
12

Matching Hierarchical Graphs

12.1 Introduction

In general, the computation of graph similarity is a very costly task. In the context
of this book, however, we focus on a special class of graphs that allow for low-order
polynomial-time matching algorithms. The considered class of graphs is characterized
by the constraint that each node has a unique node label. This constraint is met in all
computer network monitoring and abnormal event detection applications considered in
this book.

Future applications of graph matching may require one to deal with graphs consist-
ing of tens or even hundreds of thousands of nodes. For these applications low-order
polynomial matching algorithms, such as those considered in previous chapters, may be
still too slow. In this chapter we introduce a hierarchical graph representation scheme
that is suitable for reducing the size of the graphs under consideration. Other reduction
schemes have been proposed in [109], for example. There are also some conceptual
similarities with hierarchical quadtree, or pyramid, representations in image processing
[4]. The basic idea underlying the proposed hierarchical representation scheme is to

contract some nodes of the given graph and represent them as a single node at a higher
level of abstraction. There are no particular assumptions about the criteria that control
the selection of nodes to be contracted into a single node at a higher abstraction level.
For the contraction process, any algorithm that clusters nodes of a graph, including
heuristic selection strategies or the algorithms discussed in Chapter 7, may be chosen.
Properties of the nodes that are contracted are stored as attributes with the corresponding
node at the higher level of abstraction. This process can be carried out in a hierarchical,
iterative fashion, which will allow us to eventually contract any arbitrarily large set of
nodes into a single node.

Because of the reduced number of nodes, computing the similarity of two graphs at
a higher level of abstraction can be expected to be much faster than the corresponding
computation on the original graphs. It is, however, desirable that the graph contraction
procedure, as well as the chosen graph distance measure, have some monotonicity
properties. That is, if graph g1 is more similar to g2 than to g3 at the original, full graph
resolution level, then this property should be maintained for the representation at any

200 12 Matching Hierarchical Graphs

higher level of abstraction. In this chapter we study several of these properties. While
the general monotonicity property, as stated above, can’t be guaranteed, we will derive
upper and lower bounds of the graph similarity measure at higher levels of abstraction.
It will be shown that under certain conditions these bounds are tight, i.e., they are
identical to the real similarity value.

In the next section, the proposed graph abstraction scheme is presented. Then in
Section 12.3, our new graph similarity measures will be defined and upper and lower
bounds for graph distance at higher levels of abstraction derived. Next, potential ap-
plications of the proposed graph contraction scheme and the similarity measures in the
domain of computer network monitoring will be discussed. In Section 12.5 the results
of an experimental study will be presented. Finally, a summary and conclusions will be
provided in Section 12.6.

12.2 Hierarchical Graph Abstraction

In this chapter we consider graphs g = (V , E, α, β) with unique node labels, and use
the following graph edit distance:

d(gi, gj) = |Vi | + |Vj | − 2|Vi ∩ Vj | + |Ei | + |Ej | − 2|Ei ∩ Ej | . (12.1)

This edit distance is identical to the edit distance introduced in Chapter 4 for the
case that we neglect edge weight and are just interested in whether an edge is present
between a given pair of nodes.

We start our graph abstraction process by partitioning the set of nodes V into a set
of subsets, or clusters, C = {c1, . . . , cn}, where ci ⊆ V, ci ∩ cj = ∅,

⋃n
i=1 ci = V for

i �= j ; i, j = 1, . . . , n.

Definition 12.1. Given a graph g and an arbitrary partitioning C, a hierarchical ab-
straction of g is the graph ḡ = (V̄ , Ē, ᾱ, β̄) where:

(i) V̄ = C, i.e., each node in ḡ represents a cluster of nodes in g (hence V̄ =
{c1, . . . , cn});

(ii) Ē = V̄ × V̄ , i.e., ḡ is fully connected;
(iii) ᾱ(v) = (nodes(v), edges(v)) for each v ∈ V̄ , such that

– nodes(v) = |c|, where v represents c

– edges(v) = |{e | e = (x, y) ∈ E ∧ x ∈ c ∧ y ∈ c}|, where v represents c.
That is, each node in ḡ gets two attributes, nodes(v) and edges(v), assigned to it.
The attribute nodes(v) is equal to the number of nodes in graph g that belong to
the cluster represented through v, while edges(v) is equal to the number of edges
in that cluster in graph g; and

(iv) β̄(e) = |{(x, y) | (x, y) ∈ E∧x ∈ ci ∧y ∈ cj ∧e = (ci, cj)}| for each e ∈ Ē. That
is, if e is an edge in ḡ originating at the node representing cluster ci and terminating
at the node representing cluster cj , then we count the number of edges in g that
lead from a node in ci to a node on cj .

12.3 Distance Measures for Hierarchical Graph Abstraction 201

Example 12.2. A graph gi and its hierarchical abstraction ḡi are shown in Figure 12.1.
For these graphs we observe that Vi = {1, 2, 3, 4, 5} and Ei = {(1, 2), (1, 4), (2, 1),

(2, 4), (2, 5), (3, 1), (4, 3)}.
We assume that Vi is partitioned into C = {{1, 2}, {3, 4}, {5}}, i.e., c1 = {1, 2},

c2 = {3, 4}, c3 = {5}. The hierarchical abstraction ḡi = (V̄ , Ē, ᾱ, β̄) is then given by

V̄i = {{1, 2}, {3, 4}, {5}} = {c1, c2, c3},
Ēi = {(c1, c2), (c1, c3), (c2, c1)},
nodesi : c1 → 2, c2 → 2, c3 → 1,

edgesi : c1 → 2, c2 → 1, c3 → 0,

β̄i : (c1, c2) → 2, (c1, c3) → 1, (c2, c1) → 1.

2

43

1

5

{1,2}

2

{3,4}

{5}

1

g gi i

1

(1,0)

(2,1)

(2,2)

Fig. 12.1. A graph gi and its hierarchical abstraction ḡi .

All edges e that have an attribute value β(e) = 0 are not included in Figure 12.1. In
the graphical representation of ḡi in Figure 12.1, the pairs (x, y) displayed next to the
nodes correspond to the node attributes, i.e., x = nodes(v), y = edges(v). Similarly,
the numbers next to the edges correspond to the edge attributes.

12.3 Distance Measures for Hierarchical Graph Abstraction

In this section we introduce two distance measures for the hierarchical graph abstrac-
tion introduced in Section 12.2, and discuss relationships with the measure defined
in equation (12.1). Throughout this section we assume that gi = (Vi, Ei, αi, βi) and
gj = (Vj , Ej , αj , βj) are two given graphs. The nodes and edges of both graphs come
from (possibly larger) sets V and E, respectively, i.e., Vi ∪ Vj ⊆ V , Ei ∪ Ej ⊆ E,

202 12 Matching Hierarchical Graphs

and C = {c1, . . . , cn} is a partition of V . The graphs ḡi = (V̄i , Ēi , ᾱi , β̄i) and
ḡj = (V̄j , Ēj , ᾱj , β̄j) are the hierarchical abstractions of gi and gj , respectively, both
based on the partition C. In Section 12.4, we will consider not only pairs, but whole sets
of graphs G = {g1, . . . , gm}, and compute the distance of various pairs of graphs from
set G. For reasons of efficiency, it is advantageous to consider one global partitioning
C for all graphs from G. Otherwise, if individual partitionings are applied, not all pairs
ḡi and ḡj will be comparable under the considered distance measures.

The first distance measure is defined as follows:

Dl(ḡi , ḡj) =
∑
v∈V̄

|nodesi (v) − nodesj (v)| +
∑
v∈V̄

|edgesi (v) − edgesj (v)|

+
∑
e∈Ē

|β̄i (e) − β̄j (e)| . (12.2)

Example 12.3. A graph gj and its hierarchical abstraction ḡj are shown in Figure 12.2.
We assume that V = Vi ∪ Vj , E = Ei ∪ Ej and C = {{1, 2}, {3, 4}, {5, 6}}. It is easy
to verify that d(gi, gj) = 13 and Dl(ḡi , ḡj) = 9. The distance Dl(ḡi , ḡj) is obtained
by summing the absolute differences of all pairs of corresponding attribute values. For
nodes we get the value two, for edges the value three, and for β̄(e) the value four.

4

6

3

2

5

2

{2}

{5,6}

{3,4} 1

j jg

(2,1)

(2,1)

(1,0)

g

1

Fig. 12.2. Another graph gj , and its hierarchical abstraction ḡj .

The fact that Dl(ḡi , ḡj) ≤ d(gi, gj) is not a coincidence. It can be easily proven
that Dl(ḡi , ḡj) is a lower bound of d(gi, gj) for any pair of graphs gi and gj , and any
partitioning C.

Lemma 12.4. Let gi , gj , ḡi and ḡj be graphs as introduced above. Then

Dl(ḡi , ḡj) ≤ d(gi, gj).

12.3 Distance Measures for Hierarchical Graph Abstraction 203

Proof. The proof is based on the observation that the term |Vi | + |Vj | − 2|Vi ∩ Vj | in
equation (12.1) is equal to the number of nodes that are in either gi or gj , but not in
both. Similarly, |Ei | + |Ej | − 2|Ei ∩ Ej | is equal to the number of edges either in gi

or gj , but not in both. In equation (12.2), node v (corresponding to one of the clusters
ck) includes exactly nodesi(v) nodes from gi and nodesj (v) nodes from gj . Hence
there must be at least |nodesi(v) − nodesj (v)| nodes that are not in both gi and gj .
Summing up over all nodes v ∈ V̄ (i.e., clusters ck ∈ C) yields a lower bound of the
expression |Vi |+|Vj |−2|Vi ∩Vj |. Similarly, the sum of the second and the third terms
in equation (12.2) yields a lower bound of |Ei | + |Ej | − 2|Ei ∩ Ej |.

It can be shown that under certain conditions the lower bound given by equa-
tion (12.2) is exact.

Lemma 12.5. Let gi , gj , ḡi , and ḡj be the same as in Lemma 12.4. Furthermore, let
Vi ⊆ Vj and Ei ⊆ Ej . Then

Dl(ḡi , ḡj) = d(gi, gj).

Proof. From our assumptions it follows that |Vi ∩ Vj | = |Vi | and |Ei ∩ Ej | = |Ei |.
Hence |Vi |+|Vj |−2|Vi ∩Vj | = |Vj |−|Vi |, |Ei |+|Ej |−2|Ei ∩Ej | = |Ej |−|Ei |, and
d(gi, gj) = |Vj | − |Vi | + |Ej | − |Ei |. Obviously, the right-hand side of this equation
is identical to the right-hand side of equation (12.2) under the assumption |Vi | ⊆ |Vj |
and |Ei | ⊆ |Ej |.

The second graph distance measure is defined as follows:

Du(ḡi , ḡj) =
∑
v∈V̄

NODES(v) +
∑
v∈V̄

INTRACLUSTER-EDGES(v)

+
∑
e∈Ē

INTERCLUSTER-EDGES(e) , (12.3)

where

NODES(v) =
⎧⎨⎩

nodesi(v) + nodesj (v), if nodesi(v)

+nodesj (v) < |c|,
2|c| − nodesi(v) − nodesj (v), otherwise ,

INTRACLUSTER-EDGES(v) =⎧⎨⎩
edgesi(v) + edgesj (v), if edgesi(v) + edgesj (v)

< |EDGES(v)|,
2|EDGES(v)|-edgesi(v) − edgesj (v), otherwise ,

and

INTERCLUSTER-EDGES(e) ={
β̄i (e) + β̄j (e), if β̄i (e) + β̄j (e) < |EDGES(e)|,
2|EDGES(e)| − β̄i (e) − β̄j (e), otherwise .

204 12 Matching Hierarchical Graphs

In this definition, c denotes the cluster that corresponds to node v, EDGES(v) is the
set of all edges in set E that belong to cluster c, and EDGES(e) is the set of all edges
in E that start and end at the same cluster as edge e. Formally,

EDGES(v) = {e | e = (x, y) ∈ E ∧ x ∈ c ∧ y ∈ c} ,

and

EDGES(e) = {(x, y) | (x, y) ∈ E ∧ x ∈ ci ∧ y ∈ cj ∧ e = (ci, cj)} .

Example 12.6. For the graphs shown in Figures 12.1 and 12.2, we obtain Du(ḡi , ḡj) =
13. Note that in all of the quantities NODES(v), INTRACLUSTER-EDGES(v), and
INTERCLUSTER-EDGES(e) the second condition always evaluates to true. The first
term in equation (12.3) evaluates to two, while values five and six are obtained for the
second and third terms, respectively.

Next we show that the measure Du(ḡi , ḡj) is an upper bound on d(gi, gj).

Lemma 12.7. Let gi , gj , ḡi and ḡj be graphs as introduced above. Then

d(gi, gj) ≤ Du(ḡi , ḡj) .

Proof. If the number of nodes of V that belong to cluster c is greater than the number of
nodes of gi in cluster c plus the number of nodes of gj in cluster c, then the intersection
of nodes of gi and gj is possibly empty and the expression |Vi | + |Vj | − 2|Vi ∩ Vj |
in equation (12.1) is bounded from above by nodesi(c) + nodesj (c). Otherwise, some
nodes from gi and gj must be the same, i.e., some nodes must occur in both gi and gj .
The number of these nodes is equal to nodesi(c)+nodesj (c)−|c|. Hence the expression
|Vi | + |Vj | − 2|Vi ∩ Vj | becomes equal to |nodesi(c) + nodesj (c) − 2(nodesi(c) +
nodesj (c) − |c|)| = 2|c| − nodesi(c) − nodesj (c). A similar argument holds for the
edges, i.e., for the the attributes edgesi(c), edgesj (c), β̄i (e), and β̄j (e). Summing over
all clusters c and all edges in E provides an upper bound of d(gi, gj).

In Example 12.6 we note that Du(ḡi , ḡj) = d(gi, gj). This is no coincidence
because the proof of Lemma 12.7 implies that the upper bound Du(ḡi , ḡj) is equal
to the actual distance d(gi, gj) if |Vi | + |Vj | ≥ |V | and |Ei | + |Ej | ≥ |E|. This is
summarized in the following lemma.

Lemma 12.8. Let gi , gj ḡi , and ḡj be defined as in Lemma 12.7 and let |Vi |+|Vj | ≥ |V |
and |Ei | + |Ej | ≥ |E|. Then

Du(ḡi , ḡj) = d(gi, gj) .

A consequence of this lemma is that for any two graphs gi , gj and their hierarchical
abstractions ḡi , ḡj , the quantity Du(ḡi , ḡj) is always equal to d(gi, gj) if we set V =
Vi ∪ Vj and E = Ei ∪ Ej .

12.3 Distance Measures for Hierarchical Graph Abstraction 205

In the remainder of this section we will investigate the problem of how the upper
and lower bounds Du(ḡi , ḡj) and Dl(ḡi , ḡj) depend on the way we partition the set V .
Let C = {c1, . . . , cn} and C̄ = {c̄1, . . . , c̄m} be two different partitionings of set V . We
call C finer than C̄ if for each ci there exists a c̄j such that ci ⊆ c̄j . Let gi and gj be two
graphs, ḡi and ḡj their hierarchical abstractions based on partition C, and Ḡi and Ḡj

their hierarchical abstractions based on partition C̄, where C is finer than C̄. Then we
can prove that Du(ḡi , ḡj) and Dl(ḡi , ḡj) are better approximations of d(gi, gj) than
Du(Ḡi, Ḡj) and Dl(Ḡi, Ḡj), respectively.

Lemma 12.9. Let ḡi , ḡj , Ḡi , and Ḡj be as defined above. Then

Dl(Ḡi, Ḡj) ≤ Dl(ḡi , ḡj) .

Proof. Assume that the cluster c ∈ C̄ is split into clusters c1, . . . , ck ∈ C when we
refine the partition C̄ to the partition C. Clearly, |c| = ∑k

l=1 |cl |. The contribution of
cluster c to the first term of Dl(Ḡi, Ḡj) is equal to |nodesi(c) − nodesj (c)|, which
can be rewritten as |∑k

l=1 nodesi(cl)−∑k
l=1 nodesj (cl)|; see equation (12.2). On the

other hand, for clusters c1, . . . , ck we get a contribution equal to
∑k

l=1 |nodesi(cl) −
nodesj (cl)| to the first term in Dl(ḡi , ḡj).Applying a similar argument to the second and
third terms in equation (12.2) and using the well-known relation |∑k

l=1 al −∑k
l=1 bl | ≤∑k

l=1 |al − bl |, which holds for any set of real numbers al , bl , concludes the proof.

Lemma 12.10. Let ḡi , ḡj , Ḡi , and Ḡj be the same as in Lemma 12.9. Then

Du(ḡi , ḡj) ≤ Du(Ḡi, Ḡj) .

Proof. The proof is based on observing that in the computation of NODES(v) in equa-
tion (12.3), whenever the second case evaluates to true for a partition C̄, it will also
evaluate to true for any other partition C that is finer than C̄. On the other hand, if the first
case evaluates to true for C̄, then either the first or the second case may evaluate to true for
any of the clusters in C. Moreover, we observe that the value under the second condition
is always less than or equal to the value obtained under the first condition. Applying a
similar argument to INTRACLUSTER-EDGES(v) and INTERCLUSTER-EDGES(e)

yields the proof.

Summarizing all results derived in this section, we obtain the following theorem:

Theorem 12.11. Let all quantities be as introduced above. Then:

(i) Dl(Ḡi, Ḡj) ≤ Dl(ḡi , ḡj) ≤ d(gi, gj) ≤ Du(ḡi , ḡj) ≤ Du(Ḡi, Ḡj) ,

(ii) d(gi, gj) = Dl(ḡi , ḡj) = Dl(Ḡi, Ḡj), if Vi ⊆ Vj and Ei ⊆ Ej ,

(iii) d(gi, gj) = Du(ḡi , ḡj) = Du(Ḡi, Ḡj), if V = Vi ∪ Vj , E = Ei ∪ Ej .

We notice that whenever the condition in (ii) is satisfied, the condition in (iii) will also
be satisfied. Hence in this case Dl(ḡi , ḡj) = Dl(Ḡi, Ḡj) = d(gi, gj) = Du(ḡi , ḡj) =
Du(Ḡi, Ḡj).

206 12 Matching Hierarchical Graphs

12.4 Application to Computer Network Monitoring

Through the hierarchical abstraction process described in Section 12.2, the number of
nodes in a graph can be reduced. In fact, it can be made arbitrarily small. In the extreme
case, a large graph will be represented by a single node only. Applying equations (12.2)
and (12.3) to a pair of graphs ḡi , ḡj , which result from gi and gj through the proposed
abstraction process, yields upper and lower bounds for d(gi, gj). The closer ḡi and ḡj

are to the original, full-resolution graphs gi and gj , i.e., the more details are included in
the abstract graph representation, the closer will be the upper and lower bounds to the
actual value d(gi, gj). Note that only two numbers, the number of corresponding nodes
and the number of corresponding edges from the original graph, need to be stored with
a node at an abstract level. For edges at an abstract level, only one number is needed,
representing the number of corresponding edges in the original graph.

If an abnormal event at time t + 1 is defined by the condition d(gt , gt+1) ≥ θ ,
where θ is a threshold that depends on the considered application and the underlying
network, then rather than considering d(gt , gt+1) one can compute Dl(ḡt , ḡt+1) and
Du(ḡt , ḡt+1), where ḡt and ḡt+1 are obtained from gt and gt+1 through the proposed
graph abstraction procedure. Clearly, if Dl(ḡt , ḡt+1) ≥ θ then we conclude that an
abnormal event has occurred. Similarly, if Du(ḡt , ḡt+1) < θ then we conclude that
no abnormal event has occurred. In either case we need not compute d(gt , gt+1), and
it can be expected that computing Dl(ḡt , ḡt+1) and Du(ḡt , ḡt+1) is faster than the
computation of d(gt , gt+1). On the other hand, if Dl(ḡt , ḡt+1) < θ and Du(ḡt , ḡt+1) ≥
θ , then we need to calculate d(gt , gt+1). Alternatively we can compute Dl(g̃t , g̃t+1)

and Du(g̃t , g̃t+1) for graphs g̃t and g̃t+1 that are closer to the original level of resolution
than ḡt and ḡt+1, expecting either Dl(g̃t , g̃t+1) ≥ θ or Du(g̃t , g̃t+1) < θ .

In Chapter 7 (intra)graph clustering algorithms have been described. These algo-
rithms are able to identify clusters of nodes within a graph such that nodes in the same
cluster are similar to each other, while nodes in different clusters are dissimilar. For
the graph abstraction process described in Section 12.2, no such clustering algorithm
is needed. In fact, any partition of the underlying set of nodes can be used as the basis
of graph abstraction. In the simplest case, one can just assign unique labels from 1 to
N to all servers in the underlying network, and then partition the set {1, . . . , N} into a
given number of disjoint subsets.

Computing Dl(ḡt , ḡt+1) and Du(ḡt , ḡt+1), we get lower and upper bounds of
d(gt , gt+1), respectively, as discussed before. Note that in the case that all nodes
and edges of the entire network appear in the union gt and gt+1, the upper bound
Du(ḡt , ḡt+1) is the exact value. In this case two arbitrarily large graphs gt and gt+1 can
be contracted to a single node each, and the upper bound will still be the exact value,
i.e., Du(ḡt , ḡt+1) = d(gt , gt+1). As an example consider the graphs in Figures 12.1
and 12.2. If we contract gi into a single node v, we get nodesi(v) = 5, edgesi(v) = 7.
Similarly, if gj is contracted into a single node, then nodesj (v) = 5, edgesj (v) = 6.
Moreover, under the assumption that the union of gi and gj includes the entire set of
nodes and edges of the network, we observe that |c| = 6 and |EDGES(v)| = 12. Hence
Du(ḡi , ḡj) = (12 − 10) + (24 − 13) = 13 = d(gi, gj).

12.5 Experimental Results 207

12.5 Experimental Results

The aim of the experiments described in this section is to verify the theoretical results
derived in Section 12.3, to measure the tightness of upper and lower bounds, and
to quantitatively evaluate the computational savings that can be achieved through the
proposed graph abstraction scheme. In the experiments described in this section, we first
generate a graph g1, with 10,000 nodes. Each node is connected, on average, to 1,000
other nodes via an undirected, unlabeled edge. Edges are randomly distributed in g1.
The set of integers {1, . . . , 10,000} is used to label the nodes and each node has a unique
label.A second graph g2 is obtained from g1 by randomly deleting n% of the nodes of g1,
together with their incident edges. Additionally n′% of the remaining edges are deleted.
Next, hierarchical abstractions of both g1 and g2 are generated, consisting of 1,000, 100,
10, and 1 node. These hierarchical abstractions are all based on the same partition of the
nodes of g1. For example, to generate a hierarchical abstraction with 1,000 nodes, i.e.,
with a cluster size of ten nodes each, the first cluster is given by the nodes with a label
from {1, . . . , 10}, the second cluster by the nodes with a label from {11, . . . , 20}, and so
on. From the way g1 and g2 are generated, it is obvious that the conditions of Lemmas
12.5 and 12.8 are fulfilled. Hence, we expect that Dl(ḡ1, ḡ2) = d(g1, g2) = Du(ḡ1, ḡ2)

for any of the considered hierarchical abstractions ḡi .As a matter of fact, this expectation
is confirmed in Figure 12.3, where the x-axis corresponds to the different levels of
abstraction (i.e., number of clusters, which is 1,000, 100, 10, 1), and they-axis represents
the distances d(g1, g2), Dl(ḡ1, ḡ2), Du(ḡ1, ḡ2). All three distances coincide for any
considered level of abstraction, which confirms that both upper and lower bounds are
identical to the real graph distance. In Figure 12.3, values n = 10 and n′ = 5 are
used. In Figure 12.4, the results of four similar experimental runs are shown for values
(n = 20, n′ = 10), (n = 30, n′ = 15), (n = 40, n′ = 20), and (n = 50, n′ = 25). In
each case the values of d(g1, g2), Dl(ḡ1, ḡ2), and Du(ḡ1, ḡ2) coincide. Hence only four
straight lines are observed in this figure. Clearly, with an increasing number of nodes
and edges being deleted from g1, the distance between g1 and g2 increases. This effect
can be clearly observed in Figure 12.4. The point to be stressed about Figure 12.4 is
that, similarly to Figure 12.3, all three measures Dl(ḡ1, ḡ2), d(g1, g2), and Du(ḡ1, ḡ2)

are identical, as stated in Lemmas 12.5 and 12.8.

1.5e+06

1.55e+06

1.6e+06

1101001000

Fig. 12.3. Experimental data illustrating Lemmas 12.5 and 12.8.

208 12 Matching Hierarchical Graphs

2e+06

3e+06

4e+06

5e+06

1101001000

Fig. 12.4. Further illustration of Lemmas 12.5 and 12.8.

1.5e+06

3e+06

1101001000

Fig. 12.5. Experimental data illustrating the upper and lower bound (m = 60).

0

1.5e+06

3e+06

1101001000
0

1.5e+06

3e+06

1101001000
0

1.5e+06

3e+06

1101001000

(a) (b) (c)

Fig. 12.6. Further illustration of upper and lower bound: (a) m = 70, (b) m = 80, (c) m = 90.

The aim of the next set of experiments is to analyze the behavior of the upper and
lower bounds in case the conditions of Lemmas 12.5 and 12.8 are no longer satisfied.
For this purpose, we start again with a graph g1 that is generated in exactly the same way
as described in the previous paragraph. Next we randomly delete 50% of the nodes of g1
together with their incident edges. The resulting graph is referred to as g3. Next, graph
g4 is generated by randomly deleting m% of all nodes together with their incident edges

12.5 Experimental Results 209

Table 12.1. Data corresponding to Figure 12.5

1000 100 10 1 m

Du 2,409,516 2,410,042 2,410,088 2,411,390
Dl 1,239,038 638,308 534,130 390,094 60
d 2,407,580

Table 12.2. Data corresponding to Figure 12.6.

1000 100 10 1 m
Du 2,397,782 2,398,060 2,398,146 2,400,294
Dl 1,457,062 1,126,264 1,020,270 749,790 70
d 2,396,262
Du 2,322,436 2,322,510 2,322,814 2,325,836
Dl 1,700,350 1,495,504 1,360,116 1,034,514 80
d 2,321,440
Du 2,313,272 2,313,318 2,313,494 2,317,408
Dl 1,969,420 1,890,110 1,815,788 1,275,640 90
d 2,312,800

from g1 (m = 60, 70, 80, 90). Clearly, when we match graphs g3 and g4, the conditions
of Lemmas 12.5 and 12.8 are not necessarily satisfied any longer. Similarly to the first
set of experiments, hierarchical abstractions of g3 and g4 were generated consisting
of 1,000, 100, 10, and 1 node. In Figure 12.5, the distances d(g3, g4), Dl(ḡ3, ḡ4), and
Du(ḡ3, ḡ4) are shown for m = 60. While the lower bound is significantly smaller
than the real distance, the upper bound is quite tight. As a matter of fact, d(g3, g4)

visually coincides with Du(ḡ3, ḡ4) in Figure 12.5. To see that d(g3, g4) is not identical
to Du(ḡ3, ḡ4), the information provided in Figure 12.5 is shown in tabular form in Table
12.1. In Figure 12.6 and Table 12.2 the corresponding values are given for m = 70, 80,
and 90. As m increases, graphs g3 and g4 become more similar to each other. In any
case, the upper bound is very close to the real distance even for the maximum degree
of compression, where both graphs are represented through a single node only. We also
observe that both upper and lower bounds become tighter as the distance d(g3, g4)

decreases.
The motivation of the third set of experiments is to measure the computational

savings that can be achieved by means of the proposed hierarchical graph abstraction
scheme. We assume that the sensors, or devices, that yield the graph data not only
provide us with the graphs at the full level of resolution, but also with hierarchical
abstractions. Hence the time needed to generate hierarchical abstractions from a graph
at the full resolution level is not taken into account in the experiments described in
the following. To analyze the computational efficiency of the proposed graph similarity
measures, we select graphs g3 and g4 (with m = 60) and their hierarchical abstractions,
as described in the last paragraph, and measure the time needed to compute d(g3, g4),
Dl(ḡ3, ḡ4), and Du(ḡ3, ḡ4). The results are shown in Table 12.3. The computation of
d(g3, g4) is performed on the original graphs g3 and g4, and is independent of the cluster

210 12 Matching Hierarchical Graphs

size in the hierarchical abstraction. It turns out that the computation of both Dl(ḡ3, ḡ4)

and Du(ḡ3, ḡ4) is extremely fast when compared to d(g3, g4). From this observation
we can conclude that distance measure Du provides an excellent compromise between
speed and precision. On one hand, it is extremely fast to compute, and on the other,
it returns values very close to the real graph distance. As a matter of fact, a speedup
on the order of 108 can be observed over the computation of d(g3, g4) for the case of
maximum graph compression, while the precision of the upper bound is still within a
tolerance of 0.2%.

Table 12.3. Computational time of the distance measures in msec.

1000 100 10 1 m
Time Du 61.6 0.5632 0.00568 0.000076
Time Dl 19.52 0.1552 0.001304 0.0000552 60
Time d 36,000

12.6 Conclusions

In this chapter we have described a hierarchical graph abstraction procedure that con-
tracts clusters, or groups, of nodes into single nodes. On this hierarchical representation,
graph similarity can be computed more efficiently than on the original graphs. Two dis-
tance measures for contracted graphs are introduced, and it is shown that they provide
lower and upper bounds, respectively, for the distance of graphs at the original level
of resolution. The proposed methods can be used to very significantly speed up the
computation of graph similarity in the context of computer network monitoring and ab-
normal change detection. It can be proven that under special conditions, upper and/or
lower bounds are exact.

