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1 Introduction

1.1 Pillowcase covers and quadratic differentials

Consider a complex torus T2 = C/L, where L ⊂ C is a lattice. Its quotient

P = T2/±
by the automorphism z �→ −z is a sphere with four (Z/2)-orbifold points which
is sometimes called the pillowcase orbifold. The map T2 → P is essentially the
Weierstraß℘-function. The quadratic differential (dz)2 on T2 descends to a quadratic
differential on P. Viewed as a quadratic differential on the Riemann sphere, (dz)2

has simple poles at corner points.
Let µ be a partition and ν a partition of an even number into odd parts. We are

interested in enumeration of degree 2d maps
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π : C → P (1)

with the following ramification data. Viewed as a map to the sphere, π has profile
(ν, 2d−|ν|/2) over 0 ∈ P and profile (2d) over the other three corners of P. Addition-
ally, π has profile (µi, 12d−µi ) over some �(µ) given points of P and is unramified
elsewhere. Here �(µ) is the number of parts in µ. This ramification data determines
the genus of C by

χ(C) = �(µ)+ �(ν)− |µ| − |ν|/2.
In principle, one could allow more general ramifications over 0 and the nonorbifold
points, but this more general problem is readily reduced to the one above.1

Pulling back (dz)2 via π gives a quadratic differential on C with zeros of multi-
plicities {νi − 2} and {2µi − 2}. The periods of this differential, by construction, lie
in a translate of a certain lattice. The enumeration of covers π is thus related to lattice
point enumeration in the natural strata of the moduli space of quadratic differentials.
In particular, the d →∞ asymptotics gives the volumes of these strata. These vol-
umes are of considerable interest in ergodic theory, in particular in connection with
billiards in rational polygons; see [6, 18]. Their computation was the main motivation
for the present work.

A different way to compute the volume of the principal stratum was found by
M. Mirzakhani [19].

1.2 Generating functions

1.2.1

Two covers πi : Ci → P, i = 1, 2, are identified if there is an isomorphism f :
C1 → C2 such that π1 = f ◦ π2. In particular, associated to every cover π is a
finite group Aut(π). This group is trivial for most connected covers; see, e.g., [7,
Section 3.1]. We form the generating function

Z(µ, ν; q) =
∑
π

qdegπ

|Aut(π)| , (2)

where π ranges over all inequivalent covers (1) with ramification data µ and ν as
above. Note that the degree of any such π is even.

In particular, for µ = ν = ∅ any connected cover has the form

π : T2 π ′−→ T2 → T2/±
with π ′ unramified. We have |Aut(π)| = 2|Aut(π ′)| corresponding to the lift of ±.
From the enumeration of possible π ′ we obtain,

1 From first principles, the count of the branched coverings does not change if one replaces two
ramification conditions by the product of the corresponding conjugacy classes in the class
algebra of the symmetric group. In this way, one can generate complicated ramifications
from simpler ones.
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Z(∅,∅; q) =
∏
n

(1− q2n)−1/2.

By definition, we set

Z′(µ, ν; q) = Z(µ, ν; q)
Z(∅,∅; q) . (3)

This enumerates covers without unramified connected components. By the usual
inclusion-exclusion, one can extract from (3) a generating function for connected
covers. This generating function for connected covers will be denoted byZ◦(µ, ν; q).

1.2.2

Recall the classical level 1 Eisenstein series

E2k(q) = ζ(1− 2k)

2
+

∞∑
n=1

⎛⎝∑
d|n
d2k−1

⎞⎠ qn, k = 1, 2, . . . .

The algebra they generate is called the algebra QM((1)) of quasimodular forms for
(1) = SL2(Z); see [16] and also below in Section 3.3.7. It is known that E2, E4,
and E6 are free commutative generators of QM((1)). The algebra QM((1)) is
naturally graded by weight, where wtE2k = 2k. Clearly, for any integerN ,E2k(q

N)

is a quasimodular form of weight 2k for the group

0(N) =
{(
a b

c d

)∣∣∣∣ c ≡ 0 mod N

}
⊂ SL2(Z).

The quasimodular forms that will appear in this paper will typically be inhomo-
geneous, so instead of weight grading we will only keep track of the corresponding
filtration. We define the weight of a partition by

wtµ = |µ| + �(µ).
The main result of this paper is the following.

Theorem 1. The series Z′(µ, ν; q) is a polynomial in E2(q
2), E2(q

4), and E4(q
4)

of weight wtµ+ |ν|/2.

Several explicit examples of the forms Z′(µ, ν; q) are given in the appendix.

1.2.3

Quasimodular forms occur in nature, for example, as coefficients of the expansion of
the odd genus 1 theta-function

ϑ(x) = (x1/2 − x−1/2)

∞∏
i=1

(1− qix)(1− qi/x)
(1− qi)2

at the origin x = 1. The techniques developed below give a certain formula for (3)
in terms of derivatives of ϑ(x) at x = ±1, from which the quasimodularity follows.
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1.2.4

The following discussion closely parallels the corresponding discussion for the case
of holomorphic differentials in [7, Section 1.2].

Let Q(µ, ν) denote the moduli space of pairs (�, φ), where φ is a quadratic
differential on a curve � with zeroes of multiplicities {νi − 2, 2µi − 2}. Note that
we allow νi = 1; hence our quadratic differentials can have simple poles. For
(�, φ) ∈ Q(µ, ν), let �̃ denote the double cover of � on which the differential

ω = √φ
is well defined. The pair (�̃, ω) belongs to the corresponding space of holomorphic
differentials with zeroes of multiplicity

{νi − 1, µi − 1, µi − 1}.
By construction, � is the quotient of �̃ by an involution σ . Let P denote the set
of zeroes of ω; it is clearly stable under σ . Then σ acts as an involution on the
relative homology groupH1(�̃, P,Z). LetH− denote the subspace ofH1(�̃, P,Z)
on which σ acts as multiplication by −1. Choose a basis {γ1, . . . , γn} for H−, and
consider the period map � : Q(µ, ν)→ Cn defined by

�(�, φ) =
(∫
γ1

ω, . . . ,

∫
γn

ω

)
.

It is known [18] that�(�, φ) is a local coordinate system on Q(µ, ν) and, in partic-
ular, n = dimCH

− = dimC Q(µ, ν).
Pulling back the Lebesgue measure from Cn yields a well-defined measure on

Q(µ, ν). However, this measure is infinite since φ can be multiplied by any complex
number. Thus we define Q1(µ, ν) to be the subset satisfying

Area(�̃) ≡
√−1

2

∫
�̃

ω ∧ ω = 2.

As in the case of holomorphic differentials, the area function is a quadratic form in
the local coordinates on Q(µ, ν), and thus the image under � of Q1(µ, ν) can be
identified with an open subset of a hyperboloid in Cn.

Now let E ⊂ Q1(µ, ν) be a set lying in the domain of a coordinate chart, and
let C�(E) ⊂ Cn denote the cone over �(E) with vertex 0. Then we can define a
measure ρ on Q1(µ, ν) via

ρ(E) = vol(C�(E)),

where vol is the Lebesgue measure. The proof of [7, Proposition 1.6] shows the
analogue

ρ(Q1(µ, ν)) = lim
D→∞D

− dimC Q(µ,ν)
2D∑
d=1

Cov0
d(µ, ν),
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where Cov0
d(µ, ν) is the number of inequivalent degree d connected covers C → P.

Thus, the volume ρ(Q1(µ, ν)) can be read off from the q → 1 asymptotics of the
connected generating function Z◦(µ, ν; q).

Note that the moduli spaces Q(µ, ν)may be disconnected. Ergodic theory appli-
cations require the knowledge of volumes of each connected component. Fortunately,
connected components of Q(µ, ν) have been classified by E. Lanneau [17] and these
spaces turn out to be connected except for hyperelliptic components (whose volume
can be computed separately) and finitely many sporadic cases.

1.2.5

The modular transformation

q = e2πiτ �→ e−2πi/τ

relates q = 0 and q = 1 and thus gives an easy handle on the q → 1 asymptotics of
(3). This gives an asymptotic enumeration of pillowcase covers and hence computes
the volume of the moduli spaces of quadratic differentials.

1.2.6

In spirit, Theorem 1 is parallel to the results of [1, 8, 13]; see also [2, 3, 5] for earlier
results in the physics literature. The main novelty is the occurrence of quasimodular
forms of higher level. One might speculate whether similar lattice point enumeration
in the space of N th order differentials leads to level N quasimodular forms. Those
spaces, however, do not admit an SL2(R)-action and a natural interpretation of their
volumes is not known.

1.2.7

The following enumerative problem is naturally a building block of the enumerative
problem that we consider. Consider branched covers of the sphere ramified over 3
points 0, 1,∞ with profile (ν, 2d−|ν|/2), (2d), and µ, respectively, where µ is an
arbitrary partition of 2d .

The preimage of the segment [0, 1] on the sphere is a graph G on a Riemann
surface (also known as a ribbon graph) with many 2-valent vertices (that can be
ignored) and a few odd valent vertices (namely, with valencies νi). The complement
of G is a union of �(µ) disks (known as cells) with perimeters 2µi in the natural
metric on G. The asymptotic enumeration of such combinatorial objects is, almost
by definition, given by integrals of ψ-classes against Kontsevitch’s combinatorial
cycles in Mg,�(µ); see [15]. There is a useful expression for these integrals in terms
of SchurQ-functions obtained in [4, 11]. In fact, our original approach to the results
presented in this paper was based on these ideas.

While the proof that we give here is more direct, it is still interesting to investigate
the connection with combinatorial classes further, especially since a natural geometric
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interpretation of combinatorial classes is still missing. Perhaps the Gromov–Witten
theory of the orbifold P is the natural place to look for it. This will be further discussed
in [22].

2 Character sums

2.1 Characters of near-involutions

2.1.1

There is a classical way to enumerate branched coverings in terms of irreducible
characters, which is reviewed, for example, in [10] or in [21]. Specialized to our
case, it gives

Z(µ, ν; q) =
∑
λ

q |λ|/2
(

dim λ

|λ|!
)2

fν,2,2,...(λ)f2,2,...(λ)
3
∏
i

fµi (λ) (4)

where summation is over all partitions, dim λ is the dimension of the corresponding
representation of the symmetric group, and fη(λ) is the central character of an element
with cycle type η in the representation λ. Recall that the sum of all permutations with
cycle type η acts as a scalar operator in any representation λ and, by definition, this
number is fη(λ). In (4), as usual, we abbreviate fk,1,1,... to fk .

2.1.2

Alot is known about the characters of the symmetric group S(2d) in the situation when
the representation is arbitrary but the support of the permutation is bounded by some
number independent of d . In particular, explicit formulas exist for the functions fk .

Understanding the function fν,2,2,... is the key to evaluation of (4). That is, we must
study characters of permutations that are a product of a permutation with finite support
and a fixed-point-free involution. We call such permutations near-involutions.

2.1.3

By a result of Kerov and Olshanski [14], the functions fk belong to the algebra �∗
generated by

pk(λ) = (1− 2−k)ζ(−k)+
∑
i

[
(λi − i + 1

2
)k −

(
−i + 1

2

)k]
; (5)

moreover, fk has weight k + 1 in the weight filtration on �∗ defined by setting

wt pk = k + 1.

The functions pk are central characters of certain distinguished elements in the group
algebra of symmetric group known as completed cycles. See [21] for the discussion
of the relation between pk and fk from the viewpoint of Gromov–Witten theory.
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2.1.4

Our next goal is to generalize the results of [14] to characters of near-involutions.
This will require enlarging the algebra of functions. In addition to the polynomials
pk , we will need quasi-polynomial functions p̄k defined in (6) below.

It is convenient to work with the generating function

e(λ, z) def=
∑
i

ez(λi−i+
1
2 ) = 1

z
+
∑
k

pk(λ)
zk

k! .

By definition, set

p̄k(λ) = ik![zk]e(λ, z+ πi) (6)

=
∑
i

[
(−1)λi−i+1

(
λi − i + 1

2

)k
− (−1)−i+1

(
−i + 1

2

)k]
+ const,

where the constant terms are determined by the expansion

∑
k

zk

k! p̄k(∅) =
1

ez/2 + e−z/2 .

Up to powers of 2, they are Euler numbers.

2.1.5

Define
�̄ = Q[pk, p̄k]k≥1.

Setting
wt p̄k = k

gives the algebra �̄ the weight grading. Note that if f is homogeneous, then

f (λ′) = (−1)wt f f (λ), (7)

where λ′ denotes the conjugate partition.

2.1.6

In the definition of �̄, we excluded the function

p̄0(λ) = 1

2
+
∑
i

[(−1)λi−i+1 − (−1)−i+1],

which measures the difference between the number of even and odd numbers among
{λi − i + 1}, also known as the 2-charge of a partition λ.
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Every partitionλ uniquely defines two partitionsα andβ, known as its 2-quotients,
such that{

λi − i + 1

2

}
=
{

2

(
αi − i + 1

2

)
+ p̄0(λ)

}
�
{

2

(
βi − i + 1

2

)
− p̄0(λ)

}
.

A partition λ will be called balanced if p̄0(λ) = 1
2 .

Several constructions related to 2-quotients will play an important role in this pa-
per. A modern review of these ideas can be found, for example, in [9]. In particular, it
is known that the character χλ2,2,... of a fixed-point free involution in the representation
λ vanishes unless λ is balanced, in which case∣∣χλ2,2,...∣∣ = ( |λ|/2

|α|, |β|
)

dim α dim β. (8)

It follows that only balanced partitions contribute to the sum (4).

2.1.7

For a balanced partition λ, define

gν(λ) = f(ν,2,2,... )(λ)
f(2,2,... )(λ)

. (9)

We will prove that this function lies in �̄ in the following sense.

Theorem 2. The ratio (9) is the restriction of a unique function gν ∈ �̄ of weight
|ν|/2 to the set of balanced partitions.

Several examples of the polynomials gν can be found in the appendix.

2.1.8

In view of Theorem 2, it is natural to introduce the pillowcase weight

w(λ) =
(

dim λ

|λ|!
)2

f2,2,...(λ)
4.

Theorem 1 follows from (4), Theorem 2, and the following result.

Theorem 3. For any F ∈ �̄, the average

〈F 〉w = 1

Z(∅,∅; q)
∑
λ

q |λ|w(λ)F (λ) (10)

is a polynomial in E2(q
2), E2(q

4), and E4(q
4) of weight wt F .

Note that if F is homogeneous of odd weight, then 〈F 〉w = 0. This can be seen
directly from (7). Also note that (10) will not in general be of pure weight even if
F is a monomial in the generators pk and p̄k . This contrast with [1, 8] hints to the
existence of a better set of generators of the algebra �̄. Probably such generators are
related to descendents of orbifold points in the Gromov–Witten theory of P.
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2.1.9

It will be convenient to work with the following generating functions for the sums (10):

F(x1, . . . , xn) =
〈∏

e(λ, ln xi)
〉
w
. (11)

The function (11) will be called the n-point function.

2.2 Proof of Theorem 2

2.2.1

In the proof of theorems 2 and 3 it will be very convenient to use the fermionic Fock
space formalism. This formalism is standard and [12, 20] can be recommended as
a reference. A quick review of these techniques can be found, for example, in [21,
Section 2]. We follow the notation of [21].

2.2.2

By definition, the space �
∞
2 0V is spanned by the infinite wedge products

vλ = λ1 − 1
2 ∧ λ2 − 3

2 ∧ λ3 − 5
2 ∧ · · · , (12)

where k, k ∈ Z + 1
2 , is a basis of the underlying space V and λ is a partition. The

subscript 0 in �
∞
2 0V refers to the charge zero condition: the ith factor in (12) is

−i + 1
2 for all sufficiently large i.

There is a natural projective representation of the Lie algebra gl(V ) on �
∞
2 0V .

For us, the following elements of gl(V ) will be especially important:

Ek[f (x)]i = f
(
i − k

2

)
i − k, (13)

where f is a function on the real line. To define the action of E0[f (x)] on �
∞
2 0V

one needs to regularize the infinite sum
∑
i<0 f (

1
2 − i). This regularization is the

source of the central extension in the gl(V ) action. When f is an exponential as in

Ek(z) = Ek[ezx],

this infinite sum is a geometric series and thus has a natural regularization. By
differentiation, this leads to the ζ -regularization for operators Ek[f ]with a polynomial
function f .
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2.2.3

Other very useful operators are

αk = Ek[1], k �= 0.

The operator H defined by
Hvλ = |λ|vλ

is known as the energy operator. It differs only by a constant from the operator E0[x].
The operator H defines a natural grading on �

∞
2 0V and gl(V ).

2.2.4

A function F(λ) on partitions of n can be viewed as a vector∑
|λ|=n

F (λ)vλ ∈ �∞
2 0V

of energy n. For example, the vectors

|µ〉 def= 1

z(µ)

∏
α−µi v∅ =

1

z(µ)

∑
λ

χλµvλ, (14)

where
z(µ) = |Autµ|

∏
µi,

correspond to irreducible characters normalized by the order of the centralizer.

2.2.5

The operator E0(z) is the generating function

E0(z) = E0[ezx] = 1

z
+
∑
k

zk

k!Pk,

for the operators Pk acting by

Pkvλ = pk(λ)vλ.

In parallel to (6), we define operators P̄k by

iE0(z+ πi) =
∑
k

zk

k! P̄k.

Translated into the operator language, the statement of Theorem 2 is the following:
the orthogonal projection of |ν, 2d−|ν|/2〉 onto the subspace spanned by the vλ with λ
balanced is a linear combination of vectors∏

Pµi
∏

P̄µ̄i |2d〉 (15)

with
wtµ+ |µ̄| ≤ |ν|/2

and coefficients independent of d .
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2.2.6

Let us call the span of vλ with λ balanced the balanced subspace of �
∞
2 0V . A

convenient orthogonal basis of it is provided by the vectors

|ρ; ρ̄〉 def= 1

z(ρ)z(ρ̄)

∏
α−ρi

∏
ᾱ−ρ̄i v∅, ρi, ρ̄i ∈ 2Z, (16)

where the operators ᾱk are defined by

ᾱk = ik+1Ek(πi) =
∑
n

(−1)n+
1
2En−k,n + δk

2
, (17)

the operators Ei,j being the matrix units of gl(V ). From the commutation relations
for the operators Ek(z), we compute

[ᾱk, ᾱm] = [(−1)k − (−1)m]αk+m + k(−1)kδk+m, (18)

[αk, ᾱm] = [1− (−1)k]
(
ᾱk+m + δk+m

2

)
. (19)

In particular, when both k and m are even, all these operators commute apart from
the central term in [ᾱk, ᾱ−k].

The adjoint of ᾱk is
ᾱ∗k = (−1)kᾱ−k,

which gives the inner products

〈ρ; ρ̄∣∣ρ′; ρ̄′〉 = δρ,ρ′δρ̄,ρ̄′

z(ρ)z(ρ̄)
, (20)

provided all parts of all partitions in (20) are even. In particular, the vectors (16) are
orthogonal. It is clear that they lie in the balanced subspace and their number equals
the dimension of the space. Therefore, they form a basis.

2.2.7

The projection of |ν, 2d−|ν|/2〉 onto the balanced subspace is given in term of inner
products of the form

〈ν, 2d−|ν|/2∣∣(ρ, 2d−|ρ|/2−|ρ̄|/2); ρ̄〉
where all parts of ν are odd, all parts of ρ and ρ̄ are even, and ρ has no parts equal to
2. From the commutation relations (18) and (19) we conclude that this inner product
vanishes unless

ρ = ∅.
The nonvanishing inner products are
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〈ν, 2k∣∣2k; ρ̄〉 = 2�(ν)−�(ρ̄)

2kk!z(ν)z(ρ̄)C(ν, ρ̄), (21)

where the combinatorial coefficient C(ν, ρ̄) equals the number of ways to represent
the parts of ρ̄ as sums of parts of ν. For example,

C((3, 1, 1, 1), (4, 2)) = 3, C((3, 1, 1, 1), (6)) = 1.

2.2.8

The matrix elements〈
2d
∣∣∣∏Pµi

∏
P̄µ̄i
∣∣∣ (ρ, 2d−|ρ|/2−|ρ̄|/2); ρ̄〉 , ρi �= 2, (22)

describe the decomposition of the vectors (15) in the basis (16). Since

P1|2d〉 =
(
d − 1

24

)
|2d〉, (23)

we can also assume that µi �= 1.
We claim that (22) vanishes unless

wtµ+ |µ̄| ≥ wt ρ/2+ |ρ̄|/2, (24)

where ρ/2 is the partition with parts ρi/2 (recall that all parts of ρ are even).

2.2.9

The usual way to evaluate a matrix element like (22) is to use commutation relations
to commute all lowering operators to the right until they reach the vacuum (which
they annihilate) and, similarly, commute the raising operators to the left.

We will exploit the following property of the operators Pk and P̄k: their com-
mutator with enough operators of the form α−2ρi and ᾱ−2ρ̄i vanishes. All such com-
mutators have the form Ek[f ] with f (x) = (±1)xp(x), where p(x) is a polynomial.
Commutation with α−2ρi takes a finite difference of p(x); commutation with ᾱ−2ρ̄i
additionally flips the sign of ±1.

Since a (k + 1)-fold finite difference of a degree k polynomial vanishes, the
commutator of Pk with more than k+1 operators of the form α−2ρi or ᾱ−2ρ̄i vanishes.
In fact, a (k + 1)-fold commutator may be nonvanishing only because of the central
extension term. To pick up this central term, the total energy of all operators involved
should be zero and the number of ᾱs should be even. The same reasoning applies
to P̄k , but now the number of ᾱs should be odd to produce a nontrivial (k + 1)-fold
commutator.
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2.2.10

Now look at one of the raising operators involved in (22), say ᾱ−ρ̄i . This operator
commutes with α2 and its adjoint annihilates the vacuum, so only the terms involving
the commutator of ᾱ−ρ̄i with one of the Pµi or P̄µ̄i give a nonzero contribution to (22).
The commutator [Pµi , ᾱ−ρ̄i ] has energy (−ρi) and so its adjoint again annihilates the
vacuum. The same is true for the commutation with P̄µ̄i . To bring these commutators
back to zero energy, one needs to commute it ρ̄i/2 times with α2. Given the above
bounds on how many commutators we can afford, this implies (24).

2.2.11

When the bound (24) is saturated, then a further condition

�(ρ)+ �(ρ̄) ≥ �(µ)+ �(µ̄)
is clearly necessary for nonvanishing of (22). The unique nonzero coefficient satu-
rating both bounds corresponds to

ρ = 2µ, ρ̄ = 2µ̄.

Moreover, when divided by the norm squared of the vector |(ρ, 2d−|ρ|/2−|ρ̄|/2); ρ̄〉,
this coefficient is independent of d .

2.2.12

For general ρ and ρ̄, the similarly normalized coefficient will be a polynomial in d
of degree

1

2
(wtµ+ |µ̄| − wt ρ/2− |ρ̄|/2) (25)

because so many operatorsα−2 can commute with Pµi s or P̄µ̄i s instead of commuting
directly with α2s.

By induction on weight and length, we can express the basis vectors (16) in terms
of (15) with µi �= 1 and coefficients being polynomial in d of degree at most minus
the difference (25). By (23), to have d-dependent coefficients and µi �= 1 is the
same as to allow µi = 1 and make the coefficients independent of d. The bound of
degree in d ensures that this transition preserves weight. This concludes the proof of
Theorem 2.

3 Proof of Theorem 3

3.1 The pillowcase operator

3.1.1

Consider the operator
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W = exp

(∑
n>0

α−2n−1

2n+ 1

)
exp

(
−
∑
n>0

α2n+1

2n+ 1

)
. (26)

Because this operator is normally ordered, its matrix elements (Wv,w) are well
defined for any vectors v and w of finite energy. The relevance of this operator for
our purposes lies in the following.

Theorem 4. The diagonal matrix elements of W are

(Wvλ, vλ) =
{

w(λ), λ is balanced,

0 otherwise.

The proof of this theorem will occupy the rest of Section 3.1.

3.1.2

LetN be chosen so large that λ2N+1 = 0. Then because the operator (26) is a product
of an upper unitriangular and lower unitriangular operator, the vectorsλi − i + 1

2 with
i > 2N in

vλ = λ1 − 1
2 ∧ λ2 − 3

2 ∧ λ3 − 5
2 ∧ · · ·

are inert bystanders for the evaluation of (Wvλ, vλ). The whole computation is
therefore a computation of a matrix element of an operator in a finite exterior power
of a finite dimensional vector space V [N ] with basis

ek = −2N + k + 1
2 , k = 0, . . . , λ1 + 2N − 1.

By definition, matrix elements of W in exterior powers of V [N ] are determinants of
the matrix elements of W acting on the space V [N ] itself. The latter matrix elements
are determined in the following.

Proposition 1. We have

(Wek, el)

b(k)b(l)
=

⎧⎪⎨⎪⎩
1, k ≡ l ≡ 0 mod 2,

0, k ≡ l ≡ 1 mod 2,

2/(k − l), otherwise,

(27)

where

b(k) = k!
2k�k/2�!2 .
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3.1.3

For the proof of Proposition 1, form the generating function

f (x, y) =
∑
k,l

xkyl(Wek, el).

From the equality

exp

(∑
n>0

x2n+1

2n+ 1

)
=
√

1+ x
1− x

and definitions, we compute

f (x, y) = 1

1− xy
√

1+ x
1− x

√
1− y
1+ y .

The factorization(
x
∂

∂x
− y ∂

∂y

)
f (x, y) = (x + y)(1+ x)(1− y)

(1− x2)3/2(1− y2)3/2

by elementary binomial coefficient manipulations proves (27) for k �= l. To compute
the diagonal matrix elements observe that the above differential equation uniquely
determines f (x, y) from its values on the diagonal x = y. On the diagonal, the
skew-symmetric terms in (27) cancel out and evaluation is immediate.

3.1.4

We now proceed to the computation of the matrix element (Wvλ, vλ). We have the
following.

Proposition 2. We have

(Wvλ, vλ) =
⎛⎝2N

2N∏
i=1

b(λi − i + 2N)
∏

i<j≤2N

(λi − λj + j − i)(−1)λi−λj+j−i
⎞⎠2

,

provided λ is balanced and (Wvλ, vλ) = 0 otherwise.

The proof of this proposition is the following. Observe that by Proposition 1 the
matrix element (Wvλ, vλ) is a determinant of a 2N × 2N block matrix in which the
odd-odd block is identically zero, the even-even block is a rank 1 matrix with all
elements equal to 1 and the off-diagonal blocks have the form ( 2

xi−yj ), where {xi}
and {yi} are the odd and even subsets of {λi − i + 2N}. Since the odd-odd block
is identically zero, its size has to be ≤ N for the determinant to be nonvanishing.
Similarly, if the size of the even-even block is larger than N , then the determinant is
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easily seen to vanish. It follows that both blocks have sizeN , which precisely means
that the partition λ is balanced. It remains to use the Cauchy determinant

det

(
1

xi + yj
)
=
∏
i<j (xi − xj )

∏
i<j (yi − yj )∏

(xi + yj )
to finish the proof.

3.1.5

Note that decomposition of {λi − i + 2N} into the even and odd subsets is the same
as the 2-quotient construction from Section 2.1.6. Theorem 4 follows from formula
(8) and the classical formula

dim λ

|λ|! =
∏
i<j≤N(λi − λj + j − i)∏

(λi +N − i)! ,

where N is any number such that λN+1 = 0.

3.1.6

It would be interesting to find an interpretation of the operator W in conformal field
theory. Note that

exp

(∑
n>0

z−2n−1

2n+ 1

)
exp

(
−
∑
n>0

z2n+1

2n+ 1

)
=
√

1+ z−1

1− z−1

√
1− z
1+ z

is the Wiener–Hopf factorization of the function taking the value ∓i on the up-
per/lower half-plane.

3.2 Formula for the n-point function

3.2.1

Theorem 4 yields the following operator formula for the n-point function (11):

F(x1, . . . , xn) = 1

Z(∅,∅; q) tr qH
∏

E0(ln xi)W, (28)

where the trace is taken in the charge zero subspace of the infinite wedge and H is
the energy operator

Hvλ = |λ|vλ.
We have the following expression for the operator E0 in terms of the fermionic cur-
rents:

E0(ln x) = [y0]ψ(xy)ψ∗(y),
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where [y0] denotes the constant coefficient in the Laurent series expansion in the
variable y. Therefore,

F(x1, . . . , xn) = 1

Z(∅,∅; q)
× [y0

1 · · · y0
n] tr qHψ(x1y1)ψ

∗(y1) · · ·ψ(xnyn)ψ∗(yn)W.
(29)

3.2.2

By the main result of [9], we have

w(λ) ≤ 1 (30)

for any partition λ. In other words, all diagonal matrix elements of W are bounded
by 1. For the off-diagonal elements, we prove the following cruder bound.

Proposition 3. LetM = max{|λ|, |µ|}. Then

(Wvλ, vµ) ≤ exp

⎛⎜⎝1

2

�M−1
2 �∑
n=0

1

2n+ 1

⎞⎟⎠ ∼ const ·M1/4. (31)

To see this note that

(Wvλ, vµ) = (W[M]vλ, vµ),

where W[M] is the truncated operator

exp

⎛⎝ ∑
2n+1≤M

α−2n−1

2n+ 1

⎞⎠ exp

⎛⎝− ∑
2n+1≤M

α2n+1

2n+ 1

⎞⎠ .
We claim that the operator W[M] is a multiple of a unitary operator. Indeed,

(W[M]∗)−1 = exp

⎛⎜⎝−�M−1
2 �∑
n=0

1

2n+ 1

⎞⎟⎠W[M],

whence the result.
In fact, we will only use that (31) is bounded by a polynomial in the sizes of the

partitions.

3.2.3

By normally ordering all fermionic operators in (29) and using the estimate (31) one
sees that the trace converges if

|yn/q| > |x1y1| > |y1| > · · · > |xnyn| > |yn| > 1. (32)
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3.2.4

The proof of the following identity is given in [12, Theorem 14.10]:

ψ(xy)ψ∗(y) = 1

x1/2 − x−1/2

× exp

(∑
n

(xy)n − yn
n

α−n

)
exp

(∑
n

y−n − (xy)−n
n

αn

)
.

(33)

It allows to express the operator in (29) in terms of bosonic operators αn.
With respect to the action of the operators αn, the charge zero subspace of the

infinite wedge space decomposes as the infinite tensor product

�
∞
2 0V ∼=

∞⊗
n=1

∞⊕
k=0

αk−nv∅,

the distinguished vector in each factor being v∅. This gives a factorization of the trace
in (29). The trace in each tensor factor is computed as follows:

tr eAα−neBαn
∣∣∣⊕∞

k=0 α
k−nv∅

= 1

1− qn exp

(
nABqn

1− qn
)
.

For example, this shows that

tr qHW = (q2)
−1/2∞ = Z(∅,∅; q),

where

(a)∞ =
∏
n≥0

(1− aqn),

and so the 0-point function is F( ) = 1, as expected. For the n-point function this
gives the following.

Theorem 5. We have

F(x1, . . . , xn) =
∏ 1

ϑ(xi)

× [y0
1 · · · y0

n]
∏
i<j

ϑ(yi/yj )ϑ(xiyi/xj yj )

ϑ(xiyi/yj )ϑ(yi/xjyj )

∏
i

√
ϑ(−yi)ϑ(xiyi)
ϑ(yi)ϑ(−xiyi) ,

(34)

where the series expansion is performed in the domain (32).
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3.3 Quasimodular forms

3.3.1

In the computation of (34), we can assume that 1 < |xi | � |q−1| for all i and hence

|yi | > |yj |
∏

|xk|±1 > |qyi |, i < j.

The series expansion in (34) can then be performed using the following elementary
lemma.

Lemma 4. We have

1

2πi

∮
|y|=c

dy

y

n∏
i=1

ϑ(y/ai)

ϑ(y/bi)
=
(

1−
∏ ai

bi

)−1 n∑
i=1

∏
j ϑ(bi/aj )∏
j �=i ϑ(bi/bj )

, (35)

provided c > |bi | > |q|c for i = 1, . . . , n.

This is obtained by computing the difference of
∮
|y|=c and

∮
|y|=|q|c as a sum of

residues using
ϑ ′(1) = 1.

3.3.2

There are two obstacles to literally applying this lemma to the evaluation of (34).
The first is the square roots in (34). However, we are ultimately interested in the
expansion of (34) about xi = ±1. The expansion of the integrand about xi = ±1
contains no square roots, only the theta function and its derivatives. Formulas for
integrating derivatives can be obtained from (35) by differentiating with respect to
parameters.

3.3.3

The other issue is that at xi = 1 the integrand is an elliptic function of the corre-
sponding yi , and so the left hand side of (35) gives infinity times zero. This can be
circumvented, for example, by replacing each factor of xi in the argument of each
theta function an independent variable and specializing them all back to xi only after
integration. By l’Hôpital’s rule, this will produce an additional differentiation any
time we expand around xi = 1 for some i.

3.3.4

In the end, we will get some rather complicated polynomial in theta functions and
their derivatives evaluated at ±1 divided by a power of ϑ(−1). This means that we
will get a combination of Eisenstein series arising from
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ln
z

ϑ(ez)
= 2

∑
k≥1

z2k

(2k)!E2k(q), (36)

and

ln
ϑ(−ez)
ϑ(−1)

= 2
∑
k≥1

z2k

(2k)! [E2k(q)− 22kE2k(q
2)], (37)

together with the product

ϑ(−1) = 2i

(∏
n

1+ qn
1− qn

)2

= η(q2)2

η(q)4
. (38)

Note that (38) has weight −1.

3.3.5

Without knowing the precise form of the answer, one can still make some qualitative
observations about it.

Suppose we are interested in the coefficient of zk1
1 · · · zknn in the expansion of

F(ez1 , . . . , ezr ,−ezr+1 , . . . ,−ezn)
in powers of zi . We claim that the weight of this coefficient is at most

∑
ki + r .

Indeed, we from (36) and (37) we have

wt

(
x
d

dx

)k
ϑ(x)

∣∣∣
x=±1

= k − 1.

This gives the following count for the weight:

n− n+
∑
ki + r,

where the first n is added because of the prefactor in (34), the second n is subtracted
due to integration in yi (which, by Lemma 4 changes the balance of θ -factors by 1),∑
ki is the number of times we need to differentiate the integrand, and, finally, r

additional differentiations are needed for reasons explained in Section 3.3.3.

3.3.6

We further claim that (34) is, in fact, a polynomial in the coefficients of (36), (37), and

1

ϑ(−1)2
= −1

4

η(q)8

η(q2)4
= 2E2(q)− 12E2(q

2)+ 16E2(q
4). (39)

First, observe only even powers of (38) appear in the answer. This is because the
formula (34) has a balance of minus signs in the arguments of theta functions in the
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numerator and denominator. Every time we specialize yi to one of the poles in (35),
the balance of minus signs changes by an even number.

Inverse powers of (39) cannot appear in the answer because they grow expo-
nentially as q → 1 and there are no other exponentially large terms to cancel this
growth out. The averages (10) may grow only polynomially as q → 1 because of
the bound (30).

3.3.7

Recall from [16] that a quasimodular form for a congruence subgroup  ⊂ SL2(Z)
is, by definition, the holomorphic part of an almost holomorphic modular form for .
A function of |q| < 1 is called almost holomorphic if it is a polynomial in (ln |q|)−1

with coefficients in holomorphic functions of q. Quasimodular forms for  form a
graded algebra denoted by QM(). By a theorem of Kaneko and Zagier [13],

QM() = Q[E2] ⊗M().

In particular,
E2(q), E2(q

2), E2(q
4) ∈ QM(0(4)) (40)

where

0(4) =
{(
a b

c d

)∣∣∣∣ c ≡ 0 mod 4

}
⊂ SL2(Z).

Hence all averages (10) lie in QM(0(4)).
In fact, the series (40) generate the subalgebra QM2∗(0(4)) of even weight

quasimodular forms. This is because M2∗(0(4)) is freely generated by two gener-
ators of weight two, for example, by Eodd

2 (q) and Eodd
2 (q2), where

Eodd
2 (q) = E2(q)− 2E2(q

2) = 1

24
+

∞∑
n=1

⎛⎝ ∑
d|n,d odd

d

⎞⎠ qn.
3.3.8

Note that because w(λ) = 0 for any partition λ of odd size, the series (10) is in fact a
series in q2. It follows that it is quasimodular with respect to a bigger group, namely(

1 0
0 2

)
0(2)

(
1 0
0 2

)−1

⊃ 0(4).

In other words, (10) is, in fact, obtained by substituting q �→ q2 into an element of
QM(0(2)). We have

M(0(2)) = Q[Eodd
2 (q), E4(q

2)]
and hence

QM(0(2)) = Q[E2(q), E2(q
2), E4(q

2)].
This concludes the proof of Theorem 3.
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Appendix A: Examples

In this appendix, we list some simple examples of the quasimodular formsZ′(µ, ν; q)
appearing in Theorem 1 and polynomials gν from Theorem 2.

A.1 Quasimodular forms Z′(µ, ν; q)

Z′((1, 1), (2)) = 20E2(q
4)

2 − 20E2(q
4)E2(q

2)+ 4E2(q
2)

2 − 5

3
E4(q

4).

Z′((3, 1), (3)) = −2112

5
E2(q

4)
3 + 3888

5
E2(q

4)
2
E2(q

2)

− 2304

5
E2(q

4)E2(q
2)

2 + 384

5
E2(q

2)
3

+ 48E4(q
4)E2(q

4)− 36E4(q
4)E2(q

2).

Z′((3, 3), (2)) = 1056

5
E2(q

4)
3 − 1044

5
E2(q

4)
2
E2(q

2)

+ 252

5
E2(q

4)E2(q
2)

2 − 12

5
E2(q

2)
3 − 24E4(q

4)E2(q
4)

+ 3E4(q
4)E2(q

2)+ 15

2
E2(q

4)
2 − 15

2
E2(q

4)E2(q
2)

+ 3

2
E2(q

2)
2 − 5

8
E4(q

4).

Z′((5, 1), (2)) = 3520

3
E2(q

4)
3 − 1160E2(q

4)
2
E2(q

2)+ 280E2(q
4)E2(q

2)
2

− 40

3
E2(q

2)
3 − 400

3
E4(q

4)E2(q
4)+ 50

3
E4(q

4)E2(q
2)

+ 125

3
E2(q

4)
2 − 125

3
E2(q

4)E2(q
2)+ 25

3
E2(q

2)
2

− 125

36
E4(q

4).

Z′((1, 1, 1, 1),∅) = 1

4
E2(q

4)+ 1

96
.

Z′((3, 3, 1, 1),∅) = 9

256
− 12E2(q

4)
2 + 27

2
E2(q

4)E2(q
2)− 9

4
E2(q

2)
2

+ 5

4
E4(q

4)+ 9

16
E2(q

4)+ 3

8
E2(q

2).

Z′((5, 1, 1, 1),∅) = 125

1152
− 10E2(q

4)
2 + 15E2(q

4)E2(q
2)− 5

2
E2(q

2)
2

+ 55

24
E2(q

4)+ 5

12
E2(q

2).

Z′((3, 3, 3, 3),∅) = −24

5
E2(q

4)
3 − 84

5
E2(q

4)
2
E2(q

2)+ 423

20
E2(q

4)E2(q
2)

2

− 39

10
E2(q

2)
3 + E4(q

4)E2(q
4)+ 7

4
E4(q

4)E2(q
2)
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− 33

4
E2(q

4)
2 + 141

16
E2(q

4)E2(q
2)− 21

32
E2(q

2)
2

+ 25

32
E4(q

4)+ 27

256
E2(q

4)+ 9

32
E2(q

2)+ 27

2048
.

Z′((5, 3, 3, 1),∅) = 132E2(q
4)

3 − 708E2(q
4)

2
E2(q

2)+ 639E2(q
4)E2(q

2)
2

− 114E2(q
2)

3 − 15E4(q
4)E2(q

4)+ 55E4(q
4)E2(q

2)

− 310E2(q
4)

2 + 1365

4
E2(q

4)E2(q
2)− 285

8
E2(q

2)
2

+ 175

6
E4(q

4)+ 615

64
E2(q

4)+ 85

8
E2(q

2)+ 375

512
.

A.2 Polynomials gν

g1,1 = 1

2
p̄1.

g3,1 = 1

6
p̄2

1 +
1

6
p̄2 − 1

2
p1.

g3,3 = − 1

54
p̄3

1 +
1

18
p̄1p̄2 + 1

54
p̄3 − 1

4
p2 + 3

16
p̄1.

g5,1 = 1

30
p̄3

1 +
1

10
p̄1p̄2 − 1

2
p̄1p1 + 1

15
p̄3 − 1

2
p2 + 25

24
p̄1.

g5,3 = − 1

360
p̄4

1 −
1

60
p̄2

1p̄2 − 1

12
p̄2

1p1 + 2

45
p̄3p̄1 + 25

36
p̄2

1 +
1

40
p̄2

2

− 1

12
p̄2p1 + 5

8
p1

2 + 1

60
p̄4 − 1

2
p3 + 25

36
p̄2 − 25

12
p1.

g1,1,1,1 = − 1

24
p̄2

1 +
1

12
p̄2 + 1

96
.

g3,1,1,1 = 1

108
p̄3

1 −
1

36
p̄1p̄2 − 1

4
p̄1p1 + 2

27
p̄3 + 3

8
p̄1.

g3,3,1,1 = 1

216
p̄4

1 −
1

12
p̄2

1p1 + 1

108
p̄3p̄1 − 1

8
p2p̄1 + 9

32
p̄2

1 −
1

72
p̄2

2

− 1

12
p̄2p1 + 1

8
p1

2 + 1

36
p̄4 + 9

16
p̄2 − 3

4
p1 + 9

256
.

g3,3,3,1 = 1

4860
p̄5

1 +
1

486
p̄3

1p̄2 + 1

108
p̄3

1p1 − 5

972
p̄3p̄2

1 −
1

24
p2p̄2

1 −
1

96
p̄3

1

+ 1

324
p̄1p̄2

2 −
1

36
p̄1p̄2p1 + 1

162
p̄4p̄1 − 5

972
p̄3p̄2 − 1

108
p̄3p1 − 1

24
p2p̄2

+ 1

8
p2p1 + 31

96
p̄1p̄2 − 19

32
p̄1p1 + 1

4
p̄3 − p2 + 2

405
p̄5 + 153

128
p̄1.

g3,3,3,3 = 1

29160
p̄6

1 −
1

2916
p̄3p̄3

1 +
1

216
p2p̄3

1 −
1

432
p̄4

1 +
1

1944
p̄2

1p̄2
2 −

1

972
p̄4p̄2

1

+ 1

972
p̄3p̄1p̄2 − 1

72
p2p̄1p̄2 − 7

288
p̄2

1p̄2 − 1

12
p̄2

1p1 − 1

2916
p̄3

2
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− 1

1944
p̄2

3 −
1

216
p̄3p2 + 59

864
p̄3p̄1 + 1

32
p2

2 − 3

64
p2p̄1 + 1

1215
p̄5p̄1

+ 231

512
p̄2

1 +
1

32
p̄2

2 −
1

12
p̄2p1 + 3

8
p1

2 + 5

144
p̄4 − 5

12
p3 + 1

2916
p̄6

+ 129

256
p̄2 − 9

8
p1 + 27

2048
.
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