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Summary. We develop a theory of integration over valued fields of residue characteristic zero.
In particular, we obtain new and base-field independent foundations for integration over local
fields of large residue characteristic, extending results of Denef, Loeser, and Cluckers. The
method depends on an analysis of definable sets up to definable bijections. We obtain a precise
description of the Grothendieck semigroup of such sets in terms of related groups over the
residue field and value group. This yields new invariants of all definable bijections, as well as
invariants of measure-preserving bijections.
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1 Introduction

Since Weil’s Foundations, algebraic varieties have been understood independently
of a particular base field; thus an algebraic group G exists prior to the abstract or
topological groups of points G(F), taken over various fields F. For Hecke alge-
bras, or other geometric objects whose definition requires integration, no comparable
viewpoint exists. One uses the topology and measure theory of each local field sepa-
rately; since a field F' has measure zero from the point of view of any nontrivial finite
extension, at the foundational level there is no direct connection between the objects
obtained over different fields. The main thrust of this paper is the development of a
theory of integration over valued fields, which is geometric in the sense of Weil. At
present the theory covers local fields of residue characteristic zero or, in applications,
large positive residue characteristic.

Our approach to integration continues a line traced by Kontsevich, Denef-Loeser,
and Loeser—Cluckers (cf. [7]). In integration over non-archimedean local fields there
are two sources for the numerical values. The first is counting points of varieties over
the residue field. Kontsevich explained that these numerical values can be replaced,
with a gain of geometric information, by the isomorphism classes of the varieties
themselves up to appropriate transformations, or more precisely by their classes in
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a certain Grothendieck ring. This makes it possible to understand geometrically the
changes in integrals upon unramified base change. In this aspect our approach is very
similar. The main difference is a slight generalization of the notion of variety over
the residue field, which allows us to avoid what amounted to a choice of uniformizer
in the previous theory.

The second source of numerical values is the piecewise linear geometry of the
value group. We geometrize this ingredient, too, obtaining a theory of integration
taking values in an entirely geometric ring, a tensor product of a Grothendieck ring
of generalized varieties over the residue field, and a Grothendieck ring of piecewise
linear varieties over the value group.

Viewed in this way, the integral is an invariant of measure-preserving definable
bijections. We actually find all such invariants. In addition, we consider and deter-
mine all possible invariants of definable bijections; we obtain in particular two Euler
characteristics on definable sets, with values in the Grothendieck group of generalized
varieties over the residue field.

At the level of foundations, until an additive character is introduced, we are able to
work with Grothendieck semigroups rather than with classes in Grothendieck groups.

1.1 The logical setting

Let L be a valued field, with valuation ring Or. M denotes the maximal ideal. We
let VF"(L) = L". The notation VF" is analogous to the symbol A" of algebraic
geometry, denoting affine n-space. Let RV"(L) = L*/(1 + M), I'(L) = L*/0%,
k(L) = Op/Mp. Letrv : VF — RV and val : VF — I be the natural maps. The
natural map RV — I is denoted val;,. The exact sequence

0—-k*—>RV->T-—-0

shows that RV is, at first approximation, just a way to wrap together the residue field
and value group.

We consider expressions of the form 4(x) = 0 and val f(x) > val g(x) where
f, g, h € L[X],X = (X1,...,Xn). A semialgebraic formula is a finite Boolean
combination of such basic expressions. A semialgebraic formula ¢ clearly defines a
subset D(L) of VF*(L). Moreover, if f, g,h € Lo[X], we obtain a functor L
D(L) from valued field extensions of L to sets. We will later describe more general
definable sets; but for the time being take a definable subset of VF" to be a functor
D = Dy of this form.

An intrinsic description of definable subsets of RV is given in Section 2.1. In
particular, definable subsets of (k*)™ coincide with constructible sets in the usual
Zariski sense; while modulo (k*)™, a definable set is a piecewise linear subset of '™,
The structure of arbitrary definable subsets of RV™ is analyzed in Section 3.3.

The advantages of this approach are identical to the benefits in algebraic geometry
of working with arbitrary algebraically closed fields, over arbitrary base fields. One
can use Galois theory to describe rational points over subfields. Since function fields
are treated on the same footing, one has a mechanism to inductively reduce higher-
dimensional geometry to questions in dimension one, and often, in fact, to dimension
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zero. (As in algebraic geometry, statements about fields, applied to generic points,
can imply birational statements about varieties.)

1.2 Model theory

Since topological tools are no longer available, it is necessary to define notions such
as dimension in a different way. The basic framework comes from [15]; we recall and
developitfurtherin Sections 2 and 4. Itis in many respects analogous to the o-minimal
framework of [37], that has become well accepted in real algebraic geometry.

In addition, whereas in geometry all varieties are made as it were of the same
material, here a number of rather different types of objects coexist, and the interaction
between them must be clarified. In particular, the residue field and the value group
are orthogonal in a sense that will be defined below; definable subsets of one can
never be isomorphic to subsets of the other, unless both are finite. This orthogonality
has an effect on definable subsets of VF" in general; for example, closed disks behave
very differently from open ones. Here we follow and further develop [16].

Note that the set of rational points of closed and open disks over discrete valua-
tion rings, for instance, cannot be distinguished; as in rigid geometry, the geometric
setting is required to make sense of the notions. Nevertheless, they have immediate
consequences for local fields. As an example, we define the notion of a definable
distribution; this is defined as a function on the space of polydisks with certain prop-
erties. Making use of model-theoretic properties of the space of polydisks, we show
that any definable distribution agrees outside a proper subvariety with one obtained
by integrating a function. This is valid over any valued field of sufficiently large
residue characteristic. In particular, for large p, the p-adic Fourier transform of a
rational polynomial is a locally constant function away from an exceptional subvari-
ety, in the usual sense (Corollary 11.10). The analogue for R and C was proved by
Bernstein using D-modules. For an individual Q,, the same result can be shown
using Denef integration and a similar analysis of definable sets over Q,. These results
were obtained independently by Cluckers and Loeser; cf. [8].

1.3 More general definable sets

Throughout the chapter, we discuss not semialgebraic sets, but definable subsets of a
theory with the requisite geometric properties (called V-minimality). This includes
also the rigid analytic structures of [23]. The adjective “geometrically” can be take
to mean here “in the sense of the V-minimal theory.”

While we work geometrically throughout the paper, the isomorphisms we obtain
are canonical and so specialize to rational points over substructures. Thus a posteriori
our results apply to definable sets over any Hensel field of large residue characteristic.
See Section 12.

For model theorists, this systematic use of algebraically closed valued fields to
apply to other Hensel fields is only beginning to be familar. As an illustration,
see Proposition 12.9, where it is shown that after a little analysis of definable sets
over algebraically closed valued fields, quantifier elimination for Henselian fields of
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residue characteristic zero becomes a consequence of Robinson’s earlier quantifier
elimination in the algebraically closed case.

A third kind of generalization is an a posteriori expansion of the language in the
RV sort. Such an expansion involves loss of information in the integration theory,
but is sometimes useful. For instance, one may want to use the Denef-Pas language,
splitting the exact sequence into a product of residue field and value group. Another
example occurs in Theorem 12.5, where it is explained, given a valued field whose
residue field is also a valued field, what happens when one integrates twice. To discuss
this, the residue field is expanded so as to itself become a valued field.

1.4 Generalized algebraic varieties

We now describe the basic ingredients in more detail. Let Lo be a valued field
with residue field ko and value group A. For each point y € Q ® A, we have
one-dimensional k-vector space

{x € K :val(x) = y}
1+M '

As discussed above, V,, should be viewed as a functor L — V, (L) on valued field
extensions L of L, giving a vector space over the residue field functor. If y —y’ € A,
then V,,, V;/ are definably isomorphic, so one essentially has V), fory € (Q® A)/A.

Fixy =1, ..., v, and V; =V, V; =11;V,,. A y-polynomial is a polyno-
mial H(X) =} a,X" withval,(a,) + ), v(i)y; = 0 for each nonzero term a, X".
The coefficients a, are described in Section 5.5; for the purposes of the introduc-
tion, and of Theorem 1.3 below, it suffices to think of integer coefficients. Such a
polynomial clearly defines a function H : V; — K. In particular, one has the set of
zeroes Z(H). The generalized residue structure RES | is the residue field, together
with the collection of one-dimensional vector spaces V), (y € Q ® A) over it, and the
functions H : V; — K associated to each y-polynomial.

The intersection W of finitely many zero sets Z(H) is called a generalized alge-
braic variety over the residue field. Given a valued field extensions L of Lo, we have
the set of points W(L) € V;(L). When L is a local field, W (L) is finite.

We will systematically use the Grothendieck group of generalized varieties over
the residue field, rather than the usual Grothendieck group of varieties. They are
fundamentally of a similar nature: base change to an algebraically closed value field
makes them isomorphic. But the generalized residue field makes it possible to see
canonically objects that are only visible after base change in the usual approach. One
application is Theorem 1.3 below.

K RES,[n] denotes the Grothendieck group of generalized varieties of dimen-
sion < n; in the paper we will omit Ly from the notation.

Vv, ={0}U

1.5 Rational polyhedra over ordered Abelian groups

Let A be an ordered Abelian group. A rational polyhedron A over A is given by an
expression
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A ={x:Mx > b}

with x = (x1, ..., x,), M a k x n matrix with rational coefficients, and b € Ak, We
view this as a functor B +— A(B) on ordered Abelian group extensions B of A. This
functor is already determined by its value at B = Q ® A. In particular, when A < Q,
A is an ordinary rational polyhedron.

K T 4[n]isthe semigroup generated by such polyhedra, up to piecewise GL,, (Z)-
transformations and A-translations; see Section 9. When A is fixed it is omitted from
the notation.

In our applications, A will be the value group of a valued field Ly. If B is the
value group of a valued field extension L, write A(L) for A(B).

1.6 The Grothendieck semiring of definable sets

Fix a base field Ly. The word “definable” will mean T, -definable, with T a fixed
V-minimal theory. To have an example in mind one can read “semialgebraic over
L¢” in place of “definable.”

Let VF[n] be the category of definable subsets X of n-dimensional algebraic
varieties over Lg; a morphism X — X’ is a definable bijection X — X’ (see Defini-
tion 3.65 for equivalent definitions). K VF[n] denotes the Grothendieck semigroup,
i.e., the set of isomorphism classes of VF[n] with the disjoint sum operation. [X]
denotes the class of X in the Grothendieck semigroup.

We explain how an isomorphism class of VF[n] is determined precisely by iso-
morphism classes of generalized algebraic varieties and rational polyhedra, whose
dimensions add up to n.

If X C RES” and f : X — RES” is a finite-to-one map, let

L(X, f) = VF" Xpy, r X ={(v1,..., 05, %) 1 v; € VF,x € X, 1v(v;) = fi(x)}.

The VF[n]-isomorphism class [LL(X, f)] does not depend on f, and is also de-
noted [ILX].

When S is a smooth scheme over O, X a definable subset of S(k), 7 : S(O) —
S(k) the natural reduction map, we have [LX] = [z~1x].

We let RES[n] be the category of pairs (X, f) as above; a morphism (X, f) —
(X', f') is just a definable bijection X — X’. Let K RES[x] be the direct sum of
the Grothendieck semigroups K RES[n].

On the other hand, we have already defined K I'[n]. Let K I'[*] be the direct
sum of the K I'[n]. An element of K I'[n] is represented by a definable X C I'[n].
Let LX = val ~1(X), L[X] = [LX].

It is shown in Proposition 10.2 that the Grothendieck semiring of RV is the tensor
product Ky RES[*] ® K I'[*] over the semiring K I'fin of classes of finite subsets
of I'; see Section 9.

Note that L([1];) = L([1]p) + L([(0, 00)]1), where [1]; € K. RES[1], [1]p €
K RESIO0] are the classes of the singleton set 1, and [(0, 00)]; is the class in K4 I'[1]
of the semi-infinite segment (0, o). Indeed, IL([1];) is the unit open ball around 1,
L([1]p) is the point {1}, while L([(0, co)];) is the unit open ball around 0, isomorphic
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by a shift to the unit open ball around 1. This is the one relation that cannot be
understood in terms of the Grothendieck semiring of RV it will be seen to correspond
to the analytic summation of geoemtric series in the Denef theory. Let I, be the
congruence on the ring Ky RES[*] ® K I'[*] generated by [1]1 ~ [1]p + [(0, c0)];.

The following theorem summarizes the relation between definable sets in VF and
in RV; it follows from Theorem 8.4 together with Proposition 10.2 in the text.

Theorem 1.1. L induces a surjective homomorphism of filtered semirings
K, RES[x] ® K4 I'[*] - K4+ (VF).
The kernel is precisely the congruence Igp.

The inverse isomorphism K (VF) — K, RES[*] ® K I'[]/Is, can be viewed
as a kind of Euler characteristic, respecting products and disjoint sums, and can be
functorial in various other ways.

The values of this Euler characteristic are themselves geometric objects, both on
the algebraic-geometry side (RES) and the combinatorial-analytic side (I"). This is
valuable for some purposes; in particular, it becomes clear that the isomorphism is
compatible with taking rational points over Henselian subfields (cf. Proposition 12.6).

For other applications, however, it would be useful to obtain more manageable
numerical invariants; for this purpose one needs to analyze the structure of Ky I"[*].
We do not fully do this here, but using a number of homomorphisms on K I'[*], we
obtain a number of invariants. In particular, using the Z-valued Euler characteristics
on K I'[*] (cf. Section 9 and [26, 20]), we obtain two homomorphisms on K VF[n]
essentially to K RES[n]. The reason there are two rather than one has to do with
Poincaré duality; see Theorem 10.5.

For instance, when F is a field of characteristic 0, we obtain an invariant of rigid
analytic varieties over F'((¢)), with values in the Grothendieck ring K (Var r) of alge-
braic varieties over F; and another in K (Var)[[A1]~'] (Proposition 10.8). It is in-
structive to compare this with the invariant of [25], with values in K (RES[n])/ (Gl
Since any two closed balls are isomorphic, via additive translation and multiplicative
contractions, all closed balls must have the same invariant. Working with a discrete
value group tends to force [G,,,] = 0, since it appears that a closed ball By of valuation
radius 0 equals G, times a closed ball By of valuation radius 1. Since our technology
is based on divisible value groups, the “equation” [By] = [B1][G,] is replaced for
us by [Bo] = [B(‘)’ 1[G 1, where Bg is the open ball of valuation radius 0. Though
By and Bg have the same F ((¢))-rational points, they are geometrically distinct (cf.
Lemma 3.46) and so no collapse takes place. See also Sections 12.6 and 12.6 for two
previously known cases.

By such Euler characteristic methods we can prove a statement purely concerning
algebraic varieties, partially answering a question of Gromov and Kontsevich [13,
p- 121]. In particular, two elliptic curves with isomorphic complements in projective

! The setting is somewhat different: Loeser—Sebag can handle positive characteristic, too,
but assume smoothness.
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space were previously known to be isogenous, by zeta function methods; we show
that they are isomorphic. This also follows from [22]; the method there requires
strong forms of resolution of singularities. See Theorem 13.1.

1.7 Integration of forms up to absolute value

Over local fields, data for integration consists of a triple (X, V, w), with X a definable
subset of a smooth variety V and @ a volume form on V. We are interested in an
integral of the form | x lol, so that multiplication of w by a function with norm 1 does
not count as a change, nor does removing a subvariety of V of smaller dimension.
Using an equivalent description of VF[n], where the objects come with a distinguished
finite-to-one map into affine space, we can represent an integrand as a pair (X, w)
with X € Ob VF[r] and w a function from X into I". Isomorphisms are essential
bijections, preserving the form up to a function of norm 1. See Definition 8.10 for a
precise definition of this category, the category ur VF[n].

Integration is intended to be an invariant of isomorphisms in this category. Thus
we can find the integral if we determine all invariants. We do this in complete analogy
with Theorem 1.1.

For n > 0 let I'[n] be the category whose objects are finite unions of rational
polyhedra over the group A of definable points of I'. A morphism f : X — Y of
I'[n] is a bijection such that for some partition X = Uf.‘: 1 Xi into rational polyhedra,
f1X; is given by an element of GL, (Z) x A". Let ul'[n] be the category of pairs
(X, ), with X an object of I'[r], and w : X — [ a piecewise affine map. A
morphism f : (X,w) — (X', ') is a morphism f : X — X’ of ['[n] such that
Zle Xi+wx) = Zé:l x/+o'(x") whenever (x, ..., x;) = f(x1,..., x,). Given
(X, w) € Ob ul'[n], define LX as above, and adjoint the pullback of w to obtain an
object of ur VFE[n]. This gives a homomorphism K4 uI'[n] — K4 urVFE[n].

Theorem 1.2. I induces a surjective homomorphism of filtered semirings
K+ RES[*] ® Ky uT[¥] = K4 (ur VE)[].

The kernel is generated by the relations p ® 1 = 1 ® [(valyy(p), 00)] and 1 @ a =
valy 1 (a) ® 1.

In the statement of the theorem, p ranges over definable points of RES (actually
one value suffices), and a ranges over definable points of I".

This can also be written as

K4 RES[*] ®K+(“rﬁn) K4 NF[*]/IéLp >~ K (ur VB [#],

where K (uFﬁ“) is the subsemiringof subsets of wI" with finite support, and Igp is
a semiring congruence defined similarly to Is,. The base of the tensor leads to the
identification of a point of I' with with a coset of k* in RES, while IéLp identifies a
point of RES with an infinite interval of I". The inverse isomorphism can be viewed
as an integral.



268 Ehud Hrushovski and David Kazhdan

We introduce neither additive nor multiplicative inverses in K RES[x] formally,
so that the target of integration is completely geometric.

We proceed to give an application of the first part of the theorem (the surjectivity)
in terms of ordinary p-adic integration.

1.8 Integrals over local fields: Uniformity over ramified extensions

Let L be a local field, finite extension of @, or IF,((r)). We normalize the Haar
measure u in such a way that the maximal ideal has measure 1, the norm by |a| =
ui{x : |x| < |al}. Let RESy be the generalized residue field, and 'z be the value
group. We assume Q,, or IF,((¢)) has value group Z, and identify I"; with a subgroup
of Q.

Given ¢ = (c1,...,¢cr) € LK and s = (51,...,8¢) € R* with s; > 1, let
el = T_ el

Let A be a multiplicative character R” — R*. Define

evi(AB) = Y Ab),

beA(B)
provided this sum is absolutely convergent. Given linear functions Ay, ..., hx on R”"
and sy, ..., s € R, letevy s g = evy, where A(x) = QMM+ sihi(x),

Theorem 1.3. Fix n,d, k € N. Let p be a large prime compared to n, d, k, and let

feQulXy,..., X, ¥ have degrees < d. Then there exist finitely many generalized
varieties X over RES(QP), rational polyhedra A;, y (i) € Q=°, n; € N, and linear
functions hy, . .., hy with rational coefficients, such that for any finite extension L of

Qp with residue field GF (q) and val(L*) = (1/r)Z, val(p) = 1, and any s € R];l,
/ IfI = Zq”’(’)(q DX (L) vy s g (A (L)).

Note the following:

(1) A;(L) depends only on the ramification degree r of L over Q,.

(2) The formula is a sum of nonnegative terms.

(3) evp5,qr (A ((1/7r)Z)) can be written in closed form as a rational function of
q"*. This follows from Denef, who shows it for more general sets A; definable in
Pressburger arithmetic; such analytic summation is an essential component of his
integration theory. Since it plays no role in our approach we leave the statement
in geometric form.

(4) The generalized varieties X; and polyhedra A; are simple functions of the coeffi-
cients f. Here we wish to emphasize not this, but the uniformity of the expression
over ramified extensions of Q.

The proof follows Proposition 10.10. (It uses only the easy surjectivity in this
proposition and Proposition 4.5.)
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1.9 Bounded and unbounded sets

The isomorphism of semirings of Theorem 1.2 obviously induces an isomorphism of
rings. However, introducing additive inverses loses information on the I" side; the
class of the interval [0, 1) becomes 0, since [0, co) and [1, co) are isomorphic. The
classical remedy is to cut down to bounded sets before groupifying. This presents no
difficulty, since the isomorphism respects boundedness.

In higher-dimensional local fields, stronger notions of boundedness may be useful,
such as those introduced by Fesenko. Since these questions are not entangled with
the theory of integration, and can be handled a posteriori, we will deal with them in
a future work.

Here we mention only that even if one insists on integrating all definable inte-
grands, with no boundedness condition, into a ring, some but not all information is
lost. This is due to the existence of Euler characteristics on I', and thus again to the
fact that we work geometrically, with divisible groups, even if the base field has a
discrete group. We will see (Lemma 9.12) that Ky (uI'[n]) can be identified with
the group of definable functions I' — K, (I'[r]). Applying an appropriate Euler
characteristic reduces to the group of piecewise constant functions on I" into Z. Re-
combining with RES we obtain a consistent definition of an integral on unbounded
integrands, compatible with measure-preserving maps, sums, and products, with val-
ues in K (RES)[A]/[A1]1 K (RES)[A], where A is the group of definable points of T,
and [A1]; is the class of the affine line. See Theorem 10.11.

1.10 Finer volumes

We also consider a finer category of definable sets with RV-volume forms. This
means that a volume form w is identified with gew only when g — 1 € M; val(g) =0
does not suffice. We obtain an integral whose values themselves are definable sets
with volume forms; in particular, including algebraic varieties with volume forms
over the residue field.

Theorem 1.4. L induces a surjective homomorphism of graded semirings
K4 uRV[*] — K4 (WVF)[*].
The kernel is precisely the congruence pr.

1RV is the category of definable subsets of uRV* enriched with volume forms;
see Definition 8.13. Again, an isomorphism is induced in the opposite direction, that
can be viewed as a motivic integral

/ Ky (uVE)[x] > K4 uRV[*]/Ié‘p.

This allows an iteration of the integration theory, either with an integral of the same
nature if the residue field is a valued field, or with a different kind of integral if, for
instance, the residue field is R.
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1.11 Hopes

We mention three. Until now, a deep obstacle existed to extending Denef’s theory
to positive characteristic; namely, the theory was based on quantifier elimination for
Hensel fields of residue characteristic 0, or for finitely ramified extensions of Q,,
and it is known that no similar quantifier elimination is possible for I, ((z)), if any
is. On the other hand, Robinson’s quantifier elimination is perfectly valid in positive
characteristic. This raises hopes of progress in this direction, although other obstacles
remain.

It is natural to think that the theory can be applied to higher-dimensional local
fields; we will consider this in a future work.

Another important target is asymptotic integration over R. Nonstandard exten-
sions of R admit natural valued field structures. This is the basis of Robinson’s
nonstandard analysis. These valued fields have divisible value groups, and so previ-
ous theories of definable integration do not apply. The theory of this paper applies,
however, and we expect that it will yield connections between p-adic integration and
asymptotics of real integrals.

1.12 Organization of the paper

After recalling some basic model theory in Section 2, we proceed in Section 3 to
V-minimal theories.

In Section 4 we show that any definable subset of VF" admits a constructible
bijection with some (X, f). Infact, only a very limited class of bijections is needed;
a typical one has the form (x1, x2) — (x1, x2 + f(x1, x2)), so it is clearly measure
preserving. The proof is simple and brief, and uses only a little of the preceding
material. We note here that for many applications this statement is already sufficient;
in particular, it suffices to give the surjectivity in Theorems 1.1 and 1.2, and hence
the application Theorem 1.3.

In Section 5 we return to the geometry of V-minimal structures, developing a
theory of differentiation. We show the compatibility between differentiation in RV
and in VF. This is needed for Theorem 1.4. Differentiation in VF involves much
finer scales than in RV; in effect RV can only see distances measured by valuation 0,
while the derivative in VF involves distances of arbitrarily large valuation. The proof
uses a continuity argument with respect to dependence on scales. It fails in positive
characteristic, in its present form.

Section 6 is devoted to showing that L yields a well-defined map K4 (RV) —
K+ (VF); in other words, not only objects, but also isomorphisms can be lifted.

Sections 7 and 8 investigate the kernel of I in Theorem 1.1. This is the most
technical part of the paper, and we have not been able to give a proof as functorial as
we would have liked. See Question 7.9.

In Section 9 we study the piecewise linear Grothendieck group; see the introduc-
tion to this section.

Section 10 decomposes the Grothendieck group of RV into the components RES
and I', used througout this introduction.
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Section 11 introduces an additive character, and hence the Fourier transform.
The isomorphism of volumes given by Theorem 1.4 suffices for this extension; it
is not necessary to redo the theory from scratch, but merely to follow through the
functoriality.

Section 12 contains the extension to definable sets over Hensel fields mentioned
above, and Section 13 gives the application to the Grothendieck group of varieties.

2 First-order theories

The bulk of this paper uses no deep results from logic beyond Robinson’s quantifier
elimination for the theory of algebraically closed valued fields [33]. However, it is
imbued with a model-theoretic viewpoint. We will not explain the most basic notions
oflogic: language, theory, model. Let us just mention that a language consists of basic
relations and function symbols, and formulas are built out of these, using symbols for
Boolean operations and quantifiers (cf., e.g., [11] or [19], or the first section of [9]);
but we attempt in this section to bridge the gap between these and the model-theoretic
language used in the paper.

Alanguage L consists of a family of “sorts” S;, a collection of variables ranging
over each sort, a set of relation symbols R, each intended to denote a subset of a finite
product of sorts, and a set of function symbols Fj intended to denote functions from
a given finite product of sorts to a given sort. From these, and the logical symbols
&, —, V, 3 one forms formulas. A sentence is a formula with no free variables (cf.
[11]). A theory T is a set of sentences of L. A theory is called complete if for every
sentence ¢ of L, either ¢ or its negation —¢ isin T'.

Auniverse M for the language L consists, by definition, of a set S(M) for each sort
S of L. An L-structure consists of such a universe, together with an interpretation
of each relation and a function symbol of L. One can define the truth value of a
sentence in a structure M; more generally, if ¢ (x1, ..., x,) is a formula, with x; a
variable of sort S;, then one defines the interpretation ¢ (M) of ¢ in M, as the set of
alld € S1(M) x --- x S,(M) of which ¢ is true. If every sentence in T is true in
M, one says that M is a model of T (M = T). The fundamental theorem here is
a consequence of Godel’s completeness theorem called the compactness theorem: a
theory T has a model if every finite subset of 7 has a model.

The language Lings of rings, for example, has one sort, three function symbols
+, -+, —, two constants 0, 1; any ring is an Ljsgs-structure; one can obviously write
down a theory Thelgs in this language whose models are precisely the fields.

2.1 Basic examples of theories

We will work with a number of theories associated with valued fields:

(1) ACEF, the theory of algebraically closed fields. The language is the language of
rings {+, -, —, 0, 1}, mentioned earlier. The theory states that the model is a field,
and for each n, that every monic polynomial of degree n has a root. For instance,
forn =2,
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(Yuu) (Vo) (3x) (x* + u1x + ug = 0).

In addition, ACF(0) includes the sentence 1 +1 # 0,14+ 141 #0,.... This
theory is complete (Tarski—Chevalley). It will arise as the theory of the residue
field of our valued fields.

Divisible ordered Abelian groups (DOAG). The language consists of a single
sort, a binary relation symbol <, a binary function symbol +, a unary function
symbol —, and a constant symbol 0. The theory states that a model is an ordered
Abelian group. In addition, there are axioms asserting divisibility by n for each
n, for instance, (Vx)(3y)(y + y = x).

This is the theory of the value group of a model of ACVF.

The RV sort (extension of (2) by (1)). The language has one official sort, denoted
RV, and includes Abelian group operations -, / on RV, a unary predicate k* for a
subgroup, and an operation + : k> — k, where k is k* augmented by a constant
0. Finally, there is a partial ordering; the theory states that k* is the equivalence
class of 1; that < is a total ordering on k*-cosets, making RV /k* =: I" a divisible
ordered Abelian group, and that (k, 4, -) is an algebraically closed field. (We
thus have an exact sequence 0 - k* — RV — I' — 0, but we treat I" as an
imaginary sort.) This theory TRV is complete, too.

We will sometimes view RV as an autonomous structure but it will arise from an
algebraically closed valued field, as in (5) below.

Let M &= TRV, and let A be a subgroup of I'(M). Within TRV 4 we see an
interpretation of ACF, namely, the algebraically closed field k. In addition, for
each a € A, we have a one-dimensional k-space, the fiber of RV lying over I
augmented by 0. Collectively, the field k with this collection of vector spaces
will be denoted RES.

ACVF, the theory of algebraically closed valued fields. According to Robinson,
the completions, denoted ACVF(q, p), are obtained by specifying the charac-
teristic ¢ and residue characteristic p. We will be concerned with ACVF(0, 0)
in this paper. However, since any sentence of ACVF(0, 0) lies in ACVF(0, p)
for almost all primes p, the results will a posteriori apply also to valued fields of
characteristic zero and large residue characteristic.

We will take ACVF(0, 0) to have two sorts, VF and RV = VF*/(1 + M). The
language includes the language of rings (1) on the VF sort, the language (3)
on the RV sort, and a function symbol rv for a function VF* — RV. Denote
v T(RVZ%) = O, v 71 (0) = M.

The theory states that VF is a valued field, with valuation ring O and maximal
ideal M such that rv : VF* — RV is a surjective group homomorphism, and the
restriction to O (augmented by 0 +— 0) is a surjective ring homomorphism.

The structure that ACVF,4 induces on I' is of a uniquely divisible Abelian group,
with constants for the elements of I'(A). Thus every definable subset of I is a
finite union of points and open intervals (possibly infinite).

Rigid analytic expansions (Lipshitz). The theory ACVFR of algebraically closed
valued fields expanded by a family R of analytic functions. See [23] and [24].
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Our theory of definable sets will be carried out axiomatically, and are thus also
valid for these rigid analytic expansions.

A definable set D is not really a set, but a functor from the category of models
of T to the category of sets of the form M +— ¢ (M), where ¢ is a formula of
L. Model theorists do not really distinguish between the definable set D and the
formula ¢ defining it; we will usually refer to definable sets rather than to formulas.
If R € D x D’ and for any model M = T, R(M) is the graph of a function
D(M) — D(M"), we say R is a definable function of T. Similarly, we say D is finite
if D(M) is finite for any M = T, etc. It follows from the compactness theorem that
if D is finite, then for some integer m we have |[D(M)| < m forany M = T. We
sometimes write S* to denote S” for some unspecified n.

By a map between L-structures A, B we mean a family f = (fs) indexed by
the sorts of L, with fs : S(A) — S(B); one extends f to products of sorts by
setting f((x1,...,x,)) = (f(x1), ..., f(xn)). f is an embedding of structures if
f~'R(B) = R(A) for any atomic formula R of L. Taking R to be the equality
relation, this includes, in particular, the statement that each fg is injective.

On occasion we will use co-definable sets. An co-definable set is a functor of
the form M — ND, where D is a given collection of definable sets. In a complete
theory a definable set is determined by the value it has at a single model; this is, of
course, false for co-definable sets.

We write a € D to mean a € D(M) for some M = T. It is customary, since
Shelah, to choose a single universal domain U embedding all “small”” models, and
leta € D mean a € D(U); we will not require this interpretation, but the reader is
welcome to take it.

We will sometimes consider imaginary sorts. If D is a definable set, and E a
definable equivalence relation on D, then D/E may be considered to be an imaginary
sort; as a definable set it is just the functor M +— D(M)/E(M). A definable subset of
a product IT!_, D; / E; of imaginary sorts (and ordinary sorts) is taken to be a subset
whose preimage in I17_, D; is definable; the notion of a definable function is thus
also defined. In this way, the imaginary sorts can be treated on the same footing as
the others. The set of all elements of all imaginary sorts of a structure M is denoted
M*®4, 1t is easy to construct a theory 7°1 in a language L® whose category of models
is (essentially) {M® : M |= T}. See [35] and [31, Section 16d].

Given a definable set D C § x X, where S, X are definable sets, and given s € S,
let D(s) = {x € X : (s,x) € D}. Thus D is viewed as a family of definable subsets
of X, namely, {D(s) : s € S}. If s # s' implies D(s) # D(s’), we say that the
parameters are canonical, or that s is a code for D(s). In particular, if E is a definable
equivalence relation, the imaginary elements a/E can be considered as codes for the
classes of E.

T is said to eliminate imaginaries if every imaginary sort admits a definable injec-
tion into a product of some of the sorts of L. For instance, the theory of algebraically
closed fields eliminates imaginaries. See [32] for an excellent exposition of these is-
sues. We note that 7 admits elimination of imaginaries iff for any family D € § x X
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there exists a family D’ € S’ x X such that for any ¢ € S there exists a unique ' € S’
with D(t) = D'(t)).

(Recall that t € S means ¢ € S(M) for some M = T. The uniqueness of ¢’
implies in this case that one can choose ¢’ € S'(M), too.) In this case, we also say
that ¢’ is called a canonical parameter or code for D(t).

Example 2.1. Let b be a nondegenerate closed ball in a model the theory ACVF of
algebraically closed valued fields. Then b = {x : val(x — ¢) > val(c — ¢)} for some
elements ¢ # ¢ of the field. b is coded by b = (c, ¢’)/E, where (¢, ¢)E(d, d")
iff val(c — ¢’) = val(d — d’) < val(c — d). However, we often fail to distinguish
notationally between b and b, and, in particular, we write A(b) = A(b).

The only imaginary sorts that will really be essential for us are the sorts 8 of
closed and open balls. The closed balls around 0 can be identified with their radius,
hence the valuation group I'(M) = VF*(M)/O0*(M) of a valued field M is embedded
as part of ‘B.

Notation. Let B = B° U B the sorts of open and closed subballs of VF. Let
't={yel:y=>0}.

%Cl — U %Cl’ %(})/l — VF/]/O,
yel

B =B, B =VF/yM
yel

Here yM = {x € VF : val(x) > y}, yO = {x € RES : val(x) > y}. The elements
of SB;I , f B;j will be referred to as closed and open balls of valuative radius y ; though
this valuative definition of radius means that bigger balls have smaller radius. The
word “distance” will be used similarly.

By a thin annulus we will mean a closed ball of valuative radius y, with an open
ball of valuative radius y removed.

Fix amodel M of T. A substructure A of M (written A < M) consists of a subset
Ag of S(M), for each sort S of L, closed under all definable functions of 7. For
example, the substructures of models of Tfelqs are the integral domains.

In general, the definable closure of a set A9 C M is the smallest substructure
containing Ag; it is denoted dcl(Ag) or (Ag). An element of (Ap) can be written as
g(ay, ..., a,) witha; € Ag and g a definable function; i.e., it is an element satisfying
a formula ¢ (x, ay, ..., ay) of L, in one variable that has exactly one solution in
M. If A is a substructure, dcl(A U {c}) is also denoted A(c). These notions apply
equally when A, ¢ contain elements of the imaginary sorts. If B is contained in sorts
S1,..., Sy, then dcl(B) is said to be an S, ..., S,-generated substructure. In the
special case of valued fields, where one of the sorts VF is the “main” valued field
sort, a VF-generated structure will be said to be field-generated, or sometimes just
“a field.”
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For any definable set D, we let D(A) be the set of points of D (M) with coordinates
in A. If S = D/FE is an imaginary sort, S(A) is the set of @ € S whose preimage
is defined over A. We have D(A)/E(A) € S(A). D(A)/E(A) is, of course, closed
under definable functions S” — S that lift to definable functions D — D, but
it is not necessarily closed under arbitrary definable functions, i.e., functions whose
graph is the image of a definable subset of D™ x D. For example x — (1/n)x is a
definable function on the value group of a model of ACVF, butif A < M = ACVF,
I"'(A) need not be divisible.

When A < M,B < N with M, N = T, a function f : A — B is called a
(partial) elementary embedding (A, M) — (B, N) if for any definable set D of L,
f~'D(B) = D(A). In particular, when A = M, B = N, one says that M is an
elementary submodel of N.

By a constructible set over A, we mean the functor L +— ¢ (L) on models
M = Ta, where ¢ = ¢(x1,...,x5,0a1,...,ay) is a quantifier-free formula with
parameters from A.

We say that T' admits quantifier elimination if every definable set coincides with
a constructible set. It follows in this case that for any A, any A-definable set is
A-constructible. When 7 admits quantifier elimination, f : A — B is a partial
elementary embedding iff it is an embedding of structures.

Theories (1)—(5) of Section 2.1 admit quantifier elimination in their natural alge-
braic languages (theorems of Tarski—Chevalley and Robinson; cf. [16]). The sixth
admits quantifier elimination in a language that needs to be formulated with more
care; see [23].

In all of this paper, except for Sections 12.1 and 12.3, we will only use structural
properties of definable sets, and not explicit formulas. In this situation quantifier elim-
ination can be assumed softly, by merely increasing the language by definition so that
all definable sets become equivalent to quantifier-free ones. The above distinctions
will only directly come into play in Sections 12.1 and 12.3.

If A<M ET,L, isthelanguage L expanded by a constant ¢, for each element
a of A, so that an L 4-structure is the same as an L-structure M together with a
function Ag — S(M) for each sort S. T4 is the set of L 4 sentences true in M when
the constant symbol ¢, is interpreted as a; the models of T4 are models M of T,
together with an isomorphic embedding of A as a substructure of M. In particular, M
with the inclusion of A in M is an L 4-structure denoted M 4. For any subset Ag € M,
we write T4, for T(4,), where (Ag) is the substructure generated by Ay.

A definable set of T4 will also be referred to as A-definable; similarly for other
notions such as those defined just below.

A parametrically definable set of T is by definition a T4 -definable set for some A.

An almost definable set is the union of classes of a definable equivalence relation
with finitely many classes. An element e is called algebraic (respectively, definable)
if the singleton set {e} is almost definable (respectively, definable). When 7 is a
complete theory, the set of algebraic (definable) elements of a model M of T forms
a substructure that does not depend on M, up to (a unique) isomorphism.
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Let Ag € M = T; the set of e € M almost definable over A is called the alge-
braic closure of Ag, acl(Ag). If Ag is contained in sorts Sy, ..., S,, any substructure
of acl(Ag) containing dcl(Ap) is said to be almost Sy, ..., S,-generated.

Example 2.2. 1f a definable set D carries a definable linear ordering, then every alge-
braic element of D is definable. This is because the least element of a finite definable
set F is clearly definable; the rest are contained in a smaller finite definable subset of
D, so are definable by induction.

If, in addition, D has elimination of imaginaries, and Y is almost definable and
definable with parameters from D, then Y is definable. Indeed, using elimination of
imaginaries in D, the set Y can be defined using canonical parameters. These are
algebraic elements of D, hence definable.

Two definable functions f : X — Y, f' : X — Y’ will be called isogenous if for
all x € X, acl(f(x)) = acl(f'(x)).

Compactness

Compactness often allows us to replace arguments in relative dimension one over a
definable set, by arguments in dimension one over a different base structure. Here is
an example.

Lemma 2.3. Let f; : X; — Y be definable maps between definable sets of T (i =
1, 2). Assume that forany M =T andb € Y(M), X1(b) := ff] (D) is Typ-definably
isomorphic to X,(b) = fg_l (b). Then X1, X» are definably isomorphic.

Proof. Let JF be the family of pairs (U, h), where U is a definable subset of Y, and
h: fi7'U — f,7'U is a definable bijection.

Claim. Forany b € Y(M), M =T, there exists (U, h) € Fwithb € U.

Proof. Let b € Y(M). There exists a Tp-definable bijection X1(b) — X»>(b). This
bijection can be written as x — g(x, b), where g is a definable function. Let U =
{yeY:(x+— g(x,y))isabijection X{(y) — X2(y)}. Then (U, g(x, f1(x))) € F,

and b e U. O

Now by compactness, there exist a finite number of definable subsets Uy, ..., Uy
of Y, with Y = U;U;, and (U;, h;) € F for some h;. We define Ul./ =U; \ (U U
...UU;_1)and h = U;h; |Ul.’. Then h : X1 — X» is the required bijection. O

Here is another example of the use of compactness.

Example 2.4. If D is a definable set, and for any a, b € D, a € acl(b), then D is
finite. More generally, if a € acl(b) for any b € D, then a € acl(¥).

Proof. We prove the first statement, the second being similar. For any model M, pick
a € M; then D(M) C acl(a). For b € acl(a). Let ¢, be the formula x # b&D(x).
Thus the set of formulas Th(M) s U {¢p} has no common solution. By compactness,
some finite subset already has no solution; this is only possible if D(M) is finite. O
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Transitivity, orthogonality

A definable set D is transitive if it has no proper, nonempty definable subsets. (The
usual word is “atomic.” One also says that D generates a complete type.) Itis (finitely)
primitive if it admits no nontrivial definable equivalence relation (with finitely many
classes).

Remark 2.5. Let A be a VF-generated substructure of a model of ACVF. When
A is VF-generated, we will see that an ACVF 4-definable ball b is never transitive
in ACVF,; indeed, it always contains an A-definable finite set. But b is always
ACVF4(p)-definable, and quite often it is transitive; cf. Lemma 3.8.

Two definable sets D, D’ are said to be orthogonal if any definable subset of
D™ x D! is a finite union of rectangles E x F, E C D™, F C D!. In this case, the
rectangles E, F can be taken to be almost definable. If the rectangles can actually be
taken definable, we say the D, D’ are strongly orthogonal.

Types

Let S be a product of sorts, and let M =T, a € S(M). We write tp(a) = tp(a; M)
(the type of a) for the set of definable sets D with a € D; when p = tp(a) we write
a = p. A complete type is the type of some element in some model. If ¢ = tp(a),
we say that a is a realization of q. The set T pg of complete types belonging to S can
be topologized: a basic open set is the set of types including a given definable set D.
The compactness theorem of model theory implies that this is a compact topological
space: if {D;} is any collection of definable sets with nonempty finite intersections,
the compactness theorem asserts the existence of M = T with N; D; (M) # @.

The compactness theorem is often used by way of a construction called saturated
models; cf. [9]. These are models where all types over “small” sets are realized.
They enjoy excellent Galois-theoretic properties: in particular, if M is saturated, then
dcl(Ag) = Fix Aut(M/Ap) for any finite Ag C M. If D is acl(Ap)-definable, then
there exists an Ag-definable D’ which is a finite union of Aut(M/Ag)-conjugates
of D.

A type p can also be identified with the functor P from models of 7' (under
elementary embeddings) into sets; P(M) = {a € M : a = p}. As with definable
sets, we speak as if P is simply a set. Unlike definable sets, the value of P(M) ata
single model does not determine P. (It could be empty, but it does determine P if M
is sufficiently saturated.)

Any definable map f : § — S induces a map fi : Tps — Tpg; as another
consequence of the compactness theorem, f is continuous. We also have a restriction
map from types of T to types of T', tpy4)(a) — tpr(a).

If L C L'and T C T’, we say that T’ is an expansion of T. In this case any
T’'-type p’ restricts to a T-type p. If p’ is the unique type of T’ extending p, we say
that p implies p’.

The simplest kind of expansion is an expansion by constants, i.e., a theory T4
(where A < M |=T). If c € M", or more generally if c € M*®4, the type of ¢ for M 4
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is denoted tp(c/A). It is rare for tp(c) to imply tp(c/A), but it is significant when it
happens.

An instance of this is strong orthogonality: it is easy to see that strong orthogo-
nality of two definable sets D, D’ is equivalent to the following condition:

If A’ is generated by elements of D', then any type of elements (%)

of D generates a complete type over A'.

The asymmetry in (x) is therefore only apparent.
Similarly, we have the following.

Lemma 2.6. Let D, D’ be definable sets. Then (1) < (2), 3) < 4).

(1) Every definable function f : D — D’ is piecewise constant, i.e., there exists a
partition D = U?_, D; of D into definable sets, with f constant on D;.

Q) Ifd e D,d' € D', d’ € dcl(d), then d’ € dcl(9).

3) If f : E — D is adefinable finite-to-one map, and g : E — D' is definable, then
g(E) is finite.

@ Ifd e D,d € D', d € acl(d), then d' € acl(9).

Proof. Let us show that (3) implies (4). Let M =T,d € D(M), andd’ € D'(M),
d’' € acl(d). Then d’ lies in some finite T;-definable set D'(d) € D’. Since Ty is
obtained from T by adding a constant symbol for d, there exists a formula ¢ (x, y)
of the language of T and some m such that M = ¢(d,d’) and M = (3="z)¢(d, 2).
Let Xo = {(x : @"y)¢x, M}, E = {(x,y) : x € Xo,¢(x, M)}, f(x,y) = x,
g(x,y) = y. Then by (3), g(E) is finite, but d’ € g(E), sod’ € acl().

Next, (4) implies (3): let f, E, g be as in (3) , and suppose g(E) is infinite. In
particular, for any finite F C acl(#) there exists d’ € g(E) \ F. Thus the family
consisting of g(E) and the complement of all finite definable sets has nonempty
intersections of finite subfamilies, so by the compactness theorem, in some M = T,
there exists d’ € g(E) \ acl(¥).

Letd € E(M) be such that d' = g(d). Then d’ € acl(f(d)), but f(d) € D,
contradicting (4). Thus (4) implies (3).

The equivalence of (1)—(2) is similar. O

Example 2.7. Let P be a complete type, and f a definable function. Then f(P) is a
complete type P’. If f is injective on P, then there exist definable D D> P, D’ O P’
such that f restricts to a bijection of D with D’.

Proof. For any definable D', f~! D’ is definable,so P € f~'D’or PN f~'D' = 0.
Thus P’ € D’ or PN D’ = 3. Thus P’ is complete.

Let {D;} be the family of definable sets containing P. Let R; = {(x, y) € Dl.2 :
x #y, f(x) = f(»}. Then N;R; = @. Since the family of {D;} is closed under
finite intersections, it follows from the compactness theorem that for some i, R; = .
Let D = D;, D' = f(D). O
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Naming almost definable sets

As special case of an expansion by constants, we can move from a complete theory T
to the theory T4, where A = acl() is the set of all algebraic elements of a model M
of T, including imaginaries. The effect is a theory where each class of any definable
equivalence relation E with finitely many classes is definable. Since T is complete,
the isomorphism type of acl(¥) in a model M does not depend on the choice of model;
so the theory T4 is determined. A definable set in this theory corresponds to an almost
definable setin 7'.

When D is a constructible set, 7|D denotes the theory induced on D. If T
eliminates quantifiers, the language is just the restriction to D of the relations and
functions of L. If the language is countable, the countable models of Dy4 are of the
form D(M), where M is a countable model of T4.

Stable embeddedness

A definable subset D of any product of sorts (possibly imaginary) is called stably
embedded (in T) if for any A, any T4-definable subset of D™ is Tp-definable for
some B C D. For example, the set of open balls is not stably embedded in ACVF,
since the set of open balls containing a point @ € K cannot in general be defined
using a finite number of balls.

Lemma 2.8. Let D be a family of sorts of L, let T|D be the theory induced on the
sorts D. If D is stably embedded and T |D admits elimination of imaginaries, then
for any definable P and definable S C P x D™, viewed as a P-indexed family of
subsets S(a) € D™, a € P, we have a definable function f : P — D", with f(a) a
canonical parameter for S(a).

Proof. By stable embeddedness there exists a family ' € P’ x D™ yielding the
same family, i.e., {S(a) : a € P} = {S'(@’) : a’ € P’}, and with P’ C D"; using
elimination of imaginaries we can take S’ to be a canonical family; now a defines
f(a) to be the unique @’ € P’ with S(a) = S'(a’). O

Corollary 2.9. If D is stably embedded and admits elimination of imaginaries, then
for any substructure A,

(1) (TA)|D = (T|D) anps
(2) fora € A, tp(a/A N D) implies tp(a/ D). ]

Examples of definable sets of ACVF satisfying the hypotheses include the residue
field k, or the value group I', as well as RV U I'. The stable embeddedness in this
case is an immediate consequence of quantifier elimination; cf. Lemma 3.30.

If M is saturated and D is stably embedded in 7', then we have an exact sequence

1 - Aut(M/D(M)) - Aut(M) — Aut(D(M)) — 1,
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where Aut(M/D(M)) is the group of automorphisms of M fixing D (M) pointwise,
and Aut(D(M)) is the group of permutations of D(M) preserving all definable re-
lations. Moreover, Aut(M/D(M)) has a good Galois theory; in particular, elements
with a finite orbit are almost definable over some finite subset of D. This and some
other characterizations can be found in [5, appendix].

Generic types

Let T be a complete theory with quantifier elimination. Let C be the category of
substructures of models of T, with L-embeddings, and let $ be the category of pairs
(A, p) with A € Ob € and p a type over A. We define Mor((A, p), (B,q)) ={f €
More(A, B) : f*(q) = p).

By a generic type we will mean a function p on ObC, denoted A — (p|A),
such that A — (A, p|A) is a functor € — 8. For example, when T, the theory
of algebraically closed fields, is provided by any absolutely irreducible variety V:
given a field F, let p|F be the type of an F-generic point of V, i.e., the type of a
point of V(L) avoiding U (L) for every proper F-subvariety U of V, where L is
some extension field of F. Other examples will be given below, beginning with
Example 3.3.

Lemma 2.10. Let p be a generic type of T, andlet M =T, a,b € M. Letc = p|M.

(1) If a ¢ dcl(@), then a ¢ dcl(c).
(2) If a ¢ acl(®), then a ¢ acl(c).
3) If a ¢ acl(b), then a ¢ acl(b, c).

Proof.

(1) Since a ¢ dcl(?), there exists @’ # a with tp(a) = tp(a’). Let ¢’ = p|{{a, a’}).
Since tp(a) = tp(a’), there exists an isomorphism (a) — (a’); by functoriality of
p,tpla, c) = tp(a’, ¢). If a € dcl(c), then a is the unique realization of tp(a/c),
so a = a’; a contradiction.

(2) If a € acl(c), then for some n there are at most n realizations of tp(a/c). Since

a ¢ acl(f), there exist distinct realizations ay, . . ., a, of tp(a). Proceed as in (1)
to get a contradiction.
(3) This follows from (2) for Ty). |

2.2 Grothendieck rings

We define the Grothendieck group and associated objects of a theory T'; cf. [10].
Def(T) is the category of definable sets and functions. Let C be a subcategory of
Def(T). We assume Mor(X, Y) is a sheaf on X: if X; = X, U X3 are subobjects
of X, and f; € Mor(X;, Y) with f1|(X> N X3) = f2/(X2 N X3), then there exists
f € Mor(Xy, Y) with f|X; = f;. Thus the disjoint union of two constructible sets
in Ob C is also the category theoretic disjoint sum.

If only the objects are given, we will assume Mor C is the collection of all definable
bijections between them.
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The Grothendieck semigroup K (C) is defined to be the semigroup generated by
the isomorphism classes [ X] of elements X € Ob €, subject to the relation

[X]1+[YI=[XUY]+[XNY]

In most cases, C has disjoint unions; then the elements of K (C) are precisely the
isomorphism classes of C.
If € has Cartesian products, we have a semiring structure given by

[X][Y]=[X xY].

In all cases we will consider the cases when products are present, the symmetry
isomorphism X x ¥ — Y x X will be in the category, as well as the associativity
morphisms, so that K (C) is a commutative semiring.

(The assumption on Cartesian products is taken to include the presence of an object
{p} = X such that the bijections X — {p} x X, x — (p,x),and X — X x {p},
x — (x, p), are in More for all X € Obe. All such p give the same element
1 = [{p}] € K(C), which serves as the identity element of the semiring.)

Let K (C) be the Grothendieck group, the formal groupification of K (C). When
C has products, K (C) is a commutative ring.

We will often have dimension filtrations on our categories, and hence on the
semiring.

By an semiring ideal we mean a congruence relation, i.e., an equivalence relation
on the semiring R that is a subsemiring of R x R. To show that an equivalence
relation E is a congruence on a commutative semiring R, it suffices to check that if
(a,b) € Ethen (a+c,b+c¢) € E and (ac, bc) € E.

Remark. When T is incomplete, let S be the (compact, totally disconnected) space
of completions of 7. Then {K(¢) : t+ € S} are the fibers of a sheaf of rings over
S. K(T) can be identified with the ring of continuous sections of this sheaf. In this
sense, Grothendieck rings reduce to the case of complete theories.

This last remark is significant even when T is complete: if one adds a constant
symbol ¢ to the language, T becomes incomplete, and so the Grothendieck ring of T
in L(c) is the Boolean power of K (7,), where T, ranges over all L(c)-completions
of T. Say c is a constant for an element of a sort S. Then an L(c)-definable subset
of a sort S’ corresponds to an L-definable subset of § x S’. This allows for an
inductive analysis of the Grothendieck ring of a structure, given good information
about definable sets in one variable (cf. Lemma 2.3).

Groups of functions into R

Let C(T) be a subcategory of the category of definable sets and bijections, defined
systematically for T and for expansions by constants 7. Let R(T) = K (C(T))
be the Grothendieck semigroup of C(7'). When V is a definable set, we let Cy,
Ry denote the corresponding objects over V; the objects of Cy are definable sets
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X C (V x W) such that for any a € V, X, € €4, and similarly the morphisms. In
practice, R will be the Grothendieck semigroup of all definable sets and definable
isomorphisms satisfying some definable conditions, such as a boundedness condition
on the objects, or a “measure preservation’’ condition on the definable bijections.

To formalize the notion of “definable function into R we will need to look at
classes X, of parametrically definable sets. The class of X, makes sense only in
the Grothendieck groups associated with T,, not T. Moreover, the equality of such
classes, say, of X, and of X}, begins to make sense only in Grothendieck groups of
T(q,p). Expressions like

[X]=[Y]
a,b

will therefore mean that X, Y are both definable in T, , [X], [Y] denote their classes
in the Grothendieck group of T, 5, and these classes are equal.

If V is a definable set, we define the semigroup of definable functions V. — R,
denoted Fn(V, R). An element of Fn(V, R) is represented by a definable X € Cy,
viewed as the function a — [X,], where [X,] is a class in R,. X, X’ represent
the same function if for all a, [X,], [X/] are the same element of R,. Note that
despite the name, the elements of Fn(V, R) should actually be viewed as sections
V = IuevRa.

Addition is given by disjoint union in the image (i.e., disjoint union over X).

Usually R has a natural grading by dimension; in this case Fn(V, R) inherits the
grading.

Assume that V is a definable group and R = K (T') is the Grothendieck semiring
of all definable sets and functions of 7', there is a natural convolution product on
Fn(V,R). Ifh;(a) = [H;(a)], H; C V x B;, the convolution k1 *h> is represented by

H = {(a1 + a2, (a1, a2, y1, 2)) : (@i, yi) € H;i} €V x (V? x By x By)

so that iy * ha(a) = H(a) = {(a1, a2, y1,¥2) : (a;, yi) € Hi, a1 +az = a}.

Grothendieck groups of orthogonal sets

Lemma 2.11. Let T be a theory with two strongly orthogonal definable sets D1, D>,
D12 = D1 x D». Let K4 Dj[n] be the Grothendieck semigroup of definable subsets
of D}'. Then K Dya[n] =~ K4 Di[n] ® K1 D[n].

Proof. Thisreduces ton = 1. Given definable sets X; C D{L, it is clear that the class
of X1 x X5 in K4 Dj;[n] depends only on the classes of X; on D;[n]. Define [X1]®
[X2] = [X1 x X3]. This is clearly Z-bilinear, and so extends to a homomorphism
n: K4+ D1[1] x K4 Dy[1] — K4 Dia[1]. By strong orthogonality, 7 is surjective.

To prove injectivity, note that any element of K D1[n]® K+ D,[n] can be written
YIXi1 ® [X5], with X1, ..., X} pairwise disjoint. To see this, begin with some
expression Y [X}]1®[X}]; use the relation [X' U X"1®[Y] = [X'1Q[Y]+[X"1®[Y]
toreplace the X ’1 by the atoms of the Boolean algebra they generate, so that the new X :
are equal or disjoint; finally use the relation [X' @ Y]+ [X' ®@Y"] = [X'1Q[Y' UY"]
to amalgamate the terms with equal first coordinate.
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Hence it suffices to show that if [UiX’i X Xé] =[Y; Yli X Yé], with the X’1 and the
Y| pairwise disjoint, then Y [X|] x [X5] = Y[¥{] x [V;]. Let F : Ui X} x X5 —
U;Y{ x Y, be a definable bijection. By strong orthogonality, the graph of F is a

disjoint union of rectangles. Since F is a bijection, it is easy to see that each of these
rectangles has the form flk X fzk, where for v = 1, 2, ff : Xy(k) —» Yy(k)isa

bijection from a subset of U; X ; to a subset of U; Y. The rest follows by an easy
combinatorial argument; we omit the details, since a somewhat more complicated
case will be needed and proved later; see Proposition 10.2. O

Integration by parts

The following will be used only in Section 9, to study the Grothendieck semiring of
the valuation group.

Definition 2.12. Let us say that Y € Ob C is treated as discrete if for any X € ObC
and any definable F C X x Y such that T = F is the graph of a function, the
projection map F — X is an invertible element of More (F, X).

To explain the terminology, suppose each X € Ob C is endowed with a measure
ix,and C is the category of measure-preserving maps. If iy is the counting measure,
and py «y is the product measure, then for any function f : X — Y, x — (x, f(x))
is measure preserving.

We will assume C is closed under products.

If Y1, Y5 are treated by C as discrete, sois Y| x Yo: if F C X x (Y] X Y2) is
the graph of a function X — (¥ x Y>), then the projection to F; C X x Y is the
graph of a function, hence the projection F| — X isin C; now F C (F| x Y2) is
the graph of a function, and so F — F] is invertibly represented, too; thus so is the
composition. In particular, if Y is discretely treated, any bijection U — U’ between
subsets of Y” is represented in C.

If R is a Grothendieck group or semigroup, we write [ X] ?[Y] to mean that X, Y

have the same class in R.

Lemma 2.13. Let f, f' C X x L be objects of C such that [ f(c)] K(:e )[f’(c)]for
any cin X. Then [ f] K(:@)[f/]; similarly for K .

Proof. By assumption, there exists g(c) such that f(c) + g(c), f'(c) + g(c) are C,-
isomorphic. By compactness (cf. the end of the proof of Lemma 2.3) this must be
uniform (piecewise in L, and hence by glueing globally): there exists a definable
g C Z x L and a definable isomorphism f + g >~ f’+ g, inducing the isomorphisms
of each fiber. By the definition of C., and since € is closed under finite glueing,
f + g, f' + g are in Ob € and the isomorphism between them is in Mor C. O

Let L be an object of C, treated as discrete in C, and assume given a definable
partial ordering on L.
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Notation2.14. Let f C X x L. Fory € L, let f(y) = {x : (x,y) € f}. Denote
Y, fW =Hx ) :xe f,y <yl

Notation 2.15. Let ¢ : L — K (X) be a constructible function, represented by f C
X x Lysothat ¢(y) = [f(M], f(y) = {x : (x,y) € f}. Denote 3, _z¢(y) =
HGx,y):x e f(n).y <yl

Note by Lemma 2.13 that this is well defined.
Below, we write fg for the pointwise product of two functionsin K (C); [ fg(y)] =

[f(y) x g

Lemma 2.16 (integration by parts). Let I be an object of C, treated as discrete in
C, and assume given a definable partial ordering of I'. Let f C X x I, F(B) =

ZV<I3 f()/), 8§ C Y xT, G(IB) = nyﬂ g()’)
Then

FG(B) =) fG(y)+ Y FgW).
y<B Y<B
Proof. Clearly,
FG(B) = Zy<py<pf (18-

We split this into two sets, ¥ < y’ and y’ < y. Now

Sy y<pf W) =2, <pF(yHg(y),
Ty<y<pf VW) = Sep F(PIGH).

The lemma follows. O

This is particularly useful when L is treated as discrete in €, since then, if the sets
f(y) are disjoint, [ f] = [U, f, ]. Another version, with G(B) = Zy<ﬁ g(y):

FGB) =) (fG+gF + f)y).

y<p

3 Some C-minimal geometry

We will isolate the main properties of the theory ACVF, and work with an arbitrary
theory T satisfying these properties. This includes the rigid analytic expansions
ACVFR of [23].

The right general notion, C-minimality, has been introduced and studied in [15].
They obtain many of the results of the present section. Largely for expository reasons,
we will describe a slightly less general version; itis essentially minimality with respect
to an ultrametric structure in the sense of [31]. We will use notation suggestive of the
case of valued fields; thus we denote the main sort by VF and a binary function by
val(x — y). Some additional assumptions will be made explicit later on.



Integration in valued fields 285

Let T be a theory in a language L, extending a theory T in a language L. T is said
to be T-minimal if forany M |= T, any L y;-formula in one variable is Tys-equivalent
to an Ly, formula.

More generally, if D is a definable subset of T (i.e., a formula of L), we say that
D is T-minimal if for any M = T, any T)s-definable subset of D is Tys-equivalent
to one defined by an Ly, formula.

Strong minimality

Let L = @. The only atomic formulas of L are thus equalities x = y of two variables.
T is the theory of infinite sets. T-minimality is known as strong minimality; see
[1, 28, 29]. A theory T is strongly minimal iff for any M = T, any Tjs-definable
subset of M is finite or cofinite. For us the primary example of a strongly minimal
theory is ACF, the theory of algebraically closed fields.

Let M = T. If D is strongly minimal, and X a definable subset of D*, we define
the D-dimension of X to be the least n such that X admits a Tj;-definable map into
D" with finite fibers. In the situation we will work in, there will be more than one
definable strongly minimal set up to isomorphism, and even up to definable isogeny;
in particular, there will be the various sets of RES ;. However, between any of these,
there exists an M-definable isogeny; so the k dimension agrees with the D dimension
for any of them. We will call it the RES dimension. It agrees with Morley rank, a
notion defined in greater generality, that we will not otherwise need here.

O-minimality

L = {<}, T = DLO the theory of dense linear orders without endpoints (cf. [9]).
DLO minimality is known as O-minimality, and can also be stated thusly: any T);-
definable subset of M is a finite union of points and intervals. This also forms the
basis of an extensive theory; see [37].

Let D be O-minimal. Then the O-minimal dimension of a definable set X € D*
is the least n such that X admits a Tj/-definable map into D" with bounded finite
fibers.

The Steinitz exchange principle states that if a € acl(B U {b}) but a ¢ acl(B),
then b € acl(B U {a}).

This holds for both strongly minimal and O-minimal structures; cf. [37].

For us the relevant O-minimal theory is DOAG itself. We will occasionally use
stronger facts valid for this theory. Quantifier elimination for DOAG implies the
following.

Lemma 3.1.

(1) Any parameterically definable function f of one variable is piecewise affine;
there exists a finite partition of the universe into intervals and points, such that
on each interval I in the partition, f(x) = ax + c for some rational o and some
definable c.

(2) DOAG admits elimination of imaginaries.
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Proof.

(1) This follows from quantifier elimination for DOAG.

(2) This follows from (1) that any function definable with parameters in DOAG has
a canonical code, consisting of the endpoints of the intervals of the coarsest such
partition, together with a specification of the rationals « and the constants c. But
from this it follows on general grounds that every definable set is coded (cf. [16,
3.2.2]). Thus DOAG admits elimination of imaginaries. O

C-minimality

LetT = T,,, bethe theory of ultrametric spaces or, equivalently, chains of equivalence
relations (cf. [31]).

In more detail, L has two sorts, VF and I's.. The relations on I's, are a constant
oo and a binary relation <. In addition, L has a function symbol VF? — "o, Written
val(x — y). T states the following:

(1) T'wo is adense linear ordering with no least element, but with a greatest element oo.

2) val(x —y) = oc0iff x = y.

(3) val(x — y) > « is an equivalence relation; the classes are called closed «-balls.
Hence so is the relation val(x — y) > o, whose classes are called open a-balls.

(4) LetI' = I'g \ {00}. For o € T, every closed «-ball contains infinitely many
open «-balls.

A T,,,,-minimal theory will be said to be C-minimal. The notion considered in
[15] is a little more general, but for theories T,,, they coincide. Since we will be
interested in fields, this level of generality will suffice.

Atheory T extending ACVFis C-minimal iff forany M |= T, every T),-definable
subset of VF(M) is a Boolean combination of open balls, closed balls and points. If
T is C-minimal, A < M |= T, and b is an A-definable ball, or an infinite intersection,
let pg be the collection of A-definable sets not contained in a finite union of proper
subballs of . Then by C-minimality, pz is a complete type over A.

Let T be C-minimal. Then in 7', I" is O-minimal, and for any closed «-ball C,
the set of open a-subballs of C is strongly minimal. Denote it C/(1 + M). (These
facts are immediate from the definition.)

Assume 7 is C-minimal with a distinguished point 0. We define: val(x) = val(x—
0); M = {x : val(x) > 0}. Let B be the family of all closed balls, including points.

Among them are B, (0) = {x : val(x) > a}. Let RV = Uyer B;(O)/(l + M),
and let rv : VF\ {0} — RV and valy : RV — T be the natural map. By an rv-ball
we mean an open ball of the form rv ~!(c).

The T-definable fibers of val;, are referred to, collectively, as RES7. Later we
will fix a theory T, and write RES for RESt; we will also write RES 4 for REST,.
The unqualified notion “definable,” as well as many derived notions, will implicity
refer to T.

A certain notion of genericity plays an essential role in these theories.
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Example 3.2. Let T be a strongly minimal theory. Forany A < M = T, any A-
definable set is finite or has finite complement. Therefore, the collection of cofinite
sets forms a complete type. A realization of this type is called a generic element of
M, over A.

Example 3.3. Let T be an O-minimal theory. Forany A < M = T, any A-definable
set contains, or is disjoint from, an infinite interval (b, co) for some b € M. The set of
A-definable sets containing such an interval is thus a complete type, the generic type
of large elements of I'. Similarly, the set of A-definable sets containing an interval
(0,a) with 0 < a is the generic type of small positive elements. More generally,
given asubset S C A S = {b € A: (Vs € S)(s < b)}; then the definable sets
x >aa € S),x < b(b € §’) generate a complete type over A, called the type of
elements just bigger than S.

Definition 3.4. Let 7 be C-minimal. Let b be a T4-definable ball, or an infinite
intersection of balls. The generic type pp of b is defined by pp|A’ = pz,, for any
A<A<MET.

The completeness follows from C-minimality, since for any A’-definable subset
S of b, either S is contained in a finite union of proper subballs of b, or else the
complement b \ S is contained in such a finite union.

A realization of pp|A’ is said to be a generic point of b over A’. An A’-definable
set is said to be b-generic if it contains a generic point of b over A’.

See Section 3.2 for some generalities about generic types. For our purposes it
will suffice to consider generic types in one VF variable. For more information see
[16, Section 2.5].

Remark 3.5. If A = acl(A) then any type of a field element tp(c/A) coincides with
pulA, where b is the intersection of all A-definable balls containing c.

This is intended to include the case of closed balls of valuative radius oo, i.e.,
points; these are the algebraic types x = c. Note also the degenerate case that c is not
in any A-definable ball; then » = VF and tp(c/A) is the generic type of VF over A.

Not every generic 1-type is of the form pj, for a ball b as above. For instance, let
b be an open ball, ¢ € b; then the generic type pj((x — ¢)~!) is not of this form.

For V-minimal theories (defined below) it can be shown that every generic 1-type
is of the form py, or pp((x — )™ 1).

Let T be a C-minimal theory. Let b be a definable ball, or an infinite intersection
of definable balls. We say that b is centered if it contains a proper definable finite
union of balls. If b is open, or a properly infinite intersection of balls, we have the
following:

If b contains a proper finite union of balls, then it contains a
definable closed ball (the smallest closed ball containing the (%)
finite set).

For C-minimal fields of residue characteristic 0, (x) is true of closed balls: the set of
maximal open subballs of b forms an affine space over the residue field k, where the
center of mass of a finite set is well defined.
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Clearly, b is centered over acl(A) if and only if it is centered over A. The term
“centered’” will be justified to some extent by the assertion of Lemma 3.39, that when
A is generated by elements of VFURV U T, any A-definable closed ball contains an
A-definable point, and thus a centered ball has a definable “center.”

Lemma 3.6. b is centered over A iff b is not transitive over A.

This is immediate from the definition, and from C-minimality, since any proper
definable subset would have to be a Boolean combination of balls.
An often useful corollary of C-minimality is the following.

Lemma 3.7. Let T be C-minimal, X a definable subset of VF, and Y a definable set
of disjoint balls. Then for all but finitely many b € Y, eitherb C X orbN X = (.

Proof. X is a finite Boolean combination of balls, so it suffices to prove this when X
is a ball; then X is contained in at most one ball b € Y; for any other b € Y, either
bCT XorbNX =40. 0O

Lemma 3.8. Let (b; : t € Q) be a definable family of pairwise disjoint balls. Then
for any nonalgebraic t € Q, by is transitive over (t).

Proof. Consider a definable R” € Q x VF with R'(r) C b;. Let Y = UiegR'(2).
Then Y is a definable subset of VF, hence a finite combination of a finite set H of
balls. The b, are pairwise disjoint, so at most finitely many can contain an element
of H, and thus no nonalgebraic b, contains an element of H. Thus each ball in H is
disjoint from, or contains, any given b;. It follows that Y is disjoint from, or contains,
any given b;. Thus b; N Y cannot be a nonempty proper subset of b;. O

Internalizing finite sets

The following lemma will be generalized later to finite sets of balls. It is of such
fundamental importance in this paper that we include it separately in its simplest
form. The failure of this lemma in residue characteristic p > 0 is the main reason for
the failure of the entire theory to generalize, in its present form. Recall the definition
of RV (Section 2.1).

Lemma 3.9. Let T be a C-minimal theory of fields of residue characteristic O (possibly
with additional structure), A < M = T. Let F be a finite T s-definable subset of
VF". Then there exists F' C RV™, and a T 4-definable bijection h : F — F'.

Proof. First consider F = {cy,...,¢,} € VF. Letc = (}_}_, ¢;)/n be the average;
then F is T 4-definably isomorphic to {c; — ¢, ..., ¢, — c¢}. Thus we may assume
the average is 0. If there is no nontrivial A-definable equivalence relation on F', then
val(x — y) = « is constant on x # y € F. In this case rv is injective on F' and one
can take & = rv. Otherwise, let E be a nontrivial A-definable equivalence relation
on F. By an E-symmetric polynomial, we mean a polynomial H (x1, ..., x,) with
coefficients in A, invariant under the symmetric group on each E-class. For any such
H, H(F)isaT 4-definable set with < n elements. There exists H such that H (F) has



Integration in valued fields 289

more than one element. By induction, there exists an injective A-definable function
ho : H(F) — RV™. Leth; = hgo H. Ford € ho(H(F)), and d' = hy~'d, let
F; = H 'hy~'(d) = H~'(d’). By induction again, there exists an A(d) = A(d')-
definable injective function g4 : Fy — RV™ . (We can take the same m’ for all d.)
Define h(x) = (h1(x), gn,(x)(x)). Then clearly & is A-definable and injective.

The case F € VF” follows using a similar induction, or by finding a linear
projection with Q-coefficients VF* — VF which is injective on F. O

3.1 Basic geography of C-minimal structures

Let T be a C-minimal theory. We begin with a rough study of the existence and nonex-
istence of definable maps between various regions of the structure: k, I', RV, VF and
VF/O.

We will occasionally refer to stable definable sets.

A definable set D of a theory T is called stable if there is no model M = T and
M-definable relation R € D? and infinite subset J C M (D) such that R N J? is a
linear ordering. This is a model-theoretic finiteness condition, greatly generalizing
finite Morley rank, and in turn strong minimality (cf. [28, 29]).

It is shown in [16] that a definable subset of ACVFZq is stable if and only if it has
finite Morley rank, if and only if it admits no parametrically definable map onto an
interval of I'; and this is if and only if it embeds, definably over acl(A), into a finite-
dimensional k-vector space. These vector spaces have the general form A /MA, with
A < VF" alattice. Within the sorts we are using here, the relevant ones are the finite
products of vector spaces of RES. More generally, in a C-minimal structure with
sorts VF, RV, all stable sets are definably embeddable (with parameters) into RES.
We will, however, make no use of these facts, beyond justifying the terminology.
Thus “X is a stable definable set” can simply be read as “ there exists a definable
bijection between X and a subset of RES*.”

The first fact is the unrelatedness of k and T".

Lemma 3.10. Let Y be a stable definable set. Then Y, " are strongly orthogonal. In
particular, any definable map from Y to I has finite image.

Proof. We prove the second statement first: let M = T. Let f : ¥ — I be an
M-definable map. Then f(Y) is stable, and linearly ordered by <r; hence by the
definition of stability, it is finite.

Let y = (y1,...,¥m) € I'. We have to show that for a Y-generated struc-
ture A, tp(y) implies tp(y/A). It suffices to show that for any a ...,a, € A,
tp(vi/{v1, - - -, ¥i—1)) implies tp(yi /{v1, - .-, Vi—1, a1, - - ., an)), for each i. By pass-
ing to Ty,,....y,_,) We may assume m = 1, y € I'. Similarly, we may assume n = 1;
leta = a; € Y. To show that tp(y) implies tp(y/a), it suffices to show that any
T,-definable subset of I" is definable. By O-minimality, any 7,-definable subset of I
is a finite union of intervals, so (in view of the linear ordering) it suffices to show this
for intervals (c1, c2). But if the interval is T,-definable then so are the endpoints, so
¢i = cj(a) is a value of a definable map ¥ — I'. But such maps have finite images,
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so ¢; lies in a finite definable set. Using the linear ordering, we see that ¢; itself is
definable, and hence so is the interval. O

Lemma 3.11. There are no definable sections of valy : RV — T over an infinite
subset of T'. In fact if Y C RV" is definable and valyy is finite-to-one on Y, then Y is
finite.

Proof. Looking at the fibers of the projection of ¥ to RV”~!, and using induction,
we reduce the lemma to the case n = 1. In this case, by Lemma 3.7, every definable
set is a Boolean combination of pullbacks by val;y, of subsets of I" and finite sets. O

Lemma 3.12. Let M =T and let Y C B." be an infinite definable set. Then there
exists a surjective M-definable map of Y to a proper interval in T.

Proof. Since I' is O-minimal, any infinite M-definable subset contains a proper
interval. Thus it suffices to find an M-definable map of Y onto an infinite subset of I".

If the projection of ¥ to B" ! as well as every fiber of this projection are finite,
then Y is finite. Otherwise, replacing Y by one of the fibers or by the projection, we
reduce inductively to the case n = 1.

Let v(y) € T be the valuative radius of the ball y. Then v(Y) is an M-definable
subset of I'. If it is infinite, we are done; otherwise, we may assume all elements of
Y have the same valuative radius y.

Let W = UY. By C-minimality, W is a Boolean combination of balls b; (open,
of valuative radius < y, or closed, of valuative radii §; < y). If W contains some
W' =b;\(bj U---Ubj,), where b, is a proper subball of b;, and §; < y, pick a point
¢ in W’; then for any § with y > § > §; there exists ¢’ € W’ with val(c — ¢’) = 6. Tt
follows that the balls by, (¢), b, (¢") of radius y around c, ¢’ are both in Y; but infinitely
many such § exist; fixing ¢, we obtain a map by(c’ ) + val(c — ¢) into an infinite
subset of .

Otherwise, W can only be a finite set of balls of valuative radius y. Thus Y is
finite. O

Corollary 3.13. 9B," contains no stable definable set. In particular, VF contains no
strongly minimal set. O

By contrast, we have the following.

Lemma 3.14. Any infinite definable subset of RV" contains a strongly minimal M -
definable subset.

Proof. By Lemma 3.11, the inverse image of some point in ' must be infinite. O

Lemma3.15. Let M = T. Let Y C B be a definable set. Let rad(y) be the
valuative radius of the ball y. Then eitherrad : Y — T is finite-to-one, or else there
exists an M -definable map of an M -definable Y' C Y onto a strongly minimal set.

Proof. Ifrad is not finite-to-one, then Y contains an infinite set Y’ of balls of the same
radius @. Then UY’ contains a closed ball b of valuative radius 8 < «. The set S
of open subballs b’ of b of valuative radius 8 forms a strongly minimal set; the map
sending y € Y’ to the unique " € S containing y is surjective. ]
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The following lemma regarding VF/O will be needed for integration with an
additive character (Section 11).

Lemma 3.16. Let Y be a stable definable set, Z C VF x Y a definable set such that
fory e Y, Z(y) = {x : (x,y) € Z} is additively M invariant. Then for all but
finitely many O-cosets C, Z N (C x Y) is a rectangle C x Y'.

Proof. Fory € Y, Z(y)is aT-definable subset of VF, hence a Boolean combination
of a finite (y)-definable set of balls b{(y), ..., bg(y). Let B;(y) be the smallest
closed ball containing b; (y). According to Lemma 3.13, since the set of closed balls
occurring as B;(y) for some y is stable, it is finite:

{Bi(y):yeY}={B1,..., B}

All the B; are O-invariant. Let R be the set of O-cosets C that are equal to some B;.

If B;(y) has valuative radius < 0 (i.e., it is bigger than an O-coset), then so is
b; (y), so the characteristic function of such a b; (y) is constant on any closed O-coset
C. If C ¢ R, then it is disjoint from any B; of valuative radius equal to (or greater
than) O, so the characteristic functions of the corresponding b; (y) are also constant on
it. Thus with finitely many exceptional C, any such characteristic function is constant
on C, and the claim follows. O

3.2 Generic types and orthogonality

Two generic types p, g are said to be orthogonal if for any base A’, if ¢ = p|A’,
d = g|A’, then p generates a complete type over A(d); equivalently, ¢ generates a
complete type over A(c). We will see that generics of different kinds are orthogonal
(cf. Lemma 3.19). This orthogonality of types is weaker than the orthogonality of
definable sets mentioned in the introduction, and in the present case is only an indirect
consequence of the orthogonality between the residue field and value group; these
types do not have orthogonal definable neighborhoods.

If y € I'and rkg(I'(C(a))/ I'(C)) = n, we say that tp(y /C) has I'-dimension n.

Lemma 3.17. Let pr be a T 4-type of elements of T" of I dimension n. Let P =
val”' (pr). Then we have the following:

€Y val ' (pr) is a complete type over A. In other words, for any A-definable set X,
either Valfl(pr) C X or Valfl(pr) nNxX=4y.

(2) If D is a stable A-definable set and dy, . ..,d, € D, then P implies a complete
type over A(dy, ..., dy).

(3) If c € P, then D(A(c)) = D(A).

(4) P is complete over A.
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Proof.

(1) This reduces inductively to the case n = 1. Since val~1( pr) is a disjoint union of
open balls, (1) for n = 1 follows from Lemma 3.7: an A-definable set X cannot
intersect nontrivially each of an infinite family of open balls. Therefore, either X
is disjoint from almost all, or X contains almost all open balls Val_] (c), c = pr;
in the former case the complement of X contains val ' (pr), and in the latter X

contains val ' (pr) since pr is complete.

(2) By strong orthogonality, pr generates a complete type ¢’ over A(d), of I'-
dimension n. By (1) over A(d), val “(pr)is complete over A(d). Butifc € P
then val(c) = pr soc € val -1 (pr). Thus P implies a complete type over A(d).

(3) follows from (2): if d € D(A(c)) then there exists a formula ¢ such that =
¢(d, ¢) and such that ¢ (x, ¢) has a unique solution. By (2) ¢ is a consequence
of P(c) Utp(d/A), and hence by compactness of a formula ¢ (x) &> (c), where
¢> € tp(d/A). Thus already ¢ (x) has the unique solution d, and thusd € D(A).

(4) This is immediate from (1). O

Lemma 3.18. Let g be a T-type of elements of RES’) of RES dimension n. Let

0 = rv_l(q). Then Q is complete over A. Moreover, if y1,...,Ym € T, then Q
implies a complete type over A(V1, ..., Ym)-

Proof. Again the lemma reduces inductively to the case n = 1, and forn = 1 follows
from Lemma 3.7, since val ~!(¢) is a union of disjoint annuli; the “moreover” also
follows from orthogonality as in the proof of Lemma 3.17(2). O

Lemma 3.19 ([16, Section 2.5]).

(1) If b is an open ball, or a properly infinite intersection of balls, and b’ a closed
ball, then pp, py are orthogonal.
(2) Any b-definable map to k is constant on b away from a proper subball of b.

Proof. We recall the proof from [16, Section 2.5]: The statement becomes stronger if
the base set is enlarged. Thus we may assume that » and b’ are centered; by translating
we may assume both are centered at 0, and by a multiplicative renormalization that
b’ is the unit closed ball. Thus

cEpylA ff ce€O and res(c) ¢ acl(A). (%)

On the other hand, let pr be the type of elements of I' that are just bigger than
the valuative radius of b (cf. Example 3.3). Then d = pp|A iff val(d) = pr,ie.,
pp is now the type P described in Lemma 3.17. By Lemma 3.17, if ¢’ € P then
K(A(c")) = k(A). It follows that if ¢ = py|A, then res(c) ¢ acl(k(A(c")). By (%)
¢ k= prlAE).

For the second statement, let g be a definable map b — k; by Lemma 3.17(3), g
is constant on the generic type of b; by compactness, g is constant on b away from
some proper subball of b. O
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Lemma 3.20. Let a = (ay, ..., a,) € RV", and assume a; ¢ acl(A(ay, ..., ai—1))
for 1 <i < n. Then the formula D(x) = /\?:1 rv(x;) = a; generates a complete
type over A(a), and, indeed, over any RV U T"-generated structure A" over A.

In particular, if ¢ = tp(a/A), any A-definable function f : v ~'(q) - RVUT
factors through rv(x) = (rv(x1), ..., rv(x,)).

Proof. This reduces inductively to the case n = 1. If we replace A by a bigger
set M (such that a; ¢ acl(A(ay, ...,a;—1)) for 1 < i < n), the assertion becomes
stronger; so we may assume A = M = T. Let rv(c) = rv(¢’) = a. Either
val(c) = val(c’) ¢ M, or else val(c) = val(c’) = val(d) for some d € M, and
res(c/d) = res(c’/d) ¢ M; in either case, by Lemma 3.17 or Lemma 3.18, we have
tp(c/M) = tp(c’/M). Thus tp(c, rv(c)/M) = tp(c’, rv(c") /M), i.e., tp(c/M(a)) =
tp(c’/ M (a)). This proves completeness over A(a).

Let A’ be a structure generated over A by finitely many elements of I'. Then
A'(a) = A(y1,..., Yk a), where y; € T, and y; ¢ A(y1,...,yi—1,val(a)).
It follows that rv(a) ¢ A(y1,...,¥x), so D(x) generates a complete type over
A, 0@ = Ala).

Let A” be generated over A’(a) by elements of stable A-definable sets. Since D (x)
is the (unique, and therefore) generic type of an open ball over A’(a), by Lemma 3.17,
it generates a complete type over A”.

Now if A” = A(y1, ..., ¥k, F1, ..., In,d), where y; € ', r; € RV and d lies in

a stable set over A, let A" = A(yi, ..., vk, valy(r1), ..., valy (ry,)); then A’/A is T-
generated, and A”/A is generated by elements of stable sets (including valy, ~L(ri)).
Thus the above applies.

The last statement follows by applying the first part of the lemma over A” =
A(f(c)): the formula f(x) = f(c) must follow from the formula D(x), since D(x)
generates a complete type over A”. O

3.3 Definable sets in group extensions

We will analyze the structure of RV in a slightly more abstract setting. In the following
lemmas we assume R is aring, and 0 - A — B — C — 0 is a definable exact
sequence of R-modules in 7. This means that A, B, C are definable sets, and that
one is also given definable maps +4 : A2 = A, fg :A — Aforeachr € R, and
similarly for B, C; and definable maps ¢t : A — B, ¢ : B — C, such that in any
MET,AM), B(M), C(M) are R-modules under the corresponding functions, and
0—> AM) -, B(M) -y C(M) — 0 is an exact sequence of homomorphisms of
R-modules.

Lemma 3.21. Consider a theory with a sequence 0 - A — B —y C — 0 of
definable R-modules and homomorphisms (carrying additional structure). Assume
the following:

(1) A, C are stably embedded and orthogonal.
(2) Every almost definable subgroup of A" is defined by finitely many R-linear equa-
tions.
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(3) (“No definable quasi-sections.”) If P is a definable subset of B" whose projection
to C" is finite-to-one, then P is finite.

Then every almost definable subset Z of B" is a finite union of sets of the form
{b:9(b)e W,NbeY},

where N € B, x(R) is an n x k matrix, Y is an almost definable subset of a single
coset of A¥, W is an almost definable subset of C".

Note the following:

(1) To verify (3), it suffices to check it for n = 1 but for parametrically definable P.
(2) If C is definably linearly ordered, and Z is definable, then ¥, W may be taken
definable.

Proof. Using a base change as in Section 2.1, we may assume almost definable sets
are definable. Replacing B by B" and R by M,,(R), we may assumen = 1. Let Z be
a definable subset of B. Given X C A, let [X] denote the class of X up to translation;
50 [X] =[X']if X = X' + a for some a € A. Now a definable subset U of a coset
b + A of A has the form b + X, X C A; the class [X] is well defined, and we will
denote [U] = [X]. We obtain a map

c [ZNnd o).

In more detail, for any b € (9~ (¢) N Z), we have (8 ~!(c) N Z) —b C A, and so by
stable embeddedness of A we can write (9 "' (¢) N Z) —b = X (a) for some a € A™.
The tuple a is not well defined; but the class of a in the definable equivalence relation

x~x = @Are Al +X(x) =X

is obviously a function of ¢ alone. By the orthogonality assumption, this map is
piecewise constant. Thus we may assume it is constant and fix Co with [Z Ny L)) =
[Co]. Let S be the stabilizer S = {a € A : a + Co = Co}. Then fora € S,
a+(ZN~1(c)) = (Znv~(c)) forany c € C,sothatalsoS = {a € A : a+Z = Z},
and S is definable.

Now ZN9~!(c) = Co+ f(c) forsome f(c) € ¥~1(c); f(c)+S is well defined.

By assumption (2), S = Ker(r;) N ... N Ker(r,,) for some r; € R. Let I =
{r1,...,rm}. Forr € I, f,(c) ;= rf(c) is a well-defined element of B, and for all
ce(Z),r(ZNnd ) =rCo+ fr(c).

We have ¥ f.(c) = rc. If d € Ker(r : C — C), then f.(d + ¢) = rc also,
so fr(d + c) — fr(c) € A. By orthogonality, for fixed r, f.(d + ¢) — fr(c) takes
finitely many values as c, d vary in C. In other words, {rf(c) : ¢ € ¥(Z)} is a quasi-
section above r(Z). By (3), r(Z) is finite, foreachr € I. Let N = (r1, ..., ry),
Y’ = NZ. Then 9(Y’) is finite. It follows that Y’ is contained in a finite union of
cosets of A, so C, Y’ are orthogonal.

Thus {(¥(z), Nz) : z € Z}is afinite union of rectangles; upon dividing Z further,
we may assume this set is a rectangle W x Y. Now if #(b) € W and Nb € Y then
forsome z € Z, ¥ (b) = ¥ (z) and Nb = Nz;itfollowsthatb—z € Aandb—z € S;
sobe S+ Z =Z. Thus Z is of the required form. O
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Corollary 3.22. Let T be a complete theory in a language L satisfying the assump-
tions of Lemma 3.21. Let L C L', T C T', and assume (1)~(3) persistto T'. If T,
T’ induce the same structure on A and on C, up to constants they induce the same
structure on B, i.e., every T-definable subset of B* is parameterically T'-definable.

Proof. Apply Lemma 3.21 to T’, and note that every definable set in the normal form
obtained there is already parametrically definable in 7. O

We will explicitly use imaginaries in RV only rarely; but our ability to work with
RV, using T as an auxiliary, is partly explained by the following.

Corollary 3.23. Let 0 - A — B —y C — 0 be as in Lemma 3.21, and assume
C carries a definable linear ordering. Let V be the disjoint union of the definable
cosets of A in B, with structure induced from T. Let e be an imaginary element of B.
Then (e) = ((a’, ¢')) for some pair (', ¢') consisting of an imaginary of V and an
imaginary of C. Thus if V, C eliminate imaginaries, so does BUC U V.

Proof. Let e be an imaginary element of B; let E be the set of A, V-imaginaries that
are algebraic over e.

By Lemma 3.21, applied to a definable set with code e in the theory Tg,, there
exist almost definable subsets of V, C" from which e can be defined. These are
coded by imaginaries permitted in the definition of Ey. Thus e is Ey-definable. Thus
e = g(d) for some definable function g and some tuple d from Ej. O

Let us now show that e is equidefinable with a finite set, i.e., an imaginary of the
form (f1, ..., fn)/Sym(n). Let W be the set of elements with the same type as d
over e; W is finite by the definition of Ey, and is e-definable. But ¢ = g(w) for any
element w € W, so e is definable from {W}.

It remains to see that every finite set of elements of Eg is coded by imaginaries of
A and C and elements of B. Since C is linearly ordered, it suffices to consider finite
sets whose image in C™ consists of one point. These are subsets of some definable
coset of A™, so again by elimination of imaginaries there they are coded. O

Corollary 3.24. The structure induced on RVUT from ACVF eliminates imaginaries.

Proof. T'g, eliminates imaginaries, and so does ACF (cf. [31]). Note that V is
essentially a family of one-dimensional k-vector spaces, closed under tensor products
and roots and duals. Hence by [18], VEO eliminates imaginaries, too. Our only
application of this lemma will be in a situation when parameters can be freely added;
in this case, it suffices to quote elimination of imaginaries in ACF. O

Corollary 3.25. Let T be a theory as in Lemma 3.21, with R = 7Z, and C a linearly
ordered group. Then every definable subset of B" is a disjoint union of GL, (Z)-
images of products Y x 9~Y(Z), with |0Y| = 1. In particular, the Grothendieck
semiring K1 (B) (with respect to the category of all definable sets and functions of
B) is generated by the classes of elements Y C B"™ with |9Y| = 1, and pullbacks
»~Y2), Z c cm.
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Proof. By Lemma 3.21, the Grothendieck ring is generated by classes of sets X of
the form X = {b € B" : ¥ (b) € W, Nb € Y}. After performing row and column
operations on the matrix N, we may assume it is the composition of a projection
p : R" — R* with a diagonal k x k integer matrix with nonzero determinant. The
composition ¥ p(X) is finite; since C is ordered, each element of ¥ p(X) is definable,
and so we may assume ¥ p(X) has one element e. Thus W = {(e) x W'} for some
W ,and X = pX x 0~ L (W). o

Lemma 3.26. Let T be a theory, and let 0 —- A — B —3 C — 0 be an exact
sequence of definable Abelian groups and homomorphisms. If E < M = T, we will
write E4 = A(E), etc. Assume the following:

(1) A, C are orthogonal.

(2) Any parametrically definable subset of B is a Boolean combination of sets Y with
W (Y) finite, and of full pullbacks 9~ (Z).

(3) C a uniquely divisible Abelian group, and for any E < M = T, every divisible
subgroup containing Ec is algebraically closed in C over E.

(4) Foranyprime p >0, T = (3x € A)(px =0,x #0).

LetZ C C"and f : Z — C bedefinable, and suppose there exists E and E-definable
X CB"and F : X — Blifting f: X = Z,9F(x) = f(¥x). Then there exists
a partition of Z into finitely many definable sets Z,,, such that for each v, for some
meZ f(x)— Z?:] m;x; is constant on Z,,.

The main point is the integrality of the coefficients m; .

Proof. 1t suffices to show that forany M = T and any ¢ = (c1,...,¢p) € Z(M),
there exists m = (my, ..., m,) € Zsuchthat f(c) —mc € E°, where E? = dcl(9) is
the smallest substructure of M. For if so, there exists a formula of one variable of sort
C, such that T |= (3=!2)¥(2), M = ¥ (f(c) — mc). By compactness there exists
a finite set F' of such pairs v = (m, V), such that forany M =T and ¢ € Z(M),
for some (m,y¥) € F, M = ¥ (f(c) — mc); the required partition is given by
Xy =1z € Z: 9(f(2) —m2)).

Fix M and ¢ € Z(M). Let (c) be the smallest divisible subgroup of C(M)
containing Eg and cy,...,cy. By (3), {c) is closed under f, so f(c) € (c), i.e.,
f(c) => ajci +d forsome o; € Q and somed € Eg. The only problem is to show
that we can take o; € Z.

We will use induction onn. Let K = {8 € Q" : B-¢c € Eg}. K is a Q-
subspace of Q". If K # (0), there exists a primitive integral vector 81 € K. fi
may be completed to a basis for a Z-lattice in Q". Applying a GL,(Z) change of
variables to B", we may assume 81 = (1,0,...,0), i.e, c| € E(C). But then let
f'(z2,...,zn) = f(c1,22,...,2n). Then f’ lifts to a definable function on B”"
(with parameters, of the form F (b1, y2, ..., Y»)) so by induction, f(c1,...,cn) =
fl(ca,...,cn) =) jopmizi+d forsomems, ..., m, € Zandd' € Eg,asrequired.

Thus we can assume K = 0).

We can find m, m; € Z, e € dcl({) with
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mf(c) = Zmici + e.

If m|m; we are done. We will now derive a contradiction from the contrary assumption
that m does not divide each m; in such an equation, with f a liftable function. We

may assume that the greatest common divisor of m, mq, ..., m,; so there exists a
prime dividing m but not (say) m.
Let g(x) = f(x,c2,...,cn) —e/m — Y i_,mjici/m; then mg(ci) = mjci, m

does not divide m1, g is E = acl(ca, ..., ¢,)-definable and liftable. Since K = (0),
by assumption (3), c; ¢ acl(E). Let E’ D E be such that g lifts to an E’-definable
function G'. Enlarging the model if necessary, let ¢/ realize tp(c1/E), with ¢| ¢ E’
(cf. Example 2.4). Therefore, there exists E” such that E”, ¢ and E’, ¢| have the
same type. In particular, g lifts to an E”-definable function G.

Consider any b; such that ¥(b1) = ¢1. Then m¥G (b)) — m19(b1) = 0. Thus
mG(bl) — m1b1 c A.

Let p be prime, p|m but p fm. Lets, r € Z be such that sp —rm = 1, and let
hx) = sx—%g(x). Then ph(c1) = psci—rmg(c1) = psci—rmicy = c1. Alsoh
is liftable over E”: indeed, if G is E”-definable and lifts g, then H (x) = sx — %G(x)
lifts A.

Thus pH(by) = by +d,somed € A. Let by = H(by); then by = pb, — d, or

by = H(pby — d).

Now let ¢ = h(c1) = 9 (by). Then pcy; = c1, and so ¢z ¢ acl(E”), since by
unique divisibility ¢ € acl(h(cy)). By (1), ¢ ¢ acl(E”(d)). Let C; = 9~ '¢;. By
(2), any E” (d)-definable set either contains C; or is disjoint from C,. Hence for any
y € Ca,y = H(py — d).

By (4) there exists 0 # w), € A with pw, = 0. Let b’2 =by+wp. Thenb, € C3,
so by, = H(pb), — d). But pb}, = pby, so by = b}, and w, = 0, a contradiction. O

Remark 3.27.

(1) It follows from Lemma 3.26 that a definable bijection between subsets of C”
that lifts to subsets of B" is piecewise given by an element of GL,(Z) x C" (cf.
Lemma 3.28).

(2) Assumption (4) on torsion does not hold in characteristic p > 0 for the sequence
k* — RV — T. In this case there is [-torsion for [ # p, but no p-torsion, and
the corresponding group is GL,, (Z[1/p]) x C".

Note as a corollary that there can be no definable sections of B — C over an
infinite definable subset of C.

Lemma 3.28. Let0 - A — B — C — 0 be as in Lemma 3.26. Let X C B" be
definable, and let f : X — B! be a definable function. X may be partitioned into
finitely many pieces X', such that on each X',

(1) f(x) = Mx + b(x), where M is al x n-integer matrix and ¥b(x) is constant;
(2) there exists g € GL,,(Z) such that b o g factors through a projection B" —, B,
where 97 (X') is one point of C¥.
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Proof. We first prove (1)—(2) for complete types.

(1) This reduces tol = 1. Let P be a complete type of elements of X. Then on
P we have © o f(x) = > m;9(x;) + d for some constant d (Lemma 3.26).

Thus f(x) = Y m;x; + b(x), where b(x) = f(x) — Y m;x;, and ¥b(x) =d is
constant.

(2)Letw : B" — B¥bea projection such that ¥ (X) is one point of C k and with
k maximal. Thus P C P’ x P”, P’ c B" %, P” ¢ B¥ and 9(P") is a single point
of C¥, while 9 (P’) is not contained in any proper hypersurface > njx; = constant
with n; € Z. Pick b” € P”. Lety = (y1,...,v) € 9(P’), y not in any such
hypersurface. Leta = (ai, ..., ar), 9(a;) = Vi, and let a’ be another point with
¥(a@’) = y. Lete = f(a,b). Then tp(a/b, e) = tp(a’/b, e), so f(a’,b) = e. Thus
f(a, b) depends only on b € P” and not on a (with (a, b) € P).

Since (1)—(2) hold on each complete type, there exists a definable partition such
that they hold on each piece. O

3.4 V-minimality

We assume from now on that T is a theory of C-minimal valued fields, of residue
characteristic 0. When using the many-sorted language, we will still say that T is a
theory of valued fields when T = Th(F, RV(F)) for some valued field F, possibly
with additional structure. A C-minimal T satisfying assumption (3) below will be
said to have centered closed balls. If, in addition, (1)—(2) hold, we will say T is V-
minimal. Expansions by the definition of the language, i.e., the addition of a relation
symbol R(x) to the language along with a definition (Vx)(R(x) <= ¢(x)) to the
theory, do not change any of our assumptions. Thus we can assume that T eliminates
quantifiers.

(1) Induced structure on RV. T contains ACVF(0, 0), and every parametically T-
definable relation on RV* is parametrically definable in ACVF(0, 0).

(2) Definable completeness. Let A < M |= T, and let W C B be a T 4-definable
family of closed balls linearly ordered by inclusion. Then N\W # .

(3) Choosing points in closed balls. Let M =T, A € VF(M), and let b be an almost
A-definable closed ball. Then b contains an almost A-definable point.

T will be called effective if every definable finite disjoint union of balls contains
a definable set, with exactly one point in each. A substructure A of a model of T will
be called effective if T4 is effective.

If every definable finite disjoint union of rv-balls contains a definable set, with
exactly one point in each, we can call T rv-effective. However, we have the following.

Lemma 3.29. Let T be V-minimal. Then T is effective iff it is rv-effective.

Proof. Assume T is rv-effective. Let b be an algebraic ball. If b is closed, it has an
algebraic point by assumption (3) of Section 3.4. If b is open, let b be the closed ball
surrounding it. Then b has an algebraic point a. Let f(x) = x — a. Then f(b) is an
rv-ball, so by rv-effectivity it has an algebraic point a’. Hence a’ + a is an algebraic
point of b. O
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In general, effectivity is needed for lifting morphisms from RV to VF, not for the
“integration” direction.

If T is V-minimal and A is a VFURV UT'-generated structure, we will see that T 4
is V-minimal, too. The analogue for points in open balls is true but only for VFU I'-
generated substructures; for thin annuli it is true only for VF-generated structures.
For this reason the condition on closed balls is more flexible; luckily we will be able
to avoid the others.

Lemma 3.30. Let T be a C-minimal theory of valued fields. Then (1) — (2) =
3) = @

(1) T admits quantifier elimination in a three-sorted language (VF, K, T"),such that
for any basic function symbol F with range VF, the domain is a power of VF;
and no relations on K, I beyond the field structure on k and the ordered Abelian
group structure on T.

(2) Every parametrically definable relation on K is parameterically definable in
ACF(0), and every parametrically definable relation on T is parameterically
definable in DOAG.

(3) Assumption (1) of Section 3.4.

@) k, T, and RV are stably embedded.

Proof.

(1) = (2) Let ¢(a, x) be an atomic formula with paramaters a = (ay, ..., a,)
from VF and x = (xi, ..., x,,) variables for the k, I" sorts. Then
¢ must have the form (¢ (a), x), where ¢ is a term (composition of
function symbols) VF* — (k UT). Thus ¢(a, x) defines the same
set as ¥ (b, x) where b = t(a). Since every formula is a Boolean
combination of atomic ones, (2) follows.

(2) = (3) This follows from Corollary 3.22. The assumptions of Lemma 3.26 are
satisfied: (1) is automatic since by C-minimality K is strongly minimal
and I' is O-minimal; (2) follows from C-minimality; (3)—(4) follow
from the assumptions on k, I.

(3) = (4) This is immediate. ]

Lemma 3.31. Let T be a theory of valued fields satisfying assumption (1) of Sec-
tion 3.4, such that res induces a surjective map on algebraic points. Then (1) —
2 = 3 = @:

(1) For any VF-generated substructure A of a model M of T, if '(A) # (0), then
acl(A) = T.

(2) Forany VFE-generated substructure A of amodel of T, any T 4 -definable nonempty
finite union of balls contains a nonempty T 4-definable finite set.

(3) Assumption (3) of Section 3.4 holds.

(4) Let A be VF-generated, and Y a finite A-definable set of disjoint closed balls.
Then there exists an A-definable finite set Z such that |bNZ| = 1 foreachb € Y.

Proof. We first show the following.
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Claim. For any VF-generated A with I'(A) = (0), res : VF(acl(A4)) — k(acl(A)) is
surjective.

Proof. It suffices to prove the claim for finitely generated A. For A = ¢ this is true
by assumption. Using induction on the number of generators, it suffices to show that
if the claim holds for Ay and ¢ € VF then it holds for A = Ag(c)).

Since I'(A) = (0), res is defined and injective on VF(A). If ¢ € acl(Ag) there
is nothing to prove. Otherwise, by injectivity, res(c) ¢ acl(Ap). As a consequence
of assumption (1) of Section 3.4, both dcl and acl agree with the corresponding
field-theoretic notions on RV and, in particular, on the residue field.

By Lemma 3.20,

k(Ap(c)) € dcl(RV(Ayp), rv(c)) = dcl(k(Ap), res(c)) = k(Ag)(res(c)).

Now if d € k(acl(A)) thend € k and d € acl(A), so by stable embeddedness of
k, we haved € acl(k(A)); butacl(k(A)) = k(A)™¢ by assumption (1) of Section 3.4;
sod € k(Ap)(res(c))® C res(Ag(c)¥2). 0

Assume (1). If I'(acl(A)) # (0), then by (1) acl(A) = T and, in particular,
every acl(A)-definable ball has a point in acl(A), so (2) holds. Assume therefore that
I"'(acl(A)) = 0. Let b be an acl(A)-definable ball. Then b must have valuative radius
0. If some element of b has valuation y < O then all do, and y € A, a contradiction.
Thus b is the (open or closed) ball of radius 0 around some ¢ € O. If b is closed, then
b= 0and0 € b. If b is open, then b = res —1(p") for some element b’ of the residue
field k; in this case b has an acl(A)-definable point by the claim.

(3) is included in (2), being the case of closed balls.

Assume (3). In expansions of ACVF(0, 0), the average of a finite subset of a ball
remains within the ball. Thus if Y is a finite A-definable set of disjoint balls, by (3),
there exists a finite A-definable set Z; including a representative of each ball in Y.
Let Z = {av(b N Zy) : b € Y}, where av(u) denotes the average of a finite set u. O

Lemma 3.32. When T is a complete theory, definable completeness is true as soon
as T has a single spherically complete model M in the sense of Ribenboim and
Kaplansky: every intersection of nested closed balls is nonempty.

Proof. The proof is clear. O

Let ACVF®" denote any of the rigid analytic theories of [23]. For definiteness, let
us assume the power series have coefficients in C((X)). See [14] for variants living
over Zy.

Lemma 3.33. ACVF(0, 0) is V-minimal and effective. Thus is ACVF*",

Proof. C-minimality is proved in [24]. Lemma 3.30(1) for ACVF is a version of
Robinson’s quantifier elimination; cf. [16].

ACVF" admits quantifier elimination in the sorts (VF, I') by [23, Theorem 3.8.2].
The residue field sort is not explicit in this language, but one can argue as follows. Let
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k; be a large algebraically closed field containing C, and let K = U, >1ki ((X /")) be
the Puiseux series ring. Then K admits a natural expansion to a model of the theory.
K is not saturated, but by C-minimality the induced structure on the residue field is
strongly minimal, so k7 is saturated. Now any automorphism of Kk as a field extends
to an automorphism of K as arigid analytic structure. Thus every K -definable relation
on Kk is algebraic. (This could be repeated over a larger value group if necessary.)
Lemma 3.30(2) thus holds in both cases; hence we have assumption (1) of Section 3.4.

Condition Lemma 3.31(1) is obviously true for ACVF. For ACVF" it is proved
in [24]. Itis also evident that these theories have a spherically complete model. Thus
by Lemmas 3.31 and 3.32, assumptions (3) and (2) of Section 3.4 hold, too. O

Remarks.

(1) Lemma 3.31(1)—(3) remain true for ACVF in positive residue characteristic, but
(4) fails.

(2) ACVF(0, 0) also admits quantifier elimination in the two sorted language with
sorts VF, RV; so assumption (1) of Section 3.4 can also be proved directly, without
going through k, I' as in Lemma 3.30.

(3) Assumption (1) of Section 3.4 is needed for lifting definable bijections of RV to
VF, Proposition 6.1, Lemma 6.3. Specifically, it implies the truth of assumptions
(2) of Lemma 3.21 and (4) of Lemma 3.26. These lemmas are only needed for the
injectivity of the Euler charactersitic and integration maps, not for their construc-
tion and main properties. It is also needed for the theory of differentiation and
for comparing derivations in VF and RV; indeed, even for posing the question,
since in general there is no notion of differentiation on RV. The theory of differ-
entiation itself is needed neither for the Euler characteristic nor for integration of
definable sets with a I'-volume form. They are required only for the finer theory
introduced here of integration of RV-volume forms.

(4) We know no examples of C-minimal fields where assumption (2) of Sec-
tion 3.4 fails.

(5) Beyond effectivity of dcl(f), assumption (3) of Section 3.4 imposes a condition
on liftability of definable functions from VF to B¢, Let T; be the theory, inter-
mediate between ACVF(0, 0) and a Lipshitz rigid analytic expansion, generated
over ACVF(0, 0) by the relation

val(f (tox) — y) > val(t;)

on 0%, where 1y, f; are constants with val(s;)d val(fg) > 0 and f is an analytic
function. It appears that balls do not necessarily remain pointed upon adding
VF-points to Ty; so assumption (3) of Section 3.4 is not redundant.

3.5 Definable completeness and functions on the value group

We assume T is C-minimal and definably complete. We show that the property of
having centered closed balls is preserved under passage to T4 if A is RV, I", VF-
generated; similarly for open balls if A is I", VF-generated. Also included is a lemma
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stating that every image of an RV-set in VF must be finite; from the point of view
of content this belongs to the description of the “basic geography,” but we need the
lemmas on functions from I" first.

Proposition 3.34. Let M =T, y = (y1, ..., Ym) a tuple of elements of T (M). Any
almost A(y)-definable ball b contains an almost A-definable ball b'.

Proof. See [16, Proposition 2.4.4]. While the proposition is stated for ACVF there,
the proof uses only C-minimality and definable completeness. We review the proof
in the case that b € A(y), i.e., b = f(y) for some definable function f with domain
DcrM,

Let P = tp(y/A). Let r(y) be the valuative radius of f(y). By O-minimality,
r is piecewise monotone; since P is a complete type, r is monotone, say, decreasing.
Fora e Plet P, ={b € P : b < a}, and for b € P, let f,(b) be the open ball of
size r(a) containing f(b). By Lemma 3.15, the valuative radius map rad is finite-to-
one on f,(P,); but by definition it is constant, so f,(P,) is finite. Using the linear
ordering, f,(P,) is constant on each complete type over a. Pick by € P,e € T
with € > 0 but very small (over A(b1)), and ¢’ € T with ¢’ > 0 but ¢ very small
(over A(by,¢€)). Let by = by +€,a = by + €. Then tp(by, a/A) = tp(by, a/A),
S0 fa(b1) = fa(by). Now if f(b1), f(b2) are disjoint, let 6 = val(x; — xp) for
(some or any) x; € f(b;). Then r(by) > 8. Since € is very small, r(a) > §
also. Thus f,(b1), f,(b2) are distinct, a contradiction. Thus f(b1) C f(b2). Since
tp(a/A) = tp(by/A), wehave f(y) C f(a)forsomey € P,. If f(y) C f(a) forall
y € P,, we are done; otherwise, let c(a) be the unique smallest element such that f is
monotone on (c(a), a). We saw, however, that f is monotone on (d, c(a)) for some
d < c(a), hence also on (d, a), a contradiction. Thus f is monotone with respect to
inclusion. By compactness, this is true on some A-definable interval, hence on some
interval / containing P.

Let U = Nyey f (a). By definable completeness (assumption (2) of Section 3.4),
U # (. Clearly, U is aball,and U C b. O

Lemma3.35. Let M =T,y = (y1, ..., Ym) a tuple of elements of I'(M). Then any
A(y)-definable ball contains an A-definable ball. If Y is a finite A(y)-definable set
of disjoint balls, then there exists a finite A-definable set Y' of balls, such that each
ball of Y contains a unique ball of Y'.

Proof. This reduces immediately to m = 1. For m = 1, by Proposition 3.34, any
almost A(y)-definable ball b contains an almost A-definable ball 4. Thus given a
finite A(y)-definable set Y of disjoint balls, there exists a finite A-definable set Z of
balls, such that any ball of ¥ contains a ball of Z. Given b € Y, let b’ be the smallest
ball containing every subball ¢ of b withc € Z. Then Y’ = {0’ : b € Y} is A(y)-
definable, finite, almost A-definable, and (since b/1 is disjoint from by if by # by € Y)
each ball of Y contains a unique ball of Y’. Using elimination of imaginaries in I,
by Example 2.2, being A(y)-definable and almost A-definable, Y’ is A-definable. O

The following corollary of Lemma 3.35 concerning definable functions from I’
will be important for the theory of integration with an additive character in Section 11.
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Corollary 3.36. Let Y be a definable set admitting a finite-to-one map into I'"*, and
let into h be a definable map on Y into VF or VE/O or VE/M. Then h has finite
image.

Proof. One can view h as a function from a subset of I'” into finite sets of balls.
Since a ball whose radius is definable containing a definable ball is itself definable,
Lemma 3.35 implies that 4(y) € acl(¥)) forany y € I'"". By Lemma 2.6, the corollary
follows. O

Corollary 3.37. Let Y € (RVUTID)" and Z C VF x Y be definable sets, with Z
invariant for the action of M on VFE. Then for all but finitely many O-cosets C,
ZN(C xY)isarectangle C x Y'.

Proof. Let p : (RVUT)" — I'" be the natural projection, and for y € I'" let Z,, be
the fiber. For each y, by Lemma 3.16, there exists a finite F(y) € VF/O such that
for any O-coset C ¢ F(y), Z, N (C x Y) is O-invariant. Now {(u, y) : u € F(y)}
projects finite-to-one to I'", so by Lemma 3.36, this set projects to a finite subset of
VF/Q. Thus there exists a finite £ C VF/O such that for any y, and any O-coset
C ¢ E,Z,N(C xY)is O-invariant. In other words, forany C ¢ E, Z N (C x Y)
is O-invariant. O

Lemma 3.38. Let M =T, A a substructure of M (all imaginary elements allowed),
and letr = (r1, ..., rn) be a tuple of elements of RV(M) U T (M). Then any closed
ball almost defined over A(r) contains a ball almost defined over A.

Proof. This reduces to m = 1, r = r1; moreover, using Lemma 3.35, to the case
r € RV(M),valy(r) =y € A. Let E = {y € RV : val(y) = y}. Then E is
a k*-torsor, and so is strongly minimal within M. If ¢ is almost defined over A(r),
there exists an A-definable set W C E x B, with W(e) = {y : (e,y) € W}
finite, and ¢ € W(r). But then W is a finite union of strongly minimals, and hence
so is the projection P of W to B. But any strongly minimal subset of B is
finite. (Otherwise, it admits a definable map onto a segment in I'; but I' is linearly
ordered and cannot have a strongly minimal segment.) Thus ¢ € P is almost defined
over A. O

Lemma 3.39. Let M =T, T C-minimal with centered closed balls. Let B be sub-
structure of VE(M) U RV(M) U I'(M). Then every B-definable closed ball has a
B-definable point. If Y is a finite B-definable set of disjoint closed balls, there exists
a finite B-definable set Z C M, meeting each ball of Y in a unique point.

Proof. We may take B to contain a subfield K and be generated over K by finitely
many points 1, ..., € RV. Let Y be a finite B-definable set of disjoint closed
balls, and letb € Y. We may assume all elements of ¥ have the same type over B. By
Lemma 3.38, there exists a closed ball " defined almost over K and contained in b.
By assumption (3) of Section 3.4, there exists a finite K -definable set Z’' meeting b’ in
aunique point. Let Y ={b" € Y : 0" NZ' # @}, and Z = {av(Z' Nb") : D" € Y'}.
Then Z meets each ball of Y’ in a unique point, and Z, Y’ are B-definable. As for
Y \ Y/, it may be treated inductively. ]
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Corollary 3.40. Let M =T, T C-minimal with centered closed balls, and effective.
Let B be an almost I'-generated substructure. Then T is effective.

Proof. The proof is the same as the proof of Lemma 3.39, using Lemma 3.34 in place
of Lemma 3.38. O

Lemma 3.41. Let Y be a T-definable set admitting a finite-to-one map into RV". Let
g : Y — VF" be another definable map. Then g(Y) is finite.

Proof. 1t suffices to prove this for T4, where A = T. We may also assume m = 1.
We will use the equivalence (3) <= (4) of Lemma 2.6. If g(Y) is infinite, then by
compactness there exists a € g(Y) a ¢ acl(A). But for some b we have a = g(b),
soif c = f(b), we have ¢ € RV", a € acl(c). Thus it suffices to show the following:

Ifa € VF,c € RV"' and a € acl(A(c)), then a € acl(A). ()

This clearly reduces to the case n = 1, ¢ € RV. Letd = valyy(c), A’ = acl(A(d)).
Then ¢ lies in an A’-definable strongly minimal set S (namely, S = val,y ~!(d)). Using
Lemma 2.6 in the opposite direction, since a € acl(A’(c))) there exists a finite-to-one
map f : S — S and a definable map g’ : S’ — VF witha € g’(f~1(5")). By Cor-
ollary 3.13, g’(f~'(S")) is finite. Hence a € acl(A(d)). But then by Lemma 3.36,
a € acl(A). O

In particular, there can be no definable isomorphism between an infinite subset of
RV" and one of VF™.

Lemma 3.42. Let M =T, T C-minimal with centered closed balls, and let A be a
substructure of M. Write Avr for the field elements of A, Ary for the RV-elements
of A.

Let ¢ € RV(M), and let A(c) = dcl(A U {c}). Then A(c)vg C (Avp)®¢, and
tv(A(c)vr) N Ary = tv(Avp).

Proof. Lete € A(c)yr. Thene = f(c) for some A-definable function f : W — VF,
W C RV. By Lemma 3.41, the image of f is finite, e € acl(A). This proves the
first point. Now if d € RV 4 and v~ !(d) has a point in A(c), then it has a point in
(Avr)?2, by assumption (3) of Section 3.4. o

3.6 Transitive sets in dimension one

Let b be a closed ball in a valued field. Then the set Aff (b) of maximal open subballs
of b has the structure of an affine space over the residue field. We will now begin
using this structure. Without it, more general transitive annuli (missing more than
one ball) could exist.

Lemma 3.43. Let X C VF be a transitive T g-definable set, where B is some set of
imaginaries. Then X is a finite union of open balls of equal size, or a finite union of
closed balls of equal size, or a finite union of thin annuli.
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Proof. By C-minimality, X is a finite Boolean combination of balls. There are finitely
many distinct balls by, .. ., b, that are almost contained in X (i.e., b; \ X is contained
in a finite union of proper subballs of b;) but such that no ball larger than b; is almost
contained in X. These b; must be disjoint. If some of the b; have different type than
the others, their union (intersected with X) will be a proper B-definable subset of X.
Thus they all have the same type over B; in particular, they have the same radius .

Consider first the case where the balls b; are open. Then b; € X. Otherwise,
b; \ X is contained in a unique smallest ball ¢;. Say c¢; has radius «; then ¢ > B.
Let bl’. be the open ball of radius (1/2)(« + B) around c;; then U,-bl’. is a B-definable
proper subset of X, a contradiction. Thus in the case of open balls, X 2 U;b; and
therefore X = U;b;.

If the balls b; are closed, let ¢;; be a minimal finite set of subballs of b; needed
to cover b; \ X. The same argument shows that no ¢;; has radius < . Thus all ¢;;
are elements of the set V; of open subballs of b; of radius §. Now V; is a k-affine
space, and if there is more than one c;; then over acl(B), V; admits a bijection with
k; so there is a finite B-definable set of bijections V; — Kk; since any finite definable
subset of k is contained in a strictly bigger one, the union of the pullbacks gives a
B-definable subset of V; properly containing the c;;, leading to a proper B-definable
subset of X. Thus either »; € X (and then X = U;b;), orelse b; \ ¢; € X for aunique
maximal open subball ¢;. Now Uc; intersects X in a proper subset, which must be
empty. Thus in this case X = U;(b; \ ¢;). O

Let X be a transitive B-definable set. Call Y C X potentially transitive if there
exists B* D B suchthatY is B’-definable and B’-transitive. Let F(X) be the collection
of all proper potentially transitive subsets ¥ of X. Let Fax (X) be the set of maximal
elements of F(X).

Lemma 3.44.

(1) If X is an open ball, Fnax (X) = 0.
(2) If X is a closed ball, Fax (X)) = {X \ Y : Y € Aff (X)}.
(3) If X is a thin annulus X' \ 'Y with X' closed, then Fpax (X) = Aff (X) \ {Y}.

Proof. Any element of F(X) must be a ball or a thin annulus, so the lemma follows
by inspection. O

Lemma 3.45. Let b be a transitive closed ball (respectively, thin annulus). Let
Y = Aff(b) be the set of maximal open subballs of b. Then the group of auto-
morphisms of Y over K is definable, acts transitively on Y, and, in fact, contains
G4 (K) (respectively, G, (K)).

Ifb, b’ are transitive definable closed balls, and F : b — b’ a definable bijection,
let Fy : Y(b) — Y () be the induced map. Then Fy is a homomorphism of affine
spaces, i.e., there exists a vector space isomorphism Fy, : V(b) — V(b') between
the corresponding vector spaces, and Fy(a + v) = Fy(a) + Fix (V). If b = b’ then
Foo =1d.
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Proof. Y = Aff (D) is transitive, and there is a k-affine space structure on Y (re-
spectively, a k-vector space structure on V = Y’ U{0}). Let G = Aut(Y/k) be the
subgroup of the group Aff = (G,, X G,)(K) of affine transformations of Y that
preserve all definable relations. By definition, this is an intersection of definable sub-
groups of Aff. However, there is no infinite descending chain of definable subgroups
of Aff, so G is definable.

If G is finite, then ¥ C acl(k), and it follows (cf. Section 2.1) that there are
infinitely many algebraic points of Y, contradicting transitivity. Thus G is an infinite
subgroup of (G,, X G4)(k) such that the set of fixed points YO is empty. Thus G
must contain a translation, and by strong minimality it must contain G, (k). Similarly,
in the case of the annulus, G is an infinite definable subgroup of G, (k), so it must
equal G, (k).

As for the second statement, F induces a group isomorphism Aut(Y (b)/k) —
Aut(Y (b')/k), and hence an isomorphism G, (k) — G, (k), which must be multi-
plication by some y € k*. Since G, (k) acts by automorphisms on (Y (b), Y (b')),
any definable function Y (b) — Y (V') commutes with this action and hence has the
specified form. If b = b’ then Y (b) = Y (b'); now if Fy, # Id then F, would have a
fixed point, contradicting transitivity. O

Lemma 3.46. Let b be a transitive Tp-definable closed (open) ball. Let F be a
B-definable function, injective on b. Then F (b) is a closed (open) ball.

Proof. By Lemma 3.43, since F(b) is also transitive, it is either a closed ball, or an
open ball, or a thin annulus. We must rule out the possibility of a bijection between
such sets of distinct types.

Consider the collection Fp,x () defined above. Any definable bijection between
b and b’ clearly induces a bijection Fpax (b)) — Fnax(p)). By Lemma 3.44, the
bijective image of an open ball is an open ball.

Let b be a closed ball, ¥ = b” \ b a closed ball minus an open ball,
A = Foax(d) = Aff(h), A = FO') ~ At \ {b"}, G = Aut(A/K),
G’ = Aut(A’/K). Then a definable bijection A — A’ would give a definable group
isomorphism G — G’. But by Lemma 3.45, G’ = G, (k) while G contains G, (Kk),
so no such isomorphism is possible (say, because G, (k) has torsion points).

Thus the three types are distinct. O

We will see later that there can be no definable bijection between an open and a
closed ball, whether transitive or not.

Lemma 3.47. Let b be a transitive ball. Then every definable function on b into
RV UT is constant. If b is a transitive thin annulus, every definable function on b into
k UT is constant. More generally, this is true for definable functions into definable
cosets C of k* in RV that contain algebraic points.

Proof. When a ball b is transitive, it is actually finitely primitive. For if E is a B-
definable equivalence relation with finitely many classes, then exactly one of these
classes is generic (i.e., is not contained in a finite union of proper subballs of b). This
class is B-definable, hence must equal b.
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Thus a definable function on b with finite image is constant.

Let F be a definable function on b into I'. If F is not constant, then for some
y € I, F~l(y) is a proper subset of b; it follows that some finite union of proper
subballs of b is y-definable. By Lemma 3.35, it follows that some such finite union
is already definable, a contradiction.

Thus it suffices to show that functions into a single coset C = val, ~!(y) of k*
are constant on b.

Assume first that b is open, or a properly infinite intersection of balls. By
Lemma 3.19 definable functions on b into C are generically constant; but then by
transitivity they are constant.

Now suppose b is closed, or a thin annulus. Let Y be the set of maximal open
subballs b’ of b. Each b’ € Y is transitive over Ty, so F|b’ is constant. Thus F
factors through Y.

In the case of the annulus, by Lemma 3.45, G,, (k) acts transitively on Y by
automorphisms over k. This suffices to rule out nonconstant functions into k. More
generally, if a coset C of k* has algebraic points, then Aut(C/k) is finite. Since
Aut(Y /K) is transitive, it follows that if f : ¥ — C is definable then f(Y) is finite.
But Y is finitely primitive, so f(Y) is a point.

Assume finally that b is a closed ball. Using Lemma 3.45, we can view G, (k)
as a subgroup of Aut(Y/k). Aut(C/K) is contained in G,, (k). Let S = Aut(Y x
C/k) N (G,(k) x G, (K)). Then S projects onto G, (k). By strong minimality,
SN (G4(k) x (0)) is either G, (k) or a finite group. In the first case, S = G, x T
for some 7' < Gy,. In the latter, S is the graph of an finite-to-one homomorphism
G, — T; but this is impossible. Thus G, x (0) < S and G, acts transitively on Y
by automorphisms fixing C; it follows that F is constant. O

3.7 Resolution and finite generation

Lemma 3.48. Let A < B be substructures of a model of T. Assume B is finitely
generated over A. Then RV (B) is finitely generated over RV (A). Also, if RV(A) <
C < RV(B) then C is finitely generated over RV (A).

Proof. Suppose I' (B) has infinitely many Q-linearly independent elements, modulo
I'(A). By Lemma 3.1, they are algebraically independent. By Lemma 3.20, they lift
to algebraically independent elements of B over A, contradicting the assumption of
finite generation. Thus 7krI"(B)/ ' (A) < oo. Itis thus clear that any substructure of
['(B) containing I"(A) is finitely generated over I'(A). Thus it suffices to show that
RV (B) is finitely generated over AUT" (B); replacing A by AUT (B), we may assume
I'(B) =T'(A). Inthiscase RV(B) C RES. See[17, Proposition 7.3] for a proof stated
for ACVF,4, but valid in the present generality. Here is a sketch. One looks at B =
A(c) with ¢ € VF. If ¢ € acl(A) then the Galois group Aut(acl(A)/A(c)) has finite
index in Aut(acl(A)/A). Hence the same is true of their images in Aut(acl(A) NRV),
and since RV is stably embedded (by clause (1) of the definition of V-minimality) it
follows that there exists a finite subset C’ of A(c) N RV such that any automorphism
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of acl(A) fixing A(C’) fixes A(c) N RV. By Galois theory for saturated structures
(Section 2.1) C’ generates A(c) N RV over A.

On the other hand, if ¢ ¢ acl(A), then tp(c/acl(A)) agrees with the generic
type over A of either a closed ball, an open ball, or an infinite intersection of balls.
In the latter two cases, RES(A) = RES(B) using Lemma 3.19. In the case of a
closed ball b, let b’ be the unique maximal open subball of b containing c. Then
b’ € A(c), and tp(c/A(D")) is generic in the open ball »’. Thus by Lemma 3.17,
RES(B) = RES(A (")) so it is 1-generated. ]

Recall B = B2 U B is the sort of closed and open balls.

We require a variant of a result from [17] on canonical resolutions. We state it for
$B-generated structures, but it can be generalized to arbitrary ACVF-imaginaries [16].

The proposition and corollaries will have the effect of allowing free use of the
technology constructed in this paper over arbitrary base (cf. Proposition 8.3).

For this proposition, we allow ‘B (and I') as sorts, in addition to VF and RV, so
that a structure is a subset of B, I" of a model of T, closed under definable functions.

Assume for simplicity that T has quantifier elimination (cf. Section 3.4).

Let us call a structure A resolved if any ball and any thin annulus defined over
acl(A) has a point over acl(A).

Lemma 3.49. Let T be V-minimal. Let M =T, and let A be a substructure of M.
Then (1) and (2) are equivalent; if T'(A) # (0), then (3) is equivalent to both.

(1) A is effective and VF(acl(A)) — T'(A) is surjective.
(2) A is resolved.
(3) acl(A) is an elementary submodel of M.

Proof. Clearly, (3) implies (1) and (2) implies (1). To prove that (1) implies (3) it
suffices to show that every definable ¢ (x) of T4 in one variable, with a solution
in M, has a solution in A. If x is an RV-variable it suffices to show that ¢ (rv(y))
has a solution; so we may assume x is a VF-variable, so ¢ defines D € VF. By
C-minimality D is a finite Boolean combination of balls. D can be written as a finite
union of definable sets of the form U""_ 1Dj \ Ej, where for each j, Dj; is a closed
ball, and E; a finite union of maximal open subballs of D}, or D is an open ball and
E is a proper subball of D, or E; = @, or D; = K. In the third case, by effectivity
there exists a finite set meeting each D; in a point; since A = acl(A), this finite set is
contained in A; so D(A) # ¥, as required. In the first and second cases, there exists
similarly a finite set ¥ meeting each E;. Since A = acl(A), Y C A. By picking a
point and translating by it, we may assume 0 € E; for some j. Say E; has valuative
radius o; picking a pointd € A with val(d) = « and dividing, we may assume o = 0.
Now in the open case any element of valuation 0 will be in D ;. In the closed case, the
image of E; under res is a finite subset of the residue field; pick some element a of
k(A) outside this finite set; by effectivity, pick a € A with res(a) = a; thena € D.
In the fourth case, we use the assumption that I'(A) # (0). This proves (3).

It remains to show that (1) implies (2). Let b be a thin annulus defined over
acl(f); so b = b' \ b” for a unique closed ball b’ and maximal open subball 5”. By
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effectivity, b” has an algebraic point, so translation we may assume 0 € b”. In this
case, the assumption that VF(acl(A)) — T'(A) is surjective gives a point of b’ \ b”.0

If To is V-minimal, A is a finitely generated structure (allowing B, or even
ACVF-imaginareis), and 7 = (To) 4, we will call T' a finitely generated extension of
a V-minimal theory.

Remark 3.50. If A is effective, then A is VF U I'-generated. If A is resolved, then A
is VF-generated.

Proposition 3.51. Let T be V-minimal.

(1) There exists an effective structure E.¢s admitting an embedding into any effective
structure E. We have RV (Eegr), I'(Eetr) C dcl(9).

(2) There exists a resolved E,s, embedding into any resolved structure E. We have
K(Ers1v), T (Ers1v) € del(@). In fact, C(E,gy) € dcl(@) for any cosets C of k*
in RV that contain algebraic points.

(3) Let A be a finitely generated substructure of a model of T, in the sorts VF U 8.
Then (1)—(2) hold for T 4.

Proof.

(1) Let (b;); <) enumerate the definable balls. Define a tower of VF-generated
structures A;, and a sequence of balls b;, as follows. Let Ag = dcl(@); if « is a limit
ordinal, let A, = U;-A;. Assume A; has been defined. If possible, let b; be an
A;-definable, A;-transitive ball, not a point; and let ¢; be any point of b;. If no such
ball b; exists, the construction ends, and we let Eqif = A; for this 7.

Suppose E is any effective substructure of a model of T. We can inductively
define a tower of embeddings f; : A; — E. At limit stages « let f, = U« fi.
Given f; with A; # E, let b; be the image under f of b;. By effectivity, b} has a
point ¢; € E. Since b; is transitive over A;, the formula x € b; generates a complete
type; so tp(c;/A;) is carried by f to tp(c;/A}). Thus there exists an embedding
fi+1: Aix1 — E extending f;, and with ¢; — c.

Each A; is VF-generated; by Lemma 3.31(3) = (4), the process can only stop
when A; = E¢. This shows that E.¢ embeds into E, and at the same time that the
construction of E.g itself must halt at some stage (of cardinality < |T).

By construction, Eefr is VF-generated; and hence Tg,; is V-minimal. Moreover,
there are no E.gr-definable Egr-transitive balls (except points). In other words all
E.f-definable balls are centered. By V-minimality (assumption (3) of Section 3.4)
every closed ball has a definable point, so every centered ball has one. Thus E.g is
effective.

It remains only to show that RV (Ecfr), I'(Eegr) S dcl(¥). We show inductively
that RV(A;), T'(A;) € dcl(¥). At limit stages this is trivial, and at successor stages it
follows from Lemma 3.47.

(2) The proof is identical to that of (1), but using thin annuli as well as balls. If a
thin annulus is not transitive, it contains a proper nonempty finite union of balls, so
by V-minimality it contains a proper nonempty finite set. Hence the construction of
the A; stops only when A; is resolved.
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(3)Let Ag = (AN (VFUT)). A is generated over Ag by some by, ...,b, € ‘B
with b; of valuative radius y; € Ag. Since T4, is V-minimal, we may assume
T = Ty, and A is generated by by, ..., b,, with y; definable.

Let J be a subset of {1, ..., n} of smallest size such that acl({b; : j € J}) =
acl({by, ..., b,}). By minimality, no b; is algebraic over {b;; : j' € J, j' # j}.
Let j € J, and let Y; be the set of balls of radius y;; then Y is a definable family
of disjoint balls. By Lemma 3.8 for T" = Ti(b,0:jrca.j'#jy)» bj 18 transitive in T’bj,
i.e., in T(b/_,:]‘/eJ); hence b; is transitive over acl(by, ..., b,;) = acl(A). Let us now
show, using induction on |J|, that [Tjcyb; is transitive over A. Letc; € b;. By
Lemma 2.10 the ({b;s : j' € J, j’ # j}) remain algebraically independent over (c;).
Thus by induction, IT i j/b i’ is transitive over A(c;); since b; is transitive over A,
Ijcybjis, too. Let A" = A(cj : j € J).

Claim. If B is a VF U I'-generated structure containing A, then A’ embeds into B
over A.

Proof. Since B is VF U I'-generated, every ball of Tp is centered; in particular, b;
has a point c;. defined over Tg. Let ¢’ = (c;. : j € J). By transitivity of IT;c ;b ;, we
have tp(c/A) = tp(c’/A). Thus A’ embeds into B. O

Note that A’ is almost VFUT -generated; indeed, since y; is definable, b; € dcl(c;)
so A" C acl((c¢j) jes). Thus T4 is V-minimal. Thus (1)—(2) applies and prove (3).0

See Lemma 3.60 for a uniqueness statement.

Corollary 3.52. Let f : VF — (RV UT')* be a definable map.

(1) There exists a definable f : RV — (RVUTD)* such that for any x € RV, for some
x € VEwithrv(x) = x, f(x) = f(x).

(2) Let Q@ = VF/M. There exists a definable map f : @ — (RV UT)* such that for
any x € 2, for some x € VF with x + M = x, f(x) = f(x).

Proof.

(1) In view of Lemma 2.3, it suffices to show that for a given complete type
P C RV, there exists such a function f on P. We fix a € P, and show the existence
of ¢ € dcl(a) such that for some a withrv(a) = a, f(a) = c.

By Proposition 3.51, there exists an effective substructure A with a € A and
(RVUT)(A) = (RVUT)((a)). Thus the open ball rv ~!(a) has an A-definable point
a. Set ¢ = f(a); since f(a) € RV(A) = RV({(a)) we have ¢ = fp(a) for some
definable function fp. Clearly, fp satisfies the lemma for the input a, hence for any
input from P.

(2) The proof is identical, using Lemma 3.51(3). m]

Corollary 3.53. Let T be V-minimal. Assume every definable point of T lifts to an
algebraic point of RV. Then there exists a resolved structure E,g,, such that E,g,
can be embedded into any resolved structure E, and RV (E,s1y), ['(Ersy) S dcl(9).
If A is a finitely generated substructure of a model of T, in the sorts VF U ‘B, the
same is true for T 4.
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Proof. Under the assumption of the corollary, the conclusion of Proposition 3.51
implies RV (E}gy) € dcl(@). O

Remark 3.54. 1t is easy to see using the description of imaginaries in [16] that in a
resolved structure, any definable ACVF imaginary is resolved. In other words, if A
is a resolved, and ~ is a definable equivalence relation on a definable set D, then
D(A) — (D/ ~)(A) is surjective.

If A is only effective, then there exists y € I'(A)" such that for any ¢ with
val(t) = y, (D/ ~)(A) € dcl(D(A)/ ~, t); this can be seen by embedding D/ ~
into B,(K)/H for an appropriate H < B, (0), and splitting B, = T, U,.

3.8 Dimensions

We define the VF-dimension of a Ty;-definable set X to be the smallest n such that
for some n, X admits a Tjs-definable map with finite fibers into VF* x (RV U T")*.
By essential bijection Y — Z we mean a bijection Yy — Zg, where dimyp(Y \
Yo), dimyg(Z \ Zp) < dimygr(Y) = dimygr(Z); and where two such maps are iden-
tified if they agree away from a set of dimension < dimyp(Y).
We say thatamap f : X — VF” has RV-fibers if there exists g : X — (RVUI)*
with (f, g) injective.

Lemma 3.55. Let X € VF*' x (RV U D')* be a definable set. Then we have the
following:

(1) X has VF dimension < n iff there exists a definable map f : X — VF" with
RV -fibers.

(2) If it exists, the map f is “unique up to isogeny”: if f1, f» : X — VF" have
RV-fibers, then there exists a definable h : X — Z C VF' x (RV U I')* and
g1, &2 - Z — VF" with finite fibers, such that f; = g;h.

Proof.

(1) If f : X — VF”" has RV-fibers, let g be as in the definition of RV-fibers;
then (f, g) : X — VF" x (RV UT)* is injective, so certainly finite-to-one. If
¢ : X - VF" x RV* is finite-to-one, by Lemma 3.9, each fiber ¢’1 (¢) admits
a c-definable injective map ¥ : —l(¢) -> RV*. By Lemma 2.3 we can find
0 : X — VF" — RV* that is injective on each ¢-fiber. Let f(x) = (¢, 6). This
proves the equivalence.

(2) Now suppose f1, f>» : X — VF"bothhave RV-fibers. Leth(x) = (f1(x), f2(x)),
Z' = h(X), and define g; : Z/ — VF" by g1(x,y) = x, g2(x,y) = y. Then
g; has finite fibers. Otherwise, we can find a € X such that fj(a) ¢ acl(f>(a))
(or vice versa). But for any a € X, we have fi(a) € acl(fz2(a), c) for some
c € (RVUTI)*. By Lemma 341, fi(a) € acl(f»(a)), a contradiction. By
Lemma 3.9 (cf. Lemma 2.3), there exists a definable bijection between Z’ and a
subset Z of VF" x RV*. Replacing Z by Z’ finishes the proof of the lemma. O

Corollary 3.56. Let f : X — RVUI, X, = f~'(a). Thendim(X) = max, dim X,.
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Proof. Letn = max, dim X,. For each a there exist definable functions g, : X, —
VF" and h, : X, — (RV UTI)* with (g, f,) injective on X,. Thus by the com-
pactness argument of Lemma 2.3, there exists definable functions g : X — VF” and
h: X, — (RVUT)* such that (g, h) is injective when restricted to each X,. But
then clearly (g, i, f) is injective, so dim(X) < n. The other inequality is obvious.O

We continue to assume T is V-minimal.
Lemma 3.57. Let a, b € VF. If a € acl(b) \ acl(¥), then b € acl(a).

Proof. Suppose b ¢ acl(a). Let Ag = I'(acl(a, b)). Then by Lemma 3.36, b ¢
acl(Ag(a)).

Let C be the intersection of all acl(Ag)-definable balls such that b € C, and let
C’ be the union of all acl(Ag)-definable proper subballs of C. Let B = N;{B;} be
the set of all balls defined over acl(Ag(a)) with b € B;, and let B’ = Uj{B}} be the
union of all acl(Ag(a))-definable proper subballs of B.

Since a € acl(b), we have a € acl(p’) for all b’ € B \ B’, outside some proper
subball. Tt follows by compactness that for some i, j, a € acl(y’) forall b’ € B; \ B}.
Sayi = j =1, B] C B;. By Example 3.57, a € acl(Ao(f1)), where fi € B codes
the ball B;.

If By is a point, we are done. Otherwise, Bj has valuative radius «; < oo defined
over Ag. It follows thatif By 2 C then Bj is acl(Ag)-definable; but thena € acl(Ayp),
contradicting the assumption. Since B; meets P nontrivially, we therefore have
B C C. Similarly, B; cannot contain any ball in C’ since it is not acl(Ag)-definable,
but it cannot be contained in C’ since By N P # #. so By N C' = . Thus B; C P.

Let B; be the closed ball of radius o containing Bi, and let e1 be the corresponding
element of 2B;. Since B is almost definable over Ao(a), it follows from V-minimality
that there exists an almost Ag(a)-definable point c(a) in Bi. Now ifa € acl(Ag(er)),
then B; contains an Ap(eq)-definable finite set F'1 = Fy(e;). But since B is a proper
subset of P, e; ¢ acl(Agp), this contradicts Lemma 3.8. Thus a ¢ acl(Agp(e1)).

Nevertheless, we have seen that a € acl(Ag(f1)). Thus B; # By, so By is a
maximal open subball of B;. Let b; be the point of Aff(B;) representing B;. Then
a € acl(by). It follows that tp(a/acl(Ag(e1))) is strongly minimal, contradicting
Lemma 3.13. We have obtained a contradiction in all cases; so b € acl(a). O

Since the lemma continues to apply over any VF-generated structure, algebraic
closure is a dependence relation in the sense of Steinitz (also called a prematroid or
combinatorial geometry; cf. [34]). Define the VF-transcendence degree of a finitely
generated structure B to be the maximal number of elements of VF(B) that are
algebraically independent over VF(A). This is the size of any maximal independent
set, and also the minimal size of a subset whose algebraic closure includes all VF-
points. Hence we have the following.

Corollary 3.58. The VF dimension of a definable set D is the maximal transcendence
degree of (b). m}
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We can now obtain a strengthening of Lemma 3.41, and a uniqueness statement
in Proposition 3.51.

Corollary 3.59. Let Y be a T-definable set admitting a finite-to-one map f into B".
Let g : Y — VF" be a definable map. Then g(Y) is finite.

Proof. We may assume m = 1. We will use the equivalence (3) <= (4) of
Lemma 2.6. If g(Y) is infinite, then by compactness there exists a € g(Y), a ¢
acl(A). But for some b we have a = g(b), soif ¢ = f(b), we have ¢ € B",a €
acl(c). Thus it suffices to show the following:

Ifa € VF,c € B" and a € acl(A(c)), then a € acl(A). (%)

This clearly reduces to the case n = 1, ¢ € *B. Let y be the valuative radius of c¢. As
follows from Corollary 3.36, it suffices to show that a € acl(A(y)). Thus in (x) we
may assume y € A.

Finally, to prove (x) (using again the equivalence of Lemma 2.6), we may en-
large A, so we may assume A = T.

Since y € A, ¢ € dcl(A(e)) for any element e of the ball c. Thus a € acl(A(e)).
Suppose a ¢ acl(A); then by exchange for algebraic closure in VF, e € acl(A(a)).
Thus any two elements of the ball ¢ are algebraic over each other. By Ex-
ample 2.4, ¢ has finitely many points; which is absurd. This contradiction shows that
a € acl(A). O

Lemma 3.60 (cf. Proposition 3.51). Let T be a finitely generated extension of an
effective V-minimal theory. Then if E1, E, are effective and both embed into any
effective E, then they are finitely generated, and E1 =~ E».

Proof. The finite generation is clear. Since Ep, E> embed into each other, they
have the same VF-transcendence degree We may assume E£; < E;. But then by
Lemma 3.58, E; C acl(E;). By Lemma 3.9, E; C dcl(Eq, F) for some finite
F C RV*Ndcl(E>). ButRV(E;) = RV(E»),so F C dcl(E)), and thus E, = E.0

Remark 3.61. The analogous statement is true for resolved structures. Note that if F
is a finite definable subset of RV”, then automatically the coordinates of the points of
F lie in cosets of k* that have algebraic points.

Remark. The hypothesis of Lemma 3.60 can be slightly weakened to the following:
T is finitely generated over a V-minimal theory, and there exists a finitely generated
effective E.

Example 3.62. In ACVF, when X C VF", the VF dimension equals the dimension
of the Zariski closure of X. This is proved in [36]. The idea of the proof: the VF
dimension is clearly bounded by the Zariski dimension. For the opposite inequality, in
the case of dimension 0, if X is a finite A-definable subset of VF, then using quantifier
elimination there exists a nonzero polynomial f with coefficients in A, such that f
vanishes on X. In general, if a definable X € VF”" has VF dimension < n, one can
reduce to the case where all fibers of the projection pr : X — prX C VF*™! are
finite, then X is not Zariski dense in VF”, using the zero-dimensional case.
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The RV-dimension of a definable set X C RV* is the smallest integer n (if any)
such that X admits a parametrically definable finite-to-one map into RV”. More
generally for X € (RV U T')*, dimgy (X) is the smallest integer n (if any) such that
X admits a parametrically definable finite-to-one map into (RV U I")".

Note that RV is one dimensional, but I and every fiber of val,, are also one
dimensional. In this sense RV U I" dimension is not additive; model-theoretically it
is closer to weight than to rank. We do have dim(X x Y) = dim(X) + dim(Y).

Dually, if a structure B is RV-generated over a substructure A, we can define the
weight of B/ A to be the least n such that B C acl(A, ay, ..., an), with a; € RV.

For subsets of RV, RV dimension can be viewed as the size of a Steinitz basis with
respect to algebraic closure. One needs to note that the exchange principle holds.

Lemma 3.63 (exchange). Let a, by, ..., b, € RV; assume a € acl(A, by, ..., by) \
acl(A, by, ...,b,_1). Then b, € acl(A, by, ...,b,_1,a).

Proof. We may taken = 1, b, = b, and A = acl(A). Let o = valy(a) € T,
B = valy(b). If B € A then I'(A(a, b)) = I'(A(b)) = I'(A). The first equality is
true since a € acl(A(b)) so A(a, b) C acl(A (b)), and using the stable embeddedness
of I' (Section 2.1) and the linear ordering on I". The second equality follows from
Lemma 3.10. Thusif 8 € A, thena, b lie in A-definable strongly minimal sets, cosets
of k*, and the lemma is clear.

Assume 8 ¢ A. If o € A, then tp(a/A) is strongly minimal, and tp(a/A) implies
tp(a/A(b)) by Lemma 3.10; but then a € acl(A), contradicting the assumption.
Thus «, B ¢ A; from the exchange principle in T, it follows that A" := acl(A, @) =
acl(A, B). Moreover, a ¢ acl(o) by Lemma 3.11 and Lemma 2.6. By the previous
case, b € acl(A’, a), so b € acl(A, a). O

Lemma 3.64. A definable X C RV" has RV dimension n iff it contains an n-
dimensional definable subset of some coset of K*".

Proof. Assume X has RV dimension n. Then there exists (aj, ...,a,) € X with
ai, ..., an algebraically independent. Let ¢ € I'; then since a, ¢ acl(ay, ..., an—1),
it follows as in the proof of Lemma 3.63 that a,, ¢ acl(ay, ..., a,—1, ¢). This applies
to any index, so ay, . .., a, remain algebraically independent over c; and inductively
we may add to the base any finite number of elements of I'. Let ¢; = valy(a;), and
let A" = A(cy,...,cp). Thenay, ..., a, are algebraically independent over A’, and
they liein X' = X N I"Il’f:1 rv ~Y(¢;); thus X’ is an n-dimensional definable subset of
a coset of k*". O

Definition 3.65. VF[n, -] be the category of definable subsets of VF* x RV* of di-
mension < n. Morphisms are definable maps.

Let X € ObVF[n, -]. By Lemma 3.55, there exists a definable f : X — VF”
with RV-fibers; and the maximal RV dimension of a fiber is a well-defined quantity,
depending only on the isomorphism type of X (but not on the choice of f). In
particular, the subcategory of definable sets of maximal fiber dimension 0 will be
denoted VF[n].
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Definition 3.66. We define RV[n, -] to be the category of definable pairs (U, f), with
UCRV* f:U — RV". If U,U" € ObRV[n, -], amorphism h : U — U’ is
a definable map, such that U” = {(f(u), f'(h(u)) : u € U} has finite-to-one first
projection to RV”. RV[n] is the full subcategory of pairs (U, f) with f : U — RV"
finite-to-one.

RES[n] is the full subcategory of RV[n] whose objects are pairs (U, f) €
Ob RV[n] such that val, (U) is finite, i.e., U € RES*.

Remark 3.67.

(1) For X, Y € ObRV[n], any definable bijection X — Y is in Morry[, (X, ¥).

(2) The forgetful map (X, f) — X is an equivalence of categories between RV [n]
and the category of all definable subsets of RV* of RV dimension < m, with all
maps between them. The presentation with f is nonetheless useful for defining L.

By Remark 3.67, K1 (RV[m]) is isomorphic to the Grothendieck semigroup of
definable subsets of RV* of RV dimension < m. If dim(X) < m, let [X],, denote
the class [X1, = [(X, f)]n € RV[m], where f : X — RV* is any finite-to-one
definable map.

Unlike the case of VF[n, -] or RV[n], for (U, f) € ObRV][n, -] the map f cannot
be reconstructed from U alone, even up to isogeny, so it must be given as part of the
data. We view (U, f) as a cover of f(U) with “discrete” fibers.

We denote

RV[< N, -] := ®o<n<nRV[n, -], RV[< N] = ®o<n<nRV[n],
RV[x, -] := ®0<xRV[n, -], RV[*] := ®0<,RV[n],
RES[*] := ®0<,RES[n].

We have natural multiplication maps K4 RVI[k, -] x K4y RV[l,-] — Kyi[k +1,],
X, HLIY,9D — [(X x Y, f x g)]. This gives a semiring structure to
K (RV[x]). This differs from the Grothendieck ring K4 (RV).

Alternative description of RV[< N, -]

An object of RV[< N, -] thus consists of a formal sum Zfl\':o X,, of objects X,, =
(Xn, fn) of RV[n, -]. This can be explained from another angle if one adds a formal
element oo to RV, and extends rv to VF by rv(0) = oo. Define a function f[k] by
flkl(x) = (fu(x), 00, ...,00) (N —k times). If X = (X, 1), let X[k] = (X, f[k]).
Then Z)]‘[\,:O X,, can be viewed as the disjoint union UlNz()Xi X {o0}[N —i]. The rv
pullback is then a set of VF dimension N, invariant under multiplication by 1+ M; the
sum over dimensions < N is necessary to ensure that any such invariant set is obtained
(cf. Lemma 4.9). From this point of view, an isomorphism is a definable bijection
preserving the function “number of finite coordinates.” We will use RV[< N, -] or
RV [N, -] interchangeably.

Lemma 3.68. Let X, X' € ObRV(n, -1, and assume a bijection g : X' — X lifts to
G :LX — LX. Then g € MOI'RV[,Z’.](X/, X)
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Proof. We only have to check the isogeny condition, i.e., that f(g(a)) € acl(f’(a))
fora € X’ (and dually). By Lemma 3.42, for x € pX/’l(a), G(x)vr € acl(xyp), i.e.,
the VF-coordinates of G (x) are algebraic over those of x. Thus f(g(a)) € acl(xvFp).
This is true for any x € ,oxf_l(a), so f(g(a)) € acl(a). O

4 Descent to RV: Objects

We assume T is C-minimal with centered closed balls. We will find a very restricted
set of maps that transform any definable set to a pullback from RV. This is related to
Denef’s cell decomposition theorem; since we work in C-minimal theories it takes a
simpler form. Recall that this assumption is preserved under passage to T4, when A
is a (VF, RV, I')-generated substructure of a model of T (Lemma 3.39).

Recall that RV = VF*/(1 + M), rv : VF* — RV the quotient map. Let
RV = RV U {o0}, and define rv(0) = co. We will also write rv for the induced
map rv" : (VF*)" — (RV)".

Definition 4.1. Fix n. Let C¥ be the category whose objects are the definable subsets
of VF" x RV}, and whose morphisms are generated by the inclusion maps together
with functions of one of the following types:

(1) Maps
(xl,---,xn,)’lw--,}’l)'_) (-xl""axi—lv-xi+aaxi+17~"9-xnayla'""yl)

with a = a(xy, ..., Xi—1,y1,...,y) : VE=!1 x RV, — VF an A-definable
function of the coordinates y, x1, ..., xj_1.
(2) Maps (X1, « ..y Xu, Y1y oo o5 YD) B> (X15 oo vy Xy V1o o+ o5 VI, TV(X7)).

The above functions are called elementary admissible transformations over A; a
morphism in G% generated by elementary admissible transformations over A will be
called an admissible transformation over A. Taking [ = 0, we see that all A-definable
additive translations of VF" are admissible.

Analogously, if Y is a given definable set, one defines the notion of a Y-family of
admissible transformations.

If e € RV and T, is an A(e)-admissible transformation, then there exists

an A-admissible 7 such that (T, = T, where to.(x1,...,Xn, Y1,---, Y1) =
(X1,...,X%s,€,91,...,¥). This is easy to see for each generator and follows in-
ductively.

Informally, note that admissible maps preserve volume for any product satisfying
Fubini’s theorem of translation invariant measures on VF and counting measures
on RV.

We will now see that any X C VF” is a finite disjoint union of admissible
transforms of pullbacks from RV. We begin with n = 1.

Lemma 4.2. Let T be C-minimal with centered closed balls. Let X be a definable
subset of VE. Then X is the disjoint union of finitely many definable sets Z;, such that
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for some admissible transformations T;, and definable subsets H; of RVgo, T:Z; =
{(x,y) 1y € Hi,rv(x) =y }.

If X is bounded, H; is bounded below; in fact, for any h € H;, valyy(h) > val(x)
for some x € X.

Here VF will be considered a ball of valuative radius —oo, and points as balls of
valuative radius oo.

Proof. We may assume X is a finite union of disjoint balls of the same valuative radius
a € I' U {Zo00}, each minus a finite union of proper subballs, since any definable set
is a finite union of definable sets of that form.

Case 1: X is a closed ball. In this case, by the assumption of centered closed balls,
X has a definable point a. Let T(x) = x —a. Then T X \ {0} is the pullback of a
subset of I", the semi-infinite interval [«, 00) (where « is the valuative radius of X).
Thus TX = rv_ ' (H), where H = valy ™! ([, 00)) U {o0}.

Case 2: X is an open ball. Let X be the surrounding closed ball of the same radius
o, and as in Case 1 let a € X be an definable point, T(x) = x —a. If 0 € TX
then TX = v~ (H), where H = valyy, ! ((a, 00)) U {o0}. If 0 ¢ TX,thenTX =
v~ (H), where H = rv(TX) is a singleton of RV.

Case3: X = C\ Fisaballwitha single hole, the closed ball F. Let 8 be the valuative
radius of F. Leta € F be a definable point, 7(x) = x —a. Then TX = rv™'(H),
H = val,,~ (1), where [ is the open interval («, B) of I' in case C is closed, the
half-open interval [«, ) when C is open.

Case 4: X = C\ Ujey Fj is a closed ball, minus a finite union of maximal open
subballs. As in Case 1, find T such that 0 € T1X. Then T} X is the union of the
maximal open subball S of radius «, with v~ (H), where H = rv(X \ §). S can
be treated as in Case 2. Here H is a subset of Valrv_l(a), consisting of valrv_l(oz)
minus finitely many points.

Cases 3a and 4a: X is a union of m balls (perhaps with holes) of types 1-4 above.
Here we use induction on m; we have m balls C; covering X. Let E be the smallest
ball containing all C;. As we may assume m > 1, E must be a closed ball; and each
C; is contained in some maximal open subball M of E. By the choice of E, not all
C; can be contained in the same maximal open ball of E. Let a € E be a definable
point, T1(x) = x — a. If 0 € T1C; for some j, the lemma is true by induction for
this C; and for the union of the others, hence also for X. Otherwise, F' = rv(T1(X))
is a finite set, with more than one element. Forb € F,let Y, = T} X N1v_1(b). By
Lemma 2.3, we can, in fact, find a definable Y whose fiber at b is Y. By induction
again, there exists an admissible transformation 7} such that 7, (Y) is a pullback of
the required form. Let T>(x) = (x, rv(x)), T3((x, b)) = ((Tp(x), b)). Then T3T> T}
solves the problem.
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General subsets of VF. Let B > « be the least size (i.e., greatest element of I") such
that some ball of radius B contains more than one hole of X. Let {C; : j € J}
be the balls of radius B around the holes W of X, and let C = U;c;C;. Then

X=X\0) u(c \ W). Now X \ C has fewer holes than X, so it can be dealt with
inductively. Thus we may assume X = C \ W; and any proper subball of C of less
than maximal size contains at most one hole of X. We may assume the {C;} form a
single Galois orbit; so they each contain two or more holes of X. Since these holes
are not contained in a proper subball of C;, each C; must be closed, and the maximal
open subballs of C; separate holes. Let D; x be the maximal open subballs of C;
containing a hole F; ;. Let F; be the smallest closed ball containing F; x. Then
X = (C\UjxDj)UU;x(Djx \ Fjx)UU;i(Fjx\ Fjx). The second summand
in this union falls into Case 3a, the first and third (when nonempty) into Case 4a. O

Remark. If we allow arbitrary Boolean combinations (rather than disjoint unions
only), we can demand in Lemma 4.2 that the sets H; be finite. More precisely,
let X be a definable subset of VF. Then there exist definable sets Z;, admissible
transformations 7;, and finite definable subsets H; of RVi;'o such that we have the
following:

X is a Boolean combination of the sets Z;, and T; Z; is one of the following:

(1) VF;

(2) (0) x Hi;

(4) b; x Hj, with b; a definable ball containing 0;

5) {(x,y):y € H;,rv(x) = fi(y)}, for some definable function f; : H; - RV .

Corollary 4.3. Let X € VF x RV* be definable. Then there exists a definable
p:X — RV*andc : RV¥ — VF, ¢/ : RV¥ - RV, ¢’ : RV* — RV* such that
every fiber p~ () has the form (c(a) + v =1 (¢/(@))) % {¢(a)}. Moreover, ¢ has
finite image.

Proof. The finiteness of the image of c is automatic, by Lemma 3.41. The corollary
is obviously true for sets of the form L(H, h) = {(x,u) € VF x H :1rv(x) = h(u)};
take p(x, u) = (rv(x), u). If the statement holds for 7 X where T is an admissible
transformation, then it holds for X. If true for two disjoint sets, it is also true for their
union. (Add to p a map to {1, —1} € k* whose fibers are the two sets.) Hence by
Lemma 4.2 is true for all definable sets. m]

Corollary 4.4. Let T be V-minimal, X € VFand let f : X — RV UT be a definable
function. Then there exists a definable finite partition of X = U/_| X; such that either
f is constant on X;, or else X; is a finite union of balls of equal radius (possibly
missing some subballs), there is a definable set F; meeting each of the balls b in
a single point, and for x € X;, letting n(x) be the point of F; nearest x, for some
function H, f(x) = H@v(x — n(x))).

Proof. The conclusion is so stated that it suffices to prove it over acl(¥), i.e., we may
assume every almost definable set is definable; cf. Section 2.1. By compactness it
suffices to show that for each complete type p, f|p has the stated form. Let b be the
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intersection of all balls containing p. If b is transitive then by Lemma 3.47 f|p is
constant. Otherwise, by V-minimality b contains a definable point, and so we may
assume 0 € b. It follows that rv(p) is infinite. Thus by Lemma 3.20, f factors
through rv. O

Proposition 4.5. Let T be C-minimal with centered closed balls, and let X be a
definable subset of VF' x RV!. Then X can be expressed as a finite disjoint
union of A-definable sets Z, with each Z of the following form. For some A-
admissible transformation T, A-definable subset H of RVé*o, and map of indices
vell,...,n} = v e{l,..., 1%},

TZ={(a,b):be H,rv(ay) =by(v=1,...,n)}.

If X projects finite-to-one to VF*, then the projection of H to the primed coordi-
nates 1/, ..., n' is finite to one.
If X is bounded, then H is bounded below in RV .

Proof. By induction on n; the case n = 0 is trivial. Let pr : X — pr X be the
projection of X to VF' 1 x RV!, so that X C VF x prX.
Let pr*(Y) = {v : 3y € Y)(x,y) € Y}. For any ¢ € pr X, according to
ok

Lemma 4.2, we can write pr*(c) = Ui:l Z;(c), where
Ti(c)Zi(c) ={(a, D) : b € Hi(c), v(a) = by}

for some A(c)-admissible T;(c), A(c)-definable Z;(c), and H;(c) C RV = RV, We
can write Z;(c) = {x : (x,c) € Z;}, Hi(c) = {x : (x, c) € H;} for some definable
Ziand H; C VE'~!1 xRV, By compactness, as in Lemma 2.3, one can assume that
the Z;(c), H;(c), T;(c) are uniformly definable: there exists a partition of pr X into
finitely many definable sets Y, and for each Y families Z;, H;, T; over Y of definable
sets and admissible transformations over Y, such that the integer k is the same for
allc e Y, ar}{d the Z;(c), Hi(c), T;(c) are fibers over c of Z;, H;, T;. In this case,

pr*(Y) = UJ;_; Zi. We can express X as a disjoint union of the various pr*(¥); so
we may as well assume pr X = Y and X = Z;. Let T be such that (.T1(c) = Tt
Then

' X ={(a,c,b):(c,b) € H,rv(a) = by}.
Any admissible transformation is injective and so commutes with disjoint unions.

k/
L]
Now by induction, H itself is a disjoint union H; = | =1 Z;, with

T/Z] = {(d,b) : b € H/,1v(dy) = dy(v =2,...,n)).

Notational remarks. Here d = (dy, . .., d,) are the VF-coordinates of ¢ above. The
" depends on i but we will not represent this notationally.
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LetT*(a,d, b) = (a, T/ (d, b)), i.e., T does not touch the first coordinate. Note
that Tl* also does not move the 1’ coordinate, since in general admissible transforma-
tions can only add RV coordinates but not change existing ones. Let

Zi={x:Ti(x) = (a,d,b),(d,b) € Z,1v(a) = by}.

ok
Then (as one sees by applying 1) X = |J,_; Z;, and if T; = T*T1, we have

T;Zi ={(a,d',b'): d'.b) € T/ Z], rv(a) = b))}
={(a,d,b):be Hi/’ rv(a) = by, rv(d,) = by }.

As for the finiteness of the projection, if X admits a finite-to-one projection to
VF”, so does each Z in the statement of the proposition, and hence the isomorphic
set TZ. We have H c RV*t 7 : RV — RV" s0TZ = {(a,b,b) : (b, V) €
H,rv(a) = b'}. For fixed a, this yields an a-definable finite-to-one map T Z’(a) =
(b’ : (a,b,b") € TZ} — VF'. By Lemma 3.41, TZ'(a) is finite. Now fix b and
suppose (b, b') € H with b’ not algebraic over b. Then for generic a € rv=!(b), b’
is not algebraic over b, a. Yet (a, b,b’) € TZ and so b’ € T Z'(a), a contradiction.

The statement on boundedness is obvious from the proof; if X C {x : val(x) >
—y}* x RV™ then H is bounded below by —y in each coordinate. O

A remark on more general base structures

Lemma 4.6. Let T be V-minimal, A a *B-generated substructure of a model of 'T.
Let X be a T s-definable subset of V" x RV, Then there exist T o-definable subsets
Y; € RV™ and (projection) maps f; : Y; — RV", a disjoint union Z of

Zi =Y Xfiy VF"

and a nonempty A-definable family F of admissible transformations X — Z. F will
have an A'-point for any VF U RV U I'-generated structure containing A.

Proof. We may assume A is finitely generated. By Proposition 3.51 there exists an
almost VF U I'-generated A’ O A embeddable over A into any VF U I'-generated
structure containing A, and with RV(A’) = RV (A). By Proposition 4.5, the required
objects Y;, fi exist over A’. But since RV is stably embedded, this data is defined
over RV(A’) € A. The admissible transformations X — Z = U(Y,- X firv VE?)
exist over A’; so one can find a definable set D with an A’-point, and such that any
element of D codes an admissible transformation X — Z. O

Remark. In fact, arbitrary ACVF-imaginaries may be allowed here.

Example 4.7. J need not have an A-rational point. For instance, if A consists of an
element of VF/M, i.e., an open ball ¢, then we can take Y = Y to be the point 0 € RV
(since ¢ can be transformed to M); but there is no A-definable bijection of ¢ with M.
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A statement in terms of Grothendieck groups
Recall Definitions 3.65 and 3.66.
Definition 4.8. Define L : ObRV([rn, -] - Ob VF[n, -] by
L(X, f) = (VEX)" xpn 5 X C VE" x RV",
where VF* = VF \ {0}.
For X = ), X; € RV[x], we let L(X) be the disjoint sum ) _; L(X;) over the
various components in RV[i].

Let p denote the natural map L(X, f) — X.

Lemma 4.9. The image of . : ObRV[< n, -] — Ob VF[n, -] meets every isomor-
phism class of VF[n, -].

Proof. For X CRV*and f : X - RV, define rv(0) = oo and

L(X, f) = VF" Xy ¢ X C VF" x RV".
Then in the statement of Proposition 4.5, we have TZ = IL(H, h) where & is the
projection to the primed coordinates. For x € H, let s(x) = {i_: hi(x) = oo}
Forw € {l,...,n}, let H, = {x € H : s(x) = w}. Let H, = (Hy,h,)

where hl,, = (h;)igw. Then H, € RV[|w|, ], and L(Hy. h|Hy) ~ L(H,). Thus
L(H, h) ~ 1L}, Hy). o

A restatement in terms of VF alone

This restatement will not be used later in the paper.

Definition 4.10. Let A be a subfield of VF. Let @}4 (n, I) be the category of definable
subsets of VF" x (VF*)!, generated by composition and restriction to subsets by
maps of one of the following types:

(1) Maps
(-xlw--vxl'l’ylv“'ayl)'_) (xlv"'axiflv-xi+aaxi+lv'~-9xn’y11--~’yl)
witha = a(x1, ..., xi—1, 1, ..., y) : VEH =1 5 VF an A-definable function
of the coordinates y, x1, ..., Xj—1.

(2) Maps (X1, ..., Xn, Y1y oo oy YD) H> (X1y ey Xy Y1ave oy Vi1 Xi Yis Vi 1y o o5 VI &
X — Y assuming x; # 0 on X, and that this function takes X into Y.

Remark 4.11. The morphisms in this category are measure preserving with respect to
Fubini products of invariant measures (additively for VF, multiplicatively for VF*),
viz.dxy Ao Ndxy Adyr/yi A ANdy /-
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Lemma 4.12. Let T be C-minimal with centered closed balls, X a definable subset
of VF'. Then X can be expressed as a disjoint union of A-definable sets Z with the
following property. For some |l € N, there exists an 8}4 (n, I)-transformation T and
a definable subset H of RV x RV, such that

T(Z x (1 +M)) =rv I (H).

Moreover; the projection of H to RV is finite-to-one.
If val(x) is bounded below, then val(H) may be taken to be bounded below in the
RV-coordinates, and bounded in the RV -coordinates.

Proof. This follows from Proposition 4.5. O

S V-minimal geometry: Continuity and differentiation

We work with a V-minimal theory.

5.1 Images of balls under definable functions

Proposition 5.1. Let X, Y be definable subsets of VF, and let F : X — Y be a
definable bijection. Then there exists a partition of X to finitely many definable
equivalence classes, such that for any open ball b contained in one of the classes,
F (b) is an open ball; and dually, if F (b) is an open ball, so is b.

Proof. Tt suffices to show that such a partition exists over acl(#)); for any finite almost
definable partition has a finite definable refinement (cf. the discussion of Galois theory
in Section 2.1). Thus as in Section 2.1 we may assume every almost definable set
is named.

We will show that if p is a complete type, and b is an open subball of p, then
F (b) is an open ball; and that if ’ is an open subball of F(p), then b is an open ball.
From this it follows by compactness that there exists a definable D, containing p
with the same property; by another use of compactness, finitely many D), cover X;
it then suffices to choose any partition, such that any class is contained in some D,,.

When p has a unique solution, the assertion is trivial. When p is the generic type
of a closed ball, or of VF, or of a transitive open or co-definable ball, for any o € T,
p remains complete over («). In the transitive cases, this follows from Lemma 3.47,
while in the centered closed case it follows from Lemma 3.18.

Thus all open subballs b; of p of any radius « have the same type over {(«); hence
they are all transitive over (f), where t € K /My, where M, = {x : val(x) > o}
(Lemma 3.8, with Q = p). Thus by Lemma 3.46, F (b;) is an open ball.

The remaining case is that p is the generic type of a centered open or co-definable
ball by. Thus b; contains a definable proper subball by. If b is an open subball of p,
of radius «, then b N by = ¥; let b be the smallest closed ball of containing b and by.
Then b is contained in the generic type of b, and so by the case of closed balls, F(b)
is an open ball. O
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Remark 5.2. When X € VF x RV", by a ball contained in X we will mean a subset
of X of the form b x {e}, where b € B and ¢ € RV". With this understanding, the
proposition extends immediately to such sets X. Indeed, for each e € RV”, according
to the proposition there is a finite partition of X (e) with the required property; as in
Lemma 2.3 these can be patched to form a single partition of X.

Remark 5.3. When X C VF there exists a finite set of points F (not necessarily A-
definable) such that F(b) is an open ball whenever b is an open ball disjoint from F.
(This does not extend to X € VF x RV*))

Indeed, by Proposition 5.1 there is a finite number of closed and open balls b; and
points, such that F'(b) is an open ball for any open ball b that is either contained in
or is disjoint from each b;. Now let ¢; be a point of b;. If b is an open ball and no
¢i € b, then b must be disjoint from, or contained in, each b;; otherwise, b contains
b; and hence c;.

5.2 Images of balls I1

Lemma 5.4. Let X, Y be balls, and F : X — Y a definable bijection taking open
balls to open balls. Then for all x, x' € X,

val(F(x) — F(x")) = val(x — x') + vp,
where vy is the difference of the valuative radii of X, Y.

Proof. Translating by some a € X and by F(a) € Y, wemay assume (0 € X,0€ Y,
F(0) = 0; and by multiplying we may assume and both X, Y have valuative radius
0,ie, X =Y = 0. Let M(a) = {x : val(x) < a}. Then F(M(«x)) = M(B) for
some B = B(w). B is an increasing definable surjection from {& € I" : ¢ > 0} to
itself; it must have the form 8(«) = ma for some rational m > 0. By Lemma 3.26,
we have m € Z. Now reversing the roles of X, Y and using F ~! will transform m to
m~ som™! € Z also, i.e., m = +1. Since m > 0, we have m = 1. O
Lemma 5.5. Let X be a transitive open or closed ball (or infinite intersection of
balls), and F : X — Y a definable bijection. Then there exists a definable ey € RV
such that for x # x' € X, rv(F (x) — F(x)) = egrv(x — x').

Proof. We first show a weaker statement.

Claim. Forsomedefinableeg : I' — RV, 1v(F (x)—F(x)) = eg(val(x —x")) rv(x —
x") forall x # x" € X.

Proof. Fixa € X. For § € T, let bs = bs(a), the closed ball around a of valuative
radius §. Consider those bs with bs C X. As we saw in the proof of Lemma 5.1, as
any a € X is generic, bs is transitive in Tp;. By Lemma 3.45, rv(F (x) — F(a)) =
fa(8)rv(x — a), where val(x — a) = §, and f, () is a function of a and §. But then
faisafunction ' — RV, so by Lemma 3.11 it takes finitely many values vy, ..., v,.
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LetY; = fa’1 (v;). Y; has acanonical code ¢; € I'*, consisting of the endpoints of the
intervals making up Y;. Using the linear ordering on I', each individual ¢; is definable
from the set {¢;};, and hence from a; thus v; = f,(Y;) is also definable from a. Thus
fa fa 1s definable from (e;, v;);. (This last argument could have been avoided by
quoting elimination of imaginaries in RV U I"'.) However, as X is transitive, every
definable function X — (RV UT) is constant, and so f, = f foranya, b € X. Let

e0(8) = fa(8). O

We now have to show that the function eg of the claim is constant. Using the
O-minimality of T, it suffices to show for any definable § € dom(eq) that

(1) if eg(8) = e, then eg(y) = e for sufficiently small y > &,
and if § is not a minimal element of dom(eg)), then also
(2) if eg(y) = e for sufficiently large y < §, then ep(8) = e.

To determine eq(8), it suffices to know rv(F (x) — F(x)) and rv(x — x”) for one
pair x, x’ with val(x — x’) = §. Thus in (1) we may replace X by a closed subball
Y of valuative radius &, and in (2) by any closed subball Y of X of valuative radius
< §. Since such closed balls Y are transitive (over their code), we may assume X is
a closed ball.

Fix a € X. Pick a generic ¢ (over a) with rv(c) = e.

To prove (1), note that type of such c is generic in an open ball, whereas the
elements of X are generic in a closed ball; these generic types are orthogonal by
Lemma 3.19; so X remains transitive in T.. Thus we may assume (by passing to T,)
that c is definable.

Let g, be the generic type of the closed ball {x : val(a — x) > é}. For x = q,,
let vg = val(F(a) — F(x) — c(a — x)) — val(c).

By the definition of e, val(F(a) — F(x) — c(a — x)) > val(F(a) — F(x)), so
we have

vo + val(c) = val(F(a) — F(x) — c(a — x)) > val(F(a) — F(x)) 51
= val(c(a — x)) = § + val(c). -1
If§ <y < vy, find x, x’ = g, with val(x — x’) = y. Then val(F(x) — F(x') —
c(x —x")) = vg +valy(e) > v +valy(e) = val(c(x —x")),sorv(F(x) — F(x")) =
rv(c(x — x’)) showing that eg(y) = rv(c) = e. This proves (1).

For (2),let Qo = {y : y < 6}, Q8‘3f the set of definable elements of Q, and
Q={yeQo: (¥Vye Qgef)(y > y)}. Thus Q is a complete type of elements of
I'. For y € Q, according to Lemma 3.17, the formula val(x — a) = y generates a
complete type g, (x). By Lemma 3.47, X is transitive over y, so the formulax’ € X
generates a complete T, -type. Thus by transitivity a complete T, -type g, (x, x") is
generated by x, x" € X, val(x — x") = y; namely, (a,b) = q, iff b = qy.q.

For some definable vy, for (a, x) = g, we have, as in (1),

val(F(a) — F(x) — c(a — x)) = vo(y) + val(c) > y + val(c). 5.2)
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If we show that vo(y) > 8 we can finish as in (1).

Now vo(y) = my + yp for some definable y € I', and some rational m. Letting
y — §in(5.2) givesmé+yp > 8. If m < O, thenvo(y) =my +yo >mé+yp > §
so we are done; hence we may take m > 0.

By Lemma 3.47, RV({(#)) = RV({a)); by Lemma 3.20, when x = g4,
RV ({(a, x)) is generated over RV ({a)) by rv(a — x).

In particular, on g 4, x + rv(F(a) — F(x) —c(a—x)) is a function of rv(a — x).
This function lifts vg to a function on RV; hence by Lemma 3.26, m € Z. (This and
m > 0 are simplifications rather than essential points.) We have

val((F(a) — F(x) —c(a —x))(a —x)"") = n.

By Lemma 3.47, RV U I'({a)) = (RV UT)((@)). By Lemma 3.17, then
valy "' (y0) N del(a, x) = valy~'(y0) N dcl(a). Thus valy, ~!(y0) N del(a, x) =
valyy ~ (y0) N del(@). Thus rv((F(a) — F(x) — c(a — x))(a — x)~™) € dcl(¥); i.e.,

v((F(a) — F(x) —cl@a—x))a—x)"") =¢

for some definable e;. As in (1), we may assume there exists a definable c¢; with
rv(c1) = ey. Thus for (a, x) = gy,

val((F(a) — F(x) —c(a — x) — ci(a — x)™)) > val(F(a) — F(x) — c(a — x))
= vo(y) + val(c). (5.3)

Letx’ = gy,4 be genericover {y, a, x}, soin particular val(x —x’) = val(x —a) =
val(a — x") = y. We have

val((F(a) — F(x") — c(a — x") — c1(a — x")™)) > val(F(a) — F(x) — c(a — x))
= vo(y) + val(c).
Subtracting from (5.3), we obtain

val((F(x") — F(x) — c(x’ = x) —c1[(a — x)™ — (@ — x")"]) > vo(y) + val(c)

= val(ci(a — x)™).
5.4)

But since (x, x) = gy, by (5.3) we have

val((F(x) — F(x") — c(x — x") — c1(x = x")™)) > wo(y) + val(c)
= val(ci (x — x)™). (5.5)

Comparing (5.4) and (5.5) (and subtracting val(cy)), we see that
val((a — x)" — (a — x")" — (x' = x)™) > val((x — x")™)
= val((a — x")") = val((a — x)™).

Letu = (a—x")/(x’ —x);then (a —x)/(x' —x) =u+1, val(u) =0 = val(u + 1),
and val((u + D™ —u™ — 1) > 0. If U = res(u), we get (U + 1) = U™ + 1.
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Since the residue characteristic is 0 this forces m = 1. (Note that U is generic.) Thus
vo(y) =y + .

From (5.2), y + yo + val(c) > y + val(c), or y9p > 0. Butd — yp € QSef, )
since y € Q wehavey > § — yp, or vg(y) = ¥ + o > 6. As noted below (5.2) this
proves the lemma. O

Remark 5.6. In ACVF(p, p), the claim following Lemma 5.5 remains true, but it is
possible for ¢q to take more than one value; consider x — cx? on a closed ball of
valuative radius 0, where val(c) < 0.

Lemma 5.7. Let X be a transitive open ball, and let F : X — X be a definable
bijection. Thentv(F (x) — F(y)) =1v(x —y) forallx #y € X.

Proof. This follows from the second assertion in Lemma 3.45 and from
Lemma 5.5. O

At this point, Lemma 5.1 may be improved.

Definition 5.8. Call a function G on an open ball nice if for some e, for all x # x’ €
pr X, v(G(x) — G(x")) = egrv(x — x').

Proposition 5.9. Let X, Y be definable subsets of VF, and let F : X — Y be a
definable bijection. Then there exists a partition of X to finitely many definable
classes, such that on any open ball b contained in one of the classes, F (b) is an open
ball, and F'|b is nice.

Proof. The proof of Proposition 5.1 goes through verbatim, only quoting Lemma 5.5
along with Lemma 3.46. O

A definable translate of a ball rv ~! (&) will be called a basic 1-cell. Thus Corol-
lary 4.3 states that every fiber of p is a basic 1-cell. By a basic 2-cell we mean a set
of the form

X={G,y):xeprX,v(y —G(x)) = a},

where pr X is a basic 1-cell, and G is nice.

Corollary 5.10. Ler X C VF? be definable. Then there exists a definable p : X —
RV* such that every fiber is a basic 2-cell.

Proof. Let X(a) = {y : (a,y) € X}. By Corollary 4.3 there exist an a-definable
Pa : X(a) — RV* and functions c, ¢’ such that every fiber ,oa’1 («) is a basic 1-cell
vl (a, @) + cla, a). By Lemma 2.3 we can glue these together to a function
p1 @ X — RV* with p,(y) = pi(a, y). Let p2(x,y) = (p1(x, y), ' (x, p(x, ¥))).
Then any fiber D of p; has the form

{(x,y):xepry D, rv(y — Gp(x)) =},

where G p(x) = c(x, o), o depending on the fiber D. Combining p; with a function
whose fibers yield a partition as in Proposition 5.9, we may assume G takes open
balls to open balls (cf. Remark 5.2). Now apply Corollary 4.3 to pr X to obtain a map
o' : pr X — RV* with nice fibers. ]
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5.3 Limits and continuity

We now assume T is a C-minimal theory of valued fields, satisfying assumption (1)
of Section 3.4.

Let V be a VF-variety. By “almost all a”” we will mean “all a away from a set of
smaller VF dimension.”

Lemma 5.11. Let g be a definable function on a ball around 0. Then either
valg(x) — —oo as val(x) — oo or there exists a unique b € VF such that
b =1limy_,0 120 g(x); ie,

Ve e M3 € )0 # x&val(x)) > § = val(g(x) —b) > €.

Proof. Let p be the generic type of an element of large valuation; so ¢ = p|A iff
val(x) > I'(A). and let ¢ = tp(g(c)/A), where ¢ = p|A. By Remark 3.5, g
coincides with the generic type of P over A where P is a closed ball, an open ball, or
aninfinite intersection of balls, or P = VF. The last case means that val g(x) — —oo.
The existence of g shows that p, g are nonorthogonal, so it follows from Lemma 3.19
that the first case is impossible.

We begin by reducing to the case where P is centered. Assume therefore that
P is transitive. For b € P, let g, = tp(g(c)/A(b)), where ¢’ = p|AD). If g,
includes a proper b-definable subball P, of P, or a finite union of such balls, we may
take them all to have the same radius «(b); so «(b) is b-definable. By Lemma 3.47,
« is constant. If as b varies there are only finitely many balls Py, then P is after
all centered. If not, then there are two disjoint P, Py; but this is absurd since if
" &= p|A(D, V') then g(c”) € P, N Py. Thus g, cannot include a proper subball P,
of P; so gp is just the generic type of P, over A(b). Moving from A to A(b) we may
thus assume that P is centered.

Thus P is a centered open or infinitely-definable ball; therefore, it has a proper
definable subball b. If y ¢ b, write val(b — y) for the constant value of val(c — y),
¢ € b. By the definition of a generic type of P, val(b — g(c)) ¢ I'(A). Now
val(b — g(c)) € T'(A(c)) = T'(A) & Qval(c) (by assumption (2) of the definition of
V-minimality (Section 3.4)), and val(c) > I'(A); it follows that val(b—g(c)) < I'(A)
orval(b—g(c)) > I'(A). The first case is again the case of P = VF, while the second
implies that P is an infinite intersection of balls P;, whose radius is not bounded by
any element of I'(A). In other words, P = {b}. Unwinding the definitions shows
that b = limy ¢ x20 g(x). O

Remark. In reality, the transitive case considered in the proof above cannot occur.

By an (open, closed) polydisc, we mean a product of (open, closed) balls. Let B
be a closed polydisc. Let M = T. Letb € B(M),a € B(acl(¥)). Write b — a if
for any definable y € I', and each coordinate i, val(b; — a;) > y. Let pg be the type
of elements of I greater than any given definable element. Then Lemma 5.11 can
also be stated thusly: given a definable g on a ball By around O into B, there exists
b € dcl(9) such that if val(r) = p, then (¢, g(t)) — (0, b).

Stated this way, the lemma generalizes to functions defined on a finite cover of By.
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Lemma 5.12. Let By be a ball around 0, and B a closed polydisc, both 0-definable.
Let t € By have val(t) = po, and let a € acl(t), a € B. Then there exists b € B,
b € acl(®) with (¢, a) — (0, ).

Proof. The proof of Lemma 5.11 goes through. O

The following is an analogue of a result of Macintyre’s for the p-adics. By the
boundary of a set X, we mean the closure minus the interior of X.

Lemma 5.13.

(1) Any definable X € VF" of dimension n contains an open polydisc.
(2) Any definable function VF' — RV U T is constant on some open polydisc.
(3) The boundary of any definable X C VF" has dimension < n.

Proof. Given (1) and (3) follows since the boundary is definable; so it suffices to
prove (1)—(2). For a given n, (2) follows from (1): by Lemma 3.56, the fibers of the
function cannot all have dimension < n.

Forn =1, (1) is immediate from C-minimality. Assume that (1)—(2) are true for
n and let X € VF x VF" be a definable set of dimension n + 1. For any a € VF"
such that X, = {b : (a, b) € X} contains an open ball, let y (a) be the infimum of all
y such that X, contains an open y-ball. By (2) for n, y takes a constant value yy on
some polydisc U; pick y1 > yp. Let

X ={u,2)eX:ucU&Nval(z —7) >y = u,7) € X)}.

Then dim(X’) = n + 1. Now consider the projection (u, z) — z. For some ¢ € VF,
the fiber X/, = {u : (u, ¢) € X’} must have dimension n. By induction, X/ contains
a polydisc V. Now, clearly, V x B;l (c) € X. O

Ifx = (x1,...,x0),x" = (x{,...,x,), write val(x — x”) for min val(x; — x/).
Say a function F is §-Lipschitz at x if whenever val(x — x’) is sufficiently large,
val(F(x) — F(x’)) > 8 + val(x — x’). Say F is locally Lipschitz on X if for any
x € X, for some § € T, F is §-Lipschitz at x.

Lemma 5.14. Let F : X € VF" — VF be adefinable function. Then F is continuous
away from a subset X' of dimension < n. Moreover, F is locally Lipschitzon X \ X'.

Proof. Let X’ be the (definable) set of points x where F is not Lipschitz. We must
show that X’ has dimension < n. (In this case, by Lemma 5.13, the closure of X’
has dimension < 7, too.) Suppose otherwise. For n = 1 the lemma follows from
Lemmas 5.1 and 54. Let 7; : X' € VF' — VF"~! be the projection along the
ith coordinate axis. Let Y be the set of 5 € VF"~! such that 7; ~!(b) is infinite or,
equivalently, contains a ball; it is a definable set. For b € Y, let

D;i(b) = {x € m;~'(b) : (38 € I")(F|m; ' (b) is 5-Lipschitz near x)}.

By the case n = 1, ;=1 (b) \ D;i(b) is finite. Thus if D; = Upcy D; (b), then m; has
finite fibers on X \ D;, so dim(X \ D;) < n. Let X* = N; D;, and for x € X* let
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8(x) be the infinimum of all such Lipschitz constants é (for all n projections). By
Lemma 5.13, § is constant on some open polydisc U C X*. Let §' be greater than
this constant value. Then at any x € U, the restriction of F to a line parallel to an
axis is 8’-Lipschitz. It follows immediately (using the ultrametric inequality) that F
is 8’-Lipschitz on U; but this contradicts the definition of X’. O

Remark 5.15. Via assumption (1) of Section 3.4, we used the existence of p-torsion
points in the kernel of RV — T for each p. In ACVF(p, p) this fails; one can still
show that F is locally logarithmically Lipschitz, i.e., for some rational « > 0, for
any x € X \ X/, for sufficiently close x’, val(F(x) — F(x")) > § val(x — x).

5.4 Differentiation in VF

Let F : VF" — VF be a definable function, defined on a neighborhood of a € VF".
We say that F is differentiable at a if there exists alinear map L : VF" — VF such that
for any y € T, for large enough § € I, if val(x;) > § foreachi, x = (x1, ..., x,),
then val(F(a + x) — F(a) — Lx) > 6 + y. If such an L exists it is unique, and we
denote it d F,.

Lemma 5.16. Let F : X € VF*' — VF" be a definable function. Then each partial
derivative is defined at almost every a € X.

Proof. We may assume n = m = 1. Let g(x) = (F(a + x) — F(a))/x. By
Lemma 5.4, for almost every a, for some § € I', for all x with val(x) sufficiently
large, val(F(a + x) — F(a)) = 6 + val(x); so val g(x) is bounded. By Lemma 5.11,
and Proposition 5.1, g(x) approaches a limit b € VF as x — 0 (with x # 0); the
lemma follows. ]

Corollary 5.17. Let F : VF" — VF be a definable function. Then F is continuously
differentiable away from a subset of dimension < n.

Proof. F has partial derivatives almost everywhere, and these are continuous almost
everywhere, so the usual proof works. O

Lemma 5.18. Let X C VF" x RV™ be definable, pr : X — VF" the projection. Then
for almost every p € VF", there exists an open neighborhood U of p and H C RV™
such that pr "\(U) = U x H. Ifh : X — VF, then for almost all x € X, h is
differentiable with respect to each VF-coordinate.

Proof. For x € VF", let H(x) = {h € RV" : (x,h) € X}. By Corollary 3.24,
Lemma 2.8, there exists H' € RV™ x RV! x ' such that for any x € VF", there
exists a unique y = f(x) € RV/ x I'* with H(x) = H'(y). By Lemma 5.13, f is
locally constant almost everywhere. Thus for almost all x, for some neighborhood
U of x,forall x’ € U, H(x) = H(x"); sopr ~'U = U x H(x). The last assertion is
immediate. m}
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We can now define the partial derivatives of any definable map F : X — VF
(almost everywhere); we just take them with respect to the VF-coordinates, ignoring
the RV-coordinates.

Given h : X — VF', I’/ : X’ — VF" with RV-fibers, and a definable map
F : X — X', wedefine the partials of F to be those of 2’0o F. Then the differential d F
exists at almost every point x € X by Corollary 5.17, and we denote the determinant
by Jcb, and refer to it as usual as the Jacobian.

Definition 5.19. Let X, X’ € VF[n, -] and let F : X — X’ be a definable bijection.
F is measure preserving if rvJcb(x) = 1 for almost all x € X. VFyq[n, -] is the
subcategory of VF[n, -] with the same objects, and whose morphisms are the measure-
preserving morphisms of VF[n, -].

Let VF, be the category whose objects are those of VF[n, -], and whose mor-
phisms X — Y are the essential bijections f : X — Y that are measure preserving.

5.5 Differentiation and Jacobians in RV

Let X, Y be definable sets, together with finite-to-one definable maps fx : X — RV”,
fr : Y — RV". Here X, Y can be subsets of RV* or of RV* x VF*, etc.; the notion
of Jacobian will not depend on the particular realization of X, Y.

Leth : X — Y be a definable map.

The notion of Jacobian will depend not only on A, X, Y but also on fx, fy; to
emphasize this we will write & : (X, fx) — (¥, fr).

We first define smoothness. When A = fx(X), B = fy(Y) are definable subsets
of k", we say that &, X, Y are smooth if A, B are Zariski open, {(fx (x), fr (h(x))) :
x € X} N (A x B) = Z for some nonsingular Zariski closed set Z C A x B, and the
differentials of the projections to A and to B are isomorphisms at any point z € Z.
In this case, composing the inverse of one of these differentials with the other, we
obtain a linear isomorphism 7,(A) — T,(B) for any a = fx(x),b = fy(h(x));
since T,(A) = k" = Tp(B), this linear isomorphism is given by an invertible matrix,
whose determinant is the Jacobian J.

In general, to define smoothness of X, Y at (x, y = h(x)), we restrict to the cosets
of (k*)" containing x and y, translate multiplicatively by x and y, respectively, and
pose the same condition.

Any X, Y, h are smooth outside of a set E, where E N C has dimension < n for
each coset C of (k*)". Equivalently (by Lemma 3.64), E has RV-dimension < .

Assume now that X, Y, h are smooth. Define

Jebry (1) (q) = TI(fx(¢) "' TI(fr(g))J (1, 1) € RV,

where IT(cy,...,cp) =c1 - Cp.

At times it is preferable not to use a different translation at each point of a coset
of (k*)". The Jacobian Jcbry (k) of h at ¢ € X can also be defined as follows.
Let ¢ = h(q), y = valw(q), y' = valy(¢') € T'". Pick any ¢,d € RV" with
valyy (c) = v, valyy(d) = y’ (one can take ¢ = fx(q),d = fy(q')). Let
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Wy, y) ={a: fx(a) € valy " (y), fr(h(a)) € valy "' (¥},
H = {(c fx(a),d " fy(h@))) : a € W).

Since fx, fy are finite-to-one, H C (k*")? both projections of H’ to k*" are finite-
to-one, and H' is nonsingluar by the smoothness of (X, Y, ). We can thus define the
Jacobian J’ of H' at any point. We have

Jebry (M) (q) = T(c) "' T1(d)J (g™, g'd™") € RV.

We also define Jebr (h)(q) = Y. y' — >y € I (writing " additively). Note that
this depends only on the value of h at q. We have

valry Jebry (R)(g) = Jebr (R)(q).

Example 5.20. Jacobian of maps on I'. If X,Y c T'", we saw that a definable
map f : X — Y lifts to RV iff it is piecewise given by an element of GL,(Z)
composed with a translation. Assume f is given by a matrix M € GL,(Z), let
X = Valrv_l()_(), Y = Valrv_l()?), and let f : X — Y be given by the same matrix,

but multiplicatively. Then X, Y, f are smooth, and
J(f)(x) = () (x)~" det M,

where y = f(x), and det(M) = +£1.

Alternative: I'-weighted polynomials

We have seen that the geometry on valy ~1(y) (y € ') translates to the geom-
etry on (k*)", but this is true for the general notions and not for specific vari-
eties; a definable subset of C(y) = Val_l(y) does not correspond canonically
to any definable subset of val ~!(0). An invariant approach is therefore useful.
Let g = I'((¥). X = (Xy,...,X,) be variables, y = (y1,...,¥,) € I'],
and let v = (v(1),...,v(n)) € N" denote a multi-index. By a y-weighted
monomial we mean an expression a, X" with a, a definable element of RV, such
that valyy(ay) + >_v(@)y; = 0 € T'. Let Mon(y, v) be the set of y-weighted
monomials of exponent v, together with 0. Then Mon(y, v) \ {0} is a copy of
valy ~H=(ay) + > v(@)y:); so Mon(y, v) is a one-dimensional k-space. In par-
ticular, addition is defined in Mon(y, v). We also have a natural multiplication
Mon(y, v) x Mon(y,v’) — Mon(y,v + V). Let R[X; y] = ®,ene Mon(y, v).
This is a finitely generated graded k-algebra. It may be viewed as an affine coordi-
nate ring of C[y]; but the ring of the product C[y, y']is R[X, X’; (y, ¥')], in general a
bigger ring than R[X, y]1®xk R[X’, ¥']. Nevertheless, a Zariski closed subset of C(y)
corresponds to a radical ideal of R[X'; ¥]. In this way, notions such as smoothness
may be attributed to closed or constructible subsets of any C(y) in an invariant way.

Definition 5.21. Let X, Y € ObRV[n, -] and leth : X — Y be a definable bijection.
h is measure preserving if Jcbr h(x) = 0 for all x € X, and Jcbry A(x) = 1 for all
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x € X away from a set of RV dimension < n. If only the first condition holds, we
say h is I'-measure preserving.

For X,Y € RV[< n, -], we say that 1 : X — Y is measure preserving if this is
true of the RV[n]-component of /.

RVyiln, -] (respectively, RV_,r[n, -1) is the subcategory of RV[n, -] with the
same objects, and whose morphisms are the measure-preserving (respectively, I'-
measure-preserving) definable bijections.

RVyol= 7, -] = ®x<nRVr_yorlk, -1 @ RVyolln, -].

Note that when X,Y € ObRV][n, -], a bijection 2 : X — Y is I'-measure
preserving iff it leaves invariant the sets S, = {(a1, ..., ay) : Yo valw(ai) = y).

5.6 Comparing the derivatives

Consider a definable function F : VF — VF lying above f : RV — RV, ie.,
rv F = frv. The fibers of the map rv : VF — RV above Kk, for instance, are open
balls of valuative radius 0, whereas the derivative is defined on the scale of balls of
radius » for r — +o00. Thus the comparison between the derivatives of F' and f is
not tautological. Nevertheless, one obtains the expected relation almost everywhere.

While this case of the affine line would suffice (using the usual technique of partial
derivatives), it is easier to place oneself in the more general context of curves. More
precisely, we consider definable sets C together with finite-to-one maps f : C — RV.
Let LC and p : LC — C be as above.

In the following lemma, H’, i’ denote, respectively, the VF-, RV derivatives of
functions H, h defined on objects of VF[1], RV[1], respectively.

Proposition 5.22. Let C; € RV* be definable sets, f; : C; — RV finite-to-one
definable maps (i = 1,2). Let h : C1 — C» be a definable bijection, and let
H :1LCy — LLC; be a lifting of h, i.e., pH = hp. Then we have the following:

(1) For all but finitely many c € Cy, h is differentiable at c, H is differentiable at any
x € Le, andrv H' (x) = b/ (1v(x)).

(2) For all ¢ € Ci, H is differentiable at a generic x € Lc, and val H' (x) =
(valiyh') (x) = val(f2(h(x))) — val(fi(x)).

Proof.

(1) Let Z’ be the set of x € ILCy such that H is not differentiable at x (a finite
set) or that rv(H'(x)) # h'(rv(x)). We have to show that p(Z’) C C is finite
or, equivalently, that f; o p(Z’) is finite. Otherwise, there exists ¢ € p(Z’)
with ¢ ¢ acl(A). By Lemma 3.20, the formula rv(x) = fi(c) generates a
complete type g over A(c); it defines a transitive open ball b, over A(c). Since
poH = poh,wehave H(c, y) = (c, H.(y)) for some A(c)-definable bijection
H. of b.. By Lemma 5.5, for some ¢p € RV, rv(H (u) — H(v)) = egrv(u — v)
forall u, v € b.; sorv((H(u) — H(v))/(u —v)) = ep. Since H is differentiable
almost everywhere on b, (Lemma 5.17) and b, is transitive, it is differentiable at
every point. Clearly, rv H'(u) = e, contradicting the definition of Z’.
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(2) This follows from Lemma 5.4. m]

Corollary 5.23. Let X € ObRV[n], F : LX — VF" adefinable function, f : LX —
RV" a definable function. Assume v F(x) = f(v(x)). Then Proposition 5.22
applies for each partial derivative of F. In particular,

e forall c € X away from a set of smaller dimension, for all x € Lc, F is
differentiable at x, f is differentiable at c, and rv Jcb(F)(x) = Jcbry (f)(x);

* forall c € X, for generic x € LLc, F is differentiable at x, and val Jcb(F)(x) =
(Jebr f)(x). O

Corollary 5.24. Let

X,Y € ObRV[< n], f € MorRV[fn](Xs Y), F e Morvpvol[n](LX, LY).
Assume rv F(x) = f(rv(x)). Then f € Morgry, 21X, Y). O
Proof. The proof follows from Corollary 5.23. O

6 Lifting functions from RV to VF

Proposition 6.1. Let T be an effective V-minimal theory. Let X C RV* be definable
and let 1, ¢y : X — RV" be two definable maps with finite fibers. Then there exists
a definable bijection F : X X ¢, v (VF)' — X X4, v (VF*)", commuting with the
natural projections to X.

Proof. Let A = dcl(@) N (VFUT). If b € dcl(¥) N RV, then viewed as a ball b
has a point a € A; since the valuative radius of b is also in A, we have b € dcl(A).
Thus ¢1, ¢, X are ACVF 4-definable. Any ACVF4-definable bijection F is a fortiori
T-definable; so the proposition for ACVF,4 implies the proposition for T. Moreover,
ACVF, is V-minimal and effective, since any algebaic ball of ACVF 4 is T 4 -algebraic
and hence has a point in VF(A)2. Thus we may assume T = ACVFy,.

The proof will be asymmetric, concentrating on ¢1 X.

We may definably partition X, and prove the proposition on each piece.

Consider first the case where ¢ : X — U and ¢» : X — V are bijections
to definable subsets U, V C (k*)K. Our task is to lift the bijection f = drpy !
to VF'. A definable subset of k" (such as ¢;(X)) is a disjoint union of smooth
varieties. We thus consider a definable bijection f : U — V between k varieties
U c k" and V C K". Induction on dim(U') will allow us to remove a subset of U of
smaller dimension. Hence we may assume U is smooth, cutoutby i = (hy, ..., h),
TU = Ker(dh), f = (f1,..., fn), where f; are regular on U (defined on an open
subset of k"), and df is injective on T U at each point of U. Thus the common kernel
ofdhy,...,dh;,df1,...,df, equals 0.

It follows that at a generic point of U (i.e., every point outside a proper subvariety),
if Q is a sufficiently generic n x / matrix of elements of A (or integers) and we
let f/ = fi + Qh, then the common kernel of dff, ..., df, vanishes. Note that
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filU = f/|U. Let W be a smooth variety contained in f(U) and whose complement
in f (U) is a constructible set of dimension smaller than dim(U). Replacing U by
f~H (W), we may assume f(U) is also a smooth variety.

Let U = res” ! (U). Lift each f/ to a polynomial F; over O, with definable
coefficients. This is possible by effectiveness of ACVF,4. Obtain a regular map F,
whose Jacobian is invertible at points of U. We have resoF = f ores. Since f is
1-1 on U, the invertibility of 4 F implies that F is 1-1 on U. Moreover, by Hensel’s
lemma, F : v 1 (U) = v 1 (W) is bijective.

Next consider the case where in place of a bijection f : U — V we have a
finite-to-finite correspondence f C U x V (where U = ¢1(X), V = ¢ (X)), f =
{(d1(x), P2(x)) : x € X}. We may take f C U x V to be a subvariety, unramified
and quasi-finite over U and over V'; and we can take U, V' to be smooth varieties. As
before we can lift f to a correspondence FcUx V such that FNrv~! W) xrv_lw)
is a bijection v~ w) — rv~1(v) whenever (u, v) € f . It follows that a bijection
X X¢.rv (VF)" > X xg¢, v (VFX)" is given by (x, y) — (x, y") iff (y, ') € F.

Let¢; : X — U and ¢ : X — V be bijections to definable subsets U, V, each
contained in a single coset of (k*)¥, say, U € C(y), V € C(y') forsome y, y' € T'*
(cf. Section 5.5). Let Z = (Zy, ..., Z;) be variables, R[Z; y] be the subring of
VF[Z] consisting of polynomials )_ a, Z", with val(a,) + Zle v(i)y; =0, and a,
a definable element of VF. There is a natural homomorphism R'[Z; y] — R[Z; v],
where R[Z; y] is the coordinate ring of C(y). By effectivity, this homomorphism is
surjective. The proof now proceeds in exactly the same way as above.

This proves the proposition in case val¢; (X) consists of one point.

Next, assume valy, ¢y consists of one point, and valy ¢ (X) is finite. Thus ¢ (X)
lies in the union of finitely many cosets (C(a) : a € E), with E finite.

Fora € E, A(a) remains almost VF, I'-generated; since the proposition is true for
¢17'C(a) (definablein T A(a)), then by the one-coset case an appropriate isomorphism
F exists; and the finitely many F obtained in this way can then be glued together, to
yield a map defined over A.

The case of val,¢1, valyy¢; both finite, is treated similarly.

This proves the existence of a lifting in case valyy¢; (X) is finite. Now for the
general case.

Claim. Let P C X be a complete type. Then there exists a definable D with P C
D C X, and definable functions 6 on val,, (¢1 (D)) and 6’ on val,, (¢2 (D)) such that

for x € D, 0 (valwy (¢1(x))) = valr gz (x), 0’ (valry (¢2(x))) = valy i (x).

Proof. Let a € P, y; = valy(¢i(a)). Then y, is definable over some points
of ¢l_lvalrv_l(y1). But Valrv_l(yl) is a coset of k*, and ¢; is finite-to-one, so
cj)l_lvalrv_1 (y1) is orthogonal to I". Thus y» is algebraic over y;. Since I' is linearly
ordered, y» is definable over y;; so y» = 6(y1) for some definable 8. Similarly,
y1 = 0'(y2). Clearly, 0 restricts to a bijection valyy¢1 P — valpy¢p P, with inverse
0’. By Lemma 2.7 there exists a definable D with 0¢; = ¢, ¢y = 0'¢ppon D. O

Now by compactness, there exist finitely many (D;, 6;, 6;) as in the claim with
U;D; = X. We may cut down the D; successively, so we may assume the union
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is disjoint. But in this case the proposition reduces to the case of each individual
D;, so we may assume X = D. Let B; = val¢;(X). Given b € By, let X}, =
(valyy o1 y~1(b). Then by the case already considered there exists an A (b)-definable
Fy 1 Xp Xy 00 VE)' = X Xgy oy (VEX)'. Let F = Upep, Fp. By Lemma 2.3,
F : X x¢,v (VF)" = X xg¢, v (VF*)" is bijective (see the discussion in Sec-
tion 2.1). m]

We note a corollary.

Lemma 6.2. Let T be V-minimal and effective, and let A be an almost (VF, T")-
generated structure. Then A is effective.

Proof. By Lemma 3.29 it suffices to show A is rv-effective. Note that if A C acl(¥),
then T is rv-effective iff T4 is rv-effective (see the proof of Lemma 3.31(2)-(3)).
Thus it suffices to show that if Ag = acl(Ap),a € VFUT, and T" = T, is effective,
then so is T'(a). The case a € T is included in Corollary 3.40, so assume a € VF.
Let P be the intersection of all Ag-definable balls containing a. If P is transitive over
Ay, then by Lemma 3.47 we have RV(Ap(a)) = RV(Ap), so rv-effectivity remains
true trivially. Otherwise, P is centered over Ag, hence has an Ap-definable point, and
by translation we may assume 0 € P. a is then a generic point of P over Agp. Let
¢ € RV(Ao(a)); we must show that rv ~!(c) is centered over Ag(a). By Lemma 3.20,
if c € RV(Ag(a)) then ¢ = f(d) for some Ap-definable function f : RV — RV,
where d = rv(a). By Lemma 6.1 there exists an Ag-definable function ¥ : VF — VF
lifting f. Then F(d) € rv ~(c). o

Base change: Summary

Base change from T to T 4 preserves V-minimality, effectiveness and being resolved,
if A is VF-generated; V-minimality and effectiveness, if A is RV-generated; V-
minimality, if A is I'-generated. (Lemmas 6.2, 3.39, and 3.40; the resolved case
follows using Lemma 3.49).

Though the notion of a morphism g : (X1, ¢1) — (X2, ¢2) does not depend on
d1, ¢2, recall that the RV-Jacobian of g is defined with reference to these finite-to-
one maps.

Lemma 6.3. Let T be V-minimal and effective. Let X; C RV¥i be definable and let
¢; : X — RV" be definable maps with finite fibers; let g : X1 — X» be a definable
bijection. Assume given, in addition, a definable function § : X1 — RV, such that

(1) valy§(x) = Jcbr g(x) forall x € Xy;
(2) 6(x) = Jcbry g(x) for almost all x € X (i.e., all x outside a set of dimen-
sion < n).

Then there exists a definable bijection G : X1 X, v (VF*)" — X35 X4, v (VFX)"
such that ppoG = gopy, where p; are the natural projections to the X;, and such that
forany x € X1 x¢, v (VF*)", G is differentiable at x, and rv(Jcb(G)(x)) = 8(x).
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Proof. We follow closely the proof of Proposition 6.1. As there, we may assume
T = ACVFy,, with A be an almost (VF, I')-generated substructure.

We first assume that val., ¢ (X 1) is a single point of I'”

Then X can be definably embedded into k" for some N , and it follows from
the orthogonality of k and I' that the image of X in I under any definable map is
finite. Thus ¢, X» is contained in finitely many cosets (C(a) : a € S) of (k*)"; by
partitioning X| working in T 4(4), we may assume ¢, X» is contained in a single coset
(cf. Lemma 2.3).

As in Proposition 6.1, we may assume ¢; X C k", and, indeed, that ¢1 X =
U, X = V are smooth varieties. If dim(U) = n, then the lift constructed in Pro-
position 6.1 satisfies rv(Jcb(G))(x) = Jcbry g(x) for x € X x4, v VF"; thus by
assumption (2), we have rv(Jcb(G))(x) = §(x) for almost all x. The exceptional
points have dimension < n, and may be partitioned into smooth varieties of dimension
< n. Thus we are reduced to the case dim(U) < n. We prove it by induction
on dim(U). In this case choose any lifting Go. We have an error term e(x) =
rv(Jcb(Go))(x)’lé(x). Now A(x) is almost VF, I'-generated, and so balls rv -1 )
contain definable points; thus e(x) = rv E(x) for some definable E : (X X, rv
VF*") — VF. Since U is a smooth subvariety of k" of positive codimension, some
regular 2 on k" vanishes on V, while some partial derivative (say, #1) vanishes only on
alower-dimensional subvariety. By induction, one may assume /1 vanishes nowhere.
Lift & to H; so Hj lifts h1. Compose G with a map fixing all coordinates but the
first, and multiplying the first coordinate by E(x)H (y)/Hi(y). (Here x = g_l .
Where h vanishes, this has Jacobian E(x); so the composition has RV-Jacobian §(x)
as required.

Now in general, for any y € IT'" let X((y) = {x € X| : valyoi(x) = y},
X>(y) = g(Xi1(y)). By the definitions of Jcbry and Jcbr, Jcbry(g|X2(y)) =
Jcbry (g)|X2(y) and likewise Jcbr. By the case already analyzed (for the sets
X1(y), X2(y) defined in ACVF () there exists an A(y)-definable bijection G, :
X1(¥) X0 (VF)Y'" = Xo(y) Xgpov (VF>)" with rv(Jeb(G, ) (x)) = 8(x). As
in Lemma 2.3 one can extend the G, by compactness to definable sets containing y,
cover X1 by finitely many such definable sets, and glue together to obtain a single
function G with the same property. O

Remark. Assume Idy : (X, ¢1) — (X, ¢2) has Jacobian 1 everywhere. Then it is
possible to find F that is everywhere differentiable, of Jacobian precisely equal to 1.
At the before the point where Hensel’s lemma is quoted, it is possible to multiply the
function by J(F)~! (not effecting the reduction, since J(F) € 1 + M). Then one
obtains on each such coset a function of Jacobian 1 and therefore globally.

Example. Let ¢p(x) = ¢1(x)™. A definable bijection
X X¢.v (VF)" = X xg, v (VF)"

is given by (x,y) — (x,y™). (If rv(u) = ¢(x)™, there exists a unique y with
v(y) = ¢(x) and y" = u.)
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Example 6.4. Proposition 6.1 need not remain valid over an RV-generated base set.
Let A = dcl(c), c atranscendental point of k. Let f1(y) =y, o(y) = I, L(Y, f;) :=
VF Xy, 5 ¥ = {(x,y) € RV x Y :rv(x) = y}. Then L(Y, f),L(Y, f’) are both
open balls; over any field A’ containing A, they are definably isomorphic, using a
translation. But these balls are not definably isomorphic over A.

7 Special bijections and RV-blowups

We work with a V-minimal theory T. Recall the lift L : RV[< n, -] = VF[n, -], with
px : LX — X. Our present goal is an intrinsic description in terms of RV of the
congruence relation LX ~ LY.

A will denote a (VF, I, RV)-generated substructure of a model of T. Note that T 4
is also V-minimal (Corollary 3.39) so any lemma proved for T under our assumptions
can be used for any Ty4.

The word “definable” below refers to T. The categories VF, RV[x] defined below
thus depend on T; when necessary, we will denote them VFr, etc. When T has the
form T = TY for fixed T° but varying A, we write VF,, etc.

7.1 Special bijections

Let X € VF"t! x RV” be ~-invariant. Say
v

X ={(x,y,u) € VF x VF" x RV" : (rv(x), rv(y), u) € X}.

(We allow x to be any of the n + 1 coordinates and y the others.)

Let s(y, u) be a definable function into VF with ~-invariant domain of definition
v

dom(s) = {(y, u) : (tv(y), u) € S}

and 6 () a definable function on pr, (dom(s)) into RV, such that (s(y, u), y, u) € X
and rv(s(y, u)) = 6(u) for (y, u) € dom(s). Note that 6 is uniquely defined (given
s) if it exists. Let

X1 ={(x,y,u) e X : (rv(y),u) € S',rv(x) =0(u)}, X, =X\ Xy,
X/l = {(x, y,u) € VF x dom(s) : val(x) > val60(u)}

and let X' = X/ U X,. Also define ¢; : X’ — X to be the identity on X5, and
es(x,y,u) = (x +s(y,u),y,u)
on Xi.

Definition 7.1. ¢; : X’ — X is a definable bijection, called an elementary bijec-
tion. O
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Lemma 7.2.
(1) If X is ~-invariant, so is X'. If X — VF'"t s finite-to-one, the same is true
v

of X'.

() If X; = LX;, X} = LX], then X is isomorphic to (RV>°U{1}) x S, while X,
is isomorphic to S.

(3) If the projection X — VF't! hgs finite fibers, then so does the projection
dom(s) — VF", and also the projection S — RV", (y', u) — V'

(4) es has partial derivative matrix I everywhere, hence has Jacobian 1. Thus if

F : X — Y is such that v Jcb(F) factors through px, then rv Jcb(F o e;) factors
through px'.

Proof. (1) and (4) are clear. The first isomorphism of (2) is obtained by dividing x by
0 (u), the second is evident. For (3), note thatif (y, u) € dom(s) then (s(y, u), y, u) €
X so by the assumption u € acl(y, s(y, u)). But for fixed y, {s(y, u) : u € dom(s)}
is finite, by Lemma 3.41. Thus, in fact, (y, u) € dom(s) implies u € acl(y). Hence
(y',u) € S implies u € acl(y) for any y with rv(y) = y’, so (fixing such a y)
{u: (¥, u) € §}is finite for any given y’. O

A special bijection is a composition of elementary bijections and auxiliary bijec-
tions (X1, ..., Xp,u) > (X1, ..., Xp, u, 1v(x1), ..., 1V(X,)).

An elementary bijection depends on the data s of a partial section of X — VF" x
RV™. Conversely, given s, if rv(s(y, u)) depends only on u we can define 6 (u) =
rv(s(y, u)) and obtain a special bijection. If not, we can apply an auxiliary bijection
to X € VF* x RV™, and obtain aset X’ € VF x RV " suchthatrv(x) = pr,, 1 (u)
for (x,u) € X’'. For such a set X’, the condition for existence of 6 is automatic and
we can define an elementary bijection X” — X’ based on s, and obtain a special
bijection X” — X as the composition.

The classes of auxiliary morphisms and elementary morphisms are all closed
under disjoint union with any identity morphism, and it follows that the class special
morphisms is closed under disjoint unions.

7.2 Special bijections in one variable and families of RV-valued functions

We consider here special bijections in dimension 1. An elementary bijection X' — X
in dimension 1 involves a finite set B of rv-balls, and a set of “centers’’ of these balls
(i.e., aset T containing a unique point 7 (b) of each b € B), and translates each ball so
as to be centered at 0 (while fixing the RV coordinates). We say that X’ — X blows
up the balls in B, with centers 7.

Given a special bijection ' : X’ — X, let FnRY (X; h') be the set of definable
functions X — RV of the form H (px:((h")~!(x))), where H is a definable function.
This is a finitely generated set of definable functions X — RV. There will usually
be no ambiguity in writing FnRY (X, X’ — X) instead.

Note that while a special bijection is an isomorphism in VF, an asymmetry exists:
if e : X’ — X is a special bijection, then FnRY (X, X) is usually a proper subset of
FnRV (X, X' - X).



Integration in valued fields 339

What is the effect on FnRV of passing from X’ to X”, where X” — X is a special
bijection? The auxiliary bijections have no effect. Assume rv is already a coordinate
function of X’. Consider an elementary bijection e; : X" — X'. Let B = {(x, u) €
X’ : u € dom(s)}. Then the characteristic function 1p lies in FnRY (X', 1dx/); so
15 o (W)~ lies in FnRY (X, 1’). Using this, we see that FnRV (X', e;) is generated
over FnRV (X', Idy/) by the function B — RV, (x,u) — rv(x — s(u)) (extended
by 0 outside B). Thus if "/ = h' o ey : X" — X, Fn®V (X, h”) is generated over
FnRY (X, ') by the composition of the function (x, u) — rv(x — s(u)) with (h')~L.

Conversely, if B is a finite union of open balls whose characteristic function lies
in FaRY (X, '), and if there exists a definable set 7' of representatives (one point ¢ (b)
in each ball b of B), and a function ¢ = (¢1,...,P,), ;i € FnRV(X, h'), with ¢
injective on 7', then one can find a special bijection X" — X’ with composition 4" :
X" — X, suchthat FnRV (X, h") is generated over FnRY (X, /) by y — rv(y —1(y)),
y € b € B. Namely, let dom(s) = ¢(T), and for u € dom(s) set s(u) = W) if
t € T and ¢ (t) = u. In this situation, we will say that the balls in B are blown up by
X" — X', with centers T. Let 6 (1) = rv(s(u)). Because X’ — X may already have
blown up some of the balls in B, FnRY (X, #”) is generated over FnRY (X, i’) by the
restriction of y > rv(y — #(y)) to some subball of b, possibly proper. Nevertheless,
we have the following.

Lemma 7.3. The function y — 1v(y — t(y)) on B lies in Fa®Y (X, h").
Proof. This follows from the following, more general claim. O

Claim. Let ¢ € VF, b € B be definable, with ¢ € b. Let »’ be an rv-ball with ¢ € b'.
Then the function rv(x — ¢) on b is generated by its restriction to &', rv, and the
characteristic function of b.

Proof. Letx € b\ b'. From rv(x) compute val(x). If val(x) < val(c), rv(x —¢) =
rv(c). If val(x) > val(c), rv(x — ¢) = rv(x). When val(x) = val(c), but x ¢ b/,
rv(x —c¢) = rv(x) — rv(c). Recall here that Valrv_l(y) is the nonzero part of a
k-vector space; subtraction, for distinct elements u, v, can therefore be defined by
u—v=u@w v—1). m]

Thus any special bijection can be understood as blowing up a certain finite number
of balls (in a certain sequence and with certain centers). We will say that a special
bijection X” — X’ is subordinate to a given partition of X if each ball blown up by
X" — X’ is contained in some class of the partition.

It will sometimes be more convenient to work with the sets of functions Fn®Y (X, &)
than with the special bijections /& themselves.

We observe that any finite set of definable functions X — RV is contained in
FnRV(X; h) for some X', h.

Lemma 7.4. Let X C VF x RV* be ~-invariant, and let f : X — (RVUT) be a

v

definable map. Then there exists an ~-invariant X' C VF x RV* a special bijection
v

h : X' — X, and a definable function t such that t o pxr = f o h. Moreover, if
X = UL, P; is a finite partition of X into sets whose characteristic functions factor
through p, we can find X' — X subordinate to this partition.
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Proof. Say X C VF x RV"; letw : X — VF, 7’ : X — RV™ be the projections.
Applying an auxiliary bijection, we may assume rv(r (x)) = pr,, 7'(x), i.e., rv (7 (x))
agrees with one of the coordinates of 7r/(x). We now claim that there exists a finite
F’ € RV"™, such that away from 7/~!(F’), f factors through 7’. To prove this, it
suffices to show that if p is a complete type of X and x) p is nonalgebraic (i.e., not
contained in a finite definable set), then f|p factors through 7’; this follows from
Lemma 3.20.

We can thus restrict attention to 7/~ !(F”); our special bijections will be the
identity away from this. Thus we may assume 7/ (X) is finite. Recall that (since an
auxiliary bijection has been applied) rv is constant on each fiber of 7’. In this case
there is no problem relativizing to each fiber of 7/, and then collecting them together
(Lemma 2.3), we may assume, in fact, that 7'(X) consists of a single point {u}. In
this case the partition (since it is defined via p) will automatically be respected.

The rest of the proof is similar to Lemma 4.2. We first consider functions f with
finite support F (i.e., f(x) = 0 for x ¢ F) and prove the analogue of the statement
of the lemma for them. If F = {0} x {u} then F = p~'({(0)} x {u})) so the claim
isclear. If F = {(xp,u)}, lets : {u} — VF, s(u) = xo. Applying e, returns us to
the previous case. If F = Fj x {u} has more than one point, we use induction on
the number of points. Let s(u) be the average of Fy. Apply the special bijection e;.
Then the result is a situation where rv is no longer constant on the fiber. Applying
an auxiliary bijection to make it constant again, the fibers of F — RV”*! become
smaller.

The case of the characteristic function of a finite union of balls is similar (following
Lemma 4.2).

Now consider a general function f. Having disposed of the case of characteristic
function, it suffices to treat f on each piece of any given partition. Thus we can
assume f has the form of Corollary 4.4, f(x) = H(v(x — n(x))). Translating by
the n(x) as in the previous cases, we may assume 7 (x) = 0. But then again f factors
through p and rv, so one additional auxiliary bijection suffices. O

Corollary 7.5. Let X, Y C VF" x RV*, and let f : X — Y be a definable bijection.
Then there exists a special bijectionh : X' — X, and t suchthat pyo(foh) = topy:.
It can be found subordinate to a given finite partition, factoring through px. O

We wish to obtain a symmetric version of Corollary 7.5. We will say that bijections

f, g : X — Y differ by special bijections if there exist special bijections &1, hy with

hog = fhi. We show that every definable bijection between ~-invariant objects
v

differs by special bijections from an ~-invariant bijection.
v

Lemma 7.6. Let X € VF x RV", Y C VF x RV™ be definable, ~-invariant; let
v

F : X — Y beadefinable bijection. Then there exist special bijectionshy : X' — X,
hy : Y — Y, and an ~-invariant bijection F' : X' — Y’ with F = hy F'h%'; i.e.,
v

F differs from an ~-invariant morphism by special bijections.
v
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Proof. Tt suffices to find Ay, hy such that FnRY (X,hx)=Fo FnRV(Y, hy); for then
we can let F/ = h;thx.

Let X = U/, P; be a partition as in Proposition 5.1. By Lemma 7.4, there exist
Xo, Y1 and special bijections Xy — X, Y1 — Y, such that the characteristic functions
of the sets P; (respectively, the sets F'(P;)) are in FnRV(X, Xp = X) (respectively,
FnRV(y, Y, — Y)).

By Corollary 7.5, one can find a special X; — X¢ such that FnRY X, X1 —> X)
contains F o FnRY (Y, Y{ — Y). By another application of the same, one can find a
special bijection Y, — Y} subordinate to { F'(P;)} such that

VY, Y. > V)2 F o iV (X, X; > X). (7.1)

Now Y is obtained by composing a sequence Y, = Y,, = --- — Y| of elemen-
tary bijections and auxiliary bijections. We define inductively X, — --- —> X, —
X1, such that

Fo®V(Y, Y, — Y)o F C FntV (X, X3 — X). (7.2)

Let k > 1. Y4 is obtained by blowing up a finite union of balls B of Y, with a
definable set T of representatives such that some ¢ € FnRV(Y, Y — Y) is injective
on T; then Fn®Y (Y, Y441 — Y) is generated over Fn®Y (Y, Y, — Y) by yr, where for
yebeBY(y) =rv(y —t(b)) (Lemma 7.3). By the choice of the partition {P;},
F~Y(B) is also a finite union of balls.

Now F~1(B), with center set F~1(T), can serve as data for a special bijection:
the requirement about the characteristic function of B and the injective function on T’
being in FnRV are satisfied by virtue of Lemma 7.3. We can thus define X341 — Xj so
as to blow up F~1(B) with center set F~(T). By Lemma 5.4, rv(F(x) — F(x))isa
function of rv(x —x’) (and conversely) on each of these balls, so FnRY (X, X411 — X)
is generated over FnRY (X, X}) by ¥ o F. Hence (7.2) remains valid for k + 1.

Now by (7.1), Fa®Y (X, X| — X) € FnRV(Y, ¥, — Y) o F; since the generators
match at each stage, by induction on k < m,

FRY (X, Xy — X) CFoRV(Y, Y, > Y) o F. (7.3)
By (7.2) and (7.3) for k = m, Fa®Y (X, X,, — X) =FoRV(Y, ¥V, = Y)o F. O

For the sake of possible future refinements, we note that the proof of Lemma 7.6
also shows the following.

Lemma 7.7. Let X € VF x RV", Y C VF x RV"™ be definable, ~-invariant; let
F : X — Y be a definable bijection. If a Proposition 5.1 partri;ion for F has
characteristic functions factoring through px, py, and if F is ~-invariant, then for
any special bijection h'y : X' — X, there exists a special bijerZ‘tion hy 1Y =Y
such that (h/Y)_1 Fhy is ;-invariant. O
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7.3 Several variables

We will now show in general that any definable map from an ~-invariant object to
v

RV factors through the inverse of a special bijection, and the standard map p.

Lemma 7.8. Let X C VF* x RV be ~-invariant, and let ¢ : X — (RVUT). Then

v
there exists a special bijection h : X' — X, and a definable function t such that

Topx/=¢)0h.

Proof. By induction on n. For n = 0 we can take X’ = X, since py = Idy.

Forn = 1 and X € VF, by Lemma 7.4, there exists u = u(X, ¢) € N such
that the lemma holds for some % that is a composition of u elementary and auxiliary
bijections. It is easy to verify the semicontinuity of p with respect to the definable
topology: if X; is a definable family of definable sets, so that X} is A(b)-definable,
and ©(Xp, ¢|Xp) = m, then there exists a definable set D with b € D such that if
b’ € D, then w(Xy, ¢|Xp) < m.

Assume the lemma is known for n and suppose X € VF x Y, with ¥ € VF" x
RV™. Forany b € Y, let X, = {x : (x,b) € X} C VF; so X is A(b)-definable.

Let © = maxp u(Xp, ¢|Xp). Consider first the case 4 = 0. Then ¢|Xp =
7p 0 p|Xp, for some A(b)-definable function 7, : RV” — (RV UT'). By stable
embeddedness and elimination of imaginaries in RV U T, there exists (Section 2.1) a
canonical parameter d € (RV U '), and an A-definable function 7, such that 7, (1) =
t(d, t); and d itself is definable from 75, so we can write d = §(b) for some definable
§:Y > (RVUD). Using the induction hypothesis for (Y, §) in place of (X, ¢), we
find that there exists an ';-invariant Y’ € VF" x RV*, aspecial hy : Y — Y,and a

r

definable Ty, such that Ty o pyr = 8ohy. Let X' = X xy Y/, h(x, y') = (x, hy (3/")).
An elementary bijection to Y determines one to X, where the function s does not make
use of the first coordinate; so i : X’ — X is special. In this case, the lemma is proved:
¢oh(x,y) =¢x, hy(y)) =t(@hy(Y)), p(x, ) = t(zy (oy' (¥)), p(x, ¥)).

Next suppose n > 0. Applying an auxiliary bijection, we may assume that for
some definable function (in fact, projection) p, rv(x) = p(u) for (x,y,u) € X.
For each b € Y(M) (with M any model of T 4) there exists an elementary bijection
hy : X, — Xp, such that (X, ¢|X}) < u; hy is determined by sy, Op,with 55, €
v(sp) = 6p, and (sp, 6p) € X. (The u-variables have been absorbed into b.) By
compactness, one can take s, = s(b) and 6, = 0’(b) for some definable functions
s, 0'. By the inductive hypothesis applied to (Y, 8’), as in the previous paragraph,
we can assume 0’ (y, u) = 0(u) for some definable . Applying the special bijection
with data (s, 8) now amounts to blowing up (sp, 65) uniformly over each b, and thus
reduces the value of u. m]

Question 7.9. Is Proposition 7.6 true in higher dimensions?

Corollary 7.10. Let X C VF" x RV™ be definable. Then every definable function
¢ 1 X — T factors through a definable function X — RV*.
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Proof. By Lemma 4.5 we may assume X is ~-invariant; now the corollary follows
v

from Lemma 7.8. O

(It is convenient to note this here, but it can also be proved with the methods
of Section 3; the main point is that on the generic type of ball with center c, every
function into RV U I' factors through rv(x — ¢); while on a transitive ball, every
function into RV U I' is constant.)

Consider pairs (X', f') with X', f': X’ — VF" definable, such that f’ has RV-
fibers. A bijection g : X’ — X" is said to be relatively unary (with respect to f’, f”)
if it commutes with n — 1 coordinate projections, i.e., pr; f”g = pr; f’ for all but at
most one value of i.

Given X C VF* x RV™, we view it as a pair (X, f) with f the projection to VF”".
Thus for X, Y € VF* x RV*, the notion F : X — Y is relatively unary is defined.

Note that the elementary bijections are relatively unary, as are the auxiliary bijec-
tions.

Lemma 7.11. Let X, Y C VF" x RV* and let F : X — Y be a definable bijection.
Then F can be written as the composition of relatively unary morphisms of VF[n, -].

Proof. We have X with two finite-to-one maps f, g : X — VF" (the projection

and the composition of F with the projection ¥ — VF"). We must decompose the

identity X — X into a composition of relatively unary maps (X, f) — (X, g).
Begin with the case n = 2; we are given (X, f1, f2) and (X, g1, 2)-

Claim. There exists a definable partition of X into sets X;; such that (f;, g;) : X —
VF? is finite-to-one.

Proof. Let a € X. We wish to show that for some i, j, a € acl(f(a), gj(a)).
This follows from the exchange principle for algebraic closure in VF: if a € acl(¥),
there is nothing to show. Otherwise, g;(a) ¢ acl(¥)) for some j; in this case either

a € acl(fi(a), gj(a)) or fi(a) € acl(g;(a)), and then a € acl(f2(a), g;j(a)). The
claim follows by compactness. O

Leth : X’ — X be aspecial bijection such that the characteristic functions of X;;
are in FaRY (X, X’ — X). (Lemma 7.8). Since & is composition of relatively unary
bijections, we may replace X by X’ (and f;, g; by f; oh, g oh, respectively). Thus we
may assume the characteristic function of X;; is in FnRV(X, X), ie., Xij € VFr[n].
But then it suffices to treat each X;; separately, say, X11. In this case the identity map
on X takes

X, f1, )= X, f1,8) = (X, g2,81) = (X, g, 8 — &)
= (X, g1, 81— &) — (X, g1, &),

where each step is relatively unary.
When n > 2, we move between (X, f1,..., fy) and (X, g1, ..., gn), by parti-
tioning, and on a given piece replacing each f; by some g;, one at a time. O
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7.4 RV-blowups

We now define the RV-counterparts of the special bijections, which will be called
RV-blowups. These will not be bijections; the kernel of the homomorphism L :
K+ [RV] — K,[VF] will be seen to be obtained by formally inverting RV-blowups.
Let RV;OO = {x € RV : val(x) > O0U {oo}} € RV. In the RV[< 1]-presentation,
RVZY = [RV>°]; + [1]o (cf. Section 3.8).

Definition 7.12.

(1) LetY = (Y, f) € ObRV[n, -] be such that f,,(y) € acl(f1(y), ..., fu—1(¥),
and f,,(y) # 00. Let Y = Y x RVZY. For (y,1) € Y/, define f" = (f{, ..., f,)
by f/(y,t) = fi(y) fori < n, fi(y,t) = tfp(y). ThenY = (Y, f') is an
elementary blowup of Y. It comes with the projection map Y’ — Y.

(2) Let X = (X, g) € ObRVo[n, ], X = X'UX", g’ = g|X’, g = g|X”, and let
¢:Y — (X', g') be an RVj-isomorphism. Then the RV-blowup i,p is defined
tobe Y + (X", g = (Y'UX", f/Ug"”). Tt comes with b : Y/ UX" — X,
defined to be the identity on X”, and the projection on Y’. X is called the blowup
locus of b : ip - X.

An iterated RV-blowup is obtained by finitely many iterations of RV-blowups.

Since blowups in the sense of algebraic geometry will not occur in this paper, we
will say “blowup” for RV-blowup.

Remark 7.13. In the definition of an elementary blowup, dimry (Y) < n. Forsuch Y,
¢:Y — (X, g')is an RV [< n, -]-isomorphism iff it is an RV_,,y-isomorphism
(Definition 5.21).

Lemma 7.14.

(1) Let Y’ be an elementary blowup of Y. Y is RVyo[n, -1-isomorphic to Y' =
Y", f"), with Y" = {(y,1) € Y x RV : valy(t) > fu(M}, (. 1) =
15wy fu=1(0), D).

(2) An elementary blowup Y' of Y is RV [n, -]-isomorphic to (Y x RV, ) for
any f'isogenousto (f1, ..., fn,1).

(3) Up to isomorphism, the blowup depends only on the blowup locus. In other words,
if X, X', g, g are as in Definition 7.12, and ¢; : Y; — (X', ¢g") (i = 1,2) are
isomorphisms, then )FZ(m, )~(¢2 are X-isomorphic in RVye[n, -].

Proof.

(1) The isomorphism is given by (y, t) +— (y, tf,(¥)).-

(2) The identity map on ¥ x RV is an RV[n, -] isomorphism.

(3) Let Yo = ¢2~'¢1, and define ¥y : ¥; x RVZY — ¥, x RVZY by ¥ (y,1) =
(Yo (»), t). The sum of the values of the n coordinates of ?i isthen (3", _, valw fi)+
(valyy (¢) + valyy f;) in both cases. Since by assumption ¥ : Y1 — Y3 is an
RV,o1-isomorphism, it preserves ) ;_, valy f; and so 11 too is an RV_ -
isomorphism; thus Jebry (/1) € k¥, i.e., let Y] — k* be a definable map such



Integration in valued fields 345

that 0 = Jcbry (1) almost everywhere. Define ¢ : Y| X RVgo0 — Yy x RV;O0 by
Y(y,t) = (Yo(y), t/0(y)). Then one computes immediately that Jcbry () = 1,
so ¥ is an RV [n, -]-isomorphism, and hence so is ¥ U Idyr : Xy, = Xp,. O

Here is a coordinate-free description of RV-blowups; we will not really use it in
the subsequent development.

Lemma 7.15.

(1) Let Y = (Y, g) € ObRV[n, -1, with dim(g(Y)) < n; let f : ¥ — RV"~!
be isogenous to g. Let h : Y — RV be definable, with h(y) € acl(g(y)) for
y €Y, andwith) (g) = > .(f) +valy(h). Let Y =Y x RV;OO, and f'(y,t) =
(f(),th(y)). Then Y = (Y', f') with the projection map to Y is a blowup.

(2) Let Y' — Y be a blowup with blowup locus Y. Then there exist f, h such that
withY' asin (3), Y',Y' are isomorphic over Y.

Proof.

(1) Since dimry(g(Y)) < n, Idy : (¥, (f, h)) — (Y, g) is an RVg-isomorphism.
Use this as ¢ in the definition of blowup.

(2) With notation as in Definition 7.12, let h = g, o ¢_1, f = (g1,.--,8n-1)
oL O

Definition 7.16. For C = RV[< n, -] or € = RV y[< n, -], let Lp[< n] be the set of
pairs (X1, X»3) € Ob~€ sucl}vthat there exist iterated blowups b; : X; — X; and an
C-isomorphism F : X| — Xo.

When 7 is clear from the context, we will just write Lgp.

Definition 7.17. Let 1 denote the one-element object of RV[0]. Given a definable
set X € RV" let X,, denote (X, Idx) € RV[n], and [X], the class in K (RV[n]).
Write [1]; for [{1}]; (where {1} is the singleton set of the identity element of k).

Lemma 7.18. Let C = RV[< n, -] or € = RVq[< 1, -].

(1) Let f : X| — Xy be a C-isomorphism, and let by : )?1 — X be a blowup. Then
there exists a blowup b; : 5{2 — Xy and a C-isomorphism F il — )?2 with
b F = fb.

Q) Ifb - X > X is a blowup, then so are bUId : XUZ — XUZ and (b x 1d) :
XxZ—>XxZ.

(3) Let b; - )~(¢i — Xbeablowup (i = 1,2). Then there exist blowups blf 1 —> th’
and an isomorphism F : Ly — Zy such that byby F = b b;.

(4) Same as (1)—(3) for iterated blowups.

(5) Isp is an equivalence relation. It induces a semiring congruence on Ky RV[x, -],
respectively, K+ RV yo)[*, -].

(6) As a semiring congruence on K RV[x,-], Iy, is generated by ([1]i,
[RV=0]; + 1o).
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Proof.

(1) This reduces to the case of elementary blowups. If € = RVq[n, -], then the
composition f o bj is already a blowup. If € = RV[< n, -], it is also clear using
Lemma 7.14(2).

(2) This follows from the definition of blowup.

(3) If by is the identity, let b’1 = by, b’2 = Id, F = Id; similarly if b, is the identity.
If X = X’ U X” and the statement is true above X’ and above X", then by glueing it
is true also above X. We thus reduce to the case that by, by both are blowups with
blowup locus equal to X. But then by Lemma 7.14(3), there exists an isomorphism
F: X4 — Xy, over X. Let by = b, =1d.

(4) For (1)—(2) the 1nduct10n is immediate. For (3), write k-blowup as shorthand
for “an iteration of k blowups.”” We show by induction on k{, k" a more precise form.

Claim. If X; — X is a k;-blowup, and X’ — X is a k’-blowup, then there exists an
k'-blowup Z — Xj ak;-blowupZ’ — X, and anRV[n, -]-isomorphism Z| — Z/
over X.

If ky = k' = 1, this is (3). Thus say ¥’ > 1. The map X’ — X is a composition
X' — X, — X, where X; — X is a k¥’ — 1-blowup and X’ — Xj is a blowup.
By induction there is a k' — 1-blowup Z; — X and a k;-blowup Z; — X; and an
RV ,i[n, -]-isomorphism Z; — Z; over X.

By induction again there is a blowup and Z), — Z, a ki-blowup Z' — X' an
RVyoi[n, -]-isomorphism Z — Z; over Xp. By (1) there exists a blowup Z/l —
Z; and an RV [n, -]-isomorphism Z| — Z), making the Z, Z,, Z!, Z,-square
commute. Thus Z; — X is a k’-blowup, Z’ — X' is a k1-blowup, and we have a
composed isomorphism Z| — Z/, — Z' over X.

(5) If (X1, X2), (X2, X3) € Iqp, there are iterated blowups X| — X, X, — X3
and an isomorphism X| — X’ ; and also XJ — X3, X; — X3 and XJ — Xj. Using
(3) for iterated blowups, there exist iterated blowups 5(\2/ - X/, XZ” — X/, and

an 1som0rph1sm X > X, By (1), for 1terated blowups there are iterated blowups
X1 — Xl,X3 — X3 and isomorphisms Xl — Xz Xz — Xz, with the natural
diagrams commuting. Composing, we obtain X1 — X3, showing that (X1, X3) € Igp.
Hence I, is an equivalence relation.

Isomorphic objects are Is,-equivalent, so an equivalence relation on the semiring
K. Cis induced. If (X1, X2) € Igp, then by (2), (X1UZ, X2UZ) € I, and
(X1xZ, X2xZ) € lgp. Itfollows that Is induces a congruence on the semiring Ky C.

(6) We can blow up 17 to RV + 10, so ([111, [RV>?]; + 1¢) € Iyp. Conversely,
under the conditions of Definition 7.12, let Y~ = [(Y, f1, ..., fu—1)]; then [Y] =
[(Y, f1,..., fu—1,0] =[Y"] x [1]; by Lemma 7.14, and we have

[Xy]= [Ylio1 + [Ylo—1 x [RVZ]; 4+ [X"] =1, (Y] x [1]1 4+ [X"] = [X]
modulo the congruence generated by ([1]1, [RV>0]; + 1g). O

We now relate special bijections to blowing ups. Given X = (X, f), X' =
(X', f') € RV[n, -], say, X, X’ are strongly isomorphic if there exists a bijection
¢ : X — X' with f' = ¢f. Strong isomorphisms are always in RV [n, -].
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Up to strong isomorphism, an elementary blowup of (¥, f) canbe putin adifferent
form: (Y) = (Y, f"), Y" = {(z,y) : y € ¥, valw(z) > valy fu(D)}, fi(z,y) =
fi(y) fori < n, fu(z,y) = z. The strong isomorphism Y” — Y’ is given by
(z,¥) = (v, z/fu(y)). This matches precisely the definition of special bijection, and
makes evident the following lemma.

Lemma 7.19. Let C = RV [n, -] or RVyg[< 1, -].

(1) X, Y are strongly isomorphic over RV" iff LX, LY are isomorphic over the
projection to VF",

(2) Let X, X' € RV[< n, -], and let G : LX' — 1LX be an auxiliary special bijection.
Then X' is isomorphic to X over RV".

(3) Let X, X' € RV[< n, -], and let G : LX' — LLX be an elementary bijection.
Then X' is strongly isomorphic to a blowup of X.

4) Let X, X' € RV[< n, -], and let G : LX' — LLX be a special bijection. Then X'
is strongly isomorphic to an iterated blowup of X.

(5) Assume T is effective. If Y — X is an RV-blowup, there exists Y' strongly
isomorphic to Y over X and an elementary bijection ¢ : LY — LY lying over
Y - Y.

Proof.

(1) This is clear using Lemma 3.52.

(2) This is a special case of (1).

(3) This is clear from the definitions.

(4) This is clear from (1)-(3).

(5) It suffices to consider elementary blowups; we use the notation in the definition
there. Thus f,(x) € acl(f1(x), ..., fa—1(x)) for x € ¢(Y). By effectiveness

and Lemma 6.2, there exists a definable function s(x, y1, ..., y,—1) such that
ifrv(y;)) = fi(x)fori =1,...,n — 1, thenrvs(x,y) = f,(x). This s is the
additional data needed for an elementary bijection. O

Lemma 7.20. Let X = (X, /), X' = (X', f') e RV[< n,-],andleth : X — W C
RV* I/ : X' — W be definable maps. Let X. = h™'(c), X. = (X, f|1X.) and
similarly X... If (X¢, X.) € I(RV,[n, -1); then (X, X') € Ip.

Proof. Lemma 2.3 applies to RV, y-isomorphisms, and hence using Remark 7.13
also to blowups. It also applies to RV[< n, -]-isomorphisms; hence to Is,-equival-
ence. O

Lemma 7.21. If (X, Y) € Iy then LX ~ LY.

Proof. Clear, since L[1]; is the unit open ball around 1, IL([RV>0]1 is the punctured
unit open ball around 0, and L1¢ = {0}. ]
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7.5 The kernel of L.

Definition 7.22. VFR[k, [, -] is the set of pairs X = (X, f), with X C VF* x RV*,
f:X — RVéo, such that f factors through the projection prgy(X) of X to the
RV-coordinates. Igp is the equivalence relation on VFR[k, [, -]:

(X,Y) ely <= (X4, Y,) €Ip(Ty) foreacha e VF*,
K VFR is the set of equivalence classes.

By the usual compactness argument, if (X, ¥) € I, then there are uniform for-
mulas demonstrating this. The relative versions of Lemmas 7.14 and 7.18 follow.

IfU = (U, f) € VFR[k, [, -], and for u € U we are uniformly given V,, =
(Vi, gu) € VER[K', I, -], we can defineasum ), ., Vi, € VER[k + &', [ +1', -] it
is the set U, ey Vy, with the function (u, v) — (f (u), gu(v)). When necessary, we
denote this operation Z(k’l;k/’l/) . The special case k = [ = 0 is understood as the
default case.

By Proposition 7.6, the inverse of L : RV[1, -] — VF[1, -] induces an isomor-
phism 111 : Ky VF[1, -] - K{ RV[1, -]/I:

I([X]) =[Y]/ly < [LY]=[X].

Let J be a finite set of k elements. For j € J,let 7/ : VFK x RV* — VFE/ i} x
RV* be the projection forgetting the jth VF coordinate. We will write VF*, VF<~1
for VE/, VF/ ~U} respectively, when the identity of the indices is not important.

Let X = (X, f) € VFR[k, [, -]. By assumption, f factors through /. We view
the image (X, f) as an element of VFR[k — 1, [, -]. Note that each fiber of 7/ is
in VF[1, -].

Relativizing 1 11 to 7/, we obtain a map

1) = I{,: VFRIk, 1,1 — K4 VFR[k — 1,1 + 1, /I

Lemma 7.23. Let X = (X, f), X' = (X', f') € VFR[k, 1, .

(1) I/ commutes with maps into RV: if h : X — W C RV* is definable, X, =
h=Y(e), then I(X) = 3 .o I/ (X).

) If (X1, [X']) € Isp then (17 (X), I/ (X)) € Igp.

(3) 1/ induces a map K VFR[k, I, -1/lsy — Ky VFR[k — 1,1+ 1, -]/I5p.

Proof.

(1) This reduces to the case of [ 11, where it is an immediate consequence of the
uniqueness, and the fact that I commutes with maps into RV in the same sense.

(2) All equivalences here are relative to the k — 1 coordinates of VF other than j,
so we may assume k = 1. Fora € VF, ([X.], [X)]) € Isp(Ts). By stable
embeddedness of RV, there exists @ = a(a) € RV* such that X, X! are T,-
definable and ([X],, [X]a) € Isp(Ty). Fibering over the map @ we may assume
by (1) and Lemma 7.20 that « is constant; so for some W € VF[1],Y,Y’ €
RV[l,-], wehave X = W x Y, X' = W x Y/, and ([Y],[Y']) € Iy. Then
'X)=1I'(W)xY,I'/(X')=1/(W) x Y/, and the conclusion is clear.
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(3) This follows from (2). m]

Lemma7.24. Let X = (X, f),X C VF/ xRV® f: X - RVL Ifj # j € J,
then I'17 = 1717 : Ky VFR[k, 1, ]/Isp = K4 VFR[k — 2,1+ 2, -1/I5p.

Proof. We may assume S = {1,2}, j = 1, j/ = 2, since all is relative to VFS\t/-/'},
By Lemma 7.23(1) it suffices to prove the statement for each fiber of a given definable
map into RV.

Hence we may assume X C VF? and f is constant; and by Lemma 5.10, we can
assume X is a basic 2-cell:

X={x,y):xeX, vy —Gx) =a1}, X;i=r1v (8 +c1.

The case where G is constant is easy since then X is a finite union of rectangles.
Otherwise, G is invertible, and by the niceness of G we can also write

X={x.»:yeXovax -G 'O =8} Xa=rv"'(&)+c
We immediately compute
LI (X) = (81, 1), I h(X) = (a2, 62).

Clearly, [(1, a1)]2 = [(a2, 82)]2. m]

Proposition 7.25. Let X,Y € RV[< n,-]l. If LX, LY are isomorphic, then
(X1, [YD) € Isp.

Proof. Define I = Iy...1, : VF[n,-] = VFR[n,0,-] — VFR[O,n,:] =
RV[<n,]. Let V € VF[n, -].
Claim 1. If o € Sym(n) then I = I5(1) ... Ion).

Proof. We may assume o just permutes two adjacent coordinates, say, 2, 3 out of 1,
2,3,4. Then I = I1 b 1314 = 1131214 by Lemma 7.24. O

Claim2. When F : V — F(V) is a relatively unary bijection, we have I(V) =
I(F(V)).

Proof. By Claim 1 we may assume F is relatively unary with respect to pr”. Thus
F(V,) = F(V),,where V,, F(V), are the pr"-fibers. By the definition of I, we have
1} (Vo) = I} (F(V)a) € RV[1, I(T,); but by the definition of 1", I,(V), = I (V).
Thus I"(V) = I"(F(V)) and thus I (V) = I (F(V)). o

Claim 3. When F : V — F(V) is any definable bijection, I (V) = I (F(V)).
Proof. The proof is immediate from Claim 2 and Lemma 7.11. O

Now turning to the statement of the proposition, assume LX, LY are isomorphic.
We compute inductively that L(X) = [X]. By Claim 3, [X] = I(LX) = I(LY)
=[Y]. O
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Notation 7.26. Let L* : K, (VF) — K (RV[x])/Isp be the inverse map to LL.

Remark 7.27. When T is rv-effective, one can restate the conclusion of Proposi-
tion 7.25 as follows: if X, Y € VF[n, -] are ~-invariantand F : X — Y is a definable
v

bijection, then there exist special bijections X’ — X and Y’ — Y and an ~-invariant-
v

definable bijection G : X' — Y’. (This follows from Propositions 7.25 and 6.1 and
Lemmas 7.18 and 7.19.) The effectiveness hypothesis is actually unnecessary here, as
will be seen in the proof of Proposition 8.26. Perhaps Question 7.9 can be answered
simply by tracing the connection between F and G through the proof.

8 Definable sets over VF and RV: The main theorems

In stating the theorems, we restrict attention to VF[n], i.e., to definable subsets of
varieties, though the proof was given more generally for VF[n, -] (definable subsets
of VF' x RV*).

8.1 Definable subsets of varieties

Let T be V-minimal. We will look at the category of definable subsets of varieties,
and definable maps between them. The results will be stated for VF[n]; analogous
statements for VF[n, -] are true with the same proofs.

We define three variants of the sets of objects. VF’[n] is the category of <
n-dimensional definable sets over VF, i.e., of definable subsets of n-dimensional
varieties. Let VF[n] be the category of definable subsets X € VF" x RV* such that
the projection X — VF" has finite fibers. VF'[n] is the category of definable subsets
X of V x RV*, where V ranges over all VF(A)-definable sets of dimensionn, m € N,
such that the projection X — V is finite-to-one. VF, VF', VF” are the unions over
all n. In all cases, the morphisms Mor(X, Y) are the definable functions X — Y.

Lemma 8.1. The natural inclusion of VE[n] in VF'[n] is an equivalence. If T is
effective, so is the inclusion of VF'[n] in VF'[n].

Proof. We will omit the index < n. The inclusion is fully faithful by definition, and
we have to show that it hits every VF-isomorphism type; in other words, that any
definable X C (V x RV™) is definably isomorphic to some X’ C VF" x RV
for some / (with n = dim(V)). Definable isomorphisms can be glued on pieces,
so we may assume V is affine, and admits a finite-to-one map # : V — VF". By
Lemma 3.9, each fiber 2! (a) is A (a)-definably isomorphic to some F(a) C RV!. By
compactness, F' can be chosen uniformly definable, F'(a) = {y € RV!: (a,y) € F})
for some definable F € VF" x RV!: and there exists a definable isomorphism
B:V — F,over VF". Leta(v, 1) = (B(v), 1), X' = a(X).

Now assume T is effective. Let X € ObVF; X C V x RV", V C VF", such
that the projection X — V has finite fibers. Then by effectivity, for any v € V (over
any extension field), if (v, cy,...,cy,) € X then each ¢;, viewed as a ball, has a
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point defined over A(v). Hence the partial map V x VF" — X, (v, x1, ..., Xp) >
(v, 1v(x1), ..., 1v(x)) has an A-definable section; the image of this section is a
subset S of V x VF", definably isomorphic to X; and the Zariski closure V' of S in
V x VF™ has dimension < dim(V). O

The following definition and proposition apply both to the category of definable
sets, and to the definable sets with volume forms.

Definition 8.2. X, Y are effectively isomorphic if

for any effective A, X, Y are definably isomorphic in T4. If Kff (VF) is the
semiring of effective isomorphic classes of definable sets. K (VF) is the corresponding
ring; similarly K iff (VF[n]), etc.

Over an effective base, in particular, if T is effective over any field-generated
base, effectively isomorphic is the same as isomorphic. But Example 4.7 shows that
this is not so in general.

Proposition 8.3. Let T be V-minimal, or a finitely generated extension of a V-
minimal theory. The following conditions are equivalent (let X, Y € VF[n]):

(D) [L*X] = [L*Y]in K4+ (RV[< n])/Ip[< nl.

(2) There exists a definable family F of definable bijections X — Y such that for any
effective structure A, F(A) # (.

(3) X, Y are effectively isomorphic.

(4) X, Y are definably isomorphic over any A such that VF*(A) — RV (A) is sur-
Jective.

(5) For some finite Ag € RV((9)), X, Y are definably isomorphic over any A such
that Ag C rv(VF*(A)).

Proof.

(1) implies (5): By Proposition 6.1 (Proposition 6.3 in the measured case), the
given isomorphism [LL*X] — [L*Y] lifts to an isomorphism LL*X — LL*Y;
since Ty © ACVFy, this is also a T4 isomorphism; it can be composed with the
isomorphisms X — LL*X,Y — LL*Y.

(2) implies (3), (5) implies (4) implies (3), trivially.

(3) implies (1)—(2): Let E.f be as in Proposition 3.51. By (3), X, Y are Ecg-
isomorphic. By Proposition 7.25, [L*X] = [L*Y] in K, (RVE,[*])/I;p. But
RV (Ecft), T'(Eets) € dcl(@), so every Eeg-definable relation on RV is definable;
i.e.,, RV, RV are the same structure. Thus (1) holds.

Now by assumption, there exists an Eest-definable bijection ' : X — Y. f'is
an E.g-definable element of a definable family JF of definable bijections X — Y.
Since this family has an E.g-point, and E.¢ embeds into any effective B, it has a B
point, too. Thus (3) implies (2). ]
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8.2 Invariants of all definable maps
Let [ X] denote the class of X in K ff (VFE[n)).

Proposition 8.4. Let T be V-minimal. There exists a canonical isomorphism of
Grothendieck semigroups

yg : KST(VF[n]) > K4 (RV[< n])/Ip[< n]
satisfying
ﬁ[}(] = W/Ipl< nl <= [X]=[LW]e KT (VFn).

Proof. Recall Definition 4.8. Given X = (X, f) € ObRVJ[k] we have LX €
Ob VF[k] € ObVF[n]. If X, X’ are isomorphic,then by Proposition 6.1, LX, LX’
are effectively isomorphic. Direct sums are clearly respected, so we have a semi-
group homomorphism L : K4 (RV[< n]) - K ff (VF[n]). It is surjective by Pro-
position 4.5. By Proposition 8.3, the kernel is precisely Isp[< n]. Inverting, we
obtain 1. O

Definition 8.5. Let K4 VF[n]/(dim < n) be the Grothendieck ring of the category of
definable subsets of n-dimensional varieties, and essential bijections between them.
Let Isp’[n] be the congruence on RV [n] generated by pairs (X, X x RV>0) (where
X C RV* is definable, of dimension < n).

Corollary 8.6. 1 induces an isomorphism
K" (VF[n])/(dim < n) — RV[n]/Iy'[n]. O

Corollary 8.7. Let A, B € RV[< n]. Letn' > n, and let Ay, By be their images in
RV[< N]. If (AN, Bn) € Ip[< N1, then (A, B) € Iyp[< n].

Proof. By Proposition 8.4, (A, B) € Isy[< n]iff LA, LB are definably isomorphic;
this latter condition does not depend on 7. O

Putting Proposition 8.4 together for all n, we obtain the following.

Theorem 8.8. Let T be V-minimal. There exists a canonical isomorphism of filtered
semirings

y§ . K4 (VF) = K (RV[*])/Isp.

Let [X] denote the class of X in K+ (VF). Then

%[X] = IK — [X]=[LW]e KST(VF). O
sp
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On the other hand, using the Grothendieck group isomorphisms of Proposition 8.4
and passing to the limit, we have the following.

Corollary 8.9. Let T be V-minimal. The isomorphisms of Proposition 8.4 induce an
isomorphism of Grothendieck groups:

K
/ : KM (VF[n]) — K(RV[n]).
The isomorphism 1 of Theorem 8.8 induces an injective ring homomorphism
K
/ : KT (VF) - KRV)[J 7],

where J = {1}; — [RV>?]; € K(RV).

Proof. We may work over an effective base. With subtraction allowed, the generating
relation of Isp can be read as [{1}]o = {1} — [RV>9]; := J, so that the groupifi-
cation of K (RV[< n])/Isp[< n] is isomorphic to K (RV[n]), via the embedding
of K4 (RV[n]) as a direct factor in K4 (RV[< n]). Thus the groupification of the
homomorphism of Theorem 8.8 is a homomorphism

K
/ : K(VF) — lingO K RV[n]),

where the direct limit system maps are given by [X]ys — ([Xls+1 — ([X]a %
(RV>%)) = [X4]J. This direct limit embeds into K (RV)[J~!] by mapping
X e KRV[n])to XJ". O

8.3 Definable volume forms: VF

We will now define the category uVF[n] of “n-dimensional T 4-definable sets with
definable volume forms, up to RV-equivalence” and the same up to I'-equivalence.
We will represent the forms as functions to RV, that transform in the way volume
forms do.

By way of motivation, in a local field with an absolute value, a top differential
form w induces a measure |dw|. For a regular isomorphism f : V — V', we
have w = hf*w’ for a unique &, and f is measure preserving between (V, |w|) and
(V') |o)) iff |h| = 1.

We do not work with an absolute value into the reals, but instead define the
analogue using the map rv or, a coarser version, the map val into I'. When I' = Z,
the latter is the usual practice in Denef-style motivic integration. Using rv leaves room
for considering an absolute value on the residue field, and iterating the integration
functorially when places are composed, for instance, C((x))((y)) = C((x)) — C.
This functoriality will be described in a future work.

In the definition below, the words “almost every y € Y will mean for all y
outside a set of VF dimension < dimyg(Y).
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Definition 8.10. Ob 1 VF[n, -] consists of pairs (Y, w), where Y is a definable subset
of VF" x RV*, and w : Y — RV is a definable map. A morphism (Y, w) — (Y’, @)
is a definable essential bijection F such that for almost every y € ¥,

w(y) = &' (F(y)) - rv(Jcb F(y)).

(We will say “F : (Y, w) — (Y', @') is measure preserving.””)

pur VFE[n, -]is the category of pairs (¥, w) with w : ¥ — T a definable function A
morphism (Y, w) — (Y’, ') is a definable essential bijection F : ¥ — Y’ such that
for almostevery y € Y,

w(y) = o' (F(y)) + val(Jeb F(y)).

(“F : (Y,w) — (Y, @) is I'-measure preserving.”)
wVFE[n], ur VE[n] are the full subcategories of uVF(n, -], ur VF[n, -] (respec-
tively) whose objects admit a finite-to-one map to VF".

In this definition, let #;(y), ..., t,(y) be the VF-coordinates of y € Y. One can
think of the form as w(y)dt; - - - - - dt,.

Note that VF,, of Definition 5.19 is isomorphic to the full subcategory of uVF
whose objects are pairs (Y, 1).

Remark 8.11. When T is V-minimal and effective, the data w of an object (¥, ®) of
WVFE[n] can be written as rv o® for some ® : Y — VF. (Write w = @ orvoF for
some F', and use Proposition 6.1 to lift @ to some G, so that w = rv oG o F.) Itis thus
possible to view w as the RV-image (respectively, I'-image) of a definable volume
formon Y. One could equivalently take w to be a definable section of A"TY /(1+M),
where T'Y is the (appropriately defined) tangent bundle, A" the nth exterior power
with n = dim(Y).

For VFr the category we take is slightly more flexible than taking varieties with
absolute values of volume forms, even if T is V-minimal and effective, in that ex-
pressions such as [ |/x|dx are allowed.

In either of these categories, one could restrict the objects to bounded ones.

Definition 8.12. Let ;1 VFyqq[n] be the full subcategory of uVF[n] whose objects
are bounded definable sets, with bounded definable forms w. Similarly, one de-
fines ,bLVFr;bdd.

Here bounded means that there is a lower bound on the valuation of any coordinate
of any element of the set. A similar definition applies in RV and uRV.

Note that if an object of . VF[n] is u VF[n]-isomorphic to an object of uVFpqq[n],
it must lie in wVFpgq[n].
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8.4 Definable volume forms: RV

We will define a category uRV([n] of definable subsets of (RV)™, with additional
data that can be viewed as a volume form. Unlike wVF[n], in uRV[n] subsets of
dimension < n are not ignored: a point of RV”" corresponds to an open polydisc of
VF", with nonzero n-dimensional volume.

In particular, the Jacobian of a morphism needs to be defined at every point, not
just away from a lower-dimensional set. However, in accord with Lemma 6.3, it may
be modified by k*-multiplication on a lower-dimensional set.

Definition 8.13. The objects of uRV[n] are definable triples (X, f, w), X € RV*T™",
f : X — RV" finite-to-one, and w : X — RV.

We define a multiplication uRV[n] x uRV[n'] - uRV[n + n'] by (X, f, ) x
X, fl,o)=XxX,fx f,o-o). Here w - o' (x, x") = o (x) (x).

Given X = (X, f, w), we define an object LX of VF[r]; namely, (LX, L f, Lw),
where LX = X x ¢ (VF)', Lf(a,b) = f(a,1v(d)), Lo(a,b) = w(a,rv(b)).
(Sometimes we will write f, w for L f, Lw.)

A morphisma : X = (X, f,w) - X' = (X', f', @) is a definable bijection
o : X — X’ such that

w(y) = o' (a(y)) - rv(Jebry (@) (y)) for almost all y,

where “almost all”” means “away from a set ¥ with dimry (f(Y)) < n”’; and

n n
valyw(y) + Z valy f; (v) = valyyo' (a(y)) + Z valy f{(ey) forall y.
i=1 i=1

The objects of urRV[n] are triples (X, f, w), with f : X - RV", w: X — T.
A morphism « : (X, f, w) = (X', f/, @') is a definable bijection « : X — X’ such
that valyw(y) + Y i valy fi(y) = valye'(a(y)) + Y_j—; valy f (ay) for all y.
Disjoint sums and products are defined as for uRV.

urRES[#] is the full subcategory of urRV[n] with objects (X, f, ®), such that
valy (X) is finite. In this case, w takes finitely many values, too.

K frff uRV[n] is the Grothendieck semigroup of uRV[n] with respect to effective
isomorphism. Kiff uRV is the direct sum @, K iﬁc uRV([n]; it clearly inherits a
semiring structure from Cartesian multplication, (X, f, w) x (X', f/,@') = (X x
X/, (f’ f/)v w - CL)/).

The morphisms of urRV[r] are called ['-measure preserving.

The category RV e[, -] of Definition 5.21 is isomorphic to the full subcategory
whose objects have w = 1.

Remark. The semiring K iff RV, is naturally a subsemiring of K ff URV. The latter
is obtained by inverting [{a}]; for a € RV and taking the zeroth graded component.
This process is needed in order to identify integrals of functions in n variables with
volumes in n + 1 variables. Thus as semirings they are closely related. But if the
dimension grading is taken into account, the subsemiring of RV-volumes contains
finer information connected to integrability of forms.
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8.5 The kernel of L in the measured case

The description of the kernel of L on the semigroups of definable sets with volume
forms is essentially the same as for definable sets. We will now run through the
proof, indicating the modficiations. The principal change is the introduction of a
category with fewer morphisms, defined not only with reference to RV but also to
VF. For effective bases, the category is identical to uRV, so it will be invisible in the
statements of the main theorems; but during the induction in the proof, bases will not
in general be effective and the mixed category introduced here has better properties.

Both the introduction of the various intermediate categories and the repetition of
the proof would be unnecessary if we had a positive answer to Question 7.9. In this
case the proof of Lemma 8.23 would immediately lift to higher dimensions. Indeed,
the characterization of the kernel of the map L on Grothendieck groups would be
uniformized not only for the categories we consider, but for a range of categories
carrying more structure.

The integer n will be fixed in this subsection.

Lemma 8.14. Ler (X, w) € Ob uVF[n, -], Y € Ob VF[n, |, andlet F : Y — X bea
definable bijection.

(1) There exists  : Y — RV such that F : (Y, ) — (X, w) is measure preserving.

(2) V is essentially unique in the sense that if ' meets the same condition, then \, '
are equal away from a subset of X of lower dimension.

(3) Dually, given F, X, Y, , there exists an essentially unique w such that F :
Y, ¥) — (X, w) is measure preserving.

(4) Lemma 7.11 applies to uVF[n, -] and to wVF[n].

Proof.

(1)-(2) Lety(y) = w(x(y))-rv(Jcbry (o) (v)). By the definition of ; VF this works,
and is the only choice “almost everywhere.”
(3) This follows from the case of F~!.
(4) Now let X, Y € ObuVF[n] and let F € Mor,vr,(X,Y). We have
X = X,wx),Y = (Y,wy) for some X,Y € ObVF[n] and wy : X —
RV,wy : Y — RV. By Lemma 7.11 there exist X = X,..., X, =
Y € ObVF[n] and essentially unary F; : X; — X;41 with F =
Fy,_10---0 Fj. Let w1 = wy, and inductively let w;4+ be such that F; €
Mor ,vE) ((Xi, @i), (Xi+1, wi+1)). Then F € Mor,ve1((X, ), (Y, @,)).
By uniqueness it follows that wy, w, are essentially equal. O

Definition 8.15. Given X, Y € Ob uRV[n, -] call a definable bijection z : X — Y
liftable if there exists F' € Mor,vr[,,  (ILX, LY) with py F = hpx.

Let € = w;RV[n, -] be the subcategory of uRV{n, -] consisting of all objects and
liftable morphisms.

By Proposition 5.22, liftable morphisms must preserve the volume forms, so C is
a subcategory of uRV[n, -].
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Over an effective base, € = uRV|[n, -] (Lemma 6.3), and the condition of exis-
tence of s in Definition 8.16(1) below is equivalent to f,,(y) € acl(f1(¥), ..., fa—1(¥)).

Definition 8.16.

() LetY = (¥, f,w) € ObuRV[n, -] be such that there exists s : Y X7 . 7,
V'™l — VF with rv(s(y, u1, ..., un—1)) = fu(y). Let Y = ¥ x RV>O.
For (y,t) € Y/, define /" = (f{,..., f)) by fiy,t) = fi(y) fori < n,
. ) =tf(y). Let o' (y, 1) = o(y). Then Y = (Y', f’, o) is an elementary
blowup of Y. It comes with the projection map Y — Y.

) LetX = (X, g,w) € ObuRV[n,-], X = X'UX", g = g|X/, ¢’ = g|X”,
o = X, o = wX”, and let ¢ Y — X', ¢, a)) be a /LZRV[n -1-
isomorphism. Then the RV-blowup X¢ is defined to be Y + (X", g, &) =
Y'UX", f'Ug", & Uw"). It comes with b : Y/ UX" — X, deﬁned to be
the identity on X”, and the projection on Y’. X’ is called the blowup locus of
b:Xy— X

An iterated RV-blowup is obtained by finitely many iterations of RV-blowups.

Definition 8.17. Let Ié‘p[n] lle the set of pairs (X1, X3) € Ob uRV|[n, -] sucih that tllere
exist iterated blowups b; : X; — X; and a ;RV[n, -]-isomorphism F : X; — Xj.

When n is fixed, we will simply write I . On the other hand, we will need to
make explicit the dependence on the theory; we write I4; p(A) for the congruence I
of the theory T4.

When X = (X, f,w) € ObuRV][n, ], h : X — W is a definable map, and
c e W,define X, = (h~(c), fIh~"(c), wlh™(c)).

Let X1, X2 € ObuRV[n, -], and let f; : X; — Y be a definable map, with
Y € RV*. In this situation the existence of uRVI[n, -]({a))-isomorphisms be-
tween each pair of fibers X(a), X2(a) (@ € Y) does not necessarily imply that
X1 >~uRrv[<n,] X2, because of the explicit reference to dimension in the definition
of morphisms; the dimension of the allowed exceptional sets may accumulate over
Y. The definition of morphisms for wVF[r] also allows a lower-dimensional excep-
tional set; but this does not create a problem when fibered over W C RV*, since
by Lemma 3.56 max.cw dimyp(Z,) = dimyp(Z). Thus an RV-disjoint union of
wVF[n]-isomorphisms is again a W VF[n]-isomorphism, and it follows that the same
is true for y;RV[n, -]. We thus have the following.

Lemma 8.18. Let X = (X, f,w), X' = (X, f/,w) € uRV[n, -], and leth : X —
W C RV*, ' : X' — W be definable maps. If for each c € W, (X., X.) € I§ p((c),
then (X, X') € I‘

Proof. Lemma 2.3 applies to RV,,-isomorphisms, and hence using Remark 7.13,
also to blowups. It also applies to ©;RV|[n, -]-isomorphisms by the discussion above,
and hence to I‘;p-equivalence. O

In other words, there exists a well-defined direct sum operation on uRV[n, -]/ Isp,
with respect to RV-indexed systems.
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Lemma 8.19.

(1) Let Y’ be an elementary blowup of Y. Y' is C-isomorphictoY' = (Y", f”, o),
with

Y ={(y,1) €Y x RV : valn (1) > fn(»)},
00 =1y famitL D, &' (1) = o).

(2) Up to isomorphism, the blowup depends only on the blowup locus. In other words,
if X, X', g, g, o, o are as in Definition 8.16, and ¢; : Y; — (X', g, o)
(i = 1,2) are RV|n, -1-isomorphisms, then i¢1, )~(¢2 are X-isomorphic
in wiRVin, -].

Proof.

(1) The isomorphism is given by 2((y, t)) = (v, tf,(y)); since f, always lifts to a
function F, : LY — VF (a coordinate projection), h can be lifted to H defined
by H((y,1)) = (y, t Fu(y)).

(2) By assumption, ¢, ¢» lift to measure-preserving maps ®; : LY; — LX'.
On the other hand, by the assumption on existence of a section s of f;,, we
have measure-preserving isomorphisms ¢« : LY — I[A?] (v, U, .. JUp) >
v, uty ... uy—1, Uy —)/s). Slmllarly, we have oy : LY, — ]LYZ Compos-
ing, we obtam @Dy ! }LYI — ]LYz, it is easy to check that this is
~—1nvanant and shows that LY1 , ]LYZ are Y-isomorphic in u;RV|[n, -]. Taking

the disjoint sum with the complement X” of X', we obtain the result. |

Remark. There is also a parallel of Lemma 7.15: Let Y = (¥, g) € ObRV[n, -],
with dim(g(Y)) < n;let f : ¥ — RV"~! be isogenous to g. Leth : ¥ — RV be
definable, with h(y) € acl(g(y)) for y € Y, and with > (g) = >_(f) + val(h).
Let Y =Y x RVZ?, and f'(y,1) = (f(»), th(y)). Then for appropriate o', Y’ =
(Y’, f', ') with the projection map to Y is a blowup. This follows from Lemma 7.15
and Lemma 8.14(3).

Notation. For X € RV[n, -], [X] = [(X, 1)] denotes the corresponding object of
uRV([n, -] with form 1.

Lemma 8.20. Lemma 7.18(1)—(5) holds for wRV|n, -]. We also have the following:

(6) As a semiring congruence on Ky RVin, -], Iélp is generated by
([[1x111, [IRVZ°1y) (with the forms 1).

Proof. (1)-(5) go through with the same proof. For (6), Let ~ be the congru-
ence generated by this element. By blowing up a point one sees immediately that
([[111], [[RV>°1)) € 1L, so ~< I,. For the converse direction we have to show
that (Y, Y) e~ whenever Y is a blowup of Y; the elementary case suffices, since the
wiRV[n, -]-isomorphisms of Definition 8.16(2) are already accounted for in the semi-
group K4 ;RV[n, -]. Now Y = (7, f, w) with f,,(y) € RV. Since dim(Y) < n, we
have Y >~ (Y, f/, w/)wheref = fifori <n, fj =1,ando’ = Jnw. Thus we may
assume f,, = 1. In this case, as in the proof of Lemma 7.18(6), (Y Y) e~. O
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Definition 8.21. Let J be a k-element set of natural numbers. VFR,[J, [, -] is the set
of triples X = (X, f, w), with X C VF/ x RV*, f:X— RVf)o, w: X — RV, and
such that f and w factor through the projection prgy (X) of X to the RV-coordinates.
IéLp is the equivalence relation on VFR ,[J, [, -]:

(X.Y) €l & (X4, Y,) €14 ((a)) foreacha € VF/.
K VFR, is the set of equivalence classes.

For j € J,letw/ : VF* x RV* — VF/~/} % RV* be the projection forgetting
the jth VF coordinate. We will write VFR [k, [, -], VF*, VF*=! for VFR,[J, [, -]
VF/, VE/ U} respectively, when the identity of the indices is not important.

The map LL : Ob uRV|[n, -] — Ob uVF[x] induces, by Lemma 6.3, a homomor-
phism L : Ky uRV|[n, -] - K4 uVF[n]. By Proposition 4.5 it is surjective.

Lemma 8.22. Let X, X' € uRV(n, -], and let G : LX' — LLX be a special bijection.
Then X' is isomorphic to an iterated blowup of X.

Proof. The proof is clear from Lemma 7.19 since strong isomorphisms are also
wiRV[n, -]-isomorphisms. O

Lemma 8.23. The homomorphism L : K4 uRVI[1, -] - K4 uVF[1, -] is surjective,
with kernel equal to pr[l]. The image of K+ RV y[1, -] is K+ VFy[1, -]

Proof. Let X, Y € uRV[1, ], and let F : LX — LY be a definable measure-
preserving bijection. We have X = (X, f,w),Y = (¥, g, w) with (X, f), (Y, g) €
RVI1, -]. By Lemma 7.6 there exist special bijections by : LX' — LX, by : LY —
LY and an ~-invariant definable bijection F’ : LX’ — LY’ such that by F’ = Fby.

v
We used here that any ~-invariant object can be written as ILX’ for some X’. Since
v
F, by, by are measure-preserving bijections, so is F’. By Lemma 8.22, X" — X and
Y’ — Y are blowups; and F’ descends to a definable bijection between them. This
bijection is measure preserving by Lemma 5.22. Hence by definition (X, Y) € Ié‘p.lzl

By Proposition 8.23, the inverse of I : RV[1, -] — VF[1, -] induces an isomor-
phism 7'°' : K} VFy[1, -] — K4 RVyq[l, -1/I&.

KOIX) = [Y1/1, < [LY]=[X].

Let X = (X, f,w) € VFR,[k, [, -]. By assumption, f, w factor through 7/, so
that they can be viewed as functions on 7/ X. We view the image (7/ X, f, w) as an
element of VFR [k — 1, [, -]. Each fiber of 7/ is a subset of VF; it can be viewed as
an element of VF[1] € uVF[1] C uVF[1, -].

Claim. Relative I’SLp-equivalence implies I’s‘p-equivalence, in the following sense. Let
X;i CRV*(i=1,2);hj : X, > W CRV*; fy : W - RV., w : W — RV, and
fi: X — RV¥ be definable sets and functions. Let X = (Xi, (fw o hy, fi),wo
hi). Let X;(w) = (Xi(w), fi|Xi(w), w o h;|X;(w)), where X;(w) = h; ~'(w). If
X1 (w), Xz (w) € Isp({w)) for each w € W, then (X1, X») € Iélp.
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Proof. The proof is clear using Lemma 8.18. O

The claim allows us to relativize / 1"01 to 7r/. We obtain a map
I =1}, : VFR [k, 1, -] = K4 VER [k — 1,1+ 1, -]/I.

Lemma 8.24. Let X = (X, f,w), X' = (X, f', ') € VER [k, 1, -].

(1) I/ commutes with maps into RV: if h : X — W C RV* is definable, X, =
h=Ye), then V(X)) = Y .oy 17 (Xe).

() If (X1, [X']) € L&, then (17 (X), I/ (X)) € 1%,

(3) 1/ induces a map Ky VFR [k, [, 1/1§, — K VFR [k — 1,1 + 1, ]/I5,.

Proof.

(1) This reduces to the case of I}’ ol 'where it is an immediate consequence of unique-
ness, and the fact that . commutes with maps into RV in the same sense.

(2) All equivalences here are relative to the k — 1 coordinates of VF other than j,
so we may assume k = 1, and write / for /. For a € VF, ([X,], X' €
Ié‘p((a)). By stable embeddedness of RV, there exists « = «a(a) € RV* such
that X, X/, are («)-definable there are («)-definable blowups Xa, )Z’a and an
(«)-definable isomorphism between them, lifting to an a-definable isomorphism.
Using (1) and Lemma 8.18 we may assume that « is constant. Thus for some
W € ObVF[1], Y, Y € uRV[I+1,- ], wehave X =W x Y, X =W x Y/,
§~(, Y’ are blowups of Y, Y’, respectively, ¢ : Y — Y’ is a bijection, and for
any w € W there exists a measure-preserving Fy, : LY - LY lifting ¢. Then
IX)=1(W)xY,I(X")=1(W)xY and the bijection Id;w) x¢ is lifted by
the measure-preserving bijection (w, y) = (w, Fy(y)).

(3) This follows by (2). O

Lemma 8.25. Let X = (X, f,®) € ObVER,[J,1,-]. If j # j € J, then I 1/ =
' Ky VER [, 1, /1 — Ky VERL I\, /) 1+ 2, -1/

Proof. We may assume S = {1, 2}, j = 1, j/ = 2, since all is relative to VES\UJ'),
By Lemma 7.23(1) and Lemma 8.18 it suffices to prove the statement for each fiber
of a given map into RV[/]. Hence we may assume X C VF? so that f is constant;
and by Lemma 5.10, we can assume X is a basic 2-cell:

X={(x,y:xeX,vy—Gx) =ar}, X1 =1v ') +ci.

The case where G is constant is easy since then X is a finite union of rectangles.
Otherwise, G is invertible, and by the niceness of G we can also write

X={(x,y):yeXovx—G ' =8}, Xa=1v""()+c
We immediately compute

LI (X) = (81, a1), I (X) = (a2, 82)
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and necessarily val 61 4 valyo; = valyyop 4 valyy 82 (Lemma 5.4). We have bijec-
tions F; : X — LI;(X). The map FiFaFy "'t L I1(X) — LI L(X) lifts
the unique bijection between the singleton sets {(J1, «1)}, {(a2, §2)}, and shows that
(@1, an]2 = [(a2, 82)]2. O

Proposition 8.26. Let X, Y € uRV[< n,-]. If LX, LY are isomorphic, then
(X1, [Y)) € L&,

Proof. The proofisidentical to the proof of Proposition 7.25, only quoting Lemma 8.25
in place of Lemma 7.24, and Lemma 8.14 to enable using Lemma 7.11. O

Proposition 8.27. Proposition 8.3 is valid for uVF[n], uRV[n], Igp[n].

Proof. The proof is the same as that of Proposition 8.3, but using Proposition 6.3 in
place of 6.1 and Proposition 8.26 in place of Proposition 7.25. O

8.6 Invariants of measure-preserving maps, and some induced isomorphisms

Theorem 8.28. Let T be V-minimal. There exists a canonical isomorphism of
Grothendieck semigroups

74 : KS" uVFn, 1 — Ky (uRV[n, 1) /T4 [n].
Let [ X] denote the class of X in K f_ff (wVFE[n]). Then
y§ [X]=W/Ii[n] < [X]=[LW]e K" (uVF[n)).

Proof. Given X = (X, f, w) € Ob uRV[n] we have LX € Ob uVF[n]. If X, X’ are
isomorphic, then by Lemma 6.3, LX, LX' are effectively isomorphic. Direct sums
are clearly respected, so we have a semigroup homomorphism L : K4 (uRV[n]) —
K iff (wVF[n]). It is surjective by Proposition 4.5 and injective by Proposition 8.3.
Inverting, we obtain /. O

Let Iffp/ be the semigroup congruence on RV [n] generated by ((Y, f), (Y x
RV>O, f1), where Y, f, f’ are as in Definition 7.12. Let urlsp be the congruence
on K4 urRV[n] generated by ([[1k]1], [[RV>0]1]), with the constant I'-form O € T".

Assume given a distinguished subgroup N of the multiplicative group of the
residue field k. For example, N; may be the group of elements of norm one, with
respect to some absolute value |, | on k. With this example in mind, write |x| = 1 for
x € Np. Let |u|VFE[n] be the subcategory of VF[n] with the same objects, and such
that F € Mor |, v iff F € Mor,.vr,) and [JRV (F)| = 1 almost everywhere.
Define |t|RV[n] similarly.

Theorem 8.29. The isomorphism B of Theorem 8.28 induces isomorphisms:

K VEyoiln] — K4 RVyoln]/1[n], 8.1
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KSTVES[n] — Ky RV [n]/14 [n], (8.2)
KT uVE 0] — Ky pRV*[n] /14 [n], (8.3)
KST|u|VF[n] — K |2|RV[n]/14 ], (8.4)
K" urVFInl = K4 urRVInl/prlplnl. (8.5)

Proof. Since Proposition 4.5 uses measure-preserving maps, Proposition 6.1 does
not go out of the subcategory VF,., and RV [n] is a full subcategory of uRV[n],
we have (8.1). It is similarly easy to see that “dimension < n”’ and boundedness are
preserved, hence (8.2)—(8.3).

We have K¢ |1 |[VF = K¢ uVF/Nyg, where Nyvg = {([X, 0], [X, go]) : g :
X — RV, |g| = 1}; similarly for Kiff |t|RV. Thus for (8.4) it suffices to show that
#X),$(Y)) € Npv < (X,Y) € Nyg. For X € Ob uVF[n]or X € Ob uRV[n]
with RV-volume form w, given g : X — RV, let $X denote the same object but
with volume form gw. In one direction, we have to show that (LX,LY) € Ny if
(X,Y) € Nry. This is clear since (8 X) =8 (LX). Conversely we have to show
that (1[8 Z], B[Z]) € Nry. Since p commutes with RV-sums, we may assume g is
constant, with value a. But then L( X) = (LX) implies 35(“ Z) =4 y§Z as required.
This gives (8.4); (8.5) is a special case. O

9 The Grothendieck semirings of T’

Let T = DOAG,4 be the theory of divisible ordered Abelian groups I', with distin-
guished constants for elements of a subgroup A. Let DOAG 4[*] be the category of all
DOAG,4 definable sets and bijections. Our primary concern is not with DOAG 4, but
rather a proper subcategory I'[*], having the same objects but only piecewise integral
morphisms (Definition 9.1). Our interest in I'[*] derives from this: the morphisms
of I'[*] are precisely those that lift to morphisms of RV[x], and it is K [I"[«]] that
forms a part of K [RV[x]] (cf. Section 3.3). This category depends on A, but will
nevertheless be denoted I'[*] when A is fixed and understood.

We will first describe K (Fﬁn[*]), the subring of classes of finite definable sets.
Next, we will analyze K (DOAG 4 ), obtaining two Euler characteristics. This repeats
earlier work by Matikova. We retain our proofs as they give a rapid path to the Euler
characteristics, but [26] includes a complete analysis of the semiring K (DOAG,),
that may well be useful in future applications.

At the level of Grothendieck rings, the categories I'[*]4 and DOAG4 may be
rather close; see Lemma 9.8 and Question 9.9. But the semiring homomorphism
K+ (T[x]a) = K(DOAG,) is far from being an isomorphism, and it remains im-
portant to give a good description of K (I'[*]4). We believe that further invariants
can be found by mapping K [I"[*]] into the Grothendieck semirings of other com-
pletions of the universal theory of ordered Abelian groups over A, as well as DOAG,
in the manner of Proposition 9.2; it is possible that all invariants appear in this way.

A description of K (I'[*]4) would include information about the Grothendieck
group of subcategories, such as the category of bounded definable sets. We will only
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sample one bit of the information available there, in the form of a “volume’ map on
bounded subsets of K [I"[«]] into the rationals, and a discrete analogue.

Definition 9.1. An object of I'[n] is a finite disjoint union of subsets of I'" defined
by linear equalities and inequalities with Z-coefficients and parameters in A. Given
X,Y € ObI'[n], f € Morr(X, Y) iff f is a bijection, and there exists a partition
X =U!"_X;, M; € GL,(Z), a; € A", such that for x € X;,

fx) =Mix +a;.

I"[x] is the category of definable subsets of I'” for any 7, with the same morphisms.
Since there are no morphisms between different dimensions, it is simply the direct sum
of the categories I'[n], and the Grothendieck semiring K [I"] of I"[*] is the graded
direct sum of the semigroups K (I'[n]). We will write K [I'] for the corresponding
group.

Let T'P44[x] be the full subcategory of I'[] consisting of bounded sets, i.e., an
element of Ob I'"4[1] is a definable subset of [—y,v]" forsome y € .

"4 is a subcategory of I'gga (a category with the same objects, but more mor-
phisms, generated by additional translations) and this in turn is a subcategory of
DOAGqg4-

There is therefore always a natural morphism from K, (I"4[*]) to the simpler
semigroup K (DOAGgga). We will exhibit two independent Euler characteristics
on DOAGQg4 and show that they define an isomorphism K (DOAGgga) — 72
Taking the dimension grading into account, this will give rise to two families of Euler
characteristics on K (I" 1), with Z[T ]-coefficients.

9.1 Finite sets

Let T'fin[1] be the full subcategory of I' 4 [n] consisting of finite sets. The Grothendieck
semiring of 'fin[x] embeds into the semirings of both I'y and RES, within the
Grothendieck semiring of RV 4, and we will see that K (RV ) is freely generated
by them over K +(Fﬁ“[>|<]). We proceed to analyze K +(Fﬁ“[>x<]) in detail.

Lett =[0]; € K+(Fﬁn[1]) be the class of the singleton {0}.

The unit element of K (I') is the class of I'°. Note that the bijection between
and I'° is not a morphism in I'[]; in fact 1, T, 72, ... are distinct and Q-linearly
independent in K (I"). The motivation for this choice of category becomes clear if
one thinks of the lift to RV: the inverse image of t” in RV (also denoted ") has
dimension #, and cannot be a union of isomorphic copies of 7" for smaller m.

Let K (I'i")[7~1] be the localization. This ring is a naturally Z-graded ring; let
Hjg, be the zero-dimensional component.

Let 4 be the space of subgroups of (Q ® A)/A or, equivalently, of subgroups of
Q ® A containing A. View it as a closed subspace of the Tychonoff space 2Q®4)/4
via the characteristic function 1 of a subgroup s € E4. Let C(E4, Z) be the ring of
continuous functions E4 — Z (where Z is discrete).

A cancellation semigroup is a semigroup where a + b = a + ¢ implies b = c; in
other words, a subsemigroup of an Abelian group.
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Proposition 9.2. K (I''"[n]) is a cancellation semigroup. As a semiring, K (I'"[x])
is generated by K+(Fﬁ“[l]). We have

K™ [z7] = Hgylz, 71,
Hiy, >~ C(Ba, 7).

Proof. Since T is ordered, any finite definable subset of I'”* is a union of definable
singletons. Thus the semigroup K (I'"[1]) is freely generated by the isomorphism
classes of singletons a € I'" and, in particular, is a cancellation semigroup. The
displayed equality is thus clear; we proceed to prove the isomorphism.

A definable singleton of I'" has the form (ay, ..., a,;), where for some N € N,
Nai, ..., Na, € A. Thus [(ay, ..., ay)] = [(a1))] - [(a,)].

For any commutative ring R, let Idem(R) be the Boolean algebra of idempotent
elements of a commutative ring R with the operations 1,0, xy, x + y — xy. Note
that the elements [(ay, ..., a,)]t ™ € Hg, belong to Idem(Hgy,): in K4 (I'1"): for
any a € I we have the relation [a]®> = [a]z. Let B be the Boolean subalgebra of
Idem(Hjy,) generated by the elements [(ay, . .., a,)]t~". For a maximal ideal M of
B, let 1) be the ideal of Hp, generated by M. Note Hg, = ZB. Hence we have to
show the following:

(1) The Stone space of B is E4.
(2) For any maximal ideal M of B, Hgn /Iy = 7Z naturally.

For any commutative ring R, a finitely generated Boolean ideal of Idem(R) is
generated by a single element b; if b # 1, then bR # R since b(1 — b) = 0. Thus
if M is a proper ideal of Idem(R), then M R is a proper ideal of R. Applying this to
B, viewed as a Boolean subalgebra of Idem(Q ® Hg,), we see that Iy NZ = (0) for
any maximal ideal M of B. Thus the composition Z — Hg, — Hgn /Iy is injective.
On the other hand, Hj, is generated over Z by the elements [a]/7, and each of them
equals O or 1 modulo 7y, so the map is surjective, too. This proves the second point.

To prove the first, we define a map & : E4 — Stone(B).

Lett =T/A, T <Q®A. If[(ay,...,a,)] =[(b1,...,by)], then some element
of GL,(Z) x A" takes (ay, ..., a,) to (by, ..., by);in this case, if a; € T for each i
then b; € T for each i; so I1}_,1,(a; + A) = I1}_, 1,(b; + A). Thus, givent € Ea,
we can define a homomorphism 4, : Hg, — Z by

(a1, ....a)]/T" — TU_ 1:(a; + A).

Let M(t) = ker(h;) N B.

The map @ : t — M(¢) is clearly continuous. If ¢, ¢' are distinct subgroups, let
a €t,a ¢t (say);then[al/T € M(t), [al/t ¢ M(¢'). Thus @ is injective. If P is a
maximal filter of B, lettp = {a + A : [a]/T € P}.

Claim. tp is a subgroup.

Proof. Supposea + A, b+ A € tp and let c = a + b. Then we have the relation

[allb]t = [al[b]lc]
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in K (I'1"), arising from the map

x,y,2) = (x,y,xyz2).

Thus ([al/T)([b]/T)(1—[c]/T) = 0. As ([al/7), ([b]/7) € P wehave (1—[c]/7T) ¢
P,so[c]l/T € P. O

Clearly, P = M(tp). Thus ® is surjective, and so a homeomorphism. O

Example. We always have a homomorphism K (I'i") — Z (by counting points of a
finite set in the divisible hull); when A is divisible, this identifies K (I'fi") with Z[].
In general, we have the surjective morphism K (rfimy) - g (F&% ) = Z[t].

Lemma 9.3. Let Y be an A-definable subset of T, of dimension < n. Then Y is a
finite union of GL,,(Z)-conjugates of sets Y; C {c;} x T\, with ¢; € Q ® A.

Proof. Y can be divided into finitely many A-definable pieces, each contained in
some A-definable hyperplane of I'*. Thus we may assume Y itself is contained in
some such hyperplane, i.e., > r;y; = ¢ for some ¢ € Q ® valy(A). We may assume
ri € Z and (ry, ..., r,) have no common divisor. In this case Z"/Z(r{, ..., rn)
is torsion free, hence free, so Z(ry, ..., ry) is a direct summand of Z". Thus after
effecting a transformation of GL, (Z), we may assume (rq, ...,r,) = (1,0,...,0),
i.e., Y lies in the hyperplane y; = c. Let Z be the projection of Y to the coordinates
(2,...,n). ThenY ={c} x Z. m]

9.2 Euler characteristics of DOAG

We describe two independent Euler characteristics on A-definable subsets of T, i.e.,
additive, multiplicative Z[t]-valued functions invariant under all definable bijec-
tions. The values are in Z[t] rather than Z because I'[*] = @,['[r] is graded by
ambient dimension. Proposition 9.4-Lemma 9.6 were obtained earlier in [26], and
independently in [20].

In fact, these two Euler characteristics come from Euler characteristics of
DOAGqg4. Ther they are the only ones.

Proposition 9.4. Let A be a divisible ordered Abelian group. Then K(DOAG,)
~ 72

Proof. We begin by noting that there are at most two possibilities.

InDOAG, all definable singletons are isomorphic. The identity element of the ring
K (DOAG) is the class of any singleton. Thus the image of K (Tfin[x]) in K (DOAG,)
is isomorphic to Z.

Claim. The image of K (ded) in K (DOAG,) equals the image of K (Ifin[]) there.
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Translation by a gives an equality of classes in K (I"), [(0, c0)] = [(a, 00)], so
[0, @)] + [{pt}] = [(0,a] = 0.

Thus bounded segments are equivalent to linear combinations of points. This can
be seen directly by induction on dimension and on ambient dimension: consider the
class of a bounded set ¥ c I'"*!. Y is a Boolean combination of sets of the form
{(x,y):x € X, f(x) <y < g(x)}. This is DOAG 4-isomorphic to ¥’ = {(x, y) :
x € X,0<y<h(x)},whereh(x) =gx)—f(x). LetZ ={(x,y) :x € X,y > 0},
Z' ={(x,y) : x € X,y > h(x)}. Then the map (x, y) +> (x,y + h(x)) shows
that [Z] = [Z’]. On the other hand, Z’ is the disjoint union of Z, ¥ and a lower-
dimensional set W. Thus [Z] = [Z] = [Z'] + [Y] + [W] so [Y] = —[W], and by
induction [Y] lies in the image of K(Fﬁ“[*]).

Now consider t = [(0, c0)] € K(I'4). We have a homomorphism K(ded)[t] —
K (T"). To see that it is surjective, again by induction it suffices to look at sets such
as {(x,y) :x € X, f(x) < ylor{(x,y) : x € X, f(x) <y < gx)}. The
latter is equivalent to a lower-dimensional set, by induction, as above. The former is
equivalent to {(x, y) : x € X, 0 < y} so that it has the class [ X] x ¢ and thus is in the
image of K(ded)[t].

Let 7T = {(x,y) : 0 < y < x}. The map (x,y) — (x,y + x) takes T to
{(x,y):0<x <y <2x},502[T] = [{(x,y) : 0 < y < 2x}]. The same map
shows that 2 — [T] = 12> — 2[T]so [T] = 0. But then [{(x,y) : 0 < x < y}] =0,
and adding we obtain 0 + 0 = 12 + [{(x, x) : 0 < x}] = t> 4+ . Thus K (DOAG,)
is a homomorphic image of Z[¢]/ (t2 + 1) ~ 7Z2. To see that the homomorphism is
bijective, it remains to exhibit a homomorphism K (DOAG4) — Z with ¢t — 0 and
another with t — —1. The two lemmas below show this, in a form suitable also for
a dimension-graded version. O

Lemma 9.5. There exists a ring homomorphism xo : K(I') — Z[t], such that
x0((0, 00)) = t. It is invariant under GL,(Q) acting on T".

Proof. Let RCF be the theory of real closed fields. See [37] for the existence and
definability of an Euler characteristic map x : K(RCF) — Z. For any definable
X,P,f : X — P of RCF, there exists m € N and a definable partition P =
U_m<i<m P;, such that for any i, any M = RCF and b € P;(M), x(X») = i. Here
Xy, = f -1 (b), and x(Xp) = i iff there exists an M-definable partition of X} into
definable cells C;, with 3~ ; (= 1)4™€) = .

The language of I' (the language of ordered Abelian groups) is contained in the
language of RCF. Thus if X, P, f : X — P are definable in the language of ordered
Abelian groups, they are RCF-definable. Therefore, the above result specializes, and
we obtain an Euler characteristic map x : K(I'4[n]) — Z, valid for any divisible
group A. This y is invariant under all definable bijections (not only the morphisms
of I'[*]), and is additive and multiplicative. We have xp ({0}) = 1, xo ((a, b)) = —1
fora < b, and x¢(0,00) = —1, too (though (0, 1) and (0, oo) are not definably
isomorphic in the linear structure). Now let xo(X) = x(X)t" for X C I'”, and
extend to I'[*] by additivity. O
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Remark. The Euler characteristic constructed in this proof appears to depend on an
embedding of A into the additive group of a model of RCF. But by the uniqueness
shown above, it does not. In fact, as pointed out to us by Van den Dries, Ealy
and Matikov4, an Euler characteristic with the requisite properties is defined in [37]
directly for any O-minimal structure; moreover, the use of RCF in the lemma below
can also be replaced by a direct inductive argument, and some simple facts about
Fourier—Motzkin elimination.

Another Euler characteristic can be obtained as follows: given a definable set
Y cTI”, let
x'(Y) = lim x(¥Y NC,),
r—>00

where C, is the bounded closed cube [—r, r]*. By O-minimality, the value of x (Y N
C,) is eventually constant.

Note that x’ is not invariant under semialgebraic bijections, since the bounded
and unbounded open intervals are given different measures. Still,

Lemma 9.6. x' induces a group homomorphism K (I'[n]) — Z; and yields a ring ho-
momorphism K (U[*]) — Z[t]. Moreover, x' is invariant under piecewise GL,, (Q)-
transformations.

Proof. x' is clearly additive and multiplicative. Isomorphism invariance can be
checked as follows: First, we make the following claim.

Claim. If X # () is defined by a finite number of weak (<) affine equalities and
inequalities, then x/(X) = 1.

Proof. Tt suffices to show that this is true in (R, +); since then it is true in any model
of the theory of divisible ordered Abelian groups. Now we may compute the Euler
characteristic x of the bounded sets X NC, in (R, +, -). Let p € X. For large enough
r, p € X N C, there is a definable retraction of the closed bounded set X N C, to p
(along lines through p). Thus X N C, has the same homology groups as a point, and
so Euler characteristic 1. O

To prove the lemma we must show that if ¢ : X — Y is a definable bijection,
X,Y C I'", then x'(X) = x/(Y). We use induction on dim(X). By additivity, if
X is a Boolean combination of finitely many pieces, it suffices to prove the lemma
for each piece. We may therefore assume that ¢ is linear (rather than only piecewise
linear) on X. Let ¢’ be a linear automorphism extending ¢. Expressing X as a union
of basic pieces, we may assume X is defined by some inequalities > o;x; < c, as
well as some equalities and strict inequalities. Thus X is convex. We have to show
that x'(X) = x'(¢'X). Let X be the closure of X (defined by the corresponding weak
inequalities). Then X \ X has dimension < dim(X), so by induction x’(¢’(X \ X) =
x'(X \ X). But X is closed and convex, so xo/(X) = 1 = xo/(¢'X). Subtracting,
x'(@'(X)) = x"(X).

Once again, using the ambient dimension grading, we can define x, : I'[*] —
Z[t] with x,, (x) = x'(x)r" for x € I'[n]. O
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In the following lemma, all classes are taken in K (I'4)[*]. Let e, be the class in
K (T 4)[1] of the singleton {a}, and 7, the class of the segment (0, a).

Lemma 9.7. Leta € Q® A, b € A.

(1) Ta = Ta+b, €a = €q+b-

Q) Ifb <ce€ Athen[(b,c)] = —ep.

(3) eqeq = eg.

4) t4(tq +e9) =0.

(5) If 2a € A then2t, + e, = —eq, and eg(eq — eg) = 0.

Proof.

1 7, =1[(0,a)] = [(0, co)]—[(a, c0)]—ey, and similarly t,45. Themapx +— x+b
shows that [(a, 00)] = [(a + b, o0)] and e, = e,4+p, hence also 1, = T44p.

2) [(b,c)] = [(b, 00)] — [(c, 00)] — e, = —eg by (1), since c — b € A.

(3) The map (x, y) > (x, y+x)is an SL,(Z)-bijection between {(a, 0)} and (a, a).

(4) Let

D={(x,y):0<x<a,0<y<x},

D' ={(x,y):0<y<a0<x <y},

D ={(x,y):0<x<a,y >0},
T(x,y)=(x,y+x).

Then T (D) = Dy \ D. Since [T(Dy)] = [D1], [D] = 0. Similarly, [D'] = 0.
Note also
T((0,a) x{0}) ={(x,x):0<x <al.

Thus
0=[D]+[D'1=[(0,a)*1+ [{(x,x) : 0 < x < a}] = t2 + T4e0.

(5) Let0 < 2a € A. Then [(0, a)] = [(a, 2a)] using the map x +— 2a — x. Thus
27, + eq = [(0,a) U{a} U (a,2a)] = [(0,2a)] = —ep (by (2)). Therefore,
(—eo — ea)(eo — €q) = (274) (274 + 2e0) = 0 by (1). Thus eqeg = €2 = ¢J. O
The nextlemma will not be used, except as a partial indication towards the question

that follows, regarding the difference at the level of Grothendieck groups between

GL,,(Z) and GL,(Q) transformations. Let Ann(eg) be the annihilator ideal of ep;

it is a graded ideal. Let R = K(I"4)[*]/ Ann(ep), the image of K (I"4)[*] in the

localization K (I'4)[*](eo~"). In the next lemma, the classes of definable sets are
taken in R, viewed as a subring of KT )[*I(eo™ ). Lete, = eq/en, ta = Tq/e€0.

Lemma9.8.letA'={a cQ® A :e, = 1}.

(1) If X € I'" is definable by linear inequalities over A, and T € GL,(Z) x (A",
then [TX]=[X] € R.
(2) A’ is a subgroup of Q ® A.
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(3) e =ey taty +1) = 0.
(4) A’ is 2-divisible.

Proof.

(1) It suffices to show this when T is a translation by an element a € (A")". The map
(x,y) > (x+y,y)isin SLy,(Z), hence [X x {a}] = [T X x {a}]in K(T"4)[2n].
Since a € (A")", [a] = ejj. Thus [X]efj = [T X]ejj, and upon dividing by efj the
statement follows.

(2) This is clear from (1). For the following clauses, note that by (1)—(2), Lemma 9.7
applies with A replaced by A’.

(3) This follows from Lemma 9.7(3)—(4) divided by e(z).

(4) By Lemma 9.7(5) applied to A’, if 2a € A’ then eg(e, —ep) = 0;s0e, — 1 =0,
ie,aeA. O

Question 9.9. Is it true that K (I"4[*])/ Ann(eg) = K(DOAG 4[*])/ Ann(ep)?

A positive answer would follow from an extension of (4) to odd primes, over
arbitrary A; by an inductive argument, or by integration by parts.

9.3 Bounded sets: Volume homomorphism

Let A = Q ® A. Recall that ['®[] is the category of bounded A-definable subsets
of I'", with piecewise GL,(Z) X A-bijections for morphisms. Let Sym(A) be the
symmetric algebra on A.

Proposition 9.10. There exists a natural “volume” ring homomorphism K (rdd (4]
— Sym(A).

Proof. We first work with DOAG without parameters, defining a polynomial associ-
ated with a family of definable sets.

Let C(x,u) = C(xy,...,Xy; U1, ...,Uy) be aformula of DOAG. Write C;, =
{x : C(x, b)}; this is a definable family of definable sets. Assume the sets Cj are
uniformly bounded: equivalently, as one easily sees, for some ¢ € N, for each i,
C(x, u) implies |x;| < ¢ Zj luj|. For b € R™, let v(b) = volCp(IR"). Here vol is
the Lebesgue measure.

By a constructible function into Q, we mean a Q-linear combination of charac-
teristic functions of definable sets of DOAG. Let R be the (Q-algebra of constructible
functions into Q.

Claim 1. There exists a polynomial Pc(u) € R[u] such that for all b € R™,
volCp(R") = Pc(b).

In other words, the volume of a rational polytope is piecewise polynomial in the
parameters, with linear pieces. The proof of the claim is standard, using iterated
integration. For each C, fix such a polynomial Pc.

At this point we reintroduce A. Any A-definable bounded subset of I'” has the
form C}, for some C as above and some b € A™.
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Claim?2. If Cp, = CI;, then Pc(b) = Pc/(b').

Proof. (See also below for a more algebraic proof). Fix the formulas C, C’. Write
b= Ne,b' = N'e where e € Al is a vector of Q-linearly independent elements of A,
and N, N’ are rational matrices. Write Pc = Y a, (u)u” where a, is a constructible
function into Q; similarly for Pc.

Now note that any formula v (x1, . .., x;) of DOAG of dimension / has a solution
in R/ whose entries are algebraically independent. Use this to find algebraically
independent & € R/ such that Cy; = Clz»and ay(Né) = ay(b), ay(N'e) = a;,(b)
for each multi-index v of degree d.

By the definition of Pc we have Pc(Né&) = Pc/(N’é). Thus Y a,(b)(Neé)” =
> al(b')(N'é)". By algebraic independence, > a,(b)(Nv)’ =) a,(b')(N'v)" as
Q-polynomials. Therefore, Pc(Ne) = Pc/(N'e). O

Thus we can define: v(Cp) = Pc(b). Let us show that v defines a ring homo-
morphism.

Given C, C’ one can find C” such that Cg’b, = Cp U Cy, and similarly C”” with
CZ)’ w = Cp N Cy. Then Pc + Pcr = Pcr + Pcw. It follows that v is additive.
Similarly, v is multiplicative, and translation invariant. Since |det(M)| = 1 for
M € GL,(Z), if M (x,u) = ¢(Mx, u) then Pyu = Py. o

Van den Dries, Ealy, and Matikova pointed out that Claim 2 can also be reduced
to the following statement: if Q € R[u], B is any O-definable set of , and Q vanishes
on B(R), then Q vanishes on B(I"). They prove it as follows: let B be the Zariski
closure of B; B is clearly a finite union of linear subspaces, and by intersecting B
with each of these, we may assume B is linear, so it is cut out by homogeneous linear
polynomials Q1, ..., Q. Each Q; vanishes on B(R) and hence on B(I"). Thus QO
lies in the (radical) ideal generated by Q1, ..., O, hence vanishes on B(T").

The counting homomorphism in the discrete case

Suppose A has a least positive element 1, and assume given a homomorphism
hp : A — Z, for each p. Then A embeds into a Z-group A, i.e., an or-
dered Abelian group whose theory is the theory Th(Z) of (Z, <,+). (We have
AN Q® A) = {a/n € Q® A : (Yp)(nlhp(a)).) We have a homomorphism
[X]+— [X(A)] from K (I'[*]) to K4 (Th(Z)4). On the other hand, the polynomial
formula for the number of integral points in a polytope defined by linear equations
over Z yields a homomorphism K (Th(Z)4[«]) — Q[A]. By composing we obtain
a homomorphism K (I'"¥[x]) — Q[A].

Remark. Using integration by parts, one can see that the homomorphism
K (Th(Z)""[+]) — QIA]

above is actually an isomorphism.
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9.4 The measured case

We repeat the definition of uI" from the introduction, along with two related cate-
gories. The category vol I' corresponds to integrable volume forms, i.e., those that
can be transformed by a definable change of variable to the standard form on a de-
finable subsets of affine n-space. By Lemma 3.26, the liftability condition in (2)
is equivalent to being piecewise in GL, (Z) x A", A" being the group of definable
points.

Definition 9.11.

(1) Forc=(c1,...,cp) €™ let Y (c) = Y I ci

(2) For n > 0, let uI'[n] be the category whose objects are pairs (X, w), with X €
ObT'[n] and w : X — T a definable map. A morphism (X, w) — (X', o) is
a definable bijection f : X — X’ liftable to a definable bijection val,, !X —
val,, 7' X', such that Y (x) + w(x) = Y. (&) + ' (x") for x € X, x" = f(x).

(4) Let uded[n] be the full subcategory of uI'[r] with objects X C [y, 00)" for
some y € I'.

(3) Let Obvol I'[n] be the set of finite disjoint unions of definable subsets of I'".
Given X,Y € ObvolT'[n], f € Moryoirn (X, Y) iff f € Morr,; and Y (x) =
S (f(x)) forx € X.

(5) uI'[] is the direct sum of the I'[n], and similarly for the related categories.

Recall the Grothendieck rings of functions from Section 2.2. Fn(I", K (I')) is
a semigroup with pointwise addition. We also have a convolution product: if f is
represented by a definable F' C I x I'", in the sense that f(y) = [F(y)], and g by
adefinable G C I" x I'", let

f*xgly) =, b,c):ael,be F(a),c e G(y —a)}].

The coordinate « in the definition is needed in order to make the union disjoint. In
general, it yields an element represented by a subset of I' x I *"*! rather than
m + n. But let Fn(I", K4 (I"))[n] be the set of [F] € Fn(I", K, (I'[n])) such that
dim(F(a)) < n for all but finitely many @ € I'. If f € Fn([", K4 (I"))[m] and
g € Fn(I", K4 (I"))[n], then f x g € Fn(I", K4+ (I"))[m +n]. Let Fn(T", K4+ (I'))[*] =
@ Fn(I, K4 (I"))[m], a graded semiring.

Lemma 9.12.

(1) K4 (uD)[n] = Fn(T, K4 (D)[n].

(2) K4 uI®[n] ~ {f € Fn(T, K4 (TP)[n]: @)Yy < yo)(f(¥) = 0)}.
(3) K volT'[n] ~ Fn(T", K. (T'[n — 1])).

Proof.

(1) Let (X,w) € Obul'[n], with X C T and w : X — I'. Letd(x) =
o(x) + > (x). Fora € I',let X, = {x € X : d(x) = a}. This deter-
mines an element F (X, w) € Fn(T', K1 (I'[n])), namely, a +— [X,]. It is clear
from additivity of dimension that dim(X,) < n for all but finitely many a; so
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F(X,w) € Fn(I', K (I')[n]. If h € Moryr;(X, Y), then by the definition of
ul we have h(X,) = Y,; 50 [X,] = [Ya] in K4 (T')[n]. Conversely if foralla € T
we have [X,] = [Y,] in K. (I')[n], then val,~!(X,), val,~'(Y,) are a-definably
isomorphic. By Lemma 2.3 there exists a definable H : val, ~H(X) — valy,~1(Y)
such that for any x € valy, ~1(X), H(x) = hq(x), where a = > valwy(x). Clearly,
H descendsto H : X — Y; by construction H lifts to RV, and preserves Y 4w,
so H € Mor (1 (X, Y). We have thus shown that [X] — [F(X)] is injective. It is
clearly a semiring homomorphism.

For surjectivity, let g € Fn(I', K4 (I'))[n] be represented by G € I' x I'". It
suffices to consider either g with singleton support {yp}, or g such thatdim(G(a)) < n
for all a € T'. In the first case, g = F(X, w) where X = G(y) and w(x) =
Yo—Y_(x). Inthe second: after effecting a partition and a permuation of the variables,
we may assume G(a) € I'"~! x {y(a)} for some definable function ¥ (a). With
another partition of I', we may assume g is supported on § C I, i.e., g(x) = 0
for x ¢ S, and ¢ is either injective or constant on S. In fact, we may assume
is injective on S: if v is constant on S, let G’ = {(a, (by,...,by—1, b, + a)) :
(a, (by,...,by)) € G,a € S}. Then G’ also represents g, and for G’ the function
¥ is injective. Now let X = UgesG(a), and let w(x) = — ) (x) + w_l(x,,). Then
F(X,w) =g.

(2) This follows from (1) by restricting the isomorphism.

(3) This is proved in a similar manner to (1) though more simply and we omit
the details. The key point is that GL,, (Z) acts transitively on P" (Q); this can be seen
as a consequence of the fact that finitely generated torsion free Abelian groups are
free. More specifically, the covector (1, ..., 1) is GL,(Z)-conjugate to (1, 0, ..., 0).
Thus the catgegory vol I'[n] is equivalent to the one defined using the weighting x|
in place of > (x;). For this category the assertion is clear. O

This lemma reduces the study of K (uI') to that of K (T).

10 The Grothendieck semirings of RV

10.1 Decomposition to I'y RES
Recall that RV is a structure with an exact sequence

0—-k*—> RV > T — 0.

valpy

We study here the Grothendieck semiring of RV in a theory Try satisfying the as-
sumptions of Lemma 3.26. The intended case is the structure induced from ACVF4
for some RV, I'-generated base structure A.

We show that the Grothendieck ring of RV decomposes into a tensor product of
those of RES, and of I".

The category I'[+] was described in Section 9. We used GL,(Z) rather than
GL,, (Q) morphisms. The reason is given by the following.
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Lemma 10.1. The morphisms of I'[n] are precisely those definable maps that lift to
morphisms of RV[n]. The map X +— valr\f1 (X) therefore induces a functor I'[n] —
RV[n], yvielding an embedding of Grothendieck semirings K [I'[n]] — K4+[RV[n]].

Proof. Any morphism of I'[*] obviously lifts to RV, since GL,(Z) acts on C" for
any group C. The converse is a consequence of Lemma 3.28. O

We also have an inclusion morphism K4 (RES) — K (RV).

Observe that K+(Fﬁn) forms a part of both K (RES[*]) and K (I'[]): the
embedding of K (I'[*]) into K (RV[x]) takes K (M toa subring of K (RES[%]),
namely, the subring generated by the pullbacks valy,(y), y € I' a definable point.

Given two semirings R, Ry and ahomomorphism f; : S — R;, define R| ®s R»
by the universal property for triples (R, k1, hy), with R a semiring and ; : R; — R
a semiring homomorphism, satisfying 41 f1 = ha f>.

We have a natural map K (RES) ® K (I'[*]) - K+ (RV), [X]I® [Y] — [X X
val, ~'(Y)]. By the universal property it induces a map on K (RES) ® K., (Pfin)
K+ (I'[x]). A typical element of the image is represented by a definable set of the
form U(X; x valy~1(Y;)), with X; € RES*, ¥; C I'*.

Proposition 10.2. The natural map K+ (RES) ® g, piny K4 (I'[%]) — K4 (RV) is an
isomorphism.

Proof. Surjectivity is Corollary 3.25. We will prove injectivity. In this proof, X Y
will always denote an element of K (RES) ® K, (Dfiny K4 (T[*].

Claim 1. Any element of K (I'[*]) can be expressed as ZIJ-=1[Yj] x {pj}, for some
Y; €T, dim(Y;) =mj, and p; € T'i.

Proof. Let Y C T be definable. If dim(Y) < m, then Y can be partitioned
into finitely many sets Y;, each of which lies in some definable affine hypersur-
face Z;"zl ojx; = ¢, with @; € @, not all 0. In other words x — « - x is constant
on Y;, where o = (ay, ..., ;). We may assume that each o; € Z and that they
are relatively prime. Then («) is the first row of a matrix M € GL,,(Z). The map
x > Mx takes Y; to a set of the form Yl/ x {c}, YI’ c "1, Since [MY;]=[Y;]in
K (I'[]), the claim follows by induction. m]

Claim 2. Any element of K (RES) R, (rfin) K (I'[*]) can be represented as
k
Z Xi® Valrv_lYi’
i=1

where X; € RES™ and Y; C I'™ are definable sets, and m; = dim Y;.

Proof. By the definition of K (RES)® Ko (Dfin) K (T'[*]) and by Claim 1, any element
isasum of tensors X @valy, ! (Y x{p}); using the ®K+(rﬁn) -relation, X ®@valy, ! (Y x
{Ph=Xxvaly,"'(p) @Y. O
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Now let X;, X/ € RES*, Y;, Y/ C I'* be definable sets, and let
F 00X x valn ™ (%) = U(X, > valn ™ (7))

be a definable isomorphism. Let m be the maximal dimension m of any Y; or Y.
Assume the following (by Claim 2):

For each i’, Y/, C rdim®) and similarly for the Y;. (%)

Claim 3. Let P be a complete type of ¥; of dimension m, and Q a complete type of
X Then F(Q x valy, ' P) = Q' x val,~' P/, where Q' is a complete type of some
X}, and P" a complete type type of Y/,.

Moreover, there exist definable sets P, Q, 13’, Q’ containing P, Q, P/, Q’,
respectively, such that
(1) F restricts to a bijection Q x valyy, ~ 1p Q/ x valpy ~’;
(2) there exist definable bijections f : P — P and g: Q — Q’
(3) For any x € Q y € P F restricts to a bijection {x} x valy,~!(y) = {f(x)} x

w g ().

Proof. By Lemma 3.17, valy,~1(P) is a complete type; by the same lemma,
0 x valy ~H(P) is complete; hence so is F(Q x val, ~1(P)). We have F(Q x
valy ~1(P)) € (X}, x valy, ~1(Y])) for some i’. Let Q" = pr;(F(Q x valy,~' (P))),
V' = pry(F(Q x valyy,~1(P))), P/ = valy (V') C Y. where pry : X, x
Valrv’l(Yi’,) — X; € RES, pr; : X}, x Valrv’l(Yl.’/) — valrv’l(Yi’/) are the pro-
jections. Then Q’, V', P’ are complete types. We have m = dim(P’) > dim(Y/), so
by maximality of m, equality holds. We thus have P’ € I'4im(") By Lemma 3.17,
Q' x val, ~1(P’) is also complete type. Thus F(Q x P) = Q' x valy, ' P’.

By one more use of Lemma 3.17, the function f, : x + pr; F(x,y), whose
graph is a subset of the stable set Q x Q', cannot depend on y € P. Thus f, = f,
e, F(x,y) = (f(x), pry F(x, y)).

Since Q x val,~!(y) is stable, valy pr, F must be constant on it; so
valyy pry F(x,y) = g(y) on P x Q. This shows that (3) of the “moreover” holds on
P x Q. By compactness, it holds on some definable Q x P (and we may take
f injective on O, and g on P). Let O’ = f(Q), P’ = g(P). Then (1)~(2)
hold also. O

Claim 4. Assume (x) holds. Then there exist finitely many definable Yl.j (G =
0,...,N;) and Xl.j such that dim(YiO) < m, and the conclusion of Claim 3 holds
on each X/ x valy, ~'Y/ for j > 1. Moreover, we may take the ¥/, X/ pairwise
disjoint.

Proof. This follows from Claim 3 by compactness; the disjointness can be achieved

by noting that if Claim 3(3) holds for P s Q , then it holds for their definable subsets,
too. O



Integration in valued fields 375

We now show that if U(X; x valy, ~1(Y})) andU(Xl/., X valy ! (Y/)) are definably
isomorphic then Zi,[X,-r] QY] = Zi [X; ® Y;]. We use induction on the maximal
dimension m of any Y; or Yl.’,, and also on the number of indices i such that dim(Y;) =
m. Say dim(Yy) = m.

By Claim 2, without changing } ", X!, ® valp, ! (Y/)) as an element of

K+ (RES) ®K+(1“ﬁn) K+(F[*])»

we can arrange that dim(Y;’) = m;, i.e., () holds. Thus Claims 3 and 4 apply.
The Y] for j > 1 may be removed from Y, if their images are correspondingly

excised from the appropriate Y’ since [Q] ®k. (rfin) [P] [f(Q)] Q. (rfin) [g(P)]
What is left in Y; has I” dlmensmn < m, and so by induction the classes are equal.
The injectivity and the proposition follow. O

For applications to VF, we need a version of Proposition 10.2 keeping track of
dimensions. Below, the tensor product is in the category of graded semirings.

Corollary 10.3. The natural map K (RES[x]) Rk, (rfin) K (T[*]) > K+(RV[*])
is an isomorphism.

Proof. For each n we have a surjective homomorphism
®y—1 K+RES[k]) ® K4 (T'[n — k]) - K+ (RV[n]).

K4 RV[n] can be identified with a subset of the semiring K4 RV, namely, {[X] :
dim(X) < n}. The proof of Proposition 10.2 shows that the kernel is generated by
relations of the form

(X xvaly, ') RZ=XQ (Y ®2)

when Y € K (I'i") and dim(X) 4 dim(val, ~1(Y)) + dim(val, ~'(Z)) = n. These
relations are taken into account in the ring K4 (RES[*]) ® K (Ifin) K (I'[*]), so that
the natural map K4 (RES[x]) Qk, (rfin) K+ (T'[*]) = K(RV[x]) is injective and
hence an isomorphism. O

Recall the classes e, = [{a}]; in K(I'[1]), defined for a € I"'({(#4)). They are in
K+(Fﬁ“), hence identified with classes in K (RES[1]), namely, ¢, = [valy, ~! (a)].
When denoting classes of varieties V over the residue field, we will write [V] for
[V (k)], when no confusion can arise.

Definition 10.4. Let /! be the ideal of K (RES[%]) generated by all differences e, — ey,
where a € I'((#)). Let 'IK(RES[*]) = K(RES[*])/1!.

By Lemma 9.7(3), the natural homomorphism K (RES[x*]) into the localization
of K (RV[x]) by all classes e, factors through !K(RES[x]).

Since 1! is a homogeneous ideal, !K(RES[*]) is a graded ring.

The theorem that follows, when combined with the canonical isomorphisms
K (VF[n]) — K(RV[< n])/Isp and K(VF) — K(RV[*])/Isp,
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f : K(VF) —» !K(RES)[[Al(k)]fl],
/
f : K(VF) - 'K(RES).

Theorem 10.5.

(1) There exists a group homomorphism
&n : KRV[< n])/Ip — 'K(RES[n])
with
[RV7) > —[A"! x Gpuln
and
[XTe > [X x A",

for X € RESI[k].

(2) There exists a ring homomorphism & : K (RV[x]) /I, — !K(RES)[[Al]_l] with
E([X1k) = [X1k/AX for X € RES[k].

(3) There exists a group homomorphism

&, K(RV[< n])/Iy, — 'K(RES[n])

with [RVZ]; +— 0 and [X]; — [X], for X € RES[k].
(4) There exists a ring homomorphism & : K RV /Isp — K(RES) with
E([X1x) = [X] for X € RES[k].

Proof.
(1) We first define a homomorphism x[m] : K(RV[m]) — 'K(RES[m]). By
Corollary 10.3,

K (RV[m]) = @, K(RES[m —I]) Qg (riny K(I'[I]).
Let xo = IdgRrESpm)- For [ > 1, recall the homomorphism x : K(I'[l]) — Z
of Lemma 9.5. It induces x; : K(RES[k]) ®, iny K(I'[I]) — !K(RES[k]) by
a®bi> xb) - [Gul - a.
Define a group homomorphism

x[m]: K(RV[m]) - K(RES[m]), x[m]=@&x.

‘We have
xmi +mal(ab) = x[mil(a)x[m21(b)
when a € K(RV[m]), b € K(RV[m2]). This can be checked on homogeneous

elements with respect to the grading @&; K (RES[m —[]) ® K4+ (T'[I]).
We compute x [1]([RV=]1) = 1 (1 ® [[*°]1) = —[Gn] € K (RES[1]).
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Next, define a group homomorphism B, : 'K(RES[m]) — !K(RES[r]) by
Bm([(X]) = [X x A"™™]. Define y : ®m<n K(RV[m]) — K(RES[n]) by y =
> Bm © x[m]. Then y is a group homomorphism, and y (a)y (b) = y (ab) x [A"]
fora € K(RV[m1]), b € K(RV[m2]), m1 + m> < n. Again this is easy to verify on
homogeneous elements.

Finally, we compute y on the standard generator J = [RV>9]y +[1]o — [1]; of
Iip. Since x[11(IRV>?]}) = —[G], we have

y(RV7])) = B1(—[Gn]) = —[Gm x A" ']
On the other hand,
Y ([110) = Bo([110) = [A"],,
y (1) = Bi([1]) = [A" '],

Thus y(J) = [A" ',_1 x (=[Gnli + [A']; = [1]}) = 0. A homomorphism
K RV[=< n])/Is, — K(RES|[n]) is thus induced.
(2) For a € K(RV[m]), let E(a) = B (a)/[A™]. For any large enough n, we
have €(a) = €,(a)/[A"]. The formulas in (1) prove that € is a ring homomorphism.
(3)—(4) The proof is similar, using x’ from Lemma 9.6 in place of x of Lemma9.5,

and the identity in place of B,,. O
Corollary 10.6. The natural morphism K(RES[n]) — K(RV[=< n])/Is, has the
kernel contained in 1. O

Lemma 10.7. Let T = ACVFr(()) or T = ACVER (), F a field of characteristic
0, with val(F) = (0), val(F((t))) = Z, and val(t) = 1 € Z. Then there exists
a retraction py : K{(RES) — Ky(Varp). It induces a retraction \K(RES) —
K (Varp).

Proof. Lett, € F((t))™¢ be such that r; = r and ], =tm. Fora =m/n € Q, with
meZ,neN,letty, =1t Thus ¢ — t, is a homomorphism Q — G (F((1))Y9).

Let V(a) = valy "' (). Letty = rv(ty). Thent, € V(a).

Let X € RES[n]. Then for some a,...,a, € Q, we have X C IT_, V(a;),
where V (o) = valy, ~!(e;). Define fOoa, oo x0) = (01 /by, ..., X4 /ty,). Then f
is F((¢1/™))-definable for some m, but not in general. Nevertheless, F(X) =: Y is
definable. This is because the Galois group G = Aut(Fe((t1/™))/F?((1))) extends
to a group of valued field automorphisms Aut(k((tl/ ™))/k((¢))) fixing the entire
residue field k; while Y C k; thus G fixes Y pointwise and hence setwise.

The map X +— Y of definable sets described above clearly respects disjoint
unions. It also respects definable bijections: if 2 : X — X’ is a definable bijection,
Y = f(X),Y' = F(Y’'), then fhf~!is an F((t'/*))-definable bijection ¥ — Y;
by the Galois argument above, it is, in fact, definable.

The definable subsets of k are just the F-constructible sets. Thus we have an
induced homomorphism p; : K+ (RES) — K (Varp); it is clearly the identity on
K4 (RES). It induces a homomorphism K (RES) — K (Varp).

Finally p; (valy ~'(a)) = [G ] for any & € Q; so a homomorphism on 'K (RES)
is induced. m}
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This example can be generalized as follows. Let L be a valued field with residue
field F of characteristic 0, T = ACVF, or ACVFR ;. Let A =res(L), A = Q ® A,
and let7 : A — G,,(L%) be a monomorphism, with t(A) € G,,(L). Then there
exists a retraction p; : K1 (RES) — Ky (Varp).

From Theorem 10.5 and Lemma 10.7, we obtain the example discussed in the
introduction.

Proposition 10.8. Let T = ACVFR 1), F afield of characteristic 0, with val(F) =
(0) and val(t) = 1 € Z. Then there exists a ring homomorphism &; : K(VF) —
K (Varp)[[A'T™'], with [M] = —[Gw]/[Gal, LAXT) = [XIk/[AM] for X €
Varg[k]. There is also a ring homomorphism E€; : K(VF) — K(Varg) with
LX) = [Xk.

10.2 Decomposition of xRV

An analogous decomposition is valid for the measured Grothendieck semiring urRV
(Definition 8.13).

Lemma 10.9. There exists a homomorphism Ki uI'[n] — K4 urRV([n] with
[(X, )] = [(valy, ~'(X), 1d, @ o valy)].

Proof. We have to show that a uI'[n]-isomorphism X — Y lifts to a urRV[n]-
isomorphism. This follows immediately from the definitions. O

Recall urRES from Definition 8.13. Along the lines of Lemma 9.12, we
can also describe K urRES[n] as the semigroup of functions with finite support
I' - K (RES[n]). We also have the inclusion K urRES[rn] — K4 urRV[n],
(X, /)]~ [(X, f, D],

Let /LFﬁ“ [n] be full subcategory of uI'[r] whose objects are finite. We have a
homomorphism K (uI'fi")[n] — urRES[n], (X, ®) — (valy~'(X), Id, wovaly).
As before, we obtain a homomorphism K urRES[x] k., (uriny K+ (ul'[x]) —
K4 (RV[]).

Let RES-_,y be the full subcategory of RV -,y whose objects are in RES; this
is the same as RV except that morphisms must respect Y _ val,,. Let vol " pe the
subcategory of finite objects of vol I'.

Proposition 10.10.

(1) The natural map K+ (urRES[*]) Ok, (urfiny Ky (ul'[%]) > K4+ (urRV[x]) isan
isomorphism.

(2) So is K+ (RESp_,or[*]) Ok, (vol fin[4]) K1 (volT'[*]) = K4+ RV [*D).

(3) The decompositions of this section preserve the subsemirings of bounded sets.

Proof. We first prove surjectivity in (1). By the surjectivity in Corollary 10.3, it
suffices to consider a class ¢ = [(X x Valrv_l(Y), f, w)] with X € RES[k], Y C rl,
fx,y) = (fox),y), and w : X x (valr~1(¥Y)) — RV. In fact, as in Proposi-
tion 10.2 we may take dim(Y) = [, and inductively we may assume that any class
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[(X' xY', f/, )] with dim(Y’) < [ is in the image. Since we may remove a subset
of Y of smaller dimension, applying Lemma 3.17 to o : X x val,~1(Y) > T, we
may assume w(x, y) = ' (y) when valy(y) = y. Now ¢ = [(X, fo, D]Q[(Y, o)].
The proof of surjectivity in (2) is similar.
The proof of injectivity in (1)—(2) is the same as of Proposition 10.2 and Corol-
lary 10.3. (3) is clear by inspection of the homomorphisms. O

We now deduce Theorem 1.3. For a finite extension L of Q,, write voly (U) for
volp (U(L)). Let r be the ramification degree, i.e., val(L*) = (1/r)Z. Let Q = q".
The normalization is such that M has volume 1; so an open ball of valuative radius y
has volume ¢"? = QY. Thus the volume of val,, ~!(y) is (¢ — 1) Q7. Also the norm
satisfies |y| = Q¥

Proof of Theorem 1.3. For a € Tk let Z(a) = {x € O] :val(fi(x)) = a1...
val(fi(x)) = ax}. Then

/O =)0 @ volL(Z (@),

L ae(I'z0)k

According to Propositions 4.5 and 10.10, we can write

v

Z(a) ~ ’ul LX; x LA;(a),
1=

where A; is a definable subset of Fk"’_”Z(i), hi : A; — T* the projection to the first k
coordinates, A;(a) = {d € I'"2Y : hi(d) = a}, X; = (Xi, fi) € RES[n1(i)], and ~
denotes equivalence up to an admissible transformation. Thus

volL(Z(a)) = VOlL <91 LX,’ X LA,‘(Cl)) = ZVOIL (LXI')VOIL(LAi(a)).

i=1

Ifb=(b1,...,brin,4)) € A, let hf)(b) be the sum of the last n, (i) coordinates.

Since val;y, takes only finitely many values on a definable subset of RES, we
may assume Y _ valy (f(x)) = y (i) is constant on x € X;. Then voly (LX;(L)) =
0?®|X;(L)|. Thus

/ A=Y 1X@IerY Y @ ol (LA (@), (10.1)
o1 i ae(I'z0)k
Now VOIL(LAi (a)) = ZheA;,h(b):a(q — 1)”2(1) QhO(h). Thus

> @ ol La(@) = Y QMO (g — ym® glo®
ae(I'z0)k beA; (10.2)

=(g— D"Devyi, o(A).

The theorem follows from equations (10.1)—(10.2). m]
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Let A be the set of definable points of I'. Recall that for X < RV, [X];
denotes the class [(X,Idx)] € RV[1] of X with the identity map to RV, and
the constant form 1. For a € A, let &, = [(valy,~1(0),1d,a)] € RES[1],
fa = [{1}x, Id, a] € RES[1] where a in the third coordinate is the constant function
with value a. If a lifts to a definable point d of RV, multiplication by d shows that
éq = [valy'(a),1d, 0], f, = [{d},1d, 0]. Note &,6, = é44pe0; and &y = [Gm].
Let t, € RES[1] be the class of (valrv’1 ((a, 00)), 1d, 0). The generating relation of
prlsp is thus (7o, fo) (Lemma 8.20(6)). Let b be the class of [(RV>?, Id, x~1)].

Let !Iﬁ be the ideal of K(urRES[*]) generated by the relations e,4+p =
[(valr\,_1 (a),1d, b)], where a, b € A, b denoting the constant function b. Let |7, be
the ideal generated by !/ B as well as the element [A1];.

Theorem 10.11. There exist two graded ring homomorphisms

f , f KT (urVEL) = K GurRVERD/S — K (urRES[<])1,
such that the composition
K (urRES[*]) — K (urRV[x])/1§, — K (urRES[*])/!1,
equals the natural projection

7w : K(urRES[*]) — K(urRES[x])/!1,,

ff)=—[{0k}]1, f/f)=0-

Proof. The identification Keff (urVE[x]) = K(,urRV[*])/Iffp is given by Theo-
rem 8.28, and we work with K(MFRV[*])/IQLP.
According to Proposition 10.10, we can identify

with

K (urRV[+]) = K (LrRES[*]) ® . (,rim) K (LI []).

We first construct two homomorphisms of graded rings R, R’ : K (urRV[x])
— K (urRES[x])/!1,. This amounts to finding graded ring homomorphisms
K (uI'[*]) — K(urRES[x])/!1,, agreeing with 7 on the graded ring K+(,uFﬁ“). It
will be simpler to work with R, R’ together, i.e., construct

R" = (R, R'): K(ul[n]) > (K (urRES[n])/!1,)*.
Recall from Lemma 9.12 the isomorphism
¢ : K(ul'[n]) — Fn(I", K(I'))[n].

Let x” : K(I'[n]) — Z? be the Euler characteristic of Proposition 9.4; so that
x" = (x, x); cf. Lemmas 9.5 and 9.6. We obtain by composition a map E, =
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(En, E)) : Fn(T, K(T'[n])) — Fn(T, Z)%. Here Fn(T", Z) is the group of functions
g : ' = Zsuchthat g(TI') is finite and g’l (z) is a definable subset of I" (a finite union
of definable intervals and points). Thus Fn(T", Z) is freely generated as an Abelian
group by {pa, qa, r}, where r is the constant function 1, and for a € A, p,.,q, are
the characteristic functions of {a}, {(a, 00)}, respectively. Define ¢, : Fn(T", Z) —
K (urRES[*]):

Ym(pa) = [Gm]niléa = [Gm]nfaa Yu(qa) = _[Gm]nfm Yu(r) = 0.
For u € K (ul'[n]), let R"(u) = ¥, (E, (¢ (u))).
Claim. R" : K(uT'[*]) — K(,urRES[m])2 is a graded ring homomorphism.

Proof. Wehave already seen that ¢ is aring homorphism, so it remains to show this for
Yo E//. Now by Proposition 9.4, x”(Y) = x”(Y’) iff [Y] = [Y’] in the Grothendieck
group of DOAG. Hence given families Y;, Y, of pairwise disjoint sets with x” (Y;) =
x"(Y/), by Lemma 2.3 we have x”(U;Y;) = x”(U;Y/). From this and the definition
of multiplication in Fn(I", K (I"))[*], and the multiplicativity of E}, it follows that
if E/(f) = E, (f') and E, (g) = E,;(¢') then E;, (fg) = E,,,,(fg). In other
words, E/ is a graded homomorphism from into (Fn(T, 7)2, %) for some uniquely
determined multplication » on Fn(T", 7). Clearly, (a, b) x (¢, d) = (a*ic, bxyd) for
two operations *1, *x2 on Fn([", Z).
Now we can compute these operations explicitly on the generators:

Pa * Pb = Da+b, Pa *4b = qa+b, da *4db = —qa+b

for both % and *;, and

rkjeq, =, r¥1qq = —r, rEIF =T,
r¥oe, = —T, r¥2qq =0, rEor = —r.
Composing with 1/, we see that R” is, indeed, a graded ring homomorphism. O

Let R, R’ be the components of R”.
Claim. R, R’, 7 agree on K (uI'"). R(19) = R'(19) = —éo.

This is a direct computation. It follows that R, R’ induce homomorphisms
K (urRV[x]) — K(urRES[x]). Since &y + fo = [(A1,1d, 0)], modulo !/, both
R, R’ equalize urlsp, and hence induce homomorphisms on K (urRV[*])/urlsp —
K (urRES[*])/!1,,. m]

Remark. The construction is heavily, perhaps completely constrained. The value of
Ym(pg) 1s determined by the tensor relation over K (uFﬁ“). The value of ¥, (q4)
is determined by the relation Isp. The choice v (r) = 0 is not forced, but the multi-
plicative relation shows that either r or —r is idempotent, so one has a product of two
rings, with ¥ (r) = 0 and with ¥ (r) = £1. In the latter case we obtain the isomor-
phisms of Theorem 10.5. Thus the only choice involved is to factor the fibers of an
element of Fn(T", K (I"))[n] through x”, i.e., through K (DOAG). It is possible that
K(T'[n]) = K(DOAG[n]) (cf. Question 9.9). In this case, §, ', ¥, ' are injective
as a quadruple, and determine K (.« VF[*]) completely, at least when localized by the
volume of a unit ball.
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11 Integration with an additive character

Let @ = VE/M. Let ¢ : VF — Q be the canonical map.

Motivation. For any p, Q(Q,) can be identified with the pth power roots of unity
via an additive character on Q,. For other local fields, the universal ¥ we use is
tantamount to integration with respect to all additive characters of conductor M at
once. Thus €2 is our motivic analogue of the roots of unity, and the natural map
VF — VF/M, an analogue of a generic additive character.

Throughout this paper, we have been able to avoid subtractions and work with
semigroups, but here it appears to be essential to work with a group or at least a
cancellation semigroup. The reason is that we will introduce, as the essential feature
of integration with an additive character, an identification of the integral of a function
f with f + g if g is O-invariant. This corresponds to the rule that the sum over a
subgroup of a nontrivial character vanishes. Now for any & : Q@ — K (uVF), it
is easy to construct 4’ : @ — K, (uVF) such that & + i’ is O-invariant. Thus if
f+h= f"+hforsomeh,then f = f+h+h = f ' +h+h = f'. Thus
cancellation appears to come by itself.

If we allow all definable sets and volume forms, a great deal of collapsing is caused
by the cancellation rule. We thus use the classical remedy and work with bounded sets
and volume forms. The setting is flexible and can be compatible with stricter notions
of boundedness. This is only a partial remedy in the case of higher-dimensional local
fields; cf. Example 12.12.

The theory can be carried out for any of the settings we considered. Let R be one
of these groups or rings, with D the corresponding data. For instance, D is the set of
pairs (X, ¢) with X a bounded definable subset of VF" x RV*, and ¢ : X — RV is
a bounded definable function; R is the corresponding Grothendieck ring. Similarly,
we can take I"-volumes, or pure isomorphism invariants without volume forms. In
this last case there is no point restricting to bounded sets. As we saw, two Euler
characteristics into the Grothendieck group of varieties over RES do survive.

In each case, we think of R as a Grothendieck ring of associated RV-data, modulo
a canonical ideal.

Everything can be graded by dimension, but for the moment we have no need to
keep track of it, so in the volume case we can take the direct sum over all n or fix one
n and omit it from the notation.

The corresponding group for the theory T4 or T, will be denoted R4, Ry,
etc. When V is a definable set, we let Dy, Ry denote the corresponding objects
over V. For instance, in the case of bounded RV-volumes, Dy is the set of pairs
(X CVxW,¢:X — RV*suchthatforanya € V, (X4, ¢|X,) with X, bounded.

If R is our definable analogue of the real numbers (as recipients of values of p-adic
integration), the group ring € = R[2] will take the role of the complex numbers. We
have a canonical group homomorphism (VF, +) - Q € G,,(C), corresponding to
a generic additive character.

Integration with an additive character can be presented in two ways: in terms
of definable functions f : X — Q (Riemann style), where we wish to evaluate
expressions such as f x f(x)¢(x); classically f usually has the form ¥ (h(x)), where
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h is a regular function and v is the additive character. Or we can treat definable
functions F : 2 — R (Lebesgue style), and evaluation fw cq F(w). We will work
with the latter. Given this, to reconstruct a Riemann style integral, given f : X — Q,
and an R-valued volume form ¢ on X, let

F(w) =/ ¢ (x).
)

/f(X)¢>(X)=/ wF (w).
X weR

It thus suffices to define the integral of a definable function on €2. Such a function
can be interpreted as an M-invariant function on VF. We impose one rule (cancel-
lation): the integral of a function that is constant on each O-class equals zero. The
integral is a homomorphism on the group of M-invariant functions VF — R, vanish-
ing on the O-invariant ones. We give a full description of the quotient group, showing
that the universal homomorphism of this type factors through a similar group on the
residue field.

Recall the group Fn(V, R) of Section 2.2. We will not need to refer to the dimen-
sion grading explicitly.

If V is a definable group, V acts on on Fn(V, R) by translation.

Then we can define

Definition 11.1. For a definable subgroup W of V, let Fn(V, R)Y be the set of W-
invariant elements of Fn(V, R): they are represented by a definable X, such that if
t € Wanda € V then X[a], X[a + t] represent the same class in K (uVF, ()[n].

Lemma 11.2. An element of Fn(VF, R)™M can be represented by an M-invariant
X C (VF x %).

Proof. LetY € Dgg represent an element of Fn(VF, R)M. Thus each fiber ¥, €
DRV By Lemma 3.52, for a € VF/M one can find ¥, € DRV such that for some
a € VFwitha + M =a, Y, = Y,. As in Lemma 2.3 there exists ¥" € Ryg/y such
that Y, is the fiber of Y’ over a. Pulling back to VF gives the required M-invariant
representative. O

Since the equivalence is defined in terms of effective isomorphism, Definition 8.2,
it is clear that two elements of Dg, are equivalent iff the corresponding pullbacks to
Fn(VF, )M are equivalent.

The groups Fn(VF, R)™ and Fn(VE/M, R) can thus be identified.

Note that the effective isomorphism agrees with pointwise isomorphism for
Fn(VF, R)™, but not for Fn(VE/M, R).

The group we seek to describe is A = At = Fn(VF, RYM /En(VF, R)©. The
quotient corresponds to the cancellation rule discussed earlier.

Let Fn(k, R) be the Grothendieck group of functions k — R, with addition
induced from R.

Let € = R[] be the ring of definable functions 2 — R with finite support,
convolution product.
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Remark. C embeds into the Galois-invariant elements of the abstract group ring
R5[Q7], where T = Tyci(g).

The additive group k = O/M is a subgroup of 2 = VF/M, and so acts on
Q by translation. It also acts naturally on Fn(k, R). This gives two actions on
Fn(k, €) = Fn(k, R)[2]. Let Fn(k, C)k denote the coinvariants with respect to the
anti-diagonal action, i.e., the largest quotient on which the two actions coincide.

In general, the upper index denotes invariants, the lower index coinvariants.

Fn(VF, R) is the ring of definable functions from VF to R. Fn(k, R) is the
ring of definable functions from k to R. Fn(k, C) is the ring of definable functions
from k to C; equivalently, it is the set of Galois-invariant elements of the group ring
Fn(k, R)[€2].

The action of k on Fn(k, C) is by translation on k, and negative translation on 2
and hence on C. The term (Const) refers to the image of the constant functions of
Fn(k, ) in Fn(k, @)k. (It is isomorphic to (C/k).)

N
Theorem 11.3. There exists a canonical isomorphism Fn(k, C)k/(Const) =
Fn(VE, R)™M/ En(VF, R)°.

Proof. Let Agy be the subring of Fn(VE, R)™ consisting of functions represented
by elements of Fn(VFE, D)™ whose support projects to a finite subset of VE/O.
Adefinable function on k can be viewed as an M-invariant function on O; this gives

Fn(k,fR)EFn(o,ﬂz)M. (11.1)

On the other hand, we can define a homomorphism

Fn(0, HM[Q] > Afin 1 Y al@o > Y al@).. (11.2)
weW weW

where W is a finite A-definable subset of 2,a : W — Fn(O, R)M is an A-definable
function, (sothat )",y a(w)w is atypical element of the group ring Fn (0O, RMQ),
and b, is the translation of b by w, i.e., b,(x) = b(x — w).

(11.2) is surjective: Let f € Ag, be represented by F, with support Z, a finite
union of translates of O. By Lemma 3.39 there exists a finite definable set W, meeting
each ball of Z in a unique point. Define a : W — Fn(O, R)™ by

a(w) = (flo+ 0) .

Then (11.2) maps Y a(w)w to f.
The kernel of (11.2) is the equalizer of the two actions of k. Composing with

(11.1), we obtain an isomorphism (Fn(k, R)[Q2])x = Agj or, equivalently,

Fn(k, C)x = Agy. (11.3)

The last ingredient is the homomorphism



Integration in valued fields 385
Agn — A. (11.4)

We need to show that it is surjective, and to describe the kernel.

Using the representation D of elements of R by RV-data, an element of A is
represented by an M-invariant definable W C VF x RV*.

By Lemma 3.37, for each coset C of O in VF apart from a finite number, W N (C x
RV"*!) is invariant under translation of the first coordinate by elements of ©. Thus
W is the disjoint sum of an O-invariant set W’ and a set W’ C VF x RV* projecting
to a finite union Z of cosets of O in VF, i.e., representing a function in Agy,.

Clearly, W' xgy» VF" lies in Fn(VFE, R)°.

Thus (11.4) is surjective; the kernel is A}?n. Composing (11.3),(11.4) we obtain
an isomorphism

A Z(Fn(k, R)[R2])k/(Const).
Using the identification Fn(k, R)[2] >~ Fn(k, ©), the theorem follows. O

Note that Fn(k, @)X ~ @, via Fn(k, €) ~ Fn(k x €, R)fn.

11.1 Definable distributions

R is graded by dimension (VF-presentation) or ambient dimension (RV-presentation).
Write R = @,,>0R[n].

Let R4y be the dimension-free version: first form the localization R[[0] N l], where
[0]; is the class of the point 1 € RV, as an element of RV[1]. Equivalently, [0]] is
the volume of the open n-dimensional polydisc O". Let Ry be the zero-dimensional
component of this localization. Similarly, define Cy¢ so that Cyr = Rgr[2]. We can
also define K (D)yy, and check that the groupification is Ryy.

Givena = (ay,...,ay) € VF and y = (y1,...,y) € I'", let B(a,y) =
I'_, B(a;, yi), where B(a;, y;) = {c € VF : val(c — a;) > y;}. Call B(a, y) an
open polydisc of dimension y. If y € T, let B(a, y) = B(a, (y, ..., y)) (the open
cube of side y).

Note that [B(0, y)] is invertible in R;¢, in each dimension. In particular, in
dimension 1, [B(0, y)][B(0, —y)] = [0]%. Note also that [B(a, y)] T[B(O’ )1

We proceed to define integrals of definable functions.
Let U be a bounded definable subset of VF". A definable function f : U —
K (D) has the form [0];" F, where F : U — K4 D[m] is a definable function,

represented by some F € D[m + n]y. In case F can be taken bounded, define

/ f = [0]1_m+n[F]n+m-
U

We say that f is boundedly represented in this case.

In particular, vol(U) = f vl = [O]Im[U I is treated as a pure number now,
without dimension units. (Check the independence of the choices.)

This extends by linearity to |, y f for f: U — Ryy, provided f can be expressed
as the difference of two boundedly represented functions U — K4 (D)yy.
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We now note that averaging twice, with appropriate weighting, is the same as
doing it once. The function y’ in the lemmas below corresponds to a partition of U
into cubes; y’(u) is the side of the cube around u € U.

Lemma 11.4. Let U be a bounded open subset of VF", f a boundedly represented
function on U. Let y' : U — T be a definable function such that if u € U and
u' € B(u,y' (w)) thenu' € U and y'(u") = y'(u). Then

/ f= / [vol(B(u,y’(u»)—1 / f]
U U B(u,y’ (u))

Proof. Let f = [0];™F, where F : U — K D[m] is bounded. We have
vol(B(u, y")) = [0],"[y'(w)]" so

vol(B(u, ")) ~' = [011 [y’ )]~ = [01;" [y (w)]".

, we have to show

Thus, multiplying by [0]7" "

(017" [F] = [y 1", v, 2) s u € U,u' € Bu, y' ), (', 2) € F}1.

Now u’ € B(u,y’'(w)) iff u € B, y'(u’)). Applying the measure-preserving
bijection (u,u’,z) — (u — u',u’,7’) we see that the [{(u,u’,z) : u € U,u’ €
B(u,y'(w)), ', 2) € F}] = [yI/l{', 2) : (', z) € F], so the equality is clear. O

We now define the integral of definable functions into C4¢. By definition, such
a function is a finite sum of products fg, with f € Fn(U, R4¢) and g € Fn(U, Q).

Define
[re=[ of s
U weR g*l(w)
and extend by linearity.

Note that this is defined as soon as g is boundedly represented. (Again, check the
independence of the choices.)

Definition 11.5. A definable distribution on an open U € VF” is a definable function
0:U XTI — Cgf,suchthatd(a, y) = 0(d’, y)if B(a, y) = B(a’, y), and whenever
y’ > y in each coordinate,

b, y) = f vol(B(0, ¥") ™" o(u, ).
ueB(b,y)

As in Lemma 11.2, the invariance condition means that 9 can be viewed as a
function on open polydiscs, and we will view it this way below.

If 0 takes values in R4z, we say itis Ry¢-valued. By definition, d can be written as
a finite sum ) _ w;0;, where 9; is an Ry r-valued function; in fact, 9; is an Ry¢-valued
distribution.

We wish to strengthen the definition of a distribution so as to apply to subpolydiscs
of variable size. For this we need a preliminary lemma.
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Lemma 11.6. Let U = B(a, y) be a polydisc. Let y' : B(a,y) — T be a definable
function such that y'(u") = y'(u) for u’ € B(u, y'(u)). Then y' is bounded on U.

Proof. Suppose for contradiction that 3’ is not bounded on B(a, y); i.e.,
(V8 € T)3u € Bla, y) (' (u) > 8).

This will not change if we add a generic element of I to the base, so we may assume
I'(dcl(@)) # (0). By Lemma 3.51, there exists a resolved structure with the same
RV-part as (fJ); hence we may assume T is resolved. By Section 6 any VF-generated
structure is resolved. By Lemma 3.49, for any M = T and ¢ € VF(M), acl(c) is an
elementary submodel of M. Consider ¢ with val(c) = po, where pyg is the generic
type at oo of elements of I, i.e., po|A = {x > § : 6 € I'(A)}. Since

acl(c) = (V6 e I)@Qu € B(a, y) (Y (u) > 8)

there exists e € acl(c) with e € B(a, y) and y'(¢) > val(c). By Lemma 5.12,
there exists eg € acl(¥) such that (c,e) — (0, ep). In particular, e9 € B(a, y).
But then since e — eg and y’(eg) € T'(acl(¥)), we have e € B(eg, y'(eg)). Thus
y'(e) = y'(ep). But then y’(ep) > val(c), contradicting the choice of c. O

Lemma 11.7.

(1) Letd : U x I' — Cgy be a definable distribution. Let y’ : U — T be a definable
Sfunction with y'(u) > y, such that y'(u') = y'(u) foru’ € B(u, y'(u)). Then

o(b,y) = / vol(B(O, ' ()" o(u, y' ). (11.5)
ueB(b,y)

(2) Let 01, ddp be definable distributions on U such that for any x € U, for all
large enough y € T, forany y € B(x,y) and any y' > y, 01(B(y,y")) =
02(B(y, v')). Thend; = 0.

Proof.

(1) To prove (11.5), fix b, y. We may assume U = B(b, y). Using Lemma 11.6,
pick a constant y” with y” > y’(u) for all u € B(b, y). Use the definition
of a distribution with respect to y” to compute both d(B(b, v)) and for each u
0(u, y'(u)), and compare the integrals using Lemma 11.4.

(1) Define y'(u) to be the smallest y’ such that for all y” > y’ and all y €
B(u, y), 01(B(y,y")) = 02(B(y,y")). Itis clear that y'(u") = y’(u) for
u' € B(u,y'(u)). (11.5) gives the same integral formula for 0;(b, y) and
02(b, y). |

Let 0 be a definable distribution, and U an arbitrary bounded open set. We can
define 0(U) as follows. For any x € U, let p(x, U) be the smallest p € I" such that
B(x,p) C U. Let B(x,U) = B(x, p(x, U)); this is the largest open cube around x
contained in U. Note that two such cubes B(x, U), B(x’, U) are disjoint or equal.
Define
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WV) = / vol(B(x, U))"o(x, p(x, U)).
xeU

More generally, if / is a locally constant function on VF" into Ry with bounded
support, we can define

0(h) = / h(x)[B(x, h)]_lb(x, p(x,U)), (11.6)
xeVF"

where now B(x, h) = B(x, p(x, U)) is the largest open cube around x on which %
is constant.

Proposition 11.8. Let 0 be a definable distribution. Then there exists a definable
open set G C VF" whose complement Z has dimension < n, and a definable function
g8 : G — Cyy such that for any polydisc U € G

o0U) = / g.
U

Proof. Since 0 is a finite sum of R,r-valued distributions, we may assume it is Ry-
valued. Given a € VF", we have a function o, : I' — Ryy defined by a,(p) =
0(B(a, p)). Using the RV-description of R, and the stable embeddedness of RVUT,
we see that «, has a canonical code c(a) € (RV UT)*,

Let G be the union of all polydiscs W such that c is constant on W. Let Z =
VF"\ G. By Lemma 5.13, dim(Z) < n.

Claim. Let W be a polydisc such that c is constant on W. Then for some r € Ryy,
for any polydisc U = B(a, p) S W, d(a, p) = rvol(U).

Proof. Since c is constant on W, for some function §, all p and all b € W with
B(w, p) € W, we have 0(B(w, p)) = 6(p). By the definition of a distribution we
have, foranya € W,

8(p)vol(B(a, p')) =volB(a, P)8(p).

Now vol(B(a, p)) =volB(0, p). Thus §(p)vol(B(0, p')) =volB(0, p)s(p). Since
a a
this holds for any a € W, by Proposition 3.51 we have

8(p)vol(B(0, p"))) = volB(0, p)(p").

Thus 6(p)/volB(0, p) = r is constant. The claim follows. ]

The proposition also follows using Lemma 11.7. O
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11.2 Fourier transform

Let ¢ be the tautological projection K — K/M = Q.
Let g : VF" — G4y be a definable function, bounded on bounded subsets of VF".
Define a function F(g) by

F(@)W) =f g(y)(f Yvx-y).
eVF xelU

y

This makes sense since for a given U, ( fx <y ¥ (x-y)) vanishes for y outside a certain
polydisc (with sides inverse to U). Moreover, we have the following.

Lemma 11.9. F(g) is a definable distribution.
Proof. This follows from Fubini, Lemma 11.4, and chasing the definitions. O

Corollary 11.10. Fix integers n, d. For all local fields L of sufficiently large residue
characteristic, for any polynomial G € L[X1, ..., X,] of degree < d, there exists
a proper variety Vg of L" such that F(|G|) agrees with a locally constant function
outside V.

Proof. The proof follows from Lemmas 11.9 and 11.8. O

See [4] for the real case.

12 Expansions and rational points over Henselian fields

We have worked everywhere with the geometry of algebraically closed valued fields,
or more generally of T, but at a geometric level; all objects and morphisms can be
lifted to the algebraic closure, and the quantifiers are interpreted there.

For many purposes, we believe this is the right framework. It includes, for
instance, Igusa integrals fx eX(F) | f(x)|*, and we will show in a future work how to
interpret in it some constructions of representation theory. See also [21].

In other situations, however, one wishes to integrate definable sets over Henselian
fields rather than only constructible sets; and to have a change of variable formula for
definable maps, as obtained by Denef-Loeser and Cluckers-Loeser (cf. [7]). It turns
out that our formalism lends itself immediately to this generalization; we explain in
this section how to recover it. The point is that an arbitrary definable set is an RV-
union of constructible ones, and the integration theory commutes with RV-unions.

We will consider F that admits quantifier elimination in a language L™ ob-
tained from the language of T by adding relations to RV only. For example, if
F = Th(C((X))), F has quantifier elimination in a language expanded with names
D, for subgroups of I' (with D, (F) = nI'(F)).

There are two steps in moving from F€ to F. We will try to clarify the situation
by taking them one at a time. The two steps are to restrict the points to a smaller set
(the F-rational points), and they enlarge the language to a larger one (with enough
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relation symbols for F-quantifier elimination). We will take these steps in the reverse
order. In Section 12.1 we show how to extend the results of this paper to expansions
of the language in the RV sorts, and in Section 12.3 how to pass to sets of rational
points over a Hensel field.

The reader who wishes to restrict attention to constructible integrals (still taking
rational points) may skip Section 12.1, taking T™ = Tin Section 12.3. In this case one
still has a change of variable formula for a constructible change of variable, but not for
a definable change of variable. An advantage is that the target ring correspondingly
involves the Grothendieck group of constructible sets and maps rather than definable
ones, which sometimes has more faithful information; cf. Example 12.12.

12.1 Expansions of the RV sort

Let T be V-minimal.

Let T™ be an expansion of T obtained by adding relations to RV. We assume that
every M = T embeds into the restriction to the language of T of some N = T™.
(As T is complete, this is actually automatic.) By adding some more basic relations,
without changing the class of definable relations, we may assume T eliminates RV-
quantifiers. As T eliminates field quantifiers, and T™ has no new atomic formulas
with VF variables, T eliminates VF-quantifiers, too, and hence all quantifiers.

For instance, T+ may include a name for a subfield of the residue field (say,
pseudofinite) or the angular coefficients the Denef—Pas language (where RV is split).
Write +-definable for T*-definable; similarly, tp, will denote the type in T, etc.
The unqualified words formula, type, and definable closure will refer to quantifier-free
formulas of T.

Lemma 12.1. Let M |= TT. Let A be a substructure of M, c € M, B = A(c) NRV.

(1) tp(c/A U B) UTT gup implies tp, (c/A U B).
(2) Assume c is TT 5-definable. Then c € dcl(A, b) for some b € A(c) NRV.

Proof.

(1) This follows immediately from the quantifier elimination for T*. Indeed, let
¢(x) € tp,(c/AU B). Then ¢ is a Boolean combination of atomic formulas,
and it is sufficient to consider the case of ¢ atomic, or the negation of an atomic
formula. Now since any basic function VF” — VF is already in the language of
T, every basic function of the language of T™ denoting a function V F" — RV
factors through a T-definable function into RV. Hence the same is true for all
terms (compositions of basic functions). And any basic relation is either the
equality relation on VF, or else a relation between variables of RV. If ¢ is
an equality or inequality between f(x), g(x), it is already in tp(c/A). Now
suppose ¢ is a relation R(f1(x),..., fn(x)) between elements of RV. Since
B(c) "RV C B, the formula f;(x) = b; lies in tp(c/A U B) for some b; € B.
On the other hand, R(by, ..., b,) is part of T . These formulas together imply
R(f1(x), ..., fa(x)).
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(2) We must show that ¢ € dcl(A U B). Let p = tp(c/A U B). By (1), p generates
a complete type of T 4up. Since this is the type of ¢ and ¢ is T 4-definable,
and since any model of T embeds into a model of T™, p has a unique solution
solution in any model of T. Thus ¢ € dcl(A U B). O

We will now see that any T -definable bijection decomposes into T-bijections,
and bijections of the form x — (x, j(g(x))) where g is a T-definable map into RV"”
and j is a T*-definable map on RV.

Corollary 12.2.

(1) Let P be a T"-definable set. There exist T-definable f : P — RV* and a
T -definable Q  RV* such that P = f~' Q.

(2) Let Py, P, be T -definable sets, andlet F : Py — P> be a T -definable bijection.
Then there exist g; - f’, — R; CRV"™, R CRV" h; : R — R;, and a bijection
H: P Xgihy R — P, X g, hy R over R, all T-definable, and T -definable
Qi CR;, Q C R and ji: Qi — Q suchthat P; = gi_lQi, hiji =Idg,, and
forx € Py,

J181(x) = pga(F(x)) =: j(x) and H(x, j(x)) = (F(x),j(x). (0

Moreover, if P; € VF' x RV™ projects finite-to-one to VF", then R — R; is
finite-to-one.

Proof.
(1) Let F be the family of all T-definable functions f : W — RV™, where W is
a definable set.

Claim. If tp(c) = tp(d) and f(c) = f(d) for all f € F with ¢, d € dom(f), then
ceP &< deP.

Proof. Wehavetp(c, f(c)) =tp(d, f(d)) =tp(d, f(c)),sotp(c/f(c)) =tp(d/f(c))
forall f € F with ¢ € dom(f), and thus tp(c/B) = tp(d/B), where B = A(c)NRV.
It follows that tp, (¢) = tp, (d) and, in particular, c € P <= d € P. m]

By compactness, there are (f;, W;)i", € Fsuchthatifc € W; <= d € W; and
fi(c) = fi(d) whenever c,d € Wi,thenc € P <= d € P. Let P= U; W;, and
extend f; to ﬁby fikx) =occifx ¢ W;. Let f(x) = (fi(x), ..., fu(x)). Letting
P =U;W;and Q = f(P), (1) follows.

(2) Consider first a T -type p = tp,(c1), ¢c1 € Pi. Let ca = F(c1). Using
Lemma 3.48, there exists gip € F such that ¢; = gip (ci) generates dcl(c;) N RV.
It follows as in Lemma 12.1(1) that ¢; generates dcly(c;) N RV. Let e gener-
ate del(ci, ¢2) N RV; we have ¢; = h! (e) for appropriate T-definable h/. Note
dcly(c1) = dcly(cp), and so e € dcly(c;). Now quantifier elimination for T+
implies the stable embeddedness of RV, in the same way as for ACVF (cf. Sec-
tion 2.1). By Lemma 2.9 tp,(c;/e;) implies tp, (¢;/RV); in particular, since
eedcly(ci)e = jip(ei) for some T -definable jip. By Lemma 12.1(2) over dcl(cy),
¢p € dcl(cy, e); similarly, c; € dcl(cp, e). Thus there exists a T-definable invertible
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HP with HP (c1, e) = (c2, e). Equations (¢) have been shown to hold on p. Now g;
extends to a T-definable function g; : P; — R;. By compactness (¢) holds on some
definable neighborhood of p; and by (1) this neighborhood can be taken to have the
form g;~!Q; for some Q. Finitely many such neighborhoods cover Pj, and the
data can be sewed together as in (1). We thus find Fl, R, R1, R2, g1, g2, h1, ho, H,
01, j1, j2 such that A; j; (x) = x and (¢) holds on gl’lQl = P1. Let 0> = h2j101;
it follows that P, = F(P;) = g2~ ' 0.

To prove the last point, since c; € dcl(cq, e) we have (Lemma 3.41) ¢; € acl(cy).
Bute € dcl(cy, ¢2) soe € acl(dcl(cy)); and as e € RV" for some m, e € acl(dcl(ey)).

Let VFT be the category of +-definable subsets of varieties over VF N dcl(¥),
and +-definable maps. Define effective isomorphism as in Definition 8.2; let K, °'f
denote the Grothendieck group of effective isomorphism classes, and let [X] be the
class of X.

Let RV [x] be the category of pairs (Y, f), where Y is a +-definable subset of X
for some (X, f) € ObRV[x] (Definition 3.66). A morphism (Y, f) — (Y', f')isa
definable bijection i : Y — Y’ such that f/(h(y)) € acl(f(y)) fory € Y.

Let K (RVT[x]) be the Grothendieck semigroup of isomrphism classes of RV™";
let I, be the congruence generated by (J, 11), where J = {1}o + [RV>0]1.

Proposition 12.3. There exists a canonical surjective homomorphism of Grothen-
dieck semigroups

f LKy (VE[]) = K4 RVF[]) /I

determined by
%[X] =[W]/lyp < [X]=[LW].

Proof. We have to show the following:

(i) Any element of K| (VF") is effectively isomorphic to one of the form [LW].
(i) If [LW;] = [LW>] then ([W1], [W2]) € ILsp.

(1) By Corollary 12.2(1), a typical element of K, (VF') is represented by P =
=10, where Q € RV*is T*t-definable, f P — RV* is T-definable. For any
a € RV*, f~1(a) is T,-definable, and [ f ~' (a)] = [LLC,] where [C,] [ff L)
Since L. commutes with RV-disjoint unions, it follows that [P] = [LW] where
W = Ugep Ca.

(i1) Assume [LW;] = [LW;]. By Proposition 3.51, the base can be enlarged so as
to be made effective, without change to RV thus to show that ([W1], [W2]) € I;p we
may assume LW, LWz are isomorphic. Let f : LW; — LW, be an isomorphism.
Let P, = LW; and let P,, Ri, gi,hi, R, H, O, O;, ji be asin Corollary 12.2(2).

Since P; = g; lQl = LW;, the maximal ;VJ—mvarlant subset of P contains P;,

SO wWe may assume Pi is ~-invariant; in other words, Pi = ILWi for some T-definable
v

1717,- € RV[x, -] containing W;.
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By Lemma 7.8, there exists a special bijection o : LWi* — LW; such that
gioo factors through p, i.e., for some e : Wl.* — R; we have gi o0 = ¢; o p on
LW;. Let W;* be the pullback of W; to W}, so that o (LW;*) = LW; = P;. Then
([W;], [W;i*]) € Igp, so it suffices to show that (W], W}) € Ip. Since P; = gi~'oi,
we have W = e,_lQl

Forc € R, let P;(c) = o~ g1 (hi(0)), Wi (¢) = ei ' (hi(c)). Then Pi(c) =
ILW (). NOW H induces a bijection Pj(c) — Pz(c) Thus by Proposmon 7.25,
(W1 (), W2(c)) € Igp. In particular, this is true forc € Q;now h; : Q — Q;isa

bijection, and W = UCGQ Wi (c). Thus ([W{], [W5]) € Igp. ]

Remark. Since the structure on RV in T7 is arbitrary, we cannot expect the homo-
morphism of Corollary 12.3 to be injective. We could make it so tautologically by
modifying the category RV™T, taking only liftable morphisms, i.e., those that lift to
VF; we then obtain an isomorphism. In specific cases it may be possible to check
that all morphisms are liftable.

12.2 Transitivity

Motivation. Consider a tower of valued fields, such as C < C((s)) < C((s))((?)).
Given a definable set over C((s))((¢)), we can integrate with respect to the 7-valuation,
obtaining data over C((s)) and the value group. The C((s)) can then be integrated
with respect to the s-valuation. On the other hand, we can consider directly the Z>-
valued valuation of C((s))((z)), and integrate so as to obtain an answer involving
the Grothendieck group of varieties over C. Below we develop the language for
comparing these answers, and show that they coincide.

For simplicity we accept here a Denef—Pas splitting, i.e., we expand RV so as to
split the sequence k* — RV* — TI'. Then rv splits into two maps, ac : VF* — k*
and val : VF* — T'. This expansion of ACVF(0, 0) is denoted ACVFPP. Note that
this falls under the framework of Section 12.1, as will the further expansions below.

Consider two expansions of ACVFP?: (1) Expand the residue field to have the
structure of a valued field (itself a model of ACVEPY). (2) Expand the value group to
be a lexicographically ordered product of two ordered Abelian groups. Then (1)—(2)
yield bi-interpretable theories. In more detail, we have the following:

First expansion. Rename the VF sort as VF,1, the residue field as VF{, and the
value group I'1. VFj carries a field structure; expand it to a model of ACVFDP, with
residue field Fp and value group I'g. Let acyy, valy; have their natural meanings.

Second expansion. Rename the VF-sort as VFq, the residue field as F and
the value group as I'y9. Add a predicate I'g for a proper convex subgroup of 'y,
and a predicate I'; for a complementary subgroup, so that I'yg is identified with the
lexicographically ordered I'g x I';.

Lemma 12.4. The two theories described above are bi-interpretable. A model of (1)
can canonically be made into a model of (2) with the same class of definable relations,
and vice versa.
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Proof. Given (1), let VFyg = VFy; as fields. Define
acpp = acjpoacyy . (12.1)
Let I'yg = I'y x T, and define valyg : VF}; — I'y9 by

valyo(x) = (valp1(x), valig(aca (x))). (12.2)

Conversely, given (2), let VF,; = VFy as fields;
021 = {x € VF21 : (3 € T'g)(valao(x) > 1)},
May = {x € VFa1 : (Vt € Tp)(valyo(x) > 1)},
VF| = 021/Ma;.
Let VF;; have the valued field structure with residue field VF;; note that the value
group VF;, /03, can be identified with I';. Note that keracyo D 1 + Mpy, so that

factors through VF7, and define acyg, acy; so as to make (12.1) hold. Then define
valy1, valjg so that (12.2) holds. O

Let VF[x] denote the category of definable subsets of VF,|, equivalently, VF,,
in the expansions (1) or (2). According to Proposition 12.3 and Lemma 2.11,
we have canonical maps K4 (VF'[x]) — KRV [*])/Lp and K (VFT[x]) —
Ky (RV;r [*])/Isp, where RV?[*] denotes the expansion of RV according to (1)-(2),
respectively.

By Proposition 8.4 we have canonical maps

K (VET[x]) = K1 (VF1[%]) ® K1 (T21[%])/1sp

(12.3)
— (K4+(Fp) ® K4+ (I'10)) ® K4+(T21)/1sp,
for a certain congruence Igp 1- And, on the other hand,
K+ (VFY[x]) > K4 (Fol#]) ® K4 (Mool /Ip (12.4)

= K4 (Fol*]) ® (K4 (Tiol*]) ® K+ (T21[xD) /Isp,-

For an appropriate Isp,. The tensor products here are over Z, in each dimension
separately.

Using transitivity of the tensor product we identify (K1 (Fp) ® K+ (I'10)) ®
K (I'21) with Ky (Fo[*]) ® (K4 (I'1o[*]) ® Ky (I'21[*])). Then

Theorem 12.5. Iy, Lsp, are equal and the maps of (12.3),(12.4) coincide.

Proof. 1t suffices to show in the opposite direction that the compositions of maps
induced by L

(K4 (Fol*]) @ K1 (Tyo[*]) @ K4 (Ta1[*]) = K4 (VF1[*]) ® K (Ta1[*])
— K4 (VFT[x]),

K (Folx]) @ K1 (T1o[*]) @ Ky (I'21[%]) — K (Fol*]) ® K4 (I'20[*])
— K (VF*[x])

coincide. But this reduces by RV-additivity to the case of points, and by multplica-
tivity to the individual factors Fy, I'21, "9, yielding to an obvious computation in
each case. m}

(12.5)

(12.6)
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12.3 Rational points over a Henselian subfield: Constructible sets and
morphisms

Let T be V-minimal, and T an expansion of T in the RV sorts.

Let F be an effective substructure of a model of T. Thus F = (Fyf, Frv), with
Fyp afield, and rv(Fyg) = Fryv; and F is closed under definable functions of T. For
example, if T = T+ = ACVF(0, 0), this is the case iff Fyr is a Henselian field and
Frv = F/M(F); any Hensel field of residue characteristic 0 can be viewed in this
way. See Example 12.8.

By a +-constructible subset of F”, we mean a set of the form X (F) = X N F",
with X a quantifier-free formula of TT. Let VF' (F) be the category of such sets, and
+-constructible functions between them. The Grothendieck semiring K VF'(F) is
thus the quotient of K VF by the semiring congruence

Ir = {(IX],[Y]: X,Y € ObVFT, X(F) = Y(F)}.

(One can verify this is an ideal; in fact, if X(F) = Y(F) and X >~ X’, then there
exists Y/ ~ Y with X'(F) = Y'(F).)

Similarly, we can define II{SV and form Ky RV(F) >~ K (RV)/I}SV. As usual,
let Is, denote the congruence generated by ([1]o + [RV>0]1, [1]1), and I,{fv + Isp
their sum.

Claim. 1f ([X], [X']) € Ir then (B[X], BIX']) € IRV + Ip.

Proof. We may assume, changing X within the VF-isomorphism class [X], that
X(F) = X'(F). Then X(F) = (X U X')(F) = X'(F), and it suffices to show
that (B[XT, BIX U X']), (BIX'], BIX U X']) € IRV Thus we may assume X C X'.
Let Z = X'\ X. Then Z(F) = ¢, and it suffices to show that (p(Z), ) € IF@V.
Now yS(Z) = [Y] for some Y with Z definably isomorphic to LY. Thus LY (F) = ;
hence Y (F) = @. Thus ([Y], #) € IRV, as required. O

As an immediate consequence, we have the following.

Proposition 12.6. Assume F < M =T, with F closed under definable functions of
T. The homomorphism 1 of Theorem 8.8 induces a homomorphism

/ : K1 VFT(F) > K4 RVT(F)/Ip. o
F

12.4 Quantifier elimination for Hensel fields

Let T be a V-minimal theory in a language LT, with sorts (VF, RV) (cf. Section 2.1).
Assume T admits quantifier elimination and, moreover, that any definable function is
given by a basic function symbol. This can be achieved by an expansion-by-definition
of the language.

Let T, = (T)v U {(Vy € RV)(@x € VF)(1v(x) = y)}.

A model of T}, is thus the same as a substructure A of a model of T, such that
RV(A) = rv(VF(A)).
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Lemma 12.7. Any formula of Lt is T-equivalent to a Boolean combination of for-
mulas in VE-variables alone, and formula (¢t (x), u) where t is a sequence of terms
for functions VF" — RV, u is a sequence of RV-variables, and  is a formula of RV
variables only.

Proof. This follows from stable embeddedness of RV, Corollary 3.24, Lemma 2.8
and the fact (Lemma 7.10) that definable functions into I" factor through definable
functions into RV. m}

Example 12.8. If T = ACVF(0, 0), then T is an expansion-by-definition of the
theory of Hensel fields of residue characteristic zero.

Proof. We must show that a Henselian valued field is definably closed in its algebraic
closure, in the two sorts VF, RV.

Let K = Thensels K < M = ACVF. Let X € VFF x RV!, ¥ € VF¥ x RV/ be
ACVFg-definable sets, and F : X — Y an ACVFg-definable bijection. We have to
show that F(X N K¥ x RV(K)!) = Y N K¥ x RV(K)".

K2 is an elementary submodel of M; we may assume K¢ = M. By one of the
characterizations of Henselianity, the valuation on K extends uniquely to K€, Hence
every field automorphism of M over K is a valued field automorphism. Thus K is
the fixed field of Aut(M/K) (in the sense of valued fields), and hence K = dcl(K).
Since ACVF is effective, any definable point of RV lifts to a definable point of VF;
so dcl(K) N RV = RVg. Thus K is definably closed in M in both sorts. O

Let L O Lt; assume L \ Lt consists of relations and functions on RV only. If
A <M =T,let LT(A) be the languages enriched with constants for each element of
A; let Ty (A) = T4 UT), where T is the set of quantifier-free valued field formulas
true of A.

Proposition 12.9. T, admits elimination of field quantifiers.
Proof. Let Abeasabove. Let @ 4 be the set of L (A)-formulas with no VF-quantifiers.

Claim. Let ¢(x,y) € &4 with x a free VF-variable. Then (Ix)¢ (x, y) is Ty (A)-
equivalent to a formula in 4.

Proof. By the usual methods of compactness and absorbing the y-variables into A,
it suffices to prove this when x is the only variable. Assume first that ¢ (x) is an
Lt(A)-formula. By Lemma 4.2, there exists an ACVF-definable bijection between
the definable set defined by ¢ (x), and a definable set of the form L¢’(x’, u), where
¢’ is an Lt(A)-formula in RV-variables only (including a distinguished variable x’
on which IL acts.) By the definition of Ty, in any model of T}, ¢ has a solution iff
L¢'(x’, u) has a solution. But clearly L¢’(x’, u) has a solution iff ¢’(x’, u) does.
Thus Ty (A) = @) (x) < @x', u)¢'(x', u).

Now let ¢ (x) be an arbitrary ® 4 formula. Let W be the set of formulas of L(A)
involving RV-variables only. Let ® be the set of conjunctions of formulas of Lt(A)
in VF-variables only, and of formulas of the form v (¢(x)), where ¥ € W and ¢
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is a term of Lt(A). The set of disjunctions of formulas in ® is then closed under
Boolean combinations, and under existential RV-quantification. By Lemma 12.7 it
includes all Lt-formulas, up to equivalence; and also all formulas in RV-variables
only. Thus ¢ (x) is a disjunction of formulas in ®, and we may assume ¢ (x) € ©.
Say ¢ = ¢o(x) A ¥ (t(x)), with ¢g € LT(A) and ¥ € V. By the claim, for some
formula p(y) of ®4, we have Tj,(A) E p(¥) < (@x)([(x) = y&¢po(x)). Hence
@A (x) = @AW M&p (). m|

Quantifier elimination now follows by induction. O

Remark. Since only field quantifiers are mentioned, this immediately extends to ex-
pansions in the field sort.

In particular, one can split the sequence 0 — k* — RV — I' — 0 if one wishes.
This yields the quantifier elimination [30] in the Denef-Pas language.

The results of Ax-Kochen and Ershov, and the large literature that developed
around them, appeared to require methods of “quasi-convergent sequences.” It is
thus curious that they can also be obtained directly from Robinson’s earlier and
purely “algebraic” quantifier elimination for ACVF. Note that in the case of ACVF,
there is no need to expand the language to obtain QE; and then Lemma 12.7 requires
no proof beyond inspection of the language.

12.5 Rational points: Definable sets and morphisms

In this subsection we will work with completions 7 of T, U {(3x € I')(x > 0)}.
These are theories of valued fields of residue characteristic 0, possibly expanded, not
necessarily algebraically closed. The language of T is thus the language of T*. The
words formula, type, definable closure will refer to quantifier-free formulas of T™.
Definable closure, types with respect to T are referred to explicitly as del”, T tp, etc.

Let F = T. Since F = Ty, F embeds into amodel M’ of T*. Since I'(F) # (0),
by Proposition 3.51 and Lemma 3.49, there exists F/ C M’ containing F, with
[(F') =T(F),and M = acl(F’) an elementary submodel of M’. Hence F embeds
into a model M of Tt with I'(F) cofinal in I'(M).

Lemma12.10. Let F =T, F < M = T*, I'(F) cofinal in T'(M). Let A be a
substructure of M, c € F, B= A(c) NRVN F,

(1) tp(c/B) U T implies T tp(c/B).
(2) Assume c is Tp-definable. Then ¢ € dcl(A, b) for some b € B.

Proof.

(1) This follows immediately from the quantifier elimination for 7 and from Lem-
ma 12.1(1).

(2) We have B C dclT(A) N RV. We must show that ¢ € dcl(A U B). Let p =
tp(c/A U B). By (1), p generates a complete type of T4up. Since this is the type
of ¢ and c is T4-definable, some formula P in the language of T4p with P € p
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has a unique solution in . Now the values of F are cofinal in the value group
of F%; so P cannot contain any ball around c. (Any such ball would have an
additional point of F', obtained by adding to ¢ some element of large valuation.)
Let P’ be the set of isolated elements of P; then P’ is finite (as is the case for
every definable P), T 4-definable, and ¢ € P’. By Lemma 3.9, there exists an
T 4-definable bijection f : P’ — Q with Q € RV". Then f(c) € dclr(A) = B,
andc = f~1(f(c)) € dcl(A U B). O

Corollary 12.11. Two definably isomorphic definable subsets of F have the same
class in Ky VFT(F).

Proof. T-definable bijections are restrictions of T -definable bijections. Hence Cor-
ollary 12.2 is true with T replacing T™. O

Thus Proposition 12.6 includes a change-of-variable formalism for definable bi-
jections.

12.6 Some specializations
Tim Mellor’s Euler characteristic

Consider the theory RCVF of real closed valued fields. Let RVrcvyr, RESrcvF,
VALRcvr denote the categories of definable sets and maps that lift to bijections of
RCVF (on RV and on the residue field, value group, respectively; we do not need
to use the sorts of RES other than the residue field here, say, all structures A of
interest have I'4 divisible). From Proposition 12.6 and Corollary 12.11, we obtain
an isomorphism: K (RCVF) — K(RVgrcvr)/([0]; — [RV>0]; — [0]0).

The residue field is a model of the theory RCF of real closed fields; K (RCF) =
Z via the Euler characteristic (cf. [37]). Since the ambient dimension grading is
respected here, K (RESrcvr) = Z[1].

The value group is a model of DOAG, and moreover, any definable bijection on
I'[n] for fixed n lifts to RV and, indeed, to RCVF. This is because the multiplicative
group of positive elements is uniquely divisible, and so SL,(Q) acts on the nth
power of this group. By Proposition 9.4, K (DOAG)[n] = Z? for each n > 1, and
K (VALrevr) = ZIs1? == ((f, §) € ZIs] : £(0) = g(0)).

Thus K (RVRrcvre) = Z[t] ® Z[s]® < Z[r, s1?; and J is identified with the class
(1, 1)—(0, —s)—(¢, t). Thus we obtain two homomorphisms K (RVrcvyr)/J — Z[s]
(one mapping ¢ — 1, the other with # = 1 — s; and as a pair they are injective).

Equivalently, we have found two ring homomorphisms x, x’ : K(RCVF) —
Z[t]. One of these was found in [27].

Cluckers—-Haskell

Take the theory of the p-adics. By Proposition 12.6 and Corollary 12.11 we obtain
an isomorphism: K (pCF) — K (RVcg)/Isp. However, RV cF is a finite extension
of Z, and evidently K (Z) = 0, since [[0, 00)] = [[1, 00)]. Thus K (pCF) = 0.
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12.7 Higher-dimensional local fields

We have seen that the Grothendieck group of definable sets with volume forms loses
a great deal of information compared to the semigroup. Over fields with discrete
value groups, restricting to bounded sets is helpful; in this way the Grothendieck
group retains information about volumes. In the case of higher-dimensional local
fields, with value group A = Z", simple boundedness is insufficient to save it from
collapse. We show that using a simple-minded notion of boundedness is only partly
helpful, and loses much of the volume information (all but one Z factor).

Example 12.12. Let K ;,¥(Th(C((s1))((s2)))[n]) be the Grothendieck ring of defin-
able bounded sets and measure-preserving maps in C((s1))((s2)) (with val(s;) <
val(sz)). Let Q' denote the class of the thin annulus of radius ¢. In particular, QO is
the volume of the units of the valuation ring. Then in K Mbdd (Th(C((s1))((s2))[2D),
we have, for example, (QO)2 = 0. To see this directly, let

Y ={(x,y) : val(x) = 0, val(y) = 0},
X ={(x,y):0 < 2val(x) < val(sp), val(x) + val(y) = 0}.

Then X is bounded. Let f(x,y) = (x/s1,s1y). Then f is a measure-preserving
bijection X — X' = {(x, y) : 0 < 2(val(x) + val(s1)) < val(sp), val(x) + val(y) =
0}. But in C((s1))((s2)), 2val(x) < val(sp) iff 2(val(x) + val(sy)) < val(syp), so
X' (C((s1))((52))) = X (C((51))((52)) U Y (C((s1))((52)))-

Remark 12.13. (2[[0, y/2]1—[[0, y1D (2[[0, y/2)]—I[0O, ¥)]), is aclass of the Grothen-
dieck group of I that vanishes identically in the Z-evaluation, but not in the Z>-
evaluation.

13 The Grothendieck group of algebraic varieties

Let X, Y be smooth nonsingular curves in P2, or in some other smooth projective
variety Z, and assume Z \ X, Z \ Y are biregularly isomorphic. Say X, Y, Z are
defined over Q. Then for almostall p, | X (IF,)| = |Y (IF,)|, as one may see by counting
points of Z, Z \ X and subtracting. It follows from Weil’s Riemann hypothesis for
curves that X, Y have the same genus, from Faltings that X, Y are isomorphic if the
genus is 2 or more, and from Tate that X, Y are isogenous if the genus is one. It
was this observation that led Kontsevich and Gromoyv to ask if X, Y must actually be
isomorphic. We show that this is the case below.>

Theorem 13.1. Let X, Y be two smooth d-dimensional subvarieties of a smooth pro-
Jective n-dimensional variety V, and assume V \ X, V\ Y are biregularly isomorphic.
Then X, Y are stably birational, i.e., X X A4 Y x A" gre birationally equivalent.
If X, Y contain no rational curves, then X, Y are birationally equivalent.

2 This already follows from [22], who use different methods.
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While we do not obtain a complete characterization in dimensions > 1, the results
and method of proof do show that the answer lies in synthetic geometry and is not
cohomological in nature.

Let Varg be the category of algebraic varieties over a field K of characteristic 0.

Let [X] denote the class of a variety X in the Grothendieck semigroup K4 (Varg).
‘We allow varieties to be disconnected. As all varieties will be over the same field K,
we will write Var for Varg. Let K Var, be the Grothendieck semigroup of varieties
of dimension < n.

For the proof, we view K as a trivially valued subfield of a model of ACVF(0, 0).
We work with the theory ACVFg, so that “definable” means K -definable with
quantifier-free ACVF-formulas.

Note that RES = k* in ACVFg; the only definable point of I" is 0, so the only
definable coset of k* is k* itself.

The residue map is an isomorphism on K onto a subfield Krgs of the residue
field k. In particular, any smooth variety V over K lifts canonically to a smooth
scheme V9 = V ®g O over O, with generic fiber Vyr = V9 ® 9 VF and special fiber
Vo ®90 k = V ® k. We have a reduction homomorphism py : V(0Q) — V (k). We
will write V (0), V(VF) for Vo (0), Vyr(VF).

Given k < n and a definable subset X of RV* of dimension < k, let [X]; be the
class of X in K4 RV[k] € K4+ RV[< n]. Thus if dim(X) = d we haven —d + 1
classes [X]k, d < k < n, in different direct factors of K RV[< n]. We also use
[X]x to denote the image of this class in Ky RV[< n]/Is,. This abuse of notation
is not excessive since for n < N, K RV[< n]/I;, embeds in K RV[< N]/Iy
(Lemma 8.7).

Let SDy be the image of K. RV[< d] in Ky RV[< N]/Ip. Let WDZ be the
subsemigroup of RV[n] generated by {[X] : dim(X) < d}, and use the same letter
to denote the image in RV[< N]/I,. Let FD" = SD,, | + WDgfl. We write a ~
b(FD}) for Qu,v € FD})(a + u = b+ v). More generally, for any subsemigroup
S’ of a semigroup S, write a ~ b(S’) for (Ju, v € S)(a +u = b + v).

We write K (RV[< n])/Is, for the groupification of K (RV[< n])/Isp.

Lemma 13.2. Let V be a smooth projective k-variety of dimension n, X a definable
subset of V (K). Then

yg [ov ' (X)] = [X]a.

Proof. Let X = (X, f) where f : X — RV” is a finite-to-one map. We have to
show that [LX] = [py~'(X)] in K4 (VF[n]), i.e., that LX, py ~!(X) are definably
isomorphic. By Lemma 2.3 this reduces to the case that X is a point p. Find an open
affine neighborhood U of V such that ,ov_l (p) C U(O), and U admits an étale map
g:V — A" overk. Now U(0O) > 0" Xyes,¢ U(k). This reduces the lemma to the
case of affine space, where it follows from the definition of L. O

Lemma 13.3. Let X be a K -variety of dimension < d.

() B(X(VF)) € SDg = K+ (RV[< d])/I5p.
(2) If X is a smooth complete variety of dimension d, then X (VF) = [X]q.
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(3) If X is a variety of dimension d, then ySX(VF) ~ [X]a(FD%).

Proof.

(1) This is obvious, since dim(X (VF)) < d.

(2) By Grothendieck’s valuative criterion for properness, X (VF) = X (0). We thus
have a map py : X(VF) = X(0) - X(k). For @ € X(k), let X,(VF) =
pov (). Since X is smooth of dimension d it is covered by Zariski open
neighborhoods U admitting an étale map fy : U — A?, defined over K; let 8
be a finite family of such pairs (U, fy), with Uy, r,,)esU = X. We may choose
a definable finite-to-one f : X — A4 defined over K, such that for any x € X,
for some pair (U, fy) € 8, f(x) = fu(x). We have L([X]y) = L(X, f) =
VE4 Xrv,f X(K). We have to show that IL(X, f) is definably isomorphic to
X (VF). By Lemma 2.3 it suffices to show that for each & € X (k), VE¢ Xy, f{a)
is a-definably isomorphic to X, (VF). Now VF4 Xy, £ {a} irv -1 (f(x)). We

have f(a) = fy(a) for some (U, f) € 8 with @ € U. Since fy is étale, it
induces a bijective map Uy (VF) — 1v ~'(f(a)). But X4 (VF) = U,(VF), so
the required isomorphism is proved.

(3) If X, Y are birationally equivalent, then [X]; ~ [Y]d(WDid), while X (VF),
Y (VF) differ by VF-definable sets of dimension < d, so

%(X(VF)) ~7§(Y(VF))(SD,1).

Using the resolution of singularities in the following form: every variety is bira-
tionally equivalent to a smooth nonsingular one; we are done by (2). With a more
complicated induction we should be able to dispense with this use of Hironaka’s
theorem. O

Lemma 13.4. Let V be a smooth projective K -variety, X, Y closed subvarieties, Let
F : V\ X — V\Y abiregular isomorphism. Let Vo, Vyg, Vk, FyF, etc., be the
objects obtained by base change. Then Fyg induces a bijection V(VF) \ X(VF) —
V(VF) \ Y(VF), and

Fyr(py " (X) \ X(VF)) = py ' (Y) \ Y (VF).

Proof. The first statement follows from the Lefschetz principle since VF is alge-
braically closed.

Since V is projective, V(VF) = V (0), and one can define for v € V the valuative
distance d (v, X), namely, the greatest « € I' such that the image of x in V(O /) lies
in X(O/a).

Let F be the Zariski closure in V2 of the graph of F. Then FN(V \ X) x (V \ Y)
is the graph of F. In fact, in any algebraically closed field L, we have

ifae V(L)\X(L) and (a,b) e F(L), thenbe V(L)\Y(L), (13.1)

and conversely.
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Suppose for the sake of contradiction that in some M = ACVFg there exist
acpy ' (X),b¢ py ' (Y),(a,b) eF. Thusd(a,X) =a > 0,d(b,Y) = 0. Let

C={yel:(VneNny <al.
We may assume by compactness that C(M) # (). Let
I ={y e OM) :val(y) ¢ C}

SO Ehat I is a prime ideal of O(M). Let L_be thg field of fracti(_)ns of O(M)/I. Let
a, b be the images of a, b in L. Then (a,b) € F,anda € X, b ¢ Y; contradicting
(13.1). o

Proof of Theorem 13.1. By Lemma 13.4, there exists a definable bijection py ! (X)\
X — py YY)\ Y. Applying ;6 : K(VF[n]) - KRV[< n])/Isp, and using
Lemmas 13.2 and 13.3, we have [X], — [X]s = [Y], — [Y]4. Applying the first
retraction K (RV[< n])/Isp — K(RES[n]) of Theorem 10.5, we obtain

[X,]—[X x A", = [Y], — [V x A",
in! K (RES[n]) = K (Var,,). Thus
(X x A" Uy, +[Z]=[Y x A" U X], +[Z]

for some Z with dim(Z) < n, where now the equality is of classes in K Var,.
Counting birational equivalence classes of varieties of dimension n, we see that
X x A" Y x A"~ must be birationally equivalent. The last sentence follows from
the lemma below. O

Lemma 13.5. Let X, Y be varieties containing no rational curve. Let U be a variety
such that there exists a surjective morphism A™ — U. If X x U, Y x U are
birationally equivalent, then so are X, Y.

Proof. For any variety W, let (W) be the set of all rational maps g : A' — W.
Write dom(g) for the maximal subset of A! where g is regular; so dom(g) is cofinite
in Al. Let Ry = {(g(1), g(t")) € W? : g € F(W),t,t' € dom(g)}. Let Ew be the
equivalence relation generated by Ry, on points in the algebraic closure. Ry, Ew
may not be constructible in general, but in the case we are concerned with, they are
as follows.

Claim. Let W C X x U be a Zariski dense open set. Let w : W — X be the
projection. Then 7 (w) = 7 (w’) iff (w, w’) € Ew iff (w, w’) € Ry.

Proof. If g € F(U),thenmog : dom(g) — X is aregular map; hence by assumption
on X it is constant. It follows that if (w, w’) € Ry then mw(w) = =w(w’), and
hence if (w, w’) € Ey then 7(w) = w(w’). Conversely, assume w’, w” € W and
a(w’) = w(w”); then w’ = (x,u’), w = (x,u”) forsome x € X, u’,u” € U. Let
Uy ={ueU: (x,u) € W}. Since W isopen, U, isopenin U. Leth : A" — U be
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a surjective morphism; let A(v") = u’, h(v"”) = u”. The line through v’, v” intersects
h~'(U,) in a nonempty open set. This gives a regular map f from the affine lines,
minus finitely many points, into U, passing through u’, u”. Thus t — (x, f(¢)) gives
a rational map from A! to W, passing through (w’, w”); and so (w’, w”) € Ry and
certainly in Ey. O

Using the claim, we prove the lemma. Let Wy € X x U , Wy € Y x U
be Zariski dense open, and F : Wx — Wy a biregular isomorphism. Then F
takes Ew, to Ew,. Moving now to the category of constructible sets and maps,
quotients by constructible equivalence relations exist, and Wy / E, is isomorphic as
aconstructible setto Wy /Ew, . Letmy : Wy — X, wy : Wy — Y be the projections.
By the claim, Wx/Ew, = nx(Wx) =: X’. Similarly, Wy /Ew, = ny(Wy) =: Y'.
Now since Wy, Wy are Zariski dense, so are X', Y’. Thus X, Y contain isomorphic
Zariski dense constructible sets, so they are birationally equivalent. O

Remark. The condition on X, Y may be weakened to the statement that they contain
no rational curve through a generic point; i.e., that there exist proper subvarieties
(X; :i € I) defined over K, such that for any field L D K, any rational curve on
X x g L is contained in some X; xg L.

Acknowledgments. Thanks to Aviv Tatarsky and Moshe Kaminsky, and to Lou Van den Dries,
Clifton Ealy, and Jana Matikova for useful comments and corrections.
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