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Abstract. This chapter focuses on the mechanical aspects of tumor
growth. After describing some of the main features of tumor growth and
in particular the phenomena involving stress and deformation, the chapter
deals with the multiphase framework recently developed to describe tumor
growth and shows how the concept of evolving natural configurations can
be applied to the specific problem. Some examples are then described
according to the type of constitutive equation used, specifically focusing
on contact inhibition of growth, nutrient-limited avascular growth, and
interaction with the environment.

7.1 Introduction

The attempt to give a unified description of what a tumor is, unfortu-
nately is still hopeless, both because there are several tumors with dif-
ferent origin and characteristics and because there are several concurrent
causes of tumor development. Using probably a naive description, one can
say that the cells forming a compact tumor, like other cells in the body,
live in a watery environment full of proteins. These include all sorts of
nutrients the cells need to survive and duplicate, and chemical factors, in
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particular growth promoting factors, growth inhibitory factors, and chemo-
tactic factor, which trigger subcellular chemical pathways determining the
behavior of the cell. The extracellular space is also filled with a network
of cross-linked proteins (e.g. elastin, collagen, proteoglycans) collectively
known as the extracellular matrix (ECM), which forms the structure of the
tissue.

Both in a physiological situation and in a pathological one, the interac-
tions that a cell has with its neighbors and with the extracellular matrix
is very complex. In particular, focusing on the physiological behavior,
cells pull on the extracellular matrix to move and want to be attached to
it to duplicate. They like the growth factors and proteins embedded in
the extracellular matrix and continuously remodel it by digesting part of
the ECM or cleaving some of the constituents by the continuous produc-
tion of matrix-degrading enzymes, for example, matrix metallo-proteinases
(MMP). At the same time, some cells (in particular fibroblasts) rebuild
the extracellular matrix. As described in the following, this process is
affected by the stress applied to the tissue, as it can be easily under-
stood by recalling bad experiences (one hopes not personal) such as the
therapeutic action of braces and the traction applied to heal a fractured
bone, or just the fact that exercise and physical training have a good ef-
fect on our body whereas prolonged rest is detrimental for both bones and
muscles.

Cells also prefer to feel the presence of other cells of the same type,
either by the transduction of specific chemical signals or by cell contact. If
they feel lonely they commit suicide by a process called anoikis.

On the other hand, cells replicate if they sense that there is sufficient
space for doing it or if they are chemically stimulated. Conversely, if they
sense that there are a sufficient number of cells around, they can alter their
activity and enter a quiescent state ready to reactivate their replication
program if, for instance, a neighboring cell dies.

Most of the complex processes briefly sketched above are influenced by
the production and reception of chemical signals. In most cases the behav-
ior of a cell depends on the balance between two (or more) contradictory
signals. For instance, mitosis can be stimulated by the overexpression of a
growth-promoting signal or by the underexpression of a growth-inhibitory
signal. An excessive presence of extracellular matrix can be caused by the
excessive production of ECM, by a decreased production of matrix degrad-
ing enzymes (MDEs), or by an increased production of tissue inhibitors
of metallo-proteinases (TIMPs), that is, the molecules that make MDEs
ineffective, so that even if the production of MDEs is normal their effect is
damped by TIMP upregulation.

The behavior of a cell also depends on the balance between chemical and
mechanical inputs, so that a cell might give up duplication for the presence
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of growth-inhibitory factors in spite of the fact that there is space around,
or vice versa might duplicate, stimulated by growth-promoting factors, in
spite of the lack of space.

This is not a pathological situation. For instance, in wound healing
the endothelial cells covering the wall of a capillary duplicate in response
to the stimulus of vascular endothelial growth factors (VEGF) produced
by hypoxic cells in spite of the absence of any mechanical stimulus. Cells
then move toward the injury forming new capillaries to bring the materials
necessary for healing the cut.

In this scenario, how then can a normal tissue generate a hyperplasia
and then a tumor? The reasons can be disparate but, generally speaking,
have to do with the occurrence of some failure in the complex mechanisms
controlling the “circle of life,” including the following.

• The cell becomes insensitive to growth inhibitory signals, for instance
losing retinoblastoma suppressor.

• The cell produces growth-promoting signals, for instance activating
H-Ras oncogene.

• The cell delays apoptosis (i.e. natural death), for instance producing
IGF survival factors.

• The cell completely loses its program-to-death, becoming immortal.

• The cell acquires a limitless replicative potential by turning on
telomerase.

• The cell becomes insensitive to mechanical cues, the so-called cad-
herin switch.

• The cell does not need to be properly attached to the ECM, the
so-called integrin switch.

• The cell does not need to feel the presence of similar cells to survive.

The last two characteristics are linked to the diffusion of metastasis and
the formation of secondary tumors.

The problem is then very complex. The majority of the models present
in the literature focus on the chemical aspects of tumor growth, which is,
however, fundamental, and are based on reaction–diffusion equations and
mass balance equations with suitable closure for the velocity field. For a
more detailed discussion on these aspects, the interested reader is referred
to the books [ADa, CHd, PRa] and the special issues [BEb, CHb, CHc]
specifically devoted to tumor modeling, and to the recent review articles
[ARa, MAb] where even more references can be found. In fact, in this



266 Modeling of Biological Materials

chapter we only focus on the mechanical aspects of tumor growth, which
include the effect of stress on cell growth and apoptosis, the involvement
of stress on the surrounding tissue, or simply the link between stress and
deformation in deducing tumor growth models. Therefore, the effect of
chemical factors plays a secondary role here, although we are well aware of
their importance. Actually, even when focusing on the mechanical aspects
of tumor growth, it is clear that the duplication or death of cells is chem-
ically regulated inside the cell. So, at some stage, the mechanical signal
has to be translated into a chemical message that goes to the nucleus and
determines the behavior of the cell.

The main advantage of the introduction of such a mechanical frame-
work is in the ability to deal with stress, with its influence on the evolution
of the tissue itself, and with the mechanical interaction with other sur-
rounding tissues. The main limitation is due to the fact that data on
the response of multicell aggregates to traction and compression are not
available yet for tumors, although similar studies have been done for other
tissues (mainly bones and cartilage, but also brain, lungs, heart, skin, and
so on). Furthermore, in order to use models with many constituents it is
necessary to discriminate the stress contribution due to the different con-
stituents. However, in our opinion, once the experiments are done the
modeling framework has a great potential.

7.2 Mechanics and Mechanotransduction in Tumor Growth

7.2.1 Cadherin Switch

In normal tissue the rate of proliferation decreases when cells come in con-
tact, a phenomenon often called contact inhibition of growth [DEb, DIa,
KAa, NEa, POa, STa]. A quantification of this phenomenon is represented
in Figure 7.1 which reports some experimental results by Tzukatani et al.
[TZa] on human breast epithelial cells grown in vitro over a suitable substra-
tum and by Orford et al. [ORa] on canine kidney-derived nontransformed
epithelial cells.

It can be seen that after an initial exponential growth cell density sat-
urates forming a monolayer of cells. On the other hand, “tumor” cells
continue proliferating forming a multilayer leading to the conjecture that
they need to feel more contact or larger pressure to stop their proliferation
program. The starters of this growth control mechanism are the cadherins,
the transmembrane receptors involved in homophilic cell–cell interactions,
because of their crucial role in cell–cell adhesion and in mechanotrasduction
[LEa, NEa, STa, STc, TAa, TZa, UGb] (see Figure 7.2).
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Figure 7.1. Examples of contact inhibition of growth reported in the ex-
periments by Tzukatani et al. [TZa] using human breast epithelial cells
(Squares = late passage and triangles = early passage) and by Orford et al.
[ORa] using canine kidney-derived nontransformed epithelial cells (stars =
wild type and diamonds = S37A mutant).

Their involvement has been checked in several ways. For instance,
Warchol [WAa] spread synthetic beads coated with N-cadherin ligands over
a substratum and seeded some cells on it. They then found that due to
the interaction with the beads cells stopped duplicating. Similarly, Caveda
et al. [CAe] found that coating the underlying substratum with the extra-
cellular domain of recombinant VE-cadherin suppressed cell proliferation.
Conversely, Castilla et al. [CAc] found that the disruption of the inter-
cellular cadherin junctions triggers the production of growth factors that
contribute to induce proliferation.

On the basis of these observations, it is clear that if a cell is not so sen-
sitive to the control mechanisms above it is subject to deregulated growth,
a phenomenon that is considered such an important milestone in the de-
velopment of tumors to deserve to be named “cadherin switch” in analogy
with the “angiogenic switch” leading to the vascularization of tumors that
is briefly described in Section 7.2.4.
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Figure 7.2. Cadherin-cadherin junction.

In fact, it is known that loss of contact responsiveness is commonly as-
sociated with the formation of hyperplasia and malignant transformation
such as gastric carcinoma [BEa, ODa], adenocarcinoma [TZb], epithelial
tumors [CAd, CHg], colon polyps and carcinoma [GOa], gynecological can-
cers [RIa], and intimal thickening [UGa] (see also the review by Harja and
Fearon [HAa]).

However, cadherins only represent the tip of the iceberg. They are
more visible than other hidden players for their transmembrane location,
but there are many other candidates that can be responsible for a possi-
ble incorrect mechanotransduction. The second family of suspects is the
catenins, the proteins cadherin link to for a functional cell-to-cell adhesion
(see Figure 7.2). In fact, Stockinger et al. [STc] showed that epithelial
cells exhibited a strong β-catenin activity at low densities (≤40% conflu-
ency), which was five- to sevenfold reduced when cells reached a confluency
>80%. In fact, it is taught that in physiological conditions upon reach-
ing confluency the expressed cadherins sequester catenins, downregulating
their activity. Because it is known that the upregulation of catenins is
necessary for cell duplication, as we show in the following and is sketched
in Figure 7.3, the final result is that cell adhesion negatively affects cell
proliferation.

To test the link between cadherins and catenins Caveda et al. [CAe]
transfected Chinese hampster ovary cells with a cytoplasmic truncated
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Figure 7.3. Sketch of some protein cascades involved in the cell cycle and
in particular of those involving cadherins, integrins, and catenins. In order
to put in evidence the on–off mechanisms, arrows, corresponding to stim-
ulatory activities, connect proteins with the same fonts, and blockades,
corresponding to inhibitory activities, connect proteins written using dif-
ferent fonts. At the end, forgetting the details of the cascades, one can, for
instance, extract that cell–cell adhesion inhibits proliferation. cdk stands
for cyclin-dependent kinase, pRB for hypophosphorilated retinoblastoma,
and the added ps indicate its phosphorylation. The curly bracket indicates
that p27 binds to the cdk2/cyclin complex.
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mutant of VE-cadherin. They found that the deletion of the cytoplas-
mic tail of VE-cadherin abolishes its growth inhibitory activity without
affecting its adhesive properties.

More in detail, Dietrick et al. [DEb] explain the mechanism of contact
inhibition of growth as follows.

• Tissue compression and overexpression of cadherins cause the under-
expression of catenins.

• The underexpression of catenins determines the accumulation of the
cyclin-dependent kinase (cdk) inhibitors p16, p21, and p27.

• Their overexpression inhibits the entry in the S phase causing cell
cycle arrest in the G1 phase [COa, KAa, POa]. More in detail, refer-
ring to Figure 7.3,

– p16 blocks the activity of cdk4 by dissociating cyclin D from
cdk4 and binding to cdk4;

– p27 inhibits cdk2-cyclin E activity directly by binding to the
complex.

In Figure 7.3, the process above is schematized by reading the bold words
as underexpressed proteins. Conversely, reading them as overexpressed
quantities one has, for instance, that upregulation of catenins leads to the
expression of cyclin-dependent kinase and then to DNA replication and
mitosis. This procedure is particularly useful for linear cascades, although
it may fail in the presence of feedback loops.

In order to fully exploit the protein cascade in tumor modeling, one
should have all the affinity constants and reaction rates, which at present
is not the case. In addition, the spatial localization of the proteins
involved in the cascade should also be taken into account. So, at present,
the way generally used in the literature is to proceed, whenever possi-
ble, with a spatially homogeneous Boolean reasoning, which means us-
ing on/off relationships. For this reason in Figure 7.3 we tried to high-
light the overexpressed and underexpressed proteins by using different
fonts.

7.2.2 Interaction with the Extracellular Matrix and
Integrin Switch

Another main component of both normal and tumor tissues is the extra-
cellular matrix (ECM), a fibrous structure composed of many constituents
produced by a variety of stromal cells, mainly fibroblasts. The ECM is
constantly renewed through the concomitant production of matrix metal-
loproteinases (MMP) and new ECM components.



7. Mechanics in Tumor Growth 271

In stationary conditions the remodeling of ECM is a slow process. For
instance, in the human lung the physiological turnover of ECM is 10–15%
per day [J0a], which leads to an estimated complete turnover in a period of
nearly a week. However, when a new tissue has to be formed (e.g. to repair
a wound), then the rate of production is one or two orders of magnitude
faster [CHf, DEa]. Hence, it seems that the production of ECM constituents
is also affected by the pressure felt by the cells. However, this relation is
rather complicated. It is, for instance, well known that for bones, teeth, and
muscles [KIa, KJa, MAc] the remodeling process is strongly affected by the
stresses and strains to which the tissue is subject. This is a physiologically
functional process because it allows keeping the stroma young and reactive.
In fact, prolonged rest or space flight are detrimental to bones and muscles,
whereas exercise and physical training have an opposite effect.

The percentage of ECM content changes considerably from tissue to
tissue (see Table 7.1), from normal to tumor tissues, and also within the
same tumor with tumor progression (see [ZHa]). For instance, Takeuchi
et al. [TAb] found that breast tumors presented a denser and more fibrous
stroma with several differences in the chemical composition. On the other
hand, it is well known that the first hints of the possible presence of breast
nodules are obtained by palpating the breast and feeling stiffer regions

Proteo-
Collagen glycans Elastin

Tissue [Source] Water (%) (%) (%) (%)
Intervertebral disk
Nucleus pulposus 80 5 13
Annulus fibrosus [EYa] 65 23 7
Aorta [MOa] 65 9 1 16
Articular cartilage
(femoral) [MOa] 80 13 5 Trace
Corneal stroma [MAe, TSa] 77 16 1
Ligament (cruciate) [WOa] 68 25 1 <1.6
Meniscus [MOe] 74 23 1 Trace
Skeletal muscle [LE] 14
Tendon [K0a, WOa] 55–70 25 0.5 <1
Skin [WOa] 60 26 1 2–4
Subcutaneous tissue [LEb] 21
Prostate cancer [ZHa] 7–26

Table 7.1. Constituents of several tissues. Notice the strong variability in
the collagen content of prostate cancer which depends on the grade of the
tumor.
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Tissue Elastic Modulus (Pa)
Normal mammary gland 167 ± 31
Average breast tumor 4049 ± 938
Stroma attached to tumor 916 ± 269
Reconstituted basement membrane 175 ± 37
Collagen (2.0 mg/ml) 328 ± 87
Collagen (4.0 mg/ml) 1589 ± 380

Table 7.2. Examples of elastic moduli of normal and abnormal breast tissue
and stroma (data from [PAc]).

(see Table 7.2). Increased presence of ECM was also observed in other
pathologies such as cardiac hyperthrophy, intima hyperplasia, cardiac
fibrosis, liver fibrosis, pulmonary fibrosis, asthma, glomerulonephritis, and
colon cancer [BRc, J0a, MAa, PUa].

The alteration in the ECM composition can be due to several probably
concurring reasons.

• Increased synthesis of ECM proteins

• Decreased activity of matrix degrading enzymes (MDEs)

• Upregulation of tissue-specific inhibitors of metalloproteinases
(TIMPs)

On the other hand, excessive degradation of ECM due to excessive pro-
duction of MMP-13 characterizes chronic inflammatory diseases such as
osteoarthritic cartilage, rheumatoid synovium, chronic ulcer, intestinal ul-
cerations, periodontitis, and many malignant tumors [YAa].

The interaction between ECM and cells is very important because cells
need to properly adhere in order to survive. They only duplicate if they are
anchored to the ECM. As shown in Figure 7.3, the mechanotransduction
cascade is mainly activated by integrins.

On the other hand, in the process of invasion and formation of metas-
tases tumor cells detach from the original site, invade the surrounding
tissue, intravasate entering the blood or lymphatic system, and extravasate
to reach a secondary site. It is then clear that the formation and diffusion
of mestatases require that cells acquire the ability of surviving without in-
teracting with the ECM. In fact, as for cadherins, it is found that tumors
have altered integrins. This, in turn, alters the downstream integrin sig-
naling pathway, so that one could argue that there is an integrin switch in
addition to the mentioned cadherin and angiogenic switches.

Actually, Paszek et al. [PAc] prove that through the integrin signaling
pathway the stiffness of the ECM promote malignant behavior consisting
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in growth enhancement and loss of tissue polarity which, for instance, leads
to the absence of lumen formation in ductal carcinoma and the formation
of hyperplasia, the first step toward tumorigenesis.

7.2.3 Nutrient-Limited Growth and Tumor Structure

In order to give a more complete picture of the dynamics of tumor growth
we need to mention some important effects that are related to the contri-
bution of nutrients and vascularization in tumor growth. In particular, the
former has to do with the existence of a nutrient-limited dimension of the
tumor. We do not enter into detail because nutrient-limited growth has
little to do with mechanics, which is the focus of this chapter and refer the
reader to [ARa] for a recent descriptive and detailed review.

Generally speaking, tissues receive vital nutrients and oxygen perfusing
through the vessel wall and diffusing in the extracellular space. When tu-
mor cells cluster in a tissue forming a multicellular spheroid they receive
their nutrients through the boundary of the tumor. Nutrients then diffuse
toward the center of the tumor. When the tumor is small, all cells are
well-nourished and proliferate rapidly. As the colony increases in size, due
to the strong metabolic activity characterizing tumor cells, the cells toward
the center are progressively starved of oxygen and nutrients and, as a con-
sequence, their proliferation rate decreases. If the oxygen concentration
falls below a critical threshold value then the cells are unable to survive
and undergo cell death generating a necrotic core.

Eventually avascular tumors will reach an equilibrium size (∼2 mm in
diameter [FOb]), at which the rates of cell proliferation and apoptosis,
averaged over the tumor volume, balance. At this stage the tumor typi-
cally comprises an outer rim of proliferating cells, a central core of necrotic
debris, and an intermediate region of quiescent cells which are alive, but
do not proliferate due to nutrient deprivation [SUa].

7.2.4 Angiogenic Switch

The switch from the slow and relatively harmless avascular growth phase
described above to the rapid and life-threatening vascular growth phase
occurs during a process termed angiogenesis [CAb, CrRa, FOb]. We briefly
describe them in the following, although the interested reader can find more
information on the process in the recent reviews by Bussolino et al. [BUa]
and by Mantzaris et al. [MAb].

It is possible to divide the angiogenic process into the following well-
differentiated stages which sometimes partially overlap.

1. Due to the lack of oxygen and nutrients certain tumor cells secrete a
range of diffusible proteins and chemicals that are known collectively
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as tumor angiogenic factors (TAFs), in particular, vascular endothe-
lial growth factors (VEGF).

2. The reception of TAFs causes a loss of interconnection between the
endothelial cells that line the blood vessels, and a reduction of vas-
cular tonus. This, in particular, induces an increase in the vessel
permeability.

3. TAFs also stimulate the endothelial cells to release some proteolitic
enzymes (serine-proteins, iron-proteins) that degrade the basement
membrane surrounding the capillary facilitating cell movement, to
proliferate, and to migrate chemotactically (i.e. up the TAF gradi-
ent), toward the source of angiogenic stimulus, that is, the tumor.

4. Capillary sprouts then form by the accumulation of endothelial cells.
The stage of differentiation is characterized by the exit of the en-
dothelial cells from the cell cycle and by their capacity of surviving in
suboptimal conditions and of building themselves primitive capillary
structures, not yet physiologically active.

5. When capillary tips come into close proximity, they fuse together by a
process called anastomosis, forming closed loops through which blood
may circulate. Secondary sprouts emanate from the new loops and so
the process continues, with increasing numbers of capillary tips being
formed, until the new vessels penetrate the tumor.

6. In the stage of maturation, the newborn vessel is completed by the
formation of new extracellular matrix and by the arrival of other
cells named pericytes and sometimes of flat muscle cells. During this
phase a major role is played by some molecules called angiopoietins
leading to the development of the simple endothelial tubes into a
more elaborate vascular tree composed of several cell types. In fact,
they contribute to the maintenance of vessel integrity through the
establishment of appropriate cell–cell and cell–matrix connections.

7. After the formation of the vascular network, a remodeling process
starts. This involves the loss of some physiologically useless capil-
laries and the remodeling of the extracellular matrix. Shear stress
and pressure inside the vessel are the most important drivers of the
remodelling process.

At this point the tumor receives much more nutrient and the tumor cells be-
come very aggressive with their mitotic rate increasing considerably, leading
to much faster growth.

It has to be mentioned that mechanics has an important role not only in
the formation and regression of the blood vessel, but also on the interaction
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with the outer environment. For instance, growing around the vessel which
is usually immature (Step 5 above), the tumor compresses it and might
cause its collapse. In turn this makes the surrounding tissue hypoxic and
leads to new stimulation of the angiogenic pathway above, so that the
formation of new vessels and tumor growth is subject to cyclic behavior.

7.3 Multiphase Models

Referring to Araujo and McElwain [ARa] for a recent review, we here recall
that the first models dealing with avascular tumor growth worked under
the hypothesis that the tumor is made by only one type of cells occupying
a constant volume ratio φ̄T ; for example, they fill the space as a bunch
of rigid spheres in a close-packed configuration, so that the mass balance
equation

ρ

[
∂φT
∂t

+ ∇ · (φTvT)
]

= ρΓT , (3.1)

where ρ can be taken as the constant density of water, and φT is the volume
ratio occupied by tumor cells, can be written as

φ̄T∇ · vT = ΓT , (3.2)

where ΓT is a function of the concentration of nutrients and of a plethora
of important chemical factors that are diluted in the extracellular liquid
surrounding the cells and influence all vital functions of the tumor.

Enforcing a symmetry condition, usually spherical symmetry, allows the
reduction of the number of space variables to one and the velocity vector
to a scalar, so that one can directly integrate (3.2) to have the velocity in
any point

vT (r, t) =
1

r2φ̄T

∫ r

0
ΓT (x, t)x2 dx, (3.3)

and, in particular, the evolution of the free border of the tumor

dR

dt
(t) = vT (R(t), t) =

1
R2(t)φ̄T

∫ R(t)

0
ΓT (x, t)x2 dx. (3.4)

The core of these types of models consisted then in describing how the
growth term ΓT depends on the chemical factors and nutrients diffusing in
the environment. The evolution of the tumor border then is a byproduct of
the geometrical reasoning. In fact, Eq. (3.4) corresponds to a global mass
balance on the tumor mass that determines how the tumor grows, without
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resorting to any force balance. In particular, the nutrient-limited radius
can possibly be obtained by solving

∫ R(t)

0
ΓT (x, t)x2 dx = 0 , (3.5)

which is related to a global balance between proliferation in the outer rim
and death in the core. A similar consideration holds when including the
existence of quiescent and necrotic regions in the tumor.

At this point, if the tumor is immersed in a homogeneous environment
with known mechanical properties, then by knowing the (radial) displace-
ment of the tumor border, one could compute the stress in the surrounding
tissue. As examined in [AMd], there were some difficulties in generalizing
this method to three-dimensional problems and to problems involving more
populations. For this reasons, some years ago several authors (see, for
instance, [BRa, BRb, BYb, FRa, FRb, FRc, JAa]) started linking, in
the simplest possible way, motion to stress describing the tumor as a de-
formable porous material. Recently, the multiphase approach was described
by Araujo and McElwain [ARb] for a general mixture of n constituents. In
the following we focus on specific applications referring to [AMd] and [ARb]
for the general case.

7.3.1 A Basic Triphasic Model: ECM, Tumor Cells, and
Extracellular Liquid

As discussed above a tumor is made of at least three main constituents
occupying a relevant percentage of space: tumor cells, extracellular matrix
(ECM), and extracellular liquid. In addition one should consider the nu-
trients and chemical factors diffusing in the liquid and absorbed/produced
by the cells. However, in this section we do not focus on them but on the
constituents filling the available space and present a very general triphasic
model. After that, we consider some special cases that are applied in the
following section to describe specific phenomena.

The starting point is to write the mass balance equations for the con-
stituents

∂φ0

∂t
+ ∇ · (φ0v0) = Γ0 , (3.6)

∂φT
∂t

+ ∇ · (φTvT) = ΓT , (3.7)

∂φ�
∂t

+ ∇ · (φ�v�) = Γ� , (3.8)

where φ0, φT , and φ� are the volume ratios occupied by ECM, tumor cells,
and extracellular liquid, respectively, and v0, vT, and v� are the relative
velocities.
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The saturation assumption implies that

φ0 + φT + φ� = 1 , (3.9)

and if the mixture is closed, then the growth terms satisfy

Γ0 + ΓT + Γ� = 0 . (3.10)

The momentum balance equations per constituent are written

ρφ0

(
∂v0

∂t
+ v0 · ∇v0

)
= ∇ · T0 + b0 + mσ

0 , (3.11)

ρφT

(
∂vT

∂t
+ vT · ∇vT

)
= ∇ · TT + bT + mσ

T , (3.12)

ρφ�

(
∂v�
∂t

+ v� · ∇v�
)

= ∇ · T� + b� + mσ
� , (3.13)

where Ti is the partial stress tensor, bi is the body force, and mσ
i is the

interaction force acting on the ith constituent due to its interaction with
the other constituents.

Before proceeding we recall that in a Lagrangian frame of reference
(related to the constituent) the mass balance equations for the tumor cells
can be written as

d

dt
(φTJT ) = ΓTJT , (3.14)

where JT = detFT and FT is the deformation gradient relative to the
tumor constituent. Similar relations hold for the other constituents. The
meaning of Lagrangian is discussed in the following.

The main contribution to the interaction forces can be assumed to be
proportional to the velocity difference between the constituents. Compati-
bly with thermodynamics the saturation assumption implies the existence
of a Lagrangian multiplier P which is then identified with the extracellular
liquid pressure in the constitutive equations, so that one can write

mσ
� = P∇φ� − M�T(v� − vT) − M�0(v� − v0)

−Γ�
2

v� +
Γ� − ΓT

6
vT +

Γ� − Γ0

6
v0 ,

mσ
T = P∇φT − M�T(vT − v�) − MT0(vT − v0)

−ΓT
2

vT +
ΓT − Γ�

6
v� +

ΓT − Γ0

6
v0 ,

mσ
0 = P∇φ0 − MT0(v0 − vT) − M�0(v0 − v�)

−Γ0

2
v0 +

Γ0 − Γ�
6

v� +
Γ0 − ΓT

6
vT ,

(3.15)



278 Modeling of Biological Materials

where Mij refers to the interaction between the ith and the jth con-
stituent and

T� = −(Pφ�)I + T̂� ,

TT = −(PφT)I + T̂T ,

T0 = −(Pφ0)I + T̂0 ,

(3.16)

where T̂i is named excess stresses. The terms in (3.15) proportional to the
mass production rates Γi are, however, negligible, as discussed in [PRb].

In biological phenomena inertia can be neglected and also the interaction
force between the extracellular matrix and the liquid is negligible (because
in most cases the ECM has a fibrous structure filling a moderate amount
of space) with respect to the interaction force between cell and liquid and
above all cell and ECM. However, this last assumption is not essential and
can be dropped.

In addition, as a first approximation we consider the ECM as rigid.
Under these assumptions one can simplify (3.6)–(3.8) and (3.11)–(3.13)
writing




∂φ0

∂t
= Γ0 ,

∂φT
∂t

+ ∇ · (φTvT) = ΓT ,

∂φ�
∂t

+ ∇ · (φ�v�) = Γ� ,

0 = −φT∇P + ∇ · T̂T + bT + M�T(v� − vT) − MT0vT ,

0 = −φ�∇P + ∇ · T̂� − M�T (v� − vT) ,

(3.17)

because the rigidity assumption implies that the stress tensor T0 simply
reacts to the forces applied to the ECM. The body force bT relates, for
instance, to chemotactic or haptotactic action on the tumor cells, and b�
is assumed to vanish.

If as usual in the porous media model it is assumed that T̂� = 0, the
last equation gives rise to Darcy’s law and can then more familiarly be
written as

v� − vT = −K∇P , (3.18)

where K is related to the permeability and is a function of the liquid volume
ratio.
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In order to eliminate the interaction force between the liquid and the
cells, it might be convenient to add the two momentum equations to obtain

−(1 − φ0)∇P + ∇ · T̂T − K−1
0 vT + bT = 0 , (3.19)

where K0 = M−1
T0 is related to the permeability of the sticky granular flow

in the porous structure constituted by the ECM network. This equation
can then take the place of the first momentum equation in (3.17).

Hence the basic model can be written as


∂φ0

∂t
= Γ0 ,

∂φT
∂t

+ ∇ · (φTvT) = ΓT ,

∇ · (φTvT + φ�v�) = 0 ,

v� − vT = −K∇P ,

vT = K0

[
−(1 − φ0)∇P + ∇ · T̂T + bT

]
,

(3.20)

where φ� = 1 − φ0 − φT and (3.20)3 was obtained by summing the mass
balance equations and using (3.9) and (3.10).

Limit Case: Neglecting the Mechanical Interaction with the
Extracellular Liquid

Consider the case in which the permeability tensor is isotropic. If, for the
sake of simplicity, K0 � K, as is plausible, by substituting the gradient of
pressure from Darcy’s law (3.18) to (3.19), it can be readily realized that
as a first approximation

vT = K0

(
∇ · T̂T + bT

)
. (3.21)

We notice that if bT is proportional to the gradient of some chemical
concentration

bT = χ∇c , (3.22)

and the partial stress tensor is neglected, Eq.(3.21) implies the usual chemo-
tactic closure

vT = w∇c , (3.23)

where w = K0χ.
In particular, one has the classical chemotactic models

∂φT
∂t

+ ∇ · (wφT∇c) = ΓT . (3.24)
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Chemotaxis can then be conceived as a force balanced by the drag force
exerted by the substratum and not as a convenient closure of the mass
balance equation.

It is well known that Eq. (3.24) with the concentration either given or
evolving according to a typical reaction–diffusion equation may be char-
acterized by a solution that blows up in finite time. On the other hand,
Kowalczyk [KOa] showed that if mechanics is properly accounted for, that
is, if (3.21) is used with a suitable constitutive equation for the stress, the
blowup of the solution is prevented. For instance, it is enough to assume
that the ensemble of cells behaves as an elastic fluid with a convex pressure–
volume ratio dependence.

In the case of more chemotactic/haptotactic effects, one has the model




∂φ0

∂t
= Γ0 ,

∂φT
∂t

+ ∇ ·
[
K0φT

(
∇ · T̂T +

∑
i

χi∇ci
)]

= ΓT ,
(3.25)

which, of course, has to be associated with suitable reaction–diffusion equa-
tions for the chemical factors ci.

The first equation describes the possible deposition or degradation of
the extracellular matrix. If the stress tensor is isotropic, T̂T = −Σ(φT )I,
then (3.25)2 may be rewritten as

∂φT
∂t

+ ∇ ·
(∑

i

wiφT∇ci
)

= ∇ · (K0φTΣ′(φT )∇φT
)
+ ΓT , (3.26)

where Σ′ is the derivative of Σ with respect to the volume ratio φT and
wi = K0χi.

Limit Case: Constant ECM

If we assume now that the amount φ0 of ECM is maintained constant in
the system, the first equation in (3.20) can be dropped. Substituting then
v� from Darcy’s law in the third equation one has that

∇ · ((1 − φ0)vT − φ�K∇P) = 0 , (3.27)

∇ · ((1 − φ0)v� + φTK∇P) = 0 . (3.28)

In one-dimensional problems, this implies that cells move up the pressure
gradient, and the extracellular liquid moves in the opposite direction, which
is in agreement with the experimental results by Dorie et al. [DOa, DOb]
on the internalization of cells.
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As the interstitial pressure is higher inside the tumor than at its outer
boundary, cells move toward the center of the tumor and the extracellular
liquid flows toward the boundary. A recirculation flow then forms: tumor
cell near the center die due to nutrient deprivation and generate reusable
extracellular fluid. This liquid flows to the boundary where it is taken up
by proliferating cells, that are then internalized in the tumor.

In particular, in the limit of a negligible amount of ECM, then the
interaction term with the ECM drops and we can simplify the last equation
in (3.20) as

−∇P + ∇ · T̂T + bT = 0 , (3.29)

which for particular constitutive equations will lead to the model proposed
in Section 7.4.2.

7.4 Constitutive Equations

As usual, the modeling procedure above needs the specification of the con-
stitutive equations describing the mechanical response to strain. This is
not a standard step in this case because tumor cells are generated and die
during the evolution. There is then a difficulty in defining a reference con-
figuration and in using a Lagrangian coordinate system. In particular, the
meaning of deformation also loses the immediate meaning it had in clas-
sical continuum mechanics when dealing with inert matter. In fact, when
dealing with a growing tumor, with respect to what should we measure
deformations? The material is always changing. That is why the con-
cept of evolving natural configuration described several times in this book
becomes very helpful.

Of course, the problem is circumvented if one can model the tumor as
a fluid, because in this case it is possible to use an Eulerian approach.
This is what was done in the first models developed in a multiphase frame-
work. An issue to keep in mind when formulating constitutive equations for
living tissues and in particular tumors is what can be actually measured by
biologists. In fact, testing the mechanical behavior of living tissues is much
more difficult than for inert matter, and has not been done yet for tumors.
In the following we present some examples of models of tumor growth using
different constitutive equations.

7.4.1 Elastic Fluid: An Example Describing Contact
Inhibition of Growth

Referring to Section 7.2.1, in this section we focus on the fact that when
cells are in a crowded environment they sense the presence of other cells
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and their behavior then crucially depends on how they can stand the pres-
sure (see Figure 7.1). We then focus on how this can affect both mitosis
and production of extracellular matrix and matrix-degrading enzymes and
in particular how a misperception of the compression state can generate
hyperplasia, fibrosis, and tumor lesions.

Of course, we are well aware that cellular mechanotrasduction is not
the only cause of formation of hyperplasia and tumors and that chemical
factors will operate to regulate the reproduction rates. However, we recall
that the aim of this chapter is to describe the mechanical aspects of tumor
growth and therefore we focus on what happens when the only thing that
transforms a normal cell into an abnormal cell is how it senses and responds
to the stress exerted on it.

Here the stress and therefore its influence on the evolution of the
cell population occurs through three contributions: cell replication, the
production of extracellular matrix, and the release of matrix-degrading
enzymes.

The main aim is to show how an underestimation of the compression
state of the local tissue and then of the subsequent stress which is exerted
on a cell, can generate by itself a clonal advantage on the surrounding cells
leading to the replacement and the invasion of the healthy tissue. In order
to do that the model in [CHe] focuses on the evolution of

• The volume ratio φn occupied by normal cells

• The volume ratio φT occupied by tumor cells or more precisely by
abnormal cells that give rise to hyperplasia and dysplasia

• The volume ratio φm occupied by host extracellular matrix

• The volume ratio φM occupied by extracellular matrix produced by
tumor cells, which is known to be structurally and chemically different
from that produced by normal cells

• The concentration c of matrix-degrading enzymes, for example, the
plasminogen activators or matrix metalloproteinases

In the following an important role is played by the overall volume ratio
occupied by cells and extracellular matrix

ψ = φn + φT + φm + φM (4.1)

and by its relation with the stress.
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We assume that what makes the difference between a normal and a
tumor cell stays in the growth term and in its dependence on the stress level.

Generalizing Eq. (3.25) to the populations above, one can then write



∂φm
∂t

= Γm,

∂φM
∂t

= ΓM ,

∂φn
∂t

+ ∇ ·
[
K0nφn

(
∇ · T̂ + χnm∇φm + χnM∇φM

)]
= Γn,

∂φT
∂t

+ ∇ ·
[
K0TφT

(
∇ · T̂ + χTm∇φm + χTM∇φM

)]
= ΓT ,

(4.2)

In [CHe] the simplest constitutive equation is used and the ensemble of cell
is described as an elastic fluid

T̂ = −ΣI , (4.3)

where Σ vanishes below a value ψ0, is increasing for ψ > ψ0, and tends
to infinity at ψ = 1. Of course, treating the multicellular spheroid as a
viscous fluid as shown in the following section would be easy to do, make
the model closer to reality, and confer more stability to the solution.

Haptotactic effects are expressed in the last two term on the left-hand
side of Eqs. (4.2)3 and (4.2)4, which, with respect to the existing literature,
take into account the different behavior of cells in the presence of the two
kinds of ECM. In fact, cells preferentially adhere to normal ECM, whereas
the ECM produced by the tumor cells favors their motility (and also their
proliferation, although here this aspect is neglected as explained above).
Hence, the coefficients χij and K0j are allowed to be different and to de-
pend on the overall volume ratio ψ defined in (4.1) and on the percentage
of extracellular matrix ψm = φm + φM . There is, in fact, an optimal con-
centration of ECM. Motility decreases both at smaller contents of ECM
because of the lack of substratum to move on and at larger contents of
ECM because of the increase of adhesive sites (see [HIa, PAa]). In addi-
tion, it vanishes for high values of the overall volume ratio ψ because of the
occupation of space by the cells and by the ECM.

Contact inhibition of growth is modeled by [CHe] assuming that mito-
sis stops when the volume ratio (or the compression) overcomes a given
threshold. Their assumption is that the threshold value for a tumor is
slightly larger than the physiological one. Actually, it may even tend to
infinity, meaning that the cells are completely insensitive to compression
and continue replicating independently of the compression level.
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Of course, the growth terms depend on other quantities, such as the
amount of nutrient and growth factors, but, as already stated, in this sec-
tion we only focus on the possible role of stress in tumor invasion. In doing
this we tacitly assume that all the constituents necessary to grow and un-
dergo mitosis can be abundantly found in the extracellular liquid that is a
passive constituent in the global mass balance equation.

We then consider the following growth terms

Γi = [γiHσ(ψ − ψi) − δi(ψ)]φi , i = n, T . (4.4)

In fact, not only growth but also apoptosis may be influenced by the com-
pression level, as shown in [HEb].

In (4.4) Hσ(ψ − ψi) is a mollifier of the step function, which is at least
continuous, is constantly equal to 1 for ψ smaller than the threshold value
ψi, and vanishes for ψ > ψi + σ. According to the discussion above the
threshold values ψn and ψT are such that ψn < ψT .

Coming back to the evolution of the extracellular matrix, it contains
many macromolecules, including fibronectin, laminin, and collagen, which
are produced in a stress-dependent way by the cells and are degraded by
MDEs [CHa, MAd, PAb, STb]. Hence the remodeling process is obtained
assuming the following growth terms in (4.2)1 and (4.2)2,

Γm = µn(Σ)φn − νcφm ,

ΓM = µT (Σ)φT − νcφM .

(4.5)

Although it is known that the degradation by MDEs does not distinguish
between the two types of ECM, in (4.5) the production coefficients of ECM
by normal and tumor cells might be different, as occurs in the case of
fibrosis and of many tumors.

Finally, active MDEs are produced (or activated) by the cells, diffuse
throughout the tissue, and undergo some form of decay (either passive or
active). So one has to introduce the following reaction–diffusion equation
governing the evolution of MDE concentration

∂c

∂t
= κ∇2c+ πn(Σ)φn + πT (Σ)φT − c

τ
. (4.6)

The functions πn and πT model the production of active MDEs by normal
and tumor cells, respectively, which might be different and certainly depend
on the compression level.

Actually, in the following we focus on the effect of stress on growth. So,
neglecting the effect of ECM and haptotaxis on cell motion, the complete
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system of equations can be summarized as



∂φn
∂t

= ∇ · [φnK0(ψ,ψm)Σ′(ψ)∇ψ]+ γnHσ(ψ − ψn)φn − δn(ψ)φn ,

∂φT
∂t

= ∇ · [φTK0(ψ,ψm)φTΣ′(ψ)∇ψ]+ γTHσ(ψ − ψT )φT − δT (ψ)φT ,

∂φm
∂t

= µn(Σ)φn − νcφm ,

∂φM
∂t

= µT (Σ)φT − νcφM ,

∂c

∂t
= κ∇2c+ πn(Σ)φn + πT (Σ)φT − c

τ
.

(4.7)
We mention that if initially the tumor fills a compact region of space Ω,
one then has a free boundary problem related to (4.7) with the interface
between tumor and normal tissue moving with the common velocity of the
cells

n · dxT
dt

= n · v = −K0(ψ, φm + φM )Σ′(ψ)n · ∇ψ , (4.8)

and with (4.7)2 valid inside Ω and (4.7)1 outside it.
In addition, continuity of stress and velocity enforce the following inter-

face conditions
φn = φT , n · ∇φn = n · ∇φT . (4.9)

Still referring to [CHe] for more details, in the case of constant production
of ECM and MDEs an homogeneous stationary solution is given by

φn = φ̂n = ψn +H−1
σ

(
δn
γn

)
−Mn , φm = Mn ,

φT = 0 , φM = 0 ,

c = πnτ

[
ψn −Mn +H−1

σ

(
δn
γn

)]
,

(4.10)

where
Mn =

µn
νπnτ

, (4.11)

and
H−1
σ

(
δn
γn

)
∈ (0, σ). (4.12)

Symmetrically, another stationary solution is

φn = 0 , φm = 0 ,

φT = φ̂T = ψT −MT +H−1
σ

(
δT
γT

)
, φM = MT ,

c = πT τ

[
ψT −MT +H−1

σ

(
δT
γT

)]
,

(4.13)
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where
MT =

µT
νπT τ

. (4.14)

By a simple linear stability analysis with respect to homogeneous pertur-
bations it can be proved that the former configuration is unstable with an
exponential growth rate for the tumor population equal to

γTHσ

(
ψn − ψT +H−1

σ

(
δn
γn

))
− δT . (4.15)

Because tumor cells are characterized by a smaller sensitivity to compres-
sion (i.e. ψn < ψT , δn = δT , γn = γT ), or a smaller aptoptotic rate (i.e.
δT < δT , ψn = ψT , γn = γT ), or a larger growth rate (i.e. γT > γn,
ψn = ψT , δn = δT ), then

ψn +H−1
σ

(
δn
γn

)
< ψT +H−1

σ

(
δT
γT

)
. (4.16)

In order to describe in more detail what happens in the early stages, con-
sider the case in which all parameters for normal and tumor cells are equal
but for ψT > ψn+H−1

σ (δ/γ) (we dropped the indices to stress the equality).
Still referring to [CHe] for more detail, if we assume that at a certain

instant, considered as the initial time, some normal cells undergo some
genetic mutation that makes them less sensitive to the compression level,
so that, for instance, φT (t = 0,x) = a0(x), then at early times one has the
solution

φT (t,x) = a0(x)e(γ−δ)t (4.17)

φM (t,x) =
a0(x)

γ−δ
µ + ψn

M − 1

[
e(γ−δ)t − e−νc0t

]
, (4.18)

and

φn(t,x) = ψn −M +H−1
σ

(
δ

γ

)
− φT (t,x) , (4.19)

φm(t,x) = M − φM (t,x) , (4.20)

c(t,x) = πτ

[
ψT −M +H−1

σ

(
δ

γ

)]
, (4.21)

with M = Mn = MT .
In particular, we stress that φn(t,x) + φT (t,x), φm(t,x) + φM (t,x),

and c(t,x) remain constant, which implies Σ′(ψ) = 0 and absence of mo-
tion. For this reason, in [CHe] this phase is called the relaxed replace-
ment phase. In fact, tumor cells simply substitute normal cells without
causing any compression of the tissue, as shown by the early development
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Figure 7.4. Early development of a tumor. Replacement of normal cells
(left) by tumor cells (right) at times t̃ = γt = 1, . . . , 10 without compression
until t̃ ≈ 5 and progressive compression of the surrounding tissue for larger
times. But for ψn = 0.6 and ψT = 0.7, the same parameters are used
for both tumor and normal tissue δ/γ = 0.1, µ = 0.1 days−1, π/c0 =
400 days−1, νc0 = 0.25 days−1, γτ = 0.005, π/c0 = 400 days, M0 = 0.2,
σ = 0.1, and a0(x) = 0.001 exp{−30x̃2} where distances are scaled with√
γ/KE.

in Figure 7.4a for γt > 5 and Figure 7.5a. A similar behavior can be shown
if the production rates are stress-dependent.

We observe that if a0(x) has a compact support, as it should be because
the source of the tumor is localized, then the solution for φT will always
have a compact support, because (4.7)2 is parabolic degenerate.

After a time that can be estimated by

t ≈ 1
γ − δ

log


 δ
γ

ψn −M +H−1
σ

(
δ
γ

)
max a0(x)


 , (4.22)

the amount of tumor cells produced is larger than the amount of normal
cells that would normally die. The tumor then starts compressing the
tissue, as observed experimentally, and the growth of the hyperplasia is
accompained by a compression of the normal tissue near the interface sep-
arating the two tissues shown by the maxima in Figures 7.4a and 7.5a.
Cells start moving away from the compressed regions. At the same time
the ECM is completely replaced by that produced by the tumor.

From Figure 7.5 it is evident that the tumor front travels with a constant
velocity. Of course, in the model the influence of nutrients is neglected, so
from the biological point of view this makes sense until one can assume
that the nutrients are abundantly supplied to the entire tumor. Including
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Figure 7.5. Tissue invasion for longer times and for the same parameters
used in Figure 7.4. The traveling wave characteristic and the transition
layer are evident. The compression of the normal tissue due to the expan-
sion of the hyperplasia is also put in evidence by the peaks in (a) corre-
sponding to the normal tissue; (b) refers to the tumor tissue; (c) to the
ECM produced by the normal tissue; and (d) to that produced by the
tumor.

nutrients and starvation in the model would lead to nutrient-limited growth
as we show in the following section.

In [CHe] it is shown that the speed of the traveling wave solution can
be evaluated as

v ≈
√

2K0Σ′(ψn)δ
(

1 − δ

γ

)
(ψT − ψn) (4.23)

(if ψT = (1 + ε)ψn with ε � 1) and there is a transition layer between the
normal and abnormal tissue having width

z2 − z1 ≈
√√√√2K0Σ′(ψn)(ψT − ψn)

δ
(
1 − δ

γ

) . (4.24)
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In fact, to second order one has that

φT ≈ φ̂T − γ − δ

2KE
(z − z1)2 for z ∈ [z1, 0] ,

φn ≈ φ̂n +
δ

2KE
(z − z2)2 for z ∈ [0, z2] ,

(4.25)

where φ̂n and φ̂T are respectively defined in (4.10) and (4.13) and

z1 ≈ − v

γ − δ
, z2 ≈ v

δ
. (4.26)

Figure 7.6a shows a comparison between the traveling wave solution (4.25)
and the one obtained numerically, whereas Figures 7.6b,c compare the the-
oretical values of v, z1, z2, and then of the transition layer thickness z1 +z2
with those obtained from the simulations.

As mentioned in Section 7.2.2 (see also Table 7.1), often tumors are
characterized by a considerable change in the content of ECM. In fact, for
instance, self-palpation is encouraged in order to identify possible breast
tumors by sensing a stiffer nodule with respect to the surrounding tissue.
Figure 7.7 reports what happens if µT > µn, corresponding to the gener-
ation of fibrotic tissue, with a smaller amount of cells and a compressed
tissue (see Figure 7.7e). In this case the normal ECM is produced by the
cells at a rate larger than physiological, so that at the end the hyperplasic
tissue replacing the normal one is also characterized by a larger amount of
ECM. In particular, doubling the rate of ECM production leads to a fibrotic
tissue with a ratio of cells versus ECM content nearly equal to 1.02, com-
pared with 2.45 in the physiological situation. A similar thing is obtained
halving the rate of production of MDEs.

On the other hand, a hypoproduction of ECM (or a hyperproduction
of MDEs) leads to a tissue characterized by a ratio of cells versus ECM
content nearly equal to 6.86 as shown in Figure 7.8 with a larger amount
of cells and a smaller amount of ECM (see Figure 7.1a).

Comparing Figures 7.7e and 7.8e, one can notice that in the two situa-
tions the overall volume ratio ψ is very similar. However, the composition of
the tissue is dramatically different with the obvious changes in the mechan-
ical properties of the tissue. This is due to the fact that the overall volume
ratio is mainly influenced by the value at which growth stops whereas the
tissue composition is influenced by the other parameters. A similar thing
would occur by a pathological production of MDEs.
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Figure 7.6. Traveling wave solution for δ/γ = 0.1. (a) Comparison between
analytical approximation (dotted line) and numerical solution (full line) for
ψn = 0.5 and ψT = 0.55. Negative zs correspond to the tumor, positive zs
to the host tissue. Distances are scaled with z =

√
γ/KEx. (b) Velocity of

propagation as a function of D = ψT − ψn. Analytical estimates are given
by the curves and numerical results by the squares. (c) The lower curves
refer to z1 and the upper curves to z2. The thickness of the transition layer
is then given by the distance between the two curves.
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Figure 7.7. Formation of fibrosis for µT = 0.2 days−1, with all other pa-
rameters as in Figure 7.4 and at times t̃ = γt = 0, 2.5, 5, 10, 20, 40, 60, 80.
Volume ratio of normal cells and tumor cells (a) and ECM produced by
tumor cells (b). (c) The lower set of curves refers to the volume ratio of
ECM ψm = φm+φM , the central ones to the volume ratio of cells φn+φT ,
and the upper ones to the overall volume ratio ψ, (i.e. the sums of the two
above). (d) Concentration of MDEs.

7.4.2 Viscous Fluid: An Example Showing Nutrient-Limited
Growth

In this section, following [BYb], we assume that the solid constituent of the
mixture can be modeled as an ensemble of sticky cells floating in a liquid
environment and neglecting the presence of ECM.

In [BYb] the ensemble of cells is described as a “viscous growing fluid,”
so that also in this case one does not need to consider the deformations of
the material with respect to some reference configuration, but only to deal
with their rates. In this respect, it is possible to use an Eulerian framework
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Figure 7.8. Hypoproduction of ECM for µT = 0.05 days−1, with all other
parameters as in Figure 7.4 and at times t̃ = γt = 0, 2.5, 5, 10, 20, 40, 60, 80.
Volume ratio of normal cells and tumor cells (a) and ECM produced by
tumor cells (b). (c) The lower set of curves refers to the volume ratio of
ECM ψm = φm+φM , the central ones to the volume ratio of cells φn+φT ,
and the upper ones to the overall volume ratio ψ (i.e. the sums of the two
above). (d) Concentration of MDEs.

and the mathematical description of the “growing fluid” just involves an
additional source of mass.

To complete the picture we might also consider N chemical factors and
nutrients diffusing in the extracellular liquid

∂ci
∂t

+ ∇ · (civ�) = ∇ · (ki∇ci) + γiφT − δiφT ci , i = 1, . . . , N , (4.27)

where the last two terms refer, respectively, to the possible production and
absorption by tumor cells and γi and δi might not be constant.

Actually, in [BYb] only a general nutrient n perfusing through the vessels
far away from the tumor and absorbed by the cells is considered, so that
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just the equation

∂n

∂t
+ ∇ · (nv�) = ∇ · (kn∇n) − δnφTn , (4.28)

need be added to (3.20) with bT = 0 and

T̂T = (−Σ + λT∇ · vT )I + 2µTDT , (4.29)

where DT = (∇vT + ∇vT
T)/2 is the rate of strain tensor. It must be

stressed that neither λT nor µT will be constant as viscous forces among
cells increase, at least linearly, with their volume ratio. Of course, as in
the previous section, Σ is also a function of the volume ratio measuring the
response to compression and is taken positive in compression.

The growth term ΓT is constructed in [BYb] on the basis of the following
phenomenological observations.

• Proliferation occurs if the nutrient concentration exceeds the thresh-
old value n̂. Where n (>n̂) is close to n̂ the proliferation rate is
proportional to n− n̂; as n increases, the proliferation rate eventually
saturates.

• Cell proliferation is strongly affected by the presence of other cells
that exert stress on the membrane of the replicating cell. In par-
ticular, the proliferation rate approaches zero as the volume ratio
approaches one.

• Apoptosis is proportional to the volume ratio of cells.

A suitable function ΓT , which combines these features and is continuous
across n = n̂, is given by

ΓT =
γφT

1 + σΣ(φT )
(n− n̂)+
1 + νn

− δφT , (4.30)

where (f)+ is the positive part of f . Hence, when

(n− n̂)+
1 + νn

<
δ

γ
[1 + σΣ(φT )] , (4.31)

there is a net loss of cells which at the end will lead to a limit radius related
to the amount of nutrient available.

The stress–volume ratio relation is obtained in [BYb] under the following
considerations.

• Two cells that are far apart ignore each other.

• If the distance between two cells falls below a threshold value then
they attract each other.
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• When cells in contact are pulled apart, an adhesive force competes
with cell separation.

• If two cells are too close together, they experience a repulsive force.

• The repulsive force becomes infinite in the limit as the cells are packed
so densely that they fill the whole control volume.

In the one-dimensional case, the previous description can be reformu-
lated as follows.

• Cell in regions where φT < φ̂ experience neither attractive nor repul-
sive forces.

• The attractive force attains a maximum value (Σ = Σ1) when φT =
φ1 > φ̂.

• The attractive and repulsive forces balance when φT = φ2 > φ1.

• The repulsive force becomes infinite as φT tends to one.

It has to be mentioned that a continuous function satifying the properties
above would be decreasing in the interval (φ̂, φ1), giving rise to a problem
that might become ill-posed (see Eq. (4.35) below) if the solution achieves
values in the interval above, giving rise to dramatic instability problems.
However, Witelski [WIa] showed that a shock layer forms corresponding
to “a quick jump over the bad section . . . where the diffusion coefficient
is negative” (see also [ELa]). Hence if one starts from initial conditions
away from (φ̂, φ1) the solution never achieves values in that interval, but
the solution might lose regularity by forming a sharp front more or less as
in phase transition problems. However, having in mind the experiments
discussed in Section 7.4.4 and sketched in Figure 7.13, one can also assume
that the multicell spheroid fractures for φT < φ1 under the action of tensile
stresses, keeping the validity of the model for φT > φ1 where Σ(φT ) is
increasing.

We finally mention that the Young’s modulus for a tumor is of the
order of 1 kPa (see Table 7.2), whereas, as discussed in Section 7.4.4, the
maximum tension is of the order of 0.1 kPa [BAa].

Summarizing, recalling (3.20), one has


∂φT
∂t

+ ∇ · (φTvT ) =
γφT

1 + σΣ(φT )
(n− n̂)+
1 + νn

− δφT ,

∇ · (φTvT + φ�v�) = 0 ,

∇P = −Σ′∇φT + ∇(λT∇ · vT ) + ∇ · [µT (∇vT + (∇vT )T )] ,

∂n

∂t
+ ∇ · (nv�) = ∇ · (kn∇n) − δnφTn ,

(4.32)
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where v� is given by Darcy’s law

v� = vT −K∇P . (4.33)

The growth problem is a free-boundary problem with a material interface
fixed on the tumor cells. This interface moves with the cell velocity

n · dxT
dt

= n · vT . (4.34)

An interesting simplification occurs in one-dimensional problems with
viscous contributions neglected. In this case, the system reduces to

∂φT
∂t

=
∂

∂x

(
KΣ′φT

∂φT
∂x

)
+ ΓT , (4.35)

∂n

∂t
+

∂

∂x

(
K̂Σ′φT
1 − φT

∂φT
∂x

n

)
= kn

∂2n

∂x2 − δnφTn , (4.36)

with

vT = −φ�KΣ′∂φT
∂x

, (4.37)

v� = φTKΣ′∂φT
∂x

, (4.38)

and P + Σ = constant. In particular, Eq. (4.35) is similar to the equation
encountered in many one-dimensional poroelastic problems.

Figure 7.9a describes the trend toward the stationary state and then
how nutrient limits the growth of avascular tumors. Initially a stress-free
tumor of size L = 0.1 is implanted. We observe that at t̃ = 500 the tumor
is still so small that all cells have sufficient nutrient to replicate (i.e. n > n̂
everywhere). The maximum cell compaction occurs at the tumor center
and, due to the repulsive forces they experience, cells move toward the
border, causing the tumor to increase in size. At t̃ = δnt = 1000 the
nutrient concentration near the center of the tumor falls below n0 and cells
there start dying. The location of the maximum cell volume fraction moves
toward the tumor boundary, and in the center a (local) minimum appears.
Cells that are located in the central region of the tumor, between the two
symmetric maxima, move toward the center, whereas those in the outer
regions, between the maxima and the tumor boundary, move toward the
boundary. Of course, the tumor still grows, but at a reduced rate. In
the stationary configuration (the lowest curve) the maximum cell volume
fraction occurs on the tumor boundary. For the choice of parameters in
the figure, at equilibrium the nutrient concentration at the tumor center
only just exceeds that which triggers central necrosis and the formation of
a sharp front dividing the compact tumor from the necrotic core.
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(a)

(b)

Figure 7.9. Evolution toward the steady state (thicker line) for δ/δn =
0.001, and σ = 0. (a) Volume ratio plotted versus space (x̃ =

√
δn/κnx)

for γ̃ = γnext/δn = 0.0125. Transient times are t̃ = δnt = 500, 1000.
(b) Temporal evolution of the tumor size for different values of γ̃ =
0.0025, 0.005, 0.0075, 0.01, 0.0125 (from lower to upper curve).

Figure 7.9b shows the temporal evolution of the tumor size for different
values of growth rate γ̃ = γnext/δn, where next is the amount of nutrient
at the tumor border.

Another result of the model is that as the cell proliferation rate decreases
more rapidly with increasing cellular stress, the equilibrium tumor size
becomes smaller and the cells more uniformly distributed across the tumor.
Actually, in [BYb] it is shown that if this influence if sufficiently large then
no nontrivial equilibrium solutions exist and the tumor is eliminated. From
the application viewpoint, this suggests that if there were a method to
make tumor cells more sensible to mechanical compression (e.g. making
their mitotic or apoptotic rate depend on the stress), this could be used to
control the size of the tumor.

The following viscous-type constitutive equation

T = −P I + 2µT
[
DT − 1

3
(∇ · vT)I

]
, (4.39)

has been also used by Franks and coauthors [FRa, FRb, FRc] under the
additional strong hypothesis that all constituents filling the space move
with the same velocity (live tumor cells and what they call surrounding
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material in [FRc], with the addition of death tumor cells in [FRa, FRb]).
In fact, the stress in (4.39) probably refers to the mixture. For instance,
the model in [FRb], which describes tumor growth in a breast duct and
also focuses on the mechanical interaction with the duct walls, is written
in the notation of this chapter as




∂φT
∂t

+ ∇ · (φTv) = [An − B(1 − δn)]φT ,

∂φD
∂t

+ ∇ · (φDv) = B(1 − δn)φT ,

∂φ�
∂t

+ ∇ · (φ�v) = 0 ,

∂n

∂t
+ ∇ · (nv) = D∇2n− γAnφT ,

∇P = µ
[
∇2v + 1

3∇(∇ · v)
]
,

(4.40)

where φD is the volume ratio of dead cells, which is joined with the con-
stitutive equation (4.39) and the saturation assumption φT + φD + φ� = 1.
The mixture is not closed, so that the global volume of the tumor is in-
creased by the source term An. For the sake of completeness, we mention
that in [FRa] and [FRc] the authors also add diffusion terms to the first
three equations in (4.40).

7.4.3 Evolving Natural Configurations in Tumor Growth

In the previous sections we have described some models that use fluid-
like constitutive equations. However, this is only a rough approximation,
because tumors as most tissue show solidlike characteristics. As already
mentioned several times in this book, in this case in order to define, for
instance, an elastic mechanical response, one needs to measure the defor-
mation with respect to some reference state. However, the basic question
is: “Deformation with respect to what, if the tissue is always changing?” In
order to address this problem Ambrosi and Mollica [AMb, AMc] used the
theory of evolving natural configurations splitting the evolution in growth
and elastic deformation. In their model the interaction with the ECM and
with the extracellular liquid are neglected and the tumor is described as a
one-constituent compressible elastic body.

The theory for materials with evolving natural configurations is an ideal
setting to investigate tumor growth as the growth of other tissues. In fact,
the essential difficulty in formalizing the dynamics of growth is to model



298 Modeling of Biological Materials

Figure 7.10. Evolving natural configuration.

simultaneously the change in mass, and the stresses that accompany it,
possibly caused by growth itself or by the application of external loads.

With the theory for materials with evolving natural configurations one is
able to separate such contributions and to model each of them individually.
Following the notation in Figure 7.10, the aim is then to distinguish in
the evolution of the tumor given through the deformation gradient FT
the contribution of pure growth from the stress-inducing deformation. In
particular, it is natural to work so that no growth occurs during stress-
inducing deformation. By the way, from the biological point of view, the
two contributions could be easily testable in principle as growth occurs on
a much longer time scale (hours up to a day) than deformation.

The deformation gradient FT is a mapping from a tangent space onto
another tangent space, and therefore it indicates how the body is deforming
locally in going from K0 to Kt. Working in the tangent space, take a
neighborhood of a point and assume relieving its state of stress keeping its
mass constant, so that it is allowed to relax to a stress-free configurations.
The atlas of these configuration forms a natural configuration relative to
Kt which we denote by Kn. Of course, this natural configuration depends
on time. We identify this deformation without growth with the tensor FN ,
which then describes how the body is deforming locally in going from the
natural configuration Kn to Kt. The tensor

G ≡ F−1
N FT , (4.41)

tells how the body is growing locally.
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Hence, the following decomposition holds,

FT = FNG . (4.42)

The tensor FN is then connected to the stress response of the tumor to
deformations and the tensor G is the one that is directly connected to
growth and is therefore named the growth tensor.

There are then two things to determine constitutively: how the natural
configurations evolve: that is, characterizing the growth tensor G, and how
the material behaves from each natural configuration. Being the density of
a single cell is equal to the density of water, we assume that for any given
“particle” the volume ratio in the natural configuration and in the original
reference configuration are the same; that is, φT (t = 0) = φN . Denoting by
dV , dVN , and dv the volume elements in the reference, natural, and current
configuration, respectively, the related masses are then dM = ρφNdV ,
dm = ρφNdVN , and dm = ρφTdv. Because mass is preserved between Kn

and Kt, one then has that

Jg = detG =
dVN

dV
=

dm
dM

, (4.43)

JT = detFT =
dv

dV
=
φN
φT

dm

dM
, (4.44)

and, in particular, because of (4.42),

JN = detFN =
φN
φT

. (4.45)

It can be readily realized looking at (4.43) that net growth corresponds
to Jg > 1 and net death to Jg < 1. Of course, Jg never vanishes, oth-
erwise FT would be singular. Applying the polar decomposition theorem
to the growth tensor G we are sure that there exist a unique rotation Rg

and a unique symmetric tensor Ug such that G = RgUg. However, for
the arbitrariness of the choice of the natural configuration with respect to
rotations, we can certainly choose it so that Rg = I and G = Ug.

Differentiating (4.45) and then using (3.14) rewritten here for sake of
clarity

d

dt
(φTJT ) = ΓTJT , (4.46)

one has

J̇N = −φN
φ2
T

φ̇T = −φN
φT

(
ΓT
φT

− J̇T
JT

)
, (4.47)

or
J̇T
JT

− J̇N
JN

=
ΓT
φT

. (4.48)
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Recalling the splitting (4.42), one finally has

J̇g
Jg

=
ΓT
φT

, (4.49)

or defining the rate of growth tensor

Dg = sym(ĠG−1) , (4.50)

one has from standard tensor calculus that

J̇g = Jgtr Dg , (4.51)

and therefore
tr Dg =

ΓT
φT

. (4.52)

Equation (4.52) reveals then that the first principal invariant of Dg is the
right-hand side of the Eulerian mass balance equation (3.1) and the rate
of mass production can be easily identified from one of the constitutive
parameters of the material. In particular, for isotropic growth, G = gI
where g is a scalar, (4.49) is rewritten

3ġ
g

=
ΓT
φT

, (4.53)

which for known ΓT completely determines G.
In general, however, growth requires giving constitutively a suitable

evolution equation for the growth tensor, which may depend on a variety
of quantities, for example,

Ġ = Lg(X, t,S,G, c), (4.54)

where c is the set of nutrients and growth factors involved in growth and
S is a suitable invariant measure of stress that might contain information
on the direction of principal stresses. The involvement of the quantities
above implies a strong coupling between the growth tensor and mechanical
and chemical terms, so that, in general, one cannot look at growth in time
as being separated from the overall mechanical response and the chemical
background. This means that Eq. (4.54) has to be solved simultaneously
with the other evolution equations.

Finally, we observe that one can replace the mass balance equation
(4.46) with

d

dt
(φTJN ) = 0 , (4.55)

an equation not involving growth, which is instead given constitutively and
is related to ΓT through (4.54) or (4.53) for isotropic growth. Equation (4.55)
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resembles the usual Lagrangian version of conservation of mass in the
absence of mass sources but is related to a fictitious deformation from
the natural configuration which is never achieved by the growing body.

The other constitutive relation to be specified regards the stress tensor.
In their paper Ambrosi and Mollica [AMc] assumed that at any time the
mechanical response of the tumor from the natural configuration is hyper-
elastic. In particular, they used a Blatz–Ko constitutive relation [BLa], a
classical nonlinear elastic model, which can be seen as a generalization of
the classical Mooney–Rivlin model for rubber. The Blatz–Ko material is
the simplest hyperelastic compressible material and has been successfully
applied to model polymeric foams, a system that shows some analogies with
the mechanical behavior of cell aggregates [SEa].

The Cauchy stress tensor takes then the form

TT =
µ

JN
[−(JN )−qI + BN ], (4.56)

where BN =: FnFTN is the left Cauchy–Green stretch tensor, and µ and
q are positive material constants. Further comments on other possible
constitutive choices are contained in the following section. Their growth
model inside the tumor can then be summarized as



φTJN = φN ,

∇ · TT = 0 ,

ġ =
g

3
ΓT
φT

,

∇ · (D∇n) − δφTn = 0 ,

(4.57)

where the stress tensor is given by (4.56) and

ΓT = γ
n− n0

N − n0
e−(s/s0)2φT , (4.58)

where s is the trace of the first Piola–Kirchoff stress tensor P = JTTTF−T
T .

This very simple equation assumes that stress always inhibits growth
whereas net growth occurs if a sufficient minimum quantity of nutrient
is available, otherwise one has that the body resorbs mass.

The aim of the paper by Ambrosi and Mollica [AMb] was to compare
the model with the experiments performed by Helmlinger et al. [HEa] who
study the influence of external loading on tumor growth by letting a tumor
spheroid grow in a gel. In the experimental setup agarose, a polysaccharide
extracted from seaweed, is dissolved into boiling water. When the medium
starts cooling down, the polysaccharide chains cross-link with each other,
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causing the solution to gel into a semi-solid matrix. The more agarose is
dissolved in the boiling water, the firmer the gel is. While the solution is
still fluid, the tumor cells are plugged into the polymerizing medium. After
cooling, the tumor cells are trapped in the agarose gel that has known
mechanical properties depending on the solid-phase concentration. The
nutrient rapidly diffuses in the liquid phase of the gel, thus providing a
constant concentration at the boundary of the spheroid. As the spheroid
grows, it displaces the surrounding gel, which in turn exerts a uniform
compression on the tumor spheroid. By varying the volume fraction of
the solid component during the preparation of the gel, they are able to
modulate its stiffness and hence to apply different stress fields on the tumor.

The main result obtained in [HEa] is that the stress field definitely re-
duces the final dimensions of the spheroids. At a cellular level, though,
spheroids cultured in gels of increasing stiffness are characterized by a de-
creased apoptosis rate with no significant change in proliferation rate and
hence increased cellular packing. Moreover, inner regions of free-suspension
spheroids often exhibit large voids that were rarely seen in gel-cultured
spheroids. The agarose gel was modeled as a poroelastic material with the
constitutive equation given by

T = γ̃
ρ

ρ0

eβ(I−3)

(III − φ2
0)α

[
βB − α

III

III − φ2
0
I
]
, (4.59)

where I and III are the first and third invariants of the right Cauchy–Green
deformation tensor C = FTF of the surrounding gel and α = β(1 − φ2

0).
The free boundary problem for the growth of an elastic tumor in a gel is
completed by interfacing (4.57) and

∇ · T = 0 , (4.60)

where T is given in (4.59) with continuity of displacement and of the normal
component of the stress thus providing the following interface conditions

[[u · n]] = 0 , [[Tn]] = 0 , (4.61)

where the jump is evaluated across the the interface and n is its unit normal
vector.

In agreement with the experiments, Ambrosi and Mollica [AMc] as-
sumed spherical symmetry. Normalizing space length with the outer radius
of the gel the tumor spheroid is assumed to be initially located in R ∈ [0, R̄],
and the gel fills the space R ∈ [R̄, 1], where R̄ is chosen sufficiently smaller
than one so that the effect of the external constraints on the growth of the
spheroid can be neglected.

Figure 7.11 shows the evolution of a freely growing tumor, that is, not
in the gel, and then without external loads. After an initial exponential
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Figure 7.11. Comparison between free growth of a tumor spheroid (dashed
line in (a)) and constrained growth ((b) and full line in (a)). At t = 10
the spheroid is ideally extracted; being unloaded, it retains residual stress
only. The plot of the subsequent increase in size shows that the past history
tends to be asymptotically forgotten: the radius approaches the free one
and residual stress vanishes. In (b) the evolution of the position of the
interface between tumor and gel is given for different gel concentrations.

growth and a transition period growth becomes linear in time. In the
absence of external loads the change in growth rate is essentially due to
the reduced availability of nutrient that occurs when the diameter of the
spheroid overcomes the diffusion length of the nutrient in the spheroid. This
effect is confirmed by the plots of concentration depicted in Figure 7.12a at
different times: at t = 20 the nutrient has a nonnegligible concentration just
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Figure 7.12. (a) Available nutrient concentration and (b) growth function in
a freely growing tumor plotted versus undeformed radius at different times.

in a thin layer around the border (the proliferating rim) so that the growth
is essentially on the surface. Note that the existence of a proliferating
rim, as described in the experimental literature, here arises without any
ad hoc introduction. In principle, residual stresses due to nonhomogeneous
growth could inhibit proliferation too. However, the stress field generated
in free growth is small and does not affect the size of the spheroid: in this
case the key mechanism is the decreasing amount of available nutrient that
influences the growth function g through the relationship (4.58), yielding
the behavior of Figure 7.12b.

The position of the interface between a spheroid embedded in a
poroelastic medium versus time is tracked in Figure 7.11b for different
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concentrations of the solid component. The growth of the size of the
spheroid is linear from the very beginning, until it becomes almost con-
stant when the external stress starts inhibiting growth. Inasmuch as the
nutrient has a nonconstant spatial distribution in the tumor, the growth is
not homogeneous and some residual stress is generated. The stress in the
tumor is always compressive, the largest value occurring at the interface
between spheroid and gel.

Looking carefully at the final size of the spheroid, one understands that
the diameter is still much smaller than the freely floating one, whereas ex-
perimentally the final size of the embedded spheroid is some tenths of the
freely growing one. This observation suggests that, although growth inhibi-
tion by stress works fine as described in the present work, some mechanism
of stress release must be included in the model in order to obtain a final
size that is also in quantitative agreement with experiments.

After extracting from the gel a spheroid that was in its plateau phase,
cells restart duplication, yielding the results shown in Figure 7.11. When
comparing the dashed line indicating the diameter of the spheroid grow-
ing after stress release with a free-growth one, one finds that the former
tends just asymptotically to reach the latter so that, in some sense, the
inhomogeneous original growth never completely vanishes. The slope dis-
continuity of the full line in Figure 7.11a occurring at t = 10 corresponds
to gel extraction.

7.4.4 Viscoelasticity and Pseudo-Plasticity in Tumor Growth

The models presented in Sections 7.4.1 to 7.4.3 can be certainly improved
by taking into account the viscoelastic behavior that characterizes most bi-
ological materials. However, the characteristic times of the rate-dependent
response of the materials involved are of the order of tens of seconds and
therefore much less than the characteristic times of cell duplication (a day),
so in our opinion viscoelasticity only plays a secondary role in problems cou-
pled with growth. Of course, it can have important effects in mechanical
problems characterized by times of the order of the relaxation and retarda-
tion times, but in describing them growth can be in our opinion neglected,
so that the two descriptions are somewhat complementary. On the other
hand, when treating the tumor as a solid there is an important effect that
should not be neglected which has to do with the pseudo-plastic behavior
of multicellular spheroids.

The cellular scale motivation of the macroscopic plastic behavior is the
following. As shown in Figure 7.2, cells adhere to each other via cadherin
junctions and to the extracellular matrix via integrin junctions. These
bonds have a limited strength as measured, for instance, by Baumgartner
et al. [BAa] and Canetta et al. [CAa]. In fact, the adhesive strength
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(a) (b)

Figure 7.13. Adhesive force measurement. The positive branch refers to
the compression of the cell by the bead. At larger distances the adhesive
cell acts as an elastic nonlinear spring until single or multiple unbinding
occurs (redrawn from [BAa]).

of a single bond was found to be in the range of 35–55 pN. Because the
density of VE-cadherin on a cell surface is about 400–800 molecules/µm2

of the surface one can estimate the resistance to pulling to be of the order
of 0.1 kPa.

Typical experiments to test the adhesive strength of a cell consist of glue-
ing a functionalized microsphere at the tip of an AFM cantilever (atomic
force microscopy). After putting the microsphere in contact with the cell,
the cantilever is pulled away at a constant speed (in the range
0.2–4 µm/sec). If there is no adhesion between the bid and the cell, the
force measured has the behavior shown in Figure 7.13a. This is experi-
mentally obtained, for instance, by the addition of an antibody of the VE-
cadherin external domain. On the other hand, adhesion gives rise to the
measurement of a stretching force and a characteristic jump indicating the
rupture of an adhesive bond, as shown in Figure 7.13b. Actually, because
a sphere binds to many receptors, it is common to experience multiple un-
binding events occurring at different instants during the single experiment,
as shown by the grey curve in in Figure 7.13b.

Transferring this concept to tumor mechanics it is clear that if an en-
semble of cells is subject to a sufficiently high tension or shear, then some
bonds break and some others form, leading to the necessity to introduce
plasticity in the description. This in particular occurs during growth when
the duplicating cell needs to displace its neighbors to make room for its
sister cells as sketched in Figure 7.14.

Generalizing the concepts introduced in the previous section, what is
left when relieving the state of stress of a particle in the configuration Kt

keeping its mass constant, includes both growth and plastic deformation
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Figure 7.14. Sketch of pseudo-plastic behavior in tumor growth.

due to unbinding events. This means that focusing on the population of
tumor cells, one need to generalize Figure 7.8 to a three-step process which
includes plastic deformations; that is,

FT = FNFpGT . (4.62)

From the biological point of view, it is not difficult to imagine the splitting,
because as already stated the characteristic cell cycle time is much longer
than the times involved both in plastic and elastic phenomena.

Denoting by Kp the intermediate configuration for the tumor between
K0 and Kn, we assume that for any given “particle” the volume ratio in
Kp is the same as in the natural configuration and in the original reference
configuration; that is, φp = φT (t = 0) = φN . The generalization of (4.43)–
(4.45) gives

JT =
φN
φT

dm

dM
, (4.63)

Jg =
φN
φp

dm

dM
=
dm

dM
, (4.64)

Jp =
φp
φN

= 1 , (4.65)

JN =
φN
φT

. (4.66)

Notice that differentiating (4.66) one has

d

dt
log(φTJN ) = 0 , (4.67)

an equation similar to (4.55), where the time derivative is computed along
any constituent.

In order to be more specific, we consider the tumor as a triphasic mixture
made of ECM, extracellular liquid, and cells, as in Section 7.4.1. However,
contrary to Section 7.4.1, in this section we neglect ECM remodeling. The
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extracellular matrix can then be viewed as a substrate on which cells move
and duplicate and from the mechanical point of view taking it into account
results very useful because they can represent a suitable framework to prop-
erly define a Lagrangian coordinate system. Equation (3.8) with Γ0 = 0
and Γ� = −ΓT can be written in the Lagrangian form just defined as

d0

dt
(φ0J0) = 0 , (4.68)

d0

dt
(φTJ0) + Div0[φTJ0F−1

0 (vT − v0)] = ΓTJ0 , (4.69)

d0

dt
(φ�J0) + Div0[φ�J0F−1

0 (v� − v0)] = −ΓTJ0 , (4.70)

where d0/dt is the time derivative following the ECM, Div0 is the divergence
operator with respect to the ECM, and F0 is the deformation gradient of
the ECM.

Note that by summing the mass balance equations, thanks to the satu-
ration assumption and the fact that the mixture is closed, one has

d0J0

dt
+ Div0[J0F−1

0 (vc − v0)] = 0 , (4.71)

where vc = φTvT + φ�v� + φ0v0.
Following a procedure similar to that used to obtain Eqs. (4.48)–(4.52)

one can write

1
J0

d0J0

dt
− 1
JN

d0JN
dt

=
ΓT
φT

− 1
φTJ0

Div0[φTJ0F−1
0 (vT − v0)] , (4.72)

and

1
Jg

d0Jg
dt

= − 1
Jp

d0Jp
dt

− 1
J0

d0J0

dt
+

1
JT

d0JT
dt

(4.73)

+
ΓT
φT

− 1
φTJ0

Div0[φTJ0F−1
0 (vT − v0)] , (4.74)

where the first term on the r.h.s. vanishes because of (4.65)–(4.52). This
relation is not as good looking as (4.51) because we are using a Lagrangian
framework based on a constituent different from the one that is duplicating.
Equation (4.74) can be rewritten in a slightly more compact form as

d0

dt
log

JgJ0

JT
=

ΓT
φT

− 1
φTJ0

Div0[φTJ0F−1
0 (vT − v0)] , (4.75)
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and, recalling (4.69), Eq. (4.72) can be simplified to

d0

dt
log(φTJN ) = 0 , (4.76)

an equation similar to (4.55).
If tumor cells are assumed to grow isotropically, so that GT = gT I, one

then has that FN = g−1
T FTF−1

p and

3
gT

d0gT
dt

=
1
J0

d0J0

dt
+

1
JT

d0JT
dt

+
ΓT
φT

− 1
φTJ0

Div0[φTJ0F−1
0 (vT − v0)] ,

(4.77)
where ΓT has to be given constitutively.

Coming to the momentum equation, following Section 7.3.1, the extra-
cellular liquid is treated as an inviscid fluid in light of the usual assumptions
used to get Darcy’s law



0 = −φ0∇P + ∇ · T̂0 − MT0(v0 − vT) ,

0 = −φT∇P + ∇ · T̂T + bT + M�T(v� − vT) − MT0(vT − v0) ,

0� = −φ�∇P − M�T(v� − vT) .
(4.78)

As in Section 7.3.1, introducing K and K0 and writing the momentum
equation of the mixture, one can write




0 = −φ0∇P + ∇ · T̂0 − K−1
0 (v0 − vT) ,

v� − vT = −K∇P ,

0 = −∇P + ∇ · (T̂0 + T̂T ) + bT ,

(4.79)

which can be written in the Lagrangian framework defined by the ECM.
Having in mind the need to include pseudo-plastic effects, we have to men-
tion that although for the ECM one can take

T̂0 = µ0φ0[−J−q0
0 I + B0] , (4.80)

to describe the behavior of the tumor cells we can distinguish these cases:

1. When and where the cell population is subject to a moderate amount
of stress, the body behaves elastically; there are no plastic deforma-
tions, which means Fp = I and then FT = gTFN .

2. When and where the stress overcomes a threshold yield stress σ the
body behaves as a compressible liquid.



310 Modeling of Biological Materials

Referring to Figures. 7.13 and 7.14 one can argue that the resistance of a
single bond is nearly constant, so that the threshold level distinguishing
the appearance of plastic deformations is proportional to the amount of
cells present in the sample. On this basis a constitutive equation of the
following type can be suggested.

T̂T =



µφT [−(JN )−qI + BN] , if

√|IIT | < φTσ ,

φT

[
−ΣI + 2

(
η + σ√

|II2D|

)
D
]
, if

√|IIT | ≥ φTσ ,
(4.81)

where IIT is the second invariant of the stress tensor with the isotropic
pressure omitted.

We notice that in simple shear problems, the constitutive relation (4.81)
is rewritten

T̂12 =



µφT

∂ux
∂Y

, if T̂12 < φTσ ,

φT (σ + ηγ̇) if T̂12 ≥ φTσ ,

(4.82)

where ux is the displacement along the x-direction. In order to describe
possible shear-thinning effects, η can depend on IID

η = m|IID|(n−1)/2, (4.83)

where the coefficient n is related to the slope of the shear stress behavior
versus the shear rate. In this way we obtain a constitutive equation similar
to the Herschel–Buckley model.

In order to be more realistic, one should take into account that ECM
can be produced and cleaved, so that also for this constituent one should
at least consider isotropic growth G0 = g0I. Luckily, as already mentioned
in Section 7.2.2, the ECM is made of several constituents with different
mechanical and chemical properties. Some of them continuously remodel,
whereas others, such as elastin, barely turn over [RAa]. This biological fact
may be very useful to still define a proper and useful Lagrangian reference
frame fixed on an ECM constituent, so that one can consider at the same
time ECM remodeling, tumor growth, and deformation of all constituents.

7.5 Future Perspective

It is becoming clearer and clearer that in addition to chemical signaling,
mechanics plays an important role in tumor development not only to de-
scribe the mechanical interaction of the tumor with the surrounding tissues,
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but also for the interplay between mechanical properties of a tissue and the
tumor developing in it. This opens up several new research directions that
deserve further investigation.

Certainly, mathematical modeling still needs a characterization of the
mechanical behavior of growing tissues, in order to quantify viscoelastic
and plastic effect, to evaluate the importance of nonlinear effects and to
identify the proper constitutive equation.

In this respect, for the sake of completeness, it need be mentioned that
in addition to the examples presented above several authors proposed lin-
ear elastic-type models with the inclusion of suitable growth contributions
[ARb, ARc, ARd, JOb], without splitting the deformation gradient into
growth and deformation. More specifically, Jones and coworkers [JOb]
propose

TT − 1
3
(trTT )I =

2
3
E

(
ET − 1

3
gT I
)
, (5.1)

where ET is the infinitesimal strain tensor and growth is assumed to be
isotropic, or

D

Dt
[TT−1

3
(trTT )I]−WTTT+TTWT =

2
3
E

(
DT − 1

3
(∇ · vT )I

)
, (5.2)

where D/Dt is the material time derivative following the tumor and WT

is the spin tensor, and Araujo and McElwain [ARb, ARc, ARd] proposed

D
Dt
[
TT − 1

3
(trTT )I

]
= 2µ

(DET

Dt − (∇ · vT )GT

)
− φT

DP
Dt (3GT − I),

(5.3)
where D/Dt is a convective derivative based on the tumor, and GT is a
diagonal growth tensor.

The use of linear elasticity probably gives more freedom because it cir-
cumvents the difficulties implied by the definition of a proper Lagrangian
framework. However, there is incompatibility between the use of convective
derivatives and linear elasticity. In addition, one has still to define what is
a small deformation in a growing tumor, that is, a mass that starting from
a single cell grows to a size of at least few millimeters. Probably, this is
overcome by the introduction of plasticity and by the use of evolving nat-
ural configuration. In fact, as a first approximation then the deformation
with respect to the configuration achieved after the occurrence of plastic
phenomena can be assumed to be small. Actually, one knows that for ten-
sions larger that 0.1 kPA adhesion bonds break up. It would then be very
interesting to correctly frame the linear elastic approach suggested by the
authors above using the concept of evolving natural configuration.
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Other issues that need to be investigated further concern how a tumor
remodels the surrounding environment and how, vice versa, the environ-
ment influences tumor growth. In order to do that, the multiphase models
presented in this chapter should be generalized to include more constituents
belonging to both the immune system and the stroma. In particular, the
presence of macrophages and their migration toward the hypoxic regions
is very important for the related immune response, the formation of cronic
inflammations, and their angiogenic side effect. On the other hand, the pos-
sibility of developing therapies based on the use of engineered macrophages
should be supported by suitable mathematical models.

In the stroma it might be important to include other types of cells such
as fibroblasts related to the production of extracellular matrix or to dis-
tinguish the different constituents of the extracellular matrix, because, as
already mentioned in Section 7.4.4, some of them are subject to stronger
turnover and remodeling than others. The balance between the different
constituents and their percentage influences the overall mechanical char-
acteristics of the tissue and the formation of the different environments in
which tumor cells live. As already stated, the entire remodeling process is
strongly affected by the stresses and strains to which the tissue is subject.

Going to the inner characteristics of the cells, the tumor itself may con-
tain several functionally different clones that differentiate in their genetic
status, for example, cells with normal and abnormal expression of the tu-
mor suppressor gene, p53, and hormone sensitive and insensitive cells. In
this respect, one of the breakthroughs in modeling tumor growth consists
in including what happens inside the cells and therefore in developing mul-
tiscale models that take into account the cascades of events recalled in
Figure 7.3 possibly joined with those involving growth factors.

The need of working in a multiscale framework is an almost unconscious
standard procedure in biology and medicine. In fact, in order to understand
and describe the behavior of any biological phenomenon, researchers in life
sciences tend to go to the smallest scale possible, because they know, for
instance, that the behavior of a cell and the interactions that it has with the
surrounding environment depend on the chemistry inside it and, after all,
on the content of genetic information, on the particular genetic expression,
on the activation of proper protein cascades, and on their cross influence.
Of course, in order to do that one needs to have estimates on the affinity
constants. In the absence of such measurements, one could initially start
with Boolean reasoning. However, things become complicated when there
are loops and intersections between different cascades triggered by different
events.

For instance, in the models presented in this chapter the role played
by nutrients and growth-promoting and inhibitory factors is considered
secondary but it is not. So, it is important to develop models that consider
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both mechanical and chemical cues and establish the relative importance
at the protein cascade level.

Another interesting problem that has not been studied yet is the growth
of tumors in a mechanically heterogeneous environment, which includes net-
work structures such as blood vasculature, airways, and lymphatic system,
the interaction with physical barriers such as bones and cartilage, and the
pressure on the surrounding tissues.

However, whenever developing all the generalizations above, one has
to keep in mind the difficulties in obtaining specific measurements from
the biologists. For instance, quantifying the dependence of the production
rates of extracellular matrix and matrix-degrading enzymes from the level of
stress and/or strain is not easy and data are not available yet, although the
effect was put in evidence many years ago and is applied in clinical practice.
Mathematical modeling urgently needs to be based on biological measure-
ments. On the other hand, we are sure that experimental research can be
stimulated by the development of mathematical models that on the basis of
known experimental evidence and data showing the importance of mechan-
ical aspects go one step beyond what is known in biology and medicine.
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Mitola, S., Primo, L., and Serini, G., Biological aspects of tumour
angiogenesis, in: Cancer Modeling and Simulation, Preziosi, L.,
Ed., Boca Raton, FL: Chapman & Hall/CRC Press, 1–22 (2003).

[BYa] Byrne, H.M., King, J.R., McElwain, D.L.S., and Preziosi, L., A two-
phase model of solid tumor growth, Appl. Math. Letters, 16 (2003),
567–573.

[BYb] Byrne, H.M., and Preziosi, L., Modeling solid tumor growth using
the theory of mixtures, Math. Med. Biol., 20 (2004), 341–366.

[CAa] Canetta, E., Leyrat, A., Verdier, C., and Duperray, A., Measuring
cell viscoelastic properties using a force-spectrometer: Influence of
the protein-cytoplasm interactions, Biorheology, 42 (2005), 321–333.

[CAb] Carmeliet, P., and Jain, R.K., Angiogenesis in cancer and other
diseases, Nature, 407 (2000), 249-257.

[CAc] Castilla, M.A., Arroyo, M.V.A., Aceituno, E., Aragoncillo, P.,
Gonzalez-Pacheco, F.R., Texeiro, E., Bragado, R., and Caramelo, C.,
Disruption of cadherin-related junctions triggers autocrine expres-
sion of vascular endothelial growth factor in bovine aortic
endothelial cells. Effect on cell proliferation and death resistance,
Circ. Res., 85 (1999), 1132–1138.

[CAd] Cavallaro, U., Schaffhauser, B., and Christofori, G., Cadherin and
the tumor progression: Is it all in a switch?, Cancer Lett., 176
(2002), 123–128.

[CAe] Caveda, L., Martin-Padura, I., Navarro, P., Breviario, F., Corada,
M., Gulino, D., Lampugnani, M.G., and Dejana, E., Inhibition of
cultured cell growth by vascular endothelial cadherin (cadherin-
5/VE-cadherin), J. Clin. Invest., 98 (1996), 886–893.

[CHa] Chambers, A.F., and Matrisian, L.M., Changing views of the role of
matrix metalloproteinases in metastasis, J. Natl. Cancer Inst., 89
(1997), 1260–1270.

[CHb] Chaplain, M.A.J., Ed. Special issue Math. Mod. Methods Appl. Sci.,
9 (1999).

[CHc] Chaplain, M.A.J., Ed. Special issue on Mathematical Modeling and
Simulations of Aspects of Cancer Growth, J. Theor. Med., 4 (2002).

[CHd] Chaplain, M.A.J., Mathematical Modelling of Tumour
Growth, Springer, New York (2006).

[CHe] Chaplain, M., Graziano, L., and Preziosi, L., Mathematical mod-
elling of the loss of tissue compression responsiveness and its role in
solid tumour development, Math. Med. Biol., 23 (2006) 197–229.



316 Modeling of Biological Materials

[CHf] Chiquet, M., Matthisson, M., Koch, M., Tannheimer, M., and
Chiquet-Ehrismann, R., Regulation of extracellular matrix synthe-
sis by mechanical stress, Biochem. Cell Biol., 74 (1996), 737–744.

[CHg] Christofori, G., and Semb, H., The role of cell-adhesion molecule
E-cadherin as a tumors-suppressor gene, Trends Biochem. Sci., 24
(1999), 73–76.

[COa] Coats, S., Flanagan, W.M., Nourse, J., and Roberts, J., Require-
ment of p27kip1 for restriction point control of the fibroblast cell
cycle, Science, 272 (1996), 877–880.

[CRa] Craft, P.S., and Harris, A.L., Clinical prognostic-significance of tu-
mor angiogenesis, Annals of Oncology, 5 (1994), 305–311.

[DEa] Dejana, E., Lampugnani, M.G., Giorgi, M., Gaboli, M., and
Marchisio, P.C., Fibrinogen induces endothelial cell adhesion and
spreading via the release of endogenous matrix proteins and the
recruitment of more than one integrin receptor, Blood, 75 (1990),
1509–1517.

[DEb] Deleu, L., Fuks, F., Spitkovsky, D., Hörlein, R., Faisst, S., and
Rommelaere, J., Opposite transcriptional effects of cyclic AMP-
responsive elements in confluent or p27kip-overexpressing cells ver-
sus serum-starved or growing cells, Molec. Cell. Biol., 18 (1998),
409–419.

[DIa] Dietrich, C., Wallenfrang, K., Oesch, F., and Wieser, R., Differences
in the mechanisms of growth control in contact-inhibited and serum-
deprived human fibroblasts, Oncogene, 15 (1997), 2743–2747.

[DOa] Dorie, M.J., Kallman, R.F., Rapacchietta, D.F., Van Antwerp, D.,
and Huang, Y.R., Migration and internalisation of cells and
polystyrene microspheres in tumour cell spheroids, Exp. Cell. Res.,
141 (1982), 201–209.

[DOb] Dorie, M.J., Kallman, R.F., and Coyne, M.A., Effect of Cytocha-
lasin B Nocodazole on migration and internalisation of cells and
microspheres in tumour cells, Exp. Cell Res., 166 (1986), 370–378.

[ELa] Elliot, C.M., The Stefan problem with a non-monotone constitutive
relation, IMA J. Appl. Math., 35 (1985), 257–264.

[EYa] Eyre, D.R., Biochemistry of the invertebral disk, Int. Rev. Connect.
Tissue Res., 8 (1979), 227–291.

[FOa] Folkman, J., Tumor angiogenesis, Adv. Cancer Res., 19 (1974),
331–358.

[FOb] Folkman, J., and Hochberg, M., Self-regulation of growth in three
dimensions, J. Exp. Med., 138 (1973), 745–753.



7. Mechanics in Tumor Growth 317

[FRa] Franks, S.J., Byrne, H.M., King, J.R., Underwood, J.C.E., and
Lewis, C.E., Modelling the early growth of ductal carcinoma in situ
of the breast, J. Math. Biol., 47 (2003), 424–452.

[FRb] Franks, S.J., Byrne, H.M., Mudhar, H.S., Underwood, J.C.E., and
Lewis, C.E., Mathematical modelling of comedo ductal carcinoma
in situ of the breast, Math. Med. Biol., 20 (2003), 277–308.

[FRc] Franks, S.J., and King, J.R., Interactions between a uniformly pro-
liferating tumor and its surrounding. Uniform material properties,
Math. Med. Biol., 20 (2003), 47–89.

[FRd] Freyer, J.P., and Sutherland, R.M., Regulation of growth saturation
and development of necrosis in EMT6/Ro multicellular spheroids by
the glucose and oxygen supply, Cancer Res., 46 (1986), 3504–3512.

[GOa] Gottardi, C.J., Wong, E., and Gumbiner, B.M., E-cadherin sup-
presses cellular transformation by inhibiting β-catenin signalling in
an adhesion-independent manner, J. Cell. Biol., 153 (2001), 1049–
1060.

[HAa] Harja, K.M., and Fearon, E.R., Cadherin and catenin alterations in
human cancer, Genes Chromosomes Cancer, 34 (2002), 255–268.

[HEa] Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., and
Jain, R.K., Solid stress inhibits the growth of multicellular tumour
spheroids, Nature Biotech., 15 (1997), 778–783.

[HEb] Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., and
Jain, R.K., Solid stress inhibits the growth of multicellular tumor
spheroids, Nature Biotech., 15 (1997), 778–783.

[HIa] Hillen, T., Hyperbolic models for chemosensitive movement, Math.
Mod. Meth. Appl. Sci., 12 (2002), 1007–1034.

[JAa] Jackson, T.L., and Byrne, H.M., A mathematical model to study
the effects of drug resistance and vasculature on the response of
solid tumours to chemotherapy, Math. Biosci., 164 (2000), 17–38.

[JOa] Johnson, P.R.A., Role of human airway smooth muscle in altered
extracellular matrix production in asthma, Clin. Exp. Pharm. Phys-
iol., 28 (2001), 233–236.

[JOb] Jones, A.F., Byrne, H.M., Gibson, J.S., and Dold, J.W., A math-
ematical model of the stress induced during solid tumour growth,
J. Math. Biol., 40 (2000), 473–499.

[KAa] Kato, A., Takahashi, H., Takahashi, Y., and Matsushime, H., Inac-
tivation of the cyclin D-dependent kinase in the rat fibroblast cell
line, 3Y1, induced by contact inhibition, J. Biol. Chem., 272 (1997),
8065–8070.



318 Modeling of Biological Materials

[KIa] Kim, S.-G., Akaike, T., Sasagawa, T., Atomi, Y., and Kurosawa,
H., Gene expression of type I and type III collagen by mechanical
stretch in anterior cruciate ligament cells, Cell Struct. Funct., 27
(2002), 139–144.

[KJa] Kjaer, M., Role of extracellular matrix in adaptation of tendons
and skeletal muscle to mechanical loading, Physiol. Rev., 84 (2004),
649–698.

[KLa] Klominek, J., Robert, K.H., and Sundqvist, K.-G., Chemotaxis and
haptotaxis of human malignant mesothelioma cells: Effects of
fibronectin, laminin, type IV collagen, and an autocrine motility
factor-like substance, Cancer Res., 53 (1993), 4376–4382.

[KOa] Kowalczyk, R., Preventing blow-up in a chemotaxis model, J. Math.
Anal. Appl., 305 (2005), 566–588.

[LAa] Lawrence, J.A., and Steeg, P.S., Mechanisms of tumor invasion and
metastasis, World J. Urol., 14 (1996), 124–130.

[LEa] Levenberg, S., Yarden, A., Kam, Z., and Geiger, B., p27 is in-
volved in N-cadherin-mediated contact inhibition of cell growth and
S-phase entry, Oncogene, 18 (1999), 869–876.

[LEb] Levick, J.R., Flow through interstitium and other fibrous matrices,
Q. J. Cogn. Med. Sci., 72 (1987), 409–438.

[LIa] Liotta, L.A., and Kohn, E.C., The microenvironment of the tumor-
host interface, Nature, 411 (2001), 375–379.

[MAa] MacKenna, D., Summerour, S.R., and Villarreal, F.J., Role of me-
chanical factors inmodulatin cardiac fibroblast function and extra-
cellular matrix synthesis, Cardiovasc. Res., 46 (2000), 257–263.

[MAb] Mantzaris, N., Webb, S., and Othmer, H.G., Mathematical mod-
elling of tumour-induced angiogenesis, J. Math. Biol. 49 (2004),
111–187 (2004).

[MAc] Mao, J.J., and Nah, H.-D., Growth and development: Hereditary
and mechanical modulations, Amer. J. Orthod. Dentofac. Orthop.,
125 (2004), 676–689.

[MAd] Matrisian, L.M., The matrix–degrading metalloproteinases, Bioes-
says, 14 (1992), 455–463.

[MAe] Maurice, D.M., The cornea and the sclera, in The Eye, Davson,
H., Ed., Academic Press, (1984) 1–158.

[MOa] Mow, V.C., Holmes, M.H., and Lai, W.M., Fluid transport and
mechanical problems of articular cartilage: A review, J. Biomech.,
17 (1984), 377–394.

[MOb] Mow, V.C. and Lai, W.M., Mechanics of animal joints, Ann. Rev.
Fluid Mech., 11 (1979), 247–288.



7. Mechanics in Tumor Growth 319

[NEa] Nelson, C.M., and Chen, C.S., VE-cadherin simultaneously stimu-
lates ad inhibits cell proliferation by altering cytoskeletal structure
and tension, J. Cell Science, 116 (2003), 3571–3581.

[ODa] Oda, T., Kanai, Y., Okama, T., Yoshiura, K., Shimoyama, Y., Birch-
meier, W., Sugimura, T., and Hirohashi, S., E-cadherin gene mu-
tation in human gastric carcinoma cell lines, Proc. Natl. Acad. Sci.
USA, 91 (1994), 1858–1862.

[ORa] Orford, K., Orford, C.C., Byers, S.W., Exogenous expression of β-
catenin regulates contact inhibition, anchorage-independent growth,
anoikis, and radiation-induced cell cycle arrest, J. Cell Biol. 146
(1999), 855–867.

[PAa] Painter, K., and Hillen, T., Volume filling and quorum-sensing in
models for chemosensitive movement, Can. Appl. Math. Quart., 10
(2002), 501–543.

[PAb] Parson, S.L., Watson, S.A., Brown, P.D., Collins, H.M., and Steele,
R.J.C., Matrix metalloproteinases, Brit. J. Surg., 84 (1997), 160–
166.

[PAc] Paszek, M.J., Zahir, N., Johnson, K.R., Lakins, J.N., Rozenberg,
G.I., Gefen, A., Reinhart-King, C.A., Margulies, S.S., Dembo, M.,
Boettiger, D., Hammer, D.A., and Weaver, V.M., Tensional home-
ostasis and the malignant phenotype, Cancer Cell 8 (2005), 241–
254.

[POa] Polyak, K., Kato, J., Solomon, M.J., Sherr, C.J., Massague, J.,
Roberts, J.M., and Koff, A., p27Kip1, a cyclin-Cdk inhibitor, links
transforming growth factor-β and contact inhibition to cell cycle
arrest, Genes & Develop., 8 (1994), 9–22.

[PRa] Preziosi, L., Ed., Cancer Modelling and Simulation, CRC-
Press/ Chapman Hall, Boca Raton, Fl (2003).

[PRb] Preziosi, L., and Farina, A., On Darcy’s law for growing porous
media, Int. J. Nonlinear Mech., 37 (2001), 485–491.

[PUa] Pujuguet, P., Hammann, A., Moutet, M., Samuel, J.L., Martin, F.,
and Martin, M., Expression of fibronectin EDA+ and EDB+ iso-
forms by human and experimental colorectal cancer, Am. J. Patho.,
148 (1996), 579–592.

[RAa] Rao, I.J., Humphrey, J.D., and Rajagopal, K.R., Biological growth
and remodeling: A uniaxial example with possible application to
tendons and ligaments, CMES, 4 (2003), 439–455.

[RIa] Risinger, J.I., Berchuck, A., Kohler, M.F., and Boyd, J., Mutation of
E-cadherin gene in human gynecological cancers, Nature Genetics,
7 (1994), 98–102.



320 Modeling of Biological Materials

[SEa] Secomb, T.W., and El-Kareh, A.W., A theoretical model for the
elastic properties of very soft tissues, Biorheology, 38 (2001), 305–
317.

[STa] St. Croix, B., Sheehan, C., Rak, J.W., Florenes, V.A., Slingerland,
J.M., and Kerbel, R.S., E-cadherin-dependent growth suppression
is mediated by the cyclin-dependent kinase inhibitor p27 (Kip1), J.
Cell Biol., 142 (1998), 557–571.

[STb] Stetler-Stevenson, W.G., Hewitt, R., and Corcoran, M., Matrix
metallo–proteinases and tumor invasion: From correlation to causal-
ity to the clinic, Cancer Biol., 7 (1996), 147–154.

[STc] Stockinger, A., Eger, A., Wolf, J., Beug, H., and Foisner, R.,
E-cadherin regulates cell growth by modulating proliferation-
dependent β-catenin transcriptional activity, J. Cell. Biol., 152
(2001), 1185–1196.

[SUa] Sutherland, R.M., Cell and environment interactions in tumor
microregions: The multicell spheroid model, Science, 240 (1988),
177–184.

[TAa] Takeuchi, T., Misaki, A., Liang, S.-B., Tachibana, A., Hayashi, N.,
Sonobe, H., and Ohtsuki Y., Expression of T-cadherin (CDH13,
H-cadherin) in human brain and its characteristics as a negative
growth regulator of epidermal growth factor in neuroblastoma cells,
J. Neurochem., 74 (2000), 1489–1497.

[TAb] Takeuchi, J., Sobue, M., Sato, E., Shamoto, M., and Miura, K.,
Variation in glycosaminoglycan components of breast tumors, Can-
cer Res., 36 (1976), 2133–2139.

[TSa] Tseng, S.C.G., Smuckler, D., and Stern, R., Comparison of collagen
types in adult and fetal bovine corneas, J. Biol. Chem., 257 (1982),
2627–2633.

[TZa] Tzukatani, Y., Suzuki, K., and Takahashi, K., Loss of density-
dependent growth inhibition and dissociation of α-catenin from
E-cadherin, J. Cell. Physiol., 173 (1997), 54–63.

[TZb] Tzukita, S., Itoh, M., Nagafuchi, A., Yonemura, S., and Tsukita, S.,
Submembrane junctional plaque proteins include potential tumor
suppressor molecules, J. Cell Biol., 123 (1993), 1049–1053.

[UGa] Uglow, E.B., Angelini, G.D., and George, S.J., Cadherin expres-
sion is altered during intimal thickening in humal sapphenous vein,
J. Submicrosc. Cytol. Pathol. 32 (2000), C113–C119.

[UGb] Uglow, E.B., Slater, S., Sala-Newby, G.B., Aguilera-Garcia, C.M.,
Angelini, G.D., Newby, A.C., and George, S.J., Dismantling of
cadherin-mediated cell-cell contacts modulates smooth muscle cell
proliferation, Circ. Res., 92 (2003), 1314–1321.



7. Mechanics in Tumor Growth 321

[WAa] Warchol, M.E., Cell proliferation and N-cadherin interactions
regulate cell proliferation in the sensory epithelia of the inner ear,
J. Neurosci., 22 (2002), 2607–2616.

[WIa] Witelski, T.P., Shocks in nonlinear diffusion, Appl. Math. Lett., 8
(1995), 27–32.

[WOa] Woo, S.L.-Y., Biomechanics of tendon and ligaments, in Frontiers
in Biomechanics, G. W. Schmid-Schonbein, S. L.-Y. Woo and
Zweifach, B.W., Eds., Springer-Verlag, New York, 180–195 (1986).

[YAa] Yang, C.-M., Chien, C.-S., Yao, C.-C., Hsiao, L.-D., Huang, Y.-C.,
and Wu, C.B., Mechanical strain induces collagenases-3 (MMP-13)
expression in MC3T3-E1 osteoblastic cells, J. Biol. Chemistry, 279
(2004), 22158–22165.

[ZHa] Zhang, Y., Nojima, S., Nakayama, H., Yulan, J., and Enza, H.,
Characteristics of normal stromal components and their correlation
with cancer occurrence in human prostate, Oncol. Rep., 10 (2003),
207–211.


