
Chapter 5
Complexity of Abstract Argumentation

Paul E. Dunne and Michael Wooldridge

1 Introduction

The semantic models discussed in Chapter 2 provide an important element of the
formal computational theory of abstract argumentation. Such models offer a variety
of interpretations for “collection of acceptable arguments” but are unconcerned with
issues relating to their implementation. In other words, the extension-based seman-
tics described earlier distinguish different views of what it means for a set, S, of
arguments to be acceptable, but do not consider the procedures by which such a set
might be identified.

This observation motivates the study of natural questions relating to the actual
implementation of different semantics, e.g., using semantics s what can be stated
regarding methods that: decide if S ∈ Es(〈A,R〉) for S ⊆ A; or determine if x ∈ S
for at least one (alternatively every) S ∈ Es(〈A,R〉), etc? Such questions raise two
separate issues: that of algorithms by which upper bounds can be obtained; and that
of mechanisms by which lower bounds can be established. Some discussion of the
former will be given in Chapter 6; the field of Computational Complexity Theory
provides a number of approaches by which the latter issue can be addressed: these
methods and their application within abstract argument systems are the subject of
the current chapter. In the next section we give an overview of some basic notions
in complexity theory and continue with a review of some fundamental results on
complexity in abstract argument systems in Section 3. In Section 4 we consider
analogous results within deductive frameworks, assumption-based frameworks and
a number of complexity-theoretic properties of value-based frameworks. Section 5

Paul E. Dunne
Dept. of Computer Science, University of Liverpool Liverpool UK, e-mail: ped@csc.liv.ac.
uk

Michael Wooldridge
Dept. of Computer Science, University of Liverpool Liverpool UK, e-mail: mjw@csc.liv.ac.
uk

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 85
DOI 10.1007/978-0-387-98197-0 5, c© Springer Science+Business Media, LLC 2009

86 Paul E. Dunne and Michael Wooldridge

summarises some recent developments concerning novel semantics. Conclusions
and selected open questions are discussed in the final section.

2 Elements of Computational Complexity Theory

In crude terms, computational complexity theory deals with classifying computa-
tional problems with respect to the resources needed for their solution, e.g., the time
required by the fastest program that will solve the problem. In this section we intro-
duce some of the basic concepts in the field of computational complexity.

2.1 Languages and Decision Problems

We think of “computational problems” in terms of recognising objects, (e.g., propo-
sitional formulae, argumentation frameworks, etc.), which have some property of
interest, (e.g., instantiations that make the formula true (�), non-empty subsets of
arguments that define preferred extensions). For such problems one has a set of
problem instances, and the goal is to decide whether or not a given instance should
be accepted, i.e., has the property of interest. With this approach, decision prob-
lems are defined by describing the form taken by instances and the question asked
of these instances, i.e., the property we want to check. The subset of instances for
which positive answers are given is often referred to as a language. For example,
the decision problem (language) 3-CNF Satisfiability (3-SAT) has,

Instance: Propositional formula, ϕ(x1,x2, . . . ,xn) over the variables {x1, . . . ,xn} in
conjunctive normal form with at most three literals in each clause, i.e., ϕ is specified
by a set of m clauses, {C1,C2, . . . ,Cm}, with Cj = y j,1 ∨ y j,2 ∨ y j,3 where y j,k is a
literal from {x1, . . . ,xn,¬x1, . . . ,¬xn}, so that ϕ = ∧m

j=1 Cj.
Question: Is there an instantiation, α = 〈a1,a2, . . . ,an〉 ∈ 〈⊥,�〉n for which setting
xi := ai results in every clause, Cj having at least one literal given the value �?

Notice that this approach allows us to distinguish ideas of problem size. Although
this could be captured in terms of the number of bits used to encode an instance,
there is often some natural parameter that can be used as an alternative, e.g., the size
of a 3-CNF formula is usually measured as the number of propositional variables in
its definition (n). In general we use |x| to denote the size of a problem instance x.

2.2 Complexity Classes – P, NP, coNP and PH

The concept of complexity class is used to describe problems whose resource re-
quirements are similar. Given a language, L, the problem of deciding whether x ∈ L

5 Complexity of Abstract Argumentation 87

is viewed as having an efficient algorithm if there is a constant value, k, and program
M, for which

• if x ∈ L, then M returns “accept” else M returns “reject”.
• M returns its answer after at most |x|k steps.

The program M is said to provide an algorithm for L with run-time nk, so leading to
the complexity class, P, (of polynomial time decidable languages) as

P =
∞⋃

k=0

{ L : There is an algorithm with run-time nk deciding x ∈ L.}

Note that we generally regard problems as being computationally easy or tractable
if they are polynomial time decidable, although of course, if k is very large, polyno-
mial time decidability may not in fact imply the existence of a practicable algorithm
to solve the problem.

It is often the case that the question x ∈?L can be phrased in terms of identi-
fying some auxiliary structure (or witness) that x is indeed a member of L, e.g.,
ϕ ∈ 3− SAT, is witnessed by any instantiation, α , for which ϕ(α) =�. In general,
associated with x one may have a set of possible witnesses, W (x) to x ∈ L, any such
witness having size at most |x|r, for some constant r. Suppose that LW is the lan-
guage of pairs 〈x,y〉 defined by instances, x of L and witnesses y ∈W (x) to x ∈ L.
Concentrating on languages, LW in P, we get the complexity classes NP and coNP –

L ∈ NP if (x ∈ L) ⇔ ∃ y ∈W (x) : 〈x,y〉 ∈ LW

L ∈ coNP if (x ∈ L) ⇔ ∀ y ∈W (x) : 〈x,y〉 �∈ LW

So, for the complementary problem to 3-SAT, called 3-UNSAT, ϕ ∈ 3− UNSAT if
and only if ϕ has no satisfying instantiation: 3− SAT∈NP while 3−UNSAT∈coNP.

Looking at the requirements for L ∈ P, L ∈ NP, L ∈ coNP, we note the follow-
ing pattern: polynomial time decidable languages are characterised by unary pred-
icates – PL – over instances of L, i.e., tests x ∈ L equate to evaluating the predi-
cate PL(x) ≡ (x ∈ L); languages in NP and coNP are characterised by polynomial
time decidable binary predicates – PL(x,y) over instances and possible witnesses
so that NP languages are those expressible as ∃ y PL(x,y) and coNP expressible as
∀ y PL(x,y). This view naturally suggests extending to (k + 1)-ary polynomial time
decidable predicates PL(x,y1,y2, . . . ,yk) and the languages characterised as

(x ∈ L) ⇔ Qk yk Qk−1 yk−1 · · · Q2 y2 Q1 y1 PL(x,y1,y2, . . . ,yk)

where Qi ∈ {∃,∀}, Qi �= Qi+1. When Qk = ∃ (respectively ∀) the corresponding
class is denoted by Σ p

k (respectively, Π p
k). The collection ∪∞

k=0 Σ p
k (= ∪∞

k=0 Π p
k) is

called the Polynomial Hierarchy (PH) .
As examples of languages in Σ p

k and Π p
k we have the so-called quantified satisfia-

bility problems – QSATΣ
k and QSATΠ

k – whose instances are 3-CNF formulae defined
on k disjoint sets of n propositional variables – X1,X2, . . . ,Xk – so that

88 Paul E. Dunne and Michael Wooldridge

ϕ ∈ QSATΣ
k ⇔

{
∃α1∀α2 · · ·∃αk−1∀αk ϕ(α1,α2, . . . ,αk) =⊥ (k even)
∃α1∀α2 · · ·∀αk−1∃αk ϕ(α1,α2, . . . ,αk) =� (k odd)

ϕ ∈ QSATΠ
k ⇔

{
∀α1∃α2 · · ·∀αk−1∃αk ϕ(α1,α2, . . . ,αk) =� (k even)
∀α1∃α2 · · ·∃αk−1∀αk ϕ(α1,α2, . . . ,αk) =⊥ (k odd)

It is immediate from the formal definitions of P, NP, coNP and PH that the corre-
sponding sets (of languages) satisfy

P ⊆
{

NP = Σ p
1

coNP = Π p
1

}
⊆ ·· · ⊆

{
Σ p

k
Π p

k

}
⊆

{
Σ p

k+1
Π p

k+1

}
⊆ ·· ·

It is conjectured that all of these containments are strict and that Σ p
k �= Π p

k for any
k≥ 1: these generalize the well-known P �= NP conjecture and, to date, are unproven.

2.3 Hardness, Completeness, and Reducibility

The forms presented in Section 2.2 allow problems to be grouped together via upper
bounds: expressing membership in L in terms of some polynomial time decidable
finite arity predicate Pk+1 places L (at worst) in one of Σ p

k or Π p
k . The relationship

of polynomial time many one reducibility between languages is one key technique
underlying arguments that such upper bounds are “optimal”. Suppose, given some
complexity class, C, we can show that L has the following property:
For every L′ ∈ C there is a polynomial time procedure, τ , that transforms instances
x of L′ to instances τ(x) of L in such a way that x ∈ L′ if and only if τ(x) ∈ L. We
write L′ ≤p

m L to describe this relationship.
What may be said of L in such cases? Certainly, were L∈ P then we could deduce

C ⊆ P: given an instance x of L′ ∈ C, construct the instance τ(x) of L (polynomial
time) and then use the polynomial time method to decide τ(x) ∈ L. We can thereby
deduce that the complexity of L is at least as high as the complexity of any language
in C. A language L for which every L′ ∈ C has L′ ≤p

m L is said to be C–hard . If, in
addition, L∈ C then L is called C–complete . Just as P is considered as encapsulating
all efficiently decidable languages, so the classes of NP–hard, coNP–hard, Σ p

k –hard
and Π p

k –hard languages are viewed as progressively more and more demanding
in terms of their time requirements. Noting the long-standing conjecture about the
relationship between these classes a proof that L ∈ P is a positive statement that L is
tractable; a proof that L is C-hard for some C ∈ PH (other than P) provides a strong
indication that L �∈ P, i.e., that L is intractable.1

While the condition L′ ≤p
m L for every L′ ∈ C may seem somewhat demanding,

noting that the relation ≤p
m is transitive we can replace “∀ L′ ∈ C L′ ≤p

m L” by “For

1 It should be noted that C∈ PH is, almost without exception a class such as Σ p
k or Π p

k for some
fixed k > 0. There are a number of technical consequences which suggest it is extremely unlikely
the class PH itself has complete languages, i.e., L such that ∀L′ ∈ PH L′ ≤p

m L.

5 Complexity of Abstract Argumentation 89

some C-hard, L′ : L′ ≤p
m L”. For the classes introduced in Section 2.2 we have the

following results of Cook [10] and Wrathall [45].

Theorem 5.1.

a. 3-SAT is NP–complete; 3-UNSAT is coNP–complete.
b. QSATΣ

k is Σ p
k –complete; QSATΠ

k is Π p
k –complete.

For the results discussed later in this Chapter with very few exceptions the complex-
ity classifications use reductions from 3-SAT or 3-UNSAT.

2.4 More Advanced Ideas

The topics outlined above provide sufficient background for the majority of com-
plexity analyses on decision problems for AFs. There are, however, a number of
developments – in particular in the related frameworks discussed in Section 4.1 –
which occur in more recent work on complexity of abstract argumentation: here
we briefly introduce the basic notions of oracle-based complexity classes and the
models proposed in work of Cook and Reckhow [11] in order to capture relative
complexity of proof systems.

Oracle computations, are defined in terms of the availability of a device (or ora-
cle) that at the cost of a single step in the algorithm provides the answer to a given
language membership query, e.g., oracle computations using 3-SAT may construct
a 3-CNF ϕ , query the 3-SAT oracle as to whether ϕ ∈ 3− SAT with the answer
determining subsequent steps taken. This notion, when coupled with oracles for
NP-complete languages, gives rise to a range of complexity classes differentiated
by the particular restrictions placed on the manner in which such calls are made.
One important representative of such classes is the so-called difference class, Dp

formally defined as those languages, L whose members are the intersection of a
language L1 ∈ NP with a language L2 ∈ coNP: a language L ∈ Dp can thus be de-
cided by a polynomial time algorithm that is allowed to make at most two calls on
an NP oracle (which, by virtue of Thm 5.1(a) can be assumed to be 3-SAT): given
an instance x of L, test x ∈ L1 by forming the appropriate 3-SAT instance, τ1(x),
and calling the oracle; if the response is positive, then x ∈ L2 is tested in the same
way, forming the instance τ2(x) using a second oracle call to verify τ2(x) �∈ 3− SAT,
i.e. τ2(x)∈ 3−UNSAT. More generally, the class of languages for which polynomial
time algorithms using at most f (|x|) calls on some oracle for a language complete in
a class C is denoted by PC[f (|x|)] (so that Dp ⊆ PNP[2]). Where no restriction is placed
on the oracle invocation the notation PC is used. As will be seen from the results
reviewed in Sect. 4.1, the algorithmic “base class” can be defined within arbitrary
complexity classes, not simply P: this leads to classes such as NPC, etc.

The formalism from [11] has been adopted in order to relate the efficiency of
proof procedures for credulous reasoning in AFs to more widely known proof pro-
cedures in propositional logic, e.g., resolution, tableau-based, sequents, etc. The
model starts from an abstraction of “proof system” Π for a (coNP) language, L as

90 Paul E. Dunne and Michael Wooldridge

a procedure which given x ∈ L admits a formal derivation of this fact: the relative
efficiency of two processes Π1 and Π2 being viewed as the number of derivation
steps each requires.2 This approach precisely formalises two systems as equivalent
whenever derivations in one can be simulated by polynomially longer derivations in
the other.

3 Fundamental Complexity Results in Argument Frameworks

Faced with a particular semantics and framework there are a number of questions
which one may wish to decide: whether a given collection of arguments satisfies
the conditions specified by the semantics; whether a particular argument belongs
to at least one or every such set; whether there is any (non-empty) collectively ac-
ceptable subset, etc.. We shall refer to these subsequently as Verification (VERs) ;
Credulous Acceptance (CAs) ; Sceptical Acceptance (SAs) ; Existence (EXs); and
Non-emptiness (NEs). Table 5.1 presents the formal definitions.

Table 5.1 Decision Problems in AFs
Problem Instance Question

VERs G(A,R); S⊆A Is S ∈ Es(G)?
CAs G(A,R); x ∈A Is there any S ∈ Es(G) for which x ∈ S?
SAs G(A,R); x ∈A Is x a member of every T ∈ Es(G)?
EXs G(A,R) Is Es(G) non-empty?
NEs G(A,R) Is there any S ∈ Es(G) for which S �= /0?

Before discussing the intractability results that form the main concern of this
chapter, we briefly review the cases for which efficient methods are known.

Theorem 5.2.

a. For s = GR (the grounded semantics), all of the decision problems in Table 5.1
are in P. Furthermore the unique subset S for which S ∈ EGR(〈A,R〉) can be
constructed in polynomial time.

b. Given 〈A,R〉 and S ⊆ A deciding if S is conflict-free, admissible, or stable, i.e.,
the decision problem VERST (〈A,R〉,S), are all in P.

2 In carrying out such comparisons it is presumed that basic derivations in each system are compa-
rable, e.g., can be implemented in polynomial time.

5 Complexity of Abstract Argumentation 91

3.1 Intractability Results in Preferred and Stable Semantics

We now turn to the problems defined in Table 5.1 with respect to the other extension
based semantics - Preferred and Stable - introduced in Dung [22]. Our main aim is
to outline the constructions of Dimopoulos and Torres [21] and Dunne and Bench-
Capon [28] from which the classifications shown in Table 5.2 result.

Table 5.2 Complexity of Decision Problems in Preferred (PR) and Stable Semantics (ST)

A VERPR coNP–complete [21]
B CAPR NP–complete [21]
C SAPR Π p

2 –complete [28]
D NEPR NP–complete [21]
E CAST NP–complete [21]
F SAST coNP–complete/Dp–complete See discussion below.
G EXST NP–complete attributed to Chvatal in [33]; also [16, 21, 32].

All of the lower bound results in Table 5.2 are obtained as variations on what we
shall refer to as the standard translation from 3-CNF formulae to AFs.

Definition 5.1. Given ϕ(z1, . . . ,zn) a 3-CNF with clauses {C1, . . . ,Cm} the AF,
Gϕ(Aϕ ,Rϕ) constituting the standard translation from ϕ has

Aϕ = {ϕ}∪{C1, . . . ,Cm}∪{z1, . . . ,zn}∪{¬z1, . . . ,¬zn}
Rϕ = {〈Cj,ϕ〉 : 1≤ j ≤ m} ∪ {〈zi,¬zi〉,〈¬zi,zi〉 : 1≤ i≤ n}

∪ {〈yi,Cj〉 : yi is a literal (i.e., zi or ¬zi) of the clause Cj}

The AF described in Defn 5.1 is, modulo some minor simplifications, identical to
that originally used in [21]. This framework provides an extremely versatile mecha-
nism that underpins almost all the complexity analyses of extension based semantics
in abstract argumentation frameworks.3 The basic form of the standard translation
suffices to establish (B) and (E) of Table 5.2, whereas (A) and (D) follow from quite
simple modifications to it.

For example consider the claim in Table 5.2(B) that CAPR is NP–complete. First
note that CAPR ∈ NP since we may use the set of all admissible subsets of A con-
taining x as witnesses to 〈G,x〉 ∈ CAPR. We may then use the standard translation
to prove 3-SAT ≤p

m CAPR: given ϕ form the instance 〈Gϕ ,ϕ〉 of CAPR. If ϕ ∈ 3-SAT

then the literals instantiated to� by a satisfying assignment indicate a subset S of the
arguments {z1, . . . ,zn,¬z1, . . . ,¬zn} for which S∪{ϕ} is admissible. On the other
hand if 〈Gϕ ,ϕ〉 ∈ CAPR then an admissible set containing ϕ must include a conflict-
free subset of literals arguments that collectively attack all of the clause arguments:
instantiating the corresponding literals to � produces a satisfying assignment of ϕ .

3 Exceptions are a specialized case of CAPR and a select number of reductions dealing with value-
based argumentation frameworks, cf. [25, Thm. 8(a), Thms. 23–25], and later in this chapter.

92 Paul E. Dunne and Michael Wooldridge

Adapting the standard translation by adding a new argument, ψ that is attacked
by ϕ and attacks all of the literal arguments yields an AF, Hϕ for which (both) Hϕ ∈
NEPR and Hϕ ∈ EXST hold if and only if ϕ ∈ 3-SAT. Table 5.2(A) is an immediate
consequence of the former property using the special case of verifying if the empty
set is a preferred extension.

The discussion above accounts for all the cases given in Table 5.2 with the ex-
ceptions of SAPR and SAST . We first address the apparent ambiguity in the clas-
sification of SAST – Table 5.2(F). A further modification to the framework Hϕ
by which the new argument ψ now attacks every argument in Gϕ , gives an AF in
which ψ belongs to every stable extension if and only if ϕ ∈ 3-UNSAT so giving
a coNP-hardness lower bound.4 In principle, one appears to have a coNP method
via “〈〈A,R〉,x〉 ∈ SAST ⇔ ∀ S ⊆ A (VERST (〈A,R〉,S) ⇒ (x ∈ S)”. There is,
however, a possible objection: 〈G,x〉 ∈ SAST even when G has no stable exten-
sion whatsoever, i.e., G �∈ EXST .5 In order to deal with this objection one might
require as a precondition of 〈G,x〉 ∈ SAST that G∈ EXST leading to an easy Dp upper
bound: positive instances are characterised as those in CAST ∩{〈〈A,R〉,x〉 : ∀ S ⊆
A (VERST (〈A,R〉,S) ⇒ (x ∈ S)}

The matching Dp–hardness lower bound provides another illustration of the flex-
ibility of the standard translation: instances 〈ϕ1,ϕ2〉 of the canonical Dp–hard prob-
lem 〈3-SAT,3-UNSAT〉 being transformed to an instance 〈K,ψ2〉 of SAST . The con-
struction is illustrated in Fig. 5.1. We leave the reader to verify that this framework
satisfies both EXST and has ψ2 a member of every stable extension if and only if
ϕ1 ∈ 3-SAT and ϕ2 ∈ 3-UNSAT.6

α

Φ2
Φ1

Ψ2 attacks all arguments

Ψ1 Ψ2

Φ1
H

Φ2
H

Ψ1 attacks all arguments

Fig. 5.1 The reduction from 〈ϕ1,ϕ2〉 ∈ 〈3-SAT,3-UNSAT〉 to 〈K,ψ2〉 ∈ SAST

4 In [28] the coNP-hardness result is attributed to Dimopolous and Torres who do not explicitly
consider this problem: the commentary of [28, p. 189] observes the lower bound follows from an
easy modification to a construction in [21].
5 Resulting in AFs for which 〈〈A,R〉,x〉 ∈ SAST and 〈〈A,R〉,x〉 �∈ CAST for every x ∈A, i.e. every
argument is sceptically accepted but none credulously so.
6 The construction in Fig. 5.1 has not previously appeared in the literature. The issues concerning
precise formulations of SAST appear first to have been raised in [31].

5 Complexity of Abstract Argumentation 93

Although the remaining case in Table 5.2 – Π p
2 -completeness of SAPR deals with

a, notionally, harder class of languages, again the lower bound follows by adapting
the standard translation: in this case to instances ϕ(y1, . . . ,yn,z1, . . . ,zn) of QSATΠ

2 .7

It is worth noting that the decision problem actually considered via this reduction,
in [28], is the so-called coherence property of AFs, i.e., whether G is such that
EPR(G) = EST (G): this problem is shown to be Π p

2 -complete with the classification
of SAPR an immediate consequence of the reduction used.

3.2 Dialogue and Relationships to Proof Complexity

The standard translation from 3-CNF (which easily generalises to arbitrary CNF)
gives rise to one concrete interpretation of argumentation process in terms of log-
ical proof: in particular, the concept of dialogue based procedures by which two
parties attempt to reach agreement on the (credulous) acceptability status of some
argument, will be discussed in Chapter 6. If one considers applying such procedures
to determining the status of ϕ (in the standard translation) then a demonstration
that ϕ is not admissible corresponds to a formal logical proof that the propositional
formula ¬ϕ is a tautology. There are, of course, a number of widely used and well-
studied proof mechanisms for propositional logic, the question of interest in terms
of complexity in argumentation, is what one can state about the efficiency of dia-
logue based argumentation processes: that is to say, using the comparative schema
proposed in [11], how does the use of dialogue approaches compare to other tech-
niques? This question has been examined with respect to one particular credulous
reasoning process: the two-party immediate response protocol (TPI) introduced in
[44]. Informally, TPI-dialogues involve two protagonists (PRO and CON) debating
the acceptability of a given argument x: PRO claiming x to be acceptable and CON

adopting the opposite stance. The dialogue is set in the context of an AF where each
player takes turns advancing arguments in A: PRO starts by putting forward x. A re-
quirement of the game is that, whenever possible to do so, a player must put forward
an argument that attacks the most recent argument put forward by their opponent:
where this is not possible the player must backtrack to a (specified) earlier point in
the discussion or concede. In [29] the number of moves required in this game when
played on the standard translation of an unsatisfiable CNF is considered. The TPI

procedure turns out to be equivalent to a standard propositional proof theory – the
so-called CUT-free Gentzen calculus [34] and, as a consequence of [42], there are
TPI-disputes requiring exponentially many moves in order to resolve the status of
particular arguments.

7 The reduction originally presented in [28] is not restricted to 3-CNF formulae but describes a
general translation from arbitrary propositional formulae over the logical basis {∧,∨,¬}.

94 Paul E. Dunne and Michael Wooldridge

4 Complexity in Related Abstract Frameworks

As described in several chapters there are a number of abstract treatments of argu-
mentation that build on the basic structures and semantics proposed in Dung [22].
Among such are assumption-based frameworks (ABFs) discussed in Chapter 10; the
closely related deductive systems considered in Chapter 7; and the value-based ar-
gumentation frameworks (VAFs) whose elements have been presented in Chapter 3.
Our aim in this section is to review the range of complexity-theoretic results that
have been proved within these models. In general we will not give detailed defini-
tions of relevant ideas and refer the reader to the appropriate chapter for these.

4.1 Complexity in Assumption-based Argumentation

Assumption-based frameworks [5], can be interpreted as specific concrete interpre-
tations of abstract argumentation frameworks, i.e. as mechanisms for constructing
the structure 〈A,R〉 by generating arguments in A and attacks between these. This
approach starts from some deductive system – (L,R) in which L is a formal lan-
guage, e.g., well-formed propositional sentences, and R a set of inference rules of
the form α ← {α1, . . . ,αn} describing the conclusions (α ∈ L) that are supported
by the premises {α1, . . . ,αn} ⊆ L. Such systems have an associated derivability re-
lation, � : 2L → L; Δ � α holds whenever α may be obtained (via R) from Δ .
It should be noted that attention is restricted to theories in which the underlying
derivability relation is monotonic, i.e., (Δ � α)⇒ (Δ ′ � α) for any Δ ′ ⊇ Δ .

The key elements added are assumption sets, A⊆ L and the contrary function, –

which is a (total) mapping from α ∈A to its contrary α ∈ L. In very simplified terms,
(sets of) assumptions define the basis for atomic arguments (in AFs), and the con-
trary mapping provides the reasons underpinning attacks between arguments. Just
as the semantics of “collection of acceptable arguments” in AFs is given by different
notions of extension, so too in ABFs the objects of interest are subsets of assump-
tions defining extensions. In total, viewing an argument as “a statement derivable
from some set of assumptions”, leads to the notion of attack between arguments
as (the argument) Δ � α attacks (the argument) Δ ′ � β if Δ � γ for an assumption
γ ∈ Δ ′. In this way we can take any basic semantics w.r.t. AFs, and define analogues
w.r.t. ABFs, e.g., a set of assumptions, Δ , is conflict-free if for every α ∈ Δ it is not
the case that Δ � α .

Similarly, one may formulate each of the decision problems of Table 5.1 in
ABF settings. There are, however, a number of important distinctions: as a result
complexity-theoretic treatments of ABFs use significantly different techniques to
those discussed in Section 3. In particular,

a. In AFs both arguments, A, and the attack relation, R, are specified explicitly. In
ABFs these are implicit and dependent on the underlying set of assumptions A
and the precise deductive theory embodied within (L,R).

5 Complexity of Abstract Argumentation 95

b. The deductive system (L,R) is not limited to classical propositional logic with
the contrary being simply logical negation, e.g., (L,R) and – could be instantiated
in terms of a number of non-monotonic logics such as the default logic of [39].

Since the attack relation is defined between assumption sets, in principal one may
express any ABF 〈(L,R),A,–〉 as an AF, 〈A,R〉: A = 2A, R = {〈Δ ,Δ ′〉 : Δ �
γ for some γ ∈ Δ ′}. There is, however, one complication: in practice not every
subset of A is of interest, only those that satisfy the technical requirement of be-
ing closed, i.e., Δ ⊆ A is closed if and only if α ∈ A \ Δ ⇒ ¬(Δ � α). While
this provides a starting point for algorithms and upper bound constructions, for
lower bounds such approaches yield little of benefit: |〈(L,R),A,–〉| is exponentially
smaller than the corresponding AF.

A detailed investigation of complexity-theoretic issues within ABFs has been pre-
sented in a series of papers by Dimopolous, Nebel and Toni [18, 19, 20]. Using the
notation LABF to distinguish ABF instantiations of decision problems L as presented
in Table 5.1 and LABF,LT with reference to different formal theories LT = (L,R), a
key element in exact complexity characterisations is the computational complexity
of the derivability relation for the underlying logic, i.e., the derivability problem
(DER) for the formal theory (L,R), has instances 〈Δ ,α〉 – Δ ⊆ L, α ∈ L – accepted
if and only if Δ � α . For example, in standard propositional logic the derivability
problem is coNP–complete: Δ � α if and only if the formula α ∨ ∨ϕ∈Δ ¬ϕ is a
tautology.

Combining the notion of “oracle complexity classes” as described in Section 2.4
using oracles for DER(Δ ,α) provides a generic approach to obtaining upper bounds
on the complexity of decision problems within ABFs. For example, consider the
decision problem VER

ABF,LT
ST of verifying that a given set of assumptions defines

a stable extension within 〈(L,R),A,–〉, where the derivability problem for LT is in
some class C. In order to decide if Δ is accepted:

1. Check that Δ is closed.
2. Check that Δ is conflict-free, i.e., ∀ α ∈ Δ ¬(Δ � α).
3. Check that Δ attacks every assumption α �∈ Δ , i.e., Δ � α for each α ∈ A\Δ .

All of these stages can be carried out using |A| calls to an oracle for DER: (1) tests
(Δ ,α) �∈ DER for α ∈ A \Δ ; (2) involves a further |Δ | calls; and (3) a final set of
|A\Δ | calls. In consequence, VER

ABF,LT
ST ∈ PC.

Concentrating on upper bounds for Table 5.1 within the most general settings8

the upper bounds obtained in [20] are stated in Table 5.3.

It may be noted that with the exception of upper bounds on stability related prob-
lems, those relating to preferred and admissible sets of assumptions are rather higher
than might be expected having allowed for the additional overhead associated with

calls to the DER oracle, e.g., CAADM ∈ NP whereas CAABF
ADM ∈ coNPNPC

rather than

8 That is to say, no specific properties of the underyling frameworks are assumed, e.g., the property
“flatness” described in [5].

96 Paul E. Dunne and Michael Wooldridge

Table 5.3 Upper bounds for main decision problems in ABFs

Problem Semantics Instance (ABF) ABF bound (DER ∈ C) Instance (AF) AF bound
VERs Admissible 〈(L,R),A,–〉, Δ ⊆ A coNPC 〈A,R〉, S⊆A P

VERs Preferred 〈(L,R),A,–〉, Δ ⊆ A coNPNPC 〈A,R〉, S⊆A coNP

VERs Stable 〈(L,R),A,–〉, Δ ⊆ A PC 〈A,R〉, S⊆A P

CAs Admissible 〈(L,R),A,–〉, ϕ ∈ L NPNPC 〈A,R〉, x ∈A NP

CAs Preferred 〈(L,R),A,–〉, ϕ ∈ L NPNPC 〈A,R〉, x ∈A NP

CAs Stable 〈(L,R),A,–〉, ϕ ∈ L NPC 〈A,R〉, x ∈A NP

SAs Preferred 〈(L,R),A,–〉, ϕ ∈ L coNPNPNPC

〈A,R〉, x ∈A Π p
2

SAs Stable 〈(L,R),A,–〉, ϕ ∈ L NPC 〈A,R〉, x ∈A coNP/Dp

NPC. That the reasoning problems exhibit “higher than expected” complexity in
ABFs is not on account of the (additional) closure checking stage, despite the fact
this does not feature in corresponding AF algorithms.9 The increased complexity
arises from the nature of the attack relation, e.g. deciding 〈G,x〉 ∈ CAPR involves:
guess S⊆A, confirm that x ∈ S and S is conflict-free; check S attacks each y that at-
tacks S. Suppose, however, we consider the analogous version for CA

ABF,LT
PR : guess

Δ ⊆ A; confirm that Δ is closed, Δ � ϕ , and Δ does not attack itself; finally check
that any closed assumption set attacking Δ is itself attacked by Δ . This final stage
requires tests involving Δ and all other sets of assumptions, rather than (as is effec-
tively the case in AFs and suffices for stability) checking a property of Δ in relation
to single assumptions.

We conclude this overview of complexity in ABFs by noting that for the credu-
lous and sceptical reasoning variants, the classifications of Table 5.3 turn out to be
optimal for a wide range of instantiations of 〈(L,R),A,–〉 modelling non-classical
logics such as DL [39], AEL [38], etc. The typical approach to lower bound proofs,
e.g., as illustrated in the specific examples of DL and AEL, uses bounds on the com-
plexity of DER: the cases DL and AEL being coNP–complete. While for DL, one can
show CA

ABF,DL
PR ∈ NPNP = Σ p

2 , no reduction in the generic upper bound is possi-

ble for AEL: CA
ABF,AEL
PR ∈ NPNPNP

, i.e Σ p
3 . The Σ p

2 (resp. Σ p
3) hardness reductions

use instances of QSATΣ
2 (resp. QSATΣ

3) to define ABFs instantiated as DL (resp. AEL)
systems: detailed constructions may be found in [20].

4.2 Complexity in Value-based Argumentation Frameworks

We recall, from Chapter 3, that value-based argumentation frameworks (VAFs) aug-
ment the basic 〈A,R〉 abstraction of Dung’s AFs by introducing a finite set of values,
V, and a mapping η : A → V describing the abstract value, η(x) endorsed by x∈A,
so a VAF is described via a four tuple, G(V) = 〈A,R,V,η〉. In VAFs the underlying
structures are the completely abstract frameworks of [22]: whereas ABFs provide

9 In fact this stage is redundant in a number of ABF models, e.g DL.

5 Complexity of Abstract Argumentation 97

a basis for argument construction and attacks between arguments, the motivation
behind VAFs is to offer an explanatory mechanism accounting for choices between
distinct justifiable collections, S and T , which are not collectively acceptable, i.e., S
and T may be admissible under Dung’s semantics, however, S∪T fails to be. Such
occurrences raise the question of the supporting reasons as to which of S or T is
adopted: as developed in Chapter 3, VAFs rationalize these choices in terms of value
orderings on V. Any commitment to a preference of vi ∈ V over v j ∈ V (written
vi � v j) induces a simplification of 〈A,R,V,η〉 whereby every attack 〈x,y〉 ∈ R for
which η(x) = v j and η(y) = vi can be removed. Under the restrictions discussed
in Chapter 3, applying this refinement of R, any total ordering, α of V, will result

in an acyclic framework, G
(V)
α : as has been noted elsewhere such a framework will

have EGR(G(V)
α) = EPR(G(V)

α) = EST (G(V)
α). Value orderings thus motivate the two

principal decision problems that have been reviewed in algorithmic and complex-
ity studies of VAFs: Subjective Acceptance (SBA) and Objective Acceptance (OBA) .
Both take as an instance a VAF G(V) and argument x ∈A.

〈G(V),x〉 ∈ SBA ⇔ ∃ α a total ordering of V : CAPR(G(V)
α ,x)

〈G(V),x〉 ∈ OBA ⇔ ∀ α total orderings of V : CAPR(G(V)
α ,x)

The acyclic form of G
(V)
α gives CAPR(G(V)

α ,x) ∈ P hence SBA∈NP and OBA∈coNP.
Both bounds turn out to be exact, as shown in [30, 3]: these again use variants

of the standard translation from Defn 5.1. This may appear surprising given that
although the standard translation is well-suited to relating subsets (of arguments)
to instantiations of propositional variables, it is less clear how it could be applied
to deal with relating orderings of values to such instantiations. The device used in
[30] associates a “neutral” value with the formula and clause arguments in the VAF

defined from ϕ(Zn) and replaces the mutually attacking pairs {zi,¬zi} with a cycle
of four arguments pi→ qi→ ri→ si→ pi. Two arguments (pi and ri) are assigned
the value posi to promote “zi = � in a satisfying assignment of ϕ” while the others
(qi and si) are given the value negi in order to promote “zi = ⊥ in a satisfying
assignment of ϕ”. Although their definition and these classifications suggest that
SBA (resp. OBA) are closely related to CAPR (resp. SAPR for coherent AFs) , recent
work, discussed in Section 5 highlights several differences between the nature of
decision problems in VAFs and, what appear to be analogous problems in AFs.

5 Recent Developments

The computational complexity of the standard semantics (preferred, stable,
grounded) in AFs settings is, in the most general case, now well understood: ex-
act complexity bounds having been established for each of the canonical decision
problems given in Table 5.1 with respect to these semantics. There has, however,
continued to be extensive development of this aspect of the formal theory of ar-

98 Paul E. Dunne and Michael Wooldridge

gumentation, driven by a number of reasons. Among these – and forming the top-
ics reviewed in this section – one has: the various proposals for novel extension-
based semantics, some of which have been discussed in Chapter 2, e.g., Ideal se-
mantics [23, 24], Semi-stable semantics [6, 7], Prudent semantics [12]. A second
consideration concerns the extent to which intractability issues may be alleviated by
constructing efficient algorithmic approaches applicable to AFs which are restricted
in some way, e.g., by analogy with the known tractable case of acyclic topologies.

5.1 Novel extension-based semantics and their complexity

In this section we outline recent treatments of complexity in three of the develop-
ments of Dung’s standard AF semantics: prudent, ideal, and semi-stable semantics.

We recall that the rationale underlying prudent semantics stems from the po-
tential problematic side effects that might eventuate by regarding as collectively
acceptable, arguments {x,y} for which x “indirectly attacks” y. An indirect attack
by x on y is present in 〈A,R〉 if “there exists a finite sequence x0, . . . ,x2n+1 such that
(1) x = x0 and y = x2n+1 and (2) for each 0 ≤ i < 2n, 〈xi,xi+1〉 ∈ R” [22, p. 332].
It should be noted that this formulation, which we have quoted verbatim, presents
some ambiguity, which is significant from complexity-theoretic and semantic per-
spectives: it fails to distinguish “indirect attacks” in which no argument is repeated,
i.e., “simple paths”; from those in which arguments but not attacks may be repeated;
from those in which attacks may be repeated, e.g. the cases in Fig. 5.2.

x3

x1x4x0
x2x5 x6x7 x7

x3

x0 x1x4 x5

x2

x3x2x1x0(a)

(b)

(c)

Fig. 5.2 Three possible forms of “indirect” attack – (a) Simple; (b) x1 = x4; (c) 〈x1,x2〉= 〈x4,x5〉

The concept of conflict-free set from [22], is replaced under the prudent seman-
tics by that of prudently conflict-free set, i.e., one in which there is no indirect attack
between any two members. There are evident interpretative issues with cases (b) and

5 Complexity of Abstract Argumentation 99

(c) in Fig. 5.2, however, the most natural interpretation (where an indirect attack is
a simple path) has one significant computational drawback.

Fact 1 Given 〈A,R〉 and S ⊆ A deciding if S is prudently conflict-free is coNP–
complete even if S contains only two arguments.

Proof. Immediate from the result of Lapaugh and Papadimitriou [35] which shows
deciding the existence of a simple even length path between two specified arguments
in a directed graph to be NP–complete. The extension to odd length simple path is
trivial, so the lemma follows by observing that a prudently conflict-free set is one in
which no simple odd length path is present between two arguments.

Noting the definitions of admissible set, preferred and stable extensions from [22]
and the fact that conflict-freeness is an integral part of these, the result of Fact 1
immediately allows us to deduce that under the prudent semantics (so that “conflict-
free set” becomes “prudently conflict-free”) the respective verification problems are
all coNP–complete. Complexity of credulous and sceptical acceptance under the
prudent semantics has yet to be studied in depth. The intractability status of key
decision problems in this semantics is predicated on the interpretation of “indirect
attack” given by (a), i.e., as a simple path. These do not hold if repeated attacks
– Fig 5.2(c) – are used: here polynomial time methods are available. The status of
allowing repeated arguments – Fig 5.2(b) – is, to the authors’ knowledge still open.

The ideal semantics were originally proposed with respect to ABFs, but have a
natural formulation in AFs: S ⊆ A is an ideal set within 〈A,R〉 if S is both admis-
sible and a subset of every set in EPR(A,R); S is an ideal extension if it a maximal
ideal set. Detailed studies of the complexity of ideal semantics in AFs are presented
in [26, 27]. The treatment of complexity issues presented in these papers exploit a
number of more advanced techniques, however, the hardness proofs continue to be
built on the standard translation of CNF formulae to AFs. In terms of the canoni-
cal problems in Table 5.1, the verification problem (for ideal sets) is shown to be
coNP-complete, placing this decision problem at the same level of complexity as the
verification problem for preferred extensions. Arguably the most radical technique
exploited – although widely applied in a number of earlier complexity-theoretic
analyses – is the use of randomized reductions coupled with structural complexity
results from [8, 9], as opposed to standard many-one reducibility (≤p

m) which fea-
tures in all of the results discussed earlier.10 Combining these elements, the verifica-
tion problem (for ideal extensions) and credulous acceptance problems are shown to
be complete for the (conjectured to be) subclass of PNP in which oracle queries are
non-adaptive (denoted PNP

||). We note that the upper bounds from [26, 27] do not use
randomized elements. This complexity class also arises in the known lower bounds
for both credulous and sceptical acceptance in semi-stable semantics presented in
[31]. These lower bounds again apply the structural characterizations of [8] (using
≤p

m reducibility, i.e., not randomized). Upper bounds, however, are Σ p
2 and Π p

2 , i.e.,
exact classifications of reasoning problems in semi-stable semantics is open.

10 Relevant background is outlined in [27] and described in full in [26]. The actual “randomized”
element is not explicit but arises from results of [43] for the satisfiability variant used.

100 Paul E. Dunne and Michael Wooldridge

5.2 Properties of restricted frameworks

The complexity lower bounds discussed above describe worst-case scenarios, i.e.,
the fact that, for example CAPR is NP–hard, does not imply that every algorithm
on every instance will entail unrealistic computational overheads. As will be seen
in Chapter 6, if the AF is acyclic, then all of the canonical decision problems of
Table 5.1 have polynomial time solutions. In consequence a natural question to con-
sider is whether other graph-theoretic restrictions also result in frameworks with
efficient decision processes. Examining this question leads to two classes of results:
positive outcomes of the form “decision problem L has a polynomial time algorithm
in AFs satisfying some property P”; and negative classifications of the form “deci-
sion problem L in frameworks satisfying property P are no easier than the general
case”. Results of the first type extend (beyond acyclic frameworks) the range of
AFs for which tractable solutions exist. Recent work has added to the class of such
frameworks: symmetric AFs – those for which 〈x,y〉 ∈ R⇔ 〈y,x〉 ∈ R – in work
of Coste-Marquis et al. [13]; bipartite AFs (those for which A may be partitioned
into two conflict-free sets) [25]. Using the notion of “treewidth decomposition”, see
e.g., [4] a select number of problems whose instances are single AFs such as EXST ,
NEPR admit linear time algorithms given a treewidth decomposition of width k as
part of the instance: the construction of these algorithms rely on a deep result (Cour-
celle’s Theorem [14, 15]) demonstrating how efficient algorithms for testing graph-
theoretic properties may be obtained given an appropriate logical description of the
property (the so-called Monadic Second Order Logic) and a bounded treewidth de-
composition of the graph. For more details on this approach and its application in
AF settings we refer the reader to [2] and [25].

There are, however, a number of natural properties that fail to yield any reduction
in complexity. Typically the approach adopted in proving such results is to demon-
strate that frameworks with the property of interest are general enough to effectively
“simulate” any framework, e.g., if S is admissible in 〈A,R〉 then S∪T is admissible
in 〈A∪B,R′〉 where the latter AF has a particular property. Using such methods,
[25] shows that no reduction in complexity arises in: k-partite AFs (k ≥ 3); planar
systems; and those in which no argument attacks or is attacked by more than two
other arguments. This remains the case when all restrictions hold simultaneously.

We conclude this overview of recent work by returning to the issue of complexity
in VAFs. In contrast to the class of positive cases that have been identified with AFs,
the situation with VAFs turns outs out to be far more negative. The most extreme
indication of this status is the following result of [25].

Fact 2

a. SBA is NP–complete and OBA is coNP–complete even if the underlying graph is
a binary tree and every v ∈ V is associated with at most three arguments.

b. For every ε > 0 SBA is NP–complete and OBA is coNP–complete even if the un-
derlying graph is a binary tree and |V| ≤ |A|ε .

Both constructions use reductions from variants of 3-SAT/3-UNSAT, however, these
differ in a number of ways from the standard translation (which is clearly is not

5 Complexity of Abstract Argumentation 101

a binary tree). The situation highlighted by results such as Fact 2 provides further
indications that the nature of SBA/OBA in VAFs, while superficially similar to, is in
fact radically different from that of CA/SA in AFs.

6 Conclusions and Further Research

In this final section we outline some areas of research which offer a variety of chal-
lenging directions through which the algorithmic and complexity foundations of
abstract argumentation may be further advanced. We stress that our aim is to focus
on general areas rather than particular open questions as such: the reader who has
followed the earlier exposition will have noted that a number of specific open issues
have already been raised in the text.

6.1 Average case properties

As discussed in Section 5.2, the lower bounds on problem complexity are worst-
case, so leaving open the possibility that feasible algorithms may be available in
suitable contexts. In addition to the use of restrictions on the form of instances one
other approach that has been widely considered in the theory of algorithms is the
study of average-case complexity. Underpinning this approach one considers a prob-
ability distribution, μ , on instances of a decision problem – often, but not invariably
so, μ is the uniform distribution whereby each instance is equally likely, proceeding
to define the average-case run time of an algorithm P on instances of size n of L as
∑x∈I(n) μ(x)ρ(P,x) where ρ(P,x) is the run-time of P on instance x. Formal defini-
tions of average-case complexity classes may be found in [36]. To date surprisingly
little work has been carried out concerning the application of average-case methods
to decision problems in AFs either in terms of algorithmic development or in consid-
ering the limitations of such approaches. It remains open to what extent techniques
such as those applied to other intractable problems, e.g., [1] for the NP–complete
Hamiltonian cycle problem, or [46] for CNF satisfiability could be replicated in AF

settings. Of some relevance to such approaches are so-called “phase-transition” ef-
fects, which received much attention in the mid-late 1990s as potential indicators
of factors separating tractable and intractable classes of problem instances, e.g., the
studies of random CNF-SAT from [37, 40]. Analytic studies of such effects appears
to indicate connections between suitable witnessing structures, e.g., satisfying as-
signment, being present “almost certainly” and the performance of algorithms to
identify such structures. Of some interest in the context of AF semantics are the
results of [41, 17] which give conditions ensuring that a random AF “almost cer-
tainly” has a stable extension. There has as yet, however, been no detailed study
of the implications of these results for fast on average methods for identifying or
enumerating stable extensions. In the same way that the analyses of [41, 17] relate

102 Paul E. Dunne and Michael Wooldridge

to the existence of stable extensions in AFs, it would be of some interest to exam-
ine to consider existence properties of other solution structures in random AFs and
algorithmic consequences.

6.2 Approaches to dynamic updates

An important feature of the argumentation forms discussed so far is that, in practice,
these are not static systems: typically an AF, 〈A,R〉, represents only a “snapshot”
of the environment, and, as further facts, information and opinions emerge the form
of the initial view may change significantly in order to accommodate these. For
example, additional arguments may have to be considered so changing A; existing
attacks may cease to apply and new attacks (arising from changes to A) come into
force. It is clear that accounting for such dynamic aspects raises a number of issues
in terms of assessing the acceptability status of individual arguments. As with the
study of average-case properties, the treatment of algorithms and complexity issues
relating to determining argument status in dynamically changing environments has
been somewhat neglected. Thus, given 〈A,R〉 and S ⊆A for which S ∈ Es(〈A,R〉)
according to some semantics s, natural decision questions are: does x ∈ S continue
to be credulously accepted (w.r.t. to semantics s) in the AF 〈B,S〉 where B results
by removing some arguments from A and replacing these; similarly T modifies the
attack relation R.

Summary

Complexity issues provide an important foundational element of the formal com-
putational theory of abstract argumentation. Our review of the preceding pages is
intended to give a flavour of the class of questions of interest and an appreciation
of the techniques that have been brought to bear in addressing these. While some
notable progress has been achieved since the appearance of [22] – particularly in
understanding of decision properties of the standard semantics and the canonical
problems of Table 5.1, nevertheless a significant number of areas and potential ana-
lytic tools originating from complexity-theoretic studies, remain unexplored.

References

1. D. Angluin and L. Valiant. Fast probabilistic algorithms for hamiltonian circuits and match-
ings. Jnl. of Comp. and System Sci., 18:82–93, 1979.

2. S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. Jnl. of
Algorithms, 12:308–340, 1991.

5 Complexity of Abstract Argumentation 103

3. T. J. M. Bench-Capon, S. Doutre, and P. E. Dunne. Audiences in argumentation frameworks.
Artificial Intelligence, 171:42–71, 2007.

4. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209:1–45, 1998.

5. A. Bondarenko, P. Dung, R. Kowalski, and F. Toni. An abstract, argumentation-theoretic
approach to default reasoning. Artificial Intelligence, 93:63–101, 1997.

6. M. Caminada. Semi-stable semantics. In P. E. Dunne and T. J. M. Bench-Capon, editors, Proc.
1st Int. Conf. on Computational Models of Argument, volume 144 of FAIA, pages 121–130.
IOS Press, 2006.

7. M. Caminada. An algorithm for computing semi-stable semantics. In Proc. of ECSQARU
2007, 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, pages 222–234, Hammamet, Tunisia, 2007.

8. R. Chang and J. Kadin. On computing Boolean connectives of characteristic functions. Math.
Syst. Theory, 28:173–198, 1995.

9. R. Chang, J. Kadin, and P. Rohatgi. On unique satisfiability and the threshold behavior of
randomised reductions. Jnl. of Comp. and Syst. Sci., pages 359–373, 1995.

10. S. A. Cook. The complexity of theorem-proving procedures. In STOC ’71: Proc. of the 3rd
Annual ACM Symposium on Theory of Computing, pages 151–158, New York, NY, USA,
1971. ACM.

11. S. A. Cook and R. A. Reckhow. The relative complexity of propositional proof systems.
Journal of Symbolic Logic, 44(1):36–50, 1979.

12. S. Coste-Marquis, C. Devred, and P. Marquis. Prudent semantics for argumentation frame-
works. In Proc. 17th IEEE Intnl.Conf. on Tools with AI (ICTAI 2005), pages 568–572. IEEE
Computer Society, 2005.

13. S. Coste-Marquis, C. Devred, and P. Marquis. Symmetric argumentation frameworks. In
L. Godo, editor, Proc. 8th European Conf. on Symbolic and Quantitative Approaches to
Reasoning With Uncertainty (ECSQARU), volume 3571 of LNAI, pages 317–328. Springer-
Verlag, 2005.

14. B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990.

15. B. Courcelle. The monadic second-order logic of graphs III: tree-decompositions, minor and
complexity issues. Informatique Théorique et Applications, 26:257–286, 1992.

16. N. Creignou. The class of problems that are linearly equivalent to satisfiability or a uni-
form method for proving np-completeness. Theoretical Computer Science, 145(1-2):111–145,
1995.

17. W. F. de la Vega. Kernels in random graphs. Discrete Math., 82(2):213–217, 1990.
18. Y. Dimopoulos, B. Nebel, and F. Toni. Preferred arguments are harder to compute than stable

extensions. In D. Thomas, editor, Proc. of the 16th International Joint Conference on Ar-
tificial Intelligence (IJCAI-99-Vol1), pages 36–43, San Francisco, 1999. Morgan Kaufmann
Publishers.

19. Y. Dimopoulos, B. Nebel, and F. Toni. Finding admissible and preferred arguments can be very
hard. In A. G. Cohn, F. Giunchiglia, and B. Selman, editors, KR2000: Principles of Knowledge
Representation and Reasoning, pages 53–61, San Francisco, 2000. Morgan Kaufmann.

20. Y. Dimopoulos, B. Nebel, and F. Toni. On the computational complexity of assumption-based
argumentation for default reasoning. Artificial Intelligence, 141:55–78, 2002.

21. Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and default
theories. Theoretical Computer Science, 170:209–244, 1996.

22. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming, and N-person games. Artificial Intelligence, 77:321–357, 1995.

23. P. M. Dung, P. Mancarella, and F. Toni. A dialectical procedure for sceptical assumption-
based argumentation. In P. E. Dunne and T. J. M. Bench-Capon, editors, Proc. 1st Int. Conf.
on Computational Models of Argument, volume 144 of FAIA, pages 145–156. IOS Press, 2006.

24. P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artificial
Intelligence, 171:642–674, 2007.

104 Paul E. Dunne and Michael Wooldridge

25. P. E. Dunne. Computational properties of argument systems satisfying graph-theoretic con-
straints. Artificial Intelligence, 171:701–729, 2007.

26. P. E. Dunne. The computational complexity of ideal semantics. Technical Report ULCS-08-
015, Dept. of Comp. Sci., Univ. of Liverpool, August 2008.

27. P. E. Dunne. The computational complexity of ideal semantics I: abstract argumentation
frameworks. In Proc. 2nd Int. Conf. on Computational Models of Argument, volume 172
of FAIA, pages 147–158. IOS Press, 2008.

28. P. E. Dunne and T. J. M. Bench-Capon. Coherence in finite argument systems. Artificial
Intelligence, 141:187–203, 2002.

29. P. E. Dunne and T. J. M. Bench-Capon. Two party immediate response disputes: properties
and efficiency. Artificial Intelligence, 149:221–250, 2003.

30. P. E. Dunne and T. J. M. Bench-Capon. Complexity in value-based argument systems. In
Proc. 9th JELIA, volume 3229 of LNAI, pages 360–371. Springer-Verlag, 2004.

31. P. E. Dunne and M. Caminada. Computational complexity of semi-stable semantics in abstract
argumentation frameworks. In Proc. 11th JELIA, volume 5293 of LNAI, pages 153–165.
Springer-Verlag, 2008.

32. A. Fraenkel. Planar kernel and grundy with d ≤ 3, dout ≤ 2, din ≤ 2 are NP–complete. Discrete
Appl. Math., 3(4):257–262, 1981.

33. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman: New York, 1979.

34. G. Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, pages 68–131. North-Holland Publishing Co., Amsterdam, 1969.

35. A. S. Lapaugh and C. H. Papadimitriou. The even path problem for graphs and digraphs.
Networks, 14(4):597–614, 1984.

36. L. Levin. Average case complete problems. SIAM J. Comput., 15:285–286, 1986.
37. D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of sat problems. In

Proc. AAAI-92, pages 459–465. AAAI/MIT Press, 1992.
38. R. C. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelligence, 25:75–

94, 1985.
39. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
40. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability prob-

lems. In Proc. 10th National Conf. on Art. Intellig., pages 440–446, 1992.
41. I. Tomescu. Almost all digraphs have a kernel. Discrete Math., 84(2):181–192, 1990.
42. A. Urquhart. The complexity of Gentzen systems for propositional logic. Theoretical Com-

puter Science, 66(1):87–97, 1989.
43. L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theoretical

Computer Science, 47:85–93, 1986.
44. G. Vreeswijk and H. Prakken. Credulous and sceptical argument games for preferred seman-

tics. In Proc. of JELIA’2000, The 7th European Workshop on Logic for Artificial Intelligence.,
pages 224–238, Berlin, 2000. Springer LNAI 1919, Springer Verlag.

45. C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science,
3:23–33, 1976.

46. L. Wu and C. Tang. Solving the satisfiability problem by using randomized approach. Inf.
Proc. Letters, 41:187–190, 1992.

	Complexity of Abstract Argumentation
	Paul E. Dunne and Michael Wooldridge

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

