uε, A

′
ε)/N}ε to a probability measure

μ∗ such that Gε(uε, Aε) ≥ fε(N) + N2I(μ∗) + o(N2). But from Proposi-
tion 9.1 applied to μ0, the minimizer of I, we can construct a configura-
tion (vε, Bε) which belongs to UN and such that Gε(vε, Bε) ≤ fε(N) +
N2I(μ0)+o(N2). Using the fact that (uε, Aε) minimizes Gε in UN , we de-
duce the same upper bound on Gε(uε, Aε) hence I(μ∗) ≤ I(μ0) and μ∗ =
μ0. Since every subsequence converges to the same limit, {μ̃(uε, A

′
ε)/N}ε

converges to μ0, and Gε(uε, Aε) = fε(N) + N2I(μ0) + o(N2).
It remains to check that

1
N

∑
k

δãk
⇀ μ0.

From (11.30) this reduces to proving that

1
N

μ̃(uε, A
′
ε) −

1
N

∑
i

diδb̃i
⇀ 0.

We omit the proof since it was done in the course of the proof of Proposi-
tion 9.5, where it resulted from (9.68) and (9.67). This finishes the proof
of the theorem in the case N → +∞.

The case of bounded N

We now assume that N is independent of ε. In this case, the definition of
UN implies that Fε(uε, A

′
ε) ≤ C| log ε|, thus we may apply Theorem 5.4

choosing η = π/2N and the radius

r = min
(

1
| log ε| ,

1
hex

)
.
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We find balls {B(ai, Rε)}1≤i≤K which depend on ε that cover the zero set
of uε, that are inside Ω, and such that the degree di of uε on ∂B(ai, Rε)
is nonzero for every i. Moreover, the lower bound (5.36) holds and from
the previous step all the balls are inside ω, since each ball contains at
least a point where uε = 0.

We have as before

N ≤
∑

i

|di|, (11.31)

and we use (5.36) together with the definition of UN to find

π
∑

i

(
di

2 − 1
2N

)
log

r

Cε
≤ πN log

L

ε
+ πN2 log

1
L

+ O(1).

Together with (11.31), this implies that di = 1 for every i and
∑

i di =
N . We omit the details of the proof which involves a careful study of
remainder terms using (11.6) but is not difficult.

Now, since the degrees have been proven to be equal to +1 and since
the points are bounded away from ∂Ω, we may apply Proposition 10.2,
to find

Fε(uε, A
′
ε) ≥ πN | log ε|−π

∑
i	=j

log |ai−aj |+π
∑
i,j

SΩ(ai, aj)+Nγ +o(1).

Plugging this into the energy-splitting lemma (7.22), we have

Gε(uε, Aε) ≥ hex
2J0 + πN | log ε| − π

∑
i	=j

log |ai − aj | + π
∑
i,j

SΩ(ai, aj)

+ hex

∫
Ω

μ(u, A′)ξ0 + Nγ + o(1). (11.32)

We claim that

hex

∫
Ω

μ(u, A′)ξ0 = 2πhex

∑
i

diξ0(ai) + o(1). (11.33)

Indeed, we know from Theorem 6.1 that this would hold if the ai’s
were the centers a′i of the balls of small radius r′ = Cεα/2. But we
can easily check (as in the proof of Proposition 9.5 for example) that
2πhex

∑
i diδai−2πhex

∑
i d

′
iδa′

i
→ 0 as measures, which proves the claim.
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Inserting this into (11.32), for hex = O(1), we deduce that

Gε(uε, Aε) ≥ hex
2J0 + πN | log ε| + RN,hex(a1, . . . , aN ) + Nγ + o(1)

≥ hex
2J0 + πN | log ε| + min

ΩN
RN,hex + Nγ + o(1).

A matching upper bound also holds, with the help of Proposition 10.1,
hence we deduce that we have equality and that (a1, . . . , aN ) must con-
verge to a minimizer of RN,hex as ε → 0.

If hex → +∞, then we claim that the ai’s converge to p. The proof
is as above: using (7.22) with (11.33) and the lower bound for Fε(uε, A

′
ε)

coming from the definition of UN , we have

Gε(uε, Aε) ≥ hex
2J0 + 2πhex

∑
i

diξ0(ai) + f0
ε (N) − BN2 + o(1)

and comparing it with the upper bound (11.10), we find

2πhex

(∑
i

diξ0(ai) − Nξ0

)
≤ CN2 + o(1).

Using
∑

i di = N and hex → +∞, we deduce ξ0(ai) → ξ0 and thus the
claim.

It follows that π
∑

i,j SΩ(ai, aj) = πN2SΩ(p, p) + o(1). Thus, (11.32)
becomes

Gε(uε, Aε) ≥ hex
2J0 + πN | log ε| − 2πNhex|ξ0| − π

∑
i	=j

log |ai − aj |

+ 2πhex

∑
i

di(ξ0(ai) − ξ0) + Nγ + πN2SΩ(p, p) + o(1).

Using Lemma 11.1, this entails

Gε(uε, Aε) ≥ hex
2J0 + πN | log ε| − 2πNhex|ξ0|

+ π
N2 − N

2
log

hex

N
+ minwN + πN2SΩ(p, p) + Nγ + o(N2).

Again with the help of Proposition 10.1, the matching upper bound also
holds, hence there is equality above. Thus from Lemma 11.1, the ãi’s
have to converge to a minimizer of wN , where ai = p + ãi

√
N
hex

. This
proves assertion 2) and (11.7).
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The fact that for ε small enough there are exactly N zeroes of uε may
be obtained by a blow-up argument around each ai. Since |ai − aj | � ε
(they are given by Theorem 5.4) and the ai’s are bounded away from
∂Ω, the blow-ups at the scale ε around each point converge to an entire
solution of −Δu = u(1 − |u|2) of degree 1 such that∫

R2

(
1 − |u|2)2 < +∞,

i.e., to the radial degree +1 vortex which has a single zero. Therefore for
ε small enough, uε has a single zero in B(ai, Rε). This finishes the proof
of the theorem in the case of N bounded.

Bibliographic notes on Chapter 11: The existence of solutions of
the type of Case 1 in the theorem was conjectured by Rubinstein in [158]
and first established by Du–Lin in [86]. Their range of existence is here
extended.

The main result of existence of branches of solutions for a wide range
of hex, through the local minimization method, in Case 2, was established
in [182] in the case of a disc, following [181] which already contained the
minimal energy case. Case 3 is new.



Chapter 12

Back to Global Minimization

In this chapter, we establish which solutions, among the ones found in
Theorem 11.1, minimize the energy globally. This of course depends on
the value hex. As hex increases, we will see that the minimizers have one,
then two, then more and more vortices, as predicted by the physics. This
allows us to give precise expansions of the critical fields.

Again we only need to concentrate on the case of hex close to H0
c1

since, for hex greater than H0
c1 by at least an order of | log ε|, the situation

is precisely described by Theorem 7.2, while for hex − H0
c1 much greater

than log | log ε|, it is described by Theorem 9.2.

12.1 Global Minimizers Close to Hc1

Loosely speaking, from Theorem 11.1 we know that the minimal energy
of a solution with n vortices, when n is independent of ε, is equal to
gε(n) + o(1), where

gε(n) = fε(n) + min
(R2)n

wn + nγ. (12.1)

Lemma 12.1 (Critical fields). For every ε > 0, there exists an in-
creasing sequence {Hn(ε)}n, H0 = 0, such that the following holds.

Given n ≥ 0 independent of ε, if hex(ε) � 1 is such that

gε(n) ≤ min (gε(n − 1), gε(n + 1)) + o(1),

then
Hn − o(1) ≤ hex ≤ Hn+1 + o(1).
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Moreover, the following asymptotic expansion holds as ε → 0

Hn =
1

2|ξ0|

[
| log ε| + (n − 1) log

| log ε|
2|ξ0| + Kn

]
+ o(1) (12.2)

where

Kn = (n − 1) log
1
n

+
n2 − 3n + 2

2
log

n − 1
n

+
1
π

(
min
(R2)n

wn − min
(R2)n−1

wn−1 + γ + (2n − 1)πSΩ(p, p)
)

,

γ was defined in (3.15), SΩ in (7.18), wn in (11.2), and ξ0 in (7.4)).

This was illustrated in Fig. 1.7 where the branches of stable solutions
with n vortices intersect (i.e., have equal energy) at the Hn’s.

Proof. As in the proof of Lemma 9.5, we let Δn = gε(n)− gε(n− 1) and
we have, using (12.1) and (9.4),

Δn+1 = π

(
n log

hex

n + 1
+ | log ε| + 2hexξ0

)
+ R(n + 1), (12.3)

with

R(n + 1) = π
n2 − n

2
log

n

n + 1
+ π(2n + 1)SΩ(p, p)

+ min
(R2)n+1

wn+1 − min
(R2)n

wn + γ.

As a function of hex, the function Δ1 is affine decreasing on R+ and
Δ1(0) > 0. If n > 1, then Δn is first increasing and then decreasing.
Also, for ε small enough depending on n, if hex = 1, then Δn is strictly
positive. Since Δn tends to −∞ as hex → +∞, we may again define
Hn(ε) to be the only value of hex in the interval [1, +∞[ for which Δn

vanishes. This allows us to define Hn(ε) for any n ∈ N and any ε < ε0(n).
The definition of Hn allows us to easily compute the expansion (12.2)
from (12.3). It is easy to check that if 1 	 hex and n is fixed, then for any
ε > 0 small enough we have Δn+1 − Δn > 0. In particular the sequence
{Hn}n is increasing.

Now assume hex(ε) � 1. If

gε(n) ≤ min (gε(n − 1), gε(n + 1)) + o(1),
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then Δn ≤ o(1) and Δn+1 ≥ o(1). But the derivative of Δn w.r.t hex

is negative and bounded away from 0, thus Hn − o(1) ≤ hex ≤ Hn+1 +
o(1).

We deduce:

Theorem 12.1. (Global minimizers and critical fields for bound-
ed numbers of vortices). Assume N ∈ N. There exists cε → 0 as
ε → 0 such that if ε < ε0(N) and

HN + cε ≤ hex ≤ HN+1 − cε,

any global minimizer of Gε is a solution with N vortices described in
Theorem 11.1.

We prove the theorem. Let {(uε, Aε)}ε be global minimizers of the
energy with HN + cε ≤ hex ≤ HN+1 − cε for some fixed N ∈ N. Our
assumption implies hex ≤ H0

c1 + O(log | log ε|) where H0
c1 was defined in

(7.16). We wish to prove that for ε small enough we have (uε, Aε) ∈ UN ,
for a suitable choice of cε. However it suffices to prove that (uε, Aε) ∈ Un

for some integer n. Indeed, this will prove that it is a minimizer in Un,
hence its energy is gε(n) + o(1). Moreover, by global minimality, this
energy will be smaller than the energy of the minimizers in Un−1 and
Un+1 respectively, i.e.,

gε(n) ≤ min (gε(n − 1), gε(n + 1)) + o(1),

which by Lemma 12.1 implies Hn − δε ≤ hex ≤ Hn+1 + δε for some
δε = o(1) and then n = N , choosing cε = δε/2.

Note that from hex ≤ C| log ε|, and the fact that Gε(uε, Aε) ≤
Gε(1, hex∇⊥ξ0) = hex

2J0 we immediately get Gε(uε, Aε) ≤ C| log ε|2
and Fε(uε, Aε) ≤ C| log ε|2. In particular, as in Chapter 9 we may apply
Theorem 4.1 to (uε, Aε) to construct, for any α < 1

2 , small balls B′ with
total radius r′ = εα and grow them using Theorem 4.2 into large balls
B of total radius r = 1√

hex
. We again denote by {di}i the degrees of the

large balls and let n :=
∑

i |di|. We now prove that (uε, Aε) ∈ Un, which
will conclude the proof of Theorem 12.1.

— Step 1: n 	 hex. This is Step 1 of the proof of Theorem 9.2.
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— Step 2: n = O(1). Indeed, assume on the contrary that along a subse-
quence {ε} we have n � 1. Then, from Theorem 9.1 and Proposition 9.1,
and since {(uε, Aε)}ε are global minimizers, we have Gε(uε, Aε) = fε(n)+
n2I(μ0)+o(n2), where fε(n) is defined in (9.9). Moreover, by global mini-
mality, this must be less than gε(N)+o(1). But, computing and inserting
the inequality HN + cε ≤ hex ≤ HN+1 − cε, we find

πn| log ε| − 2πnhex|ξ0| + π

2
(n2 − n) log

hex

n
+ O(n2)

≤ πN | log ε| − 2πNhex|ξ0| + O(N2 log | log ε|)

hence

−CnN log | log ε| + π

2
(n2 − n) log

hex

n
≤ CN2 log | log ε| + Cn2.

Using n → +∞ and dividing by log hex
n → +∞, we find

n2 ≤ CnN log | log ε|
log hex

n

≤ CnN log hex

log hex
n

and writing log hex as log hex
n + log n, we find n2 ≤ CnN(1 + log n) from

which we easily deduce a contradiction with n � 1.

From now on, we assume that n is independent of ε and we show
that for ε small enough, we have (uε, Aε) ∈ Un.

— Step 3: The case n = 0. If n = 0 then di = 0 for all i, hence using
Proposition 9.3 and since Gε(uε, Aε) ≤ hex

2J0 we deduce that d′i = 0,
for every i. Then applying Theorem 6.1 to the small balls, we find that
the norm of μ(u, A′) in the dual of C0,1

0 (Ω) is less than Cεp for any
p < 1/2. Using Lemma 7.3 and bounding again Gε(uε, Aε) by hex

2J0

we find Fε(uε, A
′
ε) ≤ Cεp for any p < 1/2, and we may bootstrap this

information using Theorem 6.1 and Lemma 7.3, taking larger α’s, to find
Fε(uε, A

′
ε) ≤ Cεq for any q ∈ (0, 1), proving that (uε, Aε) ∈ U0 if ε is

small enough.

— Step 4: The case n > 0. Comparing the minimizer to the solution
with n vortices found in Theorem 11.1, we find that

Gε(uε, Aε) ≤ fε(n) + O(n2). (12.4)
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On the other hand, we may apply Proposition 9.4 and (9.40) together
with (9.24)–(9.25) yield

Gε(uε, Aε) ≥ fε(n) + O(n2).

Comparing to (12.4) we obtain that the difference between the left- and
right-hand sides of (9.40) is O(1) and therefore since � =

√
n

hex
→ 0,

D(t) = n for all t ∈ [r0, r1] which implies that di ≥ 0 for all i and ai → p
for every i such that di �= 0. We also obtain from (9.24)–(9.25) that
n = n′ since rhex = O(

√| log ε|) and log(r/r′) ∼ α| log ε|.
Proceeding exactly as in Step 3 of the proof of Proposition 11.3, we

deduce that (uε, Aε) ∈ Un in this case also.
In all cases we have proved (uε, Aε) ∈ Un, which concludes the proof

of Theorem 12.1.

Remark 12.1. Note that for N = 0 and since we have let H0 = 0, the
condition above reduces to

hex ≤ | log ε|
2|ξ0| +

γ + πSΩ(p, p)
2π|ξ0| − cε = H1 − cε.

In this case, the global minimizer of Gε is the Meissner (vortex-free)
solution. We have thus shown that if we define the first critical field either
as the one below which minimizers are such that |u| does not vanish or
as the one above which minimizers have exactly one zero, we have the
refined expansion as ε → 0

Hc1 = H1 =
| log ε|
2|ξ0| +

γ + πSΩ(p, p)
2π|ξ0| + o(1) .

Remark 12.2. The minimizers of the energy for hex ∈ [Hn, Hn+1] have
exactly n vortices. This does not mean that if one increases the applied
field hex to pass Hn+1, an n + 1-th vortex will really be observed exper-
imentally. Indeed, each configuration with n vortices found in Theorem
11.1 remains a local minimum even for hex < Hn or hex > Hn+1. There
is an energy barrier to pass continuously from a configuration with n vor-
tices to a configuration with a different number of vortices. This allows
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for hysteresis phenomena as observed in experiments, i.e., where the sys-
tem keeps the “memory” of the situation it is coming from, remaining
trapped in local minima instead of going to a global minimum.

The lower and upper fields for which the solutions of Theorem 11.1
lose their linear stability are called respectively the subcooling Hsc and
superheating Hsh fields. Theorem 11.1 shows that Hsc = O(n2) and also
that Hsh is much larger than Hc1, or than each Hn. In fact, it is expected
that Hsh = O(ε−1) (it was established for the vortex-free solution in [55],
see Chapter 14).

12.2 Possible Generalization: The Case where Λ is not
Reduced to a Point

The most general case is that of general domains with Λ not reduced
to one point, or Λ = {p1, . . . , pl}. Let us still assume that D2ξ0(pi) are
definite positive. Looking for solutions with N vortices, we can minimize
Gε again over UN . It is clear that with the same arguments as used
in Proposition 11.3, the minimum is achieved in UN and yields a locally
minimizing solution of (GL), with vortices of degree 1. If hex = O(1) and
N = O(1), then its vortices converge to a minimizer of RN,hex , just like
in Theorem 11.1. If N/hex → 0, then the situation has more structure,
and we will show what happens, for example, for the case of N bounded
(or fixed) and hex → +∞. As in the proof of Theorem 11.1, we can check
that the vortices should all be of degree 1 and tend to Λ. Let us consider
that n1 of them converge to p1, n2 to p2, etc. Let us denote by a1, . . . , an1

those converging to p1, and by an1+1, . . . , an2 those converging to p2. We

may check that writing � =
√

N
hex

and rescaling by ãi = 1
� (ai − pk) for

nk−1 + 1 ≤ i ≤ nk, if we denote

wk(x1, . . . , xnk
) = −π

∑
i	=j∈[1,nk]

log |xi − xj |

+ πN

nk∑
i=1

〈D2ξ0(pk)xi, xi〉,
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we have

− π
∑
i	=j

log |ai − aj | + 2πhex

∑
i

(
ξ0(ai) − ξ0

)
= π

l∑
k=1

nk(nk − 1) log
1
�
− π

∑
i	=j∈[1,l]

ninj log |pi − pj |

+
l∑

k=1

wk

(
ãn1+···+nk−1+1, . . . , ãn1+···+nk

)
+ o(1). (12.5)

We are thus led to minimizing to leading order

l∑
k=1

nk(nk − 1)

under the constraint n1 + · · · + nl = N . This is equivalent to finding

MN = min
n1+···+nl=N

l∑
k=1

n2
k. (12.6)

Lemma 12.2. If N = ml + r with m and r integers, r < l, then MN is
achieved for nk = m in l − r sites and nk = m + 1 in r sites. Then

MN = (m2 − m)l + 2mr.

Proof. Assume n1, . . . , nl is a minimizer. Let m = min1≤k≤l nk and m′ =
max1≤k≤l nk. Relabelling if necessary, we may assume that n1 = m and
n2 = m′. Since the configuration is minimizing, it has less energy than
that consisting of n1 + 1, n2 − 1, n3, . . . , nl. Thus

(n1 + 1)2 + (n2 − 1)2 +
∑
k≥3

n2
k ≥

l∑
k=1

n2
k,

that is,
2n1 + 1 − 2n2 + 1 ≥ 0

or m−m′ +1 ≥ 0. Hence we must have m′ ≤ m+1. Since m and m′ are
respectively, the min and the max, we must have nk = m or nk = m + 1
for every k. Let r be the number of k’s for which nk = m + 1. We have
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r < l otherwise nk = m + 1 for every k and this would contradict the
minimality of m. We have l − r indices such that nk = m, therefore we
have

(l − r)m + r(m + 1) = N

or lm+r = N . Thus m is indeed the integer part of N/l and the minimizer
is as described.

Inserting this into (12.5) and taking into account all the terms that
depend on the pk’s, we are thus led to minimizing

WN (p1, . . . , pl, x1, . . . , xN ) = −π
∑

i,j∈[1,l]

ninj log |pi − pj |

+
l∑

k=1

wk

(
xn1+···+nk−1+1, . . . , xn1+···+nk

)
+ π

l∑
k=1

n2
kSΩ(pk, pk)

with the constraint that the n1, . . . , nl are minimizers for (12.6). We
therefore find an analogue of Theorems 11.1, 12.1:

Theorem 12.2. Let us assume that Λ = {p1, . . . , pl}. Under the same
hypotheses as Theorem 11.1, there exists ε0 > 0 such that for 0 < ε < ε0,
there exists (uε, Aε) which is a locally minimizing critical point of Gε,
hence a stable solution of (GL), which has exactly N zeroes of degree
aε

1, . . . , a
ε
N of degree one. Moreover,

1. If N and hex are independent of ε, then, possibly after extraction,
(aε

1, . . . , a
ε
N ) converges as ε → 0 to a minimizer of RN,hex.

2. If N is independent of ε and hex → +∞, then there are n1 points
converging to p1, n2 to p2, . . . , nl to pl, and n1, . . . , nl minimize
(12.6). Moreover, after possible extraction, the configuration of the
pk’s and ãi

ε = (aε
i − pk)/� (for nk−1 + 1 ≤ i ≤ nk) converge to a

minimizer of WN under this constraint, and

Gε(uε, Aε) = min
UN

Gε = hex
2J0 + πN(| log ε| − 2|ξ0|hex)

+ π(MN − N) log
1
�

+ minWN + Nγ + o(1).

Next, in order to find the critical fields, one can observe that Mn+1−
Mn = 2m where again m is the integer part of n/l. Comparing, we find
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that the solution with n vortices has the least energy between Hn and
Hn+1 with

Hn =
1

2|ξ0|
[
| log ε| +

(
m − 1

2

)
log

| log ε|
2|ξ0| + Kn

]
+ o(1)

where

Kn =
(

m − 1
2

)
log

1
n

+ (Mn−1 − n + 1) log
n − 1

n

+
1
π

(minWn − minWn−1 + γ) ,

where m is the integer part of n−1
l .

It would not be very hard to also generalize Case 3 of Theorem 11.1
to this situation; one would obtain l pockets of vortices centered at each
pi, with ∼ n

l vortices in each.
One can also think of generalizing to the case where D2ξ0 is not

positive definite (see the open problems section).

Bibliographic notes on Chapter 12: The existence of the successive
critical fields Hn was first established in [181], the asymptotic expansion
obtained here is more precise though, since it is up to o(1). The fact
that these solutions are global minimizers was established in [169] for
hex below Hc1 and in [171] for hex above Hc1 . Finally, the generalization
to other domains is new.



Chapter 13

Asymptotics for Solutions

The problem we have dealt with until now was to understand the ε → 0
limits of the vorticity measures associated to minimizers of the Ginz-
burg–Landau functional. We now wish to derive a criticality condition
for a limiting vorticity measure associated to a family {(uε, Aε)}ε of
solutions of the Ginzburg–Landau system (GL) which are not necessarily
minimizing.

Intuitively, the force acting on a vortex in the limit ε → 0 is the
gradient of the potential generated by the vortices and the boundary
condition. Assume we are in a domain Ω with external magnetic field
hex. We denote by {ai}i the limiting locations of the vortices and by
{di}i their degrees. Then the (limiting) potential h is the solution of the
London equation {

−Δh + h = 2π
∑

i diδai in Ω
h = hex on ∂Ω.

The criticality condition in this case should be ∇h(ai) = 0 for every i.
Another formulation, letting μ = 2π

∑
i diδai , is

μ∇hμ = 0, (13.1)

where hμ is the solution of{
−Δhμ + hμ = μ in Ω

hμ = hex on ∂Ω.

This formulation can be extended to vortex densities by considering ar-
bitrary measures μ in (13.1).
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Of course the meaning of (13.1) is not clear in many important cases,
including that of μ equal to a Dirac mass at p: then hμ has a logarithmic
singularity at p and ∇hμ(p) is not defined. Another example would be
when μ is the measure of arclength along a smooth closed curve γ in
Ω. Then hμ is Lipschitz but ∇hμ is discontinuous on γ, i.e., the support
of μ. These types of measures may actually occur as limits of vorticity
measures, we will come back to this and give other examples below.

If hμ ∈ H1(Ω), or equivalently if the measure μ is in H−1(Ω) —
which is the case in the curve example above — then a weak formulation
of (13.1) is at hand. This comes naturally by computing the derivative
of ‖ht‖2

H1(Ω) with respect to t for variations of hμ of the form ht(x) =
hμ(x+ tX(x)), where X is a smooth compactly supported vector field in
Ω, also called “inner variations”. The vanishing of

d

dt
‖ht‖2

H1(Ω)

at t = 0 for any such X is equivalent to the fact that for i = 1, 2, we
have ∂1Ti1 + ∂2Ti2 = 0 in the sense of distributions, where

Tij = −∂ihμ∂jhμ +
1
2
(|∇hμ|2 + hμ

2
)
δij . (13.2)

We write, in shorthand, these two equations as div T = 0. This is ex-
pressing the fact that hμ is stationary with respect to inner variations
for the functional ‖h‖2

H1(Ω).
The coefficients Tij are in L1 if hμ is in H1, and therefore div T = 0

makes sense in D′(Ω) (the space of distributions). It is a straightforward
calculation to check that, if hμ is smooth enough, C2 for instance, then

div T = (−Δhμ + hμ)∇hμ = μ∇hμ,

hence div T = 0 is the same as (13.1). The relation div T = 0 is thus a
weak formulation of (13.1) for nonsmooth fields.

If hμ �∈ H1, then the tensor T with coefficients Tij need not be in
L1, this is the case if μ is a Dirac mass. In this case we resort to a
finite part formulation. More precisely we consider measures μ such that
there exists a family {Eδ}δ>0 of sets which become “small” as δ tends
to zero and such that hμ,∇hμ ∈ L2(Ω \ Eδ) for every δ > 0. Then the
criticality condition for μ will be that for every ζ ∈ D(Ω) we have, letting
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Fδ = ζ−1 (ζ(Eδ)), ∫
Ω\Fδ

T∇ζ = 0,

where T∇ζ is the vector with components Ti1∂1ζ +Ti2∂2ζ. If μ is a Dirac
mass at p, we could take Eδ = B(p, δ), for instance.

The method to obtain this weak formulation div T = 0 of the limiting
condition (13.1) is to pass to the limit in the analogous relation on the
stress-energy tensor, denoted here by Sε (see Definition 3.4)

div Sε = 0 (13.3)

holding for solutions of (GL), as seen in Proposition 3.7. This relation is
a “conservative form” of the Ginzburg–Landau equations, or a corollary
of Noether’s theorem, again coming naturally from the fact that (uε, Aε)
is critical for Gε with respect to inner variations as described above.
The task will thus consist in passing to the limit ε → 0 in the nonlinear
relation (13.3).

This problem is very similar to that of passing to the weak limit in
solutions of the 2D incompressible Euler equation, if we consider ∇h as
the fluid velocity and μ as the fluid vorticity. It is therefore not surprising
that the core of our argument is quite similar to that found in DiPerna–
Majda [84] in that it uses something analogous to the “concentration-
cancellation” property of the weak limits of solutions to 2D Euler. Two
specific difficulties we encounter are first the lack of L1 control of the
vorticity, and second the difference between Sε and (13.2). Note that in
our case we are able to prove that “concentration” always occurs whereas
it was a hypothesis in [84].

Note that since we have considered an applied field hex depending on
ε, and possibly tending to +∞, and a number of vortices also possibly
tending to +∞, there is a normalization issue that we will discuss be-
low. Let us simply mention that if the number of vortices is negligible
compared to hex, then the effect of the boundary is predominant and
the criticality condition is simply μ∇h0 = 0, where h0 is as in (7.1) the
solution of −Δh0 + h0 = 0 in Ω and h0 = 1 on ∂Ω. This makes sense for
any measure μ since h0 is smooth.

13.1 Results and Examples

Before stating our results, we need to introduce some definitions.
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13.1.1 The Divergence-Free Condition

Definition 13.1 (Divergence-free in finite part). Assume X is a
vector field in Ω. We say X is divergence-free in finite part if there exists
a family of sets {Eδ}δ>0 such that

1. For any compact K ⊂ Ω, we have limδ→0 cap1(K ∩ Eδ) = 0.

2. For every δ > 0, X ∈ L1(Ω \ Eδ).

3. For every ζ ∈ C∞
c (Ω), ∫

Ω\Fδ

X · ∇ζ = 0,

where Fδ = ζ−1 (ζ(Eδ)).

If T is a 2-tensor with coefficients {Tij}1≤i,j≤2, we say that T is diver-
gence-free in finite part if the vectors Ti = (Ti1, Ti2) are, for i = 1, 2.

Proposition 13.1. Assume that X is divergence-free in finite part in Ω
and that X ∈ L1(Ω \ E). Then for every ζ ∈ C∞

c (Ω),∫
Ω\F

X · ∇ζ = 0,

where F = ζ−1 (ζ(E)). In particular if X ∈ L1(Ω), then F = ∅ in the
above and therefore div X = 0 in D′(Ω).

Remark 13.1. A consequence of this proposition is that if X is diver-
gence-free in finite part and is continuous in a neighborhood U of a
smooth curve γ = ∂K, where K is a compact subset of Ω, then∫
γ X · ν = 0.

Indeed, let {ζn}n be a sequence of functions in C∞
c (Ω) converging in

BV (Ω) to 1K , the characteristic function of K, and equal to 1K outside
of U . Then letting E = Ω\U we have Ω \ ζ−1

n (ζn(E)) = {ζn �= 0, 1} ⊂ U
and applying Proposition 13.1, we have∫

U

X · ∇ζn = 0.

Passing to the limit n → +∞ proves the desired result.

It will be convenient to use the following:
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Definition 13.2. We say (with some abuse of notation) that a sequence
{Xn}n in L1(Ω) converges in L1

δ(Ω) to X if Xn → X in L1
loc(Ω) except on

a set of arbitrarily small 1-capacity, or precisely if there exists a family
of sets {Eδ}δ>0 such that for any compact K ⊂ Ω,

lim
δ→0

cap1(K ∩ Eδ) = 0, ∀δ > 0 lim
n→∞

∫
K\Eδ

|Xn − X| = 0. (13.4)

We define similarly the convergence in L2
δ by replacing L1 by L2 in the

above.

Note that the limit X need not be in L1(Ω).
The rest of this section is devoted to the proof of Proposition 13.1.

We recall from Evans–Gariepy [94] that the p-capacity (1 ≤ p < 2) of
E ⊂ R

2 is defined as

capp(E) = inf

⎧⎨⎩
∫
R2

|∇ϕ|p; ϕ ∈ Lp∗(R2),∇ϕ ∈ Lp(R2), E ⊂ int (ϕ ≥ 1)

⎫⎬⎭,

where int(A) denotes the interior of A and p∗ = 2p/(2 − p).

Lemma 13.1. Any bounded set A ⊂ R
2 may be covered by balls

{B(xi, ri)}i∈N such that
∑

i ri < C cap1(A), where C is a universal con-
stant. In particular for any Lipschitz function ζ, ζ(A) has Lebesgue mea-
sure bounded above by C‖ζ‖Lip cap1(A).

Proof. This is a restatement of the proof of the property relating cap1

and Hn−1 in [94]. Let α = cap1(A) and f be a test function in the
definition of α such that ∫

R2

|∇f | ≤ 2α.

We assume moreover that f is compactly supported. The coarea formula
for BV functions (see [94]) applied to f implies that there exists t ∈
(1/2, 1) such that Et = {f > t} satisfies per(Et) ≤ 4α. But A is included
in the interior of {f ≥ 1}, hence in the interior of Et. Therefore for any
x ∈ A, the quotient |B(x, r) ∩ Et|/|B(x, r)| is equal to 1 for r small and
tends to 0 as r → +∞. Thus there exists rx such that it is equal to 1/2.
The relative isoperimetric inequality (see [94]) for sets of finite perimeter
then asserts that for any x ∈ A we have, using the notation of [94],

‖∂Et‖(B(x, rx)) ≥ Crx,
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where C > 0 is a universal constant. Extracting a Besicovitch subcov-
ering of A from {B(x, rx)}x∈A, and denoting it by {B(xi, ri)}i∈N, we
obtain, by summing the inequalities above,∑

i

ri ≤ C per(Et) ≤ Cα.

The property that |ζ(A)| ≤ C‖ζ‖Lip cap1(A) results by summing the
corresponding inequality for each of the balls B(xi, ri).

Proof of Proposition 13.1. Let ζ be a smooth function compactly sup-
ported in Ω and γt = {ζ = t}. For any regular value t of ζ, let

f(t) =
∫
γt

T · ν,

where ν = ∇ζ/|∇ζ|.
Assuming the hypotheses of Proposition 13.1 are satisfied, T is di-

vergence free in finite part hence there exist sets {Eδ}δ satisfying the
properties stated in Definition 13.1. We let Fδ = ζ−1(ζ(Eδ)). We begin
by proving that for every δ > 0

f(t) = 0 for almost every t /∈ ζ(Eδ). (13.5)

Indeed, for any smooth g : R → R, the coarea formula gives, for any
δ > 0 (using div T = 0 in finite part),∫

Ω\Fδ

T · ∇(g ◦ ζ) =
∫

t/∈ζ(Eδ)

g′(t)f(t) dt = 0,

thus f(t) = 0 for a.e. t such that t /∈ ζ(Eδ).
Using the coarea formula again, we then have, letting A = R \ ζ(E),

and for any δ > 0,∫
Ω\F

T · ∇ζ =
∫
A

f(t) dt =
∫

A\ζ(Eδ)

f(t) dt +
∫

A∩ζ(Eδ)

f(t) dt.

The integral over A \ ζ(Eδ) is zero from (13.5). Moreover, since
limδ→0 cap1(K ∩ Eδ) = 0, where K is the support of ζ, and using the
previous lemma, the measure of ζ(Eδ) goes to zero with δ and thus the
integral over A ∩ ζ(Eδ) also tends to zero as δ → 0. It follows that∫
Ω\F T · ∇ζ = 0, proving the proposition.
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13.1.2 Result in the Case with Magnetic Field

We consider {(uε, Aε)}ε>0 a family of solutions of the Ginzburg–Landau
equations in Ω. For the sake of generality, we do not impose boundary
conditions (this way Ω can be taken to be a subregion of the original
domain where the solution is defined), but we assume that |uε| ≤ 1 in Ω
and that

Fε(uε, Aε) < C0ε
α−1, α >

2
3

(13.6)

for every ε > 0, where α is independent of ε and where Fε is the free-
energy as defined in (4.1). The value 2/3 is a technical limitation. As in
the previous chapters, we denote by με := μ(uε, Aε) = curl(iuε,∇Aεuε)+
curlAε, hε = curlAε. Also, recall that from Proposition 3.8, any gauge-
invariant quantity is smooth in Ω.

In what follows we split the magnetic field hε in two pieces: h0
ε the

field generated by the boundary conditions and h1
ε the field generated

by the vorticity. More precisely, taking the curl of the second Ginzburg–
Landau equation −∇⊥hε = jε we have

−Δhε + hε = με in Ω. (13.7)

Then we define h0
ε and h1

ε by{
−Δh1

ε + h1
ε = με in Ω

h1
ε = 0 on ∂Ω.

, h0
ε = hε − h1

ε. (13.8)

Theorem 13.1. (Limiting vorticities for critical points — case
with magnetic field).

A) Let {(uε, Aε)}ε>0 be solutions of the Ginzburg–Landau equations as
above. Then for any ε > 0, there exists a measure νε of the form
2π

∑
i d

ε
i δaε

i
where the sum is finite, aε

i ∈ Ω and dε
i ∈ Z for every i,

such that, letting nε =
∑

i |dε
i |,

nε ≤ C
Fε(uε, Aε,Bε)

| log ε| , (13.9)

where Bε is a union of balls of total radius less than Cε2/3, and
such that

‖με − νε‖W−1,p(Ω)‖με − νε‖C0(Ω)∗ → 0, (13.10)

for some p ∈ (1, 2).
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B) Let {νε}ε be any measures of the form 2π
∑

i d
ε
i δaε

i
satisfying (13.10),

let nε =
∑

i |dε
i |, and let {Mε}ε be positive real numbers such that

{h0
ε/Mε}ε converges in L1

loc(Ω) to a function H0. Then −ΔH0 +
H0 = 0 in Ω and, possibly after extraction, one of the following
holds.

0. nε = 0 for every ε small enough and then με tends to 0 in
W−1,p(Ω).

1. nε = o(Mε) is nonzero for ε small enough, and then με/nε

converges in W−1,p(Ω) to a measure μ such that

μ∇H0 = 0.

hence the support of μ is contained in the set of critical points
of H0.

2. Mε ∼ λnε, with λ > 0, and then με/Mε converges in W−1,p(Ω)
to a measure μ, and hε/Mε converges in W 1,p

loc (Ω) to a solution
of −Δhμ +hμ = μ in Ω. Moreover the symmetric 2-tensor Tμ

with coefficients Tij given by (13.2) is divergence-free in finite
part in the sense of Definition 13.1.

3. Mε = o(nε), and then με/nε converges in W−1,p(Ω) to a mea-
sure μ, and hε/nε converges in W 1,p

loc (Ω) to the solution of{−Δhμ + hμ = μ in Ω
hμ = 0 on ∂Ω.

Moreover, the symmetric 2-tensor Tμ with coefficients Tij

given by (13.2) is divergence-free in finite part.

In Cases 2) and 3), if μ ∈ H−1(Ω), then Tμ is in L1
loc(Ω) and

divergence-free in the sense of distributions. Moreover |∇hμ|2 is
then in W 1,q

loc (Ω) for any q ∈ [1, +∞), implying that hμ is locally
Lipschitz. If we assume that μ ∈ Lp(Ω) for some p > 1, then

μ∇hμ = 0 (13.11)

almost everywhere in Ω. In Case 3) this implies μ = 0 and hμ = 0.
In Case 2) we get

μ = hμ1{|∇hμ|=0}. (13.12)
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Note that since H0 satisfies −ΔH0 + H0 = 0 in Ω, it is necessarily
smooth inside Ω.

Application 1 (Natural boundary conditions). In the case where
(uε, Aε) solves the full system (GL), i.e., the Ginzburg–Landau equations
together with the natural boundary conditions jε · ν = 0 and hε = hex(ε)
on ∂Ω, we may choose Mε = hex and then h0

ε/Mε does not depend on
ε: it is equal to the function h0 which solves −Δh0 + h0 = 0 in Ω and
h0 = 1 on ∂Ω (as in (7.1)), and H0 = h0. The results in that case are
stated in the introduction, Theorem 1.7. We already noted in Lemma 7.1
that in the case where Ω is bounded, smooth and simply connected, this
function only has a finite number of critical points, and thus in Case 1),
the measure μ is a finite linear combination of Dirac masses.

In Case 2), we may be more precise about hμ: dividing (13.7) by hex

and passing to the limit, we find it solves{
−Δhμ + hμ = μ in Ω

hμ = 1 on ∂Ω.

Moreover, assuming that μ ∈ Lp(Ω), we claim that 0 ≤ hμ ≤ 1, thus
using (13.12) we find that μ is in fact a nonnegative L∞ function.

Proof of the claim. To prove that 0 ≤ hμ, one may multiply (13.12) by
h− = min(hμ, 0) and integrate by parts to obtain∫

Ω

|∇h−|2 + h−2 =
∫

{|∇hμ|=0}
h−2.

It follows that h− is supported in the set where ∇hμ vanishes, which in
turn implies that h− = 0 for if there existed x0 ∈ Ω such that hμ(x0) < 0,
then considering an arc joining x0 to x1 ∈ ∂Ω, and since hμ(x1) = 1, this
would imply the existence of some point in the arc where ∇hμ �= 0 and
hμ < 0, a contradiction. Therefore hμ ≥ 0 in Ω.

Similarly, to prove that hμ ≤ 1, we let h1 = max(0, hμ − 1), multiply
(13.12) by h1 and integrate by parts. This yields∫

Ω

|∇h1|2 + (1 + h1)h1 =
∫

{|∇hμ|=0}
(1 + h1)h1,

implying that h1 is supported in {|∇hμ| = 0}. Arguing by contradiction
as above and using the fact that h1 = 0 on ∂Ω, we obtain h1 = 0 in Ω.
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Application 2. (Minimizers of the Ginzburg–Landau func-
tional). The above result also allows to get a bit more information for
example on the minimizers of the Ginzburg–Landau functional described
in Chapter 7. Let hex = λ| log ε| and assume (uε, Aε) minimizes Gε in Ω.
In this case με/hex converges to a limiting measure uniquely determined
by λ and denoted μ∗. Moreover

μ∗ =
(

1 − 1
2λ

)
1ωλ

dx,

where ωλ is a subdomain of Ω (see Chapter 7 for these results).
Let us show what more can be said. Here we assume that we are above

the first critical field and ωλ �= ∅.
The argument is as follows: first we construct vortex balls using The-

orem 4.1, with total radius ε1/2 for instance, and let νε = 2π
∑

i d
ε
i δaε

i
.

This is small enough so that (13.10) is true and large enough so that
(13.9) is true (note that εα would do for any α ∈ (0, 1)). Then we
apply Theorem 13.1 in a subdomain ω ⊂ Ω \ ωλ, with Mε = hex(ε).
In this case H0 = hμ∗ since −Δhμ∗ + hμ∗ = 0 in ω. Moreover we
claim that nε = o(Mε). Indeed from Theorem 7.2, the weak limit of the
normalized energy densities gε(uε, Aε)/hex

2 in ω is the smooth function
1
2(|∇hμ∗ |2 +hμ∗

2). Therefore, in (13.9), the quantity Fε(uε, Aε,Bε) must
be o(hex

2) since Bε has measure tending to 0. Dividing (13.9) by hex then
yields nε/hex = o(1).

We thus have a better normalization of με by restricting to ω ⊂ Ω\ωλ,
and we then fall into Case 1) of the previous theorem. If we assume nε

to be nonzero for arbitrarily small values of ε, we find that με/nε tends
to a measure μ supported in the set of critical points of hμ∗. We recall
that hμ∗ solves an obstacle problem (cf. Chapter 7), and if we assume Ω
to strictly convex for example, we can check that the gradient of hμ∗ does
not vanish outside ωλ. We deduce that μ = 0 in ω.

Recall that μ is the limit of νε/nε. Thus, assuming for example that
every dε

i is positive, this implies that for every ω ⊂ Ω \ ωλ, the vortices
in ω (if there are any) can only accumulate on the boundary of ω. This
excludes for instance a vortex density outside ωλ that would be small
compared to hex but uniform.

Application 3. When μ is a Dirac mass or a finite linear combina-
tion of Dirac masses at a1, . . . , an, and using the fact that in this case
Tμ is smooth in Ω \ {a1, . . . , an}, Remark 13.1 implies that if Tμ is
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divergence-free in finite part, then, for r > 0 small enough, the flux
of Tμ on ∂B(ai, r) is zero. This is precisely the equivalent for the case
with magnetic field of the “vanishing gradient property” derived in [43].

Proof. Indeed, assume μ has a Dirac mass at the origin, of mass 2π for
ease of notation. Then, using polar coordinates (r, θ), and letting

ν =
∂

∂r
, τ =

1
r

∂

∂θ
,

we compute Tμ · ν in the basis (τ, ν) to find

Tμ · ν =
1
2
(
(∂τhμ)2 − (∂νhμ)2 + hμ

2
)
ν − (∂νhμ∂τhμ) τ.

But, we may write hμ = G + H, where G is the positive solution in R
2

of −ΔG + G = 2πδ and H is smooth in a neighborhood of 0. Then we
have ∂νG ≈ −1/r and ∂τG = 0 and we get, as r → 0

Tμ · ν =
1
2

(
− 1

r2
+ 2

∂νH

r

)
ν +

(
∂τH

r

)
τ + O(1).

Now we use the fact that the integral �I(r) of Tμ ·ν over the circle ∂B(0, r)
is zero. Therefore, as r → 0,

0 = ∇H(0) · �I(r) ≈ 2π|∇H(0)|2 + o(1),

hence ∇H(0) = 0.

Examples and interpretation

Here we gather examples pertaining to the case of natural boundary
conditions. Many examples are provided by minimizers of the Ginzburg–
Landau functional in various regimes of the applied field hex, they all
correspond to positive measures. It is an open problem to find solutions
with a changing-sign limiting vorticity, if they exist.

We have seen that if hex −Hc1 	 | log ε| then the limiting measure μ
associated to a family of minimizers of the Ginzburg–Landau functional
is supported at the minima of h0, and that in this case nε is a o(hex). This
falls into Case 1) of our theorem. Recall that, more generally, this case
shows that if the number of vortices is small compared to hex, then they
should all concentrate at the critical points of h0, which is a finite set of
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points in Ω, as mentioned in Lemma 7.1. This means that in Case 1),
the limiting μ is always a finite linear combination of Dirac masses. This
rules out the possibility of nontrivial nonsingular limiting densities of
vortices, for example the possibility of lattices of nε vortices if nε 	 hex.

The result of Theorem 7.2 enters in Case 2) and in this case (13.12)
is satisfied. Observe that the relation we obtain, weak form of (13.11)
can be seen as another rigorous derivation of the mean-field model of
Chapman–Rubinstein–Schatzman [72].

Recently Aydi showed in [28] that when Ω is the unit disc, a nonzero
vorticity μ which is supported in a finite union of concentric circles can
actually arise as limit of the vorticity of some families of solutions. Such
measures are in H−1 but in this case ∇hμ is no longer continuous, al-
though |∇hμ|2 is, thus the strong form (13.11) does not make sense.
These examples are constructed by minimizing the Ginzburg–Landau
energy among configurations having a well-chosen discrete rotational
symmetry.

Further examples where μ is a linear combination of Dirac masses
could in principle be of two types: either they would correspond to a
number of vortices, as well as an applied field, bounded independently
of ε; or to hex tending to +∞ as ε → 0 and to a number of vortices
of the order of hex, but concentrating around a finite number of points
only. Examples belonging to the first case have been shown to exist in
Chapter 11, but it is not known whether the second case can actually
occur.

The above examples show that Cases 1) and 2) of the above theorem
are not empty, and do not reduce to minimizers of the Ginzburg–Landau
functional. It is not known whether Case 3) of the theorem can occur.
Against this possibility is the intuition that if the number of vortices is
too large compared to the confining field hex, then they would rather
exit Ω. Observe that already we know that μ would have to be singular,
because we saw that if μ ∈ Lp, p > 1, in some subdomain of Ω, then
hμ = 0 and then μ = 0 there. However a very symmetric situation may
provide an example of such an atypical behavior.

Several more remarks can be made on this theorem.

Remark 13.2. The definition of nε, number of vortices, is not com-
pletely natural, or at least not intrinsic. This may be a problem for Case
1, since if one normalizes by a large enough factor, then the limiting
measure μ is zero and everything is trivial.
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There are good cases however, for example when hex(ε) = C| log ε|
and Gε(uε, Aε) ≤ C| log ε|2, such as in the case of the obstacle problem in
Theorem 7.2. In this case, it is straightforward to check that Fε(uε, Aε) ≤
C| log ε|2 and from (13.9) we find

nε ≤ C| log ε|.

Thus, in this situation nε ≤ Chex, and in Cases 1 or 2. In Case 2, the
normalization is by hex which is more intrinsic.

For higher values of the energy however, in Case 3, letting αε =
‖hε‖H1, we have, modulo a subsequence, that hε/αε converges weakly
in H1, hence με/αε converges weakly in H−1, but it could in principle
happen that αε = o(nε). In this case, normalizing by nε would yield zero
in the limit, whereas normalizing by αε could yield a nonzero limit. Such
a situation would correspond to solutions with many vortices, the degrees
of which are either positive of negative and for the most part cancel out
in the limit, leaving however a residual distribution. We do not know if
this can actually happen, but if it does, our techniques do not allow us
to say anything about the residue, i.e., the limit of με/αε.

Remark 13.3. Concerning the regularity implied by the criticality con-
dition on μ, the statements we present do not pretend to be a regularity
theory for the equation div Tμ = 0, but rather the direct consequences
of the equation, in the spirit of bootstrapping arguments. A variant may
be found in [175] where it is proven that (13.12) is satisfied assuming
∇hμ ∈ C0, |∇hμ| ∈ BV . A bold conjecture would be that div Tμ = 0 in
finite part implies that the support of μ is of Hausdorff dimension 0, 1
or 2.

13.1.3 The Case without Magnetic Field

We now consider a family {uε}ε>0 of solutions of

−Δuε =
uε

ε2
(1 − |uε|2) in Ω

and again we assume that |uε| ≤ 1 in Ω and

Eε(uε) < C0ε
α−1, α >

2
3

(13.13)
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for every ε > 0, where Eε was first defined in (1.2). We let jε = (iuε,∇uε)
and με = curl jε.

Taking the scalar product of the equation with iuε yields (Δuε, iuε) =
0, which by a direct calculation is div jε = 0, hence we may write jε =
∇⊥hε, where hε is the solution of{

Δhε = με in Ω
∂νhε = jε · τ on ∂Ω.

(13.14)

Here and below ν is the outward pointing normal to ∂Ω and τ = ν⊥. By
the solution to (13.14) or to any other Neumann problem, we will mean
the solution with zero average in Ω. As in the case with magnetic field,
we split hε into two pieces. We define h0

ε and h1
ε by{

−Δh1
ε = με in Ω

h1
ε = 0 on ∂Ω.

, h0
ε = hε − h1

ε. (13.15)

Theorem 13.2. (Limiting vorticities for critical points — case
without magnetic field).

A) Let {uε}ε>0 be solutions of (1.3) as above. Then for any ε > 0, there
exists a measure νε of the form 2π

∑
i d

ε
i δaε

i
where the sum is finite,

aε
i ∈ Ω and dε

i ∈ Z for every i, such that, letting nε =
∑

i |dε
i |,

nε ≤ C
Eε(uε,Bε)
| log ε| , (13.16)

where Bε is a union of balls of total radius less than Cε2/3, and
such that

‖με − νε‖W−1,p(Ω)‖με − νε‖C0(Ω)∗ → 0, (13.17)

for some p ∈ (1, 2).

B) Let {νε}ε be any measures of the form 2π
∑

i d
ε
i δaε

i
satisfying (13.17),

let nε =
∑

i |dε
i |, and let {Mε}ε be positive real numbers such that

{h0
ε/Mε}ε converges in L1

loc(Ω) to a function H0. Then H0 is har-
monic and, possibly after extraction, one of the following holds.

0. nε = 0 for every ε small enough and then με tends to 0 in
W−1,p(Ω).
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1. nε = o(Mε) is nonzero for ε small enough, and then με/nε

converges in W−1,p(Ω) to a measure μ such that

μ∇H0 = 0,

hence the support of μ is contained in the set of critical points
of H0.

2. Mε ∼ λnε, with λ > 0, and then με/Mε converges in W−1,p(Ω)
to a measure μ, and hε/Mε converges in W 1,p

loc (Ω) to a solution
of Δhμ = μ in Ω. Moreover the symmetric 2-tensor Tμ with
coefficients Tij given by

Tij = −∂ihμ∂jhμ +
1
2
|∇hμ|2δij (13.18)

is divergence-free in finite part.
3. Mε = o(nε), and then με/nε converges in W−1,p(Ω) to a mea-

sure μ, and hε/nε converges in W 1,p
loc (Ω) to the solution of{

Δhμ = μ in Ω
hμ = 0 on ∂Ω.

Moreover the symmetric 2-tensor Tμ with coefficients Tij given
by (13.18) is divergence-free in finite part.

In Cases 2) or 3), if μ ∈ H−1(Ω), then Tμ is in L1
loc(Ω) and

divergence-free in the sense of distributions and |∇hμ|2 is smooth,
hence hμ is locally Lipschitz in Ω. If there exists a subdomain Ω′

of Ω such that μ is in Lp(Ω′) for some p > 1, then μ = 0 in Ω′.

Let us look in detail at the case where uε satisfies a Dirichlet bound-
ary condition. Similar results could be proved for Neumann boundary
conditions but we prefer Dirichlet for the sake of variety and in order to
connect our results to those in [43].

Application 4 (Dirichlet boundary condition). Assume

|uε| = 1 on ∂Ω (13.19)

and that there exist normalizing factors {Mε}ε>0, and a function Φ ∈
H1/2(∂Ω) such that

lim
ε→0

∥∥∥∥jε · τ
Mε

− Φ
∥∥∥∥

H1/2(∂Ω)

= 0. (13.20)
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From (13.14) and (13.15), the function h0
ε is harmonic in Ω and such

that ∂νh
0
ε = jε ·τ −∂νh

1
ε on ∂Ω. In Case 1) we have h1

ε/Mε → 0 therefore
H0, which is the limit of h0

ε/Mε, solves{
ΔH0 = 0 in Ω
∂νH0 = Φ on ∂Ω.

In Case 2), dividing (13.14) by Mε and passing to the limit, we find
that hμ solves {

Δhμ = μ in Ω
∂νhμ = Φ on ∂Ω.

Examples

The case where Mε = 1 and nε is bounded independently of ε, which falls
into Case 2) of the above theorem, was treated by Bethuel–Brezis–Hélein
in [43] under the stronger hypothesis Eε(uε) ≤ C| log ε|. In this case, the
limiting measure μ is of the type 2π

∑
i diδai , where di ∈ Z for every i,

and it is proved in [43] that the configuration (ai, di)i is then a critical
point of a “renormalized energy” associated to the problem (see [43]),
and that this is in turn equivalent to the fact that the function H(x) =
hμ(x)+di log |x−ai|, which is smooth near ai, satisfies ∇H(ai) = 0 (the
so-called “vanishing gradient property”). Our function hμ is denoted by
Φ0 in [43]. We recover this result since as in the case with magnetic field,
the vanishing gradient property is equivalent to Tμ being divergence-free
in finite part as proved in Application 3.

In the case of a diverging number of vortices, we establish that wher-
ever μ is regular enough (i.e., does not concentrate), then it is 0. This
means that, contrary to the case with magnetic field, the Ginzburg–
Landau model without magnetic field cannot confine a large number of
vortices (in particular, cannot capture Abrikosov lattices). An intuitive
justification of this fact is provided by the analysis of Sandier–Soret in
[176], where it is shown that when the number of points becomes large,
the minimizers of the renormalized energy of [43] tend to the bound-
ary of Ω. This can be seen as a double limit ε → 0, then n → +∞,
whereas Theorem 13.2 treats a simultaneous limit (ε, nε) → (0, +∞),
and includes the case of critical points.

The possibility, in this case without magnetic field, of having singular
limiting measures, supported on a line for instance, is an open question.
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13.2 Preliminary Results

We begin by a result which is a modification of a result whose proof was
given to us by A. Ancona [23].

Proposition 13.2. Assume {αn}n is a sequence of measures such that
for some p ∈ (1, 2)

lim
n→+∞ ‖αn‖W−1,p(Ω)‖αn‖C0(Ω)∗ = 0,

where ‖αn‖C0(Ω)∗ denotes the total variation of αn,
∫
Ω |αn|. Then, letting

hn be the solution of {
−Δhn + hn = αn in Ω

hn = 0 on ∂Ω,

it holds that hn and ∇hn converge to 0 in L2
δ(Ω) (see Definition 13.2).

Proof. First note that, since W 1,q (for q > 2) embeds into C0, the (C0)∗

norm dominates the W−1,p norm for p < 2, and thus the hypothesis
implies that ‖αn‖W−1,p tends to zero as n → +∞.

We let

δn =

(
‖αn‖W−1,p

‖αn‖C0(Ω)∗ + 1

)1/2

, Fn = {x ∈ Ω | |hn| ≥ δn}. (13.21)

Then we have the well-known bound on the p-capacity of Fn (see [94] or
[197])

capp(Fn) ≤ C
‖hn‖p

W 1,p

δn
p . (13.22)

Now we note that by elliptic regularity ‖hn‖W 1,p ≤ C‖αn‖W−1,p so from
(13.21)–(13.22), we have

capp(Fn) ≤ C‖αn‖p/2
W−1,p

(‖αn‖C0(Ω)∗ + 1
)p/2

,

and therefore tends to 0 as n → +∞. This implies in turn that
limn→+∞ cap1(Fn) = 0.
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Also, from a well-known property of Sobolev functions, the truncated
function h̄n = max(−δn, min(hn, δn)) satisfies ∇h̄n = 0 a.e. in Fn, hence∫

Ω\Fn

|∇hn|2 =
∫
Ω

∇hn · ∇h̄n.

It follows that∫
Ω\Fn

|∇hn|2 + hn
2 ≤

∫
Ω

∇hn · ∇h̄n + hnh̄n =
∫
Ω

h̄n dαn,

where the last equality follows from −Δhn+hn = αn. The right-hand side
is bounded above by δn‖αn‖C0(Ω)∗ , hence by

(‖αn‖W−1,p‖αn‖C0(Ω)∗
)1/2

and therefore tends to zero as n → +∞. Thus

lim
n→+∞ ‖hn‖L2(Ω\Fn) = lim

n→+∞ ‖∇hn‖L2(Ω\Fn) = 0. (13.23)

To conclude, since limn→+∞ cap1(Fn) = 0, there is a subsequence,
still denoted by {n} such that

∑
n cap1(Fn) < +∞. We define

Eδ =
⋃

n> 1
δ

Fn.

Then cap1(Eδ) tends to zero as δ → 0 since it is bounded above by the tail
of a convergent series. Moreover, for any δ > 0 we have Fn ⊂ Eδ when n is
large enough and therefore (13.23) implies that limn→+∞ ‖hn‖L2(Ω\Eδ) =
‖∇hn‖L2(Ω\Eδ) = 0.

Proposition 13.3. Assume {Xn}n∈N is a sequence of divergence-free
vector fields which converges to X in L1

δ(Ω). Then X is divergence-free
in finite part.

Proof. Consider sets {Eδ}δ such that (13.4) is satisfied and assume ζ is
a smooth function supported in a compact subset K of Ω. Then, letting
Fδ = ζ−1(ζ(Eδ)) and for any n, we have from Proposition 13.1 applied
to Xn and Eδ that ∫

Ω\Fδ

Xn · ∇ζ = 0.
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Since Eδ ⊂ Fδ and {Xn}n∈N converges to X in L1(K \Eδ), we may pass
to the limit in the above using the fact that ζ is supported in K to find∫

Ω\Fδ

X · ∇ζ = 0.

Hence X is divergence-free in finite part.

Proposition 13.4. Let {(uε, Aε)}ε be solutions of (GL) satisfying (13.6)
and let as usual hε = curlAε. For any ε > 0 we introduce the symmetric
2-tensors Tε and Sε whose coefficients are

Tij = −∂ih∂jh +
1
2
(|∇h|2 + h2

)
δij ,

Sij = (∂A
i u, ∂A

j u) − 1
2

(
|∇Au|2 − h2 +

1
2ε2

(
1 − |u|2)2) δij , (13.24)

where we have dropped the subscripts ε for T , S, h, u and A for read-
ability.

Then Tε − Sε tends to 0 in L1
δ(Ω).

Proof. From Proposition 4.8, the set of x in Ωε (defined in (4.2)) such
that |u(x)| ≤ 1 − ε1/3 has radius smaller than Cεα−2/3 and therefore
there exists a finite union of balls containing this set, with total perimeter
bounded by Cεα−2/3. We let Zε be this union of balls. Then

lim
ε→0

cap1(Zε) = 0.

Indeed, since the 1-capacity of B(x, r) is 2πr and the capacity is count-
ably subadditive, cap1(Zε) ≤ Cεα−2/3.

The difference between the tensors Tε and Sε has a simple expression.
We use the notation uε(x) = ρ(x)eiϕ(x) for uε. Now we use the identity
∂ju−iAju = (∂jρ + i(∂jϕ − Aj)) eiϕ together with the second Ginzburg–
Landau equation −∇⊥h = ρ2(∇ϕ − A) to obtain

(∂A
i u, ∂A

j u) = ∂iρ∂jρ +
∂⊥

i h∂⊥
j h

ρ2
,

where we have used the notation ∂⊥
1 = ∂2 and ∂⊥

2 = −∂1. It follows that

(ρ2S − T )ij = ρ2

(
∂iρ∂jρ − |∇ρ|2

2
δij − (1 − ρ2)2

4ε2
δij

)
+ (ρ2 − 1)

h2

2
δij . (13.25)
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Let fε denote the free-energy density 1
2

(|∇Au|2 + h2 + 1
2ε2 (1 − |u|2)2).

The terms on the right-hand side of (13.25) can be bounded by either
C|∇ρ|2 or Cε−2(1−ρ2)2 or, for the last term, by C(1−ρ2)fε. Moreover,
the coefficients of (1−ρ2)S are also clearly bounded by C(1−ρ2)fε. But
1 − ρ2 ≤ Cε1/3 on Ωε \ Zε, therefore

|Tε − Sε| ≤ C

(
ε1/3fε + |∇ρ|2 +

(1 − ρ2)2

2ε2

)
(13.26)

holds in Ωε \ Zε.
Now let K be a compact subset of Ω. For ε small enough we have

K ⊂ Ωε therefore (13.26) holds on K \ Zε: we integrate it on this set.
Since ε1/3Fε(uε, Aε) ≤ Cεα−2/3 and α > 2/3, the integral of ε1/3fε tends
to zero with ε. We now prove the same for the integral of the remaining
terms.

Taking the scalar product of the first Ginzburg–Landau equation
with u we obtain

−Δρ + ρ|∇ϕ − A|2 =
ρ

ε2
(1 − ρ2).

Now we define χ : [0, 1] → [0, 1] as the affine interpolation between the
values χ(0) = 0, χ(1/2) = 1/2 and χ(1 − ε1/3) = χ(1) = 1, then we
multiply the above equation by the nonnegative function χ(ρ) − ρ and
integrate in K, that we can assume smooth by enlarging it if necessary.
Integrating by parts we obtain∫

K

|∇ρ|2 (χ′(ρ) − 1
)

+ ρ (χ(ρ) − ρ) |∇ϕ − A|2

=
∫
K

ρ(1 − ρ2)
χ(ρ) − ρ

ε2
+
∫

∂K

(χ(ρ) − ρ) ∂νρ. (13.27)

Now, using a mean value argument, we may find a larger compact set
K such that ‖∂νρ‖2

L2(∂K) is bounded above by CFε(uε, Aε), where C

depends on K. Then the boundary term in (13.27) may be bounded
above using Cauchy–Schwarz by CFε(uε, Aε)1/2ε1/3, hence tends to 0 as
ε → 0. It follows that
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∫
K∩{χ(ρ)=1}

|∇ρ|2 +
ρ(1 − ρ2)(1 − ρ)

ε2
+ o(1)

≤
∫
K

χ(ρ) − ρ

ρ
ρ2|∇ϕ − A|2 +

∫
K∩{χ(ρ)	=1}

|∇ρ|2 (χ′(ρ) − 1
)
. (13.28)

Now we notice that {χ(ρ) = 1} contains the set where ρ ∈ (1 − ε1/3, 1)
and therefore Ωε \Zε, hence K \Zε if ε is small enough. Moreover when
ρ ≥ 1/2, which is true on the set {χ(ρ) = 1}, the integrand of the left-
hand side is bounded below by C|∇ρ|2 + Cε−2(1 − ρ2)2 with C > 0.
Therefore the left-hand side of (13.28) bounds from above the integral of
the right-hand side of (13.26) on K \Zε, for a suitable choice of constant
C, and if we want to prove that the latter goes to zero with ε, it suffices to
prove the same for the right-hand side of (13.28). For this, we note that
|χ(ρ) − ρ|/ρ is bounded above by Cε1/3 and that where χ(ρ) �= 1, then
|χ′(ρ)−1| is also bounded above by Cε1/3. It follows that the right-hand
side of (13.28) is bounded above by Cε1/3Fε(uε, Aε), which is smaller
than Cεα−2/3 and therefore tends to zero as ε tends to zero.

We now have defined sets Zε such that, as ε → 0 and for any compact
K ⊂ Ω,

cap1(Zε) → 0,

∫
K\Zε

|Tε − Sε| → 0.

We choose a decreasing subsequence {εn} tending to zero such that∑
n cap1(Zεn) < +∞ and let

Eδ =
⋃

n> 1
δ

Zεn .

Then clearly, Tεn−Sεn tends to zero in L1(K\Eδ) along the subsequence,
for any δ > 0, and

K ∩ Eδ =
⋃

n> 1
δ

K ∩ Zεn ,

and therefore cap1(K ∩ Eδ) tends to zero, since it is bounded above by
the tail of a convergent series. The proposition is proved.

We write as a proposition Part A) of Theorem 13.1.
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Proposition 13.5. Assuming that {(uε, Aε)}ε>0 satisfy (13.6), there
exists for any ε > 0 a measure νε of the form 2π

∑
i d

ε
i δaε

i
where the sum

is finite, aε
i ∈ Ω and dε

i ∈ Z for every i such that, letting nε =
∑

i |dε
i |,

nε ≤ C
Fε(uε, Aε,Bε)

| log ε| ,

where Bε is a union of balls of total radius less than Cε2/3, and such that

‖με − νε‖W−1,p(Ω)‖με − νε‖C0(Ω)∗ → 0, (13.29)

for some p ∈ (1, 2).

Proof. Applying Proposition 4.8 with δ = 1
2 , there exists a finite collec-

tion B0
ε of disjoint closed balls such that Ωε ∩ {|uε| < 1/2} ⊂ ∪B∈B0

ε
B

and
r(B0

ε) ≤ Cεα,

where we have used the inequality Fε(|uε|) ≤ Fε(uε, Aε) ≤ C0ε
α−1. Then

defining Bε(t) using Theorem 4.2 with B0
ε as the initial collection, we let

Bε = Bε(t1), where t1 is such that r(Bε) = ε2/3−αr(B0
ε) ≤ Cε2/3.

Now we write Bε = {Bε
i = B(aε

i , r
ε
i )}i and let dε

i = deg(uε, ∂Bε
i ) if

Bε
i ⊂ Ωε and dε

i = 0 otherwise. We then let

νε = 2π
∑

i

dε
i δaε

i
, nε =

∑
i

|dε
i |.

From Proposition 4.3 applied to vε = uε/|uε| and using the fact that
|∇Avε|2 ≤ 4|∇Auε|2 outside the balls of B0

ε we get

4Fε(uε, Aε,Bε) ≥ πnε

(
log(ε2/3−α) − log 2

)
and dividing by | log ε| yields nε ≤ CFε(uε, Aε,Bε)/| log ε|.

It remains to check (13.29). From Theorem 6.1, and writing M =
Fε(uε, Aε), we have

‖με − νε‖(C0,1
0 (Ω))∗ ≤ Cε2/3M, ‖με − νε‖(C0)∗ ≤ CM,

the second inequality coming from the bound ‖με‖(C0)∗ ≤ CM of Theo-
rem 6.1 added to the bound ‖νε‖(C0)∗ = nε ≤ CM/| log ε|. Then interpo-
lating by Lemma 6.5 and using r(B0

ε) ≤ Cε2/3 we find for any β ∈ (0, 1),

‖με − νε‖(C0,β
0 (Ω))∗‖με − νε‖(C0)∗ ≤ CM2ε2β/3.
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Since M < Cεα−1 for some α > 2/3, it follows that, choosing β close
enough to 1, the right-hand side is bounded above by a positive power
of ε and thus tends to 0 as ε → 0.

We conclude by recalling that there exists q > 2 such that W 1,q
0

embeds into C0,β
0 and therefore by duality (C0,β

0 )∗ embeds into W−1,p,
for some p ∈ (1, 2). For such a p, (13.29) is satisfied.

13.3 Proof of Theorem 13.1, Criticality Conditions

Let {(uε, Aε)}ε>0 be solutions of the Ginzburg–Landau equations sat-
isfying (13.6) and as usual let hε = curlAε, jε = (iuε,∇Auε) and
με = curl jε + hε.

If nε = 0 for every small enough ε, then (13.10) implies that the
W−1,p norm of με goes to zero since νε = 0 in this case and moreover,
the (C0)∗ norm is stronger than the W−1,p norm.

Otherwise, (με − νε)/nε tends to zero in W−1,p for some p ∈ (1, 2)
while by definition νε/nε is a bounded sequence of measures. Therefore
a subsequence converges in the weak sense of measures. On the other
hand, by Ascoli’s theorem, for any α > 0, C0,α(Ω) embeds compactly
into C0(Ω), thus (C0)∗ embeds compactly into (C0,α)∗ and into W−1,p

for p < 2 (by embedding of W 1,q into C0,α for q > 2 and appropriate
α). We may thus assume, after extraction of a subsequence, that νε/nε

converges strongly in W−1,p(Ω) for p ∈ (1, 2), and then με/nε converges
to a measure, strongly in W−1,p, for some p ∈ (1, 2). If Mε ∼ λnε with
λ > 0, then the same is true for με/Mε.

Assume Mε ∼ λnε with λ > 0. From (13.8), and since με/Mε con-
verges to μ in W−1,p, we deduce that h1

ε/Mε converges in W 1,p to the
solution of −Δh1 + h1 = μ in Ω and h1 = 0 on ∂Ω. On the other hand
h0

ε/Mε, which is a solution to Δf = f from (13.8) and converges in
L1

loc(Ω) to H0, in fact, converges in Ck
loc(Ω) for any k. Therefore hε/Mε

converges in W 1,p
loc (Ω) to hμ = H0 + h1, which satisfies −Δhμ + hμ = μ

in Ω.
If Mε = o(nε), then h0

ε/nε tends to 0 in Ck
loc(Ω) for any k, while as

above h1
ε/nε converges in W 1,p to the solution of −Δhμ + hμ = μ in Ω

and hμ = 0 on ∂Ω, where μ is the limit of με/nε. Thus hε/nε converges
in W 1,p

loc (Ω) to hμ.
We now derive the criticality conditions satisfied by μ.
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Proof of Theorem 13.1, Items 2 and 3.

Since (uε, Aε) is a solution of the Ginzburg–Landau equations and from
Proposition 3.4, the symmetric 2-tensor Sε with coefficients defined by
(13.24) is divergence-free. Moreover, from Proposition 13.4, we get that

Tε − Sε converges to 0 in L1
δ(Ω). (13.30)

where Tε is the symmetric 2-tensor with coefficients

Tij = −∂ihε∂jhε + 1/2
(|∇hε|2 + hε

2
)
δij .

From (13.8), we have the decomposition hε = h0
ε + h1

ε. We further
decompose h1

ε as Uε + Vε, where{
−ΔUε + Uε = με − νε in Ω

Uε = 0 on ∂Ω

and {
−ΔVε + Vε = νε in Ω

Vε = 0 on ∂Ω.

In Case 2) of the Theorem, we have Mε ∼ λnε with λ > 0 and
μ is the limit of either με/Mε or νε/Mε. From (13.10) we may apply
Proposition 13.2 to αε = (με − νε)/Mε and find that

Uε

Mε
and ∇

(
Uε

Mε

)
tend to 0 in L2

δ(Ω). (13.31)

Also, since {νε/Mε}ε is a bounded sequence of measures, it converges
in C0

0 (Ω)∗ hence in W−1,p and we may apply Proposition 13.2 to βε =
(νε/Mε) − μ to find that

Vε

Mε
− h1 and ∇

(
Vε

Mε
− h1

)
tend to 0 in L2

δ(Ω), (13.32)

where h1 is the limit of h1
ε/Mε.

In view of (13.31)–(13.32) and since {h0
ε/Mε}ε converges in Ck

loc(Ω)
to H0, hence in L2

δ(Ω) also, we deduce that hε/Mε and its gradient both
converge to hμ = H0 + h1 in L2

δ(Ω). In particular, defining Tμ as the
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tensor with coefficients Tμ
ij = −∂ihμ∂jhμ +1/2

(|∇hμ|2 + hμ
2
)
δij , we get

that

Tε

Mε
2 converges to Tμ in L1

δ(Ω). (13.33)

In Case 3) of the theorem, where Mε = o(nε), μ is the limit of με/nε

or νε/nε, and we proceed as above, normalizing by nε instead of Mε to
find that

Tε

nε
2

converges to Tμ in L1
δ(Ω). (13.34)

In Case 2) (resp. case 3)), from (13.30), (13.33) (resp. (13.34)) we
find that Sε/(Mε

2) (resp. Sε/(nε
2)) converges to Tμ in L1

δ(Ω). Moreover,
Proposition 13.3 allows us to conclude that since Sε is divergence-free,
the tensor Tμ is divergence-free in finite part.

Proof of Theorem 13.1, Item 1.

We use again the decomposition

hε = h0
ε + h1

ε, h1
ε = Uε + Vε.

We have a corresponding decomposition for the tensor Tε

Tε = T 00
ε + T 01

ε + T 10
ε + T 11

ε , (13.35)

where T ab
ε denotes the tensor with coefficients

T ab
ij = −∂ih

a
ε∂jh

b
ε +

1
2

(
∇ha

ε · ∇hb
ε + ha

εh
b
ε

)
δij .

From (13.31)–(13.32) above, we deduce that h1
ε/nε, ∇h1

ε/nε converge
to hμ, ∇hμ in L2

δ(Ω), where −Δhμ + hμ = μ in Ω and hμ = 0 on ∂Ω.
Since nε = o(Mε), this implies that

h1
ε√

nεMε
, ∇

(
h1

ε√
nεMε

)
both converge to 0 in L2

δ(Ω) and then that

T 11
ε

nεMε
converges to 0 in L1

δ(Ω). (13.36)
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On the other hand, we know that h0
ε/Mε converges in Ck

loc(Ω) to H0 and
that h1

ε/nε converges to hμ in W 1,p(Ω). We deduce that

T 01
ε + T 10

ε

nεMε
converges to T ′

μ in L1
loc(Ω), (13.37)

where T ′
μ is the tensor with coefficients

(T ′
μ)ij = −∂iH0∂jhμ − ∂jH0∂ihμ + (∇H0 · ∇hμ + H0hμ) δij .

It follows from (13.35), (13.36), (13.37) that (Tε−T 00
ε )/(nεMε) converges

to T ′
μ in L1

δ(Ω) and then using Proposition 13.4 that (Sε − T 00
ε )/(nεMε)

converges to T ′
μ in L1

δ(Ω). But we know that Sε is divergence-free and,
using the fact that −Δh0

ε + h0
ε = 0 in Ω and in particular, smooth, it is

straightforward to compute div T 00
ε = 0. It follows that T ′

μ is divergence-
free in finite part, hence divergence-free in the sense of distributions since
it belongs to L1

loc(Ω) (see Proposition 13.1).
Now since H0 is smooth in Ω, the Leibnitz rule may be used to

compute the distributional divergence of T ′
μ and it is easy to check that

div T ′
μ = μ∇h0, hence we have established μ∇h0 = 0.

13.4 Proof of Theorem 13.1, Regularity Issues

We now proceed to proving the remaining assertions of Theorem 13.1,
which describe some consequences of the fact that Tμ is divergence-free
in finite part in special cases.

Properties Assuming μ ∈ H−1

In this case, the limit of h1
ε/nε belongs to H1(Ω) while H0 is smooth

inside Ω. Therefore in Case 2), the limit hμ of hε/Mε is in H1
loc(Ω) while

in Case 3), hμ is in H1(Ω). In any case, Tμ ∈ L1
loc(Ω) and Proposition 13.1

tells us that div Tμ = 0 in the sense of distributions in Ω.
Assuming we are in Case 2), we let

X =
1
2
(
(∂2hμ)2 − (∂1hμ)2,−2∂1hμ∂2hμ

)
.

Then X = (T11 − hμ
2/2, T12) and X = (−T22 − hμ

2/2, T21), where the
Tij ’s are the coefficients of Tμ. It follows from div Tμ = 0 that div X =
−hμ∂1hμ, curlX = hμ∂2hμ.
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Let now f1 be a solution of Δf1 = −hμ∂1hμ in Ω and f2 a solution
of Δf2 = −hμ∂2hμ. Since hμ ∈ H1

loc(Ω), by Sobolev embedding we have
hμ∇hμ ∈ Lp

loc(Ω) for any p ∈ [1, 2) and therefore f1 and f2 are in W 2,p
loc (Ω)

for any p ∈ [1, 2), and thus in W 1,q
loc (Ω) for any q ∈ [1, +∞).

Then, since Δf1 = div X and Δf2 = curlX, we have X = ∇f1 +
∇⊥f2 + Y , where Y satisfies div Y = curlY = 0 in D′(Ω). Thus Y is a
harmonic, hence smooth, vector field in Ω. It follows that X ∈ Lq

loc(Ω)
for any q ∈ [1, +∞). On the other hand, a direct calculation yields
4|X|2 = |∇hμ|4, hence we get |∇hμ| ∈ Lq

loc(Ω), for any q ∈ [1, +∞).
Bootstrapping the argument, we find hμ∇hμ ∈ Lq

loc for any q, then
f1, f2 ∈ W 2,q

loc , and X ∈ W 1,q
loc and finally |∇hμ|2 = 2|X| ∈ W 1,q

loc for any
q ∈ [1, +∞). By Sobolev embedding, this implies that |∇hμ| is bounded
locally in Ω, hence hμ is locally Lipschitz in Ω.

The case where Mε = o(nε) is identical.

Properties Assuming μ ∈ Lp(Ω), p > 1

Note that this is a subcase of the previous one. Indeed, the embedding
of H1 into any Lq, q < +∞ implies the embedding of any Lp, p > 1
into H−1. Thus in this case the previous section implies that ∇hμ is in
L∞

loc(Ω).
In Cases 2) or 3) of the Theorem, we define a sequence μn = μ ∗ ρn

obtained by convolution of μ with a regularizing kernel {ρn}n. We define
hn = hμ ∗ ρn and let Tn be the tensor with coefficients −∂ihn∂jhn +
1/2

(|∇hn|2 + hn
2
)
δij . Then μn tends to μ in Lp and, since ∇hμ ∈ L∞

loc,
∇hn tends to ∇hμ in Lq

loc(Ω), for any q ∈ [1, +∞), implying that

μn∇hn → μ∇hμ, Tn → Tμ

in L1
loc(Ω).
It follows that div Tn → div Tμ = 0 and that μn∇hn → μ∇hμ in

D′(Ω). Moreover div Tn = (−Δhn + hn)∇hn, from usual calculus, and
−Δhn+hn = μn by the properties of convolution, hence div Tn = μn∇hn.
Passing to the limit, we get μ∇hμ = limn div Tn = 0 in L1

loc(Ω), hence
a.e.

Now, from a well-known property of Sobolev functions we have Δhμ =
0 a.e. on the set F = {∇hμ = 0}. Thus μ = hμ a.e. on the set F , while
μ = 0 a.e. on the complement of F from the identity μ∇hμ = 0. We
conclude that

μ = hμ1{|∇hμ|=0}.
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In the case Mε = o(nε), multiplying this equation by hμ and integrating
by parts the left-hand side, we find hμ = 0 in Ω, and thus μ = 0.

13.5 The Case without Magnetic Field

The proof of Theorem 13.2 follows very closely that of Theorem 13.1. We
will therefore leave some of the details to the reader. We begin by very
close versions of the Propositions 13.2, 13.4 which we do not prove. Note
that Proposition 13.3 and 13.5 may be used as such in the case without
magnetic field.

Proposition 13.6. Assume {αn}n is a sequence of measures such that
for some p ∈ (1, 2)

lim
n→+∞ ‖αn‖W−1,p(Ω)‖αn‖C0(Ω)∗ = 0,

where ‖αn‖C0(Ω)∗ denotes the total variation of αn,
∫
Ω |αn|. Then, letting

hn be the solution of {
−Δhn = αn in Ω

hn = 0 on ∂Ω,

it holds that hn and ∇hn converge to 0 in L2
δ(Ω).

Proposition 13.7. Let {uε}ε>0 be solutions of −Δuε = ε−2uε(1−|uε|2)
satisfying (13.13), (13.19) and (13.20). We define hε by (13.14) and for
any ε > 0 we define the symmetric 2-tensors Tε, Sε with coefficients

Tij = −∂ih∂jh +
1
2
|∇h|2δij ,

Sij = (∂iu, ∂ju) − 1
2

(
|∇u|2 +

1
2ε2

(
1 − |u|2)2) δij , (13.38)

where we have dropped the subscripts ε for T , S, h and u for readability.
Then Tε − Sε tends to 0 in L1

δ(Ω).

Criticality Conditions

Let {uε}ε>0 be solutions of −Δuε = ε−2uε(1 − |uε|2). We let jε =
(iuε,∇uε) and με = curl jε. The function hε is defined by (13.14). We
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assume the energy bound (13.13), and the boundary conditions (13.19)
and (13.20) are satisfied.

Proposition 13.5 may be applied to (uε, Aε = 0) to yield measures
{νε}ε satisfying (13.16), (13.17).

If nε = 0 for ε small, we find as in the case with magnetic field that
με converges to 0 in W−1,p, for some p ∈ (1, 2). Otherwise, exactly as in
the case with magnetic field, we find that, modulo a subsequence, με/nε

converges to a measure in W−1,p, for some p ∈ (1, 2). In Case 2) the
same is true of με/Mε. We now derive the criticality conditions satisfied
by the limiting measure μ.

Proof of Theorem 13.2, Items 2 and 3. We already saw in (5.6)–(5.7)
that, for solutions of −Δuε = ε−2uε(1 − |uε|2), the symmetric 2-tensor
Sε with coefficients defined by (13.38) is divergence-free. As in the case
with magnetic field, Proposition 13.7 implies the existence of a subse-
quence that we still denote by {ε} such that Sε −Tε tends to 0 in L1

δ(Ω),
where Tε is the symmetric 2-tensor with coefficients Tij = −∂ihε∂jhε +
1/2|∇hε|2δij .

We use the decomposition (13.15), and decompose h1
ε again as Uε+Vε

as in the case with magnetic field, replacing the operator −Δ + 1 by Δ.
Then, in Case 2), using (13.17) and Proposition 13.6, we find that (13.31)
and (13.32) are true, implying (13.33), where Tμ now denotes the tensor
with coefficients −∂ihμ∂jhμ + |∇hμ|2δij . Similarly we obtain (13.34) in
Case 1). Together with the fact that Sε−Tε tends to 0 in L1

δ(Ω), we then
obtain that Tμ is divergence-free in finite part in both cases.

Proof of Theorem 13.2, Item 1. We now assume nε = o(Mε). We keep the
same notation as above, and decompose Tε again as in (13.35), defining
the T ab as the tensor with coefficients

T ab
ij = −∂ih

a
ε∂jh

b
ε +

1
2
∇ha

ε · ∇hb
εδij .

The rest of the argument follows as in the case with magnetic field, and
proves that

T 01
ε + T 10

ε

nεMε

converges to T ′
μ in L1

loc(Ω), where T ′
μ is the tensor with coefficients

(T ′
μ)ij = −∂iH0∂jhμ − ∂jH0∂ihμ + ∇H0 · ∇hμδij ,
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and that T ′
μ is divergence-free, implying that

μ∇H0 = 0. �

Regularity issues. As in the case with magnetic field, if μ ∈ H−1, then
T ∈ L1

loc(Ω) and therefore div T = 0 in the sense of distributions. Denot-
ing by X the first column of T this means that div X = 0 and curlX = 0
in the sense of distributions. Thus X is smooth in Ω. But |X| = |∇hμ|2
therefore |∇hμ|2 is smooth. In particular |∇hμ| is locally bounded in Ω
hence hμ is locally Lipschitz.

If μ is in Lp(Ω′) for some subdomain Ω′, then, exactly as in the
case with magnetic field, the relation μ∇hμ = 0 is true in Ω′, and since
μ = Δhμ and Δhμ = 0 a.e. on the set {∇hμ = 0}, we get μ = 0 in Ω′.

Bibliographic notes on Chapter 13: In the case without magnetic
field, and when the number of vortices (and the boundary condition) re-
main bounded independently of ε, the questions dealt with in this chapter
were studied in the book of Bethuel–Brezis–Hélein [43]. The criticality
condition for the limiting points and degrees was given in [43], following
the derivation through matched asymptotics by Fife and Peletier [96].
Later work focused on the inverse problem, namely given points and
degrees satisfying the condition, is it possible to find a corresponding
sequence of solutions? We give relevant references in Chapter 14.

The results with magnetic field and with possibly unbounded num-
bers of vortices were obtained in [175], under more restrictive assump-
tions on the energy implying that the coefficients Tij of the limiting
tensors were in L1 (the finite-part formulation was then not needed).
The other cases dealt with here, in particular Case 1 of Theorem 13.2,
and the finite-part formulation, are thus new extensions of these results.



Chapter 14

A Guide to the Literature

Our goal here is to give a brief overview of results on Ginzburg–Landau,
and point towards suitable references (in thematic, rather than chrono-
logical or hierarchical order). We apologize for not being able to be com-
pletely exhaustive.

There have been a few review-type papers on Ginzburg–Landau that
one can also refer to, notably [40, 155, 85, 68].

14.1 Ginzburg–Landau without Magnetic Field

14.1.1 Static Dimension 2 Case in a Simply Connected
Domain

The first studies of that model, i.e., of the functional

Eε(u) =
1
2

∫
Ω

|∇u|2 +
(1 − |u|2)2

2ε2

and its critical points, seem to date back to Elliott–Matano–Tang Qi [92]
who proved that energy-minimizers have isolated zeroes, and to Fife and
Peletier [96], who gave a formal justification of the “vanishing gradient
property” for solutions.

The energy Eε was then studied in details by Bethuel–Brezis–Hélein,
in [42] for the case without vortices and in [43] for the case with vortices,
both times with a fixed Dirichlet boundary data g of modulus one. They
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derived the “renormalized energy” (or the Γ-limit) of the problem:

W ((a1, d1), . . . , (an, dn)) = −π
∑
i	=j

didj log |ai − aj |

− π
∑

i

diR(ai) +
1
2

∫
∂Ω

Φ0

(
ig,

∂g

∂τ

)
.

where Φ0 is the solution with zero average on the boundary of⎧⎪⎪⎨⎪⎪⎩
ΔΦ0 = 2π

∑
i

diδai in Ω

∂Φ0

∂ν
= (ig,

∂g

∂τ
) on ∂Ω

and R(x) = Φ0(x) − ∑
i di log |x − ai|. Convergence of minimizers and

critical points under the assumption Eε(uε) ≤ C| log ε|, and of their
vortices, was established, with the derivation of the renormalized energy
and of the “vanishing gradient property” presented here in Chapter 13.
We sum up some of their results below:

Theorem 14.1. (Bethuel–Brezis–Hélein [43]). Let Ω be a strictly star-
shaped simply connected domain of R

2 and g : ∂Ω → S
1 a smooth map

of degree d > 0.
If uε minimizes Eε among maps with values g on ∂Ω. Then, as ε → 0,

up to extraction of a subsequence, there exist d distinct points a1, . . . , ad ∈
Ω such that uε → u∗ in Ck

loc(Ω\ ∪i {ai}) where

1. u∗ is an S
1-valued harmonic map from Ω\{a1, . . . , ad} to S

1 with
u∗ = g on ∂Ω and with degree di = 1 around each ai.

2. (a1, . . . , ad) is a minimizer of the renormalized energy W with di =
1.

3. Eε(uε) ≥ πd| log ε| + W (a1, . . . , ad) + dγ + o(1).

If uε is a sequence of solutions with uε = g on ∂Ω and Eε(uε) ≤ C| log ε|,
then, as ε → 0 and up to extraction of a subsequence, there exist distinct
points a1, . . . , an ∈ Ω, and degrees d1, . . . , dn with

∑n
i=1 di = d, such

that uε → u∗ in Ck
loc(Ω\ ∪i {ai}) where u∗ is a harmonic map from

Ω\{a1, . . . , an} to S
1 with u∗ = g on ∂Ω and with degree di around each

ai. Moreover ((a1, d1), . . . , (an, dn)) is a critical point of W (the di’s being
fixed) and satisfies the “vanishing gradient property.”
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Their starshapedness assumption on the domain was removed and
replaced for minimizers by simple-connectedness by Struwe [189].

A large literature followed, which we review in thematic rather than
chronological order. Note that all the results we mention below in this
section without magnetic field are under the assumption that Eε(uε) ≤
C| log ε|, i.e., concern bounded (as ε → 0) numbers of vortices, and that
this is one of the main limitations to adapting them to the case with
magnetic field.

14.1.2 Vortex Solutions in the Plane

The existence of radial vortex solutions in the plane, i.e., solutions of the
form fn(r)einθ in polar coordinates, where fn satisfies a certain ODE,
was established by Hervé and Hervé [111] via the study of the ODE
(note that these solutions have infinite energy for n �= 0). As we saw in
Theorem 3.2, it was established by Mironescu [142] that the only solution
of degree ±1 at infinity is the radial one (up to translation). For general
solutions in the plane, the quantization result

∫
Ω(1−|u|2)2 = 2πd2 where

d is the total degree, was established by Brezis–Merle–Rivière [61], see
Theorem 3.4; other qualitative results were obtained by Sandier and
Shafrir [165, 186].

It is not yet fully known whether there can exist nonradial vortex
solutions in the plane. These solutions would have a finite number of
vortices of degree di which would have to satisfy the relation (related to
the result of [61] and the Pohozaev identity)∑

i

d2
i = (

∑
i

di)2.

Ovchinnikov and Sigal conjectured the existence of such solutions (having
some rotational symmetry) and gave heuristic arguments to support this
statement in [147] (see also Open Problem 4 in Chapter 15).

14.1.3 Other Boundary Conditions

More general Dirichlet data (of modulus not equal to one and even pos-
sibly vanishing) were studied by André–Shafrir [26]. Neumann boundary
conditions were also considered, see for example Spirn [188] for a deriva-
tion of the renormalized energy in that case.
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14.1.4 Weighted Versions

Versions of the energy with different potential terms, or weighted ver-
sions, meant to include possible pinning effects, such as

1
2

∫
Ω

|∇u|2 +
(a(x) − |u|)2

2ε2

or
1
2

∫
Ω

p(x)|∇u|2 +
(1 − |u|2)2

2ε2

were studied by André–Shafrir [25], Hadiji–Beaulieu [33, 34], Du–Lin
[86].

14.1.5 Construction of Solutions

Once the main result of [43] is known, namely that critical points/mini-
mizers of Eε have vortices which converge to critical points/minimizers of
the renormalized energy, it is natural to examine the interesting inverse
problem: given a critical point of the renormalized energy, can one find
sequences of solutions of (1.3) whose vortices converge as εn → 0 to these
points? This has been solved under the restriction that vortices all be of
degree ±1; first for the case of local minimizers and min-max solutions
by Lin [128] then more completely in the book by Pacard and Rivière
[148] by a method of local inversion in weighted Hölder spaces, which
also allowed them to establish a very nice uniqueness result, i.e., a one-
to-one correspondance between solutions on the one hand, and critical
points of the renormalized energy on the other hand, at least under this
d = ±1 degree assumption. Another proof (via local inversion methods),
which lifts the assumption of nondegeneracy of the renormalized energy,
was recently given by Del Pino–Kowalczyk–Musso [82].

In the case of zero degree (or no vortices), a uniqueness result had
been previously established by Ye and Zhou in [196].

Other unstable solutions were obtained by Almeida–Bethuel through
topological methods [14].

14.1.6 Fine Behavior of the Solutions

The location and rate of convergence of the zeroes of solutions to the
limiting vortices, was established by Comte–Mironescu [78] (results also
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follow from the study done in [148]). Also, the precise asymptotic ex-
pansion of the energy of (nonminimizing) solutions was established by
Comte–Mironescu in [77, 79], through a minimality property of the so-
lutions outside of their zero-set established in [79].

One may also mention a result of Bauman–Carlsson–Phillips [30]
who proved that minimizing solutions with specific boundary data have
a single zero.

14.1.7 Stability of the Solutions

In the case with Neumann boundary conditions, conditions on Ω for
existence/nonexistence of nontrivial stable solutions (i.e., solutions with
vortices) were given in [122, 123].

It was established in [183] that stable (resp. unstable) solutions of
(1.3) have vortices which converge as ε → 0 to stable (resp. unstable)
critical points of the renormalized energy. A corollary of this result is
that, for ε small enough, there does not exist a stable solution with vor-
tices of (1.3) with Neumann boundary condition (in a simply connected
domain), i.e., (1.3) with Neumann boundary condition cannot stabilize
vortices. This had already been established but under the assumption
that Ω is convex, and for every ε, by Jimbo and Sternberg in [125].

14.1.8 Jacobian Estimates

We saw in Chapter 6 that a crucial tool in the analysis of Ginzburg–Lan-
dau is the closeness between the Jacobian determinant μ = curl(iu,∇u)
and vortex densities 2π

∑
i diδai measured in terms of the Ginzburg–Lan-

dau energy (see again Chapter 6 and [119]). A recent result of Jerrard
and Spirn [120] gives improved estimates showing that the Jacobian can
be made very close to some vortex density (where the vortices found this
way are no longer the same ones as those given by the ball-construction
method).

14.1.9 Dynamics

Heat-flow

Under the heat-flow for 2D Ginzburg–Landau, the limiting dynamical
law of vortices, which is the gradient-flow of the renormalized energy
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(up to collision time)

dai

dt
= − 1

π
∇iW (a1, . . . , an)

was proved, under a well-prepared data assumption, by Lin [129] and
Jerrard–Soner [117], after slow motion had been observed by Rubinstein–
Sternberg [161]. This result was retrieved through a more Γ-convergence
or energy-based method in [174]. After the work of Bauman–Chen–
Phillips–Sternberg [31], a few recent papers, by Bethuel–Orlandi–Smets
[47, 48, 49] and by Serfaty [184], have extended the dynamical law passed
collision and splitting times.

Schrödinger flow

This is also called the Gross–Pitaevskii equation, and is considered in su-
perfluids, nonlinear optics and Bose–Einstein condensation. The limiting
dynamical law of vortices

dai

dt
= − 1

π
∇⊥

i W (a1, . . . , an)

was established, still with well-prepared assumptions, by Colliander–Jer-
rard in [76] on a torus, and by Lin–Xin [134] in the whole plane. A recent
result of Jerrard and Spirn [121] derives the same dynamical law for ε
small but nonzero.

In the whole plane again, Bethuel and Saut [53] established the exis-
tence of some travelling wave solutions with vortices, as conjectured in
the physics literature on the Gross–Pitaevskii equation, while Gravejat
[104] proved the nonexistence of such solutions at supersonic speed.

Wave flow

In the case of the wave flow, the analogous limiting dynamical law was
established by Lin in [130] and Jerrard in [114].

14.2 Higher Dimensions

14.2.1 Γ-Convergence Approach

In dimension 3, vortices become vortex-lines and in higher dimension,
they become codimension 2 objects. The right way to capture them is to
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consider the analogue of the vorticity measure considered in this book
(see Chapter 6.1), which is then a current, the Jacobian determinant of
the function u. A result analogous to what is stated here in Theorem 6.1
was established by Jerrard–Soner in [119]. It served to prove similarly
that these higher-dimensional vorticity-currents or weak Jacobians, Ju =
d(iu, du), are compact in the same weak norm, and that

lim inf
ε→0

Eε(uε)
| log ε| ≥ 1

2
‖J‖

where ‖J‖ is the total mass of the (rectifiable and integer-multiplicity)
limiting Jacobian J ; in other words, the Ginzburg–Landau functional is
bounded below by | log ε| times half the mass of the limiting Jacobian,
which is the mass (length, surface) of the limiting vortex lines or sur-
faces. A full Γ-convergence result (i.e., including the corresponding upper
bound) was then established by Alberti–Baldo–Orlandi [12]. Some im-
provement of the lower bound, named “product-estimate”, also used to
estimate vortex velocities for vortex-dynamics, was established in [173].

14.2.2 Minimizers and Critical Points Approach

Even before the Γ-convergence approach, it was established that vortex-
lines (in dimension 3 or higher) of minimizers should converge to mini-
mal lines (or minimal connections): see Rivière [154], Sandier [167], Lin–
Rivière [131]. It was also established that for critical points, they converge
to stationary varifolds, see Lin–Rivière [132] and Bethuel–Brezis–Orlandi
[44].

The case of the most general boundary data in 3D, i.e., boundary
data in H

1
2 was examined in Bourgain–Brezis–Mironescu [57], in link

with results on lifting of S
1-valued maps in Sobolev spaces.

14.2.3 Inverse Problems

The inverse problem: given a curve which minimizes or is a critical point
of length, construct solutions whose vortices converge to that curve,
is beginning to be investigated. Montero–Sternberg–Ziemer [140] have
proved that there exists such a locally minimizing solution (with Neu-
mann boundary condition) if one starts from a straight line which is a
local minimizer of length with endpoints on the boundary of the do-
main (hence the domain should be nonconvex), it was generalized to the
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case with magnetic field by Jerrard–Montero–Sternberg in [116]. By local
inversion or Lyapounov–Schmidt type methods, Felmer–Kowalczyk–Del
Pino [95] have established the existence of a critical point if one starts
from a straight line whose endpoints are on the boundary, which is only
a critical point of the length.

14.2.4 Dynamics

In dimension ≥ 3, the vortex-set of solutions of the Ginzburg–Landau
heat-flow converges to a solution of mean curvature flow in the sense of
Brakke (as for solutions to the Allen–Cahn equation). The first result in
that direction was obtained in Lin–Rivière [133], and then a full proof
was given by Bethuel–Orlandi–Smets [46].

As concerns the Schrödinger or Gross–Pitaevskii flow, of particular
interest is the motion of a closed vortex loop. Such loops are expected to
flow under binormal flow in the ε → 0 limit of Gross–Pitaevskii. Results
in that direction (but complete results only for the case of a travelling
vortex circle) were obtained by Jerrard [115] and Bethuel–Orlandi–Smets
[45]. Also, Chiron constructed travelling wave solutions, in particular
helix-shaped ones [73, 74].

14.3 Ginzburg–Landau with Magnetic Field

14.3.1 Dependence on κ

As we saw in the phase diagram in Chapter 2, the qualitative behavior
of the Ginzburg–Landau energy depends crucially on κ, the “Ginzburg–
Landau parameter” which is a material constant.

The situation is most of the time divided into two cases: κ < 1√
2

corresponding to type-I superconductivity, and κ > 1√
2

corresponding

to type-II superconductivity. The limiting situation κ = 1√
2

is called
the self-dual case. In that famous case, as observed by Bogomoln’yi,
the functional can be rewritten into a sum of squares which can all be
made equal to zero, and the Ginzburg–Landau equations decouple into
a system of first order self-dual equations. For more on that case, refer
to the book of Jaffe and Taubes [112].

The type of the superconductor is crucial for the behavior of vor-
tices. Roughly speaking, when κ < 1√

2
, vortices (of same degree) would
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attract each other, hence they are not really observed but rather one ob-
serves interfaces (one-dimensional interfaces in 2D) between regions of
superconducting phase |u| � 1 and regions of normal phase |u| � 0 (see
for example [75] and references therein). In the self-dual case κ = 1√

2
,

vortices do not interact and it was shown by Jaffe and Taubes in [112]
that solutions with arbitrarily located vortices could be observed.

Then, for κ > 1√
2

vortices of opposite sign attract and vortices of
same sign repel, this is the regime where vortices and lattices of vortices
are observed, as seen in this book. In this regime and in the context of the
Yang–Mills–Higgs model on all R

2, Rivière [156] showed that the unique
(up to gauge-equivalence and reflection) minimizer is radially symmetric
and of degree one.

However, the above classification is not completely accurate because
it neglects size effects. The described classification with separation at the
self-dual point κ = 1√

2
corresponds rather to the situation for the whole

plane (as in Abrikosov’s study [1]) or large samples. In small samples,
the scaling is such that the same behavior as for type-II superconduc-
tors (i.e., vortices) can be observed in superconductors with κ < 1√

2
,

see for example Akkermans–Mallick [8] (and Schweigert–Peeters–Singha
Deo [180] for corresponding numerical and experimental results) where
branches of vortex-solutions such as in Chapter 11.1 are described. An-
other example of small size sample effect is described by Aftalion and
Dancer in [3].

For a global picture, one may also refer to the paper by Aftalion and
Du [4] which reviews the different regimes as a function of the parame-
ters.

14.3.2 Vortex Solutions in the Plane

As we saw in Chapter 2, Section 2.5.1, the existence of the n-vortex,
that is a finite-energy radial solution of the full Ginzburg–Landau equa-
tions (2.4) in R

2, whose only zero is at the origin and of degree n, was
first proved by Plohr [151, 152] and Berger–Chen [35]. Later on, their
uniqueness (among radial solutions) was proved by Alama–Bronsard–
Giorgi [10]. The stability of these vortex-solutions is crucially related to
the type of the superconductor, as expected from the previous subsection.
It was conjectured by Jaffe and Taubes and proved by Gustafson–Sigal
[106] that
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— for |n| ≤ 1 the n-vortex is always stable
— for |n| ≥ 2 the n-vortex is stable if κ < 1√

2
and unstable if κ > 1√

2
.

The instability result had been previously established by Almeida–Beth-
uel–Guo [41] in the case of large enough κ. The stability of the degree
1 radial solution had also been established by Mironescu [141] (without
magnetic field).

One can also search for possibly nonradial solutions in the plane,
classifying them according to their homotopy class n, the homotopy class
of a configuration being its topological degree at infinity, or its total
degree. Jaffe and Taubes conjectured in [112] that for κ > 1√

2
, if |n| > 1

there are no finite action stable critical points in the n-homotopy class,
and that for n = 0,±1 the only stable critical point is the radial n-
vortex solution described above. Rivière proved in [155] part of this in
the strongly repulsive case of κ � 1. More precisely, he showed that for
κ large enough, there is an energy-minimizer in the n-homotopy class if
and only if n = 0,±1, and that in that case it is the radial solution.

14.3.3 Static Two-Dimensional Model

Here we will restrict ourselves to the study of type-II superconductivity
(κ > 1√

2
) and in particular, the London limit κ → +∞. There is abun-

dant mathematical literature on 1-D solutions to the Ginzburg–Landau
equations with studies of bifurcations, critical fields and asymptotics; we
will not go into much detail, but refer to the works of Bolley–Helffer (for
example [54]) and Aftalion–Troy [6].

Bethuel–Rivière [52] were the first to study vortices for the full Ginz-
burg–Landau model with magnetic-field, but with a Dirichlet type bound-
ary condition (leading to a type of analysis similar to [43]). From now on,
we restrict our attention to the standard full Ginzburg–Landau equations
(GL), as studied in this book.

Critical fields and bifurcations

Here we will present the situation with decreasing applied fields.
Around Hc3: As we already mentioned, above a third critical field

Hc3 , the only solution is the (trivial) normal one u ≡ 0, h ≡ hex. Giorgi
and Phillips have proved in [102] that this is the case for hex ≥ Cκ2,
which implies the upper bound Hc3 ≤ Cκ2 for that constant C.
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At Hc3: Decreasing the applied field to Hc3 , a bifurcation from the
normal solution of a branch of solutions with surface superconductiv-
ity occurs. The linear analysis of this bifurcation was first performed
in the half-plane by De Gennes [80], then by Bauman–Phillips–Tang Qi
[32] in the case of a disc (they thus analyze what is known as the “giant
vortex” — a unique zero of u with very large degree); and for general do-
mains, formally by Chapman [67], Bernoff–Sternberg [39], then rigorously
by Lu and Pan [137], Del Pino–Felmer–Sternberg [81], Helffer–Morame
[109], Helffer–Pan [108], see improved results in Fournais–Helffer [97, 98].
The nucleation of surface superconductivity takes place near the point
of maximal curvature of the boundary, and the asymptotics for Hc3 is

Theorem 14.2.

Hc3 ∼
κ2

β0
+

C1

β
3/2
0

max(curv(∂Ω))κ,

where β0 is the smallest eigenvalue of a Schrödinger operator with mag-
netic field in the half-plane.

Between Hc2 and Hc3 : The behavior of energy minimizers for Hc2 ≤
hex ≤ Hc3 has been studied by Pan [149], who showed that, as known by
physicists, minimizers present surface superconductivity which spreads
to the whole boundary, with exponential decay of |u| from the boundary
of the domain. More qualitative results of this type were obtained by
Almog in [20, 17, 19].

Around Hc2: At Hc2 , one goes from surface superconductivity to bulk-
superconductivity. It was established by Pan [149] that

Hc2 = κ2.

Qualitative results on bulk-superconductivity below Hc2 were obtained
in [172], establishing, in particular, how bulk-superconductivity increases
(average) as hex is lowered immediately below Hc2 . Results of successive
bifurcations and of almost periodic behavior were obtained recently by
Almog [19, 21].

Regime log κ 	 hex 	 Hc2: In this situation, a uniform density of
vortices fills the domain, as presented in Chapter 8 (and first established
in [170]). This is where the Abrikosov lattice is expected.

Around Hc1: The value of Hc1 and the behavior of minimizers around
Hc1 were presented in details in this book, and previously established in
the references quoted in Chapters 7, 11, 12.
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Special solutions

Meissner solution:
The existence and stability of the Meissner solution (solution with-
out vortices) up to the “superheating field” was studied by Bonnet–
Chapman–Monneau [55], its uniqueness was also studied in [182]. The
superheating field is defined precisely as the value of the applied field for
which the Meissner solution loses its stability, and it is of order κ.
Vortex-solutions below the subcooling field:
The existence of branches of vortex-solutions was presented in Chapter
11. Previously, the existence of vortex-solutions for small applied fields
hex = O(1) had been established formally by Rubinstein [157, 158], and
rigorously by Du and Lin [86]. The “subcooling field” is defined as the
smallest applied field for which there exist stable vortex solutions. It is
thus of order of a constant.
Radial solutions:
The radial degree-d (or d-vortex) solutions in a disc were studied by
Sauvageot [177], for all values of κ. She established the existence and
critical field for existence of these branches of solutions, as well as their
stability and loss of stability through bifurcation of a branch of nonradial
degree-d solutions.

Periodic solutions

We already mentioned the study of vortex solutions in the plane. In ad-
dition, periodic solutions naturally arise for the Ginzburg–Landau sys-
tem, they are of critical importance to study the Abrikosov lattice. Since
Abrikosov’s original work [1], many periodic vortex solutions were ex-
hibited, in general as bifurcating from the normal solution, in particular
by Chapman [67] and Almog [16].

On the other hand, the study of the Ginzburg–Landau energy func-
tional over periodic configurations (i.e., on a torus) was carried out by
Dutour [89] and Aydi [28]. Dutour established a bifurcation diagram
and studied in particular the bifurcation from the normal solution at
Hc2 = Hc3 (in the periodic case, there are no boundary effects). Aydi
established that Hc1 = 1

2 log κ in the periodic setting, and studied the
vorticity of minimizers for that order of applied fields, like in Chapter
7. He also constructed particular solutions which have vortices which
concentrate on a finite number of lines.
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14.3.4 Dimension Reduction

Chapman–Du–Gunzburger [70] have derived the two-dimensional limit
of the 3D Ginzburg–Landau energy for thin films (when the thickness
goes to 0). The limiting energy is like the 3D one but where the magnetic
potential is prescribed, and the (possibly varying) thickness of the film
results in a pinning term in the 2D model, see also Chapman–Héron [71]
for a review of formal derivations. Jimbo and Morita [124] then proved
that if there exists a nondegenerate solution of the two-dimensional prob-
lem, then the original 3D problem also has a local minimizer nearby.

Ginzburg–Landau in thin superconducting loops was also considered
and Rubinstein and Schatzman (see [159] and references therein) derived
the corresponding 1D model, with interpretation of the Little–Parks ex-
periment. See also Rubinstein–Schatzman–Sternberg [160] for a model of
thin loops including constrictions in order to model the Josephson effect.

14.3.5 Models with Pinning Terms

Various models containing weights were studied to take into account
pinning effects: see Chapman–Héron [71] and the references therein,
Aftalion–Sandier–Serfaty [5], Du–Ding [83], André–Bauman–Phillips [24]
(who allowed zeroes of the pinning term). As mentioned just above, pin-
ning terms arise naturally as a result of thin-film limits of the 3D Ginz-
burg–Landau model, they also serve to model impurities in the material.
The analysis is also close to that done for the model without magnetic
field and described above in Section 14.1.4.

14.3.6 Higher Dimensions

The full Ginzburg–Landau model in higher dimensions has not been
studied as much as the two-dimensional one.

The main focus has been on the 3D analogue of the bifurcation study
around Hc3 , on surface superconductivity and the influence of the geom-
etry of the domain on its nucleation, see Pan [150], Almog [18], Helffer–
Morame [110].

We already mentioned the inverse-type existence result of Jerrard–
Montero–Sternberg [116]. More recently, Alama–Bronsard–Montero [11]
derived a candidate for the first critical field in a ball in the presence
of a uniform field, and constructed locally minimizing solutions with
vortices. In the regime Gε(uε, Aε) ≤ C| log ε|, one may mention the result
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of Liu [136], which gives a curvature condition on the limiting vortex-lines
of solutions, analogous to a result in Bethuel–Orlandi–Smets [45].

14.3.7 Dynamics

Here, again, the studies are quite similar in nature to the ones without
magnetic field. For specific magnetic field results, see Du–Lin [86] and
Spirn [187, 188] for the motion of a finite number of vortices in small
applied fields, and Sandier–Serfaty [174] in large applied fields.

14.3.8 Mean-Field Models

A mean-field model describing the dynamics of a large number of vor-
tices in the heat flow of Ginzburg–Landau was derived formally and
through heuristic arguments by Chapman–Rubinstein–Schatzman [72]
(see also similar work by E [90]). This model describes the evolution of
vortices through an evolution-problem for the density-measure. Several
mathematical papers were then interested in solving rigorously the evo-
lution problem: see Schätzle–Styles [179], Lin–Zhang [135], Du–Zhang
[87], Masmoudi–Zhang [139], Ambrosio–Serfaty [22].

The stationary case of the model is quite similar to the limiting con-
ditions we obtained (rigorously) in Theorem 13.1. This stationary prob-
lem, in particular the regularity of the free-boundary (boundary of the
support of the vorticity measure), was studied by Schätzle–Stoth [178],
Bonnet–Monneau [56], Caffarelli–Salazar–Shagholian [66]. A higher di-
mensional-dynamical model was also proposed by Chapman [69], and
later shown to be ill-posed by Richardson–Stoth [153].

14.4 Ginzburg–Landau in Nonsimply Connected Domains

In domain with holes, interesting phenomena of different qualitative na-
ture occur, and many open problems remain. Due to the nontrivial topol-
ogy, the order parameter can have a nonzero degree without vortices, in
other words there can be vorticity (and permanent currents) without
vortices.

For a review of such phenomena, we refer to the book edited by
Berger and Rubinstein [36] completely devoted to the subject.

Let us mention that in the case with magnetic field, the existence and
quantization of nontrivial solutions was studied by Rubinstein–Stern-
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berg [162] and Almeida [13] (see also [15]). Also, Berger and Rubinstein
[37] proved that in multiply-connected domains, the zero-set of the order
parameter u can be of codimension 1, contrarily to the property of iso-
lated zeroes for minimizers in simply-connected domains established by
Elliott–Matano–Tang Qi. For a discussion on the Aharonov–Bohm effect
see Helffer [107].

There is also some interesting dependence on the behavior of mini-
mizers on the precise geometry of the domain, in particular on the con-
formal type in case of an annulus: see the results (obtained in the case
without magnetic field) of Golovaty and Berlyand [103] (uniqueness of
minimizer) and Berlyand and Mironescu [38].

Alama and Bronsard [9] have started to investigate the behavior of
minimizers of the full energy Gε under an applied magnetic field, i.e., the
analogue of what is presented in this book but for nonsimply-connected
domains. They establish, in particular, the existence and value of the
first critical field for which vortices appear.
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Open Problems

1. Include the size of Ω as a parameter in the study, as it is done in
Chapter 6.

2. Obtain, in Theorem 4.1, lower bounds which can be localized in
each ball.

3. Obtain an analogue of Theorem 5.4 in the case where the number of
vortices is unbounded (or the free-energy much bigger than | log ε|).

4. Completely classify the solutions in R
2 of −Δu = u(1− |u|2) with-

out further assumption. Prove or disprove the existence of the so-
lutions conjectured by Ovchinnikov and Sigal in [147]. Classify the
solutions of the Ginzburg–Landau equations with magnetic field
in the whole R

2. In both cases, describe the vortex-structures: is
the zero set of u formed only of points or can it be formed of
one-dimensional objects, such as lines? How can the points be ar-
ranged?

5. Obtain the lower order terms in the asymptotic expansions of the
energy of solutions, i.e., find finer estimates of the energy, up to
order o(1). Deduce further information on the vortices of the so-
lutions, in particular answer the question below. Also deduce that
for energy-minimizers obtained in Chapter 7, there are really no
vortices outside of the support of the limiting measure enclosed by
the free-boundary.

6. As soon as the number of vortices diverges, our results on minimiz-
ers and local minimizers does not specify if each individual vortex
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is of degree +1, it only says that the limiting vorticity measure is
nonnegative, but there could be substructures of dipoles of vortices
at smaller lengthscales.

In other words: can positive and negative degree vortices coexist
in local minimizers of the energy? Are all vortices of degree +1?

7. Extract, from finer expansions of the energy, a minimization prob-
lem depending on the vortex points and leading to lattices, and be
able to distinguish the least costly energetically between different
shapes of lattices, and to identify them.

8. Obtain the existence of branches of stable n-vortex solutions up to
superheating fields O(1

ε ), i.e., extend the branches found in Chap-
ter 11, relaxing the hypotheses of Definition 11.1, and determine
the subcooling and superheating fields for which they lose their
stability.

9. Does the Γ-convergence analysis for the energy with pinning terms
as in [5], but relaxing the hypotheses on the points made there.

10. In the intermediate case studied in Chapter 9, treat the case where
Λ is not reduced to one point, and the case where D2ξ0(p) is de-
generate. In particular, can the vortices be aligned and the limiting
measure supported on a segment?

11. In Chapter 7, we established that limiting vorticity-measures of
energy minimizers are minimizers of Eλ, and in Chapter 13 that
limiting vorticity measures of critical points are somehow station-
ary points of Eλ. A first question is to describe more precisely what
those limiting measures can look like, and how rigid the condition
that they should be stationary is. Can the measures be negative?
Can they be of changing sign?

12. In Chapter 9, we established similarly that in the intermediate
case n 	 hex, limiting vorticity-measures of energy minimizers
are minimizers of I. Can we prove then that, limiting vorticity
measures of critical points (after blow-up) are stationary points of
I or satisfy some criticality condition? What do these look like?

13. Similarly, in Chapter 11, we established that in the case n = O(1),
limiting vorticity measures of local energy minimizers are minimiz-
ers of wn (or Rn,hex). Is it true that limiting vorticity-measures
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of critical points are critical points of wn? Describe what these
look like and further push (than started in [105]) the study of this
delicate discrete problem.

14. Analyze and classify the solutions of div Tμ = 0 in finite part (with
the notation of Chapter 13). In particular, are the limiting vorticity
measures supported only on points, lines or open sets?

15. Deduce extra conditions on the limiting vorticities for solutions as
in Theorems 13.1 and 13.2, assuming, in addition, that they are
stable solutions. Does this yields more regularity on the limiting
measures?

16. In addition to what is proved in Chapter 13 (and Chapters 7, 9)
obtain conditions on the limits of blown-up sequences of vorticity
measures (at any scale � ε) of critical points.

17. Once these results are established, a wide class of problems is that
of inverse problems: i.e., given limiting measures which are admissi-
ble, in the sense that div Tμ = 0 (cf. Theorems 13.1, 13.2 in Chapter
13), stationary for I, or critical for wn, Rn,hex , etc, do there exist
solutions of Ginzburg–Landau whose vorticities converge to those
limits? Recall that some results of this type have been obtained on
Ginzburg–Landau without magnetic field in dimensions 2 and 3,
see Chapter 14.

On Ginzburg–Landau with magnetic field, an example of such a
result was given by Aydi [28] who constructed a sequence of so-
lutions in a disc, whose limiting vorticity is a uniform measure
supported on a circle. One can then ask whether for any simply
connected domain Ω, there exist solutions whose vorticities con-
verge to a measure supported on a closed curve. More generally,
one can ask this for every admissible measure. Again can there be
solutions with nonpositive/changing sign limiting measures?

18. As asked in Chapter 13, can there be critical points with a number
of vortices much larger than hex?

19. In [173] we obtained results for the regime of hex approaching Hc2

from below, in which hex = O( 1
ε2 ). We proved, in particular, some

upper and lower bounds on the energy, and the uniform repartition
of energy in the domain at any scale � ε. No results were given
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on the vortices however. A major challenge is to obtain a complete
Γ-convergence in that regime, describe the vortices of minimizers,
and if possible, see if they tend to arrange periodically in triangular
lattices.

20. The dynamics of vortices for Ginzburg–Landau (with magnetic
field) under the heat-flow was studied in [187] and [174]. It remains
to study this for wider regime of fields, and for unbounded num-
bers of vortices (i.e., study the dynamics of the limiting vorticity-
measures).

21. Extend the results with magnetic field to dimension 3. Even though
there have been some results in that direction, much remains open.
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[26] André, N.; Shafrir, I. Minimization of a Ginzburg–Landau type
functional with nonvanishing Dirichlet boundary condition. Calc.
Var. Partial Differential Equations 7 (1998), no. 3, 191–217.

[27] Aubin, J.-P.; Ekeland, I. Applied nonlinear analysis. Pure and Ap-
plied Mathematics. John Wiley and Sons, Inc., New York, 1984.

[28] Aydi, H. Doctoral Dissertation. Université Paris-XII, 2004.
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plications, 13. Birkhäuser Boston, Boston, 1994.

[44] Bethuel, F.; Brezis, H.; Orlandi, G. Asymptotics for the Ginzburg–
Landau equation in arbitrary dimensions. J. Funct. Anal. 186
(2001), no. 2, 432–520.



Bibliography 307

[45] Bethuel, F.; Orlandi, G.; Smets, D. Vortex rings for the Gross–
Pitaevskii equation. J. Eur. Math. Soc. (JEMS) 6 (2004), no. 1,
17–94.

[46] Bethuel, F.; Orlandi, G.; Smets, D. Convergence of the parabolic
Ginzburg–Landau equation to motion by mean curvature. Annals
of Math,163 (2006), no. 1, 37–163.

[47] Bethuel, F.; Orlandi, G.; Smets, D. Collisions and phase-vortex in-
teractions in dissipative Ginzburg–Landau dynamics. Duke Math.
J., 130 (2005), no. 3, 523–614.

[48] Bethuel, F.; Orlandi, G.; Smets, D. Quantization and motion laws
for Ginzburg–Landau vortices. To appear in Arch. Rat. Mech.
Anal.

[49] Bethuel, F.; Orlandi, G.; Smets, D. Dynamics of multiple degree
Ginzburg–Landau vortices. Preprint, 2006.

[50] Bethuel, F.; Orlandi, G.; Smets, D. Improved estimates for the
Ginzburg–Landau equation: the elliptic case. Ann. Sc. Norm. Su-
per. Pisa, 4 (2005), no. 2, 319-355.

[51] Bethuel, F.; Rivière, T. Vorticité dans les modèles de Ginzburg–
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nels. Collection Études Mathématiques. Dunod, Gauthier-Villars,
1974.

[92] Elliott, C. M.; Matano, H.; Tang, Qi. Zeros of a complex Ginzburg–
Landau order parameter with applications to superconductivity.
Eur. J. Appl. Math. 5 (1994), no. 4, 431–448.

[93] Essmann, U.; Trauble, H. Vortex lattice in high-Tc superconductor,
Stuttgart Physics Letters 24A 526 (1967).

[94] Evans, L. C.; Gariepy, R. F. Measure Theory and Fine Properties
of Functions, Studies in Advanced Mathematics, CRC Press, 1992.

[95] Felmer, P.; Kowalczyk, M.; Del Pino, M. In preparation.

[96] Fife, P.; Peletier, L. A. On the location of defects in stationary
solutions of the Ginzburg–Landau equation in R2. Quart. Appl.
Math. 54 (1996), no. 1, 85–104.

[97] Fournais, S.; Helffer, B. Energy asymptotics for type II supercon-
ductors. Calc. Var. Partial Differential Equations 24 (2005), no.
3, 341–376.

[98] Fournais, S.; Helffer, B. Accurate estimates for magnetic bottles in
connection with superconductivity. Calc. Var. Partial Differential
Equations, to appear.

[99] Frehse, J. On the regularity of the solution of a second order vari-
ational inequality. Boll. Un. Mat. Ital. (4) 6 (1972), 312–315.

[100] Gilbarg, D.; Trudinger, N. S. Elliptic partial differential equations
of second order. Reprint of the 1998 edition. Classics in Mathe-
matics. Springer, Berlin, 2001.



312 Bibliography

[101] Ginzburg, V. L.; Landau, L. D. Collected papers of L.D.Landau.
Edited by D. Ter. Haar Pergamon Press, Oxford 1965.

[102] Giorgi, T.; Phillips, D. The breakdown of superconductivity due
to strong fields for the Ginzburg–Landau model. SIAM J. Math.
Anal. 30 (1999), no. 2, 341–359.

[103] Golovaty, D.; Berlyand, L. On uniqueness of vector-valued minimiz-
ers of the Ginzburg–Landau functional in annular domains. Calc.
Var. Partial Differential Equations 14 (2002), no. 2, 213–232.

[104] Gravejat, P. A non-existence result for supersonic travelling waves
in the Gross–Pitaevskii equation. Comm. Math. Phys. 243 (2003),
no. 1, 93–103.

[105] Gueron, S.; Shafrir, I. On a Discrete Variational Problem Involving
Interacting Particles. SIAM J. Appl. Math. 60 (2000), no. 1, 1–17.

[106] Gustafson, S.; Sigal, I. M. The Stability of Magnetic Vortices.
Comm. Math. Phys. 212 (2000), 257–275.

[107] Helffer, B.; Hoffmann-Ostenhof, M.; Hoffmann-Ostenhof, T.;
Owen, M. P. Nodal sets, multiplicity and superconductivity in
nonsimply connected domains. Connectivity and superconductiv-
ity, 63–84, Lecture Notes in Physics, 62. Springer, Berlin, 2000.

[108] Helffer, B.; Pan, X.-B. Upper critical field and location of surface
nucleation of superconductivity. Ann. Inst. H. Poincaré Anal. Non
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