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Optimization of Signal-to-Noise Ratio
in Linear Systems

Useful, deterministic signals passing through various transmission de-
vices often acquire extraneous random components due to, say, thermal
noise in conducting materials, radio clutter or aurora borealis magnetic
field fluctuations in the atmosphere, or deliberate jamming in warfare.
If there exists some prior information about the nature of the original
useful signal and the contaminating random noise it is possible to de-
vise algorithms to improve the relative power of the useful compenent
of the signal or, in other words, to increase the signal-to-noise ratio of
the signal, by passing it through a filter designed for the purpose. In
this short chapter, we give a few examples of such designs just to show
how the previously introduced techniques of analysis of random signals
can be applied in this context.

7.1 Fixed filter structure, known input signal

The general problem of optimization (maximization) of the signal-to-
noise ratio in a linear system schematically pictured here,

x(t)+N(t) −→ h(t) −→ y(t)+M(t),

can be formulated as follows: Consider a linear filter (system) charac-
terized by its impulse response function h(t)with the input signal X(t)
of the form

X(t) = x(t)+N(t), (7.1.1)

where x(t) is a deterministic “useful” signal and N(t) is a random
stationary “noise” signal with zero mean and autocorrelation function
γN(t). Given the linearity of the system, the output signal Y(t) is of
the form

Y(t) = y(t)+M(t), (7.1.2)
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where the deterministic “useful” output component is

y(t) =
∫∞
−∞
x(s)h(t − s)ds, (7.1.3)

and the “noise” output is a stationary zero-mean signal with the auto-
correlation function

γM(τ) =
∫∞
−∞

∫∞
−∞
γN(τ − s +u)h(s)h(u)dsdu.

The task is as follows: Given the shape of the input signal, design the
structure of the filter which would maximize the signal-to-noise power
ratio on the output. More precisely, we need to find an impulse response
function h(t) such that, for a given detection time t, the signal-to-noise
ratio

S
N = PWy(t)

E(PWM)
(7.1.4)

is maximized over all possible impulse response functions; in brief, we
want to find h(t) for which

S
N = max .

Here, PWy(t) = y2(t) is the instantaneous power of the output signal,
and E(PWM) = γM(0) = σ 2

M is the mean power of the output noise.
Hence the optimization problem is to find h(t), and also the detection
time t0, such that

S
N = y2(t0)

γM(0)
= y2(t0)

σ 2
M

= max . (7.1.5)

In the present section we will take a look at a relatively simple sit-
uation when the general structure of the filter is essentially fixed and
only certain parameters, including the detection time t0, need to be
optimized.

To show the essence of our approach, we will just consider the RC
filter with the impulse response function

h(t) = be−bt ·u(t), (7.1.6)

with a single parameter b = 1
RC to be determined in addition to the

optimal detection time t0.
Suppose that the “useful” input signal we are trying to detect on the

output is a rectangular impulse

x(t) =
{
A for 0 ≤ t ≤ T ;

0 elsewhere
(7.1.7)
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and that the input noise is a white noise with the autocovariance
γN(t) = N0δ(t).

The deterministic “useful” output signal is

y(t) =
∫∞
−∞
x(s)h(−(s − t))ds

=
⎧⎨
⎩
∫ t
0 Abe−b(t−s)ds for 0 < t < T ;∫ T
0 Abe−b(t−s)ds for t ≥ T ,

=
{
A(1− e−bt) for 0 < t ≤ T ;

A(1− e−bT )e−b(t−T) for t ≥ T . (7.1.8)

It is pictured in Figure 7.1.1.

Fig. 7.1.1. Response y(t) (7.1.8) of the RC filter (7.1.6) to the rectangular input
signal x(t) (7.1.7). The parameter values are T = 1, A = 1, and b = 1

RC = 1.
The maximum is clearly attained for t0 = T .

Clearly, the maximum of the output signal is attained at t0 = T . On
the other hand, as calculated in Chapter 6, the autocorrelation function
of the output noise is

γM(τ) = N0
b
2
e−bτ,

so that, at the already optimized detection time t0 = T ,

S
N = y2(T)

γM(0)
= A2[1− e−bT ]2

bN0
2

.

To simplify our calculations we will substitute z = bT . Now our final
task is to find the maximum of the function

S
N (z) = 2A2T

N0
· (1− e

−z)2

z
(7.1.9)
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of one variable z. Function S
N (z), although simple-looking, is a little

tricky and we will start the exploration of its maximum by graphing it;
see Figure 7.1.2.

Fig. 7.1.2. Graph of the factor (1−e−z)2
z in formula (7.1.9) for the signal-to-noise

ratio S
N (z).

To find the location of the maximum we calculate the derivative and
try to solve the equation

d
dz

(1− e−z)2
z

= 2(1− e−z)e−zz − (1− e−z)2
z2

= 0.

Although the above equation can be easily simplified to the equation

ez − 1− 2z = 0,

the latter cannot be solved explicitly. So, as usual, as the first step we
explore the solution graphically; see Figure 7.1.3.

The nontrivial zero is approximately at zmax = 1.25, which gives
bmax = 1.25

T so that the optimal RC constant is

RCmax ≈ 1
bmax

= T
1.25

= 0.8T . (7.1.10)

Evaluated at the optimal values of parameters t0 and b, the maxi-
mum available signal-to-noise ratio is

S
N max

≈ y2(T)
bmaxN0

2

= 2A2[1− e−bmaxT ]2

bmaxN0
= 0.81 · A

2T
N0

. (7.1.11)
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Fig. 7.1.3. A plot of function ez − 1 − 2z = 0. The nontrivial zero is approxi-
mately at zmax = 1.25.

7.2 Filter structure matched to signal

In this section we will solve a more ambitious problem of designing the
structure of the filter to maximize the signal-to-noise ratio on the out-
put rather than just optimizing filter parameters. To be more precise,
the task at hand is to find an impulse response function h(t) and the
detection time t0 such that

S
N = y2(t0)

σ 2
M

= max (7.2.1)

for a given deterministic (nonrandom) input signal x(t) transmitted in
the presence of the white noise input N(t) with autocorrelation func-
tion γN(t) = N0δ(t), where, as before, x(t) = 0 for t ≤ 0 and

y(t) =
∫∞

0
x(t − s)h(s)ds. (7.2.2)

For the output noise,

σ 2
M = γM(0) =

∫∞
0

(∫∞
0
δ(u− s)h(u)du

)
h(s)ds = N0

∫∞
0
h2(s)ds.

(7.2.3)
In this situation,

S
N = y2(t0)

σ 2
M

= (
∫∞
0 x(t0 − s)h(s)ds)2
N0

∫∞
0 h2(s)ds

. (7.2.4)

In view of the Cauchy–Schwartz inequality,

S
N ≤

∫∞
0 x2(t0 − s)ds ·

∫∞
0 h2(s)ds

N0
∫∞
0 h2(s)ds

= 1
N0

∫∞
0
x2(t0 − s)ds, (7.2.5)
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with the equality, that is, the maximum for S
N , achieved when the two

factors, h(s) and x(t0 − s), in the scalar product in the numerator of
(7.2.4) are linearly dependent. In other words, for any constant c, the
impulse response function

h(s) = cx(t0 − s)u(s) = cx(−(s − t0))u(s) (7.2.6)

gives the optimal structure of the filter and maximizes the S
N ratio.

This so-called matching filter has the impulse response function equal
to the input signal x(t) run backwards in time, then shifted to the right
by t0, and, finally, cut off at 0.

With the selection of the matching filter, in view of (7.2.4), the max-
imal value of the S

N ratio is

S
N max

= (
∫∞
0 x(t0 − s)cx(t0 − s)u(s)ds)2
N0

∫∞
0 (cx(t0 − s)u(s))2ds

=
∫∞
0 x2(t0 − s)ds

N0
. (7.2.7)

Example 7.2.1 (matching filter for a rectangular input signal). Con-
sider a rectangular input signal of the form

x(t) =
{
A for 0 < t < T ;

0 elsewhere,

transmitted in the presence of an additive white noise with autocorrela-
tion function γN(t) = N0δ(t). According to formula (7.2.6), its match-
ing filter at detection time t0 is

h(t) =
{
A for 0 < t < t0;

0 elsewhere

if 0 ≤ t0 ≤ T and

h(t) =
{
A for t0 − T < t < t0;

0 elsewhere

if t0 > T . So the S
N max, as a function of the detection time t0, is

S
N max

(t0) =
⎧⎨
⎩
A2t0
N0

for 0 < t0 < T ;
A2T
N0

for t0 > T.

Clearly, the earliest detection time t0 to maximize S
N max(t0) is t0 = T

(see Figure 7.2.1).

At the optimal detection time t0 = T , or any later detection time,

S
N max

= A2T
N0

. (7.2.8)
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Fig. 7.2.1. The dependence of the optimal signal-to-noise ratio on the detection
time t0 for the matching filter from Example 7.2.1. The input signal is the sum
of a rectangular signal of amplitude A = 1, duration T = 1, and the white noise
with autocorrelation function γN(t) = δ(t).

Fig. 7.2.2. The response y(t) of the matching filter for the rectangular input
signal with amplitude A = 1 and duration T = 1 (see Example 7.2.1). Top: For
detection time t0 = 0.25 < T = 1. Bottom: For detection time t0 = 1.25 > T
= 1.
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This result should be compared with the maximum signal-to-noise
ratio 0.81A

2T
N0

(see (7.1.11)) obtained in Section 7.1 by optimally tuning
the RC filter: the best-matching filter gives about a 25% gain in the
signal-to-noise ratio over the best RC filter.

It is also instructive to trace the behavior of the deterministic part
y(t) of the output signal for the matching filter as a function of detec-
tion time t0. The formula (7.2.2) applied to the matching filter immedi-
ately gives that, for 0 < t0 < T ,

y(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A2t for 0 < t < t0;

A2t0 for t0 < t < T ;

−A2(t − (t0 + T)) for T < t < t0 + T ;

0 elsewhere

(7.2.9)

and, for t0 ≥ T ,

y(t) =

⎧⎪⎪⎨
⎪⎪⎩
A2(t − (t0 − T)) for t0 − T < t < t0;

−A2(t − (t0 + T)) for t0 < t < t0 + T ;

0 elsewhere.
(7.2.10)

These two output signals are pictured in Figure 7.2.2.

7.3 The Wiener filter

Acausal filter. Given stationary random signals X(t) and Y(t), the
problem is to find a (not necessarily causal) impulse response function
h(t) such that the mean-square distance between Y(t) and the output
signal,

Yh(t) =
∫∞
−∞
X(t − s)h(s)ds,

is the smallest possible. In other words, we need h(t) to minimize the
error quantity

E(Y(t)− Yh(t))2.
In the space of all finite variance (always zero-mean) random quantities
equipped with the covariance as the scalar product, the best approxima-
tion Yh(t) of a random quantity Y(t) by elements of the linear subspace
X spanned by linear combinations of values of X(t−s), −∞ < s <∞, is
given by the orthogonal projection of X(t) onX.31 That means that the
difference Y(t)−Yh(t)must be orthogonal to all X(t−s), −∞ < s <∞,
or, more formally,
31 This argument is analagous to the one encountered in Chapter 2, when we

discussed the best approximation in power (for a definition, see Section 2.2)
of deterministic periodic signals by their Fourier series.
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E((Y(t)− Yh(t)) ·X(t − s))

= E(Y(t) ·X(t − s))− E
(∫∞

−∞
X(t −u)h(u)du ·X(t − s)

)

= γYX(s)−
∫∞
−∞
γX(s −u)h(u)du = 0,

for all s, −∞ < s <∞. Hence the optimal h(t) can be found by solving,
for each s, the integral equation

γYX(s) =
∫∞
−∞
γX(s −u)h(u)du, (7.3.1)

which involves only the autocorrelation function γX(s) and the cross-
correlation function γYX(s). The solution is found readily in the fre-
quency domain. Remembering that the Fourier transform of a convo-
lution is the product of Fourier transforms, and denoting by H(f) the
transfer function (the Fourier transform of the impulse response func-
tion) of the optimal h(t), (7.3.1) can be rewritten in the form

SYX(f) = SX(f) ·H(f),
which immediately gives the explicit formula for the transfer function
of the optimal filter:

H(f) = SYX(f)
SX(f)

. (7.3.2)

The minimal error can then also be calculated explicitly:

E(Y(t)− Yh(t))2 = γY (0)−
∫∞
−∞
γYX(s)h(s)ds, (7.3.3)

or, in terms of the optimal transfer function, using the Parseval formula
for the last integral, we have

E(Y(t)− Yh(t))2 =
∫∞
−∞
(SY (f )− S∗YX(f )H(f))df . (7.3.4)

Example 7.3.1. Assume that signal X(t) is the sum of a “useful” signal
Y(t) and noise N(t), that is, X(t) = Y(t) + N(t), where Y(t) has the
power spectrum

SY (f ) = 1
1+ f 2

,

and is uncorrelated with the white noiseN(t), which is assumed to have
the power spectrum SN(f) ≡ 1. Then

SYX(f) = SY (f ) = 1
1+ f 2

and SX(f) = SY (f )+ SN(f) = 2+ f 2

1+ f 2
.

The transfer function of the optimal filter is then
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H(f) = SYX(f)
SX(f)

= 1
2+ f 2

,

with the corresponding impulse response function

h(t) = 1
2
√

2
e−
√

2|t|,

and the error

E(Y(t)− Yh(t))2 =
∫∞
−∞

(
1

1+ f 2
− 1

1+ f 2
· 1

2+ f 2

)
df

=
∫∞
−∞

1
2+ f 2

df = π√
2
.

Causal filter. For given stationary random signals X(t) and Y(t), the
construction of the optimal causal filter requires finding a causal im-
pulse response function h(t) = 0, for t ≤ 0, such that the error

E
(
Y(t)−

∫∞
0
X(t − s)h(s)ds

)2

is minimal. In other words, we are trying to find the best mean-square
approximation to Y(t) by (continuous) linear combinations of the past
values of X(t). Using the same orthogonality argument we applied for
the acausal optimal filter, we obtain another integral equation for the
optimal h(t):

γYX(s) =
∫∞

0
γX(s −u)h(u)du,

this time valid only for all s > 0. This equation is traditionally called the
Wiener–Hopf equation. It is clear that to solve the above equation via
an integral transform method we have to replace the Fourier transform
used in the acausal case by the Laplace transform. However, the details
here are more involved, and for the solution, we refer the reader to the
literature of the subject.32

7.4 Problems and exercises

7.4.1. The triangular signal x(t) = 0.01t for 0 < t < 0.01 and 0 else-
where is combined with white noise having a flat power spectrum
of 2V

2

Hz . Find the value of the RC-constant such that the signal-
to-noise ratio at the output of the RC filter is maximal at t = 0.01
second.

32 N. Wiener’s original Extrapolation, Interpolation, and Smoothing of Station-
ary Time Series, MIT Press and Wiley, New York, 1950, is still very readable,
but also see Chapter 10 of A. Papoulis, Signal Analysis, McGraw–Hill, New
York, 1977.
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7.4.2. A signal of the form x(t) = 5e−(t+2)u(t) is to be detected in the
presence of white noise with a flat power spectrum of 0.25V

2

Hz
using a matched filter.
(a) For t0 = 2 find the value of the impulse response of the

matched filter at t = 0,2,4.
(b) Find the maximum output signal-to-noise ratio that can be

achieved if t0 = ∞.
(c) Find the detection time t0 that should be used to achieve

an output signal-to-noise ratio that is equal to 95% of the
maximum signal-to-noise ratio discovered in part (b).

(d) The signal x(t) = 5e−(t+2)u(t) is combined with white noise
having a power spectrum of 2V

2

Hz . Find the value of RC such
that the signal/noise at the output of the RC filter is maximal
at t = 0.01 second.

7.4.3. Repeat construction of the optimal filter from Example 7.3.1 in
the case when the useful signal Y(t) has a more general power
spectrum

SY (f ) = a
b2 + f 2

,

and the uncorrelated white noise N(t) has arbitrary power spec-
trum SN(f) ≡ N . Discuss the properties of this filter when the
noise power is much bigger than the power of the useful signal,
that is, when N � SY (f ). Construct the optimal acausal filters
for other selected spectra of Y(t) and N(t).




