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Abstract. Rupture of intracranial aneurysms is the leading cause of
spontaneous subarachnoid hemorrhage, which results in significant mor-
bidity and mortality. The mechanisms by which intracranial aneurysms
develop, enlarge, and rupture are unknown, and it remains difficult to
collect the longitudinal patient-based information needed to improve our
understanding. We suggest, therefore, that mathematical models hold con-
siderable promise by allowing us to propose and test competing hypotheses
on potential mechanisms of aneurysmal enlargement and to compare pre-
dicted outcomes with limited clinical information; in this way, we may
begin to narrow the possible mechanisms and thereby focus experimen-
tal studies. Toward this end, we develop a constrained mixture model for
evolving thin-walled, saccular, and fusiform aneurysms and illustrate its
efficacy via computer simulations of lesions having idealized geometries.
We also present a method to estimate linearized material properties over
the cardiac cycle, which can be exploited when solving coupled fluid–solid
interactions in a lesion.
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3.1 Introduction

Intracranial aneurysms are focal dilatations of the arterial wall that usually
occur in or near the circle of Willis, the primary network of vessels that
supplies blood to the brain [HUb]. In general, these aneurysms have one
of two forms: fusiform lesions, which are elongated dilations of an artery,
and saccular lesions, which are local saclike out-pouchings. Despite sig-
nificant accomplishments in molecular and cell biology as well as clinical
advances, intracranial aneurysms remain an enigma: how do they begin,
how do they enlarge, and how do they rupture? Rupture of intracranial
aneurysms is the leading cause of spontaneous subarachnoid hemorrhage
(SAH), which results in high morbidity and mortality rates. Although it
has been long thought that material instabilities are responsible for the
enlargement of aneurysms, recent nonlinear analyses cast doubt that such
instabilities play any role in the natural history (e.g. [KYa]). Rather, re-
cent histopathological data and modeling suggest that aneurysms enlarge
due to growth and remodeling of collagen, the primary load-bearing con-
stituent within the wall [HUa]. Note, therefore, that the natural history
of intracranial aneurysms consists of at least three phases: pathogenesis,
enlargement, and rupture (Figure 3.1). Albeit not well understood, some
initial insult to the cerebral artery causes a small out-pouching or dilation
of the arterial wall. We suggest that a stress-mediated process of growth

Pathogenesis G&R Damage & Failure

Enlargement RuptureLocal insult

Figure 3.1. Schematic view of the natural history of intracranial saccular
(top) and fusiform (bottom) aneurysms.
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and remodeling (G&R) is responsible for the subsequent enlargement and
possible stabilization of the lesions.

In the early 1980s, Skalak [SKa] first attempted to model growth in soft
tissue within the context of finite strain elasticity. His seminal work has
been extended by Rodriguez et al. [ROa] and others (e.g. Taber [TAa],
Rachev et al. [RAa]), and has served as the primary models of arterial
G&R. Briefly, they suggested that shape changes of an unloaded tissue
during growth can be decomposed into two fictitious deformations: first,
independent growth of stress-free elements of tissue, which need not result
in compatible elements, and second, an elastic deformation. The volumetric
growth model of Skalak, Rodriguez et al., and others provides a mathemat-
ical method to model certain consequences of growth, but it does not model
processes by which G&R occur. Recently, Humphrey and Rajagopal [HUc]
presented an approach that is conceptually different, one that is based on a
fundamental process by which growth and remodeling occur: the continual
production and removal of constituents in potentially different stressed con-
figurations. Because the kinetics of turnover and the way each constituent
is deposited can differ markedly, they employ ideas from the theory of mix-
tures to account for the separate contributions of each constituent. Fur-
thermore, because of inherent difficulties in prescribing traction and other
boundary conditions in the theory of mixtures, they suggested a constrained
mixture model wherein all solid constituents are assumed to have the same
motion as that of the mixture despite different natural (stress-free) config-
urations. Moreover, part of the focus was geometrical alterations due to
removal and new production of solid structural constituents as the main
mechanism for G&R of soft tissue (see [HUc] for more details).

In this work, we adapt the constrained mixture approach to study the
enlargement of intracranial aneurysms and postulate a new potential mech-
anism of aneurysmal enlargement. In particular, because the medial layer of
the aneurysmal wall is degraded during the early development of a lesion
and the remaining wall consists primarily of thin layers of collagen, we
formulate a constrained mixture model for intracranial aneurysms within
the context of a membrane theory. For numerical simulations, we employ
initially ellipsoidal and cylindrical membranes for saccular and fusiform
aneurysms, respectively. Although soft tissues are dissipative and a proper
resolution of any process requires an appropriate thermodynamic frame-
work, at this stage we assume that the body is purely elastic and solve
inflation problems with these ideal geometries using the principle of vir-
tual work. We also compare multiple competing hypotheses with regard
to the production, removal, and alignment of the collagen fibers. Finally,
we recognize that throughout G&R of the aneurysmal wall, hemodynamic
loads play key roles, thus fluid–solid interactions should be taken into
account. However, a full computation for coupled fluid–solid problems with
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a complex geometry and evolving nonlinear properties is even more chal-
lenging, requiring considerable computing time and cost. So, at the end
of this chapter, we suggest how the theory of small deformations superim-
posed on large can be exploited when solving coupled fluid–solid interaction
problems.

3.2 Theoretical Framework

3.2.1 Kinematics

Let the aneurysmal wall consist of a homogenized1 mixture of collagen lay-
ers having different preferred fiber directions: that is, we treat collagen hav-
ing different preferred fiber directions as different co-existing constituents
(e.g. [CAa,CAb]). The multiple constituents are allowed to have continu-
ous turnover during G&R, but they may have different rates of production
and removal. When a new (kth) family of collagen fibers is produced at
time τ ∈ (−∞, t], it has a preferred fiber direction that is measured by the
in-plane angle αk(τ) from the direction of an orthonormal vector in the
tangent plane. In general, the in-plane angle for the preferred direction in
each constituent can change over time and result in changes in material
anisotropy.

In this work, we introduce a fixed configuration κR as a computational
domain. However, the fixed configuration κR is different from the tradi-
tional reference configuration in that particles in κR can be produced and
removed so that the current configuration and the fixed configuration con-
tain the same particles at each time. Now, let the positions of a particle of
a lesion (mixture) be X and x in the fixed and current configurations of the
lesion, and let the mapping χκR assign particles from the fixed configuration
to the current configuration at time t, that is,

x = χκR(X, t). (2.1)

The deformation gradient F(t) is defined through

F(t) :=
∂χκR

∂X
. (2.2)

Although all solid constituents are constrained to deform together, we
imagine that each constituent has individual natural (i.e. stress-free)

1Even within the context of a single constituent inhomogeneous nonlinear elastic body, current
procedures that lead to an homogenized model are fraught with serious difficulties (see [SAa])
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Figure 3.2. Schema of important configurations. The current mixture con-
figurations κτ with τ ∈ (0, t] track the evolution of a lesion under the
physiological condition. For computational purposes, we chose a fixed con-
figuration κR where particles are produced and removed so that the current
configuration and the fixed configuration contain the same particles at time
τ ∈ (0, t]. Finally, although the newly produced collagen is incorporated
into the wall under stress, we imagine the existence of individual natural
(stress-free) configurations κkn(τ) associated with each instant of production;
hence, the natural configurations also evolve.

configurations (see Figure 3.2). Also, if we know how the newly produced
collagen fiber is laid down, in the stressed state in which it was produced,
then the natural configuration for the newly produced collagen fibers can
be inferred. Hence, we postulate that the mechanical properties and the
“deposition stretch” of the newly synthesized collagen fibers are always
the same; that is, constituents are produced at set homeostatic values in
each current configuration (c.f. [HUc, GLa]). Let the prestretch of the kth
new constituent be given by a tensor Gk(τ), which is associated with a
mapping from the natural (i.e. stress-free) configuration of the newly pro-
duced kth constituent to the overall loaded configuration κτ at time τ (see
Figure 3.2). Moreover, let the aneurysmal wall be subjected to a trans-
mural pressure P at time τ ∈ [0, t], where t is the current time. Although
any configuration in Figure 3.2 can serve as the fixed configuration, we set
a traction-free configuration at time τ = 0 as the configuration κR, which
is convenient computationally. At the time τ = t, the aneurysmal wall
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consists of constituents (i.e. families of collagen fibers) that were produced
during the period τ = −∞ to t and survived until the current time t. The
deformation gradient for each constituent k at time t, relative to its natural
configuration, is Fkn(τ)(t), which is associated with mappings of points from
the natural configuration of the kth constituent (produced at time τ) to
the current configuration. We assume a constrained mixture, that is, the
individual constituents must move with the mixture (lesion). Hence, we
have (see Figure 3.2)

Fkn(τ)(t) = F(t)F−1(τ)Gk(τ), (2.3)

where F(τ) and F(t) are associated with mappings from the fixed configura-
tion to subsequent configurations of the lesion at times τ and t, respectively.

3.2.2 Fibrous Structure

Let Mk
n(τ) and mk

n(τ)(t) be unit vectors in the directions of a family of
collagen fibers (i.e. kth constituent produced at time τ) in the natural and
loaded configurations, respectively. These unit vectors are related via,

mk
n(τ)(t) =

Fkn(τ)(t)M
k
n(τ)

|Fkn(τ)(t)M
k
n(τ)|

. (2.4)

The unit vector in the fiber direction in κR is thus Mk
R(τ) = (F−1(τ)Gk

Mk
n(τ))/|F−1(τ)GkMk

n(τ)|. Let {E1,E2} and {e1, e2} be two orthonormal
bases in fixed and current configurations, respectively. Also let αk(t) be
the angle between mk

n(τ)(t) and e1, and αkR(τ) be the angle between Mk
R(τ)

and E1 for the kth collagen fiber that was produced at time τ . When the
principal directions remain principal, the stretch experienced by the kth
constituent, along the fiber direction, can be computed as

λk(t) =
√

(λ1cosαkR)2 + (λ2sinαkR)2, (2.5)

where λ1 and λ2 are two principal stretches at any t. Alternatively, the
stretch of the kth constituent, relative to its individual fiber direction in
the natural configuration κkn(τ), is given as

λkn(τ)(t) =
√

Mk
n(τ) · Fkn(τ)(t)

TFkn(τ)(t)M
k
n(τ). (2.6)

As noted above, we assume that a newly produced family of collagen
fibers is always incorporated within the wall at a homeostatic stretch;
that is, the value of the stretch of the constituent is Gh when it is produced
(GkMk

n(τ) = Ghmk
n(τ)(τ)). Of course, the fibers are stretched farther dur-

ing the enlargement of the lesion, this additional stretch being λk(t)/λk(τ),
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where λk(τ) and λk(t) are stretches calculated from the fixed configuration
to the pressurized configurations at time τ and time t, respectively. Thus,
the stretches of fibers of the kth constituent become

λkn(τ)(t) = Gh
λk(t)
λk(τ)

. (2.7)

Let the behavior of the kth family of collagen fibers be describable via an
exponential-type strain energy function per unit volume in κR

W k(λkn(τ)) = c
{

exp
[
c1(λkn(τ)

2 − 1)2
]
− 1

}
, (2.8)

where the material parameters c and c1 are assumed to be the same for all
families.

3.2.3 Kinetics of G&R

The mass of the individual constituents, and thus that of the lesion, changes
due to local production and removal of collagen. The total mass per unit
area in κR at time t, M(t), can be calculated as

M(t) =
∑
k

Mk(t) =
∑
k

[
Mk(0)Qk(t) +

∫ t

0
mk(τ)qk(t− τ)dτ

]
, (2.9)

where mk(τ) is the rate of production of the kth constituent at time τ
per unit area and qk(t − τ) is its survival function; that is, the fraction
produced at time τ that remains at time t, Qk(t) is the fraction of the kth
constituent that was present at time 0 and still remains at time t (i.e. has
not yet been removed). Although we model the aneurysm as a membrane
mechanically, we can calculate the thickness in postprocessing. Assuming
the overall mass density of the wall remains constant (i.e. ρ ≡ ρo ∀τ ;
[ROa]), the thickness of the wall is given as

h(t) =
M(t)
Jρ

, (2.10)

where J = det(F(t)). Although the transient response to loads applied
during the cardiac cycle may be isochoric, volume need not be conserved
during G&R.

3.2.4 Stress-Mediated G&R

The production and removal of each constituent results from biological
activity. For example, collagen is produced and organized by fibroblasts
and degraded by enzymes such as matrix metalloproteinases (or MMPs).
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Recent studies show that many cell types (including fibroblasts that pop-
ulate the aneurysmal wall) can sense and convert mechanical stimuli into
biological signals, and thereby effect growth and remodeling. As an exam-
ple, we postulate that the production of each constituent is a function of
the number of cells n(t) per unit reference area and the stress experienced
by the cells via the local collagen matrix, namely

mk(t) = n(t)
(
fk(σk(t) − σh) + fh

)
, (2.11)

where σk is a time-averaged (over a cardiac cycle) mean value of a scalar-
measure of the stress, and σh is a homeostatic value of this stress-measure.
Here, we assume

σk(t) =
|T(t)mk

n(τ)(t)|
h(t)

, (2.12)

where T(t) is the overall membrane stress at time t. If cells proliferate
such that cell density (per unit volume in the current loaded configuration)
is constant, then the number of the cells increases proportionately with
volume changes; that is, n(t) = n(0)M(t)/M(0). A special case allows a
linear dependence on the stress difference (cf. [RAa,TAa]), whereby the
production rate of a constituent can be expressed as

mk(t) =
M(t)
M(0)

(
Kg(σk(t) − σh) + f̃h

)
, (2.13)

where f̃h is fh multiplied by the initial cell density n(0) and Kg is a
scalar parameter that controls the stress-mediated growth. For illustrative
purposes, we assume a simple form for the survival function q(τ̃) in Eq. (2.9).
After its production, let there be no removal of a constituent until time t1
and, then, let the constituent degrade gradually until all of the constituent
is removed by time t2. Toward this end, let

q(τ̃) =




1 0 ≤ τ̃ < t1
1
2

{
cos

(
π

t2−t1 (τ̃ − t1)
)

+ 1
}

t1 ≤ τ̃ ≤ t2

0 t2 < τ̃

. (2.14)

We introduce a nondimensional parameter for a stress mediation parameter:

K̂g =
(
σht2
M(0)

)
Kg. (2.15)

3.2.5 Stress and Strain Energy Function

The total Cauchy membrane stress T (i.e. tension, or force per current
length) is:

T11(t) =
1

λ2(t)
∂w

∂λ1(t)
T22(t) =

1
λ1(t)

∂w

∂λ2(t)
, (2.16)
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where w is the strain energy per unit area in the fixed configuration κR.
We postulate that w =

∑
k w

k and it evolves as

wk(t) =
Mk(0)
ρ

Qk(t)W k(λkn(0)(t)) +
∫ t

0

mk(τ)
ρ

q(t− τ)W k(λkn(τ)(t))dτ,

(2.17)
where W k is the aforementioned strain energy of the kth constituent per
unit volume and qk(τ̃) = q(τ̃). Substituting Eq. (2.17) into Eq. (2.16) and
using Eq. (2.3), the Cauchy membrane stress is

T11(t) =
∑
k

1
λ2(t)

{
Mk(0)Qk(t)Gh

ρλk(0)
∂W k

∂λkn(0)(t)
∂λk(t)
∂λ1(t)

+
∫ t

0

mk(τ)q(t− τ)Gh
ρλk(τ)

∂W k

∂λkn(τ)(t)
∂λk(t)
∂λ1(t)

dτ

}
, (2.18)

T22(t) =
∑
k

1
λ1(t)

{
Mk(0)Qk(t)Gh

ρλk(0)
∂W k

∂λkn(0)(t)
∂λk(t)
∂λ2(t)

+
∫ t

0

mk(τ)q(t− τ)Gh
ρλk(τ)

∂W k

∂λkn(τ)(t)
∂λk(t)
∂λ2(t)

dτ

}
. (2.19)

3.3 Simulations for Saccular Aneurysms

3.3.1 Method

We assume axisymmetric ellipsoidal membrane geometries for a saccular
aneurysm in both the fixed and current configuration. Furthermore, para-
metric relations in the fixed configuration can be described by continuous
functions Z = Z(Φ) and R = R(Φ) (Figure 3.3). We also use two sets of
two-dimensional curvilinear coordinates, Ξ = {Φ,Θ} for the fixed configu-
ration and ξ = {φ, θ} for the current configuration. The associated bases
are given by

Gi =
∂X
∂Ξi

, gi =
∂x
∂ξi

, (3.1)

where i = 1, 2. Locally orthonormal bases are obtained by

Ei =
Gi

|Gi| , ei =
gi
|gi| (3.2)

and the outward unit normal directions are

N =
G1 × G2

|G1 × G2| , n =
g1 × g2

|g1 × g2| . (3.3)
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Figure 3.3. Coordinate system for an axisymmetric saccular lesion in a
current configuration. Similar values exist for the reference configuration:
X, Y , Z, A, B, Θ, Φ, and R.

When the motion due to growth is assumed as

φ = φ(Φ) θ = Θ, (3.4)

then the components of the 2-D deformation gradient F = FiJei ⊗ EJ can
be calculated by

FiJ =

[
h1
H1
φ′ 0

0 h2
H2

]
=

[
λ1 0
0 λ2

]
, (3.5)

where (·)′ = ∂(·)/∂Φ and

H1 =
A2B2

(A2 cos2 Φ +B2 sin2 Φ)3/2
, H2 = R (3.6)

h1 =
a2b2

(a2 cos2 φ+ b2 sin2 φ)3/2
, h2 = r. (3.7)

For numerical simulations, we consider an aneurysm approximated as
an initially ellipsoidal membrane with two primary axes: dimensions 2A for
the height and 2B for the diameter of the equator. Moreover, let the wall
initially consist of two families of fibers (i.e. two constituents) and thus two
preferred directions, at 0 and π/2, and initially the same mass fraction for
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both constituents. The strain energy (2.17) is not only a function of the
deformation (and thus position) at any time, but also of the past history
of the deformations and the rate of mass production. In general, therefore,

w(t) = w(λi(Φ, t); λi(Φ, τ),mk(Φ, τ)), (i = 1, 2, 0 ≤ τ < t) (3.8)

= ŵ(φ(Φ, t), a(t), b(t);λi(Φ, τ),mk(Φ, τ)), (3.9)

where a and b are dimensions in the deformed primary axes. Such inflation
problems can be solved using the principle of virtual work, the governing
equation for which is

δI =
∫
S
δw dA−

∫
s
Pn · δxda = 0, (3.10)

where δx represents virtual changes in position. The surfaces S and s cor-
respond to the surface area of the fixed and current configuration. Next,
let the function φ(Φ) be approximated via

φ =
n∑
j=1

φjψj , (3.11)

where φj is the jth nodal value of φ(Φ) and ψj is a quadratic interpola-
tion function; a variational procedure for (3.10) with respect to φ yields
a nonlinear algebraic equation. Using similar approximations for a and b,
each yielding associated algebraic equations, we thus formulate the weak
form (3.10) as

F ≡




2π
∫ Φo

0

{
∂w

∂φ
ψi +

∂w

∂φ′ψi
′
}
RH1dΦ

2π
∫ Φo

0

{
∂w

∂a
RH1 − P (r,φz,a − z,φr,a)φ′r

}
dΦ

2π
∫ Φo

0

{
∂w

∂b
RH1 − P (r,φz,b − z,φr,b)φ′r

}
dΦ




=




0
0
0


 . (3.12)

The nonlinear finite element equations (3.12) are solved using a Newton–
Raphson procedure.

3.3.2 Results

To simulate an initial insult, we prescribe a reduction in mass from the total
mass of the stable lesion as an initial condition. Such a mass reduction could
be caused by a proteolytic weakening of the wall, with an associated loss
of elastin and then smooth muscle. Mass reduction induces larger values
of stretch in the wall than the homeostatic value and increases wall stress.
This initial perturbation initiates enlargement due to G&R in the wall. The
enlargement of an ellipsoidal aneurysm is plotted (Figure 3.4) for different
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Figure 3.4. G&R of an initially ellipsoidal aneurysm for different values of
the parameter Kg for stress mediation. Note that a and b tend to become
equal early on (panels a and b), thus yielding a spherical saccular lesion
with more uniform wall stress (panel d).

stress mediation parameters K̂g for a 20% mass reduction. The time scale
is normalized by a collagen life span t2; that is, s = t/t2. The rate of
enlargement was higher for a 20% mass reduction than a 5% reduction for
the same value of K̂g (not shown), which suggests that a more severe initial
perturbation may cause a faster enlargement of an aneurysm. The rate of
enlargement decreases with larger values of K̂g (Figure 3.4a). When K̂g is
0.09, the aneurysm quickly reaches its (biologically) stable state and there
is no more enlargement. In contrast, when K̂g is smaller than 0.04, the
aneurysm grows in a unbounded manner. Stabilization depends on changes
in the ratio of the primary axis (a or b) to the wall thickness h during G&R
(recall that the stress in a spherical membrane is Pa/2h). For a larger
value of K̂g, thickness increases faster than the rate of enlargement, hence
wall stress can reach its homeostatic value and the aneurysm can become
stable (Figure 3.4c). For a value of K̂g smaller than 0.04, the ratio between
the radius and the thickness keeps increasing, hence the stress increases
similarly. When K̂g = 0.04, both radius and thickness increase linearly
with respect to time, but the ratio of the radius to the thickness remains
nearly constant. Thus the stress also remains the same despite continued
enlargement. The tendency toward a spherical shape is similar for all three
values of K̂g (Figure 3.4b). Moreover, this tendency is strong early on, with
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lesions becoming almost spherical by s = 10. Aneurysmal wall stress thus
becomes more uniform over time (Figure 3.4d).

3.4 Simulations for Fusiform Aneurysms

3.4.1 Method

We assume that initial geometries for fusiform aneurysms are axisymmetric
cylindrical membranes. The parametric relation in the fixed configuration
can be described by continuous functions R = R(Z) (Figure 3.5). The
positions of a point in the fixed and current configurations of the lesion, X
and x, can thus be expressed by two sets of cylindrical polar coordinates
(Z, θ,R) and (z, θ, r), respectively:

X = R cos Θi +R sin Θj + Zk, (4.1)

x = r cos θi + r sin θj + zk. (4.2)

We also use a set of two-dimensional curvilinear coordinates, Ξi =
{Z,Θ} whereby the current position can be expressed by x = x(z(Z,Θ),

G & R

z(0) z(t)

r(0) r(t)

Z

R

 = t = 0

Current
configurations

Reference
configuration

Figure 3.5. Axisymmetric geometries of a fusiform lesion in current (i.e.
pressurized) configurations at time τ = 0 and t as well as a convenient
unpressurized reference configuration (which need not be stress-free if dif-
ferent families of collagen–proteoglycans are in tension/compression and
self-equilibrate).
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θ(Z,Θ), r(Z,Θ)) = x(Z,Θ). The associated bases and orthonormal bases
are given by

Gi =
∂X
∂Ξi

, gi =
∂x
∂Ξi

, Ei =
Gi

|Gi| , ei =
gi
|gi| , (4.3)

where i = 1, 2. When the deformation due to growth is assumed as

z = z(Z), θ = Θ, r = r(Z), (4.4)

then the components of the 2-D deformation gradient F(t) = FiJei ⊗ EJ ,
where

FiJ =

[
λ1 0
0 λ2

]
, λ1 =

√
(z′)2 + (r′)2√
1 + (R′)2

, λ2 =
r

R
, (4.5)

where (·)′ = ∂(·)/∂Z. For computations of the enlargement of fusiform
aneurysms, we allow the orientation of new collagen to change during G&R.
It is not known how the alignment of newly produced collagen is decided,
however, thus we consider multiple hypotheses and compare their conse-
quences. Let us define a unit vector for the preferred alignment ep and as-
sume that new collagen is deposited with this preferred alignment (similar
to Driessen et al. [DRa]). Let the vector ep = f1e1 + f2e2, where e1 and
e2 are unit vectors in the axial and circumferential directions, respectively.
When f1 and f2 are functions of principal stresses, the preferred alignment
will be dictated by the mixture stress at each time t. Conversely, when f1
and f2 are functions of principal stretches, the preferred alignment will be
dictated by the mixture stretch. We compare several cases:

• Case 1: The preferred alignment is dictated by principal stresses, and
the angle between ep and a principal axis decreases when the principal
stress along that axis becomes larger, specifically, f1 = σ1/

√
σ2

1 + σ2
2

and f2 = σ2/
√
σ2

1 + σ2
2, where σ1 and σ2 are principal stresses in e1

and e2 directions, respectively.

• Case 2: The preferred alignment is dictated by the lesser principal
stress, thus in contrast to Case 1, let f1 = σ2/

√
σ2

1 + σ2
2 and f2 =

σ1/
√
σ2

1 + σ2
2.

• Case 3: The preferred alignment is dictated by principal stretches
and the angle between ep and a principal axis decreases when that
principal stretch is larger: f1 = λ1/

√
λ2

1 + λ2
2 and f2 = λ2/

√
λ2

1 + λ2
2.
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Similar to the simulation for saccular aneurysms, we use the principle
of virtual work (3.10). Let functions r(Z) and z(Z) be approximated via

r =
n∑
j=1

rjψj , z =
n∑
j=1

zjψj , (4.6)

where rj and zj are the jth nodal values of r(Z) and z(Z), respectively,
and n is the number of nodes. The function ψj is a global quadratic inter-
polation function corresponding to the jth node. A variation of Eq. (3.10)
with respect to r and z yields two sets of nonlinear algebraic equations:

F ≡
{

2π
∫ Zo
0 (∂w∂r ψi +

∂w
∂r′ψi

′)R
√

1 + (R′)2 − Pz′rψi dZ
2π
∫ Zo
0 (∂w∂z ψi +

∂w
∂z′ψi

′)R
√

1 + (R′)2 + Pr′rψi dZ

}
=

{
0
0

}
. (4.7)

The associated algebraic equations (4.7) are solved using a Newton–Raphson
procedure.

3.4.2 Results

An initial mass reduction allows a slight bulge under the constant trans-
mural pressure as well as thinning of the wall in the middle of the vessel
at s = 0. These changes alter stresses from homeostatic values and the
lesion starts to enlarge (e.g. see Figure 3.6). Similar to results for saccular
aneurysms, a larger value of K̂g decreases the rate of enlargement of the le-
sions (Figure 3.7). Here, however, the alignment of new collagen is allowed

3

2

increase in s (0, 3, 6, ..., 24)

r^

z
^

1

10 2 3 4

Figure 3.6. Simulation of the enlargement of an axisymmetric fusiform
lesion, as a function of nondimensional time s = t/t2, for the case 3 pre-
ferred deposition (i.e. preferred direction of new collagen dictated by larger
principal stretch) and K̂g = 0.
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Figure 3.7. Effect of the stress mediation parameter K̂g on the enlargement
of a fusiform lesion due to a 20% initial mass reduction within the central
region of the wall and growth and remodeling for different hypotheses on
the alignment of newly deposited collagen fibers: (a) case 1; (b) case 2;
(c) case 3. Recall that radius and time are nondimensionalized via r/rh
and t/t2.
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Figure 3.8. Evolution of a fusiform lesion (K̂g = 0.48) with a 20% initial
mass reduction within the central region of the wall and case 1 preferred
deposition: (a) radius; (b) thickness; (c) fiber orientation of new collagen;
(d) principal stresses. The simulation shows that fiber reorientation by
case 1 causes an unstable enlargement. Results are similar for K̂g = 0 and
0.24. Recall that radius, thickness, and stress are nondimensionalized via
r/rh, h/rh, and σii/σh (i = θ, z).

to change corresponding to the stress or strain. When the fiber alignment
is assumed according to case 2 or 3, the lesion is stable for K̂g = 0.24
and 0.48 but is unstable for K̂g = 0 (e.g. G&R transitions from unstable
to stable at K̂g ≈ 0.06 for case 3). For case 1, however, the lesion shows
unstable growth for K̂g = 0, 0.24, and 0.48. In this case, the angle between
the preferred alignment and z-axis, α1(s) (note that α2(s) = −α1(s)),
decreases because the principal stress σzz is slightly higher than σθθ at
s = 0 (see Figures 3.8(c) and 3.8(d)). Further remodeling causes α1(s) to
decrease in the middle but to increase in other regions (s = 2 in Figure 3.8c).
Because the principal stress σzz remains higher than σθθ, however, the fiber
orientation changes further, which makes the enlargement of the lesion
unstable even for higher values of K̂g. In contrast, for the case 2 and 3
preferred depositions, the thickness increases in the center and the stresses
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Figure 3.9. Evolution of a fusiform lesion (K̂g = 0.24) with a 20% initial
mass reduction and case 3 preferred deposition: (a) radius; (b) thickness;
(c) fiber orientation of new collagen; (d) principal stresses. Recall from
Figure 3.7 that this is a stable enlargement.

tend to return to the homeostatic value through G&R with K̂g = 0.24
and 0.48 (Figure 3.9). Thus, the postulated alignment of newly deposited
collagen fibers had a significant influence on the potential stability of the
enlargement.

3.5 Fluid–Solid Interaction

Although conventional analyses of arterial wall mechanics require the defor-
mation to be computed relative to a suitable reference configuration (e.g.
a stress-free sector obtained by introducing multiple cuts in an excised
segment [HUb,FUa]), the focus of most computational biofluid mechanical
analyses is on changes from diastole to systole. Because of the highly nonlin-
ear material behavior of arteries, the deformation from a suitable reference
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configuration to an intact diastolic configuration is “large” whereas that
from diastolic to systolic is typically “small.” Hence, if we know the state
of stress in the artery at any configuration between diastole and systole,
then the primary need in computational biofluid mechanics is to determine
changes in stiffness during the cardiac cycle. We suggest here that the
theory of small deformations superimposed on large can be exploited when
solving coupled fluid–solid interaction problems during the cardiac cycle. In
particular, this approach allows one to include the effects of residual stress,
nonlinear material behavior, anisotropy, smooth muscle contractility, and
finite deformations of the arterial wall while recovering equations relevant
throughout the cardiac cycle that can be solved using methods common to
linearized elasticity.

Let the body occupy a configuration κto(B) at an intermediate time
to characterized by a large strain measured from a reference configuration
κR(B). Then, let the position in the intermediate (stressed) configuration
be denoted by xo = χκR(X, to). Hence, we can consider that a small
displacement u = u(xo, t), superimposed upon the large deformation, yields
the “current” position x at time t, namely

x = xo + u(xo, t). (5.1)

Deformation gradients associated with mappings from the reference to the
intermediate and current configurations are thus given by

Fo =
∂χκR(X, to)

∂X
, F =

∂χκR(X, t)
∂X

. (5.2)

The deformation gradient representing a mapping from the intermediate
configuration to current configurations is similarly,

F∗ =
∂x
∂xo

= I + H, where H =
∂u
∂xo

. (5.3)

The displacement gradient H can be divided into a symmetric part
ε = 1

2(H+HT ) and a skew-symmetric part Ω = 1
2(H−HT ). If H is small,

ε and Ω are identified as the infinitesimal strain and infinitesimal rotation.
Regardless, for the successive motions

F = F∗Fo. (5.4)

For an isochoric motion, the material is subject to a kinematic con-
straint: detF = 1 in general, which reduces to tr(ε) = 0 for an infinitesi-
mal strain. The Cauchy stress t for an incompressible Green (hyper)elastic
material can be written as

t = −pI + t̂, t̂ = FŜFT , Ŝ = 2
∂Ŵ

∂C
, (5.5)
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where p is a Lagrange multiplier that enforces the constraint that the
motion is isochoric, C = FTF is the total right Cauchy–Green tensor,
and t̂ is the deformation-dependent (or extra) part of the Cauchy stress.
For purposes herein, it is convenient to relate t̂ to the extra part of the
second Piola–Kirchhoff stress Ŝ, which in turn is computed directly from
a stored energy function W = W̃ (F), or by material frame indifference,
W = Ŵ (C). Now, let the deformation gradient and Cauchy stress of ar-
terial wall in any convenient intermediate configuration during the cardiac
cycle be represented by Fo and to whereas that in any “current” configu-
ration between diastolic and systolic be denoted as F and t. Using (5.3)
and (5.4), (5.5) can be written as

t = −(po + p∗)I + (Fo + HFo)(Ŝo + S∗)(FoT + FoTHT ), (5.6)

where

S∗ =
∂Ŝ
∂C

|CoC∗ with C∗ = 2FoT εFo. (5.7)

Hence, neglecting higher-order terms in the “small displacement gradient”
H, (5.6) can be written in terms of physical components of the tensors as
(per the usual summation convention)

tij = toij +Hik t̂
o
kj + t̂oikHjk − p∗δij

+ 4F oiAF
o
jBF

o
kPF

o
lQ

∂Ŵ

∂CAB∂CPQ

∣∣∣∣
Co
εkl. (5.8)

Moreover, recalling that H = ε + Ω, (5.8) can be written as

tij = toij − p∗δij + Cijkl εkl + Dijkl Ωkl, (5.9)

where

Cijkl = δik t̂
o
lj + t̂oilδjk + 4F oiAF

o
jBF

o
kPF

o
lQ

∂Ŵ

∂CAB∂CPQ
|Co (5.10)

Dijkl = δik t̂
o
lj + t̂oilδjk. (5.11)

Because εij = εji and Ωij = −Ωji (i �= j), Cαβijεij + Cαβjiεji = (Cαβij +
Cαβji)εij and similarly DαβijΩij + DαβjiΩji = (Dαβij − Dαβji)Ωij . Finally,
let new quantities C̃αβij = 1

2(Cαβij+Cαβji) and D̃αβij = Dαβij−Dαβji. Now,
we see, from (5.9) and (5.11), that the stress response of a nonlinearly elastic
material, from a finitely deformed intermediate configuration such as that
at the mean arterial pressure in a large artery, depends strongly on the
prestress to, initial finite deformation Fo, and possibly small rotations Ω.
As an example of the linearization, Figure 3.10 shows the pressure and axial
forces for both a nonlinear constitutive relation and its linearized elastic
response to the radius changes. The radius changes 3.7% during a cardiac
cycle, and the linearized elastic response is close to that determined using
the finite nonlinearly elastic response within the cardiac cycle.
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Figure 3.10. Pressure-circumferential stretch (r/R) and axial force-
circumferential stretch during inflation at a fixed length. The values are
calculated for both the nonlinear and linearized elastic response with re-
spect to the radius changes. The material parameters for the nonlinear
response is obtained by a best-fitting to an experimental result of a rab-
bit basilar artery and the linearized elastic parameters are calculated at
97 mmHg and Λ = 1.3.

3.6 Discussion

Over the last few decades, many studies have revealed a great deal about the
biochemistry related to proteins, DNA, and cell behaviors, and more infor-
mation is accumulating every day. However, much less is known about how
these biochemical and cellular mechanisms result in changes at the organ
level. As Hunter and Borg [HUd] emphasized, there is a need to integrate in-
formation from proteins to organs, and particularly to develop a framework
for computational methods that incorporates biochemical, biophysical, and
anatomical information on cells, tissues, and organs. Such frameworks not
only integrate information, they also help identify missing data, test hy-
potheses, and suggest new theoretical and experimental studies. For this
purpose, we chose a constrained mixture theory that can model G&R of
soft tissue that results from mechanosensitive reactions of cells, including
their control of the degradation and deposition of collagen fibers. We spe-
cialized the model to a 2-D formulation for the enlargement of intracranial
aneurysms with numerical simulations for two idealized geometries: an el-
lipsoidal shape for saccular aneurysms and a cylindrical shape for fusiform
aneurysms. We hypothesized that enlargement results primarily from the
coordinated degradation and synthesis of collagen by fibroblasts; moreover,
we hypothesized that newly synthesized collagen is incorporated within the
wall at a preferred, or homeostatic, deposition stretch. Given these basic
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hypotheses, our model predicts that stress-mediated enlargement proceeds
via a competition between a local thickening and radial expansion for both
saccular and fusiform aneurysms. For a saccular aneurysm, an initially
ellipsoidal lesion tends to enlarge toward a spherical shape (Figure 3.4b),
which agrees with a statistical study by Parlea et al. [PAa]. For a fusiform
aneurysm, we postulated three different hypotheses for the alignment of
newly deposited collagen fibers and found that the alignment had a signif-
icant influence on the potential stability of the enlargement.

As a first step, it is prudent to use simplified models and idealized geome-
tries to capture salient features of stress-mediated G&R of the aneurysms.
In the future, however, we hope to expand the model to incorporate more
biochemical, biophysical, and cellular information for G&R of arteries with
real anatomical geometries. Also there is no doubt that we have to include
fluid–solid interactions for a better understanding. Hence, we suggested
that the theory of small on large deformations will be a useful tool for
coupled fluid–solid computation within complex geometries.
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