
4

Stationary Signals

In this chapter we introduce basic concepts necessary to study the time-
dependent dynamics of random phenomena. The latter will be modeled
as a family of random quantities indexed by a parameter, interpreted in
this book as time. The parameter may be either continuous or discrete.
Depending on the context and the tradition followed by different au-
thors, such families are called random signals, stochastic processes, or
random time series. The emphasis here is on random dynamics which
are stationary , that is governed by underlying statistical mechanisms
that do not change in time, although, of course, particular realizations
of such families will be functions that vary with time. Think here about
the random signal produced by the proverbial repeated coin tossing;
the outomes vary while the fundamental mechanics remains the same.

4.1 Stationarity, autocovariance, and autocorrelation

A random (or stochastic) signal is a time-dependent family of random
quantities X(t). Depending on the context, one can consider random
signals on the positive time line t ≥ 0, on the whole time line −∞ <
t < ∞, or on a finite time interval t0 ≤ t ≤ t1. Also it is useful to be
able to consider random vector signals and signals with discrete time
t = . . . ,−2,−1,0,1,2, . . . .

In this book we will restrict our attention to signals that are sta-
tistically stationary, which means that at least some of their statistical
characteristics do not change in time. Several choices are possible here:

First-order strictly stationary signals. In this case, the c.d.f. FX(t)(x)
does not change in time (it is time-shift invariant), that is,

FX(t)(x) = FX(t+τ)(x) for all t, τ, x. (4.1.1)
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Second-order strictly stationary signals. In this case, the joint 2D c.d.f.
F(X(t1),X(t2))(x1, x2) does not change in time, that is,

F(X(t1),X(t2))(x1, x2) = F(X(t1+τ),X(t2+τ))(x1, x2) for all t1, t2, τ, x1, x2.
(4.1.2)

In a similar fashion one can define the nth-order strict stationarity
of random signal X(t) as the time-shift invariance of the nD joint c.d.f.,
that is, the requirement that

F(X(t1),...,X(tn))(x1, . . . , xn) = F(X(t1+τ),...,X(tn+τ))(x1, . . . , xn) (4.1.3)

for all t1, . . . , tn, τ,x1, . . . , xn.
Finally, a random signal X(t) is said to be strictly stationary if, for

each n = 1,2, . . . , it is nth-order strictly stationary.
Obviously, as n increases, verifying the nth-order stationarity gets

more and more difficult, not to mention practical difficulties that arise
with checking the full strict stationarity. For this reason, a more modest
concept of second-order weakly stationary signals is useful. In this case
the invariance property is demanded only of the moments of the signal
up to order 2. More precisely, a signal X(t) is said to be second-order
weakly stationary if its expectations and covariances are time-shift in-
variant, that is, if

μX(t) ≡ E[X(t)] = E[X(t + τ)] ≡ μX(t + τ) (4.1.4)

for all t, τ , and the autocovariance function is

γX(t1, t2) ≡ Cov(X(t1),X(t2))
= Cov(X(t1 + τ),X(t2 + τ)) ≡ γX(t1 + τ, t2 + τ) (4.1.5)

for all t1, t2, τ .
It is a consequence of the above two conditions that, for any second-

order weakly stationary signal,

μX(t) = μX = constant, (4.1.6)

and the autocovariance function depends only on the time lag τ =
t2 − t1,

γX(t1, t2) = γX(t1 − t1, t2 − t1) = γX(0, t2 − t1), (4.1.7)

so that, in particular,
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Var(X(t)) ≡ σ 2
X(t) = Cov(X(t),X(t)) = γX(0,0) = σ 2

X = constant.
(4.1.8)

Thus all the first and second moments of the signal can be expressed
in terms of just two characteristics, the signal’s mean value μX and
signal’s autocovariance function

γX(t) := γX(0, t) = E[(X(0)− μX)(X(t)− μX)], (4.1.9)

which is, as a result of the stationarity assumption, a function of just a
single variable.

In the remainder of this discussion, we will restrict our attention to
second-order weakly stationary signals X(t), which we will simply call
stationary signals. We will analyze them assuming only the knowledge
of their mean value μX and their autocovariance function γX(t).

The following properties of the autocovariance function follow di-
rectly from its definition and the Schwartz inequality (see Section 3.7):

γX(−t) = γX(t), (4.1.10)

and
|γX(t)| ≤ γX(0) = σ 2

X. (4.1.11)

In other words, the covariance function is even and its absolute value
is bounded by its value at t = 0, where it is simply equal to the signal’s
variance.

In different situations it is often convenient to use close relatives of
the autocovariance function, such as the autocorrelation function26

φX(t) = E(X(t1)X(t1 + t))
= Cov(X(t1),X(t1 + t))+ E(X(t1)) · E(X(t1 + t)) = γX(t)+ μ2

X,
(4.1.12)

and the normalized autocovariance function

26 You may have noticed that in signal processing the traditional term “auto-
correlation function” is at odds with the previously introduced term “corre-
lation coefficient,” which really corresponds to the above-introduced “nor-
malized autocovariance function.” But the terminology is so well estab-
lished that we will stick with it.
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ξX(τ) = γX(t)
σ 2
X

= φX(t)− μ2
X

σ 2
X

(4.1.13)

which has the advantage of having its values always contained in the
interval [−1,1].

If the signals’ mean value is zero, then, of course, the autocovariance
and the autocorrelation functions are identical:

γX(τ) = φX(τ).

In what follows, unless explicitly stated otherwise, we will always as-
sume that the signals under consideration have zero means so that the
autocorrelation and the autocovariance are the same functions.

The reminder of this section is devoted to a series of examples of
stationary data. The first, real-life example (see Figure 4.1.1) shows a
sample of a 21-channel recording of the sleep electroencephalogram
(EEG) of a neonate. The duration of this multidimensional random sig-
nal is one minute and the sampling rate is 64 Hz. This particular EEG
was taken during the so-called mixed frequency sleep stage and, in addi-
tion to the EEG, it also shows related signals such as electrocardiogram
(EKG), breathing signal, eye muscle contraction signal, etc. The signal’s
components seem stationary for some channels while other channels
seem to violate the stationarity property. This can be due to some arti-
facts in the recordings caused, for example, by the physical movements
of the infant or by the onset of a different sleep stage (active, passive,
rapid eye movement (REM), etc.). The study of EEG signals provides
important information on the state of the brain’s neural network and,
in the case of infants, can be used to assess the maturity level of their
brains. In Section 4.2, we will provide a method to estimate the auto-
correlation function for such real-life data.

Examples 4.1.1–4.1.6 provide various mathematical models of sta-
tionary signals. In those cases, the autocorrelation functions can be
explicitely calculated.

Example 4.1.1 (a random harmonic oscillation). Consider a signal which
is a simple harmonic oscillation with nonrandom frequency f0 = 1

P but
random amplitude A such that the second moment EA2 < ∞, and ran-
dom phase Θ uniformly distributed over the period and independent
of A. In other words,

X(t) = A cos(2πf0(t +Θ)).

The signal is stationary because its mean value is
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Fig. 4.1.1. A sample of a 21-channel recording of the sleep electroencephalo-
gram (EEG) of a neonate. The duration of this multidimensional random sig-
nal is 60 seconds and the sampling rate is 64 Hz. (From A. Piryatinska’s Ph.D.
dissertation, Department of Statistics, Case Western Reserve University, Cleve-
land, 2004.)

EX(t) = EA cos 2πf0(t +Θ) = EA ·
∫ P

0
cos 2πf0(t + θ)dθP = EA · 0 = 0

and its autocovariance is

γX(t, s) = EX(t)X(s) = E[A cos 2πf0(t +Θ) ·A cos 2πf0(s +Θ)]

= EA2 ·
∫ P

0
cos 2πf0(t + θ) · cos 2πf0(s + θ)dθP

= EA2 1
2

(∫ P
0

cos 2πf0(t + s + 2θ)
dθ
P
+
∫ P

0
cos 2πf0(s − t)dθP

)

= EA2

2
cos 2πf0(s − t),
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where we used the independence of the amplitude A and the phase Θ
to split the expectations of the product into the product of the expec-
tations. As a result we see that the autocorrelation γX(t, s) is just a
function of the difference s − t, which means that the signal is station-
ary. In particular,

γX(t) = EA2

2
cos 2πf0t.

Example 4.1.2 (superposition of random harmonic oscillations). In
this example, we consider a signal which is a sum of simple har-
monic oscillations with frequencies kf0, k = 1,2, . . . , N, random am-
plitudes Ak, k = 1,2, . . . , N , such that EA2

k <∞, and random phases Θk,
k = 1,2, . . . , N, uniformly distributed over the corresponding periods.
All of the above random quantities are assumed to be independent of
each other. In other words,

X(t) =
N∑
k=1

Ak cos(2πkf0(t +Θk)).

In this case one can verify (see Section 4.3, problems and exercises) that
the signal is again stationary and the covariance function is of the form

γX(t) = 1
2

N∑
k=1

EA2
k cos(2πkf0t).

Example 4.1.3 (discrete-time white noise). In this example, the time is
discrete, that is, t = n = . . . ,−2,−1,0,1,2, . . . and the random signal
W(n) has mean zero and values at different times that are uncorrelated;
its variance is σ2

W . In other words,

μW = 0,

and

γW(n, k) = E(W(n)W(k)) =
{
σ 2
W if n− k = 0,

0 if n− k ≠ 0.

Note that the above-defined signal is stationary because its autocovari-
ance (autocorrelation, since the mean is zero) is indeed a function of
only the time lag and can be written in the form

γW(n, k) = σ 2
Wδ(n− k),

where

δ(n) =
{

1 if n = 0;

0 if n ≠ 0,
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is the discrete-time Dirac delta function. This kind of signal is called
discrete-time white noise and it has mean zero and autocorrelation func-
tion

γW(n) = σ 2
Wδ(n).

A sample path of a discrete-time white noise with σ 2
W = 1

12 is shown
in Figure 4.1.2. It was produced using a random number generator
in Mathematica, with the values of Wn uniformly distributed on the
interval [−1

2 ,
1
2].

Fig. 4.1.2. A sample discrete-time white noise random signal W(n), n =
1,2, . . . ,50, with σ 2

W = 1
12 . For the sake of the clarity of the picture, values

of W(n) for consecutive integers n were joined by straight line segments.

Example 4.1.4 (moving average of the white noise). The moving aver-
age signal X(n) is obtained from the white noise W(n) with variance
σ 2
W by the “windowing” procedure. The windowing procedure mixes

values of the white noise, W(n),W(n − 1), . . . ,W(n − q), in the time
window of fixed width q+1, extending into the past, giving values with
different time lags different weights, say, b0, b1, . . . , bq. More precisely,

X(n) = b0W(n)+ b1W(n− 1)+ · · · + bqW(n− q).
You can interpret the moving average signal as a convolution of the
white noise with the windowing weight sequence. One immediately
obtains that μX = 0. Since, for independent random quantities, the
variance of the sum is equal to the sum of the variances, the variance is
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σ 2
X = σ 2

W

q∑
i=0

b2
i .

Calculation of the autocorrelation function is a little more complicated
(see Section 4.3, problems and exercises) and here we will carry it out
only in the case of the window of width 2, when

X(n) = b0W(n)+ b1W(n− 1).

Then

γX(n, k) = EX(n)X(k)
= E((b0W(n)+ b1W(n− 1))(b0W(k)+ b1W(k− 1)))

= b2
0E(W(n)W(k))+ b0b1E(W(k)W(n− 1))

+ b0b1E(W(k− 1)W(n))+ b2
1E(W(n− 1)W(k− 1))

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(b2
0 + b2

1)σ
2
W if n = k� n− k = 0;

b0b1σ 2
W if n− 1 = k� n− k = 1;

b0b1σ 2
W if n = k− 1 � n− k = −1;

0 if |n− k| > 1.

Since γX(n, k) depends only on the difference n − k, the moving
average signal is stationary. For the sample white noise signal from
Figure 4.1.2, the moving average signal X(n) = 2W(n)+ 5W(n− 1) is
shown in Figure 4.1.3, and its corresponding autocorrelation function

γX(n) =

⎧⎪⎪⎨
⎪⎪⎩

29
12 if n = 0;
10
12 if n = ±1;

0 if n = ±2,±3, . . . .

is shown in Figure 4.1.4.

Example 4.1.5 (random switching signal). Consider a signalX(t) switch-
ing back and forth between values +1 and −1 at random times. More
precisely, the intial value of the signal, X(0), is a random quantity with
the symmetric Bernoulli distribution, that is, P(X(0) = ±1) = 1

2 , and
the interswitching times form a sequence T1, T2, . . . , of independent
random quantities with the exponential distribution:

P(Ti ≤ t) = 1− e−t, t > 0,

of mean 1. The initial value X(0) is assumed to be independent of
interswitching times Ti. A typical sample of such a signal is shown in
Figure 4.1.5.
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Fig. 4.1.3. Sample moving average signal X(n) = 2W(n) + 5W(n − 1) for the
sample white noise shown in Figure 4.1.2. Note that the moving average signal
appears smoother than the original white noise. The constrained oscillations
are a result of nontrivial, although short-term in this example, correlations.

Fig. 4.1.4. Autocovariance function for the moving average signal X(n) =
2W(n) + 5W(n − 1). Note that the values of the signal separated by more
that one time unit are uncorrelated.

Calculation of the mean and the autocorrelation function of the
switching signal depends on the knowledge of the fact that such a ran-
dom signal can be written in the form

X(0) · (−1)N(t),

where N(t) is the (nonstationary) random signal counting the number
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Fig. 4.1.5. A sample of the random switching signal from Example 4.1.5. The
values are ±1 and the initial value is +1. The interswitching times are inde-
pendent and have an exponential c.d.f. of mean 1.

of switches up to time t. One can prove27 that N(t) has increments in
disjoint time intervals that are statistically independent, with the dis-
tributions thereof depending only on the interval’s length. More strik-
ingly, these increments must have the Poisson probability distribution
with mean equal to the interval’s length, that is,

P(N(t0 + t)−N(t0) = k) = e−t · t
k

k!

for any t, t0 ≥ 0 and k = 0,1,2, . . . .
Armed with this information, we can now easily complete calcula-

tions of the mean and the autocorrelation function of the switching
signal:

μX(t) = EX(t) = EX(0) · E(−1)N(t) = 0,

and, for t < s,

γX(t, s) = E[X(t)X(s)] = EX2(0) · E[(−1)N(t)(−1)N(s)]

= 1 · E[(−1)2N(t)(−1)N(s)−N(t)]

= E(−1)N(s)−N(t)

=
∞∑
k=0

(−1)k · e
−(s−t)(s − t)k

k!
= e−2(s−t).

Therefore, the random switching signal X(t) is stationary and, because
of the symmetry property of all autocorrelation functions, its autocor-
relation function

γX(t) = e−2|t|.

27 See, for example, O. Kallenberg, Foundations of Modern Probability ,
Springer-Verlag, New York, 1997.
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Example 4.1.6 (solution of a stochastic difference equation). Consider
a stochastic difference equation

X(n) = αX(n− 1)+ βW(n), n = −2,−1,0,1,2, . . . ,

where W(n) is a discrete-time white noise with σ 2
W = 1. Observe that

the above system, rewritten in the form

X(n)−X(n− 1)
Δn

= (α− 1)X(n− 1)+βW(n), n = −2,−1,0,1,2, . . . ,

can be viewed as a discrete-time version of the stochastic differential
equation

dX(t) = (α− 1)X(t)dt + βW(t)dt,
where W(t) represents the continuous-time version of the white noise
to be discussed in later chapters.

The solution of the above stochastic difference equation can be
found by recursion. Therefore,

X(n) = α(αX(n− 2)+ βW(n− 1))+ βW(n)
= α2X(n− 2)+αβW(n− 1)+ βW(n)

= · · · = αlX(n− l)+
l−1∑
k=0

αkβW(n− k).

for any l = 1,2, . . . . Assuming that |α| < 1 and that X(n − k) remain
bounded, the first term αkX(n−k)→ 0 as k→∞. In that case, the sec-
ond term converges to the infinite sum and the solution is of the form

X(n) = β
∞∑
k=0

αkW(n− k).

This is the special form of the general moving average signal appearing
in Problem 4.3.4, with the windowing sequence

ck =
{
βαk for k = 0,1,2, . . . ;
0 for k = −1,−2, . . . .

Hence its autocorrelation function is

γX(n) =
∞∑

k=−∞
ckcn+k = β2

∞∑
k=0

αkαn+k = β2 αn

1−α2
.

Example 4.1.7 (using moving averages to filter noise out of a signal).
Consider a signal of the form
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Fig. 4.1.6. Top: Signal X(n) from Example 4.1.7 containing a nonrandom har-
monic component plus a random white noise. Bottom: The same signal after
a smoothing, moving average operation filtered out some of the white noise.
The figure shows values of both signals for times n = 1,2, . . . ,1000.

X(n) = sin(0.02n)+W(n),

where W(n) is the white noise considered in Example 4.1.3 (shown in
Figure 4.1.2), and let Y(n) be a moving average (discrete-time convolu-
tion) of signal X(n) with the windowing sequence b0 = b1 = b2 = b3 =
b4 = 1

5 , that is,

Y(n) = 1
5
X(n)+ 1

5
X(n− 1)+ 1

5
X(n− 2)+ 1

5
X(n− 3)+ 1

5
X(n− 4).

The values of both signals, X(n) and Y(n), for time instants n =
1,2, . . . ,1000, are shown in Figure 4.1.6. Clearly, the moving average
operation filtered some of the white noise out of the original signal and
the transformed signal appears smoother.
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4.2 Estimating the mean and the autocorrelation function,
ergodic signals

If one can obtain multiple independent samples of the same random
stationary signal, then the estimation of its parameters, the mean value
and the autocorrelation function, can be based on procedures described
in Section 3.6. However, very often the only available information is
a single but perhaps long (timewise) sample of the signal; think here
about the historical temperature records at a given location, Dow Jones
stock market index daily quotations over the past 10 years, or measure-
ments of the sunspot activity over a period of time; these measurements
cannot be independently repeated. Estimation of the mean and the au-
tocorrelation function of a stationary signal X(t) based on its single
sample is a delicate matter because the standard law of large numbers
and the central limit theorem cannot be applied. So one has to proceed
with caution, as we now illustrate.

Estimation of the mean μX . If a stationary signal X(t) is sampled with
the sampling interval T , that is, the known values are

X(0),X(T),X(2T), . . . , X(NT), . . . ,

then the obvious candidate for an estimator μ̂X of the signal’s mean
μX is

μ̂X(N) = 1
N

N−1∑
i=0

X(iT).

This estimator is easily seen to be unbiased as

E[μ̂X(N)] = 1
N

N−1∑
i=0

E[X(iT)] = μX. (4.2.1)

To check whether the estimator μ̂X(N) converges to μX as the observa-
tion interval NT → ∞, that is, to check the estimator’s consistency, we
will take a look at the mean-square distance (estimation error) between
μ̂X(N) and μX or, equivalently, the variance of their difference:

σ 2(μ̂X(N)) = E[(μ̂X − μX)2]

= 1
N2

E

⎡
⎣N−1∑
i=0

(X(iT)− μX)
N−1∑
k=0

(X(kT)− μX)
⎤
⎦

= 1
N2

N−1∑
i=0

N−1∑
k=0

γX(iT , kT) = 1
N2

N−1∑
i=0

N−1∑
k=0

γC((i− k)T)

= σ 2
X
N
+ 2
N

N−1∑
k=0

(
1− k

N

)
γX(kT). (4.2.2)
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So the error of replacing the true value μX by the estimator μ̂X will
converge to zero, as N → ∞, only if the sum in (4.2.2) increases more
slowly28 than N , i.e.,

N−1∑
k=0

(
1− k

N

)
γX(kT) = o(N) as N →∞. (4.2.3)

Thus, for example, if the covariance function γX(n) vanishes outside
a finite interval, as was the case for finite moving averages in Exam-
ple 4.1.2, then μ̂X is a consistent estimator for μX .

Example 4.2.1 (consistency of μ̂X for solutions of discrete-time sto-
chastic difference equations). Consider the solution X(n) of the
stochastic difference equation from Example 4.1.6. Its autocorrelation
function was found to be of the form

γX(n) = β2 αn

1−α2
, |α| < 1.

Since it decays exponentially as n → ∞, the sum in (4.2.2) converges
and condition (4.2.3) is satisfied. The mean-square error of replacing
μX by the estimator μ̂X can now be controlled:

σ 2(μ̂X(N)) = E[(μ̂X − μX)2]

= γX(0)
N

+ 2
N

N−1∑
k=0

(
1− k

N

)
β2 αk

1−α2

≤ β2

N(1−α2)

⎛
⎝1+ 2

N−1∑
k=0

αk
⎞
⎠ ≤ β2(3−α)

N(1−α2)(1−α).

Estimation of the covariance function γX(n). For simplicity’s sake as-
sume that μX = 0, the sampling interval T = 1, the signal is real-valued,
and that observations X(0), . . . , X(N) are given. The natural candidate
for an estimator of the autocorrelation function γX(n) = EX(0)X(n) is
the time average:

γ̂X(n;N) = 1
N −n

N−n−1∑
k=0

X(k)X(k+n). (4.2.4)

It is an unbiased estimator since

E[γ̂X(n,N)] = 1
N −nE

⎡
⎣N−n−1∑

k=0

X(k)X(k+n)
⎤
⎦

28 Here we use Landau’s asymptotic notation: we write that f(x) = o(g(x)),
as x → x0, and say that f(x) is little “oh” of g(x) at x0, if limx→x0

f(x)
g(x) = 0.
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= 1
N −n

N−n−1∑
k=0

γX(n) = γX(n).

One can also prove that if γX(n)→ 0 sufficiently fast,29 as n→∞, and
if γX(0) = σ 2

X < ∞, then the mean-square distance from γ̂X(n;N) to
γX(n) decreases to 0 as N →∞. In other words, the estimator (4.2.4) is
consistent.

Example 4.2.2. Figure 4.2.1 shows two samples of the central channel
recording for a full-term neonate EEG (see Figure 4.1.1 for a sample of
the full 21-channel EEG). The duration of each of the samples is three
minutes. The data in the top picture were recorded during the active
sleep stage, and in the bottom picture during the quiet sleep stage. The
estimated autocorrelation functions (ACFs) for both signals were then
calculated using formula (4.2.4), and are shown in Figure 4.2.2. The
example is taken from A. Piryatinska’s Ph.D. dissertation (Department
of Statistics, Case Western Reserve University, Cleveland, 2004), men-
tioned already in Section 4.1. Note that the ACF of the active sleep signal
decays much more slowly than the ACF of the quiet sleep, indicating
the longer-range dependence structure of the former. Information on
the rate of decay in EEG ACFs can then be used to automatically clas-
sify stationary segments of the EEG signals as those corresponding to
different sleep stages recognized by pediatric neurologists.

Remark 4.2.1 (ergodicity). If the estimator μ̂X is unbiased and consis-
tent, that is,

Eμ̂X(N) = μX and σ 2(μ̂X(N))→ 0,

as N → ∞, then one often says that the signal is ergodic in the mean.
Note that, in general, this does not imply that for every sample path of
the random signal the estimator converges to the estimated parameter.
To guarantee that, for a general test function g, the time averages

g(X(1))+ g(X(2))+ · · · + g(X(N))
N

converge to Eg(X(1)) as N → ∞, for (almost) every sample path of the
random signal, stronger ergodicity and stricter stationarity assump-
tions are needed. A more detailed analysis of the ergodic behavior
of stationary time series can be found in the above-quoted books by
M. Denker and W. A. Woyczyński and by P. J. Brockwell and R. A. Davis.

29 For a thorough exposition of these issues, see, for example, P. J. Brockwell
and R. A. Davis, Time Series: Theory and Methods, Springer-Verlag, New
York, 1991.
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Fig. 4.2.1. Top: Three-minute recording of the central channel EEG for an infant
in a quiet sleep stage. Bottom: Analogous recording for an active sleep stage.
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Fig. 4.2.2. Left : Estimated autocorrelation function (ACF) for the quiet sleep
EEG signal from Figure 4.2.1. Right : Analogous estimated ACF for the active
sleep stage.
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Remark 4.2.2 (confidence intervals). Under fairly weak assumptions one
can show that the asymptotic distributions (N → ∞) of the suitably
rescaled estimators μ̂X(N), γ̂X(n;N) are asymptotically normal. Thus
the confidence intervals for them can be constructed following the ideas
discussed in Section 3.6.

4.3 Problems and exercises

4.3.1. Consider a random signal

X(t) = A1 cos 2πf0(t +Θ1)+ · · · +An cos 2π(nf0)(t +Θn),

where A1,Θ1, . . . , An,Θn are independent random variables and
Θ1, . . . ,Θn are uniformly distributed on the time interval [0, P =
1
f0
]. Is this signal stationary? Find its mean, autocovariance, and

autocorrelation functions.
4.3.2. Consider a random signal

X(t) = A1 cos 2πf0(t +Θ0),

where A1,Θ0, are independent random variables, and Θ0 is uni-
formly distributed on the time interval [0, P3 = 1

3f0
]. Is this signal

stationary? Find its mean, autocovariance, and autocorrelation
functions.

4.3.3. Find the mean and autocorrelation functions of the discrete-time
signal

Y(n) = 3W(n)+ 2W(n− 1)−W(n− 2),

whereW(n),n = . . . ,−2,−1,0,1,2, . . . , is the discrete-time white
noise with σ 2

W = 4, that is,

EW(n) = 0

and

E(W(k)W(n)) = 4δ(n− k) =
{

4 if n− k = 0;

0 if n− k ≠ 0.

Use the calculations with the Kronecker δ explicitly.
4.3.4. Consider a general moving average signal

X(n) =
∞∑

k=−∞
ckWn−k,

where ck is a “windowing” sequence such that
∑
k |ck|2 <∞, and

W(n) is the standard white noise signal with γW(n) = δ(n).
Show that the covariance function is
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γX(n) =
∞∑

k=−∞
ckcn+k.

Use the calculations with the Kronecker δ explicitly. Apply this
formula to verify the solution to Problem 4.3.3.

4.3.5. Simulation of white noise with an arbitrary probability distribu-
tion. Formula (3.1.11), FY (y) = FX(g−1(y)), describes the c.d.f.
FY (y) of the random quantity Y = g(X) in terms of the c.d.f.
FX(x) of the random quantity X and the function g(x). It also
permits construction of an algorithm to produce random sam-
ples from any given probability distribution provided a random
sample uniformly distributed on the interval [0,1] is given. The
latter can be obtained by using the random number generator in
any computing platform; see Problem 1.4.15.

Let U be a uniformly distributed on [0,1] random quantity
U with the c.d.f.

FU(u) = u, 0 ≤ u ≤ 1, (4.3.1)

Then for a given c.d.f. FZ(z), the random quantity Z = F−1
Z (U),

where F−1
Z (u) is the function inverse to FZ(z) (that is, a solution

of the equation u = FZ(F−1
Z (u))), has the c.d.f. FZ(z). Indeed, a

simple calculation using (4.3.1) shows that

P(F−1
Z (U) ≤ z) = P(U ≤ FZ(z)) = FZ(z)

because 0 ≤ FZ(z) ≤ 1. So, for example, if the desired c.d.f. is
exponential, with FZ(z) = 1− e−z, z ≥ 0, then F−1

Z (u) = − ln(1−
u), 0 ≤ u ≤ 1, and the random quantity Z = − ln(1−U) has the
above exponential c.d.f.

The general simulation algorithm is thus as follows:
(i) Choose the sample size N , and produce a random sample,

u1, u2, . . . , uN , uniformly distributed on [0,1].
(ii) Calculate the inverse function F−1

Z (u).
(iii) Substitute the random sample, u1, u2, . . . , uN , into F−1

Z (u)
to obtain the random sample

z1 = F−1
Z (u1), z2 = F−1

Z (u2), . . . , zN = F−1
Z (uN),

which has the desired c.d.f. FZ(z).
Use the above algorithm and Problem 1.4.15 to produce and
plot examples of the white noise W(n) with (a) the double ex-

ponential p.d.f. fW(w) = e−|w|
2 and (b) the Cauchy p.d.f. fW(w) =

(π(1 + w2))−1. Start with a calculation of the corresponding
c.d.f.s. Check the result graphically by plotting the histograms
of the random samples against the theoretical p.d.f.s.
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4.3.6. Simulations of stationary random signals. Using the algorithm
from Problem 4.3.5, repeat simulations shown in Figures 4.1.2,
4.1.3, and 4.1.6, but replacing the uniformly distributed white
noise by (a) a double exponentially distributed white noise and
(b) a “white noise” with the Cauchy distribution. Experiment with
these simulations by including parameters in the above p.d.f.s,
and changing the length of the produced discrete-time random
signals.

4.3.7. Using the procedures described in Section 4.2, estimate the
means and the autocorrelation functions (ACF) for sample sig-
nals obtained in simulation in Problem 4.3.6(a). Then compare
graphically the estimated and the theoretical ACFs.

Note. Cauchy random quantities have an infinite variance (check!—
cf. Problem 3.7.20), so the correlational definition of the discrete-time
white noise is not applicable for them. In such cases, by a discrete-
time white noise W(n), . . . ,−2,−1,0,1,2, . . . , we simply mean a se-
quence of independent, identically and symmetrically distributed (i.e.,
W(n) ∼ −W(n)) random quantities. No moment requirements are
made. On the other hand, such a sequence always forms a strictly sta-
tionary random signal; cf. (3.3.24) and Problem 3.7.28.




