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Transmission of Stationary Signals through
Linear Systems

Signals produced in nature are almost never experienced in their orig-
inal form. Usually, we have access to them after they pass through
various sensing and/or transmission devices such as a voltmeter, for
electric signals, the ear, for acoustic signals, the eye, for visual signals, a
fiber optic cable, for wide-band Internet signals, etc. All of them impose
restrictions on the signal being transmitted by attenuating different fre-
quency components of the signal to a different degree. This process is
generally called filtering and the devices that change the signal’s spec-
trum are traditionally called filters.

A typical example here is the so-called band-pass filter , which per-
mits transmission of the components of the signal only in a certain
frequency band, attenuating the frequencies in that band in a uniform
fashion, but totally “killing” the frequencies outside this band. Fig-
ure 6.0.1 shows results of filtering a portion of the EEG signal from
Figure 4.1.1 through four band-pass filters with frequency bands (top
to bottom) 0.5–3.5 Hz, 4–7.5 Hz, 8–12.5 Hz, and 13–17 Hz. In neu-
rological literature the contents of the EEG signal within these fre-
quency bands are traditionally called delta, theta, alpha, and beta waves,
respectively.

In this chapter we study how statistical characteristics of random
stationary signals are affected by transmission through linear filters.
The linearity assumption means that we suppose that there is a linear
relationship between the signals on the input and on the output of the
filter. In real life this is not always the case, but the study of nonlinear
filters is much more difficult than the linear theory presented below,
and beyond the scope of this book.
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Fig. 6.0.1. A portion of the EEG signal from Figure 4.1.1 filtered through four
band-pass filters with frequency bands (top to bottom) 0.5–3.5 Hz, 4–7.5 Hz,
8–12.5 Hz, and 13−−17 Hz, respectively.

6.1 The time domain analysis

In this section we conduct the time domain analysis of transmission of
random signals through a linear system shown schematically below:

X(t) −→ h(t) −→ Y(t).

The input signal X(t) is assumed to be random and stationary with
meanmX = EX(t) and autocorrelation function γX(τ) = EX(t)X(t+τ).
The system is identified by a function h(t), and the output signal Y(t)
is defined as the continuous-time moving average (convolution):

Y(t) =
∫∞
−∞
X(s)h(t − s)ds =

∫∞
−∞
X(t − s)h(s)ds. (6.1.1)

Note that in the case of a nonrandom Dirac delta impulse input δ(t)
the nonrandom output signal is

y(t) =
∫∞
−∞
δ(s)h(t − s)ds = h(t − 0) = h(t).



6.1 The time domain analysis 129

For this reason the system-identifying time domain function h(t) is
usually called the impulse response function.

The mean value of the output signal is easily calculated in terms of
the input signal and of the impulse response function:

EY(t) =
∫∞
−∞

E[X(t − s)]h(s)ds =mX

∫∞
−∞
h(s)ds. (6.1.2)

The above formula makes sense only if the last integral is well defined.
For this reason, we will always assume that the system is realizable,
that is, ∫∞

−∞
|h(s)|ds <∞. (6.1.3)

In view of (6.1.2), for realizable systems, if the input signal has zero
mean then the output signal has also zero mean:

mX = 0 =⇒mY = 0.

In this situation, henceforth we will restrict our attention only to zero-
mean signals.

The calculation of the autocorrelation function of the output signal
Y(t) is a little bit more involved. Replacing the product of the integrals
by the double integral, we obtain that

γY (τ) = E(Y(t)Y(t + τ))

= E
[∫∞

−∞
X(t − s)h(s)ds

∫∞
−∞
X(t + τ −u)h(u)du

]

=
∫∞
−∞

∫∞
−∞

E[X(t − s)X(t + τ −u)]h(s)h(u)dsdu.

Then in view of the stationarity assumption,

E[X(t − s)X(t + τ −u)] = E[X(−s)X(τ −u)] = γX(τ −u+ s),

so that, finally,

γY (τ) =
∫∞
−∞

∫∞
−∞
γX(τ −u+ s)h(s)h(u)dsdu. (6.1.4)

A system is said to be causal if the current values of the output
depend only on the past and present values of the input. This property
can be equivalently stated as the requirement that the impulse response
function satisfy

h(t) = 0 for t ≤ 0. (6.1.5)
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In other words, the moving average is performed only over the past.
This condition, in particular, implies that the second output integral in
(6.1.1) is restricted to the positive half-line

Y(t) =
∫∞

0
X(t − s)h(s)ds, (6.1.6)

and the autocorrelation function formula (6.1.4) becomes

γY (τ) =
∫∞

0

∫∞
0
γX(τ −u+ s)h(s)h(u)dsdu. (6.1.7)

In what follows, we will just consider causal systems.

Example 6.1.1 (an integrating circuit). A standard integrating circuit
with a single capacitor is shown in Figure 6.1.1.

CX (t) Y (t)

Fig. 6.1.1. A standard integrating circuit. The voltage Y(t) on the output is the
integral of the current X(t) on the input.

The impulse response function for this system is the unit step func-
tion u(t) multiplied by 1

C , where the constant C represents the capaci-
tance of the capacitor:

h(s) = 1
C
u(s) =

{
0 for s < 0;
1
C for s ≥ 0.

The output is

Y(t) = 1
C

∫∞
−∞
X(s)U(t − s)ds = 1

C

∫ t
−∞
X(s)ds.

Obviously, this system, although causal, is not realizable since

∫∞
−∞
|h(t)|dt =

∫∞
0

1
C
dt = ∞.

To avoid this difficulty, we need to restrict the integrating circuit to
a finite time interval and assume that the adjusted impulse response
function is of the form
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h(s) =

⎧⎪⎪⎨
⎪⎪⎩

0 for s < 0;
1
C for 0 ≤ s ≤ T ;

0 for s > T .
(6.1.8)

In this situation, the system is realizable and the output is

Y(t) =
∫∞
−∞
X(s)h(t − s)ds = 1

C

∫ t
t−T

X(s)ds.

The autocorrelation is

γY (τ) =
∫ T

0

∫ T
0
γX(τ −u+ s)h(s)h(u)dsdu

= 1
C2

∫ T
0

∫ T
0
γX(u− (τ + s))dsdu (6.1.9)

because of the symmetry of the autocorrelation function.
Therefore, if the input signal is the standard white noise X(t) =

W(t) with the autocorrelation γW(t) = δ(t), then for τ ≥ 0, the output
autocorrelation function is

γY (τ) =
∫ T

0

∫ T
0
δ(u− (τ + s))duds =

∫ T
0
ζ(s)ds,

where

ζ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for τ + s < 0;
1
2 for τ + s = 0;

1 for 0 < τ + s < T ;
1
2 for τ + s = T ;

0 for τ + s > T .
Hence

γY (s) =

⎧⎪⎪⎨
⎪⎪⎩

0 for τ < −T ;

T − |τ| for −T ≤ τ ≤ T ;

0 for τ > T.
(6.1.10)

If the input signalX(t) is a simple random harmonic oscillation with
the autocorrelation function γX(τ) = cosτ , then the output autocorre-
lation is

γY (τ) =
∫∞

0

∫∞
0

cos(τ−u+s)dsdu = − cos(τ+T)+2 cosτ−cos(τ−T).
(6.1.11)

As simple as the formula (6.1.9) for the output autocorrelation func-
tion seems to be, the analytic evaluation of the double convolution may
get tedious very quickly. Consider, for example, an input signal X(t)
with the autocorrelation function
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Fig. 6.1.2. The output autocorrelation function γY (τ) (6.1.10) of the integrat-
ing system (6.1.8) with T = 1, in the case of the standard white noise input
X(t) = W(t).

γX(τ) = 1
1+ τ2

, (6.1.12)

which corresponds to the exponentially decaying power spectrum (see
Section 6.4).

In this case,

γY (τ) =
∫ T

0

∫ T
0

1
1+ (τ −u+ s)2dsdu (6.1.13)

= 1
2
(2(T − τ) arctan(T − τ)− 2τ arctanτ − log(1+ (T − τ)2)

+ log(1+ τ2))

+ 1
2
(−2τ arctan(τ)+ 2(τ + T) arctan(τ + T)+ log(1+ τ2)

+ log(1+ T 2 + 2Tτ + τ2)).

So even for a relatively simple input autocorrelation function the output
autocorrelation is quite complex and unreadable. Yes, you guessed
right—we have obtained this formula using Mathematica. Figure 6.1.4
traces graphically the dependence of γY (τ) on T .

Example 6.1.2 (an RC filter). A standard RC filter is shown in Fig-
ure 6.1.5.

The impulse response function of this circuit is of the form

h(t) = 1
RC

exp
(
− t
RC

)
·u(t), (6.1.14)

where u(t) is the unit step function, R is the resistivity, and C is the
capacitance. The product RC represent the so-called time constant of
the circuit.
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Fig. 6.1.3. The output autocorrelation functions γY (τ) (6.1.11) of the integrat-
ing system (6.1.8) with T = 0.3, 1, and 3 (top to bottom) in the case of a simple
random harmonic oscillation input with γX(τ) = cosτ . Note the increasing
amplitude of γY (τ) as T increases.

In the case of the white noise input signal with γX(τ) = δ(τ), the
output autocorrelation function, for τ > 0, is

γY (τ) =
∫∞

0

∫∞
0
δ(u− (s + τ))h(u)h(s)duds =

∫∞
0
h(s + τ)h(s)ds

=
∫∞

0

1
RC

es+τ/RC · 1
RC

es/RCds = 1
2RC

e−τ/RC.
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Fig. 6.1.4. The output autocorrelation functions γY (τ) (6.1.13) of the integrat-
ing system (6.1.8) with T = 0.3, 1.3, and 9 (clockwise from top left corner), in
the case of input with γX(τ) = 1

1+τ2 . Note the growing maximum and spread
of γY (τ) as T increases.

X (t) Y (t)

R

C

Fig. 6.1.5. A standard RC filter with the impulse response function h(t) =
1
RC exp(− t

RC ) ·U(t).

So

γY (τ) = 1
2RC

exp
(
−|τ|
RC

)
. (6.1.15)

The shape of the output autocorrelation function for small and large
values of the RC constant is shown in Figure 6.1.6.

For the simple random harmonic oscillation with autocorrelation
γX(τ) = cosτ as the input, the output autocorrelation is

γY (τ) =
∫∞

0

∫∞
0

cos(τ −u+ s) 1
RC

exp
(−s
RC

)
1
RC

exp
(
− u
RC

)
dsdu

= cosτ
1+ (RC)2 .
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Fig. 6.1.6. The output autocorrelation function γY (τ) for the RC filter (6.1.14)
with a standard white noise input with γX(τ) = δ(τ). The top figure shows
the case of small time constant RC = 1 and the bottom the case of the larger
time constant RC = 3. Note the difference in the maximum and the spread of
γY (τ) in these two cases.

But a slightly more complex input autocorrelation function

γX(τ) = e−2|τ|,

corresponding to the switching input signal, produces the output auto-
correlation function of the form

γY (τ) = 1
(RC)2

∫∞
0

∫∞
0
e−|τ−u+s|e−(s+u)/(RC)dsdu (6.1.16)

= 1
(RC)2

[∫ τ
0

∫∞
0
e−(τ−u+s)e−(s+u)/(RC)dsdu

+
∫∞
τ

(∫ u−τ
0

eτ−u+se−(s+u)/(RC)ds

+
∫∞
u−τ

e−(τ−u+s)e−(s+u)/(RC)ds
)
du

]
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which, although doable (see Section 6.4, problems and exercises), is not
fun to evaluate.

6.2 Frequency domain analysis and system bandwidth

Examples provided in the preceding section demonstrated analytic diffi-
culties related to the time domain analysis of random stationary signals
transmitted through linear systems. In many cases analysis becomes
much simpler if it is carried out in the frequency domain. For this
purpose, let us consider the Fourier transform H(f) of the system’s
impulse response function h(t):

H(f) =
∫∞
−∞
h(t)e−2πjftdt, (6.2.1)

which traditionally is called the system’s transfer function.
Now the task is to calculate the power spectrum

SY (f ) =
∫∞
−∞
γY (τ)e−2πjfτdτ (6.2.2)

of the output signal given the power spectrum

SX(f) =
∫∞
−∞
γX(τ)e−2πjfτdτ

of the input signal. Since the output autocorrelation function γY (t) has
been calculated in Section 6.1, substituting the expression obtained in
(6.1.4) into (6.2.1), we get

SY (f ) =
∫∞
−∞

(∫∞
−∞

∫∞
−∞
γX(τ − s +u)h(s)h(u)dsdu

)
e−2πjfτdτ

=
∫∞
−∞

∫∞
−∞

(∫∞
−∞
γX(τ − s +u)e−2πjf(τ−s+u)dτ

)
h(s)e−2πjfsds

· h(u)e2πjfudu.

Making the substitution τ − s + u = w in the inner integral, we arrive
at the final formula

SY (f ) = SX(f) ·H(f) ·H∗(f ) = SX(f) · |H(f)|2. (6.2.3)

So the output power spectrum is obtained simply by multiplying
the input power spectrum by a fixed factor |H(f)|2, which is called the
system’s power transfer function.
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The appearance of power transfer function |H(f)|2 in formula
(6.2.3) suggests introduction of the concept of the system’s bandwidth.
As in the case of signals (see Section 5.4) several choices are possible.

The equivalent-noise bandwidth BWn is defined as the cutoff fre-
quency fmax of the limited-band white noise with the amplitude equal
to the value of the system’s power transfer function at 0 and the mean
power equal to the integral of the system’s power transfer function,
that is,

2 BWn |H(0)|2 =
∫∞
−∞
|H(f)|2df ,

which gives

BWn = 1
2|H(0)|2

∫∞
−∞
|H(f)|2df . (6.2.4)

The half-power bandwidth BW1/2 is defined as the frequency where
the system’s power transfer function declines to one-half of its max-
imum value which is always equal to |H(0)|2. Thus it is obtained by
solving, for BW1/2, the equation

|H(BW1/2)|2 = 1
2
|H(0)|2. (6.2.5)

Obviously, the above bandwidth concepts make the most sense for
lowpass filters, that is, in the case when the system’s power transfer
function has a distinctive maximum at 0, dominating its values else-
where. But for other systems such as band-pass filters, similar band-
width definitions can be easily devised.

Example 6.2.1 (an RC filter). Recall that in this case the impulse re-
sponse function is given by

h(t) = 1
RC

e−
t
RC ·u(t).

So the transfer function is

H(f) =
∫∞
−∞
h(t)e−2πjftdt =

∫∞
0

1
RC

e−
t
RC e−2πjftdt = 1

1+ 2πjRCf
,

and, consequently, the power transfer function is

|H(f)|2 = 1
1+ 2πjRCf

· 1
1− 2πjRCf

= 1
1+ (2πRCf)2 . (6.2.6)

The half-power bandwidth of the RC filter is easily computable from
the equation

1
1+ (2πRC(BW1/2))2

= 1
2
,

which gives
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BW1/2 = 1
2πRC

.

The bandwidth decreases hyperbolically with the increase of the RC
constant.

The output power spectra for an RC filter are thus easily evaluated.
In the case of the standard white noise input with SX(f) ≡ 1, the output
power spectrum is

SY (f ) = 1
1+ (2πRCf)2 .

If the input signal is a random oscillation with the power spectrum

SX(f) = A2
0

2
(δ(f − f0)+ δ(f + f0)),

then the output power spectrum is

SY (f ) = A2
0

2
(δ(f − f0)+ δ(f + f0)) · 1

1+ (2πRCf)2 .

If the input is a switching signal with the power spectrum

SX(f) = 1
1+ (af)2 ,

then the output power spectrum is

SY (f ) = 1
1+ (af)2 ·

1
1+ (2πRCf)2 .

Example 6.2.2 (bandwidth of the finite-time integrating circuit). Let us
calculate the bandwidths BWn and BW1/2 for the finite-time integrator
with the impulse response function

h(t) =
{

1 for 0 ≤ t ≤ T ;

0 elsewhere.

In this case, the transfer function is

H(f) =
∫ T

0
e−2πjftdt = 1

2πjf
(1− e−2πjfT ),

so that the power transfer function is

|H(f)|2 = (1− e−2πjfT )(1− e2πjfT )
(2πf)2

= 2(1− cos 2πfT)
(2πf)2

. (6.2.7)

Finding directly the integral of the power transfer function is a little
tedious, but fortunately, by Parseval’s formula,
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Fig. 6.2.1. Power transfer functions |H(f)|2 = 1
1+(2πRCf)2 for the RC filter with

the RC constants 0.1 (thick line), 0.5 (medium line), and 2.0 (thin line). The
half-power bandwidths BW1/2 are, respectively, 1.6, 0.32, and 0.08.

Fig. 6.2.2. Top: Power transfer function (6.2.7) of the finite-time integrating
circuit with T = 1. Bottom: Magnified portion of the power transfer function
for f between 0.44 and 0.45. This graphical analysis gives the half-power
bandwidth BW1/2 = 0.443.
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∫∞
−∞
|H(f)|2df =

∫∞
−∞
h2(t)dt =

∫ T
0
dt = T ,

and

H(0) =
∫ T

0
h(t)dt = T .

Thus the equivalent-noise bandwidth (6.2.4) is

BWn = 1
2T 2

· T = 1
2T
.

Finding the half-power bandwidth requires solving equation (6.2.5):

2(1− cos 2π(BW1/2)T)
(2π(BW1/2))2

= T 2

2
,

which can be done only numerically. Indeed, a quick graphical analysis
(see Figure 6.2.1) for T = 1 gives the half-power bandwidth BW1/2 =
0.443, slightly less than the corresponding equivalent-noise bandwidth
BWeqn = 0.500.

6.3 Digital signal, discrete-time sampling

In this section we will take a look at transmission of random stationary
signals through linear systems when the signals are sampled at discrete
times with the sampling interval Ts . The system can be schematically
represented as follows:

X(nTs) −→ h(nTs) −→ Y(nTs).

The input signal now forms a stationary random sequence

X(nTs), n = · · · − 1,0,1, . . . , (6.3.1)

and the output signal

Y(nTs), n = · · · − 1,0,1, . . . , (6.3.2)

is produced by discrete-time convolution of the input signal X(nTs)
with the discrete-time impulse reponse sequence h(nTs):

Y(nTs) =
∞∑

i=−∞
X(iTs)h(nTs − iTs)Ts. (6.3.3)

In the discrete-time case, the realizability condition is
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∞∑
n=−∞

|h(nTs)| <∞,

and the causality condition means that

h(nTs) = 0 for n < 0.

With discrete-time inputs and outputs the autocorrelation functions are
just discrete sequences and are defined by the formulas

γX(kTs) = E(X(nTs)X(nTs + kTs)),
γY (kTs) = E(Y(nTs)Y(nTs + kTs)).

Then after a direct application of (6.3.3), one obtains the following for-
mula for the output autocorrelation sequence as a function of the input
autocorrelation sequence and the impulse response sequence:

γY (kTs) =
∞∑

l=−∞

∞∑
i=−∞

γX(kTs − lTs + iTs)h(lTs)h(iTs)T 2
s . (6.3.4)

To move into the frequency domain one can either directly apply the
discrete or fast Fourier transforms or, as in Section 6.3, use the straight
continuous-time Fourier transform technique assuming that both the
signal and the impulse response function have been interpolated by
constants between sampling points. We will follow the latter approach.
Therefore, using formula (5.3.5), we get

SX(f) = S1(f ) · S2,X(f ), (6.3.5)

with

S2,X(f ) =
∞∑

m=−∞
γX(mTs)e−j2πmfTsTs,

and

SY (f ) = S1(f ) · S2,Y (f ), (6.3.6)

with

S2,Y (f ) =
∞∑

m=−∞
γY (mTs)e−j2πmfTsTs,

and

S1(f ) = 1− cos 2πfTs
2π2f 2T 2

s
.

Remember that all the relevant information about the discrete sampled
signal is contained in the frequency interval (−fs2 , fs2 ) (see Remark 5.3.1).
The transfer function of this system is
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H(f) =
∫∞
−∞
h(t)e−j2πftdt =

∞∑
k=−∞

h(kTs)
∫ (k+1)Ts

kTs
e−j2πftdt

= 1− ej2πfTs
−j2πfTs

∞∑
k=−∞

h(kTs)e−j2πfkTsTs, (6.3.7)

so that the power transfer function

|H(f)|2 = 1− cos 2πfTs
2π2f 2T 2

s

∞∑
k=−∞

∞∑
n=−∞

h(kTs)h(nTs)e−j2πf(k−n)TsT 2
s .

(6.3.8)
Again, all the relevant information about the discrete power transfer
function contained in the frequency interval (−fs2 , fs2 ) (see Remark 5.3.1).

Finally, since we already know from Section 6.2 that

SY (f ) = |H(f)|2SX(f),
we also get from (6.3.5)–(6.3.6) that

S2,Y (f ) = |H(f)|2S2,X(f ). (6.3.9)

or, equivalently,
∞∑

m=−∞
γY (mTs)e−j2πmfTsTs = |H(f)|2 ·

∞∑
m=−∞

γX(mTs)e−j2πmfTsTs.

(6.3.10)

Example 6.3.1 (autoregressive moving average system (ARMA)). We
now take the sampling period Ts = 1 and the output Y(n) determined
from the inputX(n) via the autoregressive moving average scheme with
parameters p and q (in brief, ARMA(p, q)):

Y(n) =
q∑
l=0

b(l)X(n− l)−
p∑
l=1

a(l)Y(n− l). (6.3.11)

Defining a(0) = 1, we can then write
p∑
l=0

a(l)Y(n− l) =
q∑
l=0

b(l)X(n− l).

Since the Fourier transform of the convolution is a product of
Fourier transforms, we have

X(f)
q∑
l=0

b(l)e−2πjflT = Y(f)
p∑
l=0

a(l)e−2πjflT ,

so the transfer function

H(f) = Y(f)
X(f)

=
∑q
l=0 b(l)e

−2πjflT∑p
l=0 a(l)e−2πjflT

. (6.3.12)
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Example 6.3.2 (a solution of the stochastic difference equation). This
example was considered in Chapter 4, but let us observe that it is a
special case of Example 6.3.1, with parameters p = 1, q = 0, and the
input signal being the standard discrete white noiseW(n) with σ2

W = 1.
In other words,

Y(n) = −a1Y(n− 1)+ b0W(n).

In view of (6.3.12), the power transfer function is

|H(f)|2 = b0

1+ a1e−2πjf ·
b0

1+ a1se2πjf =
b2

0

1+ a2
1 + 2a1 cos 2πf

,

with, again, all the relevant information contained in the frequency in-
terval −1

2 < f <
1
2 .

Given that the input is the standard white noise, we have that

SY (f ) = |H(f)|2 · 1 = b2
0

1+ a2
1 + 2a1 cos 2πf

. (6.3.13)

One way to find the output autocorrelation sequence γY (n) would be
to take into account the relationship (6.3.10) and expand (6.3.13) into
the Fourier series; its coefficients will form the desired autocorrelation
sequence. This procedure is streightforward and requires only an appli-
cation of the formula for the sum of a geometric series (see Section 6.4).

However, we would like to explore here a different route and em-
ploy a recursive procedure to find the output autocorrelation sequence.
First, observe that

γY (k) = E(Y(n)Y(n+ k))
= E(−a1Y(n− 1)+ b0X(n)) · (−a1Y(n+ k− 1)+ b0X(n+ k))
= a2

1E(Y(n− 1)Y(n+ k− 1))− a1b0E(Y(n− 1)X(n+ k)))
− a1b0E(X(n)Y(n+ k− 1))+ b2

0E(X(n)X(n+ k))
= a2

1γY (k)− a1b0γXY (k− 1)+ b0)2γX(k),

where
γXY (k) = E(X(n)Y(n+ k)),

is the cross-correlation sequence of signals X(n) and Y(n). Thus

γY (k) = b0

1− a2
1
(−a1γXY (k− 1)+ b0γX(k)).

For k = 0,

γY (0) = σ 2
Y =

b0

1− a2
1
(−a1E(X(n)Y(n− 1))+ b0γX(0))
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= b2
0

1− a2
1
γX(0) = b2

0

1− a2
1
.

For k = 1,

γY (1) = b0

1− a2
1
(−a1γXY (0)+ b0γX(1)) = b0(−a1)

1− a2
1

E(X(0)Y(0))

= b0(−a1)
1− a2

1
E(X(0)(a1Y(−1)+ b0X(0))) = b2

0(−a1)
1− a2

1
.

For a general k > 1,

γY (k) = b0

1− a2
1
(−a1γXY (k− 1)+ b0γX(k)),

and, as above,

γXY (k− 1) = E(X(0)Y(k− 1))
= E(X(0)(−a1Y(k− 2)+ b0X(k− 1)))
= (−a1)E(X(0)Y(k− 2))
= (−a1)γXY (k− 2)

= · · · = (−a1)k−1γXY (0) = b(0)(−a1)k−1.

Since the autocorrelation sequence must be an even function of variable
k, we finally get, for any k = . . . ,−2,−1,0,1,2, . . . ,

γY (k) = b2
0

1− a2
1
(−a1)|k|,

thus recovering the result from Chapter 4.

6.4 Problems and exercises

In the first three exercises, also try solving the problem by first finding
the autocorrelation function of the output to see how hard the problem
is in the time domain framework.

6.4.1. The impulse response function of a linear system is h(t) = 1− t
for 0 ≤ t ≤ 1 and 0 elsewhere.
(a) Produce a graph of h(t).
(b) Assume that the input is the standard white noise. Find the

autocorrelation function of the output.
(c) Find the power transfer function of the system, its equivalent-

noise bandwidth and half-power bandwidth.
(d) Assume that the input has the autocorrelation function γX(t)
= 3

1+4t2 . Find the power spectrum of the output signal.
(e) Assume that the input has the autocorrelation function γX(t)
= exp(−4|t|). Find the power spectrum of the output signal.
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(f) Assume that the input has the autocorrelation functionγX(t) =
1− |t| for |t| < 1 and 0 elsewhere. Find the power spectrum
of the output signal.

6.4.2. The impulse response function of a linear system is h(t) = e−2t

for 0 ≤ t ≤ 2 and 0 elsewhere.
(a) Produce a graph of h(t).
(b) Assume that the input is the standard white noise. Find the

autocorrelation function of the output.
(c) Find the power transfer function of the system, its equivalent-

noise bandwidth and half-power bandwidth.
(d) Assume that the input has the autocorrelation functionγX(t) =

3
1+4t2 . Find the power spectrum of the output signal.

(e) Assume that the input has the autocorrelation functionγX(t) =
exp(−4|t|). Find the power spectrum of the output signal.

(f) Assume that the input has the autocorrelation functionγX(t) =
1− |t| for |t| < 1 and 0 elsewhere. Find the power spectrum
of the output signal.

6.4.3. The impulse response function of a linear system is h(t) =
e−0.05t for t ≥ 10 and 0 elsewhere.
(a) Produce a graph of h(t).
(b) Assume that the input is the standard white noise. Find the

autocorrelation function of the output.
(c) Find the power transfer function of the system, its equivalent-

noise bandwidth and half-power bandwidth.
(d) Assume that the input has the autocorrelation functionγX(t) =

3
1+4t2 . Find the power spectrum of the output signal.

(e) Assume that the input has the autocorrelation functionγX(t) =
exp(−4|t|). Find the power spectrum of the output signal.

(f) Assume that the input has the autocorrelation functionγX(t) =
1− |t| for |t| < 1 and 0 elsewhere. Find the power spectrum
of the output signal.

6.4.4. Cross-correlation ρXY and cross-covariance γXY for random sig-
nals X(t) and Y(t) are defined, respectively, as follows:

ρXY (t, s) = E(X(t)Y(s)),
γXY (t, s) = E((X(t)− μX(t))(Y(s)− μY (s)).

Random signals X(t) and Y(t) are said to be jointly stationary if
they are stationary and

ρXY (t, s) = ρXY (t − s,0).

Consider random signals

X(t) = a cos(2π(f0t +Θ)), Y(t) = b sin(2π(f0t +Θ)),
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where a and b are nonrandom constants and Θ is uniformly dis-
tributed on [0,1]. Find the cross-correlation function for X and
Y . Are these signals jointly stationary?

6.4.5. Consider the circuit shown in Figure 6.4.1

C

X (t)

Y (t)

R Z (t)

Fig. 6.4.1.

Assume that the input is the standard white noise.
(a) Find the power spectra SY (f ) and SZ(f) of the outputs Y(t)

and Z(t).
(b) Find the cross-correlation

γYZ(τ) = E(Z(t)Y(t + τ))
between those two outputs.

6.4.6. Find the output autocorrelation sequence for the discrete-time
system representing a stochastic difference equation described
in Example 6.3.2. Use the Fourier series expansion of formula
(6.3.13).

6.4.7. Consider the circuit shown in Figure 6.4.2.

X (t) Y (t)

R1 R2

C1 C2

Fig. 6.4.2.

Assume that the input is the standard white noise. Find the
power spectrum SY (f ) and the autocorrelation function γY (τ)
of the output Y(t).

6.4.8. Find the half-power and equivalent-noise bandwidth of the sys-
tem shown in Figure 6.4.2.




