
2

Spectral Representation of Deterministic Signals:
Fourier Series and Transforms

In this chapter we will take a closer look at the spectral, or frequency do-
main, representation of deterministic (nonrandom) signals which was
already mentioned in Chapter 1. The tools introduced below, usually
called Fourier or harmonic analysis, will play a fundamental role later
on in our study of random signals. Almost all of the calculations will
be conducted in the complex form. Compared with working in the real
domain, manipulation of formulas written in the complex form turns
out to be simpler and all the tedium of remembering various trigono-
metric formulas is avoided. All of the results written in the complex
form can be translated quickly into results for real trigonometric se-
ries expressed in terms of sines and cosines via de Moivre’s formula
ejt = cos t + j sin t, familiar from Chapter 1.

2.1 Complex Fourier series for periodic signals

A complex-valued signal x(t) that is periodic with period P (say, sec-
onds) can be written in the form of an infinite complex Fourier series

x(t) =
∞∑

m=−∞
zmej2πmf0t =

∞∑
m=−∞

zmejmω0t, (2.1.1)

where f0 = 1
P is the fundamental frequency of the signal (measured

in Hz = 1
s ), and ω0 = 2πf0 is called the fundamental angular veloc-

ity (measured in radians/s). The complex number zm, where m can
take values . . . ,−2,−1,0,1,2, . . . , is called the mth Fourier coefficient
of signal x(t).

In this text, we will carry out our calculations exclusively in terms
of the fundamental frequency f0, although one can find in the printed
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and software signal processing literature sources where all the work
is done in terms of ω0. It is an arbitrary choice, and transition from
one system to the other is easily accomplished by adjusting various
constants appearing in the formulas.

The infinite Fourier series representation (2.1.1) is unique in the
sense that two different signals will have two different sequences of
Fourier coefficients. The uniqueness is a result of the fundamental
property of complex exponentials

em(t) := ej2πmf0t, m = . . . ,−2,−1,0,1,2, . . . , (2.1.2)

called orthonormality :

The scalar product (sometimes also called inner, or dot, product) of
two complex exponentials en and em is 0 if the exponentials are different,
and it is 1 if they are the same. Indeed,

〈en, em〉 = 1
P

∫ P
0
en(t)e∗m(t)dt

= 1
P

∫ P
0
ej2π(n−m)f0tdt =

{
0 if n ≠m;

1 if n =m.
(2.1.3)

Recall that, for a complex number z = a + jb = |z|ejθ with real
component a and imaginary component b, the complex conjugate
z∗ = a − jb = |z|e−jθ . Sometimes it is convenient to describe the
orthonormality using the so-called Kronecker delta notation:

δmn =
{

0 if n ≠m;

1 if n =m.

Then, simply,
〈em, en〉 = δmn.

Using the orthonormality property we can directly evaluate the co-
efficients zm in the Fourier series (2.1.1) of signal x(t) by formally cal-
culating the scalar product of x(t) and em(t):

〈x, em〉 = 1
P

∫ P
0

( ∞∑
n=−∞

znen(t)
)
· e∗m(t)dt (2.1.4)

=
∞∑

n=−∞
zn

1
P

∫ P
0
en(t)e∗m(t)dt = zm,

so that we get an explicit formula for the Fourier coefficent of sig-
nal x(t),
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zm = 〈x, em〉 = 1
P

∫ P
0
x(t)e−j2πmf0tdt. (2.1.5)

Thus the basic Fourier expansion (2.1.1) can now be rewritten in the
form of a formal identity

x(t) =
∞∑

n=−∞
〈x, en〉en(t). (2.1.6)

It is worthwhile to observe that the above calculations on infinite
series and interchanges of the order of integration and infinite summa-
tions were purely formal, that is, the soundness of the limit procedures
was not rigorously established. The missing steps can be found in the
mathematical literature devoted to Fourier analysis.3 For our purposes,
it suffices to say that if a periodic signal x(t) has finite power

PWx = 1
P

∫ P
0
|x(t)|2dt <∞, (2.1.7)

and the concept of convergence of the functional infinite series (2.1.1) is
defined in the right way, then all of the above formal manipulations can
be rigorously justified. We will return to this issue at the end of this
section. In what follows, we will usually consider signals with finite
power.

Real-valued signals. Signal x(t) is real-valued if and only if the coeffi-
cients zm satisfy the obvious algebraic condition

z−m = z∗m, (2.1.8)

in which case cancellation of the imaginary parts in the Fourier series
(2.1.1) occurs. Indeed, under assumption (2.1.8),

zm = |zm|ejθm, θ−m = −θm, (2.1.9)

and since
ejα + e−jα

2
= cosα,

we get

x(t) = c0 +
∞∑
m=1

cm cos(2πmf0t + θm), (2.1.10)

where
3 See, e.g., A. Zygmund, Trigonometric Series, Cambridge University Press,

Cambridge, UK, 1959.
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c0 = z0 and cm = 2|zm|, m = 1,2, . . . . (2.1.11)

The power PWx of a periodic signal x(t) can also be directly calcu-
lated from its Fourier coefficient zm. Indeed, again calculating formally,
we obtain that

PWx = 1
P

∫ P
0
|x(t)|2dt = 1

P

∫ P
0
x(t)x∗(t)dt

= 1
P

∫ P
0

⎛
⎝ ∞∑
k=−∞

zkek(t)

⎞
⎠ ·

( ∞∑
m=−∞

zmem(t)
)∗
dt

=
∞∑

k=−∞

∞∑
m=−∞

zkz∗m
1
P

∫ P
0
ek(t)e∗m(t)dt =

∞∑
m=−∞

zmz∗m,

in view of the orthonormality (2.1.3) of the complex exponentials. The
multiplication of the two infinite series was carried out term by term.
The resulting relationship,

PWx = 1
P

∫ P
0
|x(t)|2dt =

∞∑
m=−∞

|zm|2, (2.1.12)

is known as the Parseval formula. A similar calculation for the scalar
product 1

P

∫ P
0 x(t)y∗(t)dt of two different periodic signals, x(t) and

y(t), gives an extended Parseval formula listed in Table 2.1.1.

Analogy between the orthonormal basis of vectors in the 3D space
R3 and the complex exponentials. It is useful to think about the com-
plex exponentials em(t) = e2πjmf0t ,m = . . . ,−1,0,1, . . . , as an infinite-
dimensional version of the orthonormal basics vectors in R3. In this
mental picture the periodic signal x(t) is now thought of as an infinite-
dimensional “vector” uniquely expandable into an infinite linear com-
bination of the complex exponentials in the same way a 3D vector
is uniquely expandable into a finite linear combination of the three
unit coordinate vectors. Table 2.1.1 describes this analogy more fully.
Note that the Parseval formula can now be seen just as an infinite-
dimensional extension of the familiar Pythagorean theorem.

Recall that a signal is called even if it is symmmetric under the
change of the direction of time, i.e., if x(t) = x(−t); it is called odd
if it is antisymmetric under the change of the direction of time, i.e., if
x(t) = −x(−t). The real Fourier expansion of an even real-valued sig-
nalx(t) = x(−t)will contain only cosine functions, and the real Fourier
expansion of an odd real-valued signal x(t) = −x(−t) will contain only
sine functions. This phenomenon will be illustrated in the following
examples. Of course, if one is only interested in the signal x(t) for pos-
itive times t > 0, then one can arbitrarily extend the signal’s values to
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Table 2.1.1. Analogy between orthonormal expansions in 3D and in the space
of periodic signals.

Objects
3D vectors Signals with finite power

�x = (x1, x2, x3) x(t) =∑∞
m=−∞ zmem(t), PWx <∞

�y = (y1, y2, y3) y(t) =∑∞
m=−∞wmem(t), PWy <∞

Bases
Unit coordinate vectors Complex exponentials

...
�e1 = (1,0,0) e1(t) = ej2πf0t

�e2 = (0,1,0) e2(t) = ej2π(2f0)t

�e3 = (0,0,1) e3(t) = ej2π(3f0)t

...
Scalar products

〈�x, �y〉 =∑3
i=1 xiyi 〈x(t),y(t)〉

= 1
P

∫ P
0 x(t)y∗(t)dt

Orthonormality

〈 �em, �em〉 = δmn 〈em(t), en(t)〉 = δmn

Expansions
Basis Fourier

�x =∑3
m=1〈�x, �em〉 �em x(t) =∑∞

i=−∞〈x, em〉em(t)

Formulas
Pythagoras’ Parseval’s

||�x||2 =∑3
m=1 x2

m PWx = 1
P

∫ P
0 |x(t)|2dt

=∑∞
m=−∞ |zm|2

Scalar product Extended Parseval’s

〈�x, �y〉 =∑3
m=1 xmym

1
P

∫ P
0 x(t)y∗(t)dt

=∑∞
m=−∞ zmw∗

m

the negative timeline to form either an odd or an even signal, and thus
obtain either its pure sine or its pure cosine expansion.

Example 2.1.1 (pure cosine expansion of an even rectangular wave-
form). Consider a rectangular waveform with period P and amplitude
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a > 0, defined by the formula

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a for 0 ≤ t < P

4 ;

0 for P
4 ≤ t < 3P

4 ;

a for 3P
4 ≤ t < P.

The signal is pictured in Figure 2.1.1 for particular values P = 1 and
a = 1.

Fig. 2.1.1. An even rectangular waveform signal from Example 2.1.1. The pe-
riod P = 1 and the amplitude a = 1.

Calculation of coefficients zm in the expansion of the signal x(t)
into a complex Fourier series is here straightforward: For m = 0,

z0 = 1
P

∫ P
0
x(t)e−j2π0t/Pdt = a

P

(
P
4
− 0+ P − 3P

4

)
= a

2
.

In the case m ≠ 0,

zm = 1
P

∫ P
0
x(t)e−j2πmt/Pdt

= a
P

(∫ P/4
0

e−j2πmt/Pdt +
∫ P

3P/4
e−j2πmt/Pdt

)

= a
P

(
P

−j2πme−j2πmt/P
∣∣∣∣
P/4

0
+ P
−j2πme−j2πmt/P

∣∣∣∣
P

3P/4

)

= a
−j2πm

(
e−j(π/2)m − 1− e−j(3π/2)m + 1

)
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= − a
πm

e−j(2π/2)m
(
ej(π/2)m − e−j(π/2)m

2j

)

= − a
πm

cosπm sin
π
2
m = − a

πm
(−1)m sin

π
2
m.

If m = 2k, then sin π
2m = 0, and if m = 2k+ 1, k = 0,±1,±2, . . . , then

sin π
2m = (−1)k, which gives, for k = ±1,±2, . . . ,

z2k = 0,

and

z2k+1 = −a
π(2k+ 1)

(−1)2k+1(−1)k = (−1)ka
π(2k+ 1)

.

Thus the complex Fourier expansion of the signal x(t) is

x(t) = a
2
+ a
π

∞∑
k=−∞

(−1)k

2k+ 1
ej2π(2k+1)t/P .

Observe that for any m = . . . ,−1,0,1, . . . , we have zm = z−m. Pairing
up complex exponentials with the exponents of opposite signs, and
using de Moivre’s formula, we arrive at the real Fourier expansion that
contains only cosine functions:

x(t) = a
2
+ a
π

(
2 cos

2πt
P

− 2
3

cos
2π3t
P

)+ · · ·
)
.

Example 2.1.2 (pure sine expansion of an odd rectangular waveform).
Consider a periodic rectangular waveform of period P which is defined
by the formula

x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
a for 0 ≤ t < P

4 ;

0 for P
4 ≤ t < 3P

4 ;

−a for 3P
4 ≤ t < P.

The signal is pictured in Figure 2.1.2 for particular values P = 1 and
a = 1.

For m = 0,

z0 = 1
P

∫ P
0
x(t)dt = 0,

and, for m ≠ 0,

zm = a
P

(∫ P/4
0

e−j2πmt/Pdt −
∫ P

3P/4
e−j2πmt/Pdt

)

= −a
j2πm

(e−j(π/2)m − 1− 1+ e−j(3π/2)m)
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Fig. 2.1.2. An odd rectangular waveform signal from Example 2.1.2. The period
P = 1 and the amplitude a = 1.

= − aj
2πm

[e−j(2π/2)m(ej(π/2)m + e−j(π/2)m)− 2]

= − aj
πm

(
cosπm · cos

π
2
m− 1

)
.

Since cosπm = (−1)m, and since cos(π2 )m = 0 ifm is odd and= (−1)k
when m = 2k is even, we get that

zm =
⎧⎨
⎩0 for odd m = 2k+ 1;
aj[(−1)k−1]

2πk for even m = 2k.

Thus the complex Fourier series of the signal x(t) is of the form

x(t) = a
π

∞∑
k=−∞

j[(−1)k − 1]
2k

ej2π2kt/P .

Observe that in this case, for any m = . . . ,−1,0,1, . . . , we have zm =
−z−m, so pairing up the exponentials with opposite signs in the ex-
ponents and using de Moivre’s formula, we get a real Fourier series
expansion for x(t) that contains only sine functions:

x(t) = a
π

[
2 sin

(
4πt
P

)
+ 2

3
sin

(
12πt
P

)
+ · · ·

]
.

Example 2.1.3 (a general expansion for a rectangular waveform which
is neither odd nor even). Consider a periodic rectangular waveform of
period P which is defined by the formula
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x(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 for 0 ≤ t < P
4 ;

a for P
4 ≤ t < P

2 ;

0 for P
2 ≤ t < P.

The signal is pictured in Figure 2.1.3 for parameter values P = 1 and
a = 1, and for simplicity’s sake, we will carry out our calculations only
in that case.

Fig. 2.1.3. A neither odd nor even rectangular waveform signal from Exam-
ple 2.1.3. The period P = 1, and the amplitude a = 1.

For m = 0,

z0 =
∫ 1/2

1/4
= 1

4
.

For m ≠ 0,

zm = |zm|eiθm =
∫ 1/2

1/4
e−j2πmtdt = 1

−j2πm[e−j2πm/2 − e−j2πm/4]

= 1
πm

e−j3πm/4
(
ejπm/4 − e−jπm/4

2j

)
= 1
πm

sin
(
π
4
m
)
e−j3πm/4.

Thus

|zm| = 1
πm

sin
(
πm

4

)
and θm = −j3πm4

,

and the complex Fourier series for x(t) is

x(t) = 1
4
+

∞∑
m=−∞,m≠0

1
πm

sin
(
πm

4

)
e−j3πm/4ej2πmt.
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Again, pairing up the complex exponentials with opposite signs in the
exponents, we obtain the real expansion in terms of the cosines, but
this time with phase shifts that depend on m:

x(t) = 1
4
+

∞∑
m=1

2
πm

sin
(
πm

4

)
cos

(
2πmt − 3πm

4

)
,

which, using the trigonometric formula cos(α + β) = cosα cosβ −
sinα sinβ, can be written as a general real Fourier series

x(t) = a0 +
∞∑
m=1

am cos(2πmt)+ bm sin(2πmt),

with

a0 = 1
4
, am = 2

πm
sin

πm
4

cos
3πm

4
,

bm = 2
πm

sin
πm

4
sin

3πm
4

.

2.2 Approximation of periodic signals by finite
Fourier sums

Up to this point the equality in the Fourier series representation

x(t) =
∞∑

m=−∞
〈x, em〉em(t)

for periodic signals, or its real version in terms of sine and/or cosine
functions, was understood only formally. But, of course, the usefulness
of such an expansion will depend on whether we can show that the
signal x(t) can be well approximated by a finite cutoff of the infinite
Fourier series, that is, on whether we can prove that

x(t) ≈ sM(t) :=
M∑

m=−M
〈x, em〉em(t) (2.2.1)

forM large enough, with the error in the above approximate equality ≈
rigorously estimated.

One can pursue here several options:

Approximation in power: Mean-square error. If the error of approxi-
mation is measured as the power of the difference between the signal
x(t) and the finite Fourier sum sM(t) in (2.2.1), then the calculation is
relatively simple and the error is often called the mean-square error.
Indeed, using the Parseval formula, we find that
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PWx−sM =
1
P

∫ P
0
|x(t)− sM(t)|2dt

= 1
P

∫ P
0

∣∣∣∣∣
∞∑

m=−∞
〈x, em〉em(t)− sM(t)

∣∣∣∣∣
2

dt

= 1
P

∫ P
0

∣∣∣∣∣∣
∑

|m|>M
〈x, em〉em(t)

∣∣∣∣∣∣
2

dt =
∑

|m|>M
|〈x, em〉|2,

which converges to 0, as M → ∞, because we assumed that the power
of the signal is finite:

PWx =
∞∑

m=−∞
|〈x, em〉|2 <∞.

Note that the unspoken assumption here is that the orthonormal sys-
tem en(t), n = 0,±1,±2, . . . , is rich enough to make the Fourier repre-
sentation possible for any finite power signal. This assumption, often
called completeness of the above orthonormal system, can actually be
rigorously proven.

Approximation at each time instant t separately. This type of approx-
imation is often called the pointwise approximation and the goal is to
verify that, for each time instant t,

lim
M→∞

sM(t) = x(t). (2.2.2)

Here the situation is delicate, as examples at the end of this section will
show, and the assumption that signal x(t) has finite power is not suf-
ficient to guarantee the pointwise approximation. Neither is a stronger
assumption that the signal is continuous. However,

if the signal is continuous and has a bounded continuous derivative,
except, possibly, at a finite number of points, then the pointwise
approximation (2.2.2) holds true.

Uniform approximation in time t. If one wants to control the error
of approximation simultaneously (uniformly) for all times t, then more
stringent assumptions on the signal are necessary. Namely, we have
the following theorem:4

4 Proofs of these two mathematical theorems and other results quoted in
this section can be found in, e.g., T. W. Körner, Fourier Analysis, Cambridge
University Press, Cambridge, UK, 1988.
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If the signal is continuous everywhere and has a bounded continu-
ous derivative except at a finite number of points, then

max
0≤t≤P

|x(t)− sM(t)| → 0 as M →∞. (2.2.3)

Note that the above statements do not resolve the question of what
happens with the finite Fourier sums at discontinuity points of a signal,
like those encountered in the rectangular waveforms in Examples 2.1.1–
2.1.3. It turns out that under the assumptions of the above-quoted
theorems, the points of discontinuity of the signal x(t) are necessarily
jumps, that is the left and right limits

x(t−) = lim
s↑t
x(s) and x(t+) = lim

s↓t
x(s) (2.2.4)

exist, and the finite Fourier sums sM(x) of x(t) converge, asM →∞, to
the average value of the signal at the jump:

lim
M→∞

sM(t) = x(t−)+ x(t+)
2

. (2.2.5)

Example 2.2.1. For the signal x(t) in Example 2.1.1, the first three
nonzero terms of its cosine expansion were

x(t) = a
2
+ a
π

(
2 cos

(
2π

t
P

)
− 2

3
cos

(
2π

3t
P

)
+ · · ·

)
.

Hence, in the case of period P = 1 and amplitude a = 1, the first
four approximating sums are as follows:

s0(t) = 1
2
, s1(t) = 1

2
+ 2
π

cos 2πt,

s2(t) = 1
2
+ 2
π

cos 2πt, s3(t) = 1
2
+ 2
π

cos 2πt − 2
3π

cos 6πt.

The graphs of s1(t) and s3(t) are compared with the original sig-
nal x(t) in Figures 2.2.1–2.2.2. Note the behavior of the Fourier sums
at the signal’s discontinuities where the Fourier sums converge to the
average value of the signal on both sides of the jump according to for-
mula (2.2.5).

Remark. A word of warning is appropriate here. Abandoning the as-
sumptions in the above two theorems leads very quickly to difficulties
with approximating the signal by its Fourier series. For example, there
are continuous signals for which, at some time instants, their finite
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Fig. 2.2.1. Graph of the Fourier sum s1(t) for the rectangular waveform signal
x(t) from Example 2.1.1, plotted against the original signal x(t).

Fig. 2.2.2. Graph of the Fourier sum s3(t) for the rectangular waveform sig-
nal x(t) from Example 2.1.1, plotted against the original signal x(t). Note
the behavior of the Fourier sum s3(t) at the signal’s discontinuities, where it
matches the average value of the signal at both sides of the jump, reflecting
the asymptotics of formula (2.2.5).

Fourier sums diverge to infinity. However, even for them, one can guar-
antee that the averages of consecutive Fourier sums converge to the
signal for each t:

s0(t)+ s1(t)+ · · · + sM(t)
M + 1

→ x(t) as M →∞.

The expression on the left-hand side of the above formula is called the
Mth Césaro average of the Fourier series. If one only assumes that the
signal x(t) is integrable, that is

∫ P
0 |x(t)|dt <∞, which is the minimum

assumption assuring that the Fourier coefficients zm = 〈x, em〉 make
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Fig. 2.2.3. Approximation of the periodic signal x(t) from Example 2.2.2 by
Fourier sums s1(t), s4(t), and s20(t). Visible is the Gibbs phenomenon demon-
strating that the shape of the Fourier sum near a point of discontinuity of the
signal does not necessarily resemble the shape of the signal itself.

sense, then one can find signals whose Fourier sums diverge to infinity,
for all time instants t.

The Gibbs phenomenon. Another observation is that the finite Fourier
sums of a signal satisfying the assumptions of the above-quoted state-
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ments, despite being convergent to the signal, may have shapes that
are very unlike the signal itself.

Example 2.2.2. Consider the signal x(t), with period P = 1, defined by
the formula

x(t) = t for − 1
2
≤ t < 1

2
.

Clearly, it is an odd signal, so z0 = 0. For m ≠ 0, integrating by parts,

zm =
∫ 1/2

−1/2
te−j2πmtdt

= t −1
j2πm

e−j2πmt
∣∣∣1/2

−1/2
− −1
j2πm

∫ 1/2

−1/2
e−j2πmtdt

= − 1
j2πm

(−1)m

because the last integral is zero. The complex Fourier expansion of
x(t) is

x(t) =
∞∑

m=−∞,m≠0

− 1
j2πm

(−1)mej2πmt,

which yields a pure sine real Fourier expansion

x(t) =
∞∑
m=1

(
− 1
j2πm

(−1)mej2πmt +− 1
j2π(−m)(−1)−mej2π(−m)t

)

=
∞∑
m=1

(−1)m+1

πm
sin(2πmt).

Figure 2.2.3 shows the approximation of the periodic signal x(t)
from Example 2.2.2 by Fourier sums s1(t), s4(t), and s20(t). Visible
is the so-called Gibbs phenomenon demonstrating that the shape of
the Fourier sum near a point of discontinuity of the signal does not
necessarily resemble the shape of the signal itself. Yet, as the order
M of the approximation increases, the oscillations move closer to the
jump so that the mean-square convergence of finite Fourier sums to the
signal x(t) still obtains.

2.3 Aperiodic signals and Fourier transforms

Periodic signals with increasing period: From Fourier series to Fourier
transform. Consider a signal xP(t) of period P and fundamental fre-
quency f0 = 1

P . We already know that such signals can be represented
by this Fourier series

xP(t) =
∞∑

m=−∞

[
1
P

∫ P/2
−P/2

x(s)e−j2πmf0sds
]
· ej2πmf0t. (2.3.1)
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Notice that, for the purposes of this section, we have written the for-
mula for the Fourier coefficients of xP(t) as an integral over a symmet-
ric interval (−P2 , P2 ] rather than the usual interval of periodicity (0, P].
Since both the signal xP(t) and complex exponentials

exp(−j2πmf0s) = cos(2πmf0s)+ j sin(2πmf0s)

are periodic with period P , any interval of length P will do.
Instead of considering aperiodic signals right off the bat, we will

make a gradual transition from the analysis of periodic to aperiodic
signals by considering what happens with the Fourier series if in the
above representation (2.3.1) period P increases to ∞; the limit case of
infinite period P = ∞would then correspond to the case of an aperiodic
signal.

To see the limit behavior of the Fourier series (2.3.1), we shall intro-
duce the following notation:

(1) The multiplicities of the fundamental frequency will become a run-
ning discrete variable fm:

fm =m · f0;

(2) The increments of the new running variable will be denoted by

Δfm = fm − fm−1 = f0 = 1
P
.

In this notation the Fourier expansion (2.2.1) can be rewritten in
the form

xP(t) =
∞∑

m=−∞

[∫ P/2
−P/2

x(s)e−j2πfmsds
]
ej2πfmtΔfm (2.3.2)

because Δfm = f0 = 1
P . Now, if the period P → ∞, which is the same

as assuming that the fundamental frequency f0 = Δfm → 0, the sum
on the right-hand side of the formula (2.3.2) converges to the integral
so that our Fourier representation (2.3.2) of a periodic signal xP(t) be-
comes the following integral identity for the aperiodic signal:

x∞(t) =
∫∞
−∞

[∫∞
−∞
x∞(s)e−j2πfsds

]
ej2πftdf . (2.3.3)

The inner transformation

X(f) =
∫∞
−∞
x(t)e−j2πftdt (2.3.4)

is called the Fourier transform of signal x(t), and the outer transform
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x(t) =
∫∞
−∞
X(f)ej2πftdf (2.3.5)

is called the inverse Fourier transform of (complex in general) function
X(f). The variable in the Fourier transform is the frequency f .

Note that since |e−j2πft| = 1, the necessary condition for the exis-
tence of the Fourier transform in the usual sense is the absolute inte-
grability of the signal: ∫∞

−∞
|x(t)|dt <∞. (2.3.6)

Later on we will try to extend its definition to some important noninte-
grable signals.

Example 2.3.1. Let us trace the above limit procedure in the case of an
aperiodic signal x∞(t) = e−|t|. If this signal is approximated by periodic
signals with period P obtained by truncatingx(t) to the interval [−P2 , P2 )
and extending it periodically, i.e.,

xP(t) = e−|t| for − P
2
≤ t < P

2
,

then the Fourier coefficients of the latter are, remembering that P = 1
f0

,

zm,P = 1
P

∫ P/2
−P/2

e−|t|e−j2πmt/Pdt

= 2f0

1+ (2πmf0)2
(1− e−1/(2f0)(cos(2πmf0)

+ 2πmf0 sin(2πmf0))).

Since the original periodic signal xP(t) was even, the Fourier coeffi-
cients zm = z−m, so that the discrete spectrum of xP(t) is symmetric.
Now, as P →∞, that is f0 = 1

P → 0, the exponentional term e−1/(2f0) → 0,
and with f0 = Δf , mf0 = f , we get that

zm,P → 2
1+ (2πf)2df .

Thus the Fourier transform of the aperiodic signal x∞(t) is

X∞(f ) = 2
1+ (2πf)2 .

Taking the inverse Fourier transform, we verify5 that∫∞
−∞

2
1+ (2πf)2 e

j2πftdf = e−|t|.

5 When faced with integrals of this sort, the reader is advised to consult a
book of integrals, or a computer package such as Mathematica or MAPLE.
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Fig. 2.3.1. Adjusted Fourier coefficients Zm,P ·P , shown as functions of contin-
uous parameter m for graphical convenience, approach the Fourier transform
X∞(f ) of the aperiodic signal x∞(t) = e−|t|. The values of P , from top to
bottom, are 1, 2, 4, 8.

Figure 2.3.1 illustrates the convergence, as period P increases, of
Fourier coefficients zm,P to the Fourier transform X∞(f ).
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2.4 Basic properties of the Fourier transform

The property that makes the Fourier transform of signals so useful
is its linearity , that is the Fourier transform of a linear composition
αx(t)+βy(t) of signals x(t) and y(t) is the same linear composition
αX(f) + βY(f) of their Fourier transforms. To facilitate notation we
will often denote the fact that X(f) is the Fourier transform of signal
x(t) by writing x(t) �→ X(f). So

αx(t)+ βy(t) �−→ αX(f)+ βY(f). (2.4.1)

The proof is instantaneous using linearity of the integral.
The familiar Parseval formula for periodic signals carries over in

the form

Ex =
∫∞
−∞
|x(t)|2dt =

∫∞
−∞
|X(f)|2df . (2.4.2)

That is, the total energy of the signal can be calculated as the integral
of the square of the modulus of its Fourier transform. An observant
reader will see immediately that integrability of the signal necessary
to define the Fourier transform is not sufficient for the validity of the
Parseval formula (2.4.2) as the finiteness of the integral

∫∞
−∞ |x(t)|dt

does not imply that the signal has finite energy Ex .
Parseval’s formula also has the following useful extension:

∫∞
−∞
x(t) ·y(t)dt =

∫∞
−∞
X(f) · Y∗(f )df . (2.4.3)

In the context of transmission of signals through linear systems the
critical property of the Fourier transform is that the convolution [x ∗
y](t) of signals x(t) and y(t),

[x ∗y](t) =
∫∞
−∞
x(s)y(t − s)ds, (2.4.4)

a fairly complex operation, has the Fourier transform that is simply the
product of the corresponding Fourier transforms

[x ∗y](t) �−→ X(f) · Y(f). (2.4.5)

Indeed,
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Table 2.4.1. Fourier transform properties.

Signal Fourier Transform

Linearity

αx(t)+ βy(t) �−→ αX(f)+ βY(f)

Convolution

[x ∗y](t) �−→ X(f) · Y(f)

Differentiation

x(n)(t) �−→ (j2πf)nX(f)

Time reversal

x(−t) �−→ X(−f)

Time delay

x(t − t0) �−→ X(f) · e−j2πt0f

Frequency translation

x(t) · ej2πf0t �−→ X(f − f0)

Frequency differentiation

(−j)ntnx(t) �−→ (2π)−1X(n)(f )

Frequency convolution

x(t)y(t) �−→ [X ∗ Y](f)

∫∞
−∞
[x ∗y](t)e−j2πftdt

=
∫∞
−∞

[∫∞
−∞
x(s)y(t − s)ds

]
e−j2πftdt

=
∫∞
−∞

∫∞
−∞
y(t − s)e−j2πf(t−s)x(s)e−j2πfsdsdt

=
∫∞
−∞
y(u)e−j2πfudu ·

∫∞
−∞
x(s)e−j2πfsds = X(f) · Y(f),

where the penultimate equality resulted from the substitution t−s = u.
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Since many electrical circuits are described by differential equations,
the behavior of the Fourier transform under differentiation of the signal
is another important issue. Here the calculation is also direct:

∫∞
−∞
x′(t)e−j2πftdt = x(t)e−j2πft|∞−∞ + j2πf

∫∞
−∞
x(t)e−j2πftdt

= 0+ j2πfXZ(f).

The first term is 0 because the signal’s absolute integrability (remem-
ber, we have to assume it to guarantee the existence of the Fourier
transform) implies that x(∞) = x(−∞) = 0. Thus we have a rule

x′(t) �−→ (j2πf) ·X(f). (2.4.6)

The above and other, simple-to-derive rules are summarized in Ta-
ble 2.4.1.

Example 2.4.1. Consider the signal x(t) = e−πt2
, which has the familiar

bell shape. Its Fourier transform is

X(f) =
∫∞
−∞
e−πt

2−j2πftdt =
∫∞
−∞
e−π(t+jf)

2
e−πf

2
dt = e−πf 2

,

because
∫∞
−∞ e−π(t+jf)

2dt = ∫∞
−∞ e−πt

2dt = 1. Indeed, changing to polar
coordinates r , θ, we can evaluate easily that

(∫∞
−∞
e−πt

2
dt
)2

=
∫∞
−∞
e−πt

2
dt ·

∫∞
−∞
e−πs

2
ds

=
∫∞
−∞

∫∞
−∞
e−π(t

2+s2)dtds =
∫ 2π

0
dθ

∫∞
0
e−πr

2
rdr = 1.

Thus the signal x(t) = e−πt2
has the remarkable property of hav-

ing the Fourier transform of exactly the same functional shape. This
fact has profound consequences in mathematical physics and Fourier
analysis.

2.5 Fourier transforms of some nonintegrable signals;
Dirac delta impulse

There exist important nonintegrable signals, such as x(t) = constant,
or x(t) = cos t that are not absolutely integrable over the whole time-
line, and the usual calculus does not permit us to define their Fourier
transforms. However, to cover these and other important cases, one
can extend the standard calculus by introduction of the so-called Dirac
delta “function” δ(f) which is an infinitely high but infinitely narrow
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spike located at f = 0 which, very importantly, has the “area,” that is
the “integral,” equal to 1.6

Intuitively, but one can also make this approach rigorous, the best
way to think about the Dirac delta is as a limit

δ(f) = lim
ε→0

rε(f ), (2.5.1)

where

rε(f ) =
{ 1

2ε for −ε ≤ f ≤ +ε;
0 elsewhere

is a family, indexed by ε, of rectangular functions all of which have area
1 underneath; see Figure 2.5.1.

Fig. 2.5.1. Approximation of the Dirac delta δ(f) by rectangular functions
rε(f ) for ε = 1, 1

3 , and 1
9 .

Obviously the choice of the rectangular functions is not unique here.
Any sequence of nonnegative functions which integrate to 1 over the
whole real line and converge to zero pointwise at every point different
from the origin would do. For example, as approximations to the Dirac
delta we can also take the family of double-sided exponential functions
of variable x,

1
2a

exp
( |f |
a

)
,

indexed by parameter a → 0+. Three functions of this family, for pa-
rameter values a = 1, 1

3 ,
1
9 , are pictured in Figure 2.5.2.

6 Of course, one can similarly introduce the time domain Dirac delta δ(t), in
which case it will be called the Dirac delta impulse.
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Fig. 2.5.2. Approximation of the Dirac delta δ(f) by two-sided exponential
functions ( 1

2a) exp(−|f |
a ) for a = 1, 1

3 , and 1
9 .

The Dirac delta is characterized by its “probing property” (also
known as the “sifting property”):

∫∞
−∞
δ(f)X(f)df = X(0); (2.5.2)

integrating a function against the Dirac delta produces a value of the
function at f = 0. Operationally, all we need is the formula (2.5.2),
which can actually be taken as a formal definition of the Dirac delta.

The “probing” formula (2.5.2) can be justified by remembering our
intuitive definition (2.5.1): Indeed, if functionX(f) is regular enough, then

∫∞
−∞
δ(f)X(f)df = lim

ε→0

∫∞
−∞
rε(f )X(f)df

= lim
ε→0

1
2ε

∫ ε
−ε
X(f)df = X(0)

in view of the fundamental theorem of calculus.
Other properties of the Dirac delta follow immediately:

∫∞
−∞
δ(f − f0)X(f)df = X(f0), (2.5.3)∫ ε

−ε
δ(f )df = 1, (2.5.4)

and
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−∞
δ(f)X(f)df = 0 if X(0) = 0, (2.5.5)

The last property is often intuitively stated as

δ(f) = 0 for f ≠ 0. (2.5.6)

Equipped with the Dirac delta technique, we can immediately obtain the
Fourier transform of some nonintegrable signals.

Example 2.5.1. Finding the Fourier transform of the harmonic oscilla-
tion signal x(t) = ej2πf0t is impossible by direct integration of∫∞

−∞
ej2πf0te−j2πftdt.

But one immediately notices that the inverse transform of the shifted
Dirac delta is, by (2.5.2),∫∞

−∞
δ(f − f0)ej2πftdf = ej2πf0t.

Thus the Fourier transform of x(t) = ej2πf0t is δ(f −f0). In particular,
the Fourier transform of a constant 1 is δ(f) itself.

Table 2.5.1 lists Fourier transforms of some common signals. Here
and subsequently, u(t) denotes Heaviside’s unit step function, equal
to 0 for t < 0 and 1 for t ≥ 0.

Example 2.5.2. The Fourier transform of the signal x(t) = cos 2πt can
be found in a similar fashion, as direct integration of∫∞

−∞
cos (2πt)e−j2πftdt

is impossible. But one observes that the inverse transform

∫∞
−∞

1
2
(δ(f − 1)+ δ(f + 1))ej2πftdf = ej2πt + e−j2πt

2
= cos 2πt,

so the Fourier transform of cos 2πt is δ(f−1)+δ(f+1)
2 .

A sample of the calculus of Dirac delta “functions.” There exists a
large theory of Dirac delta “functions,” and of similar mathematical ob-
jects called distributions (in the sense of Schwartz),7 which develops

7 For a more complete exposition of the theory and applications of the Dirac
delta and related “distributions,” see A. I. Saichev and W. A. Woyczyński,
Distributions in the Physical and Engineering Sciences, Vol. 1: Distributional
Calculus, Integral Transforms, and Wavelets, Birkhäuser Boston, Cambridge,
MA, 1998.
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Table 2.5.1. Common Fourier transforms.

Signal Fourier Transform

e−a|t| �−→ 2a
a2 + (2πf)2 , a > 0

e−πt2 �−→ e−πf
2

⎧⎨
⎩1 for |t| ≤ 1

2 ;

0 for |t| > 1
2 .

�−→ sinπf
πf

⎧⎨
⎩1− |t| for |t| ≤ 1;

0 for |t| > 1.
�−→ sin2πf

π2f 2

ej2πf0t �−→ δ(f − f0)

δ(t) �−→ 1

cos 2πf0t �−→ δ(f + f0)+ δ(f − f0)
2

sin 2πf0t �−→ jδ(f + f0)− δ(f − f0)
2

u(t) =
⎧⎨
⎩0 for t < 0;

1 for t ≥ 0.
�−→ 1

2
δ(f)+ 1

j2πf

t ·u(t) �−→ j
4π

δ′(f )− 1
4π2f 2

e−at ·u(t) �−→ 1
a+ j2πf , a > 0

tools that help carry out operations such as distributional differentia-
tion, distributional multiplication, etc. To give the reader a little taste of
it let us start here with the classical integration-by-parts formula which,
for usual, vanishing at f = ±∞ functions X(f) and Y(f), states that∫∞

−∞
X(f) · Y ′(f )df = −

∫∞
−∞
X′(f ) · Y(f)df . (2.5.7)

This identity, applied formally, can be used as the definition of the
derivative δ′(f ) of the Dirac delta by assigning to it the following prob-
ing property:∫∞

−∞
X(f) · δ′(f )df = −

∫∞
−∞
X′(f ) · δ(f)df = −X′(0). (2.5.8)
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Symbolically, we can write

X(f) · δ′(f ) = −X′(f ) · δ(f).

In the particular case X(f) = f (here, the function has to be thought of
as a limit of functions vanishing at ±∞), we get

f · δ(f) = −δ(f),

a useful computational formula which can be employed, for example,
to justify the next to the last entry in the above table of common Fourier
transforms.

2.6 Discrete and fast Fourier transforms

In practice, for many signals we only obtain the value of the signal at
discrete times, but we can imagine that the signal continues between
these times. Thus we can approximate the integrals involved in calcula-
tion of the Fourier transforms in the same way as one does in numerical
integration in calculus, using left-handed rectangles, trapezoids, Simp-
son’s rule, etc. We use the simplest approximation, which is equivalent
to assuming that the signal is constant between the times at which we
sample (and rectangular approximations of the area under the func-
tion).

Therefore, suppose that the sampling period is Ts , with the sampling
frequency fs = 1

Ts , so that the signal’s sample is given in the form of a
sequence

xk = x(kTs), k = 0,1,2, . . . , N − 1, (2.6.1)

and we interpret it as a periodic signal with period

P = 1
f0
= NTs = N

fs
, (2.6.2)

The integral in formula (2.3.1) approximating the Fourier transform of
the signal x(t) at discrete frequencies mf0, m = 0,1,2, . . . , N − 1, can
now, in turn, be approximated by the sum

Xm = X(mf0) = 1
P

N−1∑
k=0

x(kTs)e−j2πmf0kTs · Ts

= 1
N

N−1∑
k=0

xke−j2πmk/N (2.6.3)

in view of the relationships (2.6.2). The sequence
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Xm, m = 0,1,2, . . . , N − 1, (2.6.4)

is traditionally called the discrete Fourier transform (DFT ) of the signal
sample xk, k = 0,1,2, . . . , N − 1, described in (2.6.1).

Note that the calculation of the DFT via formula (2.6.3) calls for N2

multiplications xk · e−j2πmk/N , m,k = 0,1,2, . . . , N −1. One often says
that the formula’s computational (algorithmic) complexity is of the or-
der N2. This computational complexity, however, can be dramatically
reduced by cleverly grouping terms in the sum (2.6.3). The technique,
which usually is called the Fast Fourier Transform (FFT ), was known
to Carl Friedrich Gauss at the beginning of the 19th century, but was
rediscovered and popularized by Cooley and Tukey in 1965.8 We will
explain it in the special case when the signal’s sample size is a power
of 2.

So assume that N = 2n, and letωN = e−j2π/N . It is called a complex
Nth root of unity because ωN

N = 1. Obviously, for M = N
2 , we have

ω(2k)m
2M =ωkm

M , ωM+m
M =ωm

M , and ωM+m
2M = −ωm

2M. (2.6.5)

The crucial observation is to recognize that the sum (2.6.3) can be split
into two pieces

Xm = 1
2
(Xeven

m +Xodd
m ·ωm

2M), (2.6.6)

where

Xeven
m = 1

M

M−1∑
k=0

x2kωkm
M and Xodd

m = 1
M

M−1∑
k=0

x2k+1ωkm
M , (2.6.7)

and that, in view of (2.6.5),

Xm+M = 1
2
(Xeven

m −Xodd
m ·ωm

2M). (2.6.8)

As a result, only values Xm, m = 0,1,2, . . . , M − 1 = N
2−1 , have to

be calculated by laborious multiplication. The values Xm, m = M,M +
1, . . . , 2M−1 = N−1, are simply obtained by formula (2.6.8). The above
trick is then repeated at levels N

22 , N23 , . . . ,2. If we denote by CC(n) the
computational complexity of the above scheme, that is the number of
multiplications required, we see that

CC(n) = 2 CC(n− 1)+ 2n−1,

with the first term on the right being the result of halving the size of
the sample at each step, and the second term resulting from multiplica-
tions of Xodd

m byωm
2M in (2.6.6) and (2.6.8). Iterating the above recursive

relation, one obtains that
8 J. W. Cooley and O. W. Tukey, An algorithm for the machine calculation of

complex Fourier series, Math. Comput., 19 (1965), 297–301.
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CC(n) = 2n−1 log2 2n = 1
2
N log2N, (2.6.9)

a major improvement over the N2 order of the computational complex-
ity of the straightforward calculation of DFT.

2.7 Problems and exercises

2.7.1. Prove that the system of real harmonic oscillations

sin(2πmf0t), cos(2πmf0t), m = 0,1,2, . . . ,

form an orthogonal system. Is the system normalized? Use the
above information to derive formulas for coefficients am,bm,
in the expansion (1.2.4). Model this derivation on (2.1.4).

2.7.2. Using the results from Problem 2.7.1, find formulas for ampli-
tudes cm and phases θm in the expansion (1.2.1).

2.7.3. Find a general formula for the coefficients cm in the cosine
Fourier expansion for the even rectangular waveform x(t) from
Example 2.1.1.

2.7.4. Find a general formula for the coefficients bm in the sine Fourier
expansion for the odd rectangular waveform x(t) from Exam-
ple 2.1.2.

2.7.5. Carry out calculations of Example 2.1.3 in the case of arbitrary
period P and amplitude a.

2.7.6. Find three consecutive approximations by finite Fourier sums of
the signal x(t) from Example 2.1.3. Graph them and compare
the graphs with the graph of the original signal.

2.7.7. Find the complex and real Fourier series for the periodic signal
with period P defined by the formula

x(t) =
{
a for 0 ≤ t < P

2 ;

−a for P
2 ≤ t < P.

In the case P = π and a = 2.5 produce graphs comparing the
signal x(t) and its finite Fourier sums of order 1, 3, and 6.

2.7.8. Find the complex and real Fourier series for the periodic signal
with period P = 1 defined by the formula

x(t) =
{

1− t
2 for 0 ≤ t < 1

2 ;

0 for 1
2 ≤ t < 1.

Produce graphs comparing the signal x(t) and its finite Fourier
sums of order 1, 3, and 6.
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2.7.9. Find the complex and real Fourier series for the periodic signal
x(t) = | sin t|. Produce graphs comparing the signal x(t) and
its finite Fourier sums of order 1, 3, and 6.

2.7.10. Find the complex and real Fourier series for the periodic signal
with period P = π defined by the formula

x(t) = et for −π
2
< t ≤ π

2
.

Produce graphs comparing the signal x(t) and its finite Fourier
sums of order 1, 3, and 6.

2.7.11. Find an example of a signal x(t) that is absolutely integrable,
i.e.,

∫∞
−∞ |x(t)|dt <∞ but has infinite energy Ex =

∫∞
−∞ |x(t)|2dt,

and conversely, find an example of a signal which has finite en-
ergy but is not absolutely integrable.

2.7.12. Provide a detailed verification of Fourier transform properties
listed in Table 2.4.1.

2.7.13. Provide a detailed verification of the Fourier transforms table
(Table 2.5.1). Utilize the fact that the derivative δ′(f ) of the
Dirac delta impulse δ(f) is defined by the integration-by-parts
formula ∫∞

−∞
δ′(f )X(f)df = −

∫∞
−∞
δ(f)X′(f )df

for any smooth function X(f).
2.7.14. Find the Fourier transform of the periodic signal

x(t) =
∞∑

m=−∞
zmej2πmf0t.

2.7.15. Find the Fourier transform of the signal x(t) = tu(t), where
u(t) is the unit step function equal to 0 for t < 0 and 1 for
t ≥ 0.

2.7.16. Find the Fourier transform of the signals given below. Graph
both the signal and its Fourier transform:

(a) x(t) = 1
1+ t2

, −∞ < t <∞,

(b) e−t
2/2, −∞ < t <∞,

(c) x(t) =
{

sin t · e−t for t ≥ 0;

0 for t < 0.

(d) x(t) = y∗z(t), y(t) = u(t)−u(t−1), z(t) = e−|t|,
where u(t) is the unit step signal = 0 for negative t and = 1 for
t ≥ 0.
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2.7.17. Find the convolution (x∗x)(t) if x(t) = u(t)−u(t−1), where
u(t) is the unit step function. First, use the original definition
of the convolution and then verify your result using the Fourier
transform method.

2.7.18. Utilize the Fourier transform (in the space variable z) to find a
solution of the diffusion (heat) partial differential equation

∂u
∂t

= σ ∂
2u
∂z2

,

for a function u(t, z) satisfying the initial condition u(0, z) =
δ(z). The solution of the above equation is often used to de-
scribe the temporal evolution of the density of a diffusing sub-
stance.9

2.7.19. Assuming the validity of the Parseval formula
∫∞
−∞ |x(t)|2dt =∫∞

−∞ |X(f)|2df , prove its extended version
∫∞
−∞ x(t)·y∗(t)dt =∫∞

−∞X(f)·Y∗(f )df . Hint : In the case of real-valued x(t), y(t),
X(f), and Y(f), it suffices to utilize the obvious identity 4xy =
(x+y)2−(x−y)2, but in the general, complex case, first verify,
and then apply the following polarization identity :

4xy = |x +y|2 − |x −y|2 + j(|x + jy|2 − |x − jy|2).

Remember that the modulus square |z|2 = zz∗.

9 It was the search for solutions to this problem that induced Jean-Baptiste
Fourier (born March 21, 1768, in Auxerre, France; died May 16, 1830, in Paris)
to introduce in his treatise Théorie analytique de la chaleur (The Analytical
Theory of Heat ; 1822), the tools of infinite functional series and integral
transforms now known under the names of Fourier series and transforms.
Fourier was also known as an Egyptologist and administrator. The modern
author of research papers, impatient with delays in publication of his/her
work, should find solace in the fact that the appearance of Fourier’s great
memoir was held up by the referees for 15 years; it was first presented to
the Institut de France on December 21, 1807.




