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Summary. Following ideas of Berger and Breuil, we give a new classification of crystalline
representations. The objects involved may be viewed as local, characteristic 0 analogues
of the “shtukas’’ introduced by Drinfeld. We apply our results to give a classification of
p-divisible groups and finite flat group schemes, conjectured by Breuil, and to show that a
crystalline representation with Hodge–Tate weights 0, 1 arises from a p-divisible group, a
result conjectured by Fontaine.
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Introduction

Let k be a perfect field of characteristic p > 0, W = W(k) its ring of Witt vectors,
K0 = W(k)[1/p], and K/K0 a finite totally ramified extension. In [Br 4] Breuil
proposed a new classification of p-divisible groups and finite flat group schemes over
the ring of integers OK of K . For p-divisible groups and p > 2, this classification
was established in [Ki], where we also used a variant of Breuil’s theory to describe flat
deformation rings, and thereby establish a modularity lifting theorem for potentially
Barsotti–Tate Galois representations.

In this paper we generalize Breuil’s theory to describe crystalline representations
of higher weight or, equivalently, their associated weakly admissible modules. To
explain our main theorem, fix a uniformiser π ∈ K with Eisenstein polynomialE(u),
and write S = W [[u]]. We equip S with the endomorphism ϕ, which acts via the
Frobenius on W , and sends u to up. Let Modϕ

/S denote the category of finite free
S-modules M equipped with a map ϕ∗(M)→ M whose cokernel is killed by some
power of E(u).
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Theorem 0.1. The category of crystalline representations with all Hodge–Tate weights
� 0 admits a fully faithful embedding into the isogeny category Modϕ

/S⊗Qp of

Modϕ
/S.

Unfortunately the embedding of the theorem is not essentially surjective. In this
sense the situation is not as good as for p-divisible groups. However, we do give an
explicit description of the image of the functor. To explain it, let O denote the ring
of rigid analytic functions on the open unit u-disk. Then S[1/p] corresponds to the
bounded functions in O. It turns out that the module M = M ⊗S O is equipped
with a canonical connection which has poles at a sequence of points corresponding
to the ideals ϕn(E(u))O ⊂ O. A module M is in the image of our functor if and only
if these poles are logarithmic (see Corollary 1.3.15 below).

In fact the theorem we prove is slightly more general than the above, and includes
the case of semistable representations. We refer to the reader to the body of the text
for the more general statement.

To prove the theorem we adapt the techniques of Berger [Be 1]. One can view
his results as relating the weakly admissible module attached to a semistable repre-
sentation and the (ϕ, 
)-module attached to the same representation [Fo 1]. (ϕ, 
)-
modules are constructed using norm fields for the cyclotomic extension. We develop
an analogue of Berger’s theory in a setting where the cyclotomic extension has been
replaced by the Kummer extensionK∞ = ∪n≥1K(

pn
√
π) (cf. [Br 1]). As in Berger’s

case, a crucial role in the construction is played by Kedlaya’s theory of slopes [Ke 1].
In particular, we again make use of Berger’s beautiful observation that the notion
of weak admissibility for filtered (ϕ,N)-modules is intimately related to that of a
Frobenius module over the Robba ring being of slope 0 in the sense of [Ke 1]. For
K = K0, the analogue of the theorem in the setting of the cyclotomic extension is
proved in [Be 2, Theorem 2].

Let us mention some applications of our results. Fix an algebraic closure K̄ of
K , and writeGK = Gal(K̄/K) andGK∞ = Gal(K̄/K∞). The following result was
conjectured by Breuil [Br 1], and proved by him for representations of GK arising
from p-divisible groups [Br 3, 3.4.3].

Theorem 0.2. The functor from crystalline representations of GK to p-adic GK∞ -
representations, obtained by restricting the action of GK to GK∞ , is fully faithful.

We also obtain a proof of Fontaine’s conjecture that weakly admissible modules
are admissible (see Proposition 2.1.5). This is at least the fourth proof, following
those of Colmez–Fontaine [CF], Colmez [Co], and Berger [Be 1]. Of course our
proof is related to the one of Berger.

As alluded to above, for crystalline representations with all Hodge–Tate weights
equal to 0 or −1, there is a refinement of Theorem 0.1. Namely the category of such
representations is equivalent to BTϕ

/S⊗Qp, where BTϕ
/S denotes the full subcategory

of Modϕ
/S consisting of objects M such that the cokernel of ϕ∗(M)→ M is killed by

E(u). On the other hand there is a functor from BTϕ
/S to the category of p-divisible

groups. This functor was first constructed for p > 2 in [Br 4] using the theory of
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[Br 2], and it was conjectured to exist and be an equivalence for all p [Br 4, 2.1.2].
Here we construct it for allp using Grothendieck–Messing theory. As a consequence,
we establish the following two results.

Theorem 0.3. Any crystalline representation with all Hodge–Tate weights equal to 0
or 1 arises from a p-divisible group.

Theorem 0.4. There is a functor from BTϕ
/S to p-divisible groups. If p > 2 this

functor is an equivalence. For p = 2 it induces an equivalence on the associated
isogeny categories.

Theorem 0.3 was conjectured by Fontaine [Fo 3, 5.2.5], and proved by Laffaille
for ramification degree e(K/K0) � p − 1 [La, Section 2], and by Breuil for p > 2,
and k finite [Br 2, Theorem 1.4].

For p > 2, Theorem 0.4 was proved in [Ki] by a completely different method.
Finally, it was pointed out by Beilinson that, using Theorem 0.4, one can deduce a
classification of finite flat group schemes over OK when p > 2. A special case of
this had been conjectured by Breuil [Br 4, 2.1.1]. To explain this result we denote
by (Mod /S) the category of finite S-modules M which are killed by some power
of p, have projective dimension 1 (i.e., M has a two-term resolution by finite free
S-modules) and are equipped with a map ϕ∗(M)→ M whose cokernel is killed by
E(u). Then we have

Theorem 0.5. For p > 2, the category (Mod /S) is equivalent to the category of
finite flat group schemes over OK .

During the writing of this paper, I learned from V. Lafforgue that, with Genestier,
he had recently developed a theory remarkably parallel to ours in the function field
case [GL]. The characteristic p analogues of modules in Modϕ

/S are a sort of local
version of a “shtuka’’ in the sense of Drinfeld [Ka]. Drinfeld introduced these objects,
with stunning success, in order to study the arithmetic of function fields. Lafforgue
pointed out to us that the modules in our theory could be regarded as analogues of local
shtukas in the case of mixed characteristic. The connection with shtukas gives a first
hint that our theory, and related constructions using norm fields, which have no known
geometric interpretation, may have some deeper meaning. The question of whether
there is a global analogue of a shtuka for number fields is extremely tantalizing, and
suggests that Drinfeld’s ideas, which revolutionized the study of automorphic forms
over function fields, may yet find an application in this case. It is a pleasure to dedicate
this article to him.

1 F -crystals and weakly admissible modules

1.1 Preliminaries

Throughout the paper we will fix a uniformiser π ∈ K , and we denote by E(u) ∈
K0[u] the Eisenstein polynomial of π . We also fix an algebraic closure K̄ of K , and
a sequence of elements πn ∈ K̄ , for n a nonnegative integer, such that π0 = π , and
π
p

n+1 = πn. We write Kn+1 = K(πn).
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1.1.1. Let S = W [[u]]. We denote by Ŝn the completion of Kn+1 ⊗W S at the
maximal ideal (u − πn). The ring Ŝn is equipped with its (u − πn)-adic filtration,
and this extends to a filtration on the quotient field Ŝn[1/(u− πn)].

Denote byD[0, 1) the open rigid analytic disk of radius 1 with co-ordinateu. Thus
the K̄-points of D([0, 1)) correspond to x ∈ K̄ such that |x| < 1. Suppose that I ⊂
[0, 1) is a subinterval. We denote by D(I) ⊂ D[0, 1) the admissible open subspace
whose K̄-points correspond to x ∈ K̄ with |x| ∈ I . We set OI = 
(D(I),OD(I)),
and O = O[0,1). If I = (a, b) we will write D(a, b) rather than D((a, b)), and
similarly for half open and closed intervals.

Note that for any n we have natural maps S[1/p] → O → Ŝn given by sending
u to u, where the first map has dense image. On S we have the Frobenius ϕ which
sends u to up, and acts as the natural Frobenius onW . We will write ϕW : S → S for
the Zp[[u]]-linear map which acts on W via the Frobenius, and by ϕS/W : S → S
the W -linear map which sends u to up. For any I ⊂ [0, 1), ϕW induces a map
ϕW : OI → OI , while ϕS/W induces a map ϕS/W : OI → Op−1I , where p−1I =
{r : rp ∈ I }. We will write ϕ = ϕW ◦ ϕS/W : OI → Op−1I .

Let c0 = E(0) ∈ K0. Set

λ =
∞∏
n=0

ϕn(E(u)/c0) ∈ O.

Thinking of functions in O as convergent power series in u, we define a derivation
N∇ := −uλ d

du
: O → O. We denote by the same symbol the induced derivation

OI → OI , for each I ⊂ [0, 1).
We adjoin a formal variable �u to O which acts formally like log u. We extend

the natural maps O → Ŝn to O[�u] by sending �u to

log

[(
u− πn
πn

)
+ 1

]
:=

∞∑
i=1

(−1)i−1i−1
(
u− πn
πn

)i
∈ Ŝn.

We extend ϕ to O[�u] by setting ϕ(�u) = p�u, and we extend N∇ to a derivation
on O[�u] by setting N∇(�u) = −λ. Finally, we write N for the derivation on O[�u]
which acts as differentiation of the formal variable �u. These satisfy the relations

Nϕ = pϕN and N∇ϕ = (p/c0)E(u)ϕN∇ . (1.1.2)

Finally, we remark that N and N∇ commute.

1.1.3. Recall [Fo 2] that a ϕ-module is a finite-dimensional K0-vector space D to-
gether with a bijective, Frobenius semilinear map ϕ : D → D. A (ϕ,N)-module is
a ϕ-moduleD, together with a linear (necessarily nilpotent) mapN : D→ D which
satisfies Nϕ = pϕN . (ϕ,N)-modules (respectively, ϕ-modules) form a Tannakian
category.

If D is a one-dimensional (ϕ,N)-module, and v ∈ D is a basis vector, then
ϕ(v) = αv for some α ∈ K0, and we write tN (D) for the p-adic valuation of α. IfD
has dimension d ∈ N+, then we write tN (D) = tN (∧d D).
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A filtered (ϕ,N)-module (respectively, ϕ-module) is a (ϕ,N)-module (respec-
tively, ϕ-module) D equipped with a decreasing, separated, exhaustive filtration on
DK = D⊗K0 K . These again form a Tannakian category. Given a one-dimensional
filtered (ϕ,N)-moduleD, we denote by tH (D) the unique integer i such that gri DK
is nonzero. In general, if D has dimension d , we set tH (D) = tH (

∧d
D). A fil-

tered (ϕ,N)-module D is called weakly admissible if tH (D) = tN (D) and for any
(ϕ,N)-submodule D′ ⊂ D, tH (D′) � tN (D

′), where D′
K ⊂ DK is equipped with

the induced filtration.
We will call a filtered (ϕ,N)-module effective if Fil0D = D.

1.1.4. By a ϕ-module over O we mean a finite free O-module M, equipped with a
ϕ-semilinear, injective map ϕ : M → M. A (ϕ,N∇)-module over O is a ϕ-module
M over O, together with a differential operator NM∇ over N∇ . That is, for f ∈ O,
and m ∈ M, we have

NM∇ (fm) = N∇(f )m+ fNM∇ (m).

ϕ and N∇ are required to satisfy the relation NM∇ ϕ = (p/c0)E(u)ϕN
M∇ . We will

usually writeN∇ forNM∇ since this will cause no confusion. The category of (ϕ,N∇)-
modules over O has a natural structure of a Tannakian category.

It will often be convenient to think of M as a coherent sheaf on D[0, 1). Then
we may speak of M or 1⊗ ϕ : ϕ∗(M)→ M having some property (e.g., being an
isomorphism) in the neighbourhood of a point of D[0, 1), or over some admissible
open subset. We will need the following.

Lemma 1.1.5. Let I ⊂ [0, 1) be an interval, M a finite free OI -module, and N ⊂ M
an OI -submodule. Then the following conditions are equivalent:

(1) N ⊂ M is closed.
(2) N is finitely generated.
(3) N is finite free.

Proof. We obviously have (3) =⇒ (2). If N is finitely generated, then it is free
of rank at most that of M by [Be 3, 4.13], so (2) =⇒ (3). Moreover, in this case,
N is the image of a map M → M, hence by [Be 3, 4.12(5)], we may choose an
isomorphism M ∼−→OdI under which N maps onto

∑d
i=1 fiOI for some fi ∈ OI .

Since fiOI ⊂ OI is a closed ideal by [Laz, 8.11], it follows that N is closed in M.
Finally, suppose that N ⊂ M is closed. We will show that N is free by induction

on the OI -rank of M. If M has rank 1, then this follows from [Laz, 7.3]. In
general choose a nonzero element n ∈ N . Let M′ = (M ∩ n · OI ) ⊗OI

Fr OI ⊂
M⊗OI

Fr OI , where Fr OI denotes the field of fractions of OI . Write N ′ = N ∩M′.
By Lazard’s results and [Ke 1, Lemma 2.4], M′ ⊂ M is a direct summand and is
free of rank 1 over OI . Since N ′ is closed in M′, and N /N ′ is closed in M/M′
by the open mapping theorem, we deduce by induction that both N ′ and N /N ′ are
finite free over OI , whence the same holds for N . )�
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1.2 Filtered (ϕ, N)-modules and (ϕ, N∇)-modules

Let D be an effective filtered (ϕ,N)-module. We define a (ϕ,N∇)-module over O,
as follows: For each nonnegative integer n, write ιn for the composite

O[�u] ⊗K0 D
ϕ−nW ⊗ϕ−n−→ O[�u] ⊗K0 D→ Ŝn ⊗K0 D = Ŝn ⊗K DK,

where the second map is deduced from the map O[�u] → Ŝn defined in (1.1.2). We
may extend this to a map

ιn : O[�u, 1/λ] ⊗K0 D→ Ŝn[1/(u− πn)] ⊗K DK.
Set

M(D) = {x ∈ (O[�u, 1/λ] ⊗K0 D)
N=0 : ιn(x) ∈ Fil0(Ŝn[1/(u− πn)] ⊗K DK),

n ≥ 0}.
Note that (O[�u, 1/λ] ⊗K0 D)

N=0 is an O-module with a ϕ-semilinear Frobenius
given by those on D and O[�u, 1/λ], where the latter ring is equipped with a Frobe-
nius, because ϕ(1/λ) = E(u)/(c0λ). It is equipped with a differential operator N∇ ,
induced by the operator on N∇ ⊗ 1 on O[�u, 1/λ] ⊗K0 D.

Lemma 1.2.1. If we regard Ŝn as an O-module via ϕ−nW , then

(1) The map
Ŝn ⊗O (O[�u] ⊗K0 D)

N=0 → Ŝn ⊗K DK
induced by ιn is an isomorphism.

(2) We have

Ŝn ⊗O M(D)
∼−→
∑
j≥0

(u− πn)−j Ŝn ⊗K Filj DK

=
∑
j≥0

ϕnS/W (E(u))
−j Ŝn ⊗K Filj DK.

Proof. Since both sides in (1) are easily seen to be free Ŝn-modules of the same
rank, it suffices to show that the map obtained by reducing modulo u − πn is an

isomorphism. The latter map is (Kn+1[�u]⊗K0D)
N=0 �u �→0→ Kn+1⊗K DK (whereN

acts on Kn+1[�u] Kn+1-linearly), and this is easily seen to be an isomorphism. This
establishes (1), and (2) follows easily. )�
Lemma 1.2.2. Suppose that D is effective. Then the operators ϕ and N∇ on
(O[�u, 1/λ] ⊗K0 D)

N=0 induce on M(D) the structure of a (ϕ,N∇)-module over
O. Moreover, there is an isomorphism of O-modules

coker(1⊗ ϕ : ϕ∗M(D)→ M(D))
∼−→⊕i≥0(O/E(u)i)hi

where hi = dimK gri DK .
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Proof. First, we check that M(D) is finite free over O. Let r be a nonnegative integer
such that Filr+1D = 0. Then M(D) ⊂ λ−r (O[�u] ⊗K0 D)

N=0, and the right-hand
side is a finite free O-module. Since the maps ιn are continuous, and the filtration on
Ŝn[1/(u−πn)] is by closedK-subspaces, this submodule is closed, and hence finite
free by Lemma 1.1.5.

Now let D0 = (O[�u] ⊗K0 D)
N=0. To prove the rest of the lemma, we have

to check that the natural map ϕ∗(λ−rD0) → λ−rD0, induced by the isomorphism
1 ⊗ ϕD0 : ϕ∗D0

∼−→D0, takes ϕ∗(M(D)) into M(D), and that the cokernel of
ϕ∗(M(D))→ M(D) is as claimed. For this it will be convenient to think of finite
O-modules as coherent sheaves on D[0, 1).

At any point ofD[0, 1) not corresponding to a maximal ideal of the formϕn(E(u))
for some n ≥ 0, M(D) is isomorphic to D0, and so 1⊗ϕD0 induces an isomorphism

ϕ∗M(D)
∼−→M(D) at such a point. Now for any n ≥ 1, the map ϕS/W on S

induces a map ofKn+1-algebrasϕS/W : Ŝn u�→u
p−→ Ŝn+1, and we have a commutative

diagram

λ−rD0
ιn ��

ϕ

��

(u− πn)−rŜn ⊗K DK
ϕS/W⊗1

��
λ−rD0

ιn+1 �� (u− πn+1)
−rŜn+1 ⊗K DK.

If we regard Ŝn as an O-module via ϕ−nW , then ϕS/W becomes a ϕ-semilinear map,
and the induced O-linear map

1⊗ ϕS/W : ϕ∗Ŝn[1/(u− πn)] → Ŝn+1[1/(u− πn+1)] (1.2.3)

is an isomorphism, which takes ϕ∗(u − πn)sŜn onto (u − πn+1)
sŜn+1 for each

integer s. Now let

Mn(D) = {x ∈ D0[1/λ] : ιn(x) ∈ Fil0(Ŝn[1/(u− πn)] ⊗K DK)}.
Then M(D) ⊂ Mn(D) and this inclusion is an isomorphism at the pointxn ∈ D[0, 1)
corresponding to the ideal (ϕn(E(u))) ⊂ O.

By Lemma 1.2.1, the map

D0/ϕ
n
W (E(u))D0 = (O/ϕnW (E(u))O[�u] ⊗K0 D)

N=0

→ Ŝn ⊗K DK/(u− πn)Ŝn ⊗K DK ∼−→Kn+1 ⊗K DK
induced by ιn is a bijection. Hence we have an exact sequence

0 → Mn(D)→ λ−rD0

→ ((u− πn)−rŜn ⊗K DK)/Fil0(Ŝn[1/(u− πn)] ⊗K DK)→ 0

Denote by Qn the term on the right of this exact sequence. Then its pullback by the
flat map ϕ : O → O sits in a commutative diagram with exact rows
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0 �� ϕ∗Mn(D) ��

���
�
� ϕ∗(λ−rD0)

��

��

ϕ∗(Qn) ��

��

0

0 �� Mn+1(D) �� λ−rD0
�� Qn+1 �� 0.

Here the map on the right is induced by the map 1⊗ ϕS/W of (1.2.3), and the re-
marks above show that it is a bijection. The map in the middle has imageE(u)rλ−rD0.
In particular, we may fill in the left hand map ϕ∗(Mn(D))→ Mn(D), as shown, and
we see that its cokernel is contained in λ−rD0/(E(u)

rλ−rD0). Since the inclusions
ϕ∗(M(D)) ⊂ ϕ∗(Mn(D)) and M(D) ⊂ Mn+1(D) are isomorphisms at xn+1, this
shows that 1⊗ ϕD0 induces an isomorphism ϕ∗(M(D))

∼−→M(D) at xn+1.
Finally, since ϕ(x0) �= xn for any n ≥ 0, the inclusion D0 ⊂ M(D) gives rise to

an inclusion ϕ∗D0 ⊂ ϕ∗(M(D))which is an isomorphism at x0. Since 1⊗ϕD0 maps
ϕ∗(D0) isomorphically onto D0 ⊂ M(D), it induces a map ϕ∗(M(D))→ M(D)

whose cokernel is supported on x0. Moreover, we have a commutative diagram with
exact rows

0 �� D0 ��

��

λ−rD0
�� ((u− π)−rŜ0/Ŝ0)⊗K DK ��

��

0

0 �� M0(D) �� λ−rD0
�� Q0 �� 0.

Hence

coker(ϕ∗(M(D))→ M(D))
∼−→M0(D)/D0

∼−→Fil0(Ŝ0[1/(u− π)] ⊗K DK)/(Ŝ0 ⊗K DK)
and the lemma follows. )�
1.2.4. We will say that a ϕ-module M over O is of finite E-height if the cokernel
of the O-linear map ϕ∗M → M is killed by some power of E(u), that is, if this
cokernel is supported on x0 ∈ D[0, 1). A (ϕ,N∇)-module over O is of finite E-
height if it is of finite E-height as a ϕ-module. We denote by Modϕ,N∇

/O (respectively,

Modϕ
/O) the category of (ϕ,N∇)-modules (respectively, ϕ-modules) over O of finite

E-height. Both these categories are stable under ⊗-products.

1.2.5. Suppose that M is in Modϕ
/O. We define a filteredϕ-moduleD(M) as follows:

The underlyingK0-vector space ofD(M) is M/uM, and the operator ϕ is induced
by ϕ on M.

To construct the filtration onD(M)K , it will be convenient to adopt the following
notation: If J ⊂ I ⊂ [0, 1) are intervals, and M is a finite OI -module, we will write
MJ = M ⊗OI

OJ . If we think of M as a coherent sheaf on D(I), then MJ

corresponds to the restriction of M to D(J ). Similarly, if ξ : M → M′ is a map of
finite OI -modules we denote by ξJ : MJ → M′

J the induced map. We will need
the following
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Lemma 1.2.6. Let M be a ϕ-module over O. There is a unique O-linear, ϕ-
equivariant morphism

ξ : D(M)⊗K0 O → M
whose reduction modulo u induces the identity on D(M). ξ is injective, and its
cokernel is killed by a finite power of λ. If r ∈ (|π |, |π |1/p), then the image of the
map ξ[0,r) induced by ξ coincides with the image of 1⊗ ϕ : (ϕ∗M)[0,r) → M[0,r).

Proof. Recall that O is a Fréchet space, with its topology defined by the norms | · |r
for r ∈ (0, 1), given by |f |r = supx∈D[0,r] |f (x)|. Since M is free we may identify
it with Od , where d = rkO M, and we will again denote by | · |r the norm on M
obtained by taking the maximum of | · |r applied to the co-ordinates of an element
m ∈ M = Od . For a subset � ⊂ M we set |�|r = supx∈� |x|r .

Now choose any K0-linear map s0 : D(M)→ M whose reduction modulo u is
the identity. We define a new map s : D(M)→ M by

s = s0 +
∞∑
i=1

(ϕi ◦ s0 ◦ ϕ−i − ϕi−1 ◦ s0 ◦ ϕ1−i )

To check that the right-hand side converges to a well defined map, fix an r ∈ (0, 1),
and let L ⊂ D(M) be a OK0 -lattice. Then ϕ−1(L) ⊂ p−jL for some nonnegative
integer j . After increasing j , we may also assume that |ϕ(m)|r � |p−jm|r for all
m ∈ M. Since ϕ◦s0◦ϕ−1−s0 ∈ uM, we have L̃ := u−1(ϕ◦s0◦ϕ−1−s0)(L) ⊂ M
so that

|(ϕi+1 ◦ s0 ◦ ϕ−i−1 − ϕi ◦ s0 ◦ ϕ−i )(L)|r � |p−ij upi ϕi(L̃)|r � p2ij rp
i |L̃|r .

Since |L̃|r is finite, and p2ij rp
i → 0 as i → ∞, for any j ≥ 0 and r ∈ (0, 1), the

map s is well defined. Once checks immediately that ϕ ◦ s = s ◦ ϕ.
Given any other such map s′, the difference s − s′ sends D(M) into uM. But

since ϕ is a bijection on D(M), and ϕj ◦ (s − s′) = (s − s′) ◦ ϕj , for j ≥ 1, we see
that (s − s′)(D(M)) ⊂ upjM, so that s − s′ = 0. It follows that s is the unique
such map. Extending s to D(M) ⊗K0 O by O-linearity yields the required map ξ ,
and the uniqueness of s implies the that of ξ .

To establish the claim regarding the image of ξ , note that ξ is an isomorphism
modulo u, so for some sufficiently large positive integer i, ξ[0,rpi ) is an isomorphism.
Since ξ commutes with ϕ, we have a commutative diagram

ϕ∗(D(M)⊗K0 O) ϕ∗ξ ��

∼
��

ϕ∗M
1⊗ϕ

��
D(M)⊗K0 O ξ �� M·

If i > 1, then the restriction of the right vertical map to [0, rpi−1
) is an isomor-

phism, so that ξ[0,rpi−1
)

is also. Repeating this argument, we find that ξ[0,rp) is an
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isomorphism, and making use of the above commutative diagram once more, we find
that the image of ξ[0,r) coincides with (1⊗ ϕ)[0,r).

Finally, we have seen that ξ[0,r) is injective with cokernel killed by a finite power
E(u)s of E(u). It follows from the same commutative diagram above that ξ is
injective with cokernel killed by λs . )�
1.2.7. Now define a decreasing filtration on ϕ∗M by

Fili ϕ∗M = {x ∈ ϕ∗M : 1⊗ ϕ(x) ∈ E(u)iM}.
This is a filtration onϕ∗Mby finite freeO-modules (for example, using Lemma 1.1.5),
whose successive graded pieces areE(u)-torsion modules. By transport of structure,
this defines a filtration on (1⊗ ϕ)(ϕ∗M), and hence on (1⊗ ϕ)(ϕ∗M)[0,r), where r
is as in Lemma 1.2.2. Using the map ξ[0,r) of Lemma 1.2.6, we obtain a filtration on
(D(M) ⊗K0 O)[0,r). The required filtration on D(M)K is defined to be the image
filtration under the composite

(D(M)⊗K0 O)[0,r) → D(M)⊗K0 O/E(u)O ∼−→D(M)⊗K0 K = D(M)K.

Finally, if M is a (ϕ,N∇)-module over O of finiteE-height, then we equipD(M)

with a K0-linear operator N , by reducing the operator N∇ on M modulo u. This
gives D(M) the structure of a filtered (ϕ,N)-module.

We will show that the functors D and M induce quasi-inverse equivalences of
categories.

Proposition 1.2.8. Let D be an effective filtered (ϕ,N)-module. There is a natural

isomorphism of filtered (ϕ,N)-modules D(M(D))
∼−→D.

Proof. As in Lemma 1.2.2, we set D0 = (O[�u] ⊗K0 D)
N=0. The natural inclusion

D0 ⊂ M(D) is an isomorphism at u = 0, so that

D(M(D)) = M(D)⊗O O/uO ∼−→(K0[�u] ⊗K0 D)
N=0 (1.2.9)

We claim that the composite map

η : (K0[�u] ⊗K0 D)
N=0 ⊂ K0[�u] ⊗K0 D

�u �→0→ D. (1.2.10)

is an isomorphism of filtered (ϕ,N)-modules, where on the left-hand side N acts
by −N ⊗ 1. This is the operator induced by reducing the operator N∇ ⊗ 1 on
O[�u] ⊗K0 D modulo u. First, one checks easily that η is an injection, and that
both sides have the same dimension. Hence η is a bijection. Since both maps in
(1.2.10) are evidently compatible with ϕ, so is the composite. Finally, suppose that
d =∑j≥0 dj �

j
u ∈ (K0[�u] ⊗K0 D)

N=0, with dj ∈ D. Since N(d) = 0, we see that
N(d0)+ d1 = 0. Hence

η(N∇ ⊗ 1(d)) = −d1 = N(d0) = N(η(d)),
so η is compatible with N .
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It remains to check that η is strictly compatible with filtrations. As remarked in the
proof of Lemma 1.2.2, the submodule D0 ⊂ M(D), is contained in (1⊗ ϕ)(ϕ∗M),
and this containment is an isomorphism at x0. By definition of M, an element d ∈ D0
is in E(u)iM if and only if ι0(d) ∈ Fili (Ŝ0 ⊗K DK). Hence, using Lemma 1.2.1,
one sees that under the isomorphisms

D(M(D))K = (K0[�u] ⊗K0 D)
N=0 ⊗K0 O/E(u)O = D0/E(u)D0

∼−→
ι0

Ŝ0 ⊗K DK/(u− π)Ŝ0 ⊗K DK = DK, (1.2.11)

the filtration on D(M(D))K is identified with the given filtration on DK .
Thus, to show that η is strictly compatible with filtrations, we have to check that

the composite

D
η−1

→ D(M(D)) ↪→ D(M(D))K
(1.2.11)→ DK.

is the natural inclusion. However, this is clear because both η and (1.2.11) send an
element

∑
i≥0 �

i
udi ∈ (K0[�u] ⊗K0 D)

N=0 to d0. )�

Lemma 1.2.12. Let M be in Modϕ,N∇
/O . Then we have

(1) The O-submodule (1⊗ ϕ)ϕ∗M ⊂ M is stable under N∇ .
(2) For i ≥ 0, N∇(E(u)iM) ⊂ E(u)iM. In particular, if we identify ϕ∗M with
(1 ⊗ ϕ)ϕ∗M via 1 ⊗ ϕ, then N∇ respects the filtration on ϕ∗M defined in
Section 1.2.7.

(3) The map

(O[�u] ⊗K0 D(M))N=0 = (K0[�u] ⊗K0 D(M))N=0 ⊗K0 O
η⊗1→ D(M)⊗K0 O ξ→ M

is compatible with N∇ . Here η is the isomorphism of (1.2.10), and N∇ acts on
the left via its action on O[�u].

(4) For i ≥ 1, applying Ŝ0⊗O to the map of (3) and using the isomorphism of
Lemma 1.2.1(1) induces an isomorphism∑

j≥0

E(u)j Ŝ0 ⊗K Fili−j D(M)K
∼−→

ξ◦(η⊗1)
Ŝ0 ⊗O (1⊗ ϕ)(Fili ϕ∗M).

Proof. (1) follows from the relation N∇ϕ = E(u)ϕN∇ , while (2) follows from the
Leibniz rule for N∇ , and the fact that N∇(E(u)) = −uλE′(u)iE(u)i−1, since E(u)
divides λ in O.

For (3) let σ = N∇ ◦ (ξ ◦ η)− (ξ ◦ η) ◦ N∇ , and write D0(M) = (K0[�u] ⊗K0

D(M))N=0. Then σ is O-linear, and it suffices to show that σ(D0(M)) = 0. Since
the map η of (1.2.10) is compatible with N , and ξ reduces to the identity modulo u,
we have σ(D0(M)) ⊂ uM. On the other hand, ξ ◦ η is compatible with ϕ, so that
σ ◦ ϕ = pE(u)/c0ϕ ◦ σ , and for i ≥ 1
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σ(D0(M)) = σ ◦ ϕi(D0(M))

= piE(u)/c0ϕ(E(u)/c0) . . . ϕ
i−1(E(u)/c0)ϕ

i ◦ σ(D0(M))

⊂ O · ϕi(uM) ⊂ upiM.

It follows that σ = 0, which proves (3).
Finally, for (4) it will be convenient to again denote by N∇ the operator −uλ d

du

on Ŝ0, and to extend NM∇ to a differential operator on Ŝ0 ⊗O M, which we again
denote by N∇ . By (2), N∇ leaves Ŝ0 ⊗O (1⊗ ϕ)(Fili ϕ∗M) stable.

SetMi = Ŝ0 ⊗O (E(u)(1⊗ ϕ)ϕ∗M∩E(u)iM) for i ≥ 1. We have a commu-
tative diagram with exact rows

0 �� Mi ��

N∇|Mi
��

Mi−1 ��

N∇|Mi−1
��

Mi−1/Mi ��

��

��

��

0

0 �� Mi �� Mi−1 �� Mi−1/Mi ���� 0,

where the vertical maps are induced by N∇ . We claim that N∇|Mi is a bijection for
i ≥ 0.

By Lemmas 1.2.1(1) and 1.2.6 and (3) above, we have an N∇ -compatible iso-
morphism

Ŝ0 ⊗K0 D(M)
∼−→ Ŝ0 ⊗K D(M)K

∼−→ Ŝ0 ⊗O ϕ∗M,

where N∇ acts on the left via N∇ ⊗ 1. Since N∇ induces a bijection on E(u)Ŝ0, our
claim holds for i = 0. For i ≥ 1, we may assume by induction that N∇|Mi−1 is a
bijection. Hence N∇|Mi−1/Mi is surjective, and it is therefore injective as Mi−1/Mi
is a finite-dimensionalK-vector space. Finally, it follows from the snake lemma that
N∇|Mi is surjective. In particular, we see that N∇|M0/Mi is bijective for all i.

To prove (4), we proceed by induction on i. For i = 0, this follows from
Lemma 1.2.6. For i ≥ 1, the induction hypothesis implies that

(u− π)Fili−1(Ŝ0 ⊗K D(M)K) = (u− π)Ŝ0 ⊗O (1⊗ ϕ)(Fili−1 ϕ∗M).

Since the filtrations on ϕ∗M and on Ŝ0 ⊗K D(M)K both induce the same filtration
on their common quotient D(M)K , it suffices to show that

ξ ◦ (η ⊗ 1)(Fili D(M)K) ⊂ Ŝ0 ⊗O (1⊗ ϕ)(Fili ϕ∗M).

Let d ∈ ξ ◦ (η ⊗ 1)(Fili D(M)K). We may write d = d0 + d1, with d0 ∈ Ŝ0 ⊗O
Fili ϕ∗M, and d1 ∈ E(u)Ŝ0 ⊗O ϕ∗M = M0. Since N∇(d) = 0,

N∇(d1) = −N∇(d0) ∈ Ŝ0 ⊗O Fili ϕ∗M ∩ E(u)Ŝ0 ⊗O ϕ∗M = Mi.
Hence, by what we saw above, we must have d1 ∈ Mi ⊂ Ŝ0 ⊗O Fili ϕ∗M. )�
Proposition 1.2.13. Let M be in Modϕ,N∇

/O . There is a canonical isomorphism

M(D(M))
∼−→M.
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Proof. Let M′ = M(D(M)). We will write D0(M) = (O[�u] ⊗K0 D(M))N=0.
By construction M′ ⊂ D0(M)[1/λ]. On the other hand, if we identify D0(M)

with an O-submodule of M via the map ξ ◦ (η ⊗ 1) of Lemma 1.2.12(3), then
M ⊂ D0(M)[1/λ], by Lemma 1.2.6. Since both these inclusions are compatible
with N∇ and ϕ, it suffices to check that M′ = M.

It is enough to check that M′
[0,r) = M[0,r) where r ∈ (|π |, |π |1/p), for then

pulling back by (ϕ∗)i , and using the fact that M and M′ are both of finite E-height,
we find that M′

[0,r1/pi )
= M[0,r1/pi )

, and hence that M = M′.
Now at any point of D[0, r) other than x0, we have M = D0(M) = M′, so we

have to check that

Ŝ0 ⊗O M = Ŝ0 ⊗O M′ ⊂ Ŝ0 ⊗O D0(M)[1/λ] ∼−→
1.2.1

Ŝ0[1/(u− π)] ⊗K D(M)K

For this it suffices to check that an element x ∈ Ŝ0⊗OD0(M) is divisible byE(u)i in
M for some i ≥ 0 if and only if it is divisible byE(u)i in M′. Now by Lemma 1.2.6,
and the observations made in the proof of Lemma 1.2.2, we have

Ŝ0 ⊗O (1⊗ ϕ)ϕ∗M = Ŝ0 ⊗O D0(M) = Ŝ0 ⊗O (1⊗ ϕ)ϕ∗M′, (1.2.14)

so it is enough to show that the filtrations on the left- and right-hand sides of (1.2.14),
defined in Section 1.2.7, coincide. This follows by comparing Lemma 1.2.1(2) with
Lemma 1.2.12(4). )�
Theorem 1.2.15. The functorsD and M induce exact, quasi-inverse equivalences of
⊗-categories between effective filtered (ϕ,N)-modules and the category Modϕ,N∇

/O .

Proof. By Propositions 1.2.8 and 1.2.13 we know thatD and M induce quasi-inverse
equivalences of categories. It remains to check that they they are exact and compatible
with tensor products.

Consider a sequence of filtered (ϕ,N)-modules

D• : 0 → D′′ → D→ D′ → 0

and denote by M(D•) the corresponding sequence of (ϕ,N∇)-modules over O. IfD•
is exact then, thinking of M(D•) as a sequence of coherent sheaves on D[0, 1), we
see that it is evidently exact outside the set of points {xn}n≥0, and the exactness at xn
follows from Lemma 1.2.1(2). Conversely, if M(D•) is exact then Lemma 1.2.1(2)
implies that D• is exact. Thus M and D are exact functors.

Suppose we are given filtered (ϕ,N)-modules D1 and D2. There is an obvious
morphism of (ϕ,N∇)-modules over O, M(D1) ⊗O M(D2) → M(D1 ⊗K0 D2),
which is an isomorphism outside the points {xn}n≥0. That it is an isomorphism at xn
follows from Lemma 1.2.1(2). Hence M commutes with tensor products.

Finally, suppose that M1 and M2 are (ϕ,N∇)-modules over O. From the defini-
tions, one sees that there is an isomorphism D(M1) ⊗K0 D(M2)

∼−→
D(M1 ⊗O M2) compatible with the action of ϕ, and that the map of K-vector
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spaces obtained by tensoring both sides by⊗K0K is compatible with filtrations. That
it is strictly compatible with filtrations may be deduced from the strict compatibility
with filtrations of the map

ϕ∗M1 ⊗O ϕ∗M2 → ϕ∗(M1 ⊗O M2). )�

1.3 Weakly admissible modules and F -crystals

In this section we show how to produce (ϕ,N∇)-modules over O using ϕ-modules
over S of finite E-height.

1.3.1. We begin by reviewing the results of Kedlaya [Ke 1], [Ke 2]. Recall that the
Robba ring R is defined by

R = lim
r→1−

O(r,1)

R is equipped with a Frobenius ϕ induced by the maps ϕ : O(r,1) → O(r1/p,1).
We denote by Modϕ

/R the category of finite free R-modules M equipped with an

isomorphism ϕ∗M ∼−→M. This has a natural structure of a Tannakian category.
We also have the bounded Robba ring Rb, defined by

R = lim
r→1−

Ob(r,1)

where Ob(r,1) ⊂ O(r,1) denotes the functions onD(r, 1) which are bounded. The ring

Rb is a discrete valuation field, with a valuation vRb given by

vRb (f ) = − logp lim
r→1−

sup
x∈D(r,1)

|f (x)|

The Frobenius ϕ on R induces a Frobenius ϕ on Rb. We denote by Modϕ
/Rb the

category of finite-dimensional Rb-vector spaces M equipped with an isomorphism
ϕ∗M ∼−→M.

Kedlaya defines an R-algebra Ralg (denoted by
alg
an,con in [Ke 1]), which contains

a copy ofW(k̄), where k̄ denotes an algebraic closure of k, is equipped with a lifting
ϕ of the Frobenius on R, and such that for any M in Modϕ

/R, there exists a finite

extension E of W(k̄)[1/p] such that M ⊗R Ralg ⊗W(k̄)[1/p] E admits a basis of
ϕ-eigenvectors v1, . . . vn such that ϕ(vi ) = αivi for some αi ∈ E. The set of p-adic
valuations of α1, . . . , αn is uniquely determined by M, and called the set of slopes
of M [Ke 1, Theorem 4.16]. If these are all equal to some s ∈ Q, then M is called
pure of slope s. We denote by Modϕ,s

/R the full subcategory of Modϕ
/R consisting

of modules which are pure of slope s. We write Modϕ,s
/Rb for the full subcategory

of Modϕ
/Rb consisting of modules which are pure of slope s (as ϕ-modules over a

discretely valued field).

Theorem 1.3.2. (1) The functor M �→ M⊗Rb R induces an equivalence

Modϕ,s
/Rb

∼−→Modϕ,s
/R .
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(2) For any M in Modϕ
/R, there exists a canonical filtration—called the slope

filtration—0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M by ϕ-stable submodules such
that Mi/Mi−1 is finite free over R and pure of slope si , and s1 < s2 < · · · < sr .

Proof. The first part is [Ke 2, Theorem 6.3.3], while the second follows from [Ke 1,
Theorem 6.10]. )�
1.3.3. We want to show that if M in Modϕ

/R arises from a module MO in Modϕ,N∇
/O ,

then the slope filtration of (4) is induced by a filtration on MO.
We denote byN∇ the operator−uλ d

du
onR and we write Modϕ,N∇

/R for the category

whose objects consist of a module M in Modϕ
/R equipped with a differential operator

N∇ = NM∇ over the operator N∇ on R, such that N∇ϕ = (pE(u)/c0)ϕN∇ .
For M a finite free R-module (respectively, an OI -module for some interval

I ⊂ [0, 1),) we say that an R (respectively, OI ) submodule N ⊂ M is saturated
if it is finitely generated and if M/N is torsion-free or, equivalently, free over R
(respectively, OI ). If N ⊂ M is any submodule, then there is a smallest submodule
N ′ ⊂ M containing N which is saturated, and we call this the saturation of N .

Lemma 1.3.4. Let M be a finite free O-module equipped with a ϕ-semilinear map
ϕ : M → M such that the induced map ϕ∗M → M is an injection. Let NR ⊂
MR := M⊗O R be a saturated submodule which is stable under ϕ. Then there is
a unique saturated submodule N(0,1) ⊂ M(0,1) such that N(0,1) ⊗O(0,1) R = NR.
N(0,1) is ϕ-stable.

Proof. Since NR is finitely generated, there exists r ∈ (0, 1) and a saturated O(r,1)-
submodule N(r,1) ⊂ M(r,1) such that N(r,1) ⊗O(r,1) R = N . Since N(r,1) is clearly
the unique such saturated submodule of M(r,1), 1 ⊗ ϕ induces a map ϕ∗N(r,1) →
N(r1/p,1).

Set N(rp,1) = M(rp,1) ∩ N(r,1). Since N(rp,1) is clearly a closed O(rp,1)-
submodule, it is finitely generated, and one sees immediately that it is saturated. We
claim that its rank is equal to h = rkO(r,1) N(r,1). It suffices to show that ϕ∗N(rp,1)
has O(r,1)-rank h. Since the map ϕ : O(r,1) → O(rp,1) is finite flat, we have a
commutative diagram with exact rows

0 �� ϕ∗N(rp,1) ��

��

ϕ∗M(rp,1) ⊕ ϕ∗N(r,1) ��

��

ϕ∗M(r,1)

��
0 �� N(r,1) �� M(r,1) ⊕N(r1/p,1) �� M(r1/p,1).

Since the central and right vertical maps are injective, and the cokernel of the
central vertical map is a torsion O(r,1)-module, we see that rkO(r,1) ϕ

∗N(rp,1) =
rkO(r,1) N(r,1) = h.

Since N(rp,1) ⊗O(rp,1)
O(r,1) ⊂ N(r,1) and both modules are saturated O(r,1)-

submodules of M(r,1) of the same rank, this inclusion must be an equality. Repeating
the argument, we obtain for each i ≥ 0 a saturated O

(rp
i
,1)

-submodule N
(rp

i
,1)

of



474 Mark Kisin

M
(rp

i
,1)

such that the restriction of N
(rp

i
,1)

toD(rp
i−1
, 1) is N

(rp
i−1
,1)

. These mod-
ules glue to a coherent sheaf N (0,1) on D(0, 1). Write N(0,1) for the global sections
of N (0,1). Then N(0,1) is a closed O(0,1)-submodule of M(0,1), and hence finitely
generated, and N (0,1) is the coherent sheaf corresponding to N(0,1). In particular,
we see that N(0,1) ⊂ M(0,1) is saturated and that N(0,1) ⊗O(0,1) R = NR. Since
N(0,1) = M(0,1) ∩NR is the unique saturated submodule with this property, we see
that N(0,1) is stable under ϕ. )�
Lemma 1.3.5. Let M be a finite free O-module equipped with a differential operator
∂ over −u d

du
, and suppose that the operator N : M/uM → M/uM induced by

∂ is nilpotent. If N(0,1) ⊂ M(0,1) is a saturated O(0,1)-submodule which is stable
under ∂ , then N(0,1) extends uniquely to a saturated, ∂-stable O-submodule N ⊂ M.

Proof. This is part of the theory of connections with regular singular points. In
fact one can even suppress the assumption on the nilpotence of N (cf. [De, Propo-
sition 5.4]). Since we could not find a good reference, and for the convenience of
the reader, we give a proof here. Closely related arguments may be found in the
literature—see, for example, [Ba] and [An].

We equip M with the connection given by ∇(m) = −u−1∂(m)du, and M′ :=
M/uM⊗K0 O with the logarithmic connection given by ∇(m⊗f ) = −N(m)/u⊗
f du + m ⊗ df . Then HomO(M′,M) is naturally equipped with a logarithmic
connection, given by∇(f )(m′) = −f (∇(m′))+∇(f (m′)). Let s0 : M/uM → M
be any K0-linear map lifting the identity on M/uM. We define a new section by

s =
∞∑
i=0

∇
(
d

du

)i
(s0)(−u)i/i!.

Note that since s0 lifts the identity section, ∇( d
du
)i(s0)(−u)i/i! sends M/uM into

uM for each i ≥ 1. Moreover, since N is nilpotent, this summand sends M/uM
into u[i/d]M, where d denotes the rank of M. Using this one sees easily that
there is a positive integer n such that the formula for s gives a well defined sec-
tion s : M/uM → M overD[0, p−n). After replacing u by u/pn, we may assume
that s gives a well defined section over D[0, 1), so that M ∼−→M′ as O-modules
with logarithmic connection. In particular, M∂d=0 ⊂ M is a K0-vector space of
dimension d, which spans M.

Now let L be any finite free O(0,1)-module equipped with a connection ∇, and

define ∂ = ∇(−u d
du
). We claim that the natural map L∂d=0 ⊗K0 O(0,1) → L is

injective. To see this we remark that we may replace L by the image of the above
map, and assume that L∂d=0 spans L. Note also that, if L′ and L′′ are two finite free
O(0,1)-modules with connection, and L is an extension of L′ by L′′, then it suffices
to prove the claim for L′ and L′′. Furthermore if L′ ⊂ L is any O(0,1)-submodule
which is stable by∇, then L/L′ is equipped with a connection, and is hence O(0,1)-free
[Kat 2, Proposition 8.9]. Applying these remarks with L′ = a · O where a ∈ L∂=0

is nonzero, and using induction on the rank of L, it suffices to consider the case
where L = O(0,1) with the trivial connection. In this case the result is clear since any
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f ∈ O(0,1) can be written as a convergent sum f =∑i∈Z aiu
i , so that ∂d(f ) = 0 if

and only if f is constant.
Now the natural map M∂d=0⊗K0 O → M is evidently an isomorphism. Hence,

applying the above remarks with L = N(0,1) and M(0,1)/N(0,1), and using the snake

lemma, we see that the map N ∂d=0
(0,1) ⊗K0 O(0,1) → N(0,1) is an isomorphism. In

particular, N(0,1) extends to N = N ∂d=0
(0,1) ⊗K0 O. )�

Lemma 1.3.6. Let Rξ denote a free R-module of rank 1 with a generator ξ . We think
of L := R⊕Rξ as a right R-module by setting ξ · a = aξ +N∇(a), and letting R
act on itself in the natural way. This makes L into an (R,R)-bimodule.

Let M be in Modϕ,N∇
/R . Then L ⊗R M has a natural structure of an object of

Modϕ
/R given by

ϕ(a ⊗ n+ bξ ⊗m) = ϕ(a)ϕ(n)+ ϕ(b)(pE(u)/c0)
−1ξ ⊗ ϕ(m),

and the set of slopes of L ⊗R M is equal to those of M. More precisely, if s is a
slope of M which appears with multiplicity h, then s appears with multiplicity 2h in
L⊗O M.

Proof. First, observe that the formula giving ϕ defines a well defined Frobenius
because

ϕ(ξ ⊗ bm) = (pE(u)/c0)
−1ξ ⊗ ϕ(bm)

= (pE(u)/c0)
−1ϕ(b)ξ ⊗ ϕ(m)+ (pE(u)/c0)

−1N∇(ϕ(b))ϕ(m)
= ϕ(bξ ⊗m+N∇(b)⊗m).

To prove the second claim, we may reduce by dévissage to the case where M is
irreducible and of pure slope s ∈ Q. Then we have an exact sequence in Modϕ

/R

0 → M → L⊗R M → M(1)→ 0.

Here M(1) denotes the object of Modϕ
/R whose underlying R-module is equal to

M, but whose Frobenius is the Frobenius on M multiplied by (pE(u)/c0)
−1. The

first map is given by m �→ m ⊕ 0, while the second sends a + bξ ⊗ m to bm. It
follows by [Ke 1, Proposition 4.5] that L⊗R M is pure of slope s. )�
Proposition 1.3.7. Let M be in Modϕ,N∇

/O and set MR = M⊗O R. If

0 = M0,R ⊂ M1,R ⊂ · · · ⊂ Mr,R = MR

denotes the slope filtration of MR then for i = 0, 1, . . . , r , Mi,R extends uniquely
to a saturated O-submodule Mi ⊂ M which is stable by ϕ and N∇ .

Proof. For any interval I ⊂ [0, 1), MI = M⊗O OI is equipped with a differential
operator induced by N∇ on M and −uλ d

du
on OI . Passing to the limit we also get a

differential operator on MR. We again denote these differential operators by N∇ ,
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By Lemma 1.3.4 Mi,R extends to a saturated ϕ-stable submodule Mi,(0,1) ⊂
M(0,1). We claim that Mi,(0,1) is stable by N∇ . Since Mi,(0,1) = Mi,R ∩M(0,1),
it suffices to show that Mi,R is stable by N∇ . For this we use the notation of
Lemma 1.3.6. Consider the map of R-modules

δ : L⊗R M → M; (a + bξ)⊗m �→ am+ bN∇(m).
A simple calculation shows that δ respects the action of ϕ. Let M′

i,R =
δ(L ⊗R Mi,R). We obviously have Mi,R ⊂ M′

i,R. To show this inclusion is
an equality we proceed by induction on i. Let si denote the slope of Mi/Mi−1.
When i = 0 there is nothing to prove. If Mi−1,R = M′

i−1,R, then we have surjec-
tions

L⊗R Mi,R/Mi−1,R
δ→ M′

i,R/M
′
i−1,R = M′

i,R/Mi−1,R → M′
i.R/Mi,R.

Since the R-submodule M′
i,R/Mi,R ⊂ M/Mi,R is finitely generated, it is finite

free over R by Lemma 1.1.5. By Lemma 1.3.6, L⊗RMi,R/Mi−1,R is pure of slope
si , so if M′

i,R/Mi,R is nonzero, its smallest slope is � si by [Ke 1, Lemma 4.1].
But then the smallest slope of M/Mi,R is � si , which is a contradiction as all the
slopes of this module are ≥ si+1 > si .

Finally, N∇ induces a differential operator ∂ = λ−1N∇ over −u d
du

on M[0,p−2).
By Lemma 1.3.5, Mi,(0,p−2) extends to a unique ∂-stable saturated O[0,p−2)-sub-
module Mi,[0,p−2) ⊂ Mi,[0,p−2). Hence Mi,(0,1) extends to a unique, N∇ -stable,
saturated O-submodule Mi ⊂ M. Since Mi = M ∩Mi,R it is stable by ϕ. )�
Theorem 1.3.8. Let D be an effective filtered (ϕ,N)-module. Then D is weakly
admissible if and only if M(D) is pure of slope 0.

Proof. Suppose first that D has rank 1, and choose a basis e ∈ D. Write ϕ(e) = αe
for some α ∈ K0. Set D0 = (O[�u] ⊗K0 D)

N=0. Then the definition of M shows
that M(D) = λ−tH (D)D0, so that

ϕ(λ−tH (D)e) = (E(u)/c0)
tH (D)αλ−tH (D)e.

Hence M(D) has slope tN (D)− tH (D). This proves the theorem for rank 1 (ϕ,N)-
modules.

Suppose that D is weakly admissible. By Proposition 1.3.7, the slope filtration
on M(D)R is induced by a filtration of M(D) by saturated O-submodules, stable
by ϕ and N∇

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M.

Write si for the unique slope of Mi,R/Mi−1,R, and di for its R-rank. By Theo-
rem 1.2.15, M1 = M(D1) for some filtered (ϕ,N) submodule D1 ⊂ D. Then∧d1 M1 has slope d1s1 [Ke 1, Proposition 5.13], and the compatibility with tensor
products in Theorem 1.2.15 and the rank 1 case considered above imply that this slope
is tN (D1)− tH (D1). Hence the weak admissibility of D implies that s1 ≥ 0. Since
s1 is the smallest slope this implies that si ≥ 0 for all i. On the other hand, applying
the rank 1 case as above,

∑r
i=1 disi = tN (D)− tH (D) = 0, so that r = 1 and s1 = 0.
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Conversely, suppose that M(D) is pure of slope 0. We have already seen that this
implies tN (D) = tH (D). If D′ ⊂ D is a (ϕ,N)-submodule, then M(D′) ⊂ M(D)

has all slopes ≥ 0 by [Ke 1, Proposition 4.4]. In particular, the slope of the top
exterior product of M(D′) is ≥ 0, so we have tN (D′)− tH (D′) ≥ 0. )�
1.3.9. A (ϕ,N)-module over O is a ϕ-module M together with a K0-linear map
N : M/uM → M/uM which satisfies Nϕ = pϕN , where we have written ϕ for
the endomorphism of M/uM obtained by reducing ϕ : M → M modulo u. We say
that M is pure of slope 0 if M⊗O R is. As usual, M is said to be of finite E-height
if it has this property as a ϕ-module over O. We denote by Modϕ,N

/O the category

of (ϕ,N)-modules over O of finite E-height, and by Modϕ,N,0
/O the full subcategory

consisting of modules which are pure of slope 0. Each of these categories has a
natural structure of a Tannakian category.

Given a module M in Modϕ,N∇
/O we obtain a module M̃ in Modϕ,N

/O by taking

M̃ = M equipped with the operator ϕ, and taking N to be the reduction of N∇
modulo u.

Lemma 1.3.10. Let M be in Modϕ,N
/O . Then

(1) M[1/λ] is canonically equipped with an operator N∇ such that N∇ϕ =
(p/c0)E(u)ϕN∇ and N∇|u=0 = N .

(2) The functor N �→ Ñ is fully faithful, and a module M is in its image if and only
if it is stable under the operator N∇ on M[1/λ].

(3) Any M in Modϕ,N
/O which has O-rank 1 is in the image of the functor in (2).

Proof. The construction of Section 1.2.5 shows that given an M in Modϕ,N
/O , we obtain

a filtered (ϕ,N)-moduleD(M), and that for N in Modϕ,N∇
/O we haveD(Ñ ) = D(N ).

Now, given M we set D0 = (O[�u]⊗K0 D(M))N=0, equipped with an operator
N∇ induced by the corresponding operator on O[�u]. As in Lemma 1.2.12, we may
consider the composite

D0 = (K0[�u] ⊗K0 D(M))N=0 ⊗K0 O η⊗1→ D(M)⊗K0 O ξ→ M (1.3.11)

where η is a bijection, and ξ has cokernel killed by some power of λ by Lemma 1.2.6.
Using (1.3.11), we obtain an isomorphism D0[1/λ] ∼−→M[1/λ], which is compatible
with the action of ϕ, and with N after applying ⊗OO/uO. From the definition of
M(D), we have an isomorphism D0[1/λ] ∼−→M(D(M))[1/λ], compatible with ϕ
and N∇ .

This proves (1). Moreover, by Theorem 1.2.15 M is in the image of N �→ Ñ if
and only if M ∼−→M(D(M)) in D0[1/λ], and this is equivalent to M being stable
under N∇ . This also shows the claim regarding full faithfulness.

Finally, suppose M in Modϕ,N
/O has O-rank 1. The above discussion shows that

ξ(D(M)) ⊂ M is killed by N∇ . If e is a K0-basis vector for D(M), then there
exists f ∈ O such that M = f−1Oe, and
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N∇(f−1e) = −uλ df
−1

du
e = uλdf

du
f−1(f−1e).

So it suffices to show that λdf
du
f−1 ∈ O. Since M ⊂ D0[1/λ] the set of zeroes of f

is contained in the set of zeroes of λ. Since df
du
f−1 has at most a simple pole at each

such zero, this completes the proof of (3). )�
1.3.12. A (ϕ,N)-module over S is a finite free S-module M, equipped with a ϕ-
semilinear Frobenius ϕ : M → M, and a linear endomorphism N : M/uM ⊗Zp

Qp → M/uM⊗Zp Qp such that Nϕ = pϕN on M/uM⊗Zp Qp. We say that M
is of finite E-height if the cokernel of ϕ∗M → M is killed by some power of E(u).
We denote by Modϕ,N

/S the category (ϕ,N)-modules over S of finite E-height, and

by Modϕ,N
/S ⊗Qp the associated isogeny category.

The reader may wonder why we do not insist that the operator N takes M/uM
to itself. The reason is that with this definition we could not prove Lemma 1.3.13
below. We do not know if the two definitions give rise to the same isogeny category.

Lemma 1.3.13. The functor

' : Modϕ,N
/S ⊗Qp

∼−→Modϕ,N,0
/O ; M �→ M⊗S O (1.3.14)

is an equivalence of Tannakian categories.

Proof. Let M be in Modϕ,N,0
/O . Then MR := M ⊗O R is in Modϕ,0

/R, and hence

Theorem 1.3.2 implies that M is of the form MRb⊗RbR for some MRb in Modϕ,0
/Rb ,

whose construction is functorial in MR. Thus we have

MRb ⊗Rb R ∼−→MR
∼−→M⊗O R.

Choose an Rb-basis for MRb , and an O-basis for M. The composite of the above
isomorphisms is then given by a matrix with values in R. By [Ke 1, Proposition 6.5],
after modifying the chosen bases, we may assume that this matrix is the identity.
In other words MRb and M are spanned by a common basis. Let Mb denote
the S[1/p]-span of this basis. Since S[1/p] = O ∩ Rb ⊂ R, we have Mb =
MRb ∩M ⊂ MR.

Hence Mb is stable by ϕ, and of finite E-height, since M is. This already shows
that ' is fully faithful, since given any N in Modϕ,N

/S , N ⊗Qp can be recovered as
'(N )Rb ∩ '(N ). To show that it is essentially surjective, we have to check that
Mb arises from an object of Modϕ,N

/S .

Let ORb denote the valuation ring of Rb. Since MRb has slope 0, there exists a
ϕ-stable ORb -lattice L in MRb . Let M′ = Mb ∩ L, and set

M = ORb ⊗S M′ ∩M′[1/p] ⊂ MRb .

Then M ⊂ MRb is a finite, ϕ-stable S-submodule. Moreover, the structure theory
of finite S-modules shows that there exists an inclusion M′ ⊂ F of M′ into a finite
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free S-module F , such that F/M′ has finite length. This implies that M may be
identified with F . Thus M is free over S.

To check that M is in Modϕ,N
/S , we have to check that the cokernel of ϕ∗M → M

is killed by a power of E(u). Let d be the S-rank of M. Then ϕ on
∧d

S M with
respect to some choice of basis vector is given by prE(u)sw where r, s ≥ 0, and
w ∈ S×. Since MRb = M⊗S Rb, and ∧dRbMRb is pure of slope 0, we must have
that r = 0. )�
Corollary 1.3.15. There exists a fully faithful⊗-functor from the category of effective
weakly admissible filtered (ϕ,N)-modules to Modϕ,N

/S ⊗Qp.

If M is in Modϕ,N
/S , and M = M⊗S O, then M[1/λ] is canonically equipped

with a connection ∇ such that ϕ ◦ ∇ = ∇ ◦ ϕ. The module M is in the image of
the functor above if and only if ∇ induces a singular connection on M with only
logarithmic singularities.

Proof. By Theorems 1.3.8 and 1.2.15, D �→ M(D) is an equivalence between the
category of effective weakly admissible filtered (ϕ,N)-modules, and Modϕ,N∇ ,0

/O .

By Lemma 1.3.10, the latter category is a full subcategory of Modϕ,N,0
/O which is

equivalent to Modϕ,N
/S ⊗Qp by Lemma 1.3.13. This proves the first claim, and the

second follows from Lemma 1.3.10(2), the connection on M being given by∇(m) =
−λ−1N∇(m)duu . )�

2 Galois representations and p-divisible groups

2.1 GK -representations and GK∞ -representations

In this section we will use the theory of the previous section to compare constructions
of crystalline representations, and representations of finiteE-height. We show that the
functor from crystallineGK -representations toGK∞ -representations is fully faithful.

2.1.1. Let OK̄ denote the ring of integers of K̄ . Let R = lim←−OK̄/p where the
transition maps are given by Frobenius. There is a unique surjective map θ : W(R)→
ÔK̄ to the p-adic completion ÔK̄ of OK̄ , which lifts the projection R→ OK̄/p onto
the first factor in the inverse limit.

Write π = (πn)n≥0 ∈ R, where πn ∈ K̄ are the elements introduced in Sec-
tion 1.1.1. Let [π] ∈ W(R) be the Teichmüller representative. We embed the
W -algebraW [u] intoW(R) by u �→ [π ]. Since θ([π ]) = π this embedding extends
to an embedding S ↪→ W(R), and θ |S is the map S → OK sending u to π . This
embedding is compatible with Frobenius endomorphisms.

We denote byAcris the p-adic completion of the divided power envelope ofW(R)
with respect to ker(θ). As usual, we write B+cris = Acris[1/p], we denote by B+st the
ring obtained by formally adjoining the element “log[π ]’’ to B+cris, and by B+dR the
ker(θ)-adic completion ofW(R)[1/p].
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Let OE be the p-adic completion of S[1/u]. Then OE is a discrete valuation ring
with residue field the field of Laurent series k((u)). We write E for the field of fractions
of OE . If FrR denotes the field of fractions of R, then the inclusion S ↪→ W(R)

extends to an inclusion E ↪→ W(FrR). Let Eur ⊂ W(FrR)[1/p] denote the maximal
unramified extension of E contained inW(FrR)[1/p], and OEur its ring of integers.
Since FrR is algebraically closed [Fo 1, A.3.1.6], the residue field OEur/pOEur is a
separable closure of k((u)). We denote by Êur the p-adic completion of Eur, and by
OÊur its ring of integers. Êur is also equal to the closure of Eur inW(FrR). We write
Sur = OEur ∩W(R) ⊂ W(FrR). We regard all these rings as subrings ofW(R).

Let K∞ = ∪n≥0Kn, and write GK∞ = Gal(K̄/K∞). Since GK∞ fixes the
subring S ⊂ W(R), it acts on Sur and Eur.

Lemma 2.1.2. Let M be a finitely generated S-module equipped with an S-linear
map ϕ∗M → M. Suppose that M is isomorphic as an S-module to a finite direct
sum ⊕i∈IS/pniS where ni ∈ N+ and that coker(1⊗ ϕ) is killed by some power of
E(u). Then

(1) The association M �→ HomS,ϕ(M,S
ur[1/p]/Sur) is an exact functor in M.

(2) The natural map

HomS,ϕ(M,S
ur[1/p]/Sur)→ HomS,ϕ(M, Eur/OEur )

is an isomorphism, and both sides are isomorphic to ⊕i∈IZp/pniZp as Zp-
modules.

Proof. The first part of (2) follows from [Fo 1, B.1.8.4]. The rest of the lemma then
follows from [Fo 1, Section A.1.2]. )�

2.1.3. We denote by Modϕ
/S the category of finite free S-modules equipped with an

S-linear map 1⊗ ϕ : ϕ∗M → M whose cokernel is killed by some power of E(u).
We may regard Modϕ

/S as a full subcategory of Modϕ,N
/S by taking the operator N to

be 0 on an object of Modϕ
/S.

Corollary 2.1.4. Let M be in Modϕ
/S. Then

VS(M) := HomS,ϕ(M,S
ur)

is a free Zp-module of rank r = rkS M, and the functor M �→ VS(M) is exact in
M. Moreover, the natural map

HomS,ϕ(M,S
ur)→ HomOE ,ϕ(OE ⊗S M,OÊur )

is a bijection.

Proof. This follows immediately from Lemma 2.1.2. )�
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Proposition 2.1.5. Let D be an effective, weakly admissible filtered (ϕ,N)-module,
and M in Modϕ,N

/S a module whose image in Modϕ,N
/S ⊗Qp is equal to the image of

D under the functor of Corollary 1.3.15.
Then there exists a canonical bijection

HomS,ϕ(M,S
ur)⊗Zp Qp

∼−→HomFil,ϕ,N (D,B
+
st ),

which is compatible with the action ofGK∞ on the two sides. In particular, both sides
have dimension dimK0 D, and D is admissible.

Proof. Set M = M ⊗S O. Using Proposition 1.2.8, we may identify D with
D(M). The inclusion S ⊂ B+cris admits a unique continuous extension to O, and we
will regard B+cris as an O-algebra in this way. Since the inclusion of O in B+cris sends
E(u) to E([π ]) ∈ Fil1 B+dR, it extends to an inclusion of Ŝ0 into B+dR. Recall that the
O-module ϕ∗M is equipped with a decreasing filtration as in Section 1.2.7, while
the ring B+cris ⊗K0 K is equipped with a filtration via its inclusion into the discrete
valuation ring B+dR.

Observe that we have natural maps

HomS,ϕ(M,S
ur)→ HomO,ϕ(M, B+cris)→ HomO,Fil,ϕ(ϕ

∗M, B+cris). (2.1.6)

Here the term on the right means O-linear, ϕ-compatible maps which induce a filtered
map Ŝ0⊗O ϕ∗M → B+dR, and the second map is obtained by composing morphisms
with the inclusion 1⊗ϕ : ϕ∗M → M. It follows from the definition of the filtration
on ϕ∗M (and the fact that E([π ]) ∈ Fil1 B+dR)) that any such composed morphism
respects filtrations. Note that both maps in (2.1.6) are injective. This is clear for the
first map, and for the second it follows from the fact that the cokernel of 1 ⊗ ϕ is a
killed by some power of λ, while B+cris is a domain.

Next, we set D0 = (O[�u] ⊗K0 D)
N=0. By Lemma 1.2.1 (and since we are

identifying D and D(M)), we have an isomorphism Ŝ0 ⊗O D0
∼−→ Ŝ0 ⊗K DK ,

and we regard the left-hand side of this isomorphism as equipped with the filtration
induced by that on the right-hand side. By Lemma 1.2.12, ξ ◦ (η⊗ 1) induces a map

HomO,Fil,ϕ(ϕ
∗M, B+cris)→ HomO,Fil,ϕ(D0, B

+
cris), (2.1.7)

where the term on the right means ϕ-compatible maps, which induce a map Ŝ0 ⊗O
D0 → B+dR that is compatible with filtrations. Since the map of Lemma 1.2.12(3) is
an isomorphism at the point x0, (2.1.7) is an injection.

Finally, note that multiplication in the ring O[�u] induces a natural isomorphism
O[�u] ⊗O D0

∼−→
µ⊗1

O[�u] ⊗K0 D which is compatible with ϕ and N . Hence given

any map f in the right-hand side of (2.1.7), we may form the composite

D ↪→ O[�u] ⊗K0 D
∼−→

(µ⊗1)−1
O[�u] ⊗O D0

1⊗f→ O[�u] ⊗O B+cris
∼−→

�u �→log[π ]
B+st .

It follows from the definition of the filtration on Ŝ0 ⊗O D0 that any such composed
map respects filtrations after tensoring by K⊗K0 . Hence we obtain an injective map
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HomO,Fil,ϕ(D0, B
+
cris)→ HomFil,ϕ,N (D,B

+
st ). (2.1.8)

Combining (2.1.6)–(2.1.8), we obtain a GK∞ -equivariant inclusion

HomS,ϕ(M,S
ur)⊗Zp Qp → HomFil,ϕ,N (D,B

+
st ),

Since the left-hand side has Qp-dimension d = dimK0 D by Corollary 2.1.4, the
dimension of the right-hand side is ≥ d . But now an elementary argument [CF,
Proposition 4.5] shows that the right-hand side has dimension d, andD is admissible.
Hence our map is a bijection, as required. )�
Lemma 2.1.9. Let h : M → M′ be a morphism in Modϕ

/S which becomes an
isomorphism after tensoring by OE . Then h is an isomorphism.

Proof. Sinceh is a morphism of free S-modules of the same rank, it is an isomorphism
if the induced map on determinants is. Hence we may assume that M and M′ are
free of rank 1 over S.

Let M = M ⊗S O and M′ = M′ ⊗S O. By Lemmas 1.3.13 and 1.3.10(3),
M and M′ may be regarded as objects of Modϕ,N∇

/O . Let D = D(M) and D′ =
D(M′). By Lemma 1.3.10(2) and Theorem 1.2.15 the mapD→ D′ induced by h is
nonzero, and hence is an isomorphism of filtered (ϕ,N)-modules. Hence h becomes
an isomorphism after inverting p by Corollary 1.3.15. This means that in a suitable
choice of bases h is given by multiplication by pi for some nonnegative integer i.
Since h becomes an isomorphism after tensoring by OE , we must have i = 0. )�
Lemma 2.1.10. Let M be in Modϕ

/S, and let VS(M) be as in Corollary 2.1.4. Then
M′ = HomZp[GK∞](VS(M),S

ur) is a free S-module of rank d = rkS M, and the
natural map

M → HomZp[GK∞](HomS,ϕ(M,S
ur),Sur) = M′

is an injection.

Proof. Set M = M ⊗S OE . The natural map Sur/pSur → OEur/pOEur is an
injection, so that we have an injection

HomZp[GK∞](VS(M),S
ur/pSur) ↪→ HomZp[GK∞](VS(M), ÔEur/pOEur ).

By [Fo 1, A.1.2.7], the right-hand side is a OE/pOE = k((u))-vector space of di-
mension d = rkZp VS(M). The left-hand side is clearly a u-adically separated,
torsion-free k[[u]]-module. Hence it is a free k[[u]]-module of rank at most d.

Now M′ is a p-adically separated torsion-free S-module. Moreover, we have an
injection

M′/pM′ ↪→ HomZp[GK∞](VS(M),S
ur/pSur).

Hence M′ is a quotient of Sd . On the other hand, the natural map M → M′
is an injection because the map OE ⊗S M → HomZp[GK∞](VS(M),OÊur ) is an
isomorphism by [Fo 1, A.1.2.7]. Thus M′ must be a free S-module of rank d =
rkS M by Corollary 2.1.4. )�
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2.1.11. Denote by Modϕ
/OE the category of finite free OE -modules M equipped with

an isomorphism ϕ∗M → M.

Proposition 2.1.12. The functor

Modϕ
/S → Modϕ

/OE ; M �→ M⊗S OE

is fully faithful.

Proof. Let M be in Modϕ
/OE . If M ⊂ M is any finitely generated S-module which

is stable under ϕ, and is such that M/ϕ∗(M) is killed by some power of E(u), then
we set F(M) = OE ⊗S M ∩ M[1/p]. As in the proof of Lemma 1.3.13, F(M)
is a finite free S-module, and is naturally a submodule of M, which contains M, is
stable by ϕ, and such that F(M)/ϕ∗(F (M)) is killed by some power of E(u). In
particular, F(M) is an object of Modϕ

/S.

Now suppose that M1 and M2 are in Modϕ
/S, and write M1 = M1 ⊗S OE and

M2 = M2 ⊗S OE . Suppose we are given a morphism h : M1 → M2 in Modϕ
/OE .

We have to show this induces a map M1 → M2.
Suppose first thath is the identity morphism. By Corollary 2.1.4, we haveVS(M1)

= VS(M2), so both M1 and M2 are contained in HomZp[GK∞](VS(M1),S
ur),

which is a finite S-module of rank d = rkOE M1, by (2.1.10). In particular, M3 =
M1+M2 ⊂ M1 is a finite S-module of rank d , which is stable under the action of ϕ,
and M3/ϕ

∗(M3) is killed by a power of E(u). Hence the morphism M1 → F(M3)

is an isomorphism by Lemma 2.1.9, and similarly M2 = F(M3) = M1.
Now consider the case of any map h. Let M3 = h(M1), M3 = h(M1), and

M′
3 = M3 ∩M2. Then M3 is in Modϕ

/OE , and M3 and M′
3 are finitely generated,

ϕ-stable S-modules, such that M3/ϕ
∗(M3) and M′

3/ϕ
∗(M′

3) are killed by some
power of E(u). To see this for M′ note that we have an exact sequence

0 → M′
3 → M3 ⊕M2 → M2

and that the map 1⊗ϕ is injective on all the terms of this sequence. Thus the cokernel
of 1⊗ ϕ on M′

3 may be identified with an S-submodule of the cokernel of 1⊗ ϕ on
M2. By what we have seen above, we must have F(M3) = F(M′

3) ⊂ M3, so h
induces the composite map

M1 → F(M3) = F(M′
3)→ F(M2) = M2. )�

2.1.13. Denote by RepGK∞ the category of continuous representations of GK∞ on

finite-dimensional Qp-vector spaces. Similarly, we denote by Repcris
GK

the category

of crystalline representations of GK = Gal(K̄/K). The following result had been
conjectured by Breuil [Br 1, p. 202].

Corollary 2.1.14. The functor Repcris
GK

→ RepGK∞ obtained by restricting the action
of a GK -representation to GK∞ is fully faithful.



484 Mark Kisin

Proof. It suffices to prove the corollary for the full subcategory Repcris,+
GK

⊂ Repcris
GK

consisting of crystalline representations with nonnegative Hodge–Tate weights.
Consider the diagram of functors

Repcris,+
GK

��

��

RepGK∞

Modϕ
/S ⊗Qp �� Modϕ

/OE ⊗Qp.

��

Here⊗Qp means that we have passed to the associated isogeny category. The map on
the left is given by composing the (contravariant) functor from crystalline representa-
tions to weakly admissible modules with the fully faithful functor of Corollary 1.3.15.
The map on the bottom is given by Proposition 2.1.12, and hence is fully faithful,
while the map on the right is given by sending M in Modϕ

/OE to HomOE (M, Êur),
and this functor is an equivalence by [Fo 1, A.1.2.7]. That the square commutes (up to
a natural equivalence) follows from Proposition 2.1.5. It follows that the top functor
is also fully faithful. )�
Lemma 2.1.15. Let M be in Modϕ

/S and set V = VS(M) ⊗Zp Qp, and M =
E ⊗S M. Then the map N �→ HomS,ϕ(N,S

ur) is a bijection between finite free,

ϕ-stable S-submodules N ⊂ M such that E ⊗S N
∼−→M and N/ϕ∗(N) is killed

by a power of E(u), and GK∞ -stable Zp-lattices L ⊂ V .

Proof. By [Fo 1, A.1.2.7] the set of GK∞ -stable lattices L ⊂ V is in bijection with
the set of finite free, ϕ-stable OE -lattices N ⊂ M such that the map ϕ∗N → N is
an isomorphism.

Given N, HomS,ϕ(N,S
ur) is a GK∞ -stable lattice in V by Corollary 2.1.4.

Moreover, the above remarks together with Corollary 2.1.4 and Lemma 2.1.9 show
that the map of the lemma is an injection. Suppose we are given a GK∞ -stable
lattice L ⊂ V , and let N = HomZp[GK∞](L,OÊur ) be the corresponding finite free
OE -module. Let N = N ∩ M[1/p] ⊂ M. As in the proof of Lemma 1.3.13 N
is a finite free S-module such that N/ϕ∗(N) is killed by some power of E(u), and
OE ⊗S N = N . Hence N maps to L by Corollary 2.1.4. )�

2.2 Applications to p-divisible groups

In this section we apply the theory of Section 1 to the special case of p-divisible
groups. We give a classification of p-divisible groups (up to isogeny when p = 2)
using S-modules, and we show Fontaine’s conjecture that a crystalline representation
with Hodge–Tate weights 0 and 1 arises from a p-divisible group.

2.2.1. We will denote by BTϕ
/S the full subcategory of Modϕ

/S consisting of objectsM

such that M/ϕ∗(M) is killed byE(u) (not just some power). Similarly we denote by
BTϕ,N∇

/O (respectively, BTϕ
/O) the full subcategory of Modϕ,N∇

/O (respectively, Modϕ,N
/O )
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consisting of objects M such that N∇ = 0 modulo u, (respectively, N = 0) and
M/ϕ∗(M) is killed by E(u).

We say a weakly admissible moduleD is of Barsotti–Tate type if gri DK = 0 for
i �= 0, 1.

Proposition 2.2.2. The functor of Corollary 1.3.15 induces an exact equivalence
between the category of weakly admissible modules of Barsotti–Tate type and
BTϕ

/S⊗Qp.

Proof. Let M be in BTϕ
/S and M̃ = M⊗S O the corresponding object of Modϕ,N

/O .

Then M̃ is evidently in BTϕ
/O. As in (1.3.11) we obtain a mapD(M̃)⊗K0 O → M̃,

which lifts the isomorphismD(M̃)
∼−→M̃/uM̃, and is compatible with ϕ and N∇ .

Here N∇ acts on D(M̃)⊗K0 O as 1 ⊗−uλ d
du

. Now since M̃/ϕ∗(M̃) is killed by

E(u), one sees easily using Lemma 1.2.6 that M̃/(D(M̃)⊗K0 O) is killed by λ. Let
m ∈ M̃, and write m =∑r

i=1 di ⊗ λ−1fi , where di ∈ D(M̃) and fi ∈ O. Then

N∇(m) = −uλ
r∑
i=1

di ⊗ (−λ−2 dλ

du
fi + λ−1 dfi

du
) = udλ

du
m− u

r∑
i=1

di ⊗ dfi
du

∈ M̃.

Hence, by Lemma 1.3.10, M̃ arises from a module M in Modϕ,N∇
/O , and D(M̃) =

D(M) is weakly admissible by Theorems 1.3.8 and 1.2.15. By construction, the
functor in Corollary 1.3.15 takes D(M) to (an object isomorphic to) M.

It remains to remark that ifD is an effective weakly admissible module, and M in
Modϕ,N

/S is the image ofD under the functor of Corollary 1.3.15, then M is in BTϕ
/S

if and only if D is of Barsotti–Tate type. This follows from Lemma 1.2.2. )�
2.2.3. We will use the notation introduced in the appendix. Given a module M in
BTϕ

/S, M = S ⊗ϕ,S M has a natural structure of an object of BTϕ/S , where this is
the category introduced in Section A.5. Here the tensor product is taken with respect
to the map S → S sending u to up. Following [Br 4], we set

Fil1 M = {m ∈ M : 1⊗ ϕ(m) ∈ Fil1 S ⊗S M ⊂ S ⊗S M},
and we define the map ϕ1 as the composite

ϕ1 : Fil1 M 1⊗ϕ→ Fil1 S ⊗S M
ϕ1⊗1→ S ⊗ϕ,S M = M

By Lemma A.2, given a p-divisible group G over OK , M(G) := D(G)(S) is
naturally an object of BTϕ/S . By Proposition A.6 the functor G �→ M(G) is an

equivalence between BTϕ/S and the category of p-divisible groups if p > 2. If p = 2
it induces an equivalence between the corresponding isogeny categories.

Given a p-divisible groupG over OK , we will denote by Tp(G) its Tate module.
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Lemma 2.2.4. Let G be a p-divisible group over OK . If we regard the ring Acris of
Section 2.1.1 as an S-algebra via u �→ [π ], then there is a canonical injection of
GK∞ -modules

Tp(G) ↪→ HomS,Fil,ϕ(M(G),Acris).

This map is an isomorphism if p > 2, and has cokernel killed by p when p = 2.

Proof. An element of Tp(G) is a map of p-divisible groups over OK̄ , Qp/Zp →
G⊗OK

OK̄ . Since Acris is a divided power thickening of ÔK̄ , we can pull this map
back to ÔK̄ , and then evaluate the corresponding crystals onAcris (see the appendix).
This gives rise to a map M⊗SAcris → Acris compatible with filtrations and Frobenius.
That the resulting map is injective, an isomorphism when p > 2, and has cokernel
killed by p when p = 2, follows from [Fa, Theorem 7]. )�
2.2.5. We remark that the fact that the map of Lemma 2.2.4 is an isomorphism when
p > 2 also follows from the calculations of [Br 2, Section 5.3]; however, Faltings’
argument is quite direct and does not rely on reduction to calculations with finite flat
group schemes.

The following result had been conjectured by Fontaine [Fo 3, 5.2.5]

Corollary 2.2.6. Let V be a crystalline representation of GK with all Hodge–
Tate weights equal to 0 or 1. Then there exists a p-divisible group G such that

V
∼−→ Tp(G)⊗Zp Qp.

Proof. Let D = HomZp[GK ](V , B
+
cris) denote the admissible filtered (ϕ,N)-module

attached to V , and let M in BTϕ
/S⊗Qp be the module associated toD by the functor

of Proposition 2.2.2. We again denote by M the object of BTϕ
/S underlying M.

Write M = S ⊗ϕ,S M for the associated object of BTϕ/S . Then M is associated to
a p-divisible group G as above, and by Lemma 2.2.4 we have an isomorphism of
Qp-vector spaces with GK∞ -action

Tp(G)⊗Zp Qp
∼−→HomS,Fil,ϕ(M, Acris)⊗Zp Qp

∼−→HomS,Fil,ϕ(D,B
+
cris) = V.

Here the final isomorphism follows from the fact that, by [Br 2, 5.1.3], we have
a canonical isomorphism M ⊗Zp Qp

∼−→D ⊗W S, compatible with ϕ and filtra-
tions. This fact is also easily deduced from Lemma 1.2.6. That this map is actually
compatible with the action of GK follows from Corollary 2.1.14. )�
Theorem 2.2.7. There exists an exact functor between BTϕ

/S and the category of p-
divisible groups over OK . When p > 2, this functor is an equivalence, and when
p = 2 it induces an equivalence between the corresponding isogeny categories.

Proof. Let M be in BTϕ
/S and M = S ⊗ϕ,S M the corresponding module in BTϕ/S .

We have natural maps

HomS,ϕ(M,S
ur)→ HomS,Fil,ϕ(M, Acris) (2.2.8)
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obtained by composing maps M → Sur with the inclusion Sur ϕ→ Acris, and extend-
ing the resulting map to M by S-linearity. By Lemma 2.2.4 and Corollary 2.1.4, both
sides of (2.2.8) are finite free Zp-modules of the same rank, and (2.2.8) is clearly
injective. Hence it becomes an isomorphism after inverting p. In particular, any map
in the right-hand side induces a map M → Sur[1/p]. It follows that (2.2.8) is an
isomorphism provided that any map M → Sur in the left-hand side whose composite

with Sur ϕ→ Acris factors through pAcris actually factors through pSur. That this is
the case for p > 2, was observed in the proof of [Br 3, 3.3.2].

Now given M in BTϕ
/S, the construction of Section 2.2.3 produces a p-divisible

group G(M). Conversely, given a p-divisible group G, its Tate module Tp(G) is
a lattice in the Barsotti–Tate representation Vp(G) = Tp(G) ⊗Zp Qp. By Proposi-
tion 2.2.2 and Lemma 2.1.15, there is an M in BTϕ

/S, determined up to canonical

isomorphism, such that Tp(G)
∼−→HomS,ϕ(M,S

ur), and it follows from Proposi-
tion 2.1.12 that the assignment G �→ M = M(G) is functorial.

Now suppose thatp > 2. Then Lemma 2.2.4 and the fact that (2.2.8) is an isomor-
phism imply that for M in Modϕ

/S there is a natural isomorphism M(G(M))
∼−→M.

On the other hand, ifG is a p-divisible group over OK , then we have natural isomor-
phisms,

Tp(G(M(G)))
∼−→HomS,ϕ(M(G),S

ur)
∼−→ Tp(G),

and hence a natural isomorphism G(M(G))
∼−→G by Tate’s theorem.

For p = 2, the same arguments show that the functors G and M induce equiva-
lences on the associated isogeny categories. We could also have deduced the theorem
in this case directly from Proposition 2.2.2 and Corollary 2.2.6. )�
2.2.9. In [Ki, 2.2.22] we gave a different proof of the above theorem when p > 2,
which, in particular, made no use of Tate’s theorem. One can recover Tate’s result
from Theorem 2.2.7 by using the full faithfulness of Proposition 2.1.12 together with
Lemma 2.2.4 and the isomorphism (2.2.8).

2.3 Classification of finite flat group schemes

In this final subsection of the paper, we use Theorem 2.2.7 to give a classification
of finite flat group schemes over OK . The idea that one could do this is due to
A. Beilinson, and we are grateful to him for allowing us to include his argument here.
The final result was conjectured by Breuil [Br 4, 2.1.1]

2.3.1. Following the notation of [Ki] we denote by ′(Mod /S) the category consisting
of S-modules M equipped with a Frobenius semilinear map ϕ, such that the cokernel
of ϕ∗(M)→ M is killed by E(u). We denote by (Mod /S) the full subcategory of
′(Mod /S) consisting of modules M such that M has projective dimension 1 as an
S-module and is killed by some power of p.

Later we will need the full subcategory (ModFI /S) of (Mod /S) consisting of
modules M which are of the form⊕i∈IS/pniS, where I is a finite set and ni ∈ N+.
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Lemma 2.3.2. A module M in ′(Mod /S) is in (Mod /S) if and only if M is an
extension in ′(Mod /S) of objects which are finite free S/pS-modules.

Proof. We remark that since S is a regular ring of dimension 2, the Auslander-
Buchsbaum theorem implies that a finitely generated torsion S-module M has pro-
jective dimension 1 if and only if it has depth 1. The latter condition holds if and only
if the associated primes of M are all of height 1 or, equivalently, if M has no section
supported on the closed point of Spec S.

Thus, if M is in (Mod /S) then the quotients M[pi]/M[pi−1] for i = 0, 1, 2 . . .
are easily seen to be free S/pS-modules, and one sees by descending induction on
i that ϕ∗(M[pi]/M[pi−1]) → M[pi]/M[pi−1] has kernel killed by E(u), and is
therefore injective [Ki, 1.1.9]. Hence M is an extension of objects which are free
over S/pS.

Conversely, any such extension has projective dimension 1, and is killed by some
power of p. )�
2.3.3. Let Db(BTϕ

/S) denote the bounded derived category of the exact category

BTϕ
/S. We write (Mod /S)• for the full subcategory of Db(BTϕ

/S) consisting of
two-term complexes M• = M1 → M2 concentrated in degrees 0 and −1, such that
H−1(M•) = 0, and H 0(M•) is killed by a power of p. This is equivalent to asking
that the map M1 → M2 becomes an isomorphism in the isogeny category of BTϕ

/S.
Concretely, (Mod /S)• is obtained by taking the category of two-term complexes M•,
as above, dividing by homotopy equivalences—that is, by morphisms N• → M• of
the form (h ◦ d, d ◦ h), where h : N2 → M1 is a morphism in BTϕ

/S—and inverting
quasi-isomorphisms.

Lemma 2.3.4. The functor M• �→ H 0(M•) induces an equivalence between
(Mod /S)• and (Mod /S).

Proof. It is easy to check that the functor is fully faithful. To check essential surjec-
tivity it suffices, given M in (Mod /S), to find M̃ in BTϕ

/S and a surjection M̃ → M
compatible with ϕ. Indeed, the kernel of any such surjection is automatically a finite
free module, and since ϕ∗(M)→ M is injective, this cokernel is in BTϕ

/S.

LetL = M/(1⊗ϕ)(ϕ∗M). ThenL is a finite OK -module (via S
u�→π→ OK ). Let

L̃ be a free OK -module, and L̃→ L a surjection. Choose a free S-module M̃ and
surjections of S-modules M̃ → L̃ and M̃ → M compatible with the projections of
L̃ and M to L.

Since we may always replace M̃ with M̃⊕Sr for r ∈ N+, and map the second
factor to 0 in L̃ and arbitrarily to N = ker(M → L), we may assume that Ñ :=
ker(M̃ → L̃) surjects onto N. Finally, we may write Ñ = Ñ0 ⊕ Ñ1, where Ñ1

maps to 0 in N, and Ñ0 ⊗S k
∼−→N ⊗S k. Since ϕ∗(M̃) is a free S-module, the

composite
ϕ∗(M̃)→ ϕ∗(M) ∼−→N ⊂ M

lifts to Ñ0, and any such lift is automatically a surjection. We may then lift this further
to a surjection ϕ∗(M̃) → Ñ. Any such lift is an isomorphism, since both sides are
free S-modules of the same rank.
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The induced map ϕ∗(M̃)→ M̃ has cokernel L̃, and hence gives M̃ the structure
of a module in BTϕ

/S, which surjects onto M. )�
Theorem 2.3.5. If p > 2, there is an exact anti-equivalence between (Mod /S) and
the category (p-Gr /OK) of finite flat group schemes over OK .

Proof. LetDb(p-div /OK)denote the bounded derived category of the exact category
of p-divisible groups over OK . We write (p-Gr /OK)• for the full subcategory
of Db(p-div /OK) consisting of isogenies of p-divisible groups G1 → G2. This
category has an explicit description analogous to the one given for (Mod /S)• in
Section 2.3.3.

The kernel of any isogeny is a finite flat group scheme, and conversely given
any finite flat group scheme G there exists an embedding of G into a p-divisible
group G1 [BBM, 3.1.1]. The quotient G1/G (taken, for example, in the cate-
gory of fppf sheaves) is a p-divisible group. Hence one sees easily that the functor
(p-Gr /OK)• → (p-Gr /OK) given by sending an isogeny to its kernel is an equiv-
alence of categories.

On the other hand, (p-Gr /OK)• is anti-equivalent to (Mod /S)• by Theo-
rem 2.2.7, and the theorem follows, since (Mod /S)• is equivalent to (Mod /S)
by Lemma 2.3.4. )�
Corollary 2.3.6. Ifp > 2, the category (ModFI /S) is anti-equivalent to the category
of finite flat group schemes G over OK such that G[pn] is finite flat for n ≥ 1.

Proof. This can be deduced by formal arguments from Theorem 2.3.5 in the same
way that [Br 2, 4.2.2.5] is deduced from [Br 2, 4.2.1.6]. )�

Appendix A: Crystals and p-divisible groups

A.1

Let T be a W -scheme on which p is locally nilpotent, and denote by (T /W)cris the
crystalline site of T overW , corresponding to embeddings ofW -schemes T ↪→ T ′,
defined by a sheaf of ideal J on T ′, which is equipped with divided powers, and such
that the local sections of J are nilpotent.

Let G be a p-divisible group on T . Recall [MM, II Section 9] that there is a
contravariant functor G �→ D(G) from the category of p-divisible groups over T to
the category of crystals on (T /W)cris. The functor is defined using the Lie algebra
of the universal vector extension of the dual p-divisible group G∗.

The formation of D(G) is compatible with arbitrary base change. In particular, if
p = 0 on T , then we can pullG back by the Frobenius ϕ on T . The relative Frobenius
on G, gives a map G→ ϕ∗(G), and hence a map of crystals

ϕ∗(D(G)) ∼−→D(ϕ∗(G))→ D(G).
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Suppose now that T0 is a W -scheme with p = 0 on T0, and G0 is a p-divisible
group over T0. Let T0 ↪→ T be an object of (T0/W)cris on which p is locally nilpo-
tent, and G a lifting of G0 to T . By construction of D, we have an isomorphism
D(G0)(T )

∼−→D(G)(T ). Moreover, the OT -module D(G)(T ) sits in an exact se-
quence

0 → (LieG)∗ → D(G)(T )→ LieG∗ → 0

where (LieG)∗ denotes the OT -dual of LieG. Hence specifyingG equips D(G0)(T )

with an OT -submodule L such that D(G0)(T )/L is a free OT -module.
The main result of [Me] asserts that if the divided powers on the ideal defining

T0 ↪→ T are nilpotent, then G is determined by L, and that, conversely, given a
submodule L ⊂ D(G0)(T ) such that D(G0)(T )/L is OT -free, and L ⊗OT

OT0 ⊂
D(G0)(T0) coincides with (LieG0)

∗, there is a p-divisible group G over T with
L = (LieG)∗ ⊂ D(G)(T ) = D(G0)(T ). (Strictly speaking, the result in [Me]
applies when, locally on T0, G0 admits some lift to T , but this condition is always
satisfied [MM, II Section 9]).

If T = SpecA is affine we will write D(G)(A) for D(G)(SpecA).

Lemma A.2. Let A → A0 be a surjection of p-adically complete and separated,
local Zp-algebras with residue field k, whose kernel Fil1A is equipped with divided
powers. Suppose that

(1) A is p-torsion-free, and equipped with an endomorphism ϕ : A→ A lifting the
Frobenius on A/pA.

(2) The induced map ϕ∗(Fil1A)
1⊗ϕ/p→ A is surjective.

IfG is ap-divisible group overA0, write Fil1 D(G)(A) ⊂ D(G)(A) for the preim-
age of (LieG)∗ ⊂ D(G)(A0). Then the restriction of ϕ : D(G)(A)→ D(G)(A) to
Fil1 D(G)(A) is divisible by p, and the induced map

ϕ∗ Fil1 D(G)(A)
1⊗ϕ/p−→ D(G)(A)

is a surjection.

Proof. Let M = D(G)(A). Let G̃ be a lifting ofG toA, and set G̃0 = G⊗A A/pA.
Note that ϕ induces the zero endomorphism of (Lie G̃0)

∗, and that ϕ restricted to
Fil1A = ker(A → A0) is divisible by p, since this ideal is equipped with divided
powers. In particular, the map of (2) makes sense. Since

Fil1 M = (Lie G̃)∗ + Fil1A ·M,

we see that ϕ(Fil1 M) ⊂ pM, so we may define a map

ϕ1 = ϕ/p : Fil1 M → M.

We have to check that the image of this map generates the A-module M. The
hypothesis (2) implies that ϕ(M) = ϕ1(Fil1A)Aϕ(M) ⊂ ϕ1(Fil1 M)A. Hence it
suffices to show that the map



Crystalline representations and F -crystals 491

ϕ∗(Fil1 M+ pM)
1⊗ϕ/p−→ M (A.2.1)

is surjective.
There is a unique map A → W(k) which lifts the projection A → k and is

compatible with the action of Frobenius. WriteH = G̃⊗AW(k) andH0 = H ⊗W(k)
k. By [MM, II Section 15] D(H)(W(k)) is naturally isomorphic to the Dieudonné
module ofH , and this isomorphism is compatible with the action of Frobenius. Hence
if V denotes the Verschiebung, then we have

(LieH)∗ = V (F/p)(LieH ∗) ⊂ VD(H)(W(k)).

Hence (LieH0)
∗ ⊂ VD(H0)(k), and this inclusion must be an equality since both

sides have the same k-dimension. (They may both be identified with the quotient
D(H0)(k)/FD(H0)(k).) Hence (LieH)∗ + pD(H)(W(k)) = VD(H)(W(k)), and
since (F/p)V = 1, we see thatF/p induces a surjection of (LieH)∗+pD(H)(W(k))
onto D(H)(W(k)). Hence (A.2.1) is also a surjection. )�

A.3

By a special ring we shall mean a p-adically complete, separated, p-torsion-free,
local Zp-algebra A with residue field k, equipped with an endomorphism ϕ lifting
the Frobenius on A/pA.

For such anA, we denote by CA the category of finite freeA-modules M, equipped
with a Frobenius semilinear map ϕ : M → M and anA-submodule M1 ⊂ M such
that ϕ(M1) ⊂ pM and the map 1⊗ ϕ/p : ϕ∗(M1)→ M is surjective.

Given a map of special rings A→ B, (that is a map of Zp-algebras compatible
with ϕ) and M in CA, we give M⊗A B the structure of an object in CB , by giving
it the induced Frobenius, and setting (M⊗A B)1 equal to the image of M1 ⊗A B in
M⊗A B.

Lemma A.4. Let h : A→ B be a surjection of special rings with kernel J . Suppose
that for i ≥ 1, ϕi(J ) ⊂ pi+ji J , where {ji}i≥1 is a sequence of integers such that
lim−→i

ji = ∞.

Let M and M′ be in CA, and θB : M ⊗A B ∼−→M′ ⊗A B an isomorphism in

CB Then there exists a unique isomorphism ofA-modules θA : M ∼−→M′ lifting θB ,
and compatible with ϕ.

Proof. Let θ0 : M → M′ be any map of A-modules lifting θB . Since ϕ(J ) ⊂ pA
the truth of the proposition is unaffected if we replace M1 and M′

1 by M1 + JM
and M′

1 + JM′ respectively. In particular, we may assume that θ0(M1) ⊂ M′
1.

We claim that the composite

ϕ∗(M1)
ϕ∗(θ0|M1 )−→ ϕ∗(M′

1)
1⊗ϕ/p−→ M′ (A.4.1)

factors through M via the map 1⊗ ϕ/p. To see this note that the map ϕ∗M → M
is injective because, after inverting p, it becomes a surjection of finite free A[1/p]-
modules of the same rank, and hence an isomorphism. Hence if x ∈ ϕ∗(M1) is
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in the kernel of 1 ⊗ ϕ/p, then the image of x in ϕ∗(M) is 0, and hence so is
ϕ∗(θ0)(x) ∈ ϕ∗(M′). It follows that (A.4.1) maps px and hence also x to 0.

Let θ1 : M → M′ be the map induced by (A.4.1). Then for x ∈ M1 we have
θ1 ◦ ϕ/p(x) = ϕ/p ◦ θ0(x). Repeating the construction, we obtain a sequence of
maps θ0, θ1, . . . lifting θB , and such that θi ◦ϕ/p(x) = ϕ/p◦θi−1(x) for x ∈ M1. In
particular, we have (θi+1−θi)◦ϕ/p = ϕ/p◦(θi−θi−1) on M1, and since ϕ/p(M1)

generates M as anA-module, we see that (θi+1−θi)(M) ⊂ (ϕ/p)i(J )M′ ⊂ pjiM′.
Hence the θi converge to a well defined map θA : M → M′, which commutes with
ϕ and lifts θB .

If θA and θ ′A are two such maps, then as above, we obtain that (θA − θ ′A)(M) ⊂
(ϕ/p)i(J )M′ for each i so that θA = θ ′A. )�

A.5

We will apply Lemma A.4 in the following situation: J is equipped with divided
powers, and there exist a finite set of elements x1, . . . xn ∈ J such that J is topo-
logically (for the p-adic topology) generated by the xi and their divided powers, and
ϕ(xi) = xpi . The integers ji may then be taken to be vp((pi − 1)!)− i.

Denote by S the p-adic completion of the divided power envelope ofW [u] with
respect to the ideal E(u). The ring S is equipped with an endomorphism ϕ given by
the Frobenius on W , and ϕ(u) = up. We denote by Fil1 S ⊂ S the closure of the
ideal generated by E(u) and its divided powers. Note that ϕ(Fil1 S) ⊂ pS. We set
ϕ1 = ϕ/p|Fil1 S .

We will denote by BTϕ/S the category of finite free S-modules M equipped with

an S-submodule Fil1 M and a ϕ-semilinear map ϕ1 : Fil1 M → M such that

(1) Fil1 S ·M ⊂ Fil1 M, and the quotient M/Fil1 M is a free OK -module.

(2) The map ϕ∗(Fil1 M)
1⊗ϕ1→ M is surjective.

Any M in BTϕ/S is equipped with a Frobenius semilinear map ϕ : M → M
defined by ϕ(x) = ϕ1(E(u))

−1ϕ1(E(u)x).

Proposition A.6. There is an exact contravariant functor G �→ D(G)(S) from the
category of p-divisible groups over OK to BTϕ/S . If p > 2 this functor is an anti-
equivalence, and ifp = 2 it induces an anti-equivalence of the corresponding isogeny
categories.

Proof. Given a p-divisible groupG over OK , the S-module M(G) := D(G)(S) has
a natural structure of an object of BTϕ/S by (A.2). This gives a functor fromp-divisible

groups over OK to BTϕ/S . We will construct a quasi-inverse (up to isogeny if p = 2).

Let M be in BTϕ/S . We begin by constructing from M a p-divisible group Gi
over OK/πi for i = 1, 2, . . . , e. More precisely, for any such i let Ri = W [u]/ui .
It is equipped with a Frobenius endomorphism ϕ given by the usual Frobenius onW
and u �→ up. We regard OK/πi as an Ri-algebra via u �→ π . This is a surjection
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with kernel pRi , so Ri is a divided power thickening of OK/πi and given any p-
divisible groupGi over OK/πi we may form D(Gi)(Ri). As in (A.2), we denote by
Fil1 D(Gi)(Ri) the preimage of (LieGi)∗ ⊂ D(Gi)(OK/πi) in D(Gi)(Ri). On the
other hand, we have a ϕ-compatible map S → Ri , sending u to u, and uej /j ! to 0
for j ≥ 1. Write Ii for the kernel of this map. We equip Mi = Ri ⊗S M with the
induced Frobenius ϕ, and we set Fil1 Mi ⊂ Mi equal to the image of Fil1 M in Mi .
Note that 1⊗ϕ1 : ϕ∗(Fil1 M)→ M induces a surjective map ϕ∗(Fil1 Mi )→ Mi .
We will construct a p-divisible group Gi together with a canonical isomorphism
D(Gi)(Ri)

∼−→Mi compatible with ϕ and filtrations.
Denote by F : M1 → M1 the map induced by ϕ : M → M. A simple

computation shows that both sides of the surjective map ϕ∗(Fil1 M1) → M1, are
free W -modules of the same rank, hence this map is an isomorphism. Composing
the inverse of this isomorphism with the composite

ϕ∗(Fil1 M1)→ ϕ∗(M1)
∼−→M1,

where the first map is induced by the inclusion Fil1 M ⊂ M, while the second is given
by a⊗m �→ ϕ−1(a)m, gives a ϕ−1 semilinear mapV : M1 → M1, such thatFV =
VF = p. Denote by G1 to be the p-divisible group associated (contravariantly)
to this Dieudonné module. The tautological isomorphism D(G1)(W)

∼−→M1 is
compatible with Frobenius, and it is compatible with filtrations because Fil1 D(G1)

may be identified with VD(G1), as explained at the end of the proof of Lemma A.2.
Now suppose that i ∈ [2, e] is an integer and that we have constructedGi−1 such

that D(Gi−1)(Ri−1)
∼−→Mi−1 is compatible with Frobenius and filtrations. Note

that the kernel ofRi → OK/πi−1 is equal to (ui−1, p)which admits divided powers,
so we may evaluate D(Gi−1) on Ri . By Lemma A.2 and what we have already seen
D(Gi−1)(Ri), and Mi both have the structure of objects of CRi , and the above iso-
morphism is an isomorphism in CRi−1 . Hence by Lemma A.4 applied to the surjection

Ri → Ri−1, it lifts to a unique ϕ-compatible isomorphism D(Gi−1)(Ri)
∼−→Mi .

By the main result of [Me] there is a unique p-divisible groupGi over OK/πi which
lifts Gi−1, and such that (LieGi)∗ ⊂ D(Gi−1)(OK/πi) is equal to the image of
Fil1 Mi under the composite

Fil1 Mi ⊂ Mi
∼−→D(Gi−1)(Ri)→ D(Gi−1)(OK/πi).

By construction we have D(Gi)(Ri)
∼−→Mi compatible withϕ and filtrations, which

completes the induction.
We now apply Lemma A.4 to the surjection S → Re, and the modules M and

D(Ge)(S) in CS . Note that the kernel of S → OK/πe = OK/p admits divided
powers, so we may evaluate D(Ge) on S, and the result is in CS by Lemma A.2.
Since Me

∼−→D(Ge)(Re) in CRe , we have a canonical ϕ-compatible isomorphism

M ∼−→D(Ge)(S) by Lemma A.4.
Suppose that p > 2. Then the divided powers on the kernel of OK → OK/p are

nilpotent, and we may take G = G(M) to be the unique lift of Ge to OK such that
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(LieG)∗ ⊂ D(Ge)(OK) is equal to the image of Fil1 M under the composite of the
above isomorphism and the projection D(Ge)(S)→ D(Ge)(OK). Strictly speaking
what Grothendieck–Messing theory produces is a sequence ofp-divisible groups over
OK/pi for i = 1, 2, . . . which are compatible under the maps OK/pi → OK/pi−1.
However, this data corresponds to a unique p-divisible group over OK [deJ, 2.4.4].

From the construction we clearly have M ∼−→M(G(M)). On the other hand
using the uniqueness at every stage of the construction, one sees by induction on i that
for i = 1, 2, . . . , e and any p-divisible group G over OK , Gi(M(G)) is isomorphic
to G⊗OK

OK/πi , and then that G
∼−→G(M(G)).

Now suppose that p = 2. We may regard the kernel of OK/p2 → OK/p as
being equipped with divided powers by taking the divided powers p[i] to be 0 for
i ≥ 2. We denote by G2e the unique lift of Ge to OK/p2, such that the image of the
composite

Fil1 M → M ∼−→D(Ge)(S)→ D(Ge)(OK/p2)

is equal to (LieG2e)
∗. Finally, as for the case p = 2, we set G equal to the unique

lift of G2e to OK , such that the image of Fil1 M in D(G2e)(OK) = D(Ge)(OK) is
equal to (LieG)∗.

As for p > 2, we still have a natural isomorphism M(G(M))
∼−→M. Given a

p-divisible groupG over OK , we also obtain, as before, an isomorphismGe(M(G))
∼−→G⊗OK

OK/p. In general,G2e need not be isomorphic toG′2e := G⊗OK
OK/p2,

because the divided power structure on (p) ⊂ OK/p2, its not compatible with the
divided powers on (p) ⊂ S. However, since both these p-divisible groups lift Ge,
there exist maps G2e � G′2e, lifting multiplication by p2 on Ge [Kat, 1.1.3]. Since
G and G(M(G)) are obtained from G′2e and G2e as the unique lifts corresponding
to the image of Fil1 M in

D(G2e)(OK)
∼−→D(Ge)(OK)

∼−→D(G′2e)(OK),

these maps lift to mapsG(M(G))� G whose composite in either order is multipli-
cation by p4. )�
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