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Preface

In this monograph, we describe the application of many graph-theoretic algorithms to a
comprehensive environment of analysis of dynamic enterprise networks. Networks are
ubiquitous, increasingly complex, and dynamic. Since they are part of all aspects of hu-
man life, their support of modern enterprise environments is paramount. Enterprises in
general are becoming more information-based, and proper networking support depends
on optimal performance management of all intranets involved in populating information
and knowledge databases. Among other parameters, network dynamics analysis yields
valuable information about network performance, efficiency, fault prediction, cost op-
timization, indicators, and warnings. After many years of applied research of generic
network dynamics, we have decided to write a chronicle of our investigations to date
with emphasis on enterprise networks. The motivation was two-fold: first, we wanted to
convey to practitioners involved in network analysis a number of elegant applications
of traditional graph-theoretic algorithms and techniques to computationally-tractable
network dynamics analysis; second, we wanted to motivate researchers in other areas of
mathematics, statistics, and computer science to apply similar reasoning in implementa-
tion of their approaches to analysis of dynamic enterprise networks. This monograph is
also suitable for various graduate-level courses addressing state-of-the art applications
of graph theory in analysis of dynamic communication networks, dynamic databasing,
knowledge management, and many related applications of network dynamics.

The exposition is organized in four parts. They are relatively self-contained and
describe in detail the main phases of our up-to-date investigations of enterprise network
dynamics.

Part I serves as an introduction to the monograph. Chapter 1 is a basic overview
of typical enterprise networks, such as intranets, and their management. An overview
of enterprise intranets is given, together with the most important aspects of network
monitoring and detection of anomalous network behavior. Parts of this chapter and the
majority of the remaining chapters in this monograph are also based on the thesis of P.
Dickinson [58]. Chapter 2 is devoted to introduction of all graph-theoretic prerequisites
for the algorithms used later in the monograph.

Part II is an in-depth treatise on the use of various graph distances for event detection
in modern enterprise networks. Chapter 3 covers graph matching for networks with
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unique node labeling; this work has also been described in [62]. Parts of reference [62]
are used in this monograph with kind permission of Springer Science and Business
Media. Chapter 4 introduces the most important graph similarity measures for abnormal
change detection in networks, as reported in [26, 158]. Median graphs and their most
important applications in detection of anomalous changes in dynamic networks are
outlined in Chapter 5. Many experimental results are given as well. This work was also
reported in [59, 63]. Chapter 6 addresses the important problem of clustering in the
graph domain of time series of graphs. Most important types of clustering are given
and applications to network analysis are outlined. Graph distances based on intra-graph
clustering are covered in Chapter 7; this work has been reported also in [61]. Chapter
8 outlines possible applications of matching sequences of graphs to network dynamics
investigations. Some applications to incomplete network knowledge are given. Some
of this work was reported in [22].

Part III is dedicated to the exploration of properties of underlying graphs in dynamic
enterprise networks. Chapter 9 introduces graph dynamics measures using path lengths
and clustering coefficients. Relationships to networks of small-world type and general
enterprise networks is given. In Chapter 10, a new set of measures utilizing Kendall–
Wei ranking of graph tournaments is applied to network dynamics modeling and to
ranking of enterprise network nodes by their importance in overall communication.

Part IV deals with theory and applications of network behavior inferencing and fore-
casting using sequences of graphs. Moreover, in this part, graph distances based on the
hierarchical graph abstractions are introduced. Chapter 11 describes the reconstruction
of missing network data using context in time and also machine learning and decision
tree classifiers applied to network prediction. In this chapter, a detailed examination
of the algorithms implemented is given, along with an extensive set of computational
results. Some of the new results described in this chapter have been reported else-
where [23]. In Chapter 12, network dynamics measures involving hierarchical graph
abstractions are explored, together with their most important applications to enterprise
network monitoring. Bounding techniques are implemented for graph contractions, re-
sulting in favorable speedups of anomalous change computations; the main results of
this chapter have been reported elsewhere [64].1 We acknowledge the permission of
World Scientific to use the material from that publication.

A monograph of this size and scope would not be possible without the help and
support of many people. The first author wants to acknowledge contributions from
his students at the University of Bern, especially Christophe Irniger, Michel Neuhaus,
and Florian Thalmann. The second and third authors would like to thank the many
people from the Intelligence, Surveillance and Reconnaissance Division of DSTO for
their support during the development of this book. All four authors would also like to
acknowledge the contribution of Peter Shoubridge to many theoretical and experimental
aspects of our work on network dynamics investigations. Any views stated within this

1Also available at http://www.worldscinet.com/ijprai/18/1803/S02180014041803.html.
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book are completely our own and are not related in any way to theAustralian Department
of Defence.

Bern (Switzerland) Horst Bunke
Adelaide (Australia) Peter J. Dickinson, Miro Kraetzl
Carbondale (U.S.A.) Walter D. Wallis
March 2006
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Introduction
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Intranets and Network Management

1.1 Introduction

The origin of the Internet and TCP/IP protocol suite date back to 1969, when the Ad-
vanced Research Projects Agency (ARPA) funded a research and development project
to create a packet-switched network, named the ARPANET. The aim was to demon-
strate techniques to provide a heterogeneous, robust, and reliable data communications
network. The ARPANET grew steadily as many research and educational institutions
implemented the open protocols and connected to the network. The ARPANET has
since evolved into the global network of networks that we know as the Internet and has
continued to grow rapidly.

The Transmission Control Protocol/Internet Protocol (TCP/IP) is a suite of protocols
that form the basic foundation of the Internet. The Internet Protocol (IP) is central to
the architecture of the Internet. In terms of the OSI (Open Systems Interconnection)
seven-layer reference model, it provides the data link and network layer services. The
function of IP is to ensure that packets injected at any point in the network are routed to
the intended destination. It is a connectionless protocol; hence it provides no guarantee
that packets will be successfully delivered to the destination node. The TCP is a reliable
connection-oriented transport layer protocol. Its function is to fragment a byte stream
into discrete messages and then use IP to route these messages to the destination. At
the destination, TCP sorts packets into the correct order and requests the sender to
retransmit lost packets. A comprehensive coverage of TCP/IP and layered protocols,
such as the OSI reference model, can be found in [166].

The popularity and growth of the Internet, in conjunction with the variety of appli-
cations that make use of it (e.g., World Wide Web and email), has led to the widespread
usage of the TCP/IP protocol suite in networks not connected, or indirectly connected,
to the Internet. These networks are called intranets and provide data communications
for internal use by organizations. Within such organizations, the trend has been toward
larger and more complex networks that support numerous corporate activities. Not
surprisingly, this has led to an increased reliance on the intranet for daily business func-
tions. In addition, the larger and more complex the network becomes, the greater the
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risk of performance degradations and faults. To maintain reliable network operations,
it is important that network management processes be employed [69].

Network management comprises five key functional areas. Of these, fault manage-
ment, performance management, and security management are central to maintaining
a high level of service. Fault management is responsible for detecting and identifying
network faults. A fault is usually indicated by a failure to operate correctly or through
excessive errors. Performance management is concerned with how well the network
or its parts are working. Security management ensures that only selected users have
access to network resources. It encompasses functions such as user authorization and
intrusion detection. In all of these areas of network management the early detection
of network anomalies can greatly assist in minimizing or preventing a problem from
occurring. Anomaly detection can be used to identify abnormal network behavior by
statistical modeling of data collected from the network. To improve the effectiveness
of network anomaly detection, more sophisticated techniques are required to collect
and process raw network measurements in order to produce new data that has greater
sensitivity to anomalous behavior.

Section 1.2 will extend the definition of an intranet by discussing typical network
configurations and applications that they utilize. A general description of computer
network management will be provided in 1.3. The underlying architecture for imple-
mentation of network management will be addressed in Section 1.4. In Section 1.5 the
general description of network management will be refined to specifically address man-
agement of TCP/IP networks. A discussion of the two major protocols used, namely
SNMP and RMON, will be given. Network monitoring, which is defined in Section
1.6, provides common implementations, techniques to minimize the volume of network
measures collected, and new methods to synthesize improved measures from existing
measures. A summary of the chapter is given in Section 1.8.

1.2 Enterprise Intranets

An intranet is a private network inside a company or organization that uses technolo-
gies developed for the public Internet, but that is for internal use only. Intranets are
growing rapidly in popularity because they provide platform independence, and are
less expensive to build and manage than private networks that use proprietary protocols
and software. The importance of the intranet to an enterprise is increasing as enterprises
become more information-based. The intranet provides powerful capabilities to an en-
terprise for dissemination of information (e.g., WWW and web browsers), efficient
information retrieval (e.g., search engines) and interactive information exchange (e.g.,
email, newsgroups) [17]. These capabilities equate to reduced costs in operation and
maintenance of infrastructure, and increased productivity from employees [14, 85].

Intranets can take advantage of many types of networking technologies in the same
manner as that of the Internet. The technologies used for any given intranet will depend
on many factors, including the number of users that need to access the network and the
geographical area that the network must span. A small organization located in a single
office, building, or group of buildings that are in close proximity to one another may
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require only a single network technology. A local area network (LAN) using Ethernet
technology would suffice. On the other hand, a large organization that has offices glob-
ally may use numerous networking technologies. This global intranet may comprise of
many Ethernet LANs, to service the individual offices, that are interconnected using
a high-speed wide area networking (WAN) technology, such as asynchronous transfer
mode (ATM) or frame relay. Network technologies are dealt with more thoroughly in
[169]. The difficulty in managing networks increases with size and complexity of the

network. While the management of a single LAN segment requires only basic net-
work management tools, a large heterogeneous network requires a powerful network
management system.

It is often a requirement for an organization to connect its intranet to the public In-
ternet. Under these circumstances a firewall is deployed to keep unauthorized Internet
traffic off the intranet. Figure 1.1 shows the interconnectivity between an intranet and
the Internet. Likewise, if a partnership is formed between two organizations, a need
may arise to connect their individual intranets to share information. While this poses
less risk than connection to the Internet, firewalls are again deployed, however using
less-stringent filters. When two or more enterprise intranets are connected to one an-
other they are referred to as an extranet (see Figure 1.1). Organizations are faced with
supporting a broader range of communications among a wider range of sites and at
the same time reducing the cost of the communications infrastructure. When an urgent
need arises to provide connectivity to remote offices, the past solutions to wide area
networking, such as dedicated leased lines, have proven to be inflexible and expensive.
Many of these problems have been solved following the advent of virtual private net-
work (VPN) technology. VPNs use the open distributed infrastructure of the Internet
to transfer encrypted data from the corporate intranet to remote sites. An example of
this can be seen in Figure 1.1. The use of VPNs is not limited to corporate sites only.
They can be used to provide secure connectivity to mobile users and to provide in-
terconnections to extranets. VPNs provide a significant cost reduction over dedicated
leased lines. The tradeoff for having greater flexibility in connections to extranets and
the Internet is increased security risks. The management of security of an intranet is
vital and should consider both internal and external vulnerabilities. While firewalls help
to secure interconnections to external networks, including the Internet, and VPN tech-
nology provides intranets with a secure method of data transfer that utilizes the public
infrastructure, additional methods are required to ensure that intranets, and the sensi-
tive information they carry, remain protected from unauthorized access and malicious
attacks. These techniques require the ability to detect network anomalies and identify
network intrusion in order to identify and isolate incursions. Figure 1.1 also depicts
how a VPN is used to connect to remote intranets via the Internet.

As mentioned, the main objective of an intranet is to provide a mechanism for infor-
mation exchange. The applications that are most prevalent in intranets for information
exchange are email, web browsers, ftp, and telnet. More recently, voice over IP (VoIP)
and video conferencing have grown in popularity. All of these applications can gen-
erate a large volume of dynamic traffic on the underlying physical network. For most
intranets, web traffic makes up the bulk of this traffic and arises from communications
between distributed web servers and web browsers on user workstations. Unlike the
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Fig. 1.1. Intranets, extranets, and the Internet.

traditional client/server models, where traffic patterns are somewhat predictable, the
new web-centric model leads to unpredictable traffic patterns. These unusual patterns
result from a large number of users accessing a variety of web pages that reside on
different web servers distributed across the intranet. Under some circumstances this
traffic can lead to significant network problems. Flash crowds [95], whereby a recently
published web site is accessed concurrently by a large number of users, is one such
example that results in network congestion. The ensemble behavior of web traffic is thus
largely driven by the activity of its users. Web traffic, and traffic resulting from many
other TCP/IP-based applications, poses significant challenges to network managers if
they are to provide acceptable performance and availability of intranet applications to
end users. To maintain desired levels of service to end users it is critical to exercise
effective network management of web resources, bandwidth, and traffic. Network man-
agement tools that can help to identify abnormal behavior before it leads to performance
degradation or network failure are still very immature. Better techniques are required
to detect network anomalies in order to identify problems early so that corrective action
can be taken.

The protocols used in the TCP/IP suite to control network routing (e.g., open short-
est path first (OSPF) protocol), can also result in significant dynamic network behavior.
It is important for network managers to know when this behavior is normal or abnormal
so that faults, such as misconfiguration of routers, can be identified early. In order to de-
rive models of normal and abnormal behavior, it is necessary for metrics to be collected
from various points in the network. The network management system is used to re-
trieve such information. Fortunately, intranets are generally owned by one organization
and thus have the advantage of a single management entity. This makes it possible to
access network devices directly to acquire management data. Conversely, when one is
performing network monitoring functions in the Internet domain, ownership of certain
parts of the network may not always be so clear, and access to management data may
be prohibited by the owner. Where complete ownership is not guaranteed, other tech-
niques, such as network tomography [50], are required to derive information about the
network. These techniques may also prove valuable for intranets. Tools that can make
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use of varied sources of network metrics in order to distinguish abnormal from normal
behavior, and thus identify anomalous events, are valuable to network managers.

Intranets have proven to be a very useful facilitator of communication of infor-
mation within an organization and as such have become relied upon for performing
the daily functions of the organization. The size and complexity of these networks, in
combination with the flexible nature of applications available to end users, can lead to
serious network faults. This has the potential to cause major disruption to the operations
of an organization. The impact of such faults can suspend an organization’s activities
until the problem is rectified. This could result in a large amount of lost revenue for
the organization. It is very important that an organization has a network management
system in place and that the capability of that system is commensurate with the risk that
the organization is willing to accept if the network were to fail. Performance, fault, and
security management of a network are vital components of an overall network manage-
ment solution. They minimize the risk of network failure and network intrusion, and
ensure that the network is providing the desired quality of service to its end users.

1.3 Network Management

In the last section we emphasized that intranets are heavily relied upon by organizations,
and as a consequence it has become mandatory that network services be maintained to
ensure that business operations are not disrupted. Network management is the discipline
that attempts to deliver this outcome. The goal of network management is to guarantee
an agreed upon level of service to users of the network. In many enterprises a service
level agreement (SLA) is established with users. In general, network management is
a service that employs a variety of tools, applications, and devices to assist human
network managers in monitoring and maintaining networks. A more thorough coverage
of network management principles can be found in [165].

Over the past twenty years there has been a huge growth in network deployment.
At the same time, networking technologies have been evolving at a rapid rate. As
networking requirements within organizations have grown, it has been necessary to
augment the existing networking infrastructure with new infrastructure. At the time
of a network upgrade it was common for an organization to use the latest technology
available. This generally provided the greatest improvement in capability as a function
of cost. As a result, the enterprise networks that emerged comprised a range of different
networking technologies, each requiring its own set of skilled network managers. In
the early 1980s, the cost of network management required to manage these large,
heterogeneous networks created a crisis for many organizations. An urgent need arose
for automated network management that was integrated across diverse environments.

The International Organization for Standardization (ISO) has developed the OSI net-
work management reference model, which comprises five functional areas. This model
has become the primary means for understanding the major functions of a network
management system and has gained broad acceptance by vendors of both standardized
and proprietary network management tools. The five functional areas are performance
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management, fault management, security management, configuration management, and
accounting management.

The goal of performance management is to measure and make available various
aspects of network performance so that internetworking performance can be maintained
at an acceptable level. Examples of performance variables are network throughput,
reliability, availability, latency, user response times, and resource utilization. There
are two main functions of performance management, namely monitoring and control.
Monitoring is used to probe network resources to acquire data that can be analyzed by
performance management tools. It is important that the chosen measurement variables
capture information that is suitable for identifying performance degradations. Network
monitoring is discussed at length in Section 1.6. Control is the reactive component
of performance management that makes adjustments to the network in response to
unacceptable levels of network performance.

Fault management is used to detect, identify, locate, and if possible repair network
problems. It is probably the most widely implemented function of the OSI network
management components due to the impact a fault can have on critical business op-
erations. Faults in networks include network misconfigurations, link failure, hardware
interface failure, and traffic anomalies (for example, broadcast storms [5,71,82,133]).
Open standards, associated with the TCP/IP protocols, have led to networks that contain
hardware and software of different vendors. This complexity coupled with the growing
size of networks has made network faults increasingly difficult to detect and diagnose
[193].

Security management is concerned with physically securing the network and con-
trolling access to network resources. Network access control is required to protect sen-
sitive information from unauthorized users and to avoid malicious network attacks. It is
important that sensitive information, and access points to this information, be identified
and secured. Access points that are most sensitive include end user devices, backbone
networks, and web servers. In large organizations it is usual that users have different
levels of access to information. Users that access the network via an extranet will have
very little access to sensitive information. Internal network users would likely have ac-
cess to general information; however, access may be denied to information originating
from a particular department. Access to human resource files, for example, would be
inappropriate for most users outside the human resources department. Access-related
issues have largely been managed by maintaining logs of network access and examina-
tion of audit records. The protection of an intranet from external attacks is performed
by a firewall. It monitors and controls traffic into and out of an intranet. Firewalls are
commonly used at the gateway between an intranet and an extranet, or the Internet.
Most security risks are common to all types of networks. With the constant evolution
of intranets and TCP/IP protocols, new security risks are likely to emerge as new web
sites, network servers, and services are added to the network. Some of the highest-level
risks to intranets include brute-force attacks, vulnerabilities in web server software,
anonymous ftp, and overriding buffers [168]. Network anomaly detection can aid in
network security management by detecting and identifying abnormal network events
associated with breaches of security. Denial-of-service attacks and network intrusion
are examples of such breaches.
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The goal of configuration management is to maintain a record of the relationship
among systems and network components and the status of these components during
network operation. Monitoring of the network and system configuration allows the
impact on network operations, of various versions of hardware and software elements,
to be tracked and managed.

In many organizations there is a need to measure network usage so that individual
groups, cost centers, or projects that use the corporate intranet can be charged accord-
ingly. These charges are usually internal accounting transactions and do not require
cash transfers. The measurement of network resource utilization is also important for
reasons such as discovering inefficient usage or abuse of the network by end users and
planning for network growth. Collection of data on network utilization, setting of usage
quotas for service-level agreements, and billing users on their usage is the objective of
accounting management.

Several standards bodies including IEEE, ANSI, ISO, and IETF are involved in
developing new, and enhancing existing, network management standards for computer
networks [13]. This responsibility includes finding solutions to known deficiencies and
shortcomings in standards already in practice. The evolution of the Simple Network
Management Protocol (SNMP), including the security capability introduced in SN-
MPv3, is a classic example of how standards are being adapted to overcome problems
[160, 162].

The bulk of this monograph addresses techniques that can assist with aspects of
performance, fault, and security management in large dynamic intranets. In particu-
lar, a network-wide approach for detection of network anomalies is addressed. While
accounting management and configuration management are important functions of an
overall network management strategy, they will not be given any further attention.

1.4 Network Management System

The underlying architecture for implementation of network management is the network
management system (NMS). An NMS manages all components that are connected to a
network. It is made up of management stations and network elements (see Figure 1.2).
A management station is generally a centralized resource, providing a user interface
to enable a network manager to observe and control the behavior of the network. Fur-
thermore, it contains a set of applications to perform management functions such as
performance monitoring, fault detection, and configuration control. Network elements
are resources such as workstations, routers, and bridges. Network resources that are to
be managed must include a management agent. The agent module is responsible for
collecting management information from the network resource and passing it on to a
management station for further analysis.

In addition to the agents and managers, an NMS contains a management information
base (MIB) and network management protocol. The MIB is used to store current and
historical information relevant to a network resource. Some attributes contained in the
MIB are related to local configuration information, such as retransmit timers, while
others are related to traffic flow data, such as the number of packets in and out of a
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Fig. 1.2. Network management system.

device. The management agent associated with the network resource is responsible for
maintaining the MIB. The management station accesses information from the MIB of
managed resources to determine their status. The management station can also change
the characteristics of a network element by controlling values of attributes in the MIB
that relate to configuration aspects of the resource. Interaction between a manager
station and management agents is provided by the network management protocol. A
network management protocol defines functions for retrieving management information
from agents and for issuing commands to agents. The SNMP is widely used in TCP/IP
networks and hence is commonly used to manage intranets.

It is quite straightforward for a single vendor to produce an NMS to manage a net-
work constructed solely from its own products. In practice, it is seldom the case that an
organization would choose network components from a single vendor. Hence the in-
stallation of multiple network management systems may be required by an organization
[159]. The use of multivendor network management systems is a problem, not only in
intranets, but in network management systems in general. Much effort has been made to
develop standards for the purpose of providing a common management system and to
enable interoperability among different NMSs. Some attention has been given to solv-
ing internetworking problems [42,190]. In addition, commercial products, such as HP
Openview, provide an open network management platform on top of which can be built
network management applications. Openview provides common management services
that can be accessed through standard application interfaces (APIs). The APIs enable
third-party vendors to develop their own network management systems that conform
to Openview. Thus an enterprise can deploy an integrated multivendor NMS.

The two main standards for network management are those of the Internet and OSI.
The OSI protocols, developed by ISO, comprise Common Management Information
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Protocols (CMIP) and Common Management Information Service Element (CMISE)
[159, 192]. CMIP/CMISE are very comprehensive and address all seven layers of

the OSI reference model. In addition to specifying a management protocol, they also
address network management applications. OSI network management is very com-
plex, and hence implementation is difficult. The Internet protocols developed by IETF
comprise the Simple Network Management Protocol (SNMP) and Remote Network-
Monitoring (RMON) standard [162]. As the name implies, these protocols are simple.
Because of the relative simplicity of SNMP, compared to the OSI network management
standards, the TCP/IP standards have become the accepted protocol for network man-
agement. Most vendors of networking equipment support SNMP. While SNMP was
developed to manage networking resources in the Internet, it has become very popu-
lar for managing other types of networks, including telecommunication networks and
intranets. A thorough discussion of SNMP and RMON will be given in Sections 1.5.1
and 1.5.2 respectively, due to their widespread use in the management of intranets.

1.5 Network Management in TCP/IP Networks

In the early years of TCP/IP development little attention was given to network man-
agement. Management problems that arose were fixed by protocol experts involved
in ARPANET research, using basic tools such as Internet Control Message Protocol
(ICMP).As the number of hosts and subnetworks connected to the Internet exploded, so
too did the number of administrative domains responsible for the health of the network.
No longer could a small group of experts solve all management problems. In addition,
there was a need for remote monitoring and configuring of gateways. Thus a standard
protocol for network management was required, and this resulted in the development
of the Simple Gateway Monitoring Protocol (SGMP). To enhance the capability pro-
vided by SGMP, the Internet Advisory Board (IAB) recommended the development
of SNMP. Currently, SNMP remains at the center of network management of TCP/IP
networks. The Remote Network Monitoring (RMON) standards were later developed
so that statistics of network performance from subnetworks be produced locally and
then passed to the central monitoring station. The IETF is responsible for all TCP/IP
standards, including those for network management. It publishes standards in a form
known as Request for Comments (RFCs).

Most effort in the development of TCP/IP network management standards has fo-
cused on transport protocols for accessing management information across the network
and in the development of the management information base. It was envisaged that OSI
network management, namely CMIP/CMISE, would provide a longer-term solution to
network management; however, the simplicity of SNMP has led to it becoming the pre-
ferred standard. It is likely that SNMP will remain the primary network management
protocol for many years. Beyond this, SNMP may be replaced by a more advanced
network management model. It is uncertain which protocol will replace SNMP; how-
ever, OSI remains unlikely to be adopted due to its complexity [159]. Despite this,
OSI network management will continue to provide a framework for the development
of new standards for network management.
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The following two sections provide an overview of SNMP and RMON. For a more
comprehensive description see [162].

1.5.1 Simple Network Management Protocol (SNMP)

SNMP is a set of standards used for network management of TCP/IP networks. Not only
does it define a protocol for exchanging network management information between an
agent and manager, but it also contains a framework for the definition of management
information relating to network devices. For a device to be managed by SNMP it must
be capable of running an SNMP management agent. Currently, most devices designed
for use in TCP/IP networks, such as bridges and routers, meet this requirement. This
makes SNMP a cost-effective method for monitoring network functions. In contrast
to CMIP, SNMP does not provide a definition for network management functions and
services. Instead, it provides a set of primitives from which network management ap-
plications can be built. The network management applications are performed at the
management station on information retrieved from management agents. Many vendors
produce proprietary network management applications that use SNMP [160].

The Management Information Base (MIB) is a database used by SNMP to define
characteristics of the managed resource (e.g., server, bridge, router). Each resource to be
managed is represented in the database by an object. The MIB is a structured collection
of such objects. Objects within the MIB must be either a scalar or tabular quantity. A
tabular variable is used where multiple object instances are defined. The total number
of packets on a router interface would be represented by a scalar variable, whereas a
list of interface entries would be tabular. The SNMP standards describe in considerable
detail the information that must be maintained by each type of management agent. This
information is rigidly specified to ensure that a management station will be compatible
with network resources produced by a variety of vendors. Management agents are not
required to maintain all objects defined in the MIB. Depending on the type of device, a
set of objects relevant to the operations of that device will be populated. For example,
a device that does not require the implementation of TCP will not have to manage MIB
objects relating to TCP. Most of the information stored in the MIB of a device either
represents the status of the device (e.g., operational status of an interface on a router), or
is an aggregated traffic-related parameter (e.g., number of packets into an interface on
a router). The management station also maintains a MIB. The contents of this database
reflects the contents of MIBs of network devices that it manages, and hence the objects
that these devices support.

The objects defined for the MIB of SNMP are arranged hierarchically as a tree
and are clustered into groups of related areas. The tree structure facilitates this logical
grouping, with each managed object occupying a leaf in the tree. MIB-II is the current
standard for SNMP and is specified in RFC1213 [128]. There are eleven groups defined
for MIB-II. These groups contain information relating to such areas as system, interface,
TCP, and UDP (User Datagram Protocol). The system group defines objects related to
system administration, such as system name, contact person, and physical locality.
It is the most accessed group in MIB-II. Other groups, such as interfaces and TCP,
comprise objects that control the behavior of the network resource (e.g., the maximum
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number of allowable TCP connections) and provide counts for certain traffic-related
variables (e.g., total number of input octets received by an interface). In total there are
175 objects (or variables) specified in MIB-II [128]. An important criterion used by
developers of MIB-II when selecting object groups was that each object must assist
in fault or configuration management. Further criteria are given in the RFC. A private
subtree has been included in the MIB to cater for vendor specific objects.

The SNMP protocol is used to provide communication of information contained
in the MIB between the managed agent and management station, and between two
manager processes. SNMP was designed to operate over the UDP for robustness. Since
UDP is connectionless, no connections are maintained between a management station
and its agents. The use of UDP can result in some SNMP messages not reaching their
intended destination node. This problem is exacerbated when SNMP is used to manage
larger networks and when regular polling is relied upon for management information.
If SNMP had used TCP, then SNMP exchanges may have been lost whenever one or
more links in the path between the management station and managed agent failed.

SNMP was designed to be easy to implement and to consume minimal resources.
As a result, the capabilities it offers are very simple. The protocol provides four basic
functions to allow a manager station to communicate with an agent. These functions
include get, set, trap, and traversal (e.g., get-next-request) operations. In summary,
the get command is used to retrieve management information from agents and hence
monitor managed devices; the set command is used to control managed devices by
changing the values of certain MIB objects. The trap command is used to send alarms
asynchronously from an agent to a management station whenever an abnormal event
is detected by the agent. In the event of an alarm, a network manager would respond
by polling for management information from the agent in order to ascertain the cause
of the alarm. A manager station can also send an alarm to another manager station.
Finally, traversal operations are used to determine which objects are supported by a
device on the network and to sequentially retrieve information from tabular objects,
such as routing tables.

The first version of SNMP, referred to as SNMP version 1, was developed as an
interim management protocol, ahead of OSI management. The specification is given
in RFC1157 [32]. Since OSI management was never realized, further development of
SNMP was undertaken to address a number of deficiencies with SNMPv1. This resulted
in SNMPv2 [33–40]. The main change to the protocol in SNMPv2 was the introduction
of two new messages. The first message, get-bulk, provided a bulk data transfer capa-
bility for improving retrieval speed of data from tables. The second, inform-request,
provided improved communication of management information between management
stations. SNMPv2 is currently the most widely used version of SNMP. Many security
issues that were identified in SNMPv1 were unable to be fixed during the development
cycle of SNMPv2. The final revision of SNMPv2 was termed community-based SN-
MPv2 or SNMPV2C, since it uses the concept of community name for authentication
purposes. Recent work on SNMPv3 has addressed security issues in greater detail [161].

An important limitation of SNMP is the inability to derive information about traffic
between two subnetworks separated by two or more routers. If the traffic between such
subnetworks were to increase, then the cause of such an increase could not be identified
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using MIB-II alone. In these circumstances RMON can be used. RMON is discussed in
Section 1.5.2 below. SNMP is primarily a capability for collecting and reporting man-
agement information about the network. Further processing of information is required
to perform network anomaly detection.

1.5.2 Remote Network Monitoring (RMON) Protocol

The success of SNMP management is reflected in its widespread usage in TCP/IP-based
networks along with its availability in most vendors’ networking equipment. This suc-
cess has resulted in growth of the number of managed network resources in computer
networks. SNMPv1 provided the first capability for implementing remote monitoring
of a network. This capability enabled a centralized Network Operation Center (NOC) to
remotely configure network resources and to detect faults. It is common for large enter-
prise networks to comprise many thousands of hosts and subnetworks. Unfortunately,
SNMPv1 alone could not provide adequate capability for monitoring the performance of
such networks. The RMON standard is an enhancement to SNMP to provide a network
management system with the ability to monitor a subnetwork as a whole rather than
having to monitor individual devices connected to the subnetwork. Since the character-
ization of network performance is statistical in nature, it was logical that such statistics
be produced locally and later transmitted to a central network management station. The
process of remote network monitoring involves three steps. The first step requires ac-
cess to the transmission medium so that packets flowing on the network can be viewed.
This activity is performed by a network monitor (or probe) attached to the subnetwork.
Network monitors can be stand-alone devices or can be embedded into existing equip-
ment, such as routers. Network monitoring employed by RMON is a passive operation
and hence does not disrupt the flow of data on the network. Figure 1.3 shows a typical
network configuration employing RMON probes at each LAN segment. The second
step in remote monitoring is to produce summary information from data collected from
a probe. This may include error statistics, such as number of collisions, and performance
statistics, such as throughput and packet size distribution. The production of statistics
is performed within the network monitor. The final step requires communication of the
summarized information to a remote network management station.

There are several advantages in using RMON devices for network monitoring.
It is not always practical to monitor subnetworks using SNMP due to the additional
traffic generated by the protocol. A single RMON device can devote all of its resources
to monitor a network segment and relay summarized information, characterizing the
behavior of the subnetwork, to the management station. The information can be sent
upon request by a management station or as a result of an abnormal event being detected
by the management agent. The SNMP protocol is still used to access information from
RMON devices; however, the overall effect is a marked reduction of SNMP traffic on
the network, especially in the segment where the network management station resides.
In addition, RMON is able to provide greater detail about the nature of traffic on a
subnetwork. This can be used to deduce information such as the host within a LAN
segment that is generating the most errors. It would not be possible to do this without
remote monitoring unless the network management station were connected directly to
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Fig. 1.3. Typical use of RMON probes for network monitoring.

the subnetwork. Since SNMP uses unreliable transport of packets, it is more likely
for packet loss to occur across a large network. The local probing of a subnetwork,
performed by an RMON device, is thus more reliable than that which could be achieved
by regular polling of information across a large network using SNMP. If the network
management station is unable to communicate with a device due to link failure, the
RMON device can continue to collect statistics about the local subnetwork and report
back to the network management station when connectivity resumes. It is possible to
perform near-continuous monitoring of a subnetwork using RMON; hence proactive
fault detection is a possibility. At the least, network problems can be identified more
quickly and reported to the network management station.

In order to implement RMON, it was necessary to add new MIB variables to sup-
plement MIB-II. No changes were required to the SNMP protocol to support RMON.
A device that implements the RMON MIB is known as an RMON probe. RMON is
described in detail in a number of RFCs published by the IETF. The earliest imple-
mentation of RMON, now referred to as RMON1, is given in RFC 1757 [177]. It is
capable of monitoring all traffic on the LAN segment to which it is attached. RMON1
operates at the data link layer; hence it can capture MAC (medium access control) level
frames and read source and destination MAC addresses in those frames. If a router is
attached to the LAN, RMON1 can monitor total traffic only into and out of that router.
It is not capable of determining source and destination addresses beyond the router. The
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RMON1 MIB is divided into ten groups of variables. Each group provides storage of
data specific to that group. An example is the statistics group used to store information
on utilization of the network.

RMON2 is defined by RFC2021 and RFC2074 [11,178]. It was developed to provide
a capability of monitoring protocol traffic above the MAC level. RMON2 operates
upward from the network layer to the application layer. It can monitor traffic at the
network layer, including IP addressing, and at the application level, such as email, ftp,
and web. As a result, RMON2 can determine source or destination addresses beyond a
router. This additional capability enables a network manager to determine such things
as which nodes are contributing to the bulk of traffic that is incoming or outgoing to the
LAN. It also enables a breakdown of traffic by protocol or application. The RMON2
MIB introduces an additional nine groups of variables to that of the RMON1 MIB. These
hold information related to higher-layer activities, such as statistics of traffic carried
between specific host pairs for a given application. Of most importance to the study of
anomaly detection in intranets, especially the graph-theoretic techniques developed in
this monograph, are the matrix groups. These groups provide statistics on the amount
of traffic between pairs of hosts, and contain statistics relating to the network layer and
the application layer. The network-layer matrix (nlMatrix) group provides statistics for
the aggregated traffic between host pairs, while the application-layer (alMatrix) group
provides statistics on the basis of application-level address. This information can be
used to describe the network topology and traffic flow at the network layer for any
given time interval.

The finer-grained detail of network management information provided by RMON-II
comes at the cost of greater processing requirements at the management agent. This has
led vendors to produce stand-alone RMON probes that are hosted on high-end servers.
At present, the standards for RMON2 are being extended to support high-capacity
networks.

1.6 Network Monitoring

In the last section, TCP/IP network management was discussed due to its importance
in the management of intranets. Two of the most common protocols used in TCP/IP
management, namely SNMP and RMON, were described in some detail. As a result
of the widespread deployment of devices supporting the SNMP standards [15, 31,
90], many network anomaly detection systems are based on measurement of variables
derived from such devices. In this section a general overview of network monitoring is
given.

Network monitoring is an essential component of managing TCP/IP networks and
is important for network anomaly detection. It is the process of gathering useful in-
formation pertaining to operations of the network. Network monitoring contributes to
all of the five functional areas of the OSI network management model. In configura-
tion management it is necessary not only to know the static configuration of a network
but also to monitor its dynamically changing topology. In terms of accounting man-
agement, information is required to attribute usage of network resources to groups or



1.6 Network Monitoring 17

divisions within an organization and to identify misappropriation of network resources
by legitimate users. From a security management perspective, network monitoring is
used to collect data for network intrusion detection and to identify malicious attacks,
such as denial of service and web-based attacks [111]. Possibly the two most important
management functions that rely on network monitoring functions are performance and
fault management. Information relating to traffic statistics, network delay, and errors
are required to produce indicators of network performance and to detect and identify
faults. Network anomaly detection plays an important role in improving the overall
capability of the OSI management functions. An important aspect of being able to de-
tect network anomalies lies with the ability to characterize the dynamic behavior of
a network. The aim is to be able to distinguish between times when the network is
behaving normally and when it is behaving abnormally. To achieve this it is imperative
that network behavior be quantified in some manner. Network measurement variables
that are sensitive to the types of anomalies of interest to network managers must be
produced from information collected from the network to provide this quantification.
The underlying network monitoring system is responsible for collecting, refining, and
disseminating this information to anomaly detection algorithms.

Network monitoring can be broken down into three stages. The first of these stages
involves the collection of information about the network. Both active and passive mon-
itoring techniques are employed for this function. In TCP/IP-based networks such in-
formation is commonly derived from the MIB variables of SNMP and RMON. The
second stage of network monitoring transforms the collected information into useful
detection metrics. The new metrics should capture information about the behavior of
the network. This stage is normally referred to as the information processing phase.
Finally, the third stage of network monitoring assesses the ensemble behavior of the
network in order to determine abnormal events. This function is referred to as anomaly
detection. Anomaly detection will be discussed separately in Section 1.7.

The major thrust of this monograph is to develop graph-based concepts that trans-
form measurements, collected from network devices, into new measures that are more
sensitive to detecting changes in network topology. This forms an important part of the
second stage of network monitoring. The techniques require regular information about
network-wide traffic flows in order to produce measures of network change and hence
identify network anomalies.

1.6.1 Active and Passive Monitoring

Network monitoring techniques can be categorized as either active or passive. Active
network monitoring techniques are generally path-oriented and include tools such as
traceroute and ping [1]. Active approaches operate by injecting test traffic into the
network in order to measure performance metrics such as network end-to-end delay
and packet loss. These techniques are often used for characterization of the Internet,
since they can be used when administrative control of the network is not centralized, and
hence direct access to network elements is not possible. Conversely, passive monitoring
techniques are node oriented. Passive techniques do not disrupt the flow of packets, nor
add test traffic to the network. Passive monitors are used to gauge traffic flows in and
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out of a single device and can examine encapsulated headers to derive behavior related
to the network layer and above. Devices such as routers containing SNMP agents
and network monitors that implement the RMON MIB are the most commonly used
passive monitors. While active monitoring techniques are useful for producing certain
performance metrics, such as network latency measurements, passive techniques that
collect information relating to origin–destination (OD) traffic flows are of prime interest
to this monograph. The information from OD traffic flows can be represented as a
graph. Graph-based techniques can then be used to produce measures that are sensitive
to network change and hence be used in network anomaly detection. Such and other
techniques applied to analysis of enterprise network dynamics indeed represent the
main topics of this monograph.

1.6.2 Common Monitoring Solutions for Intranets

SNMP-based polling systems have proven to be cost-effective means for network mon-
itoring due to the widespread deployment of devices that are SNMP enabled. MIB
variables are a very good source of aggregated network data and are hence often used
for passive network monitoring [15, 31, 90]. These polling systems, however, have an
inherent overhead in terms of the processing load on the network devices required to
compute traffic statistics, and on network bandwidth consumed when the management
station retrieves data from managed agents. In some extreme cases, where a poorly
designed network management system is in operation, the SNMP traffic can be respon-
sible for disrupting the very services that it aims to maintain. In order to be capable of
rapidly detecting network anomalies and faults, the rate of polling of each SNMP agent
in a network has to be at least of the same order of time as that of the fault; otherwise,
the fault will go undetected. This can lead to very short polling intervals on the order
of a few minutes. This increased polling frequency further accentuates the processing
demand on network devices and bandwidth overhead. Also, as network management
systems become more focused on application-level management, the network monitor-
ing system is required to collect more data. An increased processing load on network
devices can lead to lost packets. Some research has recently been undertaken to im-
prove the efficiency of polling [43] and data access [19] for the SNMP protocol. When
a centralized measurement system is utilized, bandwidth bottlenecks can occur on links
nearest to the central management station. The resource-intensive task of polling can
be overcome using a distributed measurement system whereby network monitors send
important data back to midlevel management stations. A midlevel station will usually
oversee approximately ten probes and be located in close proximity to those probes. Its
function is to consolidate data from each probe and respond to periodic queries from a
higher level, or central management station [175]. In distributed polling systems, the
bulk of polling is moved closer to each device, where the corresponding links are less
likely to be affected by the additional traffic. The traffic load on links between midlevel
management systems and the central management system is thus greatly reduced. In
[112] a method to minimize bandwidth utilization using hierarchical network moni-

toring is addressed. To reduce the hardware requirements, and hence cost, this research
sought to find the minimum number and location of midlevel stations in a network to
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perform polling. Other research into failure-resilient monitoring of link delays [9] and
monitoring of bandwidth and latency [18] also deals with the problem of minimizing
the cost of measurement infrastructure.

RMON is also commonly used for network monitoring. However, the cost of de-
ploying an RMON solution network-wide is high. RMON was described in detail in
Section 1.5.2. Since the function of RMON is to monitor and aggregate traffic in a
subnetwork, it provides a similar benefit to that of a distributed management model, in
that it reduces the need for regular polling by a management station. RMON is gener-
ally limited to monitoring LAN segments. Implementation of RMON for monitoring
higher-speed backbone interfaces has proven to be infeasible or prohibitively expensive
[77].

Packet monitors are an alternative method for the production of network measure-
ments and are commonly used on high-speed backbone links. Packet monitors can pro-
vide very detailed information about traffic traversing a link. They operate by collecting
a copy of each packet that traverses a link, recording IP, TCP/IP, or application layer
information. In monitoring high-speed links the collection of every packet becomes
impractical. To reduce the load on processing elements and volume of data collected,
these monitors often collect only a limited number of bytes from each packet. Typically,
only the IP header is collected, which contains information such as source and destina-
tion addresses and port numbers. Many packet monitoring tools have been developed
by research institutions [69, 72, 103] and commercial vendors.

Many commercial tools are available for performing network monitoring functions.
These range from personal computers fitted with a network interface card and special
monitoring software to custom hardware devices. Examples of popular commercial
monitors include NetFlow by Cisco [48], and Ecoscope by Compuware.

1.6.3 Alternative Methods for Network Monitoring

In the management of intranets we assume that a single administrative domain exists.
From a network monitoring perspective this means that monitoring techniques that
require direct connection to the network to perform active or passive monitoring, or
require access to information on network devices, can be employed. Conversely, moni-
toring of Internet performance is a more difficult problem due to the size, heterogeneity,
and lack of centralized administration [49,86]. Before entering into a peering relation-
ship,1 the owner of an autonomous system (AS) would generally like to gain some
insight into the operations of the AS that it wishes to peer with. Under these conditions
it is necessary for monitoring techniques to be able to acquire information about the
AS of interest without cooperation from devices within that network. Techniques exist
whereby passive monitoring of traffic emanating from that network is used to derive
information about the network’s internal operations. Network tomography [50], which
is based on signal processing, is one such technique that has been adapted for this
purpose. Here network inferencing is used to estimate network performance parame-
ters based on traffic measurements taken at a small subset of network nodes. Many of

1A bilateral agreement established between two or more ISPs for the purpose of directly
exchanging Internet traffic.
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the techniques developed specifically for Internet monitoring [44] can also be applied
to intranets. While it may seem unnecessary to do so, in some circumstances where
limited monitoring infrastructure is available, and network bandwidth is at a premium,
such techniques can be invaluable. These methods provide additional sources of data
for network anomaly detection.

1.6.4 Sampling Interval and Polling Rate

An important parameter in network monitoring is the period of time between mea-
surements and the sampling (or aggregation) interval. The period of time between
measurements, or polling rate, defines how often a network measurement is taken.
When a fast polling rate is used, the interval between network measurements is short.
Likewise, a slow polling rate results in a long interval of time between measurements.
The sampling interval determines the length of time that information collected from
the network is aggregated to produce any given network measurement. This interval
governs the types of network faults or anomalies that can be detected. An example of
this is a count of the number of packets into or out of a router interface. A sampling
interval of fifteen minutes will enable shorter-duration faults to be detected than those
that would be detected by a longer time interval. Aggregation of statistics over a longer
time interval would mask the occurrence of the shorter-duration faults or anomalies,
but would be better suited for predicting long-term network trends. The performance
of a network is also largely influenced by the time of day, or operating period [194].
This is mostly due to traffic resulting from network users.

It is common for a fixed sampling interval to be employed in network monitoring
implementations. However, the use of a variable-length sampling interval can be better
suited to certain monitoring functions. Instead of time being used to determine the
boundaries of a sampling interval, the interval could be determined by using a fixed
number of OD traffic flows on a link. Thus the time interval would vary depending on
the rate of traffic on the link. In busy periods, when traffic on the network is heavy, the
interval would be short. Conversely, when network activity is low, such as in the middle
of the night, the time interval would be longer. Obviously, there exist many other ways
for determining the length of sampling intervals.

Depending on the network monitoring requirement it may be advantageous to have
a short sampling interval and a slow polling rate. This approach is most suited to
monitoring networks that are known to be relatively static over time. The sampling
interval is set to a value suitable for capturing network anomalies of interest.Aggregation
of measurements over the sampling interval is usually performed locally at a router or
network probe. A slow polling rate reduces network load resulting from traffic between
the management station and network element. The polling rate selected should ensure
that any change that may occur will be detected within an acceptable time frame.

Most of the examples given above discuss aggregation of SNMP MIB variables. In
this monograph, we address the aggregation of network topology. The aim is to produce
a static representation of the network topology observed during the aggregation interval
(see Section 4.2). This method is central to the application of graph-based techniques
developed throughout this monograph.
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In designing a network-monitoring scheme for the purposes of network-anomaly
detection, the selection of time-based parameters must be given careful consideration.
At present, the selection of appropriate parameters suitable for detecting anomalies of
interest relies on expertise of network operators. Issues relating to selection of optimal
measurement intervals for purposes of network monitoring are beyond the scope of this
monograph.

1.6.5 Minimizing Collection Infrastructure and Reducing Data Volume

Network monitoring requires data to be collected from numerous measurement points
across a network. Since it is not practical to collect network data from all links in a
network, a selection of links must be chosen. Recent research has developed techniques
to determine the best links to monitor in order to provide maximal coverage of the
network given a finite set of probes [9, 18, 112]. In monitoring high-speed links in a
network, the amount of data that is generated at each measurement point can be quite
large. The occurrence of duplicate data is also a possibility due to several probes being
on the same path between OD pairs. Where the requirement is to measure the spatial
flow of packets through a network, techniques such as trajectory sampling, developed
by Duffield and Grossglauser [68], make use of duplicate collection of packets. In other
cases, such as the ability to detect change in network topology, duplicate packets provide
misleading information. In such situations the removal of duplicate conversations is an
imperative and has the additional benefit of both reducing data volume and minimizing
the processing demand on network management software. The techniques developed
in this monograph require the removal of duplicates.

Sampling and filtering are two other techniques used to minimize the volume of data
collected [198]. Sampling involves the selection of a subset of representative packets
that allow accurate estimates of the properties of the unsampled traffic to be made.
Most sampling techniques aim to reduce the number of packets to be processed and
transmitted to a value that is within the capabilities of the network management system.
In packet filtering all packets that are not of interest are removed. Only packets that
conform to certain criteria (e.g., those using the TCP protocol) are retained for further
analysis. Generally, the IP header information is the only portion of the packet retained,
especially when OD traffic flow data is all that is required.

Aggregation of data is also very important in reducing the amount of data forwarded
by network probes. Aggregation provides compact predefined views of the traffic. Ag-
gregation is used extensively in the MIB variables of SNMP and RMON. An example
is the network-layer matrix (nlMatrix) group of RMON, which provides statistics for
the aggregated traffic between host pairs.

1.6.6 Synthesis of Improved Network Measures

It has already been stated that in order to perform network anomaly detection, it is
critical to collect information about a network that is sensitive to the types of anomalies
to be detected. This can help to improve the detection of real network anomalies while
at the same time minimizing false alarms [83]. It was also stated that no single variable
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or metric is capable of identifying all network anomalies. It is therefore necessary to
synthesize improved network measures. A common approach is to perform some form
of aggregation of two or more metrics, such as those derived from the SNMP MIB. In
[172], an operator matrix was used to correlate information from several measurement
variables.

In [158], summaries of traffic flows between OD pairs, for a given interval of
time, have been used to generate a time series of networks, or graphs. Graph difference
algorithms were applied to each consecutive graphs. This resulted in a new time series of
numbers whose values represent a measure of network change that occurred between
consecutive time intervals. The application of techniques for anomaly detection to
the new time series has shown promise in identification of abnormal network events
or trends. The research that has been outlined in this monograph builds upon these
graph-based techniques for synthesizing network measurement variables for anomaly
detection.

It has been discussed how network monitoring is essential to effective management
of modern IP networks and that many factors are important in producing improved
monitoring systems. Techniques used to transform raw network measurement variables
into measures suitable for network anomaly detection are of prime interest to the work
explored in this monograph. In particular, graph-based approaches form the basis for
this research. Techniques for improvement of other aspects of network monitoring are
beyond the scope of this monograph.

1.7 Network Anomaly Detection and Network Anomalies

Anomaly detection is the process of determining when system behavior has deviated
from normal behavior. The detection of abnormal events in large dynamic intranets
has become increasingly important as networks grow in size and complexity. Current
network management systems are, however, unable to perform early detection of net-
work anomalies. They rely upon alarms generated by network resources for detection
and processing of network failures [2]. Not surprisingly, anomaly detection research
has recently gained much interest. In network management, network administrators are
responsible for monitoring network assets, such as routers and switches, for anomalous
traffic behavior. While many traffic anomalies are of little or no concern, some anoma-
lies can be indicators of serious problems. Performance bottlenecks due to flash flooding
(or flash crowds), network element failure, IP forwarding anomalies, and network in-
trusions or denial of service attacks are a few examples of problems that cause traffic
anomalies. The identification of network anomalies has relied upon ad hoc methods
developed over many years by skilled network operators. In enterprise network man-
agement today, the methods used by network operators for detecting network anomalies
include the use of standard tools such as SNMP traps and syslog messages. These are
best suited for detecting problems such as network component failures, which can
be isolated to a local area within the network and hence more easily identified. Such
problems generally produce only short transient anomalies, while routing protocols
reconverge. Often an anomaly can be detected only by observing traffic or topology
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changes in the network as a whole. The standard techniques are unable to detect such
anomalies. A requirement exists for automated techniques to perform early detection
of network-wide traffic anomalies to enable timely and rapid correction of a problem
before it can result in a failure of service [94].

1.7.1 Anomaly Detection Methods

Anomaly detection has found applications in many of the activities relating to network
management including network security [56, 117], fault detection [89, 101, 116, 124],
and performance monitoring [86]. Network intrusion detection (i.e., intrusion detection
and denial of service attacks) is the greatest driver for this research. Proactive fault
detection [87–89, 171] is also a big driver of this work. The type of methods used
for implementing anomaly detection fall into two major categories. In this section a
description will be given for these two main areas of research. They are the signature-
based and statistical approaches.

Signature Method

Signature-based, or rule-based, approaches to anomaly detection have been used con-
siderably in network management [110, 119, 126]. The fundamental characteristic of
signature-based approaches is that they can only detect network anomalies that have
been observed in the past. A signature for each anomaly is created and stored in a
database. When new anomalies are identified, through other means, a new signature
is created and added to the database. Techniques in this category perform well against
known problems, usually with very low false alarm rates. Signature-based methods can
also help to limit the source domain. Information not relevant to signatures of interest
can be ignored. Any data that cannot be matched to a known pattern can also be im-
mediately discarded. The major disadvantage is that signature approaches are unable
to identify new problems as they arise. A network anomaly that is not represented in
the database of signatures of known anomalies will remain undetected. In addition, this
method assumes that information is available to build a database of representative signa-
tures. In general, such a database requires substantial time to develop, and demands the
attention of network experts. Signature-based techniques are used in network anomaly
detection due to the large number of efficient algorithms that have been developed in
this area over time. While only a limited number of anomalies can be detected by any
system using this method, it is expected that detection of anomalies using such systems
is reliable, and able to explicitly identify the type of anomaly that has transpired.

Several variants of signature-based methods have been explored over time. The
early work in this area was based on expert systems, where rules defining the behavior
of faulty systems or known network intrusions were compiled. The rule-based systems
rely heavily upon expertise of network managers and do not adapt well to an evolving
network environment. In the detection of network faults, alarms are generated by net-
work resources and sent to a central management station. Alarms arising from multiple
network resources must be correlated to determine the cause of a problem. There is
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considerable research in the domain of alarm correlation [97, 150]. Rule-based sys-
tems are used to correlate such alarms. Case-based reasoning [119] is an extension to
rule-based systems whereby previous fault scenarios are used to assist in the decision-
making process. Adaptive learning techniques can be employed to enable this approach
to adapt to the changing network environment. Finite state machines [116] have also
been used for anomaly detection in networks. Historical data is used to build a finite
state machine model. The sequence of alarms, generated from devices in the network,
are modeled as states of the finite state machine. A problem is flagged whenever the
sequence of events leads to a state that is known to represent an anomaly. In this way the
exact type of anomaly is usually determined. The problem with finite state machines
is that there may be an explosion in the number of states as a function of the number
and complexity of anomalies to be modeled. Finite state machines are also not highly
suited for adaptation to a changing network environment.

Statistical Method

Statistical approaches to anomaly detection [7, 125, 171] offer an alternative to
signature-based methods. These methods function by learning normal network behav-
ior from network measures. When network measurement variables deviate away from
normal behavior, it represents a possible anomaly. In order to build a model of normal
behavior there is a need to know when the network is operating normally. In practice it
is rare for this information to be known. Likewise, it is difficult to characterize abnormal
behavior [52]. Instead, it is common practice that normal behavior be represented by
a period devoted to learning. An assumption is made that it would be unlikely that a
network anomaly would occur during a learning period because of the low frequency of
occurrence of anomalies. However, if an anomaly does occur during the learning period,
the problematic behavior will become part of the model for normal behavior and hence
be undetectable in the future. Common techniques used to learn normal network be-
havior and perform anomaly detection include auto regressive processes [31,83,171],
neural networks, hidden Markov models (HMM) [87], wavelets [125], Kalman filters,
change point detection [197], and Bayesian networks [89].

Unlike the signature approaches, statistical methods are capable of detecting net-
work anomalies that have not been observed in the past. In addition, as the network
evolves, statistical approaches can continuously update their model of normal behavior.
Thus they have no need for regular recalibration or retraining. For statistical methods to
perform adequately, they require suitable indicators to be selected as input for the deci-
sion engine. Choosing the right measures is difficult, since different types of anomalies
produce different symptoms. This requires a large range of network measures to be
considered. It is critical that the measurement variables selected enable modeling of
normal network behavior and be sensitive to network abnormalities of interest. When
more than one measure has been deemed suitable, they can be combined to produce a
single anomaly measure (see Section 1.6.6) so that single time series analysis can be uti-
lized.Alternatively, techniques based on analysis of multiple time series, or multivariate
analysis, such as principal component analysis, may be used.



1.7 Network Anomaly Detection and Network Anomalies 25

Statistical techniques are likely to have the disadvantage of producing a larger
number of false alarms and may not be able to identify the type of anomaly detected. This
increases the difficulty in deciding what action is needed by network operators when
anomalous activity is detected. It is important that the network management system be
able to determine whether the anomaly represents abnormal activity requiring further
action, or whether it represents simply a significant change in normal network behavior.
It is also useful to be able to determine whether the anomaly is related to a hardware
fault or software error. These tasks are not trivial. An obvious solution might be to flag
all anomalies for human attention, but this is far from ideal: frequent reporting of false
alarms will lead to the anomaly detection system being ignored by network operators.

A large number of researchers have focused on applying statistical anomaly detec-
tion to network intrusion. In [117], a comparative study is given for various methods of
anomaly detection based on unsupervised learning and outlier detection. Some of the
outlier detection schemes studied included the nearest-neighbor, Mahalanobis distance,
and density-based local outliers. Techniques were applied to data obtained by packet
filtering techniques, with data aggregated at the 5-tuple IP-flow level (IP address and
port number for both source and destination, and protocol type). Results showed that
there was no single best solution and that the most successful anomaly detection scheme
was dependent upon the type of attack.

Many techniques for anomaly detection are based on modeling the statistical be-
havior of one or more SNMP MIB variables. This is due to the widespread deployment
and standardization of SNMP. The MIB variables selected for this purpose are gener-
ally traffic-related. In [172], a statistical signal processing technique based on abrupt
change detection is used for anomaly detection in IP networks. An abrupt change is
any change in the parameters of a time series that occurs on the order of the sampling
interval. Correlation of events between multiple MIB variables is used to discern be-
tween anomalous events and random changes relating to normal behavior. The network
anomalies detected were file server failure, network access problems, runaway pro-
cesses, and protocol implementation errors. This type of approach to network anomaly
detection is useful for detecting device-level anomalies.

In addition to the two main areas described above, other methods used for anomaly
detection include machine learning [41] and graph-based approaches [137].A desirable
network anomaly detection system would be one that employs both a signature-based
approach, to detect and identify known anomalies, and a statistical approach, to detect
anomalies that have previously not been identified.

1.7.2 Network-Wide Approach to Anomaly Detection

Most work in network anomaly detection usually approaches the summarization task
(determining the typical behavior of a network) from a single-link, temporal analysis
standpoint. Here either MIB variables, from devices like routers or OD flow informa-
tion, derived from packet filtering tools, are used as network measures. In contrast to
these techniques are those that take a network-wide approach to anomaly detection.
The sources of raw network measures can be the same as those used for the single-link
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techniques. However, the difference is that network measures are collected from nu-
merous points across a network and combined to produce new measures that capture
network-wide anomalies. Network-wide measures are suited to modeling the dynamic
behavior of a network and detecting topology and traffic anomalies brought about by
unusual behavioral patterns of its users. It is important for network operators to be able
to identify the causes of change in traffic volumes over physical links caused by changes
in user behavior across the network. The work in this monograph takes this approach,
employing graph-based techniques to produce measures that are sensitive to changes
in network topology.

A technique to detect network-wide anomalies was studied in [113]. Here the
subspace method, based on multivariate statistical process control, was applied to OD
level traffic flows collected from all routers in a network. Principal component analysis
(PCA) was used to decompose OD flows into their constituent eigenflows. The top
eigenflows correspond to normal network behavior with the remainder of eigenflows
representing abnormal behavior. The original OD flows were reconstructed as the sum
of normal and abnormal components. Abnormal events were isolated by inspecting the
residual traffic. Results were obtained for three OD flow data sets comprising 5-tuple
data and one of the number of bytes, packets, or flows. The anomalies detected using
this approach proved to be valid. However, an additional finding showed that each data
set led to different anomalies being detected. This suggests that the data sets derived
from number of bytes, packets, and flows produce complementary information about
network behavior.

1.7.3 Examples of Network Anomalies

There are numerous network anomalies that are of great interest to network operators.
Many of these anomalies arise from network device failure, performance degradations,
and network security issues. Some common performance anomalies include file server
failure, paging across the network, babbling nodes, broadcast storms, and transient
congestion [127]. Denial of service attacks and network intrusion are examples of
security-related anomalies. Some network anomalies can be detected using techniques
that make use of data gathered at the link layer or below. This may require network
measurements such as counts of packets into or out of router interfaces. There are,
however, many instances whereby a network-wide solution may be better suited to
detecting certain kinds of network anomalies. Here, monitoring techniques that gather
data at the network layer and above are required. This may entail collecting IP header
information at several points across a network. The resulting data sets would include
OD flows. However, these could also be further refined by specification of a certain
application layer protocol (e.g., OD flows relating to http traffic only). Network-wide
anomalies are often the result of unusual patterns of activity caused by user behavior.
Below are a number of examples of network anomalies that impact intranets, and would
be best detected using a network-wide analysis approach. The examples given aim to
provide motivation for research into network monitoring strategies outlined in this
monograph. Accordingly, they are prime candidates of network problems where the
techniques proposed in this monograph could be applied.



1.7 Network Anomaly Detection and Network Anomalies 27

Logical Communities of Interest

Changes in logical communities of interest, or user groups, often occur at times when
new projects are conceived or when projects reach fruition. Teams will be formed to
provide the necessary skills to achieve project outcomes, or be disbanded once a project
has been completed. The enterprise intranet would provide the communications fabric
for team members to go about their business. These activities generate network traffic
ranging from low-volume email to large-volume data transfer. Problems are likely
to occur if the traffic becomes significant. The problem is compunded when the team
members access the intranet from across a country or the globe. Until network operators
become aware of the impact that these users have on the network, the quality of service
for them and other users may be impaired. If the new user groups can be identified
early, the network can be redimensioned to provide additional network capacity where
it is needed.

Corporate Reorganization

During a corporate reorganization, various job functions may be shifted from one site
to another without network operators being informed. An example of this is the relo-
cation of the management function of an email distribution server. This service may be
inadvertently located within a stub network where link capacity back to the core of the
enterprise network may not be adequately dimensioned to cope with the rise in traffic
caused by a major email server. The additional traffic on links into and out of this stub
network could lead to network congestion and hence poor quality of service to users
of that network. If the stub network is not being monitored, nor links adjacent to this
part of the network, then traditional tools would be unlikely to identify the problem.
Such a problem could remain undetected until users report a degradation in service.
Tools that can detect changes in logical network topology would be able to identify this
problem. Early detection of this type of change would allow the period of performance
degradation to be minimized.

Flash Crowd or New Web Service

In large-enterprise intranets it is not uncommon for a new web server to be installed
onto a LAN segment without network operators being informed. The web server may
be required for a new corporate electronic form to replace a dated mainframe-based
system. As users access this new server, there will be a rise in traffic flow into and
out of links adjacent to the server. Similarly, an existing web server may have new
web pages added, or a change in content that is of high interest to the user population
across the intranet. This can result in a sudden rise in traffic as the web site is accessed
concurrently by a large number of users. Such an anomaly is known as a flash crowd
[95]. From a link layer perspective, it would be apparent that the amount of traffic was
increasing on links adjacent to the web server. Network layer detection measures are
able to detect this behavior as a change in network topology.
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Implementation of Custom Applications and Services

When a new service, such as a command and control system in defense applications,
is being developed that requires network connectivity, it is not uncommon for the
developers to perform tests over the existing network infrastructure. The traffic from
these systems may branch out over many physical links to achieve connectivity with
all of its constituents. The system may use a nonstandard TCP port number to avoid
incompatibility with existing applications. This makes traffic monitoring difficult. In
many cases, developers do not take into consideration the impact that these new systems
will have on the network during testing phases. Changes in logical network topology
and traffic flow would enable network operators to detect these anomalies.

Distributed Denial of Service Attacks

The aim of a distributed denial of service attack (DDoS) is to bring down a target system
by flooding the network with artificial traffic. There are usually two stages to the attack.
The first stage involves the perpetrator of the attack infiltrating a number of computer
systems connected to the network and installing the DDoS tools. In the second stage
these computer systems are instructed to start generating large volumes of network
traffic. Typical targets of such an attack are routers and web servers. A DDoS could be
detected by looking for an abnormally large number of connections being established
from multiple nodes to the target. It may also be possible to trace the network node
used by the perpetrator by analyzing historical information. Changes in logical network
topology and traffic flow could provide early warning of such DDoS attacks.

1.8 Summary

In this chapter, a definition of a typical enterprise intranet was given along with many of
the network management functions required to adequately maintain quality of service to
users. Intranets are based on technologies developed for the Internet and have recently
become invaluable to modern business. Many enterprise business functions now rely
upon the intranet, and network failures or intrusions can be costly. Early detection of
network anomalies can reduce or eliminate possible failures. Techniques for network
anomaly detection can be used to aid network management functions.

A model widely adopted for network management comprises five functional areas,
including fault management, performance management, security management, con-
figuration management, and accounting management. While a detailed explanation of
each function was given, application to performance, fault, and security management
of large dynamic intranets was identified to be the focus of techniques developed in this
monograph. TCP/IP network management is used to manage most intranets. The SNMP
protocols form the basis of TCP/IP management. The implementation of network man-
agement functions is executed by a network management system. Management stations
gather information compiled at network elements (e.g., router) by a management agent
and use this information to monitor and control the behavior of the entire network.
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The database used in SNMP is known as the MIB. The SNMP agent is responsible
for populating the MIB with useful network measures. standardization of SNMP has
resulted in it being implemented by most vendors of networking equipment. RMON
is another important protocol in TCP/IP management, providing the ability to monitor
remote parts of a network.

Network monitoring is essential for management of all networks. It is the process
of gathering useful information pertaining to operations of the network that facilitates
all five functional areas of network management. Network monitoring consists of three
steps: data collection, information processing, and anomaly detection. New methods
are required to improve both information processing and anomaly detection. Synthesis
of new network measures using graph-based techniques can be used to improve the
detection of network-wide anomalies, which is the main theme of this monograph.

Network anomaly detection is a growing field of research due to the increasing size
and complexity of modern networks and the lack of tools to identify abnormal network
behavior. The two main approaches to network anomaly detection are the signature and
statistical methods. The signature-based methods rely on a database of known signatures
to detect anomalies. While they are unable to detect new types of network anomalies,
they generally produce very low false alarm rates and are able to identify the actual
anomaly that has occurred. The statistical approaches model normal network behavior
and classify deviation away from normal behavior as abnormal. These methods are
capable of detecting unknown anomalies. However, they suffer from larger numbers of
false alarms and less ability to identify the type of anomaly when one occurs.
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Graph-Theoretic Concepts

2.1 Introduction

We are going to discuss the structure of several kinds of communications networks.
In every case, the network consists of a number of individuals, or nodes, and certain
relationships between them.

The basic mathematical structure underlying this is a graph. A graph consists of
undefined objects called vertices together with a binary relation called adjacency: given
any two vertices, either they are adjacent or they are not. Vertices will usually represent
nodes or collections of nodes of the network; for example, they might be individuals
in an organization, or servers in an intranet. (When vertices represent single nodes,
the words “node” and “vertex” are used interchangeably.) Adjacency might represent
communication between two nodes, or acquaintanceship, or any other relation.

It is useful to represent a graph in a diagram. The vertices are specially identified
points, and a line is drawn between each adjacent pair of vertices, and for this reason
adjacent pairs are called edges. (The name “graph” derives from this graphic repre-
sentation.) Numerical measures may be associated with the vertices or with the edges,
representing costs, capacities, et cetera.

In this book we shall encounter several generalizations of graphs; for example, it is
often (but not always) useful to associate directions with the edges. Numerical measures
may be associated with the vertices or with the edges, representing costs, capacities,
and so on. The definition of an edge implies that there can be at most one edge between
two vertices, but in some representations multiple edges make sense.

Because of the importance of the graphs that underlie networks, we shall start with
a formal discussion of graphs and a few standard definitions.

General discussions of graph theory include [10,181,188]. The relation to networks
is discussed in [6, 135, 184].



32 2 Graph-Theoretic Concepts

2.2 Basic Ideas

A graph G consists of a finite set V (G) of objects called vertices or nodes together with
a set E(G) of unordered pairs of vertices; the elements of E(G) are called edges or links.
The “vertex–edge” and “node–link” terminologies are used interchangeably; “vertex”
and “edge” have traditionally been used in graph-theoretic discussions, while “node”
and “link” have been used in applied situations. However, in discussing communications
networks, there may be more than one graph associated with a network. For example,
one might consider a graph in which a vertex represents an individual user, and another
graph in which each vertex stands for a collection of users (those connected to one
server, or those in one branch of an organization). In that case “node” and “link” refer
to the members and connections in the network, while “vertex” and “edge” are used for
the graph elements.

Sometimes labels are attached to the vertices of a graph. Then we can always
distinguish between two vertices when their labels are different. If there are no labels,
we cannot always distinguish. As an example, consider the graphs in Figure 2.1. If
considered unlabeled, the three graphs are identical. If they are considered labeled, the
three graphs are different. Moreover, in the first graph, the vertices labeled x and z are
different, but in the third graph the two corresponding vertices are indistinguishable.

Fig. 2.1. Labeled graphs.

In terms of the more general definitions sometimes used, we can say that “our graphs
are finite and contain neither loops nor multiple edges.”

We write v(G) and e(G) for the orders of V (G) and E(G), respectively.
The edge containing x and y is written xy or (x, y); x and y are called its endpoints.

We say that this edge joins x to y. G−xy denotes the result of deleting edge xy from G;
if x and y were not adjacent, then G+xy is the graph constructed from G by adjoining
an edge xy. Similarly G − x is the graph derived from G by deleting one vertex x (and
all the edges on which x lies). Similarly, G − S denotes the result of deleting some set
S of vertices.

In order to discuss cases in which there may be more than one link between two
vertices, we define a multigraph in the same way as a graph except that there may
be more than one edge corresponding to the same unordered pair of vertices. The
underlying graph of a multigraph is formed by replacing all edges corresponding to the
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unordered pair {x, y} by a single edge xy. Unless otherwise mentioned, all definitions
pertaining to graphs will be applied to multigraphs in the obvious way.

If vertices x and y are endpoints of one edge in a graph or multigraph, then x and y

are said to be adjacent to each other, and it is often convenient to write x ∼ y. The set
of all vertices adjacent to x is called the neighborhood of x, and denoted by N(x). We
define the degree or valency d(x) of the vertex x to be the number of edges that have
x as an endpoint. If d(x) = 0, x is an isolated vertex. A graph is called regular if all
its vertices have the same degree; in particular, if the common degree is 3, the graph is
called cubic. We write δ(G) for the smallest of all degrees of vertices of G, and �(G)

for the largest. (One also writes �(G) for the common degree of a regular graph G.) If
G has v vertices, so that its vertex set is, say,

V (G) = {x1, x2, . . . , xv},
then its adjacency matrix MG is the v × v matrix with entries mij such that

mij =
{

1 if xi ∼ xj ,

0 otherwise.

Some authors define the adjacency matrix of a multigraph to be the adjacency matrix
of the underlying graph; others set mij equal to the number of edges joining xi to xj .
We shall use the former convention.

A vertex and an edge are called incident if the vertex is an endpoint of the edge, and
two edges are called incident if they have a common endpoint. A set of edges is called
independent if no two of its members are incident, while a set of vertices is independent
if no two of its members are adjacent.

Theorem 2.1. In any graph or multigraph, the number of edges equals half the sum of
the degrees of the vertices.

Proof. It is convenient to work with the incidence matrix: we sum its entries. The sum
of the entries in row i is just d(xi); the sum of the degrees is then

∑v
i=1 d(xi), which

equals the sum of the entries in N . The sum of the entries in column j is 2, since each
edge is incident with two vertices; the sum over all columns is thus 2e, so that

v∑
i=1

d(xi) = 2e,

giving the result.

Corollary 2.2. In any graph or multigraph, the number of vertices of odd degree is
even. In particular, a regular graph of odd degree has an even number of vertices.

Given a set S of v vertices, the graph formed by joining all pairs of members of S

is called the complete graph on S, and denoted by KS . We also write Kv to mean any
complete graph with v vertices. The set of all edges of KV (G) that are not in a graph
G will form a graph with V (G) as vertex set; this new graph is called the complement
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of G, and written G. More generally, if G is a subgraph of H , then the graph formed
by deleting all edges of G from H is called the complement of G in H , denoted by
H − G. The complement KS of the complete graph KS on the vertex set S is called a
null graph; we also write Kv for a null graph with v vertices.

An isomorphism of a graph G onto a graph H is a one-to-one map φ from V (G)

onto V (H) with the property that a and b are adjacent vertices in G if and only if
aφ and bφ are adjacent vertices in H ; G is isomorphic to H if and only if there is an
isomorphism of G onto H . From this definition it follows that all complete graphs on
n vertices are isomorphic. The notation Kn can be interpreted as being a generic name
for the typical representative of the isomorphism class of all n-vertex complete graphs.

If G is a graph, it is possible to choose some of the vertices and some of the edges
of G in such a way that these vertices and edges again form a graph, H say. H is then
called a subgraph of G; one writes H ≤ G. Clearly every graph G has itself and the
1-vertex graph (which we shall denote by K1) as subgraphs; we say that H is a proper
subgraph of G if it equals neither G nor K1. If U is any set of vertices of G, then the
subgraph consisting of U and all the edges of G that joined two vertices of U is called
an induced subgraph, the subgraph induced by U , and is denoted by 〈U〉. A subgraph
G of a graph H is called a spanning subgraph if V (G) = V (H). Clearly any graph G

is a spanning subgraph of KV (G).

2.3 Connectivity, Walks, and Paths

A graph is called disconnected if its vertex set can be partitioned into two subsets, V1
and V2, that have no common element in such a way that there is no edge with one
endpoint in V1 and the other in V2; if a graph is not disconnected then it is connected.
A disconnected graph consists of a number of disjoint subgraphs; a maximal connected
subgraph is called a component.

Among connected graphs, some are connected so slightly that removal of a single
vertex or edge will disconnect them. Such vertices and edges are quite important; in
network applications, they can represent areas of great vulnerability.A vertex x is called
a cutpoint in G if G − x contains more components than G does; in particular, if G is
connected then a cutpoint is a vertex x such that G − x is disconnected. Similarly, a
bridge (or cut-edge) is an edge whose deletion increases the number of components.

A collection of edges whose deletion disconnects G is called a cut in G. A cut
partitions the vertex set V (G) into two components, A and B say, such that the edges
joining vertices in A to vertices in B are precisely the edges of the cut, and we refer
to “the cut (A, B).” (The two sets A and B are not uniquely defined—for example, if
there is an isolated vertex in G, it could be allocated to either set—but the cut will be
well-defined.) The cut (A, {x}), consisting of all edges incident with the vertex x, is
called a trivial cut.

The complete bipartite graph on V1 and V2 has two disjoint sets of vertices, V1 and
V2; two vertices are adjacent if and only if they lie in different sets. We write Km,n to
mean a complete bipartite graph with m vertices in one set and n in the other. Figure 2.2
shows K4,3; K1,n in particular is called an n-star. Any subgraph of a complete bipartite
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graph is called “bipartite.” More generally, the complete r-partite graph Kn1,n2,...,nr

is a graph with vertex set V1 ∪ V2 ∪ · · · ∪ Vr , where the Vi are disjoint sets and Vi

has order ni , in which xy is an edge if and only if x and y are in different sets. Any
subgraph of this graph is called an r-partite graph. If n1 = n2 = · · · = nr = n we use
the abbreviation K

(r)
n .

Fig. 2.2. K4,3.

A walk in a graph G is a finite sequence of vertices x0, x1, . . . , xn and edges
a1, a2, . . . , an of G:

x0, a1, x1, a2, . . . , an, xn,

where the endpoints of ai are xi−1 and xi for each i. A simple walk is a walk in which
no edge is repeated. A path is a walk in which no vertex is repeated; the length of a
path is its number of edges. A walk is closed when the first and last vertices, x0 and xn,
are equal. A cycle of length n is a closed simple walk of length n, n ≥ 3, in which the
vertices x0, x1, . . . , xn−1 are all different.

The following observation, although very easy to prove, will be useful.

Theorem 2.3. If there is a walk from vertex y to vertex z in the graph G, where y is not
equal to z, then there is a walk in G with first vertex y and last vertex z.

We say that two vertices are connected when there is a walk joining them. (The-
orem 2.3 tells us we can replace the word “walk” by “path.”) Two vertices of G are
connected if and only if they lie in the same component of G; G is a connected graph
if and only if all pairs of its vertices are connected. If vertices x and y are connected,
then their distance is the length of the shortest path joining them.

Cycles give the following useful characterization of bipartite graphs.

Theorem 2.4. A graph is bipartite if and only if it contains no cycle of odd length.

The proof is straightforward.
A graph that contains no cycles at all is called acyclic; a connected acyclic graph

is called a tree. Clearly all trees are bipartite graphs. We shall discuss trees in the next
section.

It is clear that the set of vertices and edges that constitute a path in a graph is itself a
graph. We define a walk Pn to be a graph with n vertices x1, x2, . . . , xn and n−1 edges
x1x2, x2x3, . . . , xn−1xn. A cycle Cn is defined similarly, except that the edge xnx1 is
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also included, and (to avoid the triviality of allowing K2 to be defined as a cycle) n

must be at least 3. The latter convention ensures that every Cn has n edges. Figure 2.3
shows P4 and C5.

Fig. 2.3. P4 and C5.

As an extension of the idea of a proper subgraph, we shall define a proper tree to
be a tree other than K1, and similarly define a proper path. (No definition of a “proper
cycle” is necessary.)

A cycle that passes through every vertex in a graph is called a Hamilton cycle and
a graph with such a cycle is called Hamiltonian. Typically one thinks of a Hamiltonian
graph as a cycle with a number of other edges (called chords of the cycle). The idea of
such a spanning cycle was simultaneously developed by Hamilton [81] in the special
case of the icosahedron, and more generally by Kirkman [105].

It is easy to discuss Hamiltonicity in particular cases, and there are a number of
small theorems. However, no good necessary and sufficient conditions are known for
the existence of Hamilton cycles. The following result is a useful sufficient condition.

Theorem 2.5. If G is a graph with n vertices, n ≥ 3, and d(x) + d(y) ≥ n whenever
x and y are nonadjacent vertices of G, then G is Hamiltonian.

Proof. Suppose the theorem is false. Choose an n such that there is an n-vertex coun-
terexample, and select a graph G on n vertices that has the maximum number of edges
among counterexamples. Choose two nonadjacent vertices v and w: clearly G + vw

is Hamiltonian, and vw must be an edge in every Hamilton cycle. By hypothesis,
d(v) + d(w) ≥ n.

Consider any Hamilton cycle in G + vw:

v, x1, x2, . . . , xn−2, w, v.

If xi is any member of N(v), then xi−1 cannot be a member of N(w), because

v, x1, x2, . . . , xi−1, w, xn−2, xn−3, . . . , xi, v

would be a Hamilton cycle in G. So each of the d(v) vertices adjacent to v in G must
be preceded in the cycle by vertices not adjacent to w, and none of these vertices can
be w itself. So there are at least d(v) + 1 vertices in G that are not adjacent to w. So
there are at least d(w) + d(v) + 1 vertices in G, whence
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d(v) + d(w) ≤ n − 1,

a contradiction.

Corollary 2.6. If G is a graph with n vertices, n ≥ 3, and every vertex has degree at
least n/2, then G is Hamiltonian.

Theorem 2.5 was first proven by Ore [138] and Corollary 2.6 some years earlier
by Dirac [65]. Both can in fact be generalized into the following result of Pósa [143]:
a graph with n vertices, n ≥ 3, has a Hamiltonian cycle provided the number of
vertices of degree less than or equal to k does not exceed k − 1, for each k satisfying
1 ≤ k ≤ (n − 1)/2.

2.4 Trees

As we stated in the preceding section, a tree is a connected graph that contains no cycle.
Figure 2.4 contains three examples of trees. It is also clear that every path is a tree, and
the star K1,n is a tree for every n.

Fig. 2.4. Three trees.

A tree is a minimal connected graph in the following sense: if any vertex of degree
at least 2, or any edge, is deleted, then the resulting graph is not connected.

Theorem 2.7. A connected graph is a tree if and only if every edge is a bridge.

Trees are also characterized among connected graphs by their number of edges.

Theorem 2.8. A finite connected graph G with v vertices is a tree if and only if it has
exactly v − 1 edges.

From this it follows that every tree other than K1 has at least two vertices of degree 1.
(This does not hold if we allow our graphs to have infinite vertex sets—one elementary
example consists of the infinitely many vertices 0, 1, 2, . . ., n, . . . and the edges 01, 12,
23, . . ., (n, n + 1), . . .—but infinite graphs will not arise in this book.)

Theorem 2.9. Suppose T is a tree with k edges and G is a graph with minimum degree
δ(G) ≥ k. Then G has a subgraph isomorphic to T .
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2.5 Factors, or Spanning Subgraphs

If G is any graph, then a factor or spanning subgraph of G is a subgraph with vertex set
V (G). A factorization of G is a set of factors of G that are pairwise edge-disjoint—no
two have a common edge—and whose union is all of G.

Every graph has a factorization, quite trivially: since G is a factor of itself, {G} is a
factorization of G. However, it is more interesting to consider factorizations in which
the factors satisfy certain conditions. In particular a one-factor is a factor that is a regular
graph of degree 1. In other words, a one-factor is a set of pairwise disjoint edges of G

that between them contain every vertex. A one-factorization of G is a decomposition
of the edge set of G into edge-disjoint one-factors. Similarly, a two-factor is a factor
that is a regular graph of degree 2, a union of disjoint cycles, and a two-factorization
of G is a decomposition of the edge set of G into edge-disjoint two-factors.

A spanning tree is a spanning subgraph that is a tree when considered as a graph in
its own right. Clearly every connected graph has a spanning tree. This also applies to
graphs with loops and multiple edges. Moreover, a given graph may have many different
spanning trees.

In many of the applications in which each edge of a graph has a weight associated
with it, it is desirable to find a spanning tree such that the weight of the tree, the total
of the weights of its edges, is minimum. Such a tree is called a minimum spanning
tree. A finite graph can contain only finitely many spanning trees, so it is possible in
theory to list all spanning trees and their weights, and to find a minimum spanning
tree by choosing one with minimum weight But this process can take a very long time,
particularly in the large graphs arising from enterprise networks. So efficient algorithms
to find a minimum spanning tree have been developed. One of the best was given by
Prim [144].

There is an extensive literature on matching and factorization problems; see, for
example, [120, 179, 180].

2.6 Directed Graphs

A directed graph or digraph consists of a finite set v of objects called vertices together
with a finite set of directed edges or arcs, which are ordered pairs of vertices. It is like
a graph except that each edge is allocated a direction; one vertex is designated a start
and the other is a finish. An arc directed from start s to finish t is denoted by (s, t), or
simply st . It is important to observe that, unlike a graph, a digraph can have two arcs
with the same endpoints, provided they are directed in opposite ways. But we shall not
allow multiple arcs or loops.

The idea of adjacency needs further elaboration in digraphs. Associated with a
vertex v are the two sets

A(v) = {x : (v, x) is an arc},
B(v) = {x : (x, v) is an arc}.
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A vertex v is called a start in the digraph if B(x) is empty and a finish if A(x) is empty.
The indegree and outdegree of a vertex are the numbers of arcs leading into and leading
away from that vertex respectively, so if multiple arcs are not allowed, then the indegree
and outdegree of v equal |B(v)| and |A(v)| respectively.

Our notation is extended to directed graphs in the obvious way, so that if X and Y

are any sets of vertices of G, then [X, Y ] consists of all arcs with start in X and finish
in Y . If X or Y has only one element, it is usual to omit the set brackets in this notation.
Observe that if V is the vertex set of G, then

[v, A(v)] = [v, V ] = set of all arcs leading out of v,

[B(v), v] = [V, v] = set of all arcs leading into v.

A walk in a directed multigraph is a sequence of arcs such that the finish of one
is the start of the next. (This is analogous to the definition of a walk in a graph, but
takes into account the direction of each arc. Each arc must be traversed in its proper
direction.) A directed path is a sequence (a0, a1, . . . , an) of vertices, all different, such
that ai−1ai is an arc for every i. Not every path is a directed path. If a directed path is
considered as a digraph, then a0 is a start, and is unique, and an is the unique finish,
so we call a0 and an the start and finish of the path. We say ai precedes aj (and aj

succeeds ai) when i < j .
A directed cycle (a1, a2, . . . , an) is a sequence of two or more vertices in which all

of the members are distinct, each consecutive pair ai−1ai is an arc, and also an, a1 is an
arc. (Notice that there can be a directed cycle of length 2, or digon, which is impossible
in the undirected case.) A digraph is called acyclic if it contains no directed cycle.

As an example, consider the digraph of Figure 2.5. It has

A(a) = {b, c}, B(a) = ∅,

A(b) = ∅, B(b) = {a, c, d},
A(c) = {b, d}, B(c) = {a},
A(d) = {b}, B(d) = {c};

a is a start and b is a finish. We have [{a, c}, {b, d}] = {ab, cb, cd}. There are various
directed paths, such as (a, c, d, b), but no directed cycle.

Fig. 2.5. A typical digraph.

Lemma 2.10. If a digraph contains an infinite sequence of vertices (a0, a1, . . .) such
that ai−1ai is an arc for every i, then the digraph contains a cycle.
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Proof. Any digraph has finitely many vertices, so the sequence (a0, a1, . . .) must con-
tain repetitions. Suppose ai is repeated; say j is the smallest subscript greater than i

such that ai = aj . Then (ai, ai+1, . . . , aj ) is a cycle in g.

In a similar way we can prove the following lemma:

Lemma 2.11. If a digraph contains an infinite sequence of vertices (a0, a1, . . .) such
that ai+1ai is an arc for every i, then the digraph contains a cycle.

Theorem 2.12. Every acyclic digraph has a start and a finish.

The concept of a complete graph generalizes to the directed case in two ways. The
complete directed graph on vertex set V , denoted by DKV , has as its arcs all ordered
pairs of distinct members of V , and is uniquely determined by V . On the other hand,
one can consider all the different digraphs that can be formed by assigning directions
to the edges of the complete graph on V ; these are called tournaments.

In those cases in which a directed graph is fully determined, up to isomorphism,
by its number of vertices, notation is used that is analogous to the undirected case. The
directed path, directed cycle, and complete directed graph on v vertices are denoted by
DPv , DCv , and DKv respectively.

We shall say that vertex x is reachable from vertex y if there is a walk (and con-
sequently a directed path) from y to x. (When x is reachable from y, some authors
say “x is a descendant of y” and “y is an ancestor of x.”) Two vertices are strongly
connected if each is reachable from the other, and a digraph (or directed multigraph)
is called strongly connected if every vertex is strongly connected to every other vertex.
For convenience, every vertex is defined to be strongly connected to itself. We shall say
that a directed graph or multigraph is connected if the underlying graph is connected,
and disconnected otherwise. However, some authors reserve the word “connected” for
a digraph in which given any pair of vertices x and y, either x is reachable from y or y

is reachable from x.
It is clear that strong connectivity is an equivalence relation on the vertex set of any

digraph D. The equivalence classes, and the subdigraphs induced by them, are called
the strong components of D.
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Matching Graphs with Unique Node Labels

3.1 Introduction

In its most general form, graph matching refers to the problem of finding a mapping
f from the nodes of one given graph g1 to the nodes of another given graph g2 that
satisfies some constraints or optimality criteria. For example, in graph isomorphism
detection [130], mapping f is a bijection that preserves all edges and labels. In subgraph
isomorphism detection [173], mapping f has to be injective such that all edges of g1 are
included in g2 and all labels are preserved. Other graph matching problems that require
the constructions of a mapping f with particular properties are maximum common
subgraph detection [118, 129] and graph edit distance computation [131, 151].

The main problem with graph matching is its high computational complexity, which
arises from the fact that it is usually very costly to find mapping f for a pair of given
graphs. It is a known fact that the detection of a subgraph isomorphism or a maximum
common subgraph and the computation of graph edit distance are NP -complete prob-
lems. If the graphs in the application are small, optimal algorithms can be used. These
algorithms are usually based on an exhaustive enumeration of all possible mappings
f between two graphs. Sometimes application-dependent heuristics can be found that
allow us to eliminate significant portions of the search space (i.e., the space of all possi-
ble functions f ), but still guarantee the correct, or optimal, solution being found. Such
heuristics can be used in conjunction with look-ahead techniques and constraint satis-
faction [51,115,173]. For matching of large graphs, one needs to resort to suboptimal
matching strategies. Methods of this type are characterized by an (often low-order)
polynomial-time complexity, but they are no longer guaranteed to find the optimal so-
lution for a given problem. A large variety of such suboptimal approaches have been
proposed in the literature, based on a multitude of different computational paradigms.
Examples include probabilistic relaxation [45, 191], genetic algorithms [54, 183],
expectation maximization [122], eigenspace methods [108, 123], and quadratic pro-
gramming [141].

Another possibility to overcome the problem arising from the exponential com-
plexity of graph matching is to focus on classes of graphs with an inherently lower
computational complexity of the matching task. Some examples of such classes are
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given in [91, 99, 121]. Most recently, in the field of pattern recognition and computer
vision, the class of trees has received considerable attention [140, 156].

In this chapter another special class of graphs will be introduced. The graphs be-
longing to this class are characterized by the existence of unique node labels, which
means that each node in a graph possesses a node label that is different from all other
node labels in that graph. This condition implies that whenever two graphs are being
matched with each other, each node has at most one candidate for possible assignment
under function f in the other graph. This candidate is uniquely defined through its node
label. Consequently, the most costly step in graph matching, which is the exploration
of all possible mappings between the nodes of the two graphs under consideration, is
no longer needed. Moreover, we introduce matching algorithms for this special class
of graphs and analyze their computational complexity. Particular attention is directed
to the computation of graph isomorphism, subgraph isomorphism, maximum common
subgraph, graph edit distance, and median graph computation.

If constraints are imposed on a class of graphs, we usually lose some representational
power. The class of graphs considered in this chapter is restricted by the requirement
of each node label being unique. Despite this restriction, there exist some interesting
applications for this class of graphs. From the general point of view, graphs with unique
node labels seem to be appropriate whenever the objects from the problem domain,
which are modeled through nodes, possess properties that can be used to identify them
uniquely. In particular, the condition of unique node labels does not pose a problem when
one is dealing with graphs constructed from data collected from computer networks.
It is common in these networks that each node, such as a client, server, or router, be
uniquely identified. For example, in an intranet employing ethernet technology on a local
area network (LAN) segment, either the Media Access Control (MAC), or the Internet
Protocol (IP) address could be used to uniquely identify nodes on the local segment. As
a consequence, the efficient graph matching algorithms described in Theorem 3.8 can
be applied to computer networks to assist in network management functions. Another
application of graphs with unique node labels is web document analysis [154].

The remainder of this chapter is organized as follows. In Section 3.2, we intro-
duce our basic concepts and terminology. Graphs with unique node labels and related
matching strategies are discussed in Section 3.3. In Section 3.4, we present the results
of an experimental study in which the run time of some of the proposed algorithms was
measured. Finally, conclusions from this work are drawn in Section 3.5.

3.2 Basic Concepts and Notation

In this section the basic concepts and terminology used throughout this and later chapters
of the book will be introduced.We consider directed graphs with labeled vertices (nodes)
and edges (links). Let LV and LE denote sets of node and edge labels, respectively. A
graph g = (V , E, α, β) is a 4-tuple where V is the finite set of vertices, E ⊆ V × V

is the set of edges, α : V −→ LV is a function assigning labels to the nodes, and
β : E −→ LE is a function assigning labels to edges. Edge (x, y) ∈ E originates
at node x ∈ V and terminates at node y ∈ V . An undirected graph is obtained as
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a special case if there exists an edge (y, x) ∈ E for every edge (x, y) ∈ E with
β(x, y) = β(y, x).

Let g = (V , E, α, β) and g′ = (V ′, E′, α′, β ′) be graphs; g′ is a subgraph of g,
g′ ⊆ g, if V ′ ⊆ V, E′ ⊆ E, α(x) = α′(x) for all x ∈ V ′, and β(x, y) = β ′(x, y) for
all (x, y) ∈ E′. Let g ⊆ g′ and g ⊆ g′′. Then g is called a common subgraph of g′ and
g′′. Furthermore, g is called a maximum common subgraph (notation: mcs) of g′ and
g′′ if there exists no other common subgraph of g′ and g′′ that has more nodes and, for
a given number of nodes, more edges than g.

For graphs g and g′, a graph isomorphism is any bijection f : V −→ V ′ such that:

(1) α(x) = α′(x) for all x ∈ V ; and
(2) for any edge (x, y) ∈ E, there exists (f (x), f (y)) ∈ E′ with β(x, y) =

β ′(f (x), f (y)), and for any edge (x′, y′) ∈ E′ there exists an edge
(f −1(x′), f −1(y′)) ∈ E with β ′(x′, y′) = β(f −1(x′), f −1(y′)).

If f : V −→ V ′ is a graph isomorphism between graphs g and g′, and g′ is a
subgraph of another graph g′′, i.e., g′ ⊆ g′′, then f is called a subgraph isomorphism
from g to g′′.

Next we introduce the concept of graph edit distance (notation: ged), which is
based on graph edit operations. We consider six types of edit operations: substitution
of a node label, substitution of an edge label, insertion of a node, insertion of an edge,
deletion of a node, and deletion of an edge. A cost (i.e., a nonnegative real number) is
assigned to each edit operation. Let e be an edit operation and c(e) its cost. The cost
of a sequence of edit operations, s = e1 . . . en, is given by the sum of all its individual
costs, i.e., c(s) = ∑n

i=1 c(ei). The edit distance d(g1, g2) of two graphs g1 and g2 is
equal to the minimum cost, taken over all sequences of edit operations, that transform
g1 into g2. Procedures for ged computation are discussed in [131].

Finally, we introduce the median of a set of graphs [100]. Let G = {g1, . . . , gN }
be a set of graphs and U the set of all graphs with labels from LV and LE . The median
g of G is a graph that satisfies the condition

N∑
i=1

d(g, gi) = min

{
N∑

i=1

d(g, gi) | g ∈ U

}
.

It follows that the median is a graph that has the minimum average edit distance
to the graphs in set G. It is a useful concept to represent a set of graphs by a single
prototype. In many instances the median of a given set G is not unique; nor is it always
a member of G. For further details on median graphs see [100].

3.3 Graphs with Unique Node Labels

In this section we introduce a special class of graphs that are characterized by the
existence of unique node labels. Formally, we require that for any graph g and any
pair x, y ∈ V , the condition α(x) �= α(y) holds if x �= y. Furthermore, we assume
that the underlying alphabet of node labels is an ordered set, for example, the integers,
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i.e., LV = {1, 2, 3, . . .}, or words over an alphabet that can be lexicographically ordered.
Throughout this chapter we consider graphs from this class only, unless otherwise
mentioned.

Definition 3.1. Let g = (V , E, α, β) be a graph. The label representation ρ(g) of g is
given by ρ(g) = (L, C, λ), where:

(1) L = {α(x)|x ∈ V };
(2) C = {(α(x), α(y))|(x, y) ∈ E}; and
(3) λ : C −→ LE with λ(α(x), α(y)) = β(x, y) for all (x, y) ∈ E.

According to this definition the label representation of a graph g is obtained by
representing each node of g by its (unique) label and dropping the set V . From the formal
point of view, ρ(g) defines the equivalence class of all graphs that are isomorphic to
g. The individual members of this class are obtained by assigning an arbitrary node, or
more precisely an arbitrary node name, to each unique node label, i.e., to each element
from L.

Example 3.2. Let LV = {1, 2, 3, 4, 5} and g = (V , E, α, β), where V = {a, b, c, d, e},
E = {(a, b), (b, e), (e, d), (d, a), (a, c), (b, c), (d, c), (e, c), (a, e), (b, d)}, α : a 
→
1, b 
→ 2, c 
→ 5, d 
→ 4, e 
→ 3, β : (x, y) 
→ 1 for all (x, y) ∈ E. A
graphical illustration of g is shown in Figure 3.1(a), where the node names (i.e., the
elements of V ) appear inside the nodes and the corresponding labels outside. Be-
cause all edge labels are identical, they have been omitted. The label representa-
tion ρ(g) of g is then given by the following quantities: L = {1, 2, 3, 4, 5}, C =
{(1, 2), (2, 3), (3, 4), (4, 1), (1, 5), (2, 5), (4, 5), (3, 5), (1, 3), (2, 4)}, λ : (i, j) 
→ 1
for all (i, j) ∈ C.

a

d

c

b

e

2

3
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4

1 2
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5

4

1

(a) Example graph g (b) Label representation of g

Fig. 3.1. Example graph g and its label representation.

Intuitively, we can interpret the label representation ρ(g) of any graph g as a graph
identical to g up to the fact that all node names are left unspecified. Hence ρ(g) can be
conveniently graphically represented in the same way as g is represented. For example,
a graphical representation of ρ(g), where g is shown in Figure 3.1(a), is given in
Figure 3.1(b).
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Lemma 3.3. Let g1 = (V1, E1, α1, β1), g2 = (V2, E2, α2, β2) be two graphs and
ρ(g1) = (L1, C1, λ1), ρ(g2) = (L2, C2, λ2) their label representations. Graph g1 is
isomorphic to graph g2 if and only if ρ(g1) = ρ(g2) (i.e., L1 = L2, C1 = C2, and
λ1 = λ2).

Proof. Assume that there exists a graph isomorphism f : V1 −→ V2. Then α1(x) =
α2(f (x)) for all x ∈ V1. Since f is bijective, it follows that L1 = L2. Furthermore,
because of the conditions on the edges that are imposed by graph isomorphism f , we
conclude that C1 = C2 and λ1 = λ2. Conversely, assume that ρ(g1) = ρ(g2). Construct
now the mapping f : V1 −→ V2 such that f (x) = y if and only if α1(x) = α2(y).
Because L1 = L2 and the node labels in both g1 and g2 are unique, this mapping is a
bijection that satisfies the conditions of graph isomorphism imposed on the edges and
edge labels in g1 and g2.

Based on this lemma, we can examine two graphs for isomorphism by simply
generating their label representations and checking the conditions L1 = L2, C1 = C2,
and λ1 = λ2. Assume n = max{|V1|, |V2|}. Then |L1| = |L2| = O(n), |E1| = |C1| =
O(n2), and |E2| = |C2| = O(n2). Testing two ordered sets for identity is an operation
that is linear in the number of elements. Hence the computational complexity of testing
two graphs with unique node labels for isomorphism amounts to O(n2).

Lemma 3.4. Let g1, g2, ρ(g1), and ρ(g2) be the same as in Lemma 3.3. Then, g1 is
subgraph isomorphic to g2 if and only if L1 ⊆ L2, C1 ⊆ C2, and λ1(i, j) = λ2(i, j)

for all (i, j) ∈ C1.

Proof. Firstly, we assume that there exists a subgraph isomorphism f : V1 −→ V2.
Then α1(x) = α2(f (x)) for all x ∈ V1. Since f is injective, it follows that L1 ⊆ L2.
Similarly to the proof of Lemma 3.3, we conclude that C1 ⊆ C2 and λ1(i, j) = λ2(i, j)

for all (i, j) ∈ C1. Conversely, assume L1 ⊆ L2, C1 ⊆ C2, and λ1(i, j) = λ2(i, j) for
all (i, j) ∈ C1. Then we can construct an injective mapping f : V1 −→ V2 such that
f (x) = y if and only if α1(x) = α2(y). Similarly to the proof of Lemma 3.3, it follows
that this mapping is a subgraph isomorphism from g1 to g2.

Using Lemma 3.4, testing two graphs for subgraph isomorphism reduces to ex-
amining the corresponding label representations for the three conditions L1 ⊆ L2,
C1 ⊆ C2, and λ1(i, j) = λ2(i, j) for all (i, j) ∈ C1. The third condition can be
checked in O(|C1|) = O(n2) time. Checking whether an ordered set is a subset of
another ordered set is linear in the size of the larger of the two sets. Hence the com-
putational complexity of subgraph isomorphism of graphs with unique node labels is
O(n2).

Lemma 3.5. Let g1, g2, ρ(g1), and ρ(g2) be the same as in Lemma 3.3. Let g be a
graph with ρ(g) = (L, C, λ) such that L = L1 ∩ L2, C = {(i, j)|(i, j) ∈ C1 ∩
C2, and λ1(i, j) = λ2(i, j)}, and λ(i, j) = λ1(i, j) for all (i, j) ∈ C. Then g is an
mcs of g1 and g2.
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Proof. First we note that L ⊆ L1 and L ⊆ L2. Hence V ⊆ V1 and V ⊆ V2 for any
graph g with label representation ρ(g) = (L, C, λ). Similarly, because C includes a
pair (i, j) if and only if a corresponding edge with identical labels exists in both g1 and
g2, we observe that E ⊆ E1 and E ⊆ E2 for any such graph g. Thirdly, the labels of
edges (x, y) occurring in both g1 and g2 are preserved under λ. Hence g is a subgraph
of both g1 and g2. Now assume that g is not an mcs. In this case there must exist another
subgraph g′ of both g1 and g2 with either more nodes than g or the same number of
nodes, but with more edges. The first case contradicts the way set L is constructed; if
g′ has more nodes than g, then L �= L1 ∩ L2. The second case is in conflict with the
construction of C and λ, i.e., if g′ has the same number of nodes as g, but more edges,
then C and λ must be different from their values stated in Lemma 3.5. Hence g must
be indeed an mcs of g1 and g2. This concludes the proof.

Possible computational procedures implied by Lemma 3.5 are again based on the
intersection of two ordered sets. Hence the complexity of computing the mcs of two
graphs with unique node labels is O(n2).

In [21] a detailed analysis was provided showing how ged depends on the costs
associated with the individual edit operations. A set of edit operations together with
their cost is also called a cost function. In this chapter we focus our attention on the
following cost function: cnd(x) = cni(x) = 1, cns(x) = ∞, ced(x, y) = cei(x, y) =
ces(x, y) = 1, where cnd(x), cni(x), and cns(x) denote the costs associated with the
deletion, insertion, and substitution of node x, while ced(x, y), cei(x, y), and ces(x, y)

denote the cost associated with the deletion, insertion, and substitution of edge (x, y),
respectively. This cost function is simple in the sense that each edit operation has a cost
equal to one, except for node substitutions, which have infinite cost. It is easy to see
that for any two graphs g1 and g2, there always exists a sequence of edit operations that
transforms g1 into g2 with a finite total cost (for example, a sequence that deletes all
nodes and edges from g1, and inserts all nodes and edges in g2). Hence edit operations
with infinite cost will never be applied in the computation of any actual ged . This means
that node substitutions will never be applied and may be considered inadmissible under
the cost function introduced above, while all other edit operation can be applied and
have the same cost. The exclusion of node substitutions for graphs with unique node
labels makes sense since node label substitutions may generate graphs with nonunique
node labels, i.e., graphs that do not belong to the class of graphs under consideration.

Lemma 3.6. Let g1, g2, ρ(g1), and ρ(g2) be the same as in Lemma 3.3. Furthermore,
let C0 = {(i, j)|(i, j) ∈ C1 ∩ C2 and λ1(i, j) = λ2(i, j)}, and C′

0 = {(i, j)|(i, j) ∈
C1 ∩C2 and λ1(i, j) �= λ2(i, j)}. Then d(g1, g2) = |L1|+ |L2|− 2|L1 ∩L2|+ |C1|+
|C2| − 2|C0| + |C′

0| .
Proof. Because node substitutions can be regarded inadmissible, the minimum cost
sequence of edit operations transforming g1 into g2 assigns each node x ∈ V1 with
label α1(x) to node y ∈ V2 with α1(x) = α2(y). If no node y ∈ V2 exists with this
property, node x is deleted from g1. Similarly, all nodes y ∈ V2 for which no node
x ∈ V1 exists with α1(x) = α2(y) will be inserted in g2. This leads to |L1| − |L1 ∩ L2|
node deletions in graph g1, and |L2|−|L1∩L2| node insertions in graph g2, each having
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a cost equal to one. Hence the total cost arising from edit operations on the nodes of g1
and g2 amounts to |L1| − |L1 ∩ L2| + |L1| − |L1 ∩ L2| = |L1| + |L2| − 2 |L1 ∩ L2|.

We now consider the edges. There exist |C1| − |C0| edges in g1 that do not occur
in g2, and need to be deleted. Similarly, there exist |C2| − |C0| edges in g2 that do not
have a counterpart in g1, and need to be inserted. Furthermore, there are two types of
edges corresponding to set C1 ∩ C2. The first type are edges (i, j) ∈ C0, for which
λ1(i, j) = λ2(i, j). No edit operations are needed for edges of this kind. The second
type are edges (i, j) ∈ C

′
0, for which λ1(i, j) �= λ2(i, j).An edge substitution with cost

one is needed for each such edge. Hence the total cost of edit operations on the edges
of g1 and g2 is equal to |C1|− |C0|+ |C2|− |C0|+ |C ′

0| = |C1|+ |C2|− 2 |C0|+ |C ′
0|.

This concludes the proof.

Possible computational procedures for ged computation implied by Lemma 3.6 are
based again on the intersection of two ordered sets. Hence, similar to all other graph
matching procedures considered before, the complexity of edit distance computation
of graphs with unique node labels is O(n2).

Finally, we turn to the problem of computing a graph g that is the median of a set of
graphs, G = {g1, . . . , gN }, with unique node labels. In the remainder of this section we
assume, for the purpose of notational convenience and without restricting generality,
that all graphs under consideration are complete. That is, there is an edge (x, y) ∈ E

between any pair of nodes x, y ∈ V for any considered graph g. “Real” edges can be
easily distinguished from “virtual” edges by including a special null symbol in the edge
label alphabet LE and defining β(x, y) = null for any virtual edge. The benefit we
get from considering complete graphs is that the only necessary edit operations on the
edges are substitutions. In other words, any edge deletion or insertion now becomes a
substitution that involves the null label. No conflicts will arise from this simplification
because the cost of edge substitutions, deletions, and insertions are the same.

Let ρ(g1), . . . , ρ(gN) be the label representations of g1, . . . , gN . Define LU =⋃N
i=n Li and CU = ⋃N

i=1 Ci . Furthermore, let γ (i) be the total number of occurrences
of node label i ∈ LU in L1, . . . , LN . Note that (1 ≤ γ (i) ≤ N ). Formally, γ (i) can be
defined through the following procedure:

γ (i) = 0;
for k = 1 to N do

if i ∈ Lk then γ (i) = γ (i) + 1

Next, we define ρ(g) = (L, C, λ) such that

(1) L = {i | i ∈ LU and γ (i) ≥ N/2};
(2) C = {(i, j) | i, j ∈ L}; and
(3) λ(i, j) = max_label(i, j),

where function max_label(i, j) returns the label λk(i, j) ∈ LE that has the maxi-
mum number of occurrences on edge (i, j) in C1, . . . , CN . In case of a tie, any of the
competing labels λk(i, j) may be returned.

Lemma 3.7. Let G and ρ(g) be as above. Then any graph g with label representation
ρ(g) is a median graph of G.
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Proof. The smallest potential median graph candidate is the graph with an empty set
of nodes, while the largest potential candidate corresponds to the case L = LU . The
second observation is easy to verify, because any graph g∗ that includes more node
labels will have at least one label k∗ that does not occur in any of the Li’s. Hence
the node with label k∗ will be deleted in all of the distance computations for d(g∗, g),
i = 1, . . . , N . Therefore dropping the node with label k∗ from g∗ will produce a graph
with a smaller average edit distance to the members of G. It follows that for any median
graph g with node label representation ρ(g), set L must necessarily be a subset of LU .

If we substitute the expression derived in Lemma 3.6 into the definition of a median
graph given in Section 3.2, we recognize that any median graph g with node label
representation ρ(g) must minimize the following expression:

� =|L| + |L1| − 2 |L ∩ L1| + |C| + |C1| − 2 |C01| + |C ′
01| + · · ·

+ |L| + |LN | − 2 |L ∩ LN | + |C| + |CN | − 2 |C0N | + |C ′
0N |,

where we use the following notation (see Lemma 3.6):

C0k = {(i, j) | (i, j) ∈ C ∩ Ck and λ(i, j) = λk(i, j)} ,

C
′
0k = {(i, j) | (i, j) ∈ C ∩ Ck and λ(i, j) �= λk(i, j)} .

Clearly, � can be rewritten as

� = N |L| +
N∑

i=1

|Li | − 2
N∑

i=1

|L ∩ Li | + N |C| +
N∑

i=1

|Ci | − 2
N∑

i=1

|C0i | +
N∑

i=1

|C ′
0i |.

Note that all quantities are nonnegative integers. Since all Li’s and Ci’s are given,
minimization of � is equivalent to minimizing

N |L| − 2
N∑

i=1

|L ∩ Li | + N |C| − 2
N∑

i=1

|C0i | +
N∑

i=1

|C ′
0i |.

First we analyze the term �1 = N |L| − 2
∑N

i=1 |L ∩ Li |. It is obvious that N |L|
will become smaller if we include fewer nodes in the median graph. On the other hand,
this will also make the term 2

∑N
i=1 |L∩Li | smaller, which leads to an increase of �1.

To find the optimal number of nodes to be included in the median graph, we consider
each element of L individually and decide whether it must be included in the median
graph. From the definition of �1 it follows that if a node with label i is included in
the median graph, its contribution to �1 will be N − 2 γ (i). Conversely, if that node is
not included, its contribution will be zero. Hence, in order to minimize �1, we include
a node with label i in the median graph if N − 2 γ (i) ≤ 0, which is equivalent to
γ (i) ≥ N/2.

Now consider the term �2 = N |C| − 2
∑N

i=1 |C0i | + ∑N
i=1 |C ′

0i |. Assume for
the moment that |C| is a constant that is defined through the choice of L. Then we
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have to minimize −2
∑N

i=1 |C0i | +∑N
i=1 |C ′

0i |. Since |C0i | + |C ′
0i | = |C ∩ C0|, this

is equivalent to maximizing |C0i |. However, such a maximization is exactly what is
accomplished by function max_label. This function chooses, for edge (i, j), the label
that most often occurs on edge (i, j) in all the given graphs.

So far we have treated the terms �1 and �2 independently of each other. In fact, they
are not independent because the exclusion of a node with label i from the median graph
implies exclusion of any of its incident edges (i, j) or (j, i). Therefore the question
arises whether this dependency can lead to an inconsistency in the minimization of
� = �1 + �2 in the sense that decreasing �1 leads to an increase of �2 by a larger
amount, and vice versa. It is easy to see that such an inconsistency can never happen.
First of all, exclusion of an edge (i, j) for the sake of minimizing �2 does not imply any
constraints on inclusion or exclusion of any of the incident nodes i and j . Secondly, if
node i is not included because γ (i) < N/2, function max_label will surely return the
null label for any edge (i, j) or (j, i). This is equivalent to not including (i, j) or (j, i)

in the median graph. In other words, if a node i is not included in the median graph
because γ (i) < N/2, the dependency between �1 and �2 leads also to not including
all incident edges, which is exactly what is required to minimize �2. This concludes
the proof of Lemma 3.7.

In order to derive a practical computational procedure for the computation of a
median of a set of graphs with unique node labels, we need to implement functions γ (i)

and max_label(i, j). It is easy to verify that the complexities of these two functions
are O(n N) and O(n2 N), respectively. It follows that the median graph computation
problem can be solved in O(n2 N) time for graphs with unique node labels.

So far, we have assumed that there are O(n2) edges in a graph with n nodes. There
are, however, applications in which the graphs are of bounded degree, i.e., the maximum
number of edges incident to a node is bounded by a constant κ . In this case all of the
expressions O(n2) reduce to O(n).

The following theorem summarizes all the results derived in this section.

Theorem 3.8. For the class of graphs with unique node labels there exist computational
procedures that solve the following problems in quadratic time with respect to the
number of nodes in the underlying graph:

(1) graph isomorphism;
(2) subgraph isomorphism;
(3) maximum common subgraph; and
(4) graph edit distance under the cost function introduced earlier in this section.

The median graph computation problem can be solved in O(n2 N) time, where n is the
number of nodes in the largest graph and N is the number of given graphs.

3.4 Experimental Results

The aim of the experiments described in this section is to verify the low computational
complexity for the theoretical results derived in Section 3.3. The time taken to compute
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isomorphism, subgraph isomorphism, mcs, and ged are measured for graphs ranging
in size from hundreds of nodes to tens of thousands of nodes, and with different edge
densities. In addition, we validate the linear dependency of time taken to compute a
median graph to the number of graphs from which the median is derived. Computation
times are measured for synthetic data sets and real network data. Real network data were
acquired from a link in the core of a wide area computer network. A test for similarity of
computational time measurements for real and synthetic data sets is made to verify that
results achieved for simulated networks can be repeated for real-world implementations.
An experiment was conducted to verify that the times taken to compute algorithms in
this chapter are independent of network topology. Two graph generators were used to
produce synthetic data sets having different network topologies. The real network data
set was used as a third sample having different topology. Graphs in each data set had
to be equivalent in number of nodes and links for this test.

The hardware platform used to measure computational times was a SUN Fire V880
with 4 × 750MHz UltraSparc3 processors and 8GB of RAM. The specific hardware
platform used to perform the experiments is not important and has been provided for
completeness only. Only relative computational times with respect to graph dimensions
are important.

3.4.1 Synthetic Network Data

Synthetic data sets are used to validate the computational complexity of procedures
defined in Section 3.3. These data sets are also used to verify that the procedures are
independent of network topology.

Two data sets have been produced using normally distributed random edges with
edge densities of 2.5% and 10%, respectively. An edge density of 2.5% was used so that
graphs with 20000 nodes could be synthesized without exceeding computer memory
of the computer platform used for the experiments. The data set with 10% edge density
was chosen to mimic the characteristics of the real data network. The maximum number
of nodes possible for graphs in this data set was 10000.

An additional single synthetic data set, having edge density of 2.5%, was created
using a Fan Chung algorithm [47]. This graph generator produced graphs having vertex
degrees with a power-law distribution. The resultant topology of graphs produced using
this method is quite different from those of graphs having normally distributed random
edges. In fact, graphs having degree distribution that are power laws are characteristic
of large networks, such as the Internet [167].

For each synthetic data set we first obtain a series S of graphs, containing 100,
1000, 3000, 5000, 7000, and 10000 nodes. For data sets with edge density of 2.5% we
obtain an additional graph in the series that has 20000 nodes. The resulting graphs have
directed edges with Poisson distributed edge weights. A second series S′ was produced
as a counterpart, using the same procedure, for measurements of computational times
for mcs and ged.

A further set of graphs was created to verify the linear increase in computational
time with an increase in edge density, for a fixed number of nodes. The graph generator
assigned edges using a normal distribution. For this data set, graphs had 5000 vertices
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and edge densities ranging from 1% to 10% in steps of 1%. A counterpart was created
for each graph to be used for mcs and ged computations.

To compare computational times of algorithms measured for synthetic data against
real data sets, we created two randomly distributed graphs having the same number of
vertices and edges as each of the real data sets in Section 3.4.2.

Finally, for the validation of computational times for median graphs we created a
series of 100 graphs using randomly distributed edges. In this series the average number
of vertices and edge density are matched to our business domain network data set (i.e.,
comprising graphs having on average 70 vertices with edge density of 10%) as described
in Section 3.4.2.

3.4.2 Real Network Data

Real network data were acquired from a core link in a large-enterprise data network
using network performance monitoring tools. The data network employs static IP ad-
dresses, hence its suitability for representation by the class of graphs defined in this
chapter. Graphs were produced from traffic traversing the link at intervals of one day.
This resulted in a time series of 100 graphs representing 100 days of network traffic.

Two levels of abstraction have been used to produce the time series of real network
data. Both have quite different characteristics. The first data set has graph vertices that
represent IP addresses, while the second has vertices that represent business domains.
In both data sets, edges represent logical links, and edge weights represent the total
number of bytes communicated between vertices in one day. The business domain
abstraction is created by coalescing IP addresses belonging to a predefined business
entity into a single node. This resulted in graphs that contain on average 70 nodes with
edge densities of 10%. The IP network abstraction has graphs that have on average
9000 nodes with an edge density of 0.04%. The low edge density is a result of the near
bipartite nature of the graphs arising from data collected at a single point in the core of
the enterprise data network. The business domain and IP network abstractions are of
interest to network administrators because they provide both coarse and fine network
performance data, respectively.

Two consecutive graphs were chosen from each of the real network data set ab-
stractions, to be used in comparisons of computational times of algorithms with times
measured for synthetic data. The two graphs chosen for the business domain abstrac-
tion contained approximately 90 vertices with an edge density of 10%, while the graphs
chosen from the IP abstraction contained 9000 vertices with an edge density of 0.04%.

To verify median graph computational times the whole 100-day time series of graphs
of business domain data was used.

3.4.3 Verification of O(n2) Theoretical Computational Complexity for
Isomorphism, Subgraph Isomorphism, MCS, and GED

To measure the time taken to compute a test for graph isomorphism we select the first
graph g1 from S, containing one hundred unique nodes, and make an exact copy g2. The
fact that g2 = g1 guarantees that the graphs tested are in fact isomorphic to each other.
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The computational time measurement does not include the time taken to derive the label
representations ρ(g1) and ρ(g2) for graphs g1 and g2. This is true for all computational
times measured for each algorithm. For the measurement of computational time for the
subgraph isomorphism test, we use the same graph g1, together with graph g3, obtained
by removing 20% of the edges from g1. The graph g3 is obviously a subgraph of g1.
The measurements of time to compute both mcs and ged required both graph series S

and S′. To measure the time taken to execute these algorithms we again use g1 from
S, and select the equivalent-size graph from S′. The procedures outlined above were
repeated for all three synthetic data sets for graph sizes 1000, 3000, 5000, 7000, 10000,
and 20000 (where present).

Table 3.1. Computational times for isomorphism.

Computational times in seconds for graphs with N vertices

N=100 1000 3000 5000 7000 10000 20000

Fan Chung 2.5% 0.01 0.55 5.48 17.41 36.77 78.97 343.77

Random 2.5% 0.02 0.5 5.33 17.74 37.94 81.63 383.80

Random 10% 0.02 2.00 25.16 77.75 163.22 357.72

The results of all computational time measurements are shown in Tables 3.1, 3.2,
3.3, and 3.4. As expected, the measured computational complexity of all matching
algorithms is O(n2). Figures 3.2, 3.3, 3.4, and 3.5 illustrate this observation for iso-
morphism, subgraph isomorphism, mcs, and ged, respectively; the x-axis corresponds

Fig. 3.2. Computational times for Graph Isomorphism.
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Table 3.2. Computational times for subgraph isomorphism.

Computational times in seconds for graphs with N vertices

N=100 1000 3000 5000 7000 10000 20000

Fan Chung 2.5% 0.01 0.38 3.04 10.04 21.33 45.60 197.32

Random 2.5% 0.01 0.33 2.82 9.51 20.71 45.03 206.90

Random 10% 0.01 1.17 13.92 43.23 90.23 195.68

Table 3.3. Computational times for maximum common subgraph.

Computational times in seconds for graphs with N vertices

N=100 1000 3000 5000 7000 10000 20000

Fan Chung 2.5% 0.01 0.38 3.44 11.21 24.28 52.36 230.63

Random 2.5% 0.01 0.40 3.18 10.74 23.63 51.69 237.16

Random 10% 0.01 1.28 16.21 49.40 102.27 221.55

to the number of nodes in a graph and the y-axis represents the time, in seconds, to
compute each graph matching algorithm. Figures show greater computational times
for larger edge densities. This result was anticipated due to the dependency on graph
elements. Computation times to test for graph isomorphism were the longest. Testing
for subgraph isomorphism required the least time to compute. This was a consequence
of removing 20% of edges from g1 to produce a subgraph g2. The smaller the size
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Fig. 3.3. Computational times for subgraph isomorphism.
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Fig. 3.4. Computational times for maximum common subgraph.

Table 3.4. Computational times for graph edit distance.

Computational times in seconds for graphs with N vertices

N=100 1000 3000 5000 7000 10000 20000

Fan Chung 2.5% 0.01 0.40 3.49 11.34 24.46 52.09 230.51

Random 2.5% 0.01 0.33 3.38 10.90 23.63 51.45 232.09

Random 10% 0.01 1.35 16.30 49.00 101.88 220.26

of g2 with respect to g1, the shorter the time taken to compute the subgraph isomor-
phism. The computational times for both mcs and ged, as observed in Figures 3.4 and
3.5, are almost indistinguishable. This is not surprising, since the computational steps
proposed in Lemmas 3.5 and 3.6 are nearly identical. In all cases the computational
times measured for both randomly distributed edges and those with power-law degree
distributions, for edge density of 2.5%, are nearly identical. The results would be iden-
tical if the numbers of edges in graphs from both data sets were equal. Since the graph
generator used to produce graphs with randomly distributed edges create on average
graphs with a specified edge density, the actual number of edges can vary. The closeness
of results verifies the independence of the algorithms from network topology.

Further experimentation was performed to show the linear dependency of compu-
tational complexity in number of edges in a graph with fixed number of vertices. Figure
3.6 shows results for the four graph algorithms. Observation of these results reveals the
linear relationship.
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Fig. 3.5. Computational times for graph edit distance.
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Fig. 3.6. Plot of linear dependency of computational times vs. edge density.

3.4.4 Comparison of Computational Times for Real and Synthetic Data Sets

In this section measurements of computational times of isomorphism, subgraph iso-
morphism, mcs, and ged on the two real network data sets (i.e., business domain and
IP level abstractions) and their synthetic counterparts are described. The aim was to



58 3 Graphs with Unique Node Labels

confirm that synthetic data measurements are consistent with those measured for real
network data.

The label representation is first derived for the two graphs in each data set. Isomor-
phism and subgraph isomorphism computation requires only one of the graphs from
each set. Both graphs are required for the mcs and ged computations. The results are
given in Table 3.5. It can be seen that all measurements between real and equivalent syn-
thetic data sets agree. This implies that results obtained for synthetic data are consistent
to those for real data.

Table 3.5. Comparison of computational times for real and synthetic network data.

Real network data

Business domain IP domain

Real Synthetic Real Synthetic

Isomorphism 0.02 0.02 0.60 0.58

Subgraph Isomorphism 0.01 0.01 0.35 0.32

MCS 0.01 0.01 0.38 0.36

GED 0.01 0.01 0.38 0.36

Table 3.6. Computational times for median graph.

Number of graphs in median Computational time (seconds)

Real data Synthetic data

10 2.21 3.36

20 2.75 4.72

30 3.17 5.37

40 3.53 6.00

50 3.83 6.39

60 4.08 6.76

70 4.27 7.16

80 4.16 7.47

90 4.48 7.79

100 4.93 8.15
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3.4.5 Verification of Theoretical Computational Times for Median Graph

The computational time of the median graph algorithm described in Section 3.3 is
measured for both real and synthetic data sets. Each contains a time series of one
hundred graphs. The sizes of graphs within each time series and between time series
are similar. We wish to verify that the time taken to compute a median graph increases
linearly as the number of graphs in the median computation increases.

Measurements commenced by taking the first 10 graphs in the time series (i.e.,
{g1, . . . , g10}) of each data set and computing the median graph. The procedure was
repeated using the first 20, 30, 40, …, 90, and 100 graphs. The results are given in
Table 3.6 and Figure 3.7. Both real and synthetic data sets show a linear dependency
of computational time with respect to the number of graphs. The plot of computational
times for the real data set deviates from a straight line because the edge counts in this
data set had a greater standard deviation than those of the synthetic data set. The number
of vertices and edges in graphs belonging to real and synthetic data sets can been seen
in Figure 3.8.
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Fig. 3.7. Computational times for median graph algorithm.

3.5 Conclusions

Graph matching is finding many applications in the fields of science and engineering. In
this chapter we considered a special class of graphs characterized by unique node labels.
A label representation is given for graphs in this class. For a given graph it contains
a set of unique vertex labels of the graph, an edge set based on vertex labels, and a
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Fig. 3.8. Vertex and edge counts for real and synthetic data sets.

set of edge weights. A number of computationally efficient matching algorithms were
derived for this class of graphs. The suitability of applying these matching algorithms
to computer network monitoring was addressed.

The matching algorithms that have been derived for graphs having a label represen-
tation are detection of graph isomorphism and subgraph isomorphism, computation of
maximum common subgraph, graph edit distance, and median graph. The theoretical
computational complexity of these algorithms, for graphs having n nodes, is O(n2). It
was also shown that the time taken to compute a median graph increases linearly with
the number of graphs in the set from which the median is computed. Theoretical results
were verified using real and synthetic data sets.

It is possible to apply the derived matching algorithms to computer network moni-
toring since the constraint for unique node labels can be satisfied. In computer networks,
nodes can be uniquely identified by means of the media access control or Internet Pro-
tocol addresses. The matching algorithms proposed can be used to measure change that
occurs in a computer network over time. Measures of network change provide good
indicators of when abnormal network events have occurred. Such techniques greatly
enhance computer network management, especially in the field of performance moni-
toring.

The theoretical computational complexity of the matching algorithms were verified
through experimentation using synthetic and real network data. Synthetic data sets of
graphs with specified numbers of nodes and edge densities were used for this purpose.
In addition, synthetic data sets having different network topologies were used to show
that the computation times for derived algorithms are independent of network topology.
A comparison of results achieved for synthetic data sets with those obtained using data
acquired from a large wide area computer network of equal dimension were shown to
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agree. This outcome, along with the knowledge that the algorithms are independent of
network topology, means that simulation of performance of the algorithms on synthetic
data can be used to accurately predict the performance that will be achieved for real
networks.

In conclusion, graph matching algorithms for uniquely labeled graphs having a label
representation provide a significant computational saving compared to the generalized
class of graphs, where such matching algorithms have an exponential computational
complexity. In this chapter we have shown that for this class of graphs we have been
able to apply matching algorithms to graphs having many thousands of nodes.

While this chapter focused on applications to network analysis, it is important to
note that the class of graphs described, and the matching algorithms, can be used for
any application in which graphs have a unique node labeling. In particular, there are
applications in content-based web document analysis [154].



4

Graph Similarity Measures for Abnormal Change
Detection

4.1 Introduction

In managing large-enterprise data networks, the ability to measure network changes
in order to detect abnormal trends is an important performance monitoring function
[17]. The early detection of abnormal network events and trends can provide advance

warning of possible fault conditions [171], or at least assist with identifying the causes
and locations of known problems.

Network performance monitoring typically uses statistical techniques to analyze
variations in traffic distribution [84, 98] or changes in topology [189]. Visualization
techniques are also widely used to monitor changes in network performance [8]. To
complement these approaches, specific measures of change at the network level in both
logical connectivity and traffic variations are useful in highlighting when and where
abnormal events may occur in the network [57,59–64,157]. Using these measures, other
network management tools may then be focused on problem regions of the network for
more detailed analysis.

This chapter examines various measures of network change based on the concept
of graph distance. The aim is to identify whether in using these techniques, significant
changes in logical connectivity or traffic distributions can be observed between large
groups of users communicating over a wide area data network. This data network
interconnects some 120, 000 users around Australia. For the purposes of this study, a
network management probe was attached to a physical link on the wide area network
backbone, and traffic statistics of all data traffic operating over the link were collected.
From this information a logical network of users communicating over the physical link
is constructed.

Communications between user groups (business domains) within the logical net-
work over any one day is represented as a directed graph. Edge direction indicates the
direction of traffic transmitted between two adjacent nodes (business domains) in the
network, with edge labels (also called edge-weight) indicating the amount of traffic
carried. A subsequent graph can then describe communications within the same net-
work for the following day. This second graph can be compared with the original graph,
using a measure of distance between the two graphs to indicate the degree of change
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occurring in the logical network. The more dissimilar the graphs, the greater the graph
distance value. By continuing network observations over subsequent days, the graph
distance scores provide a trend of the logical network’s relative dynamic behavior as it
evolves over time.

This problem becomes one of finding good graph distance measures that are sensi-
tive to abnormal change events but insensitive to typical variations in logical network
connectivity or traffic. In addition to graph distance measures, it is also necessary to
readily identify where in a network the abnormal change has occurred. This requires
the location of regions in the graph that contributed most to the measured change.

The chapter is structured in the following way. Section 4.2 describes how a telecom-
munication system can be represented as a graph and provides details of how the network
traffic was sampled. Graph distance measures suited to changes in logical network con-
nectivity are assessed in Section 4.3, with Section 4.4 examining distance measures
aimed at variations in traffic. Measures exploiting graph structures are discussed in
Section 4.5, and Section 4.6 applies localization approaches to a particular abnormal
event in the sampled network traffic. Concluding remarks are presented in Section 4.7.

4.2 Representing the Communications Network as a Graph

Communications over the data network are represented as graphs. Network nodes (clus-
ters of users in common business domains or individual servers and clients) are repre-
sented by vertices in the graph, and edges represent logical links (data transmissions or
information transfers) between the nodes. The graph g = (V , E, α, β) representing a
communications network is vertex-labeled with labeling function α : V → LV assign-
ing vertex identifiers from LV to individual vertices, such that α(u) �= α(v), ∀u, v ∈
V, u �= v, since the graph possesses a unique vertex-labeling (see Chapter 3). Edges
are also labeled to indicate the amount of traffic observed over a finite time interval,
with labeling function β : E → R

+. The label of an edge is also called an edge-weight,
and edge labeling function β is sometimes referred to as an edge-weighting function.
The number of vertices in a graph g = (V , E, α, β) is denoted by |V |, and likewise,
the number of edges is denoted by |E|.

A sample of real network traffic was chosen for the purpose of verifying whether
such traffic exhibits periods of uncharacteristic behavior, and whether the graph dis-
tance measures being considered can highlight such differences. For this investigation,
sample traffic statistics were collected from the network management system of the
wide area data network. A traffic probe was installed on a single physical link in the
network and traffic parameters were logged over 24-hour periods in daily log files. A
traffic log file contains information on the logical originators and destinations of traffic
(derived from network address information) and the volume of traffic transmitted be-
tween OD pairs. To reduce the overall number of OD pairs in the data set, individual
users (network addresses) were clustered by the business domain they belonged to on
the data network. The aggregated logical flows of traffic between business domains ob-
served over this physical link in a day were then represented as a directed and labeled
graph. Vertex-weight identified the business domains of logical nodes communicating
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over the physical link with edge-weight denoting the total traffic transmitted between
corresponding OD pairs over a 24-hour period.

Successive log files collected over subsequent days produced a time series of cor-
responding directed and labeled graphs representing traffic flows between business
domains communicating over the physical link in the network. Log files were collected
continuously over the period 9 July 1999 to 24 December 1999. Weekends, public hol-
idays, and days for which probe data were unavailable were removed to produce a final
set of 102 log files representing the successive business days’ traffic. The graph distance
measures examined in this chapter produce a distance score indicating the dissimilarity
between two given graphs. Successive graphs derived from the 102 log files of the
network data set are compared using the various graph distance measures to produce
a set of distance scores representing the change experienced in the network from one
day to the next.

Operators in the network management center are interested in identifying the causes
of change in traffic volume over the physical link caused by changes in user behavior on
the network. Primarily, these effects are caused by the introduction of new applications
or services at a local user level, and changes in communities of interest or user groups
communicating over particular physical links. Detecting significant changes in logical
connectivity is useful in tracking changes in user groups, while logical traffic variations
between OD pairs assist with the identification of new applications or services consum-
ing large amounts of network capacity. Distance measures assessing change in topology
are required for measuring change in communities of interest between user groups, with
traffic-based distance measures required for measurements of change to logical traffic
distributions. When significant abnormal change is observed in either connectivity or
traffic patterns over successive business days, operators then require identification of the
regions within the logical network that contribute most to the overall change observed.

4.3 Graph Topology-Based Distance Measures

Graph distance provides a measure of the difference (or similarity) between graphs.
The edit distance, as introduced in Chapter 3, can be used to measure the distance of
two given graphs. In this section we introduce a number of additional graph distance
measures.

4.3.1 Using Maximum Common Subgraph

Graph distance measures using only graph element parameters, but no labels, provide
a measure of difference in graph topology. One such measure relies on the maximum
common subgraph (MCS). A distance metric has been defined based on the determina-
tion of the maximum common subgraph of two graphs g and g′ [30]:

d(g, g′) = 1 − |mcs(g, g′)|
max{|g|, |g′|} , (4.1)
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where mcs(g, g′) denotes the maximum common subgraph of g and g′, and |g| denotes
the number of vertices in the graph g. The number of edges can also be used as |g|, or
any other measure of problem size in the denominator of equation (4.1) [158, 182].
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Fig. 4.1. Maximum common subgraph distance (vertices).

In applying this maximum common subgraph distance measure to the network
data, subsequent days’ logical connectivity between business domains is represented as
a series of graphs that are successively compared using the distance metric. The MCS
measure produces results depicting the relative degree of change experienced. This is
shown in Figure 4.1, where |g| = |V |, and Figure 4.2, where |g| = |E|. In both plots
it is clear that there are three prominent events (occurring on days 22, 64, and 89).
The three events of greatest change are highlighted more using |g| = |E| as a measure
of graph size. This is useful because it is the changes in relationships between logical
nodes that are of particular interest to network operators. Verification that these peaks
do represent significant change is discussed later.
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Fig. 4.2. Maximum common subgraph distance (edges).
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4.3.2 Using Graph Edit Distance

Another graph distance measure suited to measuring changes in graph topology is
graph edit distance (see Chapter 3). Graph edit distance (ged) evaluates the sequence
of edit operations required to modify an input graph such that it becomes isomorphic
to some reference graph. This can include the possible insertion and deletion of edges
and vertices, in addition to edge label substitutions. Generally, ged algorithms assign
costs to each of the edit operations and use efficient tree search techniques to identify
the sequence of edit operations resulting in the lowest total edit cost [27, 131]. The
resultant lowest total edit cost is a measure of the distance between the two graphs.

In general, a unique sequence of edit operations does not exist due to the occurrence
of multiple possible vertex mappings. The ged algorithms are required to search for
the edit sequence that results in a minimum edit cost. However, in communications
performance monitoring, vertex-label value substitution is not a valid edit operation
because vertex labels reference unique physical or logical nodes within a network.
As a result, the combinatorial search reduces to the simple identification of elements
(vertices and edges) inserted or deleted from one graph g to produce the other graph
g′. The implementation requires linear time in the size of the problem, as described in
Chapter 3.

If the cost associated with the insertion or deletion of individual elements is one, and
edge-weight value substitution is not considered (i.e., we consider the topology only),
the edit sequence cost becomes the difference between the total number of elements in
both graphs and all graph elements in common.

Using the above cost function, let the graph g = (V , E, α, β) represent the
communication network’s connectivity observed over a single business day, and let
g′ = (V ′, E′, α′, β ′) describe the same network’s connectivity over a subsequent busi-
ness day. The graph edit distance d(g, g′) describing topological change experienced
by the network over successive days then becomes1

d(g, g′) = |V | + |V ′| − 2|V ∩ V ′| + |E| + |E′| − 2|E ∩ E′| . (4.2)

Clearly the edit distance, as a measure of topology change, increases with increasing
degree of change experienced by the network over successive time intervals. Edit dis-
tance d(g, g′) is bounded below by d(g, g′) = 0 when g and g′ are isomorphic (i.e.,
there is no change), and above by d(g, g′) = |V | + |V ′| + |E| + |E′| when g ∩ g′ = ∅,
the case in which the networks are completely different. Cost functions can also be
designed to place greater significance on the more important vertices or edges within
the graph representation of the network. It is interesting to note that this measure, ged, is
related to the previous maximum common subgraph distance metric given in equation
(4.1) in [20].

Results plotted in Figure 4.3 show that the edit distance produces peaks (indicat-
ing significant change) that correlate with the maximum common subgraph distance
measures, in addition to indicating further possible events of interest. Note that edit

1Note that equation (4.2) is a simplification of the formula derived in Lemma 3.6 because no
edge label substitutions are considered here.
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Fig. 4.3. Edit distance.

distance measures the absolute change between consecutive network observations in
the time series, while the MCS approach is relative. This absolute measure is useful in
the detection of large increases (or decreases) in graph size. Also, both the MCS and
edit distance plots indicate a reasonable amount of day-to-day dynamic logical network
behavior over this physical link.

The three prominent peaks occurring in the MCS and edit distance plots were
verified through the visual examination of the corresponding graphs using a graph
visualization tool. Comparison of graphs over successive days generally showed a large
degree of edge and vertex consistency. This is reasonable because one would expect
a fair degree of consistency in communications between business groups in a large
corporate data network. While consistency was evident, there were also typically many
changes to edges and vertices, indicating a dynamic nature in logical connectivity from
one day to the next. This shows up in the general day-to-day “background” change in
the three plots.

Fig. 4.4. Logical connectivity over physical link before change.
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Fig. 4.5. Logical connectivity over physical link after change.

In the transition from day 63 to day 64, a significant amount of change was measured
using both MCS and edit distance measures. To provide an example of the degree of
change measured, the logical connectivity between business domains on days 63 and 64
is shown in Figures 4.4 and 4.5 respectively. Note that all node positions are maintained
the same in both figures. There is clearly a significant change in connectivity, in the
lower right region of the graphs, between these two days. Such changes were not evident
in the comparison of other adjacent graphs in the time series with lower distance scores.
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Fig. 4.6. Distribution of edge presence in the series of graphs.

Figure 4.6 shows the distribution of edge occurrences in the time series of graphs
over the 102 days. From this figure, a large number of edges appear in a reasonably
small (≤ 10) number of graphs; these edges are the cause of the large amount of distance
variation. Also, there are quite a few edges that occur consistently in a large number of
the graphs; 99 graphs in the time series have approximately 100 edges in common. This
further explains the three significant events observed in the previous graph distance
plots, in which many of these 100 consistent edges were found missing from the graphs
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Fig. 4.7. Distribution of vertex presence in the series of graphs.

of those three particular days. The distribution of vertex presence in the series of graphs
is shown in Figure 4.7. Again there is a large number of dynamic vertices and also
many consistent vertices in the series. Almost 30 vertices occur in all graphs of the time
series. This shows a consistent group of business domains communicating daily.

4.4 Traffic-Based Distance Measures

Traffic loading in a network is a prime concern of network performance management,
so the ability to automatically detect abnormal change in traffic patterns is very useful.
The expression for graph edit distance given in equation (4.2) provides a measure of
difference between two graphs in terms of topological connectivity. Communications
traffic is represented in the graphs by edge-weight and can be incorporated into a ged
algorithm using an edge-weight substitution cost, although it is difficult to design a
suitable cost function that is sensitive to both topology changes and traffic variations.
One alternative is to quantize traffic into integer values and insert multiple edges into the
graph between adjacent vertices, with the number of edges corresponding to the integer
value of traffic. This effectively converts the problem into one of topology change.
However, this too presents problems in combining connectivity changes with traffic
variations because large fluctuations in edge-weight value have different implications
for communications than does the insertion or deletion of nodes in a network. In this
section we introduce two alternative measures based on difference in edge-weight values
and graph spectrum.

4.4.1 Differences in Edge-Weight Values

Measures of graph distance based on differences in edge-weight values for two graphs
g = (V , E, α, β) and g′ = (V ′, E′, α′, β ′) have been proposed [139]. Using this
distance measure it is possible to assess relative traffic variations by summing the
differences in edge-weight value over all edges in the two graphs. The distance measure
is defined as
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d(g, g′) =
∑

u,v∈V

|β(u, v) − β ′(u, v)|
max{β(u, v), β ′(u, v)} . (4.3)

Other expressions similar to equation (4.3) appear in [139, 174].
Dividing d(g, g′) in equation (4.3) by the total number of edges in the double

summation (i.e., by |E∪E′|) provides a normalized relative measure of traffic variation
over the entire network. All edges in both graphs can be included by substituting an
edge-weight value of zero for edges that exist only in one of the two graphs g and g′. As
a result, this distance measure includes the effects of topological change by including
edges that have been inserted or deleted. It is also possible to include only those edges
belonging to the maximum common subgraph of g and g′, thus enabling the detection
of traffic variations between users maintaining communications over two adjacent time
intervals.
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Fig. 4.8. Edge-weight distance.
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Fig. 4.9. Edge-weight distance (MCS).
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Figure 4.8 shows the comparative plot of edge-weight distance derived from the
data network observations represented as a time series of graphs. Three of the peaks,
indicating increased network change, correlate with previous plots showing changes in
connectivity. Clearly these logical connectivity changes involve relatively large amounts
of traffic, as illustrated in Figure 4.8. Two peaks at days 48 and 53 indicate large changes
in traffic distribution, between business domains (vertices), without greatly affecting
overall connectivity. This becomes apparent by comparing Figure 4.8 with say Figure
4.3 for days 48 and 53. Figure 4.9 plots the same edge-weight distance but in this case
only with edges belonging to the maximum common subgraph between the graphs being
compared. This plot is useful because it shows that there was a reasonable amount of
change in traffic on five of the days independent of any changes in logical connectivity.
By considering together the plots of connectivity (Figures 4.1–4.3), total traffic (Figure
4.8), and traffic variations in the maximum common subgraph (Figure 4.9), it is possible
to make judgements regarding the type of network changes occurring.

4.4.2 Analysis of Graph Spectra

Another approach to the measurement of change in a time series of graphs is through
the analysis of graph spectra. Algebraic aspects of spectral graph theory are useful in
the analysis of graphs [153,174]. There are several ways of associating matrix spectra
(sets of all eigenvalues) with a given weighted graph g. The most obvious way is to
investigate the structure of a graph g by analyzing the spectrum of its adjacency matrix
Ag . Note that Ag is not a symmetric matrix for directed graphs because weight may
not be a symmetric function.

For a given ordering of the set of n vertices V in a graph g = (V , E, α, β), one can
investigate the spectrum σ(g) = {λ1, λ2, . . . , λn}, where λi are the eigenvalues of the
weighted adjacency matrix Ag . Obviously, σ(g) does not depend on the ordering of V .

A different approach to graph spectra for undirected graphs [46] investigates the
eigenvalues of the Laplace matrix Lg = Dg −Ag , where the degree matrix Dg of graph
g is defined as Dg = diag{∑v∈V β(u, v) | u ∈ Vg}. Note that in the unweighted case,
diagonal elements of Dg are simply the vertex degrees of indexed vertices V . In the
case of directed graphs, the Laplacian is defined as Lg = Dg − (Ag + AT

g ) (in order to
ensure that σ(Lg) ⊆ {0} ∪ R

+). Laplacian spectra of graphs have many applications
in graph partitions, isoperimetric problems, semidefinite programming, random walks
on graphs, and infinite graphs [46].

The relationship between graph spectra and graph distance measures can be es-
tablished using an eigenvalue interpretation: given two weighted graphs g and g′ with
respective spectra σ(Ag) = {λ1, λ2, . . . , λn1} and σ(Ag′) = {µ1, µ2, . . . , µn2}, the k

largest positive eigenvalues are incorporated into the graph distance measure [153] as

d(g, g′) =
√√√√ ∑k

i=1(λi − µi)2

min
{∑k

i=1 λ2
i ,
∑k

j=1 µ2
j

} , (4.4)
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Fig. 4.10. Spectral distance (connectivity and traffic).

where k is an arbitrary summation limit. Empirical studies in pattern recognition and
image analysis show that k ≈ 20 is a good choice [153, 158]. Notice that similar
approaches to distance measures can be applied to the case of Laplacian spectra.

Figure 4.10 shows the outcomes of connectivity and traffic (weighted graph) spectral
distances respectively, applied to the time series of graphs derived from the network
data. In spite of the less-intuitive interpretation of these graph distance measures, there
exists reasonable correlation with the peaks of other distance measures and far less
sensitivity to daily variations using this approach. However, at this time it is not clear
why the traffic peak at day 80 is so prominent in the lower part of Figure 4.10.

4.5 Measures Using Graph Structure

Instead of measuring change by concentrating on network elements, as in the cases
for graph edit distance and maximum common subgraph, better indicators of abnormal
change could perhaps be obtained by basing comparisons on specific structures or graph
properties within the graphs. Such measures are likely to be less sensitive to minor
variations of individual elements but highlight network changes of greater significance.
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One possible approach is to use various path sets for the definition of new graph
measures. For specified vertices (network terminals) u, v ∈ Vg , one can consider the
family P

g
k (u, v) of all paths (in g) of length k connecting u and v. This can be generalized

to the collection P
g
k of all k-long paths in graph g (i.e., the distance-k path set of g).

One could also replace the k-length paths with paths containing the minimal number of
edges, or with shortest paths satisfying certain vertex- and/or edge-weight minimality.
Let P g(u, v) = ⋃

k≥2 P
g
k (u, v), and similarly, by P g = ⋃

k≥2 P
g
k denote the sets of all

paths of length greater than or equal to 2 joining u and v, or joining any two vertices,
respectively.

In communication networks, it is common for information to be passed from a
source node to a destination node along a path via intermediate nodes. Therefore, if an
edge is deleted from a graph, and many paths contain this edge, it will have a greater
impact on communications than an edge that affects only one path. It therefore seems
reasonable that in the context of communications, graph distance measures based on
the number of paths containing a specific edge(s) should be more sensitive to network
changes of interest.

For a chosen (nonempty) subset of edges Ê ⊆ E, a new graph g′(Ê) = (V ′, E′, α′,
β ′) can be generated from g = (V , E, α, β) such that only those edges in g are retained
that are within paths p in P g(·, ·) (or in P g) containing edges in Ê. The graph g(Ê) is
constructed using the following conditions:

1. V ′ = V .
2. An edge e is in E′ if and only if there exists a path p ∈ P

g
k such that e ∈ p and p

contains at least one edge in Ê.
3. α′ = α.
4. The edge-weight values in Gg denote the number of paths in P g containing that

edge and at least one edge in Ê.

Edge attributes in g(Ê) provide an indication of edge significance because edges con-
tained within many paths have high associated edge-weight value and are likely to affect
communications connectivity between more vertices.

Graphs g′
1(·) and g′

2(·) can be constructed from graphs g1 and g2 respectively and
compared using equation (4.3) as the basis for measuring graph distance. There are
some obvious choices of respective sets Ê as subsets of E1 and E2; either Ê = E1 and
Ê = E2 respectively, or Ê can consist of edges belonging to mcs(g1, g2). Furthermore,
Ê can comprise edges of the core backbone of the communication network or important
logical links. In the case that there exist disjoint edge sets of g1 and g2, both graphs
are treated as completely different. The resulting distance measure should be more
sensitive to change that potentially impacts a greater number of nodes or users within
the network. Analysis using the sampled network traffic showed no improvement in
clearly identifying further change events over the previous methods. However, this
approach is worth being investigated further due to the potential advantages it offers.
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4.5.1 Graphs Denoting 2-hop Distance

A variant of the above path-based approach is to consider a graph generated from
paths of length two only; this shows the 2-hop connectedness of the given graph. As a
result, adjacent vertices in this derived graph denote vertices in the original graph that
are connected via a common neighbor or neighbors. Any change to individual edges
of these new graphs (describing 2-hop connectedness) indicates significantly greater
impact on communications topology than change in individual edges associated with
the original graphs.

For a given graph g = (V , E, α, β), the graph g2-hop is generated as g′(Ê) using
either P

g
2 (u, v) or P

g
2 for path sets P , and E for Ê. Furthermore, parallel reductions are

performed on all edges of g2-hop, and the new graph is unweighted. If graphs g1,2-hop and
g2,2-hop are constructed from two given graphs g1 and g2 respectively, and compared
using equations (4.1) or (4.2), the resulting graph distance will be more sensitive to
the loss (or gain) of connectivity through common neighbors. The loss (or gain) of
individual edges within the given graphs is likely to have less effect on the resulting
graph distance measure. This approach attempts to filter minor variations that would
otherwise contribute unwanted variance to graph distance measurements.
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Fig. 4.11. Edit distance using 2-hop connectedness.

The 2-hop edit distance has been applied to the time series of network data, produc-
ing a result showing correlation of significant events with previous distance measures
(Figure 4.11). In addition, this distance measure highlights a number of secondary level
events (in terms of change magnitude) not obvious with earlier results. However, clear
evidence demonstrating the significance of these events has not yet been obtained.

4.6 Identifying Regions of Change

The various graph distance measures previously described enable detection of relative
change as a network, represented by a series of graphs, evolves over time. While global
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similarity measures such as these are useful in determining when abnormal events
have occurred that might warrant closer examination, these measures do not provide
information describing where in the network greatest change has occurred. For this
latter problem an indication of change distribution within the network is required.

4.6.1 Symmetric Difference

One approach to locating regions in the network most affected by topology change is
to rank vertices in the order they experienced insertions or deletions of incident edges
during the transition from one time interval to the next. Consider two graphs g and g′
representing network communications over two successive time intervals, and assume
that the graph distance betweeng andg′ is deemed to be significant. Of particular interest
is the distribution of the change during the transition from g to g′. The following method
ranks all vertices V ∪ V ′ within the two graphs in ascending order of the number of
network topology change events experienced by individual vertices.

Differences between graphs g and g′ can be described by a change matrix C = [cuv]
that indicates where edges have been deleted from g or inserted into g′. This matrix
C has a row and column for every vertex contained within the two graphs. An edge
deleted or inserted in transition from one graph to the other is represented in the matrix
by a corresponding row column entry cuv = 1. Indices u and v denote the respective
originator and destination vertices of the deleted or inserted directed edge. Any edges
(u, v) that remain incident to the same pair of vertices in both g and g′ result in the
corresponding entry cuv = 0, indicating that no change has occurred. All other entries
in C equal 0. This matrix C essentially describes the symmetric difference between
graphs g and g′, where the symmetric difference g�g′ is the graph containing vertices
V ∪ V ′ whose edges appear in exactly one of either graph g or g′ [157, 188].

Fig. 4.12. Local change experienced by vertices.

Respective row and column sums of C indicate the amount of change experienced
locally by the corresponding vertex. The amount of change experienced by each vertex
can be plotted in descending order to show the distribution of local change occurring in
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the transition from g to g′. This is illustrated in Figure 4.12 derived from the network
data for change occurring between days 63 and 64. Vertices contributing most to the
network change can be readily identified from the figure.

This approach could be modified to identify those vertices experiencing greatest
variations in traffic along incident edges by substituting the entries cuv in C with relative
differences in edge-weight value between g and g′, for example

cuv = |β(u, v) − β ′(u, v)|
max{β(u, v), β ′(u, v)} ,

where (u, v) ∈ E ∪ E′.

4.6.2 Vertex Neighborhoods

An alternative to the graph-symmetric difference approach just described is to measure
graph distances between corresponding vertex neighborhood subgraphs. This technique
will produce a vector of graph distance measures describing the differences between
two graphs g1 and g2. Each vector coordinate indicates the distance between g1 and
g2 from the perspective of an individual vertex and its adjacent vertices, essentially
providing a measure of change for a local region. The neighborhood subgraph of a
vertex u in g1 = (V1, E1, α1, β1) is the subgraph g′

1(u) = (V ′
1(u), E′

1(u), α′
1, β

′
1),

where E′
1(u) = E1 ∩ (N1[u] × N1[u]) is the set of incident edges between adjacent

vertices in N1[u]. Vertex- and edge-weight functions in g′
1(u) are α1 and β1, restricted

to N1[u] and E1(u) respectively.
Successive graphs in the time series of networks can be compared using this neigh-

borhood approach with the corresponding neighborhoods’ graph distances calculated
using equations (4.1), (4.2), (4.3), or (4.4). A vertex that exists only in one of the two
graphs g1 and g2 has its graph neighborhood compared with the empty neighborhood,
where N [u] = E(u) = ∅. The resulting neighborhood graph distances are stored in a
distance vector d, defined as

d = [d(g′
1(u), g′

2(u))] ,

for all u ∈ (V1 ∪ V2), and where d(·, ·) is a particular graph distance measure. Those
coordinates contained within the neighborhood distance vector d with higher subgraph
distance measures correspond to the vertices u that experienced greatest change in their
respective local region as the network transitioned from one time interval to the next.
The distance vector coordinates can be ordered to rank vertices by the degree to which
they experienced local change.

The vertex neighborhoods defined above describe single-hop (1-hop) neighbor-
hoods that include only the adjacent vertices to a given vertex u. It may be useful to
consider neighborhoods of 2-hops, whereby vertices adjacent to those in N [u] are also
included in the neighborhood subgraph (together with incident edges). Of course this
can be extended to the general case for k-hops.
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4.7 Conclusions

This chapter has examined several techniques that can be used to measure the degree
of change occurring within a data network as it evolves over time. Communication
transactions collected by a network management system between logical network nodes
occurring over periodic time intervals are represented as a series of weighted graphs.
Graph distance measures are used to assess the changes in communications between user
groups (nodes), over successive time intervals, to focus a network operator’s attention
on the time and regions within the logical network where abnormal events occur.

Identifying what is a “significant event” or what is the network’s “normal” op-
erational behavior is difficult. However, drawing attention to abnormal events, when
compared with previous network observations, appears feasible and potentially very
useful. It relieves network operators from the need to continually monitor networks if
connectivity and traffic patterns can be shown to be similar to the activity over previous
time periods. Alternatively, if traffic volumes are seen to abruptly increase over the
physical link, network operators are able to more readily identify the individual user
groups contributing to this increase in aggregate traffic.

Both maximum common subgraph and edit distance measures identified significant
changes in logical connectivity using relative and absolute measures of change respec-
tively. The more significant events were verified by comparing graph visualizations of
days around the events and on other “normal” days. The edge-weight distance measure
highlighted large variations in logical traffic distributions on two days in particular that
were not affected by large changes in connectivity. These results correlate with dis-
tance measures based on analysis of the graph spectra. The use of vertex neighborhood
distance vectors and graph-symmetric difference assists with identifying those vertices
contributing most to network change.
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Median Graphs for Abnormal Change Detection

5.1 Introduction

In Chapter 4, abnormal network behavior was detected based on the distance of a pair
of graphs. In this chapter we derive more general procedures that use more than just
two graphs. Considering a larger number of graphs, it can be expected that abnormal
event detection procedures will exhibit more stability and robustness against random
fluctuations and noise in the underlying network.

The procedures derived in this chapter will be based on the median of a set, or a
sequence of graphs as introduced in Chapter 4. Intuitively speaking, the median of a
sequence of graphs S = (g1, . . . , gn) is a graph that represents the given gi’s in the
best possible manner. Using any of the graph distance measures introduced in Chapter
4, the median of a sequence of graphs S is defined as a graph that minimizes the sum
of all edit distances to all members of sequence S. Formally, let U be the family of all
graphs that can be constructed using labels from LV for vertices and real numbers for
edges. Then g is a median graph of the sequence S = (g1, . . . , gn) if

g = arg min
g∈U

n∑
i=1

d(g, gi) . (5.1)

If we constrain g to be a member of S then the graph that satisfies equation (5.1) is
called the set median of S. In a general context where node labels are not unique a set
median is usually easier to compute than a median graph. However, in the context of
the present chapter, where we deal with uniquely labeled graphs, we will exclusively
focus on median graph computation and its application to abnormal change detection.
It is to be noted that median graphs need not be unique.

Here we want to point out that the term “median graph” is used because the median
x of an ordered sequence of real numbers (x1, . . . , xn), which is defined as

x = median(x1, . . . , xn) =
{

xn/2, if n is even ,

x�n/2�, if n is odd ,
(5.2)
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has a similar property to the median of a sequence of graphs: it minimizes the sum
of distances to all elements of the given sequence, i.e., it minimizes the expression∑n

i=1 |x − xi |.
In Chapter 3, an efficient procedure for median graph computation was introduced.

This procedure uses the edit distance of graphs and assumes particular costs of the
underlying edit operations. Each of the edit operations node deletion, node insertion,
edge deletion, edge insertion, and edge substitution has a cost equal to one. Node label
substitution is not admissible and has infinite cost. We will use the notation d1(g1, g2)

to refer to this kind of graph edit distance. In Section 5.2 we introduce a second graph
edit distance, called d2(d1, g2), and describe a procedure for median graph computa-
tion based on d2(g1, g2). The cost function underlying d2(g1, g2) is more general than
the cost function underlying d1(g1, g2) in that it takes differences in edge weight into
account. In Section 5.3 we derive procedures for abnormal event detection in telecom-
munication networks using median graphs. Experimental results are reported in Section
5.4 and conclusions are drawn in Section 5.5.

5.2 Median Graph for the Generalized Graph Distance Measure d2

In this section we introduce a graph edit distance measure, called d2(g1, g2), which also
takes edge weight into account.We focus our attention on graphs with unique node labels
and drop the node labeling function α. Let g1 = (V1, E1, β1) and g2 = (V2, E2, β2)

denote two graphs. Under measure d2 we seek the minimum cost sequence of edit
operations that transform graph g1 into g2. Each vertex insertion and deletion has a
cost c > 0. Vertex label substitutions are not admissible and have infinite cost. The
cost of changing weight β1(e) on edge e ∈ E1 into β2(e) on e ∈ E2 is defined as
|β1(e) − β2(e)|. To simplify our notation we let our graphs be completely connected
(i.e., there is an edge e ∈ E1 between any two vertices in g1 and an edge e ∈ E2 between
any two vertices in g2) and assign a weight equal to zero to edge e ∈ E1 (e ∈ E2) if this
edge does not exist in g1(g2). Hence substitution of edge weights, edge deletions, and
edge insertions can be treated uniformly. Note that the deletion of an edge e ∈ E1 with
weight β1(e) has a cost equal to β1(e). Similarly, the insertion of an edge e ∈ E2 has
the weight of that edge β2(e) assigned as its cost. Consquently, the graph edit distance
under this cost function becomes

d2(g1, g2) = c[|V1| + |V2| − 2|V1 ∩ V2|] +
∑

e∈E1∩E2

|β1(e) − β2(e)|

+
∑

e∈E1\(E1∩E2)

β1(e) +
∑

e∈E2\(E1∩E2)

β2(e) .

The constant c is a parameter that allows us to weight the importance of a node
deletion or insertion relative to the weight changes on the edges.

We start from S = (g1, . . . , gn), g = (V , E, β) with V = ⋃n
i=1 Vi and E =⋃n

i=1 Ei , and let γ (u) be the same as in Chapter 3, i.e., γ (u) represents the number of
occurrences of node u in sequence S.
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Let graph ĝ = (V̂ , Ê, β̂) be defined as follows:

V̂ = {u | u ∈ V and γ (u) > n/2} ,

Ê = {(u, v) | u, v ∈ V̂ } ,

β̂(u, v) = median{βi(u, v) | i = 1, . . . , n} .

Theorem 5.1. Graph ĝ = (V̂ , Ê, β̂) is a median of set S under graph distance measure
d2.

Proof. Similarly to the proof of Lemma 3.7 we observe that the set of nodes potentially
included in V̂ is bounded from above and below by

⋃n
i=1 Vi and ∅, respectively. The

quantity to be minimized is

� = c

[
n|V̂ | +

n∑
i=1

|Vi | − 2
n∑

i=1

|V̂ ∩ Vi |
]

+
∑

(u,v)∈E

∑n

i=1
|β̂(u, v) − βi(u, v)| ,

which is equivalent to minimizing δnodes + δedges, where

δnodes = c

[
n|V̂ | − 2

n∑
i=1

|V̂ ∩ Vi |
]

and

δedges =
∑

(u,v)∈E

∑n

i=1
|β̂(u, v) − βi(u, v)| .

Clearly, δnodes is minimized by the same procedure used in Lemma 3.7, i.e., we
include a node u ∈ V in V̂ if and only if γ (u) > n/2. For the minimization
of δedges we use the property of the median of an ordered sequence of real num-
bers cited in Section 5.1. That is, δedges is minimized by assigning to each edge
(u, v) ∈ Ê the median of the weights of the edge (u, v) in E1, . . . , En. Formally,
β̂(u, v) = median(βi1(u, v), . . . , βin(u, v)), where βi1(u, v), . . . , βin(u, v) is the or-
dered sequence of β1(u, v), . . . , βn(u, v).

Similarly to Lemma 3.7, the values of δnodes and δedges are not independent of each
other, because the exclusion of a node u in V̂ implies the exclusion of all edges (u, v)

and (v, u) in Ê, which means β̂(u, v) = 0 or β̂(v, u) = 0 for those edges. We observe
that median(βi(u, v) | i = 1, . . . , n) = 0 and median(βi(v, u) | i = 1, . . . , n) = 0
if γ (u) � n/2 or γ (v) � n/2. Hence none of the edges incident to u will ever be
a candidate for inclusion in Ê during the minimization of δedges. This concludes the
proof.

Comparing the median graph construction procedure described in Lemma 3.7 with
the one introduced in this chapter, we notice that the former is a special case of the
latter, constraining edge weights to assume only binary values. Edge weight zero (or
one) indicates the absence (or presence) of an edge. Including an edge (u, v) in the
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Fig. 5.1. Three graphs (g1, g2, g3).

median graph g because it occurs in more than n/2 of the given graphs is equivalent to
labeling that edge in ĝ with the median of the weights assigned to it in the given graphs.

The median of a set of numbers according to equation (5.2) is unique. Hence in con-
structing a median graph under graph distance measure d2, there will be no ambiguity
in edge weight. But inclusion of a node in the median graph is in general not unique.

We conclude this section with an example of median graph under graph distance d2.
Three different graphs g1, g2, and g3 are shown in Figure 5.1. Their median is unique
and is displayed in Figure 5.2. Moreover, we observe that � = c + 14.

ĝ: 1 2

3

4

1

1 3

Fig. 5.2. The median of (g1, g2, g3) in Figure 5.1 using d2.

5.3 Median Graphs and Abnormal Change Detection in Data
Networks

In Chapter 4 several graph distance measures are applied to detect abnormal change in
telecommunication networks. However, these measures are applied only to consecutive
graphs in a time series of graphs g1, . . . , gn. That is, values of d(gi−1, gi) are com-
puted for i = 2, . . . , n, and the change from time i − 1 to i is classified as abnormal
if d(gi−1, gi) is larger than a certain threshold. This approach has shown good results.
Nevertheless, it can be argued that measuring network change only between consecutive
points of time is potentially vulnerable to noise, i.e., the random appearance or disap-
pearance of some nodes together with some random fluctuation of the edge weights
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may lead to a graph distance larger than the chosen threshold, though these changes are
not really significant.

One expects that a more robust change detection procedure would be obtained
through the use of median graphs. In statistical signal processing the median filter is
widely used for removing impulsive noise. A median filter is computed by sliding a
window of length L over data values in a time series. At each step the output to this
process is the median of values within the window. This process is also termed the
running median [3]. In the following we discuss four different approaches to abnormal
change detection that utilize median filters. All these approaches assume that a time
series of graphs (g1, . . . , gn, gn+1, . . .) is given. The median graph of a subsequence
of these graphs can be computed using either graph distance measure d1 or d2.

5.3.1 Median vs. Single Graph, Adjacent in Time (msa)

Given the time series of graphs, we compute the median graph in a window of length L,
where L is a parameter that is to be specified by the user, depending on the underlying
application. Let g̃n be the median of the sequence (gn−L+1, . . . , gn). Then d(g̃n, gn+1)

can be used to measure the abnormal network change. We classify the change between
gn and gn+1 as abnormal if d(g̃n, gn+1) is larger than some threshold.

Increased robustness can be expected if we take the average deviation ϕ of graphs
(gn−L+1, . . . , gn) into account. We compute

ϕ = 1

L

n∑
i=n−L+1

d(g̃n, gi) , (5.3)

and classify the change between gn and gn+1 as abnormal if

d(g̃n, gn+1) � αϕ , (5.4)

where α is a parameter that needs to be determined from examples of normal and ab-
normal network change. Note that the median g̃n is by definition a graph that minimizes
ϕ in equation (5.3).

Earlier in this chapter it was pointed out that g̃n is not necessarily unique. If sev-
eral instances g̃n1 , . . . , g̃nt of g̃n exist, one can apply equations (5.3) and (5.4) to
all of them. This will result in a series of values ϕ1, . . . , ϕt and a series of values
d(g̃n1 , gn+1), . . . , d(g̃nt , gn+1). Under a conservative scheme, an abnormal change will
be reported if

d(g̃n1 , gn+1) � αϕ1 ∧ · · · ∧ d(g̃nt , gn+1) � αϕt .

By contrast, a more sensitive change detector is obtained if a change is reported as soon
as there exists at least one i for which

d(g̃ni
, gn+1) � αϕi, 1 � i � t .
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5.3.2 Median vs. Median Graph, Adjacent in Time (mma)

Here we compute two median graphs g̃1 and g̃2 in windows of lengths L1 and L2,
respectively, i.e., g̃1 is the median of the sequence (gn−L1+1, . . . , gn) and g̃2 is the
median of the sequence (gn+1, . . . , gn+L2). We measure now the abnormal change
between time n and n + 1 by means of d(g̃1, g̃2). That is, we compute ϕ1 and ϕ2 for
each of the two windows using equation (5.3) and classify the change from gn to gn+1
as abnormal if

d(g̃1, g̃2) � α

[
L1ϕ1 + L2ϕ2

L1 + L2

]
.

Measure mma can be expected to be even more robust against noise and outliers
than measure msa. If the considered median graphs are not unique, similar techniques
(discussed for measure msa) can be applied.

5.3.3 Median vs. Single Graph, Distant in Time (msd)

If network changes are evolving rather slowly over time, it may be better not to compare
two consecutive graphs gn and gn+1 with each other, but gn and gn+l , where l > 1.
Instead of msa, as proposed above, we use d(g̃n, gn+l ) as a measure of change between
gn and gn+l , where l is a parameter defined by the user and depends on the underlying
application.

5.3.4 Median vs. Median Graph, Distant in Time (mmd)

This measure is a combination of the measures mma and msd. We use g̃1 as defined
for mma, and let g̃2 = median(gn+l+1, . . . , gn+l+L2). Then d(g̃1, g̃2) can serve as a
measure of network change between time n and n + l + 1. Obviously, equations (5.3)
and (5.4) can be adapted to msd and mmd similarly to the way they are adapted to mma.

5.4 Experimental Results

The network change detection approaches discussed in Section 5.3 have been applied
to the same data as in Chapter 4. A sliding window was applied to the time series of
graphs to implement a median filter. Measures of graph distance were then computed at
each point in the time series, according to the approaches outlined in Section 5.3. This
results in a new time series of numbers that represents the extent of network change
occurring at any point in the time series. Experimental results were obtained for each
technique described in Section 5.3 using both d1 and d2. For comparative purposes,
we also show results obtained using the application of d1 and d2 to consecutive graphs
in the time series. The selection of suitable values for L and l were derived through
experimentation. The identification of points in the new time series of numbers where
significant network change occurred was computed using equations (5.3) and (5.4).
These points of change are highlighted in the figures by an asterisk (∗).
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Normalization of edge weight was applied to the computation of distance measure
d2 to prevent edge weight dominating the distance measure. Normalization consisted
in dividing the absolute edge weight differences by the maximum of the two weights
from each graph. This approach required less tuning than the application of a single
scalar multiplier to the vertex sum.

5.4.1 Edit Distance and Single Graph vs. Single Graph Adjacent in Time (ssa)

Figure 5.31 shows results for edit distance applied to consecutive graphs of the time
series for the topology-only measure d1. This measure produces three significant peaks
(on days 25, 65, and 90). The figure also shows several secondary peaks that may
also indicate events of potential interest. Also, there is significant minor fluctuation
throughout the whole data set appearing as background noise.
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Fig. 5.3. Consecutive days using measure d1.

Figure 5.4 shows the results for distance measure d2 being applied to consecutive
graphs in the time series. While this measure considers both topology and traffic, it
does not appear to provide any additional indicators of change additional to those
found using the topology only measure. The main difference with this measure is that
it has increased the amplitude of the first two peaks so that they now appear as major
peaks. This suggests that these peaks were a result of network change consisting of
large change in edge weights.

The findings for this technique indicate that the application of measures to consec-
utive graphs in a time series is most suited for detecting daily fluctuations in network
behavior. This is especially useful for identifying outliers in a time series of graphs.

1Figure 5.3 is identical to Figure 4.3 but is shown here again for easier comparison.
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Fig. 5.4. Consecutive days using measure d2.

5.4.2 Edit Distance and Median Graph vs. Single Graph Adjacent in Time
(msa)

The results computed formsa used a median graph constructed from L = 5 consecutive
graphs with α = 2 used to compute the threshold of significant network change. Figures
5.5 and 5.6 show msa results for topology and topology plus traffic, respectively.
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Fig. 5.5. msa using measure d1.

In Figure 5.5 there are now three additional major peaks identified on days 8, 12,
and 32, compared to those observed in ssa. The peaks occurring on days 8 and 12
have been accentuated using msa. This method also shows that there was significant
change on days 6, 7, 8, 12, 21, 22, 23, 32, 49, 56, 62, 64, 65, 86, 88, and 90 based on
the threshold using α = 2. Raising the threshold (i.e., α = 3) results in a reduction in
the number of days on which significant change was detected to three. Here significant
change occurred on days 56, 65, and 90. Interestingly enough, day 56 corresponded
to a minor peak, yet has been deemed significant based on the deviations observed
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within the preceding median graph window. Finally, from Figure 5.5 it is evident that
the network is undergoing a gradual transition from considerable daily network change
to less daily change between days one through 60.
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Fig. 5.6. msa using measure d2.

The results presented in Figure 5.6 show the effect of introducing edge weight.While
the peaks here occur at the same time as the unweighted experiment, their amplitudes
do differ somewhat. The amplitude of peaks on days 22, 65, and 90 have been reduced,
relative to the two peaks at the start of the time series. This suggests that these changes
are more influenced by changes in topology. The number of significant events detected
is noticeably smaller for the same value α. Significant change was detected on four
occasions: days 21, 56, 65, and 90. The inclusion of edge weight has resulted in an
increase in average deviation within the median graph window, which is the result of a
large traffic variation on edges. This had the overall effect of increasing the threshold
for detection of significant change.

This method is particularly useful for detection of significant events with improved
robustness to noise. Increasing the length of the median graph window results in a
greater smoothing effect.

5.4.3 Edit Distance and Median Graph vs. Median Graph Adjacent in Time
(mma)

The mma procedure computes an edit distance between two adjacent median graphs in
the time series. In this experiment a median graph window length of L1 = L2 = 5
was used. There is no reason why the window lengths must be equal for both median
graphs. A value of α = 2 was used.

Results obtained using d1 are shown in Figure 5.7. In this figure there are only
two major peaks, one occurring at the start of the time series and around day 65.
Significant change was detected around day 7 and on days 12 and 46. Surprisingly,
significant change was not detected around day 65. This is most likely due to the
increased smoothing effect, which would have reduced the effect of the large outlier
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Fig. 5.7. mma using measure d1.

occurring on day 65. Significant change is, however, detected on day 65 with a value
of α that is below 1.8. The mma procedure improves the observation of network change
decreasing slowly between days 1 through 60.
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Fig. 5.8. mma using measure d2.

When distance measure d2 is applied to the mma procedure the results shown in
Figure 5.8 are obtained. Here the results are very similar to those attained using measure
d1. The main point to note is that there are no points identifed as exhibiting significant
change with a value of α = 2. This again indicates that inclusion of edge weight has
increased the average deviation within the median graph window. The value of α must
be reduced below 1.5 to get the same results as those of measure d1.

The use of the mma procedure seems particularly useful for providing an additional
smoothing effect that eliminates the effects caused by large outliers. This makes it more
robust to noise than that of msa.
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5.4.4 Edit Distance and Median Graph vs. Single Graph Distant in Time (msd)

The experiment involving the msd procedure used a median graph window of length
L = 5 with an offset of l = 10 graphs between the median graph and the second graph
used in the distance computation. Values of α = 3 for d1 and α = 2 for d2 were used in
the detection of significant change. The larger value of α for d1 was required to reduce
an unusually large number of significant events being detected with α = 2. Figures 5.9
and 5.10 only have outputs at points relating to the graph that is distant in time. Thus
the starting point of a trace is dependent on both the size L of the median graph window
and the offset period l between graphs.
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Fig. 5.9. msd using measure d1.

Figure 5.9 shows the results achieved for measure d1. This figure shows three major
peaks on days 23, 65, and 90. The main point of interest in this result is the cluster
of indicators of significant change between days 64 and 74. This suggests that there
was a step change in network behavior that took place on day 64. This characteristic
could not clearly be observed using ssa, msa, or mma. It is also important to note
that the indicators of significant change were based on a threshold of three times the
average deviation occurring within the median graph window, indicating a large change
in network behavior.

Figure 5.10 shows the results achieved for measure d2. Again there was quite a
degree of similarity with the results achieved using measure d1. The main difference
was the relative increase in the peak occurring on day 90.

While the msd procedure would be better suited to a data set exhibiting gradual
change, it was crucial in highlighting a step change in network behavior.

5.4.5 Edit Distance and Median Graph vs. Median Graph Distant in Time
(mmd)

Median graph windows of length L1 = L2 = 5 were used in the mmd procedure
with an offset of l = 10 graphs between the two median graphs used in the distance
computation. A value of α = 3 was used for d1 and α = 2 for d2.
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Fig. 5.10. msd using measure d2.

Fig. 5.11. mmd using measure d1.

The results for mmd can be seen in Figures 5.11 and 5.12 using measures d1 and d2,
respectively. The two figures are very similar to one another with peaks and significant
change detected in the same periods. Compared with the msd results themmd procedure
provides additional smoothing, giving greater robustness to noise and large outliers.
This can be seen by the relative fall in amplitude of the peak on day 65 and the near
elimination of the peak on day 90. Like the msd procedure, mmd is also capable of
showing the step change in the network behavior commencing on day 64.

5.5 Conclusions

In this chapter the use of the median graph for detecting abnormal change in data
networks is proposed. The median of a sequence of graphs S is a graph that minimizes
the average edit distance from all members in S. Thus the median can be regarded as the
best single representative of a sequence of graphs. Abnormal change in a network can
be detected by computing the median of a time series of graphs over a window of a given
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Fig. 5.12. mmd using measure d2.

span, and comparing it to a graph, or the median of a sequence of graphs, following
that window. Whenever the comparison results in a large graph distance value, it can
be concluded that an abnormal change has occurred.

The computation of the median of a set of graphs is a computationally expensive
process that is intractable by optimal procedures [28]. However, the graphs considered
here have the distinctive property that their node labels are unique. This results in
optimal procedures for the median graph computation. In fact, it can be expected that
the proposed procedures can be applied to networks consisting of millions of nodes and
links.

The median graph was applied in four techniques for abnormal change detection
in data networks. The data set under observation was collected from a single physical
link in the core of a large-enterprise data network. It consisted of logical communica-
tions observed on the link. Distance measures were computed between combinations
of median graphs and single graphs in the time series. Network change was deemed
to be significant when a measure of graph distance exceeded a predefined threshold.
The threshold value is determined by multiplying a constant by the average deviation
occurring within the median graph window(s). It is important to note that when signif-
icant change is detected it does not automatically imply that a performance anomaly
exists. A network manager would use this information as an early warning indicator
that a problem may be developing.

The four median graph-based techniques (msa, mma, msd, and mmd) for detecting
change in data networks provide considerable improvement over the technique that
applies distance measures d1 and d2 to consecutive graphs in the time series of graphs
(i.e., ssa). In particular, these approaches provide increased robustness to noise and
large outliers. An appreciable smoothing effect was achieved by the use of mma and
mmd. Both msd and mmd were able to detect a change in the state of behavior of
the network. These methods are particularly suited to the detection of slow changes
in network behavior. All four approaches were able to identify periods during which
network change was steadily increasing or decreasing. This is more evident with the
mma andmmd techniques. Finally, all four techniques were able to detect points at which
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significant network change had occurred. From a network management perspective it
is possible that these points of significant change could be correlated to various types
of abnormal change in the behavior of the network.
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Graph Clustering for Abnormal Change Detection

6.1 Introduction

Graph similarity measures, including graph edit distance, and their application to the
detection of abnormal change in telecommunication networks were introduced in Chap-
ter 4. In Section 3.3, the median of a set of graphs was studied. Also this concept has
proven useful to measure change in communication networks and to detect unusual
behavior. Recently, graph clustering based on graph edit distance has been proposed
[78]. In this chapter, some known clustering algorithms will be reviewed first. Then the
potential of graph clustering for analyzing time series of graphs and telecommunication
networks will be studied.

Clustering is the process of dividing a set of objects into groups, or clusters, such
that objects that are similar are assigned to the same cluster, while dissimilar objects are
put into different clusters. Clustering is a fundamental technique in the whole discipline
of computer science. However, almost all clustering algorithms published until today
are based on object representations in terms of feature vectors. Only very few papers
address the clustering of symbolic data structures, particularly the clustering of graphs.
For a general introduction to clustering see [66, 96]. Graph clustering was addressed
in [155]. Recently an extension of self-organizing maps [106] for graph clustering was
proposed in [78]. This method will be reviewed in greater detail in Section 6.2.2.

The meaning of the term “graph clustering” in the literature is not unique. In [149]
the identification of groups of nodes within the same graph is called “graph clustering,”
while in [78,155] the term is used to denote procedures that cluster graphs rather than
feature vectors. Throughout this chapter, “graph clustering” is to be interpreted in the
latter sense.

The rest of this chapter is organized as follows. In the next section the most important
clustering algorithms for the domain of feature vectors will be reviewed. In Section 6.3
techniques will be introduced that allow us to extend the algorithms presented in Section
6.2 into the graph domain. The application of the resulting graph clustering algorithms
to time series of graphs and the detection of abnormal change in telecommunication
networks will be discussed in Section 6.4. Finally, conclusions will be drawn in Sec-
tion 6.5.
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6.2 Clustering Algorithms

It is not attempted to exhaustively cover all existing clustering methods in this section.
Only some of the more popular algorithms will be taken into regard.

The existing clustering algorithms can be classified into hierarchical and non-
hierarchical approaches. In hierarchical clustering, the set of given objects is iteratively
split into smaller subsets (top-down), or small subsets are iteratively merged into larger
ones (bottom-up). Under such a procedure a sequence of hierarchically nested subsets,
or clusters, is produced rather than a single clustering. Nonhierarchical approaches are
“single shot” procedures that generate just one particular grouping of the given objects.
Hierarchical and nonhierarchical clustering algorithms will be introduced in Sections
6.2.3 and 6.2.4, respectively.

In many nonhierarchical clustering algorithms the desired number of clusters has
to be given as a parameter. But in many applications this number is not known. Cluster
validation indices can be used to find the optimum number of clusters in a clustering
problem automatically. Some of these validation indices will be reviewed in Section
6.2.3.

Traditional clustering algorithms make “hard” decisions when assigning objects to
clusters. That is, object xi either belongs to cluster cj or does not. If xi belongs to cj

then xi can’t belong to any other cluster ck , k �= j . In fuzzy information processing,
class membership is no longer defined in a binary fashion. Hence, an object xi can
belong to a number of clusters at the same time, with a different membership degree for
each. Fuzzy clustering deals with algorithms that allow us to make such “soft,” multiple
cluster assignments. Fuzzy clustering will be discussed in Section 6.2.4.

6.2.1 Hierarchical Clustering

In the following we consider a set of objects

X = {x1, . . . , xM}.
A clustering of X is a set of subsets

C = {c1, . . . , ck}
such that ci ⊆ X, ci �= ∅; ci ∩ cj = ∅ for i �= j ;

⋃k
i=1 ci = X for i, j = 1, . . . , k.

The basic version of the hierarchical clustering algorithm is given in Figure 6.1. In
the algorithm, d(ci, cj ) is a function that computes the distance between clusters ci and
cj ; for details see below. Obviously, there are M clusters before the algorithm enters the
repeat loops. In each run through the repeat loop the number of clusters is reduced by
one. Therefore, the algorithm terminates after the repeat loop has been executed M − 1
times. We observe that R0 = {{x1}, . . . , {xM}} and RM−1 = {{x1, . . . , xM}}.

The clusters resulting from the hierarchical clustering algorithm can be represented
as a tree with M levels, where RM−1 corresponds to the root and R0 to the level of the
leaves. The distance on the horizontal axis corresponds to the distance between clusters.
Such a tree representation is also called a dendrogram.
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input: X = {x1, . . . , xM}
output: a hierarchical partitioning of set X, i.e., a sequence R0,

R1, . . . , RM−1, where each Ri is a partition of set X, and
Ri is finer than Ri+1

begin
R0 = {c1 = {x1}, c2 = {x2}, . . . , cM = {xM}};
t = 0;
repeat

t = t + 1;
put each cluster ci from Rt−1 into Rt ;
find among all pairs of clusters in Rt the one with
minimum distance, i.e., find (ci, cj ) such that
d(ci, cj ) = min{(cr , cs) | cr �= cs; cr , cs ∈ Rt }
/* ties are broken arbitrarily */
generate a new cluster cnew = ci ∪ cj ;
remove ci and cj from Rt ;
add cnew to Rt

until all xi belong to the same cluster
end

Fig. 6.1. Hierarchical clustering.

Example 6.1. Assume that set X consists of the seven points A, B, . . . , G in the x-y
plane shown in Figure 6.2. The dendrogram resulting from the hierarchical clustering
algorithm is depicted in Figure 6.3. First, objects B and C are merged into one cluster.
Next D and E, and then F and G are merged. In the next step the cluster consisting
of B and C is merged with object A, and so on. Finally, one cluster is obtained that
includes all seven objects.

One important detail needed for the implementation of the hierarchical clustering
algorithm is the definition of the distance of clusters, d(ci, cj ). The three most popular
distance functions are the following:

• single-linkage distance:

d(ci, cj ) = min{d(x, y) | x ∈ ci, y ∈ cj }.
The distance of two clusters is equal to the distance of the two closest representatives,
one from ci and the other from cj .

• complete-linkage distance:

d(ci, cj ) = max{d(x, y) | x ∈ ci, y ∈ cj }.
Here the representatives that have the largest distance define the distance of two
clusters.
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• average distance:

d(ci, cj ) = 1

|ci ||cj |
∑
x∈ci

∑
y∈cj

d(x, y).

This is the average distance of two elements that belong to different clusters.

It has been reported by several authors that the complete-linkage distance generally leads
to compact clusters, while the single-linkage distance has a tendency to produce rather
diffuse clusters. The behavior of the average distance is somewhat between complete-
and single-linkage. Another possibility is to represent each cluster by its mean or its
median and to use the distance between those as distance measure for clusters.

Fig. 6.2. A clustering example. (The clusters correspond to the horizontal dashed line in Fig-
ure 6.3).

A dendrogram, such as the one shown in Figure 6.3, is an excellent tool to visualize
the structure of the given objects. The dendrogram can also be used to partition set X
into a given number of clusters. For this purpose one needs only to split the dendrogram
at a certain height. For an example see the horizontal dashed line in Figure 6.3 that splits
the data into three clusters, namely, {A, B, C}, {D, E}, and {F, G}.

Usually one needs to reorder the elements of set X in a dendrogram in order to
achieve a “nice” graphical representation in which branches of the tree don’t cross each
other. Obviously, such a reordering is always possible, regardless of the number of
elements in set X.

The algorithm in Figure 6.1 is a bottom-up hierarchical procedure. It starts with
singleton clusters and successively builds larger sets. It is also possible to start with the
full set X and split it recursively into subsets. Such an algorithm is called top-down. A
closer examination reveals that the splitting criteria needed in top-down clustering are
often more difficult to define than the merging criteria required in bottom-up clustering.
Therefore, bottom-up approaches are much more popular than hierarchical top-down
clustering.
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Fig. 6.3. Dendogram of Figure 6.2.

6.2.2 Nonhierarchical Clustering

The task in nonhierarchical clustering is to produce one partition of the given set
of objects, X, into subsets {c1, . . . , ck} such that ci ⊆ X; ci �= ∅; ci ∩ cj �= ∅ for
i �= j ;⋃k

i=1 ci = X for i, j = 1, . . . , k. In this section we will review the k-means
clustering algorithm and self-organizing maps (SOMs), which are two of the most
popular approaches to nonhierarchical clustering.

A pseudocode description of the k-means algorithm is given in Figure 6.4. Notice
that k, the number of clusters to be produced, is needed as a parameter for the algorithm.1

Potential methods for the selection of the initial cluster centers include:

• randomly select k elements of X as initial cluster centers;
• randomly generate k objects as initial cluster centers; if the objects are represented

by feature vectors, i.e., if each object is a point in n-dimensional real space, then one
usually selects k random points inside the hyperbox that is defined by the extremal
points of set X.

Popular termination criteria are:

• termination after a predefined number of iterations;
• the cluster centers change only by a small amount from one iteration to the next;
• only a few objects from set X are assigned to a different cluster from one iteration

to the next;
• the error is below a predefined threshold (see below).

Example 6.2. Let x1 = 1; x2 = 2; x3 = 4; x4 = 5; k = 2.

Assume we choose m1 = 1; m2 = 2.

1Techniques to find optimal values of this parameter automatically will be discussed in Sec-
tion 6.2.3.
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• 1st iteration:
x1 
→ m1; x2, x3, x4 
→ m2;
m1 = 1; m2 = 3.66;

• 2nd iteration:
x1, x2 
→ m1; x3, x4 
→ m2;
m1 = 1.5; m2 = 4.5;

• 3rd and following iterations:
no more change, i.e., c1 = {x1, x2}, c2 = {x3, x4}.

Example 6.3. For this example we use again Figure 6.2. Assume k = 3 and the initial
cluster centers are A, D, and F . Then the result of the k-means algorithm is the one
shown in Figure 6.2. However, if we select A, B, and C as initial cluster centers, we
will obtain the clustering shown in Figure 6.5.

From this example, it becomes clear that the result of the k-means clustering al-
gorithm critically depends on the choice of the initial cluster centers. Therefore, often
a number of runs of the complete algorithm are executed, each with a different set of
initial cluster centers. Finally, the best result is chosen.

To measure the quality of a clustering produced by the k-means algorithm, the sum
E of all quadratic distances from the cluster centers can be used. Let mj be the center
of cluster cj . Then we define

ej =
∑
x∈cj

d2(mj , x)

and choose the clustering that minimizes

E =
k∑

j=1

ej .

It has been proposed to add some postprocessing steps to the results generated by the
k-means algorithm. Possible postprocessing operations include the merging of a pair
of (small) clusters that have a small distance, or the splitting of clusters that have many
elements and/or large variance.

Self organizing maps (SOMs) is a popular method in information processing that
is inspired by biological systems [106]. It can be used for various purposes. In this
chapter, we consider SOMs exclusively for the purpose of clustering.

A pseudocode description of the classical SOM algorithm is given in Figure 6.6.
Given a set of patterns X, the algorithm returns a prototype yi for each cluster ci . The
prototypes are sometimes called neurons. The number of clusters, k, is a parameter
that must be provided a priori. In the algorithm, first each prototype yi is randomly
initialized (line 4). In the main loop (lines 5–10) one randomly selects an element
x ∈ X and determines the neuron y∗ that is nearest to x. In the inner loop (lines 7,
8) one considers all neurons y that are within a neighborhood N(y∗) of y∗, including
y∗, and updates them according to the formula in line 8. The effect of neuron updating
is to move neuron y closer to pattern x. The degree by which y is moved toward x
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input: X = {x1, . . . , xM}; number of clusters, k

output: clusters c1, . . . , ck

begin
choose k initial cluster centers m1, . . . , mk;
repeat

assign each xi to its nearest cluster center mj ;
recompute the cluster centers m1, . . . , mk;

until termination criterion fulfilled
end

Fig. 6.4. k-means clustering.

Fig. 6.5. An example.

is controlled by the parameter α, which is called the learning rate. It has to be noted
that α is dependent on the distance between y and y∗, i.e., the smaller this distance
is, the larger is the change on neuron y. After each iteration through the repeat-loop,
the learning rate α is reduced by a small amount, thus facilitating convergence of the
algorithm. It can be expected that after a sufficient number of iterations the yi’s have
moved into areas where many xj ’s are concentrated. Hence each yi can be regarded as
a cluster center. The cluster around center yi consists of exactly those patterns that have
yi as closest neuron.

SOM clustering is in fact similar to the k-means clustering algorithm. The main
difference between both algorithms is that SOM is incremental in its nature, while k-
means is batch-oriented. That is, under k-means cluster centers are updated only after a
complete cycle through all x ∈ X has been conducted, while in SOM cluster centers are
updated immediately after representation of each individual object x ∈ X. Similarly to
k-means, SOM clustering critically depends on a good initialization strategy.
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(1) input: a set of patterns, X = {x1, . . . , xM}
(2) output: a set of prototypes, Y = {y1, . . . , yk}
(3) begin
(4) initialize Y = {y1, . . . , yk} randomly
(5) repeat select x ∈ X randomly
(6) find y∗ such that d(x, y∗) = min{d(x, y) | y ∈ Y}
(7) for all y ∈ N(y∗) do
(8) y = y + α(x − y)

(9) reduce learning rate α

(10) until termination criterion is true
(11) end

Fig. 6.6. The SOM algorithm.

6.2.3 Cluster Validation

Many clustering methods, for example, k-means and SOM, require the number of clus-
ters being known beforehand. But often this kind of knowledge is not available. There
are two potential approaches to finding the optimal number of clusters automatically.
The first is clustering algorithms that dynamically change the number of clusters dur-
ing their execution. Typically, large clusters are split, or small clusters that are adjacent
in feature space are merged with each other. However, the proper parameterization of
these algorithms, for example, the thresholds that define when a cluster is “small” or
“large,” remains an open problem.

Fig. 6.7. Example of Dunn index: (a) Clustering with a small value of D; (b) Clustering with a
large value of D; dmin = min{d(ci , cj ) | i, j = 1, 2, 3}.

In this section we will focus on another, simpler approach to automatically finding
the optimal number of clusters. It is based on so-called cluster validation indices. A
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cluster validation index is a function that measures the quality of a given clustering.
Hence, given a cluster validation index and a clustering algorithm, such as k-means
or SOM, one can execute the clustering algorithm a number of times, specifying a
different number of clusters to be produced in each run, and finally select the clustering
that yields the optimal value of the cluster validation index.

At first glance, the sum E of all quadratic distances defined in Section 6.2.2 may
look like a suitable cluster validation index. It turns out, however, that this measure
assumes its minimum value E = 0 for k = M , i.e., for the case in which each cluster
consists of just a single element. A number of more appropriate indices have been pro-
posed in the literature [55, 66, 70, 76, 96]. Some of them are reviewed below.

Dunn Index
Let d(ci, cj ) denote the distance of clusters ci and cj . For this function any of the

measures discussed in Section 6.2.1 can be used, i.e., single-linkage, complete-linkage,
average distance, as well as the distance between the mean or the median of ci and cj .
Furthermore, let �(ci) denote the maximum distance within cluster ci , i.e.,

�(ci) = max{d(x, y) | x, y ∈ ci},
and let �max be the maximum within-cluster distance taken over all clusters, i.e.,

�max = max{�(ci) | i = 1, . . . , k}.
Then the Dunn index D is defined as

D = 1

�max
min{d(ci, cj ) | i, j = 1, . . . , k}.

The Dunn index D considers the distance of the two nearest clusters in relation to
the largest distance within a single cluster. Clearly, the larger D is, the better is the
considered clustering. For a graphical illustration see Figure 6.7. It is easy to verify that

D ∈ [0, ∞].
This index is easy to compute. Its main shortcoming, however, is the fact that it is
vulnerable to outliers, i.e., if only a single outlier is added to the data, the value of the
index may drastically change.

Davis–Bouldin Index
Let mi be the center of cluster ci; i = 1, . . . , k. The average distance of element

xl ∈ ci to mi is given by

di = 1

|ci |
∑
xl∈ci

d(xl , mi ).

First we define
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Rij = Rji = di + dj

d(mi , mj )
.

This quantity can be interpreted as the compactness of clusters ci and cj in relation
to their distance. Clearly, for a good clustering, Rij will be small. For a graphical
representation see Figure 6.8.

d1
m1 d12

d13

d2

d3

d23

m2

m3

Fig. 6.8. Example of Davis–Bouldin index: The smaller the di ’s and the further the mj ’s are
away from each other, the smaller is DB, i.e., the better is the clustering. In the figure, the notation
dij = d(mi , mj ) is used.

Next we are interested, for cluster ci , in the worst case, i.e., in the cluster cj that
yields the maximum value of Rij . Hence we define

Ri = max{Rij | j = 1, . . . , k; i �= j}.
Finally the Davis–Bouldin index DB is defined as the average of the Ri’s taken over
all clusters, i.e.,

DB = 1

k

k∑
i=1

Ri.

Clearly, the smaller the value of DB is, the better the clustering. It is easy to see that

D ∈ [0, ∞].
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Goodman–Kruskal Index
We define

ρ(xi , xj ) =
{

1 if xi and xj belong to different clusters,
0 if xi and xj belong to same cluster.

To compute the index, one considers all quadruples (xi , xj , xr , xs) where xi �= xj , xr �=
xs , (xi , xj ) �= (xr , xs). For each such quadruple, the quantities d(xi , xj ), ρ(xi , xj ),
d(xr , xs), and ρ(xr , xs) are computed. A quadruple is concordant if either

d(xi , xj ) < d(xr , xs) ∧ ρ(xi , xj ) < ρ(xr , xs)

or

d(xi , xj ) > d(xr , xs) ∧ ρ(xi , xj ) > ρ(xr , xs).

By contrast, a quadruple is called discordant if either

d(xi , xj ) < d(xr , xs) ∧ ρ(xi , xj ) > ρ(xr , xs)

or

d(xi , xj ) > d(xr , xs) ∧ ρ(xi , xj ) < ρ(xr , xs).

Notice that there are usually quadruples that are neither concordant nor discordant, for
example if ρ(xi , xj ) = ρ(xr , xs).

Fig. 6.9. (a) Example of a concordant quadruple (xi , xj , xr , xs); (b) Example of a discordant
quadruple (xi , xj , xr , xs).

Intuitively, concordant quadruples are hints to a good clustering, while discordant
quadruples represent situations that are typical of a poor clustering. For a graphical illus-
tration see Figure 6.9. Let S+ and S− denote the number of concordant and discordant
quadruples, respectively. The Goodman–Kruskal index GK is defined as

GK = S+ − S−
S+ + S−

.
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Clearly, a good clustering is characterized by a high value of GK . The denominator
has a normalizing effect such that

GK ∈ [−1, 1].
This measure can be expected to be robust against outliers, but it has a high computa-
tional complexity, which amounts to O(M4).

6.2.4 Fuzzy Clustering

All clustering techniques considered so far are “hard” procedures in the sense that an
element xi belongs to exactly one cluster cj . If xi belongs to cj it can’t belong to
any other cluster cl �= cj . Fuzzy, or soft, clustering is a generalization that allows an
element xi to be simultaneously assigned to a number of different clusters, with some
degree of membership for each cluster. In this section we consider the fuzzy version of
the k-means clustering algorithm as a representative from among a number of different
fuzzy clustering algorithms proposed in the literature [73].

A fuzzy set [195] is a set F of elements x ∈ F together with a membership function
µ(x) → [0, 1] that assigns a membership degree out of the interval [0, 1] to each
element x ∈ F . The two extremal cases are µ(x) = 0, which means that x doesn’t
belong to F at all, and µ(x) = 1, which means that x is a full member of F . Any other
value 0 < µ(x) < 1 indicates that x is a member of F to a certain degree. Classical
sets are obtained as a special case of fuzzy sets if the membership function µ can take
on only the values µ(x) = 0 and µ = (1) for any x ∈ F .

The input elements to be clustered by the fuzzy k-means algorithms are the same
as under the conventional k-means algorithms, i.e., they are a (nonfuzzy, or crisp)
set X = {x1, . . . , xM}. However, the clusters c1, . . . , ck are fuzzy sets. That is, for
each element xi and each cluster cj there exists a membership value µj (xi ) ∈ [0, 1]
indicating the degree to which xi belongs to cluster cj . Usually it is required that

k∑
j=1

µj (xi ) = 1 for i = 1, . . . , M (6.1)

and

0 <

M∑
i=1

µj (xi ) < M for j = 1, . . . , k. (6.2)

The first condition means that for each xi the membership degrees, taken over all clusters
cj , must sum up to unity. By means of the second condition, clusterings are excluded
in which all elements belong to just a single cluster with membership degree one.

Let mj denote the center of cluster cj . We compute the degree of membership of
an element xi in cluster cj as follows:

µj (xi ) =
⎧⎨⎩

1, if xi = mj ,(∑k
l=1

(
d(xi ,mj )

d(xi ,ml )

) 2
β−1
)−1

, otherwise.
(6.3)
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It can be verified that µj (xi ) will have a value close to 1 if xi is near mj , and a value
close to 0 if xi is far away from mj . In the equation, β > 1 is a parameter that controls
how quickly the value of µj (xi ) drops from 1 to 0 if xi is moved away from mj . A value
of β close to 1 means a quick drop of the membership function, while large values of
β imply a slower decrease of µj (xi ).

In the classical version of the k-means algorithm, there is an iterative updating of
the cluster centers. A similar updating operation on the cluster centers takes place in
fuzzy k-means clustering:

mj =
∑M

i=1 µj (xi )xi∑M
i=1 µj (xi )

. (6.4)

This operation can be interpreted as computing the weighted average over all input
elements, xi , where each xi is weighted by its degree of membership in cluster cj .

Given equations (6.3) and (6.4), the fuzzy k-means clustering algorithm can be
formulated as shown in Figure 6.10. Notice that, similarly to its classical counterpart
given in Figure 6.4, the number of clusters needs to be given as a parameter. The same
techniques for cluster center initialization and termination as discussed in Section 6.2.2
can be applied, but the error measure E needs to be appropriately redefined, for example
by letting

FE =
M∑
i=1

k∑
j=1

µj (xi )d(xi , mj ).

It can be shown that the validity of equations (6.1) and (6.2) is maintained during
the execution of the fuzzy k-means algorithm. The result of the fuzzy k-means algo-
rithm is a set of cluster centers m1, . . . , mk and a sequence of membership values,
(µ1(xi ), . . . , µk(xi )), for each input element xi . It is possible to “harden” this result by
means of a defuzzyfication procedure. One possibility of defuzzyfication is the winner-
take-all strategy. Under this strategy, xi is assigned to the cluster cj with maximum
membership value µj (xi ), i.e., we assign xi to cj if and only if

j = arg max{µj (xi ) | j = 1, . . . , k}.
This decision rule is equivalent to assigning xi to that cluster cj the center mj of

which is closest to xi .

A multitude of clustering algorithms have been published in the literature, but there
is no general principle that can be used to predict which method performs best. The
actual performance of a method crucially depends on the given task and the underlying
data, and has to be experimentally determined.

6.3 Clustering in the Graph Domain

All methods discussed in Section 6.2 are exclusively devoted to the clustering of objects
that are described in terms of feature vectors. Only a few works have been published
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input: X = {x1, . . . , xM}; number of clusters, k

output: cluster centers m1, . . . , mk; membership degrees µj (xi )

for i = 1, . . . , M and j = 1, . . . , k

begin
choose k initial cluster centers m1, . . . , mk;
repeat

compute µj (xi ) for i = 1, . . . , M and j = 1, . . . , k

using equation (6.3);
recompute cluster centers m1, . . . , mk using equation (6.4);

until termination criterion fulfilled
end

Fig. 6.10. Fuzzy k-means clustering.

on graph clustering, i.e., on the clustering of objects that are represented by means of
graphs.

In [155] the objects to be clustered are random graphs. In such a graph, each node
and each edge has a probability assigned to it, which reflects its likelihood of existence.
An information-theoretic measure is used to assess the quality of a clustering. This
measure also controls the assignment of individual random graphs to clusters.

In [78] an extension of the SOM clustering procedure from feature vectors to the
domain of graphs is described. The basic steps of the algorithm are identical to those
given in Figure 6.6. However, two important extensions were introduced to make the
SOM clustering applicable to graphs. The first is the replacement of the Euclidian
distance by graph edit distance (see Chapter 3), and the second a generalization of the
SOM updating rule (see line 8 in Figure 6.6) from n-dimensional real space to the graph
domain.

The method introduced in [78] was augmented by cluster validation indices for the
graph domain in [79]. As a result, a graph clustering procedure is obtained that can
find the optimal number of clusters automatically.

Next we discuss, from a general standpoint, what is needed to extend the clustering
algorithms introduced in Section 6.2 from n-dimensional real space to the domain of
graphs. Obviously, one of the concepts essential to each of the clustering algorithms is
a distance function. Very often, Euclidian distance is used. In order to apply clustering
algorithms in the graph domain, we need a function d(g1, g2) that computes the distance
of any two given graphs, g1 and g2. Fortunately, there are a number of such graph
distance functions; see Chapter 4. Also, graph distance measures d1 and d2 introduced
in Section 5.2 can be used as a graph distance function in the context of graph clustering.

A close look reveals that the availability of a function that computes graph distance
is already sufficient to implement the hierarchical clustering algorithm discussed in
Section 6.2.1 (see Figure 6.1). For the implementation of the k-means algorithm (Fig-
ure 6.4) we need, in addition to a distance function on graphs, a method to compute the
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α d(g ,g ) − α
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1
d(g ,g )

2

Fig. 6.11. Illustration of weighted mean.

center of a cluster, i.e., the center of a finite set of graphs. For this task, any procedure
for median (or set median) graph computation can be used; see Chapters 3 and 5.

Median graph computation is not needed for the implementation of the SOM algo-
rithm in the graph domain. Here a different operation is required. We need to synthesize
a new graph g on the basis of two given graphs g1 and g2 such that

d(g1, g) = α and d(g, g2) = d(g1, g2) − α, (6.5)

where α is a given constant, called the learning rate. It controls the degree by which a
cluster center is moved closer to an input element (see Figure 6.6, line 8). Intuitively,
g is a graph on the connecting line between g1 and g2 at distance α to g1 in the graph
domain; see Figure 6.11 for an illustration. Such a graph has been called a weighted
mean in [24].

Fortunately, it turns out that the computation of a weighted mean g, given g1, g2,
and α, is a straightforward task. In fact, this computation can be accomplished as a
postprocessing step of edit distance computation. The computation of d(g1, g2) yields
a sequence of edit operations (e1, . . . , el) that transform g1 into g2 with minimum
cost. Let c(ei) denote the cost of edit operation ei in this sequence. Now g can be
synthesized from g1 by selecting a subsequence (ei1 , . . . , eir ) of sequence (e1, . . . , el),
r ≤ l, such that

∑r
j=1 c(eij ) approximates α as closely as possible, and applying all

edit operations of this subsequence to g1. It can be proven that the graph g that results
from this procedure is in fact a weighted mean, satisfying equation (6.5).

The procedure for weighted mean graph computation is also applicable to distance
measures d1 and d2 introduced in Chapter 5, as we will show in the following two
examples.

Fig. 6.12. An example of weighted mean graph using d1 (see also Figure 6.13 and Figure 6.14).
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Example 6.4. In Figure 6.12 two graphs, g1 and g2, are shown. It is easy to verify that
d1(g1, g2) = 8. An optimal, i.e., minimum cost, sequence of edit operations transform-
ing g1 into g2 is as follows:

e1 : delete edge (0, 1)

e2 : delete edge (0, 3)

e3 : delete node 0
e4 : delete edge (2, 3)

e5 : delete node 3
e6 : insert node 4
e7 : insert edge (1, 4)

e8 : insert edge (2, 4)

3

22

3

1010

3

4

2

3

2 0 1 0 1

Fig. 6.13. Four weighted mean graphs of g1 and g2 in Figure 6.12 for α = 1.

For α = 1 we may select any of the edge deletions e1, e2, e4, or the node insertion
e6 and apply it to g1. The resulting graphs are shown in Figure 6.13. We observe
that d(g1, g) = 1 and d(g2, g) = 7 for any of the weighted mean graphs g shown
in Figure 6.13. Note, however, that it is not legitimate to select any of the other edit
operations, i.e., e3, e5, e7, or e8, because these edit operations can’t be carried out
independently. This means they need additional edit operations to produce a valid graph.
For example, if we delete node 0 through edit operation e3, we also must delete edges
(0, 1) and (0, 3) through edit operations e1 and e2, respectively. Similarly, insertion of
edge (1, 4) through edit operation e7 requires the insertion of node 4 by means of e6.

For α = 2 we may select any pair of edit operations among (e1, e2), (e1, e4),
(e1, e6), (e2, e4), (e2, e6), (e4, e6), (e6, e7), (e6, e8), resulting in one of the graphs
shown in Figure 6.14. Here we observe that d(g1, g) = 2 and d(g, g2) = 6, for any
graph g depicted in Figure 6.14. Any pair of edit operations other than the ones listed
above are not legitimate for the same reasons as given for the case α = 1.

The cases α = 3, . . . , 7 are similar. Note that for α = 0 and α = 8, the weighted
means will be isomorphic to g1 and g2, respectively.

Example 6.5. Two graphs with edge labels are shown in Figure 6.15. Here we observe
that d2(g1, g2) = 6 if we let c = 1. An optimal sequence of edit operations that
transform g1 into g2 is:
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Fig. 6.14. Eight weighted mean graphs of g1 and g2 in Figure 6.12 for α = 2.

Fig. 6.15. An example of weighted mean graph using d2 (see also Figures 6.16 and 6.17).

e1 : change the label on edge (1, 2) from 3 to 1 (cost 2)
e2 : delete edge (1, 3) (cost 2)2

e3 : delete edge (2, 3) (cost 1)2

e4 : delete node 3 (cost 1)

To generate a weighted mean for α = 1, we may choose any of the following
operations:

• delete edge (2, 3)

• change the label on edge (1, 2) from 3 to 2
• change the label on edge (1, 3) from 2 to 1

The resulting three graphs are shown in Figure 6.16. Obviously, d2(g1, g) = 1 and
d2(g, g2) = 5 for any of the weighted means.

For α = 2 the following possibilities exist:

• delete edge (2, 3) and change the label of edge (1, 2) from 3 to 2
• delete edge (2, 3) and change the label of edge (1, 3) from 2 to 1
• delete edge (1, 3)

• change the label on edge (1, 2) from 3 to 1
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Fig. 6.16. Three weighted mean graphs of g1 and g2 in Figure 6.15 for α = 1.

Fig. 6.17. Three weighted mean graphs of g1 and g2 in Figure 6.15 for α = 2.

The resulting graphs are shown in Figure 6.17. Now we have d2(g1, g) = 2 and
d2(g, g2) = 4.

The graphs for α = 3, . . . , 6 can be constructed similarly.

Fig. 6.18. An example of weighted median graph computation using d1 (see also Figure 6.19).

Having a procedure for weighted mean graph computation at our disposal, we are
able to implement the SOM clustering algorithm in the graph domain. Next we consider
the fuzzy k-means clustering algorithm. It is easy to see that for the implementation of
equation (6.3) the availability of a function for graph distance computation is sufficient.
However, equation (6.4) needs to be elaborated on. Here the aim is to compute a cluster
center mj . As a generalization over the median graph computation procedure discussed
in the context of nonfuzzy k-means clustering, each of the elements xi now has an
individual weight, namely µj (xi ). Yet the computation of the median of a weighted
set of graphs can be considered as a straightforward extension of normal median graph

2Note that the deletion of an edge is equivalent to substituting the label by weight 0.
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Fig. 6.19. Weighted mean of the graphs in Figure 6.18.

computation. All that needs to be done is to include multiple copies of each graph in the
underlying set, with the number of copies of a graph being proportional to its weight.

Example 6.6. Three graphs, g1, g2, and g3, together with their weights are shown in
Figure 6.18. Let us consider the computation of a weighted median under graph distance
d1. From g1, g2, and g3 we produce a set of ten graphs. This set includes four copies
of g1, three copies of g2, and three copies of g3. Application of the median graph
computation procedure as described in Chapter 3 to this set yields the graph shown in
Figure 6.19.

Fig. 6.20. An example of weighted median graph computation using d2 (see also Figure 6.21).

2

3

1

1

1 2

0 0
4

Fig. 6.21. Weighted mean of the graphs in Figure 6.20.
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Example 6.7. The graphs in Figure 6.18, augmented by edge labels, are shown in Fig-
ure 6.20. The weighted median computed under graph distance d2 (see Section 5.2) is
depicted in Figure 6.21.

Further inspection of the pseudocode in Figure 6.10 reveals that no additional tools
are needed to implement fuzzy k-means clustering in the graph domain.

It is easy to see that all cluster validation indices introduced in Section 6.2.3 are based
only on distances. Therefore, only graph distance is needed for their implementation in
the graph domain.

6.4 Clustering Time Series of Graphs with Applications to the
analysis of Telecommunication Networks

Applications of median graphs and graph similarity measures to the analysis of time
series of graphs and telecommunication networks have been studied in Chapters 4 and
5. In this section we will discuss how graph clustering can potentially be used in this
area.

For the purpose of clustering, a given time series of graphs S = (g1, . . . , gm) is
interpreted as a set G = {g1, . . . , gm}, in which multiple instances of the same graph
may occur. Application of any of the clustering algorithms described in Section 6.2 will
result in a partition of set G into subsets c1, . . . , ck such that ci ⊆ G; ci �= ∅; ci∩cj = ∅
for i �= j ;⋃k

i=1 ci = G; i, j = 1, . . . , k. We expect that graphs in the same cluster are
similar to each other, while graphs that are assigned to different clusters are dissimilar.
It is easy to verify that, under any of the considered algorithms, multiple occurrences
of the same graph will always be assigned to the same cluster.

Fig. 6.22. Example of noncontiguous clustering.

We cannot expect, however, that the clusters to be produced are contiguous. A
cluster cj is contiguous if all its graphs can be ordered (gi1 , . . . , gil ) such that i1 +
1 = i2; i2 + 1 = i3; . . . ; il−1 + 1 = il . In general the graphs of a cluster will be
noncontiguous, i.e., they are scattered over the whole time series with different clusters
interleaving each other. But this effect may be desirable. It allows us, for example, to
identify sets of similar graphs, i.e., similar states of the network, without requiring that
these states occur at consecutive points in time. A graphical illustration is shown in
Figure 6.22. Here the time series of graphs consists of two noncontiguous clusters, c1



6.4 Clustering Time Series of Graphs 113

and c2. A partitioning of a time series of graphs, such as the one shown in Figure 6.22,
may be useful to characterize a whole series of graphs in more general and global terms
than just referring to individual points in time where abnormal change occurs. For the
sequence shown in Figure 6.22 one could infer, for example, that the sequence consists
of two different alternating types of graphs. If the behavior of the network follows some
(deterministic or nondeterministic) rules, it may be possible to automatically detect such
rules by means of grammatical inference [29] or tools from the discipline of machine
learning (see Chapter 11). Once appropriate rules have been derived from an existing
sequence, they may be used to predict the future behavior of this sequence, or to patch
up points in time where no measurements are available. In such a system, clustering
would be needed to provide the basic similarity classes of network states.2

Any noncontiguous clustering can be easily converted into a contiguous one by
splitting the clusters into contiguous subsequences. Figure 6.23 shows the contiguous
clusters that are obtained from Figure 6.22. Another procedure for the generation of
contiguous clusters can be derived from the hierarchical clustering algorithm introduced
in Section 6.2.1. Here we start with the individual graphs as the initial clusters. Then,
whenever two clusters (or individual graphs) are to be merged, only candidates that are
adjacent in time will be considered. In other words, only pairs of (contiguous) clusters
that will result in a new contiguous cluster are eligible for merging.

Fig. 6.23. Contiguous clustering resulting from splitting the clusters in Figure 6.22.

Graph clustering can be used to develop additional tools for abnormal change detec-
tion in time series of graphs. The basic idea is to first produce a contiguous clustering
of a given time series of graphs. Then pairs of clusters that are adjacent in time are
compared to each other. If their dissimilarity is above some threshold, it can be con-
cluded that some abnormal change has occurred at the point in time at which the two
clusters meet. Potential measures for cluster similarity, or dissimilarity, are single link-
age, complete linkage, average distance, and distance of median. It can be expected
that such measures for abnormal change detection have noise resistance properties that
are similar to the median graph. But they are more general because they can adapt to
the actual data in a more flexible way than median graphs, which are always computed
over a time window of fixed size.

2For a more detailed treatment of predicting future network behavior and recovering missing
informaton see Chapter 11.
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6.5 Conclusion

Graph representation and similarity measures on graphs have proven useful in many ap-
plications, including the analysis of telecommunication networks. In this chapter a num-
ber of clustering algorithms are reviewed and their extension from the n-dimensional
real space to the graph domain is studied. Furthermore, the application of these algo-
rithms to the monitoring of telecommunication networks is discussed.

It can be expected that graph clustering will provide additional tools to detect
abnormal change in time series of graphs and telecommunication networks. Moreover, it
is potentially useful to identify patterns of similar behavior in long network observation
sequences. This may lead to enhanced tools that are able not only to detect network
events in short time windows, but also to analyze network behavior and deliver human-
understandable high-level interpretation over long periods of time.
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Graph Distance Measures based on Intragraph
Clustering and Cluster Distance

7.1 Introduction

Various graph distance measures were considered in previous chapters. All of these
measures have in common that the distance of two given graphs g1 and g2 is equal to
zero if and only if g1 and g2 are isomorphic to each other. Sometimes, however, it may
be desirable to have a more flexible distance measure for which d(g1, g2) = 0 if g1 and
g2 are similar, but not necessarily isomorphic. Such a measure is potentially useful to
make our graph-distance-based computer network monitoring procedures more robust
against noise and small random perturbations.

A family of new graph distance measures with this property is introduced in this
chapter. Given two graphs g1 and g2, their distance d(g1, g2) is computed in two steps.
First an intragraph clustering procedure is applied that partitions the set of nodes of
each graph into a set of clusters, based on the weights on the edges. In the second step,
the distance d(C1, C2) of the two clusterings C1 and C2 derived in the first step will be
computed, and this quantity will serve as our graph distance measure d(g1, g2). Thus
the problem of computing the distance of two graphs is transformed into the prob-
lem of measuring the similarity of two given clusterings. For the latter problem, some
algorithms are known from the literature [147, 164]. In addition to these algorithms
we propose a novel approach to measuring cluster similarity, based on bipartite graph
matching. The intragraph clustering procedure can be combined with any of the meth-
ods that measure clustering similarity. Hence a whole family of new graph distance
measures, rather than just a single procedure, is obtained.

In the next section our basic terminology and an algorithm for intragraph clustering
will be introduced. Then in Section 7.3, distance measures for clusterings will be dis-
cussed. Combining the concepts from Sections 7.2 and 7.3, our novel graph-matching
methods will be described in Section 7.4. In Section 7.5, we continue with a discussion
of applications of the new graph distance measures in the field of computer network
monitoring. Finally, in Section 7.6 conclusions and suggestions for further research are
provided.
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7.2 Basic Terminology and Intragraph Clustering

We consider graphs with unique node labels as introduced in Chapter 3. To simplify
our notation, the terminology g = (V , E, β) will be used to denote a graph, where V

is the finite set of nodes, E ⊆ V × V is the set of edges, and β : E → LE is the edge
labeling function. Because of the unique node labeling property, we drop node labeling
function α from our graph representation and identify, without loss of generality, nodes
and node labels.

In this chapter new graph distance measures are introduced. To compute these dis-
tance measures we first apply an intragraph clustering procedure. The term intragraph
refers to the fact that the purpose of this clustering procedure is to build groups, or
clusters, within the same graph. By contrast, intergraph clustering procedures, such as
those discussed in Chapter 6, group whole sets or subsets of graphs into clusters.

In general, clustering refer to the process of dividing a set of objects into groups,
or clusters, such that objects that are similar to each other are assigned to the same
cluster, while dissimilar objects are put into different clusters. Clustering is a funda-
mental technique in many disciplines of science and engineering. A brief introduction
to clustering is provided in Chapter 6.

In this chapter we propose to use the graph clustering algorithm described in
[196] to partition the set of nodes V of a given graph g = (V , E, β) into subsets,
or clusters. The original version of this algorithm starts with a set of general objects
O = {o1, o2, . . . , on} rather than a set of nodes. Objects from O are typically members
of n-dimensional Euclidean space. First the distance d(oi, oj ) is computed for each
pair of objects oi , oj . Then the objects together with their distances are represented by
a distance graph G. In this distance graph each node corresponds to an object oi , and
there is an edge between each pair of objects oi and oj , the weight of which represents
the distance d(oi, oj ). Next the minimum spanning tree (mst) of distance graph G is
computed. The mst of any graph g with weights on its edges is a tree that includes all
nodes of g and has, among all such trees, the smallest sum of edge weights.An algorithm
for computing the minimum spanning tree T of an arbitrary graph g = (V , E, β) is
given below:

initialize T as an empty tree;
choose the edge e = (x, y) with minimum weight β(e) from E

and include it in T ;
while T has fewer nodes than |V | do

find the edge e with minimum weight connecting T

with g − T and add it to T

For the purpose of clarity we would like to mention here that any edge (x, y) that is
added to T during the execution of the while-loop has one of its incident nodes, either
x or y (but not both), already in T . Say the node already included in T is x. Then
adding edge (x, y) means adding that edge plus node y. An example of this algorithm
is shown in Figure 7.1. The algorithm starts with edge (H, G) and adds edges (H, G),
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(G, F ), (F, C), (C, I ), (C, D), (H, A), (A, B), (D, E) to T , in this order. The edges
belonging to T are printed in bold. It can be proven that the mst of a given graph is
uniquely defined if all edge weights are different. Otherwise several msts may exist
for the same given graph. In the remainder of this monograph we shall assume, for the
purpose of simplification, that each graph under consideration has a unique mst.

As mentioned above, the objective in this chapter is not to cluster a set of objects,
as is done in the algorithm described in [196], but to cluster the nodes in a graph
g = (V , E, β). However, we can directly apply the algorithm given in [196] in case
the underlying graph is connected, i.e., any node y ∈ V can be reached from any
other node x ∈ V via a sequence of edges (x, x1), (x1, x2), (x2, x3), . . . , (xi, y) that
all belong to E. Otherwise, if g is not connected, we add edges to graph g such that
it becomes a complete graph (i.e., such that there is an edge (x, y) between any pair
of nodes x, y ∈ V ). Each of the additional edges e gets assigned a weight β(e) = ∞.
Given graph g we compute an mst, using the algorithm described above. Given the
mst, the k edges with the largest weights are determined and deleted from the mst. This
results in k + 1 subsets, or clusters, of the set of nodes V . Each cluster is defined by a
connected component of the mst.

Example 7.1. For this example we use the graph and the mst from Figure 7.1. If we
delete just the single edge with maximum weight from the mst, i.e., edge (D, E) with
weight 9, then the nodes of graph g are divided into two clusters, the one just including
node E, and the other consisting of all other nodes. Alternatively, if we delete the
two edges with maximum weight from the mst, we get three clusters, {E}, {A, B}, and
{C, D, F, G, H, I }. Deletion of three edges from the mst yields four clusters, {E}, {D},
{A, B}, {C, F, G, H, I }, and so on.

B C D

H G F

  I A E

4

9 7

9

10

4
2

6
7

8

1

14

2

11

Fig. 7.1. An example of the mst computation.

The number of edges to be deleted from the mst is a parameter that controls the
number of clusters to be produced. Two basic strategies can be applied to select appro-
priate values of this parameter. First, we can put a threshold t on the edge weights and
delete all edges from the mst with a weight larger than t . Under this strategy, the number
of clusters is not fixed a priori, but depends on the actual weights in the given graph.
Secondly, the number of edges to be deleted can be fixed. This will always result in
the same number of clusters being produced, independent of the actual weights on the
edges. Which of the two strategies is more suitable usually depends on the underlying
application.
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The algorithm described above is based on the idea that edge weights represent
distances and that clusters should comprise objects that have a small distance to each
other. Therefore, the minimum spanning tree is computed, and those k edges are deleted
from the mst that have the largest weights. There is a dual version of this problem in
which edge weights represent affinity between nodes, and we want to cluster those
nodes together that have a high degree of affinity. In this dual version we compute the
maximum spanning tree of the complete graph analogously to the minimum spanning
tree and delete those k edges from the maximum spanning tree that have the smallest
weights. If we consider the second version of the problem, a small modification of the
graph completion procedure will be required in case g is not connected: To each edge
e added to the original graph g with the purpose of turning g into a complete graph,
a weight β(e) = 0, rather than β(e) = ∞, should be assigned. Intuitively, this means
that a missing edge corresponds to the case of zero affinity between two nodes.

We like to conclude this section by pointing out that for the new graph distance
measures to be introduced below, any other procedure that partitions the set of nodes of
a graph into disjoint subsets, or clusters, can be used instead of the mst-based clustering
algorithm.

7.3 Distance of Clusterings

Given a set of objects O = {o1, . . . , on}, a clustering of O is a set of subsets C =
{c1, . . . , ck} such that ci ⊆ O, ci ∩ cj = ∅ if i �= j ,

⋃k
i=1 ci = O for i, j ∈ {1, . . . , k}.

Each ci is called a cluster. The problem considered in this section is to measure how
different two clusterings are, i.e., to measure their distance. Throughout the section we
will consider two clusterings C1 = {c11, . . . , c1k} and C2 = {c21, . . . , c2l} of the same
set O. To illustrate the concepts introduced in this section, we will use the set of objects
and the clusterings given in the example below.

Example 7.2. O = {o1, o2, . . . , o6};
C1 = {c11, c12, c13} with c11 = {o1, o2}, c12 = {o3, o4}, c13 = {o5, o6};
C2 = {c21, c22, c23} with c21 = {o3, o4}, c22 = {o5, o6}, c23 = {o1, o2};
C3 = {c31, c32, c33} with c31 = {o1, o3}, c32 = {o2, o5}, c33 = {o4, o6};
C4 = {c41, c42} with c41 = {o1, o2, o3}, c42 = {o4, o5, o6};
C5 = {c51, c52} with c51 = {o1, o3, o5}, c52 = {o2, o4, o6}.

7.3.1 Rand Index

The Rand index was introduced in [147]. Consider two clusterings C1 and C2 of a set
of objects O. The purpose of the Rand index is to measure how different C1 and C2
are. In order to compute the Rand index R(C1, C2), we consider all pairs of objects
(oi, oj ) with i �= j from O × O. A pair (oi, oj ) is called

• consistent if either
- oi and oj are in the same cluster in C1 and in the same cluster in C2, or
- oi and oj are in different clusters in C1 and in different clusters in C2;
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• inconsistent if either
- oi and oj are in the same cluster in C1, but in different clusters in C2, or
- oi and oj are in different clusters in C1, but in the same cluster in C2.

Let R+ be the number of consistent and R− the number of inconsistent pairs in O ×O.
Then the Rand index is defined as

R(C1, C2) = 1 − R+

R+ + R− . (7.1)

It is easy to see that R(C1, C2) ∈ [0, 1] for any two given clusterings C1 and C2 over
a set of objects O.We have R(C1, C2) = 0 if and only if k = l and there exists a bijective
mappingf betweenC1 andC2 such thatf (c1i ) = c2j for i, j ∈ {1, . . . , l}, which means
that the two clusterings are the same except for possibly assigning different names to
the individual clusters, or listing the clusters in different order. The case R(C1, C2) = 1
corresponds to the maximum degree of cluster dissimilarity. It indicates that there exists
no consistent pair (oi, oj ) ∈ O × O. In order to compute the Rand index, O(n2) pairs
of objects from O have to be considered since R+ + R− = n(n − 1)/2.

Example 7.3. The following values of the Rand index are obtained for the clusterings
given in Example 7.2:

d(C1, C2) = 0 , R+ = 15 , R− = 0 ;
d(C1, C3) = 6/15 , R+ = 9 , R− = 6 ;
d(C1, C4) = 5/15 , R+ = 10 , R− = 5 ;
d(C1, C5) = 9/15 , R+ = 6 , R− = 9 ;
d(C2, Ci) = d(C1, Ci) for i = 3, 4, 5 ;
d(C3, C4) = 5/15 , R+ = 10 , R− = 5 ;
d(C3, C5) = 5/15 , R+ = 10 , R− = 5 ;
d(C4, C5) = 8/15 , R+ = 7 , R− = 8 .

Hence if we order these distance values, we may conclude, for example, that the
clustering that is most similar to C1 is C2, followed by C4, C3, and C5.

7.3.2 Mutual Information

Mutual information (MI ) is a well-known concept in information theory [53]. It mea-
sures how much information about random variable Y is obtained from observing
random variable X. Let X and Y be two random variables with joint probability dis-
tribution p(x, y) and marginal probability functions p(x) and p(y). Then the mutual
information of X and Y , MI(X, Y ), is defined as

MI(X, Y ) =
∑
(x,y)

p(x, y) log
p(x, y)

p(x)p(y)
. (7.2)

Some properties of MI are summarized below. For a more detailed treatment the
reader is referred to [53].
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1. MI(X, Y ) = MI(Y, X) ;
2. MI(X, Y ) ≥ 0 ;
3. MI(X, Y ) = 0 if and only if X and Y are independent;
4. MI(X, Y ) ≤ max(H(X), H(Y )), where H(X) = −∑x p(x) log p(x) is the en-

tropy of random variable X ;
5. MI(X, Y ) = H(X) + H(Y) − H(X, Y ), where H(X, Y ) =

−∑(x,y) p(x, y) log p(x, y) is the joint entropy of X and Y.

In the context of measuring the distance of two given clusterings C1 and C2 over
a set of objects O, the discrete values of random variable X are the different clusters
c1i of C1 to which an element of O can be assigned. Similarly, the discrete values of
Y are the different clusters c2j of C2 to which an object of O can be assigned. Hence
equation (7.2) becomes

MI(C1, C2) =
∑

(c1i ,c2j )

p(c1i , c2j ) log
p(c1i , c2j )

p(c1i )p(c2j )
. (7.3)

Given set O and clusterings C1 and C2, we can construct a table such as the one shown in
Figure 7.2 to compute MI(C1, C2). An entry at position (c1i , c2j ) in this table indicates
how often an object has been assigned to cluster c1i in clustering C1, and to cluster c2j

in clustering C2. To compute p(c1i , c2j ) in equation (7.3) we just have to divide the
element at position (c1i , c2j ) by the sum of all elements in the table. For p(c1i ) we sum
all elements in row c1i and divide again by the sum of all elements in the table. To get
p(c2j ) we proceed similarly, summing over all values in column c2j , and dividing by
the total sum.

C1 \ C2 c21 . . . c2j . . . c2l

c11
...

c1i

...

c1k

Fig. 7.2. Illustration of the computation of MI(C1, C2).

In contrast with the Rand index, which is normalized to the interval [0, 1], no
normalization is provided in equation (7.3). As MI(C1, C2) ≤ max(H(C1), H(C2))

and H(C) ≤ log(k), with k being the number of clusters present in clustering C, the
upper bound of MI(C1, C2) depends on the number of clusters in C1 and C2. To get a
normalized value, it was proposed to divide MI(X, Y ) in equation (7.3) by log(k · l),
where k and l are the number of discrete values of X and Y , respectively [164]. This
leads to the normalized mutual information
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NMI(C1, C2) = 1 − 1

log(k · l)

∑
(c1i ,c2j )

p(c1i , c2j ) log
p(c1i , c2j )

p(c1i )p(c2j )
. (7.4)

We note that smaller values of NMI(C1, C2) indicate a higher degree of similarity,
i.e., a smaller distance, of the two clusterings under consideration.

Example 7.4. Some of the values of MI(Ci, Cj ) for the clusterings given in Example
7.2 are

MI(C1, C2) = 3

(
1

3
log

1/3

1/3 · 1/3

)
= log 3 ≈ 0.48,

MI (C1, C3) = 6

(
1

6
log

1/6

1/3 · 1/3

)
= log

3

2
≈ 0.18,

MI (C1, C4) = 2

(
1

3
log

1/3

1/3 · 1/2

)
+ 2

(
1

6
log

1/6

1/3 · 1/2

)
= 2

3
log 2 ≈ 0.2,

MI (C1, C5) = 6

(
1

6
log

1/6

1/3 · 1/2

)
= 0.

The corresponding tables are shown in Figure 7.3.

MI(C1, C2)

c21 c22 c23
∑

c11 0 0 2 2
c12 2 0 0 2
c13 0 2 0 2∑

2 2 2 6

MI(C1, C3)

c31 c32 c33
∑

c11 1 1 0 2
c12 1 0 1 2
c13 0 1 1 2∑

2 2 2 6

MI(C1, C4)

c41 c42
∑

c11 2 0 2
c12 1 1 2
c13 0 2 2∑

3 3 6

MI(C1, C5)

c51 c52
∑

c11 1 1 2
c12 1 1 2
c13 1 1 2∑

3 3 6

Fig. 7.3. Illustration of MI -computation.

Furthermore one has

MI(C2, Ci) = MI(C1, Ci) for i = 3, 4, 5 ,

MI (C3, C4) = MI(C3, C5) = MI(C1, C4),

MI (C4, C5) = 2

(
1

3
log

2/6

1/2 · 1/2

)
+ 2

(
1

6
log

1/6

1/2 · 1/2

)
= 2

3
log

4

3
+ 1

3
log

2

3
.
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7.3.3 Bipartite Graph Matching

In this subsection a novel procedure for measuring the distance of two clusterings
is introduced. It is based on bipartite graph matching.1 We represent the two given
clusterings C1 and C2 as one common set of nodes {c11, . . . , c1k} ∪ {c21, . . . , c2l} of a
graph, i.e., each cluster from either C1 or C2 is considerd to be a node. Then between
each pair of nodes (c1i , c2j ) an edge is inserted. The weight of this edge is equal to∣∣c1i ∩ c2j

∣∣, i.e., it is equal to the number of elements that occur in both c1i and c2j .
Given this graph, we determine a maximum-weight bipartite graph matching. Such

a matching is defined by a subset {(c1i1 , c2j1), . . . , (c1ir , c2jr )} such that each node c1i

and c2j has at most one incident edge, and the total sum of weights is maximized over
all possible subsets of edges. Intuitively, the maximum-weight bipartite graph matching
can be understood as a correspondence between the clusters of C1 and the clusters of
C2 such that no two clusters of C1are mapped to the same cluster in C2, and vice
versa. Moreover, the correspondence optimizes the total number of objects that belong
to corresponding clusters. Algorithms for computing maximum-weight bipartite graph
matching can be found in [104], for example.

The sum of weights w of a maximum-weight bipartite graph matching is bounded
from above by the number of objects n in set O. Therefore, a suitable normalized
measure for the distance of C1 and C2 is

BGM(C1, C2) = 1 − w

n
. (7.5)

Clearly, this measure is equal to 0 if and only if k = l and there is a bijective mapping
f between the clusters of C1 and C2 such that f (c1i ) = c2j for i, j ∈ {1, . . . , k}. Values
close to one indicate that no good mapping between the clusters of C1 and C2 exists
such that corresponding clusters have many elements in common.

Example 7.5. Based on the clusterings C1, . . . , C5 introduced in Example 7.2, the
graphs used to find the maximum-weight bipartite graph matching between (C1, C2),

. . . , (C4, C5) are shown in Figures 7.4a-g. In these graphs the numbers in the left
columns represent the clusters in C1, and the numbers in the right columns the clusters
in C2. Edges are drawn between any two clusters that have a nonempty intersection.
The maximum-weight bipartite matching is indicated in bold. For example, in Fig-
ure 7.4c, we compare clusters c11, c12, and c13 (represented by numbers 1, 2, 3 on
the left) with clusters c41 and c42 (represented by numbers 1, 2 on the right). Since
c11 ∩ c41 = {o1, o2}, an edge with weight 2 is drawn between c11 and c41. Similarly,
an edge with weight 2 is drawn between c13 and c42. Cluster c12 has one element in
common with each c41 and c42, which is reflected in the two edges with weight 1. Since
all other pairs of clusters have an empty intersection, there are no more edges included
in Figure 7.4c. The maximum-weight bipartite matching is the one corresponding to
the bold edges. Note that in Figures 7.4a,c,e,f,g the maximum-weight bipartite graph

1In bipartite graph matching we aim at matching two subsets of nodes of the same graph with
each other. This is different from the meaning of graph matching as used in the rest of this book,
where our aim is to match the nodes and edges of two different graphs with each other.
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matching is uniquely defined, while in Figures 7.4b,d several solutions exist. However,
all these solutions lead to the same distance value. The distances are as follows:

BGM(C1, C2) = 0,

BGM(C1, C3) = 3/6, BGM(C1, C4) = 2/6,

BGM(C1, C5) = 4/6, BGM(C3, C4) = 2/6,

BGM(C3, C5) = 2/6, BGM(C4, C5) = 2/6.
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Fig. 7.4. Illustration of bipartite graph matching.

7.4 Novel Graph Distance Measures

Having the intragraph clustering algorithm of Section 7.2 and the cluster distance mea-
sures of Section 7.3 at our disposal, we can now combine both tools to obtain new
distance measures for a pair of graphs g1 and g2. The basic idea of the measures pro-
posed in the following is first to apply the algorithm of Section 7.2 to get a clustering C1
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Fig. 7.5. An example (see text).

of the nodes of g1, and a clustering C2 of the nodes of g2. Then any of the three cluster
distance measures discussed in Section 7.3 can be used to get the distance d(g1, g2)

between g1 and g2. This yields three different new graph distance measures. Note that
even more graph distance measures can be obtained if the mst-clustering procedure
applied in the first step is replaced by another intragraph clustering procedure.

We assume that there is a common pool V = V1 ∪ V2 from which the nodes of
graphs g1 = (V1, E1, β1) and g2 = (V2, E2, β2) are chosen. Note, however, that we
do not require V1 = V2. This means that in general, there will be nodes in g1 that do
not occur in g2, and there will be nodes in g2 that are not present in g1. From this point
of view, the situation is more general than the one considered in Section 7.3 because
it was assumed there that both clusterings C1 and C2 are derived from the same set
of objects. In the following we will discuss three extensions to the distance measures
introduced in Section 7.3 that allow us to deal with this problem.

Assume that we are given two clusterings, C1 = {c11, c12, . . . , c1k} and C2 =
{c21, c22, . . . , c2l} produced by our intragraph clustering algorithm, and we want to
apply the Rand index R(C1, C2) to measure the distance of C1 and C2. First we add
a dummy cluster c10 to C1. This cluster includes exactly the nodes that are present in
V2, but not in V1. Similarly, we add a dummy cluster c20 to C2, consisting of exactly
the nodes that are present in V1, but not in V2. We can think of the nodes in cluster
c20 as nodes that are deleted from g1, while the nodes in cluster c10 can be understood
as nodes that are inserted in g2. Now consider the Rand index as defined in equation
(7.1). In order to cope with the situation that V1 may be different from V2, we need to
generalize the notion of a consistent pair. Any pair (x, y) with x ∈ c10 or y ∈ c10 (or
both x, y ∈ c10) will be considered inconsistent in our new setting. Moreover, any pair
(x, y) with x ∈ c20 or y ∈ c20 (or both x, y ∈ c20) will be considered inconsistent as
well. This means that a consistent pair (x, y) needs to fulfill, in addition to the properties
stated in Section 7.3.1, the condition that none of x and y is in c10 or c20.

An example is shown in Figure 7.5. We assume that we run the intragraph clustering
algorithm in such a way that it produces two clusters. Then the clusters represented by
the ovals will be obtained. We have c10 = {E, F }, c11 = {A, B}, c12 = {C, D},
c20 = {C, D}, c21 = {A, B, F }, c22 = {E}. There are altogether 15 different pairs
to be considered, out of which only one is consistent, namely pair (A, B). Hence
d(g1, g2) = 1 − 1/15 = 14/15. So we get a relatively large distance value, which
makes sense from the intuitive point of view since the two clusterings are in fact quite
different.
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For the mutual information-based clustering similarity measure defined by equa-
tions (7.3) and (7.4) we need to extend the table shown in Figure 7.2 by adding one
row for dummy cluster c10, and one column for dummy cluster c20. Given the extended
table, we propose to compute the distance measure in the same fashion as described in
Section 7.3.2, but to carry out the summation in equations (7.3) and (7.4) only over the
rows corresponding to c11, . . . , c1k and the columns corresponding to c21, . . . , c2l . In
this way elements from c10 and c20 will not contribute to the value of NMI(C1, C2).

For the example shown in Figure 7.5 we get the table shown in Figure 7.6,
where the entries correspond to absolute frequencies. From these numbers we derive
MI(C1, C2) = 2

6 log 2/6
1/2·1/3 = 1

3 · log 2.

CD ABF E
∑

EF 0 1 1 2
AB 0 2 0 2
CD 2 0 0 2∑

2 3 1 6

Fig. 7.6. Table for mutual information computation.

For the bipartite graph-matching-based measure we do not need to add clusters c10
and c20 to the result of the intragraph clustering procedure, but we adjust the normal-
ization factor n in equation (7.5). In Section 7.3.3 this factor was equal to the number of
objects under consideration, i.e., |V1| = |V2| = n. In the generalized setting discussed
in this section, we let n = |V1 ∪ V2|, which means that all nodes occurring in graphs
g1 and g2 are taken into consideration.

Using the example in Figure 7.5, we derive the bipartite weighted graph shown in
Figure 7.7, from which we get d(g1, g2) = 1 − 2/6 = 4/6.

1

2 2

2
1

Fig. 7.7. Example of bipartite graph matching.

Next we provide a more extensive example using the bipartite graph matching
scheme for measuring the distance of two clusterings. Four graphs, g1, g2, g3, and g4,
are shown in Figures 7.8a,b,c,d. The bold edges represent the msts of these graphs.
The clusters that result when all edges with a weight greater than or equal to 3 are
deleted from the mst are graphically represented by ellipses.2 For these four graphs,
the bipartite graph matching measure yields

2In this example, the edge weights are not unique and several msts exist. Nevertheless, the
resulting clusterings of all four graphs are uniquely defined.
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d(g1, g2) = 0,

d(g1, g3) = d(g2, g3) = 2/9,

d(g1, g4) = d(g2, g4) = 1/2,

d(g3, g4) = 4/9.

The bipartite matchings for d(g1, g2), d(g1, g3), d(g1, g4), and d(g3, g4) are shown
in Figures 7.9a,b,c,d. We note that the bipartite matchings for d(g2, g3) and d(g2, g4)

are identical to those for d(g1, g3) and d(g1, g4), respectively. In the computation
of d(g1, g2) and d(g1, g3), a total of nine nodes are involved. Hence, for example,
d(g1, g3) = 1 − 7/9 = 2/9, with 7 being the sum of the weights on the edges of
the maximum weight bipartite graph shown in Figure 7.9b. For d(g1, g4) we need to
consider ten nodes, and for d(g3, g4) nine nodes.

In the remainder of this section we formally characterize some properties of the
new graph distance measures. For the following considerations we assume that the
intragraph clustering procedure described in Section 7.2 is applied in such a way that
it always returns the same number of clusters. That is, we always cut a fixed number
of edges from the mst, rather than defining the edges to be cut by means of a threshold
on the weight of the edges. Let g1 = (V1, E1, β1) and g2 = (V2, E2, β2) be graphs.
Furthermore, let E1 = {e1, . . . , ek} and β1(e1) < β1(e2) < · · · < β1(ek). We call
graph g2 a scaled version of g1, symbolically g2 = σ(g1), if V1 = V2, E1 = E2, and
β2(ei) = c · β1(ei) for i = 1, . . . , k, where c > 0 is a constant. Basically, g1 and g2
are the same up to a constant factor that is applied on each edge weight in g1 to get the
corresponding edge weight in g2.

Lemma 7.6. Let g be a graph and σ(g) a scaled version of g. Then d(g, σ (g)) = 0.

Proof. Let g = g1 and σ(g) = g2. Because each β2(ei) is identical to β1(ei) up to
a constant scaling factor, the mst of g1, which is uniquely defined because all edge
weights are different by assumption, is also an mst of g2. Hence cutting a fixed number
of edges with the maximum weight from those msts will lead to identical clusterings
in g1 and g2. Consequently, d(g1, g2) = 0.

Lemma 7.7. Let g1 and g2 be graphs, and σ(g2) a scaled version of g2. Then
d(g1, g2) = d(g1, σ (g2)).

Proof. Similarly to the proof of Lemma 7.6, we notice that the clustering obtained for g2
will be the same as the clustering obtained for σ(g2). Hence d(g1, g2) = d(g1, σ (g2)).

Finally, we consider a transformation on the edge weights of a graph that is more
general than scaling. Let g1 = (V1, E1, β1) and g2 = (V2, E2, β2) be graphs. Fur-
thermore, let E1 = {e1, . . . , ek} and β1(e1) < β1(e2) < · · · < β1(ek). We call g2
an order-preserved transformed version of g1, symbolically g2 = ρ(g1), if V1 = V2,
E1 = E2, and β2(e1) < β2(e2) < · · · < β2(ek).
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Fig. 7.8. Four graphs and their clusters.
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Fig. 7.9. Bipartite graph matching corresponding to (a) d(g1, g2), (b) d(g1, g3), (c) d(g1, g4),
(d) d(g3, g4).

Theorem 7.8. Let g1 and g2 be graphs and ρ(g2) an order preserved transformed
version of g2. Then

(i) d(g1, ρ(g1)) = 0,
(ii) d(g1, g2) = d(g1, ρ(g2)).

The proof is based on arguments similar to the ones used for Lemmas 7.6 and 7.7.
Clearly, Theorem 7.8 is a generalization of Lemmas 7.6 and 7.7 because any scaled
version of a graph g is necessarily an order-preserved transformed version of g.

For an example of Theorem 7.8 consider Figure 7.10. Here we apply the intragraph
clustering algorithm in such a way that it always produces two clusters. Clearly, g2 is a
scaled and therefore an order-preserved transformed version of g1, and d(g1, g2) = 0.
The distance of any other graph g to g1 will always be the same as the distance of g

to g2, because g1 and g2 are clustered in the same way; hence d(g, g1) = d(g, g2).
For example, d(g1, g3) = d(g2, g3) = 0.5, using the bipartite graph-matching-based
cluster similarity measure.

7.5 Applications to Computer Network Monitoring

Various graph distance measures and their application to computer network monitoring
have been discussed in previous chapters of this book. It is expected that the measure
proposed in this chapter will be a valuable addition to the repository of tools for measur-
ing graph distance. A more detailed discussion of properties of the distance measures
introduced in this chapter and their potential usefulness in the domain of computer
network monitoring will be provided below.
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In Chapter 5 two particular graph distance measures, d1 and d2, were proposed.
Measure d1 reflects only changes in the topology of a graph, but does not capture
changes in edge weight. Hence, the insertion and deletion of both nodes and edges
will be reported by this measure, but changes in edge weight, even large ones, remain
undetected.As a generalization of d1, measure d2 captures not only topological changes,
but also differences in edge weight. However, a potential shortcoming of this measure is
its sensitivity to small edge weight changes. Any change of an edge weight, even a very
small one, will have an impact on the graph distance value. The measure introduced
in this chapter captures both topological and edge weight changes, but it has a certain
degree of insensitivity with respect to small weight changes. Those changes are very
common and may arise from regular “noise” present in the network under observation.
The insensitivity with respect to small weight change comes from the fact that such
changes are unlikely to change the clustering of the nodes. Clearly, if the clustering does
not change, then a distance equal to zero will be reported by the new graph distance
measure even if the two underlying graphs to be compared are not isomorphic.

The following example is provided to further demonstrate the differences between
the graph distance measure d(g1, g2) introduced in this chapter and d2(g1, g2) intro-
duced in Chapter 5. Three graphs g1, g2, g3 are shown in Figure 7.10a,b,c. It is easy to
verify that d2(g1, g2) = 10 and d2(g1, g3) = 8. Thus g3 is more similar to g1 than g2
to g1 under measure d2. Now assume that we run the intragraph clustering procedure
described in Section 7.2 in such a way that it produces two clusters (i.e., only one edge,
the one with maximum weight, is cut from the mst). Then we get the clusterings shown
by the ellipses in Figure 7.10 and consequently d(g1, g2) = 0 and d(g1, g3) = 0.5. We
notice that under the new graph distance measure, g2 is more similar to g1 than g3 to
g1. By definition, measure d2 merely sums up all edge weight differences, but the new
measure also takes structural information about the underlying graphs into account. We
observe that the change that leads from g1 to g2 is just a pure scaling change. That is,
the smaller/larger relation between any pair of edges in the graph is maintained when
we go from g1 to g2, since g2 is identical to g1 up to the fact that all edge weights have
been multiplied by the same constant. As discussed above, the new measure d doesn’t
respond at all to such a scale change. However, it does indicate a change between g1
and g3. This change may be interpreted as a structural one, because in g3 other node
pairs more closely linked than in g1.
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Fig. 7.10. An example.

Another very important feature of the graph distance measure introduced in this
chapter is the fact that it may lend itself to useful visualization tools that allow a human
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operator to visually track the changes in a computer network. First of all, the clusters
resulting from the first step of the new method can be readily displayed (as single nodes)
on a screen, which allows us to view the network from a bird’s-eye perspective. The
level of detail, i.e., the number of clusters or, equivalently, their size, can be chosen by
the user. It corresponds to the number of edges to be deleted from the mst, as described
in Section 7.2. Secondly, if we use the bipartite graph matching procedure in the second
step of the algorithm for computing graph distance, we can exactly see what happens
to the individual clusters when we go from time t to t + 1. That is, we can see how
the individual clusters of nodes develop over time. This allows a human operator not
only to quantitatively measure network change, but also to qualitatively interpret these
changes. Using the bipartite graph matching procedure introduced in Section 7.3.3 one
can also highlight, for example, the k clusters that have undergone the largest change
between time t and t +1, where k is a user-defined parameter. Similarly, one can define
a threshold T and display all clusters on the screen with a change larger than T . It is
perhaps more difficult to implement similar visualization tools based on graph distance
measures d1, d2, or others described in Chapter 4.

7.6 Conclusion

In this chapter we have proposed a set of new distance measures for graphs with unique
node labels and weighted edges. These measures are based on a clustering procedure
that partitions the set of nodes of a graph into clusters based on the edge weights, and
algorithms to determine the distance of two given clusterings. We have also discussed
potential applications of the new measures in the field of computer network monitoring
and have pointed out that they may be a valuable addition to the repository of existing
tools with some potential advantages over other graph distance measures.

In the second step of the new algorithm the distance of two given clusterings is
evaluated. For this task, three different methods have been proposed. Also for the first
step, i.e., intragraph clustering, several alternatives exist to the algorithm described
in Section 7.2. Hence, what is described in the current chapter may be regarded as a
novel general algorithmic framework rather than a single concrete procedure for graph
distance computation.



8

Matching Sequences of Graphs

8.1 Introduction

In the current chapter we are going to address a new problem in the domain of graph
matching. All algorithms for graph distance computation discussed previously in this
book consider just a pair of graphs g and G, and derive their distance d(g, G). Our
proposed extension consists in computing the distance d(s, S) of a pair of graph se-
quences s = g1, . . . , gn and S = G1, . . . , Gm. Both sequences can be of arbitrary
length. In particular, the length of s can be different from the length of S. The normal
graph distance is obtained as a special case of the proposed graph sequence distance if
each s and S consists of only one graph. Similarly to any of the classical graph distance
measures d(g, G), the proposed graph sequence distance d(s, S) will be equal to zero
if s and S are the same, i.e., n = m and gi = Gi for i = 1, . . . , n. On the other hand,
d(s, S) will be large for two highly dissimilar sequences.

In the next section, we review basic concepts and procedures in sequence matching
that will be used later in this chapter. In Section 8.3 we will bring the two concepts,
classical sequence matching and graph matching, together and develop novel procedures
for graph sequence matching. Applications of graph sequence matching, particularly
in the field of network behavior analysis, will be discussed in Section 8.4. Finally, in
Section 8.5 conclusions will be drawn.

8.2 Matching Sequences of Symbols

8.2.1 Preliminaries

We will consider sequences of symbols from some finite or infinite alphabet A. Such a
sequence is given by

x = x1x2 . . . xn ,

where xi ∈ A for i = 1, 2, . . . , n. The integer n represents the length of sequence
x, also denoted by |x|. A special case is the empty sequence ε that has length zero.
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Sequences of symbols can be concatenated. Let x = x1 . . . xn and y = y1 . . . ym be
sequences. Then the concatenation of x and y yields the sequence

z = xy = x1 . . . xny1 . . . ym .

Let x = x1 . . . xn be a sequence. A continuous subsequence of x, xk+1 . . . xn−l , is
obtained by deleting the first k symbols x1 . . . xk and the last l symbols xn−l+1 . . . xn

from x, where l, k ≥ 0 and l + k ≤ n. A subsequence of x is obtained by deleting
up to n symbols from x at arbitrary positions. Hence any continuous subsequence is
a subsequence but not vice versa. We call the continuous subsequence that consists of
the first k symbols x1 . . . xk a prefix, and the sequence that consists of the last l symbols
xn−l+1 . . . xn a suffix of x, for 0 ≤ k, l ≤ n.

Example 8.1. Let A = {a, b, c}, x = aabca, y = cca. We observe that |x| = 5 and
|y| = 3. Concatenation yields, for example, xy = aabcacca, yx = ccaaabca, yy =
ccacca, xxy = aabcaaabcacca. Symbol a is a prefix of x and a suffix of y. Sequences
aa and aab are both a prefix of x. All of the following sequences are continuous
subsequences of x : a, ab, abc, aa, aabc. The set of all continuous subsequences
of y is {c, cc, cca, ca, a}. All of the following sequences are subsequences of x :
ac, ba, aba, aca, aaa, but none is a continuous subsequence.

Given two sequences x = x1 . . . xn and y = y1 . . . ym, it is trivial to check their
identity: we just need to find out whether n = m and xi = yi for i = 1, . . . , n.

There is also a simple algorithm to find out whether x is a continuous subsequence
of y; see Figure 8.1. We assume that n ≤ m (otherwise, x can’t be a continuous
subsequence of y). The algorithm considers each symbol yi in sequence y as a potential
starting point of sequence x, for i = 1, . . . , m − n + 1. It compares symbols yi+j and
xj for j = 1, . . . , n. If both symbols are the same then the algorithm continues and
compares the next pair of symbols, yi+j+1 and xj+1. Otherwise, if a position j is
encountered for which yi+j �= xj , the algorithm continues with the next symbol of
y, yi+1, as a potential starting point of sequence x. If there exists a symbol yi such
that yi+j = xj for j = 1, . . . , n then we can conclude that x is in fact a continuous
subsequence of y.As an example, the reader may execute the algorithm shown in Figure
8.1 with x = ab and y = aaab.

Obviously, the algorithm shown in Figure 8.1 runs in O(nm) time and O(m) space.
There exist more elaborate procedures that require less time [163]. A procedure similar
to the one given above can be designed to find out whether x is a subsequence of y.
Another algorithm that solves this task will be introduced in Section 8.2.

8.2.2 Edit Distance of Sequences of Symbols

Edit distance is a concept that is useful to measure the distance d(x, y) of two given
sequences x and y. The basic idea in sequence edit distance computation is to introduce
a set of edit operations that operate on the symbols of x and y. Typically the set of
edit operations consists of the deletion, insertion, and substitution of a symbol. More
formally, an edit operation is one of the following:
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(a) a → ε denotes the deletion of symbol a

(b) ε → a denotes the insertion of symbol a

(c) a → b denotes the substitution of symbol a by b

Often a cost is assigned to each individual edit operation. Let c(a → ε), c(ε → a),
and c(a → b) denote the cost assigned to edit operations a → ε, ε → a, and a → b,
respectively. The costs are usually application-dependent and are chosen in such a way
that frequent operations have a low cost, while a high cost is assigned to operations that
occur seldomly. Regardless of the application, each cost is a nonnegative number, and
the cost of an identical substitution c(a → a) is always equal to zero for any symbol a.

Given two sequences x and y, the aim of sequence matching is to apply edit oper-
ations so as to make the two sequences identical to each other. In general, there exist
many possibilities, i.e., many possible sequences of edit operations, to achieve this
goal. For example, one can first delete all symbols from x and then insert all symbols
from y. Among all possible sequences of edit operations that transform x into y we are
particularly interested in the one that has minimum cost. Let σ be such a sequence with
minimum cost (note that there may exist several such minimum cost sequences), and
let c(σ ) denote the cost of σ . Then the edit distance d(x, y) of x and y is equal to c(σ ).
Formally, we define

d(x, y) = min{c(σ )|σ is a sequence of edit operations that transform x into y} .

(8.1)
In this definition we assume that the cost of a sequence of edit operations is equal

to the sum of the individual costs. That is, let σ = e1, . . . , el be a sequence of edit
operations, where edit operation ei has cost c(ei) for i = 1, . . . , l. Then c(σ ) =∑l

i=1 c(ei).
We note that equation (8.1) is just a formal definition of the edit distance d(x, y) of

two sequences x and y. It doesn’t tell us how to actually compute d(x, y) for a given
pair of sequences x and y. The standard algorithm for computing d(x, y) is based on
dynamic programming. A pseudocode description of the algorithm is given in Figure
8.2 [176].

The algorithm uses a matrix D(i, j), which is also called cost matrix, because
its elements represent the cost of certain sequences of edit operations. If |x| = n and
|y| = m then D(i, j) is of dimension (n+1)×(m+1). There is one row for each symbol
in x and one column for each symbol in y. Additionally there is one initial row and one
initial column, both with index 0. Matrix element D(0, 0) is equal to zero, by definition.
Furthermore, D(0, j) holds the edit distance d(ε, y1 . . . yj ) and matrix element D(i, 0)

the edit distance D(x1 . . . xi, ε) for i = 1, . . . , n and j = 1, . . . , m. For i > 0 and
j > 0, D(i, j) holds the edit distance d(x1 . . . xi, y1 . . . yj ). Consequently, element
D(n, m), which is obtained immediately before the algorithm terminates, holds the
desired edit distance between x and y, d(x, y) = d(x1 . . . xn, y1 . . . ym). An illustration
of the cost matrix is shown in Figure 8.3.

During execution of the algorithm, the initial row and initial column are computed
first. Then the interior matrix elements are computed in a left-to-right and top-to-bottom
fashion. In the computation of matrix element D(i, j) for i > 0 and j > 0 its three
immediate predecessor elements, D(i − 1, j − 1), D(i − 1, j), and D(i, j − 1), are
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input: x = x1 . . . xn, y = y1 . . . ym

output: success, if x is a continuous subsequence of y;
failure, otherwise.

begin
i = 1
j = 1
while i ≤ m and j ≤ n do

if xj = yi then
i = i + 1
j = j + 1

else
i = i − j + 2
j = 1

if j > n then
output(success: x1 . . . xn = yi−n . . . yi−1)
else
output(failure)

end

Fig. 8.1. Algorithm for finding a continuous subsequence x in sequence y.

considered. The value of D(i, j) is defined to be equal to the minimum of the following
three quantities: (a) D(i−1, j −1) plus the cost of substituting xi by yj , (b) D(i−1, j)

plus the cost of deleting xi , (c) D(i, j−1) plus the cost of inserting yj . Hence the value of
D(i, j), which represents d(x1 . . . xi, y1 . . . yj ), is obtained by selecting the minimum
among of the following three terms:

(a) d(x1 . . . xi−1, y1 . . . yj−1) + c(xi → yj )

(b) d(x1 . . . xi−1, y1 . . . yj ) + c(xi → ε)

(c) d(x1 . . . xi, y1 . . . yj−1) + c(ε → yj )

Matrix element D(n, m) will become available last, and it holds the desired value
d(x, y). For a proof of the correctness of this algorithm see [176], for example.

From the pointers set in steps 10 to 12 the sequence of edit operations that actu-
ally transform x into y can be reconstructed. For this purpose one starts at D(n, m) and
traces back these pointers to position D(0, 0). Such a sequence of pointers is also called
an optimal path in the cost matrix. It has to be noted that, due to the way the algorithm is
presented in Figure 8.2, only one pointer is installed for each matrix element. In general,
however, the predecessor element from which D(i, j) is computed may not be uniquely
defined. In other words, the minimum among (a), (b), and (c) as introduced above may
not be unique. If one is interested in recovering all possible sequences of edit operations
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input: x = x1 . . . xn, y = y1 . . . ym, set of edit operations and their costs
output: cost matrix D(i, j) and pointers; d(x, y) = D(n, m).

begin
1. D(0, 0) := 0;
2. for i = 1 to n do D(i, 0) := D(i − 1, 0) + c(xi → ε);
3. for j = 1 to m do D(0, j) := D(0, j − 1) + c(ε → yj );
4. for i = 1 to n do
5. for j = 1 to m do
6. m1 := D(i − 1, j − 1) + c(xi → yj );
7. m2 := D(i − 1, j) + c(xi → ε);
8. m3 := D(i, j − 1) + c(ε → yj );
9. D(i, j) = min(m1, m2, m3);
10. if m1 = D(i, j) then pointer(i, j):=(i − 1, j − 1)

11. else if m2 = D(i, j) then pointer(i, j):=(i − 1, j)

12. else pointer(i, j):=(i, j − 1);
end

Fig. 8.2. Algorithm for edit distance d(x, y) of sequences x and y.

x1

x2

xi

...

...

xn

y1 y2 yi . . .. . . ym

element D(i, 0): holds d(x1 . . . xi, ε)

initial column

element D(0, j): holds d(ε, y1 . . . yj )

initial row

element D(i, j): holds

d(x1 . . . xi, y1 . . . yj )

element D(n, m): holds
d(x1 . . . xn, y1 . . . ym)

Fig. 8.3. Graphical illustration of cost matrix D(i, j).

that transform x into y with minimum cost, one has to install and track all these pointers.

Example 8.2. Let x = ababbb, y = babaaa and let the set of edit operations be given
by a → b, b → a, a → ε, b → ε, ε → a, ε → b with costs c(a → ε) = c(b →
ε) = c(ε → a) = c(ε → b) = 1 and c(a → b) = c(b → a) = 2. Then the execution
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of the algorithm yields the matrix shown in Figure 8.4. From the element in the lower
right corner we conclude that d(x, y) = 6.
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1 3 4 5
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1 1 2 3

3 2 1 3 4
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4

3 32 4 5

5 6435

Fig. 8.4. Cost matrix corresponding to Example 8.2.

For the sake of simplicity, pointers have been left out in Figure 8.4. However, the
path that can be actually reconstructed from the pointers is shown in Figure 8.5. This
path corresponds to the following edit operations:

(ε → b), (a → a), (b → b), (a → a), (b → ε), (b → a), (b → a).

Application of this sequence of edit operations to x yields in fact sequence y, and
the cost of this sequence of edit operations is equal to 6.
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Fig. 8.5. Illustration of pointers.
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An interesting problem that is closely related to the edit distance of sequences as
introduced in this section is longest common subsequence computation. Let x and y

be two sequences and z a subsequence of both x and y. We call z a longest common
subsequence (lcs) of x and y if there exists no other subsequence of x and y that is longer
than z. Notice that there may exist more than one lcs of two given sequences x and y. It
has been shown that the algorithm for string edit distance computation given in Figure
8.2 can be used for lcs computation if the following costs are chosen: c(a → b) = 2
for any substitution a → b, where a �= b, c(ε → a) = c(a → ε) = 1 for any insertion
and deletion [176]. In this case the length l of the lcs of two sequences x and y is
related to the edit distance of x and y via the equation

d(x, y) = |x| + |y| − 2l , (8.2)

and an actual lcs corresponds to the identical substitutions on an optimal path in the
cost matrix.

Example 8.3. Consider again Example 8.2. Here the costs comply with the condition
stated above. Hence we conclude that l = [|x|+ |y|−d(x, y)]/2 = [6+6−6]/2 = 3,
i.e., the lcs of x and y is of length 3. Moreover, from the optimal path shown in Figure
8.5 we extract three identical substitutions, namely (a → a), (b → b), (a → a), which
correspond to the lcs aba. Note that in this example the lcs is not unique.

Obviously, the algorithm for lcs computation can be used to find out whether a given
sequence s is a subsequence of another given sequence S. We just run the algorithm and
check whether |s| = l, where l is the length of the lcs of s and S according to equation
(8.2).

It is easy to see that the algorithm given in Figure 8.2 has a time and space complexity
equal to O(nm). We want to remark that the present section provides only a basic
introduction to the field of sequence matching. For further details, including algorithms
with a lower time or space complexity, the reader is referred to [80, 152, 163].

8.3 Graph Sequence Matching

In Section 8.2 we have discussed how two sequences of symbols can be tested for
identity, and the relations of subsequence and continuous subsequence. Also, a proce-
dure for the computation of the edit distance of a pair of sequences was introduced. In
the current section we show how these procedures can be extended from sequences of
symbols to sequences of graphs. Throughout the section we consider two sequences of
graphs, s = g1 . . . gn and S = G1 . . . Gm, that are to be matched to each other.

A closer look reveals that all algorithms considered in Section 8.2 can be extended
to deal with sequences of graphs rather than sequences of symbols in a straightforward
manner. First of all, we notice that checking two sequences of graphs for identity can be
accomplished by testing whether n = m and gi and Gi are isomorphic to each other, for
i = 1, . . . , m. Furthermore, the algorithm given in Figure 8.1, which tests two sequences
of symbols for the continuous subsequence relation, can be trivially extended to test
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whether one sequence of graphs is a continuous subsequence of another if we replace
the operation that tests two symbols for identity by an operation that tests two graphs
for isomorphism.

Moreover, we can generalize the algorithm for edit distance computation in Figure
8.2 from sequences of symbols to sequences of graphs in a straightforward way. The
only extension that is needed is to define the edit operations, which are applied on
symbols in Section 8.2, to work on whole graphs. Hence our proposed graph sequence
matching algorithm will be based on the following edit operations:

(a) g → G, which denotes the substitution of graph g by graph G

(b) g → λ, which denotes the deletion of graph g (or, equivalently, the substitution of
graph g by the empty graph λ)

(c) λ → g, which denotes the insertion of graph g (or, equivalently, the substitution of
the empty graph λ by graph g)

Given these edit operations and associated costs, we can adapt the algorithm of
Figure 8.2 for edit distance computation of graph sequences. A pseudocode description
of the resulting algorithm is given in Figure 8.6.

The costs of the edit operations used in the algorithm in Figure 8.6 depend, similarly
to the case of matching sequences of symbols, on the considered application. One
obvious choice is, for example, to assign a constant cost to each type of edit operation,
regardless of the affected graphs.As a concrete example, one may define c(g → G) = 2
for any substitution and c(g → λ) = c(λ → G) = 1 for any deletion and insertion.
Under such a cost function, the algorithm shown in Figure 8.6 can be used not only
for graph sequence computation but also to compute the length of the longest common
subsequence of two sequences of graphs (see Section 8.2 and equation (8.2)).

Another meaningful definition of the costs of the edit operations is the edit distance
d(g, G) of the affected graphs g and G. Under this scheme, we define

(a) c(g → G) = d(g, G),
(b) c(g → λ) = d(g, λ),
(c) c(λ → G) = d(λ, G),

where any of the graph distance measures introduced in previous chapters can be used
to implement d(g, G).

It is easy to see that the proposed algorithm for computing the edit distance of
two sequences of graphs has a time and space complexity of O(nmk), where k is
the complexity of determining the cost of an individual edit operation. For example,
when a constant cost is assigned to each edit operation, as discussed above, then factor k

reflects the complexity of testing two graphs for isomorphism. Similarly, when the costs
of the edit operations are equal to the distance of the corresponding graphs, then factor
k corresponds to the complexity of graph distance computation. In the applications
discussed in Section 8.4 this factor will be no larger than p2 thanks to the fact that the
class of graphs under consideration is restricted, where p is the number of nodes of the
larger of the two graphs involved. Hence a polynomial complexity with respect to the
size of the underlying graphs and the length of the graph sequences is ensured.
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input: graph sequences s = g1 . . . gn and S = G1 . . . Gm, together with
edit operations and their costs.

output: cost matrix D(i, j) and pointers; d(s, S) = D(n, m).

begin
1. D(0, 0) := 0;
2. for i = 1 to n do D(i, 0) := D(i − 1, 0) + c(gi → ε);
3. for j = 1 to m do D(0, j) := D(0, j − 1) + c(ε → Gj);
4. for i = 1 to n do
5. for j = 1 to m do
6. m1 := D(i − 1, j − 1) + c(gi → Gj);
7. m2 := D(i − 1, j) + c(gi → ε);
8. m3 := D(i, j − 1) + c(ε → Gj);
9. D(i, j) = min(m1, m2, m3);
10. if m1 = D(i, j) then pointer(i, j):=(i − 1, j − 1)

11. else if m2 = D(i, j) then pointer(i, j):=(i − 1, j)

12. else pointer(i, j):=(i, j − 1);
end

Fig. 8.6. Algorithm for edit distance, d(s, S), of graph sequences s = g1 . . . gn and S =
G1 . . . Gm.

8.4 Applications in Network Behavior Analysis

With new algorithms for graph sequence distance computation at our disposal, a number
of additional, more refined, procedures for network behavior analysis can be designed.
Three possibilities are discussed below.

8.4.1 Anomalous Event Detection Using a Library of Past Time Series

The basic idea of this approach is to have a database of past time series of graphs
available with some of these time series including anomalous events. More precisely,
for each sequence S = G1 . . . Gm in the database and each transition from Gi to
Gi+1 it is known whether this transition corresponds to an anomalous event. If the
transition is known to be abnormal, it may also carry a label that further specifies of
which type the abnormal event is. Now assume we are given an actual time series of
graphs s = g1 . . . gn and want to find out whether an abnormal event has occurred in the
last time step, i.e., between gn−1 and gn. Rather than just computing d(gn−1, gn) and
comparing this value to a predefined threshold, with the new graph sequence matching
algorithms at our disposal, we can match the whole time series s, or a suffix of suitable
length, to the sequences in the database, retrieve all sequences that have a small distance
to s, and decide based on the type of these similar sequences whether the transition from
gn−1 to gn is abnormal. More precisely, if we retrieve sequence S = G1 . . . Gm from the
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database such that the pair Gi−1, Gi corresponds to the pair gn−1, gn, and if furthermore
the transition from Gi−1 to Gi is known to be anomalous, then we may conclude that
also the transition from gn−1 to gn is anomalous. Such a strategy, which compares
actual input data to past events of known type, follows the paradigm of case-based
reasoning, where past cases are used to solve an actual problem. For an introduction
to, and overview of, case-based reasoning, see [107].

In the rest of this section we will discuss the strategy that was sketched in the
last paragraph in greater detail. The first question that arises in the implementation of
a scheme for anomalous change detection using a library of past cases concerns the
length of sequence s. We assume here that there exist some deterministic, but unknown,
rules that partly govern the network behavior. In particular, we assume that whether the
transition from gn−1 to gn is anomalous depends not only on gn−1 and gn, but on some
longer, but finite, history, i.e., on a suffix of sequence s of length t ≥ 2. Finding an
appropriate value of the relevant length t of the postfix of s to be used to decide whether
the transition from gn−1 to gn represents an anomalous event is the first important
step to be solved. Clearly, if the value of t is too small then we may not have enough
information to decide of which type the event leading from gn−1 to gn is. On the other
hand, if t is too large we may unnecessarily slow down the computation or introduce
noise. In order to simplify our notation, we assume that n = t , i.e., we assume that the
whole length of sequence s is relevant to classifying the transition from gn−1 to gn as
anomalous or not. The actual choice of a suitable value of parameter t will usually need
some prior knowledge that depends on the actual application, and may require some
experimental investigation.

Given a fixed value of parameter t , let us furthermore assume that we know that
the transition from Gi−1 to Gi in sequence S of the database is anomalous. Then
we can compute the distance of s = g1 . . . gn and Gi−n+1 . . . Gi . If this distance
d(g1 . . . gn, Gi−n+1 . . . Gi) is smaller than a given threshold θ we may conclude that
the transition from gn−1 to gn is anomalous. Moreover, we may conclude that the
abnormality is of the same type as the one corresponding to the transition from Gi−1 to
Gi . Hence detection of anomalous events can be solved by means of the graph sequence
matching algorithm introduced in this chapter. If there is more than one anomalous event
recorded in the database, then all of these events can be used for comparison to sequence
s. If more than one anomalous event from the database matches the actual sequence,
then the closest match, i.e., the event corresponding to the sequence with the smallest
distance, can be used to determine the type of abnormality.

When matching sequence g1 . . . gn with Gi−n+1 . . . Gi , we can either disable inser-
tions and deletions or allow them, depending on the particular application. Disabling
insertions and deletions can be easily accomplished by defining the costs of these
edit operations to equal infinity. If insertions and deletions are disabled, then the two
sequences under consideration must be of the same length, and computing the edit
distance of two sequences of equal length, s = g1 . . . gn and S = G1 . . . Gn, reduces
to computing the sum of the substitution costs c(gi, Gi), i.e., in this case
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d(g1 . . . gn, G1 . . . Gn) =
n∑

i=1

c(gi, Gi) .

Note that this operation requires only O(nk) time, where parameter k represents
the cost of computing c(gi, Gi).

If deletions and insertions are enabled, one may consider a time window longer
than n in the sequences in the database to be matched with the input sequence s. That
is, if s = g1 . . . gn and the transition from Gi−1 to Gi in database sequence S is
known to be anomalous, then we may wish to compute d(g1 . . . gn, Gi−N+1 . . . Gi)

rather than d(g1 . . . gn, Gi−n+1 . . . Gi) for some N > n. Again, finding an appropriate
value of parameter N may require a priori knowledge about the problem domain and
experimental investigation.

8.4.2 Prediction of Anomalous Events

We assume again that a database with past time series of graphs is at our disposal,
where it is known for each transition from Gi−1 to Gi in each sequence S whether
the transition represents an anomalous event. Given an actual time series of graphs
s = g1 . . . gn, we consider the task of predicting whether the transition from gn to gn+1
will be anomalous. It is assumed, similarly to Section 8.4.1, that the behavior of the
network to be monitored is to some degree deterministic, though the concrete rules that
govern the network’s behavior are unknown. Consequently, we may conclude that an
anomalous event is likely to occur if there exists a sequence S = G1 . . . Gm in the
database that contains a (contiguous) subsequence Gi−n+1 . . . Gi that is similar to s,
and the transition from Gi to Gi+1 represents an anomalous event. This strategy is
based on the assumption that, given two sequences s and S, if the first n graphs are
similar in both sequences, the elements at position n + 1 will also be similar.

To implement a scheme for prediction as sketched in the last paragraph, we need to
fix again parameter t that defines the length of the relevant time window. This parameter
has the same meaning as in Section 8.4.1. In order to simplify our notation we assume
again that t = n. In analogy to Section 8.4.1 let the transition from Gi to Gi+1 represent
an anomalous event. Then we compute the distance d(g1 . . . gn, Gi−n+1 . . . Gi) and
predict that the transition from gn to gn+1 will be an anomalous one if this distance is
smaller than some predefined threshold.

Similarly to Section 8.4.1, two different instances of this scheme seem feasible. We
may choose either to disable or enable insertions and deletions. In the second case, it
may be meaningful to consider a time window in the sequences in the database that is
longer than n.

8.4.3 Recovery of Incomplete Network Knowledge

For a number of reasons we may sometimes have to deal with incomplete time series of
graphs, where at certain points in time no graphs are available. For the sake of simplicity
we consider just the case of a simple gap of length one in a given time series of graphs.
That is, we assume that an actual time series of graphs s = g1 . . . gi−1∅gi+1 . . . gn is
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given, where we have observed a graph at each point in time 1, . . . , i − 1, i + 1, . . . , n,
but we missed the observation at time i. The procedure described in the following can
be easily extended from one to several gaps in a sequence, and from gaps of length one
to gaps of length r ≥ 1. The task considered in this subsection consists in recovering the
state of the network at point i, i.e., in recovering graph gi from g1 . . . gi−1gi+1 . . . gn.
For the procedure described below we assume that the database of past time series
includes only sequences without gaps.

One possible procedure to recover graph gi is to split incomplete sequence s =
g1 . . . gi−1∅gi+1 . . . gn into two continuous subsequences, s1 = g1 . . . gi−1 and s2 =
gi+1 . . . gn. Then we try to find a sequence S = G1 . . . Gm in the database that contains
a subsequence S1 = Gj+1 . . . Gj+i−1 and another subsequence S2 = Gj+i+1 . . . Gj+n

such that s1 matches S1 well and s2 matches S2 well, i.e., both d(s1, S1) and d(s2, S2)

are small. If two such subsequences exist, we can use the graph in between S1 and S2,
i.e., Gj+i , to substitute it for the missing observation in sequence s. This procedure is
based on the assumption that, given two sequences s and S, if the first i and the last j

graphs are similar in both sequences, the elements in between will also be similar.
In the implementation of the proposed procedure we need to decide upon the lengths

of sequences s1 and s2. To keep our notation simple we let s1 and s2 be of lengths i−1 and
n−i, respectively, i.e., s1 = g1 . . . gi−1 and s2 = gi+1 . . . gn, as introduced above. If we
decide to disable insertions and deletions then there exists a simple solution that checks
whether database sequence S = G1 . . . Gm contains sequences S1 = Gj+1 . . . Gj+i−1
and S2 = Gj+i+1 . . . Gj+n such that s1 has a small distance to S1 and s2 has a small
distance to S2. We assume that n ≤ m and compute

d(g1 . . . gi−1γgi+1 . . . gn, Gj+1 . . . Gj+i−1Gj+iGj+i+1 . . . Gj+n)

=
n∑

k=1

c(gk, Gj+k) ,

for j = 0, . . . , m − n + 1. Symbol γ = gi is a dummy symbol for which we de-
fine c(γ → g) = 0 for any graph g. Clearly, whenever there exists a subsequence
Gj+1 . . . Gj+i−1Gj+i Gj+i+1 . . . Gj+n for which d(g1 . . . gi−1γgi+1 . . . gn,Gj+1 . . .

Gj+i−1Gj+iGj+i+1 . . . Gj+n) is smaller than some predefined threshold, graph Gj+i

qualifies to be used as a suitable substitute for the missing graph gi .

8.5 Conclusions

In this chapter we have proposed a novel class of algorithms for graph sequence match-
ing. While both the matching of graphs and the matching of sequences of symbols have
been individually addressed in the literature before, this is the first attempt to com-
bine both concepts into a common framework that allows us to compare sequences in
which the individual elements are given in terms of graphs. Our novel algorithms are
able to decide, for two given sequences of graphs s and S, whether s is a (continuous)
subsequence of S. Moreover, we have introduced a procedure that is able to compute
the distance of two graph sequences based on a set of edit operations, each of which
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affects a complete graph in one of the two given sequences. Also, some applications
of the proposed algorithms in the analysis of network behavior have been discussed.
Compared to previous work in network analysis that uses the same kind of graph repre-
sentation as in this chapter, it can be expected that the proposed algorithms will be able
to be distinguished by increased robustness and precision in the detection of anomalous
events, since they take more information into account when classifying an event as nor-
mal or abnormal. Moreover, there are a number of novel tasks in network analysis that
can be addressed, thanks to the improved capabilities of the new tools proposed in this
report. Examples include prediction of anomalous behavior and recovery of missing
information. One crucial requirement, however, is the availability of a sufficiently large
database that represents typical network behavior of both normal and abnormal type.

In Section 8.4.3 we have shown how a missing graph in a time series can be re-
covered. A variation of this task consists in the reconstruction of partial graphs. Here
we assume that at time i only a partial graph gi was observed and we are interested in
reconstructing the missing portion of graph gi . Obviously, this problem can be solved
by the method described in Section 8.4.3 if we don’t distinguish whether graph gi is
completely missing or was only partially observed. Another possible solution is, how-
ever, to apply some kind of graph interpolation operator that would reconstruct gi from
gi−1 and gi+1, or from a larger window. That is, under this scheme we would not need
any of the graph sequence stored in the database but rely only on graphs in the actual
input sequence. This topic will be discussed in greater detail in Chapter 11.

Another open question is whether more elaborate versions of the algorithms pro-
posed in this chapter can be developed that would be able to find appropriate values
of some of the involved parameters automatically. For example, in all of the methods
discussed in Section 8.4 it is necessary for the user, or the system developer, to fix the
length t of the relevant sequences or subsequences that are to be taken into account
in comparing the actual times series of graphs with the cases stored in the database.
It would be an advantage from the user’s point of view if appropriate values of this
parameter could be automatically found by our graph sequence matching algorithm.
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Distances, Clustering, and Small Worlds

9.1 Graph Functions

9.1.1 Distance

In previous chapters we have discussed distance between graphs. In this chapter we
shall consider distance between vertices in a graph.

As we said in Chapter 2, the length of a path in a graph is the number of edges in
it, and the distance between two connected vertices is the minimum length of paths
joining them (a path attaining this length is often called a “shortest path” joining the
vertices). In a network, with weights on the edges, one sometimes defines the length as
the sum of the weights on the edges of a path; to distinguish between the two, we will
refer to this as weighted length, and similarly define weighted distance.

We shall write D(x, y) for the distance between vertices x and y. By definition,
D(x, x) = 0.

9.1.2 Longest Distances

There are several definitions of the diameter of a graph. The key property used in any
definition of graph diameter is eccentricity.

Definition 9.1. Given a graph G = (V , E) the eccentricity of a vertex v ∈ V , denoted
by ε(v), is the maximum distance from v to any other vertex in the graph. That is,
ε(v) = maxu∈V D(v, u).

Definition 9.2. Given a graph G = (V , E), the diameter of G is

D(G) =
∑

v∈V ε(v)

|V | .

Graph diameter can be calculated using algorithms for all pairs of shortest paths.
From the algorithms, averaging over all of the vertex eccentricities is straightforward.
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Section 9.3 presents an example network for calculating vertex eccentricities and graph
diameter.

Of course, the distance function in the definition of eccentricity could be replaced
by the weighted distance. In that case we would refer to the weighted eccentricity and
graph weighted diameter.

9.1.3 Average Distances

It is of interest to know the typical distance between two vertices in a graph. One
obvious parameter is the mean path length, the mean value of D(x, y), where x and y

vary through the vertices. While this is a useful parameter when known, its calculation is
impractical for large graphs such as those that arise in discussing intelligent networks. It
is necessary to estimate the average. Such estimation must be carried out by sampling.
Since calculating a median is much faster than calculating a mean, there are better
sampling techniques available for accurately estimating medians than for means, so
Watts and Strogatz considered the median path length as a measure.

The sampling technique for estimating medians was studied, and its accuracy esti-
mated, by Huber [93]. One might think that the median would be a significantly less
reliable measure of average distance than the mean. However, Huber [93] studied the
sampling technique for estimating medians, and estimated its accuracy. The results are
summarized in [184, pp. 29–30] and show that the median is quite a good estimator.

Another theoretical advantage is that medians can be calculated even if the graph
is disconnected, provided the number of disconnected pairs of vertices is not too large.
(A disconnected pair corresponds to an “infinite” path, which is longer than any finite
path. Provided fewer than half the paths are “infinite,” the median can be calculated.)
Newman [135] suggests ignoring disconnected pairs, but we believe that the “infinite”
distance technique is more appropriate.

To approximate a median of a set is straightforward, because the sample median is
an unbiased estimator of the median (and of the mean, in normal or near-normal data).
One simply takes a number of readings and finds their median.

If S is a set with n elements, its median is defined as that value M(S) such that n/2
members of S have value ≤ M(S) and n/2 members have value ≥ M(S). Let us say
that an estimate M of M(S) is “of accuracy” δ if at least δn/2 members have value
≤ M and δn/2 members have value ≥ M . Then Huber proved the following theorem:

Theorem 9.3. [93] Suppose δ (usually near 1) and ε (usually small) are positive
constants. Approximation of the median M(S) of a set S by sampling s readings yields
a value of accuracy at least δ with probability 1 − ε, where

s = 8 ln
2

ε

(
δ

1 − δ

)2

.

9.1.4 Characteristic Path Length

The median of a finite set of readings is a discrete-valued function: it takes either one of
the reading values or the average of two of them. This leads to some minor inaccuracies.
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Consider, for example, two sets of readings: A contains 49 readings 0 and 50 readings
1, while B contains 50 readings 0 and 49 readings 1. These sets are very similar, but the
medians are 0 and 1 respectively. To avoid such chaotic leaps in value, the following
definition is used.

The characteristic path length L(G) of a graph G is calculated as follows. First,
for each vertex x, the median Dx of all the values D(x, y), y a vertex, is calculated.
Then L(G) is the mean of the values Dx , for varying x. So, in the sampling procedure
suggested by Huber, one calculates a number of values of Dx and takes their median.

9.1.5 Clustering Coefficient

The neighborhood of a set of vertices consists of all the vertices adjacent to at least one
member of the set, excluding members of the set itself. If the set consists of a single
vertex x, we denote the neighborhood of {x} by N(x). The graph generated by N(x),
denoted by 〈N(x)〉, has vertex set N(x), and its edges are all edges of the graph with
both endpoints in N(x). We write k(x) (the degree of x) and e(x) for the numbers of
vertices and edges, respectively, in 〈N(x)〉. Then the clustering coefficient γx of x is

γx = e(x)(
k(x)

2

) = 2e(x)

k(x)(k(x) − 1)
.

In other words, it equals the number of connections between the neighbors of x divided
by the maximum possible number of connections.

The clustering coefficient of a graph G equals the mean of the clustering coefficients
of all vertices of G, and is denoted γ (G) or simply γ .

The extreme maximum value γ (G) = 1 occurs if and only if G consists of a number
of disjoint complete graphs of the same order (each has k + 1 vertices, where every
vertex has the same degree k). The extreme minimum value γ (G) = 0 is attained if
and only if the graph G contains no triangles.

9.1.6 Directed Graphs

The theory of these measures is much the same if directed graphs are considered.
However, in calculating the clustering coefficient in a directed graph, the formula

γx = e(x)

2
(
k(x)

2

) = e(x)

k(x)(k(x) − 1)

should be used. In other words, the result should be halved, corresponding to the fact
that there are k(k − 1) possible directed edges between k vertices.

9.2 Diameters

Graph diameter can be used as as a measure of difference between two graphs. Given
two graphs G and H , simply calculate the difference between their respective diameters.
The difference f (G, H) is given by
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f (G, H) = |D(G) − D(H)|.
We shall now discuss some theoretical properties of this distance measure and some

sensitivities that this measure has for detecting change in networks.

9.2.1 A Pseudometric

It is a desirable property that a measure of distance between networks (like the ones
defined in Chapter 4) should be a metric. Recall that a metric on set A is a function
d : A × A → R that maps a product set A × A to the real numbers such that four
axioms hold: nonnegativity, separation, symmetry, and the triangle inequality.

The axiom of separation states that for a given distance measure, d(a, b) = 0 if and
only if a = b. In terms of graphs, two graphs are equivalent if they are isomorphic, that
is, the two graphs have a one-to-one mapping of the vertices that preserves the edge
connections [188]. It is certainly possible that two graphs G and H are not isomorphic
but have the same graph diameter and therefore f (G, H) = 0. A simple example of
this is the complete graph with n vertices, Kn. The complete graph Kn has diameter
D(Kn) = 1, ∀ n ≥ 2, and it follows that f (Ki, Kj ) = 0, ∀ i, j ≥ 2; however, Ki and
Kj are not isomorphic if i �= j .

Although the function f (G, H) = |D(G)−D(H)| is not a metric, it is still a useful
measure of distance between two graphs. To discuss this, we present the notion of a
pseudometric.

Definition 9.4. A pseudometric on set A is a function d : A × A → R for which the
following axioms hold for all a, b, c ∈ A:

(i) d(a, b) ≥ 0,
(ii) d(a, b) = 0, if a = b,

(iii) d(a, b) = d(b, a),
(iv) d(a, b) ≤ d(a, c) + d(c, b).

For the graph diameter distance measure, axiom (ii) of Definition 9.4 implies that if two
graphs are isomorphic, denoted by G ∼= H , then they have the same graph diameter,
but having the same graph diameter does not imply that the two graphs are isomorphic.
This constitutes a relaxation of the separation axiom in the definition of a metric.

Theorem 9.5. The function f (G, H) = |D(G) − D(H)| is a pseudometric.

Proof. It must be shown that all axioms in Definition 9.4 hold for f (G, H) = |D(G)−
D(H)|. For (i), by definition of absolute value, |D(G) − D(H)| ≥ 0, ∀ G, H , so
f (G, H) ≥ 0.

Next, to show that (ii) holds, the relation of graph isomorphism is used. If G and
H are isomorphic, then there exists a bijection g : V (G) → V (H) such that {u, v} ∈
E(G) implies that {g(u), g(v)} ∈ E(H). Due to this bijection, |V (G)| = |V (H)| and
ε(v) = ε(g(v)) and therefore f (G, H) = 0 if G is isomorphic to H .

Again, by definition of absolute value, f (G, H) = |D(G) − D(H)| = |D(H) −
D(G)| = f (H, G), so (iii) holds.



9.2 Diameters 151

Finally, it must be shown that the triangle inquality f (G, H) ≤ f (G, K)+f (K, H)

holds for all graphs G, H, K . Without loss of generality it is assumed that D(G) ≥
D(H). Three cases are considered. In the first case, let D(G) ≥ D(H) ≥ D(K). Then

|D(G) − D(K)| + |D(K) − D(H)| = D(G) − D(K) + D(H) − D(K),

but D(H) − D(K) ≥ 0 and −D(K) ≥ −D(H), so

D(G) − D(K) + D(H) − D(K) ≥ D(G) − D(K) + 0

≥ D(G) − D(H)

= |D(G) − D(H)|.
For the second case, let D(G) ≥ D(K) ≥ D(H). Then

|D(G) − D(K)| + |D(K) − D(H)| = D(G) − D(K) + D(K) − D(H)

= D(G) − D(H)

= |D(G) − D(H)|.
In the last case, let D(K) ≥ D(G) ≥ D(H). Then

|D(G) − D(K)| + |D(K) − D(H)| = D(K) − D(G) + D(K) − D(H),

but D(K) − D(G) ≥ 0 and D(K) ≥ D(G), so

D(K) − D(G) + D(K) − D(H) ≥ 0 + D(K) − D(H)

≥ D(G) − D(H)

= |D(G) − D(H)|.
Axioms (i)–(iv) hold, and therefore f (G, H) = |D(G) − D(H)| is a pseudometric.

It is important to note that it is possible to define an equivalence class for which
the function f is a metric. If we define G to be the set of all networks with diameter
equal to D(G) and write D(G) for the (common) diameter of members of G, then
f (G, H) = |D(G)−D(H)| is a metric on the (quotient set of) equivalence classes {G}.

9.2.2 Sensitivity Analysis

In addition to being a pseudometric, if difference in graph diameter is to be a useful
indicator of changes in network topology, it is important that small changes in a rela-
tively dense unweighted network should not result in large changes in the diameter. To
investigate the sensitivity of our distance measure, we look at the family of complete
graphs and simple cycles.

The eccentricity of any vertex of the complete graph Kn is 1, so the diameter is
D(Kn) = 1. If one edge is deleted, two vertices of the resulting graph G will have
eccentricity 2, so D(G) = n+2

n
. If k edges are deleted, where k ≤ n

2 , at most 2k

vertices will have eccentricity 2, and the others will have eccentricity 1. So D(G) ≤ 2.



152 9 Distances, Clustering, and Small Worlds

In general, if a graph G has any vertex x of degree n − 1, then ε(x) = 1. Any
two other vertices y, z are joined by a path of length 2, namely yxz, so ε(y) ≤ 2 and
ε(z) ≤ 2. So D(G) < 2. This means that even when n

2 edges are deleted from Kn, the
resulting graph has diameter less than 2 unless the n

2 edges form a one-factor.
At the other extreme, consider the cycle Cn. Every vertex has eccentricity �n

2 �, so
this is the graph diameter. If Cn has vertices x1, x2, . . . , xn, let Ci

n denote the result of
adding edge xnxi (a chord of length i) to Cn. The addition of an edge reduces the graph
diameter. As an example, we have

D(C10) = 5, D(C2
10) = 4.2, D(C3

10) = 4.4, D(C4
10) = 3.8, D(C5

10) = 4.0,

while
D(C9) = D(C2

9 ) = 4, D(C3
9) = D(C4

9) = 3.56.

Theorem 9.6. If n ≡ 0 (mod 4), then

D(Ci
n) ≥ D

(
C

n
2
n

)
= 3n

8
.

If n ≡ 2 (mod 4), then

D(Ci
n) ≥ D

(
C

n
2 −1
n

)
= 3n

8
+ 4

8n
.

If n ≡ 1 (mod 4), then

D(Ci
n) ≥ D

(
C

� n−1
2 �

n

)
= 3n + 1

8
.

If n ≡ 3 (mod 4), then

D(Ci
n) ≥ D

(
C

� n−3
2 �

n

)
= 3n

8
− 14n − 15

8n
.

Proof. In the first case, it is easy to see that the graph diameter is smallest when the
chord is of length n/2: in those cases the eccentricities of the vertices are n/2 − 1 (this
is the eccentricity of two vertices, the vertices furthest from the endpoints of the chord),
n/2−2 (four vertices adjacent to the two just mentioned), n/2−3 (four times vertices),
. . . , n/4+1 (four vertices), n/4 (two vertices, the endpoints of the chord). The average
is as shown.

The other cases are handled similarly. It is interesting to note that when n ≡ 2 ( mod

4), D
(
C

n
2
n

)
= D

(
C

n
2 −1
n

)
+ n−2

2n
.

Theorem 9.6 shows that the addition of an edge can reduce the diameter of Cn by
approximately 25%, from �n

2 � to approximately 3n
8 . This discussion shows that the

distance measure based on graph diameter is sensitive to small changes in sparse graphs
and less sensitive for small changes in nearly complete graphs.

This analysis is pointless in the case of weighted networks, because the difference
in diameter due to inclusion or deletion of one edge can be made as large as we please
by increasing the weight of the edge.
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9.3 An Example Network

Here an example network (graph) is used to demonstrate the calculation of vertex
eccentricities and difference in graph diameter as presented in Section 9.2. First, the
graph without an edge-weight function will be used, then an edge-weight ω will be
introduced.
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44

Fig. 9.1. Example graph.

Let G be the graph in Figure 9.1 with V = {1, 2, . . . , 7} and E = {{1, 2}, {1, 3},
{2, 5}, {3, 5}, {4, 7}, {5, 6}, {5, 7}, {6, 7}}.1 The eccentricities for the example graph are
ε(1) = 4, ε(2) = 3, ε(3) = 3, ε(4) = 4, ε(5) = 2, ε(6) = 3, ε(7) = 3. Taking an
average of all the eccentricities, D(G) ≈ 3.143.
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Fig. 9.2. Example graph with edge {3,4} added.

To demonstrate that graph diameter can detect small changes in graph topology, an
edge is added to the graph in Figure 9.1. Figure 9.2 shows the graph with the edge {3, 4}
added. Let this graph be H = (E ∪ {3, 4}, V ). It is left to the reader to verify that the
graph diameter D(H) ≈ 2.714 and the difference f (G, H) ≈ 0.429.

1The example graph is undirected; therefore, the edges are just unordered pairs of adjacent
vertices. It is trivial to convert the graph to directed as described in Section 9.1.
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Now an edge-weight ω1 is introduced on the original graph G to give G1 =
(V , E, ω1). For simplicity, let ω1(e) = 3, ∀e ∈ E. This yields a graph diameter
D(G1) ≈ 9.429. To demonstrate that graph diameter can detect a change in edge-
weight, set ω2 = ω1, ∀e �= {3, 5} ∈ E. Let ω2({3, 5}) = 1 and G2 = (E, V, ω2). With
this minimal change, D(G2) = 8.0, and f (G1, G2) ≈ 1.429.

9.3.1 Time Series Using f

The examples in Section 9.3 show that graph diameter can be used to detect small
changes in both network topology (the underlying graph) and network traffic (the
weighted case). In this section we use graph diameter to measure change in a time
series of an actual communication network described in detail in Sections 3.4.2 and
4.2. Both unweighted and weighted time series are presented where the corresponding
edge-weight is traffic. The time series are based on daily traffic activity.
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Fig. 9.3. Time series using comparison.

Figure 9.3 shows the times series change based on the difference in graph diameter
normalized by the maximum change over the interval. Peaks in the time series represent
potential abnormal change. Abnormal change would be based on deviations from some
normal state of the network.

Figure 9.4 shows the time series change based on the difference in weighted graph
diameter, normalized by the maximum change over the interval. As in the plot in Figure
9.3, peaks represent potential abnormal change. The peaks and valleys differ between the
two plots, since different factors are compared for weighted and nonweighted graphs.
The nonweighted plot would show topological changes where edges are either added or
deleted. The weighted plot, based on edge traffic, can show both topological changes as
well as abnormal changes in edge traffic. As demonstrated in Section 9.2.1 and Section
9.3, both are sensitive to small changes in the network.
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Fig. 9.4. Time series using weighted comparison.

9.4 Time Series Using D

Instead of considering time series of f (difference in graph diameters), one can use the
diameter D directly and obtain an interesting time series of graphs. With the measure
D, we simply use the characterization of a graph independent of any other graphs.
This is the first time that we have addressed the problem of abnormal change detection
from a characterization of an individual graph. Note that f (as a function of time) is
effectively the rate of change of D in time.
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Fig. 9.5. Time series using only characterization.

As can be seen in Figure 9.5, there are still peaks and valleys in the time series
plot of graph diameter, but these peaks and valleys have a different connotation than
in the time series. This connotation is based on the difference in two graphs. From a
communications network perspective, large graph diameter implies a longer average
communication path between any two vertices. From the aspects of performability and
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redundancy, small graph diameter is desirable so as to minimize the longest average
communication path link. So from this standpoint, an abnormal event could be defined
as an event in which the graph diameter moves above some established threshold. We
also notice the obvious correlation of significant events with the time series using the
consecutive f -distances (see Figure 9.3).

9.5 Characteristic Path Lengths, Clustering Coefficients, and
Small Worlds

9.5.1 Two Classes of Graphs

Two classes of graphs have been used as standards in studies relating to characteristic
path lengths and clustering coefficients. They are lattice graphs and random graphs.

Lattice Graphs

Lattice graphs were defined by Watts and Strogatz [185] to provide a family of highly
structured graphs. A d-lattice is analogous to a Euclidean lattice of dimension d. The n

vertices are labeled with the integers modulo n, and where x is joined to all the vertices
(v − id

′
) and (v + id

′
) for 1 ≤ i ≤ 1

2k, 1 ≤ d ′ ≤ d, where k is some integer (it is
usually assumed that k ≥ 2d). Examples of a 1-lattice and a 2-lattice with k = 4 are
shown in Figures 9.6 and 9.7.

Fig. 9.6. A 1-lattice with k = 4.

Suppose G is a 1-lattice with n vertices, for which k is even and at least 2. Then

γ (G) = 3(k − 2)

4(k − 1)
.

The exact value of L(G) depends on the remainder when n is divided by k, but approx-
imately,
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Fig. 9.7. A 2-lattice with k = 4 (joined as on a torus).

L(G) = n(n + k − 2)

2k(n − 1)

and

γ (G) = 3(k − 2)

4(k − 1)
.

If we wish to discuss directed graphs, we define the directed version of a d-lattice
by replacing every edge xy in the undirected case by the pair of edges {xy, yx}. The
above formulas remain true in the directed case.

Random Graphs

There are two standard models of random graphs in the mathematical literature (see,
for example, [16]).

A graph of type G(n, M) has n vertices and M edges. The M edges are chosen from
the

(
n
2

)
possibilities in such a way that any of the possible M-sets is equally likely to

be the one chosen. (In statistical terminology, the edges are a simple random sample of
size M from the possibilities.)

A graph of type G(n, p) has n vertices. The probability that the vertex-pair xy is
an edge is p, and the

(
n
2

)
events “xy is an edge” are independent.

In studying most properties—in particular, the properties that will interest us—these
two models of random graphs are interchangeable, provided M is approximately np.
When this is true, it is more usual to study G(n, p), since the independence makes
mathematical discussions simpler.

The average degree of vertices in a G(n, p) is clearly p(n − 1). The clustering
coefficient is approximately p; in other words, for a reasonably large random graph of
average degree k, the clustering coefficient is approximately k/n.
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9.5.2 Small-World Graphs

From the above results on clustering coefficients in completely random graphs and
lattice graphs, it would seem that tight local clusters entail long average distances, and
that reducing average distance requires abandoning local clustering.

However, Watts and Strogatz [185] discovered a class of graphs that combine strong
local clustering with relatively short average distance. They started from a highly regular
graph (a 1-lattice), and randomly changed a small fraction of the connections (they used
a random process in which certain edges were deleted and replaced by edges with one
endpoint the same as in the original and the other chosen randomly). In these graphs
the clustering coefficient stays near 3/4, while the average distance between vertices is
is approximately ln(n)/ ln(k), so it is proportional to log (n) rather than to n.

Small-world networks evolve when links are made randomly in a sparse structured
network. The underlying graph of such a network is an amalgam of local clusters and
random long-range links. For example, in a network representing acquaintanceship, the
clusters might be cliques of friends or coworkers, and long-range links might occur
through a vacation or when close friends work for different companies. Watts and
Strogatz conjectured that the underlying graphs of small-world networks would behave
like their artificially constructed graphs, which they accordingly called small-world
graphs.

The name “small-world network” comes from the buzz phrase “It’s a small world,”
sometimes heard when strangers discover a common link between them. For example,
when you board an airplane, you might find that your uncle works in the same office
as the wife of the person sitting next to you. Among other applications, the theory has
been used in social network theory to track how information and ideas spread through
a community. It serves to model the spread of infectious diseases. Moreover, it appears
that the nervous system may be wired along the same principle.

The small-world effect was first studied by Milgram [132] in 1967. He described
an experiment in which people in Omaha, Nebraska, were given a letter intended for
delivery to a stranger in Massachusetts and asked to pass it along to someone they
thought might know the intended recipient, with instructions for that person to do the
same. Only about 20% of the letters ever reached the “target.” For those that did, though,
the surprise was how quickly they arrived: It rarely took more than six intermediate
steps.

Recent mathematical discussion of the small-world phenomenon has focused on
the underlying (undirected) graphs of small-world networks. The characteristic path
lengths and clustering coefficients of these graphs have been studied. In particular,
Watts and Strogatz applied their models to three real-world networks.

One example was the Internet Movie Database (IMDb), in which the vertices are
movie actors, with a connection between any two who have appeared in the same movie.
Analyzing the IMDb network, which then had an average of k = 61 connections per
actor for n = 225,226 actors (the IMDb has increased considerably in size since their
study), Watts and Strogatz found a clustering coefficient C = 0.79—surprisingly close
to the theoretical value for a highly regular network—and an average distance between
actors of 3.65, which is much closer to ln(n)/ ln(k) = 2.998 than it is to n/2k = 1846.
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The other two networks analyzed were electrical in nature: the power grid for the
western United States and the neural system of the much-studied nematode C. elegans.
(Nematodes are a class of worms comprising 10,000 known species. The parasitic kinds,
such as hookworm, infect nearly half the world’s human population.) The power grid
has n = 4941 vertices, consisting of generators, transformers, and substations, with an
average of k = 2.67 high-voltage transmission lines per vertex. C. elegans has a mere
n = 282 neurons (not counting 20 neurons in the worm’s throat, which biologists have
not yet completely mapped), with an average of k = 14 connections—synapses and
gap junctions—for each neuron.

The power grid has a rather low clustering coefficient γ = 0.08. But this is 160 times
what would be expected for a random network of the same size. The average distance
between vertices is 18.7, far below the 925 predicted for a perfectly regular network.
(Actually, this is an unfair comparison, since Watts and Strogatz’s regular network is
essentially 1-dimensional, whereas the power grid is inherently 2-dimensional. It would
be fairer to compare the power grid to a hexagonal honeycomb, for which most vertices
have three links. The average distance between two vertices in an m × m honeycomb,
which has n = 2m(m + 2) vertices altogether, is approximately 2m. For n = 4941,
that is approximately 98.) For C. elegans, the clustering coefficient is 0.28 (as against
0.05 for the random model), and the average distance is 2.65 (with 2.25 calculated for
the random model and 10 for the corresponding lattice graph with k = 14).

Extensive surveys of small-world phenomena appear in the literature [6, 184].

9.6 Enterprise Graphs and Small Worlds

Throughout this book we are studying enterprise networks, such as communications
networks and other intelligent networks. These networks often have a large amount
of initial structure imposed, but with use they evolve in a similar way to small-world
networks. Enterprise networks often have a large amount of initial structure imposed,
but with use they evolve in a similar way to small-world networks. We refer to the
underlying graph of such a network as an enterprise graph. We suspected that the
small-world model would apply to these graphs, and shall present evidence for this
hypothesis.

9.6.1 Sampling Traffic

In our previous investigations (see, for example, Sections 3.4.2 and 4.2) we have used
sample network traffic collected from the network management system of a large-
enterprise data network. A traffic probe was installed on a single physical link in the
network and traffic parameters were logged over 24-hour periods in daily log files.
A traffic log file contains information on the logical originators (O) and destinations
(D) of traffic (derived from network address information) and the volume of traffic
transmitted between OD pairs. To reduce the overall number of OD pairs in the data set,
the 45,000 individual users (network addresses) were clustered by the business domain
they belonged to on the data network. The aggregated logical flows of traffic between the
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325 business domains observed over this physical link in a day were then represented as
a directed and labeled graph. Vertex-weight identified the business domains of logical
nodes communicating over the physical link with edge-weight denoting the total traffic
transmitted between corresponding OD pairs over a 24-hour period.

Successive log files collected over subsequent days produced a time series of cor-
responding directed and labeled graphs representing traffic flows between business
domains communicating over the physical link in the network. Log files were col-
lected continuously over a period of several months, from July 19 to October 25, 1999,
and weekends and public holidays were removed to produce a final set of 90 log files
representing the successive business days’ traffic.

9.6.2 Results on Enterprise Graphs

To test our hypothesis, we used our data to produce two samples of enterprise graphs
by removing weights and directions (see Sections 3.4.2 and 4.2). The resulting graph
represented connections in the network. Time series of both the original graphs (with
45,000 vertices corresponding to individual users) and the domain graphs (with 325
vertices corresponding to the business domains) were studied.

Both characteristic path length and clustering coefficient can be discussed in the
case of directed graphs. The theory of both these measures is much the same in the
directed case. However, in calculating the clustering coefficient in a directed graph, the
formula

γx = e(x)

2
(
k(x)

2

) = e(x)

k(x)(k(x) − 1)

should be used. In other words, the result should be halved, corresponding to the fact
that there are k(k − 1) possible directed edges between k vertices.
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Fig. 9.8. Characteristic path lengths for original 45,000 users.
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Fig. 9.9. Characteristic path lengths for 325 domains.

Much work has been done on random directed graphs. To have a directed benchmark
for highly structured graphs, we define the directed version of a d-lattice by replacing
every edge xy in the undirected case by the pair of edges {xy, yx}. The formulas for
characteristic path length and clustering coefficient apply to the directed lattices.

We measured the characteristic path lengths for the directed versions of our two
series of enterprise graphs. In the original graphs, the characteristic path length ranges
approximately from 3 to 4.5, averaging between 3.8 and 3.9. In the domain graph series
the average is about 2.2; the length is never less than 2, and there were only three days
when it was greater than 2.35. This is consistent with the hypothesis that enterprise
graphs behave like small-world graphs in the directed case also. The time series of
characteristic path lengths are shown in Figures 9.8 and 9.9.

In both series of graphs, the clustering coefficient ranges approximately from 0.58
to 0.75, averaging about 0.67. In the domain graph series there is very little variation;
the original graph series is a little less tight. These figures are very close to the lattice
graph figure, 0.749. This is also consistent with the small-world hypothesis. The time
series of clustering coefficients are shown in Figures 9.10 and 9.11.

We produced a histogram of the values γx for all vertices x on the first day (day 0)
of the series. These histograms are shown in Figures 9.12 and 9.13.

In our examples of enterprise graphs, there were very few situations in which com-
munication was not symmetric, that is, if there was a directed edge from x to y, there
was usually a directed edge from y to x. This would not necessarily be true in some
enterprise graphs, for example in a highly structured social network where instructions
or data are broadcast from a source that does not accept answering messages. While
the characteristic path length would be higher in such networks (due to the existence
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Fig. 9.10. Clustering coefficients for original 45,000 users.
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Fig. 9.11. Clustering coefficients for 325 domains.

of a larger number of “infinite” paths), and the clustering coefficient would be lower,
we predict that the underlying graph will still fit the “small-world” pattern.

9.6.3 Discovering Anomalous Behavior

We do not derive a measure of change between snapshots of the network from the
characteristic path length or clustering coefficient. However, the relative consistency
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Fig. 9.12. Clustering coefficients of vertices, day 0 (original 45,000 users).
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Fig. 9.13. Clustering coefficients of vertices, day 0 (325 domains).

of the characteristic path length, particularly for the domain graphs, suggests that one
should study those days with a markedly different characteristic length, to see whether
they correspond to other marked differences in the network.Therefore the “small-world”
measures provide a significant tool for network management.
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We would also suggest that the upward trend in the clustering coefficient be inves-
tigated. If it in fact reflects a seasonal or other consistent change in the network, this
would be important, since other measures that have been tested on these data do not
reflect such a consistent change.
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Tournament Scoring

10.1 Introduction

Various methods have been used to assess the relative strengths of players in round-
robin tournaments. These methods involve the digraph representing the results of the
tournament. (Somewhat confusingly, this digraph is also called a “tournament.”) In
this chapter we shall generalize these techniques to provide a graph measure that we
call modality. We propose techniques to measure rapid change in the structure of the
network by looking at changes in modality.

The ideas of matrix theory will be used in discussing tournaments. In addition to
standard references such as [92] and [114], another useful reference for nonnegative
matrices is [145]. We shall use the notation ‖v‖ to denote the (Euclidean) norm of the
vector v. Thus, if v has n elements,

‖v‖ =
√√√√ n∑

i=1

v2
i .

Let In, Jn, and en represent an identity matrix of order n, an n × n matrix with every
entry 1, and a vector of length n with every entry 1, respectively. If the order n is clear
from the context, it will be omitted. A zero matrix or vector will be denoted by O or 0
respectively.

10.2 Tournaments

10.2.1 Definitions

In general, a tournament is an oriented complete graph. In other words, it is a digraph
in which every pair of vertices is joined by exactly one arc.

In sports scheduling, a tournament is an event in which a number of players compete
two at a time. A round-robin tournament is one in which every pair of players com-
petes exactly once, so a (graphical) tournament represents the results of a (scheduling)
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round-robin tournament in which ties are impossible: the players are the vertices and
x → y whenever x beats y. We shall use the graphical and scheduling terminologies
interchangeably.

10.2.2 Tournament Matrices

The win–loss outcomes of the matches in a tournament can conveniently be recorded
in a tournament matrix A = [aij ], where aij = 1 if i → j and aij = 0 otherwise; in
particular, A has zero diagonal. Such a matrix is called a tournament matrix. A square
zero–one matrix A is a tournament matrix if and only if

A + AT = J − I.

As an example, consider the 6-player tournament in which

• 1 beats 2, 3, 4, 5;
• 2 beats 3, 4, 5, 6;
• 3 beats 5, 6;
• 4 beats 3, 6;
• 5 beats 4, 6;
• 6 beats 1.

This tournament has matrix

M =

0 1 1 1 1 0
0 0 1 1 1 1
0 0 0 0 1 1
0 0 1 0 0 1
0 0 0 1 0 1
1 0 0 0 0 0

.

A matrix is called reducible if it can be written in the form

M = X Y

O Z
,

where the submatrices X and Z are square, and irreducible otherwise. A tournament
is called reducible if there is some ordering of the players for which the tournament
matrix is reducible, and called irreducible otherwise.

10.3 Ranking Tournaments

10.3.1 The Ranking Problem

The classical way to rank participants in a tournament is to allocate points for victories.
For example, in the example tournament, players 1 and 2 have score 4; players 3, 4, 5
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have score 2; and player 6 has score 1. There is an immediate problem: how do we rank
players 1 and 2 in this example? Our first intuition is that 1 should outrank 2, because
1 beat 2 when they met. Is this appropriate, or should they be considered equal? The
second problem we notice is the anomalous behavior of player 6. This player won
only one match. However, it was against one of the two strongest players. Should this
performance receive extra credit? In general, should we give more credit to a player
who beats “better” opponents?

10.3.2 Kendall–Wei Ranking

We outline a method due to Wei [187] and Kendall [102] that takes into account the
quality of the opponents.We assume that the tournament is irreducible (if the tournament
is reducible, all players in the upper part are ranked above all players in the lower part).
We assume that there is a nonnegative quantity that we shall call the (relative) strength
of a player, and that the players should be ranked according to strength. So the object of
a scoring system is to estimate the strengths of players. We denote the strength of player
i by w∗

i , and (assuming there are n players) define the strength vector of a tournament
to be

w∗ = (w∗
1, w∗

2, . . . , w∗
n) .

For convenience, we assume that the strength vector is normalized, so that the sum of
strengths of the players adds to 1. Suppose we have an estimate of all the strengths of the
players. One could define the strength of player i to depend on the sum of the strengths
of the players that i beats. The Kendall–Wei method approximates w∗ by finding a
sequence of vectors w1, w2, . . . , wn. In w1, the strength of player i is proportional to
the number of matches won in the tournament: in the example, we take

v1 = (4, 4, 2, 2, 2, 1)

and define w1 to be v1/‖v1‖. When vj−1 is determined, we define

v
j
i =

∑
i→k

v
j−1
k .

In other words, the strength of player i in the j th iteration is derived from the sum
of the (j − 1)st iteration strengths of the players beaten by i. This is a reasonable
approximation to the suggested principle, and also is easy to compute: v1 = Ae, and
vj = Avj−1, so in general vn = Ane. Then wn = vn/‖vn‖. If the sequence (wn)

approaches a limit, then that limit is a reasonable value for w∗. Proceeding with the
example, we obtain

v2 = (10, 7, 3, 3, 3, 4),

v3 = (16, 13, 7, 7, 7, 10),

v4 = (34, 31, 17, 17, 17, 16),

v5 = (82, 67, 33, 33, 33, 34),

v6 = (166, 133, 67, 67, 67, 82).
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So w6 is approximately (.65, .52, .26, .26, .26, .32). At this stage player 1 is signifi-
cantly stronger than player 2 and player 6 has moved clearly into third place. It is not
obvious that convergence occurs, but we would expect the order of strength of the play-
ers to stay unchanged in future iterations. An important question is, of course, whether
convergence takes place.

10.3.3 The Perron–Frobenius Theorem

The spectral radius of a real square matrix A, denoted by ρ(A) or simply ρ, is the
largest of the absolute values of eigenvalues of A. The matrix A is called primitive
if all its entries are nonnegative and if there is some positive integer power of A all
of whose entries are positive. The following theorem guarantees convergence of the
strength vector of a tournament matrix. It comes from a theorem of Perron [142],
generalized by Frobenius [74] (see [114, p. 538]).

Theorem 10.1 (Perron–Frobenius). Suppose A is an irreducible matrix with all en-
tries nonnegative. Then ρ(A) is an eigenvalue of multiplicity one for A, and there is a
corresponding eigenvector v all of whose entries are positive. Moreover, any nonnega-
tive eigenvector of A is a multiple of v. If, furthermore, A is primitive, then every other
eigenvalue of A has absolute value less than ρ(A).

The multiple of v with norm 1, the eigenvector v/‖v‖, is called the Perron vector
of A, and denoted by v(A). If the eigenvalue λ of largest magnitude of a matrix A is
unique, then it is known that limk→∞ Ake/‖Ake‖ exists, and in fact is an eigenvector
corresponding to λ. In fact this is the power method, a standard technique for finding the
eigenvalue of largest magnitude of A when that eigenvalue is unique (see, for example,
[75, p. 209]). This means that the Kendall–Wei method always gives a result whenever
there are four or more players, since all tournament matrices of size greater than three
are primitive.

10.4 Application to Networks

10.4.1 Matrix of a Network

Consider a network in which the nodes communicate with each other, such as an internet
or intranet. With such a network we associate a graph G, the underlying graph of the
network, whose vertices correspond to users or sets of users. (The vertices might be
individual nodes, or they might correspond to groups of users, or to servers.)Vertices are
joined by an edge if information can travel between the vertices. With such a network
we associate a weighted graph, called a snapshot of the network, in which edge {i, j}
is assigned a weight pij representing the number of packets of information that travel
between vertices i and j in a given time period. (The vertices might be individual
nodes, or they might correspond to groups of users, or to servers.) Such a snapshot
might represent all transactions in one day, or in one week, or any other appropriate
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period. Thus the snapshots form a time series of graphs. We have discussed these series
in [25].

Typically pij will be a count of the number of packets of information, but this is
not necessary. We could use any function pij provided it is a monotone increasing
function of the number of packets, and provided pij = 0 if and only if no information
is transmitted. As defined, pij is symmetric, pij = pji , but one could equally well
define pij to be the number of packets sent from i to j , and associate a digraph rather
than a graph with the network. We shall discuss possible variations of pij in Section
10.6 below.

We now define the snapshot matrix corresponding to a snapshot to be the matrix
A = (pij ). A snapshot is called reducible if there is some ordering of the vertices for
which the snapshot matrix is reducible, and called irreducible otherwise. Because of the
symmetry of the matrix, a reducible snapshot is decomposable: the network decomposes
into two or more components, with no communication between the components.

We define the underlying graph of a snapshot as the subgraph of G obtained by
deleting edges (i, j) for which pij = 0. The underlying graph of a decomposable
snapshot is disconnected, and the components that do not communicate correspond to
the components of the underlying graph.

All the analysis in Section 10.3 can be carried out for matrices more general than
tournament matrices. In fact, Kendall’s original analysis put an entry 1

2 in every diagonal
position, and Thompson [170] showed that this 1

2 may be replaced by any value r with
0 ≤ r < 1. Moreover, one could multiply the matrix by a positive constant without
affecting the Perron vector. In particular, consider a snapshot matrix of a communication
network. The Perron vector of such a matrix will be defined and will measure relative
“strength” of the nodes; the greater the entry in the ith position, the greater the “strength”
of node i. What is this “strength”? From the discussion of the Kendall–Wei method,
we see that the first approximation measures the amount of information that the node
communicates with the rest of the network. Subsequent approximations weight this
with the communicativeness of those that the node contacts, so the information will be
disseminated more rapidly. If we were to treat the amount of information communicated
to or originating from a node as a random variable, the first approximation to “strength”
is the value of the variable at that node; the largest value corresponds to the mode of
the distribution. Consequently, we refer to the measure as the modality of the node. The
Perron vector will be called the modality vector of the network.

10.5 Modality Distance

10.5.1 Defining the Measure

We use the modality vector to define a measure of difference between snapshots. The
modality distance between two snapshots with matrices A and B is

‖v(A) − v(B)‖.



170 10 Tournament Scoring

Various problems exist where a measure of difference between two graphs is re-
quired; see, for example, the discussion in [157]. In order to make numerical compar-
isons between differences in different situations, it is desirable that measures of graph
difference have metric properties (see [30]), and the modality distance is clearly a met-
ric: if there are n nodes, then modality distance is derived directly from the Euclidean
distance metric in n-dimensional space.

10.5.2 Applying the Distance Measure

The modality distance method was tested on two datasets comprising 102 and 284
days respectively, of TCP/IP traffic collected from a number of probes on an enterprise
network excluding weekends and public holidays. The 284-days data were collected
about a year after the 102-days data. In the 102-days data set, the network administrators
identified three days (22, 64, and 89) on which they thought the network had changed or
behaved anomalously. Only on day 64 was there a suggested reason: the introduction
of a web-based personnel and financial management system. There may have been
other network changes in this period but none were notable enough to be mentioned by
network administrators. From Figure 10.1, one can see that modality distance obviously
produces an evident change point on day 64. All tests were performed on a PC with
Pentium R4 processor run at 3.00 GHz. Using Java-based REDBACK software, for 102-
days data set 7 seconds of CPU time was used, while the 284-days data set required 102
seconds of processing time. The running times seem to be reasonable assuming that
eigenvalues of large matrices were computed. Also, we chose the diagonal parameter
r from [170] equal to 0.1, and we replaced every other zero entry of the adjacency
matrices by 1.0 × 10−5.
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Fig. 10.1. Modality distance for 102 days data.

We also compared the modality distance results with a number of other time series
graph distance measures. For example, the MCS distances [25, 30] using edges (Fig-
ure 10.2) and vertices (Figure 10.3) for the 102-days data set produced obvious large
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changes in network topology behavior on all three anomalous days. Naturally, since
graphs in time series are labeled, this MCS-distance computations run in linear time
and produced numerical distances in about 7 seconds on the same PC.
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Fig. 10.2. MCS distance (edges) for 102-days data.
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Fig. 10.3. MCS distance (vertices) for 102-days data.

Modality distance results for the 284-days data set are shown in Figure 10.4. We
did not have any identified anomalous change points, but we could postprocess the
obtained numerical time series of doubles with algorithms for change point detection
and/or forecasting of network behavior.



172 10 Tournament Scoring

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

days

mo
da

lity

Fig. 10.4. Modality distance for 294-days data.

10.6 Variations in the Weight Function

The first possible variation is to consider the modality vector of the digraph correspond-
ing to the network. This may give more information in cases in which the network
corresponds to a hierarchy, in which messages commonly travel from “superiors” to
“inferiors.” Increased modality distance could suggest a change in the hierarchy.

As we mentioned previously, the function pij need not be a simple count of the
number of packets of information. One might well argue that a large relative change
in the amount of communication between two vertices is more important than a large
absolute change. In this case, pij could be taken as a logarithmic function. For example,
if nij is the number of packets exchanged between vertices i and j , one might define
pij = 1 + ln(nij ) when nij > 0. The 1 is added so that pij is positive; a zero entry will
then correspond to zero communication.

Another possible change in the model is to incorporate a measure of the total com-
munication involving a vertex, or the number of packets emanating from the vertex.
The entry pii could be adjusted to become a measure of this.

The appropriateness of these possible modifications would depend on the applica-
tion. One possible direction for future research is to test these ideas on various classes
of real data.

10.7 Conclusion

In this chapter we proposed an application of the tournament scoring in analysis of
communication networks. Tournament matrices record the win–loss outcomes of the
matches in tournaments. Kendall–Wei ranking is an approach to ranking of tournament
outputs using the quality of the players. The strength vector is approximated by a
recursive sequence of vectors where the strength of a player i is proportional to the
sum of the strengths of all the players that were beaten by i. The question of the
convergence of that sequence is solved by a version of the Perron–Frobenius theorem
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for primitive matrices. That version states that for primitive matrices each eigenvalue
is strictly dominated by the spectral radius (which is a simple zero of the characteristic
polynomial). We introduced the snapshot matrices of individual members of time series
of weighted digraphs that are defined and used for the implementation of the tournament
scoring. Modality distance is defined and used to measure distance between consecutive
members of the time series of digraphs. Some future directions for generalizing the
measure (by varying the weight function) are discussed.
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Prediction and Advanced Distance Measures
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Recovery of Missing Information in Graph Sequences

11.1 Introduction

Various procedures for the detection of anomalous events and network behavior were
introduced in previous chapters of this book. In the current chapter we are going to
address a different problem, viz., the recovery of missing information. Procedures for
missing information recovery are useful in computer network monitoring in situations
in which one or more network probes have failed. Here the presence, or absence, of
certain nodes and edges is not known. In these instances, the network management
system would be unable to compute an accurate measurement of network change. The
techniques described in this chapter can be used to determine the likely status of this
missing data and hence reduce false alarms of abnormal change.

This chapter is organized as follows. In the next section we address the problem of
recovering missing information in a computer network using three different heuristic
procedures that exploit graph context in time. In Section 11.3 an alternative approach to
the recovery of missing information in a computer network is proposed. This approach
makes use of decision tree classifiers. Finally, Section 11.4 draws conclusions and
discusses potential future work.

11.2 Recovery of Missing Information in Computer Networks
Using Context in Time

We consider a graph sequence g1, g2, . . . , gt−1, gt and assume that our knowledge
of gt is incomplete. That is, there exist one or several nodes and/or edges in gt that
were not observed in the graph sequence acquisition process. In other words, we don’t
know whether these nodes and/or edges are actually present in gt . Assuming that all
graphs under consideration have unique node labels, which is justified in the considered
application, the behavior of an individual node x in the time series of graphs can be
analyzed, and its presence or absence in some or all previous graphs in the sequence
under consideration can be used to predict its presence or absence in graph gt . A similar
argument can be applied to the edges of graph gt .
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In the present section we will present three heuristic procedures for the recovery of
missing information in a computer network based on graph context in time. We start
by introducing the basic concepts and our notation in Section 11.2.1. Then the three
strategies for information recovery will be described in Sections 11.2.2 to 11.2.4.

11.2.1 Basic Concepts and Notation

We consider graphs with unique node labels. To represent graphs with unique node
labels in a convenient way, we drop set V and define each node in terms of its unique
label. Hence a graph with unique node labels is represented by a 3-tuple g = (L, E, β),
where L is the set of node labels occurring in g, E ⊆ L × L is the set of edges, and
β : E → L

′
is the edge-labeling function. The terms “node label” and “node” will be

used synonymously in the remainder.

D C3

g : B D2

g : B C1

g :

A

A

A

Fig. 11.1. An example of a graph sequence s = g1, g2, g3.

In this chapter we will especially consider time series of graphs, i.e., graph se-
quences s = g1, g2, . . . , gN . The notation gi = (Li, Ei, βi) will be used to represent
an individual graph gi in sequence s; i = 1, . . . , N . Motivated by computer network
analysis applications we assume the existence of a universal set of node labels, or nodes,
L, from which all node labels that occur in a sequence s are drawn. That is, Li ⊆ L for
i = 1, . . . , N and L = ⋃N

i=1 Li .1 Given sequence s = g1, g2, . . . , gN , a subsequence
of s is obtained by deleting the first i and the last j graphs from s, where 0 ≤ i+j ≤ N .
Thus s′ = gi+1, . . . , gN−j+1 is a subsequence of sequence s.2

As an example, consider sequence s = g1, g2, g3, where graphs g1, g2, and g3 are
depicted in Figure 11.1. These graphs are formally represented as follows:

1In the computer network analysis application L will be, for example, the set of all unique
IP host addresses in the network. Note that in one particular graph gi , usually only a subset is
actually present.

2The notation used here differs slightly from that of Chapter 8, where a subsequence as
defined above is referred to as a continuous subsequence.
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• g1 = (L1, E1, β1); L1 = {A, B, C}; E1 = {(A, B) , (B, C) , (C, A)};
• g2 = (L2, E2, β2); L2 = {A, B, D}; E2 = {(A, B) , (B, D) , (D, A)};
• g3 = (L3, E3, β3); L3 = {A, D, C}; E3 = {(A, D) , (D, C) , (C, A)}.

We assume that β1 = β2 = β3 = const and omit the edge labels in Figure 11.1. In
this example we have L = {A, B, C, D}.

Given a time series of graphs s = g1, g2, . . . , gN and its corresponding universal
set of node labels L, we can represent each graph gi = (Li, Ei, βi) in this series as a
3-tuple (γi, δi, β̂i) where:

• γi : L → {0, 1} is a mapping that indicates whether node l is present in gi . If l is
present in gi , then γi (l) = 1; otherwise γi (l) = 0.3

• δi : L′ × L′ → {0, 1} is a mapping that indicates whether edge (l1, l2) is present in
gi ; here we choose L′ = {l | γi (l) = 1}, i.e., L′

is the set of nodes that are actually
present in gi .

• β̂i : L′ × L′ → L
′

is a mapping that is defined as follows:

β̂i (e) =
{

βi (e) , if e ∈ {(l1, l2) | δi (l1, l2) = 1} ,

undefined otherwise.

The definition of β̂i (e) means that each edge e that is in fact present in gi will have
label βi (e).

The 3-tuple (γi, δi, β̂i) that is constructed from gi = (Li, Ei, βi) will be called the
characteristic representation of gi , and denoted by χ (gi). Clearly, for any given graph
sequence s = g1, g2, . . . , gN the corresponding sequence χ (s) = χ (g1) , χ (g2) , . . . ,

χ (gN) can be easily constructed and is uniquely defined. Conversely, given χ (s) =
χ (g1) , χ (g2) , . . . , χ (gN) we can uniquely reconstruct s = g1, g2, . . . , gN .

As an example, consider graphs g1, g2, and g3 in Figure 11.1. As mentioned before,
L = {A, B, C, D}. The following characteristic representations are obtained:

• χ (g1) = (γ1, δ1, β̂1) where
γ1 : A 
→ 1, B 
→ 1, C 
→ 1, D 
→ 0
δ1 : (A, B) 
→ 1, (B, C) 
→ 1, (C, A) 
→ 1, (B, A) 
→ 0, (C, B) 
→ 0, (A, C) 
→
0
β̂1 : (A, B) 
→ const, (B, C) 
→ const, (C, A) 
→ const;
β̂1 (x, y) undefined for any other (x, y) ∈ {A, B, C} × {A, B, C}

• χ (g2) = (γ2, δ2, β̂2) where
γ2 : A 
→ 1, B 
→ 1, C 
→ 0, D 
→ 1
δ2 : (A, B) 
→ 1, (B, D) 
→ 1, (D, A) 
→ 1, (B, A) 
→ 0, (D, B) 
→
0, (A, D) 
→ 0
β̂2 : (A, B) 
→ const, (B, D) 
→ const, (D, A) 
→ const;
β̂2 (x, y) undefined for any other (x, y) ∈ {A, B, D} × {A, B, D}

• χ (g3) = (γ3, δ3, β̂3) where
γ3 : A 
→ 1, B 
→ 0, C 
→ 1, D 
→ 1
δ3 : (A, D) 
→ 1, (D, C) 
→ 1, (C, A) 
→ 1, (D, A) 
→ 0, (C, D) 
→
0, (A, C) 
→ 0

3One can easily verify that {l | γi (l) = 1} = Li .



180 11 Missing Information in Graph Sequences

β̂3 : (A, D) 
→ const, (D, C) 
→ const, (C, A) 
→ const;
β̂3 (x, y) undefined for any other (x, y) ∈ {A, C, D} × {A, C, D}
In this chapter we will pay particular attention to graph sequences with missing

information. There are two possible cases of interest. First it may not be known whether
node l is present in graph gi . In other words, in χ (gi), it is not known whether γi (l) = 1
or γi (l) = 0. Secondly, it may not be known whether edge (l1, l2) is present in gi , which
is equivalent to not knowing, in χ (gi), whether δi (l1, l2) = 1 or δi (l1, l2) = 0.

To cope with the problem of missing information and in order to make our notation
more convenient, we extend functions γ and δ in the characteristic representation χ (g)

of graph g = (L, E, β) by including the special symbol ? in the range of values of
each function to indicate the case of missing information. That is, we write γ (l) =?
if it is unknown whether node l is present in g. Similarly, the notation δ (l1, l2) =?
will be used to indicate that it is not known whether edge (l1, l2) is present in g. To
keep our notation simple we will not explicitly distinguish between functions γ and δ

as originally introduced and their extended versions that include the symbol ? in their
range of values, and we will refer to the 3-tuple χ (g) = (γ, δ, β̂) as the characteristic
representation of graph g regardless of whether the original functions or their extended
versions are used.

Since any existing edge (l1, l2) ∈ E requires the existence of both incident nodes
l1, l2 ∈ L, we assume condition γ (l1) = γ (l2) = 1 if δ (l1, l2) = 1 always being
fulfilled to ensure the consistency of any graph g.

11.2.2 Recovery of Missing Information Using a Voting Procedure

In Sections 11.2.2 to 11.2.4 we introduce three simple heuristic procedures that are all
based on the idea of using information about the behavior of a particular node or an
edge along the time axis in order to predict its presence or absence in a particular graph.

Consider graph sequence s = g1, g2, . . . , gt and let L denote the underlying univer-
sal set of node labels. Furthermore, consider graph gt = (Lt , Et , βt ) with characteristic
representation χ (gt ) = (γt , δt , β̂t ) and assume that γt (l) =? for some l ∈ L. In order
to make a statement about the possible presence or absence of node l in graph gt we
consider a subsequence, or time window, s′ = gt−M, . . . , gt−1 of length M . The length
of the sequence, M , is actually a parameter that can be tuned to the considered appli-
cation. The basic idea is to utilize information about node l in the graphs belonging
to subsequence s′, in order to make a statement about the presence or absence of l in
graph gt . A simple approach consists in computing the relative frequency of occurrence
of node l in subsequence s′ and using this value for the decision to be made. Let k1 be
the number of graphs in subsequence s′ in which node l is actually present. In other
words, k1 is the number of graphs g in subsequence s′ for which γ (l) = 1. Clearly
0 ≤ k1 ≤ M . Similarly, assume that k0 is the number of graphs g in subsequence s′
for which γ (l) = 0. Similarly to k1, we observe 0 ≤ k0 ≤ M . Obviously, there are
0 ≤ M − (k0 + k1) ≤ M graphs g in subsequence s′ where γ (l) =?. Given parameters
k0 and k1, we can use the following rule to make a decision as to the presence of node
l in gt :
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γt (l) =
{

0 if k0 > k1,

1 if k1 > k0 .
(11.1)

In case k0 = k1, a random decision is in order. Alternatively, such a tie can be
broken by some other scheme, for example by computing k0 and k1 for another value of
M . Equation (11.1) can be interpreted as a majority voting rule. We decide γt (l) = 0
if the majority of graphs in subsequence s′ excludes node l, and we decide γt (l) = 1
if node l is present in the majority of graphs in s′. Note that a graph g in sequence s

where γ (l) =? will not be considered under this voting rule.
A potential problem with the decision rule according to equation (11.1) occurs if

k0 +k1 = 0, i.e., if in each graph g of subsequence s′ we have γt (l) =?. In this case one
has to resort to making a random decision, or possibly enlarge the length of subsequence
s′, i.e., increase the value of parameter M . The second possibility is motivated by the
expectation to find some graph g in subsequence g1, . . . , gt−M−1 in which γ (l) = 1
or γ (l) = 0, resulting in a value k0 > 0 and/or k1 > 0.

The decision scheme implied by equation (11.1) can be combined with a rejection
mechanism. Under such a rejection mechanism a decision as to γt (l) = 0 or γt (l) = 1
will be made only if a certain level of confidence is reached. For example, one could
replace the condition k0 > k1 by the more rigorous condition k0 > k1+ϑ , where ϑ > 0
is a user-defined parameter. This means that a mere majority is no longer sufficient in
order to decide for γt (l) = 0. The decision γt (l) = 0 will be made only if counters
k0 and k1 differ by an amount larger than ϑ from each other. Similarly, the condition
k1 > k0 would be replaced by k1 > k0 +ϑ . In case neither k0 > k1 +ϑ nor k1 > k0 +ϑ

holds, the system would abstain from making a decision and leave the value of γt (l)

undecided, i.e., yield γt (l) =? as the final result. Note that the original decision rule as
given in equation (11.1) is a special case of the decision rule with rejection if ϑ = 0.
Intuitively, it may be expected that with an increasing value of ϑ , the relative number
of correct decisions will increase, but the number of abstentions will increase as well.

Similar decision procedures can be derived for edges e in graph gt . That is, given
edge e with δ (e) =?, we count the number of graphs g in subsequence s′ with δ (e) = 0
and the number of graphs g with δ (e) = 1 and decide, based on these two numbers,
whether δt (e) = 0 or δt (e) = 1.

In case information about more than one node l or one edge e is missing in graph
gt , we can apply the procedures described above to all affected nodes and edges of gt

in parallel. In the extreme case, these procedures can even be applied when information
about the complete graph gt is missing, i.e., when γt (l) =? for all nodes l of gt and
δt (e) =? for all edges e of gt .

We conclude this subsection with an example. A graph sequence s = g1, g2, g3, g4
is shown in Figure 11.2. Assume that t = 4 and M = 3. This means that we use
subsequence s′ = g1, g2, g3 for reconstructing missing information in g4. First we
note that L = {A, B, C, D}. In Figure 11.2, dashed circles and lines represent missing
information. For example, in graph g1, we observe γ1 (A) = γ1 (D) = 1, γ1 (B) =
γ1 (C) = 0, δ1 (A, D) = 1 and δ1 (D, A) = 0. In graph g2, γ2 (A) = γ2 (D) = 1,
γ2 (B) = 0, γ2 (C) =?, δ2 (A, D) = 1 and δ2 (D, A) = 0, δ2 (A, C) = δ2 (C, A) =
δ2 (C, D) = δ2 (D, C) =?. Moreover, γ3 (A) = 0, γ3 (B) = γ3 (C) = 1, γ3 (D) =?,
δ3 (B, C) = δ3 (C, B) = 1, δ3 (C, D) = δ3 (D, C) = δ3 (B, D) = δ3 (D, B) = 0. In
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graph g4, we observe γ4 (l) =? for any x ∈ L, and δ4 (l1, l2) =? for any (l1, l2) ∈ L×L.
This means that we don’t have any information about graph g4. Assume the task is
to recover the missing information for graph g4. Applying rule (2.2.1) results in the
following decisions: γ4 (A) = γ4 (D) = 1; γ4 (B) = 0; for node C we have k0 = k1 =
1 and therefore make a random decision, for example, γ4 (C) = 0. Furthermore, we
get for the edges of g4 δ4 (A, D) = 1 and δ4 (D, A) = 0. A graphical representation of
graph g4 after recovering the missing information is shown in Figure 11.3.
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Fig. 11.2. Example of a graph sequence s = g1, g2, g3, g4 with missing information.

g 4
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D

Fig. 11.3. Result of information recovery procedure when applied to g4 in Figure 11.2.

11.2.3 Recovery of Missing Information Using Reference Patterns

The method described in Section 11.2.2 is based on a simple voting scheme that com-
putes the number of graphs g in subsequence s′ where γ (l) = 0 and compares this
number with the number of graphs where γ (l) = 1. The particular order of the values
γ (l) = 0 and γ (l) = 1 in subsequence s′ is not relevant. In Section 11.2.3 we develop
a more refined decision rule in which this order is taken into account. We address again
the problem of making a decision as to γt (l) = 0 or γt (l) = 1, given γt (l) =? in
sequence s.

As a generalization of the scenario considered in Section 11.2.2 we assume the
existence of a reference set

R = {s1, . . . , sn} (11.2)

of graph subsequences
sj = gj,1, . . . , gj,M (11.3)
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of length M for each j = 1, . . . , n.
Each element sj of the reference set is a sequence of graphs of length M . These

sequences are used to represent information about the “typical behavior” of the nodes
and edges in a graph sequence of length M . This information will be used to make a
decision as to γt (l) = 0 or γt (l) = 1 whenever γt (l) =? occurs.

To generate reference set R, we can utilize graph sequence g1, . . . , gt−1. Each
sequence in R is of length M , by definition (see equation (11.3)), where M is a parameter
to be chosen dependent on the particular application. Let’s assume that M ≤ t − 1.
Then we can extract all subsequences of length M from sequence g1, . . . , gt−1, and
include them in reference set R. This results in

R = {s1 = g1, . . . , gM ; s2 = g2, . . . , gM+1 ; st−M = gt−M, . . . , gt−1} . (11.4)

From each sequence si = gi, . . . , gi+M−1 in set R we can furthermore extract,
for each node l ∈ L, the sequence γi (l) , . . . , γi+M−1 (l). Assume for the mo-
ment that γi (l), . . . , γi+M−1 (l) ∈ {0, 1}, which means that none of the elements
γi (l) , . . . , γi+M−1 (l) is equal to ?. Then (γi (l) , . . . , γi+M−1 (l)) is a sequence of
binary numbers, 0 or 1, that indicate whether node l occurs in a particular graph in
sequence si . Such a sequence of binary numbers will be called a reference pattern.
Obviously (γi (l) , . . . , γi+M−1 (l)) ∈ {0, 1}M . Because there are 2M different binary
sequences of length M , there exist at most 2M different reference patterns for each node
l ∈ L. Note that a particular reference pattern x = (x1, . . . , xM) ∈ {0, 1}M may have
multiple occurrences in set R.

In order to make a decision as to γt (l) = 0 or γt (l) = 1, given γt (l) =?,
the following procedure can be adopted. First, we extract from graph sequence
s = g1, . . . , gt the sequence (γt−M+1 (l) , . . . , γt (l)) where, according to our as-
sumption, γt (l) =?. Assume furthermore that γt−M+1 (l) , . . . , γt (l) ∈ {0, 1}, i.e.,
none of the elements in sequence (γt−M+1 (l) , . . . , γt (l)), except γt (l), is equal to ?.
Sequence (γt−M+1 (l) , . . . , γt (l)) will be called the query pattern. Given the query
pattern, we retrieve from the reference set R all reference patterns x = (x1, . . . , xM)

where x1 = γt−M+1 (l), x2 = γt−M+2 (l) , . . . , xM−1 = γt−1 (l). Any reference pat-
tern x with this property is called a reference pattern matching the query pattern, or
a matching reference pattern for short. Clearly, a reference pattern that matches the
query pattern is a sequence of 0’s and 1’s of length M , where the first M − 1 elements
are identical to corresponding elements in the query pattern. The last element in the
query pattern is equal to ?, by definition, while the last element in any matching refer-
ence pattern is either 0 or 1. Let k be the number of reference patterns that match the
query pattern. Furthermore, let k0 be the number of matching reference patterns with
xM = 0, and let k1 be the number of matching reference patterns with xM = 1; note
that k = k0 + k1. Now we can apply the following decision rule:

γt (l) =
{

0 if k0 > k1,

1 if k1 > k0 .
(11.5)

In case k0 = k1 a random decision is in order, similarly to the case k0 = k1 in
equation (11.1). Intuitively, under this decision rule we consider the history of node l
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over a time window of length M and retrieve all cases recorded in set R that match
the current history. Then a decision is made as to γt (l) = 0 or γt (l) = 1, depending
on which case occurs more frequently in the reference set. From the intuitive point of
view, this approach is based on the assumption that not only the number of occurrences,
but also the patterns of presence and absence of a node l in a time window of a certain
length has a correlation with the occurrence of l in gt .

As an example, consider graph sequence s = g1, . . . , g9 shown in Figure 11.4. Let
t = 9 and assume we want to make a decision as to γ9 (A) = 0 or γ9 (A) = 1. Let
M = 2. Then we get the following reference set:

R = {(g1, g2) , (g2, g3) , . . . , (g7, g8)} . (11.6)

From this set, we can extract the following reference patterns for node A:

(0, 0) : 1 instance extracted from (g1, g2)

(0, 1) : 2 instances extracted from (g2, g3) and (g4, g5)

(1, 0) : 2 instances extracted from (g3, g4) and (g7, g8)

(1, 1) : 2 instances extracted from (g5, g6) and (g6, g7)

The query pattern in this example is (γ8 (A) , γ9 (A)) = (0, ?). There are three
matching reference patterns, namely the single instance of (0, 0) and the two instances
of (0, 1). Hence k = 3, k0 = 1, k1 = 2, and the result will be γ9 (A) = 1.

The method derived until now is based on the assumption that none of the reference
patterns for node l, extracted from set R, contains the symbol ?. From the practical
point of view, this implies that whenever the situation γi (l) =? is actually encountered,
we have to discard the corresponding reference pattern, which may result in a set of
reference patterns too small to be meaningful. However, the restriction that symbol ?
must not occur in a reference pattern can be overcome as described below. Consider
reference set R as defined in equation (11.4) and assume that in fact γi (l) =? for some
i, 1 ≤ i < t . Then there will be reference patterns for node l that include symbol ?. Let
x = (x1, . . . , xi−1, ?, xi+1, . . . , xM) be such a reference pattern. In order to eliminate
symbol ? from the reference pattern, we replace x by two new reference patterns x0 and
x1 where x0 is obtained from x by replacing symbol ? by symbol 0, and x1 is obtained
by replacing ? by symbol 1. That is, x0 = (x1, . . . , xi−1, 0, xi+1, . . . , xM) and x1 =
(x1, . . . , xi−1, 1, xi+1, . . . , xM). This schema can be iteratively applied in case there is
more than one position in x equal to ?. Generally, if there are r , 1 ≤ r ≤ M , positions
equal to ?, we will replace the original reference pattern by 2r new reference patterns,
taking all combinations into account to substitute symbol 0 or symbol 1 for symbol
?. As an example, consider reference pattern x = (?, ?, ?), which will be replaced by
eight new reference patterns, x000 = (0, 0, 0), x001 = (0, 0, 1), . . ., x111 = (1, 1, 1).

Once all occurrences of symbol ? have been eliminated from all reference patterns
for node l, we assign a weight to each new reference pattern. The weight is equal to
1/2r , where r is the number of symbols equal to ? in the original reference pattern
(equivalently, 2r is the number of new reference patterns obtained by substitution from
the original reference pattern). In the previous example, where x = (?, ?, ?), each of
the new reference patterns x000, x001, . . . , x111 gets a weight equal to 1/8. In case
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Fig. 11.4. An example used to demonstrate the method introduced in Section 11.2.3.

no substitution operation was applied to a reference pattern x (which means that this
reference pattern never included an occurrence of symbol ?) we assign weight 1 to x.

Once all symbols ? have been eliminated and weights have been assigned to all
reference patterns of node l, we apply the following modified rule in order to decide as
to γt (l) = 0 or γt (l) = 1, given γt (l) =?. The numbers k0 and k1 in equation (11.5)
are no longer used to reflect the number of matching reference patterns with xM = 0
and xM = 1, respectively, but are now equal to the sum of weights of all reference
patterns with xM = 0 and xM = 1, respectively. With this modified definition of k0 and
k1, equation (11.5) is applied.

As an example, consider the graph sequence in Figure 11.4 and assume γ6 (A) =?
rather than γ6 (A) = 1. For this situation we get the following reference patterns and
weights for node A:
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(0, 0) : weight 1, resulting from (g1, g2) contributing with weight 1
(0, 1) : weight 2.5, resulting from (g2, g3) and (g4, g5), each contributing

with weight 1, and (g6, g7) contributing with weight 0.5
(1, 0) : weight 2.5, resulting from (g3, g4) and (g7, g8), each contributing

with weight 1, and (g5, g6) contributing with weight 0.5
(1, 1) : weight 1, resulting from (g5, g6) and (g6, g7), each contributing

with weight 0.5

In order to derive a decision concerning γ9 (A) =?, we obtain k0 = 1 and k1 = 2.5
under the generalized decision schema. Hence γ9 (A) = 1, which is identical to the
decision made before.

There is still a restriction in the decision procedure derived until now, in the sense
that query pattern (γt−M+1 (l) , . . . , γt (l)) must not include any occurrence of symbol ?,
except for γt (l) =?.Yet this restriction can be overcome by a procedure that eliminates
all occurrences of ? in a query pattern, similar to their elimination in a reference pattern.
Assume that our query pattern is y = (y1, . . . , yM), where in addition to yM =?, we
have r , 1 ≤ r ≤ M − 1, other symbols equal to ?. In such a situation, we iteratively
replace each occurrence of ? first by symbol 0 and then by symbol 1. Consequently,
we get 2r new query patterns, none of which contains symbol ? at a position other than
M . For example, for query pattern y = (?, ?, ?) we derive four new query patterns
y00 = (0, 0, ?), y01 = (0, 1, ?), y10 = (1, 0, ?), and y11 = (1, 1, ?). (Notice that
symbol ? is not replaced at position M , due to our assumption that the last symbol in
each query pattern is equal to ?.) For each new query pattern we retrieve all matching
reference patterns x = (x1, . . . , xM) from set R and simply count, using variables k0
and k1, how many reference patterns exist with xM = 0 and xM = 1, respectively.
Then equation (11.5) is applied. Notice that in this schema no weights are needed
for the new reference patterns that are generated. If there are weights assigned to the
matching reference patterns that are retrieved, these weights will be summed up in the
computation of k0 and k1, as explained before.

As an example, assume that the graph sequence shown in Figure 11.4 (with γ6 (A) =
1) is being extended by an additional graph g10 with γ10 (A) =?. Let t = 10, M = 2,
and assume we want to make a decision regarding γ10 (A). Now the query sequence
becomes y = (y1, y2) = (γ9 (A) , γ10 (A)) = (?, ?). The method described above
yields y0 = (0, ?) and y1 = (1, ?). Given the (unweighted) reference patterns derived
from Figure 11.4, where graph g9 is excluded, we find k0 = 3 (due to one instance of
(0, 0) and two instances of (1, 0)) and k1 = 4 (due to two instances of both (0, 1) and
(1, 1)), which results in γ10 (A) = 1.

We can extend this example by including (g8, g9) in reference set R. Because
γ9 (A) =? we use the weighting schema to derive the reference patterns for node A. As
a result we obtain:
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(0, 0) : weight 1.5, resulting from (g1, g2) contributing with weight 1,
and (g8, g9) contributing with weight 0.5

(0, 1) : weight 2.5, resulting from (g2, g3) and (g4, g5), each contributing
with weight 1, and (g8, g9) contributing with weight 0.5

(1, 0) : weight 2, resulting from (g3, g4) and (g7, g8), each contributing
with weight 1

(1, 1) : weight 2, resulting from (g5, g6) and (g6, g7), each contributing
with weight 1

From the original query pattern y = (?, ?) we derive y0 = (0, ?) and y1 = (1, ?).
To calculate k0 we have to add the weights of reference patterns (0, 0) and (1, 0), and
for k1 the weights of (0, 1) and (1, 1), which results in k0 = 3.5 and k1 = 4.5. Hence
we set δ10 (A) = 1.

The procedures described so far aim at the recovery of missing information con-
cerning graph nodes. However, using function δ (e), defined in Section 11.2.1, rather
than γ (l), they can be adapted to the recovery of missing edge information in a straight-
forward manner.

Some final remarks on the recovery scheme using reference patterns concern the
actual implementation of the proposed method. Because of the exponential number of
reference patterns, it is advisable to keep parameter M rather small. On the other hand,
if M gets too small we take only a short history of node l into account when making
our decision. Therefore, a suitable compromise has to be found, preferably through
experimental evaluation over a range of possible parameter values. Depending on the
length t of sequence s = g1, g2, . . . , gt and on M , it may happen that certain binary
sequences will not occur as reference patterns at all. In this case k0 = k1 = 0 in equation
(11.5). Hence a random decision has to be made. As an alternative to making a random
decision, one could repeat the procedure using a smaller value of M . Generally, if M

gets smaller, a higher number of reference patterns is obtained (assuming constant t).
Another possibility to increase the number of reference patterns is to pool the reference
patterns of all nodes l ∈ L. That is, rather than keeping an individual set of reference
patterns for each node l ∈ L, there is only one global set of reference patterns, derived
from, and applicable to, all nodes l ∈ L in the same way. Such a pooling procedure
seems adequate if all nodes in the network are believed to behave in the same way. As a
final remark in this section, we want to point out that regardless of how many matching
reference patterns exist for a given query pattern, one can always resort to the decision
rule presented in Section 11.2.2 to avoid making a random decision in case k0 = k1.
Using parameter ϑ in a similar way as described in Section 11.2.2 it is also possible to
implement a rejection schema for the method described in Section 11.2.3.

11.2.4 Recovery of Missing Information Using Linear Prediction

Linear prediction is an established methodology in signal processing [136]. It can be
used in particular to estimate future values of a function as a linear combination of
previous samples.

Given a time series of numbers, y1, . . . , yt−1, an estimate of yt , ŷt , can be calculated
as follows:
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ŷt =
M∑
i=1

αiyt−i . (11.7)

In this formula the last M values yt−M, . . . , yt−1 are used for the prediction of
yt , using M real-valued weighting coefficients α1, . . . , αM . In linear prediction one
chooses the weighting factors αi in such a way that the estimate ŷt results in an error
as small as possible. Hence, defining the error as

et = yt − ŷt = yt −
M∑
i=1

αiyt−i , (11.8)

and summing the squared error over a past time window of length T yields the quantity

E =
T −1∑
i=0

e2
i =

T −1∑
i=0

⎛⎝yi −
M∑

j=1

αjyi−j

⎞⎠2

. (11.9)

Now the aim is to choose the coefficients αi in such a way that E is minimized. The
minimum of E occurs when the derivative with respect to each parameter ∂E/∂αi is
equal to zero. After some intermediate steps, the following solution is obtained [136]:

ααα = �−1ϕ0ϕ0ϕ0 , (11.10)

where:

• ααα = (α1, . . . , αM)′ is the desired vector of coefficients
• �−1 is the inverse of the quadratic M × M matrix

� =
⎡⎢⎣ ϕ1,1 · · · ϕ1,M

...
. . .

...

ϕM,1 · · · ϕM,M

⎤⎥⎦
with elements

ϕr,s =
T −1∑
i=0

yi−ryi−s

for r, s = 0, 1, . . . , M

• ϕ0ϕ0ϕ0 = (
ϕ1,0, . . . , ϕM,0

)′ is a column vector of dimension M

It can be shown that matrix � is symmetric, and this symmetry can be exploited to
speed up the inversion process [136].

In order to apply linear prediction to the recovery of missing information about node
l in a time series of graphs s = g1, g2, . . . , gt we just need to select appropriate values
for parameters M and T and substitute values γ1 (l) , . . . , γt−1 (l) for y1, . . . , yt−1
in the previous equations. Similarly, we can use sequence δ1 (e) , . . . , δt−1 (e) for the
recovery of missing edge information. It is possible to dynamically recompute all αi
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values whenever the case γt (l) =? or δt (e) =? occurs. Alternatively, one can compute
these coefficients just a single time and use them in equation (11.7) whenever the case
γt (l) =? or δt (e) =? occurs. It has to be noted that in contrast with the methods
described in Sections 11.2.2 and 11.2.3, linear prediction will not tolerate missing
information in any of the graphs gi used to derive the coefficients αi . That is, the cases
γi (l) =? or δi (e) =? are not admissible if graph gi is being used in the computation
of ααα.

11.3 Recovery of Missing Information Using a Machine Learning
Approach

The discipline of machine learning is concerned with the automatic inference of some
function f from a set of training, or learning, data [134]. In the application considered
in this chapter, our aim is to construct a function that computes γt (l) and/or δt (e), given
some data extracted from time series g1, g2, . . . , gt as input. From the general point of
view, machine learning is a rather broad discipline with several subfields that include,
for example, statistical classification [67] and neural networks [148]. In the following
we will consider one particular approach to decision making that is based on decision
tree classifiers [146].

In Section 11.3.1 we will first review basic concepts of decision tree classifiers.Then,
in Section 11.3.2, we will derive a procedure for the recovery of missing information
using within-graph context. The procedure makes a decision as to γt (l) = 0 or γt (l) =
1, given γt (l) =?, using only nodes from graph gt , but no nodes from other graphs
g1, g2, . . . , gt−1 of the considered time series. More general scenarios will be discussed
in Section 11.3.3.

11.3.1 Decision Tree Classifiers

Decision tree classifiers are normally used for the purpose of object classification. An
object xxx is given in terms of the values of d different features and represented by means
of a d-dimensional vector, i.e., xxx = (x1, . . . , xd). The feature values xi , 1 ≤ i ≤ d,
can be numerical or nonnumerical. It is possible that one or several feature values are
unknown. To classify an object means to assign it to a class �i out of a number of given
classes �1, . . . , �c.

Let us consider a simple example where the task consists in classifying fruits,
depending on their color, size, shape, and taste. Here we have four features, color, size,
shape, taste (i.e., d = 4), and we assume that these features can assume the following
values:

• color ∈ {green, yellow, red}
• size ∈ {big, medium, small}
• shape ∈ {round, elongated}
• taste ∈ {sweet, sour}
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Hence a fruit is characterized by a 4-dimensional vector xxx = (x1, . . . , x4),
where x1 is the value of feature color , x2 is the value of feature size, x3 is the
value of feature shape, and x4 is the value of feature taste. We note that all fea-
ture values are nonnumerical in this example. A particular example of a fruit is
xxx = (yellow, small, round, sour). Object yyy = (yellow, big, round, ?) reflects the
case in which no information about the feature taste is available.

A decision tree is a tree with the following properties:

• Each leaf of the tree represents exactly one object class.
• Each nonleaf node n of the tree, including the root node, represents a test, which

uses exactly one feature. For each possible outcome of the test, there is one edge
leading from node n to a child node of n.

An example of a decision tree that can be used to classify fruits is shown in Fig-
ure 11.5. The different object classes underlying our example are

• �1 = watermelon
• �2 = apple
• �3 = grape
• �4 = grapefruit
• �5 = lemon
• �6 = banana
• �7 = cherry

Given a decision tree, such as the one shown in Figure 11.5, and an unknown input
object xxx to be classified, we simply apply the tests represented by the nonleaf nodes of
the tree, starting with the test represented by the root, and traverse the tree top-down
toward the leaves, according to the outcome of each test. Once a leaf has been reached,
the class �i represented by that leaf is assigned to the unknown input object xxx. As an
example, consider the object xxx = ( yellow, small, round, sour). Classification of this
object leads to the leaf node that represents object class lemon. Therefore, object xxx is
classified as lemon. Note that for this decision the value of the attribute taste has not
been used.

From the decision tree shown in Figure 11.5 it can be concluded that the same class
may occur at different leaf nodes. This simply means that objects of the same class may
have different feature values, or intuitively speaking, different appearance. An example
in Figure 11.5 is the class grape, which occurs two times. We also note that the same
test might occur multiple times, at different nonleaf nodes, in the same decision tree.
For example, there are three different nonleaf nodes in Figure 11.5 that all test attribute
size.

Given a decision tree, such as the one shown in Figure 11.5, and an unknown object,
for example xxx = (yellow, small, round, sour), the classification of xxx is accomplished
easily by a straightforward traversal of the decision tree. A more difficult question is
how the decision tree is obtained. Clearly, one possibility is to have the decision tree
built by a human expert, in a “manual” fashion based on his or her expertise. However,
such a manual decision tree construction has clear limitations, for example if many
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features or many classes are involved. Also, for certain applications, there may be a
lack of human expertise. In the following we introduce a procedure that allows us to
infer a decision tree automatically from a set of examples. This set of examples is
called a learning or training set in machine learning, and it is conceptually similar to
the reference set R used in Section 11.2.3.

A training set is a set of objects, xxx = (x1, . . . , xd), where the class of each object
in the training set is known. There are several algorithms for the inference of a decision
tree from a learning set that are similar to each other. In the following we describe
an approach closely related to C4.5 [146]. It is a procedure that recursively splits
the training set into smaller subsets, according to the possible outcomes of the tests
represented by the nodes of the decision tree, i.e., the values of a chosen attribute. The
procedure starts with the whole training set and terminates once a subset contains only
elements that belong to the same class.

A pseudocode description of the procedure for decision tree learning is given in
Figure 11.6. As an example, consider set L = {x1x1x1, . . . , x9x9x9} shown in Figure 11.7. We
observe that L contains elements from different classes. Hence case 1 applies, and the
algorithm generates a node for set L; this node will actually become the root node of
the decision tree. Assume that the best feature is color. We assign this feature as a test to
the node corresponding to L. The different values of color, viz. green, yellow, and red,
split L into three subsets, L1 = {x1x1x1,x2x2x2,x3x3x3}, L2 = {x4x4x4,x5x5x5,x6x6x6}, and L3 = {x7x7x7,x8x8x8,x9x9x9},
respectively. For a graphical illustration see Figure 11.8. For each subset we generate
an edge that leaves the node corresponding to L. Then we recursively apply procedure
decision-tree-inference to each of L1, L2, L3. At the node corresponding to L1, case
1 applies. Assume best feature is size. This splits L1 into L11 = {x1}, corresponding
to size = big, L12 = {x2}, corresponding to size = medium, and L13 = {x3},
corresponding to size = small. We generate the corresponding edges and continue
with L11. Since this subset contains only a single element, case 2 applies. We generate
a leaf node for L11 and label it with �1 = watermelon. Similarly, we generate a leaf
node for L12 and a leaf node for L13 and label it with �2 = apple and �3 = grape,
respectively. It is easy to verify that by continuing this procedure we get the tree shown
in Figure 11.8, assuming that the following features will be chosen as best feature:
shape for L2, size for L3, size for L21 = {x4, x5}, and taste for L32 = {x8, x9}.
Dropping sets L, L1, L2, L3, L11, and so on from the tree and keeping only the best
feature as a test at each nonleaf node renders the decision tree shown in Figure 11.5.

An important question in decision tree induction is how the best feature is found at
each nonleaf node. The basic idea is to seek the feature that contributes most toward
the purity of the resulting subsets. At any stage of the execution of the decision tree
induction algorithm shown in Figure 11.6, a training set L is called pure if all its
elements are from the same class. On the other hand, it is impure if different classes are
represented in L. A quantity that is suitable to formally model the concept of purity is
entropy. The entropy of training set L is given by

E (L) = −
c∑

i=1

p (�i) log2 p (�i) . (11.11)
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Fig. 11.5. Example of decision tree.

decision_tree_inference(L)

input: learning set L where the class of each object is known
output: decision tree
begin
case 1: the learning set L includes objects from different classes; in this
case do

1. generate a decision tree node N for L

2. choose the best feature xi assign it as a test to N , and divide set
L into disjoint subsets L1, L2,...,Lk corresponding to the different
values v1,v2,...,vk of xi

3. for each value vj , of xi do

(a) generate an edge to the child node of N corresponding to the
value vj

(b) execute decision_tree_inference(Lj )

case 2: the learning set L includes objects from only a single class, �i ;
in this case generate a leaf node for L and assign class �i to it
end

Fig. 11.6. Procedure for decision tree inference.

In this formula, c is the number of classes and p (�i) is the probability of class �i

occurring in L. This probability is usually computed by dividing the number of elements
from �i in L by the total number of elements in L. For example, if L = {x1, x2, x3, x4},
x1, x2 ∈ �1, x3 ∈ �2, x4 ∈ �3 then p (�1) = 0.5, p (�2) = p (�3) = 0.25. It is
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known that E (L) ≥ 0, and E (L) = 0 if and only if all elements in L are from the
same class. On the other hand, the maximum value of E (L) occurs if and only if the
probabilities of all classes �i in L are the same, which means that p (�i) = 1/c for
i = 1, . . . , c. Note that maximum and minimum purity coincides with minimum and
maximum entropy, respectively.

Given a training set L, in order to find the best feature at a particular node in
the decision tree we probe each feature xi by computing the weighted entropy of the
successor nodes that result if L is split into subsets L1, L2, . . . , Lk depending on the k

different values of xi . More precisely, the expression

E =
k∑

j=1

E
(
Lj

)∣∣Lj

∣∣ (11.12)

is computed for each feature xi , and the feature that minimizes E is taken as the
best feature. Clearly, this minimization strategy is equivalent to maximizing the purity
among the training subsets, which makes sense because we require each leaf node to
be eventually produced being completely pure.

As an example, consider the decision tree in Figure 11.8 and assume we want to
find the best feature for the root node, which corresponds to the training set L =
{x1, . . . , x9}. Evaluation of feature color gives

E = 1

3
E (L1) + 1

3
E (L2) + 1

3
E (L3) = 1

3

(
− log

1

3
− log

1

3
− log

1

3

)
= − log

1

3
.

We compute E in the same manner for all other features, i.e., size, shape, and taste,
and choose that feature as best feature that yields the smallest value of E.4 The same
procedure is repeated at all other nonleaf nodes of the decision tree. Note that for any of
the other nonleaf nodes we test all features, even in case a feature was already chosen
as best feature at a predecessor of the current node in the tree.

 = (red, small, round, sour) = Grapex 9

 = (red, medium, round, sweet) = Applex 7

 = (yellow, big, round, sour) = Grapefruitx 4

 = (yellow, small, elongated, sweet) = Bananax 6

 = (green, small, round, sweet) = Grapex 3

x 1

x 2

 = (yellow, small, round, sour) = Lemonx 5

 = (red, small, round, sweet) = Cherryx 8

 = (green, medium, round, sour) = Apple
 = (green, big, round, sweet) = Watermelon

Fig. 11.7. Training set for inference of the decision tree shown in Figure 11.5.

There are more issues that need to be addressed before a decision tree classifier
can be actually applied to a practical problem. One of these issues is how to deal with

4Note that for the decision tree shown in Figure 11.8, best feature was chosen randomly. That
is, the entropy minimization procedure based on equation (11.12) was not used in Figure 11.8.
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unknown feature values that may occur in the training set and/or the unknown input
objects to be classified. Furthermore, it may happen during decision tree construction
that elements from different classes end up in the same leaf node. In this case there
exist no features that allow us to discriminate between these elements. Such a case,
where two identical objects belong to different classes, is not uncommon in real-world
applications.5

Another issue is decision tree pruning in order to avoid overfitting. Usually, the aim
of the algorithm described in Figure 11.6 is to produce a decision tree that is used as a
classifier on future input objects. In particular, the classifier should work well on new
input objects that are not included in the training set. That is, we have to expect that a
new input object is different from any of the training objects used to build the tree. It is
well known that decision trees that are overadapted, or overfit, to the given training set
tend to have a rather poor performance on new, unseen data.6 To avoid overfitting, some
pruning strategies are available. They typically cut off some branches after a decision
tree has been generated, or they avoid generation of such branches from the beginning.

For a detailed treatment all of these issues we refer to [146] and Chapter 3 on deci-
sion tree learning in [134]. There are several software packages available that include all
functionality needed to implement decision tree classifiers for a variety of applications,
including techniques to deal with unknown feature values and to avoid overfitting.

Fig. 11.8. Example of decision tree induction, using the training set given in Figure 11.7.

11.3.2 Missing Information Recovery by Means of Decision Tree Classifiers: A
Basic Scheme

In this section we describe how the network information recovery problem can be
cast as a classification problem that can then be solved by means of a decision tree

5An example is optical character recognition, where digit 0 and character O may have identical
appearance.

6The decision tree in Figure 11.8 is actually an example of overfitting.
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classifier. We use the same terminology as in Section 11.2 and assume we want to
make a decision as to γt (l) = 0 or γt (l) = 1, given γt (l) =?. Actually, this decision
problem can be transformed into a classification problem as follows. The network at
time t , gt corresponds to the unknown object to be classified. Network gt is described
by means of a feature vector xxx = (x1, . . . , xd), and the decision as to γt (l) = 0 or
γt (l) = 1 can be interpreted as a two-class classification problem, where γt (l) = 0
corresponds to class �0 and γt (l) = 1 corresponds to class �1. As features x1, . . . , xd

that represent the unknown objectxxx, i.e., graph gt , one can use, in principle, any quantity
that is extractable from graphs g1, . . . , gt . In the present section we consider the case
that these features are extracted from graph gt exclusively. Assume that the universal
set of node labels is given by L = {l0, l1, . . . , lD}, and assume furthermore that it is
node label l0 for which we want to make a decision as to γt (l0) = 0 or γt (l0) = 1,
given γt (l0) =?. Then we set d = D and use the D-dimensional binary feature vector
(γt (l1) , . . . , γt (lD)) to represent graph gt . In other words, xxx = (γt (l1) , . . . , γt (lD)).
This feature vector is to be classified as either belonging to class �0 or �1. The former
case corresponds to deciding γt (l0) = 0, and the latter to γt (l0) = 1. Intuitively, using
(γt (l1) , . . . , γt (lD)) as a feature vector for the classification of gt means we make a
decision as to the presence or absence of l0 in gt depending on the presence or absence
of all other nodes from L in gt .

For the implementation of the classification procedure described in the last para-
graph, we need a training set. For the training set we can use all previous graphs in the
given time series, i.e., g1, . . . , gt−1. From each graph gi , we extract the D-dimensional
feature vector

xixixi = (γi (l1) , . . . , γi (lD)) . (11.13)

So our training set becomes L = {x1x1x1, . . . , xt−1xt−1xt−1} . As pointed out in Section 11.3.1 we
do need to assign the proper class to each element of the training set. This can be easily
accomplished by assigning class �0 to xixixi if γi (l0) = 0; otherwise, if γi (l0) = 1 we
assign class �1 to xxxi .

Given such a training set constructed from g1, . . . , gt−1, we can now apply the
procedure described in Figure 11.6 to infer a decision tree from training set L. Once
the decision tree has been produced, it is easy to classify feature vector xtxtxt (see equation
(11.13)), which describes gt , as belonging to �0 or �1.

As mentioned in Section 11.3.1, decision tree classifiers are able to deal with un-
known attribute values. This is important in our application because we must expect
that not only information about node l0 in gt is missing, but also about other nodes
li in gt , where i ∈ {1, . . . , D}. Similarly, in building the decision tree from training
set L = {xxx1, . . . , xxxt−1}, there may be graphs gi , i ∈ {1, . . . , t − 1}, for which it is
not known for some nodes whether they are present in gi . Hence some of the γi

(
lj
)

may be unknown. Using a state-of-the-art decision tree software package will allow
us to deal with missing feature values without the necessity of taking any additional
precautions. In other words, it doesn’t matter, neither during decision tree inference nor
while classifying an unknown input object, whether there are unknown feature values
or not. The system will be able to correctly handle any case.
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The procedure described in this section is based on two assumptions. The first
assumption is that there is some kind of correlation between the occurrence of a node
l in graph gt and the occurrence of some (or all) other nodes in the same graph. In
other words, we assume that the behavior of node l is dependent, in some way, on the
behavior of the other nodes. Note, however, that we don’t need to make any assumptions
as to the mathematical nature of this dependency. Our second assumption is that there
is some stationarity in the dependency between l and the other nodes. Using graphs
g1, . . . , gt−1 as a training set to derive a classifier that makes a decision pertaining to
graph gt will work well only if the dependency between l and the other nodes in gt is
of the same nature as in g1, . . . , gt−1.

In a practical setting it may be computationally too demanding to infer a decision tree
at each point of time t from g1, . . . , gt−1, because decision tree induction procedures
typically work in batch mode. That is, as time progresses from t to t + 1, and a new
decision tree for gt+1 is built from g1, . . . , gt , we can’t use the tree produced for gt

before, but need to generate the decision tree for gt+1 completely from scratch. Hence it
may be preferable to do an update of the actual decision tree only after a certain period
of time has elapsed. In the decision tree updating process it may also be advisable to use
only part of the network history. This means that for the construction of the decision
tree for gt , we don’t use g1, . . . , gt−1, but focus on only the M most recent graphs
gt−M, . . . , gt−1. This is particularly advisable if there is evidence that the behavior of
the network is not perfectly stationary, but changing over time.

11.3.3 Possible Extensions of the Basic Scheme

In Section 11.3.2 we have presented a basic scheme of applying a decision tree classifier
to the recovery of missing information in a computer network. In the current section
we discuss a number of possible extensions. All extensions are based on the decision
tree induction and traversal procedures described in Section 11.3.1. They differ only in
the feature vector xxx = (x1, . . . , xd) used to represent the underlying network.

The first possible extension discussed in this section concerns network edges. It is
easy to see that information about network edges can be integrated in a feature vector
in a straightforward way. If E = {

e1, . . . , eD
′
} = L×L is the set of all potential edges

in the network then we can extend equation (11.13) as follows:

xxxi = (
γi (l1) , . . . , γi (lD) , δi (e1) , . . . , δi

(
e
D

′
))

. (11.14)

Such an extension would allow us to use not only node information, but also infor-
mation about the presence or absence of edges in the process of recovering information
about node l0 in graph gt .All other steps remain the same as described in Section 11.3.2.
However, a note of caution regarding computational complexity is in order here, be-
cause such an extension will increase the dimensionality of the feature vector from
O (D) to O (D2

)
, which leads to a corresponding increase of complexity in decision

tree inference.
Our next extension concerns the recovery of missing edge data. That is, we consider

the problem of making a decision as to δt (e) = 0 or δt (e) = 1, given δt (e) =? for some
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e ∈ L × L. To address this problem we can proceed similarly to Section 11.3.2. The
only difference is the way we assign class �0 or �1 to the feature vectorxxxi representing
graph gi in the training set. Here we use the presence or absence of edge e in graph gi

as the criterion for assigning xxxi to �0 or �1, i.e., if δi (e) = 0 then we assign graph gi

to �0; otherwise, if δi (e) = 1 we assign xxxi to �1. Note that this schema can be applied
using either only node information in the feature vector (see equation (11.13)), or both
node and edge information (see equation (11.14)). A third possibility is to use only edge
information. In this case the feature vector becomes xxxi = (

δi (e1) , . . . , δi

(
e
D

′
))

.
Obviously, in our decision procedure we are not confined to including only infor-

mation about graph gi in feature vector xxxi . In order to classify graph gt as belonging to
either �0 or �1, which corresponds to deciding γt (l0) = 0 or γt (l0) = 1, respectively,
we can include information about previous graphs in the feature vector as well. For
example, by including information about graph gi and gi−1 in xxxi , equation (11.13)
turns into

xxxi = (γi (l1) , . . . , γi (lD) , γi−1 (l1) , . . . , γi−1 (lD)) . (11.15)

Note that the order of the features in equation (11.15) is arbitrary. However it has
to be the same for all graphs gi . A feature vector as defined by equation (11.15) can be
extended by including information about graphs gi−2, gi−3, . . .. The scenario consid-
ered in Section 11.2 is obtained if we choose xxxi = (γi−1 (l) , γi−2 (l) , . . . , γi−d (l)).
Furthermore, one can include information about the edges in all these graphs.

As a general rule, however, feature vectors should be chosen in a way such that
they include only information that is useful to enhance the discriminatory power of
the resulting decision tree. If too much information is included in a feature vector, it
will not only slow down the classification and decision tree induction processes, but
may result in overfitting.7 To find appropriate features for a given application, careful
experimental evaluation is needed.

11.4 Conclusions

In this chapter the problem of missing information recovery has been investigated. In
Section 11.2, three heuristic schemes were proposed that all use context in time, i.e.,
the behavior of a node or an edge in previous graphs in the sequence under observation,
in order to predict its presence or absence in the actual graph. Next, in Section 11.3,
we have developed a machine-learning-based method to solve the same problem. This
method can utilize context in time as well as intragraph context, which means that not
only the history of a node or an edge can be used to infer information about its possible
presence or absence in the actual graph, but also information about the presence or
absence of certain other nodes or edges in the graph under consideration.

The information recovery schemes introduced in Sections 11.2 and 11.3 can be
extended in various ways. First of all, we have not addressed the problem of edge label
recovery. That is, it may be known that edge e exists in graph gt , but its label βt (e)

may be unknown. Here we can imagine the development of some kind of extrapolation

7This phenomenon is also known as the “curse of dimensionality” [67, 134].
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schema that computes βt (e) as a linear or nonlinear combination of L previous label
values βt−L(e), . . . , βt−1(e).

Throughout Sections 11.2 and 11.3 we have always considered the problem of recov-
ering missing information in graph gt based on information extracted from g1, . . . , gt−1
(Section 11.2), or g1, . . . , gt (Section 11.3). This problem is an instance of an online
problem, where we seek a decision immediately after observation gt has been made. In
an offline scenario, by contrast, we may be allowed to use all graphs g1, . . . , gN in the
whole time series for the recovery of the missing information in gt , where t < N . It is
easy to see that the framework proposed in Sections 11.2 and 11.3 can be extended to the
offline case in a straightforward way. If not only past graphs g1, . . . , gt−1 or g1, . . . , gt

but also future graphs gt+1, . . . , gN are available, information extracted from the future
graphs can be used in the procedures introduced in Section 11.2 and 11.3 in the same
way as information extracted from the past graphs.

We furthermore note that the online algorithms introduced in Sections 11.2 and 11.3
can be used not only for the purpose of recovering missing information, but also for
predicting the presence or absence of nodes in a graph. All algorithms of Section 11.2
can be used in their original form for this purpose, while in Section 11.3 we only need
to ensure our decision tree being built from data occurring in g1, . . . , gt−1, but not in
gt , when making a prediction about gt .

In Section 11.3 we have cast our missing information recovery problem as a classi-
fication problem and used a decision tree classifier to solve it. We would like to mention
that a variety of other classification methods exist [67, 148]. For those classification
methods, however, in particular for statistical classifiers, it is to be expected that the
number of features (i.e., the number of nodes and edges in graphs g1, . . . , gt ) becomes
too large, which may lead to poor classifier performance due to overfitting. However,
to overcome the problem of too many features, methods for feature selection may be
applicable; see Chapter 8 in [186], for example. So statistical classifiers could be
trained after suitable reduction of the number of relevant features. Such a procedure
may eventually make a large number of classification procedures available for solving
our problem of missing information recovery.
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Matching Hierarchical Graphs

12.1 Introduction

In general, the computation of graph similarity is a very costly task. In the context
of this book, however, we focus on a special class of graphs that allow for low-order
polynomial-time matching algorithms. The considered class of graphs is characterized
by the constraint that each node has a unique node label. This constraint is met in all
computer network monitoring and abnormal event detection applications considered in
this book.

Future applications of graph matching may require one to deal with graphs consist-
ing of tens or even hundreds of thousands of nodes. For these applications low-order
polynomial matching algorithms, such as those considered in previous chapters, may be
still too slow. In this chapter we introduce a hierarchical graph representation scheme
that is suitable for reducing the size of the graphs under consideration. Other reduction
schemes have been proposed in [109], for example. There are also some conceptual
similarities with hierarchical quadtree, or pyramid, representations in image processing
[4]. The basic idea underlying the proposed hierarchical representation scheme is to

contract some nodes of the given graph and represent them as a single node at a higher
level of abstraction. There are no particular assumptions about the criteria that control
the selection of nodes to be contracted into a single node at a higher abstraction level.
For the contraction process, any algorithm that clusters nodes of a graph, including
heuristic selection strategies or the algorithms discussed in Chapter 7, may be chosen.
Properties of the nodes that are contracted are stored as attributes with the corresponding
node at the higher level of abstraction. This process can be carried out in a hierarchical,
iterative fashion, which will allow us to eventually contract any arbitrarily large set of
nodes into a single node.

Because of the reduced number of nodes, computing the similarity of two graphs at
a higher level of abstraction can be expected to be much faster than the corresponding
computation on the original graphs. It is, however, desirable that the graph contraction
procedure, as well as the chosen graph distance measure, have some monotonicity
properties. That is, if graph g1 is more similar to g2 than to g3 at the original, full graph
resolution level, then this property should be maintained for the representation at any
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higher level of abstraction. In this chapter we study several of these properties. While
the general monotonicity property, as stated above, can’t be guaranteed, we will derive
upper and lower bounds of the graph similarity measure at higher levels of abstraction.
It will be shown that under certain conditions these bounds are tight, i.e., they are
identical to the real similarity value.

In the next section, the proposed graph abstraction scheme is presented. Then in
Section 12.3, our new graph similarity measures will be defined and upper and lower
bounds for graph distance at higher levels of abstraction derived. Next, potential ap-
plications of the proposed graph contraction scheme and the similarity measures in the
domain of computer network monitoring will be discussed. In Section 12.5 the results
of an experimental study will be presented. Finally, a summary and conclusions will be
provided in Section 12.6.

12.2 Hierarchical Graph Abstraction

In this chapter we consider graphs g = (V , E, α, β) with unique node labels, and use
the following graph edit distance:

d(gi, gj ) = |Vi | + |Vj | − 2|Vi ∩ Vj | + |Ei | + |Ej | − 2|Ei ∩ Ej | . (12.1)

This edit distance is identical to the edit distance introduced in Chapter 4 for the
case that we neglect edge weight and are just interested in whether an edge is present
between a given pair of nodes.

We start our graph abstraction process by partitioning the set of nodes V into a set
of subsets, or clusters, C = {c1, . . . , cn}, where ci ⊆ V, ci ∩ cj = ∅,

⋃n
i=1 ci = V for

i �= j ; i, j = 1, . . . , n.

Definition 12.1. Given a graph g and an arbitrary partitioning C, a hierarchical ab-
straction of g is the graph ḡ = (V̄ , Ē, ᾱ, β̄) where:

(i) V̄ = C, i.e., each node in ḡ represents a cluster of nodes in g (hence V̄ =
{c1, . . . , cn});

(ii) Ē = V̄ × V̄ , i.e., ḡ is fully connected;
(iii) ᾱ(v) = (nodes(v), edges(v)) for each v ∈ V̄ , such that

– nodes(v) = |c|, where v represents c

– edges(v) = |{e | e = (x, y) ∈ E ∧ x ∈ c ∧ y ∈ c}|, where v represents c.
That is, each node in ḡ gets two attributes, nodes(v) and edges(v), assigned to it.
The attribute nodes(v) is equal to the number of nodes in graph g that belong to
the cluster represented through v, while edges(v) is equal to the number of edges
in that cluster in graph g; and

(iv) β̄(e) = |{(x, y) | (x, y) ∈ E∧x ∈ ci ∧y ∈ cj ∧e = (ci, cj )}| for each e ∈ Ē. That
is, if e is an edge in ḡ originating at the node representing cluster ci and terminating
at the node representing cluster cj , then we count the number of edges in g that
lead from a node in ci to a node on cj .
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Example 12.2. A graph gi and its hierarchical abstraction ḡi are shown in Figure 12.1.
For these graphs we observe that Vi = {1, 2, 3, 4, 5} and Ei = {(1, 2), (1, 4), (2, 1),

(2, 4), (2, 5), (3, 1), (4, 3)}.
We assume that Vi is partitioned into C = {{1, 2}, {3, 4}, {5}}, i.e., c1 = {1, 2},

c2 = {3, 4}, c3 = {5}. The hierarchical abstraction ḡi = (V̄ , Ē, ᾱ, β̄) is then given by

V̄i = {{1, 2}, {3, 4}, {5}} = {c1, c2, c3},
Ēi = {(c1, c2), (c1, c3), (c2, c1)},
nodesi : c1 → 2, c2 → 2, c3 → 1,

edgesi : c1 → 2, c2 → 1, c3 → 0,

β̄i : (c1, c2) → 2, (c1, c3) → 1, (c2, c1) → 1.

2
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2

{3,4}
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1

g gi i

1

(1,0)

(2,1)

(2,2)

Fig. 12.1. A graph gi and its hierarchical abstraction ḡi .

All edges e that have an attribute value β(e) = 0 are not included in Figure 12.1. In
the graphical representation of ḡi in Figure 12.1, the pairs (x, y) displayed next to the
nodes correspond to the node attributes, i.e., x = nodes(v), y = edges(v). Similarly,
the numbers next to the edges correspond to the edge attributes.

12.3 Distance Measures for Hierarchical Graph Abstraction

In this section we introduce two distance measures for the hierarchical graph abstrac-
tion introduced in Section 12.2, and discuss relationships with the measure defined
in equation (12.1). Throughout this section we assume that gi = (Vi, Ei, αi, βi) and
gj = (Vj , Ej , αj , βj ) are two given graphs. The nodes and edges of both graphs come
from (possibly larger) sets V and E, respectively, i.e., Vi ∪ Vj ⊆ V , Ei ∪ Ej ⊆ E,
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and C = {c1, . . . , cn} is a partition of V . The graphs ḡi = (V̄i , Ēi , ᾱi , β̄i ) and
ḡj = (V̄j , Ēj , ᾱj , β̄j ) are the hierarchical abstractions of gi and gj , respectively, both
based on the partition C. In Section 12.4, we will consider not only pairs, but whole sets
of graphs G = {g1, . . . , gm}, and compute the distance of various pairs of graphs from
set G. For reasons of efficiency, it is advantageous to consider one global partitioning
C for all graphs from G. Otherwise, if individual partitionings are applied, not all pairs
ḡi and ḡj will be comparable under the considered distance measures.

The first distance measure is defined as follows:

Dl(ḡi , ḡj ) =
∑
v∈V̄

|nodesi (v) − nodesj (v)| +
∑
v∈V̄

|edgesi (v) − edgesj (v)|

+
∑
e∈Ē

|β̄i (e) − β̄j (e)| . (12.2)

Example 12.3. A graph gj and its hierarchical abstraction ḡj are shown in Figure 12.2.
We assume that V = Vi ∪ Vj , E = Ei ∪ Ej and C = {{1, 2}, {3, 4}, {5, 6}}. It is easy
to verify that d(gi, gj ) = 13 and Dl(ḡi , ḡj ) = 9. The distance Dl(ḡi , ḡj ) is obtained
by summing the absolute differences of all pairs of corresponding attribute values. For
nodes we get the value two, for edges the value three, and for β̄(e) the value four.
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2

5

2

{2}

{5,6}

{3,4} 1

j jg

(2,1)

(2,1)

(1,0)

g

1

Fig. 12.2. Another graph gj , and its hierarchical abstraction ḡj .

The fact that Dl(ḡi , ḡj ) ≤ d(gi, gj ) is not a coincidence. It can be easily proven
that Dl(ḡi , ḡj ) is a lower bound of d(gi, gj ) for any pair of graphs gi and gj , and any
partitioning C.

Lemma 12.4. Let gi , gj , ḡi and ḡj be graphs as introduced above. Then

Dl(ḡi , ḡj ) ≤ d(gi, gj ).
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Proof. The proof is based on the observation that the term |Vi | + |Vj | − 2|Vi ∩ Vj | in
equation (12.1) is equal to the number of nodes that are in either gi or gj , but not in
both. Similarly, |Ei | + |Ej | − 2|Ei ∩ Ej | is equal to the number of edges either in gi

or gj , but not in both. In equation (12.2), node v (corresponding to one of the clusters
ck) includes exactly nodesi(v) nodes from gi and nodesj (v) nodes from gj . Hence
there must be at least |nodesi(v) − nodesj (v)| nodes that are not in both gi and gj .
Summing up over all nodes v ∈ V̄ (i.e., clusters ck ∈ C) yields a lower bound of the
expression |Vi |+|Vj |−2|Vi ∩Vj |. Similarly, the sum of the second and the third terms
in equation (12.2) yields a lower bound of |Ei | + |Ej | − 2|Ei ∩ Ej |.

It can be shown that under certain conditions the lower bound given by equa-
tion (12.2) is exact.

Lemma 12.5. Let gi , gj , ḡi , and ḡj be the same as in Lemma 12.4. Furthermore, let
Vi ⊆ Vj and Ei ⊆ Ej . Then

Dl(ḡi , ḡj ) = d(gi, gj ).

Proof. From our assumptions it follows that |Vi ∩ Vj | = |Vi | and |Ei ∩ Ej | = |Ei |.
Hence |Vi |+|Vj |−2|Vi ∩Vj | = |Vj |−|Vi |, |Ei |+|Ej |−2|Ei ∩Ej | = |Ej |−|Ei |, and
d(gi, gj ) = |Vj | − |Vi | + |Ej | − |Ei |. Obviously, the right-hand side of this equation
is identical to the right-hand side of equation (12.2) under the assumption |Vi | ⊆ |Vj |
and |Ei | ⊆ |Ej |.

The second graph distance measure is defined as follows:

Du(ḡi , ḡj ) =
∑
v∈V̄

NODES(v) +
∑
v∈V̄

INTRACLUSTER-EDGES(v)

+
∑
e∈Ē

INTERCLUSTER-EDGES(e) , (12.3)

where

NODES(v) =
⎧⎨⎩

nodesi(v) + nodesj (v), if nodesi(v)

+nodesj (v) < |c|,
2|c| − nodesi(v) − nodesj (v), otherwise ,

INTRACLUSTER-EDGES(v) =⎧⎨⎩
edgesi(v) + edgesj (v), if edgesi(v) + edgesj (v)

< |EDGES(v)|,
2|EDGES(v)|-edgesi(v) − edgesj (v), otherwise ,

and

INTERCLUSTER-EDGES(e) ={
β̄i (e) + β̄j (e), if β̄i (e) + β̄j (e) < |EDGES(e)|,
2|EDGES(e)| − β̄i (e) − β̄j (e), otherwise .
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In this definition, c denotes the cluster that corresponds to node v, EDGES(v) is the
set of all edges in set E that belong to cluster c, and EDGES(e) is the set of all edges
in E that start and end at the same cluster as edge e. Formally,

EDGES(v) = {e | e = (x, y) ∈ E ∧ x ∈ c ∧ y ∈ c} ,

and

EDGES(e) = {(x, y) | (x, y) ∈ E ∧ x ∈ ci ∧ y ∈ cj ∧ e = (ci, cj )} .

Example 12.6. For the graphs shown in Figures 12.1 and 12.2, we obtain Du(ḡi , ḡj ) =
13. Note that in all of the quantities NODES(v), INTRACLUSTER-EDGES(v), and
INTERCLUSTER-EDGES(e) the second condition always evaluates to true. The first
term in equation (12.3) evaluates to two, while values five and six are obtained for the
second and third terms, respectively.

Next we show that the measure Du(ḡi , ḡj ) is an upper bound on d(gi, gj ).

Lemma 12.7. Let gi , gj , ḡi and ḡj be graphs as introduced above. Then

d(gi, gj ) ≤ Du(ḡi , ḡj ) .

Proof. If the number of nodes of V that belong to cluster c is greater than the number of
nodes of gi in cluster c plus the number of nodes of gj in cluster c, then the intersection
of nodes of gi and gj is possibly empty and the expression |Vi | + |Vj | − 2|Vi ∩ Vj |
in equation (12.1) is bounded from above by nodesi(c) + nodesj (c). Otherwise, some
nodes from gi and gj must be the same, i.e., some nodes must occur in both gi and gj .
The number of these nodes is equal to nodesi(c)+nodesj (c)−|c|. Hence the expression
|Vi | + |Vj | − 2|Vi ∩ Vj | becomes equal to |nodesi(c) + nodesj (c) − 2(nodesi(c) +
nodesj (c) − |c|)| = 2|c| − nodesi(c) − nodesj (c). A similar argument holds for the
edges, i.e., for the the attributes edgesi(c), edgesj (c), β̄i (e), and β̄j (e). Summing over
all clusters c and all edges in E provides an upper bound of d(gi, gj ).

In Example 12.6 we note that Du(ḡi , ḡj ) = d(gi, gj ). This is no coincidence
because the proof of Lemma 12.7 implies that the upper bound Du(ḡi , ḡj ) is equal
to the actual distance d(gi, gj ) if |Vi | + |Vj | ≥ |V | and |Ei | + |Ej | ≥ |E|. This is
summarized in the following lemma.

Lemma 12.8. Let gi , gj ḡi , and ḡj be defined as in Lemma 12.7 and let |Vi |+|Vj | ≥ |V |
and |Ei | + |Ej | ≥ |E|. Then

Du(ḡi , ḡj ) = d(gi, gj ) .

A consequence of this lemma is that for any two graphs gi , gj and their hierarchical
abstractions ḡi , ḡj , the quantity Du(ḡi , ḡj ) is always equal to d(gi, gj ) if we set V =
Vi ∪ Vj and E = Ei ∪ Ej .
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In the remainder of this section we will investigate the problem of how the upper
and lower bounds Du(ḡi , ḡj ) and Dl(ḡi , ḡj ) depend on the way we partition the set V .
Let C = {c1, . . . , cn} and C̄ = {c̄1, . . . , c̄m} be two different partitionings of set V . We
call C finer than C̄ if for each ci there exists a c̄j such that ci ⊆ c̄j . Let gi and gj be two
graphs, ḡi and ḡj their hierarchical abstractions based on partition C, and Ḡi and Ḡj

their hierarchical abstractions based on partition C̄, where C is finer than C̄. Then we
can prove that Du(ḡi , ḡj ) and Dl(ḡi , ḡj ) are better approximations of d(gi, gj ) than
Du(Ḡi, Ḡj ) and Dl(Ḡi, Ḡj ), respectively.

Lemma 12.9. Let ḡi , ḡj , Ḡi , and Ḡj be as defined above. Then

Dl(Ḡi, Ḡj ) ≤ Dl(ḡi , ḡj ) .

Proof. Assume that the cluster c ∈ C̄ is split into clusters c1, . . . , ck ∈ C when we
refine the partition C̄ to the partition C. Clearly, |c| = ∑k

l=1 |cl |. The contribution of
cluster c to the first term of Dl(Ḡi, Ḡj ) is equal to |nodesi(c) − nodesj (c)|, which
can be rewritten as |∑k

l=1 nodesi(cl)−∑k
l=1 nodesj (cl)|; see equation (12.2). On the

other hand, for clusters c1, . . . , ck we get a contribution equal to
∑k

l=1 |nodesi(cl) −
nodesj (cl)| to the first term in Dl(ḡi , ḡj ).Applying a similar argument to the second and
third terms in equation (12.2) and using the well-known relation |∑k

l=1 al −∑k
l=1 bl | ≤∑k

l=1 |al − bl |, which holds for any set of real numbers al , bl , concludes the proof.

Lemma 12.10. Let ḡi , ḡj , Ḡi , and Ḡj be the same as in Lemma 12.9. Then

Du(ḡi , ḡj ) ≤ Du(Ḡi, Ḡj ) .

Proof. The proof is based on observing that in the computation of NODES(v) in equa-
tion (12.3), whenever the second case evaluates to true for a partition C̄, it will also
evaluate to true for any other partition C that is finer than C̄. On the other hand, if the first
case evaluates to true for C̄, then either the first or the second case may evaluate to true for
any of the clusters in C. Moreover, we observe that the value under the second condition
is always less than or equal to the value obtained under the first condition. Applying a
similar argument to INTRACLUSTER-EDGES(v) and INTERCLUSTER-EDGES(e)

yields the proof.

Summarizing all results derived in this section, we obtain the following theorem:

Theorem 12.11. Let all quantities be as introduced above. Then:

(i) Dl(Ḡi, Ḡj ) ≤ Dl(ḡi , ḡj ) ≤ d(gi, gj ) ≤ Du(ḡi , ḡj ) ≤ Du(Ḡi, Ḡj ) ,

(ii) d(gi, gj ) = Dl(ḡi , ḡj ) = Dl(Ḡi, Ḡj ), if Vi ⊆ Vj and Ei ⊆ Ej ,

(iii) d(gi, gj ) = Du(ḡi , ḡj ) = Du(Ḡi, Ḡj ), if V = Vi ∪ Vj , E = Ei ∪ Ej .

We notice that whenever the condition in (ii) is satisfied, the condition in (iii) will also
be satisfied. Hence in this case Dl(ḡi , ḡj ) = Dl(Ḡi, Ḡj ) = d(gi, gj ) = Du(ḡi , ḡj ) =
Du(Ḡi, Ḡj ).
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12.4 Application to Computer Network Monitoring

Through the hierarchical abstraction process described in Section 12.2, the number of
nodes in a graph can be reduced. In fact, it can be made arbitrarily small. In the extreme
case, a large graph will be represented by a single node only. Applying equations (12.2)
and (12.3) to a pair of graphs ḡi , ḡj , which result from gi and gj through the proposed
abstraction process, yields upper and lower bounds for d(gi, gj ). The closer ḡi and ḡj

are to the original, full-resolution graphs gi and gj , i.e., the more details are included in
the abstract graph representation, the closer will be the upper and lower bounds to the
actual value d(gi, gj ). Note that only two numbers, the number of corresponding nodes
and the number of corresponding edges from the original graph, need to be stored with
a node at an abstract level. For edges at an abstract level, only one number is needed,
representing the number of corresponding edges in the original graph.

If an abnormal event at time t + 1 is defined by the condition d(gt , gt+1) ≥ θ ,
where θ is a threshold that depends on the considered application and the underlying
network, then rather than considering d(gt , gt+1) one can compute Dl(ḡt , ḡt+1) and
Du(ḡt , ḡt+1), where ḡt and ḡt+1 are obtained from gt and gt+1 through the proposed
graph abstraction procedure. Clearly, if Dl(ḡt , ḡt+1) ≥ θ then we conclude that an
abnormal event has occurred. Similarly, if Du(ḡt , ḡt+1) < θ then we conclude that
no abnormal event has occurred. In either case we need not compute d(gt , gt+1), and
it can be expected that computing Dl(ḡt , ḡt+1) and Du(ḡt , ḡt+1) is faster than the
computation of d(gt , gt+1). On the other hand, if Dl(ḡt , ḡt+1) < θ and Du(ḡt , ḡt+1) ≥
θ , then we need to calculate d(gt , gt+1). Alternatively we can compute Dl(g̃t , g̃t+1)

and Du(g̃t , g̃t+1) for graphs g̃t and g̃t+1 that are closer to the original level of resolution
than ḡt and ḡt+1, expecting either Dl(g̃t , g̃t+1) ≥ θ or Du(g̃t , g̃t+1) < θ .

In Chapter 7 (intra)graph clustering algorithms have been described. These algo-
rithms are able to identify clusters of nodes within a graph such that nodes in the same
cluster are similar to each other, while nodes in different clusters are dissimilar. For
the graph abstraction process described in Section 12.2, no such clustering algorithm
is needed. In fact, any partition of the underlying set of nodes can be used as the basis
of graph abstraction. In the simplest case, one can just assign unique labels from 1 to
N to all servers in the underlying network, and then partition the set {1, . . . , N} into a
given number of disjoint subsets.

Computing Dl(ḡt , ḡt+1) and Du(ḡt , ḡt+1), we get lower and upper bounds of
d(gt , gt+1), respectively, as discussed before. Note that in the case that all nodes
and edges of the entire network appear in the union gt and gt+1, the upper bound
Du(ḡt , ḡt+1) is the exact value. In this case two arbitrarily large graphs gt and gt+1 can
be contracted to a single node each, and the upper bound will still be the exact value,
i.e., Du(ḡt , ḡt+1) = d(gt , gt+1). As an example consider the graphs in Figures 12.1
and 12.2. If we contract gi into a single node v, we get nodesi(v) = 5, edgesi(v) = 7.
Similarly, if gj is contracted into a single node, then nodesj (v) = 5, edgesj (v) = 6.
Moreover, under the assumption that the union of gi and gj includes the entire set of
nodes and edges of the network, we observe that |c| = 6 and |EDGES(v)| = 12. Hence
Du(ḡi , ḡj ) = (12 − 10) + (24 − 13) = 13 = d(gi, gj ).
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12.5 Experimental Results

The aim of the experiments described in this section is to verify the theoretical results
derived in Section 12.3, to measure the tightness of upper and lower bounds, and
to quantitatively evaluate the computational savings that can be achieved through the
proposed graph abstraction scheme. In the experiments described in this section, we first
generate a graph g1, with 10,000 nodes. Each node is connected, on average, to 1,000
other nodes via an undirected, unlabeled edge. Edges are randomly distributed in g1.
The set of integers {1, . . . , 10,000} is used to label the nodes and each node has a unique
label.A second graph g2 is obtained from g1 by randomly deleting n% of the nodes of g1,
together with their incident edges. Additionally n′% of the remaining edges are deleted.
Next, hierarchical abstractions of both g1 and g2 are generated, consisting of 1,000, 100,
10, and 1 node. These hierarchical abstractions are all based on the same partition of the
nodes of g1. For example, to generate a hierarchical abstraction with 1,000 nodes, i.e.,
with a cluster size of ten nodes each, the first cluster is given by the nodes with a label
from {1, . . . , 10}, the second cluster by the nodes with a label from {11, . . . , 20}, and so
on. From the way g1 and g2 are generated, it is obvious that the conditions of Lemmas
12.5 and 12.8 are fulfilled. Hence, we expect that Dl(ḡ1, ḡ2) = d(g1, g2) = Du(ḡ1, ḡ2)

for any of the considered hierarchical abstractions ḡi .As a matter of fact, this expectation
is confirmed in Figure 12.3, where the x-axis corresponds to the different levels of
abstraction (i.e., number of clusters, which is 1,000, 100, 10, 1), and they-axis represents
the distances d(g1, g2), Dl(ḡ1, ḡ2), Du(ḡ1, ḡ2). All three distances coincide for any
considered level of abstraction, which confirms that both upper and lower bounds are
identical to the real graph distance. In Figure 12.3, values n = 10 and n′ = 5 are
used. In Figure 12.4, the results of four similar experimental runs are shown for values
(n = 20, n′ = 10), (n = 30, n′ = 15), (n = 40, n′ = 20), and (n = 50, n′ = 25). In
each case the values of d(g1, g2), Dl(ḡ1, ḡ2), and Du(ḡ1, ḡ2) coincide. Hence only four
straight lines are observed in this figure. Clearly, with an increasing number of nodes
and edges being deleted from g1, the distance between g1 and g2 increases. This effect
can be clearly observed in Figure 12.4. The point to be stressed about Figure 12.4 is
that, similarly to Figure 12.3, all three measures Dl(ḡ1, ḡ2), d(g1, g2), and Du(ḡ1, ḡ2)

are identical, as stated in Lemmas 12.5 and 12.8.
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Fig. 12.3. Experimental data illustrating Lemmas 12.5 and 12.8.
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Fig. 12.4. Further illustration of Lemmas 12.5 and 12.8.
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Fig. 12.5. Experimental data illustrating the upper and lower bound (m = 60).
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Fig. 12.6. Further illustration of upper and lower bound: (a) m = 70, (b) m = 80, (c) m = 90.

The aim of the next set of experiments is to analyze the behavior of the upper and
lower bounds in case the conditions of Lemmas 12.5 and 12.8 are no longer satisfied.
For this purpose, we start again with a graph g1 that is generated in exactly the same way
as described in the previous paragraph. Next we randomly delete 50% of the nodes of g1
together with their incident edges. The resulting graph is referred to as g3. Next, graph
g4 is generated by randomly deleting m% of all nodes together with their incident edges
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Table 12.1. Data corresponding to Figure 12.5

1000 100 10 1 m

Du 2,409,516 2,410,042 2,410,088 2,411,390
Dl 1,239,038 638,308 534,130 390,094 60
d 2,407,580

Table 12.2. Data corresponding to Figure 12.6.

1000 100 10 1 m
Du 2,397,782 2,398,060 2,398,146 2,400,294
Dl 1,457,062 1,126,264 1,020,270 749,790 70
d 2,396,262
Du 2,322,436 2,322,510 2,322,814 2,325,836
Dl 1,700,350 1,495,504 1,360,116 1,034,514 80
d 2,321,440
Du 2,313,272 2,313,318 2,313,494 2,317,408
Dl 1,969,420 1,890,110 1,815,788 1,275,640 90
d 2,312,800

from g1 (m = 60, 70, 80, 90). Clearly, when we match graphs g3 and g4, the conditions
of Lemmas 12.5 and 12.8 are not necessarily satisfied any longer. Similarly to the first
set of experiments, hierarchical abstractions of g3 and g4 were generated consisting
of 1,000, 100, 10, and 1 node. In Figure 12.5, the distances d(g3, g4), Dl(ḡ3, ḡ4), and
Du(ḡ3, ḡ4) are shown for m = 60. While the lower bound is significantly smaller
than the real distance, the upper bound is quite tight. As a matter of fact, d(g3, g4)

visually coincides with Du(ḡ3, ḡ4) in Figure 12.5. To see that d(g3, g4) is not identical
to Du(ḡ3, ḡ4), the information provided in Figure 12.5 is shown in tabular form in Table
12.1. In Figure 12.6 and Table 12.2 the corresponding values are given for m = 70, 80,
and 90. As m increases, graphs g3 and g4 become more similar to each other. In any
case, the upper bound is very close to the real distance even for the maximum degree
of compression, where both graphs are represented through a single node only. We also
observe that both upper and lower bounds become tighter as the distance d(g3, g4)

decreases.
The motivation of the third set of experiments is to measure the computational

savings that can be achieved by means of the proposed hierarchical graph abstraction
scheme. We assume that the sensors, or devices, that yield the graph data not only
provide us with the graphs at the full level of resolution, but also with hierarchical
abstractions. Hence the time needed to generate hierarchical abstractions from a graph
at the full resolution level is not taken into account in the experiments described in
the following. To analyze the computational efficiency of the proposed graph similarity
measures, we select graphs g3 and g4 (with m = 60) and their hierarchical abstractions,
as described in the last paragraph, and measure the time needed to compute d(g3, g4),
Dl(ḡ3, ḡ4), and Du(ḡ3, ḡ4). The results are shown in Table 12.3. The computation of
d(g3, g4) is performed on the original graphs g3 and g4, and is independent of the cluster
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size in the hierarchical abstraction. It turns out that the computation of both Dl(ḡ3, ḡ4)

and Du(ḡ3, ḡ4) is extremely fast when compared to d(g3, g4). From this observation
we can conclude that distance measure Du provides an excellent compromise between
speed and precision. On one hand, it is extremely fast to compute, and on the other,
it returns values very close to the real graph distance. As a matter of fact, a speedup
on the order of 108 can be observed over the computation of d(g3, g4) for the case of
maximum graph compression, while the precision of the upper bound is still within a
tolerance of 0.2%.

Table 12.3. Computational time of the distance measures in msec.

1000 100 10 1 m
Time Du 61.6 0.5632 0.00568 0.000076
Time Dl 19.52 0.1552 0.001304 0.0000552 60
Time d 36,000

12.6 Conclusions

In this chapter we have described a hierarchical graph abstraction procedure that con-
tracts clusters, or groups, of nodes into single nodes. On this hierarchical representation,
graph similarity can be computed more efficiently than on the original graphs. Two dis-
tance measures for contracted graphs are introduced, and it is shown that they provide
lower and upper bounds, respectively, for the distance of graphs at the original level
of resolution. The proposed methods can be used to very significantly speed up the
computation of graph similarity in the context of computer network monitoring and ab-
normal change detection. It can be proven that under special conditions, upper and/or
lower bounds are exact.
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abnormal change, 83
detection, 63, 79, 93

accounting management, 9
acyclic graph, 35
adjacency, 31, 38

matrix, 33
anomaly detection, 4, 16, 21, 22

in networks, 23
methods, 23–26

average distance, 96

bipartite graph, 35
matching, 122–123

bridge, 34

case based reasoning, 140
change matrix, 76
characteristic path length, 148
characteristic representation, 179
closed walk, 35
cluster, 200
cluster distance, 115
cluster validation, 100

index, 100
clustering, 93

k-means, 99
fuzzy, 104–105
fuzzy k-means, 105
hierarchical, 94, 96
intragraph, 115
nonhierarchical, 97–99

clustering coefficient, 149
directed, 149
of graph, 149

common subgraph, 45
communications network, 64
complement, 33
complete bipartite graph, 34
complete directed graph, 40
complete graph, 34, 151
complete-linkage distance, 95
component, 34

strong, 40
concordant, 103
configuration management, 9
connected graph, 34, 37
context in time, 177
continuous subsequence, 132
cost function, 48
cost matrix, 133
cubic graph, 33
cut, 34

trivial, 34
cut-edge, 34
cutpoint, 34
cycle, 35, 152

directed, 39
Hamilton, 36

Davis–Bouldin index, 101
decision tree, 190

classifier, 189
inference, 192

defuzzyfication, 105
degree, 33
degree matrix, 72
dendrogram, 94
diameter, 147, 149
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diameter (continued)
weighted, 148

digraph, 38
directed cycle, 39
directed graph, 31, 38

complete, 40
directed path, 39
disconnected graph, 34
discordant, 103
distance, 147

modality, 169
distance measure, 201
distance of clusterings, 118–123
Dunn index, 101
dynamic programming, 133

eccentricity
weighted, 148

edge, 31, 32
eigenvalue, 72
eigenvector, 168
endpoint, 32
enterprise graph, 159
entropy, 191
extranet, 5, 8

factor, 38
factorization, 38
fault management, 4, 8
firewall, 5, 8
fuzzy k-means clustering, 105
fuzzy clustering, 104–105
fuzzy set, 104

Goodman–Kruskal index, 103
graph, 31, 32, 35, 44

abstraction, 200–201
acyclic, 35
adjacency matrix, 33
bipartite, 35
clustering, 93, 105–112
clustering coefficient, 149
complement, 33
complete, 34
complete bipartite, 34
connected, 34, 37
cubic, 33
deletion, 138
diameter, 147, 149

directed, 31, 38
disconnected, 34
distance in, 22, 147
edge, 44
edit distance, 45, 51, 67–70
enterprise, 159
Hamiltonian, 36
insertion, 138
isomorphism, 34, 45, 51, 150
labeled, 32
matching, 43
null, 34
random walk, 72
regular, 33
sequence matching, 137–138
small-world, 158
spectrum, 72–73
substitution, 138
time series, 112
unique node labeling, 45–51
vertex, 44

graph isomorphism, 150

Hamilton cycle, 36
Hamiltonian graph, 36
hierarchical abstraction, 200
hierarchical clustering, 94–96
hierarchical graph matching, 199

IMDb, 158
incidence, 33
incomplete network knowledge, 141–142
indegree, 39
independence, 33
induced subgraph, 34
Internet, 3, 4, 8, 10, 17, 19
Internet Protocol (IP), 3, 11, 19, 21
intragraph clustering, 115
intranet, 4–8, 14

anomaly detection, 22
behavior, 6
enterprise, 4
extranet, 5
growth, 4
importance of, 7

intrusion detection, 4, 5, 23, 28
isolated vertex, 33
isomorphism

graph, 150
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isomorphism (continued)
of graphs, 34, 45, 51

k-means clustering, 99
Kendall–Wei ranking, 167

Laplace matrix, 72
lattice graph, 156
learning rate, 107
length, 35, 147
linear prediction, 187
link, 32
longest common subsequence, 137
loop, 38

machine learning, 189
matching

of graph sequences, 137–138
of graphs, 43

matrix
snapshot, 169
tournament, 166

maximum common subgraph, 45, 51, 65
mean path length, 148
median, 45, 148
median graph, 51, 79
median path length, 148
metric, 150
MIB, 9, 12, 15
minimum spanning tree, 38, 116
missing information recovery, 177
modality, 169

distance, 169
vector, 169

multigraph, 32
adjacency matrix, 33
underlying graph, 32

mutual information, 119

neighborhood, 33, 149
neighborhood subgraph, 77
network, 4

abnormal behavior, 4, 17
anomaly detection, 21, 22
examples of anomalies, 26–28
faults, 6
intranet, 4, 14
monitoring, 6
probes, 14

tomography, 6
network management, 4, 7–9

abnormal behavior, 22
accounting, 9
configuration, 9
fault, 4, 8
history of, 11
network anomalies, 26–28
network monitoring, 16
OSI vs. IETF, 10
performance, 4, 8
RMON, 14–16, 18
security, 4, 8
SNMP, 12–14, 18
standards, 7, 9–11, 13
TCP/IP, 11

network management system, 5, 7, 9–11
components of, 9
for intranets, 7
management agent, 9, 12
management information base, 9
management station, 9, 12, 14
problems in, 10
protocol, 9

network measurements, 4, 6, 17, 21, 24
network monitoring, 6, 16–22

active vs. passive, 17
commercial tools, 19
data aggregation, 21
definition of, 16
filtering, 21
network tomography, 19
packet monitors, 19
polling, 18, 20
sampling interval, 20
stages of, 17

network traffic, 64
neuron, 98
node, 31, 32
nonhierarchical clustering, 97–99
norm

of vector, 165
null graph, 34

one-factor, 38
one-factorization, 38
optimal path, 134
OSI reference model, 3, 7, 10, 11, 13
outdegree, 39
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overfitting, 194

partitioning, 200
path, 35

directed, 39
finish, 39
length, 35, 147
shortest, 147
start, 39

performance management, 4, 8
Perron–Frobenius theorem, 168
prediction, 141
prefix, 132
proper tree, 36
pruning, 194
pseudometric, 150

query pattern, 183

Rand index, 118
random graph, 157
reachability, 40
reducibility, 166
reference pattern, 182
regions of change, 75
regular graph, 33
RMON, 11, 14–16, 19

MIB, 15, 18, 21
probes, 14
RMON1, 15
RMON2, 16

round-robin tournament, 165
running median, 83

security management, 4, 8
self-organizing map, 97, 100
sensitivity, 151
sequence of graphs, 131
sequence of symbols, 131

edit distance, 132–137
set median, 79
significant change, 84
single-linkage distance, 95
small-world graph, 158
snapshot

irreducible, 169
of network, 168
reducible, 169

snapshot matrix, 169

SNMP, 9, 11–14, 18
agent, 12, 18
MIB, 12
MIBII, 13
protocol, 13, 18
SNMPv1, 13, 14
SNMPv2, 13
SNMPv3, 13

SOM, 97, 100
spanning subgraph, 34
spanning tree, 38
spectral radius, 168
strength

of player, 167
strong component, 40
subgraph, 34, 45

common, 45
induced, 34
maximum common, 45, 51, 65
spanning, 34, 38

subgraph isomorphism, 45, 51
subsequence, 132
suffix, 132
symbol

deletion, 133
insertion, 133
substitution, 133

symmetric difference, 76–77

2-hop distance, 75
TCP/IP protocol, 3, 8, 11, 19

intranets, 4–7
MIB, 12
network management, 11–16
RMON, 11, 14–16
SNMP, 10–14

tournament, 165
reducible, 166
round-robin, 165

tournament matrix, 166
training set, 195
tree, 35, 37

minimum spanning, 116
proper, 36
spanning, 38

triangle inequality, 150
trivial, 34

underlying graph
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underlying graph (continued)
of network, 168

valency, 33
vector

modality, 169
vertex, 31, 32

degree, 33
eccentricity, 147
indegree, 39
independence, 33
isolated, 33
outdegree, 39
reachability, 40

valency, 33
vertex neighborhood, 77
virtual private network, 5
voting procedure, 180

walk, 35, 39
closed, 35
directed, 39

weighted diameter, 148
weighted eccentricity, 148
weighted length, 147
weighted mean, 107
winner-take-all, 105
within-graph context, 189
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