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Description of Signals

Signals are everywhere, literally. The universe is bathed in the back-
ground radiation, the remnant of the original Big Bang, and as your eyes
scan this page, a signal is being transmitted to your brain where differ-
ent sets of neurons analyze it and process it. All human activities are
based on processing and analysis of sensory signals, but the goal of this
book is somewhat narrower. The signals we will be mainly interested
in can be described as data resulting from quantitative measurements
of some physical phenomena, and our emphasis will be on data that
display randomness that may be due to different causes, such as errors
of measurements, algorithmic complexity, or the chaotic behavior of
the underlying physical system itself.

1.1 Types of random signals

For the purposes of this book, signals will be functions of real variable
t interpreted as time. To describe and analyze signals we will adopt the
functional notation: x(t)will denote the value of a nonrandom signal at
time t. The values themselves can be real or complex numbers, in which
case we will symbolically write x(t) ∈ R, or, respectively, x(t) ∈ C. In
certain situations it is necessary to consider vector-valued signals with
x(t) ∈ Rd, where d stands for the dimension of the vector x(t) with d
real components.

Signals can be classified into different categories depending on their
features. For example, there are the following:

• Analog signals are functions of continuous time and their values form
a continuum. Digital signals are functions of discrete time dictated by
the computer’s clock, and their values are also discrete and dictated
by the resolution of the system. Of course, one can also encounter
mixed-type signals which are sampled at discrete times but whose
values are not restricted to any discrete set of numbers.
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Fig. 1.1.1. Signalx(t) = sin(t)+ 1
3 cos(3t) [V] is analog and periodic with period

P = 2π [s]. It is also deterministic.

• Periodic signals are functions whose values are periodically repeated.
In other words, for a certain number P > 0, we have x(t + P) = x(t)
for any t. The number P is called the period of the signal . Aperiodic
signals are signals that are not periodic.

• Deterministic signals are signals not affected by random noise; there
is no uncertainty about their values. Stochastic or random signals in-
clude an element of uncertainty; their analysis requires use of statis-
tical tools, and providing such tools is the principal goal of this book.

For example, signal x(t) = sin(t) + 1
3 cos(3t) [V] shown in Fig-

ure 1.1.1 is deterministic, analog, and periodic with period P = 2π [s].
The same signal, digitally sampled during the first five seconds at time
intervals equal to 0.5 s, with resolution 0.01 V, gives tabulated values:

t 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
x(t) 0.50 0.51 0.93 1.23 0.71 −0.16 0.51 −0.48 −0.78 −1.21

This sampling process is called the analog-to-digital conversion:
given the sampling period T and the resolution R, the digitized signal
xd(t) is of the form

xd(t) = R
⌊
x(t)
R

⌋
for t = T ,2T , . . . , (1.1.1)

where the (convenient to introduce here) “floor” function �a� is defined
as the largest integer not exceeding real numbera. For example, �5.7� =
5, but �5.0� = 5 as well.
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Fig. 1.1.2. Signalx(t) = sin(t)+ 1
3 cos(3t) [V] digitally sampled at time intervals

equal to 0.5 s with resolution 0.01 V.
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Fig. 1.1.3. Signal x(t) = sin(t)+ 1
3 cos(3t) [V] in the presence of additive ran-

dom noise with average amplitude of 0.2 V. The magnified noise component
itself is pictured underneath the graph of the signal.

Note the role the resolution R plays in the above formula. Take,
for example, R = 0.01. If the signal x(t) takes all the continuum of
values between m = mint x(t) and M = maxt x(t), then x(t)

0.01 takes all

the continuum of values between 100m and 100M , but � x(t)0.01 � takes
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Fig. 1.1.4. Several computer-generated trajectories (sample paths) of a random
signal called the Brownian motion stochastic process or the Wiener stochastic
process. Its trajectories, although very rough, are continuous. It is often used
as a simple model of diffusion. The random mechanism that created different
trajectories was the same.

only integer values between 100m and 100M . Finally, 0.01� x(t)0.01 � takes
as its values only all the discrete numbers between m and M that are
0.01 apart.

Randomness of signals can have different origins, such as the quan-
tum uncertainty principle, the computational complexity of algorithms,
the chaotic behavior in dynamical systems, or the random fluctuations
and errors in measurement of outcomes of independently repeated ex-
periments.1 The usual way to study them is via their aggregated statis-
tical properties. The main purpose of this book is to introduce some
of the basic mathematical and statistical tools useful in the analysis
of random signals that are produced under stationary conditions, that
is, in situations where the measured signal may be stochastic and con-
tain random fluctuations, but the basic underlying random mechanism
producing it does not change over time; think here about outcomes of
independently repeated experiments, each consisting of tossing a sin-
gle coin.

At this point, to help the reader visualize the great variety of random
signals appearing in the physical sciences and engineering, it is worth-
while to review a gallery of pictures of random signals, both experi-
mental and simulated, presented in Figures 1.1.4–1.1.8. The captions
explain the context in each case.

1 See, e.g., M. Denker and W. A. Woyczyński, Introductory Statistics and Ran-
dom Phenomena: Uncertainty, Complexity, and Chaotic Behavior in Engi-
neering and Science, Birkhäuser Boston, Cambridge, MA, 1998.
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Fig. 1.1.5. Several computer-generated trajectories (sample paths) of random
signals called Lévy stochastic processes with parameter α = 1.5, 1, and 0.75,
respectively (from top to bottom). They are often used to model anomalous
diffusion processes wherein diffusing particles are also permitted to change
their position by jumping. Parameter α indicates the intensity of jumps of
different sizes. Parameter value α = 2 corresponds to the Wiener process
with trajectories that have no jumps. In each figure, the random mechanism
that created different trajectories was the same. However, different random
mechanisms led to trajectories presented in different figures.
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Fig. 1.1.6. Computer simulation of the evolution of a passive tracer density in
a turbulent Burgers velocity field with random initial distribution and random
“shot-noise” initial velocity data. The simulation was performed for 100,000
particles. The consecutive frames show the location of passive tracer particles
at times t = 0.0,0.3,0.6,1.0,2.0,3.0.

The signals shown in Figures 1.1.4–1.1.5 are, obviously, not station-
ary and have a diffusive character. However, their increments (differ-
entials) are stationary and, in Chapter 9, they will play an important
role in constructing the spectral representation of stationary signals
themselves. The signal shown in Figure 1.1.4 can be interpreted as a
trajectory , or sample path, of a random walker moving in discrete time
steps up or down a certain distance with equal probabilities 1

2 and 1
2 .
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Fig. 1.1.7. Some deterministic signals (in this case, the images) transformed by
deterministic systems can appear random. The above picture shows a series
of iterated transformations of the original image via a fixed linear 2D mapping
(matrix). The number of iterations applied is indicated in the top left corner
of each image. The curious behavior of iterations, the original image first dis-
solving into seeming randomness only to return later to an almost original
condition, is related to the so-called ergodic behavior. Thus irreverently trans-
formed is Professor Henri Poincaré (1854–1912) of the University of Paris, the
pioneer of ergodic theory of stationary phenomena. (From Scientific American;
reproduced with permission. Copyright 1986 James P. Crutchfield.)

However, in the picture these trajectories are viewed from far away, and
in accelerated time, so that both time and space appear continuous.
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Fig. 1.1.8. A signal (again, an image) representing the large-scale and appar-
ently random distribution of mass in the universe. The data come from the
APM galaxy survey and shows more than 2 million galaxies in a section of sky
centered on the South Galactic Pole. The so-called adhesion model of the large-
scale mass distribution in the universe uses the Burgers equation to model the
relevant velocity fields.

In certain situations the randomness of the signal is due to uncer-
tainty about initial conditions of the underlying phenomenon which
otherwise can be described by perfectly deterministic models such as
partial differential equations. A sequence of pictures in Figure 1.1.6
shows the evolution of the system of particles with an initially random
(and homogeneous in space) spatial distribution. The particles are then
driven by the velocity field �v(t, �x) ∈ R2 governed by the so-called 2D
Burgers equation2

∂�v(t, �x)
∂t

+ (�v(t, �x) · ∇)�v(t, �x) = D
(
∂2�v(t, �x)
∂x1

+ ∂
2�v(t, �x)
∂x2

)
, (1.1.2)

where �x = (x1, x2), the nabla operator∇ = ∂
∂x1
�i+ ∂

∂x2
�j, and the positive

constantD is the coefficient of diffusivity. The inital velocity field is also
assumed to be random.

1.2 Time domain and frequency domain descriptions

A periodic signal with period P (measured, say, in seconds [s]) can be
written in the form of an infinite series

x(t) = c0 +
∞∑
m=1

cm cos(2πmf0t + θm), (1.2.1)

2 See, e.g., W. A. Woyczyński, Burgers–KPZ Turbulence–Göttingen Lectures,
Springer-Verlag, Berlin, New York, 1998.
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where f0 = 1
P [Hz] is the fundamental frequency of the signal. This

expansion, called the Fourier expansion of the signal, is the basic tool in
the analysis of random signals; it will be reviewed in detail in Chapter 2.
The components

cm cos(2πmf0t + θm), m = 2,3, . . . ,

are called higher harmonics of the signal with the amplitudes cm, higher
frequencies mf0, and the corresponding phase shifts θm. In the case
of zero phase shifts, θm = 0, the collection of pairs

(mf0, cm), m = 1,2, . . . ,

or, equivalently, their graphical representation, is called the frequency
spectrum of the signal. Note that, for a periodic signal, the spectrum
is always concentrated on a discrete set of frequencies, namely, the
multiplicities of the fundamental frequency f0. For example, the signal

x(t) =
12∑
m=1

1
m2

cos(2πmt), (1.2.2)

shown in Figure 1.2.1, has the fundamental frequency 1 Hertz (Hz), i.e.,
one cycle per second, and the frequency spectrum

cm =
{
m−2 for m = 1,2, . . . ,12,
0 for m = 13,14, . . .

(1.2.3)

shown in Figure 1.2.2.

Fig. 1.2.1. Signal x(t) =∑12
m=1m−2 cos(2πmt) in its time domain representa-

tion.
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Fig. 1.2.2. Signal x(t) =∑12
m=1m−2 cos(2πmt) in its frequency domain (spec-

tral) representation.

If the signal is studied only in a finite time interval [0, P], it can
always be treated as a periodic signal with period P since one can extend
its definition periodically to the whole time line by copying its waveform
from the interval [0, P] to intervals [P,2P], [2P,3P], and so on.

Given the familar trigonometric formulas

cos(α+ β) = cosα cosβ− sinα sinβ

and de Moivre’s formulas

ejα = cosα+ j sinα, j =
√
−1, cosα = 1

2
(ejα + e−jα),

which tie together the trigonometric functions of the real variable α
with exponential functions of the imaginary variable jα, the spectral
representation of the signal can be rewritten either in the real phase-
less form

x(t) = a0 +
∞∑
m=1

am cos(2πmf0t)+
∞∑
m=1

bm sin(2πmf0t), (1.2.4)

with coefficients in representations (1.2.4) and (1.2.1) connected by the
formulas

a0 = c0, am = cm cosθm, bm = −cm sinθm, m = 1,2, . . . ,

or in the complex exponential form

x(t) =
∞∑

m=−∞
zmej2πmf0t, (1.2.5)



1.2 Time domain and frequency domain descriptions 11

Table 1.2.1. Trigonometric formulas and complex numbers.

sin(α± β) = sinα cosβ± sinβ cosα;

cos(α± β) = cosα cosβ∓ sinα sinβ;

sinα+ sinβ = 2 sin
α+ β

2
cos

α− β
2

;

sinα− sinβ = 2 cos
α+ β

2
sin

α− β
2

;

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β
2

;

cosα− cosβ = −2 sin
α+ β

2
sin

α− β
2

;

sin2α− sin2 β = cos2 β− cos2α = sin(α+ β) sin(α− β);
cos2α− sin2 β = cos2 β− sin2α = cos(α+ β) cos(α− β);

sinα cosβ = 1
2
[sin(α+ β)+ sin(α− β)];

cosα cosβ = 1
2
[cos(α+ β)+ cos(α− β)];

sinα sinβ = 1
2
[cos(α− β)− cos(α+ β)];

j =
√
−1, j4m = 1, j4m+1 = j, j4m+2 = −1, j4m+3 = −j,

where m is an integer;

z = a+ jb, a = Rez, b = Imz, z∗ = a− jb;

|z| =
√
a2 + b2 = √z · z∗;

Rez = z + z∗
2

= |z| cosθ, Imz = z − z∗
2j

= |z| sinθ,

where

θ = Argz = arctan
Imz
Rez

is the argument of z.

Table 1.2.2. De Moivre formulas.

eβ+jα = eβ(cosα+ j sinα),

cosα = ejα + e−jα
2

, sinα = ejα − e−jα
2j

,

(cosθ + j sinθ)n = cosnθ + j sinnθ.
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with coefficients (amplitudes) in representations (1.2.5) and (1.2.4) con-
nected by the formulas

a0 = z0, am = zm + z−m, bm = j(zm − z−m), m = 1,2, . . . .

For the complex exponential form (1.2.5) to represent a real-valued
signal, that is, fora0, am, bm, given by the above formulas to be real, the
condition z−m = z∗m, where the asterisk denotes the complex conjugate,
must be satisfied.

Nonperiodic signals can also be analyzed in terms of their spectra,
but those spectra are not discrete. We will study them later on.

At the first sight, the above introduction of complex numbers and
functions of complex numbers may seem as an unnecessary complica-
tion in the analysis of signals. However, as we will see in subsequent
chapters, the calculations within the theory of random signals actu-
ally become simpler and more transparent if one operates in the com-
plex domain. The book assumes familiarity with elementary properties
of trigonometric functions and complex numbers. However, for the
reader’s peace of mind, and by popular demand of the readers of the
preliminary versions of this book, we summarize the basic formulas in
this area in the table below and include a few exercises in Section 1.4
to review basic operational procedures on complex numbers.

1.3 Characteristics of signals

Several physical characteristics of signals are of primary interest.

• The time average of the signal : For analog, continuous-time signals,
the time average is defined by the formula

xav = lim
T→∞

1
T

∫ T
0
x(t)dt, (1.3.1)

and for digital, discrete-time signals which are defined only for the
time instants t = n, n = 0,1,2, . . . , N−1, it is defined by the formula

xav = 1
N

N−1∑
n=0

x(nT). (1.3.2)

For periodic signals, it follows from (1.3.1) that

xav = 1
P

∫ P
0
x(t)dt, (1.3.3)

so that, for signals described by their Fourier expansions, (1.2.1) and
(1.2.4)–(1.2.5), the time averages are
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xav = c0 = a0 = z0,

because the integral of the sine and cosine functions over the full
period is 0.

• Energy of the signal : For an analog signal x(t), the energy is

Ex =
∫∞

0
|x(t)|2dt, (1.3.4)

and for digital signals,

Ex = T
∞∑
n=0

|x(nT)|2. (1.3.5)

Remember that, since in what follows it will be convenient to con-
sider complex-valued signals, the above formulas include notation
for the square of the modulus of a complex number: |z|2 = (Rez)2+
(Imz)2 = z · z∗.

• Power of the signal : Again, for an analog signal, the power is

PWx = lim
T→∞

1
T

∫ T
0
|x(t)|2dt, (1.3.6)

and for a digital signal,

PWx = lim
N→∞

1
NT

N−1∑
n=0

|x(nT)|2 · T . (1.3.7)

As a consequence, for a periodic signal with period P ,

PWx = 1
P

∫ P
0
|x(t)|2dt. (1.3.8)

Sometimes it is convenient to consider signals defined for all time
instants t, −∞ < t < +∞, rather than just for positive t. In such cases,
all of the above definitions have to be adjusted in obvious ways, replac-
ing the one-sided integrals and sums by two-sides integrals and sums,
and adjusting the averaging constants correspondingly.

1.4 Problems and exercises

1.4.1. Find the real and imaginary parts of j+3
j−3 ; (1+ j√2)3; 1

2−j ; 2−3j
3j+2 .

1.4.2. Find the moduli |z| and arguments θ of complex numbers z = 5;
z = −2j; z = −1+ j; z = 3+ 4j.
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1.4.3. Find the real and imaginary components of complex numbers
z = 5ejπ/4; z = −2ej(8π+1.27); z = −1ej ; z = 3eje.

1.4.4. Show that

5
(1− j)(2− j)(3− j) =

j
2

and (1− j)4 = −4.

1.4.5. Sketch sets of points in the complex plane (x,y), z = x + jy ,
such that |z−1+j| = 1; |z+j| ≤ 3; Re(z∗−j) = 2; |2z−j| = 4;
z2 + (z∗)2 = 2.

1.4.6. Using de Moivre’s formulas, find (−2j)1/2 and Re(1 − j√3)77.
Are these complex numbers uniquely defined?

1.4.7. Write the signal x(t) = sin t + cos 3t
3 from Figure 1.1.1 in the

pure cosine form (1.2.1). Use the fact that sine can be written
as a cosine with a phase shift.

1.4.8. Using de Moivre’s formulas, write the signal x(t) = sin t+cos 3t
3

from Figure 1.1.1 in the complex exponential form (1.2.5).
1.4.9. Find the time average and power of the signal x(t) = sin t +

cos 3t
3 from Figure 1.1.1.

1.4.10. Using de Moivre’s formula, derive the complex exponential rep-
resentation (1.2.5) of the signal x(t) given by the cosine series
representation (1.2.1). Then apply this procedure to obtain the
complex exponential representation of the signal given by for-
mula (1.2.2) and shown in Figure 1.2.1.

1.4.11. Find the time average and power of the signal x(t) from Fig-
ure 1.2.1. Use a symbolic manipulation language such as Math-
ematica or Matlab if you like.

1.4.12. Verify that for the signal x(t) in (1.2.5) to be real valued, con-
dition z−m = z∗m has to be satisfied for all integers m.

1.4.13. Using a computing platform such as Mathematica, MAPLE, or
Matlab, produce plots of the signals

xn(t) = π
4
+

M∑
m=1

[
(−1)m − 1
πm2

cosmt − (−1)m

m
sinmt

]

for M = 0,1,2,3, . . . ,9 and −2π < t < 2π . Then produce
their plots in the frequency domain representation. Calculate
their power (again, using Mathematica, MAPLE, or Matlab if
you wish). Write down your observations. What is likely to
happen with the plots of these signals as we take more and
more terms of the above series, that is, as M →∞?

1.4.14. Use the analog-to-digital conversion formula (1.1.1) to digitize
signals from Problem 1.4.13 for a variety of sampling periods
and resolutions. Plot the results.
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1.4.15. Use your computing platform to produce a discrete-time sig-
nal consisting of a string of random numbers uniformly dis-
tributed on the interal [0,1]. For example, in Mathematica, the
command

Table[Random[], {20}]

may produce the following string of 20 random numbers be-
tween 0 and 1:

{0.175245, 0.552172, 0.471142, 0.910891, 0.219577,
0.198173, 0.667358, 0.226071, 0.151935, 0.42048,
0.264864, 0.330096, 0.346093, 0.673217, 0.409135,
0.265374, 0.732021, 0.887106, 0.697428, 0.7723}

Use the “random numbers” string as additive noise to produce
random versions of the digitized signals from Problem 1.4.14.
Follow the example described in Figure 1.1.3. Experiment with
different string lengths and various noise amplitudes. Then
center the noise around zero and repeat your experiments.




