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Gaussian Signals, Correlation Matrices,
and Sample Path Properties

In general, determination of the shape of the sample paths of a random
signal X(t) requires knowledge of n-point probabilities

P(a1 < X(t1) < b1, . . . , an < X(tn) < bn)

for an arbitrary n, and arbitrary windows a1 < b1, . . . , an < bn. But
usually this information cannot be recovered if the only signal char-
acteristic known is the autocorrelation function. The latter depends
on the two-point distributions but does not uniquely determine them.
However, in the case of Gaussian signals, the autocorrelations deter-
mine not only the two-point probability distributions but also all the
n-point probability distributions, so that complete information is avail-
able within the second-order theory. For example, this means that you
only have to estimate means and covariances to make the model. Also,
in the Gaussian universe, weak stationarity implies strict stationarity
as defined in Chapter 4. For the sake of simplicity all signals in this
chapter are assumed to be real-valued. The chapter ends with a more
subtle analysis of sample path properties of stationary signals such as
continuity and differentiability; in the Gaussian case the information is
particularly complete.

Of course, faced with real-world data the proposition that they are
distributed according to a Gaussian distribution must be tested rigor-
ously. Many such tests have been developed by the statisticians.33 In
other cases, one can make an argument in favor of such a hypothesis
based on the central limit theorem (3.5.5)–(3.5.6).

33 See, e.g., M. Denker and W. A. Woyczyński’s book mentioned in previous
chapters.
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8.1 Linear transformations of random vectors

In Chapter 3, we have calculated probability distributions of trans-
formed random quantities. Repeating that procedure in the case of
a linear transformation of the 1D random quantity X given by the for-
mula

Y = aX, a > 0, (8.1.1)

we can obtain the cumulative distribution function (c.d.f.) FY (y) of the
random quantity Y in terms of the c.d.f. FX(x) of the random quantity
X as follows:

FY (y) = P(Y ≤ y) = P(aX ≤ y) = P
(
X ≤ y

a

)
= FX

(
y
a

)
. (8.1.2)

To obtain an analogous formula for the probability density functions
(p.d.f.s), it suffices to differentiate both sides of (8.1.2) to see that

fY (y) = d
dy

FY (y) = 1
a
fX

(
u
a

)
. (8.1.3)

Example 8.1.1. Consider a standard Gaussian random quantity X ∼
N(0,1) with the p.d.f.

fX(x) = 1√
2π

exp

(
−x2

2

)
. (8.1.4)

Then the random quantity Y = aX, a > 0, has the p.d.f.

fY (y) = 1√
2πa

exp

(
− x2

2a2

)
. (8.1.5)

Obviously, the expectation EY = E(aX) = aEX = 0 and the variance of
Y is

σ 2
Y = E(aX)2 = a2EX2 = a2. (8.1.6)

If we conduct the same argument for a < 0, the p.d.f. of Y = aX will be

fY (y) = 1√
2π(−a) exp

(
− x2

2a2

)
. (8.1.7)

Thus formulas (8.1.6) and (8.1.7) can be unified in a single statement:
If X ∼ N(0,1), then for any a ≠ 0, random quantity Y = aX has p.d.f.

fY (y) = 1√
2π|a| exp

(
− x2

2a2

)
. (8.1.8)

Using the above elementary reasoning as a model we will now derive
the formula for a d-dimensional p.d.f.

f�Y ( �y) = f�Y (y1, . . . , yd)
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of a random vector

�Y =

⎛
⎜⎜⎝
Y1
...
Yd

⎞
⎟⎟⎠

obtained by a nondegenerate (invertible) linear transformation

�Y = A �X (8.1.9)

consisting of multiplication of the random vector

�X =

⎛
⎜⎜⎝
X1
...
Xd

⎞
⎟⎟⎠

with a known p.d.f.
f�X(�x) = f�X(x1, . . . , xd)

by a fixed nondegenerate nonrandom matrix

A =
⎛
⎜⎝ a11, · · · , a1d

· · ·
ad1, · · · , add

⎞
⎟⎠ .

In other words, we assume that det(A) ≠ 0, or, equivalently, that the
rows of the matrix A form a linearly independent system of vectors.

In terms of its coordinates the result of the linear transformation
(8.1.9) can be written in the explicit form

�Y =

⎛
⎜⎜⎜⎝
a11X1 + a12X2 + · · · + a1dXd
a21X1 + a22X2 + · · · + a2dXd
· · · · · · · · · · · ·
ad1X1 + ad2X2 + · · · + addXd

⎞
⎟⎟⎟⎠ .

To calculate the probability distribution of �Y following the 1D method,
we must use the assumption that the matrix A is invertible, an analogue
of the assumption a ≠ 0 in the 1D case. Then, for a domain D in the
d-dimensional space Rd,

P(�Y ∈ D) = P(A �X ∈ D) = P( �X ∈ A−1D). (8.1.10)

This identity can be rewritten in terms of p.d.f.s of �Y and �X as follows:∫
D
f�Y ( �y)dy1 · · · · · dyd =

∫
A−1D

f�X(�x)dx1 · · · · · dxd.

Making a substitution �x = A−1�z in the second integral, in view of the
d-dimensional change of variables formula, we get that
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D
f�Y ( �y)dy1 · · · · · dyd =

∫
D
f�X(A

−1�z) · |det(A−1)|dz1 · · · · · dzd,

where det(A−1) is just the Jacobian of the substitution �x = A−1�z. Re-
membering that the determinant of the inverse matrix A−1 is the recip-
rocal of the determinant of the matrix A, we get the identity

∫
D
f�Y ( �y)dy1 · · · · · dyd =

∫
D

f�X(A
−1�z)

|det(A)| dz1 · · · · · dzd.

Since this identity holds true for any domain D, the integrands on both
sides must be equal, which gives the final formula for the p.d.f. of �Y :

f�Y ( �y) =
f�X(A

−1 �y)
|det (A)| if det(A) ≠ 0. (8.1.11)

The 1D formula (8.1.3) is, obviously, the special case of the above
general result.

8.2 Gaussian random vectors

As in the one-dimensional case, all nondegenerate zero-mean d-dimen-
sional Gaussian random vectors can be obtained as nondegenerate lin-
ear transformations of a standard dD Gaussian random vector

�X =

⎛
⎜⎜⎝
X1
...
Xd

⎞
⎟⎟⎠

in which the coordinates X1, . . . , Xd, are independent N(0,1) random
quantities. Because of their independence, the d-dimensional p.d.f. of
�X is the product of 1D N(0,1) p.d.f.s and is thus of the product form

f�X(�x) =
e−x

2
1/2√

2π
· · · · · e

−x2
d/2√

2π

= 1
(2π)d/2

e−
1
2 (x

2
1+···+x2

d) = 1
(2π)d/2

e−
1
2 �x

T �x, (8.2.1)

where the superscript T denotes the transpose of a matrix. Indeed,

�xT �x = (x1, . . . , xd) ·

⎛
⎜⎜⎝
x1
...
xd

⎞
⎟⎟⎠ = x2

1 + · · · + x2
d.
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It is the latter form in (8.2.1) that will be useful now in applying formula
(8.1.11). Indeed, substituting the last expression for f�X(�x) in (8.2.1)
into (8.1.11), one immediately gets, remembering that (MN)T = NTMT ,
(MN)−1 = N−1M−1, and (MT )−1 = (M−1)T ,

f�Y ( �y) =
1

(2π)d/2|det(A)|e
− 1

2 (A
−1 �y)T ·(A−1 �y)

= 1
(2π)d/2|det(A)|e

− 1
2 �y

T (AAT )−1 �y . (8.2.2)

Thus formula (8.2.2) gives the general form of the d-dimensional zero-
mean Gaussian p.d.f., and just as we identified the parameter a2 in the
1D case (8.1.5)–(8.1.6) as the variance of the random quantity Y , we can
identify entries of the matrix

Γ = AAT (8.2.3)

appearing in the exponent in (8.2.2) as statistically significant parame-
ters of the random vector �Y .

To see what they are, let us first calculate the entries γij , i, j =
1,2, . . . , d, of matrix Γ :

γij = ai1aj1 + ai2aj2 + · · · + aidajd. (8.2.4)

On the other hand, correlations (really, covariances, since we are work-
ing with zero-mean vectors) of different components of random vector
�Y are

E(YiYj) = E((ai1X1 + · · · + aidXd) · (aj1X1 + · · · + ajdXd))
= ai1aj1 + ai2aj2 + · · · + aidajd (8.2.5)

because EXiXj = 1 if i = j and = 0 if i ≠ j.
Therefore, it turns out that

Γ = (γij) = (EYiYj), (8.2.6)

and matrix Γ = (γij) is simply the correlation matrix of the general
zero-mean Gaussian random vector �Y . Thus, since

det(Γ) = det(AAT ) = det(A) · det(AT ) = (det(A))2,

we finally get that the p.d.f. of �Y can be written in the form

f�Y ( �y) =
1

(2π)d/2|det(Γ)|1/2 e
− 1

2 �y
T Γ−1 �y , (8.2.7)

where Γ is the correlation matrix of �Y satisfying the nondegeneracy
condition det(Γ) ≠ 0.
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Remark 8.2.1 (Gaussian random vectors with nonzero mean). Of course,
to get the p.d.f. of a general Gaussian random vector with nonzero ex-
pectation

E�Y = �μ = (μ1, . . . , μd)T ,

it suffices to shift the p.d.f. (8.2.7) by �μ to obtain that

f�Y ( �y) =
1

(2π)d/2|det(Σ)|1/2 e
− 1

2 ( �y−�μ)TΣ−1( �y−�μ), (8.2.8)

where
Σ = (σij) = (E(Yi − μi)(Yj − μj)) (8.2.9)

is the covariance matrix of �Y . A Gaussian random vector with joint
p.d.f. given by formulas (8.2.8)–(8.2.9) is often called a normal N(�μ,Σ)
random vector.

Example 8.2.1 (2D zero-mean Gaussian random vectors). Let us carry
out the above calculation explicitly in the special case of dimension
d = 2. Then the correlation matrix is

Γ =
(

EY1Y1 EY1Y2

EY2Y1 EY2Y2

)
=
(

σ 2
1 σ1σ2ρ

σ1σ2ρ σ 2
2

)
,

where the variances of the coordinate vectors are

σ 2
1 = EY 2

1 , σ 2
2 = EY 2

2 ,

and the correlation coefficient of the two components is

ρ = EY1Y2

σ1σ2
.

The determinant of the correlation matrix is

det(Γ) = σ 2
1σ

2
2 (1− ρ2),

and its inverse is

Γ−1 = 1

σ 2
1σ

2
2 (1− ρ2)

(
σ 2

2 −σ1σ2ρ
−σ1σ2ρ σ 2

1

)
.

Hence the p.d.f. of a general zero-mean Gaussian random vector is of
the form

f�Y(y1, y2) = 1

(2π)2/2σ1σ2

√
1− ρ2

× exp

⎡
⎢⎢⎢⎢⎣−

1
2
(y1, y2)

(
σ 2

2 −σ1σ2ρ
−σ1σ2ρ σ 2

1

)

σ 2
1σ

2
2 (1− ρ2)

(
y1

y2

)
⎤
⎥⎥⎥⎥⎦ ,
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which, after performing prescribed matrix algebra, leads to the final
expression

f�Y(y1, y2) = 1

2πσ1σ2

√
1− ρ2

× exp

[
− 1

2(1− ρ2)

(
y2

1

σ 2
1
− 2ρ

y1y2

σ1σ2
+ y

2
2

σ 2
2

)]
. (8.2.10)

8.3 Gaussian stationary signals

By definition, a nondegenerate zero-mean random signal X(t) is Gaus-
sian if, for any positive integer N , and any selection of sampling times
t1 < t2 < · · · < tN , the random vector

�X(t1,...,tN) =

⎛
⎜⎜⎜⎜⎝
X(t1)
X(t2)

...
X(tN)

⎞
⎟⎟⎟⎟⎠ (8.3.1)

is a Gaussian zero-mean random vector with a nondegenerate correla-
tion matrix. Thus, in view of results of Section 8.2, its N-dimensional
joint p.d.f. f(t1,...,tN)(x1, . . . , xN) is given by the formula34

f(t1,...,tN)(x1, . . . , xN) = 1
(2π)N/2|det(Γ)|1/2 · e

− 1
2 �x

T Γ−1 �x, det(Γ) ≠ 0,

(8.3.2)

where Γ is the N ×N correlation matrix

Γ = Γ (t1,...,tN) = (γX(ti, tj)) = (EX(ti)X(tj)). (8.3.3)

Thus, in view of (8.3.1)–(8.3.2), the only information needed to com-
pletely determine all finite-dimensional joint probability distributions of
a zero-mean Gaussian random signal X(t) is the knowledge of its auto-
correlation function

γX(s, t) = EX(t)X(s).

For stationary Gaussian signals the situation is simpler yet as the
autocorrelation function γX(s, t) is just a function of a single variable:
34 Note that for some simple Gaussian stationary signals, like, e.g., X(t) =
X ·ejt , where X ∼ N(0,1), one can choose the tis so that the determinant of
the correlation matrix is zero; take, for example, N = 2 and t1 = π , t2 = 2π .
Then the joint p.d.f. of the Gaussian random vector (X(t1), . . . , X(tN))T is
not of the form (8.3.2). Such signals are called degenerate.
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γX(t, s) = γX(t − s).

Thus the correlation matrix Γ for a stationary random signal X(t) sam-
pled at t1, t2, . . . , tN , is of the form

Γ (t1,...,tN) =

⎛
⎜⎜⎜⎝

γX(0) γX(t2 − t1) γX(t3 − t1) · · · γX(tN − t1)
· · · γX(0) · · · · · · · · ·
· · · · · · · · · · · · · · ·

γX(tN − t1) γX(tN − t2) · · · · · · γX(0)

⎞
⎟⎟⎟⎠ ,

and it is obviously invariant under translations, that is, for any t,

Γ (t1,...,tN) = Γ (t1+t,...,tN+t), (8.3.4)

which, in view of (8.3.2)–(8.3.3), implies that all finite-dimensional
p.d.f.s of X(t) are also invariant under translations; that is, for any
positive integer N , any sampling times t1, . . . , tN , and any time shift t,

f(t1,...,tN)(x1, . . . , xN) = f(t1+t,...,tN+t)(x1, . . . , xN). (8.3.5)

In other words,

a Gaussian weakly stationary signal is strictly stationary .

In the particular case when the sampling times are uniformly spaced
with the intersampling time interval Δt, the correlation matrix Γ of the
signal X(t) sampled at times

t, t +Δt, t + 2Δt, . . . , t + (N − 1)Δt,

is

Γ =

⎛
⎜⎜⎜⎝

γX(0) γX(Δt) γX(2Δt) · · · γX((N − 1)Δt)
γX(Δt) γX(0) γX(Δt) · · · γX((N − 2)Δt)
· · · · · · · · · · · · · · ·

γX((N − 1)Δt) γX((N − 2)Δt) · · · · · · γX(0)

⎞
⎟⎟⎟⎠ .

Example 8.3.1. Consider a Gaussian signal X(t) with autocorrelation
function

γX(t) = e−0.3|t|.

We are interested in finding the joint p.d.f. of the signal at times t1 = 1,
t2 = 2, and the probability that the signal has values between −0.6 and
1.4 at t1 and between 0.7 and 2.6 at t2.

The first step is then to find the correlation matrix

Γ (1,2) =
(
γX(0) γX(1)
γX(1) γX(0)

)
=
(
e0 e−0.3

e−0.3 e0

)
=
(

1 0.74
0.74 1

)
.
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The correlation coefficient of X(1) and X(2) is then

ρ = γX(1)
γX(0)

= 0.74

and, in view of Example 8.2.1 (see (8.2.10)), the joint p.d.f. of X(1) and
X(2) is of the form

f(1,2)(x1, x2) = 1

2π
√

1− 0.742

· exp
[ −1

2(1− 0.742)
(x2

1 − 2 · 0.74x1x2 + x2
2)
]

= 0.24 · exp[−1.11(x2
1 − 1.48x1x2 + x2

2)].

Finally, the desired probability is

P(−0.6 ≤ X(1) ≤ 1.4 and 0.7 ≤ X(2) ≤ 2.6)

=
∫ 1.4

−0.6

∫ 2.6

0.7
0.24 · e−1.11(x2

1−1.48x1x2+x2
2)dx1dx2 = 0.17,

where the last integral has been evaluated numerically in Mathematica
with a two-digit precision.

8.4 Sample path properties of general and Gaussian
stationary signals

Mean-square continuity and differentiability. It is clear that the local
properties of the autocorrelation function γX(τ) of a stationary signal
X(t) affect properties of the sample paths of the signal itself in the
mean-square sense, that is in terms of the behavior of the expectation of
the square of signal’s increments, i.e., the variances of the increments.35

Indeed, with no distributional assumptions on X(t), we have

σ 2(τ) = E(X(t + τ)−X(t))2 = 2(γX(0)− γX(τ));

the variance of the increment is independent of t. Hence we have the
following result:

A stationary signal X(t) is continuous in the mean-square sense, that
is, for any t > 0,

lim
τ→0

E(X(t + τ)−X(t))2 = 0,

if and only if the autocorrelation function γX(τ) is continuous at τ = 0,
35 Recall that the sequence (Xn) of random quantities is said to converge to
X, in the mean-square, if E|Xn −X|2 → 0, as n→∞.
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that is,
lim
τ→0

γX(τ) = γX(0).

In particular, signals with autocorrelation functions γX(τ) = e|τ| or
γX(τ) = 1

1+τ2 are mean-square continuous.
A similar, mean-square analysis of the limit at τ = 0 of the differen-

tial ratio,

E
(
X(t + τ)−X(t)

τ

)2

= 2
γX(0)− γX(τ)

τ2
,

shows that a stationary signal with autocorrelation function γX(τ) =
e|τ| cannot be possibly mean-square differentiable because in this case

lim
τ→0

γX(0)− γX(τ)
τ2

= lim
τ→0

1− e−|τ|
τ2

= ∞,

whereas the differentiability cannot be excluded for the signal with au-
tocorrelation γX(τ) = 1

1+τ2 because in this case

lim
τ→0

γX(0)− γX(τ)
τ2

= lim
τ→0

1− 1
1+τ2

τ2
= 1.

Of course, the above brief discussion just verifies the boundedness
of the variance of the signal’s differential ratio as τ → 0, not whether the
latter has a limit. So, let us take a closer look at the issue of the mean-
square differentiability of a stationary signal, that is the existence of the
random quantity X′(t), for a fixed t. First, observe that this existence
is equivalent to the statement that36

lim
τ1→0

lim
τ2→0

E
(
X(t + τ1)−X(t)

τ1
− X(t + τ2)−X(t)

τ2

)2

= 0

But the expression under the limit signs is equal to

E
(
X(t + τ1)−X(t)

τ1

)2

+ E
(
X(t + τ2)−X(t)

τ2

)2

− 2E
(
X(t + τ1)−X(t)

τ1
· X(t + τ2)−X(t)

τ2

)
.

So, the existence of the derivativeX′(t) in the mean-square is equivalent
to the fact that the first two terms converge to γX′(0) and the third to
36 This argument relies on the so-called Cauchy criterion of convergence for

random quantities with finite variance: A sequence Xn converges in the
mean-square as n → ∞, that is, there exists a random quantity X such that
limn→∞ E(Xn −X)2 = 0, if and only if limn→∞ limm→∞ E(Xn −Xm)2 = 0. This
criterion permits the verification of the convergence without knowing what
the limit is; see, e.g., Theorem 11.4.2 in W. Rudin, Principles of Mathematical
Analysis, McGraw–Hill, New York, 1976.



8.4 General and Gaussian stationary signals 169

−2γX′(0). But the convergence of the last term means the existence of
the limit

lim
τ1→0

lim
τ2→0

1
τ1τ2

E((X(t + τ1)−X(t)) · (X(t + τ2)−X(t)))

= lim
τ1→0

lim
τ2→0

1
τ1τ2

(γX(τ2 − τ1)− γX(τ1)− γX(τ2)+ γX(0))

= lim
τ1→0

lim
τ2→0

1
τ1τ2

Δ−τ1Δτ2γX(0),

whereΔτf (t) := f(t+τ)−f(t) is the usual difference operator. Indeed,

Δ−τ1Δτ2γX(0) = Δτ1(γX(τ2)− γX(0))
= (γX(τ2 − τ1)− γX(−τ1))− (γX(τ2)− γX(0)).

Since the existence of the last limit appearing above means twice dif-
ferentiability of the autocorrelation function of X at τ = 0 we arrive at
the following criterion:

A stationary signal X(t) is mean-square differentiable if and only
if its autocorrelation function γX(τ) is twice differentiable at τ = 0.
Moreover, in this case, the cross-correlation of the signal X(t) and its
derivative X′(t) is

EX(t)X′(s) = lim
τ→0

γX(t + τ − s)− γX(t − s)
τ

= ∂
∂t
γX(t − s), (8.4.1)

and the autocorrelation of the derivative signal is

EX′(t)X′(s) = lim
τ→0

(
∂
∂t
γX(t + τ − s)− ∂

∂t
γX(t − s)

)
= ∂2

∂t∂s
γX(t − s).

(8.4.2)

In a similar fashion one can calculate the cross-correlation of higher
derivatives of the signal X(t) to obtain that37

EX(n)(t)X(m)(s) = ∂n+m

∂tn∂sm
γX(t − s). (8.4.3)

Sample path continuity. A study of properties of the individual sample
paths (trajectories, realizations) of stationary random signals is a more
delicate matter, with the most precise results obtainable only in the case
of Gaussian signals. Indeed, we have observed in the previous sections
that, for a Gaussian signal, the autocorrelation function determines all
the finite-dimensional probability distributions of the signal, meaning
37 For details, see M. Loeve, Probability Theory , Van Nostrand, Princeton, NJ,

1963, Section 34.3.
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that for any finite sequence of windows, [a1, b1], [a2, b2], . . . , [aN, bN],
and any collection of time instants t1, t2, . . . , tN , we can find the proba-
bility that the signal fits into those windows at prescribed times, that is,

P(a1 < t1 < b1, a2 < t2 < b2, . . . , aN < tN < bN).

So it seems that by taking N to ∞, and making the time instants closer
to each other and the windows narrower, one could find the probability
that the signal’s sample path has any specific shape or property. This
idea is, roughly speaking, correct, but only in a subtle sense that will be
explained below.

The discussion of the sample path properties of stationary signals
will be based here on the following theorem of the theory of general
random signals (stochastic processes) due to N. N. Kolmogorov.

Theorem 8.4.1. Let g(h) be an even function, nondecreasing for h > 0,
and such that g(h) → 0 as h → 0. Furthermore, suppose that X(t) is a
random signal such that

P(|X(t + h)−X(t)| > g(h)) ≤ q(h), (8.4.4)

for a function q(h) satisfying the following three conditions:

q(h)→ 0 as h→ 0; (8.4.5)
∞∑
n=1

2nq(2−n) <∞; (8.4.6)

∞∑
n=1

g(2−n) <∞; (8.4.7)

Then, with probability 1, the sample paths of the signal X(t) are contin-
uous.

Although the proof of the above theorem is beyond the scope of this
book,38 the intuitive meaning of the assumptions (8.4.4)–(8.4.7) is clear:
for the signal to have continuous sample paths, the increments of the
signal over small time intervals can be permitted to be large only with
a very small probability.

Applied to the second-order (not necessarily stationary) signals,
Theorem 8.4.1 immediately gives the following.

38 For a more complete discussion of this theorem and its consequences for
sample path continuity and differentiability of random signals, see, for ex-
ample, M. Loève, Probability Theory , Van Nostrand, Princeton, NJ, 1963, Sec-
tion 35.3.
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Corollary 8.4.1. If there exists a τ0 such that, for all τ, 0 ≤ τ < τ0, and
all t in a finite time interval,

E(X(t + τ)−X(t))2 ≤ C|τ|1+ε (8.4.8)

for some constants C , ε > 0, then the sample paths of the signal X(t)
are continuous with probability 1.

To see how Corollary 8.4.1 follows from Theorem 8.4.1,39 observe
first that for any random quantity Z and any constant a > 0.

P(Z > a) ≤
∫∞
a
fZ(z)dz ≤

∫∞
a

z2

a2
fZ(z)dz ≤ EZ2

a2
.

Condition (8.4.8) then implies that

P(X(t + τ)−X(t)| > g(τ)) ≤ C|τ|1+ε
g2(τ)

,

so that by selecting g(τ) = |τ|ε/4, and

q(τ) = C|τ|1+ε
g2(τ)

= C|τ|1+ε/2,

we easily see that g(τ) and q(τ) are continuous functions vanishing
at τ = 0, and that the conditions (8.4.6)–(8.4.7) of the theorem are also
satisfied. Indeed,

∞∑
n=1

2nq(2−n) = C
∞∑
n=1

2n(2−n)1+ε/2 = C
∞∑
n=1

2−nε/2 <∞,

and
∞∑
n=1

g(2−n) =
∞∑
n=1

2−nε/4 <∞.

In the special case of a stationary signal we have E(X(t + τ) −
X(t))2 = 2(γX(0)−γX(τ)), so the sample path continuity is guaranteed
by the following condition on the autocorrelation function:

|γX(0)− γX(τ)| ≤ C|τ|1+ε, (8.4.9)

39 This inequality is known as the Chebyshev inequality, and its proof here has
been carried out only in the case of absolutely continuous probability dis-
tributions. The proof in the discrete case is left to the reader as an exercise;
see Section 8.5.
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for some constant ε > O, and small enough τ .
In particular, for the autocorrelation function γX(τ) = 1

1+τ2 ,

|γX(0)− γX(τ)| = 1− 1
1+ τ2

= τ2

1+ τ2
≤ τ2,

and the condition (8.4.8) is satisfied, thus giving the sample path con-
tinuity.

However, for a signal with autocorrelation function γX(τ) = e−|τ|,
the difference γX(0) − γX(τ) behaves asymptotically like τ for τ → 0.
Therefore, there is no positive ε for which condition (8.4.9) is satisfied
and we cannot claim the continuity of the sample path in this case—not
a surprising result if one remembers that the exponential autocorrela-
tion was first encountered in the context of the obviously sample path
discontinuous switching signal. Nevertheless, as we observed at the
beginning of this section, a signal with an exponential autocorrelation
is mean-square continuous.

For a Gaussian stationary signal X(t), Theorem 8.4.1 can be applied
in a more precise fashion since the probabilities P(X(t+τ)−X(t) > a)
are known exactly. Indeed, since for any positive z,∫∞

z
e−x

2/2dx ≤
∫∞
z

x
z
e−x

2/2dx = 1
z
e−z

2/2,

because x
z ≥ 1 in the interval of integration, we have, for any nonnega-

tive function g(τ) and positive constant C ,

P(|X(t + τ)−X(t)| > Cg(τ)) ≤
√

2
π
σ(τ)
Cg(τ)

exp

(
−1

2
C2g2(τ)
σ 2(τ)

)
,

(8.4.10)
where σ 2(τ) = E(X(t + τ)−X(t))2 = 2(γX(0)− γX(τ)). This estimate
yields the following result.

Corollary 8.4.2. If there exists τ0 such that, for all τ, 0 ≤ τ ≤ τ0, the
autocorrelation function γX(τ) of a stationary Gaussian signal X(t) sat-
isfies the condition

γX(0)− γX(τ) ≤ K
| ln |τ||δ , (8.4.11)

for some constants K > 0 and δ > 3, then the signal X(t) has continuous
sample paths with probability 1.

The proof of the corollary is completed by selecting

g(τ) = | ln |τ||−ν,
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with any number ν satisfying condition 1 < ν < δ−1
2 , choosing

q(C, τ) = K′

C| ln |τ||δ/2−ν exp

(
−C

2

2K
| ln |τ||δ−2ν

)

and verifying the convergence of the two series in conditions (8.4.6)–
(8.4.7); see the exercise in Section 8.5.

Returning to the case of a stationary random signal with an expo-
nential autocorrelation function, we see that if the signal is Gaussian,
then Corollary 8.4.2 guarantees the continuity of its sample paths with
probability 1. Indeed, condition (8.4.11) is obviously satisfied since (e.g.,
picking δ = 4) we have

lim
τ→0

(γX(0)− γX(τ)) · | ln |τ||4 = lim
τ→0

(1− e−|τ|) · | ln |τ||4 = 0

in view of l’Hospital’s rule.

8.5 Problems and exercises

8.5.1. A zero-mean Gaussian random signal has the autocorrelation
function of the form

γX(τ) = 10e−0.1|τ| cos 2πτ.

Write the covariance matrix for the signal sampled at four time
instants separated by 0.5 seconds.

8.5.2. Find the joint p.d.f. of the signal from Exercise 8.5.1 at t1 = 1
and t2 = 2.5. Write the integral formula for

P(0 ≤ X(1) ≤ 1,0 ≤ X(2.5) ≤ 2).

Evaluate the above probability numerically.
8.5.3. Find the joint p.d.f. of the signal from Exercise 8.5.1 at t1 = 1,

t2 = 1.5, and t3 = 2.5. Write the integral formula for

P(0 ≤ X(1) ≤ 1,−1 ≤ X(1.5) ≤ 3,0 ≤ X(2.5) ≤ 2).

Evaluate the above probability numerically.
8.5.4. Show that if a 2D Gaussian random vector �Y = (Y1, Y2) has un-

correlated components Y1, Y2, then those components are sta-
tistically independent random quantities.

8.5.5. Produce 2D surface plots for p.d.f.s of three Gaussian random
vectors: (X(1.0),X(1.1))T , (X(1.0),X(2.0))T , (X(1.0),X(5.0))T ,
where X(t) is the stationary signal described in Example 8.3.1.
Comment on similarities and differences in the three plots.
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8.5.6. Prove that if there exists a τ0 such that, for all τ < τ0 and all t
in a finite time interval,

E(X(t + τ)−X(t))2 ≤ C |τ|
| ln |τ||1+δ ,

for some C > 0 and δ > 2, then the sample paths of the signal
X(t) are continuous with probability 1. Hint : This result is
a little more delicate than Corollary 8.4.1, but the idea of the
proof is similar: take g(τ) = | ln |τ||−β, for a β between 1 and
δ
2 , from which we have

q(τ) = |τ|
| ln |τ||1+δ−2β ,

and check conditions (8.4.4)–(8.4.7) in Theorem 8.4.1.
8.5.7. Verify the Chebyshev inequality, P(|Z| > a) ≤ EZ2

a2 , a > 0, for a
discrete random quantity Z .

8.5.8. Produce plots of several 2D Gaussian densities with selected
means and covariance matrices.

8.5.9. Random signalX(t) has an autocorrelation function of the form
γX(τ) = exp(−|τ|α) with 0 < α ≤ 2. For which values of pa-
rameter α can you claim the continuity of sample paths of X(t)
with probability 1?

8.5.10. Verify formula (8.4.3) for the cross-correlation of higher deriva-
tives of a stationary signal.

8.5.11. Verify the convergence of the series (8.4.6)–(8.4.7) in the proof
of Corollary 8.4.2.




