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Summary. We develop a theory of integration over valued fields of residue characteristic zero.
In particular, we obtain new and base-field independent foundations for integration over local
fields of large residue characteristic, extending results of Denef, Loeser, and Cluckers. The
method depends on an analysis of definable sets up to definable bijections. We obtain a precise
description of the Grothendieck semigroup of such sets in terms of related groups over the
residue field and value group. This yields new invariants of all definable bijections, as well as
invariants of measure-preserving bijections.

Subject Classifications: Primary 03C60, 14C99, 11S80.

1 Introduction

Since Weil’s Foundations, algebraic varieties have been understood independently
of a particular base field; thus an algebraic group G exists prior to the abstract or
topological groups of points G(F), taken over various fields F . For Hecke alge-
bras, or other geometric objects whose definition requires integration, no comparable
viewpoint exists. One uses the topology and measure theory of each local field sepa-
rately; since a field F has measure zero from the point of view of any nontrivial finite
extension, at the foundational level there is no direct connection between the objects
obtained over different fields. The main thrust of this paper is the development of a
theory of integration over valued fields, which is geometric in the sense of Weil. At
present the theory covers local fields of residue characteristic zero or, in applications,
large positive residue characteristic.

Our approach to integration continues a line traced by Kontsevich, Denef–Loeser,
and Loeser–Cluckers (cf. [7]). In integration over non-archimedean local fields there
are two sources for the numerical values. The first is counting points of varieties over
the residue field. Kontsevich explained that these numerical values can be replaced,
with a gain of geometric information, by the isomorphism classes of the varieties
themselves up to appropriate transformations, or more precisely by their classes in
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a certain Grothendieck ring. This makes it possible to understand geometrically the
changes in integrals upon unramified base change. In this aspect our approach is very
similar. The main difference is a slight generalization of the notion of variety over
the residue field, which allows us to avoid what amounted to a choice of uniformizer
in the previous theory.

The second source of numerical values is the piecewise linear geometry of the
value group. We geometrize this ingredient, too, obtaining a theory of integration
taking values in an entirely geometric ring, a tensor product of a Grothendieck ring
of generalized varieties over the residue field, and a Grothendieck ring of piecewise
linear varieties over the value group.

Viewed in this way, the integral is an invariant of measure-preserving definable
bijections. We actually find all such invariants. In addition, we consider and deter-
mine all possible invariants of definable bijections; we obtain in particular two Euler
characteristics on definable sets, with values in the Grothendieck group of generalized
varieties over the residue field.

At the level of foundations, until an additive character is introduced, we are able to
work with Grothendieck semigroups rather than with classes in Grothendieck groups.

1.1 The logical setting

Let L be a valued field, with valuation ring OL. M denotes the maximal ideal. We
let VFn(L) = Ln. The notation VFn is analogous to the symbol An of algebraic
geometry, denoting affine n-space. Let RVm(L) = L∗/(1 + M), (L) = L∗/O∗L,
k(L) = OL/ML. Let rv : VF → RV and val : VF →  be the natural maps. The
natural map RV →  is denoted valrv. The exact sequence

0 → k∗ → RV → → 0

shows that RV is, at first approximation, just a way to wrap together the residue field
and value group.

We consider expressions of the form h(x) = 0 and val f (x) ≥ val g(x) where
f, g, h ∈ L[X], X = (X1, . . . , Xn). A semialgebraic formula is a finite Boolean
combination of such basic expressions. A semialgebraic formula φ clearly defines a
subset D(L) of VFn(L). Moreover, if f, g, h ∈ L0[X], we obtain a functor L �→
D(L) from valued field extensions of L0 to sets. We will later describe more general
definable sets; but for the time being take a definable subset of VFn to be a functor
D = Dφ of this form.

An intrinsic description of definable subsets of RVm is given in Section 2.1. In
particular, definable subsets of (k∗)m coincide with constructible sets in the usual
Zariski sense; while modulo (k∗)m, a definable set is a piecewise linear subset of m.
The structure of arbitrary definable subsets of RVm is analyzed in Section 3.3.

The advantages of this approach are identical to the benefits in algebraic geometry
of working with arbitrary algebraically closed fields, over arbitrary base fields. One
can use Galois theory to describe rational points over subfields. Since function fields
are treated on the same footing, one has a mechanism to inductively reduce higher-
dimensional geometry to questions in dimension one, and often, in fact, to dimension
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zero. (As in algebraic geometry, statements about fields, applied to generic points,
can imply birational statements about varieties.)

1.2 Model theory

Since topological tools are no longer available, it is necessary to define notions such
as dimension in a different way. The basic framework comes from [15]; we recall and
develop it further in Sections 2 and 4. It is in many respects analogous to the o-minimal
framework of [37], that has become well accepted in real algebraic geometry.

In addition, whereas in geometry all varieties are made as it were of the same
material, here a number of rather different types of objects coexist, and the interaction
between them must be clarified. In particular, the residue field and the value group
are orthogonal in a sense that will be defined below; definable subsets of one can
never be isomorphic to subsets of the other, unless both are finite. This orthogonality
has an effect on definable subsets of VFn in general; for example, closed disks behave
very differently from open ones. Here we follow and further develop [16].

Note that the set of rational points of closed and open disks over discrete valua-
tion rings, for instance, cannot be distinguished; as in rigid geometry, the geometric
setting is required to make sense of the notions. Nevertheless, they have immediate
consequences for local fields. As an example, we define the notion of a definable
distribution; this is defined as a function on the space of polydisks with certain prop-
erties. Making use of model-theoretic properties of the space of polydisks, we show
that any definable distribution agrees outside a proper subvariety with one obtained
by integrating a function. This is valid over any valued field of sufficiently large
residue characteristic. In particular, for large p, the p-adic Fourier transform of a
rational polynomial is a locally constant function away from an exceptional subvari-
ety, in the usual sense (Corollary 11.10). The analogue for R and C was proved by
Bernstein using D-modules. For an individual Qp, the same result can be shown
using Denef integration and a similar analysis of definable sets over Qp. These results
were obtained independently by Cluckers and Loeser; cf. [8].

1.3 More general definable sets

Throughout the chapter, we discuss not semialgebraic sets, but definable subsets of a
theory with the requisite geometric properties (called V-minimality). This includes
also the rigid analytic structures of [23]. The adjective “geometrically’’ can be take
to mean here “in the sense of the V-minimal theory.’’

While we work geometrically throughout the paper, the isomorphisms we obtain
are canonical and so specialize to rational points over substructures. Thus a posteriori
our results apply to definable sets over any Hensel field of large residue characteristic.
See Section 12.

For model theorists, this systematic use of algebraically closed valued fields to
apply to other Hensel fields is only beginning to be familar. As an illustration,
see Proposition 12.9, where it is shown that after a little analysis of definable sets
over algebraically closed valued fields, quantifier elimination for Henselian fields of
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residue characteristic zero becomes a consequence of Robinson’s earlier quantifier
elimination in the algebraically closed case.

A third kind of generalization is an a posteriori expansion of the language in the
RV sort. Such an expansion involves loss of information in the integration theory,
but is sometimes useful. For instance, one may want to use the Denef–Pas language,
splitting the exact sequence into a product of residue field and value group. Another
example occurs in Theorem 12.5, where it is explained, given a valued field whose
residue field is also a valued field, what happens when one integrates twice. To discuss
this, the residue field is expanded so as to itself become a valued field.

1.4 Generalized algebraic varieties

We now describe the basic ingredients in more detail. Let L0 be a valued field
with residue field k0 and value group A. For each point γ ∈ Q ⊗ A, we have
one-dimensional k-vector space

Vγ = {0} ∪ {x ∈ K : val(x) = γ }
1+M

.

As discussed above, Vγ should be viewed as a functor L �→ Vγ (L) on valued field
extensionsL ofL0, giving a vector space over the residue field functor. If γ −γ ′ ∈ A,
then Vγ ,V′

γ are definably isomorphic, so one essentially has Vγ for γ ∈ (Q⊗A)/A.
Fix γ̄ = (γ1, . . . , γn), and Vi = Vγi , Vγ̄ = �iVγi . A γ̄ -polynomial is a polyno-

mial H(X) =∑ aνX
ν with valp(aν)+∑i ν(i)γi = 0 for each nonzero term aνXν .

The coefficients aν are described in Section 5.5; for the purposes of the introduc-
tion, and of Theorem 1.3 below, it suffices to think of integer coefficients. Such a
polynomial clearly defines a function H : Vγ̄ → k. In particular, one has the set of
zeroes Z(H). The generalized residue structure RESL0 is the residue field, together
with the collection of one-dimensional vector spaces Vγ (γ ∈ Q⊗A) over it, and the
functions H : Vγ̄ → k associated to each γ̄ -polynomial.

The intersectionW of finitely many zero sets Z(H) is called a generalized alge-
braic variety over the residue field. Given a valued field extensions L of L0, we have
the set of pointsW(L) ⊆ Vγ̄ (L). When L is a local field,W(L) is finite.

We will systematically use the Grothendieck group of generalized varieties over
the residue field, rather than the usual Grothendieck group of varieties. They are
fundamentally of a similar nature: base change to an algebraically closed value field
makes them isomorphic. But the generalized residue field makes it possible to see
canonically objects that are only visible after base change in the usual approach. One
application is Theorem 1.3 below.
K+ RESL0 [n] denotes the Grothendieck group of generalized varieties of dimen-

sion ≤ n; in the paper we will omit L0 from the notation.

1.5 Rational polyhedra over ordered Abelian groups

Let A be an ordered Abelian group. A rational polyhedron  over A is given by an
expression
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 = {x : Mx ≥ b}
with x = (x1, . . . , xn),M a k × n matrix with rational coefficients, and b ∈ Ak . We
view this as a functor B �→  (B) on ordered Abelian group extensions B of A. This
functor is already determined by its value at B = Q⊗A. In particular, whenA ≤ Q,
 is an ordinary rational polyhedron.
K+ A[n] is the semigroup generated by such polyhedra, up to piecewise GLn(Z)-

transformations andA-translations; see Section 9. WhenA is fixed it is omitted from
the notation.

In our applications, A will be the value group of a valued field L0. If B is the
value group of a valued field extension L, write  (L) for  (B).

1.6 The Grothendieck semiring of definable sets

Fix a base field L0. The word “definable’’ will mean TL0 -definable, with T a fixed
V-minimal theory. To have an example in mind one can read “semialgebraic over
L0’’ in place of “definable.’’

Let VF[n] be the category of definable subsets X of n-dimensional algebraic
varieties over L0; a morphism X→ X′ is a definable bijection X→ X′ (see Defini-
tion 3.65 for equivalent definitions). K+ VF[n] denotes the Grothendieck semigroup,
i.e., the set of isomorphism classes of VF[n] with the disjoint sum operation. [X]
denotes the class of X in the Grothendieck semigroup.

We explain how an isomorphism class of VF[n] is determined precisely by iso-
morphism classes of generalized algebraic varieties and rational polyhedra, whose
dimensions add up to n.

If X ⊆ RESm and f : X→ RESn is a finite-to-one map, let

L(X, f ) = VFn ×rv,f X = {(v1, . . . , vn, x) : vi ∈ VF, x ∈ X, rv(vi) = fi(x)}.
The VF[n]-isomorphism class [L(X, f )] does not depend on f , and is also de-
noted [LX].

When S is a smooth scheme over O, X a definable subset of S(k), π : S(O)→
S(k) the natural reduction map, we have [LX] = [π−1X].

We let RES[n] be the category of pairs (X, f ) as above; a morphism (X, f )→
(X′, f ′) is just a definable bijection X → X′. Let K+ RES[∗] be the direct sum of
the Grothendieck semigroups K+ RES[n].

On the other hand, we have already defined K+ [n]. Let K+ [∗] be the direct
sum of theK+ [n]. An element ofK+ [n] is represented by a definableX ⊆ [n].
Let LX = val−1(X), L[X] = [LX].

It is shown in Proposition 10.2 that the Grothendieck semiring of RV is the tensor
product K+ RES[∗] ⊗K+ [∗] over the semiring K+fin of classes of finite subsets
of ; see Section 9.

Note that L([1]1) = L([1]0) + L([(0,∞)]1), where [1]1 ∈ K+ RES[1], [1]0 ∈
K+ RES[0] are the classes of the singleton set 1, and [(0,∞)]1 is the class inK+ [1]
of the semi-infinite segment (0,∞). Indeed, L([1]1) is the unit open ball around 1,
L([1]0) is the point {1}, while L([(0,∞)]1) is the unit open ball around 0, isomorphic
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by a shift to the unit open ball around 1. This is the one relation that cannot be
understood in terms of the Grothendieck semiring of RV; it will be seen to correspond
to the analytic summation of geoemtric series in the Denef theory. Let Isp be the
congruence on the ringK+ RES[∗]⊗K+ [∗] generated by [1]1 ∼ [1]0+[(0,∞)]1.

The following theorem summarizes the relation between definable sets in VF and
in RV; it follows from Theorem 8.4 together with Proposition 10.2 in the text.

Theorem 1.1. L induces a surjective homomorphism of filtered semirings

K+ RES[∗] ⊗K+ [∗] → K+(VF).

The kernel is precisely the congruence Isp.

The inverse isomorphismK+(VF)→ K+ RES[∗]⊗K+ [∗]/Isp can be viewed
as a kind of Euler characteristic, respecting products and disjoint sums, and can be
functorial in various other ways.

The values of this Euler characteristic are themselves geometric objects, both on
the algebraic-geometry side (RES) and the combinatorial-analytic side (). This is
valuable for some purposes; in particular, it becomes clear that the isomorphism is
compatible with taking rational points over Henselian subfields (cf. Proposition 12.6).

For other applications, however, it would be useful to obtain more manageable
numerical invariants; for this purpose one needs to analyze the structure ofK+ [∗].
We do not fully do this here, but using a number of homomorphisms onK+ [∗], we
obtain a number of invariants. In particular, using the Z-valued Euler characteristics
onK [∗] (cf. Section 9 and [26, 20]), we obtain two homomorphisms onK+ VF[n]
essentially to K RES[n]. The reason there are two rather than one has to do with
Poincaré duality; see Theorem 10.5.

For instance, when F is a field of characteristic 0, we obtain an invariant of rigid
analytic varieties over F((t)), with values in the Grothendieck ringK(VarF ) of alge-
braic varieties over F ; and another in K(VarF )[[A1]−1] (Proposition 10.8). It is in-
structive to compare this with the invariant of [25], with values inK(RES[n])/[Gm].1
Since any two closed balls are isomorphic, via additive translation and multiplicative
contractions, all closed balls must have the same invariant. Working with a discrete
value group tends to force [Gm] = 0, since it appears that a closed ballB0 of valuation
radius 0 equalsGm times a closed ballB1 of valuation radius 1. Since our technology
is based on divisible value groups, the “equation’’ [B0] = [B1][Gm] is replaced for
us by [B0] = [Bo0 ][Gm], where Bo0 is the open ball of valuation radius 0. Though
B1 and B0

0 have the same F((t))-rational points, they are geometrically distinct (cf.
Lemma 3.46) and so no collapse takes place. See also Sections 12.6 and 12.6 for two
previously known cases.

By such Euler characteristic methods we can prove a statement purely concerning
algebraic varieties, partially answering a question of Gromov and Kontsevich [13,
p. 121]. In particular, two elliptic curves with isomorphic complements in projective

1 The setting is somewhat different: Loeser–Sebag can handle positive characteristic, too,
but assume smoothness.
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space were previously known to be isogenous, by zeta function methods; we show
that they are isomorphic. This also follows from [22]; the method there requires
strong forms of resolution of singularities. See Theorem 13.1.

1.7 Integration of forms up to absolute value

Over local fields, data for integration consists of a triple (X, V, ω), withX a definable
subset of a smooth variety V and ω a volume form on V . We are interested in an
integral of the form

∫
X
|ω|, so that multiplication of ω by a function with norm 1 does

not count as a change, nor does removing a subvariety of V of smaller dimension.
Using an equivalent description of VF[n], where the objects come with a distinguished
finite-to-one map into affine space, we can represent an integrand as a pair (X, ω)
with X ∈ Ob VF[n] and ω a function from X into . Isomorphisms are essential
bijections, preserving the form up to a function of norm 1. See Definition 8.10 for a
precise definition of this category, the category µVF[n].

Integration is intended to be an invariant of isomorphisms in this category. Thus
we can find the integral if we determine all invariants. We do this in complete analogy
with Theorem 1.1.

For n ≥ 0 let [n] be the category whose objects are finite unions of rational
polyhedra over the group A of definable points of . A morphism f : X → Y of
[n] is a bijection such that for some partition X = ∪ki=1Xi into rational polyhedra,
f |Xi is given by an element of GLn(Z) � An. Let µ[n] be the category of pairs
(X, ω), with X an object of [n], and ω : X →  a piecewise affine map. A
morphism f : (X, ω) → (X′, ω′) is a morphism f : X → X′ of [n] such that∑l
i=1 xi+ω(x) =

∑l
i=1 x

′
i+ω′(x′)whenever (x′1, . . . , x′n) = f (x1, . . . , xn). Given

(X, ω) ∈ Obµ[n], define LX as above, and adjoint the pullback of ω to obtain an
object of µVF[n]. This gives a homomorphism K+ µ[n] → K+ µVF[n].
Theorem 1.2. L induces a surjective homomorphism of filtered semirings

K+ RES[∗] ⊗N K+ µ[∗] → K+(µVF)[∗].
The kernel is generated by the relations p ⊗ 1 = 1 ⊗ [(valrv(p),∞)] and 1 ⊗ a =
valrv−1(a)⊗ 1.

In the statement of the theorem, p ranges over definable points of RES (actually
one value suffices), and a ranges over definable points of .

This can also be written as

K+ RES[∗] ⊗K+(µfin) K+ µ[∗]/Iµsp ' K+(µVF)[∗],

where K+(µfin) is the subsemiringof subsets of µ with finite support, and Iµsp is
a semiring congruence defined similarly to Isp. The base of the tensor leads to the
identification of a point of  with with a coset of k∗ in RES, while Iµsp identifies a
point of RES with an infinite interval of . The inverse isomorphism can be viewed
as an integral.
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We introduce neither additive nor multiplicative inverses inK+ RES[∗] formally,
so that the target of integration is completely geometric.

We proceed to give an application of the first part of the theorem (the surjectivity)
in terms of ordinary p-adic integration.

1.8 Integrals over local fields: Uniformity over ramified extensions

Let L be a local field, finite extension of Qp or Fp((t)). We normalize the Haar
measure µ in such a way that the maximal ideal has measure 1, the norm by |a| =
µ{x : |x| < |a|}. Let RESL be the generalized residue field, and L be the value
group. We assume Qp or Fp((t)) has value group Z, and identify L with a subgroup
of Q.

Given c = (c1, . . . , ck) ∈ Lk and s = (s1, . . . , sk) ∈ Rk with si ≥ 1, let
|c|s = �ki=1|ci |si .

Let λ be a multiplicative character Rn → R∗. Define

evλ( (B)) =
∑
b∈ (B)

λ(b),

provided this sum is absolutely convergent. Given linear functions h0, . . . , hk on Rn

and s1, . . . , sk ∈ R, let evh,s,Q = evλ, where λ(x) = Qh0(x)+∑ sihi (x).

Theorem 1.3. Fix n, d, k ∈ N. Let p be a large prime compared to n, d, k, and let
f ∈ Qp[X1, . . . , Xn]k have degrees ≤ d . Then there exist finitely many generalized
varieties Xi over RES(Qp), rational polyhedra i , γ (i) ∈ Q≥0, ni ∈ N, and linear
functions hi0, . . . , h

i
k with rational coefficients, such that for any finite extension L of

Qp with residue field GF(q) and val(L∗) = (1/r)Z, val(p) = 1, and any s ∈ Rk≥1,∫
OnL

|f |s =
∑
i

qrγ (i)(q − 1)ni |Xi(L)| evhi ,s,qr ( i(L)).

Note the following:

(1)  i(L) depends only on the ramification degree r of L over Qp.
(2) The formula is a sum of nonnegative terms.
(3) evh,s,qr ( i((1/r)Z)) can be written in closed form as a rational function of

qrs . This follows from Denef, who shows it for more general sets i definable in
Pressburger arithmetic; such analytic summation is an essential component of his
integration theory. Since it plays no role in our approach we leave the statement
in geometric form.

(4) The generalized varietiesXi and polyhedra i are simple functions of the coeffi-
cients f . Here we wish to emphasize not this, but the uniformity of the expression
over ramified extensions of Qp.

The proof follows Proposition 10.10. (It uses only the easy surjectivity in this
proposition and Proposition 4.5.)
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1.9 Bounded and unbounded sets

The isomorphism of semirings of Theorem 1.2 obviously induces an isomorphism of
rings. However, introducing additive inverses loses information on the  side; the
class of the interval [0, 1) becomes 0, since [0,∞) and [1,∞) are isomorphic. The
classical remedy is to cut down to bounded sets before groupifying. This presents no
difficulty, since the isomorphism respects boundedness.

In higher-dimensional local fields, stronger notions of boundedness may be useful,
such as those introduced by Fesenko. Since these questions are not entangled with
the theory of integration, and can be handled a posteriori, we will deal with them in
a future work.

Here we mention only that even if one insists on integrating all definable inte-
grands, with no boundedness condition, into a ring, some but not all information is
lost. This is due to the existence of Euler characteristics on , and thus again to the
fact that we work geometrically, with divisible groups, even if the base field has a
discrete group. We will see (Lemma 9.12) that K+(µ[n]) can be identified with
the group of definable functions  → K+([n]). Applying an appropriate Euler
characteristic reduces to the group of piecewise constant functions on  into Z. Re-
combining with RES we obtain a consistent definition of an integral on unbounded
integrands, compatible with measure-preserving maps, sums, and products, with val-
ues inK(RES)[A]/[A1]1K(RES)[A], whereA is the group of definable points of ,
and [A1]1 is the class of the affine line. See Theorem 10.11.

1.10 Finer volumes

We also consider a finer category of definable sets with RV-volume forms. This
means that a volume form ω is identified with gω only when g− 1 ∈ M; val(g) = 0
does not suffice. We obtain an integral whose values themselves are definable sets
with volume forms; in particular, including algebraic varieties with volume forms
over the residue field.

Theorem 1.4. L induces a surjective homomorphism of graded semirings

K+ µRV[∗] → K+(µVF)[∗].
The kernel is precisely the congruence Iµsp.

µRV is the category of definable subsets of µRV∗ enriched with volume forms;
see Definition 8.13. Again, an isomorphism is induced in the opposite direction, that
can be viewed as a motivic integral∫

: K+(µVF)[∗] → K+ µRV[∗]/Iµsp.

This allows an iteration of the integration theory, either with an integral of the same
nature if the residue field is a valued field, or with a different kind of integral if, for
instance, the residue field is R.
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1.11 Hopes

We mention three. Until now, a deep obstacle existed to extending Denef’s theory
to positive characteristic; namely, the theory was based on quantifier elimination for
Hensel fields of residue characteristic 0, or for finitely ramified extensions of Qp,
and it is known that no similar quantifier elimination is possible for Fp((t)), if any
is. On the other hand, Robinson’s quantifier elimination is perfectly valid in positive
characteristic. This raises hopes of progress in this direction, although other obstacles
remain.

It is natural to think that the theory can be applied to higher-dimensional local
fields; we will consider this in a future work.

Another important target is asymptotic integration over R. Nonstandard exten-
sions of R admit natural valued field structures. This is the basis of Robinson’s
nonstandard analysis. These valued fields have divisible value groups, and so previ-
ous theories of definable integration do not apply. The theory of this paper applies,
however, and we expect that it will yield connections between p-adic integration and
asymptotics of real integrals.

1.12 Organization of the paper

After recalling some basic model theory in Section 2, we proceed in Section 3 to
V-minimal theories.

In Section 4 we show that any definable subset of VFn admits a constructible
bijection with some L(X, f ). In fact, only a very limited class of bijections is needed;
a typical one has the form (x1, x2) �→ (x1, x2 + f (x1, x2)), so it is clearly measure
preserving. The proof is simple and brief, and uses only a little of the preceding
material. We note here that for many applications this statement is already sufficient;
in particular, it suffices to give the surjectivity in Theorems 1.1 and 1.2, and hence
the application Theorem 1.3.

In Section 5 we return to the geometry of V-minimal structures, developing a
theory of differentiation. We show the compatibility between differentiation in RV
and in VF. This is needed for Theorem 1.4. Differentiation in VF involves much
finer scales than in RV; in effect RV can only see distances measured by valuation 0,
while the derivative in VF involves distances of arbitrarily large valuation. The proof
uses a continuity argument with respect to dependence on scales. It fails in positive
characteristic, in its present form.

Section 6 is devoted to showing that L yields a well-defined map K+(RV) →
K+(VF); in other words, not only objects, but also isomorphisms can be lifted.

Sections 7 and 8 investigate the kernel of L in Theorem 1.1. This is the most
technical part of the paper, and we have not been able to give a proof as functorial as
we would have liked. See Question 7.9.

In Section 9 we study the piecewise linear Grothendieck group; see the introduc-
tion to this section.

Section 10 decomposes the Grothendieck group of RV into the components RES
and , used througout this introduction.
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Section 11 introduces an additive character, and hence the Fourier transform.
The isomorphism of volumes given by Theorem 1.4 suffices for this extension; it
is not necessary to redo the theory from scratch, but merely to follow through the
functoriality.

Section 12 contains the extension to definable sets over Hensel fields mentioned
above, and Section 13 gives the application to the Grothendieck group of varieties.

2 First-order theories

The bulk of this paper uses no deep results from logic beyond Robinson’s quantifier
elimination for the theory of algebraically closed valued fields [33]. However, it is
imbued with a model-theoretic viewpoint. We will not explain the most basic notions
of logic: language, theory, model. Let us just mention that a language consists of basic
relations and function symbols, and formulas are built out of these, using symbols for
Boolean operations and quantifiers (cf., e.g., [11] or [19], or the first section of [9]);
but we attempt in this section to bridge the gap between these and the model-theoretic
language used in the paper.

A language L consists of a family of “sorts’’ Si , a collection of variables ranging
over each sort, a set of relation symbolsRj , each intended to denote a subset of a finite
product of sorts, and a set of function symbols Fk intended to denote functions from
a given finite product of sorts to a given sort. From these, and the logical symbols
&, ¬, ∀, ∃ one forms formulas. A sentence is a formula with no free variables (cf.
[11]). A theory T is a set of sentences of L. A theory is called complete if for every
sentence φ of L, either φ or its negation ¬φ is in T .

AuniverseM for the languageL consists, by definition, of a set S(M) for each sort
S of L. An L-structure consists of such a universe, together with an interpretation
of each relation and a function symbol of L. One can define the truth value of a
sentence in a structure M; more generally, if φ(x1, . . . , xn) is a formula, with xi a
variable of sort Si , then one defines the interpretation φ(M) of φ inM , as the set of
all d ∈ S1(M) × · · · × Sn(M) of which φ is true. If every sentence in T is true in
M , one says that M is a model of T (M |= T ). The fundamental theorem here is
a consequence of Gödel’s completeness theorem called the compactness theorem: a
theory T has a model if every finite subset of T has a model.

The language Lrings of rings, for example, has one sort, three function symbols
+, · · · ,−, two constants 0, 1; any ring is anLrings-structure; one can obviously write
down a theory Tfields in this language whose models are precisely the fields.

2.1 Basic examples of theories

We will work with a number of theories associated with valued fields:

(1) ACF, the theory of algebraically closed fields. The language is the language of
rings {+, ·,−, 0, 1}, mentioned earlier. The theory states that the model is a field,
and for each n, that every monic polynomial of degree n has a root. For instance,
for n = 2,
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(∀u1)(∀u0)(∃x)(x2 + u1x + u0 = 0).

In addition, ACF(0) includes the sentence 1 + 1 �= 0, 1 + 1 + 1 �= 0, . . . . This
theory is complete (Tarski–Chevalley). It will arise as the theory of the residue
field of our valued fields.

(2) Divisible ordered Abelian groups (DOAG). The language consists of a single
sort, a binary relation symbol <, a binary function symbol +, a unary function
symbol −, and a constant symbol 0. The theory states that a model is an ordered
Abelian group. In addition, there are axioms asserting divisibility by n for each
n, for instance, (∀x)(∃y)(y + y = x).
This is the theory of the value group of a model of ACVF.

(3) The RV sort (extension of (2) by (1)). The language has one official sort, denoted
RV, and includes Abelian group operations ·, / on RV, a unary predicate k∗ for a
subgroup, and an operation+ : k2 → k, where k is k∗ augmented by a constant
0. Finally, there is a partial ordering; the theory states that k∗ is the equivalence
class of 1; that≤ is a total ordering on k∗-cosets, making RV/k∗ =:  a divisible
ordered Abelian group, and that (k,+, ·) is an algebraically closed field. (We
thus have an exact sequence 0 → k∗ → RV →  → 0, but we treat  as an
imaginary sort.) This theory TRV is complete, too.
We will sometimes view RV as an autonomous structure but it will arise from an
algebraically closed valued field, as in (5) below.

(4) Let M |= TRV, and let A be a subgroup of (M). Within TRVA we see an
interpretation of ACF, namely, the algebraically closed field k. In addition, for
each a ∈ A, we have a one-dimensional k-space, the fiber of RV lying over 
augmented by 0. Collectively, the field k with this collection of vector spaces
will be denoted RES.

(5) ACVF, the theory of algebraically closed valued fields. According to Robinson,
the completions, denoted ACVF(q, p), are obtained by specifying the charac-
teristic q and residue characteristic p. We will be concerned with ACVF(0, 0)
in this paper. However, since any sentence of ACVF(0, 0) lies in ACVF(0, p)
for almost all primes p, the results will a posteriori apply also to valued fields of
characteristic zero and large residue characteristic.
We will take ACVF(0, 0) to have two sorts, VF and RV = VF∗/(1 +M). The
language includes the language of rings (1) on the VF sort, the language (3)
on the RV sort, and a function symbol rv for a function VF∗ → RV. Denote
rv −1(RV≥0) = O, rv −1(0) = M.
The theory states that VF is a valued field, with valuation ring O and maximal
ideal M such that rv : VF∗ → RV is a surjective group homomorphism, and the
restriction to O (augmented by 0 �→ 0) is a surjective ring homomorphism.
The structure that ACVFA induces on  is of a uniquely divisible Abelian group,
with constants for the elements of (A). Thus every definable subset of  is a
finite union of points and open intervals (possibly infinite).

(6) Rigid analytic expansions (Lipshitz). The theory ACVFR of algebraically closed
valued fields expanded by a family R of analytic functions. See [23] and [24].
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Our theory of definable sets will be carried out axiomatically, and are thus also
valid for these rigid analytic expansions.

A definable set D is not really a set, but a functor from the category of models
of T to the category of sets of the form M �→ φ(M), where φ is a formula of
L. Model theorists do not really distinguish between the definable set D and the
formula φ defining it; we will usually refer to definable sets rather than to formulas.
If R ⊆ D × D′ and for any model M |= T , R(M) is the graph of a function
D(M)→ D(M ′), we say R is a definable function of T . Similarly, we sayD is finite
if D(M) is finite for anyM |= T , etc. It follows from the compactness theorem that
if D is finite, then for some integer m we have |D(M)| ≤ m for any M |= T . We
sometimes write S∗ to denote Sn for some unspecified n.

By a map between L-structures A, B we mean a family f = (fS) indexed by
the sorts of L, with fS : S(A) → S(B); one extends f to products of sorts by
setting f ((x1, . . . , xn)) = (f (x1), . . . , f (xn)). f is an embedding of structures if
f−1R(B) = R(A) for any atomic formula R of L. Taking R to be the equality
relation, this includes, in particular, the statement that each fS is injective.

On occasion we will use ∞-definable sets. An ∞-definable set is a functor of
the form M �→ ∩D, where D is a given collection of definable sets. In a complete
theory a definable set is determined by the value it has at a single model; this is, of
course, false for ∞-definable sets.

We write a ∈ D to mean a ∈ D(M) for some M |= T . It is customary, since
Shelah, to choose a single universal domain U embedding all “small’’ models, and
let a ∈ D mean a ∈ D(U); we will not require this interpretation, but the reader is
welcome to take it.

We will sometimes consider imaginary sorts. If D is a definable set, and E a
definable equivalence relation onD, thenD/E may be considered to be an imaginary
sort; as a definable set it is just the functorM �→ D(M)/E(M). A definable subset of
a product �ni=1Di/Ei of imaginary sorts (and ordinary sorts) is taken to be a subset
whose preimage in �ni=1Di is definable; the notion of a definable function is thus
also defined. In this way, the imaginary sorts can be treated on the same footing as
the others. The set of all elements of all imaginary sorts of a structureM is denoted
Meq. It is easy to construct a theory T eq in a language Leq whose category of models
is (essentially) {Meq : M |= T }. See [35] and [31, Section 16d].

Given a definable setD ⊆ S×X, where S,X are definable sets, and given s ∈ S,
let D(s) = {x ∈ X : (s, x) ∈ D}. Thus D is viewed as a family of definable subsets
of X, namely, {D(s) : s ∈ S}. If s �= s′ implies D(s) �= D(s′), we say that the
parameters are canonical, or that s is a code forD(s). In particular, ifE is a definable
equivalence relation, the imaginary elements a/E can be considered as codes for the
classes of E.

T is said to eliminate imaginaries if every imaginary sort admits a definable injec-
tion into a product of some of the sorts of L. For instance, the theory of algebraically
closed fields eliminates imaginaries. See [32] for an excellent exposition of these is-
sues. We note that T admits elimination of imaginaries iff for any familyD ⊆ S×X
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there exists a familyD′ ⊆ S′ ×X such that for any t ∈ S there exists a unique t ′ ∈ S′
with D(t) = D′(t ′).

(Recall that t ∈ S means t ∈ S(M) for some M |= T . The uniqueness of t ′
implies in this case that one can choose t ′ ∈ S′(M), too.) In this case, we also say
that t ′ is called a canonical parameter or code for D(t).

Example 2.1. Let b be a nondegenerate closed ball in a model the theory ACVF of
algebraically closed valued fields. Then b = {x : val(x − c) ≥ val(c− c′)} for some
elements c �= c′ of the field. b is coded by b̄ = (c, c′)/E, where (c, c′)E(d, d ′)
iff val(c − c′) = val(d − d ′) ≤ val(c − d). However, we often fail to distinguish
notationally between b and b̄, and, in particular, we write A(b) = A(b̄).

The only imaginary sorts that will really be essential for us are the sorts B of
closed and open balls. The closed balls around 0 can be identified with their radius,
hence the valuation group(M) = VF∗(M)/O∗(M) of a valued fieldM is embedded
as part of B.

Notation. Let B = Bo ∪ Bcl, the sorts of open and closed subballs of VF. Let
+ = {γ ∈  : γ ≥ 0}.

Bcl =
•⋃
γ∈

Bcl
γ , Bcl

γ = VF/γO,

Bo =
•⋃
γ∈

Bo
γ , Bo

γ = VF/γM.

Here γM = {x ∈ VF : val(x) > γ }, γO = {x ∈ RES : val(x) ≥ γ }. The elements
of Bcl

γ , fBoγ will be referred to as closed and open balls of valuative radius γ ; though
this valuative definition of radius means that bigger balls have smaller radius. The
word “distance’’ will be used similarly.

By a thin annulus we will mean a closed ball of valuative radius γ , with an open
ball of valuative radius γ removed.

Fix a modelM of T . A substructureA ofM (writtenA ≤ M) consists of a subset
AS of S(M), for each sort S of L, closed under all definable functions of T . For
example, the substructures of models of Tfields are the integral domains.

In general, the definable closure of a set A0 ⊂ M is the smallest substructure
containing A0; it is denoted dcl(A0) or 〈A0〉. An element of 〈A0〉 can be written as
g(a1, . . . , an)with ai ∈ A0 and g a definable function; i.e., it is an element satisfying
a formula φ(x, a1, . . . , an) of LA0 in one variable that has exactly one solution in
M . If A is a substructure, dcl(A ∪ {c}) is also denoted A(c). These notions apply
equally when A, c contain elements of the imaginary sorts. If B is contained in sorts
S1, . . . , Sn, then dcl(B) is said to be an S1, . . . , Sn-generated substructure. In the
special case of valued fields, where one of the sorts VF is the “main’’ valued field
sort, a VF-generated structure will be said to be field-generated, or sometimes just
“a field.’’
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For any definable setD, we letD(A) be the set of points ofD(M)with coordinates
in A. If S = D/E is an imaginary sort, S(A) is the set of a ∈ S whose preimage
is defined over A. We have D(A)/E(A) ⊆ S(A). D(A)/E(A) is, of course, closed
under definable functions Sm → S that lift to definable functions Dm → D, but
it is not necessarily closed under arbitrary definable functions, i.e., functions whose
graph is the image of a definable subset of Dm ×D. For example x �→ (1/n)x is a
definable function on the value group of a model of ACVF, but if A ≤ M |= ACVF,
(A) need not be divisible.

When A ≤ M,B ≤ N with M,N |= T , a function f : A → B is called a
(partial) elementary embedding (A,M) → (B,N) if for any definable set D of L,
f−1D(B) = D(A). In particular, when A = M , B = N , one says that M is an
elementary submodel of N .

By a constructible set over A, we mean the functor L �→ φ(L) on models
M |= TA, where φ = φ(x1, . . . , xn, a1, . . . , am) is a quantifier-free formula with
parameters from A.

We say that T admits quantifier elimination if every definable set coincides with
a constructible set. It follows in this case that for any A, any A-definable set is
A-constructible. When T admits quantifier elimination, f : A → B is a partial
elementary embedding iff it is an embedding of structures.

Theories (1)–(5) of Section 2.1 admit quantifier elimination in their natural alge-
braic languages (theorems of Tarski–Chevalley and Robinson; cf. [16]). The sixth
admits quantifier elimination in a language that needs to be formulated with more
care; see [23].

In all of this paper, except for Sections 12.1 and 12.3, we will only use structural
properties of definable sets, and not explicit formulas. In this situation quantifier elim-
ination can be assumed softly, by merely increasing the language by definition so that
all definable sets become equivalent to quantifier-free ones. The above distinctions
will only directly come into play in Sections 12.1 and 12.3.

IfA ≤ M |= T , LA is the languageL expanded by a constant ca for each element
a of A, so that an LA-structure is the same as an L-structure M together with a
function AS → S(M) for each sort S. TA is the set of LA sentences true inM when
the constant symbol ca is interpreted as a; the models of TA are models M of T ,
together with an isomorphic embedding ofA as a substructure ofM . In particular,M
with the inclusion ofA inM is anLA-structure denotedMA. For any subsetA0 ⊆ M ,
we write TA0 for T〈A0〉, where 〈A0〉 is the substructure generated by A0.

A definable set of TA will also be referred to as A-definable; similarly for other
notions such as those defined just below.

A parametrically definable set of T is by definition a TA-definable set for someA.

An almost definable set is the union of classes of a definable equivalence relation
with finitely many classes. An element e is called algebraic (respectively, definable)
if the singleton set {e} is almost definable (respectively, definable). When T is a
complete theory, the set of algebraic (definable) elements of a model M of T forms
a substructure that does not depend onM , up to (a unique) isomorphism.
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Let A0 ⊆ M |= T ; the set of e ∈ M almost definable over A0 is called the alge-
braic closure ofA0, acl(A0). IfA0 is contained in sorts S1, . . . , Sn, any substructure
of acl(A0) containing dcl(A0) is said to be almost S1, . . . , Sn-generated .

Example 2.2. If a definable setD carries a definable linear ordering, then every alge-
braic element ofD is definable. This is because the least element of a finite definable
set F is clearly definable; the rest are contained in a smaller finite definable subset of
D, so are definable by induction.

If, in addition, D has elimination of imaginaries, and Y is almost definable and
definable with parameters from D, then Y is definable. Indeed, using elimination of
imaginaries in D, the set Y can be defined using canonical parameters. These are
algebraic elements of D, hence definable.

Two definable functions f : X→ Y, f ′ : X→ Y ′ will be called isogenous if for
all x ∈ X, acl(f (x)) = acl(f ′(x)).

Compactness

Compactness often allows us to replace arguments in relative dimension one over a
definable set, by arguments in dimension one over a different base structure. Here is
an example.

Lemma 2.3. Let fi : Xi → Y be definable maps between definable sets of T (i =
1, 2). Assume that for anyM |= T and b ∈ Y (M),X1(b) := f1

−1(b) is Tb-definably
isomorphic to X2(b) = f2

−1(b). Then X1, X2 are definably isomorphic.

Proof. Let F be the family of pairs (U, h), where U is a definable subset of Y , and
h : f1

−1U → f2
−1U is a definable bijection.

Claim. For any b ∈ Y (M),M |= T , there exists (U, h) ∈ F with b ∈ U .

Proof. Let b ∈ Y (M). There exists a Tb-definable bijection X1(b) → X2(b). This
bijection can be written as x �→ g(x, b), where g is a definable function. Let U =
{y ∈ Y : (x �→ g(x, y)) is a bijectionX1(y)→ X2(y)}. Then (U, g(x, f1(x))) ∈ F,
and b ∈ U . )�

Now by compactness, there exist a finite number of definable subsets U1, . . . , Uk
of Y , with Y = ∪iUi , and (Ui, hi) ∈ F for some hi . We define U ′i = Ui \ (U1 ∪
. . . ∪ Ui−1) and h = ∪ihi |U ′i . Then h : X1 → X2 is the required bijection. )�

Here is another example of the use of compactness.

Example 2.4. If D is a definable set, and for any a, b ∈ D, a ∈ acl(b), then D is
finite. More generally, if a ∈ acl(b) for any b ∈ D, then a ∈ acl(∅).
Proof. We prove the first statement, the second being similar. For any modelM , pick
a ∈ M; then D(M) ⊆ acl(a). For b ∈ acl(a). Let φb be the formula x �= b&D(x).
Thus the set of formulas Th(M)M ∪ {φb} has no common solution. By compactness,
some finite subset already has no solution; this is only possible if D(M) is finite. )�
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Transitivity, orthogonality

A definable set D is transitive if it has no proper, nonempty definable subsets. (The
usual word is “atomic.’’ One also says thatD generates a complete type.) It is (finitely)
primitive if it admits no nontrivial definable equivalence relation (with finitely many
classes).

Remark 2.5. Let A be a VF-generated substructure of a model of ACVF. When
A is VF-generated, we will see that an ACVFA-definable ball b is never transitive
in ACVFA; indeed, it always contains an A-definable finite set. But b is always
ACVFA(b)-definable, and quite often it is transitive; cf. Lemma 3.8.

Two definable sets D, D′ are said to be orthogonal if any definable subset of
Dm ×Dl is a finite union of rectangles E × F , E ⊆ Dm, F ⊆ Dl . In this case, the
rectangles E, F can be taken to be almost definable. If the rectangles can actually be
taken definable, we say the D, D′ are strongly orthogonal.

Types

Let S be a product of sorts, and let M |= T , a ∈ S(M). We write tp(a) = tp(a;M)
(the type of a) for the set of definable sets D with a ∈ D; when p = tp(a) we write
a |= p. A complete type is the type of some element in some model. If q = tp(a),
we say that a is a realization of q. The set TpS of complete types belonging to S can
be topologized: a basic open set is the set of types including a given definable setD.
The compactness theorem of model theory implies that this is a compact topological
space: if {Di} is any collection of definable sets with nonempty finite intersections,
the compactness theorem asserts the existence ofM |= T with ∩iDi(M) �= ∅.

The compactness theorem is often used by way of a construction called saturated
models; cf. [9]. These are models where all types over “small’’ sets are realized.
They enjoy excellent Galois-theoretic properties: in particular, ifM is saturated, then
dcl(A0) = Fix Aut(M/A0) for any finite A0 ⊆ M . If D is acl(A0)-definable, then
there exists an A0-definable D′ which is a finite union of Aut(M/A0)-conjugates
of D.

A type p can also be identified with the functor P from models of T (under
elementary embeddings) into sets; P(M) = {a ∈ M : a |= p}. As with definable
sets, we speak as if P is simply a set. Unlike definable sets, the value of P(M) at a
single model does not determine P . (It could be empty, but it does determine P ifM
is sufficiently saturated.)

Any definable map f : S → S′ induces a map f∗ : TpS → TpS′ ; as another
consequence of the compactness theorem, f∗ is continuous. We also have a restriction
map from types of TA to types of T , tpT (A)(a) �→ tpT (a).

If L ⊆ L′ and T ⊆ T ′, we say that T ′ is an expansion of T . In this case any
T ′-type p′ restricts to a T -type p. If p′ is the unique type of T ′ extending p, we say
that p implies p′.

The simplest kind of expansion is an expansion by constants, i.e., a theory TA
(whereA ≤ M |= T ). If c ∈ Mn, or more generally if c ∈ Meq, the type of c forMA
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is denoted tp(c/A). It is rare for tp(c) to imply tp(c/A), but it is significant when it
happens.

An instance of this is strong orthogonality: it is easy to see that strong orthogo-
nality of two definable sets D, D′ is equivalent to the following condition:

If A′ is generated by elements of D′, then any type of elements
of D generates a complete type over A′. (∗)

The asymmetry in (∗) is therefore only apparent.
Similarly, we have the following.

Lemma 2.6. Let D,D′ be definable sets. Then (1) ⇐⇒ (2), (3) ⇐⇒ (4).

(1) Every definable function f : D → D′ is piecewise constant, i.e., there exists a
partition D = ∪ni=1Di of D into definable sets, with f constant on Di .

(2) If d ∈ D, d ′ ∈ D′, d ′ ∈ dcl(d), then d ′ ∈ dcl(∅).
(3) If f : E→ D is a definable finite-to-one map, and g : E→ D′ is definable, then
g(E) is finite.

(4) If d ∈ D, d ′ ∈ D′, d ′ ∈ acl(d), then d ′ ∈ acl(∅).

Proof. Let us show that (3) implies (4). Let M |= T , d ∈ D(M), and d ′ ∈ D′(M),
d ′ ∈ acl(d). Then d ′ lies in some finite Td -definable set D′(d) ⊆ D′. Since Td is
obtained from T by adding a constant symbol for d, there exists a formula φ(x, y)
of the language of T and some m such thatM |= φ(d, d ′) andM |= (∃≤mz)φ(d, z).
Let X0 = {(x : (∃≤my)φ(x, y)}, E = {(x, y) : x ∈ X0, φ(x, y)}, f (x, y) = x,
g(x, y) = y. Then by (3), g(E) is finite, but d ′ ∈ g(E), so d ′ ∈ acl(∅).

Next, (4) implies (3): let f,E, g be as in (3) , and suppose g(E) is infinite. In
particular, for any finite F ⊆ acl(∅) there exists d ′ ∈ g(E) \ F . Thus the family
consisting of g(E) and the complement of all finite definable sets has nonempty
intersections of finite subfamilies, so by the compactness theorem, in someM |= T ,
there exists d ′ ∈ g(E) \ acl(∅).

Let d ∈ E(M) be such that d ′ = g(d). Then d ′ ∈ acl(f (d)), but f (d) ∈ D,
contradicting (4). Thus (4) implies (3).

The equivalence of (1)–(2) is similar. )�

Example 2.7. Let P be a complete type, and f a definable function. Then f (P ) is a
complete type P ′. If f is injective on P , then there exist definableD ⊇ P , D′ ⊇ P ′
such that f restricts to a bijection of D with D′.

Proof. For any definableD′, f−1D′ is definable, so P ⊆ f−1D′ or P ∩f−1D′ = ∅.
Thus P ′ ⊆ D′ or P ′ ∩D′ = ∅. Thus P ′ is complete.

Let {Di} be the family of definable sets containing P . Let Ri = {(x, y) ∈ D2
i :

x �= y, f (x) = f (y)}. Then ∩iRi = ∅. Since the family of {Di} is closed under
finite intersections, it follows from the compactness theorem that for some i, Ri = ∅.
Let D = Di , D′ = f (D). )�
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Naming almost definable sets

As special case of an expansion by constants, we can move from a complete theory T
to the theory TA, where A = acl(∅) is the set of all algebraic elements of a modelM
of T , including imaginaries. The effect is a theory where each class of any definable
equivalence relation E with finitely many classes is definable. Since T is complete,
the isomorphism type of acl(∅) in a modelM does not depend on the choice of model;
so the theory TA is determined. A definable set in this theory corresponds to an almost
definable set in T .

When D is a constructible set, T |D denotes the theory induced on D. If T
eliminates quantifiers, the language is just the restriction to D of the relations and
functions of L. If the language is countable, the countable models of DA are of the
form D(M), whereM is a countable model of TA.

Stable embeddedness

A definable subset D of any product of sorts (possibly imaginary) is called stably
embedded (in T ) if for any A, any TA-definable subset of Dm is TB -definable for
some B ⊂ D. For example, the set of open balls is not stably embedded in ACVF,
since the set of open balls containing a point a ∈ K cannot in general be defined
using a finite number of balls.

Lemma 2.8. Let D be a family of sorts of L; let T |D be the theory induced on the
sorts D. If D is stably embedded and T |D admits elimination of imaginaries, then
for any definable P and definable S ⊂ P × Dm, viewed as a P -indexed family of
subsets S(a) ⊆ Dm, a ∈ P , we have a definable function f : P → Dn, with f (a) a
canonical parameter for S(a).

Proof. By stable embeddedness there exists a family S′ ⊂ P ′ × Dm yielding the
same family, i.e., {S(a) : a ∈ P } = {S′(a′) : a′ ∈ P ′}, and with P ′ ⊆ Dn; using
elimination of imaginaries we can take S′ to be a canonical family; now a defines
f (a) to be the unique a′ ∈ P ′ with S(a) = S′(a′). )�
Corollary 2.9. If D is stably embedded and admits elimination of imaginaries, then
for any substructure A,

(1) (TA)|D = (T |D)A∩D;
(2) for a ∈ A, tp(a/A ∩D) implies tp(a/D). )�

Examples of definable sets of ACVF satisfying the hypotheses include the residue
field k, or the value group , as well as RV ∪ . The stable embeddedness in this
case is an immediate consequence of quantifier elimination; cf. Lemma 3.30.

IfM is saturated andD is stably embedded in T , then we have an exact sequence

1 → Aut(M/D(M))→ Aut(M)→ Aut(D(M))→ 1,
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where Aut(M/D(M)) is the group of automorphisms ofM fixing D(M) pointwise,
and Aut(D(M)) is the group of permutations of D(M) preserving all definable re-
lations. Moreover, Aut(M/D(M)) has a good Galois theory; in particular, elements
with a finite orbit are almost definable over some finite subset of D. This and some
other characterizations can be found in [5, appendix].

Generic types

Let T be a complete theory with quantifier elimination. Let C be the category of
substructures of models of T , with L-embeddings, and let S be the category of pairs
(A, p) with A ∈ Ob C and p a type over A. We define Mor((A, p), (B, q)) = {f ∈
MorC(A,B) : f ∗(q) = p}.

By a generic type we will mean a function p on Ob C, denoted A �→ (p|A),
such that A �→ (A, p|A) is a functor C → S. For example, when T , the theory
of algebraically closed fields, is provided by any absolutely irreducible variety V :
given a field F , let p|F be the type of an F -generic point of V , i.e., the type of a
point of V (L) avoiding U(L) for every proper F -subvariety U of V , where L is
some extension field of F . Other examples will be given below, beginning with
Example 3.3.

Lemma 2.10. Let p be a generic type of T , and letM |= T , a, b ∈ M . Let c |= p|M .

(1) If a /∈ dcl(∅), then a /∈ dcl(c).
(2) If a /∈ acl(∅), then a /∈ acl(c).
(3) If a /∈ acl(b), then a /∈ acl(b, c).

Proof.

(1) Since a /∈ dcl(∅), there exists a′ �= a with tp(a) = tp(a′). Let c′ |= p|〈{a, a′}〉.
Since tp(a) = tp(a′), there exists an isomorphism 〈a〉 → 〈a′〉; by functoriality of
p, tp(a, c) = tp(a′, c). If a ∈ dcl(c), then a is the unique realization of tp(a/c),
so a = a′; a contradiction.

(2) If a ∈ acl(c), then for some n there are at most n realizations of tp(a/c). Since
a /∈ acl(∅), there exist distinct realizations a0, . . . , an of tp(a). Proceed as in (1)
to get a contradiction.

(3) This follows from (2) for T〈b〉. )�

2.2 Grothendieck rings

We define the Grothendieck group and associated objects of a theory T ; cf. [10].
Def (T ) is the category of definable sets and functions. Let C be a subcategory of
Def (T ). We assume Mor(X, Y ) is a sheaf on X: if X1 = X2 ∪ X3 are subobjects
of X, and fi ∈ Mor(Xi, Y ) with f1|(X2 ∩ X3) = f2|(X2 ∩ X3), then there exists
f ∈ Mor(X1, Y ) with f |Xi = fi . Thus the disjoint union of two constructible sets
in Ob C is also the category theoretic disjoint sum.

If only the objects are given, we will assume Mor C is the collection of all definable
bijections between them.
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The Grothendieck semigroup K+(C) is defined to be the semigroup generated by
the isomorphism classes [X] of elements X ∈ Ob C, subject to the relation

[X] + [Y ] = [X ∪ Y ] + [X ∩ Y ].
In most cases, C has disjoint unions; then the elements of K+(C) are precisely the
isomorphism classes of C.

If C has Cartesian products, we have a semiring structure given by

[X][Y ] = [X × Y ].
In all cases we will consider the cases when products are present, the symmetry
isomorphism X × Y → Y × X will be in the category, as well as the associativity
morphisms, so that K+(C) is a commutative semiring.

(The assumption on Cartesian products is taken to include the presence of an object
{p} = X0 such that the bijections X → {p} × X, x �→ (p, x), and X → X × {p},
x �→ (x, p), are in MorC for all X ∈ ObC. All such p give the same element
1 = [{p}] ∈ K(C), which serves as the identity element of the semiring.)

LetK(C) be the Grothendieck group, the formal groupification ofK+(C). When
C has products, K(C) is a commutative ring.

We will often have dimension filtrations on our categories, and hence on the
semiring.

By an semiring ideal we mean a congruence relation, i.e., an equivalence relation
on the semiring R that is a subsemiring of R × R. To show that an equivalence
relation E is a congruence on a commutative semiring R, it suffices to check that if
(a, b) ∈ E then (a + c, b + c) ∈ E and (ac, bc) ∈ E.

Remark. When T is incomplete, let S be the (compact, totally disconnected) space
of completions of T . Then {K(t) : t ∈ S} are the fibers of a sheaf of rings over
S. K(T ) can be identified with the ring of continuous sections of this sheaf. In this
sense, Grothendieck rings reduce to the case of complete theories.

This last remark is significant even when T is complete: if one adds a constant
symbol c to the language, T becomes incomplete, and so the Grothendieck ring of T
in L(c) is the Boolean power of K(Ta), where Ta ranges over all L(c)-completions
of T . Say c is a constant for an element of a sort S. Then an L(c)-definable subset
of a sort S′ corresponds to an L-definable subset of S × S′. This allows for an
inductive analysis of the Grothendieck ring of a structure, given good information
about definable sets in one variable (cf. Lemma 2.3).

Groups of functions into R

Let C(T ) be a subcategory of the category of definable sets and bijections, defined
systematically for T and for expansions by constants T . Let R(T ) = K+(C(T ))
be the Grothendieck semigroup of C(T ). When V is a definable set, we let CV ,
RV denote the corresponding objects over V ; the objects of CV are definable sets
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X ⊆ (V ×W) such that for any a ∈ V , Xa ∈ Ca , and similarly the morphisms. In
practice, R will be the Grothendieck semigroup of all definable sets and definable
isomorphisms satisfying some definable conditions, such as a boundedness condition
on the objects, or a “measure preservation’’ condition on the definable bijections.

To formalize the notion of “definable function into R’’ we will need to look at
classes Xa of parametrically definable sets. The class of Xa makes sense only in
the Grothendieck groups associated with Ta , not T. Moreover, the equality of such
classes, say, of Xa and of Xb, begins to make sense only in Grothendieck groups of
T(a,b). Expressions like

[X] =
a,b
[Y ]

will therefore mean thatX, Y are both definable in Ta,b, [X], [Y ] denote their classes
in the Grothendieck group of Ta,b, and these classes are equal.

If V is a definable set, we define the semigroup of definable functions V → R,
denoted Fn(V ,R). An element of Fn(V ,R) is represented by a definable X ∈ CV ,
viewed as the function a �→ [Xa], where [Xa] is a class in Ra . X,X′ represent
the same function if for all a, [Xa], [X′a] are the same element of Ra . Note that
despite the name, the elements of Fn(V ,R) should actually be viewed as sections
V → �a∈VRa .

Addition is given by disjoint union in the image (i.e., disjoint union over X).
Usually R has a natural grading by dimension; in this case Fn(V ,R) inherits the

grading.
Assume that V is a definable group and R = K+(T ) is the Grothendieck semiring

of all definable sets and functions of T , there is a natural convolution product on
Fn(V ,R). If hi(a) = [Hi(a)],Hi ⊂ V ×Bi , the convolution h1∗h2 is represented by

H = {(a1 + a2, (a1, a2, y1, y2)) : (ai, yi) ∈ Hi} ⊆ V × (V 2 × B1 × B2)

so that h1 ∗ h2(a) = H(a) = {(a1, a2, y1, y2) : (ai, yi) ∈ Hi, a1 + a2 = a}.

Grothendieck groups of orthogonal sets

Lemma 2.11. Let T be a theory with two strongly orthogonal definable setsD1,D2,
D12 = D1 ×D2. Let K+Di[n] be the Grothendieck semigroup of definable subsets
of Dni . Then K+D12[n] ' K+D1[n] ⊗K+D2[n].
Proof. This reduces to n = 1. Given definable setsXi ⊆ Dni , it is clear that the class
ofX1×X2 inK+D12[n] depends only on the classes ofXi onDi[n]. Define [X1]⊗
[X2] = [X1 × X2]. This is clearly Z-bilinear, and so extends to a homomorphism
η : K+D1[1] ×K+D2[1] → K+D12[1]. By strong orthogonality, η is surjective.

To prove injectivity, note that any element ofK+D1[n]⊗K+D2[n] can be written∑[Xi1] ⊗ [Xi2], with X1
1, . . . , X

k
1 pairwise disjoint. To see this, begin with some

expression
∑[Xi1]⊗[Xi2]; use the relation [X′ .∪X′′]⊗[Y ] = [X′]⊗[Y ]+[X′′]⊗[Y ]

to replace theXi1 by the atoms of the Boolean algebra they generate, so that the newXii
are equal or disjoint; finally use the relation [X′ ⊗Y ′]+[X′ ⊗Y ′′] = [X′]⊗[Y ′ .∪Y ′′]
to amalgamate the terms with equal first coordinate.
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Hence it suffices to show that if [∪iXi1×Xi2] = [∪j Y i1 ×Y i2], with theXi1 and the
Y i1 pairwise disjoint, then

∑[Xi1] × [Xi2] =
∑[Y i1] × [Y i2]. Let F : ∪iXi1 × Xi2 →

∪j Y i1 × Y i2 be a definable bijection. By strong orthogonality, the graph of F is a
disjoint union of rectangles. Since F is a bijection, it is easy to see that each of these
rectangles has the form f k1 × f k2 , where for ν = 1, 2, f kν : Xν(k) → Yν(k) is a

bijection from a subset of ∪iXiν to a subset of ∪j Y jν . The rest follows by an easy
combinatorial argument; we omit the details, since a somewhat more complicated
case will be needed and proved later; see Proposition 10.2. )�

Integration by parts

The following will be used only in Section 9, to study the Grothendieck semiring of
the valuation group.

Definition 2.12. Let us say that Y ∈ Ob C is treated as discrete if for any X ∈ Ob C

and any definable F ⊂ X × Y such that T |= F is the graph of a function, the
projection map F → X is an invertible element of MorC(F,X).

To explain the terminology, suppose each X ∈ Ob C is endowed with a measure
µX, and C is the category of measure-preserving maps. IfµY is the counting measure,
and µX×Y is the product measure, then for any function f : X→ Y , x �→ (x, f (x))

is measure preserving.
We will assume C is closed under products.
If Y1, Y2 are treated by C as discrete, so is Y1 × Y2: if F ⊂ X × (Y1 × Y2) is

the graph of a function X → (Y1 × Y2), then the projection to F1 ⊂ X × Y1 is the
graph of a function, hence the projection F1 → X is in C; now F ⊂ (F1 × Y2) is
the graph of a function, and so F → F1 is invertibly represented, too; thus so is the
composition. In particular, if Y is discretely treated, any bijection U → U ′ between
subsets of Yn is represented in C.

If R is a Grothendieck group or semigroup, we write [X]=
R
[Y ] to mean thatX, Y

have the same class in R.

Lemma 2.13. Let f, f ′ ⊂ X × L be objects of C such that [f (c)] =
K(Cc)

[f ′(c)] for

any c in X. Then [f ] =
K(C)

[f ′]; similarly for K+ .

Proof. By assumption, there exists g(c) such that f (c)+ g(c), f ′(c)+ g(c) are Cc-
isomorphic. By compactness (cf. the end of the proof of Lemma 2.3) this must be
uniform (piecewise in L, and hence by glueing globally): there exists a definable
g ⊂ Z×L and a definable isomorphism f +g ' f ′ +g, inducing the isomorphisms
of each fiber. By the definition of Cc, and since C is closed under finite glueing,
f + g, f ′ + g are in Ob C and the isomorphism between them is in Mor C. )�

Let L be an object of C, treated as discrete in C, and assume given a definable
partial ordering on L.
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Notation 2.14. Let f ⊂ X × L. For y ∈ L, let f (y) = {x : (x, y) ∈ f }. Denote∑
γ<β f (γ ) = [{(x, y) : x ∈ f (y), y < γ }].

Notation 2.15. Let φ : L→ K(X) be a constructible function, represented by f ⊂
X × L; so that φ(y) = [f (y)], f (y) = {x : (x, y) ∈ f }. Denote

∑
γ<β φ(γ ) =[{(x, y) : x ∈ f (y), y < γ }].

Note by Lemma 2.13 that this is well defined.
Below, we writefg for the pointwise product of two functions inK(C); [fg(y)] =

[f (y)× g(y)].
Lemma 2.16 (integration by parts). Let  be an object of C, treated as discrete in
C, and assume given a definable partial ordering of . Let f ⊂ X × , F(β) =∑
γ<β f (γ ), g ⊂ Y × , G(β) =∑γ≤β g(γ ).
Then

FG(β) =
∑
γ<β

fG(γ )+
∑
γ≤β

Fg(γ ).

Proof. Clearly,
FG(β) = �γ<β,γ ′≤βf (γ )g(γ ′).

We split this into two sets, γ < γ ′ and γ ′ ≤ γ . Now

�γ<γ ′≤βf (γ )g(γ ′) = �γ ′≤βF (γ ′)g(γ ′),
�γ ′≤γ<βf (γ )g(γ ′) = �g<βf (γ )G(γ ′).

The lemma follows. )�
This is particularly useful when L is treated as discrete in C, since then, if the sets

f (γ ) are disjoint, [f ] = [∪γ fγ ]. Another version, with G(β) =∑γ<β g(γ ):

FG(β) =
∑
γ<β

(fG+ gF + fg)(γ ).

3 Some C-minimal geometry

We will isolate the main properties of the theory ACVF, and work with an arbitrary
theory T satisfying these properties. This includes the rigid analytic expansions
ACVFR of [23].

The right general notion, C-minimality, has been introduced and studied in [15].
They obtain many of the results of the present section. Largely for expository reasons,
we will describe a slightly less general version; it is essentially minimality with respect
to an ultrametric structure in the sense of [31]. We will use notation suggestive of the
case of valued fields; thus we denote the main sort by VF and a binary function by
val(x − y). Some additional assumptions will be made explicit later on.
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Let T be a theory in a language L, extending a theory T in a language L. T is said
to be T-minimal if for anyM |= T , anyLM -formula in one variable is TM -equivalent
to an LM formula.

More generally, if D is a definable subset of T (i.e., a formula of L), we say that
D is T-minimal if for any M |= T , any TM -definable subset of D is TM -equivalent
to one defined by an LM formula.

Strong minimality

Let L = ∅. The only atomic formulas of L are thus equalities x = y of two variables.
T is the theory of infinite sets. T-minimality is known as strong minimality; see
[1, 28, 29]. A theory T is strongly minimal iff for any M |= T , any TM -definable
subset of M is finite or cofinite. For us the primary example of a strongly minimal
theory is ACF, the theory of algebraically closed fields.

LetM |= T . IfD is strongly minimal, andX a definable subset ofD∗, we define
the D-dimension of X to be the least n such that X admits a TM -definable map into
Dn with finite fibers. In the situation we will work in, there will be more than one
definable strongly minimal set up to isomorphism, and even up to definable isogeny;
in particular, there will be the various sets of RESM . However, between any of these,
there exists anM-definable isogeny; so the k dimension agrees with theD dimension
for any of them. We will call it the RES dimension. It agrees with Morley rank, a
notion defined in greater generality, that we will not otherwise need here.

O-minimality

L = {<}, T = DLO the theory of dense linear orders without endpoints (cf. [9]).
DLO minimality is known as O-minimality, and can also be stated thusly: any TM -
definable subset of M is a finite union of points and intervals. This also forms the
basis of an extensive theory; see [37].

LetD beO-minimal. Then theO-minimal dimension of a definable setX ⊆ D∗
is the least n such that X admits a TM -definable map into Dn with bounded finite
fibers.

The Steinitz exchange principle states that if a ∈ acl(B ∪ {b}) but a /∈ acl(B),
then b ∈ acl(B ∪ {a}).

This holds for both strongly minimal and O-minimal structures; cf. [37].
For us the relevant O-minimal theory is DOAG itself. We will occasionally use

stronger facts valid for this theory. Quantifier elimination for DOAG implies the
following.

Lemma 3.1.

(1) Any parameterically definable function f of one variable is piecewise affine;
there exists a finite partition of the universe into intervals and points, such that
on each interval I in the partition, f (x) = αx + c for some rational α and some
definable c.

(2) DOAG admits elimination of imaginaries.
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Proof.

(1) This follows from quantifier elimination for DOAG.
(2) This follows from (1) that any function definable with parameters in DOAG has

a canonical code, consisting of the endpoints of the intervals of the coarsest such
partition, together with a specification of the rationals α and the constants c. But
from this it follows on general grounds that every definable set is coded (cf. [16,
3.2.2]). Thus DOAG admits elimination of imaginaries. )�

C-minimality

Let T = Tum be the theory of ultrametric spaces or, equivalently, chains of equivalence
relations (cf. [31]).

In more detail, L has two sorts, VF and ∞. The relations on ∞ are a constant
∞ and a binary relation<. In addition, L has a function symbol VF2 → ∞, written
val(x − y). T states the following:

(1) ∞ is a dense linear ordering with no least element, but with a greatest element∞.
(2) val(x − y) = ∞ iff x = y.
(3) val(x − y) ≥ α is an equivalence relation; the classes are called closed α-balls.

Hence so is the relation val(x − y) > α, whose classes are called open α-balls.
(4) Let  = ∞ \ {∞}. For α ∈ , every closed α-ball contains infinitely many

open α-balls.

A Tum-minimal theory will be said to be C-minimal. The notion considered in
[15] is a little more general, but for theories Tum they coincide. Since we will be
interested in fields, this level of generality will suffice.

Atheory T extending ACVF isC-minimal iff for anyM |= T , every TM -definable
subset of VF(M) is a Boolean combination of open balls, closed balls and points. If
T isC-minimal,A ≤ M |= T , and b is anA-definable ball, or an infinite intersection,
let pbA be the collection of A-definable sets not contained in a finite union of proper
subballs of b. Then by C-minimality, pbA is a complete type over A.

Let T be C-minimal. Then in T ,  is O-minimal, and for any closed α-ball C,
the set of open α-subballs of C is strongly minimal. Denote it C/(1 +M). (These
facts are immediate from the definition.)

AssumeT isC-minimal with a distinguished point 0. We define: val(x) = val(x−
0); M = {x : val(x) > 0}. Let Bcl be the family of all closed balls, including points.

Among them are Bcl
c
α(0) = {x : val(x) ≥ α}. Let RV =

•⋃
γ∈ Bcγ (0)/(1 + M),

and let rv : VF \ {0} → RV and valrv : RV →  be the natural map. By an rv-ball
we mean an open ball of the form rv −1(c).

The T -definable fibers of valrv are referred to, collectively, as REST . Later we
will fix a theory T, and write RES for REST; we will also write RESA for RESTA .
The unqualified notion “definable,’’ as well as many derived notions, will implicity
refer to T.

A certain notion of genericity plays an essential role in these theories.
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Example 3.2. Let T be a strongly minimal theory. For any A ≤ M |= T , any A-
definable set is finite or has finite complement. Therefore, the collection of cofinite
sets forms a complete type. A realization of this type is called a generic element of
M , over A.

Example 3.3. Let T be anO-minimal theory. For any A ≤ M |= T , any A-definable
set contains, or is disjoint from, an infinite interval (b,∞) for some b ∈ M . The set of
A-definable sets containing such an interval is thus a complete type, the generic type
of large elements of . Similarly, the set of A-definable sets containing an interval
(0, a) with 0 < a is the generic type of small positive elements. More generally,
given a subset S ⊆ A S′ = {b ∈ A : (∀s ∈ S)(s < b)}; then the definable sets
x > a(a ∈ S), x < b(b ∈ S′) generate a complete type over A, called the type of
elements just bigger than S.

Definition 3.4. Let T be C-minimal. Let b be a TA-definable ball, or an infinite
intersection of balls. The generic type pb of b is defined by pb|A′ = pbA′ , for any
A ≤ A′ ≤ M |= T .

The completeness follows from C-minimality, since for any A′-definable subset
S of b, either S is contained in a finite union of proper subballs of b, or else the
complement b \ S is contained in such a finite union.

A realization of pb|A′ is said to be a generic point of b over A′. An A′-definable
set is said to be b-generic if it contains a generic point of b over A′.

See Section 3.2 for some generalities about generic types. For our purposes it
will suffice to consider generic types in one VF variable. For more information see
[16, Section 2.5].

Remark 3.5. If A = acl(A) then any type of a field element tp(c/A) coincides with
pb|A, where b is the intersection of all A-definable balls containing c.

This is intended to include the case of closed balls of valuative radius ∞, i.e.,
points; these are the algebraic types x = c. Note also the degenerate case that c is not
in any A-definable ball; then b = VF and tp(c/A) is the generic type of VF over A.

Not every generic 1-type is of the form pb for a ball b as above. For instance, let
b be an open ball, c ∈ b; then the generic type pb((x − c)−1) is not of this form.

For V-minimal theories (defined below) it can be shown that every generic 1-type
is of the form pb or pb((x − c)−1).

Let T be a C-minimal theory. Let b be a definable ball, or an infinite intersection
of definable balls. We say that b is centered if it contains a proper definable finite
union of balls. If b is open, or a properly infinite intersection of balls, we have the
following:

If b contains a proper finite union of balls, then it contains a
definable closed ball (the smallest closed ball containing the
finite set).

(∗)

For C-minimal fields of residue characteristic 0, (∗) is true of closed balls: the set of
maximal open subballs of b forms an affine space over the residue field k, where the
center of mass of a finite set is well defined.
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Clearly, b is centered over acl(A) if and only if it is centered over A. The term
“centered’’ will be justified to some extent by the assertion of Lemma 3.39, that when
A is generated by elements of VF∪RV ∪, any A-definable closed ball contains an
A-definable point, and thus a centered ball has a definable “center.’’

Lemma 3.6. b is centered over A iff b is not transitive over A.

This is immediate from the definition, and from C-minimality, since any proper
definable subset would have to be a Boolean combination of balls.

An often useful corollary of C-minimality is the following.

Lemma 3.7. Let T be C-minimal, X a definable subset of VF, and Y a definable set
of disjoint balls. Then for all but finitely many b ∈ Y , either b ⊆ X or b ∩X = ∅.

Proof. X is a finite Boolean combination of balls, so it suffices to prove this whenX
is a ball; then X is contained in at most one ball b ∈ Y ; for any other b ∈ Y , either
b ⊆ X or b ∩X = ∅. )�
Lemma 3.8. Let (bt : t ∈ Q) be a definable family of pairwise disjoint balls. Then
for any nonalgebraic t ∈ Q, bt is transitive over 〈t〉.
Proof. Consider a definable R′ ⊆ Q × VF with R′(t) ⊆ bt . Let Y = ∪t∈QR′(t).
Then Y is a definable subset of VF, hence a finite combination of a finite set H of
balls. The bt are pairwise disjoint, so at most finitely many can contain an element
of H , and thus no nonalgebraic bt contains an element of H . Thus each ball in H is
disjoint from, or contains, any given bt . It follows that Y is disjoint from, or contains,
any given bt . Thus bt ∩ Y cannot be a nonempty proper subset of bt . )�
Internalizing finite sets

The following lemma will be generalized later to finite sets of balls. It is of such
fundamental importance in this paper that we include it separately in its simplest
form. The failure of this lemma in residue characteristic p > 0 is the main reason for
the failure of the entire theory to generalize, in its present form. Recall the definition
of RV (Section 2.1).

Lemma 3.9. Let T be aC-minimal theory of fields of residue characteristic 0 (possibly
with additional structure), A ≤ M |= T. Let F be a finite TA-definable subset of
VFn. Then there exists F ′ ⊆ RVm, and a TA-definable bijection h : F → F ′.

Proof. First consider F = {c1, . . . , cn} ⊆ VF. Let c = (∑n
i=1 ci)/n be the average;

then F is TA-definably isomorphic to {c1 − c, . . . , cn − c}. Thus we may assume
the average is 0. If there is no nontrivial A-definable equivalence relation on F , then
val(x − y) = α is constant on x �= y ∈ F . In this case rv is injective on F and one
can take h = rv. Otherwise, let E be a nontrivial A-definable equivalence relation
on F . By an E-symmetric polynomial, we mean a polynomial H(x1, . . . , xn) with
coefficients inA, invariant under the symmetric group on eachE-class. For any such
H ,H(F) is a TA-definable set with< n elements. There existsH such thatH(F) has
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more than one element. By induction, there exists an injective A-definable function
h0 : H(F) → RVm. Let h1 = h0 ◦ H . For d ∈ h0(H(F )), and d ′ = h0

−1d, let
Fd = H−1h0

−1(d) = H−1(d ′). By induction again, there exists an A(d) = A(d ′)-
definable injective function gd : Fd → RVm

′
. (We can take the same m′ for all d.)

Define h(x) = (h1(x), gh1(x)(x)). Then clearly h is A-definable and injective.
The case F ⊆ VFn follows using a similar induction, or by finding a linear

projection with Q-coefficients VFn → VF which is injective on F . )�

3.1 Basic geography of C-minimal structures

Let T be aC-minimal theory. We begin with a rough study of the existence and nonex-
istence of definable maps between various regions of the structure: k, ,RV,VF and
VF/O.

We will occasionally refer to stable definable sets.
A definable set D of a theory T is called stable if there is no modelM |= T and

M-definable relation R ⊆ D2 and infinite subset J ⊆ M(D) such that R ∩ J 2 is a
linear ordering. This is a model-theoretic finiteness condition, greatly generalizing
finite Morley rank, and in turn strong minimality (cf. [28, 29]).

It is shown in [16] that a definable subset of ACVFeq
A is stable if and only if it has

finite Morley rank, if and only if it admits no parametrically definable map onto an
interval of ; and this is if and only if it embeds, definably over acl(A), into a finite-
dimensional k-vector space. These vector spaces have the general form�/M�, with
� ≤ VFn a lattice. Within the sorts we are using here, the relevant ones are the finite
products of vector spaces of RES. More generally, in a C-minimal structure with
sorts VF, RV, all stable sets are definably embeddable (with parameters) into RES.
We will, however, make no use of these facts, beyond justifying the terminology.
Thus “X is a stable definable set’’ can simply be read as “ there exists a definable
bijection between X and a subset of RES∗.’’

The first fact is the unrelatedness of k and .

Lemma 3.10. Let Y be a stable definable set. Then Y,  are strongly orthogonal. In
particular, any definable map from Y to  has finite image.

Proof. We prove the second statement first: let M |= T. Let f : Y →  be an
M-definable map. Then f (Y ) is stable, and linearly ordered by <; hence by the
definition of stability, it is finite.

Let γ = (γ1, . . . , γm) ∈ . We have to show that for a Y -generated struc-
ture A, tp(γ ) implies tp(γ /A). It suffices to show that for any a, . . . , an ∈ A,
tp(γi/〈γ1, . . . , γi−1〉) implies tp(γi/〈γ1, . . . , γi−1, a1, . . . , an〉), for each i. By pass-
ing to T〈γ1,...,γi−1〉 we may assume m = 1, γ ∈ . Similarly, we may assume n = 1;
let a = a1 ∈ Y . To show that tp(γ ) implies tp(γ /a), it suffices to show that any
Ta-definable subset of  is definable. ByO-minimality, any Ta-definable subset of 
is a finite union of intervals, so (in view of the linear ordering) it suffices to show this
for intervals (c1, c2). But if the interval is Ta-definable then so are the endpoints, so
ci = ci(a) is a value of a definable map Y → . But such maps have finite images,
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so ci lies in a finite definable set. Using the linear ordering, we see that ci itself is
definable, and hence so is the interval. )�
Lemma 3.11. There are no definable sections of valrv : RV →  over an infinite
subset of . In fact if Y ⊂ RVn is definable and valrv is finite-to-one on Y , then Y is
finite.

Proof. Looking at the fibers of the projection of Y to RVn−1, and using induction,
we reduce the lemma to the case n = 1. In this case, by Lemma 3.7, every definable
set is a Boolean combination of pullbacks by valrv of subsets of  and finite sets. )�
Lemma 3.12. Let M |= T and let Y ⊂ Bcl

n be an infinite definable set. Then there
exists a surjectiveM-definable map of Y to a proper interval in .

Proof. Since  is O-minimal, any infinite M-definable subset contains a proper
interval. Thus it suffices to find anM-definable map of Y onto an infinite subset of .

If the projection of Y to Bcl
n−1 as well as every fiber of this projection are finite,

then Y is finite. Otherwise, replacing Y by one of the fibers or by the projection, we
reduce inductively to the case n = 1.

Let v(y) ∈  be the valuative radius of the ball y. Then v(Y ) is anM-definable
subset of . If it is infinite, we are done; otherwise, we may assume all elements of
Y have the same valuative radius γ .

Let W = ∪Y . By C-minimality, W is a Boolean combination of balls bi (open,
of valuative radius < γ , or closed, of valuative radii δi ≤ γ ). If W contains some
W ′ = bi \(bj1∪· · ·∪bjl ), where bji is a proper subball of bi , and δi < γ , pick a point
c inW ′; then for any δ with γ > δ > δi there exists c′ ∈ W ′ with val(c− c′) = δ. It
follows that the balls bγ (c), bγ (c′) of radius γ around c, c′ are both in Y ; but infinitely
many such δ exist; fixing c, we obtain a map bγ (c′) �→ val(c − c′) into an infinite
subset of .

Otherwise, W can only be a finite set of balls of valuative radius γ . Thus Y is
finite. )�
Corollary 3.13. Bcl

n contains no stable definable set. In particular, VF contains no
strongly minimal set. )�

By contrast, we have the following.

Lemma 3.14. Any infinite definable subset of RVn contains a strongly minimal M-
definable subset.

Proof. By Lemma 3.11, the inverse image of some point in n must be infinite. )�
Lemma 3.15. Let M |= T. Let Y ⊆ Bcl be a definable set. Let rad(y) be the
valuative radius of the ball y. Then either rad : Y →  is finite-to-one, or else there
exists anM-definable map of anM-definable Y ′ ⊆ Y onto a strongly minimal set.

Proof. If rad is not finite-to-one, then Y contains an infinite set Y ′ of balls of the same
radius α. Then ∪Y ′ contains a closed ball b of valuative radius β < α. The set S
of open subballs b′ of b of valuative radius β forms a strongly minimal set; the map
sending y ∈ Y ′ to the unique b′ ∈ S containing y is surjective. )�
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The following lemma regarding VF/O will be needed for integration with an
additive character (Section 11).

Lemma 3.16. Let Y be a stable definable set, Z ⊂ VF× Y a definable set such that
for y ∈ Y , Z(y) = {x : (x, y) ∈ Z} is additively M invariant. Then for all but
finitely many O-cosets C, Z ∩ (C × Y ) is a rectangle C × Y ′.

Proof. For y ∈ Y ,Z(y) is a Ty-definable subset of VF, hence a Boolean combination
of a finite 〈y〉-definable set of balls b1(y), . . . , bk(y). Let Bi(y) be the smallest
closed ball containing bi(y). According to Lemma 3.13, since the set of closed balls
occurring as Bi(y) for some y is stable, it is finite:

{Bi(y) : y ∈ Y } = {B1, . . . , Bl}.

All the Bi are O-invariant. Let R be the set of O-cosets C that are equal to some Bi .
If Bi(y) has valuative radius < 0 (i.e., it is bigger than an O-coset), then so is

bi(y), so the characteristic function of such a bi(y) is constant on any closed O-coset
C. If C /∈ R, then it is disjoint from any Bi of valuative radius equal to (or greater
than) 0, so the characteristic functions of the corresponding bi(y) are also constant on
it. Thus with finitely many exceptionalC, any such characteristic function is constant
on C, and the claim follows. )�

3.2 Generic types and orthogonality

Two generic types p, q are said to be orthogonal if for any base A′, if c |= p|A′,
d |= q|A′, then p generates a complete type over A(d); equivalently, q generates a
complete type over A(c). We will see that generics of different kinds are orthogonal
(cf. Lemma 3.19). This orthogonality of types is weaker than the orthogonality of
definable sets mentioned in the introduction, and in the present case is only an indirect
consequence of the orthogonality between the residue field and value group; these
types do not have orthogonal definable neighborhoods.

If γ ∈  and rkQ((C(a))/(C)) = n, we say that tp(γ /C) has -dimension n.

Lemma 3.17. Let p be a TA-type of elements of n of  dimension n. Let P =
val

−1
(p). Then we have the following:

(1) val
−1
(p) is a complete type over A. In other words, for any A-definable set X,

either val
−1
(p) ⊆ X or val

−1
(p) ∩X = ∅.

(2) If D is a stable A-definable set and d1, . . . , dn ∈ D, then P implies a complete
type over A(d1, . . . , dn).

(3) If c ∈ P , then D(A(c)) = D(A).
(4) P is complete over A.
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Proof.

(1) This reduces inductively to the case n = 1. Since val−1(p) is a disjoint union of
open balls, (1) for n = 1 follows from Lemma 3.7: an A-definable set X cannot
intersect nontrivially each of an infinite family of open balls. Therefore, eitherX

is disjoint from almost all, or X contains almost all open balls val
−1
(c), c |= p;

in the former case the complement of X contains val
−1
(p), and in the latter X

contains val
−1
(p) since p is complete.

(2) By strong orthogonality, p generates a complete type q ′ over A(d), of -
dimension n. By (1) over A(d), val−1(p) is complete over A(d). But if c ∈ P
then val(c) |= p so c ∈ val−1(p). Thus P implies a complete type overA(d).

(3) follows from (2): if d ∈ D(A(c)) then there exists a formula φ such that |=
φ(d, c) and such that φ(x, c) has a unique solution. By (2) φ is a consequence
of P(c)∪ tp(d/A), and hence by compactness of a formula φ1(x)&φ2(c), where
φ2 ∈ tp(d/A). Thus already φ1(x) has the unique solution d, and thus d ∈ D(A).

(4) This is immediate from (1). )�
Lemma 3.18. Let q be a TA-type of elements of RESnA of RES dimension n. Let

Q = rv
−1
(q). Then Q is complete over A. Moreover, if γ1, . . . , γm ∈ , then Q

implies a complete type over A(γ1, . . . , γm).

Proof. Again the lemma reduces inductively to the case n = 1, and for n = 1 follows
from Lemma 3.7, since val−1(q) is a union of disjoint annuli; the “moreover’’ also
follows from orthogonality as in the proof of Lemma 3.17(2). )�
Lemma 3.19 ([16, Section 2.5]).

(1) If b is an open ball, or a properly infinite intersection of balls, and b′ a closed
ball, then pb, pb′ are orthogonal.

(2) Any b-definable map to k is constant on b away from a proper subball of b.

Proof. We recall the proof from [16, Section 2.5]: The statement becomes stronger if
the base set is enlarged. Thus we may assume that b and b′ are centered; by translating
we may assume both are centered at 0, and by a multiplicative renormalization that
b′ is the unit closed ball. Thus

c |= pb′ |A iff c ∈ O and res(c) /∈ acl(A). (∗)

On the other hand, let p be the type of elements of  that are just bigger than
the valuative radius of b (cf. Example 3.3). Then d |= pb|A iff val(d) |= p , i.e.,
pb is now the type P described in Lemma 3.17. By Lemma 3.17, if c′ ∈ P then
k(A(c′)) = k(A). It follows that if c |= pb′ |A, then res(c) /∈ acl(k(A(c′)). By (∗)
c |= pb′ |A(c′).

For the second statement, let g be a definable map b→ k; by Lemma 3.17(3), g
is constant on the generic type of b; by compactness, g is constant on b away from
some proper subball of b. )�
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Lemma 3.20. Let a = (a1, . . . , an) ∈ RVn, and assume ai /∈ acl(A(a1, . . . , ai−1))

for 1 ≤ i ≤ n. Then the formula D(x) = ∧ni=1 rv(xi) = ai generates a complete
type over A(a), and, indeed, over any RV ∪ -generated structure A′′ over A.

In particular, if q = tp(a/A), any A-definable function f : rv −1(q)→ RV ∪ 
factors through rv(x) = (rv(x1), . . . , rv(xn)).

Proof. This reduces inductively to the case n = 1. If we replace A by a bigger
set M (such that ai /∈ acl(A(a1, . . . , ai−1)) for 1 ≤ i ≤ n), the assertion becomes
stronger; so we may assume A = M |= T. Let rv(c) = rv(c′) = a. Either
val(c) = val(c′) /∈ M , or else val(c) = val(c′) = val(d) for some d ∈ M , and
res(c/d) = res(c′/d) /∈ M; in either case, by Lemma 3.17 or Lemma 3.18, we have
tp(c/M) = tp(c′/M). Thus tp(c, rv(c)/M) = tp(c′, rv(c′)/M), i.e., tp(c/M(a)) =
tp(c′/M(a)). This proves completeness over A(a).

Let A′ be a structure generated over A by finitely many elements of . Then
A′(a) = A(γ1, . . . , γk, a), where γi ∈ , and γi /∈ A(γ1, . . . , γi−1, val(a)).
It follows that rv(a) /∈ A(γ1, . . . , γk), so D(x) generates a complete type over
A(γ1, . . . , γk)(a) = A′(a).

LetA′′ be generated overA′(a)by elements of stableA-definable sets. SinceD(x)
is the (unique, and therefore) generic type of an open ball overA′(a), by Lemma 3.17,
it generates a complete type over A′′.

Now if A′′ = A(γ1, . . . , γk, r1, . . . , rn, d), where γj ∈ , ri ∈ RV and d lies in
a stable set over A, let A′ = A(γ1, . . . , γk, valrv(r1), . . . , valrv(rn)); then A′/A is -
generated, and A′′/A is generated by elements of stable sets (including valrv−1(ri)).
Thus the above applies.

The last statement follows by applying the first part of the lemma over A′′ =
A(f (c)): the formula f (x) = f (c) must follow from the formula D(x), since D(x)
generates a complete type over A′′. )�

3.3 Definable sets in group extensions

We will analyze the structure of RV in a slightly more abstract setting. In the following
lemmas we assume R is a ring, and 0 → A → B → C → 0 is a definable exact
sequence of R-modules in T . This means that A,B,C are definable sets, and that
one is also given definable maps +A : A2 → A, f rA : A → A for each r ∈ R, and
similarly for B,C; and definable maps ι : A → B, ϑ : B → C, such that in any
M |= T ,A(M),B(M),C(M) areR-modules under the corresponding functions, and
0 → A(M)→ι B(M)→ϑ C(M)→ 0 is an exact sequence of homomorphisms of
R-modules.

Lemma 3.21. Consider a theory with a sequence 0 → A → B →ϑ C → 0 of
definable R-modules and homomorphisms (carrying additional structure). Assume
the following:

(1) A,C are stably embedded and orthogonal.
(2) Every almost definable subgroup of An is defined by finitely many R-linear equa-

tions.
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(3) (“No definable quasi-sections.’’) IfP is a definable subset ofBn whose projection
to Cn is finite-to-one, then P is finite.

Then every almost definable subset Z of Bn is a finite union of sets of the form

{b : ϑ(b) ∈ W,Nb ∈ Y },
where N ∈ Bn,k(R) is an n × k matrix, Y is an almost definable subset of a single
coset of Ak ,W is an almost definable subset of Cn.

Note the following:

(1) To verify (3), it suffices to check it for n = 1 but for parametrically definable P .
(2) If C is definably linearly ordered, and Z is definable, then Y , W may be taken

definable.

Proof. Using a base change as in Section 2.1, we may assume almost definable sets
are definable. Replacing B by Bn and R byMn(R), we may assume n = 1. Let Z be
a definable subset of B. GivenX ⊂ A, let [X] denote the class ofX up to translation;
so [X] = [X′] if X = X′ + a for some a ∈ A. Now a definable subset U of a coset
b + A of A has the form b + X, X ⊂ A; the class [X] is well defined, and we will
denote [U ] = [X]. We obtain a map

c �→ [Z ∩ ϑ−1(c)].
In more detail, for any b ∈ (ϑ−1(c)∩Z), we have (ϑ−1(c)∩Z)− b ⊆ A, and so by
stable embeddedness ofA we can write (ϑ−1(c)∩Z)− b = X(a) for some a ∈ Am.
The tuple a is not well defined; but the class of a in the definable equivalence relation

x ∼ x′ ⇐⇒ (∃t ∈ A)(t +X(x)) = X(x′)
is obviously a function of c alone. By the orthogonality assumption, this map is
piecewise constant. Thus we may assume it is constant and fixC0 with [Z∩ϑ−1(c)] =
[C0]. Let S be the stabilizer S = {a ∈ A : a + C0 = C0}. Then for a ∈ S,
a+(Z∩ϑ−1(c)) = (Z∩ϑ−1(c)) for any c ∈ C, so that alsoS = {a ∈ A : a+Z = Z},
and S is definable.

NowZ∩ϑ−1(c) = C0+f (c) for some f (c) ∈ ϑ−1(c); f (c)+S is well defined.
By assumption (2), S = Ker(r1) ∩ . . . ∩ Ker(rm) for some ri ∈ R. Let I =

{r1, . . . , rm}. For r ∈ I , fr(c) := rf (c) is a well-defined element of B, and for all
c ∈ ϑ(Z), r(Z ∩ ϑ−1(c)) = rC0 + fr(c).

We have ϑfr(c) = rc. If d ∈ Ker(r : C → C), then fr(d + c) = rc also,
so fr(d + c) − fr(c) ∈ A. By orthogonality, for fixed r , fr(d + c) − fr(c) takes
finitely many values as c, d vary in C. In other words, {rf (c) : c ∈ ϑ(Z)} is a quasi-
section above rϑ(Z). By (3), rϑ(Z) is finite, for each r ∈ I . Let N = (r1, . . . , rm),
Y ′ = NZ. Then ϑ(Y ′) is finite. It follows that Y ′ is contained in a finite union of
cosets of A, so C, Y ′ are orthogonal.

Thus {(ϑ(z),Nz) : z ∈ Z} is a finite union of rectangles; upon dividingZ further,
we may assume this set is a rectangle W × Y . Now if ϑ(b) ∈ W and Nb ∈ Y then
for some z ∈ Z, ϑ(b) = ϑ(z) andNb = Nz; it follows that b−z ∈ A and b−z ∈ S;
so b ∈ S + Z = Z. Thus Z is of the required form. )�
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Corollary 3.22. Let T be a complete theory in a language L satisfying the assump-
tions of Lemma 3.21. Let L ⊆ L′, T ⊆ T ′, and assume (1)–(3) persist to T ′. If T ,
T ′ induce the same structure on A and on C, up to constants they induce the same
structure on B, i.e., every T -definable subset of B∗ is parameterically T ′-definable.

Proof. Apply Lemma 3.21 to T ′, and note that every definable set in the normal form
obtained there is already parametrically definable in T . )�

We will explicitly use imaginaries in RV only rarely; but our ability to work with
RV, using  as an auxiliary, is partly explained by the following.

Corollary 3.23. Let 0 → A → B →ϑ C → 0 be as in Lemma 3.21, and assume
C carries a definable linear ordering. Let V̄ be the disjoint union of the definable
cosets of A in B, with structure induced from T . Let e be an imaginary element of B.
Then 〈e〉 = 〈(a′, c′)〉 for some pair (a′, c′) consisting of an imaginary of V̄ and an
imaginary of C. Thus if V̄ , C eliminate imaginaries, so does B ∪ C ∪ V̄ .

Proof. Let e be an imaginary element ofB; letE0 be the set ofA, V̄ -imaginaries that
are algebraic over e.

By Lemma 3.21, applied to a definable set with code e in the theory TE0 , there
exist almost definable subsets of V̄ , Cn from which e can be defined. These are
coded by imaginaries permitted in the definition of E0. Thus e is E0-definable. Thus
e = g(d) for some definable function g and some tuple d from E0. )�

Let us now show that e is equidefinable with a finite set, i.e., an imaginary of the
form (f1, . . . , fn)/Sym(n). Let W be the set of elements with the same type as d
over e; W is finite by the definition of E0, and is e-definable. But e = g(w) for any
element w ∈ W , so e is definable from {W }.

It remains to see that every finite set of elements ofE0 is coded by imaginaries of
A and C and elements of B. Since C is linearly ordered, it suffices to consider finite
sets whose image in Cm consists of one point. These are subsets of some definable
coset of Am, so again by elimination of imaginaries there they are coded. )�
Corollary 3.24. The structure induced on RV∪ from ACVF eliminates imaginaries.

Proof. E0 eliminates imaginaries, and so does ACF (cf. [31]). Note that V̄ is
essentially a family of one-dimensional k-vector spaces, closed under tensor products
and roots and duals. Hence by [18], V̄E0 eliminates imaginaries, too. Our only
application of this lemma will be in a situation when parameters can be freely added;
in this case, it suffices to quote elimination of imaginaries in ACF. )�
Corollary 3.25. Let T be a theory as in Lemma 3.21, with R = Z, and C a linearly
ordered group. Then every definable subset of Bn is a disjoint union of GLn(Z)-
images of products Y × ϑ−1(Z), with |ϑY | = 1. In particular, the Grothendieck
semiring K+(B) (with respect to the category of all definable sets and functions of
B) is generated by the classes of elements Y ⊂ Bn with |ϑY | = 1, and pullbacks
ϑ−1(Z), Z ⊂ Cm.
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Proof. By Lemma 3.21, the Grothendieck ring is generated by classes of sets X of
the form X = {b ∈ Bn : ϑ(b) ∈ W,Nb ∈ Y }. After performing row and column
operations on the matrix N , we may assume it is the composition of a projection
p : Rn → Rk with a diagonal k × k integer matrix with nonzero determinant. The
composition ϑp(X) is finite; since C is ordered, each element of ϑp(X) is definable,
and so we may assume ϑp(X) has one element e. Thus W = {(e) ×W ′} for some
W ′, and X = pX × ϑ−1(W ′). )�
Lemma 3.26. Let T be a theory, and let 0 → A → B →ϑ C → 0 be an exact
sequence of definable Abelian groups and homomorphisms. If E ≤ M |= T , we will
write EA = A(E), etc. Assume the following:

(1) A, C are orthogonal.
(2) Any parametrically definable subset of B is a Boolean combination of sets Y with
ϑ(Y ) finite, and of full pullbacks ϑ−1(Z).

(3) C a uniquely divisible Abelian group, and for any E ≤ M |= T , every divisible
subgroup containing EC is algebraically closed in C over E.

(4) For any prime p > 0, T |= (∃x ∈ A)(px = 0, x �= 0).

LetZ ⊂ Cn and f : Z→ C be definable, and suppose there existsE andE-definable
X ⊂ Bn and F : X → B lifting f : ϑX = Z, ϑF(x) = f (ϑx). Then there exists
a partition of Z into finitely many definable sets Zν, such that for each ν, for some
m ∈ Zn, f (x)−∑n

i=1mixi is constant on Zν.

The main point is the integrality of the coefficients mi .

Proof. It suffices to show that for any M |= T and any c = (c1, . . . , cn) ∈ Z(M),
there existsm = (m1, . . . , mn) ∈ Z such that f (c)−mc ∈ E0, whereE0 = dcl(∅) is
the smallest substructure ofM . For if so, there exists a formula of one variable of sort
C, such that T |= (∃≤1z)ψ(z), M |= ψ(f (c) − mc). By compactness there exists
a finite set F of such pairs ν = (m,ψ), such that for any M |= T and c ∈ Z(M),
for some (m,ψ) ∈ F , M |= ψ(f (c) − mc); the required partition is given by
Xm,ψ = {z ∈ Z : ψ(f (z)−mz)}.

Fix M and c ∈ Z(M). Let 〈c〉 be the smallest divisible subgroup of C(M)
containing E0

C and c1, . . . , cn. By (3), 〈c〉 is closed under f , so f (c) ∈ 〈c〉, i.e.,
f (c) =∑αici+d for some αi ∈ Q and some d ∈ E0

C . The only problem is to show
that we can take αi ∈ Z.

We will use induction on n. Let K = {β ∈ Qn : β · c ∈ E0
C}. K is a Q-

subspace of Qn. If K �= (0), there exists a primitive integral vector β1 ∈ K . β1
may be completed to a basis for a Z-lattice in Qn. Applying a GLn(Z) change of
variables to Bn, we may assume β1 = (1, 0, . . . , 0), i.e., c1 ∈ E0

C . But then let
f ′(z2, . . . , zn) = f (c1, z2, . . . , zn). Then f ′ lifts to a definable function on Bn

(with parameters, of the form F(b1, y2, . . . , yn)) so by induction, f (c1, . . . , cn) =
f ′(c2, . . . , cn) =∑i≥2mizi+d ′ for somem2, . . . , mn ∈ Z andd ′ ∈ E0

C , as required.
Thus we can assume K = (0).
We can find m,mi ∈ Z, e ∈ dcl(∅) with
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mf (c) =
∑
mici + e.

Ifm|mi we are done. We will now derive a contradiction from the contrary assumption
that m does not divide each mi in such an equation, with f a liftable function. We
may assume that the greatest common divisor of m,m1, . . . , mn; so there exists a
prime dividing m but not (say) m1.

Let g(x) = f (x, c2, . . . , cn) − e/m −∑n
i=2mici/m; then mg(c1) = m1c1, m

does not divide m1, g is E = acl(c2, . . . , cn)-definable and liftable. Since K = (0),
by assumption (3), c1 /∈ acl(E). Let E′ ⊃ E be such that g lifts to an E′-definable
function G′. Enlarging the model if necessary, let c′1 realize tp(c1/E), with c′1 /∈ E′
(cf. Example 2.4). Therefore, there exists E′′ such that E′′, c1 and E′, c′1 have the
same type. In particular, g lifts to an E′′-definable function G.

Consider any b1 such that ϑ(b1) = c1. Then mϑG(b1) − m1ϑ(b1) = 0. Thus
mG(b1)−m1b1 ∈ A.

Let p be prime, p|m but p � |m1. Let s, r ∈ Z be such that sp− rm1 = 1, and let
h(x) = sx− rm

p
g(x). Thenph(c1) = psc1−rmg(c1) = psc1−rm1c1 = c1. Also h

is liftable overE′′: indeed, ifG isE′′-definable and lifts g, thenH(x) = sx− rm
p
G(x)

lifts h.
Thus pH(b1) = b1 + d , some d ∈ A. Let b2 = H(b1); then b1 = pb2 − d, or

b2 = H(pb2 − d).
Now let c2 = h(c1) = ϑ(b2). Then pc2 = c1, and so c2 /∈ acl(E′′), since by

unique divisibility c1 ∈ acl(h(c1)). By (1), c2 /∈ acl(E′′(d)). Let C2 = ϑ−1c2. By
(2), any E′′(d)-definable set either contains C2 or is disjoint from C2. Hence for any
y ∈ C2, y = H(py − d).

By (4) there exists 0 �= ωp ∈ Awith pωp = 0. Let b′2 = b2+ωp. Then b2 ∈ C2,
so b′2 = H(pb′2 − d). But pb′2 = pb2, so b2 = b′2 and ωp = 0, a contradiction. )�
Remark 3.27.

(1) It follows from Lemma 3.26 that a definable bijection between subsets of Cn

that lifts to subsets of Bn is piecewise given by an element of GLn(Z)� Cn (cf.
Lemma 3.28).

(2) Assumption (4) on torsion does not hold in characteristic p > 0 for the sequence
k∗ → RV → . In this case there is l-torsion for l �= p, but no p-torsion, and
the corresponding group is GLn(Z[1/p])� Cn.

Note as a corollary that there can be no definable sections of B → C over an
infinite definable subset of C.

Lemma 3.28. Let 0 → A → B → C → 0 be as in Lemma 3.26. Let X ⊂ Bn be
definable, and let f : X → Bl be a definable function. X may be partitioned into
finitely many pieces X′, such that on each X′,
(1) f (x) = Mx + b(x), whereM is a l × n-integer matrix and ϑb(x) is constant;
(2) there exists g ∈ GLn(Z) such that b ◦ g factors through a projection Bn →π B

k ,
where ϑπ(X′) is one point of Ck .
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Proof. We first prove (1)–(2) for complete types.
(1) This reduces to l = 1. Let P be a complete type of elements of X. Then on

P we have ϑ ◦ f (x) =∑miϑ(xi)+ d for some constant d (Lemma 3.26).
Thus f (x) =∑mixi + b(x), where b(x) = f (x)−∑mixi , and ϑb(x) = d is

constant.
(2) Letπ : Bn → Bk be a projection such that ϑπ(X) is one point ofCk , and with

k maximal. Thus P ⊂ P ′ × P ′′, P ′ ⊂ Bn−k, P ′′ ⊂ Bk , and ϑ(P ′′) is a single point
of Ck , while ϑ(P ′) is not contained in any proper hypersurface

∑
nixi = constant

with ni ∈ Z. Pick b′′ ∈ P ′′. Let γ = (γ1, . . . , γk) ∈ ϑ(P ′), γ not in any such
hypersurface. Let a = (a1, . . . , ak), ϑ(ai) = γi , and let a′ be another point with
ϑ(a′) = γ . Let e = f (a, b). Then tp(a/b, e) = tp(a′/b, e), so f (a′, b) = e. Thus
f (a, b) depends only on b ∈ P ′′ and not on a (with (a, b) ∈ P ).

Since (1)–(2) hold on each complete type, there exists a definable partition such
that they hold on each piece. )�

3.4 V-minimality

We assume from now on that T is a theory of C-minimal valued fields, of residue
characteristic 0. When using the many-sorted language, we will still say that T is a
theory of valued fields when T = Th(F,RV(F )) for some valued field F , possibly
with additional structure. A C-minimal T satisfying assumption (3) below will be
said to have centered closed balls. If, in addition, (1)–(2) hold, we will say T is V-
minimal. Expansions by the definition of the language, i.e., the addition of a relation
symbol R(x) to the language along with a definition (∀x)(R(x) ⇐⇒ φ(x)) to the
theory, do not change any of our assumptions. Thus we can assume that T eliminates
quantifiers.

(1) Induced structure on RV. T contains ACVF(0, 0), and every parametically T-
definable relation on RV∗ is parametrically definable in ACVF(0, 0).

(2) Definable completeness. Let A ≤ M |= T , and let W ⊂ B be a TA-definable
family of closed balls linearly ordered by inclusion. Then ∩W �= ∅.

(3) Choosing points in closed balls. LetM |= T,A ⊆ VF(M), and let b be an almost
A-definable closed ball. Then b contains an almost A-definable point.

T will be called effective if every definable finite disjoint union of balls contains
a definable set, with exactly one point in each. A substructure A of a model of T will
be called effective if TA is effective.

If every definable finite disjoint union of rv-balls contains a definable set, with
exactly one point in each, we can call T rv-effective. However, we have the following.

Lemma 3.29. Let T be V-minimal. Then T is effective iff it is rv-effective.

Proof. Assume T is rv-effective. Let b be an algebraic ball. If b is closed, it has an
algebraic point by assumption (3) of Section 3.4. If b is open, let b̄ be the closed ball
surrounding it. Then b̄ has an algebraic point a. Let f (x) = x − a. Then f (b) is an
rv-ball, so by rv-effectivity it has an algebraic point a′. Hence a′ + a is an algebraic
point of b. )�
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In general, effectivity is needed for lifting morphisms from RV to VF, not for the
“integration’’ direction.

If T is V-minimal andA is a VF∪RV∪-generated structure, we will see that TA
is V-minimal, too. The analogue for points in open balls is true but only for VF∪-
generated substructures; for thin annuli it is true only for VF-generated structures.
For this reason the condition on closed balls is more flexible; luckily we will be able
to avoid the others.

Lemma 3.30. Let T be aC-minimal theory of valued fields. Then (1) =⇒ (2) =⇒
(3) =⇒ (4):
(1) T admits quantifier elimination in a three-sorted language (VF,k, ),such that

for any basic function symbol F with range VF, the domain is a power of VF;
and no relations on k,  beyond the field structure on k and the ordered Abelian
group structure on .

(2) Every parametrically definable relation on k is parameterically definable in
ACF(0), and every parametrically definable relation on  is parameterically
definable in DOAG.

(3) Assumption (1) of Section 3.4.
(4) k, , and RV are stably embedded.

Proof.

(1) =⇒ (2) Let φ(a, x) be an atomic formula with paramaters a = (a1, . . . , an)

from VF and x = (x1, . . . , xm) variables for the k,  sorts. Then
φ must have the form ψ(t (a), x), where t is a term (composition of
function symbols) VF∗ → (k ∪ ). Thus φ(a, x) defines the same
set as ψ(b, x) where b = t (a). Since every formula is a Boolean
combination of atomic ones, (2) follows.

(2) =⇒ (3) This follows from Corollary 3.22. The assumptions of Lemma 3.26 are
satisfied: (1) is automatic since byC-minimality k is strongly minimal
and  is O-minimal; (2) follows from C-minimality; (3)–(4) follow
from the assumptions on k, .

(3) =⇒ (4) This is immediate. )�
Lemma 3.31. Let T be a theory of valued fields satisfying assumption (1) of Sec-
tion 3.4, such that res induces a surjective map on algebraic points. Then (1) =⇒
(2) =⇒ (3) =⇒ (4):
(1) For any VF-generated substructure A of a model M of T, if (A) �= (0), then

acl(A) |= T.
(2) For any VF-generated substructureAof a model of T,any TA-definable nonempty

finite union of balls contains a nonempty TA-definable finite set.
(3) Assumption (3) of Section 3.4 holds.
(4) Let A be VF-generated, and Y a finite A-definable set of disjoint closed balls.

Then there exists anA-definable finite setZ such that |b∩Z| = 1 for each b ∈ Y .

Proof. We first show the following.
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Claim. For any VF-generated A with (A) = (0), res : VF(acl(A))→ k(acl(A)) is
surjective.

Proof. It suffices to prove the claim for finitely generated A. For A = ∅ this is true
by assumption. Using induction on the number of generators, it suffices to show that
if the claim holds for A0 and c ∈ VF then it holds for A = A0(c)).

Since (A) = (0), res is defined and injective on VF(A). If c ∈ acl(A0) there
is nothing to prove. Otherwise, by injectivity, res(c) /∈ acl(A0). As a consequence
of assumption (1) of Section 3.4, both dcl and acl agree with the corresponding
field-theoretic notions on RV and, in particular, on the residue field.

By Lemma 3.20,

k(A0(c)) ⊆ dcl(RV(A0), rv(c)) = dcl(k(A0), res(c)) = k(A0)(res(c)).

Now if d ∈ k(acl(A)) then d ∈ k and d ∈ acl(A), so by stable embeddedness of
k, we have d ∈ acl(k(A)); but acl(k(A)) = k(A)alg by assumption (1) of Section 3.4;
so d ∈ k(A0)(res(c))alg ⊆ res(A0(c)

alg). )�
Assume (1). If (acl(A)) �= (0), then by (1) acl(A) |= T and, in particular,

every acl(A)-definable ball has a point in acl(A), so (2) holds. Assume therefore that
(acl(A)) = 0. Let b be an acl(A)-definable ball. Then bmust have valuative radius
0. If some element of b has valuation γ < 0 then all do, and γ ∈ A, a contradiction.
Thus b is the (open or closed) ball of radius 0 around some c ∈ O. If b is closed, then
b = O and 0 ∈ b. If b is open, then b = res−1(b′) for some element b′ of the residue
field k; in this case b has an acl(A)-definable point by the claim.

(3) is included in (2), being the case of closed balls.
Assume (3). In expansions of ACVF(0, 0), the average of a finite subset of a ball

remains within the ball. Thus if Y is a finite A-definable set of disjoint balls, by (3),
there exists a finite A-definable set Z0 including a representative of each ball in Y .
Let Z = {av(b ∩ Z0) : b ∈ Y }, where av(u) denotes the average of a finite set u. )�
Lemma 3.32. When T is a complete theory, definable completeness is true as soon
as T has a single spherically complete model M in the sense of Ribenboim and
Kaplansky: every intersection of nested closed balls is nonempty.

Proof. The proof is clear. )�
Let ACVFan denote any of the rigid analytic theories of [23]. For definiteness, let

us assume the power series have coefficients in C((X)). See [14] for variants living
over Zp.

Lemma 3.33. ACVF(0, 0) is V-minimal and effective. Thus is ACVFan.

Proof. C-minimality is proved in [24]. Lemma 3.30(1) for ACVF is a version of
Robinson’s quantifier elimination; cf. [16].

ACVFan admits quantifier elimination in the sorts (VF, ) by [23, Theorem 3.8.2].
The residue field sort is not explicit in this language, but one can argue as follows. Let
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k1 be a large algebraically closed field containing C, and letK = ∪n≥1k1((X
1/n)) be

the Puiseux series ring. Then K admits a natural expansion to a model of the theory.
K is not saturated, but by C-minimality the induced structure on the residue field is
strongly minimal, so k1 is saturated. Now any automorphism of k1 as a field extends
to an automorphism ofK as a rigid analytic structure. Thus everyK-definable relation
on k1 is algebraic. (This could be repeated over a larger value group if necessary.)
Lemma 3.30(2) thus holds in both cases; hence we have assumption (1) of Section 3.4.

Condition Lemma 3.31(1) is obviously true for ACVF. For ACVFan it is proved
in [24]. It is also evident that these theories have a spherically complete model. Thus
by Lemmas 3.31 and 3.32, assumptions (3) and (2) of Section 3.4 hold, too. )�
Remarks.

(1) Lemma 3.31(1)–(3) remain true for ACVF in positive residue characteristic, but
(4) fails.

(2) ACVF(0, 0) also admits quantifier elimination in the two sorted language with
sorts VF, RV; so assumption (1) of Section 3.4 can also be proved directly, without
going through k,  as in Lemma 3.30.

(3) Assumption (1) of Section 3.4 is needed for lifting definable bijections of RV to
VF, Proposition 6.1, Lemma 6.3. Specifically, it implies the truth of assumptions
(2) of Lemma 3.21 and (4) of Lemma 3.26. These lemmas are only needed for the
injectivity of the Euler charactersitic and integration maps, not for their construc-
tion and main properties. It is also needed for the theory of differentiation and
for comparing derivations in VF and RV; indeed, even for posing the question,
since in general there is no notion of differentiation on RV. The theory of differ-
entiation itself is needed neither for the Euler characteristic nor for integration of
definable sets with a -volume form. They are required only for the finer theory
introduced here of integration of RV-volume forms.

(4) We know no examples of C-minimal fields where assumption (2) of Sec-
tion 3.4 fails.

(5) Beyond effectivity of dcl(∅), assumption (3) of Section 3.4 imposes a condition
on liftability of definable functions from VF to Bcl. Let T1 be the theory, inter-
mediate between ACVF(0, 0) and a Lipshitz rigid analytic expansion, generated
over ACVF(0, 0) by the relation

val(f (t0x)− y) ≥ val(t1)

on O2, where t0, t1 are constants with val(t1)ð val(t0) > 0 and f is an analytic
function. It appears that balls do not necessarily remain pointed upon adding
VF-points to T1; so assumption (3) of Section 3.4 is not redundant.

3.5 Definable completeness and functions on the value group

We assume T is C-minimal and definably complete. We show that the property of
having centered closed balls is preserved under passage to TA if A is RV, ,VF-
generated; similarly for open balls ifA is ,VF-generated. Also included is a lemma



302 Ehud Hrushovski and David Kazhdan

stating that every image of an RV-set in VF must be finite; from the point of view
of content this belongs to the description of the “basic geography,’’ but we need the
lemmas on functions from  first.

Proposition 3.34. LetM |= T, γ = (γ1, . . . , γm) a tuple of elements of (M). Any
almost A(γ )-definable ball b contains an almost A-definable ball b′.

Proof. See [16, Proposition 2.4.4]. While the proposition is stated for ACVF there,
the proof uses only C-minimality and definable completeness. We review the proof
in the case that b ∈ A(γ ), i.e., b = f (γ ) for some definable function f with domain
D ⊆ M .

Let P = tp(γ /A). Let r(γ ) be the valuative radius of f (γ ). By O-minimality,
r is piecewise monotone; since P is a complete type, r is monotone, say, decreasing.
For a ∈ P let Pa = {b ∈ P : b < a}, and for b ∈ Pa let fa(b) be the open ball of
size r(a) containing f (b). By Lemma 3.15, the valuative radius map rad is finite-to-
one on fa(Pa); but by definition it is constant, so fa(Pa) is finite. Using the linear
ordering, fa(Pa) is constant on each complete type over a. Pick b1 ∈ P , ε ∈ 
with ε > 0 but very small (over A(b1)), and ε′ ∈  with ε′ > 0 but ε′ very small
(over A(b1, ε)). Let b2 = b1 + ε, a = b2 + ε′. Then tp(b1, a/A) = tp(b2, a/A),
so fa(b1) = fa(b2). Now if f (b1), f (b2) are disjoint, let δ = val(x1 − x2) for
(some or any) xi ∈ f (bi). Then r(b2) > δ. Since ε′ is very small, r(a) > δ

also. Thus fa(b1), fa(b2) are distinct, a contradiction. Thus f (b1) ⊂ f (b2). Since
tp(a/A) = tp(b2/A), we have f (y) ⊂ f (a) for some y ∈ Pa . If f (y) ⊂ f (a) for all
y ∈ Pa , we are done; otherwise, let c(a) be the unique smallest element such that f is
monotone on (c(a), a). We saw, however, that f is monotone on (d, c(a)) for some
d < c(a), hence also on (d, a), a contradiction. Thus f is monotone with respect to
inclusion. By compactness, this is true on some A-definable interval, hence on some
interval I containing P .

Let U = ∩a∈I f (a). By definable completeness (assumption (2) of Section 3.4),
U �= ∅. Clearly, U is a ball, and U ⊆ b. )�
Lemma 3.35. LetM |= T, γ = (γ1, . . . , γm) a tuple of elements of (M). Then any
A(γ )-definable ball contains an A-definable ball. If Y is a finite A(γ )-definable set
of disjoint balls, then there exists a finite A-definable set Y ′ of balls, such that each
ball of Y contains a unique ball of Y ′.

Proof. This reduces immediately to m = 1. For m = 1, by Proposition 3.34, any
almost A(γ )-definable ball b contains an almost A-definable ball b′. Thus given a
finite A(γ )-definable set Y of disjoint balls, there exists a finite A-definable set Z of
balls, such that any ball of Y contains a ball of Z. Given b ∈ Y , let b′ be the smallest
ball containing every subball c of b with c ∈ Z. Then Y ′ = {b′ : b ∈ Y } is A(γ )-
definable, finite, almostA-definable, and (since b′1 is disjoint from b2 if b1 �= b2 ∈ Y )
each ball of Y contains a unique ball of Y ′. Using elimination of imaginaries in ,
by Example 2.2, being A(γ )-definable and almost A-definable, Y ′ is A-definable. )�

The following corollary of Lemma 3.35 concerning definable functions from 

will be important for the theory of integration with an additive character in Section 11.
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Corollary 3.36. Let Y be a definable set admitting a finite-to-one map into n, and
let into h be a definable map on Y into VF or VF/O or VF/M. Then h has finite
image.

Proof. One can view h as a function from a subset of n into finite sets of balls.
Since a ball whose radius is definable containing a definable ball is itself definable,
Lemma 3.35 implies that h(γ ) ∈ acl(∅) for any γ ∈ n. By Lemma 2.6, the corollary
follows. )�
Corollary 3.37. Let Y ⊆ (RV ∪ )n and Z ⊆ VF × Y be definable sets, with Z
invariant for the action of M on VF. Then for all but finitely many O-cosets C,
Z ∩ (C × Y ) is a rectangle C × Y ′.
Proof. Let p : (RV ∪ )n → n be the natural projection, and for γ ∈ n let Zγ be
the fiber. For each γ , by Lemma 3.16, there exists a finite F(γ ) ⊆ VF/O such that
for any O-coset C /∈ F(γ ), Zγ ∩ (C × Y ) is O-invariant. Now {(u, γ ) : u ∈ F(γ )}
projects finite-to-one to n, so by Lemma 3.36, this set projects to a finite subset of
VF/O. Thus there exists a finite E ⊂ VF/O such that for any γ , and any O-coset
C /∈ E, Zγ ∩ (C × Y ) is O-invariant. In other words, for any C /∈ E, Z ∩ (C × Y )
is O-invariant. )�
Lemma 3.38. LetM |= T, A a substructure ofM (all imaginary elements allowed),
and let r = (r1, . . . , rm) be a tuple of elements of RV(M) ∪ (M). Then any closed
ball almost defined over A(r) contains a ball almost defined over A.

Proof. This reduces to m = 1, r = r1; moreover, using Lemma 3.35, to the case
r ∈ RV(M), valrv(r) = γ ∈ A. Let E = {y ∈ RV : valrv(y) = γ }. Then E is
a k∗-torsor, and so is strongly minimal within M . If c is almost defined over A(r),
there exists an A-definable set W ⊂ E × Bcl, with W(e) = {y : (e, y) ∈ W }
finite, and c ∈ W(r). But then W is a finite union of strongly minimals, and hence
so is the projection P of W to Bcl. But any strongly minimal subset of Bcl is
finite. (Otherwise, it admits a definable map onto a segment in ; but  is linearly
ordered and cannot have a strongly minimal segment.) Thus c ∈ P is almost defined
over A. )�
Lemma 3.39. Let M |= T, T C-minimal with centered closed balls. Let B be sub-
structure of VF(M) ∪ RV(M) ∪ (M). Then every B-definable closed ball has a
B-definable point. If Y is a finite B-definable set of disjoint closed balls, there exists
a finite B-definable set Z ⊂ M , meeting each ball of Y in a unique point.

Proof. We may take B to contain a subfield K and be generated over K by finitely
many points r1, . . . , rk ∈ RV . Let Y be a finite B-definable set of disjoint closed
balls, and let b ∈ Y . We may assume all elements of Y have the same type overB. By
Lemma 3.38, there exists a closed ball b′ defined almost over K and contained in b.
By assumption (3) of Section 3.4, there exists a finiteK-definable setZ′ meeting b′ in
a unique point. Let Y ′ = {b′′ ∈ Y : b′′ ∩ Z′ �= ∅}, and Z = {av(Z′ ∩ b′′) : b′′ ∈ Y ′}.
Then Z meets each ball of Y ′ in a unique point, and Z, Y ′ are B-definable. As for
Y \ Y ′, it may be treated inductively. )�
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Corollary 3.40. LetM |= T, T C-minimal with centered closed balls, and effective.
Let B be an almost -generated substructure. Then T is effective.

Proof. The proof is the same as the proof of Lemma 3.39, using Lemma 3.34 in place
of Lemma 3.38. )�
Lemma 3.41. Let Y be a T-definable set admitting a finite-to-one map into RVn. Let
g : Y → VFm be another definable map. Then g(Y ) is finite.

Proof. It suffices to prove this for TA, where A |= T. We may also assume m = 1.
We will use the equivalence (3) ⇐⇒ (4) of Lemma 2.6. If g(Y ) is infinite, then by
compactness there exists a ∈ g(Y ) a /∈ acl(A). But for some b we have a = g(b),
so if c = f (b), we have c ∈ RVn, a ∈ acl(c). Thus it suffices to show the following:

If a ∈ VF, c ∈ RVn and a ∈ acl(A(c)), then a ∈ acl(A). (∗)

This clearly reduces to the case n = 1, c ∈ RV. Let d = valrv(c), A′ = acl(A(d)).
Then c lies in anA′-definable strongly minimal setS (namely, S = valrv−1(d)). Using
Lemma 2.6 in the opposite direction, since a ∈ acl(A′(c))) there exists a finite-to-one
map f : S′ → S and a definable map g′ : S′ → VF with a ∈ g′(f−1(S′)). By Cor-
ollary 3.13, g′(f−1(S′)) is finite. Hence a ∈ acl(A(d)). But then by Lemma 3.36,
a ∈ acl(A). )�

In particular, there can be no definable isomorphism between an infinite subset of
RVn and one of VFm.

Lemma 3.42. Let M |= T, T C-minimal with centered closed balls, and let A be a
substructure of M . Write AVF for the field elements of A, ARV for the RV-elements
of A.

Let c ∈ RV(M), and let A(c) = dcl(A ∪ {c}). Then A(c)VF ⊂ (AVF)
alg, and

rv(A(c)VF) ∩ ARV = rv(AVF).

Proof. Let e ∈ A(c)VF. Then e = f (c) for someA-definable function f : W → VF,
W ⊆ RV. By Lemma 3.41, the image of f is finite, e ∈ acl(A). This proves the
first point. Now if d ∈ RVA and rv−1(d) has a point in A(c), then it has a point in
(AVF)

alg, by assumption (3) of Section 3.4. )�

3.6 Transitive sets in dimension one

Let b be a closed ball in a valued field. Then the set Aff (b) of maximal open subballs
of b has the structure of an affine space over the residue field. We will now begin
using this structure. Without it, more general transitive annuli (missing more than
one ball) could exist.

Lemma 3.43. Let X ⊆ VF be a transitive TB -definable set, where B is some set of
imaginaries. Then X is a finite union of open balls of equal size, or a finite union of
closed balls of equal size, or a finite union of thin annuli.
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Proof. ByC-minimality,X is a finite Boolean combination of balls. There are finitely
many distinct balls b1, . . . , bn that are almost contained inX (i.e., bi \X is contained
in a finite union of proper subballs of bi) but such that no ball larger than bi is almost
contained in X. These bi must be disjoint. If some of the bi have different type than
the others, their union (intersected with X) will be a proper B-definable subset of X.
Thus they all have the same type over B; in particular, they have the same radius β.

Consider first the case where the balls bi are open. Then bi ⊆ X. Otherwise,
bi \ X is contained in a unique smallest ball ci . Say ci has radius α; then α > β.
Let b′i be the open ball of radius (1/2)(α + β) around ci ; then ∪ib′i is a B-definable
proper subset of X, a contradiction. Thus in the case of open balls, X ⊇ ∪ibi and
therefore X = ∪ibi .

If the balls bi are closed, let cij be a minimal finite set of subballs of bi needed
to cover bi \ X. The same argument shows that no cij has radius < β. Thus all cij
are elements of the set Vi of open subballs of bi of radius β. Now Vi is a k-affine
space, and if there is more than one cij then over acl(B), Vi admits a bijection with
k; so there is a finite B-definable set of bijections Vi → k; since any finite definable
subset of k is contained in a strictly bigger one, the union of the pullbacks gives a
B-definable subset of Vi properly containing the cij , leading to a proper B-definable
subset ofX. Thus either bi ⊆ X (and thenX = ∪ibi), or else bi \ci ⊆ X for a unique
maximal open subball ci . Now ∪ci intersects X in a proper subset, which must be
empty. Thus in this case X = ∪i (bi \ ci). )�

Let X be a transitive B-definable set. Call Y ⊆ X potentially transitive if there
existsB ′ ⊃ B such thatY isB ′-definable andB ′-transitive. Let F(X)be the collection
of all proper potentially transitive subsets Y ofX. Let Fmax(X) be the set of maximal
elements of F(X).

Lemma 3.44.

(1) If X is an open ball, Fmax(X) = ∅.
(2) If X is a closed ball, Fmax(X) = {X \ Y : Y ∈ Aff (X)}.
(3) If X is a thin annulus X′ \ Y with X′ closed, then Fmax(X) = Aff (X) \ {Y }.

Proof. Any element of F(X) must be a ball or a thin annulus, so the lemma follows
by inspection. )�

Lemma 3.45. Let b be a transitive closed ball (respectively, thin annulus). Let
Y = Aff (b) be the set of maximal open subballs of b. Then the group of auto-
morphisms of Y over k is definable, acts transitively on Y , and, in fact, contains
Ga(k) (respectively, Gm(k)).

If b, b′ are transitive definable closed balls, and F : b→ b′ a definable bijection,
let F∗ : Y (b) → Y (b′) be the induced map. Then F∗ is a homomorphism of affine
spaces, i.e., there exists a vector space isomorphism F∗∗ : V (b) → V (b′) between
the corresponding vector spaces, and F∗(a + v) = F∗(a) + F∗∗(v). If b = b′ then
F∗∗ = Id .
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Proof. Y = Aff (b) is transitive, and there is a k-affine space structure on Y (re-
spectively, a k-vector space structure on V = Y ′ .∪{0}). Let G = Aut(Y/k) be the
subgroup of the group Aff = (Gm � Ga)(k) of affine transformations of Y that
preserve all definable relations. By definition, this is an intersection of definable sub-
groups of Aff . However, there is no infinite descending chain of definable subgroups
of Aff , so G is definable.

If G is finite, then Y ⊆ acl(k), and it follows (cf. Section 2.1) that there are
infinitely many algebraic points of Y , contradicting transitivity. ThusG is an infinite
subgroup of (Gm � Ga)(k) such that the set of fixed points YG is empty. Thus G
must contain a translation, and by strong minimality it must containGa(k). Similarly,
in the case of the annulus, G is an infinite definable subgroup of Gm(k), so it must
equal Gm(k).

As for the second statement, F induces a group isomorphism Aut(Y (b)/k) →
Aut(Y (b′)/k), and hence an isomorphism Ga(k) → Ga(k), which must be multi-
plication by some γ ∈ k∗. Since Ga(k) acts by automorphisms on (Y (b), Y (b′)),
any definable function Y (b) → Y (b′) commutes with this action and hence has the
specified form. If b = b′ then Y (b) = Y (b′); now if F∗∗ �= Id then F∗ would have a
fixed point, contradicting transitivity. )�
Lemma 3.46. Let b be a transitive TB -definable closed (open) ball. Let F be a
B-definable function, injective on b. Then F(b) is a closed (open) ball.

Proof. By Lemma 3.43, since F(b) is also transitive, it is either a closed ball, or an
open ball, or a thin annulus. We must rule out the possibility of a bijection between
such sets of distinct types.

Consider the collection Fmax(b) defined above. Any definable bijection between
b and b′ clearly induces a bijection Fmax(b) → Fmax(b

′). By Lemma 3.44, the
bijective image of an open ball is an open ball.

Let b be a closed ball, b′ = b′′ \ b′′′ a closed ball minus an open ball,
A = Fmax(b) ' Aff (b), A′ = F(b′) ' Aff (b′′) \ {b′′′}, G = Aut(A/k),
G′ = Aut(A′/k). Then a definable bijection A→ A′ would give a definable group
isomorphism G→ G′. But by Lemma 3.45, G′ = Gm(k) while G contains Ga(k),
so no such isomorphism is possible (say, because Gm(k) has torsion points).

Thus the three types are distinct. )�
We will see later that there can be no definable bijection between an open and a

closed ball, whether transitive or not.

Lemma 3.47. Let b be a transitive ball. Then every definable function on b into
RV∪ is constant. If b is a transitive thin annulus, every definable function on b into
k ∪  is constant. More generally, this is true for definable functions into definable
cosets C of k∗ in RV that contain algebraic points.

Proof. When a ball b is transitive, it is actually finitely primitive. For if E is a B-
definable equivalence relation with finitely many classes, then exactly one of these
classes is generic (i.e., is not contained in a finite union of proper subballs of b). This
class is B-definable, hence must equal b.
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Thus a definable function on b with finite image is constant.
Let F be a definable function on b into . If F is not constant, then for some

γ ∈ , F−1(γ ) is a proper subset of b; it follows that some finite union of proper
subballs of b is γ -definable. By Lemma 3.35, it follows that some such finite union
is already definable, a contradiction.

Thus it suffices to show that functions into a single coset C = valrv−1(γ ) of k∗
are constant on b.

Assume first that b is open, or a properly infinite intersection of balls. By
Lemma 3.19 definable functions on b into C are generically constant; but then by
transitivity they are constant.

Now suppose b is closed, or a thin annulus. Let Y be the set of maximal open
subballs b′ of b. Each b′ ∈ Y is transitive over Tb′ , so F |b′ is constant. Thus F
factors through Y .

In the case of the annulus, by Lemma 3.45, Gm(k) acts transitively on Y by
automorphisms over k. This suffices to rule out nonconstant functions into k. More
generally, if a coset C of k∗ has algebraic points, then Aut(C/k) is finite. Since
Aut(Y/k) is transitive, it follows that if f : Y → C is definable then f (Y ) is finite.
But Y is finitely primitive, so f (Y ) is a point.

Assume finally that b is a closed ball. Using Lemma 3.45, we can view Ga(k)
as a subgroup of Aut(Y/k). Aut(C/k) is contained in Gm(k). Let S = Aut(Y ×
C/k) ∩ (Ga(k) × Gm(k)). Then S projects onto Ga(k). By strong minimality,
S ∩ (Ga(k) × (0)) is either Ga(k) or a finite group. In the first case, S = Ga × T
for some T ≤ Gm. In the latter, S is the graph of an finite-to-one homomorphism
Ga → T ; but this is impossible. Thus Ga × (0) ≤ S and Ga acts transitively on Y
by automorphisms fixing C; it follows that F is constant. )�

3.7 Resolution and finite generation

Lemma 3.48. Let A ≤ B be substructures of a model of T. Assume B is finitely
generated over A. Then RV(B) is finitely generated over RV(A). Also, if RV(A) ≤
C ≤ RV(B) then C is finitely generated over RV(A).

Proof. Suppose (B) has infinitely many Q-linearly independent elements, modulo
(A). By Lemma 3.1, they are algebraically independent. By Lemma 3.20, they lift
to algebraically independent elements of B over A, contradicting the assumption of
finite generation. Thus rk(B)/(A) <∞. It is thus clear that any substructure of
(B) containing (A) is finitely generated over (A). Thus it suffices to show that
RV(B) is finitely generated overA∪(B); replacingA byA∪(B), we may assume
(B) = (A). In this case RV(B) ⊂ RES. See [17, Proposition 7.3] for a proof stated
for ACVFA, but valid in the present generality. Here is a sketch. One looks at B =
A(c) with c ∈ VF. If c ∈ acl(A) then the Galois group Aut(acl(A)/A(c)) has finite
index in Aut(acl(A)/A). Hence the same is true of their images in Aut(acl(A)∩RV),
and since RV is stably embedded (by clause (1) of the definition of V -minimality) it
follows that there exists a finite subset C′ of A(c)∩RV such that any automorphism
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of acl(A) fixing A(C′) fixes A(c) ∩ RV. By Galois theory for saturated structures
(Section 2.1) C′ generates A(c) ∩ RV over A.

On the other hand, if c /∈ acl(A), then tp(c/ acl(A)) agrees with the generic
type over A of either a closed ball, an open ball, or an infinite intersection of balls.
In the latter two cases, RES(A) = RES(B) using Lemma 3.19. In the case of a
closed ball b, let b′ be the unique maximal open subball of b containing c. Then
b′ ∈ A(c), and tp(c/A(b′)) is generic in the open ball b′. Thus by Lemma 3.17,
RES(B) = RES(A(b′)) so it is 1-generated. )�

Recall B = Bo ∪Bcl is the sort of closed and open balls.
We require a variant of a result from [17] on canonical resolutions. We state it for

B-generated structures, but it can be generalized to arbitrary ACVF-imaginaries [16].
The proposition and corollaries will have the effect of allowing free use of the

technology constructed in this paper over arbitrary base (cf. Proposition 8.3).
For this proposition, we allow B (and ) as sorts, in addition to VF and RV, so

that a structure is a subset of B,  of a model of T, closed under definable functions.
Assume for simplicity that T has quantifier elimination (cf. Section 3.4).
Let us call a structure A resolved if any ball and any thin annulus defined over

acl(A) has a point over acl(A).

Lemma 3.49. Let T be V-minimal. Let M |= T, and let A be a substructure of M .
Then (1) and (2) are equivalent; if (A) �= (0), then (3) is equivalent to both.

(1) A is effective and VF(acl(A))→ (A) is surjective.
(2) A is resolved.
(3) acl(A) is an elementary submodel ofM .

Proof. Clearly, (3) implies (1) and (2) implies (1). To prove that (1) implies (3) it
suffices to show that every definable φ(x) of TA in one variable, with a solution
in M , has a solution in A. If x is an RV-variable it suffices to show that φ(rv(y))
has a solution; so we may assume x is a VF-variable, so φ defines D ⊆ VF. By
C-minimalityD is a finite Boolean combination of balls. D can be written as a finite
union of definable sets of the form ∪mj=1Dj \ Ej , where for each j , Dj is a closed
ball, and Ej a finite union of maximal open subballs ofDj , orDj is an open ball and
Ej is a proper subball ofDj , or Ej = ∅, orDj = K . In the third case, by effectivity
there exists a finite set meeting eachDj in a point; since A = acl(A), this finite set is
contained in A; so D(A) �= ∅, as required. In the first and second cases, there exists
similarly a finite set Y meeting each Ej . Since A = acl(A), Y ⊆ A. By picking a
point and translating by it, we may assume 0 ∈ Ej for some j . Say Ej has valuative
radius α; picking a point d ∈ Awith val(d) = α and dividing, we may assume α = 0.
Now in the open case any element of valuation 0 will be inDj . In the closed case, the
image of Ej under res is a finite subset of the residue field; pick some element ā of
k(A) outside this finite set; by effectivity, pick a ∈ A with res(a) = ā; then a ∈ D.
In the fourth case, we use the assumption that (A) �= (0). This proves (3).

It remains to show that (1) implies (2). Let b be a thin annulus defined over
acl(∅); so b = b′ \ b′′ for a unique closed ball b′ and maximal open subball b′′. By
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effectivity, b′′ has an algebraic point, so translation we may assume 0 ∈ b′′. In this
case, the assumption that VF(acl(A))→ (A) is surjective gives a point of b′ \ b′′.)�

If T0 is V-minimal, A is a finitely generated structure (allowing B, or even
ACVF-imaginareis), and T = (T0)A, we will call T a finitely generated extension of
a V-minimal theory.

Remark 3.50. If A is effective, then A is VF ∪ -generated. If A is resolved, then A
is VF-generated.

Proposition 3.51. Let T be V-minimal.

(1) There exists an effective structure Eeff admitting an embedding into any effective
structure E. We have RV(Eeff ), (Eeff ) ⊆ dcl(∅).

(2) There exists a resolved Erslv embedding into any resolved structure E. We have
k(Erslv), (Erslv) ⊆ dcl(∅). In fact, C(Erslv) ⊆ dcl(∅) for any cosets C of k∗
in RV that contain algebraic points.

(3) Let A be a finitely generated substructure of a model of T, in the sorts VF ∪B.
Then (1)–(2) hold for TA.

Proof.
(1) Let (bi)i<λ enumerate the definable balls. Define a tower of VF-generated

structures Ai , and a sequence of balls bi , as follows. Let A0 = dcl(∅); if κ is a limit
ordinal, let Aκ = ∪i<κAi . Assume Ai has been defined. If possible, let bi be an
Ai-definable, Ai-transitive ball, not a point; and let ci be any point of bi . If no such
ball bi exists, the construction ends, and we let Eeff = Ai for this i.

Suppose E is any effective substructure of a model of T. We can inductively
define a tower of embeddings fi : Ai → E. At limit stages κ let fκ = ∪i<κfi .
Given fi with Ai �= E, let b′i be the image under f of bi . By effectivity, b′i has a
point c′i ∈ E. Since bi is transitive over Ai , the formula x ∈ bi generates a complete
type; so tp(ci/Ai) is carried by f to tp(c′i/A′i ). Thus there exists an embedding
fi+1 : Ai+1 → E extending fi , and with ci �→ c′i .

EachAi is VF-generated; by Lemma 3.31(3) =⇒ (4), the process can only stop
when Ai = Eeff . This shows that Eeff embeds into E, and at the same time that the
construction of Eeff itself must halt at some stage (of cardinality ≤ |T|).

By construction, Eeff is VF-generated; and hence TEeff is V-minimal. Moreover,
there are no Eeff -definable Eeff -transitive balls (except points). In other words all
Eeff -definable balls are centered. By V-minimality (assumption (3) of Section 3.4)
every closed ball has a definable point, so every centered ball has one. Thus Eeff is
effective.

It remains only to show that RV(Eeff ), (Eeff ) ⊆ dcl(∅). We show inductively
that RV(Ai), (Ai) ⊆ dcl(∅). At limit stages this is trivial, and at successor stages it
follows from Lemma 3.47.

(2) The proof is identical to that of (1), but using thin annuli as well as balls. If a
thin annulus is not transitive, it contains a proper nonempty finite union of balls, so
by V-minimality it contains a proper nonempty finite set. Hence the construction of
the Ai stops only when Ai is resolved.
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(3) Let A0 = (A ∩ (VF ∪ )). A is generated over A0 by some b1, . . . , bn ∈ B
with bi of valuative radius γi ∈ A0. Since TA0 is V-minimal, we may assume
T = TA0 and A is generated by b1, . . . , bn, with γi definable.

Let J be a subset of {1, . . . , n} of smallest size such that acl({bj : j ∈ J }) =
acl({b1, . . . , bn}). By minimality, no bj is algebraic over {bj ′ : j ′ ∈ J, j ′ �= j}.
Let j ∈ J , and let Yj be the set of balls of radius γj ; then Yj is a definable family
of disjoint balls. By Lemma 3.8 for T′ = T〈{bj ′ :j ′∈J,j ′ �=j}〉, bj is transitive in T′bj ,
i.e., in T〈bj ′ :j ′∈J 〉; hence bj is transitive over acl(b1, . . . , bn) = acl(A). Let us now
show, using induction on |J |, that �j∈J bj is transitive over A. Let cj ∈ bj . By
Lemma 2.10 the ({bj ′ : j ′ ∈ J, j ′ �= j}) remain algebraically independent over 〈cj 〉.
Thus by induction, �j �=j ′bj ′ is transitive over A(cj ); since bj is transitive over A,
�j∈J bj is, too. Let A′ = A(cj : j ∈ J ).
Claim. If B is a VF ∪ -generated structure containing A, then A′ embeds into B
over A.

Proof. Since B is VF ∪ -generated, every ball of TB is centered; in particular, bj
has a point c′j defined over TB . Let c′ = (c′j : j ∈ J ). By transitivity of�j∈J bj , we
have tp(c/A) = tp(c′/A). Thus A′ embeds into B. )�

Note thatA′ is almost VF∪-generated; indeed, since γi is definable, bi ∈ dcl(ci)
so A′ ⊆ acl((cj )j∈J ). Thus TA′ is V-minimal. Thus (1)–(2) applies and prove (3).)�

See Lemma 3.60 for a uniqueness statement.

Corollary 3.52. Let f : VF → (RV ∪ )∗ be a definable map.

(1) There exists a definable f̃ : RV → (RV∪)∗ such that for any x ∈ RV, for some
x ∈ VF with rv(x) = x, f̃ (x) = f (x).

(2) Let 	 = VF/M. There exists a definable map f̃ : 	→ (RV ∪ )∗ such that for
any x ∈ 	, for some x ∈ VF with x +M = x, f̃ (x) = f (x).

Proof.
(1) In view of Lemma 2.3, it suffices to show that for a given complete type

P ⊆ RV, there exists such a function f̃ on P . We fix a ∈ P , and show the existence
of c ∈ dcl(a) such that for some a with rv(a) = a, f (a) = c.

By Proposition 3.51, there exists an effective substructure A with a ∈ A and
(RV∪)(A) = (RV∪)(〈a〉). Thus the open ball rv −1(a) has anA-definable point
a. Set c = f (a); since f (a) ∈ RV(A) = RV(〈a〉) we have c = f̃P (a) for some
definable function f̃P . Clearly, f̃P satisfies the lemma for the input a, hence for any
input from P .

(2) The proof is identical, using Lemma 3.51(3). )�
Corollary 3.53. Let T be V-minimal. Assume every definable point of  lifts to an
algebraic point of RV. Then there exists a resolved structure Erslv such that Erslv
can be embedded into any resolved structure E, and RV(Erslv), (Erslv) ⊆ dcl(∅).
If A is a finitely generated substructure of a model of T, in the sorts VF ∪ B, the
same is true for TA.
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Proof. Under the assumption of the corollary, the conclusion of Proposition 3.51
implies RV(Erslv) ⊆ dcl(∅). )�
Remark 3.54. It is easy to see using the description of imaginaries in [16] that in a
resolved structure, any definable ACVF imaginary is resolved. In other words, if A
is a resolved, and ∼ is a definable equivalence relation on a definable set D, then
D(A)→ (D/ ∼)(A) is surjective.

If A is only effective, then there exists γ ∈ (A)n such that for any t with
val(t) = γ , (D/ ∼)(A) ⊆ dcl(D(A)/ ∼, t); this can be seen by embedding D/ ∼
into Bn(K)/H for an appropriate H ≤ Bn(O), and splitting Bn = TnUn.

3.8 Dimensions

We define the VF-dimension of a TM -definable set X to be the smallest n such that
for some n, X admits a TM -definable map with finite fibers into VFn × (RV ∪ )∗.

By essential bijection Y → Z we mean a bijection Y0 → Z0, where dimVF(Y \
Y0), dimVF(Z \ Z0) < dimVF(Y ) = dimVF(Z); and where two such maps are iden-
tified if they agree away from a set of dimension < dimVF(Y ).

We say that a map f : X→ VFn has RV-fibers if there exists g : X→ (RV∪)∗
with (f, g) injective.

Lemma 3.55. Let X ⊆ VFn × (RV ∪ )∗ be a definable set. Then we have the
following:

(1) X has VF dimension ≤ n iff there exists a definable map f : X → VFn with
RV-fibers.

(2) If it exists, the map f is “unique up to isogeny’’: if f1, f2 : X → VFn have
RV-fibers, then there exists a definable h : X → Z ⊆ VFn × (RV ∪ )∗ and
g1, g2 : Z→ VFn with finite fibers, such that fi = gih.

Proof.

(1) If f : X → VFn has RV-fibers, let g be as in the definition of RV-fibers;
then (f, g) : X → VFn × (RV ∪ )∗ is injective, so certainly finite-to-one. If
φ : X → VFn × RV∗ is finite-to-one, by Lemma 3.9, each fiber φ−1(c) admits
a c-definable injective map ψc : −1(c) → RV∗. By Lemma 2.3 we can find
θ : X→ VFn → RV∗ that is injective on each φ-fiber. Let f (x) = (φ, θ). This
proves the equivalence.

(2) Now supposef1, f2 : X→ VFn both have RV-fibers. Leth(x) = (f1(x), f2(x)),
Z′ = h(X), and define gi : Z′ → VFn by g1(x, y) = x, g2(x, y) = y. Then
gi has finite fibers. Otherwise, we can find a ∈ X such that f1(a) /∈ acl(f2(a))

(or vice versa). But for any a ∈ X, we have f1(a) ∈ acl(f2(a), c) for some
c ∈ (RV ∪ )∗. By Lemma 3.41, f1(a) ∈ acl(f2(a)), a contradiction. By
Lemma 3.9 (cf. Lemma 2.3), there exists a definable bijection between Z′ and a
subset Z of VFn × RV∗. Replacing Z by Z′ finishes the proof of the lemma. )�

Corollary 3.56. Letf : X→ RV∪,Xa = f−1(a). Then dim(X) = maxa dimXa .
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Proof. Let n = maxa dimXa . For each a there exist definable functions ga : Xa →
VFn and ha : Xa → (RV ∪ )∗ with (ga, fa) injective on Xa . Thus by the com-
pactness argument of Lemma 2.3, there exists definable functions g : X→ VFn and
h : Xa → (RV ∪ )∗ such that (g, h) is injective when restricted to each Xa . But
then clearly (g, h, f ) is injective, so dim(X) ≤ n. The other inequality is obvious.)�

We continue to assume T is V-minimal.

Lemma 3.57. Let a, b ∈ VF. If a ∈ acl(b) \ acl(∅), then b ∈ acl(a).

Proof. Suppose b /∈ acl(a). Let A0 = (acl(a, b)). Then by Lemma 3.36, b /∈
acl(A0(a)).

Let C be the intersection of all acl(A0)-definable balls such that b ∈ C, and let
C′ be the union of all acl(A0)-definable proper subballs of C. Let B = ∩i{Bi} be
the set of all balls defined over acl(A0(a)) with b ∈ Bi , and let B ′ = ∪j {B ′j } be the
union of all acl(A0(a))-definable proper subballs of B.

Since a ∈ acl(b), we have a ∈ acl(b′) for all b′ ∈ B \ B ′, outside some proper
subball. It follows by compactness that for some i, j , a ∈ acl(b′) for all b′ ∈ Bi \B ′j .
Say i = j = 1, B ′1 ⊂ B1. By Example 3.57, a ∈ acl(A0(f1)), where f1 ∈ B codes
the ball B1.

If B1 is a point, we are done. Otherwise, B1 has valuative radius α1 <∞ defined
overA0. It follows that ifB1 ⊇ C thenB1 is acl(A0)-definable; but then a ∈ acl(A0),
contradicting the assumption. Since B1 meets P nontrivially, we therefore have
B1 ⊂ C. Similarly, B1 cannot contain any ball in C′ since it is not acl(A0)-definable,
but it cannot be contained in C′ since B1 ∩ P �= ∅. so B1 ∩ C′ = ∅. Thus B1 ⊂ P .

Let B̄1 be the closed ball of radiusα1 containingB1, and let e1 be the corresponding
element ofBcl. Since B̄1 is almost definable overA0(a), it follows from V-minimality
that there exists an almostA0(a)-definable point c(a) in B̄1. Now if a ∈ acl(A0(e1)),
then B̄1 contains anA0(e1)-definable finite set F1 = F1(e1). But since B1 is a proper
subset of P , e1 /∈ acl(A0), this contradicts Lemma 3.8. Thus a /∈ acl(A0(e1)).

Nevertheless, we have seen that a ∈ acl(A0(f1)). Thus B1 �= B̄1, so B1 is a
maximal open subball of B̄1. Let b1 be the point of Aff (B̄1) representing B1. Then
a ∈ acl(b1). It follows that tp(a/ acl(A0(e1))) is strongly minimal, contradicting
Lemma 3.13. We have obtained a contradiction in all cases; so b ∈ acl(a). )�

Since the lemma continues to apply over any VF-generated structure, algebraic
closure is a dependence relation in the sense of Steinitz (also called a prematroid or
combinatorial geometry; cf. [34]). Define the VF-transcendence degree of a finitely
generated structure B to be the maximal number of elements of VF(B) that are
algebraically independent over VF(A). This is the size of any maximal independent
set, and also the minimal size of a subset whose algebraic closure includes all VF-
points. Hence we have the following.

Corollary 3.58. The VF dimension of a definable setD is the maximal transcendence
degree of 〈b〉. )�
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We can now obtain a strengthening of Lemma 3.41, and a uniqueness statement
in Proposition 3.51.

Corollary 3.59. Let Y be a T-definable set admitting a finite-to-one map f into Bn.
Let g : Y → VFm be a definable map. Then g(Y ) is finite.

Proof. We may assume m = 1. We will use the equivalence (3) ⇐⇒ (4) of
Lemma 2.6. If g(Y ) is infinite, then by compactness there exists a ∈ g(Y ), a /∈
acl(A). But for some b we have a = g(b), so if c = f (b), we have c ∈ Bn, a ∈
acl(c). Thus it suffices to show the following:

If a ∈ VF, c ∈ Bn and a ∈ acl(A(c)), then a ∈ acl(A). (∗)

This clearly reduces to the case n = 1, c ∈ B. Let γ be the valuative radius of c. As
follows from Corollary 3.36, it suffices to show that a ∈ acl(A(γ )). Thus in (∗) we
may assume γ ∈ A.

Finally, to prove (∗) (using again the equivalence of Lemma 2.6), we may en-
large A, so we may assume A |= T.

Since γ ∈ A, c ∈ dcl(A(e)) for any element e of the ball c. Thus a ∈ acl(A(e)).
Suppose a /∈ acl(A); then by exchange for algebraic closure in VF, e ∈ acl(A(a)).
Thus any two elements of the ball c are algebraic over each other. By Ex-
ample 2.4, c has finitely many points; which is absurd. This contradiction shows that
a ∈ acl(A). )�
Lemma 3.60 (cf. Proposition 3.51). Let T be a finitely generated extension of an
effective V-minimal theory. Then if E1, E2 are effective and both embed into any
effective E, then they are finitely generated, and E1 ' E2.

Proof. The finite generation is clear. Since E1, E2 embed into each other, they
have the same VF-transcendence degree We may assume E1 ≤ E2. But then by
Lemma 3.58, E2 ⊆ acl(E1). By Lemma 3.9, E2 ⊆ dcl(E1, F ) for some finite
F ⊆ RV∗ ∩ dcl(E2). But RV(E1) = RV(E2), so F ⊆ dcl(E1), and thus E2 = E1.)�
Remark 3.61. The analogous statement is true for resolved structures. Note that if F
is a finite definable subset of RVn, then automatically the coordinates of the points of
F lie in cosets of k∗ that have algebraic points.

Remark. The hypothesis of Lemma 3.60 can be slightly weakened to the following:
T is finitely generated over a V-minimal theory, and there exists a finitely generated
effective E.

Example 3.62. In ACVF, when X ⊆ VFn, the VF dimension equals the dimension
of the Zariski closure of X. This is proved in [36]. The idea of the proof: the VF
dimension is clearly bounded by the Zariski dimension. For the opposite inequality, in
the case of dimension 0, ifX is a finiteA-definable subset of VF, then using quantifier
elimination there exists a nonzero polynomial f with coefficients in A, such that f
vanishes on X. In general, if a definable X ⊆ VFn has VF dimension < n, one can
reduce to the case where all fibers of the projection pr : X → prX ⊂ VFn−1 are
finite, then X is not Zariski dense in VFn, using the zero-dimensional case.
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The RV-dimension of a definable set X ⊆ RV∗ is the smallest integer n (if any)
such that X admits a parametrically definable finite-to-one map into RVn. More
generally for X ⊆ (RV ∪ )∗, dimRV(X) is the smallest integer n (if any) such that
X admits a parametrically definable finite-to-one map into (RV ∪ )n.

Note that RV is one dimensional, but  and every fiber of valrv are also one
dimensional. In this sense RV ∪  dimension is not additive; model-theoretically it
is closer to weight than to rank. We do have dim(X × Y ) = dim(X)+ dim(Y ).

Dually, if a structure B is RV-generated over a substructure A, we can define the
weight of B/A to be the least n such that B ⊆ acl(A, a1, . . . , an), with ai ∈ RV.

For subsets of RV, RV dimension can be viewed as the size of a Steinitz basis with
respect to algebraic closure. One needs to note that the exchange principle holds.

Lemma 3.63 (exchange). Let a, b1, . . . , bn ∈ RV; assume a ∈ acl(A, b1, . . . , bn) \
acl(A, b1, . . . , bn−1). Then bn ∈ acl(A, b1, . . . , bn−1, a).

Proof. We may take n = 1, bn = b, and A = acl(A). Let α = valrv(a) ∈ ,
β = valrv(b). If β ∈ A then (A(a, b)) = (A(b)) = (A). The first equality is
true since a ∈ acl(A(b)) soA(a, b) ⊂ acl(A(b)), and using the stable embeddedness
of  (Section 2.1) and the linear ordering on . The second equality follows from
Lemma 3.10. Thus if β ∈ A, then a, b lie inA-definable strongly minimal sets, cosets
of k∗, and the lemma is clear.

Assume β /∈ A. If α ∈ A, then tp(a/A) is strongly minimal, and tp(a/A) implies
tp(a/A(b)) by Lemma 3.10; but then a ∈ acl(A), contradicting the assumption.
Thus α, β /∈ A; from the exchange principle in , it follows that A′ := acl(A, α) =
acl(A, β). Moreover, a /∈ acl(α) by Lemma 3.11 and Lemma 2.6. By the previous
case, b ∈ acl(A′, a), so b ∈ acl(A, a). )�
Lemma 3.64. A definable X ⊆ RVn has RV dimension n iff it contains an n-
dimensional definable subset of some coset of k∗n.

Proof. Assume X has RV dimension n. Then there exists (a1, . . . , an) ∈ X with
a1, . . . , an algebraically independent. Let c ∈ ; then since an /∈ acl(a1, . . . , an−1),
it follows as in the proof of Lemma 3.63 that an /∈ acl(a1, . . . , an−1, c). This applies
to any index, so a1, . . . , an remain algebraically independent over c; and inductively
we may add to the base any finite number of elements of . Let ci = valrv(ai), and
let A′ = A(c1, . . . , cn). Then a1, . . . , an are algebraically independent over A′, and
they lie in X′ = X ∩�ni=1 rv −1(ci); thus X′ is an n-dimensional definable subset of
a coset of k∗n. )�
Definition 3.65. VF[n, ·] be the category of definable subsets of VF∗ × RV∗ of di-
mension ≤ n. Morphisms are definable maps.

Let X ∈ Ob VF[n, ·]. By Lemma 3.55, there exists a definable f : X → VFn

with RV-fibers; and the maximal RV dimension of a fiber is a well-defined quantity,
depending only on the isomorphism type of X (but not on the choice of f ). In
particular, the subcategory of definable sets of maximal fiber dimension 0 will be
denoted VF[n].
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Definition 3.66. We define RV[n, ·] to be the category of definable pairs (U, f ), with
U ⊆ RV∗, f : U → RVn. If U,U ′ ∈ Ob RV[n, ·], a morphism h : U → U ′ is
a definable map, such that U ′′ = {(f (u), f ′(h(u)) : u ∈ U} has finite-to-one first
projection to RVn. RV[n] is the full subcategory of pairs (U, f ) with f : U → RVn

finite-to-one.
RES[n] is the full subcategory of RV [n] whose objects are pairs (U, f ) ∈

Ob RV[n] such that valrv(U) is finite, i.e., U ⊆ RES∗.

Remark 3.67.

(1) For X, Y ∈ Ob RV[n], any definable bijection X→ Y is in MorRV[n](X, Y ).
(2) The forgetful map (X, f ) �→ X is an equivalence of categories between RV[n]

and the category of all definable subsets of RV∗ of RV dimension ≤ m, with all
maps between them. The presentation with f is nonetheless useful for defining L.

By Remark 3.67, K+(RV[m]) is isomorphic to the Grothendieck semigroup of
definable subsets of RV∗ of RV dimension ≤ m. If dim(X) ≤ m, let [X]m denote
the class [X]m = [(X, f )]m ∈ RV[m], where f : X → RV∗ is any finite-to-one
definable map.

Unlike the case of VF[n, ·] or RV[n], for (U, f ) ∈ Ob RV[n, ·] the map f cannot
be reconstructed from U alone, even up to isogeny, so it must be given as part of the
data. We view (U, f ) as a cover of f (U) with “discrete’’ fibers.

We denote

RV[≤ N, ·] := ⊕0≤n≤NRV[n, ·], RV[≤ N ] = ⊕0≤n≤NRV[n],
RV[∗, ·] := ⊕0≤nRV[n, ·], RV[∗] := ⊕0≤nRV[n],
RES[∗] := ⊕0≤nRES[n].

We have natural multiplication maps K+ RV[k, ·] × K+ RV[l, ·] → K+[k + l, ·],
([(X, f )], [(Y, g)]) �→ [(X × Y, f × g)]. This gives a semiring structure to
K+(RV[∗]). This differs from the Grothendieck ring K+(RV).

Alternative description of RV[≤ N, ·]
An object of RV[≤ N, ·] thus consists of a formal sum

∑N
n=0 Xn of objects Xn =

(Xn, fn) of RV[n, ·]. This can be explained from another angle if one adds a formal
element ∞ to RV, and extends rv to VF by rv(0) = ∞. Define a function f [k] by
f [k](x) = (fn(x),∞, . . . ,∞) (N − k times). If X = (X, f ), let X[k] = (X, f [k]).
Then

∑N
n=0 Xn can be viewed as the disjoint union ∪Ni=0Xi × {∞}[N − i]. The rv

pullback is then a set of VF dimensionN , invariant under multiplication by 1+M; the
sum over dimensions≤ N is necessary to ensure that any such invariant set is obtained
(cf. Lemma 4.9). From this point of view, an isomorphism is a definable bijection
preserving the function “number of finite coordinates.’’ We will use RV[≤ N, ·] or
RV∞[N, ·] interchangeably.

Lemma 3.68. Let X,X′ ∈ Ob RV[n, ·], and assume a bijection g : X′ → X lifts to
G : LX′ → LX. Then g ∈ MorRV[n,·](X′, X).
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Proof. We only have to check the isogeny condition, i.e., that f (g(a)) ∈ acl(f ′(a))
for a ∈ X′ (and dually). By Lemma 3.42, for x ∈ ρX′−1(a),G(x)VF ∈ acl(xVF), i.e.,
the VF-coordinates ofG(x) are algebraic over those of x. Thus f (g(a)) ∈ acl(xVF).
This is true for any x ∈ ρX′−1(a), so f (g(a)) ∈ acl(a). )�

4 Descent to RV: Objects

We assume T is C-minimal with centered closed balls. We will find a very restricted
set of maps that transform any definable set to a pullback from RV. This is related to
Denef’s cell decomposition theorem; since we work in C-minimal theories it takes a
simpler form. Recall that this assumption is preserved under passage to TA, when A
is a (VF,RV, )-generated substructure of a model of T (Lemma 3.39).

Recall that RV = VF×/(1 + M), rv : VF× → RV the quotient map. Let
RV∞ = RV ∪ {∞}, and define rv(0) = ∞. We will also write rv for the induced
map rvn : (VF×)n → (RV)n.

Definition 4.1. Fix n. Let C0 be the category whose objects are the definable subsets
of VFn ×RV∗∞, and whose morphisms are generated by the inclusion maps together
with functions of one of the following types:

(1) Maps

(x1, . . . , xn, y1, . . . , yl) �→ (x1, . . . , xi−1, xi + a, xi+1, . . . , xn, y1, . . . , yl)

with a = a(x1, . . . , xi−1, y1, . . . , yl) : VFi−1 × RVl∞ → VF an A-definable
function of the coordinates y, x1, . . . , xi−1.

(2) Maps (x1, . . . , xn, y1, . . . , yl) �→ (x1, . . . , xn, y1, . . . , yl, rv(xi)).

The above functions are called elementary admissible transformations over A; a
morphism in C0

A generated by elementary admissible transformations over A will be
called an admissible transformation overA. Taking l = 0, we see that allA-definable
additive translations of VFn are admissible.

Analogously, if Y is a given definable set, one defines the notion of a Y -family of
admissible transformations.

If e ∈ RV and Te is an A(e)-admissible transformation, then there exists
an A-admissible T such that ιeTe = T ιe, where ιe(x1, . . . , xn, y1, . . . , yl) =
(x1, . . . , xn, e, y1, . . . , yl). This is easy to see for each generator and follows in-
ductively.

Informally, note that admissible maps preserve volume for any product satisfying
Fubini’s theorem of translation invariant measures on VF and counting measures
on RV .

We will now see that any X ⊂ VFn is a finite disjoint union of admissible
transforms of pullbacks from RV. We begin with n = 1.

Lemma 4.2. Let T be C-minimal with centered closed balls. Let X be a definable
subset of VF. ThenX is the disjoint union of finitely many definable setsZi , such that
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for some admissible transformations Ti , and definable subsets Hi of RVli∞, TiZi =
{(x, y) : y ∈ Hi, rv(x) = yli }.

If X is bounded, Hi is bounded below; in fact, for any h ∈ Hi , valrv(h) ≥ val(x)
for some x ∈ X.

Here VF will be considered a ball of valuative radius −∞, and points as balls of
valuative radius ∞.

Proof. We may assumeX is a finite union of disjoint balls of the same valuative radius
α ∈  ∪ {±∞}, each minus a finite union of proper subballs, since any definable set
is a finite union of definable sets of that form.

Case 1: X is a closed ball. In this case, by the assumption of centered closed balls,
X has a definable point a. Let T (x) = x − a. Then TX \ {0} is the pullback of a
subset of , the semi-infinite interval [α,∞) (where α is the valuative radius of X).
Thus TX = rv−1(H), where H = valrv−1([α,∞)) ∪ {∞}.

Case 2: X is an open ball. Let X be the surrounding closed ball of the same radius
α, and as in Case 1 let a ∈ X be an definable point, T (x) = x − a. If 0 ∈ TX
then TX = rv−1(H), where H = valrv−1((α,∞)) ∪ {∞}. If 0 /∈ TX, then TX =
rv−1(H), where H = rv(T X) is a singleton of RV.

Case 3:X = C\F is a ball with a single hole, the closed ballF. Letβ be the valuative
radius of F . Let a ∈ F be a definable point, T (x) = x − a. Then TX = rv−1(H),
H = valrv−1(I ), where I is the open interval (α, β) of  in case C is closed, the
half-open interval [α, β) when C is open.

Case 4: X = C \ ∪j∈J Fj is a closed ball, minus a finite union of maximal open
subballs. As in Case 1, find T1 such that 0 ∈ T1X. Then T1X is the union of the
maximal open subball S of radius α, with rv−1(H), where H = rv(X \ S). S can
be treated as in Case 2. Here H is a subset of valrv−1(α), consisting of valrv−1(α)

minus finitely many points.

Cases 3a and 4a: X is a union of m balls (perhaps with holes) of types 1–4 above.
Here we use induction on m; we have m balls Cj covering X. Let E be the smallest
ball containing all Cj . As we may assume m > 1, E must be a closed ball; and each
Cj is contained in some maximal open subballMj of E. By the choice of E, not all
Cj can be contained in the same maximal open ball of E. Let a ∈ E be a definable
point, T1(x) = x − a. If 0 ∈ T1Cj for some j , the lemma is true by induction for
this Cj and for the union of the others, hence also for X. Otherwise, F = rv(T1(X))

is a finite set, with more than one element. For b ∈ F , let Yb = T1X ∩ rv−1(b). By
Lemma 2.3, we can, in fact, find a definable Y whose fiber at b is Yb. By induction
again, there exists an admissible transformation Tb such that Tb(Y ) is a pullback of
the required form. Let T2(x) = (x, rv(x)), T3((x, b)) = ((Tb(x), b)). Then T3T2T1
solves the problem.
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General subsets of VF. Let β ≥ α be the least size (i.e., greatest element of ) such
that some ball of radius β contains more than one hole of X. Let {Cj : j ∈ J }
be the balls of radius β around the holes W of X, and let C = ∪j∈JCj . Then

X = (X \ C) .∪(C \W). Now X \ C has fewer holes than X, so it can be dealt with
inductively. Thus we may assume X = C \W ; and any proper subball of C of less
than maximal size contains at most one hole of X. We may assume the {Cj } form a
single Galois orbit; so they each contain two or more holes of X. Since these holes
are not contained in a proper subball of Cj , each Cj must be closed, and the maximal
open subballs of Cj separate holes. Let Dj,k be the maximal open subballs of Cj
containing a hole Fj,k . Let F̄j,k be the smallest closed ball containing Fj,k . Then

X = (C \ ∪j,kDj,k)
.∪∪j,k(Dj,k \ F̄j,k)

.∪∪j,k(F̄j,k \ Fj,k). The second summand
in this union falls into Case 3a, the first and third (when nonempty) into Case 4a. )�
Remark. If we allow arbitrary Boolean combinations (rather than disjoint unions
only), we can demand in Lemma 4.2 that the sets Hi be finite. More precisely,
let X be a definable subset of VF. Then there exist definable sets Zi , admissible
transformations Ti , and finite definable subsets Hi of RVli∞ such that we have the
following:
X is a Boolean combination of the sets Zi , and TiZi is one of the following:

(1) VF;
(2) (0)×Hi ;
(4) bi ×Hi , with bi a definable ball containing 0;
(5) {(x, y) : y ∈ Hi, rv(x) = fi(y)}, for some definable function fi : Hi → RV∞.

Corollary 4.3. Let X ⊆ VF × RV∗ be definable. Then there exists a definable
ρ : X → RV∗ and c : RV∗ → VF, c′ : RV∗ → RV∞, c′′ : RV∗ → RV∗ such that
every fiber ρ−1(α) has the form (c(α) + rv −1(c′(α))) × {c′′(a)}. Moreover, c has
finite image.

Proof. The finiteness of the image of c is automatic, by Lemma 3.41. The corollary
is obviously true for sets of the form L(H, h) = {(x, u) ∈ VF×H : rv(x) = h(u)};
take ρ(x, u) = (rv(x), u). If the statement holds for TX where T is an admissible
transformation, then it holds forX. If true for two disjoint sets, it is also true for their
union. (Add to ρ a map to {1,−1} ⊆ k∗ whose fibers are the two sets.) Hence by
Lemma 4.2 is true for all definable sets. )�
Corollary 4.4. Let T be V-minimal,X ⊆ VF and let f : X→ RV∪ be a definable
function. Then there exists a definable finite partition ofX = ∪mi=1Xi such that either
f is constant on Xi , or else Xi is a finite union of balls of equal radius (possibly
missing some subballs), there is a definable set Fi meeting each of the balls b in
a single point, and for x ∈ Xi , letting n(x) be the point of Fi nearest x, for some
function H , f (x) = H(rv(x − n(x))).
Proof. The conclusion is so stated that it suffices to prove it over acl(∅), i.e., we may
assume every almost definable set is definable; cf. Section 2.1. By compactness it
suffices to show that for each complete type p, f |p has the stated form. Let b be the
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intersection of all balls containing p. If b is transitive then by Lemma 3.47 f |p is
constant. Otherwise, by V-minimality b contains a definable point, and so we may
assume 0 ∈ b. It follows that rv(p) is infinite. Thus by Lemma 3.20, f factors
through rv. )�

Proposition 4.5. Let T be C-minimal with centered closed balls, and let X be a
definable subset of VFn × RVl . Then X can be expressed as a finite disjoint
union of A-definable sets Z, with each Z of the following form. For some A-
admissible transformation T , A-definable subset H of RVl

∗
∞, and map of indices

ν ∈ {1, . . . , n} �→ ν′ ∈ {1, . . . , l∗},

T Z = {(a, b) : b ∈ H, rv(aν) = bν′(ν = 1, . . . , n)}.

If X projects finite-to-one to VFn, then the projection of H to the primed coordi-
nates 1′, . . . , n′ is finite to one.

If X is bounded, then H is bounded below in RV∞.

Proof. By induction on n; the case n = 0 is trivial. Let pr : X → prX be the
projection of X to VFn−1 × RVl , so that X ⊂ VF× prX.

Let pr∗(Y ) = {v : (∃y ∈ Y )(x, y) ∈ Y }. For any c ∈ prX, according to

Lemma 4.2, we can write pr∗(c) =
•⋃k
i=1 Zi(c), where

Ti(c)Zi(c) = {(a, b) : b ∈ Hi(c), rv(a) = b1′ }

for someA(c)-admissible Ti(c),A(c)-definableZi(c), andHi(c) ⊆ RV = RV1′ . We
can write Zi(c) = {x : (x, c) ∈ Zi}, Hi(c) = {x : (x, c) ∈ Hi} for some definable
Zi andHi ⊂ VFn−1×RV1′ . By compactness, as in Lemma 2.3, one can assume that
the Zi(c),Hi(c), Ti(c) are uniformly definable: there exists a partition of prX into
finitely many definable sets Y , and for each Y families Zi,Hi, Ti over Y of definable
sets and admissible transformations over Y , such that the integer k is the same for
all c ∈ Y , and the Zi(c), Hi(c), Ti(c) are fibers over c of Zi , Hi , Ti . In this case,

pr∗(Y ) =
•⋃k
i=1 Zi . We can express X as a disjoint union of the various pr∗(Y ); so

we may as well assume prX = Y and X = Z1. Let T1 be such that ιcT1(c) = T1ιc.
Then

T1X = {(a, c, b) : (c, b) ∈ H1, rv(a) = b1′ }.
Any admissible transformation is injective and so commutes with disjoint unions.

Now by induction, H1 itself is a disjoint union H1 =
•⋃k′
j=1 Zj , with

T ′i Z′i = {(d, b) : b ∈ H ′
i , rv(dν) = dν′(ν = 2, . . . , n)}.

Notational remarks. Here d = (d2, . . . , dn) are the VF-coordinates of c above. The
′ depends on i but we will not represent this notationally.
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Let T ∗i (a, d, b) = (a, T ′i (d, b)), i.e., T ∗i does not touch the first coordinate. Note
that T ∗i also does not move the 1′ coordinate, since in general admissible transforma-
tions can only add RV coordinates but not change existing ones. Let

Zi = {x : T1(x) = (a, d, b), (d, b) ∈ Z′i , rv(a) = b1′ }.

Then (as one sees by applying T1) X =
•⋃k
i=1 Zi , and if Ti = T ∗i T1, we have

TiZi = {(a, d ′, b′) : (d ′, b′) ∈ T ′i Z′i , rv(a) = b′1′ }
= {(a, d ′, b′) : b ∈ H ′

i , rv(a) = b1′ , rv(dν) = bν′ }.
As for the finiteness of the projection, if X admits a finite-to-one projection to

VFn, so does each Z in the statement of the proposition, and hence the isomorphic
set T Z. We have H ⊂ RVn+l , π : RVn+l → RVn, so T Z = {(a, b, b′) : (b, b′) ∈
H, rv(a) = b′}. For fixed a, this yields an a-definable finite-to-one map T Z′(a) =
{b′ : (a, b, b′) ∈ T Z} → VFn. By Lemma 3.41, T Z′(a) is finite. Now fix b and
suppose (b, b′) ∈ H with b′ not algebraic over b. Then for generic a ∈ rv−1(b), b′
is not algebraic over b, a. Yet (a, b, b′) ∈ T Z and so b′ ∈ T Z′(a), a contradiction.

The statement on boundedness is obvious from the proof; if X ⊆ {x : val(x) ≥
−γ }n × RVm, then H is bounded below by −γ in each coordinate. )�

A remark on more general base structures

Lemma 4.6. Let T be V-minimal, A a B-generated substructure of a model of T.
LetX be a TA-definable subset of VFn×RVl . Then there exist TA-definable subsets
Yi ⊂ RVmi and (projection) maps fi : Yi → RVn, a disjoint union Z of

Zi = Yi ×fi ,rv VFn

and a nonempty A-definable family F of admissible transformations X→ Z. F will
have an A′-point for any VF ∪ RV ∪ -generated structure containing A.

Proof. We may assume A is finitely generated. By Proposition 3.51 there exists an
almost VF ∪ -generated A′ ⊃ A embeddable over A into any VF ∪ -generated
structure containing A, and with RV(A′) = RV(A). By Proposition 4.5, the required
objects Yi, fi exist over A′. But since RV is stably embedded, this data is defined
over RV(A′) ⊆ A. The admissible transformations X → Z = .∪(Yi ×fi ,rv VFn)
exist over A′; so one can find a definable set D with an A′-point, and such that any
element of D codes an admissible transformation X→ Z. )�
Remark. In fact, arbitrary ACVF-imaginaries may be allowed here.

Example 4.7. F need not have an A-rational point. For instance, if A consists of an
element of VF/M, i.e., an open ball c, then we can take Y = Y1 to be the point 0 ∈ RV
(since c can be transformed to M); but there is no A-definable bijection of c with M.
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A statement in terms of Grothendieck groups

Recall Definitions 3.65 and 3.66.

Definition 4.8. Define L : Ob RV[n, ·] → Ob VF[n, ·] by

L(X, f ) = (VF×)n ×rvn,f X ⊂ VFn × RVm,

where VF× = VF \ {0}.
For X = ∑

i Xi ∈ RV[∗], we let L(X) be the disjoint sum
∑
i L(Xi ) over the

various components in RV[i].
Let ρ denote the natural map L(X, f )→ X.

Lemma 4.9. The image of L : Ob RV[≤ n, ·] → Ob VF[n, ·] meets every isomor-
phism class of VF[n, ·].
Proof. For X ⊆ RV∗ and f : X→ RV∞, define rv(0) = ∞ and

L(X, f ) = VFn ×rvn,f X ⊂ VFn × RVm.

Then in the statement of Proposition 4.5, we have T Z = L(H, h) where h is the
projection to the primed coordinates. For x ∈ H , let s(x) = {i : hi(x) = ∞}.
For w ⊆ {1, . . . , n}, let Hw = {x ∈ H : s(x) = w}. Let H̄w = (Hw, h

′
w)

where h′w = (hi)i /∈w. Then H̄w ∈ RV[|w|, ·], and L(Hw, h|Hw) ' L(H̄w). Thus
L(H, h) ' L(

∑
w H̄w). )�

A restatement in terms of VF alone

This restatement will not be used later in the paper.

Definition 4.10. Let A be a subfield of VF. Let C1
A(n, l) be the category of definable

subsets of VFn × (VF×)l , generated by composition and restriction to subsets by
maps of one of the following types:

(1) Maps

(x1, . . . , xn, y1, . . . , yl) �→ (x1, . . . , xi−1, xi + a, xi+1, . . . , xn, y1, . . . , yl)

with a = a(x1, . . . , xi−1, y1, . . . , yl) : VFi+l−1 → VF an A-definable function
of the coordinates y, x1, . . . , xi−1.

(2) Maps (x1, . . . , xn, y1, . . . , yl) �→ (x1, . . . , xn, y1, . . . , yi−1, xiyi, yi+1, . . . , yl) :
X→ Y assuming xi �= 0 on X, and that this function takes X into Y .

Remark 4.11. The morphisms in this category are measure preserving with respect to
Fubini products of invariant measures (additively for VF, multiplicatively for VF×),
viz. dx1 ∧ · · · ∧ dxn ∧ dy1/y1 ∧ · · · ∧ dyl/yl .
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Lemma 4.12. Let T be C-minimal with centered closed balls, X a definable subset
of VFn. Then X can be expressed as a disjoint union of A-definable sets Z with the
following property. For some l ∈ N, there exists an C1

A(n, l)-transformation T and
a definable subset H of RVn∞ × RVl , such that

T (Z × ((1+M))l) = rv−1(H).

Moreover, the projection of H to RVn∞ is finite-to-one.
If val(x) is bounded below, then val(H) may be taken to be bounded below in the

RV-coordinates, and bounded in the RV∞-coordinates.

Proof. This follows from Proposition 4.5. )�

5 V-minimal geometry: Continuity and differentiation

We work with a V-minimal theory.

5.1 Images of balls under definable functions

Proposition 5.1. Let X, Y be definable subsets of VF, and let F : X → Y be a
definable bijection. Then there exists a partition of X to finitely many definable
equivalence classes, such that for any open ball b contained in one of the classes,
F(b) is an open ball; and dually, if F(b) is an open ball, so is b.

Proof. It suffices to show that such a partition exists over acl(∅); for any finite almost
definable partition has a finite definable refinement (cf. the discussion of Galois theory
in Section 2.1). Thus as in Section 2.1 we may assume every almost definable set
is named.

We will show that if p is a complete type, and b is an open subball of p, then
F(b) is an open ball; and that if b′ is an open subball of F(p), then b is an open ball.
From this it follows by compactness that there exists a definable Dp containing p
with the same property; by another use of compactness, finitely many Dp cover X;
it then suffices to choose any partition, such that any class is contained in some Dp.

When p has a unique solution, the assertion is trivial. When p is the generic type
of a closed ball, or of VF, or of a transitive open or ∞-definable ball, for any α ∈ ,
p remains complete over 〈α〉. In the transitive cases, this follows from Lemma 3.47,
while in the centered closed case it follows from Lemma 3.18.

Thus all open subballs bt of p of any radius α have the same type over 〈α〉; hence
they are all transitive over 〈t〉, where t ∈ K/Mα , where Mα = {x : val(x) > α}
(Lemma 3.8, withQ = p). Thus by Lemma 3.46, F(bt ) is an open ball.

The remaining case is that p is the generic type of a centered open or∞-definable
ball b1. Thus b1 contains a definable proper subball b0. If b is an open subball of p,
of radius α, then b ∩ b0 = ∅; let b̄ be the smallest closed ball of containing b and b0.
Then b is contained in the generic type of b̄, and so by the case of closed balls, F(b)
is an open ball. )�
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Remark 5.2. When X ⊆ VF× RVn, by a ball contained in X we will mean a subset
of X of the form b × {e}, where b ∈ B and e ∈ RVn. With this understanding, the
proposition extends immediately to such setsX. Indeed, for each e ∈ RVn, according
to the proposition there is a finite partition of X(e) with the required property; as in
Lemma 2.3 these can be patched to form a single partition of X.

Remark 5.3. When X ⊆ VF there exists a finite set of points F (not necessarily A-
definable) such that F(b) is an open ball whenever b is an open ball disjoint from F .
(This does not extend to X ⊆ VF× RV∗.)

Indeed, by Proposition 5.1 there is a finite number of closed and open balls bi and
points, such that F(b) is an open ball for any open ball b that is either contained in
or is disjoint from each bi . Now let ci be a point of bi . If b is an open ball and no
ci ∈ b, then b must be disjoint from, or contained in, each bi ; otherwise, b contains
bi and hence ci .

5.2 Images of balls II

Lemma 5.4. Let X, Y be balls, and F : X → Y a definable bijection taking open
balls to open balls. Then for all x, x′ ∈ X,

val(F (x)− F(x′)) = val(x − x′)+ v0,

where v0 is the difference of the valuative radii of X, Y .

Proof. Translating by some a ∈ X and by F(a) ∈ Y , we may assume 0 ∈ X, 0 ∈ Y ,
F(0) = 0; and by multiplying we may assume and both X, Y have valuative radius
0, i.e., X = Y = O. Let M(α) = {x : val(x) < α}. Then F(M(α)) = M(β) for
some β = β(α). β is an increasing definable surjection from {α ∈  : α > 0} to
itself; it must have the form β(α) = mα for some rational m > 0. By Lemma 3.26,
we have m ∈ Z. Now reversing the roles of X, Y and using F−1 will transform m to
m−1, so m−1 ∈ Z also, i.e., m = ±1. Since m > 0, we have m = 1. )�
Lemma 5.5. Let X be a transitive open or closed ball (or infinite intersection of
balls), and F : X→ Y a definable bijection. Then there exists a definable e0 ∈ RV
such that for x �= x′ ∈ X, rv(F (x)− F(x′)) = e0 rv(x − x′).
Proof. We first show a weaker statement.

Claim. For some definable e0 : → RV, rv(F (x)−F(x′)) = e0(val(x−x′)) rv(x−
x′) for all x �= x′ ∈ X.

Proof. Fix a ∈ X. For δ ∈ , let bδ = bδ(a), the closed ball around a of valuative
radius δ. Consider those bδ with bδ ⊆ X. As we saw in the proof of Lemma 5.1, as
any a ∈ X is generic, bδ is transitive in Tbδ . By Lemma 3.45, rv(F (x) − F(a)) =
fa(δ) rv(x − a), where val(x − a) = δ, and fa(δ) is a function of a and δ. But then
fa is a function → RV, so by Lemma 3.11 it takes finitely many values v1, . . . , vn.



324 Ehud Hrushovski and David Kazhdan

Let Yi = fa−1(vi). Yi has a canonical code ei ∈ ∗, consisting of the endpoints of the
intervals making up Yi . Using the linear ordering on, each individual ei is definable
from the set {ei}i , and hence from a; thus vi = fa(Yi) is also definable from a. Thus
fa fa is definable from (ei, vi)i . (This last argument could have been avoided by
quoting elimination of imaginaries in RV ∪ .) However, as X is transitive, every
definable function X→ (RV ∪ ) is constant, and so fa = fb for any a, b ∈ X. Let
e0(δ) = fa(δ). )�

We now have to show that the function e0 of the claim is constant. Using the
O-minimality of , it suffices to show for any definable δ ∈ dom(e0) that

(1) if e0(δ) = e, then e0(γ ) = e for sufficiently small γ > δ,

and if δ is not a minimal element of dom(e0)), then also

(2) if e0(γ ) = e for sufficiently large γ < δ, then e0(δ) = e.
To determine e0(δ), it suffices to know rv(F (x)− F(x′)) and rv(x − x′) for one

pair x, x′ with val(x − x′) = δ. Thus in (1) we may replace X by a closed subball
Y of valuative radius δ, and in (2) by any closed subball Y of X of valuative radius
< δ. Since such closed balls Y are transitive (over their code), we may assume X is
a closed ball.

Fix a ∈ X. Pick a generic c (over a) with rv(c) = e.
To prove (1), note that type of such c is generic in an open ball, whereas the

elements of X are generic in a closed ball; these generic types are orthogonal by
Lemma 3.19; soX remains transitive in Tc. Thus we may assume (by passing to Tc)
that c is definable.

Let qa be the generic type of the closed ball {x : val(a − x) ≥ δ}. For x |= qa ,
let v0 = val(F (a)− F(x)− c(a − x))− val(c).

By the definition of e, val(F (a) − F(x) − c(a − x)) > val(F (a) − F(x)), so
we have

v0 + val(c) = val(F (a)− F(x)− c(a − x)) > val(F (a)− F(x))
= val(c(a − x)) = δ + val(c).

(5.1)

If δ < γ < v0, find x, x′ |= qa with val(x − x′) = γ . Then val(F (x) − F(x′) −
c(x− x′)) ≥ v0 + valrv(e) > γ + valrv(e) = val(c(x− x′)), so rv(F (x)−F(x′)) =
rv(c(x − x′)) showing that e0(γ ) = rv(c) = e. This proves (1).

For (2), let Q0 = {γ : γ < δ}, Qdef
0 the set of definable elements of Q0, and

Q = {γ ∈ Q0 : (∀y ∈ Qdef
0 )(γ > y)}. Thus Q is a complete type of elements of

. For γ ∈ Q, according to Lemma 3.17, the formula val(x − a) = γ generates a
complete type qγ ;a(x). By Lemma 3.47,X is transitive over γ , so the formula x′ ∈ X
generates a complete Tγ -type. Thus by transitivity a complete Tγ -type qγ (x, x′) is
generated by x, x′ ∈ X, val(x − x′) = γ ; namely, (a, b) |= qγ iff b |= qγ ;a .

For some definable v0, for (a, x) |= qγ we have, as in (1),

val(F (a)− F(x)− c(a − x)) = v0(γ )+ val(c) > γ + val(c). (5.2)
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If we show that v0(γ ) > δ we can finish as in (1).
Now v0(γ ) = mγ + γ0 for some definable γ0 ∈ , and some rationalm. Letting

γ → δ in (5.2) givesmδ+ γ0 ≥ δ. Ifm < 0, then v0(γ ) = mγ + γ0 > mδ+ γ0 ≥ δ
so we are done; hence we may take m ≥ 0.

By Lemma 3.47, RV(〈∅〉) = RV(〈a〉); by Lemma 3.20, when x |= qγ ;a ,
RV(〈a, x〉) is generated over RV(〈a〉) by rv(a − x).

In particular, on qγ,a , x �→ rv(F (a)−F(x)−c(a−x)) is a function of rv(a−x).
This function lifts v0 to a function on RV; hence by Lemma 3.26, m ∈ Z. (This and
m ≥ 0 are simplifications rather than essential points.) We have

val((F (a)− F(x)− c(a − x))(a − x)−m) = γ0.

By Lemma 3.47, (RV ∪ )(〈a〉) = (RV ∪ )(〈∅〉). By Lemma 3.17, then
valrv−1(γ0) ∩ dcl(a, x) = valrv−1(γ0) ∩ dcl(a). Thus valrv−1(γ0) ∩ dcl(a, x) =
valrv−1(γ0) ∩ dcl(∅). Thus rv((F (a)− F(x)− c(a − x))(a − x)−m) ∈ dcl(∅); i.e.,

rv((F (a)− F(x)− c(a − x))(a − x)−m) = e1

for some definable e1. As in (1), we may assume there exists a definable c1 with
rv(c1) = e1. Thus for (a, x) |= qγ ,

val((F (a)− F(x)− c(a − x)− c1(a − x)m)) > val(F (a)− F(x)− c(a − x))
= v0(γ )+ val(c). (5.3)

Let x′ |= qγ,a be generic over {γ, a, x}, so in particular val(x−x′) = val(x−a) =
val(a − x′) = γ . We have

val((F (a)− F(x′)− c(a − x′)− c1(a − x′)m)) > val(F (a)− F(x)− c(a − x))
= v0(γ )+ val(c).

Subtracting from (5.3), we obtain

val((F (x′)− F(x)− c(x′ − x)− c1[(a − x)m − (a − x′)m]) > v0(γ )+ val(c)

= val(c1(a − x′)m).
(5.4)

But since (x, x′) |= qγ , by (5.3) we have

val((F (x)− F(x′)− c(x − x′)− c1(x − x′)m)) > v0(γ )+ val(c)

= val(c1(x − x′)m). (5.5)

Comparing (5.4) and (5.5) (and subtracting val(c1)), we see that

val((a − x)m − (a − x′)m − (x′ − x)m) > val((x − x′)m)
= val((a − x′)m) = val((a − x)m).

Let u = (a− x′)/(x′ − x); then (a− x)/(x′ − x) = u+ 1, val(u) = 0 = val(u+ 1),
and val((u + 1)m − um − 1) > 0. If U = res(u), we get (U + 1)m = Um + 1.
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Since the residue characteristic is 0 this forcesm = 1. (Note that U is generic.) Thus
v0(γ ) = γ + γ0.

From (5.2), γ + γ0 + val(c) > γ + val(c), or γ0 > 0. But δ − γ0 ∈ Qdef
0 , so

since γ ∈ Q we have γ > δ− γ0, or v0(γ ) = γ + γ0 > δ. As noted below (5.2) this
proves the lemma. )�
Remark 5.6. In ACVF(p, p), the claim following Lemma 5.5 remains true, but it is
possible for e0 to take more than one value; consider x − cxp on a closed ball of
valuative radius 0, where val(c) < 0.

Lemma 5.7. Let X be a transitive open ball, and let F : X → X be a definable
bijection. Then rv(F (x)− F(y)) = rv(x − y) for all x �= y ∈ X.

Proof. This follows from the second assertion in Lemma 3.45 and from
Lemma 5.5. )�

At this point, Lemma 5.1 may be improved.

Definition 5.8. Call a functionG on an open ball nice if for some e0, for all x �= x′ ∈
prX, rv(G(x)−G(x′)) = e0 rv(x − x′).
Proposition 5.9. Let X, Y be definable subsets of VF, and let F : X → Y be a
definable bijection. Then there exists a partition of X to finitely many definable
classes, such that on any open ball b contained in one of the classes, F(b) is an open
ball, and F |b is nice.

Proof. The proof of Proposition 5.1 goes through verbatim, only quoting Lemma 5.5
along with Lemma 3.46. )�

A definable translate of a ball rv −1(α) will be called a basic 1-cell. Thus Corol-
lary 4.3 states that every fiber of ρ is a basic 1-cell. By a basic 2-cell we mean a set
of the form

X = {(x, y) : x ∈ prX, rv(y −G(x)) = α},
where prX is a basic 1-cell, and G is nice.

Corollary 5.10. Let X ⊆ VF2 be definable. Then there exists a definable ρ : X →
RV∗ such that every fiber is a basic 2-cell.

Proof. Let X(a) = {y : (a, y) ∈ X}. By Corollary 4.3 there exist an a-definable
ρa : X(a)→ RV∗ and functions c, c′ such that every fiber ρa−1(α) is a basic 1-cell
rv −1(c′(a, α)) + c(a, α). By Lemma 2.3 we can glue these together to a function
ρ1 : X → RV∗ with ρa(y) = ρ1(a, y). Let ρ2(x, y) = (ρ1(x, y), c

′(x, ρ(x, y))).
Then any fiber D of ρ2 has the form

{(x, y) : x ∈ pr1D, rv(y −GD(x)) = α},
whereGD(x) = c(x, α), α depending on the fiberD. Combining ρ2 with a function
whose fibers yield a partition as in Proposition 5.9, we may assume G takes open
balls to open balls (cf. Remark 5.2). Now apply Corollary 4.3 to prX to obtain a map
ρ′ : prX→ RV∗ with nice fibers. )�
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5.3 Limits and continuity

We now assume T is a C-minimal theory of valued fields, satisfying assumption (1)
of Section 3.4.

Let V be a VF-variety. By “almost all a’’ we will mean “all a away from a set of
smaller VF dimension.’’

Lemma 5.11. Let g be a definable function on a ball around 0. Then either
val g(x) → −∞ as val(x) → ∞ or there exists a unique b ∈ VF such that
b = limx→0,x �=0 g(x); i.e.,

(∀ε ∈ )(∃δ ∈ )(0 �= x& val(x)) > δ =⇒ val(g(x)− b) > ε.
Proof. Let p be the generic type of an element of large valuation; so c |= p|A iff
val(x) > (A). and let q = tp(g(c)/A), where c |= p|A. By Remark 3.5, q
coincides with the generic type of P overA where P is a closed ball, an open ball, or
an infinite intersection of balls, orP = VF. The last case means that val g(x)→−∞.
The existence of g shows that p, q are nonorthogonal, so it follows from Lemma 3.19
that the first case is impossible.

We begin by reducing to the case where P is centered. Assume therefore that
P is transitive. For b ∈ P , let qb = tp(g(c′)/A(b)), where c′ |= p|A(b). If qb
includes a proper b-definable subball Pb of P , or a finite union of such balls, we may
take them all to have the same radius α(b); so α(b) is b-definable. By Lemma 3.47,
α is constant. If as b varies there are only finitely many balls Pb, then P is after
all centered. If not, then there are two disjoint Pb, Pb′ ; but this is absurd since if
c′′ |= p|A(b, b′) then g(c′′) ∈ Pb ∩ Pb′ . Thus qb cannot include a proper subball Pb
of P ; so qb is just the generic type of P , over A(b). Moving from A to A(b) we may
thus assume that P is centered.

Thus P is a centered open or infinitely-definable ball; therefore, it has a proper
definable subball b. If y /∈ b, write val(b − y) for the constant value of val(c − y),
c ∈ b. By the definition of a generic type of P , val(b − g(c)) /∈ (A). Now
val(b− g(c)) ∈ (A(c)) = (A)⊕Q val(c) (by assumption (2) of the definition of
V-minimality (Section 3.4)), and val(c) > (A); it follows that val(b−g(c)) < (A)
or val(b−g(c)) > (A). The first case is again the case ofP = VF, while the second
implies that P is an infinite intersection of balls Pi , whose radius is not bounded by
any element of (A). In other words, P = {b}. Unwinding the definitions shows
that b = limx→0,x �=0 g(x). )�
Remark. In reality, the transitive case considered in the proof above cannot occur.

By an (open, closed) polydisc, we mean a product of (open, closed) balls. Let B
be a closed polydisc. Let M |= T . Let b ∈ B(M), a ∈ B(acl(∅)). Write b → a if
for any definable γ ∈ , and each coordinate i, val(bi − ai) > γ . Let p0 be the type
of elements of  greater than any given definable element. Then Lemma 5.11 can
also be stated thusly: given a definable g on a ball B0 around 0 into B, there exists
b ∈ dcl(∅) such that if val(t) |= p, then (t, g(t))→ (0, b).

Stated this way, the lemma generalizes to functions defined on a finite cover ofB0.
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Lemma 5.12. Let B0 be a ball around 0, and B a closed polydisc, both 0-definable.
Let t ∈ B0 have val(t) |= p0, and let a ∈ acl(t), a ∈ B. Then there exists b ∈ B,
b ∈ acl(∅) with (t, a) �→ (0, b).

Proof. The proof of Lemma 5.11 goes through. )�
The following is an analogue of a result of Macintyre’s for the p-adics. By the

boundary of a set X, we mean the closure minus the interior of X.

Lemma 5.13.

(1) Any definable X ⊆ VFn of dimension n contains an open polydisc.
(2) Any definable function VFn → RV ∪  is constant on some open polydisc.
(3) The boundary of any definable X ⊆ VFn has dimension < n.

Proof. Given (1) and (3) follows since the boundary is definable; so it suffices to
prove (1)–(2). For a given n, (2) follows from (1): by Lemma 3.56, the fibers of the
function cannot all have dimension < n.

For n = 1, (1) is immediate from C-minimality. Assume that (1)–(2) are true for
n and let X ⊆ VF × VFn be a definable set of dimension n + 1. For any a ∈ VFn

such that Xa = {b : (a, b) ∈ X} contains an open ball, let γ (a) be the infimum of all
γ such that Xa contains an open γ -ball. By (2) for n, γ takes a constant value γ0 on
some polydisc U ; pick γ1 > γ0. Let

X′ = {(u, z) ∈ X : u ∈ U&(∀z′)(val(z− z′) > γ0 =⇒ (u, z′) ∈ X)}.
Then dim(X′) = n+ 1. Now consider the projection (u, z) �→ z. For some c ∈ VF,
the fiber X′c = {u : (u, c) ∈ X′} must have dimension n. By induction, X′c contains
a polydisc V . Now, clearly, V × Boγ1

(c) ⊆ X. )�
If x = (x1, . . . , xn), x

′ = (x′1, . . . , x′n), write val(x − x′) for min val(xi − x′i ).
Say a function F is δ-Lipschitz at x if whenever val(x − x′) is sufficiently large,
val(F (x) − F(x′)) > δ + val(x − x′). Say F is locally Lipschitz on X if for any
x ∈ X, for some δ ∈ , F is δ-Lipschitz at x.

Lemma 5.14. LetF : X ⊆ VFn → VF be a definable function. ThenF is continuous
away from a subsetX′ of dimension< n. Moreover, F is locally Lipschitz onX \X′.
Proof. Let X′ be the (definable) set of points x where F is not Lipschitz. We must
show that X′ has dimension < n. (In this case, by Lemma 5.13, the closure of X′
has dimension < n, too.) Suppose otherwise. For n = 1 the lemma follows from
Lemmas 5.1 and 5.4. Let πi : X′ ⊆ VFn → VFn−1 be the projection along the
ith coordinate axis. Let Y be the set of b ∈ VFn−1 such that πi−1(b) is infinite or,
equivalently, contains a ball; it is a definable set. For b ∈ Y , let

Di(b) = {x ∈ πi−1(b) : (∃δ ∈ )(F |πi−1(b) is δ-Lipschitz near x)}.
By the case n = 1, πi−1(b) \Di(b) is finite. Thus if Di = ∪b∈YDi(b), then πi has
finite fibers on X \ Di , so dim(X \ Di) < n. Let X∗ = ∩iDi , and for x ∈ X∗ let
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δ(x) be the infinimum of all such Lipschitz constants δ (for all n projections). By
Lemma 5.13, δ is constant on some open polydisc U ⊆ X∗. Let δ′ be greater than
this constant value. Then at any x ∈ U , the restriction of F to a line parallel to an
axis is δ′-Lipschitz. It follows immediately (using the ultrametric inequality) that F
is δ′-Lipschitz on U ; but this contradicts the definition of X′. )�
Remark 5.15. Via assumption (1) of Section 3.4, we used the existence of p-torsion
points in the kernel of RV →  for each p. In ACVF(p, p) this fails; one can still
show that F is locally logarithmically Lipschitz, i.e., for some rational α > 0, for
any x ∈ X \X′, for sufficiently close x′, val(F (x)− F(x′)) > δ val(x − x′).

5.4 Differentiation in VF

Let F : VFn → VF be a definable function, defined on a neighborhood of a ∈ VFn.
We say thatF is differentiable at a if there exists a linear mapL : VFn → VF such that
for any γ ∈ , for large enough δ ∈ , if val(xi) > δ for each i, x = (x1, . . . , xn),
then val(F (a + x)− F(a)− Lx) > δ + γ . If such an L exists it is unique, and we
denote it dFa .

Lemma 5.16. Let F : X ⊆ VFn → VFm be a definable function. Then each partial
derivative is defined at almost every a ∈ X.

Proof. We may assume n = m = 1. Let g(x) = (F (a + x) − F(a))/x. By
Lemma 5.4, for almost every a, for some δ ∈ , for all x with val(x) sufficiently
large, val(F (a+ x)−F(a)) = δ+ val(x); so val g(x) is bounded. By Lemma 5.11,
and Proposition 5.1, g(x) approaches a limit b ∈ VF as x → 0 (with x �= 0); the
lemma follows. )�
Corollary 5.17. Let F : VFn → VF be a definable function. Then F is continuously
differentiable away from a subset of dimension < n.

Proof. F has partial derivatives almost everywhere, and these are continuous almost
everywhere, so the usual proof works. )�
Lemma 5.18. LetX ⊆ VFn×RVm be definable, pr : X→ VFn the projection. Then
for almost every p ∈ VFn, there exists an open neighborhood U of p and H ⊆ RVm

such that pr −1(U) = U × H . If h : X → VF, then for almost all x ∈ X, h is
differentiable with respect to each VF-coordinate.

Proof. For x ∈ VFn, let H(x) = {h ∈ RVm : (x, h) ∈ X}. By Corollary 3.24,
Lemma 2.8, there exists H ′ ⊆ RVm × RVl × k such that for any x ∈ VFn, there
exists a unique y = f (x) ∈ RVl × k with H(x) = H ′(y). By Lemma 5.13, f is
locally constant almost everywhere. Thus for almost all x, for some neighborhood
U of x, for all x′ ∈ U , H(x) = H(x′); so pr −1U = U ×H(x). The last assertion is
immediate. )�
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We can now define the partial derivatives of any definable map F : X → VF
(almost everywhere); we just take them with respect to the VF-coordinates, ignoring
the RV-coordinates.

Given h : X → VFn, h′ : X′ → VFn with RV-fibers, and a definable map
F : X→ X′, we define the partials ofF to be those ofh′◦F . Then the differential dFx
exists at almost every point x ∈ X by Corollary 5.17, and we denote the determinant
by Jcb, and refer to it as usual as the Jacobian.

Definition 5.19. Let X,X′ ∈ VF[n, ·] and let F : X → X′ be a definable bijection.
F is measure preserving if rv Jcb(x) = 1 for almost all x ∈ X. VFvol[n, ·] is the
subcategory of VF[n, ·]with the same objects, and whose morphisms are the measure-
preserving morphisms of VF[n, ·].

Let VFvol be the category whose objects are those of VF[n, ·], and whose mor-
phisms X→ Y are the essential bijections f : X→ Y that are measure preserving.

5.5 Differentiation and Jacobians in RV

LetX, Y be definable sets, together with finite-to-one definable maps fX : X→ RVn,
fY : Y → RVn. Here X, Y can be subsets of RV∗ or of RV∗ × VF∗, etc.; the notion
of Jacobian will not depend on the particular realization of X, Y .

Let h : X→ Y be a definable map.
The notion of Jacobian will depend not only on h,X, Y but also on fX, fY ; to

emphasize this we will write h : (X, fX)→ (Y, fY ).
We first define smoothness. WhenA = fX(X), B = fY (Y ) are definable subsets

of kn, we say that h, X, Y are smooth if A,B are Zariski open, {(fX(x), fY (h(x))) :
x ∈ X} ∩ (A×B) = Z for some nonsingular Zariski closed set Z ⊂ A×B, and the
differentials of the projections to A and to B are isomorphisms at any point z ∈ Z.
In this case, composing the inverse of one of these differentials with the other, we
obtain a linear isomorphism Ta(A) → Tb(B) for any a = fX(x), b = fY (h(x));
since Ta(A) = kn = Tb(B), this linear isomorphism is given by an invertible matrix,
whose determinant is the Jacobian J .

In general, to define smoothness ofX, Y at (x, y = h(x)), we restrict to the cosets
of (k∗)n containing x and y, translate multiplicatively by x and y, respectively, and
pose the same condition.

Any X, Y , h are smooth outside of a set E, where E ∩ C has dimension < n for
each coset C of (k∗)n. Equivalently (by Lemma 3.64), E has RV-dimension < n.

Assume now that X, Y , h are smooth. Define

JcbRV(h)(q) = �(fX(q))−1�(fY (q
′))J (1, 1) ∈ RV,

where �(c1, . . . , cn) = c1 · · · · · cn.
At times it is preferable not to use a different translation at each point of a coset

of (k∗)n. The Jacobian JcbRV(h) of h at q ∈ X can also be defined as follows.
Let q ′ = h(q), γ = valrv(q), γ ′ = valrv(q ′) ∈ n. Pick any c, d ∈ RVn with
valrv(c) = γ, valrv(d) = γ ′ (one can take c = fX(q), d = fY (q ′)). Let
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W(γ, γ ′) = {a : fX(a) ∈ valrv
−1(γ ), fY (h(a)) ∈ valrv

−1(γ ′)},
H ′ = {(c−1fX(a), d

−1fY (h(a))) : a ∈ W }.
Since fX, fY are finite-to-one, H ′ ⊂ (k∗n)2 both projections of H ′ to k∗n are finite-
to-one, andH ′ is nonsingluar by the smoothness of (X, Y, h). We can thus define the
Jacobian J ′ of H ′ at any point. We have

JcbRV(h)(q) = �(c)−1�(d)J ′(qc−1, q ′d−1) ∈ RV.

We also define Jcb(h)(q) =∑ γ ′ −∑ γ ∈  (writing  additively). Note that
this depends only on the value of h at q. We have

valrv JcbRV(h)(q) = Jcb(h)(q).

Example 5.20. Jacobian of maps on . If X̄, Ȳ ⊂ n, we saw that a definable
map f̄ : X̄ → Ȳ lifts to RV iff it is piecewise given by an element of GLn(Z)
composed with a translation. Assume f̄ is given by a matrix M ∈ GLn(Z), let
X = valrv−1(X̄), Y = valrv−1(Ȳ ), and let f : X→ Y be given by the same matrix,
but multiplicatively. Then X, Y, f are smooth, and

J (f )(x) = �(y)�(x)−1 detM,

where y = f (x), and det(M) = ±1.

Alternative: �-weighted polynomials

We have seen that the geometry on valrv−1(γ ) (γ ∈ n) translates to the geom-
etry on (k∗)n, but this is true for the general notions and not for specific vari-
eties; a definable subset of C(γ ) = val−1(γ ) does not correspond canonically
to any definable subset of val−1(0). An invariant approach is therefore useful.
Let 0 = (〈∅〉). X = (X1, . . . , Xn) be variables, γ = (γ1, . . . , γn) ∈ n0 ,
and let ν = (ν(1), . . . , ν(n)) ∈ Nn denote a multi-index. By a γ -weighted
monomial we mean an expression aνXν with aν a definable element of RV, such
that valrv(aν) + ∑ ν(i)γi = 0 ∈ . Let Mon(γ, ν) be the set of γ -weighted
monomials of exponent ν, together with 0. Then Mon(γ, ν) \ {0} is a copy of
valrv−1(−(aν) +∑ ν(i)γi); so Mon(γ, ν) is a one-dimensional k-space. In par-
ticular, addition is defined in Mon(γ, ν). We also have a natural multiplication
Mon(γ, ν) × Mon(γ, ν′) → Mon(γ, ν + ν′). Let R[X; γ ] = ⊕ν∈Nn Mon(γ, ν).
This is a finitely generated graded k-algebra. It may be viewed as an affine coordi-
nate ring ofC[γ ]; but the ring of the productC[γ, γ ′] isR[X,X′; (γ, γ ′)], in general a
bigger ring thanR[X, γ ]⊗kR[X′, γ ′]. Nevertheless, a Zariski closed subset ofC(γ )
corresponds to a radical ideal of R[X′; γ ]. In this way, notions such as smoothness
may be attributed to closed or constructible subsets of any C(γ ) in an invariant way.

Definition 5.21. Let X, Y ∈ Ob RV[n, ·] and let h : X→ Y be a definable bijection.
h is measure preserving if Jcb h(x) = 0 for all x ∈ X, and JcbRV h(x) = 1 for all
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x ∈ X away from a set of RV dimension < n. If only the first condition holds, we
say h is -measure preserving.

For X, Y ∈ RV[≤ n, ·], we say that h : X → Y is measure preserving if this is
true of the RV[n]-component of h.

RVvol[n, ·] (respectively, RV-vol′ [n, ·]) is the subcategory of RV[n, ·] with the
same objects, and whose morphisms are the measure-preserving (respectively, -
measure-preserving) definable bijections.

RVvol[≤ n, ·] = ⊕k<nRV-vol′ [k, ·] ⊕ RVvol[n, ·].
Note that when X, Y ∈ Ob RV[n, ·], a bijection h : X → Y is -measure

preserving iff it leaves invariant the sets Sγ = {(a1, . . . , an) :∑n
i=1 valrv(ai) = γ }.

5.6 Comparing the derivatives

Consider a definable function F : VF → VF lying above f : RV → RV, i.e.,
rvF = f rv. The fibers of the map rv : VF → RV above k, for instance, are open
balls of valuative radius 0, whereas the derivative is defined on the scale of balls of
radius r for r → +∞. Thus the comparison between the derivatives of F and f is
not tautological. Nevertheless, one obtains the expected relation almost everywhere.

While this case of the affine line would suffice (using the usual technique of partial
derivatives), it is easier to place oneself in the more general context of curves. More
precisely, we consider definable setsC together with finite-to-one maps f : C → RV.
Let LC and ρ : LC → C be as above.

In the following lemma, H ′, h′ denote, respectively, the VF-, RV derivatives of
functions H , h defined on objects of VF[1], RV[1], respectively.

Proposition 5.22. Let Ci ⊆ RV∗ be definable sets, fi : Ci → RV finite-to-one
definable maps (i = 1, 2). Let h : C1 → C2 be a definable bijection, and let
H : LC1 → LC2 be a lifting of h, i.e., ρH = hρ. Then we have the following:

(1) For all but finitely many c ∈ C1, h is differentiable at c,H is differentiable at any
x ∈ Lc, and rvH ′(x) = h′(rv(x)).

(2) For all c ∈ C1, H is differentiable at a generic x ∈ Lc, and valH ′(x) =
(valrvh′)(x) = val(f2(h(x)))− val(f1(x)).

Proof.

(1) Let Z′ be the set of x ∈ LC1 such that H is not differentiable at x (a finite
set) or that rv(H ′(x)) �= h′(rv(x)). We have to show that ρ(Z′) ⊆ C is finite
or, equivalently, that f1 ◦ ρ(Z′) is finite. Otherwise, there exists c ∈ ρ(Z′)
with c /∈ acl(A). By Lemma 3.20, the formula rv(x) = f1(c) generates a
complete type q over A(c); it defines a transitive open ball bc over A(c). Since
ρ ◦H = ρ ◦h, we haveH(c, y) = (c,Hc(y)) for some A(c)-definable bijection
Hc of bc. By Lemma 5.5, for some e0 ∈ RV, rv(H(u)−H(v)) = e0 rv(u− v)
for all u, v ∈ bc; so rv((H(u)−H(v))/(u− v)) = e0. SinceH is differentiable
almost everywhere on bc (Lemma 5.17) and bc is transitive, it is differentiable at
every point. Clearly, rvH ′(u) = e0, contradicting the definition of Z′.
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(2) This follows from Lemma 5.4. )�
Corollary 5.23. Let X ∈ Ob RV[n], F : LX → VFn a definable function, f : LX →
RVn a definable function. Assume rvF(x) = f (rv(x)). Then Proposition 5.22
applies for each partial derivative of F . In particular,

• for all c ∈ X away from a set of smaller dimension, for all x ∈ Lc, F is
differentiable at x, f is differentiable at c, and rv Jcb(F )(x) = JcbRV(f )(x);

• for all c ∈ X, for generic x ∈ Lc, F is differentiable at x, and val Jcb(F )(x) =
(Jcb f )(x). )�

Corollary 5.24. Let

X,Y ∈ Ob RV[≤ n], f ∈ MorRV[≤n](X,Y), F ∈ MorVFvol[n](LX,LY).

Assume rvF(x) = f (rv(x)). Then f ∈ MorRVvol[n](X,Y). )�
Proof. The proof follows from Corollary 5.23. )�

6 Lifting functions from RV to VF

Proposition 6.1. Let T be an effective V-minimal theory. Let X ⊂ RVk be definable
and let φ1, φ2 : X→ RVn be two definable maps with finite fibers. Then there exists
a definable bijection F : X×φ1,rv (VF×)n → X×φ2,rv (VF×)n, commuting with the
natural projections to X.

Proof. Let A = dcl(∅) ∩ (VF ∪ ). If b ∈ dcl(∅) ∩ RV, then viewed as a ball b
has a point a ∈ A; since the valuative radius of b is also in A, we have b ∈ dcl(A).
Thus φ1, φ2, X are ACVFA-definable. Any ACVFA-definable bijectionF is a fortiori
T-definable; so the proposition for ACVFA implies the proposition for T. Moreover,
ACVFA is V-minimal and effective, since any algebaic ball of ACVFA is TA-algebraic
and hence has a point in VF(A)alg. Thus we may assume T = ACVFA.

The proof will be asymmetric, concentrating on φ1X.
We may definably partition X, and prove the proposition on each piece.
Consider first the case where φ1 : X → U and φ2 : X → V are bijections

to definable subsets U,V ⊆ (k∗)k . Our task is to lift the bijection f = φ2φ1
−1

to VFn. A definable subset of kn (such as φi(X)) is a disjoint union of smooth
varieties. We thus consider a definable bijection f : U → V between k varieties
U ⊂ kn and V ⊂ kn. Induction on dim(U) will allow us to remove a subset of U of
smaller dimension. Hence we may assumeU is smooth, cut out by h = (h1, . . . , hl),
T U = Ker(dh), f = (f1, . . . , fn), where fi are regular on U (defined on an open
subset of kn), and df is injective on T U at each point ofU . Thus the common kernel
of dh1, . . . , dhl, df1, . . . , dfn equals 0.

It follows that at a generic point ofU (i.e., every point outside a proper subvariety),
if Q is a sufficiently generic n × l matrix of elements of A (or integers) and we
let f ′i = fi + Qh, then the common kernel of df ′1, . . . , df ′n vanishes. Note that
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fi |U = f ′i |U . LetW be a smooth variety contained in f (U) and whose complement
in f (U) is a constructible set of dimension smaller than dim(U). Replacing U by
f−1(W), we may assume f (U) is also a smooth variety.

Let Ũ = res−1(U). Lift each f ′i to a polynomial Fi over O, with definable
coefficients. This is possible by effectiveness of ACVFA. Obtain a regular map F ,
whose Jacobian is invertible at points of Ũ . We have res ◦F = f ◦ res. Since f is
1-1 on U , the invertibility of dF implies that F is 1-1 on Ũ . Moreover, by Hensel’s
lemma, F : rv−1(U)→ rv−1(W) is bijective.

Next consider the case where in place of a bijection f : U → V we have a
finite-to-finite correspondence f̃ ⊂ U × V (where U = φ1(X), V = φ2(X)), f̃ =
{(φ1(x), φ2(x)) : x ∈ X}. We may take f̃ ⊂ U × V to be a subvariety, unramified
and quasi-finite over U and over V ; and we can take U,V to be smooth varieties. As
before we can lift f̃ to a correspondence F̃ ⊂ Ũ×Ṽ , such that F̃ ∩rv−1(u)×rv−1(v)

is a bijection rv−1(u) → rv−1(v) whenever (u, v) ∈ f̃ . It follows that a bijection
X ×φ1,rv (VF×)n → X ×φ2,rv (VF×)n is given by (x, y) �→ (x, y′) iff (y, y′) ∈ F̃ .

Let φ1 : X → U and φ2 : X → V be bijections to definable subsets U,V , each
contained in a single coset of (k∗)k , say, U ⊆ C(γ ), V ⊆ C(γ ′) for some γ, γ ′ ∈ k
(cf. Section 5.5). Let Z = (Z1, . . . , Zk) be variables, R[Z; γ ] be the subring of
VF[Z] consisting of polynomials

∑
aνZ

ν , with val(aν)+∑k
i=1 ν(i)γi = 0, and aν

a definable element of VF. There is a natural homomorphism R′[Z; γ ] → R[Z; γ ],
where R[Z; γ ] is the coordinate ring of C(γ ). By effectivity, this homomorphism is
surjective. The proof now proceeds in exactly the same way as above.

This proves the proposition in case valrvφi(X) consists of one point.
Next, assume valrvφ2 consists of one point, and valrvφ1(X) is finite. Thus φ1(X)

lies in the union of finitely many cosets (C(a) : a ∈ E), with E finite.
For a ∈ E,A(a) remains almost VF, -generated; since the proposition is true for

φ1
−1C(a) (definable in TA(a)), then by the one-coset case an appropriate isomorphism

F exists; and the finitely many F obtained in this way can then be glued together, to
yield a map defined over A.

The case of valrvφ1, valrvφ2 both finite, is treated similarly.
This proves the existence of a lifting in case valrvφi(X) is finite. Now for the

general case.

Claim. Let P ⊂ X be a complete type. Then there exists a definable D with P ⊂
D ⊂ X , and definable functions θ on valrv(φ1(D)) and θ ′ on valrv(φ2(D)) such that
for x ∈ D, θ(valrv(φ1(x))) = valrvφ2(x), θ ′(valrv(φ2(x))) = valrvφ1(x).

Proof. Let a ∈ P , γi = valrv(φi(a)). Then γ2 is definable over some points
of φ−1

1 valrv−1(γ1). But valrv−1(γ1) is a coset of k∗, and φ1 is finite-to-one, so
φ−1

1 valrv−1(γ1) is orthogonal to . Thus γ2 is algebraic over γ1. Since  is linearly
ordered, γ2 is definable over γ1; so γ2 = θ(γ1) for some definable θ . Similarly,
γ1 = θ ′(γ2). Clearly, θ restricts to a bijection valrvφ1P → valrvφ2P , with inverse
θ ′. By Lemma 2.7 there exists a definable D with θφ1 = φ2, φ1 = θ ′φ2 on D. )�

Now by compactness, there exist finitely many (Di, θi, θ ′i ) as in the claim with
∪iDi = X. We may cut down the Di successively, so we may assume the union
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is disjoint. But in this case the proposition reduces to the case of each individual
Di , so we may assume X = D. Let Bi = valrvφi(X). Given b ∈ B1, let Xb =
(valrvφ1)

−1(b). Then by the case already considered there exists an A(b)-definable
Fb : Xb ×φ1,rv (VF×)n → Xb ×φ2,rv (VF×)n. Let F = ∪b∈B1Fb. By Lemma 2.3,
F : X ×φ1,rv (VF×)n → X ×φ2,rv (VF×)n is bijective (see the discussion in Sec-
tion 2.1). )�

We note a corollary.

Lemma 6.2. Let T be V-minimal and effective, and let A be an almost (VF, )-
generated structure. Then A is effective.

Proof. By Lemma 3.29 it suffices to show A is rv-effective. Note that if A ⊆ acl(∅),
then T is rv-effective iff TA is rv-effective (see the proof of Lemma 3.31(2)–(3)).
Thus it suffices to show that ifA0 = acl(A0), a ∈ VF∪, and T′ = TA0 is effective,
then so is T′(a). The case a ∈  is included in Corollary 3.40, so assume a ∈ VF.
Let P be the intersection of allA0-definable balls containing a. If P is transitive over
A0, then by Lemma 3.47 we have RV(A0(a)) = RV(A0), so rv-effectivity remains
true trivially. Otherwise, P is centered overA0, hence has anA0-definable point, and
by translation we may assume 0 ∈ P . a is then a generic point of P over A0. Let
c ∈ RV(A0(a)); we must show that rv −1(c) is centered overA0(a). By Lemma 3.20,
if c ∈ RV(A0(a)) then c = f (d) for some A0-definable function f : RV → RV,
where d = rv(a). By Lemma 6.1 there exists anA0-definable functionF : VF → VF
lifting f . Then F(d) ∈ rv −1(c). )�

Base change: Summary

Base change from T to TA preserves V-minimality, effectiveness and being resolved,
if A is VF-generated; V-minimality and effectiveness, if A is RV-generated; V-
minimality, if A is -generated. (Lemmas 6.2, 3.39, and 3.40; the resolved case
follows using Lemma 3.49).

Though the notion of a morphism g : (X1, φ1)→ (X2, φ2) does not depend on
φ1, φ2, recall that the RV-Jacobian of g is defined with reference to these finite-to-
one maps.

Lemma 6.3. Let T be V-minimal and effective. Let Xi ⊂ RVki be definable and let
φi : X → RVn be definable maps with finite fibers; let g : X1 → X2 be a definable
bijection. Assume given, in addition, a definable function δ : X1 → RV, such that

(1) valrvδ(x) = Jcb g(x) for all x ∈ X1;
(2) δ(x) = JcbRV g(x) for almost all x ∈ X1 (i.e., all x outside a set of dimen-

sion < n).

Then there exists a definable bijection G : X1 ×φ1,rv (VF×)n → X2 ×φ2,rv (VF×)n
such that ρ2◦G = g◦ρ1,where ρi are the natural projections to theXi , and such that
for any x ∈ X1 ×φ1,rv (V F

∗)n, G is differentiable at x, and rv(Jcb(G)(x)) = δ(x).
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Proof. We follow closely the proof of Proposition 6.1. As there, we may assume
T = ACVFA, with A be an almost (VF, )-generated substructure.

We first assume that valrvφ1(X1) is a single point of n

Then X1 can be definably embedded into kN for some N , and it follows from
the orthogonality of k and  that the image of X1 in  under any definable map is
finite. Thus φ2X2 is contained in finitely many cosets (C(a) : a ∈ S) of (k∗)n; by
partitioningX1 working in TA(a), we may assume φ2X2 is contained in a single coset
(cf. Lemma 2.3).

As in Proposition 6.1, we may assume φiX ⊆ kn, and, indeed, that φ1X =
U, φ2X = V are smooth varieties. If dim(U) = n, then the lift constructed in Pro-
position 6.1 satisfies rv(Jcb(G))(x) = JcbRV g(x) for x ∈ X ×φ1,rv VFn; thus by
assumption (2), we have rv(Jcb(G))(x) = δ(x) for almost all x. The exceptional
points have dimension< n, and may be partitioned into smooth varieties of dimension
< n. Thus we are reduced to the case dim(U) < n. We prove it by induction
on dim(U). In this case choose any lifting G0. We have an error term e(x) =
rv(Jcb(G0))(x)

−1δ(x). Now A(x) is almost VF, -generated, and so balls rv −1(y)

contain definable points; thus e(x) = rvE(x) for some definable E : (X ×φ1,rv
VFn) → VF. Since U is a smooth subvariety of kn of positive codimension, some
regularh on kn vanishes onV , while some partial derivative (say, h1) vanishes only on
a lower-dimensional subvariety. By induction, one may assume h1 vanishes nowhere.
Lift h to H ; so H1 lifts h1. Compose G0 with a map fixing all coordinates but the
first, and multiplying the first coordinate by E(x)H(y)/H1(y). (Here x = g−1(y).)
Where h vanishes, this has Jacobian E(x); so the composition has RV-Jacobian δ(x)
as required.

Now in general, for any γ ∈ n let X1(γ ) = {x ∈ X1 : valrvφ1(x) = γ },
X2(γ ) = g(X1(γ )). By the definitions of JcbRV and Jcb , JcbRV(g|X2(γ )) =
JcbRV(g)|X2(γ ) and likewise Jcb . By the case already analyzed (for the sets
X1(γ ),X2(γ ) defined in ACVFA(γ )) there exists an A(γ )-definable bijection Gγ :
X1(γ ) ×φ1,rv (V F

×)n → X2(γ ) ×φ2,rv (V F
×)n with rv(Jcb(Gγ )(x)) = δ(x). As

in Lemma 2.3 one can extend theGγ by compactness to definable sets containing γ ,
cover X1 by finitely many such definable sets, and glue together to obtain a single
function G with the same property. )�

Remark. Assume IdX : (X, φ1) → (X, φ2) has Jacobian 1 everywhere. Then it is
possible to find F that is everywhere differentiable, of Jacobian precisely equal to 1.
At the before the point where Hensel’s lemma is quoted, it is possible to multiply the
function by J (F )−1 (not effecting the reduction, since J (F ) ∈ 1 + M). Then one
obtains on each such coset a function of Jacobian 1 and therefore globally.

Example. Let φ2(x) = φ1(x)
m. A definable bijection

X ×φ1,rv (VF×)n → X ×φ2,rv (VF×)n

is given by (x, y) �→ (x, ym). (If rv(u) = φ(x)m, there exists a unique y with
rv(y) = φ(x) and ym = u.)
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Example 6.4. Proposition 6.1 need not remain valid over an RV-generated base set.
LetA = dcl(c), c a transcendental point of k. Let f1(y) = y, f2(y) = 1, L(Y, fi) :=
VF ×rv,fi Y = {(x, y) ∈ RV × Y : rv(x) = y}. Then L(Y, f ),L(Y, f ′) are both
open balls; over any field A′ containing A, they are definably isomorphic, using a
translation. But these balls are not definably isomorphic over A.

7 Special bijections and RV-blowups

We work with a V-minimal theory T. Recall the lift L : RV[≤ n, ·] → VF[n, ·], with
ρX : LX → X. Our present goal is an intrinsic description in terms of RV of the
congruence relation LX ' LY .
Awill denote a (VF, ,RV)-generated substructure of a model of T. Note that TA

is also V-minimal (Corollary 3.39) so any lemma proved for T under our assumptions
can be used for any TA.

The word “definable’’below refers to T. The categories VF,RV[∗] defined below
thus depend on T; when necessary, we will denote them VFT, etc. When T has the
form T = T0

A for fixed T0 but varying A, we write VFA, etc.

7.1 Special bijections

Let X ⊆ VFn+1 × RVm be ∼
rv

-invariant. Say

X = {(x, y, u) ∈ VF× VFn × RVm : (rv(x), rv(y), u) ∈ X̄}.
(We allow x to be any of the n+ 1 coordinates and y the others.)

Let s(y, u) be a definable function into VF with∼
rv

-invariant domain of definition

dom(s) = {(y, u) : (rv(y), u) ∈ S̄}
and θ(u) a definable function on pru(dom(s)) into RV, such that (s(y, u), y, u) ∈ X
and rv(s(y, u)) = θ(u) for (y, u) ∈ dom(s). Note that θ is uniquely defined (given
s) if it exists. Let

X1 = {(x, y, u) ∈ X : (rv(y), u) ∈ S̄, rv(x) = θ(u)}, X2 = X \X1,

X′1 = {(x, y, u) ∈ VF× dom(s) : val(x) > valrvθ(u)}

and let X′ = X′1
.∪X2. Also define es : X′ → X to be the identity on X2, and

es(x, y, u) = (x + s(y, u), y, u)
on X′1.

Definition 7.1. es : X′ → X is a definable bijection, called an elementary bijec-
tion. )�
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Lemma 7.2.

(1) If X is ∼
rv

-invariant, so is X′. If X → VFn+1 is finite-to-one, the same is true

of X′.
(2) If Xi = LX̄i , X′1 = LX̄′1, then X̄′1 is isomorphic to (RV>0

.∪{1}) × S̄, while X̄1

is isomorphic to S̄.
(3) If the projection X → VFn+1 has finite fibers, then so does the projection

dom(s)→ VFn, and also the projection S̄ → RVn, (y′, u) �→ y′.
(4) es has partial derivative matrix I everywhere, hence has Jacobian 1. Thus if
F : X→ Y is such that rv Jcb(F ) factors through ρX, then rv Jcb(F ◦ es) factors
through ρX′ .

Proof. (1) and (4) are clear. The first isomorphism of (2) is obtained by dividing x by
θ(u), the second is evident. For (3), note that if (y, u) ∈ dom(s) then (s(y, u), y, u) ∈
X so by the assumption u ∈ acl(y, s(y, u)). But for fixed y, {s(y, u) : u ∈ dom(s)}
is finite, by Lemma 3.41. Thus, in fact, (y, u) ∈ dom(s) implies u ∈ acl(y). Hence
(y′, u) ∈ S̄ implies u ∈ acl(y) for any y with rv(y) = y′, so (fixing such a y)
{u : (y′, u) ∈ S̄} is finite for any given y′. )�

A special bijection is a composition of elementary bijections and auxiliary bijec-
tions (x1, . . . , xn, u) �→ (x1, . . . , xn, u, rv(x1), . . . , rv(xn)).

An elementary bijection depends on the data s of a partial section ofX→ VFn×
RVm. Conversely, given s, if rv(s(y, u)) depends only on u we can define θ(u) =
rv(s(y, u)) and obtain a special bijection. If not, we can apply an auxiliary bijection
toX ⊆ VFn×RVm, and obtain a setX′ ⊆ VF×RVm+n, such that rv(x) = prm+1(u)

for (x, u) ∈ X′. For such a set X′, the condition for existence of θ is automatic and
we can define an elementary bijection X′′ → X′ based on s, and obtain a special
bijection X′′ → X as the composition.

The classes of auxiliary morphisms and elementary morphisms are all closed
under disjoint union with any identity morphism, and it follows that the class special
morphisms is closed under disjoint unions.

7.2 Special bijections in one variable and families of RV-valued functions

We consider here special bijections in dimension 1. An elementary bijectionX′ → X

in dimension 1 involves a finite set B of rv-balls, and a set of “centers’’ of these balls
(i.e., a set T containing a unique point t (b) of each b ∈ B), and translates each ball so
as to be centered at 0 (while fixing the RV coordinates). We say that X′ → X blows
up the balls in B, with centers T .

Given a special bijection h′ : X′ → X, let FnRV(X;h′) be the set of definable
functionsX→ RV of the formH(ρX′((h′)−1(x))), whereH is a definable function.
This is a finitely generated set of definable functions X → RV. There will usually
be no ambiguity in writing FnRV(X,X′ → X) instead.

Note that while a special bijection is an isomorphism in VF, an asymmetry exists:
if e : X′ → X is a special bijection, then FnRV(X,X) is usually a proper subset of
FnRV(X,X′ → X).
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What is the effect on FnRV of passing fromX′ toX′′, whereX′′ → X′ is a special
bijection? The auxiliary bijections have no effect. Assume rv is already a coordinate
function of X′. Consider an elementary bijection es : X′′ → X′. Let B = {(x, u) ∈
X′ : u ∈ dom(s)}. Then the characteristic function 1B lies in FnRV(X′, IdX′); so
1B ◦ (h′)−1 lies in FnRV(X, h′). Using this, we see that FnRV(X′, es) is generated
over FnRV(X′, IdX′) by the function B → RV, (x, u) �→ rv(x − s(u)) (extended
by 0 outside B). Thus if h′′ = h′ ◦ es : X′′ → X, FnRV(X, h′′) is generated over
FnRV(X, h′) by the composition of the function (x, u) �→ rv(x − s(u)) with (h′)−1.

Conversely, if B is a finite union of open balls whose characteristic function lies
in FnRV(X, h′), and if there exists a definable set T of representatives (one point t (b)
in each ball b of B), and a function φ = (φ1, . . . , φn), φi ∈ FnRV(X, h′), with φ
injective on T , then one can find a special bijection X′′ → X′ with composition h′′ :
X′′ → X, such that FnRV(X, h′′) is generated over FnRV(X, h′) by y �→ rv(y−t (y)),
y ∈ b ∈ B. Namely, let dom(s) = φ(T ), and for u ∈ dom(s) set s(u) = h′−1(t) if
t ∈ T and φ(t) = u. In this situation, we will say that the balls in B are blown up by
X′′ → X′, with centers T . Let θ(u) = rv(s(u)). BecauseX′ → X may already have
blown up some of the balls in B, FnRV(X, h′′) is generated over FnRV(X, h′) by the
restriction of y �→ rv(y − t (y)) to some subball of b, possibly proper. Nevertheless,
we have the following.

Lemma 7.3. The function y �→ rv(y − t (y)) on B lies in FnRV(X, h′′).
Proof. This follows from the following, more general claim. )�
Claim. Let c ∈ VF, b ∈ B be definable, with c ∈ b. Let b′ be an rv-ball with c ∈ b′.
Then the function rv(x − c) on b is generated by its restriction to b′, rv, and the
characteristic function of b.

Proof. Let x ∈ b \ b′. From rv(x) compute val(x). If val(x) < val(c), rv(x − c) =
rv(c). If val(x) > val(c), rv(x − c) = rv(x). When val(x) = val(c), but x /∈ b′,
rv(x − c) = rv(x) − rv(c). Recall here that valrv−1(γ ) is the nonzero part of a
k-vector space; subtraction, for distinct elements u, v, can therefore be defined by
u− v = u(u−1v − 1). )�

Thus any special bijection can be understood as blowing up a certain finite number
of balls (in a certain sequence and with certain centers). We will say that a special
bijection X′′ → X′ is subordinate to a given partition of X if each ball blown up by
X′′ → X′ is contained in some class of the partition.

It will sometimes be more convenient to work with the sets of functions FnRV(X, h)

than with the special bijections h themselves.
We observe that any finite set of definable functions X → RV is contained in

FnRV(X;h) for some X′, h.

Lemma 7.4. Let X ⊆ VF × RV∗ be ∼
rv

-invariant, and let f : X → (RV ∪ ) be a

definable map. Then there exists an ∼
rv

-invariant X′ ⊆ VF×RV∗ a special bijection

h : X′ → X, and a definable function t such that t ◦ ρX′ = f ◦ h. Moreover, if
X = ∪mi=1Pi is a finite partition of X into sets whose characteristic functions factor
through ρ, we can find X′ → X subordinate to this partition.
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Proof. Say X ⊆ VF × RVm; let π : X → VF, π ′ : X → RVm be the projections.
Applying an auxiliary bijection, we may assume rv(π(x)) = prm π

′(x), i.e., rv(π(x))
agrees with one of the coordinates of π ′(x). We now claim that there exists a finite
F ′ ⊆ RVm, such that away from π ′−1(F ′), f factors through π ′. To prove this, it
suffices to show that if p is a complete type of X and π ′∗p is nonalgebraic (i.e., not
contained in a finite definable set), then f |p factors through π ′; this follows from
Lemma 3.20.

We can thus restrict attention to π ′−1(F ′); our special bijections will be the
identity away from this. Thus we may assume π ′(X) is finite. Recall that (since an
auxiliary bijection has been applied) rv is constant on each fiber of π ′. In this case
there is no problem relativizing to each fiber of π ′, and then collecting them together
(Lemma 2.3), we may assume, in fact, that π ′(X) consists of a single point {u}. In
this case the partition (since it is defined via ρ) will automatically be respected.

The rest of the proof is similar to Lemma 4.2. We first consider functions f with
finite support F (i.e., f (x) = 0 for x /∈ F ) and prove the analogue of the statement
of the lemma for them. If F = {0} × {u} then F = ρ−1({(0)} × {u})) so the claim
is clear. If F = {(x0, u)}, let s : {u} → VF, s(u) = x0. Applying es returns us to
the previous case. If F = F0 × {u} has more than one point, we use induction on
the number of points. Let s(u) be the average of F0. Apply the special bijection es .
Then the result is a situation where rv is no longer constant on the fiber. Applying
an auxiliary bijection to make it constant again, the fibers of F → RVm+1 become
smaller.

The case of the characteristic function of a finite union of balls is similar (following
Lemma 4.2).

Now consider a general function f . Having disposed of the case of characteristic
function, it suffices to treat f on each piece of any given partition. Thus we can
assume f has the form of Corollary 4.4, f (x) = H(rv(x − n(x))). Translating by
the n(x) as in the previous cases, we may assume n(x) = 0. But then again f factors
through ρ and rv, so one additional auxiliary bijection suffices. )�

Corollary 7.5. Let X, Y ⊆ VFn ×RV∗, and let f : X→ Y be a definable bijection.
Then there exists a special bijectionh : X′ → X, and t such that ρY ◦(f ◦h) = t◦ρX′ .

It can be found subordinate to a given finite partition, factoring through ρX. )�

We wish to obtain a symmetric version of Corollary 7.5. We will say that bijections
f, g : X→ Y differ by special bijections if there exist special bijections h1, h2 with
h2g = f h1. We show that every definable bijection between ∼

rv
-invariant objects

differs by special bijections from an ∼
rv

-invariant bijection.

Lemma 7.6. Let X ⊆ VF × RVm, Y ⊆ VF × RVm
′

be definable, ∼
rv

-invariant; let

F : X→ Y be a definable bijection. Then there exist special bijectionshX : X′ → X,
hY : Y ′ → Y , and an ∼

rv
-invariant bijection F ′ : X′ → Y ′ with F = hYF ′h−1

X ; i.e.,

F differs from an ∼
rv

-invariant morphism by special bijections.
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Proof. It suffices to find hX, hY such that FnRV(X, hX) = F ◦FnRV(Y, hY ); for then
we can let F ′ = h−1

Y FhX.
Let X = ∪mi=1Pi be a partition as in Proposition 5.1. By Lemma 7.4, there exist

X0, Y1 and special bijectionsX0 → X, Y1 → Y , such that the characteristic functions
of the sets Pi (respectively, the sets F(Pi)) are in FnRV(X,X0 → X) (respectively,
FnRV(Y, Y1 → Y )).

By Corollary 7.5, one can find a special X1 → X0 such that FnRV(X,X1 → X)

contains F ◦ FnRV(Y, Y1 → Y ). By another application of the same, one can find a
special bijection Y∗ → Y1 subordinate to {F(Pi)} such that

FnRV(Y, Y∗ → Y ) ⊇ F−1 ◦ FnRV(X,X1 → X). (7.1)

Now Y∗ is obtained by composing a sequence Y∗ = Ym → · · · → Y1 of elemen-
tary bijections and auxiliary bijections. We define inductively Xm → · · · → X2 →
X1, such that

FnRV(Y, Yk → Y ) ◦ F ⊆ FnRV(X,Xk → X). (7.2)

Let k ≥ 1. Yk+1 is obtained by blowing up a finite union of balls B of Y , with a
definable set T of representatives such that some φ ∈ FnRV(Y, Yk → Y ) is injective
on T ; then FnRV(Y, Yk+1 → Y ) is generated over FnRV(Y, Yk → Y ) byψ , where for
y ∈ b ∈ B ψ(y) = rv(y − t (b)) (Lemma 7.3). By the choice of the partition {Pi},
F−1(B) is also a finite union of balls.

Now F−1(B), with center set F−1(T ), can serve as data for a special bijection:
the requirement about the characteristic function of B and the injective function on T
being in FnRV are satisfied by virtue of Lemma 7.3. We can thus defineXk+1 → Xk so
as to blow up F−1(B)with center set F−1(T ). By Lemma 5.4, rv(F (x)−F(x′)) is a
function of rv(x−x′) (and conversely) on each of these balls, so FnRV(X,Xk+1 → X)

is generated over FnRV(X,Xk) by ψ ◦ F . Hence (7.2) remains valid for k + 1.
Now by (7.1), FnRV(X,X1 → X) ⊆ FnRV(Y, Y∗ → Y )◦F ; since the generators

match at each stage, by induction on k ≤ m,

FnRV(X,Xk → X) ⊆ FnRV(Y, Ym → Y ) ◦ F. (7.3)

By (7.2) and (7.3) for k = m, FnRV(X,Xm → X) = FnRV(Y, Y∗ → Y ) ◦ F . )�

For the sake of possible future refinements, we note that the proof of Lemma 7.6
also shows the following.

Lemma 7.7. Let X ⊆ VF × RVm, Y ⊆ VF × RVm
′

be definable, ∼
rv

-invariant; let

F : X → Y be a definable bijection. If a Proposition 5.1 partition for F has
characteristic functions factoring through ρX, ρY , and if F is ∼

rv
-invariant, then for

any special bijection h′X : X′ → X, there exists a special bijection h′Y : Y ′ → Y ′
such that (h′Y )−1Fh′X is ∼

rv
-invariant. )�
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7.3 Several variables

We will now show in general that any definable map from an ∼
rv

-invariant object to

RV factors through the inverse of a special bijection, and the standard map ρ.

Lemma 7.8. LetX ⊆ VFn×RVm be∼
rv

-invariant, and let φ : X→ (RV∪). Then

there exists a special bijection h : X′ → X, and a definable function τ such that
τ ◦ ρX′ = φ ◦ h.

Proof. By induction on n. For n = 0 we can take X′ = X, since ρX = IdX.
For n = 1 and X ⊆ VF, by Lemma 7.4, there exists µ = µ(X, φ) ∈ N such

that the lemma holds for some h that is a composition of µ elementary and auxiliary
bijections. It is easy to verify the semicontinuity of µ with respect to the definable
topology: if Xt is a definable family of definable sets, so that Xb is A(b)-definable,
and µ(Xb, φ|Xb) = m, then there exists a definable set D with b ∈ D such that if
b′ ∈ D, then µ(Xb′ , φ|Xb′) ≤ m.

Assume the lemma is known for n and suppose X ⊆ VF × Y , with Y ⊆ VFn ×
RVm. For any b ∈ Y , let Xb = {x : (x, b) ∈ X} ⊆ VF; so Xb is A(b)-definable.

Let µ = maxb µ(Xb, φ|Xb). Consider first the case µ = 0. Then φ|Xb =
τb ◦ ρ|Xb, for some A(b)-definable function τb : RVm → (RV ∪ ). By stable
embeddedness and elimination of imaginaries in RV ∪, there exists (Section 2.1) a
canonical parameter d ∈ (RV∪)l , and anA-definable function τ , such that τb(t) =
τ(d, t); and d itself is definable from τb, so we can write d = δ(b) for some definable
δ : Y → (RV ∪)l . Using the induction hypothesis for (Y, δ) in place of (X, φ), we
find that there exists an ∼

rv
-invariant Y ′ ⊆ VFn × RV∗, a special hY : Y ′ → Y , and a

definable τY , such that τY ◦ρY ′ = δ ◦hY . LetX′ = X×Y Y ′, h(x, y′) = (x, hY (y′)).
An elementary bijection to Y determines one toX, where the function s does not make
use of the first coordinate; so h : X′ → X is special. In this case, the lemma is proved:
φ ◦ h(x, y′) = φ(x, hY (y′)) = τ(δ(hY (y′)), ρ(x, y)) = τ(τY (ρY ′(y′)), ρ(x, y)).

Next suppose µ > 0. Applying an auxiliary bijection, we may assume that for
some definable function (in fact, projection) p, rv(x) = p(u) for (x, y, u) ∈ X.
For each b ∈ Y (M) (with M any model of TA) there exists an elementary bijection
hb : X′b → Xb, such that µ(X′b, φ|X′b) < µ; hb is determined by sb, θb,with sb ∈
rv(sb) = θb, and (sb, θb) ∈ X. (The u-variables have been absorbed into b.) By
compactness, one can take sb = s(b) and θb = θ ′(b) for some definable functions
s, θ ′. By the inductive hypothesis applied to (Y, θ ′), as in the previous paragraph,
we can assume θ ′(y, u) = θ(u) for some definable θ . Applying the special bijection
with data (s, θ) now amounts to blowing up (sb, θb) uniformly over each b, and thus
reduces the value of µ. )�

Question 7.9. Is Proposition 7.6 true in higher dimensions?

Corollary 7.10. Let X ⊆ VFn × RVm be definable. Then every definable function
φ : X→  factors through a definable function X→ RV∗.
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Proof. By Lemma 4.5 we may assume X is ∼
rv

-invariant; now the corollary follows

from Lemma 7.8. )�
(It is convenient to note this here, but it can also be proved with the methods

of Section 3; the main point is that on the generic type of ball with center c, every
function into RV ∪  factors through rv(x − c); while on a transitive ball, every
function into RV ∪  is constant.)

Consider pairs (X′, f ′) with X′, f ′ : X′ → VFn definable, such that f ′ has RV-
fibers. A bijection g : X′ → X′′ is said to be relatively unary (with respect to f ′, f ′′)
if it commutes with n− 1 coordinate projections, i.e., pri f

′′g = pri f
′ for all but at

most one value of i.
GivenX ⊆ VFn×RVm, we view it as a pair (X, f )with f the projection to VFn.

Thus for X, Y ⊆ VFn × RV∗, the notion F : X→ Y is relatively unary is defined.
Note that the elementary bijections are relatively unary, as are the auxiliary bijec-

tions.

Lemma 7.11. Let X, Y ⊆ VFn × RV∗, and let F : X→ Y be a definable bijection.
Then F can be written as the composition of relatively unary morphisms of VF[n, ·].
Proof. We have X with two finite-to-one maps f, g : X → VFn (the projection
and the composition of F with the projection Y → VFn). We must decompose the
identity X→ X into a composition of relatively unary maps (X, f )→ (X, g).

Begin with the case n = 2; we are given (X, f1, f2) and (X, g1, g2).

Claim. There exists a definable partition of X into sets Xij such that (fi, gj ) : X→
VF2 is finite-to-one.

Proof. Let a ∈ X. We wish to show that for some i, j , a ∈ acl(fi(a), gj (a)).
This follows from the exchange principle for algebraic closure in VF: if a ∈ acl(∅),
there is nothing to show. Otherwise, gj (a) /∈ acl(∅) for some j ; in this case either
a ∈ acl(f1(a), gj (a)) or f1(a) ∈ acl(gj (a)), and then a ∈ acl(f2(a), gj (a)). The
claim follows by compactness. )�

Let h : X′ → X be a special bijection such that the characteristic functions ofXij
are in FnRV(X,X′ → X). (Lemma 7.8). Since h is composition of relatively unary
bijections, we may replaceX byX′ (and fi , gi by fi ◦h, gi ◦h, respectively). Thus we
may assume the characteristic function of Xij is in FnRV(X,X), i.e., Xij ∈ VFr[n].
But then it suffices to treat eachXij separately, say,X11. In this case the identity map
on X takes

(X, f1, f2) �→ (X, f1, g1) �→ (X, g2, g1) �→ (X, g2, g1 − g2)

�→ (X, g1, g1 − g2) �→ (X, g1, g2),

where each step is relatively unary.
When n > 2, we move between (X, f1, . . . , fn) and (X, g1, . . . , gn), by parti-

tioning, and on a given piece replacing each fi by some gj , one at a time. )�
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7.4 RV-blowups

We now define the RV-counterparts of the special bijections, which will be called
RV-blowups. These will not be bijections; the kernel of the homomorphism L :
K+[RV] → K+[VF] will be seen to be obtained by formally inverting RV-blowups.
Let RV>0∞ = {x ∈ RV : val(x) > 0 ∪ {∞}} ⊆ RV∞. In the RV[≤ 1]-presentation,
RV>0∞ = [RV>0]1 + [1]0 (cf. Section 3.8).

Definition 7.12.

(1) Let Y = (Y, f ) ∈ Ob RV∞[n, ·] be such that fn(y) ∈ acl(f1(y), . . . , fn−1(y)),
and fn(y) �= ∞. Let Y ′ = Y × RV>0∞ . For (y, t) ∈ Y ′, define f ′ = (f ′1, . . . , f ′n)
by f ′i (y, t) = fi(y) for i < n, f ′n(y, t) = tfn(y). Then Ỹ = (Y ′, f ′) is an
elementary blowup of Y. It comes with the projection map Y ′ → Y .

(2) Let X = (X, g) ∈ Ob RV∞[n, ·], X = X′ .∪X′′, g′ = g|X′, g′′ = g|X′′, and let
φ : Y → (X′, g′) be an RVvol-isomorphism. Then the RV-blowup X̃φ is defined

to be Ỹ + (X′′, g′′) = (Y ′
.∪X′′, f ′ .∪ g′′). It comes with b : Y ′ .∪X′′ → X,

defined to be the identity onX′′, and the projection on Y ′. X′ is called the blowup
locus of b : X̃φ → X.

An iterated RV-blowup is obtained by finitely many iterations of RV-blowups.

Since blowups in the sense of algebraic geometry will not occur in this paper, we
will say “blowup’’ for RV-blowup.

Remark 7.13. In the definition of an elementary blowup, dimRV(Y ) < n. For such Y ,
φ : Y → (X′, g′) is an RVvol[≤ n, ·]-isomorphism iff it is an RV-vol′ -isomorphism
(Definition 5.21).

Lemma 7.14.

(1) Let Y′ be an elementary blowup of Y. Y′ is RVvol[n, ·]-isomorphic to Y′′ =
(Y ′′, f ′′), with Y ′′ = {(y, t) ∈ Y × RV∞ : valrv(t) > fn(y)}, f ′′(y, t) =
(f1(y), . . . , fn−1(y), t).

(2) An elementary blowup Y′ of Y is RV∞[n, ·]-isomorphic to (Y × RV∞, f ′) for
any f ′ isogenous to (f1, . . . , fn, t).

(3) Up to isomorphism, the blowup depends only on the blowup locus. In other words,
if X,X′, g, g′ are as in Definition 7.12, and φi : Yi → (X′, g′) (i = 1, 2) are
isomorphisms, then X̃φ1 , X̃φ2 are X-isomorphic in RVvol[n, ·].

Proof.

(1) The isomorphism is given by (y, t) �→ (y, tfn(y)).
(2) The identity map on Y × RV is an RV∞[n, ·] isomorphism.
(3) Let ψ0 = φ2

−1φ1, and define ψ1 : Y1 × RV>0∞ → Y2 × RV>0∞ by ψ(y, t) =
(ψ0(y), t). The sum of the values of then coordinates of Ỹi is then (

∑
i<n valrvfi)+

(valrv(t) + valrvfn) in both cases. Since by assumption ψ0 : Y1 → Y2 is an
RVvol-isomorphism, it preserves

∑
i≤n valrvfi and so ψ1 too is an RV-vol′ -

isomorphism; thus JcbRV(ψ1) ∈ k∗, i.e., let θY1 → k∗ be a definable map such



Integration in valued fields 345

that θ = JcbRV(ψ1) almost everywhere. Defineψ : Y1×RV>0∞ → Y2×RV>0∞ by
ψ(y, t) = (ψ0(y), t/θ(y)). Then one computes immediately that JcbRV(ψ) = 1,
so ψ is an RVvol[n, ·]-isomorphism, and hence so is ψ

.∪ IdX′′ : X̃φ1 → X̃φ2 . )�
Here is a coordinate-free description of RV-blowups; we will not really use it in

the subsequent development.

Lemma 7.15.

(1) Let Y = (Y, g) ∈ Ob RV∞[n, ·], with dim(g(Y )) < n; let f : Y → RVn−1

be isogenous to g. Let h : Y → RV be definable, with h(y) ∈ acl(g(y)) for
y ∈ Y , and with

∑
(g) =∑(f )+ valrv(h). Let Y ′ = Y ×RV>0∞ , and f ′(y, t) =

(f (y), th(y)). Then Y′ = (Y ′, f ′) with the projection map to Y is a blowup.
(2) Let Y′′ → Y be a blowup with blowup locus Y . Then there exist f , h such that

with Y′ as in (3), Y′′,Y′ are isomorphic over Y.

Proof.

(1) Since dimRV(g(Y )) < n, IdY : (Y, (f, h)) → (Y, g) is an RVvol-isomorphism.
Use this as φ in the definition of blowup.

(2) With notation as in Definition 7.12, let h = gn ◦ φ−1, f = (g1, . . . , gn−1)

◦ φ−1. )�
Definition 7.16. For C = RV[≤ n, ·] or C = RVvol[≤ n, ·], let Isp[≤ n] be the set of
pairs (X1,X2) ∈ Ob C such that there exist iterated blowups bi : X̃i → Xi and an
C-isomorphism F : X̃1 → X̃2.

When n is clear from the context, we will just write Isp.

Definition 7.17. Let 10 denote the one-element object of RV[0]. Given a definable
set X ⊆ RVn let Xn denote (X, IdX) ∈ RV[n], and [X]n the class in K+(RV[n]).
Write [1]1 for [{1}]1 (where {1} is the singleton set of the identity element of k).

Lemma 7.18. Let C = RV[≤ n, ·] or C = RVvol[≤ n, ·].
(1) Let f : X1 → X2 be a C-isomorphism, and let b1 : X̃1 → X1 be a blowup. Then

there exists a blowup b2 : X̃2 → X2 and a C-isomorphism F : X̃1 → X̃2 with
b2F = f b1.

(2) If b : X̃ → X is a blowup, then so are b
.∪ Id : X̃

.∪Z → X
.∪Z and (b × Id) :

X̃ × Z → X × Z.
(3) Let bi : X̃φi → X be a blowup (i = 1, 2). Then there exist blowups b′i : Zi → X̃φi

and an isomorphism F : Z1 → Z2 such that b2b
′
2F = b1b

′
1.

(4) Same as (1)–(3) for iterated blowups.
(5) Isp is an equivalence relation. It induces a semiring congruence on K+ RV[∗, ·],

respectively, K+ RVvol[∗, ·].
(6) As a semiring congruence on K+ RV[∗, ·], Isp is generated by ([1]1,

[RV>0]1 + 10).
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Proof.
(1) This reduces to the case of elementary blowups. If C = RVvol[n, ·], then the

composition f ◦ b1 is already a blowup. If C = RV[≤ n, ·], it is also clear using
Lemma 7.14(2).

(2) This follows from the definition of blowup.
(3) If b1 is the identity, let b′1 = b2, b′2 = Id, F = Id; similarly if b2 is the identity.

If X = X′ .∪X′′ and the statement is true above X′ and above X′′, then by glueing it
is true also above X. We thus reduce to the case that b1, b2 both are blowups with
blowup locus equal to X. But then by Lemma 7.14(3), there exists an isomorphism
F : X̃φ1 → X̃φ2 over X. Let b′1 = b′2 = Id.

(4) For (1)–(2) the induction is immediate. For (3), write k-blowup as shorthand
for “an iteration of k blowups.’’ We show by induction on k1, k′ a more precise form.

Claim. If X1 → X is a k1-blowup, and X′ → X is a k′-blowup, then there exists an
k′-blowup Z′1 → X1 a k1-blowup Z′ → X, and an RVvol[n, ·]-isomorphism Z′1 → Z′
over X.

If k1 = k′ = 1, this is (3). Thus say k′ > 1. The map X′ → X is a composition
X′ → X2 → X, where X2 → X is a k′ − 1-blowup and X′ → X2 is a blowup.
By induction there is a k′ − 1-blowup Z1 → X1 and a k1-blowup Z2 → X2 and an
RVvol[n, ·]-isomorphism Z1 → Z2 over X.

By induction again there is a blowup and Z′2 → Z2, a k1-blowup Z′ → X′ an
RVvol[n, ·]-isomorphism Z′ → Z2 over X2. By (1) there exists a blowup Z′1 →
Z1 and an RVvol[n, ·]-isomorphism Z′1 → Z′2, making the Z1,Z2,Z′1,Z2-square
commute. Thus Z1 → X1 is a k′-blowup, Z′ → X′ is a k1-blowup, and we have a
composed isomorphism Z′1 → Z′2 → Z′ over X.

(5) If (X1,X2), (X2,X3) ∈ Isp, there are iterated blowups X′
1 → X1,X′

2 → X2
and an isomorphism X′

1 → X′
2; and also X′′

2 → X2,X′
3 → X3 and X′′

2 → X3. Using

(3) for iterated blowups, there exist iterated blowups X̂2
′ → X′

2, X̂2
′′ → X′′

2 , and

an isomorphism X̂2
′ → X̂2

′
. By (1), for iterated blowups there are iterated blowups

X̂1 → X′
1, X̂3 → X3 and isomorphisms X̂1 → X̂2

′
, X̂2

′′ → X̂3, with the natural
diagrams commuting. Composing, we obtain X̂1 → X̂3, showing that (X1,X3) ∈ Isp.
Hence Isp is an equivalence relation.

Isomorphic objects are Isp-equivalent, so an equivalence relation on the semiring

K+ C is induced. If (X1, X2) ∈ Isp, then by (2), (X1
.∪Z,X2

.∪Z) ∈ Isp, and
(X1×Z,X2×Z) ∈ Isp. It follows that Isp induces a congruence on the semiringK+ C.

(6) We can blow up 11 to RV>0
1 + 10, so ([1]1, [RV>0]1 + 10) ∈ Isp. Conversely,

under the conditions of Definition 7.12, let Y− = [(Y, f1, . . . , fn−1)]; then [Y] =
[(Y, f1, . . . , fn−1, 0)] = [Y−] × [1]1 by Lemma 7.14, and we have

[X̃Y] = [Y]n−1 + [Y]n−1 × [RV>0]1 + [X′′] ∼=Isp [Y] × [1]1 + [X′′] = [X]
modulo the congruence generated by ([1]1, [RV>0]1 + 10). )�

We now relate special bijections to blowing ups. Given X = (X, f ),X′ =
(X′, f ′) ∈ RV[n, ·], say, X, X′ are strongly isomorphic if there exists a bijection
φ : X→ X′ with f ′ = φf . Strong isomorphisms are always in RVvol[n, ·].
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Up to strong isomorphism, an elementary blowup of (Y, f ) can be put in a different
form: (Ỹ) ' (Y ′′, f ′′), Y ′′ = {(z, y) : y ∈ Y, valrv(z) > valrvfn(y)}, fi(z, y) =
fi(y) for i < n, fn(z, y) = z. The strong isomorphism Y ′′ → Y ′ is given by
(z, y) �→ (y, z/fn(y)). This matches precisely the definition of special bijection, and
makes evident the following lemma.

Lemma 7.19. Let C = RV∞[n, ·] or RVvol[≤ n, ·].
(1) X, Y are strongly isomorphic over RVn iff LX, LY are isomorphic over the

projection to VFn.
(2) Let X,X′ ∈ RV[≤ n, ·], and letG : LX′ → LX be an auxiliary special bijection.

Then X′ is isomorphic to X over RVn.
(3) Let X,X′ ∈ RV[≤ n, ·], and let G : LX′ → LX be an elementary bijection.

Then X′ is strongly isomorphic to a blowup of X.
(4) Let X,X′ ∈ RV[≤ n, ·], and let G : LX′ → LX be a special bijection. Then X′

is strongly isomorphic to an iterated blowup of X.
(5) Assume T is effective. If Y → X is an RV-blowup, there exists Y′ strongly

isomorphic to Y over X and an elementary bijection c : LY′ → LY lying over
Y′ → Y.

Proof.

(1) This is clear using Lemma 3.52.
(2) This is a special case of (1).
(3) This is clear from the definitions.
(4) This is clear from (1)–(3).
(5) It suffices to consider elementary blowups; we use the notation in the definition

there. Thus fn(x) ∈ acl(f1(x), . . . , fn−1(x)) for x ∈ φ(Y ). By effectiveness
and Lemma 6.2, there exists a definable function s(x, y1, . . . , yn−1) such that
if rv(yi) = fi(x) for i = 1, . . . , n − 1, then rv s(x, y) = fn(x). This s is the
additional data needed for an elementary bijection. )�

Lemma 7.20. Let X = (X, f ),X′ = (X′, f ′) ∈ RV[≤ n, ·], and let h : X → W ⊆
RV∗, h′ : X′ → W be definable maps. Let Xc = h−1(c), Xc = (Xc, f |Xc) and
similarly X′

c. If (Xc,X′
c) ∈ Isp(RVc[n, ·]); then (X,X′) ∈ Isp.

Proof. Lemma 2.3 applies to RV-vol′ -isomorphisms, and hence using Remark 7.13
also to blowups. It also applies to RV[≤ n, ·]-isomorphisms; hence to Isp-equival-
ence. )�

Lemma 7.21. If (X,Y) ∈ Isp then LX ' LY.

Proof. Clear, since L[1]1 is the unit open ball around 1, L([RV>0]1 is the punctured
unit open ball around 0, and L10 = {0}. )�
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7.5 The kernel of L

Definition 7.22. VFR[k, l, ·] is the set of pairs X = (X, f ), with X ⊆ VFk × RV∗,
f : X → RVl∞, such that f factors through the projection prRV(X) of X to the
RV-coordinates. Isp is the equivalence relation on VFR[k, l, ·]:

(X, Y ) ∈ Isp ⇐⇒ (Xa, Ya) ∈ Isp(Ta) for each a ∈ VFk.

K+ VFR is the set of equivalence classes.

By the usual compactness argument, if (X, Y ) ∈ Isp then there are uniform for-
mulas demonstrating this. The relative versions of Lemmas 7.14 and 7.18 follow.

If U = (U, f ) ∈ VFR[k, l, ·], and for u ∈ U we are uniformly given Vu =
(Vu, gu) ∈ VFR[k′, l′, ·], we can define a sum

∑
u∈U Vu ∈ VFR[k + k′, l + l′, ·]: it

is the set
.∪u∈U Vu, with the function (u, v) �→ (f (u), gu(v)). When necessary, we

denote this operation
∑(k,l;k′,l′). The special case k = l = 0 is understood as the

default case.
By Proposition 7.6, the inverse of L : RV[1, ·] → VF[1, ·] induces an isomor-

phism I 1
1 : K+ VF[1, ·] → K+ RV[1, ·]/Isp:

I ([X]) = [Y ]/Isp ⇐⇒ [LY ] = [X].
Let J be a finite set of k elements. For j ∈ J , let πj : VFk ×RV∗ → VFJ−{j} ×

RV∗ be the projection forgetting the j th VF coordinate. We will write VFk,VFk−1

for VFJ ,VFJ−{j}, respectively, when the identity of the indices is not important.
Let X = (X, f ) ∈ VFR[k, l, ·]. By assumption, f factors through πj . We view

the image (πjX, f ) as an element of VFR[k − 1, l, ·]. Note that each fiber of πj is
in VF[1, ·].

Relativizing I 1
1 to πj , we obtain a map

I j = I jk,l : VFR[k, l, ·] → K+ VFR[k − 1, l + 1, ·]/Isp.

Lemma 7.23. Let X = (X, f ),X′ = (X′, f ′) ∈ VFR[k, l, ·].
(1) I j commutes with maps into RV: if h : X → W ⊆ RV∗ is definable, Xc =
h−1(c), then I j (X) =∑c∈W Ij (Xc).

(2) If ([X], [X′]) ∈ Isp then (I j (X), I j (X′)) ∈ Isp.

(3) I j induces a map K+ VFR[k, l, ·]/Isp → K+ VFR[k − 1, l + 1, ·]/Isp.

Proof.

(1) This reduces to the case of I 1
1 , where it is an immediate consequence of the

uniqueness, and the fact that L commutes with maps into RV in the same sense.
(2) All equivalences here are relative to the k − 1 coordinates of VF other than j ,

so we may assume k = 1. For a ∈ VF, ([Xa], [X′
a]) ∈ Isp(Ta). By stable

embeddedness of RV, there exists α = α(a) ∈ RV∗ such that Xa,X′
a are Tα-

definable and ([X]a, [X′]a) ∈ Isp(Tα). Fibering over the map α we may assume
by (1) and Lemma 7.20 that α is constant; so for some W ∈ VF[1],Y,Y′ ∈
RV[l, ·], we have X = W × Y,X′ = W × Y′, and ([Y], [Y′]) ∈ Isp. Then
I j (X) = I j (W)× Y, I j (X′) = I j (W)× Y′, and the conclusion is clear.



Integration in valued fields 349

(3) This follows from (2). )�
Lemma 7.24. Let X = (X, f ),X ⊆ VFJ × RV∞, f : X → RVl . If j �= j ′ ∈ J ,
then I j I j

′ = I j ′I j : K+ VFR[k, l, ·]/Isp → K+ VFR[k − 2, l + 2, ·]/Isp.

Proof. We may assume S = {1, 2}, j = 1, j ′ = 2, since all is relative to VFS\{j,j ′}.
By Lemma 7.23(1) it suffices to prove the statement for each fiber of a given definable
map into RV.

Hence we may assume X ⊆ VF2 and f is constant; and by Lemma 5.10, we can
assume X is a basic 2-cell:

X = {(x, y) : x ∈ X1, rv(y −G(x)) = α1}, X1 = rv −1(δ1)+ c1.

The case where G is constant is easy since then X is a finite union of rectangles.
Otherwise, G is invertible, and by the niceness of G we can also write

X = {(x, y) : y ∈ X2, rv(x −G−1(y)) = β}, X2 = rv −1(δ2)+ c2.

We immediately compute

I2I1(X) = (δ1, α1), I1I2(X) = (α2, δ2).

Clearly, [(δ1, α1)]2 = [(α2, δ2)]2. )�
Proposition 7.25. Let X,Y ∈ RV[≤ n, ·]. If LX, LY are isomorphic, then
([X], [Y ]) ∈ Isp.

Proof. Define I = I1 . . . In : VF[n, ·] = VFR[n, 0, ·] → VFR[0, n, ·] =
RV[≤ n, ·]. Let V ∈ VF[n, ·].
Claim 1. If σ ∈ Sym(n) then I = Iσ(1) . . . Iσ(n).
Proof. We may assume σ just permutes two adjacent coordinates, say, 2, 3 out of 1,
2, 3, 4. Then I = I1I2I3I4 = I1I3I2I4 by Lemma 7.24. )�
Claim 2. When F : V → F(V ) is a relatively unary bijection, we have I (V ) =
I (F (V )).

Proof. By Claim 1 we may assume F is relatively unary with respect to prn. Thus
F(Va) = F(V )a , whereVa, F (V )a are the prn-fibers. By the definition of I 1

1 , we have
I 1

1 (Va) = I 1
1 (F (V )a) ∈ RV[1, ·](Ta); but by the definition of In, In(V )a = I 1

1 (Va).
Thus In(V ) = In(F (V )) and thus I (V ) = I (F (V )). )�
Claim 3. When F : V → F(V ) is any definable bijection, I (V ) = I (F (V )).
Proof. The proof is immediate from Claim 2 and Lemma 7.11. )�

Now turning to the statement of the proposition, assume LX, LY are isomorphic.
We compute inductively that L(X) = [X]. By Claim 3, [X] = I (LX) = I (LY)
= [Y]. )�
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Notation 7.26. Let L∗ : K+(VF)→ K+(RV[∗])/Isp be the inverse map to L.

Remark 7.27. When T is rv-effective, one can restate the conclusion of Proposi-
tion 7.25 as follows: ifX, Y ∈ VF[n, ·] are∼

rv
-invariant andF : X→ Y is a definable

bijection, then there exist special bijectionsX′ → X and Y ′ → Y and an∼
rv

-invariant-

definable bijection G : X′ → Y ′. (This follows from Propositions 7.25 and 6.1 and
Lemmas 7.18 and 7.19.) The effectiveness hypothesis is actually unnecessary here, as
will be seen in the proof of Proposition 8.26. Perhaps Question 7.9 can be answered
simply by tracing the connection between F and G through the proof.

8 Definable sets over VF and RV: The main theorems

In stating the theorems, we restrict attention to VF[n], i.e., to definable subsets of
varieties, though the proof was given more generally for VF[n, ·] (definable subsets
of VFn × RV∗).

8.1 Definable subsets of varieties

Let T be V-minimal. We will look at the category of definable subsets of varieties,
and definable maps between them. The results will be stated for VF[n]; analogous
statements for VF[n, ·] are true with the same proofs.

We define three variants of the sets of objects. VF′′[n] is the category of ≤
n-dimensional definable sets over VF, i.e., of definable subsets of n-dimensional
varieties. Let VF[n] be the category of definable subsets X ⊆ VFn × RV∗ such that
the projectionX→ VFn has finite fibers. VF′[n] is the category of definable subsets
X of V ×RV∗, where V ranges over all VF(A)-definable sets of dimension n,m ∈ N,
such that the projection X → V is finite-to-one. VF, VF′, VF′′ are the unions over
all n. In all cases, the morphisms Mor(X, Y ) are the definable functions X→ Y .

Lemma 8.1. The natural inclusion of VF[n] in VF′[n] is an equivalence. If T is
effective, so is the inclusion of VF′′[n] in VF′[n].
Proof. We will omit the index ≤ n. The inclusion is fully faithful by definition, and
we have to show that it hits every VF′-isomorphism type; in other words, that any
definable X ⊆ (V × RVm) is definably isomorphic to some X′ ⊆ VFn × RVm+l
for some l (with n = dim(V )). Definable isomorphisms can be glued on pieces,
so we may assume V is affine, and admits a finite-to-one map h : V → VFm. By
Lemma 3.9, each fiberh−1(a) isA(a)-definably isomorphic to someF(a) ⊆ RVl . By
compactness, F can be chosen uniformly definable, F(a) = {y ∈ RVl : (a, y) ∈ F }
for some definable F ⊆ VFm × RVl ; and there exists a definable isomorphism
β : V → F , over VFm. Let α(v, t) = (β(v), t), X′ = α(X).

Now assume T is effective. Let X ∈ Ob VF′; X ⊆ V × RVm, V ⊆ VFn, such
that the projection X→ V has finite fibers. Then by effectivity, for any v ∈ V (over
any extension field), if (v, c1, . . . , cm) ∈ X then each ci , viewed as a ball, has a
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point defined over A(v). Hence the partial map V ×VFm → X, (v, x1, . . . , xm) �→
(v, rv(x1), . . . , rv(xm)) has an A-definable section; the image of this section is a
subset S of V × VFm, definably isomorphic to X; and the Zariski closure V ′ of S in
V × VFm has dimension ≤ dim(V ). )�

The following definition and proposition apply both to the category of definable
sets, and to the definable sets with volume forms.

Definition 8.2. X, Y are effectively isomorphic if
for any effective A, X, Y are definably isomorphic in TA. If Keff+ (VF) is the

semiring of effective isomorphic classes of definable sets. K(VF) is the corresponding
ring; similarly Keff+ (VF[n]), etc.

Over an effective base, in particular, if T is effective over any field-generated
base, effectively isomorphic is the same as isomorphic. But Example 4.7 shows that
this is not so in general.

Proposition 8.3. Let T be V-minimal, or a finitely generated extension of a V-
minimal theory. The following conditions are equivalent (let X, Y ∈ VF[n]):
(1) [L∗X] = [L∗Y ] in K+(RV[≤ n])/Isp[≤ n].
(2) There exists a definable family F of definable bijectionsX→ Y such that for any

effective structure A, F(A) �= ∅.
(3) X, Y are effectively isomorphic.
(4) X, Y are definably isomorphic over any A such that VF∗(A) → RV(A) is sur-

jective.
(5) For some finite A0 ⊆ RV(〈∅〉), X, Y are definably isomorphic over any A such

that A0 ⊆ rv(VF∗(A)).

Proof.
(1) implies (5): By Proposition 6.1 (Proposition 6.3 in the measured case), the

given isomorphism [L∗X] → [L∗Y ] lifts to an isomorphism LL∗X → LL∗Y ;
since TA ⊇ ACVFA, this is also a TA isomorphism; it can be composed with the
isomorphisms X→ LL∗X, Y → LL∗Y .

(2) implies (3), (5) implies (4) implies (3), trivially.
(3) implies (1)–(2): Let Eeff be as in Proposition 3.51. By (3), X, Y are Eeff -

isomorphic. By Proposition 7.25, [L∗X] = [L∗Y ] in K+(RVEeff [∗])/Isp. But
RV(Eeff ), (Eeff ) ⊆ dcl(∅), so every Eeff -definable relation on RV is definable;
i.e., RVEeff ,RV are the same structure. Thus (1) holds.

Now by assumption, there exists an Eeff -definable bijection f ′ : X → Y . f ′ is
an Eeff -definable element of a definable family F of definable bijections X → Y .
Since this family has an Eeff -point, and Eeff embeds into any effective B, it has a B
point, too. Thus (3) implies (2). )�
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8.2 Invariants of all definable maps

Let [X] denote the class of X in Keff+ (VF[n]).
Proposition 8.4. Let T be V-minimal. There exists a canonical isomorphism of
Grothendieck semigroups

D

∫
: Keff+ (VF[n])→ K+(RV[≤ n])/Isp[≤ n]

satisfying

D

∫
[X] = W/Isp[≤ n] ⇐⇒ [X] = [LW ] ∈ Keff+ (VF[n]).

Proof. Recall Definition 4.8. Given X = (X, f ) ∈ Ob RV[k] we have LX ∈
Ob VF[k] ⊆ Ob VF[n]. If X,X′ are isomorphic,then by Proposition 6.1, LX,LX′
are effectively isomorphic. Direct sums are clearly respected, so we have a semi-
group homomorphism L : K+(RV[≤ n]) → Keff+ (VF[n]). It is surjective by Pro-
position 4.5. By Proposition 8.3, the kernel is precisely Isp[≤ n]. Inverting, we
obtain D

∫
. )�

Definition 8.5. LetK+ VF[n]/(dim < n) be the Grothendieck ring of the category of
definable subsets of n-dimensional varieties, and essential bijections between them.
Let Isp

′[n] be the congruence on RV [n] generated by pairs (X,X × RV>0) (where
X ⊆ RV∗ is definable, of dimension < n).

Corollary 8.6. D
∫

induces an isomorphism

Keff+ (VF[n])/(dim < n)→ RV[n]/Isp
′[n]. )�

Corollary 8.7. Let A,B ∈ RV[≤ n]. Let n′ > n, and let AN,BN be their images in
RV[≤ N ]. If (AN,BN) ∈ Isp[≤ N ], then (A,B) ∈ Isp[≤ n].
Proof. By Proposition 8.4, (A,B) ∈ Isp[≤ n] iff LA,LB are definably isomorphic;
this latter condition does not depend on n. )�

Putting Proposition 8.4 together for all n, we obtain the following.

Theorem 8.8. Let T be V-minimal. There exists a canonical isomorphism of filtered
semirings

D

∫
: K+(VF)→ K+(RV[∗])/Isp.

Let [X] denote the class of X in K+(VF). Then

D

∫
[X] = W

Isp
⇐⇒ [X] = [LW ] ∈ Keff+ (VF). )�
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On the other hand, using the Grothendieck group isomorphisms of Proposition 8.4
and passing to the limit, we have the following.

Corollary 8.9. Let T be V-minimal. The isomorphisms of Proposition 8.4 induce an
isomorphism of Grothendieck groups:∫ K

: Keff (VF[n])→ K(RV[n]).

The isomorphism D
∫

of Theorem 8.8 induces an injective ring homomorphism∫ K

: Keff (VF)→ K(RV)[J−1],

where J = {1}1 − [RV>0]1 ∈ K(RV).

Proof. We may work over an effective base. With subtraction allowed, the generating
relation of Isp can be read as [{1}]0 = {1}1 − [RV>0]1 := J , so that the groupifi-
cation of K+(RV[≤ n])/Isp[≤ n] is isomorphic to K(RV[n]), via the embedding
of K+(RV[n]) as a direct factor in K+(RV[≤ n]). Thus the groupification of the
homomorphism of Theorem 8.8 is a homomorphism∫ K

: K(VF)→ lim
n→∞K(RV[n]),

where the direct limit system maps are given by [X]d �→ ([X]d+1 − ([X]d ×
(RV>0))) = [Xd ]J . This direct limit embeds into K(RV)[J−1] by mapping
X ∈ K(RV[n]) to XJ−n. )�

8.3 Definable volume forms: VF

We will now define the category µVF[n] of “n-dimensional TA-definable sets with
definable volume forms, up to RV-equivalence’’ and the same up to -equivalence.
We will represent the forms as functions to RV, that transform in the way volume
forms do.

By way of motivation, in a local field with an absolute value, a top differential
form ω induces a measure |dω|. For a regular isomorphism f : V → V ′, we
have ω = hf ∗ω′ for a unique h, and f is measure preserving between (V , |ω|) and
(V ′, |ω′|) iff |h| = 1.

We do not work with an absolute value into the reals, but instead define the
analogue using the map rv or, a coarser version, the map val into . When  = Z,
the latter is the usual practice in Denef-style motivic integration. Using rv leaves room
for considering an absolute value on the residue field, and iterating the integration
functorially when places are composed, for instance, C((x))((y))→ C((x))→ C.
This functoriality will be described in a future work.

In the definition below, the words “almost every y ∈ Y ’’ will mean for all y
outside a set of VF dimension < dimVF(Y ).
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Definition 8.10. ObµVF[n, ·] consists of pairs (Y, ω), where Y is a definable subset
of VFn ×RV∗, and ω : Y → RV is a definable map. A morphism (Y, ω)→ (Y ′, ω′)
is a definable essential bijection F such that for almost every y ∈ Y ,

ω(y) = ω′(F (y)) · rv(JcbF(y)).

(We will say “F : (Y, ω)→ (Y ′, ω′) is measure preserving.’’)
µVF[n, ·] is the category of pairs (Y, ω)with ω : Y →  a definable function A

morphism (Y, ω)→ (Y ′, ω′) is a definable essential bijection F : Y → Y ′ such that
for almost every y ∈ Y ,

ω(y) = ω′(F (y))+ val(JcbF(y)).

(“F : (Y, ω)→ (Y ′, ω′) is -measure preserving.’’)
µVF[n], µVF[n] are the full subcategories of µVF[n, ·], µVF[n, ·] (respec-

tively) whose objects admit a finite-to-one map to VFn.

In this definition, let t1(y), . . . , tn(y) be the VF-coordinates of y ∈ Y . One can
think of the form as ω(y)dt1 · · · · · dtn.

Note that VFvol of Definition 5.19 is isomorphic to the full subcategory of µVF
whose objects are pairs (Y, 1).

Remark 8.11. When T is V-minimal and effective, the data ω of an object (Y, ω) of
µVF[n] can be written as rv ◦� for some � : Y → VF. (Write ω = ω̄ ◦ rv ◦F for
some F , and use Proposition 6.1 to lift ω̄ to someG, so thatω = rv ◦G◦F .) It is thus
possible to view ω as the RV-image (respectively, -image) of a definable volume
form on Y . One could equivalently takeω to be a definable section of�nT Y/(1+M),
where T Y is the (appropriately defined) tangent bundle, �n the nth exterior power
with n = dim(Y ).

For VF the category we take is slightly more flexible than taking varieties with
absolute values of volume forms, even if T is V-minimal and effective, in that ex-
pressions such as

∫ |√x|dx are allowed.

In either of these categories, one could restrict the objects to bounded ones.

Definition 8.12. Let µVFbdd[n] be the full subcategory of µVF[n] whose objects
are bounded definable sets, with bounded definable forms ω. Similarly, one de-
fines µVF;bdd.

Here bounded means that there is a lower bound on the valuation of any coordinate
of any element of the set. A similar definition applies in RV and µRV.

Note that if an object ofµVF[n] isµVF[n]-isomorphic to an object ofµVFbdd[n],
it must lie in µVFbdd[n].



Integration in valued fields 355

8.4 Definable volume forms: RV

We will define a category µRV[n] of definable subsets of (RV)m, with additional
data that can be viewed as a volume form. Unlike µVF[n], in µRV[n] subsets of
dimension < n are not ignored: a point of RVn corresponds to an open polydisc of
VFn, with nonzero n-dimensional volume.

In particular, the Jacobian of a morphism needs to be defined at every point, not
just away from a lower-dimensional set. However, in accord with Lemma 6.3, it may
be modified by k∗-multiplication on a lower-dimensional set.

Definition 8.13. The objects of µRV[n] are definable triples (X, f, ω),X ⊆ RVn+m,
f : X→ RVn finite-to-one, and ω : X→ RV.

We define a multiplication µRV[n] × µRV[n′] → µRV[n + n′] by (X, f, ω) ×
(X′, f ′, ω′) = (X ×X′, f × f ′, ω · ω′). Here ω · ω′(x, x′) = ω(x)ω′(x′).

Given X = (X, f, ω), we define an object LX of VF[n]; namely, (LX,Lf,Lω),
where LX = X ×f,rv (VF×)n, Lf (a, b) = f (a, rv(b)), Lω(a, b) = ω(a, rv(b)).
(Sometimes we will write f , ω for Lf , Lω.)

A morphism α : X = (X, f, ω) → X′ = (X′, f ′, ω′) is a definable bijection
α : X→ X′ such that

ω(y) = ω′(α(y)) · rv(JcbRV(α)(y)) for almost all y,

where “almost all’’ means “away from a set Y with dimRV(f (Y )) < n’’; and

valrvω(y)+
n∑
i=1

valrvfi(y) = valrvω
′(α(y))+

n∑
i=1

valrvf
′
i (αy) for all y.

The objects of µRV[n] are triples (X, f, ω), with f : X → RVn, ω : X → .
A morphism α : (X, f, ω)→ (X′, f ′, ω′) is a definable bijection α : X → X′ such
that valrvω(y) +∑n

i=1 valrvfi(y) = valrvω′(α(y)) +∑n
i=1 valrvf ′i (αy) for all y.

Disjoint sums and products are defined as for µRV.
µRES[n] is the full subcategory of µRV[n] with objects (X, f, ω), such that

valrv(X) is finite. In this case, ω takes finitely many values, too.

Keff+ µRV[n] is the Grothendieck semigroup of µRV[n] with respect to effective
isomorphism. Keff+ µRV is the direct sum ⊕n Keff+ µRV[n]; it clearly inherits a
semiring structure from Cartesian multplication, (X, f, ω) × (X′, f ′, ω′) = (X ×
X′, (f, f ′), ω · ω′).

The morphisms of µRV[n] are called -measure preserving.
The category RVvol[n, ·] of Definition 5.21 is isomorphic to the full subcategory

whose objects have ω = 1.

Remark. The semiringKeff+ RVvol is naturally a subsemiring ofKeff+ µRV. The latter
is obtained by inverting [{a}]1 for a ∈ RV and taking the zeroth graded component.
This process is needed in order to identify integrals of functions in n variables with
volumes in n + 1 variables. Thus as semirings they are closely related. But if the
dimension grading is taken into account, the subsemiring of RV-volumes contains
finer information connected to integrability of forms.
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8.5 The kernel of L in the measured case

The description of the kernel of L on the semigroups of definable sets with volume
forms is essentially the same as for definable sets. We will now run through the
proof, indicating the modficiations. The principal change is the introduction of a
category with fewer morphisms, defined not only with reference to RV but also to
VF. For effective bases, the category is identical to µRV, so it will be invisible in the
statements of the main theorems; but during the induction in the proof, bases will not
in general be effective and the mixed category introduced here has better properties.

Both the introduction of the various intermediate categories and the repetition of
the proof would be unnecessary if we had a positive answer to Question 7.9. In this
case the proof of Lemma 8.23 would immediately lift to higher dimensions. Indeed,
the characterization of the kernel of the map L on Grothendieck groups would be
uniformized not only for the categories we consider, but for a range of categories
carrying more structure.

The integer n will be fixed in this subsection.

Lemma 8.14. Let (X, ω) ∈ ObµVF[n, ·], Y ∈ Ob VF[n, ·], and let F : Y → X be a
definable bijection.

(1) There exists ψ : Y → RV such that F : (Y, ψ)→ (X, ω) is measure preserving.
(2) ψ is essentially unique in the sense that ifψ ′ meets the same condition, thenψ,ψ ′

are equal away from a subset of X of lower dimension.
(3) Dually, given F , X, Y , ψ, there exists an essentially unique ω such that F :
(Y, ψ)→ (X, ω) is measure preserving.

(4) Lemma 7.11 applies to µVF[n, ·] and to µVF[n].
Proof.

(1)–(2) Letψ(y) = ω(α(y))·rv(JcbRV(α)(y)). By the definition ofµVF this works,
and is the only choice “almost everywhere.’’

(3) This follows from the case of F−1.
(4) Now let X,Y ∈ ObµVF[n] and let F ∈ MorµVF[n](X, Y ). We have

X = (X, ωX),Y = (Y, ωY ) for some X, Y ∈ Ob VF[n] and ωX : X →
RV, ωY : Y → RV. By Lemma 7.11 there exist X = X1, . . . , Xn =
Y ∈ Ob VF[n] and essentially unary Fi : Xi → Xi+1 with F =
Fn−1 ◦ · · · ◦ F1. Let ω1 = ωX, and inductively let ωi+1 be such that Fi ∈
MorµVF[n]((Xi, ωi), (Xi+1, ωi+1)). Then F ∈ MorµVF[n]((X, ω), (Y, ωn)).
By uniqueness it follows that ωY , ωn are essentially equal. )�

Definition 8.15. Given X,Y ∈ ObµRV[n, ·] call a definable bijection h : X → Y

liftable if there exists F ∈ MorµVF[n,·](LX,LY ) with ρYF = hρX.
Let C = µlRV[n, ·] be the subcategory of µRV[n, ·] consisting of all objects and

liftable morphisms.

By Proposition 5.22, liftable morphisms must preserve the volume forms, so C is
a subcategory of µRV[n, ·].
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Over an effective base, C = µRV[n, ·] (Lemma 6.3), and the condition of exis-
tence of s in Definition 8.16(1) below is equivalent tofn(y) ∈ acl(f1(y), . . . , fn−1(y)).

Definition 8.16.

(1) Let Y = (Y, f, ω) ∈ ObµRV[n, ·] be such that there exists s : Y ×f1,...,fn−1

VFn−1 → VF with rv(s(y, u1, . . . , un−1)) = fn(y). Let Y ′ = Y × RV>0.
For (y, t) ∈ Y ′, define f ′ = (f ′1, . . . , f ′n) by f ′i (y, t) = fi(y) for i < n,
f ′n(y, t) = tfn(y). Let ω′(y, t) = ω(y). Then Ỹ = (Y ′, f ′, ω′) is an elementary
blowup of Y. It comes with the projection map Y ′ → Y .

(2) Let X = (X, g, ω) ∈ ObµRV[n, ·], X = X′
.∪X′′, g′ = g|X′, g′′ = g|X′′,

ω′ = ω|X′, ω′′ = ω|X′′, and let φ : Y → (X′, g′, ω′) be a µlRV[n, ·]-
isomorphism. Then the RV-blowup X̃φ is defined to be Ỹ + (X′′, g′′, ω′′) =
(Y ′

.∪X′′, f ′ .∪ g′′, ω′ .∪ω′′). It comes with b : Y ′ .∪X′′ → X, defined to be
the identity on X′′, and the projection on Y ′. X′ is called the blowup locus of
b : X̃φ → X.

An iterated RV-blowup is obtained by finitely many iterations of RV-blowups.

Definition 8.17. Let Iµsp[n] be the set of pairs (X1,X2) ∈ ObµRV[n, ·] such that there
exist iterated blowups bi : X̃i → Xi and a µlRV[n, ·]-isomorphism F : X̃1 → X̃2.

When n is fixed, we will simply write Iµsp. On the other hand, we will need to
make explicit the dependence on the theory; we write Iµsp(A) for the congruence Iµsp
of the theory TA.

When X = (X, f, ω) ∈ ObµRV[n, ·], h : X → W is a definable map, and
c ∈ W , define Xc = (h−1(c), f |h−1(c), ω|h−1(c)).

Let X1, X2 ∈ ObµRV[n, ·], and let fi : Xi → Y be a definable map, with
Y ⊆ RV∗. In this situation the existence of µRV[n, ·](〈a〉)-isomorphisms be-
tween each pair of fibers X1(a), X2(a) (a ∈ Y ) does not necessarily imply that
X1 'µRV[≤n,·] X2, because of the explicit reference to dimension in the definition
of morphisms; the dimension of the allowed exceptional sets may accumulate over
Y . The definition of morphisms for µVF[n] also allows a lower-dimensional excep-
tional set; but this does not create a problem when fibered over W ⊆ RV∗, since
by Lemma 3.56 maxc∈W dimVF(Zc) = dimVF(Z). Thus an RV-disjoint union of
µVF[n]-isomorphisms is again a µVF[n]-isomorphism, and it follows that the same
is true for µlRV[n, ·]. We thus have the following.

Lemma 8.18. Let X = (X, f, ω), X′ = (X′, f ′, ω) ∈ µRV[n, ·], and let h : X →
W ⊆ RV∗, h′ : X′ → W be definable maps. If for each c ∈ W , (Xc,X′

c) ∈ Iµsp(〈c〉),
then (X,X′) ∈ Iµsp.

Proof. Lemma 2.3 applies to RVvol-isomorphisms, and hence using Remark 7.13,
also to blowups. It also applies to µlRV[n, ·]-isomorphisms by the discussion above,
and hence to Iµsp-equivalence. )�

In other words, there exists a well-defined direct sum operation onµRV[n, ·]/Iµsp,
with respect to RV-indexed systems.
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Lemma 8.19.

(1) Let Y′ be an elementary blowup of Y. Y′ is C-isomorphic to Y′′ = (Y ′′, f ′′, ω′),
with

Y ′′ = {(y, t) ∈ Y × RV∞ : valrv(t) > fn(y)},
f ′′(y, t) = (f1(y), . . . , fn−1(y), t), ω′(y, t) = ω(y).

(2) Up to isomorphism, the blowup depends only on the blowup locus. In other words,
if X, X′, g, g′, ω, ω′ are as in Definition 8.16, and φi : Yi → (X′, g′, ω′)
(i = 1, 2) are µlRV[n, ·]-isomorphisms, then X̃φ1 , X̃φ2 are X-isomorphic
in µlRV[n, ·].

Proof.

(1) The isomorphism is given by h((y, t)) = (y, tfn(y)); since fn always lifts to a
function Fn : LY → VF (a coordinate projection), h can be lifted to H defined
by H((y, t)) = (y, tFn(y)).

(2) By assumption, φ1, φ2 lift to measure-preserving maps �i : LYi → LX′.
On the other hand, by the assumption on existence of a section s of fn, we
have measure-preserving isomorphisms α1 : LY1 → LỸ1, (y, u1, . . . , un) �→
(y, u1, . . . , un−1, (un − s)/s). Similarly, we have α2 : LY2 → LỸ2. Compos-
ing, we obtain α2�2

−1�1α1
−1 : LỸ1 → LỸ2; it is easy to check that this is

∼
rv

-invariant and shows that LỸ1,LỸ2 are Y-isomorphic in µlRV[n, ·]. Taking

the disjoint sum with the complement X′′ of X′, we obtain the result. )�
Remark. There is also a parallel of Lemma 7.15: Let Y = (Y, g) ∈ Ob RV∞[n, ·],
with dim(g(Y )) < n; let f : Y → RVn−1 be isogenous to g. Let h : Y → RV be
definable, with h(y) ∈ acl(g(y)) for y ∈ Y , and with

∑
(g) = ∑

(f ) + valrv(h).
Let Y ′ = Y × RV>0∞ , and f ′(y, t) = (f (y), th(y)). Then for appropriate ω′, Y′ =
(Y ′, f ′, ω′)with the projection map to Y is a blowup. This follows from Lemma 7.15
and Lemma 8.14(3).

Notation. For X ∈ RV[n, ·], [X] = [(X, 1)] denotes the corresponding object of
µRV[n, ·] with form 1.

Lemma 8.20. Lemma 7.18(1)–(5) holds for µlRV[n, ·]. We also have the following:

(6) As a semiring congruence on K+ µlRV[n, ·], Iµsp is generated by
([[1k]1], [[RV>0]1) (with the forms 1).

Proof. (1)–(5) go through with the same proof. For (6), Let ∼ be the congru-
ence generated by this element. By blowing up a point one sees immediately that
([[1]1], [[RV>0]1) ∈ Iµsp, so ∼≤ Iµsp. For the converse direction we have to show
that (Ỹ,Y) ∈∼ whenever Ỹ is a blowup of Y; the elementary case suffices, since the
µlRV[n, ·]-isomorphisms of Definition 8.16(2) are already accounted for in the semi-
group K+ µlRV[n, ·]. Now Y = (Y, f, ω) with fn(y) ∈ RV. Since dim(Y ) < n, we
have Y ' (Y, f ′, ω′) where f ′i = fi for i < n, f ′n = 1, and ω′ = fnω. Thus we may
assume fn = 1. In this case, as in the proof of Lemma 7.18(6), (Ỹ,Y) ∈∼. )�
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Definition 8.21. Let J be a k-element set of natural numbers. VFRµ[J, l, ·] is the set
of triples X = (X, f, ω), with X ⊆ VFJ × RV∗, f : X→ RVl∞, ω : X→ RV, and
such that f and ω factor through the projection prRV(X) ofX to the RV-coordinates.
Iµsp is the equivalence relation on VFRµ[J, l, ·]:

(X, Y ) ∈ Iµsp ⇐⇒ (Xa, Ya) ∈ Iµsp(〈a〉) for each a ∈ VFJ .

K+ VFRµ is the set of equivalence classes.

For j ∈ J , let πj : VFk × RV∗ → VFJ−{j} × RV∗ be the projection forgetting
the j th VF coordinate. We will write VFRµ[k, l, ·], VFk,VFk−1 for VFRµ[J, l, ·]
VFJ , VFJ−{j}, respectively, when the identity of the indices is not important.

The map L : ObµRV[n, ·] → ObµVF[n] induces, by Lemma 6.3, a homomor-
phism L : K+ µRV[n, ·] → K+ µVF[n]. By Proposition 4.5 it is surjective.

Lemma 8.22. Let X,X′ ∈ µRV[n, ·], and letG : LX′ → LX be a special bijection.
Then X′ is isomorphic to an iterated blowup of X.

Proof. The proof is clear from Lemma 7.19 since strong isomorphisms are also
µlRV[n, ·]-isomorphisms. )�
Lemma 8.23. The homomorphism L : K+ µRV[1, ·] → K+ µVF[1, ·] is surjective,
with kernel equal to Iµsp[1]. The image of K+ RVvol[1, ·] is K+ VFvol[1, ·]
Proof. Let X,Y ∈ µRV[1, ·], and let F : LX → LY be a definable measure-
preserving bijection. We have X = (X, f, ω),Y = (Y, g, ω) with (X, f ), (Y, g) ∈
RV[1, ·]. By Lemma 7.6 there exist special bijections bX : LX′ → LX, bY : LY′ →
LY and an ∼

rv
-invariant definable bijection F ′ : LX′ → LY′ such that bYF ′ = FbX.

We used here that any ∼
rv

-invariant object can be written as LX′ for some X′. Since

F , bX, bY are measure-preserving bijections, so is F ′. By Lemma 8.22, X′ → X and
Y′ → Y are blowups; and F ′ descends to a definable bijection between them. This
bijection is measure preserving by Lemma 5.22. Hence by definition (X,Y) ∈ Iµsp.)�

By Proposition 8.23, the inverse of L : RV[1, ·] → VF[1, ·] induces an isomor-
phism I vol

1 : K+ VFvol[1, ·] → K+ RVvol[1, ·]/Iµsp.

I vol
1 ([X]) = [Y ]/Iµsp ⇐⇒ [LY ] = [X].

Let X = (X, f, ω) ∈ VFRµ[k, l, ·]. By assumption, f, ω factor through πj , so
that they can be viewed as functions on πjX. We view the image (πjX, f, ω) as an
element of VFRµ[k − 1, l, ·]. Each fiber of πj is a subset of VF; it can be viewed as
an element of VFvol[1] ⊆ µVF[1] ⊆ µVF[1, ·].
Claim. Relative Iµsp-equivalence implies Iµsp-equivalence, in the following sense. Let
Xi ⊆ RV∗ (i = 1, 2); hi : Xi → W ⊆ RV∗; fW : W → RVl , ω : W → RV, and
fi : X → RVk be definable sets and functions. Let Xi = (Xi, (fW ◦ hi, fi), ω ◦
hi). Let Xi (w) = (Xi(w), fi |Xi(w), ω ◦ hi |Xi(w)), where Xi(w) = hi−1(w). If
X1(w),X2(w) ∈ Isp(〈w〉) for each w ∈ W , then (X1,X2) ∈ Iµsp.
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Proof. The proof is clear using Lemma 8.18. )�
The claim allows us to relativize I vol

1 to πj . We obtain a map

I j = I jk,l : VFRµ[k, l, ·] → K+ VFRµ[k − 1, l + 1, ·]/Iµsp.

Lemma 8.24. Let X = (X, f, ω),X′ = (X′, f ′, ω′) ∈ VFRµ[k, l, ·].
(1) I j commutes with maps into RV: if h : X → W ⊆ RV∗ is definable, Xc =
h−1(c), then I j (X) =∑c∈W Ij (Xc).

(2) If ([X], [X′]) ∈ Iµsp, then (I j (X), I j (X′)) ∈ Iµsp.

(3) I j induces a map K+ VFRµ[k, l, ·]/Iµsp → K+ VFRµ[k − 1, l + 1, ·]/Iµsp.

Proof.

(1) This reduces to the case of I vol
1 , where it is an immediate consequence of unique-

ness, and the fact that L commutes with maps into RV in the same sense.
(2) All equivalences here are relative to the k − 1 coordinates of VF other than j ,

so we may assume k = 1, and write I for I j . For a ∈ VF, ([Xa], [X′
a]) ∈

Iµsp(〈a〉). By stable embeddedness of RV, there exists α = α(a) ∈ RV∗ such
that Xa,X′

a are 〈α〉-definable there are 〈α〉-definable blowups X̃a, X̃′
a and an

〈α〉-definable isomorphism between them, lifting to an a-definable isomorphism.
Using (1) and Lemma 8.18 we may assume that α is constant. Thus for some
W ∈ Ob VF[1], Y,Y′ ∈ µRV[l + 1, ·], we have X = W × Y, X′ = W × Y′,
Ỹ, Ỹ′ are blowups of Y, Y′, respectively, φ : Y → Y′ is a bijection, and for
any w ∈ W there exists a measure-preserving Fw : LỸ → LỸ lifting φ. Then
I (X) = I (W)×Y, I (X′) = I (W)×Y′ and the bijection IdI (W)×φ is lifted by
the measure-preserving bijection (w, y) �→ (w, Fw(y)).

(3) This follows by (2). )�
Lemma 8.25. Let X = (X, f, ω) ∈ Ob VFRµ[J, l, ·]. If j �= j ′ ∈ J , then I j I j

′ =
I j

′
I j : K+ VFRµ[J, l, ·]/Iµsp → K+ VFRµ[J \ {j, j ′}, l + 2, ·]/Iµsp.

Proof. We may assume S = {1, 2}, j = 1, j ′ = 2, since all is relative to VFS\{j,j ′}.
By Lemma 7.23(1) and Lemma 8.18 it suffices to prove the statement for each fiber
of a given map into RV[l]. Hence we may assume X ⊆ VF2 so that f is constant;
and by Lemma 5.10, we can assume X is a basic 2-cell:

X = {(x, y) : x ∈ X1, rv(y −G(x)) = α1}, X1 = rv −1(δ1)+ c1.

The case where G is constant is easy since then X is a finite union of rectangles.
Otherwise, G is invertible, and by the niceness of G we can also write

X = {(x, y) : y ∈ X2, rv(x −G−1(y)) = β}, X2 = rv −1(δ2)+ c2.

We immediately compute

I2I1(X) = (δ1, α1), I1I2(X) = (α2, δ2)
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and necessarily valrvδ1 + valrvα1 = valrvα2 + valrvδ2 (Lemma 5.4). We have bijec-
tions Fj : X → LIj (X). The map F1F2F1

−1F2
−1 : LI2I1(X) → LI1I2(X) lifts

the unique bijection between the singleton sets {(δ1, α1)}, {(α2, δ2)}, and shows that
[(δ1, α1)]2 = [(α2, δ2)]2. )�
Proposition 8.26. Let X,Y ∈ µRV[≤ n, ·]. If LX, LY are isomorphic, then
([X], [Y ]) ∈ Iµsp.

Proof. The proof is identical to the proof of Proposition 7.25, only quoting Lemma 8.25
in place of Lemma 7.24, and Lemma 8.14 to enable using Lemma 7.11. )�
Proposition 8.27. Proposition 8.3 is valid for µVF[n], µRV[n], Iµsp[n].
Proof. The proof is the same as that of Proposition 8.3, but using Proposition 6.3 in
place of 6.1 and Proposition 8.26 in place of Proposition 7.25. )�

8.6 Invariants of measure-preserving maps, and some induced isomorphisms

Theorem 8.28. Let T be V-minimal. There exists a canonical isomorphism of
Grothendieck semigroups

D

∫
: Keff+ µVF[n, ·] → K+(µRV[n, ·])/Iµsp[n].

Let [X] denote the class of X in Keff+ (µVF[n]). Then

D

∫
[X] = W/Iµsp[n] ⇐⇒ [X] = [LW ] ∈ Keff+ (µVF[n]).

Proof. Given X = (X, f, ω) ∈ ObµRV[n] we have LX ∈ ObµVF[n]. If X,X′ are
isomorphic, then by Lemma 6.3, LX,LX′ are effectively isomorphic. Direct sums
are clearly respected, so we have a semigroup homomorphism L : K+(µRV[n])→
Keff+ (µVF[n]). It is surjective by Proposition 4.5 and injective by Proposition 8.3.
Inverting, we obtain I . )�

Let Iµsp
′ be the semigroup congruence on RVvol[n] generated by ((Y, f ), (Y ×

RV>0, f ′)), where Y , f , f ′ are as in Definition 7.12. Let µIsp be the congruence
onK+ µRV[n] generated by ([[1k]1], [[RV>0]1]), with the constant -form 0 ∈ .

Assume given a distinguished subgroup N1 of the multiplicative group of the
residue field k. For example, N1 may be the group of elements of norm one, with
respect to some absolute value |, | on k. With this example in mind, write |x| = 1 for
x ∈ N1. Let |µ|VF[n] be the subcategory of VF[n] with the same objects, and such
that F ∈ Mor|µ|VF[n] iff F ∈ MorµVF[n] and |JRV (F)| = 1 almost everywhere.
Define | .µ|RV[n] similarly.

Theorem 8.29. The isomorphism D
∫

of Theorem 8.28 induces isomorphisms:

Keff+ VFvol[n] → K+ RVvol[n]/Iµsp
′[n], (8.1)
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Keff+ VFbdd
vol [n] → K+ RVbdd

vol [n]/Iµsp[n], (8.2)

Keff+ µVFbdd[n] → K+ µRVbdd[n]/Iµsp[n], (8.3)

Keff+ |µ|VF[n] → K+ | .µ|RV[n]/Iµsp[n], (8.4)

Keff+ µVF[n] → K+ µRV[n]/µIsp[n]. (8.5)

Proof. Since Proposition 4.5 uses measure-preserving maps, Proposition 6.1 does
not go out of the subcategory VFvol, and RVvol[n] is a full subcategory of µRV[n],
we have (8.1). It is similarly easy to see that “dimension < n’’ and boundedness are
preserved, hence (8.2)–(8.3).

We have Keff+ |µ|VF = Keff+ µVF/NVF, where NVF = {([X,ω], [X, gω]) : g :
X→ RV, |g| = 1}; similarly for Keff+ | .µ|RV. Thus for (8.4) it suffices to show that
(D
∫
(X), D

∫
(Y)) ∈ NRV ⇐⇒ (X,Y) ∈ NVF. ForX ∈ ObµVF[n] orX ∈ ObµRV[n]

with RV-volume form ω, given g : X → RV, let gX denote the same object but
with volume form gω. In one direction, we have to show that (LX,LY ) ∈ NVF if
(X, Y ) ∈ NRV. This is clear since L(gX) =g (LX). Conversely we have to show
that (D

∫ [gZ], D
∫ [Z]) ∈ NRV. Since D

∫
commutes with RV-sums, we may assume g is

constant, with value a. But then L(aX) =a (LX) implies D
∫
(aZ) =a D

∫
Z as required.

This gives (8.4); (8.5) is a special case. )�

9 The Grothendieck semirings of �

Let T = DOAGA be the theory of divisible ordered Abelian groups , with distin-
guished constants for elements of a subgroupA. Let DOAGA[∗] be the category of all
DOAGA definable sets and bijections. Our primary concern is not with DOAGA, but
rather a proper subcategory [∗], having the same objects but only piecewise integral
morphisms (Definition 9.1). Our interest in [∗] derives from this: the morphisms
of [∗] are precisely those that lift to morphisms of RV[∗], and it is K+[[∗]] that
forms a part of K+[RV[∗]] (cf. Section 3.3). This category depends on A, but will
nevertheless be denoted [∗] when A is fixed and understood.

We will first describe K(fin[∗]), the subring of classes of finite definable sets.
Next, we will analyzeK(DOAGA), obtaining two Euler characteristics. This repeats
earlier work by Maříková. We retain our proofs as they give a rapid path to the Euler
characteristics, but [26] includes a complete analysis of the semiring K(DOAGA),
that may well be useful in future applications.

At the level of Grothendieck rings, the categories [∗]A and DOAGA may be
rather close; see Lemma 9.8 and Question 9.9. But the semiring homomorphism
K+([∗]A) → K(DOAGA) is far from being an isomorphism, and it remains im-
portant to give a good description of K+([∗]A). We believe that further invariants
can be found by mapping K+[[∗]] into the Grothendieck semirings of other com-
pletions of the universal theory of ordered Abelian groups over A, as well as DOAG,
in the manner of Proposition 9.2; it is possible that all invariants appear in this way.

A description of K+([∗]A) would include information about the Grothendieck
group of subcategories, such as the category of bounded definable sets. We will only
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sample one bit of the information available there, in the form of a “volume’’ map on
bounded subsets of K+[[∗]] into the rationals, and a discrete analogue.

Definition 9.1. An object of [n] is a finite disjoint union of subsets of n defined
by linear equalities and inequalities with Z-coefficients and parameters in A. Given
X, Y ∈ Ob[n], f ∈ Mor(X, Y ) iff f is a bijection, and there exists a partition
X = ∪ni=1Xi ,Mi ∈ GLn(Z), ai ∈ An, such that for x ∈ Xi ,

f (x) = Mix + ai.
[∗] is the category of definable subsets ofn for anyn, with the same morphisms.

Since there are no morphisms between different dimensions, it is simply the direct sum
of the categories [n], and the Grothendieck semiring K+[] of [∗] is the graded
direct sum of the semigroups K+([n]). We will write K[] for the corresponding
group.

Let bdd[∗] be the full subcategory of [∗] consisting of bounded sets, i.e., an
element of Obbdd[n] is a definable subset of [−γ, γ ]n for some γ ∈ .
A is a subcategory of Q⊗A (a category with the same objects, but more mor-

phisms, generated by additional translations) and this in turn is a subcategory of
DOAGQ⊗A.

There is therefore always a natural morphism from K+(A[∗]) to the simpler
semigroup K+(DOAGQ⊗A). We will exhibit two independent Euler characteristics
on DOAGQ⊗A and show that they define an isomorphism K(DOAGQ⊗A) → Z2.
Taking the dimension grading into account, this will give rise to two families of Euler
characteristics on K(A), with Z[T ]-coefficients.

9.1 Finite sets

Letfin[n] be the full subcategory ofA[n] consisting of finite sets. The Grothendieck
semiring of fin[∗] embeds into the semirings of both A and RES, within the
Grothendieck semiring of RVA, and we will see that K+(RVA) is freely generated
by them over K+(fin[∗]). We proceed to analyze K+(fin[∗]) in detail.

Let τ = [0]1 ∈ K+(fin[1]) be the class of the singleton {0}.
The unit element of K() is the class of 0. Note that the bijection between τ

and 0 is not a morphism in [∗]; in fact 1, τ , τ 2, . . . are distinct and Q-linearly
independent in K(). The motivation for this choice of category becomes clear if
one thinks of the lift to RV: the inverse image of τn in RV (also denoted τn) has
dimension n, and cannot be a union of isomorphic copies of τm for smaller m.

Let K(fin)[τ−1] be the localization. This ring is a naturally Z-graded ring; let
Hfin be the zero-dimensional component.

Let+A be the space of subgroups of (Q⊗A)/A or, equivalently, of subgroups of
Q⊗A containing A. View it as a closed subspace of the Tychonoff space 2(Q⊗A)/A,
via the characteristic function 1s of a subgroup s ∈ +A. Let C(+A,Z) be the ring of
continuous functions +A → Z (where Z is discrete).

A cancellation semigroup is a semigroup where a + b = a + c implies b = c; in
other words, a subsemigroup of an Abelian group.
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Proposition 9.2. K+(fin[n]) is a cancellation semigroup. As a semiring,K+(fin[∗])
is generated by K+(fin[1]). We have

K(fin)[τ−1] = Hfin[τ , τ−1],
Hfin ' C(+A,Z).

Proof. Since  is ordered, any finite definable subset of n is a union of definable
singletons. Thus the semigroup K+(fin[n]) is freely generated by the isomorphism
classes of singletons a ∈ n and, in particular, is a cancellation semigroup. The
displayed equality is thus clear; we proceed to prove the isomorphism.

A definable singleton of n has the form (a1, . . . , an), where for some N ∈ N,
Na1, . . . , Nan ∈ A. Thus [(a1, . . . , an)] = [(a1)] · · · [(an)].

For any commutative ring R, let Idem(R) be the Boolean algebra of idempotent
elements of a commutative ring R with the operations 1, 0, xy, x + y − xy. Note
that the elements [(a1, . . . , an)]τ−n ∈ Hfin belong to Idem(Hfin): in K+(fin): for
any a ∈  we have the relation [a]2 = [a]τ . Let B be the Boolean subalgebra of
Idem(Hfin) generated by the elements [(a1, . . . , an)]τ−n. For a maximal idealM of
B, let IM be the ideal of Hfin generated by M . Note Hfin = ZB. Hence we have to
show the following:

(1) The Stone space of B is +A.
(2) For any maximal idealM of B, Hfin/IM ' Z naturally.

For any commutative ring R, a finitely generated Boolean ideal of Idem(R) is
generated by a single element b; if b �= 1, then bR �= R since b(1 − b) = 0. Thus
ifM is a proper ideal of Idem(R), thenMR is a proper ideal of R. Applying this to
B, viewed as a Boolean subalgebra of Idem(Q⊗Hfin), we see that IM ∩Z = (0) for
any maximal idealM of B. Thus the composition Z → Hfin → Hfin/IM is injective.
On the other hand, Hfin is generated over Z by the elements [a]/τ , and each of them
equals 0 or 1 modulo IM , so the map is surjective, too. This proves the second point.

To prove the first, we define a map � : +A → Stone(B).
Let t = T/A, T ≤ Q⊗A. If [(a1, . . . , an)] = [(b1, . . . , bn)], then some element

of GLn(Z)�An takes (a1, . . . , an) to (b1, . . . , bn); in this case, if ai ∈ T for each i
then bi ∈ T for each i; so �ni=11t (ai + A) = �ni=11t (bi + A). Thus, given t ∈ +A,
we can define a homomorphism ht : Hfin → Z by

[(a1, . . . , an)]/τn �→ �ni=11t (ai + A).
LetM(t) = ker(ht ) ∩ B.
The map � : t �→ M(t) is clearly continuous. If t , t ′ are distinct subgroups, let

a ∈ t , a /∈ t ′ (say); then [a]/τ ∈ M(t), [a]/τ /∈ M(t ′). Thus� is injective. If P is a
maximal filter of B, let tP = {a + A : [a]/τ ∈ P }.
Claim. tP is a subgroup.

Proof. Suppose a + A, b + A ∈ tP and let c = a + b. Then we have the relation

[a][b]τ = [a][b][c]
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in K+(fin), arising from the map

(x, y, z) �→ (x, y, xyz).

Thus ([a]/τ )([b]/τ )(1−[c]/τ ) = 0. As ([a]/τ ), ([b]/τ ) ∈ P we have (1−[c]/τ ) /∈
P , so [c]/τ ∈ P . )�

Clearly, P = M(tP ). Thus � is surjective, and so a homeomorphism. )�

Example. We always have a homomorphism K(fin)→ Z (by counting points of a
finite set in the divisible hull); when A is divisible, this identifies K(fin) with Z[τ ].
In general, we have the surjective morphism K(fin))→ K(fin

Q⊗A) = Z[τ ].

Lemma 9.3. Let Y be an A-definable subset of n, of dimension < n. Then Y is a
finite union of GLn(Z)-conjugates of sets Yi ⊆ {ci} × n−1, with ci ∈ Q⊗ A.

Proof. Y can be divided into finitely many A-definable pieces, each contained in
some A-definable hyperplane of n. Thus we may assume Y itself is contained in
some such hyperplane, i.e.,

∑
riyi = c for some c ∈ Q⊗ valrv(A). We may assume

ri ∈ Z and (r1, . . . , rn) have no common divisor. In this case Zn/Z(r1, . . . , rn)
is torsion free, hence free, so Z(r1, . . . , rn) is a direct summand of Zn. Thus after
effecting a transformation of GLn(Z), we may assume (r1, . . . , rn) = (1, 0, . . . , 0),
i.e., Y lies in the hyperplane y1 = c. Let Z be the projection of Y to the coordinates
(2, . . . , n). Then Y = {c} × Z. )�

9.2 Euler characteristics of DOAG

We describe two independent Euler characteristics on A-definable subsets of , i.e.,
additive, multiplicative Z[τ ]-valued functions invariant under all definable bijec-
tions. The values are in Z[τ ] rather than Z because [∗] = ⊕n[n] is graded by
ambient dimension. Proposition 9.4–Lemma 9.6 were obtained earlier in [26], and
independently in [20].

In fact, these two Euler characteristics come from Euler characteristics of
DOAGQ⊗A. Ther they are the only ones.

Proposition 9.4. Let A be a divisible ordered Abelian group. Then K(DOAGA)
' Z2.

Proof. We begin by noting that there are at most two possibilities.
In DOAG, all definable singletons are isomorphic. The identity element of the ring

K(DOAG) is the class of any singleton. Thus the image ofK(fin[∗]) inK(DOAGA)
is isomorphic to Z.

Claim. The image ofK(bdd
A ) inK(DOAGA) equals the image ofK(fin[∗]) there.
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Translation by a gives an equality of classes in K(), [(0,∞)] = [(a,∞)], so

[(0, a)] + [{pt}] = [(0, a] = 0.

Thus bounded segments are equivalent to linear combinations of points. This can
be seen directly by induction on dimension and on ambient dimension: consider the
class of a bounded set Y ⊂ n+1. Y is a Boolean combination of sets of the form
{(x, y) : x ∈ X, f (x) < y < g(x)}. This is DOAGA-isomorphic to Y ′ = {(x, y) :
x ∈ X, 0 < y < h(x)}, whereh(x) = g(x)−f (x). LetZ = {(x, y) : x ∈ X, y > 0},
Z′ = {(x, y) : x ∈ X, y > h(x)}. Then the map (x, y) �→ (x, y + h(x)) shows
that [Z] = [Z′]. On the other hand, Z′ is the disjoint union of Z, Y and a lower-
dimensional set W . Thus [Z] = [Z′] = [Z′] + [Y ] + [W ] so [Y ] = −[W ], and by
induction [Y ] lies in the image of K(fin[∗]).

Now consider t = [(0,∞)] ∈ K(A). We have a homomorphismK(bdd
A )[t] →

K(). To see that it is surjective, again by induction it suffices to look at sets such
as {(x, y) : x ∈ X, f (x) < y} or {(x, y) : x ∈ X, f (x) < y < g(x)}. The
latter is equivalent to a lower-dimensional set, by induction, as above. The former is
equivalent to {(x, y) : x ∈ X, 0 < y} so that it has the class [X] × t and thus is in the
image of K(bdd

A )[t].
Let T = {(x, y) : 0 < y ≤ x}. The map (x, y) �→ (x, y + x) takes T to

{(x, y) : 0 < x < y ≤ 2x}, so 2[T ] = [{(x, y) : 0 < y ≤ 2x}]. The same map
shows that t2 − [T ] = t2 − 2[T ] so [T ] = 0. But then [{(x, y) : 0 < x ≤ y}] = 0,
and adding we obtain 0 + 0 = t2 + [{(x, x) : 0 < x}] = t2 + t . Thus K(DOAGA)
is a homomorphic image of Z[t]/(t2 + t) ' Z2. To see that the homomorphism is
bijective, it remains to exhibit a homomorphism K(DOAGA)→ Z with t �→ 0 and
another with t �→ −1. The two lemmas below show this, in a form suitable also for
a dimension-graded version. )�
Lemma 9.5. There exists a ring homomorphism χO : K() → Z[τ ], such that
χO((0,∞)) = τ . It is invariant under GLn(Q) acting on n.

Proof. Let RCF be the theory of real closed fields. See [37] for the existence and
definability of an Euler characteristic map χ : K(RCF) → Z. For any definable
X,P, f : X → P of RCF, there exists m ∈ N and a definable partition P =
∪−m≤i≤mPi , such that for any i, any M |= RCF and b ∈ Pi(M), χ(Xb) = i. Here
Xb = f−1(b), and χ(Xb) = i iff there exists an M-definable partition of Xb into
definable cells Cj , with

∑
j (−1)dim(Cj ) = i.

The language of  (the language of ordered Abelian groups) is contained in the
language of RCF. Thus ifX,P, f : X→ P are definable in the language of ordered
Abelian groups, they are RCF-definable. Therefore, the above result specializes, and
we obtain an Euler characteristic map χ : K(A[n]) → Z, valid for any divisible
group A. This χ is invariant under all definable bijections (not only the morphisms
of [∗]), and is additive and multiplicative. We have χO({0}) = 1, χO((a, b)) = −1
for a < b, and χO(0,∞) = −1, too (though (0, 1) and (0,∞) are not definably
isomorphic in the linear structure). Now let χO(X) = χ(X)τn for X ⊆ n, and
extend to [∗] by additivity. )�
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Remark. The Euler characteristic constructed in this proof appears to depend on an
embedding of A into the additive group of a model of RCF. But by the uniqueness
shown above, it does not. In fact, as pointed out to us by Van den Dries, Ealy
and Maříková, an Euler characteristic with the requisite properties is defined in [37]
directly for any O-minimal structure; moreover, the use of RCF in the lemma below
can also be replaced by a direct inductive argument, and some simple facts about
Fourier–Motzkin elimination.

Another Euler characteristic can be obtained as follows: given a definable set
Y ⊂ n, let

χ ′(Y ) = lim
r→∞χ(Y ∩ Cr),

where Cr is the bounded closed cube [−r, r]n. ByO-minimality, the value of χ(Y ∩
Cr) is eventually constant.

Note that χ ′ is not invariant under semialgebraic bijections, since the bounded
and unbounded open intervals are given different measures. Still,

Lemma 9.6. χ ′ induces a group homomorphismK([n])→ Z; and yields a ring ho-
momorphismK([∗])→ Z[τ ]. Moreover, χ ′ is invariant under piecewise GLn(Q)-
transformations.

Proof. χ ′ is clearly additive and multiplicative. Isomorphism invariance can be
checked as follows: First, we make the following claim.

Claim. If X �= ∅ is defined by a finite number of weak (≤) affine equalities and
inequalities, then χ ′(X) = 1.

Proof. It suffices to show that this is true in (R,+); since then it is true in any model
of the theory of divisible ordered Abelian groups. Now we may compute the Euler
characteristic χ of the bounded setsX∩Cr in (R,+, ·). Let p ∈ X. For large enough
r , p ∈ X ∩ Cr there is a definable retraction of the closed bounded set X ∩ Cr to p
(along lines through p). Thus X ∩Cr has the same homology groups as a point, and
so Euler characteristic 1. )�

To prove the lemma we must show that if φ : X → Y is a definable bijection,
X, Y ⊆ n, then χ ′(X) = χ ′(Y ). We use induction on dim(X). By additivity, if
X is a Boolean combination of finitely many pieces, it suffices to prove the lemma
for each piece. We may therefore assume that φ is linear (rather than only piecewise
linear) on X. Let φ′ be a linear automorphism extending φ. Expressing X as a union
of basic pieces, we may assume X is defined by some inequalities

∑
αixi ≤ c, as

well as some equalities and strict inequalities. Thus X is convex. We have to show
that χ ′(X) = χ ′(φ′X). Let X̄ be the closure ofX (defined by the corresponding weak
inequalities). Then X̄ \X has dimension< dim(X), so by induction χ ′(φ′(X̄ \X) =
χ ′(X̄ \ X). But X̄ is closed and convex, so χO ′(X̄) = 1 = χO ′(φ′X̄). Subtracting,
χ ′(φ′(X̄)) = χ ′(X̄).

Once again, using the ambient dimension grading, we can define χ ′O : [∗] →
Z[τ ] with χ ′O(x) = χ ′(x)τn for x ∈ [n]. )�
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In the following lemma, all classes are taken in K(A)[∗]. Let ea be the class in
K(A)[1] of the singleton {a}, and τa the class of the segment (0, a).

Lemma 9.7. Let a ∈ Q⊗ A, b ∈ A.

(1) τa = τa+b, ea = ea+b.
(2) If b < c ∈ A then [(b, c)] = −e0.

(3) eae0 = e2
a.

(4) τa(τa + e0) = 0.
(5) If 2a ∈ A then 2τa + ea = −e0, and e0(ea − e0) = 0.

Proof.

(1) τa = [(0, a)] = [(0,∞)]−[(a,∞)]−ea , and similarly τa+b. The map x �→ x+b
shows that [(a,∞)] = [(a + b,∞)] and ea = ea+b, hence also τa = τa+b.

(2) [(b, c)] = [(b,∞)] − [(c,∞)] − ec = −e0 by (1), since c − b ∈ A.
(3) The map (x, y) �→ (x, y+x) is an SL2(Z)-bijection between {(a, 0)} and (a, a).
(4) Let

D = {(x, y) : 0 < x < a, 0 < y ≤ x},
D′ = {(x, y) : 0 < y < a, 0 < x ≤ y},
D1 = {(x, y) : 0 < x < a, y > 0},

T (x, y) = (x, y + x).
Then T (D1) = D1 \D. Since [T (D1)] = [D1], [D] = 0. Similarly, [D′] = 0.
Note also

T ((0, a)× {0}) = {(x, x) : 0 < x < a}.
Thus

0 = [D] + [D′] = [(0, a)2] + [{(x, x) : 0 < x < a}] = τ 2
a + τae0.

(5) Let 0 < 2a ∈ A. Then [(0, a)] = [(a, 2a)] using the map x �→ 2a − x. Thus
2τa + ea = [(0, a) ∪ {a} ∪ (a, 2a)] = [(0, 2a)] = −e0 (by (2)). Therefore,
(−e0 − ea)(e0 − ea) = (2τa)(2τa + 2e0) = 0 by (1). Thus eae0 = e2

a = e2
0. )�

The next lemma will not be used, except as a partial indication towards the question
that follows, regarding the difference at the level of Grothendieck groups between
GLn(Z) and GLn(Q) transformations. Let Ann(e0) be the annihilator ideal of e0;
it is a graded ideal. Let R = K(A)[∗]/Ann(e0), the image of K(A)[∗] in the
localization K(A)[∗](e0

−1). In the next lemma, the classes of definable sets are
taken in R, viewed as a subring of K(A)[∗](e0

−1). Let ea = ea/e0, ta = τa/e0.

Lemma 9.8. Let A′ = {a ∈ Q⊗ A : ea = 1}.
(1) If X ⊆ n is definable by linear inequalities over A, and T ∈ GLn(Z) � (A′)n,

then [TX] = [X] ∈ R.
(2) A′ is a subgroup of Q⊗ A.
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(3) e2
a = ea , ta(ta + 1) = 0.

(4) A′ is 2-divisible.

Proof.

(1) It suffices to show this when T is a translation by an element a ∈ (A′)n. The map
(x, y) �→ (x+y, y) is in SL2n(Z), hence [X×{a}] = [TX×{a}] inK(A)[2n].
Since a ∈ (A′)n, [a] = en0 . Thus [X]en0 = [TX]en0 , and upon dividing by en0 the
statement follows.

(2) This is clear from (1). For the following clauses, note that by (1)–(2), Lemma 9.7
applies with A replaced by A′.

(3) This follows from Lemma 9.7(3)–(4) divided by e2
0.

(4) By Lemma 9.7(5) applied to A′, if 2a ∈ A′ then e0(ea − e0) = 0; so ea − 1 = 0,
i.e., a ∈ A′. )�

Question 9.9. Is it true that K(A[∗])/Ann(e0) = K(DOAGA[∗])/Ann(e0)?

A positive answer would follow from an extension of (4) to odd primes, over
arbitrary A; by an inductive argument, or by integration by parts.

9.3 Bounded sets: Volume homomorphism

Let Ā = Q⊗A. Recall that bdd[n] is the category of bounded A-definable subsets
of n, with piecewise GLn(Z) � A-bijections for morphisms. Let Sym(Ā) be the
symmetric algebra on A.

Proposition 9.10. There exists a natural “volume’’ ring homomorphism K(bdd[∗])
→ Sym(Ā).

Proof. We first work with DOAG without parameters, defining a polynomial associ-
ated with a family of definable sets.

Let C(x, u) = C(x1, . . . , xn; u1, . . . , um) be a formula of DOAG. Write Cb =
{x : C(x, b)}; this is a definable family of definable sets. Assume the sets Cb are
uniformly bounded: equivalently, as one easily sees, for some q ∈ N, for each i,
C(x, u) implies |xi | ≤ q∑j |uj |. For b ∈ Rm, let v(b) = volCb(Rn). Here vol is
the Lebesgue measure.

By a constructible function into Q, we mean a Q-linear combination of charac-
teristic functions of definable sets of DOAG. Let R be the Q-algebra of constructible
functions into Q.

Claim 1. There exists a polynomial PC(u) ∈ R[u] such that for all b ∈ Rm,
volCb(Rn) = PC(b).

In other words, the volume of a rational polytope is piecewise polynomial in the
parameters, with linear pieces. The proof of the claim is standard, using iterated
integration. For each C, fix such a polynomial PC .

At this point we reintroduce A. Any A-definable bounded subset of n has the
form Cb for some C as above and some b ∈ Ām.
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Claim 2. If Cb = C′b′ then PC(b) = PC′(b′).
Proof. (See also below for a more algebraic proof). Fix the formulas C,C′. Write
b = Ne, b′ = N ′e where e ∈ Āl is a vector of Q-linearly independent elements of Ā,
and N,N ′ are rational matrices. Write PC =∑ aν(u)u

ν where aν is a constructible
function into Q; similarly for PC′ .

Now note that any formulaψ(x1, . . . , xl) of DOAG of dimension l has a solution
in Rl whose entries are algebraically independent. Use this to find algebraically
independent ẽ ∈ Rl such that CNẽ = C′N ′ẽ, and aν(Nẽ) = aν(b), aν(N ′ẽ) = a′ν(b′)
for each multi-index ν of degree d .

By the definition of PC we have PC(Nẽ) = PC′(N ′ẽ). Thus
∑
aν(b)(Nẽ)

ν =∑
a′ν(b′)(N ′ẽ)ν . By algebraic independence,

∑
aν(b)(Nv)

ν = ∑ a′ν(b′)(N ′v)ν as
Q-polynomials. Therefore, PC(Ne) = PC′(N ′e). )�

Thus we can define: v(Cb) = PC(b). Let us show that v defines a ring homo-
morphism.

Given C,C′ one can find C′′ such that C′′
b,b′ = Cb ∪ Cb′ , and similarly C′′′ with

C′′′
b,b′ = Cb ∩ Cb′ . Then PC + PC′ = PC′′ + PC′′′ . It follows that v is additive.

Similarly, v is multiplicative, and translation invariant. Since | det(M)| = 1 for
M ∈ GLn(Z), if φM(x, u) = φ(Mx, u) then PφM = Pφ . )�

Van den Dries, Ealy, and Maříková pointed out that Claim 2 can also be reduced
to the following statement: ifQ ∈ R[u], B is any 0-definable set of , andQ vanishes
on B(R), then Q vanishes on B(). They prove it as follows: let B̄ be the Zariski
closure of B; B̄ is clearly a finite union of linear subspaces, and by intersecting B
with each of these, we may assume B̄ is linear, so it is cut out by homogeneous linear
polynomials Q1, . . . ,Qm. Each Qi vanishes on B(R) and hence on B(). Thus Q
lies in the (radical) ideal generated byQ1, . . . ,Qm, hence vanishes on B().

The counting homomorphism in the discrete case

Suppose A has a least positive element 1, and assume given a homomorphism
hp : A → Zp for each p. Then A embeds into a Z-group Ã, i.e., an or-
dered Abelian group whose theory is the theory Th(Z) of (Z, <,+). (We have
Ã ∩ (Q ⊗ A) = {a/n ∈ Q ⊗ A : (∀p)(n|hp(a)).) We have a homomorphism
[X] �→ [X(Ã)] from K+([∗]) to K+(Th(Z)A). On the other hand, the polynomial
formula for the number of integral points in a polytope defined by linear equations
over Z yields a homomorphismK(Th(Z)bdd[∗])→ Q[A]. By composing we obtain
a homomorphism K(bdd[∗])→ Q[A].
Remark. Using integration by parts, one can see that the homomorphism

K(Th(Z)bdd[∗])→ Q[A]
above is actually an isomorphism.
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9.4 The measured case

We repeat the definition of µ from the introduction, along with two related cate-
gories. The category vol corresponds to integrable volume forms, i.e., those that
can be transformed by a definable change of variable to the standard form on a de-
finable subsets of affine n-space. By Lemma 3.26, the liftability condition in (2)
is equivalent to being piecewise in GLn(Z) � An, An being the group of definable
points.

Definition 9.11.

(1) For c = (c1, . . . , cn) ∈ n, let
∑
(c) =∑n

i=1 ci .
(2) For n ≥ 0, let µ[n] be the category whose objects are pairs (X, ω), with X ∈

Ob[n] and ω : X →  a definable map. A morphism (X, ω) → (X′, ω′) is
a definable bijection f : X → X′ liftable to a definable bijection valrv−1X →
valrv−1X′, such that

∑
(x)+ ω(x) =∑(x′)+ ω′(x′) for x ∈ X, x′ = f (x).

(4) Let µbdd[n] be the full subcategory of µ[n] with objects X ⊆ [γ,∞)n for
some γ ∈ .

(3) Let Ob vol[n] be the set of finite disjoint unions of definable subsets of n.
Given X, Y ∈ Ob vol[n], f ∈ Morvol[n](X, Y ) iff f ∈ Mor[n] and

∑
(x) =∑

(f (x)) for x ∈ X.
(5) µ[∗] is the direct sum of the µ[n], and similarly for the related categories.

Recall the Grothendieck rings of functions from Section 2.2. Fn(,K+()) is
a semigroup with pointwise addition. We also have a convolution product: if f is
represented by a definable F ⊆  × m, in the sense that f (γ ) = [F(γ )], and g by
a definable G ⊆  × n, let

f ∗ g(γ ) = [{(α, b, c) : α ∈ , b ∈ F(α), c ∈ G(γ − α)}].
The coordinate α in the definition is needed in order to make the union disjoint. In
general, it yields an element represented by a subset of  × m+n+1 rather than
m + n. But let Fn(,K+())[n] be the set of [F ] ∈ Fn(,K+([n])) such that
dim(F (a)) < n for all but finitely many a ∈ . If f ∈ Fn(,K+())[m] and
g ∈ Fn(,K+())[n], then f ∗ g ∈ Fn(,K+())[m+ n]. Let Fn(,K+())[∗] =
⊕m Fn(,K+())[m], a graded semiring.

Lemma 9.12.

(1) K+(µ)[n] ' Fn(,K+())[n].
(2) K+ µbdd[n] ' {f ∈ Fn(,K+(bdd))[n] : (∃γ0)(∀γ < γ0)(f (γ ) = 0)}.
(3) K+ vol[n] ' Fn(,K+([n− 1])).
Proof.

(1) Let (X, ω) ∈ Obµ[n], with X ⊆ n and ω : X → . Let d(x) =
ω(x) + ∑(x). For a ∈ , let Xa = {x ∈ X : d(x) = a}. This deter-
mines an element F(X,ω) ∈ Fn(,K+([n])), namely, a �→ [Xa]. It is clear
from additivity of dimension that dim(Xa) < n for all but finitely many a; so
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F(X,ω) ∈ Fn(,K+())[n]. If h ∈ Morµ[n](X, Y ), then by the definition of
µ we have h(Xa) = Ya ; so [Xa] = [Ya] in K+()[n]. Conversely if for all a ∈ 
we have [Xa] = [Ya] in K+()[n], then valrv−1(Xa), valrv−1(Ya) are a-definably
isomorphic. By Lemma 2.3 there exists a definable H : valrv−1(X) → valrv−1(Y )

such that for any x ∈ valrv−1(X), H(x) = ha(x), where a = ∑ valrv(x). Clearly,
H descends to H̄ : X → Y ; by construction H̄ lifts to RV, and preserves

∑+ω,
so H̄ ∈ Morµ[n](X, Y ). We have thus shown that [X] �→ [F(X)] is injective. It is
clearly a semiring homomorphism.

For surjectivity, let g ∈ Fn(,K+())[n] be represented by G ⊆  × n. It
suffices to consider either gwith singleton support {γ0}, or g such that dim(G(a)) < n
for all a ∈ . In the first case, g = F(X,ω) where X = G(γ0) and ω(x) =
γ0−∑(x). In the second: after effecting a partition and a permuation of the variables,
we may assume G(a) ⊆ n−1 × {ψ(a)} for some definable function ψ(a). With
another partition of , we may assume g is supported on S ⊆ , i.e., g(x) = 0
for x /∈ S, and ψ is either injective or constant on S. In fact, we may assume ψ
is injective on S: if ψ is constant on S, let G′ = {(a, (b1, . . . , bn−1, bn + a)) :
(a, (b1, . . . , bn)) ∈ G, a ∈ S}. Then G′ also represents g, and for G′ the function
ψ is injective. Now let X = ∪a∈SG(a), and let ω(x) = −∑(x)+ ψ−1(xn). Then
F(X,ω) = g.

(2) This follows from (1) by restricting the isomorphism.
(3) This is proved in a similar manner to (1) though more simply and we omit

the details. The key point is that GLn(Z) acts transitively on Pn(Q); this can be seen
as a consequence of the fact that finitely generated torsion free Abelian groups are
free. More specifically, the covector (1, . . . , 1) is GLn(Z)-conjugate to (1, 0, . . . , 0).
Thus the catgegory vol[n] is equivalent to the one defined using the weighting x1
in place of

∑
(xi). For this category the assertion is clear. )�

This lemma reduces the study of K+(µ) to that of K+().

10 The Grothendieck semirings of RV

10.1 Decomposition to �, RES

Recall that RV is a structure with an exact sequence

0 → k∗ → RV →
valrv

→ 0.

We study here the Grothendieck semiring of RV in a theory TRV satisfying the as-
sumptions of Lemma 3.26. The intended case is the structure induced from ACVFA
for some RV, -generated base structure A.

We show that the Grothendieck ring of RV decomposes into a tensor product of
those of RES, and of .

The category [∗] was described in Section 9. We used GLn(Z) rather than
GLn(Q) morphisms. The reason is given by the following.
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Lemma 10.1. The morphisms of [n] are precisely those definable maps that lift to
morphisms of RV[n]. The mapX �→ valrv−1(X) therefore induces a functor [n] →
RV[n], yielding an embedding of Grothendieck semiringsK+[[n]] → K+[RV[n]].
Proof. Any morphism of [∗] obviously lifts to RV, since GLn(Z) acts on Cn for
any group C. The converse is a consequence of Lemma 3.28. )�

We also have an inclusion morphism K+(RES)→ K+(RV).
Observe that K+(fin) forms a part of both K+(RES[∗]) and K+([∗]): the

embedding ofK+([∗]) intoK+(RV[∗]) takesK+(fin) to a subring ofK+(RES[∗]),
namely, the subring generated by the pullbacks valrv(γ ), γ ∈  a definable point.

Given two semiringsR1, R2 and a homomorphism fi : S → Ri , defineR1⊗S R2
by the universal property for triples (R, h1, h2), with R a semiring and hi : Ri → R

a semiring homomorphism, satisfying h1f1 = h2f2.
We have a natural map K+(RES)⊗K+([∗])→ K+(RV), [X] ⊗ [Y ] �→ [X ×

valrv−1(Y )]. By the universal property it induces a map on K+(RES) ⊗K+(fin)

K+([∗]). A typical element of the image is represented by a definable set of the
form

.∪(Xi × valrv−1(Yi)), with Xi ⊆ RES∗, Yi ⊆ ∗.

Proposition 10.2. The natural mapK+(RES)⊗K+(fin) K+([∗])→ K+(RV) is an
isomorphism.

Proof. Surjectivity is Corollary 3.25. We will prove injectivity. In this proof, X⊗ Y
will always denote an element of K+(RES)⊗K+(fin) K+([∗]).

Claim 1. Any element of K+([∗]) can be expressed as
∑l
j=1[Yj ] × {pj }, for some

Yj ⊆ mj , dim(Yj ) = mj , and pj ∈ lj .
Proof. Let Y ⊆ m be definable. If dim(Y ) < m, then Y can be partitioned
into finitely many sets Yj , each of which lies in some definable affine hypersur-
face

∑m
i=1 αixi = c, with αi ∈ Q, not all 0. In other words x �→ α · x is constant

on Yj , where α = (α1, . . . , αm). We may assume that each αi ∈ Z and that they
are relatively prime. Then (α) is the first row of a matrix M ∈ GLm(Z). The map
x �→ Mx takes Yj to a set of the form Y ′j × {c}, Y ′j ⊆ m−1. Since [MYj ] = [Yj ] in
K+([∗]), the claim follows by induction. )�
Claim 2. Any element of K+(RES)⊗K+(fin) K+([∗]) can be represented as

k∑
i=1

Xi ⊗ valrv
−1Yi,

where Xi ⊆ RESni and Yi ⊆ mi are definable sets, and mi = dim Yi .

Proof. By the definition ofK+(RES)⊗K+(fin)K+([∗]) and by Claim 1, any element

is a sum of tensorsX⊗valrv−1(Y×{p}); using the⊗K+(fin)-relation,X⊗valrv−1(Y×
{p}) = (X × valrv−1(p))⊗ Y . )�
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Now let Xi,X′i ⊆ RES∗, Yi, Y ′i ⊆ ∗ be definable sets, and let

F : .∪(Xi × valrv
−1(Yi))→

.∪(X′i′ × valrv
−1(Y ′i′))

be a definable isomorphism. Let m be the maximal dimension m of any Yi or Y ′
i′ .

Assume the following (by Claim 2):

For each i′, Y ′i′ ⊆ dim(Y ′
i′ ) and similarly for the Yi . (∗)

Claim 3. Let P be a complete type of Yi of dimension m, and Q a complete type of
Xi . Then F(Q× valrv−1P) = Q′ × valrv−1P ′, whereQ′ is a complete type of some
X′
i′ , and P ′ a complete type type of Y ′

i′ .
Moreover, there exist definable sets P̃ , Q̃, P̃ ′, Q̃′ containing P , Q, P ′, Q′,

respectively, such that

(1) F restricts to a bijection Q̃× valrv−1P̃ → Q̃′ × valrv−1P̃ ′;
(2) there exist definable bijections f : P̃ → P̃ ′ and g : Q̃→ Q̃′;
(3) For any x ∈ Q̃, y ∈ P̃ , F restricts to a bijection {x} × valrv−1(y)→ {f (x)} ×

valrv−1(g(y)).

Proof. By Lemma 3.17, valrv−1(P ) is a complete type; by the same lemma,
Q × valrv−1(P ) is complete; hence so is F(Q × valrv−1(P )). We have F(Q ×
valrv−1(P )) ⊆ (X′

i′ × valrv−1(Y ′
i′)) for some i′. LetQ′ = pr1(F (Q× valrv−1(P ))),

V ′ = pr2(F (Q × valrv−1(P ))), P ′ = valrv(V ′) ⊆ Y ′
i′ . where pr1 : X′

i′ ×
valrv−1(Y ′

i′) → Xi ⊆ RES, pr2 : X′i′ × valrv−1(Y ′
i′) → valrv−1(Y ′

i′) are the pro-
jections. ThenQ′, V ′, P ′ are complete types. We havem = dim(P ′) ≥ dim(Y ′

i′), so

by maximality of m, equality holds. We thus have P ′ ⊆ dim(P ′). By Lemma 3.17,
Q′ × valrv−1(P ′) is also complete type. Thus F(Q× P) = Q′ × valrv−1P ′.

By one more use of Lemma 3.17, the function fy : x �→ pr1 F(x, y), whose
graph is a subset of the stable set Q ×Q′, cannot depend on y ∈ P . Thus fy = f ,
i.e., F(x, y) = (f (x), pr2 F(x, y)).

Since Q × valrv−1(y) is stable, valrv pr2 F must be constant on it; so
valrv pr2 F(x, y) = g(y) on P ×Q. This shows that (3) of the “moreover’’ holds on
P × Q. By compactness, it holds on some definable Q̃ × P̃ (and we may take
f injective on Q̃, and g on P̃ ). Let Q̃′ = f (Q̃), P̃ ′ = g(P̃ ). Then (1)–(2)
hold also. )�
Claim 4. Assume (∗) holds. Then there exist finitely many definable Y ji (j =
0, . . . , Ni) and Xji such that dim(Y 0

i ) < m, and the conclusion of Claim 3 holds

on each Xji × valrv−1Y
j
i for j ≥ 1. Moreover, we may take the Y ji , Xji pairwise

disjoint.

Proof. This follows from Claim 3 by compactness; the disjointness can be achieved
by noting that if Claim 3(3) holds for P̃ , Q̃, then it holds for their definable subsets,
too. )�



Integration in valued fields 375

We now show that if
.∪(Xi ×valrv−1(Yi)) and

.∪(X′
i′ ×valrv−1(Y ′

i′)) are definably
isomorphic then

∑
i′ [Xi′ ] ⊗ [Yi′ ] =

∑
i[Xi ⊗ Yi]. We use induction on the maximal

dimensionm of any Yi or Y ′
i′ , and also on the number of indices i such that dim(Yi) =

m. Say dim(Y1) = m.
By Claim 2, without changing

∑
i′ X

′
i′ ⊗ valrv−1(Y ′

i′)) as an element of

K+(RES)⊗K+(fin) K+([∗]),
we can arrange that dim(Yi′) = mi′ , i.e., (∗) holds. Thus Claims 3 and 4 apply.

The Y j1 for j ≥ 1 may be removed from Y1, if their images are correspondingly
excised from the appropriate Y ′j , since [Q̃]⊗K+(fin) [P̃ ] = [f (Q̃)]⊗K+(fin) [g(P̃ )].
What is left in Y1 has  dimension < m, and so by induction the classes are equal.

The injectivity and the proposition follow. )�
For applications to VF, we need a version of Proposition 10.2 keeping track of

dimensions. Below, the tensor product is in the category of graded semirings.

Corollary 10.3. The natural map K+(RES[∗]) ⊗K+(fin) K+([∗])→ K+(RV[∗])
is an isomorphism.

Proof. For each n we have a surjective homomorphism

⊕nk=1K+(RES[k])⊗K+([n− k])→ K+(RV[n]).
K+ RV[n] can be identified with a subset of the semiring K+ RV, namely, {[X] :
dim(X) ≤ n}. The proof of Proposition 10.2 shows that the kernel is generated by
relations of the form

(X × valrv
−1(Y ))⊗ Z = X ⊗ (Y ⊗ Z)

when Y ∈ K+(fin) and dim(X)+ dim(valrv−1(Y ))+ dim(valrv−1(Z)) = n. These
relations are taken into account in the ring K+(RES[∗])⊗K+(fin) K+([∗]), so that
the natural map K+(RES[∗]) ⊗K+(fin) K+([∗]) → K+(RV[∗]) is injective and
hence an isomorphism. )�

Recall the classes ea = [{a}]1 in K([1]), defined for a ∈ (〈∅〉). They are in
K+(fin), hence identified with classes in K(RES[1]), namely, ea = [valrv−1(a)].
When denoting classes of varieties V over the residue field, we will write [V ] for
[V (k)], when no confusion can arise.

Definition 10.4. Let I ! be the ideal ofK(RES[∗]) generated by all differences ea−e0,
where a ∈ (〈∅〉). Let !K(RES[∗]) = K(RES[∗])/I !.

By Lemma 9.7(3), the natural homomorphism K(RES[∗]) into the localization
of K(RV[∗]) by all classes ea factors through !K(RES[∗]).

Since I ! is a homogeneous ideal, !K(RES[∗]) is a graded ring.
The theorem that follows, when combined with the canonical isomorphisms

K(VF[n])→ K(RV[≤ n])/Isp and K(VF)→ K(RV[∗])/Isp,
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R

∫
: K(VF)→ !K(RES)[[A1(k)]−1],

R

∫ ′
: K(VF)→ !K(RES).

Theorem 10.5.

(1) There exists a group homomorphism

En : K(RV[≤ n])/Isp → !K(RES[n])
with

[RV>0]1 �→ −[An−1 ×Gm]n
and

[X]k �→ [X × An−k]n
for X ∈ RES[k].

(2) There exists a ring homomorphism E : K(RV[∗])/Isp → !K(RES)[[A1]−1] with
E([X]k) = [X]k/Ak for X ∈ RES[k].

(3) There exists a group homomorphism

E′n : K(RV[≤ n])/Isp → !K(RES[n])
with [RV>0]1 �→ 0 and [X]k �→ [X]n for X ∈ RES[k].

(4) There exists a ring homomorphism E′ : K(RV[∗])/Isp → !K(RES) with
E([X]k) = [X]k for X ∈ RES[k].

Proof.
(1) We first define a homomorphism χ [m] : K(RV[m]) → !K(RES[m]). By

Corollary 10.3,

K(RV[m]) = ⊕ml=1K(RES[m− l])⊗K+(fin) K([l]).
Let χ0 = IdK RES[m]. For l ≥ 1, recall the homomorphism χ : K([l]) → Z
of Lemma 9.5. It induces χl : K(RES[k]) ⊗K+(fin) K([l]) → !K(RES[k]) by

a ⊗ b �→ χ(b) · [Gm]l · a.
Define a group homomorphism

χ [m] : K(RV[m])→ K(RES[m]), χ[m] = ⊕lχl .
We have

χ [m1 +m2](ab) = χ [m1](a)χ [m2](b)
when a ∈ K(RV[m1]), b ∈ K(RV[m2]). This can be checked on homogeneous
elements with respect to the grading ⊕l K+(RES[m− l])⊗K+([l]).

We compute χ [1]([RV>0]1) = χ1(1⊗ [>0]1) = −[Gm] ∈ K(RES[1]).
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Next, define a group homomorphism βm : !K(RES[m]) → !K(RES[n]) by
βm([X]) = [X × An−m]. Define γ : ⊕m≤n K(RV[m]) → !K(RES[n]) by γ =∑
m βm ◦ χ [m]. Then γ is a group homomorphism, and γ (a)γ (b) = γ (ab)× [An]

for a ∈ K(RV[m1]), b ∈ K(RV[m2]), m1 +m2 ≤ n. Again this is easy to verify on
homogeneous elements.

Finally, we compute γ on the standard generator J = [RV>0]1 + [1]0 − [1]1 of
Isp. Since χ [1]([RV>0]1) = −[Gm], we have

γ ([RV>0]1) = β1(−[Gm]) = −[Gm × An−1]1
On the other hand,

γ ([1]0) = β0([1]0) = [An]n,
γ ([1]1) = β1([1]1) = [An−1]n.

Thus γ (J ) = [An−1]n−1 × (−[Gm]1 + [A1]1 − [1]1) = 0. A homomorphism
K(RV[≤ n])/Isp →K(RES[n]) is thus induced.

(2) For a ∈ K(RV[m]), let E(a) = βm(a)/[Am]. For any large enough n, we
have E(a) = En(a)/[An]. The formulas in (1) prove that E is a ring homomorphism.

(3)–(4) The proof is similar, usingχ ′ from Lemma 9.6 in place ofχ of Lemma 9.5,
and the identity in place of βm. )�
Corollary 10.6. The natural morphism K(RES[n]) → K(RV[≤ n])/Isp has the
kernel contained in !I . )�
Lemma 10.7. Let T = ACVFF((t)) or T = ACVFR

F((t)), F a field of characteristic
0, with val(F ) = (0), val(F ((t))) = Z, and val(t) = 1 ∈ Z. Then there exists
a retraction ρt : K+(RES) → K+(VarF ). It induces a retraction !K(RES) →
K(VarF ).

Proof. Let tn ∈ F((t))alg be such that t1 = t and tnnm = tm. For α = m/n ∈ Q, with
m ∈ Z, n ∈ N, let tα = tmn . Thus α→ ta is a homomorphism Q → Gm(F((t))

alg).
Let V (α) = valrv−1(α). Let tα = rv(tα). Then ta ∈ V (α).
Let X ∈ RES[n]. Then for some α1, . . . , αn ∈ Q, we have X ⊆ �ni=1V (αi),

where V (αi) = valrv−1(αi). Define f (x1, . . . , xn) = (x1/tα1 , . . . , xn/tαn). Then f
is F((t1/m))-definable for some m, but not in general. Nevertheless, F(X) =: Y is
definable. This is because the Galois group G = Aut(F a((t1/m))/F a((t))) extends
to a group of valued field automorphisms Aut(k((t1/m))/k((t))) fixing the entire
residue field k; while Y ⊆ k; thus G fixes Y pointwise and hence setwise.

The map X �→ Y of definable sets described above clearly respects disjoint
unions. It also respects definable bijections: if h : X → X′ is a definable bijection,
Y = f (X), Y ′ = F(Y ′), then f hf−1 is an F((t1/∞))-definable bijection Y → Y ′;
by the Galois argument above, it is, in fact, definable.

The definable subsets of k are just the F -constructible sets. Thus we have an
induced homomorphism ρt : K+(RES) → K+(VarF ); it is clearly the identity on
K+(RES). It induces a homomorphism K(RES)→ K(VarF ).

Finally ρt (valrv−1(α)) = [Gm] for any α ∈ Q; so a homomorphism on !K(RES)
is induced. )�
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This example can be generalized as follows. Let L be a valued field with residue
field F of characteristic 0, T = ACVFL or ACVFR

L. Let A = res(L), A = Q⊗ A,
and let t : A → Gm(L

a) be a monomorphism, with t (A) ⊆ Gm(L). Then there
exists a retraction ρt : K+(RES)→ K+(VarF ).

From Theorem 10.5 and Lemma 10.7, we obtain the example discussed in the
introduction.

Proposition 10.8. Let T = ACVFR
F((t)), F a field of characteristic 0, with val(F ) =

(0) and val(t) = 1 ∈ Z. Then there exists a ring homomorphism Et : K(VF) →
K(VarF )[[A1]−1], with [M] �→ −[Gm]/[Ga], L([X]k) �→ [X]k/[Ak] for X ∈
VarF [k]. There is also a ring homomorphism E′t : K(VF) → K(VarF ) with
L([X]k) �→ [X]k .

10.2 Decomposition of µRV

An analogous decomposition is valid for the measured Grothendieck semiring µRV
(Definition 8.13).

Lemma 10.9. There exists a homomorphism K+ µ[n] → K+ µRV[n] with
[(X, ω)] �→ [(valrv−1(X), Id, ω ◦ valrv)].
Proof. We have to show that a µ[n]-isomorphism X → Y lifts to a µRV[n]-
isomorphism. This follows immediately from the definitions. )�

Recall µRES from Definition 8.13. Along the lines of Lemma 9.12, we
can also describe K+ µRES[n] as the semigroup of functions with finite support
 → K+(RES[n]). We also have the inclusion K+ µRES[n] → K+ µRV[n],
[(X, f )] �→ [(X, f, 1)].

Let µfin[n] be full subcategory of µ[n] whose objects are finite. We have a
homomorphismK+(µfin)[n] → µRES[n], (X, ω) �→ (valrv−1(X), Id, ω◦valrv).
As before, we obtain a homomorphism K+ µRES[∗] ⊗K+(µfin) K+(µ[∗]) →
K+(RV[∗]).

Let RES-vol′ be the full subcategory of RV-vol′ whose objects are in RES; this
is the same as RV except that morphisms must respect

∑
valrv. Let volfin be the

subcategory of finite objects of vol.

Proposition 10.10.

(1) The natural mapK+(µRES[∗])⊗K+(µfin) K+(µ[∗])→ K+(µRV[∗]) is an
isomorphism.

(2) So is K+(RES-vol′ [∗])⊗K+(volfin[∗]) K+(vol[∗])→ K+(RV-vol′ [∗]).
(3) The decompositions of this section preserve the subsemirings of bounded sets.

Proof. We first prove surjectivity in (1). By the surjectivity in Corollary 10.3, it
suffices to consider a class c = [(X× valrv−1(Y ), f, ω)] with X ∈ RES[k], Y ⊆ l ,
f (x, y) = (f0(x), y), and ω : X × (val r−1(Y )) → RV. In fact, as in Proposi-
tion 10.2 we may take dim(Y ) = l, and inductively we may assume that any class
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[(X′ × Y ′, f ′, ω′)] with dim(Y ′) < l is in the image. Since we may remove a subset
of Y of smaller dimension, applying Lemma 3.17 to ω : X × valrv−1(Y ) → , we
may assume ω(x, y) = ω′(γ )when valrv(y) = γ . Now c = [(X, f0, 1)]⊗ [(Y, ω′)].

The proof of surjectivity in (2) is similar.
The proof of injectivity in (1)–(2) is the same as of Proposition 10.2 and Corol-

lary 10.3. (3) is clear by inspection of the homomorphisms. )�
We now deduce Theorem 1.3. For a finite extension L of Qp, write volL(U) for

volL(U(L)). Let r be the ramification degree, i.e., val(L∗) = (1/r)Z. Let Q = qr .
The normalization is such that M has volume 1; so an open ball of valuative radius γ
has volume qrγ = Qγ . Thus the volume of valrv−1(γ ) is (q − 1)Qγ . Also the norm
satisfies |y| = Qval(y).

Proof of Theorem 1.3. For a ∈ k , let Z(a) = {x ∈ OnL : val(f1(x)) = a1 . . .

val(fk(x)) = ak}. Then∫
OnL

|f |s =
∑

a∈(≥0)k

Qs·avolL(Z(a)).

According to Propositions 4.5 and 10.10, we can write

Z(a) ∼
ν
.∪
i=1

LXi × L i(a),

where  i is a definable subset of k+n2(i), hi :  i → k the projection to the first k
coordinates,  i(a) = {d ∈ n2(i) : hi(d) = a}, Xi = (Xi, fi) ∈ RES[n1(i)], and ∼
denotes equivalence up to an admissible transformation. Thus

volL(Z(a)) = volL

(
ν
.∪
i=1

LXi × L i(a)

)
=

ν∑
i=1

volL(LXi )volL(L i(a)).

If b = (b1, . . . , bk+n2(i)) ∈  i , let hi0(b) be the sum of the last n2(i) coordinates.
Since valrv takes only finitely many values on a definable subset of RES, we

may assume
∑

valrv(f (x)) = γ (i) is constant on x ∈ Xi . Then volL(LXi(L)) =
Qγ(i)|Xi(L)|. Thus∫

OnL

|f |s =
∑
i

|Xi(L)|Qγ(i)
∑

a∈(≥0)k

Qs·avolL(L i(a)). (10.1)

Now volL(L i(a)) =∑b∈ i,h(b)=a(q − 1)n2(i)Qh0(b). Thus∑
a∈(≥0)k

Qs·avolL(L i(a)) =
∑
b∈ i

Qs1h
i
1(b)+···+skhik(b)(q − 1)n2(i)Qh0(b)

= (q − 1)n2(i) evhi ,s,Q( i).

(10.2)

The theorem follows from equations (10.1)–(10.2). )�
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Let A be the set of definable points of . Recall that for X ⊆ RV, [X]1
denotes the class [(X, IdX)] ∈ RV[1] of X with the identity map to RV, and
the constant form 1. For a ∈ A, let ẽa = [(valrv−1(0), Id, a)] ∈ RES[1],
fa = [{1}k, Id, a] ∈ RES[1] where a in the third coordinate is the constant function
with value a. If a lifts to a definable point d of RV, multiplication by d shows that
ẽa = [valrv−1(a), Id, 0], fa = [{d}, Id, 0]. Note ẽa ẽb = ẽa+bẽ0; and ẽ0 = [Gm].
Let τa ∈ RES[1] be the class of (valrv−1((a,∞)), Id, 0). The generating relation of
µIsp is thus (τ0, f0) (Lemma 8.20(6)). Let h be the class of [(RV>0, Id, x−1)].

Let !I 0
µ be the ideal of K(µRES[∗]) generated by the relations ẽa+b =

[(valrv−1(a), Id, b)], where a, b ∈ A, b denoting the constant function b. Let !Iµ be
the ideal generated by !I 0

µ as well as the element [A1]1.

Theorem 10.11. There exist two graded ring homomorphisms

e
∫
, e
∫ ′

: Keff (µVF[∗]) = K(µRV[∗])/Iµsp → K(µRES[∗])/!Iµ

such that the composition

K(µRES[∗])→ K(µRV[∗])/Iµsp → K(µRES[∗])/!Iµ
equals the natural projection

π : K(µRES[∗])→ K(µRES[∗])/!Iµ,
with

e
∫

h = −[{0k}]1, e
∫ ′

h = 0.

Proof. The identification Keff (µVF[∗]) = K(µRV[∗])/Iµsp is given by Theo-
rem 8.28, and we work with K(µRV[∗])/Iµsp.

According to Proposition 10.10, we can identify

K(µRV[∗]) = K(µRES[∗])⊗K+(µfin) K(µ[∗]).
We first construct two homomorphisms of graded rings R,R′ : K(µRV[∗])

→ K(µRES[∗])/!Iµ. This amounts to finding graded ring homomorphisms
K(µ[∗])→ K(µRES[∗])/!Iµ, agreeing with π on the graded ringK+(µfin). It
will be simpler to work with R, R′ together, i.e., construct

R′′ = (R,R′) : K(µ[n])→ (K(µRES[n])/!Iµ)2.
Recall from Lemma 9.12 the isomorphism

φ : K(µ[n])→ Fn(,K())[n].
Let χ ′′ : K([n]) → Z2 be the Euler characteristic of Proposition 9.4; so that

χ ′′ = (χ, χ ′); cf. Lemmas 9.5 and 9.6. We obtain by composition a map E′′n =
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(En,E
′
n) : Fn(,K([n])) → Fn(,Z)2. Here Fn(,Z) is the group of functions

g : → Z such that g() is finite and g−1(z) is a definable subset of (a finite union
of definable intervals and points). Thus Fn(,Z) is freely generated as an Abelian
group by {pa, qa, r}, where r is the constant function 1, and for a ∈ A, pa ,qa are
the characteristic functions of {a}, {(a,∞)}, respectively. Define ψn : Fn(,Z)→
K(µRES[∗]):
ψm(pa) = [Gm]n−1ẽa = [Gm]nfa, ψn(qa) = −[Gm]nfa, ψn(r) = 0.

For u ∈ K(µ[n]), let R′′(u) = ψn(E′′n(φ(u))).
Claim. R′′ : K(µ[∗])→ K(µRES[m])2 is a graded ring homomorphism.

Proof. We have already seen thatφ is a ring homorphism, so it remains to show this for
ψ∗◦E′′∗ . Now by Proposition 9.4, χ ′′(Y ) = χ ′′(Y ′) iff [Y ] = [Y ′] in the Grothendieck
group of DOAG. Hence given families Yt , Yt ′ of pairwise disjoint sets with χ ′′(Yt ) =
χ ′′(Y ′t ), by Lemma 2.3 we have χ ′′(∪t Yt ) = χ ′′(∪t Y ′t ). From this and the definition
of multiplication in Fn(,K())[∗], and the multiplicativity of E′′n , it follows that
if E′′n(f ) = E′′n(f ′) and E′′m(g) = E′′m(g′) then E′′n+m(fg) = E′′n+m(fg). In other
words, E′′∗ is a graded homomorphism from into (Fn(,Z)2, ") for some uniquely
determined multplication " on Fn(,Z)2. Clearly, (a, b) " (c, d) = (a∗1c, b∗2d) for
two operations ∗1, ∗2 on Fn(,Z).

Now we can compute these operations explicitly on the generators:

pa ∗ pb = pa+b, pa ∗ qb = qa+b, qa ∗ qb = −qa+b
for both ∗1 and ∗2, and

r∗1ẽa = r, r∗1qa = −r, r∗1r = r,
r∗2ẽa = −r, r∗2qa = 0, r∗2r = −r.

Composing with ψ , we see that R′′ is, indeed, a graded ring homomorphism. )�
Let R, R′ be the components of R′′.

Claim. R, R′, π agree on K+(µfin). R(τ0) = R′(τ0) = −ẽ0.

This is a direct computation. It follows that R,R′ induce homomorphisms
K(µRV[∗]) → K(µRES[∗]). Since ẽ0 + f0 = [(A1, Id, 0)], modulo !Iµ both
R,R′ equalize µIsp, and hence induce homomorphisms onK(µRV[∗])/µIsp →
K(µRES[∗])/!Iµ. )�
Remark. The construction is heavily, perhaps completely constrained. The value of
ψm(pa) is determined by the tensor relation over K+(µfin). The value of ψm(qa)
is determined by the relation Isp. The choice ψ(r) = 0 is not forced, but the multi-
plicative relation shows that either r or−r is idempotent, so one has a product of two
rings, with ψ(r) = 0 and with ψ(r) = ±1. In the latter case we obtain the isomor-
phisms of Theorem 10.5. Thus the only choice involved is to factor the fibers of an
element of Fn(,K())[n] through χ ′′, i.e., through K(DOAG). It is possible that
K([n]) = K(DOAG[n]) (cf. Question 9.9). In this case, e

∫
, e
∫ ′, R
∫

, R
∫ ′ are injective

as a quadruple, and determineK(µVF[∗]) completely, at least when localized by the
volume of a unit ball.
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11 Integration with an additive character

Let 	 = VF/M. Let ψ : VF → 	 be the canonical map.

Motivation. For any p, 	(Qp) can be identified with the pth power roots of unity
via an additive character on Qp. For other local fields, the universal ψ we use is
tantamount to integration with respect to all additive characters of conductor M at
once. Thus 	 is our motivic analogue of the roots of unity, and the natural map
VF → VF/M, an analogue of a generic additive character.

Throughout this paper, we have been able to avoid subtractions and work with
semigroups, but here it appears to be essential to work with a group or at least a
cancellation semigroup. The reason is that we will introduce, as the essential feature
of integration with an additive character, an identification of the integral of a function
f with f + g if g is O-invariant. This corresponds to the rule that the sum over a
subgroup of a nontrivial character vanishes. Now for any h : 	 → K+(µVF), it
is easy to construct h′ : 	 → K+(µVF) such that h + h′ is O-invariant. Thus if
f + h = f ′ + h for some h, then f = f + h + h′ = f ′ + h + h′ = f ′. Thus
cancellation appears to come by itself.

If we allow all definable sets and volume forms, a great deal of collapsing is caused
by the cancellation rule. We thus use the classical remedy and work with bounded sets
and volume forms. The setting is flexible and can be compatible with stricter notions
of boundedness. This is only a partial remedy in the case of higher-dimensional local
fields; cf. Example 12.12.

The theory can be carried out for any of the settings we considered. Let R be one
of these groups or rings, with D the corresponding data. For instance, D is the set of
pairs (X, φ) with X a bounded definable subset of VFn × RV∗, and φ : X→ RV is
a bounded definable function; R is the corresponding Grothendieck ring. Similarly,
we can take -volumes, or pure isomorphism invariants without volume forms. In
this last case there is no point restricting to bounded sets. As we saw, two Euler
characteristics into the Grothendieck group of varieties over RES do survive.

In each case, we think of R as a Grothendieck ring of associated RV-data, modulo
a canonical ideal.

Everything can be graded by dimension, but for the moment we have no need to
keep track of it, so in the volume case we can take the direct sum over all n or fix one
n and omit it from the notation.

The corresponding group for the theory TA or T〈a〉 will be denoted RA,Ra ,
etc. When V is a definable set, we let DV , RV denote the corresponding objects
over V . For instance, in the case of bounded RV-volumes, DV is the set of pairs
(X ⊆ V ×W,φ : X→ RV∗) such that for any a ∈ V , (Xa, φ|Xa)withXa bounded.

If R is our definable analogue of the real numbers (as recipients of values ofp-adic
integration), the group ring C = R[	]will take the role of the complex numbers. We
have a canonical group homomorphism (VF,+)→ 	 ⊆ Gm(C), corresponding to
a generic additive character.

Integration with an additive character can be presented in two ways: in terms
of definable functions f : X → 	 (Riemann style), where we wish to evaluate
expressions such as

∫
X
f (x)φ(x); classically f usually has the form ψ(h(x)), where
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h is a regular function and ψ is the additive character. Or we can treat definable
functions F : 	 → R (Lebesgue style), and evaluation

∫
ω∈	 F(ω). We will work

with the latter. Given this, to reconstruct a Riemann style integral, given f : X→ 	,
and an R-valued volume form φ on X, let

F(ω) =
∫
f−1(ω)

φ(x).

Then we can define ∫
X

f (x)φ(x) =
∫
ω∈	

ωF(ω).

It thus suffices to define the integral of a definable function on	. Such a function
can be interpreted as an M-invariant function on VF. We impose one rule (cancel-
lation): the integral of a function that is constant on each O-class equals zero. The
integral is a homomorphism on the group of M-invariant functions VF → R, vanish-
ing on the O-invariant ones. We give a full description of the quotient group, showing
that the universal homomorphism of this type factors through a similar group on the
residue field.

Recall the group Fn(V ,R) of Section 2.2. We will not need to refer to the dimen-
sion grading explicitly.

If V is a definable group, V acts on on Fn(V ,R) by translation.

Definition 11.1. For a definable subgroup W of V , let Fn(V ,R)W be the set of W -
invariant elements of Fn(V ,R): they are represented by a definable X, such that if
t ∈ W and a ∈ V then X[a], X[a + t] represent the same class in K(µVFa,t )[n].
Lemma 11.2. An element of Fn(VF,R)M can be represented by an M-invariant
X ⊆ (VF× ∗).
Proof. Let Y ∈ DRVVF represent an element of Fn(VF,R)M. Thus each fiber Ya ∈
DRV . By Lemma 3.52, for a ∈ VF/M one can find Y ′a ∈ DRV such that for some
a ∈ VF with a +M = a, Ya = Y ′a. As in Lemma 2.3 there exists Y ′ ∈ RVF/M such
that Y ′a is the fiber of Y ′ over a. Pulling back to VF gives the required M-invariant
representative. )�

Since the equivalence is defined in terms of effective isomorphism, Definition 8.2,
it is clear that two elements of D	 are equivalent iff the corresponding pullbacks to
Fn(VF,R)M are equivalent.

The groups Fn(VF,R)M and Fn(VF/M,R) can thus be identified.
Note that the effective isomorphism agrees with pointwise isomorphism for

Fn(VF,R)M, but not for Fn(VF/M,R).
The group we seek to describe is A = AT = Fn(VF,R)M/Fn(VF,R)O. The

quotient corresponds to the cancellation rule discussed earlier.
Let Fn(k,R) be the Grothendieck group of functions k → R, with addition

induced from R.
Let C = R[	] be the ring of definable functions 	 → R with finite support,

convolution product.
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Remark. C embeds into the Galois-invariant elements of the abstract group ring
RT̃ [	T̃ ], where T̃ = Tacl(∅).

The additive group k = O/M is a subgroup of 	 = VF/M, and so acts on
	 by translation. It also acts naturally on Fn(k,R). This gives two actions on
Fn(k,C) = Fn(k,R)[	]. Let Fn(k,C)k denote the coinvariants with respect to the
anti-diagonal action, i.e., the largest quotient on which the two actions coincide.

In general, the upper index denotes invariants, the lower index coinvariants.
Fn(VF,R) is the ring of definable functions from VF to R. Fn(k,R) is the

ring of definable functions from k to R. Fn(k,C) is the ring of definable functions
from k to C; equivalently, it is the set of Galois-invariant elements of the group ring
Fn(k,R)[	].

The action of k on Fn(k,C) is by translation on k, and negative translation on 	
and hence on C. The term (Const) refers to the image of the constant functions of
Fn(k,C) in Fn(k,C)k . (It is isomorphic to (C/k).)

Theorem 11.3. There exists a canonical isomorphism Fn(k,C)k/(Const)
→∼=

Fn(VF,R)M/Fn(VF,R)O.

Proof. Let Afin be the subring of Fn(VF,R)M consisting of functions represented
by elements of Fn(VF,D)M whose support projects to a finite subset of VF/O.

Adefinable function on k can be viewed as anM-invariant function onO; this gives

Fn(k,R)
→∼= Fn(O,R)M. (11.1)

On the other hand, we can define a homomorphism

Fn(O,R)M[	] → Afin :
∑
ω∈W

a(ω)ω �→
∑
ω∈W

a(ω)ω, (11.2)

whereW is a finite A-definable subset of 	, a : W → Fn(O,R)M is an A-definable
function, (so that

∑
a∈W a(ω)ω is a typical element of the group ring Fn(O,R)M[	]),

and bω is the translation of b by ω, i.e., bω(x) = b(x − ω).
(11.2) is surjective: Let f ∈ Afin be represented by F , with support Z, a finite

union of translates of O. By Lemma 3.39 there exists a finite definable setW , meeting
each ball of Z in a unique point. Define a : W → Fn(O,R)M by

a(ω) = (f |ω + O)−ω.

Then (11.2) maps
∑
a(ω)ω to f .

The kernel of (11.2) is the equalizer of the two actions of k. Composing with

(11.1), we obtain an isomorphism (Fn(k,R)[	])k
→∼=Afin or, equivalently,

Fn(k,C)k
→∼=Afin. (11.3)

The last ingredient is the homomorphism
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Afin → A. (11.4)

We need to show that it is surjective, and to describe the kernel.
Using the representation D of elements of R by RV-data, an element of A is

represented by an M-invariant definableW ⊂ VF× RV∗.
By Lemma 3.37, for each cosetC of O in VF apart from a finite number,W ∩(C×

RVn+l ) is invariant under translation of the first coordinate by elements of O. Thus
W is the disjoint sum of an O-invariant setW ′ and a setW ′′ ⊂ VF×RV∗ projecting
to a finite union Z of cosets of O in VF, i.e., representing a function in Afin.

Clearly,W ′ ×RVn VFn lies in Fn(VF,R)O.
Thus (11.4) is surjective; the kernel is AO

fin. Composing (11.3),(11.4) we obtain
an isomorphism

A
→∼=(Fn(k,R)[	])k/(Const).

Using the identification Fn(k,R)[	] ' Fn(k,C), the theorem follows. )�
Note that Fn(k,C)k ' C, via Fn(k,C) ' Fn(k ×	,R)fin.

11.1 Definable distributions

R is graded by dimension (VF-presentation) or ambient dimension (RV-presentation).
Write R = ⊕n≥0R[n].

Let Rdf be the dimension-free version: first form the localization R[[0]−1
1 ], where

[0]1 is the class of the point 1 ∈ RV, as an element of RV[1]. Equivalently, [0]n1 is
the volume of the open n-dimensional polydisc On. Let Rdf be the zero-dimensional
component of this localization. Similarly, define Cdf so that Cdf = Rdf [	]. We can
also define K+(D)df , and check that the groupification is Rdf .

Given a = (a1, . . . , an) ∈ VFn and γ = (γ1, . . . , γn) ∈ n, let B(a, γ ) =
�ni=1B(ai, γi), where B(ai, γi) = {c ∈ VF : val(c − ai) > γi}. Call B(a, γ ) an
open polydisc of dimension γ . If γ ∈ , let B(a, γ ) = B(a, (γ, . . . , γ )) (the open
cube of side γ ).

Note that [B(0, γ )] is invertible in Rdf , in each dimension. In particular, in
dimension 1, [B(0, γ )][B(0,−γ )] = [0]21. Note also that [B(a, γ )]=

a
[B(0, γ )].

We proceed to define integrals of definable functions.
Let U be a bounded definable subset of VFn. A definable function f : U →

K+(D)df has the form [0]−m1 F , where F : U → K+ D[m] is a definable function,
represented by some F̄ ∈ D[m+ n]U . In case F̄ can be taken bounded, define∫

U

f = [0]−m+n1 [F ]n+m.

We say that f is boundedly represented in this case.
In particular, vol(U) = ∫

U
1 = [0]−m1 [U ]m is treated as a pure number now,

without dimension units. (Check the independence of the choices.)
This extends by linearity to

∫
U
f for f : U → Rdf , provided f can be expressed

as the difference of two boundedly represented functions U → K+(D)df .
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We now note that averaging twice, with appropriate weighting, is the same as
doing it once. The function γ ′ in the lemmas below corresponds to a partition of U
into cubes; γ ′(u) is the side of the cube around u ∈ U .

Lemma 11.4. Let U be a bounded open subset of VFn, f a boundedly represented
function on U . Let γ ′ : U →  be a definable function such that if u ∈ U and
u′ ∈ B(u, γ ′(u)) then u′ ∈ U and γ ′(u′) = γ ′(u). Then∫

U

f =
∫
U

[
vol(B(u, γ ′(u)))−1

∫
B(u,γ ′(u))

f

]
.

Proof. Let f = [0]−m1 F , where F : U → K+ D[m] is bounded. We have
vol(B(u, γ ′)) = [0]−n1 [γ ′(u)]n so

vol(B(u, γ ′))−1 = [0]n1[γ ′(u)]−n = [0]−n1 [−γ ′(u)]n.
Thus, multiplying by [0]3n+m1 , we have to show

[0]2n1 [F ] = [−γ ′(u)]n[{(u, u′, z) : u ∈ U, u′ ∈ B(u, γ ′(u)), (u′, z) ∈ F }].
Now u′ ∈ B(u, γ ′(u)) iff u ∈ B(u′, γ ′(u′)). Applying the measure-preserving
bijection (u, u′, z) �→ (u − u′, u′, z′) we see that the [{(u, u′, z) : u ∈ U, u′ ∈
B(u, γ ′(u)), (u′, z) ∈ F }] = [γ ]n1[{(u′, z) : (u′, z) ∈ F ], so the equality is clear. )�

We now define the integral of definable functions into Cdf . By definition, such
a function is a finite sum of products fg, with f ∈ Fn(U,Rdf ) and g ∈ Fn(U,	).
Define ∫

U

fg =
∫
ω∈	

ω

∫
g−1(ω)

f

and extend by linearity.
Note that this is defined as soon as g is boundedly represented. (Again, check the

independence of the choices.)

Definition 11.5. A definable distribution on an openU ⊆ VFn is a definable function
d : U×→ Cdf , such that d(a, γ ) = d(a′, γ ) ifB(a, γ ) = B(a′, γ ), and whenever
γ ′ > γ in each coordinate,

d(b, γ ) =
∫
u∈B(b,γ )

vol(B(0, γ ′))−1d(u, γ ′).

As in Lemma 11.2, the invariance condition means that d can be viewed as a
function on open polydiscs, and we will view it this way below.

If d takes values in Rdf , we say it is Rdf -valued. By definition, d can be written as
a finite sum

∑
ωidi , where di is an Rdf -valued function; in fact, di is an Rdf -valued

distribution.
We wish to strengthen the definition of a distribution so as to apply to subpolydiscs

of variable size. For this we need a preliminary lemma.



Integration in valued fields 387

Lemma 11.6. Let U = B(a, γ ) be a polydisc. Let γ ′ : B(a, γ )→  be a definable
function such that γ ′(u′) = γ ′(u) for u′ ∈ B(u, γ ′(u)). Then γ ′ is bounded on U .

Proof. Suppose for contradiction that γ ′ is not bounded on B(a, γ ); i.e.,

(∀δ ∈ )(∃u ∈ B(a, γ ))(γ ′(u) > δ).
This will not change if we add a generic element of  to the base, so we may assume
(dcl(∅)) �= (0). By Lemma 3.51, there exists a resolved structure with the same
RV-part as 〈∅〉; hence we may assume T is resolved. By Section 6 any VF-generated
structure is resolved. By Lemma 3.49, for anyM |= T and c ∈ VF(M), acl(c) is an
elementary submodel of M . Consider c with val(c) |= p0, where p0 is the generic
type at ∞ of elements of , i.e., p0|A = {x > δ : δ ∈ (A)}. Since

acl(c) |= (∀δ ∈ )(∃u ∈ B(a, γ ))(γ ′(u) > δ)
there exists e ∈ acl(c) with e ∈ B(a, γ ) and γ ′(e) > val(c). By Lemma 5.12,
there exists e0 ∈ acl(∅) such that (c, e) → (0, e0). In particular, e0 ∈ B(a, γ ).
But then since e → e0 and γ ′(e0) ∈ (acl(∅)), we have e ∈ B(e0, γ

′(e0)). Thus
γ ′(e) = γ ′(e0). But then γ ′(e0) > val(c), contradicting the choice of c. )�
Lemma 11.7.

(1) Let d : U ×→ Cdf be a definable distribution. Let γ ′ : U →  be a definable
function with γ ′(u) > γ, such that γ ′(u′) = γ ′(u) for u′ ∈ B(u, γ ′(u)). Then

d(b, γ ) =
∫
u∈B(b,γ )

vol(B(0, γ ′(u))−1d(u, γ ′(u)). (11.5)

(2) Let d1, dd2 be definable distributions on U such that for any x ∈ U , for all
large enough γ ∈ , for any y ∈ B(x, γ ) and any γ ′ > γ , d1(B(y, γ

′)) =
d2(B(y, γ

′)). Then d1 = d2.

Proof.

(1) To prove (11.5), fix b, γ . We may assume U = B(b, γ ). Using Lemma 11.6,
pick a constant γ ′′ with γ ′′ > γ ′(u) for all u ∈ B(b, γ ). Use the definition
of a distribution with respect to γ ′′ to compute both d(B(b, γ )) and for each u
d(u, γ ′(u)), and compare the integrals using Lemma 11.4.

(1) Define γ ′(u) to be the smallest γ ′ such that for all γ ′′ > γ ′ and all y ∈
B(u, γ ), d1(B(y, γ

′′)) = d2(B(y, γ
′′)). It is clear that γ ′(u′) = γ ′(u) for

u′ ∈ B(u, γ ′(u)). (11.5) gives the same integral formula for d1(b, γ ) and
d2(b, γ ). )�
Let d be a definable distribution, and U an arbitrary bounded open set. We can

define d(U) as follows. For any x ∈ U , let ρ(x,U) be the smallest ρ ∈  such that
B(x, ρ) ⊆ U . Let B(x,U) = B(x, ρ(x, U)); this is the largest open cube around x
contained in U . Note that two such cubes B(x,U), B(x′, U) are disjoint or equal.
Define
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d(U) =
∫
x∈U

vol(B(x, U))−1d(x, ρ(x, U)).

More generally, if h is a locally constant function on VFn into Rdf with bounded
support, we can define

d(h) =
∫
x∈VFn

h(x)[B(x, h)]−1d(x, ρ(x, U)), (11.6)

where now B(x, h) = B(x, ρ(x, U)) is the largest open cube around x on which h
is constant.

Proposition 11.8. Let d be a definable distribution. Then there exists a definable
open setG ⊆ VFn whose complementZ has dimension< n, and a definable function
g : G→ Cdf such that for any polydisc U ⊆ G

d(U) =
∫
U

g.

Proof. Since d is a finite sum of Rdf -valued distributions, we may assume it is Rdf -
valued. Given a ∈ VFn, we have a function αa :  → Rdf defined by αa(ρ) =
d(B(a, ρ)). Using the RV-description of R, and the stable embeddedness of RV∪,
we see that αa has a canonical code c(a) ∈ (RV ∪ )∗.

Let G be the union of all polydiscs W such that c is constant on W . Let Z =
VFn \G. By Lemma 5.13, dim(Z) < n.

Claim. Let W be a polydisc such that c is constant on W . Then for some r ∈ Rdf ,
for any polydisc U = B(a, ρ) ⊆ W , d(a, ρ) = rvol(U).

Proof. Since c is constant on W , for some function δ, all ρ and all b ∈ W with
B(w, ρ) ⊆ W , we have d(B(w, ρ)) = δ(ρ). By the definition of a distribution we
have, for any a ∈ W ,

δ(ρ)vol(B(a, ρ′))=
a

volB(a, ρ)δ(ρ ′).

Now vol(B(a, ρ))=
a

volB(0, ρ). Thus δ(ρ)vol(B(0, ρ′))=
a

volB(0, ρ)δ(ρ′). Since

this holds for any a ∈ W , by Proposition 3.51 we have

δ(ρ)vol(B(0, ρ′))) = volB(0, ρ)δ(ρ′).

Thus δ(ρ)/volB(0, ρ) = r is constant. The claim follows. )�

The proposition also follows using Lemma 11.7. )�



Integration in valued fields 389

11.2 Fourier transform

Let ψ be the tautological projection K → K/M = 	.
Let g : VFn → Cdf be a definable function, bounded on bounded subsets of VFn.

Define a function F(g) by

F(g)(U) =
∫
y∈VF

g(y)(

∫
x∈U

ψ(x · y)).

This makes sense since for a givenU , (
∫
x∈U ψ(x ·y)) vanishes for y outside a certain

polydisc (with sides inverse to U ). Moreover, we have the following.

Lemma 11.9. F(g) is a definable distribution.

Proof. This follows from Fubini, Lemma 11.4, and chasing the definitions. )�
Corollary 11.10. Fix integers n, d. For all local fields L of sufficiently large residue
characteristic, for any polynomial G ∈ L[X1, . . . , Xn] of degree ≤ d, there exists
a proper variety VG of Ln such that F(|G|) agrees with a locally constant function
outside VG.

Proof. The proof follows from Lemmas 11.9 and 11.8. )�
See [4] for the real case.

12 Expansions and rational points over Henselian fields

We have worked everywhere with the geometry of algebraically closed valued fields,
or more generally of T, but at a geometric level; all objects and morphisms can be
lifted to the algebraic closure, and the quantifiers are interpreted there.

For many purposes, we believe this is the right framework. It includes, for
instance, Igusa integrals

∫
x∈X(F) |f (x)|s , and we will show in a future work how to

interpret in it some constructions of representation theory. See also [21].
In other situations, however, one wishes to integrate definable sets over Henselian

fields rather than only constructible sets; and to have a change of variable formula for
definable maps, as obtained by Denef–Loeser and Cluckers-Loeser (cf. [7]). It turns
out that our formalism lends itself immediately to this generalization; we explain in
this section how to recover it. The point is that an arbitrary definable set is an RV-
union of constructible ones, and the integration theory commutes with RV-unions.

We will consider F that admits quantifier elimination in a language L+ ob-
tained from the language of T by adding relations to RV only. For example, if
F = Th(C((X))), F has quantifier elimination in a language expanded with names
Dn for subgroups of  (with Dn(F) = n(F )).

There are two steps in moving from F alg to F . We will try to clarify the situation
by taking them one at a time. The two steps are to restrict the points to a smaller set
(the F -rational points), and they enlarge the language to a larger one (with enough
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relation symbols for F -quantifier elimination). We will take these steps in the reverse
order. In Section 12.1 we show how to extend the results of this paper to expansions
of the language in the RV sorts, and in Section 12.3 how to pass to sets of rational
points over a Hensel field.

The reader who wishes to restrict attention to constructible integrals (still taking
rational points) may skip Section 12.1, taking T+ = T in Section 12.3. In this case one
still has a change of variable formula for a constructible change of variable, but not for
a definable change of variable. An advantage is that the target ring correspondingly
involves the Grothendieck group of constructible sets and maps rather than definable
ones, which sometimes has more faithful information; cf. Example 12.12.

12.1 Expansions of the RV sort

Let T be V-minimal.
Let T+ be an expansion of T obtained by adding relations to RV. We assume that

every M |= T embeds into the restriction to the language of T of some N |= T+.
(As T is complete, this is actually automatic.) By adding some more basic relations,
without changing the class of definable relations, we may assume T+ eliminates RV-
quantifiers. As T eliminates field quantifiers, and T+ has no new atomic formulas
with VF variables, T+ eliminates VF-quantifiers, too, and hence all quantifiers.

For instance, T+ may include a name for a subfield of the residue field (say,
pseudofinite) or the angular coefficients the Denef–Pas language (where RV is split).
Write +-definable for T+-definable; similarly, tp+ will denote the type in T+, etc.
The unqualified words formula, type, and definable closure will refer to quantifier-free
formulas of T.

Lemma 12.1. LetM |= T+. Let A be a substructure ofM , c ∈ M , B = A(c)∩RV.

(1) tp(c/A ∪ B) ∪ T+A∪B implies tp+(c/A ∪ B).
(2) Assume c is T+A-definable. Then c ∈ dcl(A, b) for some b ∈ A(c) ∩ RV.

Proof.

(1) This follows immediately from the quantifier elimination for T+. Indeed, let
φ(x) ∈ tp+(c/A ∪ B). Then φ is a Boolean combination of atomic formulas,
and it is sufficient to consider the case of φ atomic, or the negation of an atomic
formula. Now since any basic function VFn → VF is already in the language of
T, every basic function of the language of T+ denoting a function VFn → RV
factors through a T-definable function into RV. Hence the same is true for all
terms (compositions of basic functions). And any basic relation is either the
equality relation on VF, or else a relation between variables of RV. If φ is
an equality or inequality between f (x), g(x), it is already in tp(c/A). Now
suppose φ is a relation R(f1(x), . . . , fn(x)) between elements of RV. Since
B(c) ∩ RV ⊆ B, the formula fi(x) = bi lies in tp(c/A ∪ B) for some bi ∈ B.
On the other hand, R(b1, . . . , bn) is part of T+B . These formulas together imply
R(f1(x), . . . , fn(x)).



Integration in valued fields 391

(2) We must show that c ∈ dcl(A ∪ B). Let p = tp(c/A ∪ B). By (1), p generates
a complete type of T+A∪B . Since this is the type of c and c is T+A-definable,
and since any model of T embeds into a model of T+, p has a unique solution
solution in any model of T. Thus c ∈ dcl(A ∪ B). )�
We will now see that any T+-definable bijection decomposes into T-bijections,

and bijections of the form x �→ (x, j (g(x))) where g is a T-definable map into RVm

and j is a T+-definable map on RV.

Corollary 12.2.

(1) Let P be a T+-definable set. There exist T-definable f : P̃ → RV∗ and a
T+-definableQ ⊆ RV∗ such that P = f−1Q.

(2) LetP1, P2 be T+-definable sets, and letF : P1 → P2 be a T+-definable bijection.
Then there exist gi : P̃i → Ri ⊆ RVm, R ⊆ RVm, hi : R → Ri , and a bijection
H : P̃1 ×g1,h1 R → P̃2 ×g2,h2 R over R, all T-definable, and T+-definable
Qi ⊆ Ri , Q ⊆ R, and ji : Qi → Q such that Pi = gi−1Qi , hiji = IdQi , and
for x ∈ P1,

j1g1(x) = j2g2(F (x)) =: j (x) and H(x, j (x)) = (F (x), j (x)). (2)

Moreover, if Pi ⊆ VFn × RVm projects finite-to-one to VFn, then R → Ri is
finite-to-one.

Proof.
(1) Let F be the family of all T-definable functions f : W → RVm, where W is

a definable set.

Claim. If tp(c) = tp(d) and f (c) = f (d) for all f ∈ F with c, d ∈ dom(f ), then
c ∈ P ⇐⇒ d ∈ P .

Proof. We have tp(c, f (c)) = tp(d, f (d)) = tp(d, f (c)), so tp(c/f (c)) = tp(d/f (c))
for all f ∈ F with c ∈ dom(f ), and thus tp(c/B) = tp(d/B), whereB = A(c)∩RV.
It follows that tp+(c) = tp+(d) and, in particular, c ∈ P ⇐⇒ d ∈ P . )�

By compactness, there are (fi,Wi)mi=1 ∈ F such that if c ∈ Wi ⇐⇒ d ∈ Wi and
fi(c) = fi(d) whenever c, d ∈ Wi , then c ∈ P ⇐⇒ d ∈ P . Let P̃ = ∪iWi , and
extend fi to P̃ by fi(x) = ∞ if x /∈ Wi . Let f (x) = (f1(x), . . . , fm(x)). Letting
P̃ = ∪iWi andQ = f (P ), (1) follows.

(2) Consider first a T+-type p = tp+(c1), c1 ∈ P1. Let c2 = F(c1). Using
Lemma 3.48, there exists gpi ∈ F such that ei = g

p
i (ci) generates dcl(ci) ∩ RV.

It follows as in Lemma 12.1(1) that ei generates dcl+(ci) ∩ RV. Let e gener-
ate dcl(c1, c2) ∩ RV; we have ei = h

p
i (e) for appropriate T-definable hpi . Note

dcl+(c1) = dcl+(c2), and so e ∈ dcl+(ci). Now quantifier elimination for T+
implies the stable embeddedness of RV, in the same way as for ACVF (cf. Sec-
tion 2.1). By Lemma 2.9 tp+(ci/ei) implies tp+(ci/RV); in particular, since
e ∈ dcl+(ci) e = jpi (ei) for some T+-definable jpi . By Lemma 12.1(2) over dcl(c1),
c2 ∈ dcl(c1, e); similarly, c1 ∈ dcl(c2, e). Thus there exists a T-definable invertible
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Hp with Hp(c1, e) = (c2, e). Equations (2) have been shown to hold on p. Now gi
extends to a T-definable function gi : P̃i → Ri . By compactness (2) holds on some
definable neighborhood of p; and by (1) this neighborhood can be taken to have the
form g1

−1Q1 for some Q1. Finitely many such neighborhoods cover P1, and the
data can be sewed together as in (1). We thus find P̃1, R, R1, R2, g1, g2, h1, h2, H ,
Q1, j1, j2 such that hiji(x) = x and (2) holds on g1

−1Q1 = P1. LetQ2 = h2j1Q1;
it follows that P2 = F(P1) = g2

−1Q2.
To prove the last point, since c2 ∈ dcl(c1, e)we have (Lemma 3.41) c2 ∈ acl(c1).

But e ∈ dcl(c1, c2) so e ∈ acl(dcl(c1)); and as e ∈ RVm for somem, e ∈ acl(dcl(e1)).

Let VF+ be the category of +-definable subsets of varieties over VF ∩ dcl(∅),
and +-definable maps. Define effective isomorphism as in Definition 8.2; let K+eff

denote the Grothendieck group of effective isomorphism classes, and let [X] be the
class of X.

Let RV+[∗] be the category of pairs (Y, f ), where Y is a+-definable subset ofX
for some (X, f ) ∈ Ob RV[∗] (Definition 3.66). A morphism (Y, f )→ (Y ′, f ′) is a
definable bijection h : Y → Y ′ such that f ′(h(y)) ∈ acl(f (y)) for y ∈ Y .

LetK+(RV+[∗]) be the Grothendieck semigroup of isomrphism classes of RV+;
let Isp be the congruence generated by (J, 11), where J = {1}0 + [RV>0]1.

Proposition 12.3. There exists a canonical surjective homomorphism of Grothen-
dieck semigroups

D

∫
: K+(VF+[∗])→ K+(RV+[∗])/Isp

determined by

D

∫
[X] = [W ]/Isp ⇐⇒ [X] = [LW ].

Proof. We have to show the following:

(i) Any element of K+(VF+) is effectively isomorphic to one of the form [LW ].
(ii) If [LW1] = [LW2] then ([W1], [W2]) ∈ Isp.

(i) By Corollary 12.2(1), a typical element of K+(VF+) is represented by P =
f−1Q, where Q ⊆ RV∗is T+-definable, f : P̃ → RV∗ is T-definable. For any
a ∈ RV∗, f−1(a) is Ta-definable, and [f−1(a)] = [LCa]where [Ca] = [∫ f−1(a)].
Since L commutes with RV-disjoint unions, it follows that [P ] = [LW ] where
W = .∪a∈Q Ca .

(ii) Assume [LW1] = [LW2]. By Proposition 3.51, the base can be enlarged so as
to be made effective, without change to RV; thus to show that ([W1], [W2]) ∈ Isp we
may assume LW1,LW2 are isomorphic. Let f : LW1 → LW2 be an isomorphism.
Let Pi = LWi and let P̃i , Ri , gi , hi , R, H ,Q,Qi , ji be as in Corollary 12.2(2).

Since Pi = gi−1Qi = LWi , the maximal ∼
rv

-invariant subset of P̃i contains Pi ,

so we may assume P̃i is∼
rv

-invariant; in other words, P̃i = LW̃i for some T-definable

W̃i ∈ RV[∗, ·] containingWi .
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By Lemma 7.8, there exists a special bijection σ : LW̃ ∗
i → LW̃i such that

gi ◦ σ factors through ρ, i.e., for some ei : W̃ ∗
i → Ri we have gi ◦ σ = ei ◦ ρ on

LW̃i . Let Wi∗ be the pullback of Wi to W̃ ∗
i , so that σ(LW ∗

i ) = LWi = Pi . Then
([Wi], [Wi∗]) ∈ Isp, so it suffices to show that (W ∗

1 ,W
∗
2 ) ∈ Isp. Since Pi = gi−1Qi ,

we haveW ∗
i = ei−1Qi .

For c ∈ R, let P̃i(c) = σ−1gi
−1(hi(c)), W̃i(c) = ei

−1(hi(c)). Then P̃i(c) =
LW̃i(c). Now H induces a bijection P̃1(c) → P̃2(c). Thus by Proposition 7.25,
(W̃1(c), W̃2(c)) ∈ Isp. In particular, this is true for c ∈ Q; now hi : Q → Qi is a

bijection, andW ∗
i =

.∪c∈Q W̃i(c). Thus ([W ∗
1 ], [W ∗

2 ]) ∈ Isp. )�
Remark. Since the structure on RV in T+ is arbitrary, we cannot expect the homo-
morphism of Corollary 12.3 to be injective. We could make it so tautologically by
modifying the category RV+, taking only liftable morphisms, i.e., those that lift to
VF; we then obtain an isomorphism. In specific cases it may be possible to check
that all morphisms are liftable.

12.2 Transitivity

Motivation. Consider a tower of valued fields, such as C ≤ C((s)) ≤ C((s))((t)).
Given a definable set over C((s))((t)), we can integrate with respect to the t-valuation,
obtaining data over C((s)) and the value group. The C((s)) can then be integrated
with respect to the s-valuation. On the other hand, we can consider directly the Z2-
valued valuation of C((s))((t)), and integrate so as to obtain an answer involving
the Grothendieck group of varieties over C. Below we develop the language for
comparing these answers, and show that they coincide.

For simplicity we accept here a Denef–Pas splitting, i.e., we expand RV so as to
split the sequence k∗ → RV∗ → . Then rv splits into two maps, ac : VF∗ → k∗
and val : VF∗ → . This expansion of ACVF(0, 0) is denoted ACVFDP. Note that
this falls under the framework of Section 12.1, as will the further expansions below.

Consider two expansions of ACVFDP: (1) Expand the residue field to have the
structure of a valued field (itself a model of ACVFDP). (2) Expand the value group to
be a lexicographically ordered product of two ordered Abelian groups. Then (1)–(2)
yield bi-interpretable theories. In more detail, we have the following:

First expansion. Rename the VF sort as VF21, the residue field as VF1, and the
value group 1. VF1 carries a field structure; expand it to a model of ACVFDP, with
residue field F0 and value group 0. Let ac21, val21 have their natural meanings.

Second expansion. Rename the VF-sort as VF20, the residue field as F0 and
the value group as 20. Add a predicate 0 for a proper convex subgroup of 20,
and a predicate 1 for a complementary subgroup, so that 20 is identified with the
lexicographically ordered 0 × 1.

Lemma 12.4. The two theories described above are bi-interpretable. A model of (1)
can canonically be made into a model of (2)with the same class of definable relations,
and vice versa.
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Proof. Given (1), let VF20 = VF21 as fields. Define

ac20 = ac10 ◦ ac21 . (12.1)

Let 20 = 1 × 0, and define val20 : VF∗21 → 20 by

val20(x) = (val21(x), val10(ac21(x))). (12.2)

Conversely, given (2), let VF21 = VF20 as fields;

O21 = {x ∈ VF21 : (∃t ∈ 0)(val20(x) ≥ t)},
M21 = {x ∈ VF21 : (∀t ∈ 0)(val20(x) > t)},
VF1 = O21/M21.

Let VF21 have the valued field structure with residue field VF1; note that the value
group VF∗21/O

∗
21 can be identified with 1. Note that ker ac20 ⊃ 1 + M21, so that

factors through VF∗1, and define ac10, ac21 so as to make (12.1) hold. Then define
val21, val10 so that (12.2) holds. )�

Let VF+[∗] denote the category of definable subsets of VF21, equivalently, VF20,
in the expansions (1) or (2). According to Proposition 12.3 and Lemma 2.11,
we have canonical maps K+(VF+[∗]) → K+(RV+

1 [∗])/Isp and K+(VF+[∗]) →
K+(RV+

2 [∗])/Isp, where RV+
i [∗] denotes the expansion of RV according to (1)–(2),

respectively.
By Proposition 8.4 we have canonical maps

K+(VF+[∗])→ K+(VF1[∗])⊗K+(21[∗])/Isp

→ (K+(F0)⊗K+(10))⊗K+(21)/Isp1

(12.3)

for a certain congruence Isp1. And, on the other hand,

K+(VF+[∗])→ K+(F0[∗])⊗K+(20[∗])/Isp

= K+(F0[∗])⊗ (K+(10[∗])⊗K+(21[∗]))/Isp2.
(12.4)

For an appropriate Isp2. The tensor products here are over Z, in each dimension
separately.

Using transitivity of the tensor product we identify (K+(F0) ⊗ K+(10)) ⊗
K+(21) with K+(F0[∗])⊗ (K+(10[∗])⊗K+(21[∗])). Then

Theorem 12.5. Isp1, Isp2 are equal and the maps of (12.3),(12.4) coincide.

Proof. It suffices to show in the opposite direction that the compositions of maps
induced by L

(K+(F0[∗])⊗K+(10[∗])⊗K+(21[∗])→ K+(VF1[∗])⊗K+(21[∗])
→ K+(VF+[∗]), (12.5)

K+(F0[∗])⊗K+(10[∗])⊗K+(21[∗])→ K+(F0[∗])⊗K+(20[∗])
→ K+(VF+[∗]) (12.6)

coincide. But this reduces by RV-additivity to the case of points, and by multplica-
tivity to the individual factors F0, 21, 10, yielding to an obvious computation in
each case. )�
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12.3 Rational points over a Henselian subfield: Constructible sets and
morphisms

Let T be V-minimal, and T+ an expansion of T in the RV sorts.
Let F be an effective substructure of a model of T. Thus F = (FVF, FRV), with

FVF a field, and rv(FVF) = FRV; and F is closed under definable functions of T. For
example, if T = T+ = ACVF(0, 0), this is the case iff FVF is a Henselian field and
FRV = F/M(F ); any Hensel field of residue characteristic 0 can be viewed in this
way. See Example 12.8.

By a +-constructible subset of Fn, we mean a set of the form X(F) = X ∩ Fn,
withX a quantifier-free formula of T+. Let VF+(F ) be the category of such sets, and
+-constructible functions between them. The Grothendieck semiringK+ VF+(F ) is
thus the quotient of K+ VF by the semiring congruence

IF = {([X], [Y ]) : X, Y ∈ Ob VF+, X(F ) = Y (F )}.
(One can verify this is an ideal; in fact, if X(F) = Y (F ) and X ' X′, then there
exists Y ′ ' Y with X′(F ) = Y ′(F ).)

Similarly, we can define IRVF and form K+ RV(F ) ' K+(RV)/IRVF . As usual,
let Isp denote the congruence generated by ([1]0 + [RV>0]1, [1]1), and IRVF + Isp
their sum.

Claim. If ([X], [X′]) ∈ IF then (D
∫ [X], D

∫ [X′]) ∈ IRVF + Isp.

Proof. We may assume, changing X within the VF-isomorphism class [X], that
X(F) = X′(F ). Then X(F) = (X ∪ X′)(F ) = X′(F ), and it suffices to show
that (D

∫ [X], D
∫ [X ∪ X′]), (D∫ [X′], D

∫ [X ∪ X′]) ∈ IRVF . Thus we may assume X ⊆ X′.
Let Z = X′ \ X. Then Z(F) = ∅, and it suffices to show that (D

∫
(Z),∅) ∈ IRVF .

Now D
∫
(Z) = [Y ] for some Y with Z definably isomorphic to LY . Thus LY (F ) = ∅;

hence Y (F ) = ∅. Thus ([Y ],∅) ∈ IRVF , as required. )�
As an immediate consequence, we have the following.

Proposition 12.6. Assume F ≤ M |= T, with F closed under definable functions of
T. The homomorphism D

∫
of Theorem 8.8 induces a homomorphism∫

F

: K+ VF+(F )→ K+ RV+(F )/Isp. )�

12.4 Quantifier elimination for Hensel fields

Let T be a V-minimal theory in a language LT, with sorts (VF,RV) (cf. Section 2.1).
Assume T admits quantifier elimination and, moreover, that any definable function is
given by a basic function symbol. This can be achieved by an expansion-by-definition
of the language.

Let Th = (T)∀ ∪ {(∀y ∈ RV)(∃x ∈ VF)(rv(x) = y)}.
A model of Th is thus the same as a substructure A of a model of T, such that

RV(A) = rv(VF(A)).
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Lemma 12.7. Any formula of LT is T-equivalent to a Boolean combination of for-
mulas in VF-variables alone, and formula ψ(t (x), u) where t is a sequence of terms
for functions VFn → RV, u is a sequence of RV-variables, and ψ is a formula of RV
variables only.

Proof. This follows from stable embeddedness of RV, Corollary 3.24, Lemma 2.8
and the fact (Lemma 7.10) that definable functions into  factor through definable
functions into RV. )�
Example 12.8. If T = ACVF(0, 0), then Th is an expansion-by-definition of the
theory of Hensel fields of residue characteristic zero.

Proof. We must show that a Henselian valued field is definably closed in its algebraic
closure, in the two sorts VF, RV.

Let K |= THensel , K ≤ M |= ACVF. Let X ⊆ VFk ×RVl , Y ⊆ VFk
′ ×RVl

′
be

ACVFK -definable sets, and F : X→ Y an ACVFK -definable bijection. We have to
show that F(X ∩Kk × RV(K)l) = Y ∩Kk′ × RV(K)l

′
.

Kalg is an elementary submodel ofM; we may assumeKalg = M . By one of the
characterizations of Henselianity, the valuation onK extends uniquely toKalg. Hence
every field automorphism of M over K is a valued field automorphism. Thus K is
the fixed field of Aut(M/K) (in the sense of valued fields), and hence K = dcl(K).
Since ACVFK is effective, any definable point of RV lifts to a definable point of VF;
so dcl(K) ∩ RV = RVK . Thus K is definably closed inM in both sorts. )�

Let L ⊃ LT; assume L \ LT consists of relations and functions on RV only. If
A ≤ M |= T, letLT(A) be the languages enriched with constants for each element of
A; let Th(A) = TA ∪Th, where TA is the set of quantifier-free valued field formulas
true of A.

Proposition 12.9. Th admits elimination of field quantifiers.

Proof. LetA be as above. Let�A be the set ofL(A)-formulas with no VF-quantifiers.

Claim. Let φ(x, y) ∈ �A with x a free VF-variable. Then (∃x)φ(x, y) is Th(A)-
equivalent to a formula in �A.

Proof. By the usual methods of compactness and absorbing the y-variables into A,
it suffices to prove this when x is the only variable. Assume first that φ(x) is an
LT(A)-formula. By Lemma 4.2, there exists an ACVF-definable bijection between
the definable set defined by φ(x), and a definable set of the form Lφ′(x′, u), where
φ′ is an LT(A)-formula in RV-variables only (including a distinguished variable x′
on which L acts.) By the definition of Th, in any model of Th, φ has a solution iff
Lφ′(x′, u) has a solution. But clearly Lφ′(x′, u) has a solution iff φ′(x′, u) does.
Thus Th(A) |= (∃x)φ(x) ⇐⇒ (∃x′, u)φ′(x′, u).

Now let φ(x) be an arbitrary �A formula. Let ! be the set of formulas of L(A)
involving RV-variables only. Let' be the set of conjunctions of formulas of LT(A)

in VF-variables only, and of formulas of the form ψ(t (x)), where ψ ∈ ! and t
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is a term of LT(A). The set of disjunctions of formulas in ' is then closed under
Boolean combinations, and under existential RV-quantification. By Lemma 12.7 it
includes all LT-formulas, up to equivalence; and also all formulas in RV-variables
only. Thus φ(x) is a disjunction of formulas in ', and we may assume φ(x) ∈ '.
Say φ = φ0(x) ∧ ψ(t (x)), with φ0 ∈ LT(A) and ψ ∈ !. By the claim, for some
formula ρ(y) of �A, we have Th(A) |= ρ(y) ⇐⇒ (∃x)(t (x) = y&φ0(x)). Hence
(∃x)φ(x) ⇐⇒ (∃y)(ψ(y)&ρ(y)). )�

Quantifier elimination now follows by induction. )�
Remark. Since only field quantifiers are mentioned, this immediately extends to ex-
pansions in the field sort.

In particular, one can split the sequence 0 → k∗ → RV → → 0 if one wishes.
This yields the quantifier elimination [30] in the Denef–Pas language.

The results of Ax-Kochen and Ershov, and the large literature that developed
around them, appeared to require methods of “quasi-convergent sequences.’’ It is
thus curious that they can also be obtained directly from Robinson’s earlier and
purely “algebraic’’ quantifier elimination for ACVF. Note that in the case of ACVF,
there is no need to expand the language to obtain QE; and then Lemma 12.7 requires
no proof beyond inspection of the language.

12.5 Rational points: Definable sets and morphisms

In this subsection we will work with completions T of Th ∪ {(∃x ∈ )(x > 0)}.
These are theories of valued fields of residue characteristic 0, possibly expanded, not
necessarily algebraically closed. The language of T is thus the language of T+. The
words formula, type, definable closure will refer to quantifier-free formulas of T+.
Definable closure, types with respect to T are referred to explicitly as dclT , T tp, etc.

LetF |= T . SinceF |= T∀,F embeds into a modelM ′ of T+. Since(F) �= (0),
by Proposition 3.51 and Lemma 3.49, there exists F ′ ⊆ M ′ containing F , with
(F ′) = (F), andM = acl(F ′) an elementary submodel ofM ′. Hence F embeds
into a modelM of T+ with (F) cofinal in (M).

Lemma 12.10. Let F |= T , F ≤ M |= T+, (F) cofinal in (M). Let A be a
substructure ofM , c ∈ F , B = A(c) ∩ RV ∩ F ,

(1) tp(c/B) ∪ TB implies T tp(c/B).
(2) Assume c is TA-definable. Then c ∈ dcl(A, b) for some b ∈ B.

Proof.

(1) This follows immediately from the quantifier elimination for T and from Lem-
ma 12.1(1).

(2) We have B ⊆ dclT (A) ∩ RV. We must show that c ∈ dcl(A ∪ B). Let p =
tp(c/A∪B). By (1), p generates a complete type of TA∪B . Since this is the type
of c and c is TA-definable, some formula P in the language of TA∪B with P ∈ p



398 Ehud Hrushovski and David Kazhdan

has a unique solution in F . Now the values of F are cofinal in the value group
of Fa ; so P cannot contain any ball around c. (Any such ball would have an
additional point of F , obtained by adding to c some element of large valuation.)
Let P ′ be the set of isolated elements of P ; then P ′ is finite (as is the case for
every definable P ), TA-definable, and c ∈ P ′. By Lemma 3.9, there exists an
TA-definable bijection f : P ′ → QwithQ ⊆ RVn. Then f (c) ∈ dclT (A) = B,
and c = f−1(f (c)) ∈ dcl(A ∪ B). )�

Corollary 12.11. Two definably isomorphic definable subsets of F have the same
class in K+ VF+(F ).

Proof. T -definable bijections are restrictions of T+-definable bijections. Hence Cor-
ollary 12.2 is true with T replacing T+. )�

Thus Proposition 12.6 includes a change-of-variable formalism for definable bi-
jections.

12.6 Some specializations

Tim Mellor’s Euler characteristic

Consider the theory RCVF of real closed valued fields. Let RVRCVF, RESRCVF,
VALRCVF denote the categories of definable sets and maps that lift to bijections of
RCVF (on RV and on the residue field, value group, respectively; we do not need
to use the sorts of RES other than the residue field here, say, all structures A of
interest have A divisible). From Proposition 12.6 and Corollary 12.11, we obtain
an isomorphism: K(RCVF)→ K(RVRCVF)/([0]1 − [RV>0]1 − [0]0).

The residue field is a model of the theory RCF of real closed fields; K(RCF) =
Z via the Euler characteristic (cf. [37]). Since the ambient dimension grading is
respected here, K(RESRCVF) = Z[t].

The value group is a model of DOAG, and moreover, any definable bijection on
[n] for fixed n lifts to RV and, indeed, to RCVF. This is because the multiplicative
group of positive elements is uniquely divisible, and so SLn(Q) acts on the nth
power of this group. By Proposition 9.4, K(DOAG)[n] = Z2 for each n ≥ 1, and
K(VALRCVF) = Z[s](2) := {(f, g) ∈ Z[s] : f (0) = g(0)}.

Thus K(RVRCVF) = Z[t] ⊗ Z[s](2) ≤ Z[t, s]2; and J is identified with the class
(1, 1)−(0,−s)−(t, t). Thus we obtain two homomorphismsK(RVRCVF)/J → Z[s]
(one mapping t �→ 1, the other with t �→ 1− s; and as a pair they are injective).

Equivalently, we have found two ring homomorphisms χ, χ ′ : K(RCVF) →
Z[t]. One of these was found in [27].

Cluckers–Haskell

Take the theory of the p-adics. By Proposition 12.6 and Corollary 12.11 we obtain
an isomorphism: K(pCF)→ K(RVpCF)/Isp. However, RVpCF is a finite extension
of Z, and evidently K(Z) = 0, since [[0,∞)] = [[1,∞)]. Thus K(pCF) = 0.
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12.7 Higher-dimensional local fields

We have seen that the Grothendieck group of definable sets with volume forms loses
a great deal of information compared to the semigroup. Over fields with discrete
value groups, restricting to bounded sets is helpful; in this way the Grothendieck
group retains information about volumes. In the case of higher-dimensional local
fields, with value group A = Zn, simple boundedness is insufficient to save it from
collapse. We show that using a simple-minded notion of boundedness is only partly
helpful, and loses much of the volume information (all but one Z factor).

Example 12.12. LetKµbdd(Th(C((s1))((s2)))[n]) be the Grothendieck ring of defin-
able bounded sets and measure-preserving maps in C((s1))((s2)) (with val(s1) �
val(s2)). Let Qt denote the class of the thin annulus of radius t . In particular, Q0 is
the volume of the units of the valuation ring. Then in Kµbdd(Th(C((s1))((s2)))[2]),
we have, for example, (Q0)2 = 0. To see this directly, let

Y = {(x, y) : val(x) = 0, val(y) = 0},
X = {(x, y) : 0 < 2 val(x) < val(s2), val(x)+ val(y) = 0}.

Then X is bounded. Let f (x, y) = (x/s1, s1y). Then f is a measure-preserving
bijection X→ X′ = {(x, y) : 0 < 2(val(x)+ val(s1)) < val(s2), val(x)+ val(y) =
0}. But in C((s1))((s2)), 2 val(x) < val(s2) iff 2(val(x) + val(s1)) < val(s2), so
X′(C((s1))((s2))) = X(C((s1))((s2)) ∪ Y (C((s1))((s2))).
Remark 12.13. (2[[0, y/2]]−[[0, y]])(2[[0, y/2)]−[[0, y)]), is a class of the Grothen-
dieck group of  that vanishes identically in the Z-evaluation, but not in the Z2-
evaluation.

13 The Grothendieck group of algebraic varieties

Let X, Y be smooth nonsingular curves in P3, or in some other smooth projective
variety Z, and assume Z \ X, Z \ Y are biregularly isomorphic. Say X, Y , Z are
defined over Q. Then for almost allp, |X(Fp)| = |Y (Fp)|, as one may see by counting
points of Z, Z \ X and subtracting. It follows from Weil’s Riemann hypothesis for
curves that X, Y have the same genus, from Faltings that X, Y are isomorphic if the
genus is 2 or more, and from Tate that X, Y are isogenous if the genus is one. It
was this observation that led Kontsevich and Gromov to ask ifX, Y must actually be
isomorphic. We show that this is the case below.2

Theorem 13.1. LetX, Y be two smooth d-dimensional subvarieties of a smooth pro-
jective n-dimensional varietyV , and assumeV \X,V \Y are biregularly isomorphic.
ThenX, Y are stably birational, i.e.,X×An−d , Y×An−d are birationally equivalent.
If X, Y contain no rational curves, then X, Y are birationally equivalent.

2 This already follows from [22], who use different methods.
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While we do not obtain a complete characterization in dimensions> 1, the results
and method of proof do show that the answer lies in synthetic geometry and is not
cohomological in nature.

Let VarK be the category of algebraic varieties over a field K of characteristic 0.
Let [X] denote the class of a varietyX in the Grothendieck semigroupK+(VarK).

We allow varieties to be disconnected. As all varieties will be over the same fieldK ,
we will write Var for VarK . LetK+ Varn be the Grothendieck semigroup of varieties
of dimension ≤ n.

For the proof, we viewK as a trivially valued subfield of a model of ACVF(0, 0).
We work with the theory ACVFK , so that “definable’’ means K-definable with
quantifier-free ACVF-formulas.

Note that RES = k∗ in ACVFK ; the only definable point of  is 0, so the only
definable coset of k∗ is k∗ itself.

The residue map is an isomorphism on K onto a subfield KRES of the residue
field k. In particular, any smooth variety V over K lifts canonically to a smooth
scheme VO = V ⊗K O over O, with generic fiber VVF = VO⊗O VF and special fiber
VO⊗O k = V ⊗K k. We have a reduction homomorphism ρV : V (O)→ V (k). We
will write V (O), V (VF) for VO(O), VVF(VF).

Given k ≤ n and a definable subset X of RV∗ of dimension ≤ k, let [X]k be the
class of X in K+ RV[k] ⊆ K+ RV[≤ n]. Thus if dim(X) = d we have n − d + 1
classes [X]k , d ≤ k ≤ n, in different direct factors of K+ RV[≤ n]. We also use
[X]k to denote the image of this class in K+ RV[≤ n]/Isp. This abuse of notation
is not excessive since for n ≤ N , K+ RV[≤ n]/Isp embeds in K+ RV[≤ N ]/Isp
(Lemma 8.7).

Let SDd be the image of K+ RV[≤ d] in K+ RV[≤ N ]/Isp. Let WDnd be the
subsemigroup of RV[n] generated by {[X] : dim(X) ≤ d}, and use the same letter
to denote the image in RV[≤ N ]/Isp. Let FDn = SDn−1 +WDnn−1. We write a ∼
b(FDnd) for (∃u, v ∈ FDnd)(a + u = b + v). More generally, for any subsemigroup
S′ of a semigroup S, write a ∼ b(S′) for (∃u, v ∈ S)(a + u = b + v).

We write K(RV[≤ n])/Isp for the groupification of K+(RV[≤ n])/Isp.

Lemma 13.2. Let V be a smooth projective k-variety of dimension n, X a definable
subset of V (k). Then

D

∫
[ρV −1(X)] = [X]n.

Proof. Let X = (X, f ) where f : X → RVn is a finite-to-one map. We have to
show that [LX] = [ρV −1(X)] in K+(VF[n]), i.e., that LX, ρV −1(X) are definably
isomorphic. By Lemma 2.3 this reduces to the case thatX is a point p. Find an open
affine neighborhood U of V such that ρV −1(p) ⊆ U(O), and U admits an étale map
g : V → An over k. Now U(O) ' On ×res,g U(k). This reduces the lemma to the
case of affine space, where it follows from the definition of L. )�
Lemma 13.3. Let X be a K-variety of dimension ≤ d.

(1) D
∫
(X(VF)) ∈ SDd = K+(RV[≤ d])/Isp.

(2) If X is a smooth complete variety of dimension d, then D
∫
X(VF) = [X]d .
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(3) If X is a variety of dimension d , then D
∫
X(VF) ∼ [X]d(FDd).

Proof.

(1) This is obvious, since dim(X(VF)) ≤ d .
(2) By Grothendieck’s valuative criterion for properness, X(VF) = X(O). We thus

have a map ρV : X(VF) = X(O) → X(k). For α ∈ X(k), let Xα(VF) =
ρV

−1(α). Since X is smooth of dimension d it is covered by Zariski open
neighborhoods U admitting an étale map fU : U → Ad , defined over K; let S

be a finite family of such pairs (U, fU ), with ∪(U,fU )∈SU = X. We may choose
a definable finite-to-one f : X→ Ad , defined over K , such that for any x ∈ X,
for some pair (U, fU ) ∈ S, f (x) = fU(x). We have L([X]d) = L(X, f ) =
VFd ×rv,f X(k). We have to show that L(X, f ) is definably isomorphic to
X(VF). By Lemma 2.3 it suffices to show that for each α ∈ X(k), VFd ×rv,f {a}
is α-definably isomorphic to Xα(VF). Now VFd ×rv,f {a}=

α
rv −1(f (α)). We

have f (α) = fU(α) for some (U, f ) ∈ S with α ∈ U . Since fU is étale, it
induces a bijective map Uα(VF) → rv −1(f (α)). But Xα(VF) = Uα(VF), so
the required isomorphism is proved.

(3) If X, Y are birationally equivalent, then [X]d ∼ [Y ]d(WDd<d), while X(VF),
Y (VF) differ by VF-definable sets of dimension < d, so

D

∫
(X(VF)) ∼ D

∫
(Y (VF))(SDd).

Using the resolution of singularities in the following form: every variety is bira-
tionally equivalent to a smooth nonsingular one; we are done by (2). With a more
complicated induction we should be able to dispense with this use of Hironaka’s
theorem. )�

Lemma 13.4. Let V be a smooth projectiveK-variety, X, Y closed subvarieties, Let
F : V \ X → V \ Y a biregular isomorphism. Let VO, VVF, Vk , FVF, etc., be the
objects obtained by base change. Then FVF induces a bijection V (VF) \X(VF)→
V (VF) \ Y (VF), and

FVF(ρV
−1(X) \X(VF)) = ρV −1(Y ) \ Y (VF).

Proof. The first statement follows from the Lefschetz principle since VF is alge-
braically closed.

Since V is projective, V (VF) = V (O), and one can define for v ∈ V the valuative
distance d(v,X), namely, the greatest α ∈  such that the image of x in V (O/α) lies
in X(O/α).

Let F be the Zariski closure in V 2 of the graph of F . Then F∩ (V \X)× (V \Y )
is the graph of F . In fact, in any algebraically closed field L, we have

if a ∈ V (L) \X(L) and (a, b) ∈ F(L), then b ∈ V (L) \ Y (L), (13.1)

and conversely.
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Suppose for the sake of contradiction that in some M |= ACVFK there exist
a ∈ ρV −1(X), b /∈ ρV −1(Y ), (a, b) ∈ F. Thus d(a,X) = α > 0, d(b, Y ) = 0. Let

C = {γ ∈  : (∀n ∈ N)nγ < α}.
We may assume by compactness that C(M) �= ∅. Let

I = {y ∈ O(M) : val(y) /∈ C}
so that I is a prime ideal of O(M). Let L be the field of fractions of O(M)/I . Let
ā, b̄ be the images of a, b in L. Then (ā, b̄) ∈ F̄ , and ā ∈ X, b̄ /∈ Y ; contradicting
(13.1). )�
Proof of Theorem 13.1. By Lemma 13.4, there exists a definable bijection ρV −1(X)\
X → ρV

−1(Y ) \ Y . Applying D
∫ : K(VF[n]) → K(RV[≤ n])/Isp, and using

Lemmas 13.2 and 13.3, we have [X]n − [X]d = [Y ]n − [Y ]d . Applying the first
retraction K(RV[≤ n])/Isp → K(RES[n]) of Theorem 10.5, we obtain

[Xn] − [X × An−d ]n = [Y ]n − [Y × An−d ]n
in !K(RES[n]) = K(Varn). Thus

[X × An−d
.∪Y ]n + [Z] = [Y × An−d

.∪X]n + [Z]
for some Z with dim(Z) ≤ n, where now the equality is of classes in K+ Varn.
Counting birational equivalence classes of varieties of dimension n, we see that
X×An−d , Y ×An−d must be birationally equivalent. The last sentence follows from
the lemma below. )�
Lemma 13.5. LetX, Y be varieties containing no rational curve. Let U be a variety
such that there exists a surjective morphism Am → U . If X × U , Y × U are
birationally equivalent, then so are X, Y .

Proof. For any variety W , let F(W) be the set of all rational maps g : A1 → W .
Write dom(g) for the maximal subset of A1 where g is regular; so dom(g) is cofinite
in A1. Let RW = {(g(t), g(t ′)) ∈ W 2 : g ∈ F(W), t, t ′ ∈ dom(g)}. Let EW be the
equivalence relation generated by RW , on points in the algebraic closure. RW,EW
may not be constructible in general, but in the case we are concerned with, they are
as follows.

Claim. Let W ⊆ X × U be a Zariski dense open set. Let π : W → X be the
projection. Then π(w) = π(w′) iff (w,w′) ∈ EW iff (w,w′) ∈ RW .

Proof. If g ∈ F(U), then π ◦g : dom(g)→ X is a regular map; hence by assumption
on X it is constant. It follows that if (w,w′) ∈ RU then π(w) = π(w′), and
hence if (w,w′) ∈ EU then π(w) = π(w′). Conversely, assume w′, w′′ ∈ W and
π(w′) = π(w′′); then w′ = (x, u′), w′ = (x, u′′) for some x ∈ X, u′, u′′ ∈ U . Let
Ux = {u ∈ U : (x, u) ∈ W }. SinceW is open, Ux is open in U . Let h : Am → U be
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a surjective morphism; let h(v′) = u′, h(v′′) = u′′. The line through v′, v′′ intersects
h−1(Ux) in a nonempty open set. This gives a regular map f from the affine lines,
minus finitely many points, intoU , passing through u′, u′′. Thus t �→ (x, f (t)) gives
a rational map from A1 to W , passing through (w′, w′′); and so (w′, w′′) ∈ RU and
certainly in EU . )�

Using the claim, we prove the lemma. Let WX ⊆ X × U , WY ⊆ Y × U
be Zariski dense open, and F : WX → WY a biregular isomorphism. Then F
takes EWX to EWY . Moving now to the category of constructible sets and maps,
quotients by constructible equivalence relations exist, andWX/EWX is isomorphic as
a constructible set toWY/EWY . LetπX : WX → X,πY : WY → Y be the projections.
By the claim, WX/EWX = πX(WX) =: X′. Similarly, WY/EWY = πY (WY ) =: Y ′.
Now since WX, WY are Zariski dense, so are X′, Y ′. Thus X, Y contain isomorphic
Zariski dense constructible sets, so they are birationally equivalent. )�
Remark. The condition on X, Y may be weakened to the statement that they contain
no rational curve through a generic point; i.e., that there exist proper subvarieties
(Xi : i ∈ I ) defined over K , such that for any field L ⊃ K , any rational curve on
X ×K L is contained in some Xi ×K L.

Acknowledgments. Thanks to Aviv Tatarsky and Moshe Kaminsky, and to Lou Van den Dries,
Clifton Ealy, and Jana Maříková for useful comments and corrections.
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