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Summary. This appendix to the beautiful paper [1] of Ihara puts it in the context of infinite
global fields of our papers [2] and [3]. We study the behaviour of Euler–Kronecker constant
γK when the discriminant (genus in the function field case) tends to infinity. Results of [2]
easily give us good lower bounds on the ratio γK/ log

√|dK |. In particular, for number fields,
under the generalized Riemann hypothesis we prove

lim inf
γK

log
√|dK |

≥ −0.26049 . . . .

Then we produce examples of class-field towers, showing that

lim inf
γK

log
√|dK |

≤ −0.17849 . . . .

1 Introduction

Let K be a global field, i.e., a finite algebraic extension either of the field Q of
rational numbers, or of the field of rational functions in one variable over a finite field
of constants. Let ζK(s) be its zeta-function. Consider its Laurent expansion at s = 1,

ζK(s) = c−1(s − 1)−1 + c0 + c1(s − 1)+ · · · .
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In [1] Yasutaka Ihara introduces and studies the constant

γK = c0/c−1.

There are several reasons to study it:

• It generalizes the classical Euler constant γ = γQ.
• For imaginary quadratic fields, it is expressed by a beautiful Kronecker limit

formula.
• For fields with large discriminants, its absolute value is at most of the order of

const × log
√|dK |, while the residue c−1 itself may happen to be exponential in

log
√|dK |; see [2].

In this appendix, we study the asymptotic behaviour of this constant when the
discriminant (genus in the function field case) of the field tends to infinity. It is
but natural to compare Ihara’s results [1] with the methods of infinite zeta-functions
developed in [2].

Let αK = log
√|dK | in the number field case and αK = (gK − 1) log q in the

function field case over Fq . In the number field case, Ihara shows that

0 ≥ lim sup
K

γK

αK
≥ lim inf

K

γK

αK
≥ −1.

We improve the lower bound to the following.

Theorem 1. Assuming the generalized Riemann hypothesis, we have

lim inf
K

γK

αK

≥ − log 2+ 1
2 log 3+ 1

4 log 5+ 1
6 log 7

1√
2−1

log 2+ 1√
3−1

log 3+ 1√
5−1

log 5+ 1√
7−1

log 7+ 1
2 (γ + log 8π)

= −0.26049 . . . .

Remarks. Unconditionally we get lim inf γK/αK ≥ −0.52227 . . . .
In the function field case, using the same method, we get 0 ≥ lim sup γK/αK ≥

lim inf γK/αK ≥ −(√q + 1)−1, which, of course, coincides with Ihara’s result [1,
Theorem 2].

Let us remark that the upper bound 0 is attained for any asymptotically bad
family of global fields, and that the lower bound in the function field case is attained
for any asymptotically optimal family (such that the ratio of the number of Fq -points
to the genus tends to

√
q − 1), which we know to exist whenever q is a square.

Hence lim sup γK/αK = 0 and in the function field case with a square q, we have
lim inf γK/αK = −(√q + 1)−1.

In Section 3 we construct examples of class-field towers proving (unconditionally)
the following.
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Theorem 2.

lim inf
K

γK/αK ≤ − 2 log 2+ log 3

log
√

5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37
= −0.17849 . . . .

This slightly improves the examples given by Ihara in [1].
In the number field case set βK = −( r12 (γ + log 4π) + r2(γ + log 2π)). If we

complete γK by archimedean terms, we get the following.

Theorem 3. Let γ̃K = γK + βK . Then under the generalized Riemann hypothesis,
we have

lim inf
K

γ̃K

αK
≥ −γ + log(2π)

γ + log(8π)
= −0.6353 . . . .

It is much easier to see that lim sup γ̃K/αK ≤ 0 , and that 0 is attained for any
asymptotically bad family (i.e., such that all φs vanish; see the definitions below).

The best example we know gives (unconditionally) the following.

Theorem 4.
lim inf
K

γ̃K/αK ≤ −0.5478 . . . .

2 Bounds

Let us consider the asymptotic behaviour of γK . We treat the number field case. (The
same argument in the function field case leads to [1, Theorem 2].) Let |dK | tend to
infinity. By [2, Lemma 2.2], any family of fields contains an asymptotically exact
subfamily, i.e., such that for any q there exists the limit φq of the ratio of the number
�q(K) of prime ideals of norm q to the “genus’’αK , and also the limits φR and φC of
the ratios of r1 and r2 to αK . To find lim inf γK/αK and lim inf γ̃K/αK , it is enough
to find corresponding limits for a given asymptotically exact family, and then to look
for their minimal values. In what follows, we consider only asymptotically exact
families.

Theorem 5. For an asymptotically exact family {K}, we have

lim
K

γK

αK
= −

∑ φq log q

q − 1
,

where q runs over all prime powers.

Proof. The right-hand side equals ξ0
φ(1), where ξ0

φ(s) is the log-derivative of the
infinite zeta-function ζφ(s) of [2]. The corresponding series converges for Re s ≥ 1
[2, Proposition 4.2]. We know [1, (1.3.3) and (1.3.4)] that

γK = − lim
s→1

(
ZK(s)− 1

s − 1

)
,
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where for Re(s) > 1,

ZK(s) = −ζ
′
K

ζK
(s) =

∑
P,k≥1

logN(P )

N(P )ks
=
∑
q

�q(K)
log q

qs − 1
.

By the same [2, Proposition 4.2],
ζ ′K
ζK
(s)→ ξ0

φ(s), and hence γK/αK → ξ0
φ(1). )�

Proof of Theorem 1. We have to maximize
∑ φq log q

q−1 under the following conditions:

• φq ≥ 0.
• For any prime p we have

∑∞
m=1mφpm ≤ φR + 2φC.

•
∑
q
φq log q√
q−1 +φR(log 2

√
2π+ π

4 + γ
2 )+φC(log 8π+γ ) ≤ 1 (the Basic Inequality,

[2, GRH-Theorem 3.1]).

If we put

a0 = log
√

8π + π
4
+ γ

2
, a1 = log 8π + γ, aq = log q√

q − 1
,

b0 = b1 = 0, bq = log q

q − 1
,

we are under [2, Section 8, conditions (1)–(4) and (i)–(iv)].
Theorem 1 is now straightforward from [2, Proposition 8.3]. Indeed, the maxi-

mum is attained for φpm = 0 for m > 1, φR = 0, and φ2 = φ3 = φ5 = φ7 = 2φC.
(Calculation shows that starting from p′ = 11, the last inequality of [2, Proposi-
tion 8.3] is violated.) )�
Proof of Theorem 3. This proof is much easier. Since in this case all coefficients are
positive and the ratio of the coefficient of the function we maximize to the correspond-
ing coefficient of the Basic Inequality is maximal for φC, the maximum is attained
when all φs vanish except for φC. )�
Remarks. If we want unconditional results, then instead of the Basic Inequality we
have to use [2, Proposition 3.1]:

2
∑
q

φq log q
∞∑
m=1

1

qm + 1
+ φR

(
γ

2
+ 1

2
+ log 2

√
π

)
+ φC(γ + log 4π) ≤ 1.

For γ̃K/αK , one easily gets

lim inf
γ̃K

αK
≥ −γ + log(2π)

γ + log(4π)
= −0.7770 . . . .

The calculation for γK/αK is trickier since the last condition of [2, Proposition 8.3]
is not violated until very large primes. Changing the coefficients by the first term
(q + 1)−1, Zykin [5] gets

lim inf
γK

αK
≥ −0.52227 . . . .

Note that (for an asymptotically exact family) 1+ γ̃K/αK is just the value at 1 of the
log-derivative ξ(s) of the completed infinite zeta-function ζ̃ (s) of [2].



Asymptotic behaviour of the Euler–Kronecker constant 457

3 Examples

Let us bound lim inf γK/αK from above. To do this, one should provide some exam-
ples of families. The easiest is, just as in [2, Section 9], to produce quadratic fields
having infinite class-field towers with prescribed splitting. The proof of Theorem 1
suggests that we should look for towers of totally complex fields, where 2, 3, 5, and 7
are totally split. This is, however, imprecise, because the sum of [2, Proposition 8.3]
varies only slightly when we change p0. Therefore, I also look at the cases when 2,
3, 5, 7, and 11 are split, and when only 2, 3, and 5 are split, or even only 2 and 3.
This leads to a slight improvement on [1, (1.6.30)].

Each of the following fields has an infinite 2-class-field tower with prescribed
splitting (just apply [2, Theorem 9.1]), and Theorem 5 gives the following list.

• For Q(
√

11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 67) (the ex-
ample of [2, Theorem 9.4]) R, 2, 3, 5, 7 totally split, we get lim inf γK/αK ≤
−0.1515 . . . .

• For Q(
√−13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 73 · 79) (the

example of [2, Theorem 9.5]) with 2, 3, 5, 7, and 11 split, we get −0.1635 . . . .
• For Q(

√−7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 79)with 2, 3, 5 split, we
get −0.1727 . . . .

• For Q(
√−7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 47 · 59)with 2, 3, 5 split, we

get −0.1737 . . . .
• An even better example is found by Zykin [5]:

Q(
√−5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37)

with 2 and 3 split gives us −0.17849 . . . . This proves Theorem 2.

For lim inf γ̃K/αK , the Martinet field Q(cos 2π
11 ,

√
2,
√−23) (see [2, Theo-

rem 9.2]) gives −0.5336 . . . The best Hajir–Maire example (see [4, Section 3.2])
gives lim inf γ̃K/αK ≤ −0.5478 . . . This proves Theorem 4.
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