
Chapter 6
Proof Theories and Algorithms for Abstract
Argumentation Frameworks

Sanjay Modgil and Martin Caminada

1 Introduction

Previous chapters have focussed on abstract argumentation frameworks and prop-
erties of sets of arguments defined under various extension-based semantics. The
main focus of this chapter is on more procedural, proof-theoretic and algorithmic
aspects of argumentation. In particular, Chapter 2 describes properties of extensions
of a Dung argumentation framework 〈A,R〉 under various semantics. In this context
a number of questions naturally arise:

1. For a given semantics s, “global” questions concerning the existence and con-
struction of extensions can be addressed:

a. Does an extension exist?
b. Give an extension (it does not matter which, just give one)
c. Give all extensions.

2. For a given semantics s, “local” questions concerning the existence and construc-
tion of extensions, relative to a set A ⊆ A can be addressed. Note that it is often
the case that |A|= 1, in which case the member of A is called the query argument.

a. Is A contained in an extension ? (Credulous membership question.)
b. Is A contained in all extensions ? (Sceptical membership question.)
c. Is A attacked by an extension?
d. Is A attacked by all extensions?
e. Give an extension containing A.

Sanjay Modgil
Department of Computer Science, King’s College London, e-mail: sanjay.modgil@kcl.ac.
uk

Martin Caminada
Interdisciplinary Lab for Intelligent and Adaptive Systems, University of Luxembourg e-mail:
martin.caminada@uni.lu

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 105
DOI 10.1007/978-0-387-98197-0 6, c© Springer Science+Business Media, LLC 2009

106 Sanjay Modgil and Martin Caminada

f. Give all extensions containing A.
g. Give an extension that attacks A.
h. Give all extensions that attack A.

In this chapter, procedures will be described for answering a selection of the
above questions with respect to finite argumentation frameworks 〈A,R〉 (in which
A is finite). Notice that for some semantics, such as the grounded and preferred
semantics, extensions always exist, so that 1a will be answered in the positive for
any framework. Also, for the grounded semantics, at most one extension exists, so
that questions distinguished by reference to ‘an’ or ‘all’ extensions are equivalent
(e.g., questions 2a and 2b).

Sections 2 and 3 will introduce some key concepts underpinning the approaches
that we will use in the description of proof theories and algorithms. Sections 4 - 6
will then focus on application of these approaches to the core semantics defined by
Dung [13]; namely grounded, preferred and stable.

Broadly speaking, two approaches will be presented. Firstly, Section 2 formally
describes the argument graph labelling approach that was originally proposed by
Pollock [23], and has more recently been the subject of renewed analysis and in-
vestigation [5, 6, 25, 27]. The basic idea is that the status assignment to arguments
defined by the extension-based approach (see Chapter 2), can be directly defined
through assignment of labels to the arguments (nodes) in the framework’s corre-
sponding argument graph. Section 2 provides formal underpinnings for the defini-
tion of argument graph labelling algorithms that are used to address a selection of
the above questions in Sections 4 - 6.

Section 3 then describes a framework for argument game based proof theories
[9, 16, 17, 28]. The inherently dialectical nature of argumentation lends itself to for-
mulation of argument games in which a proponent starts with an initial argument to
be tested, and then an opponent and the proponent successively attack each other’s
arguments. The initial argument provably has a certain status if the proponent has a
winning strategy whereby he can win irrespective of the moves made by the oppo-
nent. In Sections 4 - 6 we describe specific games, emphasising the way in which the
rules of each specific game correspond to the semantics they are meant to capture.

2 Labellings

In this section the labelling approach (based on its formulation in [5, 6]) is briefly
reviewed. Given an argumentation framework AF = 〈A,R〉, a labelling assigns to
each argument exactly one label, which can be either IN, OUT or UNDEC. The la-
bel IN indicates that the argument is justified, OUT indicates that the argument is
overruled, and UNDEC indicates that the status of the argument is undecided.

Definition 6.1. Let 〈A,R〉 be an argumentation framework.

• A labelling is a total function L : A �→ {IN,OUT,UNDEC}

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 107

• We define: in(L) = {x|L(x) = IN}; out(L) = {x|L(x) = OUT}; undec(L) =
{x|L(x) = UNDEC}
Notice that from hereon, we may represent a labelling L as a triple of the form

(in(L), out(L), undec(L)).
We now define what it is for an argument to be assigned a legal labelling:

Definition 6.2. Let L be a labelling for 〈A,R〉 and x ∈A

• x is legally IN iff x is labelled IN and every y that attacks x (yRx) is labelled OUT
• x is legally OUT iff x is labelled OUT and there is at least one y that attacks x and

y is labelled IN
• x is legally UNDEC iff x is labelled UNDEC, there is no y that attacks x such that y

is labelled IN, and it is not the case that: for all y, y attacks x implies y is labelled
OUT.

The rules defining legal labelling assignments encode one’s intuitive understand-
ing of the status assignments defined by the extension-based semantics and their use
of the reinstatement principle, as described in Chapter 2. An argument x is IN only
if all its attackers are OUT, and each attacker is OUT only if it is itself attacked by an
argument that is IN. Thus, the arguments that are IN in a legal labelling correspond
to a single extension. It is sometimes not possible to obtain a labelling where each
argument is either legally IN or legally OUT; consider for example an argumenta-
tion framework with just a single argument that attacks itself. This is why we need a
third label UNDEC, which basically means that there is insufficient ground to explic-
itly justify the argument and insufficient ground to explicitly overrule the argument.
Notice that from Definition 6.2 it follows that x is legally UNDEC iff it is labelled
UNDEC, and at least one y that attacks x is labelled UNDEC, and no y attacking x is
labelled IN.

Definition 6.3. For l ∈ {IN,OUT,UNDEC} an argument x is said to be illegally l
iff x is labelled l, and it is not legally l.

• An admissible labelling L is a labelling without arguments that are illegally IN
and without arguments that are illegally OUT.

• A complete labelling L is an admissible labelling without arguments that are
illegally UNDEC

Notice that the additional requirement on complete labellings corresponds intu-
itively to Chapter 2’s characterisation of a complete extension as a fixed point of a
framework AF’s characteristic function FAF . Since the grounded and preferred ex-
tensions of a framework are the minimal, respectively maximal, fixed points (com-
plete extensions) of a framework, then as one would expect, grounded and preferred
labellings are given by complete labellings that minimise, respectively maximise,
the arguments that are made legally IN. A stable labelling is a complete labelling in
which all arguments are either legally IN or legally OUT, and hence no argument is
UNDEC.

Definition 6.4. Let L be a complete labelling. Then:

108 Sanjay Modgil and Martin Caminada

• L is a grounded labelling iff there there does not exist a complete labelling L′

such that in(L′) ⊂ in(L) 1

• L is a preferred labelling iff there there does not exist a complete labelling L′

such that in(L′) ⊃ in(L)
• L is a stable labelling iff undec(L) = /0

In [6], the following theorem is shown to hold:

Theorem 6.1. Let AF = 〈A,R〉 be an argumentation framework, and E ⊆ A. For
s ∈ {admissible, complete, grounded, preferred, stable}:
E is an s extension of AF iff there exists an s labelling L with in(L) = E 2

In Sections 4 - 6 we will describe algorithms that compute labellings and so
address a subset of the questions enumerated in Section 1. We conclude this section
with an example:

Example 6.1. Consider the framework in Figure 6.1. There exists three complete
labellings: 1. (/0, /0, {a,b,c,d,e}); 2. ({a}, {b}, {c,d,e}); and 3. ({b,d}, {a,c,e},
/0). 1 is the grounded labelling, 2 and 3 are preferred, and 3 is also stable.

a b c

d

e

Fig. 6.1 An argumentation framework

3 Argument Games

In general, proof theories license the way in which pieces of information can be
articulated in order to prove a fact. They therefore provide a basis for algorithm de-
velopment, and proofs constructed according to these theories provide explanations
as to why a given fact is believed to be true. For example, a proof that argument x is
in an admissible extension, would consist of showing how one can establish the exis-
tence of such an extension, rather than simply identifying the extension. Intuitively,

1 Since every framework has a unique minimal fixed point, one could alternatively define L to be
a grounded labelling iff for each complete labelling L′ it holds that in(L) ⊂ in(L′)
2 Note that for s �= admissible there is a 1-1 mapping between s extensions and s labellings. An
admissible extension may have more than one admissible labelling. For example, the admissible
extension {c}, of c→ b ,c→ a, has two admissible labellings: ({c},{b},{a}) and ({c},{b,a}, /0).

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 109

one would need to show how to defend x by showing that for every argument y that
is put forward (moved) as an attacker of x, one must move an argument z that attacks
y, and then subsequently show how any such z can be reinstated against attacks (in
the same way that z reinstates x). The arguments moved can thus be organised into
a graph of attacking arguments that constitutes an explanation as to why x is in an
admissible extension.

The process of moving arguments and counter-arguments can be implemented as
an algorithm [27]. In this chapter we follow the approach of [9, 14, 16, 17, 26, 28]
and present the moving of arguments as 2-person dialogue games that provide a
natural way in which to lay out and understand the algorithms that implement them.
To be sure, the actual algorithms themselves, should, except for didactic purposes,
not be implemented as dialogue games, but rather as monological procedures (or
methods in OO-languages) that are called recursively.

A dialogue game is played by two players, PRO (for “proponent”) and OPP (for
“opponent”), each of which are referred to as the other’s ‘counterpart’. A game
begins with PRO moving an initial argument x that it wants to put to the test. OPP
and PRO then take turns in moving arguments that attack their counterpart’s last
move. From hereon:

a sequence of moves in which each player moves against its counterpart’s last
move is referred to as a dispute.

If the last move in a dispute is by player Pl, and Pl’s counterpart cannot respond
to this last move, then Pl is said to win the dispute. If a dispute with initial argument
x is won by PRO, we call the dispute a line of defense for x.

The rules of the game encode restrictions on the legality of moves in a dispute,
and different sets of rules capture the different semantics under which justification of
the initial argument x is to be shown, by effectively establishing when OPP or PRO
run out of legal moves. In general, however, a player can backtrack to a counterpart’s
previous move and initiate a new dispute. Consider the dispute aPRO−bOPP−cPRO−
dOPP− ePRO− fOPP won by OPP (xPl − yPl′ denotes player Pl′ moving argument y
against counterpart Pl’s argument x). PRO must then try and backtrack to move an
argument against either bOPP or dOPP and establish an alternative line of defense
for a. Suppose such a line of defense aPRO−bOPP−gPRO. Then OPP can backtrack
and try an alternative line of attack moving h against a, so that PRO must now try
and win the newly initiated dispute aPRO−hOPP. Thus, the ‘playing field’ of a game
— the data structure on the basis of which argument games are played — can be
represented by an argumentation framework’s induced dispute tree, in which every
branch from root to leaf is a dispute:

Definition 6.5. Let AF = 〈A,R〉 be an argumentation framework, and let a∈A. The
dispute tree induced by a in AF is a tree T of arguments, such that T ’s root node is
a, and ∀x,y ∈A: x is a child of y in T iff xRy.

Figure 6.2i) shows an argumentation framework, and part of the tree induced by
a is shown in Figure 6.2ii). Notice that multiple instances of arguments are indi-
viduated by numerical indicies. Any game played by PRO and OPP in which PRO

110 Sanjay Modgil and Martin Caminada

cab

i)

a1

b2

a3

b4
c5

a6

c7

a8

c9 b10

a11

PRO

OPP

PRO

OPP

PRO

a1

b2

a3

c5

a6

c7

a8

b10

a11

ii) iii)

Fig. 6.2 i) shows an argumentation framework, and ii) shows the dispute tree induced in a. iii)
shows the dispute tree induced under the assumption that OPP cannot repeat moves in the same
dispute (branch of the tree)

attempts to show that a is justified, must necessarily involve the submission of at-
tacking arguments conforming to some sub-tree of the induced tree in Figure 6.2ii).
In particular, PRO must show that it fully fulfills its burden of proof, in response to
OPP who fully fulfills its burden of attack. In other words, OPP moves all ys that
attack an x moved by PRO, and each such y must in turn be responded to by PRO
moving at least one x′ that attacks y. This does of course capture the reinstatement
principle used to define the extensions of an argumentation framework, and corre-
lates with Section 2’s definition of legal labellings and the extensions they define3.
In the context of a game, this is captured by the notion of a winning strategy for
an argument. Notice that in the following definition we refer to the notion of a sub-
dispute d′ of a dispute d, which, intuitively is any sub-sequence of d that starts with
the same initial argument as d.

Definition 6.6. Let AF = 〈A,R〉, T the dispute tree induced by a in AF , and T ′ a
sub-tree of T . Then T ′ is a winning strategy for a iff:

1. The set DT ′ of disputes in T ′ is a non-empty finite set such that each dispute
d ∈ DT ′ is finite and is won by PRO (terminates in an argument moved by PRO)

2. ∀d ∈ DT ′ , ∀d′ such that d′ is some sub-dispute of d and the last move in d′ is an
argument x played by PRO, then for any y such that yRx, there is a d′′ ∈DT ′ such
that d′ − yOPP is a sub-dispute of d′′.

If PRO plays moves as described in a winning strategy sub-tree, then PRO is
guaranteed to win.

As stated earlier, the rules of a game encode restrictions on the arguments a
player can legally move in a dispute in order to attack its counterpart’s argument.
These restrictions vary according to the semantics of interest, and are encoded in a
legal move function:

3 Recall that x is legally IN iff all ys that attack an x are legally OUT, and each such y is legally
OUT iff there is at least one x′ attacking y that is legally IN

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 111

Definition 6.7. Let AF = 〈A,R〉, T the dispute tree induced by a in AF . Let DT be
the set of all disputes in T . Then φ is a legal move function such that φ : DT �→ 2A.

Given a dispute tree T induced by a, the legal move function φ for a semantics
s, prunes T to obtain the sub-tree T ′ of T that we call the φ tree induced by a. T ′ is
the playing field of the game for semantics s. Thus, we define a φ -winning strategy
for a [9, 17] as a sub-tree of the φ dispute tree induced by a, in the same way as
Definition 6.6, except that we replace ‘for any x such that xRy’ in condition 2, with
‘for any x that OPP can φ legally move against y’. Intuitively, φ is defined such
that a is in an admissible extension that conforms to the semantics s iff there is a
φ -winning strategy for a in the φ tree induced by a, where the arguments moved by
PRO in the φ -winning strategy are conflict free (recall that an admissible extension
must contain no arguments that attack each other).

For example, consider games whose legal move function φ prohibits OPP from
repeating arguments in the same dispute. Figure 6.2iii) shows the φ -dispute tree that
is a sub-tree of the dispute tree induced by a (Figure 6.2ii)). After PRO plays a6,
OPP cannot backtrack and extend the dispute d = a1−b2−a3 by moving b against
a3, since b has already been moved by OPP in d. Similarly, OPP cannot backtrack
to move c against a8 in order to extend d′ = a1− c7−a8. Note also that both DT1 =
{d1 = a1−b2−a3−c5−a6} and DT2 = {d2 = a1−c7−a8−b10−a11} are winning
strategies. In the former case, consider the sub-dispute d′1 = a1−b2−a3 of d1. OPP
can legally move c against a3, but there is a dispute in DT1 that extends d′1 (d1 itself)
in which PRO moves against OPP’s move of c.

To summarise, suppose PRO wishes to show that x is a member of an extension
E under the semantics s. The associated legal move function φ for s defines some
φ -dispute tree T that is a sub-tree of the dispute tree induced by x, and defines all
possible disputes the players can play in a game. The φ -dispute tree T should be
such that: x ∈ E iff there is a φ -winning strategy T ′ in T , such that the arguments
moved by PRO in T ′ do not attack each other (are conflict free). A φ -winning strat-
egy is a set of disputes won by PRO in which PRO has fulfilled its burden of proof
by countering all possible φ -legal moves of OPP.

4 Grounded Semantics

For any argumentation framework, there is guaranteed to be exactly one grounded
extension. Hence, questions 1b, 1c and 2a - 2h can all be addressed by construc-
tion of a framework’s grounded extension. In Section 4.1 we present an algorithm
that generates the grounded labelling of an argumentation framework. Section 4.2
then describes an argument game for deciding whether a given argument is in the
grounded extension, thus providing an alternative way for addressing the questions
2a and 2b.

The grounded semantics places the highest burden of proof on membership of
the extension that it defines. This equates with Chapter 2’s definition of the exten-
sion as the least fixed point of a framework AF’s characteristic function FAF (i.e.,
the smallest admissible E that contains exactly those arguments that are acceptable

112 Sanjay Modgil and Martin Caminada

w.r.t. E). The extra burden of proof is intuitively captured by the fact that in de-
fending x’s membership of the grounded extension E, one must ‘appeal to’ some
argument other than x itself. That is to say, for any y such that y attacks x, y is
attacked by at least one z1 ∈ E such that z1 �= x, and in turn, z1 must be reinstated
against any attack, by some z2 ∈ E such that z2 �= x, z2 �= z1, and so on. This property
is exploited by both the algorithm for generating the grounded labelling, and argu-
ment games for the grounded semantics. The property is relatively straightforward
to show given Chapter 2’s description of how, starting with the empty set, iteration
of the characteristic function yields the grounded extension. We have that x ∈ Fi

AF

iff for every attack on x, x is reinstated by some z ∈ F
j
AF , where z �= x and j < i.

4.1 A labelling algorithm for the Grounded Semantics

An algorithm for generating the grounded labelling starts by assigning IN to all ar-
guments that are not attacked, and then iteratively: OUT is assigned to any argument
that is attacked by an argument that has just been made IN, and then IN to those
arguments all of whose attackers are OUT. Thus, the arguments assigned IN on each
iteration, are those that are reinstated by the arguments assigned IN on the previ-
ous iteration. The iteration continues until no more new arguments are made IN
or OUT. Any arguments that remain unlabelled are then assigned UNDEC. One can
straightforwardly show that the algorithm is sound and complete since it effectively
mimics construction of the grounded extension through iteration of a framework’s
characteristic function. The algorithm for generating the grounded labelling LG of
a framework 〈A,R〉 is presented more formally below, in which we use Section 2’s
representation of a labelling L as a triple (in(L), out(L), undec(L)).

Algorithm 6.1 Algorithm for Grounded Labelling
1: L0 = (/0, /0, /0)
2: repeat
3: in(Li+1) = in(Li) ∪ {x | x is not labelled in Li, and ∀y : if yRx then y ∈ out(Li) }
4: out(Li+1) = out(Li) ∪ {x | x is not labelled in Li, and ∃y : yRx and y ∈ in(Li+1) }
5: until Li+1 = Li

6: LG = (in(Li), out(Li), A− (in(Li) ∪ out(Li))

Consider the following example framework:

a→ b→ c , d � e

L1 = ({a},{b}, /0), L2 = ({a,c},{b}, /0), L3 = L2 and so LG = ({a,c},{b},{d,e}).

Finally, notice that the algorithm presented here can be made more efficient in a
number of ways. For example, when assigning IN to arguments in line 3, checking
whether all attackers are OUT can be made more efficient by giving each argument

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 113

a counter attackers-out that represents the number of attackers that are la-
belled OUT. Since all arguments are initially unlabelled, this counter is set to zero
before the actual labelling begins. Every time that an argument is labelled OUT,
it sends a message to each of the arguments that it attacks to increase its variable
attackers-out. Evidently, if this variable equals the number of attackers, the
attacked argument can be labelled IN.

4.2 Argument games for the Grounded Semantics

We have discussed how, in defending an argument x’s membership of the grounded
extension, one must not loop back to x itself, and how the same restriction applies
to any argument moved in x’s line of defence. Intuitively, this is captured by a le-
gal move function φG1 that prohibits PRO from repeating arguments it has already
moved in a dispute.

Definition 6.8. Given 〈A,R〉, a dispute d such that x is the last argument in d, and
PRO(d) the arguments moved by PRO in d, then φG1 is a legal move function such
that:

• If d is of odd length (next move is by OPP) then φG1 (d) = {y | yRx }
• If d is of even length (next move is by PRO) then:

φG1 (d) = {y |
1. yRx

2. y /∈ PRO(d)
}

Theorem 6.2. Let AF = 〈A,R〉 be a finite argumentation framework. Then, there
exists a φG1 -winning strategy T for x such that the set PRO(T) of arguments moved
by PRO in T is conflict free, iff x is in the grounded extension of AF.

One can give an intuitive proof of Theorem 6.2 by appealing to the correspon-
dence between the grounded extension and grounded labelling of an argumentation
framework (see Theorem 6.1). That is to say, by showing that:

1. Let T be a φG1 -winning strategy for x such that PRO(T) is conflict free.
Then there is a grounded labelling L with L(x) = IN.

2. Let L be a labelling with L(x) = IN. Then there exists a φG1 -winning
strategy for x such that PRO(T) is conflict free.

Proof of the above correspondences can be found in [21].
Consider the example framework in Figure 6.3i). Part of the dispute tree induced

by a is shown in Figure 6.3ii), and the φG1 dispute tree induced by a is shown in
Figure 6.3iii). Observe that {(a1−b2− c3−d4− e6)} is a φG1 -winning strategy for
a (a is in the grounded extension {a,c,e}). Finally, consider the example framework
in Figure 6.3iv). In this case the φG1 -winning strategy for a consists of two disputes:

114 Sanjay Modgil and Martin Caminada

dc

e

i)

a1

c3

d4

e6
c5

d7

d8

c10

d11

PRO

OPP

PRO

OPP

PRO

ii) iii)

b

a
b2

OPP

e9

a1

c3

d4

e6

d8

c10

b2

e9

iv)

abd c e

Fig. 6.3 i) shows an argumentation framework and ii) shows the dispute tree induced in a. iii)
shows the φG1 -dispute tree induced by a and the φG1 winning strategy encircled. The φG1 winning
strategy for a, in the framework in iv), consists of two disputes.

{(aPRO−bOPP−dPRO),(aPRO− cOPP− ePRO)}.

Some gain in efficiency can be obtained by a legal move function φG2 that ad-
ditionally prohibits PRO from moving a y that is itself attacked by the x that PRO
moves against (i.e., augmenting 1 and 2 in Definition 6.8 with ¬(xRy)). This is be-
cause if PRO moves such a y against x, then OPP can simply repeat x and move
against y, and then PRO will be prevented from repeating y. The φG2 game is in-
stantiated by Prakken and Sartor for their argument-based system of prioritized ex-
tended logic programming [24]. Amgoud and Cayrol [1] do the same for their argu-
ment based system for inconsistency handling in propositional logic. The following
soundness and completeness result can be proved as a straightforward generalisa-
tion of proofs for the specific systems in [24, 1]. Such a generalised proof can be
found in [4].

Theorem 6.3. Let AF = 〈A,R〉 be a finite argumentation framework. Then, there
exists a φG2 -winning strategy T for x such that the set PRO(T) of arguments moved
by PRO in T is conflict free, iff x is in the grounded extension of AF

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 115

Since the arguments moved by PRO in a winning strategy are required to be con-
flict free, it is obvious to see that shorter proofs may also be obtained by preventing
PRO from moving arguments in a dispute d that attack themselves or attack or are
attacked by arguments that PRO has already moved in d.

Definition 6.9. Let POSS(d) = {y | ¬(yRy) and ∀z∈ PRO(d), ¬(zRy) and ¬(yRz)}.

One can then further restrict PRO’s moves in Definition 6.8, by adding the condition
that y ∈ POSS(d), thus obtaining the legal move function φG3 .

Finally, further gains in efficiency can be obtained by noticing that if T is a
φG1 , φG2 or φG3 winning strategy, then PRO(T) is conflict free. Thus, one need
not instigate the conflict free check on winning strategies suggested by the above
soundness and completeness results. To see why, notice that φG1 , φG2 and φG3 make
no restrictions on moves by OPP, and one can show that the following theorem
holds:

Theorem 6.4. Let T be a φ winning strategy such that φ makes no restrictions on
moves by OPP. Then PRO(T) is conflict free.

We refer the reader to [21] for a proof of the above theorem.

5 Preferred Semantics

For any argumentation framework, existence of a preferred extension is guaranteed,
and there can be more than one preferred extension. Hence, the decision questions
2a (credulous membership) and 2b (sceptical membership) are distinct. In Section
5.2 we describe argument games for addressing the credulous membership ques-
tion. Section 5.3 then describes argument games for addressing the more difficult
sceptical membership question. Solution-orientated questions 2c - 2h require proce-
dures for identifying one or all preferred extensions. Such questions become rele-
vant when end-users would like to be informed about the reasons as to how and why
an argument is justified or overruled, and can be addressed by labelling algorithms
that compute one or all preferred labellings. We describe labelling algorithms in the
following section.

5.1 A Labelling Algorithm for the Preferred Semantics

In this Section we review Caminada’s work on labelling algorithms [6]. Theorem
6.1 in Section 2 establishes an equivalence between an argumentation framework’s
preferred extensions and the framework’s preferred labellings. In [5] it is shown
that:

116 Sanjay Modgil and Martin Caminada

L is a preferred labelling iff L is an admissible labelling such that for no ad-
missible labelling L′ is it the case that in(L′)⊃ in(L). (R1)

Hence, a framework’s preferred extensions can be identified by algorithms that
compute admissible labellings that maximise the number of arguments that are
legally IN. In [6], admissible labellings are generated by starting with a labelling
that labels all arguments IN and then iteratively, selects arguments that are illegally
IN and applies a transition step to obtain a new labelling, until a labelling is reached
in which no argument is illegally IN.

Definition 6.10. Let L be a labelling for 〈A,R〉 and x an argument that is illegally
IN in L. A transition step on x in L consists of the following:

1. the label of x is changed from IN to OUT
2. for every y ∈ {x}∪{z|xRz}, if y is illegally OUT, then the label of y is changed

from OUT to UNDEC (i.e., any argument made illegally OUT by 1 is changed to
UNDEC)

In what follows, we assume a function transition step that takes as input x and L,
and applies the above operations to yield a labelling L′. We then define a transition
sequence as follows:

A transition sequence is a list [L0, x1, L1, x2, . . ., xn, Ln] (n ≥ 0), where for i =
1 . . .n, xi is illegally IN in Li−1, and Li = transition step(Li−1, xi).

A transition sequence is said to be terminated iff Ln does not contain any argument
that is illegally IN.

Let us examine a transition sequence that starts with the initial labelling L0 in
which all arguments are labelled IN (from hereon any such labelling is referred
to as an ‘all-in’ labelling and we assume that any initial labelling L0 is an all-in
labelling). Any labelling containing an argument x that is illegally IN cannot be a
candidate admissible labelling (since not all of x’s attackers are OUT and so x is not
reinstated against all attackers), and so must be relabelled OUT. One might expect
that the second part of the transition step relabels to IN, those arguments that are
made illegally OUT by the first step. However this may not only result in a loop,
but would also ‘overcommit’ arguments to membership of an admissible labelling
(and so extension); just because an argument may be acceptable w.r.t. an admissible
extension E does not mean that it must be in E.

For finite frameworks it can be shown that:

For any terminated transition sequence [L0, x1, L1, x2, . . ., xn, Ln], it holds that
Ln is an admissible labelling. (R2)

To see why, observe that L0 contains no arguments that are illegally OUT, and it
is straightforward to show that a transition step preserves the absence of arguments
that are illegally OUT. Hence, since the terminated sequence contains no arguments
that are illegally IN, then by Definition 6.3, Ln is admissible.

In [6], it is also shown that:

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 117

For any preferred labelling L, it holds that there exists a terminated transition
sequence [L0, x1, L1, x2, . . ., xn, Ln], where Ln = L. (R3)

The above results R1, R2 and R3, imply that terminated transition sequences whose
final labellings maximise the arguments labelled IN are exactly the preferred la-
bellings. Before presenting the algorithm for generating such sequences, let us con-
sider how admissible labellings are generated for the argumentation framework in
Figure 6.4i). Starting with the initial all-in labelling L0 = ({a,b,c}, /0, /0), then se-
lecting a on which to perform a transition step obtains L1 = ({b,c},{a}, /0). Now
only c is illegally IN, and relabelling it to OUT results in a being illegally OUT, and
so L2 = ({b},{c},{a}). Now b is illegally IN, and relabelling b to OUT results in
both b and c being illegally OUT, so that they are both labelled UNDEC. Thus, the
transition sequence terminates with the labelling L3 = (/0, /0,{a,b,c}) in which all
arguments are UNDEC. It is easy to verify that irrespective of whether a, b or c is
selected on the first transition step, every terminated transition sequence will result
in L3.

Consider now the framework in Figure 6.4ii). Starting with the initial all-in la-
belling L0 = ({a,b,c}, /0, /0), we observe that B and C are illegally IN:

1. Selecting b for the first transition step obtains the terminated sequence [L0, b,
L1 = ({a,c},{b}, /0)]. L1 is an admissible and complete labelling, yielding the
admissible and complete extension {a,c}.

2. Selecting c for the first transition step obtains the terminated sequence [L0, c, L1

= ({a,b},{c}, /0), b, L2 = ({a},{b},{c})], yielding the admissible extension {a}

a b

ii)

ca

b

c

i)

Fig. 6.4 Two argumentation frameworks

Notice that in the second sequence, the label of c is changed from OUT to UNDEC
since c is made illegally OUT by the second transition step’s assignment of OUT
to the illegally IN b. L2 is an admissible but not complete labelling, since c is
illegally UNDEC. To help avoid non-complete labellings, one can guide the choice
of arguments on which to perform transition steps: choose an argument that is super-
illegally IN, if such an argument is available.

Definition 6.11. An argument x in L that is illegally IN, is also super-illegally IN
iff it is attacked by a y that is legally IN in L, or UNDEC in L.

118 Sanjay Modgil and Martin Caminada

Thus, b would preferentially be selected according to the above strategy, since b
and not c is super-illegally IN in ({a,b,c}, /0, /0). As shown in [6], both the results
R2 and R3 are preserved under such a strategy.

Algorithm 6.2 Algorithm for Preferred Labellings
1: candidate-labellings := /0;
2: find labellings(all-in);
3: print candidate-labellings;
4: end.
5: .
6: .
7: procedure find labellings(L)
8: .
9: # if L is worse than an existing candidate labelling then prune the search tree

10: # and backtrack to select another argument for performing a transition step
11: if ∃L′ ∈ candidate-labellings: in(L) ⊂ in(L′) then return;
12: .
13: # if the transition sequence has terminated
14: if L does not have an argument that is illegally IN then
15: for each L′ ∈ candidate-labellings do
16: # if L′’s IN arguments are a strict subset of L’s IN arguments
17: # then remove L′

18: if in(L′) ⊂ in(L) then
19: candidate-labellings :=
20: candidate-labellings − {L′};
21: end if
22: end for
23: # add L as a new candidate
24: candidate-labellings := candidate-labellings ∪ {L};
25: return; # we are done, so try the next possibility
26: else
27: if L has an argument that is super-illegally IN then
28: x := some argument that is super-illegally IN in L;
29: find labellings(transition step(L, x));
30: else
31: for each x that is illegally IN in L do
32: find labellings(transition step(L, x))
33: end for
34: end if
35: end if
36: endproc

We now describe the above listed algorithm for generating preferred labellings.
The main procedure find labellings starts with the all-in labelling, and then
iteratively applies transitions steps in an attempt to generate terminated transition
sequences that update the global variable candidate-labellings. The algo-
rithm preferentially selects from amongst super-illegal arguments for performing
transition steps, if such arguments are available. If at any stage in the generation of
a transition sequence, the arguments that are IN in the labelling Li thus far obtained

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 119

are a strict subset of in(L′) for some L′ ∈ candidate-labellings, then no
further transition steps on Li can result in a preferred labelling (that maximises the
arguments that are IN). This follows from the result that during the course of a tran-
sition sequence, the set of IN labelled arguments monotonically decreases (as shown
in [6]). Thus, any further transition steps on Li will only reduce the arguments that
are IN. In such cases, the algorithm backtracks to Li−1 and, if possible, selects an-
other argument on which to perform a transition step. In the case that a transition
sequence terminates, the obtained labelling L is compared with all labellings L′

in candidate-labellings. If for any L′, in(L′) is a strict subset of in(L),
then L′ is removed from candidate-labellings. Thus, given a finite argu-
mentation framework 〈A,R〉, the algorithm calculates the preferred labellings and
so preferred extensions.

5.2 Argument Games for the Credulous Preferred Semantics

Since the admissible extensions of a framework form a complete partial order with
respect to set inclusion (and so every admissible extension is a subset of a preferred
extension), then for argument games addressing the credulous membership question,
it suffices to show an admissible extension containing the argument in question. In
contrast with the grounded semantics, x’s membership of an admissible extension
E can now ‘appeal to’ x itself, in the sense that in defending x’s membership of E,
and membership of all subsequent defenders, one can loop back to x itself. This then
means, that to prevent infinite disputes, it is now OPP, rather than PRO, that should
not be allowed to repeat an argument y it has already moved in a dispute, since y can
then be attacked by PRO repeating the argument it moved against OPP’s first move
of y.

Consider the framework in Figure 6.5i), and the dispute tree induced in a in Fig-
ure 6.5ii). In both disputes (branches) PRO is allowed to repeat its arguments (c5

and d9). OPP repeats its arguments, and the disputes continue with PRO repeatedly
fulfilling its burden of proof w.r.t. c (d). It is of course sufficient that PRO fulfill
its burden of proof only once. Hence, as well as preventing PRO from introduc-
ing a conflict into a dispute, the following legal move function prohibits OPP from
repeating arguments.

Definition 6.12. Given 〈A,R〉, a dispute d such that x is the last argument in d, and
OPP(d) the arguments moved by OPP in d, then φPC1 is a legal move function such
that:

• If d is of odd length (next move is by OPP) then:

φPC1 (d) = {y |
1. yRx

2. y /∈ OPP(d)
}

120 Sanjay Modgil and Martin Caminada

dc

i)

a1

c3

d4

c5

d6

d7

c8

d9

b2

c10

PRO

OPP

PRO

OPP

PRO

ii) iii)

a1

c3

d4

c5

d7

c8

d9

b2

b

a

OPP

iv)

a1

c3 d7

b2

Fig. 6.5 i) shows an argumentation framework and ii) shows the dispute tree induced in a. iii) and
iv) respectively shows the φPC1 and φPC2 dispute trees induced by a.

• If d is of even length (next move is by PRO) then:

φPC1 (d) = {y |
1. yRx

2. y ∈ POSS(d)
}

Notice that φPC1 mirrors Section 4.2’s grounded game function φG3 (that aug-
ments φG1 to restrict PRO to moving arguments in POSS(d)). They differ only in
that φPC1 prevents repetition by OPP, and φG3 prevents repetition by PRO.

Consider again the framework in Figure 6.5i). The φPC1 dispute tree induced by a
is shown in Figure 6.5iii), and both disputes in the tree individually constitute φPC1

winning strategies. Notice that for the example framework in Figure 6.3iv), the φPC1 -
winning strategy for a consists of two disputes: {(aPRO − bOPP − dPRO),(aPRO −
cOPP− ePRO)}.

The following theorem states the soundness and completeness result for φPC1

games:

Theorem 6.5. Let AF = 〈A,R〉 be a finite argumentation framework. Then, there
exists a φPC1 -winning strategy T for x such that the set PRO(T) of arguments moved
by PRO in T is conflict free, iff x is in an admissible (and hence preferred) extension
of AF.

One can give an intuitive proof of the above by using the correspondence be-
tween admissible extensions and admissible labellings of an argumentation frame-
work (see Theorem 6.1). That is, it suffices to prove that:

1. Let T be a φPC1 -winning strategy for x such that PRO(T) is conflict free.
Then there exists an admissible labelling L with L(x) = IN.

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 121

2. Let L be an admissible labelling with L(x) = IN. Then there exists a φPC1 -
winning strategy for x such that PRO(T) is conflict free.

Proof of the above correspondences can be found in [21].

Observe that the spectrum of outcomes would not be changed by a function φPC2

that augments φPC1 by prohibiting OPP from moving any argument y (and not just
a y already moved by OPP) that is attacked by an argument x in PRO(d). This is
because PRO can then simply move x against y, and if yRx, prohibiting repetition
by OPP will mean that y cannot be moved against this second move of x by PRO.
Notice that if this prohibition on OPP is in place, then one cannot have a dispute
of the form (. . .yPRO . . .xOPP− yPRO . . .) in which PRO repeats an argument, since
the prohibition on OPP would prevent the move xOPP. Hence, shorter proofs can be
obtained by a function φPC2 that augments φPC1 by prohibiting OPP from moving
any argument attacked by an argument in PRO(d), and prohibiting repetition by
PRO. Indeed, [9] prove that the following theorem holds:

Theorem 6.6. Let AF = 〈A,R〉 be a finite argumentation framework. Then, there
exists a φPC2 -winning strategy for x such that the set PRO(T) of arguments moved
by PRO in T is conflict free, iff a is in a preferred extension of AF.

Figure 6.5iv) shows the φPC2 dispute tree induced by a for the framework in
Figure 6.5i), where both disputes in the tree are φPC2 winning strategies. However,
notice that neither dispute fully fulfills the remit of a proof to explain the credulous
membership of a, since neither demonstrates the reinstatement of c, respectively
d, against its attacker d, respectively c, and so provides an explanation for the ad-
missibility of {a,c}, respectively {a,d}. This illustrates a more general point that
efficiency gains often come at the expense of explanatory power.

Finally, note that unlike games for the grounded semantics, checking that the
arguments moved by PRO in a φPC1 (or φPC2) winning strategy are conflict free, is
required. This is because φPC1 and φPC2 games place restrictions on moves by OPP
(and hence the result concluding Section 4.2 does not hold). For example, consider
that a is not in an admissible, and hence preferred, extension of the framework
in Figure 6.6. Now, {(aPRO− bOPP− cPRO− dOPP− gPRO),(aPRO− eOPP− fPRO−
gOPP− dPRO)} is a φPC1 winning strategy since OPP cannot legally extend either
dispute. However, the arguments moved by PRO are not conflict free (PRO has
moved g and d).

c b ad

e
f

g

Fig. 6.6 Argument a is not in an admissible and so preferred extension of the above framework.

122 Sanjay Modgil and Martin Caminada

5.3 Argument Games for the Sceptically Preferred Semantics

The question of whether an argument is sceptically preferred is much harder to an-
swer than the credulously preferred membership problem. To understand why, it
may first help to realise that the credulous membership problem only requires us to
point at one extension, while the sceptical membership problem requires us to prove
something about all possible extensions. Thus, the credulously preferred member-
ship problem is an existence problem while the sceptically preferred membership
problem is a verification problem. To understand better why verification is hard in
this case, we recall the definition of sceptically preferred membership: an argument
a is sceptically preferred iff it is a member of all preferred extensions. The crux of
the problem is that we have to verify whether there exists preferred extensions that
do not contain a. In so doing, it is not immediately clear where to begin to search
for such extensions.

The following result establishes a connection between a and preferred extensions
that might possibly exclude a (we refer the reader to [21] for a proof of this result). It
basically ensures that the search space for the sceptical decision problem is confined
to elements that are indirectly connected to defense sets of a.

Theorem 6.7 (Complement lemma). An argument a is sceptically preferred if and
only if for every admissible extension B, there is an admissible extension A, contain-
ing a, that is consistent with B.

Thus, conversely, a is not sceptically preferred if there exists an admissible exten-
sion B that conflicts with all admissible extensions around a. Because such an exten-
sion B blocks sceptically preferred membership, such an extension is called a block.
With the help of Theorem 6.7 we may now formulate an abstract and inefficient, but
conceptually correct proof procedure to determine sceptical membership. This pro-
cedure works by falsification, as follows. Try to construct a block B. If this attempt
fails, we may, with the help of Theorem 6.7 conclude that a is sceptically preferred.

The procedure to block a can be described as an argument game that we infor-
mally describe here. The difference with the games described earlier, is that the play-
ers exchange entire admissible extensions rather than single arguments. The game
works as follows. Suppose PRO’s goal is to show that a is sceptically preferred. To
this end, PRO starts by constructing an admissible extension, A{1} around a. Since
A{1} is the only admissible extension known at this stage, it follows that at this
stage a is sceptically preferred. To invalidate this temporary conclusion, the bur-
den of proof shifts to OPP who must show that a is not sceptically preferred. By
virtue of Theorem 6.7 it suffices for OPP to show that there exists an admissible
extension that conflicts with A{1}. If OPP does not manage to construct such an
extension, the procedure ends and OPP has lost. Suppose OPP manages to produce
A{1,1} as a response to A{1}. Thus, A{1,1} is an admissible extension that con-
flicts with A{1}. Once A{1,1} is advanced, a is no longer sceptically preferred, be-
cause A{1,1} conflicts with every admissible extension around a constructed thus
far, viz. A{1}. To invalidate this temporary conclusion, the burden of proof shifts
back to PRO who must now show that there exists another admissible extension

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 123

around a that does not conflict with A{1,1}. If PRO fails to do so (and PRO’s search
was adequate and exhaustive), it follows that A{1,1} conflicts with all admissible
extensions around A, so that a is not sceptically preferred. Suppose otherwise, i.e,
suppose that PRO is able to construct an admissible extension, A{1,1,1}, that does
not conflict with A{1,1}. OPP must now either extend A{1,1} such that it also con-
flicts with A{1,1,1} or else drop A{1,1} to start all over to attack another member
of A{1}. Continuing this way (including backtracking), OPP is busy with extending
an admissible extension until either PRO is unable to produce another admissible
extension around a, or else until OPP’s admissible extension cannot be further ex-
tended (on pain of becoming inconsistent).

More generally, we may suppose that A{1}, . . . ,A{n} are possible begin moves of
PRO, and A{i1, . . . , ik,m}, k ≥ 1 is the mth possible response of either PRO or OPP
to A{i1, . . . , ik}. Naturally, all the A{ī} are admissible extensions. The following
constraints hold:

1. Every extension advanced by PRO must contain the main argument, a.
2. Every response of PRO must be consistent with the extension that is previously

advanced by OPP.
3. Every response of OPP must attack PRO’s immediately preceding extension.
4. Within one branch, every extension advanced by OPP must be an extension of

OPP’s previous extension in the same branch.
5. Both parties may backtrack and construct alternative replies.
6. OPP has won if it is able to move last; else PRO has won.

If OPP has won this means that OPP was able to create a block B = A{i1, . . . , i2k},
where k≥ 1 (note that we have ‘2k’ since all moves by OPP have an even number of
indices). With B, OPP is able to move last in the particular branch where that block
was created and all sub-branches emanating from the main branch. It must be noted
that all this only works in finitary argument systems, i.e., argument systems where
all arguments have a finite number of attackers. Algorithms for non-finitary argu-
ment systems require additional constraints such as fairness which must guarantee
that every possibility is enumerated eventually.

The above ideas are taken from earlier work on the sceptically preferred mem-
bership problem, notably that of Doutre et al. [12] and Dung et al. [15]. In [12],
the procedure to find a possible block is presented as a so-called meta-acceptance
dialogue. As above, moves in this dialogue are extensions (hence the meta), and a
dialogue is won by OPP if it is able to move last in at least one branch. In Dung et
al. [15] the procedure to construct a “fan” of admissible extensions around A that
together represent all preferred extensions is called generating a complete base for
a. A base for a is a set of admissible extensions, B, such that every preferred exten-
sion around a includes at least one element of B. A complete base for a, then, is a
set of admissible extensions, B, such that every preferred extension includes at least
one element of B. In line with Theorem 6.7, Dung et al. proceed to show that a base
B is incomplete if and only if there exists a preferred extension that attacks every
element of B. Their proof procedure is a combination of a so-called BG-derivation
(base generation derivation) followed by a CB-verification (complete base verifica-

124 Sanjay Modgil and Martin Caminada

tion). With BG a base for a is generated, such that every preferred extension around
a contains an element of B. Such a base always exists, but not every base may serve
as a representant of sceptical membership. To check whether B indeed represents
sceptical membership, it is checked for completeness, which effectively means that
it must hold out against every candidate block that might undermine B. Again, all
decision procedures only work in finitary argument systems.

6 Stable and Semi-Stable Semantics

Stable semantics are, what one might call ‘xenophobic’, since every argument out-
side of a stable extension is attacked by an argument in the stable extension. Unlike
the preferred semantics, existence of a stable extension is not guaranteed; consider
that a framework consisting of a single argument that attacks itself has no stable ex-
tension. However, as in the case of the preferred semantics, there may be more than
one extension, and so decision questions 2a (credulous membership) and 2b (scep-
tical membership) are distinct. These questions, questions 1b, 1c, and the solution-
orientated questions 2a - 2h can be addressed by an algorithm (taken from [6])
that generates all stable extensions of a framework. Since a stable labelling makes
all arguments either OUT or IN, one can straightforwardly adapt the algorithm for
preferred labellings in Section 5.1, so as to only yield labellings without UNDEC
labelled arguments. Thus, line 11 in the algorithm is replaced by:
if undec(L) �= /0 then return;
Furthermore, we do not have to compare the arguments made IN by other candidate
labellings, and so we can remove lines 15 to 22. The result is an algorithm that cal-
culates all stable extensions of a finite framework.

Argument games for stable semantics have only recently been studied. In [28],
the authors study coherent argumentation frameworks, in which every preferred ex-
tension is also stable (meaning that the preferred and stable extensions coincide,
since each stable extension is by definition also a preferred extension). Thus, for
coherent argumentation frameworks, one can simply apply existing games for the
preferred semantics to decide membership under stable semantics.

For the general case, where one is not restricted to coherent argumentation frame-
works, the situation is more complex, but can still be expressed in terms of the cred-
ulous games defined in Section 5.2. Given a framework 〈A,R〉, and letting PRO(T),
respectively OPP(T), denote the arguments moved by PRO, respectively OPP, in a
dispute tree T , then an argument x is in a stable extension iff there exists a set S of
φPC1 winning strategies such that:

1. at least one winning strategy in S is for x.
2.

⋃{PRO(T)|T ∈ S} is conflict free.
3.

⋃{PRO(T)∪OPP(T)|T ∈ S} = A

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 125

This can be seen as follows. First of all, each φPC1 winning strategy corresponds
to an admissible labelling. A set of winning strategies that do not attack each other
(point 2) again corresponds to an admissible labelling. If this resulting admissible
labelling spans the entire argumentation framework (each argument is either IN or
OUT) then this labelling is also stable (point 3). Then, if x is IN in this labelling,
then x is labelled IN in at least one stable labelling (point 1).

It is also possible to define a single dispute game that determines credulous ac-
ceptance w.r.t. stable semantics. Such a game has recently been stated by Caminada
and Wu [7]. One particular feature of their approach, which builds on the work of
Vreeswijk and Prakken [28], is that they do not use the concept of a winning strat-
egy. Instead, for an argument x to be in a stable extension, it suffices to have at least
one game for x that is won by PRO. Caminada and Wu are able to do this by first
defining a game for credulous preferred in which PRO may repeat its own moves,
but not the moves of OPP, and in which OPP may repeat PRO’s moves but not its
own moves. Moreover, PRO has to react to the directly preceding move of OPP,
whereas OPP is free to react either to the directly preceding move of PRO, or to
a previous PRO move. A dispute is won by PRO iff OPP cannot move. A dispute
is won by OPP iff PRO cannot move, or if OPP managed to repeat one of PRO’s
moves.

Basically, the game can be understood in terms of PRO and OPP building an
admissible labelling in which PRO makes IN moves, and OPP makes OUT moves.
This game can be altered to implement stable semantics by introducing a third kind
of move, which is called QUESTION. By uttering QUESTION x, OPP asks PRO for
an explicit opinion on argument x. PRO is then obliged to reply with either IN x or
with IN y, where y is an attacker of x. Caminada and Wu show that this game indeed
models credulous acceptance under the stable semantics.

Once a procedure for credulous acceptance w.r.t. stable semantics has been de-
fined, the issue of sceptical acceptance w.r.t. stable semantics becomes relatively
straightforward: an argument x is in all stable extensions iff one fails to establish
credulous membership of any attacker of x. For the left to right half, observe that
if x is in all stable extensions, then all attackers of x are attacked by all such ex-
tensions (an argument y is attacked by an extension if it is attacked by an argument
in that extension), and so no attacker of x can be in any such extension, since each
such extension is conflict free. For the right to left half, observe that if any attacker
of x does not belong to any stable extension, then it is attacked by all such exten-
sions. Thus every extension contains an argument that reinstates x, and so contains x.

Caminada has recently proposed semi-stable semantics [5, 6], that unlike the sta-
ble semantics, guarantees that every (finite) framework has at least one semi-stable
extension. In the case that there exists at least one stable extension for a frame-
work, semi-stable semantics yield the same extensions as stable semantics. From
the perspective of argument labellings, semi-stable semantics select those labellings
in which the set of UNDEC arguments is minimal. Referring to Definition 6.4, this
can be expressed as follows:

126 Sanjay Modgil and Martin Caminada

Let L be a complete labelling. Then L is a semi-stable labelling iff there
does not exist a complete labelling L′ such that undec(L′) ⊂ undec(L)

For example, consider the framework in Figure 6.4ii) augmented by an additional
argument d that attacks itself. The augmented framework has no stable extension,
but {a,c} is the single semi-stable extension equating with the semi-stable labelling
({a,c},{b},{d}). Notice that although {a,c} is also the single preferred extension,
in general not every preferred extension is a semi-stable extension since not every
preferred extension minimises UNDEC. However, every semi-stable extension is a
preferred extension, which suggests that we can adapt Section 5.1’s algorithm for
preferred labellings in order to compute semi-stable labellings.

In [6] it is also shown that:

L is a semi-stable labelling iff L is an admissible labelling such that for no
admissible labelling L′ is it the case that undec(L′) ⊂ undec(L).

(R1′)

Since every semi-stable extension is a preferred extension then R3 in Section
5.1 also holds for semi-stable labellings L. This result, together with R1′ and R2 in
Section 5.1, implies that terminated transition sequences whose final labellings min-
imise the arguments labelled UNDEC are exactly the semi-stable labellings. Hence,
one can adapt Section 5.1’s algorithm by replacing line 11 by:

if ∃L′ ∈ candidate-labellings: undec(L′) ⊂ undec(L) then return;

In other words, if at any stage in the generation of a transition sequence, the
UNDEC arguments of the labelling Li thus far obtained, are a strict superset of
undec(L′) for some L′ ∈ candidate-labellings, then no further transition
steps on Li can result in a semi-stable labelling, and so one can backtrack to per-
form a transition step on another choice of argument. This follows from the result
that during the course of a transition sequence, the set of UNDEC labelled arguments
monotonically increases (as shown in [6]). Finally, we replace line 18 with:

if undec(L) ⊂ undec(L′);

and we are done. We have an algorithm that calculates the semi-stable labellings of
a finite argumentation framework.

7 Conclusions

In this chapter we have described labelling algorithms and argument game proof
theories for various argumentation semantics. Labellings and argument games can
be seen as alternatives to the extension-based approach to specifying argumentation

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 127

semantics described in Chapter 2. We conclude with some further reflections on
these different ways of specifying argumentation semantics.

One of the original motivations for developing the labelling approach was to pro-
vide an easy and intuitive account of formal argumentation. After all, principles like
“In order to accept an argument, one has to be able to reject all its counterargu-
ments” and “In order to reject an argument, one has to be able to accept at least one
counterargument” are easy to explain and have therefore been used as the basis of
the labelling approach. Also, our teaching experiences indicate that students who
are new to argumentation tend to find it easier to understand the labelling approach
rather than the extension-based approach to argumentation. In fact, it is often easier
for them to understand the extension-based approach after having been introduced
to the labelling approach.

Another advantage of the labelling approach is that it allows one to specify a
number of relatively small and simple properties, each of which can be individu-
ally satisfied or not, and that collectively define the argumentation semantics. This
modular approach can be of assistance when constructing formal proofs. Also, by
explicitly distinguishing between IN, OUT and UNDEC (instead of merely speci-
fying the set of IN-labelled arguments as in the extension-based approach) one is
provided with more detailed information. For instance, Section 5.1’s algorithm for
generating all preferred extensions, would be much more difficult to specify using
the extension-based approach.

Finally, we note that the labelling approach essentially identifies a graph or ‘net-
work’ labelling problem, suggesting that the approach more readily lends itself to
extensions of argument frameworks that accommodate: different types of relation
between arguments (e.g. support [10] and collective attack [22]); attacks on attacks
[20]; multi-valued and quantitative valuations of arguments [2, 11], and so on. In
essence, these extensions of Dung’s abstract argumentation framework can be un-
derstood as instantiating a more general network reasoning model in which the val-
uations of nodes (arguments) is determined by propagating the valuations of the
connected nodes, as mediated by the semantics of the connecting arcs. Algorithms
for determining these valuations will thus generalise the three value labelling algo-
rithms described in this chapter.

With regard to the argument game approach, we recall that Dung’s abstract ar-
gumentation semantics can be understood as a semantics for a number of non-
monotonic and defeasible logics [3, 13], in the sense that:

α is an inference from a theory Δ in a logic L, iff α is the conclusion of a
justified argument of the argumentation framework 〈A,R〉 defined by Δ and
L.

The argument game approach places an emphasis on the dialectical nature of
argumentation, in the sense that the approach appeals more directly to an inter-
subjective notion of truth: truth becomes that which can be defended in a rational
exchange and evaluation of interacting arguments. Thus, what accounts for the cor-
rectness of an inference is that it can be shown to rationally prevail in the face of

128 Sanjay Modgil and Martin Caminada

arguments for opposing inferences, where it is application of the reinstatement prin-
ciple that encodes logic neutral, rational means for establishing such standards of
correctness. This account of argumentation as a semantics, contrasts with model-
based semantics for formal entailment that appeal to an objective notion of truth:
true is that which holds in every possible model. Notice that dialectical semantics
are not unique to formal argumentation. For instance, Lorenzen and Lorenz [18, 19]
have proposed dialectical devices as a method of demonstration in formal logic.

An advantage of dialectical semantics is that they are able to relate formal en-
tailment to something most people are familiar with in everyday life: debates and
discussions. Argument games of the type described in this chapter are therefore use-
ful not only for providing guidelines and principles for the design of algorithms, but
also for bridging the gap between formal and informal reasoning.

Finally, we note that the dialectical view also accords with our understanding of
reasoning as an incremental process. Rather than have all the arguments and their
attacks defined from the outset, we incrementally acquire knowledge in order to con-
struct arguments required to counter-argue existing arguments. At any stage in this
incremental process we can evaluate the status of arguments, which in turn motivates
acquisition of further knowledge for construction and submission of arguments. Ar-
gument games allow one to model such processes. Provided that there is a well
understood notion of what constitutes an attack between any two arguments, one
can then formalise the games described in this chapter, without reference to a pre-
existing framework. This also allows one to acknowledge that reasoning agents are
resource bounded, and suggests that bounds on reasoning resources may be charac-
terised by bounds on the breadth and depth of the dispute trees constructed in order
to prove the claim of the argument under test.

Acknowledgements The authors would like to thank Gerard Vreeswijk for his con-
tributions to the contents of this chapter. Thanks also to Nir Oren for commenting
on a draft of the chapter.

References

1. L. Amgoud and C. Cayrol. A Reasoning Model Based on the Production of Acceptable Argu-
ments. Annals of Mathematics and Artificial Intelligence, 34(1–3),197–215, 2002.

2. H. Barringer, D. M. Gabbay and J. Woods. Temporal Dynamics of Support and Attack Net-
works: From Argumentation to Zoology. Mechanizing Mathematical Reasoning, 59–98, 2005.

3. A. Bondarenko and P.M. Dung and R.A. Kowalski and F. Toni. An abstract, argumentation-
theoretic approach to default reasoning. Artificial Intelligence, 93:63–101, 1997.

4. M. Caminada. For the sake of the Argument. Explorations into argument-based reasoning.
Doctoral dissertation Free University Amsterdam, 2004.

5. M. Caminada. On the Issue of Reinstatement in Argumentation. In European Conference on
Logic in Artificial Intelligence (JELIA), 111–123, 2006.

6. M. Caminada. An Algorithm for Computing Semi-stable Semantics. In European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), 222–
234, 2007.

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 129

7. M. Caminada and Y. Wu. Towards an Argument Game for Stable Semantics. In Computational
Models of Natural Argument, to appear, 2008.

8. C. Cayrol, S. Doutre and J. Mengin. Dialectical Proof Theories for the Credulous Preferred
Semantics of Argumentation Frameworks. In European Conference on Symbolic and Quanti-
tative Approaches to Reasoning with Uncertainty (ECSQARU), 668–679, 2001.

9. C. Cayrol, S. Doutre and J. Mengin. On Decision Problems related to the preferred semantics
for argumentation frameworks. Journal of Logic and Computation, 13(3), 377–403, 2003.

10. C. Cayrol and M. Lagasquie-Schiex. On the Acceptability of Arguments in Bipolar Argu-
mentation Frameworks. In European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU), 378–389, 2005.

11. C. Cayrol and M.-Ch. Lagasquie-Schiex. Graduality in argumentation. Journal of Artificial
Intelligence Research, 23:245–297, 2005.

12. S. Doutre and J. Mengin. On sceptical vs credulous acceptance for abstract argument systems.
In Ninth European Conference on Logics in Artificial Intelligence (JELIA 2004), 462–473,
2004.

13. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

14. P.M. Dung, P. Mancarella and F. Toni. Computing ideal sceptical argumentation. Artificial
Intelligence Journal, 171(10–15):642–674, 2007.

15. P.M. Dung and P.M. Thang. A Sound and Complete Dialectical Proof Procedure for Sceptical
Preferred Argumentation. In Proc. of the LPNMR-Workshop on Argumentation and Nonmono-
tonic Reasoning (ArgNMR07), 49–63, 2007.

16. P.E. Dunne and T.J.M. Bench-Capon. Two Party Immediate Response Disputes: Properties
and Efficiency. Artificial Intelligence Journal, 149(2),221–250, 2003.

17. H. Jakobovits and D. Vermeir. Dialectic Semantics for Argumentation Frameworks. Journal
of Logic and Computation, 53–62, 1999.

18. P. Lorenzen. Dialectical foundations of logical calculi. Constructive Philosophy, Univ. of Mas-
sachusetts Press, 1987.

19. P. Lorenzen and K.Lorenz”. Dialogische Logik. Wissenschaftliche Buchgesellschaft, Darm-
stadt, 1978.

20. S. Modgil. Reasoning About Preferences in Argumentation Frameworks. Artificial Intelli-
gence Journal, 173(9–10), 901–934, 2009.

21. S. Modgil and M. Caminada. Proof Theories and Algorithms for Abstract Argumentation
Frameworks. Technical Report, Department of Computer Science, King’s College London,
www.dcs.kcl.ac.uk/sta f f /modgilsa/Proo f T heoriesAlgorithms.pd f , 2008.

22. S. Nielsen and S. Parsons. A generalization of Dung’s abstract framework for argumentation:
Arguing with sets of attacking arguments. In Proc. Third International Workshop on Argu-
mentation in Multiagent Systems (ArgMAS 2006), 54–73, 2006.

23. J. L. Pollock. Cognitive Carpentry. A Blueprint for How to Build a Person. MIT Press, Cam-
bridge, MA, 1995.

24. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible pri-
orities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

25. B. Verheij. A Labeling Approach to the Computation of Credulous Acceptance in Argumen-
tation. In International Joint Conference on Aritificial Intelligence (IJCAI), 623–628, 2007.

26. G. A. W. Vreeswijk. Defeasible dialectics: A controversy-oriented approach towards defeasi-
ble argumentation. Journal of Logic and Computation, 3:3–27, 1993.

27. G. A. W. Vreeswijk. An algorithm to compute minimally grounded and admissible defence
sets in argument systems. In Proc. 1st International Conference on Computational Models of
Argument, 109–120, 2006.

28. G. A. W. Vreeswijk and H. Prakken. Credulous and sceptical argument games for preferred
semantics. In Proc. 7th European Workshop on Logic for Artificial Intelligence, 239–253,
2000.

	Proof Theories and Algorithms for Abstract Argumentation Frameworks
	Sanjay Modgil and Martin Caminada

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

