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Random Quantities and Random Vectors

By definition, values of random signals at a given sampling time are ran-
dom quantities which can be distributed over a certain range of values.
The tools for the precise, quantitative description of those distributions
are provided by the classical probability theory . However natural, its
development has to be handled with care since the overly heuristic ap-
proach can easily lead to apparent paradoxes.10 But the basic intuitive
idea that for independently repeated experiments, probabilities of their
particular outcomes correspond to their relative frequencies of appear-
ance, is correct. Although the concept of probability is more elementary
than the concept of cumulative probability distribution functions, we
assume that the reader is familiar with the former at the high school
level, and start our exposition with the latter, which not only applies
universally to all types of data, both discrete and continuous, but also
gives us a tool to immediately introduce the probability calculus ideas,
including the physically appealing probability density function.

Think here about an electrical engineer whose responsibility is to
monitor the voltage on the electrical outlets in the university’s circuits
laboratory. The record of a month’s worth of daily readings on a very
sensitive voltmeter may look as follows:

109.779, 109.37, 110.733, 109.762, 110.364, 110.73,
109.906, 110.378, 109.132, 111.137, 109.365, 108.968,
111.275, 110.806, 110.99, 111.522, 110.728, 109.689,
111.163, 107.22, 109.661, 108.933, 111.057, 111.055,
112.392, 109.55, 111.042, 110.679, 111.431, 112.06.

Surprisingly, the voltage varies from day to day and this variability is
visualized in Figure 3.0.1.

In the presence of such uncertainty he may want to get a better idea
of how the voltage values are distributed within its range and he is

10 See, e.g., Problem 3.7.25.
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Fig. 3.0.1. Variability of daily voltage readings on an electrical outlet.

Fig. 3.0.2. The histogram of daily voltage readings on an electrical outlet.

likely to visualize this information in the form of a histogram shown in
Figure 3.0.2.

In this chapter, we will discuss analytical tools for the study of such
random quantities. The discrete and continuous random quantities are
introduced, but we also show that, in the presence of fractal phenom-
ena, the above classification is not exhaustive.

3.1 Discrete, continuous, and singular random quantities

For the purposes of this book, random quantities (also called random
variables in the literature), denoted by capital letters X, Y , etc., will
symbolize measurements of experiments with uncertain outcomes. A
random quantity X will be fully characterized by its probability distri-
bution PX , which, for any numbers a < b, assigns the probability



3.1 Discrete, continuous, and singular random quantities 49

PX(a, b] = P(a < X ≤ b) = P(X ∈ (a, b])
that X takes values in the interval (a, b]. It is customary to assume that
the probability measure PX is normalized , that is,

PX(−∞,+∞) = P(−∞ < X < +∞) = 1, (3.1.1)

and it is natural to demand that, if a < b < c, than

P(a < X ≤ c) = P(a < X ≤ b)+ P(b < X ≤ b). (3.1.2)

This fundamental property of probabilities, called additivity , can be
extended from disjoint intervals to more general disjoint11 sets A and
B, yielding the formula

P(X ∈ A∪ B) = P(X ∈ A)+ P(X ∈ B).
In other words, probability measure behaves like the area measure of
planar sets.

Equivalently, one can completely characterize the probability distri-
bution P of X by its cumulative distribution function (c.d.f.)

FX(x) := P(X ≤ x),
which gives the probability that the outcomes of experiment X do not
exceed number x. Note that, in a sense, c.d.f. FX(x), which depends
only on one variable x, is a simpler object than the probability distri-
bution PX(a, b], which depends on two. Properties (3.1.1)–(3.1.2) of P
immediately imply the normalization and monotonicity of FX ,

FX(−∞) = 0, x < y ⇒ FX(x) ≤ FX(y), FX(+∞) = 1, (3.1.3)

and the formula recovering P from FX :

P(a < X ≤ b) = FX(b)− FX(a). (3.1.4)

Discrete probability distributions. A random quantity X with a dis-
crete probability distribution takes on only (finitely or infinitely many)
discrete values, say, x1, x2, . . . , so that

P(X = xi) = pi, i = 1,2, . . . , 0 < pi < 1,
∑
pi = 1. (3.1.5)

In the discrete case, the c.d.f.

FX(x) =
∞∑
i=1

piu(x − xi), (3.1.6)

where u(x) is the unit step function. In other words, the c.d.f. has
jumps of size pi at locations xi, and is constant at other points of the
real line.
11 Recall that sets A and B are called disjoint if their intersection is the empty

set, i.e., A∩ B = ∅.
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Example 3.1.1 (Bernoulli distribution). In this case the values ofX, that
is the outcomes of the experiment, are assumed to be either 1 or 0 (think
about it as a model of an experiment in which “success” or “failure” are
the only possible outcomes), with P(X = 1) = p > 0, P(X = 0) = q > 0,
with p,q satisfying condition p + q = 1. The c.d.f. of the Bernoulli
random quantity is

FX(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x < 0;

q = 1− p for 0 ≤ x < 1;

1 for 1 ≤ x.
The Bernoulli family of distributions has one parameter p which must
be a number between 0 and 1. Then q = 1− p.

Fig. 3.1.1. Cumulative distribution function FX(x) of a Bernoulli random quan-
tity X with parameter p = 0.4 has a jump of size q = 1 − 0.4 = 0.6 at x = 0
and a jump of size p = 0.4 at x = 1.

Example 3.1.2 (binomial distribution). The binomial random quantity
X can take values 0,1, . . . , n, with corresponding probabilities

pk = P(X = k) =
(
n
k

)
pk(1− p)n−k, k = 0,1,2, . . . , n,

where the binomial coefficient is defined by(
n
k

)
= n!
k!(n− k)! .

Recall, that the name “binomial coefficient” comes from the elementary
binomial formula
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(a+ b)n =
n∑
k=0

(
n
k

)
akbn−k,

familiar in the special cases:

(a+ b)2 = a2 + 2ab + b2,

(a+ b)3 = a3 + 3a2b + 3ab2 + b3,

and so on.

Fig. 3.1.2. Cumulative distribution function FX(x) of a binomial random quan-
tity X with parameters p = 0.5 and n = 5.

Probabilities pk = pk(n,p) in the binomial probability distribution
are probabilities that exactly k “successes” occur in n independent12

Bernoulli experiments in each of which the probability of “success” is p.
The normalization condition

∑
k pk = 1 (3.1.5) is here satisfied be-

cause, in view of the above-mentioned binomial formula,

1 = (p + q)n =
n∑
k=0

(
n
k

)
pk(1− p)n−k.

The binomial family of distributions has two parameters: p, which must
be between 0 and 1, and n, which can be an arbitrary positive integer.

Example 3.1.3 (Poisson distribution). The values of a Poisson random
quantity X can be arbitrary nonnegative integers 0,1,2, . . . , and their
probabilities are defined by the formula

12 A rigorous definition of the concept of independence of random quantities
will be discussed later on in this chapter.
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pk = P(X = k) = e−μ μ
k

k!
, k = 0,1,2, . . . .

The normalization condition
∑
k pk = 1 is satisfied in this case because

of the power series expansion for the exponential function:

∞∑
k=0

e−μ
μk

k!
= e−μ

∞∑
k=0

μk

k!
= e−μeμ = 1.

The family of Poisson distributions has one parameter μ > 0. Pois-
son random quantities are often used as models of numbers of arrivals
of “customers” in queuing systems (an Internet website, a line at the
checkout counter, etc.) within a given time interval.

Continuous distributions. A random quantity X is said to have a con-
tinuous probability distribution13 if its c.d.f. FX(x) can be written as an
integral of a certain nonnegative function fX(x) which traditionally is
called the probability density function (p.d.f.) of X, that is,

FX(x) = P(X ≤ x) =
∫ x
−∞
fX(z)dz. (3.1.7)

Then, of course, the probability of the random quantity to assume val-
ues between a and b is just the integral of the p.d.f. over the inter-
val [a, b]; see Figure 3.1.3, where fX(x) was selected to be 3

5
√
π e

−x2 +
2

5
√
π e

−(x−2)2 . Note that in the continuous case it does not matter
whether the interval between a and b is open or closed. Thus we have

P(a < X ≤ b) = FX(b)− FX(a) =
∫ b
a
fX(z)dz. (3.1.8)

Also, necessarily, we have the normalization condition

∫∞
−∞
fX(x)dx = 1, (3.1.9)

and, in view of (3.1.7), and the fundamental theorem of calculus, we
can obtain the p.d.f. fX(x) by differentiation of the c.d.f. FX(x):
13 Strictly speaking, c.d.f.s that admit the integral representation (3.1.7), that

is, have densities, are called absolutely continuous distributions as there ex-
ist continuous c.d.f.s which do not admit this integral representation; see
an example of a singular c.d.f. later in this section and, e.g., M. Denker
and W. A. Woyczyński, Introductory Statistics and Random Phenomena: Un-
certainty, Complexity, and Chaotic Behavior in Engineering and Science,
Birkhäuser Boston, Cambridge, MA, 1998.
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Fig. 3.1.3. The shaded area under fX(x), and above the interval [−1,2] is equal
to the probability that a random quantity X with p.d.f. fX(x) takes values in
the interval [−1,2].

d
dx

FX(x) = fX(x).

Example 3.1.4 (uniform distribution). The density of a uniformly dis-
tributed random quantity X is defined to be a positive constant within a
certain interval, say [c, d], and zero outside this interval. Thus, because
of the normalization condition (3.1.9),

fX(x) =
{
(d− c)−1 for c ≤ x ≤ d;

0 elsewhere.

The family of uniform densities is parametrized by two parameters c
and d, with c < d.

The c.d.f. of a uniform random quantity is

FX(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 for x < c;
x−c
d−c for c ≤ x ≤ d;

1 for d ≤ x.

Example 3.1.5 (exponential distribution). An exponentially distributed
random quantity X has the density of the form

fX(x) =
⎧⎨
⎩0 for x < 0;
e−x/μ
μ for x ≥ 0.
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Fig. 3.1.4. Top: Probability density function (p.d.f) fX(x) for a random quantity
with values uniformly distributed over the interval [0,1]. Bottom: C.d.f. FX(x)
for the same random quantity.

There is one parameter, μ > 0. The c.d.f. in this case is easily com-
putable:

FX(x) =
{

0 for x < 0;

1− e−x/μ for x ≥ 0.

An exponential p.d.f. and the corresponding c.d.f. are pictured in Fig-
ure 3.1.3.

Exponential p.d.f.s often appear in applications as probability dis-
tributions of random waiting times between Poisson events discussed
earlier in this section. For example, under certain simplifying assump-
tions, it can be proven that the time intervals between consecutive hits
of a website have an exponential probability distribution. For this rea-
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Fig. 3.1.5. Top: Probability density function (p.d.f.) fX(x) of an exponentially
distributed random quantity with parameter μ = 1. Bottom: Cumulative dis-
tribution function (c.d.f.) FX(x) for the same random quantity.

son, exponential p.d.f.s plays a crucial role in the analysis of Internet
traffic and other queuing networks.

Example 3.1.6 (Gaussian (normal) distribution). The density of a Gaus-
sian (also called normal) random quantity X is defined by the formula

fX(x) = 1√
2πσ

e−(x−μ)
2/2σ2

.

There are two parameters—μ, which is a real number, and σ > 0—
and this distribution is often called theN(μ,σ 2) p.d.f. (N for “normal”).
The Gaussian c.d.f. is of the form (see Figure 3.1.4)

FX(x) =
∫ x
−∞

1√
2πσ

e−(z−μ)
2/2σ2

dz,
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Fig. 3.1.6. Top: Probability density function (p.d.f.) fX(x) for a Gaussian ran-
dom quantity with parameters μ = 0, σ = 1. Bottom: Cumulative distribution
function (c.d.f.) FX(x) for the same random quantity.

but, unfortunately, the integral cannot be expressed in terms of the el-
ementary functions of the variable x. Thus the values of this c.d.f., and
the probabilities of a Gaussian random quantity taking values within a
given interval, have to be evaluated numerically, using tables (provided
at the end of this chapter), or mathematical software such as Matlab,
MAPLE, or Mathematica; see the continuation of Example 3.1.6 below.

However, the normalization condition for the Gaussian p.d.f. can be
verified directly analytically by a clever trick that replaces the square
of the integral by a double integral which is then evaluated in polar
coordinates r , θ. We carry out this calculation in the special case μ = 0,
σ 2 = 1: (∫∞

−∞
fX(x)dx

)2

=
∫∞
−∞
fX(x)dx ·

∫∞
−∞
fX(y)dy
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=
∫∞
−∞

∫∞
−∞
fX(x) · fX(y)dxdy

= 1
2π

∫∞
−∞

∫∞
−∞
e−x

2−y2/2dxdy

= 1
2π

∫ 2π

0

∫∞
0
e−r

2/2rdrdθ = 1.

Example 3.1.7 (calculations ofN(0, 1) probabilities). The values of the
Gaussian N(0,1) cumulative distribution, traditionally denoted Φ(x),
are tabulated at the end of this chapter. They are listed only for positive
values of variable x, because, in view of the symmetry of the N(0,1)
density, we have

Φ(−x) = 1− Φ(x).
Thus

P(−1.53 < X < 2.11) = Φ(2.11)− Φ(−1.53) = Φ(2.11)− (1− Φ(1.53))
≈ 0.9826− (1− 0.9370) = 0.9196.

Remark. The fundamental importance of the Gaussian probability dis-
tribution stems from the central limit theorem (see Section 3.5), which
asserts that for a large number of independent repetitions of experi-
ments with random outcomes, the fluctuations (errors) of the outcomes
around their mean value have, approximately, a Gaussian p.d.f.

Mixed and singular distributions. A random quantity is said to have a
c.d.f. of mixed type if it has both discrete and continuous components.
The c.d.f. thus has both discrete jumps, perhaps infinitely many, as well
as points of continuous increase where its derivative is well defined. For
example, the c.d.f.

FX(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 for x < −1;
x
6 + 2

6 for −1 ≤ x < 0;
x
6 + 4

6 for 0 ≤ x < 1;

1 for 1 ≤ x,

(3.1.10)

represents a random quantitiy X which is uniformly distributed on the
interval [−1,1] with probability 1

3 , but also takes the discrete values
−1,0,1, with positive probabilites equal to the jump sizes of the c.d.f
at those points. Thus, for example,

P
(
−1

2
< X ≤ 1

2

)
= FX

(
1
2

)
− FX

(
−1

2

)
=
(

1
12
+ 4

6

)
−
(
− 1

12
+ 2

6

)
= 1

2
,

and

P(X = 0) = lim
ε→0

P(−ε < X ≤ ε) = lim
ε→0
(FX(ε)− FX(−ε))
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Fig. 3.1.7. Cumulative distribution function (c.d.f.) FX(x) of mixed type de-
scribed by formula (3.1.10). This distribution has both discrete and continuous
components.

= lim
ε→0

[(
ε
6
+ 4

6

)
−
(
−ε

6
+ 2

6

)]
= 1

3
.

Similarly,

P(X = −1) = 1
6
, P(X = 0) = 2

6
, P(X = 1) = 1

6
.

Remark. The reader will notice that the example of a p.d.f. which ap-
peared in Figure 3.1.3 is a mixture of two Gaussian p.d.f.s.

It is tempting to venture a guess that all c.d.f.s have to be either
discrete, continuous, or of mixed type. This, however, is not the case.

The limit of the so-called “devil’s staircase” c.d.f.s shown in Fig-
ure 3.1.8 is an example of a c.d.f. which, although continuous, does
not have a p.d.f.

Observe that inside the interval [0,1] its derivative is 0 on the union
of the infinite family of disjoint intervals whose lengths add up to 1.
Indeed, as is clear from the construction displayed in Figure 3.1.8, this
set has the linear measure

lim
n→∞

(
1
3
+ 2 · 1

32
+ · · · + 22 · 1

3n

)
= 1

3

∞∑
i=0

(
2
3

)i
= 1

3
· 1

1− 2
3

= 1,

in view of the formula for the sum of a geometric series. Thus inte-
gration of this derivative cannot possibly give a c.d.f. that grows from
0 to 1. Distributions of this type are called singular and they arise in
studies of fractal phenomena. One can prove that the set of points of
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Fig. 3.1.8. The construction of the singular “devil’s staircase” c.d.f. FX(x). It
continuously grows from 0 at x = 0 to 1 at x = 1, and yet it has no density;
its derivative is equal to 0 on disjoint intervals whose lengths add up to 1.

increase of the limit “devil’s staircase,” i.e., the set of points on which
the probability is concentrated, has a fractional dimension equal to
ln 2
ln 3 = 0.6309 . . . .14

Distributions of functions of random quantities. One often measures
random quantities through devices that distort the original quantity
X to produce a new random quantity, say, Y = g(X), and the natural
question is how the c.d.f. FX(x) of X is affected by such a transforma-
tion. In other words, the question is: Can FY (y) be expressed in terms
of g and FX(x)? In the case when the transforming function g(x) is
monotonically increasing the answer is simple:

Fg(X)(y) = P(g(X) ≤ y) = P(X ≤ g−1(y)) = FX(g−1(y)), (3.1.11)

where g−1(y) is the inverse function of g(x), that is g−1(g(x)) = x,
or, equivalently, if y = g(x) then x = g−1(y).

Remembering the chain rule of elementary calculus, and the formula
for the derivative of the inverse function g−1(y), we also immediately
obtain, in the case of monotonically increasing g(x), the expression of
the p.d.f. of Y = g(X) in terms of the p.d.f. of X itself :

14 See, for example, M. Denker and W. A. Woyczyński, Introductory Statistics
and Random Phenomena: Uncertainty, Complexity, and Chaotic Behavior in
Engineering and Science, Birkhäuser Boston, Cambridge, MA, 1998.
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fg(X)(y) = d
dy

FX(g−1(y)) = fX(g−1(y)) · 1
g′(g−1(y))

. (3.1.12)

Example 3.1.8 (linear transformation of a standard Gaussian random
quantity). A Gaussian random quantity X is called standard (orN(0,1))
if its p.d.f. is of the form

fX(x) = 1√
2π

e−x
2/2.

It is a special case of the general Gaussian p.d.f. introduced in Exam-
ple 3.1.6, with parameters μ and σ specified to be 0 and 1, respectively.
Consider now a new random quantity Y obtained from X by a linear
transformation

Y = aX + b, a > 0.

Think about this transformation as representing the change in units of
measurement and the choice of the origin (like changing the tempera-
ture measurements from degrees Celsius to Fahrenheit: if X represents
temperature measurements in degrees Celsius, then Y = 1.8 · X + 32
gives the same measurements in degrees Fahrenheit).

The transforming function in this case, y = g(x) = ax+b, is mono-
tonically increasing, and

g′(x) = a and g−1(y) = y − b
a

.

Formula (3.1.12) now gives the following expression for the p.d.f. of Y :

fY (y) = 1
√

2πe−((y−b)/a)
2/2 · 1

a
= 1√

2πa2
e−(y−b)

2/2a2
.

The conclusion is that the transformed random quantity Y also has a
Gaussian p.d.f., but with parameters μ = b and σ 2 = a2; in other words,
Y is N(b,a2)-distributed (in short, Y ∼ N(b,a2)).

Example 3.1.9 (calculation of general N(μ, σ2) probabilities). The re-
lationship established in Example 3.1.8 permits utilization of tables of
theN(0,1) distributions supplied at the end of this chapter to calculate
N(μ,σ 2) probabilities for arbitrary values of parameter μ and σ > 0.
Indeed, if a random quantity Y has the N(μ,σ 2) distribution, then it is
of the form

Y = σX + μ,
where X has the N(0,1) distribution, so that
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Fig. 3.1.9. Probability density functions ofN(0,1),N(0.5,0.25), andN(1,2.25)
random quantities (from left to right).

FY (y) = P(Y ≤ y) = P(σX + μ ≤ y)
= P

(
X ≤ y − μ

σ

)
= Φ

(
y − μ
σ

)
, (3.1.13)

and the values of the latter can be taken from the tables. For example,
if Y is Gaussian with parameters σ = 1.8 and μ = 32, then

P(30 < Y < 36) = Φ
(

36− 32
1.8

)
− Φ

(
30− 32

1.8

)

= Φ(2.22)− (1− Φ(−1.11))
≈ 0.9868− (1− 0.8665) = 0.8533.

In the next two examples we will consider the quadratic transfor-
mation Y = X2

2 corresponding to calculation of the (random) kinetic
energy15 Y of an object of unit mass m = 1, traveling with random
velocity X.

Example 3.1.10 (kinetic energy of a unit mass traveling with random,
exponentially distributed velocity). Suppose that the random quantity
X has an exponential c.d.f. and p.d.f. given in Example 3.1.5 with pa-
rameter μ = 1. It is transformed by a quadratic “device” g(x) = x2

2

into the random quantity Y = X2

2 . Note that the exponential p.d.f. is
concentrated on the positive half-line and that the transforming func-
tion g(x) is monotonically increasing in that domain. Then the c.d.f.
FY (y) = 0 for y ≤ 0, and for y > 0 we can repeat the argument from
formula (3.1.11) to obtain
15 Recall that an object of mass m traveling with velocity v has kinetic energy

E = mv2

2 .
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FY (y) = P(Y ≤ y) = P

(
X2

2
≤ y

)

= P
(
X ≤

√
2y

)
= FX

(√
2y

)
= 1− e−

√
2y.

Similarly, using (3.1.12), one gets the p.d.f. of X2

2 :

fY (y) = d
dy

FY (y) =
⎧⎨
⎩

0 for y ≤ 0;
e−
√

2y√
2y for y > 0.

Note that this p.d.f. has a singularity at the origin; indeed, fY (y) ↑ +∞
as y ↓ 0+. Observe, however, that the singularity does not affect the
p.d.f. normalization condition

∫∞
−∞ fY (y)dy = 1.

If the transforming function y = g(x) is not monotonically increas-
ing (or decreasing; see Problem 3.7.26 and Sections 8.1–8.2) over the
range of the random quantity X (as, for example, g(x) = x2 in the case
when X takes both positive and negative values), then a more subtle
analysis is required to find the p.d.f. of the random quantity Y = g(X).
Example 3.1.11 (square of a standard Gaussian random quantity). As-
sume thatX has the standardN(0,1) Gaussian p.d.f. and that the trans-
forming function is quadratic: y = g(x) = x2. The quadratic function
is monotonically increasing only over the positive half-line; it is mono-
tonically decreasing over the negative half-line. So, we have to proceed
with caution, and start with the analysis of the c.d.f. of Y = X2 by taking
advantage of the symmetry of the Gaussian p.d.f.:

FY (y) = P(Y ≤ y) = P(X2 ≤ y)
= 2P(0 ≤ X ≤ √y) = 2

(
FX(

√
y)− 1

2

)
.

The above formula, obviously, is valid only for y > 0; on the negative
half-line the c.d.f. vanishes. Thus the p.d.f. of Y = X2 is

fY (y) = d
dy

FY (y) =
⎧⎨
⎩

0 for y ≤ 0;
e−y/2√

2πy for y > 0.

This p.d.f. is traditionally called the chi-square probability density func-
tion. We’ll see its importance in Section 3.6, where it plays the central
role in the statistical parameter estimation problems.

3.2 Expectations and moments of random quantities

The expected value, or, in brief, the expectation of a random quantity X
is its mean value (or, for a physics-minded reader, the center of the
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probability mass) with different values of X given weights equal to
their probabilities. The expectation of X will be denoted EX, or E(X),
whichever is more convenient. So for a discrete random quantityX with
P(X = xi) = pi,

∑
i pi = 1, we have

EX =
∑
i
xipi, (3.2.1)

and for an (absolutely) continuous random quantity with probability
density fX(x)

EX =
∫∞
−∞
xfX(x)dx. (3.2.2)

More generally, one can consider the expectation of a function g(X)
of a random quantity X, which is defined by the formulas

E[g(X)] =
{∑

i g(xi)pi in the discrete case;∫∞
−∞ g(x)fX(x)dx in the continuous case.

(3.2.3)

In particular, if g(x) = xk, k = 1,2, . . . , then the numbers

μk(X) = Eg(X) = EXk =
{∑

i xki pi in the discrete case;∫∞
−∞ xkfX(x)dx in the continuous case

(3.2.4)
are called kth moments of X. The first moment μ1 = μ1(X) is just the
expectation of EX of the random quantity X.

If g(x) = |x|α, −∞ < α <∞, then

mk(X) = E|X|α

are calledαth absolute moments, and for g(x) = |x−μ1|α, the numbers

E|X − μ1|α = E|X − EX|α

are called αth central moments of X. The latter measure the mean
value of the αth power of the deviation of the random quantity X from
its expectation EX. In other words, they provide a family of parame-
ters which measure how the values of the random quantity are spread
around its “center of mass.” In the special case α = 2, the second
central moment

E(X − EX)2 =
{∑

i(xi − μ1)2pi in discrete case;∫∞
−∞(x − μ1)2fX(x)dx in continuous case

(3.2.5)

is called the variance of the random quantity X and denoted Var(X).
Again, for a physics-minded reader, it is worth noticing that the variance
is just the moment of inertia of the probability mass distribution. A
simple calculation gives the formula
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Var(X) = EX2 − (EX)2, (3.2.6)

which is sometimes simpler computationally than (3.2.5); the variance is
thus the difference between the second moment (sometimes also called
the mean square of a random quantity) and the square of the first mo-
ment. This rule is then often phrased as follows: Variance is equal to
the mean square minus the squared mean.

Example 3.2.1 (moments of the Bernoulli distribution). For the Ber-
noulli random quantity X, with distribution given in Example 3.1.1, all
the moments are

μk(X) = 1k · p + 0k · (1− p) = p,

and the variance is

Var(X) = (1− p)2p + (0− p)2(1− p) = p(1− p).

Example 3.2.2 (mean and variance of the uniform distribution). A uni-
formly distributed random quantity X (see Example 3.1.4) has expecta-
tion

EX =
∫ d
c
x

1
d− cdx =

d+ c
2

.

Its variance is

Var(X) =
∫ d
c

(
x − d+ c

2

)2 1
d− cdx =

(d− c)2
12

.

Notice that the expectation or expected value EX of a random quan-
tity X scales linearly , that is,

E(αX) = αE(X), −∞ < α <∞, (3.2.7)

so that the change of scale of the measurements affects the expectations
proportionally: if, for example, X is measured in meters, then EX is also
measured in meters. Indeed, in the continuous case,

E(αX) =
∫∞
−∞
(αx)fX(x)dx = α

∫∞
−∞
xfX(x)dx = αE(X),

and the discrete case can be verified in an analogous fashion.
On the other hand, the variance Var(X) has a quadratic scaling
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Var(αX) = α2 Var(X). (3.2.8)

This follows immediately from the linearity of the expectations (3.2.7)
and formula (3.2.6). Thus the mean-square deviation has a somewhat
unpleasant nonlinear property which implies that if X is measured, say,
in meters, then its variance is measured in meters squared.

For this reason, one often considers the standard deviation Std(X) of
a random quantityX which is defined as the square root of the variance:

Std(X) =
√

Var(X). (3.2.9)

The standard deviation scales linearly, at least for positive α, since

Std(αX) = |α| Std(X), −∞ < α <∞. (3.2.10)

This means that changing the measurement units affects the standard
deviation proportionately as well. If a random quantity is measured in
meters, then its standard deviation is also measured in meters.

Additionally, observe that the expectation is additive with respect to
constants, that is, for any constant β, −∞ < β <∞,

E(X + β) = E(X)+ β. (3.2.11)

The verification is again immediate and follows from the additivity
property of the integrals (or, in the discrete case, sums):

E(X + β) =
∫∞
−∞
(x + β)fX(x)dx

=
∫∞
−∞
xfX(x)dx +

∫∞
−∞
βfX(x)dx = E(X)+ β

because
∫∞
−∞ fX(x)dx = 1.

Finally, the variance is invariant under translations, that is, for any
constant β, −∞ < β <∞,

Var(X + β) = Var(X). (3.2.12)

Indeed,
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Var(X +β) = E((X +β)− E(X +β))2 = E(X +β− E(X)−β)2 = Var(X).

The above properties indicate that any random quantity X can be
standardized by first centering it and then rescaling it so that the stan-
dardized random quantity has expectation 0 and variance 1. Indeed, if

Z = X − EX
Std(X)

, (3.2.13)

then it immediately follows from (3.2.10)–(3.2.11) that EZ = 0 and
σ 2(Z) = 1.

Example 3.2.3 (mean and variance of the Gaussian distribution). Let
us begin with a random quantity X with the standard N(0,1) p.d.f. Its
expectation is

E(X) =
∫∞
−∞
x

1√
2π

e−x
2/2dx = 0

because the integrand is an odd function and is integrated over the in-
terval (−∞,∞) which is symmetric about the origin. Its variance is thus
just the second moment (mean square) of X, which can be evaluated
easily by integration by parts16

Var(X) =
∫∞
−∞
x2 1√

2π
e−x

2/2dx = 1√
2π

∫∞
−∞
x · (xe−x2/2)dx.

= 1√
2π

(
−x · e−x2/2

∣∣∣∞−∞ +
∫∞
−∞
e−x

2/2dx
)
= 1,

because limx→±∞ x · e−x2/2 = 0 and ( 1√
2π )

∫∞
−∞e−x

2/2dx = 1.
Now let us consider a general Gaussian random quantity Y with

N(μ,σ 2) p.d.f. In view of Example 3.1.8,

Y = σX + μ.

The above properties of the expectation and the variance ((3.2.7)–(3.2.8)
and (3.2.11)–(3.2.12)) immediately give

E(Y) = E(σX + μ) = σE(X)+ μ = μ

and
Var(Y) = Var(σX + μ) = Var(σX) = σ2 Var(X) = σ 2.

Thus the parameters μ and σ 2 in the Gaussian N(μ,σ 2) p.d.f. are, sim-
ply, its expectation and variance.

16 Recall the integration-by-parts formula:
∫
f(x)g′(x)dx = f(x)g(x) −∫

f ′(x)g(x)dx.
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3.3 Random vectors, conditional probabilities, statistical
independence, and correlations

A random vector X has components X1, X2, . . . , Xd, which are scalar
random quantities, that is,

X = (X1, X2, . . . , Xd),

where d is the dimension of the random vector and its statistical prop-
erties are completely determined by its joint c.d.f.

F(X1,...,Xd)(x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd).
For the sake of simplicity of notation, we shall consider first the

case of dimension d = 2, and we shall write X = (X, Y). In the discrete
case, for a random vector X taking discrete values x = (x,y), the joint
probability distribution is

P(X = x) = P(X = x,Y = y) = pX(x,y), (3.3.1)

and

∑
(x,y)

pX(x,y) = 1. (3.3.2)

Example 3.3.1 (a Bernoulli random vector). The random vector (X, Y)
takes values (0,0), (0,1), (1,0), (1,1), with the following joint probabil-
ities:

p(X,Y)(0,0) = (1− p)2, p(X,Y)(0,1) = p(1− p),
p(X,Y)(0,1) = (1− p)p, p(X,Y)(1,1) = p2.

It is easy to check that

1∑
x=0

1∑
y=0

p(X,Y)(x,y) = 1.

In the special case p = 1
2 all four possible values of this random vector

are taken with the same probability equal to 1
4 .

A continuous random vector is characterized by its joint p.d.f.
f(X,Y)(x,y), which is a nonnegative function of two variables x,y ,
such that ∫∞

−∞

∫∞
−∞
f(X,Y)(x,y)dxdy = 1. (3.3.3)

In this case, the probability that the random vector (X, Y) takes values
in a certain domain A of the 2D space is calculated by evaluating the
double integral of the joint p.d.f. over the domain A:
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P((X, Y) ∈ A) =
∫ ∫

A
f(X,Y)(x,y)dxdy. (3.3.4)

For example, if the domain A is a rectangle [a, b] × [c, d] = {(x,y) :
a ≤ x ≤ b, c ≤ y ≤ d}, then

P((X, Y) ∈ A) = P(a ≤ X ≤ b, c ≤ Y ≤ d) =
∫ b
a

∫ d
c
f(X,Y)(x,y)dydx.

(3.3.5)
If the domain B = {(x,y) : x2 + y2 ≤ R2} is a centered disk of radius
R, then

P((X, Y) ∈ B) = P(X2 + Y 2 ≤ R2) =
∫ R
−R

∫ √R2−x2

−√R2−x2
f(X,Y)(x,y)dydx.

(3.3.6)
The graph of a 2D joint p.d.f. is a surface over the (x,y)-plane such

that the volume underneath it is equal to 1; see (3.3.3).

Example 3.3.2 (a 2D Gaussian random vector). An example of the 2D
Gaussian joint p.d.f. is given by the formula

f(X,Y)(x,y) = 1
2πσxσy

exp

[
−(x − μx)

2

2σ 2
x

− (y − μy)
2

2σ 2
y

]
. (3.3.7)

where σx,σy > 0, and μx , μy are arbitrary real numbers. Figure 3.3.1
shows the plot of the surface representing a 2D Gaussian joint p.d.f. in
the case σx,σy = 1 and μx, μy = 0.

Calculation of the probabilities P(a ≤ X ≤ b, c ≤ Y ≤ d) is here
reduced to calculation of one-dimensional Gaussian probabilities since
the joint 2D density in this case is a product of two 1D Gaussian den-
sities, one depending only on x and the other on y ,17 and the double
integral splits into a product of two single integrals. To obtain numer-
ical values, tables of (or software for) 1D N(0,1) c.d.f. have to be used;
see Section 3.5.

In the special case of equal variances σ 2
x = σ 2

y = σ 2, the proba-
bility that the above Gaussian random vector takes values in a disk of
radius R centered at (μx, μy) can, however, be carried out explicitly by
calculation of the integral in polar coordinates (θ, r):

P((X − μx)2 + (Y − μy)2 ≤ R2)

=
∫ R
−R

∫ √R2−x2

−√R2−x2

1
2πσ 2

exp

[
−x

2 +y2

2σ 2

]
dydx

17 We will have more to say about joint p.d.f.s of this type in the next few
pages. The multiplicative property is equivalent to the concept of statistical
independence of components of a random vector.
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Fig. 3.3.1. Plot of the surface representing a 2D Gaussian joint p.d.f. (3.3.7) in
the case σx,σy = 1 and μx, μy = 0.

= 1
2πσ 2

∫ 2π

0

∫ R
0

exp

[
− r 2

2σ 2

]
rdrdθ

= 1
σ 2

[
−σ 2 exp

[
− r 2

2σ 2

]]R
0

= 1− e−R2/2σ2
.

Because the joint p.d.f. gives complete information about the ran-
dom vector (X, Y), it also yields complete information about the proba-
bility distributions of each of the component random quantities. These
distributions are called marginal distributions of the random vector. In
particular, for a discrete random vector, the marginal distribution of
the component X is

pX(x) =
∑
y
p(X,Y)(x,y). (3.3.8)

To find the probability of X taking a particular value x0 we simply need
to sum, over all possible ys, the probabilities of (X, Y) taking values
(x0, y). For a continuous random vector the marginal p.d.f. of the com-
ponent X is

fX(x) =
∫∞
−∞
f(X,Y)(x,y)dy. (3.3.9)

It is important to observe that the marginal distributions of com-
ponents of a random vector do not determine its joint distribution.
Indeed, the example provided below shows that it is quite possible for
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random vectors to have the same marginal probability distributions of
their components while their joint probability distributions are differ-
ent.

Example 3.3.3 (different random vectors with the same marginal prob-
ability distributions). A random vector (X, Y) has components X and
Y that take values 1,2,3 and 1,2, respectively. The joint probability
distribution of this random vector is given in Table 3.3.1.

Table 3.3.1.

Y\X 1 2 3 Y

1 5
24

4
24

3
24

6
12

2 5
24

4
24

3
24

6
12

X 5
12

4
12

3
12

∑ = 1

Thus, for example, P((X, Y) = (3,2)) = 3
24 . The last row in the

above table gives the marginal probability distribution for the compo-
nent X, and the last column, the marginal probability distribution for
the component Y .

Now consider another random vector (W,Z) with components W
and Z which also take values 1,2,3 and 1,2, respectively. The joint
distrbution of this random vector is given by Table 3.3.2.

Table 3.3.2.

Z\W 1 2 3 Z

1 1
12

2
12

3
12

6
12

2 4
12

2
12 0 6

12

W 5
12

4
12

3
12

∑ = 1

This time, P((X, Y) = (3,2)) = 0. The last row in the above table
gives the marginal probability distribution for the component W , and
the last column, the marginal probability distribution for the compo-
nent Z . The marginal probability distributions for vectors (X, Y) and
(W,Z) are the same, while their joint distributions are different.

Conditional probabilities. Knowledge of the joint p.d.f. permits us also
to introduce the concept of the conditional probability (in the discrete
case) and the conditional density (in the continuous case). Thus, the
conditional probability of the component X taking value x, given that
the second component Y took value y , is given by the formula
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pX|Y (x|y) ≡ P(X = x|Y = y) = P(X = x,Y = y)
P(Y = y) = p(X,Y)(x,y)

pY (y)
,

(3.3.10)

and the conditional probability density function of X given Y = y is
given by the formula

fX|Y (x|y) = f(X,Y)(x,y)
fY (y)

. (3.3.11)

In other words, conditional probability distributions are distributions
of values of one component of a random vector calculated under the
assumption that the value of the other component has already been
determined.

Conditional probabilities are bona fide probabilities, as they satisfy
the normalization property. Indeed, say, in the continuous case, for
each fixed y ,

∫∞
−∞
fX|Y (x|y)dx =

∫∞
−∞ f(X,Y)(x,y)dx

fY (y)
= fY (y)
fY (y)

= 1,

in view of formula (3.3.9), which calculates the marginal density from
the joint density.

If the component X of random vector (X, Y) takes on distinct values
x1, x2, . . . , xn, then the additive property of probabilities immediately
gives the following total probability formula:

P(Y = y) =
n∑
i=1

P(Y = y|X = xi) · P(X = xi).

Remark. Heuristically, one can think about conditional probabilities as
probabiilities obtained under additional constraints. Think here about
the probability of your running into a bear during a hike. If you are
hiking in the city park, the probability of the event may be only 0.0001;
in Yellowstone the similar conditional probability may be as high as
0.75. Now assume you participate, with 51 of your classmates, in a
raffle and the prize is a trip to Yellowstone; the consolation prize is a
group hike in the city park. The total probability of your running into
a bear would then be 0.0001 · 51

52 + 0.75 · 1
52 ≈ 0.015.

One of the corollaries of the total probability formula is the cele-
brated Bayes formula for reverse conditional probabilities which, loosely
speaking, computes the conditional probability of X, given Y , in terms
of the conditional probabilities of Y , given X:
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P(X = xi|Y = y) = P(Y = y|X = xi) · P(X = xi)∑n
i=1 P(Y = y|X = xi) · P(X = xi) .

Indeed,

P(X = xi|Y = y) = P(X = xi, Y = y)
P(Y = y) · P(X = xi)

P(X = xi)
= P(Y = y|X = xi) · P(X = xi)

P(Y = y) ,

and an application of the total probability formula immediately gives
the final result.

Example 3.3.4 (transmission of a binary signal in the presence of ran-
dom errors). A channel transmits binary symbols 0 and 1 with random
errors. The probability that the symbols 0 and 1 appear at the input of
the channel are, respectively, 0.45 amd 0.55. Because of transmission
errors, if the symbol 0 appears at the input, then the probability of it
being received as 0 at the output is 0.95. The analogous conditional
probability is 0.9, for the symbol 1 to be received, given that it was
transmitted. Our task is to find the reverse conditional probability that
the symbol 1 was transmitted given that 1 was received.

The random vector here is (X, Y), where X is the input signal and Y
is the output signal. The problem’s description contains the following
information:

P(X = 0) = 0.45, P(X = 1) = 0.55,

and

P(Y = 0|X = 0) = 0.95, P(Y = 1|X = 1) = 0.9,

so that

P(Y = 1|X = 0) = 0.05, P(Y = 0|X = 1) = 0.1.

We are seeking P(X = 1|Y = 1) and the Bayes formula gives the answer:

P(X = 1|Y = 1)

= P(Y = 1|X = 1) · P(X = 1)
P(Y = 1|X = 0) · P(X = 0)+ P(Y = 1|X = 1) · P(X = 1)

= 0.9 · 0.55
0.05 · 0.45+ 0.9 · 0.55

≈ 0.9565.
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Statistical independence. Components X and Y of a random vector
X = (X, Y) are said to be statistically independent if the conditional
probabilities of X given Y are independent of Y and vice versa. In the
discrete case, this means that, for all x and y ,

P(X = x|Y = y) = P(X = x),
which is equivalent to the statement that the joint p.d.f. is the product
of the marginal p.d.f.s. Indeed, the above independence assumption
and the formula defining the conditional probabilities yield

P(X = x,Y = y) = P(X,Y)(x,y)
= PX(x) · PY (y) = P(X = x) · P(Y = y). (3.3.12)

In the continuous case, the analogous definition of independence of
X and Y can be stated via the multiplicative formula for the joint p.d.f.:

f(X,Y)(x,y) = fX(x) · fY (y). (3.3.13)

Note that both the 2D Bernoulli distribution of Example 3.3.1 and
the 2D Gaussian distribution of Example 3.3.2 have statistically inde-
pendent components X and Y . Also, components of the random vector
(X, Y) in Example 3.3.3 are independent, as the table was actually ob-
tained by multiplying the marginal probabilities in the corresponding
rows and columns. However, the components W and Z of random vec-
tor (W,Z) in Example 3.3.3 are not statistically independent. To see
this, it is sufficient to observe that

P(W = 3, Z = 2) = 0,

but

P(W = 3) · P(Z = 2) = 3
12
· 6

12
= 3

24
≠ 0.

Moments of random vectors and correlations. If a random quantity Z
is a function of a random vector (X, Y), say,

Z = g(X,Y),
then as in Section 3.2, we can calculate the expectation of Z using the
joint p.d.f. Indeed,

EZ =
∑
x

∑
y
g(x,y)p(X,Y)(x,y) (3.3.14)
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in the discrete case, and

EZ =
∫∞
−∞

∫∞
−∞
g(x,y)f(X,Y)(x,y)dxdy, (3.3.15)

in the continuous case.
A mixed second-order moment corresponding to function g(x,y) =

xy will play a pivotal role in the analysis of random signals. The num-
ber

ϕX,Y = E(X · Y) (3.3.16)

is called the correlation of random quantities X and Y . The related
parameter corresponding to g(x,y) = (x − μx)(y − μy),

Cov(X, Y) = E[(X − μX)(Y − μY )] = E(XY)− E(X)E(Y), (3.3.17)

is called the covariance of X and Y . Obviously, the covariance of X and
X is just the variance of X:

Cov(X,X) = E[(X − μX)(X − μY )] = Var(X). (3.3.18)

By the Cauchy–Schwartz inequality,18

|Cov(X, Y)| ≤ Std(X) · Std(Y). (3.3.19)

This suggests the introduction of yet another parameter for a 2D ran-
dom vector which is called the correlation coefficient of X and Y :

Cor(X, Y) ≡ ρX,Y = Cov(X, Y)
Std(X) · Std(Y)

. (3.3.20)

In view of (3.3.19) the correlation coefficient is always contained
between −1 and +1:

−1 ≤ ρX,Y ≤ 1, (3.3.21)

and, in view of (3.3.18), if random components X and Y are linearly
dependent, that is, Y = αX, then the correlation coefficient takes its
extreme values

ρX,αX = ±1, (3.3.22)

18 Recall that if a = (a1, . . . , ad) and b = (b1, . . . , bd) are two d-dimensional
vectors, then the Cauchy–Schwartz inequality says that the absolute value
of their scalar (dot) product is not larger than the product of their norms
(magnitudes), i.e., |〈a,b〉| ≤ ‖a‖·‖b‖, where 〈a,b〉 = a1b1+· · ·+adbd, and
‖a‖2 = a2

1 + · · · + a2
d; see Section 3.7.



3.3 Random vectors and correlations 75

depending on whether α is positive or negative. In those cases we say
that the random quantities X and Y are perfectly (positively or nega-
tively) correlated.

The opposite case is that of statistically independent random quanti-
tiesX andY . Then, because of the multiplicative property f(X,Y)(x,y) =
fX(x)fY (y) (3.3.12)–(3.3.13) of the joint p.d.f., we always have

E(XY) =
∫ ∫

xyfX(x)fY (y)dxdy = EX · EY , (3.3.23)

so that

Cov(X, Y) = E(X − μX)(Y − μY ) = E(X − μX) · E(Y − μY ) = 0 (3.3.24)

and the correlation coefficient ρX,Y = 0. In other words, statistically
independent random quantities are always uncorrelated.19 The correla-
tion coefficient ρX,Y is often considered as a measure of “independence”
of random quantities X and Y ; more appropriately, it should be inter-
preted as a measure of the “linear association” of random quantities X
and Y .

Example 3.3.5 (a discrete 2D distribution with nontrivial correlation).
Consider the random vector (W,Z) from Example 3.3.3. The expecta-
tions of the components are

EW = 1
(

5
12

)
+ 2

(
4
12

)
+ 3

(
3
12

)
= 11

6
,

EZ = 1
(

6
12

)
+ 2

(
6
12

)
= 3

2
.

The variances are

Var(W) =
(

1− 11
6

)2( 5
12

)
+
(

2− 11
6

)2( 4
12

)
+
(

3− 11
6

)2( 3
12

)
= 23

36
,

Var(Z) =
(

1− 3
2

)2 ( 6
12

)
+
(

2− 3
2

)2 ( 6
12

)
= 1

4
.

The expectation of the product is

E(WZ) = (1 · 1)
(

1
12

)
+ (2 · 1)

(
2
12

)
+ (3 · 1)

(
3
12

)
+ (1 · 2)

(
4
12

)

+ (2 · 2)
(

2
12

)
+ (3 · 2)0 = 5

2
.

Thus the covariance is

Cov(W,Z) = E(WZ)− E(W)E(Z) = 5
2
−
(

11
6

)(
3
2

)
= −1

4
,

19 The opposite statement is, in general, not true; see Problem 3.7.28.
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and, finally, the correlation coefficient of W and Z is

Cor(W,Z) = Cov(W,Z)
Std(W) · Std(Z)

= −
1
4√

23
36 ·

√
1
4

= −
√

3
23

≈ −0.361.

Example 3.3.6 (a continuous 2D distribution with nontrivial correla-
tion). A random vector (X, Y) has a continuous joint p.d.f. of the form

f(X,Y)(x,y) =
{
C(1− (x +y)) for x,y ≥ 0, x +y ≤ 1;

0 elsewhere.

The constant C can be determined from the normalization condition,∫ 1

0

∫ 1−x

0
C(1− (x +y))dydx = 1,

which gives C = 6. The plot of the surface representing this density is
given in Figure 3.3.2.

Fig. 3.3.2. The plot of the surface representing the joint p.d.f. from Exam-
ple 3.3.6.

The marginal density of the component X,

fX(x) =
∫ 1−x

0
6(1− (x +y))dy = 3(1− x)2,

for 0 < x < 1. It is equal to 0 elsewhere, and its plot is pictured in
Figure 3.3.3.
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Fig. 3.3.3. The marginal density FX(x) of the X component of the random
vector from Example 3.3.6.

The expectations of X and Y are easily evaluated using the margin-
al p.d.f.:

EX = EY =
∫ 1

0
x · 3(1− x)2dx = 1

4
.

Similarly, the variances are

σ 2(X) = σ 2(Y) =
∫ 1

0

(
x − 1

4

)2

· 3(1− x)2dx = 3
80
.

Finally, the covariance is

Cov(X, Y) =
∫ 1

0

∫ 1−x

0

(
x − 1

4

)(
y − 1

4

)
· 6(1− (x +y))dydx = − 1

80
.

So the random components X and Y are not independent; they are
negatively correlated. The correlation coefficient itself is now easily
evaluated to be

ρX,Y =
− 1

80
3

80

= −1
3
.

3.4 The least-squares fit, regression line

The roles of the covariance and the correlation coefficient will become
better understood in the context of the following least-squares regres-
sion problem.

Consider a sample,

(x1, y1), (x2, y2), . . . , (xN,yN),
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of N 2D vectors. Its representation in the (x,y)-plane is called the
scatterplot of the sample; see, for example, Figure 3.4.1. Our goal is to
find a line

y = ax + b
that would provide the best approximation to the scatterplot in the
sense of minimizing the sum of the squares of the errors of the ap-
proximation measured in the vertical direction. To be more precise,
the error of the approximation for the ith sample point is expressed by
the formula

εi(a, b) = |yi − (axi − b)|, i = 1,2, . . . , N,

and the sum of the squares of the errors,

N∑
i=1

ε2
i (a, b) =

N∑
i=1

(yi − (axi − b))2,

is a nice, differentiable function of two variables a and b. We can find
its minimum by taking partial derivatives with respect to a and b and
equating them to 0:20

∂
∂a

N∑
i=1

ε2
i (a, b) = −2

N∑
i=1

(yi − (axi + b))xi = 0,

∂
∂b

N∑
i=1

ε2
i (a, b) = −2

N∑
i=1

(yi − (axi + b)) = 0.

These two equations, sometimes called the normal equations, are linear
in a and b and can be easily solved by the substitution method. To
make the next step more transparent, we will introduce the following
simplified notation for different sample means (think here about the
means of random quantities with N possible values with each value
assigned probability 1

N ):

x = 1
N

M∑
i=1

xi, y = 1
N

M∑
i=1

yi,

x2 = 1
N

M∑
i=1

x2
i , y2 = 1

N

M∑
i=1

y2
i ,

xy = 1
N

M∑
i=1

xiyi.

20 This explains why we consider quadratic errors rather than the straight ab-
solute errors; in the latter case the calculus tools would not work so well.
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Now the normal equations for a and b can be written in the form

ax + b −y = 0 and ax2 + bx − xy = 0,

which can be immediately solved to give

b = y − ax, a = xy − x ·y
x2 − (x)2 .

The first of the above two equations indicates that the point with
coordinates formed by the sample means x and y is located on the
regression line. To better see the meaning of the second equation, ob-
serve that

xy − x ·y = 1
N

N∑
i=1

(xi − x)(yi −y) = Cov(x,y)

is just the sample covariance of the x- and y-coordinates, and that

x2 − (x)2 = Var(x), y2 − (y)2 = Var(y).

Thus the equation y = ax+b of the regression line can now be rewrit-
ten in the elegant form

y −y√
Var(y)

= ρx,y x − x√
Var(x)

, (3.4.1)

where

ρx,y = Cov(x,y)√
Var(x)

√
Var(y)

= Cov(x,y)
σxσy

,

is the sample correlation coefficient. Its significance is now clear: ρx,y is
the slope of the regression line but only after the x- and y-coordinates
were standardized (see (3.2.11)), that is, they were centered by the
means x and y , and rescaled by the standard deviations σx and σy ,
respectively.

Example 3.4.1. Consider a 2D vector sample of size 10 (see Table 3.4.1).

Table 3.4.1.

x 1.06 2.08 3.28 4.13 5.28 6.39 7.12 8.04 9.23 10.38
y 1.10 3.37 3.23 6.92 7.66 6.78 8.12 9.94 9.55 10.87

The coefficients are a = 0.9934 and b = 1.0925, so that the equation
of the regression line is

y = 0.9934 · x + 1.0925

and the correlation coefficient is
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ρx,y = 0.1063.

The scatterplot of these data as well as the plot of the regression
line are shown in Figure 3.4.1.

Fig. 3.4.1. The scatterplot and the least-squares fit regression line for data from
Example 3.4.1.

3.5 The law of large numbers and the stability of
fluctuations law

One of the fundamental theorems of statistics, called the law of large
numbers (LLN ), says that if X1, X2, . . . , Xn are independent random
quantities with identical probability distributions (i.i.d.) and finite iden-
tical expectations EXi = μX , then as n → ∞, the averages converge to
that expectation, i.e.,

Xn ≡ X1 +X2 + · · · +Xn
n

−→ μX as n→∞. (3.5.1)

Of course, the immediate issue is what do we mean by the conver-
gence of random variables Xn. For the purposes of these lectures the
convergence of Xn to μX will mean that the standard deviation of the
fluctuations of the averages Xn around the mean μX , that is, the differ-
ences Xn − μX , converge to zero as n→∞. More formally,

lim
n→∞ Std(Xn − μX) = 0. (3.5.2)

The statement (3.5.2) can be easily verified if we observe first that,
for independent random quantities X and Y with finite variances, the
variance
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Var(X + Y) = Var(X)+ Var(Y), (3.5.3)

which follows immediately from the multiplicative property (3.3.23) of
the expectations of independent random variables; see Section 3.3. In-
deed, if X and Y are independent, then X − μX and Y − μY are also
independent, so that

Var(X + Y) = E((X − μX)+ (Y − μY ))2
= E(X − μX)2 + 2E(X − μX)E(Y − μY )+ E(Y − μY )2
= Var(X)+ Var(Y),

because E(X − μX) = E(Y − μY ) = 0. Hence

Var(Xn − μX) = Var
(
X1 − μX
n

+ · · · + Xn − μX
n

)
= Var(X)

n
, (3.5.4)

which obviously approaches 0 as n → ∞. Thus the law of large num-
bers (3.5.1), also often called the law of averages, is verified, at least in
the situation when random quantities Xi have well-defined finite vari-
ances.21

A more subtle insight about the averages is provided by the follow-
ing stability of fluctuations law , usually called the central limit theorem
(CLT ) in the mathematical and statistical literature. It states that as
the averages Xn fluctuate around the expectation μX , the fluctuations,
if viewed under a “magnifying glass,” turn out to follow, asymptotically
as n → ∞, a Gaussian or normal probability distribution. More pre-
cisely, the c.d.f. of the standardized (see (3.2.13) and (3.5.4)) random
fluctuations of the averages Xn around the mean μX ,

Zn =
√
n

Std(X)
· (Xn − μX), (3.5.5)

converges to the standard N(0,1) Gaussian c.d.f., that is,

lim
n→∞P(Zn ≤ z) = Φ(z) ≡

∫ z
−∞
φ(x)dx, (3.5.6)

where the density is

φ(z) = 1√
2π

e−z
2/2. (3.5.7)

The important assumption of the central limit theorem is that the com-
mon variance of Xis is finite. It can be immediately verified that all of
Zns have mean zero and variance one; see (3.2.13) and (3.5.4), but the
21 Note that not all random quantities have well-defined, finite variances; see

Section 3.7.
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proof of the convergence to a Gaussian limit is more delicate; for its
sketch, see Section 3.7.

So the central limit theorem can be loosely rephrased as follows:

Standardized random fluctuations of averages of independent and
identically distributed random quantities around their common ex-
pected value have a limiting standard Gaussian p.d.f.

3.6 Estimators of parameters and their accuracy;
confidence intervals

The law of large numbers can be reinterpreted as follows: If X1, X2, . . . ,
Xn is an i.i.d. sample from a certain probability distribution FX(x), then
as n increases, the sample means Xn, n = 1,2, . . . , become better and
better estimators for the expectation of that distribution. In the sta-
tistical terminology the law of large numbers (3.5.1) says that Xn is a
consistent estimator for parameter μX .

The central limit theorem (3.5.5)–(3.5.7) permits us to say what is the
error of approximation of the theoretical mean μX by the sample mean
Xn, or, in other words, to establish the accuracy of the above estimation.
Indeed, for a given sample of size n, the CLT says that the difference
between the parameter μX and its estimator, the sample mean Xn, is,
after normalization by

√
n

Std(X) , approximatelyN(0,1) distributed so that,
for large n,

P
(
−εStd(X)√

n
≤ Xn − μX ≤ εStd(X)√

n

)
≈ Φ(ε)− Φ(−ε)
= 2Φ(ε)− 1 = C,

(3.6.1)

where C = C(ε) is a nonrandom constant, depending on the choice of
ε only.

If X itself has a Gaussian p.d.f., then the above approximate equal-
ity becomes exact for all n. This follows from the fact that the sum of
two independent Gaussian random quantities is again a Gaussian ran-
dom quantity, obviously with the mean and variance being the sums of
means and variances, respectively, of the corresponding random sum-
mands; see Section 3.7.

The above statement can be reformulated as follows: the parameter
μX is contained in the random interval

(
Xn − εStd(X)√

n
,Xn + εStd(X)√

n

)

with probability C . This statement is sometimes abbreviated by writing
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μX = Xn ± εStd(X)√
n

at the confidence level C . Note that it is the center of the above random
interval that is random; its length is not random unless Std(X) = σX
itself has to be estimated from the sample.

Example 3.6.1 (a 95% confidence interval for μX with knownσX ). One
hundred independently repeated measurements of a random quantity
X were conducted, resulting in X100 = 7.1. Suppose that we know that
Std(X) = 0.5. To find the 95% confidence interval for μX using (3.5.1),
we need to find ε such that 2Φ(ε) − 1 = 0.95. From the table of the
Gaussian N(0,1) c.d.f. we have z = 1.96. Thus at the 95% confidence
level,

7.1− 1.96
0.5√
100

≤ μX ≤ 7.1+ 1.96
0.5√
100

,

that is, μX = 7.1±0.098 at the 95% confidence level. The above approx-
imate confidence interval is exact if X has a Gaussian distribution.

Remark (error of the Gaussian approximation in the CLT ). To be hon-
est, we left open the essential, but delicate question of how good is the
approximate equality in the basic formula (3.5.1) or, equivalently, the
question of precise estimation of the error in the central limit theorem
(3.5.6), which just says that the difference

P(Zn ≤ z)− Φ(z)→ 0 as n→∞,

where

Zn = (X1 + · · · +Xn)−nμX√
n · Std(X)

are standardized sums X1 + · · · + Xn. It turns out that the accuracy
in CLT is actually pretty good if the Xis have finite higher absolute
moments. In particular, if the third central moment M3 = E|X −μX|3 <
∞, then, for all −∞ < x <∞ and n = 1,2, . . . ,

|P(Zn ≤ z)− Φ(z)| ≤ kM3√
nσ 3

X
,

where k is a universal (independent of n and X) constant contained in
the interval (0.4097,0.7975). Its exact value is not known.22

Of course, the above procedure used in Example 3.4.1 requires ad-
vance knowledge of the standard deviation Std(X). If that parameter is

22 This error estimate in the CLT is known as the Berry–Esseen theorem and
its proof can be found, for example, in V. V. Petrov’s monograph Sums of
Independent Random Variables, Springer-Verlag, Berlin, 1975.
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unknown, then the obvious step is to try to estimate it from the sample
X1, X2, . . . , Xn itself using the sample variance estimator

S2
n =

1
n− 1

n∑
i=1

(Xi −X)2. (3.6.2)

But in this case, even in the case of Gaussian Xi, the random quantity

T =
√
n
Sn
(X − μX) (3.6.3)

is no longer N(0,1) distributed, so a simple construction of the confi-
dence interval for μX is no longer possible.

However, in the case of a Gaussian random sample X1, X2, . . . , Xn, it
is known23 that the random quantity T has the p.d.f.

fT (x;n− 1) =
Γ
(
n
2

)
√
nπΓ

(
n−1

2

)
(

1+ x2

n− 1

)−n/2
, (3.6.4)

which traditionally is called the Student-T p.d.f. with (n−1) degrees of
freedom. The Gamma function Γ(α) appearing in the definition of fT
is defined by the formula

Γ(α) =
∫∞

0
xα−1e−xdx, α > 0. (3.6.5)

It is worth noting that

αΓ(α) = Γ(α+ 1) and Γ(n) = (n− 1)!, (3.6.6)

if n is a positive integer. Thus the Gamma function is an interesting
extension of the concept of the factorial to noninteger numbers.

Therefore, in this case, the C = (2FT (ε)− 1) confidence interval for
μX is of the form

(
Xn − ε Sn√n,Xn + ε

Sn√
n

)
. (3.6.7)

It is convenient to tabulate the quantiles QT(α;n) defined by the
condition

FT (QT(α;n)) = α, (3.6.8)
23 See, for example, M. Denker and W. A. Woyczyński, Introductory Statistics

and Random Phenomena: Uncertainty, Complexity, and Chaotic Behavior in
Engineering and Science, Birkhäuser Boston, Cambridge, MA, 1998, for more
details on the statistical issues discussed in this section.
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rather than the c.d.f. itself. Note that the quantile is just the function
inverse to c.d.f. The tables of selected quantiles QT(α;n) are provided
at the end of the chapter. Using the T -quantiles allows the C confidence
level interval for μX to be simply written in the form(
Xn −QT (1+ C2;n− 1)

Sn√
n
,Xn +QT

(
1+ C

2
;n− 1

)
Sn√
n

)
. (3.6.9)

For large n, say, n > 20, the Student-T p.d.f. with n degress of
freedom becomes almost indistinguishable from the N(0,1) p.d.f. (see
Exercise 3.7.17), and the latter can be used in the construction of con-
fidence intervals even in the case of unknown variance.

Example 3.6.2 (a 90% confidence interval forμX with unknown Std(X)).
Nine independent measurements of a Gaussian random quantity X re-
sulted in X9 = 2.56 and S9 = 0.12. With the desired confidence level
C = 0.9, the table yields the quantile

QT
(

1+ 0.9
2

; 8
)
= QT(0.95; 8) = 1.86.

Hence the 90% confidence interval for the expectation μX is of the form(
2.56− 1.86 · 0.12√

9
,2.56+ 1.86 · 0.12√

9

)
= (2.56− 0.07,2.56+ 0.07)

or, in other words, μX = 2.56± 0.07 at the 90% confidence level.

The final question in this section is, how good is the sample variance
estimator S2

n introduced in (3.6.2)? Here again, the answer is difficult
for a general c.d.f. FX . However, in the case of a Gaussian sample one
can prove that the nonnegative random quantity

χ2 = 1

σ 2
X

n∑
i=1

(Xi −Xn)2 (3.6.10)

has a p.d.f. of the form

fχ2(x;n− 1) = 1
2(n−1)/2 Γ

(
n− 1

2

)
x(n−3)/2e−x/2, x ≥ 0, (3.6.11)

which traditionally is called the chi-square p.d.f. with (n − 1) degrees
of freedom.24 Thus the C confidence level interval for σ 2

X is of the form⎛
⎝ (n− 1)S2

X

Qχ2

(
1+C

2 ;n− 1
) , (n− 1)S2

X

Qχ2

(
1−C

2 ;n− 1
)
⎞
⎠ (3.6.12)

Selected quantiles Qχ2(α;n) for the chi-square distributions are given
in the tables at the end of this chapter.
24 Compare this definition with the calculation of the p.d.f. of the square of

the N(0,1)-distributed random quantity in Example 3.1.11.
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Example 3.6.3 (a 99% confidence interval for Var(X)). Twenty-six in-
dependent measurements of a Gaussian random quantity X resulted in
the estimate S2

26 = 1.37 for the variance Var(X). With C = 0.99, the
tables yield

Qχ2

(
1+ 0.99

2
; 25

)
= Qχ2(0.995; 25) = 46.928

and

Qχ2

(
1− 0.99

2
; 25

)
= Qχ2(0.005; 25) = 10.520.

Thus the 99% confidence level interval for the variance σ 2
X is(

25 · 1.37
46.928

,
25 · 1.37
10.520

)
= (0.723,3.255).

The interval is relatively large because the confidence level demanded
is very high. Note that it is not symmetric about the estimated value
S2

26 = 1.37.

3.7 Problems, exercises, and tables

Use Mathematica, MAPLE, or Matlab as needed throughout this and
other problem sections.

3.7.1. Plot the c.d.f.s of binomial quantities X with p = 0.21 and
n = 5,13,25. Calculate the probabilities that X takes values
between 1.3 and 3.7. Repeat the same exercise for p = 0.5 and
p = 0.9.

3.7.2. Calculate the probability that a random quantity uniformly dis-
tributed over the interval [0,3] takes values between 1 and 3.
Do the same calculation for the exponentially distributed ran-
dom quantity with parameter μ = 1.5, and the Gaussian random
quantity with parameters μ = 1.5, σ 2 = 1.

3.7.3. Prove that αΓ(α) = Γ(α+ 1), and that Γ(n) = (n− 1)!. Use the
integration-by-parts formula. Verify analytically that Γ(1

2) =√
π . Use the idea employed in Example 3.1.6 to prove that the

standard Gaussian density is normalized.
3.7.4. The p.d.f. of a random variable X is expressed by the quadratic

function fX(x) = ax(1 − x), for 0 < x < 1, and is zero out-
side the unit interval. Find a from the normalization condition
and then calculate FX(x), EX, Var(X), Std(X), the nth central
moment, and P(0.4 < X < 0.9). Graph fX(x) and FX(x).

3.7.5. Find the c.d.f and p.d.f. of the random quantity Y = X3, where
X is uniformly distributed on the interval [1,3].
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3.7.6. Find the c.d.f and p.d.f. of the random quantity Y = tanX, where
X is uniformly distributed over the interval (−π2 , π2 ). Find a
physical (geometric) interpretation of this result.

3.7.7. Verify that Var(X) = EX2 − (EX)2; see formula (3.2.6).
3.7.8. Calculate the expectation and the variance of the binomial dis-

tribution from Example 3.1.2.
3.7.9. Calculate the expectation and the variance of the Poisson dis-

tribution from Example 3.1.3.
3.7.10. Calculate the expectation, the variance, and the nth moment of

the exponential distribution from Example 3.1.5.
3.7.11. Calculate the nth central moment of the Gaussian distribution

from Example 3.1.6.
3.7.12. Derive the formula for the binomial distribution from Exam-

ple 3.1.2, relying on the observation that it is the distribution of
the sum of n independent and identically distributed Bernoulli
random qunatities. Show that if p = μ

n and n → ∞, then the
binomial probabilities converge to the Poisson probabilities.

3.7.13. A random quantity X has an even p.d.f. fX(x) of the triangular
shape shown in Figure 3.7.1.

Fig. 3.7.1.

(a) How many parameters do you need to describe this p.d.f.?
Find an explicit analytic formula for p.d.f. fX(x) and c.d.f.
FX(x). Graph both of them.

(b) Find the expectation and variance of X.
(c) Let Y = X3. Find the p.d.f. fY (y) and graph it.

3.7.14. A discrete 2D random vector (X, Y) has the following joint p.d.f.:

P(X = 1, Y = 1) = 2
12
, P(X = 2, Y = 1) = 1

12
,

P(X = 3, Y = 1) = 1
12
, P(X = 1, Y = 3) = 2

12
,

P(X = 2, Y = 3) = 4
12
, P(X = 3, Y = 2) = 2

12
.
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Find the marginal distributions of X and Y , their expectations
and variances, as well as the covariance and the correlation co-
efficient of X and Y . Are X and Y independent?

3.7.15. Verify the Cauchy–Schwartz inequality (3.3.19). Hint : Take
Z = X−EX

σ(X) and W = Y−EY
σ(Y) , and consider the discriminant of

the expression E(Z + xW)2. The latter is quadratic in variable
x and necessarily always nonnegative, so it can have at most
one root.

3.7.16. The following sample of random vector (X, Y) was obtained:
(1,1.7), (2,2), (5,4.3), (7,5.9), (9,8), (9,8.7). Produce the scat-
terplot of the sample and the corresponding least-squares re-
gression line.

3.7.17. Using the table ofN(0,1) c.d.f. provided at the end of this chap-
ter calculate P(−1 ≤ Y ≤ 2) if Y ∼ N(0.7,4).

3.7.18. Produce graphs of the Student-T p.d.f. fT (x,n), for n = 2,5,
12,20, and compare them with the standard normal p.d.f.

3.7.19. Produce graphs of the chi-square p.d.f. fχ2(x,n) for n = 2,5,
12,20.

3.7.20. Find a constant c > 0 such that the function

fX(x) =
{
c(1+ x)−3 for x > 0;

0 for x ≤ 0.

is a valid p.d.f. Find P(1
5 < X < 5), E(X), and the p.d.f. fY (y)

of Y = X1/5. Show that Var(x) = ∞.
3.7.22. Measurements of voltage V and current I on a resistor yielded

the following n = 5 paired data: (1.0,2.3), (2.0,4.1), (3.0,6.4),
(4.0,8.5), (5.0,10.5). Draw the scatterplot and find the regres-
sion line providing the least-squares fit for the data.

3.7.23. Independent measurements of the leakage current I on a ca-
pacitor yielded the following data: 2.71, 2.66, 2.78, 2.67, 2.71,
2.69, 2.70, 2.73 mA. Assuming that the distribution of the ran-
dom quantity I is Gaussian, find the 95% confidence intervals
for the expectation EI and the variance σ2

X .
3.7.24. Complete the following sketch of the proof of the central limit

theorem.
(a) Define LX(u) as the Laplace transform of c.d.f. FX(x):

LX(u) =
∫∞
∞
euxdFX(x).

Find L′X(0) and L′′X(0).
(b) Calculate LX(u) for the Gaussian N(0,1) random quantity.
(c) Prove that, for independent random quantities X and Y ,

LX+Y (u) = LX(u) · LY (u).
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(d) Utilizing (c), calculate

L√n(X−μX)/ Std(X)(u),

(it is easier to work here with the logarithm of the Laplace
transform) and find its limit as n→∞. Compare it with the
Laplace transform of the GaussianN(0,1) random quantity.

3.7.25. Use the introduced above Laplace transform technique to prove
that the sum of two independent Gaussian random quantities
is again a Gaussian random quantity.

3.7.26. What is the probability P that a randomly selected chord is
shorter than the side S of an equilateral triangle inscribed in
the circle? Here are two seemingly reasonable solutions:25

(a) A chord is determined by its two endpoints. Fix one of them
to be A. For the chord to be shorter than the side S, the
other endpoint must be chosen on either the arc AB or on
the arc CA, and each of them is subtended by an engle of
120◦. Thus P = 2

3 .
(b) A chord is completely determined by its center. For the

chord to be shorter than the side S, the center must lie out-
side the circle of radius equal to the half of the radius of the
original circle and the same center. Hence, the probability
P equals the ratio of the annular area between two circles
and the area of the original circle, which is 3

4 .
These two solutions are different. How is that possible?

3.7.27. Derive formulas for the c.d.f. FY (y), and the p.d.f. fY (y), of
a transformation Y = g(X) of a random quantity X, in terms
of its c.d.f. FX(x), and p.d.f. fX(x), in the case when the trans-
forming function y = g(x) is monotonically decreasing. Follow
the line of reasoning used to derive the analogous formulas
(3.1.11)–(3.1.12) for monotonically increasing transformations.
How would you extend these formulas to transformations that
are monotonically increasing on some intervals and decreasing
on their complement?

3.7.28. Verify that the components X,Y of the random vector with
probability distribution P((X, Y) = (1,0)) = P((X, Y) = (0,1))
= P((X, Y) = (−1,0)) = P((X, Y) = (0,−1)) = 1

4 are un-
correlated but not statistically independent. Calculate proba-
bility distribution of a random vector (W,Z) with statistically
independent components and the same marginal distribution
as (X, Y).

25 For more information, see M. Denker and W. A. Woyczyński, Introductory
Statistics and Random Phenomena: Uncertainty, Complexity, and Chaotic
Behavior in Engineering and Science, Birkhäuser Boston, Cambridge, MA,
1998, Example 5.1.1.
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Table 3.7.1. Gaussian N(0,1) c.d.f. Φ(z) = (2π)−1/2
∫ z
−∞ e−x

2/2dx.

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
0.1 .5395 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
0.3 .6179 .6217 .6255 .6296 .6331 .6366 .6406 .6443 .6480 .6517
0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6884 .6879
0.5 .6915 .6956 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
0.6 .7257 .7291 .7324 .7857 .7389 .7422 .7454 .7486 7517 .7549
0.7 .7580 .7611 .7642 7673 .7704 .7734 .7764 .7794 .7823 .7852
0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8075 .8106 .8133
0.9 .8195 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 .8413 .8438 .8461 .8485 .8503 .8531 .8554 .8577 .8599 .8621
1.1 .8613 .8665 .8686 .8708 .8729 .8749 .8770 .8796 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8977 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9359 .9370 .9382 .9309 .9404 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9606 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 9678. 9666. 9693. 9699. .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9773 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850. 9854 .9857
2.2 .9891 .9861 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.4 .9918 .9820 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9983 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .8876 .8876 .8877 .8877 .8878 .8878 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992. .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
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Table 3.7.2. Student-T distribution quantiles QT(α;n).

n\α 0.1000 0.0500 0.0250 0.0100 0.0050 0.0010 0.0005
1 3.078 6.314 12.706 31.821 63.657 318.317 636.61
2 1.886 2.920 4.303 6.965 9.925 22.326 31.598
3 1.638 2.353 3.182 4.451 5.841 10.213 12.924
4 1.533 2.132 2.776 3.747 4.604 7.173 8.610
5 1.476 2.015 2.571 3.365 4.032 5.893 8.610
6 1.440 1.943 2.447 3.143 3.707 5.208 5.959
7 1.415 1.895 2.365 2.998 3.500 4.785 5.408
8 1.397 1.860 2.306 2.896 3.355 4.501 5.041
9 1.383 1.833 2.262 2.821 3.250 4.297 4.781

10 1.372 1.813 2.228 2.764 3.169 4.144 4.587
11 1.364 1.796 2.201 2.718 3.106 4.025 4.437
12 1.356 1.782 2.179 2.681 3.055 3.930 4.318
13 1.350 1.771 2.160 2.650 3.012 3.852 4.221
14 1.345 1.761 2.145 2.624 2.977 3.787 4.141
15 1.341 1.753 2.131 2.602 2.947 3.733 4.073
16 1.337 1.746 2.120 2.584 2.921 3.686 4.015
17 1.333 1.740 2.110 2.567 2.898 3.646 3.965
18 1.330 1.734 2.101 2.553 2.879 3.610 3.992
19 1.328 1.729 2.093 2.540 2.861 3.579 3.883
20 1.325 1.725 2.086 2.528 2.845 3.552 3.849
21 1.323 1.721 2.080 2.518 2.831 3.527 3.819
22 1.321 1.717 2.074 2.508 2.819 3.505 3.792
23 1.320 1.714 2.069 2.500 2.807 3.485 3.768
24 1.318 1.711 2.064 2.492 2.797 3.467 3.745
25 1.316 1.708 2.059 2.485 2.787 3.450 3.725
26 1.315 1.706 2.056 2.479 2.779 3.435 3.707
27 1.314 1.703 2.052 2.473 2.771 3.421 3.690
28 1.312 1.701 2.049 2.467 2.763 3.408 3.674
29 1.311 1.699 2.045 2.462 2.756 3.396 3.659
30 1.311 1.697 2.042 2.457 2.750 3.385 3.646
40 1.303 1.684 2.021 2.423 2.704 3.307 3.551
60 1.296 1.671 2.000 2.390 2.660 3.232 3.460
120 1.289 1.658 1.980 2.358 2.617 3.160 3.373
∞ 1.282 1.645 1.960 2.326 2.576 3.090 3.291
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Table 3.7.3. Chi-square distribution quantiles Qχ2(α;n).

n\α 0.9950 0.9900 0.9750 0.9500 0.9000 0.1000 0.0500 0.0250 0.0100 0.0050
1 0.000 0.000 0.001 0.004 0.016 2.706 3.843 5.025 6.637 7.882
2 0.010 0.020 0.051 0.103 0.211 4.605 5.992 7.378 9.210 10.597
3 0.072 0.115 0.216 0.352 0.584 6.251 7.815 9.348 11.344 12.937
4 0.207 0.297 0.484 0.711 1.064 7.779 9.488 11.143 13.277 14.860
5 0.412 0.554 0.831 1.145 1.160 9.236 11.070 12.832 15.085 16.748
6 0.676 0.872 1.237 1.635 2.204 10.645 12.592 14.440 16.812 18.548
7 0.989 1.239 1.690 2.167 2.833 12.17 14.067 16.012 18.474 20.276
8 1.344 1.646 2.180 2.733 3.490 13.362 15.507 17.534 20.090 21.954
9 1.735 2.088 2.700 3.325 4.168 14.684 16.919 19.022 21.665 23.587
10 2.156 2.558 3.247 3.940 4.865 15.987 18.307 20.483 23.209 25.188
11 2.603 3.053 3.816 4.575 5.578 17.275 19.675 21.920 24.724 26.755
12 3.074 3.571 4.404 5.226 6.304 18.549 21.026 23.337 26.217 28.300
13 3.565 4.107 5.009 5.892 7.041 19.812 22.362 24.735 27.687 29.817
14 4.075 4.660 5.629 6.571 7.790 21.064 23.685 26.119 29.141 31.319
15 4.600 5.229 6.262 7.261 8.547 22.307 24.996 27.488 30.577 32.799
16 5.142 5.812 6.908 7.962 9.312 23.542 26.296 28.845 32.000 34.267
17 5.697 6.407 7.564 8.682 10.085 24.769 27.587 30.190 33.408 35.716
18 6.265 7.015 8.231 9.390 10.865 25.989 28.869 31.526 34.805 37.156
19 6.843 7.632 8.906 10.117 11.651 27.203 30.143 32.852 36.190 38.580
20 7.434 8.260 9.591 10.851 12.443 28.412 31.410 34.170 37.566 39.997
21 8.033 8.897 10.283 11.591 13.240 29.615 32.670 35.479 38.930 41.399
22 8.643 9.542 10.982 12.338 14.042 30.813 33.924 36.781 40.289 42.796
23 9.260 10.195 11.688 13.090 14.848 32.007 35.172 38.075 41.637 44.179
24 9.886 10.856 12.401 13.848 15.659 33.196 36.415 39.364 42.980 45.558
25 10.519 11.523 13.120 14.611 16.473 34.381 37.652 40.646 44.313 46.925
26 11.160 12.198 13.844 15.379 17.292 35.563 38.885 41.923 45.642 48.290
27 11.807 12.878 14.573 16.151 18.114 36.741 40.113 43.194 46.962 49.642
28 12.461 13.565 15.308 16.928 18.939 37.916 41.337 44.461 48.278 50.993
29 13.120 14.256 16.147 17.708 19.768 39.087 42.557 45.772 49.586 52.333
30 13.787 14.954 16.791 18.493 20.599 40.256 43.773 46.979 50.892 53.672
31 14.457 15.655 17.538 19.280 21.433 41.422 44.985 48.231 52.190 55.000
32 15.134 16.362 18.291 20.072 22.271 42.585 46.194 49.480 53.486 56.328
33 15.814 17.073 19.046 20.866 23.110 43.745 47.400 50.724 54.774 57.646
34 16.501 17.789 19.806 21.664 23.952 44.903 48.602 51.966 56.061 58.964
35 17.191 18.508 20.569 22.465 24.796 46.059 49.802 53.203 57.340 60.272
36 17.887 19.233 21.336 23.269 25.643 47.212 50.998 54.437 58.619 61.581
37 18.584 19.960 22.105 24.075 26.492 48.363 52.192 55.667 59.891 62.880
38 19.289 20.691 22.878 24.884 27.343 49.513 53.384 56.896 61.162 64.181
39 19.994 21.425 23.654 25.695 28.196 50.660 54.572 58.119 62.462 65.473
40 20.706 22.164 24.433 26.509 29.050 51.805 55.758 59.342 63.691 66.766




