
1 23

Iyad Rahwan
Guillermo R. Simari
Editors

Argumentation in
Artifi cial Intelligence

Foreword by Johan van Benthem

Argumentation
in Artificial Intelligence

Argumentation
in Artificial Intelligence

Edited by

Iyad Rahwan

Guillermo R. Simari

123

Editors

Dr. Iyad Rahwan
Faculty of Informatics
British University in Dubai
P.O.Box 502216, Dubai
United Arab Emirates
irahwan@acm.org

Guillermo R. Simari
Department of Computer Science &

Engineering
Universidad Nacional del Sur
Alem 1253
(8000) Bahı́a Blanca - Argentina
grs@cs.uns.edu.ar

and

School of Informatics
University of Edinburgh
Edinburgh EH8 9AB, UK

ISBN 978-0-387-98196-3 e-ISBN 978-0-387-98197-0
DOI 10.1007/978-0-387-98197-0
Springer Dordrecht Heidelberg London New York

Library of Congress Control Number: 2009927013

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

To Zoe, for her love and support.

– I.R.

To my family with love.

– G.S.

Foreword

Argumentation is all around us. Letters to the Editor often make points of consis-
tency, and “Why” is one of the most frequent questions in language, asking for rea-
sons behind behaviour. And argumentation is more than ‘reasoning’ in the recesses
of single minds, since it crucially involves interaction. It cements the coordinated
social behaviour that has allowed us, in small bands of not particularly physically
impressive primates, to dominate the planet, from the mammoth hunt all the way
up to organized science. This volume puts argumentation on the map in the field of
Artificial Intelligence. This theme has been coming for a while, and some famous
pioneers are chapter authors, but we can now see a broader systematic area emerging
in the sum of topics and results.

As a logician, I find this intriguing, since I see AI as ‘logic continued by other
means’, reminding us of broader views of what my discipline is about. Logic arose
originally out of reflection on many-agent practices of disputation, in Greek Antiq-
uity, but also in India and China. And logicians like me would like to return to this
broader agenda of rational agency and intelligent interaction. Of course, Aristotle
also gave us a formal systems methodology that deeply influenced the field, and
eventually connected up happily with mathematical proof and foundations. Thus,
I see two main paradigms from Antiquity that come together in the modern study
of argumentation: Platos’ Dialogues as the paradigm of intelligent interaction, and
Euclid’s Elements as the model of rigour. Of course, some people also think that
formal mathematical proof is itself the ultimate ideal of reasoning - but you may
want to change your mind about reasoning’s ‘peak experiences’ when you see top
mathematicians argue interactively at a seminar.

But more themes went into the mixture of this Book. Leibniz and those after
him, from Boole to Turing or McCarthy, added computation as a major category in
understanding reasoning. Now, this is not necessarily congenial to argumentation:
Leibniz’ famous ‘Calculemus’ calls for replacing interactive disputation by mechan-
ical computing. But modern computation itself is distributed and interactive, so we
are in tune again.

Also relevant to understanding this Book is the emergence of ‘Argumentation
Theory’ in the 20th century, partly in opposition to formal logic. In particular, Toul-
min gave us a much richer view of actual inference than just a bleak jump from
premises to conclusion, and placed it in a historical tradition of dynamic legal pro-
cedure (what he calls the ‘formalities’) rather than just the static mathematical form
of statements. Indeed, Mathematics and Law seem two major pillars of our culture,
with the latter often under-estimated as an intellectual force. This tandem seems sig-
nificant to me, since it fits the Dynamic Turn I have long advocated toward logical
studies of cognitive actions, and indeed multi-agent interaction. Strategic responses
to others, and ‘logical empathy’ putting yourself in someone else’s place, are keys to
rational behaviour. And argumentation is one of the major processes that make this
interaction happen. Thus, pace Toulmin, logic and argumentation theory can form
happy unions after all, witness the work of colleagues like van Eemeren, Krabbe &
Walton, Gabbay & Woods, etc.

vii

viii Foreword

And even beyond these strands, the land of rational agency is populated by other
tribes, many equipped with mathematical tools. Game theorists study social mech-
anisms, social scientists care about social choice and decisions, and philosophers,
too, have long studied rational interaction. Think of Kant’s categorical imperative
of treating others as an end like yourself, not just a means. This only makes sense in
a society of agents.

AI lets all these strands come together: logic, mathematics, computation, and
human behaviour. It has long been a sanctuary for free-thinkers about reasoning and
other intelligent activities, taking a fresh look at the practice of common sense all
around us. Indeed, I see the above perspective as an appropriate extension of the
very concept of ‘common sense’, which is not just ‘sense’ about how single agents
represent the world and make inferences about it, but equally much ‘common’ about
how they sensibly interact with others. And once more, argumentation is a major
mechanism for doing so.

The content of this rich volume is definitely not exhausted by the above. It
contains methods from computer science, mathematics, philosophy, law, and eco-
nomics, merging artificial with natural intelligence. Its formal methods range from
logic programs to abstract argumentation systems, and from non-monotonic default
logics and belief revision to classical proof theory. It also highlights multi-agent di-
alogue and decision making, including connections with game theory - where our
rich practices of argumentation and debate pose many unsolved challenges. Just try
to understand how we successfully conduct meetings, and ‘play’ arguments of var-
ious strengths over time! Finally, I would mention an intriguing feature in many
studies of argumentation, viz. attention to fallacies and errors. Once I was taken to
task by a prominent medical researcher, who claimed that the most interesting in-
formation about the human body and mind is found with patients deviating from
the norm, and coping with ‘disturbance’ in unexpected creative ways. He did not
understand why logicians would wilfully ignore the corresponding rich evidence in
the case of reasoning, concentrating just on angelic correctness. I agree, and linking
up with empirical psychology and cognitive science seems an attractive next step,
given the suggestive material collected here.

This volume tries to stake out a new field, and hence: papers, careers, tenure. But
something broader is at stake. Original visions of AI tended to emphasize hugely
uninspiring, if terrifying, goals like machines emulating humans. A Dutch book
with ‘vision statements’ by leading scientists once revealed a disturbing uniformity:
all described a technological end goal for their field of which all said they hoped
to be dead long before it was achieved. I myself prefer goals that I could live with.
Understanding argumentation means understanding a crucial feature of ourselves,
perhaps using machines to improve our performance, helping us humans be better
at what we are.

I am happy that books like this are happening and I congratulate the editors and
authors.

Amsterdam and Stanford, December 2008 Johan van Benthem

Preface

This book is about the common ground between two fields of inquiry: Argumenta-
tion Theory and Artificial Intelligence. On the one hand, formal models of argumen-
tation are making significant and increasing contributions to Artificial Intelligence,
from defining semantics of logic programs, to implementing persuasive medical
diagnostic systems, to studying negotiation dialogues in multi-agent systems. On
the other hand, Artificial Intelligence has also made an impact on Argumentation
Theory and Practice, for example by providing formal tools for argument analysis,
evaluation, and visualisation.

The field of Argumentation in Artificial Intelligence has grown significantly in
the past few years resulting in a substantial body of work and well-established
technical literature. A testimony to this is the appearance of several special is-
sues in leading scientific journals in recent years, (e.g., Springer’s Journal of Au-
tonomous Agents and Multiagent Systems 2006; Elsevier’s Artificial Intelligence
Journal 2007; IEEE Intelligent Systems 2007; Wiley’s International Journal of In-
telligent Systems 2007). Another evidence of the maturity of this area is the es-
tablishment of a new biannual international conference in 2006 (see www.comma-
conf.org). In addition, two series of workshops have been co-located with major AI
conferences: the Argumentation in Multi-Agent Systems (ArgMAS) workshop se-
ries running annually alongside AAMAS since 2004, and the Computational Models
of Natural Argument (CMNA) workshop running series alongside IJCAI and ECAI
since 2001. Yet, although valuable survey papers exist, there is no comprehensive
presentation of the major achievements in the field. This volume is a response to
a growing need for an in-depth presentation of this fast-expanding area. As such it
can be seen as a confluence of deep exposition and comprehensive exploration of
the underlying themes in the various areas, done by leading researchers. While no
single volume on Argumentation and Artificial Intelligence could cover the entire
scope of this dynamic area, these selected writings will give the reader an insightful
view of a landscape of stimulating ideas that drive forward the fundamental research
and the creation of applications.

This book is aimed at new and current researchers in Argumentation Theory and
in Artificial Intelligence interested in exploring the rich terrain at the intersection
between these two fields. In particular, the book presents an overview of key con-
cepts in Argumentation Theory and of formal models of Argumentation in AI. After
laying a strong foundation by covering the fundamentals of argumentation and for-
mal argument modeling, the book expands its focus to more specialised topics, such
as algorithmic issues, argumentation in multi-agent systems, and strategic aspects
of argumentation. Finally, as a coda, the book presents some practical applications
of argumentation in AI and applications of AI in argumentation.

Although the book is an edited collection, the chapters’ topics and order was
done carefully to produce a highly organised text containing a progressive develop-
ment of intuitions, ideas and techniques, starting from philosophical backgrounds,
to abstract argument systems, to computing arguments, to the appearance of appli-
cations presenting innovative results. Authors had the chance to review each others’

ix

x Preface

work at various stages of writing in order to coordinate content, ensuring unified
notation (when possible) and natural progression.

Readers of this book will acquire an appreciation of a wide range of topics in
Argumentation and Artificial Intelligence covering, for the first time, a breadth of
hot topics. Throughout the chapters the authors have provided extensive examples
to ensure that readers develop the right intuitions before they move from one topic
to another.

The primary audience is composed of researchers and graduate students work-
ing in Autonomous Agents, AI and Law, Logic in Computer Science, Electronic
Governance, Multi-agent Systems, and the growing research represented by the in-
terdisciplinary inquiry carried out in many areas such as Decision Support Systems.
Given the scope and depth of the chapters of this book, its content provides an ex-
cellent foundation for several different graduate courses.

The book begins with an “Introduction to Argumentation Theory” by Douglas
Walton, who was one of the argumentation theorists who pioneered joint work with
AI researchers. The rest of the book’s twenty three chapters have been organised
into four parts: “Abstract Argument Systems”, “Arguments with Structure”, “Argu-
mentation in Multi-Agent Systems”, and “Applications”. Chapters in this book have
been written by researchers that have helped shape the field. As such, we are confi-
dent that this book will be an essential resource for graduate students and researchers
coming to the area.

The value of this book is in the ideas it presents. Thus we gratefully acknowledge
efforts by all authors who shared their ideas and deep insights of this fertile area of
research in such a clear manner. Furthermore, they also acted as peer reviewers
of other chapters and helped to significantly improve the quality and the flow of
the book. We would also like to thank all the contributions made by the different
organisations that supported the authors of this book as they individually recognise
in each chapter.

We are grateful to the Springer team, and in particular Melissa Fearon and Va-
lerie Schofield, for supporting the creation of this book from early discussions right
through to final editorial work.

Last but not least, we are always grateful to our families for their endless love
and support.

Dubai, Edinburgh and Bahia Blanca, Iyad Rahwan
December 2008 Guillermo Simari

Contents

1 Argumentation Theory: A Very Short Introduction 1
Douglas Walton

Part I Abstract Argument Systems

2 Semantics of Abstract Argument Systems . 25
Pietro Baroni and Massimiliano Giacomin

3 Abstract Argumentation and Values . 45
Trevor Bench-Capon and Katie Atkinson

4 Bipolar abstract argumentation systems . 65
Claudette Cayrol and Marie-Christine Lagasquie-Schiex

5 Complexity of Abstract Argumentation . 85
Paul E. Dunne and Michael Wooldridge

6 Proof Theories and Algorithms for Abstract Argumentation
Frameworks . 105
Sanjay Modgil and Martin Caminada

Part II Arguments with Structure

7 Argumentation Based on Classical Logic . 133
Philippe Besnard and Anthony Hunter

8 Argument-based Logic Programming . 153
Alejandro J. Garcı́a, Jürgen Dix and Guillermo R. Simari

9 A Recursive Semantics for Defeasible Reasoning 173
John L. Pollock

xi

xii Contents

10 Assumption-Based Argumentation . 199
Phan Minh Dung, Robert A. Kowalski and Francesca Toni

11 The Toulmin Argument Model in Artificial Intelligence 219
Bart Verheij

12 Proof Burdens and Standards . 239
Thomas F. Gordon and Douglas Walton

Part III Argumentation in Multi-Agent Systems

13 Dialogue Games for Agent Argumentation . 261
Peter McBurney and Simon Parsons

14 Models of Persuasion Dialogue . 281
Henry Prakken

15 Argumentation for Decision Making . 301
Leila Amgoud

16 Argumentation and Game Theory . 321
Iyad Rahwan and Kate Larson

17 Belief Revision and Argumentation Theory . 341
Marcelo A. Falappa, Gabriele Kern-Isberner
and Guillermo R. Simari

Part IV Applications

18 Argumentation in Legal Reasoning . 363
Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

19 The Argument Interchange Format . 383
Iyad Rahwan and Chris Reed

20 Empowering Recommendation Technologies Through
Argumentation . 403
Carlos Iván Chesñevar, Ana Gabriela Maguitman
and Marı́a Paula González

21 Arguing on the Semantic Grid . 423
Paolo Torroni, Marco Gavanelli and Federico Chesani

22 Towards Probabilistic Argumentation . 443
Ingrid Zukerman

23 Argument-Based Machine Learning . 463
Ivan Bratko, Jure Žabkar and Martin Možina

Contents xiii

A Description Logic . 483

B Bayesian Networks . 485

Index . 487

Chapter 1
Argumentation Theory: A Very Short
Introduction

Douglas Walton

1 Introduction

Since the time of the ancient Greek philosophers and rhetoricians, argumentation
theorists have searched for the requirements that make an argument correct, by some
appropriate standard of proof, by examining the errors of reasoning we make when
we try to use arguments. These errors have long been called fallacies, and the logic
textbooks have for over 2000 years tried to help students to identify these fallacies,
and to deal with them when they are encountered. The problem was that deduc-
tive logic did not seem to be much use for this purpose, and there seemed to be no
other obvious formal structure that could usefully be applied to them. The radical
approach taken by Hamblin [7] was to refashion the concept of an argument to think
of it not just as an arbitrarily designated set of propositions, but as a move one party
makes in a dialog to offer premises that may be acceptable to another party who
doubts the conclusion of the argument. Just after Hamblin’s time a school of thought
called informal logic grew up that wanted to take a new practical approach to teach-
ing students skills of critical thinking by going beyond deductive logic to seek other
methods for analyzing and evaluating arguments. Around the same time, an interdis-
ciplinary group of scholars associated with the term ‘argumentation,’ coming from
fields like speech communication, joined with the informal logic group to help build
up such practical methods and apply them to real examples of argumentation [9].

The methods that have been developed so far are still in a process of rapid evolu-
tion. More recently, improvements in them have been due to some computer scien-
tists joining the group, and to collaborative research efforts between argumentation
theorists and computer scientists. Another recent development has been the adop-
tion of argumentation models and techniques to fields in artificial intelligence, like
multi-agent systems and artificial intelligence for legal reasoning. In a short paper, it
is not possible to survey all these developments. The best that can be done is to offer

Douglas Walton
University of Windsor, e-mail: dwalton@uwindsor.ca

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 1
DOI 10.1007/978-0-387-98197-0 1, c© Springer Science+Business Media, LLC 2009

2 Douglas Walton

an introduction to some of the basic concepts and methods of argumentation theory
as they have evolved to the present point, and to briefly indicate some problems and
limitations in them.

2 Arguments and Argumentation

There are four tasks undertaken by argumentation, or informal logic, as it is also
often called: identification, analysis, evaluation and invention. The task of identifi-
cation is to identify the premises and conclusion of an argument as found in a text
of discourse. A part of this task is to determine whether a given argument found in
a text fits a known form of argument called an argumentation scheme (more about
schemes below). The task of analysis is to find implicit premises or conclusions in
an argument that need to be made explicit in order to properly evaluate the argu-
ment. Arguments of the kind found in natural language texts of discourse tend to
leave some premises, or in some instances the conclusion, implicit. An argument
containing such missing assumptions is traditionally called an enthymeme. The task
of evaluation is to determine whether an argument is weak or strong by general cri-
teria that can be applied to it. The task of invention is to construct new arguments
that can be used to prove a specific conclusion. Historically, recent work has mainly
been directed to the first three tasks, but there has been a tradition of attempting
to address the fourth task from time to time, based on the tradition of Aristotelian
topics [1, ch. 8].

There are differences in the literature in argumentation theory on how to define
an argument. Some definitions are more minimal while others are more inclusive.
We start here with a minimal definition, however, that will fit the introduction to
the elements of argumentation presented below. An argument is a set of statements
(propositions), made up of three parts, a conclusion, a set of premises, and an infer-
ence from the premises to the conclusion. An argument can be supported by other
arguments, or it can be attacked by other arguments, and by raising critical questions
about it.

Argument diagramming is one of the most important tools currently in use to
assist with the tasks of analyzing and evaluating arguments. An argument diagram
is essentially a box and arrow representation of an argument where the boxes con-
tain propositions that are nodes in a graph structure and where arrows are drawn
from nodes to other nodes representing inferences. At least this is the most common
style of representation. Another style growing in popularity is the diagram where
the nodes represent arguments and the boxes represent premises and conclusions of
these arguments. The distinction between a linked argument and a convergent ar-
gument is important in argumentation theory. A linked argument is one where the
premises work together to support the conclusion, whereas in a convergent argument
each premise represents a separate reason that supports the conclusion. Arguments
fitting the form of an argumentation scheme are linked because all of the premises
are needed to adequately support the conclusion. Here is an example of a convergent

1 Argumentation Theory: A Very Short Introduction 3

Fig. 1.1 Example of an Argument Diagram

argument: gold is malleable; it can be easily made into jewelry, and my metallurgy
textbook says it is malleable. In the example shown in Figure 1.1, two linked argu-
ments are combined in a chain of reasoning (called a serial argument).

The linked argument on the right at the bottom has a colored border and the label
Argument from Expert Opinion is shown in a matching color at the top of the con-
clusion. This label represents a type of argument called an argumentation scheme.

Figure 1.1 was drawn with argument diagramming tool called Araucaria [14].
It assists an argument analyst using a point-and-click interface, which is saved in
an Argument Markup Language based on XML [14]. The user inserts the text into
Arauacaria, loads each premise or conclusion into a text box, and then inserts ar-
rows showing which premises support which conclusions. As illustrated above, she
can also can insert implicit premises or conclusions and label them. The output is
an argument diagram that appears on the screen that can be added to, exported or
printed (http://araucaria.computing.dundee.ac.uk/).

The other kind of format for representing arguments using visualization tools
is shown in the screen shot in Figure 1.2. According to this way of represent-
ing the structure of the argument, the premises and conclusions appear as state-
ments in the text boxes, while the nodes represent the arguments. Information about
the argumentation scheme, and other information as well, is contained in a node
(http://carneades.berlios.de/downloads/).

Both arguments pictured in Figure 1.2 are linked. Convergent arguments are rep-
resented as separate arguments. Another chapter in this book (see Chapter 12) shows
how Carneades represents different proof standards of the kinds indicated on the
lower right of the screen shot.

4 Douglas Walton

Fig. 1.2 Carneades Screen Shot of an Argument

Argument diagrams are very helpful to display premises and conclusions in an
argument and to show how groups of premises support conclusions that can in turn
be used as premises in adjoining arguments. Smaller arguments are chained together
into longer sequences, and an argument diagram can be very useful to help an an-
alyst keep track of the chain of reasoning in its parts. However, typical argument
diagrams are made up only of statements in text boxes joined together by arrows.
Such an argument diagram is of limited or less use when it comes to representing
critical questions and the relationship of these questions to an argument.

The definition of ‘argument’ relied on so far could be called a minimal inferential
definition, and the method of argument diagramming shown so far fits this minimal
definition. The boxes represent propositions and the arrows represent inferences
from some propositions to others.

The general approach or methodology of argumentation can be described as dis-
tinctively different from the traditional approach based on deductive logic. The tra-
ditional approach concentrated on a single inference, where the premises and con-
clusion are designated in advance, and applied formal models like propositional
calculus and quantification theory determine whether the conclusion conclusively
follows from the premises. This approach is often called monological.

In contrast, the argumentation approach is called dialogical (or dialectical) in that
it looks at two sides of an argument, the pro and the contra. According to this ap-
proach, the method of evaluation is to examine how the strongest arguments for and
against a particular proposition at issue interact with each other, and in particular
how each argument is subject to probing critical questioning that reveals doubts

1 Argumentation Theory: A Very Short Introduction 5

about it. By this dialog process of pitting the one argument against the other, the
weaknesses in each argument are revealed, and it is shown which of the two argu-
ments is the stronger.1

To fill out the minimal definition enough to make it useful for the account of
argumentation in the paper, however, some pragmatic elements need to be added,
that indicate how arguments are used in a dialog between two (in the simplest case)
parties. Argumentation is a chain of arguments, where the conclusion of one infer-
ence is a premise in the next one. There can be hypothetical arguments, where the
premises are merely assumptions. But generally, the purpose of using an argument
in a dialog is to settle some disputed (unsettled) issue between two parties. In the
speech act of putting forward an argument, one party in the dialog has the aim of
trying to get the other party to accept the conclusion by offering reasons why he
should accept it, expressed in the premises. This contrasts with the purpose of using
an explanation, where one party has the aim of trying to get the other party to under-
stand some proposition that is accepted as true by both parties. The key difference
is that in an argument, the proposition at issue (the conclusion) is doubted by the
one party, while in an explanation, the proposition to be explained is not in doubt by
either party. It is assumed to represent a factual event.

3 Argument Attack and Refutation

One way to attack an argument is to ask an appropriate critical question that raises
doubt about the acceptability of the argument. When this happens, the argument
temporarily defaults until the proponent can respond appropriately to the critical
question. Another way to attack an argument is to question one of the premises. A
third way to attack an argument is to put forward counter-argument that opposes
the original argument, meaning that the conclusion of the opposing argument is the
opposite (negation) of the conclusion of the original argument. There are other ways
to attack an argument as well [10]. For example, one might argue that the premises
are not relevant to the conclusion, or that the argument is not relevant in relation to
the issue that is supposedly being discussed. One might also argue that the original
argument commits a logical fallacy, like the fallacy of begging the question (argu-
ing in a circle by taking for granted as a premise the very proposition that is to be
proved). However, the three first ways cited above of attacking an argument are es-
pecially important for helping us to understand the notion of argument refutation. A
refutation of an argument is an opposed argument that attacks the original argument
and defeats it.

A simple way to represent a sequence of argumentation in the dialogical style is
to let the nodes in a graph represent arguments and the arrows represent attacks on

1 This approach has been neglected for a long time in the history of logic, but it is not new. Ci-
cero, based on the work of his Greek predecessors in the later Platonic Academy, Arcesilaus and
Carneades, adopted the method of dialectical inquiry that, by arguing for and against competing
views, reveals the one that is the more plausible [16, p. 4].

6 Douglas Walton

arguments [5]. In this kind of argument representation, one argument is shown as
attacking another. In this example, argument A1 attacks both A2 and A3. A2 attacks
A6. A6 attacks A7, and A7 attacks A6. A3 attacks A4, and so forth.

Fig. 1.3 Example of a Dung-style Argument Representation

Notice that arguments can attack each other. A6 attacks A7 and A7 also attacks
A6. An example [4, p. 23] is the following pair of arguments.

Richard is a Quaker and Quakers are pacifists, so he is a pacifist. Richard is a
Republican and Republicans are not pacifists, so he is a not a pacifist.

In Dung’s system, the notions of argument attack are undefined primitives, but the
system can be used to model criteria of argument acceptability. One such criterion
is the view that an argument should be accepted only if every attack on it is attacked
by an acceptable argument [3, p. 3].

There is general (but not universal) agreement in argumentation studies that there
are three standards by which the success of the inference from the premises to the
conclusion can be evaluated. This agreement is generally taken to mean that there
are three kinds of arguments: deductive, inductive, and defeasible arguments of a
kind widely thought not to be inductive (Bayesian) in nature. This third class in-
cludes arguments like ‘Birds fly; Tweety is a bird; therefore Tweety flies,’ where
exceptions, like ‘Tweety has a broken wing’ are not known in advance and cannot
be anticipated statistically. Many of the most common arguments in legal reasoning
and everyday conversational argumentation that are of special interest to argumen-
tation theorists fall into this class. An example would be an argument from expert
opinion of this sort: Experts are generally right about things in their domain of ex-
pertise; Dr. Blast is an expert in domain D, Dr. Blast asserts that A, A is in D;
therefore an inference can be drawn that A is acceptable, subject to default if any
reasonable arguments to the contrary or critical questions are raised. Arguments of
this sort are important, for example in legal reasoning, but before the advent of ar-
gumentation theory, useful logical tools to identify, analyze and evaluate them were
not available.

1 Argumentation Theory: A Very Short Introduction 7

4 Argumentation Schemes

Argumentation schemes are abstract argument forms commonly used in everyday
conversational argumentation, and other contexts, notably legal and scientific argu-
mentation. Most of the schemes that are of central interest in argumentation theory
are forms of plausible reasoning that do not fit into the traditional deductive and
inductive argument forms. Some of the most common schemes are: argument from
witness testimony, argument from expert opinion, argument from popular opinion,
argument from example, argument from analogy, practical reasoning (from goal to
action), argument from verbal classification, argument from sign, argument from
sunk costs, argument from appearance, argument from ignorance, argument from
cause to effect, abductive reasoning, argument from consequences, argument from
alternatives, argument from pity, argument from commitment, ad hominem argu-
ment, argument from bias, slippery slope argument, and argument from precedent.
Each scheme has a set of critical questions matching the scheme and such a set rep-
resents standard ways of critically probing into an argument to find aspects of it that
are open criticism.

A good example of a scheme is the one for argument from expert opinion, also
called appeal to expert opinion in logic textbooks. In this scheme [1, p. 310], A is a
proposition, E is an expert, and D is a domain of knowledge.

Major Premise: Source E is an expert in subject domain S containing proposition
A.

Minor Premise: E asserts that proposition A is true (false).
Conclusion: A is true (false).

The form of argument in this scheme could be expressed in a modus ponens for-
mat where the major (first) premise is a universal conditional: If an expert says that A
is true, A is true; expert E says that A is true; therefore A is true. The major premise,
for practical purposes, however, is best seen as not being an absolute universal gen-
eralization of the kind familiar in deductive logic. It is best seen as a defeasible
generalization, and the argument is defeasible, subject to the asking of critical ques-
tions. If the respondent asks any one of the following six critical questions [1, p.
310], the proponent must give an appropriate reply or the argument defaults.

CQ1: Expertise Question. How credible is E as an expert source?
CQ2: Field Question. Is E an expert in the field that A is in?
CQ3: Opinion Question. What did E assert that implies A?
CQ4: Trustworthiness Question. Is E personally reliable as a source?
CQ5: Consistency Question. Is A consistent with what other experts assert?
CQ6: Backup Evidence Question. Is E’s assertion based on evidence?

Some other examples of schemes will be introduced when we come to study the
example of extended argumentation in section 2.

8 Douglas Walton

5 Enthymemes

As indicated in the introduction, an enthymeme is an argument with an implicit
premise or conclusion that needs to be made explicit before the argument can be
properly understood or evaluated. The classic example is the argument: all men
are mortal; therefore Socrates is mortal. As pointed out in many logic textbooks, the
premise ‘Socrates is a man’ needs to be made explicit in order to make the argument
into a deductively valid argument. Because both premises are needed to support the
conclusion adequately, this argument is linked. Consider the following example of
an enthymeme.

Example 1.1 ((The Free Animals)). Animals in captivity are freer than in nature be-
cause there are no natural predators to kill them.

The explicit conclusion is clearly the first statement: animals in captivity are
freer than in nature. The explicit premise offered to support the conclusion is the
statement that there are no natural predators to kill animals that are in captivity.
There are two assumptions that play the role of implicit premises in the argument.
The first is the statement that there are natural predators to kill animals that are in
nature. The second is the conditional statement that if animals are in a place where
there are no natural predators to kill them, they are freer than if they are in a place
where there are natural predators to kill them. The first implicit premise is a matter
of common knowledge. The second one, however, expresses a special way that the
arguer is using the word ‘free’ that seems to go against common knowledge, or at
any rate, does not seem to be based on it. It seems to represent the arguer’s own
special position on the meaning of ‘freedom.’

In the argument diagram in Figure 1.4, the two premises on the right are enclosed
in darkened boxes, with a broken line around the border, indicating that both are
implicit premises. The one in the middle is labeled as based on common knowledge
(CK) and the one on the right is labeled as based on the arguer’s special commitment
(COM).

The argument shown in Figure 4 is clearly a linked argument, since all three
premises are required to adequately support the conclusion. They all function to-
gether in support of the conclusion, rather than being separate reasons, each of
which supports the conclusion independently of the others.

In some cases of enthymemes it is fairly obvious to determine what the missing
premise or conclusion should be. In such cases, an argumentation scheme can often
be used to apply to the argument given in the text of discourse to see which premise
is missing. In other cases, however, there can be different interpretations of the text
of discourse, and different judgments about what the missing premise should be
taken to be. The more general problem is to judge what an arguer’s commitment
is, given some evidence of what the arguer has said and how he has responded to
criticisms and other moves in a dialog. If an arguer explicitly asserts a statement
and does not retract it, then it is clear that he is committed to that statement. But
suppose he explicitly asserts two statements, and a third statement follows from the
first two by modus ponens. Is he then committed to the third statement? Logically, it

1 Argumentation Theory: A Very Short Introduction 9

Fig. 1.4 Argument Diagram of the Free Animals Example

seems that he should be, but when he is confronted with the third statement he may
deny that he is committed to it. The other party in the dialog should then challenge
him to resolve the inconsistency one way or the other, by either retracting the third
statement or one of the premises.

6 An Example Dialog

In the following dialog, called the smoking dialog, two participants Ann and Bob,
are discussing the issue of whether governments should ban smoking. They take
turns making moves, and each move after Ann’s opening move appears to address
the prior move of the other party. Thus the dialog has an appearance of being con-
nected and continuous in addressing the issue by bringing forward arguments pro
and con.

The Smoking Dialog:

Ann (1): Governments should protect its citizens from harm. There is little doubt
that smoking tobacco is extremely harmful to the smoker’s health. Therefore
governments should ban smoking.

Bob (2): How do you know that smoking tobacco is extremely harmful to the
smoker’s health?

Ann (3): Smoking leads to many other health problems, including lung cancer
and heart disease. According to the American Cancer Society, 3 million people
die from smoking each year.

10 Douglas Walton

Bob (4): The government has a responsibility to protect its citizens, but it also has
a responsibility to defend their freedom of choice. Banning smoking would be
an intrusion into citizens’ freedom of choice.

Ann (5): Smoking is not a matter of freedom of choice. Nicotine is an addictive
drug. Studies have shown that once smokers have begun smoking, they become
addicted to nicotine. Once they become addicted they are no longer free to choose
not to smoke.

Bob (6): Governments should not stop citizens from doing things that can be ex-
tremely harmful to their health. It is legal to eat lots of fatty foods or drink alcohol
excessively, and it makes no sense for governments to try to ban these activities.

Examining Ann’s first argument, it is fairly straightforward to put it in a format
showing that it has two premises and a conclusion.

Premise: Governments should protect its citizens from harm.
Premise: Smoking tobacco is extremely harmful to the smoker’s health.
Conclusion: Therefore governments should ban smoking.

This argument looks to be an instance of the argumentation scheme for argument
from negative consequences [1, p. 332]. The reason it offers to support its conclusion
that governments should ban smoking is that smoking has negative consequences.
An implicit premise is that being extremely harmful to health is a negative conse-
quence, but we ignore this complication for the moment.2

Scheme for Argument from Negative Consequences

Premise: If A is brought about, then bad consequences will occur.
Conclusion: Therefore A should not be brought about.

The reason is that a premise in the argument claims that the practice of smoking
tobacco has harmful (bad) consequences, and for this reason the conclusion advo-
cates something that would make it so that smoking is no longer brought about.

However there is another argumentation scheme, one closely related to argument
from negative consequences, that could also (even more usefully) be applied to this
argument. It is called practical reasoning. The simplest version of this scheme, called
practical inference in [1, p. 323] is cited below with its matching set of critical
questions.

Scheme for Practical Inference

Major Premise: I have a goal G.
Minor Premise: Carrying out this action A is a means to realize G.
Conclusion: Therefore, I ought (practically speaking) to carry out this action A.

Critical Questions for Practical Inference

CQ1: What other goals do I have that should be considered that might conflict
with G?

2 To more fully analyze the argument we could apply a more complex scheme called value-based
practical reasoning [2].

1 Argumentation Theory: A Very Short Introduction 11

CQ2: What alternative actions to my bringing about A that would also bring about
G should be considered?

CQ3: Among bringing about A and these alternative actions, which is arguably
the most efficient?

CQ4: What grounds are there for arguing that it is practically possible for me to
bring about A?

CQ5: What consequences of my bringing about A should also be taken into ac-
count?

CQ5 asks if there are negative consequences of the action (side effects) that need
to be taken into account, and it can be seen that it covers argumentation from both
positive and negative consequences.

Applying the argumentation scheme for practical reasoning, we get the following
reconstruction of the original argument. Premise 1: Governments have the goal of
protecting their citizens from harm. Premise 2: Smoking is harmful to their citizens.
Premise 3: Carrying out the action of banning smoking is a means for governments
to protect their citizens from this harm. Conclusion: governments should ban smok-
ing. This argument can be diagrammed as shown in Figure 1.5.

Fig. 1.5 Argument Diagram of the Smoking Example with Practical Inference

At his first move, Bob questions one of the premises of Ann’s argument. He
asks her to give a reason to support her assertion that smoking tobacco is extremely
harmful to the smoker’s health. In response to Bob’s question, Ann offers two such
reasons. There could be various ways to represent the structure of her additional
argument. The two reasons could perhaps function together as a linked argument,
or they could function as two separate reasons having the structure of a convergent
argument. But there is another way to analyze her additional argumentation.

When Ann puts forward her argument, it appears that she is using her new asser-
tion that smoking leads to many other health problems, including lung cancer and
heart disease, as additional support for her previous premise that smoking tobacco

12 Douglas Walton

is extremely harmful to the smoker’s health. What about her next statement that ac-
cording to the American Cancer Society, 3 million people die from smoking each
year? It appears that this statement is being used to back up her previous statement
that smoking leads to many other health problems, including lung cancer and heart
disease. This seems to be a plausible reconstruction of her argument.

We can produce an even better analysis of her argument using the argumentation
scheme for argument from expert opinion. It would appear that she is citing the
American Cancer Society as an expert source on health issues relating to cancer and
smoking. We could analyze her argument by inserting an implicit premise to this
effect, as shown in the argument diagram in Figure 1.6.

Fig. 1.6 Argument Diagram of the Smoking Example with Implicit Premise

On this analysis, the implicit premise that the American Cancer Society is an
expert source is shown in the darkened box with dashed lines around it at the lower
right. This premise, when taken with Ann’s explicit premise shown on the left,
makes up an argument from expert opinion supporting her previous claim. This
example shows how an argumentation scheme can be useful in helping an argument

1 Argumentation Theory: A Very Short Introduction 13

analyst to identify an implicit premise that is not explicitly stated in the argument,
but that is important for helping us to realize what the basis of the argument is.

At move 4, Bob concedes Ann’s claim that the government has a responsibility
to protect its citizens, but then he introduces a new argument. This argument is
an interesting example of an enthymeme because the implicit statement needed to
complete the argument is its conclusion.

Premise: Governments have a responsibility to defend citizens’ freedom of choice.
Premise: Banning smoking would be an intrusion into citizens’ freedom of choice.
Implicit Conclusion: Governments should not ban smoking.

Notice that the conclusion of this argument is the opposite of Ann’s previous
argument that had the conclusion that governments should ban smoking. Thus Bob’s
argument above is meant as a refutation of Ann’s previous argument. It is easy to
see that Bob’s argument is connected to Ann’s whole previous argumentation, and
is meant to attack it. This observation is part of the evidence that the dialog to this
point hangs together in the sense that each move is relevant to previous moves made
by one party or the other.

There is perhaps one exception to the general pattern in the dialog that each move
is connected to the prior move made by the other party. There is something that Bob
should perhaps question after Ann’s move 5 when she attacks Bob’s assertion that
banning smoking would be an intrusion into citizens’ freedom of choice. She attacks
his assertion by arguing that smoking is not a matter of freedom of choice, but does
this attack really bear on Bob’s assertion? One might reply that even though it may
be true that citizens who have been smoking for a while are addicted to the habit,
still, for the government to ban smoking would be an intrusion into citizens’ freedom
of choice. It would force them by law to take steps to cure their addiction, and it
would even force them by law not to start smoking in the first place. Whether Ann’s
argument at move 5 really refutes Bob’s prior argument at move 4 is questionable.
Instead of raising these questions about the relevance of Ann’s argument, Bob moves
on to a different argument at his move 6. It could be suggested that he might have
done better at his move 6 to attack Ann’s prior argument instead of hastily moving
ahead to his next argument.

7 Types of Dialog

Six basic types of dialog are fundamental to dialog theory – persuasion dialog, the
inquiry, negotiation dialog, information-seeking dialog, deliberation, and eristic di-
alog. The properties of these six types of dialog are summarized in Table 1.

In argumentation theory, each type of dialog is used as a normative model that
provides the standards for analyzing a given argument as used in a conversational
setting in a given case. Each type of dialog has three stages, an opening stage, an
argumentation stage and a closing stage. In a persuasion dialog, the proponent has
a particular thesis to be proved, while the respondent has the role of casting doubt

14 Douglas Walton

Type of Dialog Initial Situation Participant’s Goal Goal of Dialog
Persuasion Conflict of Opinions Persuade Other Party Resolve or Clarify Issue
Inquiry Need to Have Proof Find and Verify Evi-

dence
Prove (Disprove) Hy-
pothesis

Negotiation Conflict of Interests Get What You Most
Want

Reasonable Settlement
Both Can Live With

Information-
Seeking

Need Information Acquire or Give Infor-
mation

Exchange Information

Deliberation Dilemma or Practical
Choice

Co-ordinate Goals and
Actions

Decide Best Available
Course of Action

Eristic Personal Conflict Verbally Hit Out at Op-
ponent

Reveal Deeper Basis of
Conflict

Table 1.1 Six Basic Types of Dialog

on that thesis or arguing for an opposed thesis. These tasks are set at the opening
stage, and remain in place until the closing stage, when one party or the other fulfils
its burden of persuasion. The proponent has a burden of persuasion to prove (by a
set standard of proof) the proposition that is designated in advance as her ultimate
thesis.3 The respondent’s role is to cast doubt on the proponent’s attempts to succeed
in achieving such proof. The best known normative model of the persuasion type of
dialog in the argumentation literature is the critical discussion [17]. It is not a formal
model, but it has a set of procedural rules that define it as a normative structure for
rational argumentation.

The goal of a persuasion dialog is to reveal the strongest arguments on both sides
by pitting one against the other to resolve the initial conflict posed at the opening
stage. Each side tries to carry out its task of proving its ultimate thesis to the standard
required to produce an argument stronger than the one produced by the other side.
This burden of persuasion, as it is called [13], is set at the opening stage. Meeting
one’s burden of persuasion is determined by coming up with a strong enough argu-
ment using a chain of argumentation in which individual arguments in the chain are
of the proper sort. To say that they are of the proper sort means that they fit argumen-
tation schemes appropriate for the dialog. ‘Winning’ means producing an argument
that is strong enough to discharge the burden of persuasion set at the opening stage.

In a deliberation dialog, the goal is for the participants to arrive at a decision on
what to do, given the need to take action. McBurney, Hitchcock and Parsons [11]
set out a formal model of deliberation dialog in which participants make proposals
and counter-proposals on what to do. In this model (p. 95), the need to take action
is expressed in the form of a governing question like, “How should we respond
to the prospect of global warming?” Deliberation dialog may be contrasted with
persuasion dialog.

3 The notions of burden of persuasion and burden of proof have recently been subject to investiga-
tion [6, 13]. Here we have adopted the view that in a persuasion dialog, the burden of persuasion
is set at the opening stage, while a burden of proof can also shift from one side to the other during
the argumentation stage.

1 Argumentation Theory: A Very Short Introduction 15

In the model of [11, p. 100], a deliberation dialog consists of an opening stage, a
closing stage, and six other stages making up the argumentation stage.

Open: In this stage a governing question is raised about what is to be done. A gov-
erning question, like ‘Where shall we go for dinner this evening?,’ is a question
that expresses a need for action in a given set of circumstances.

Inform: This stage includes discussion of desirable goals, constraints on possible
actions that may be considered, evaluation of proposals, and consideration of
relevant facts.

Propose: Proposals cite possible action-options relevant to the governing question
Consider: this stage concerns commenting on proposals from various perspec-

tives.
Revise: goals, constraints, perspectives, and action-options can be revised in light

of comments presented and information gathering as well as fact-checking.
Recommend: an option for action can be recommended for acceptance or non-

acceptance by each participant.
Confirm: a participant can confirm acceptance of the recommended option, and

all participants must do so before the dialog terminates.
Close: The termination of the dialog.

The initial situation of deliberation is the need for action arising out of a choice
between two or more alternative courses of action that are possible in a given situ-
ation. The ultimate goal of deliberation dialog is for the participants to collectively
decide on what is the best available course of action for them to take. An important
property of deliberation dialog is that an action-option that is optimal for the group
considered as a whole may not be optimal from the perspective of an individual
participant [11, p. 98].

Both deliberation and persuasion dialogs can be about actions, and common
forms of argument like practical reasoning and argument from consequences are
often used in both types of dialog. There is no burden of persuasion in a delibera-
tion dialog. Argumentation in deliberation is primarily a matter of supporting one’s
own proposal for its chosen action-option, and critiquing the other party’s proposal
for its chosen action-option. At the concluding stage one’s proposal needs to be
abandoned in favor of the opposed one if the reasons given against it are strong
enough to show that the opposed proposal is better to solve the problem set at the
opening stage. Deliberation dialog is also different from negotiation dialog, which
centrally deals with competing interests set at the opening stage. In a deliberation
dialog, the participants evaluate proposed courses of action according to standards
that may often be contrary to their personal interests.

16 Douglas Walton

8 Dialectical Shifts

In dialectical shifts of the kind analyzed in [18, pp. 100-116], an argument starts out
as being framed in one kind of dialog, but as the chain of argumentation proceeds,
it needs to be framed in a different type of dialog. Here is an example.

Example 1.2 ((The Dam)). In a debate in a legislative assembly the decision to be
made is whether to pass a bill to install a new dam. Arguments are put forward
by both sides. One side argues that such a dam will cost too much, and will have
bad ecological consequences. The other side argues that the dam is badly needed to
produce energy. A lot of facts about the specifics of the dam and the area around it
are needed to reasonably evaluate these opposed arguments. The assembly calls in
experts in hydraulics engineering, ecology, economics and agriculture, to testify on
these matters.

Once the testimony starts, there has been a dialectical shift from the original
deliberation dialog to an information-seeking dialog that goes into issues like what
the ecological consequences of installing the dam would be. But this shift is not
a bad thing, if the information provided by the testimony is helpful in aiding the
legislative assembly to arrive at an informed and intelligent decision on how to vote.
If this is so, the goal of the first dialog, the deliberation, is supported by the advent
of the second dialog, the information-seeking interval. A constructive type of shift
of this sort is classified as an embedding [18, p. 102], meaning that the advent of
the second dialog helps the first type of dialog along toward it goal. An embedding
underlies what can be called a constructive or licit shift.

Other dialectical shifts are illicit, meaning that the advent of the second dia-
log interferes with the proper progress of the first toward reaching its goal [18, p.
107]. Wells and Reed [19] constructed two formal dialectical systems to help judge
whether a dialectical shift from a persuasion dialog to a negotiation dialog is licit
or illicit. In their model, when a participant is engaged in a persuasion dialog, and
proposes to shift to a different type of dialog, he must make a request to ask if the
shift is acceptable to the other party. The other party has the option of insisting on
continuing with the initial dialog or agreeing to shift to the new type. Wells and
Reed have designed dialog rules to allow for a licit shift from persuasion to negoti-
ation. Their model is especially useful in studying cases where threats are used as
arguments. This type of argument, called the argumentum ad baculum in logic, has
traditionally been classified as a fallacy, presumably because making threat to the
other party is not a relevant move in a persuasion dialog. What one is supposed to
do in a persuasion dialog is to offer evidence to support one’s contention, and mak-
ing a threat does not do this, even though it may give the recipient of the threat a
prudential reason to at least appear to go along the claim that the other party wants
him to accept.

The study of dialectical shifts is important in the study of informal fallacies, or
common errors of reasoning, of a kind studied in logic textbooks since the time of
Aristotle. A good example is provided in the next section.

1 Argumentation Theory: A Very Short Introduction 17

9 Fallacious Arguments from Negative Consequences

Argument from consequences (argumentum ad consequentiam) is an interesting fal-
lacy that can be found in logic textbooks used to help students acquire critical think-
ing skills. The following example is quoted from Rescher [15, p. 82].

Example 1.3 ((The Mexican War)). The United States had justice on its side in wag-
ing the Mexican war of 1848. To question this is unpatriotic, and would give comfort
to our enemies by promoting the cause of defeatism.

The argument from consequences in this case was classified as a fallacy for the
reason that is not relevant to the issue supposedly being discussed. Rescher (p. 82)
wrote that “logically speaking,” it can be “entirely irrelevant that certain undesirable
consequences might derive from the rejection of a thesis, or certain benefits accrue
from its acceptance.” It can be conjectured from the example that the context is a
persuasion dialog in which the conflict of opinions is the issue of which country had
justice on its side in the Mexican war of 1848. This issue is a historical or ethical
one, and prudential deliberation about whether questioning whether the U.S. had
justice on its side would give comfort to our enemies is not relevant to resolving it.
We can analyze what has happened by saying that there has been a dialectical shift
at the point where the one side argues that questioning that the U.S. was in the right
would promote defeatism.

Notice that in this case there is nothing wrong in principle with using argumen-
tation from negative consequences. As shown above, argument from the negative
consequences is a legitimate argumentation scheme and any argument that fits this
scheme is a reasonable argument in the sense that if the premises are acceptable,
then subject to defeasible reasoning if new circumstances come to be known, the
conclusion is acceptable as well. It’s not the argument itself that is fallacious, or
structurally wrong as an inference. The problem is the context of dialog in which
these instances of argumentation from negative consequences have been used. Such
an argument would be perfectly appropriate if the issue set at the opening stage
was how to make a decision about how to best support the diplomatic interests of
the United States. However, notice that the first sentence of the example states very
clearly what the ultimate thesis to be proved is: “The United States had justice on
its side in waging the Mexican war of 1848.” The way that this thesis is supposed
to be proved is by giving the other side reasons to come to accept it is true. Hence
it seems reasonable to conjecture that the framework of the discussion is that of a
persuasion dialog.

Rescher (1969, 82) classified the Mexican War example as an instance of ar-
gument from negative consequences that commits a fallacy of relevance. But what
exactly is relevance? How is it to be defined? It can be defined by determining what
type of dialog an argument in a given case supposedly belongs to, and then deter-
mining what the issue to be resolved is by determining what the goal of the dialog is.
The goal is set at the opening stage. If during the argumentation stage, the argumen-
tation strays off onto a different path away from the proper kind of argumentation
needed to fulfill this goal, a fallacy of relevance may have been committed. Based

18 Douglas Walton

on this analysis, it can be said that a fallacy of relevance has been committed in
the Mexican War example. The dialectical shift to the prudential issue leads to a
different type of dialog, a deliberation that interferes with the progress of the origi-
nal persuasion dialog. The shift distracts the reader of the argument by introducing
another issue, whether arguing this way is unpatriotic, and would give comfort to
enemies by promoting the cause of defeatism. That may be more pressing, and it
may indeed be true that arguing in this way would have brought about the negative
consequences of giving comfort to enemies in promoting the cause of defeatism.
Still, even though this argument from negative consequences might be quite reason-
able, framed in the context of the deliberation, it is not useful to fulfill the burden of
persuasion necessary to resolve the original conflict of opinions.

10 Relevance and Fallacies

Many of the traditional informal fallacies in logic are classified under the heading
of fallacies of relevance [8]. In such cases, the argument may be a reasonable one
that is a valid inference based on premises that can be supported, but the problem is
that the argument is not relevant. One kind of fallacy of irrelevance, as shown in the
Mexican War example above, is the type of case where there has been a dialectical
shift from one type of dialog to another. However, there is also another type of
fallacy of relevance, where there is no dialectical shift, but there still is a failure
to fulfill the burden of persuasion. In this kind of fallacy, which is very common,
the arguer stays within the same type of dialog, but nevertheless fails to prove the
conclusion he is supposed to prove and instead goes off in a different direction.

The notion of relevance of argumentation can only be properly understood and
analyzed by drawing a distinction between the opening stage of a dialog, where the
burden of persuasion is set, and the argumentation stage, where arguments, linked
into chains of argumentation, are brought forward by both sides. In a persuasion
dialog, the burden of persuasion is set at the opening stage. Let’s say, for example,
that the issue being discussed is whether one type of light bulb lasts longer than an-
other. The proponent claims that one type of bulb lasts longer than another. She has
the burden of persuasion to prove that by bringing forward arguments that support
it. The respondent takes the stance of doubting the proponent’s claim. He does not
have the burden of persuasion. His role is to cast doubt on the proponent’s attempts
to prove her claim. He can do this by bringing forward arguments that attack the
claim that one type of bulb lasts longer than another. Suppose, however, that during
the argumentation stage, he wanders off to different topic by arguing that the one
type of bulb is manufactured by a company has done bad things that have led to neg-
ative consequences. This may be an emotionally exciting argument, and the claim
made in it may even be accurate, but the problem is that it is irrelevant to the issue
set at the opening stage.

This species of fallacy of relevance is called the red herring fallacy. It occurs
where an arguer wanders off the point in a discussion, and directs a chain of argu-

1 Argumentation Theory: A Very Short Introduction 19

mentation towards proving some conclusion other than the one he is supposed to
prove, as determined at the opening stage. The following example is a classic case
of this type of fallacy cited in logics textbook [8].

Example 1.4 ((The Light Bulb)). The Consumers Digest reports that GE light bulbs
last longer than Sylvania bulbs.4 But do you realize that GE is this country’s major
manufacturer of nuclear weapons? The social cost of GE’s irresponsible behavior
has been tremendous. Among other things, we are left with thousands of tons of
nuclear waste with nowhere to put it. Obviously, the Consumers Digest is wrong.

In the first sentence of the example, the arguer states the claim that he is supposed
to prove (or attack) as his ultimate probandum in the discussion. He is supposed to
be attacking the claim reported in the Consumers Digest that GE light bulbs last
longer than Sylvania bulbs. How does he do this? He launches into a chain of argu-
mentation, starting with the assertion that GE is this country’s major manufacturer
of nuclear weapons. This makes GE sound very bad, and it would be an emotionally
exciting issue to raise. He follows up the statement with another one to the effect
that the social cost of GE’s irresponsible behavior has been tremendous. This is an-
other serious allegation that would rouse the emotions of readers. Finally he uses
argumentation from negative consequences by asserting that because of GE’s irre-
sponsible behavior, we are left with thousands of tons of nuclear waste with nowhere
to put it. This line of argumentation is a colorful and accusatory distraction. It di-
verts the attention of the reader, who might easily fail to recall that the real issue is
whether GE light bulbs last longer than Sylvania bulbs. Nothing in all the allega-
tions made about GE’s allegedly responsible behavior carries any probative weight
for the purpose of providing evidence against the claim reported in the Consumers
Digest that GE light bulbs last longer than Sylvania bulbs.

In the red herring fallacy the argumentation is directed along a path of argumen-
tation other than one leading to proving the conclusion to be proved. The chain of
argumentation goes off in a direction that is exciting and distracting for the audience
to whom the argument was directed. The red herring fallacy becomes a problem
in cases where the argumentation moves away from the proper chain of argument
leading to the conclusion to be proved. Sometimes the path leads to the wrong con-
clusion (one other than the one that is supposed to be proved), but in other cases it
goes nowhere. The general pattern of this type of fallacy is displayed in Figure 1.7.

Such a distraction may be harmless if there is plenty of time for discussion. But
it can be a serious problem if there is not, because the real issue is not discussed.
According to the burden of persuasion, the line of argumentation has as its end point
a specific conclusion that needs to be proved. And if the argumentation moves away,
it may not do this.

4 In the 1994 edition (p. 127), the first sentence of the light bulb example is, “The Consumers
Digest reports that Sylvania light bulbs last longer than GE bulbs.” The example makes more sense
if the two light bulb manufacturers names are reversed, and so I have presented the light bulb
example this way.

20 Douglas Walton

Conclusion to be Proved Wrong Conclusion

Premises

Proper Path of Argumentation
Irrelevant Argument

Fig. 1.7 General Pattern of the Red Herring Fallacy

11 Basic Problems to be Solved

This paper has only touched on the main concepts of argumentation theory and the
main techniques used in argumentation studies. It is important to emphasize that
the use of such concepts and techniques, while they have proved very valuable for
teaching skills of critical thinking, have raised many problems about how to make
the concepts and techniques more precise so that they can be applied more pro-
ductively to realistic argumentation in natural language texts of discourse. Many
of these problems arise from the fact that it can be quite difficult to interpret what
is meant in a natural language text of discourse and precisely identify arguments
contained in it. Ambiguity and vagueness are extremely common, and in many in-
stances, the best one can do is to construct a hypothesis about how to interpret the
argument based on the evidence given from the text of discourse. Much of the cur-
rent research is indeed directed to studying how to marshal such evidence in an
objective manner.

For example, applying an abstract argumentation scheme to an argument in a
specific case can be very tricky. In some cases, the same argument can fit more
than one scheme. A project that needs to be undertaken is to devise criteria that
students of critical thinking can use to help them determine in a particular case
whether a given argument correctly fits a scheme or not. Another problem is that
schemes can vary contextually. For example the scheme for argument from expert
opinion used in law has to be different in certain respects from the standard scheme
for argument from expert opinion cited above. The reason is that in the law rules
have been developed for the admissibility and evaluation of expert opinion evidence.
Any argumentation scheme for argument from expert opinion suitable for use in law
would have to take these legal developments into account.

Similarly, the problem of how to deal with enthymemes in a precise and objective
manner has still not been solved, because we lack tools for determining what an

1 Argumentation Theory: A Very Short Introduction 21

arguer’s commitments are, and what should properly be taken to constitute common
knowledge, in specific cases where we are examining a text of discourse to find
implicit statements. While the field has helped to develop objective methods for
collecting evidence to deal with these problems in analyzing arguments, much work
remains to be done in making them more precise.

Of all the types of dialog, the one that has been most carefully and systematically
studied is persuasion dialog, and there are formal systems of persuasion dialog [12].
Just recently, deliberation dialog also has come to be formally modeled [11, p. 100].
There is an abundance of literature on negotiation, and there are a software tools for
assisting with negotiation argumentation. Comparatively less work is noticeable on
information-seeking dialog and on the inquiry model of dialog. There is a scattering
of work on eristic dialog, but there appears to be no formal model of this type of
dialog that has been put forward, or at least that is well known in the argumentation
literature. The notion of dialectical shift needs much more work. In particular, what
kinds of evidence are useful in helping an argument analyst to determine when a
dialectical shift has taken place during the sequence of argumentation in discourse
is a good topic for study.

The concepts of burden of proof and presumption are also central to the study
of argumentation in different types of dialog. Space has prevented much discussion
of these important topics, but the recent work that has been done on them raises
some general questions that would be good topics for research. This work [6, 13]
suggests that what is called the burden of persuasion is set at the opening stage of a
persuasion dialog, and that this burden affects how a different kind of burden, often
called the burden of production in law, shifts back and forth during the argumen-
tation stage. Drawing this distinction is extremely helpful for understanding how
a persuasion dialog should work, and more generally, it helps us to grasp how the
critical questions should work as attacks on an argumentation scheme. But is there
some comparable notion of burden of proof in the other types of dialog, for exam-
ple in deliberation dialog? This unanswered question points a direction for future
research in argumentation.

References

1. D. Walton, C. Reed and F. Macagno. Argumentation Schemes. Cambridge University Press,
Cambridge, UK, 2008.

2. T. J. M. Bench-Capon. Persuasion in practical argument using value-based argumentation
frameworks. Logic and Computation, 13:429–448, 2003.

3. T. J. M. Bench-Capon and P. E. Dunne. Argumentation and dialogue in artificial intelligence,
IJCAI 2005 tutorial notes. Technical report, Department of Computer Science, University of
Liverpool, 2005.

4. P. Besnard and A. Hunter. Elements of Argumentation. MIT Press, Cambridge MA, USA,
2008.

5. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–358,
1995.

22 Douglas Walton

6. T. F. Gordon, H. Prakken, and D. Walton. The Carneades model of argument and burden of
proof. Artificial Intelligence, 171(10–15):875–896, 2007.

7. C. L. Hamblin. Fallacies. Methuen, London, UK, 1970.
8. P. J. Hurley. A Concise Introduction to Logic. Belmont, Wadsworth, CA, USA, 1994.
9. R. H. Johnson and A. J. Blair. The current state of informal logic. Informal Logic, 9:147–151,

1987.
10. E. C. W. Krabbe. Nothing but objections. In H. V. Hansen and R. C. Pinto, editors, Reason

Reclaimed. Vale Press, Newport News, Virginia, USA, 2007.
11. D. Hitchcock, P. McBurney and S. Parsons. The eightfold way of deliberation dialogue. In-

ternational Journal of Intelligent Systems, 22(1):95–132, 2007.
12. H. Prakken. Formal systems for persuasion dialogue. The Knowledge Engineering Review,

21(2):163–188, 2006.
13. H. Prakken and G. Sartor. Formalising arguments about the burden of persuasion. In Proceed-

ings of the 11th International Conference on Artificial Intelligence and Law, pages 97–106.
ACM Press, New York NY, USA, 2007.

14. C. Reed and G. Rowe. Araucaria: Software for argument analysis. International Journal of
AI Tools, 14(3–4):961–980, 2004.

15. N. Rescher. Introduction to Logic. St. Martin’s Press, New York NY, USA, 1964.
16. H. Thorsrud. Cicero on his academics predecessors: the fallibilism of Arcesilaus and

Carneades. Journal of the History of Philosophy, 40(1):1–18, 2002.
17. F. H. van Eemeren and R. F. Grootendorst. A Systematic Theory of Argumentation. Cambridge

University Press, Cambridge, UK, 2004.
18. D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of Interpersonal

Reasoning. SUNY Press, Albany NY, USA, 1995.
19. S. Wells and C. Reed. Knowing when to bargain: the roles of negotiation and persuasion in

dialogue. In F. Grasso, R. Kibble, and C. Reed, editors, Proceedings of the ECAI workshop
on Computational Models of Natural Argument (CMNA), Riva del Garda, Italy, 2006.

Part I
Abstract Argument Systems

Chapter 2
Semantics of Abstract Argument Systems

Pietro Baroni and Massimiliano Giacomin

1 Abstract Argument Systems

An abstract argument system or argumentation framework, as introduced in a semi-
nal paper by Dung [13], is simply a pair 〈A,R〉 consisting of a set A whose elements
are called arguments and of a binary relation R on A called attack relation. The set
A may be finite or infinite in general, however, given the introductory purpose of this
chapter, we will restrict the presentation to the case of finite sets of arguments. An
argumentation framework has an obvious representation as a directed graph where
nodes are arguments and edges are drawn from attacking to attacked arguments. A
simple example of argumentation framework AF2.1 = 〈{a,b},{(b,a)}〉 is shown in
Figure 2.1.

While the word argument may recall several intuitive meanings, like the ones of
“line of reasoning leading from some premise to a conclusion” or of “utterance in
a dispute”, abstract argument systems are not (even implicitly or indirectly) bound
to any of them: an abstract argument is not assumed to have any specific structure
but, roughly speaking, an argument is anything that may attack or be attacked by
another argument. Accordingly, the argumentation framework depicted in Figure
2.1 is suitable to represent many different situations. For instance, in a context of
reasoning about weather, argument a may be associated with the inferential step

b a

Fig. 2.1 AF2.1: a simple argumentation framework

Pietro Baroni
Dip. di Elettronica per l’Automazione, University of Brescia, Via Branze 38, 25123 Brescia, Italy
e-mail: baroni@ing.unibs.it

Massimiliano Giacomin
Dip. di Elettronica per l’Automazione, University of Brescia, Via Branze 38, 25123 Brescia, Italy
e-mail: giacomin@ing.unibs.it

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 25
DOI 10.1007/978-0-387-98197-0 2, c© Springer Science+Business Media, LLC 2009

26 Pietro Baroni and Massimiliano Giacomin

“Tomorrow will rain because the national weather forecast says so”, while b with
“Tomorrow will not rain because the regional weather forecast says so”. In a legal
dispute a might be associated with a prosecutor’s statement “The suspect is guilty
because an eyewitness, Mr. Smith, says so” while b with the defense reply “Mr.
Smith is notoriously alcohol-addicted and it is proved that he was completely drunk
the night of the crime, therefore his testimony should not be taken into account”.
In a marriage arrangement setting (corresponding to the game-theoretic formulation
of stable marriage problem [13]), a may be associated with “The marriage between
Alice and John”, while b with “The marriage between Barbara and John”. Similarly,
the attack relation has no specific meaning: again at a rough level, if an argument
b attacks another argument a, this means that if b holds then a can not hold or,
putting it in other words, that the evaluation of the status of b affects the evaluation
of the status of a. In the weather example, two intrinsically conflicting conclusions
are confronted and the attack relation corresponds to the fact that one conclusion is
preferred to the other, e.g. because the regional forecast is considered more reliable
than the national one (this kind of attack is often called rebut in the literature). In
the legal dispute, the fact that Mr. Smith was drunk is not incompatible per se with
the fact that the suspect is guilty, however it affects the reason why s/he should be
believed to be guilty (this kind of attack has sometimes been called undercut in the
literature, but the use of this term has not been uniform). In the stable marriage
problem, the attack from b to a may simply be due to the fact that John prefers
Barbara to Alice.

Abstracting away from the structure and meaning of arguments and attacks en-
ables the study of properties which are independent of any specific aspect, and, as
such, are relevant to any context that can be captured by the very terse formalization
of abstract argument systems. As a counterpart of this generality, abstract argument
systems feature a limited expressiveness and can hardly be adopted as a modeling
formalism directly usable in application contexts. In fact the gap between a prac-
tical problem and its representation as an abstract argument system is patently too
wide and requires to be filled by a less abstract formalism, dealing in particular with
the construction of arguments and the conditions for an argument to attack another
one. For instance, in a given formalism, attack may be identified at a purely syntac-
tic level (e.g. the conclusion of an argument being the negation of the conclusion
of another one). In another formalism, attack may not be a purely syntactic notion
(e.g. the conclusions of two arguments being incompatible because they give rise to
contradiction through some strict logical deduction). Only after the attack relation
is defined in these “concrete” terms, it is appropriate to derive its abstract represen-
tation and exploit it for the analysis of general properties.

2 Abstract Argumentation Semantics

Given that arguments may attack each other, it is clearly the case that they can not
stand all together and their status is subject to evaluation. In particular what we are
usually interested in is the justification state of arguments: while this notion will

2 Semantics of Abstract Argument Systems 27

be given a precise formal meaning1 in the following, intuitively an argument is re-
garded as justified if it has some way to survive the attacks it receives, as not justified
(or rejected) otherwise. In the following we will use the term argument evaluation
to refer to a process aimed at determining the justification state of the arguments in
an abstract argument system, i.e. on the basis of the attack relation only. In the case
of Figure 2.1 the outcome of the evaluation process is almost undebatable: b should
be justified (in particular it does not receive attacks) while a should not be justified
(it has no way to survive the attack from b). The case of mutual attack of Figure
2.2 is less obvious: evident symmetry reasons suggest that the evaluation process
should assign to b and a the same state, which should correspond neither to “full”
justification nor to “full” rejection. An intuitive counterpart to Figure 2.2 is given by
the case of two contradicting weather forecasts about rain tomorrow, coming from
sources considered equally reliable.

It is important to remark that the evaluation process in abstract argument systems
concerns the justification state of arguments, not of their conclusions (conclusions
“do not exist” in the abstract setting). To clarify this distinction consider a new ar-
gument put forward by the prosecutor in the example of legal dispute: “The suspect
is guilty because his fingerprints have been found on the crime scene”. The new ar-
gument (let say c) has no attack relationships with the previous ones (in particular,
the fact that the fingerprints have been found on the crime scene does not conflict
with the fact that the witness was drunk that night) and, as a consequence, the cor-
responding abstract representation is the one given in Figure 2.3. Then a is still
rejected, b is still justified and c (not receiving any attack) is justified too. Note that,
at the underlying level, a and c have the same conclusion (“the suspect is guilty”)
and that this conclusion should now be intuitively regarded as justified. However,
summarizing the justification state of conclusions is outside the scope of the ab-
stract representation.

An argumentation semantics is the formal definition of a method (either declar-
ative or procedural) ruling the argument evaluation process. Two main styles of ar-
gumentation semantics definition can be identified in the literature: extension-based
and labelling-based.

In the extension-based approach a semantics definition specifies how to derive
from an argumentation framework a set of extensions, where an extension E of an
argumentation framework 〈A,R〉 is simply a subset of A, intuitively representing
a set of arguments which can “survive together” or are “collectively acceptable”.

b a

Fig. 2.2 AF2.2: a mutual attack

b ac

Fig. 2.3 AF2.3: presence of an isolated argument

1 Actually the term “justification” is used informally and with different meanings in the literature.

28 Pietro Baroni and Massimiliano Giacomin

Putting things in more formal terms, given an extension-based semantics S and an
argumentation framework AF = 〈A,R〉 we will denote the set of extensions pre-
scribed by S for AF as ES(AF) ⊆ 2A. The justification state of an argument a ∈ A

according to an extension-based semantics S is then a derived concept, defined in
terms of the membership of a to the elements of ES(AF).

In the labelling-based approach a semantics definition specifies how to derive
from an argumentation framework a set of labellings, where a labelling L is the as-
signment to each argument in A of a label taken from a predefined set L, which
corresponds to the possible alternative states of an argument in the context of a sin-
gle labelling. Putting things in formal terms, given a labelling-based semantics S

with set of labels L, a labelling of an argumentation framework 〈A,R〉 is a mapping
L : A → L. We denote the set of all possible labellings, i.e. of all possible map-
pings from A to L, as L(A,L), and the set of labellings prescribed by S for AF as
LS(AF) ⊆ L(A,L). Again, the justification state of an argument a according to a
labelling-based semantics S turns out to be a derived concept, defined in terms of
the labels assigned to a in the various elements of LS(AF).

Let us exemplify the semantics definition styles with reference to the simple case
of Figure 2.2. Let S1

ext be a hypothetical extension-based semantics whose underly-
ing principle consists in identifying as extensions the largest sets of non-conflicting
arguments which reply to the attacks they receive. Intuitively, both the sets {a} and
{b} satisfy this principle, yielding ES1

ext
(AF2.2) = {{a},{b}}. Alternatively, let S2

ext
be a hypothetical extension-based semantics whose underlying principle consists in
identifying as extensions the sets of arguments which are unattacked. Clearly, no
argument features this property in AF2.2, yielding as unique extension the empty
set: ES2

ext
(AF2.2) = { /0}. Let us turn to the labelling-based style and adopt the set of

labels L = {in,out,undecided}. Let S1
lab be a hypothetical labelling-based seman-

tics whose underlying principle consists in labelling in the elements of the largest
sets of non-conflicting arguments which reply to the attacks they receive and la-
belling out the arguments attacked by arguments labelled in. Then two labellings
are prescribed: LS1

lab
(AF2.2) = {{(a, in),(b,out)},{(a,out),(b, in)}}. On the other

hand, let S2
lab be a hypothetical labelling-based semantics whose underlying princi-

ple consists in labelling in only unattacked arguments, labelling out the arguments
attacked by arguments labelled in, and labelling undecided all the remaining ones.
Clearly this would yield LS2

lab
(AF2.2) = {{(a,undecided),(b,undecided)}}.

As it is also evident from the above examples, for a given argumentation frame-
work one or more extensions (labellings) may be prescribed by a given semantics. It
has to be remarked that also the case where no extensions (labellings) are prescribed
for an argumentation framework AF is in general possible, namely ES(AF) = /0
(LS(AF) = /0). This corresponds to the case where the semantics S is undefined
in AF since no extensions (labellings) compliant with the definition of S exist. For
extension-based semantics, note in particular that the case ES(AF) = /0 is very differ-
ent from ES(AF) = { /0}. In the following we will denote as DS the set of argumenta-
tion frameworks where a semantics S is defined, namely, DS = {AF | ES(AF) �= /0}
or DS = {AF | LS(AF) �= /0}. A semantics S is called universally defined if any

2 Semantics of Abstract Argument Systems 29

argumentation framework belongs to DS. Further, an important terminological con-
vention concerning the cardinality of the set of extensions (labellings) is worth intro-
ducing. If a semantics S always prescribes exactly one extension (labelling) for any
argumentation framework belonging to DS then S is said to belong to the unique-
status (or single-status) approach, otherwise it is said to belong to the multiple-status
approach.

While the adoption of the labelling or extension-based style is a matter of subjec-
tive preference by the proponent(s) of a given semantics, a natural question concerns
the expressiveness of the two styles. It is immediate to observe that any extension-
based definition can be equivalently expressed in a simple labelling-based formula-
tion, where a set of two labels is adopted (let say L = {in,out}) corresponding to
extension membership. On the other hand, an arbitrary labelling can not in general
be formulated in terms of extensions. It is however a matter of fact that labellings
considered in the literature typically include a label called in which naturally cor-
responds to extension membership, while other labels correspond to a partition of
other arguments, easily derivable from extension membership and the attack rela-
tion. As a consequence, equivalent extension-based formulations of labelling-based
semantics are typically available. Given this fact and the definitely prevailing cus-
tom of adopting the extension-based style in the literature, this chapter will focus on
extension-based semantics.

3 Principles for extension-based semantics

While alternative semantics proposals differ from each other by the specific notion
of extension they endorse, one may wonder whether there are reasonable general
properties which are shared by all (or, at least, most) existing semantics and can be
regarded as evaluation principles for new semantics. We discuss these principles in
the following, distinguishing between properties of individual extensions and prop-
erties of the whole set of extensions. The reader may refer to [2] for a more extensive
analysis of this issue.

The first basic requirement for any extension E corresponds to the idea that E is a
set of arguments which “can stand together”. Consequently, if an argument a attacks
another argument b, then a and b can not be included together in an extension. This
corresponds to the following conflict-free principle, which, as to our knowledge, is
satisfied by all existing semantics in the literature.

Definition 2.1. Given an argumentation framework AF = 〈A,R〉, a set S ⊆ A is
conflict-free, denoted as c f (S), if and only if �a,b ∈ S such that aRb. A semantics
S satisfies the conflict-free principle if and only if ∀AF ∈ DS, ∀E ∈ ES(AF) E is
conflict-free.

A further requirement corresponds to the idea that an extension is a set of ar-
guments which “can stand on its own”, namely is able to withstand the attacks it
receives from other arguments by “replying” with other attacks. Formally, this has
a counterpart in the property of admissibility, which lies at the heart of all seman-
tics discussed in [13] and is shared by many more recent proposals. The definition

30 Pietro Baroni and Massimiliano Giacomin

is based on the notions of acceptable argument and admissible set. In words, a is
acceptable wrt. (or, equivalently, defended by) a set S if S “counterattacks” all at-
tackers of a and a set S is admissible if it is conflict-free and defends all its elements.

Definition 2.2. Given an argumentation framework AF = 〈A,R〉, an argument a ∈
A is acceptable wrt. a set S⊆A if and only if ∀b ∈A bRa⇒ SRb.2

The function FAF : 2A → 2A which, given a set S ⊆ A, returns the set of the
acceptable arguments wrt. S, is called the characteristic function of AF .

Definition 2.3. Given an argumentation framework AF = 〈A,R〉, a set S ⊆ A is
admissible if and only if c f (S) and ∀a ∈ S a is acceptable wrt. S. The set of all the
admissible sets of AF is denoted as AS(AF).

Definition 2.4. A semantics S satisfies the admissibility principle if and only if
∀AF ∈DS ES(AF)⊆AS(AF), namely ∀E ∈ ES(AF) it holds that:

a ∈ E ⇒ (∀b ∈A,bRa⇒ ERb). (2.1)

The property of reinstatement is somewhat dual with respect to the notion of
defense. Intuitively, if the attackers of an argument a are in turn attacked by an ex-
tension E one may assume that they have no effect on a: then a should be, in a sense,
reinstated, therefore it should belong to E. This leads to the following reinstatement
principle which turns out to be the converse of the implication (2.1).

Definition 2.5. A semantics S satisfies the reinstatement principle if and only if
∀AF ∈DS, ∀E ∈ ES(AF) it holds that:

(∀b ∈A,bRa⇒ ERb)⇒ a ∈ E. (2.2)

To exemplify these properties consider the argumentation framework AF2.4 rep-
resented in Figure 2.4. It is easy to see that AS(AF2.4) = { /0,{a},{b},{a,c}}, in
particular c needs the “help” of a in order to be defended from the attack of b.
The set {b} obviously satisfies the reinstatement condition (2.2), and so does {a,c},
while the set {a} does not, since it attacks all attackers of c, but does not include it.

Let us turn now to principles concerning sets of extensions. A first fundamen-
tal principle corresponds to the fact that the set of extensions only depends on the
attack relation between arguments while it is totally independent of any property
of arguments at the underlying language level. Formally, this principle corresponds
to the fact that argumentation frameworks which are isomorphic have the “same”
(modulo the isomorphism) extensions, as stated by the following definitions.

b ac

Fig. 2.4 AF2.4: not just a mutual attack

2 With a little abuse of notation we define SRb≡ ∃a ∈ S : aRb. Similarly, bRS≡ ∃a ∈ S : bRa.

2 Semantics of Abstract Argument Systems 31

Definition 2.6. Two argumentation frameworks AF1 = 〈A1,R1〉 and AF2 = 〈A2,R2〉
are isomorphic if and only if there is a bijective mapping m : A1 → A2, such that
(a,b) ∈ R1 if and only if (m(a),m(b)) ∈ R2. This is denoted as AF1 �m AF2.

Definition 2.7. A semantics S satisfies the language independence principle if and
only if ∀AF1 ∈ DS,∀AF2 ∈ DS such that AF1 �m AF2,ES(AF2) = {M(E) | E ∈
ES(AF1)}, where M(E) = {b | ∃a ∈ E,b = m(a)}.

All argumentation semantics we are aware of adhere to this principle.
Another principle concerns possible inclusion relationships between extensions.

Considering for instance the admissible sets of the example in Figure 2.4, the empty
set is of course included in all other ones, moreover the set {a} is included in {a,c}.
In such a situation, the question arises whether an extension may be a strict subset of
another one. The answer is typically negative, for reasons which are related in par-
ticular with the notion of skeptical justification, to be discussed later. Accordingly,
the I-maximality principle can be introduced.

Definition 2.8. A set of extensions E is I-maximal if and only if ∀E1,E2 ∈ E, if
E1 ⊆ E2 then E1 = E2. A semantics S satisfies the I-maximality principle if and only
if ∀AF ∈DS ES(AF) is I-maximal.

A further principle is related with the notion of attack which is intrinsically di-
rectional: if a attacks b this corresponds to the fact that a has the power to affect b,
while not vice versa (unless, in turn, b attacks a). Generalizing this consideration,
one may require the evaluation of an argument a to be only affected by its attackers,
the attackers of its attackers and so on, i.e. by its ancestors in the attack relationship.
In other words, an argument a may affect another argument b only if there is a di-
rected path from a to b. For instance, in Figure 2.4 the evaluations of a and b affect
each other and both affect c, while the evaluation of c should not affect those of a
and b but rather depend on them. It is reasonable to require this notion of direction-
ality to be reflected by the set of extensions prescribed by a semantics. This can be
formalized by referring to sets of arguments not receiving attacks from outside.

Definition 2.9. Given an argumentation framework AF = 〈A,R〉, a non-empty set
S⊆A is unattacked if and only if � ∃a ∈ (A\S) : aRS. The set of unattacked sets of
AF is denoted as US(AF).

We also need to introduce the notion of restriction of an argumentation frame-
work to a subset S of its arguments.

Definition 2.10. Let AF = 〈A,R〉 be an argumentation framework. The restriction
of AF to S⊆A is the argumentation framework AF↓S = 〈S,R∩ (S×S)〉.

The directionality principle can then be defined by requiring an unattacked set
to be unaffected by the remaining part of the argumentation framework as far as
extensions are concerned.

Definition 2.11. A semantics S satisfies the directionality principle if and only if
∀AF ∈DS,∀S ∈ US(AF),AES(AF,S) = ES(AF↓S), where AES(AF,S) � {(E ∩S) |
E ∈ ES(AF)} ⊆ 2S.

32 Pietro Baroni and Massimiliano Giacomin

In words, the intersection of any extension prescribed by S for AF with an
unattacked set S is equal to one of the extensions prescribed by S for the re-
striction of AF to S, and vice versa. Referring to the example of Figure 2.4,
US(AF2.4) = {{a,b},{a,b,c}}. Then, the restriction of AF2.4 to its unattacked set
{a,b} coincides with AF2.2 shown in Figure 2.2. A hypothetical semantics S1 such
that ES1(AF2.4) = {{a,c},{b}} and ES1(AF2.2) = {{a},{b}} would satisfy the di-
rectionality principle in this case. On the other hand, a hypothetical semantics S2

such that ES2(AF2.4) = {{a,c}} and ES2(AF2.2) = {{a},{b}} would not.

4 The notion of justification state

At a first level, the justification state of an argument a can be conceived in terms
of its extension membership. A basic classification encompasses only two possible
states for an argument, namely justified or not justified. In this respect, two alterna-
tive types of justification, namely skeptical and credulous can be considered.

Definition 2.12. Given a semantics S and an argumentation framework AF ∈ DS,
an argument a is:

• skeptically justified if and only if ∀E ∈ ES(AF) a ∈ E;
• credulously justified if and only if ∃E ∈ ES(AF) a ∈ E.

Clearly the two notions coincide for unique-status approaches, while, in general,
credulous justification includes skeptical justification. To refine this relatively rough
classification, a consolidated tradition considers three justification states.

Definition 2.13. [18] Given a semantics S and an argumentation framework AF ∈
DS, an argument a is:

• justified if and only if ∀E ∈ES(AF), a∈E (this is clearly the “strongest” possible
level of justification, corresponding to skeptical justification);

• defensible if and only if ∃E1,E2 ∈ ES(AF) : a ∈ E1,a /∈ E2 (this is a weaker
level of justification, corresponding to arguments which are credulously but not
skeptically justified);

• overruled if and only if ∀E ∈ ES(AF), a /∈ E (in this case a can not be justified
in any way and should be rejected).

Some remarks are worth about the above classification, which is largely (and
sometimes implicitly) adopted in the literature: on one hand, while (two) differ-
ent levels of justified arguments are encompassed, no distinctions are drawn among
rejected arguments; on the other hand, the attack relation plays no role in the deriva-
tion of justification state from extensions. These points are addressed by a different
classification of justification states introduced by Pollock [16] in the context of a
unique-status approach. Again, three cases are possible for an argument a:

• a belongs to the (unique) extension E: then it is justified, or, using Pollock’s
terminology, undefeated;

2 Semantics of Abstract Argument Systems 33

• a does not belong to the (unique) extension E and is attacked by (some member
of) E: then, using Pollock’s terminology, it is defeated outright, corresponding to
a strong form of rejection;

• a does not belong to the (unique) extension E but does not receive attacks from
E: then it is provisionally defeated, corresponding to a weaker form of rejection.

Both these classifications of justification states are unsatisfactory in some respect.
It is however possible to combine the intuitions underlying both of them, obtaining
a systematic classification of seven possible justification states [6]. As a starting
point, considering the relationship between an argument a and a specific extension
E, three main situations3, as in Pollock’s classification, can be envisaged:

• a is in E, denoted as in(a,E), if a ∈ E;
• a is definitely out from E, denoted as do(a,E), if a /∈ E ∧ERa;
• a is provisionally out from E, denoted as po(a,E), if a /∈ E ∧¬ERa.

Then, taking into account the possible existence of multiple extensions, an argu-
ment can be in any of the above three states with respect to all, some or none of
the extensions. This gives rise to 27 hypothetical combinations. It is however easy
to see that some of them are impossible: for instance, if an argument is in a given
state with respect to all extensions this clearly excludes that it is in another state
with respect to any extension. Directly applying this kind of considerations, seven
possible justification states emerge.

Definition 2.14. Given an argumentation framework AF = 〈A,R〉 and a non-empty
set of extensions E the possible justification states of an argument a ∈A according
to E are defined by the following mutually exclusive conditions:

• ∀E ∈ E in(a,E), denoted as JSI ;
• ∀E ∈ E do(a,E), denoted as JSD;
• ∀E ∈ E po(a,E), denoted as JSP;
• ∃E ∈ E : do(a,E), ∃E ∈ E : po(a,E), and �E ∈ E : in(a,E), denoted as JSDP;
• ∃E ∈ E : in(a,E), ∃E ∈ E : po(a,E), and �E ∈ E : do(a,E), denoted as JSIP;
• ∃E ∈ E : in(a,E), ∃E ∈ E : do(a,E), and �E ∈ E : po(a,E), denoted as JSID;
• ∃E ∈ E : in(a,E), ∃E ∈ E : do(a,E), and ∃E ∈ E : po(a,E), denoted as JSIDP.

Correspondences with “traditional” definitions of justification states are easily
drawn. An argument is skeptically justified if and only if it is in the JSI state, while
credulous justification corresponds to the disjunction of the states JSI , JSIP, JSID,
and JSIDP. As to Definition 2.13, the state of justified corresponds to JSI , the state of
overruled to the disjunction of JSD, JSP, and JSDP, while the state of defensible to
the disjunction of JSIP, JSID, and JSIDP. Turning to Pollock’s classification, it is easy
to see that in the case of a unique-status semantics only JSI , JSD and JSP may hold,
which correspond to the state of undefeated, defeated outright and provisionally
defeated, respectively. Other meaningful ways of defining aggregated justification
states are investigated in [6].

3 The case a ∈ E ∧ERa is prevented by the conflict-free principle.

34 Pietro Baroni and Massimiliano Giacomin

5 A review of extension-based argumentation semantics

Turning from general notions to actual approaches, we now examine several argu-
mentation semantics proposed in the literature. From a historical point of view, it is
possible to distinguish between:

• four “traditional” semantics, considered in Dung’s original paper [13], namely
complete, grounded, stable, and preferred semantics;

• subsequent proposals introduced by various authors in the literature, often to
overcome some limitation or improve some undesired behavior of a traditional
approach: we consider stage, semi-stable, ideal, CF2, and prudent semantics.

It is important to note that while the definitions of the semantics we will de-
scribe are formulated in the context of purely abstract argumentation frameworks,
the underlying intuitions have commonalities with other (somewhat more concrete)
formalizations in related contexts. In fact, as already mentioned, one of the main
results of Dung’s paper is showing that abstract argumentation frameworks are able
to capture the properties of a large variety of more specific formalisms. This means
that it is possible to define mappings from entities defined in a more specific formal-
ism into an argumentation framework. In [13] mappings of this kind are provided for
stable marriage problems, default theories in Reiter’s default logic, logic programs
with negation as failure, and Pollock’s theory of defeasible reasoning.

Let AF = 〈A,R〉 be an argumentation framework obtained through a mapping
from a more specific formalism (e.g. a logic program). We have now two ways of
deriving a “meaningful” set of subsets of A: on one hand, we can apply a purely
abstract semantics S to AF , obtaining the relevant set of extensions ES(AF). On the
other hand, we can start from a meaningful concept in the underlying formalism
(e.g. the set of models of a logic program) and then map it into a set M of subsets
of A (continuing the example, by deriving the set of arguments corresponding to
each model). An important question then arises: can interesting relationships be
identified between ES(AF) and M, given a suitable choice of the semantics S? A
strikingly affirmative answer is provided in [13]: it is shown that properly selecting
S among the traditional grounded, preferred, and stable semantics one obtains sets
of extensions ES(AF) which coincide with the sets of arguments corresponding to
meaningful notions in the formalisms mentioned above. Specific indications about
these coincidences will be given in the review of individual semantics. At a general
level, they confirm that abstract argumentation semantics is a powerful analysis tool,
able to focus on essential properties of a variety of formalisms and to shed light on
their (possibly hidden) significant common features.

5.1 Complete semantics

We start our review by the notion of complete extension, as it lies at the heart of all
traditional Dung’s semantics. Actually the notion of complete extension is not asso-
ciated with a notion of complete semantics in [13], but the term complete semantics
has subsequently gained acceptance in the literature and will be used in the present

2 Semantics of Abstract Argument Systems 35

analysis to refer to the properties of the set of complete extensions. Complete se-
mantics is denoted as CO.

The notion of complete extension is based on the principles of admissibility and
reinstatement: a complete extension is a set which is able to defend itself and in-
cludes all arguments it defends, as stated by the following definition.

Definition 2.15. Given an argumentation framework AF = 〈A,R〉, a set E ⊆A is a
complete extension if and only if E is admissible and every argument of A which is
acceptable wrt. E belongs to E, i.e. E ∈AS(AF)∧FAF(E)⊆ E.

It is worth noting here that the empty set is admissible and that arguments
not receiving attacks in an argumentation framework AF (called initial arguments
and denoted as IN(AF) in the sequel) are acceptable wrt. the empty set (in fact
IN(AF) = FAF(/0)). It can be shown that the following properties hold:

• ∀AF ECO(AF) �= /0 (namely CO is universally defined);
• /0 ∈ ECO(AF) if and only if IN(AF) = /0;
• ∀E ∈ ECO(AF) IN(AF)⊆ E.

Due to reinstatement, any complete extension not only includes the initial ar-
guments, but also the arguments they defend, those which are in turn defended by
them, and so on. More formally, for any argumentation framework AF = 〈A,R〉,
given a set S ⊆ A, let F1

AF(S) � FAF(S) and for i > 1, Fi
AF(S) � FAF(Fi−1

AF (S)).
Then, it turns out that ∀AF , ∀E ∈ ECO(AF), ∀i≥ 1, Fi

AF(/0)⊆ E.
In the example of Figure 2.1, {b}= IN(AF2.1) is clearly the only complete exten-

sion. Similarly in the example of Figure 2.3 the only complete extension is {b,c}.
In the example of Figure 2.2 there are three complete extensions: /0 (as there are
no initial arguments), {a}, and {b} (each one defending itself against the other).
By similar considerations and the property of reinstatement it is easy to see that
in the example of Figure 2.4 ECO(AF2.4) = { /0,{a,c},{b}}. The example of Fig-
ure 2.5 requires some more articulated considerations. First note that IN(AF2.5) = /0
hence /0 ∈ ECO(AF2.5). Then note that all singletons except {c} are admissible: to
check whether they are complete extensions or not we have to resort to the reinstate-
ment property. In particular, a defends c from b but not from d, so {a} stands as a
complete extension. On the other hand b defends d from its only attacker c, there-
fore {b,d} is a complete extension, while {b} is not. Argument d does not defend
any other argument apart itself, thus {d} is a complete extension. We have now to
consider possibly larger admissible sets. It is easy to see that {a,c} and {a,d} are
admissible (and attack all arguments they do not include). Summarizing we have
ECO(AF2.5) = { /0,{a},{d},{b,d},{a,c},{a,d}}.

We complete the treatment of CO by considering its ability to satisfy the proper-
ties which are not common to all semantics: we note that admissibility and reinstate-
ment are enforced by definition, while the satisfaction of directionality is proved in

b acd

Fig. 2.5 AF2.5: two mutual attacks.

36 Pietro Baroni and Massimiliano Giacomin

[2]. As the examples above abundantly show, CO does not satisfy I-maximality,
since a complete extension E1 may be a proper subset of a complete extension E2.

5.2 Grounded semantics

Grounded semantics, denoted as GR, is a traditional unique-status approach whose
formulation in argumentation-based reasoning (see e.g. the one proposed by Pollock
in [16]) predates the following quite technical definition given in [13].

Definition 2.16. The grounded extension of an argumentation framework AF , de-
noted as GE(AF), is the least fixed point of its characteristic function FAF .

The underlying and preexisting informal intuition is however rather simple and
can be directly put in relationship with some notions we already discussed in the
context of complete semantics. The basic idea is that the (unique) grounded exten-
sion can be built incrementally starting from the initial unattacked arguments. Then
the arguments attacked by them can be suppressed, resulting in a modified argumen-
tation framework where, possibly, the set of initial arguments is larger. In turn the
arguments attacked by the “new” initial arguments can be suppressed, and so on.
The process stops when no new initial arguments arise after a deletion step: the set
of all initial arguments identified so far is the grounded extension. An example with
a graphical illustration of this incremental process is given in Figure 2.6, resulting
in EGR(AF) = {{a,c}}. To put it in other words, the grounded extension includes
those and only those arguments whose defense is “rooted” in initial arguments (see
[2] for a formal treatment of this notion, called strong defense). If there are no initial
arguments the grounded extension is the empty set.

The reader should have noticed that the above construction corresponds to the
iterated application of FAF(/0) already met in previous section: the set of arguments
obtained up to each step i above coincides with Fi

AF(/0) and the process stops when
Fi

AF(/0) = Fi+1
AF (/0) (i.e. a fixed point of FAF is reached). As a counterpart to this

intuitive correspondence, it is proved in [13] that:

i) the grounded extension is the least (wrt. set inclusion) complete extension: for
any AF GE(AF) ∈ ECO(AF) and ∀E ∈ ECO(AF) GE(AF)⊆ E;

ii) for any finite (and, more generally, finitary [13]) AF GE(AF) = ∪i=1,...,∞Fi
AF(/0).

Given the above explanations it should be now immediate to see that GE(AF2.1) =
{b}, GE(AF2.3) = {b,c}, GE(AF2.2) = GE(AF2.4) = GE(AF2.5) = /0.

c db fa e

c d fa e

c fa e

Fig. 2.6 AF2.6: an example to illustrate grounded semantics

2 Semantics of Abstract Argument Systems 37

Besides the relationship with Pollock’s approach [16], the grounded extension
has been put in correspondence in [13] with the well-founded semantics of logic pro-
grams [20]. Turning to general semantics properties it is immediate to see that GR

is universally defined and satisfies admissibility, reinstatement and I-maximality. It
is proved in [2] that GR also satisfies directionality.

5.3 Stable semantics

Stable semantics, denoted as ST, relies on a very simple (and easy to formalize)
intuition: an extension should be able to attack all arguments not included in it. This
leads to the notion of stable extension [13].

Definition 2.17. Given an argumentation framework AF = 〈A,R〉, a set E ⊆A is a
stable extension of AF if and only if E is conflict-free and ∀a ∈A, a /∈ E ⇒ ERa.

By definition, any stable extension E is also a complete extension (thus in par-
ticular GE(AF) ⊆ E) and a maximal conflict-free set of AF . Referring to the ex-
amples seen so far, identifying stable extensions is straightforward: EST(AF2.1) =
{b}, EST(AF2.2) = {{a},{b}}, EST(AF2.3) = {b,c}, EST(AF2.4) = {{a,c},{b}},
EST(AF2.5) = {{a,c},{a,d},{b,d}}, EST(AF2.6) = {{a,c,e},{a,c, f}}.

The simple intuition underlying stable semantics has significant counterparts in
several contexts: it is proved in [13] that stable extensions can be put in correspon-
dence with solutions of cooperative n-person games, solutions of the stable mar-
riage problem, extensions of Reiter’s default logic [19], and stable models of logic
programs [15]. Stable semantics however has also a significant drawback: it is not
universally defined as there are argumentation frameworks where no stable exten-
sions exist. A simple example is provided in Figure 2.7: no conflict-free set is able
to attack all other arguments in this case. While it has sometimes been claimed
by supporters of stable semantics that situations where stable extensions do not
exist are “pathological” in some sense, it has been shown in [13] that perfectly
reasonable problems may be formalized with argumentation frameworks such that
EST(AF) = /0.

As to general properties, it is easy to see that I-maximality is enforced by defi-
nition and, since stable extensions are a subset of complete extensions, also admis-
sibility and reinstatement are satisfied. ST is not directional, due to the fact that it is
not universally defined. To see this, consider the example in Figure 2.8: we have that
EST(AF2.8) = {{b}}, however, considering the unattacked set S = {a,b}, we have
EST(AF2.8↓S) = {{a},{b}}. Therefore AEST(AF2.8,S) = {{b}} �= EST(AF2.8↓S).

a b

c

Fig. 2.7 AF2.7: a three-length cycle

38 Pietro Baroni and Massimiliano Giacomin

5.4 Preferred semantics

The “aggressive” requirement that an extension must attack anything outside it may
be relaxed by requiring that an extension is as large as possible and able to defend
itself from attacks. This is captured by the notion of preferred extension [13].

Definition 2.18. Given an argumentation framework AF = 〈A,R〉, a set E ⊆A is a
preferred extension of AF if and only if E is a maximal (wrt. set inclusion) element
of AS(AF).

According to this definition every preferred extension E is also a complete ex-
tension (entailing that GE(AF) ⊆ E); indeed, preferred extensions may be equiv-
alently defined as maximal complete extensions. It follows that preferred seman-
tics, denoted as PR, is universally defined (as complete semantics is) and that,
taking into account the treatment of the examples in Section 5.1, EPR(AF2.1) =
{{b}}, EPR(AF2.2)={{a},{b}},EPR(AF2.3)={{b,c}},EPR(AF2.4)={{a,c},{b}},
EPR(AF2.5) = {{a,c},{a,d},{b,d}}, and EPR(AF2.6) = {{a,c,e},{a,c, f}}. The
reader may notice that in all these examples the set of preferred extensions coincides
with the set of stable extensions. In general any stable extension is also a preferred
extension but not vice versa. In the example of Figure 2.7 we have EPR(AF2.7) = { /0}
while EST(AF2.7) = /0. In the example of Figure 2.8 there are two preferred exten-
sions, namely {a}, {b}, but only one of them, namely {b}, is also stable.

The intuition underlying preferred semantics has a correspondence with pref-
erential semantics of logic programs [12]. As to general semantics properties it is
immediate to see that PR satisfies I-maximality, admissibility, reinstatement, while
it is proved in [2] that it is directional. Given these facts, PR has often been regarded
as the most satisfactory semantics in the context of Dung’s framework.

5.5 Stage and semi-stable semantics

Stage [21] and semi-stable [8] semantics, denoted respectively as STA and SST, are
based on the idea of prescribing the maximization not only of the arguments in-
cluded in an extension but also of those attacked by it.

Definition 2.19. Given an argumentation framework AF = 〈A,R〉 and a set E ⊆ A

the range of E is defined as E ∪ E+, where E+ � {a ∈ A : ERa}. E is a stage
extension if and only if E is a conflict-free set with maximal (wrt. set inclusion)
range. E is a semi-stable extension if and only if E is a complete extension with
maximal (wrt. set inclusion) range.

As evident from Definition 2.19, the two semantics differ in the requirement on
the sets whose range is maximal: being conflict-free for stage semantics, complete

b ac

Fig. 2.8 AF2.8: ST is not directional

2 Semantics of Abstract Argument Systems 39

extensions (or equivalently, admissible sets) for semi-stable semantics. Both STA

and SST are clearly universally defined (differently from stable semantics), while co-
inciding with stable semantics (differently from preferred semantics) when stable
extensions exist. In fact, for any stable extension E it holds that E ∪E+ = A. It
follows that any complete extension (conflict-free set) which is not stable does not
satisfy the range maximization requirement for argumentation frameworks where
stable extensions exist, hence the coincidence of ST and SST (STA) in these cases.
If stable extensions do not exist, SST selects anyway as extensions some complete
extensions and the maximization requirement restricts the choice to preferred ex-
tensions: ∀AF ESST(AF) ⊆ EPR(AF). On the other hand, STA does not necessarily
select admissible sets as extensions. Figure 2.9 shows an argumentation framework
where SST and STA agree and do not coincide neither with ST nor with PR: in fact
EST(AF2.9) = /0, EPR(AF2.9) = {{a},{b}}, ESST(AF2.9) = ESTA(AF2.9) = {{b}}. On
the other hand, in the case of Figure 2.7 EPR(AF2.7) = ESST(AF2.7) = { /0} while
ESTA(AF2.7) = {{a},{b},{c}}.

It is easy to see that both SST and STA satisfy I-maximality, while only SST satisfies
admissibility and reinstatement. SST and STA do not satisfy directionality, as ST does
not.

5.6 Ideal semantics

Ideal semantics [14], denoted as ID, provides a unique-status approach allowing the
acceptance of a set of arguments possibly larger than in the case of GR.

Definition 2.20. Given an argumentation framework AF = 〈A,R〉 a set S ⊆ A is
ideal if and only if S is admissible and ∀E ∈ EPR(AF) S ⊆ E. The ideal extension,
denoted as ID(AF), is the maximal (wrt. set inclusion) ideal set.

The definition of ideal set prescribes admissibility and skeptical justification un-
der preferred semantics. From Section 5.2 we know that the grounded extension sat-
isfies both requirements and is therefore an ideal set (this in particular implies that
ideal semantics is universally defined). Ideal sets strictly larger than the grounded
extension may exist, as shown by the example in Figure 2.10 where it holds that
EPR(AF2.10) = {{a,d},{b,d}}: in this case the grounded extension is empty while
ID(AF2.10) = {d}.

By definition ID satisfies I-maximality and admissibility. It is proved in [2] that
ID also satisfies reinstatement and directionality.

db ac

Fig. 2.9 AF2.9: SST may not coincide with PR or ST

40 Pietro Baroni and Massimiliano Giacomin

5.7 CF2 semantics

CF2 semantics is defined in the frame of the SCC-recursive scheme [7] which is a
general pattern for the definition of argumentation semantics based on the graph-
theoretical notion of strongly connected components (SCCs) of an argumentation
framework, i.e. the equivalence classes of arguments under the relation of mutual
reachability via attack links. CF2 semantics can be roughly regarded as selecting
its extensions among the maximal conflict-free sets of AF , on the basis of some
topological requirements related to the decomposition of AF into strongly connected
components. Examining in detail the definition of CF2 semantics is beyond the
scope of this chapter: the interested reader may refer to [7].

Definition 2.21. Given an argumentation framework AF = 〈A,R〉, a set E ⊆ A is
an extension of CF2 semantics, i.e. E ∈ ECF2(AF), if and only if

• E ∈MCF(AF) if |SCCSAF |= 1
• ∀S ∈ SCCSAF (E ∩S) ∈ ECF2(AF↓UPAF (S,E)) otherwise

where MCF(AF) denotes the set of maximal conflict-free sets of AF , SCCSAF

denotes the set of strongly connected components of AF , and, for any E,S ⊆ A,
UPAF(S,E) = {a ∈ S | �b ∈ E : b /∈ S,bRa}.

The underlying idea consists in relying only on I-maximality and the conflict-
free principle within a unique strongly connected component S, where all argu-
ments (if more than one) both receive and deliver at least an attack. In particular
it turns out that when AF consists of exactly one strongly connected component,
the set of extensions prescribed by CF2 semantics exactly coincides with the set of
maximal conflict-free sets of AF . This yields a uniform multiple-status treatment of
cycles, which is not achieved by other semantics. In fact, it is easy to see that for
any argumentation framework AF consisting of an even-length attack cycle it holds
that EST(AF) = EPR(AF) = ESST(AF) �= { /0}. For instance we already know that
EST(AF2.2) = EPR(AF2.2) = ESST(AF2.2) = MCF(AF2.2) = {{a},{b}}. Similarly, in
the case of a four-length cycle two extensions arise, each consisting of two argu-
ments. On the other hand, for any argumentation framework AF consisting of an

b

a

c d

Fig. 2.10 AF2.10: an example to illustrate ideal semantics

a

b

c ed

Fig. 2.11 AF2.11: an example to illustrate CF2 semantics

2 Semantics of Abstract Argument Systems 41

odd-length attack cycle it holds that EST(AF) = /0 and EPR(AF) = ESST(AF) = { /0}.
This disuniformity in the treatment of cycles gives rise to counterintuitive behav-
iors in some simple examples and has therefore been regarded as problematic in
the literature [17]. Clearly CF2 semantics is able to overcome this limitation since
ECF2(AF) = MCF(AF) for any argumentation framework AF consisting of an at-
tack cycle, independently of its length. For instance, ECF2(AF2.7) = {{a},{b},{c}}.

In a generic argumentation framework, CF2 extensions may be computed fol-
lowing the decomposition of AF into strongly connected components, which, due
to a well-known graph-theoretical property, can be partially ordered according to the
attack relation. Consider the example in Figure 2.11, which consists of two SCCs,
namely S1 = {a,b,c} and S2 = {d,e}. According to Definition 2.21 it must be the
case that E ∩ S1 is a maximal conflict-free set of AF2.11↓{a,b,c}. Thus we get three
possible starting points for the construction of extensions, namely {a}, {b}, {c}.
It has then to be noted that in any of these three cases d is attacked. Therefore in
all cases UPAF(S2,E) consists of the only argument e, yielding E ∩S2 = {e} as the
only possibility. In summary ECF2(AF2.11) = {{a,e},{b,e},{c,e}}. It can be seen
that in all other examples considered so far CF2 extensions coincide with preferred
extensions.

As to general properties, CF2 semantics is I-maximal, since its extensions are
maximal conflict-free sets of AF , directional [2], and universally defined, since, for
any AF , MCF(AF) �= /0. On the other hand, the “desired” treatment of odd-length
cycles entails that CF2 semantics gives up the traditional properties of admissibil-
ity and reinstatement as shown, for instance, by the example of Figure 2.7 where
no extension is an admissible set and all violate the reinstatement property. It is
proven however in [2] that the departure from the notion of reinstatement is not
radical, since CF2 semantics satisfies two weaker versions of this property called
CF-reinstatement and weak reinstatement. As another confirmation that CF2 se-
mantics has significant relationships with traditional semantics it can be recalled
that any preferred extension is included in a CF2 extension, any stable extension is
a CF2 extension and the grounded extension is included in any CF2 extension.

5.8 Prudent semantics

The family of prudent semantics [10] is introduced by considering a more extensive
notion of attack in the context of traditional semantics. In particular, an argument a
indirectly attacks an argument b if there is an odd-length attack path from a to b.
For instance, in Figure 2.5 a indirectly attacks d, while in Figure 2.6 a indirectly
attacks d and f , b indirectly attacks e, and c indirectly attacks f . The odd-length
path need not be the shortest path and may include cycles: in Figure 2.10 both a
and b indirectly attack d, while in Figure 2.11 a indirectly attacks e. A set S of
arguments is free of indirect conflicts, denoted as ic f (S), if �a,b ∈ S such that a
indirectly attacks b. The prudent version of the admissibility property and of several
traditional notions of extension can then be defined.

Definition 2.22. Given an argumentation framework AF = 〈A,R〉, a set of argu-
ments S ⊆ A is p(rudent)-admissible if and only if ∀a ∈ S a is acceptable wrt. S

42 Pietro Baroni and Massimiliano Giacomin

and ic f (S). A set of arguments E ⊆ A is: a preferred p-extension if and only if
E is a maximal (wrt. set inclusion) p-admissible set; a stable p-extension if and
only if ic f (E) and ∀a ∈ (A\E) ERa; a complete p-extension if and only if E is p-
admissible and there is no a /∈ E such that a is acceptable wrt. E and ic f (E ∪{a}).
Definition 2.23. Given an argumentation framework AF = 〈A,R〉, the function
F

p
AF : 2A → 2A such that for a given a set S ⊆ A, F

p
AF(S) = {a | a is acceptable

with respect to S∧ ic f (S∪{a})} is called the p-characteristic function of AF . Let
j be the lowest integer such that the sequence (Fp

AF)i(/0) is stationary for i ≥ j:
(Fp

AF) j(/0) is the grounded p-extension of AF , denoted as GPE(AF).

The prudent versions of grounded, complete, preferred and stable semantics are
denoted as GRP, COP, PRP and STP, respectively.

It is possible to note that the adoption of indirect conflict has a different impact
on the various notions of traditional semantics. The definition of stable prudent ex-
tension corresponds to the one of stable extension with an additional requirement.
This means that, when STP is defined, its extensions are also stable (and thus have
the same properties) but DSTP � DST . For instance in the example of Figure 2.12 STP

is not defined since the only stable extension, namely {a,d,e} is not prudent due to
the indirect attack from a to d. Analogously to the traditional version, the grounded
prudent extension, denoted as GPE(AF), can be conceived as the result of the incre-
mental application of a (p-)characteristic function starting from initial arguments.
As F

p
AF is more restrictive than FAF it follows that the grounded prudent extension

is a possibly strict subset of the traditional grounded extension. This entails in par-
ticular that reinstatement is given up by GRP, as it can be seen in the example of
Figure 2.12 where GPE(AF2.12) = {a,e}� GE(AF2.12) = {a,d,e} and d is not rein-
stated. In the context of complete and preferred prudent semantics a notable effect is
that an initial argument may not be included in an extension. This is the case of a in
the example of Figure 2.12 where ECOP(AF2.12) = EPRP(AF2.12) = {{a,e},{d,e}}.
Besides reinstatement this gives up also the directionality property, showing the neat
departure of COP and PRP from the track of traditional semantics.

6 Advanced topics

This final section provides a quick overview and literature references for some ad-
vanced topics in the field of abstract argumentation, namely semantics agreement,
skepticism relations, and semantics principles.

As to the first point, while different semantics proposals correspond to alternative
intuitions which manifest themselves in distinct behaviors in some argumentation

c dba

e

Fig. 2.12 AF2.12: an example to illustrate prudent semantics

2 Semantics of Abstract Argument Systems 43

frameworks, there are also argumentation frameworks where the sets of extensions
prescribed by different semantics coincide, as evident from several of the examples
seen above. Topological properties of argumentation frameworks providing suffi-
cient conditions for semantics agreement have been investigated in Dung’s original
paper: for instance the absence of attack cycles is sufficient to ensure agreement
among grounded, stable and preferred semantics, while the absence of odd-length
attack cycles is sufficient to ensure agreement between stable and preferred seman-
tics. Subsequent results concerning topological families of argumentation frame-
works relevant to agreement properties are reported in [11, 1], while a systematic
set-theoretical analysis of agreement classes is provided in [5].

As to the notion of skepticism, it has often been used in informal ways to dis-
cuss semantics behavior, e.g. by observing that a semantics is “more skeptical” than
another one. Intuitively, a semantics is more skeptical than another if it makes less
committed choices about the justification of the arguments: a skeptical behavior
tends to leave arguments in an “undecided” justification state, while a non-skeptical
behavior corresponds to more “resolute” choices about acceptance or rejection of
arguments. The issue of formalizing skepticism relations between sets of extension
in terms of set theoretical properties and then comparing semantics according to
skepticism has been first addressed in [6] and subsequently developed in [4].

Turning finally back to general properties of argumentation semantics, some of
them, like admissibility and reinstatement, have regularly been considered in the lit-
erature [18], while the task of systematically defining a set of criteria for semantics
evaluation and comparison has been undertaken only recently. Besides the princi-
ples we have explicitly discussed in Section 3, two families of adequacy properties
(based on skepticism relations) are introduced in [2], where it is shown that, consid-
ering also these properties, none of the literature semantics discussed in this chapter
is able to comply with all the desirable criteria. A novel semantics able to satisfy all
of them has been proposed in [3]. At a different abstraction level, where argument
structure and construction are explicitly dealt with, general rationality postulates for
argumentation systems have been introduced in [9]. Exploring the definition of gen-
eral principles for argumentation at different abstraction levels, investigating their
relationships and analyzing their suitability for different application domains appear
to be open and fruitful research directions. A related research issue concerns the
identification of a generic definition scheme able to encompass into a unifying view
a large variety of semantics. In this perspective, it is shown in [7] that all traditional
semantics adhere to the parametric SCC-recursive scheme, where they differ sim-
ply by a base function which only specifies the sets of extensions of argumentation
frameworks consisting of a single SCC.

The above mentioned results suggest that though there is a wide corpus of lit-
erature on abstract argumentation semantics, providing a rich variety of alternative
approaches, the field is far from being “mature” and there is still large room for
investigating both fundamental theoretical issues and their potential impact on prac-
tical applications.

44 Pietro Baroni and Massimiliano Giacomin

References

1. Baroni, P., Giacomin, M.: Characterizing defeat graphs where argumentation semantics agree.
In: G. Simari, P. Torroni (eds.) Proc. 1st Int. Workshop on Argumentation and Non-Monotonic
Reasoning (ARGNMR07), pp. 33–48. Tempe, AZ (2007)

2. Baroni, P., Giacomin, M.: On principle-based evaluation of extension-based argumentation
semantics. Artif. Intell. (Special issue on Argumentation in A.I.) 171(10/15), 675–700 (2007)

3. Baroni, P., Giacomin, M.: Resolution-based argumentation semantics. In: P. Besnard,
S. Doutre, A. Hunter (eds.) Proc. 2nd Int. Conf. on Computational Models of Argument
(COMMA 2008), pp. 25–36. IOS Press, Toulouse, F (2008)

4. Baroni, P., Giacomin, M.: Skepticism relations for comparing argumentation semantics. Int.
J. Approx. Reason. 50(6), 854–866 (2009)

5. Baroni, P., Giacomin, M.: A systematic classification of argumentation frameworks where
semantics agree. In: P. Besnard, S. Doutre, A. Hunter (eds.) Proc. 2nd Int. Conf. on Compu-
tational Models of Argument (COMMA 2008), pp. 37–48. IOS Press, Toulouse, F (2008)

6. Baroni, P., Giacomin, M., Guida, G.: Towards a formalization of skepticism in extension-
based argumentation semantics. In: Proc. 4th Workshop on Computational Models of Natural
Argument (CMNA 2004), pp. 47–52. Valencia, Spain (2004)

7. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argumentation
semantics. Artif. Intell. 168(1-2), 165–210 (2005)

8. Caminada, M.: Semi-stable semantics. In: P.E. Dunne, T. Bench-Capon (eds.) Proc. 1st Int.
Conf. on Computational Models of Argument (COMMA 2006), pp. 121–130. IOS Press, Liv-
erpool, UK (2006)

9. Caminada, M., Amgoud, L.: An axiomatic account of formal argumentation. In: Proc. 20th
National Conf. on Artificial Intelligence (AAAI-05), pp. 608–613. AAAI Press, Menlo Park,
CA (2005)

10. Coste-Marquis, S., Devred, C., Marquis, P.: Prudent semantics for argumentation frameworks.
In: Proc. 17th IEEE Int. Conf. on Tools with Artificial Intelligence (ICTAI 2005), pp. 568–572.
IEEE Computer Society, Hong Kong, China (2005)

11. Coste-Marquis, S., Devred, C., Marquis, P.: Symmetric argumentation frameworks. In: Proc.
8th European Conf. on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
(ECSQARU 2005), pp. 317–328. Barcelona, E (2005)

12. Dung, P.M.: Negations as hypotheses: An abductive foundation for logic programming. In:
K. Furukawa (ed.) Proc. 8th Int. Conf. on Logic Programming (ICLP 91), pp. 3–17. MIT
Press, Paris, F (1991)

13. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming, and n-person games. Artif. Intell. 77(2), 321–357 (1995)

14. Dung, P.M., Mancarella, P., Toni, F.: A dialectic procedure for sceptical, assumption-based
argumentation. In: P.E. Dunne, T. Bench-Capon (eds.) Proc. 1st Int. Conf. on Computational
Models of Argument (COMMA 2006), pp. 145–156. IOS Press, Liverpool, UK (2006)

15. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: R.A.
Kowalski, K. Bowen (eds.) Proc. 5th Int. Conf. on Logic Programming (ICLP 88), pp. 1070–
1080. MIT Press, Cambridge, Massachusetts (1988)

16. Pollock, J.L.: How to reason defeasibly. Artif. Intell. 57(1), 1–42 (1992)
17. Pollock, J.L.: Justification and defeat. Artif. Intell. 67(2), 377–407 (1994)
18. Prakken, H., Vreeswijk, G.A.W.: Logics for defeasible argumentation. In: D.M. Gabbay,

F. Guenthner (eds.) Handbook of Philosophical Logic, Second Edition. Kluwer Academic
Publishers, Dordrecht (2001)

19. Reiter, R.: A logic for default reasoning. Artif. Intell. 13(1–2), 81–132 (1980)
20. van Gelder, A., Ross, K., Schlipf, J.S.: The well-founded semantics for general logic pro-

grams. J. ACM 38(3), 620–650 (1991)
21. Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumentation

stages. In: Proc. 8th Dutch Conf. on Artificial Intelligence (NAIC’96), pp. 357–368. Utrecht,
NL (1996)

Chapter 3
Abstract Argumentation and Values

Trevor Bench-Capon and Katie Atkinson

1 Introduction

Abstract argumentation frameworks, as described in Chapter 2, are directed towards
determining whether a claim that some statement is true can be coherently main-
tained in the context of a set of conflicting arguments. For example, if we use
preferred semantics, that an argument is a member of all preferred extensions es-
tablishes that its claim must be accepted as true, and membership of at least one
preferred extension shows that the claim is at least tenable. In consequence, that
admissible sets of arguments are conflict free is an important requirement under all
the various semantics.

For many common cases of argument, however, this is not appropriate: two ar-
guments can conflict, and yet both be accepted. For an example suppose that Trevor
and Katie need to travel to Paris for a conference. Trevor offers the argument “we
should travel by plane because it is quickest”. Katie replies with the argument “we
should travel by train because it is much pleasanter”. Trevor and Katie may con-
tinue to disagree as to how to travel, but they cannot deny each other’s arguments.
The conclusion will be something like “we should travel by train because it is much
pleasanter, even though travelling by plane is quicker”. The point concerns what
Searle [24] calls direction of fit. For matters of truth and falsity, we are trying to
fit what we believe to the way the world actually is. In contrast, when we consider
what we should do we are trying to fit the world to the way we would like it to
be. Moreover, because people may have different preferences, values, interests and
aspirations, people may rationally choose different options: if Katie prefers comfort

Trevor Bench-Capon
Department of Computer Science, University of Liverpool, UK, e-mail: tbc@liverpool.ac.
uk

Katie Atkinson
Department of Computer Science, University of Liverpool, UK, e-mail: katie@liverpool.
ac.uk

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 45
DOI 10.1007/978-0-387-98197-0 3, c© Springer Science+Business Media, LLC 2009

46 Trevor Bench-Capon and Katie Atkinson

to speed she will rationally choose the train, but this does not mean that Trevor can-
not rationally choose the plane if he prefers speed to comfort. We will return to this
example throughout this chapter.

Within standard abstract argumentation frameworks one approach to recognising
the importance of direction of fit [22] is to require sceptical acceptance for epis-
temic arguments but only credulous acceptance for practical arguments. This does
successfully model the existence of a choice with respect to practical arguments,
but it does not motivate the choice, nor does it allow us to predict choices on the
basis of choices made in the past. Value based argumentation frameworks (VAFs)
[6], described in this chapter, are an attempt to address issues about the rational
justification of choices systematically.

Value based justification of choices is common in many important areas: in poli-
tics where specific policies are typically justified in terms of the values they promote,
and where politicians’ values are advanced as reasons to vote for them; in law, where
differences in legal jurisdictions and decisions over time can be explained in terms
of the values of the societies in which the judgements are made [11]; in matters
of morality where individual and group ethical perspectives play a crucial role in
reasoning and action [2]; as well as more everyday examples, such as given above.

In this chapter we will first give some philosophical background, in particular
introducing the notion of audience, and some of the features that we require from
practical reasoning. Section 3 will discuss the nature of values in more detail, in
particular the distinction between values and goals. Section 4 will introduce the
formal machinery of Value Based Argumentation Frameworks, and discuss some
of their more important properties. Section 5 describes some applications of value
based argumentation. Section 6 discusses some recent developments, and section 7
concludes the chapter with a summary.

2 Audiences

One of the first people to stress the importance of the audience in determining
whether an argument is persuasive or not was Chaim Perelman [20], [19]:

“If men oppose each other concerning a decision to be taken, it is not because they commit
some error of logic or calculation. They discuss apropos the applicable rule, the ends to
be considered, the meaning to be given to values, the interpretation and characterisation of
facts.” [[19] p.150, italics ours].

A similar point was made by John Searle [24]:

“Assume universally valid and accepted standards of rationality, assume perfectly rational
agents operating with perfect information, and you will find that rational disagreement will
still occur; because, for example, the rational agents are likely to have different and incon-
sistent values and interests, each of which may be rationally acceptable.” [[24], xv]

Both Perelman and Searle recognise that there may be complete agreement on
facts, logic, which arguments are valid, which arguments attack one another and the

3 Abstract Argumentation and Values 47

rules of fair debate, and yet still disagreement as to the correct decision. This was
true when Trevor and Katie were thinking about how to travel to Paris, and there are
many other examples. Consider an example from politics.

One choice that any government must make is to decide on an appropriate rate
of income tax. Typically there will be an argument in favour of increasing the rate
of taxation, since this progressive form of taxation will reduce income inequalities.
Against this, it can be argued that a decrease in taxation will promote more en-
terprise, increasing Gross National Product, and so raising the absolute incomes of
everyone. It is possible to see both these arguments as valid, since both supply a rea-
son to act: and yet a choice must be made, since the actions are incompatible. Which
choice is made will depend on whether the chooser prefers equality or enterprise in
the particular circumstances with which he is confronted. Two parties may be in
agreement as to the consequences of a movement in the tax rate, and yet disagree
as to the choice to be made because they differ in their fundamental aspirations.
Different people will prize social values differently, and one may prefer equality to
enterprise, while another prefers enterprise to equality. Thus while both arguments
are agreed to be valid, one audience will ascribe more force to one of the arguments,
while a different audience will make a different choice. In such cases these different
audiences will rationally disagree, and agreement can only be reached by coming up
with additional arguments which convince all audiences in terms of their own pref-
erences, or by converting those who disagree to a different appraisal of social values.
This will often require that different arguments be presented to different audiences.
Thus when in the 1980s the UK Conservative Party under Margaret Thatcher were
attempting to justify dramatic cuts in income tax for the highly paid, one argument
was simply that fairness meant that people deserved to keep a larger proportion of
their “earnings”. This argument was quite acceptable at Party Conferences where
the audience comprised predominately high earners, but was not persuasive to the
country at large, since most people were not subject to higher rate taxation. To con-
vince the nation at large a different argument was needed: namely that there would
be a “trickle down” effect, benefitting everyone, whatever their level of income. This
was clearly persuasive as Thatcher was twice re-elected.

Thus whether an argument is persuasive depends not only on the intrinsic merits
of the argument – of course, it needs to be based on plausible premises and must be
sound – but also on the audience to which it is addressed. Moreover, for practical
reasoning, what is important about the audience is what they want to see happen, and
this seems to turn on how they rank the various values that accepting the arguments
promote. In the next section we will consider values, and their relation to practical
reasoning, in more detail.

3 Values

This far we have seen that whether a particular audience is persuaded by an argu-
ment depends on the attitude of that audience to the values on which the argument is

48 Trevor Bench-Capon and Katie Atkinson

founded. Values are used in the sense of fundamental social or personal goods that
are desirable in themselves, and should never be confused with any numeric measure
of the strength, certainty or probability of an argument. Liberty, Equality and Fra-
ternity, the values of the French Revolution, are paradigmatic examples of values.
Values are widely recognised as the basis for persuasive argument. For example, the
National Forensic League, which conducts debating competitions throughout the
USA uses the “Lincoln-Douglas” (LD) debate format which is based on the notion
of a clash of values. In an LD debate the resolution forces each side to take on com-
peting values and argue about which one is supreme. For example, if the resolution
is, “Resolved: An oppressive government is better than no government at all,” the
affirmative side might value “order” and the negative side might value “freedom”.
Such a debate would revolve around whether order is more valuable than freedom.
In the original debate between Abraham Lincoln and Stephen Douglas on which LD
debates are based, Douglas championed the rights of states to legislate for their par-
ticular circumstances, whereas Lincoln argued on the basis that there were certain
inviolable human rights that all states had to respect, even though this constrained
state autonomy.

But what is the role of values in practical reasoning? Historically the basis for
treatments of practical reasoning has been the practical syllogism, first discussed by
Aristotle. A standard modern statement is given in [16]:

K1 I’m to be in London at 4.15
If I catch the 2.30, I’ll be in London at 4.15
So, I’ll catch the 2.30.

The first premise is a statement of some desired state of affairs, the second an
action which would bring about that state of affairs, and the conclusion is that the
action should be performed. There are, however, problems with the formulation: it is
abductive rather than deductive, does not consider alternative, possibly better, ways
of achieving the desired state of affairs, or possibly undesirable side effects of the
action. Walton [26] addresses these issues by regarding the practical syllogism as an
argumentation scheme, which he calls the sufficient condition scheme for practical
reasoning, which provides a presumptive reason to perform the action, but which
can be critiqued on the basis of alternatives and undesirable consequences. He states
the sufficient condition practical reasoning scheme as:

W2 G is a goal for agent a
Doing action A is sufficient for agent a to carry out goal G
Therefore agent a ought to do action A.

This, however, still does not explain why G is a goal for the agent, nor indi-
cate how important bringing about G is to the agent. Neither K1 nor W1 make any
mention of values: rather that the agent has certain values is implicit in calling the
desired state of affairs a “goal” for that agent. Accordingly, to make this role of
values explicit, Walton’s scheme was developed by Atkinson and her colleagues [4]
into the more elaborated scheme:

3 Abstract Argumentation and Values 49

A1 In the circumstances R, we should perform action A
to achieve new circumstances S, which will realise some goal G
which will promote some value V.

What this scheme does in particular is to distinguish three aspects which are
conflated into the notion of goal in K1 and W1. These aspects are: the state of affairs
which will result from the action; the goal, which is those aspects of the new state
of affairs for the sake of which the action is performed; and the value, which is the
reason why the agent desires the goal. Making these distinctions opens up several
distinct types of alternative to the recommended action. We may perform a different
action to realise the same state of affairs; we may act so as to bring about a different
state of affairs which realises the same goal; or we may realise a different goal which
promotes the same value. Alternatively, since the state of affairs potentially realises
several goals, we can justify the action in terms of promoting a different value. In
coming to agreement this last possibility may be of particular importance: we may
want to promote different values, and so agree to perform the action on the basis of
different arguments. Our contention is that, in the spirit of the notion of audience
developed in section 2, what is important, what is the appropriate comparison for
choosing between alternatives, is the value.

In order to see the distinction between a goal and a value, consider again Trevor
and Katie’s journey to Paris. The goal is to be in Paris for the conference, and this
is not in dispute: the dispute is how that goal should be realised and turns on the
values promoted by the different methods of travel. What is important is not the
state reached, but the way in which the transition is made.

The style of argumentation represented by A1 has been formalised in [1] in terms
of a particular style of transition system, Alternating Action Based Transition sys-
tems (AATS) [27]. An AATS consists of a set of states and a set of agents and the
transitions between the states are in terms of the joint actions of the agents, that is,
actions composed from the actions available to the agents individually. In terms of
A1 the circumstances R and S are represented by the states of the system, the goal
G is realised if G holds in S (of course, G may hold in several of the states), and
the action is the particular agent’s component of a joint action which is a transition
from R to S. The value labels the transition, indicating that it is the movement from
R to S using that particular transition that promotes the value. A fragment of the
AATS for Trevor and Katie’s travel dilemma is shown in Figure 3.1, t/kt/p is the
action of Trevor/Katie travelling by train/plane, C/St/k means that Comfort/Speed is
promoted in respect of Trevor/Katie, 00 that both are in Liverpool and 11 that both
are in Paris.

00 11

tt&kt +Ct +Ck

tp&kt +St +Ck
tp&kp +St +Sk

tt&kp +Ct +Sk

Fig. 3.1 AATS for travel to Paris example

50 Trevor Bench-Capon and Katie Atkinson

Although there is only one destination state, each of the four potential ways of
reaching it promotes different values, and hence give rise to different arguments in
their favour. Which arguments will succeed will depend on the preferences between
the values of Comfort and Speed of the two agents concerned.

Essentially then, in this problem there will be a number of possible audiences,
depending on how the values are ordered. Suppose that Trevor values his own speed
over his own comfort and Katie her comfort over her speed, and that neither consider
values promoted in respect of the other. Then Trevor will choose to go by plane and
Katie by train. Here the agents can choose independently, as their values are affected
only by their own actions: in later sections we will introduce a third value which
requires them to consider what the other intends to do also.

The basic idea underlying Value Based Argumentation Frameworks is that it is
possible to associate practical arguments with values, and that in order to determine
which arguments are acceptable we need to consider the audience to which they are
addressed, characterised in terms of an ordering on the values involved. We need,
however, to recognise that not all the arguments relevant to a practical decision will
be practical arguments. For example, if there is a train strike (or it is a UK Bank
Holiday when there are often no trains from Liverpool), the argument that the train
should be used cannot be accepted no matter how great the audience preference is
for Comfort over Speed. In order to recognise that such epistemic arguments con-
strain choice, such arguments are associated with the value Truth, and all audiences
are obliged to rank Truth above all other values. In the next section we will give a
formal presentation of Value Based Argumentation Frameworks.

4 Value Based Argumentation Frameworks

We present the Value Based Framework as an extension of Dung’s original Argu-
mentation Framework [14], defined in Chapter 2 of this book. We do this by extend-
ing the standard pair to a 5 tuple.

Definition 3.1. A value-based argumentation framework (VAF) is a 5-tuple:
VAF = <A, R, V, val, P>

where A is a finite set of arguments, R is an irreflexive binary relation on A (i.e.
<A, R> is a standard AF), V is a non-empty set of values, val is a function which
maps from elements of A to elements of V and P is the set of possible audiences
(i.e. total orders on V). We say that an argument a relates to value v if accepting A
promotes or defends v: the value in question is given by val(a). For every a ∈ A,
val(a) ∈ V.

When the VAF is considered by a particular audience, the ordering of values is
fixed. We may therefore define an Audience Specific VAF (AVAF) as:

Definition 3.2. An audience specific value-based argumentation framework (AVAF)
is a 5-tuple: VAFa = <A, R, V, val, Valprefa>

3 Abstract Argumentation and Values 51

where A, R, V and val are as for a VAF, a is an audience, a ∈ P, and Valprefa
is a preference relation (transitive, irreflexive and asymmetric) Valprefa ⊆ V x V,
reflecting the value preferences of audience a. The AVAF relates to the VAF in that
A, R, V and val are identical, and Valpref is the set of preferences derivable from
the ordering a ∈ P in the VAF.

Our purpose in introducing VAFs is to allow us to distinguish between one ar-
gument attacking another, and that attack succeeding, so that the attacked argument
may or may not be defeated. Whether the attack succeeds depends on the value or-
der of the audience considering the VAF. We therefore define the notion of defeat
for an audience:

Definition 3.3. An argument A ∈ AF defeatsa an argument B ∈ AF for audience a
if and only if both R(A,B) and not (val(B),val(A)) ∈ Valprefa.

We can now define the various notions relating to the status of arguments:

Definition 3.4. An argument a ∈ A is acceptable-to-audience-a (acceptablea) with
respect to set of arguments S, (acceptablea(A,S)) if:

(∀ x)((x ∈ A & defeatsa(x,A))→ (∃ y)((y ∈ S) & defeatsa(y,x))).

Definition 3.5. A set S of arguments is conflict-free-for-audience-a if:
(∀ x) (∀ y)((x ∈ S & y ∈ S)→ (¬ R(x,y) ∨ valpref(val(y),val(x)) ∈ Valprefa))).

Definition 3.6. A conflict-free-for-audience-a set of arguments S is admissible-for-
an-audience-a if: (∀ x)(x ∈ S→ acceptablea(x,S)).

Definition 3.7. A set of arguments S in a value-based argumentation framework
VAF is a preferred extension for-audience-a (preferreda) if it is a maximal (with
respect to set inclusion) admissible-for-audience-a subset of A.

Now for a given choice of value preferences valprefa we are able to construct an
AF equivalent to the AVAF, by removing from R those attacks which fail because
they are faced with a superior value.

Thus for any AVAF, vafa = <A, R, V, val, Valprefa> there is a corresponding
AF, afa = <A, defeats>, such that an element of R, R(x,y) is an element of defeats
if and only if defeatsa(x,y). The preferred extension of afa will contain the same
arguments as vafa, the preferred extension for audience a of the VAF. Note that if
vafa does not contain any cycles in which all arguments pertain to the same value,
afa will contain no cycles, since the cycle will be broken at the point at which the
attack is from an inferior value to a superior one. Hence both afa and vafa will have
a unique, non-empty, preferred extension for such cases. A proof is given in [6].
Moreover, since the AF derived from an AVAF contains no cycles, the grounded
extension coincides with the preferred extension for this audience, and so there is a
straightforward polynomial time algorithm to compute it, also given in [6]. For the
moment we will restrict consideration to VAFs which do not contain any cycles in a
single value.

52 Trevor Bench-Capon and Katie Atkinson

For such VAFs, the notions of sceptical and credulous acceptance do not apply,
since any given audience will accept only a single preferred extension. These pre-
ferred extensions may, and typically will, however, differ from audience to audience.
We may therefore introduce two useful notions, objective acceptance, arguments
which are acceptable to all audiences irrespective of their particular value order,
and subjective acceptance, arguments which can be accepted by audiences with the
appropriate value order.

Definition 3.8. Objective Acceptance. Given a VAF, <A, R, V, val, P> an argument
a ∈ A is objectively acceptable if and only if for all p ∈ P, a is in every preferredp.

Definition 3.9. Subjective Acceptance. Given a VAF, <A, R, V, val, P> an argu-
ment a ∈ A is subjectively acceptable if and only if for some p ∈ P, a is in some
preferredp.

An argument which is neither objectively nor subjectively acceptable (such as
one attacked by an objectively acceptable argument with the same value) is said to
be indefensible.

All arguments which are not attacked will, of course, be objectively acceptable.
Otherwise objective acceptance typically arises from cycles in two or more values.
For example, consider a three cycle in two values, say two arguments with V1 and
one with V2. The argument with V2 will either resist the attack on it when it is
preferred to V1, or, when V1 is preferred, fail to defeat the argument it attacks which
will, in consequence, be available to defeat its attacker. Thus the argument in V2
will be objectively acceptable, and both the arguments with V1 will be subjectively
acceptable. For a more elaborate example consider Figure 3.2.

a
blue

b

c

d
red

red

blue
e

f

g

h

red

red

blue

blue

Fig. 3.2 VAF with values red and blue

There will be two preferred extensions, according to whether red > blue, or blue
> red. If red > blue, the preferred extension will be {e,g,a,b}, and if blue > red,
{e,g,d,b}. Now e and g and b are objectively acceptable, but d, which would have
been objectively acceptable if e had not attacked d, is only subjectively acceptable
(when blue > red), and a, which is indefensible if d is not attacked, is also subjec-
tively acceptable (when red > blue). Arguments c, f and h are indefensible. Results
characterising the structures which give rise to objective acceptance are given in [6].

3 Abstract Argumentation and Values 53

4.1 VAF Example

We will illustrate VAFs using our running example of Trevor and Katie’s conference
travel arrangements. Recall that VAFa = <A, R, V, val, Valprefa>. We therefore
need to instantiate the five elements of this tuple.

From Figure 3.1 above we get four arguments:

A1: Katie should travel by train (Kt) to promote her comfort (Ck).
A2: Katie should travel by plane (Kp) to promote her speed (Sk).
A3: Trevor should travel by train (Tt) to promote his comfort (Ct).
A4: Trevor should travel by plane to (Tp) to promote his speed (St).

But there are other considerations: it is far more boring to travel alone than in
company. This gives two other arguments:

A5: Both Katie and Trevor should travel by train (Kt&Tt) to avoid boredom (B).
A6: Both Katie and Trevor should travel by plane (Kp&Tp) to avoid boredom

(B).

Thus Ae = {A1,A2,A3,A4,A5,A6} and val = {A1→Ck, A2→Sk, A3→Ct,
A4→St, A5→B, A6→B}.

We can now identify attacks between these arguments. Since neither Katie nor
Trevor can travel by both train and plane, A1 attacks A2, and vice versa, and A3
attacks and is attacked by A4. Moreover A1and A3 attack and are attacked by A6,
and A2 and A4 attack and are attacked by A5.

Thus Re = {<A1,A2>, <A2,A1>, <A3,A4>, <A4,A3>, <A1,A6>, <A3,A6>,
<A6,A1>, <A6,A3>, <A2,A5>, <A4,A5>,<A5,A2>,<A5,A4>, <A5,A6>,
<A6,A5>}.

The values are given by the values used in the arguments, but for the present we
will make no distinction at first between values promoted in respect of Trevor and
values promoted in respect of Katie. Thus Ve = {B, C, S}. Finally the audiences P
will be every possible ordering of the elements in Ve, so P = {B>C>S, B>S>C,
S>B>C, S>C>B, C>B>S, C>S>B}

We can represent the VAF diagrammatically as a directed graph, as shown in
Figure 3.3.

A1
Kt
Ck

A2
Kp
Sk

A6
Kp&Tp

B

A5
Kt&Tt

B

A4
Tp

St

A3
Tt
Ct

Fig. 3.3 VAF for travel example

54 Trevor Bench-Capon and Katie Atkinson

Note that here we do have a cycle of two arguments with the same value, namely
B. This means that some audiences will not have a unique preferred extension. This
does not pose any serious problem in this small example.

Now consider specific audiences. Suppose that Katie, who very much dislikes
flying, ranks C as her highest value, and S as her least important.

Now AVAFkatie = <Ae, Re, Ve, val, {<C,B>,<C,S>,<B,S>}>.

When we use Katie’s preferences to eliminate unsuccessful attacks, this produces
the corresponding AFkatie = < Ae, {<A1,A2>,<A3,A4>, <A1,A6>, <A3,A6>,
<A5,A2>,<A5,A4>, <A5,A6>}>. This AF has a unique preferred extension,
PEkatie = {A1,A3,A5}, which means that she will be in favour of both Trevor and
herself travelling by train.

Suppose, however, Trevor, who has no objection to flying, prefers speed to com-
fort, but dislikes travelling alone, so that he is a member of the audience {B>S>C}.

Now AVAFtrevor = <Ae, Re, Ve, val, {<B,S>,<B,C>,<S,C>}>.

And AFtrevor = <Ae, {<A2,A1>, <A4,A3>, <A6,A1>, <A6,A3>, <A5,A4>,
<A5,A6>, <A6,A5>}>.

This contains a cycle for the two arguments in B, and so Trevor will have two pre-
ferred extensions: {A1,A3,A5}, and {A2,A4,A6}. Trevor could solve this dilemma
by considering that A3 also promotes C and A4 also promotes S, and so choose
{A2,A4,A6}. But what is required is a joint decision: neither Trevor nor Katie can
act independently so as to ensure that A5 or A6 is followed. We therefore need to
consider the joint audience, and to distinguish between values promoted in respect
of Trevor and values promoted in respect of Katie.

Ck

B

St

Ct

Ck

B

Sk Ct

B

Ck St

Sk CtSk

St

)c()b()a(

Fig. 3.4 Partial Orders representing combined audiences: (a) Katie C>B>S and Trevor B>S>C;
(b) Katie C>B>S and Trevor S>B>C; (c) Katie B>C>S and Trevor B>S>C

Katie’s order is Ck > B > Sk, while Trevor’s is B > St > Ct. Since they have B in
common – either both are bored or neither are bored – we can merge their orderings
on B to get the partial order shown in Figure 3.4(a).

The AVAF for the combined audience is thus <Ae, Re,Ve, val, {<B,St>,
<B,Ct>, <B,Sk>, <St,Ct>, <Ck,B>, <Ck,Sk>, <Ck,St>, <Ck,Ct>}>. This
gives rise to the AF shown in Figure 3.5.

3 Abstract Argumentation and Values 55

A1
Kt
Ck

A2
Kp
Sk

A6
Kp&Tp

B

A5
Kt&Tt

B

A4
Tp
St

A3
Tt
Ct

Fig. 3.5 AF for Combined Audience

We can use this VAF to illustrate the algorithm for finding the Preferred Exten-
sion given in [6]. First we include the arguments with no attacker: in this case A1.
A1 attacks A2 and A6 and so they are excluded. Now A5 has no attacker and so it
is included. A5 excludes A4, leaving A3 without an attacker, and so A3 is included
to give the preferred extension of the combined audience as {A1,A3,A5}.

This case is straightforward, because the combined audience yields a single pre-
ferred extension. The same is true if Trevor preferred S to B, the combined order
being shown in Figure 3.4(b). This would cause <A5,A4> to be replaced in R by
<A4,A5>. Now both A1 and A4 are not attacked, and so they defeat the remaining
arguments yielding the preferred extension {A1,A4}. This is possible: they simply
agree to travel separately by their preferred means.

More complicated is the situation where Katie prefers B to C, so that the merged
order is as shown in Figure 3.4(c), and <A6,A1> replaces <A1,A6> in R. Now
there is no longer any argument which has no attackers, and the algorithm must
be applied twice; first including A5 and then including A6, so that are two pre-
ferred extensions, {A1,A3,A5}, and {A2,A4,A6}, both of which are acceptable to
them both. Now, since Katie will lean towards the former and Trevor the latter they
must find a way to decide between Ck and St. This might depend on who had the
strongest opinions, or who is the more altruistic or conciliatory. Alternatively one
person might change their preferences: if Katie moved back to her original ordering
of C>B>S, Trevor would either have to decide to prefer S to B or to agree to travel
by train. This possibility shows how preferences can emerge from the reasoning
process: although initially Katie might express a preference for B to C, and Trevor
for B to S, when the consequences are realised she may decide that C is actually
more important than B, and he may decide S is more important than B.

5 Example Applications

As noted in Section 1, reasoning with values is common to many application do-
mains. In previous work [2, 3, 5, 9] we have shown how the application of abstract
argumentation with values can be applied to problems in law, medicine, ethics and

56 Trevor Bench-Capon and Katie Atkinson

e-democracy, and we will briefly discuss these applications here. We begin by con-
sidering legal reasoning with values.

5.1 Law

Reasoning with legal cases has often been viewed as a decision being deduced about
a particular case through the application of a set of rules, given the facts of the case,
e.g. [25]. However, the facts of cases are not set in stone as they can be open to
interpretation from different lawyers. Additionally, the rules used to reach decisions
are defeasible by their nature and many are derived from precedent cases, so they
too may be open to interpretation. Thus, within the AI and Law literature it has
been recognised that when considering arguments in legal cases, the purposes of
the law – the values intended to be promoted or upheld through the application
of the law – must be represented and accounted for, e.g. [8] [21]. In the literature
on legal case-based reasoning the issue was first brought to attention in Berman
and Hafner’s seminal paper on the topic [8] arguing that legal case-based reasoning
needs to recognise teleological as well as factual aspects. This is so since the law
is not composed arbitrarily, rather it is constructed to serve social ends, so when
conflicts in the application of rules occur in legal cases they can be resolved more
effectively by considering the purposes of these rules and their relative applicability
to the particular case in question. This enables preferences amongst purposes to
be revealed, and then the argument can be presented appropriately to the audience
through an appeal to the social values that the argument promotes or defends.

In order to demonstrate how the values of the law can be represented and rea-
soned about within a case, we have previously presented a reconstruction [3] of a
famous case in property law by simulating the opinion and dissent in that case. The
case is that of Pierson vs Post1 which concerned a dispute about ownership of a
hunted fox. The said fox was being pursued by Post who was hunting with hounds
on unoccupied waste-land. Whilst Post was in pursuit of the fox another man, Pier-
son, came along and intercepted the chase, killing and carrying off the fox. Central
to the arguments considered in the case was whether ownership of a wild animal
can be attributed through mere pursuit. However, there are numerous other argu-
ments that need to be considered which draw out the emphasis placed on the values
considered within the case.

Firstly, the value ‘public benefit’ was considered as it was argued that fox hunting
is of benefit to the public because it assists farmers, so it should be encouraged by
giving the sportsman such as Post protection of the law. There are of course counter
arguments to this based on the humane treatment of animals. Furthermore, there are
arguments concerning consideration of public benefit based on the desire to punish
malicious behaviour as allegedly shown by Pierson in intercepting the fox that he
could see Post was chasing.

1 3 Cai R 1752 Am Dec 264 (Supreme Court of New York, 1805)

3 Abstract Argumentation and Values 57

Secondly, there were arguments set forth about the need for the law to be clear:
in attributing ownership without bodily possession this would encourage a climate
of litigation based on similar claims related to pursuit alone.

Thirdly, the value of ‘economic benefit’ was considered in relation to the protec-
tion of property rights where the claimant is engaged in a profitable enterprise.

Given the facts of the case and the values stated above that have been recognised
as pertinent to the reasoning in the case, the argument scheme for practical reasoning
can be applied to generate the competing arguments about who to decide for in the
case. Once generated these arguments can be organised into a VAF and evaluated in
the usual manner. In the actual case the court found for Pierson, thus holding that
clarity was more important than the values promoted by finding for Post. Preference
orderings of values that led to this decision are reflected in our full representation
of the case, which can be found in [3]. Explicitly representing the values promoted
by the arguments put forward in the case helps to clarify the justifications for the
arguments advanced and ground those justifications within the purposes that law is
intended to capture and uphold.

5.2 Medicine

A second example scenario that has been considered in terms of value-based ar-
gumentation is one concerning a system for reasoning about the medical treatment
of a patient [5]. Decision making in this domain often requires consideration of
a wide range of options, some of which may conflict, and may also be uncertain.
Thus, value-based argumentation can play a role in supporting the decision making
process in this domain.

The scenario modelled in [5] illustrates a running example of a patient whose
health is threatened by blood clotting. In deciding which particular treatment to ad-
minister to the patient there are a number of policies and concerns that affect the
decision, and each must be given its due weight. In the computational model of the
scenario a number of different perspectives are represented that are given as val-
ues of individual agents. The arguments and subsequent conclusions drawn by the
individual agents are then adjudicated by a central agent which comes to a deci-
sion based on an evaluation of the competing arguments. Concerning the individual
agents’ values, these represent perspectives such as: the treatment of the patient
based on general medical policy; the safety of the patient concerning knowledge of
contraindications of the various drugs; the efficacy of the treatments in reference to
specific medical knowledge; and, the cost of the different treatments available.

Given the above agent perspectives (and others that we do not detail here), the
practical reasoning argument scheme can be used to generate arguments about
which drug should be used to treat a particular patient. These arguments can be
critiqued by agents other than those that generated the recommendation, based on
their individual knowledge, through the posing of the appropriate critical questions.
This may lead to different agents recommending different treatments, one of which

58 Trevor Bench-Capon and Katie Atkinson

must be chosen. In order to decide between the competing choices, the arguments
justifying each are organised into a VAF and evaluated according to the preference
given over the values represented by the individual agents. For example, it may be
the case that the treatment agent recommends a particular drug that is known to be
highly effective (since no critique from the efficacy agent indicates otherwise) and
has no contraindications (according to the safety agent), yet the cost agent has an
argument that the drug cannot be used on monetary grounds. The question then is
whether treatment is to be preferred to cost (which may be the case if there are no
suitable alternatives are identified). Resolution of this issue will be determined by
the central adjudicating agent who provides the value ordering to decide upon the
winning argument and subsequent treatment recommended, in accordance with the
policy of the relevant health authority at the time.

Whilst a key motivation for the example application described above was the
representation of the different perspectives within the situation, there are other ad-
vantages worthy of note. Firstly, the reasoning involved in medical scenarios is often
highly context dependant and relative to specific individuals so there is a high de-
gree of uncertainty. Thus any ordering of preferences must take the specific context
into account and the argumentation based approach enables this. Secondly, the ar-
gumentation element is effected inside a single agent and the information that it
uses is distributed across different information sources, which need not themselves
consider every eventuality, and play no part in the evaluation. This simplifies their
construction and facilitates their reuse in other applications. Finally, the critiques
that are posed against putative solutions are made only as and when they can affect
the evaluation status of arguments already advanced. This means that all reasoning
undertaken is potentially relevant to the solution.

5.3 Moral Reasoning

The running example that we have presented in this paper concerning travel to a
conference is represented in terms of an AATS. We now turn to briefly discussing
another example scenario, concerning moral reasoning, that has been modelled in
these terms.

The scenario is a particular ethical dilemma discussed by Coleman [12] and
Christie [11], amongst others, and it involves two agents, called Hal and Carla, both
of whom are diabetic. The situation is that Hal, through no fault of his own, has
lost his supply of insulin and urgently needs to take some to stay alive. Hal is aware
that Carla has some insulin kept in her house, but Hal does not have permission to
enter Carla’s house. The question is whether Hal is justified in breaking into Carla’s
house and taking her insulin in order to save his life. By taking Carla’s insulin, Hal
may be putting her life in jeopardy, since she will come to need that insulin herself.
One possible response is that if Hal has money, he can compensate Carla so that her
insulin can be replaced before she needs it. Alternatively if Hal has no money but
Carla does, she can replace her insulin herself, since her need is not immediately

3 Abstract Argumentation and Values 59

life threatening. There is, however, a serious problem if neither have money, since
in that case Carla’s life is really under threat. Coleman argued that Hal may take the
insulin to save his life, but should compensate Carla. Christie’s argument against
this was that even if Hal had no money and was unable to compensate Carla he
would still be justified in taking the insulin by his immediate necessity, since no one
should die because of poverty.

In [2] we have represented this scenario in terms of an AATS and considered the
arguments that can be generated concerning how the agents could justifiably act.
Following our methodology, we take the arguments generated and organise them
into a VAF to see the attack relations between them and evaluate them in accor-
dance with the particular value preference orderings. An interesting point that can
be taken from this particular example concerns the nuances between different ‘lev-
els’ of morality that can be drawn out by distinguishing the individual agents within
the value orderings. For example, prudential reasoning takes account of the different
agents, with the reasoning agent preferring values relating to itself, whereas strict
moral reasoning ignores the individual agents and treats the values equally. For ex-
ample, in the insulin scenario two values are recognised: life, which is demoted
when Hal or Carla ceases to be alive, and freedom, which is demoted when Hal or
Carla ceases to have money. Thus, an agent may rank life over freedom, but within
this value ordering it may discriminate between agents; for example, the agent may
place equal value on its own and another’s life, or it may be that it prefers its own
life to another’s (or vice versa). This leads to distinctions such as selfish agents who
prefer their own interests above all those of other agents, and noble agents whose
values are ordered, but within a value the agent prefers another’s interests.

In addition to the AATS representation set out in [2], simulations have also been
run, which are reported in [10], that confirm the reasoning as set out.

5.4 e-Democracy

The final application area that we discuss is an e-Democracy setting whose focus is
more on the support given by value based argumentation within a system to facilitate
the collection and analysis of human arguments within political debates.

The application is presented as a discussion forum named Parmenides whose
underlying structure is based upon the practical reasoning argument scheme and the
latest version of the system is described in [9]. The system is intended as a forum
by which the government is able to present policy proposals to the public so users
can submit their opinions on the justification presented for the particular policy. The
justification for action is structured in the form of the practical reasoning argument
scheme, though this imposed structure is hidden from the user. Within a particular
topic of debate, a justification upholding a proposed government action is presented
to users of the system in the form of the argument scheme. Users are then led in a
structured fashion through a series of web pages that pose the appropriate critical
questions to determine which parts of the justification the users agree or disagree

60 Trevor Bench-Capon and Katie Atkinson

with (the circumstances, the action, the consequences or the value). Users are not
aware (and have no need to be aware) of the underlying structure for argument
representation but it is, nevertheless, imposed on the information they submit. This
enables the collection of information which is structured in a clear and unambiguous
fashion from a system which does not require users to gain specialist knowledge
before being able to use it.

In addition to collecting arguments, Parmenides also has analysis facilities that
make use of AFs. All the information that the users submit through the system
is stored in a back-end database. This information is then organised into an argu-
mentation framework to show the attacking arguments between the positions ex-
pressed. Associated with the arguments in the AF is statistical information con-
cerning a breakdown of support for the arguments, i.e. the number of users agree-
ing/disagreeing with a particular element of the justification. Thus, arguments can
be assessed by considering which ones are the most controversial to the users.

The Parmenides system is intended to overcome some of the problems faced
by existing discussion forum formats, such as unstructured blogs and e-petitions. In
such systems where there is no structuring of the information, it is undoubtedly very
difficult for the policy maker to adequately address each person’s concerns since he
or she is not aware of users’ specific reasons for disagreeing. Furthermore, it may
be difficult to recognise agreement and disagreement between multiple user replies.
In contrast, the structure imposed by Parmenides allows the administrator of the
system to see exactly which particular part of the argument is disagreed with by the
majority of users, e.g. arguments based on a description of the circumstances, or
arguments based on a disagreement about the importance of promoting a particular
value. Identifying these different sources of disagreement allows the policy maker
to see why his policy is disliked, so he may be able to better respond to the criticisms
made, or indeed change the policy. In particular, it can indicate whether the values
motivating the policy are shared by the respondents.

Parmenides has been tested on a number of different political debates, including:
the UK debate about banning fox hunting2; the justification for the 2003 war in Iraq;
and, a debate about the proposal to increase the number of speed cameras on UK
roads. Work on the Parmenides system is ongoing to further extend its representation
facilities, through the use of schemes additional to the practical reasoning scheme,
and to further extend the facilities for analysing the arguments through the use of
argumentation frameworks.

6 Developments of Value Based Argumentation

In this section we will mention some developments of Value Based Argumentation.
In [13] there is an interesting exploration of the relation between neural networks,

in particular neural-symbolic learning systems, and value based argumentation sys-

2 For this particular debate on the system see:
http://cgi.csc.liv.ac.uk/∼parmenides/foxhunting/

3 Abstract Argumentation and Values 61

tems, including an extensive discussion of the insulin example described in the last
section. In [15] there is a formal generalisation of VAFs to allow for arguments that
promote multiple values, and in which preferences among values can be specified
in various ways. In [7] a method is given to determine which audiences can accept a
particular set of arguments. Here, however, we will look in detail only at the appli-
cation of Modgil’s extended argumentation frameworks (EAF) [17] to VAFs. For a
preliminary exploration of the relation between EAFs and VAFs see [18].

The core idea of EAFs is, like VAFs, to enable a distinction between an argu-
ment attacking an argument, and an argument defeating another argument. Whereas
VAFs, however, rely on a comparison of properties of the arguments concerned,
EAFs achieve this in an entirely abstract manner by allowing arguments to attack
not only other arguments, but also attacks. EAFs thus enable arguments to resist an
attack for a number of reasons. In VAFs arguments resist attacks solely in virtue of
a preference between the values concerned. This enables VAFs to be rewritten as
standards AFs, by introducing some auxiliary arguments to articulate the notion of
an attack on an attack. These auxiliary arguments represent the status of arguments,
value preferences, and arguments representing particular audiences. Suppose we
have a VAF with two arguments, A and B which attack one another. A is associated
with value V1 and B with Value V2. A will be defeated if B defeats it, and B will
be defeated if A defeats it. Defeat is only possible if the attacking argument is not
defeated, and if the value of A is not preferred to that of B. Thus the attack on the
attack of A on B in an EAF becomes an attack on the argument that A defeats B.

This enables us to represent a VAF as a standard AF, with preferred extensions
depending on the choices made regarding value preferences. We can extend the AF
to include audiences as well. Suppose Audience X prefers V1 to V2 and Audience
Y prefers V2 to V1. This can be shown as in Figure 3.6.

A is

V1
justified

V1 > V2

V2 > V1

is X
Audience

Audience
is Y

B

A
defeats

B is
defeated

B isjustified
V2B

A
defeats

A is
defeated

Fig. 3.6 AF representing VAF with audiences

The rewriting of VAFs in this way is shown to be sound and complete with re-
spect to EAFs in [18]. When we rewrite VAFs in this way, subjective acceptance
in the VAF is equivalent to credulous acceptance in the rewritten AF, and objective
acceptance in the VAF is equivalent to sceptical acceptance in the rewritten AF. This

62 Trevor Bench-Capon and Katie Atkinson

Property
A7

A5
Life

Property
A6

A6
Property

not
A6

A6

A5
def

A5
Life

not
A5

A5
def
A7

A7
Property

def
A6

A7

A7
not

L > P

P > L

b)a)

Fig. 3.7 3 cycle and re-write

can be seen by considering the three cycle in the two value case shown in Figure
3.7.

There will be two preferred extensions depending on which preference is chosen:
{L> P, A5defA7,not A7,A6,A5} and {P>L,A7,A7defA6,notA6,A5}. Thus A5 is
correctly sceptically acceptable in 7b, and objectively acceptable in 7a, and the re-
maining arguments, other than notA5, are credulously acceptable in 7b, and A6 and
A7 are subjectively acceptable in 7a.

A1
Kt
Ck

A2
Kp
Sk

A3
Tt
Ct

A4
Tp
St

A6

B
Kp&Tp A5

B
Kt&Tt

>
Ck

B

B
>

Ck

Ck
>
Sk

Sk
>

Ck

Sk

B
>

B
>
Sk

S

C
>

C

S
>

B
>
St

St
>
B

B
>
Ct

Ct
>
B

Ct
>
St

St
>
Ct

Katie
C>B>S

Trevor
B>S>C

Fig. 3.8 Value based EAF for travel example.

Finally, we apply this to our running example of Trevor and Katie travelling to
Paris. The rewritten framework is given in Figure 3.8: note that we have used the
EAF style of attacks on attacks rather than the rewrite, for clarity in the diagram.

3 Abstract Argumentation and Values 63

We have added the audiences Trevor and Katie. Note that, although their preferences
differ, these arguments do not conflict, as Trevor and Katie must be allowed to have
different preferences: although they are trying to come to a consensus of which argu-
ments to accept, they are free to maintain their own value orders. Trevor’s audience
attacks the preferences between values in respect of Trevor, and Katie’s audience
attacks preferences in respect of Katie. Both audiences attack preferences in com-
mon.

We evaluate the framework in Figure 3.8 by first removing the arguments at-
tacked by the audiences, and then the attacks attacked by surviving arguments. Re-
flecting the impact of audiences in this way gives a standard AF, the connected com-
ponent of which is the same as that shown in Figure 3.5. Now A1 is not attacked,
and so the preferred extension will contain the two audiences, the consequent pref-
erences (note that both S>C and C>S have been defeated as Trevor and Katie dis-
agree), together with A1, (which is not attacked), A3 and A5 (whose attackers are
defeated). Thus, as before, given these preferences both Trevor and Katie choose to
travel by train.

7 Summary

Just as deduction is a natural paradigm for justifying beliefs, argumentation is the
natural paradigm for explaining and justifying why one course of action is preferred
to another, since the notions of defeasibility and individual preference are central to
argumentation. We can be coercive about what is the case, but need to be persuasive
about what should be the case. But in order to exploit this aspect of argumentation, it
is necessary to extend the purely abstract notion of argumentation proposed by Dung
to enable individual preferences to explain the choices made in determining which
arguments will be accepted by an agent in a particular context. We have discussed
such an extension, representing the individual interests and aspirations as values,
and individual preferences as orderings on these values.

Using this extension we have shown how different agents can rationally make
different choices in accordance with their value orderings, and how in turn these
value orderings can emerge from particular situations. In particular we have dis-
cussed examples where two agents with different value orderings must agree collec-
tively on what they should do. The range of applications in which reasoning of this
sort is required is wide, and we have discussed a number of application areas: law,
medicine, politics and moral dilemmas, and an everyday situation. In this chapter
we have shown how this important style of reasoning, central to the notion of an au-
tonomous agent, can be captured in a particular form of argumentation framework
which, while permitting the expression of individual preferences, retains all the ben-
efits of the clean semantics associated with abstract argumentation frameworks.

64 Trevor Bench-Capon and Katie Atkinson

References

1. K. Atkinson and T. Bench-Capon. Practical reasoning as presumptive argumentation using
action based alternating transition systems. Artificial Intelligence, 171(10–15):855–874, 2007.

2. K. Atkinson and T. Bench-Capon. Addressing moral problems through practical reasoning.
Journal of Applied Logic, 6(2):135–151, 2008.

3. K. Atkinson, T. Bench-Capon, and P. McBurney. Arguing about cases as practical reasoning.
In Proc. of the Tenth International Conference on Artificial Intelligence and Law (ICAIL ’05),
pages 35–44, 2005. ACM Press.

4. K. Atkinson, T. Bench-Capon, and P. McBurney. Computational representation of practical
argument. Synthese, 152(2):157–206, 2006.

5. K. Atkinson, T. Bench-Capon, and S. Modgil. Argumentation for decision support. In Proc.
of the Seventeenth DEXA Conference, LNCS 4080, pages 822–831. Springer, 2006.

6. T. Bench-Capon. Persuasion in practical argument using value based argumentation frame-
works. Journal of Logic and Computation, 13(3):429–448, 2003.

7. T. Bench-Capon, S. Doutre, and P.E. Dunne. Audiences in argumentation frameworks. Artifi-
cial Intelligence, 171(1):42–71, 2006.

8. D. H. Berman and C. D. Hafner. Representing teleological structure in case-based legal rea-
soning: the missing link. In Proc. of the Fourth International Conference on Artificial Intelli-
gence and Law (ICAIL ’93), pages 50–59, 1993. ACM Press.

9. D. Cartwright and K. Atkinson. Political engagement through tools for argumentation. In
P. Besnard, S. Doutre, and A. Hunter, editors, Proc. of COMMA ’08, pages 116–127, 2008.

10. A. Chorley, T. Bench-Capon, and P. McBurney. Automating argumentation for deliberation
in cases of conflict of interest. In P. E. Dunne and T. Bench-Capon, editors, Proc. of COMMA
’06, pages 279–290. IOS Press, 2006.

11. C. G. Christie. The Notion of an Ideal Audience in Legal Argument. Kluwer Academic
Publishers, 2000.

12. J. Coleman. Risks and Wrongs. Cambridge University Press, 1992.
13. A. S. d’Avila Garcez, D. M. Gabbay, and L. C. Lamb. Value-based argumentation frameworks

as neural-symbolic learning systems. J. of Logic and Computation, 15(6):1041–1058, 2005.
14. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.
15. S. Kaci, L. van der Torre, and E. Weydert. On the acceptability of incompatible arguments. In

Proc. of the Ninth ECSQARU Conference, pages 247–258, 2007.
16. A. J. P. Kenny. Practical Reasoning and Rational Appetite. 1975. Reprinted in [23].
17. S. Modgil. An abstract theory of argumentation that accommodates defeasible reasoning about

preferences. In Proc. of the Ninth ECSQARU Conference, pages 648–659, 2007.
18. S. Modgil and T. Bench-Capon. Integrating object and meta-level value based argumentation.

In P. Besnard, S. Doutre, and A. Hunter, editors, Proc. of COMMA ’08, pages 240–251, 2008.
19. C. Perelman. Justice, Law, and Argument. D. Reidel Publishing Company, Dordrecht, 1980.
20. C. Perelman and L. Olbrechts-Tyteca. The New Rhetoric: A Treatise on Argumentation. Uni-

versity of Notre Dame Press, Notre Dame, IN, USA, 1969.
21. H. Prakken. An exercise in formalising teleological reasoning. In Proc. of the Thirteenth

Annual JURIX Conference, pages 49–58, 2000. IOS Press.
22. H. Prakken. Combining sceptical epistemic reasoning with credulous practical reasoning. In

P. E. Dunne and T. Bench-Capon, editors, Proc. of COMMA ’06, pages 311–322. IOS Press,
2006.

23. J. Raz, editor. Practical Reasoning. Oxford University Press, Oxford, UK, 1978.
24. J. R. Searle. Rationality in Action. MIT Press, Cambridge, MA, USA, 2001.
25. M. J. Sergot, F. Sadri, R. A. Kowalski, F. Kriwaczek, P. Hammond, and H. T. Cory. The British

Nationality Act as a logic program. Communications of the ACM, 29(5):370–386, 1986.
26. D. N. Walton. Argumentation Schemes for Presumptive Reasoning. Lawrence Erlbaum Asso-

ciates, Mahwah, NJ, USA, 1996.
27. M. Wooldridge and W. van der Hoek. On obligations and normative ability: Towards a logical

analysis of the social contract. Journal of Applied Logic, 3:396–420, 2005.

Chapter 4
Bipolar abstract argumentation systems

Claudette Cayrol and Marie-Christine Lagasquie-Schiex

1 Introduction

In most existing argumentation systems, only one kind of interaction is considered
between arguments. It is the so-called attack relation. However, recent studies on
argumentation [23, 34, 35, 4] have shown that another kind of interaction may exist
between the arguments. Indeed, an argument can attack another argument, but it can
also support another one. This suggests a notion of bipolarity, i.e. the existence of
two independent kinds of information which have a diametrically opposed nature
and which represent repellent forces.

Bipolarity has been widely studied in different domains such as knowledge and
preference representation [10, 31, 25, 6]. Indeed, in [6] two kinds of preferences
are distinguished: the positive preferences representing what the agent really wants,
and the negative ones referring to what the agent rejects. This distinction has been
supported by studies in cognitive psychology which have shown that the two kinds
of preferences are completely independent and are processed separately in the mind.
Another application where bipolarity is largely used is that of decision making.
In [3, 19], it has been argued that when making decision, one generally takes into
account some information in favour of the decisions and other pieces of information
against those decisions.

In [20], a nomenclature of three types of bipolarity has been proposed using par-
ticular characteristics like exclusivity (can a piece of information be at the same time
positive and negative), duality (can negative information be computed using posi-
tive information), exhaustivity (can information be neither positive, nor negative),
computation of positive and negative information on the same data, computation of
positive and negative information with the same process, existence of a consistency
constraint between positive and negative information.

IRIT-UPS, 118 route de Narbonne, 31062 Toulouse, France, e-mail: {ccayrol,lagasq}@
irit.fr

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 65
DOI 10.1007/978-0-387-98197-0 4, c© Springer Science+Business Media, LLC 2009

66 Claudette Cayrol and Marie-Christine Lagasquie-Schiex

The first type of bipolarity proposed by [20] (symmetric univariate bipolarity)
expresses the fact that the negative feature is a reflection of the positive feature
(so, they are mutually exclusive and a single bipolar univariate scale is enough for
representing them).

The second one (dual bivariate bipolarity) expresses the fact that we need two
separate scales in order to represent both features, although they stem from the same
data (so, an information can be positive and negative at the same time and there is
no exclusivity). However a duality must exist between both features.

And the third one (heterogeneous bipolarity) expresses the fact that both features
do not stem from the same data though there is some minimal consistency require-
ment between both features.

In this chapter, we focus on the use of bipolarity in the particular domain of
argumentation. In all the disparate cases, an argumentation process follows different
steps: i) building the arguments and the interactions between them, ii) valuating
the arguments and accounting for their interactions or not, iii) finally selecting the
most acceptable arguments (or sets of arguments) and using them in order to draw a
conclusion or choose a decision. Bipolarity can appear under different forms in each
step of this process. In this chapter we are only concerned by the use of bipolarity
at the interaction level (a more complete study of bipolarity in each step of the
argumentation process is proposed in [4, 5]).

At this level, the main point is the definition of the interactions between argu-
ments. As already said, due for instance to the presence of inconsistency in knowl-
edge bases, arguments may be conflicting. Indeed, in all argumentation systems, an
attack relation is considered in order to capture the conflicts.

However, most logical theories of argumentation assume that: if an argument a1

attacks an argument a3 and a3 attacks an argument a2, then a1 supports a2. In this
case, the notion of support does not have to be formalized in a way really different
from the notion of attack. It is the case of the basic argumentation framework defined
by Dung, in which only one kind of interaction is explicitly represented by the attack
relation. In this context, the support of an argument a by another argument b can be
represented only if b defends a in the sense of [21]. So, support and attack are
dependent notions. It is a parsimonious strategy, but it is not a correct description
of the process of argumentation. Let us take several examples for illustrating the
difference between “defence” and “support”:

Ex. 1 We want to begin a hike. We prefer a sunny weather, then a sunny and cloudy
one, then a cloudy but not rainy weather, in this order. We will cancel the hike only
if the weather is rainy. But clouds could be a sign of rain. We look at the sky early
in the morning. It is cloudy. The following exchange of informal arguments occurs
between Tom, Ben and Dan:

t1 Today we have time, we begin a hike.
b The weather is cloudy, clouds are sign of rain, we had better cancel the hike.
t2 These clouds are early patches of mist, the day will be sunny, without clouds,

so the weather will be not cloudy (and we can begin the hike).

4 Bipolar abstract argumentation systems 67

d These clouds are not early patches of mist, so the weather will be not sunny but
cloudy; however these clouds will not grow, so it will not rain (and we can begin
the hike).

In this exchange, we can identify the following path of conflicts between ar-
guments: argument d attacks argument t2 which attacks argument b which in turn
attacks argument t1. So, with Dung’s framework, argument t2 is a defender of ar-
gument t1, and argument d is a defeater of argument t1. Nevertheless, arguments
t2 and d support the hike project. So, the idea of a chain of arguments and counter-
arguments in which we just have to count the links and take the even one as defeaters
and the odd ones as supporters is an oversimplification. So, the notion of defence
proposed by [21] is not sufficient to represent support.

The following example also illustrates the need for a new kind of interaction
between arguments; the following arguments are exchanged during the meeting of
the editorial board of a newspaper:

Ex. 2

a: Assuming agreement and no right of censor, information I concerning X will
be published.

b1: X is the prime minister who may use the right of censor.
c0: We are in democracy and even a prime minister cannot use the right of censor.
c1: I believe that X has resigned. So, X is no longer the prime minister.
d: The resignation has been announced officially yesterday on TV Channel 1.
b2: I is private information so X denies publication.
e: I is an important information concerning X’s son.
c2: Any information concerning a prime minister is public information.
repetition of c1 and d: . . .
c3: But I is of national interest, so I cannot be considered as private information.

In this example, some conflits appear: for instance, b1 (resp. b2) is in conflict with
a. But we may also consider that the argument d given by an agent Ag1 supports the
argument c1 given by another agent Ag2. It is not only a “dialogue-like speech act”:
a new piece of information is really given and it is given after the production of the
argument c1. So taking d into account leads either to modify c1, or to find a more
intuitive solution for representing the interaction between d and c1. In this case, we
adopt an incremental point of view, considering that pieces of information given by
different agents enable them to provide more and more arguments. We do not want
to revise already advanced arguments. In contrast, we intend to represent as much
as possible all the kinds of interaction between these arguments.

The last example shows how a notion of support between two arguments can be
formalized with a logical representation of the structure of the arguments.

Ex. 3 A murder has been performed and the suspects are Liz, Mary and Peter. The
following pieces of information have been gathered:

The type of murder suggests us that the killer is a female. The killer is certainly
small. Liz is tall and Mary and Peter are small. The killer has long hair and uses a

68 Claudette Cayrol and Marie-Christine Lagasquie-Schiex

lipstick. A witness claims that he saw the killer who was tall. Moreover, we are told
that the witness is short-sighted, so he is no more reliable.

We use the following propositional symbols: sm (the killer is small), f em (the
killer is a female), mary (the killer is Mary), lglip (the killer has long hair and uses
a lipstick), wit (the witness is reliable), bl (the witness is short-sighted).

Here, an argument takes the form of a set of premises which entails a conclusion.
So the following arguments can be formed: a1 in favour of mary (with premises
{sm, f em,(sm∧ f em)→ mary}), a2 in favour of ¬sm (with premises {wit,wit →
¬sm}), a3 in favour of ¬wit (with premises {bl,bl → ¬wit}), a4 in favour of f em
(with premises {lglip, lglip→ f em}).

a3 attacks a2 which attacks a1. So a3 defends a1 against a2.
Moreover, a4 confirms the premise f em of a1. So, a4 supports a1 (in the sense that

a4 strengthens a1). Contrastedly, a3 defends a1 against a2 means that a3 weakens
the attack on a1 brought by a2. So, on one side, a1 gets a support and on the other
side a1 suffers a weakened attack.

The above examples show that the argumentation process uses arguments and
counter-arguments, support and attack relations, but not always in the same way.
The arguments which are available in a dynamic argumentation process rely upon
premises which are not always pieces of evidence. If we accept that a new fact can
undermine one of the premises (thus forming an attack), we must also accept that a
new fact can enforce, or confirm a premise (thus forming a support interaction).

Following all these remarks, and in order to formalise realistic examples, a more
powerful tool than the abstract argumentation framework proposed by Dung is
needed. In particular, we are interested in modelling situations where two inde-
pendent kinds of interactions are available: a positive and a negative one (see for
example in the medical domain the work [23]). So, following [23, 35], we present a
new argumentation framework: an abstract bipolar argumentation framework.

The chapter is organized as follows: Section 2 introduces the formal definitions of
an abstract Bipolar Argumentation Framework (BAF). Then, we consider the fun-
damental problem of determining which arguments (or sets of arguments) can be
considered as acceptable. The formal way to handle this problem is to define argu-
mentation semantics. Section 3 introduces extension-based acceptability semantics
for a BAF. These new semantics rely upon criteria which make explicitly use of both
support and attack relations. In Section 4, another way to define extension-based
semantics for a BAF is followed. First, a transformation of a BAF into a Dung’s
meta-argumentation framework is given. The support relation is used to form meta-
arguments (called coalitions) in such a way that at the meta-level only conflict in-
teractions may appear. Extensions of a BAF can then be defined from Dung’s ex-
tensions of the meta framework. Section 5 addresses the question of labelling-based
semantics in a BAF. Some labelling functions are proposed for a BAF. Section 6 is
devoted to the related issues and to some concluding remarks. Note that the proofs
of the properties given in this chapter can be found in the associated original papers.

4 Bipolar abstract argumentation systems 69

2 Abstract bipolar frameworks

An abstract bipolar argumentation framework is an extension of the basic abstract
argumentation framework introduced by [21] in which a new kind of interaction
between arguments is represented by the support1 relation2. This new relation is
assumed to be totally independent of the attack relation (i.e. it is not defined using
the attack relation). So, we have a bipolar representation of the interactions between
arguments.

Def. 1 An abstract bipolar argumentation framework (BAF) 〈A,Ratt,Rsup〉 consists
of: a set A of arguments, a binary relation Ratt on A called the attack relation and
another binary relation Rsup on A called the support relation. These binary relations
must verify the following consistency constraint: Ratt∩Rsup = ∅3.
Consider ai and a j ∈ A, aiRatta j (resp. aiRsupa j) means that ai attacks (resp. sup-
ports) a j. Let a ∈ A, Ratt

−(a) (resp. Rsup
−(a)) denotes the set of attackers (resp.

supporters) of a.

In the following, we assume that A represents the set of arguments proposed by
rational agents at a given time, so we will assume that A is finite.

A BAF can be represented by a directed graph Gb called the bipolar interaction
graph, with two kinds of edges, one for the attack relation (→) and another one for
the support relation (�). See for instance the following representations:

For Ex. 1 For Ex. 2 For Ex. 3
(hiking project) (editorial meeting) (murder)

b �� t1 t2�� �� �� ����

d

����������

���������

��
��
��
��

c0 �� b1
�� a b2

�� e�� �� �� ��

d �������� c1

��

�� c2

����������
c3

�� a3 �� a2 �� a1

a4

��
��

��
��

��

In the following, we abstract from the structure of the arguments and we consider
arbitrary independent relations Ratt and Rsup.

Def. 2 Let BAF = 〈A,Ratt,Rsup〉 be a bipolar argumentation framework and Gb be
the associated interaction graph. Let a, b ∈A. A path from a to b in Gb is a sequence
(a1, . . . ,an) of elements of A s.t. n ≥ 2, a = a1, b = an, a1Ra2, . . . , an−1Ran, with
R = Ratt or Rsup. Such a path has length n−1.

Note that if n = 2 and a = b then the path is a loop and if the relation R used in
the loop is Ratt then a is said self-attacking.

The use of bipolarity suggests new kinds of interaction between arguments: in
Ex. 2, the fact that d supports an attacker of b1 may be considered as a kind of

1 Note that the term “support” refers to a relation between two arguments and not a relation between
premises and conclusion, as in Toulmin [32].
2 If the support relation is removed, we retrieve Dung’s framework.
3 In the context of the argumentation, this consistency constraint is essential: it does not seem ratio-
nal to advance an argument which simultaneously attacks and supports the same other argument.

70 Claudette Cayrol and Marie-Christine Lagasquie-Schiex

negative interaction between d and b1, which is however weaker than a direct at-
tack. From a cautious point of view, such arguments cannot appear together in a
same extension. In order to address this problem, a new kind of attack has been
introduced [13, 14] which combines a sequence of supports with a direct attack.

Def. 3 Let a, b ∈ A. There is a sequence of supports for b by a (or for short a
supports b) iff there exists a sequence (a1, . . . ,an) of elements of A s.t. n≥ 2, a = a1,
b = an, a1Rsupa2, . . . , an−1Rsupan.

Def. 4 A supported attack for an argument b by an argument a is a sequence (a,x,b)
of arguments of A s.t. a supports x4 and xRattb.

In Ex. 2, there is a supported attack for b1 by d.
Then, taking into account attacks and sequences of supports leads to the following
definitions applying to sets of arguments:

Def. 5 Let S ⊆ A, let a ∈ A. S set-attacks a iff there exists a supported attack or a
direct attack for a from an element of S. S set-supports a iff there exists a sequence
of supports for a from an element of S.

The above definitions are illustrated on the following example:

Ex. 4 Consider the following graph: a �������� b �������� c �� d j

g

		��������
h

		��������
i �������� e

��

f

��
��
��
��

�� k

��

In this graph, the paths a−b− c−d and i− c correspond to supported attacks.
The set {a,h} set-attacks d and b and set-supports b and c.

3 Extension-based semantics for acceptability

In Dung’s framework, the acceptability of an argument depends on its membership
to some sets, called acceptable sets or extensions. These extensions are characterised
by particular properties. It is a collective acceptability. Following Dung’s method-
ology, we propose characteristic properties that a set of arguments must satisfy in
order to be an output of the argumentation process, in a bipolar framework. We re-
call that such a set of arguments must be in some sense coherent and must enable to
win a dispute. Maximality for set-inclusion is also often required.

Considering a BAF 〈A,Ratt,Rsup〉 and using the notion of “set-attack” and “set-
support” given by Def. 5, we first investigate the notion of coherence, then we pro-
pose new semantics for acceptability in bipolar argumentation frameworks.

4 In the sense of Def. 3.

4 Bipolar abstract argumentation systems 71

3.1 Managing the conflicts

In the basic argumentation framework, whatever the considered semantics, selected
acceptable sets of arguments are constrained to be coherent in the sense that they
must be conflict-free. In a bipolar argumentation framework, the concept of coher-
ence can be extended along two different lines:

• forbidding not only direct attacks but also supported attacks enforces a kind of
internal coherence: we do not accept a set S of arguments which set-attacks one
of its elements (this a generalization of Dung’s notion of conflict-free).

• extending the consistency constraint between support and attack relations leads
to define a kind of external coherence: we do not accept a set S of arguments
which set-attacks and set-supports the same argument.

Def. 6 Let S⊆A. S is +conflict-free5 iff � ∃a,b ∈ S s.t. {a} set-attacks b.
S is safe6 iff � ∃b ∈A s.t. S set-attacks b and either S set-supports b, or b ∈ S.

Ex. 4 (cont’d) The set {h,b} is not +conflict-free (there is a direct attack). The set
{b,d} is not +conflict-free since d suffers a supported attack from b. Contrastedly,
{a,h} and {b, f} are +conflict-free.
The set {a,h} is not safe since a supports b and h attacks b. The set {b, f} is not safe
since d suffers a supported attack from b and f supports d. Contrastedly, {g, i,h} is
safe.

Note that the notion of safe set encompasses the notion of +conflict-free set:

Prop. 1 ([14]) Let S ⊆ A. If S is safe, then S is +conflict-free. If S is +conflict-free
and closed for Rsup then S is safe.

Ex. 4 (cont’d) The set {g,h, i,e} is +conflict-free and closed for Rsup. So it is safe.

3.2 New acceptability semantics

According to the methodology proposed by [21], two notions play an important
role in the definition of extension-based semantics: the notion of coherence, and the
notion of defence (that is for short attack against attack). In a BAF, several notions
of coherence, and two kinds of attack (direct and supported) are available. So several
extensions of the notion of defence could be proposed. However, we have chosen to
restrict to the classical defence, for the following reasons. First, the purpose of this
chapter is to present some principles governing bipolar frameworks, rather than an
exhaustive survey. Secondly, most of the works talking about bipolarity consider that

5 This notation means that checking if a set is +conflict-free needs to consider more conflicts than
with the basic notion of conflict-free suggested by Dung.
6 This definition is inspired by [35] and by the notion of a controversial argument given in [21].

72 Claudette Cayrol and Marie-Christine Lagasquie-Schiex

a support does not have the same strength as an attack. In that sense, an argument
can be considered as defended if and only if its direct attackers are directly attacked.

The above remark is illustrated by the following example: a1 �� a2

a3�� �� �� ��

There is a supported attack for a1 by a3 and no attack for a3. However, a1 directly
attacks a2 and it seems sufficient to resinstate a1.

Let us recall the definition of defence given in [21].

Def. 7 Let S⊆A. Let a∈A. S defends a iff ∀b∈A, if bRatta then ∃c∈ S s.t. cRattb.

In the following, the concept of admissibility is first extended. The idea is to
reinforce the coherence of the admissible sets. Then, extensions under the preferred
semantics will be defined as maximal (for ⊆) admissible sets of arguments.

Three different definitions for admissibility can be given, from the most general
one to the most specific one. First, a direct translation of Dung’s definition gives
the definition of d-admissibility (“d” means “in the sense of Dung”). Taking into
account external coherence leads to s(afe)-admissibility. Finally, external coherence
can be strengthened by requiring that an admissible set is closed for Rsup. So, we
obtain the definition of c(losed)-admissibility.

Def. 8 Let S⊆A.
S is d-admissible iff S is +conflict-free and defends all its elements.
S is s-admissible iff S is safe and defends all its elements.
S is c-admissible iff S is +conflict-free, closed for Rsup and defends all its elements.

From the above definitions, it follows that each c-admissible set is s-admissible,
and each s-admissible set is d-admissible.

Def. 9 A set S ⊆ A is a d-preferred (resp. s-preferred, c-preferred) extension iff
S is maximal for ⊆ (or for short ⊆-maximal) among the d-admissible (resp. s-
admissible, c-admissible) subsets of A.

Ex. 1 (cont’d) In this case, the three semantics give the same result: {d, t1} is the
unique d-preferred, s-preferred and c-preferred extension.

Ex. 4 (cont’d) The set {g,h, i,e, f ,d, j} is the unique c-preferred extension.

Ex. 5 Consider the BAF represented by a � b ← h. The set {a,h} is the unique
d-preferred extension. There are two s-preferred extensions {a} and {h}. And there
is only one c-preferred extension {h}.

One of the most important issues with regard to extensions concerns their ex-
istence. The existence of d-preferred (resp. s-preferred, c-preferred) extensions is
guaranteed since the empty set is d-admissible (resp. s-admissible, c-admissible),
and each d-admissible (resp. s-admissible, c-admissible) is included in a d-preferred
(resp. s-preferred, c-preferred) extension. Note that analogous definitions for admis-
sibility could be proposed using a stronger notion of defence (a stronger defence
would be defined for instance by replacing attack with set-attack in Def. 7).

4 Bipolar abstract argumentation systems 73

Considering another well-known semantics, the stable semantics, nice results can
be obtained if we keep the basic definition of a stable extension, but replace attack
with set-attack. It is a straightforward way to extend the stable semantics in a BAF.

Def. 10 S is a stable extension iff S is +conflict-free and ∀a �∈ S, S set-attacks a.

In the following, we restrict to acyclic BAF, in the sense that the associated in-
teraction graph is acyclic. In Dung’s basic framework, it has been proved that, in
the case of an acyclic attack graph, there is always a unique stable (which is also
preferred) extension. So, Def. 10 ensures the existence of a unique stable extension
in an acyclic BAF7. However, the unique stable extension is not always safe.

Ex. 5 (cont’d) The set {a,h} is the unique stable extension, and it is not safe.

Indeed, the following result can be proved:

Prop. 2 ([14]) Let S be a stable extension. S is safe iff S is closed for Rsup.

The following results enable to characterize d-preferred, s-preferred and c-
preferred extensions when the BAF is acyclic:

Prop. 3 ([14]) Let S be the unique stable extension of an acyclic BAF.

1. S is also the unique d-preferred extension.
2. The s-preferred extensions and the c-preferred extensions are subsets of S.
3. Each s-preferred extension which is closed for Rsup is c-preferred.
4. If S is safe, then S is the unique c-preferred and the unique s-preferred extension.
5. If A is finite, each c-preferred extension is included in a s-preferred extension.
6. If S is not safe, the s-preferred extensions are the subsets of S which are ⊆-

maximal among the s-admissible sets.
7. If S is not safe, and A is finite, there is only one c-preferred extension.

Ex. 5 (cont’d) {h} is the only s-preferred extension which is also closed for Rsup.
So, {h} is the unique c-preferred extension.

Ex. 6 Consider the BAF represented by: a1 ��������

���
��

��
��

� a2 �������� b

c h�� �� �� ��

��

{a1,a2,h} is the only d-preferred extension. {a1,a2} and {h} are the only two
s-preferred extensions. None of them is closed for Rsup. ∅ is the unique c-preferred
extension. If we add an isolated argument a3 (for which no interaction exists with
the other available arguments), then we obtain: {a1,a2,a3,h} is the only d-preferred
extension. {a1,a2,a3} and {h,a3} are the only two s-preferred extensions. None of
them is closed, and {a3} is the unique c-preferred extension.

7 We instantiate Dung’s AF with the relation set-attacks and the resulting graph is still acyclic.

74 Claudette Cayrol and Marie-Christine Lagasquie-Schiex

The above discussion enables to draw the following conclusions. In the particular
case of an acyclic BAF, two semantics present nice features: the stable semantics and
the c-preferred semantics. If we are interested in internal coherence only, we will
have to determine the unique stable extension, which is also the unique d-preferred
extension. If we are interested in a more constrained concept of coherence, we will
compute the unique c-preferred extension.

4 Turning a bipolar framework into a Dung meta-framework

The extension-based acceptability semantics introduced in Section 3 rely upon cri-
teria which make explicitly use of support and attack relations, through the concept
of supported attack. Here, we follow another way to define extension-based seman-
tics for a BAF. First, a transformation of a BAF into a Dung’s meta-argumentation
framework is given. This meta-argumentation framework consists only of a set
of meta-arguments (called coalitions), and a conflict relation between these meta-
arguments. The attack relation of the initial BAF will appear only at the meta-level.
As a consequence, a meta-argument will gather arguments which are not in conflict.
The support relation of the initial BAF will not appear at the meta-level, but will
be used to gather arguments in a coalition. The idea is that a meta-argument makes
sense only if its members are somehow related by the support relation. So, the two
fundamental principles governing the definition of a coalition are: the Coherence
principle (there is no direct attack between two arguments of a same coalition) and
the Support principle (if two arguments belong to a same coalition, they must be
somehow, directly or indirectly, related by the support relation).

4.1 The concept of coalition

Consider BAF = 〈A,Ratt,Rsup〉 represented by the graph Gb. Gb
sup will denote the

partial graph representing the partial system 〈A,Rsup〉8. AF will denote the partial
argumentation system 〈A,Ratt〉 associated with BAF and represented by the partial
graph denoted by Gb

att.

Def. 11 C ⊆ A is a coalition of BAF iff: (i) The subgraph of Gb
sup induced by C

is connected; (ii) C is conflict-free9 for AF; (iii) C is ⊆-maximal among the sets
satisfying (i) and (ii).

8 We consider that the reader knows the basic concepts of graph theory (chain, connexity,. . .). See
for instance [7] for a background on graph theory.
9 In the basic sense proposed by Dung.

4 Bipolar abstract argumentation systems 75

Note that when Ratt is empty, the coalitions are exactly the connected compo-
nents10 of the partial graph Gb

sup.

Prop. 4 ([17]) An argument which is not self-attacking is in at least one coalition.

Ex. 7 Consider the BAF: a

��
��
��
��

c��

��
��
��
��

�� e ��������

��
��
��
��

f �������� g �������� h

b

		�	
�	

�	
�	

�	

d i

The coalitions are: C1 = {b,c,d}, C2 = {i}, C3 = {a,b}, C4 = {e, f ,g,h}
The following result shows that coalitions can be restated in terms of connected

components of an appropriate subgraph. By the way, it gives a constructive way for
computing coalitions.

Prop. 5 ([17]) C ⊆ A is a coalition of BAF iff: (i) There exists S ⊆ A ⊆-maximal
conflict-free for AF s.t. C is a connected component of the subgraph of Gb

sup induced
by S and (ii) C is ⊆-maximal among the subsets of A satisfying (i).

Prop. 5 suggests a procedure for computing the coalitions of BAF:

Step 1: Consider AF and determine the maximal conflict-free sets for AF.
Step 2: For each set of arguments Si obtained at Step 1, determine the connected components of

the subgraph of Gb
sup induced by Si.

Step 3: Keep the ⊆-maximal sets obtained at Step 2.

The notion of conflict-free set is related to the notion of independent set:

Prop. 6 ([17]) Let S ⊆ A. S is conflict-free for AF iff S is an independent subset of
A in the graph Gb

att.

So, S is ⊆-maximal conflict-free for AF iff S is a ⊆-maximal independent set
of vertices in the graph Gb

att and Step 1 of the computational procedure consists in
determining all the ⊆-maximal independent subsets of Gb

att. Remark that the time
complexity of the best algorithms providing all the ⊆-maximal independent sets is
exponential. Note also that there exist several algorithms in the literature for finding
all the⊆-maximal independent sets (see for instance the work of J.M. Nielsen [26]).
We also know that:

• For Step 2, a depth-first exploration of a graph provides the connected compo-
nents in linear time O(number of vertices + number of edges).

• And for Step 3, maximization with respect to ⊆ is also an exponential process.

10 Let G = (V,E) be a graph. Let S ⊆ V . S is a connected component of G iff the subgraph of G
induced by S is connected and there exists no S′ ⊆V s.t. S ⊂ S′ and the subgraph of G induced by
S′ is connected.

76 Claudette Cayrol and Marie-Christine Lagasquie-Schiex

4.2 A meta-argumentation framework

Let C(A) denote the set of coalitions of BAF. We define a conflict relation on C(A)
as follows.

Def. 12 Let C1 and C2 be two coalitions of BAF. C1 C-attacks C2 iff there exists an
argument a1 in C1 and an argument a2 in C2 s.t. a1Ratta2.

It can be proved that:

Prop. 7 ([17]) Let C1 and C2 be two distinct coalitions of BAF. If C1∩C2 �= ∅ then
C1 C-attacks C2 or C2 C-attacks C1.

So a new argumentation framework CAF = 〈C(A),C-attacks〉 can be defined, re-
ferred to as the coalition framework associated with BAF.

Ex. 7 (cont’d) In this example, CAF can be represented by (by abusing notations,→
represents the attack relation in BAF and also the C-attack relation in CAF):

C3 C1�� �� C4 C2��

Dung’s definitions apply to CAF, and it can be proved that:

Prop. 8 ([17]) Let {C1, . . . ,Cp} be a finite set of distinct coalitions. {C1, . . . ,Cp} is
conflict-free for CAF iff C1∪ . . .∪Cp is conflict-free for AF.

So, CAF is a “meta-argumentation” framework with a set of “meta-arguments”
(the set of coalitions C(A)) and a “meta-attack” relation on these coalitions (the C-
attacks relation). A coalition gathers arguments which are close in some sense and
can be produced together. However, as coalitions may conflict, following Dung’s
methodology, preferred and stable extensions of CAF can be computed. Such exten-
sions will contain coalitions which are collectively acceptable. The last step consists
in gathering the elements of the coalitions of an extension of CAF. By this way, the
best groups of arguments (w.r.t. the given interaction relations) will be selected.

Def. 13 Let S ⊆ A. S is a Cp-extension (Cp means “Coalition-preferred”) of BAF
iff there exists {C1, . . . ,Cp} a preferred extension of CAF s.t. S = C1∪ . . .∪Cp.
S is a Cs-extension (Cs means “Coalition-stable”) of BAF iff there exists {C1, . . . ,Cp}
a stable extension of CAF s.t. S = C1∪ . . .∪Cp.

When the only preferred extension of CAF is the empty set, we define the empty
set as the unique Cp-extension of BAF.

Ex. 7 (cont’d) There is only one preferred extension of CAF, which is also stable:
{C1,C2}. So, S = {b,c,d, i} is the Cp-extension (and also the Cs-extension) of BAF.

Some nice properties of Dung’s basic framework are preserved:

• A BAF has always a (at least one) Cp-extension. It is a consequence of Def. 13.
• In contrast, there does not always exist a Cs-extension of BAF. The reason is that

there may be no stable extension of CAF.
• Each Cs-extension is also a Cp-extension. The converse is false.

4 Bipolar abstract argumentation systems 77

• There cannot exist two Cp-extensions s.t. one strictly contains the other one. It
follows from Def. 11 and 13.

However, other properties are lost. A Cp-extension is not always admissible for
AF, and a Cs-extension is not always a stable extension of AF:

Ex. 8 Consider the BAF represented by: a �� b c�� �� �� �� �������� d �� e
The coalitions are: C1 = {a}, C2 = {b,c,d}, C3 = {e}. And the associated CAF

can be represented by: C1 �� C2 �� C3

There is only one preferred extension of CAF, which is also stable: {C1,C3}. So,
S = {a,e} is the Cp-extension (and also the Cs-extension) of BAF. We have dRatte,
but a does not defend e against d (neither by a direct attack, nor by a supported
attack, though a attacks an element of the coalition which attacks e). So, S is not
admissible for AF. S does not contain c, but there is no attack (no supported attack)
of an element of S against c. So, S is not a stable extension of AF.

Note that a coalition is considered as a whole and its members cannot be used
separately in an attack process. Ex. 8 suggests that admissibility is lost due to the
size of the coalition {b,c,d}, and that it would be more fruitful to consider two
independent coalitions {c,b} and {c,d}. A new formalization of coalitions in terms
of conflict-free maximal support paths has been proposed in [17]. However, it does
not enable to recover Dung’s properties.

Note that the lost of admissibility in Dung’s sense is not surprising: admissibility
is lost because it takes into account “individual” attack and defence, whereas, with
meta-argumentation and coalitions, “collective” attack and defence are considered.

5 Labellings in bipolar frameworks

This section addresses the question of labelling-based semantics in a BAF. A
labelling-based semantics relies upon a set of labels and is defined by specifying
the criteria for assigning labels to arguments. An example of labelling-based seman-
tics in a basic argumentation framework is given by [22] with the robust semantics.
More generally, several approaches have been proposed for valuing the arguments
in a classical argumentation framework (for example [24, 29, 30, 8, 15, 1, 33]). In
some of them, the value of an argument depends on its interactions with the other ar-
guments; in other ones, it depends on an intrinsic strength of the argument. Besides,
Karacapilidis & Papadias [23] have proposed an argumentation web-tool, named
HERMES, for decision making in the medical field. Taking into account notions of
attacks and supports between arguments, this system permits the expression and
the weighting of arguments. The basic elements of this system are: a solution (an
answer to the question which is discussed) and a position (expressing the support
for, or the opposition to a solution or to another position). HERMES can label the
solutions and the positions by the status “active” or “inactive”. At the end of the
discussion, the “active” (resp. “inactive”) solutions are accepted (resp. rejected). An

78 Claudette Cayrol and Marie-Christine Lagasquie-Schiex

“active” solution is a recommended choice among the other solutions concerning
a same question. Different recursive labellings are proposed in HERMES. But, the
value of a position p depends only on the active positions which are linked to p in
the acyclic discussion graph, and the value of a position is always binary.

In this section, we propose a limited use of the notion of labelling-based seman-
tics for a BAF: we show how bipolar interactions can be used for defining valuations
over the set of arguments, i.e. functions which assign a value to each argument of the
BAF (a further step would be to use such a valuation in order to select arguments,
that is to completely define labelling-based semantics in a BAF, in an analogous
way as what has been done in [16] for basic argumentation frameworks).

The approach presented here (see [13]) has the following features: the valuation
process takes place before the selection process; the valuation process makes use of
a rich set of values and not only two as in HERMES (so, it is called a gradual valu-
ation); the value assigned to an argument takes into account all the direct attackers
and supporters of this argument (it is not the case in HERMES in which the value of
an argument only depends on the active positions); so it is called a local valuation.

This proposition extends the works [22, 8, 16] to bipolar argumentation frame-
works as defined in Section 2. It follows the same principles as those already de-
scribed in [15] augmented with new principles corresponding to the “support” in-
formation. So, the three underlying principles for a gradual interaction-based local
valuation are:

• P1: The value of an argument depends on the values of its direct attackers and of
its direct supporters.

• P2: If the quality of the support (resp. attack) increases then the value of the
argument increases (resp. decreases).

• P3: If the quantity of the supports (resp. attacks) increases then the quality of the
support (resp. attack) increases.

The value of an argument is obtained with the composition of several functions:

• one for aggregating the values of all the direct attackers; this function computes
the value of the “attack”

• one for aggregating the values of all the direct supporters; this function computes
the value of the “support”

• one for computing the effect of the attack and of the support on the value of the
argument.

In the respect of the previous principles, we assume that there exists a completely
ordered set V with a minimum element Vmin and a maximum element Vmax. The
following formal definition for a gradual local valuation can be given.

Def. 14 Let 〈A,Ratt,Rsup〉 be a bipolar argumentation framework. Let a ∈ A with
Ratt

−(a) = {b1, . . . ,bn} and Rsup
−(a) = {c1, . . . ,cp}.

A local gradual valuation on 〈A,Ratt,Rsup〉 is a function v : A→ V s.t.:
v(a) = g(hsup(v(c1), . . . , v(cp)),hatt(v(b1), . . . , v(bn))) with

4 Bipolar abstract argumentation systems 79

the function hatt (resp. hsup): V∗ →Hatt (resp. V∗ →Hsup)11 valuing the quality
of the attack (resp. support) on a, and the function g: Hsup×Hatt → V with g(x,y)
increasing on x and decreasing on y. The function h, h = hatt or hsup, must satisfy:

1. if xi ≥ x′i then h(x1, . . . ,xi . . . ,xn) ≥ h(x1, . . . ,x′i . . . ,xn),
2. h(x1, . . . ,xn,xn+1) ≥ h(x1, . . . ,xn),
3. h() = α ≤ h(x1, . . . ,xn) ≤ β , for all x1, . . . ,xn

12.

Def. 14 produces a generic local gradual valuation. Let us give two instances of
the generic definition, to illustrate the different principles.

• A first instance is defined by Hatt = Hsup = V = [−1,1] interval of the real
line, hatt(x1, . . . ,xn) = hsup(x1, . . . ,xn) = max(x1, . . . ,xn), and g(x,y) = x−y

2 (so,
we have α =−1, β = 1 and g(α,α) = 0).

• Another one is defined by V = [−1,1] interval of the real line, Hatt = Hsup =
[0,∞[interval of the real line, hatt(x1, . . . ,xn) = hsup(x1, . . . ,xn) = Σ n

i=1
xi+1

2 , and
g(x,y) = 1

1+y − 1
1+x (so, we have α = 0, β = ∞ and g(α,α) = 0).

The following table shows the values computed with both instances on some
simple examples:

Example with 1st instance with 2nd instance
No attack, no support: a v(a) = 0 v(a) = 0
Direct attack: a �� b v(b) =−0.5 v(b) =−0.33

Direct support: a �������� b v(b) = 0.5 v(b) = 0.33

Defence: a �� b �� c v(c) =−0.25 v(c) =−0.25

Sequence of supports: a �������� b �������� c v(c) = 0.75 v(c) = 0.4

Supported attack: a �������� b �� c v(c) =−0.75 v(c) =−0.4

Ex. 1 (cont’d) With the first (resp. second) instance, v(t1) = 1
4 (resp. 37

154).

Ex. 5 (cont’d) With the first and the second instances, v(b) = 0. In this case, there
is a perfect equilibrium13 between support and attack.

A local gradual valuation defined as above satisfies the following properties [13]:

• If Ratt
−(a) = Rsup

−(a) = ∅ then v(a) = g(α,α).
• If Ratt

−(a) �= ∅ and Rsup
−(a) = ∅ then v(a) = g(α,y)≤ g(α,α) for y≥ α .

• If Ratt
−(a) = ∅ and Rsup

−(a) �= ∅ then v(a) = g(x,α)≥ g(α,α) for x≥ α .

11 V∗ denotes the set of the finite sequences of elements of V, including the empty sequence. Hatt
and Hsup are ordered sets.
12 So, α is the minimal value for an attack (resp. a support) – i.e. there is no attack (resp. no
support) –, and β is the maximal value for an attack (resp. a support).
13 Note that it is not necessarily the case, and an appropriate choice of the function g enables to
give more importance to the attack than to the support.

80 Claudette Cayrol and Marie-Christine Lagasquie-Schiex

And we have the following comparative scale14:
Vmin ≤ g(α,y) ≤ g(α,α) ≤ g(x,α) ≤ Vmax

(for y≥ α) (for x≥ α)
Moreover the valuation proposed in Def. 14 satisfies the principles P1 to P3

(see [13] for a more detailed discussion).

6 Related issues and conclusion

In this chapter, an extension of [21]’s abstract argumentation framework has been
proposed in order to take into account two kinds of interaction between arguments
modelled with a support relation and an attack relation. In this abstract BAF, two
issues have been considered:

• taking into account bipolarity for defining acceptability semantics: either by en-
forcing the coherence of the admissible sets, or by turning a BAF into a meta-
argumentation framework using the concept of coalition;

• taking into account bipolar interactions for proposing gradual labellings for the
arguments.

6.1 Related issues about acceptability and bipolarity

Deflog [35]: DEFLOG argumentation system enables to express a support or an at-
tack between sentences in the language, with a new sentence using specific connec-
tors (one for each kind of interaction). Examples of sentences (with→ for the attack
relation and � for the support relation) are: a, b, (a � b), (a→ b), (c � (a � b)),
(d → (a � b)). In DEFLOG, the notions of sequence of supports and of supported
attacks can be retrieved but at the language level (between sentences). Moreover, the
notion of conflict-free set proposed in DEFLOG corresponds to the notion of safe set
(no sentence which is, at the same time, supported and attacked by the set).

DEFLOG enables to define the dialectical interpretations (or extensions) of a
given set of sentences S: an extension is built from a partition (J,D) of S such that J
is conflict-free and attacks the sentences of D.

Note that the attack relation and the support relation are explicitly expressed in
the sentences. So, one can have an extension of a set S s.t. some supported sentences
by J do not belong to S. DEFLOG extensions correspond to [21]’s stable extensions
for DEFLOG theories that do not go beyond the expressiveness of Dung’s argu-
mentation frameworks, and note that a Dung’s AF can always be expressed in DE-
FLOG. So in this precise sense, DEFLOG’s extensions are a faithful generalization
of Dung’s stable extensions, allowing more expressiveness. Moreover, [35] gives
also a faithful generalization of Dung’s preferred extensions.

14 Using this scale, the values ≤ (resp. ≥) to g(α,α) are considered as negative (resp. positive)
ones even if g(α,α) �= 0.

4 Bipolar abstract argumentation systems 81

Evidence-based argumentation [28]: In this work, the fundamental claim is that
an argument cannot be accepted unless it is supported by evidence. So, special ar-
guments are distinguished: the prima-facie arguments (which do not require any
support to stand).

Arguments may be acceptable only if they are supported (indirectly) by prima-
facie arguments. This is evidential support. Moreover, only supported arguments
may attack other arguments.

Then, the notion of defence is rather complex: A set of arguments S defends an
argument a if S provides evidential support for a and S invalidates each attack on
a (either by a direct attack on the attacker of a or by rendering this attack unsup-
ported).

Following our definitions, a BAF is an abstract framework, where arguments may
stand and attack with or without support. However, evidential reasoning as proposed
by [28] could also be handled in a BAF in the following way: Given X a set of
arguments (which are considered as prima-facie arguments in a given application),
a notion of evidential support can be defined via a sequence of supports from an
argument of X . Then, the notion of attack can be restricted so that attackers be
elements of X , or receive evidential support from X . Finally, instead of choosing the
classical definition for “S defends a” (as presented in Def. 7), it can be required first
that S provides support for a and secondly that for each supported attack on a, one
argument of the sequence of supports is directly attacked by S.

6.2 Related issues about coalitions of arguments

Another way for defining acceptability semantics in a bipolar framework is to turn
a bipolar argumentation framework into a meta-argumentation framework . This
transformation has the following characteristics: the support relation is used in or-
der to identify “coalitions” (sets of arguments which can be used together without
conflict and which are related by the support relation) and the attack relation is used
in order to identify conflicts between coalitions and then to define new acceptability
semantics as in Dung’s framework.

The concept of coalition has already been related to argumentation.

Collective argumentation framework [9, 27]: A collective argumentation frame-
work is an abstract framework where the initial data are a set of arguments and
a binary “attack” relation between sets of arguments. The key idea is the follow-
ing: a set of arguments can produce an attack against other arguments, which is not
reducible to attacks between particular arguments. That is in agreement with our
notion of coalition, since in our work, a coalition is considered as a whole and its
members cannot be used separately in an attack process. The proposal by Nielsen
and Parsons is similar to Bochman’s proposal. Both proposals take the attacks be-
tween sets of arguments as initial data, and define semantics by properties on subsets
of arguments. However, Nielsen and Parsons propose an abstract framework which
allows sets of arguments to attack single arguments only, and they stick as close

82 Claudette Cayrol and Marie-Christine Lagasquie-Schiex

as possible to the semantics provided by Dung. In contrast, Bochman departs from
Dung’s methodology and give new specific definitions for stable and admissible sets
of arguments. Our proposal essentially differs from collective argumentation in two
points. First, we keep exactly Dung’s construction for defining semantics, but we ap-
ply this construction in a meta-argumentation framework (the coalition framework).
The second main difference lies in the meaning of a coalition: we intend to gather
as many arguments as possible in a coalition, and a coalition cannot be broken in
the defence process.

Generation of coalition structures in MAS [18, 2]: In multi-agent systems
(MAS), the coalition formation is a process in which independent and autonomous
agents come together to act as a collective. A coalition structure (CS) is a partition of
the set of agents into coalitions. Each coalition has a value (the utility that the agents
in the coalition can jointly get minus the cost which this coalition induces for each
agent). So the value of a CS is obtained by aggregating the values of the different
coalitions in the structure. One of the main problems is to generate a preferred CS,
that is a structure which maximizes the global value. Recently, [2] has proposed an
abstract system where the initial data are a set of coalitions equipped with a conflict
relation. A preferred CS is a subset of coalitions which is conflict-free and defends
itself against attacks. Coalitions may conflict for instance if they are non-disjoint or
if they achieve a same task.

However, the generation of the coalitions is not studied in [2]. So, one perspective
is to apply our work to the formation of coalitions taking into account interactions
between the agents. Arguments represent agents in that case. Indeed, it is very im-
portant to put together agents which want to cooperate (“supports” relation) and to
avoid gathering agents who do not want to cooperate (“attacks” relation). Then, the
concept of Cp-extension provides a tool for selecting the best groups of agents (w.r.t.
the given interaction relations).

More generally, the work reported here is generic and takes place in abstract
frameworks, since no assumption is made on the nature of the arguments. Argu-
ments may have a logical structure such as a pair 〈explanation, conclusion〉, may just
be positions advanced in a discussion, or may be agents interacting in a multi-agent
system. All that we need is the bipolar interaction graph describing how the argu-
ments under consideration are interrelated. We think that this generic work should
stimulate discussion across boundaries.

6.3 Related issues about valuation and bipolarity

Most works about valuations of arguments take place in the basic framework. Some
of them consider intrinsic valuations, which express to what extent an argument
increases the confidence in the statement it promotes. Other approaches consider
interaction-based valuations. These approaches usually differ in the set of values
which are available.

4 Bipolar abstract argumentation systems 83

However, very few works have been interested in valuations which handle both
support and attack interactions. Most of these works have been developed for spe-
cific applications.

Medical applications: The most influential work has been proposed in HERMES

system [23]. But there is no graduality (only two possible values with HERMES),
and some parts of the interacting arguments are not taken into account for the com-
putation of the value. See in Section 5.

Valued maps of argumentations: The bipolar valuation in argumentation has been
used for a collective annotation of documents.

Collective annotation models supporting exchange through discussion threads. A
discussion thread is initiated by an annotation about a given document. Then, users
can reply with annotations which confirm or refute the previous ones. Annotations
are associated with a social validation which provides a synthetic view of the dis-
cussions. The purpose of this validation is to identify annotations which are globally
confirmed by the discussion thread. It can also take into account an intrinsic value
of the annotations.

In [11, 12] a discussion thread is modelled by a BAF. The set of arguments con-
tains the nodes of the thread. Pairs of the support (resp. attack) relation correspond
to replies in the thread of the confirm (resp. refute) type. The social validation of a
given annotation is computed with the local bipolar valuation. Moreover, the bipo-
lar valuation procedure has been slightly modified in order to take into account an
intrinsic value of each annotation.

References

1. L. Amgoud. Contribution à l’intégration des préférences dans le raisonnement argumentatif.
PhD thesis, Université Paul Sabatier, Toulouse, July 1999.

2. L. Amgoud. Towards a formal model for task allocation via coalition formation. In Proc. of
AAMAS, pages 1185–1186, 2005.

3. L. Amgoud, J.-F. Bonnefon, and H. Prade. An argumentation-based approach to multiple
criteria decision. In Proc. of ECSQARU, pages 269–280, 2005.

4. L. Amgoud, C. Cayrol, and M. Lagasquie-Schiex. On the bipolarity in argumentation frame-
works. In Proc. of the 10th NMR-UF workshop, pages 1–9, 2004.

5. L. Amgoud, C. Cayrol, M.-C. Lagasquie-Schiex, and P. Livet. On bipolarity in argumentation
frameworks. International Journal of Intelligent Systems, 23:1062–1093, 2008.

6. S. Benferhat, D. Dubois, S. Kaci, and H. Prade. Bipolar representation and fusion of prefer-
ences in the possibilistic logic framework. In Proc. of KR, pages 158–169, 2002.

7. C. Berge. Graphs and Hypergraphs. North-Holland Mathematical Library, 1973.
8. P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelligence,

128 (1-2):203–235, 2001.
9. A. Bochman. Collective argumentation and disjunctive programming. Journal of Logic and

Computation, 13 (3):405–428, 2003.
10. C. Boutilier. Towards a logic for qualitative decision theory. In Proc. of KR, pages 75–86,

1994.
11. G. Cabanac, M. Chevalier, C. Chrisment, and C. Julien. A social validation of collaborative

annotations on digital documents. In Proc. of IWAC, pages 31–40, 2005.

84 Claudette Cayrol and Marie-Christine Lagasquie-Schiex

12. G. Cabanac, M. Chevalier, C. Chrisment, and C. Julien. Collective annotation: Perspectives
for information retrieval improvement. In Proc. of RIAO, 2007.

13. C. Cayrol and M. Lagasquie-Schiex. Gradual valuation for bipolar argumentation frameworks.
In Proc of the 8th ECSQARU, pages 366–377, 2005.

14. C. Cayrol and M. Lagasquie-Schiex. On the acceptability of arguments in bipolar argumenta-
tion frameworks. In Proc of the 8th ECSQARU, pages 378–389, 2005.

15. C. Cayrol and M.-C. Lagasquie-Schiex. Gradual handling of contradiction in argumentation
frameworks. In Intelligent Systems for Information Processing: From representation to Appli-
cations, chapter Reasoning, pages 179–190. Elsevier, 2003.

16. C. Cayrol and M.-C. Lagasquie-Schiex. Graduality in argumentation. Journal of Artificial
Intelligence Research, 23:245–297, 2005.

17. C. Cayrol and M.-C. Lagasquie-Schiex. Coalitions of arguments in bipolar argumentation
frameworks. In Proc. of CMNA, pages 14–20, 2007.

18. V. Dang and N. Jennings. Generating coalition structures with finite bound from the optimal
guarantees. In Proc. of AAMAS, pages 564–571, 2004.

19. D. Dubois and H. Fargier. On the qualitative comparison of sets of positive and negative
affects. In Proc. of ECSQARU, pages 305–316, 2005.

20. D. Dubois and H. Prade. A bipolar possibilitic representation of knowledge and preferences
and its applications. In Proc. of WILF (LNCS 3849), pages 1–10, 2006.

21. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

22. H. Jakobovits and D. Vermeir. Robust semantics for argumentation frameworks. Journal of
logic and computation, 9(2):215–261, 1999.

23. N. Karacapilidis and D. Papadias. Computer supported argumentation and collaborative deci-
sion making: the HERMES system. Information systems, 26(4):259–277, 2001.

24. P. Krause, S. Ambler, M. Elvang, and J. Fox. A logic of argumentation for reasoning under
uncertainty. Computational Intelligence, 11 (1):113–131, 1995.

25. J. Lang, L. Van der Torre, and E. Weydert. Utilitarian desires. Journal of Autonomous Agents
and Multi-Agents Systems, 5(3):329–363, 2002.

26. J. Nielsen. On the number of maximal independent sets in a graph. Technical Report RS
02-15, Center for Basic Research in Computer Science (BRICS), April 2002.

27. S. Nielsen and S. Parsons. A generalization of Dung’s abstract framework for argumentation.
In Proc. of the 3rd WS on Argumentation in multi-agent systems, 2006.

28. N. Oren and T. J. Norman. Semantics for evidence-based argumentation. In Proc. of COMMA,
pages 276–284, 2008.

29. S. Parsons. Normative argumentation and qualitative probability. In Proc. of ECSQARU, pages
466–480, 1997.

30. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible pri-
orities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

31. S. W. Tan and J. Pearl. Specification and evaluation of preferences under uncertainty. In Proc.
of KR, pages 530–539, 1994.

32. S. Toulmin. The Uses of Arguments. Cambridge University Press, Mass., 1958.
33. B. Verheij. Two Approaches to Dialectical Argumentation: Admissible Sets and Argumenta-

tion Stages. In Proc. of Dutch Conference on Artificial Intelligence, 357–368, 1996.
34. B. Verheij. Automated argument assistance for lawyers. In Proc. of International Conference

on Artificial Intelligence and Law, 43–52, 1999.
35. B. Verheij. Deflog: on the logical interpretation of prima facie justified assumptions. Journal

of Logic in Computation, 13:319–346, 2003.

Chapter 5
Complexity of Abstract Argumentation

Paul E. Dunne and Michael Wooldridge

1 Introduction

The semantic models discussed in Chapter 2 provide an important element of the
formal computational theory of abstract argumentation. Such models offer a variety
of interpretations for “collection of acceptable arguments” but are unconcerned with
issues relating to their implementation. In other words, the extension-based seman-
tics described earlier distinguish different views of what it means for a set, S, of
arguments to be acceptable, but do not consider the procedures by which such a set
might be identified.

This observation motivates the study of natural questions relating to the actual
implementation of different semantics, e.g., using semantics s what can be stated
regarding methods that: decide if S ∈ Es(〈A,R〉) for S ⊆ A; or determine if x ∈ S
for at least one (alternatively every) S ∈ Es(〈A,R〉), etc? Such questions raise two
separate issues: that of algorithms by which upper bounds can be obtained; and that
of mechanisms by which lower bounds can be established. Some discussion of the
former will be given in Chapter 6; the field of Computational Complexity Theory
provides a number of approaches by which the latter issue can be addressed: these
methods and their application within abstract argument systems are the subject of
the current chapter. In the next section we give an overview of some basic notions
in complexity theory and continue with a review of some fundamental results on
complexity in abstract argument systems in Section 3. In Section 4 we consider
analogous results within deductive frameworks, assumption-based frameworks and
a number of complexity-theoretic properties of value-based frameworks. Section 5

Paul E. Dunne
Dept. of Computer Science, University of Liverpool Liverpool UK, e-mail: ped@csc.liv.ac.
uk

Michael Wooldridge
Dept. of Computer Science, University of Liverpool Liverpool UK, e-mail: mjw@csc.liv.ac.
uk

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 85
DOI 10.1007/978-0-387-98197-0 5, c© Springer Science+Business Media, LLC 2009

86 Paul E. Dunne and Michael Wooldridge

summarises some recent developments concerning novel semantics. Conclusions
and selected open questions are discussed in the final section.

2 Elements of Computational Complexity Theory

In crude terms, computational complexity theory deals with classifying computa-
tional problems with respect to the resources needed for their solution, e.g., the time
required by the fastest program that will solve the problem. In this section we intro-
duce some of the basic concepts in the field of computational complexity.

2.1 Languages and Decision Problems

We think of “computational problems” in terms of recognising objects, (e.g., propo-
sitional formulae, argumentation frameworks, etc.), which have some property of
interest, (e.g., instantiations that make the formula true (�), non-empty subsets of
arguments that define preferred extensions). For such problems one has a set of
problem instances, and the goal is to decide whether or not a given instance should
be accepted, i.e., has the property of interest. With this approach, decision prob-
lems are defined by describing the form taken by instances and the question asked
of these instances, i.e., the property we want to check. The subset of instances for
which positive answers are given is often referred to as a language. For example,
the decision problem (language) 3-CNF Satisfiability (3-SAT) has,

Instance: Propositional formula, ϕ(x1,x2, . . . ,xn) over the variables {x1, . . . ,xn} in
conjunctive normal form with at most three literals in each clause, i.e., ϕ is specified
by a set of m clauses, {C1,C2, . . . ,Cm}, with Cj = y j,1 ∨ y j,2 ∨ y j,3 where y j,k is a
literal from {x1, . . . ,xn,¬x1, . . . ,¬xn}, so that ϕ = ∧m

j=1 Cj.
Question: Is there an instantiation, α = 〈a1,a2, . . . ,an〉 ∈ 〈⊥,�〉n for which setting
xi := ai results in every clause, Cj having at least one literal given the value �?

Notice that this approach allows us to distinguish ideas of problem size. Although
this could be captured in terms of the number of bits used to encode an instance,
there is often some natural parameter that can be used as an alternative, e.g., the size
of a 3-CNF formula is usually measured as the number of propositional variables in
its definition (n). In general we use |x| to denote the size of a problem instance x.

2.2 Complexity Classes – P, NP, coNP and PH

The concept of complexity class is used to describe problems whose resource re-
quirements are similar. Given a language, L, the problem of deciding whether x ∈ L

5 Complexity of Abstract Argumentation 87

is viewed as having an efficient algorithm if there is a constant value, k, and program
M, for which

• if x ∈ L, then M returns “accept” else M returns “reject”.
• M returns its answer after at most |x|k steps.

The program M is said to provide an algorithm for L with run-time nk, so leading to
the complexity class, P, (of polynomial time decidable languages) as

P =
∞⋃

k=0

{ L : There is an algorithm with run-time nk deciding x ∈ L.}

Note that we generally regard problems as being computationally easy or tractable
if they are polynomial time decidable, although of course, if k is very large, polyno-
mial time decidability may not in fact imply the existence of a practicable algorithm
to solve the problem.

It is often the case that the question x ∈?L can be phrased in terms of identi-
fying some auxiliary structure (or witness) that x is indeed a member of L, e.g.,
ϕ ∈ 3− SAT, is witnessed by any instantiation, α , for which ϕ(α) =�. In general,
associated with x one may have a set of possible witnesses, W (x) to x ∈ L, any such
witness having size at most |x|r, for some constant r. Suppose that LW is the lan-
guage of pairs 〈x,y〉 defined by instances, x of L and witnesses y ∈W (x) to x ∈ L.
Concentrating on languages, LW in P, we get the complexity classes NP and coNP –

L ∈ NP if (x ∈ L) ⇔ ∃ y ∈W (x) : 〈x,y〉 ∈ LW

L ∈ coNP if (x ∈ L) ⇔ ∀ y ∈W (x) : 〈x,y〉 �∈ LW

So, for the complementary problem to 3-SAT, called 3-UNSAT, ϕ ∈ 3− UNSAT if
and only if ϕ has no satisfying instantiation: 3− SAT∈NP while 3−UNSAT∈coNP.

Looking at the requirements for L ∈ P, L ∈ NP, L ∈ coNP, we note the follow-
ing pattern: polynomial time decidable languages are characterised by unary pred-
icates – PL – over instances of L, i.e., tests x ∈ L equate to evaluating the predi-
cate PL(x) ≡ (x ∈ L); languages in NP and coNP are characterised by polynomial
time decidable binary predicates – PL(x,y) over instances and possible witnesses
so that NP languages are those expressible as ∃ y PL(x,y) and coNP expressible as
∀ y PL(x,y). This view naturally suggests extending to (k + 1)-ary polynomial time
decidable predicates PL(x,y1,y2, . . . ,yk) and the languages characterised as

(x ∈ L) ⇔ Qk yk Qk−1 yk−1 · · · Q2 y2 Q1 y1 PL(x,y1,y2, . . . ,yk)

where Qi ∈ {∃,∀}, Qi �= Qi+1. When Qk = ∃ (respectively ∀) the corresponding
class is denoted by Σ p

k (respectively, Π p
k). The collection ∪∞

k=0 Σ p
k (= ∪∞

k=0 Π p
k) is

called the Polynomial Hierarchy (PH) .
As examples of languages in Σ p

k and Π p
k we have the so-called quantified satisfia-

bility problems – QSATΣ
k and QSATΠ

k – whose instances are 3-CNF formulae defined
on k disjoint sets of n propositional variables – X1,X2, . . . ,Xk – so that

88 Paul E. Dunne and Michael Wooldridge

ϕ ∈ QSATΣ
k ⇔

{∃α1∀α2 · · ·∃αk−1∀αk ϕ(α1,α2, . . . ,αk) =⊥ (k even)
∃α1∀α2 · · ·∀αk−1∃αk ϕ(α1,α2, . . . ,αk) =� (k odd)

ϕ ∈ QSATΠ
k ⇔

{∀α1∃α2 · · ·∀αk−1∃αk ϕ(α1,α2, . . . ,αk) =� (k even)
∀α1∃α2 · · ·∃αk−1∀αk ϕ(α1,α2, . . . ,αk) =⊥ (k odd)

It is immediate from the formal definitions of P, NP, coNP and PH that the corre-
sponding sets (of languages) satisfy

P ⊆
{

NP = Σ p
1

coNP = Π p
1

}
⊆ ·· · ⊆

{
Σ p

k
Π p

k

}
⊆

{
Σ p

k+1
Π p

k+1

}
⊆ ·· ·

It is conjectured that all of these containments are strict and that Σ p
k �= Π p

k for any
k≥ 1: these generalize the well-known P �= NP conjecture and, to date, are unproven.

2.3 Hardness, Completeness, and Reducibility

The forms presented in Section 2.2 allow problems to be grouped together via upper
bounds: expressing membership in L in terms of some polynomial time decidable
finite arity predicate Pk+1 places L (at worst) in one of Σ p

k or Π p
k . The relationship

of polynomial time many one reducibility between languages is one key technique
underlying arguments that such upper bounds are “optimal”. Suppose, given some
complexity class, C, we can show that L has the following property:
For every L′ ∈ C there is a polynomial time procedure, τ , that transforms instances
x of L′ to instances τ(x) of L in such a way that x ∈ L′ if and only if τ(x) ∈ L. We
write L′ ≤p

m L to describe this relationship.
What may be said of L in such cases? Certainly, were L∈ P then we could deduce

C ⊆ P: given an instance x of L′ ∈ C, construct the instance τ(x) of L (polynomial
time) and then use the polynomial time method to decide τ(x) ∈ L. We can thereby
deduce that the complexity of L is at least as high as the complexity of any language
in C. A language L for which every L′ ∈ C has L′ ≤p

m L is said to be C–hard . If, in
addition, L∈ C then L is called C–complete . Just as P is considered as encapsulating
all efficiently decidable languages, so the classes of NP–hard, coNP–hard, Σ p

k –hard
and Π p

k –hard languages are viewed as progressively more and more demanding
in terms of their time requirements. Noting the long-standing conjecture about the
relationship between these classes a proof that L ∈ P is a positive statement that L is
tractable; a proof that L is C-hard for some C ∈ PH (other than P) provides a strong
indication that L �∈ P, i.e., that L is intractable.1

While the condition L′ ≤p
m L for every L′ ∈ C may seem somewhat demanding,

noting that the relation ≤p
m is transitive we can replace “∀ L′ ∈ C L′ ≤p

m L” by “For

1 It should be noted that C∈ PH is, almost without exception a class such as Σ p
k or Π p

k for some
fixed k > 0. There are a number of technical consequences which suggest it is extremely unlikely
the class PH itself has complete languages, i.e., L such that ∀L′ ∈ PH L′ ≤p

m L.

5 Complexity of Abstract Argumentation 89

some C-hard, L′ : L′ ≤p
m L”. For the classes introduced in Section 2.2 we have the

following results of Cook [10] and Wrathall [45].

Theorem 5.1.

a. 3-SAT is NP–complete; 3-UNSAT is coNP–complete.
b. QSATΣ

k is Σ p
k –complete; QSATΠ

k is Π p
k –complete.

For the results discussed later in this Chapter with very few exceptions the complex-
ity classifications use reductions from 3-SAT or 3-UNSAT.

2.4 More Advanced Ideas

The topics outlined above provide sufficient background for the majority of com-
plexity analyses on decision problems for AFs. There are, however, a number of
developments – in particular in the related frameworks discussed in Section 4.1 –
which occur in more recent work on complexity of abstract argumentation: here
we briefly introduce the basic notions of oracle-based complexity classes and the
models proposed in work of Cook and Reckhow [11] in order to capture relative
complexity of proof systems.

Oracle computations, are defined in terms of the availability of a device (or ora-
cle) that at the cost of a single step in the algorithm provides the answer to a given
language membership query, e.g., oracle computations using 3-SAT may construct
a 3-CNF ϕ , query the 3-SAT oracle as to whether ϕ ∈ 3− SAT with the answer
determining subsequent steps taken. This notion, when coupled with oracles for
NP-complete languages, gives rise to a range of complexity classes differentiated
by the particular restrictions placed on the manner in which such calls are made.
One important representative of such classes is the so-called difference class, Dp

formally defined as those languages, L whose members are the intersection of a
language L1 ∈ NP with a language L2 ∈ coNP: a language L ∈ Dp can thus be de-
cided by a polynomial time algorithm that is allowed to make at most two calls on
an NP oracle (which, by virtue of Thm 5.1(a) can be assumed to be 3-SAT): given
an instance x of L, test x ∈ L1 by forming the appropriate 3-SAT instance, τ1(x),
and calling the oracle; if the response is positive, then x ∈ L2 is tested in the same
way, forming the instance τ2(x) using a second oracle call to verify τ2(x) �∈ 3− SAT,
i.e. τ2(x)∈ 3−UNSAT. More generally, the class of languages for which polynomial
time algorithms using at most f (|x|) calls on some oracle for a language complete in
a class C is denoted by PC[f (|x|)] (so that Dp ⊆ PNP[2]). Where no restriction is placed
on the oracle invocation the notation PC is used. As will be seen from the results
reviewed in Sect. 4.1, the algorithmic “base class” can be defined within arbitrary
complexity classes, not simply P: this leads to classes such as NPC, etc.

The formalism from [11] has been adopted in order to relate the efficiency of
proof procedures for credulous reasoning in AFs to more widely known proof pro-
cedures in propositional logic, e.g., resolution, tableau-based, sequents, etc. The
model starts from an abstraction of “proof system” Π for a (coNP) language, L as

90 Paul E. Dunne and Michael Wooldridge

a procedure which given x ∈ L admits a formal derivation of this fact: the relative
efficiency of two processes Π1 and Π2 being viewed as the number of derivation
steps each requires.2 This approach precisely formalises two systems as equivalent
whenever derivations in one can be simulated by polynomially longer derivations in
the other.

3 Fundamental Complexity Results in Argument Frameworks

Faced with a particular semantics and framework there are a number of questions
which one may wish to decide: whether a given collection of arguments satisfies
the conditions specified by the semantics; whether a particular argument belongs
to at least one or every such set; whether there is any (non-empty) collectively ac-
ceptable subset, etc.. We shall refer to these subsequently as Verification (VERs) ;
Credulous Acceptance (CAs) ; Sceptical Acceptance (SAs) ; Existence (EXs); and
Non-emptiness (NEs). Table 5.1 presents the formal definitions.

Table 5.1 Decision Problems in AFs
Problem Instance Question

VERs G(A,R); S⊆A Is S ∈ Es(G)?
CAs G(A,R); x ∈A Is there any S ∈ Es(G) for which x ∈ S?
SAs G(A,R); x ∈A Is x a member of every T ∈ Es(G)?
EXs G(A,R) Is Es(G) non-empty?
NEs G(A,R) Is there any S ∈ Es(G) for which S �= /0?

Before discussing the intractability results that form the main concern of this
chapter, we briefly review the cases for which efficient methods are known.

Theorem 5.2.

a. For s = GR (the grounded semantics), all of the decision problems in Table 5.1
are in P. Furthermore the unique subset S for which S ∈ EGR(〈A,R〉) can be
constructed in polynomial time.

b. Given 〈A,R〉 and S ⊆ A deciding if S is conflict-free, admissible, or stable, i.e.,
the decision problem VERST (〈A,R〉,S), are all in P.

2 In carrying out such comparisons it is presumed that basic derivations in each system are compa-
rable, e.g., can be implemented in polynomial time.

5 Complexity of Abstract Argumentation 91

3.1 Intractability Results in Preferred and Stable Semantics

We now turn to the problems defined in Table 5.1 with respect to the other extension
based semantics - Preferred and Stable - introduced in Dung [22]. Our main aim is
to outline the constructions of Dimopoulos and Torres [21] and Dunne and Bench-
Capon [28] from which the classifications shown in Table 5.2 result.

Table 5.2 Complexity of Decision Problems in Preferred (PR) and Stable Semantics (ST)

A VERPR coNP–complete [21]
B CAPR NP–complete [21]
C SAPR Π p

2 –complete [28]
D NEPR NP–complete [21]
E CAST NP–complete [21]
F SAST coNP–complete/Dp–complete See discussion below.
G EXST NP–complete attributed to Chvatal in [33]; also [16, 21, 32].

All of the lower bound results in Table 5.2 are obtained as variations on what we
shall refer to as the standard translation from 3-CNF formulae to AFs.

Definition 5.1. Given ϕ(z1, . . . ,zn) a 3-CNF with clauses {C1, . . . ,Cm} the AF,
Gϕ(Aϕ ,Rϕ) constituting the standard translation from ϕ has

Aϕ = {ϕ}∪{C1, . . . ,Cm}∪{z1, . . . ,zn}∪{¬z1, . . . ,¬zn}
Rϕ = {〈Cj,ϕ〉 : 1≤ j ≤ m} ∪ {〈zi,¬zi〉,〈¬zi,zi〉 : 1≤ i≤ n}

∪ {〈yi,Cj〉 : yi is a literal (i.e., zi or ¬zi) of the clause Cj}
The AF described in Defn 5.1 is, modulo some minor simplifications, identical to
that originally used in [21]. This framework provides an extremely versatile mecha-
nism that underpins almost all the complexity analyses of extension based semantics
in abstract argumentation frameworks.3 The basic form of the standard translation
suffices to establish (B) and (E) of Table 5.2, whereas (A) and (D) follow from quite
simple modifications to it.

For example consider the claim in Table 5.2(B) that CAPR is NP–complete. First
note that CAPR ∈ NP since we may use the set of all admissible subsets of A con-
taining x as witnesses to 〈G,x〉 ∈ CAPR. We may then use the standard translation
to prove 3-SAT ≤p

m CAPR: given ϕ form the instance 〈Gϕ ,ϕ〉 of CAPR. If ϕ ∈ 3-SAT

then the literals instantiated to� by a satisfying assignment indicate a subset S of the
arguments {z1, . . . ,zn,¬z1, . . . ,¬zn} for which S∪{ϕ} is admissible. On the other
hand if 〈Gϕ ,ϕ〉 ∈ CAPR then an admissible set containing ϕ must include a conflict-
free subset of literals arguments that collectively attack all of the clause arguments:
instantiating the corresponding literals to � produces a satisfying assignment of ϕ .

3 Exceptions are a specialized case of CAPR and a select number of reductions dealing with value-
based argumentation frameworks, cf. [25, Thm. 8(a), Thms. 23–25], and later in this chapter.

92 Paul E. Dunne and Michael Wooldridge

Adapting the standard translation by adding a new argument, ψ that is attacked
by ϕ and attacks all of the literal arguments yields an AF, Hϕ for which (both) Hϕ ∈
NEPR and Hϕ ∈ EXST hold if and only if ϕ ∈ 3-SAT. Table 5.2(A) is an immediate
consequence of the former property using the special case of verifying if the empty
set is a preferred extension.

The discussion above accounts for all the cases given in Table 5.2 with the ex-
ceptions of SAPR and SAST . We first address the apparent ambiguity in the clas-
sification of SAST – Table 5.2(F). A further modification to the framework Hϕ
by which the new argument ψ now attacks every argument in Gϕ , gives an AF in
which ψ belongs to every stable extension if and only if ϕ ∈ 3-UNSAT so giving
a coNP-hardness lower bound.4 In principle, one appears to have a coNP method
via “〈〈A,R〉,x〉 ∈ SAST ⇔ ∀ S ⊆ A (VERST (〈A,R〉,S) ⇒ (x ∈ S)”. There is,
however, a possible objection: 〈G,x〉 ∈ SAST even when G has no stable exten-
sion whatsoever, i.e., G �∈ EXST .5 In order to deal with this objection one might
require as a precondition of 〈G,x〉 ∈ SAST that G∈ EXST leading to an easy Dp upper
bound: positive instances are characterised as those in CAST ∩{〈〈A,R〉,x〉 : ∀ S ⊆
A (VERST (〈A,R〉,S) ⇒ (x ∈ S)}

The matching Dp–hardness lower bound provides another illustration of the flex-
ibility of the standard translation: instances 〈ϕ1,ϕ2〉 of the canonical Dp–hard prob-
lem 〈3-SAT,3-UNSAT〉 being transformed to an instance 〈K,ψ2〉 of SAST . The con-
struction is illustrated in Fig. 5.1. We leave the reader to verify that this framework
satisfies both EXST and has ψ2 a member of every stable extension if and only if
ϕ1 ∈ 3-SAT and ϕ2 ∈ 3-UNSAT.6

α

Φ2
Φ1

Ψ2 attacks all arguments

Ψ1 Ψ2

Φ1
H

Φ2
H

Ψ1 attacks all arguments

Fig. 5.1 The reduction from 〈ϕ1,ϕ2〉 ∈ 〈3-SAT,3-UNSAT〉 to 〈K,ψ2〉 ∈ SAST

4 In [28] the coNP-hardness result is attributed to Dimopolous and Torres who do not explicitly
consider this problem: the commentary of [28, p. 189] observes the lower bound follows from an
easy modification to a construction in [21].
5 Resulting in AFs for which 〈〈A,R〉,x〉 ∈ SAST and 〈〈A,R〉,x〉 �∈ CAST for every x ∈A, i.e. every
argument is sceptically accepted but none credulously so.
6 The construction in Fig. 5.1 has not previously appeared in the literature. The issues concerning
precise formulations of SAST appear first to have been raised in [31].

5 Complexity of Abstract Argumentation 93

Although the remaining case in Table 5.2 – Π p
2 -completeness of SAPR deals with

a, notionally, harder class of languages, again the lower bound follows by adapting
the standard translation: in this case to instances ϕ(y1, . . . ,yn,z1, . . . ,zn) of QSATΠ

2 .7

It is worth noting that the decision problem actually considered via this reduction,
in [28], is the so-called coherence property of AFs, i.e., whether G is such that
EPR(G) = EST (G): this problem is shown to be Π p

2 -complete with the classification
of SAPR an immediate consequence of the reduction used.

3.2 Dialogue and Relationships to Proof Complexity

The standard translation from 3-CNF (which easily generalises to arbitrary CNF)
gives rise to one concrete interpretation of argumentation process in terms of log-
ical proof: in particular, the concept of dialogue based procedures by which two
parties attempt to reach agreement on the (credulous) acceptability status of some
argument, will be discussed in Chapter 6. If one considers applying such procedures
to determining the status of ϕ (in the standard translation) then a demonstration
that ϕ is not admissible corresponds to a formal logical proof that the propositional
formula ¬ϕ is a tautology. There are, of course, a number of widely used and well-
studied proof mechanisms for propositional logic, the question of interest in terms
of complexity in argumentation, is what one can state about the efficiency of dia-
logue based argumentation processes: that is to say, using the comparative schema
proposed in [11], how does the use of dialogue approaches compare to other tech-
niques? This question has been examined with respect to one particular credulous
reasoning process: the two-party immediate response protocol (TPI) introduced in
[44]. Informally, TPI-dialogues involve two protagonists (PRO and CON) debating
the acceptability of a given argument x: PRO claiming x to be acceptable and CON

adopting the opposite stance. The dialogue is set in the context of an AF where each
player takes turns advancing arguments in A: PRO starts by putting forward x. A re-
quirement of the game is that, whenever possible to do so, a player must put forward
an argument that attacks the most recent argument put forward by their opponent:
where this is not possible the player must backtrack to a (specified) earlier point in
the discussion or concede. In [29] the number of moves required in this game when
played on the standard translation of an unsatisfiable CNF is considered. The TPI

procedure turns out to be equivalent to a standard propositional proof theory – the
so-called CUT-free Gentzen calculus [34] and, as a consequence of [42], there are
TPI-disputes requiring exponentially many moves in order to resolve the status of
particular arguments.

7 The reduction originally presented in [28] is not restricted to 3-CNF formulae but describes a
general translation from arbitrary propositional formulae over the logical basis {∧,∨,¬}.

94 Paul E. Dunne and Michael Wooldridge

4 Complexity in Related Abstract Frameworks

As described in several chapters there are a number of abstract treatments of argu-
mentation that build on the basic structures and semantics proposed in Dung [22].
Among such are assumption-based frameworks (ABFs) discussed in Chapter 10; the
closely related deductive systems considered in Chapter 7; and the value-based ar-
gumentation frameworks (VAFs) whose elements have been presented in Chapter 3.
Our aim in this section is to review the range of complexity-theoretic results that
have been proved within these models. In general we will not give detailed defini-
tions of relevant ideas and refer the reader to the appropriate chapter for these.

4.1 Complexity in Assumption-based Argumentation

Assumption-based frameworks [5], can be interpreted as specific concrete interpre-
tations of abstract argumentation frameworks, i.e. as mechanisms for constructing
the structure 〈A,R〉 by generating arguments in A and attacks between these. This
approach starts from some deductive system – (L,R) in which L is a formal lan-
guage, e.g., well-formed propositional sentences, and R a set of inference rules of
the form α ← {α1, . . . ,αn} describing the conclusions (α ∈ L) that are supported
by the premises {α1, . . . ,αn} ⊆ L. Such systems have an associated derivability re-
lation, � : 2L → L; Δ � α holds whenever α may be obtained (via R) from Δ .
It should be noted that attention is restricted to theories in which the underlying
derivability relation is monotonic, i.e., (Δ � α)⇒ (Δ ′ � α) for any Δ ′ ⊇ Δ .

The key elements added are assumption sets, A⊆ L and the contrary function, –

which is a (total) mapping from α ∈A to its contrary α ∈ L. In very simplified terms,
(sets of) assumptions define the basis for atomic arguments (in AFs), and the con-
trary mapping provides the reasons underpinning attacks between arguments. Just
as the semantics of “collection of acceptable arguments” in AFs is given by different
notions of extension, so too in ABFs the objects of interest are subsets of assump-
tions defining extensions. In total, viewing an argument as “a statement derivable
from some set of assumptions”, leads to the notion of attack between arguments
as (the argument) Δ � α attacks (the argument) Δ ′ � β if Δ � γ for an assumption
γ ∈ Δ ′. In this way we can take any basic semantics w.r.t. AFs, and define analogues
w.r.t. ABFs, e.g., a set of assumptions, Δ , is conflict-free if for every α ∈ Δ it is not
the case that Δ � α .

Similarly, one may formulate each of the decision problems of Table 5.1 in
ABF settings. There are, however, a number of important distinctions: as a result
complexity-theoretic treatments of ABFs use significantly different techniques to
those discussed in Section 3. In particular,

a. In AFs both arguments, A, and the attack relation, R, are specified explicitly. In
ABFs these are implicit and dependent on the underlying set of assumptions A
and the precise deductive theory embodied within (L,R).

5 Complexity of Abstract Argumentation 95

b. The deductive system (L,R) is not limited to classical propositional logic with
the contrary being simply logical negation, e.g., (L,R) and – could be instantiated
in terms of a number of non-monotonic logics such as the default logic of [39].

Since the attack relation is defined between assumption sets, in principal one may
express any ABF 〈(L,R),A,–〉 as an AF, 〈A,R〉: A = 2A, R = {〈Δ ,Δ ′〉 : Δ �
γ for some γ ∈ Δ ′}. There is, however, one complication: in practice not every
subset of A is of interest, only those that satisfy the technical requirement of be-
ing closed, i.e., Δ ⊆ A is closed if and only if α ∈ A \ Δ ⇒ ¬(Δ � α). While
this provides a starting point for algorithms and upper bound constructions, for
lower bounds such approaches yield little of benefit: |〈(L,R),A,–〉| is exponentially
smaller than the corresponding AF.

A detailed investigation of complexity-theoretic issues within ABFs has been pre-
sented in a series of papers by Dimopolous, Nebel and Toni [18, 19, 20]. Using the
notation LABF to distinguish ABF instantiations of decision problems L as presented
in Table 5.1 and LABF,LT with reference to different formal theories LT = (L,R), a
key element in exact complexity characterisations is the computational complexity
of the derivability relation for the underlying logic, i.e., the derivability problem
(DER) for the formal theory (L,R), has instances 〈Δ ,α〉 – Δ ⊆ L, α ∈ L – accepted
if and only if Δ � α . For example, in standard propositional logic the derivability
problem is coNP–complete: Δ � α if and only if the formula α ∨ ∨ϕ∈Δ ¬ϕ is a
tautology.

Combining the notion of “oracle complexity classes” as described in Section 2.4
using oracles for DER(Δ ,α) provides a generic approach to obtaining upper bounds
on the complexity of decision problems within ABFs. For example, consider the
decision problem VER

ABF,LT
ST of verifying that a given set of assumptions defines

a stable extension within 〈(L,R),A,–〉, where the derivability problem for LT is in
some class C. In order to decide if Δ is accepted:

1. Check that Δ is closed.
2. Check that Δ is conflict-free, i.e., ∀ α ∈ Δ ¬(Δ � α).
3. Check that Δ attacks every assumption α �∈ Δ , i.e., Δ � α for each α ∈ A\Δ .

All of these stages can be carried out using |A| calls to an oracle for DER: (1) tests
(Δ ,α) �∈ DER for α ∈ A \Δ ; (2) involves a further |Δ | calls; and (3) a final set of
|A\Δ | calls. In consequence, VER

ABF,LT
ST ∈ PC.

Concentrating on upper bounds for Table 5.1 within the most general settings8

the upper bounds obtained in [20] are stated in Table 5.3.

It may be noted that with the exception of upper bounds on stability related prob-
lems, those relating to preferred and admissible sets of assumptions are rather higher
than might be expected having allowed for the additional overhead associated with

calls to the DER oracle, e.g., CAADM ∈ NP whereas CAABF
ADM ∈ coNPNPC

rather than

8 That is to say, no specific properties of the underyling frameworks are assumed, e.g., the property
“flatness” described in [5].

96 Paul E. Dunne and Michael Wooldridge

Table 5.3 Upper bounds for main decision problems in ABFs

Problem Semantics Instance (ABF) ABF bound (DER ∈ C) Instance (AF) AF bound
VERs Admissible 〈(L,R),A,–〉, Δ ⊆ A coNPC 〈A,R〉, S⊆A P

VERs Preferred 〈(L,R),A,–〉, Δ ⊆ A coNPNPC 〈A,R〉, S⊆A coNP

VERs Stable 〈(L,R),A,–〉, Δ ⊆ A PC 〈A,R〉, S⊆A P

CAs Admissible 〈(L,R),A,–〉, ϕ ∈ L NPNPC 〈A,R〉, x ∈A NP

CAs Preferred 〈(L,R),A,–〉, ϕ ∈ L NPNPC 〈A,R〉, x ∈A NP

CAs Stable 〈(L,R),A,–〉, ϕ ∈ L NPC 〈A,R〉, x ∈A NP

SAs Preferred 〈(L,R),A,–〉, ϕ ∈ L coNPNPNPC

〈A,R〉, x ∈A Π p
2

SAs Stable 〈(L,R),A,–〉, ϕ ∈ L NPC 〈A,R〉, x ∈A coNP/Dp

NPC. That the reasoning problems exhibit “higher than expected” complexity in
ABFs is not on account of the (additional) closure checking stage, despite the fact
this does not feature in corresponding AF algorithms.9 The increased complexity
arises from the nature of the attack relation, e.g. deciding 〈G,x〉 ∈ CAPR involves:
guess S⊆A, confirm that x ∈ S and S is conflict-free; check S attacks each y that at-
tacks S. Suppose, however, we consider the analogous version for CA

ABF,LT
PR : guess

Δ ⊆ A; confirm that Δ is closed, Δ � ϕ , and Δ does not attack itself; finally check
that any closed assumption set attacking Δ is itself attacked by Δ . This final stage
requires tests involving Δ and all other sets of assumptions, rather than (as is effec-
tively the case in AFs and suffices for stability) checking a property of Δ in relation
to single assumptions.

We conclude this overview of complexity in ABFs by noting that for the credu-
lous and sceptical reasoning variants, the classifications of Table 5.3 turn out to be
optimal for a wide range of instantiations of 〈(L,R),A,–〉 modelling non-classical
logics such as DL [39], AEL [38], etc. The typical approach to lower bound proofs,
e.g., as illustrated in the specific examples of DL and AEL, uses bounds on the com-
plexity of DER: the cases DL and AEL being coNP–complete. While for DL, one can
show CA

ABF,DL
PR ∈ NPNP = Σ p

2 , no reduction in the generic upper bound is possi-

ble for AEL: CA
ABF,AEL
PR ∈ NPNPNP

, i.e Σ p
3 . The Σ p

2 (resp. Σ p
3) hardness reductions

use instances of QSATΣ
2 (resp. QSATΣ

3) to define ABFs instantiated as DL (resp. AEL)
systems: detailed constructions may be found in [20].

4.2 Complexity in Value-based Argumentation Frameworks

We recall, from Chapter 3, that value-based argumentation frameworks (VAFs) aug-
ment the basic 〈A,R〉 abstraction of Dung’s AFs by introducing a finite set of values,
V, and a mapping η : A → V describing the abstract value, η(x) endorsed by x∈A,
so a VAF is described via a four tuple, G(V) = 〈A,R,V,η〉. In VAFs the underlying
structures are the completely abstract frameworks of [22]: whereas ABFs provide

9 In fact this stage is redundant in a number of ABF models, e.g DL.

5 Complexity of Abstract Argumentation 97

a basis for argument construction and attacks between arguments, the motivation
behind VAFs is to offer an explanatory mechanism accounting for choices between
distinct justifiable collections, S and T , which are not collectively acceptable, i.e., S
and T may be admissible under Dung’s semantics, however, S∪T fails to be. Such
occurrences raise the question of the supporting reasons as to which of S or T is
adopted: as developed in Chapter 3, VAFs rationalize these choices in terms of value
orderings on V. Any commitment to a preference of vi ∈ V over v j ∈ V (written
vi � v j) induces a simplification of 〈A,R,V,η〉 whereby every attack 〈x,y〉 ∈ R for
which η(x) = v j and η(y) = vi can be removed. Under the restrictions discussed
in Chapter 3, applying this refinement of R, any total ordering, α of V, will result

in an acyclic framework, G
(V)
α : as has been noted elsewhere such a framework will

have EGR(G(V)
α) = EPR(G(V)

α) = EST (G(V)
α). Value orderings thus motivate the two

principal decision problems that have been reviewed in algorithmic and complex-
ity studies of VAFs: Subjective Acceptance (SBA) and Objective Acceptance (OBA) .
Both take as an instance a VAF G(V) and argument x ∈A.

〈G(V),x〉 ∈ SBA ⇔ ∃ α a total ordering of V : CAPR(G(V)
α ,x)

〈G(V),x〉 ∈ OBA ⇔ ∀ α total orderings of V : CAPR(G(V)
α ,x)

The acyclic form of G
(V)
α gives CAPR(G(V)

α ,x) ∈ P hence SBA∈NP and OBA∈coNP.
Both bounds turn out to be exact, as shown in [30, 3]: these again use variants

of the standard translation from Defn 5.1. This may appear surprising given that
although the standard translation is well-suited to relating subsets (of arguments)
to instantiations of propositional variables, it is less clear how it could be applied
to deal with relating orderings of values to such instantiations. The device used in
[30] associates a “neutral” value with the formula and clause arguments in the VAF

defined from ϕ(Zn) and replaces the mutually attacking pairs {zi,¬zi} with a cycle
of four arguments pi → qi → ri → si → pi. Two arguments (pi and ri) are assigned
the value posi to promote “zi = � in a satisfying assignment of ϕ” while the others
(qi and si) are given the value negi in order to promote “zi = ⊥ in a satisfying
assignment of ϕ”. Although their definition and these classifications suggest that
SBA (resp. OBA) are closely related to CAPR (resp. SAPR for coherent AFs) , recent
work, discussed in Section 5 highlights several differences between the nature of
decision problems in VAFs and, what appear to be analogous problems in AFs.

5 Recent Developments

The computational complexity of the standard semantics (preferred, stable,
grounded) in AFs settings is, in the most general case, now well understood: ex-
act complexity bounds having been established for each of the canonical decision
problems given in Table 5.1 with respect to these semantics. There has, however,
continued to be extensive development of this aspect of the formal theory of ar-

98 Paul E. Dunne and Michael Wooldridge

gumentation, driven by a number of reasons. Among these – and forming the top-
ics reviewed in this section – one has: the various proposals for novel extension-
based semantics, some of which have been discussed in Chapter 2, e.g., Ideal se-
mantics [23, 24], Semi-stable semantics [6, 7], Prudent semantics [12]. A second
consideration concerns the extent to which intractability issues may be alleviated by
constructing efficient algorithmic approaches applicable to AFs which are restricted
in some way, e.g., by analogy with the known tractable case of acyclic topologies.

5.1 Novel extension-based semantics and their complexity

In this section we outline recent treatments of complexity in three of the develop-
ments of Dung’s standard AF semantics: prudent, ideal, and semi-stable semantics.

We recall that the rationale underlying prudent semantics stems from the po-
tential problematic side effects that might eventuate by regarding as collectively
acceptable, arguments {x,y} for which x “indirectly attacks” y. An indirect attack
by x on y is present in 〈A,R〉 if “there exists a finite sequence x0, . . . ,x2n+1 such that
(1) x = x0 and y = x2n+1 and (2) for each 0 ≤ i < 2n, 〈xi,xi+1〉 ∈ R” [22, p. 332].
It should be noted that this formulation, which we have quoted verbatim, presents
some ambiguity, which is significant from complexity-theoretic and semantic per-
spectives: it fails to distinguish “indirect attacks” in which no argument is repeated,
i.e., “simple paths”; from those in which arguments but not attacks may be repeated;
from those in which attacks may be repeated, e.g. the cases in Fig. 5.2.

x3

x1x4x0
x2x5 x6x7 x7

x3

x0 x1x4 x5

x2

x3x2x1x0(a)

(b)

(c)

Fig. 5.2 Three possible forms of “indirect” attack – (a) Simple; (b) x1 = x4; (c) 〈x1,x2〉= 〈x4,x5〉

The concept of conflict-free set from [22], is replaced under the prudent seman-
tics by that of prudently conflict-free set, i.e., one in which there is no indirect attack
between any two members. There are evident interpretative issues with cases (b) and

5 Complexity of Abstract Argumentation 99

(c) in Fig. 5.2, however, the most natural interpretation (where an indirect attack is
a simple path) has one significant computational drawback.

Fact 1 Given 〈A,R〉 and S ⊆ A deciding if S is prudently conflict-free is coNP–
complete even if S contains only two arguments.

Proof. Immediate from the result of Lapaugh and Papadimitriou [35] which shows
deciding the existence of a simple even length path between two specified arguments
in a directed graph to be NP–complete. The extension to odd length simple path is
trivial, so the lemma follows by observing that a prudently conflict-free set is one in
which no simple odd length path is present between two arguments.

Noting the definitions of admissible set, preferred and stable extensions from [22]
and the fact that conflict-freeness is an integral part of these, the result of Fact 1
immediately allows us to deduce that under the prudent semantics (so that “conflict-
free set” becomes “prudently conflict-free”) the respective verification problems are
all coNP–complete. Complexity of credulous and sceptical acceptance under the
prudent semantics has yet to be studied in depth. The intractability status of key
decision problems in this semantics is predicated on the interpretation of “indirect
attack” given by (a), i.e., as a simple path. These do not hold if repeated attacks
– Fig 5.2(c) – are used: here polynomial time methods are available. The status of
allowing repeated arguments – Fig 5.2(b) – is, to the authors’ knowledge still open.

The ideal semantics were originally proposed with respect to ABFs, but have a
natural formulation in AFs: S ⊆ A is an ideal set within 〈A,R〉 if S is both admis-
sible and a subset of every set in EPR(A,R); S is an ideal extension if it a maximal
ideal set. Detailed studies of the complexity of ideal semantics in AFs are presented
in [26, 27]. The treatment of complexity issues presented in these papers exploit a
number of more advanced techniques, however, the hardness proofs continue to be
built on the standard translation of CNF formulae to AFs. In terms of the canoni-
cal problems in Table 5.1, the verification problem (for ideal sets) is shown to be
coNP-complete, placing this decision problem at the same level of complexity as the
verification problem for preferred extensions. Arguably the most radical technique
exploited – although widely applied in a number of earlier complexity-theoretic
analyses – is the use of randomized reductions coupled with structural complexity
results from [8, 9], as opposed to standard many-one reducibility (≤p

m) which fea-
tures in all of the results discussed earlier.10 Combining these elements, the verifica-
tion problem (for ideal extensions) and credulous acceptance problems are shown to
be complete for the (conjectured to be) subclass of PNP in which oracle queries are
non-adaptive (denoted PNP

||). We note that the upper bounds from [26, 27] do not use
randomized elements. This complexity class also arises in the known lower bounds
for both credulous and sceptical acceptance in semi-stable semantics presented in
[31]. These lower bounds again apply the structural characterizations of [8] (using
≤p

m reducibility, i.e., not randomized). Upper bounds, however, are Σ p
2 and Π p

2 , i.e.,
exact classifications of reasoning problems in semi-stable semantics is open.

10 Relevant background is outlined in [27] and described in full in [26]. The actual “randomized”
element is not explicit but arises from results of [43] for the satisfiability variant used.

100 Paul E. Dunne and Michael Wooldridge

5.2 Properties of restricted frameworks

The complexity lower bounds discussed above describe worst-case scenarios, i.e.,
the fact that, for example CAPR is NP–hard, does not imply that every algorithm
on every instance will entail unrealistic computational overheads. As will be seen
in Chapter 6, if the AF is acyclic, then all of the canonical decision problems of
Table 5.1 have polynomial time solutions. In consequence a natural question to con-
sider is whether other graph-theoretic restrictions also result in frameworks with
efficient decision processes. Examining this question leads to two classes of results:
positive outcomes of the form “decision problem L has a polynomial time algorithm
in AFs satisfying some property P”; and negative classifications of the form “deci-
sion problem L in frameworks satisfying property P are no easier than the general
case”. Results of the first type extend (beyond acyclic frameworks) the range of
AFs for which tractable solutions exist. Recent work has added to the class of such
frameworks: symmetric AFs – those for which 〈x,y〉 ∈ R ⇔ 〈y,x〉 ∈ R – in work
of Coste-Marquis et al. [13]; bipartite AFs (those for which A may be partitioned
into two conflict-free sets) [25]. Using the notion of “treewidth decomposition”, see
e.g., [4] a select number of problems whose instances are single AFs such as EXST ,
NEPR admit linear time algorithms given a treewidth decomposition of width k as
part of the instance: the construction of these algorithms rely on a deep result (Cour-
celle’s Theorem [14, 15]) demonstrating how efficient algorithms for testing graph-
theoretic properties may be obtained given an appropriate logical description of the
property (the so-called Monadic Second Order Logic) and a bounded treewidth de-
composition of the graph. For more details on this approach and its application in
AF settings we refer the reader to [2] and [25].

There are, however, a number of natural properties that fail to yield any reduction
in complexity. Typically the approach adopted in proving such results is to demon-
strate that frameworks with the property of interest are general enough to effectively
“simulate” any framework, e.g., if S is admissible in 〈A,R〉 then S∪T is admissible
in 〈A∪B,R′〉 where the latter AF has a particular property. Using such methods,
[25] shows that no reduction in complexity arises in: k-partite AFs (k ≥ 3); planar
systems; and those in which no argument attacks or is attacked by more than two
other arguments. This remains the case when all restrictions hold simultaneously.

We conclude this overview of recent work by returning to the issue of complexity
in VAFs. In contrast to the class of positive cases that have been identified with AFs,
the situation with VAFs turns outs out to be far more negative. The most extreme
indication of this status is the following result of [25].

Fact 2

a. SBA is NP–complete and OBA is coNP–complete even if the underlying graph is
a binary tree and every v ∈ V is associated with at most three arguments.

b. For every ε > 0 SBA is NP–complete and OBA is coNP–complete even if the un-
derlying graph is a binary tree and |V| ≤ |A|ε .

Both constructions use reductions from variants of 3-SAT/3-UNSAT, however, these
differ in a number of ways from the standard translation (which is clearly is not

5 Complexity of Abstract Argumentation 101

a binary tree). The situation highlighted by results such as Fact 2 provides further
indications that the nature of SBA/OBA in VAFs, while superficially similar to, is in
fact radically different from that of CA/SA in AFs.

6 Conclusions and Further Research

In this final section we outline some areas of research which offer a variety of chal-
lenging directions through which the algorithmic and complexity foundations of
abstract argumentation may be further advanced. We stress that our aim is to focus
on general areas rather than particular open questions as such: the reader who has
followed the earlier exposition will have noted that a number of specific open issues
have already been raised in the text.

6.1 Average case properties

As discussed in Section 5.2, the lower bounds on problem complexity are worst-
case, so leaving open the possibility that feasible algorithms may be available in
suitable contexts. In addition to the use of restrictions on the form of instances one
other approach that has been widely considered in the theory of algorithms is the
study of average-case complexity. Underpinning this approach one considers a prob-
ability distribution, μ , on instances of a decision problem – often, but not invariably
so, μ is the uniform distribution whereby each instance is equally likely, proceeding
to define the average-case run time of an algorithm P on instances of size n of L as
∑x∈I(n) μ(x)ρ(P,x) where ρ(P,x) is the run-time of P on instance x. Formal defini-
tions of average-case complexity classes may be found in [36]. To date surprisingly
little work has been carried out concerning the application of average-case methods
to decision problems in AFs either in terms of algorithmic development or in consid-
ering the limitations of such approaches. It remains open to what extent techniques
such as those applied to other intractable problems, e.g., [1] for the NP–complete
Hamiltonian cycle problem, or [46] for CNF satisfiability could be replicated in AF

settings. Of some relevance to such approaches are so-called “phase-transition” ef-
fects, which received much attention in the mid-late 1990s as potential indicators
of factors separating tractable and intractable classes of problem instances, e.g., the
studies of random CNF-SAT from [37, 40]. Analytic studies of such effects appears
to indicate connections between suitable witnessing structures, e.g., satisfying as-
signment, being present “almost certainly” and the performance of algorithms to
identify such structures. Of some interest in the context of AF semantics are the
results of [41, 17] which give conditions ensuring that a random AF “almost cer-
tainly” has a stable extension. There has as yet, however, been no detailed study
of the implications of these results for fast on average methods for identifying or
enumerating stable extensions. In the same way that the analyses of [41, 17] relate

102 Paul E. Dunne and Michael Wooldridge

to the existence of stable extensions in AFs, it would be of some interest to exam-
ine to consider existence properties of other solution structures in random AFs and
algorithmic consequences.

6.2 Approaches to dynamic updates

An important feature of the argumentation forms discussed so far is that, in practice,
these are not static systems: typically an AF, 〈A,R〉, represents only a “snapshot”
of the environment, and, as further facts, information and opinions emerge the form
of the initial view may change significantly in order to accommodate these. For
example, additional arguments may have to be considered so changing A; existing
attacks may cease to apply and new attacks (arising from changes to A) come into
force. It is clear that accounting for such dynamic aspects raises a number of issues
in terms of assessing the acceptability status of individual arguments. As with the
study of average-case properties, the treatment of algorithms and complexity issues
relating to determining argument status in dynamically changing environments has
been somewhat neglected. Thus, given 〈A,R〉 and S ⊆A for which S ∈ Es(〈A,R〉)
according to some semantics s, natural decision questions are: does x ∈ S continue
to be credulously accepted (w.r.t. to semantics s) in the AF 〈B,S〉 where B results
by removing some arguments from A and replacing these; similarly T modifies the
attack relation R.

Summary

Complexity issues provide an important foundational element of the formal com-
putational theory of abstract argumentation. Our review of the preceding pages is
intended to give a flavour of the class of questions of interest and an appreciation
of the techniques that have been brought to bear in addressing these. While some
notable progress has been achieved since the appearance of [22] – particularly in
understanding of decision properties of the standard semantics and the canonical
problems of Table 5.1, nevertheless a significant number of areas and potential ana-
lytic tools originating from complexity-theoretic studies, remain unexplored.

References

1. D. Angluin and L. Valiant. Fast probabilistic algorithms for hamiltonian circuits and match-
ings. Jnl. of Comp. and System Sci., 18:82–93, 1979.

2. S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs. Jnl. of
Algorithms, 12:308–340, 1991.

5 Complexity of Abstract Argumentation 103

3. T. J. M. Bench-Capon, S. Doutre, and P. E. Dunne. Audiences in argumentation frameworks.
Artificial Intelligence, 171:42–71, 2007.

4. H. L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theoretical
Computer Science, 209:1–45, 1998.

5. A. Bondarenko, P. Dung, R. Kowalski, and F. Toni. An abstract, argumentation-theoretic
approach to default reasoning. Artificial Intelligence, 93:63–101, 1997.

6. M. Caminada. Semi-stable semantics. In P. E. Dunne and T. J. M. Bench-Capon, editors, Proc.
1st Int. Conf. on Computational Models of Argument, volume 144 of FAIA, pages 121–130.
IOS Press, 2006.

7. M. Caminada. An algorithm for computing semi-stable semantics. In Proc. of ECSQARU
2007, 9th European Conference on Symbolic and Quantitative Approaches to Reasoning with
Uncertainty, pages 222–234, Hammamet, Tunisia, 2007.

8. R. Chang and J. Kadin. On computing Boolean connectives of characteristic functions. Math.
Syst. Theory, 28:173–198, 1995.

9. R. Chang, J. Kadin, and P. Rohatgi. On unique satisfiability and the threshold behavior of
randomised reductions. Jnl. of Comp. and Syst. Sci., pages 359–373, 1995.

10. S. A. Cook. The complexity of theorem-proving procedures. In STOC ’71: Proc. of the 3rd
Annual ACM Symposium on Theory of Computing, pages 151–158, New York, NY, USA,
1971. ACM.

11. S. A. Cook and R. A. Reckhow. The relative complexity of propositional proof systems.
Journal of Symbolic Logic, 44(1):36–50, 1979.

12. S. Coste-Marquis, C. Devred, and P. Marquis. Prudent semantics for argumentation frame-
works. In Proc. 17th IEEE Intnl.Conf. on Tools with AI (ICTAI 2005), pages 568–572. IEEE
Computer Society, 2005.

13. S. Coste-Marquis, C. Devred, and P. Marquis. Symmetric argumentation frameworks. In
L. Godo, editor, Proc. 8th European Conf. on Symbolic and Quantitative Approaches to
Reasoning With Uncertainty (ECSQARU), volume 3571 of LNAI, pages 317–328. Springer-
Verlag, 2005.

14. B. Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990.

15. B. Courcelle. The monadic second-order logic of graphs III: tree-decompositions, minor and
complexity issues. Informatique Théorique et Applications, 26:257–286, 1992.

16. N. Creignou. The class of problems that are linearly equivalent to satisfiability or a uni-
form method for proving np-completeness. Theoretical Computer Science, 145(1-2):111–145,
1995.

17. W. F. de la Vega. Kernels in random graphs. Discrete Math., 82(2):213–217, 1990.
18. Y. Dimopoulos, B. Nebel, and F. Toni. Preferred arguments are harder to compute than stable

extensions. In D. Thomas, editor, Proc. of the 16th International Joint Conference on Ar-
tificial Intelligence (IJCAI-99-Vol1), pages 36–43, San Francisco, 1999. Morgan Kaufmann
Publishers.

19. Y. Dimopoulos, B. Nebel, and F. Toni. Finding admissible and preferred arguments can be very
hard. In A. G. Cohn, F. Giunchiglia, and B. Selman, editors, KR2000: Principles of Knowledge
Representation and Reasoning, pages 53–61, San Francisco, 2000. Morgan Kaufmann.

20. Y. Dimopoulos, B. Nebel, and F. Toni. On the computational complexity of assumption-based
argumentation for default reasoning. Artificial Intelligence, 141:55–78, 2002.

21. Y. Dimopoulos and A. Torres. Graph theoretical structures in logic programs and default
theories. Theoretical Computer Science, 170:209–244, 1996.

22. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic rea-
soning, logic programming, and N-person games. Artificial Intelligence, 77:321–357, 1995.

23. P. M. Dung, P. Mancarella, and F. Toni. A dialectical procedure for sceptical assumption-
based argumentation. In P. E. Dunne and T. J. M. Bench-Capon, editors, Proc. 1st Int. Conf.
on Computational Models of Argument, volume 144 of FAIA, pages 145–156. IOS Press, 2006.

24. P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artificial
Intelligence, 171:642–674, 2007.

104 Paul E. Dunne and Michael Wooldridge

25. P. E. Dunne. Computational properties of argument systems satisfying graph-theoretic con-
straints. Artificial Intelligence, 171:701–729, 2007.

26. P. E. Dunne. The computational complexity of ideal semantics. Technical Report ULCS-08-
015, Dept. of Comp. Sci., Univ. of Liverpool, August 2008.

27. P. E. Dunne. The computational complexity of ideal semantics I: abstract argumentation
frameworks. In Proc. 2nd Int. Conf. on Computational Models of Argument, volume 172
of FAIA, pages 147–158. IOS Press, 2008.

28. P. E. Dunne and T. J. M. Bench-Capon. Coherence in finite argument systems. Artificial
Intelligence, 141:187–203, 2002.

29. P. E. Dunne and T. J. M. Bench-Capon. Two party immediate response disputes: properties
and efficiency. Artificial Intelligence, 149:221–250, 2003.

30. P. E. Dunne and T. J. M. Bench-Capon. Complexity in value-based argument systems. In
Proc. 9th JELIA, volume 3229 of LNAI, pages 360–371. Springer-Verlag, 2004.

31. P. E. Dunne and M. Caminada. Computational complexity of semi-stable semantics in abstract
argumentation frameworks. In Proc. 11th JELIA, volume 5293 of LNAI, pages 153–165.
Springer-Verlag, 2008.

32. A. Fraenkel. Planar kernel and grundy with d ≤ 3, dout ≤ 2, din ≤ 2 are NP–complete. Discrete
Appl. Math., 3(4):257–262, 1981.

33. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman: New York, 1979.

34. G. Gentzen. Investigations into logical deductions, 1935. In M. E. Szabo, editor, The Collected
Papers of Gerhard Gentzen, pages 68–131. North-Holland Publishing Co., Amsterdam, 1969.

35. A. S. Lapaugh and C. H. Papadimitriou. The even path problem for graphs and digraphs.
Networks, 14(4):597–614, 1984.

36. L. Levin. Average case complete problems. SIAM J. Comput., 15:285–286, 1986.
37. D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of sat problems. In

Proc. AAAI-92, pages 459–465. AAAI/MIT Press, 1992.
38. R. C. Moore. Semantical considerations on nonmonotonic logic. Artificial Intelligence, 25:75–

94, 1985.
39. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
40. B. Selman, H. Levesque, and D. Mitchell. A new method for solving hard satisfiability prob-

lems. In Proc. 10th National Conf. on Art. Intellig., pages 440–446, 1992.
41. I. Tomescu. Almost all digraphs have a kernel. Discrete Math., 84(2):181–192, 1990.
42. A. Urquhart. The complexity of Gentzen systems for propositional logic. Theoretical Com-

puter Science, 66(1):87–97, 1989.
43. L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theoretical

Computer Science, 47:85–93, 1986.
44. G. Vreeswijk and H. Prakken. Credulous and sceptical argument games for preferred seman-

tics. In Proc. of JELIA’2000, The 7th European Workshop on Logic for Artificial Intelligence.,
pages 224–238, Berlin, 2000. Springer LNAI 1919, Springer Verlag.

45. C. Wrathall. Complete sets and the polynomial-time hierarchy. Theoretical Computer Science,
3:23–33, 1976.

46. L. Wu and C. Tang. Solving the satisfiability problem by using randomized approach. Inf.
Proc. Letters, 41:187–190, 1992.

Chapter 6
Proof Theories and Algorithms for Abstract
Argumentation Frameworks

Sanjay Modgil and Martin Caminada

1 Introduction

Previous chapters have focussed on abstract argumentation frameworks and prop-
erties of sets of arguments defined under various extension-based semantics. The
main focus of this chapter is on more procedural, proof-theoretic and algorithmic
aspects of argumentation. In particular, Chapter 2 describes properties of extensions
of a Dung argumentation framework 〈A,R〉 under various semantics. In this context
a number of questions naturally arise:

1. For a given semantics s, “global” questions concerning the existence and con-
struction of extensions can be addressed:

a. Does an extension exist?
b. Give an extension (it does not matter which, just give one)
c. Give all extensions.

2. For a given semantics s, “local” questions concerning the existence and construc-
tion of extensions, relative to a set A ⊆ A can be addressed. Note that it is often
the case that |A|= 1, in which case the member of A is called the query argument.

a. Is A contained in an extension ? (Credulous membership question.)
b. Is A contained in all extensions ? (Sceptical membership question.)
c. Is A attacked by an extension?
d. Is A attacked by all extensions?
e. Give an extension containing A.

Sanjay Modgil
Department of Computer Science, King’s College London, e-mail: sanjay.modgil@kcl.ac.
uk

Martin Caminada
Interdisciplinary Lab for Intelligent and Adaptive Systems, University of Luxembourg e-mail:
martin.caminada@uni.lu

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 105
DOI 10.1007/978-0-387-98197-0 6, c© Springer Science+Business Media, LLC 2009

106 Sanjay Modgil and Martin Caminada

f. Give all extensions containing A.
g. Give an extension that attacks A.
h. Give all extensions that attack A.

In this chapter, procedures will be described for answering a selection of the
above questions with respect to finite argumentation frameworks 〈A,R〉 (in which
A is finite). Notice that for some semantics, such as the grounded and preferred
semantics, extensions always exist, so that 1a will be answered in the positive for
any framework. Also, for the grounded semantics, at most one extension exists, so
that questions distinguished by reference to ‘an’ or ‘all’ extensions are equivalent
(e.g., questions 2a and 2b).

Sections 2 and 3 will introduce some key concepts underpinning the approaches
that we will use in the description of proof theories and algorithms. Sections 4 - 6
will then focus on application of these approaches to the core semantics defined by
Dung [13]; namely grounded, preferred and stable.

Broadly speaking, two approaches will be presented. Firstly, Section 2 formally
describes the argument graph labelling approach that was originally proposed by
Pollock [23], and has more recently been the subject of renewed analysis and in-
vestigation [5, 6, 25, 27]. The basic idea is that the status assignment to arguments
defined by the extension-based approach (see Chapter 2), can be directly defined
through assignment of labels to the arguments (nodes) in the framework’s corre-
sponding argument graph. Section 2 provides formal underpinnings for the defini-
tion of argument graph labelling algorithms that are used to address a selection of
the above questions in Sections 4 - 6.

Section 3 then describes a framework for argument game based proof theories
[9, 16, 17, 28]. The inherently dialectical nature of argumentation lends itself to for-
mulation of argument games in which a proponent starts with an initial argument to
be tested, and then an opponent and the proponent successively attack each other’s
arguments. The initial argument provably has a certain status if the proponent has a
winning strategy whereby he can win irrespective of the moves made by the oppo-
nent. In Sections 4 - 6 we describe specific games, emphasising the way in which the
rules of each specific game correspond to the semantics they are meant to capture.

2 Labellings

In this section the labelling approach (based on its formulation in [5, 6]) is briefly
reviewed. Given an argumentation framework AF = 〈A,R〉, a labelling assigns to
each argument exactly one label, which can be either IN, OUT or UNDEC. The la-
bel IN indicates that the argument is justified, OUT indicates that the argument is
overruled, and UNDEC indicates that the status of the argument is undecided.

Definition 6.1. Let 〈A,R〉 be an argumentation framework.

• A labelling is a total function L : A �→ {IN,OUT,UNDEC}

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 107

• We define: in(L) = {x|L(x) = IN}; out(L) = {x|L(x) = OUT}; undec(L) =
{x|L(x) = UNDEC}
Notice that from hereon, we may represent a labelling L as a triple of the form

(in(L), out(L), undec(L)).
We now define what it is for an argument to be assigned a legal labelling:

Definition 6.2. Let L be a labelling for 〈A,R〉 and x ∈A

• x is legally IN iff x is labelled IN and every y that attacks x (yRx) is labelled OUT
• x is legally OUT iff x is labelled OUT and there is at least one y that attacks x and

y is labelled IN
• x is legally UNDEC iff x is labelled UNDEC, there is no y that attacks x such that y

is labelled IN, and it is not the case that: for all y, y attacks x implies y is labelled
OUT.

The rules defining legal labelling assignments encode one’s intuitive understand-
ing of the status assignments defined by the extension-based semantics and their use
of the reinstatement principle, as described in Chapter 2. An argument x is IN only
if all its attackers are OUT, and each attacker is OUT only if it is itself attacked by an
argument that is IN. Thus, the arguments that are IN in a legal labelling correspond
to a single extension. It is sometimes not possible to obtain a labelling where each
argument is either legally IN or legally OUT; consider for example an argumenta-
tion framework with just a single argument that attacks itself. This is why we need a
third label UNDEC, which basically means that there is insufficient ground to explic-
itly justify the argument and insufficient ground to explicitly overrule the argument.
Notice that from Definition 6.2 it follows that x is legally UNDEC iff it is labelled
UNDEC, and at least one y that attacks x is labelled UNDEC, and no y attacking x is
labelled IN.

Definition 6.3. For l ∈ {IN,OUT,UNDEC} an argument x is said to be illegally l
iff x is labelled l, and it is not legally l.

• An admissible labelling L is a labelling without arguments that are illegally IN
and without arguments that are illegally OUT.

• A complete labelling L is an admissible labelling without arguments that are
illegally UNDEC

Notice that the additional requirement on complete labellings corresponds intu-
itively to Chapter 2’s characterisation of a complete extension as a fixed point of a
framework AF’s characteristic function FAF . Since the grounded and preferred ex-
tensions of a framework are the minimal, respectively maximal, fixed points (com-
plete extensions) of a framework, then as one would expect, grounded and preferred
labellings are given by complete labellings that minimise, respectively maximise,
the arguments that are made legally IN. A stable labelling is a complete labelling in
which all arguments are either legally IN or legally OUT, and hence no argument is
UNDEC.

Definition 6.4. Let L be a complete labelling. Then:

108 Sanjay Modgil and Martin Caminada

• L is a grounded labelling iff there there does not exist a complete labelling L′
such that in(L′) ⊂ in(L) 1

• L is a preferred labelling iff there there does not exist a complete labelling L′
such that in(L′) ⊃ in(L)

• L is a stable labelling iff undec(L) = /0

In [6], the following theorem is shown to hold:

Theorem 6.1. Let AF = 〈A,R〉 be an argumentation framework, and E ⊆ A. For
s ∈ {admissible, complete, grounded, preferred, stable}:
E is an s extension of AF iff there exists an s labelling L with in(L) = E 2

In Sections 4 - 6 we will describe algorithms that compute labellings and so
address a subset of the questions enumerated in Section 1. We conclude this section
with an example:

Example 6.1. Consider the framework in Figure 6.1. There exists three complete
labellings: 1. (/0, /0, {a,b,c,d,e}); 2. ({a}, {b}, {c,d,e}); and 3. ({b,d}, {a,c,e},
/0). 1 is the grounded labelling, 2 and 3 are preferred, and 3 is also stable.

a b c

d

e

Fig. 6.1 An argumentation framework

3 Argument Games

In general, proof theories license the way in which pieces of information can be
articulated in order to prove a fact. They therefore provide a basis for algorithm de-
velopment, and proofs constructed according to these theories provide explanations
as to why a given fact is believed to be true. For example, a proof that argument x is
in an admissible extension, would consist of showing how one can establish the exis-
tence of such an extension, rather than simply identifying the extension. Intuitively,

1 Since every framework has a unique minimal fixed point, one could alternatively define L to be
a grounded labelling iff for each complete labelling L′ it holds that in(L) ⊂ in(L′)
2 Note that for s �= admissible there is a 1-1 mapping between s extensions and s labellings. An
admissible extension may have more than one admissible labelling. For example, the admissible
extension {c}, of c→ b ,c→ a, has two admissible labellings: ({c},{b},{a}) and ({c},{b,a}, /0).

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 109

one would need to show how to defend x by showing that for every argument y that
is put forward (moved) as an attacker of x, one must move an argument z that attacks
y, and then subsequently show how any such z can be reinstated against attacks (in
the same way that z reinstates x). The arguments moved can thus be organised into
a graph of attacking arguments that constitutes an explanation as to why x is in an
admissible extension.

The process of moving arguments and counter-arguments can be implemented as
an algorithm [27]. In this chapter we follow the approach of [9, 14, 16, 17, 26, 28]
and present the moving of arguments as 2-person dialogue games that provide a
natural way in which to lay out and understand the algorithms that implement them.
To be sure, the actual algorithms themselves, should, except for didactic purposes,
not be implemented as dialogue games, but rather as monological procedures (or
methods in OO-languages) that are called recursively.

A dialogue game is played by two players, PRO (for “proponent”) and OPP (for
“opponent”), each of which are referred to as the other’s ‘counterpart’. A game
begins with PRO moving an initial argument x that it wants to put to the test. OPP
and PRO then take turns in moving arguments that attack their counterpart’s last
move. From hereon:

a sequence of moves in which each player moves against its counterpart’s last
move is referred to as a dispute.

If the last move in a dispute is by player Pl, and Pl’s counterpart cannot respond
to this last move, then Pl is said to win the dispute. If a dispute with initial argument
x is won by PRO, we call the dispute a line of defense for x.

The rules of the game encode restrictions on the legality of moves in a dispute,
and different sets of rules capture the different semantics under which justification of
the initial argument x is to be shown, by effectively establishing when OPP or PRO
run out of legal moves. In general, however, a player can backtrack to a counterpart’s
previous move and initiate a new dispute. Consider the dispute aPRO−bOPP−cPRO−
dOPP− ePRO− fOPP won by OPP (xPl − yPl′ denotes player Pl′ moving argument y
against counterpart Pl’s argument x). PRO must then try and backtrack to move an
argument against either bOPP or dOPP and establish an alternative line of defense
for a. Suppose such a line of defense aPRO−bOPP−gPRO. Then OPP can backtrack
and try an alternative line of attack moving h against a, so that PRO must now try
and win the newly initiated dispute aPRO−hOPP. Thus, the ‘playing field’ of a game
— the data structure on the basis of which argument games are played — can be
represented by an argumentation framework’s induced dispute tree, in which every
branch from root to leaf is a dispute:

Definition 6.5. Let AF = 〈A,R〉 be an argumentation framework, and let a∈A. The
dispute tree induced by a in AF is a tree T of arguments, such that T ’s root node is
a, and ∀x,y ∈A: x is a child of y in T iff xRy.

Figure 6.2i) shows an argumentation framework, and part of the tree induced by
a is shown in Figure 6.2ii). Notice that multiple instances of arguments are indi-
viduated by numerical indicies. Any game played by PRO and OPP in which PRO

110 Sanjay Modgil and Martin Caminada

cab

i)

a1

b2

a3

b4
c5

a6

c7

a8

c9 b10

a11

PRO

OPP

PRO

OPP

PRO

a1

b2

a3

c5

a6

c7

a8

b10

a11

ii) iii)

Fig. 6.2 i) shows an argumentation framework, and ii) shows the dispute tree induced in a. iii)
shows the dispute tree induced under the assumption that OPP cannot repeat moves in the same
dispute (branch of the tree)

attempts to show that a is justified, must necessarily involve the submission of at-
tacking arguments conforming to some sub-tree of the induced tree in Figure 6.2ii).
In particular, PRO must show that it fully fulfills its burden of proof, in response to
OPP who fully fulfills its burden of attack. In other words, OPP moves all ys that
attack an x moved by PRO, and each such y must in turn be responded to by PRO
moving at least one x′ that attacks y. This does of course capture the reinstatement
principle used to define the extensions of an argumentation framework, and corre-
lates with Section 2’s definition of legal labellings and the extensions they define3.
In the context of a game, this is captured by the notion of a winning strategy for
an argument. Notice that in the following definition we refer to the notion of a sub-
dispute d′ of a dispute d, which, intuitively is any sub-sequence of d that starts with
the same initial argument as d.

Definition 6.6. Let AF = 〈A,R〉, T the dispute tree induced by a in AF , and T ′ a
sub-tree of T . Then T ′ is a winning strategy for a iff:

1. The set DT ′ of disputes in T ′ is a non-empty finite set such that each dispute
d ∈ DT ′ is finite and is won by PRO (terminates in an argument moved by PRO)

2. ∀d ∈ DT ′ , ∀d′ such that d′ is some sub-dispute of d and the last move in d′ is an
argument x played by PRO, then for any y such that yRx, there is a d′′ ∈DT ′ such
that d′ − yOPP is a sub-dispute of d′′.

If PRO plays moves as described in a winning strategy sub-tree, then PRO is
guaranteed to win.

As stated earlier, the rules of a game encode restrictions on the arguments a
player can legally move in a dispute in order to attack its counterpart’s argument.
These restrictions vary according to the semantics of interest, and are encoded in a
legal move function:

3 Recall that x is legally IN iff all ys that attack an x are legally OUT, and each such y is legally
OUT iff there is at least one x′ attacking y that is legally IN

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 111

Definition 6.7. Let AF = 〈A,R〉, T the dispute tree induced by a in AF . Let DT be
the set of all disputes in T . Then φ is a legal move function such that φ : DT �→ 2A.

Given a dispute tree T induced by a, the legal move function φ for a semantics
s, prunes T to obtain the sub-tree T ′ of T that we call the φ tree induced by a. T ′ is
the playing field of the game for semantics s. Thus, we define a φ -winning strategy
for a [9, 17] as a sub-tree of the φ dispute tree induced by a, in the same way as
Definition 6.6, except that we replace ‘for any x such that xRy’ in condition 2, with
‘for any x that OPP can φ legally move against y’. Intuitively, φ is defined such
that a is in an admissible extension that conforms to the semantics s iff there is a
φ -winning strategy for a in the φ tree induced by a, where the arguments moved by
PRO in the φ -winning strategy are conflict free (recall that an admissible extension
must contain no arguments that attack each other).

For example, consider games whose legal move function φ prohibits OPP from
repeating arguments in the same dispute. Figure 6.2iii) shows the φ -dispute tree that
is a sub-tree of the dispute tree induced by a (Figure 6.2ii)). After PRO plays a6,
OPP cannot backtrack and extend the dispute d = a1−b2−a3 by moving b against
a3, since b has already been moved by OPP in d. Similarly, OPP cannot backtrack
to move c against a8 in order to extend d′ = a1− c7−a8. Note also that both DT1 =
{d1 = a1−b2−a3−c5−a6} and DT2 = {d2 = a1−c7−a8−b10−a11} are winning
strategies. In the former case, consider the sub-dispute d′1 = a1−b2−a3 of d1. OPP
can legally move c against a3, but there is a dispute in DT1 that extends d′1 (d1 itself)
in which PRO moves against OPP’s move of c.

To summarise, suppose PRO wishes to show that x is a member of an extension
E under the semantics s. The associated legal move function φ for s defines some
φ -dispute tree T that is a sub-tree of the dispute tree induced by x, and defines all
possible disputes the players can play in a game. The φ -dispute tree T should be
such that: x ∈ E iff there is a φ -winning strategy T ′ in T , such that the arguments
moved by PRO in T ′ do not attack each other (are conflict free). A φ -winning strat-
egy is a set of disputes won by PRO in which PRO has fulfilled its burden of proof
by countering all possible φ -legal moves of OPP.

4 Grounded Semantics

For any argumentation framework, there is guaranteed to be exactly one grounded
extension. Hence, questions 1b, 1c and 2a - 2h can all be addressed by construc-
tion of a framework’s grounded extension. In Section 4.1 we present an algorithm
that generates the grounded labelling of an argumentation framework. Section 4.2
then describes an argument game for deciding whether a given argument is in the
grounded extension, thus providing an alternative way for addressing the questions
2a and 2b.

The grounded semantics places the highest burden of proof on membership of
the extension that it defines. This equates with Chapter 2’s definition of the exten-
sion as the least fixed point of a framework AF’s characteristic function FAF (i.e.,
the smallest admissible E that contains exactly those arguments that are acceptable

112 Sanjay Modgil and Martin Caminada

w.r.t. E). The extra burden of proof is intuitively captured by the fact that in de-
fending x’s membership of the grounded extension E, one must ‘appeal to’ some
argument other than x itself. That is to say, for any y such that y attacks x, y is
attacked by at least one z1 ∈ E such that z1 �= x, and in turn, z1 must be reinstated
against any attack, by some z2 ∈ E such that z2 �= x, z2 �= z1, and so on. This property
is exploited by both the algorithm for generating the grounded labelling, and argu-
ment games for the grounded semantics. The property is relatively straightforward
to show given Chapter 2’s description of how, starting with the empty set, iteration
of the characteristic function yields the grounded extension. We have that x ∈ Fi

AF

iff for every attack on x, x is reinstated by some z ∈ F
j
AF , where z �= x and j < i.

4.1 A labelling algorithm for the Grounded Semantics

An algorithm for generating the grounded labelling starts by assigning IN to all ar-
guments that are not attacked, and then iteratively: OUT is assigned to any argument
that is attacked by an argument that has just been made IN, and then IN to those
arguments all of whose attackers are OUT. Thus, the arguments assigned IN on each
iteration, are those that are reinstated by the arguments assigned IN on the previ-
ous iteration. The iteration continues until no more new arguments are made IN
or OUT. Any arguments that remain unlabelled are then assigned UNDEC. One can
straightforwardly show that the algorithm is sound and complete since it effectively
mimics construction of the grounded extension through iteration of a framework’s
characteristic function. The algorithm for generating the grounded labelling LG of
a framework 〈A,R〉 is presented more formally below, in which we use Section 2’s
representation of a labelling L as a triple (in(L), out(L), undec(L)).

Algorithm 6.1 Algorithm for Grounded Labelling
1: L0 = (/0, /0, /0)
2: repeat
3: in(Li+1) = in(Li) ∪ {x | x is not labelled in Li, and ∀y : if yRx then y ∈ out(Li) }
4: out(Li+1) = out(Li) ∪ {x | x is not labelled in Li, and ∃y : yRx and y ∈ in(Li+1) }
5: until Li+1 = Li

6: LG = (in(Li), out(Li), A− (in(Li) ∪ out(Li))

Consider the following example framework:

a→ b→ c , d � e

L1 = ({a},{b}, /0), L2 = ({a,c},{b}, /0), L3 = L2 and so LG = ({a,c},{b},{d,e}).

Finally, notice that the algorithm presented here can be made more efficient in a
number of ways. For example, when assigning IN to arguments in line 3, checking
whether all attackers are OUT can be made more efficient by giving each argument

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 113

a counter attackers-out that represents the number of attackers that are la-
belled OUT. Since all arguments are initially unlabelled, this counter is set to zero
before the actual labelling begins. Every time that an argument is labelled OUT,
it sends a message to each of the arguments that it attacks to increase its variable
attackers-out. Evidently, if this variable equals the number of attackers, the
attacked argument can be labelled IN.

4.2 Argument games for the Grounded Semantics

We have discussed how, in defending an argument x’s membership of the grounded
extension, one must not loop back to x itself, and how the same restriction applies
to any argument moved in x’s line of defence. Intuitively, this is captured by a le-
gal move function φG1 that prohibits PRO from repeating arguments it has already
moved in a dispute.

Definition 6.8. Given 〈A,R〉, a dispute d such that x is the last argument in d, and
PRO(d) the arguments moved by PRO in d, then φG1 is a legal move function such
that:

• If d is of odd length (next move is by OPP) then φG1 (d) = {y | yRx }
• If d is of even length (next move is by PRO) then:

φG1 (d) = {y |
1. yRx

2. y /∈ PRO(d)
}

Theorem 6.2. Let AF = 〈A,R〉 be a finite argumentation framework. Then, there
exists a φG1 -winning strategy T for x such that the set PRO(T) of arguments moved
by PRO in T is conflict free, iff x is in the grounded extension of AF.

One can give an intuitive proof of Theorem 6.2 by appealing to the correspon-
dence between the grounded extension and grounded labelling of an argumentation
framework (see Theorem 6.1). That is to say, by showing that:

1. Let T be a φG1 -winning strategy for x such that PRO(T) is conflict free.
Then there is a grounded labelling L with L(x) = IN.

2. Let L be a labelling with L(x) = IN. Then there exists a φG1 -winning
strategy for x such that PRO(T) is conflict free.

Proof of the above correspondences can be found in [21].
Consider the example framework in Figure 6.3i). Part of the dispute tree induced

by a is shown in Figure 6.3ii), and the φG1 dispute tree induced by a is shown in
Figure 6.3iii). Observe that {(a1−b2− c3−d4− e6)} is a φG1 -winning strategy for
a (a is in the grounded extension {a,c,e}). Finally, consider the example framework
in Figure 6.3iv). In this case the φG1 -winning strategy for a consists of two disputes:

114 Sanjay Modgil and Martin Caminada

dc

e

i)

a1

c3

d4

e6
c5

d7

d8

c10

d11

PRO

OPP

PRO

OPP

PRO

ii) iii)

b

a
b2

OPP

e9

a1

c3

d4

e6

d8

c10

b2

e9

iv)

abd c e

Fig. 6.3 i) shows an argumentation framework and ii) shows the dispute tree induced in a. iii)
shows the φG1 -dispute tree induced by a and the φG1 winning strategy encircled. The φG1 winning
strategy for a, in the framework in iv), consists of two disputes.

{(aPRO−bOPP−dPRO),(aPRO− cOPP− ePRO)}.

Some gain in efficiency can be obtained by a legal move function φG2 that ad-
ditionally prohibits PRO from moving a y that is itself attacked by the x that PRO
moves against (i.e., augmenting 1 and 2 in Definition 6.8 with ¬(xRy)). This is be-
cause if PRO moves such a y against x, then OPP can simply repeat x and move
against y, and then PRO will be prevented from repeating y. The φG2 game is in-
stantiated by Prakken and Sartor for their argument-based system of prioritized ex-
tended logic programming [24]. Amgoud and Cayrol [1] do the same for their argu-
ment based system for inconsistency handling in propositional logic. The following
soundness and completeness result can be proved as a straightforward generalisa-
tion of proofs for the specific systems in [24, 1]. Such a generalised proof can be
found in [4].

Theorem 6.3. Let AF = 〈A,R〉 be a finite argumentation framework. Then, there
exists a φG2 -winning strategy T for x such that the set PRO(T) of arguments moved
by PRO in T is conflict free, iff x is in the grounded extension of AF

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 115

Since the arguments moved by PRO in a winning strategy are required to be con-
flict free, it is obvious to see that shorter proofs may also be obtained by preventing
PRO from moving arguments in a dispute d that attack themselves or attack or are
attacked by arguments that PRO has already moved in d.

Definition 6.9. Let POSS(d) = {y | ¬(yRy) and ∀z∈ PRO(d), ¬(zRy) and ¬(yRz)}.
One can then further restrict PRO’s moves in Definition 6.8, by adding the condition
that y ∈ POSS(d), thus obtaining the legal move function φG3 .

Finally, further gains in efficiency can be obtained by noticing that if T is a
φG1 , φG2 or φG3 winning strategy, then PRO(T) is conflict free. Thus, one need
not instigate the conflict free check on winning strategies suggested by the above
soundness and completeness results. To see why, notice that φG1 , φG2 and φG3 make
no restrictions on moves by OPP, and one can show that the following theorem
holds:

Theorem 6.4. Let T be a φ winning strategy such that φ makes no restrictions on
moves by OPP. Then PRO(T) is conflict free.

We refer the reader to [21] for a proof of the above theorem.

5 Preferred Semantics

For any argumentation framework, existence of a preferred extension is guaranteed,
and there can be more than one preferred extension. Hence, the decision questions
2a (credulous membership) and 2b (sceptical membership) are distinct. In Section
5.2 we describe argument games for addressing the credulous membership ques-
tion. Section 5.3 then describes argument games for addressing the more difficult
sceptical membership question. Solution-orientated questions 2c - 2h require proce-
dures for identifying one or all preferred extensions. Such questions become rele-
vant when end-users would like to be informed about the reasons as to how and why
an argument is justified or overruled, and can be addressed by labelling algorithms
that compute one or all preferred labellings. We describe labelling algorithms in the
following section.

5.1 A Labelling Algorithm for the Preferred Semantics

In this Section we review Caminada’s work on labelling algorithms [6]. Theorem
6.1 in Section 2 establishes an equivalence between an argumentation framework’s
preferred extensions and the framework’s preferred labellings. In [5] it is shown
that:

116 Sanjay Modgil and Martin Caminada

L is a preferred labelling iff L is an admissible labelling such that for no ad-
missible labelling L′ is it the case that in(L′)⊃ in(L). (R1)

Hence, a framework’s preferred extensions can be identified by algorithms that
compute admissible labellings that maximise the number of arguments that are
legally IN. In [6], admissible labellings are generated by starting with a labelling
that labels all arguments IN and then iteratively, selects arguments that are illegally
IN and applies a transition step to obtain a new labelling, until a labelling is reached
in which no argument is illegally IN.

Definition 6.10. Let L be a labelling for 〈A,R〉 and x an argument that is illegally
IN in L. A transition step on x in L consists of the following:

1. the label of x is changed from IN to OUT
2. for every y ∈ {x}∪{z|xRz}, if y is illegally OUT, then the label of y is changed

from OUT to UNDEC (i.e., any argument made illegally OUT by 1 is changed to
UNDEC)

In what follows, we assume a function transition step that takes as input x and L,
and applies the above operations to yield a labelling L′. We then define a transition
sequence as follows:

A transition sequence is a list [L0, x1, L1, x2, . . ., xn, Ln] (n ≥ 0), where for i =
1 . . .n, xi is illegally IN in Li−1, and Li = transition step(Li−1, xi).

A transition sequence is said to be terminated iff Ln does not contain any argument
that is illegally IN.

Let us examine a transition sequence that starts with the initial labelling L0 in
which all arguments are labelled IN (from hereon any such labelling is referred
to as an ‘all-in’ labelling and we assume that any initial labelling L0 is an all-in
labelling). Any labelling containing an argument x that is illegally IN cannot be a
candidate admissible labelling (since not all of x’s attackers are OUT and so x is not
reinstated against all attackers), and so must be relabelled OUT. One might expect
that the second part of the transition step relabels to IN, those arguments that are
made illegally OUT by the first step. However this may not only result in a loop,
but would also ‘overcommit’ arguments to membership of an admissible labelling
(and so extension); just because an argument may be acceptable w.r.t. an admissible
extension E does not mean that it must be in E.

For finite frameworks it can be shown that:

For any terminated transition sequence [L0, x1, L1, x2, . . ., xn, Ln], it holds that
Ln is an admissible labelling. (R2)

To see why, observe that L0 contains no arguments that are illegally OUT, and it
is straightforward to show that a transition step preserves the absence of arguments
that are illegally OUT. Hence, since the terminated sequence contains no arguments
that are illegally IN, then by Definition 6.3, Ln is admissible.

In [6], it is also shown that:

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 117

For any preferred labelling L, it holds that there exists a terminated transition
sequence [L0, x1, L1, x2, . . ., xn, Ln], where Ln = L. (R3)

The above results R1, R2 and R3, imply that terminated transition sequences whose
final labellings maximise the arguments labelled IN are exactly the preferred la-
bellings. Before presenting the algorithm for generating such sequences, let us con-
sider how admissible labellings are generated for the argumentation framework in
Figure 6.4i). Starting with the initial all-in labelling L0 = ({a,b,c}, /0, /0), then se-
lecting a on which to perform a transition step obtains L1 = ({b,c},{a}, /0). Now
only c is illegally IN, and relabelling it to OUT results in a being illegally OUT, and
so L2 = ({b},{c},{a}). Now b is illegally IN, and relabelling b to OUT results in
both b and c being illegally OUT, so that they are both labelled UNDEC. Thus, the
transition sequence terminates with the labelling L3 = (/0, /0,{a,b,c}) in which all
arguments are UNDEC. It is easy to verify that irrespective of whether a, b or c is
selected on the first transition step, every terminated transition sequence will result
in L3.

Consider now the framework in Figure 6.4ii). Starting with the initial all-in la-
belling L0 = ({a,b,c}, /0, /0), we observe that B and C are illegally IN:

1. Selecting b for the first transition step obtains the terminated sequence [L0, b,
L1 = ({a,c},{b}, /0)]. L1 is an admissible and complete labelling, yielding the
admissible and complete extension {a,c}.

2. Selecting c for the first transition step obtains the terminated sequence [L0, c, L1

= ({a,b},{c}, /0), b, L2 = ({a},{b},{c})], yielding the admissible extension {a}

a b

ii)

ca

b

c

i)

Fig. 6.4 Two argumentation frameworks

Notice that in the second sequence, the label of c is changed from OUT to UNDEC
since c is made illegally OUT by the second transition step’s assignment of OUT
to the illegally IN b. L2 is an admissible but not complete labelling, since c is
illegally UNDEC. To help avoid non-complete labellings, one can guide the choice
of arguments on which to perform transition steps: choose an argument that is super-
illegally IN, if such an argument is available.

Definition 6.11. An argument x in L that is illegally IN, is also super-illegally IN
iff it is attacked by a y that is legally IN in L, or UNDEC in L.

118 Sanjay Modgil and Martin Caminada

Thus, b would preferentially be selected according to the above strategy, since b
and not c is super-illegally IN in ({a,b,c}, /0, /0). As shown in [6], both the results
R2 and R3 are preserved under such a strategy.

Algorithm 6.2 Algorithm for Preferred Labellings
1: candidate-labellings := /0;
2: find labellings(all-in);
3: print candidate-labellings;
4: end.
5: .
6: .
7: procedure find labellings(L)
8: .
9: # if L is worse than an existing candidate labelling then prune the search tree

10: # and backtrack to select another argument for performing a transition step
11: if ∃L′ ∈ candidate-labellings: in(L) ⊂ in(L′) then return;
12: .
13: # if the transition sequence has terminated
14: if L does not have an argument that is illegally IN then
15: for each L′ ∈ candidate-labellings do
16: # if L′’s IN arguments are a strict subset of L’s IN arguments
17: # then remove L′
18: if in(L′) ⊂ in(L) then
19: candidate-labellings :=
20: candidate-labellings − {L′};
21: end if
22: end for
23: # add L as a new candidate
24: candidate-labellings := candidate-labellings ∪ {L};
25: return; # we are done, so try the next possibility
26: else
27: if L has an argument that is super-illegally IN then
28: x := some argument that is super-illegally IN in L;
29: find labellings(transition step(L, x));
30: else
31: for each x that is illegally IN in L do
32: find labellings(transition step(L, x))
33: end for
34: end if
35: end if
36: endproc

We now describe the above listed algorithm for generating preferred labellings.
The main procedure find labellings starts with the all-in labelling, and then
iteratively applies transitions steps in an attempt to generate terminated transition
sequences that update the global variable candidate-labellings. The algo-
rithm preferentially selects from amongst super-illegal arguments for performing
transition steps, if such arguments are available. If at any stage in the generation of
a transition sequence, the arguments that are IN in the labelling Li thus far obtained

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 119

are a strict subset of in(L′) for some L′ ∈ candidate-labellings, then no
further transition steps on Li can result in a preferred labelling (that maximises the
arguments that are IN). This follows from the result that during the course of a tran-
sition sequence, the set of IN labelled arguments monotonically decreases (as shown
in [6]). Thus, any further transition steps on Li will only reduce the arguments that
are IN. In such cases, the algorithm backtracks to Li−1 and, if possible, selects an-
other argument on which to perform a transition step. In the case that a transition
sequence terminates, the obtained labelling L is compared with all labellings L′
in candidate-labellings. If for any L′, in(L′) is a strict subset of in(L),
then L′ is removed from candidate-labellings. Thus, given a finite argu-
mentation framework 〈A,R〉, the algorithm calculates the preferred labellings and
so preferred extensions.

5.2 Argument Games for the Credulous Preferred Semantics

Since the admissible extensions of a framework form a complete partial order with
respect to set inclusion (and so every admissible extension is a subset of a preferred
extension), then for argument games addressing the credulous membership question,
it suffices to show an admissible extension containing the argument in question. In
contrast with the grounded semantics, x’s membership of an admissible extension
E can now ‘appeal to’ x itself, in the sense that in defending x’s membership of E,
and membership of all subsequent defenders, one can loop back to x itself. This then
means, that to prevent infinite disputes, it is now OPP, rather than PRO, that should
not be allowed to repeat an argument y it has already moved in a dispute, since y can
then be attacked by PRO repeating the argument it moved against OPP’s first move
of y.

Consider the framework in Figure 6.5i), and the dispute tree induced in a in Fig-
ure 6.5ii). In both disputes (branches) PRO is allowed to repeat its arguments (c5

and d9). OPP repeats its arguments, and the disputes continue with PRO repeatedly
fulfilling its burden of proof w.r.t. c (d). It is of course sufficient that PRO fulfill
its burden of proof only once. Hence, as well as preventing PRO from introduc-
ing a conflict into a dispute, the following legal move function prohibits OPP from
repeating arguments.

Definition 6.12. Given 〈A,R〉, a dispute d such that x is the last argument in d, and
OPP(d) the arguments moved by OPP in d, then φPC1 is a legal move function such
that:

• If d is of odd length (next move is by OPP) then:

φPC1 (d) = {y |
1. yRx

2. y /∈ OPP(d)
}

120 Sanjay Modgil and Martin Caminada

dc

i)

a1

c3

d4

c5

d6

d7

c8

d9

b2

c10

PRO

OPP

PRO

OPP

PRO

ii) iii)

a1

c3

d4

c5

d7

c8

d9

b2

b

a

OPP

iv)

a1

c3 d7

b2

Fig. 6.5 i) shows an argumentation framework and ii) shows the dispute tree induced in a. iii) and
iv) respectively shows the φPC1 and φPC2 dispute trees induced by a.

• If d is of even length (next move is by PRO) then:

φPC1 (d) = {y |
1. yRx

2. y ∈ POSS(d)
}

Notice that φPC1 mirrors Section 4.2’s grounded game function φG3 (that aug-
ments φG1 to restrict PRO to moving arguments in POSS(d)). They differ only in
that φPC1 prevents repetition by OPP, and φG3 prevents repetition by PRO.

Consider again the framework in Figure 6.5i). The φPC1 dispute tree induced by a
is shown in Figure 6.5iii), and both disputes in the tree individually constitute φPC1

winning strategies. Notice that for the example framework in Figure 6.3iv), the φPC1 -
winning strategy for a consists of two disputes: {(aPRO − bOPP − dPRO),(aPRO −
cOPP− ePRO)}.

The following theorem states the soundness and completeness result for φPC1

games:

Theorem 6.5. Let AF = 〈A,R〉 be a finite argumentation framework. Then, there
exists a φPC1 -winning strategy T for x such that the set PRO(T) of arguments moved
by PRO in T is conflict free, iff x is in an admissible (and hence preferred) extension
of AF.

One can give an intuitive proof of the above by using the correspondence be-
tween admissible extensions and admissible labellings of an argumentation frame-
work (see Theorem 6.1). That is, it suffices to prove that:

1. Let T be a φPC1 -winning strategy for x such that PRO(T) is conflict free.
Then there exists an admissible labelling L with L(x) = IN.

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 121

2. Let L be an admissible labelling with L(x) = IN. Then there exists a φPC1 -
winning strategy for x such that PRO(T) is conflict free.

Proof of the above correspondences can be found in [21].

Observe that the spectrum of outcomes would not be changed by a function φPC2

that augments φPC1 by prohibiting OPP from moving any argument y (and not just
a y already moved by OPP) that is attacked by an argument x in PRO(d). This is
because PRO can then simply move x against y, and if yRx, prohibiting repetition
by OPP will mean that y cannot be moved against this second move of x by PRO.
Notice that if this prohibition on OPP is in place, then one cannot have a dispute
of the form (. . .yPRO . . .xOPP− yPRO . . .) in which PRO repeats an argument, since
the prohibition on OPP would prevent the move xOPP. Hence, shorter proofs can be
obtained by a function φPC2 that augments φPC1 by prohibiting OPP from moving
any argument attacked by an argument in PRO(d), and prohibiting repetition by
PRO. Indeed, [9] prove that the following theorem holds:

Theorem 6.6. Let AF = 〈A,R〉 be a finite argumentation framework. Then, there
exists a φPC2 -winning strategy for x such that the set PRO(T) of arguments moved
by PRO in T is conflict free, iff a is in a preferred extension of AF.

Figure 6.5iv) shows the φPC2 dispute tree induced by a for the framework in
Figure 6.5i), where both disputes in the tree are φPC2 winning strategies. However,
notice that neither dispute fully fulfills the remit of a proof to explain the credulous
membership of a, since neither demonstrates the reinstatement of c, respectively
d, against its attacker d, respectively c, and so provides an explanation for the ad-
missibility of {a,c}, respectively {a,d}. This illustrates a more general point that
efficiency gains often come at the expense of explanatory power.

Finally, note that unlike games for the grounded semantics, checking that the
arguments moved by PRO in a φPC1 (or φPC2) winning strategy are conflict free, is
required. This is because φPC1 and φPC2 games place restrictions on moves by OPP
(and hence the result concluding Section 4.2 does not hold). For example, consider
that a is not in an admissible, and hence preferred, extension of the framework
in Figure 6.6. Now, {(aPRO− bOPP− cPRO− dOPP− gPRO),(aPRO− eOPP− fPRO−
gOPP− dPRO)} is a φPC1 winning strategy since OPP cannot legally extend either
dispute. However, the arguments moved by PRO are not conflict free (PRO has
moved g and d).

c b ad

e
f

g

Fig. 6.6 Argument a is not in an admissible and so preferred extension of the above framework.

122 Sanjay Modgil and Martin Caminada

5.3 Argument Games for the Sceptically Preferred Semantics

The question of whether an argument is sceptically preferred is much harder to an-
swer than the credulously preferred membership problem. To understand why, it
may first help to realise that the credulous membership problem only requires us to
point at one extension, while the sceptical membership problem requires us to prove
something about all possible extensions. Thus, the credulously preferred member-
ship problem is an existence problem while the sceptically preferred membership
problem is a verification problem. To understand better why verification is hard in
this case, we recall the definition of sceptically preferred membership: an argument
a is sceptically preferred iff it is a member of all preferred extensions. The crux of
the problem is that we have to verify whether there exists preferred extensions that
do not contain a. In so doing, it is not immediately clear where to begin to search
for such extensions.

The following result establishes a connection between a and preferred extensions
that might possibly exclude a (we refer the reader to [21] for a proof of this result). It
basically ensures that the search space for the sceptical decision problem is confined
to elements that are indirectly connected to defense sets of a.

Theorem 6.7 (Complement lemma). An argument a is sceptically preferred if and
only if for every admissible extension B, there is an admissible extension A, contain-
ing a, that is consistent with B.

Thus, conversely, a is not sceptically preferred if there exists an admissible exten-
sion B that conflicts with all admissible extensions around a. Because such an exten-
sion B blocks sceptically preferred membership, such an extension is called a block.
With the help of Theorem 6.7 we may now formulate an abstract and inefficient, but
conceptually correct proof procedure to determine sceptical membership. This pro-
cedure works by falsification, as follows. Try to construct a block B. If this attempt
fails, we may, with the help of Theorem 6.7 conclude that a is sceptically preferred.

The procedure to block a can be described as an argument game that we infor-
mally describe here. The difference with the games described earlier, is that the play-
ers exchange entire admissible extensions rather than single arguments. The game
works as follows. Suppose PRO’s goal is to show that a is sceptically preferred. To
this end, PRO starts by constructing an admissible extension, A{1} around a. Since
A{1} is the only admissible extension known at this stage, it follows that at this
stage a is sceptically preferred. To invalidate this temporary conclusion, the bur-
den of proof shifts to OPP who must show that a is not sceptically preferred. By
virtue of Theorem 6.7 it suffices for OPP to show that there exists an admissible
extension that conflicts with A{1}. If OPP does not manage to construct such an
extension, the procedure ends and OPP has lost. Suppose OPP manages to produce
A{1,1} as a response to A{1}. Thus, A{1,1} is an admissible extension that con-
flicts with A{1}. Once A{1,1} is advanced, a is no longer sceptically preferred, be-
cause A{1,1} conflicts with every admissible extension around a constructed thus
far, viz. A{1}. To invalidate this temporary conclusion, the burden of proof shifts
back to PRO who must now show that there exists another admissible extension

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 123

around a that does not conflict with A{1,1}. If PRO fails to do so (and PRO’s search
was adequate and exhaustive), it follows that A{1,1} conflicts with all admissible
extensions around A, so that a is not sceptically preferred. Suppose otherwise, i.e,
suppose that PRO is able to construct an admissible extension, A{1,1,1}, that does
not conflict with A{1,1}. OPP must now either extend A{1,1} such that it also con-
flicts with A{1,1,1} or else drop A{1,1} to start all over to attack another member
of A{1}. Continuing this way (including backtracking), OPP is busy with extending
an admissible extension until either PRO is unable to produce another admissible
extension around a, or else until OPP’s admissible extension cannot be further ex-
tended (on pain of becoming inconsistent).

More generally, we may suppose that A{1}, . . . ,A{n} are possible begin moves of
PRO, and A{i1, . . . , ik,m}, k ≥ 1 is the mth possible response of either PRO or OPP
to A{i1, . . . , ik}. Naturally, all the A{ī} are admissible extensions. The following
constraints hold:

1. Every extension advanced by PRO must contain the main argument, a.
2. Every response of PRO must be consistent with the extension that is previously

advanced by OPP.
3. Every response of OPP must attack PRO’s immediately preceding extension.
4. Within one branch, every extension advanced by OPP must be an extension of

OPP’s previous extension in the same branch.
5. Both parties may backtrack and construct alternative replies.
6. OPP has won if it is able to move last; else PRO has won.

If OPP has won this means that OPP was able to create a block B = A{i1, . . . , i2k},
where k≥ 1 (note that we have ‘2k’ since all moves by OPP have an even number of
indices). With B, OPP is able to move last in the particular branch where that block
was created and all sub-branches emanating from the main branch. It must be noted
that all this only works in finitary argument systems, i.e., argument systems where
all arguments have a finite number of attackers. Algorithms for non-finitary argu-
ment systems require additional constraints such as fairness which must guarantee
that every possibility is enumerated eventually.

The above ideas are taken from earlier work on the sceptically preferred mem-
bership problem, notably that of Doutre et al. [12] and Dung et al. [15]. In [12],
the procedure to find a possible block is presented as a so-called meta-acceptance
dialogue. As above, moves in this dialogue are extensions (hence the meta), and a
dialogue is won by OPP if it is able to move last in at least one branch. In Dung et
al. [15] the procedure to construct a “fan” of admissible extensions around A that
together represent all preferred extensions is called generating a complete base for
a. A base for a is a set of admissible extensions, B, such that every preferred exten-
sion around a includes at least one element of B. A complete base for a, then, is a
set of admissible extensions, B, such that every preferred extension includes at least
one element of B. In line with Theorem 6.7, Dung et al. proceed to show that a base
B is incomplete if and only if there exists a preferred extension that attacks every
element of B. Their proof procedure is a combination of a so-called BG-derivation
(base generation derivation) followed by a CB-verification (complete base verifica-

124 Sanjay Modgil and Martin Caminada

tion). With BG a base for a is generated, such that every preferred extension around
a contains an element of B. Such a base always exists, but not every base may serve
as a representant of sceptical membership. To check whether B indeed represents
sceptical membership, it is checked for completeness, which effectively means that
it must hold out against every candidate block that might undermine B. Again, all
decision procedures only work in finitary argument systems.

6 Stable and Semi-Stable Semantics

Stable semantics are, what one might call ‘xenophobic’, since every argument out-
side of a stable extension is attacked by an argument in the stable extension. Unlike
the preferred semantics, existence of a stable extension is not guaranteed; consider
that a framework consisting of a single argument that attacks itself has no stable ex-
tension. However, as in the case of the preferred semantics, there may be more than
one extension, and so decision questions 2a (credulous membership) and 2b (scep-
tical membership) are distinct. These questions, questions 1b, 1c, and the solution-
orientated questions 2a - 2h can be addressed by an algorithm (taken from [6])
that generates all stable extensions of a framework. Since a stable labelling makes
all arguments either OUT or IN, one can straightforwardly adapt the algorithm for
preferred labellings in Section 5.1, so as to only yield labellings without UNDEC
labelled arguments. Thus, line 11 in the algorithm is replaced by:
if undec(L) �= /0 then return;
Furthermore, we do not have to compare the arguments made IN by other candidate
labellings, and so we can remove lines 15 to 22. The result is an algorithm that cal-
culates all stable extensions of a finite framework.

Argument games for stable semantics have only recently been studied. In [28],
the authors study coherent argumentation frameworks, in which every preferred ex-
tension is also stable (meaning that the preferred and stable extensions coincide,
since each stable extension is by definition also a preferred extension). Thus, for
coherent argumentation frameworks, one can simply apply existing games for the
preferred semantics to decide membership under stable semantics.

For the general case, where one is not restricted to coherent argumentation frame-
works, the situation is more complex, but can still be expressed in terms of the cred-
ulous games defined in Section 5.2. Given a framework 〈A,R〉, and letting PRO(T),
respectively OPP(T), denote the arguments moved by PRO, respectively OPP, in a
dispute tree T , then an argument x is in a stable extension iff there exists a set S of
φPC1 winning strategies such that:

1. at least one winning strategy in S is for x.
2.

⋃{PRO(T)|T ∈ S} is conflict free.
3.

⋃{PRO(T)∪OPP(T)|T ∈ S} = A

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 125

This can be seen as follows. First of all, each φPC1 winning strategy corresponds
to an admissible labelling. A set of winning strategies that do not attack each other
(point 2) again corresponds to an admissible labelling. If this resulting admissible
labelling spans the entire argumentation framework (each argument is either IN or
OUT) then this labelling is also stable (point 3). Then, if x is IN in this labelling,
then x is labelled IN in at least one stable labelling (point 1).

It is also possible to define a single dispute game that determines credulous ac-
ceptance w.r.t. stable semantics. Such a game has recently been stated by Caminada
and Wu [7]. One particular feature of their approach, which builds on the work of
Vreeswijk and Prakken [28], is that they do not use the concept of a winning strat-
egy. Instead, for an argument x to be in a stable extension, it suffices to have at least
one game for x that is won by PRO. Caminada and Wu are able to do this by first
defining a game for credulous preferred in which PRO may repeat its own moves,
but not the moves of OPP, and in which OPP may repeat PRO’s moves but not its
own moves. Moreover, PRO has to react to the directly preceding move of OPP,
whereas OPP is free to react either to the directly preceding move of PRO, or to
a previous PRO move. A dispute is won by PRO iff OPP cannot move. A dispute
is won by OPP iff PRO cannot move, or if OPP managed to repeat one of PRO’s
moves.

Basically, the game can be understood in terms of PRO and OPP building an
admissible labelling in which PRO makes IN moves, and OPP makes OUT moves.
This game can be altered to implement stable semantics by introducing a third kind
of move, which is called QUESTION. By uttering QUESTION x, OPP asks PRO for
an explicit opinion on argument x. PRO is then obliged to reply with either IN x or
with IN y, where y is an attacker of x. Caminada and Wu show that this game indeed
models credulous acceptance under the stable semantics.

Once a procedure for credulous acceptance w.r.t. stable semantics has been de-
fined, the issue of sceptical acceptance w.r.t. stable semantics becomes relatively
straightforward: an argument x is in all stable extensions iff one fails to establish
credulous membership of any attacker of x. For the left to right half, observe that
if x is in all stable extensions, then all attackers of x are attacked by all such ex-
tensions (an argument y is attacked by an extension if it is attacked by an argument
in that extension), and so no attacker of x can be in any such extension, since each
such extension is conflict free. For the right to left half, observe that if any attacker
of x does not belong to any stable extension, then it is attacked by all such exten-
sions. Thus every extension contains an argument that reinstates x, and so contains x.

Caminada has recently proposed semi-stable semantics [5, 6], that unlike the sta-
ble semantics, guarantees that every (finite) framework has at least one semi-stable
extension. In the case that there exists at least one stable extension for a frame-
work, semi-stable semantics yield the same extensions as stable semantics. From
the perspective of argument labellings, semi-stable semantics select those labellings
in which the set of UNDEC arguments is minimal. Referring to Definition 6.4, this
can be expressed as follows:

126 Sanjay Modgil and Martin Caminada

Let L be a complete labelling. Then L is a semi-stable labelling iff there
does not exist a complete labelling L′ such that undec(L′) ⊂ undec(L)

For example, consider the framework in Figure 6.4ii) augmented by an additional
argument d that attacks itself. The augmented framework has no stable extension,
but {a,c} is the single semi-stable extension equating with the semi-stable labelling
({a,c},{b},{d}). Notice that although {a,c} is also the single preferred extension,
in general not every preferred extension is a semi-stable extension since not every
preferred extension minimises UNDEC. However, every semi-stable extension is a
preferred extension, which suggests that we can adapt Section 5.1’s algorithm for
preferred labellings in order to compute semi-stable labellings.

In [6] it is also shown that:

L is a semi-stable labelling iff L is an admissible labelling such that for no
admissible labelling L′ is it the case that undec(L′) ⊂ undec(L).

(R1′)

Since every semi-stable extension is a preferred extension then R3 in Section
5.1 also holds for semi-stable labellings L. This result, together with R1′ and R2 in
Section 5.1, implies that terminated transition sequences whose final labellings min-
imise the arguments labelled UNDEC are exactly the semi-stable labellings. Hence,
one can adapt Section 5.1’s algorithm by replacing line 11 by:

if ∃L′ ∈ candidate-labellings: undec(L′) ⊂ undec(L) then return;

In other words, if at any stage in the generation of a transition sequence, the
UNDEC arguments of the labelling Li thus far obtained, are a strict superset of
undec(L′) for some L′ ∈ candidate-labellings, then no further transition
steps on Li can result in a semi-stable labelling, and so one can backtrack to per-
form a transition step on another choice of argument. This follows from the result
that during the course of a transition sequence, the set of UNDEC labelled arguments
monotonically increases (as shown in [6]). Finally, we replace line 18 with:

if undec(L) ⊂ undec(L′);

and we are done. We have an algorithm that calculates the semi-stable labellings of
a finite argumentation framework.

7 Conclusions

In this chapter we have described labelling algorithms and argument game proof
theories for various argumentation semantics. Labellings and argument games can
be seen as alternatives to the extension-based approach to specifying argumentation

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 127

semantics described in Chapter 2. We conclude with some further reflections on
these different ways of specifying argumentation semantics.

One of the original motivations for developing the labelling approach was to pro-
vide an easy and intuitive account of formal argumentation. After all, principles like
“In order to accept an argument, one has to be able to reject all its counterargu-
ments” and “In order to reject an argument, one has to be able to accept at least one
counterargument” are easy to explain and have therefore been used as the basis of
the labelling approach. Also, our teaching experiences indicate that students who
are new to argumentation tend to find it easier to understand the labelling approach
rather than the extension-based approach to argumentation. In fact, it is often easier
for them to understand the extension-based approach after having been introduced
to the labelling approach.

Another advantage of the labelling approach is that it allows one to specify a
number of relatively small and simple properties, each of which can be individu-
ally satisfied or not, and that collectively define the argumentation semantics. This
modular approach can be of assistance when constructing formal proofs. Also, by
explicitly distinguishing between IN, OUT and UNDEC (instead of merely speci-
fying the set of IN-labelled arguments as in the extension-based approach) one is
provided with more detailed information. For instance, Section 5.1’s algorithm for
generating all preferred extensions, would be much more difficult to specify using
the extension-based approach.

Finally, we note that the labelling approach essentially identifies a graph or ‘net-
work’ labelling problem, suggesting that the approach more readily lends itself to
extensions of argument frameworks that accommodate: different types of relation
between arguments (e.g. support [10] and collective attack [22]); attacks on attacks
[20]; multi-valued and quantitative valuations of arguments [2, 11], and so on. In
essence, these extensions of Dung’s abstract argumentation framework can be un-
derstood as instantiating a more general network reasoning model in which the val-
uations of nodes (arguments) is determined by propagating the valuations of the
connected nodes, as mediated by the semantics of the connecting arcs. Algorithms
for determining these valuations will thus generalise the three value labelling algo-
rithms described in this chapter.

With regard to the argument game approach, we recall that Dung’s abstract ar-
gumentation semantics can be understood as a semantics for a number of non-
monotonic and defeasible logics [3, 13], in the sense that:

α is an inference from a theory Δ in a logic L, iff α is the conclusion of a
justified argument of the argumentation framework 〈A,R〉 defined by Δ and
L.

The argument game approach places an emphasis on the dialectical nature of
argumentation, in the sense that the approach appeals more directly to an inter-
subjective notion of truth: truth becomes that which can be defended in a rational
exchange and evaluation of interacting arguments. Thus, what accounts for the cor-
rectness of an inference is that it can be shown to rationally prevail in the face of

128 Sanjay Modgil and Martin Caminada

arguments for opposing inferences, where it is application of the reinstatement prin-
ciple that encodes logic neutral, rational means for establishing such standards of
correctness. This account of argumentation as a semantics, contrasts with model-
based semantics for formal entailment that appeal to an objective notion of truth:
true is that which holds in every possible model. Notice that dialectical semantics
are not unique to formal argumentation. For instance, Lorenzen and Lorenz [18, 19]
have proposed dialectical devices as a method of demonstration in formal logic.

An advantage of dialectical semantics is that they are able to relate formal en-
tailment to something most people are familiar with in everyday life: debates and
discussions. Argument games of the type described in this chapter are therefore use-
ful not only for providing guidelines and principles for the design of algorithms, but
also for bridging the gap between formal and informal reasoning.

Finally, we note that the dialectical view also accords with our understanding of
reasoning as an incremental process. Rather than have all the arguments and their
attacks defined from the outset, we incrementally acquire knowledge in order to con-
struct arguments required to counter-argue existing arguments. At any stage in this
incremental process we can evaluate the status of arguments, which in turn motivates
acquisition of further knowledge for construction and submission of arguments. Ar-
gument games allow one to model such processes. Provided that there is a well
understood notion of what constitutes an attack between any two arguments, one
can then formalise the games described in this chapter, without reference to a pre-
existing framework. This also allows one to acknowledge that reasoning agents are
resource bounded, and suggests that bounds on reasoning resources may be charac-
terised by bounds on the breadth and depth of the dispute trees constructed in order
to prove the claim of the argument under test.

Acknowledgements The authors would like to thank Gerard Vreeswijk for his con-
tributions to the contents of this chapter. Thanks also to Nir Oren for commenting
on a draft of the chapter.

References

1. L. Amgoud and C. Cayrol. A Reasoning Model Based on the Production of Acceptable Argu-
ments. Annals of Mathematics and Artificial Intelligence, 34(1–3),197–215, 2002.

2. H. Barringer, D. M. Gabbay and J. Woods. Temporal Dynamics of Support and Attack Net-
works: From Argumentation to Zoology. Mechanizing Mathematical Reasoning, 59–98, 2005.

3. A. Bondarenko and P.M. Dung and R.A. Kowalski and F. Toni. An abstract, argumentation-
theoretic approach to default reasoning. Artificial Intelligence, 93:63–101, 1997.

4. M. Caminada. For the sake of the Argument. Explorations into argument-based reasoning.
Doctoral dissertation Free University Amsterdam, 2004.

5. M. Caminada. On the Issue of Reinstatement in Argumentation. In European Conference on
Logic in Artificial Intelligence (JELIA), 111–123, 2006.

6. M. Caminada. An Algorithm for Computing Semi-stable Semantics. In European Conference
on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), 222–
234, 2007.

6 Proof Theories and Algorithms for Abstract Argumentation Frameworks 129

7. M. Caminada and Y. Wu. Towards an Argument Game for Stable Semantics. In Computational
Models of Natural Argument, to appear, 2008.

8. C. Cayrol, S. Doutre and J. Mengin. Dialectical Proof Theories for the Credulous Preferred
Semantics of Argumentation Frameworks. In European Conference on Symbolic and Quanti-
tative Approaches to Reasoning with Uncertainty (ECSQARU), 668–679, 2001.

9. C. Cayrol, S. Doutre and J. Mengin. On Decision Problems related to the preferred semantics
for argumentation frameworks. Journal of Logic and Computation, 13(3), 377–403, 2003.

10. C. Cayrol and M. Lagasquie-Schiex. On the Acceptability of Arguments in Bipolar Argu-
mentation Frameworks. In European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU), 378–389, 2005.

11. C. Cayrol and M.-Ch. Lagasquie-Schiex. Graduality in argumentation. Journal of Artificial
Intelligence Research, 23:245–297, 2005.

12. S. Doutre and J. Mengin. On sceptical vs credulous acceptance for abstract argument systems.
In Ninth European Conference on Logics in Artificial Intelligence (JELIA 2004), 462–473,
2004.

13. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

14. P.M. Dung, P. Mancarella and F. Toni. Computing ideal sceptical argumentation. Artificial
Intelligence Journal, 171(10–15):642–674, 2007.

15. P.M. Dung and P.M. Thang. A Sound and Complete Dialectical Proof Procedure for Sceptical
Preferred Argumentation. In Proc. of the LPNMR-Workshop on Argumentation and Nonmono-
tonic Reasoning (ArgNMR07), 49–63, 2007.

16. P.E. Dunne and T.J.M. Bench-Capon. Two Party Immediate Response Disputes: Properties
and Efficiency. Artificial Intelligence Journal, 149(2),221–250, 2003.

17. H. Jakobovits and D. Vermeir. Dialectic Semantics for Argumentation Frameworks. Journal
of Logic and Computation, 53–62, 1999.

18. P. Lorenzen. Dialectical foundations of logical calculi. Constructive Philosophy, Univ. of Mas-
sachusetts Press, 1987.

19. P. Lorenzen and K.Lorenz”. Dialogische Logik. Wissenschaftliche Buchgesellschaft, Darm-
stadt, 1978.

20. S. Modgil. Reasoning About Preferences in Argumentation Frameworks. Artificial Intelli-
gence Journal, 173(9–10), 901–934, 2009.

21. S. Modgil and M. Caminada. Proof Theories and Algorithms for Abstract Argumentation
Frameworks. Technical Report, Department of Computer Science, King’s College London,
www.dcs.kcl.ac.uk/sta f f /modgilsa/Proo f T heoriesAlgorithms.pd f , 2008.

22. S. Nielsen and S. Parsons. A generalization of Dung’s abstract framework for argumentation:
Arguing with sets of attacking arguments. In Proc. Third International Workshop on Argu-
mentation in Multiagent Systems (ArgMAS 2006), 54–73, 2006.

23. J. L. Pollock. Cognitive Carpentry. A Blueprint for How to Build a Person. MIT Press, Cam-
bridge, MA, 1995.

24. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible pri-
orities. Journal of Applied Non-Classical Logics, 7:25–75, 1997.

25. B. Verheij. A Labeling Approach to the Computation of Credulous Acceptance in Argumen-
tation. In International Joint Conference on Aritificial Intelligence (IJCAI), 623–628, 2007.

26. G. A. W. Vreeswijk. Defeasible dialectics: A controversy-oriented approach towards defeasi-
ble argumentation. Journal of Logic and Computation, 3:3–27, 1993.

27. G. A. W. Vreeswijk. An algorithm to compute minimally grounded and admissible defence
sets in argument systems. In Proc. 1st International Conference on Computational Models of
Argument, 109–120, 2006.

28. G. A. W. Vreeswijk and H. Prakken. Credulous and sceptical argument games for preferred
semantics. In Proc. 7th European Workshop on Logic for Artificial Intelligence, 239–253,
2000.

Part II
Arguments with Structure

Chapter 7
Argumentation Based on Classical Logic

Philippe Besnard and Anthony Hunter

1 Introduction

Argumentation is an important cognitive process for dealing with conflicting infor-
mation by generating and/or comparing arguments. Often it is based on construct-
ing and comparing deductive arguments. These are arguments that involve some
premises (which we refer to as the support of the argument) and a conclusion (which
we refer to as the claim of the argument) such that the support deductively entails
the claim.

In order to formalize argumentation, we could potentially use any logic to define
the logical entailment of the claim from the support. Possible logics include defea-
sible logics, description logics, paraconsistent logics, modal logics, and classical
logic. In this chapter, we focus on deductive arguments in the setting of classical
logic. Hence, our starting position is that a deductive argument consists of a claim
entailed by a collection of statements such that the claim as well as the statements
are denoted by formulae of classical logic and entailment is deduction in classical
logic. Classical logic is a well-known formalism. It is widely used in philosophy,
mathematics, and computer science for capturing deductive reasoning. It has a sim-
ple and intuitive syntax and semantics, and it is supported by a proof theory and
extensive foundational results. By using classical logic, we can provide a simple
and efficient formalization of argument and counterargument.

So in our framework, an argument is simply a pair 〈Φ ,α〉 where the first item in
the pair is a minimal consistent set of formulae that proves the second item. That is,
we account for the support and the claim of an argument though we do not indicate
the method of inference since it does not differ from one argument to another: We

Philippe Besnard
IRIT, Universite Paul Sabatier, Toulouse, France

Anthony Hunter
Department of Computer Science, University College London, London, UK

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 133
DOI 10.1007/978-0-387-98197-0 7, c© Springer Science+Business Media, LLC 2009

134 Philippe Besnard and Anthony Hunter

only consider deductive arguments, hence the method of inference for each and
every argument is always entailment according to classical logic.

A counterargument for an argument 〈Φ ,α〉 is an argument 〈Ψ ,β 〉 where the
claim β contradicts the support Φ . Furthermore, we identify a particular kind of
counterargument called a canonical undercut 〈Ψ ,β 〉where β is equivalent to ¬(φ1∧
..∧ φn) and {φ1, ...,φn} is the support of the argument being undercut. This is a
valuable form of undercut since it subsumes many other kinds of undercut, and
hence focusing on only canonical undercuts renders the presentation and evaluation
of counterarguments as a more manageable process.

Each undercut to an argument is itself an argument, and so may be undercut, and
hence by recursion each undercut needs to be considered for its undercuts. Exploring
systematically the universe of arguments in order to present an exhaustive synthesis
of the relevant chains of undercuts for a given argument is the basic principle of our
approach.

Following on from the idea that we can capture undercuts, and by recursion un-
dercuts to undercuts, our notion of an argument tree is that it is a synthesis of all the
arguments that challenge the argument at the root of the tree, and it also contains
all counterarguments that challenge these arguments and so on recursively. In each
instance, the only counterarguments we consider are the canonical undercuts.

In the rest of this chapter, we formalize and illustrate arguments and counterar-
guments (including canonical undercuts), and show how these can be collected into
argument trees. We conclude the chapter with a comparison with other approaches
to formalising argumentation. Since the aim of this chapter is to just introduce some
of the basic ideas to argumentation based on classical logic, the interested reader is
requested to refer to [3, 6] for more details including formal results.

2 Preliminaries

We assume the reader has some knowledge of classical logic. We will represent
atoms by lower case roman letters (a,b,c,d,...), formulae by greek letters (α ,β ,γ ,
....), and use ∧,∨,→, and ¬ to denote the logical connectives conjunction, disjunc-
tion, negation, and implication (respectively). We use � to denote the classical con-
sequence relation, and so if Δ is a knowledgebase, and α is a formula, then Δ � α
denotes that Δ entails α (or equivalently α is a consequence of Δ). We also use⊥ to
denote a contradiction, and so Δ �⊥ denotes that Δ is contradictory (or equivalently
inconsistent).

For the knowledgebase, we first assume a fixed Δ (a finite set of formulae) and
use this Δ throughout. So when we consider arguments and counterarguments, they
will be formed from this Δ . For examples, we will explicitly give the elements of
the knowledgebase.

We further assume that every subset of Δ is given an enumeration 〈α1, . . . ,αn〉 of
its elements, which we call its canonical enumeration. This really is not a demanding
constraint: In particular, the constraint is satisfied whenever we impose an arbitrary

7 Argumentation Based on Classical Logic 135

total ordering over Δ . Importantly, the order has no meaning and is not meant to
represent any respective importance of formulae in Δ . It is only a convenient way to
indicate the order in which we assume the formulae in any subset of Δ are conjoined
to make a formula logically equivalent to that subset.

The paradigm for our approach is a large repository of information, represented
by Δ , from which arguments can be constructed for and against arbitrary claims.
Apart from information being understood as declarative statements, there is no a
priori restriction on the contents and the pieces of information in the repository can
be arbitrarily complex. Therefore, Δ is not expected to be consistent. It need not
even be the case that individual formulae in Δ are consistent.

The formulae in Δ can represent certain or uncertain information, and they can
represent objective, subjective, or hypothetical statements. So Δ can represent facts,
beliefs, views, . . . Furthermore, the items in Δ can be beliefs from different agents
who need not even have the same opinions. It can indeed be the case that an argu-
ment formed from such a Δ takes advantage of partial views from different agents.
In any case, it is quite possible for Δ to have two or more formulae which are logi-
cally equivalent (Δ can be such that it contains both α ∨β and β ∨α for example).
But wherever they come from, all formulae in Δ are on a par and treated equitably.

Note, we do not assume any meta-level information about formulae. In particular,
we do not assume some preference ordering or “certainty ordering” over formulae.
This is in contrast to numerous proposals for argumentation which do assume some
form of ordering over formulae. Such orderings can be useful to resolve conflicts
by, for example, selecting formulae from a more reliable source. However, this, in a
sense, pushes the problem of dealing with conflicting information to one of finding
and using orderings over formulae, and as such raises further questions such as:
Where does the knowledge about reliability of the sources come from? How can it
be assessed? How can it be validated? Besides, reliability is not universal, it usually
comes in specialized domains.

This is not to say priorities (or indeed other forms of meta-level information)
are not useful. Indeed it is important to use them in some situations when they
are available, but we believe that to understand the elements of argumentation, we
need to avoid drawing on them — we need to have a comprehensive framework for
argumentation that works without recourse to priorities over formulae.

3 Arguments

We adopt a very common intuitive notion of an argument and consider some of
the ramifications of the definition. Essentially, an argument is a set of appropriate
formulae that can be used to classically prove some claim, together with that claim
(formulae represent statements, including claims).

Definition 7.1. An argument is a pair 〈Φ ,α〉 such that

1. Φ �� ⊥.

136 Philippe Besnard and Anthony Hunter

2. Φ � α .
3. Φ is a minimal subset of Δ satisfying 2.

If A = 〈Φ ,α〉 is an argument, we say that A is an argument for α (which in
general is not an element of Δ) and we also say that Φ is a support for α . We call α
the claim of the argument and we call Φ the support of the argument.

Example 7.1. Let Δ = {a,a→ b,c→¬b,c,d,d → b,¬a,¬c}. Some arguments are:

〈{a,a→ b},b〉
〈{c→¬b,c},¬b〉
〈{d,d → b},b〉
〈{¬a},¬a〉
〈{¬c},¬c〉

〈{a→ b},¬a∨b〉
〈{¬c},d →¬c〉

The need for the first condition of Definition 7.1 can be illustrated by means of
the next example.

Example 7.2. Consider the following atoms.

a The office phone number is 020 4545 8721
b I am a billionaire

Now let {a,¬a} ⊆ Δ , and so by classical logic, we have

{a,¬a} � b

However, we do not want to have {a,¬a} as the support for an argument with claim
b. If we were to allow that as an argument, then we would have an argument with this
support and with any claim in the language. Hence, if we were to allow inconsistent
supports, then we would have an overwhelming number of useless arguments.

The second condition of Definition 7.1 aims at ensuring that the support is suffi-
cient for the consequent to hold, as is illustrated in the next example.

Example 7.3. Consider the informal argument which is acceptable.

It is an even number, and therefore we can infer it is not an odd number.

Now consider the following atoms.

e It is an even number
o It is an odd number

So we can represent the premise of informal argument by the set {e}. However, by
classical logic we have that {e} �� ¬o, and hence the following is not an argument.

7 Argumentation Based on Classical Logic 137

〈{e},¬o〉

If we want to turn the informal argument (which is an enthymeme) into an argument,
we need to make explicit all the premises. So we can represent the above informal
argument by the following formal argument.

〈{e,¬e∨¬o},¬o〉

An enthymeme is a form of reasoning in which some premises are implicit, most
often because they are obvious. As another example, “The baby no longer has her
parents, therefore she is an orphan” (in symbols, ¬p hence o) is an enthymeme: The
reasoning is correct despite omitting the trivial premise stating that “if a baby no
longer has her parents, then she is an orphan” (in symbols, {¬p,¬p→ o} � o).

Minimality (i.e., condition 3 Definition 7.1) is not an absolute requirement, al-
though some properties depend on it. Importantly, the condition is not of a mere
technical nature.

Example 7.4. Consider the following formulae.

p I like paprika
r It is raining
r→ q If it is raining, then I should use my umbrella

It is possible to argue that “I should use my umbrella, because I should use my
umbrella, if it is raining, and indeed it is”, to be captured formally by the argument

〈{r,r→ q},q〉

In contrast, it is counter-intuitive to argue that “I should use my umbrella, because
I like paprika and I should use my umbrella, if it is raining, and indeed it is”, to be
captured formally by

〈{p,r,r→ q},q〉
which fails to be an argument because condition 3 is not satisfied.

The underlying idea for condition 3 is that an argument makes explicit the con-
nection between reasons for a claim and the claim itself. But that would not be the
case if the reasons were not exactly identified. In other words, if reasons incorpo-
rated irrelevant information and so included formulae not used in the proof of the
claim.

Arguments are not necessarily independent. In a sense, some encompass others
(possibly up to some form of equivalence), which is the topic we now turn to.

Definition 7.2. An argument 〈Φ ,α〉 is more conservative than an argument 〈Ψ ,β 〉
iff Φ ⊆Ψ and β � α .

Example 7.5. 〈{a},a∨b〉 is more conservative than 〈{a,a→ b},b〉.
Roughly speaking, a more conservative argument is more general: It is, so to

speak, less demanding on the support and less specific about the consequent.

138 Philippe Besnard and Anthony Hunter

Example 7.6. Consider the following atoms.

p The number is divisible by 10
q The number is divisible by 2
r The number is an even number

We use these for the following set of formulae.

Δ = {p, p→ q,q→ r}

Hence, the following is an argument with the claim “The number is divisible by 2”.

〈{p, p→ q},q〉

Similarly, the following is argument with claim “The number is divisible by 2 and
the number is an even number”.

〈{p, p→ q,q→ r},r∧q〉

However, the first argument 〈{p, p → q},q〉 is more conservative than the second
argument 〈{p, p→ q,q→ r},r∧q〉 which can be retrieved from it:

〈{p, p→ q},q〉
{q,q→ r} |= r∧q

}
⇒ 〈{p, p→ q,q→ r},r∧q〉

We will use the notion of “more conservative” to help us identify the most useful
counterarguments amongst the potentially large number of counterarguments.

4 Counterarguments

Informally, an argument that disagrees with another argument is described as a coun-
terargument. So counterarguments are an important part of the argumentation pro-
cess. They highlight points of contention.

In logic-based approaches to argumentation, an intuitive notion of counterargu-
ment is captured with the idea of defeaters, which are arguments whose claim refutes
the support of another argument [23, 14, 19, 25, 24, 22]. This gives us a general way
for an argument to challenge another.

Definition 7.3. A defeater for an argument 〈Φ ,α〉 is an argument 〈Ψ ,β 〉 such that
β � ¬(φ1∧ . . .∧φn) for some {φ1, . . . ,φn} ⊆Φ .

Example 7.7. Let Δ = {¬a,a∨ b,a↔ b,c→ a}. Then, 〈{a∨ b,a↔ b},a∧ b〉 is a
defeater for 〈{¬a,c→ a},¬c〉. A more conservative defeater for 〈{¬a,c→ a},¬c〉
is 〈{a∨b,a↔ b},a∨ c〉.

7 Argumentation Based on Classical Logic 139

The notion of assumption attack to be found in the literature is less general than
the above notion of defeater, of which special cases are undercut and rebuttal as
discussed next.

Some arguments directly oppose the support of others, which amounts to the
notion of an undercut.

Definition 7.4. An undercut for an argument 〈Φ ,α〉 is an argument 〈Ψ ,¬(φ1 ∧
. . .∧φn)〉 where {φ1, . . . ,φn} ⊆Φ .

Example 7.8. Let Δ = {a,a→ b,c,c→¬a}. Then, 〈{c,c→¬a},¬(a∧ (a→ b))〉
is an undercut for 〈{a,a→ b},b〉. A less conservative undercut for 〈{a,a→ b},b〉
is 〈{c,c→¬a},¬a〉.

The most direct form of a conflict between arguments is when two arguments
have opposite claims. This case is captured in the literature through the notion of a
rebuttal.

Definition 7.5. An argument 〈Ψ ,β 〉 is a rebuttal for an argument 〈Φ ,α〉 iff β ↔
¬α is a tautology.

Example 7.9. Consider a discussion in a newspaper editorial office about whether or
not to proceed with the publication of some indiscretion about a prominent politi-
cian. Suppose the key bits of information are captured by the following five state-
ments.

p Simon Jones is a Member of Parliament
p→¬q If Simon Jones is a Member of Parliament then we need not keep quiet

about details of his private life
r Simon Jones just resigned from the House of Commons
r→¬p If Simon Jones just resigned from the House of Commons then he is not

a Member of Parliament
¬p→ q If Simon Jones is not a Member of Parliament then we need to keep

quiet about details of his private life

The first two statements form an argument A whose claim is that we can publicize
details about his private life. The next two statements form an argument whose claim
is that he is not a Member of Parliament (contradicting an item in the support of
A) and that is a counterargument against A. The last three statements combine to
give an argument whose claim is that we cannot publicize details about his private
life (contradicting the claim of A) and that, too, is a counterargument against A.
In symbols, we obtain the following argument (below left), and counterarguments
(below right).

〈{p, p→¬q},¬q〉
{

An undercut is 〈{r,r→¬p},¬p〉
A rebuttal is 〈{r,r→¬p,¬p→ q},q〉

Trivially, undercuts are defeaters but it is also quite simple to establish that rebut-
tals are defeaters. Furthermore, if an argument has defeaters then it has undercuts,

140 Philippe Besnard and Anthony Hunter

naturally. It may happen that an argument has defeaters but no rebuttals as illustrated
next.

Example 7.10. Let Δ = {a∧b,¬b}. Then, 〈{a∧b},a〉 has at least one defeater but
no rebuttal.

There are some important differences between rebuttals and undercuts that can be
seen in the following examples. In the first, we see how an undercut for an argument
need not be a rebuttal for that argument, and in the second, we see how rebuttal for
an argument need not be an undercut for that argument.

Example 7.11. 〈{¬a},¬a〉 is an undercut for 〈{a,a→ b},b〉 but is not a rebuttal for
it. Clearly, 〈{¬a},¬a〉 does not rule out b. Actually, an undercut may even agree
with the claim of the objected argument: 〈{b∧¬a},¬a〉 is an undercut for 〈{a,a→
b},b〉. In this case, we have an argument with an undercut that conflicts with the
support of the argument but implicitly provides an alternative way to deduce the
claim of the argument. This should make it clear that an undercut need not question
the claim of an argument but only the reason(s) given by that argument to support
its claim. Of course, there are also undercuts that challenge an argument on both
counts: Just consider 〈{¬a∧¬b},¬a〉 which is such an undercut for the argument
〈{a,a→ b},b〉.
Example 7.12. 〈{¬b},¬b〉 is a rebuttal for 〈{a,a → b},b〉 but is not an undercut
for it because b is not in {a,a → b}. Observe that there is not even an argument
equivalent to 〈{¬b},¬b〉 which would be an undercut for 〈{a,a→ b},b〉: In order
to be an undercut for 〈{a,a→ b},b〉, an argument should be of the form 〈Φ ,¬a〉,
〈Φ ,¬(a → b)〉 or 〈Φ ,¬(a∧ (a → b))〉 but ¬b is not logically equivalent to ¬a,
¬(a→ b) or ¬(a∧ (a→ b)).

Both undercuts and rebuttals are useful kinds of counterargument. However, we
will see in the next section that we can effectively capture all we need to know about
the counterarguments to an argument by just using a special kind of undercut called
a canonical undercut.

5 Canonical undercuts

A particularly useful kind of undercut is the maximally conservative undercut which
we define next.

Definition 7.6. 〈Ψ ,β 〉 is a maximally conservative undercut of 〈Φ ,α〉 iff for all
undercuts 〈Ψ ′,β ′〉 of 〈Φ ,α〉, if Ψ ′ ⊆Ψ and β � β ′ then Ψ ⊆Ψ ′ and β ′ � β .

Evidently, 〈Ψ ,β 〉 is a maximally conservative undercut of 〈Φ ,α〉 iff 〈Ψ ,β 〉 is an
undercut of 〈Φ ,α〉 such that no undercuts of 〈Φ ,α〉 are strictly more conservative
than 〈Ψ ,β 〉.

7 Argumentation Based on Classical Logic 141

The next example shows that a collection of counterarguments to the same argu-
ment can sometimes be summarized in the form of a single maximally conservative
undercut of the argument, thereby avoiding some amount of redundancy among
counterarguments.

Example 7.13. Consider the following formulae concerning who is going to a party.

r→¬p∧¬q If Rachel goes, neither Paul nor Quincy go
p Paul goes
q Quincy goes

Hence both Paul and Quincy go (initial argument)

〈{p,q}, p∧q〉

Now assume the following additional piece of information

r Rachel goes

Hence Paul does not go (a first counterargument)

〈{r,r→¬p∧¬q},¬p〉

Hence Quincy does not go (a second counterargument)

〈r,r→¬p∧¬q},¬q〉

A maximally conservative undercut (for the initial argument) that subsumes both
counterarguments above is

〈{r,r→¬p∧¬q},¬(p∧q)〉

The fact that the maximally conservative undercut in Example 7.13 happens to
be a rebuttal of the argument is only accidental. Actually, the claim of a maximally
conservative undercut for an argument is exactly the negation of the full support of
the argument. In other words, if 〈Ψ ,¬(φ1 ∧ . . .∧ φn)〉 is a maximally conservative
undercut for an argument 〈Φ ,α〉, then Φ = {φ1, . . . ,φn}.

Note that if 〈Ψ ,¬(φ1∧ . . .∧φn)〉 is a maximally conservative undercut for an ar-
gument 〈Φ ,α〉, then so are 〈Ψ ,¬(φ2∧ . . .∧φn∧φ1)〉 and 〈Ψ ,¬(φ3∧ . . .∧φn∧φ1∧
φ2)〉 and so on. However, they are all identical (in the sense that each is more conser-
vative than the others). We can ignore the unnecessary variants by just considering
the canonical undercuts defined as follows.

Definition 7.7. An argument 〈Ψ ,¬(φ1 ∧ . . . ∧ φn)〉 is a canonical undercut for
〈Φ ,α〉 iff it is an undercut for 〈Φ ,α〉 and 〈φ1, . . . ,φn〉 is the canonical enumera-
tion of Φ .

Recall (from the Preliminaries section) that the ordering given by the canonical
enumeration has no meaning and is not meant to represent any respective importance

142 Philippe Besnard and Anthony Hunter

of formulae in Δ . It is only a convenient way to indicate the order in which we
assume the formulae in any subset of Δ are conjoined to make a formula logically
equivalent to that subset.

Example 7.14. Returning to Example 7.13, suppose the canonical enumeration is as
follows.

〈r, p,r→¬p∧¬q,q〉
Then both the following are maximally conservative undercuts, but only the first is
a canonical undercut.

〈{r,r→¬p∧¬q},¬(p∧q)〉
〈{r,r→¬p∧¬q},¬(q∧ p)〉

The nice feature of canonical undercuts is that they are all maximally conser-
vative undercuts. In other words, an argument 〈Ψ ,¬(φ1 ∧ . . .∧ φn)〉 is a canoni-
cal undercut for 〈Φ ,α〉 iff it is a maximally conservative undercut for 〈Φ ,α〉 and
〈φ1, . . . ,φn〉 is the canonical enumeration of Φ .

Clearly, an argument may have more than one canonical undercut. This raises
the question of how do the canonical undercuts for the same argument look like,
and how do they differ from one another? In response to the first question, any two
different canonical undercuts for the same argument have the same claim, but dis-
tinct supports, and in response to the second question, given two different canonical
undercuts for the same argument, none is more conservative than the other.

Example 7.15. Let Δ = {a,b,¬a,¬b}. Both the following are canonical undercuts
for 〈{a,b},a↔ b〉, but neither is more conservative than the other.

〈{¬a},¬(a∧b)〉
〈{¬b},¬(a∧b)〉

A further important property of canonical undercuts is the following which shows
how they give us the useful information concerning counterarguments for an ar-
gument: For each defeater 〈Ψ ,β 〉 of an argument 〈Φ ,α〉, there exists a canonical
undercut for 〈Φ ,α〉 that is more conservative than 〈Ψ ,β 〉. Therefore, the set of
all canonical undercuts of an argument represent all the defeaters of that argument
(informally, all its counterarguments). This is to be taken advantage of in the next
section.

6 Argument trees

How does argumentation usually take place? Argumentation starts when an initial
argument is put forward, making some claim. An objection is raised, in the form
of a counterargument. The latter is addressed in turn, eventually giving rise to a
counter-counterargument, if any. And so on. However, there often is more than one
counterargument to the initial argument, and if the counterargument actually raised

7 Argumentation Based on Classical Logic 143

in the first place had been different, the counter-counterargument would have been
different, too, and similarly the counter-counter-counterargument, if any, and so on,
and hence the argumentation would have taken a possibly quite different course.

So do we find all the alternative courses which could take place from a given
initial argument? And is it possible to represent them in a rational way? Let alone
the most basic question: How do we make sure that no further counterargument can
be expressed from the information available?

Example 7.16. Let the following be our knowledgebase.

{a,b,c,¬a∨¬b∨¬c}

Suppose we start with the following argument.

〈{a,b,c},a∧b∧ c〉

Now we have numerous undercuts to this argument including the following.

〈{b,c,¬a∨¬b∨¬c},¬a〉
〈{a,c,¬a∨¬b∨¬c},¬b〉
〈{a,b,¬a∨¬b∨¬c},¬c〉
〈{a,¬a∨¬b∨¬c},¬b∨¬c〉
〈{b,¬a∨¬b∨¬c},¬a∨¬c〉
〈{c,¬a∨¬b∨¬c},¬a∨¬b〉
〈{¬a∨¬b∨¬c},¬a∨¬b∨¬c〉

All these undercuts say the same thing which is that the set {a,b,c} is inconsistent
together with the formula ¬a∨¬b∨¬c. As a result, this can be captured by the last
undercut listed above. Note this is the maximally conservative undercut amongst the
undercuts listed, and moreover it is a canonical undercut. This example therefore
illustrates how the canonical undercuts are the undercuts that represent all the other
undercuts.

Often each undercut may itself be undercut, as illustrated by the next example.

Example 7.17. Consider the following atoms that concern the debate on addressing
the shortage of oil with biofuel and thereby addressing the effect of the shortage
on inflation. However, when grain is used to produce biofuel, then this can cause
inflation because it causes shortages of grain for food. But, biofuel can be produced
from the large unexploited sources of biowaste (such as the remainder of the wheat
plant after the grain has been removed).

o there is decreased availability of oil
b there is increased production of biofuel
g there is decreased availability of food grain
i there is increased inflation of prices
w there is unexploited availability of biowaste

144 Philippe Besnard and Anthony Hunter

We can use these for the following formulae.

{o,o→ b,b→ g,b→¬i,g→ i,w,w→ b∧¬g}

Now we can form the the following argument to capture the first part of the above
discussion.

〈{o,o→ b,b→¬i},¬i〉
The following canonical undercut captures the counterargument to the above.

〈{o,o→ b,b→ g,g→ i},¬(o∧ (o→ b)∧ (b→¬i))〉

We can capture the counterargument to the above undercut by the following canon-
ical undercut.

〈{w,w→ b∧¬g},¬(o∧ (o→ b)∧ (b→ g)∧ (g→ i))〉

So we can represent the above discussion by three arguments, where we start with
an argument, we have an undercut to that argument, and an undercut to the undercut.

It is also common to have more than one canonical undercut for an argument.
Multiple undercuts are illustrated by the following example.

Example 7.18. Suppose we have the following knowledgebase.

{(¬r→¬p)→¬q,(p→ s)→¬¬q,r,s,¬p}

Also suppose we construct the following argument.

〈{r,(¬r→¬p)→¬q},¬q〉

Then the following two arguments are each a canonical undercut to the above argu-
ment.

〈{s,(p→ s)→¬¬q},¬(r∧ (¬r→¬p)→¬q)〉
〈{¬p,(p→ s)→¬¬q},¬(r∧ (¬r→¬p)→¬q)〉

Finally, the following argument is a canonical undercut to the first of the above
canonical undercuts.

〈{¬p,(¬r→¬p)→¬q},¬(s∧ (p→ s)→¬¬q)〉

We now turn to one final issue before we formalize the notion of argument trees.

Example 7.19. Argumentation sometimes falls into a repetitive and uninformative
cycle as illustrated below with a case of the “Chicken and Egg dilemma”.

Dairyman: – Egg was first
Farmer: – Chicken was first
Dairyman: – Egg was first
Farmer: – Chicken was first

. . . – . . .

7 Argumentation Based on Classical Logic 145

The following propositional atoms are introduced:

p Egg was first
q Chicken was first
r The chicken comes from the egg
s The egg comes from the chicken

It can be assumed that the chicken was first and that the egg was first are not
equivalent. (i.e. ¬(p ↔ q)). Also, it can be assumed that the egg comes from the
chicken (i.e. s) and the chicken comes from the egg (i.e. r). Moreover, if the egg
comes from the chicken then the egg was not first. (i.e. s → ¬p). Similarly, if the
chicken comes from the egg then the chicken was not first (i.e. r →¬q). Then, the
above dispute can be represented as follows:

〈{s→¬p,s,¬(p↔ q)},q〉
↑

〈{r→¬q,r,¬(p↔ q)}, p〉
↑

〈{s→¬p,s,¬(p↔ q)},q〉
↑

〈{r→¬q,r,¬(p↔ q)}, p〉
↑
...

We are now ready for our definition (below) of an argument tree in which the root
of the tree is an argument of interest, and the children for any node are the canonical
undercuts for that node. In the definition, we avoid the circularity seen in the above
example by incorporating an intuitive constraint.

Definition 7.8. An argument tree for α is a tree where the nodes are arguments
such that

1. The root is an argument for α .
2. For no node 〈Φ ,β 〉 with ancestor nodes 〈Φ1,β1〉, . . . ,〈Φn,βn〉 is Φ a subset of

Φ1∪·· ·∪Φn.
3. The children nodes of a node N consist of all canonical undercuts for N that obey

2.

We illustrate the definition of an argument tree in the following examples.

Example 7.20. Returning to Example 7.9, we have the following five formulae.

p Simon Jones is a Member of Parliament
p→¬q If Simon Jones is a Member of Parliament then we need not keep quiet

about details of his private life
r Simon Jones just resigned from the House of Commons
r→¬p If Simon Jones just resigned from the House of Commons then he is not

a Member of Parliament
¬p→ q If Simon Jones is not a Member of Parliament then we need to keep

quiet about details of his private life

146 Philippe Besnard and Anthony Hunter

These can be used to construct the argument tree below.

〈{p, p→¬q},¬q〉
↑

〈{r,r→¬p},¬(p∧ (p→¬q))〉

Example 7.21. Given Δ = {a,a → b,c,c → ¬a,¬c∨¬a}, we have the following
argument tree.

〈{a,a→ b},b〉
↗ ↖

〈{c,c→¬a},¬(a∧ (a→ b))〉 〈{c,¬c∨¬a},¬(a∧ (a→ b))〉
Note the two undercuts are equivalent. They do count as two arguments because they
are based on two different items of the knowledgebase (even though these items turn
out to be logically equivalent).

For the rest of this chapter, we adopt a lighter notation, writing 〈Ψ ,�〉 for a
canonical undercut of 〈Φ ,β 〉. Clearly, � is ¬(φ1∧ . . .∧φn) where 〈φ1, . . . ,φn〉 is the
canonical enumeration for Φ .

Example 7.22. Consider the following atoms concerning the safety of mobiles
phones for children.

q1 Mobile phones are safe for children
q2 Mobile phones have a health risk
q3 Mobile phones heat the brain
q4 Mobile phones emit strong electromagnetic radiation
q5 There is a high density of phone masts
q6 Mobile phones can be used hands-free
q7 Hot baths heat the brain

Now suppose we have the following knowledgebase

{¬q2,¬q2 → q1,q4,q4 → q3,q3 → q2,q5,q5 →¬q4,q6,q6 →¬q3,q7,q7 →¬q2}

From this knowledgebase, we can obtain the following argument tree.

〈{¬q2,¬q2 → q1},q1〉
↑

〈{q4,q4 → q3,q3 → q2},�〉
↗ ↑ ↖

〈{q5,q5 →¬q4},�〉 〈{q6,q6 →¬q3},�〉 〈{q7,q7 →¬q2},�〉
We motivate the conditions of Definition 7.8 as follows: Condition 2 is meant to

avoid the situation illustrated by Example 7.23; and Condition 3 is meant to avoid
the situation illustrated by Example 7.24.

7 Argumentation Based on Classical Logic 147

Example 7.23. Let Δ = {a,a→ b,c→¬a,c}.

〈{a,a→ b},b〉
↑

〈{c,c→¬a},�〉
↑

〈{a,c→¬a},�〉
This is not an argument tree because Condition 2 is not met. The undercut to the
undercut is actually making exactly the same point (that a and c are incompatible)
as the undercut itself does, just by using modus tollens instead of modus ponens.

Example 7.24. Given Δ = {a,b,a→ c,b→ d,¬a∨¬b}, consider the following tree.

〈{a,b,a→ c,b→ d},c∧d〉
↗ ↖

〈{a,¬a∨¬b},¬b〉 〈{b,¬a∨¬b},¬a〉
This is not an argument tree because the two children nodes are not maximally
conservative undercuts. The first undercut is essentially the same argument as the
second undercut in a rearranged form (relying on a and b being incompatible, as-
sume one and then conclude that the other doesn’t hold). If we replace these by the
maximally conservative undercut 〈{¬a∨¬b},�〉, we obtain an argument tree.

The form of an argument tree is not arbitrary. It summarizes all possible courses
of argumentation about the argument in the root node. Each node except the root
node is the starting point of an implicit series of related arguments. What happens is
that for each possible course of argumentation (from the root), an initial sequence is
provided as a branch of the tree up to the point that no subsequent countern-argument
needs a new item in its support (where new means not occurring somewhere in
that initial sequence). Also, the counterarguments in a course of argumentation may
somewhat differ from the ones in the corresponding branch of the argument tree:

Example 7.25. We return to Example 7.18 which has the following knowledgebase.

{(¬r→¬p)→¬q,(p→ s)→¬¬q,r,s,¬p}

The argument tree with 〈{r,(¬r→¬p)→¬q},¬q〉 as its root is

〈{r,(¬r→¬p)→¬q},¬q〉
↗ ↖

〈{s,(p→ s)→¬¬q},�〉 〈{¬p,(p→ s)→¬¬q},�〉
↑

〈{¬p,(¬r→¬p)→¬q},�〉
Example 7.26. We return to the “Chicken and Egg dilemma” presented in Example
7.19

148 Philippe Besnard and Anthony Hunter

Dairyman: – Egg was first
Farmer: – Chicken was first
Dairyman: – Egg was first
Farmer: – Chicken was first

. . . – . . .

Here are the formulae again:

p Egg was first
q Chicken was first
r The chicken comes from the egg
s The egg comes from the chicken

¬(p↔ q) That the egg was first and that the chicken was first are not equivalent
r→¬q The chicken comes from the egg implies that the chicken was not first
s→¬p The egg comes from the chicken implies that the egg was not first

So, Δ = {¬(p↔ q),r →¬q,s→¬p,r,s}. The argument tree with the dairyman’s
argument as its root is

〈{r→¬q,r,¬(q↔ p)}, p〉
↑

〈{s→¬p,s,¬(q↔ p)},�〉
but it does not mean that the farmer has the last word nor that the farmer wins
the dispute! The argument tree is merely a representation of the argumentation (in
which the dairyman provides the initial argument). Although the argument tree is
finite, the argumentation here is infinite and unresolved.

We now consider a widely used criterion in argumentation theory for determining
whether the argument at the root of the argument tree is warranted (e.g. [21, 15]).
For this, each node is marked as either U for undefeated or D for defeated.

Definition 7.9. The judge function, denoted Judge, assigns either Warranted or
Unwarranted to each argument tree T such that Judge(T) = Warranted iff Mark(Ar)
= U where Ar is the root node of T . For all nodes Ai in T , if there is child A j of Ai

such that Mark(A j) = U , then Mark(Ai) = D, otherwise Mark(Ai) = U .

As a direct consequence of the above definition, the root is undefeated iff all its
children are defeated.

Example 7.27. Returning to Example 7.22, we see that the root of the tree T is un-
defeated, and hence Judge(T) = Warranted.

Example 7.28. Returning to Example 7.26, we see that the root of the tree T is de-
feated, and hence Judge(T) = Unwarranted.

In general, a complete argument tree (i.e. an argument tree with all the canonical
undercuts for each node as children of that node) provides an efficient representation
of the arguments and counterarguments. Furthermore, if Δ is finite, there is a finite
number of argument trees with the root being an argument with claim α that can be
formed from Δ , and each of these trees has finite branching and a finite depth.

7 Argumentation Based on Classical Logic 149

7 Discussion

In this chapter, we have reviewed a framework for argumentation based on classical
logic. The key features of this framework are the clarification of the nature of ar-
guments and counterarguments, the identification of canonical undercuts which we
argue are the only undercuts that we need to take into account, and the representa-
tion of argument trees which provide a way of exhaustively collating arguments and
counterarguments. This chapter is based on a particular proposal for logic-based ar-
gumentation for the propositional case [3, 6]. In comparison with the previous pro-
posals based on classical logic (e.g. [1, 20]), our proposal provides a much more
detailed analysis of counterarguments, and ours is the first proposal to consider
canonical undercuts. We believe that without the notion of canonical undercuts, the
number of undercuts available is unmanageable, and so restricting to canonical un-
dercuts reduces the number of undercuts to consider, and renders it manageable.

It is interesting to compare our approach with other logic-based approaches to
argumentation that use logics other than classical logic for the definition of deduc-
tion. The most common alternative is a form of defeasible logic such as defeasi-
ble logic programming [15], defeasible argumentation with specificity-based pref-
erences [23], and argument-based extended logic programming [21]. For a general
coverage of defeasible logics in argumentation see [10, 22, 6].

Whilst there are various positive features of these proposals based on defeasible
logic, including computational viability, and modeling of intuitive features of de-
feasible reasoning, there are complications with these proposals with respect to the
interplay between strict rules and defeasible rules, and the interplay between these
rules and the use of priorities over rules. This can render the deductive process to be
less than transparent. In comparison, we believe that using classical logic provides
a simpler and clear notion of deduction, of argument, and of counterargument.

Furthermore, various questions of rationality have been raised concerning the use
of defeasible logic for deduction in argumentation [8]. One of the proposals made
for rationality is that contrapositive reasoning needs to be supported. Introducing
contrapositive reasoning is controversial in defeasible logic [9], but it is an intrinsic
feature of classical logic. In other words, classical logic offers a nice solution to the
problems raised in [8].

A more general approach to logic-based argumentation is to leave the logic for
deduction as a parameter. This was proposed in abstract argumentation systems [25],
and developed in assumption-based argumentation (ABA) [11]. A substantial part
of the development of the theory and implement of ABA is focused on defeasible
logic. However, ABA is a general framework allowing for the use classical logic for
deduction, and thereby we could instantiate ABA with our proposal.

It is also interesting to compare our approach with abstract argument systems. Su-
perficially, an argument tree could be viewed as an argument framework in Dung’s
system. An argument in an argument tree could be viewed as an argument in a Dung
argument framework, and each arc in an argument tree could be viewed as an attack
relation. However, the way sets of arguments are compared is different.

150 Philippe Besnard and Anthony Hunter

Some differences between Dung’s approach and our approach can be seen in the
following examples.

Example 7.29. Consider a set of arguments {A1,A2,A3,A4} with the attack relation
R s.t. A2RA1, A3RA2, A4RA3, and A1RA4. Here there is an admissible set {A1,A3}.
We can try to construct an argument tree with A1 at the root. As a counterpart to the
attack relation, we regard that A1 is undercut by A2, A2 is undercut by A3, and so on.
However, the corresponding sequence of nodes A1,A2,A3,A4,A1 is not an argument
tree because A1 occurs twice in the branch (violating Condition 2 of Definition 7.8).
So, the form of the argument tree for A1 fails to represent the fact that A1 attacks A4.

Example 7.30. Let Δ = {b,b→ a,d∧¬b,¬d∧¬b}, giving the following argument
tree for a.

〈{b,b→ a},a〉
↗ ↖

〈{d∧¬b},�〉 〈{¬d∧¬b},�〉
↑ ↑

〈{¬d∧¬b},�〉 〈{d∧¬b},�〉

For this let A1 be 〈{b,b→ a},a〉, A2 be 〈{d ∧¬b},�〉 and A3 be 〈{¬d ∧¬b},�〉.
Disregarding the difference between the occurrences of �, this argument tree
rewrites as A2RA1, A3RA1, A3RA2, and A2RA3 where A1 denotes the root node
〈{b,b→ a},a〉. In this argument tree, each defeater of the root node is defeated. Yet
no admissible set of arguments contains A1.

Our proposal has been extended in a number of ways. As covered in [6], we have
proposed techniques that take into account intrinsic aspects of the arguments and
counterargument such as the degree of conflict between them, and the degree of
similarity between them, and extrinsic aspects such as the impact on the audience
and the empathy or antipathy the audience may have for individual arguments.

Further developments include formalization of enthymemes in our logic-based
framework [16, 7], a generalization of the framework to also consider the proponent
of each argument, and thereby argue about whether a proponent is an appropriate
proponent for that argument [17], and a refinement of the proposal to reason with
temporal knowledge [18].

We have also generalised the proposal reviewed in this chapter to handle first-
order logic [4]. Indeed, this is straightforward since all we need to do is to use a
first-order language and to use the classical first-order consequence relation instead
of the classical propositional logic. The key finiteness results still hold: So for a finite
number of formulae in the knowledgebase, there is a finite number of argument trees
for a claim, and each of these trees contains a finite number of nodes.

We have developed algorithms for generating arguments [12, 13], formaliza-
tions of decision problems concerning arguments and counterarguments in quan-
tified Boolean formaulas [2], and compilation techniques with the aim of improving
the viability of argumentation based on classical logic [5].

7 Argumentation Based on Classical Logic 151

Acknowledgements

We wish to thank Maria Vanina Martinez for feedback on an earlier draft of this
chapter.

References

1. L. Amgoud and C. Cayrol. On the acceptability of arguments in preference-based argumenta-
tion. In G. Cooper and S. Moral, editors, Proceedings of the 14th Conference on Uncertainty
in Artificial Intelligence (UAI 1998), pages 1–7. Morgan Kaufmann, 1998.

2. Ph. Besnard, A. Hunter, and S. Woltran. Encoding deductive argumentation in quantified
boolean formulae. Technical Report DBAI-TR-2008-60, Database and Artificial Intelligence
Group, Institute of Information Systems, Technischen Universität Wien, 2008.

3. Ph. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelli-
gence, 128:203–235, 2001.

4. Ph. Besnard and A. Hunter. Practical first-order argumentation. In Proceedings of the 20th
National Conference on Artificial Intelligence (AAAI 2005), pages 590–595. MIT Press, 2005.

5. Ph. Besnard and A. Hunter. Knowledgebase compilation for efficient logical argumentation.
In Proceedings of the 10th International Conference on Knowledge Representation (KR 2006),
pages 123–133. AAAI Press, 2006.

6. Ph. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008.
7. E. Black and A. Hunter. Using enthymemes in an inquiry dialogue system. In Proceedings of

the Seventh International Joint Conference on Autonomous Agents and Multi-Agent Systems
(AAMAS’08), pages 437–444. ACM Press, 2008.

8. M. Caminada and L. Amgoud. An axiomatic account of formal argumentation. In Proceedings
of the 20th National Conference on Artificial Intelligence (AAAI 2005), pages 608–613, 2005.

9. M. Caminada. On the issue of contraposition of defeasible rules. In Computational Models of
Argument: Proceedings of COMMA 2008, pages 109–115. IOS Press, 2008.

10. C. Chesñevar, A. Maguitman, and R. Loui. Logical models of argument. ACM Computing
Surveys, 32:337–383, 2000.

11. P. Dung, R. Kowalski, and F. Toni. Dialectical proof procedures for assumption-based admis-
sible argumentation. Artificial Intelligence, 170:114–159, 2006.

12. V. Efstathiou and A. Hunter. Algorithms for effective argumentation in classical propositional
logic. In Proceedings of the International Symposium on Foundations of Information and
Knowledge Systems (FOIKS’08), volume 4932 of LNCS, pages 272–290. Springer, 2008.

13. V. Efstathiou and A. Hunter. Focused search for arguments from propositional knowledge. In
Computation Models of Argument: Proceedings of COMMA 2008, pages 159–170. IOS Press,
2008.

14. J. Fox, P. Krause, and M. Elvang-Gøransson. Argumentation as a general framework for uncer-
tain reasoning. In Proceedings of the 9th Conference on Uncertainty in Artificial Intelligence
(UAI 1993), pages 428–434. Morgan Kaufmann, 1993.

15. A. Garcı́a and G. Simari. Defeasible logic programming: An argumentative approach. Theory
and Practice of Logic Programming, 4:95–138, 2004.

16. A. Hunter. Real arguments are approximate arguments. In Proceedings of the 22nd AAAI
Conference on Artificial Intelligence (AAAI’07), pages 66–71. MIT Press, 2007.

17. A. Hunter. Reasoning about the appropriateness of proponents for arguments. In Proceedings
of the 23rd AAAI Conference on Artificial Intelligence (AAAI’08). MIT Press, 2008.

18. N. Mann and A. Hunter. Argumentation using temporal knowledge. In Computational Models
of Argument: Proceedings of COMMA’08, pages 204–215. IOS Press, 2008.

152 Philippe Besnard and Anthony Hunter

19. D. Nute. Defeasible logics. In Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming, Volume 3: Nonmonotonic Reasoning and Uncertainty Reasoning, pages 355–395.
Oxford University Press, 1994.

20. J. Pollock. How to reason defeasibly. Artificial Intelligence, 57:1–42, 1992.
21. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible pri-

orities. Journal of Applied Non-classical Logic, 7:25–75, 1997.
22. H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In D. Gabbay,

editor, Handbook of Philosophical Logic, pages 219–318. Kluwer, 2002.
23. G. Simari and R. Loui. A mathematical treatment of defeasible reasoning and its implemen-

tation. Artificial Intelligence, 53:125–157, 1992.
24. B. Verheij. Automated argument assistance for lawyers. In Proceedings of the 7th Interna-

tional Conference on Artificial Intelligence and Law (ICAIL 1999), pages 43–52. ACM Press,
1999.

25. G. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90:225–279, 1997.

Chapter 8
Argument-based Logic Programming

Alejandro J. Garcı́a, Jürgen Dix and Guillermo R. Simari

1 Introduction

In this chapter we describe several formalisms for integrating Logic Programming
and Argumentation. Research on the relation between logic programming and ar-
gumentation has been and still is fruitful in both directions: Some argumentation
formalisms were used to define semantics for logic programming and also logic
programming was used for providing an underlying representational language for
non-abstract argumentation formalisms.

One of the first attempts dates back to 1987, when Donald Nute [19] introduced
a formalism called LDR (Logic for Defeasible Reasoning) with a simple represen-
tational language consisting of three types of rules: Strict, defeasible and defeaters.
Although LDR is not a defeasible argumentation formalism in itself, its implemen-
tation, d-Prolog, defined as an extension of PROLOG, was the first language that
introduced defeasible reasoning programming with specificity as a comparison cri-
terion between rules.

Another important step was taken in the nineties, when Phan M. Dung [10] em-
phasized that “there are extremely interesting relations between argumentation and
logic programming”. Dung showed that argumentation can be viewed as a special
form of logic programming with negation as failure. He introduced a general logic

Alejandro J. Garcı́a
Consejo Nacional de Investigaciones Cientı́ficas y Técnicas (CONICET)
Department of Computer Science and Engineering, Universidad Nacional del Sur
e-mail: ajg@cs.uns.edu.ar

Guillermo R. Simari
Department of Computer Science and Engineering, Universidad Nacional del Sur
e-mail: grs@cs.uns.edu.ar

Jürgen Dix
Department of Informatics Clausthal University of Technology
e-mail: dix@tu-clausthal.de

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 153
DOI 10.1007/978-0-387-98197-0 8, c© Springer Science+Business Media, LLC 2009

154 Alejandro J. Garcı́a, Jürgen Dix and Guillermo R. Simari

programming based method for generating meta-interpreters for argumentation sys-
tems.

A few years later, in 1997, inspired by legal reasoning, Prakken and Sartor [24]
introduced an argument-based formalism for extended logic programming with de-
feasible priorities. In their formalism, arguments are expressed in a logic program-
ming language with both strong and default negation. Conflicts between arguments
are decided with the help of priorities on the rules. These priorities can be defeasibly
derived as conclusions within the system. The semantics of the system is given by
a fixed point definition, while its proof theory is stated in dialectical style. A proof
takes the form of a dialogue between a proponent and an opponent: An argument
is shown to be justified if the proponent can make the opponent run out of moves in
whatever way the opponent attacks.

Another formalism for combining logic programming and argumentation, Defea-
sible Logic Programming (DeLP) has been introduced by Garcı́a and Simari in [15].
The representational language of DeLP is defined as an extension of a logic pro-
gramming language that considers two types of rules: Strict and defeasible, and
allows for both strong and default negation. A DeLP-query succeeds, i.e., it is war-
ranted from a DeLP-program, if it is possible to build an argument that supports
the query and this argument is found to be undefeated by a warrant procedure. This
process implements an exhaustive dialectical analysis that involves the construction
and evaluation of arguments that either support or interfere with the given query. The
DeLP dialectical analysis is based on previous works on defeasible argumentation
conducted by Simari and Loui [28], and Simari, Chesñevar, and Garcı́a [27].

In [26], Schweimeier and Schroeder formulate a variety of notions of attack for
extended logic programs from combinations of undercut and rebuttal. As shown
in Section 4, their language corresponds to that used by Prakken and Sartor [24]
without strict rules and any priorities. They also define a general hierarchy of argu-
mentation semantics parameterized by the notions of attack chosen by the proponent
and the opponent. They prove the equivalence and subset relationships between the
semantics and examine some essential properties concerning consistency and the
coherence principle, which relates default negation and explicit negation.

The rest of the chapter is organized as follows. Section 2 describes Defeasible
Logic Programming. Section 3 introduces Prakken’s approach of argument-based
extended logic programming with defeasible priorities. Section 4 gives an overview
of argumentation semantics for extended logic programming by Schweimeier and
Schroeder. Section 5 introduces Dung’s approach and Section 6 illustrates Nute’s
framework. Finally, in Section 7 we discuss more recent developments before con-
cluding with Section 8.

2 Defeasible Logic Programming

Defeasible Logic Programming (DeLP), as introduced in [15], is a formalism that
combines techniques of both logic programming and defeasible argumentation. As

8 Argument-based Logic Programming 155

in logic programming, in DeLP knowledge is represented using facts and rules;
however, DeLP also provides the possibility of representing information in the form
of weak rules in a declarative manner. These weak rules are the key element for in-
troducing defeasibility [21] and they are used to represent a relation between pieces
of knowledge that could be defeated when all things have been considered. DeLP
uses a defeasible argumentation inference mechanism for warranting the entailed
conclusions.

A defeasible logic program (DeLP-program for short), is a set of facts, strict rules
and defeasible rules, defined as follows.

• Facts are ground literals representing atomic information or the negation of
atomic information using strong negation “∼”, (e.g., chicken(little) and
∼scared(little)).

• Strict rules, denoted by L0 ← L1, . . . ,Ln, represent non-defeasible information.
The head of the rule, L0, is a ground literal and the body {Li}i>0 is a non-empty
set of ground literals, (e.g., bird ← chicken and ∼innocent ← guilty).

• Defeasible rules, denoted by L0 —< L1, . . . ,Ln, represent tentative information.
The head L0 is a ground literal and the body {Li}i>0 is a non-empty set of ground
literals (e.g., ∼ f lies —< chicken or f lies —< chicken,scared).

Syntactically, the symbol “—<” is all that distinguishes a defeasible rule from a
strict one. Pragmatically, a defeasible rule is used to represent tentative information
that may be used if nothing could be posed against it. A defeasible rule “H —< B”
is understood as expressing that “reasons to believe in the antecedent B provide
reasons to believe in the consequent H” [28]. For instance, “lights on —< switch on”
expresses that reasons to believe that the switch of a room is on, provide reasons
to believe that lights will be on. Note that this rule represents tentative information
because it may happen that the switch is on and the lights are not on, for example,
if light bulbs are broken, or there is no electricity (as represented by the following
rule: “∼lights on —<∼electricity”).

The information that represents a strict rule is not tentative. For instance, given
“∼innocent ← guilty” and the fact guilty, then it will not be possible to infer
innocent. That is, if guilty has a strict derivation then ∼innocent will also have a
strict derivation and innocent cannot be concluded. However, as it will be shown
below, if guilty is a tentative conclusion, then ∼innocent will also be a tentative
conclusion, and innocent may be concluded if there is information that supports it.

When required, a DeLP-program is denoted by the pair (Π ,Δ) distinguishing the
subset Π of facts and strict rules (that represents non-defeasible knowledge), and
the subset Δ of defeasible rules. Observe that strict and defeasible rules are ground.
However, following the usual convention [17], some examples will use “schematic
rules” with variables. To distinguish variables, they are written with an uppercase
letter. In examples, a period may be used as a delimiter between rules or facts. As in
logic programming, queries can be posed to a program. A DeLP-query is a ground
literal that DeLP will try to warrant. For example, dark(a) or illuminated(b) are
DeLP-queries.

Example 8.1. Consider the DeLP-program (Π 8.1,Δ 8.1) where:

156 Alejandro J. Garcı́a, Jürgen Dix and Guillermo R. Simari

Π 8.1=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

night. switch on(a).
∼day ← night. switch on(b).
∼dark(X) ← illuminated(X). switch on(c).
sunday. ∼electricity(b).
deadline. ∼electricity(c).

emergency lights(c).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

Δ 8.1=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

lights on(X) —< switch on(X).
∼lights on(X) —<∼electricity(X).
lights on(X) —<∼electricity(X),emergency lights(X).
dark(X) —<∼day.
illuminated(X) —< lights on(X),∼day.
working at(X) —< illuminated(X).
∼working at(X) —< sunday.
working at(X) —< sunday,deadline.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

The set Π 8.1 has information about three rooms: a, b and c. For instance, there are
facts expressing that in room a the light switch is on, in room b there is no electricity
and in room c there are emergency lights. There are also facts expressing that it is
Sunday night and that people working there have a deadline. Observe that Π 8.1 has
also two strict rules. For instance, the second one express that an illuminated room
is not dark.

The set Δ 8.1 provides defeasible rules representing tentative information, that can
be used to infer, for instance, which room is illuminated, or if someone is working
in a particular room. For example, the first defeasible rule states that “reasons to
believe that the switch of a room is on, provides reasons to believe that the lights
of that room are on”. The second rule express that “usually if there is no electricity
then lights of a room are not on”. The third defeasible rule states that “ normally,
if there is no electricity but there are emergency lights, then lights will be on”. The
last two rules state that “normally there is nobody working in a room on a Sunday”,
however, “if they have a deadline, people may be working on a Sunday”.

As it will be explained below, there are several queries that succeed with respect
to this program because they are warranted (e.g., illuminated(a), illuminated(c),
∼dark(c), dark(b) and working at(a)), whereas other queries are not warranted
(e.g., illuminated(b), ∼illuminated(c)).

Defeasible rules allow to infer tentative conclusions. A defeasible derivation of a
literal Q from a DeLP-program (Π ,Δ), denoted by (Π ,Δ) |∼ Q, is a finite sequence
of ground literals L1,L2, . . . ,Ln = Q, where either:

1. Li is a fact in Π , or
2. there exists a rule Ri in (Π ,Δ) (strict or defeasible) with head Li and body

B1,B2, . . . ,Bk and every literal of the body is an element L j of the sequence ap-
pearing before Li (j < i.)

The sequence: switch on(b), lights on(b), night, ∼day, illuminated(b), is a de-
feasible derivation for illuminated(b) from (Π 8.1,Δ 8.1). In particular, a derivation

8 Argument-based Logic Programming 157

from (Π , /0) is called a strict derivation, (e.g., night,∼day in Example 8.1). That is,
a derivation is defeasible if at least one defeasible rule is used, otherwise it is strict.
Two literals are considered contradictory if one is the complement of the other with
respect to strong negation, (e.g., day and ∼day). Since Π represents non-defeasible
information, then it is natural to require certain internal coherence. Therefore, in
DeLP, two contradictory literals cannot have a strict derivation from a valid pro-
gram.

Nevertheless, as expected, from a valid DeLP-program, there can result contra-
dictory literals that have defeasible derivations (e.g., lights on(b) and∼lights on(b)
from (Π 8.1,Δ 8.1)). In these situations, in order to decide which literal is accepted as
warranted, DeLP incorporates a defeasible argumentation formalism that allows the
identification of the pieces of knowledge that are in contradiction. Then, a dialectical
process is used for deciding which information prevails as warranted. This process
involves the construction and evaluation of arguments and counter-arguments, as
described next.

Definition 8.1 (Argument Structure). Let H be a ground literal, (Π ,Δ) a DeLP-
program, and A⊆Δ . The pair 〈A,H〉 is an argument structure if:

1. there exists a defeasible derivation for H from (Π ,A),
2. there is no defeasible derivation from (Π ,A) of contradictory literals,
3. and there is no proper subset A′ of A such that A′ satisfies (1) and (2).

In an argument structure 〈A,H〉, H is the claim and A is the argument support-
ing that claim. For instance, from the DeLP-program of Example 8.1 the follow-
ing argument structures can be obtained: 〈A1,dark(b)〉, 〈A2, illuminated(b)〉, and
〈A3,∼lights on(b)〉, where
A1={dark(b) —<∼day}
A2={(illuminated(b) —< lights on(b),∼day), (lights on(b) —< switch on(b)}
A3={∼lights on(b) —<∼electricity(b)}
Observe that an argument is a set of defeasible rules; however, strict rules may be
used for the defeasible derivation of its claim. For instance, A1 uses the strict rule
∼day ← night for the derivation of ∼day.

A DeLP-query Q succeeds, i.e., it is warranted from a DeLP-program, if it is
possible to build an argument A that supports Q and A is found to be undefeated
by a warrant procedure. This process implements an exhaustive dialectical analysis
that involves the construction and evaluation of arguments that either support or
interfere with the query under analysis. That is, given an argument A that supports
Q, the warrant procedure will evaluate if there are other arguments that counter-
argue or attack A or a sub-argument of A. An argument 〈C,P〉 is a sub-argument of
〈A,Q〉 if C⊆A.

Definition 8.2 (Counter-Argument).
An argument 〈B,S〉 is a counter-argument for 〈A,H〉 at literal P, if there exists a
sub-argument 〈C,P〉 of 〈A,H〉 such that P and S disagree, that is, there exist two
contradictory literals that have a strict derivation from Π ∪ {S,P}. The literal P

158 Alejandro J. Garcı́a, Jürgen Dix and Guillermo R. Simari

is referred to as the counter-argument point and 〈C,P〉 as the disagreement sub-
argument.

Two contradictory literals trivially disagree (e.g., day and ∼day), however,
two literals that are non-contradictory can also disagree. For instance, in Ex-
ample 8.1, the literals dark(b) and illuminated(b) disagree because from Π 8.1∪
{illuminated(b), dark(b)} there exists a strict derivation for ∼dark(b). Hence,
following the example above, 〈A2, illuminated(b)〉 is a counter-argument for
〈A1,dark(b)〉 (and vice versa). Observe that the argument 〈A3,∼lights on(b)〉 is a
counter-argument for 〈A2, illuminated(b)〉 at (the inner point) lights on(b) and the
disagreement sub-argument in A2 is 〈{lights on(b) —< switch on(b)}, lights on(b)〉.

Given an argument 〈A,H〉, there could be several counter-arguments attacking
different points in A, or different counter-arguments attacking the same point in A.
In DeLP, in order to verify whether an argument is non-defeated, all of its associ-
ated counter-arguments B1, B2, . . ., Bk have to be examined, each of them being a
potential reason for rejecting A. If any Bi is (somehow) “better” than, or unrelated
to, A, then Bi is a candidate for defeating A. However, if for some Bi, the argument
A is “better” than Bi, then Bi will not be a defeater for A. To compare arguments
and counter-arguments a preference relation among arguments is needed.

In DeLP the argument comparison criterion is modular, and thus the most ap-
propriate criterion for the domain that is being represented can be introduced. In the
literature of DeLP different criteria have been defined. For example in [15] a crite-
rion that uses rule priorities was introduced. Recently, in [11] a comparison criterion
based on priorities among selected literals of the program was defined. In the follow-
ing examples we will use a syntactic criterion called generalized specificity [15, 29].
This criterion favors two aspects in an argument: It prefers (1) a more precise argu-
ment or (2) a more concise argument. For instance, 〈A2, illuminated(b)〉, is more
specific (more precise) than 〈A1,dark(b)〉. For the following definitions we will
abstract away from the comparison criterion, assuming there exists one (denoted
“�”).

Definition 8.3 (Defeaters: Proper and Blocking). Let 〈B,S〉 be a counter-argument
for 〈A,H〉 at point P, and 〈C,P〉 the disagreement sub-argument. If 〈B,S〉 � 〈C,P〉
(i.e., 〈B,S〉 is “better” than 〈C,P〉) then 〈B,S〉 is a proper defeater for 〈A,H〉. If
〈B,S〉 is unrelated by the preference relation to 〈C,P〉, (i.e., 〈B,S〉 �� 〈C,P〉, and
〈C,P〉 �� 〈B,S〉) then 〈B,S〉 is a blocking defeater for 〈A,H〉. Finally, 〈B,S〉 is a
defeater for 〈A,H〉, if 〈B,S〉 is either a proper or blocking defeater for 〈A,H〉.

In a previous example, we have shown that 〈A2, illuminated(b)〉 is a counter-
argument for 〈A1,dark(b)〉 (and vice versa). Considering generalized specificity as
the comparison criterion, then A2 �A1. Therefore, 〈A2, illuminated(b)〉 is a proper
defeater for 〈A1,dark(b)〉. The argument 〈A3,∼lights on(b)〉 is a blocking defeater
for 〈A2, illuminated(b)〉 because A3 and the disagreement sub-argument D1 ={
lights on(b) —< switch on(b)} of A2 are unrelated by this comparison criterion.

If an argument 〈A1,H1〉 is defeated by 〈A2,H2〉, then 〈A2,H2〉 represents a rea-
son for rejecting 〈A1,H1〉. Nevertheless, a defeater 〈A3,H3〉 for 〈A2,H2〉 may also

8 Argument-based Logic Programming 159

exist, rejecting 〈A2,H2〉 and reinstating 〈A1,H1〉. Note that the argument 〈A3,H3〉
may be in turn defeated, reinstating 〈A2,H2〉, and so on. In this manner, a sequence
of arguments (called argumentation line) can arise, where each element is a defeater
of its predecessor.

Definition 8.4 (Argumentation Line). An argumentation line for 〈A1,H1〉 is a se-
quence of argument structures, Λ = [〈A1,H1〉, 〈A2,H2〉, 〈A3,H3〉, . . .], where each
element of the sequence 〈Ai,Hi〉, i > 1, is a defeater of its predecessor 〈Ai−1,Hi−1〉.

In an argumentation line Λ = [〈A1,H1〉, 〈A2,H2〉, 〈A3,H3〉, . . .], the first ele-
ment, 〈A1,H1〉, becomes a supporting argument for H1, 〈A2,H2〉 an interfering ar-
gument, 〈A3,H3〉 a supporting argument, 〈A4,H4〉 an interfering one, and so on.
Thus, an argumentation line can be split into two disjoint sets: Λ S = {〈A1,H1〉,
〈A3,H3〉, 〈A5,H5〉, . . .} of supporting arguments, and Λ I = {〈A2,H2〉, 〈A4,H4〉,
. . .} of interfering arguments. Considering the arguments generated above from
(Π 8.1,Δ 8.1) of Example 8.1, Λ 1 = [〈A1,dark(b)〉, 〈A2, illuminated(b)〉,
〈A3,∼lights on(b)〉] is an argumentation line, with two supporting arguments and
an interfering one.

Note that an infinite argumentation line may arise if an argument structure is rein-
troduced in the sequence. For instance, Λ i = [〈A3,∼lights on(b)〉, 〈D1, lights on(b)〉,
〈A3,∼lights on(b)〉, 〈D1, lights on(b)〉, . . .]. This is an example of circular argu-
mentation where an argument structure is reintroduced again in the argumentation
line to defend itself. Clearly, this situation is undesirable as it leads to the construc-
tion of an infinite sequence of arguments. Circular argumentation and other forms of
fallacious argumentation were studied in detail in [27, 15]. In DeLP, argumentation
lines have to be acceptable, that is, they have to be finite, an argument cannot appear
twice, and supporting (resp. interfering) arguments have to be non-contradictory.

Definition 8.5 (Acceptable Argumentation Line).
An argumentation line Λ = [〈A1,H1〉, . . .〈An,Hn〉] is acceptable iff:

1. Λ is a finite sequence.
2. The set Λ S of supporting arguments (resp. Λ I), is concordant (a set {〈Ai,Hi〉}n

i=1
is concordant iff Π ∪⋃n

i=1 Ai is non-contradictory.).
3. No argument 〈Ak,Hk〉 in Λ is a disagreement sub-argument of an argument
〈Ai,Hi〉 appearing earlier in Λ (i < k.)

4. For all i, such that 〈Ai,Hi〉 is a blocking defeater for 〈Ai−1,Hi−1〉, if 〈Ai+1,Hi+1〉
exists, then 〈Ai+1,Hi+1〉 is a proper defeater for 〈Ai,Hi〉.
A single acceptable argumentation line for 〈A1,H1〉 may not be enough to es-

tablish whether 〈A1,H1〉 is an undefeated argument. The reason is that there can
be several defeaters (〈B1,Q1〉, 〈B2,Q2〉, . . ., 〈Bk,Qk〉) for 〈A1,H1〉, and therefore
k argumentation lines for 〈A1,H1〉 need to be considered. Since for each defeater
〈Bi,Qi〉 there can be in turn several defeaters, then a tree structure (called dialec-
tical tree) is defined. In this tree, the root is labeled with 〈A1,H1〉 and every node
(except the root) represents a defeater (proper or blocking) of its parent. Each path
from the root to a leaf corresponds to a different acceptable argumentation line. The
definition follows.

160 Alejandro J. Garcı́a, Jürgen Dix and Guillermo R. Simari

Definition 8.6 (Dialectical Tree). A dialectical tree for 〈A1,H1〉, T〈A1,H1〉, is de-
fined as follows:

1. The root of the tree is labeled with 〈A1,H1〉.
2. Let N be a non-root node labeled 〈An,Hn〉, and [〈A1,H1〉, . . . ,〈An,Hn〉] be the

sequence of labels of the path from the root to N. Let {〈B1,Q1〉, 〈B2,Q2〉, . . .,
〈Bk,Qk〉} be the set of all the defeaters for 〈An,Hn〉. For each defeater 〈Bi,Qi〉
(1≤i≤k), such that the argumentation line Λ ′= [〈A1,H1〉, . . .,〈An,Hn〉,〈Bi,Qi〉]
is acceptable, the node N has a child Ni labeled 〈Bi,Qi〉. If there is no defeater
for 〈An,Hn〉 or there is no 〈Bi,Qi〉 such that Λ ′ is acceptable, then N is a leaf.

In Example 8.1, 〈C1,working at(c)〉 has two defeaters: 〈C2,∼lights on(c)〉,
and 〈C3,∼working at(c)〉, where: C1= {(working at(c) —< illuminated(c)),
(illuminated(c) —< lights on(c),∼day), (lights on(c) —< switch on(c))}; C2=
{∼lights on(c) —<∼electricity(c)} and C3={∼working at(c)—< sunday}. Since C2

and C3 have defeaters, then the following acceptable argumentation lines arise: [C1,
C2, C4] where C4={ working at(c) —< sunday,deadline}, and [C1, C3, C5] where
C5={lights on(c)—<∼electricity(c), emergency lights(c)}. These two lines are con-
sidered in the dialectical tree T1

∗ of Figure 8.1.
A dialectical tree provides a structure integrating all the possible acceptable ar-

gumentation lines that can be generated for deciding whether an argument is unde-
feated. In order to compute whether the status of the root is defeated or undefeated,
a recursive marking process is introduced next. Let T be a dialectical tree, a marked
dialectical tree, T∗, can be obtained marking every node in T as follows: (1) Each
leaf in T is marked as U in T∗. (2) An inner node N of T is marked as D in T∗ iff N
has at least a child marked as U, otherwise N is marked as U in T∗. Thus, the root
〈A,H〉 of a dialectical tree is marked with U if all its children are marked as D (i.e.,
all the defeaters for 〈A,H〉 are defeated).

Figure 8.1 shows three different marked dialectical trees. Nodes are depicted as
triangles with marks (D or U) on their right. D-nodes are also grey colored. The
marked dialectical tree T1

∗ has also the argument names of the example introduced
above as labels inside the triangles.

A ground literal H is considered to be warranted if an argument A for H exists,
and all the defeaters for 〈A,H〉 are defeated. Therefore, this marking procedure
provides an effective way of determining if a DeLP-query H is warranted. Note that
given a DeLP-query H, there can be several arguments that support H. Therefore,
H is warranted if there is at least one argument A for H such that the root of a
dialectical tree for 〈A,H〉 is marked as U.

Definition 8.7 (Warranted Literals). Let P be a DeLP-program, H a ground literal,
〈A,H〉 an argument from P and T∗ a marked dialectical tree for 〈A,H〉. Literal H is
warranted from P iff the root of T∗ is marked as U.

Example 8.2. Consider again the DeLP-program (Π 8.1,Δ 8.1) of Example 8.1. The
set ω includes some literals that are warranted from the program (Π 8.1,Δ 8.1)
ω ={working at(c), illuminated(c), illuminated(a), dark(b),∼dark(a)}, whereas
the set ω ′ includes literals that are not warranted from (Π 8.1,Δ 8.1) ω ′ ={dark(a),

8 Argument-based Logic Programming 161

U D U

D D

UD D D D

C2 C3
U UD DU U

U
U

C4

C1

U

C5

U U
U

T1
* T2

* T3
*

Fig. 8.1 Marked Dialectical Trees

illuminated(b), ∼lights on(b), ∼empty(a), illuminated(r)}. Observe that the last
two literals of ω ′ have no supporting argument at all.

DeLP Implementation and Extensions

An interpreter for DeLP is available (http://lidia.cs.uns.edu.ar/DeLP). This
interpreter takes a DeLP-program P, and a DeLP-query Q as input. It then returns
one of the following four possible answers: YES, if Q is warranted from P; NO, if the
complement of Q is warranted from P; UNDECIDED, if neither Q nor its complement
are warranted from P; or UNKNOWN, if Q is not in the language of the program P.
For instance, considering the program (Π 8.1,Δ 8.1) of Example 8.1 the answer for
illuminated(c), is YES, the answer for dark(a) is NO, the answer for ∼lights on(b)
is UNDECIDED, and the answer for ∼empty(a) is UNKNOWN. Observe that for all
the literals of the set ω in Example 8.2 the answer is YES. However, as shown above,
literals of ω ′ may have different answers.

The reader may have noticed in Figure 8.1 that in some dialectical trees it is not
necessary to explore the whole tree in order to mark the root. Thus, some pruning is
possible. For instance, in the tree T2

∗ of Figure 8.1 as one of the children of the root
is marked U, then the mark of the other two children does not affect the mark of the
root. As an optimization, the DeLP interpreter implements a marking procedure with
pruning that is similar to the classic α-β pruning algorithm (see [15] for details). It
is interesting to note that changes in the definition of acceptable argumentation line
may produce a different behavior of the formalism. Therefore, Definition 8.5 could
be modified by providing a way of tuning the system in order to have a different
behavior.

In [15] an extension of DeLP that allows default negation in the body of defeasi-
ble rules was defined (e.g., a —< not b,c,not ∼d). In DeLP ‘not F’ is assumed when
the literal F is not warranted. The definition of argument was adapted for this ex-

162 Alejandro J. Garcı́a, Jürgen Dix and Guillermo R. Simari

tension and a new form of defeat (attack to an assumption) was introduced (see [15]
for details). Thus, default negated literals become new points of attack, and when
the dialectical analysis is carried out, default negated literals can be defeated by
arguments.

In [14] dialectical explanations for DeLP-queries (called δ -Explanations) were
introduced. δ -Explanations allow to visualize the reasoning carried out by the sys-
tem, and the support for the answer. It is clear that without this information at hand it
is very difficult to understand the returned answer. δ -Explanations were also defined
for schematic queries, i.e., a DeLP-query with at least one variable that represents
the set of DeLP-queries that unify with the schematic one (e.g., illuminated(X).)

Possibilistic Defeasible Logic Programming (P-DeLP) represents an important
extension of DeLP in which the elements of the language have the form (ϕ,α),
where ϕ is of the form L0 ← L1, . . . ,Ln or just L0, where the Li,(0 ≤ i ≤ n) are
ground literals as in DeLP, and α is a certainty weight associated with ϕ .

A P-DeLP-program Γ is a set of clauses. To define the possibilistic entailment we
only need the triviality axiom of Possibilistic Gödel Logic (PGL) and the general-
ized modus ponens rule (GMP). The triviality axiom says that we can add (ϕ,0) for
any formula ϕ in the language and the GMP says that from (L0 ← L1,. . . ,Ln,γ)
and (L1,βn), . . . ,(L1,βn) we can obtain (L0,min(γ,β1, . . . ,βn)). A derivation of
a weighted literal (Q,α) from Γ , denoted Γ � (Q,α), is a sequence of clauses
C1, . . . ,Cm such that Cm = (Q,α), and for each 1≤ i≤ m it holds that Ci ∈ Γ , or Ci

is an instance of the triviality axiom, Ci is obtained by using GMP over its preceding
clauses in the sequence.

The set of clauses Γ of a P-DeLP program can be split, like in DeLP, as (Π ,Δ)
distinguishing the subset Π of facts and strict rules with certainty weight α = 1 (rep-
resenting non-defeasible knowledge), and the subset Δ of of clauses with certainty
weight α < 1 (representing defeasible knowledge). An argument for a literal (Q,α)
built from a P-DeLP program (Π ,Δ) is a subset A⊆ Δ such that: Π ∪A � (Q,α),
Π ∪A is non-contradictory, and A is minimal with respect to set inclusion satisfying
the two previous conditions; and it is denoted 〈A,Q,α〉.

From these extended notions, a complete argumentation system has been devel-
oped which incorporates possibilistic reasoning. Complete details of P-DeLP can be
found in [1, 2].

3 Argument-based extended logic programming with defeasible
priorities

Inspired by legal reasoning, Prakken and Sartor have introduced in [24] an argument-
based formalism for extended logic programming with defeasible priorities. In their
formalism, arguments are expressed in a logic programming language with both
strong and default negation. Conflicts between arguments are decided with the help
of priorities on the rules. These priorities can be defeasibly derived as conclusions
within the system. Its semantics is given with a fixed point definition, while its proof

8 Argument-based Logic Programming 163

theory is stated in dialectical style, where a proof takes the form of a dialogue be-
tween a proponent and an opponent: an argument is shown to be justified if the
proponent can make the opponent run out of moves in whatever way the opponent
attacks.

We give a brief description of this formalism and refer the interested reader
to [24, 22, 25] for details. Their proposed system assumes input information in the
form of an ordered theory (S,D) where S and D are sets of, respectively, strict and
defeasible rules. In their language,∼ represents default negation and ¬ strong nega-
tion, and rules are denoted by

r : L0∧ . . .∧L j ∧∼Lk ∧ . . .∧∼Lm ⇒ Ln

where r, a term, is the name of the rule, each Li (0 ≤ i ≤ n) is a strong literal, and
each ∼Lk is a weak literal. Only defeasible rules can contain weak literals.

An argument is a finite sequence A = [r0, . . . ,rn] of ground instances of rules
such that

1. for every i (0≤ i≤ n), for every strong literal L j in the antecedent of ri there is a
k < i such that L j is the consequent of rk; and

2. no two distinct rules in the sequence have the same consequent.

Each consequent of a rule in A is a conclusion of A, and every literal L is an assump-
tion of A iff∼L occurs in some rule in A. An argument is strict iff it does not contain
a defeasible rule; it is defeasible otherwise. Note that arguments are not assumed to
be either minimal or consistent.

The presence of assumptions in a rule gives rise to two kinds of conflicts between
arguments, conclusion-to-conclusion attack and conclusion-to-assumption attack.
An argument A1 attacks A2 iff there are sequences of strict rules S1 and S2, such that
the concatenation A1 + S1 is an argument with conclusion L and (1) A2 + S2 is an
argument with conclusion L, or (2) L is an assumption of A2. In order to compare
conflicting arguments, priorities among rules (that are relevant to the conflict) are
used. For any two sets R and R′ of defeasible rules, R < R′ iff for some r ∈ R and all
r′ ∈ R′ it holds that r < r′.

Defeat among arguments is built up from two other notions, rebutting and un-
dercutting an argument. An argument A defeats an argument B iff (1) A=[] and B
attacks itself, or else if (2a) A undercuts B or (2b) A rebuts B and B does not undercut
A. As explained in [25], an argument A rebuts an argument B iff A conclusion-to-
conclusion attacks B and either A is strict and B is defeasible, or A’s rules involved in
the conflict have no lower priority than B’s rules involved in the conflict (see [24, 22]
for details). An argument A undercuts an argument B precisely in case of the second
kind of conflict (attack on an assumption). Note that it is not necessary that the rules
responsible for the attack on the assumption have no lower priority than the one
containing the assumption. An argument A strictly defeats B iff A defeats B and B
does not attack A.

As stated above, priorities between rules can be defeasibly derived as conclu-
sions within the system. Hence, the language is extended with a special predicate
≺, where r1 ≺ r2 means that rule r2 has priority over r1. This new predicate symbol

164 Alejandro J. Garcı́a, Jürgen Dix and Guillermo R. Simari

denotes a strict partial order, and therefore the set S must contain the axioms of a
strict partial order. Thus, the rebut and defeat relations must be made relative to an
ordering relation that might vary during the reasoning process.

Since priorities are not fixed, in order to determine if an argument A is acceptable
with respect to a set T of arguments, the relevant defeat relations are verified relative
to the priority conclusions drawn by the arguments in T . Therefore, given a set of
arguments T , priorities between rules are defined as <T ={r < r′ | r≺ r′ is a conclu-
sion of some A ∈ T}. Hence, an argument A (strictly) T -defeats B iff, assuming the
ordering <T , A (strictly) defeats B.

An argument A is acceptable with respect to a set T of arguments iff all argu-
ments T -defeating A are strictly T -defeated by some argument in T . Thus, accept-
ability of an argument with respect to a set T depends on the priority conclusions of
the arguments in T . Let Γ be an ordered theory (S,D), and T be any set of arguments
from Γ ; the characteristic function of Γ is FΓ (T)={A | A is acceptable with respect
to T}. Then, the status of an argument A is defined as follows: A is justified iff A is
in the least fixed point of FΓ , A is overruled iff A is attacked by a justified argument,
and A is defensible iff A is neither justified nor overruled.

For example, consider a theory (S,D) where D has the following rules:

r0 : ⇒ a r2 : ∼b ⇒ c r4 : ⇒ r0 ≺ r3 r6 : ⇒ r5 ≺ r4

r1 : a ⇒ b r3 : ⇒¬a r5 : ⇒ r3 ≺ r0

The set of justified arguments is constructed as follows. The only /0-undefeated
argument is [r6], then, FΓ (/0) = F1 = {[r6]} and <F1 = {r5 < r4}. Now, the con-
flict between [r4] and [r5] can be solved because [r4] strictly F1-defeats [r5].
Then, FΓ (F1) = F2 = {[r6], [r4]} and <F2 = {r5 < r4,r0 < r3}. Hence, the conflict
between [r0] and [r3] can be solved because [r3] strictly F2-defeats [r0]. Thus,
FΓ (F2) = F3 = {[r6], [r4], [r3]} and <F3 = <F2 . Finally, FΓ (F3) = F4 = {[r6], [r4],
[r3], [r2]} and FΓ (F4) = F4.

The proof theory of this formalisms is stated in dialectical style, where a proof
takes the form of a dialogue between a proponent (P) and an opponent (O). An
argument is shown to be justified if P can make O run out of moves.

A priority dialogue is a finite sequence of moves (Playeri,Ai), where:
1. Playeri = P iff i is odd, and Playeri = O iff i is even;
2. If Playeri = Player j = P and i �= j, then Ai �= A j;
3. If Playeri = P(i > 1) then Ai is a minimal argument such that Ai strictly {Ai}-
defeats Ai−1; or Ai−1 does not {Ai}-defeat Ai−2;
4. If Playeri = O(i > 1) then Ai strictly /0-defeats Ai−1;

A priority dialogue tree is a finite tree of moves such that (1) each branch is a
dialogue and (2) if Playeri = P then the children of movei are all /0-defeat Ai. A
player wins a dialogue if the other player cannot move, and a player wins a dialogue
tree iff it wins all branches of the tree. Finally, an argument A is provably justified
iff there is a dialogue tree with A as its root, and won by the proponent.

The semantics of this formalism was very much inspired by Dung’s work. If it
is restricted to static priorities (given as input instead of derived within the system)
then it instantiates Dung’s grounded semantics [10]. However, the semantics slightly

8 Argument-based Logic Programming 165

differs from Dung’s when dynamic priorities are considered. In [23] some detailed
legal examples are given, and a third way of attacking arguments, namely by arguing
that a rule is not applicable, is introduced.

4 Argumentation Semantics for Extended Logic Programming

In [26], Schweimeier and Schroeder formulate a variety of notions of attack for ex-
tended logic programs from combinations of undercutting and rebuttal. A general
hierarchy of argumentation semantics is defined, parameterized by the notions of
attack chosen by proponent and opponent, and the equivalence and subset relation-
ships between the semantics is shown. The placement of existing semantics in this
hierarchy is determined.

The language corresponds to [24] without strict rules, and either without priori-
ties, or, equivalently, if all rules have the same priority. An extended logic program
(ELP) P is a (possibly infinite) set of rules of the form L0 ← L1, . . . , Lm, not Lm+1,
. . . ,not Lm+n (m,n≥ 0) where each Li (0≤ i≤m+n) is an objective literal, i.e., an
atom M or its explicit negation ¬M.

An argument associated with P is a finite sequence A = [r0, . . . ,rn] of ground
instances of rules ri ∈ P such that for every 0 ≤ i ≤ n, for every objective literal
L j in the body of ri there is a k > i such that L j=head(rk). The head of a rule in
A is called a conclusion of A, and a default literal not L in a rule of A is called an
assumption of A. An argument A with a conclusion L is a minimal argument for L if
there is no subargument of A with conclusion L. Given an ELP P, the set of minimal
arguments associated with P is denoted by ArgsP.

From the two basic notions of attack (undercut u, and rebut r), they introduce
further notions: Attacks (a), defeats (d), strongly attacks (sa) and strongly undercuts
(su). Here are the precise definitions. Let A1 and A2 be arguments.

• A1 undercuts A2 if there is an objective literal L such that L is a conclusion of A1

and not L is an assumption of A2.
• A1 rebuts A2 if there is an objective literal L such that L is a conclusion of A1 and
¬L is a conclusion of A2.

• A1 attacks A2 if A1 undercuts or rebuts A2.
• A1 defeats A2 if A1 undercuts A2, or A1 rebuts A2 and A2 does not undercut A1.
• A1 strongly attacks A2 if A1 attacks A2 and A2 does not undercut A1.
• A1 strongly undercuts A2 if A1 undercuts A2 and A2 does not undercut A1.

A notion of attack is defined as a function x that assigns to each ELP P a bi-
nary relation xP ⊆ ArgsP×ArgsP. Different notions of attack are partially ordered
by defining: x ⊆ y iff ∀P : xP ⊆ yP. The inverse of a notion of attack x, denoted
by x−1, is defined as: x−1

P = {(B,A)|(A,B) ∈ xP}. Thus, a = u∪ r, d = u∪ (r-u−1),
sa = (u∪ r)-u−1, and su = u-u−1. Since their framework does not consider priorities,
undercuts play the prime role and notions of attack which are based on rebuttals,
such as r or r-u−1, are not considered.

166 Alejandro J. Garcı́a, Jürgen Dix and Guillermo R. Simari

Their definition of acceptability is parameterized on the notions of attack allowed
for the proponent and the opponent. Basically, an argument is acceptable if it can be
defended against any attack.

Let x and y be notions of attack, A an argument, and S a set of arguments. Then A
is x/y-acceptable with respect to S if for every argument B such that (B,A)∈ x there
exists an argument C∈ S such that (C,B)∈ y. A particular semantics can be obtained
by choosing one notion of attack for the opponent, and another notion of attack as
defense for the proponent. The uniformity of the definition makes it a convenient
framework for comparing different argumentation semantics.

Based on the notion of acceptability, they define a fixed point semantics for ar-
guments: FP,x/y(S) = {A|A is x/y-acceptable with respect to S} and its least fixed
point is denoted by JP,x/y. Thus, an argument A is x/y-justified if A∈ JP,x/y, A is x/y-
overruled if it is attacked by an x/y-justified argument, and A is x/y-defensible if it
is neither x/y-justified nor x/y-overruled. For example, Dung’s grounded semantics
is Ja/u, and Prakken and Sartor’s semantics without priorities or strict rules is Jd/su
(see [26] for other examples).

Consider, for instance, P1 = {(p ← not q), (q ← not p), (¬q ← r), (r ← not s),
(¬s ← not s), (s)}. Here, all arguments (except [s]) are undercut by another argu-
ment, and [¬s ← not s] rebuts (but does not defeat) [s]. Thus, [s] is identified as
a justified argument in all semantics, except if a is allowed as an attack. We state
several results (for other semantics see [26]).

JP1,a/x= /0 JP1,u/sa={[s],[¬q ← r], [p ← not q] }
JP1,d/x={[s]} JP1,sa/su={[s],[p ← not q]}
JP1,u/u={[s],[¬q ← r] } JP1,su/x={[s],[¬q ← r],[q ← not p],[p ← not q]}

Schweimeier and Schroeder proved a series of theorems, showing that some of
the argumentation semantics defined above are subsumed by others. In fact some are
actually equivalent. Thus, they established a hierarchy of argumentation semantics,
where WFS and WFSXp also occur. One of their results states that WFS=u/u and
WFSXp=u/a. They also showed which semantics satisfy the coherence principle
and which ones generate a conflict free set of justified arguments. Finally, based on
the dialectical proof theory of [24] they introduce a proof theory for x/y-justified
arguments.

5 Dung’s approach

In [10], Phan Minh Dung states that “there are extremely interesting relations be-
tween argumentation and logic programming”. For example, he shows that logic
programming can be shown to be a particular form of argumentation. He considers a
logic program P as a finite set of clauses of the form B0 ← B1, . . . ,Bm,¬Bm+1, . . . ,
¬Bm+n (where the Bi’s are atoms). To capture the semantics of negation as finite
failure (naff), he proposes that P can be transformed in an argumentation frame-
work AFnaff = 〈AR, attacks〉 as follows: AR = {(K,k) | there exists a ground clause
of P with head k and body K} ∪ {({¬k},k) |k is a ground atom}, and (K,h) at-
tacks (K′,h′) iff the complement of h belongs to K′. That is, each ground instance

8 Argument-based Logic Programming 167

of a clause of P constitutes an argument for its head. Then, Dung gives a series
of theorems that relate semantics of logic programs and semantics of argumenta-
tion frameworks. Similarly, an argumentation framework AFnapif that captures the
semantics of negation of possibly infinite failure (general loop checking, as in the
stable semantics) is introduced.

In [10], Dung also shows that argumentation can be “viewed” as logic program-
ming by introducing a general method for generating an interpreter for argumenta-
tion. This method consists of a very simple logic program consisting of the following
two clauses:

C1 = acceptable(A) ← not defeated(A)
C2 = defeated(A) ← attacks(B,A),acceptable(B)

Consider an argumentation framework AF = (AR,attacks) where AR is a set
of arguments and attack a relation over AR× AR. Let PAF be the logic pro-
gram, PAF = {C1,C2} ∪ {attacks(B,A) |(B,A) ∈ attacks}. For each extension E
of AF , let m(E) = {attacks(B,A) |(B,A) ∈ attacks} ∪ {acceptable(A) |A ∈ E}
∪{defeated(B)|B is attacked by some A ∈ E}. Then, Dung shows that

1. E is a stable extension of AF iff m(E) is stable model of PAF .
2. E is grounded extension of AF iff m(E)∪{not defeated(A)|A ∈ E} is the well-

founded model of PAF .

6 Nute’s Defeasible Logic

In [19, 20], Donald Nute introduced Logic for Defeasible Reasoning (LDR), a for-
malism that provides defeasible reasoning with a simple representational language.
Although LDR is not a defeasible argumentation formalism in itself, its implemen-
tation, d-Prolog, defined as an extension of PROLOG, was the first language that
introduced defeasible reasoning programming with specificity as a comparison cri-
terion between rules.

In LDR there are three types of rules: strict rules (e.g., emus → birds that rep-
resents “emus are birds”), defeasible rules (e.g., birds ⇒ f ly “birds usually fly”)
and defeater rules (e.g., heavy � ¬ f ly “heavy animals may not fly”). The purpose
of a defeater rule is to account for the exceptions to defeasible rules. Therefore, in
contrast with the other two types of rules, defeater rules cannot be used to derive
formulas. They can only be used to block an application of a defeasible rule. As
shown below, the derivation of contradictory literals is prevented by the definition
of a defeasible derivation.

The original definitions of strict and defeasible derivation, introduced in [19],
have evolved in successive articles [20, 4, 3]. For strict derivations only facts and
strict rules can be used. However, for defeasible derivations a more sophisticated
analysis is performed. A literal p has a defeasible derivation if p is the consequent
of a rule (strict or defeasible) with antecedent A, such that (1) for every a ∈ A, a

168 Alejandro J. Garcı́a, Jürgen Dix and Guillermo R. Simari

has a defeasible derivation, (2) the complement of p (p) has no strict derivation, and
(3) for every rule R1 (strict, defeasible or defeater) with consequent p and antecedent
B, it holds that (3a) there is some b∈B that has no defeasible derivation or (3b) there
exists a (strict or defeasible) rule R2 with consequent p and antecedent C such that
every c ∈ C has a defeasible derivation and R2 > R1. Observe that only rules with
complementary consequents can be compared.

Thus, if a literal has a defeasible derivation, then no further analysis is performed.
Therefore, a defeasible derivation cannot be considered as a single argument. A
defeasible derivation is related to a tree of arguments because it encodes the analysis
of all possible attacks and, by condition (3b), also counter-attacks. A comparison of
d-Prolog with defeasible argumentation formalisms can be found in [25] and [15].

7 Recent Developments

In this section, we will briefly comment some recent developments that extend the
formalisms mentioned above and provide new proposals. We also refer the inter-
ested reader to [5], where an extensive review of current defeasible reasoning im-
plementations is given.

In [13], an argumentative reasoning service for multi-agent systems called
DeLP-server is proposed. A DeLP-server is a stand-alone program that can interact
with multiple client agents. A common (or public) DeLP-program can be stored in
a server, and client agents (that can be distributed in remote hosts) may send queries
to the server and receive the corresponding answer together with the explanation for
that answer [14]. A DeLP-server can be consulted by several agents, and one par-
ticular agent can consult several DeLP-servers, each of them providing a different
shared knowledge base.

To answer queries, a DeLP-server will use the common knowledge stored in
it, together with individual knowledge that clients can send attached to a query,
creating a particular context for that query (see [13] for details). This context is
private knowledge that the server will use for answering the query and will not
affect other future queries. That is, a client agent cannot make permanent changes
to the public DeLP-program stored in a server. The temporal scope of the context
sent in a query [Context, Q] is limited and disappears once the query Q has been
answered.

For instance, consider a DeLP-server that has the set Δ 8.1 of Example 8.1 stored.
An agent may send the contextual query [{∼electricity(d), emergency lights(d)}
, lights on(d)] where the context {∼electricity(d), emergency lights(d)} will pro-
vide to the server information about a particular room d. The server will use this
context and Δ 8.1 in order to return the answer for the query lights on(d).

Since contextual information can be in contradiction with the information stored
in the server, different types of contextual queries were defined [13]: prioritized,
non-prioritized and restrictive. For instance, a prioritized contextual assigns more

8 Argument-based Logic Programming 169

importance to the information sent by the agent and overrides the information stored
in the server that produces the contradiction.

Agents are not restricted to consult a unique DeLP-server, they may perform the
same contextual query to different servers, and they may share different knowledge
with other agents through different servers. Thus, several configurations of agents
and servers can be established (statically or dynamically). For example, special-
purpose DeLP-servers can be used, each of them representing particular shared
knowledge of a specific domain.

Argue tuProlog (AtuP) [6] is a prototype implementation of an argumentation
engine based on Vreeswijk’s Argumentation System (AS) that can be used to im-
plement a non-monotonic reasoning component in the Internet or agent-based ap-
plications. The following description is taken from [5]. AtuP accepts formulae in
an extended first-order language and returns answers to queries of acceptability on
the basis of the semantics of credulously preferred sets. The language can be con-
sidered to be a conservative extension of the basic language of PROLOG, enriched
with numbers that quantify rule strength and degree of belief. Strict and defeasible
rules can be entered into the system and typically exactly one query is supplied. The
core prover of the implementation attempts to find an argument with a conclusion
for the query. On the macro level arguments are constructed as nodes in a digraph,
and AtuP tries to build an admissible set around an argument for the main claim.
AtuP is currently implemented in Java.

Finally, the issue of studying which properties are satisfied by the set of conse-
quences of an argument-based reasoning system has been gaining attention in the
community [8, 7]. A similar effort was conducted in the general area of nonmono-
tonic reasoning formalisms since very early [12, 16, 18]. In [7] three postulates are
advanced: Closure, Direct Consistency, and Indirect Consistency. The properties
are studied in the context of the possible extensions that could be obtained from
the argumentation system via different semantics such as the ones proposed in [10].
Closure is a form of completeness, i.e., all possible consequences of the knowledge
base are obtained. Consistency (direct and indirect) requires that the set of conclu-
sions be non contradictory in a logical sense.

The idea of introducing postulates such as these is to guide the design of the
reasoners in a manner that their consequences would satisfy the intuitions of the
users of these systems. Even though the importance of this issue cannot be over-
stated, the discussion of the problems of properly characterizing the behavior of an
argument-based consequence operator is out of the scope of this chapter.

8 Conclusions

In this chapter we have described several formalisms that integrate Logic Program-
ming and Argumentation. In particular, we have described Defeasible Logic Pro-
gramming (DeLP), which provides an extension of a logic programming language
with a defeasible argumentation formalism. In DeLP a query succeeds if it is war-

170 Alejandro J. Garcı́a, Jürgen Dix and Guillermo R. Simari

ranted, i.e., if it is possible to build an argument that supports the query and this
argument is found to be undefeated by a warrant procedure. We have described an
argument-based extended logic programming formalism with defeasible priorities
developed by Prakken and Sartor. In their formalism, arguments are expressed in
a logic programming language with both strong and default negation. Conflicts be-
tween arguments are decided with the help of priorities on the rules. These priorities
can be defeasibly derived as conclusions within the system. An overview of the ar-
gumentation semantics for extended logic programming developed by Schweimeier
and Schroeder was given. Their proposal introduces a variety of notions of attack
for extended logic programs from combinations of undercutting and rebuttal.

As Phan Minh Dung emphasized in [10] “there are extremely interesting re-
lations between argumentation and logic programming”. In this chapter we have
covered some of them.

Acknowledgements This research was funded by CONICET Argentina Project PIP
5050, and SGCyT, Universidad Nacional del Sur, Argentina.

References

1. T. Alsinet, C. Chesñevar, L. Godo, S. Sandri, and G. Simari. Formalizing argumentative
reasoning in a possibilistic logic programming setting with fuzzy unification. International
Journal of Approximate Reasoning, 48(3):711–729, 2008.

2. T. Alsinet, C. Chesñevar, L. Godo, and G. Simari. A logic programming framework for
possibilistic argumentation: Formalization and logical properties. Fuzzy Sets and Systems,
159(10):208–1228, 2008.

3. G. Antoniou, D. Billington, G. Governatori, M. J. Maher, and A. Rock. A family of defeasible
reasoning logics and its implementation. In Proceedings of European Conference on Artificial
Intelligence (ECAI), pages 459–463, 2000.

4. G. Antoniou, D. Billington, and M. J. Maher. Normal forms for defeasible logic. In Pro-
ceedings of International Joint Conference and Symposium on Logic Programming, pages
160–174. MIT Press, 1998.

5. D. Bryant and P. J. Krause. A review of current defeasible reasoning implementations. The
Knowledge Engineering Review, 23:1–34, 2008.

6. D. Bryant, P. J. Krause, and G. Vreeswijk. Argue tuProlog: A Lightweight Argumentation
Engine for Agent Applications. In Proc. of 1st Int. Conference on Computational Models of
Argument (COMMA06), pages 27–32. IOS Press, 2006.

7. M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. Artificial
Intelligence, 171(5-6):286–310, 2007.

8. C. Chesñevar and G. Simari. Modelling inference in argumentation through labelled deduc-
tion: Formalization and logical properties. Logica Universalis, 1(1):93–124, 2007.

9. J. Dix, C. Chesñevar, F. Stolzenburg, and G. Simari. Relating Defeasible and Normal Logic
Programming through Transformation Properties. Theoretical Computer Science, 290(1):499–
529, 2002.

10. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning and logic programming and n-person games. Artificial Intelligence, 77:321–357,
1995.

11. E. Ferretti, M. Errecalde, A. Garcı́a, and G. Simari. Decision rules and arguments in de-
feasible decision making. In P. Besnard, S. Doutre, and A. Hunter, editors, Proc. 2nd Int.

8 Argument-based Logic Programming 171

Conference on Computational Models of Arguments (COMMA), volume 172 of Frontiers in
Artificial Intelligence and Applications, pages 171–182. IOS Press, 2008.

12. D. Gabbay. Theoretical foundations for non-monotonic reasoning in expert systems. In K. Apt,
editor, Logics and Models of Concurrent Systems, pages 439–459. Springer-Verlag, 1985.

13. A. Garcı́a, N. Rotstein, M. Tucat, and G. Simari. An argumentative reasoning service for
deliberative agents. In Z. Zhang and J. Siekmann, editors, LNAI 4798 Proceedings of the
2nd. International Conference on Knowledge Science, Engineering and Management (KSEM
2007), pages 128–139. Springer-Verlag, 2007.

14. A. J. Garcı́a, N. D. Rotstein, and G. R. Simari. Dialectical explanations in defeasible argu-
mentation. In K. Mellouli, editor, ECSQARU, volume 4724 of Lecture Notes in Computer
Science, pages 295–307. Springer, 2007.

15. A. J. Garcı́a and G. R. Simari. Defeasible logic programming: An argumentative approach.
TPLP, 4(1-2):95–138, 2004.

16. S. Kraus, D. Lehmann, and M. Magidor. Nonmonotonic reasoning, preferential models and
cumulative logics. Artificial Intelligence, 44:167–207, 1990.

17. V. Lifschitz. Foundations of logic programs. In G. Brewka, editor, Principles of Knowledge
Representation, pages 69–128. CSLI Pub., 1996.

18. D. Makinson. General patterns in nonmonotonic reasoning. In D. Gabbay, editor, Handbook of
Logic in Artificial Intelligence and Logic Programming (vol 3): Nonmonotonic and Uncertain
Reasoning, pages 35–110. Oxford University Press, 1994.

19. D. Nute. Defeasible reasoning. In Proc. of the 20th annual Hawaii Int. Conf. on System
Sciences, 1987.

20. D. Nute. Defeasible logic. In D. Gabbay, C. Hogger, and J.A.Robinson, editors, Handbook
of Logic in Artificial Intelligence and Logic Programming, Vol 3, pages 355–395. Oxford
University Press, 1994.

21. J. Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person. MIT Press, 1995.
22. H. Prakken. Logical Tools for Modelling Legal Argument. A Study of Defeasible Reasoning in

Law. Kluwer Law and Philosophy Library, 1997.
23. H. Prakken and G. Sartor. A dialectical model of assessing conflicting arguments in legal

reasoning. Artificial Intelligence and Law, 4(331-368), 1996.
24. H. Prakken and G. Sartor. Argument-based logic programming with defeasible priorities. J.

of Applied Non-classical Logics, 7(25-75), 1997.
25. H. Prakken and G. Vreeswijk. Logical systems for defeasible argumentation. In D.Gabbay,

editor, Handbook of Philosophical Logic, 2nd ed. Kluwer, 2000.
26. R. Schweimeier and M. Schroeder. A parameterised hierarchy of argumentation semantics

for extended logic programming and its application to the well-founded semantics. TPLP,
5(1-2):207–242, 2005.

27. G. R. Simari, C. I. Chesñevar, and A. J. Garcı́a. The role of dialectics in defeasible argu-
mentation. In Proc. of the XIV Int. Conf. of the Chilenean Computer Science Society, pages
335–344, 1994.

28. G. R. Simari and R. P. Loui. A Mathematical Treatment of Defeasible Reasoning and its
Implementation. Artificial Intelligence, 53:125–157, 1992.

29. F. Stolzenburg, A. J. Garcı́a, C. I. Chesñevar, and G. R. Simari. Computing generalized speci-
ficity. Journal of Applied Non-Classical Logics, 13(1):87–113, 2003.

Chapter 9
A Recursive Semantics for Defeasible Reasoning

John L. Pollock

1 Reasoning in the Face of Pervasive Ignorance

One of the most striking characteristics of human beings is their ability to function
successfully in complex environments about which they know very little. Reflect on
how little you really know about all the individual matters of fact that characterize
the world. What, other than vague generalizations, do you know about the apples
on the trees of China, individual grains of sand, or even the residents of Cincinnati?
But that does not prevent you from eating an apple while visiting China, lying on
the beach in Hawaii, or giving a lecture in Cincinnati. Our ignorance of individual
matters of fact is many orders of magnitude greater than our knowledge. And the
situation does not improve when we turn to knowledge of general facts. Modern sci-
ence apprises us of some generalizations, and our experience teaches us numerous
higher-level although less precise general truths, but surely we are ignorant of most
general truths.

In light of our pervasive ignorance, we cannot get around in the world just rea-
soning deductively from our prior beliefs together with new perceptual input. This is
obvious when we look at the varieties of reasoning we actually employ. We tend to
trust perception, assuming that things are the way they appear to us, even though we
know that sometimes they are not. And we tend to assume that facts we have learned
perceptually will remain true, at least for awhile, when we are no longer perceiving
them, but of course, they might not. And, importantly, we combine our individ-
ual observations inductively to form beliefs about both statistical and exceptionless
generalizations. None of this reasoning is deductively valid. On the other hand, we
cannot be criticized for drawing conclusions on the basis of such non-conclusive ev-
idence, because there is no feasible alternative. Our non-deductive reasoning makes
our conclusions reasonable, but does not guarantee their truth. As our conclusions

John L. Pollock
Department of Philosophy, University of Arizona, Tucson, Arizona 85721.
This work was supported by NSF grant no. IIS- 0412791

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 173
DOI 10.1007/978-0-387-98197-0 9, c© Springer Science+Business Media, LLC 2009

174 John L. Pollock

are not guaranteed to be true, we must countenance the possibility that new infor-
mation will lead us to change our minds, withdrawing previously adopted beliefs.
In this sense, our reasoning is “defeasible”. That is, it makes it reasonable for us to
form beliefs, but it can be “defeated” by considerations that make it unreasonable to
maintain the previously reasonable beliefs.

If we are to understand how rational cognition works, we must know how de-
feasible reasoning works, or ought to work. This chapter attempts to answer that
question.

2 The Structure of Defeasible Reasoning

2.1 Inference Graphs

I assume that much of our reasoning proceeds by stringing together individual in-
ferences into more complex arguments. In philosophy it is customary to think of
arguments as linear sequences of propositions, with each member of the sequence
being either a premise or the conclusion of an inference (in accordance with some
inference scheme) from earlier propositions in the sequence. However, this repre-
sentation of arguments is an artifact of the way we write them. In many cases the
ordering of the elements of the sequence is irrelevant to the structure of the argu-
ment. For instance, consider an argument that proceeds by giving a subargument
for P and an unrelated subargument for (P→Q), and then finishes by inferring Q
by modus ponens. We might diagram this argument as in figure 9.1. The ordering
of the elements of the two subarguments with respect to each other is irrelevant. If
we write the argument for Q as a linear sequence of propositions, we must order
the elements of the subarguments with respect to each other, thus introducing arti-
ficial structure in the representation. For many purposes it is better to represent the
argument graphically, as as in figure 9.1. Such a graph is an inference graph. The
compound arrows linking elements of the inference graph represent the application
of inference schemes.

Fig. 9.1 An inference graph

9 A Recursive Semantics for Defeasible Reasoning 175

More generally, we can take the elements of arguments to be Fitch-style sequents
– ordered pairs of propositions and suppositions (sets of propositions), and inference
rules like conditionalization can take advantage of that. However, for the purposes
of this chapter, I will ignore that sophistication. In deductive reasoning, the inference
schemes employed are deductive inference rules. What distinguishes deductive rea-
soning from reasoning more generally is that the reasoning is not defeasible. More
precisely, given a deductive argument for a conclusion, you cannot rationally deny
the conclusion without denying one or more of the premises. In contrast, consider an
inductive argument. Suppose we observe a number of swans and they are all white.
This gives us a reason for thinking that all swans are white. If we subsequently
journey to Australia and observe a black swan, we must retract that conclusion. But
notice that this does not give us a reason for retracting any of the premises. It is
still reasonable to believe that each of the initially observed swans is white. What
distinguishes defeasible arguments from deductive arguments is that the addition of
information can mandate the retraction of the conclusion of a defeasible argument
without mandating the retraction of any of the premises or conclusions from which
the retracted conclusion was inferred.

2.2 Rebutting defeaters

Information that can mandate the retraction of the conclusion of a defeasible argu-
ment constitutes a defeater for the argument. There are two kinds of defeaters. The
simplest are rebutting defeaters, which attack an argument by attacking its conclu-
sion. In the inductive example concerning white swans, what defeated the argument
was the discovery of a black swan, and the reason that was a defeater is that it
entails the negation of the conclusion, i.e., it entails that not all swans are white.
More generally, a rebutting defeater could be any reason for denying the conclusion
(deductive or defeasible). For instance, I might be informed by Herbert, an ornithol-
ogist, that not all swans are white. People do not always speak truly, so the fact that
he tells me this does not entail that it is true that not all swans are white. Neverthe-
less, because Herbert is an ornithologist, his telling me that gives me a defeasible
reason for thinking that not all swans are white, so it is a rebutting defeater.

2.3 Undercutting defeaters

Not all defeaters are rebutting defeaters. Suppose Simon, whom I regard as very reli-
able, tells me, “Don’t believe Herbert. He is incompetent.” That Herbert told me that
not all swans are white gives me a reason for believing that not all swans are white,
but Simon’s remarks about Herbert give me a reason for withdrawing my belief, and
they do so without either (1) making me doubt that Herbert said what I took him to
say or (2) giving me a reason for thinking it false that not all swans are white. Even if

176 John L. Pollock

Herbert is incompetent, he might have accidentally gotten it right that not all swans
are white. Thus Simon’s remarks constitute a defeater, but not a rebutting defeater.
This is an example of an undercutting defeater. The difference between rebutting de-
featers and undercutting defeaters is that rebutting defeaters attack the conclusion of
a defeasible inference, while undercutting defeaters attack the defeasible inference
itself, without doing so by giving us a reason for thinking it has a false conclusion.
We can think of an undercutting defeater as a reason for thinking that it is false that
the premises of the inference would not be true unless the conclusion were true.
More simply, we can think of it as giving us a reason for believing that (under the
present circumstances) the truth of the premises does not guarantee the truth of the
conclusion. It will be convenient to symbolize this as “premises⊗conclusion”. It is
useful to expand our graphical representation of reasoning by including defeat rela-
tions. Thus we might represent the preceding example as in figure 9.2. Here I have
drawn the defeat relations using thick grey arrows. Note that the rebutting defeat is
symmetrical, but undercutting defeat is not.

Fig. 9.2 Inference graph with defeat

2.4 Computing Defeat-statuses

We can combine all of a cognizer’s reasoning into a single inference graph and re-
gard that as a representation of those aspects of his cognitive state that pertain to
reasoning. The hardest problem in a theory of defeasible reasoning is to give a pre-
cise account of how the structure of the cognizer’s inference graph determines what
he should believe. Such an account is called a “semantics” for defeasible reasoning,

9 A Recursive Semantics for Defeasible Reasoning 177

although it is not a semantics in the same sense as, for example, a semantics for
first-order logic. If a cognizer reasoned only deductively, it would be easy to pro-
vide an account of what he should believe. In that case, a cognizer should believe all
and only the conclusions of his arguments (assuming that the premises are somehow
initially justified). However, if an agent reasons defeasibly, then the conclusions of
some of his arguments may be defeaters for other arguments, and so he should not
believe the conclusions of all of them. For example, in figure 9.2, the cognizer first
concludes “All swans are white”. Then he constructs an argument for a defeater for
the first argument, at which point it would no longer be reasonable to believe its con-
clusion. But then he constructs a third argument supporting a defeater for the second
(defeating) argument, and that should reinstate the first argument. Obviously, the re-
lationships between interacting arguments can be very complex. We want a general
account of how it is determined which conclusions should be believed, or to use
philosophical parlance, which conclusions are “justified” and which are not. This
distinction enforces a further distinction between beliefs and conclusions. When a
cognizer constructs an argument, he entertains the conclusion and he entertains the
propositions comprising the intervening steps, but he need not believe them. Con-
structing arguments is one thing. Deciding which conclusions to accept is another.
What we want is a criterion which, when applied to the inference graph, determines
which conclusions are defeated and which are not, i.e., a criterion that determines
the defeat-statuses of the conclusions. The conclusions that ought to be believed are
those that are undefeated. The remainder of the chapter will be devoted to proposing
such a criterion.

3 The Multiple-Assignment Semantics

Let us collect all of an agent’s arguments into an inference-graph, where the nodes
are labeled by the conclusions of arguments, support-links tie nodes to the nodes
from which they are inferred, and defeat-links indicate defeat relations between
nodes. These links relate their roots to their targets. The root of a defeat-link is a sin-
gle node, and the root of a support-link is a set of nodes. The analysis is somewhat
simpler if we construct the inference-graph in such a way that when the same con-
clusion is supported by two or more arguments, it is represented by a separate node
for each argument. For example, consider the inference-graph diagrammed in fig-
ure three, which represents two different arguments for (P & Q) given the premises,
P, Q, A, and (A → (P & Q)). The nodes of such an inference-graph represent argu-
ments rather than just representing their conclusions. In such an inference-graph, a
node has at most one support-link. When it is unambiguous to do so, I will refer to
the nodes in terms of the conclusions they encode.

Because a conclusion can be supported by multiple arguments, it is the arguments
themselves to which we must first attach defeat-statuses. Then a conclusion is un-
defeated iff it is supported by at least one undefeated argument. The only exception
to this rule is “initial nodes”, which (from the perspective of the inference graph)

178 John L. Pollock

Fig. 9.3 An inference graph

are simply “given” as premises. Initial nodes are unsupported by arguments, but are
taken to be undefeated. Ultimately, we want to use this machinery to model ratio-
nal cognition. In that case, all that can be regarded as “given” is perceptual input
(construed broadly to include such modes of perception as proprioception, intro-
spection, etc.), in which case it may be inaccurate to take the initial nodes to encode
propositions. It is probably better to regard them as encoding percepts.1

The node-basis of a node is the set of roots of its support-link (if it has one),
i.e., the set of nodes from which the node is inferred in a single step. If a node has
no support-link (i.e., it is initial) then the node-basis is empty. The node-defeaters
are the roots of the defeat-links having the node as their target. Given an inference-
graph, a semantics must determine which nodes encode (the conclusions of) argu-
ments that ought to be accepted, i.e., that are not defeated. This is the defeat-status
computation, and nodes are marked “defeated” or “undefeated”. The defeat-status
computation is made more complex by the fact that some arguments support their
conclusions more strongly than other arguments. For instance, if Jones tells me it
is raining, and Smith denies it, and I regard them as equally reliable, then I have
equally strong arguments both for believing that it is raining and for believing that
it is not raining. In that case, I should withhold belief, not accepting either conclu-
sion. On the other hand, if I regard Jones as much more reliable than Smith, then I
have a stronger argument for believing that it is raining, and if the difference is great
enough, that is the conclusion I should draw. So argument-strengths make a differ-
ence. However, most semantics for defeasible reasoning ignore argument strengths,
pretending that all initial nodes are equally well justified and all inference schemes
equally strong. I will make this same simplifying assumption in this chapter. What
can we say about the semantics in this simplified case?

Let us define:

A node of the inference-graph is initial iff its node-basis and list of
node-defeaters are empty.

It is initially tempting to try to characterize defeat-statuses recursively using the
following two rules:

(D1) Initial nodes are undefeated.
(D2) A non-initial node is undefeated iff all the members of its node-basis

1 See [11] and [12] for a fuller discussion of this.

9 A Recursive Semantics for Defeasible Reasoning 179

are undefeated and all node-defeaters are defeated.

However, this recursion turns out to be ungrounded because we can have nodes of
an inference-graph that defeat each other, as in inference-graph (4), where dashed ar-
rows indicate defeasible inferences and heavy arrows indicate defeat-links. In com-
puting defeat-statuses in inference-graph (4), we cannot proceed recursively using
rules (D1) and (D2), because that would require us to know the defeat-status of Q
before computing that of∼Q, and also to know the defeat-status of∼Q before com-
puting that of Q. The general problem is that a node Q can have an inference/defeat-
descendant that is a defeater of Q, where an inference/defeat-descendant of a node
is any node that can be reached from the first node by following support-links
and defeat-links. I will say that a node is Q-dependent iff it is an inference/defeat-
descendant of a node Q. So the recursion is blocked in inference-graph (4) by there
being Q-dependent defeaters of Q and ∼Q-dependent defeaters of ∼Q.

Inference-graph (4) is a case of “collective defeat”. For example, let P be “Jones
says that it is raining”, R be “Smith says that it is not raining”, and Q be “It is rain-
ing”. Given P and Q, and supposing you regard Smith and Jones as equally reliable,
what should you believe about the weather? It seems clear that you should withhold
belief, accepting neither Q nor ∼Q. In other words, both Q and ∼Q should be de-
feated. This constitutes a counter-example to rule (D2). So not only do rules (D1)
and (D2) not provide a recursive characterization of defeat-statuses – they are not
even true. The failure of these rules to provide a recursive characterization of defeat-
statuses suggests that no such characterization is possible, and that in turn suggested
to me (see [9, 10]) that rules (D1) and (D2) might be used to characterize defeat-
statuses in another way. Reiter’s default logic [13] proceeded in terms of multiple
“extensions”, and “skeptical default logic” characterizes a conclusion as following
nonmonotonically from a set of premises and defeasible inference-schemes iff it is
true in every extension. There are simple examples showing that this semantics is
inadequate for the general defeasible reasoning of epistemic agents (see below), but
the idea of having multiple extensions suggested to me that rules (D1) and (D2)
might be used to characterize multiple “status assignments”. On this approach, a
partial status assignment is an assignment of defeat-statuses to a subset of the nodes
of the inference-graph in accordance with (D1) and (D2):

180 John L. Pollock

An assignment σ of “defeated” and “undefeated” to a subset of the nodes of an
inference-graph is a partial status assignment iff:

1. σ assigns “undefeated” to any initial node;
2. σ assigns “undefeated” to a non-initial node α iff σ assigns “undefeated”

to all the members of the node-basis of α and all node-defeaters of α are
assigned “defeated”.

My (1995) semantics defined:

σ is a status assignment iff σ is a partial status assignment and σ is not properly
contained in any other partial status assignment.

My proposal was then:

A node is undefeated iff every status assignment assigns “undefeated” to it; oth-
erwise it is defeated.

Belief in P is justified for an agent iff P is encoded by an undefeated node of the
inference-graph representing the agent’s current epistemological state.

I will refer to this semantics as the multiple-assignment semantics. To illustrate,
consider inference-graph (4) again. There are two status assignments for this infer-
ence graph:

assignment 1:

P “undefeated”
R “undefeated”
Q “undefeated”
∼Q “defeated”

assignment 2:

P “undefeated”
R “undefeate”
Q “defeated”
∼Q “undefeated”

P and R are undefeated, but neither Q nor ∼Q is assigned “undefeated” in every
assignment, so both are defeated.

9 A Recursive Semantics for Defeasible Reasoning 181

The reason for making status assignments “partial” is that there are inference
graphs for which it is impossible to construct status assignments assigning statuses
to every node. One case in which this happens is when we have “self-defeating ar-
guments”, i.e., arguments whose conclusions defeat some of the inferences leading
to those conclusions. A simple example is inference-graph (5). A partial status as-
signment must assign “undefeated” to P. If it assigned “undefeated” to Q then it
would assign “undefeated” to R and P⊗Q, in which case it would have to assign
“defeated” to Q. So it cannot assign “undefeated” to Q. If it assigned “defeated” to
Q it would have to assign “defeated” to R and P⊗Q, in which case it would have
to assign “undefeated” to Q. So that is not possible either. Thus a partial status as-
signment cannot assign anything to Q, R, and P⊗Q. Hence there is only one status
assignment (i.e., maximal partial status assignment), and it assigns “undefeated” to
P and nothing to the other nodes. Accordingly, P is undefeated and the other nodes
are defeated. An intuitive example having approximately the same form is shown in
inference-graph (6). Here we suppose that people generally tell the truth, and this
gives us a reason for believing what they tell us. However, some people suffer from
a malady known as “pink-elephant phobia”. In the presence of pink elephants, they
become strangely disoriented so that their statements about their surroundings cease
to be reliable. Now imagine Robert, who tells us that the elephant beside him looks
pink. In ordinary circumstances, we would infer that the elephant beside Robert does
look pink, and hence probably is pink. However, Robert suffers from pink-elephant
phobia. So if it were true that the elephant beside Robert is pink, we could not rely
upon his report to conclude that it is. So we should not conclude that it is pink.
We may be left wondering why he would say that it is, but we cannot explain his
utterance by supposing that the elephant really is pink. So this gives us no reason
at all for a judgment about the color of the elephant. On the other hand, it gives us
no reason to doubt that Robert did say that the elephant is pink, or that Robert has
pink-elephant phobia. Those are perfectly justified beliefs.

182 John L. Pollock

Inference-graphs (5) and (6) constitute intuitive counterexamples to default
logic [13] and the stable model semantics [2] because there are no extensions. Hence
on those semantics, P has the same status as Q, R, and P⊗Q. It is perhaps more ob-
vious that this is a problem for those semantics if we imagine this self-defeating
argument being embedded in a larger inference-graph containing a number of oth-
erwise perfectly ordinary arguments. On these semantics, all of the nodes in all of
the arguments would have to have the same status, because there would still be no
extensions. But surely the presence of the self-defeating argument should not have
the effect of defeating all other (unrelated) arguments.

4 A Problem Case

The multiple-assignment semantics produces the intuitively correct answer for many
complicated inference-graphs. For a number of years, I thought that, given the sim-
plifying assumption that all arguments are equally strong, this semantics was cor-
rect. But I no longer think so. Here is the problem. Contrast inference-graph (4) with
inference-graph (7). Inference-graph (7) involves “odd-length defeat cycles”. For an
example of inference-graph (7), let A = “Jones says that Smith is unreliable”, B =
“Smith is unreliable”, C = “Smith says that Robinson is unreliable”, D = “Robinson
is unreliable”, E = “Robinson says that Jones is unreliable”, F = “Jones is unreli-
able”. Intuitively, this should be another case of collective defeat, with A, C, and
E being undefeated and B, D, and F being defeated. The multiple-assignment se-

9 A Recursive Semantics for Defeasible Reasoning 183

mantics does yield this result, but it does it in a peculiar way. A, C, and E must be
assigned “undefeated”, but there is no consistent way to assign defeat-statuses to B,
D, and F . Accordingly, there is only one status assignment (maximal partial status
assignment), and it leaves B, D, and F unassigned. We get the right answer, but it
seems puzzling that we get it in a different way than we do for even-length defeat
cycles like that in inference-graph (4). This difference has always bothered me.

That we get the right answer in a different way does not show that the semantics
is incorrect. As long as otherwise equivalent inference-graphs containing odd-length
and even-length defeat cycles always produce the same defeat-statuses throughout
the graphs, there is no problem. However, they do not. Contrast inference-graphs
(8) and (9). In inference-graph (8), there are two status assignments, one assigning
“defeated” to B and “undefeated” to D, and the other assigning “undefeated” to B
and “defeated” to D. On either status assignment, P has an undefeated defeater, so it
is defeated on both status assignments, with the result that Q is undefeated on both
status assignments. Hence Q is undefeated simpliciter. However, in inference-graph
(9), there is only one status-assignment, and it assigns no status to any of B, D, F , P,
or Q. Thus Q is defeated in inference-graph (9), but undefeated in inference-graph
(8). This, I take it, is a problem. Although it might not be clear which inference-
graph is producing the right answer, the right answer ought to be the same for both
inference-graphs. Thus the semantics is getting one of them wrong. It is worth noting
in passing that, as far as I know, no currently available semantics for defeasible
reasoning handles (8) and (9) correctly. I take this to show that we need a different
semantics.

5 A Recursive Semantics

The multiple-assignment semantics is based upon the two rules:

184 John L. Pollock

(D1) Initial nodes are undefeated.
(D2) A non-initial node is undefeated if all the members of its node-basis

are undefeated and all node-defeaters are defeated.

We have seen that these rules are not true as stated. For example, inference-graph
(4) is a counterexample to rule (D2). Both Q and ∼Q should be defeated, but then
both have undefeated node-bases but no undefeated defeaters. I tried to avoid this
problem by imposing these rules instead on partial-status assignments. But perhaps
we should take seriously the fact that these rules are simply wrong. In inference-
graph (4), in computing the defeat-status of Q, what is crucial is that (a) its node-
basis is undefeated, (b) the node-basis of its defeater is undefeated, and (c) there is
no other defeater for ∼Q besides Q itself. We can capture this by asking whether
∼Q would be defeated if it were not defeated by Q. We can test this by removing
the mutual defeat-links between Q and∼Q, producing inference-graph (4*). In (4*),
∼Q is undefeated. The proposal is that this should make Q defeated in (4). Note that
the defeaters we are removing in constructing inference-graph (4*) are those that are
Q-dependent, i.e., those that can be reached by following paths from Q consisting
of inference-links and defeat-links.

Consider another example – inference-graph (10). In computing the defeat-status
of Q, we note that its node-basis is undefeated, and its defeater P⊗Q is defeated only
by the Q-dependent defeat-link from R⊗S. If we remove the Q-dependent defeat-
links from inference-graph (10) we get inference-graph (10*). In inference-graph
(10*), P⊗Q is undefeated, so again, the proposal is that this makes Q defeated in
inference-graph (10).

These examples suggest that we might replace rule (D2) by a rule that computes
the defeat-statuses of defeat-links in a modified inference-graph from which we have
removed those defeat-links that make the computation circular. Recall that a defeat-
link or support-link extends from its root to its target. The root of a defeat-link is a
single node, and the root of a support-link is a set of nodes. Let us define:

9 A Recursive Semantics for Defeasible Reasoning 185

Definition 9.1. An inference/defeat-path from a node ϕ to a node θ is a sequence
of support-links and defeat-links such that (1) ϕ is or is a member of the root of the
first link in the path; (2) θ is the target of the last link in the path; (3) a member of
the root of each link after the first member of the path is the target of the preceding
link; (4) the path does not contain an internal loop, i.e., no two links in the path have
the same target.

Definition 9.2. θ is ϕ-dependent iff there is an inference/defeat-path from ϕ to ϕ .

Definition 9.3. A circular inference/defeat-path from a node ϕ to itself is an
inference/defeat-path from ϕ to a defeater for ϕ .

Definition 9.4. A defeat-link is ϕ-critical iff it is a member of some minimal set of
defeat-links such that removing all the defeat-links in the set suffices to cut all the
circular inference/defeat-paths from ϕ to ϕ .

It will be convenient to modify our understanding of initial nodes. Previously, I
took them to be automatically undefeated, and we can still regard that as the default
value, but it will also be useful to be able to stipulate that some of the initial nodes
in a newly-constructed inference-graph are defeated. The construction I am go-
ing to propose builds new inference-graphs as subgraphs of pre-existing inference-
graphs by (1) deleting ϕ-critical links, and (2) making ϕ-independent nodes initial,
i.e., deleting the arguments for them. The latter nodes, being ϕ-independent, have
defeat-statuses that were computable in the original inference-graph without first
having to compute a defeat-status for ϕ . I want to be able to simply stipulate that
these newly-initial nodes have the same defeat-statuses in the new inference-graph
as they had in the original. This allows us to define:

Definition 9.5. If ϕ is a node of an inference-graph G, let Gϕ be the inference-graph
that results from deleting all ϕ-critical defeat-links from G and making all mem-
bers of the node-basis of ϕ and all ϕ-independent nodes initial-nodes (i.e., deleting
their support-links and defeat-links) with stipulated defeat-statuses the same as their
defeat-statuses in G.

My proposed semantics now consists of two rules:

(CL1) Initial nodes are undefeated unless they are stipulated to be defeated.
(CL2) A non-initial node ϕ is undefeated in an inference-graph G iff all members

of the node-basis of ϕ are undefeated in G and any defeater for ϕ is
defeated in Gϕ .

On the assumption that arguments cannot be circular, this pair of rules can be
applied recursively to compute the defeat-status of any node in a finite inference-
graph. The recursion simply steps through arguments, computing the defeat-status
of each node ϕ after the defeat-statuses of the nodes in ϕ’s node-basis are com-
puted. The problem of circular inference/defeat-paths is avoided by removing the
ϕ-critical defeat-links and evaluating node-defeaters in Gϕ . I will refer to this new
semantics as the critical-link semantics, and contrast it with the multiple-assignment
semantics.

186 John L. Pollock

I believe that the critical-link semantics gets everything right that the multiple-
assignment semantics got right. Consider a complex example. Inference-graph (11)
illustrates the so called “lottery paradox” [3]. Here P reports a description (e.g., a
newspaper report) of a fair lottery with one million tickets. P constitutes a defeasible
reason for R, which is the description. That is, the newspaper report gives us a
defeasible reason for believing the lottery is fair and has a million tickets. In such
a lottery, each ticket has a probability of one in a million of being drawn, so for
each i, the statistical syllogism gives us a reason for believing ∼T i (“ticket i will
not be drawn”). The supposed paradox is that although we thusly have a reason for
believing of each ticket that it will not be drawn, we can also infer on the basis of
R that some ticket will be drawn. Of course, this is not really a paradox, because
the inferences are defeasible and this is a case of collective defeat. This results from
the fact that for each i, we can infer T i from (i) the description R (which entails that
some ticket will be drawn) and (ii) the conclusions that none of the other tickets
will be drawn. This gives us a defeating argument for the defeasible argument to
the conclusion that ∼T i, as diagrammed in inference-graph (11). The result is that
for each i, there is a status assignment on which ∼T i is assigned “defeated” and
the other ∼T j’s are all assigned “undefeated”, and hence none of them are assigned
“undefeated” in every status assignment.

I believe that all (skeptical) semantics for defeasible reasoning get the lottery
paradox right. A more interesting example is the “lottery paradox paradox”, dia-
grammed in inference-graph (12). This results from the observation that because
R entails that some ticket will be drawn, from the collection of conclusions of the
form ∼T i we can infer ∼R, and that is a defeater for the defeasible inference from
∼P to ∼R. This is a self-defeating argument. Clearly, the inferences in the lottery
paradox should not lead us to disbelieve the newspaper’s description of the lottery,
so R should be undefeated. Circumscription [5], in its simple non-prioritized form,
gets this example wrong, because one way of minimizing abnormalities would be to
block the inference from P to R. My own early analysis [8] also gets this wrong. This
was the example that led me to the multiple-assignment semantics. The multiple-
assignment semantics gets this right. We still have the same status assignments as in

9 A Recursive Semantics for Defeasible Reasoning 187

inference-graph (11), and ∼R is defeated in all of them because it is inferred from
the entire set of ∼T i’s, and one of those is defeated in every status assignment.

It will be convenient to have a simpler example of an inference-graph with the
same general structure as the lottery paradox paradox. For that purpose we can
use inference-graph (13). Here P and R should be undefeated, but T 1, T 2, and ∼R
should be defeated. In the critical link semantics, to compute the defeat-status of R
in inference-graph (13), we construct (13*) by removing the only defeat-link whose
removal results in R no longer having an R-dependent defeater. In (13*), the triangle
consisting of R, T 1 and T 2 is analogous to inference-graph (4), with the result that
T 1 and T 2 are both defeated in inference-graph (13*). They constitute the node-basis
for ∼R, so ∼R is also defeated in inference-graph (13*). Thus by (CL2), R is unde-
feated in inference-graph (13). Turning to T 1 and T 2 in inference-graph (13), both
have R as their node-basis, and R is undefeated. Thus to compute the defeat-status
of T 1 or T 2, we construct inference-graph (13**), and observe that T 1 and T 2 are
undefeated there. It then follows by (CL2) that T 1 and T 2 are defeated in inference-
graph (13). Then because T 1 and T 2 are defeated,∼R is defeated in inference-graph
(13). So we get the intuitively correct answers throughout.

188 John L. Pollock

Inference-graph (13) also illustrates why, in constructing Gϕ , we remove only the
ϕ-critical defeat-links, and not all of the ϕ-dependent defeat-links. All of the defeat-
links in inference-graph (13) are R-dependent, and if we remove them all we get
inference-graph (13***). But in inference-graph (13***), ∼R is undefeated. This
would result in R being defeated in inference-graph (13) rather than undefeated.
Thus it is crucial to remove only the ϕ-critical defeat-links rather than all the ϕ-
dependent defeat-links.

6 The Problem Cases

Now let us turn to some cases that the multiple-assignment semantics does not
or may not get right. First, consider the pair of inference-graphs that motivated
the search for a new semantics. These are inference-graphs (8) and (9). In these
inference-graphs, not everyone agrees whether Q should come out defeated or un-
defeated, but it does seem clear that whatever the right answer is, it should be the
same for both inference-graphs. Unfortunately, on the multiple-assignment seman-
tics, Q is undefeated in inference-graph (8) and defeated in inference-graph (9).

On the critical-link semantics, we compute the defeat-statuses of B and D in
inference-graph (8) by constructing inference-graph (8*). B and D are undefeated
in inference-graph (8*), so each defeats the other in inference-graph (8), with the
result that B and D are defeated in inference-graph (8). There are no P-critical
defeat-links in (8), so removing P-critical defeat-links leaves inference-graph (8)

9 A Recursive Semantics for Defeasible Reasoning 189

unchanged. B and D are defeated in inference-graph (8), so it follows that P is de-
feated in inference-graph (8). Then because there are no Q-dependent defeat-links
in inference-graph (8), Q is undefeated.

The computation of defeat-statuses in inference-graph (9) works in exactly the
same way, via inference-graph (9*), again producing the result that Q is undefeated.
So on the critical-link semantics, we do not get a divergence between inference-
graphs (8) and (9).

Still, we can ask whether the answer we get for inference-graphs (8) and (9) is
the correct answer. There is some intuitive reason for thinking so. In inference-graph
(8), B and D are defeated, so they should not have the power to defeat P, and hence
P should defeat Q. Similarly, in inference-graph (9), all three of B, D, and F are
defeated, and so again, D should not have the power to defeat P, and hence P should
defeat Q. However, not everyone agrees that this intuitive reasoning is correct. This
issue is closely connected with a question that has puzzled theorists since the earliest
work on the semantics of defeasible reasoning. The multiple-assignment semantics,
as well as default logic, the stable model semantics, circumscription, and almost
every familiar semantics for defeasible reasoning and nonmonotonic logic, supports
what I have called [8] “presumptive defeat”.2 For example, consider inference-graph
(14). On the multiple-assignment semantics, a defeated conclusion like Q that is as-
signed “defeated” in some status assignment and “undefeated” in another retains the
ability to defeat. That is because, in the assignment in which it is undefeated, the
defeatee is defeated, and hence not undefeated in all status-assignments. In the case
of inference-graph (14) this has the consequence that S is assigned “defeated” in
those status-assignments in which Q is assigned “defeated”, but S is assigned “un-
defeated” and ∼S is assigned “defeated” in those status-assignments in which Q is
assigned “undefeated”. Touretzky, Horty, and Thomason [14] called this “ambigu-
ity propagation”, and Makinson and Schlechta [4] called such arguments “Zombie
arguments” (they are dead, but they can still get you). However, the critical-link se-
mantics precludes presumptive defeat. It entails that Q, ∼Q, and hence ∼S, are all
defeated, and S is undefeated. Is this the right answer?

2 The only semantics I know about that does not support presumptive defeat are certain versions
of Nute’s [6] defeasible logic. See also Covington, Nute, and Vellino [1], and Nute [7].

190 John L. Pollock

Consider an example. You are sitting with Keith and Alvin, and the following
conversation ensues:

Keith: I heard on the news this morning that it is going to rain this afternoon.
Alvin: Nonsense! I was sitting right beside you listening to the same weather

report, and the announcer clearly said that it is going to be a sunny day in Tucson.
Keith: You idiot, you must have cotton in your ears! It was perfectly clear that he

said it is going ro rain.
Alvin: You never pay attention. No one in his right mind could have thought he

said it was going to rain. He said it would be sunny.
. . .

At that point, you wander off shaking your head, still wondering what the weather
is going to be. Then it occurs to you that it is about time for the noon News, so you
turn on the radio and hear the announcer say, “This just in from the National Weather
Service. It is going to rain in Tucson this afternoon.” Surely, that settles the matter.
You will believe, with complete justification, that it is going to rain. The earlier
conversation between Keith and Alvin does not defeat your judgment on the basis
of the noon broadcast. This example has the form of inference-graph (14) if we let:

S = “It is going to rain in Tucson this afternoon”
Q = “The morning news said that S”
P = “Alvin says that Q”
R = “Keith says that ∼Q”
A = “The noon news says that S”

This seems to me to be a fairly compelling example of the failure of presumptive
defeat. Formally, presumptive defeat arises for the multiple-assignment semantics
from the fact that if a node P is defeated in one assignment and undefeated in an-
other, then P-dependent nodes will also have different defeat-statuses in the different
assignments unless one of their inference-ancestors is defeated absolutely (i.e., in all
status assignments). A similar problem arises for inference-nodes P that cannot be
assigned defeat-statuses in any assignments. This occurs, for example, in cases of
self-defeat or when there are odd-length defeat cycles. In this case, no P-dependent
node can be assigned a defeat-status either unless one of its inference-ancestors is
defeated absolutely. For example, consider once more the sad case of Robert, the
pink-elephant-phobic (inference-graph (6)). We observed that Robert’s statement
that the elephant beside him is pink does not give us a good reason for believing that

9 A Recursive Semantics for Defeasible Reasoning 191

it really is pink. Now suppose that Robert is accompanied by Herbert, who is also
standing beside the elephant. While Robert is blathering about pink-elephants, Her-
bert turns to you and says, “I read in the newspaper this morning that the President
is going to visit China.” From this you infer that he did read that in the newspaper,
and hence the President is probably going to visit China. Suppose, however, that
Herbert also suffers from pink-elephant phobia. Does that make any difference? It
does not seem so, because as we observed, Robert’s statement gives us no reason to
think the elephant is pink, and so no reason to distrust Herbert’s statement. This sce-
nario is diagrammed in inference-graph (15). However, on the multiple-assignment
semantics,

The elephant beside Robert and Herbert is pink

has no status assignment, and hence neither does

(People generally tell the truth and Herbert says that he read in the newspaper this morning
that the President is going to visit China)⊗ Herbert read in the newspaper this morning that
the President is going to visit China

or

Herbert read in the newspaper this morning that the President is going to visit China

or

The president is going to visit China.

This seems clearly wrong. On the other hand, on the critical-link semantics,

The elephant beside Robert and Herbert looks pink

is defeated, and hence so is

The elephant beside Robert and Herbert is pink

and so is

(People generally tell the truth and Herbert says that he read in the newspaper this morning
that the President is going to visit China)⊗ Herbert read in the newspaper this morning that
the President is going to visit China.

Accordingly,

Herbert read in the newspaper this morning that the President is going to visit China

and

The president is going to visit China

are undefeated, which is the intuitively correct result.

192 John L. Pollock

The upshot is that the critical-link semantics agrees with the multiple-assignment
semantics on simple cases in which the latter seems to give the right answer, but the
critical-link semantics also seems to get right a number of cases that the multiple-
assignment semantics gets wrong. The test of a semantics for defeasible reasoning
is that it agrees with our intuitions about clear cases. So we have reasonably strong
inductive reasons for thinking that the critical-link semantics properly characterizes
the semantics of defeasible reasoning.

7 Computing Defeat-Statuses

Principles (CL1) and (CL2) provide a recursive characterization of defeat-status
relative to an inference-graph. However, this characterization does not lend itself
well to implementation because it requires the construction of modified inference-
graphs, which would be computationally expensive. The objective of this section is
to produce an equivalent recursive characterization that appeals only to the given
inference-graph.

A defeat-link is ϕ-critical iff it is a member of a minimal set such that removing
all the defeat-links in the set suffices to cut all the circular inference/defeat-paths
from ϕ to ϕ . A necessary condition for a defeat-link L to be ϕ-critical is that it lie on
such a circular path. In general, there can be diverging and reconverging paths with
several “parallel” defeat-links, as in figure 16. In figure 16, removing the defeat-link
D3 suffices to cut both circular paths. But the set D1,D2 of parallel defeat-links is
also a minimal set of defeat-links such that the removal of all the links in the set

9 A Recursive Semantics for Defeasible Reasoning 193

suffices to cut all the circular inference/defeat-paths from ϕ to ϕ . Thus in figure 16,
all of the defeat-links are ϕ-critical. However, lying on a circular inference/defeat-
path is not a sufficient condition for being ϕ-critical. A defeat-link on a circular
inference/defeat-path from ϕ to ϕ fails to be ϕ-critical when there is a path around
it consisting entirely of support-links, as diagrammed in figure 17. In this case, you
must remove D3 to cut both paths, but once you have done that, removing D1 is a
gratuitous additional deletion. So D1 is not contained in a minimal set of deletions
sufficient for cutting all the circular inference/defeat-paths from ϕ to ϕ , and hence
D1 is not ϕ-critical. This phenomenon is also illustrated by inference-graph (13),
and we saw that it is crucial to the computation of degrees of justification in that
inference-graph that such defeat-links not be regarded as ϕ-critical. It turns out that
this is the only way a defeat-link on a circular inference/defeat-path can fail to be
ϕ-critical, as will now be proven. Let us say that a node α precedes a node β on

Fig. 9.16 Parallel ϕ-critical defeat-links

Fig. 9.17 Defeat link that is not ϕ-critical

an inference/defeat-path iff α and β both lie on the path and either α = β or the
path contains a subpath originating on α and terminating on β . Node-ancestors of a
node are nodes that can be reached by following support-links backwards. It will be
convenient to define:

Definition 9.6. A defeat-link L is bypassed on an inference/defeat-path μ in G iff
there is a node α preceding the root of L on μ and a node β preceded by the target
of L on μ such that α = β or α is a node-ancestor of β in G.

194 John L. Pollock

Definition 9.7. μ is a ϕ-circular-path in G iff μ is a circular inference/defeat-path
in G from ϕ to ϕ and no defeat-link in G is bypassed on μ .

Lemma 9.1. If μ1 and μ2 are ϕ-circular-paths and every defeat-link in μ1 occurs in
μ2, then μ1 and μ2 contain the same defeat-links and they occur in the same order.

Proof. Proof: Suppose the defeat-links in μ1 are δ1, . . . ,δn, occurring in that order.
Suppose μ1 and μ2 differ first at the ith defeat-link. Then μ1 and μ2 look as in figure
18. But every defeat-link in μ1 occurs in μ2, so δi must occur later in μ2. But then
the path from δi−1 to δi in μ1 is a bypass around δ ∗i in μ2, which is impossible if it
is a ϕ-circular-path.�

Fig. 9.18 Paths must agree

Lemma 9.2. Every defeat-link in a ϕ-circular-path is ϕ-critical.

Proof. Suppose δ is a defeat-link on the ϕ-circular-path μ . Let D be the set of all
defeaters in the inference-graph other than those on μ . If deleting all members of
D is sufficient to cut all ϕ-circular-paths not containing δ , then select a minimal
subset D0 of D whose deletion is sufficient to cut all ϕ-circular-paths not containing
δ . Adding δ to D0 gives us a set of defeat-links whose deletion is sufficient to cut
all ϕ-circular-paths. Furthermore, it is minimal, because adding δ cannot cut any
paths not containing δ , and all members of D0 are required to cut those paths. Thus
δ is a member of a minimal set of defeat-links the deletion of which is sufficient to
to cut all ϕ-circular-paths, i.e., δ is ϕ-critical. Thus if δ is not ϕ-critical, there is
a ϕ-circular-path ν not containing δ and not cut by cutting all defeat-links not in
μ . That is only possible if every defeat-link in ν is in μ . But then by the previous
lemma, μ and ν must contain the same defeat-links, so contrary to supposition, δ is
in ν . Thus the supposition that δ is not ϕ-critical is inconsistent with the supposition
that it lies on a ϕ-circular-path. �

Lemma 9.3. If a defeat-link does not occur on any ϕ-circular-path then it is not
ϕ-critical.

Proof. For every circular inference/defeat-path μ from ϕ to ϕ there is a ϕ-circular-
path ν such that every defeat-link in ν is in μ . ν results from removing bypassed
defeat-links and support-links in μ and replacing them by their bypasses. It follows
that any set of deletions of defeat-links that will cut all ϕ-circular-paths will also
cut every circular inference/defeat-path from ϕ to ϕ . Conversely, ϕ-circular-paths
are also circular-paths from ϕ to ϕ , so any set of deletions that cuts all circular-
paths from ϕ to ϕ will also cut all ϕ-circular-paths. So the ϕ-circular-paths and the

9 A Recursive Semantics for Defeasible Reasoning 195

circular-paths from ϕ to ϕ have the same sets of deletions of defeat-links sufficient
to cut them, and hence the same minimal sets of deletions. If a defeat-link δ does not
occur on any ϕ-circular-path, then it is irrelevant to cutting all the ϕ-circular-paths,
and hence it is not in any minimal set of deletions sufficient to cut all circular-paths
from ϕ to ϕ , i.e., it is not ϕ-critical. �

Theorem 4 follows immediately from lemmas 2 and 3:

Theorem 9.4. A defeat-link is ϕ-critical in G iff it lies on a ϕ-circular-path in G.

A further simplification results from observing that, for the purpose of deciding
whether a defeat-link is ϕ-critical, all we have to know about ϕ-circular-paths is
what defeat-links occur in them. It makes no difference what support-links they
contain. So let us define:

Definition 9.8. A ϕ-defeat-loop is a sequence μ of defeat-links for which there is a
ϕ-circular-path ν such that the same defeat-links occur in μ and ν and in the same
order.

In other words, to construct a ϕ-defeat-loop from a ϕ-circular-path we simply
remove all the support-links. We have the following very simple characterization of
ϕ-defeat-loops:

Theorem 9.5. A sequence 〈δ1, . . . ,δn〉 of defeat-links is a ϕ-defeat-loop iff (1) ϕ is
a node-ancestor of the root of δ1, but not of the root of any δk for k > 1, (2) ϕ is the
target of δn, and (3) for each k < n, the target of δk is equal to or an ancestor of the
root of δk+1, but not of the root of δk+ j for j > 1.

The significance of ϕ-defeat-loops is that by omitting the support-links we make
them easier to process, but we still have the simple theorem:

Theorem 9.6. A defeat-link is ϕ-critical in G iff it lies on a ϕ-defeat-loop in G.

In simple cases, Gϕ will be an inference-graph in which no node ψ has a ψ-
critical defeat-link. But in more complex cases, like inference-graph (13), we have
to repeat the construction, constructing first Gϕ , and then (Gϕ)ψ . Let us define re-
cursively:

Definition 9.9. G〈ϕ1,...,ϕn〉 =
(
G〈ϕ2,...,ϕn〉

)
ϕ1

As formulated, the recursive semantics requires us to construct the inference-
graphs G〈ϕ1,...,ϕn〉. To reformulate the semantics so as to avoid this, let us define
recursively:

Definition 9.10.

A defeat-link δ of G is 〈ϕ1, . . . ,ϕn〉-critical in G iff (1) δ lies on a ϕ1-defeat-
loop μ in G containing no 〈ϕ2, . . . ,ϕn〉-critical defeat-links.

A defeat-link δ of G is hereditarily-〈ϕ1, . . . ,ϕn〉-critical in G iff either δ is
〈ϕ1, . . . ,ϕn〉-critical in G or δ is hereditarily-〈ϕ2, . . . ,ϕn〉 in G.

A defeater (i.e., a node) of G is hereditarily-〈ϕ1, . . . ,ϕn〉-critical in G iff it is
the root of a hereditarily-〈ϕ1, . . . ,ϕn〉-critical defeat-link in G.

196 John L. Pollock

Obviously:

Theorem 9.7. δ is hereditarily-〈ϕ1, . . . ,ϕn〉-critical in G iff δ is ϕ1-critical in
G〈ϕ2,...,ϕn〉 or ϕ2-critical in G〈ϕ3,...,ϕn〉 or . . . or ϕn-critical in G.

Note that a defeat-link that is ϕi-critical in G〈ϕi+1,...,ϕn〉 does not exist in G〈ϕ j+1,...,ϕn〉
for j < i, so:

Theorem 9.8. δ is ϕ1-critical in G〈ϕ2,...,ϕn〉 iff δ is 〈ϕ1, . . . ,ϕn〉-critical in G.

Furthermore, a defeat-link still exists in G〈ϕ3,...,ϕn〉 (i.e., has not been removed) iff it
is not 〈ϕ1, . . . ,ϕn〉-critical in G.

Where θ ,ϕ2, . . . ,ϕn are nodes of an inference-graph G, define:

Definition 9.11.

θ is 〈ϕ〉-independent of ψ in G iff there is no inference/defeat-path in G from
ϕ to θ .

θ is 〈ϕ1, . . . ,ϕn〉-independent in G iff every inference/defeat-path in G from ϕ1

to θ contains a hereditarily-〈ϕ2, . . . ,ϕn〉-critical defeat-link.

Theorem 9.9. θ is 〈ϕ1, . . . ,ϕn〉-independent in G iff θ is ϕ1-independent in
G〈ϕ2,...,ϕn〉.

Let us define recursively:

Definition 9.12.

(a) If ψ is initial in G then ψ is 〈ϕ1, . . . ,ϕn〉-undefeated in G iff ψ is undefeated in
G;

(b) If ψ is 〈ϕ1, . . . ,ϕn〉-independent in G then ψ is 〈ϕ1, . . . ,ϕn〉-undefeated in G iff
ψ is 〈ϕ2, . . . ,ϕn〉-undefeated in G;

(c) Otherwise, ψ is 〈ϕ1, . . . ,ϕn〉-undefeated in G iff (1) all members of the node-
basis of ψ are 〈ϕ1, . . . ,ϕn〉-undefeated in G, (2) all defeaters for ψ that are
〈ϕ1, . . . ,ϕn〉-independent of ψ in G and are not hereditarily-〈ϕ1, . . . ,ϕn〉-critical
in G (i.e., still exist in G〈ϕ3,...,ϕn〉) are 〈ϕ1, . . . ,ϕn〉-defeated in G, and (3) all de-
featers for ψ that are 〈ϕ1, . . . ,ϕn〉-dependent of ψ in G and are not hereditarily-
〈ϕ1, . . . ,ϕn〉-critical in G (i.e., still exist in G〈ϕ3,...,ϕn〉) are 〈ψ,ϕ1, . . . ,ϕn〉-defeated
in G,

The reason this is a recursive definition is that we always reach an n at which
there are no more 〈ϕ1, . . . ,ϕn〉-dependent defeaters, and then the values of all nodes
are computed recursively in terms of the values assigned to initial nodes.

It is now trivial to prove by induction on n that:

Theorem 9.10. ψ is undefeated in G〈ϕ1,...,ϕn〉 iff ψ is 〈ϕ1, . . . ,ϕn〉-undefeated in G.

Thus we have a recursive definition of the defeat-status of a node that computes
defeat-statuses entirely by reference to the given inference-graph rather than by
building a sequence of modified inference-graphs in accordance with the original
analysis. This is easily implemented with two pages of LISP code.

9 A Recursive Semantics for Defeasible Reasoning 197

8 Conclusions

In an environment of real-world complexity, it is impossible to know enough about
the world to confine one’s reasoning to deductively valid inferences. One has to
reason defeasibly, drawing conclusions that are made reasonable by one’s evidence,
but be prepared to change one’s mind in the face of new evidence. The question then
arises how defeasible reasoning ought to work. In particular, given a set of defeasible
arguments some of which support defeaters for others, how is it determined which
conclusions ought to be believed? Most semantics for defeasible reasoning agree
with regard to simple cases, and produce intuitively congenial answers. But there
are some complex cases that all existing semantics seem to get wrong. This chapter
proposes a new semantics, based on the concept of a critical link, that arguably gets
those cases right. Furthermore, the semantics is recursive and easily implemented.

References

1. M. A. Covington, D. Nute, and A. Vellino. Prolog Programming in Depth. Prentice-Hall,
Englewood Cliffs, New Jersey, second edition, 1997.

2. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming, and n-person games. Artificial Intelligence, 77(2):321–357,
1995.

3. H. E. Kyburg, Jr. Probability and the Logic of Rational Belief. Wesleyan University Press,
Middletown, Conneticut, 1961.

4. D. Makinson and K. Schlechta. Floating conclusions and zombie paths: Two deep difficulties
in the “directly skeptical” approach to inheritance nets. Artificial Intelligence, 48(2):199–209,
1991.

5. J. McCarthy. Applications of circumscription to formalizing common sense knowledge. Arti-
ficial Intelligence, 28(1):89–116, 1986.

6. D. Nute. Basic defeasible logic. In L. F. del Cerro and M. Penttonen, editors, Intensional
Logics for Programming, pages 125–154. Oxford University Press, USA, 1992.

7. D. Nute. Norms, priorities, and defeasibility. In P. McNamara and H. Prakken, editors, Norms,
Logics and Information Systems, pages 201–218. IOS Press, Amsterdam, 1999.

8. J. Pollock. Defeasible reasoning. Cognitive Science, 11(4):481–518, 1987.
9. J. Pollock. Justification and defeat. Artificial Intelligence, 67(2):377–408, 1994.

10. J. Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person. MIT Press, 1995.
11. J. Pollock. Perceiving and reasoning about a changing world. Computational Intelligence,

14(4):498–562, 1998.
12. J. Pollock and I. Oved. Vision, knowledge, and the mystery link. Philosophical Perspectives

19, pages 309–351, 2005.
13. R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13(1,2):81–132, 1980.
14. D. S. Touretzky, J. F. Horty, and R. H. Thomason. A clash of intuitions: the current state of

nonmonotonic multiple inheritance systems. In Proceedings IJCAI, pages 476–482, 1987.

Chapter 10
Assumption-Based Argumentation

Phan Minh Dung, Robert A. Kowalski and Francesca Toni

1 Introduction

Assumption-Based Argumentation (ABA) [4, 3, 27, 11, 12, 20, 22] was developed,
starting in the 90s, as a computational framework to reconcile and generalise most
existing approaches to default reasoning [24, 25, 4, 3, 27, 26]. ABA was inspired by
Dung’s preferred extension semantics for logic programming [9, 7], with its dialec-
tical interpretation of the acceptability of negation-as-failure assumptions based on
the notion of “no-evidence-to-the-contrary” [9, 7], by the Kakas, Kowalski and Toni
interpretation of the preferred extension semantics in argumentation-theoretic terms
[24, 25], and by Dung’s abstract argumentation (AA) [6, 8].

Because ABA is an instance of AA, all semantic notions for determining the
“acceptability” of arguments in AA also apply to arguments in ABA. Moreover,
like AA, ABA is a general-purpose argumentation framework that can be instan-
tiated to support various applications and specialised frameworks, including: most
default reasoning frameworks [4, 3, 27, 26] and problems in legal reasoning [27, 13],
game-theory [8], practical reasoning and decision-theory [33, 29, 15, 28, 14]. How-
ever, whereas in AA arguments and attacks between arguments are abstract and
primitive, in ABA arguments are deductions (using inference rules in an underly-
ing logic) supported by assumptions. An attack by one argument against another is
a deduction by the first argument of the contrary of an assumption supporting the
second argument.

Differently from a number of existing approaches to non-abstract argumentation
(e.g. argumentation based on classical logic [2] and DeLP [23]) ABA does not have
explicit rebuttals and does not impose the restriction that arguments have consistent
and minimal supports. However, to a large extent, rebuttals can be obtained “for

Phan Minh Dung
Asian Institute of Technology, Thailand, e-mail: dung@cs.ait.ac.th

Robert A. Kowalski, Francesca Toni
Imperial College London, UK, e-mail: {rak,ft}@doc.ic.ac.uk

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 199
DOI 10.1007/978-0-387-98197-0 10, c© Springer Science+Business Media, LLC 2009

200 Phan Minh Dung, Robert A. Kowalski and Francesca Toni

free” [27, 11, 33]. Moreover, ABA arguments are guaranteed to be “relevant” and
largely consistent [34].

ABA is equipped with a computational machinery (in the form of dispute deriva-
tions [11, 12, 19, 20, 22]) to determine the acceptability of claims by building and
exploring a dialectical structure of a proponent’s argument for a claim, an oppo-
nent’s counterarguments attacking the argument, the proponent’s arguments attack-
ing all the opponents’ counterarguments, and so on. This computation style, which
has its roots in logic programming, has several advantages over other computational
mechanisms for argumentation. The advantages are due mainly to the fine level of
granularity afforded by interleaving the construction of arguments and determining
their “acceptability”.

The chapter is organised as follows. In Sections 2 and 3 we define the ABA
notions of argument and attack (respectively). In Section 4 we define “acceptability”
of sets of arguments, focusing on admissible and grounded sets of arguments. In
Section 5 we present the computational machinery for ABA. In Section 6 we outline
some applications of ABA. In Section 7 we conclude.

2 Arguments in ABA

ABA frameworks [3, 11, 12] can be defined for any logic specified by means of
inference rules, by identifying sentences in the underlying language that can be
treated as assumptions (see Section 3 for a formal definition of ABA frameworks).
Intuitively, arguments are “deductions” of a conclusion (or claim) supported by a
set of assumptions.

The inference rules may be domain-specific or domain-independent, and may
represent, for example, causal information, argument schemes, or laws and regu-
lations. Assumptions are sentences in the language that are open to challenge, for
example uncertain beliefs (“it will rain”), unsupported beliefs (“I believe X”), or
decisions (“perform action A”). Typically, assumptions can occur as premises of in-
ference rules, but not as conclusions. ABA frameworks, such as logic programming
and default logic, that have this feature are said to be flat [3]. We will focus solely
on flat ABA frameworks. Examples of non-flat frameworks can be found in [3].

As an example, consider the following simplification of the argument scheme
from expert opinion [38]:

Major premise: Source E is an expert about A.
Minor premise: E asserts that A is true.
Conclusion: A may plausibly be taken as true.

This can be represented in ABA by a (domain-independent) inference rule: 1

1 In this chapter, we use inference rule schemata, with variables starting with capital letters, to
stand for the set of all instances obtained by instantiating the variables so that the resulting premises
and conclusions are sentences of the underlying language. For simplicity, we omit the formal defi-
nition of the language underlying our examples.

10 Assumption-Based Argumentation 201

h(A)← e(E,A),a(E,A),arguably(A)
with conclusion h(A) (“A holds”) and premises e(E,A) (“E is an expert about A”),
a(E,A) (“E asserts A”), and an assumption arguably(A). This assumption can be
read in several ways, as “there is no reason to doubt that A holds” or “ the com-
plement of A cannot be shown to hold” or “the defeasible rule – that a conclusion
A holds if a person E who is an expert in A asserts that A is the case – should
not apply”. The inference rule can be understood as the representation of this de-
feasible rule as a strict (unchallangable) rule with an extra, defeasible condition –
arguably(A) – that is open to challenge. This transformation of defeasible rules into
strict rules with defeasible conditions is borrowed from Theorist [31]. Within ABA,
defeasible conditions are always assumptions. Different representations of assump-
tions correspond to different frameworks for defeasible reasoning. For example, in
logic programming arguably(A) could be replaced by not ¬h(A) (here not stands for
negation as failure), and in default logic it could become M h(A). Note that Verheij
[37] also uses assumptions to represent defeasibility of rules. However, his approach
amounts to treating every defeasible rule as an assumption.

In ABA, attacks are always directed at the assumptions in inference rules. The
transformation of defeasible rules into strict rules with defeasible conditions is also
used to reduce rebuttal attacks to undercutting attacks, as we will see in Section 3.

Note that, here and in all the examples given in this chapter, we represent condi-
tionals as inference rules. However, as discussed in [11], this is equivalent to repre-
senting them as object language implications together with modus ponens and and-
introduction as more general inference rules. Representing conditionals as inference
rules is useful for default reasoning because it inhibits the automatic application of
modus tollens to object language implications. However, the ABA approach applies
to any logic specified by means of inference rules, and is not restricted in the way
illustrated in our examples in this chapter.

Suppose we wish to apply the inference rule above to the concrete situation in
which a professor of computer science (cs), say jo, advises that a software product
sw meets a customer’s requirements (reqs) for speed (s) and usability (u). Suppose,
moreover, that professors are normally regarded as experts within (w) their field.
This situation can be represented by the additional inference rules:

reqs(sw)← h(ok(sw,s)),h(ok(sw,u));
a(jo,ok(sw,s))←; a(jo,ok(sw,u))←; pro f (jo,cs)←;
w(cs,ok(sw,s))←; w(cs,ok(sw,u))←;
e(X ,A)← pro f (X ,S),w(S,A),c pro f (X ,S)

Note that all these inference rules except the last are problem-dependent. Note also
that, in general, inference rules may have empty premises.

The potential assumptions in the language underlying all these inference rules are
(instances of) the formulae arguably(A) and c pro f (X ,S) (“X is a credible profes-
sor in S”). Given these inference rules and pool of assumptions, there is an argument
with assumptions {arguably(ok(sw,s)), arguably(ok(sw,u)), c pro f (jo,cs)} sup-
porting the conclusion (claim) reqs(sw).

In the remainder, for simplicity we drop the assumptions arguably(A) and re-
place the inference rule representing the scheme from expert opinion simply by

202 Phan Minh Dung, Robert A. Kowalski and Francesca Toni

h(A)← e(E,A),a(E,A). With this simplification, there is an argument for reqs(sw)
supported by {c pro f (jo,cs)}.

Informally, an argument is a deduction of a conclusion (claim) c from a set of as-
sumptions S represented as a tree, with c at the root and S at the leaves. Nodes in this
tree are connected by the inference rules, with sentences matching the conclusion of
an inference rule connected as parent nodes to sentences matching the premises of
the inference rule as children nodes. The leaves are either assumptions or the special
extra-logical symbol τ , standing for an empty set of premises. Formally:

Definition 10.1. Given a deductive system (L,R), with language L and set of infer-
ence rules R, and a set of assumptions A⊆ L, an argument for c∈L (the conclusion
or claim) supported by S ⊆ A is a tree with nodes labelled by sentences in L or by
the symbol τ , such that

• the root is labelled by c
• for every node N

– if N is a leaf then N is labelled either by an assumption or by τ;
– if N is not a leaf and lN is the label of N, then there is an inference rule

lN ← b1, . . . ,bm (m≥ 0) and
either m = 0 and the child of N is τ
or m > 0 and N has m children, labelled by b1, . . . ,bm (respectively)

• S is the set of all assumptions labelling the leaves.

Throughout this chapter, we will often use the following notation

• an argument for (claim) c supported by (set of assumptions) S is denoted by S � c

in situations where we focus only on the claim c and support S of an argument. Note
that our definition of argument allows for one-node arguments. These arguments
consist solely of a single assumption, say α , and are denoted by {α} � α .

A portion of the argument {c pro f (jo,cs)} � reqs(sw) is given in Fig. 10.1.
Here, for simplicity, we omit the right-most sub-tree with root h(ok(sw,u)), as this
is a copy of the left-most sub-tree with root h(ok(sw,s)) but with s replaced by u
throughout.

Arguments, represented as trees, display the structural relationships between
claims and assumptions, justified by the inference rules. The generation of argu-
ments can be performed by means of a proof procedure, which searches the space
of applications of inference rules. This search can be performed in the forward direc-
tion, from assumptions to conclusions, in the backward direction, from conclusions
to assumptions, or even “middle-out”. Our definition of tight arguments in [11] cor-
responds to the backward generation of arguments represented as trees. Backward
generation of arguments is an important feature of dispute derivations, presented in
Section 5.2.

Unlike several other authors, e.g. those of [2] (see also Chapter 7) and [23] (see
also Chapter 8), we do not impose the restriction that the support of an argument be
minimal. For example, consider the ABA representation of the scheme from expert

10 Assumption-Based Argumentation 203

opinion, and suppose that our professor of computer science, jo, is also an engineer
(eng). Suppose, moreover, that engineers are normally regarded as experts in com-
puter science. These additional “suppositions” can be represented by the inference
rules

eng(jo)←; e(X ,A)← eng(X),w(cs,A),c eng(X)
with (instances of) the formula c eng(X) (“X is a credible engineer”) as additional
assumptions. There are now three, different arguments for the claim reqs(sw):
{c pro f (jo,cs)} � reqs(sw), {c eng(jo)} � reqs(sw), and
{c pro f (jo,cs),c eng(jo)} � reqs(sw).

Only the first two arguments have minimal support. However, all three arguments,
including the third, “non-minimal” argument, are relevant, in the sense that their
assumptions contribute to deducing the conclusion. Minimality is one way to ensure
relevance, but comes at a computational cost. ABA arguments are guaranteed to
be relevant without insisting on minimality. Note that the arguments of Chapter 9,
defined as inference graphs, are also constructed to ensure relevance.

Some authors (e.g. again [2] and [23]) impose the restriction that arguments have
consistent support 2. We will see later, in Sections 3 and 4, that the problems arising
for logics including a notion of (in)consistency can be dealt in ABA by reducing
(in)consistency to the notion of attack and by employing a semantics that insists
that sets of acceptable arguments do not attack themselves.

reqs(sw)

�
�

�
� �

�
�

�

h(ok(sw,s)) h(ok(sw,u))

�
�

�
� �

�
�

�

e(jo,ok(sw,s)) a(jo,ok(sw,s))

�
�

�
� �

�
�

�

�
�

�
�

pro f (jo,cs)) w(cs,ok(sw,s)) c pro f (jo,cs)) τ

τ τ
Fig. 10.1 An example argument represented as a tree

2 Note that these authors define arguments with respect to an underlying logic with an explicit
negation and hence a notion of consistency, such that inconsistency implies every sentence in the
language. The logic underlying an ABA framework need not have an explicit negation and notion
of inconsistency.

204 Phan Minh Dung, Robert A. Kowalski and Francesca Toni

3 Attacks in ABA

In ABA, the notion of attack between arguments is defined in terms of the contrary
of assumptions: one argument S1 � c1 attacks another (or the same) argument S2 � c2

if and only if c1 is the contrary of an assumption in S2.
In general, the contrary of an assumption is a sentence representing a challenge

against the assumption. For example, the contrary of the assumption “it will rain”
might be “the sky is clear”. The contrary of the assumption “perform action A”
might be “perform action B” (where the actions A and B are mutually exclusive).
The contrary of the assumption “I believe X” might be “there is evidence against
X”. The contrary of an assumption can also represent critical questions addressed
to an argument scheme. For example, the argument scheme from expert opinion in
Section 2 can be challenged by such critical questions as [38]:

CQ1: How credible is E as an expert source?
CQ2: Is E an expert in the field that A is in?
CQ3: Does E’s testimony imply A?
CQ4: Is E reliable?
CQ5: Is A consistent with the testimony of other experts?
CQ6: Is A supported by evidence?

For simplicity, we focus here solely on CQ1, because modelling the other ques-
tions would require introducing additional assumptions to our earlier representation
of the scheme. 3 Providing negative answers to CQ1 can be understood as prov-
ing the contrary ¬c pro f (jo,cs), ¬c eng(jo,cs) of the assumptions c pro f (jo,cs),
c eng(jo,cs) respectively.

Contraries may be other assumptions or may be defined by inference rules, e.g.
¬c eng(E,cs)←¬prog(E); ¬prog(E)← theo(E)

where prog stands for “programmer” and theo stands for “theoretician”. The first
rule can be used to challenge the assumption that an engineer is a credible expert in
computer science by arguing that the engineer is not a programmer. The second rule
can be used to show that an engineer is not a programmer by assuming that he/she is
a theoretician (here theo(E) is an additional assumption). Given this representation,
the argument {c eng(jo,cs)} � reqs(sw) is attacked by the argument {theo(jo)} �
¬c eng(jo,cs).

Definition 10.2. Given a notion of contrary of assumptions 4,

• an argument S1 � c1 attacks an argument S2 � c2 if and only if the conclusion c1

of the first argument is the contrary of one of the assumptions in the support S2

of the second argument;
• a set of arguments Arg1 attacks a set of arguments Arg2 if an argument in Arg1

attacks an argument in Arg2.

3 For example, providing negative answers to CQ5 and CQ6 for A can understood as proving
the contrary of the assumption arguably(A) introduced at the beginning of Section 2 but ignored
afterwards.
4 See definition 10.3 for the formal notion of contrary.

10 Assumption-Based Argumentation 205

This notion of attack between arguments depends only on attacking (“undercutting”)
assumptions. In many other approaches, however, such as those of Pollock [30]
and Prakken and Sartor [32], an argument can attack (“rebut”) another argument
by deducing the negation of its conclusion. We reduce such “rebuttal” attacks to
“undercutting” attacks, as described in [27, 11, 33, 34]. For example, consider the
inference rules

prog(X)← works f or(X ,micro),nor(X); works f or(jo,micro)←
where micro is the name of some company, nor(X) stands for “X is normal”, and the
first inference rule represents the defeasible rule that “normally individuals working
at micro are programmers”. From these and the earlier inference rule for ¬prog, we
can construct both an argument for prog(jo) supported by {nor(jo)} and an argu-
ment for ¬prog(jo) supported by {theo(jo)}. These arguments “rebut” one another
but neither one undercuts the other. However, let us set the contrary of assumption
theo(X) to prog(X) and the contrary of assumption nor(X) to ¬prog(X). Then, the
effect of the rebuttals is obtained by undercutting the assumptions (supporting the
arguments for prog(jo) and ¬prog(jo)).

Note that an alternative approach to accommodate rebuttals could be to introduce
an explicit additional notion of rebuttal attack as done in [10] for logic programming
with two kinds of negation.

To complete our earlier definition of argument and attack we need a definition of
ABA framework:

Definition 10.3. An ABA framework is a tuple 〈L, R, A, 〉 where

• (L,R) is a deductive system, with a language L and a set of inference rules R,
• A⊆ L is a (non-empty) set, whose elements are referred to as assumptions,
• is a total mapping from A into L, where α is the contrary of α .

4 Acceptability of arguments in ABA

ABA can be used to determine whether a given claim is to be “accepted” by a ra-
tional agent. The claim could be, for example, a potential belief to be justified, or a
goal to be achieved, represented as a sentence in L. In order to determine the “ac-
ceptability” of the claim, the agent needs to find an argument for the claim that can
be defended against attacks from other arguments. To defend an argument, other ar-
guments may need to be found and they may need to be defended in turn. As in AA,
this informal definition of “acceptability” can be formalised in many ways, using
the notion of attack between arguments. In this chapter we focus on the following
notions of “acceptable” sets of arguments:

• a set of arguments is admissible if and only if it does not attack itself and it
attacks every argument that attacks it;

• an admissible set of arguments is complete if it contains all arguments that it
defends, where a set of arguments Arg defends an argument arg if Arg attacks all
arguments that attack {arg};

206 Phan Minh Dung, Robert A. Kowalski and Francesca Toni

• the least (with respect to set inclusion) complete set of arguments is grounded.

As for AA (see [8] and Chapter 2), in ABA, given a proposed conclusion c, there
always exists a grounded set of arguments, and this can be constructed bottom-up
[3, 12].

Consider again our formulation of the scheme for expert opinion. The set con-
sisting of the two arguments

arg1={c eng(jo,cs)} � reqs(sw)
arg2={nor(jo)} � prog(jo)

is admissible, and as a consequence so is the claim reqs(sw). Indeed, this set does
not attack itself and it attacks the argument

arg3={theo(jo)} � ¬prog(jo).
However, the set {arg1,arg2} is not (a subset of) the grounded set of arguments. But
the set {arg4} is grounded, where

arg4={c pro f (jo,cs)} � reqs(sw).
The notion of admissibility is credulous, in that there can be alternative, conflicting
admissible sets. In the example above, {arg3} is also admissible, but in conflict with
the admissible {arg1,arg2}.

In some applications, it is more appropriate to adopt a sceptical notion of “ac-
ceptability”. The notion of grounded set of arguments is sceptical in the sense that
no argument in the grounded set is attacked by an admissible set of arguments. Other
notions of credulous and sceptical “acceptable” set of arguments can be employed
within ABA [3, 27, 12].

Note that the notions of “acceptable” sets of arguments given here are more struc-
tured than the corresponding notions of “acceptable” sets of assumptions given in
[3, 27, 11, 12]. The correspondence between “acceptability” of arguments and “ac-
ceptability” of assumptions, given in [12], is as follows:

• If a set of assumptions S is admissible/grounded then the union of all arguments
supported by any subset of S is admissible/grounded;

• If a set of arguments S is admissible/grounded then the union of all sets of as-
sumptions supporting the arguments in S is admissible/grounded.

Note that, if the underlying logic has explicit negation and inconsistency, and we ap-
ply the transformation outlined in Section 3 (to reduce rebuttals to our undercutting
attacks), then an argument has an inconsistent support if and only if it attacks itself.
Thus, in such a case, no argument belonging to an “acceptable” set may possibly
contain an argument with an inconsistent support [34].

5 Computation of “acceptability”

The notion of “acceptability” of sets of arguments provides a non-constructive spec-
ification. In this section we show how to turn the specification into a constructive
proof procedure. As argued in [6, 8], at a conceptual level, a proof procedure for

10 Assumption-Based Argumentation 207

argumentation consists of two tasks, one for generating arguments and one for de-
termining the “acceptability” of the generated arguments. We have already briefly
discussed the computation of arguments in Section 2. Below, we first demonstrate
how to determine the “acceptability” of arguments that are already constructed, in
the spirit of AA, by means of dispute trees [11, 12]. Then, we discuss how dispute
derivations [11, 12, 20, 22], which interleave constructing arguments and determin-
ing their “acceptability”, can be viewed as generating “approximations” to “accept-
able” dispute trees.

Dispute derivations are inspired by SLDNF, the “EK” procedure of [17, 9, 7],
and the “KT” procedure of [36, 26] for logic programming with negation as failure.
Like SLDNF and EK, dispute derivations interleave two kinds of derivations (one
for “proving” and one for “disproving”). Like EK, they accumulate defence assump-
tions and use them for filtering. Like KT, they accumulate culprit assumptions and
use them for filtering.

5.1 Dispute trees

Dispute trees can be seen as a way of representing a winning strategy for a propo-
nent to win a dispute against an opponent. The proponent starts by putting forward
an initial argument (supporting a claim whose “acceptability” is under dispute), and
then the proponent and the opponent alternate in attacking each other’s previously
presented arguments. The proponent wins if he/she has a counter-attack against ev-
ery attacking argument by the opponent.

Definition 10.4. A dispute tree for an initial argument a is a (possibly infinite) tree
T such that

1. Every node of T is labelled by an argument and is assigned the status of propo-
nent node or opponent node, but not both.

2. The root is a proponent node labelled by a.
3. For every proponent node N labelled by an argument b, and for every argument

c attacking b, there exists a child of N, which is an opponent node labelled by c.
4. For every opponent node N labelled by an argument b, there exists exactly one

child of N which is a proponent node labelled by an argument attacking b.
5. There are no other nodes in T except those given by 1-4 above.

The set of all arguments belonging to the proponent nodes in T is called the defence
set of T.

Note that a branch in a dispute tree may be finite or infinite. A finite branch repre-
sents a winning sequence of arguments (within the overall dispute) that ends with an
argument by the proponent that the opponent is unable to attack. An infinite branch
represents a winning sequence of arguments in which the proponent counter-attacks
every attack of the opponent, ad infinitum. Note that our notion of dispute tree intu-
itively corresponds to the notion of winning strategy in Chapter 6.

208 Phan Minh Dung, Robert A. Kowalski and Francesca Toni

Fig. 10.2 illustrates (our notion of) dispute tree for an extension of our running
example, augmented with the following rules

¬c pro f (X ,S)← ret(X), inact(X); ¬c pro f (X ,S)← admin(X), inact(X);
act(X)← pub(X); ret(jo)←; admin(jo)←; pub(jo)←

Here inact(X) is an assumption with inact(X) = act(X). These additions express
that professors cannot be assumed to be credible (¬c pro f) if they are retired (ret)
or cover administrative roles (admin) and can be assumed to be inactive (inact).
inact cannot be assumed if its contrary (act) can be shown, and this is so for pro-
fessors with recent publications (pub). The resulting, overall ABA framework is
summarised in Fig. 10.3. Note that the tree in Fig. 10.2 has an infinite (left-most)
branch with
{nor(jo)} � prog(jo) child of {theo(jo)} � ¬prog(jo) and
{theo(jo)} � ¬prog(jo) child of {nor(jo)} � prog(jo)

ad infinitum. Note also that our intention is to label the opponent nodes in the
middle and right-most branches by two different arguments, but both denoted by
{inact(jo)} � ¬c pro f (jo,cs). The two arguments differ with respect to the infer-
ence rules used to obtain them (the first and second inference rule for ¬c pro f in
Fig. 10.3, respectively) and thus have different representations as argument trees (as
in Definition 10.1).

The definition of dispute tree incorporates the requirement that the proponent
must counter-attack every attack, but it does not incorporate the requirement that
the proponent does not attack itself. This further requirement is incorporated in the
definition of admissible and grounded dispute trees:

Definition 10.5. A dispute tree T is

�
�

�
��

�
�

�

P: {c eng(jo),c pro f (jo,cs)} � reqs(sw)

O: {theo(jo)} � ¬c eng(jo)

O: {inact(jo)} � ¬c pro f (jo,cs)

O: {inact(jo)} � ¬c pro f (jo,cs)

P: {nor(jo)} � prog(jo)

O: {theo(jo)} � ¬prog(jo)......

P: {} � act(jo)

P: {} � act(jo)

Fig. 10.2 A dispute tree for argument {c eng(jo),c pro f (jo,cs)} � reqs(sw), with respect to the
ABA framework in Fig. 10.3.

10 Assumption-Based Argumentation 209

• admissible if and only if no argument labels both a proponent and an opponent
node. 5

• grounded if and only if it is finite.

Note that, by theorem 3.1 in [12], any grounded dispute tree is admissible. The re-
lationship between admissible/grounded dispute tree and admissible/grounded sets
of arguments is as follows:

1. the defence set of an admissible dispute tree is admissible;
2. the defence set of a grounded dispute tree is a subset of the grounded set of

arguments;
3. if an argument a belongs to an admissible set of arguments A then there exists

an admissible dispute tree for a with defence set A′ such that A′ ⊆ A and A′ is
admissible;

4. if an argument a belongs to the grounded set of arguments A (and the set of all
arguments supported by assumptions for the given ABA framework is finite) then
there exists a grounded dispute tree for a with defence set A′ such that A′ ⊆ A and
A′ is admissible.

Results 1. and 3. are proven in [12] (theorem 3.2). Results 2. and 4. follow directly
from theorem 3.7 in [26].

Note that the dispute tree in Fig. 10.2 is admissible but not grounded (since it has
an infinite branch). However, the tree with root {c pro f (jo,cs)} � reqs(sw) (arg4

in Section 4) and the two right-most subtrees in Fig. 10.2 is grounded.
We can obtain finite trees from infinite admissible dispute trees by using “filter-

ing” to avoid re-defending assumptions that are in the process of being “defended”
or that have already successfully been “defended”. For example, for the tree in
Fig. 10.2, only the (proponent) child of argument {theo(jo)} � ¬prog(jo) needs
to be constructed. Indeed, since this argument is already being “defended”, the re-
mainder of the (infinite) branch can be ignored.

R : reqs(sw)← h(ok(sw,s)),h(ok(sw,u)); h(A)← e(E,A),a(E,A);
e(X ,A)← eng(X),w(cs,A),c eng(X); e(X ,A)← pro f (X ,S),w(S,A),c pro f (X ,S);
a(jo,ok(sw,s))←; a(jo,ok(sw,u)); eng(jo)←; pro f (jo,cs)←;
w(cs,ok(sw,s))←; w(cs,ok(sw,u))←;
¬c eng(E,cs)←¬prog(E); ¬prog(X)← theo(X);
prog(X)← works f or(X ,micro),nor(X); works f or(bob,micro)←;
¬c pro f (X ,S)← ret(X), inact(X); ret(jo)←;
¬c pro f (X ,S)← admin(X), inact(X); admin(jo)←;
act(X)← pub(X); pub(jo)←

A : c eng(X); c pro f (X ,S); theo(X); nor(X); inact(X)
: c eng(X) = ¬c eng(X); c pro f (X ,S) = ¬c pro f (X ,S);

theo(X) = prog(X); nor(X) = ¬prog(X); inact(X) = act(X)

Fig. 10.3 ABA framework for the running example.

5 Note that admissible dispute trees are similar to the complete argument trees of [2]. We use the
term “argument tree” for arguments.

210 Phan Minh Dung, Robert A. Kowalski and Francesca Toni

5.2 Dispute derivations

Dispute derivations compute (“approximations of) dispute trees top-down, starting
by constructing an argument supporting a given claim. While doing so, they per-
form several kinds of “filtering” exploiting the fact that different arguments may
share the same supporting assumptions. Assumptions that are already under attack
in the dispute are saved in appropriate data structures (the defence assumptions and
culprits), in order to avoid re-computation. The assumptions used by the propo-
nent (defence assumptions) are kept separate from the assumptions used by the
opponent and attacked by the proponent (culprits). The defence assumptions and
culprits for the dispute tree in Fig. 10.2 are {c eng(jo),c pro f (jo),nor(jo)} and
{theo(jo), inact(jo)} respectively.

Dispute derivations employ the following forms of filtering:

1. of defence assumptions by defence assumptions, e.g. performed on the defence
assumption theo(jo) in the left-most branch of the dispute tree in Fig. 10.2 (this
is analogous to the filtering of arguments we discussed earlier);

2. of culprits by defence assumptions and of defence assumptions by culprits, to
guarantee that no argument labels both a proponent and opponent node in the
tree and thus attacks itself (see Definition 10.5);

3. of culprits by culprits, for reasons of efficiency; e.g., if the dispute tree in
Fig. 10.2 is generated left-to-right, the leaf in the right-most branch does not
need to be generated, as the culprit inact(jo) has already been attacked in the
middle branch.

The first form of filtering is employed only for computing admissible sets, whereas
the other two forms are employed for computing grounded as well as admissible
sets.

Dispute derivations are defined in such a way that, by suitably tuning parameters,
they can interleave the construction of arguments and determing “acceptability”.
This interleaving may be very beneficial, in general, as it allows

• abandoning, during their construction, “potential arguments” that cannot be ex-
panded into an actual argument in an “acceptable” set of proponent’s arguments,

• avoiding the expansion of the opponent’s “potential arguments” into actual argu-
ments when a culprit has already been identified and defeated.

Informally speaking, a potential argument of a conclusion c from a set of premises
P can be represented as a tree, with c at the root and P at the leaves. As in the case
of “actual” arguments (as in Definition 10.1), nodes in the tree are connected by
inference rules. However, whereas the leaves of an argument tree are only assump-
tions or τ , the leaves of a potential argument can also be non-assumption sentences
in L−A. Dispute derivations successively expand potential arguments, using infer-
ence rules backwards to replace a non-assumption premise, e.g. p, that matches the
conclusion of an inference rule, e.g. p← Q, by the premises of the rule, Q. In this
case, we also say that p is expanded to Q.

10 Assumption-Based Argumentation 211

Fig. 10.1 without the dots is an example of a potential argument for reqs(sw),
supported by assumption c pro f (jo,cs) and non-assumption h(ok(sw,u)). Fig. 10.4
shows another example of a potential argument. In general there may be one, many
or no actual arguments that can be obtained from a potential argument. For example,
the potential argument in Fig. 10.1 may give rise to two actual arguments (supported
by {c pro f (jo,cs)} and {c pro f (jo,cs), c eng(jo)} respectively), whereas the po-
tential argument in Fig. 10.4 gives rise to exactly one actual argument (supported
by {inact(jo)}). However, if no inference rules were given for ret, then no actual
argument could be generated from the potential argument in Fig. 10.4.

The benefits of interleaving mentioned earlier can be illustrated as follows:

• A proponent’s potential argument is abandoned if it is supported by assumptions
that would make the proponent’s defence of the claim unacceptable. For example,
in Fig. 10.1, if the assumption c pro f (jo,cs) is “defeated” before h(ok(sw,u)) is
expanded, then the entire potential argument can be abandoned.

• An opponent’s potential argument does not need to be expanded into an actual
argument if a culprit can be selected and defeated already in this potential ar-
gument. For example, by choosing as culprit and “defeating” the assumption
inact(jo) in the potential argument in Fig. 10.4, the proponent “defeats” any
argument that can be obtained by expanding the non-assumption ret(jo).

However, when a potential argument cannot be expanded into an actual argument,
defeating a culprit in the potential argument is wasteful. Nonetheless, dispute deriva-
tions employ a selection function which, given a potential or actual argument, se-
lects an assumption to attack or a non-assumption to expand. As a special case,
the selection function can be patient [11, 20], always selecting non-assumptions in
preference to assumptions, in which case arguments will be fully constructed before
they are attacked. Even in such a case, dispute derivations still benefit from filtering.

Informally, a dispute derivation is a sequence of transitions steps from one state
of a dispute to another. In each such state, the proponent maintains a set P of (sen-
tences supporting) potential arguments, representing a single way to defend the ini-
tial claim, and the opponent maintains a set O of potential arguments, representing
all ways to attack the assumptions in P. In addition, the state of the dispute contains
the set D of all defence assumptions and the set C of all culprits already encoun-
tered in the dispute. The sets D and C are used to filter potential arguments, as we
discussed earlier.

A step in a dispute derivation represents either a move by the proponent or a
move by the opponent.

�
�

�
��

�
�

�

¬c pro f (jo,cs)

ret(jo) inact(jo)
Fig. 10.4 A potential argument for ¬c pro f (jo,cs), supported by assumption inact(jo) and non-
assumption ret(jo).

212 Phan Minh Dung, Robert A. Kowalski and Francesca Toni

A move by the proponent either expands one of his/her potential arguments in P,
or it selects an assumption in one of the opponent’s potential arguments in O and
decides whether or not to attack it. In the first case, it expands the potential argument
in only one way, and adds any new assumptions resulting from the expansion to D,
checking that they are distinct from any assumptions in the culprit set C (filtering
defence assumptions by culprits). In the second case, either the proponent ignores
the assumption, as a non-culprit, or he/she adds the assumption to C (bearing in
mind that, in order to defeat the opponent, he/she needs to counter-attack only one
assumption in each of the opponent’s attacking arguments). In this latter case, he/she
checks that the assumption is distinct from any assumptions in D (filtering culprits
by defence assumptions) and checks that it is distinct from any culprit already in
C (filtering culprits by culprits). If the selected culprit is not already in C, the pro-
ponent adds the contrary of the assumption as the conclusion of a new, one-node
potential argument to P (to construct a counter-attack).

A move by the opponent, similarly, either expands one of his/her potential argu-
ments in O, or it selects an assumption to attack in one of the proponent’s potential
arguments in P. In the first case, it expands a non-assumption premise of the selected
potential argument in all possible ways, replacing the selected potential argument in
O by all the new potential arguments. In the second case, the opponent does not have
the proponent’s dilemma of deciding whether or not to attack the assumption, be-
cause the opponent needs to generate all attacks against the proponent. Thus, he/she
adds the contrary of the assumption as the conclusion of a new, one-node potential
argument to O. 6

A successful dispute derivation represents a single way for the proponent to sup-
port and defend a claim, but all the ways that the opponent can try to attack the
proponent’s arguments. Thus, although the proponent and opponent can attack one
another before their arguments are fully completed, for a dispute derivation to be
successful, all of proponent’s arguments must be actual arguments. In contrast, the
opponent’s defeated arguments may be only potential. In this sense, dispute deriva-
tions compute only “approximations” of dispute trees. However, for every success-
ful dispute derivation, there exists a dispute tree that can be obtained by expanding
the opponent’s potential arguments and dropping the potential arguments that cannot
be expanded, as well as any of the proponent’s unnecessary counter-attacks [22].

We give an informal dispute derivation for the running example:

P: I want to determine the “acceptability” of claim reqs(sw) (D = {} and C = {}
initially).

P: I generate a potential argument for reqs(sw) supported by {h(ok(sw,s)),
h(ok(sw,u))}, and then expand it (through several steps) to one supported by
{c pro f (jo,cs), h(ok(sw,u))} (c pro f (jo,cs) is added to D).

O: I attack the assumption c pro f (jo,cs) in this potential argument by looking
for arguments for its contrary ¬c pro f (jo,cs).

6 If computing admissibility, however, the opponent would not attack assumptions that already
belong to D (filtering defence assumptions by defence assumptions).

10 Assumption-Based Argumentation 213

O: I generate two potential arguments for ¬c pro f (jo,cs), supported by {ret(jo),
inact(jo)} and {admin(jo), inact(jo)} respectively.

P: I choose inact(jo) as culprit in the first potential argument by O (inact(jo) is
added to C), and generate (through several steps) an argument for its contrary
act(jo), supported by the empty set.

O: There is no point for me to expand this potential argument then. But I still
have the attacking argument for ¬c pro f (jo,cs), supported by {admin(jo),
inact(jo)}.

P: I again choose inact(jo) as culprit, which I have already defeated (inact(jo)∈
C).

P: There is no attacking argument that I still need to deal with: let me go back to
expand the argument for reqs(sw).

P: I need to expand h(ok(sw,u)), I can do so and generate (through several steps)
an argument for reqs(sw) supported by {c pro f (jo,cs),c eng(jo)} (c eng(jo)
is added to D).

O: I can attack this argument by generating (through several steps) an argument
for the contrary ¬c eng(jo) of c eng(jo): this argument is supported by assump-
tion theo(jo).

P: I can attack this argument by generating (through several steps) a potential
argument for the contrary of theo(jo).
. . .

This dispute corresponds to the top-down and right-to-left construction of (an ap-
proximation of) the dispute tree in Fig. 10.2. The dispute ends successfully for com-
puting admissible sets of arguments, but does not terminate for computing grounded
sets of arguments. Note that dispute derivations are defined in terms of several pa-
rameters: the selection function, the choice of “player” at any specific step in the
derivation, the choice of potential arguments for the proponent/opponent to expand
etc (see [20, 22]). Concrete choices for some of these parameters (e.g. the choice
of the proponent’s arguments) correspond to concrete search strategies for finding
dispute derivations and computing dispute trees. Concrete choices for other param-
eters (e.g. the choice of “player”) determine how the dispute tree is constructed in a
linear manner.

Several notions of dispute derivations have been proposed, differing in the notion
of “acceptability” and in the presentation of the computed set of “acceptable” argu-
ments. More specifically, the dispute derivations of [11, 20, 22] compute admissible
sets of arguments whereas the dispute derivations of [12] compute grounded and
ideal (another notion of sceptical “acceptability”) sets of arguments. Moreover, the
dispute derivations of [11, 12] compute the union of all sets of assumptions sup-
porting the “acceptable” sets of arguments for the given claim, whereas the dispute
derivations of [20, 22] also return explicitly the computed set of “acceptable” argu-
ments and the attacking (potential) arguments, as well as an indication of the attack
relationships amongst these arguments.

214 Phan Minh Dung, Robert A. Kowalski and Francesca Toni

6 Applications

In this section, we illustrate recent applications of ABA for dispute resolution (Sec-
tion 6.1, adapted from [20]) and decision-making (Section 6.2, adapted from [15]).
For simplicity, the description of these applications is kept short here. For more
detail see [13] (for dispute resolution applied to contracts) and [33, 16, 29] (for
decision-making in service-oriented architectures). We also show how ABA can be
used to model the stable marriage problem (Section 6.3, building upon [8]).

6.1 ABA for dispute resolution

Consider the following situation, inspired by a real-life court case on contract dis-
pute. A judge is tasked with resolving a disagreement between a software house
and a customer refusing to pay for a product developed by the software house. Sup-
pose that this product is the software sw in the running example of Fig. 10.3. The
judge uses information agreed upon by both parties, and evaluates the claim by the
software house that payment should be made to them.

All parties agree that payment should be made if the product is delivered on
time (del) and is a good product (goodProd). They also agree that a product is
not good (badProd) if it is late (lateProd) or does not meet its requirements. As
before, we assume that these requirements are speed and usability. There is also the
indisputable fact that the software was indeed delivered (del(sw)). This situation
can be modelled by extending the framework of Fig. 10.3 with inference rules

payment(sw)← del(sw),goodProd(sw); badProd(sw)← lateProd(sw);
badProd(sw)←¬reqs(sw); del(sw)←

and assumptions goodProd(sw), ¬reqs(sw), with contraries:
goodProduct(sw) = badProduct(sw); ¬reqs(sw) = reqs(sw)

Given the expert opinions of jo (see Section 2), the claim that payment should be
made is grounded (and thus admissible).

6.2 ABA for decision-making

We use a concrete “home-buying” example, in which a buyer is looking for a prop-
erty and has a number of goals including “structural” features of the property, such
as its location and the number of rooms, and “contractual” features, such as the
price, the completion date for the sale, etc. The buyer needs to decide both on a
property, taking into account the features of the properties (Ri below), and general
“norms” about structural properties (Rn below). The buyer also needs to decide and
agree on a contract, taking into account norms about contractual issues (Rc below).
A simple example of buyer is given by the ABA framework 〈L, R, A, 〉 with:

10 Assumption-Based Argumentation 215

• R = Ri∪Rn∪Rc and
Ri : number o f rooms = 5← house1;

number o f rooms = 4← house2; price = £400K ← house2

Rn : sa f e← council approval,a1; ¬sa f e← weak f oundations,a2;
council approval ← completion certi f icate,a3

Rc : seller moves abroad ← house2;
quick completion← seller moves abroad

• A = Ad ∪Au∪Ac and
Ad = {house1,house2}; Ac = {a1,a2,a3}; Au = {¬council approval }

• house1 = house2, house2 = house1,
a1 = ¬sa f e, a2 = sa f e, a3 = ¬council approval,
¬council approval = council approval.

Here, there are two properties for sale, house1 and house2. The first has 5 rooms, the
second has 4 rooms and costs £400K (Ri). The buyer believes that a property ap-
proved by the council is normally safe, a completion certificate normally indicates
council approval, and a property with weak foundations is normally unsafe (Rn).
The buyer also believes that the seller of the second property is moving overseas,
and this means that the seller aims at a quick completion of the sale (Rc). Some
of the assumptions in the example have a defeasible nature (Ac), others amount to
mutually exclusive decisions (Ad) and finally others correspond to genuine uncer-
tainties of the buyer (Au).

This example combines default reasoning, epistemic reasoning and practical rea-
soning. An example of “pure” practical reasoning in ABA applied to a problem
described in [1] can be found in [35].

6.3 ABA for the stable marriage problem

Given two sets M, W of n men and n women respectively, the stable marriage prob-
lem (SMP) is the problem of pairing the men and women in M and W in such a way
that no two people of opposite sex prefer to be with each other rather than with the
person they are paired with. The SMP can be viewed as a problem of finding stable
extensions in an abstract argumentation framework [8].

Here we show that the problem can be naturally represented in an ABA frame-
work 〈L, R, A, 〉 with:

• A = {pair(A,B) | A ∈M,B ∈W}
• pair(A,B) = contrary pair(A,B)
• R consists of inference rules

contrary pair(A,B)← pre f ers(A,D,B), pair(A,D);
contrary pair(A,B)← pre f ers(B,E,A), pair(E,B)

together with a set P of inference rules of the form pre f er(X ,Y,Z) ← such
that for each person A and for each two different people of the opposite sex

216 Phan Minh Dung, Robert A. Kowalski and Francesca Toni

B and C, either pre f er(A,B,C) ← or pre f er(A,C,B) ← belongs to P, where
pre f er(X ,Y,Z) stands for X prefers Y to Z.

The standard formulation of the stable marriage problem combines the rules, as-
sumptions and contraries of this framework with the notion that a set of argu-
ments/assumptions is “acceptable” if and only if it is stable, where

• A set of arguments/assumptions is stable if and only if it does not attack itself,
but attacks all arguments/assumptions not in the set.

In SMP, the semantics of stable sets forces solutions to be total, pairing all men and
women in the sets M and W . The semantics of admissible sets is more flexible. It
does not impose totality, and it can be used when the sets M and W have different
cardinalities. Consider for example the situation in which two men, a and b, and two
women, c and d have the following preferences:

pre f er(a,d,c)←; pre f er(b,c,d)←; pre f er(c,a,b)←; pre f er(d,b,a)←
Although there is no stable solution in which all people are paired with their highest
preference, there exist two alternative stable solutions: {pair(a,c), pair(b,d)} and
{pair(a,d), pair(b,c)}. However, suppose a third woman, e, enters the scene, turns
the heads of a and b, and expresses a preference for a over b, in effect adding to P:

pre f er(a,e,d)←; pre f er(a,e,c)←;
pre f er(b,e,c)←; pre f er(b,e,d)←; pre f er(e,a,b)←

This destroys both stable solutions of the earlier SMP, but has a single maximally
admissible solution: {pair(a,e), pair(b,c)}.

Thus, by using admissibility we can drop the requirement that the number of men
and women is the same. Similarly, we can drop the requirement that preferences are
total, namely all preferences between pairs of the opposite sex are given.

7 Conclusions

In this chapter, we have reviewed assumption-based argumentation (ABA), focusing
on relationships with other approaches to argumentation, computation, and applica-
tions. In contrast with a number of other approaches, ABA makes use of under-
cutting as the only way in which one argument can attack another. The effect of
rebuttal attacks is obtained in ABA by adding appropriate assumptions to rules and
by attacking those assumptions instead. The extent to which such undercutting is
an adequate replacement for rebuttals has been explored elsewhere [34], but merits
further investigation. Also, again in contrast with some other approaches, we do not
insist that the support of an argument in ABA be minimal and consistent. Instead of
insisting on minimality, we guarantee that the support of an argument is relevant, as
a side-effect of representing arguments as deduction trees. Instead of insisting that
the support of an argument is consistent, we obtain a similar effect by imposing the
restriction that “acceptable” sets of arguments do not attack themselves.

ABA is an instance of abstract argumentation (AA), and consequently it inherits
its various notions of “acceptable” sets of arguments. ABA also shares with AA the

10 Assumption-Based Argumentation 217

computational machinery of dispute trees, in which a proponent and an opponent
alternate in attacking each other’s arguments. However, ABA also admits the com-
putation of dispute derivations, in which the proponent and opponent can attack and
defeat each other’s potential arguments before they are completed. We believe that
this feature of dispute derivations is both computationally attractive and psycholog-
ically plausible when viewed as a model of human argumentation.

The computational complexity of ABA has been investigated for several of its in-
stances [5] (see also Chapter 5). The computational machinery of dispute derivations
and dispute trees is the basis of the CaSAPI argumentation system 7 [19, 20, 22].

Although ABA was originally developed for default reasoning, it has recently
been used for several other applications, including dispute resolution and decision-
making. ABA is currently being used in the ARGUGRID project 8 to support ser-
vice selection and composition of services in the Grid and Service-Oriented Ar-
chitectures. ABA is also being used for several applications in multi-agent systems
[21, 18] and e-procurement [29].

Acknowledgement This work was partially funded by the Sixth Framework IST programme of
the EC, under the 035200 ARGUGRID project.

References

1. T. Bench-Capon and H. Prakken. Justifying actions by accruing arguments. In Proc.
COMMA’06, pages 247–258. IOS Press, 2006.

2. P. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008.
3. A. Bondarenko, P. Dung, R. Kowalski, and F. Toni. An abstract, argumentation-theoretic

approach to default reasoning. Artificial Intelligence, 93(1-2):63–101, 1997.
4. A. Bondarenko, F. Toni, and R. Kowalski. An assumption-based framework for non-

monotonic reasoning. In Proc. LPRNR’93, pages 171–189. MIT Press, 1993.
5. Y. Dimopoulos, B. Nebel, and F. Toni. On the computational complexity of assumption-based

argumentation for default reasoning. Artificial Intelligence, 141:57–78, 2002.
6. P. M. Dung. On the acceptability of arguments and its fundamental role in non-monotonic

reasoning and logic programming. In Proc. IJCAI’93, pages 852–859. Morgan Kaufmann,
1993.

7. P. M. Dung. An argumentation theoretic foundation of logic programming. Journal of Logic
Programming, 22:151–177, 1995.

8. P. M. Dung. On the acceptability of arguments and its fundamental role in non-monotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

9. P. M. Dung. Negations as hypotheses: An abductive foundation for logic programming. In
Proc. ICLP, pages 3–17. MIT Press, 1991.

10. P. M. Dung. An argumentation semantics for logic programming with explicit negation. In
Proc. ICLP, pages 616–630. MIT Press, 1993.

11. P. M. Dung., R. Kowalski, and F. Toni. Dialectic proof procedures for assumption-based,
admissible argumentation. Artificial Intelligence, 170:114–159, 2006.

12. P. M. Dung, P. Mancarella, and F. Toni. Computing ideal sceptical argumentation. Artificial
Intelligence, 171(10-15):642–674, 2007.

13. P. M. Dung and P. M. Thang. Towards an argument-based model of legal doctrines in common
law of contracts. In Proc. CLIMA IX, 2008.

7 http://www.doc.ic.ac.uk/˜dg00/casapi.html
8 www.argugrid.eu

218 Phan Minh Dung, Robert A. Kowalski and Francesca Toni

14. P. M. Dung, P. M. Thang, and N. D. Hung. Argument-based decision making and negotiation
in e-business: Contracting a land lease for a computer assembly plant. In Proc. CLIMA IX,
2008.

15. P. M. Dung, P. M. Thang, and F. Toni. Towards argumentation-based contract negotiation. In
Proc. COMMA’08. IOS Press, 2008.

16. P. M. Dung, P. M. Thang, F. Toni, N. D. Hung, P.-A. Matt, J. McGinnis, and M. Morge.
Towards argumentation-based contract negotiation. ARGUGRID Deliverable D.4.1, 2008.

17. K. Eshghi and R. Kowalski. Abduction compared with negation as failure. In Proc. ICLP.
MIT Press, 1989.

18. D. Gaertner, J. Rodriguez, and F. Toni. Agreeing on institutional goals for multi-agent soci-
eties. In Proc. COIN, pages 94–113, 2008.

19. D. Gaertner and F. Toni. CaSAPI: A system for credulous and sceptical argumentation. In
Proc. ArgNMR, 2007.

20. D. Gaertner and F. Toni. Computing arguments and attacks in assumption-based argumenta-
tion. IEEE Intelligent Systems, 22(6):24–33, 2007.

21. D. Gaertner and F. Toni. Preferences and assumption-based argumentation for conflict-free
normative agents. In Proc. ArgMAS’07. Springer, 2007.

22. D. Gaertner and F. Toni. Hybrid argumentation and its computational properties. In Proc.
COMMA’08. IOS Press, 2008.

23. A. Garcia and G. Simari. Defeasible logic programming: An argumentative approach. Journal
of Theory and Practice of Logic Programming, 4(1-2):95–138, 2004.

24. A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming. Journal of Logic
and Computation, 2(6):719–770, 1993.

25. A. C. Kakas, R. A. Kowalski, and F. Toni. The role of abduction in logic programming. In
Handbook of Logic in Artificial Intelligence and Logic Programming, volume 5, pages 235–
324. OUP, 1998.

26. A. C. Kakas and F. Toni. Computing argumentation in logic programming. Journal of Logic
and Computation, 9:515–562, 1999.

27. R. A. Kowalski and F. Toni. Abstract argumentation. Journal of Artificial Intelligence and
Law, 4(3-4):275–296, 1996.

28. P.-A. Matt and F. Toni. Basic influence diagrams and the liberal stable semantics. In Proc.
COMMA’08. IOS Press, 2008.

29. P.-A. Matt, F. Toni, T. Stournaras, and D. Dimitrelos. Argumentation-based agents for epro-
curement. In Proc. AAMAS 2008, 2008.

30. J. Pollock. Defeasible reasoning. Cognitive Science, 11(4):481–518, 1987.
31. D. Poole. A logical framework for default reasoning. Artificial Intelligence, 36(1):27–47,

1988.
32. H. Prakken and G. Sartor. The role of logic in computational models of legal argument: a

critical survey. In Computational Logic: Logic Programming and Beyond – Essays in Honour
of Robert A. Kowalski, pages 342–381. Springer, 2002.

33. F. Toni. Assumption-based argumentation for selection and composition of services. In Proc.
CLIMA VIII, 2007.

34. F. Toni. Assumption-based argumentation for closed and consistent defeasible reasoning. In
Proc. JSAI 2007, pages 390–402. Springer, 2008.

35. F. Toni. Assumption-based argumentation for epistemic and practical reasoning. In Com-
putable Models of the Law, pages 185–202. Springer, 2008.

36. F. Toni and A. Kakas. Computing the acceptability semantics. In Proc. LPNMR’95, pages
401–415. Springer, 1995.

37. B. Verheij. DefLog: on the Logical Interpretation of Prima Facie Justified Assumptions. Jour-
nal of Logic and Computation, 13(3):319–346, 2003.

38. D. Walton, C. Reed, and F. Macagno. Argumentation Schemes. Cambridge Univ. Press, 2008.

Chapter 11
The Toulmin Argument Model in Artificial
Intelligence
Or: how semi-formal, defeasible argumentation
schemes creep into logic

Bart Verheij

1 Toulmin’s ‘The Uses of Argument’

In 1958, Toulmin published The Uses of Argument. Although this anti-formalistic
monograph initially received mixed reviews (see section 2 of [20] for Toulmin’s own
recounting of the reception of his book), it has become a classical text on argumen-
tation, and the number of references to the book (when writing these words1 — by a
nice numerological coincidence — 1958) continues to grow (see [7] and the special
issue of Argumentation 2005; Vol. 19, No. 3). Also the field of Artificial Intelligence
has discovered Toulmin’s work. Especially four of Toulmin’s themes have found
follow-up in Artificial Intelligence. First, argument analysis involves half a dozen
distinct elements, not just two. Second, many, if not most, arguments are substan-
tial, even defeasible. Third, standards of good reasoning and argument assessment
are non-universal. Fourth, logic is to be regarded as generalised jurisprudence. Us-
ing these central themes as a starting point, this chapter provides an introduction to
Toulmin’s argument model and its connections with Artificial Intelligence research.
No attempt is made to give a comprehensive history of the reception of Toulmin’s
ideas in Artificial Intelligence; instead a personal choice is made of representative
steps in AI-oriented argumentation research.

When Toulmin wrote his book, he was worried. He saw the influence of the
successes of formal logic on the philosophical academia of the time, and was afraid
that as a consequence seeing formal logic’s limitations would be inhibited. He wrote
The Uses of Argument to fight the — in his opinion mistaken — idea of formal logic
as a universal science of good reasoning. In the updated edition of The Uses of
Argument [19], he describes his original aim as follows:

to criticize the assumption, made by most Anglo-American academic philosophers, that any
significant argument can be put in formal terms: not just as a syllogism, since for Aristotle
himself any inference can be called a ‘syllogism’ or ‘linking of statements’, but a rigidly
demonstrative deduction of the kind to be found in Euclidean geometry. ([19], vii)

Bart Verheij
Artificial Intelligence, University of Groningen

1 Source: Google Scholar citation count, April 1, 2008.

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 219
DOI 10.1007/978-0-387-98197-0 11, c© Springer Science+Business Media, LLC 2009

220 Bart Verheij

Fig. 11.1 Toulmin’s layout of arguments with an example ([18], 104–5)

In short: Toulmin wanted to argue that there are other arguments than formal ones.
It is also clear from this quote that Toulmin’s goals were first and foremost aimed at
his fellow philosophers. In the Preface to the 2003 edition, Toulmin says it thus:

In no way had I set out to expound a theory of rhetoric or argumentation: my concern was
with twentieth-century epistemology, not informal logic. ([19], vii)

Let us look closer at some of Toulmin’s points.

1.1 Argument analysis involves half a dozen distinct elements, not
just two

Toulmin is perhaps most often read because of his argument diagram (Figure 1).
Whereas a formal logical analysis uses the dichotomy of premises and conclusions
when analyzing arguments, Toulmin distinguishes six different kinds of elements:
Data, Claim, Qualifier, Warrant, Backing and Rebuttal. Before explaining the roles
of these elements, let us look at Toulmin’s famous example of Harry, who may or
may not be a British subject.

When someone claims that Harry is a British subject, it is natural to ask, so says
Toulmin: What have you got to go on? An answer to that question can provide the
data on which the claim rests, here: Harry was born in Bermuda. But having datum
and claim is not enough. A further important question needs to be answered. Toul-
min phrases it thus: How do you get there? In other words, why do you think that
the datum gives support for your claim? An answer to this question must take the
form of a rule-like general statement, the warrant underlying the step from datum
to claim. In the example, the warrant is that a man born in Bermuda will generally
be a British subject. As the example shows, warrants need not express universal
generalizations. Here the warrant is not that each man born in Bermuda is a British
subject, but merely that a man born in Bermuda will generally be a British sub-
ject. As a result, on the basis of datum and warrant a claim needs to be qualified.
Here the claim becomes that presumably Harry is a British subject. When datum,
qualified claim and warrant have been made explicit, a further question needs to be
asked: Why do you think that the warrant holds? An answer will be provided by the
backing of the warrant. In the example, Toulmin refers to the existence of statutes
and other legal provisions (without specifying them) that can provide the backing

11 The Toulmin Argument Model in Artificial Intelligence 221

for the warrant that who is born in Bermuda will generally be British subjects. The
sixth and final kind of element to be distinguished is that of conditions of exception
or rebuttal (101/93)2. Conditions of rebuttal indicate ‘circumstances in which the
general authority of the warrant would have to be set aside’ or ‘exceptional circum-
stances which might be capable of defeating or rebutting the warranted conclusion’
(101/94). In the example, Harry’s parents could be aliens or he could have become
a naturalized American. Toulmin refers to Hart and Ross as predecessors for his
discussion of rebuttal. Hart coined the term ‘defeasibility’ (see also [9]) and used
it in legal and philosophical settings (contract, free will, responsibility), while Ross
emphasized that moral rules must have exceptions (142/131–2).

Here is Toulmin’s defence of the difference between a datum and the negation
of a rebuttal, which predates discussions about the relation between rule conditions
and exceptions:

[T]he fact that Harry was born in Bermuda and the fact that his parents were not aliens are
both of them directly relevant to the question of his present nationality; but they are relevant
in different ways. The one fact is a datum, which by itself establishes a presumption of
British nationality; the other fact, by setting aside one possible rebuttal, tends to confirm the
presumption thereby created. (102/95)

Summarizing, Toulmin distinguishes six kinds of elements in arguments:

Claim: The Claim is the original assertion that we are committed to and must justify when
challenged (97/90). It is the starting point of the argument.
Datum: The Datum provides the basis of the claim in response to the question: What have
you got to go on? (97–8/90)
Warrant: The Warrant provides the connection between datum and claim. A warrant ex-
presses that ‘[d]ata such as D entitle[s] one to draw conclusions, or make claims, such as
C’. Warrants are ‘general, hypothetical statements, which can act as bridges, and autho-
rise the sort of step to which our particular argument commits’. They are ‘rules, principles,
inference-licences or what you will, instead of additional items of information’. (98/91)
Qualifier: The Qualifier indicates the strength of the step from datum to claim, as conferred
by the warrant (101/94)
Backing: The Backing shows why a warrant holds. Backing occurs when not a particular
claim is challenged, but the range of arguments legitimized by a warrant (103–4/95–6).
Rebuttal: A Rebuttal can indicate ‘circumstances in which the general authority of the war-
rant would have to be set aside’ or ‘exceptional circumstances which might be capable of
defeating or rebutting the warranted conclusion’ (101/94).

1.2 Many, if not most, arguments are substantial, even defeasible
Let us consider another of Toulmin’s example arguments:

(1) Anne is one of Jack’s sisters;
All Jack’s sisters have red hair;
So, Anne has red hair. (123/115)

This example is a variant of the paradigmatic example of a syllogism: ‘Socrates
is a man. All men are mortal. So, Socrates is mortal’. Anyone accustomed to the

2 Page numbers before the slash refer to the original 1958 edition of The Uses of Argument [18],
those after the slash to the updated 2003 edition [19]

222 Bart Verheij

standard logical treatment of syllogisms will recognize the following logical form
underlying this type of syllogistic argument:

(2) P(t)
(∀x) (P(x)→ Q(x))
———————–
Q(t)

In this logical analysis, argument (1) has two premises and one conclusion. More-
over, the two premises have clearly distinctive roles, one often referred to as the
minor premise (P(t)), the other the major premise ((∀x) (P(x)→ Q(x)).

If we look at example (1) and its logical analysis (2) — an analysis to which Toul-
min does not object for this type of argument3 — one may ask: Why the richness of
primitives in his scheme? Shouldn’t we apply Occam’s razor and be satisfied with
the good-old dichotomy of premises and conclusions instead of Toulmin’s six-fold
scheme?

Toulmin’s answer is: no, we shouldn’t be satisfied. A central place in the defence
of his position is the claim that syllogistic arguments of the logical form in (2)
are atypical, even rare (147–150/136–139; also: 125–6/116–7). They have special
characteristics that do not hold for other kinds of arguments. Toulmin discusses the
following five characteristics of (2)-fitting arguments:

1. They are unequivocal in their consequences.
However, there are also arguments (e.g., the Harry example; Figure 1) that only allow draw-
ing a conclusion tentatively. Hence the need for qualifiers.
2. They are formally valid.
Toulmin speaks of a formally valid argument when the argument’s conclusion can be
achieved by ‘shuffling’ the premises and their constituent parts (118/110). Arguments of
the form ‘D; W. So C’ can in this way be phrased as formally valid, but arguments of the
form ‘D; B. So C’ normally cannot. Toulmin refers to the Harry example (Figure 1) to make
his point (123/114).
3. They are expressed in terms of ‘logical words’.
Toulmin says it thus: ‘The acceptable, logical words include ‘all’, ‘some’, ‘or’, and a few
others: these are firmly herded away from the non-logical goats, i.e. the generality of nouns,
adjectives and the like, and unruly connectives and quantifiers such as ‘most’, ‘few’, ‘but’.’
(149/138)
4. They are warrant-using.
But, says Toulmin, there are also warrant-establishing arguments, as they for instance occur
in scientific papers (120–1/112–3). Toulmin refers to Ryle, who contrasted warrant-using
and warrant-establishing arguments by the analogy of taking a journey along a railway al-
ready built and the building of a fresh railway. Toulmin connects warrant-using arguments
to the term ‘deduction’, and warrant-establishing arguments to ‘induction’.
5. They are analytic.
Toulmin calls an argument analytic if and only if the backing for the warrant authorising
it includes, explicitly or implicitly, the information conveyed in the conclusion itself. For
instance, the universal statement that all of Jack’s sisters have red hair, in a way includes
that Anne, who is one of Jack’s sisters, has red hair (123–127/114–118). Arguments that are
not analytic are substantial.

3 The class of analytic arguments, for which both ‘D. W. So, C’ and ‘D. B. So, C’ can be expressed
in the formally valid way (2) (123/114).

11 The Toulmin Argument Model in Artificial Intelligence 223

It is because of the accidental concurrence of these five properties in (2)-arguments
that the idea has come about that all arguments have them, and must have them; and
this is an unfortunate fact of history, says Toulmin.

In the connection of analytic versus substantial arguments, Toulmin distinguishes
two variants of the Anne argument (1) (124/115):

(1, backing version)
Anne is one of Jack’s sisters;
Each one of Jack’s sisters has (been checked individually to have) red hair;
So, Anne has red hair.

(1, warrant version)
Anne is one of Jack’s sisters;
Any sister of Jack’s will (i.e. may be taken to) have red hair;
So, Anne has red hair.

Note the different phrasing of the general statement used in the first and the second
variant. In the former, it is formulated as a backing, here taking the form of an
empirical fact about Jack’s sisters, thereby encompassing the instance of sister Anne
having red hair (at a certain moment). In the latter, it is formulated as a warrant, i.e.,
an inference-licensing general statement (‘may be taken to’). The former can be
used as a backing for the second.

Under which circumstances is (1, backing version) a genuinely analytic argument
defending the claim that Anne has red hair? Well, says Toulmin, ‘only if at this very
moment I have all of Jack’s sisters in sight. The thing to do now is use one’s eyes,
not hunt up a chain of reasoning’ (126/117). The ‘So’ in the argument could be just
as well replaced by ‘In other words’ or ‘That is to say’.

In all other situations (which is: most), the conclusion will not be given with da-
tum and backing, hence the argument will be a substantial one. Toulmin continues:
‘If the purpose of an argument is to establish conclusions about which we are not
entirely confident by relating them back to other information about which we have
greater assurance, it begins to be a little doubtful whether any genuine, practical
argument could ever be properly analytic.’

Here is how Toulmin extends the Anne example, making it fit his own format:

Datum: Anne is one of Jack’s sisters.
Claim: Anne has red hair.
Warrant: Any sister of Jack’s will (i.e. may be taken to) have red hair.
Backing: All his sisters have previously been observed to have red hair.
Qualifier: Presumably
Rebuttal: Anne has dyed/gone white/lost her hair ...

Note how Toulmin has added a qualifier and rebuttals, even though the backing
assumes that all sisters have been checked. But Toulmin says rightly that normally
an argument like this occurs later than at the time of establishing the warrant by
the backing; hence making it non-demonstrative/subject to exceptions/defeasible/...,
hence substantial, and not analytic (in Toulmin’s sense). Checking hair colour today
is not a guarantee for hair colour tomorrow.

Toulmin mentions one field in which arguments seem to be safe: mathematics.
But then again: ‘As a model argument for formal logicians to analyse, it [i.e., a

224 Bart Verheij

solution to a mathematical problem] may be seducingly elegant, but it could hardly
be less representative’ (127/118).

1.3 Standards of good reasoning and argument assessment are not
universal, but context-dependent

According to Toulmin, our standards for the assessment of real arguments are not
universal, but depend on a context. In a section, where he discusses this issue, he
uses the term ‘possibility’ as an illustration (36/34): whereas in mathematics ‘pos-
sibility’ has to do with the absence of demonstrable contradiction, in most cases
‘possibility’ is based on a stronger standard. His example statement is ‘Dwight
D. Eisenhower will be selected to represent the U.S.A. in the Davis Cup match
against Australia’. This statement involves no contradiction, while still (now former,
then actual) President Eisenhower will not be considered a possible team member.
In other words, ‘possibility’ is judged using different standards, some more for-
mal (‘absence of contradiction’), others more substantial (‘being a top-level tennis
player’).

The example is however an example of different standards for the possible, not
of different standards for the assessment of arguments, his ultimate aim. Here is a
succinct phrasing of his position:

It is unnecessary, we argued, to freeze statements into timeless propositions before admit-
ting them into logic: utterances are made at particular times and in particular situations, and
they have to be understood and assessed with one eye on this context. The same, we can
now argue, is true of the relations holding between statements, at any rate in the majority of
practical arguments. The exercise of the rational judgement is itself an activity carried out in
a particular context and essentially dependent on it: the arguments we encounter are set out
at a given time and in a given situation, and when we come to assess them they have to be
judged against this background. So the practical critic of arguments, as of morals, is in no
position to adopt the mathematician’s Olympian posture. (182–3/168–9; the quote appears
in a section entitled “Logic as a System of Eternal Truths”)

According to Toulmin, the differences between standards of reasoning are reflected
in the backings that are accepted to establish warrants. For instance, he considers
the following three warrants (103–4/96):

A whale will be a mammal.
A Bermudan will be a Briton.
A Saudi Arabian will be a Muslim.

Each of these warrants gives in a similar way the inferential connection between
certain types of data and certain kinds of claims. The first allows inferring that a
particular whale is a mammal, the second that a particular Bermudan is a Briton,
the third that a particular Saudi Arabian is a Muslim (all these inferences, of course,
subject to qualification and rebuttal). The different standards become visible when
information about the corresponding backings is inserted:

A whale will be (i.e. is classifiable as) a mammal
A Bermudan will be (in the eyes of the law) a Briton
A Saudi Arabian will be (found to be) a Muslim

11 The Toulmin Argument Model in Artificial Intelligence 225

Toulmin explains (104/96):

One warrant is defended by relating it to a system of taxonomical classification, another by
appealing to the statutes governing the nationality of people born in the British colonies, the
third by referring to the statistics which record how religious beliefs are distributed among
people of different nationalities.

For Toulmin, the establishment of standards of argument assessment, hence of good
reasoning, is an empirical question, cf. the following excerpt:

Accepting the need to begin by collecting for study the actual forms of argument current
in any field, our starting-point will be confessedly empirical: we shall study ray-tracing
techniques because they are used to make optical inferences, presumptive conclusions and
‘defeasibility’ as an essential feature of many legal arguments, axiomatic systems because
they reflect the pattern of our arguments in geometry, dynamics and elsewhere. (257/237)4

Toulmin goes one step further. Our standards of good reasoning are not only to be
established empirically, they are also to be considered historically: they change over
time and can be improved upon:

To think up new and better methods of arguing in any field is to make a major advance,
not just in logic, but in the substantive field itself: great logical innovations are part and
parcel of great scientific, moral, political or legal innovations. [...] We must study the ways
of arguing which have established themselves in any sphere, accepting them as historical
facts; knowing that they may be superseded, but only as the result of a revolutionary advance
in our methods of thought. (257/237)

Because of his views that standards of good reasoning and argument assessment are
non-universal and depend on field, even context, Toulmin has been said to revive
Aristotle’s Topics (Toulmin 2003, viii).

1.4 Logic is generalised jurisprudence
Toulmin discusses the relation of logic with a number of research areas (3–8/3–8).
When logic is regarded as psychology, it deals with the laws of thought, distinguish-
ing between what is normal and abnormal, thereby perhaps even allowing a kind of
“psychopathology of cognition” (5/5). In logic as psychology, the goal is at heart
descriptive: to formulate generalisations about thinkers thinking. But logic can also
be seen as a kind of sociology. Then it is not individual thinkers that are at issue,
but the focus is on general habits and practices. Here Toulmin refers to Dewey, who
explains the passage from the customary to the mandatory: inferential habits can
turn into inferential norms. Logic can also be regarded as a kind of technology, i.e.,
as providing a set of recipes for rationality or the rules of a craft. Here he speaks
of logic as an art, like medicine. In this analogy, logic aims at the formulation of
maxims, ‘tips’, that remind thinkers how they should think. And then there is logic
as mathematics. There the goal of logic becomes to find truths about logical rela-
tions. There is no connection with thinking and logic becomes an objective science.

4 Toulmin here considers the study of defeasibility an empirical question, to be performed by
looking at the law! Toulmin has predicted history, by foreseeing what actually has happened and
still is happening in the field of AI & law.

226 Bart Verheij

Finally Toulmin comes to the metaphor that he prefers and uses as the basis for his
work: to view logic as jurisprudence:

Logic is concerned with the soundness of the claims we make-with the solidity of the
grounds we produce to support them, the firmness of the backing we provide for them-or,
to change the metaphor, with the sort of case we present in defence of our claims. (7/7)

The jurisprudence metaphor emphasises the critical, procedural function of logic,
thereby fundamentally changing the perspective on logic. It helps to change logic
from an ‘idealised logic’ to a ‘working logic’ (cf. the title of the fourth essay in The
Uses of Argument). At the end of his book he says that jurisprudence should not be
seen as merely an analogy, but, more strongly, as providing an example to follow, as
being a kind of ‘best practice’:

Jurisprudence is one subject which has always embraced a part of logic within its scope,
and what we called to begin with ‘the jurisprudential analogy’ can be seen in retrospect to
amount to something more than a mere analogy. If the same as has long been done for legal
arguments were done for arguments of other types, logic would make great strides forward.
(255/235)

2 The reception and refinement of Toulmin’s ideas in AI

The reception of Toulmin’s ideas is marked by historical happenstance. It was al-
ready mentioned that his original audience, primarily the positivist, logic-oriented
philosophers of knowledge of the time, was on the whole critical. For Toulmin’s
main messages to be appreciated a fresh crowd was needed. It was found in a radi-
cal movement in academic research and education refocusing on the analysis and as-
sessment of real-life argument. This movement, referred to by names such as speech
communication, informal logic and argumentation theory, started to blossom from
the 1970s, continuing so to the present day (see [22]). One thing that Toulmin and
this movement shared was the relativising, at times antagonistic, attitude towards
logic as a formal science. The swing had swung back to exploring the possibilities
of more formal approaches in the 1990s, when Toulmin’s project of treating logic as
a generalised jurisprudence was almost literally taken up in the field of Artificial In-
telligence and Law (see Feteris’ [4] for a related development in argumentation the-
ory). Successful attempts were made to formalize styles of legal reasoning in a way
that respected actual legal reasoning. The approach taken in this field was rooted
in an independent development in Artificial Intelligence, where so-called nonmono-
tonic logics were studied from the 1980s. In that line of research, formal logical
systems were studied that allowed for the retraction of conclusions when new in-
formation, indicating exceptional or contradictory circumstances, became available.
Also in the 1990s, the study of nonmonotonic logics evolved towards what might
be called argumentation logics. More generally, attention was reallocated to imple-
mented systems and an agent-oriented perspective.

The following does not give a fully representative, historical account of AI work
taking up Toulmin’s ideas. A personal choice of relevant research has been made in

11 The Toulmin Argument Model in Artificial Intelligence 227

order to highlight how Toulmin’s points of view have been adopted and refined in
Artificial Intelligence.

2.1 Reiter’s default rules
An early strand of research in Artificial Intelligence, in which a number of Toulmin’s
key positions are visible, is Reiter’s work on the logic of default reasoning [15]. Re-
iter’s formalism is built around the concept of a default: an expression α : Mβ 1, ...,
Mβ n / γ , in which α , β 1, ..., β n, and γ are sentences of first-order logic. Defaults
are a kind of generalized rules of inference. The sentence α is the default’s prereq-
uisite, playing the role of what Toulmin refers to as the datum. The sentence γ is the
default’s consequent, comparable to Toulmin’s notion of a claim. The sentences β i

are called the default’s justifications. A default expresses that its consequent follows
given its prerequisite, but only when its justifications can consistently be assumed.

Reiter does not refer to Toulmin in his highly influential 1980 paper, nor in his
other work. Being thoroughly embedded in the fertile logic-based AI community
of the time, Reiter does not refer to less formal work. Still, in Reiter’s work two
important ideas defended by Toulmin recur in a formal version. The first is the
idea of defeasibility. As said, Reiter’s defaults are a kind of generalized rules of
inference, but of a defeasible kind. For instance, the default p : M¬e / q expresses
that q follows from p unless ¬e cannot be assumed consistently. Reiter’s formal
definitions are such that, given only p, it follows that q, while if both p and e are
given q does not follow. Reiter’s justifications are hence closely related to Toulmin’s
rebuttals, but as opposites: in our example the opposite e of the default’s justification
¬e is a kind of rebuttal in Toulmin’s sense. This holds more generally: opposites of
justifications can be thought of as formal versions of Toulmin’s rebuttals.

There is a second way in which Reiter’s work formally explicates one of Toul-
min’s prime concerns: defaults are contingent rules of inference, in the sense that
they are not fixed in the logical system, as is the case for the natural deduction rules
of first-order logic. Concretely, in Reiter’s approach, defaults are part of the the-
ory from which consequences can be drawn, side by side with the other, factual,
information. One can therefore say that Toulmin’s creed that standards of reason-
ing are field-dependent has found a place in Reiter’s work. There is one important
limitation however. Although Reiter’s defaults can be used to construct arguments
— in what Toulmin refers to as warrant-using arguments —, they cannot be argued
about. In other words, there is no counterpart of warrant-establishing arguments. A
default can for instance not have a default as its conclusion. Since Reiter’s defaults
are givens, it is not possible to give reasons for why they hold. Whereas in Toulmin’s
model warrants do not stand by themselves, but can be given support by backings,
this has no counterpart for Reiter’s defaults. (See section 2.7 for an approach to
warrant-establishing arguments.)

How did Reiter extend or refine Toulmin? The first way is obvious: Reiter has
given a precise explication of a part of Toulmin’s notions, which is a direct conse-
quence of the fact that Reiter’s approach is formally specified, whereas Toulmin’s
only exists in the form of an informal philosophical essay. Reiter has shown that it
is possible to give a formal elaboration of rebuttals and of warrants.

228 Bart Verheij

The other way is perhaps more important, as it concerns a genuine extension of
what Toulmin had in mind: Reiter’s logical formalism proposes a way of determin-
ing which consequences follow from given information. The key formal notion is
that of an extension of a default theory (consisting of a set of factual assumptions
and a set of defaults), which can be thought of as a possible set of consequences of
the theory. Essentially, a set of sentences S is an extension of a default theory if S is
equal to the set of consequences of the factual information that one obtains by ap-
plying a subset of the defaults, namely those defaults the justifications of which are
consistent with S. (Note that S occurs in the definiens and in the definiendum.) Let
me show how and to what extent Reiter’s system can formalize Toulmin’s Harry-
example. We will leave out the qualifier and the backing as these have no obvious
counterpart in Reiter’s work. The core of a formalization of the Harry example is
the default d(x) : M¬r1(x), M¬r2(x) / c(x) and its instance d(t) : M¬r1(t), M¬r2(t) /
c(t). The following code is used:

t Harry
d(t) Harry was born in Bermuda
c(t) Harry is a British subject
r1(t) Both his parents were aliens
r2(t) He has become a naturalized American

The default expresses that it follows that Harry is a British subject given that he
is born in Bermuda, as long as it can be consistently assumed that his parents are
not aliens and he has not become a naturalized American. Note that the default is
a kind of hybrid of the example’s warrant and rebuttals and that the default’s list of
justifications is not open-ended (in contrast with Toulmin’s list of rebuttals).

Now consider two sets of sentences: S1, the first-order closure of d(t), c(t) and S2,
the closure of d(t), r1(t). Then S1 is the unique extension of the theory consisting of
the default and the factual information d(t), while S2 is the unique extension of the
theory consisting of the default and the factual information d(t) and r1(t). (Analo-
gous facts hold when the other rebuttal r2(t) is used.) These facts can be interpreted
as saying that, given the warrant encoded by the default, the claim follows from the
data, but only when there is no rebuttal.

Three ways in which this formal version refines Toulmin’s treatment seem note-
worthy. First, here there is a distinction between ‘generic’ warrants and ‘specific’
warrants. The former is for Toulmin a pleonasm, while he does not consider the
latter. Here the distinction is clear: on the one hand there is the generic inference
license that a man born in Bermuda will generally be a British subject, on the other
the specific inference license that if Harry was born in Bermuda, he is a British sub-
ject. Second, whereas Toulmin only treats single, unstructured sentences, Reiter’s
formal system inherits the elegant additional structuring of first-order sentences.
For instance, disjunction and conjunction are directly inherited. Third and finally,
Reiter’s version specifies what happens when there is more than one default. Es-
pecially, his version incorporates naturally the situations that a sentential element
(datum, rebuttal, ...) of one instance of Toulmin’s model can be the claim of another.
It has sometimes been charged against Toulmin that his model does not allow such
recursiveness.

11 The Toulmin Argument Model in Artificial Intelligence 229

2.2 Pollock’s undercutting and rebutting defeaters
Pollock’s work on the philosophy and AI of argumentation has rightly achieved
recognition in today’s argumentation research. He can be regarded as being the first
who combined theoretical, computational and practical considerations in his design
of an ‘artificial person’, OSCAR (see, e.g., [12]). In this high ambition, he has had
no followers. Pollock’s work started with roots close to Toulmin’s original audi-
ence, namely philosophers of knowledge. Gradually he began using methods from
the field of Artificial Intelligence, where his ideas have gained most attention. Pol-
lock does not seem to have been directly influenced by Toulmin. In his [11], where
Pollock connects philosophical approaches to defeasibility with AI approaches, he
cites work on defeasibility by Chisholm (going back to 1957, hence a year before
Toulmin’s The Uses of Argument) and himself (going back to 1967).

Here are some of Pollock’s definitions [11]:

P is a prima facie reason for S to believe Q if and only if P is a reason for S to believe Q
and there is an R such that R is logically consistent with P but (P & R) is not a reason for S
to believe Q. R is a defeater for P as a prima facie reason for Q if and only if P is a reason
for S to believe Q and R is logically consistent with P but (P & R) is not a reason for S to
believe Q.

So prima facie reasons are reasons that sometimes lead to their conclusion, but not
always, namely not when there is a defeater. There is a close connection with non-
monotonic consequence relations: when P is a prima facie reason for Q, and R is a
defeater for P as a reason, then Q follows from P, but not from P & R. Pollock goes
on to distinguish between two kinds of defeaters:

R is a rebutting defeater for P as a prima facie reason for Q if and only if R is a defeater and
R is a reason for believing ∼Q. R is an undercutting defeater for P as a prima facie reason
for S to believe Q if and only if R is a defeater and R is a reason for denying that P wouldn’t
be true unless Q were true.

Undercutting defeaters only attack the inferential connection between reason and
conclusion, whereas a defeater is rebutting if it is also a reason for the opposite
of the conclusion. Pollock remarks that ‘P wouldn’t be true unless Q were true’ is
a kind of conditional, different from the material conditional of logic, but having
learnt from an initial analysis, which he no longer finds convincing, he maintains
that it is otherwise not clear how to analyze this conditional ([11], 485).5

Pollock’s finding that there are different kinds of defeaters has been recognized
as an important contribution both for the theory and for the practical analysis of
arguments. Nothing of the sort can be found in Toulmin’s The Uses of Argument.6

(See section 2.7 for more on different conceptions of a rebuttal.)

5 As far as I know, Pollock’s later work (e.g., his [12]) does not contain a new analysis of this
conditional. See section 2.7 for an approach addressing this.
6 Pollock’s work contributes significantly to several other aspects of argumentation (e.g., argu-
ment evaluation, semi-formal rules of inference and software implementation). See also Verheij’s
discussion [26], 104–110.

230 Bart Verheij

2.3 Prakken, Sartor & Hage on reasoning with legal rules
Toulmin’s idea that logic should be regarded as a generalised form of jurisprudence
(section 1.4), was taken up seriously in the 1990s in the field of Artificial Intel-
ligence and Law. The work by Prakken, Sartor and Hage on reasoning with legal
rules [13, 6] is representative.7

Influenced by logic-based knowledge representation (see, e.g., chapter 10 of
[16]), Prakken & Sartor and Hage use an adapted first-order language as the basis
of their formalism. For instance, here is a formal version of the rule that someone
has legal capacity unless he can be shown to be a minor ([13], 340):

r1: ∼x is a minor⇒ x has legal capacity

Here r1 is the name of the rule, which can be used to refer to it, and ‘x is a minor’
and ‘x has legal capacity’ are unary predicates. The tilde represents so-called weak
negation, which here means that the rule’s antecedent is fulfilled when it cannot
be shown that x is a minor. If ordinary negation were used, the fulfilment of the
antecedent would require something stronger, namely that it can be shown that x is
not a minor.

In the system of Prakken & Sartor, arguments are built by applying Modus po-
nens to rules. There are two ways in which arguments can attack each other. First, an
argument can attack a weakly negated assumption in the antecedent of a rule used
in the attacked argument. Second, two arguments can have opposite conclusions.
Information about rule priorities (expressed using the rules names) is then used to
compare the arguments. Argument evaluation is defined in terms of winning strate-
gies in dialogue games: an argument is called justified when it can be successfully
defended against an opponent’s counterarguments.

Hage’s approach [6], in several ways similar to Prakken & Sartor’s, is more am-
bitious and philosophically radical.8 For Hage, rules are first-and-foremost to be
thought of as things with properties. As a result, a rule is formalized as a structured
term. A rule’s properties are then formalized using predicates. For instance, the fact
that the rule that thieves are punishable, is valid is formalized as

Valid(rule(theftl, thief(x), punishable(x))).

Here ‘theft1’ is the name of the rule, ‘thief(x)’ the rule’s antecedent and ‘punish-
able(x)’ its consequent. Hage’s work takes the possibilities of a knowledge repre-
sentation approach to the modelling of legal reasoning to its limits. For instance,
there are dedicated predicates to express reasons, rule validity, rule applicability
and the weighing of reasons.

How does the work by Prakken, Sartor & Hage relate to Toulmin’s views? First,
they have provided an operationalisation of Toulmin’s idea of law-inspired logic, by
formalizing aspects of legal reasoning. Second, they have refined Toulmin’s treat-
ment of argument. Notably, Prakken & Sartor have modelled specific kinds of re-
buttal, namely by the attack of weakly negated assumptions and on the basis of

7 Some other important AI & Law work concerning argumentation is for instance [1, 2, 5, 10].
8 Hage’s philosophical and formal theory of rules and reasons Reason-Based Logic was initiated
by Hage and further developed in cooperation with Verheij.

11 The Toulmin Argument Model in Artificial Intelligence 231

rule priorities, and embedded them in an argumentative dialogue. Hage has added a
further kind of rebuttal, namely by the weighing of reasons. Also, Hage has distin-
guished the validity of a rule from its applicability. The former can be regarded as an
expression of a warrant in Toulmin’s sense, and since in Hage’s system rule validity
can depend on other information, it is natural to model Toulmin’s backings as rea-
sons for the validity of a rule. And perhaps most importantly: Prakken & Sartor and
Hage (and other AI & law researchers) have worked on the embedding of defeasible
argumentation in a genuine procedural, dialogical setting (see also section 2.5). A
further refinement of Toulmin’s view is given by Verheij and colleagues [28], who
show how two kinds of warrants (viz. legal rules and legal principles) with apparent
logical differences, can be seen as extremes of a spectrum.

2.4 Dung’s admissible sets
Dung’s paper [3] has supplied an abstract mathematical foundation for formal
work on argumentation. Following earlier mathematically flavoured work (e.g.,
[17, 29, 30]), his abstraction of only looking at the attack relation between argu-
ments has helped organize the field, e.g., by showing how several formal systems
of nonmonotonic reasoning can be viewed from the perspective of argument attack.
A set of (unstructured) arguments with an attack relation is called an argumentation
framework.

Dung has studied the mathematics of three types of subsets of the set of argu-
ments of an argumentation framework: stable, preferred and grounded extensions.
A set of arguments is a stable extension if it attacks all arguments not in the set. A
set of arguments is a preferred extension if it is a maximal set of arguments without
internal conflicts and attacking all arguments attacking the set. The grounded exten-
sion (there is only one) is the result of an inductive process: starting from the empty
set, consecutively arguments are added that are only attacked by arguments already
defended against.

Stable extensions can be regarded as an ‘ideal’ interpretation of an argumentation
framework. When an extension is stable, all conflicts between arguments can be
regarded as solved. It turns out that sometimes there are distinct ways of resolving
the conflicts (e.g., when two arguments attack each other, each argument by itself is
a stable extension) and that sometimes there is no way (e.g., when an argument is
self-attacking). Preferred extensions are a generalization of stable extensions, as all
stable extensions are also preferred. However, an argumentation framework always
has a preferred extension (perhaps several). Preferred extensions can be regarded
as showing how as many conflicts as possible can be resolved by counterattack.
The grounded extension exists always and is a subset of all preferred and stable
extensions.

Dung’s work shows that the mathematics of argument attack is non-trivial and
interesting. Thereby he has significantly extended our understanding of Toulmin’s
concept of rebuttal.

232 Bart Verheij

2.5 Walton’s argumentation schemes
Toulmin’s proposal that the maxims provided by a standard formal logical system
(such as first order predicate logic) are not the only criteria for good reasoning
and argument assessment, posed a new problem: if there are other, more field- and
context-dependent standards of reasoning, what are they? For, though many recog-
nized the shortcomings of formal logic for practical argument assessment, few were
happy with the possible relativistic implication that anything goes. A good way to
avoid the trap of uncontrolled relativism is to provide a systematic specification of
standards of good reasoning.

One approach in this direction, which is especially close to Toulmin’s concep-
tion of warrants, can be found in Walton’s work on argumentation schemes (e.g.,
[31]). Argumentation schemes can be thought of as a semi-formal generalization of
the rules of inference found in formal logic. Argument from expert opinion is an
example ([31], 65):

E is an expert in domain D.
E asserts that A is known to be true.
A is within D.
Therefore, A may (plausibly) be taken to be true.

As Walton’s argumentation schemes are context-dependent, not universal; defeasi-
ble, not strict; and concrete, not abstract, there is a strong analogy with Toulmin’s
warrants. There are two important differences though. First, Walton’s argumentation
schemes are structured, whereas Toulmin’s warrants are not. Walton’s argumenta-
tion schemes have premises, consisting of one or more sentences (often with in-
formal variables), and a conclusion;9 Toulmin’s warrants are expressed as rule-like
statements, such as ‘A man born in Bermuda will generally be a British subject’.10

By giving generic inference licenses more structure, as in Walton’s work, the ques-
tion arises whether they become formal enough to give rise to a kind of ‘concrete
logic’. Verheij [24] argues that it is a matter of choice, perhaps: taste, whether one
draws the border between form and content on either side of argumentation schemes.
To indicate the somewhat ambiguous status of argumentation schemes, the term
‘semi-formal’ may be most appropriate.

Second, Walton’s argumentation schemes have associated critical questions. Crit-
ical questions help evaluating applications of an argumentation scheme. As a result,
they play an important role in the evaluation of practical arguments. For instance,
Walton lists the following critical questions for the scheme ‘Argument from expert
opinion’ ([31], 65):

1. Is E a genuine expert in D?
2. Did E really assert A?

9 Sometimes Walton’s schemes take another form, e.g., small chains of argument steps or small
dialogues; see Verheij’s [24] for a format for the systematic specification of argumentation schemes
inspired by knowledge engineering technology.
10 Occasionally, a bit more structure is made explicit. For instance, when Toulmin phrases a warrant
in an ‘if ... then ...’ form (e.g., ‘If anything is red, it will not also be black’, 98/91), thereby making
an antecedent and consequent recognizable.

11 The Toulmin Argument Model in Artificial Intelligence 233

3. Is A relevant to domain D?
4. Is A consistent with what other experts in D say?
5. Is A consistent with known evidence in D?

Critical questions are related to argument attack, as they point to circumstances
in which application of the scheme is problematic (e.g., [24]). For instance, the
question ‘Is E a genuine expert in D?’ questions whether the element ‘E is an expert
in domain D’ in the premises of the scheme really holds. Some critical questions
are like Toulmin’s notion of rebuttal. For instance, the question ‘Is A consistent with
what other experts in D say?’ points to a rebuttal ‘A is not consistent with what other
experts in D say’, which, if accepted, can raise doubt whether the conclusion can
justifiably be drawn. In general, four types of critical questions can be distinguished
[24]:

1. Critical questions concerning the conclusion of an argumentation scheme. Are there other
reasons, based on other argumentation schemes for or against the scheme’s conclusion?
2. Critical questions concerning the elements of the premises of an argumentation scheme.
Is E an expert in domain D? Did E assert that A is known to be true? Is A within D?
3. Critical questions based on the exceptions of an argumentation scheme. Is A consistent
with what other experts in D say? Is A consistent with known evidence in D?
4. Critical questions based on the conditions of use of an argumentation scheme. Do experts
with respect to facts like A provide reliable information concerning the truth of A?

The critical questions associated with an argumentation scheme point to the dia-
logical setting of argumentation. Toulmin mentions the dialogical and procedural
setting of argumentation (as, e.g., when discussing the jurisprudence metaphor for
logic), but the discussion is not elaborate. Much work on the relation between argu-
mentation and dialogue has been done. There is for instance the pragma-dialectical
school (e.g., [21]), but also Walton’s conception of argumentation is embedded in a
procedural, dialogical setting. For instance, Walton [32] expresses a view on how to
determine the relevance of an argument in a dialogue. There are six issues to take
into account: the dialogue type11, the stage the dialogue is in, the dialogue’s goal,
the type of argument, which is determined by the argumentation scheme underlying
the argument, the prior sequence of argumentation, and the institutional and social
setting.

In conclusion, Walton’s work has played a significant role in two developments
in AI with respect to Toulmin’s main themes. First, the study of argumentation
schemes by Walton and others has made a start with the systematic specification
of context-dependent, defeasible, concrete standards of argument assessment, as
sought for by Toulmin. And, second, the idea of considering argumentation from
a procedural, dialogue perspective has been elaborated upon.

2.6 Reed & Rowe’s argument analysis software
Further steps towards the realization of Toulmin’s goals have been made by the
recent advent of software-support of argumentative tasks, often using argument dia-
grams [8, 26]. In this connection, Reed & Rowe’s work on the Araucaria tool [14] is

11 See also Walton & Krabbe’s [33], a treatment of dialogue types that is especially influential in
research in AI and multi-agent systems.

234 Bart Verheij

especially relevant for the achievement of Toulmin’s goals, as they have presented
Araucaria specifically as a software tool for argument analysis. Araucaria uses an
argument diagramming format, in which the recursive tree-structure of reasons sup-
porting conclusions is depicted. It is also possible to indicate statements that are in
conflict. Araucaria’s standard diagramming format12 is different from Toulmin’s in
several ways, but especially by not graphically distinguishing warrants from data.
In an interestingly different way, however, Araucaria’s standard format does include
the idea of context-dependent types of reasoning as argued for by Toulmin, namely
by its incorporation of Walton-style argumentation schemes (cf. section 2.5). Ar-
gumentation schemes can be used in Araucaria to label argumentative steps. For
instance, a concrete argument ‘There is smoke. Therefore, there is fire’ could be la-
belled as an instance of the scheme ‘Argument from sign’, thereby giving access two
critical questions, such as ‘Are there other events that would more reliably account
for the sign?’. By this possibility, Reed & Rowe’s Araucaria is a useful step towards
software-supported argument assessment. The tool provides a significant extension
of Toulmin’s aim to change logic from an ‘idealised logic’ to a ‘working logic’.

2.7 Verheij’s formal reconstruction of Toulmin’s scheme
Already the examples in this chapter show a wide variety of approaches to — what
might be called — semi-formal defeasible argumentation; and this is just the tip of
the iceberg. By this embarrassment of riches, the question arises whether there are
fundamental differences, e.g., between explicitly Toulmin-oriented approaches and
other; or is the similarity of subject matter strong enough to allow for a synthesis of
approaches? Looking for answers, I have attempted to reconstruct Toulmin’s scheme
using modern formal tools [25]. I used the abstract argumentation logic DefLog
[23]. DefLog uses two connectives × and �: the first for expressing the defeat of
a prima facie justified statement (‘negation-as-defeat’, the semantics of which falls
outside the scope of this chapter), the second for expressing a conditional relation
between statements (‘primitive implication’, validating Modus Ponens, but lacking
a so-called introduction rule).13 Toulmin’s notion of a qualifier has been left out of
the reconstruction.

The key to the translation of Toulmin’s scheme into DefLog is to explicitly ex-
press that a datum leads to a claim; in DefLog: D � C. DefLog’s primitive im-
plication can be thought of as expressing a specific inference license. It is an ex-
plicit expression of what Toulmin refers to as a ‘logical gulf’ (9/9) that seems to
exist between a reason and the state of affairs it supports. In this way, the licens-
ing of concrete argument steps is removed from the logic, i.e., the fixed formalized
background specifying general argument validity, and shifted to the contingent in-
formation. In this way, it becomes possible to express substantial arguments about
concrete inferential bridges.

12 In later versions, two alternative formats are provided: Toulmin’s and Wigmore’s.
13 DefLog is formally an extension of Dung’s abstract argumentation framework (section 2.4), as
Dung’s attack between two arguments A and B can be expressed as A � ×B. DefLog analogues
of Dung’s stable and preferred semantics are defined and proven to coincide with Dung’s when
DefLog’s language is restricted to Dung’s.

11 The Toulmin Argument Model in Artificial Intelligence 235

In particular, the role of a warrant can now be expressed as a reason for such a
conditional statement: W � (D � C). To formally show that a datum and claim are
specific, whereas a warrant is to be thought of as a generic inference license, we can
use variables and their instances: W � (D(t) � C(t)). This clarifies the distinctions
between the following three:

(1) A man born in Bermuda will generally be a British subject.
(2) If Person was born in Bermuda, then generally Person is a British subject.
(3) If Harry was born in Bermuda, then generally he is a British subject.

The first is the ordinary language expression of a warrant as a rule-like statement
(formally: W). The third is a conditional sentence (formally: D(t) � C(t)), instan-
tiating the second, which is a scheme of conditional sentences (formally: D(x) �

C(x), where x is a variable, that can be instantiated by the concrete term t). Note that
only (1) and (3) can occur in actual texts, whereas (2) is — by its use of a variable
Person — an abstraction. One could say however that (1) and (2) imply each other: a
warrant corresponds to a scheme of argumentative steps from datum to claim. Given
this analysis of warrants and their relation to datum and claim, backings are simply
reasons for warrants: B � W.

Rebuttals are an ambiguous concept in Toulmin’s treatment. He associates rebut-
tals with ‘circumstances in which the general authority of the warrant would have to
be set aside’ (101/94), ‘exceptional circumstances which might be capable of defeat-
ing or rebutting the warranted conclusion’ (101/94) and with the (non)applicability
of a warrant (102/95). It turns out that these three can be distinguished, and, given
the present analysis of the warrant-datum-claim part of Toulmin’s scheme, even ex-
tended to five kinds of rebuttals, as there are five different statements that can be
argued against: the datum D, the claim C, the warrant W, the conditional D(t) �

C(t), expressing the inferential bridge from datum to claim, and the conditional W
� (D(t) � C(t)), which expresses the application of the warrant in the concrete situ-
ation (see [25] for a more extensive explanation). A rebuttal of the latter conditional
coincides conceptually with an undercutting defeater in the sense of Pollock’s. Note
that the analysis suggests an answer to Pollock’s open issue of how to analyze the
conditional ‘P wouldn’t be true unless Q were true’ (section 2.2). If U undercuts P
as a reason for Q, we would write U � ×(P � Q).

In this analysis, there is a natural extension of Toulmin’s concept of warrant: just
as it is necessary to specify which data imply claims (by Toulmin’s warrants), it is
necessary to specify which rebuttals block the application of warrants. Informally: it
is a matter of substance, not logic, which statements are rebuttals. It must be shown
by argument whether some statement is a rebuttal. In the law, for instance, not only
legal rules (a kind of warrants) find backing in statutes, but also exceptions to rules.
In the present analysis, dealing with ‘rebuttal warrants’ is a matter of course, since
there is an explicit expression that R is a rebuttal.14

A side effect of the reconstruction is that arguments modelled according to Toul-
min’s scheme can be formally evaluated. For instance, assuming that datum and

14 When R is a rebuttal in the sense of a Pollockian undercutter, this requires a sentence of the form
R � ×(W � (D � C)), expressing that, if R holds, the warrant W is not applicable.

236 Bart Verheij

Fig. 11.2 An entangled dialectical argument

warrant hold, but not a rebuttal, the claim follows; when also a rebuttal is assumed,
the claim does not follow.15 A rebuttal of a rebuttal can be shown to reinstate a claim.
Verheij [24] extends the approach to include Walton’s argumentation schemes.

The result of the formal reconstruction of Toulmin’s scheme showed some ex-
tensions, while retaining the original flavour. Figure 2 (using a diagramming format
used in [27]) illustrates the basic relations between statements as distinguished here:
Claims can have reasons for and against them (Jim’s testimony supporting the as-
sault by Jack, and Paul’s attacking it), and the inferential bridges (the conditionals
connecting reasons with their conclusions, here drawn as arrows) can be argued
about just like other statements. The resulting argument structures are dialectical,
by their incorporation of pros and cons, and entangled by their allowing the support
and attack of inferential bridges.

3 Concluding remarks

It has been shown that central points of view argued for by Toulmin (1958), in par-
ticular the defeasibility of argumentation, the substantial, instead of formal, nature
of standards of argument assessment, and the richer set of building blocks for argu-
ment analysis, are very much alive. Also Toulmin’s ‘research program’ of treating
logic as generalised jurisprudence has been taken up (with or without reference to
him) and proven to be fertile.

There have also been refinements and extensions. It is now known that defeasible
argumentation has interesting (and intricate) formal properties. There exist formal
systems for the evaluation of defeasible arguments. Toulmin’s argument diagram
and its associated set of building blocks for argument analysis have been made pre-
cise and become refined, e.g., by distinguishing between kinds of argument attack.
Not only is there now a wealth of studies of domain-bound, concrete forms of ar-

15 Formally: using W � (D � C), R � ×(W � (D � C)), two sentences expressing that W is a
warrant and R a rebuttal blocking its application, respectively, as background, and then assuming
W, and D, one finds a unique dialectical interpretation, in which C holds, whereas adding R to the
assumptions leads to a unique dialectical interpretation in which C does not hold.

11 The Toulmin Argument Model in Artificial Intelligence 237

gumentation, also methods for their systematic investigation have been proposed.
Defeasible argumentation has been embedded in procedural models of dialogue.
Toulmin’s wish to develop logic into a practical tool has found a modern guise in
the form of argumentation-support software, aiming at argument analysis and pro-
duction.

Notwithstanding recent progress, there is ample room for innovative research.
Some possible directions of future research are the continuing systematisation and
specification of argumentation schemes; the further organisation of the wealth of
evaluation paradigms for defeasible argumentation (‘semantics’); the prolongation
of research aiming at practically useful software tools, especially when supported by
user studies or commercial success; the implementation of software agents capable
of argumentative behaviour; and the coupling of empirical work on reasoning and
argumentation to the findings in AI.

Toulmin ends his introduction in a modest, but hopeful mood:

The studies which follow are, as I have said, only essays. If our analysis of arguments
is to be really effective and true-to-life it will need, very likely, to make use of notions
and distinctions that are not even hinted at here. But of one thing I am confident: that by
treating logic as generalised jurisprudence and testing our ideas against our actual practice
of argument-assessment, rather than against a philosopher’s ideal, we shall eventually build
up a picture very different from the traditional one. The most I can hope for is that some of
the pieces whose shape I have here outlined will keep a place in the finished mosaic. (10/10)

As evidenced by the research discussed in this chapter, the present state of the art in
AI-inspired argumentation research shows that Toulmin’s hope has been fulfilled.

Acknowledgements The author would like to thank David Hitchcock, Douglas Walton and James
Freeman for comments on a prepublication version of this text.

References

1. K. D. Ashley. Modeling legal argument. Reasoning with cases and hypotheticals. The MIT
Press, Cambridge (Massachusetts), 1990.

2. T. J. M. Bench-Capon. Persuasion in practical argument using value-based argumentation
frameworks. Journal of Logic and Computation, 13(3):429–448, 2003.

3. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77:321–357, 1995.

4. E. T. Feteris. Fundamentals of legal argumentation. A Survey of Theories on the Justification
of Judicial Decisions. Kluwer Academic Publishers, Dordrecht, 1999.

5. T. F. Gordon. The Pleadings Game. An Artificial Intelligence Model of Procedural Justice.
Kluwer Academic Publishers, Dordrecht, 1995.

6. J. C. Hage. A theory of legal reasoning and a logic to match. Artificial Intelligence and Law,
4:199–273, 1996.

7. D. L. Hitchcock and B. Verheij, editors. Arguing on the Toulmin Model. New Essays in Ar-
gument Analysis and Evaluation (Argumentation Library, Volume 10). Springer-Verlag, Dor-
drecht, 2006.

8. P. A. Kirschner, S. J. Buckingham Shum, and C. S. Carr. Visualizing Argumentation: Software
Tools for Collaborative and Educational Sense-Making. Springer-Verlag, London, 2002.

238 Bart Verheij

9. R. P. Loui. Hart’s critics on defeasible concepts and ascriptivism. In The Fifth International
Conference on Artificial Intelligence and Law. Proceedings of the Conference, pages 21–30.
ACM, New York (New York), 1995.

10. R. P. Loui and J. Norman. Rationales and argument moves. Artificial Intelligence and Law,
3:159–189, 1995.

11. J. L. Pollock. Defeasible reasoning. Cognitive Science, 11:481–518, 1987.
12. J. L. Pollock. Cognitive Carpentry: A Blueprint for How to Build a Person. The MIT Press,

Cambridge (Massachusetts), 1995.
13. H. Prakken and G. Sartor. A dialectical model of assessing conflicting arguments in legal

reasoning. Artificial Intelligence and Law, 4:331–368, 1996.
14. C. Reed and G. Rowe. Araucaria: Software for argument analysis, diagramming and repre-

sentation. International Journal of AI Tools, 13(4):961–980, 2004.
15. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.
16. S. J. Russell and P. Norvig. Artificial Intelligence. A Modern Approach. Prentice Hall, Upper

Saddle River (New Jersey), 2003.
17. G. R. Simari and R. P. Loui. A mathematical treatment of defeasible reasoning and its appli-

cations. Artificial Intelligence, 53:125–157, 1992.
18. S. E. Toulmin. The Uses of Argument. Cambridge University Press, Cambridge, 1958.
19. S. E. Toulmin. The Uses of Argument. Updated Edition. Cambridge University Press, Cam-

bridge, 2003.
20. S. E. Toulmin. Reasoning in theory and practice. In D. L. Hitchcock and B. Verheij, editors,

Arguing on the Toulmin Model. New Essays in Argument Analysis and Evaluation (Argumen-
tation Library, Volume 10)., pages 25–30. Springer-Verlag, Dordrecht, 2006.

21. F. H. van Eemeren, R. Grootendorst, S. Jackson, and S. Jacobs. Reconstructing Argumentative
Dialogue. The University of Alabama Press, Tuscaloosa (Alabama), 1993.

22. F. H. van Eemeren, R. Grootendorst, and F. Snoeck Henkemans. Fundamentals of Argu-
mentation Theory. A Handbook of Historical Backgrounds and Contemporary Developments.
Lawrence Erlbaum Associates, Mahwah (New Jersey), 1996.

23. B. Verheij. DefLog: on the logical interpretation of prima facie justified assumptions. Journal
of Logic and Computation, 13(3):319–346, 2003.

24. B. Verheij. Dialectical argumentation with argumentation schemes: An approach to legal
logic. Artificial Intelligence and Law, 11(1-2):167–195, 2003.

25. B. Verheij. Evaluating arguments based on toulmin’s scheme. Argumentation, 19(3):347–371,
2005.

26. B. Verheij. Virtual arguments. On the design of argument assistants for lawyers and other
arguers. TMC Asser Press, The Hague, 2005.

27. B. Verheij. Argumentation support software: Boxes-and-arrows and beyond. Law, Probability
and Risk, 6:187–208, 2007.

28. B. Verheij, J. C. Hage, and H. J. van den Herik. An integrated view on rules and principles.
Artificial Intelligence and Law, 6(1):3–26, 1998.

29. G. A. W. Vreeswijk. Studies in defeasible argumentation. 1993.
30. G. A. W. Vreeswijk. Abstract argumentation systems. Artificial Intelligence, 90:225–279,

1997.
31. D. N. Walton. Argument Schemes for Presumptive Reasoning. Lawrence Erlbaum Associates,

Mahwah (New Jersey), 1996.
32. D. N. Walton. The New Dialectic: Conversational Contexts of Argument. University of

Toronto Press, Toronto, 1998.
33. D. N. Walton and E. Krabbe. Commitment in Dialogue. Basic Concepts of Interpersonal

Reasoning. State University of New York Press, Albany (New York), 1995.

Chapter 12
Proof Burdens and Standards

Thomas F. Gordon and Douglas Walton

1 Introduction

This chapter explains the role of proof burdens and standards in argumentation, il-
lustrates them using legal procedures, and surveys the history of research on compu-
tational models of these concepts. It also presents an original computational model
which aims to integrate the features of these prior systems.

The ‘mainstream’ conception of argumentation in the field of artificial intelli-
gence is monological [6] and relational [14]. Argumentation is viewed as taking
place against the background of an inconsistent knowledge base, where the knowl-
edge base is a set of propositions represented in some formal logic. Argumentation
in this conception is a method for deducing warranted propositions from an incon-
sistent knowledge base. Which statements are warranted depends on attack relations
among the arguments [10] which can be constructed from the knowledge base.

The notions of proof standards and burden of proof become relevant only when
argumentation is viewed as a dialogical process for making justified decisions. The
input to the process is an initial claim or issue. The goal of the process is to clarify
and decide the issues, and produce a justification of the decision which can with-
stand a critical evaluation by a particular audience. The role of the audience could
be played by the respondent or a neutral-third party, depending on the type of di-
alogue. The output of this process consists of: 1) a set of claims, 2) the decision
to accept or reject each claim, 3) a theory of the generalizations of the domain and
the facts of the particular case, and 4) a proof justifying the decision of each issue,
showing how the decision is supported by the theory.

Notice that a theory or knowledge-base is part of the output of argumentation
dialogues, not, as in the relational conception, its input. This is because, as has been

Thomas F. Gordon
Fraunhofer FOKUS, Berlin, Germany, e-mail: thomas.gordon@fokus.fraunhofer.de

Douglas Walton
University of Windsor, Windsor, Canada, e-mail: dwalton@uwindsor.ca

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 239
DOI 10.1007/978-0-387-98197-0 12, c© Springer Science+Business Media, LLC 2009

240 Thomas F. Gordon and Douglas Walton

repeatedly recognized [31, 33, 21], the generalizations (rules) of some domain and
the particular facts of a problem or case are dependent on one another and need to
be constructed together, in an iterative process. For example, one of the founders of
the field of computer science and law, Jon Bing, wrote in 1982:

Legal reasoning is not primarily deductive, but rather a modeling process of shaping an
understanding of the facts, based on evidence, and an interpretation of the legal sources, to
a construct a theory for some legal conclusion. [7]

The concept of proof in argumentation is weaker than it is in mathematics. The
proof need not demonstrate that a proposition is necessarily true, given a set of ax-
ioms assumed to be true. Rather, as in law, a proof in argumentation is a structure
which demonstrates to a particular audience that a proposition statisfies its applica-
ble proof standard. Since expressive logics are undecidable or intractable, the theory
constructed during the dialogue cannot usually serve as a proof. A burden of proof
is not discharged if the audience must solve a hard problem to construct the proof
for themselves from the theory.

There are several kinds of proof burdens. The distinctions between them can only
be understood with a deeper analysis of particular argumentation processes. There
are many kinds of argumentation processes, each regulated by its own procedural
rules, usually called ‘protocols’ in AI. Walton has developed a typology of dialogue
types, classifying persuasion dialogues, negotiation, and deliberation, among other
types [37].

For our purpose of illustrating different kinds of proof burdens, it is sufficient to
use a simplified description of civil procedure, roughly based on the law of Califor-
nia [34]. A civil case begins by the plaintiff filing a complaint, stating a claim against
the defendant. The complaint is the first step in the pleadings phase of the case. It
contains, in addition to the claim, assertions about the facts of the case which the
plaintiff contends are sufficient, if true, to prove the defendant has breached some
obligation legally entitling the plaintiff to some remedy or compensation. The de-
fendant then has several options for responding to the complaint. For the sake of
brevity we will mention just one, filing an answer in which the factual allegations
are each denied or conceded and asserting additional facts, called an affirmative de-
fense, which may be useful for defeating or undercutting later arguments put forward
by the plaintiff. The final step in the pleadings phase gives the plaintiff an opportu-
nity to file a reply in which he concedes or denies the additional facts alleged by the
defendant in his answer. The next phase of the process provides the parties various
methods to discover evidence, for example by interviewing witnesses under oath,
called taking depositions. At the trial, this evidence is presented to the judge, and
possibly a jury, and further evidence is produced by examining and cross-examining
witnesses during the trial. At the end of the trial, the evidence is passed on to the
trier-of-fact, either the judge or the jury, if there is one. If there is a jury, the judge
first instructs the jury about the relevant law, since the jury is only responsible for
finding the facts. After the jury has completed its deliberations, it reports its verdict
to the judge, who then enters his judgment upon the verdict. The judgment may be
appealed by the losing party, but we will end our exposition of legal procedure here.

12 Proof Burdens and Standards 241

Our account of legal burdens of proof below is based in part on [30]. The first
kind of burden of proof is called the burden of claiming. A person who feels he has
a right to some legal remedy has the burden of initiating the proceeding by filing
a complaint, which must allege facts sufficient to prove the operative facts of legal
rules entitling him to some remedy. The second type of burden of proof is called
the burden of questioning or contesting. During pleading, any allegations of fact by
either party are implicitly conceded unless they are denied. The third type of burden
is called the burden of production. It is the burden to discover and bring forward
evidence supporting the contested factual allegations in the pleadings. The fourth
type of burden of proof is the burden of persuasion. In a civil proceeding, this burden
becomes operative only at the end of the trial, when the evidence and arguments are
put to the jury to decided the factual issues. In a civil proceeding, the plaintiff has
the burden of persuasion for all operative facts of his complaint and the defendant
has the burden of persuasion for all affirmative defenses, i.e. exceptions. In criminal
cases this is different. The prosecution has the burden of persuasion for all facts of
the case, whether or not they are the operative facts of the elements of the alleged
crime, or defenses, such as self-defense in a murder case. The fifth type of burden is
called the tactical burden of proof . During the trial, arguments are put forward by
both parties, pro and con the various claims at issue. At a finer level of granularity,
the argumentation phase can be broken down conceptually into a sequence of stages,
where each stage consists of all the arguments which have been put forward by both
parties so far in the proceeding. The parties take turns putting forward arguments,
by introducing new evidence. The next stage is constructed by adding the arguments
put forward during this turn to all the previous arguments. The tactical burden arises
from considering whether the arguments of a stage would be sufficient to meet the
burden of persuasion with regard to some issue, if hypothetically the trial were to
end at the stage and the issues where immediately put to the jury. The tactical burden
of proof is the only burden of proof which, strictly speaking, can shift back and forth
between the parties during the proceeding.

How does the burden of persuasion operate? Essentially the jury has the task of
weighing the arguments pro and con each proposition at issue. If the pro arguments
are not deemed to sufficiently outweigh the con arguments, then the jury must reject
the alleged fact by deciding that the alleged fact is not true. Because of the way the
burden of persuasion is allocated, this amounts to accepting the default truth value
of the proposition at issue.

When do pro arguments ‘sufficiently’ outweigh con arguments to meet the bur-
den of persuasion? This leads us to our final topic, proof standards. The question
is how to aggregate or ‘accrue’ [24] arguments pro and con some claim. In the le-
gal domain, four proof standards for factual issues exist, at least in common law
jurisdictions. The scintilla of evidence proof standard is met if there is “any evi-
dence at all in a case, even a scintilla, tending to support a material issue . . . ” [8,
p. 1207] The preponderance of evidence proof standard is met by “evidence which
as a whole shows that the fact sought to be proved . . . is more credible and convinc-
ing to the mind.” [8, p. 1064]. The clear and convincing evidence proof standard
is the “measure or degree of proof which will produce in mind of trier of facts a

242 Thomas F. Gordon and Douglas Walton

firm belief or conviction as to allegations sought to be established; it is intermedi-
ate, being more than preponderance, but not to extent of such certainty as is required
beyond reasonable doubt . . . ” [8, p. 227]. Finally, the beyond reasonable doubt stan-
dard is the strongest legal proof standard, applicable in criminal cases. It requires
evidence which leaves the trier of fact “fully satisfied, entirely convinced, . . . to a
moral certainty” [8, p. 147].

In our view proof standards cannot and should not be interpreted probabilisti-
cally. The first and most important reason is that probability theory is applicable
only if statistical knowledge about prior and conditional probabilities is available.
Presuming the existence of such statistical information would defeat the whole pur-
pose of argumentation about factual issues, which is to provide methods for making
justified decisions when knowledge of the domain is lacking. Another argument
against interpreting proof standards probabilistically is more technical. Arguments
for and against some proposition are rarely independent. What is needed is some
way to accrue arguments which does not depend on the assumption that the argu-
ments or evidence are independent.

Prakken has identified three principles any formal account of accrual must satisfy
[24]: 1) Combining several arguments pro or con some proposition can not only
strengthen one’s position, but also weaken it. 2) Once several arguments have been
accrued, the individual arguments, considered separately, should have no impact on
the acceptability of the proposition at issue, and 3) Finally, any argument which is
‘flawed’ may not take part in the aggregation process. The models of proof standards
presented in the section are designed to respect these principals.

2 Formal Model

Our goal in this section is to define an abstract formal model of argumentation as
a theory and proof construction process for making justified decisions. Inspired by
Dung’s model of abstract argumentation frameworks, the model shall be as abstract
and simple as possible while being sufficient for capturing the distinctions between
the various types of proof burdens and proof standards identified in the introduction
and meeting other known requirements. It is not intended to be a comprehensive
formal model of argumentation. We will also take care to abstract from the details
of the legal domain and, in particular, the law of civil procedure.

We begin with the concept of an argument. Unlike Dung, we cannot leave this
concept fully abstract, since our aim is to model burden of proof and proof stan-
dards. The proponent of an argument has the burden of production for its ordinary
premises; while the respondent has the burden of production for any exceptions.
Moreover, since the task of proof standards is to aggregate arguments pro and con
some proposition at issue, the model must represent not only the premises of argu-
ments, and distinctions between types of premises, but also their conclusions. These
considerations lead us to the following definition of argument.

Definition 12.1 (argument). Let L be a propositional language. An argument is a
tuple 〈P,E,c〉 where P ⊂ L are its premises, E ⊂ L are its exceptions and c ∈ L

12 Proof Burdens and Standards 243

is its conclusion. For simplicity, c and all members of P and E must be literals, i.e.
either an atomic proposition or a negated atomic proposition. Let p be a literal. If p
is c, then the argument is an argument pro p. If p is the complement of c, then the
argument is an argument con p.

Since all conclusions of arguments are literals according to this definition, the
axioms of the theory constructed during argumentation consist only of literals. Other
propositions of the theory can be derived from these axioms using the inference rules
of classical logic and the argumentation schemes of the domain.

To model the distinctions between the various kinds of burden of proof, we must
model argumentation as a process, consisting of several phases. It is sufficient to
distinguish three phases, the opening, argumentation and closing phases of the pro-
cess. Since typically argumentation takes place in dialogues, we will use the term
‘dialogue’ as the generic name for argumentation processes.

Definition 12.2 (dialogue). A dialogue is a tuple 〈O,A,C〉, where O, A and C, the
opening, argumentation, and closing phases of the dialogue, respectively, are each
sequences of stages. A stage is a tuple 〈arguments,status〉, where arguments is a
set of arguments and status is a function mapping the conclusions of the arguments
in arguments to their dialectical status in the stage, where the status is a member
of {claimed,questioned}. In every chain of arguments, a1, . . .an, constructable from
arguments by linking the conclusion of an argument to a premise of another argu-
ment, a conclusion of an argument ai may not be a premise of an argument a j, if
j < i. A set of arguments which violates this condition is said to contain a cycle and
a set of arguments which complies with this condition is called cycle-free.

Notice that the cycles defined here are not the same as cycles in a Dung argu-
mentation framework. Whereas the links (arcs) between arguments in the directed
graph induced by a Dung argumentation framework model the attack relation, the
links in the directed graph induced by arguments in our system model the premise
and conclusion relations. Notice that, in our system, arguments both pro and con
some proposition can be included in a set of arguments without causing a cycle.

Constraining the arguments of a stage to be cycle-free is intended to simplify
the evaluation of arguments. The set of arguments is intended to model the current
state of the proof being constructed by the parties in the dialogue, not a ‘pool of
information’ for constructing proofs. Intuitively, proofs should not contain cycles.

Next we need a structure for evaluating arguments, to assess the acceptability of
propositions at issue. As in value-based argumentation frameworks [4, 5] arguments
are evaluated with respect to an audience, such as the trier-of-fact (judge or jury) in
legal trials.

Definition 12.3 (audience). An audience is a structure 〈assumptions,weight〉, where
assumptions ⊂ L is a consistent set of literals assumed to be acceptable by the au-
dience and weight is a partial function mapping arguments to real numbers in the
range 0.0 . . .1.0, representing the relative weights assigned by the audience to the
arguments.

244 Thomas F. Gordon and Douglas Walton

Whereas in value-based argumentation frameworks the audience is defined by a
partial-order on a set of values, which is then used to constrain the attack relation on
arguments in a Dung argumentation framework, the audience in our system models
the relative strength of arguments for this audience. Intuitively, a stronger argument
does not necessarily attack a weaker argument. Both arguments could be arguments
pro the same proposition, for example. Thus, these two conceptions of an audience
are not directly comparable.

An argument evaluation structure associates an audience with a stage of dialogue
and assigns proof standards to propositions, providing a basis for evaluating the
acceptability of propositions to this audience.

Definition 12.4 (argument evaluation structure). An argument evaluation struc-
ture is a tuple 〈stage,audience,standard〉, where stage is a stage in a dialogue,
audience is an audience and standard is a total function mapping propositions in
L to their applicable proof standards in the dialogue. A proof standard is a func-
tion mapping tuples of the form 〈issue,stage,audience〉 to the Boolean values true
and false, where issue is a proposition in L, stage is a stage and audience is an
audience.

Given an argument evaluation structure, the acceptability of a proposition can be
defined as follows.

Definition 12.5 (acceptability). A literal p is acceptable in an argument evalua-
tion structure 〈stage,audience,standard〉 if and only if standard(p,stage,audience)
is true.

The argument evaluation structure is the component of this formal model which
is most like a Dung abstract argumentation framework. The role of the attack re-
lation in abstract argumentation frameworks is played by competing pro and con
arguments aggregated by proof standards, using the relative weights assigned the
arguments by an audience.

Obviously much of the work of argument evaluation has been delegated to the
proof standards. We cannot say anything about the computational properties of ac-
ceptability in an argument evaluation structure until these standards have been de-
fined. All the proof standards make use of the concept of argument applicability, so
let us define this concept first.

Definition 12.6 (argument applicability). Let 〈stage,audience,standard〉 be an ar-
gument evaluation structure. An argument 〈P,E,c〉 is applicable in this argument
evaluation structure if and only if

• the argument is a member of the arguments of the stage,
• every proposition p∈ P, the premises, is an assumption of the audience or, if nei-

ther p nor p is an assumption, is acceptable in the argument evaluation structure
and

• no proposition p ∈ E, the exceptions, is an assumption of the audience or, if nei-
ther p nor p is an assumption, is acceptable in the argument evaluation structure.

12 Proof Burdens and Standards 245

Now we are ready to define the proof standards, beginning with scintilla of the
evidence. A proposition satisfies the scintilla standard, in our model, if it is sup-
ported by at least one applicable pro argument.

Definition 12.7 (scintilla of evidence). Let 〈stage,audience,standard〉 be an argu-
ment evaluation structure and let p be a literal in L. scintilla(p,stage,audience) =
true if and only if there is at least one applicable argument pro p in stage.

Scintilla is the weakest of the proof standards we will define and is the only
one which can be met by complementary literals in the same argument evaluation
structure. That is, if p is an atomic proposition, both p and ¬p can be acceptable
in an argument evaluation structure using the scintilla of evidence standard. This
would be the case if p has an applicable con argument, as well as an applicable pro
argument.

Let us now turn our attention to the three most important legal proof standards:
preponderance of the evidence, clear and convincing evidence and beyond reason-
able doubt. Intuitively, preponderance is satisfied if the pro arguments outweigh the
con arguments, by however much. The issue we have to face when formalizing pre-
ponderance is how to aggregate the weights of a set of arguments for the purpose of
this comparison. The clear and convincing evidence standard requires more proof
than the preponderance standard: not only must the pro arguments outweigh the
con arguments, the weight of the pro arguments and the difference in weight of the
pro and con arguments both must exceed some thresholds. Finally, the beyond a
reasonable doubt standard goes further. Not only must the arguments be clear and
convincing, but, as the name of the standard suggests, the weight of the con argu-
ments must be below the threshold of ‘reasonable doubt’.

Definition 12.8 (preponderance of the evidence). Let 〈stage,audience,standard〉
be an argument evaluation structure and let p be a literal in L. preponderance
(p,stage,audience) = true if and only if

• there is at least one applicable argument pro p in stage and
• the maximum weight assigned by the audience to the applicable arguments pro

p is greater than the maximum weight of the applicable arguments con p.

The preponderance of the evidence standard was called the best argument stan-
dard in [18].

Definition 12.9 (clear and convincing evidence). Let 〈stage,audience,standard〉
be an argument evaluation structure and let p be a literal in L. clear-and-convincing
(p,stage,audience) = true if and only if

• the preponderance of the evidence standard is met,
• the maximum weight of the applicable pro arguments exceeds some threshold α ,

and
• the difference between the maximum weight of the applicable pro arguments and

the maximum weight of the applicable con arguments exceeds some threshold β .

246 Thomas F. Gordon and Douglas Walton

Definition 12.10 (beyond reasonable doubt). Let 〈stage,audience,standard〉 be an
argument evaluation structure 〈stage,audience,standard〉 and let p be a literal in L.
beyond-reasonable-doubt(p,stage,audience) = true if and only if

• the clear and convincing evidence standard is met and
• the maximum weight of the applicable con arguments is less than some threshold

γ .

We assume the α , β and γ thresholds used by the clear and convincing evidence
and beyond a reasonable doubt standards are set by the applicable protocol of the
dialogue.

At first glance, using maximum weights to aggregate pro and con arguments
might seem unintuitive. One might be inclined to compare the sums of the weights
of the applicable pro and con arguments. However, since arguments cannot be as-
sumed to be independent, summing weights would risk taking the same information
or reasons into account multiple times. When several weak arguments can be com-
bined to make a stronger argument, this can be achieved by joining their premises
together into a single argument, as discussed further next. We leave it up to the au-
dience to judge the effect of any possible interdependencies among the premises
on the weight of the argument. Both alternatives, summing weights or taking their
maximum weight, have the property of taking all arguments into account.

Assuming arguments are stated in their strongest form, aggregating arguments
using their maximum weight satisfies all three of Prakken’s principles of accrual
[24]: 1) Aggregated arguments can be evaluated by the audience to be stronger or
weaker than the arguments considered separately; 2) Once several arguments have
been accrued, the individual arguments, considered separately, have no effect on the
acceptability of the proposition at issue; and 3) Any argument which is ‘flawed’
does not take part in the aggregation process.

By ‘stating arguments in their strongest form’ we mean the following. Let p and q
be two propositions which, when they are true, are evidence pro a third proposition,
r. This can be expressed as either two convergent arguments or as a linked argument
[38]. The convergent arguments would be:

a1: r since p.
a2: r since q.

The linked form of this argument ‘accrues’ p and q into a single argument:

a3: r since p and q.

If the linked argument, a3, is more persuasive, that is if the party putting forward
this argument estimates it would be given more weight by the audience than either
a1 or a2, then we assume a3 will be put forward.

To illustrate this more concretely, let’s return to Prakken’s example about jog-
ging when it is both hot and rainy. The strongest arguments con jogging are the
convergent arguments:

a4: not jogging since hot.

12 Proof Burdens and Standards 247

a5: not jogging since rainy.

The strongest argument pro jogging is the following linked argument:

a6: jogging since hot and rainy.

Returning to Prakken’s three principles of accrual: 1) The audience can decide
whether to give a6 greater or lesser weight than each of the arguments a4 and a5;
2) If the accrued argument, a6, is given greater weight, then a6 will defeat both
a4 and a5, rendering them ineffective, using any of the proofs standards which ag-
gregate arguments by weight; and 3) Inapplicable arguments are not be taken into
consideration using any proof standard.

In [18] one further proof standard was defined, called dialectical validity. For the
sake of completeness we include its definitions here.

Definition 12.11 (dialectical validity). Let 〈stage,audience,standard〉 be an argu-
ment evaluation structure 〈stage,audience,standard〉 and let p be a literal in L.
dialectical-validity(p,stage,audience,) = true if and only if there is at least one ap-
plicable argument pro p in stage and no argument con p in stage is applicable.

The dialectical validity standard is suitable for aggregating arguments from gen-
eral rules and exceptions, where any applicable exception is enough to override the
general rule.

One of the requirements identified in the introduction is that checking proofs
should be an easy task. In more computational terms, using our formal model, the is-
sue is whether the acceptability of a proposition in an argument evaluation structure
is tractably decidable. We conjecture that this is the case, but will not try to prove
this formally here. The reasons for this conjecture are many. The argument eval-
uation structure has been designed in part to achieve this goal, by making several
restrictions: 1) The language is propositional, not first-order; 2) premises, excep-
tions and conclusions of arguments must be literals; and 3) the set of arguments of
a stage is finite and, by definition, acyclic. Of course the computational complexity
of acceptability also depends on the complexity of the proof standards applied.

Now we are ready to turn to modeling the various kinds of burden of proof. The
burdens of claiming and questioning must be met during the opening phase of the
dialogue. The burden of production and the tactical burden of proof are relevant only
during the argumentation phase. Finally, the burden of persuasion comes into play
in the closing phase, but is also used hypothetically to estimate the tactical burden
of proof during the argumentation phase.

The purpose of the opening stage of a dialogue is to frame the issues. Arguments
put forward in the argumentation stage must be relevant to the issues raised in the
opening stage. Depending on the protocol of the dialogue, a proposition claimed in
the opening stage may be deemed conceded unless it is questioned, requiring the
audience to assume it is true, following the principal of “silence implies consent.”

Definition 12.12 (burdens of claiming and questioning). Let s1, . . . ,sn be the
stages of the opening phase of a dialogue. Let 〈argumentsn,statusn〉 be the last stage,

248 Thomas F. Gordon and Douglas Walton

sn, of the opening phase. A party has met the burden of claiming a proposition p
if and only if statusn(p) ∈ {claimed,questioned}, that is, if and only if statusn(p)
is defined. The burden of questioning a proposition p has been met if and only if
statusn(p) = questioned.

Notice that a questioned proposition satisfies the burden of claiming, since it
is assumed that only propositions which have been claimed in an earlier stage are
questioned.

This simple model defines only minimal requirements for raising issues in the
opening phase of a dialogue. The argumentation protocol of a dialogue may state
additional requirements. For example, according to the law of civil procedure in Cal-
ifornia, the plaintiff must state a cause of action: the facts claimed must be sufficient
to give the plaintiff a right to judicial relief, as a matter of law.

The burden of production is relevant only during the argumentation phase of a
dialogue. The burden of production for some proposition is satisfied if it is accept-
able at the end of the argumentation phase using the the weakest proof standard,
scintilla of the evidence. The party who puts forward an argument has the burden of
production for its premises. Similarly, the respondent to an argument has the burden
of production for each exception.

The audience used to assess the burden of production depends on the protocol of
the particular dialogue. In civil proceedings in California, the judge is the audience
during the argumentation phase, i.e. the trial.

Definition 12.13 (burden of production). Let s1, . . . ,sn be the stages of the argu-
mentation phase of a dialogue. Let 〈argumentsn,statusn〉 be the last stage, sn, of
the argumentation phase. Let audience be the relevant audience for assessing the
burden of production, depending on the protocol of the dialogue. Let AES be the
argument evaluation structure 〈sn,audience,standard〉, where standard is a function
mapping every proposition to the scintilla of evidence proof standard. The burden
of production for a proposition p has been met if and only if p is acceptable in
AES.

Even though the weakest proof standard, scintillia of the evidence, is used to
test whether the burden of production has been met, an arbitrary, or silly, argument
would not be sufficient, since only applicable arguments are taken into consider-
ation by all proof standards. A silly argument can be defeated by questioning or
attacking its premises. Arguments can be undercut in our system by first revealing,
if necessary, an implicit premise about the applicability of the warrant underlying
the argument to this case and then attacking this premise [18].

Since arguments put forward to met the burden of production can be defeated
by further arguments, the burden of production may be met at some stage, si, of a
dialogue, but not met at some later stage, s j, where j > i. If the burden of production
is not met at the end of the argumentation phase, the audience in the closing phase
may be required, depending on the dialogue type, to assume that the proposition is
false. In this case, the burden of persuasion for this proposition becomes irrelevant.

12 Proof Burdens and Standards 249

The burden of persuasion plays a role only in the closing phase of the dialogue.
The burden of persuasion is met only if at the end of the closing phase the propo-
sition at issue is acceptable to the audience. The way proof standards are assigned
to propositions depends on the type of dialogue and is regulated by the argumen-
tation protocol. In legal proceedings in California, the proof standards are assigned
by the judge, since this is a question of law, not fact. In civil proceedings, the usual
proof standard is preponderance of the evidence. In criminal proceedings, the proof
standard is beyond reasonable doubt.

Definition 12.14 (burden of persuasion). Let s1, . . . ,sn be the stages of the closing
phase of a dialogue. Let 〈argumentsn,statusn〉 be the last stage, sn, of the closing
phase. Let audience be the relevant audience for assessing the burden of persuasion,
depending on the dialogue type and its protocol. Let AES be the argument evalua-
tion structure 〈sn,audience,standard〉, where standard is a function mapping every
proposition to its applicable proof standard for this type of dialogue. The burden of
persuasion for a proposition p has been met if and only if p is acceptable in AES.

In some cases, the party which has the burden of production in the argumenta-
tion phase may not have the burden of persuasion in the closing phase. This is the
case, for example, in criminal law proceedings. The defendant, as usual, has the
burden of production for exceptions, such as self-defense in murder cases, but once
this burden has been met, the burden of persuasion is passed to the prosecution.
If any evidence of self-defense has been brought forward, satisfying the burden of
production, the prosecution has the burden of persuading the trier of fact, beyond a
reasonable doubt, that the defendant did not act in self-defense.

This can be achieved in our model by making the exception an ordinary premise
after the burden of production has been met in the argumentation phase. For exam-
ple, let 〈P,E,c〉 be an argument and e be a proposition in E, meaning “self defense”.
After the burden of production for e has been met, the other side can be given the
burden of persuasion by removing e from E and adding ¬e to P. It may seem odd to
modify the argument in this way, but keep in mind the arguments of a stage do not
represent the speech acts of the parties, but rather the state of the proof being con-
structed collaboratively by all parties, according the protocol of the dialogue type.
The stage must be modified in some way to reflect this change, and modifying the
arguments of the stage is one way to accomplish this.

One kind of burden of proof remains to be defined formally, the tactical burden
of proof. The tactical burden is the only one which can shift back and forth between
the parties. It is relevant only during the argumentation phase of the dialogue. We
defined the burden of persuasion first, even though it is applicable only in the later
closing stage, because the tactical burden of proof requires the burden of persuasion
to be estimated. At each stage of the argumentation phase, a party must decide
whether stronger arguments might be necessary to persuade the audience. In some
dialogue types, the audience may reveal its assumptions and evaluations (weight
assignments) during the argumentation phase, at least provisionally. This will be
the case, for example, in two-party dialogues where the audience to be persuaded
is the same as the respondent. In legal proceedings this is not the case, since the

250 Thomas F. Gordon and Douglas Walton

respondent is the defendant and the audience is the judge or jury. In such cases it
will be necessary to make assumptions about the audience.

Definition 12.15 (tactical burden of proof). Let s1, . . . ,sn be the stages of the ar-
gumentation phase of a dialogue. Assume audience is the audience which will as-
sess the burden of persuasion in the closing phase. Assume standard is the function
which will be used in the closing phase to assign a proof standard to each propo-
sition. For each stage si in s1, . . . ,sn, let AESi be the argument evaluation structure
〈si,audience,standard〉. The tactical burden of proof for a proposition p is met at
stage si if and only if p is acceptable in AESi.

Both sides in a dialogue can have a tactical burden. Intuitively, a party has a
tactical burden of proof for a proposition p at some stage si only if p is not acceptable
in si and the party has an interest in proving p, either because proving p is relevant
for proving some claim of the party or disproving some claim of the other party,
given the arguments which have been put forward. A fuller, more complete account
of the tactical burden of proof would require the parties, their claims and the concept
of relevance to be modeled.

This completes our formal model of proof standards and burden of proof. Again,
we do not claim this is a comprehensive dialogical model of argumentation. Many
important elements of argumentation have been abstracted out for the sake of
brevity, such as the parties, argumentation schemes and their critical questions, di-
alogue types, argumentation protocols and commitment stores. Our aim here was
to define the simplest, most abstract possible model which is sufficient for distin-
guishing the various kinds of proof standards and burdens of proof which have been
discussed in the computational models of argument literature. Of course, we cannot
prove that we have achieved this goal. We leave it up to others in the field to try to
develop a simpler model with this scope.

In the introduction we formulated our view of argumentation as a kind of pro-
cess for making justified decisions, where the input to the process is an initial claim
or issue and the output consists of a set of claims, the decision to accept or reject
each claim, a theory and a proof. Unlike assumption-based instantiations of Dung’s
model of abstract argumentation frameworks [9], in which a theory or knowledge
base is presumed as part of the input, in our model a theory and a proof are con-
structed together during argumentation and are part of the output. The theory con-
structed is the deductive closure, in classical propositional logic, of the set of all
propositions which have been assumed by the audience or, if neither the proposi-
tion or its complement has been assumed, are acceptable in the final stage of the
closing phase of the dialogue. The proof constructed is represented by the argument
evaluation structure of the final stage.

3 Survey of Prior Research

Early work in the field of Artificial Intelligence and Law recognized the utility of
defeasible rules, subject to exceptions, as a tool for allocating the burden of proof

12 Proof Burdens and Standards 251

and developed nonmonotonic logics for reasoning with such rules [13, 35]. But
different proof standards or kinds of proof burdens were not yet distinguished in
these models.

In the Pleadings Game [14], inspired by legal proceedings, argumentation was
modeled as dialogical process consisting of several phases, in which theories and
arguments are constructed dynamically by the parties during the process. The Plead-
ings Game modeled the burdens of claiming, questioning and production, but it did
not explicitly use this terminology. Proof standards and the burden of persuasion,
were not modeled, as they do not play a role in the opening phase.

To our knowledge, the first effort to develop a computational model of proof
standards was by Freeman and Farley in 1996 [12]. They modeled argumentation
as a dialectical process during which an acyclic argument graph is constructed by
putting forward pro and con arguments constructed (‘invented’) from a propositional
rule-base. The model of proof standards comes into play when evaluating the argu-
ments in the graph. An argument is defendable if each premise satisfies its proof
standard. Five proof standards were defined (scintilla of evidence, preponderance,
dialectical validity, beyond a reasonable doubt and beyond a doubt). The relative
weights of arguments were not assigned by an audience, but rather computed from
certainty factors assigned to premises and the kind of argumentation scheme used to
construct the argument, using the weakest premise principle [32]. The model of ar-
gumentation developed in this paper has borrowed much from Freeman and Farley,
but there are some important differences. By restricting the arguments which can be
put forward to those which can be constructed from a static rule-base and model of
the facts, provided as input to the dialectical process, Freeman and Farley’s model
is more of a relational model of argumentation than a theory construction model.
The relative strength of arguments is determined by the rules and facts, rather than
by the intersubjective judgment of an audience. Only the burden of persuasion has
been modeled by this work. Finally, no attempt was made to model proof burdens
other than the burden of persuasion in this work.

The Zeno system [17] was inspired by Freeman and Farley’s work. Zeno’s model
of the structure of argument graphs was based on Kunz and Rittel’s [22] concept of
issue-based information systems (IBIS). Zeno supported arguments about both fac-
tual issues and issues about which action to take to solve some problem or achieve
some goal (practical reasoning). For factual issues, three proof standards were mod-
eled (scintilla of evidence, preponderance of the evidence and beyond reasonable
doubt). For issues about actions, two further proof standards were provided (no bet-
ter alternative and best choice). The relative strength of arguments in Zeno was
computed from qualitative constraints (equations and inequalities) over proposi-
tions. The qualitative constraints were issues which could be argued about. Only
the burden of persuasion was modeled in Zeno. As in Freeman and Farley’s work,
Zeno did not explicitly model an audience. On the contrary, in Zeno it was assumed
the parties would argue about the evaluation of their own arguments, by putting
forward and arguing about constraints.

Prakken formulated the three principles of argument accrual [24] explained in the
introduction, which our model has been designed to satisfy. He compared automatic

252 Thomas F. Gordon and Douglas Walton

and manual approaches to accrual. In the manual approach, arguments are accrued
by changing their representation in the model. In the automatic approach, argu-
ments are accrued by the argument evaluation process, without having to modify
the representation of the arguments. Prakken illustrated this approach with a novel
system, using a rule-based instantiation of Dung’s model of an abstract argumenta-
tion framework, in which the conclusions of rules are labeled with the set of their
premises. The attack relation of the argumentation framework is defined so that an
argument A does not attack an argument B if the set of premises of the conclu-
sion of the argument A is a subset of the (accrued) set of premises of the argument
B. This leads to a bottom-up inference process which, Prakken notes, is similar to
Reason-Based Logic [20]: first all arguments pro and con some leaf proposition
are combined into two competing sets of accruals; next the conflict between these
accruals is resolved; and finally the process iterates moving up the tree, with only
the winning defeasible conclusion being used. The way arguments are evaluated in
our model has much in common with the bottom-up inference approach taken by
both Reason-Based Logic and Prakken’s system. Nonetheless, our approach to the
accrual problem is manual, not automatic, as responsibility for accruing arguments
is allocated to the parties who put them forward in dialogues. But unlike Bayesian
Networks, which require a complete conditional probabilities table to be provided
as input to the process, our approach does not require all possible arguments to be
formulated. Accruing arguments when possible to strengthen one’s case is part of
the burden of proof allocated to the parties. Prakken points out that there is a trade-
off between automatic and manual approaches to accrual: in the former unwanted
inferences must be expressly blocked while in the latter accruals must be expressly
formulated. So neither approach is clearly superior.

In 2006, Prakken and Sartor published the first formal account of the distinctions
between the burden of production, the burden of persuasion and the tactical burden
of proof [28]. Their model is based on an interpretation of presumptions as default
rules, formalized using an extended version of their Inference System (IS) defeasi-
ble logic [27], called the Litigation Inference System (LIS) [23], which includes as
part of the input, together with the defeasible rules, an assignment of the burden of
persuasion for literals to either the plaintiff or defendant in the proceeding. Prakken
and Sartor’s model of the distinctions between these three proof burdens is more
concrete than our model, as it is limited to arguments constructed from defeasible
rules. Our model abstracts away the process of constructing arguments and can be
instantiated with models of various argumentation schemes, for example for argu-
ments from cases as well as defeasible rules.1 Prakken and Sartor did not attempt
to model the burdens of claiming or questioning or support the use of various proof
standards.

Continuing work began with Reed and Walton in 2005 on dialogues about the
burden of proof [26], Prakken and Sartor in 2007 presented a model of arguments
about the allocation of the burden of persuasion [29]. They note that ‘the argumen-

1 We have done some research recently on constructing arguments automatically from formal mod-
els of ontologies, rules, and cases, in a way which is well integrated with the model of argument
presented here [16].

12 Proof Burdens and Standards 253

tation games we define in this paper are not intended as a model of actual legal
dialogue but as a proof theory for a nonmonotonic logic. . . . All we claim is that
our games draw the correct defeasible inferences from a given body of information
and an associated allocation of the burden of persuasion. It remains to be seen how
the present logical model can be integrated with dialogical and procedural mod-
els of legal argument”. Clearly, their work is a relational model of argumentation,
not a theory construction model. In their conclusion, Prakken and Sartor express
concern that their system “lacks an extension-based semantics in the style of [10]”
and note, citing [23], that this “raises questions about the adequacy of ‘mainstream’
nonmonotonic logics for representing legal reasoning”.2

The idea of using audiences in our model was inspired by work by Bench-Capon,
Doutre and Dunne [5]. Bench-Capon’s focus is on modeling practical reasoning, i.e.
the process of making decisions about which action to take in order to achieve goals
which promote an agent’s values. Since different agents can have different values,
as well as different priority orderings on their set of values, arguments about action
can only be evaluated against the values of a particular agent, or ‘audience’. Bench-
Capon contrasted practical reasoning with argumentation about “what is true in a sit-
uation”, i.e. the facts of a case, and appears to consider audiences to be relevant only
for the former. As illustrated by legal trials, however, audiences can be important in
argumentation dialogues about factual issues as well, since different persons will
judge the probative weight of evidence, such as witness testimony, differently. Our
model of an audience is more abstract, since it orders arguments by their strength,
regardless of the kind of argumentation scheme which has been applied to construct
the argument. Formally, Bench-Capon’s model is an extension of Dung’s concept
of an abstract argumentation framework. Although a formal dialogue game is de-
fined, the game serves as a proof theory for a relational model of argument. The
input to the system is a Value-Based Argumentation Framework (VAF) consisting
of a set of arguments, an attack relation over these arguments, a set of values, and
a mapping from arguments to values. An audience is defined to be a binary rela-
tion over these values, modeling the preference ordering over these values of the
audience. The output of the dialogue game is the set of arguments which are objec-
tively or subjectively acceptable. Arguments which are objectively acceptable are,
or should be, acceptable by all (rational) audiences. Conversely, arguments which
are subjectively acceptable are acceptable to a particular, given audience. Bench-
Capon compares the distinction between objective and subjective acceptability with
the concept of credulous and skeptical inference familiar from nonmonotonic logic
and Dung argumentation frameworks. The distinction between objective and sub-
jective acceptability, like the distinction between credulous and skeptical inference,
possibly can be viewed as a simple two-level model of proof standards, but it is
questionable that this distinction is of much use outside of the procedural context of
dialogues in which the allocation of the burden of proof matters, and such dialogues
were outside the scope of this work.

2 But see [36] for a defense of nonmonotonic logic for legal reasoning, even when the burden of
persuasion is divided among the parties.

254 Thomas F. Gordon and Douglas Walton

Atkinson and Bench-Capon recently modeled a variety of proof standards us-
ing Dung-style argumentation frameworks [2]. This paper also recognizes the need
for audiences in dialogues about factual issues, as well as teleological issues about
values promoted by alternative courses of action. The basic idea of this paper elab-
orates on the idea discussed above, of using the distinction between various kinds
of acceptability in Dung argumentation frameworks to define proof standards. The
scintilla of evidence standard is modeled as membership in some preferred exten-
sion (credulous acceptability). Preponderance of the evidence corresponds to mem-
bership in all preferred extensions (skeptical acceptability). And, finally, beyond
reasonable doubt corresponds to membership in the grounded extension, if there
is one. Ways of modeling proof standards between preponderance of the evidence
and beyond reasonable doubt, such as the clear and convincing evidence standard,
are proposed which make use of an assignment of ‘probabilities’, i.e. weights, to
arguments. However this idea is discarded with the argument that this information
is not usually available. In our model this information is provided by the intersub-
jective judgment of the audience. Later in their paper, Atkinson and Bench-Capon
suggest the use of audiences to derive preferences over arguments, starting with
Bench-Capon’s value-based argumentation frameworks for arguing about teleolog-
ical issues. This idea is extended to arguments about factual issues by ordering evi-
dence, for example by ordering witness testimony using information about witness
credibility.

An advantage of Bench-Capon and Atkinson’s line of research is that it elabo-
rates rationality constraints on an audience’s assignment of strengths to arguments,
using for example its value preferences or its assessment of the relative credibil-
ity of witnesses. Although our model leaves the weights assigned by audiences to
arguments completely unconstrained, it has the advantage of being more general,
applying to arguments from any argumentation scheme. Perhaps it is possible to
combine the benefits of these two approaches. This may be an interesting topic for
future research.

A disadvantage of modeling proof standards using Dung argumentation frame-
works is the computational complexity of testing whether the proof standard has
been met. We have argued that, intuitively, to satisfy a burden of proof, the party
with the burden must present the proof in a form which is easy to check. The other
party shouldn’t have to solve an undecidable or intractable problem to check the
proof. As discussed previously, in Section 2, this criterion could be satisfied for the
proposed scintilla of evidence proof standard, modeled as credulous acceptability,
by requiring the proponent to produce an admissible set of arguments. The admissi-
ble set could serve as a representation of the proof, since checking whether the set
is admissible and whether an argument is a member of this set are both tractable
problems. But it is not clear what structures could serve as proofs for the models
proposed by Atkinson and Bench-Capon for the stricter proof standards. A related
issue is whether or not such proofs could be presented in a form which is compre-
hensible to human users, using for example some kind of argument mapping or other
visualization technique. Existing argument mapping methods have been developed
for presenting proofs (argument graphs) of the kind we have presented in this paper

12 Proof Burdens and Standards 255

[3, 11, 1, 15]. While Dung argumentation frameworks are often displayed as graphs,
these graphs do not represent proofs of the acceptability of any of the arguments in
the graph.

Prakken recently published a formal model which explicates the role of judges
in deciding issues regarding the admissibility of evidence and the allocation of the
burdens of production and persuasion [25]. Interestingly, dialogues are divided into
two, rather than tree phases, in the model, called the pleadings phase and the de-
cision phase. The pleadings phases encompasses the opening and argumentation
phases of our model. The decision phase corresponds to our closing phase. The
judge plays a role in the decision phase comparable to the audience in the closing
phase of our model, but arguments are evaluated by having the judge put forward
further arguments, which are then evaluated using Prakken’s LIS nonmonotonic
logic [23], discussed above. Arguments are not weighed and proof standards are
not part of the model.

Prakken and Sartor’s chapter on a “Logical Analysis of Burdens of Proof” in
[30] highly influenced our model of the distinctions among the various kinds of
proof burdens. The main difference between our systems is that they use Dung’s
abstract argumentation framework to evaluate the arguments at each stage of the
dialogue. We have already expressed our reservations about this approach, which
does not take into consideration that a burden of proof entails an obligation to put
forward the proof in a form which can be tractably checked. In their conclusion they
point out that their use of a nonmonotonic logic for evaluating arguments in a stage
could be replaced by any formalism “which accepts as input a description of an ev-
idential problem and produces as output a fallible assessment whether a claim has
been proven”. This is one way looking at we have done here, by replacing their non-
monotonic logic with a structure designed to make argument evaluation tractable for
a variety of common proof standards. Proof standards are not given much attention
in their chapter, except to suggest that they could be handled using some mecha-
nism for ordering arguments by their strength. Finally, although they recognize the
role of the finder-of-fact, they did not explictly model audiences or their impact on
assessing proof burdens. For example, the evalution of the tactical burden of proof
in their model does not require a party to estimate an audience’s assessment of the
weight of arguments. Rather, this information appears to be assumed as input to the
dialogue, available as common knowledge to both parties.

The model of argumentation developed in this paper is most closely related to
the Carneades system, which consists of both a mathematical model of argumen-
tation and software tools for supporting argumentation tasks based on this model.3

Carneades is work in progress and thus prior publications about the system differ in
their details. For example, the version of the model in [19] gave the term ‘presump-
tion’ a technical meaning which is confusing for those familar with the concept of a
presumption in the legal domain. This was pointed out by Prakken and Sartor [28]
and corrected when Prakken joined us for the next version of Carneades [18]. Simi-
larly, the use of weights to order arguments in [19] was replaced by a partial order in

3 http://carneades.berlios.de

256 Thomas F. Gordon and Douglas Walton

[18], but now we have come full circle, by again using numeric weights. The initial
models of the preponderance of the evidence and beyond reasonable doubt proof
standards of [19] were removed from the [18] version, since we had our doubts
about their adequacy as models of these legal standards. We feel confident enough
about the models of these legal standards in this paper to want to publish them
in order to obtain critical feedback. Aside from improved models of various proof
standards, the main contribution of the new version presented here is that it more
clearly and explicitly models argumentation as a theory and argument construction
process, consisting of a sequence of stages divided into opening, argumentation and
closing phases. Although we had already suggested in [18] how to use Carneades to
model the distinction between the burden of production and the burden of persua-
sion, the version in this article models these distinctions more explicitly and extends
the model to cover the burdens of claiming and questioning in the opening phase
and the tactical burden of proof. This version also introduces an explicit model of
audiences. Previous versions had used the concept of an argumentation context to
model argument strengths or priorities, with no reference to an audience.

4 Concluding Remarks

Viewing argumentation as dialogical process for making justified decisions raises
a number of issues which have no place in relational, monological accounts of ar-
gumentation, proof burdens and standards among them. Thus it should come as no
surprise that the concept of proof has thus far received little attention in mainstream
accounts of argumentation in artificial intelligence. An argument may be acceptable
in a Dung-style argumentation framework, or a proposition may be warranted by a
default theory in some nonmonotonic logic, but what mathematical structures are
adequate as models of proofs of these or other inference relations? We have argued
that checking a proof should be an easy, tractable problem. Argumentation frame-
works and default theories do not, in general, meet this requirement. And other,
less computational requirements could also be formulated, such as transparency and
comprehensibility for the intended class of audiences.

Another distinction between relational and dialogical conceptions of argumenta-
tion concerns their input/out relations. Whereas in relational accounts an argumen-
tation framework or default theory is provided as input and the task is to derive ac-
ceptable arguments or warranted propositions, argumentation dialogues begin with
a claim or issue and construct, as part of their output, theories and proofs. Argumen-
tation dialogues includes synthetic as well as analytic tasks.

Abstract argumentation frameworks, which focus on attack relations among ar-
guments, are not well-suited to modeling proof standards, at least not the familiar
proof standards from the legal domain. The intuitive idea of legal proof standards
since Roman times, symbolized by the scales of the goddess Justitia, involves the
weighing of arguments or evidence pro and con some claim. This simple idea can-
not be directly represented using abstract argumentation frameworks. Attempts to

12 Proof Burdens and Standards 257

model proof standards as variations of credulous and skeptical acceptability in an
argumentation framework are not very promising, since they largely leave open the
question of how to represent proofs in an understandable form which can be easily
checked.

Research to date on modeling proof standards and burdens calls into question the
common research strategy in the field of computational models of argumentation
which presumes that valid dialogical models of argumentation as a process can be
constructed on the foundation of relational models of argument as a nonmonotonic
inference relation. We recommend a research strategy which begins with a task and
requirements analysis of argumentation dialogues in a variety of application do-
mains.

Acknowledgements We’d like to thank Trevor Bench-Capon and Henry Prakken for their helpful
comments on various drafts of this article.

References

1. T. Anderson, D. Schum, and W. Twining. Analysis of Evidence. Cambridge University Press,
2nd edition, 2005.

2. K. Atkinson and T. Bench-Capon. Argumentation and standards of proof. In ICAIL ’07:
Proceedings of the 11th International Conference on Artificial Intelligence and Law, pages
107–116, New York, NY, USA, 2007. ACM.

3. M. C. Beardsley. Practical Logic. Prentice Hall, New York, 1950.
4. T. Bench-Capon. Persuasion in practical argument using value-based argumentation frame-

works. Journal of Logic and Computation, 13(3):429–448, 2003.
5. T. J. Bench-Capon, S. Doutre, and P. E. Dunne. Audiences in argumentation frameworks.

Artificial Intelligence, 171(42-71), 2007.
6. P. Besnard and A. Hunter. Elements of Argumentation. MIT Press, 2008.
7. J. Bing. Uncertainty, decisions and information systems. In C. Ciampi, editor, Artificial

Intelligence and Legal Information Systems. North-Holland, 1982.
8. H. C. Black. Black’s Law Dictionary. West Publishing Co., 1979.
9. A. Bondarenko, P. M. Dung, R. A. Kowalski, and F. Toni. An abstract, argumentation-theoretic

approach to default reasoning. Artificial Intelligence, 93(1-2):63–101, 1997.
10. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357,
1995.

11. J. B. Freeman. Dialectics and the Macrostructure of Arguments: A Theory of Argument Struc-
ture. Walter de Gruyter, Berlin / New York, 1991.

12. K. Freeman and A. M. Farley. A model of argumentation and its application to legal reasoning.
Artificial Intelligence and Law, 4(3-4):163–197, 1996.

13. T. F. Gordon. Some problems with Prolog as a knowledge representation language for legal
expert systems. In C. Arnold, editor, Yearbook of Law, Computers and Technology, pages
52–67. Leicester Polytechnic Press, Leicester, England, 1987.

14. T. F. Gordon. The Pleadings Game; An Artificial Intelligence Model of Procedural Justice.
Springer, New York, 1995. Book version of 1993 Ph.D. Thesis; University of Darmstadt.

15. T. F. Gordon. Visualizing Carneades argument graphs. Law, Probability and Risk, 6(1-4):109–
117, 2007.

16. T. F. Gordon. Hybrid reasoning with argumentation schemes. In Proceedings of the 8th
Workshop on Computational Models of Natural Argument (CMNA 08), pages 16–25, Patras,
Greece, July 2008. The 18th European Conference on Artificial Intelligence (ECAI 2008).

258 Thomas F. Gordon and Douglas Walton

17. T. F. Gordon and N. Karacapilidis. The Zeno argumentation framework. In Proceedings of the
Sixth International Conference on Artificial Intelligence and Law, pages 10–18, Melbourne,
Australia, 1997. ACM Press.

18. T. F. Gordon, H. Prakken, and D. Walton. The Carneades model of argument and burden of
proof. Artificial Intelligence, 171(10-11):875–896, 2007.

19. T. F. Gordon and D. Walton. The Carneades argumentation framework — using presumptions
and exceptions to model critical questions. In P. E. Dunne and T. J. Bench-Capon, editors,
Computational Models of Argument. Proceedings of COMMA 2006, pages 195–207, Amster-
dam, September 2006. IOS Press.

20. J. Hage. A theory of legal reasoning and a logic to match. Artificial Intelligence and Law,
4(3-4):199–273, 1996.

21. H. L. A. Hart. Essays in Jurisprudence and Philosophy. Oxford University Press, 1983.
22. W. Kunz and H. W. Rittel. Issues as elements of information systems. Technical report,

Institut für Grundlagen der Planung, Universität Stuttgart, 1970. also: Center for Planning
and Development Research, Institute of Urban and Regional Development Research. Working
Paper 131, University of California, Berkeley.

23. H. Prakken. Modeling defeasibility in law: Logic or Procedure? Fundamenta Informaticae,
48:253–271, 2001.

24. H. Prakken. A study of accrual of arguments, with applications to evidential reasoning. In
Proceedings of the Tenth International Conference on Artificial Intelligence and Law, pages
85–94, New York, 2005. ACM Press.

25. H. Prakken. A formal model of adjudication. In S. Rahman, editor, Argumentation, Logic and
Law. Springer Verlag, Dordrecht, 2008.

26. H. Prakken, C. Reed, and D. Walton. Dialogues about the burden of proof. In Proceedings of
the Tenth International Conference on Artificial Intelligence and Law, pages 85–94, Bologna,
2005. ACM Press.

27. H. Prakken and G. Sartor. A dialectical model of assessing conflicting argument in legal
reasoning. Artificial Intelligence and Law, 4(3-4):331–368, 1996.

28. H. Prakken and G. Sartor. Presumptions and burden of proof. In T. van Engers, editor, Legal
Knowledge and Information Systems. JURIX 2006: The Nineteenth Annual Conference, pages
21–30, Amsterdam, 2006. IOS Press.

29. H. Prakken and G. Sartor. Formalizing arguments about the burden of persuasion. In Proceed-
ings of the 11th International Conference on Artificial Intelligence and Law, pages 97–106,
New York, 2007. Stanford University, ACM Press.

30. H. Prakken and G. Sartor. A logical analysis of burdens of proof. In H. Kaptein, H. Prakken,
and B. Verheij, editors, Legal Evidence and Proof: Statistics, Stories, Logic, Applied Legal
Philosophy Series. Ashgate Publishing, 223–253, 2009.

31. J. Rawls. Outline of a decision procedure for ethics. Philosophical Review, 177–197, 1951.
32. N. Rescher. Dialectics: A Controversy-Oriented Approach to the Theory of Knowledge. State

University of New York Press, 1977.
33. H. W. Rittel and M. M. Webber. Dilemmas in a general theory of planning. Policy Science,

4:155–169, 1973.
34. M. Rosenberg, J. B. Weinstein, H. Smit, and H. L. Korn. Elements of Civil Procedure. Foun-

dation Press, 1976.
35. G. Sartor. Defeasibility in legal reasoning. In Informatics and the Foundations of Legal Rea-

soning, Law and philosophy library, pages 119–157. Kluwer Academic Publishers, Dordrecht,
1995.

36. K. Satoh, S. Tojo, and Y. Suzuki. Formalizing a switch of burden of proof by logic program-
ming. In Proceedings of the First International Workshop on Juris-Informatics (JURISIN
2007), pages 76–85, Miyazaki, Japan, 2007.

37. D. Walton. The new dialectic: A method of evaluating an argument used for some purpose in
a given case. ProtoSociology, 13:70–91, 1999.

38. D. Walton. Fundamentals of Critical Argumentation. Cambridge University Press, Cam-
bridge, UK, 2006.

Part III
Argumentation in Multi-Agent Systems

Chapter 13
Dialogue Games for Agent Argumentation

Peter McBurney and Simon Parsons

1 Introduction

The rise of the Internet and the growth of distributed computing have led to a ma-
jor paradigm shift in software engineering and computer science. Until recently,
the notion of computation has been variously construed as numerical calculation,
as information processing, or as intelligent symbol analysis, but increasingly, it is
now viewed as distributed cognition and interaction between intelligent entities [60].
This new view has major implications for the conceptualization, design, engineer-
ing and control of software systems, most profoundly expressed in the concept of
systems of intelligent software agents, or multi-agent systems [99]. Agents are soft-
ware entities with control over their own execution; the design of such agents, and
of multi-agent systems of them, presents major research and software engineering
challenges to computer scientists.

One key challenge is the design of means of communication between intelli-
gent agents. Considerable research effort has been expended on the design of ar-
tificial languages for agent communications, such as DARPA’s Knowledge Query
and Manipulation Language (KQML) [33] and the Foundation for Intelligent Phys-
ical Agents’ (now IEEE FIPA) Agent Communications Language (FIPA ACL) [35].
These languages, and languages like them, have been designed to be widely ap-
plicable. As well as being a strength, this feature can also be a weakness: agents
participating in conversations have too many choices of what to utter at each turn,
and thus agent dialogues may endure a state-space explosion.

Allowing sufficient flexibility of expression while avoiding state-space explosion
had led agent communications researchers to the study of formal dialogue games;
these are rule-governed interactions between two or more players (or agents), where

Department of Computer Science, University of Liverpool, UK
e-mail: mcburney@liverpool.ac.uk
Department of Computer and Information Science, Brooklyn College, New York, USA
e-mail: parsons@sci.brooklyn.cuny.edu

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 261
DOI 10.1007/978-0-387-98197-0 13, c© Springer Science+Business Media, LLC 2009

262 McBurney and Parsons

each player “moves” by making utterances, according to a defined set of rules. Al-
though their study dates to at least the time of Aristotle [5], dialogue games have
found recent application in philosophy, computational linguistics and Artificial In-
telligence (AI). In philosophy, dialogue games have been used to study fallacious
reasoning [41, 62] and to develop a game-theoretic semantics for various logics, e.g.,
intuitionistic and for classical logics [59]. In linguistics, they have been used to ex-
plain sequences of human utterances [57], with subsequent application to machine-
based natural language processing and generation [49], and to human-computer in-
teraction [9]. Within computer science and AI, they have been applied to modeling
complex human reasoning, for example in legal domains [81], and to requirements
specification for complex software systems [34]. Dialogue games differ from the
games of economic game theory in that payoffs for winning or losing a game are
not considered, and, indeed, the notions of winning and losing are not always ap-
plicable to dialogue games. They also differ from the abstract games recently used
as a semantics for interactive computation [1], since these latter games do not share
the rich rule structure of dialogue games, nor are these latter intended to themselves
have a semantic interpretation involving the co-ordination of actions among a group
of agents.

This chapter considers the application of formal dialogue games for agent com-
munication and interaction using argumentation. We begin, in the next subsection,
with a brief overview of an influential typology of human dialogues, which have
proven useful in classifying agent interactions. Because the design of artificial lan-
guages for communication between software agents shares much with the study of
natural human languages, we structure this chapter according to the standard divi-
sion within linguistic theory between syntax, semantics and pragmatics; we do this
despite this division being imprecise and contested within linguistics (e.g., [58]).
Very broadly (following [58]), we may view: syntax as being concerned with the sur-
face form and combinatorial properties of utterances, words and their components;
semantics as being concerned with the truth or falsity of utterances; and pragmatics
as being concerned with those aspects of the meaning of utterances other than their
truth or falsity.1 Section 2 thus presents a model of a formal dialogue game protocol,
focusing primarily on the syntax of such dialogues. We follow this in Section 3 with
a discussion of the semantics and the pragmatics of agent dialogues. Section 4 then
presents an illustrative example, taken from [68], while Section 5 considers protocol
design and assessment. The chapter ends with a brief conclusion in Section 6.

1.1 Types of dialogues

An influential model of human dialogues is the typology of primary dialogue types
of argumentation theorists Douglas Walton and Erik Krabbe [96]. This categoriza-
tion is based upon the information the participants have at the commencement of a

1 Note that the word semantics is used differently here than in the study of argumentation frame-
works, as in Chapter 2 of this volume.

13 Dialogue Games 263

dialogue (of relevance to the topic of discussion), their individual goals for the di-
alogue, and the goals they share. Information-Seeking Dialogues are those where
one participant seeks the answer to some question(s) from another participant, who
is believed by the first to know the answer(s). In Inquiry Dialogues the participants
collaborate to answer some question or questions whose answers are not known
to any one participant. Persuasion Dialogues involve one participant seeking to
persuade another to accept a proposition he or she does not currently endorse. In
Negotiation Dialogues, the participants bargain over the division of some scarce
resource. If a negotiation dialogue terminates with an agreement, then the resource
has been divided in a manner acceptable to all participants. Participants of Delib-
eration Dialogues collaborate to decide what action or course of action should be
adopted in some situation. Here, participants share a responsibility to decide the
course of action, or, at least, they share a willingness to discuss whether they have
such a shared responsibility. Participants may have only partial or conflicting in-
formation, and conflicting preferences. As with negotiation dialogues, if a deliber-
ation dialogue terminates with an agreement, then the participants have decided on
a mutually-acceptable course of action. In Eristic Dialogues, participants quarrel
verbally as a substitute for physical fighting, aiming to vent perceived grievances.

Several comments are important to make here. The first is that although Walton
and Krabbe talk about the goal of a dialogue and the goal of a dialogue type,2 only
participants can have goals since only they are sentient. Participants may believe
that a dialogue interaction they enter has an ostensible purpose, but their own goals
or the goals of the other participants may not be consistent with this purpose. For ex-
ample, participants may enter a negotiation dialogue in order to reach an agreement
(a deal) over the allocation of some resource; or they may enter it to prevent any
such agreement being reached, or to delay agreement [24], or to prove that no such
agreement is possible, or to gather information from the other participants, or even
to signal something to some third party, not in the dialogue. Participants in dialogues
may also seek to hide their true goals from the other participants [25, 64]. Instead
of dialogue goals it makes sense only to speak of participant goals and dialogue
outcomes [74].

Secondly, most actual dialogue occurrences — both human and agent — involve
mixtures of these dialogue types. A purchase transaction, for example, may com-
mence with a request from a potential buyer for information from a seller, proceed
to a persuasion dialogue, where the seller seeks to persuade the potential buyer of
the importance of some feature of the product, and then transition to a negotia-
tion, where each party offers to give up something he or she desires in return for
something else. The two parties may or may not be aware of the different nature of
their discussions at each phase, or of the transitions between phases. Instances of
individual dialogue types contained entirely within other dialogue types are said to
be embedded [96]. Several formalisms have been suggested for computational rep-
resentation of combinations of dialogue: first, the Dialogue Frames of Reed [84],
which enable iterated, sequential and embedded dialogues to be represented; sec-

2 as do others, e.g., [80].

264 McBurney and Parsons

ond, the Agent Dialogue Frameworks of McBurney and Parsons, based on PDL
[66], which permit iterated, sequential, parallel and embedded dialogues to be rep-
resented; and third, the more abstract RASA frameworks of Miller and McBurney
[73], which permit iterated, sequential, parallel and embedded combinations of any
types of agent interaction protocols. All these formalisms are neutral with regard to
the modeling of the primary dialogue types themselves, allowing the primary types
to be represented in any convenient form, and allowing for types other than the six
of the Walton and Krabbe typology to be included. Walton and Krabbe do not claim
their typology is comprehensive, and some recent research has explored other types
and sub-types, e.g., [14].

Researchers in multi-agent systems and in argumentation have articulated dia-
logue game protocols for many of the types in the Walton and Krabbe typology.
For example, the two-party protocol of Amgoud, Maudet and Parsons [3], which is
based on MacKenzie’s philosophical dialogue game DC [62], supports persuasion,
inquiry and information-seeking dialogues; a subsequent extension of this protocol
with additional locutions supports negotiation dialogues [4]. Information-seeking
dialogues have been considered by Hulstijn [49], and analyzed by Cogan, Parsons
and McBurney [14]; indeed this latter work, which examines the pre- and post-
conditions of dialogues over beliefs in fine detail, identifies several new types of
dialogues not explicitly included in the Walton and Krabbe typology. A study of dif-
ferent persuasion protocols can be found in the review paper by Prakken [80]; other
protocols for persuasion dialogues include the PADUA protocol for arguments from
experience by Wardeh, Bench-Capon and Coenen [97] and a protocol for arguments
over access to information by Doutre and colleagues [22, 23, 78].

Protocols for multi-agent inquiry dialogues have been proposed and studied by
McBurney and Parsons [65], who consider the circumstances under which an in-
quiry dialogue may converge to the truth, and by Black and Hunter [11], whose
agent reasoning architecture enables generative inquiry dialogues, i.e., those where
new proposals may emerge for consideration and possible endorsement by the
agents participating. For dialogues over beliefs (information-seeking, inquiry and
persuasion dialogues), Parsons and Sklar consider the question of convergence of
beliefs of agents engaged in repeated dialogues with one another [77]. In addition
to [4] cited above, protocols for negotiation dialogues include those of Sadri, Toni
and Torroni [87], McBurney, van Eijk, Parsons and Amgoud [63], and Karunatil-
lake [54]. Regarding dialogues over action which are not negotiations: McBurney,
Hitchcock and Parsons [64] and Tang and Parsons [92] have presented protocols for
deliberation dialogues; Atkinson, Bench-Capon and McBurney have given a repre-
sentation for proposals for actions and a dialogue game protocol to discuss these
proposals [6]; and Atkinson, Girle, McBurney and Parsons have presented a dia-
logue game protocol for dialogues over commands [7]. Finally, the dialogue-game
protocols presented in the work of Dignum, Dunin-Kȩplicz and Verbrugge [20, 21]
are intended to enable agents to form teams and to agree joint intentions, respec-
tively.

13 Dialogue Games 265

2 Syntax

The syntax of a language concerns the surface form of words and phrases, and how
these may be combined. Accordingly, defining the syntax of an agent dialogue game
protocol usually involves the specification of the possible utterances which agents
can make (the locutions) and the rules which govern the order in which utterances
can be made. Since the work of Hamblin [41], it has become standard to talk of
speakers in a dialogue incurring commitments: a speaker who asserts a statement as
being true, for example, may be committed to justifying this assertion when chal-
lenged by another participant, or else allowed (or even forced) to retract the asser-
tion. Although such dialogical commitments may be viewed as aspects of the se-
mantics (the meaning) of utterances, the rules regarding commitments are typically
included in the specification of dialogue syntax because these rules often influence
the order of utterances. The various commitments of the participants are usually
tracked in a publicly-readable database, called a commitment store.

Within the agents communications community, it has become standard to view
utterances as composed of two layers: an inner layer comprising the topics of dis-
cussion, and an outer (or wrapper) layer, comprising the locutions. An utterance can
thus be seen as an instantiated locution, with one variable of instantiation being the
topic. This structure, adopted for both KQML and FIPA ACL, provides great flexi-
bility, since agents encoded appropriately may use the same wrappers to undertake
dialogues over different topics.

We now present a generic framework for specification of a dialogue game pro-
tocol in terms of its key components, adapted from [66].3 We first assume that the
topics of discussion between the agents (the inner layer) can be represented in some
logical language, whose well-formed formulae are denoted by the lower-case Ro-
man letters, p, q, r, etc. A dialogue game specification then comprises the following
elements, each of which concern the wrapper layer of communications:

Commencement Rules: Rules which define the circumstances under which the
dialogue commences.

Locutions: Rules which indicate what utterances are permitted. Typically, legal
locutions permit participants to assert propositions, permit others to question or
contest prior assertions, and permit those asserting propositions which are sub-
sequently questioned or contested to justify their assertions. Justifications may
involve the presentation of a proof of the proposition or an argument for it. The
dialogue game rules may also permit participants to utter propositions to which
they assign differing degrees of commitment, for example: one may merely pro-
pose a proposition, a speech act which entails less commitment than would an
assertion of the same proposition.

Rules for Combination of Locutions: Rules which define the dialogical contexts
under which particular locutions are permitted or not, or obligatory or not. For

3 We are also informed by [80]; note, however, that work defines a mathematical model for analyz-
ing multi-party dialogues, rather than defining a framework for specification of dialogue protocols
for agent communications.

266 McBurney and Parsons

instance, it may not be permitted for a participant to assert a proposition p and
subsequently the proposition ¬p in the same dialogue, without in the interim
having retracted the former assertion.

Commitments: Rules which define the circumstances under which participants
incur dialogical commitments by their utterances, and thus alter the contents of
the participants’ associated commitment stores. For example, a question posed
by one agent to another may impose a commitment on the second to provide a
response; until provided, this commitment remains undischarged.

Rules for Combination of Commitments: Rules which define how commitments
are combined or manipulated when utterances incurring conflicting or comple-
mentary commitments are made. For example, the rules may allow a speaker to
assert the truth of a proposition and then to assert its negation, with the commit-
ment store holding only the most recent asserted proposition, or the store may
hold the earlier proposition until explicitly retracted. These rules become partic-
ularly important when multiple dialogues are involved, as when one dialogue is
embedded within another; in such a case, the commitments incurred in the inner
dialogue may take priority over those of the outer dialogue, or vice versa [66].

Rules for Speaker Order: Rules which define the order in which speakers may
make utterances. It may be that any speaker may speak at any time, as in FIPA
ACL, or that there are rules regarding turn-taking.

Termination Rules: Rules that define the circumstances under which the dialogue
ends.

It is worth noting here that more than one notion of commitment is present in the
literature on dialogue games. For example, Hamblin treats commitments in a purely
dialogical sense: “A speaker who is obliged to maintain consistency needs to keep a
store of statements representing his previous commitments, and require of each new
statement he makes that it may be added without inconsistency to this store. The
store represents a kind of persona of beliefs; it need not correspond with his real
beliefs . . .” [41, p. 257]. In contrast, Walton and Krabbe [96, Chapter 1] treat com-
mitments as obligations to (execute, incur or maintain) a course of action, which
they term action commitments. These actions may be utterances in a dialogue, as
when a speaker is forced to defend a proposition he has asserted against attack from
others; so Walton and Krabbe also consider propositional commitment as a special
case of action commitment [96, p. 23]. As with Hamblin’s treatment, such dialogi-
cal commitments to propositions may not necessarily represent a participant’s true
beliefs. In contrast, Singh’s social semantics [90], requires participants in an interac-
tion to express publicly their beliefs and intentions, and these expressions are called
social commitments. These include both expressions of belief in some propositions
and expressions of intent to execute or incur some future actions.4 Our primary mo-
tivation is the use of dialogue games as the basis for interaction protocols between
autonomous agents. Because such agents will typically enter into these interactions

4 It is worth noting that all these notions of commitment differ from that commonly used in discus-
sion of agent’s internal states, namely the idea of the persistence of a belief or an intention [99, p.
205].

13 Dialogue Games 267

in order to achieve some wider objectives, and not just for the enjoyment of the
interaction itself, we believe it is reasonable to define commitments in terms of fu-
ture actions or propositions external to the dialogue. In a commercial negotiation
dialogue, for instance, the utterance of an offer may express a willingness by the
speaker to undertake a subsequent transaction on the terms contained in the offer.
For this reason, we can view commitments as semantic mappings between locutions
and subsets of some set of statements expressing actions or beliefs external to the
dialogue.

3 Semantics and Pragmatics

3.1 Purposes of Semantics

We begin this section by discussing the concept of semantics for agent communica-
tions languages and dialogue protocols. These languages and protocols are clearly
media for communication (between software entities and/or their human principals)
and so researchers have naturally looked to theories developed in human linguistics
to understand them. But, unlike human languages, agent communications languages
and dialogue protocols are also formal constructs, usually defined explicitly and of-
ten computationally; thus, understanding their properties can also usefully draw on
notions from logic and mathematics. Moreover, because these communications lan-
guages and dialogue protocols are usually intended to be used by autonomous soft-
ware entities, they are also programming languages, since software agents will use
them to construct sequences of utterances — commands — with which to interact
with one another. The theory of programming language semantics is therefore also
relevant to their study.

It is thus important to keep in mind the different functions which a semantics for
an agent communications language or dialogue protocol may be required to serve:

• To provide a shared understanding to participants in a communicative interac-
tion of the meaning of individual utterances, of sequences of utterances, and of
dialogues.

• To provide a shared understanding to designers of agent protocols and to the
(possibly distinct) designers of agents using those protocols of the meaning of
individual utterances, of sequences of utterances, and of dialogues.

• To provide a means by which the properties of individual agent communications
languages and protocols may be studied formally and with rigor.

• To provide a means by which different agent communications languages and
protocols may be compared with one another formally and with rigor.

• To provide a means by which languages and protocols may be readily imple-
mented in production systems.

• To help ensure that implementation of agent communications in open, distributed
agent systems is undertaken uniformly.

268 McBurney and Parsons

Different types of semantics may serve these various purposes to varying degrees,
and so it may be useful to develop more than one semantics for a communications
language or protocol. 5 In addition, an articulation of semantics could be undertaken
at one or more different levels: for each individual utterance, or speech act; for
specified short sequences of utterances,6 such as a question-and-answer sequence;
for complete sequences of utterances, or dialogues; and for dialogue protocols. Most
current published work on agent dialogue protocols presents a semantics defined in
terms of individual utterances. In the terms defined below, these semantics are most
often axiomatic or operational, and are much less often denotational.

3.2 Types of Semantics

We have inherited two conflicting notions of semantics, one deriving from linguis-
tics and the other from mathematical logic. As linguists normally understand these
terms, the syntax of a language is “the formal relation of signs to one another”
and the semantics of the language “the relations of signs to the objects to which
the signs are applicable” (Morris [75], cited in [58, p. 1]). Thus, it makes sense
to speak of the truth of a sign (or of an utterance in a language using such signs),
since this indicates that the sign has a relationship to external objects in the world.
Within mathematics and mathematical logic, a different understanding of semantics
has arisen, beginning with Pieri [79] and Hilbert [43] and first articulated formally
by Tarski [94]. In this tradition, a semantics for a formal language is a relationship
between that language and a space M of mathematical structures, called models.
A statement S in the language specifies a subset M(S) of M. Such a statement is
said to be true in a particular model M0 if M0 ∈M(S). A statement is said to be
logically true if it is true in every model, i.e., if M(S) = M.7 These two notions
of semantics — one linguistic, one mathematical — collide.8 In particular, in the
mathematical framework, benefit may be gained from defining different semantic
mathematical structures for the one language; Tarski himself, for instance, defined
topological [93] and discrete lattice [71] semantics for propositional logic. The ben-
efits of this are that different semantic frameworks may enable different properties
of the language to be studied and may provide different insights. Insight may also
be gained by comparing the structures with each other, a subject known as model
theory or metamathematics [48]. But, defining and comparing alternative structures

5 Traditional mathematical communications theory, due to Shannon and Weaver [89], explicitly
ignores the semantics of messages, and so provides little guidance to designers, developers or
users of agent communications languages and protocols.
6 These are known as conversations in the agent communications literature, e.g., [39].
7 Note that Tarski only applied his framework to formal, or mathematical, languages, and was
skeptical about its applicability to natural language [94, pp. 163–165].
8 Their first skirmish was the argument between Hilbert and Frege over the meaning of Hilbert’s ax-
ioms for geometry: Frege took what we are calling a linguistic approach, Hilbert a model-theoretic
approach; see [95, pp. 408–412] and [46, pp. 7–10].

13 Dialogue Games 269

in this way makes no sense in the linguistic understanding of semantics: how could
a language admit more than one set of relationships to the truth?

Agent communications languages and dialogue protocols straddle this divide.
Because they are formal languages, insight into their properties can be gained by
defining semantic relationships to mathematical structures, and studying these struc-
tures. However, because they are also intended as media for communication, just as
natural language is, each agent using a particular communications language or pro-
tocol will wish to ensure that all users share a common understanding of utterances.9

To verify that agents have the same understanding — the same semantics — for a
communications language ultimately requires some form of inspection of their in-
ternal states or, equivalently, their program code. This is a challenging, and perhaps
conceptually impossible, undertaking since a sufficiently-clever agent can always
simulate insincerely any required internal state.10 Rather, in this chapter, our use
of semantic frameworks differs from that in linguistics: first, as in model theory,
semantic structures are a means to understand the properties of a formal agent com-
munications language, and, second, because our focus is on computer systems, these
structures are a means to support the engineering of multi-agent systems software
and to aid uniformity of implementation when software engineering is undertaken
by different development teams.

It is therefore helpful to consider several different types of semantic frameworks
for formal languages. In doing so, we draw on the summary of the literature on pro-
gramming language semantics presented by van Eijk in [29, Section 1.2.2]; however,
we make no claims that the typology is comprehensive. One type of semantics de-
fines each locution of a communications language in terms of the pre-conditions
which must exist before the locution can be uttered, and possibly also the post-
conditions which apply following its utterance, in a STRIPS-like fashion [32]. This
is called an axiomatic semantics [29, 72]. For agent communications languages and
dialogue protocols we distinguish between public and private axiomatic approaches.
In public axiomatic approaches, the pre-conditions and post-conditions all describe
states or conditions of the dialogue which can be observed by all participants. In
private axiomatic approaches, at least some of the pre- or post-conditions describe
states or conditions which are internal to one or more of the participants, and thus
not directly observable by the others. For example, the semantic language, SL, for
the locutions of the Agent Communications Language, FIPA ACL, of the Founda-
tion for Intelligent Physical Agents (FIPA), is a private axiomatic semantics of the
speech acts of the language, defined in terms of the beliefs, desires and intentions
of the participating agents [35]. For example, the inform locution in the FIPA ACL
language, allows one agent, say agent A, to tell another agent, say B, some propo-
sition p. The FIPA ACL semantics of inform only permits agent A to do this if [35,
p. 10]: (a) agent A believes p to be true, (b) agent A intends that agent B believes p
to be true, and (c) agent A believes that agent B does not already have a belief about

9 Friedrich Dürrenmatt’s novel, Die Panne, shows what tragic consequences may follow when
participants assign very different meanings to the same conversation [28].
10 For more on this, see [98].

270 McBurney and Parsons

the truth of p.11 Similarly, the semantics defined for many dialogue game protocols
for agent interaction, e.g., [3], are also private axiomatic semantics. In contrast, the
semantics provided for dialogue games used for modeling legal reasoning in [10] is
a public axiomatic semantics.

A second type of semantics, an operational semantics, considers the dialogue
locutions as computational instructions which operate successively on the states
of some abstract machine. Under this approach, the participating agents and their
shared dialogue are viewed conceptually as parts of a large abstract or virtual com-
puter, whose overall state may be altered by the utterance of valid locutions or by
internal decision processes of the participants; it is as if these locutions or decisions
were commands in some computer programme language acting on the virtual ma-
chine.12 The utterances and agent decision-mechanisms are thus seen as state tran-
sition operators, and the operational semantics defines these transitions precisely
[29]. This approach to the semantics of agent communications languages makes ex-
plicit any link between the internal decision mechanisms of the participating agents
and their public utterances to one another. The semantics therefore enables the re-
lationships between the mental states of the participants and the public state of the
dialogue to be seen explicitly, and shows how these relationships change as a re-
sult of utterances and internal agent decisions. Thus, an operational semantics will
typically make assumptions about the internal decision-mechanisms of the agents
participating in the interaction; the actual agents engaged in a communicative in-
teraction may not necessarily use the decision-process or realize the mental states
assumed. Operational semantics have recently been defined for some agent commu-
nications languages, for example, in [30, 44] and for some dialogue protocols, e.g.,
information-passing interactions [19], negotiation dialogue protocols [54, 63], and
a general argumentation protocol [68].

Third, in denotational semantics, each element of the language syntax is as-
signed a relationship to an abstract mathematical entity, its denotation. The possi-
ble worlds, or Kripkean, semantics defined for modal logic syntax is an example of
such a semantics for a logical language [56]. However, two decades before Kripke’s
work, a denotational semantics mapping logical formulae to subsets of a topologi-
cal space was given for the modal logic system S4 [91]. For argumentation systems,
three denotational semantics have been provided for the ICRF’s Logic of Argu-
mentation LA [55]. In the first of these, Ambler [2] articulated a category-theoretic
semantics [61] for LA, by extending to arguments the Curry-Howard isomorphism,
which connects proofs in a deductive logic to the morphisms of a free cartesian
closed category. In this semantics, propositions (i.e., premises or claims) correspond
to objects in a particular enriched category, and arguments linking propositions to
morphisms between the associated objects. A second denotational semantics for LA,
due to Parsons [76], connects argumentation systems to qualitative probabilistic net-
works (QPNs). In this semantics, propositions correspond to nodes in a QPN, and
arguments linking propositions to edges between the associated nodes. Das [17]

11 Note that condition (a) enforces sincerity on the speaker, which is not necessarily desirable.
Also, condition (c) precludes the use of inform in authentication dialogues.
12 This virtual machine is purely a conceptual construct and does not need to exist in reality.

13 Dialogue Games 271

articulated a third denotational semantics for logics of argumentation, based on a
Kripkean possible-worlds structure. In this semantics, different arguments are as-
sumed classified according to the degree of support they provide for propositions;
these differential degrees of support are translated into separate hyper-relations over
the accessibility relations of the Kripke structure.13

Perhaps the first example of a denotational semantics for a dialogue protocol was
the possible-worlds semantics for question-response interactions defined by Ham-
blin in 1956 [40]. Although possible-worlds and category-theoretic denotational se-
mantics have a long subsequent history in mathematical linguistics, only recently
have denotational semantics been defined for agent dialogue protocols. In [67],
McBurney and Parsons articulated a category-theoretic semantics, called a Trace
Semantics, for a broad class of deliberation dialogue protocols. In this semantics,
articulation of proposals for action by participants correspond to the creation of ob-
jects in certain categories, while participant preferences between these proposals
correspond to the existence of arrows (morphisms) between the corresponding ob-
jects. Thus, the semantics is constructed jointly and incrementally by the dialogue
participants as the dialogue proceeds, in a manner similar to the natural language se-
mantics of Discourse Representation Theory [53] (which uses possible worlds), or
the argumentation graph of Gordon’s Pleadings Game [38]. A similar denotational
semantics, constructed jointly and incrementally by the participants, is outlined by
Atkinson and colleagues in [6], for a dialogue protocol for arguments over propos-
als for action. In this semantics, the mathematical entities constructed are topoi and
maps between them, rather than simply categories.14

For the denotational semantics approach to be useful, we must be able to derive
the semantic mapping of a compound statement in the language from the seman-
tic mappings of its elements, a property called compositionality. This property is
not always present; for example, it may be absent if the language contains com-
pound statements with infinite combinations of elements or if compound statements
have denotations which differ from the composition of those of their elements, as
in Hintikka’s Independence-Friendly (IF) Logic [47]. In these cases, a specific type
of denotational semantics, game-theoretic semantics, has sometimes proven use-
ful [45]. In this semantics, each well-formed statement in the language is associated
with a conceptual game between two players, a protagonist and an antagonist. A
statement in the language is considered to be true when and only when a winning
strategy exists for the protagonist in the associated game; a winning strategy for
a player is a rule giving that player moves for the game such that executing these
moves guarantees the player can win the game, no matter what moves are made by
the opposing player. Game semantics have been articulated for propositional and
predicate logics [59], linear logic [1], and for probability theory [18], among others.

13 This semantics may be viewed as a form of quantification over possible worlds, of which a
more general formalism is that developed subsequently (and independently) by van Eijk and his
colleagues to compare network topologies [31].
14 Topoi are generalizations of the category of sets, and incorporate a categorial analogue of the
notion of set membership [37].

272 McBurney and Parsons

What value do these different types of semantics have? Axiomatic semantics
show the pre- and post-conditions of individual utterances in a communications in-
teraction. They may also be used to show the pre- and post-conditions of sequences
of utterances, or even entire dialogues [14, 74]. Thus, they provide a set of rules
to regulate participation in rule-governed interactions. Operational semantics, by
showing the state transitions effected by utterances, may be used to identify dia-
logue states which are not reachable or from which no legal utterance may be made.
These semantics can be used, therefore, to demonstrate that termination of dialogues
between participants using a particular protocol is or is not possible. Operational
semantics also identify which internal agent decision-mechanisms are needed by
agents in order to issue and comprehend received utterances. Properties of dialogue
protocols may also be demonstrated using denotational semantics. In [67], we used
the Deliberation Trace Semantics to generalize a result of Harsanyi [42] regarding
the pareto-optimality of deals achieved using Zeuthen’s Monotonic Concession Pro-
tocol (MCP) [100]. Game semantics have also been used to study the properties of
formal argumentation systems and dialogue protocols, such as their computational
complexity [26], or the extent of truth-convergence under an inquiry dialogue pro-
tocol [65], and to identify acceptable sets of arguments in argument frameworks
[13, 51].

3.3 Pragmatics

Following Levinson [58], we view the study of language pragmatics as dealing with
those aspects of linguistic meaning not covered by considerations of truth and fal-
sity. Chief among these aspects are the desires and intentions of speakers, and these
are usually communicated by means of speech acts, non-propositional utterances in-
tended to or perceived to change the state of the world. Examples of speech acts are
utterances in which a speaker proposes that some action be undertaken, or promises
to undertake it, or commands another to perform it. Modern speech act theory was
initially due to Austin [8] and Searle [88], who classified spoken utterances by their
intended and actual effects on the world (including the internal mental states of
those hearing the utterances), and developed pre-conditions for those effects to be
realized. Drawing on this theory, Bretier, Cohen, Levesque, Perrault and Sadek
were able to present pre- and post-conditions for agent utterances in terms of the
mental states of the participants [12, 15, 16]. This work formed the basis for the
axiomatic Semantic Language SL of the FIPA Agent Communications Language
ACL mentioned above [35]. One of the criticisms made of FIPA ACL is that the
language does not support argumentation [70]; accordingly, McBurney and Parsons
[68] extended this language by defining five additional locutions to enable agents to
assert, question, challenge, justify and retract statements with one another. A set of
locution-combination rules are given (although any such rules are absent from the
specification of FIPA ACL itself), along with an axiomatic semantics in the style of

13 Dialogue Games 273

SL and an operational semantics. This protocol is discussed in the next Section, as
an example of these ideas.

Long before Austin and Searle, Reinach [85] had noted that speech acts typically
require endorsement, or uptake, from the hearer before changing the state of the
world; a speaker may promise a hearer to perform some action, but the speaker is
only obligated to act once the promise is accepted by the hearer. Speech acts are thus
essentially social activities and cannot, normally, be executed by a lone reasoner:
their natural home is a multi-party dialogue. This observation is particularly true
for those speech acts for which the speaker does not have power of retraction or
revocation. In [69], McBurney and Parsons presented an analysis of the differences
in meaning between, for instance, commands and promises. Once uptaken (i.e.,
once in effect), a command may only be revoked by the original speaker, whereas a
promise may only be revoked by the agent to which the promise was made, not the
speaker.

However, capturing such differences in the syntax of utterances can be difficult.
For example, the syntactical form of the two utterances:

I command you to wash the car.
I promise you to wash the car.

is identical, but the illocutionary force, the effects on the world, the nature of the
obligation incurred, the identity of the agent with revocation powers, and even
the identity of the agent intended by the speaker to perform the action are differ-
ent. Although formal agent communications languages should be less ambiguous
than natural language, an interpretation of the syntax of utterances is required for
elimination of any ambiguity in meaning. McBurney and Parsons [69] dealt with
this problem by modifying the denotational trace semantics of [67] to map action-
utterances to tuples in a partitioned tuple space [36]. The different dialogical powers
that participating agents have of issuance, endorsement and revocation for particular
types of utterance then correspond to different permissions to write, copy and delete
(respectively) tuples from associated sub-spaces of the tuple space.

4 Example

As an example of the ideas in this chapter, we present the Fatio protocol of [68].
This protocol comprises five locutions which may be added to the 22 locutions of
FIPA ACL, in order to enable communicating agents to engage in rational argument:
assert, question, challenge, justify and retract. These five locutions are subject to
six locution-combination rules, which together encode a particular dialectical ar-
gumentation theory. Because these locutions are intended to be complementary to
FIPA ACL, there are no locutions for commencing or terminating a dialogue.15 For
reasons of space, we only give examples of two of the five legal locutions of Fatio:

15 It would be easy to take these from another protocol, such as [63].

274 McBurney and Parsons

F1: assert(Pi,φ): A speaker Pi asserts a statement φ ∈ C (a belief, an intention,
a social connection, an external commitment, etc). In doing so, Pi creates a di-
alectical obligation within the dialogue to provide justification for φ if required
subsequently by another participant.

F3: challenge(Pj,Pi,φ): A speaker Pj challenges a prior utterance of assert(Pi,φ)
by another participant Pi, and seeks a justification for φ . In contrast to a ques-
tion, with this locution, Pj also creates a dialectical obligation on himself to pro-
vide a justification for not asserting φ , for example an argument against φ , if
questioned or challenged. Thus, challenge(Pj,Pi,φ) is a stronger utterance than
question(Pj,Pi,φ).

For illustration, we present two of the six Fatio locution-combination rules. Here,
Φ �+ φ indicates that Φ is an argument in support of φ .

CR2: The utterances question(Pj,Pi,φ) and challenge(Pj,Pi,φ) may be made
at any time following an utterance of assert(Pi,φ). Similarly, the utterances
question(Pj,Pi,Φ) and challenge(Pj,Pi,Φ) may be made at any time following
an utterance of justify(Pi,Φ �+ φ).

CR3: Immediately following an utterance of question(Pj,Pi,φ) or challenge(Pj,
Pi,φ), the speaker Pi of assert(Pi,φ) must reply with justify(Pi,Φ �+ φ), for some
Φ ∈A.

In [68], both an axiomatic and an operational semantics for this protocol are ar-
ticulated. The axiomatic semantics is defined in terms of the beliefs, desires and
intentions of the participating agents consistent with the axiomatic semantics SL of
FIPA ACL. For example, the semantics of the locution assert(.) is defined as fol-
lows, with Biφ indicating that “Agent i believes that φ is true”, and Diφ that “Agent
i desires that φ be true.”

• assert(Pi,φ)
Pre-conditions: A speaker Pi desires that each participant Pj(j �= i), believes that
Pi believes the proposition φ ∈ C.
((Pi,φ ,+) �∈ DOS(Pi))∧ (∀ j �= i)(DiB jBiφ).
Post-conditions: Each participant Pk(k �= i), believes that participant Pi desires
that each participant Pj(j �= i), believe that Pi believes φ .
(Pi,φ ,+) ∈ DOS(Pi) ∧ (∀k �= i)(∀ j �= i)(BkDiB jBiφ).
Dialectical Obligations: (Pi,φ ,+) is added to DOS(Pi), the Dialectical Obliga-
tions Store of speaker Pi.

Similarly, the operational semantics for Fatio defined in [68] articulates the state-
transition effected by an assert(.) utterance (here labeled F1) on the mental states
of, firstly, the agent who uttered it and, secondly, on any agent who heard it.

TR2: 〈Pi, D1, utter-assert(φ)〉 F1→ 〈Pi, D5, listen 〉
TR3: 〈Pi, D1, utter-assert(φ)〉 F1→ 〈Pj, D5, do-mech(D2) 〉
These excerpts from the semantics of Fatio are intended simply for illustration. Full
details are given with the protocol definition [68].

13 Dialogue Games 275

5 Protocol design and assessment

The science and software engineering of agent communications and interactions is
still in its infancy. Accordingly, designers of multi-agent dialogue game protocols
still have little guidance for design questions such as: How many locutions should
there be? What types of locutions should be included, e.g., assertions, questions, etc?
What are the appropriate rules for the combination of locutions? When should be-
havior be forbidden, e.g., repeated utterance of one locution? Under what conditions
should dialogues be made to terminate? When are dialogues conducted according to
a particular protocol guaranteed to terminate? What are the properties of a proposed
protocol?

Similarly, the immaturity of the discipline means that software developers and
their agents still lack answers to questions such as: How may different protocols
be compared and differences measured? Which protocols are to be preferred under
which circumstances? In other words, what are their advantages and disadvantages?
How should a system developer (or an agent) choose between two protocols which
both support the same type of dialogue, for example, two negotiation protocols?
When are dialogue game protocols preferable to other forms of agent interaction,
such as auction mechanisms or general agent communications languages, such as
FIPA ACL?

Some work has been undertaken which would assist with such questions. For ex-
ample, McBurney, Parsons and Wooldridge [70], proposed thirteen desirable prop-
erties of agent interaction protocols using dialogue games, and then applied these
properties to assess several dialogue game protocols and FIPA ACL; all were found
wanting, to a greater or lesser extent. From an empirical perspective, Karunatil-
lake [54] undertook an evaluation of various negotiation protocols. This work used
simulation studies to compare performance in negotiation interactions for agents
using protocols with and using protocols without argumentation, in order to iden-
tify the circumstances under which argumentation-based negotiation was beneficial.
From a theoretical perspective, Johnson, McBurney and Parsons [52] defined var-
ious measures of protocol equivalence, both syntactical and semantic, and showed
the relationship of these measures to one another. Knowing that two protocols are
equivalent allows inference about their properties (such as termination), and about
their compliance with a given specification, such as that laid down as the standard
for interacting within some electronic institution [86].

6 Conclusion

In this chapter we have given a brief introduction to the theory of dialogue game
protocols for agent interaction and argument, a subject which has become impor-
tant with the rise of multi-agent systems. We have focused on the syntax and the
semantics of these protocols because these topics are important, not only for anal-
ysis of protocols, but also for the software engineering specification, design and

276 McBurney and Parsons

implementation of agent interaction systems. In only a chapter, there are many top-
ics we do not have space to discuss, for example: the computational complexity
of decision-making involved in making utterances, and in deciding whether or not
these comply with a protocol, e.g., [27]; strategic issues over what utterances an
agent should make and when, under a given protocol [82, 83]; properties of specific
protocols, e.g. [3, 11, 87]; experiences arising from implementation [23]; and al-
lowing agents to choose protocols themselves, even at run-time [50, 74]. As can be
seen, there are many avenues to explore in this rich and exciting subject.

Acknowledgements We are grateful for partial financial support received from the EC Informa-
tion Society Technologies (IST) programme, through project ASPIC (IST-FP6-002307). This work
was also partially supported by the US Army Research Laboratory and the UK Ministry of Defence
under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this doc-
ument are those of the authors and should not be interpreted as representing the official policies,
either expressed or implied, of the US Army Research Laboratory, the US Government, the UK
Ministry of Defense, or the UK Government. The US and UK Governments are authorized to re-
produce and distribute reprints for Government purposes notwithstanding any copyright notation
hereon.

References

1. S. Abramsky. Semantics of interaction: an introduction to game semantics. In A. M. Pitts and
P. Dybjer, editors, Semantics and Logics of Computation, pages 1–31. Cambridge University
Press, Cambridge, UK, 1997.

2. S. J. Ambler. A categorical approach to the semantics of argumentation. Mathematical
Structures in Computer Science, 6:167–188, 1996.

3. L. Amgoud, N. Maudet, and S. Parsons. Modelling dialogues using argumentation. In E. Dur-
fee, editor, Proceedings of the Fourth International Conference on Multi-Agent Systems (IC-
MAS 2000), pages 31–38, Boston, MA, USA, 2000. IEEE Press.

4. L. Amgoud, S. Parsons, and N. Maudet. Arguments, dialogue, and negotiation. In W. Horn,
editor, Proceedings of the Fourteenth European Conference on Artificial Intelligence (ECAI
2000), pages 338–342, Berlin, Germany, 2000. IOS Press.

5. Aristotle. Topics. Clarendon Press, Oxford, UK, 1928. (W. D. Ross, Editor).
6. K. Atkinson, T. Bench-Capon, and P. McBurney. A dialogue game protocol for multi-

agent argument for proposals over action. Autonomous Agents and Multi-Agent Systems,
11(2):153–171, 2005.

7. K. Atkinson, R. Girle, P. McBurney, and S. Parsons. Command dialogues. In I. Rahwan and
P. Moraitis, editors, Proceedings of the Fifth International Workshop on Argumentation in
Multi-Agent Systems (ArgMAS 2008), Lisbon, Portugal, 2008. AAMAS 2008.

8. J. L. Austin. How To Do Things with Words. Oxford University Press, Oxford, UK, 1962.
9. T. J. M. Bench-Capon, P. E. Dunne, and P. H. Leng. Interacting with knowledge-based

systems through dialogue games. In Proceedings of the Eleventh International Conference
on Expert Systems and Applications, pages 123–140, Avignon, 1991.

10. T. J. M. Bench-Capon, T. Geldard, and P. H. Leng. A method for the computational modelling
of dialectical argument with dialogue games. Artificial Intelligence and Law, 8:233–254,
2000.

11. E. Black and A. Hunter. A generative inquiry dialogue system. In M. Huhns, O. Shehory,
E. H. Durfee, and M. Yokoo, editors, Proceedings of the Sixth International Joint Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS 2007), Honolulu, Hawaii, USA,
2007. IFAAMAS, ACM Press.

13 Dialogue Games 277

12. P. Bretier and D. Sadek. A rational agent as the kernel of a cooperative spoken dialogue
system: Implementing a logical theory of interaction. In J. P. M. et al., editor, Intelligent
Agents III, Lecture Notes in Artificial Intelligence 1193, pages 189–204. Springer, Berlin,
Germany, 1997.

13. C. Cayrol, S. Doutre, and J. Mengin. On decision problems related to the preferred semantics
for argumentation frameworks. Journal of Logic and Computation, 13(3):377–403, 2003.

14. E. Cogan, S. Parsons, and P. McBurney. New types of inter-agent dialogs. In S. P. et al., edi-
tor, Argumentation in Multi-Agent Systems: Second International Workshop (ArgMAS 2005),
Lecture Notes in Computer Science 4049, pages 154–168. Springer, Berlin, Germany, 2006.

15. P. R. Cohen and H. J. Levesque. Rational interaction as the basis for communication. In
P. R. C. et al., editor, Intentions in Communication, pages 221–255. MIT Press, Cambridge,
MA, USA, 1990.

16. P. R. Cohen and C. R. Perrault. Elements of a plan-based theory of speech acts. Cognitive
Science, 3:177–212, 1979.

17. S. Das. How much does an agent believe: An extension of modal epistemic logic. In
A. Hunter and S. Parsons, editors, Applications of Uncertainty Formalisms, Lecture Notes
in Artificial Intelligence 1455, pages 415–426. Springer, Berlin, Germany, 1998.

18. A. P. Dawid and V. G. Vovk. Prequential probability: principles and properties. Bernoulli,
5:125–162, 1999.

19. F. S. de Boer, R. Eijk, W. v. Hoek, and J.-J. C. Meyer. A fully abstract model for the exchange
of information in multi-agent systems. Theoretical Computer Science, 290(3):1753–1773,
2003.

20. F. Dignum, B. Dunin-Kȩplicz, and R. Verbrugge. Agent theory for team formation by dia-
logue. In C. Castelfranchi and Y. Lespérance, editors, Intelligent Agents VII, Lecture Notes
in Artificial Intelligence 1986, pages 150–166, Berlin, Germany, 2000. Springer.

21. F. Dignum, B. Dunin-Kȩplicz, and R. Verbrugge. Creating collective intention through dia-
logue. Logic Journal of the IGPL, 9(2):305–319, 2001.

22. S. Doutre, P. McBurney, and M. Wooldridge. Law-governed Linda as a semantics for agent
interaction protocols. In F. D. et al., editor, Proceedings of the Fourth International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2005), pages 1257–
1258, New York City, NY, USA, 2005. ACM Press.

23. S. Doutre, P. McBurney, M. Wooldridge, and W. Barden. Information-seeking agent dialogs
with permissions and arguments. Technical Report ULCS-05-010, Department of Computer
Science, University of Liverpool, Liverpool, UK, 2005.

24. P. E. Dunne. Prevarication in dispute protocols. In G. Sartor, editor, Proceedings of the Ninth
International Conference on AI and Law (ICAIL-03), pages 12–21, New York, NY, USA,
2003. ACM Press.

25. P. E. Dunne. Suspicion of hidden agenda in persuasive argument. In P. E. Dunne and T. J. M.
Bench-Capon, editors, Computational Models of Argument: Proceedings of COMMA 2006,
pages 329–340, Amsterdam, The Netherlands, 2006. IOS Press.

26. P. E. Dunne and T. J. M. Bench-Capon. Two party immediate response disputes: Properties
and efficiency. Artificial Intelligence, 149(2):221–250, 2003.

27. P. E. Dunne and P. McBurney. Optimal utterances in dialogue protocols. In J. S. R. et al.,
editor, Proceedings of the Second International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2003), pages 608–615, New York City, NY, USA, 2003. ACM
Press.

28. F. Dürrenmatt. A Dangerous Game. Jonathan Cape, London, UK, 1960. (Translation by R.
and C. Winston of Die Panne, published in German in 1956.).

29. R. Eijk. Programming Languages for Agent Communications. PhD thesis, Department of
Computer Science, Utrecht University, Utrecht, The Netherlands, 2000.

30. R. Eijk, F. S. de Boer, W. v. Hoek, and J.-J. C. Meyer. Operational semantics for agent
communications. In F. Dignum and M. Greaves, editors, Issues in Agent Communications,
Lecture Notes in Artificial Intelligence 1916, pages 80–95. Springer, Berlin, Germany, 2000.

31. R. Eijk, F. S. de Boer, W. v. Hoek, and J.-J. C. Meyer. Modal logic with bounded quantifica-
tion over worlds. Journal of Logic and Computation, 11(5):701–715, 2001.

278 McBurney and Parsons

32. R. E. Fikes and N. J. Nilsson. STRIPS: A new approach to the application of theorem proving
to problem solving. Artificial Intelligence, 2:189–208, 1971.

33. T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication language. In
J. Bradshaw, editor, Software Agents, pages 291–316. MIT Press, Cambridge, USA, 1997.

34. A. Finkelstein and H. Fuks. Multi-party specification. In Proceedings of the Fifth Interna-
tional Workshop on Software Specification and Design, Pittsburgh, PA, USA, 1989. ACM
Sigsoft Engineering Notes.

35. FIPA. Communicative Act Library Specification. Standard SC00037J, IEEE Foundation for
Intelligent Physical Agents, 3 December 2002.

36. D. Gelernter. Generative communication in Linda. ACM Transactions on Programming
Languages and Systems, 7(1):80–112, 1985.

37. R. Goldblatt. Topoi: The Categorial Analysis of Logic. North-Holland, Amsterdam, The
Netherlands, 1979.

38. T. F. Gordon. The Pleadings Game: An exercise in computational dialectics. Artificial Intel-
ligence and Law, 2:239–292, 1994.

39. M. Greaves, H. Holmback, and J. Bradshaw. What is a conversation policy? In F. Dignum and
M. Greaves, editors, Issues in Agent Communication, Lecture Notes in Artificial Intelligence
1916, pages 118–131. Springer, Berlin, Germany, 2000.

40. C. L. Hamblin. Language and the Theory of Information. Ph.D. thesis, Logic and Scientific
Method Programme, University of London, London, UK, 1957.

41. C. L. Hamblin. Fallacies. Methuen, London, UK, 1970.
42. J. C. Harsanyi. Approaches to the bargaining problem before and after the theory of games:

a critical discussion of Zeuthen’s, Hicks’ and Nash’s theories. Econometrica, 24:144–157,
1956.

43. D. Hilbert. Grundlagen der Geometrie. In Festschrift zur Feier der Enthüllung des Gauss-
Weber-Denkmals in Göttingen, pages 3–92. Teubner, Leipzig, Germany, 1899.

44. K. V. Hindriks, F. S. de Boer, W. Hoek, and J.-J. C. Meyer. Formal semantics for an abstract
agent progamming language. In M. P. S. et al., editor, Intelligent Agents IV, Lecture Notes
in Artificial Intelligence 1365, pages 215–229. Springer, Berlin, Germany, 1998.

45. J. Hintikka. Language-games for quantifiers. Americal Philosophical Quarterly Monograph
Series 2: Studies in Logical Theory, pages 46–72, 1968. Blackwell, Oxford, UK.

46. J. Hintikka. On the development of the model-theoretic viewpoint in logical theory. Synthese,
77(1):1–36, 1988.

47. J. Hintikka and G. Sandu. Game-theoretical semantics. In J. Benthem and A. Meulen, editors,
Handbook of Logic and Language, pages 361–410. Elsevier, Amsterdam, The Netherlands,
1997.

48. W. Hodges. A Shorter Model Theory. Cambridge University Press, Cambridge, UK, 1997.
49. J. Hulstijn. Dialogue Models for Inquiry and Transaction. PhD thesis, Universiteit Twente,

Enschede, The Netherlands, 2000.
50. J. Hulstijn, M. Dastani, and L. Torre. Negotiation protocols and dialogue games. In Proceed-

ings of the Belgian-Dutch AI Conference (BNAIC-2000), ADDRESS =, 2000.
51. H. Jakobovits and D. Vermeir. Dialectic semantics for argumentation frameworks. In Pro-

ceedings of the Seventh International Conference on Artificial Intelligence and Law (ICAIL-
99), pages 63–72, New York, NY, USA, 1999. ACM Press.

52. M. W. Johnson, P. McBurney, and S. Parsons. When are two protocols the same? In M.-
P. Huget, editor, Communication in Multi-Agent Systems: Agent Communication Languages
and Conversation Policies, Lecture Notes in Artificial Intelligence 2650, pages 253–268.
Springer, Berlin, Germany, 2003.

53. H. Kamp and U. Reyle. From Discourse to Logic: Introduction to Modeltheoretic Semantics
of Natural Language, Formal Logic and Discourse Representation Theory. Kluwer, Dor-
drecht, 1993.

54. N. C. Karunatillake. Argumentation-Based Negotiation in a Social Context. Ph.D. thesis,
School of Electronics and Computer Science, University of Southampton, UK, 2006.

55. P. Krause, S. Ambler, M. Elvang-Gørannson, and J. Fox. A logic of argumentation for rea-
soning under uncertainty. Computational Intelligence, 11 (1):113–131, 1995.

13 Dialogue Games 279

56. S. Kripke. A completeness proof in modal logic. Journal of Symbolic Logic, 24:1–14, 1959.
57. J. A. Levin and J. A. Moore. Dialogue-games: metacommunications structures for natural

language interaction. Cognitive Science, 1(4):395–420, 1978.
58. S. C. Levinson. Pragmatics. Cambridge University Press, Cambridge, UK, 1983.
59. P. Lorenzen and K. Lorenz. Dialogische Logik. Wissenschaftliche Buchgesellschaft, Darm-

stadt, Germany, 1978.
60. M. Luck, P. McBurney, O. Shehory, and S. Willmott. Agent Technology: Computing as Inter-

action. A Roadmap for Agent Based Computing. AgentLink III, the European Co-ordination
Action for Agent-Based Computing, Southampton, UK, 2005.

61. S. Mac Lane. Categories for the Working Mathematician. Springer, New York, USA, 1971.
62. J. D. MacKenzie. Question-begging in non-cumulative systems. Journal of Philosophical

Logic, 8:117–133, 1979.
63. P. McBurney, R. Eijk, S. Parsons, and L. Amgoud. A dialogue-game protocol for agent

purchase negotiations. Journal of Autonomous Agents and Multi-Agent Systems, 7(3):235–
273, 2003.

64. P. McBurney, D. Hitchcock, and S. Parsons. The eightfold way of deliberation dialogue.
International Journal of Intelligent Systems, 22(1):95–132, 2007.

65. P. McBurney and S. Parsons. Representing epistemic uncertainty by means of dialectical
argumentation. Annals of Mathematics and Artificial Intelligence, 32(1–4):125–169, 2001.

66. P. McBurney and S. Parsons. Games that agents play: A formal framework for dialogues
between autonomous agents. Journal of Logic, Language and Information, 11(3):315–334,
2002.

67. P. McBurney and S. Parsons. A denotational semantics for deliberation dialogues. In I. Rah-
wan, P. Moraitis, and C. Reed, editors, Argumentation in Multi-Agent Systems, Lecture Notes
in Artificial Intelligence 3366, pages 162–175. Springer, Berlin, 2005.

68. P. McBurney and S. Parsons. Locutions for argumentation in agent interaction protocols.
In R. M. van Eijk et al., editor, Developments in Agent Communication, Lecture Notes in
Artificial Intelligence 3396, pages 209–225. Springer, Berlin, Germany, 2005.

69. P. McBurney and S. Parsons. Retraction and revocation in agent deliberation dialogs. Argu-
mentation, 21(3):269–289, 2007.

70. P. McBurney, S. Parsons, and M. Wooldridge. Desiderata for agent argumentation protocols.
In C. Castelfranchi and W. L. Johnson, editors, Proceedings of the First International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2002), pages 402–409,
New York City, NY, USA, 2002. ACM Press.

71. J. C. C. McKinsey and A. Tarski. Some theorems about the Sentential Calculus of Lewis and
Heyting. Journal of Symbolic Logic, 13(1):1–15, 1948.

72. B. Meyer. Introduction to the Theory of Programming Languages. International Series in
Computer Science. Prentice Hall, New York City, NY, USA, 1990.

73. T. Miller and P. McBurney. Using constraints and process algebra for specification of first-
class agent interaction protocols. In G. O. et al., editor, Engineering Societies in the Agents
World VII, Lecture Notes in Artificial Intelligence 4457, pages 245–264, Berlin, Germany,
2007. Springer.

74. T. Miller and P. McBurney. Annotation and matching of first-class agent interaction proto-
cols. In L. P. et al., editor, Seventh International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2008), Estoril, Portugal, 2008.

75. C. W. Morris. Foundations of the theory of signs. In O. Neurath, R. Carnap, and C. Morris,
editors, International Encyclopedia of Unified Science, pages 77–138. Chicago University
Press, Chicago, IL, USA, 1938.

76. S. Parsons. Normative argumentation and qualitative probability. In D. M. G. et al., editor,
Qualitative and Quantitative Practical Reasoning, Lecture Notes in Artificial Intelligence
1244, pages 466–480, Berlin, Germany, 1997. Springer.

77. S. Parsons and E. Sklar. How agents alter their beliefs after an argumentation-based dialogue.
In S. P. et al., editor, Argumentation in Multi-Agent Systems: Second International Workshop
(ArgMAS 2005), Lecture Notes in Computer Science 4049, pages 297–312. Springer, Berlin,
Germany, 2006.

280 McBurney and Parsons

78. L. Perrussel, S. Doutre, J.-M. Thevenin, and P. McBurney. Argumentation in Multi-Agent
Systems, chapter A persuasion dialog for gaining access to information, pages 63–79. Lecture
Notes in Artificial Intelligence 4946. Springer, Berlin, Germany, 2008.

79. M. Pieri. Sui principi che reggiono la geometria di posizione. Atti della Reale Accademia
delle scienze di Torino, 30:54–108, 1895.

80. H. Prakken. Formal systems for persuasion dialogue. The Knowledge Engineering Review,
21(2):163–188, 2006.

81. H. Prakken and G. Sartor. Modelling reasoning with precedents in a formal dialogue game.
Artificial Intelligence and Law, 6:231–287, 1998.

82. I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and E. Sonenberg.
Argumentation-based negotiation. Knowledge Engineering Review, 18(4):343–375, 2003.

83. I. Rahwan, E. Sonenberg, N. R. Jennings, and P. McBurney. STRATUM: a methodology for
designing automated negotiation strategies. Applied Artificial Intelligence, 21(6):489–527,
2007.

84. C. Reed. Dialogue frames in agent communications. In Y. Demazeau, editor, Proceedings
of the Third International Conference on Multi-Agent Systems (ICMAS-98), pages 246–253.
IEEE Press, 1998.

85. A. Reinach. Die apriorischen Grundlagen des bürgerlichen Rechtes. Jahrbuch für Philoso-
phie und phänomenologische Forschung, 1:685–847, 1913.

86. J. A. Rodrı́guez, F. J. Martin, P. Noriega, P. Garcia, and C. Sierra. Towards a test-bed for
trading agents in electronic auction markets. AI Communications, 11(1):5–19, 1998.

87. F. Sadri, F. Toni, and P. Torroni. Logic agents, dialogues and negotiation: an abductive
approach. In M. Schroeder and K. Stathis, editors, Proceedings of the Symposium on Infor-
mation Agents for E-Commerce (AISB-2001), York, UK, 2001. AISB.

88. J. Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge University
Press, Cambridge, UK, 1969.

89. C. E. Shannon. The mathematical theory of communication. In C. E. Shannon and
W. Weaver, editors, The Mathematical Theory of Communication, pages 29–125. University
of Illinois Press, Chicago, IL, USA, 1963.

90. M. P. Singh. A social semantics for agent communication languages. In F. Dignum and
M. Greaves, editors, Issues in Agent Communication, Lecture Notes in Artificial Intelligence
1916, pages 31–45. Springer-Verlag: Heidelberg, Germany, 2000.

91. T. C. Tang. Algebraic postulates and a geometric interpretation for the Lewis calculus of
strict implication. Bulletin of the American Mathematical Society, 44:737–744, 1938.

92. Y. Tang and S. Parsons. Argumentation-based dialogues for deliberation. In F. D. et al.,
editor, Proceedings of the Fourth International Joint Conference on Autonomous Agents and
Multi-Agent Systems (AAMAS 2005), pages 552–559, New York City, NY, USA, 2005. ACM
Press.

93. A. Tarski. Der Aussagenkalkül und die Topologie. Fundamenta Mathematicae, 31:103–134,
1938.

94. A. Tarski. The concept of truth in formalized languages. In Logic, Semantics, Metamathe-
matics, pages 152–278. Clarendon Press, Oxford, UK, 1956. (Translated by J. H. Woodger).

95. R. Torretti. The Philosophy of Physics. Cambridge University Press, Cambridge, UK, 1999.
96. D. N. Walton and E. C. W. Krabbe. Commitment in Dialogue: Basic Concepts of Interper-

sonal Reasoning. SUNY Press, Albany, NY, USA, 1995.
97. M. Wardeh, T. J. M. Bench-Capon, and F. Coenen. Arguments from experience: The PADUA

protocol. In P. B. et al., editor, Computational Models of Argument: Proceedings of COMMA
2008, pages 405–416, Amsterdam, The Netherlands, 2008. IOS Press.

98. M. J. Wooldridge. Semantic issues in the verification of agent communication languages.
Journal of Autonomous Agents and Multi-Agent Systems, 3(1):9–31, 2000.

99. M. J. Wooldridge. Introduction to Multiagent Systems. John Wiley and Sons, New York, NY,
USA, 2002.

100. F. Zeuthen. Problems of Monopoly and Economic Warfare. Routledge and Sons, London,
UK, 1930.

Chapter 14
Models of Persuasion Dialogue

Henry Prakken

1 Introduction

This chapter1 reviews formal dialogue systems for persuasion. In persuasion dia-
logues two or more participants try to resolve a conflict of opinion, each trying to
persuade the other participants to adopt their point of view. Dialogue systems for
persuasion regulate how such dialogues can be conducted and what their outcome
is. Good dialogue systems ensure that conflicts of view can be resolved in a fair
and effective way [6]. The term ‘persuasion dialogue’ was coined by Walton [13]
as part of his influential classification of dialogues into six types according to their
goal. While persuasion aims to resolve a difference of opinion, negotiation tries to
resolve a conflict of interest by reaching a deal, information seeking aims at trans-
ferring information, deliberation wants to reach a decision on a course of action,
inquiry is aimed at “growth of knowledge and agreement” and quarrel is the ver-
bal substitute of a fight. This classification leaves room for shifts of dialogues of
one type to another. In particular, other types of dialogues can shift to persuasion
when a conflict of opinion arises. For example, in information-seeking a conflict of
opinion could arise on the credibility of a source of information, in deliberation the
participants may disagree about likely effects of plans or actions and in negotiation
they may disagree about the reasons why a proposal is in one’s interest.

The formal study of dialogue systems for persuasion was initiated by Hamblin
[5]. Initially, the topic was studied only within philosophical logic and argumenta-
tion theory [15, 7], but later several fields of computer science also became inter-
ested in this topic. In general AI the embedding of nonmonotonic logic in models
of persuasion dialogue was seen as a way to deal with resource-bounded reasoning
[6, 2], while in AI & Law persuasion was seen as an appropriate model of legal

Henry Prakken
Department of Information and Computing Sciences, Utrecht University, and Faculty of Law, Uni-
versity of Groningen, e-mail: henry@cs.uu.nl

1 This chapter is a revised and updated version of [11].

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 281
DOI 10.1007/978-0-387-98197-0 14, c© Springer Science+Business Media, LLC 2009

282 Henry Prakken

procedures [4]. In intelligent tutoring, systems for teaching argumentation skills
have been founded on models of persuasion dialogue [16]. Finally, in the field of
multi-agent systems dialogue systems have been incorporated into models of ratio-
nal agent interaction [8].

To delineate the scope of this chapter, it is useful to discuss what is the subject
matter of dialogue systems. According to Carlson [3] dialogue systems define the
principles of coherent dialogue, that is, the conditions under which an utterance
is appropriate. The leading principle here is that an utterance is appropriate if it
furthers the goal of the dialogue. For persuasion this means that an utterance should
contribute to the resolution of the conflict of opinion that triggered the persuasion.
Thus according to Carlson the principles governing the use of utterances should not
be defined at the level of individual speech acts but at the level of the dialogue in
which the utterance is made. Carlson therefore proposes a game-theoretic approach
to dialogues, in which speech acts are viewed as moves in a game and rules for their
appropriateness are formulated as rules of the game. Most work on formal dialogue
systems for persuasion follows this approach and therefore this chapter will assume
a game format of dialogue systems. It should be noted that the term dialogue system
as used in this chapter only covers the rules of the game, i.e., which moves are
allowed; it does not cover principles for playing the game well, i.e., strategies and
heuristics for the individual players. The latter are instead aspects of agent models.

Below in Section 2 an example persuasion dialogue will be presented, which will
be used for illustration throughout the paper. Then in Section 3 a formal framework
for specifying dialogue game systems is proposed, which in Section 4 is instantiated
for persuasion dialogues and in Section 5 is used for discussing and comparing three
systems proposed in the literature.

2 An example persuasion dialogue

The following example persuasion dialogue exhibits some typical features of per-
suasion and will be used in this chapter to illustrate different degrees of expressive-
ness and strictness of the various persuasion systems.

Paul: My car is safe. (making a claim)
Olga: Why is your car safe? (asking grounds for a claim)
Paul: Since it has an airbag, (offering grounds for a claim)
Olga: That is true, (conceding a claim) but this does not make your car safe. (stat-
ing a counterclaim)
Paul: Why does that not make my care safe? (asking grounds for a claim)
Olga: Since the newspapers recently reported on airbags expanding without cause.
(stating a counterargument by providing grounds for the counterclaim)
Paul: Yes, that is what the newspapers say (conceding a claim) but that does not
prove anything, since newspaper reports are very unreliable sources of technologi-
cal information. (undercutting a counterargument)

14 Models of Persuasion Dialogue 283

Olga: Still your car is still not safe, since its maximum speed is very high. (alter-
native counterargument)
Paul: OK, I was wrong that my car is safe.

This dialogue illustrates several features of persuasion dialogues.

• Participants in a persuasion dialogue not only exchange arguments and coun-
terarguments but also express various propositional attitudes, such as claiming,
challenging, conceding or retracting a proposition.

• As for arguments and counterarguments it illustrates the following features.

– An argument is sometimes attacked by constructing an argument for the oppo-
site conclusion (as in Olga’s two counterarguments) but sometimes by saying
that in the given circumstances the premises of the argument do not support
its conclusion (as in Paul’s counterargument). This is Pollock’s well-known
distinction between rebutting and undercutting counterarguments [9].

– Counterarguments are sometimes stated at once (as in Paul’s undercutter and
Olga’s last move) and are sometimes introduced by making a counterclaim (as
in Olga’s second and third move).

– Natural-language arguments sometimes leave elements implicit. For example,
Paul’s second move arguably leaves a commonsense generalisation ‘Cars with
airbags usually are safe’ implicit.

• As for the structure of dialogues, the example illustrates the following features.

– The participants may return to earlier choices and move alternative replies: in
her last move Olga states an alternative counterargument after she sees that
Paul had a strong counterattack on her first counterargument. Note that she
could also have moved the alternative counterargument immediately after her
first, to leave Paul with two attacks to counter.

– The participants may postpone their replies, sometimes even indefinitely: with
her second argument why Paul’s car is not safe, Olga postpones her reply to
Paul’s counterattack on her first argument for this claim; if Paul fails to suc-
cessfully attack her second argument, such a reply might become superfluous.

3 Elements of dialogue systems

In this section a formal framework for specifying dialogue systems is proposed. To
summarise, dialogue systems have a dialogue goal and at least two participants,
who can have various roles. Dialogue systems have two languages, a a communica-
tion language wrapped around a topic language. Sometimes, dialogues take place
in a context of fixed and undisputable knowledge, such as the relevant laws in a le-
gal dispute. The heart of a dialogue system is formed by a protocol, specifying the
allowed moves at each point in a dialogue, the effect rules, specifying the effects
of utterances on the participants’ commitments, and the outcome rules, defining the

284 Henry Prakken

outcome of a dialogue. Two kinds of protocol rules are sometimes separately de-
fined, viz. turntaking and termination rules.

Let us now specify these elements more formally. The definitions below of dia-
logues, protocols and strategies are based on Chapter 12 of [1] as adapted in [10].
As for notation, the complement ϕ of a formula ϕ is ¬ϕ if ϕ is a positive formula
and ψ if ϕ is a negative formula ¬ψ .

Definition 14.1. (Dialogue systems) A dialogue system consists of the following
elements.

• A topic language Lt , closed under classical negation.
• A communication language Lc, consisting of a set of speech acts with a content.

The set of dialogues, denoted by M≤∞, is the set of all sequences from Lc, and
the set of finite dialogues, denoted by M<∞, is the set of all finite sequences from
Lc. For any dialogue d = m1, . . . ,mn, . . ., the subsequence m1, . . . ,mi is denoted
with di.

• A dialogue purpose.
• A set A of participants (or ‘players’) and a set R of roles, defined as disjoint

subsets of A. A participant a may or may not have a, possibly inconsistent, belief
base Σa ⊆ Pow(Lt), which may or may not change during a dialogue. Further-
more, each participant has a, possibly empty set of commitments Ca ⊆ Lt , which
usually changes during a dialogue.

• A context K ⊆ Lt , containing the knowledge that is presupposed and must be
respected during a dialogue. The context is assumed consistent and remains the
same throughout a dialogue.

• A logic L for Lt , which may or may not be monotonic and which may or may
not be argument-based.

• A set of effect rules C for Lc, specifying for each utterance ϕ ∈ Lc its effects on
the commitments of the participants. These rules are specified as functions

– Ca : M<∞ −→ Pow(Lt)

Changes in commitments are completely determined by the last move in a dia-
logue and the commitments just before making that move:

– If d = d′ then Ca(d,m) = Ca(d′,m)

• A protocol Pr for Lc, specifying the allowed (or ‘legal’) moves at each stage of
a dialogue. Formally, A protocol on Lc is a function Pr with domain the context
plus a nonempty subset D of M<∞ taking subsets of Lc as values. That is:

– Pr : Pow(Lt)×D−→ Pow(Lc)

such that D⊆M<∞. The elements of D are called the legal finite dialogues. The
elements of Pr(d) are called the moves allowed after d. If d is a legal dialogue
and Pr(d) = ∅, then d is said to be a terminated dialogue. Pr must satisfy the
following condition: for all finite dialogues d and moves m, d ∈D and m∈ Pr(d)
iff d,m ∈ D.

14 Models of Persuasion Dialogue 285

It is useful (although not strictly necessary) to explicitly distinguish elements of
a protocol that regulate turntaking and termination:

– A turntaking function is a function T : D×Pow(Lt)−→ Pow(A). A turn of a
dialogue is defined as a maximal sequence of moves in the dialogue in which
the same player is to move. Note that T can designate more than one player
as to-move next.

– Termination is above defined as the case where no move is legal. Accordingly,
an explicit definition of termination should specify the conditions under which
Pr returns the empty set.

• Outcome rules OK , defining the outcome of a dialogue given a context. For in-
stance, in negotiation the outcome is an allocation of resources, in deliberation
it is a decision on a course of action, and in persuasion dialogue it is a winner
and a loser of the persuasion dialogue. The outcome must be defined for termi-
nated dialogues and may be defined for nonterminated ones; in the latter case the
outcome rules capture an ‘anytime’ outcome notion.

Note that no relations are assumed between a participant’s commitments and be-
lief base. Commitments are an agent’s publicly declared points of view about a
proposition, which need not coincide with the agent’s internal beliefs.

Definition 14.2. (Some protocol types)

• A protocol has a public semantics if the set of legal moves is always independent
from the agents’ belief bases.

• A protocol is context-independent if the set of legal moves and the outcome is
always independent of the context, so if Pr(K,d) = Pr(∅,d) and OK(d) = O∅(d)
for all K and d.

• A protocol Pr is fully deterministic if Pr always returns a singleton or the empty
set. It is deterministic in Lc if the set of moves returned by Pr at most differ in
their content but not in their speech act type.

• A protocol is unique-move if the turn shifts after each move; it is multiple-move
otherwise.

Paul and Olga (ct’d): The protocol in our running example is multiple-move.

Dialogue participants can have strategies and heuristics for playing the dialogue
game in ways that promote their individual dialogue goal. The notion of a strategy
for a participant a can be defined in the game-theoretical sense, as a function from
the set of all finite legal dialogues in which a is to move into Lc. A strategy for a is a
winning strategy if in every dialogue played in accord with the strategy a realises his
dialogue goal (for instance, winning in persuasion). Heuristics generalise strategies
in two ways: they may leave the choice for some dialogues undefined and they may
specify more than one move as a choice option. More formally:

Definition 14.3. (strategies and heuristics) Let Da, a subset of D, be the set of all
dialogues where a is to move, and let D′a be a subset of Da. Then a strategy and a
heuristic for a are defined as functions sa and ha as follows.

286 Henry Prakken

• sa : Da −→ Lc

• ha : D′a −→ Pow(Lc)

4 Persuasion

Let us now become more precise about persuasion. Walton & Krabbe [14] define
persuasion dialogues as dialogues with as goal to resolve a conflict of points of
view between at least two participants. A point of view with respect to a proposition
can be positive (for), negative (against) or doubtful. The participants aim to per-
suade the other participant(s) to accept their point of view. According to Walton &
Krabbe a conflict is resolved if all parties share the same point of view on the propo-
sition that is at issue. They distinguish disputes as a subtype of persuasion dialogues
where two parties disagree about a single proposition ϕ , such that at the start of the
dialogue one party has a positive (ϕ) and the other party a negative (¬ϕ) point of
view towards the proposition.

Dialogue systems for persuasion can be formally defined as a particular class of
instantiations of the general framework.

Definition 14.4. (dialogue systems for persuasion) A dialogue system for persua-
sion is a dialogue system with at least the following instantiations of Definition 14.1.

• The dialogue purpose is resolution of a conflict of opinion about one or more
propositions, called the topics T ⊆ Lt . This dialogue purpose gives rise to the
following participant roles and outcome rules.

• The participants can have the following roles. To start with, prop(t) ⊆ A, the
proponents of topic t, is the (nonempty) set of all participants with a positive point
of view towards t. Likewise, opp(t) ⊆ A, the opponents of t, is the (nonempty)
set of all participants with a doubtful point of view toward a topic t. Together,
the proponents and opponents of t are called the adversaries with respect to t.
For any t, the sets prop(t) and opp(t) are disjoint but do not necessarily jointly
exhaust A. The remaining participants, if any, are the third parties with respect
to t, assumed to be neutral towards t.
Note that this allows that a participant is a proponent of both t and ¬t or has
a positive attitude towards t and a doubtful attitude towards a topic t ′ that is
logically equivalent to t. Since protocols can deal with such situations in various
ways, this should not be excluded by definition.

• The Outcome rules of systems for persuasion dialogues define for a dialogue d,
context K and topic t the winners and losers of d with respect to topic d. More
precisely, O consists of two partial functions w and l:

– w : D×Pow(Lt)×Lt −→ Pow(A)
– l : D×Pow(Lt)×Lt −→ Pow(A)

such that they are defined at least for all terminated dialogues but only for those
t that are a topic of d. These functions will be written as wK

t (d) and lK
t (d) or,

14 Models of Persuasion Dialogue 287

if there is no danger for confusion, as wt(d) and lt(d). They further satisfy the
following conditions for arbitrary but fixed context K:

– wt(d)∩ lt(d) = ∅
– wt(d) = ∅ iff lt(d) = ∅
– if |A | = 2, then wt(d) and lt(d) are at most singletons

• Next, to make sense of the notions of proponent and opponent, their commit-
ments at the start of a dialogue should not conflict with their points of view.

– If a ∈ prop(t) then t �∈Ca(∅)
– If a ∈ opp(t) then t �∈Ca(∅)

• Finally, in persuasion at most one side in a dialogue gives up, i.e.,

– wt(d)⊆ prop(t) or wt(d)⊆ opp(t) ; and
– If a ∈ wt(d) then
· if a ∈ prop(t) then t ∈Ca(d)
· if a ∈ opp(t) then t �∈Ca(d)

These conditions ensure that a winner did not change its point of view. Note
that they make that two-person persuasion dialogues are zero-sum games. Per-
haps this is the main feature that sets persuasion apart from information seeking,
deliberation and inquiry.

Note that the two last winning conditions of the last bullet lack their only-if part.
This is to allow for a distinction between so-called pure persuasion and conflict
resolution. The outcome of pure persuasion dialogues is fully determined by the
participants’ points of view and commitments:

Definition 14.5. (types of persuasion systems)

• A dialogue system is for pure persuasion iff for any terminated dialogue d it
holds that a ∈ wt(d) iff

– either a ∈ prop(t) and t ∈Ca′(d) for all a′ ∈ prop(d)∪opp(d)
– or a ∈ opp(t) and t �∈Ca′(d) for all a′ ∈ prop(d)∪opp(d)

• Otherwise, it is for conflict resolution.

In addition, pure persuasion dialogues are assumed to terminate as soon as the
right-hand-side conjuncts of one of these two winning conditions hold.

Paul and Olga (ct’d): In our running example, if the dialogue is regulated by a
protocol for pure persuasion, it terminates after Paul’s retraction.

In conflict resolution dialogues the outcome is not fully determined by the par-
ticipant’s points of view and commitments. In other words, in such dialogues it is
possible that, for instance, a proponent of ϕ loses the dialogue about ϕ even if at
termination he is still committed to ϕ . A typical example is legal procedure, where
a third party can determine the outcome of the case. For instance, a crime suspect
can be convicted even if he maintains his innocence throughout the case.

288 Henry Prakken

If the system has an anytime outcome notion, then another distinction can be
made [6]: a protocol is immediate-response if the turn shifts just in case the speaker
is the ‘current’ winner and if it then shifts to a ‘current’ loser.

As for the communication language and effect rules, some common elements can
be found throughout the literature. Below are the most common speech acts, with
their informal meaning and the various names they have been given in the literature.2

• claim ϕ (assert, statement, ...). The speaker asserts that ϕ is the case.
• why ϕ (challenge, deny, question, ...) The speaker challenges that ϕ is the case

and asks for reasons why it would be the case.
• concede ϕ (accept, admit, ...). The speaker admits that ϕ is the case.
• retract ϕ (withdraw, no commitment, ..) The speaker declares that he is not com-

mitted (any more) to ϕ . Retractions are ‘really’ retractions if the speaker is com-
mitted to the retracted proposition, otherwise it is a mere declaration of non-
commitment (for example, in reply to a question).

• ϕ since S (argue, argument, ...) The speaker provides reasons why ϕ is the case.
Some protocols do not have this move but instead require that reasons be pro-
vided by a claim ϕ or claim S move in reply to a why ψ move (where S is a
set of propositions). Also, in some systems the reasons provided for ϕ can have
structure, for example, of a proof three or a deduction.

• question ϕ The speaker asks the hearers’ opinion on whether ϕ is the case.

Paul and Olga (ct’d): In this communication language our example from Section 2
can be more formally displayed as follows:

P1: claim safe O2: why safe
P3: safe since airbag O4: concede airbag

O5: claim ¬ safe
P6: why ¬ safe O7: ¬ safe since newspaper
P8: concede newspaper
P9: so what since ¬ newspapers reliable O10: ¬ safe since high max. speed
P11: retract safe

Most dialogue systems have a notion of typical replies to certain speech acts,
although usually this is left implicit in the replies that are allowed by the protocol
rules. In most systems these typical replies are as displayed in Table 14.1.

Paul and Olga (ct’d): With this table our running example can be displayed as in
Figure 14.1, where the boxes stand for moves and the links for reply relations.

The reply notion induces another distinction between dialogue protocols.

Definition 14.6. A dialogue protocol is unique-reply if at most one reply to a move
is allowed throughout a dialogue; otherwise it is multiple-reply.

Paul and Olga (ct’d): The protocol governing our running example is multiple-
reply, as illustrated by the various branches in Figure 14.1.

2 To make this chapter more uniform, the present terminology will be used even if the original
publication of a system uses different terms.

14 Models of Persuasion Dialogue 289

Table 14.1 Locutions and typical replies

Locutions Replies
claim ϕ why ϕ , claim ϕ , concede ϕ
why ϕ ϕ since S (alternatively: claim S), retract ϕ
concede ϕ
retract ϕ
ϕ since S why ψ (ψ ∈ S), concede ψ (ψ ∈ S), ϕ ′ since S ′
question ϕ claim ϕ , claim ϕ , retract ϕ

Fig. 14.1 Reply structure of the example dialogue

As for the commitment rules, the following ones are generally accepted in the
literature. (Below pl denotes the speaker of the move; effects on the other parties’
commitments are only specified when a change is effected.)

• If pl(m) = claim(ϕ) then Cpl(d,m) = Cpl(d)∪{ϕ}
• If pl(m) = why(ϕ) then Cpl(d,m) = Cpl(d)
• If pl(m) = concede(ϕ) then Cpl(d,m) = Cpl(d)∪{ϕ}
• If pl(m) = retract(ϕ) then Cpl(d,m) = Cpl(d) −{ϕ}
• If pl(m) = ϕ since S then Cpl(d,m)⊇Cpl(d)∪prem(A)

The rule for since uses ⊇ since such a move may commit to more than just the
premises of the moved argument. For instance, in [10] the move also commits to
ϕ , since arguments can also be moved as counterarguments instead of as replies to

290 Henry Prakken

challenges of a claim. And in some systems that allow incomplete arguments, such
as [14], the move also commits the speaker to the material implication S→ ϕ .

Paul and Olga (ct’d): According to these rules, the commitment sets of Paul and
Olga at the end of the example dialogue are

- CP(d11)⊇ {airbag, newspaper, ¬ newspapers reliable}
- CO(d11)⊇ {¬ safe, airbag, newspaper, high max. speed}

5 Three systems

Now three persuasion protocols from the literature will be discussed. The first is pri-
marily based on commitments, the second defines protocols as finite state machines,
while the third exploits an explicit reply structure on the communication language.

5.1 Walton and Krabbe (1995)

The first system to be discussed is Walton & Krabbe’s dialogue system PPD for “per-
missive persuasion dialogues” [14]. In PPD, dialogues have no context. The players
are called White (W) and Black (B). They are assumed to declare zero or more “as-
sertions” and “concessions” in an implicit preparatory phase of a dialogue. Each
participant is proponent of his own and opponent of the other participant’s initial
assertions. B must have declared at least one assertion, and W starts a dialogue. The
communication language consists of challenges, (tree-structured) arguments, con-
cessions, questions, resolution demands (“resolve”), and two retraction locutions,
one for assertion-type and one for concession-type commitments. It has no explicit
reply structure but the protocol reflects the reply structure of Table 14.1 above.

The logical language is that of propositional logic and the logic consists of an
incomplete set of deductively valid inference rules: they are incomplete to reflect
that for natural language no complete logic exists. Although an argument may thus
be incomplete, its mover becomes committed to the material implication premises
→ conclusion, which is then open for discussion.

The commitment rules are standard but Walton & Krabbe distinguish between
several kinds of commitments for each participant, viz. assertions, concessions and
dark-side commitments. Initial assertions and premises of arguments are placed in
the assertions while conceded propositions are placed in the concessions. Only as-
sertions can be challenged. Dark-side commitments are hidden or veiled commit-
ments of an agent, of which they are often unaware. This makes them hard to model
computationally, for which reason they will be ignored below.

The protocol is driven by two main factors: the contents of the commitment sets
and the content of the last turn. W starts and in their first turn both W and B either
concede or challenge each initial assertion of the other party. Then each turn must

14 Models of Persuasion Dialogue 291

reply to all moves in the other player’s last turn except concessions and retractions;
in particular, for since moves each premise must be conceded or challenged, includ-
ing the hidden premise of incomplete arguments. Multiple replies are allowed, such
as alternative arguments for the same assertion. Counterarguments are not allowed.
In sum, the PPD protocol is nondeterministic, multi-move and multi-reply but post-
ponement of replies is not allowed. Dark-side commitments prevent the protocol
from having a public semantics.

Most protocol rules refer to the participants’ commitments. To start with, chal-
lenges, concessions and retractions always concern commitments. Second, a speaker
cannot challenge or concede his own commitments, and question ϕ and ϕ since S
may not be used if the listener is committed to ϕ . Furthermore, if a participant
has inconsistent commitments, the other participant can demand resolution of the
inconsistency by using the resolve speech act. Also, if a participant’s commitments
logically imply an assertion of the other participant but do not contain that assertion,
then the initial participant must either concede the assertion or retract one of the im-
plying commitments. Retractions must be successful in that the retracted proposition
is not still implied by the speaker’s commitments. Finally, the commitments deter-
mine the outcome of a dialogue: dialogues terminate after a predetermined number
of turns, and the outcome of terminated dialogues is defined as for pure persuasion.

Table 14.2 contains an example dialogue.3 The first column numbers the turns,
and the second contains the moves made in each turn. The other columns contain
the assertions and concessions of W and B: the first row contains the initial commit-
ments and the other rows indicate changes in these sets: +ϕ means that ϕ is added
and −ϕ that it is deleted. If the dialogue terminates here, there is no winner, since
neither player has conceded any of the other player’s assertions or retracted any of
his own.

Several points are worth noting about this example. Firstly, B in his first turn
moves a complex argument, where the second argument supports a premise of the
first: for this reason i is not added to B’s assertions. Next, in his second turn, W first
concedes j and then asserts j as a premise of an argument; only after the second
move has W incurred a burden to defend j if challenged. However, B in his second
turn cannot challenge j since B is itself committed to j: if B wants to challenge j,
he must first retract j. Note further that after B concedes f ∧ j → a in his second
turn, his commitments logically imply a, which is an assertion of W . Therefore B
must in the same turn either concede a or retract one of the implying commitments.
B opts for the latter, retracting f . Next consider B’s second move of his second
turn: remarkably, B becomes committed to a tautology but W still has the right to
challenge it at his third turn. Finally, the example illustrates that the protocol only
partly enforces relevance of moves. For instance, at any point a participant could
have moved question ϕ for any ϕ not in the commitments of the listener.

Paul and Olga (ct’d): Let us finally reconstruct our running example in PPD. To
start with, Paul’s initial claim must now be modelled as an initial assertion in the

3 In this section the dialogue participants will be denoted with W and B, except if they have propo-
nent/opponent roles throughout the dialogues, in which case they are called P and O.

292 Henry Prakken

Table 14.2 An example PPD dialogue

Turn Moves AW CW AB CB

{a} {b,c} {d,e} { f ,g}
W1 why d

concede e +e
B1 why a

d since h, i,
i since j,k +h,h∧ i→ d,

j,k, j∧ k→ i
W2 concede j + j

concede k +k
why j∧ k→ i
concede h∧ i→ d +h∧ i→ d
why h
a since f , j + f , j, f ∧ j→ a

B2 h since l, l → h +l, l → k,
l∧ (l → k)→ k

j∧ k→ i since m +m,m→ (j∧ k→ i)
concede f ∧ j→ a + f ∧ j→ a
retractC f − f

preparatory phase. Since arguments can be incomplete, they can be modelled as in
the example’s original version. Two features of PPD make a straightforward mod-
elling of the example impossible. The first is that PPD requires that every claim or
argument is replied to in the next turn and the second is that explicit counterargu-
ments are not allowed. To deal with the latter, it must be assumed that Olga has also
declared an initial assertion, viz. that Paul’s car is not safe.

(P0: claim safe O0: claim ¬ safe)
O1: why safe

P2: safe since airbag
P3: why ¬ safe O4: concede airbag

O5: ¬ safe since newspaper

Here a problem arises, since Olga now has to either concede or challenge Paul’s
hidden premise airbag → safe. If Olga concedes it, she is forced to also concede
Paul’s initial claim, since it is now implied by Olga’s commitments. If, on the other
hand, Olga challenges the hidden premise, then at his next turn Paul must provide
an argument for it, which he does not do in our original example. Similar problems
arise with the rest of the example. Let us now, to proceed with the example, ignore
this ‘completeness’ requirement of turns.

P6: concede newspaper

Here another problem arises, since PPD does not allow Paul to move his undercut-
ting counterargument against O5. The only way to attack O5 is by challenging its
unstated premise (newspaper→ ¬ safe).

14 Models of Persuasion Dialogue 293

In sum, two features of PPD prevent a fully natural modelling of our example:
the monotonic nature of the underlying logic and the requirement to reply to each
claim or argument of the other participant.

5.2 Parsons, Wooldridge & Amgoud (2003)

In a series of papers Parsons, Wooldridge & Amgoud have developed an approach
to specifying dialogue systems for various types of dialogues. Here the persuasion
system of [8] will be discussed.

The system is for dialogues on a single topic between two players called White
(W) and Black (B). Dialogues have no context but each participant has a, possibly
inconsistent, belief base Σ . The communication language consists of claims, chal-
lenges, and concessions; it has no explicit reply structure but the protocol largely
conforms to Table 14.1. Claims can concern both individual propositions and sets
of propositions. The logical language is propositional. Its logic is an argument-
based nonmonotonic logic in which arguments are classical proofs from consistent
premises and counterarguments negate a premise of their target. Conflict relations
between arguments are resolved with a preference relation on the premises such that
arguments are as good as their least preferred premises. Argument acceptability is
defined with grounded semantics. In dialogues, arguments cannot be moved as such
but only implicitly as claim S replies to challenges of another claim ϕ , such that S is
consistent and S � ϕ . Finally, the commitment rules are standard and commitments
are only used to enlarge the player’s belief base with the other player’s commit-
ments; they do not constrain move legality nor determine the dialogue’s outcome.

An important feature of the system is that the players are assumed to adopt an
assertion and an acceptance attitude, which they must respect throughout the dia-
logue. The attitudes are defined relative to their internal belief base (which remains
constant throughout a dialogue) plus both players’ commitment sets (which may
vary during a dialogue). The following assertion attitudes are distinguished: a con-
fident agent can assert any proposition for which he can construct an argument, a
careful agent can do so only if he can construct such an argument and cannot con-
struct a stronger counterargument, and a thoughtful agent can do so only if he can
construct an acceptable argument for the proposition. The corresponding acceptance
attitudes also exist: a credulous agent accepts a proposition if he can construct an
argument for it, a cautious agent does so only if in addition he cannot construct a
stronger counterargument and a skeptical agent does so only if he can construct an
acceptable argument for the proposition.

It can be debated whether such the requirement to respect these attitudes must
be part of a protocol or of a participant’s heuristics. According to one approach, a
dialogue protocol should only enforce coherence of dialogues [14, 10]; according
to another approach, it should also enforce rationality and trustworthiness of the
agents engaged in a dialogue [8]. The second approach allows protocol rules to
refer to an agent’s internal belief base and therefore such protocols do not have a

294 Henry Prakken

public semantics. The first approach does not allow such protocol rules and instead
regards assertion and acceptance attitudes as an aspect of agent design.

The formal definition of the persuasion protocol is as follows.

Definition 14.7. (PWA persuasion protocol) A move is legal iff it does not repeat a
move of the same player, and satisfies the following procedure:

1. W claims ϕ .

2. B concedes ϕ if its acceptance attitude allows, if not B asserts ¬ϕ if its assertion attitude
allows it, or otherwise challenges ϕ .

3. If B claims ¬ϕ , then goto 2 with the roles of the players reversed and ¬ϕ in place of ϕ .

4. If B has challenged, then:

a. W claims S, an argument for ϕ;

b. Goto 2 for each s ∈ S in turn.

5. B concedes ϕ if its acceptance attitude allows, or the dialogue terminates.

Dialogues terminate as specified in condition 5, or when the move required by the
procedure cannot be made, or when the player-to-move has conceded all claims
made by the hearer.

No win and loss functions are defined, but the possible outcomes are defined in
terms of the propositions claimed by one player and conceded by the other.

This protocol is unique-move except that if one element of a claim S move is
conceded, another element may be replied-to next. Also, it is unique-reply except
that each element of a claim S move can be separately challenged or conceded.
The protocol is deterministic in Lc but not fully deterministic, since if a player can
construct more than one argument for a challenged claim, he has a choice.

Let us first consider some simple dialogues that fit this protocol.

Example 14.1. First, let ΣW = {p} and ΣB = ∅. Then the only legal dialogue is:

W1: claim p, B1: concede p

B1 is B’s only legal move, whatever its acceptance attitude, since after W1, B must
reason from ΣB∪CW (d1) = {p} so that B can construct the trivial argument ({p}, p).
Here the dialogue terminates.

This example illustrates that since the players must reason with the commitments of
the other player, they can learn from each other. However, the next example illus-
trates that the same feature sometimes makes them learn too easily.

Example 14.2. Assume ΣW = {q,q→ p} and ΣB = {¬q}, where all formulas are of
the same preference level.

W1: claim p

Now whatever her acceptance attitude, B has to concede p since she can construct
the trivial argument ({p}, p) for p while she can construct no argument for ¬p. Yet
B has an attacker for W ’s only argument for p, namely, ({¬q},¬q), which attacks
({q,q→ p}, p) and is not weaker than its target. So even though p is not acceptable
on the basis of the agents’ joint knowledge, W1 can win a dialogue about p.

14 Models of Persuasion Dialogue 295

This example thus illustrates that if the players must reason with the other player’s
commitments, one player can sometimes ‘force’ an opinion onto the other player
by simply making a claim. A simple solution to this problem is to restrict the in-
formation with which agent reason to their own beliefs and commitments. A more
refined option is to assume that the agents have knowledge about the reliability of
information sources and to let them use it in the acceptance policies.

Paul and Olga (ct’d): Finally, our running example can be modelled in this ap-
proach as follows. Let us give Paul and Olga the following beliefs:

ΣW = {airbag, airbag→ safe, ¬(newspaper→ ¬ safe)}
ΣB = {newspaper, newspaper→ ¬ safe}

(Note that Paul’s undercutter must now be formalised as the negation of Olga’s
material implication.) Assume that all these propositions are equally preferred. We
must also make some assumptions on the players’ assertion and acceptance atti-
tudes. Let us first assume that Paul is thoughtful and skeptical while Olga is careful
and cautious, and that they only reason with their own beliefs and commitments.

P1: claim safe O2: claim ¬ safe

Olga could not challenge Paul’s main claim as in the example’s original version,
since she can construct an argument for ‘¬sa f e’, while she cannot construct an ar-
gument for ‘safe’. So she had to make a counterclaim. Now since players may not
repeat moves, Paul cannot make the remove required by the protocol and his asser-
tion attitude, namely, claiming ‘safe’, so the dialogue terminates without agreement.

Let us now assume that the players must also reason with each others commit-
ments. Then the dialogue evolves as follows:

P1: claim safe O2: concede safe

Olga has to concede, since she can use Paul’s commitment to construct the trivial
argument ({safe}, safe), while her own argument for ‘¬ safe’ is not stronger. So
here the dialogue terminates with agreement on ‘safe’, even though this proposition
is not acceptable on the basis of the players’ joint beliefs.

So far, neither of the players could develop their arguments. To change this, as-
sume now that Olga is also thoughtful and skeptical, and that the players reason with
each others commitments. Then:

P1: claim safe O2: why safe

Olga could not concede, nor could she state her argument for ¬ safe since it is not
preferred over its attacker ({safe},safe). So she had to challenge.

P3: claim {airbag, airbag→ safe}
Now Olga can create a (trivial) argument for ‘airbag’ by using Paul’s commitments,
but she can also create an argument for its negation by using her own beliefs. Neither
is acceptable, so she must challenge. Likewise for the second premise, so:

O4: why airbag
P5: claim {airbag} O6: why airbag→ safe
P7: claim {airbag→ safe}

296 Henry Prakken

Here the nonrepetition rule makes the dialogue terminate without agreement. Note
that only Paul could develop his arguments. To give Olga a chance to develop her
arguments, let us make her careful and skeptical while the players still reason with
each others commitments. Then:

P1: claim safe O2: claim ¬ safe

In the new dialogue state Paul’s argument for ‘safe’ is not acceptable any more,
since it is not preferred over its attacker ({¬ safe}, ¬ safe). So he must challenge.

P3: why ¬ safe O4: claim {newspaper, newspaper→¬ safe }
Although Paul can construct an argument for Olga’s first premise, namely,
({¬(newspaper → ¬ safe’}, safe), it is not acceptable since it is not preferred over
its attacker based on Olga’s second premise. So he must challenge.

P5: why newspaper O6: claim {newspaper}
Olga had to reply with a (trivial) argument for her first premise, after which Paul
cannot repeat his challenge, so he has to go to the second premise of O4. Based on
his beliefs and Olga’s commitments he can construct (trivial) arguments both for
and against it and neither of these is acceptable. So he must again challenge.

P7: why newspaper→ ¬ safe O8: claim {newspaper→ ¬ safe}
Here the nonrepetition rule again makes the dialogue terminate without agreement.
In this dialogue only Olga could develop her arguments (although she could not
state her second counterargument).

In conclusion, the PWA persuasion protocol leaves little room for choice and ex-
ploring alternatives, and induces one-sided dialogues in that at most one side can
develop their arguments for a certain issue. Also, the examples suggest that if a
claim is accepted, it is accepted in the first ‘round’ of moves (but this should be
formally verified). On the other hand, the strictness of the protocol induces short di-
alogues which are guaranteed to terminate, which promotes efficiency. Also, thanks
to the strong assumptions on the logic and the participants’ beliefs and reasoning
behaviour, PWA have been able to prove several interesting properties of their pro-
tocols. Finally, without the requirement to respect the assertion and acceptance atti-
tudes the protocol would be much more liberal while still enforcing some coherence.

5.3 Prakken (2005)

In [10] I proposed a formal framework for systems for two-party persuasion dia-
logues and instantiated it with some example protocols. The participants have pro-
ponent and opponent role, and their beliefs are irrelevant to the protocols, so that
these have a public semantics. Dialogues have no context. The framework abstracts
from the communication language except for an explicit reply structure. It also ab-
stracts from the logical language and the logic, except that the logic is assumed to

14 Models of Persuasion Dialogue 297

be argument-based and to conform to grounded semantics and that arguments are
trees of deductive and/or defeasible inferences, as in e.g. [9].

A main motivation of the framework is to ensure focus of dialogues while yet
allowing for freedom to move alternative replies and to postpone replies. This is
achieved with two main features of the framework. Firstly, Lc has an explicit reply
structure, where each move either attacks or surrenders to its target. An example Lc

of this format is displayed in Table 14.3. Secondly, winning is defined for each dia-

Table 14.3 An example Lc in Prakken’s framework

Acts Attacks Surrenders
claim ϕ why ϕ concede ϕ
ϕ since S why ψ(ψ ∈ S) concede ψ

(ψ ∈ S)
ϕ ′ since S′ concede ϕ
(ϕ ′ since S′ defeats ϕ since S)

why ϕ ϕ since S retract ϕ
concede ϕ
retract ϕ

logue, whether terminated or not, and it is defined in terms of a notion of dialogical
status of moves. The dialogical status of a move is recursively defined as follows,
exploiting the tree structure of dialogues generated by the reply structure on Lc. A
move is in if it is surrendered or else if all its attacking replies are out. (This implies
that a move without replies is in). And a move is out if it has a reply that is in. Then
a dialogue is (currently) won by the proponent if its initial move is in while it is
(currently) won by the opponent otherwise.

Together, these two features of the framework support a notion of relevance that
ensures focus while yet leaving a degree of freedom: a move is relevant just in case
making its target out would make the speaker the current winner. Termination is
defined as the situation that a player is to move but has no legal moves. Various
results are proven about the relation between being the current winner of a dialogue
and what is defeasibly implied by the arguments exchanged during the dialogue.

As for dialogue structure, the framework allows for all kinds of protocols. The
instantiations of [10] are all multi-move and multi-reply; one of them has the com-
munication language of Table 14.3 and is constrained by the requirement that each
move be relevant. This makes the protocol immediate-response, which implies that
each turn consists of zero or more surrenders followed by one attacker. Within these
limits postponement of replies is allowed, sometimes even indefinitely.

Let us next discuss some examples, assuming that the protocol is further in-
stantiated with Prakken & Sartor’s argument-based version of prioritised extended
logic programming [12]. This logic uses grounded semantics and supports argu-
ments about rule priorities. (The examples below should speak for themselves so
no formal definitions about the logic will be given. Note that since the rules are
logic-programming rules, they do not satisfy contraposition or modus tollens. Rule

298 Henry Prakken

connectives are tagged with a rule name, which is needed to express rule priorities
in the object language). Consider two agents with the following belief bases:

ΣP = {p, p⇒r1 q, q⇒r2 r, p∧ s⇒r3 r2 > r4}
ΣO = {t, t ⇒r4 ¬r}.

Then the following is legal in [10]’s so-called relevant protocol (with each move
its target is indicated between square brackets):

P1[−]: claim r O2[P1]: why r
P3[O2]: r since q,q⇒ r O4[P3]: why q
P5[O4]: q since p, p⇒ q O6[P5]: concede p⇒ q

O7[P5]: why p

(Note that unlike in [8] but like in [14], arguments can be stepwise built in sev-
eral moves.) Here P has several allowed moves, viz. retracting any of his argument
premises or his claim, or giving an argument for p. All these moves are relevant
but if P makes any retraction then an argument for p ceases to be relevant, since it
cannot make P the current winner. Moreover, if P retracts r as a reply to P1 then the
dialogue terminates with a win for O.

O could at all points after P3 have moved her argument against r. For instance:

O7[P3]: ¬r since t, t ⇒¬r
P8[O7]: r2 > r4 since p,s, p∧ s⇒ r1 > r4

P8 is a priority argument which makes P3 strictly defeat O7 (note that the fact that s
is not in P’s own belief base does not make the move illegal). At this point, P1 is in;
O has various allowed moves, viz. challenging or conceding any (further) premise
of P’s arguments, moving a counterargument to P5 or a second counterargument to
P3, and conceding P’s initial claim.

This example shows that the participants have much more freedom in this system
than in the one of [8], since they are not bound by assertion and acceptance attitudes
and the protocol is structurally less strict. The downside of this is that dialogues
can be much longer, that the participants can lie and that they can prevent losing by
simply continuing to attack the other participant.

Another drawback of the present approach is that not all natural-language dia-
logues have an explicit reply structure. For example, often one player tries to extract
seemingly irrelevant concessions from the other player with the aim to lure her into
a contradiction, as in as in the following witness cross-examination dialogue:

Witness: Suspect was at home with me that day.
Prosecutor: Are you a student?
Witness: Yes.
Prosecutor: Was that day during summer holiday?
Witness: Yes.
Prosecutor: Aren’t all students away during summer holiday?

In [14] such dialogues can be modelled with the question locution but at the price
of decreased coherence and focus.

14 Models of Persuasion Dialogue 299

Paul and Olga (ct’d): Let us finally model our running example in this protocol.
Figure 14.2 displays the dialogue tree, where moves within solid boxes are in and
moves within dotted boxes are out.

Fig. 14.2 The example dialogue in Prakken’s approach

As can be easily checked, this formalisation captures all aspects of the exam-
ple’s original version, except that arguments have to be complete and that counter-
arguments cannot be introduced by a counterclaim. (But other instantiations of the
framework may be possible without these limitations.)

6 Conclusion

In this chapter a formal framework for dialogue systems for persuasion was pro-
posed, which was then used to critically discuss three systems from the literature.
Concluding, we can say that the formal study of persuasion dialogue has resulted
in a number of interesting dialogue systems, some of which have been applied in
insightful case studies or applications. On the other hand, there is still much room
for refining or extending the various sytems with, for example, more refined com-
munication languages or with different modes of reasoning, such as probabilistic,
case-based or coherence-based reasoning. Also, the integration of persuasion with
other types of dialogues should be studied. Another important research issue is the
study of strategies and heuristics for individual participants and how these interact
with the protocols to yield certain properties of dialogues. One aspect of such stud-
ies is the development of quality measures for dialogues as to how well they satisfy
certain desirable properties. More generally, a formal metatheory of systems, their
interrelations and their combinations with agent models is still in its early stages.

300 Henry Prakken

Perhaps the main challenge in tackling all these issues is how to reconcile the
need for flexibility and expressiveness with the aim to enforce coherent dialogues.
The answer to this challenge may well vary with the nature of the context and ap-
plication domain, and a precise description of the grounds for such variations would
provide important insights in how dialogue systems for persuasion can be applied.

References

1. J. Barwise and L. Moss. Vicious Circles. Number 60 in CSLI Lecture Notes. CSLI Publica-
tions, Stanford, CA, 1996.

2. G. Brewka. Dynamic argument systems: a formal model of argumentation processes based on
situation calculus. Journal of Logic and Computation, 11:257–282, 2001.

3. L. Carlson. Dialogue Games: an Approach to Discourse Analysis. Reidel Publishing Com-
pany, Dordrecht, 1983.

4. T. Gordon. The Pleadings Game: an exercise in computational dialectics. Artificial Intelli-
gence and Law, 2:239–292, 1994.

5. C. Hamblin. Fallacies. Methuen, London, 1970.
6. R. Loui. Process and policy: resource-bounded non-demonstrative reasoning. Computational

Intelligence, 14:1–38, 1998.
7. J. Mackenzie. Question-begging in non-cumulative systems. Journal of Philosophical Logic,

8:117–133, 1979.
8. S. Parsons, M. Wooldridge, and L. Amgoud. Properties and complexity of some formal inter-

agent dialogues. Journal of Logic and Computation, 13, 2003. 347-376.
9. J. Pollock. Cognitive Carpentry. A Blueprint for How to Build a Person. MIT Press, Cam-

bridge, MA, 1995.
10. H. Prakken. Coherence and flexibility in dialogue games for argumentation. Journal of Logic

and Computation, 15:1009–1040, 2005.
11. H. Prakken. Formal systems for persuasion dialogue. The Knowledge Engineering Review,

21:163–188, 2006.
12. H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible pri-

orities. Journal of Applied Non-classical Logics, 7:25–75, 1997.
13. D. Walton. Logical dialogue-games and fallacies. University Press of America, Inc., Lanham,

MD., 1984.
14. D. Walton and E. Krabbe. Commitment in Dialogue. Basic Concepts of Interpersonal Rea-

soning. State University of New York Press, Albany, NY, 1995.
15. J. Woods and D. Walton. Arresting circles in formal dialogues. Journal of Philosophical

Logic, 7:73–90, 1978.
16. T. Yuan, D. Moore, and A. Grierson. A human-computer dialogue system for educational

debate: A computational dialectics approach. International Journal of Artificial Intelligence
in Education, 18:3–26, 2008.

Chapter 15
Argumentation for Decision Making

Leila Amgoud

1 Introduction

Decision making, often viewed as a form of reasoning toward action, has raised the
interest of many scholars including economists, psychologists, and computer scien-
tists for a long time. Any decision problem amounts to selecting the “best” or suf-
ficiently “good” action(s) that are feasible among different alternatives, given some
available information about the current state of the world and the consequences of
potential actions. Available information may be incomplete or pervaded with un-
certainty. Besides, the goodness of an action is judged by estimating how much
its possible consequences fit the preferences of the decision maker. This agent is
assumed to behave in a rational way [29], at least in the sense that his decisions
should be as much as possible consistent with his preferences.
Classical decision theory, as developed mainly by economists, has focused on mak-
ing clear what is a rational decision maker. Thus, they have looked for principles
for comparing different alternatives. The inputs of this approach are a set of can-
didate actions, and a function that assesses the value of their consequences when
the actions are performed in a given state, together with complete or partial infor-
mation about the current state of the world. In other words, such an approach dis-
tinguishes between knowledge and preferences, which are respectively encoded in
practice by a distribution function assessing the plausibility of the different states of
the world, and by a utility function encoding preferences by estimating how good a
consequence is. The output is a preference relation between actions encoded by the
associated principle. Note that such an approach aims at rank-ordering a group of
candidate actions rather than focusing on a candidate action individually. Moreover,
the candidate actions are supposed to be feasible. What is worth noticing is that
in such an approach, the principles that are defined for comparing pairs of alterna-
tives are given in terms of analytical expressions that summarize the whole decision

Institut de Recherche en Informatique de Toulouse, IRIT-UPS
118 route de Narbonne, 31062 Toulouse, Cedex, France, e-mail: amgoud@irit.fr

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 301
DOI 10.1007/978-0-387-98197-0 15, c© Springer Science+Business Media, LLC 2009

302 L. Amgoud

process. It is then hard for a person who is not familiar with the abstract decision
methodology, to understand why a proposed alternative is good, or better than an-
other. It is thus important to have an approach in which one can better understand
the underpinnings of the evaluation. Argumentation is the most appropriate way to
advocate a choice thanks to its explanatory power.

Argumentation has been introduced in decision making analysis by several re-
searchers only in the last few years (e.g. [15, 20, 23]). Indeed, in everyday life, deci-
sion is often based on arguments and counter-arguments. Argumentation can be also
useful for explaining a choice already made. Recently, in [1], a decision model in
which some decision criteria were articulated in terms of a two-steps argumentation
process has been proposed. At the first step, called inference step, the model uses a
Dung style system in which arguments in favor/against each option are built, then
evaluated using a given acceptability semantics. At the second step, called compar-
ison step, pairs of alternatives are compared using a given criterion. This criterion
is generally based on the “accepted” arguments computed at the inference step. The
model returns thus, an ordering on the set of options, which may be either partial
or total depending on the decision criterion that is encoded. This approach presents
a great advantage since not only the best alternative is provided to the user but also
the reasons justifying this recommendation. In what follows, we will develop that
argument-based model for decision making.

2 A general framework for argumentative decision making

Solving a decision problem amounts to defining a pre-ordering, usually a complete
one, on a set D of possible options (or candidate decisions), on the basis of the
different consequences of each decision. Let us illustrate this problem through a
simple example borrowed from [20].

Example 15.1 (Having or not a surgery). The example is about having a surgery
(sg) or not (¬sg), knowing that the patient has colonic polyps. The knowledge base
contains the following information:

• having a surgery has side-effects,
• not having surgery avoids having side-effects,
• when having a cancer, having a surgery avoids loss of life,
• if a patient has cancer and has no surgery, the patient would lose his life,
• the patient has colonic polyps,
• having colonic polyps may lead to cancer.

In addition to the above knowledge, the patient has also some goals like: “no side
effects” and “to not lose his life”. Obviously it is more important for him to not lose
his life than to not have side effects.

Let L denote a logical language. From L, a finite set D = {d1, . . . ,dn} of n op-
tions is identified. An option di may be a conjunction of other options in D. Let us,

15 Argumentation for Decision Making 303

for instance, assume that an agent wants a drink and has to choose between tea, milk
or both. Thus, there are three options: d1 : tea, d2 : milk and d3 : tea and milk. In
Example 15.1, the set D contains two options: d1 : sg and d2 : ¬sg.

Argumentation is used in this chapter for ordering the set D. An argumentation-
based decision process can be decomposed into the following steps:

1. Constructing arguments in favor/against statements (beliefs or decisions)
2. Evaluating the strength of each argument
3. Determining the different conflicts among arguments
4. Evaluating the acceptability of arguments
5. Comparing decisions on the basis of relevant “accepted” arguments

Note that the first four steps globally correspond to an “inference problem” in which
one looks for accepted arguments, and consequently warranted beliefs. At this step,
one only knows what is the quality of arguments in favor/against candidate deci-
sions, but the “best” candidate decision is not determined yet. The last step answers
this question once a decision principle is chosen.

2.1 Types of arguments

As shown in Example 15.1, decisions are made on the basis of available knowledge
and the preferences of the decision maker. Thus, two categories of arguments are
distinguished: i) epistemic arguments justifying beliefs and are themselves based
only on beliefs, and ii) practical arguments justifying options and are built from
both beliefs and preferences/goals. Note that a practical argument may highlight
either a positive feature of a candidate decision, supporting thus that decision, or a
negative one, attacking thus the decision.

Example 15.2 (Example 15.1 cont.). In this example, α = [“the patient has colonic
polyps”, and “having colonic polyps may lead to cancer”] is considered as an ar-
gument for believing that the patient may have cancer. This epistemic argument
involves only beliefs. While δ1 = [“the patient may have a cancer”, “when having
a cancer, having a surgery avoids loss of life”] is an argument for having a surgery.
This is a practical argument since it supports the option “having a surgery”. Note
that such argument involves both beliefs and preferences. Similarly, δ2 = [“not hav-
ing surgery avoids having side-effects”] is a practical argument in favor of “not
having a surgery”. However, the two practical arguments δ3 = [“having a surgery
has side-effects”] and δ4 = [“the patient has colonic polyps”, and “having colonic
polyps may lead to cancer”, “if a patient has cancer and has no surgery, the patient
would lose his life”] are respectively against surgery and no surgery since they point
out negative consequences of the two options.

In what follows, Ae denotes a set of epistemic arguments, and Ap denotes a
set of practical arguments such that Ae ∩Ap = ∅. Let A = Ae ∪ Ap (i.e. A will

304 L. Amgoud

contain all those arguments). The structure and origin of the arguments are assumed
to be unknown. Epistemic arguments will be denoted by variables α1,α2, . . ., while
practical arguments will be referred to by variables δ1,δ2, . . . When no distinction is
necessary between arguments, we will use the variables a,b,c, . . .

Example 15.3 (Example 15.1 cont.). Ae = {α} while Ap = {δ1,δ2,δ3,δ4}.
Let us now define two functions that relate each option to the arguments support-

ing it and to the arguments against it.

• Fp : D → 2Ap is a function that returns the arguments in favor of a candidate
decision. Such arguments are said pro the option.

• Fc : D→ 2Ap is a function that returns the arguments against a candidate deci-
sion. Such arguments are said cons the option.

The two functions satisfy the following requirements:

• ∀d ∈D, �δ ∈Ap s.t. δ ∈ Fp(d) and δ ∈ Fc(d). This means that an argument is
either in favor of an option or against that option. It cannot be both.

• If δ ∈ Fp(d) and δ ∈ Fp(d′) (resp. if δ ∈ Fc(d) and δ ∈ Fc(d′)), then d = d′.
This means that an argument refers only to one option.

• Let D = {d1, . . . ,dn}. Ap = (
⋃

Fp(di)) ∪ (
⋃

Fc(di)), with i = 1, . . . ,n. This means
that the available practical arguments concern options of the set D.

When δ ∈ Fx(d) with x ∈ {p,c}, we say that d is the conclusion of δ , and we
write Conc(δ) = d.

Example 15.4 (Example 15.1 cont.). The two options of the set D = {sg,¬sg} are
supported/attacked by the following arguments: Fp(sg) = {δ1}, Fc(sg) = {δ3},
Fp(¬sg) = {δ2}, and Fc(¬sg) = {δ4}.

2.2 Comparing arguments

As pointed out by several researchers (e.g. [14, 18]), arguments may have forces of
various strengths. These forces play two key roles: i) they may be used in order to
refine the notion of acceptability of epistemic or practical arguments, ii) they allow
the comparison of practical arguments in order to rank-order candidate decisions.
Generally, the strength of an epistemic argument reflects the quality, such as the
certainty level, of the pieces of information involved in it. Whereas the strength of
a practical argument reflects both the quality of knowledge used in the argument, as
well as how important it is to fulfill the preferences to which the argument refers.

In our particular application, three preference relations between arguments are
defined. The first one, denoted by ≥e, is a (partial or total) preorder1 on the set Ae.
The second relation, denoted by ≥p, is a (partial or total) preorder on the set Ap.

1 A preorder is a binary relation that is reflexive and transitive

15 Argumentation for Decision Making 305

Finally, a third relation, denoted by ≥m (m stands for mixed relation), captures the
idea that any epistemic argument is stronger than any practical argument. The role of
epistemic arguments in a decision problem is to validate or to undermine the beliefs
on which practical arguments are built. Indeed, decisions should be made under
“certain” information. Thus, ∀α ∈Ae, ∀δ ∈Ap, (α,δ) ∈≥m and (δ ,α) /∈≥m.
Note that (a,b) ∈≥x, with x ∈ {e, p,m}, means that a is at least as good as b. At
some places, we will also write a≥x b. In what follows, >x denotes the strict relation
associated with≥x. It is defined as follows: (a,b)∈>x iff (a,b)∈≥x and (b,a) /∈≥x.
When (a,b) ∈≥x and (b,a) ∈≥x, we say that a and b are indifferent, and we write
a≈x b. When (a,b) /∈≥x and (b,a) /∈≥x, the two arguments are said incomparable.

Example 15.5 (Example 15.1 cont.). ≥e = {(α,α)} and ≥m = {(α,δ1),(α,δ2)}.
Now, regarding ≥p, one may, for instance, assume that δ1 is stronger than δ2 since
the goal satisfied by δ1 (namely, not loss of life) is more important than the one
satisfied by δ2 (not having side effects). Thus, ≥p = {(δ1,δ1), (δ2,δ2), (δ1,δ2)}.
This example will be detailed in a next section.

2.3 Attacks among arguments

Since knowledge may be inconsistent, the arguments may be conflicting too. In-
deed, epistemic arguments may attack each others. Such conflicts are captured by
the binary relation Re ⊆Ae×Ae. This relation is assumed abstract and its origin is
not specified. Epistemic arguments may also attack practical arguments when they
challenge their knowledge part. The idea is that an epistemic argument may un-
dermine the beliefs part of a practical argument. However, practical arguments are
not allowed to attack epistemic ones. This avoids wishful thinking. This relation,
denoted by Rm, contains pairs (α,δ) where α ∈ Ae and δ ∈Ap.

We assume that practical arguments do not conflict. The idea is that each practical
argument points out some advantage or some weakness of a candidate decision, and
it is crucial in a decision problem to list all those arguments for each candidate deci-
sion, provided that they are accepted w.r.t. the current epistemic state, i.e built from
warranted beliefs. According to the attitude of the decision maker in face of uncer-
tain or inconsistent knowledge, these lists associated with the candidate decisions
may be taken into account in different manners, thus leading to different orderings
of the decisions. This is why all accepted arguments should be kept, whatever their
strengths, for preserving all relevant information in the decision process. Otherwise,
getting rid of some of those accepted arguments (w.r.t. knowledge), for instance be-
cause they would be weaker than others, may prevent us to have a complete view
of the decision problem and then may even lead us to recommend decisions that
would be wrong w.r.t. some decision principles (agreeing with the presumed de-
cision maker’s attitude). This point will be made more concrete in a next section.
Thus, the relation Rp ⊆Ap×Ap is equal to the empty set (Rp = ∅).

306 L. Amgoud

Each preference relation ≥x (with x ∈ {e, p,m}) is combined with the conflict
relation Rx into a unique relation between arguments, denoted by Defx and called
defeat relation, in the same way as in ([4], Definition 3.3, page 204).

Definition 15.1 (Defeat relation). Let A be a set of arguments, and a, b ∈ A.
(a,b) ∈ Defx iff (a,b) ∈ Rx, and (b,a) /∈>x.

Let Defe, Defp and Defm denote the three defeat relations corresponding to the three
attack relations. In case of Defm, the second bullet of Definition 15.1 is always true
since epistemic arguments are strictly preferred (in the sense of≥m) to any practical
arguments. Thus, Defm = Rm (i.e. the defeat relation is exactly the attack relation
Rm). The relation Defp is the same as Rp, thus it is empty. However, the relation
Defe coincides with its corresponding attack relation Re in case all the arguments
of the set Ae are incomparable.

2.4 Extensions of arguments

Now that the sets of arguments and the defeat relations are identified, we can define
the decision system.

Definition 15.2 (Decision system). Let D be a set of options. A decision system
for ordering D is a triple AF = (D,A,Def) where A = Ae∪Ap

2 and Def = Defe∪
Defp∪Defm

3.

Note that a Dung style argumentation system is associated to a decision system
AF = (D,A,Def), namely the system (A,Def). This latter can be seen as the union
of two distinct argumentation systems: AFe = (Ae,Defe), called epistemic system,
and AFp = (Ap,Defp), called practical system. The two systems are related to each
other by the defeat relation Defm.

Due to Dung’s acceptability semantics defined in [17] or their extensions defined
in [8], it is possible to identify among all the conflicting arguments, which ones
will be kept for ordering the options. Recall that an acceptability semantics amounts
to define sets of arguments that satisfy a consistency requirement and must defend
all their elements. In what follows, E1, . . . ,Ex denote the different extensions of
the system (A,Def) under a given semantics. Using these extensions, a status is
assigned to each argument of AF as follows.

Definition 15.3 (Argument status). Let AF = (D,A,Def) be a decision system, and
E1, . . . ,Ex its extensions under a given semantics. Let a ∈A.

• a is skeptically accepted iff a ∈ Ei, ∀Ei=1,...,x, Ei �= ∅.
• a is credulously accepted iff ∃Ei such that a ∈ Ei and ∃E j such that a /∈ E j.

2 Recall that options are related to their supporting and attacking arguments by the functions Fp

and Fc respectively.
3 Since the relation Defp is empty, then Def = Defe∪Defm.

15 Argumentation for Decision Making 307

• a is rejected iff �Ei such that a ∈ Ei.

A consequence of Definition 15.3 is the following one.

Property 15.1. Each argument has exactly one status.

Let Acc(x,y) be a function that returns the skeptically accepted arguments of de-
cision system x under semantics y (y ∈ {ad,st, pr} with ad (resp. st and pr) stands
for admissible (resp. stable and preferred) semantics). This set may contain both
epistemic and practical arguments. Such arguments are very important in argumen-
tation process since they support the conclusions to be inferred from a knowledge
base or the options that will be chosen. Indeed, for ordering the candidate decisions,
only skeptically accepted practical arguments are used. The following result shows
the links between the sets of accepted arguments under different semantics.

Property 15.2. Let AF = (D,A,Def) be a decision system.

• Acc(AF,ad) = ∅.
• If AF has no stable extensions, then Acc(AF,st)=∅ and Acc(AF,st)⊆Acc(AF, pr).
• If AF has stable extensions, then Acc(AF, pr) ⊆ Acc(AF,st).

From the above property, one concludes that in a decision problem, it is not
interesting to use admissible semantics. The reason is that no argument is accepted.
Consequently, argumentation will not help at all for ordering the different candidate
decisions. Let us illustrate this issue through the following simple example.

Example 15.6. Let us consider the decision system AF = (D,Ae ∪Ap,Def) where
D = {d1,d2}, Ae = {α1,α2,α3}, Ap = {δ} and Def = {(α1,α2), (α2,α1), (α1,α3),
(α2,α3), (α3,δ)}. We assume that Fp(d1) = δ whereas Fp(d2) = Fc(d2) = ∅. The
admissible extensions of this system are: E1 = {}, E2 = {α1}, E3 = {α2}, E4 =
{α1,δ} and E5 = {α2,δ}. Under admissible semantics, the practical argument δ is
not skeptically accepted. Thus, the two options d1 and d2 may be equally preferred
since the first one has an argument but not an accepted one, and the second has no
argument at all. However, the same decision system has two preferred extensions:
E4 and E5. Under preferred semantics, the set Acc(AF, pr) contains the argument δ
(i.e. Acc(AF, pr) = {δ}). Thus, it is natural to prefer option d1 to d2.

Consequently, in the following, we will use stable semantics if the system has
stable extensions, otherwise preferred semantics will be considered for computing
the set Acc(AF,y).

Since the defeat relation Defp is empty, it is trivial that the practical system AFp

has exactly one preferred/stable extension which is the set Ap itself.

Property 15.3. The practical system AFp = (Ap,Defp) has a unique preferred/stable
extension, which is the set Ap.

It is important to notice that the epistemic system AFe in its side is very general
and does not necessarily present particular properties like for instance the existence

308 L. Amgoud

of stable/preferred extensions. In what follows, we will show that the result of the
decision system depends broadly on the outcome of this epistemic system. The first
result states that the epistemic arguments of each admissible extension of AF consti-
tute an admissible extension of the epistemic system AFe.

Theorem 15.1. Let AF = (D,Ae ∪Ap,Defe ∪ Defp ∪ Defm) be a decision system,
E1, . . . ,En its admissible extensions, and AFe = (Ae,Defe) its epistemic system.

• ∀Ei, the set Ei∩Ae is an admissible extension of AFe.
• ∀E′ such that E′ is an admissible extension of AFe, ∃Ei such that E′ ⊆ Ei∩Ae.

It is easy to show that when Defm is empty, i.e. no epistemic argument defeats
a practical one, then the extensions of AF (under a given semantics) are exactly the
different extensions of AFe (under the same semantics) augmented by the set AFp.

Theorem 15.2. Let AF = (D,Ae ∪Ap,Defe ∪ Defp ∪ Defm) be a decision system.
Let E1, . . . ,En be the extensions of AFe under a given semantics. If Defm = ∅ then
∀Ei with i = 1, . . . ,n, then the set Ei∪Ap is an extension of AF.

Finally, it can be shown that if the empty set is the only admissible extension of the
decision system AF, then the empty set is also the only admissible extension of the
corresponding epistemic system AFe. Moreover, each practical argument is attacked
by at least one epistemic argument.

Theorem 15.3. Let AF = (D,Ae ∪Ap,Defe ∪ Defp ∪ Defm) be a decision system.
The only admissible extension of AF is the empty set iff:

1. The only admissible extension of AFe is the empty set, and
2. ∀δ ∈Ap, ∃α ∈Ae such that (α,δ) ∈ Defm.

At this step, we have only defined the accepted arguments among all the existing
ones. However, nothing is yet said about which option to prefer. In the next section,
we will study different ways of comparing pairs of options on the basis of skeptically
accepted practical arguments.

2.5 Ordering options

Comparing candidate decisions, i.e. defining a preference relation (on the set D

of options, is a key step in a decision process. In an argumentation-based approach,
the definition of this relation is based on the sets of “accepted” arguments pros or
cons associated with candidate decisions. Thus, the input of this relation is no longer
Ad , but the set Acc(AF,y)∩Ad , where Acc(AF,y) is the set of skeptically accepted
arguments of the decision system (D,A,Def) under stable or preferred semantics.
In what follows, we will use the notation Acc(AF) for short. Note that in a decision
system, when the defeat relation Defm is empty, the epistemic arguments become
useless for the decision problem, i.e. for ordering options. Thus, only the practical

15 Argumentation for Decision Making 309

system AFp is needed.

Depending on what sets are considered and how they are handled, one can
roughly distinguish between three categories of principles:

Unipolar principles: are those that only refer to either the arguments pros or the
arguments cons.

Bipolar principles: are those that take into account both types of arguments at the
same time.

Non-polar principles: are those where arguments pros and arguments cons a given
choice are aggregated into a unique meta-argument. It results that the negative
and positive polarities disappear in the aggregation.

Whatever the category is, a relation (should suitably satisfy the following min-
imal requirements:

1. Transitivity: The relation should be transitive (as usually required in decision
theory).

2. Completeness: Since one looks for the “best” candidate decision, it should then
be possible to compare any pair of choices. Thus, the relation should be complete.

2.5.1 Unipolar principles

In this section we present basic principles for comparing decisions on the basis of
only arguments pros. Similar ideas apply to arguments cons. We start by presenting
those principles that do not involve the strength of arguments, then their respective
refinements when strength is taken into account. A first natural criterion consists of
preferring the decision that has more arguments pros.

Definition 15.4 (Counting arguments pros). Let AF = (D,A,Def) be a decision
system and Acc(AF) its accepted arguments. Let d1, d2 ∈D.

d1 (d2 iff |Fp(d1)∩Acc(AF)| ≥ |Fp(d2)∩Acc(AF)|.

Property 15.4. This relation is a complete preorder.

Note that when the decision system has no accepted arguments (i.e. Acc(AF) = ∅),
all the options in D are equally preferred w.r.t. the relation (. It is also worth men-
tioning that with such a principle, one may prefer a decision d, which has three
arguments pointing all to the same positive consequence, to decision d′, which is
supported by two arguments pointing to different consequences.

When the strength of arguments is taken into account in the decision process,
one may think of preferring a choice that has a dominant argument, i.e. an argument
pros that is preferred w.r.t. the relation≥p⊆Ap×Ap to any argument pros the other
choices. This principle is called promotion focus principle in [2].

310 L. Amgoud

Definition 15.5. Let AF = (D,A,Def) be a decision system and Acc(AF) its ac-
cepted arguments. Let d1, d2 ∈D.

d1 (d2 iff ∃δ ∈ Fp(d1)∩Acc(AF) such that ∀δ ′ ∈ Fp(d2)∩Acc(AF),δ ≥p δ ′.

With this criterion, if the decision system has no accepted arguments, then all the
options in D are equally preferred. The above definition relies heavily on the relation
≥p that compares practical arguments. Thus, the properties of this criterion depends
on those of ≥p. Namely, it can be checked that the above criterion works properly
only if ≥p is a complete preorder.

Property 15.5. If the relation ≥p is a complete preorder, then (is also a complete
preorder.

Note that the above relation may be found to be too restrictive, since when the
strongest arguments in favor of d1 and d2 have equivalent strengths (i.e. are indif-
ferent), d1 and d2 are also seen as equivalent. However, we can refine the above
definition by ignoring the strongest arguments with equal strengths, by means of the
following strict preorder.

Definition 15.6. Let AF = (D,A,Def) be a decision system and Acc(AF) its ac-
cepted arguments. Let d1, d2 ∈ D, and ≥p be a complete preorder. Let (δ1,
. . ., δr), (δ ′1, . . ., δ ′s) such that ∀δi=1,...,r, δi ∈ Fp(d1) ∩ Acc(AF), and ∀δ ′j=1,...,s,
δ ′j ∈ Fp(d2)∩Acc(AF). Each of these vectors is assumed to be decreasingly ordered
w.r.t ≥p (e.g. δ1 ≥p . . . ≥p δr). Let v = min(r, s). d1 (d2 iff:

• δ1 >p δ ′1, or
• ∃ k ≤ v such that δk >p δ ′k and ∀ j < k, δ j ≈p δ ′j, or
• r > v and ∀ j ≤ v, δ j ≈p δ ′j.

Till now, we have only discussed decision principles based on arguments pros.
However, the counterpart principles when arguments cons are considered can also
be defined. Thus, the counterpart principle of the one defined in Definition 15.4 is
the following complete preorder:

Definition 15.7 (Counting arguments cons). Let AF = (D,A,Def) be a decision
system and Acc(AF) its accepted arguments. Let d1, d2 ∈D.

d1 (d2 iff |Fc(d1)∩Acc(AF)| ≤ |Fc(d2)∩Acc(AF)|.

The principles that take into account the strengths of arguments have also their coun-
terparts when handling arguments cons. The prevention focus principle prefers a
decision when all its cons are weaker than at least one argument against the other
decision. Formally:

Definition 15.8. Let AF = (D,A,Def) be a decision system and Acc(AF) its ac-
cepted arguments. Let d1, d2 ∈D.

d1 (d2 iff ∃δ ∈ Fc(d2)∩Acc(AF) such that ∀δ ′ ∈ Fc(d1)∩Acc(AF),δ ≥p δ ′.

15 Argumentation for Decision Making 311

As in the case of arguments pros, when the relation ≥p is a complete preorder, the
above relation is also a complete preorder, and can be refined into the following
strict one.

Definition 15.9. Let AF = (D,A,Def) be a decision system and Acc(AF) its ac-
cepted arguments. Let d1, d2 ∈D.

Let (δ1, . . ., δr), (δ ′1, . . ., δ ′s) such that ∀δi=1,...,r, δi ∈ Fc(d1)∩ Acc(AF), and
∀δ ′j=1,...,s, δ ′j ∈ Fc(d2)∩ Acc(AF). Each of these vectors is assumed to be decreas-
ingly ordered w.r.t ≥p (e.g. δ1 ≥p . . . ≥p δr). Let v = min(r, s). d1 � d2 iff:

• δ ′1 >p δ1, or
• ∃ k ≤ v such that δ ′k >p δk and ∀ j < k, δ j ≈p δ ′j, or
• v < s and ∀ j ≤ v, δ j ≈p δ ′j.

2.5.2 Bipolar principles

Let’s now define some principles where both types of arguments (pros and cons) are
taken into account when comparing decisions. Generally speaking, we can conjunc-
tively combine the principles dealing with arguments pros with their counterpart
handling arguments cons. For instance, the principles given in Definition 15.4 and
Definition 15.7 can be combined as follows:

Definition 15.10. Let AF = (D,A,Def) be a decision system and Acc(AF) its ac-
cepted arguments. Let d1, d2 ∈D. d1 (d2 iff

• |Fp(d1)∩Acc(AF)| ≥ |Fp(d2)∩Acc(AF)|, and
• |Fc(d1)∩Acc(AF)| ≤ |Fc(d2)∩Acc(AF)|.
However, note that unfortunately this is no longer a complete preorder. Similarly, the
principles given respectively in Definition 15.5 and Definition 15.8 can be combined
into the following one:

Definition 15.11. Let AF = (D,A,Def) be a decision system and Acc(AF) its ac-
cepted arguments. Let d1, d2 ∈D. d1 (d2 iff:

• ∃ δ ∈ Fp(d1)∩Acc(AF) such that ∀ δ ′ ∈ Fp(d2)∩Acc(AF), δ ≥p δ ′, and
• � δ ∈ Fc(d1)∩Acc(AF) such that ∀ δ ′ ∈ Fc(d2)∩Acc(AF), δ ≥p δ ′.

This means that one prefers a decision that has at least one supporting argument
which is better than any supporting argument of the other decision, and also that
has not a very strong argument against it. Note that the above definition can be also
refined in the same spirit as Definitions 15.6 and 15.9.
Another family of bipolar decision principles applies the Franklin principle which
is a natural extension to the bipolar case of the idea underlying Definition 15.6. This
principle consists, when comparing pros and cons a decision, of ignoring pairs of
arguments pros and cons which have the same strength. After such a simplification,
one can apply any of the above bipolar principles. In what follows, we will define
formally the Franklin simplification.

312 L. Amgoud

Definition 15.12 (Franklin simplification). Let AF = (D,A,Def) be a decision
system and Acc(AF) its accepted arguments. Let d ∈D.

Let P = (δ1, . . ., δr), C = (δ ′1, . . ., δ ′m) such that ∀δi,δi ∈ Fp(d)∩ Acc(AF) and
∀δ ′j,δ ′j ∈ Fc(d)∩ Acc(AF). Each of these vectors is assumed to be decreasingly
ordered w.r.t ≥p (e.g. δ1 ≥p . . . ≥p δr). The result of the simplification is P′ =
(δ j+1, . . ., δr), C′ = (δ ′j+1, . . ., δ ′m) s.t.

• ∀ 1 ≤ i ≤ j, δi ≈p δ ′i and (δ j+1 >p δ ′j+1 or δ ′j+1 >p δ j+1)
• If j = r (resp. j = m), then P′ = ∅ (resp. C′ = ∅).

2.5.3 Non-polar principles

In some applications, the arguments in favor of and against a decision are aggre-
gated into a unique meta-argument having a unique strength. Thus, comparing two
decisions amounts to compare the resulting meta-arguments. Such a view is well
in agreement with current practice in multiple criteria decision making, where each
decision is evaluated according to different criteria using the same scale (with a
positive and a negative part), and an aggregation function is used to obtain a global
evaluation of each decision.

Definition 15.13 (Aggregation criterion). Let AF = (D,A,Def) be a decision sys-
tem and Acc(AF) its accepted arguments. Let d1, d2 ∈ D. Let (δ1, . . ., δn)4 and (δ ′1,
. . ., δ ′m)5 (resp. (γ1, . . . ,γl)6 and (γ ′1, . . . ,γ ′k)

7) the vectors of the arguments pros and
cons the decision d1 (resp. d2).
d1 (d2 iff h(δ1, . . ., δn, δ ′1, . . ., δ ′m) ≥p h(γ1, . . ., γl , γ ′1, . . ., γ ′k), where h is an
aggregation function.

A simple example of this aggregation attitude is computing the difference of the
number of arguments pros and cons.

Definition 15.14. Let AF = (D,A,Def) be a decision system and Acc(AF) its ac-
cepted arguments. Let d1, d2 ∈ D. d1 (d2 iff |Fp(d1) ∩ Acc(AF)| − |Fc(d1) ∩
Acc(AF)| ≥ |Fp(d2)∩Acc(AF)|− |Fc(d2)∩Acc(AF)|.
This has the advantage to be again a complete preorder, while taking into account
both pros and cons arguments.

3 A typology of formal practical arguments

This section presents a systematic study of practical arguments. Epistemic argu-
ments will not be discussed here because they have been much studied in the litera-

4 Each δi ∈Fp(d1)∩Acc(AF).
5 Each δ ′i ∈Fc(d1)∩Acc(AF).
6 Each γi ∈Fp(d2)∩Acc(AF).
7 Each γ ′i ∈Fc(d2)∩Acc(AF).

15 Argumentation for Decision Making 313

ture (eg. [3, 9, 26]), and their handling does not make new problems in the general
setting of Section 2, even in the decision process perspective of this chapter. More-
over, they only play a role when the knowledge base is inconsistent. Before pre-
senting the different types of practical arguments, we start first by introducing the
logical language as well as the different bases needed in a decision making problem.

3.1 Logical representation of knowledge and preference

This section introduces the representation setting of knowledge and preference
which are here distinct, as it is in classical decision theory. Moreover, preferences
are supposed to be handled in a bipolar way meaning that what the decision maker
is really looking for may be more restrictive than what it is just willing to avoid. In
what follows, a vocabulary P of propositional variables contains two kinds of vari-
ables: decision variables, denoted by v1, . . . ,vn, and state variables. Decision vari-
able are controllable, that is their value can be fixed by the decision maker. Making
a decision then amounts to fixing the truth value of every decision variable. On the
contrary, state variables are fixed by nature, and their value is a matter of knowl-
edge by the decision maker. He has no control on them (although he may express
preferences about their values).

1. D is a set of formulas built from decision variables. Elements of D represent
the different alternatives, or candidate decisions. Let us consider the example of
an agent who wants to know whether she should take her umbrella, her raincoat
or both. In this case, there are two decision variables: umb (for umbrella) and
rac (for raincoat). Assume that this agent hesitates between the three following
options: i) d1 : umb (i.e. to take only her umbrella), ii) d2 : rac (i.e. to take only
her raincoat), or iii) d3 : umb∧ rac (i.e. to take both). Thus, D = {d1,d2,d3}.
Note that elements of D are not necessarily mutually exclusive. In the example,
if the agent chooses the option d3 then the two other options are satisfied.

2. G is a set of propositional formulas built from state variables. It gathers the goals
of an agent (the decision maker). A goal represents what the agent wants to
achieve, and has thus a positive flavor. This means that if g ∈ G, the decision
maker wants that the chosen decision leads to a state of affairs where g is true.
This base may be inconsistent. In this case it would be for sure impossible to
satisfy all the goals, which would induce the simultaneous existence of practical
arguments pros and cons. In general G contains several goals. Clearly, an agent
should try to satisfy all goals in its goal base G if possible. This means that G

may be thought as a conjunction. However, the two goal bases G = {g1,g2} and
G′ = {g1∧g2} although they are logically equivalent, will not be handled in the
same way in an argumentative perspective, since in the second case there is no
way to consider intermediary objectives such as here satisfying g1, or satisfying
g2 only, in case it turns out that it is impossible to satisfy g1∧g2. This means that
our approach is syntax-dependent.

314 L. Amgoud

3. The set R contains propositional formulas built from state variables. It gathers
the rejections of an agent. A rejection represents what the agent wants to avoid.
Clearly rejections express negative preferences. The set {¬r|r ∈ R} describing
what is acceptable for the agent is assumed to be consistent, since acceptable
alternatives should satisfy ¬r due to the rejection of r, and at least there should
remain some possible worlds that are not rejected. There are at least two rea-
sons for separately considering a set of goals and a set of rejections. First, since
agents naturally express themselves in terms of what they are looking for (i.e.
their goals), and in terms of what they want to avoid (i.e. their rejections), it is
better to consider goals and rejections separately in order to articulate arguments
referring to them in a way easily understandable for the agents. Moreover, recent
cognitive psychology studies [13] have confirmed the cognitive validity of this
distinction between goals and rejections. Second, if r is a rejection, this does not
necessarily mean that ¬r is a goal, and thus rejections cannot be equivalently
restated as goals. For instance, in case of choosing a medical drug, one may have
as a goal the immediate availability of the drug, and as a rejection its availability
only after at least two days. In such a case, if the candidate decision guarantees
the availability only after one day, this decision will for sure avoid the rejection
without satisfying the goal. Another simple example is the case of an agent who
wants to get a cup of either coffee or tea, and wants to avoid getting no drink. If
the agent obtains a glass of water, again he would avoid its rejection, without be-
ing completely satisfied. We can imagine different forms of consistency between
the goals and the rejections. A minimal requirement is to have G∩R = ∅.

4. The set K represents the background knowledge that is not necessarily assumed
to be consistent. The argumentation framework for inference presented in Section
2 will handle such inconsistency, namely with the epistemic system. Elements of
K are propositional formulas built from the alphabet P, and assumed to be put
in a clausal form. The base K contains basically two kinds of clauses: i) those
not involving any element from D which encode pieces of knowledge or factual
information (possibly involving goals) about how the world is; ii) those involving
one negation of a formula d of the set D, and which states what follows when
decision d is applied.

Thus, the decision problem we consider will be always encoded with the four above
sets of formulas (with the restrictions stated above). Moreover, we may suppose that
each of the three bases K, G, and R are stratified. Having K stratified would mean
that we consider that some pieces of knowledge are fully certain, while others are
less certain (maybe distinguishing between several levels of partial certainty such as
“almost certain”, “rather certain”, etc.). Clearly, formulas that are not certain at all
cannot be in K. Similarly, having G (resp. R) stratified means that some goals (resp.
rejections) are imperative, while some others are less important (one may have more
than two levels of importance). Completely unimportant goals (resp. rejections) do
not appear in any stratum of G (resp. R). It is worth pointing out that we assume that
candidate decisions are all considered as a priori equally potentially suitable, and
thus there is no need to have D stratified.

15 Argumentation for Decision Making 315

Definition 15.15 (Decision theory). A decision theory (or a theory for short) is a
tuple T = 〈D, K, G, R〉.

3.2 A typology of formal practical arguments

Each candidate decision may have arguments in its favor (called pros), and argu-
ments against it (called cons). In the following, an argument is associated with an
alternative, and always either refers to a goal or to a rejection. Arguments pros point
out the “existence of good consequences” or the “absence of bad consequences” for
a candidate decision. A good consequence means that applying decision d will lead
to the satisfaction of a goal, or to the avoidance of a rejection. Similarly, a bad con-
sequence means that the application of d leads for sure to miss a goal, or to reach
a rejected situation. We can distinguish between practical arguments referring to a
goal, and those arguments referring to rejections. When focusing on the base G, an
argument pro corresponds to the guaranteed satisfaction of a goal when there exists
a consistent subset S of K such that S∪{d} � g.

Definition 15.16 (Positive arguments pro). Let T be a theory. A positively ex-
pressed argument in favor of an option d is a tuple δ = 〈S,d,g〉 s.t:

1. S⊆K, d ∈D, g ∈ G, S∪{d} is consistent
2. S∪{d} � g, and S is minimal for set inclusion among subsets of K satisfying the

above criteria (arguments of Type PP).

S is called the support of the argument, and d is its conclusion.

In what follows, Supp denotes a function that returns the support S of an argument,
Conc denotes a function that returns the conclusion d of the argument, and Result
denotes a function that returns the consequence of the decision. The consequence
may be either a goal as in the previous definition, or a rejection as we can see in the
next definitions of argument types. The above definition deserves several comments:
1) The consistency of S∪{d} means that d is applicable in the context S, in other
words that we cannot prove from S that d is impossible. This means that impossible
alternatives w.r.t. K have been already taken out when defining the set D. In the par-
ticular case where the base K would be consistent, then condition 1, namely S∪{d}
is consistent, is equivalent to K∪{d} is consistent. But, in the case where K is in-
consistent, independently from the existence of a PP argument, it may happen that
for another consistent subset S′ of K, S′ � ¬d. This would mean that there is some
doubt about the feasibility of d, and then constitute an epistemic argument against
d. In the general framework proposed in section 2, such an argument will overrule
decision d since epistemic arguments take precedence over any practical argument
(provided that this epistemic argument is not itself killed by another epistemic argu-
ment).
2) Note that argument of type PP are reminiscent of the practical syllogism recalled
in the introduction. Indeed, it emphasizes that a candidate decision might be chosen

316 L. Amgoud

if it leads to the satisfaction of a goal. However, this is only a clue for choosing the
decision since this last may have arguments against, which would weaken it, or there
may exist other candidate decisions with stronger arguments. Moreover, due to the
nature of the practical syllogism, it is worth noticing that practical arguments have
an abductive form, contrarily to epistemic arguments that are defined in a deductive
way, as revealed by their formal respective definitions.

Another type of arguments pros refers to rejections. It amounts to avoid a rejec-
tion for sure, i.e. S∪{d} � ¬r (where S is a consistent subset of K).

Definition 15.17 (Negative arguments pros). Let T be a theory. A negatively ex-
pressed argument in favor of an option is a tuple δ = 〈S,d,r〉 s.t:

1. S⊆K, d ∈D, r ∈ R, S∪{d} is consistent
2. S∪{d} � ¬r and S is minimal for set inclusion among subsets of K satisfying

the above criteria (arguments of Type NP).

Arguments cons highlight the existence of bad consequences for a given can-
didate decision. Negatively expressed arguments cons are defined by exhibiting a
rejection that is necessarily satisfied. Formally:

Definition 15.18 (Negative arguments cons). Let T be a theory. A negatively ex-
pressed argument against an option d is a tuple δ = 〈S,d,r〉 s.t:

1. S⊆K, d ∈D, r ∈ R, S∪{d} is consistent,
2. S∪{d} � r and S is minimal for set inclusion among subsets of K satisfying the

above criteria (arguments of Type NC).

Lastly, the absence of positive consequences can also be seen as an argument
against (cons) an alternative.

Definition 15.19 (Positive arguments cons). Let T be a theory. A positively ex-
pressed argument against an option d is a tuple δ = 〈S,d,g〉 s.t:

1. S⊆K, d ∈D, g ∈ G, S∪{d} is consistent,
2. S∪{d} � ¬g and S is minimal for set inclusion among subsets of K satisfying

the above criteria (arguments of Type PC).

Let us illustrate the previous definitions on an example.

Example 15.7. Two decisions are possible, organizing a show (d), or not (¬d). Thus
D = {d,¬d}. The knowledge base K contains the following pieces of knowledge:
if a show is organized and it rains then small money loss (¬d∨¬r∨ sml); if a show
is organized and it does not rain then benefit (¬d∨ r∨b); small money loss entails
money loss (¬sml∨ml); if benefit there is no money loss (¬b∨¬ml); small money
loss is not large money loss (¬sml∨¬lml); large money loss is money loss (¬lml∨
ml); there are clouds (c); if there are clouds then it may rain (¬c∨r). All these pieces
of knowledge are in the stratum of level n, except the last one which is in a stratum
with a lower level due to uncertainty. Consider now the cases of two organizers (O1

and O2) having different preferences. O1 does not want any loss R = {ml}, and

15 Argumentation for Decision Making 317

would like benefit G = {b}. O2 does not want large money loss R = {lml}, and
would like benefit G = {b}. In such case, it is expected that O1 prefers ¬d to d,
since there is a NC argument against d and no argument for ¬d. For O2, there is no
longer any NC argument against d. He might even prefer d to ¬d, if he is optimistic
and he considers that there is a possibility that it does not rain (leading to a potential
PP argument under the hypothesis to have ¬r in K.

Due to the asymmetry in the human mind between what is rejected and what is
desired, the former being usually considered as stronger than the latter, one may
assume that NC arguments are stronger than PC arguments, and conversely PP argu-
ments are stronger than NP arguments.

4 Related work

Some works have been done on arguing for decision. Quite early, in [22] Brewka
and Gordon have outlined a logical approach to decision (for negotiation purposes),
which suggests the use of defeasible consequence relation for handling prioritized
rules, and which also exhibits arguments for each choice. However, arguments are
not formally defined. In the framework proposed by Fox and Parsons in [20], no ex-
plicit distinction is made between knowledge and goals. However, in their examples,
values (belonging to a linearly ordered scale) are assigned to formulas which repre-
sent goals. These values provide an empirical basis for comparing arguments using a
symbolic combination of strengths of beliefs and goals values. This symbolic com-
bination is performed through dictionaries corresponding to different kinds of scales
that may be used. In this work, only one type of arguments is considered in the style
of arguments in favor of beliefs. In [10], Bonet and Geffner have also proposed an
approach to qualitative decision, inspired from Tan and Pearl [27], based on “action
rules” that link a situation and an action with the satisfaction of a positive or a nega-
tive goal. However in contrast with the previous two works and the work presented
in this paper, this approach does not refer to any model in argumentative inference.

Other researchers in AI, working on practical reasoning, starting with the generic
question “what is the right thing to do for an agent in a given situation” [24, 25], have
proposed a two steps process to answer this question. The first step, often called de-
liberation [29], consists of identifying the goals of the agent. In the second step, they
look for ways of achieving those goals, i.e. for plans, and thus for intermediary goals
and sub-plans. Such an approach raises issues such as: how are goals generated ? are
actions feasible ? do actions have undesirable consequences ? are sub-plans compat-
ible ? are there alternative plans for achieving a given goal, etc. In [12], it has been
argued that this can be done by representing the cognitive states, namely agent’s
beliefs, desires and intentions (thus the so-called BDI architecture). This requires a
rich knowledge/preference representation setting, which contrasts with the classical
decision setting that directly uses an uncertainty distribution (a probability distri-
bution in the case of expected utility), and a utility (value) function. Besides, the

318 L. Amgoud

deliberation step is merely an inference problem since it amounts to finding a set of
desires that are justified on the basis of the current state of the world and of condi-
tional desires. Checking if a plan is feasible and does not lead to bad consequences
is still a matter of inference. A decision problem only occurs when several plans or
sub-plans are possible, and one of them has to be chosen. This latter issue may be
viewed as a classical decision problem. What is worth noticing in most works on
practical reasoning is the use of argument schemes for providing reasons for choos-
ing or discarding an action (e.g. [19, 21]). For instance, an action may be considered
as potentially useful on the basis of the practical syllogism [28]:

• G is a goal for agent X
• Doing action A is sufficient for agent X to carry out goal G
• Then, agent X ought to do action A

The above syllogism is in essence already an argument in favor of doing action
A. However, this does not mean that the action is warranted, since other argu-
ments (called counter-arguments) may be built or provided against the action. Those
counter-arguments refer to critical questions identified in [28] for the above syllo-
gism. In particular, relevant questions are “Are there alternative ways of realizing
G?”, “Is doing A feasible?”, “Has agent X other goals than G?”, “Are there other
consequences of doing A which should be taken into account?”. Recently in [6, 7],
the above syllogism has been extended to explicitly take into account the reference
to ethical values in arguments.

5 Conclusion

The chapter has proposed an abstract argumentation-based framework for decision
making. The main idea behind this work is how to define a complete preorder on a
set of candidate decisions on the basis of arguments. The framework distinguishes
between two types of arguments: epistemic arguments that support beliefs and prac-
tical arguments that justify candidate decisions. Each practical argument concerns
only one candidate decision, and may be either in favor of that decision or against
it. The framework follows two main steps: i) an inference step in which arguments
are evaluated using acceptability semantics. This step amounts to return among the
practical arguments, those which are warranted in the current state of information,
i.e. the “accepted” arguments. ii) A pure decision step in which candidate decisions
are compared on the basis of accepted practical arguments. For the second step of
the process, we have proposed three families of principles for comparing pairs of
choices. An axiomatic study and a cognitive validation of these principles are worth
developing, in particular in connection with [11, 16]. The proposed approach is very
general and includes as particular cases already studied argumentation-based deci-
sion systems. Moreover it has been shown in [5] that the approach is suitable for
multiple criteria decision making as well as decision making under uncertainty. In
particular, the approach has been shown to fully agree with qualitative decision mak-

15 Argumentation for Decision Making 319

ing under uncertainty, and to distinguish between pessimistic and optimistic attitude
of the decision maker.

Although our model is quite general, it may be still worth extending along dif-
ferent lines. First, the use of default knowledge could be developed. Second, our
approach does not take into account rules that recommend or disqualify decisions in
given contexts. Such rules should incorporate modalities for distinguishing between
strong and weak recommendations. Moreover, they are fired by classical argumen-
tative inference. This contrasts with our approach where the only arguments per-
taining to decisions have an abductive structure. Recommendation rules may also
turn to be inconsistent with other pieces of knowledge in practical arguments pros
or cons w.r.t. a decision. Lastly, agents may base their decision on two types of in-
formation, namely generic knowledge and a repertory of concrete reported cases.
Then, past observations recorded in the repertory may be the basis of a new form
of arguments by exemplification of cases where a decision has succeeded or failed.
This would amount to relate argumentation and case-based decision.

References

1. L. Amgoud. A general argumentation framework for inference and decision making. In 21st
Conference on Uncertainty in Artificial Intelligence, UAI’2005, pages 26–33, 2005.

2. L. Amgoud, J-F. Bonnefon, and H. Prade. An argumentation-based approach to multiple cri-
teria decision. In Proceedings of the 8th European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty (ECSQARU’05), pages 269–280, 2005.

3. L. Amgoud and C. Cayrol. Inferring from inconsistency in preference-based argumentation
frameworks. In International Journal of Automated Reasoning, 29, N2:125–169, 2002.

4. L. Amgoud and C. Cayrol. A reasoning model based on the production of acceptable argu-
ments. In Annals of Mathematics and Artificial Intelligence, 34:197–216, 2002.

5. L. Amgoud and H. Prade. Explaining qualitative decision under uncertainty by argumentation.
In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI’06), pages
219–224, 2006.

6. K. Atkinson. Value-based argumentation for democratic decision support. In Proceed-
ings of the First International Conference on Computational Models of Natural Argument
(COMMA’06), pages 47–58, 2006.

7. K. Atkinson, T. Bench-Capon, and P. McBurney. Justifying practical reasoning. In Pro-
ceedings of the Fourth Workshop on Computational Models of Natural Argument (CMNA’04),
pages 87–90, 2004.

8. P. Baroni, M. Giacomin, and G. Guida. Scc-recursiveness: a general schema for argumentation
semantics. In Artificial Intelligence, 168 (1-2):162–210, 2005.

9. Ph. Besnard and A. Hunter. A logic-based theory of deductive arguments. In Artificial Intel-
ligence, 128:203–235, 2001.

10. B. Bonet and H. Geffner. Arguing for decisions: A qualitative model of decision making. In
Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence (UAI’96), pages
98–105, 1996.

11. J.-F. Bonnefon and H. Fargier. Comparing sets of positive and negative arguments: Empirical
assessment of seven qualitative rules. In Proceedings of the 17th European Conference on
Artificial Intelligence (ECAI’06), pages 16–20, 2006.

12. M. Bratman. Intentions, plans, and practical reason. Harvard University Press, Mas-
sachusetts, 1987.

320 L. Amgoud

13. J.T. Cacioppo, W.L. Gardner, and G.G. Bernston. Beyond bipolar conceptualizations and
measures: The case of attitudes and evaluative space. In Personality and Social Psychology
Review, 1:3–25, 1997.

14. C. Cayrol, V. Royer, and C. Saurel. Management of preferences in assumption-based reason-
ing. In Lecture Notes in Computer Science, 682:13–22, 1993.

15. Y. Dimopoulos, P. Moraitis, and A. Tsoukias. Argumentation based modeling of decision
aiding for autonomous agents. In IEEE-WIC-ACM International Conference on Intelligent
Agent Technology, pages 99–105, 2004.

16. D. Dubois and H. Fargier. Qualitative decision making with bipolar information. In Proceed-
ings of the 10th International Conference on Principles of Knowledge Representation and
Reasoning (KR’06), pages 175–186, 2006.

17. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. In Artificial Intelligence, 77:321–357,
1995.

18. M. Elvang-Goransson, J. Fox, and P. Krause. Dialectic reasoning with inconsistent informa-
tion. In Proceedings of 9th Conference on Uncertainty in Artificial Intelligence (UAI’93),
pages 114 – 121, 1993.

19. J. Fox and S. Das. Safe and Sound. Artificial Intelligence in Hazardous Applications. AAAI
Press, The MIT Press, 2000.

20. J. Fox and S. Parsons. On using arguments for reasoning about actions and values. In Proceed-
ings of the AAAI Spring Symposium on Qualitative Preferences in Deliberation and Practical
Reasoning, Stanford, 1997.

21. R. Girle, D. Hitchcock, P. McBurney, and B. Verheij. Decision support for practical reasoning.
C. Reed and T. Norman (Editors): Argumentation Machines: New Frontiers in Argument and
Computation. Argumentation Library. Dordrecht, The Netherlands: Kluwer Academic, 2003.

22. T. Gordon and G. Brewka. How to buy a porsche: An approach to defeasible decision making
(preliminary report). In In the workshop of Comutational Dialectics, 1994.

23. T. F. Gordon and N. I. Karacapilidis. The Zeno Argumentation Framework. Kunstliche Intel-
ligenz, 13(3):20–29, 1999.

24. J. Pollock. The logical foundations of goal-regression planning in autonomous agents. In
Artificial Intelligence, 106(2):267–334, 1998.

25. J. Raz. Practical reasoning. Oxford, Oxford University Press, 1978.
26. G. R. Simari and R. P. Loui. A mathematical treatment of defeasible reasoning and its imple-

mentation. In Artificial Intelligence and Law, 53:125–157, 1992.
27. S. W. Tan and J. Pearl. Qualitative decision theory. In Proceedings of the 11th National

Conference on Artificial Intelligence (AAAI’94), pages 928–933, 1994.
28. D. Walton. Argument schemes for presumptive reasoning, volume 29. Lawrence Erlbaum

Associates, Mahwah, NJ, USA, 1996.
29. M. J. Wooldridge. Reasoning about rational agents. MIT Press, Cambridge Massachusetts,

London England, 2000.

Chapter 16
Argumentation and Game Theory

Iyad Rahwan and Kate Larson

1 What Game Theory Can Do for Argumentation

In a large class of multi-agent systems, agents are self-interested in the sense that
each agent is interested only in furthering its individual goals, which may or may
not coincide with others’ goals. When such agents engage in argument, they would
be expected to argue strategically in such a way that makes it more likely for their
argumentative goals to be achieved. What we mean by arguing strategically is that
instead of making arbitrary arguments, an agent would carefully choose its argu-
mentative moves in order to further its own objectives.

The mathematical study of strategic interaction is Game Theory, which was pi-
oneered by von Neuman and Morgenstern [13]. A setting of strategic interaction is
modelled as a game, which consists of a set of players, a set of actions available
to them, and a rule that determines the outcome given players’ chosen actions. In
an argumentation scenario, the set of actions are typically the set of argumentative
moves (e.g. asserting a claim or challenging a claim), and the outcome rule is the
criterion by which arguments are evaluated (e.g. a judge’s attitude or a social norm).

Generally, game theory can be used to achieve two goals:

1. undertake precise analysis of interaction in particular strategic settings, with a
view to predicting the outcome;

2. design rules of the game in such a way that self-interested agents behave in some
desirable manner (e.g. tell the truth); this is called mechanism design;

Both these approaches are quite useful for the study of argumentation in multi-
agent systems. On one hand, an agent may use game theory to analyse a given
argumentative situation in order to choose the best strategy. On the other hand, we

Iyad Rahwan
British University in Dubai, UAE & University of Edinburgh, UK, e-mail: irahwan@acm.org

Kate Larson
University of Waterloo, Canada e-mail: klarson@cs.uwaterloo.ca

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 321
DOI 10.1007/978-0-387-98197-0 16, c© Springer Science+Business Media, LLC 2009

322 Iyad Rahwan and Kate Larson

may use mechanism design to design the rules (e.g. argumentation protocol) in such
a way as to promote good argumentative behaviour. In this chapter, we will discuss
some early developments in these directions.

In the next section, we motivate the usefulness of game theory in argumentation
using a novel game. After providing a brief background on game theory in Section
3, we introduce our Argumentation Mechanism Design approach in Section 4 and
present some preliminary results in Section 5. Finally, we discuss related work in
Section 6 and conclude in Section 7

2 The “Argumentative Battle of the Sexes” Game

Consider the following situation involving the couple Alice (A) and Brian (B), who
want to decide on an activity for the day.1 Brian thinks they should go to a soc-
cer match (argument α1) while Alice thinks they should attend the ballet (argument
α2). There is time for only one activity, however (hence α1 and α2 defeat one an-
other). Moreover, while Alice prefers the ballet to the soccer, she would still rather
go to a soccer match than stay at home. Likewise, Brian prefers the soccer match
to the ballet, but also prefers the ballet to staying home. Formally, we can write
uA(ballet) > uA(soccer) > uA(home) and uB(soccer) > uB(ballet) > uB(home).

Alice has a strong argument which she may use against going to the soccer,
namely by claiming that she is too sick to be outdoors (argument α3). Brian simply
cannot attack this argument (without compromising his marriage at least). Likewise,
Brian has an irrefutable argument against the ballet; he could claim that his ex-wife
will be there too (argument α4). Alice cannot stand her! Using Dung’s abstract ar-
gumentation model [1], which is described in detail in Chapter 2, the argumentative
structure of this situation can be modelled as shown in Figure 16.1(a).

Alice can choose to say nothing, utter argument α2 or α3 or both. Similarly,
Brian can choose to say nothing, utter argument α1 or α4 or both. For the sake of
the example, we will suppose that Alice and Brian use the grounded semantics as
the argumentative foundation of their marriage! The question we are interested in
here is: What will Alice and Bob say? or at least: What are they likely to say?

The strategic encounter, on the other hand, can be modelled as shown in the table
in Figure 16.1(b). Each cell corresponds to a strategy profile in which Alice and
Brian reveal a particular set of arguments. The numbers in the cells correspond to
the utilities they obtain once the grounded extension is calculated on their revealed
arguments. For example, if Alice utters {α2} while Brian utters {α1,α4}, we end up
with a sub-graph of Figure 16.1(a) in which α3 is missing. The grounded extension
of this argument graph admits arguments {α1,α4}. This corresponds to a situation
where Brian wins and the couple head to the soccer. Thus, he gets the highest utility
of 2, while Alice gets her second-preferred outcome with utility 1. This representa-
tion, shown in Figure 16.1(b), is known as a normal form game.

1 We call this the argumentative battle of the sexes game. It is similar, but not identical to the
well-known “Battle of the Sexes” game.

16 Argumentation and Game Theory 323

α4α3

α1: They should go to the soccer.
α2: They should go to the ballet.
α3: Alice too sick for the outdoors.
α4: Brian’s ex-wife at the ballet.

α1 α2

(a) (b)

{α1}

{α2}

{}

0 0 2 1

{} 1 2 0 0

Brian

Alice
{α3} 0 0 0 0

2 1{α2, α3} 2 1

{α4}

0 0

0 0

0 0

0 0

{α1, α4}

1 2

1 2

0 0

0 0

Nash Equilibria:
({α2}, {α1, α4}) ({α2, α3}, {α1})
({}, {α1, α4}) ({α2, α3}, {})

Fig. 16.1 Simple argumentative scenario and its normal form game representation. The outcome
is decided using grounded semantics.

The normal-form game can be used to deduce a number of things about this
particular scenario. First, it is never in either Alice or Brian’s best interest to utter
their irrefutable argument (α3 or α4) without also stating their preferred activity
(α1 or α2), since by announcing their preferred activity then they may possibly
attend some event (either ballet or soccer) while if one of them only announces their
irrefutable argument then both agents are certain to stay at home (the least preferred
outcome for both Alice and Brian). That is, {α3} is weakly dominated by {α2,α3}
(and {α2}) and α4 is weakly dominated by {α1,α4} (and {α1}).

Given a game, we are interested in finding the Nash equilibria of the game. A
Nash equilibrium is a strategy profile (a listing of one strategy for each agent) where
no agent wants to change its strategy, assuming that the other agents do not change.
The Nash equilibria are the stable outcomes of the game. Consider the strategy
profile in which Alice says that she is sick and suggests the ballet (i.e. she utters
{α2,α3}) and Brian simply suggests the soccer match (i.e. he utters {α1}). This
outcome is a Nash equilibrium. On one hand, given that Alice states {α2,α3}, Brian
has no incentive to deviate to any other strategy. If he mentions his ex-wife’s atten-
dance at the ballet (uttering {α4} or {α1,α4}), he shoots himself in the foot and
ends up spending the day at home. And if he stays quiet (uttering {}), he cannot
influence the outcome anyway. On the other hand, assuming that Brian announces
{α1} then Alice is best-off stating {α2,α3} since by doing so, she gets the outcome
that she prefers (the ballet). In fact, we list four Nash equilibria in Figure 16.1(b).2

The analysis that we just concluded does not allow us to identify a single outcome
for the example. However, it does identify some interesting strategic phenomena. In
particular, it shows that it is never in Alice and Brian’s interest for them both to use
their irrefutable arguments. For example, if Brian is confident that Alice will state

2 A reader familiar with game theory will note that we only list the pure strategy Nash equilibria.
In addition to these four equilibria, there are three mixed equilibria in which players randomize
their strategies.

324 Iyad Rahwan and Kate Larson

Fig. 16.2 A (pruned) game tree for the argumentative battle of the sexes game.

that she is too sick (α3) then Brian should not bring up his argument against the
ballet.

While the above analysis did not allow us to identify a single outcome of the
scenario, at least we were able to rule out so many unstable outcomes. Indeed, in
some situations, there is a single Nash equilibrium, which makes predicting the
outcome easier.

So far, we used a normal-form representation to model the argument game.
While this representation is useful for many purposes due to its simplicity, it
fails to capture the dynamic aspect of argumentation: the fact that argumenta-
tive moves are normally made interactively over multiple time steps. The appro-
priate tool to model such dynamics are extensive-form games, which we discuss
next.

An extensive-form game with perfect information explicitly captures the fact that
agents may take turns when choosing actions (for example, declaring arguments). A
game tree is used to represent the game. Each node in the tree is associated with an
agent whose turn it is to take an action. A path in the tree represents the sequence of
actions taken, and leafs nodes are the final outcomes, given the actions on the path
to the leaf node. In these games we assume that the actions that each agent takes are
fully observable by all the other agents.

We can model the interaction between Alice and Brian using an extensive-form
game, if we assume that Alice and Brian take turns uttering arguments. We will

16 Argumentation and Game Theory 325

assume that i) an agent can only make one argument at a time, ii) agents can not
repeat arguments, and iii) if at some step an agent decides not to make an argument,
then they are not allowed to make any more arguments in the future. We will also
assume, for the sake of the example, that Alice gets to make the first argument.
Figure 16.2 shows the game tree for the argumentative battle of the sexes game.
Most of the paths which result in an outcome where both agents will get zero have
been pruned from the tree. These paths are not played in equilibrium, and their
removal allows us to focus on the relevant parts of the tree.

Since Alice gets to make the first move, she has to decide whether to offer no
arguments at all {}, suggest that they go to the ballet (α2), or present her counter-
argument to the soccer match before the soccer match is even brought up (α3).
Based on the argument uttered by Alice, Brian then gets to make a decision. If Alice
had made no argument, then as long as Brian announces α1 (and possibly also α4)
then they will go to the soccer match. Brian will receive utility of two and Alice
will receive utility of one (the subtree on the left). If Alice suggested going to the
ballet (α2) then Brian is best off immediately raising his counter-argument to the
ballet (α4). This is because Alice’s best counter-argument is then to say nothing,
which allows Brian to then present soccer (α1) as an alternative. This results in
Brian getting his favorite outcome (soccer) since Alice’s only other option would
be to raise argument α3, resulting in them both staying at home (the least preferred
outcome). If instead, Brian had not made an argument or had uttered α1, then Alice
would have been able to to raise her counter-argument, resulting in them both going
to the ballet. Finally, if Alice first announces her counter-argument to soccer (α3)
then Brian will end up announcing, at most, argument α1 since raising the counter-
argument to the ballet (α4) will result in them both staying at home. This means that
the outcome will be that both Alice and Brian will go to the ballet. Alice uses this
reasoning in order to determine what her initial action should be. She will realize
that if she makes no argument, or initially suggests the ballet (α2) then Brian will
be able to take actions so that they end up going to the soccer match. However,
if Alice starts with her counter-argument to the soccer match (α3) then she can
force Brian into a situation where he is best off not making his counter-argument
to the ballet, and so they will both end up going to the ballet, Alice’s preferred
outcome. Therefore, in equilibrium, Alice will state her objection to soccer (α3)
first, which will force Brian to either make no argument or make (already defeated)
argument α1, which then allows Alice to counter with the ballet proposal (α2). This
equilibrium is called a subgame perfect equilibrium and is a refinement of the Nash
equilibria.

We note that by going first, Alice had an advantage over Brian since by carefully
choosing her first argument she could force the outcome that she wanted. If Brian
had gone first, then he would have been best off first announcing α4, his counter-
argument to the ballet. This would have allowed him to get the outcome that he
preferred, that is, the soccer match. Thus in the extensive-form game analysis of
argumentation, the order in which agents make arguments is critical in the analysis
and in the outcome.

326 Iyad Rahwan and Kate Larson

A number of researchers have proposed using extensive-form games of perfect
information to model argumentation. For example, Procaccia and Rosenschein [10]
proposed a game-based argumentation framework where they extend Dung’s
abstract argumentation framework by mapping argumentation frameworks into
extensive-form games of perfect information. A similar approach has recently been
proposed by Riveret et al [12], giving an extensive-form game characterisation of
Prakken’s dialectical framework [8]. In both cases, the authors show how standard
backward induction techniques can be used to eliminate dominated strategies and
characterise Nash equilibrium strategies.

3 Technical Background

Before we present a precise formal mapping of abstract argumentation into game
theory, in this section, we give a brief background on key game-theoretic concepts.
Readers who lack background in game theory may consult a more comprehensive
introduction to the field, such as [5].

3.1 Game Theory

The field of game theory studies strategic interactions of self-interested agents. We
assume that there is a set of self-interested agents, denoted by I. We let θi ∈ Θi

denote the type of agent i which is drawn from some set of possible types Θi. The
type represents the private information and preferences of the agent. An agent’s
preferences are over outcomes o∈O, where O is the set of all possible outcomes. We
assume that an agent’s preferences can be expressed by a utility function ui(o,θi)
which depends on both the outcome, o, and the agent’s type, θi. Agent i prefers
outcome o1 to o2 when ui(o1,θi) > ui(o2,θi).

When agents interact, we say that they are playing strategies. A strategy for agent
i, si(θi), is a plan that describes what actions the agent will take for every decision
that the agent might be called upon to make, for each possible piece of information
that the agent may have at each time it is called to act. That is, a strategy can be
thought as a complete contingency plan for an agent. We let Σi denote the set of
all possible strategies for agent i, and thus si(θi) ∈ Σi. When it is clear from the
context, we will drop the θi in order to simplify the notation. We let strategy profile
s = (s1(θ1), . . . ,sI(θI)) denote the outcome that results when each agent i is playing
strategy si(θi). As a notational convenience we define

s−i(θ−i) = (s1(θi), . . . ,si−1(θi−1),si+1(θi+1), . . . ,sI(θI))

and thus s = (si,s−i). We then interpret ui((si,s−i),θi) to be the utility of agent i with
type θi when all agents play strategies specified by strategy profile (si(θi),s−i(θ−i)).

16 Argumentation and Game Theory 327

Similarly, we also define:

θ−i = (θ1, . . . ,θi−1,θi+1, . . . ,θI)

Since the agents are all self-interested, they will try to choose strategies which
maximize their own utility. Since the strategies of other agents also play a role in de-
termining the outcome, the agents must take this into account. The solution concepts
in game theory determine the outcomes that will arise if all agents are rational and
strategic. The most well known solution concept is the Nash equilibrium. A Nash
equilibrium is a strategy profile in which each agent is following a strategy which
maximizes its own utility, given its type and the strategies of the other agents.

Definition 16.1 (Nash Equilibrium). A strategy profile s∗ = (s∗1, . . . ,s
∗
I) is a Nash

equilibrium if no agent has incentive to change its strategy, given that no other agent
changes. Formally,

∀i,∀s′i,ui(s∗i ,s
∗
−i,θi)≥ ui(s′i,s

∗
−i,θi).

Although the Nash equilibrium is a fundamental concept in game theory, it does
have several weaknesses. First, there may be multiple Nash equilibria and so agents
may be uncertain as to which equilibrium they should play. Second, the Nash equi-
librium implicitly assumes that agents have perfect information about all other
agents, including the other agents’ preferences.

A stronger solution concept in game theory is the dominant-strategy equilibrium.
A strategy si is said to be dominant if by playing it, the utility of agent i is maximized
no matter what strategies the other agents play.

Definition 16.2 (Dominant Strategy). A strategy s∗i is dominant if

∀s−i, ∀s′i, ui(s∗i ,s−i,θi)≥ ui(s′i,s−i,θi).

Sometimes, we will refer to a strategy satisfying the above definition as weakly
dominant. If the inequality is strict (i.e. > instead of ≥), we say that the strategy is
strictly dominant.

A dominant-strategy equilibrium is a strategy profile where each agent is play-
ing a dominant strategy. This is a very robust solution concept since it makes no
assumptions about what information the agents have available to them, nor does it
assume that all agents know that all other agents are being rational (i.e. trying to
maximize their own utility). However, there are many strategic settings where no
agent has a dominant strategy.

A third solution concept is the Bayes-Nash equilibrium. We include it for the sake
of completeness. In the Bayes-Nash equilibrium the assumption made for the Nash
equilibrium, that all agents know the preferences of others, is relaxed. Instead, we
assume that there is some common prior F((Θ1, . . . ,ΘI)), such that the agents’ types
are distributed according to F . Then, in equilibrium, each agent chooses the strategy
that maximizes it’s expected utility given the strategies other agents are playing and
the prior F .

328 Iyad Rahwan and Kate Larson

Definition 16.3 (Bayes-Nash Equilibrium). A strategy profile s∗ = (s∗i ,s∗−i) is a
Bayes-Nash equilibrium if

Eθ−i [ui((s∗i (θi),s∗−i(·)),θi)]≥ Eθ−i [ui((s′i(θi),s∗−i(·)),θi)] ∀θi,∀s′i.

3.2 Mechanism Design

The problem that mechanism design studies is how to ensure that a desirable system-
wide outcome or decision is made when there is a group of self-interested agents
who have preferences over the outcomes. In particular, we often want the outcome to
depend on the preferences of the agents. This is captured by a social choice function.

Definition 16.4 (Social Choice Function). A social choice function is a rule f :
Θ1× . . .×ΘI → O, that selects some outcome f (θ) ∈ O, given agent types θ =
(θ1, . . . ,θI).

The challenge, however, is that the types of the agents (the θ ′i s) are private and
known only to the agents themselves. Thus, in order to select an outcome with the
social choice function, one has to rely on the agents to reveal their types. However,
for a given social choice function, an agent may find that it is better off if it does
not reveal its type truthfully, since by lying it may be able to cause the social choice
function to choose an outcome that it prefers. Instead of trusting the agents to be
truthful, we use a mechanism to try to reach the correct outcome.

A mechanism M = (Σ ,g(·)) defines the set of allowable strategies that agents
can chose, with Σ = Σ1× ·· ·×ΣI where Σi is the strategy set for agent i, and an
outcome function g(s) which specifies an outcome o for each possible strategy pro-
file s = (s1, . . . ,sI) ∈ Σ . This defines a game in which agent i is free to select any
strategy in Σi, and, in particular, will try to select a strategy which will lead to an
outcome that maximizes its own utility. We say that a mechanism implements social
choice function f if the outcome induced by the mechanism is the same outcome
that the social choice function would have returned if the true types of the agents
were known.

Definition 16.5 (Implementation). A mechanism M = (Σ ,g(·)) implements social
choice function f if there exists an equilibrium s∗ such that

∀θ ∈Θ , g(s∗(θ)) = f (θ).

While the definition of a mechanism puts no restrictions on the strategy spaces of
the agents, an important class of mechanisms are the direct-revelation mechanisms
(or simply direct mechanisms).

Definition 16.6 (Direct-Revelation Mechanism). A direct-revelation mechanism
is a mechanism in which Σi = Θi for all i, and g(θ) = f (θ) for all θ ∈Θ .

In words, a direct mechanism is one where the strategies of the agents are to an-
nounce a type, θ ′i to the mechanism. While it is not necessary that θ ′i = θi, the

16 Argumentation and Game Theory 329

important Revelation Principle (see below for more details) states that if a social
choice function, f (·), can be implemented, then it can be implemented by a direct
mechanism where every agent reveals its true type [5]. In such a situation, we say
that the social choice function is incentive compatible.

Definition 16.7 (Incentive Compatible). The social choice function f (·) is incen-
tive compatible (or truthfully implementable) if the direct mechanism M = (Θ ,g(·))
has an equilibrium s∗ such that s∗i (θi) = θi.

If the equilibrium concept is the dominant-strategy equilibrium, then the social
choice function is strategy-proof . In this chapter we will on occasion call a mecha-
nism incentive-compatible or strategy-proof. This means that the social choice func-
tion that the mechanism implements is incentive-compatible or strategy-proof.

3.3 The Revelation Principle

Determining whether a particular social choice function can be implemented, and in
particular, finding a mechanism which implements a social choice function appears
to be a daunting task. In the definition of a mechanism, the strategy spaces of the
agents are unrestricted, leading to an infinitely large space of possible mechanisms.
However, the Revelation Principle states that we can limit our search to a special
class of mechanisms [5, Ch 14].

Theorem 16.1 (Revelation Principle). If there exists some mechanism that imple-
ments social choice function f in dominant strategies, then there exists a direct
mechanism that implements f in dominant strategies and is truthful.

The intuitive idea behind the Revelation Principle is fairly straightforward. Sup-
pose that you have a, possibly very complex, mechanism, M, which implements
some social choice function, f . That is, given agent types θ = (θ1, . . . ,θI) there ex-
ists an equilibrium s∗(θ) such that g(s∗(θ)) = f (θ). Then, the Revelation Principle
states that it is possible to create a new mechanism, M′, which, when given θ , will
then execute s∗(θ) on behalf of the agents and then select outcome g(s∗(θ)). Thus,
each agent is best off revealing θi, resulting in M′ being a truthful, direct mechanism
for implementing social choice function f .

The Revelation Principle is a powerful tool when it comes to studying imple-
mentation. Instead of searching through the entire space of mechanisms to check
whether one implements a particular social choice function, the Revelation Prin-
ciple states that we can restrict our search to the class of truthful, direct mecha-
nisms. If we can not find a mechanism in this space which implements the social
choice function of interest, then there does not exist any mechanism which will
do so.

It should be noted that while the Revelation Principle is a powerful analysis tool,
it does not imply we should only design direct mechanisms. Some reasons why one
rarely sees direct mechanisms in the “real world” include (among others);

330 Iyad Rahwan and Kate Larson

• they can place a high computational burden on the mechanism since it is required
to execute agents’ strategies,

• agents’ strategies may be computationally difficult to determine, and
• agents may not be willing to reveal their true types because of privacy concerns.

4 Argumentation Mechanism Design

Mechanism design (MD) is a sub-field of game theory concerned with the follow-
ing question: what game rules guarantee a desirable social outcome when each
self-interested agent selects the best strategy for itself? In other words, while game
theory is concerned with a given strategic situation modelled as a game, mechanism
design is concerned with designing the game itself. As such, one might actually call
it reverse game theory.

In this section we define the mechanism design problem for abstract argumenta-
tion. We dub this new approach ‘Argumentation Mechanism Design’ (ArgMD).

Let AF = 〈A,R〉 be an argumentation framework with a set of arguments A and
a binary defeat relation R. We define a mechanism with respect to AF and semantics
S, and we assume that there is a set of I self-interested agents. We define an agent’s
type to be its set of arguments.

Definition 16.8 (Agent Type). Given an argumentation framework 〈A,R〉, the type
of agent i, Ai ⊆ A, is the set of arguments that the agent is capable of putting for-
ward.

There are two things to note about this definition. Firstly, an agent’s type can
be seen as a reflection of its expertise or domain knowledge. For example, medical
experts may only be able to comment on certain aspects of forensics in a legal case,
while a defendant’s family and friends may be able to comment on his/her character.
Also, such expertise may overlap, so agent types are not necessarily disjoint. For
example, two medical doctors might have some identical argument, and so on.

The second thing to note about the definition is that agent types do not include
the defeat relation. In other words, we implicitly assume that the notion of defeat is
common to all agents. That is, given two arguments, no agent would dispute whether
one attacks another. This is a reasonable assumption in systems where agents use
the same logic to express arguments or at least multiple logics for which the notion
of defeat is accepted by everyone (e.g. conflict between a proposition and its nega-
tion). Disagreement over the defeat relation itself requires a form of hierarchical
(meta) argumentation [7], which is a powerful concept, but is beyond the scope of
the present chapter.

Given the agents’ types (argument sets) a social choice function f maps a type
profile into a subset of arguments;

f : 2A× . . .×2A → 2A

16 Argumentation and Game Theory 331

While our definition of an argumentation mechanism will allow for generic social
choice functions which map type profiles into subsets of arguments, we will be
particularly interested in argument acceptability social choice functions. We denote
by Acc(〈A,R〉,S)⊆A the set of acceptable arguments according to semantics S.3

Definition 16.9 (Argument Acceptability Social Choice Functions). Given an ar-
gumentation framework 〈A,R〉 with semantics S, and given an agent type profile
(A1, . . . ,AI), the argument acceptability social choice function f is defined as the
set of acceptable arguments given the semantics S. That is,

f (A1, . . . ,AI) = Acc(〈A1∪ . . .∪AI ,R〉,S).

As is standard in the mechanism design literature, we assume that agents have
preferences over the outcomes o ∈ 2A, and we represent these preferences using
utility functions where ui(o,Ai) denotes agent i’s utility for outcome o when its
type is argument set Ai.

Agents may not have incentive to reveal their true type because they may be able
to influence the final argument status assignment by lying, and thus obtain higher
utility. There are two ways that an agent can lie in our model. On one hand, an
agent might create new arguments that it does not have in its argument set. In the
rest of the chapter we will assume that there is an external verifier that is capable of
checking whether it is possible for a particular agent to actually make a particular
argument. Informally, this means that presented arguments, while still possibly de-
feasible, must at least be based on some sort of demonstrable ‘plausible evidence.’
If an agent is caught making up arguments then it will be removed from the mech-
anism. For example, in a court of law, any act of perjury by a witness is punished,
at the very least, by completely discrediting all evidence produced by the witness.
Moreover, in a court of law, arguments presented without any plausible evidence
are normally discarded (e.g. “I did not kill him, since I was abducted by aliens at
the time of the crime!”). For all intents and purposes this assumption (also made by
Glazer and Rubinstein [2]) removes the incentive for an agent to make up facts.

A more insidious form of manipulation occurs when an agent decides to hide
some of its arguments. By refusing to reveal certain arguments, an agent might be
able to break defeat chains in the argument framework, thus changing the final set of
acceptable arguments. For example, a witness may hide evidence that implicates the
defendant if the evidence also undermines the witness’s own character. This type of
lie is almost impossible to detect in practice, and it is this form of strategic behaviour
that we will be the most interested in.

As mentioned earlier, a strategy of an agent specifies a complete plan that de-
scribes what action the agent takes for every decision that a player might be called
upon to take, for every piece of information that the player might have at each time
that it is called upon to act. In our model, the actions available to an agent involve
announcing sets of arguments. Thus a strategy si ∈ Σi for agent i would specify for

3 Here, we assume that S specifies both the classical semantics used (e.g. grounded, preferred,
stable) as well as the acceptance attitude used (e.g. sceptical or credulous).

332 Iyad Rahwan and Kate Larson

each possible subset of arguments that could define its type, what set of arguments
to reveal. For example, a strategy might specify that an agent should reveal only
half of its arguments without waiting to see what other agents are going to do, while
another strategy might specify that an agent should wait and see what arguments are
revealed by others, before deciding how to respond. In particular, beyond specifying
that agents are not allowed to make up arguments, we place no restrictions on the
allowable strategy spaces, when we initially define an argumentation mechanism.
Later, when we talk about direct argumentation mechanisms we will further restrict
the strategy space.

We are now ready to define our argumentation mechanism. We first define a
generic mechanism, and then specify a direct argumentation mechanism, which due
to the Revelation Principle, is the type of mechanism we will study in the rest of the
chapter.

Definition 16.10 (Argumentation Mechanism). Given an argumentation frame-
work AF = 〈A,R〉 and semantics S, an argumentation mechanism is defined as

MS
AF = (Σ1, . . . ,ΣI ,g(·))

where Σi is an argumentation strategy space of agent i and g : Σ1× . . .×ΣI → 2A.

Note that in the above definition, the notion of dialogue strategy is broadly con-
strued and would depend on the protocol used. In a direct mechanism, however, the
strategy spaces of the agents are restricted so that they can only reveal a subset of
arguments.

Definition 16.11 (Direct Argumentation Mechanism). Given an argumentation
framework AF = 〈A,R〉 and semantics S, a direct argumentation mechanism is de-
fined as

MS
AF = (Σ1, . . . ,ΣI ,g(·))

where Σi = 2A and g : Σ1× . . .ΣI → 2A.

In Table 16.1, we summarise the mapping of multi-agent abstract argumentation
as an instance of a mechanism design problem.

MD Concept ArgMD Instantiation
Agent type θi ∈Θi Agent’s arguments θi = Ai ⊆A
Outcome o ∈O Accepted arguments Acc(.)⊆A

Utility ui(o,θi) Preferences over 2A (what arguments end up being accepted)
Social choice function f : Θ1× . . .×ΘI →O f (A1, . . . ,AI) = Acc(〈A1 ∪ . . .∪AI ,R〉,S).

by some argument acceptability criterion
Mechanism M = (Σ ,g(·)) where
Σ = Σ1×·· ·×ΣI and g : Σ →O Σi is an argumentation strategy, g : Σ → 2A

Direct mechanism: Σi = Θi Σi = 2A (every agent reveals a set of arguments)
Truth revelation Revealing Ai

Table 16.1 Abstract argumentation as a mechanism

16 Argumentation and Game Theory 333

5 Case Study: Implementing the Grounded Semantics

In this section, we demonstrate the power of our ArgMD approach by showing
how it can be used to systematically analyse the strategic incentives imposed by
a well-established argument evaluation criterion. In particular, we specify a direct-
revelation argumentation mechanism, in which agents’ strategies are to reveal sets
of arguments, and where the mechanism calculates the outcome using sceptical
(grounded) semantics.4 That is, we look at the grounded semantics as if it was
designed as a mechanism and analyse it from that perspective. We show that, in
general, this mechanism gives rise to strategic manipulation. We prove, however,
that under various conditions, this mechanism turns out to be strategy-proof.

In a direct argumentation mechanism, each agent i’s available actions are Σi =
2A. We will refer to a specific action (i.e. set of declared arguments) as A◦i ∈ Σi.

We now present a direct mechanism for argumentation based on a sceptical ar-
gument evaluation criteria. The mechanism calculates the grounded extension given
the union of all arguments revealed by agents.

Definition 16.12 (Grounded Direct Argumentation Mechanism). A grounded di-
rect argumentation mechanism for argumentation framework 〈A,R〉 is M

grnd
AF =

(Σ1, . . . ,ΣI ,g(.)) where:

– Σi ∈ 2A is the set of strategies available to each agent;
– g : Σ1×·· ·×ΣI → 2A is an outcome rule defined as: g(A◦1, . . . ,A

◦
I) = Acc(〈A◦1∪

·· ·∪A◦I ,R〉,Sgrnd) where Sgrnd denotes sceptical grounded acceptability seman-
tics.

To simplify our analysis, we will assume below that agents can only lie by hiding
arguments, and not by making up arguments. Formally, this means that ∀i, Σi ∈ 2Ai .

For the sake of illustration, we will consider a particular family of preferences
that agents may have. According to these preferences, every agent attempts to max-
imise the number of arguments in Ai that end up being accepted. We call this pref-
erence criteria the individual acceptability maximising preference.

Definition 16.13 (Acceptability maximising preferences). An agent i has indi-
vidual acceptability maximising preferences if and only if ∀o1,o2 ∈ O such that
|o1∩Ai| ≥ |o2∩Ai|, we have ui(o1,Ai)≥ ui(o2,Ai).

Let us now consider aspects of incentives using mechanism M
grnd
AF through an

example.

Example 16.1. Consider grounded direct argumentation mechanism with three agents
x, y and z with types Ax = {α1,α4,α5}, Ay = {α2} and Az = {α3} respectively.
And suppose that the defeat relation is defined as follows: R = {(α1,α2), (α2,α3),
(α3,α4), (α3,α5)}. If each agent reveals its true type (i.e. A◦x = Ax; A◦y = Ay; and

4 In the remainder of the chapter, we will use the term sceptical to refer to sceptical grounded,
since the chapter focuses on the grounded semantics.

334 Iyad Rahwan and Kate Larson

α1 α2 α3

α4

α5

(a) Argument graph in case of full revelation

α4

α3α2

α5

(b) Argument graph with α1 withheld

Fig. 16.3 Hiding an argument is beneficial (case of acceptability maximisers)

A◦z = Az), then we get the argument graph depicted in Figure 16.3(a). The mecha-
nism outcome rule produces the outcome o = {α1,α3}. If agents have individual ac-
ceptability maximising preferences, with utilities equal to the number of arguments
accepted, then: ux(o,{α1,α4,α5}) = 1; uy(o,{α3}) = 1; and uz(o,{α2}) = 0.

It turns out that the mechanism is susceptible to strategic manipulation, even if
we suppose that agents do not lie by making up arguments (i.e., they may only
withhold some arguments). In this case, for both agents y and z, revealing their
true types weakly dominates revealing nothing at all. However, it turns out that
agent x is better off revealing {α4,α5}. By withholding α1, the resulting argument
network becomes as depicted in Figure 16.3(b), for which the output rule produces
the outcome o′ = {α2,α4,α5}. This outcome yields utility 2 to agent x, which is
better than the truth-revealing strategy.

Remark 16.1. Given an arbitrary argumentation framework AF and agents with ac-
ceptability maximising preferences, mechanism M

grnd
AF is not strategy-proof.

The following theorem provides a full characterisation of strategy-proof mech-
anisms for sceptical argumentation frameworks for agents with acceptability max-
imising preferences.

Theorem 16.2. Let AF be an arbitrary argumentation framework, and let EGR(AF)
denote its grounded extension. Mechanism M

grnd
AF is strategy-proof for agents with

acceptability maximising preferences if and only if AF satisfies the following con-
dition: ∀i ∈ I,∀S ⊆ Ai and ∀A−i, we have |Ai ∩ EGR(〈Ai ∪A−i,R〉)| ≥ |Ai ∩
EGR(〈(Ai\S)∪A−i,R〉)|.

Although the above theorem gives us a full characterisation, it is difficult to apply
in practice. In particular, the theorem does not give us an indication of how agents
(or the mechanism designer) can identify whether the mechanism is strategy-proof
for a class of argumentation frameworks by appealing to their graph-theoretic prop-
erties. Below, we provide an intuitive, graph-theoretic condition that is sufficient to
ensure that M

grnd
AF is strategy-proof when agents have focal arguments.

Let α,β ∈ A. We say that α indirectly defeats β , written α ↪→ β , if and only if
there is an odd-length path from α to β in the argument graph.

16 Argumentation and Game Theory 335

Theorem 16.3. Suppose agents have individual acceptability maximising prefer-
ences. If each agent’s type corresponds to a conflict-free set of arguments which
does not include (in)direct defeats (formally ∀i�α1,α2 ∈ Ai such that α1 ↪→ α2),
then M

grnd
AF is strategy-proof.

Note that in the theorem, ↪→ is over all arguments in A. Intuitively, the condition
in the theorem states that all arguments of every agent must be conflict-free (i.e.
consistent), both explicitly and implicitly. Explicit consistency implies that no argu-
ment defeats another. Implicit consistency implies that other agents cannot possibly
present a set of arguments that reveal an indirect defeat among one’s own argu-
ments. More concretely, in Example 16.1 and Figure 16.3, while agent x’s argument
set Ax = {α1,α4,α5} is conflict-free, when agents y and z presented their own argu-
ments α2 and α3, they revealed an implicit conflict in x’s arguments. In other words,
they showed that x contradicts himself (i.e. committed a fallacy of some kind).

In addition to characterising a sufficient graph-theoretic condition for strategy-
proofness, Theorem 16.3 is useful for individual agents. As long as the agent knows
that it is not possible for a path to be created which causes an (in)direct defeat among
its arguments (i.e., a fallacy to be revealed), then the agent is best off revealing all its
arguments. The agent only needs to know that no argument imaginable can reveal
conflicts among its own arguments.

We now ask whether the sufficient condition in Theorem 16.3 is also necessary
for agents to reveal all their arguments truthfully. Example 16.2 shows that this is
not the case. In particular, for certain argumentation frameworks, an agent may have
truthtelling as a dominant strategy despite the presence of indirect defeats among its
own arguments.

α1

α6

α2 α3

α4

α5

Fig. 16.4 Strategy-proofness despite indirect self-defeat

Example 16.2. Consider the variant of Example 16.1 with the additional argument
α6 and defeat (α6,α3). Let the agent types be Ax = {α1,α4,α5,α6}, Ay = {α2}
and Az = {α3} respectively. The full argument graph is depicted in Figure 16.4.
Under full revelation, the mechanism outcome rule produces the outcome o =
{α1,α4,α5,α6}.

Note that in Example 16.2, truth revelation is now a dominant strategy for x (since
it gets all its arguments accepted) despite the fact that α1 ↪→ α4 and α1 ↪→ α5. This
hinges on the presence of an argument (namely α5) that cancels out the negative
effect of the (in)direct self-defeat among x’s own arguments.

336 Iyad Rahwan and Kate Larson

6 Related Work

6.1 Pareto Optimality of Outcomes

A well-known property of the grounded semantics is that it is extremely sceptical,
accepting only undefeated arguments and arguments defended by undefeated argu-
ments. An interesting question, then, is whether it is possible to be more inclusive
(i.e. being more credulous) in order to produce argumentation outcomes that are
more socially desirable. For example, consider the simple argument graph in Figure
16.5 and suppose we have two agents with types A1 = {α1} and A2 = {α2} who
both reveal their arguments. The grounded extension (Figure 16.5(a)) is empty here.

α2 α1

(a)

α2 α1

(b)

α2 α1

(c)

Fig. 16.5 Preferred extensions ‘dominate’ the grounded extension

Suppose the judge chooses one of the preferred extensions instead (Figure
16.5(b) or (c)). Clearly, when compared to outcome (a), each preferred extension
makes one agent better-off without making the other worse-off. Formally, we say
that outcomes (b) and (c) each Pareto dominates outcome (a). An outcome that is
not Pareto dominated is called Pareto optimal.

Recently, Rahwan and Larson [11] presented an extensive analysis of Pareto op-
timality in abstract argumentation, and established correspondence results between
different semantics on one hand and the Pareto optimal outcomes on the other.

6.2 Glazer and Rubinstein’s Model

Another game-theoretic analysis of argumentation was presented by Glazer and Ru-
binstein [2]. The authors explore the mechanism design problem of constructing
rules of debate that maximise the probability that a listener reaches the right con-
clusion given arguments presented by two debaters. They study a very restricted
setting, in which the world state is described by a vector ω = (w1, . . . ,w5), where
each ‘aspect’ wi has two possible values: 1 and 2. If wi = j for j ∈ {1,2}, we say
that aspect wi supports outcome O j. Presenting an argument amounts to revealing
the value of some wi. The setting is modelled as an extensive-form game and anal-
ysed. In particular, the authors investigate various combinations of procedural rules
(stating in which order and what sorts of arguments each debater is allowed to state)
and persuasion rules (stating how the outcome is chosen by the listener). In terms of
procedural rules, the authors explore: (1) one-speaker debate in whichone debater

16 Argumentation and Game Theory 337

chooses two arguments to reveal; (2) simultaneous debate in which the two debaters
simultaneously reveal one argument each; and (3) sequential debate in which one
debater reveals one argument followed by one argument by the other. Our mecha-
nism is closer to the simultaneous debate, but is much more general as it enables
the simultaneous revelation of an arbitrary number of arguments. Glazer and Rubin-
stein investigate a variety of persuasion rules. For example, in one-speaker debate,
one rule analysed by the authors states that ‘a speaker wins if and only if he presents
two arguments from {a1,a2,a3} or {a4,a5}.’ In a sequential debate, one persuasion
rule states that ‘if debater D1 argues for aspect a3, then debater D2 wins if and only if
he counter-argues with aspect a4.’ These kinds of rules are arbitrary and do not fol-
low an intuitive notion of persuasion (e.g. like scepticism). The sceptical mechanism
presented in this chapter provides a more natural criterion for argument evaluation,
supplemented by a strong solution concept that ensures all agents have incentive to
reveal their arguments, and thus for the listener to reach the correct outcome. More-
over, our framework for argumentation mechanism design is more general in that it
can be used to model a variety of more complex argumentation settings.

6.3 Game Semantics

It is worth contrasting our work with work on so-called game semantics for logic,
which was pioneered by logicians such as Paul Lorenzen [4] and Jaakko Hintikka
[3]. Although many specific instantiations of this notion have been presented in
the literature, the general idea is as follows. Given some specific logic, the truth
value of a formula is determined through a special-purpose, multi-stage dialogue
game between two players, the verifier and falsifier. The formula is considered true
precisely when the verifier has a winning strategy, while it will be false whenever
the falsifier has the winning strategy. Similar ideas have been used to implement
dialectical proof-theories for defeasible reasoning (e.g. by Prakken and Sartor [9]).

In a related development, Matt and Toni recently proposed a game-theoretic ap-
proach to characterise argument strength [6]. Thus, the acceptability of each argu-
ment is rated between 0 and 1 by using a two-person zero-sum game with imperfect
information between a proponent and an opponent.

There is a fundamental difference between the aims of game semantics and our
ArgMD approach. In game semantics, the goal is to interpret (i.e., characterise the
truth value of) a specific formula by appealing to a notion of a winning strategy.
As such, each player is carefully endowed with a specific set of formulae to en-
able the game to characterise semantics correctly (e.g. the verifier may own all the
disjunctions in the formula, while the falsifier is given all the conjunctions).

In contrast, ArgMD is about designing rules for argumentation among self-
interested players who may have incentives to manipulate the outcome given a va-
riety of possible individual preferences (specified in arbitrary instantiations of a
utility function). Our interest is in conditions that guarantee truth-revelation given
different classes of preferences. Game semantics have no similar notion of strategic

338 Iyad Rahwan and Kate Larson

manipulation by hiding information. Moreover, our framework allows an arbitrary
number of players (as opposed to two agents).

6.4 Argumentation and Cooperative Games

Another notable early link between argumentation and cooperative game theory has
been proposed by Dung in his seminal paper [1]. Let A = {a1, . . . ,a|A|} be a set
of agents. A cooperative game is defined by specifying a value to V (C) to each
coalition C ⊆ A of agents. An outcome of the game is a vector u = (ua1 , . . . ,ua|A|) ∈
R|A| specifying a vector of utilities, one per agent.

Outcome u dominates outcome u′ if there is a (nonempty) coalition K ⊆ A in
which agents get more utility (as a whole) in u than in u′. An outcome is said to be
stable if no outcome dominates it (i.e. if no subset of agents has incentive to leave
their own coalition and be all individually better off). A solution of the cooperative
game is a set of outcomes S satisfying the following conditions:

1. No s ∈ S is dominated by an s′ ∈ S.
2. Every s /∈ S is dominated by some s′ ∈ S.

Dung argued that an n-person game can be seen as an argumentation framework
〈A,R〉 in which the set of arguments A is the set of all possible outcomes of the co-
operative game, and the defeat relation is defined as R = {(u,u′) | u dominates u′}.
Dung shows that with this characterisation, the set of solutions to the cooperative
game corresponds to the set of stable extensions of an abstract argumentation frame-
work. This enabled Dung to describe the well-known stable marriage problem as a
problem of finding a stable extension.

Another important notion in cooperative game theory is that of the core: the
set of (feasible) outcomes which are not dominated by any other outcome. Dung
showed that the core corresponds to F(∅) where F is the characteristic function of
the corresponding argumentation framework.

7 Conclusion

In this chapter, our aim was to demonstrate the importance of game theory as a
tool for analysing strategic argumentation. We showed how normal form games and
extensive-form games can be used to analyse equilibrium strategies in strategic ar-
gumentation. We then introduced Argumentation Mechanism Design (ArgMD) as
a new framework for designing and analysing argument evaluation criteria. With
ArgMD, designing new argument acceptance criteria becomes akin to designing
auction protocols in strategic multi-agent settings. The goal is to design rules that
ensure, under precise conditions, that agents have no incentive to manipulate the

16 Argumentation and Game Theory 339

outcome. We believe this approach will become increasingly important before argu-
mentation can be applied in open agent systems.

References

1. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–358,
1995.

2. J. Glazer and A. Rubinstein. Debates and decisions: On a rationale of argumentation rules.
Games and Economic Behavior, 36:158–173, 2001.

3. J. Hintikka and G. Sandu. Game-theoretical semantics. In J. van Benthem and A. ter Meulen,
editors, Handbook of Logic and Language, pages 361–410. Elsevier, Amsterdam, The Nether-
lands, 1997.

4. P. Lorenzen. Ein dialogisches konstruktivitätskriterium. In Infinitistic Methods, pages 193–
200. Pergamon Press, Oxford, UK, 1961.

5. A. Mas-Colell, M. D. Whinston, and J. R. Green. Microeconomic Theory. Oxford University
Press, New York NY, USA, 1995.

6. P.-A. Matt and F. Toni. A game-theoretic measure of argument strength for abstract argumen-
tation. In S. Hölldobler, C. Lutz, and H. Wansing, editors, Logics in Artificial Intelligence,
11th European Conference, JELIA 2008, volume 5293 of Lecture Notes in Computer Science,
pages 285–297. 2008.

7. S. Modgil. Hierarchical argumentation. In Proceedings of the 10th European Conference on
Logics in Artificial Intelligence. Liverpool, UK, 2006.

8. H. Prakken. Coherence and flexibility in dialogue games for argumentation. Journal of Logic
and Computation, 15(6):1009–1040, 2005.

9. H. Prakken and G. Sartor. Argument-based logic programming with defeasible priorities.
Journal of Applied Non-classical Logics, 7:25–75, 1997.

10. A. D. Procaccia and J. S. Rosenschein. Extensive-form argumentation games. In Proceedings
of the Third European Workshop on Multi-Agent Systems (EUMAS-05), Brussels, Belgium,
pages 312–322, 2005.

11. I. Rahwan and K. Larson. Pareto optimality in abstract argumentation. In D. Fox and
C. Gomes, editors, Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI-
2008), Menlo Park CA, USA, 2008.

12. R. Riveret, H. Prakken, A. Rotolo, and G. Sartor. Heuristics in argumentation: A game-
theoretical investigation. In P. Besnard, S. Doutre, and A. Hunter, editors, Proceedings of
the 2nd International Conference on Computational Models of Argument (COMMA), pages
324–335. IOS Press, Amsterdam, The Netherlands, 2008.

13. J. von Neuman and O. Morgenstern. The Theory of Games and Economic Behaviour. Prince-
ton University Press, Princeton NJ, USA, 1944.

Chapter 17
Belief Revision and Argumentation Theory

Marcelo A. Falappa, Gabriele Kern-Isberner and Guillermo R. Simari

1 Introduction

Belief revision is the process of changing beliefs to adapt the epistemic state of an
agent to a new piece of information. The logical formalization of belief revision is
a topic of research in philosophy, logic, and in computer science, in areas such as
databases or artificial intelligence. On the other hand, argumentation is concerned
primarily with the evaluation of claims based on premises in order to reach conclu-
sions. Both provide basic and substantial techniques for the art of reasoning, as it is
performed by human beings in everyday life situations and which goes far beyond
logical deduction. Reasoning, in this sense, makes possible to deal successfully with
problems in uncertain, dynamic environments and has been promoting the develop-
ment of human societies. The interest of computer scientists in both domains has
increased considerably over the past years, as agent systems are to be endowed with
similar capabilities. In an agent environment, belief revision describes the way in
which an agent is supposed to change her beliefs when new information arrives, or
changes in the world are observed; argumentation deals with strategies agents em-
ploy for their own reasoning, or to change the beliefs of other agents, by providing
reasons for such change.

In this chapter, we will elaborate on the relationships between argumentation and
belief revision, first recalling important work done by others and ourselves concern-

Marcelo A. Falappa
CONICET (National Council of Technical and Scientific Research) – Department of Computer
Science and Engineering – Universidad Nacional del Sur – Bahı́a Blanca, Argentina, e-mail:
mfalappa@cs.uns.edu.ar

Gabriele Kern-Isberner
Department of Computer Science – University of Dortmund – Dortmund, Germany – e-mail:
gabriele.kern-isberner@cs.uni-dortmund.de

Guillermo R. Simari
Department of Computer Science and Engineering – Universidad Nacional del Sur – Bahı́a Blanca,
Argentina, e-mail: grs@cs.uns.edu.ar

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 341
DOI 10.1007/978-0-387-98197-0 17, c© Springer Science+Business Media, LLC 2009

342 Marcelo A. Falappa, Gabriele Kern-Isberner and Guillermo R. Simari

ing the links between both areas. Based on such insights, we will develop a con-
ceptual view on this topic, which is based on the understanding of argumentation
and belief revision being complementary disciplines for the broad picture sketched
above. Each needs the other’s support if we want to model successful decision mak-
ing in a real world application. We will also discuss how one area may contribute to
the other, enriching the respective framework.

2 Basic facts on argumentation and belief revision

An argument A for α is a set of interrelated pieces of knowledge supporting α
from evidence. Abstract approaches to argumentation such as [13] make use of ar-
gumentation frameworks 〈A,R〉 with is a finite set A of arguments and an attack
relation R among arguments. The main issue of such argumentation frameworks is
the selection of acceptable sets of arguments called extensions on the basis of which
argumentation semantics can be defined. We assume that the reader is familiar with
the basic concepts from argumentation theory such as conflict, attack, non-attack,
defeat, evaluation of arguments, etc.

In classical belief revision frameworks, a fixed finite language L with a complete
set of boolean connectives is usually used. Formulae in L are be denoted by lower
case Greek characters α,β ,δ , . . ., while sets of formulae from L will be denoted by
upper case letters A,B,C, The underlying logic contains a consequence operator
Cn (Cn : 2L ⇒ 2L) and it is assumed to be supraclassical (i.e., include classical
propositional calculus), compact (Cn(A) = Cn(B) for some finite subset B of A) and
to satisfy the deduction theorem (α → β ∈ Cn(A) if and only if β ∈ Cn(A∪{α})).
Sometimes, the relation � is used as an alternative notation of the consequence op-
erator: A � α if and only if α ∈ Cn(A).

There are many different frameworks for belief revision with their respective
epistemic models. The epistemic model is the formalism in which beliefs are rep-
resented and in which different kinds of operators can be defined. The basic repre-
sentation of epistemic states is through belief sets (sets of sentences closed under
logical consequence) or belief bases (sets of sentences not necessarily closed). Op-
erators may be presented in two ways: by giving an explicit construction (algorithm)
for the operator, or by giving a set of rationality postulates to be satisfied. Rational-
ity postulates determine constraints that the operators should satisfy. They treat the
operators as black boxes by describing their response behavior to inputs in basic
cases, but not the internal mechanisms used.

The distinction between belief sets and belief bases is similar to the distinction
between the coherence approach and the foundational approach to belief revision.
The coherence approach focuses on logical relations among beliefs rather than on
inferential relations, that is, no belief is more fundamental than others [11]. Beliefs
provide each other with mutual support; therefore, a belief set represents the limit
case of this approach. On the other hand, the foundational approach divides beliefs
into two classes: explicit beliefs and those beliefs justified by the explicit beliefs.

17 Belief Revision and Argumentation Theory 343

The explicit beliefs can be seen as “self-justified beliefs” whereas the other beliefs
are considered as derived, justified or supported beliefs. The foundational approach
provides explanation of beliefs by requiring that each belief is supportable by means
of non-circular arguments from explicit or basic beliefs [11]. Since a belief α may
be justified by several independent beliefs, if some of the justifications for α are
removed, α may be retained because it is supported by other beliefs. Belief base
revision provides a good example of the foundational approach.

The AGM paradigm [1] has been extensively studied during the last three decades
and it is the most influential model of belief revision so far, serving as a frame of
reference for improvements, extensions or criticisms of the original proposal. The
AGM model is conceived as an idealistic theory of rational change in which epis-
temic states are represented by belief sets and the epistemic input is represented by
a sentence. AGM theory studies the changes at the knowledge level whereas some
others approaches studies the changes at the symbol level. The distinction about
knowledge and symbol level was proposed by Allen Newell [43]. According to
Newell, the knowledge level lies above the symbol level where all of the knowledge
in the system is represented. Some belief bases with different symbol representa-
tions may represent the same knowledge. Suppose that p and q are logically inde-
pendent propositions. Then, K1 = {p,q} and K2 = {p, p → q} are different belief
bases. Since their closure is the same Cn(K1) = Cn(K2) = Cn({p,q}) they repre-
sent the same beliefs at the knowledge level. Although they are statically equivalent
(they represent the same beliefs), they could be dynamically different: changes of
K1 can be different from changes of K2 because p and q are totally independent in
K1 but interrelated in K2 by the sentence p→ q.

Suppose that the set K represents the beliefs of an agent. The AGM theory defines
three basic types of change operations for K:

• Expansions: the result of expanding K by a sentence α is a larger set which
infers α;

• Contractions: the result of contracting K by α is a smaller set which does not
infer α;

• Revisions: the result of revising K by α is a set that neither extends nor is part
of the set K. In general, if K infers ¬α then α is consistently inferred from the
revision of K by α .

In the classical AGM framework and all coherence approaches, the internal structure
of beliefs is ignored and the focus is on belief sets. Given a belief set K1 and a
sentence α , the expansion of K by α is denoted by K+α and is defined as K+α =
Cn(K∪{α}).

Suppose that ÷ is a contraction operator. The contraction of K by α is denoted
as K÷α . The basic postulates for contraction are [1, 20] the following:

• Closure: K÷α = Cn(K÷α).
• Inclusion: K÷α ⊆K.

1 Belief sets (i.e., logically closed sets of sentences) are typically denoted by Latin letters in bold-
face.

344 Marcelo A. Falappa, Gabriele Kern-Isberner and Guillermo R. Simari

• Success: If � α then α �∈K÷α .
• Vacuity: If α �∈K then K÷α = K.
• Recovery: K⊆ (K÷α)+α .
• Extensionality: If � α ↔ β then K÷α = K÷β .

Recovery is one of the most controversial postulates of the AGM theory: it says that
a sequence of first contracting by a sentence α , and then expanding by the same
sentence α leaves the belief state unchanged. In other words, so much is retained
in a belief set that everything can be recovered by reinstatement of the contracted
sentence.

Revision operators can be defined through Levi identity [38, 20] from contraction
operators; in order to revise a belief set K with respect to a sentence α , we contract
with respect to ¬α and then expand the new epistemic state with respect to α .
That is, the revision of K by α , noted by K∗α , is defined as K∗α = (K÷¬α)+α .
There is a set of basic postulates for revision that correspond to the above postulates
for contraction. One of the most important (though not indisputable) properties is
success (α ∈ K∗α) which specifies that the new information has primacy over the
beliefs of an agent.

2.1 Changes on belief sets

Partial meet contractions cover exactly the basic AGM-contractions. They are based
on the concept of remainder sets.

Definition 17.1. [2] Let K be a set of sentences and α a sentence. Then K⊥α is
the set of all H such that H ⊆ K, H � α and if H ⊂ K′ ⊆ K,H �= K′, then K′ � α .
The set K⊥α is called the remainder set of K with respect to α , and its elements are
called the α-remainders of K.

In order to define a partial meet contraction operator, a selection function is
needed. This function makes a selection among the α-remainders, choosing those
candidate sets for contraction which are preferred.

Definition 17.2. Let K be a set of sentences. A selection function for K is a function
γ defined on {K⊥α|α ∈ L} such that for any sentence α ∈ L, it holds that:
1) If K⊥α �= ∅, then γ(K⊥α) is a non-empty subset of K⊥α .
2) If K⊥α = ∅, then γ(K⊥α) = K.

Definition 17.3. Given a set of sentences K, a sentence α and a selection function
γ for K, the partial meet contraction of K by α , denoted by K÷γ α , is defined as
K÷γ α = ∩γ(K⊥α). That is, K÷γ α is equal to the intersection of the α-remainders
of K selected by γ . If γ selects a single element, then the induced contraction is
called maxichoice contraction. If γ selects all elements of the remainder set, then
the induced contraction is called full meet contraction.

17 Belief Revision and Argumentation Theory 345

Representation theorems (also called axiomatic characterizations) characterize
an operation in terms of axioms or postulates. They are widely used in belief re-
vision in order to show an interrelation between constructions and postulates. The
following is a representation theorem for partial meet contractions.

Theorem 17.1. [1, 20] Let K be a belief set and ÷ be a contraction operator for
K. Then ÷ is a partial meet contraction for K if and only if ÷ satisfies closure,
inclusion, success, vacuity, recovery and extensionality.

Partial meet revisions are defined from partial meet contractions using Levi iden-
tity. On the other hand, partial meet contractions on belief sets can be defined from
partial meet revisions using the Harper identity [20]: K÷α = K∩ (K∗¬α). A rep-
resentation theorem for partial meet revisions on belief sets can be found in [1].

2.2 Changes on belief bases

Following the seminal work of the AGM trio, almost all works on belief revision
employed models in which epistemic states are represented by theories or belief sets,
that is, set of sentences closed under logical consequence. However, it was observed
by Alchourrón and Makinson [2] that “the intuitive processes of contraction and
revision, contrary to casual impressions, are never really applied to theories as a
whole, but rather to more or less clearly identified bases for them”. Perhaps inspired
by this observation, operations on belief bases have been investigated, among other,
by Hansson [26, 29, 30], Fuhrmann [17], and Nayak [42].

Fuhrmann [17] defined a contraction operator − on a belief base K and then
studied the properties of its related contraction operator÷ on belief sets K = Cn(K)
defined as K÷α = Cn(K−α). That is, the definition of K÷α actually depends on
K and α . Fuhrmann proposed a set of postulates for the operator − on belief bases
based on the basic postulates on belief sets proposed by Gärdenfors, showing that
recovery does not hold on belief bases.

Hansson proposed an alternative approach, studying the changes on belief bases
and not on their associated belief sets. He proposed an alternative contraction, called
kernel contraction. Kernel contractions [31] are based on a selection among the
sentences that imply the information to be retracted and they are a natural non-
relational generalization of safe contractions [3].

Definition 17.4. [31] Let K be a set of sentences and α a sentence. Then K⊥⊥α is
the set of all X such that X ⊆ K, X � α , and if K′ ⊂ X , then K′ � α . The set K⊥⊥α
is called the kernel set, and its elements are called the α-kernels of K.

In order to retract some information α from K, some sentences in each α-kernel
must be erased. This is done by incision functions.

Definition 17.5. [31] Let K be a set of sentences. An incision function for K is
a function σ defined on {K⊥⊥α|α ∈ L} such that for any sentence α ∈ L, the
following statements hold:

346 Marcelo A. Falappa, Gabriele Kern-Isberner and Guillermo R. Simari

1) σ(K⊥⊥α)⊆ ∪(K⊥⊥α).
2) If X ∈ K⊥⊥α and X �= ∅ then (X ∩σ(K⊥⊥α)) �= ∅.
In the limit case when K⊥⊥α = ∅ then σ(K⊥⊥α) = ∅.

So, incision functions cut into each α-kernel, removing at least one sentence.
Since all α-kernels are minimal subsets implying α , from the resulting sets it is no
longer possible to derive α . Hence, incision functions may be used to derive (kernel)
contraction operations.

Definition 17.6. [31] Given a set of sentences K, a sentence α and an incision
function σ for K, the kernel contraction of K by α , denoted by K÷σ α , is defined
as: K÷σ α = K \σ(K⊥⊥α).

That is, K÷σ α can be obtained by erasing from K the sentences cut out by σ .
In the following, we recall a set of postulates for contraction that can be consid-

ered on every arbitrary set of sentences K:

• Inclusion: K÷α ⊆ K.
• Success: If α �∈Cn(∅) then α �∈Cn(K÷α).
• Vacuity: If α �∈Cn(K) then K÷α = K.
• Core-Retainment [27]: If β ∈ K and β �∈K÷α then there is a set K′ such that

K′ ⊆ K such that α �∈Cn(K′) but α ∈ Cn(K′ ∪{β}).
• Uniformity [28]: If it holds for all subsets K′ of K that α ∈ Cn(K′) if and only

if β ∈ Cn(K′) then K÷α = K÷β .
• Relative Closure [27]: K∩Cn(K÷α)⊆ K÷α .

The following is a representation theorem for kernel contractions on belief bases.

Theorem 17.2. [31] Let K a belief base and ÷ be a contraction operator for K.
Then ÷ is a kernel contraction for K if and only if ÷ satisfies inclusion, success,
core-retainment and uniformity.

Smooth kernel contractions are kernel contractions that satisfy relative closure.
Hansson showed that smooth kernel contractions and partial meet contractions are
equivalent on belief sets. That is, smooth kernel contractions and partial meet con-
tractions are just two different ways to construct the same class of operations on
belief sets. However, kernel contractions are more general than partial meet con-
tractions on belief bases. More relations about partial meet and kernel contractions
can be found in [14]. The textbook [32] gives a good overview on axiomatic work
in general (belief) base revision.

2.3 Alternative approaches and iterated revision

There are other approaches to belief change realizing AGM change operations, for
instance, Grove’s sphere system [23], epistemic entrenchment [22], and safe con-
traction [3]. Grove’s sphere system is very similar to the sphere semantics for coun-
terfactuals proposed by Lewis [39]. Concentric spheres allow the ordering of pos-
sible worlds according to some notion of similarity or the like. Then, the result of

17 Belief Revision and Argumentation Theory 347

revising by α can be semantically described by the set of α-models that are clos-
est to the K-models. Epistemic entrenchment allows that a revision can be based
on a relation ≤ among sentences that when forced to choose between two beliefs,
an agent will give up the less entrenched one. Gärdenfors and Makinson [22] pro-
posed an epistemic entrenchment relation from which it is possible to define AGM
contractions.

Belief updating [33] is a change operation of a different kind. Whereas in belief
revision, both the old beliefs and the new information refer to the same situation, in
updating the new information is about a current, possibly changed situation. Recent
work relates update to actions [37]. Much current work in belief revision focuses
on iterated revision that deals with changing epistemic relations such as epistemic
entrenchment [7]. For a recent paper that considers iterated belief (base) revision in
a broad epistemic framework, cf. [36].

3 Related work

Before entering into the discussion on the backgrounds of belief revision and argu-
mentation theories, and possible connections in between, we will give an overview
over work addressing this broad topic.

3.1 Truth Maintenance Systems [1979–1986]

Doyle [10] presents initially the truth maintenance system, or TMS, which is a
knowledge representation method for representing both beliefs and their justifica-
tions. The aim of such systems is to restore consistency when a new justification
has been added. A TMS associates a special data structure, called a node, with each
problem solver datum which includes database entries, inference rules, and proce-
dures. It records justifications, i.e., arguments, for potential inferred beliefs, so as
to compute the current set of beliefs by manipulating the status of nodes repre-
senting beliefs and evaluating justifications that represent reasons to believe. The
truth maintenance process starts when a new justification for a node is added, and
runs through basic steps of argumentation, such as evaluating the justifications to
determine the status of nodes and checking justifications and contradictions, while
avoiding circular relations among justifications and nodes.

A different type of truth maintenance systems was proposed by de Kleer’s
assumption-based truth maintenance systems (ATMS)[8]. Instead of evaluating jus-
tifications in a global process, ATMS label each datum with the corresponding sets
of assumptions, representing the contexts under which it holds. These assumption
sets are computed by the ATMS from the justifications that are supplied by the prob-
lem solver. The idea is that the assumptions provide contexts from which beliefs can
be derived and hence may serve as arguments. The assumptions are primitive data,

348 Marcelo A. Falappa, Gabriele Kern-Isberner and Guillermo R. Simari

and all other data can be derived from them. There is no necessity that the overall
database be consistent; it is easy to refer to contexts, and moving to different points
in the search space requires very little effort.

3.2 Inconsistencies from multiple sources [1995]

Benferhat et al. [4] present an article primarily oriented towards the treatment of in-
consistency caused by the use of multiple sources of information. Knowledge bases
are stratified, namely each formula in the knowledge base is associated with its level
of certainty corresponding to the layer to which it belongs.

The authors investigate two classes of approaches to deal with inconsistency in
knowledge bases: coherence theories and foundation theories. The first insists on
revising the knowledge base and restoring consistency, while the latter accepts in-
consistency and copes with it. Coherence theories propose to give up some formulas
of the knowledge base in order to get one or several consistent subbases, and to apply
classical entailment on these consistent subbases to deduce plausible conclusions of
the knowledge base. Foundation theories proceed differently since they retain all
available information but each plausible conclusion inferred from the knowledge
base is justified by some strong argumentative reason for believing in it.

The claim of the paper is that it does not always make sense to revise an inconsis-
tent knowledge base, in particular, if the information comes from multiple sources.
It is not even necessary to restore consistency in order to make sensible inferences
from an inconsistent knowledge base, since inference based on argumentation can
derive conclusions and reasons to believe them, independently of the consistency of
the knowledge base.

3.3 Belief revision and epistemology [2000]

Pollock and Gillies [46] studied the dynamics of a belief revision system considering
relations among beliefs in a “derivational approach” trying to derive a theory of
belief revision from a more concrete epistemological theory. According to them, one
of the goals of belief revision is to generate a knowledge base in which each piece
of information is justified (by perception) or warranted by arguments containing
previously held beliefs.

The difficulty is that the set of justified beliefs can exhibit all kinds of logical
incoherencies because it represents an intermediate stage in reasoning. Therefore,
the authors propose a theory of belief revision concerned with warrant rather than
justification. The set of warranted propositions already takes account of all possible
inferences, so there is only one way to acquire new warranted propositions: through
perception. However, perception adds a percept to the inference-graph, not a belief,

17 Belief Revision and Argumentation Theory 349

so the effect of perception on warrant cannot be represented as the addition of a
proposition to a belief state.

3.4 Deductive explanations and belief revision [2002]

Falappa et al. [16] present a kind of non-prioritized revision operator based on
the use of explanations. The idea is that an agent, before incorporating informa-
tion which is inconsistent with its knowledge, requests an explanation supporting it.
The authors build on the classical distinction between the explanandum, which is
the final conclusion, and the explanans, represented by a set of sentences supporting
the conclusion. The structure of an explanation is very similar to the structure of
a deductive argument; the main difference is that every belief of an explanation is
undefeasible (in a moment of time) whereas some beliefs of an argument may be
defeasible or tentatively inferred.

In this framework, every explanation contains rules and factual knowledge. If
the sentences in the explanans are better or more plausible than the sentences in
the original belief base, then the explanation is incorporated. Therefore, not beliefs,
but explanations (and hence arguments) supporting a belief are used for the change
process. The authors considered both kernel and partial meet revision by a set of
sentences and gave representation theorems for them. These operators may partially
accept the new information, so they are non-prioritized.

3.5 Data-oriented Belief Revision [2006]

Paglieri and Castelfranchi [45] join argumentation and belief revision in the same
conceptual framework by following Toulmin’s layout of argumentation, which is
intended to be used to analyze the rationality of arguments typically found in court-
rooms. The connection to belief revision is made by considering argumentation as
“persuasion to believe”, hence argumentation is supposed to initiate successful re-
vision processes. The authors propose Data-oriented Belief Revision (DBR) as an
alternative to the AGM approach. Two basic informational categories, data and be-
liefs, are put forward in their approach, to account for the distinction between pieces
of information that are simply gathered and stored by the agent (data), and pieces of
information that the agent considers (possibly up to a certain degree) truthful rep-
resentations of states of the world (beliefs). The beliefs are a subset of the data: an
agent might well be aware of a datum that he does not believe (i.e., he does not con-
sider reliable enough). Data structures are conceived as networks of nodes (data),
linked together by the relations of support, contrast and union. Data are selected (or
rejected) as beliefs on the basis of their properties, described by relevance, credibil-
ity, importance, and likeability.

350 Marcelo A. Falappa, Gabriele Kern-Isberner and Guillermo R. Simari

According to Paglieri and Castelfranchi [45], the Toulmin’s layout schema is li-
able of immediate implementation in DBR, since it uses a specific data structure.
The union of data and warrant supports the claim, and the warrant is in turn sup-
ported by its backing and contrasted by the rebuttal, i.e., supports of the rebuttal
make the warrant less reliable.

3.6 Merging Dung argumentation systems [2007]

Coste-Marquis et al. [6] proposed a general framework for merging Dung’s style
argumentation systems. They presented a framework for deriving reasonable infor-
mation from a collection of Dung argumentation systems. Their approach consists
in merging such systems assuming that all agents do not share the same sets of ar-
guments. No assumption is made concerning the meaning of the attack relations,
so that such relations may differ not only because agents have different points of
view on the way arguments interact but more generally may disagree on what an
interaction is.

Every argumentation system is expanded to a partial argumentation system, and
such partial systems are built over the same set of arguments. Merging is used on
the expanded systems as a way to solve the possible conflicts between them, and a
set of argumentation systems which are as close as possible to the whole profile is
generated. Finally, the last step consists in selecting the acceptable arguments at the
group levels from the set of argumentation systems.

3.7 Prioritized revision by arguments [2008]

Rotstein et al. [47] introduce an abstract theory that captures the dynamics of an
argumentation framework through the application of belief revision concepts. They
define a dynamic abstract argumentation theory including dialectical constraints,
and then present argument revision techniques to describe the fluctuation of the
set of active arguments (the ones considered by the inference process of the theory).
Expansion, contraction, and revision operators are realized in this framework, where
the revision can be expressed in terms of the other two, leading to an identity similar
to the one defined by Isaac Levi [38]. Their abstract theory allows the introduction
of an argument ensuring it can be believed afterwards. The expansion operator is
quite straightforward, but the definition of the contraction operator allows a wide
range of possibilities from affecting unrestrictedly any number of arguments in the
system to keeping this perturbation to a minimum, following the minimal change
principle of the AGM theory. Contraction may also have an indirect impact on the
attack relation among arguments.

In a second paper, Moguillansky et al. [41] proposed an instantiation of these
change operators to Defeasible Logic Programming, DeLP [19]. In particular, a

17 Belief Revision and Argumentation Theory 351

warrant-prioritized argument revision operator (WPA) is defined that implements
successful change. To be more precise, when a program is revised by an argument
〈A,α〉 (where A is an argument for α), the revised program will be such that A is
an undefeated argument, and α will therefore be warranted. The main issue under-
lying WPA revision lies in the selection of arguments and the incisions that have to
be made over them. An argument selection criterion determines which arguments
should not be present and once this selection is made, incisions (in the form of
deletion of rules) will make those arguments “disappear” following some minimal
change principle.

3.8 Adding arguments to Dung systems [2008]

Cayrol et al. [5] proposed a Dung-style abstract argumentation system that allows
the addition of a new argument which may interact with previous arguments. An
argumentation framework 〈A,R〉 is identified with an associated attack graph G.
The revision process produces a new framework represented by a graph G′ and a
new set of extensions. By considering how the set of extensions is modified under
the revision process, the authors propose a typology of different revisions including
decisive revision, when there is only one acceptable set of arguments in the revised
framework, and expansive revision, when the revision simply adds the new argument
to the existing extensions.

3.9 Relating reinstatement and recovery [2008]

Boella et al. [24] try to show a direct relation between argumentation and belief
revision on the level of abstract properties. Like Paglieri and Castelfranchi [45],
the authors also consider argumentation as persuasion to believe, and persuasion
should be related to belief revision. They establish a link between reinstatement
and recovery. Reinstatement plays an important role in argumentation; it refers to
the situation that an argument that is not acceptable because of the existence of
an attacking argument become acceptable again when an attacker to the attacking
argument exists. Recovery reflects the central idea of minimal change in AGM belief
revision; according to it, expansion by α should recover what was lost when α was
contracted.

More recently, Boella et al. [25] present the application of a belief revision ma-
chinery to argumentation in a multi-agent system. The authors define an argument
base revision that gives priority to the last introduced argument. As they are inter-
ested particularly in the persuasive power of argumentation, they express appealing-
ness of arguments in terms of belief revision.

352 Marcelo A. Falappa, Gabriele Kern-Isberner and Guillermo R. Simari

4 A conceptual view on Argumentation and Belief Revision

An investigation of the multifaceted relationships between argumentation and belief
revision makes it necessary to consider cross-links between different aspects on ei-
ther side, while at the same time taking the whole context of reasoning into account.
The works sketched in section 3 have contributed to clarify this broad picture, in one
way or another. In this chapter, we will add some pieces and links to the complex
scenario.

4.1 The big picture

In order to obtain a clear view on possible connections between argumentation and
belief revision, we start with making the basic steps of reasoning, as it was sketched
in the introduction, more precise, pointing out the way from receiving (new) infor-
mation to coming up with adequate plausible beliefs on which a decision can be
based. We hereby assume that the current epistemic state is given and represented
within some chosen framework.

• Receiving new information: The new information I may come in very different
shapes and forms. In the simplest scenario, I is a propositional fact. This is the
scope of the basic AGM theory, assuming the epistemic state of the agent to be
given by a belief set, i.e., a deductively closed set of (propositional) formulas. But
I might be much more complex. It can be equipped with a degree of plausibility,
or have the form of a rule or even a complete argument, or consist of a set of such
entities.

• Evaluating new information: For the further processing of I, it is crucial for the
agent to know its origin, as this knowledge will influence decisively her willing-
ness to adopt I. For instance, if I is based on an observation made by the agent
herself, she will usually be convinced of it being true. However, if I is conveyed
to her by another agent, be it as part of the official news, in personal communi-
cation or found as written material, the agent will require some justification for
I. In any case, as a mandatory step for rational, critical thinking, she will evalu-
ate both I and a possibly given justification on the basis of her own beliefs and
decide if I is to be incorporated into her stock of beliefs or not.

• Changing beliefs: If the agent has decided to adopt I in the previous step, she
employs strategies to incorporate I consistently into her beliefs. For this, she has
to use belief revision techniques that allows her to change her epistemic state
accordingly.

• Inference: From her new epistemic state, the agent derives (most) plausible be-
liefs that guide her behavior.

This scenario can also be applied in parts if I is not a new information but a query to
which the agent is expected to reply. In most of such cases, the change step would be
obsolete, and evaluation and inference would collapse. However, if I is a conditional

17 Belief Revision and Argumentation Theory 353

query “Suppose α holds, would you believe β?”, whatever α and β are, reasoning
would include a hypothetical change process that the current epistemic state of the
agent must undergo.

From this embedding into a complex reasoning process, the complementary char-
acters of argumentation and belief revision become obvious: while argumentation
can make substantial contributions to the evaluation step, belief revision theory
should be employed in the belief change part. But this is not the end of the story.
Evaluation might include hypothetical change processes, considering what would
happen if the new information were to be believed, and belief change implicitly
relies on logical links between pieces of information which can be represented by
arguments. In the end, both from argumentation processes and from belief revision
processes, plausible beliefs can be obtained, but both areas focus only on parts of
the dynamic reasoning process while at the same time providing general and ver-
satile frameworks. Revision operators can not only be applied to beliefs, but also
to intentions, preferences, theories, ontologies, law codes, etc. Argumentation can
be used for negotiation (when the agents have conflicting interests and they try to
make the best out of a deal for themselves), inquiry (when the agents have general
ignorance in some subject and they try to find a proof or destroy one), deliberation
(when the agents collaborate to decide what course of action to take) or information
seeking (when the agents have personal ignorance on some subject and every agent
seeks the answer to some questions from other agents). This is a much more general
view than considering argumentation as persuasion to believe, as has been proposed
in [45, 25].

These contemplations result in a most complex, highly interrelated view on ar-
gumentation and belief revision. Consequently, discussing links between both fields
must reflect this complexity, taking into regard that proposed frameworks on either
side might only implement some but not all aspects of the corresponding field. In
particular, the famous AGM theory [1] in belief revision is more concerned with
judging the results of change in a very abstract way than with the change process
itself; moreover, argumentative evaluation of justifications to believe the given in-
formation in the sense described above is not at all a topic of AGM. That is why suc-
cess is one of the basic postulates of the AGM theory according to which the agent is
forced to believe the new information. Here, it is implicitly assumed that evaluation
has been done beforehand. Hence, a comparison between AGM and some approach
that makes use of a sophisticated argumentative evaluation of information to select
beliefs, as has been developed e.g. in [45], is very likely to shed a bad light on AGM.
AGM is no more on argumentative reasons for belief than is Dung’s framework [13]
on change processes. Both are highly abstract, declarative approaches to the respec-
tive field, hence (necessarily) over-simplifying in some respects but nevertheless
extremely valuable as reference points.

Therefore, an investigation of the connections between belief revision and ar-
gumentation theory that is to do justice to both areas must go beneath the surface
of abstract frameworks. It must study methods and the rationale underlying these
methods, as well as purposes and intentions guiding the application of techniques.

354 Marcelo A. Falappa, Gabriele Kern-Isberner and Guillermo R. Simari

We will first identify characteristic and prototypic concepts on either side and find
basic correspondences as well as crucial differences. Afterwards, we will investigate
how either domain may enrich the other domain’s framework.

4.2 Comparing belief revision and argumentation

At first glance, the differences between argumentation and belief revision prevail.
To begin with representational issues, the syntactic and semantic foundations of
both areas have not much in common. In standard belief revision, logical formulas
are used for knowledge representation, and the result of change processes are logi-
cal formulas. In more advanced frameworks, epistemic states are changed in which
some qualitative relation allows for ranking worlds or sentences with respect to en-
trenchment, plausibility, and the like. In order to verify the results of the change
processes, classical logical semantics is used. On the contrary, argumentation the-
ory focuses on the interactions of arguments as pieces of information that may attack
one another, and a relation between arguments may give priority to one argument
or another. The arguments themselves, however, are very heterogeneous. In most
approaches, they are quite complex argument structures built up by some kind of
rules, using standard or non-standard derivation to implement reasoning. However,
they might as well be abstract objects as in Dung’s framework [13] without any in-
ternal structure. A special semantics makes precise what good arguments are, and
there are several such semantics possible, implemented by preferred, stable, and
grounded extensions.

As to the common grounds, both disciplines aim at resolving conflicts which are
usually based on logical grounds, i.e., on contradictions, and make use of prefer-
ence relations to achieve this aim. However, belief revision theory provides a highly
declarative framework for that, based on postulates, whereas argumentation theory
is more concerned with practical, justification-based techniques.

For a direct comparison of argumentation and belief revision, it is tempting to
take the standard AGM approach [1], as no other work has influenced the develop-
ment of belief revision theory in a similar way. And the AGM postulates offer a clear
framework that makes fundamental views explicit. However, one of the most basic
assumptions of the standard AGM theory, namely its focus on deductively closed
sets of formulas as representing belief sets, does not fit at all to argumentation the-
ory, as it abstracts from the basic steps of reasoning, blurring the distinction between
what is explicitly given or serves as assumptions, and what is justified belief. Hence,
works on belief base revision (e.g. [32, 14]), or on iterated epistemic change (e.g.
[7, 34, 35, 9]) offer a much richer base for comparison, since they allow one to take
deeper insights into change processes.

Belief revision methods and most argumentation frameworks can be used directly
for reasoning, although this is not their principal concern. The connection between
belief revision and nonmonotonic inference has been made clear by [40] and further
developed for iterative change operations in [36]; this is the BRDI view on belief

17 Belief Revision and Argumentation Theory 355

revision, as Dubois [12] calls it. As to argumentation, those approaches that are
based on rules or use some sort of derivation provide logical chains that establish
links between what is presupposed and what is concluded. Also with respect to that
aspect, belief revision theories remain on an abstract level, describing by axioms
what good inferences are, while argumentation is more concerned with how and
why conclusions are drawn, making reasons for belief apparent.

These considerations make obvious that belief revision and argumentation theory
are basically complementary areas of research. In the following, we will discuss how
they may complement each other.

4.3 Argumentation in Belief Revision

In this subsection we study how argumentation concepts and techniques can be used
in belief revision theory. Among the works relating argumentation and belief revi-
sion, many of them add belief revision capabilities to an argumentation system.
However, there are some papers that propose to use an “argumentative machin-
ery” for a belief revision process, like e.g. [46, 45] (see also section 3). The first
approach to use argumentation in belief revision is justification-based truth mainte-
nance systems (TMS’s) proposed by Doyle [10] (cf. section 3.1). Doyle studies the
interactions between justifications when a new justification has been added, to find
out which conclusions can be justified. He does not consider retraction of justifica-
tions. Assumption-based truth maintenance systems (ATMS) [8] are more concerned
with managing assumptions instead of implementing change processes. As in DBR
[45], we have data and beliefs: a data is believed in some contexts represented by
assumptions sets. As in [4], there is no necessity that the overall database be consis-
tent; it is easy to refer to contexts and move to different points in the search space
representing the proper context. Both types of truth maintenance systems work on
belief bases and are very early approaches to belief revision, dating before AGM
theory.

In [16], we combine the ATMS idea with base revision and propose a system
that uses argumentative structures in the form of explanations for nonprioritized
revisions of belief bases K. Different from standard approaches to belief revision,
the new information not only consists of a proposition α but of reasons to believe
a proposition, i.e., of rules and prerequisites A from which α can be deductively
derived. So, A can be considered an explanans for the explanandum α . In order
to integrate an argumentative evaluation of the new information into the revision
process, we defined partial acceptance revision operators in the following way: i)
the epistemic input is the set of sentences A as explanans for the explanandum α , ii)
A is initially accepted, that is, A is joined to K (possibly producing an inconsistent
intermediate state), iii) all possible inconsistencies of K∪A are removed, returning a
consistent revised belief base K ◦A. This operator is an operator of external revision.
The name “external” indicates that the revision process takes place outside of the
original set.

356 Marcelo A. Falappa, Gabriele Kern-Isberner and Guillermo R. Simari

Whether α is accepted or not depends on the evaluation of its explanans A with
respect to the current belief base. The acceptance of the explanans forces the ac-
ceptance of the explanandum in the revised set, since explanation here is based on
classical deduction. However, there is an important remark to be made regarding the
degree of acceptance of the explanans and the explanandum. While the explanans
can be explicitly included in the revised set, the explanandum may be inferred from
it without actually being included. So, the distinction between explicitly given in-
formation (as data in [45]) and inferred beliefs is respected and can be implemented
only when working with belief bases instead of belief sets.

The main difference between the process of revision by a set of sentences and the
process of argumentation is significant: in revision, external beliefs are compared
with internal beliefs and, after a selection process, some sentences are discarded,
other ones are accepted. In argumentation, the process is more procedural: we have
an argument, attack this by counterarguments, defend it by counterarguments to
counterarguments, and so on. Nevertheless, the rationale behind partial acceptance
revision operators matches the intentions leading argumentation in that not the new
information itself, but reasons to believe it, are evaluated.

4.4 Belief Revision in Argumentation

Belief revision theory offers nice methods to implement dynamical features in an
argumentation framework. The papers by Rotstein, Moguillansky et al. [47, 41] and
Boella et al. [25] are among the most comprehensive approaches to address such
a revision theory for argument systems (cf. section 3). Several different ways of
applying belief revision in argumentation may be distinguished:

• Changing by adding or deleting an argument.
• Changing by adding or deleting a set of arguments.
• Changing the attack (and/or defeat) relation among arguments.
• Changing the status of beliefs (as conclusions of arguments).
• Changing the type of an argument (from strict to defeasible, or vice versa).

The distinction between the two first ways is similar to the distinction among sin-
gle change (as in AGM model) and multiple change (as in multiple contraction
[18, 44]). Adding or removing an argument or a set of arguments may trigger a
change in the justified conclusions. The consideration of such changes may lead
to a base revision theory which deals with changes of argumentative bases, and in
which deduction is replaced by an argumentation process. The method of kernel
contraction making use of incision functions to eliminate base elements (cf. section
2) is of particular interest here; first steps towards this direction can be found in [41].

Changing the attack and/or defeat relation among arguments may lead to a com-
pletely different behavior of the system, the understanding and the control of which
constitutes substantially new challenges for belief revision theory. Boella et al. [25]
have proposed an approach that changes the attack relation in a dictatorial way in

17 Belief Revision and Argumentation Theory 357

favor of the new information. More sophisticated change processes are conceivable,
taking ideas from the methods for epistemic belief change (or iterated belief change)
that deal with modifying relations on possible worlds (cf. e.g. [7, 35]). Although ar-
guments are very different from possible worlds, those works might be considered
as approaches to realize minimal change processes for general relations. However,
before applying those techniques from epistemic belief revision to argumentative at-
tack or defeat relations, a careful investigation has to be done concerning conceptual
differences between both frameworks.

Changing the status of beliefs may be a consequence of previous changes to the
argument system. In classical, Dung-style argument systems, the criterion to be a
justified belief is based on extensions. Cayrol et al. [5] have studied how extensions
change when new arguments are added. In argumentation frameworks where ar-
gumentation is based on conclusions (e.g. DeLP [19]), the addition of an argument
may change the status of a claim from unwarranted to warranted and vice versa. This
touches basic concerns of the reasoning aspect of belief revision, and investigations
on the level of belief revision postulates might be very useful. The link between
reinstatement (in argumentation) and recovery (in belief revision) proposed in [24]
is in this line of research.

Finally, changing the type of an argument from strict to defeasible, or vice versa,
addresses novel issues in belief revision. Such modifications are not dealt with prop-
erly by chaining retraction and addition of arguments, as the old and the new ar-
gument are linked by a syntactic or semantic relation which gets lost when these
operations are carried out independently. The basic idea is that inconsistencies that
arise when new information has to be incorporated into the stock of beliefs can be
eliminated not only by removing arguments (resp. beliefs), but by weakening strict
beliefs to defeasible rules (resp. conditionals). The procedure of dynamic classifica-
tion of generic rules has been frequently used in the evolution of humanity’s knowl-
edge. The possibility of changing the status of beliefs from undefeasible to defea-
sible induces revision operations of a new quality, with important consequences for
argumentation, as arguments are formed very often by defeasible beliefs. In [16],
we have introduced a new type of base revision that implements such a dynamic
classification of beliefs and is likewise interesting for argumentation and belief re-
vision theory. We proposed a framework in which defeasible conditionals can be
generated by revising belief structures composed of defeasible rules and undefeasi-
ble knowledge. The approach preserves consistency in the undefeasible knowledge
and it provides a mechanism to dynamically qualify the beliefs as undefeasible or
defeasible, providing a more complete set of epistemic attitudes and extending the
inference power of knowledge based systems. As a particular case, Falappa et al.
[15] propose to extend the application of this non-prioritized revision operator to
Defeasible Logic Programming (DeLP) [19].

358 Marcelo A. Falappa, Gabriele Kern-Isberner and Guillermo R. Simari

4.5 Possible future work

To alleviate orientation within the complex picture and promote further work, we
will take up some of our ideas and suggestions developed above and propose a list of
possible important topics for future work on the connection between argumentation
and belief revision.

• Development of new change operators for argumentative systems: this point may
include non-prioritized revision as well as symmetrical revision operators. Non-
prioritized revision means revision in which the new information (argument)
could be accepted, partially accepted or rejected. Symmetric revision means
merging of argumentative systems.

• Elaborating a set of postulates or properties for changes of argumentative sys-
tems: this may include postulates for expansions, contractions, revisions as well
as postulates for consolidations (for instance, changes for cleaning blocking de-
featers) or merging the beliefs of several argumentative systems.

• Finding representation theorems for changes on argumentative systems: repre-
sentation theorems establish links between constructive approaches to revision
that propose mechanisms and algorithms for change, and black box approaches
that specify the properties that a change operator should have to show equiva-
lence.

• Epistemic entrenchment and defeat: epistemic entrenchment relations among
beliefs may be derived from attack/defeat relations among arguments and vice
versa. Basically, warranted beliefs should be more entrenched than non-warranted
beliefs.

• Argumentation and epistemic revision: interesting new views that alleviate the
combination of belief revision and argumentation might arise from studying
change operators within the broader framework of iterated revision. In partic-
ular, it would be interesting to find parallels in changing relational structures on
either side.

5 Conclusion

In this chapter, we discuss the relationships between argumentation and belief revi-
sion, first recalling important work done, then analyzing the current state of the art
and proposing some tentative future research lines.

We developed a conceptual view on argumentation and belief revision based on
the understanding of both areas as being complementary disciplines in the art of
reasoning. While argumentation seems to be more appropriate for the evaluation
of (rule-based) information, belief revision proves to be useful for the handling
of dynamic beliefs. Hence they should not be regarded as competitive alternatives
that may replace each other. Just to the contrary – combining argumentation and
belief revision allows the modelling of reasoning processes in greater variety and

17 Belief Revision and Argumentation Theory 359

complexity than each of the areas can. Moreover, their diverseness makes it possi-
ble that each of argumentation and belief revision provides enriching aspects for the
respective other discipline beyond any differences. We pointed out various starting
points for work in this direction, and proposed future lines of research along the
borderline between argumentation and revision.

Acknowledgements This research was funded by Consejo Nacional de Investigaciones Cientı́ficas
y Técnicas (CONICET), Agencia Nacional de Promocion Cientı́fica y Tecnológica (ANPCyT),
Universidad Nacional del Sur (UNS), Ministerio de Ciencia y Tecnologı́a (MinCyT) [Argentina]
and Fundação para a Ciência e a Tecnologia (FCT) [Portugal].

References

1. C. Alchourrón, P. Gärdenfors, and D. Makinson. On the Logic of Theory Change: Partial Meet
Contraction and Revision Functions. The Journal of Symbolic Logic, 50:510–530, 1985.

2. C. Alchourrón and D. Makinson. On the Logic of Theory Change: Contraction Functions and
their Associated Revision Functions. Theoria, 48:14–37, 1982.

3. C. Alchourrón and D. Makinson. On the Logic of Theory Change: Safe Contraction. Studia
Logica, 44:405–422, 1985.

4. S. Benferhat, D. Dubois, and H. Prade. How to infer from inconsistent beliefs without revising.
In Proceedings of IJCAI’95, pages 1449–1455, 1995.

5. C. Cayrol, F. D. de Saint Cyr, and M. C. Lagasquie Schiex. Revision of an Argumentation
System. In Proceedings of KR 2008, pages 124–134, 2008.

6. S. Coste-Marquis, C. Devred, S. Konieczny, M.-C. Lagasquie-Schiex, and P. Marquis. On the
Merging of Dung’s Argumentation Systems. Artficial Intelligence, 171:730–753, 2007.

7. A. Darwiche and J. Pearl. On the Logic of Iterated Belief Revision. Artificial Intelligence,
89:1–29, 1997.

8. J. de Kleer. An Assumption-based TMS. Artificial Intelligence, 28(2):127–162, 1986.
9. J. Delgrande, D. Dubois, and J. Lang. Iterated Revision and Prioritized Merging. In Proceed-

ings of KR 2006, pages 210–220. AAAI Press, 2006.
10. J. Doyle. A Truth Maintenance System. Artificial Intelligence, 12:231–272, 1979.
11. J. Doyle. Reason Maintenance and Belief Revision: Foundations versus Coherence Theories.

In Belief Revision [21], pages 29–51.
12. D. Dubois. Three Scenarios for the Revision of Epistemic States. In Besnard and Hanks,

editors, Proceedings of NMR 2006, pages 296–305, San Francisco, CA., 2006. Morgan Kauf-
mann.

13. P. M. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-Person Games. Artificial Intelligence, 77:321–357,
1995.

14. M. A. Falappa, E. L. Fermé, and G. Kern-Isberner. On the Logic of Theory Change: Relations
between Incision and Selection Functions. In Proceedings of ECAI 2006, pages 402–406,
2006.

15. M. A. Falappa, A. J. Garcı́a, and G. R. Simari. Belief Dynamics and Defeasible Argumentation
in Rational Agents. In Proceedings of NMR 2004, section Belief Change, pages 164–170,
2004.

16. M. A. Falappa, G. Kern-Isberner, and G. R. Simari. Belief Revision, Explanations and Defea-
sible Reasoning. Artificial Intelligence Journal, 141:1–28, 2002.

17. A. Fuhrmann. Theory Contraction through Base Contraction. The Journal of Philosophical
Logic, 20:175–203, 1991.

360 Marcelo A. Falappa, Gabriele Kern-Isberner and Guillermo R. Simari

18. A. Fuhrmann and S. O. Hansson. A Survey of Multiple Contractions. The Journal of Logic,
Language and Information, 3:39–76, 1994.

19. A. J. Garcı́a and G. R. Simari. Defeasible Logic Programming: an Argumentative Approach.
Theory and Practice of Logic Programming, 4(1):95–138, 2004.

20. P. Gärdenfors. Knowledge in Flux: Modelling the Dynamics of Epistemic States. The MIT
Press, Bradford Books, Cambridge, Massachusetts, 1988.

21. P. Gärdenfors. Belief Revision. Gärdenfors, Cambridge University Press, 1992.
22. P. Gärdenfors and D. Makinson. Revisions of Knowledge Systems using Epistemic Entrench-

ment. Second Conference on Theoretical Aspects of Reasoning About Knowledge, pages 83–
95, 1988.

23. A. Grove. Two Modellings for Theory Change. The Journal of Philosophical Logic, 17:157–
170, 1988.

24. G. Guido Boella, C. d. Costa Perera, A. Tettamanzi, and L. van der Torre. Dung Argumentation
and AGM Belief Revision. In Fifth International Workshop on Argumentation in Multi-Agent
Systems, ArgMAS 2008, 2008.

25. G. Guido Boella, C. d. Costa Perera, A. Tettamanzi, and L. van der Torre. Making others
believe what they want. Artificial Intelligence in Theory and Practice II, pages 215–224,
2008.

26. S. O. Hansson. New Operators for Theory Change. Theoria, 55:114–132, 1989.
27. S. O. Hansson. Belief Contraction without Recovery. Studia Logica, 50:251–260, 1991.
28. S. O. Hansson. A Dyadic Representation of Belief. In Belief Revision [21], pages 89–121.
29. S. O. Hansson. In Defense of Base Contraction. Synthese, 91:239–245, 1992.
30. S. O. Hansson. Theory Contraction and Base Contraction Unified. The Journal of Symbolic

Logic, 58(2), 1993.
31. S. O. Hansson. Kernel Contraction. The Journal of Symbolic Logic, 59:845–859, 1994.
32. S. O. Hansson. A Textbook of Belief Dymanics: Theory Change and Database Updating.

Kluwer Academic Publishers, 1999.
33. H. Katsuno and A. Mendelzon. On the Difference between Updating a Knowledge Database

and Revising it. In Belief Revision [21], pages 183–203.
34. G. Kern-Isberner. Postulates for Conditional Belief Revision. In Proceedings of IJCAI’99,

pages 186–191. Morgan Kaufmann, 1999.
35. G. Kern-Isberner. A Thorough Axiomatization of a Principle of Conditional Preservation in

Belief Revision. Annals of Mathematics and Artificial Intelligence, 40(1-2):127–164, 2004.
36. G. Kern-Isberner. Linking Iterated Belief Change Operations to Nonmonotonic Reasoning. In

G. Brewka and J. Lang, editors, Proceedings of KR 2008, pages 166–176, Menlo Park, CA,
2008. AAAI Press.

37. J. Lang. Belief Update Revisited. In Proceedings of IJCAI 2007, pages 2517–2522, 2007.
38. I. Levi. Subjunctives, Dispositions, and Chances. Synth̀ese, 34:423–455, 1977.
39. D. Lewis. Counterfactuals. Harvard University Press, Cambridge, Massachusetts, 1973.
40. D. Makinson and P. Gärdenfors. Relations between the Logic of Theory Change and Non-

monotonic Logic. Lecture Notes in Computer Science, 465:183–205, 1991.
41. M. O. Moguillansky, N. D. Rotstein, M. A. Falappa, A. J. Garcı́a, and G. R. Simari. Argument

Theory Change: Revision Upon Warrant. In Proceedings of The Twenty-Third Conference on
Artificial Intelligence, AAAI 2008, pages 132–137, 2008.

42. A. Nayak. Foundational Belief Change. Journal of Philosophical Logic, 23:495–533, 1994.
43. A. Newell. The Knowledge Level. Readings from the AI Magazine, pages 357–377, 1988.
44. R. Niederée. Multiple Contraction: a further case against Gärdenfors’ Principle of Recovery.

Lecture Notes in Computer Science, 465:322–334, 1991.
45. F. Paglieri and C. Castelfranchi. The Toulmin Test: Framing Argumentation within Belief

Revision Theories, pages 359–377. Berlin, Springer, 2006.
46. J. L. Pollock and A. S. Gillies. Belief Revision and Epistemology. Synthese, 122(1–2):69–92,

2000.
47. N. D. Rotstein, M. O. Moguillansky, M. A. Falappa, A. J. Garcı́a, and G. R. Simari. Argument

Theory Change: Revision upon Warrant. In Proceedings of The Computational Models of
Argument, COMMA 2008, pages 336–347, 2008.

Part IV
Applications

Chapter 18
Argumentation in Legal Reasoning

Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

1 Introduction

A popular view of what Artificial Intelligence can do for lawyers is that it can do
no more than deduce the consequences from a precisely stated set of facts and legal
rules. This immediately makes many lawyers sceptical about the usefulness of such
systems: this mechanical approach seems to leave out most of what is important in
legal reasoning. A case does not appear as a set of facts, but rather as a story told by
a client. For example, a man may come to his lawyer saying that he had developed
an innovative product while working for Company A. Now Company B has made
him an offer of a job, to develop a similar product for them. Can he do this? The
lawyer firstly must interpret this story, in the context, so that it can be made to fit the
framework of applicable law. Several interpretations may be possible. In our exam-
ple it could be seen as being governed by his contract of employment, or as an issue
in Trade Secrets law. Next the legal issues must be identified and the pros and cons
of the various interpretations considered with respect to them. Does his contract in-
clude a non-disclosure agreement? If so, what are its terms? Was he the sole devel-
oper of the product? Did Company A support its development? Does the product use
commonly known techniques? Did Company A take measures to protect the secret?
Some of these will favour the client, some the Company. Each interpretation will
require further facts to be obtained. For example, do the facts support a claim that
the employee was the sole developer of the product? Was development work carried

Trevor Bench-Capon
Department of Computer Science, University of Liverpool, UK e-mail: tbc@liverpool.ac.
uk

Henry Prakken
Department of Information and Computing Sciences, Utrecht University, and Faculty of Law, Uni-
versity of Groningen, The Netherlands e-mail: henry@cs.uu.nl

Giovanni Sartor
European University Institute, Law Department, Florence, and CIRSFID, University of Bologna,
Italy e-mail: giovanni.sartor@eui.eu

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 363
DOI 10.1007/978-0-387-98197-0 18, c© Springer Science+Business Media, LLC 2009

364 Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

out in his spare time? What is the precise nature of the agreements entered into?
Once an interpretation has been selected, the argument must be organised into the
form considered most likely to persuade, both to advocate the client’s position and
to rebut anticipated objections. Some precedents may point to one result and others
to another. In that case, further arguments may be produced to suggest following the
favourable precedent and ignoring the unfavourable one. Or the rhetorical presenta-
tion of the facts may prompt one interpretation rather than the other. Surely all this
requires the skill, experience and judgement of a human being? Granted that this is
true, much effort has been made to design computer programs that will help people
in these tasks, and it is the purpose of this chapter to describe the progress that has
been made in modelling and supporting this kind of sophisticated legal reasoning.

We will review1 systems that can store conflicting interpretations and that can
propose alternative solutions to a case based on these interpretations. We will also
describe systems that can use legal precedents to generate arguments by drawing
analogies to or distinguishing precedents. We will discuss systems that can argue
why a rule should not be applied to a case even though all its conditions are met.
Then there are systems that can act as a mediator between disputing parties by struc-
turing and recording their arguments and responses. Finally we look at systems that
suggest mechanisms and tactics for forming arguments.

Much of the work described here is still research: the implemented systems are
prototypes rather than finished systems, and much work has not yet reached the stage
of a computer program but is stated as a formal theory. Our aim is therefore to give
a flavour (certainly not a complete survey) of the variety of research that is going
on and the applications that might result in the not too distant future. Also for this
reason we will informally paraphrase example inputs and outputs of systems rather
than displaying them in their actual, machine-readable format; moreover, because
of space limitations the examples have to be kept simple.

2 Early systems for legal argumentation

In this section we briefly discuss some early landmark systems for legal argumenta-
tion. All of them concern the construction of arguments and counterarguments.

2.1 Conflicting interpretations

Systems to address conflicting interpretations of legal concepts go back to the very
beginnings of AI and Law. Thorne McCarty (e.g. [25, 27]) took as his key problem
a landmark Supreme Court Case in US tax law which turned on differing interpreta-
tions of the concept of ownership, and set himself the ambitious goal of reproducing,

1 This chapter is a revised and updated version of [6].

18 Argumentation in Legal Reasoning 365

in his TAXMAN system, both the majority and the dissenting opinions express-
ing these interpretations. This required highly sophisticated reasoning, constructing
competing theories and reasoning about the deep structure of legal concepts to map
the specific situation onto paradigmatic cases. Although some aspects of the system
were prototyped, the aim was perhaps too ambitious to result in a working sys-
tem, certainly given the then current state of the art. This was not McCarty’s goal,
however: his motivation was to gain insight into legal reasoning through a computa-
tional model. McCarty’s main contribution was the recognition that legal argument
involves theory construction as well as reasoning with established knowledge. Mc-
Carty [26] summarises his position as follows: “The task for a lawyer or a judge in
a “hard case” is to construct a theory of the disputed rules that produces the desired
legal result, and then to persuade the relevant audience that this theory is preferable
to any theories offered by an opponent” (p. 285). Note also the emphasis on persua-
sion, indicating that we should expect to see argumentation rather than proof. Both
the importance of theory construction and the centrality of persuasive argument are
still very much part of current thinking in AI and Law.

Another early system was developed by Anne Gardner [15] in the field of of-
fer and acceptance in American contract law. The task of the system was “to spot
issues”: given an input case, it had to determine which legal questions arising in
the case were easy and which were hard, and to solve the easy ones. The system
was essentially rule based, and this simpler approach offered more possibilities for
practical exploitation than did McCarty’s system. One set of rules was derived from
the Restatement of Contract Law, a set of 385 principles abstracting from thousands
of contract cases. These rules were intended to be coherent, and to yield a single
answer if applicable. This set of rules was supplemented by a set of interpretation
rules derived from case law, common sense and expert opinion, intended to link
these other rules to the facts of the case. Gardner’s main idea was that easy ques-
tions were those where a single answer resulted from applying these two rule sets,
and hard questions, or issues, were either those where no answer could be produced,
because no interpretation rule linked the facts to the substantive rules, or where con-
flicting answers were produced by the facts matching with several rules. Some of
the issues were resolved by the program with a heuristic that gives priority to rules
derived from case law over restatement and commonsense rules. The rationale of
this heuristic is that if a precedent conflicts with a rule from another source, this is
usually because that rule was set aside for some reason by the court. The remaining
issues were left to the user for resolution.

Consider the following example, which is a very much simplified and adapted
version of Gardner’s own main example2. The main restatement rule is

R1: An offer and an acceptance constitute a contract

Suppose further that there are the following commonsense (C) and expert (E) rules
on the interpretation of the concepts of offer and acceptance:

2 We in particular abstract from Gardner’s refined method for representing knowledge about
(speech act) events.

366 Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

C1: A statement “Will supply ...” in reply to a request for offer is an offer.
C2: A statement “Will you supply ...” is a request for offer.
C3: A statement “I accept ...” is an acceptance.
E1: A statement “I accept” followed by terms that do not match the terms of

the offer is not an acceptance.

Suppose that Buyer sent a telegram to Seller with “Will you supply carload salt at
$2.40 per cwt?” to which Seller replied with “Will supply carload at $2.40, terms
cash on delivery”, after which Buyer replied with her standard “Purchase Order”
indicating “I accept your offer of 12 July” but which also contained a standard pro-
vision “payment not due until 30 days following delivery”.

Applying the rules to these events, the “offer” antecedent of R1 can be estab-
lished by C1 combined with C2, since there are no conflicting rules on this issue.
However, with respect to the “acceptance” antecedent of R1 two conflicting rules
apply, viz. C3 and E1. Since we have no way of giving precedence to C3 or E1, the
case will be a hard one, as there are two conflicting notions of “acceptance”. If the
case is tried and E1 is held to have precedence, E1 will now be a precedent rule, and
any subsequent case in which this conflict arises will be easy, since, as a precedent
rule, E1 will have priority over C3.

2.2 Reasoning with precedents

The systems described in the last section do recognise the importance of precedent
cases as a source of legal knowledge, but they make use of them by extracting the
rationale of the case and encoding it as a rule. To be applicable to a new case,
however, the rule extracted may need to be analogised or transformed to match
the new facts. Nor is extracting the rationale straightforward: judges often leave
their reasoning implicit and in reconstructing the rationale a judge could have had
in mind there may be several candidate rationales, and they can be expressed at a
variety of levels of abstraction. These problems occur especially in so-called ‘factor-
based’ domains, i.e., domains where problems are solved by considering a variety of
factors that plead for or against a solution. In such domains a rationale of a case often
just expresses the resolution of a particular set of factors in a specific case. A main
source of conflict in such domains is that a new case often will not exactly match a
precedent but will share some features with it, lack some of its other features, and/or
have some additional features. Moreover, cases are more than simple rationales:
matters such as the context and the procedural setting can influence the way the case
should be used. In consequence, some researchers have attempted to avoid using
rules and rationales altogether, instead representing the input, often interpreted as
a set of factors, and the decisions of cases, and defining separate argument moves
for interpreting the relation between the input and decision (e.g. [23, 1], both to be
discussed below). This approach is particularly associated with researchers in US,
where the common law tradition places a greater stress on precedent cases and their
particular features than is the case with the civil law jurisdictions of Europe. None

18 Argumentation in Legal Reasoning 367

the less cases are also used in civil law jurisdictions and the reasoning techniques
are similar.

The most influential system of this sort is HYPO [2], developed by Edwina Riss-
land and Kevin Ashley in the domain of US Trade Secrets Law, which can be seen
as a factor-based domain. In HYPO cases are represented according to a number
of dimensions. A dimension is some aspect of the case relevant to the decision, for
example, the security measures taken by the plaintiff. One end of the dimension
represents the most favourable position for the plaintiff (e.g. specific non-disclosure
agreements), while the other end represents the position most favourable to the de-
fendant (e.g. no security measures at all). Typically a case will lie somewhere be-
tween the two extremes and will be more or less favourable accordingly. HYPO
then uses these dimensions to construct three-ply arguments. First one party (say
the plaintiff) cites a precedent case decided for that side and offers the dimensions
it shares with the current case as a reason to decide the current case for that side. In
the second ply the other party responds either by citing a counter example, a case
decided for the other side which shares a different set of dimensions with the cur-
rent case, or distinguishing the precedent by pointing to features which make the
precedent more, or the current case less, favourable to the original side. In the third
ply the original party attempts to rebut the arguments of the second ply, by distin-
guishing the counter examples, or by citing additional precedents to emphasise the
strengths or discount the weaknesses in the original argument.

Subsequently Ashley went on, with Vincent Aleven, to develop CATO (most
fully reported in [1]), a system designed to help law students to learn to reason with
precedents. CATO simplifies HYPO in some respects but extends it in others. In
CATO the notion of dimensions is simplified to a notion of factors. A factor can be
seen as a specific point of the dimension: it is simply present or absent from a case,
rather than present to some degree, and it always favours either the plaintiff or defen-
dant. A new feature of CATO is that these factors are organised into a hierarchy of
increasingly abstract factors, so that several different factors can be seen as meaning
that the same abstract factor is present. One such abstract factor is that the defendant
used questionable means to obtain the information, and two more specific factors in-
dicating the presence of this factor are that the defendant deceived the plaintiff and
that he bribed an employee of the plaintiff: both these factors favour the plaintiff.
The hierarchy allows for argument moves that interpret the relation between a case’s
input and its decision, such as emphasising or downplaying distinctions. To give an
example of downplaying, if in the precedent defendant used deception while in the
new case instead defendant bribed an employee, then a distinction made by the de-
fendant at this point can be downplayed by saying that in both cases the defendant
used questionable means to obtain the information. To give an example of empha-
sising a distinction, if in the new case defendant bribed an employee of plaintiff
while in the precedent no factor indicating questionable means was present, then
the plaintiff can emphasise the distinction “unlike the precedent, defendant bribed
an employee of plaintiff” by adding “and therefore, unlike the precedent defendant
used questionable means to obtain the information”.

368 Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

Perhaps the most elaborate representation of cases was produced in Karl Brant-
ing’s Grebe system in the domain of industrial injury, where cases were represented
as semantic networks [13]. The program matched portions of the network for the
new case with parts of the networks of precedents, to identify appropriate analogies.

Of all this work, HYPO in particular was highly influential, both in the explicit
stress it put on reasoning with cases as constructing arguments, and in providing
a dialectical structure in which these arguments could be expressed, anticipating
much other work on dialectical procedures.

3 Logical accounts of reasoning under disagreement

The systems discussed in the previous section were (proposals for) implemented
systems, based on informal accounts of some underlying theory of reasoning. Other
AI & Law research aims at specifying theories of reasoning in a formal way, in
order to make general reasoning techniques from nonmonotonic logic and formal
argumentation available for implementations.

The first AI & Law proposals in this vein, for example, [16, 30], can be regarded
as formal counterparts of Gardner’s ideas on issue spotting. Recall that Gardner
allows for the presence in the knowledge base of conflicting rules governing the
interpretation of legal concepts and that she defines an issue as a problem to which
either no rules apply at all, or conflicting rules apply. Now in logical terms an issue
can be defined as a proposition such that either there is no argument about this
proposition or there are both arguments for the proposition and for its negation.

Some more recent work in this research strand has utilised a very abstract AI
framework for representing systems of arguments and their relations developed by
Dung [14]. For Dung, the notion of argument is entirely abstract: all that can be
said of an argument is which other arguments it attacks, and which it is attacked
by. Given a set of arguments and the attack relations between them, it is possible
to determine which arguments are acceptable: an argument which is not attacked
will be acceptable, but if an argument has attackers it is acceptable only if it can
be defended, against these attackers, by acceptable arguments which in turn attack
those attackers. This framework has proved a fruitful tool for understanding non-
monotonic logics and their computational properties. Dung’s framework has also
been made use of in AI & Law. It was first applied to the legal domain by Prakken
& Sartor [35], who defined a logic for reasoning with conflicting rules as an instan-
tiation of Dung’s framework. (See below and Chapter 8 of this book) Bench-Capon
[3] has explored the potential of the fully abstract version of the framework to rep-
resent a body of case law. he uses preferred semantics, where arguments can defend
themselves: in case of mutual attack this gives rise to multiple sets of acceptable
arguments, which can explain differences in the application of law in different juris-
dictions, or at different times in terms of social choices. Dung’s framework has also
been extended to include a more formal consideration of social values (see Chapter 3
of this book).

18 Argumentation in Legal Reasoning 369

3.1 Reasoning about conflicting rules

Generally speaking, the proposed systems discussed so far attempt to identify con-
flicting interpretations and arguments, but do not attempt to resolve them, leaving it
to the user to choose which argument will be accepted. As we saw above, Gardner’s
system went somewhat further in that it gave priority to rules derived from case law
over restatement and commonsense rules. Thus her system was able to solve some
of the cases to which conflicting rules apply. This relates to much logical work in
Artificial Intelligence devoted to the resolution of rule conflicts in so-called com-
monsense reasoning. If we have a rule that birds can fly and another that ostriches
cannot fly, we do not want to let the user decide whether Cyril the ostrich can fly or
not: we want the system to say that he cannot, since an ostrich is a specific kind of
bird. Naturally attempts have been made to apply these ideas to law.

One approach was to identify general principles used in legal systems to establish
which of two conflicting rules should be given priority. These principles included
preferring the more specific rule (as in the case of the ostrich above, or where a
law expresses an exception to a general provision), preferring the more recent rule,
or preferring the rule deriving from the higher legislative authority (for instance,
‘federal law precedes state law’). To this end the logics discussed above were ex-
tended with the means to express priority relations between rules in terms of these
principles so that rule conflicts would be resolved. Researchers soon realised, how-
ever, that general priority principles can only solve a minority of cases. Firstly, as
for the specificity principle, whether one rule is more specific than another often
depends on substantive legal issues such as the goals of the legislator, so that the
specificity principle cannot be applied without an intelligent appreciation of the par-
ticular issue. Secondly, general priority principles usually only apply to rules from
regulations and not to, for instance, case rationales or interpretation rules derived
from cases. Accordingly, in many cases the priority of one rule over another can be
a matter of debate, especially when the rules that conflict are unwritten rules put
forward in the context of a case. For these reasons models of legal argument should
allow for arguments about which rule is to be preferred.

As an example of arguments about conflicting case rationales, consider three
cases discussed by, amongst others, [10, 7, 32] and [8] concerning the hunting of
wild animals. In all three cases, the plaintiff (P) was chasing wild animals, and the
defendant (D) interrupted the chase, preventing P from capturing those animals. The
issue to be decided is whether or not P has a legal remedy (a right to be compensated
for the loss of the game) against D. In the first case, Pierson v Post, P was hunting
a fox on open land in the traditional manner using horse and hound, when D killed
and carried off the fox. In this case P was held to have no right to the fox because he
had gained no possession of it. In the second case, Keeble v Hickeringill, P owned
a pond and made his living by luring wild ducks there with decoys, shooting them,
and selling them for food. Out of malice, D used guns to scare the ducks away
from the pond. Here P won. In the third case, Young v Hitchens, both parties were
commercial fisherman. While P was closing his nets, D sped into the gap, spread his

370 Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

own net and caught the fish. In this case D won. The rules we are concerned with
here are the rationales of these cases:

R1 Pierson: If the animal has not been caught, the defendant wins
R2 Keeble: If the plaintiff is pursuing his livelihood, the plaintiff wins
R3 Young: If the defendant is in competition with the plaintiff and the animal

is not caught, the defendant wins.

Note that R1 applies in all cases and R2 in both Keeble and Young. In order to
explain the outcomes of the cases we need to be able to argue that R3 > R2 > R1.
To start with, note that if, as in HYPO, we only look at the factual similarities and
differences, none of the three precedents can be used to explain the outcome of one
of the other precedents. For instance, if we regard Young as the current case, then
both Pierson and Keeble can be distinguished. A way of arguing for the desired
priorities, first mooted in [10], is to refer to the purpose of the rules, in terms of the
social values promoted by following the rules.

The logic of [35] provides the means to formalise such arguments. Consider an-
other case in which only plaintiff was pursuing his livelihood and in which the ani-
mal was not caught. In the following (imaginary) dispute the parties reinterpret the
precedents in terms of the values promoted by their outcomes, in order to find a con-
trolling precedent (we leave several details implicit for reasons of brevity; a detailed
formalisation method can be found in [32]; see also [8].

Plaintiff : I was pursuing my livelihood, so (by Keeble) I win
Defendant: You had not yet caught the animal, so (by Pierson) I win
Plaintiff : following Keeble promotes economic activity, which is why Keeble takes
precedence over Pierson, so I win.
Defendant: following Pierson protects legal certainty, which is why Keeble does not
take precedence over Pierson, so you do not win.
Plaintiff : but promoting economic activity is more important than protecting legal
certainty since economic development, not legal certainty is the basis of this coun-
try’s prosperity. Therefore, I am right that Keeble takes precedence over Pierson, so
I still win.

This dispute contains priority debates at two levels: first the parties argue about
which case rationale should take precedence (by referring to values advanced by
following the rationale), and then they argue about which of the conflicting pref-
erence rules for the rationales takes precedence (by referring to the relative order
of the values). In general, a priority debate could be taken to any level and will be
highly dependent on the context and jurisdiction. Various logics proposed in the AI
& Law literature are able to formalise such priority debates, such as [17, 35, 19] and
[21].

18 Argumentation in Legal Reasoning 371

3.2 Other arguments about rules

Besides priority debates in case of conflicting rules, these logics can also model
debates about certain properties of rules, such as their legal validity or their appli-
cability to a legal case. The most fully developed logical theory about what it takes
to apply a rule is reason-based logic, developed jointly by Jaap Hage and Bart Ver-
heij (e.g. [19, 45]). They claim that applying a legal rule involves much more than
subsuming a case under the rule’s conditions. Their account of rule application can
be briefly summarised as follows. First in three preliminary steps it must be deter-
mined whether the rule’s conditions are satisfied, whether the rule is legally valid,
and whether the rule’s applicability is not excluded in the given case by, for instance,
a statutory exception. If these questions are answered positively (and all three are
open to debate), it must finally be determined that the rule can be applied, i.e., that
no conflicting rules or principles apply. On all four questions reason-based logic al-
lows reasons for and against to be provided and then weighed against each other to
obtain an answer.

Consider by way of illustration a recent Dutch case (HR 7-12-1990, NJ 1991,
593) in which a male nurse aged 37 married a wealthy woman aged 97 whom he
had been nursing for several years, and killed her five weeks after the marriage.
When the woman’s matrimonial estate was divided, the issue arose whether the
nurse could retain his share. According to the relevant statutes on Dutch matrimo-
nial law the nurse was entitled to his share since he had been the woman’s husband.
However, the court refused to apply these statutes, on the grounds that applying it
would be manifestly unjust. Let us assume that this was in turn based on the legal
principle that no one shall profit form his own wrongdoing (the court did not explic-
itly state this). In reason-based logic this case could be formalised as follows (again
the full details are suppressed for reasons of brevity).

Claimant: Statutory rule R is a valid rule of Dutch law since it was enacted ac-
cording to the Dutch constitution and never repealed. All its conditions are satisfied
in my case, and so it should be applied to my case. The rule entitles me to my late
wife’s share in the matrimonial estate. Therefore, I am entitled to my wife’s share in
the matrimonial estate.
Defendant: Applying rule R would allow you to profit from your own wrongdoing:
therefore rule R should not be applied in this case.
Court: The reason against applying this rule is stronger than that for applying the
rule, and so the rule does not apply.

Of course, in the great majority of cases the validity or applicability of a statute
rule is not at issue but instead silently presumed by the parties (recall the differ-
ence between arguments and proofs described in the introduction). The new logical
techniques alluded to above can also deal with such presumptions, and they can be
incorporated in reason-based logic.

Reason-based logic also has a mechanism for ‘accruing’ different reasons for
conclusions into sets and for weighing these sets against similar sets for conflict-

372 Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

ing conclusions. Thus it captures that having more reasons for a conclusions may
strengthen one’s position. Prakken [33] formalises a similar mechanism for accruing
arguments in the context of Dung’s framework. Prakken also proposes three prin-
ciples that any model of accrual should satisfy. In Chapter 12 of this book Gordon
and Walton show that the Carneades logic of [18] has an accrual mechanism that
satisfies these principles.

One way to argue about the priority of arguments is to claim that the argument is
preferred if it is grounded in the better or more coherent legal theory3. While there
has been considerable progress in seeing how theories can be constructed on the
basis of a body of past cases, evaluation of the resulting theories in terms of their
coherence is more problematic, since coherence is a difficult notion to define pre-
cisely4. Bench-Capon & Sartor [8] describe some features of a theory which could
be used in evaluation, such as simplicity of a theory or the number of precedent
cases explained by the theory. As an (admittedly somewhat simplistic) example of
the last criterion, consider again the three cases on hunting animals, and imagine
two theories that explain the case decisions in terms of the values of promotion of
economic activity and protection of legal certainty. A theory that gives precedence
to promoting economic activity over protecting legal certainty explains all three
precedents while a theory with the reverse value preference fails to explain Keeble.
The first theory is therefore on this criterion the more coherent one. However, how
several coherence criteria are to be combined is a matter for further research. For an
attempt to give a metric for coherence, see [7]. Coherence is also discussed in [20],
where coherence is treated mainly in terms of respecting a fortiori arguments.

4 Dialogue and mediation systems

Implicit in the notion of argument is that there are two parties with opposing views.
Already in HYPO there is the dialectical structure of point, counter point and re-
buttal, and most logics for argumentation discussed above also have this dialectical
flavour. It is therefore a natural step to make this dialogical structure explicit, and to
build systems to conduct or mediate dialogues between the opposed parties. Such
dialogue systems also provide the opportunity to model the procedure under which
a dispute is conducted, and the context in which information is introduced to a dis-
pute. Taking a procedural point of view forces us to think about matters such as
burden of proof, admissibility of evidence, agreed and contested points, and the role
of a neutral third party to arbitrate the dispute.

One of the first such systems in AI & Law was Tom Gordon’s Pleadings Game,
which embodies an idealised model of civil pleadings in common law systems [17].
The objective of the system is to extend the issue-spotting task of Gardner’s pro-

3 There is, of course, a debate in legal theory as to how we can provide an epistemology of law, and
coherence is only one position. Coherence is discussed here as it is the position which has received
most attention in AI & Law
4 For fuller discussions of coherence, see [29] and [28, Ch. 2]

18 Argumentation in Legal Reasoning 373

gram to a dialogical setting. It is to allow two human parties to state the arguments
and facts that they believe to be relevant, so that they can determine where they
agree and where they disagree. The residual disagreements will go on to form the
issues when the case is tried. The system plays two roles in this process: it acts as
a referee to ensure that the proper procedure is followed, and records the facts and
arguments that are presented and what points are disputed, so as to identify the is-
sues that require resolution. The Pleadings Game has a built-in proof mechanism
for an argumentation logic, which is applied to check the logical well-formedness
of the arguments stated by the user, and to compute which of the stated arguments
prevail, on the basis of the priority arguments also stated by the user and a built-in
specificity checker. The main addition to Gardner’s system is that in the Pleadings
Game not only the content of the arguments is relevant but also the attitudes of the
parties expressed towards the arguments and their premises.

Let us illustrate this with the following simplified dispute, based on the example
that we used in section 2.1 to illustrate Gardner’s system.

Plaintiff : I claim (1) we have a contract
Defendant: I deny 1
Plaintiff : We have a valid contract since (2) I made an offer and (3) you accepted it,
so we have a contract.
Defendant: I concede 2 but I deny 3.
Plaintiff : (4) you said “I accept...”, so by C3 you accepted my offer.
Defendant: I concede 4 and C3, but (5) my statement “I accept ...” was followed by
terms that do not match the terms of your offer. So by E1 (which takes priority over
C3) I (6) did not accept you offer.
Plaintiff : I concede Ei and that Ei takes priority over C3 but I deny 5.
Defendant: (7) you required payment upon delivery while (8) I offered payment 30
days following delivery, so there is a mismatch between our terms.
Plaintiff : I concede (7) and the argument but I deny (8).

At this point, there is one argument for the conclusion that a contract was created,
based on the premises 2, 4 and C3 (note that plaintiff left R1 implicit and defen-
dant silently agreed with this). The intermediate conclusion (3) of this argument
that there was an acceptance is defeated by a counterargument based on premises 7,
8 and E1. So according to a purely logical analysis of the dispute the case is easy,
having as outcome that no contract exists between the parties. This agrees with
Gardner’s treatment of the example. However, in the Pleadings Game it also matters
that the plaintiff has denied defendant’s claim (8). This is a factual issue making the
case hard, and which has to be decided in court.

The Pleadings Game was fully implemented, but purely as an experimental sys-
tem: in particular the arguments had to be presented in a complicated logical syntax
so that they could be handled by the underlying proof mechanism. The trade-off be-
tween ease of use and the ability of the system to process the information it receives
remains a difficult problem for such systems.

374 Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

Following Gordon’s work, a number of other systems for dialogue were pro-
duced. Arno Lodder’s Dialaw [22] is a two-player dialogue game that combines the
notion of propositional commitment [48] with Hage and Verheij’s Reason Based
Logic. The players can use locutions for claiming a proposition and for challenging,
conceding and retracting a claimed proposition. Arguments are constructed implic-
itly, by making a new claim in reply to a challenge. Arguments can also be about the
procedural correctness of dialogue moves. Each dialogue begins with a claim of one
player, and then the turn usually switches after each move. When the commitments
of one player logically imply a claim of the other player, the first player must either
concede it or retract one of the implying commitments. A dialogue terminates if no
disagreement remains, i.e., if no commitment of one player is not also a commit-
ment of the other. The first player wins if at termination he is still committed to his
initial claim, the second player wins otherwise.

Bench-Capon’s TDG [5] is intended to produce more natural dialogues than the
“stilted” ones produced by systems such as the Pleadings Game and Dialaw. To
this end, its speech acts are based on Toulmin’s well-known argument scheme [44].
In this scheme, a claim is supported by data, which support is warranted by an
inference licence, which is backed by grounds for its acceptance; finally, a claim
can be attacked with a rebuttal, which itself is a claim and thus the starting point
of a counterargument. Arguments can be chained by regarding data also as claims,
for which data can in turn be provided. TDG has speech acts for asking for and
providing these elements of an argument; a dialogue starts with a claim and then the
protocol supports a dialogue which constructs a Toulmin structure whilst subjecting
it to a top-down critical examination.

In [34] Prakken proposes a dialogue game model for “adjudication dialogues”,
by adding a neutral third party who adjudicates the conflict between two adversaries.
The main feature of the model is a division into an argumentation phase, where the
adversaries plea their case and the adjudicator has a largely mediating role, and a
decision phase, where the adjudicator decides the dispute on the basis of the claims,
arguments and evidence put forward in the argumentation phase. The model allows
for explicit decisions on admissibility of evidence and burden of proof by the ad-
judicator in the argumentation phase. Adjudication is modelled as putting forward
arguments, in particular undercutting and priority arguments, in the decision phase.

Such a dialogue game model of adjudication paves the way for formal models
of burden of proof and presumption. Research on legal argumentation has recently
addressed these issues, which has required models going beyond existing ‘standard’
non-monotonic logics. In [31] the logic of [35] is adapted to make the acceptability
of an argument dependent on how such a burden is distributed over the parties,
while in the original system it is always allocated to one side. In [36] Prakken &
Sartor extend the resulting logic with the means to explicitly represent and reason
about distributions of the burden of proof. They also claim that if such a logic is
embedded in a dialogue model for adjudication, a precise distinction can be made
between three kinds of burdens of proof often distinguished in the law, namely, the
burden of production, the burden of persuasion and the tactical burden of proof.
The resulting combination of logic and dialogue game is applied to presumptions in

18 Argumentation in Legal Reasoning 375

[37]: by developing the idea that legal presumptions can be modelled as defeasible
rule, they provide ways of representing how a legal presumption can be defeated by
evidence to the contrary and how the burden of proof can be allocated with regard
to the disproval of presumed facts. In related work, Gordon, Prakken & Walton [18]
have provided a logical model of reasoning under standards of proof within the
Carneades logic. In Chapter 12 of this volume, Gordon and Walton extend it with
definitions of these three and some further notions of burden of proof and compare
their account with the work of Prakken & Sartor.

5 Tactics for dispute

Once arguments are placed in a dialogical setting, it becomes apparent that at various
points of the dialogue, the parties will have a choice of moves by which to attack
their opponent or defend their own arguments. Questions then arise as to which
moves are available to construct, attack and defend arguments, and whether there are
principles to guide the choice of move. In fact, the implemented dialogue systems
of the previous section do not address these questions, because they are intended to
act as a mediator between two human players. The responsibility of the system is
thus limited to enforcing the rules of the game, while strategy and tactics are the
responsibility of the human users.

In their work on the CABARET system, Skalak & Rissland [43] attempted to
identify arguments that could be made in a dispute using rules and cases. They
begin by identifying a number of forms of argument, and then describe argument
strategies to be used according to the context of the dispute. For example, if the
current case matches with most but not all the features of some statutory rule that
one wishes to use, the rule must be broadened so as to make the rule applicable
to the case. Or if a rule is applicable to the case under consideration but would be
unfavourable, that rule needs to be discredited. They then identify the moves that
can be made to realise the strategies, depending on the disposition of the precedent,
and whether the precedent does or does not establish the desired consequent. One
move to broaden a rule is to find a precedent that also lacked the missing features
but in which the conclusion of the rule was nevertheless drawn. To discredit a rule
one can try to find a precedent case in which it was not followed even though all
its conditions were satisfied in the case. Finally they identify a number of primitive
operations in terms of which the moves can be realised. These operations include
all moves that can be made in HYPO with cases. All of this is then brought together
in a decision tree which suggests which strategy should be adopted, which moves
need to be used to fulfill it and which primitives will enable the required moves.

Loui & Norman [23] take this approach a step further in their formal model of
the use of rationales in disputes. They allow for a position under attack to be first
restated, in order to make the attack more effective. For example if an argument
using a rationale if P then Q is to be attacked, it may be helpful to restate this as

376 Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

if P then R and if R then Q, and to provide a counter example to if P then R. They
provide a number of other examples of rationales and tactics for attacking them.

CABARET, by distinguishing different kinds of building materials, and provid-
ing different moves and attacks appropriate to each kind, can produce its elegant
classification of strategies. The central idea of distinguishing different kinds of
premises and different ways of dealing with them is explicitly addressed by work
on argument schemes, which we discuss in the next section.

Finally, in [41] and [40] strategic aspects of legal argument are modelled with
game-theoretic methods. A game-theoretical analysis of legal argumentation re-
quires a method of determining the payoffs the parties will receive as a consequence
of the arguments they present in a dispute (combined with the choices of the other
parties) as well as the identification of the equilibrium strategies the parties should
pursue (namely what strategies of the two parties are such that each one of them
represents a best response to the strategy of the other). The first aspect has been
addressed in [41], while the second has been considered in [40].

6 Argument schemes

In a logical proof we have a set of premises and a conclusion which is said to follow
from them. The premises are considered to be entirely homogeneous. Many of the
systems discussed so far likewise make no distinctions among their premises. In ar-
guments expressed in natural language in contrast we can typically see the premises
as playing different roles in the argument. By identifying these roles, we can present
the arguments in a more readily understandable fashion, and also identify the vari-
ous different ways in which the argument may be attacked. Structuring the argument
in this way produces an argument scheme. Analysing legal reasoning in terms of
argument schemes produces a taxonomy of arguments, which may provide useful
guidance for building implemented argumentation systems, analogous to the guid-
ance provided by domain ontologies for building knowledge-based systems (cf. e.g.
[28]).

One argument scheme that has been widely used in AI and Law is that devised
by Toulmin [44] (see the description of TDG in Section 4)). This has been mainly
used to present arguments to users, as in PLAID [9] and SPLIT UP [52], but it has
also been used as the basis of a dialogue game, Bench-Capon’s TDG, in which the
moves of the game relate to providing various elements of the scheme.

While Toulmin attempts to supply a general scheme for arguments, others have
attempted to classify arguments in terms of various specific schemes [47]. One of
the schemes discussed by Walton (pp. 61–63) is the scheme of arguments from the
position to know:

Person W says that p
Person W is in the position to know about p
Therefore, p

18 Argumentation in Legal Reasoning 377

Walton also discusses two special versions of this scheme for witness and expert
testimonies. Clearly, these schemes are very relevant for evidential legal reasoning.
Another scheme discussed by Walton (pp. 75–77) is the scheme from good (or bad)
consequences:

If A is brought about, then good (bad) consequences will (may plausibly) occur. Therefore,
A should (not) be brought about.

One instantiation is adapted from a recent discussion in Dutch privacy law whether
email addresses are personal data.

If the term “personal data” of the Dutch Data Protection Act is interpreted to include email
addresses, then legal measures against spam become possible, which is good. Therefore,
the term “personal data” of the Dutch Data Protection Act should be interpreted to include
email addresses.

Argument schemes are not classified according to their logical form but according
to their content. Many argument schemes in fact express epistemological principles
(such as the scheme from the position to know) or principles of practical reasoning
(such as the scheme from consequences). Accordingly, different domains may have
different sets of such principles. Each argument scheme comes with a customised
set of critical questions that have to be answered when assessing whether their ap-
plication in a specific case is warranted. Thus with argument schemes it becomes
clear that the different premises are each associated with their own particular types
of attack, in contrast to the purely logical systems in which attacks are uniform.
Some of these questions pertain to acceptability of the premises, such as “is W in
the position to know about p?” or “is the possibility to use legal means against spam
really good?”. Other critical questions point at exceptional circumstances in which
the scheme may not apply, such as “is W sincere?” or “are there better ways to bring
about these good consequences?”. Clearly, the possibility to ask such critical ques-
tions makes argument schemes defeasible, since negative answers to such critical
questions are in fact counterarguments, such as “Person W is not sincere since he is
a relative of the suspect and relatives of suspects tend to protect the suspect”. An-
other reason why argument schemes are defeasible is that they may be contradicted
by conflicting applications of the same or another scheme. For instance, a positive
instance of the scheme from consequences can be attacked by a negative instance
of the same scheme, such as by “interpreting email addresses as personal data also
has bad consequences, since the legal system will be flooded with litigation, so the
term “personal data” should not be interpreted to include email addresses”. Or one
person in a position to know (say an eyewitness) may have said that the suspect was
at the crime scene while another eyewitness may have said that the suspect was not
at the crime scene.

Originally only Toulmin’s argumentation scheme was paid explicit attention in
AI & Law, although implicit appeal to other argumentation schemes can be seen
in many of the systems discussed above. For example, HYPO identifies the two
ways in which the citation of a precedent may be attacked, and reason-based logic
identifies ways to reason about the application of legal rules. More recently explicit
argumentation schemes have been used. For example, [4] use an extended version

378 Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

of the scheme from consequences to link legal arguments and social values, and this
approach has been applied to the representation of a particular case by [51]. [50]
presented a set of particular argumentation schemes designed to capture the cased
based reasoning used in CATO. [12] modelled several schemes for reasoning about
evidence, and this work has subsequently been developed by [11]. In Carneades
[18] a generalised notion of argument schemes is applied to legal cases; Carneades
is further described in chapter 12 of this volume.

7 Systems to structure argument

Arguments can often be rather complex, so that understanding the web of relation-
ships becomes difficult. There is clear potential for computers to provide a means of
addressing this problem. The idea of providing a visual means of structuring legal
arguments is not new to the legal field: as early as the 1930s John Henry Wigmore
[49] produced a graphical notation for depicting legal arguments and their relations
of support and attack, so as to make sense of a mass of evidence. In this way the re-
lationships between the evidence and the point to be proven, and the ways in which
the chain of reasoning could be attacked could be clearly seen.

In Wigmore’s days the only way to draw such graphs was with pencil and paper,
which perhaps explains why his method was forgotten until Schum & Tillers [42]
saw the potential of the computer for supporting the drawing and manipulation of
such graphs. They proposed a software system MarshalPlan for visualising prelim-
inary fact investigation based on Wigmore’s diagrams. Some other systems within
AI & Law that provide support for the graphical structuring of argumentation are
Verheij’s ArguMed system [46] and Loui’s Room 5 system [24], which replaces
ArguMed’s (and MarshalPlan’s) graph structures with encapsulated text boxes, to
avoid “pointer spaghetti”. The Araucaria system [38] combines an ArguMed-like
graphical notation with means to label the arguments as instances of predefined ar-
gumentation schemes, which are stored in a database together with their critical
questions. The Avers system [11] in turn combines an Araucaria-like approach with
the means to visualise crime scenarios as abductive reasoning. An overview of var-
ious argument visualisation tools and their legal applications is given in [39].

Argument structuring systems have uses in areas where the clear presentation
of the argument is of prime importance. They could be used in preliminary fact
investigation (see MarshalPlan or Avers), in teaching (many argument structuring
systems outside the legal domain have been developed especially for teaching), for
case management or for mediation in online dispute resolution. In all these cases,
the usefulness of such systems might be increased by integrating them with docu-
mentary sources. For instance, when supporting preliminary fact investigation, the
structured evidential arguments could be linked to police documents containing the
available evidence. Or when used for case management, the structured arguments
could be linked to the case files. Or when a structuring system is used for teach-
ing the analysis of a case decision, the structured arguments could be linked to

18 Argumentation in Legal Reasoning 379

the corresponding fragment in the case decisions in the casebook used by the stu-
dents. Work on argumentation schemes can further augment the usefulness of such
systems. When constructing arguments, argument schemes provide a repertoire of
forms of argument to be considered, and a template prompting for the pieces that are
needed; when attacking arguments they provide a set of critical questions that can
identify potential weaknesses in the opponents case. Araucaria and Avers provide
examples of research systems pointing in this direction.

8 Concluding remarks

In this chapter we have given an overview of the ways in which argumentation
has been addressed in legal applications. Legal reasoning has many distinctive fea-
tures, which include: any proposed set of rules inevitably contain gaps and conflicts;
many of its concepts are imprecisely defined meaning that interpretation is required;
precedent cases play an important role; procedural issues can influence the status of
arguments; much legal argumentation is adversarial and dialectic in nature; the facts
of a case need to be selected and characterised; many decisions express a preference
for particular values and purposes; and all its conclusions are defeasible, subject of-
ten to formal appeal. All of these features mean that deduction cannot provide an
adequate model of legal reasoning and instead argumentation must take centre stage
to allow for these contextual, procedural and interpretative elements. For this reason
developments in computational models of argumentation have been readily taken up
by the AI & Law community. Equally, however, the legal AI community has con-
tributed much to computational models of argumentation: a considerable amount of
the work described in this book has its origins in work motivated by legal applica-
tions, and more than half the chapters have authors who have published in specialist
AI & Law venues.

The legal domain can thus act both a motivation and a test-bed for developments
in argumentation, and we look forward to much fruitful future interaction between
the two areas.

References

1. V. Aleven. Teaching Case-Based Argumentation Through a Model and Examples. PhD Dis-
sertation University of Pittsburgh, 1997.

2. K. Ashley. Modeling Legal Argument: Reasoning with Cases and Hypotheticals. MIT Press,
Cambridge, MA, 1990.

3. T. Bench-Capon. Representation of case law as an argumentation framework. In T. Bench-
Capon, A. Daskalopulu & R. Winkels, editors, Legal Knowledge and Information Systems. JU-
RIX 2002: The Fifteenth Annual Conference, pages 53–62, Amsterdam etc, 2002. IOS Press.

4. T. Bench-Capon, K. Atkinson, and A. Chorley. Persuasion and value in legal argument. Jour-
nal of Logic and Computation, 15:1075–1097, 2005.

380 Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

5. T. Bench-Capon, T. Geldard, and P. Leng. A method for the computational modelling of
dialectical argument with dialogue games. Artificial Intelligence and Law, 8:233–254, 2000.

6. T. Bench-Capon and H. Prakken. Argumentation. In A. Lodder and A. Oskamp, editors, Infor-
mation Technology and Lawyers: Advanced technology in the legal domain, from challenges
to daily routine, pages 61–80. Springer, Berlin, 2006.

7. T. Bench-Capon and G. Sartor. A quantitative approach to theory coherence. In B. Verheij,
A. Lodder, R.Loui & A. Muntjewerff, editors, Legal Knowledge and Information Systems.
JURIX 2001: The Fourteenth Annual Conference, pages 53–62, Amsterdam etc, 2001. IOS
Press.

8. T. Bench-Capon and G. Sartor. A model of legal reasoning with cases incorporating theories
and values. Artificial Intelligence, 150:97–143, 2003.

9. T. Bench-Capon and G. Staniford. PLAID - proactive legal assistance. In Proceedings of the
Fifth International Conference on Artificial Intelligence and Law, pages 81–88, New York,
1995. ACM Press.

10. D. Berman and C. Hafner. Representing teleological structure in case-based legal reasoning:
the missing link. In Proceedings of the Fourth International Conference on Artificial Intelli-
gence and Law, pages 50–59, New York, 1993. ACM Press.

11. F. Bex, S. v. d. Braak, H. v. Oostendorp, H. Prakken, B. Verheij, and G. Vreeswijk. Sense-
making software for crime investigation: how to combine stories and arguments? Law, Prob-
ability and Risk, 6:145–168, 2007.

12. F. Bex, H. Prakken, C. Reed, and D. Walton. Towards a formal account of reasoning about ev-
idence: argumentation schemes and generalisations. Artificial Intelligence and Law, 12:125–
165, 2003.

13. L. Branting. Reasoning with Rules and Precedents: A Computational Model of Legal Analysis.
Kluwer Academic Publishers, Dordrecht/Boston/London, 1999.

14. P. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reason-
ing, logic programming, and n–person games. Artificial Intelligence, 77:321–357, 1995.

15. A. Gardner. Artificial Intelligence Approach to Legal Reasoning. MIT Press, Cambridge, MA,
1987.

16. T. Gordon. An abductive theory of legal issues. International Journal of Man-Machine Stud-
ies, 35:95–118, 1991.

17. T. Gordon. The Pleadings Game. An Artificial Intelligence Model of Procedural Justice.
Kluwer Academic Publishers, Dordrecht/Boston/London, 1995.

18. T. Gordon, H. Prakken, and D. Walton. The Carneades model of argument and burden of
proof. Artificial Intelligence, 171:875–896, 2007.

19. J. Hage. A theory of legal reasoning and a logic to match. Artificial Intelligence and Law,
4:199–273, 1996.

20. J. Hage. Formalizing legal coherence. In Proceedings of the Eighth International Conference
on Artificial Intelligence and Law, pages 22–31, New York, 2001. ACM Press.

21. R. Kowalski and F. Toni. Abstract argumentation. Artificial Intelligence and Law, 4:275–296,
1996.

22. A. Lodder. DiaLaw. On Legal Justification and Dialogical Models of Argumentation. Kluwer
Academic Publishers, Dordrecht/Boston/London, 1999.

23. R. Loui and J. Norman. Rationales and argument moves. Artificial Intelligence and Law,
3:159–189, 1995.

24. R. Loui, J. Norman, J. Alpeter, D. Pinkard, D. Craven, J. Linsday, and M. Foltz. Progress on
Room 5: A testbed for public interactive semi-formal legal argumentation. In Proceedings of
the Sixth International Conference on Artificial Intelligence and Law, pages 207–214, New
York, 1997. ACM Press.

25. L. McCarty. Reflections on TAXMAN: An experiment in artificial intelligence and legal
reasoning. Harvard Law Review, 90:89–116, 1977.

26. L. McCarty. An implementation of Eisner v. Macomber. In Proceedings of the Fifth Interna-
tional Conference on Artificial Intelligence and Law, pages 276–286, New York, 1995. ACM
Press.

18 Argumentation in Legal Reasoning 381

27. L. McCarty and N. Sridharan. The representation of an evolving system of legal concepts: II.
Prototypes and deformations. In Proceedings of the Seventh International Joint Conference
on Artificial Intelligence, pages 246–253, 1981.

28. L. Mommers. Applied Legal Epistemology. Doctoral dissertation Leiden University, 2002.
29. A. Peczenik. Jumps and logic in the law. Artificial Intelligence and Law, 4:297–329, 1996.
30. H. Prakken. A logical framework for modelling legal argument. In Proceedings of the Fourth

International Conference on Artificial Intelligence and Law, pages 1–9, New York, 1993.
ACM Press.

31. H. Prakken. Modelling defeasibility in law: logic or procedure? Fundamenta Informaticae,
48:253–271, 2001.

32. H. Prakken. An exercise in formalising teleological case-based reasoning. Artificial Intelli-
gence and Law, 10:113–133, 2002.

33. H. Prakken. A study of accrual of arguments, with applications to evidential reasoning. In
Proceedings of the Tenth International Conference on Artificial Intelligence and Law, pages
85–94, New York, 2005. ACM Press.

34. H. Prakken. A formal model of adjudication dialogues. Artificial Intelligence and Law,
16:305–328, 2008.

35. H. Prakken and G. Sartor. A dialectical model of assessing conflicting arguments in legal
reasoning. Artificial Intelligence and Law, 4:331–368, 1996.

36. H. Prakken and G. Sartor. Formalising arguments about the burden of persuasion. In Pro-
ceedings of the Eleventh International Conference on Artificial Intelligence and Law, pages
97–106, New York, 2007. ACM Press.

37. H. Prakken and G. Sartor. More on presumptions and burdens of proof. In G. Sartor, editor,
Legal Knowledge and Information Systems. JURIX 2008: The Twentyfirst Annual Conference.
pages 176–185, Amsterdam etc., 2008. IOS Press.

38. C. Reed and G. Rowe. Araucaria: Software for argument analysis, diagramming and repre-
sentation. International Journal of AI Tools, 13:961–980, 2004.

39. C. Reed, D. Walton, and F. Macagno. Argument diagramming in logic, law and artificial
intelligence. The Knowledge Engineering Review, 22:87–109, 2007.

40. R. Riveret, H. Prakken, A. Rotolo, and G. Sartor. Heuristics in argumentation: a game-
theoretical investigation. In P. Besnard, S. Doutre, and A. Hunter, editors, Computational
Models of Argument. Proceedings of COMMA 2008, pages 324–335, Amsterdam etc, 2008.
IOS Press.

41. R. Riveret, A. Rotolo, G. Sartor, H. Prakken, and B. Roth. Success chances in argument
games: a probabilistic approach to legal disputes. In A. Lodder and L. Mommers, editors,
Legal Knowledge and Information Systems. JURIX 2007: The Twentieth Annual Conference,
pages 99–108. IOS Press, Amsterdam etc., 2007.

42. D. Schum and P. Tillers. Marshaling evidence for adversary litigation. Cardozo Law Review,
13:657–704, 1991.

43. D. Skalak and E. Rissland. Arguments and cases. an inevitable intertwining. Artificial Intelli-
gence and Law, 1:3–44, 1992.

44. S. Toulmin. The Uses of Argument. Cambridge University Press, Cambridge, 1958.
45. B. Verheij. Rules, reasons, arguments: formal studies of argumentation and defeat. Doctoral

dissertation University of Maastricht, 1996.
46. B. Verheij. Automated argument assistance for lawyers. In Proceedings of the Seventh Inter-

national Conference on Artificial Intelligence and Law, pages 43–52, New York, 1999. ACM
Press.

47. D. Walton. Argumentation Schemes for Presumptive Reasoning. Lawrence Erlbaum Asso-
ciates, Mahwah, NJ, 1996.

48. D. Walton and E. Krabbe. Commitment in Dialogue. Basic Concepts of Interpersonal Rea-
soning. State University of New York Press, Albany, NY, 1995.

49. J. Wigmore. The Principles of Judicial Proof. Little, Brown and Company, Boston, 2nd
edition, 1931.

382 Trevor Bench-Capon, Henry Prakken and Giovanni Sartor

50. A. Wyner and T. Bench-Capon. Argument schemes for legal case-based reasoning. In A. Lod-
der and L. Mommers, editors, Legal Knowledge and Information Systems. JURIX 2007: The
Twentieth Annual Conference, pages 139–149. IOS Press, Amsterdam etc., 2007.

51. A. Wyner, T. Bench-Capon, and K. Atkinson. Arguments, values and baseballs: Represen-
tation of Popov v. Hayashi. In A. Lodder and L. Mommers, editors, Legal Knowledge and
Information Systems. JURIX 2007: The Twentieth Annual Conference, pages 151–160. IOS
Press, Amsterdam etc., 2007.

52. J. Zeleznikow and A. Stranieri. The split-up system. In Proceedings of the Fifth International
Conference on Artificial Intelligence and Law, pages 185–195, New York, 1995. ACM Press.

Chapter 19
The Argument Interchange Format

Iyad Rahwan and Chris Reed

1 Introduction

While significant progress has been made in understanding the theoretical proper-
ties of different argumentation logics and in specifying argumentation dialogues,
there remain major barriers to the development and practical deployment of argu-
mentation systems. One of these barriers is the lack of a shared, agreed notation
or “interchange format” for argumentation and arguments. In the last years a num-
ber of different argument mark-up languages have been proposed in the context
of tools developed for argument visualisation and construction (see [10] for a re-
view). Thus, for example, the Assurance and Safety Case Environment (ASCE)1

is a graphical and narrative authoring tool for developing and managing assurance
cases, safety cases and other complex project documentation. ASCE relies on an
ontology for arguments about safety based on claims, arguments and evidence [8].
Another mark-up language was developed for Compendium,2 a semantic hypertext
concept mapping tool. The Compendium argument ontology enables construction
of networks, in which nodes represent issues, positions and arguments.

The analysis and study of human argument has also prompted the development of
specialised argument mark-up languages and tools. Two particularly relevant devel-
opments in this direction are ClaiMaker [5] and AML [18]. ClaiMaker and related
technologies [5] provide a set of tools for individuals or distributed communities to
publish and contest ideas and arguments, as is required in contested domains such
as research literatures, intelligence analysis, or public debate. This system is based
on the ScholOnto ontology [4], which can express a number of basic reasoning

Iyad Rahwan
British University in Dubai, UAE & University of Edinburgh, UK, e-mail: irahwan@acm.org

Chris Reed
University of Dundee, UK e-mail: chris@computing.dundee.ac.uk

1 http://www.adelard.co.uk/software/asce/
2 http://www.compendiuminstitute.org/tools/compendium.htm

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 383
DOI 10.1007/978-0-387-98197-0 19, c© Springer Science+Business Media, LLC 2009

384 Iyad Rahwan and Chris Reed

schemes (causality, support) and relationships between concepts found in scholarly
discourse (e.g. similarity of ideas, taxonomies of concepts, etc.). The argument-
markup language (AML) used by the Araucaria system [18] is an XML-based lan-
guage designed for the markup of analysed human argument. The syntax of AML
is specified in a Document Type Definition (DTD) which imposes structural con-
straints on the form of valid AML documents. AML was primarily produced for use
in the Araucaria tool, though has more recently been adopted elsewhere.

These various attempts at providing argument mark-up languages share two ma-
jor limitations. Firstly, each particular language is designed for use with a specific
tool (usually for the purpose of facilitating argument visualisation) rather than for fa-
cilitating inter-operability of arguments among a variety of tools. As a consequence,
the semantics of arguments specified using these languages is tightly coupled with
particular schemes to be interpreted in a specific tool and according to a specific un-
derlying theory. Thus, for example, arguments in the Compendium concept mapping
tool are to be interpreted in relation to a rigorous theory of issue-based information
systems. Clearly, in order to enable true interoperability of arguments and argument
structures we need an argument description language that can be extended beyond
a particular argumentation theory, enabling us to accommodate a variety of argu-
mentation theories and schemes. Another limitation of the above argument mark-up
languages is that they are primarily aimed at enabling users to structure arguments
through diagrammatic linkage of natural language sentences. Hence, these mark-up
languages are not designed to process formal logical statements such as those used
within multi-agent systems. For example, AML imposes structural limitations on
well formed arguments, but provides no semantic model. Such a semantic model is
an important requirement in order to enable the automatic processing of argument
structures by heterogeneous software agents.

In order to address these limitations, a group of researchers interested in ‘ar-
gument and computation’ gathered for a workshop3 whose aim was to sketch an
Argumentation Interchange Format (AIF) which consolidates –where possible– the
work in argumentation mark-up languages and multi-agent system frameworks by
focusing on two main aims:

• to facilitate the development of (closed or open) multi-agent systems capable of
argumentation-based reasoning and interaction using a shared formalism;

• to facilitate data interchange among tools for argument manipulation and argu-
ment visualization.

This article describes and analyzes the main components of the draft specification
for AIF. It must be remarked that AIF as it stands represents a consensus ‘abstract
model’ established by researchers across fields of argumentation, artificial intelli-
gence and multi-agent systems. In its current form, this specification is intended
as a starting point for further discussion and elaboration by the community, rather
than an attempt at a definitive, all encompassing model. In order to demonstrate the
power of the proposed approach, we describe use cases which show how AIF fits

3 AgentLink Technical Forum Group meeting, Budapest, Hungary, September 2005.

19 The Argument Interchange Format 385

into some argument-based tools and applications. We also illustrate a number of
concrete realisations or ‘reifications’ of the proposed abstract model.

2 The Core AIF

In this section, we briefly describe the first AIF draft specification, as reported in
more detail elsewhere [6] and subsequently formalised in [16, 14].

The core AIF has two types of nodes: information nodes (or I-nodes) and scheme
nodes (or S-nodes). These are represented by two disjoint sets, NI ⊂ N and NS ⊂
N, respectively. Information nodes are used to represent propositional information
contained in an argument, such as a claim, premise, data, etc. S-nodes capture the
application of schemes (i.e. patterns of reasoning). Such schemes may be domain-
independent patterns of reasoning, which resemble rules of inference in deductive
logics but broadened to include non-deductive inference. The schemes themselves
belong to a class, S, and are classified into the types: rule of inference scheme,
conflict scheme, and preference scheme. We denote these using the disjoint sets SR,
SC and SP, respectively. The predicate (uses : NS× S) is used to express the fact
that a particular scheme node uses (or instantiates) a particular scheme. The AIF
thus provides an ontology for expressing schemes and instances of schemes, and
constrains the latter to the domain of the former via the function uses, i.e., ∀n ∈
NS,∃s ∈ S such that uses(n,s).

The present ontology has three different types of scheme nodes: rule of inference
application nodes (or RA-nodes), preference application nodes (or PA-nodes) and
conflict application nodes (or CA-nodes). These are represented as three disjoint
sets: NRA

S ⊆ NS, NPA
S ⊆ NS, and NCA

S ⊆ NS, respectively. The word ‘application’
on each of these types was introduced in the AIF as a reminder that these nodes
function as instances, not classes, of possibly generic inference rules. Intuitively,
NRA

S captures nodes that represent (possibly non-deductive) rules of inference, NCA
S

captures applications of criteria (declarative specifications) defining conflict (e.g.
among a proposition and its negation, etc.), and NPA

S are applications of (possibly
abstract) criteria of preference among evaluated nodes.

The AIF specification does not type its edges. The (informal) semantics of edges
can be inferred from the types of nodes they connect. One of the restrictions is
that no outgoing edge from an I-node can be linked directly to another I-node. This
ensures that the type of any relationship between two pieces of information must be
specified explicitly via an intermediate S-node.

Definition 19.1. (Argument Network) An argument network Φ is a graph consist-
ing of:

– a set N = NI ∪NS of vertices (or nodes); and

– a binary relation
edge−−→: N×N representing edges.

where �(i, j) ∈ edge−−→ where both i ∈NI and j ∈NI

386 Iyad Rahwan and Chris Reed

p → q p → q

r→

p

qMP1 MP1

(a) Simple argument (b) Attack among two simple arguments

r

MP2

neg1

A1

A2

p

q

neg2

–p

Fig. 19.1 Examples of simple arguments; S-Nodes denoted with a thicker border

A simple argument can be represented by linking premises to a conclusion.

Definition 19.2. (Simple Argument) A simple argument, in network Φ and schemes
S, is a tuple 〈P,τ,c〉 where:

– P⊆NI is a set of nodes denoting premises;
– τ ∈NRA

S is a rule of inference application node;
– c ∈NI is a node denoting the conclusion;

such that τ edge−−→ c, uses(τ,s) where s ∈ S, and ∀p ∈ P we have p
edge−−→ τ .

Following is a description of a simple argument in propositional logic, depicted in
Figure 19.1(a).

Example 19.1. (Simple Argument)

The tuple A1 = 〈{p, p→ q},MP1,q〉 is a simple argument in propositional lan-
guage L, where p, (p→ q) ∈ NI are nodes representing premises, and q ∈ NI is a
node representing the conclusion. In between them, the node MP1 ∈ NRA

S is a rule
of inference application node (i.e., RA-node) that uses the modus ponens natural
deduction scheme, which can be formally written as follows: uses(MP1,∀A,B ∈
L A A→B

B).

An attack or conflict from one information or scheme node to another informa-
tion or scheme node is captured through a CA-node, which captures the type of
conflict. The attacker is linked to the CA-node, and the CA-node is subsequently
linked to the attacked node. Note that since edges are directed, each CA-node cap-
tures attack in one direction. Symmetric attack would require two CA-nodes, one
in each direction. The following example describes a conflict between two simple
arguments (see Figure 19.1(b)).

Example 19.2. (Simple Arguments in Conflict)

19 The Argument Interchange Format 387

Recall the simple argument A1 = 〈{p, p → q},MP1,q〉. And consider another
simple argument A2 = 〈{r,r→¬p},MP2,¬p〉. Argument A2 undermines A1 by sup-
porting the negation of the latter’s premise. This (symmetric) propositional conflict
is captured through two CA-nodes: neg1 and neg2, both of which insantiate a conflict
scheme based on propositional contraries.

3 An Extended AIF in RDF

In this section, we present a brief description of an implementation of an extended
AIF ontology which may be used as a seed for a variety of Semantic Web argument
annotation tools. The ontology is described in detail in a recent joint paper with other
colleagues [16]. It enables the annotation of arguments using RDF, and is based on
the AIF, extended with Walton’s account of argumentation schemes [22].

3.1 Representing Argument Schemes

Recall that schemes are forms of argument, representing stereotypical ways of draw-
ing inferences from particular patterns of premises to conclusions. We consider the
set of schemes S as themselves nodes in the argument network. And we introduce a
new class of nodes, called forms (or F-nodes), captured in the set NF ⊆N. Two dis-
tinct types of forms are presented: premise descriptors and conclusion descriptors,
denoted by NPrem

F ⊆ NF and NConc
F ⊆ NF , respectively. As can be seen in Figure

19.2, we can now explicitly link each node in the actual argument (the four un-
shaded nodes at the bottom right) to the form node it instantiates (the four shaded
nodes at the top right).4 Notice that here, we expressed the predicate ‘uses’ with the

edge
fulfilsScheme−−−−−−−→: NS×S.

Since each critical question corresponds either to a presumption or an exception,
we provide explicit descriptions of the presumptions and exceptions associated with
each scheme. To express the scheme’s presumptions, we add a new type of F-node
called presumption, represented by the set NPres

F ⊆ NF , and linked to the scheme

via a new edge type,
hasPresumption−−−−−−−−→: S×NPres

F . This is shown in the three (shaded)
presumption nodes at the bottom left of Figure 19.2. As for representing exceptions,
the AIF offers a more expressive possibility. In just the same way that stereotypical
patterns of the passage of deductive, inductive and presumptive inference can be
captured as rule of inference schemes, so too can the stereotypical ways of charac-
terising conflict be captured as conflict schemes. Conflict, like inference, has some
patterns that are reminiscent of deduction in their absolutism (such as the conflict
between a proposition and its complement), as well as others that are reminiscent

4 To improve readability, we will start using typed edges. All typed edges will take the form
type−−→,

where type is the type of edge, and
type−−→⊆ edge−−→.

388 Iyad Rahwan and Chris Reed

of non-deductive inference in their heuristic nature (such as the conflict between
two courses of action with incompatible resource allocations). Thus, exceptions can
most accurately be presented as conflict scheme descriptions (see top left of Fig-
ure 19.2).

Finally, in Walton’s account of schemes, some presumptions may be implicitly
or explicitly entailed by a premise. While the truth of a premise may be questioned
directly, questioning associated with the underlying presumptions can be more spe-
cific, capturing the nuances expressed in Walton’s characterisation. This relation-

ship, between is captured explicitly using a predicate (entails−−−→: NPrem
F ×NPres

F).

Definition 19.3. (Presumptive Inference Scheme Description) A presumptive in-

ference scheme description is a tuple 〈PD,α,cd,Ψ ,Γ ,
entails−−−→〉 where:

– PD⊆NPrem
F is a set of premise descriptors;

– α ∈ SR is the scheme;
– cd ∈NConc

F is a conclusion descriptor.
– Ψ ⊆NPres

F is a set of presumption descriptors;
– Γ ⊆ SC is a set of exceptions; and

–
entails−−−→⊆NPrem

F ×NPres
F

such that:

– α hasConcDesc−−−−−−−→ cd;

– ∀pd ∈ PD we have α hasPremiseDesc−−−−−−−−−→ pd;

– ∀ψ ∈Ψ we have α hasPresumption−−−−−−−−→ ψ;

– ∀γ ∈ Γ we have α hasException−−−−−−−→ γ;

With the description of the scheme in place, we can now show how argument struc-
tures can be linked to scheme structures. In particular, we define a presumptive
argument, which is an extension of the definition of a simple argument.

Definition 19.4. (Presumptive Argument) A presumptive argument based on pre-

sumptive inference scheme description 〈PD,α,cd,Ψ ,Γ ,
entails−−−→〉 is a tuple 〈P,τ,c〉

where:

– P⊆NI is a set of nodes denoting premises;
– τ ∈NRA

S is a rule of inference application node;
– c ∈NI is a node denoting the conclusion;

such that:

– τ edge−−→ c; ∀p ∈ P we have p
edge−−→ τ;

– τ fulfilsScheme−−−−−−−→ α; c
fulfilsConclusionDesc−−−−−−−−−−−→ cd; and

–
fulfilsPremiseDesc−−−−−−−−−−→⊆ P×PD corresponds to a one-to-one correspondence from P to
PD.

19 The Argument Interchange Format 389

Conclusion descriptor:
A may plausibly be
taken to be true

Presumptive inference scheme:
Argument from expert opinion

Premise descriptor:
E is an expert in
domain D

Premise descriptor:
E asserts that A is
known to be true

Presumption:
E is credible as
an expert source

Presumption:
E’s testimony
does imply A

Presumption:
E is an expert in the
field that A is in

hasPresumption
entails

hasConclusionDescription

hasPremiseDesc

Conflict scheme:
Conflict from testimonial
inconsistency

Premise descriptor:
Other experts disagree

Conflict scheme:
Conflict from bias

Premise descriptor:
Speaker is biased

hasPremiseDescription

hasPremiseDescription hasException

hasException

Allen says that
Brazil has the
best football team

Allen is an
expert in sports

RA-node

Brazil has the best
football team

supportssupports

CA-node

CA_Node_attacks

Allen is biased attacks

fulfilsP
rem

iseD
esc fulfilsPremiseDesc fulfilsPremiseDesc

fulfilsScheme

fulfilsC
onclusionD

esc

hasConclusion

Allen is not an
expert in sport

CA-nodeattacks

I-node or one of its sub-types

S-node or one of its sub-types

F-node or one of its sub-types

Scheme or one of its sub-types

underminesPresumption

Underlined: Node type

Fig. 19.2 An argument network showing an argument from expert opinion, two counter-arguments
undermining a presumption and an exception, and the descriptions of the schemes used by the
argument and attackers. A: Brazil has the best football team: Allen is a sports expert and he says
so; B: But Allen is biased, and he is not an expert in sports!

3.2 Implementation in ArgDF

We implemented our extended ontology using RDF and RDFS [2], and call the
resulting ontology AIF-RDF. In summary, we view elements of arguments and
schemes (e.g. premises, conclusions) as RDF resources, and connect them using
binary predicates as described earlier.

ArgDF5 is a Semantic Web-based system that uses the AIF-RDF ontology. The
Sesame RDF repository offers the central features needed by the system, namely:
(i) uploading RDF and RDFS single statements or complete files; (ii) deleting RDF
statements; (iii) querying the repository using the Semantic Web query language
RQL; and (iv) returning RDF query results in a variety of computer processable
formats including XML, HTML or RDF.

Creating New Arguments: The system presents the available schemes, and al-
lows the user to choose the scheme to which the argument belongs. Details of the
selected scheme are then retrieved from the repository, and the form of the argument
is displayed to the user, who then creates the conclusion followed by the premises.

Support/Attack of Existing Expressions: The expressions (i.e. premises or
conclusions) in the repository can be displayed, supported or attacked. When a
user chooses to support an existing premise through a new argument/scheme, this
premise will be both a premise in one argument, and a conclusion in another. Thus,
the system enables argument chaining. If the user chooses to attack an expression,
on the other hand, s/he will be redirected to choose an appropriate conflict scheme,

5 ArgDF is a proof-of-concept prototype and can be accessed at: http://www.argdf.org

390 Iyad Rahwan and Chris Reed

and create a new argument whose conclusion is linked to the existing conclusion via
a conflict application node (as in Example 19.2).

Searching through Arguments: The system enables users to search existing
arguments, by specifying text found in the premises or the conclusion, the type of
relationship between these two (i.e. support or attack), and the scheme(s) used. For
example, one can search for arguments, based on expert opinion, against the ‘war
on Iraq,’ and mentioning ‘weapons of mass destruction’ in their premises. An RQL
query is generated in the background.

Linking Existing Premises to a New Argument: While creating premises sup-
porting a given conclusion through a new argument, the user can re-use existing
premises from the system. This premise thus contributes to multiple arguments in
a divergent structure. This functionality can be useful, for example, in Web-based
applications that allow users to use existing Web content (e.g. a news article, a legal
document) to support new or existing claims.

Attacking Arguments through Implicit Assumptions: With our account of
presumptions and exceptions, it becomes possible to construct an automatic mecha-
nism for presuming. ArgDF allows the user to inspect an existing argument, allow-
ing the exploration of the hidden assumptions (i.e. presumptions and exceptions) by
which its inference is warranted. This leads the way for possible implicit attacks
on the argument through pointing out an exception, or through undermining one
of its presumptions (as shown in Figure 19.2). This is exactly the role that Walton
envisaged for his critical questions [22]. Thus, ArgDF exploits knowledge about
implicit assumptions in order to enable richer interaction between the user and the
arguments.

Creation of New Schemes: The user can create new schemes through the inter-
face of ArgDF without having to modify the ontology. This feature enables a variety
of user-created schemes to be incorporated, thus offering flexibility not found in any
other argument-support system.

4 The AIF in Description Logic

In ArgDF, the actual arguments are specified by instantiating nodes, while actual
schemes are created by instantiating the “scheme” class. Then, argument instances
(and their constituent parts) are linked to scheme instances (and their part descrip-
tors) in order to show what scheme the argument follows.

From the above, it is clear that ArgDF’s reification of the AIF causes some redun-
dancy at the instance level. Both arguments and schemes are described with explicit
structure at the instance level. As a result, the property “fulfilsScheme” does not
capture the fact that a S-node represents an instantiation of some generic class of
arguments (i.e. scheme). Having such relationship expressed explicitly can enable
reasoning about the classification of schemes.

19 The Argument Interchange Format 391

In this section, we present another AIF-based ontology, which captures schemes
as classes of arguments explicitly. The AIF model is reified by interpreting schemes
as classes and S-nodes as instances of those classes; in this case, the semantics of
the “uses” edge can be interpreted as “instance – o f ”.

We formalise the new ontology using Description Logics (DLs) [1], a family of
logical formalisms that have initially been designed for the representation of concep-
tual knowledge in Artificial Intelligence. DL knowledge representation languages
provide means for expressing knowledge about concepts composing a terminology
(TBox), as well as knowledge about concrete facts (i.e. objects instantiating the
concepts) which form a world description (ABox). Since Description Logics are
provided with a formal syntax and formal model-theoretic semantics, sound and
complete reasoning algorithms can be formulated. Our summary here of AIF in
OWL-DL draws upon [15].

4.1 The ontology

At the highest level, three concepts are identified: statements that can be made (that
correspond to AIF I-nodes), schemes that describe arguments made up of statements
(that correspond to AIF S-nodes) and authors of those statements and arguments
(formerly just properties in AIF). All these concepts are disjoint.

Scheme* T hing Statement * T hing Author * T hing
Author * ¬Scheme Author * ¬Statement Statement * ¬Scheme

As with the ArgDF reification of AIF, different specialisations of scheme are identi-
fied; for example the rule scheme (which describes the class of arguments), conflict
scheme, preference scheme etc.

RuleScheme* Scheme Con f lictScheme* Scheme Pre f erenceScheme* Scheme

Each of these schemes can be further classified. For example, a rule scheme may be
further specialised to capture deductive or presumptive arguments. The same can be
done with different types of conflicts, preferences, and so on.

DeductiveArgument * RuleScheme LogicalCon f lict *Con f lictScheme
InductiveArgument * RuleScheme PresumptivePre f erence* Pre f erenceScheme
PresumptiveArgument * RuleScheme LogicalPre f erence* Pre f erenceScheme

A number of properties (or roles in DL terminology) are defined, which can be used
to refer to additional information about instances of the ontology, such as authors
of arguments, the creation date of a scheme, and so on. The domains and ranges of
these properties are restricted appropriately and described below.

�* ∀creationDate.Date �* ∀creationDate−.Scheme
�* ∀argTitle.String �* ∀argTitle−.RuleScheme
�* ∀authorName.String �* ∀authorName−.Author
Scheme* ∀hasAuthor.Author Scheme*= 1creationDate
RuleScheme*= 1argTitle

392 Iyad Rahwan and Chris Reed

To capture the structural relationships between different schemes, their components
should first be classified. This is done by classifying their premises, conclusions,
assumptions and exceptions into different classes of statements. For example, at the
highest level, we may classify statements as declarative, comparative or imperative,
etc.

DeclarativeStatement * Statement ImperativeStatement * Statement
ComparativeStatement * Statement . . .

Actual statement instances have a property that describes their textual content.

�* ∀claimText.String �* ∀claimText−.Statement

When defining a particular RuleScheme (i.e. class of arguments), we capture the
relationship between each scheme and its components. Each argument has exactly
one conclusion and at least one premise (which are, themselves, instances of class
“Statement”). Furthermore, presumptive arguments may have assumptions and ex-
ceptions.

RuleScheme* ∀hasConclusion.Statement RuleScheme*≥ 1hasPremise
RuleScheme*= 1hasConclusion PresumptiveArgument * ∀hasAssumption.Statement
RuleScheme* ∀hasPremise.Statement PresumptiveArgument * ∀hasException.Statement

4.2 Example

With this in place, it becomes possible to further classify the above statement types
to cater for a variety of schemes. For example, to capture the scheme for “Argument
from Position to Know,” the following classes of declarative statements need to be
defined (each class is listed with its property formDescription6 that describes its
typical form).
PositionToHaveKnowledgeStmnt * DeclarativeStatement

formDescription : “E is in position to know whether A is true (false)”

KnowledgeAssertionStmnt * DeclarativeStatement

formDescription : “E asserts that A is true(false)”

KnowledgePositionStmnt * DeclarativeStatement

formDescription : “A may plausibly be taken to be true(false)”

LackO f ReliabilityStmnt * DeclarativeStatement

formDescription : “E is not a reliable source”

Now it is possible to fully describe the scheme for “Argument from Position to
Know.” Following are the necessary and sufficient conditions for an instance to be
classified as an argument from position to know.
ArgFromPositionToKnow≡ (PresumptiveArgument +∃hasConclusion.KnowledgePositionStmnt +

∃hasPremise.PositionToHaveKnowledgeStmnt +∃hasPremise.KnowledgeAssertionStmnt)

ArgFromPositionToKnow* ∃hasException.LackO f ReliabilityStmnt

Other argument schemes (e.g. argument from analogy, argument from sign, etc.) can
be defined in the same way.

6 formDescription is an annotation property in OWL-DL. Annotation properties are used to add
meta-data about classes.

19 The Argument Interchange Format 393

4.3 Representing Conflicts Among Arguments

Conflict among arguments are captured through different specialisations of
Con f lictScheme such as GeneralCon f lict and ExceptionCon f lict.

ExceptionCon f lict *Con f lictScheme GeneralCon f lict *Con f lictScheme

GeneralCon f lict instances capture simple symmetric and asymmetric attacks among
arguments while ExceptionCon f lict instances represent exceptions to rules of infer-
ence. The definition of Con f lictScheme and Statement classes have been extended
to include the appropriate restrictions on properties used to represent attacks among
different arguments.

Con f lictScheme* ∀con f Attacks.(Statement ,RuleScheme) Statement * ∀attacks.Con f lictScheme
Con f lictScheme* ∀isAttacked.Statement Statement * ∀con f IsAttacked.Con f lictScheme
Con f lictScheme* ∀underminesAssumption.Statement

Figures 19.3(a) to 19.3(d) illustrate how instances of Con f lictScheme and the re-
lated properties are used to represent four different types of conflicts among argu-
ments, namely, asymmetric attacks (a), symmetric attacks (b), undermining assump-
tions (c) and attacking by supporting existing exceptions (d).

In these figures, argument instances are denoted by Argn, premises are denoted
by PXn, conclusions by CX, assumptions by AsmXn, exceptions by ExcpXn and
instances of general conflict and exception conflict as GCn and EC1 respectively
where X = {A, B, C, ...} and n represents the set of natural numbers {1,2,3,...}.

5 Reasoning over Argument Structures

In this section, we describe two ways in which the expressive power of Description
Logic and its support for reasoning can be used to enhance user interaction with
arguments. The features discussed here were implemented in a pilot system called
Avicenna, utilizing the DL-compatible Web Ontology Language (OWL) .

5.1 Automatic Classification of Schemes and Arguments

In this section, we describe the general inference pattern behind classification of
argument schemes (and their instances). This inference is based on the statement hi-
erarchy and the conditions defined on each scheme. Two examples of this inference
are also provided.

Consider two specialisations (sub-classes) of PresumptiveArgument :
PresScheme1 and PresScheme2. An instance of the first scheme, PresScheme1,
might have an instance of CA class as its conclusion and premises from classes
(PA1,PA2, ...,PAn), where classes CA and (PA1,PA2, ...,PAn) are specialisations
of the class Statement. Similarly, PresScheme2 has members of CB class as its

394 Iyad Rahwan and Chris Reed

(b) Symmetric Attack among two simple arguments

PA1

PA2
CA

Arg1

A1

GC2

isAttacked

PB1

PB2
CB

Arg2

A2

confIsAttacked

(a) Asymmetric Attack among two simple arguments

PA1

PA2
CA

Arg1

hasPremise

hasPremise

hasConclusion

hasPremise

hasPremise

hasConclusion

attacks

A1

GC1

PB1

PB2
CB

Arg2

hasPremise

hasPremise

hasConclusion

hasPremise

hasPremise

hasConclusion

A2

confAttacks

attacks confAttacks

(c) Undermining an assumption

PA1

PA2
CA

Arg1

hasPemiser

hasPremise

hasConclusion

A1

GC3

PB1

PB2

CB

Arg2

A2

confAttacks

AsmA1

hasAssumption

underMinesAssumption

attacks

(d) Attacking through supporting an exception

PA1

PA2

CA

Arg1

hasPremise

hasPremise hasConclusion

A1
EC1

PB1

PB2Arg2

hasConclusion

A2

confAttacks

ExcpA1

/CB

hasException

attacks

Instance of Statement or one of its sub-classes

Instance of Presumptive Argument Scheme or one of its
sub-classes

Instance of Conflict Scheme or one of its sub-classes

hasPremise

hasPremise

hasPremise

hasPremise

hasConclusion

Fig. 19.3 Representation of different types of attack among arguments

conclusion and its premises are from classes (PB1,PB2, ...,PBm where CB and
(PB1,PB2, ...,PBm) are specialisations of Statement and m >= n. Let us assume that
a relationship exists between CA and CB, that they are either referring to the same
class or else that the latter is a specialisation of the former, i.e., (CB≡CA)∨ (CB*
CA).
We also assume a relationship exists among the premises of these two schemes in a
way that for every premise class of PresScheme1, there is a corresponding premise
class in PresScheme2 that is either equal to or is a specialisation of the premise class
in PresScheme1 (the opposite does not hold as we have allowed that PresScheme2
could have greater number of premises than PresScheme1), i.e. ∀x ∈ 1,2, ...m,∀y ∈
1,2, ...,n,(PBx ≡ PAy)∨ (PBx * PAy).

19 The Argument Interchange Format 395

The necessary and sufficient conditions on PresScheme1 and PresScheme2 are de-
fined as:

PresScheme1≡ (PresumptiveArgument +∃hasConclusion.CA+∃hasPremise.PA1+∃hasPremise.PA2+
∃hasPremise.(...)+∃hasPremise.PAn)

PresScheme2≡ (PresumptiveArgument +∃hasConclusion.CB+∃hasPremise.PB1+∃hasPremise.PB2+
∃hasPremise.(...)+∃hasPremise.PBm)

Considering the statement hierarchy and the necessary and sufficient conditions de-
fined on each class, PresScheme2 is inferred by the description logic reasoner as
the sub-class of PresScheme1 in case the number of premises in PresScheme2 is
greater than number of premises in PresScheme1 (i.e. m > n). In case the number of
premises are the same (i.e m = n), and at least one of the premises of PresScheme2
is a specialisation of a premise in PresScheme1 and/or the conclusion CB is a spe-
cialisation of CA, PresScheme2 is also inferred as the sub-class of PresScheme1.

Following the above explanation, due to the hierarchy of specialisation among
different descriptors of scheme components (statements) as well as the necessary
and sufficient conditions defined on each scheme, it is possible to infer the classifi-
cation hierarchy among schemes.

An interesting example is offered by the specialisation relationship that can be
inferred between “Fear Appeal Argument” and “Argument from Negative Conse-
quences”.

Scheme 1 Argument From Negative Consequences

– Premise: If A is brought about, bad consequences will plausibly occur.
– Conclusion: A should not be brought about.
– Critical Questions

1. How strong is the probability or plausibility that these cited consequences will
(may, might, must) occur?

2. What evidence, if any, supported the claim that these consequences will (may,
might, must) occur if A is brought about?

3. Are there consequences of the opposite value that ought to be taken into ac-
count?

Scheme 2 Fear Appeal Argument

– Fearful situation premise: Here is a situation that is fearful to you.
– Conditional premise: If you carry out A, then the negative consequences por-

trayed in this fearful situation will happen to you.
– Conclusion: You should not carry out A.
– Critical Questions

1. Should the situation represented really be fearful to me, or is it an irrational
fear that is appealed to?

2. If I don’t carry out A, will that stop the negative consequences from happen-
ing?

396 Iyad Rahwan and Chris Reed

3. If I do carry out A, how likely is it that the negative consequences will happen?

The necessary and sufficient conditions of the “Argument from Negative Conse-
quences” are detailed as:

ArgNegatvieConseq≡ (PresumptiveArgument +
∃hasConclusion.ForbiddenActionStmnt +
∃hasPremise.BadConsequenceStmnt)

Likewise, for “Fear Appeal Argument”:

FearAppealArg≡ (PresumptiveArgument +∃hasConclusion.ForbiddenActionStmnt +
∃hasPremise.Fear f ulSituationStmnt +∃hasPremise.FearedBadConsequenceStmnt)

The statements are defined below. Note that the “Feared Bad Consequence” state-
ment is a specialization of “Bad Consequence” statement, since it limits the bad
consequence to those portrayed in the fearful situation.
BadConsequenceStmnt * DeclarativeStatement

formDescription : “If A is brought about, bad consequences will plausibly occur”

ForbiddenActionStmnt * DeclarativeStatement

formDescription : “A should not be brought about”

Fear f ulSituationStmnt * DeclarativeStatement

formDescription : “Here is a situation that is fearful to you”

FearedBadConsequenceStmnt * BadConsequenceStmnt

formDescription : “If you carry out A, then the negative consequences portrayed

in this fearful situation will happen to you”

As a result of classification of schemes into hierarchies, instances belonging to a
certain scheme class will also be inferred to belong to all its super-classes. For ex-
ample, if the user queries to return all instances of “Argument from Negative Con-
sequences,” the instances of all specializations of the scheme, such as all argument
instances from “Fear Appeal Arguments” are also returned.

5.2 Inferring Critical Questions

In this section we describe the general inference pattern behind inference of critical
questions from an argumentation scheme’s super-classes and provide an example.

In the previous section we described an assumption about two specialisations of
PresumptiveArgument, PresScheme1 and PresScheme2 and the fact that
PresScheme2 was inferred to be the sub-class of PresScheme1. Each of these
schemes might have different assumptions and exceptions defined on their classes.
For example, PresScheme1 has AsmA1 and AsmA2 as its assumptions and ExcA1
as its exception. PresScheme2 has AsmB1 and ExcB1 as its assumption and excep-
tion respectively. AsmA1, AsmA2, AsmB1, ExcA1 and ExcB1 are specialisations of
Statement class. The the necessary conditions defined on classes PresScheme1 and
PresScheme2 are:

PresScheme1* ∃hasAssumption.AsmA1

PresScheme1* ∃hasAssumption.AsmA2

PresScheme1* ∃hasException.ExcA1

19 The Argument Interchange Format 397

PresScheme2* ∃hasAssumption.AsmB1

PresScheme2* ∃hasException.ExcB1

Since PresScheme2 has been inferred by the reasoner as the specialization (sub-
class) of PresScheme1, a query to the system to return all assumptions and excep-
tions of PresScheme2, is able to return all those explicitly defined on the scheme
class (i.e. AsmB1 and ExcB1) as well as those defined on any of its super-classes (in
this case: AsmA1, AsmA2 and ExcA1).

Since the schemes are classified by the reasoner into a hierarchy, if certain as-
sumptions or exceptions are not explicitly stated for a specific scheme but are
defined on any of its super-classes, the system is able to infer and add those as-
sumptions and exceptions to instances of that specific scheme class. Since critical
questions enable evaluation of an argument, inferring additional questions for each
scheme will enhance the analysis process.

Consider the critical questions for “Fear Appeal Argument” and “Argument from
Negative Consequences” given in the previous section. These critical questions are
represented in the ontology through the following statements:
IrrationalFearAppealStmnt * DeclarativeStatement

formDescription : “It is an irrational fear that is appealed to”

PreventionO f BadConsequenceStmnt * DeclarativeStatement

formDescription : “If A is not carried out, this will stop the negative consequences from happening”

OppositeConsequencesStmnt * DeclarativeStatement

formDescription : “There are consequences of the opposite value that ought to be taken into account”

StrongConsequenceProbabilityStmnt * DeclarativeStatement

formDescription : “There is a strong probability that the cited consequences will occur”

ConsequenceBackU pEvidenceStmnt * DeclarativeStatement

formDescription : “There is evidence that supports the claim that these

consequences will occur if A is brought about.”

The necessary conditions on “Argument from Negative Consequences” that define
these critical questions are:
ArgNegatvieConseq* ∃hasException.OppositeConsequencesStmnt

ArgNegatvieConseq* ∃hasAssumption.StrongConsequenceProbabilityStmnt

ArgNegatvieConseq* ∃hasAssumption.ConsequenceBackU pEvidenceStmnt

Likewise, the necessary conditions on “Fear Appeal Argument” are:
FearAppealArg* ∃hasException.IrrationalFearAppealStmnt

FearAppealArg* ∃hasAssumption.PreventionO f BadConsequenceStmnt

FearAppealArg* ∃hasAssumption.StrongConsequenceProbabilityStmnt

“Fear Appeal Argument” is classified as a sub-class of “Argument from Negative
Consequences.” The critical questions 2 and 3 of “Argument from Negative Conse-
quences” have not been explicitly defined on “Fear Appeal Argument”, but can be
inferred through reasoning.

398 Iyad Rahwan and Chris Reed

6 Current Issues and Future Directions

The AIF will come into its own as it demonstrates that it can be used to build bridges
between applications, and, perhaps, between theories. Work with the Araucaria dia-
gramming tool [18] has demonstrated (at least in the specific area of linguistic analy-
sis) how carefully designed representation can support analysts working in different
traditions, and to a certain extent can help reuse across domains. At the time of writ-
ing, Araucaria has in the region of 10,000 users. Some few of these submit analyses
using a number of different analytical techniques (Toulmin schema, argumentation
schemes, Wigmore charts, etc.) to a centralised corpus. Though there are analysed
arguments from an enormous range of domains, one that is particularly interest-
ing is the legal domain. Wigmore charts were designed specifically for analysis of
cases and are rarely used in other domains. The Toulmin-schema is rooted in legal
analysis though is now much more widely used. Walton’s approach to argumenta-
tion schemes has generic application, though one that encompasses use in law [23].
These various degrees of specificity to the legal domain counterbalance the number
of analysts working in each tradition (relatively few using Wigmore, many more
using Walton argumentation schemes). As a result, the part of the corpus that might
be said to encompass examples from the legal domain has a theoretically diverse
basis. Despite this diversity, that part of the corpus has been successfully used in an
unrelated project investigating discourse markers in legal argumentation [13]. What
has made this possible is the underlying unifying representation.

This example shows in microcosm what the AIF is trying to do right across com-
putational uses of argument. Though it is still early days, there are a number of
systems, tools and techniques that are working, planning or considering implemen-
tation to support AIF. We provide a brief overview of a number of them here to give
an indication of the range of potential applications, and the types of role that AIF
might play.

Argkit and Dungine. Argkit7 is designed to be a reusable, plug and play code-
base for developing and linking together applications that use argument, and partic-
ularly those that have a requirement for processing abstract argument [20]. In a com-
pelling demonstration, South has shown how the Dungine component, which per-
forms computations according to Dung acceptability semantics, can be connected
to Araucaria to compute acceptability of real arguments on the fly. Though there are
theoretical challenges with connecting models of abstract and concrete argumenta-
tion, this proof of concept demonstrator shows how the two areas of research might
be harmonised. Argkit plans have scheduled integration of AIF as a way to support
such integration more broadly across other sources of both concrete and abstract
argumentation.

Araucaria. The analysis tool, Araucaria [18], has a large user base, but is now
suffering from limitations of its underlying representation and increasingly dated in-
terface and interaction metaphors. A large-scale rewrite is underway, which provides

7 http://www.argkit.org

19 The Argument Interchange Format 399

AIF support: an early alpha is available with reusable code modules for processing
AIF resources.

Rationale. Rationale [21] is a highly polished commercial product for argument
visualisation in a primarily educational context, which has been recently comple-
mented by a new product from the same company, Austhink Software Pty Ltd8,
providing related functionality targeted at a commercial context. Rationale, in par-
ticular, has explored interaction with resources that Araucaria produces and vice
versa. From Austhink’s commercial point of view, the cost of developing an AIF
component (even if low) would need to be offset against value; that value will only
be clear when there is a critical mass of other systems and environments that can
work with AIF. This is perhaps an inevitable part of the relationship between aca-
demic and commercial sides of research in argumentation.

Compendium. Compendium is similar to Rationale in a number of ways in that
it is a polished tool with its origins in a research programme but now mature with
a wide user-bases supported by the Compendium Institute9, run by the Open Uni-
versity. Compendium focuses not just on arguments, but on a wide range of se-
mantic types (issues, decisions, etc.). It has been used with other tools, such as
Araucaria, which can provide embedded support for building the fine-grained struc-
ture of arguments which form components of Compendium maps. Compendium has
also made use of Araucaria’s argumentation scheme representation, by automati-
cally importing the various “schemesets” that capture the definitions of schemes
offered by various authors. The import makes those same definitions available as
templates to Compendium users10. Richer integration with more detailed models of
these schemes would be made possible by AIF import along these same lines.

Cohere. Cohere is an ambitious project that aims to bring Compendium-like
flexibility in ‘sense-making’ to a broad online audience. Though it supports a very
broad range of semantic relationships between componets, it has a particular fo-
cus on those that might be considered argumentative. As a part of its mission to be
“an idea management tool”11, Buckingham Shum states that, “A key priority is to
provide Argument Interchange Format compatibility” [3] to provide smooth inter-
operability with both other tools in the space (such as those listed here) and also to
provide Cohere with structured access to additional argument resources.

Carneades. The Carneades system is both a framework for reasoning about ar-
guments and a system that implements that framework. Carneades is sited squarely
within an AI & Law context [9], and has already worked to integrate with the Legal
Knowledge Interchange Format, LKIF. At its core, however, lies argumentation-
based representation and reasoning at both concrete and abstract levels (though,
interestingly in regards to the latter not using Dung’s popular approach [7]). As a
result, the Carneades work is exploring the possibility of using AIF as a mechanism
for exporting and importing argument structures from other systems.

8 http://www.austhink.com
9 http://compendium.open.ac.uk/institute
10 http://compendium.open.ac.uk/compendium-arg-schemes.html
11 http://kmi.open.ac.uk/technologies/cohere

400 Iyad Rahwan and Chris Reed

ArguGRID. ArguGRID is a large EU project funded under FP7. Though its
goals cover a broad spectrum of activity, models of argumentation lie at its centre.
The project aims to use argumentation to provide semantically rich processes for
negotiating services across grid networks – see e.g. [11]. Drawing heavily upon
abstract argumentation models, it needs AIF to develop far enough that it provides
strong support for abstract argumentation before AIF can play an important role. In
the meantime, AIF remains on the roadmap of development for ArguGRID systems.

AAC. The Arguing Agents Competition is a new collaboration that aims to pro-
vide an open, competitive environment in which agents can compete in their ability
to argue successfully [24]. It aims to be similar in spirit to the leading example set
by the Trading Agent Competition12. As the AAC is currently under development,
it has been designed to use AIF from the outset. This represents the first significant
test case for AIF’s suitability for autonomous reasoning (as opposed to human-in-
the-loop processing).

InterLoc. Interloc is an online educational environment for structuring peda-
gogic discourse and debate [17]. Its rich representations of argument, and strongly
typed dialogue games are well suited to what AIF can offer. Initial explorations are
under way to explore potential uses of AIF in the Interloc project, but there is a
significant challenge: Interloc focuses heavily upon the design and execution of a
number of sophisticated and intricate dialogue games for structuring interactions
online. AIF in its simplest form, presented here, does not support dialogue at all.

6.1 Dialogue in AIF

Though discussed at the initial AgentLink meeting in Budapest, argumentation dia-
logue was deprioritised against the more basic requirement of being able to represent
“monologue”: it is first necessary to be able to handle relatively static knowledge
structures (such as those represented in abstract argumentation frameworks) before
going on to tackle how those structures are updated and modified. The problem is
that very many systems and use cases for the AIF involve dialogue.

The first step in introducing dialogue into the AIF is presented in [12], which
shows how protocol application steps can be introduced into the AIF framework.
[19] goes on to show how both dialogue game descriptions, and the actual dialogues
they govern can be represented in a common extension to AIF, called AIF+. The
aim is to allow specifications of dialogue games to be represented in a way that is
analogous to argument scheme representations, and to allow instantiated dialogues
to be analagous to argument instantiations. The challenge lies in ensuring that the
instantiations of dialogues are connected in appropriate ways to instantiations of
arguments, according to the rules of the appropriate dialogue game. Both [12] and
[19] are, however, rather preliminary, and many issues remain to be resolved.

12 http://www.sics.se/tac

19 The Argument Interchange Format 401

7 Conclusion

The current AIF specification and its reifications mark a starting point. As expe-
rience with AIF grows, and different systems and research programmes make call
upon it, the specification will inevitably shift to accommodate the broadening de-
mands. Extensions to handle dialogue represent and early example of this broaden-
ing – albeit one that has been anticipated from the outset.

Unfortunately, this shifting poses two distinct problems: one in the short term,
and one in the longer term. The first problem is one of bootstrapping. With a num-
ber of teams working to implement slightly different reifications of the AIF, tracking
versions to ensure at least some compatibility is becoming tricky. To some extent,
the core of AIF is stabilising, and as reference implementations become available,
code reuse will become more common, and compatibility will be improved. The
second, related problem, concerns the process of solidification by which the AIF
settles into stability. It is important that this solidification not happen too early: the
AIF must support the theories and systems that are being developed right across
the community. But on the other hand, it must also not happen to late, or we risk
fragmentation and a loss of coherence, which is the raison d’être of the specifica-
tion. Currently, the balance is being successfully struck informally through personal
networks and regular communication. If AIF starts to scale, a control system that is
less lightweight may be necessary to maintain stability of at least a common core.

Finally, [16] present a vision of a World Wide Argument Web of interconnected
arguments and debates, founded upon the AIF. Though it leaves many questions
unanswered it does present a challenging goal for development not only of AIF
components but also large-scale infrastructure for supporting online argumentation.
The WWAW vision has the potential to draw together a number of different initia-
tives in the space allowing each to find a wider audience and more practical utility
than they might individually, which would be a true measure of success for the AIF.

Acknowledgements The authors are grateful to Steve Willmott, Peter McBurney, and AgentLink
III for initiating and organising the Technical Forum “Towards a Standard Agent-to-Agent Argu-
mentation Interchange Format,” and to all those who contributed to the initial AIF specification
that it produced.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, editors. The De-
scription Logic Handbook. Cambridge University Press, Cambridge, UK, 2003.

2. D. Brickley and R. V. Guha. RDF Vocabulary Description Language 1.0: RDF Schema. W3C
Recommendation REC-rdf-schema-20040210, World Wide Web Consortium (W3C), Febru-
ary 2004.

3. S. Buckingham Shum. Cohere: Towards Web 2.0 argumentation. In P. Besnard, S. Doutre, and
A. Hunter, editors, Proceedings of the 2nd International Conference on Computational Models
of Argument (COMMA), pages 97–108. IOS Press, Amsterdam, The Netherlands, 2008.

402 Iyad Rahwan and Chris Reed

4. S. Buckingham Shum, E. Motta, and J. Domingue. ScholOnto: An ontology-based digital li-
brary server for research documents and discourse. International Journal of Digital Libraries,
3(3):237–248, 2000.

5. S. Buckingham Shum, V. Uren, G. Li, B. Sereno, and C. Mancini. Modelling naturalistic argu-
mentation in research literatures: Representation and interaction design issues. International
Journal of Intelligent Systems, Special Issue on Computational Modelling of Naturalistic Ar-
gumentation, 22(1):17–47, 2007.

6. C. I. Chesñevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South,
G. Vreeswijk, and S. Willmott. Towards an argument interchange format. The Knowledge
Engineering Review, 21(4):293–316, 2007.

7. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmonotonic
reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–358,
1995.

8. L. Emmet and G. Cleland. Graphical notations, narratives and persuasion: a pliant systems
approach to hypertext tool design. In HYPERTEXT 2002, Proceedings of the 13th ACM Con-
ference on Hypertext and Hypermedia, June 11-15, 2002, University of Maryland, College
Park, MD, USA, pages 55–64, New York, USA, 2002. ACM Press.

9. T. F. Gordon, H. Prakken, and D. Walton. The Carneades model of argument and burden of
proof. Artificial Intelligence, 171(10–15):875–896, 2007.

10. P. A. Kirschner, S. J. B. Schum, and C. S. Carr, editors. Visualizing Argumentation: Software
Tools for Collaborative and Educational Sense-Making. Springer Verlag, London, 2003.

11. P.-A. Matt, F. Toni, T. Stournaras, and D. Dimitrelos. Argumentation-based agents for epro-
curement. In AAMAS ’08, pages 71–74, 2008.

12. S. Modgil and J. McGinnis. Towards characterising argumentation based dialogue in the
argument interchange format. In I. Rahwan and P. Moraitis, editors, Proceedings of the 4th
International Workshop on Argumentation in Multi-Agent Systems (ArgMAS), volume 5384 of
Lecture Notes in Computer Science. Springer Verlag, 2008. to appear.

13. M. F. Moens, E. Boiy, R. M. Palau, and C. Reed. Automatic detection of arguments in legal
texts. In Proceedings of the International Conference on AI & Law (ICAIL-2007), 2007.

14. I. Rahwan. Mass argumentation and the Semantic Web. Journal of Web Semantics, 6(1):29–
37, 2008.

15. I. Rahwan and B. Banihashemi. Arguments in OWL: A progress report. In P. Besnard,
S. Doutre, and A. Hunter, editors, Proceedings of the 2nd International Conference on Com-
putational Models of Argument (COMMA), pages 297–310, Amsterdam, Nethrelands, 2008.
IOS Press.

16. I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide argument web.
Artificial Intelligence, 171(10–15):897–921, 2007.

17. A. Ravenscroft. Promoting thinking and conceptual change with digital dialogue games. Jour-
nal of Computer Assisted Learning, 23(6):453–465, 2007.

18. C. Reed and G. Rowe. Araucaria: Software for argument analysis. International Journal of
AI Tools, 14(3–4):961–980, 2004.

19. C. Reed, S. Wells, J. Devereux, and G. Rowe. AIF+: Dialogue in the Argument Interchange
Format. In P. Besnard, S. Doutre, and A. Hunter, editors, Proceedings of the 2nd International
Conference on Computational Models of Argument (COMMA), pages 311–323. IOS Press,
Amsterdam, The Netherlands, 2008.

20. M. South, G. Vreeswijk, and J. Fox. Dungine: A Java Dung reasoner. In P. Besnard, S. Doutre,
and A. Hunter, editors, Proceedings of the 2nd International Conference on Computational
Models of Argument (COMMA), pages 360–368, Amsterdam, Nethrelands, 2008. IOS Press.

21. T. van Gelder. The rationale for rationale. Law, Probability and Risk, 6(1–4):23–42, 2007.
22. D. Walton. Argumentation Schemes for Presumptive Reasoning. Erlbaum, Mahwah NJ, 1996.
23. D. Walton. Legal Argumentation and Evidence. Penn State Press, University Park, PA, 2002.
24. T. Yuan, J. Schulze, J. D. C., and Reed. Towards an arguing agents competition: Building

on Argumento. In Working Notes of the 8th Workshop on Computational Models of Natural
Argument (CMNA-2008), 2008.

Chapter 20
Empowering Recommendation Technologies
Through Argumentation

Carlos Iván Chesñevar, Ana Gabriela Maguitman and Marı́a Paula González

1 Introduction and motivations

User support systems have evolved in the last years as specialized tools to assist
users in a plethora of computer-mediated tasks by providing guidelines or hints [19].
Recommender systems are a special class of user support tools that act in coopera-
tion with users, complementing their abilities and augmenting their performance by
offering proactive or on-demand, context-sensitive support. Recommender systems
are mostly based on machine learning and information retrieval algorithms, provid-
ing typically suggestions based on quantitative evidence (i.e. measures of similarity
between objects or users). The inference process which led to such suggestions is
mostly unknown (i.e. ‘black-box’ metaphor). Although the effectiveness of existing
recommenders is remarkable, they still have some serious limitations. On the one
hand, they are incapable of dealing formally with the defeasible nature of users’
preferences in complex environments. Decisions about user preferences are mostly
based on heuristics which rely on ranking previous user choices or gathering in-
formation from other users with similar interests. On the other hand, they are not
equipped with explicit inference capabilities. This is a hindrance for providing ex-
planation facilities which could help the user to assess the analysis underlying the

Carlos Iván Chesñevar
CONICET (National Council of Technical and Scientific Research) – Department of Computer
Science and Eng. – Universidad Nacional del Sur – Bahı́a Blanca, Argentina, e-mail: cic@cs.
uns.edu.ar

Ana Gabriela Maguitman
CONICET (National Council of Technical and Scientific Research) – Department of Computer
Science and Eng. – Universidad Nacional del Sur – Bahı́a Blanca, Argentina, e-mail: agm@cs.
uns.edu.ar

Marı́a Paula González
CONICET (National Council of Technical and Scientific Research) – Department of Computer
Science and Eng. – Universidad Nacional del Sur – Bahı́a Blanca, Argentina
GRIHO Research Group – University of Lleida – Lleida, Spain. e-mail: mpg@cs.uns.edu.ar

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 403
DOI 10.1007/978-0-387-98197-0 20, c© Springer Science+Business Media, LLC 2009

404 Carlos Iván Chesñevar, Ana Gabriela Maguitman and Marı́a Paula González

recommendations provided (i.e., which elements were taken into account in order
to come up with a specific suggestion).

In fact, quantitative approaches in AI, as opposed to qualitative approaches, have
often been criticized for their inability to obtain conclusions supported by a ratio-
nally justified procedure. The quantitative techniques adopted by most existing user
support systems suffer also from this limitation. The absence of an underlying for-
mal model makes it hard to provide users with a clear explanation of the factors and
procedures that led the system to come up with some particular recommendations.
As a result, serious trustworthiness issues may arise, especially in those cases when
business interests are involved, or when external manipulation is possible. Logic-
based approaches could help to overcome these issues, enhancing recommendation
technology by providing a means to formally express constrains and to draw infer-
ences. In this context, frameworks for defeasible argumentation [10, 25] constitute
an interesting alternative for empowering recommendation technologies by provid-
ing appropriate inference mechanisms for qualitative reasoning. In fact, the argu-
mentation paradigm has proven to be successful in a growing number of real-world
applications such as multiagent systems [3, 6], legal reasoning [24], intelligent web-
based forms [15], and semantic web [26, 9], among many others.

This chapter presents a generic approach to characterize argument-based recom-
mender systems, i.e. user support tools in which recommendations are provided on
the basis of arguments. The proposed approach is based on modelling user pref-
erence criteria by means of facts, strict rules and defeasible rules encoded in an
argumentation formalism. These preference criteria are combined with additional
background information and used by the argumentation framework to prioritize po-
tential suggestions, thus enhancing the final results provided to the user. The rest
of the chapter is structured as follows. Section 2 presents an overview of current
recommender system technologies. Section 3 summarizes the main elements of De-
feasible Logic Programming, a general-purpose argumentation formalism based on
logic programming used for our proposal. Section 4 discusses our approach to em-
powering recommendation technologies through argumentation. Section 5 describes
a particular application which emerged as an instance of this approach, oriented
towards providing suitable decision support in the context of content-based web
search. Finally, Section 6 discusses related work and Section 7 presents some con-
clusions and future research directions.

2 Recommendation Technologies: an overview

Recommendation systems are aimed at helping users to deal with the problem of
information overload by facilitating access to relevant items. They attempt to gener-
ate a model of the user or user’s task and apply diverse heuristics to anticipate what
information may be of interest to the user. User support systems operate in associa-
tion with the user to effectively accomplish a range of tasks. Some of these systems
serve the purpose of expanding the user’s natural capabilities, for example by acting

20 Empowering Recommendation Technologies Through Argumentation 405

as intelligence or memory augmentation mechanisms [13]. Some of these systems
reduce the user’s work by carrying out the routinizable tasks on the user’s behalf.
Others offer tips on how to refine or complete human generated products (such as
electronic documents) by highlighting potential inaccuracies and proposing alterna-
tive solutions, thus minimizing the user’s cognitive effort. Some aides “think ahead”
to anticipate the next steps in a user’s task providing the capability for the user to
confirm the prediction and ask the system to complete the steps automatically.

Recommender systems are a special class of user support tools that act in coop-
eration with users, complementing their abilities and augmenting their performance
by offering proactive or on demand context-sensitive support. They usually operate
by creating a model of the user’s preferences or the user’s task with the purpose of
facilitating access to items (e.g., news, web pages, books, etc.) that the user may find
useful. While in many situations the user explicitly posts a request for recommen-
dations in the form of a query, many recommender systems attempt to anticipate the
user’s needs and are capable of proactively providing assistance. In order to come
up with recommendations for user queries, conventional recommender systems rely
on similarity measures between users or contents, computed on the basis of methods
coming either from the information retrieval or the machine learning communities.
Recommender systems adopt mainly two different views to help predict informa-
tion needs. The first approach is known as user modeling and relies on the use of
a profile or model of the users, which can be created by observing users’ behavior
(e.g., [20]). The second approach is based on task modeling, and recommendations
are based on the context in which the user is immersed (e.g., [7]). The context may
consist of an electronic document the user is editing, web pages the user has recently
visited, etc.

Two main techniques have been used to compute recommendations: content-
based and collaborative filtering. Content-based recommenders [23] are driven
by the premise that user’s preferences tend to persist through time. These recom-
menders frequently use machine-learning techniques to generate a profile of the
active user. Typically, a model of the active user is stored as a list of rated items.
In order to determine if a new item is a potentially good recommendation, content-
based recommender systems rely on similarity measures between the new items and
the rated items stored as part of the user model. On the other hand, recommender
systems based on collaborative filtering [28] are based on the assumption that users’
preferences are correlated. These systems maintain a pool of users’ profiles associ-
ated with items that the users rated in the past. For a given active user, collaborative
recommender systems find other similar users whose ratings strongly correlate with
the current user. New items not rated by the active user can be presented as sugges-
tions if similar users have rated them highly.

A combination of collaborative-filtering and content-based recommendation
gives rise to hybrid recommender systems (e.g., [4]). Other combinations can be
made resulting on other kinds of hybrid technologies. A survey of hybrid recom-
mender systems can be found in [8]. Additional dimensions of analysis for recom-
mender systems are the content of the suggestion (e.g., news, URLs, people, articles,
text, products), the purpose of the suggestion (e.g., sales or information), the event

406 Carlos Iván Chesñevar, Ana Gabriela Maguitman and Marı́a Paula González

that triggers the search for suggestions (by user’s demand or proactively), and the
level of intrusiveness (none, low, moderate or high).

2.1 Limitations of current recommendation technologies

Although large amounts of qualitative data is available on the Web in the form
of rankings, opinions, and other facts, this data is hardly used by existing recom-
menders to perform inference. Even quantitative data available on the Web could
give rise to highly reliable and traceable suggestions if used by a system with the
ability to perform qualitative inference on this data. An important deficiency of cur-
rent recommendations technologies, therefore, is due to their inability to qualita-
tively exploit these data. This gives rise to a number of research opportunities for
the development of a new generation of recommenders.

• Exposing underlying assumptions. Because the evidence used to provide sug-
gestions is not traced or tracked, existing recommenders are unable to expose the
underlying assumptions to careful scrutiny by the user. While recommendations
in the form of simple pointers or hints may be useful in many situations, it is easy
to come up with scenarios in which the user may need further evidence before
taking a course of action based on a recommendation.

• Dealing with the defeasible nature of users’ preferences. Users preferences
are dynamic and typically change as time evolves or as new material becomes
available for analysis. Because quantitative approaches are not equipped with
mechanism to revise previous conclusions, the changing nature of users pref-
erences is poorly dealt with. Modeling the dynamics of users preferences can
help to keep the system up-to-date, without disregarding selections and decisions
made by the user in the past.

• Approaching trust and trustworthiness. Recommendation technologies are in-
creasingly gaining importance in commercial applications. However, most exist-
ing systems simply focus on tracking a customer’s interests and make suggestions
for the future without a contextualized justification. As a result the user is unable
to evaluate the reasons that led the system to present certain recommendations.
In certain domains (e.g., e-commerce), this is not sufficient, as this lack of justifi-
cation can be associated with ulterior motives on the recommendation provider’s
side, leading to lack of confidence or reliability [22]. This emerging area requires
a careful investigation of the notion of trust and trustworthiness.

• Proving rationally compelling arguments. The absence of a formal model un-
derlying quantitative approaches makes it hard to provide users with a justifi-
cation of why certain recommendations should be trusted or preferred. In many
situations, more than one potential course of action could be proposed by a rec-
ommendation tool. However, the convenience of using these support tools is lim-
ited if no rational arguments for these suggestions are provided to help the user
make a final decision.

20 Empowering Recommendation Technologies Through Argumentation 407

Context-
based search

 engine

Collaborative
filtering

Learner

Learner

Content-based
search results

Recommendations

Pool of users’
profiles as lists of

rated items

Active user’s
profile

as list of
rated items

Information
needs

Declared
interests

Feedback

Monitoring

Declared
interests

Feedback

Monitoring

Active
user

Pool of
users

Fig. 20.1 A schematic view of a hybrid recommender system

• Going beyond the basic collaborative model. Because trust is to a great de-
gree subjective, quantifying trust by combining measures coming from a pool of
credibility assessments may not be entirely realistic. Although the “wisdom of
the crowds” [29] is typically useful, it should be combined in a rational manner
with information coming from individual users or communities.

A solution to some of these problems can be provided by integrating existing
user support technologies with appropriate inferential mechanisms for qualitative
reasoning. As we will see in the next sections, the use of argumentation will al-
low to enhance recommender systems with inference abilities to present reasoned
suggestions, which the user will be able to further investigate and accept only if a
convincing case can be made by the recommendation tool.

408 Carlos Iván Chesñevar, Ana Gabriela Maguitman and Marı́a Paula González

3 Defeasible Logic Programming in a Nutshell

Defeasible logic programming (DeLP)1 [14] is a general-purpose defeasible argu-
mentation formalism based on logic programming, intended to model inconsistent
and potentially contradictory knowledge. A defeasible logic program has the form
P = (Π ,Δ), where Π and Δ stand for strict and defeasible knowledge, respectively.
The set Π involves strict rules of the form P ← Q1, . . . ,Qk and facts (strict rules
with empty body), and it is assumed to be non-contradictory (i.e., no complemen-
tary literals P and∼P can be inferred, where∼P denotes the contrary of P). The set
Δ involves defeasible rules of the form P −−≺Q1, . . . ,Qk, which stand for “Q1, . . .Qk

provide a tentative reason to believe P.” Rules in DeLP are defined in terms of lit-
erals. A literal is an atom A or the strict negation (∼A) of an atom. Default negation
(denoted not A) is also allowed in the body of defeasible rules (see [14] for details).

Deriving literals in DeLP results in the construction of arguments. An argument
A for a literal Q (denoted 〈A,Q〉) is a (possibly empty) set of ground defeasible
rules that together with the set Π provide a proof for a given literal Q, satisfying
the additional constraints of non-contradiction (i.e., an argument should not allow
the derivation of contradictory literals) and minimality (i.e., the set of defeasible in-
formation used to derive Q should be minimal).2 Note that arguments are obtained
by a mechanism similar to the usual query-driven SLD derivation from logic pro-
gramming, performed by backward chaining on both strict and defeasible rules; in
this context a negated literal ∼P is treated just as a new predicate name no P. In
DeLP, arguments provide tentative support for claims (literals). Clearly, as a pro-
gram P represents incomplete and tentative information, an argument 〈A,Q〉 may
be attacked by other arguments also derivable from P. An argument 〈B,R〉 is a
counter-argument for 〈A,Q〉 whenever a subargument 〈A′,Q′〉 (with A′ ⊆ A) in
〈A,Q〉 can be identified, such that 〈B,R〉 and 〈A′,Q′〉 cannot be simultaneously
accepted since their joint acceptance would allow contradictory conclusions to be
inferred from Π ∪A′ ∪B. If the attacking argument 〈B,R〉 is preferred over 〈A′,Q′〉,
then 〈B,R〉 is called a defeater for 〈A,Q〉. The preference criterion commonly used
is specificity [14], preferring those arguments which are more direct or more in-
formed, although other criteria could be adopted.

In DeLP the search for defeaters for a given argument 〈A,Q〉 prompts a recursive
process, resulting in the generation of a dialectical tree: the root node of this tree
is the original argument at issue, and every children node in the tree is a defeater
for its parent. Additional restrictions help to avoid circular situations when comput-
ing branches in a dialectical tree, guaranteeing that every dialectical tree is finite
(see [14] for details). Nodes in the tree can be marked either as defeated (D-nodes)
or as undefeated (U-nodes). The marking of the dialectical tree is performed as in
an AND-OR trees: leaves are always marked as undefeated nodes (as they have no
defeaters); inner nodes can be be marked either as undefeated (if and only if every

1 For an in-depth description of Defeasible Logic Programming the reader is referred to Chapter 8
in this book.
2 This definition of argument was originally introduced by Simari & Loui [30].

20 Empowering Recommendation Technologies Through Argumentation 409

DeLP Development Environment

Abstract Machine

• YES (there exists a warranted argument <A,q>)

• NO (there exists a warranted argument for <A,~q>)

• UNDECIDED (none of the above cases hold).

• UNKNOWN (q is not in the program signature).

Possible
Answers

User Query

Computes dialectical trees by backward
chaining. Primitives are based on an
extension of Warren’s abstract machine for
Prolog.

U

DD

U

U

D

A

q

U

D

?-q

DeLP Program

U

Yes

DeLP Interpreter

DeLP Output
Visualization and
tracing facilities

Fig. 20.2 A schematic view of the DeLP development environment

of its children nodes is marked as defeated) or as defeated (whenever at least one of
its children has been marked as undefeated). The original argument 〈A,Q〉 (the root
of tree) is deemed as ultimately acceptable or warranted whenever it turns out to be
marked as undefeated after applying the above process.

Given a DeLP program P, solving a query Q with respect to P may result in four
possible answers:

• YES (there is at least one warranted argument A for Q);
• NO (there is at least one warranted argument A for ∼Q);
• UNDECIDED (none of the previous cases hold); and
• UNKNOWN (Q is not present in the program signature).

The emerging semantics is skeptical, computed by DeLP on the basis of the goal-
directed construction and marking of dialectical trees, which is performed in a
depth-first fashion. Additional facilities (such as visualization of dialectical trees,
zoom-in/zoom-out view of arguments, etc.) are integrated in the DeLP environment
to facilitate user interaction when solving queries. The DeLP environment is avail-
able online at http://lidia.cs.uns.edu.ar/delp client.

410 Carlos Iván Chesñevar, Ana Gabriela Maguitman and Marı́a Paula González

4 Argument-based Recommendation Technologies

We contend that argument-based reasoning can be integrated into recommender sys-
tems in order to provide a qualitative perspective in decision making. This can be
achieved by integrating inference abilities to offer reasoned suggestions modelled in
terms of arguments in favor and against a particular decision. This approach comple-
ments existing qualitative techniques by enriching the user’s mental model of such
computer systems in a natural way: suggestions are statements which are backed by
arguments supporting them. Clearly, conflicting suggestions may arise, and it will
be necessary to determine which suggestions can be considered as valid according
to some rationally justified procedure. The role of argumentation is to provide a
sound formal framework as a basis for such analysis.

In this context, our proposal is based on modelling users’ preference criteria in
terms of a DeLP program built on top of a traditional content-based search engine.
Figure 20.3 depicts the basic architecture of a generic argument-based user sup-
port system based on DeLP. In such a setting users’ preferences and background
knowledge can be codified as facts, strict rules and defeasible rules in a DeLP pro-
gram. These facts and rules can come from different sources. For example, user’s
preferences could be entered explicitly by the user or could be inferred by the sys-
tem (e.g., by monitoring the user’s behavior). Additional facts and rules could be
obtained from other repositories of structured (e.g., databases) and semistructured
data (e.g., the web.).

We will distinguish particular subsets in a DeLP program, representing different
elements in a user support system. For example, a DeLP program could take the
form P = Puser ∪Ppool ∪Pdomain, where sets Puser and Ppool represent preferences
and behavior of the active user and the pool of users, respectively. In the case of the
active user, his/her profile can be encoded as facts and rules in DeLP. In the case
of the pool of users, rule induction techniques are in order3 resulting in defeasible
rules characterizing trends and general preference criteria (e.g., normally if a given
user likes X then she also likes Y). The set Pdomain represents the domain (back-
ground) knowledge, encoded using facts and rules in DeLP. Either proactively or
upon a user’s request, an argument-based user support system triggers the search
for suggestions. If needed, the collected results could be codified as facts and added
to the DeLP program. Finally, a DeLP interpreter is in charge of performing the
qualitative analysis on the program and to provide the final suggestions to the user.

Given the program P, a user’s request is transformed into suitable DeLP queries,
from which different suggestions are obtained. For the sake of simplicity, we will
assume in our analysis that user suggestions will be DeLP terms associated with a
distinguished predicate name rel (which stands for relevant or acceptable as a valid
suggestion). Using this formalization, suggestions will be classified into three sets,
namely:

• Sw (warranted suggestions): those suggestions si for which there exists at least
one warranted argument supporting rel(si) based on P;

3 An approach for inducing defeasible rules from association rules can be found in [17].

20 Empowering Recommendation Technologies Through Argumentation 411

User
Preferences

Search
Engine

Supporting
Subsystems

DeLP
Interpreter

Supporting
Databases

(Structured Data)

DeLP Program
(facts,

strict rules, and
defeasible rules)

Collective
Repository

(Semi-Structured
Data)

User
Context/

Information
Needs

Suggestions

Fig. 20.3 A Generic Argument-Based User Support System based on DeLP

• Su (undecided suggestions): those suggestions si for which there is no warranted
argument for rel(si), neither there is a warranted argument for ∼rel(si) on the
basis of P, and

• Sd (defeated suggestions): those suggestions si such that there is a warranted
argument supporting ∼rel(si) on the basis of P.

Given a potential suggestion si, the existence of a warranted argument 〈A1,rel(si)〉
built on the basis of the DeLP program P will allow to conclude that si should be
presented as a final suggestion to the user. If results are presented as a ranked list
of suggestions, then warranted suggestions will be more relevant than those which
are undecided or defeated. Note that the above classification has a direct correspon-
dence with the doxastic attitudes associated with answers to DeLP queries.

412 Carlos Iván Chesñevar, Ana Gabriela Maguitman and Marı́a Paula González

User
Preferences

Web Search
Engine

Query
Reformulator

DeLP
Interpreter

Web Search
Special

Syntaxes

DeLP Program
(facts,

strict rules, and
defeasible rules)

Web Repository

User
Query

Suggestions

Fig. 20.4 A particular instance of the Generic Argument-Based User Support System for Content-
based Search

5 Providing Argument-based User Support for Content-Based
Web Search

We will present next a particular instantiation of our approach: an argument-based
recommendation tool for content-based search queries [12]. In this context, the
intended user support system aims at providing an enriched (content-based) web
search engine which categorizes results, where the user’s needs correspond to strings
to be searched on the web. The underlying search engine may be a conventional
search engine (e.g., GOOGLE), or a specialized content-based search engine. Final
recommendation results for a query q are prioritized according to domain back-
ground knowledge and the user’s declared preferences. Figure 4 illustrates the ar-
chitecture of our argument-based recommender system.

Given a user query q, it will be given as an input to a traditional content-based
web search engine, returning a list of search results L. If required, the original query
q could be suitably re-formulated in order to improve the quality of the search re-
sults to be obtained. In the list L we can assume that si is a unique name charac-
terizing a piece of information in f o(si), in which a number of associated features

20 Empowering Recommendation Technologies Through Argumentation 413

ALGORITHM Recommend on Query
INPUT: Query q, DeLP program P = Puser ∪Ppool ∪Pdomain
OUTPUT: List Lnew {recommendation results wrt P′}
Let L = [s1,s2, . . .sk] be the output of solving q
wrt content-based search engine SE
{L is the list of (the first k) results obtained from query q via SE }
Psearch = {facts encoding in f o(s1), in f o(s2) . . . in f o(sk)}
{in f o(si) stands for features associated with result si }
P′ := Revise (P∪ Psearch).
{Revise stands for a belief revision operator to ensure consistency in P′ }
Initialize Sw, Su, and Sd as empty sets.
{Sw, Su, and Sd stand for the set of results si’s which are warranted as
relevant, undecided and warranted as non-relevant, respectively }
FOR EVERY si ∈ L

DO
Solve query rel(si) using DeLP program P′
IF rel(si) is warranted THEN add si to Sw

ELSE
IF ∼rel(si) is warranted THEN add si to Sd

ELSE add si to Sd

Return Recommendation Lnew = [sw
1 ,sw

2 , . . . ,sw
j1,s

u
1,s

u
2, . . . ,s

u
j2,s

d
1 , . . . ,sd

j3]

Fig. 20.5 High-level algorithm for solving queries with argumentation support in content-based
search

(meta-tags, filename, URL, etc.) can be identified. We assume that such features
can be identified and extracted from in f o(si) by some specialized tool, as suggested
by Hunter [18] in his approach to dealing with structured news reports. Such fea-
tures will be encoded as a set Psearch of new DeLP facts, extending thus the original
program P into a new program P′. A special operator Revise deals with possible
inconsistencies found in Psearch with respect to P′, ensuring P∪Psearch is not con-
tradictory.4 Following the algorithm shown in Figure 20.5 we can now analyze L in
the context of a new DeLP program P′=P∪Facts, where Facts denotes the set corre-
sponding to the collection discussed above and P corresponds to domain knowledge
and the user’s preferences about the search domain.5 For each si, the query rel(si)
will be analyzed in light of the new program P′. Elements in the original list L of
content-based search results will be classified into three sets of warranted, unde-
cided, and defeated results. The final output presented to the user will be a sorted
list L′ in which the elements of L are ordered according to their epistemic status with
respect to P′. Figure 20.5 outlines a high level algorithm, which will be exemplified
in the case study shown next.

4 For example, contradictory facts may be found on the web. A simple belief revision criterion is
to prefer the facts with a newer timestamp over the older ones.
5 In this particular context, note that P= Pdomain∪Puser .

414 Carlos Iván Chesñevar, Ana Gabriela Maguitman and Marı́a Paula González

5.1 A worked example

Example 20.1. Consider a tourist who wants to search for books about London. A
content-based query q containing the terms books, about, London will return thou-
sands of search results. The tourist performing the query may have some implicit
knowledge to guide the search, such as:

1. She usually considers as relevant those books about London which are not out-
dated and are written by authors with good reputation.

2. She trusts a ranked list provided by the website www.rankings.com to as-
sess the quality of a given author. Authors ranked less than 20 are considered
trustworthy.6

3. According to the tourist’s opinion, there is a particular author (John Doyle) which
has a good reputation in books about London (independently of web-based rank-
ings).

4. Usually all search results which include the keyword ‘London’ are of interest,
but not those involving ‘Jack’ and ‘London’ (as they are assumed to belong to
the American writer Jack London, and not the city of London).

5. She usually likes books which are not expensive (not exceeding $ 300), except
for those books published by Acme Inc. (in that case, she is willing to pay a
higher price).

6. She usually considers non-relevant those books published by Boring Books Ltd.

Such rules and facts can be modelled in terms of a DeLP program P as shown
in Figure 20.7. Note that some rules in P rely on “built in” predicates computed
elsewhere and not provided by the user.

For the sake of example, let us suppose that the original query “books about
London” returns a list of content-based search results L=[s1, s2, s3, s4]. Note that a
traditional content-based search engine would present these results exactly in this
order to the user, independently of the user’s preferences or background knowledge.
However, as discussed before, most of such results will be associated with XML
or HTML pages, in which a number of attributes can be identified (e.g. author,
date, URL, etc.). Such attributes can be encoded in a collection of DeLP facts as
shown in Figure 20.6. We can now analyze s1, s2, s3 and s4 in the context of the
user’s preference theory about the search domain by considering the DeLP program
P′=P∪Facts, where Facts denotes the set corresponding to the collection of facts in
Figure 20.6. For each si, the query rel(si) will be analyzed wrt this new program P′.

Consider the case for s1. The search for an argument for rel(s1) returns the argu-
ment 〈A1,rel(s1)〉: s1 should be considered as a relevant item since it corresponds
to a book about London written by a good author (John Doyle), and at a reasonable
price. In this case we have the argument7

6 It must be remarked that the ranked list mentioned in this example is fictitious, although websites
such as all-rankings.com (a trademark of Lists & Ranks, S.L., Barcelona, Spain) allow
to create such lists, making them available to others users. In this example the number 20 is an
arbitrary threshold value, just for illustrative purposes.
7 For the sake of clarity, semicolons to separate elements in an argument A = {e1 ; e2 ; . . . ; ek }.

20 Empowering Recommendation Technologies Through Argumentation 415

A1= { rel(s1) −−≺goodauthor(s1), aboutlondon(s1), good price(s1) ;
goodauthor(s1) −−≺author(s1,‘john doyle’), trust(‘john doyle’);
aboutlondon(s1) −−≺keywords(s1, [‘london’,‘history’]),
member(‘london’, [‘london’,‘history’]);
good price(s1) −−≺not expensive(s1) }.

Search for defeaters for argument 〈A1,rel(s1)〉 will result in a proper defeater
〈A2,∼ rel(s1)〉: s1 is not relevant as it corresponds to an outdated book (more than
20 years old). In this case we have the argument

A2= {∼rel(s1) −−≺goodauthor(s1), aboutlondon(s1), good price(s1), outdated(s1) ;
goodauthor(s1) −−≺author(s1,‘john doyle’), trust(‘john doyle’);
aboutlondon(s1) −−≺keywords(s1, [‘london’,‘history’]),
member(‘london’, [‘london’,‘history’]);
good price(s1) −−≺not expensive(s1) }.

There are no other arguments to consider in the dialectical analysis. The di-
alectical trees for 〈A1,rel(s1)〉 and 〈A2,∼ rel(s1)〉 are shown in Figure 20.8a. As
∼ rel(s1) is warranted, the item s1 will be considered non-relevant.

Now consider the case for s2. Let us assume that the author Joe Foo is ranked
number 10 in ‘www.rankings.com’. Following a similar analysis as above, the
search for an argument for rel(s2) returns the argument 〈B1,rel(s2)〉, where

B1= { rel(s2) −−≺goodauthor(s2), aboutlondon(s2), good price(s2) ;
goodauthor(s2) −−≺author(s2,‘joe foo’), trust(‘joe foo’);
aboutlondon(s2) −−≺keywords(s2, [‘london’,‘jack’,‘stories’]),
member(‘london’, [‘london’,‘jack’,‘stories’]);
good price(s2) −−≺not expensive(s2) }.

However, an argument 〈B2,∼ rel(s2)〉 can be found defeating the previous argu-
ment: s2 should not be considered as a relevant item since it seems to correspond to
the writer Jack London, and not the city of London:

B2= { rel(s2) −−≺∼ aboutlondon(s2) ;
∼ aboutlondon(s2) −−≺keywords(s2, [‘london’,‘jack’,‘stories’]),
member(‘london’, [‘london’,‘jack’,‘stories’]),
member(‘jack’, [‘london’,‘jack’,‘stories’]);

Note that there exists a third argument 〈B3,aboutlondon(s2)〉, where

B3= { aboutlondon(s2) −−≺keywords(s2, [‘london’,‘jack’,‘stories’]),
member(‘london’, [‘london’,‘jack’,‘stories’])}

which would also attack 〈B2,∼ rel(s2)〉. However, such argument is discarded in the
dialectical analysis, since it is strictly less specific than 〈B2,∼ rel(s2)〉 and hence
cannot be considered as a defeater. There are no more arguments to consider, and
consequently (as in the previous case), since ∼ rel(s2) is warranted, the item s2 can
be deemed as non-relevant (see Figure 20.8b).

416 Carlos Iván Chesñevar, Ana Gabriela Maguitman and Marı́a Paula González

Now consider the case for s3. Once again, let us assume that Jena Bar is an au-
thor ranked number 5 in ‘www.rankings.com’. There is an argument 〈C1,rel(s3)〉
supporting the conclusion rel(s3), namely:

C1= { rel(s3) −−≺goodauthor(s3), aboutlondon(s3), good price(s3) ;
goodauthor(s3) −−≺author(s3,‘jena bar’), trust(‘jena bar’);
aboutlondon(s3) −−≺keywords(s3, [‘london’,‘tourism’]),
member(‘london’, [‘london’,‘tourism’]);
good price(s3) −−≺not expensive(s3) }.

However, this argument is defeated by argument 〈C2,expensive(s3)〉, since the
price of this particular book is above $ 300.

C2= { expensive(s3) −−≺ price(s3,350),350 > 300. }
Nevertheless, there is a third argument 〈C3,∼ expensive(s3)〉 which attack the

previous one, supporting the claim that this particular book is considered as relevant
for the user, as it is published by ACME, which is an exceptional publisher.

C3= { ∼ expensive(s3) −−≺ price(s3,350),350 > 300, publisher(s3,acme). }
There are no more arguments to consider, and consequently we have computed

the dialectical tree for 〈C1,rel(s3)〉 (see Figure 20.8c). According to the marking
criterion introduced in Section 3, the root of the tree turns out to be an undefeated
node, and hence 〈C1,rel(s3)〉 is warranted and considered as a relevant information
item.

Finally, let us consider the case for s4. Let us assume that Tim Burton is an author
ranked number 5 in ‘www.rankings.com’. As in the case of s1, there is an argument
〈D1,rel(s4)〉 supporting the fact that s4 is a relevant item, since it corresponds to a
book about London written by a good author and at a reasonable price.

D1= { rel(s4) −−≺goodauthor(s4), aboutlondon(s4), good price(s4) ;
goodauthor(s4) −−≺author(s4,‘tim burton’), trust(‘tim burton’);
aboutlondon(s4) −−≺keywords(s4, [‘london’,‘history’]),
member(‘london’, [‘london’,‘history’]);
good price(s4) −−≺not expensive(s4) }.

However, it turns out that this book was edited by Boring Books Ltd., so that it
should not be considered as relevant. Indeed, there is an argument 〈D2,∼ rel(s4)〉
defeating the previous one

D2= { ∼ rel(s4) −−≺ publisher(s4,‘boring books ltd’). }
It must be noted that 〈D2,∼ rel(s4)〉 is a blocking defeater for 〈D1,rel(s4)〉, and

〈D1,rel(s4)〉 is a blocking defeater for 〈D2,∼ rel(s4)〉, as both arguments cannot
be compared by specificity. According to the marking criterion presented before,
the conclusion rel(s4) is deemed as undecided, as neither 〈D1,rel(s4)〉 nor 〈D2,∼
rel(s4)〉 are warranted arguments (see Figure 20.8d).

20 Empowering Recommendation Technologies Through Argumentation 417

author(s1,‘John Doyle’).
title(s1,‘Everything about London’).
publisher(s1,‘peterbooks’).
pubyear(s1,1960).
price(s1,20).
keywords(s1, [‘london’,‘history’]).
author(s2,‘Joe Foo’).
title(s2,‘American Stories’).
publisher(s2,‘inkhouse’).
pubyear(s2,2007).
price(s2,20).
keywords(s2, [‘london’,‘jack’,‘stories’]).
author(s3,‘Jena Bar’).
title(s3,‘London for tourists’).
publisher(s3,‘acme’).
pubyear(s3,2007).
price(s3,250).
keywords(s3, [‘london’,‘tourism’]).
author(s4,‘Tim Burton’).
title(s4,‘London History’).
publisher(s4,‘boring books ltd’).
pubyear(s4,2007).
price(s4,20).
keywords(s4, [‘london’,‘history’]).

Fig. 20.6 Facts encoded from original content-based search results

From the previous analysis, and according to the high-level algorithm in Fig-
ure 20.5, we get the sets Sw = {s3}, Sd = {s1,s2}, and Su = {s4}. Consequently,
the system will return the list Lnew=[s3, s4, s1, s2] of final recommendation results,
where users’ preferences and background knowledge were taken into account, in-
stead of just suggesting the original list of content-based search results L [s1, s2,
s3, s4].

6 Related Work

As explained before, our approach for integrating argumentation in recommendation
systems is based on modelling users’ preference criteria in terms of a DeLP program
built on top of a content-based search engine. Part of our recent research involved
a variation of this schema in order to provide assessment on natural language usage
using the web as a linguistic corpus [11]. The user preferences consist of a number

418 Carlos Iván Chesñevar, Ana Gabriela Maguitman and Marı́a Paula González

rel(B) −−≺ goodauthor(B), aboutlondon(B), good price(B).
∼ rel(B) −−≺ goodauthor(B), aboutlondon(B),

good price(B), outdated(B).
∼ rel(B) −−≺ ∼ aboutlondon(B).
∼ rel(B) −−≺ publisher(B,‘boring books ltd’).

goodauthor(B) −−≺ author(B,A), trust(A).
trust(A) ← queryranking(A,‘www.rankings.com’,Rank),

Rank < 20.
trust(A) ← A = ‘John Doyle’.

aboutlondon(B) −−≺ keywords(B,K),member(‘london’,K).
∼ aboutlondon(B) −−≺ keywords(B,K),member(‘jack’,K),

member(‘london’,K).
good price(B) −−≺ not expensive(B).
expensive(B) −−≺ price(B,P),P > 300.

∼ expensive(B) −−≺ price(B,P),P > 300, publisher(B,acme).
oudated(B) ← pubyear(B,Y),getcurrentyear(CY),

(CY −Y) > 20.

getcurrentyear(T) ← [Computed elsewhere]
member(String,List) ← [Computed elsewhere]
keywords(Book,List) ← [Computed elsewhere]

Fig. 20.7 DeLP program modelling user preferences about books

(a) (b) (c) (d)

A D
1

A U
2

A U
2 B D

1

B U
2

B U
2 C U

1

C D
2

C U
3

D D
1

D U
2

D D
2

D U
1

Fig. 20.8 Dialectical trees associated with (a) 〈A1,rel(s1)〉 and 〈A2,∼ rel(s1)〉; (b) 〈B1,rel(s2)〉
and 〈B2,∼ rel(s2)〉; (c) 〈C1,rel(s3)〉 and (d) 〈D1,rel(s4)〉 and 〈D2,∼ rel(s4)〉

of (possibly defeasible) rules and facts which encode different aspects of adequate
language usage, defining the acceptability of different terms on the basis of so-called
“usage indices”, which are good indicators of the suitability of an expression on the
basis of the Web corpus. Argumentation is used to determine if a given expression

20 Empowering Recommendation Technologies Through Argumentation 419

is ultimately recommendable on the basis of a DeLP program which encodes the
user’s preferences.

Recommender systems can be seen as a particular instance of decision making
systems oriented to assist users in solving computer-mediated tasks. In the last years
there have been several efforts towards integrating argumentation in generic deci-
sion making systems. In [16] argumentation was applied in the context of modelling
Shared Knowledge and Shared Knowledge Awareness when solving tasks collabo-
ratively in a computer-supported collaborative learning (CSCL) environment. While
Shared Knowledge (SK) refers to the common knowledge students acquire when
they work in a collaborative activity, Shared Knowledge Awareness (SKA) is as-
sociated with the consciousness on the Shared Knowledge that a particular student
has. In that context, DeLP was used to formalize an automated argumentation sys-
tem as a support tool for characterizing SK and SKA in CSCL scenarios. Warranted
arguments could be seen as suggestions provided by the argumentation system, pro-
viding a part of the SK among students, whereas visualization and explanation facil-
ities provided by the argumentation system will help to make explicit the associated
SKA.

In [34], an argument-based approach to modelling group decision making is pre-
sented, in which argumentation is used to support group decision task generation
and identification. In contrast with our approach, the argumentation process is not
automated, and the authors use argumentation for agreement among multiple users
in a team, whereas we focus on argumentation for eliciting conclusions for a partic-
ular user on the basis of available information. In [31] a number of interesting argu-
ment assistance tools are presented. Even though there is a sound logical framework
underlying this approach, the focus is rather restricted to legal reasoning, viewing
the application of law as dialectical theory construction and evaluating alternative
ways of representing argumentative data. In contrast, our analysis is oriented to-
wards characterizing more generic argument-based user support systems.

Recent research has led to some interesting proposals to combine argumenta-
tion and machine learning techniques for rule induction. As discussed in Section 4,
such combination lends itself applicable for extending our current approach towards
a collaborative filtering setting, where defeasible rules would characterize trends
and general preference criteria. Two recent research works are particularly relevant
in this direction. In [21], a generic argumentation-based machine learning model
(ABML) is proposed. This approach combines machine learning from examples
with concepts from the field of argumentation. The idea is to provide expert’s argu-
ments, or reasons, for some of the learning examples. An improved argument-based
rule learning was developed, which could be naturally integrated in the context of
obtaining and justifying new rules which capture the knowledge associated with a
pool of users. A different direction is adopted in the PADUA protocol [33], where a
novel combination of argumentation and datamining is introduced in order to clas-
sify objects in a domain. Classification is the topic of a dialogue game between two
agents, based on an argument scheme and critical questions designed to be used by
agents whose knowledge of the domain comes from data mining. Each agent has
its own set of examples which it can mine to find arguments based on association

420 Carlos Iván Chesñevar, Ana Gabriela Maguitman and Marı́a Paula González

rules for and against a classification of a new instance. As in the case of ABML, this
approach can help improve recommendation technologies in a collaborative setting,
allowing agents to perform argument-based reasoning from the database of cases
corresponding to knowledge provided by users in the past.

During the last years there has been a growing attention to the development of
the Semantic Web [5]. In particular, the integration of Semantic Web languages
(such as OWL and RDF Schema) with argumentation has been recently explored
with promising results by Iyad Rahwan et al.(e.g. [27, 26]). Their proposal involves
an argumentation ontology (based on Walton’s argumentation schemes [32]) which
enables the representation of networks of arguments on the Semantic Web. Using
a Semantic Web-based system called ARGDF, users can create arguments using
different argumentation schemes and can query arguments using a suitable Semantic
Web query language. Clearly, such integration can provide a powerful platform for
the development of more evolved argument-based recommendation technologies,
where arguments presented by others users can be taken into account for making
decisions or presenting recommendations.

7 Conclusions. Future Directions

We have introduced a novel approach for enhancing recommendation technologies
through the use of qualitative, argument-based analysis. As we have shown in this
chapter, the argumentation formalism provided by Defeasible Logic Programming
constitutes a powerful tool for carrying out this analysis when dealing with users’
complex information needs. We performed some preliminary experiments on the
integration of argumentation and recommendation technologies, which only served
as a “proof of concept” prototype. We are currently carrying out more through eval-
uations in order to assess the full applicability of our proposal. Part of our current
research in this context is related to combining quantitative and qualitative features
in the argumentative analysis through the use of P-DeLP [1, 2], an extension of De-
feasible Logic Programming which incorporates the treatment of possibilistic un-
certainty at the object language level. In P-DeLP, in contrast to DeLP, arguments are
attached with numerical values which determine their strength. Such values (neces-
sity degrees) are assigned to the facts and rules present in the program, and prop-
agated when performing inference via generalized modus ponens. In that respect,
P-DeLP would be a natural tool for enhancing our current approach to argument-
based recommendation, as such necessity degrees can be associated with rankings
or user-assigned values.

We contend that the evolution of recommender systems will result in efficient and
reliable content-based search environments, where both quantitative and qualitative
analysis will play important roles. We believe our proposal is a realistic and doable
approach to help fulfill this long-term goal.

20 Empowering Recommendation Technologies Through Argumentation 421

Acknowledgements This research was funded by Agencia Nacional de Promoción Cientı́fica y
Tecnológica (PICT 2005 - 32373), by CONICET (Argentina), by Projects TIN2006-15662-C02-
01 and TIN2008-06596-C02-01 (MEC, Spain), and PGI Projects 24/ZN10, 24/N023 and 24/N020
(SGCyT, Universidad Nacional del Sur, Argentina).

References

1. T. Alsinet, C. Chesñevar, L. Godo, S. Sandri, and G. Simari. Formalizing argumentative
reasoning in a possibilistic logic programming setting with fuzzy unification. International
Journal of Approximate Reasoning, 48(3):711–729, 2008.

2. T. Alsinet, C. Chesñevar, L. Godo, and G. Simari. A logic programming framework for
possibilistic argumentation: Formalization and logical properties. Fuzzy Sets and Systems,
159(10):1208–1228, 2008.

3. L. Amgoud and M. Serrurier. Agents that argue and explain classifications. Autonomous
Agents and Multi-Agent Systems, 16(2):187–209, 2008.

4. M. Balabanovic and Y. Shoham. Content-based, collaborative recommendation. Communica-
tions of the ACM, 40(3):66–72, 1997.

5. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, May 2001.
6. R. Brena, J. Aguirre, C. Chesñevar, E. Ramı́rez, and L. Garrido. Knowledge and information

distribution leveraged by intelligent agents. Knowledge and Information Systems, 12(2):203–
227, 2007.

7. J. Budzik, K. Hammond, and L. Birnbaum. Information access in context. Knowledge based
systems, 14(1–2):37–53, 2001.

8. R. Burke. Hybrid recommender systems: Survey and experiments. User Modeling and User-
Adapted Interaction, 12(4):331–370, 2002.

9. C. Chesñevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South, G. Vreeswijk,
and S. Wilmott. Towards an argument interchange format. Knowledge Engineering Review,
21(4):293–316, 2006.

10. C. Chesñevar, A. Maguitman, and R. Loui. Logical Models of Argument. ACM Computing
Surveys, 32(4):337–383, Dec. 2000.

11. C. Chesñevar, A. Maguitman, and M. Sabaté. An argument-based decision support system
for assessing natural language usage on the basis of the web corpus. International Journal of
Intelligent Systems (IJIS), 21(11):1151–1180, 2006.

12. C. Chesñevar, A. Maguitman, and G. Simari. Argument-Based Critics and Recommenders: A
Qualitative Perspective on User Support Systems. Journal of Data and Knowledge Engineer-
ing, 59(2):293–319, 2006.

13. D. Engelbart. Augmenting human intellect: A conceptual framework. Summary report, Stan-
ford Research Institute, on Contract AF 49(638)-1024, October 1962.

14. A. Garcı́a and G. Simari. Defeasible Logic Programming: An Argumentative Approach. The-
ory and Practice of Logic Programming, 4(1):95–138, 2004.

15. S. Gómez, C. Chesñevar, and G. Simari. Defeasible reasoning in web-based forms through
argumentation. International Journal of Information Technology and Decision Making
(IJITDM), 7(1):71–101, Mar. 2008.

16. M. González, C. Chesñevar, C. Collazos, and G. Simari. Modelling shared knowledge and
shared knowledge awareness in cscl scenarios through automated argumentation systems. In
J. M. Haake, S. F. Ochoa, and A. Cechich, editors, CRIWG, volume 4715 of Lecture Notes in
Computer Science, pages 207–222. Springer, 2007.

17. G. Governatori and A. Stranieri. Towards the application of association rules for defeasible
rules discovery. In Legal Knowledge & Information Systems, pages 63–75. JURIX, IOS Press,
2001.

18. A. Hunter. Hybrid argumentation systems for structured news reports. Knowledge Engineer-
ing Review, pages 295–329, 2001.

422 Carlos Iván Chesñevar, Ana Gabriela Maguitman and Marı́a Paula González

19. J. Konstan. Introduction to recommender systems: Algorithms and evaluation. ACM Transac-
tions on Information Systems, 22(1):1–4, 2004.

20. F. Linton, D. Joy, and H. Schaefer. Building user and expert models by long-term observa-
tion of application usage. In Proceedings of the seventh international conference on User
modeling, pages 129–138. Springer-Verlag New York, Inc., 1999.

21. M. Mozina, J. Zabkar, and I. Bratko. Argument based machine learning. Artificial Intelligence,
171(10-15):922–937, 2007.

22. J. O’Donovan and B. Smyth. Trust in recommender systems. In IUI ’05: Proceedings of the
10th international conference on Intelligent user interfaces, pages 167–174, New York, NY,
USA, 2005. ACM.

23. M. Pazzani and D. Billsus. Content-based recommendation systems. In P. Brusilovsky,
A. Kobsa and W. Nejdl, editors, The Adaptive Web, Methods and Strategies of Web Personal-
ization, volume 4321 of Lecture Notes in Computer Science, pages 325–341. Springer, 2007.

24. H. Prakken and G. Sartor. The role of logic in computational models of legal argument: A
critical survey. In A. C. Kakas and F. Sadri, editors, Computational Logic: Logic Programming
and Beyond, volume 2408 of Lecture Notes in Computer Science, pages 342–381. Springer,
2002.

25. H. Prakken and G. Vreeswijk. Logical Systems for Defeasible Argumentation. In D. Gabbay
and F.Guenther, editors, Handbook of Philosophical Logic, pages 219–318. Kluwer, 2002.

26. I. Rahwan. Mass argumentation and the semantic web. Journal of Web Semantics, 6(1):29–37,
2008.

27. I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide argument web.
Artificial Intelligence, 171(10-15):897–921, 2007.

28. J. Sandvig, B. Mobasher, and R. Burke. A survey of collaborative recommendation and the
robustness of model-based algorithms. IEEE Data Engineering Bulletin, 31(2):3–13, 2008.

29. R. Schenkel, T. Crecelius, M. Kacimi, T. Neumann, J. Parreira, M. Spaniol, and G. Weikum.
Social wisdom for search and recommendation. IEEE Data Engineering Bulletin, 31(2):40–
49, 2008.

30. G. Simari and R. Loui. A Mathematical Treatment of Defeasible Reasoning and its Imple-
mentation. Artificial Intelligence, 53:125–157, 1992.

31. B. Verheij. Artificial argument assistants for defeasible argumentation. Artificial Intelligence,
150(1-2):291–324, 2003.

32. D. Walton. Argumentation Schemes for Presumptive Reasoning. Erlbaum, Mahwah, NJ, 1996.
33. M. Wardeh, T. Bench-Capon, and F. Coenen. Arguments from experience: The padua proto-

col. In P. Besnard, S. Doutre, and A. Hunter, editors, COMMA, volume 172 of Frontiers in
Artificial Intelligence and Applications, pages 405–416. IOS Press, 2008.

34. P. Zhang, J. Sun, and H. Chen. Frame-based argumentation for group decision task generation
and identification. Decision Support Systems, 39:643–659, 2005.

Chapter 21
Arguing on the Semantic Grid

Paolo Torroni, Marco Gavanelli and Federico Chesani

1 Introduction

In the last decade, the rapid evolution of Internet technologies has opened new
perspectives, created new application areas, provided new social environments for
communication and posed new challenges. Among the most influential domains of
Internet sciences to date we find Web services, Grid computing, the Web 2.0, and the
Semantic Web. These are components of a wider vision, which we call the Semantic
Grid.

We believe that the Semantic Grid is an interesting domain for Argumentation,
for two reasons. First, its new challenges can give motivation to further Argumen-
tation research in ways that have not been explored so far. Second, existing Argu-
mentation theories and technologies can find in the Semantic Grid a natural and
convenient application domain.

With this chapter we aim to give a gentle introduction to the Semantic Grid,
to Argumentation researchers potentially interested in this new research and appli-
cation domain. In particular, the next section will be rich in pointers and is mainly
intended for “novices” to provide them with a global picture of the main ideas, main-
stream technologies and challenges. In addition, we position in this global picture
some Argumentation research done, and motivate future work by discussing possi-
ble roles that Argumentation can play in Semantic Grid research and applications.

Paolo Torroni
Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna, Viale Risorgimento
2, 40136 Bologna, Italy, email: paolo.torroni@unibo.it

Marco Gavanelli
Dipartimento di Ingegneria, University of Ferrara, Via Saragat 1, 44100 Ferrara, Italy, email:
marco.gavanelli@unife.it

Federico Chesani
Dipartimento di Elettronica, Informatica e Sistemistica, University of Bologna, Viale Risorgimento
2, 40136 Bologna, Italy, email: federico.chesani@unibo.it

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 423
DOI 10.1007/978-0-387-98197-0 21, c© Springer Science+Business Media, LLC 2009

424 P. Torroni, M. Gavanelli & F. Chesani

We will not present new argumentation theories and technologies. We will rather
refer to other chapters of this book when needed. Moreover, by no means we aim
to produce an exhaustive survey of research done across Argumentation and the Se-
mantic Grid. We will instead give some specific examples, so as to adopt a concrete
approach when discussing the bigger picture and the challenges that wait for us.

Some readers will agree that the Semantic Grid is a natural arena for Argumenta-
tion to apply its results and further its development following the influential themes
identified by Bench-Capon and Dunne [2]. These themes are: argumentation’s ori-
gins in non-classical logics, models of argumentation as dialogue processes, and
diagrammatic views of argument structure.

Important motivations that brought argumentation theory into use in AI arose
from the issues of reasoning and explanation under incomplete and uncertain in-
formation. Some fundamental traits of the Web are openness, incompleteness, and
peaceful coexistence of contradictory information. These are not to be seen as lim-
itations but rather as an asset, and their presence is one of the main reasons that
caused the popularity of the Internet to reach today’s levels. The Semantic Grid
swarms with new technologies, standards and abstractions, but all of them are faith-
ful to the open nature of the traditional Web.

The possibility to engage in dialogue processes was one of the main social drivers
of the Web and of the development of the notion of Social Web and community.
These are fundamental elements of the Semantic Grid. At a more abstract level,
dialogue is a particular form of interaction, and the Semantic Grid, from Grid com-
puting through Web services to Web 2.0 is all about interaction.

Finally, Web communities have become a reference model for new social partici-
pation paradigms such as those of eGovernment and eDemocracy. These paradigms
rely on applications and user interfaces, aimed to help exchange of concepts and
ideas, accessibility, communication and debate. Thus an influential theme of Se-
mantic Grid development is visualization methods.

In this chapter, we argue that Argumentation research can contribute to the cre-
ation of an “argumentation-enabled Semantic Grid” vision. We give concrete ex-
amples of how this can be achieved, and we discuss the main challenges that must
be faced. We conclude by discussing some application areas where argumentation-
based approaches to the Semantic Grid may be particularly influential.

2 The Semantic Grid: A bird’s-eye view

The Semantic Grid is a vision of collaboration and computation on a global scale,
which emerges from the synergy of Semantic Web technologies and ideas coming
from three different domains of Internet sciences: Web services, Web 2.0, and Grid
computing. These domains differ from one another in terms of inspiration, architec-
ture, technologies, resources they target and features they offer, but they also have
many areas of intersection. The Semantic Grid vision proposes to build on the tech-
nologies developed in these domains and to add meaning to the Grid, to enhance

21 Arguing on the Semantic Grid 425

Fig. 21.1 The Semantic Grid

Web
services

Grid
computing

Web 2.0

Semantic GridSeSeSeSemmm GGGGridd

S
E

M
A

N
T

IC
S

the existing features and offer new ones. In this section we present the main con-
cepts and technologies of each domain, and we discuss the features envisioned by
the global picture.

2.1 Semantic Web Technologies

Since its presentation on the pages of a popular scientific magazine [4], the Seman-
tic Web (SW) has appealed to many computer science researchers and outsiders for
its features and promises. It has motivated so many research directions, that it has
become hard nowadays to clearly identify what the SW is anymore. However, look-
ing back eight years later, it is easy to see how some parts of the original proposal
have been dropped or postponed, while the core ideas have resisted and evolved,
and the adoption of standards has begun in the information industry.

The SW initiative,1 in its fundamentals, aimed to overcome the main limitations
of the World Wide Web, as it was perceived in 2001. A huge amount of informa-
tion was available, but machines could not automatically exploit it in full, since its
representation only targeted human users. In fact, standard mark-up languages such
as HTML—the most common format for Web pages—define how the information
should be presented to the human users, but do not tell anything about what is being
presented. This type of information structuring would not help automatic informa-
tion extraction from Web sites, because the quality of the result highly depends on
how frequently a Web site’s presentation—i.e., its graphical appearance—changes.

The first step towards the SW consisted in identifying standards supporting in-
teroperability, to overcome problems arising from the heterogeneity of software
and hardware. It was decided to build upon UNICODE and XML. Such a choice

1 See the W3C Semantic Web Activity’s official Web site, http://www.w3.org/2001/sw/.

426 P. Torroni, M. Gavanelli & F. Chesani

sets the same alphabet for SW applications, but it does not suffice to guarantee
interoperability, like the French and the English are not guaranteed to interoperate
by simply using the same letters.

The introduction of the Resource Description Framework (RDF)2 represented a
step ahead towards Web information structuring. RDF is simple yet effective. The
idea is to represent each piece of knowledge by sentences of the form subject, pred-
icate, object. Each part of the sentence is an entity identified by a name. The whole
sentence—or triple—is read as a binary relation between subject and object, whose
name—or type—is defined by the predicate. The SW consortium adopted an exist-
ing naming system standard: the Uniform Resource Identifier (URI).

With the introduction of RDF, the SW initiative met one of its goals: it managed
to provide a standard, structured way for representing information. This again did
not suffice to capture the meaning given to information. The French and the English
structure their sentences in a similar way, but they do not necessarily give the same
meaning to words. Therefore, standards were developed to define the meaning of
terms/entities, which converged into RDF Schema (RDFS)3 and its successor, Web
Ontology Language (OWL),4 endorsed by the W3C.5

OWL enables to formally define ontologies, i.e. to specify the features that char-
acterize a concept, and the relations among concepts. One of the main relations
linking concepts with one another is inheritance, which defines a parent-child hier-
archy. Many other relations are supported, and, above all, users can define their own
relations, treated by OWL as first-class objects.

Ontologies are usually defined by a Terminological Box (TBox), plus an Asser-
tion Box (ABox). The TBox is the set of logical axioms, defining the concepts and
the relations among them. The ABox is a set of TBox-compliant concept instances.
OWL comes in three different flavours (Lite, DL and Full), each one characterized
by a different language expressiveness and underlying formal semantics. OWL Lite
and DL refer to the family of Description Logics, while OWL Full refers to First
Order Logic and Higher Order Logic. To date, a large number of ontologies have
been defined for all sorts of general concepts and specific domains. A new research
theme is: how to find suitable ontologies from libraries, such as the Protégé6 and the
DAML7 ontology libraries, or from the Web. There are also many ontology design
tools. The most popular one is probably Protégé [18] developed by the Stanford
Center for Biomedical Informatics Research.

2 The work of the RDF Core Working Group, completed in 2004, is summarised in the W3C
Resource Description Framework official Web site, http://www.w3.org/RDF/.
3 See the W3C RDF Vocabulary Description Language 1.0: RDF Schema, http://www.w3.
org/TR/rdf-schema/.
4 See the W3C OWL Web Ontology Language Reference, released as a W3C Recommendation on
10 February 2004 http://www.w3.org/TR/owl-ref/.
5 W3C is the World Wide Web Consortium, see http://www.w3.org/.
6 See the Protégé Ontology Library on http://protegewiki.stanford.edu/ index.
php/Protege_Ontology_Library.
7 See the DAML Ontology Library http://www.daml.org/ontologies/.

21 Arguing on the Semantic Grid 427

The SW architecture has been conceived as a layered cake, in which each layer
uses the services offered by the one below, and offers new, richer and more complex
services to the one above. The layers above OWL however are still at an early devel-
opment stage. Recently, great interest is on the Linking Open Data initiative,8 which
aims at making data freely available to everyone and at defining best practices for
exposing, sharing, and connecting pieces of data, information, and knowledge on the
Semantic Web using URIs and RDF. The interested reader can find more material
on the Semantic Web Activity’s official Web site.

2.2 Web services

The Service Oriented Architecture (SOA) has recently emerged as a paradigm for
structuring complex information systems within a distributed environment. The
main idea consists in organizing a system in terms of re-usable components (ser-
vices) that provide a precise functionality. To maximize re-usability, services are
intended to be loosely coupled with one another. Thus the invocation of a service
is typically stateless, and the interaction is based on message passing. Complex ap-
plications are then built as groups of services that provide the desired behaviour as
a whole, by interacting with each other. Developing complex systems amounts to
selecting the services and establishing how and in which order they should interact.

A requirement for the feasibility itself of a SOA is service interoperability. To
this end, the SOA envisages a de-coupling between the description of the service
and its real implementation. Each service publishes a set of metadata describing
how it can be invoked by a service requester. The content of such information spans
from the logical location were the service can be invoked, to the supported commu-
nication protocols and the parameter types.

Although several application frameworks support SOA principles and claim to
be SOA-oriented, the most common technological implementation of an SOA is
based on Web services. Already supported by many industrial vendors, Web ser-
vices are characterized by a set of standards regulating all the aspects concerning
interaction, leaving a great deal of freedom about the implementation of the ser-
vices. E.g., the Web Service Description Language (WSDL)9 provides a standard
for describing a service in terms of its logical location, its invocation parameters and
the interaction protocol, such as SUN’s RPC, HTTP, or the Simple Object Access
Protocol (SOAP).10 The Universal Description, Discovery and Integration standard
(UDDI)11 regulates service description publishing and brokering.

8 See the Linking Open Data Web site, http://linkeddata.org and Berners-Lee’s report
on Linked Data at http://www.w3.org/DesignIssues/LinkedData.html.
9 See the Web Service Description Language Web site, http://www.w3.org/TR/wsdl20/.
10 See the W3C’s SOAP V1.2 Specifications,http://www.w3.org/TR/soap12-part1/.
11 Documents produced by the UDDI Specification Technical Committee are available from the
following Web site: http://www.oasis-open.org/committees/uddi-spec/.

428 P. Torroni, M. Gavanelli & F. Chesani

Let us give an example of Web service. In the scenario illustrated in [24], Sarah
is a research scientist who often travels to conferences, and must abide by her de-
partment’s regulations concerning refunds. A problem is that Sarah is not an expert
in such regulations. A traditional solution consists of publishing all relevant infor-
mation on a public repository, such as a Web site. Every time Sarah needs to travel,
she reads the most recent regulations, downloads the relevant forms from the Web,
does the necessary paperwork, and delivers the filled-in forms to her administra-
tion. However, this solution does not help Sarah using the information properly, it
is prone to errors and misunderstandings, and is not highly automated, instead it
heavily relies on direct interaction between Sarah and the administration.

A different solution based on SW technologies seems more appropriate: reg-
ulations are encoded in a semantically rich, machine-understandable format, and
made available via a “department Web service.” Using a smartphone with an in-
telligent agent running in it, Sarah can have all relevant information automatically
downloaded from the Web service. Whenever Sarah needs to travel, she queries
her smartphone to know if her trip is approved. Because the rules are published in
a machine-understandable format and a semantically rich language, the intelligent
smartphone agent can understand their meaning, reason from them, and determine
whether Sarah’s goal can be accomplished given the current regulations.

While the technological implementation of Web services is now well developed,
the task of composing services into a complete system is still the focus of intense
research activities. Here we find two main approaches: one relying on the idea
of orchestration, by a central actor, the other one stressing instead the concept of
choreography, of many cooperating peers. The textual Business Process Execution
Language (BPEL),12 proposed in an industrial setting, supports the definition of a
system as a service that coordinates (orchestrates) many other services. Commer-
cially available BPEL engines can be used to execute the BPEL definition of a sys-
tem. The graphical Web Service-Choreography Description Language (WS-CDL)13

instead assumes that services are organized like a choreography, where each peer
plays a role and the overall system is given by the contribution of all the players.

It is worthwhile mentioning another language whose aim is also to define com-
plex applications. The Business Process Modeling Notation (BPMN),14 developed
in the Business Processes domain, is a high-level, graphical notation for defining
a business process in terms of a procedural flow of business activities. BPMN is
highly expressive, but its specifications are not executable—although research has
mapped fragments of BPMN into BPEL.

Key issues in the Web services context are discovery and interoperability. The
Web services’ ability of discovering and being discovered, and then effectively inter-
operate, greatly affects their potential success. The aforementioned UDDI standard

12 See IBM’s Business Process Execution Language for Web Services V1.1 Specifications, http:
//www.ibm.com/developerworks/library/specification/ws-bpel/.
13 See the W3C’s Recommendation for Web Service-Choreography Description Language V1.0,
http://www.w3.org/TR/ws-cdl-10/.
14 See the Object Management Group’s Business Process Management Initiative Web site, http:
//www.bpmn.org/.

21 Arguing on the Semantic Grid 429

was proposed to meet this need. UDDI addresses service discovery using WSDL.
However, WSDL descriptions do not contain any metadata about the service seman-
tics, thus UDDI cannot use any information about what services provide.

To this end, researchers have studied ways to extend service descriptions with
semantic information, by exploiting the results obtained within the Semantic Web
Activity. The Semantic Markup for Web Services (OWL-S)15 and the Web Service
Modeling Ontology (WSMO)16 are the two main proposals. They both rely on SW
technologies, in particular on the ontology layer. They extend service descriptions
by characterizing the semantics of the input parameters, of the outputs, as well as
of the preconditions and the effects related to the service invocation. Semantically
enhanced Web services are called semantic Web services [17].

2.3 Grid computing

The World Wide Web is mainly about presenting content. It was not designed to
provide other types of resources, such as storage space or computing power. Web
services enable to invoke a specific service via the Web, but they do not allow user
processes to target computing resources of other computers. The Grid started as
an idea to overcome these shortcomings, building on two successful distributed
schemes for the Internet: peer-to-peer computing and Internet computing.

Nowadays, most of the network traffic in the Internet is due to peer-to-peer. Peer-
to-peer applications, such as those mainstream relying on the BitTorrent protocol,17

and other former file sharing applications such as Napster, GNUtella, and Freenet
[7], provide a means to distribute files across a network, by replicating them on many
storage devices. The ubiquity of these types of applications paved the way to a new
model for mass storage, in which a distributed file system over the network gives
a user petabytes of virtual space, transparently distributed across the hard-disks of
many users, providing replication, fast distributed access, and increased reliability.

The success of this model was also due to a steady decrease in the cost of
home computers. Mainframes and supercomputers became less used, while inten-
sive, number-crunching applications are more and more split into (almost) indepen-
dent sub-parts and fed to computer clusters. The ubiquity of home computers and
extension of the Internet made it possible to target and use new resources, such
as idle CPU time of millions of computers. One example is given by the famous
SETI@Home project and its quest for extraterrestrial life, which has produced the
largest computation in history to date, and by other projects which adopted the same
method and gave birth to the new model of Internet computing.

The Grid is, in general, the possibility to publish and use computational resources
(as opposed to Web pages) on the Internet. For example, the computer of a European

15 See the DAML Services Web site on DAML-S and OWL-S, http://www.daml.org/
services/owl-s/.
16 See the The ESSI WSMO working group Web site, http://www.wsmo.org/.
17 See the BitTorrent.org forum, http://www.bittorrent.org/.

430 P. Torroni, M. Gavanelli & F. Chesani

user is often idle when its owner is sleeping: there we have a resource—computing
power—which could be made available on the Grid, for the benefit of another user
who is not sleeping, say an Australian. The Grid concept heavily relies on the idea
of reciprocation, thus the amount of accessible resources will depend the amount
of shared resources. For instance, the Australian is expected to return the favour at
some point, say 12 hours later, as night falls in Oceania. The implementation of the
Grid opens a number of issues [11], such as the need to define new standards and
protocols, to ensure security and to provide new accounting methods, access rules
and policies, but it also offers unprecedented computing power and storage capacity.
The organization leading the global standardization effort for Grid computing is a
community of users, developers, and vendors, called the Open Grid Forum (OGF).18

Besides providing computing resources, research on the Grid is focussed on the
concept of Virtual Organizations (VOs) [9]. Users that have similar goals but belong
to different (physical) organizations might be interested in sharing various types of
resources. For example, the members of a project might work in different depart-
ments or universities, but they want to share memory and CPU time, but also soft-
ware, data, experimental results, partial computations that could be reused by other
members of the VO. A type of VO could be a Data Grid: as a single virtual data
store which is actually distributed. The VO concept is also used in the context of
Web services, for example by the ArguGRID project (see Section 3.3).

A notable example of Data Grid was the CombeChem project [22], which also
represented a step towards the evolution of the Grid in the direction of adding mean-
ing to data. The project’s aim was to build a distributed repository of chemical ex-
perimental results. A requirement was that the repository should accept data taken
from any sort of chemical experiment, possibly with new types of inputs (instru-
ment sensitivity, substance purity, etc.), unforeseen at the time the repository was
being designed. Another requirement, to ensure practical usability and automated
processing, was that the input data would have to have a machine-understandable
semantics. The adopted solution was to use RDF. Every laboratory can add new in-
formation associated with some chemical compound (either new or already present)
simply by adding a triple in the (distributed) RDF store. Despite all the limitations
of RDF compare to, say, OWL, CombeChem was nevertheless an example showing
the practical need of adding semantics to the Grid. The need for semantic informa-
tion is present at the various levels of the Grid, as it is discussed in the Open Grid
Service Architecture (OGSA) documentation produced by the OGF [8].

2.4 Web 2.0

The World Wide Web, originally conceived and developed to enable automatic in-
formation sharing between geographically distributed individuals, is being more
and more strongly shaped by the idea of community. The so-called Web 2.0 is a

18 See the Open Grid Forum Web site, http://www.ogf.org/.

21 Arguing on the Semantic Grid 431

place where people exchange ideas using Web sites, blogs, chats, and spaces for
social networking, such as Orkut, mySpace, Flickr, Blogger, LinkedIn, FaceBook
and many others [19]. The mainstream technologies developed in this context are
mostly application-driven. They are wikis, blogs, microformats, and social tagging
tools. Differently from the areas presented above, the Web 2.0 was not born from
a vision but it rather emerged from the grassroots. This is why we would not talk
about an architecture for the Web 2.0, but rather about a collection of Web-based ap-
plications. According to IBM software architect Steven Watt,19 the Web 2.0 is best
described as a core set of patterns that are observable in applications that share the
Web 2.0 label. These patterns are services (as an architectural feature), simplicity,
both for the user and the developer, and community mechanisms. Web 2.0 applica-
tions are dominated by sites that explicitly seek to create communities and connect
people via the artifacts that they share [5]. Differently form Grid computing and
Web services, Web 2.0’s expansion found its main driver in the people’s need to
feel a part of a community, in which they can contribute and give their best efforts
without expecting any direct return on investment. We could say that the Web 2.0
comes from a view of the Internet as a social experiment, and therefore has a strong
social connotation.

The area in which Semantic Web and Web 2.0 meet is sometimes called Social
Semantic Web. There we find initiatives such as SIOC (Semantically Interlinked
Online Communities)20 and FOAF (Friend Of A Friend).21

2.5 Putting it all together

From a historical perspective, Grid computing and SW research have joined forces
as researchers in the two communities realised that they had a common goal: foster-
ing collaborative work. Semantic technologies enable machines to share informa-
tion, and to feed it to applications which have been developed independently from
one another. Adding meaning to the Grid amounts to associating semantic informa-
tion to computing resources, which allows for resource discovery [14], and inherits
features of SW services, such as interoperability. SW services gain from the Grid
better reliability and scalability, thanks to the replication of data and services. On the
other hand, from a technological and business-oriented perspective, XML and Web
services are becoming the industrial standard for integrating distributed systems.

Many researchers have recognized the synergy of ideas developed in these dif-
ferent communities. Thus a vision has emerged which draws from all the above and
goes under the name of Semantic Grid. Among others, De Roure defines the Se-
mantic Grid as an “extension of the current Grid in which information and services

19 See Mashups—The evolution of the SOA, Part 1: Web 2.0 and foundational concepts by Steven
Watt on the IBM Web site, http://www.ibm.com/developerworks/ webservices/
library/ws-soa-mashups/.
20 See the SIOC initiative Web site, http://sioc-project.org.
21 See the FOAF project Web site, http://foaf-project.org.

432 P. Torroni, M. Gavanelli & F. Chesani

Table 21.1 Inspiration, architectures, resources and features of the Grid

Web 2.0 Web services Grid computing
Technologies wikis, blogs, microfor-

mats, social tagging
protocols, standards, im-
plementations, tools

middleware, standards,
implementations, tools

Inspiration social, community business e-Sciences
Architecture Web-based applications SOA, distributed systems distributed computing
Resources social communication services storage space, CPU time
Features freedom of expression, co-

operative work, dissemi-
nation, exchange

service-level agreement,
quality of service, fault
tolerance

VOs, performance, trans-
parency, fault tolerance,
accessibility

are given well-defined meaning, better enabling computers and people to work in
cooperation.”22 Nowadays, the user base of Web 2.0 technologies is limited only by
the extension of the Internet. The extent and impact of the Web 2.0 phenomenon
cannot be neglected, and we consider technologies oriented to social networking
and community to be first-class citizens of the Semantic Grid grand vision.

Table 21.1 gives the global picture. By Semantic Grid, we mean the vision where
semantic technologies contribute to achieving, as a whole, enhanced virtual organ-
isations, resource discovery, selection, cooperation, user-oriented communication
and creative content browsing.

3 Argumentation and the Semantic Grid

State-of-the-art research has recently identified several areas in the Semantic Grid
vision in which argumentation can play a role, either by exploiting Semantic Grid
technologies, or by contributing to them.

3.1 Web 2.0 and Semantic Web Technologies for Argumentation

The advent of Web 2.0 has opened up new horizons for participation and expres-
sion. Arguments definitely play a role in this picture. Any basic blog and commu-
nity software supports posting of user comments, replies to comments, etc., and
although conversations sometimes tend to drift to eristic dialogues, still there is a
large share of information which could represent a valuable asset if it was put in a
structured way. Consider for example typical Web 2.0 topics of discussion such as
“Monogamy is out of date,” “The phrase war on terrorism is a misnomer” or “Being
a nihilist ain’t that bad.” The level of discussion could raise significantly if search
engines could answer queries such as “what is the support of such a topic,” “what are
all arguments that attack a given argument,” or “what can a given argument be used

22 See the Semantic Grid Community Portal, http://www.semanticgrid.org/.

21 Arguing on the Semantic Grid 433

for,” and possibly reason about the results automatically. Technology has not yet
reached this stage, but there are tools aimed to facilitate structured Web discussion.
They include, for example, TruthMapping.com,23 which incidentally hosts discus-
sions about the topics above, and Discourse DB, already mentioned in Chapter 19.
TruthMapping.com provides an intuitive interface to enable users to engage in struc-
tured argumentation dialogues about topics, by identifying arguments, rebuttals, un-
dercuts, and organise them using a simplified structure. Discourse DB24 is a more
specialized forum to discuss politics, and it can export content in RDF.

In this direction also goes work by Rahwan et al. on a World Wide Web of argu-
ments [20]. A standard, semantically rich format is assumed for Web information,
as well as for arguments. Arguments can be published on the Web using a well-
defined structure, that enables automatic agents to use the published information,
without posing excessive difficulty to non-expert human users. The challenge is to
take the best balance of usability with automatic agents and simplicity for human
users. Automatic agents should be able to understand arguments published by hu-
mans as humans understand them. On the other hand, humans should not be bur-
dened by complicated tasks that would refrain them from publishing, in everyday
life, arguments in a semantic form.

With a look at a future in which several argumentation-enabled Web applica-
tions will interoperate with one another, Rahwan and colleagues [6] propose the
Argument Interchange Format (AIF), an ontology to represent arguments, together
with RDF encodings and tools for authoring and navigating arguments (see Chap-
ter 19). The AIF ontology was implemented in RDF and RDFS using Protégé (see
Section 2.1).

3.2 Argumentation Technology for the Semantic Web

In the same way as SW technologies can help community-oriented argumentation
and argumentation-based reasoning, also argumentation technologies can help the
development of the SW. Laera et al. have identified a possible role of argumentation
technologies in the ontology mapping process [16]. Ontologies, as we have seen ear-
lier on, specify concepts and their relations in a formal way. In a distributed context,
agents or Web services that need to interact will refer to some specific ontology,
possibly developed by their designer for completing specific tasks. The ontology
might be published on the Web, or simply inserted in an agent’s knowledge base.
When the interacting parties need to communicate, they can either use a common
ontology, or they can try to establish a set of correspondences between terms in
one ontology and the other. Various methods can be conceived to perform such an
alignment [21]. The proposal presented in [16] is to provide agents with means to
discuss, via argumentation, a mapping that is satisfactory for both parties. In this

23 See TruthMapping.com Web site, http://www.truthmapping.com.
24 More information on http://discoursedb.org/wiki/DiscourseDB:About.

434 P. Torroni, M. Gavanelli & F. Chesani

setting, each agent can have its preferences and interests in the correspondence be-
tween terms. For example, one agent might have a very shallow ontology, and might
prefer using terminological correspondences, instead of structural correspondences
that would make less sense in this case.

The alignment starts with an ontology alignment service [10] that provides the
possible matchings, together with a confidence level for each matching and a set of
justifications that explain why the mapping was proposed. The agents compare the
confidence level with an internal threshold. Mappings that do not reach the threshold
are discarded. The arguments are the possible matchings returned by the ontology
alignment service based on a Value-based Argumentation Framework (see Chap-
ter 3).

3.3 Arguing Virtual Organizations: ArguGRID

The ArguGRID project, led by Francesca Toni, proposes a vision in which Web ser-
vices/agents and argumentation technologies may be combined to support decision
making and negotiations inside Virtual Organizations (VOs). Some of the main is-
sues addressed by way of argumentation are Web service selection and composition.
The project proposes an architecture consisting of a platform [23] using peer-to-peer
computing, and VOs made of Web services associated with argumentation-based
agents using resources of various kind. Agents are built on top of a middleware,
which is the main component of the ArguGRID platform.

ArguGRID agents are responsible for the negotiation of contracts regulating their
interaction. Argumentation is used for different tasks: to solve a decision-making
problem in the service selection process, to support contract negotiation and agree-
ment about executable workflows, and to help dispute resolution with respect to
agreed workflows and contracts. The agents use CaSAPI [12], a general-puropose
argumentation tool for Assumption-Based Argumentation (see Chapter 10).

The project focusses on three main applications: Earth Observation, eProcure-
ment, and eBusiness. In first application, the problem is information source hetero-
geneity and distribution. The role of argumentation is mainly in decision-making
and service composition, especially in crisis scenarios such as oil spill or fire de-
tection. The purpose is to produce user-tailored solutions that combine existing ser-
vices in a workable and effective way. The eProcurement application investigates
use cases based on automating decision-making processes and negotiations among
a large number of partners. There are specific example cases showing, for instance,
how eAuction parameters can be optimised. The last application focusses on the
idea of contract. Argumentation is used to negotiate contracts based on a formal
framework using goals and preferences and to resolve conflicts. ArguGRID uses a
two-level reasoning process. The acceptability of certain beliefs and facts is estab-

21 Arguing on the Semantic Grid 435

lished at the “object-level,” while at the “meta-level” the legal doctrines determine
the risk allocation. More information is on the ArguGRID Web site.25

3.4 Arguing Semantic Web Services: ArgSCIFF

The research presented by Torroni et al. in [24] proposes a framework that supports
dialogic argument exchange between SW services. Interaction among Web services
is essentially of a request-response kind. This is sometimes not enough informative
for human users, who cannot understand the justification of the interaction outputs
nor can effectively intervene to modify it. ArgSCIFF aims to making Web service
reasoning more visible to potential users by using dialogues for service interaction.
Argumentation technology is used to drive the interaction at a high level, where
human users can perceive message exchanges and service-request sequences as dia-
logues that they can understand better than current modalities. ArgSCIFF agents use
the SCIFF26 abductive logic programming framework [1] to implement an argumen-
tation framework in the style of Assumption-Based Argumentation (see Chapter 10).
Let us look into ArgSCIFF in more detail.

3.4.1 Argumentation for machine-supported, collaborative problem-solving

Let us consider again the scenario introduced in Section 2.2. The solution based on
Web services greatly automates the process, but it is not enough to accommodate
interactive, dialogical problem-solving. If Sarah’s request is rejected, Sarah cannot
interact with the administration staff and find out why. This is true of all client-server
based systems which provide definitional answers rather than informed justifications
that users could argue with and, possibly, eventually understand and accept. The risk
is the creation of a barrier to human adoption of IT solutions.

What ArgSCIFF proposes instead is a third scenario, in which the department’s
service and Sarah’s smartphone agent interact by exchanging arguments in a dialog-
ical fashion. Sarah’s smartphone not only posts requests to the department’s service
and obtains replies but also reasons from such replies. When the replies are negative,
the agent challenges them and tries to understand ways to obtain alternative, positive
replies. If necessary, the agent can provide fresh information that could inhibit some
regulations and activate others. This solution delegates most of the reasoning and
interaction to the machine by relying on semantic Web service technology, and it
gives Sarah understandable, justified answers and decisions. The whole process is a
machine-supported, collaborative problem-solving activity rather than a flat client-
server, query-answer interaction.

25 See the ArguGRID project Web site, http://www.argugrid.eu/.
26 See the SCIFF framework Web site, http://lia.deis.unibo.it/sciff.

436 P. Torroni, M. Gavanelli & F. Chesani

3.4.2 Dialogue based Web service interaction

The ArgSCIFF architecture extends the semantic Web service architecture with
argumentation technology implemented through request and challenge methods.
The ArgSCIFF argumentation protocol is asymmetric: the requester agent sees a
dialogue, and the provider agent sees service requests. Requester and provider in-
teract with each other using SW technologies. From the SW’s ontology layer down-
ward, the two semantic Web services will adopt some agreed standard, such as
HTTP, SOAP, and RuleML for rule exchange. At the logic level, knowledge is
expressed by SCIFF programs. The ArgSCIFF proof procedure instead is used to
evaluate queries and replies, according to the abductive semantics defined in [24].
The exchanged messages follow a simple request-reply protocol, but at a high level,
the user can see a dialogue, in which the requester service engages, to argue for
its own case. From the provider’s standpoint, no dialogue occurs. The two different
views of the ongoing interaction generate a decoupling, and this decoupling makes
it possible to marry stateless Web services with argumentation dialogues.

open request

deny challenge

agree close

justify

Fig. 21.2 The ArgSCIFF dialogue protocol starts by a request and can challenge the provider in
case of negative answer.

The dialogue protocol starts by a request, which can result in an agreement or
a denial. In case of denial, the requester can challenge the provider, which will
answer by justifying his previous answer. Depending on the requester’s knowledge
and goals, the dialogue can proceed by a new request, or reach an end. The protocol
is depicted in Fig. 21.2.

The dialogue protocol’s implementation relies on two kinds of knowledge: (1) a
domain-independent knowledge that encodes the argumentation protocol and is the
same for both requester and provider, and (2) specific, private knowledge, which
distinguishes one party from the other. This separation makes the ArgSCIFF able
to accommodate other kinds of possible scenarios, in which the domain knowledge
will be different, and it supports heterogeneity of policies and negotiation strategies.

21 Arguing on the Semantic Grid 437

3.5 Concluding Remarks

With this brief review we covered only a part of the research pursued at the intersec-
tion between Argumentation and the Semantic Grid. There are many other important
contributions, such as work by Bentahar et al. [3], who propose to help Web services
better interact by giving reasons that support their conclusions and receive counter-
arguments, and Buckingham Shum’s Cohere project [5] mentioned in Chapter 19.
Without even attempting to be exhaustive, this short survey suffices to demonstrate
an existing interest of various research groups in these topics. We believe that such
an interest will grow. In the near future, we expect application-driven development
in theories, standardization, and tools and a closer dialogue between the Semantic
Grid and the Argumentation communities. In the next, concluding section we give
a subjective and speculative view about the future of this exciting new multidisci-
plinary domain.

4 Future Directions

We believe that the marriage between Argumentation and Semantic Grid will result
in an enrichment of the Semantic Grid features. We identify some possible directions
and challenges that motivate future research, and discuss Semantic Grid applications
in which Argumentation can take a lead.

Argumentation and Grid computing. Some of the main issues in the Grid are
accounting, access rules and policies specification, management, and enactment.
Argumentation technologies can be used to reason and negotiate about the rights
acquired over some resource’s access. Moreover, they could help cross-domain rea-
soning, encompassing user preferences, regulations, and technical constraints. For
example, a user could prefer not to give resources to other users that have a certain
profile—users that are weapon producers or that are not generous with their own re-
sources. Argumentation could play a role in the procedures that determine resource
access by taking such kinds of preferences into account. Semantic technologies, and
in particular ontological reasoning, could become more important when these proce-
dures need to determine, e.g., that a “gun” is a kind of “weapon.” A challenge here
is to provide powerful reasoners that are lightweight, performing, and customiz-
able, so that many different argumentation proof procedures and semantics such as
those discussed in Chapter 2 and Chapter 6 can be made available. Another one is
to develop suitable policy specification languages that can be used on top of these
reasoners.

Argumentation and the Web 2.0. Web social communities nowadays seem to
be among the best places to argue. Argumentation-related technologies could play
a role in the Web 2.0 by automating tasks that help social communication activities.
Some possible scenarios may involve tools to find related discussions and related
results of discussions, tools to verify argument backing from specialized corpora,
and tools to find arguments from selected communities, which could be used in

438 P. Torroni, M. Gavanelli & F. Chesani

other contexts as “expert opinions.” This should be done in integration with onto-
logical reasoners, able to find meaningful links between elements of discussions,
whether inside the same topic or across multiple topics. Moreover, research pre-
sented in books such as [15] demonstrate the rich potential of state-of-the-art argu-
ment mapping and visualization tools. They can also have a great impact in the Web
2.0. We identify, as a challenge, gearing existing tools for Web 2.0 usage, following
the patterns of service, simplicity and community seen in Section 2.4. Great effort
has to be put into graphical user interfaces and usability.

Argumentation and Web services. ArgSCIFF and ArguGRID have shown the
potential impact of argumentation technologies in Web service interaction, selec-
tion and VO creation. Service discovery and selection are key aspects of Web ser-
vice technologies. Argumentation-enabled Web service search engines could greatly
improve these processes and thus have a considerable impact in the Web service
domain. An open challenge is the development of standards, necessary for the inte-
gration of argumentation technologies in the service-oriented world.

Argumentation and the Semantic Web. Ontological reasoning nowadays fo-
cusses on concepts such as subsumption and consistency. In the future, other onto-
logical relations could become important, such as for example relations of strength,
support, and the trustworthiness and reliability of sources. They could be properly
determined by argumentation procedures, and become key elements of distributed
ontological reasoning. Here the main challenges that we see are of a theoretical na-
ture. Essential steps in this direction must be moved towards integrating Semantic
Web languages and logics, such as Description Logics, and argumentation theories,
similarly to what authors have done in the past to combine, e.g., Description Logics
with Logic Programming to help integrating ontological reasoning with rule-based
reasoning [13].

4.1 Challenges

These directions draw a vision in which the Semantic Grid will offer richer services,
more links, better interaction, information, and transparency of its processes. To
achieve this goal, two challenges must be faced.

The first one is in the theory. Much of the potential of argumentation technolo-
gies depends on the ways they can be integrated with other logics and reasoning
frameworks, such as ontological reasoners. Issues of computational complexity and
distribution must be addressed, to propose methods that can be applicable in such a
vast and heterogeneous domain.

The second one is in the tools. The Web 2.0 has became so popular thanks to
the applications. A relatively small part of the argumentation community today
works on implementing tools. This is a limitation. To produce an argumentation-
enabled Semantic Grid, tools must be developed for argument visualization, ex-
change, tagging, and the theory must be followed by automated procedures that are
user-friendly and efficient. In particular, the main issues here are about reasoners,

21 Arguing on the Semantic Grid 439

which must be fast and easy to use on the Web, user interfaces, which must be sim-
ple and ergonomic, and standards, needed to leverage the deployment of Semantic
Grid applications.

4.2 Applications

We conclude the chapter by suggesting five areas where argumentation-based ap-
proaches to the Semantic Grid may be particularly influential.

Trust and service selection. The proliferation of Web services is an asset. Be-
cause it is important to make the best out of it, semantic search engines are now
subject of extensive investigation. But do current technologies provide the neces-
sary guarantees to the user? Nowadays, users seek reassurance in reputation-based
methods such as customer reviews and feedback forums. This method does not ob-
viously scale up. Along with scalable semantic search methods, we need powerful
tools that help service selection based on an increasing amount of information. We
see a big role of argumentation-based techniques in supporting qualitative, open,
community-oriented trust management.

Contracting and negotiation. Business contracts are synchronization points that
enable services to create, evaluate, negotiate, and execute interaction. They can an-
swer some of the challenges posed by the future Semantic Grid requirements, such
as quality of service, rights of use, and interoperability at a very large scale. Thus
contract specification, generation, update, management, and negotiation methods
are and will be subject of increasing research efforts. Here there is an opportunity
for argumentation technologies to take a lead in supporting declarative, collaborative
Web services contracting, and in integration with Semantic search engine technolo-
gies, to play an important role in service selection and composition, negotiation,
dispute resolution and legal reasoning.

Human-Web service interaction. A great amount of business resources is de-
voted to interaction with people. Keeping customers happy can be challenging and
expensive. We are moving towards a world of composite services, dynamically cre-
ated on demand, specialized and tailored to the need of the individual. Traditional
resources and interfaces with the user, such as call centers, user manuals, informa-
tion repositories may soon be not up to the task any more. The knowledge needed to
understand a service’s behaviour and explain it to a potential customer may grow too
fast, and equally fast it may become obsolete. Argumentation theories can provide
a solution in the difficult task of selecting relevant, non-contradictory information
that can be used for the interactive advertisement of new products or for justifying
the behaviour of a Web service to a human user.

E-Sciences. Some pilot projects in the Semantic Grid domain, such as Argu-
GRID, consider argumentation as a core technology to manage Virtual Organiza-
tions. Argumentation may be particularly influential in enhancing distributed global
collaborations, and can play a key role in some application domains, such as oil
drilling or pharmaceutical testing, in which costly experiments must not be repeated

440 P. Torroni, M. Gavanelli & F. Chesani

and each one of them must be exploited scientifically to the full. To take a lead in
this direction, research in argumentation will have to push towards cross-domain
decision making support, encompassing domain-specific know-how, contract-based
reasoning, and normative reasoning, to cite some.

Digital Libraries and Technology Enhanced Learning. The application of
ICT to cultural heritage, education, and learning, is catalysing the interest of many
research groups. At the time of writing, the European digital library, museum and
archive—Europeana—is being launched to provide users direct access to some 2
million digital objects, including film material, photos, paintings, sounds, maps,
manuscripts, books, newspapers and archival papers.27 We think that suitable evo-
lutions of the AIF and new argument exchange, mapping and visualization methods
for cross-domain knowledge exploration are directions to pursue. The products of
such research will be an invaluable asset for scholars and may determine new trends
in the creative exploration of cultural content.

Acknowledgements

This research has been partially supported by the Italian MIUR PRIN 2007
project No 20077WWCR8, “Le Forme di Correlazione tra Italian Style, Flussi di
Turismo e Trend di Consumo del Made in Italy,” and by the Italian FIRB project
TOCAI.IT, “Tecnologie Orientate alla Conoscenza per Aggregazioni di Imprese in
Internet.”

References

1. M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P. Mello, and P. Torroni. Verifiable agent
interaction in abductive logic programming: the SCIFF framework. ACM Transactions on
Computational Logic, 9(4):Article 29, 2008.

2. T. J. Bench-Capon and P. E. Dunne. Argumentation in artificial intelligence. Artificial Intelli-
gence, 171:897–921, 2007.

3. J. Bentahar, Z. Maamar, D. Benslimane, and P. Thiran. An argumentation framework for
communities of Web services. IEEE Intelligent Systems, 22(6):75–83, Nov/Dec 2007.

4. T. Berners-Lee, J. A. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34–43, May 2001.

5. S. J. Buckingham Shum. Cohere: Towards Web 2.0 argumentation. In P. Besnard, S. Doutre,
and A. Hunter, editors, Computational Models of Argument, volume 172 of Frontiers in Arti-
ficial Intelligence and Applications, pages 97–108. IOS Press, 2008.

6. C. I. Chesnevar, J. McGinnis, S. Modgil, I. Rahwan, C. Reed, G. Simari, M. South,
G. Vreeswijk, and S. Willmott. Towards an argument interchange format. The Knowledge
Engineering Review, 21(4):293–316, 2007.

7. I. Clarke, O. Sandberg, B. Wiley, and T. Hong. Freenet: A distributed anonymous information
storage and retrieval system. In ICSI Workshop on Design Issues in Anonymity and Unobserv-
ability, 1999.

8. O. Corcho, P. Alper, I. Kotsiopoulos, P. Missier, S. Bechhofer, and C. Goble. An overview
of S-OGSA: A reference semantic grid architecture. Web Semantics: Science, Services and
Agents on the World Wide Web, 4:102–115, 2006.

27 See the Europeana Web site, http://www.europeana.eu/portal/.

21 Arguing on the Semantic Grid 441

9. D. De Roure, J. Frey, D. Michaelides, and K. Page. The collaborative semantic grid. In
International Symposium on Collaborative Technologies and Systems (CTS’06), pages 411–
418, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

10. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-lite. In R. L.
de Màntaras and L. Saitta, editors, Proceedings of the 16th Eureopean Conference on Arti-
ficial Intelligence, ECAI’2004, pages 333–337, 2004.

11. I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations. International Journal of High Performance Computing Applications, 15:200 –
222, Aug 2001.

12. D. Gaertner and F. Toni. Computing arguments and attacks in assumption-based argumenta-
tion. IEEE Intelligent Systems, 22(6):24–33, Nov/Dec 2007.

13. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description logic programs: Combining
logic programs with description logic. In Proceedings of the Twelfth International World Wide
Web Conference, pages 48–57, 2003.

14. T. Guan, E. Zaluska, and D. De Roure. A semantic service matching middleware for mobile
devices discovering grid services. In S. Wu, L. T. Yang, and T. L. Xu, editors, Advances in
Grid and Pervasive Computing, Third International Conference, GPC 2008, Kunming, China,
May 25-28, 2008. Proceedings, volume 5036 of Lecture Notes in Computer Science, pages
422–433. Springer-Verlag, 2008.

15. P. A. Kirschner, S. J. Buckingham Shum, and C. S. Carr, editors. Visualizing Argumentation,
Computer Supported Cooperative Work, London, UK, 2003. Springer.

16. L. Laera, V. Tamma, J. Euzenat, T. J. Bench-Capon, and T. Payne. Reaching agreement over
ontology alignments. In I. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika,
M. Uschold, and L. Aroyo, editors, Proceedings of the First international Semantic Web Con-
ference on the Semantic Web (ISWC), volume 4273 of Lecture Notes in Computer Science,
pages 371–384, Berlin, Germany, 2006. Springer-Verlag.

17. S. A. McIlraith, T. C. Son, and H. Zeng. Semantic Web Services. IEEE Intelligent Systems,
16(2):46–53, 2001.

18. N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, and M. Musen. Creating semantic
web contents with Protégé-2000. IEEE Intelligent Systems, 16(2):60–71, 2001.

19. T. OReilly. What is Web 2.0: Design patterns and business models for the next generation of
software. http://www.oreilly.com/pub/a/oreilly/tim/news/ 2005/09/
30/what-is-web-20.html, 2005.

20. I. Rahwan, F. Zablith, and C. Reed. Laying the foundations for a world wide argument web.
Artificial Intelligence, 171:897–921, 2007.

21. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal on data
semantics, 4:146–171, 2005.

22. K. Taylor, J. Essex, J. Frey, H. Mills, G. Hughes, and E. Zaluska. The semantic Grid and
chemistry: Experiences with CombeChem. Web semantics: Science, Services and Agents on
the World Wide Web, 4:84–101, 2006.

23. F. Toni, M. Grammatikou, S. Kafetzoglou, L. Lymberopoulos, S. Papavassiliou, D. Gaertner,
M. Morge, S. Bromuri, J. McGinnis, K. Stathis, V. Curcin, M. Ghanem, and L. Guo. The
ArguGRID platform: An overview. In J. Altmann, D. Neumann, and T. Fahringer, editors, Grid
Economics and Business Models, 5th International Workshop, GECON 2008, Las Palmas
de Gran Canaria, Spain, August 26, 2008. Proceedings, volume 5206 of Lecture Notes in
Computer Science, pages 217–225. Springer, 2008.

24. P. Torroni, M. Gavanelli, and F. Chesani. Argumentation in the Semantic Web. IEEE Intelli-
gent Systems, 22(6):67–74, Nov/Dec 2007.

Chapter 22
Towards Probabilistic Argumentation

Ingrid Zukerman

1 Introduction

All arguments share certain key similarities: they have a goal and some support
for the goal, although the form of the goal and support may vary dramatically. Hu-
man argumentation is also typically enthymematic, i.e., people produce and expect
arguments that omit easily inferable information. In this chapter, we draw on the
insights obtained from a decade of research to formulate requirements common to
computational systems that interpret human arguments and generate their own argu-
ments. To ground our discussion, we describe how some of these requirements are
addressed by two probabilistic argumentation systems developed by the User Mod-
eling and Natural Language (UMNL) Group at Monash University: the argument
generation system NAG (Nice Argument Generator) [18, 19, 20, 38, 39, 40], and the
argument interpretation system BIAS (Bayesian Interactive Argumentation System)
[7, 8, 34, 35, 36, 37].

The generation and interpretation of arguments have the following aspects in
common: (1) both processes are performed in some context (e.g., an existing con-
versation or situation); (2) they support a goal by means of a “line” of reasoning
that links premises with the goal;1 they should handle (3) uncertainty (as most hu-
man beliefs are not absolute), and (4) discrepancies in beliefs and reasoning pat-
terns between the speaker and the addressee; and (5) they should handle different
argumentation strategies. In addition, in order to generate or interpret enthymematic
arguments, (6) a system must consider the omission of information.

To illustrate some of these aspects, consider the goal “Mr Green possibly did
not murder Mr Body” in the context of some background information given about

Ingrid Zukerman
Faculty of Information Technology
Monash University
Clayton, VICTORIA 3800, AUSTRALIA
e-mail: ingrid@infotech.monash.edu.au

1 We will not consider non-factual arguments, such as ad hominem attacks or appeals to authority.

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 443
DOI 10.1007/978-0-387-98197-0 22, c© Springer Science+Business Media, LLC 2009

444 Ingrid Zukerman

a murder mystery. An argument generation system attempts to connect the goal
with beliefs shared by the system and the addressee (to a sufficient extent for
the argument to work). It then considers different argumentation strategies, e.g.,
reasoning-by-cases, premise-to-goal or reductio-ad-absurdum [39], and decides
which propositions can be omitted from the argument to make it enthymematic.
The omitted information could be argument branches that have a small impact on
the belief in the goal, or obvious intermediate conclusions.

An argument interpretation system “reverses” the last two steps of this process.
The user’s argumentation strategy must be inferred in order to identify the premises
and the goal of the argument, e.g., the initial “premise” in a reductio-ad-absurdum
argument is the negation of the goal. In addition, the system incorporates into a
user’s argument the necessary information to make the argument acceptable in terms
of the system’s knowledge representation. This step may require including addi-
tional argument branches, and adding propositions and relations that bridge gaps
(according to the system’s knowledge representation) between antecedents and con-
sequents in the user’s argument. It is worth noting that the information so included
is not necessarily the information omitted by the user. Rather, it is information that
the system (addressee) needs in order to make sense of the user’s argument.

Let us now discuss the above aspects of argumentation systems in more detail.

1.1 Incorporating context

Context is information that surrounds an interaction, and is shared by the dialogue
participants. This information could be situational (e.g., the participants are in the
same room and can see the same things); background (conveyed prior to the in-
teraction), which makes the participants partially aware of each others’ beliefs; or
attentional (i.e., items in the focus of attention). Situational and background context
provide an anchor for constructing or interpreting an argument on the basis of es-
tablished facts. Attentional context influences the selection of propositions during
both argument generation and interpretation. For example, given several reasoning
paths that connect between an antecedent and a consequent, it is reasonable to prefer
the path that uses propositions in the focus of attention. NAG considers attentional
and background context during argument generation (Section 2), and BIAS during
interpretation (Section 3).

1.2 Reasoning process for supporting a goal

From a procedural point of view, the process of connecting the antecedents and con-
sequents within an argument during argument interpretation can be performed in
any order. In contrast, argument construction is traditionally a backwards reason-
ing process (from goal to premises), as the goal is typically unique, and it is not

22 Towards Probabilistic Argumentation 445

immediately apparent which premises are the most appropriate to support the goal.
In NAG we have implemented a semi-directed process for argument generation by
employing an attentional model that postulates intermediate argument milestones,
i.e., “islands of attention” (Section 2.1).

In addition, both argument generation and interpretation require a procedure that
searches for a “good” argument or interpretation respectively. In NAG we defined a
good argument as one that is correct and persuasive (we called such an argument
“nice” [18]), and in BIAS we defined a good interpretation as one that reflects the
user’s intentions and makes sense to the system. If we operationalize these defini-
tions by means of evaluation functions that assess the merit of candidate solutions,
both problems can be handled as search problems. Indeed, this is how our argument
interpretation system BIAS works (Section 3.1). In contrast, NAG relies on heuristic
functions for argument generation (Section 2.1). An interesting avenue of investi-
gation involves adapting the search procedure and evaluation metrics developed for
BIAS to argument generation. The main challenge pertains to developing metrics
which compare arguments that have different argumentation strategies.

1.3 Handling uncertainty

The human experience is fraught with uncertainty, as the facts in front of us are al-
most never clear cut. Hence, people and the systems that interact with them must be
able to cope with uncertainty. In our research, we have employed Bayesian networks
(BNs) as our underlying knowledge representation and reasoning formalism (a brief
overview of BNs appears in Appendix B). Nielsen and Parsons [23] also use BNs
in argumentation, but they fuse BNs for different agents into a consensus BN — a
generalization of the approach described in [20].

We selected BNs because they represent normatively correct reasoning under
uncertainty. However, when faced with uncertainty, people generally do not engage
in normative probabilistic reasoning [16]. Additionally, Bayesian belief propagation
potentially affects all the nodes in a BN. This is generally not the case in human
reasoning, where arguments tend to have a localized impact on beliefs.

Next, we outline an approach which handles some differences between BN rea-
soning patterns and those used by people. Difficulties associated with a Bayesian
implementation of localized probabilistic reasoning are discussed in Section 4.

1.4 Handling discrepancies in beliefs and reasoning patterns

When an argument generation system faces discrepancies in beliefs and reasoning
patterns with a user, it must decide to what extent it is willing to take advantage
of the addressee’s “misconceptions” in order to achieve its goal. This extent may
range from “none”, yielding a normative argument that relies solely on the system’s

446 Ingrid Zukerman

presumably correct beliefs and inferences, to “all the way”, yielding a persuasive
argument that takes advantage of a user’s erroneous beliefs and reasoning patterns.
The system operator must therefore set a disposition parameter, which determines
the extent to which the system is prepared to depart from its beliefs and inferences.

To produce an argument on this basis, an argument generation system requires a
model of addressees’ beliefs and inference patterns. An extensive discussion of the
acquisition of such models is outside the scope of this chapter. In brief, a model of
a user’s beliefs is normally obtained from previous interactions with the user (say,
via argument interpretation). Models of a user’s inference patterns, such as those
assumed by NAG, are more difficult to obtain. Hence, we also experimented with
coarse computational models of certain cognitive fallacies [6], which we used to
modulate NAG’s normative Bayesian inferences [18] (Nisbett et al. [24] show that
inference fallacies are situation dependent, hence requiring finer models than those
we investigated). These cognitive models, together with the models of users’ beliefs
and inferences, were used to generate nice arguments, which combine normative-
ness with persuasiveness [18, 20].2

Clearly, inability to entertain a user’s discrepant beliefs and inference patterns
may reduce the persuasiveness of an argument generation system, but the system
would still be able to produce correct arguments. In contrast, inability to consider
a user’s discrepant beliefs may severely hinder an argument interpretation system.
In fact, as indicated above, it is part of the job of an interpretation system to infer
a user’s beliefs [7]. For instance, the following argument would make sense only if
the user believes that the murder did not occur at 11 pm: “Since Mr Green probably
arrived at the house at 11 pm, he probably did not murder Mr Body”. BIAS attributes
discrepant beliefs to a user if this leads to a “better” interpretation of the user’s ar-
gument (Section 3). Owing to the time limitations of the project, reasoning fallacies
were not incorporated into BIAS’s interpretation process. However, the effect of rea-
soning fallacies is more subtle than that of discrepant beliefs, hence interpretation
performance was still creditable. An interesting avenue for future research is the
incorporation of reasoning fallacies into the argument interpretation process.

1.5 Considering different argumentation strategies

The applicability of an argumentation strategy depends on the properties of the argu-
ment, e.g., is there one convincing line of reasoning, or are there multiple branches
that together prove the goal? Also, concise arguments are usually preferred to
longer arguments, and people may have personal preferences for certain strategies.
NAG determines whether an argumentation strategy is applicable by checking its
applicability conditions. These conditions pertain to the beliefs in the premises and

2 Owing to space limitations, the argument generation process described in Section 2 does not
consider reasoning fallacies.

22 Towards Probabilistic Argumentation 447

goal of a preliminary argument (a Bayesian subnet) [39].3 For instance, the strategy
inference-to-best-explanation is employed when the assertion of the goal G supports
a premise Q which is firmly believed, but which would be unexplained (improba-
ble) without supposing the truth of the goal. If more than one strategy is applicable,
then that which yields the most concise argument is selected. Owing to the time
limitations of the project, BIAS assumes that the user employs a premise-to-goal ar-
gumentation strategy. The incorporation of strategy identification into the argument
interpretation process is an interesting avenue for future investigation.

1.6 Handling enthymematic arguments

As mentioned above, in order to generate or interpret enthymematic arguments, a
system must consider the omission of information. An argument generation system
must decide which information may be omitted without significantly affecting the
achievement of the argument goal, while ideally an interpretation system should
reinstate the information omitted by the user.

NAG generates enthymematic arguments by initially producing a complete argu-
ment, and then considering two types of omissions: semantic suppression, where it
removes easily inferred propositions, and probabilistic pruning, where it removes
superfluous premises and possibly entire reasoning branches (Section 2.2). When
interpreting an argument, it is normally not feasible to reinstate information a con-
versational partner omitted, as addressees do not have access to such unstated infor-
mation. All an addressee can do is construct an explanation that makes sense to him
or her. BIAS does this as follows. It first includes in an interpretation propositions
from its domain knowledge that connect the propositions in a user’s argument. It
then adds argument branches that improve the coherence of the argument, but were
not mentioned by the user (Section 3).

1.7 Summary

Table 22.1 summarizes the above aspects of the generation and interpretation pro-
cesses. The first column shows the aspect, and the second and third columns propose
an approach for handling this aspect during generation and interpretation respec-
tively. As indicated above, some of these requirements are currently not handled by
NAG or BIAS. Specifically, NAG employs a hand-coded model of a user’s beliefs and
inferences, rather than a model acquired while interacting with the user, and uses a
coarse model of reasoning fallacies. BIAS does not incorporate reasoning fallacies in
its reasoning process, and does not infer an argumentation strategy. In Section 2, we
describe NAG’s main reasoning process and handling of enthymematic arguments.

3 Owing to space limitations, the procedure for selecting an argumentation strategy is not described
in this chapter.

448 Ingrid Zukerman

Table 22.1 Aspects of argument generation and interpretation systems

Aspect Generation Interpretation
Context establish shared and discrepant beliefs and create “islands of attention”
Goal support – goal to premises connect antecedents and consequents
reasoning process connect between “islands of attention”
Uncertainty choose an appropriate knowledge representation, e.g., Bayesian networks
Discrepant beliefs and decide how to take advantage postulate a user’s discrepant
reasoning patterns of a user’s discrepant beliefs and beliefs and inferences, and

inferences, and reasoning fallacies reasoning fallacies
Argumentation strategy select a strategy infer a strategy
Enthymematic decide which information to omit infer missing information
arguments (between antecedent and consequents; entire argument branches)

In Section 3, we consider these issues for BIAS plus the postulation of discrepant
user beliefs. In Section 4, we discuss additional requirements for argumentation
systems in light of our experience with NAG and BIAS.

2 NAG – Argument Generation

NAG receives as input a goal proposition to be argued for accompanied by a tar-
get range of beliefs for it, and an initial argument context, which comprises the
argument goal plus the propositions and concepts mentioned in a preamble to the
argument. The system produces an argument that aims to get the belief in the goal
proposition within the target range of beliefs. During argument generation, the con-
text is expanded, and the actual premises used in the argument are selected from the
set of propositions believed by NAG and the user (sufficiently for the argument to
work). Upon completion of this process, the system produces an Argument Graph
— a subnet of the domain BN which connects a set of premises to the goal proposi-
tion. An argumentation strategy is then selected on the basis of the properties of this
Argument Graph [39], and superfluous steps and branches are pruned to produce
an enthymematic argument for presentation [19]. In this section, we describe the
generation of an Argument Graph and the removal of superfluous information.

2.1 Argument Generation Process

A basic argument generation process involves reasoning from the argument goal
backwards to premises that are mutually believed by the system and the user. How-
ever, human reasoning is influenced by attentional focus. For instance, when think-
ing of an argument, people are likely to consider propositions that are related to
recently mentioned concepts. NAG emulates this process by incorporating atten-
tional context (the propositions in the system’s focus of attention) into its argument

22 Towards Probabilistic Argumentation 449

Algorithm 22.1 Argument Generation
Require: Argument goal, domain knowledge BN, context, target belief range
1: Start with an Argument Graph that contains only the goal.
2: loop
3: Use attentional focus to determine subgoals for investigation.
4: Expand the Argument Graph around the subgoals identified in Step 3 and the leaf nodes of

the Argument Graph.
5: Analyze the Argument Graph by propagating belief in it.
6: if the Argument Graph achieves a belief in the goal inside the target range then go to Step 9.
7: Expand the context by incorporating the nodes newly connected to the goal and salient

nodes.
8: end loop
9: Select an argumentation strategy, simplify the Argument Graph, and present the resultant

argument.

generation process. This is done by identifying “islands of attention” in the domain
BN, and expanding the argument around them. After each expansion, the Argu-
ment Graph (i.e., the Bayesian subnet that is connected to the goal) is analyzed. If
it achieves the argument goal, an argumentation strategy is selected, and the Argu-
ment Graph is made enthymematic for presentation. These ideas are implemented
in Algorithm 22.1.

The identification of islands of attention is performed in Step 3 of Algorithm 22.1.
To this effect, NAG employs a hierarchical Semantic net (SN) built on top of the BN,
which captures associative connections between information items. Figure 22.1(a)
illustrates such a semantic-Bayesian network (SN-BN): the base of the pyramid con-
tains the BN, which comprises propositions, and the upper layers contain the SN,
which is composed of concepts. The context of the argument provides an initial set
of salient concepts, which are activated in the SN. We then iteratively spread activa-
tion [1] from these salient concepts to determine the focus of attention. During this
process, each node in the SN-BN is activated to the degree implied by the activation
levels of its neighbors, the strength of association to those neighbors, and its imme-
diately prior activation level (vitiated by a time-decay factor). The spreading acti-
vation process ceases when an activation cycle fails to activate a new node. At this
point, all items in the SN-BN which achieve a threshold activation level are brought
into the span of attention. The argument is then expanded around the BN nodes that
reach this threshold and the leaf nodes in the Argument Graph constructed so far
(Step 4 in Algorithm 22.1). This expansion process, which may connect previously
disconnected Bayesian subnets, yields a new Argument Graph, which is analyzed by
performing Bayesian belief propagation. If the resultant belief in the goal is inside
the target belief range, then the argument can be presented. Otherwise, the attention-
expansion-analysis process is repeated.

Figure 22.1(b) illustrates the steps of Algorithm 22.1. The top-left panel contains
the goal proposition (circled diamond) and the propositions mentioned in the pream-
ble. The top-right panel shows the concepts and propositions activated in Step 3 (the
diamonds are BN propositions, and the circles are SN concepts). The expansion of
the argument is performed around the BN nodes connected to the goal and salient

450 Ingrid Zukerman

Bayesian
network

network
Semantic

Steps 4−5 Step 7

Step 3

(a) Sample Semantic-Bayesian Network (b) Attention-expansion-analysis cycle

Fig. 22.1 Argument-generation process

nodes identified in Step 3, yielding the Bayesian subnets illustrated in the bottom-
left panel (the expansion of some nodes may not yield additional neighbours). Note
that two subnets which were isolated in the top-right panel have become connected
after this expansion, yielding a larger Argument Graph. If this graph achieves the
argument goal, the argument can be presented. Otherwise, in Step 7 the algorithm
expands the context to include the nodes in this Argument Graph and salient nodes
in subnets that are detached from this graph (bottom-right panel). The attention-
expansion-analysis process is now repeated in light of this context.

It is worth noting that although an argument can be generated by performing
backwards reasoning from the goal, the incorporation of attentional focus saves
processing time [38]. This is because it allows NAG to concentrate its search on
propositions connected to propositions in focus, which are likely to be relevant to
the argument.

2.2 Producing an Enthymematic Argument

Algorithm 22.2 generates an enthymematic argument from an Argument Graph by
combining probabilistic pruning with semantic suppression.

• Probabilistic pruning removes premises that alter the belief in the argument goal
to only a small degree, such that removing them does not put the belief in the goal
outside the given target belief range. After attempting the removal of a premise,
the argument is re-analyzed, and if the belief in the goal is now outside the target
range, the removed premise is reinstated.4 Since this process is iterative, proba-
bilistic pruning may eventually remove an entire reasoning branch.

• Semantic suppression checks intermediate conclusions in the Argument Graph
to see if they are easily inferred, and hence can be left implicit, rather than being
explicitly stated. We say that a proposition is easily inferred if it has a high level

4 Probabilistic pruning also has attentional implications, which are discussed in [19].

22 Towards Probabilistic Argumentation 451

Algorithm 22.2 Argument Pruning
Require: Argument Graph, presentation ordering < N1, . . . ,Nk > for the propositions in the graph
1: for i = 1 to k do
2: if Ni is a premise then
3: Invoke probabilistic pruning.
4: if Ni is retained then activate it for attentional processing.
5: else [Ni is an intermediate proposition]
6: Simulate the user’s attentional state.
7: Invoke semantic suppression to determine whether Ni may be left implicit.
8: end for
9: if no change was made in the last pass through the Argument Graph or time has run out

then exit.
10: else go to Step 1.

of semantic activation, and it is obtained from a probabilistically strong infer-
ence (which greatly strengthens the belief in the proposition in question) [20].
NAG determines the strength of an inference by means of partial Bayesian prop-
agation from its antecedents, and obtains the level of activation of a proposition
by spreading activation from the (planned) presentation of the preceding propo-
sitions in the argument.
Semantic suppression is performed for one intermediate conclusion at a time in a
greedy fashion. That is, the first intermediate conclusion that can be left implicit
is removed, and an implication is stated from its antecedents to its consequent.
For instance, given the reasoning chain A→ B→C → D, if B can be removed,
then C must remain. Semantic suppression fails if the omission of a consequent
drives the level of semantic activation of the next consequent (C in our example)
below a threshold. In this case, the last removed proposition is reinstated, and the
pass through the current ordering continues.

To illustrate the argument pruning process, consider the example in Figure 22.2,
which contains an Argument Graph for the proposition [Phobos is building nuclear
weapons] (Figure 22.2(a)), and assume that we have selected a premise-to-goal argu-
mentation strategy. Now, if the user believes N8 and N9 sufficiently, then N10 and N11

can be probabilistically pruned respectively. In addition, N2,N3,N4 and N5 can be
semantically suppressed, since they are easily inferred from their antecedents. The
resultant argument (hand-generated from NAG’s output) appears in Figure 22.2(b).

The application of these argument-pruning techniques assumes a complete pre-
sentation order of the nodes in an Argument Graph. Hence, pruning is performed
after an argumentation strategy has been selected, and the propositions in the graph
have been ordered [19, 39]. The propositions are ordered by applying policies that
rely on the probabilistic properties of the inferences in the Argument Graph to group
them into sub-arguments, and order the sub-arguments and remaining stand-alone
inferences. Attention-based heuristics are then applied to order the antecedents of
the sub-arguments and inferences. For instance, the output in Figure 22.2(b) is pro-
duced by combining N6 and N7 into one sub-argument, and N8 and N9 into another
sub-argument, and then ordering the antecedents within each sub-argument [19].

452 Ingrid Zukerman

(b) Resultant argument(a) Sample Argument Graph

N2

N3

N4

N5

N6

N7

N8

N9

N10

N1

N11

Phobos is
building
nuclear
weapons

weapons
nuclear
has
Deimos

are rivals
Deimos
and
Phobos

purchases
Po and U
monitoring
documents

reactors
of Phobos’s
naissance
recon−

Phobos has
increased
uranium
purchases

Phobos has
increased
polonium
purchases

Phobos is
building
nuclear
reactors

Phobos has
a rival with
nuclear
weapons

Galactic
magazine
documents
rivalry

recon−
naissance

missiles
shows

Fig. 22.2 Argument pruning: Phobos-Deimos Example

2.3 Related Research

Our argument generation mechanism uses BNs to reason about an argument, and
performs spreading activation to focus the argument. This use of spreading acti-
vation resembles Charniak and Goldman’s use of a marker passing mechanism to
focus attention in a Bayesian plan recognition system [2].

NAG’s expansion-analysis cycle resembles the propose-evaluate-modify cycle
in [3]. However, NAG uses Bayesian reasoning to determine the impact of an ar-
gument on an addressee’s beliefs, and it may combine several lines of reasoning to
achieve its goal, rather than selecting a single proposition.

Vreeswijk [32] describes IACAS, an interactive system for generating arguments.
However, IACAS does not attempt to model the user’s attentional processes or tailor
the presentation of its arguments to the user. Instead, IACAS shows supporting ar-
guments for the current goal proposition in a sequence until the user is satisfied or
chooses a new goal proposition. The chosen sequence of presentation is the order in
which IACAS finds its arguments.

Huang and Fiedler’s system [15] uses a limited implementation of attentional
focus to select which step in a proof should be mentioned next, and Reed and
Long’s system [28] takes attention (salience) into consideration when deciding how
to present arguments. However, unlike NAG, the former system does not generate
enthymematic arguments, and the latter does not consider salience while gathering
the information necessary to generate an argument. Two systems that can turn an
existing fully explicit argument into an enthymematic one are described in [12, 21],
but neither of these systems can generate an argument from constituent propositions.
A generative system based on the work of Hobbs et al. [11] is described in [30]. That
system deals with what can be readily inferred, and so deleted, during communica-
tion, but the generated discourse is not an argument in support of a proposition.

22 Towards Probabilistic Argumentation 453

3 BIAS – Argument Interpretation

BIAS receives as input an argument in the form of probabilistic implications that
lead to a goal. For instance, the following text is a gloss of an input argument.

Mr Green’s fingerprints were found on the gun, therefore he probably had the means to
murder Mr Body. In addition, the Bayesian Times reports that Mr Body seduced Mr Green’s
girlfriend, therefore he probably had a motive.

Since Mr Green probably had means and motive, he possibly killed Mr Body.

BIAS produces an interpretation for this argument, which takes the form of a sub-
net of the domain BN, plus suppositions about a user’s beliefs. To avoid difficulties
associated with the interpretation of free-form Natural Language statements (Sec-
tion 4), the antecedents and consequents of the argument are selected from a list
of propositions known to the system. The argument is typically enthymematic, as
users are not aware of the implications known to BIAS, and hence make their own
connections between antecedents and consequents.

We view an interpretation of an argument as a “self-explanation” — an account of
the argument that makes sense to the addressee. For BIAS, such an account requires
three components: an Interpretation Graph IG, a Supposition Configuration SC, and
Explanatory Extensions EE.5

• An Interpretation Graph is a structure comprising propositions and inferences
from the system’s domain knowledge that connect between the propositions in
the argument. This structure bridges inferential leaps in an enthymematic argu-
ment, but the bridges so constructed may not be those intended by the user.

• A Supposition Configuration is a set of suppositions attributed to the user (in-
stead of the system’s beliefs) to account for the beliefs expressed in the argument.
As indicated in Section 1.4, recognizing a user’s beliefs that differ from those of
the system is an essential part of argument interpretation, which supports the
construction of a model of a user’s beliefs.

• Explanatory Extensions consist of domain propositions that are added to an
Interpretation Graph in order to make the inferences in the interpretation more
acceptable to people (in early trials of the system, people objected to increases in
certainty and to large jumps in belief between the antecedents and the consequent
of implications). Contrary to suppositions, the beliefs in Explanatory Extensions
are shared by the user and the system.

Thus, Interpretation Graphs and Explanatory Extensions are proposed to handle
enthymematic arguments — they could be respectively viewed as the inverse of se-
mantic suppression and probabilistic pruning in argument generation (Section 2.2).
Supposition Configurations are posited to better understand a user’s reasoning.

5 Argument interpretation requires the identification of the user’s argumentation strategy, but BIAS

assumes a premise-to-goal strategy.

454 Ingrid Zukerman

Algorithm 22.3 Argument Interpretation
Require: User argument, domain knowledge BN
1: while there is time do
2: Propose a Supposition Configuration SCi — this can be an existing Supposition Configura-

tion or a new one.
3: Propose a new Interpretation Graph IGi j under Supposition Configuration SCi, such that the

nodes in the user argument are connected.
4: Propose Explanatory Extensions EEi j for Interpretation Graph IGi j under Supposition Con-

figuration SCi as necessary.
5: Estimate the probability of interpretation {SCi, IGi j,EEi j}.
6: Retain the top K most probable interpretations.
7: end while
8: Present the retained interpretations to the user for validation.

3.1 Argument Interpretation Process

The problem of finding the best interpretation of an argument is exponential, as there
are many candidates for each component of an interpretation, and complex interac-
tions between Interpretation Graphs and Supposition Configurations. For example,
making a supposition could invalidate an otherwise sound line of reasoning.

In order to generate reasonable interpretations in real time, we apply Algo-
rithm 22.3 — an anytime algorithm [5, 14] that iteratively proposes interpretations
until time runs out, i.e., until the system has to act upon a preferred interpretation or
show the user one or more interpretations for validation [8]. The algorithm proposes
an interpretation which consists of a Supposition Configuration, an Interpretation
Graph and Explanatory Extensions (Steps 2-4). It then estimates the probability
of this interpretation (Step 5), and retains the top K (=4) most probable interpreta-
tions (Step 6). The procedure for building Interpretation Graphs is described in [36],
and the procedures for postulating Supposition Configurations and generating Ex-
planatory Extensions are described in [8]. Here we outline the general interpretation
process and the estimation of the probability of an interpretation.

Figure 22.3(a) depicts a portion of the search tree generated by Algorithm 22.3,
with Supposition Configurations in the first level, Interpretation Graphs in the sec-
ond level, and Explanatory Extensions in the third. Supposition Configurations are
generated first due to their effect on Interpretation Graphs, i.e., the beliefs in the
domain BN and the suppositions attributed to the user (which are incorporated in
the BN) affect the beliefs in the candidate Interpretation Graphs. Specifically, a sup-
position may block a path in a BN (precluding the propagation of evidence through
this path), or unblock a previously blocked path (for a discussion of blocked paths,
see [26]). These interactions, which are difficult to predict until an Interpretation
Graph is complete, motivate the large number of alternatives considered in the first
two levels of the search tree. In contrast, Explanatory Extensions do not seem to
have complex interactions with Interpretation Graphs or Supposition Configura-
tions. Hence, they are deterministically generated in the third level of the search

22 Towards Probabilistic Argumentation 455

EE −− explanatory extensions
IG −− interpretation graph
SC −− supposition configuration

SC1 SC2 SC3

IG11 IG12

EE12

IG13 IG21 IG22

EE21 EE22

SC4

Argument (connected propositions)

(a) Search tree in progress (b) Sample search tree

(c) Interpretation (SC1, IG11, EE11) (d) Interpretation (SC2, IG21, EE21)

[Probably]

[EvenChance]

[EvenChance]GreenHasOpportunity

GreenInGardenAtTimeOfDeath

GreenInGardenAt11
EE11: TimeOfDeath11 [EvenChance]

it is the best I could do given what I believe.
Since it is probable that Mr Green was in the

I know this is not quite what you said, but

garden at 11, and
time of death was 11, it is even chance that
Mr Green was in the garden at the time of
death, which implies that it is even chance

it is even chance that the

that he had the opportunity to kill Mr Body.

that he probably was in the garden at the
time of death, which implies that he
possibly had the opportunity to kill Mr Body.

GreenHasOpportunity [Possibly]

SC2: TimeOfDeath11 TRUE
GreenInGardenAt11 [Probably]

GreenInGardenAtTimeOfDeath
[Probably]

time of death was 11. Hence, Mr Green
probably being in the garden at 11 implies

Your argument seems to suppose that the

Mr Green probably being in the garden at 11 implies that
Mr Green possibly had the opportunity to kill Mr Body.

SC1:
NONE

GreenInGardenAt11

GreenInGardenAtTimeOfDeath

GreenHasOpportunity

[Probably]

[Possibly]

[Probably]

SC3:
GreenVisitBodyLastNight: TRUE

SC2:
TimeOfDeath11: TRUE

GreenInGardenAt11 [Probably]

GreenInGardenAtTimeOfDeath

GreenHasOpportunity

[EvenChance]

[EvenChance]

IG11 IG21

EE21: NONEEE11: TimeOfDeath11 [EvenChance]

Fig. 22.3 Argument interpretation process

tree, i.e., only one set of Explanatory Extensions is proposed for each interpretation,
rather than multiple options (Step 4).

Figure 22.3(b) depicts a portion of the search tree instantiated for the short ar-
gument at the root node of this tree: “Mr Green probably being in the garden at
11 implies that Mr Green possibly had the opportunity to kill Mr Body”. In this ex-
ample, the user’s belief in the consequent of the argument differs from the belief
obtained by BIAS by means of Bayesian propagation from the evidence nodes in
the domain BN. As indicated above, BIAS attempts to address this problem by mak-
ing suppositions about the user’s beliefs. The first level of the sample search tree in
Figure 22.3(b) contains three Supposition Configurations SC1, SC2 and SC3. SC1
posits no beliefs that differ from those in the domain BN, thereby retaining the mis-
match between the user’s belief in the consequent and BIAS’s belief; SC2 posits that

456 Ingrid Zukerman

the user supposes that the time of death is 11; and SC3 posits that the user supposes
that Mr Green visited Mr Body last night.

The best Interpretation Graph for SC1 is IG11 (the evaluation of the goodness
of an interpretation is described in Section 3.2). Here the belief in the consequent
differs from that stated by the user (due to the absence of suppositions), prompt-
ing the generation of a preface that acknowledges this fact. In addition, the Inter-
pretation Graph has a large jump in belief (from Probably to EvenChance), which
causes BIAS to add the mutually believed proposition TimeOfDeath11[EvenChance]
as an Explanatory Extension. The resultant interpretation and its gloss appear in
Figure 22.3(c). The best Interpretation Graph for SC2 is IG21, which matches the
beliefs in the user’s argument. The resultant interpretation and its gloss appear in
Figure 22.3(d). Note that both (SC1, IG11,EE11) and (SC2, IG21,EE21) mention
TimeOfDeath11. However, in the first interpretation this proposition is used as an
Explanatory Extension (with a belief of EvenChance obtained by Bayesian propaga-
tion), while in the second interpretation it is used as a supposition (with a belief of
True). Upon completion of this process, BIAS retains the four best interpretations.
In this example, the winning interpretation is {SC2, IG21,EE21}.

3.2 Estimating the Probability of an Interpretation

An interpretation is evaluated by calculating its posterior probability. Our approach,
which is inspired by the Minimum Message Length model selection criterion [33],
requires the specification of three elements: background knowledge, model and data.
Background knowledge is everything known to the system and the user prior to
interpreting the argument, e.g., domain knowledge, beliefs shared by the user and
the system, and dialogue history; the data comprise the argument itself; and the
model is the interpretation.

We posit that the best interpretation is that with the highest posterior probability.

IntBest = argmaxi=1,...,nPr(SCi, IGi,EEi|Argument)

where n is the number of candidate interpretations.
After applying Bayes rule, we obtain

Pr(SCi, IGi,EEi|Argument) ∝ Pr(SCi, IGi,EEi)×Pr(Argument|SCi, IGi,EEi)

The first factor represents the prior probability of the model (interpretation) in
light of the background knowledge, and the second factor represents the probability
of the data (argument) in light of the model.

• The prior probability of a model reflects how “easy” it is to construct the model
from background knowledge. For instance, complex models (i.e., interpretations
with larger Interpretation Graphs) usually have a lower prior probability than
simpler models. This factor is also known as model complexity.

22 Towards Probabilistic Argumentation 457

• The probability of the data in light of the model is the probability that a user
uttered an argument (data) when intending a particular interpretation (model).
The more similar the data are to the model, the higher the probability of the data
given the model. This factor is also known as data fit.

Both the argument and its interpretation contain numerical and structural infor-
mation. The numerical information in the argument and the interpretation comprises
the beliefs in their propositions, which include Supposition Configurations for the
interpretation. The structural part of the argument comprises the stated propositions
and the relationships between them, while the structural part of the interpretation
comprises the Interpretation Graph and Explanatory Extensions. The estimation of
the probabilities of structural and numerical information is described in [8, 35, 36].
Here we describe the general principles underlying these calculations.

• Prior model probability – we adopt a combinatorial approach to the estimation
of the probability of the structure of an interpretation (i.e., we calculate the prob-
ability of selecting a k-node Bayesian subnet corresponding to the interpretation
from an N-node domain BN6). The probability of the numerical information in
an interpretation depends on how well it matches the beliefs in the domain BN
(background).

• Data fit – the probability of the structure of an argument given the structure of an
interpretation depends on how well these structures match (this can be encoded as
a function of the edit distance between the structures). As above, the probability
of the beliefs in an argument given the beliefs in an interpretation depends on
how well these beliefs match.

These ideas have a straightforward implementation when an interpretation con-
sists only of an Interpretation Graph. Let us now see how Supposition Configura-
tions and Explanatory Extensions fit into this scheme.

• Supposition Configurations – suppositions that are not consistent with the be-
liefs in the domain BN increase the difference between the beliefs in an inter-
pretation and those in the domain BN. Hence, they reduce the prior probability
of the interpretation. At the same time, suppositions are warranted when they
substantially reduce the discrepancy between the beliefs in an interpretation and
those in the argument (i.e., improve data fit).

• Explanatory Extensions – adding such argument branches increases the size
of an Interpretation Graph, thereby reducing its structural probability (from a
combinatorial perspective). At the same time, Explanatory Extensions have a
positive impact, as they satisfy people’s expectations for what constitutes an ac-
ceptable inference (an inference without increases in certainty or large changes
in certainty [8]). To account for the inclusion of Explanatory Extensions in an in-
terpretation, we incorporate these expectations into our background knowledge.
Thus, inferences that do not meet these expectations reduce the prior probability
of an interpretation. If these expectations are met by adding Explanatory Exten-
sions, the prior probability of the interpretation increases.

6 This approach and its extensions based on dialogue salience are described in [36].

458 Ingrid Zukerman

In summary, for all three constructs (Interpretation Graph, Supposition Config-
uration and Explanatory Extensions), our model selection approach balances prior
model probability (in light of background knowledge) and data fit. In general, a sim-
ple model has a higher prior probability than a more complex model. However, if
the simpler model has a worse data fit or a worse match with background knowl-
edge than the complex model, then the more complex model could have a higher
posterior probability. Specifically, the addition of suppositions makes an interpre-
tation (model) more complex, reducing its prior probability, but improves data fit.
The addition of Explanatory Extensions has a mixed effect on the prior probabil-
ity of a model: on one hand, Explanatory Extensions increase the complexity of
an interpretation, which reduces its probability; on the other hand, they improve the
match between an interpretation and the expectations in the background knowledge,
which increases the probability of the interpretation. The winning interpretation is
that with the highest posterior probability after these different factors are taken into
account.

3.3 Related Research

Our approach offers an abductive account of users’ arguments, using BNs as our
main reasoning formalism. Such abductive accounts have been provided by sev-
eral researchers for different discourse interpretation tasks, e.g., [11, 22]. Hobbs et
al. [11] focused on problems of reference resolution and disambiguation in single
sentences. Our work is more similar to the research of Ng and Mooney [22], in that
it explains discourse consisting of several propositions. However, Ng and Mooney
apply a coherence heuristic to select an explanation for a user’s discourse (similar
to the approach used in NAG for argument generation), while our selection process
is based on an optimization framework that incorporates a user’s posited beliefs
and people’s preferences. Additionally, the above researchers employ a logic-based
formalism for the selection of an interpretation, while our approach is probabilistic.

BNs have been used in several intention recognition tasks, e.g., [2, 9, 13]. Char-
niak and Goldman’s system handled complex narratives [2], Gertner et al. repre-
sented students’ solutions of physics problems [9], and Horvitz and Paek used BNs
at different levels of an abstraction hierarchy to infer a user’s goal in information-
seeking interactions [13]. BIAS’s generation of Interpretation Graphs most resem-
bles the work described in [2, 9]. However, these systems do not posit discrepant
user beliefs or augment their interpretations with additional explanations.

Our work on positing suppositions is related to the research described in [4, 27]
on the recognition of flawed plans, in the sense that we also attempt to justify a
user’s statements. The main difference between BIAS and these systems is that they
use a plan-based approach to postulate a user’s (erroneous) beliefs, restricting their
attention to beliefs within the inferred plans. In contrast, BIAS employs a probabilis-
tic approach, and considers its domain model (and not just the inferred Bayesian
subnet) when postulating discrepant beliefs (i.e., suppositions).

22 Towards Probabilistic Argumentation 459

4 Discussion

In this section, we outline some challenges for argumentation systems in light of
lessons learned from NAG and BIAS: (1) what shall we argue about?, (2) probabilistic
and human reasoning, (3) argumentation process, and (4) argumentation interface.

What shall we argue about?

Typically, computer systems know a limited number of propositions and relations
between them. To deal with this, an argumentation system can (1) restrict the user to
use only the propositions known to the system, (2) ignore the propositions the sys-
tem doesn’t know, or (3) try to learn the import of new propositions. Our experience
with BIAS shows that the first solution is frustrating for users, as people did not like
having to shoehorn their reasoning into the propositions known to the system. The
second solution leads to only a partial understanding of the user’s intentions, and
hence potentially to a mis-directed discussion. The third solution is clearly the most
sound. However, learning new propositions and their relationship with a system’s
current beliefs is a challenging task that falls under the purview of probabilistic rea-
soning and human-computer interfaces, as users must define the new propositions
in terms amenable to the system’s reasoning.

This indicates that a fruitful domain for current argumentation systems is an ex-
pert domain, where the system knows all or most of what there is to know, e.g.,
medical reasoning. Alternatively, one can devise applications of argumentation sys-
tems which assist people in argument construction and rational thought, without
having to engage in a fully fledged argument with users [29, 31].

Probabilistic and human reasoning

As stated in Section 1, we adopted a Bayesian formalism because of its sound
probabilistic reasoning. However, Bayesian belief propagation differs from human
reasoning in two main respects: (1) it may affect any node in a BN, while human
reasoning has a more localized effect; and (2) it may not represent adequately the
user’s reasoning process. This may be due to the absence of a model of human rea-
soning fallacies, beliefs that differ from users’ beliefs, and inference patterns that
differ from those of users.

One way of modeling localized reasoning in a Bayesian framework involves cut-
ting off the interpretation sub-net from the domain BN. However, such subnets may
produce effects that are difficult to justify to people (due to the marginalization of
parent nodes and excision of children nodes [17, 26]). An alternative solution in-
volves employing logic-based formalisms or different approaches to reasoning un-
der uncertainty, e.g., subjective logic [25]. However, the former would remove a
system’s capacity to deal with uncertainty, and the latter have been applied to prob-
lems that differ in nature from that considered by NAG and BIAS.

460 Ingrid Zukerman

Our Bayesian reasoning framework was augmented with a (rather coarse) model
of certain types of human reasoning fallacies for argument generation (Section 1).
An interesting avenue for future research consists of developing finer, domain de-
pendent models of human reasoning, and incorporating them into generation and
interpretation processes. In Section 3, we described how we incorporated a model
of suppositions (user beliefs that differ from those of the system) in our argument
interpretation mechanism, and in Section 1 we discussed how an argumentation
system may take advantage of such suppositions to generate more persuasive argu-
ments. However, user inference patterns that differ from those of the system pose
a more challenging problem. In the context of BNs, this involves modifying links
between nodes and updating Conditional Probability Tables. As for the above men-
tioned “new proposition” problem, this has significant implications with respect to
the system’s reasoning, and presents non-trivial interface problems. The solution of
this problem constitutes an interesting avenue for future investigation.

Argumentation process

Our argument generation process is based on heuristics (Section 2), while our inter-
pretation process relies on a search procedure that uses a probabilistic function to
assess the merit of an interpretation (Section 3). Other differences between our im-
plementation of argument generation and interpretation pertain to the consideration
of argumentation strategies, and to how to take into account discrepant user beliefs
and reasoning patterns (Table 22.1). An interesting avenue of investigation consists
of devising uniform processes that can be employed for generation and interpreta-
tion [10]; and considering the impact of using a search procedure coupled with an
evaluation function, rather than heuristics, for argument generation.

Argumentation interface

People normally argue in Natural Language. However, it is not clear that this is the
best medium for effective communication. An interesting alternative involves com-
bining a graphical interface with Natural Language. However, even if the user did
not introduce information unknown to the system, such an argumentation interface
would have to map Natural Language statements into propositions in the system’s
domain knowledge. The design of an effective argumentation interface is essential
to enable the deployment of practical argumentation systems.

Acknowledgements The author thanks her collaborators on the research described in this chap-
ter: Sarah George, Natalie Jitnah, Kevin Korb, Richard McConachy and Michael Niemann. This
research was supported in part by grants A49531227, A49927212 and DP0344013 from the Aus-
tralian Research Council, and by the ARC Centre for Perceptive and Intelligent Machines in Com-
plex Environments.

22 Towards Probabilistic Argumentation 461

References

1. J. R. Anderson. The Architecture of Cognition. Harvard University Press, Cambridge, Mas-
sachusetts, 1983.

2. E. Charniak and R. Goldman. A Bayesian model of plan recognition. Artificial Intelligence,
64(1):53–79, 1993.

3. J. Chu-Carroll and S. Carberry. Response generation in collaborative negotiation. In Pro-
ceedings of the 33rd Annual Meeting of the Association for Computational Linguistics, pages
136–143, Cambridge, Massachusetts, 1995.

4. J. Chu-Carroll and S. Carberry. Conflict resolution in collaborative planning dialogues. Inter-
national Journal of Human Computer Studies, 6(56):969–1015, 2000.

5. T. Dean and M. Boddy. An analysis of time-dependent planning. In AAAI88 – Proceedings
of the 7th National Conference on Artificial Intelligence, pages 49–54, St. Paul, Minnesota,
1988.

6. J. Evans. Bias in human reasoning: Causes and consequences. Lawrence Erlbaum Associates,
Hillsdale, New Jersey, 1989.

7. S. George, I. Zukerman, and M. Niemann. Modeling suppositions in users’ arguments. In
UM05 – Proceedings of the 10th International Conference on User Modeling, pages 19–29,
Edinburgh, Scotland, 2005.

8. S. George, I. Zukerman, and M. Niemann. Inferences, suppositions and explanatory extensions
in argument interpretation. User Modeling and User-Adapted Interaction, 17(5):439–474,
2007.

9. A. Gertner, C. Conati, and K. VanLehn. Procedural help in Andes: Generating hints using a
Bayesian network student model. In AAAI98 – Proceedings of the 15th National Conference
on Artificial Intelligence, pages 106–111, Madison, Wisconsin, 1998.

10. N. Green and S. Carberry. A hybrid reasoning model for indirect answers. In Proceedings of
the 32nd Annual Meeting of the Association for Computational Linguistics, pages 58–65, Las
Cruces, New Mexico, 1994.

11. J. R. Hobbs, M. E. Stickel, D. E. Appelt, and P. Martin. Interpretation as abduction. Artificial
Intelligence, 63(1-2):69–142, 1993.

12. H. Horacek. How to avoid explaining obvious things (without omitting central information).
In ECAI94 – Proceedings of the 11th European Conference on Artificial Intelligence, pages
520–524, Amsterdam, The Netherlands, 1994.

13. E. Horvitz and T. Paek. A computational architecture for conversation. In UM99 – Proceed-
ings of the 7th International Conference on User Modeling, pages 201–210, Banff, Canada,
1999.

14. E. Horvitz, H. Suermondt, and G. Cooper. Bounded conditioning: flexible inference for deci-
sion under scarce resources. In UAI89 – Proceedings of the 1989 Workshop on Uncertainty in
Artificial Intelligence, pages 182–193, Windsor, Canada, 1989.

15. X. Huang and A. Fiedler. Proof verbalization as an application of NLG. In IJCAI97 – Pro-
ceedings of the 15th International Joint Conference on Artificial Intelligence, pages 965–970,
Nagoya, Japan, 1997.

16. D. Kahneman, P. Slovic, and A. Tversky. Judgment under Uncertainty: Heuristics and Biases.
Cambridge University Press, 1982.

17. K. Korb and A. Nicholson. Bayesian Artificial Intelligence. Chapman & Hall/CRC, 2004.
18. K. B. Korb, R. McConachy, and I. Zukerman. A cognitive model of argumentation. In Pro-

ceedings of the 19th Annual Conference of the Cognitive Science Society, pages 400–405,
Stanford, California, 1997.

19. R. McConachy, K. B. Korb, and I. Zukerman. Deciding what not to say: An attentional-
probabilistic approach to argument presentation. In Proceedings of the 20th Annual Confer-
ence of the Cognitive Science Society, pages 669–674, Madison, Wisconsin, 1998.

20. R. McConachy and I. Zukerman. Towards a dialogue capability in a Bayesian argumentation
system. ETAI 3 – Electronic Transactions of Artificial Intelligence (Section D), pages 89–124,
1999.

462 Ingrid Zukerman

21. S. Mehl. Forward inferences in text generation. In ECAI94 – Proceedings of the 11th European
Conference on Artificial Intelligence, pages 525–529, Amsterdam, The Netherlands, 1994.

22. H. Ng and R. Mooney. On the role of coherence in abductive explanation. In AAAI90 –
Proceedings of the 8th National Conference on Artificial Intelligence, pages 337–342, Boston,
Massachusetts, 1990.

23. S. H. Nielsen and S. Parsons. An application of formal argumentation: Fusing Bayesian net-
works in multi-agent systems. Artificial Intelligence, 171:754–775, 2007.

24. R. Nisbett, E. Borgida, R. Crandall, and H. Reed. Popular induction: Information is not nec-
essarily informative. In J. Carroll and J. Payne, editors, Cognition and social behavior, pages
113–133. Hillsdale, NJ: LEA, 1976.

25. N. Oren, T. Norman, and A. Preece. Subjective logic and arguing with evidence. Artificial
Intelligence, 171:838–854, 2007.

26. J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers, San
Mateo, California, 1988.

27. A. Quilici. Detecting and responding to plan-oriented misconceptions. In A. Kobsa and
W. Wahlster, editors, User Models in Dialog Systems, pages 108–132. Springer-Verlag, 1989.

28. C. Reed and D. Long. Content ordering in the generation of persuasive discourse. In IJCAI97 –
Proceedings of the 15th International Joint Conference on Artificial Intelligence, pages 1022–
1027, Nagoya, Japan, 1997.

29. G. Rowe and C. Reed. Argument diagramming: The Araucaria project. In A. Okada, S. Buck-
ingham Shum, and A. Sherborne, editors, Knowledge Cartography, pages 163–181. Springer,
2008.

30. R. H. Thomason, J. R. Hobbs, and J. D. Moore. Communicative goals. In Proceedings of
ECAI96 Workshop – Gaps and Bridges: New Directions in Planning and NLG, pages 7–12,
Budapest, Hungary, 1996.

31. T. van Gelder. Teaching critical thinking: some lessons from cognitive science. College
Teaching, 45(1):1–6, 2005.

32. G. Vreeswijk. IACAS: An interactive argumentation system. Technical Report CS 94-03,
Department of Computer Science, University of Limburg, 1994.

33. C. Wallace. Statistical and Inductive Inference by Minimum Message Length. Springer, Berlin,
Germany, 2005.

34. I. Zukerman. An integrated approach for generating arguments and rebuttals and understand-
ing rejoinders. In UM01 – Proceedings of the 8th International Conference on User Modeling,
pages 84–94, Sonthofen, Germany, 2001.

35. I. Zukerman. Discourse interpretation as model selection – a probabilistic approach. In
B. Bouchon-Meunier, C. Marsala, M. Rifqi, and R. Yager, editors, Uncertainty and Intelli-
gent Information Systems, pages 61–73. World Scientific, 2008.

36. I. Zukerman and S. George. A probabilistic approach for argument interpretation. User Mod-
eling and User-Adapted Interaction, Special Issue on Language-Based Interaction, 15(1-2):5–
53, 2005.

37. I. Zukerman, S. George, and M. George. Incorporating a user model into an information theo-
retic framework for argument interpretation. In UM03 – Proceedings of the 9th International
Conference on User Modeling, pages 106–116, Johnstown, Pennsylvania, 2003.

38. I. Zukerman, R. McConachy, and K. B. Korb. Bayesian reasoning in an abductive mecha-
nism for argument generation and analysis. In AAAI98 – Proceedings of the 15th National
Conference on Artificial Intelligence, pages 833–838, Madison, Wisconsin, 1998.

39. I. Zukerman, R. McConachy, and K. B. Korb. Using argumentation strategies in automated
argument generation. In INLG’2000 – Proceedings of the 1st International Conference on
Natural Language Generation, pages 55–62, Mitzpe Ramon, Israel, 2000.

40. I. Zukerman, R. McConachy, K. B. Korb, and D. A. Pickett. Exploratory interaction with a
Bayesian argumentation system. In IJCAI99 – Proceedings of the 16th International Joint
Conference on Artificial Intelligence, pages 1294–1299, Stockholm, Sweden, 1999.

Chapter 23
Argument-Based Machine Learning

Ivan Bratko, Jure Žabkar and Martin Možina

1 Introduction

The most common form of machine learning (ML) is learning from examples, also
called inductive learning . Usually the problem of learning from examples is stated
as: Given examples, find a theory that is consistent with the examples. We say that
such a theory is induced from the examples. Roughly, we say that a theory is con-
sistent with the examples if the examples can be derived from the theory. In the case
of learning from imperfect, noisy data, we may not insist on perfect consistency
between the examples and the theory. In such cases, a shorter and only ”approxi-
mately” consistent theory may be more appropriate.

Illustrative applications of learning from examples are:

• Given examples of weather situations, learn to predict weather in the future;
• Given examples of past patients, learn to diagnose new patients.

Examples for learning may come from nature, experiments, observations, exist-
ing databases, etc. Examples may also come from an expert who may take special
care in preparing a good set of examples. The situation is similar to teaching humans
where good learning examples designed by the teacher are especially valuable. An
expert user of a ML tool may help the learning system by selecting good examples

Ivan Bratko
Faculty of Computer and Information Science, University of Ljubljana, Tržaška 25, Ljubljana,
Slovenia e-mail: ivan.bratko@fri.uni-lj.si

Jure Žabkar
Faculty of Computer and Information Science, University of Ljubljana, Tržaška 25, Ljubljana,
Slovenia e-mail: jure.zabkar@fri.uni-lj.si

Martin Možina
Faculty of Computer and Information Science, University of Ljubljana, Tržaška 25, Ljubljana,
Slovenia e-mail: martin.mozina@fri.uni-lj.si

I. Rahwan, G. R. Simari (eds.), Argumentation in Artificial Intelligence, 463
DOI 10.1007/978-0-387-98197-0 23, c© Springer Science+Business Media, LLC 2009

464 Ivan Bratko, Jure Žabkar and Martin Možina

Table 23.1 Learning examples for credit approval

Name PaysRegularly Rich HairColor CreditApproved
Mrs. Brown no yes blond yes

Mr. Grey no no grey no
Miss White yes no blond yes

from observations in nature, or even by designing his own examples to convey es-
sential information. This point is especially relevant to argument-based ML that will
be discussed in this chapter.

To introduce some basic notions and terminology of machine learning, required
in this chapter, consider a simple example of learning about credit approval. We
will later extend this example to illustrate argument-based ML. Table 23.1 gives
some learning data. There are three learning examples in this table, each of them
corresponding to a person that made a credit application. Each person is described in
terms of three attributes: PaysRegularly, with possible values “yes” and “no”, Rich
(possible values “yes” and “no”), and HairColor (possible values “blond”, “grey”).
The right-most column CreditApproved tells for each person whether credit was
approved or not. This attribute is called class, that is the attribute whose value we
want to learn to predict from the values of the other attributes.

A typical rule learning algorithm will induce the following theory about this
domain:

IF HairColor = blond THEN CreditApproved = yes
ELSE CreditAproved = no

This is short and consistent with the data. It correctly classifies all three learning
examples. We say that the first IF-THEN rule covers two examples (Mrs Brown
and Miss White), and the ELSE rule covers the third example (Mr Grey). On the
other hand, this theory may not make much sense to a financial expert. The theory
classifies the learning examples correctly, but for wrong reasons. It does not really
correspond to the intended theory.

We will now look at how this may be improved by introducing arguments into
the learning examples. We call this approach argument-based machine learning, or
ABML for short. With arguments, the learning problem statement changes to:

• Given examples + supporting arguments for some of the examples
• Find a theory that explains the examples using given arguments

To illustrate what we mean by “explaining the examples using given arguments”,
consider again the data in Table 23.1 and assume that an expert gave an argument
for Mrs. Brown: “Mrs. Brown received credit because she is rich”. Now consider
again the first rule above that all blond people receive credit. This rule correctly
classifies Mrs. Brown, but it does not explain this classification in terms of the given
argument for Mrs. Brown. The rule does not even mention Mrs. Brown’s property
in the argument, namely that she is rich. Therefore we say that this rule covers

23 Argument-Based Machine Learning 465

Mrs. Brown, however the rule does not AB-cover Mrs. Brown. “AB-cover” stands
for “argument based cover”. An ABML algorithm has to induce another rule to this
effect, namely to explain Mrs. Brown’s case in terms of the given argument. An
ABML algorithm may achieve this effect by inducing the rule:

IF Rich = yes THEN CreditApproved = yes

This rule explains Mrs. Brown example using the given argument: credit was ap-
proved because Rich = yes. We say that this rule AB-covers Mrs. Brown. This ex-
ample also shows how the given argument guides the learning system to induce a
theory that makes more sense to an expert.

The foregoing examples illustrate the idea of using annotated (argumented) ex-
amples in machine learning. They also illustrate the advantages of ABML over stan-
dard ML from examples. These advantages can be summarised as:

• Reasons (arguments) impose constraints over the space of possible hypotheses,
thus reducing search complexity.

• An induced theory should make more sense to an expert as it has to be consis-
tent with the given arguments. So it tends to construct the right reasons for the
propositions in question.

• Introducing expert knowledge through arguments about specific cases is much
easier for experts than work out complete, generally applicable rules or theories.

The examples above also indicate how an existing machine learning method may
be enhanced into its AB extension. One way of looking at it is as adding a special
declarative bias to the machine learning method. As usual, the method looks for
theories that are consistent with the learning data. The added bias that results from
the arguments requires an extra condition that the theories have to satisfy. Namely,
the acceptable theories are those only that allow proofs of the argumented examples
so that the proofs mention the given arguments. In rule learning, this bias can be
enforced by insisting that the precondition of the rule that covers the argumented
example conjunctively contains the given reason. This also illustrates how the argu-
ments constrain the search space among possible hypotheses, or how the arguments
may guide the search.

Although the basic principle of turning a standard ML method into an ABML
method may be quite straightforward, all the details of this may be rather compli-
cated. In the next section we will describe through examples how learning in logic
(inductive logic programming, ILP) may be extended to argument-based ILP. In
Section 3 we describe in detail how a well-known rule learning algorithm CN2 has
been extended to its argument-based variant ABCN2. Then we describe the “ABML
refinement loop” – a way of using argument based ML for knowledge acquisition
from examples in practical applications.

466 Ivan Bratko, Jure Žabkar and Martin Možina

2 Argument based Inductive Logic Programming

Our credit approval example above belongs to attribute-value learning. The data
(Table 1) was stated in terms of attribute values for each example, and the induced
theory was stated in terms of propositional logic formulas where propositions are
attribute-value pairs. Typically in this formalism, examples are explained in terms
of the given arguments directly – a rule that predicts a class value directly mentions
the argument, so there is just one step inference between the class value and the
argument.

”Deeper” explanation of examples in terms of given arguments is possible when
the learning is done in first-order logic, as in Inductive Logic Programing (ILP) .
Extending the problem of ILP to argument-based ILP (AB-ILP) may be as follows.
First, consider the usual ILP problem statement, without arguments. This can be:

• Given positive examples E and negative examples NE, and background knowl-
edge BK

• Find a logic formula H (called a “hypothesis”), such that

BK∧H � E,

and for each negative example N in NE:

not(BK∧H � N)

That is, all positive examples can be derived from hypothesis H and BK, but none of
the negative examples can. To illustrate this, consider the credit approval problem
of Table 1, this time stated as an ILP problem. This can be done by translating the
problem into predicate logic as follows (using the syntax of Prolog):

% Background knowledge
pays_regularly(miss_White).
rich(mrs_Brown).
hair_color(mrs_Brown, blond).
hair_color(mr_Grey, grey).
hair_color(miss_White, blond).

% Positive examples
ex(credit_approved(mrs_Brown)).
ex(credit_approved(miss_White)).

% Negative example
nex(credit_approved(mr_Grey)).

A typical ILP program will induce from this a definition of the credit approved
predicate, which is equivalent to the typical result of an attribute-value rule learning
algorithm. For example, running the ILP program HYPER [2] on this data produces
the theory:

credit_approved(X) :-
hair_color(X, blond).

23 Argument-Based Machine Learning 467

Again, a more sensible result from the expert’s point of view can be obtained by
turning the usual ILP to argument-based ILP (abbreviated as AB-ILP) and adding
the arguments about Mrs. Brown as before (because she is rich).

The above definition of the ILP problem can be extended to AB-ILP problem
definition as [3]:

• Given examples E, annotated by arguments (reasons) R, and background knowl-
edge BK

• Find a hypothesis H, such that

BK∧H �R E,

and for each negative example N in NE:

not(BK∧H � N)

This says that hypothesis H explains the examples w.r.t. BK using reasons R. The
notation �R means: derivation of E mentions reasons R.

If we now add our usual arguments about Mrs Brown, the theory about
credit approved induced by AB-ILP becomes:

credit_approved(X):-
rich(X).

credit_approved(X):-
pays_regularly(X).

The first clause AB-covers Mrs Brown since acccording to this rule,
credit approved(mrs brown) follows from the fact rich(mrs brown), that is the given
reason.

Now, to illustrate a deeper reason (that requires more than just one inference
step), consider the following changes to our learning data whereby we also add to
background knowledge the predicate married/2, owns/2, and well-paid/1:

% Background knowledge

rich(X) :- owns(X, castle).

rich(X) :- well_paid(X).

pays_regularly(miss_White).

owns(mr_Brown, castle).

well_paid(mrs_Bond).

hair_color(mrs_Brown, blond).
hair_color(mr_Grey, grey).
hair_color(miss_White, blond).
hair_color(mr_Bond, blond).
hair_color(mrs_Grey, grey).

married(mrs_Brown, mr_Brown).

468 Ivan Bratko, Jure Žabkar and Martin Možina

married(mr_Bond, mrs_Bond).
...

% Examples
ex(credit_approved(mrs_Brown)). % A positive example
ex(credit_approved(miss_White)).
ex(credit_approved(mr_Bond)).

nex(credit_approved(mr_Grey)). % A negative example
nex(credit_approved(mrs_Grey)).

Now Mrs Brown is not described as rich, and the argumented example now is: Mrs
Brown received credit because Mr Brown owns a castle. A theory induced from this
data and consistent with the argument is:

credit_approved(X):-
married(X,Y),
rich(Y).

credit_approved(X):-
pays_regularly(X).

Notice that the argument this time did not mention a direct property of Mrs Brown,
so that AB-ILP had to induce a two step inference connection between the Mrs
Brown example and the argument. The proof of the example with the induced theory
and background knowledge indeed mentions the given argument owns(mr Brown,
castle). This proof is:

credit_approved(mrs_Brown) FOLLOWS FROM
married(mrs_Brown, mr_Brown), AND
rich(mr_Brown) WHICH FOLLOWS FROM

owns(mr_Brown, castle)

The induced theory also explains the Mr Bond example:

credit_approved(mr_Bond) FOLLOWS FROM
married(mr_Bond, mrs_Bond), AND
rich(mrs_Bond) WHICH FOLLOWS FROM

well_paid(mrs_Bond)

A preliminary extension of the program HYPER to AB-ILP is described in (I.
Bratko, Argumentation Based ILP: Towards AB-HYPER, ASPIC Project working
paper, 2005). Examples of learning family relations show that huge speed-up may
result from the use of arguments.

3 ABCN2 – an argument-based rule learning algorithm

In this section we describe an algorithm, called ABCN2 , for induction of rules in
argument-based framework for machine learning. ABCN2, which stands for “argu-
ment based CN2”, was introduced in [19] as an extension of the well-known CN2
rule induction algorithm of Clark and Niblett [7].

23 Argument-Based Machine Learning 469

We will give in this section a formal definition of argumented examples in the
form accepted by ABCN2, and present a version of CN2 and its extension into its
argument based counterpart ABCN2.

In our implementation of ABCN2, “CN2” stands for a state-of-the-art version
of the original Clark and Niblett’s CN2 algorithm, in which various improvements
were added over the years. Details of these improvements are described in [18],
which also gives experimental results comparing the improved CN2 with several
other representative ML methods. In these experiments, this improved CN2 (without
the use of arguments) performed overall significantly better than the original CN2,
and better or comparably to some other popular ML methods.

3.1 Argumented examples

A learning example E in the usual form accepted by CN2 is a pair (A,C), where A
is an attribute-value vector, and C is a class value. For instance, the first example in
Table 23.1 can be written in this syntax as:

((PaysRegularly = no,Rich = yes,HairColor = blond),
CreditApproved = yes)

An attribute can be either discrete, nominal, or continuous. In addition to such ex-
amples, ABCN2 also accepts argumented examples. An argumented example AE is
a triple of the form:

AE = (A, C, Arguments)

A is an attribute-value vector and C is a class value. Arguments is a set of arguments
Arg1, . . . ,Argn, where an argument Argi has one of the following forms:

because Reasons

or

despite Reasons

The former specifies a positive argument (speaks for the given class value), while
the latter specifies a negative argument (speaks against the class value). For ex-
ample, the expert’s argument for approving credit to Mrs. Brown (see Table 23.1)
can be: Mrs. Brown received credit because she is rich. A negative argument can
be: Mrs. Brown received credit despite her not paying regularly. This argumented
example would in our syntax be written as:

((PaysRegularly = no,Rich = yes,HairColor = blond),
CreditApproved = yes,

{ because Rich = yes, despite PaysRegularly = no}).

470 Ivan Bratko, Jure Žabkar and Martin Možina

In general, Reasons is a conjunction of reasons r1, . . . ,rn,

Reasons = r1∧ r2∧ . . .∧ rn

where each of the reasons ri can be in one of the possible forms below. In the expla-
nation of these forms below we assume that ri is a part of a positive argument; for
negative arguments, the explanations are exactly the opposite. The possible forms
of reasons are:

• X = xi means that value xi of attribute X is a reason why example is in the class
as given. This is the only allowed form for discrete attributes.

• X > xi (orX >= xi) means that the value of attribute X of example being greater
than (greater or equal to) xi is a reason for class value.

• X > (orX >=) “X is high”; similar to X > xi (X >= xi), just that in this case we
do not know the threshold value xi and it has to be found by ABCN2 automati-
cally. Such an argument says that the value of X of the example is high enough
for the example to be in the class as given.

• The forms X < xi, X <= xi, X <, and X <= (“X is low”), are defined analogously
as the opposite of X > xi, (X >= xi), X >, and (X >=), respectively.

In CN2, rules have the form:

IF Complex THEN Class

where Complex is the conjunction of simple conditions, called selectors. A selector
specifies the value of an attribute, for example HairColor = blond or a threshold
on the attribute value, for example Salary > 5000. A rule for our credit approval
domain can be:

IF PaysRegularly = no AND HairColor = blond

THEN CreditApproved = yes

The condition part of the rule is satisfied by the attribute values of Mrs. Brown
example, so we say that this rule covers this example.

Arguments given to an example constrain rules that AB-cover this example. Con-
sider again the argumented example “Mrs Brown received credit because she is rich
and despite she does not pay regularly”. How can these arguments be used in rule
learning so as to constrain the form of rules? A rule that handles Mrs Brown has
to mention, in its IF-part, the condition “Rich = yes”, but must not mention the
condition ”PaysRegulary = no”. In ABCN2, this intuition is formalized through the
notions (1) a rule is consistent with an argument, and (2) a rule AB-covers and ex-
ample.

A rule R = “IF Complex THEN Class” is consistent with an argument “because
Reasons” if Complex implies all the reasons in Reasons. A rule is consistent with
an argument “despite Reasons” if Complex does not imply Reasons. Implication of
reasons of special forms like “attribute is high” is defined as follows. A complex

23 Argument-Based Machine Learning 471

Complex implies a reason ri of the form “X >” (or “X <”, “X <=”, “X >=”), if
Complex contains a selector of the form “X > xi” (or “X < xi”, “X >= xi”, “X <=
xi”, respectively) where the threshold xi can be any possible value of attribute X .

For argumented examples, the definition of a rule covering an example needs to
be refined. In the standard definition, a rule covers an example if the condition part
of the rule is true for this example. In argument based rule learning, this definition
is modified to: A rule R AB-covers an argumented example E if:

1. All the conditions in R are true for E (the same as covers in CN2), and
2. R is consistent with at least one positive argument of E, and
3. R is consistent with all negative arguments of E.

As an illustration of the differences between AB-covering and the usual definition
of covering, consider again the Mrs Brown example with the arguments that she
received credit because she is rich and despite her not paying regularly. Now con-
sider four rules R1 - R4. All of them cover the Brown example, but not all of them
AB-cover this example:

R1: IF HairColor = blond THEN CreditApproved = yes
R2: IF PaysRegularly = no AND HairColor = blond

THEN CreditApproved = yes
R3: IF PaysRegularly = no AND Rich = yes

THEN CreditApproved = yes
R4: IF HairColor = blond AND Rich = yes

THEN CreditApproved = yes

All four rules cover the Brown example and have 100% accuracy on the data set
from Table 23.1. However, Rule 1 does not AB-cover the example, because it is
not consistent with the positive argument. For the same reason, rule 2 does not AB-
cover the Brown example, but this rule fails also because it is not consistent with
the negative argument (PaysRegularly = no). Rule 3 also fails due to the negative
argument, although it is consistent with the positive argument. The last example
AB-covers the Brown example.

3.2 ABCN2 algorithm

The CN2 algorithm [6, 7] consists of a covering algorithm and a search procedure
that finds individual rules by performing beam search. The covering algorithm (see
Algorithm 23.1) induces a list of rules that cover all the examples in the learning
set. Roughly, the covering algorithm starts by finding a rule, then it removes from
the set of learning examples those examples that are covered by this rule, and adds
the rule to the set of rules. In each iteration, a “best” rule is heuristically constructed
by beam search (call to procedure Find best rule). This process is repeated until
all the examples are removed. This is called a “covering” algorithm because the
constructed rules cover all the examples.

472 Ivan Bratko, Jure Žabkar and Martin Možina

Algorithm 23.1 A sketch of the basic CN2 covering algorithm. The algorithm takes
a set of examples ES and computes an ordered list of rules RULE LIST that cover
all the examples.

Procedure CN2(Examples ES)

Let RULE LIST be the empty list.
while ES is not empty do

Let BEST RULE be Find best rule(ES)
Add BEST RULE to RULE LIST.
Remove from ES examples AB-covered by BEST RULE.

end while
Return RULE LIST.

Algorithm 23.2 Covering algorithm of ABCN2 algorithm that learns rules from
examples ES for given class T.

Procedure ABCN2ForOneClass(Examples ES, Class T)

Let RULE LIST be the empty list.
Let AES be the set of examples of class T that have arguments; AES⊆ ES
Determine thresholds for “vague” reasons (of form X > and X <)
Evaluate arguments (as if they were rules) of examples in AES and sort examples in AES
according to the evaluations of their best argument.
while AES is not empty do

Let AE1 be the first example in AES.
Let BEST RULE be ABFind best rule(ES,AE1,T)
Add BEST RULE to RULE LIST.
Remove from AES examples AB-covered by BEST RULE.

end while
for all RULE in RULE LIST do

Remove from ES examples AB-covered by RULE.
end for
Add to RULE LIST the rules returned by CN2ForOneClass(ES,T).
return RULE LIST

There are two versions of CN2: one induces ordered list of rules, and the other
unordered list of rules. Our algorithm in this paper is based on the second version of
CN2. In this case, the covering algorithm consists of two procedures, CN2unordered
and CN2ForOneClass. The first procedure iteratively calls CN2ForOneClass for all
the classes in the domain, while the second induces rules only for the class given.
When removing covered examples, only examples of this class are removed [6].
Essentially, CN2ForOneClass is a covering algorithm that covers the examples of
the given class.

Now we will extend the CN2 algorithm to ABCN2. The first requirement for
ABML is that an induced hypothesis explains the argumented examples using given
arguments. In rule learning, this means that for each argumented example, there has
to be at least one rule in the set of induced rules that AB-covers this example. This
is achieved simply by replacing covering in original CN2 with AB-covering.

23 Argument-Based Machine Learning 473

Replacing the “covers” relation in CN2 with “AB-covers” in ABCN2 ensures
that both argumented and non-argumented examples are AB-covered. However, in
addition to simpy AB-covering all the examples, we would also prefer explaining as
many as possible non-argumented examples by arguments given for the argumented
examples. Therefore, CN2ForOneClass is changed into ABCN2ForOneClass (see
Algorithm 23.2). The procedure starts by creating an empty list of rules, and makes
a separate set AES of argumented examples only. Then it looks for “vague” reasons
in the arguments – reasons of the forms “X >”, “X <”, etc., and finds the “best”
threshold t for each of such reasons. A “vague” reason X > so becomes X > t.
Arguments in the examples AES are then evaluated by the rule evaluation function
(explained later) as if the arguments were rules of the form “IF argument THEN
class”. The examples in AES are then sorted according to the “goodness” of their
best arguments.

In the while loop, the procedure induces a rule, using ABFind Best rule, to cover
the first argumented example. ABFind Best rule is a modified beam search proce-
dure that accepts examples and an argumented example, where the resulting rule is
guaranteed to AB-cover the given argumented example. This rule is added to the
rule set, and the procedure removes from AES argumented examples AB-covered
by this rule. The removal of all positive examples is not necessary, as each of the
argumented examples differently constrains the search and thus prevents ABCN2
from inducing the same rule again. When all argumented examples are covered, all
positive examples AB-covered by rules are removed, and the remaining rules are
learned using classical CN2ForOneClass to cover the non-argumented examples.

Algorithm 23.3 shows the AB search procedure. The procedure takes a set of
examples to learn from, and an argumented example that needs to be AB-covered
by the induced rule.

3.3 Rule evaluation and extreme value correction

An evaluation function is used to estimate the quality of a rule. The quality of a
rule is a user-defined measure to estimate how well the rule will eventually work in
classification. Generally, this measure should reflect the accuracy of the rule when
classifying new examples. Several formulas for estimating the probability of cor-
rect classification of new cases by a rule have been used in CN2. In [6], Clark
and Boswell use Laplace’s rule of succession. Džeroski et al. [9] use Cestnik’s m-
estimate [5].

The problem with all these probability estimates is that rule learning algorithms
choose the best hypothesis among many candidate hypotheses. Therefore the exam-
ple set covered by the best looking rule is not really a random sample, which these
formulas assume. Rather, this example set is the best among those that belong to
many competing rules. This gives rise to optimistic estimates. This problem, also
known as multiple-comparison problem in induction algorithms [14], can be even
worse in the case of ABCN2. Rules learned from argumented examples are typically

474 Ivan Bratko, Jure Žabkar and Martin Možina

Algorithm 23.3 Algorithm that finds best rule that AB-covers argumented example
E. The “quality” of a complex is evaluated by user-defined evaluation function.

Procedure ABFind Best Rule(Examples ES, Example E)

Let T be the class of E
Let the set STAR contain positive arguments of E (written as complexes).
Evaluate complexes in STAR (using quality function).
Let BEST CPX be the best complex from STAR.
Let SELECTORS be the set of all possible selectors that are TRUE for E
Let ARG REASONS be the set of all reasons in positive arguments of E (union of reasons).
while STAR is not empty do

{Specialize all complexes in STAR as follows}
Let NEWSTAR be the set

{x∧ y ‖x ∈ STAR,y ∈ SELECTORS}
Remove from NEWSTAR all complexes that are not consistent with any of negative argu-
ments of E.
for every complex Ci in NEWSTAR do

if Ci is statistically significant(ES,T) and
quality(Ci) > quality(BEST CPX) then
Let BEST CPX be Ci

end if
end for
Let STAR be best N complexes from NEWSTAR; N is a user-defined size of STAR (size of
beam in beam search, usually N=5).
Let ABNEWSTAR be such subset of NEWSTAR

where complexes in ABNEWSTAR contain only
conditions from ARG REASONS.

Let ABSTAR be best N complexes from ABNEWSTAR.
Let STAR be STAR merged with ABSTAR.

end while
return rule: ”IF BEST CPX THEN T.

selected from less hypotheses than rules induced by standard CN2 algorithm. Thus
the accuracy of rules learned from an argumented examples are relatively under-
estimated in comparison with rules learned by standard CN2.

In [15] we developed a method called EVC (extreme value correction) that
accounts for multiple comparisons and corrects otherwise optimistic evaluation
measure. All the experiments with ABCN2 mentioned in this chapter were done
with this method of rule evaluation. To enable efficient implementation of EVC in
ABCN2, a probabilistic coverage and removal strategy was designed in [19].

3.4 Classification with rules

Learned rules are used to predict the class of a new example. In the case where
only one rule triggers for this example, classification is simply the class of the rule.
In cases where several rules trigger, we need to resolve clashes between opposing
rules. In standard CN2 these conflicts are resolved by summing the distributions of

23 Argument-Based Machine Learning 475

covered examples of all the rules to find the most probable class. However, such
classification works only in cases where covering rules are sufficiently independent,
which is often not true. Moreover, such a classification technique only considers
the distribution of covered examples, without considering the rule’s quality, which
becomes a problem when classifying from rules that were induced from arguments.
Rules learned from argumented examples might have relatively small coverage and
might become relatively unimportant in such a classification technique. On the other
hand, we showed in the previous section how to compute the quality of a rule that ac-
counts for the number of tried hypotheses. To make rules induced from argumented
examples competitive, we used in our experiments a simple classification technique
based on the quality of rules: we take the best rule (having highest quality) for each
class covering the given example, and classify the example in the class predicted by
the best rule. Note that this classification can also be used to give probabilistic class
predictions by normalizing the qualities of the best rules so that they sum up to 1.

4 ABML refinement loop

Giving arguments to all examples is not likely to be feasible in practice because it
would require too much effort by a domain expert who provides arguments. Can
we help the expert by suggesting which examples to explain by arguments? We
developed a method to automatically find “problematic” examples , that is exam-
ples where arguments would be likely to have a significant effect on learning. So
the “commentator” of examples (expert) is asked to concentrate on these “prob-
lematic” cases. This idea is realized by the following iterative procedure which we
call “ABML refinement loop”. The loop starts with “plain” examples only (i.e. no
argumented examples are initially given). Then it proceeds as follows:

1. Induce a theory from plain examples, without arguments (using classical CN2).
2. Find a critical example that would be useful to be argumented. This step involves

a search for the most problematic example (e.g. outlier) in the learning set. For
this task we use a k-fold cross-validation repeated n times (e.g. n = 4,k = 5), so
that each example is tested n times. The example that is most frequently miss-
classified in cross-validations is chosen as the most critical example that needs to
be argumented. If there are several such examples, then the algorithm picks one
at random.

3. If a critical example was not found (in step 2), then stop the iteration.
4. An expert gives arguments to the selected example. Two things can happen here:

in the preferred case the expert finds argumenting this example easy; in the un-
desired case, the expert finds this to be hard. The second case may be due to
different reasons (deciding attributes are not available, the example is indeed an
outlier, or argumenting may be hard in the chosen representation of arguments).
Each of these cases can be mended in different ways. In the extreme, this example
can simply be discarded from the learning set.

476 Ivan Bratko, Jure Žabkar and Martin Možina

5. Induce rules on the learning set using ABCN2 and new argumented example.
6. Return to step 2.

5 Experiments and applications

In this section we present a number of experiments and applications with ABCN2.
These highlight a number of important points which concern the questions:

• Success of learning with arguments, compared with standard learning where ex-
amples come without arguments. Success of learning can be measured in terms
of classification accuracy, number of examples needed for learning, understand-
ability (or interpretability by the user) of the induced theory.

• How effective is the interactive ABML refinement loop where the system auto-
matically selects critical examples that are to be argumented by the expert. That
is, how well does this mechanism guide the expert’s attention to important cases
and missing information.

• How can a knowledge base be reconstructed from examples with ABML?
• Can relevant arguments be extracted automatically from relevant literature, rather

than provided by an expert?

In these experiments, an implementation of ABCN2 within the Orange-toolkit [8]
was used. Some other applications, in medicine and law, are described in [19].

5.1 ZOO Data Set

ZOO data set [20] contains descriptions of 101 animals (instances) with 17 at-
tributes: hair, feathers, eggs, milk, predator, toothed, domestic, backbone, fins, legs,
tail, catsize, airborne, aquatic, breathes, venomous, and type, which is the class
attribute. Type has seven possible values: mammal, bird, reptile, fish, amphibian, in-
sect, other. An advantage of this data set is that a domain expert is not really needed
as source of arguments. Just using an encyclopedia, a non-expert is able to provide
good arguments to automatically selected critical examples.

The set was split into a learning set (70%) and a test set (30%). Classical CN2,
without arguments, induced seven IF-THEN rules. The accuracy of these rules on
the learning set was 100%, but the (more important!) accuracy on the test set was
about 90%. The refinement loop with identifying critical examples only required
three iterations:

1. The first critical example was the tortoise (type reptile). A good argument for tor-
toise to be a reptile is that it has the backbone and it lays eggs (tortoise is a reptile
because backbone=yes AND eggs=yes). Now, the rule induced by ABCN2 that
AB-covers the tortoise was:

IF backbone=yes AND eggs=yes AND aquatic=no AND feathers=no THEN
type=Reptile

23 Argument-Based Machine Learning 477

The attribute-value pairs in boldface correspond to the argument.
2. The next critical example was a sea snake (a reptile). When the encyclopedia was

consulted to look for an argument about sea snake, it turned out that there was an
error in the example set. The example set said that sea snake is a non-breathing
reptile, whereas the encyclopedia stated that it is in fact air-breathing. So this
critical example just helped to identify and correct a mistake in the data.

3. The next critical example was the newt (amphibian). The argument extracted
from the encyclopedia was that the newt is an amphibian because it has the back-
bone, is aquatic, and lays eggs.

This resulted in final eight IF-THEN rules with 100% accuracy on both learning set
and test set.

This experiment clearly illustrates the effectiveness of the refinement loop based
on selecting critical examples. Only two examples had to be argumented to achieve
perfect rule set. The example also nicely illustrates that it is much easier for a human
to give arguments only to an individual example (e.g why tortoise is a reptile), than
it would be to articulate general rules that correctly classify the animals. Moreover,
the rules learned from arguments are consistent with prior knowledge and thus make
more sense to the user.

5.2 Extracting arguments from free text

In ABML applications, arguments are usually provided by domain experts. In [17],
an alternative approach was investigated where arguments were automatically ex-
tracted from text. This approach eliminates the reliance on an expert who may not
be available. One expected advantage of this idea is in that it should be much easier
to extract from text specific relations in the form of arguments that concern con-
crete examples, rather than extracting general theories from text. For the purpose
of extracting arguments for ABML from text, we are interested in finding semantic
relations between class values and attribute values (taken from the learning data).
For example, given the class value reptile and the attribute eggs we are interested
in relations such as “Most reptiles lay eggs” and “Reptiles hatch eggs.” In [17], a
simple idea was explored that if many sentences reference both a class value and
an attribute, then the class value and the attribute are likely to be related. Here,
one problem is the lexicalization of the class values and attribute descriptions. The
names of attributes and classes should be similar to those used in text. It can be
very difficult to find occurrences of the lexicalizations of such concepts in the same
sentence and, consequently, to determine whether or not a relation exists. To deal
with the variability of natural language, alternative lexical variants were generated
using WordNet [10], a lexical database containing semantic relations among words.
Variants for all class values and attributes were generated using the following se-
mantic relations in WordNet: synonyms (e.g., breathe → respire) and morpholog-
ical derivations (e.g., predator → predators). The arguments were then extracted
from text simply by statistical means, depending on whether a class value and an

478 Ivan Bratko, Jure Žabkar and Martin Možina

attribute co-occur significantly more frequently or less frequently than it would be
statistically expected.

This approach was experimentally applied to the ZOO dataset. Arguments were
automatically extracted from Wikipedia. The method was evaluated by 10-times re-
peated 10-fold cross-validation. In each iteration, all the examples in the learning
set were argumented, then a classifier was built from these examples with ABCN2.
The induced classifier’s accuracy was then estimated on the test set. Using ABCN2
without arguments resulted in 94.5% classification accuracy, while ABCN2 with
arguments scored, on average, 96.7%. For comparison, some other standard ma-
chine learning methods (as implemented in Orange [8]) scored 90% (SVM), 92.57%
(C4.5) and 92.6% (naı̈ve Bayes). The accuracy results in this experiment differ
somewhat from those obtained in the experiment with expert-constructed argu-
ments. The main reason for the differences is that in the Wikipedia experiment,
accuracy was measured with 10-fold cross validation whereas in the previous sec-
tion this was done by 70:30% split into learning and test set.

5.3 Construction of sophisticated chess concepts

Today’s chess playing programs are extremely good at playing chess, but their use
for chess commenting or tutoring is rather limited. Such programs evaluate chess
positions numerically, but are then not able to explain a numerical evaluation in
terms of concepts that human chess players use when they reason about the position.
For example, the program may say that the current position’s value is 1.70 in favor
of White. Now the beginner chess player would ask “Why”? An answer, which
is beyond today’s chess programs, might be: ”Because Black has a bad bishop”?
Typically, the concept of bad bishop is not built into chess programs, although the
program’s numerical evaluation function may incorporate some features that are
related to the concept of bad bishop. Watson [21] gives the following definition
as traditional: a bishop that is on the same colour of squares as its own pawns is
bad, since its mobility is restricted by its own pawns and it does not defend the
squares in front of these pawns. Watson adds some further qualitative comments
to this definition (such as which own pawns are particularly important). However,
all this is very hard to translate precisely into program code that would reliably
recognize bad bishops. An attempt by women grandmaster Jana Krivec and FIDE
master Matej Guid at manually formalizing the definition of bad bishop as if-then
rules, only resulted in a classifier that had 59% accuracy.

Guid et al. [13, 16] applied ABCN2 to the construction of chess concepts in-
tended for a tutoring chess program. In a case study, the concept of bad bishop was
induced with ABCN2. 200 examples of positions that included bishops were pre-
pared for learning. The positions were selected from real chess games. 78 bishops in
these positions were bad, and 122 not bad. The set of 200 positions was randomly di-
vided into a 100 position learning set, and the remaining 100 position test set. As an
initial set of attributes for learning, the features included in the evaluation function

23 Argument-Based Machine Learning 479

of the well-known chess program Crafty were used. The learning with CN2, without
arguments, achieved 72% accuracy on the test set. Then, in the ABML refinement
loop, eight critical examples were iteratively identified and equipped by arguments
by the chess experts Krivec and Guid. In some cases, the experts were not able to
produce meaningful arguments in terms of the existing set of attributes. In such cases
they also suggested new attributes which were then added to the attribute set. This
illustrates another important point in ABML. The mechanism of selecting and argu-
menting critical examples may also help an expert to improve the representation for
learning. Five new attributes were thus added to the initial set of Crafty’s attributes.
The final induced classifier by ABCN2 attained 95% accuracy on the test set. So the
argumenting of just eight examples resulted in the improved accuracy from the ini-
tial 72% to 95%. An interesting question is: How much of this improvement can be
attributed to the arguments alone, and how much to the improved set of attributes.
To answer this, CN2 was run again on the original, non-argumented learning set, by
this time using the extended attribute set. The resulting CN2’s accuracy on the test
set was 91%. We may interpret this result as that the main improvement in accuracy
was due to the improved attribute set, enabled by the ABML refinement loop.

5.4 Japanese Credit Screening Database

Japanese Credit Screening Database [20] contains 125 persons applying for credit
described with 10 attributes. The class attribute is whether a person got credit or not.
This domain definition also contains imperfect prior knowledge (accuracy 83% on
the examples) - it was generated by talking to individuals at a Japanese company that
grants credit. This prior knowledge was used in the experiment [19] as a substitute
for the domain expert. It was assumed that this “expert” cannot give a complete
definition of the target concept, but can only give arguments for certain examples.
The data was split to a learning set (70%) and test set (30%). CN2 induced three
rules from this data set.

These three rules achieved 84% accuracy on the learning set and 76% accuracy
on the test set. Then, in the ABML refinement loop, critical examples were argu-
mented automatically by the “expert” (knowledge base). After 5 iterations, when
remaining problematic examples could not be argumented any more, final theory
induced by ABCN2 consisted of seven rules. These rules had accuracy 85% on the
learning set, and 89% on the test set.

This experiment indicated several points of interest regarding the reconstruction
of expert’s prior knowledge. Six of the seven final induced rules correspond pre-
cisely to complete background knowledge given by experts. This was achieved by
asking our “expert” to explain only five examples, which indicates the effectiveness
of the ABML refinement loop. This also indicates how effective ABML is as a tool
for extracting expert’s informal background knowledge. Imagine that we did not
have experts’ prior knowledge already formalized, and that we wanted to extract it

480 Ivan Bratko, Jure Žabkar and Martin Možina

from the expert. The way to do this with interactive use of ABCN2, is to generate
questions for the expert by identifying critical examples. Expert’s explanations in
terms of arguments of the five critical cases would, in our example, be sufficient to
completely formalize the expert’s prior intuitions. In addition to reconstructing the
original expert knowledge base, ABCN2 was able also to improve its classification
accuracy.

This experiment also nicely illustrates the difference between induced rules re-
sulting from data only, and actual causal rules that generated the data. Both hypothe-
ses, with and without arguments, have a similar accuracy on the learning set, but to
a domain expert the first set of rules would be difficult to understand as they show
unfamiliar dependencies. Moreover, the first set of rules scored significantly lower
accuracy on the test set, meaning that the first hypothesis merely reflected a spurious
relation in the learning set.

A similar learning problem – learning about credit status – occurred within the
European 6th framework project ASPIC1. Learning about credit status is a part of a
larger business-to-business scenario used in ASPIC as the main large-scale demon-
stration application for argument-based methods. In that experiment we also showed
how ABCN2 can be used to improve existing knowledge bases in argumentation
based expert systems. The data set consisted of 5000 companies described by 18
attributes (three of them were actually relevant for credit status). We began the ex-
periment with the induction of rules from 2500 examples (learning set) without
considering any prior knowledge. The system induced a set of 40 rules. These rules
correctly classified 95% of the examples in the test set (the remaining 2500 exam-
ples). After adding arguments to two problematic examples, ABCN2 induced six
rules only, and the classification accuracy of these rules on the test set was 99.9%.
This is a significant improvement in terms of classification accuracy, but even more
spectacular is the improvement in terms of the complexity of the induced theories,
from the initial 40 rules to 6 only.

6 Conclusions

In this chapter we described an approach to machine learning that, in addition to
learning examples as usual, also uses arguments about some of the examples. This
approach has been named ABML (argument based machine learning). Advantages
of ABML are:

• Expressing expert knowledge in the form of arguments for individual examples
is easier for the expert than providing general theories.

• Critical examples whose arguments are expected to improve the learning most,
are automatically identified inside the ABML refinement loop.

1 Argument Service Platform with Integrated Components (ASPIC), url: http://www.
argumentation.org/

23 Argument-Based Machine Learning 481

• ABCN2, an argument-based extension of the known CN2 learning algorithm,
produces more comprehensible rules than CN2, because ABCN2 uses expert-
given arguments that constrain the search among possible hypotheses, thereby
suppressing spurious hypotheses.

• In experiments in number of domains, ABCN2 achieved higher classification ac-
curacy than classical CN2. An important practical question is, what happens with
ABCN2 accuracy when there are errors in arguments. In [19] it was shown ex-
perimentally that, on average, imperfect, or even completely random arguments
are unlikely to harm the classification accuracy of ABCN2.

There has been some related work on combining machine learning and argumen-
tation. [1, 4] focused on the use of machine learning to build arguments that can be
later used in the argumentation process, most notably in the law domain. Gomez and
Chesñevar [11] suggested several ideas on combining argumentation and machine
learning. They implemented an approach where they used argumentation to improve
the performance of a neural network [12].

The main principles of extending a standard ML technique to its ABML version
seem to be quite straightforward. However, when extending attribute-value rule-
learning algorithm CN2 to ABCN2, many quite intricate problems had to be solved
in the process. One would expect that extending ILP to AB-ILP would be even more
beneficial. However, this is largely subject of future work.

7 Acknowledgements

This work was carried out under the auspices of the European Commission’s Infor-
mation Society Technologies (IST) programme, through Project ASPIC (IST-FP6-
002307). It was also supported by the Slovenian research agency ARRS.

References

1. Kevin D. Ashley and Edwina L. Rissland. Law, learning and representation. Artificial Intelli-
gence, 150:17–58, 2003.

2. Prolog Programming for Artificial Intelligence Pearson Education / Addison-Wesley, 2001.
3. Ivan Bratko and Martin Možina. Argumentation and machine learning. In: Deliverable 2.1 for

the ASPIC project, 2004.
4. Stefanie Brüninghaus and Kevin D. Ashley. Predicting the outcome of case-based legal ar-

guments. In G. Sartor, editor, Proceedings of the 9th International Conference on Artificial
Intelligence and Law (ICAIL), pages 233–242, Edinburgh, United Kingdom, June 2003.

5. B. Cestnik. Estimating probabilities: A crucial task in machine learning. In Proceedings of
the Ninth European Conference on Artificial Intelligence, pages 147–149, 1990.

6. Peter Clark and Robin Boswell. Rule induction with CN2: Some recent improvements. In
Machine Learning - Proceeding of the Fifth Europen Conference (EWSL-91), pages 151–163,
Berlin, 1991.

7. Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine Learning Journal,
4(3):261–283, 1989.

482 Ivan Bratko, Jure Žabkar and Martin Možina

8. J. Demšar and B. Zupan. Orange: From experimental machine learning to interactive data
mining. White Paper [http://www.ailab.si/orange], Faculty of Computer and
Information Science, University of Ljubljana, 2004.

9. Sašo Džeroski, Bojan Cestnik, and Igor Petrovski. Using the m-estimate in rule induction.
CIT. J. Comput. Inf. Technol., 1:37–46, 1993.

10. C. Fellbaum. WordNet. An Electronic Lexical Database. MIT Press, 1998.
11. Sergio A. Gomez and Carlos I. Chesnevar. Integrating defeasible argumentation and machine

learning techniques. Technical report, Universidad Nacional del Sur, 2004.
12. Sergio A. Gomez and Carlos I. Chesnevar. Integrating defeasible argumentation with fuzzy

art neural networks for pattern classification. Journal of Computer Science and Technology,
4(1):45–51, April 2004.

13. Matej Guid, Martin Možina, Jana Krivec, Aleksander Sadikov, and Ivan Bratko. Learning
positional features for annotating chess games. Computers and Games Conference 2008,
Bejing, 2008.

14. David D. Jensen and Paul R. Cohen. Multiple comparisons in induction algorithms. Machine
Learning, 38(3):309–338, March 2000.

15. Martin Možina, Janez Demšar, Jure Žabkar, and Ivan Bratko. Why is rule learning opti-
mistic and how to correct it. In Johannes Fuernkranz, Tobias Scheffer, and Myra Spiliopoulou,
editors, Proceedings of 17th European Conference on Machine Learning (ECML 2006), pages
330–340, Berlin, 2006. Springer-Verlag.

16. Martin Možina, Matej Guid, Jana Krivec, Aleksander Sadikov, and Ivan Bratko. Fighting
knowledge acquisition bottleneck with Argument Based Machine Learning Proc. ECAI’08,
Patras, 2008.

17. Martin Možina, Claudio Giuliano, and Ivan Bratko. Arguments extracted from text in argu-
ment based machine learning: a case study. SAMT Workshop, Koblenz, 2008.

18. Martin Možina, Jure Žabkar, and Ivan Bratko. D3.4: Implementation of and experiments with
ABML and MLBA. ASPIC Deliverable D3.4, 2006.

19. Martin Možina, Jure Žabkar, and Ivan Bratko. Argument based machine learning. Artificial
Intelligence, 171:922–937, 2007.

20. P. M. Murphy and D. W. Aha. UCI Repository of machine learning databases
[http://www.ics.uci.edu/˜mlearn/mlrepository.html]. Irvine, CA:
University of California, Department of Information and Computer Science, 1994.

21. J. Watson. Secrets of Modern Chess Strategy. Gambit Publications, 1999.

Appendix A
Description Logic

Description Logics (DLs)1 are a family of knowledge representation languages used
to represent the terminological knowledge of an application domain. The idea is
to define complex concept hierarchies from basic (atomic) concepts, and to define
complex roles (or properties) as relationships between concepts.

Table A.1 shows the syntax and semantics of common concept and role construc-
tors. The letters A, B are used for atomic concepts and C, D for concept descriptions.
For roles, the letters R and S are used and non-negative integers (in number restric-
tions) are denoted by n, m and individuals (i.e. instances) by a, b. An interpretation
I consists of a non-empty set ΔI (the domain of the interpretation) and an interpre-
tation function, which assigns to every atomic concept A a set AI ⊆ ΔI and to every
atomic role R a binary relation RI ⊆ ΔI×ΔI.

A DL knowledge base consists of a set of terminological axioms (often called
T Box) and a set of assertion axioms or assertions (often called ABox). A finite set of
definitions is called a terminology or T Box if the definitions are unambiguous, i.e.,
no atomic concept occurs more than once as left hand side.

Suppose that Person and Female are atomic concepts. Then Person+ Female
is a concept describing persons that are female. If, in addition, we suppose that
hasChild is an atomic role, we can form the concept Person+∃hasChild, denoting
those persons that have a child. Using the bottom concept, we can also describe those
persons without a child by the concept Person+∀hasChild.⊥. These examples show
how we can form complex descriptions of concepts to describe classes of objects.

An equality whose left-hand side is an atomic concept is a de f inition. Definitions
are used to introduce symbolic names for complex descriptions. For instance, by the
axiom Mother≡Woman+∃hasChild.Person, we associate to the description on the
right-hand side the name Mother. Symbolic names may be used as abbreviations in
other descriptions. If, for example, we have defined Father analogously to Mother,
we can define Parent as Parent ≡Mother,Father. Table A.2 shows a terminology
with concepts concerned with family relationships.

1 See: F. Baader, D. Calvanese, D. McGuinness, D. Nardi and P. Patel-Schneider (Eds.). The
Description Logic Handbook. Cambridge University Press, Cambridge, UK, 2003.

483

484 A Description Logic

Name Syntax Semantics

Concept & Role Constructors
Top � ΔI

Bottom ⊥ ∅
Concept Intersection C+D CI ∩DI

Concept Union C,D CI ∪DI

Concept Negation ¬C ΔI \CI

Value Restriction ∀R.C {a ∈ ΔI | ∀b.(a,b) ∈ RI → b ∈CI}
Existential Quantifier ∃R.C {a ∈ ΔI | ∃b.(a,b) ∈ RI ∧b ∈CI}
Unqualified ≥ nR {a ∈ ΔI || {b ∈ ΔI | (a,b) ∈ RI} |≥ n}
Number ≤ nR {a ∈ ΔI || {b ∈ ΔI | (a,b) ∈ RI} |≤ n}
Restriction = nR {a ∈ ΔI || {b ∈ ΔI | (a,b) ∈ RI} |= n}
Role-value- R⊆ S {a ∈ ΔI | ∀b.(a,b) ∈ RI → (a,b) ∈ SI}
map R = S {a ∈ ΔI | ∀b.(a,b) ∈ RI ↔ (a,b) ∈ SI}
Nominal I II ⊆ ΔI with | II |= 1
Universal Role U ΔI×ΔI

Role Intersection R+S RI ∩SI

Role Union R,S RI ∪SI

Role Complement ¬R ΔI×ΔI \RI

Role Inverse R− {(b,a) ∈ ΔI×ΔI | (a,b) ∈ RI}
Transitive Closure R+ ⋃

n≥1(RI)n

Role Restriction R|c RI ∩ (ΔI×CI)
Identity id(C) {(d,d) | d ∈CI}
Teminological Axioms
Concept Inclusion C * D CI ⊆ DI

Concept Equality C ≡ D CI = DI

Role Inclusion R* S RI ⊆ SI

Role Equality R≡ S RI = SI

Table A.1 Some Description Logic Role and Concept Constructors, and Terminological Axioms

The sentence � * ∀hasParent.Person expresses that the range of the property
hasParent is the class Person (more technically, if the property hasParent holds be-
tween any concept and another concept, the latter concept must be of type Person).

Name DL Syntax Example

Constructor / axiom
Concept Intersection C+D Woman≡ Person+Female
Concept Union C,D Parent ≡Mother,Father
Concept Negation ¬C Man≡ Person+¬Woman
Existential Quantifier ∃R.C Mother ≡Woman+∃hasChild.Person
Value Restriction ∀R.C MotherWithoutSons≡Mother+∀hasChild.Woman
MinCardinality ≥ nR MotherWithAtLeastT hreeChildren≡Mother+ ≥ 3hasChild
Cardinality = nR FatherWithOneChild ≡ Father+= 1hasChild
Bottom ⊥ PersonWithoutAChild ≡ Person+∀hasChild.⊥
Transitive Property R+ * R ancestor+ * ancestor
Role Inverse R≡ S− hasChild ≡ hasParent−

Concept Inclusion C * D Woman* Person
Disjoint with C * ¬D Man* ¬Woman
Role Inclusion R* S hasDaughter * hasParent
Range �* ∀R.C �* ∀hasParent.Person
Domain �* ∀R−.C �* ∀hasParent−.Person

Table A.2 A terminology (TBox) with concepts about family relationships

Appendix B
Bayesian Networks

Bayesian networks (BNs)2 popular representation for reasoning under uncertainty,
as they integrate a graphical representation of the relationships between propositions
with a sound Bayesian foundation.

BNs are directed acyclic graphs where nodes correspond to random variables
or propositions. The nodes in a BN are connected by directed arcs, which may be
thought of as causal or influence links; the arcs go from “parents” to “children”.
The structure and connections in a BN specify conditional independence relations
between nodes. For instance, given a particular node, its children are independent
of its parents. These conditional independence relations allow the joint probabil-
ity distribution of all the random variables to be specified by exponentially fewer
probability values than the full joint distribution.

A conditional probability distribution (CPD) is associated with each node in a
BN. The CPD gives the probability of each node value for all combinations of the
values of its parent nodes. The probability distribution for a node with no parents is
its prior distribution. Given these prior probabilities and the CPDs, belief propaga-
tion is performed to compute posterior probability distributions for all the nodes in
a BN. These posterior probabilities represent beliefs about the values of the propo-
sitions represented by these nodes. The observation of specific values for nodes is
called evidence. Beliefs in unobserved nodes in a BN can then be updated by per-
forming belief propagation given the evidence nodes. Belief propagation for general
BNs is NP-hard. However, on polytrees (where there is at most one path between
any pair of nodes) belief propagation is linear.

To illustrate these ideas, consider the Earthquake BN in Figure B.1.3 This BN
represents a situation where a burglary or an earthquake may cause an alarm to ring,
and John or Mary may call the owner of the house if they hear the alarm (i.e., their

2 For a more comprehensive introduction, see:
– K. Korb and A. Nicholson. Bayesian Artificial Intelligence. Chapman & Hall/CRC, 2004.
– J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Publishers, San
Mateo, California, 1988.
3 Many sample BNs, together with the application package Netica, may be found in http://
www.norsys.com.

485

486 B Bayesian Networks

P(J=T|A)

0.90

0.05

P(M=T|A)

0.70

0.01

T

F

T

F

0.95

0.94

0.29

0.001

E P(A=T|B,E)

F

T

A

T

F

A

P(B=T)

0.01

Burglary Earthquake

Alarm

MaryCallsJohnCalls
F

F

T

T

B

0.02

P(E=T)

Fig. B.1 Earthquake Bayesian Network

phone call is evidence for the alarm having rang). The joint probability distribution
of the propositions in the BN is represented compactly through the conditional in-
dependences implied by the structure of the BN. For instance, Pr(Burglary=False∧
Earthquake=True∧Alarm=True∧JohnCalls=False∧MaryCalls=True) may be ex-
pressed as follows.

Pr(Burglary=False)×Pr(Earthquake=True)×
Pr(Alarm=True|Burglary=False, Earthquake=True)×
Pr(JohnCalls=False|Alarm=True)×Pr(MaryCalls=True|Alarm=True)

This is because Burglary and Earthquake have no parent nodes, and the structure
of the BN implies that JohnCalls and MaryCalls are conditionally independent of
Burglary and Earthquake given Alarm. The probabilities required to calculate this
joint probability are obtained from the CPDs, e.g., according to the CPD for Alarm,
Pr(Alarm=True|Burglary=False, Earthquake=True) = 0.29. If we are interested in
a particular variable, say Alarm, we obtain its probability by performing belief prop-
agation. For example, we can start by calculating the probability of Alarm without
any observed evidence (just propagating the prior probabilities), and then obtain an
updated probability for Alarm after observing that MaryCalls is true and JohnCalls
is false. It is worth noting that all the nodes in this example are Boolean, but belief
propagation is applicable to multi-valued nodes.

Index

AB-covering, 471
AB-ILP, 466
ABA framework, 205
ABCN2, 468, 471
ABML, 464
ABML refinement loop, 475
Abstract argument framework, 149
abstract argument system, 25
Abstract argumentation, 149
abstract argumentation framework, 256
acceptable argument, 30
acceptance attitude, 293
accrual, 372
accrual of arguments, 242, 246
adjudication dialogue, 374
admissibility principle, 29, 35, 37–39, 41
admissible, 200, 205
admissible dispute tree, 208, 209
admissible labelling algorithm, 116
admissible set, 30
admissible sets (Dung), 231
Agent Communications Language, 260
agent interaction, 282
Agents, 260
AGM model, 343, 345, 353, 354
AI & Law, 368
AI and Law, 364
Alternating Action Based Transition systems,

49
analogy, 366
analytic argument, 222
applicability of arguments, 244
Araucaria, 3, 378, 398
Araucaria (Reed & Rowe), 233
ArgDF, 389
Argkit, 398
ArgSCIFF, 435

ArguGRID, 400, 434
Arguing Agents Competition, 400
ArguMed, 378
Argument, 135
argument, 202, 342
argument analysis software, 233
argument assessment, 224
Argument assistance tools, 419
argument evaluation structure, 244
argument games, 106, 109
Argument Graph, 448–451
argument graph labellings, 106
Argument Interchange Format, 383
Argument Interchange Format (AIF), 433
argument scheme, 374, 376
argument schemes, 48, 49
argument structures, 354
Argument tree, 145
argument-based inductive logic programing,

466
argument-based machine learning, 464
argument-based rule learning, 468
argumentation, 341
argumentation framework, 25
argumentation frameworks, 45
Argumentation Mechanism Design, 330
argumentation schemes (Walton), 232
argumentation semantics, 27
argumentation system, 217
Argumentative Battle of the Sexes, 322
argumented example, 469
Artificial Intelligence and Law, 226, 230
assertion attitude, 293
assumption, 205
Assumption-Based Argumentation, 434, 435
assumption-based truth maintenance systems,

347

487

488 Index

ATMS, see assumption-based truth mainte-
nance systems

attack, 204
attack cycle, 40
attack relation, 25
attacks, 204
attention

focus of, 444, 449
islands of, 445, 449

attentional
focus, 448–450, 452

audience, 46, 47, 49, 50, 54, 59, 63, 239, 243
Austin, John, 272
Avers, 378
Avicenna, 393
axiomatic characterizations, 345
Axiomatic semantics, 269

Backing (Toulmin), 220
Bayes-Nash equilibrium, 327
Bayesian, 445, 452, 459, 460

belief propagation, 445, 449, 451, 454–456,
459, 485, 486

inference, 446
network, 445, 485
subnet, 447, 449, 450, 457, 458

belief change
contraction operator, 343
expansion operator, 343
revision operator, 343

belief revision, 341
belief updating, 347
beliefs, 341, 349
beyond reasonable doubt proof standard, 242,

246
BIAS, 443–448, 453, 455, 456, 458, 459
bipartite AF, 100
Bipolarity in Argumentation

+conflict-free set of arguments, 71
acceptability semantics in a BAF, 71
acceptability semantics in a CAF, 76
BAF (bipolar argumentation framework), 69
C-attack relation in a BAF, 76
CAF (coalition framework associated with a

BAF), 76
coalition in a BAF, 74
labellings in a BAF, 77
safe set of arguments, 71
support relation, 69
supported attack, 70

burden of claiming, 241, 247
burden of persuasion, 241, 249
burden of production, 241, 248
burden of proof, 110, 239, 374

burden of questioning, 241, 247

CABARET, 375
Carneades, 375, 399
Carneades system, 255
CaSAPI, 217, 434
case-based reasoning, 363, 366
cases, 56
Category Theory, 271
CATO, 367
CF2 semantics, 40
characteristic function, 30, 36
claim, 202
Claim (Toulmin), 220
ClaiMaker, 383
clear and convincing evidence proof standard,

241, 245
Cohere, 399
coherence, 372
coherence approach, 342
coherent, 93, 97
coherent argumentation frameworks, 124
Collaborative filtering, 405
Commands, 273
commitment rules, 285
Commitments, 265
commitments, 285
communication language, 283
Compendium, 399
complete, 205
complete extension, 34
complete semantics, 34
complexity class, 86
Compositionality, 271
computational complexity theory, 86
conflict of opinion, 282
conflict resolution, 287
conflict-free principle, 29
consequence operator, 342
consistent argument, 203
Content-based recommenders, 405
contraction, 343

closure postulate, 343
core-retainment postulate, 346
extensionality postulate, 344
full meet, 344
inclusion postulate, 343, 346
kernel, 345
maxichoice, 344
multiple, 356
partial meet, 344
recovery postulate, 344
relative closure postulate, 346
safe, 345

Index 489

success postulate, 344, 346
uniformity postulate, 346
vacuity postulate, 344, 346

contrary, 204, 205
cooperative game theory, 338
Counterargument, 138
coNP, 87
credulous, 206
credulous acceptability, 254
Credulous Acceptance problem (CAs), 90
credulous justification, 32
critical examples, 475
critical question, 377
critical questions, 57
critical-link semantics, 185
culprit, 210

dark-side commitments, 291
data, 349
data fit, 457, 458
data-oriented belief revision, 349
Datum (Toulmin), 220
DBR, see data-oriented belief revision
decision problem, 86
decisive revision, 351
deductive system, 205
default logic, 34, 37
default rules (Reiter), 227
defeasible argument, 221
Defeasible Logic Programming, 154, 350
Defeasible logic programming, 408
Defeated argument, 148
Defeated suggestions, 411
Defeater, 138
defeater, 175

rebutting, 175
undercutting, 176

defeater (Pollock), 229
defence, 205, 207, 210
deliberation, 281, 353
DeLP, 154, see Defeasible Logic Programming
DeLP:argument structure, 157
DeLP:defeasible derivation, 156
Denotational semantics, 270
dependent node, 185
Description Logic, 391
deterministic protocols, 285
Dialaw, 374
dialectical semantics, 128
Dialectical tree, 408
dialectical validity proof standard, 247
dialogical status, 297
Dialogue, 372
dialogue, 243, 374

dialogue coherence, 300
dialogue context, 284
dialogue games, 282
dialogue goal, 283
dialogue roles, 283
dialogue shift, 281
dialogue system, 372
dialogue systems, 281
Dialogues, 260
dialogues, 284
difference class (Dp), 89, 92
dimension, 367
direct-revelation mechanism, 328
direction of fit, 45
directionality principle, 31, 35, 37–39, 41, 42
Discourse DB, 433
Discourse Representation Theory, 271
dispute, 109, 286
dispute derivation, 211
dispute derivations, 207
dispute tree, 109, 207
dominant-strategy, 327
Dung model, 353, 354
Dung’s argumentation framework, 368
dynamic abstract argumentation theory, 350
dynamic classification of rules, 357

e-Democracy, 59
effect rules, 283
Endorsement, 273
entangled dialectical argument, 236
enthymematic, 443, 444, 447–450, 452, 453
Enthymeme, 137
epistemic entrenchment, 346
expansion, 343
expansive revision, 351
explanandum, 349
explanans, 349
Explanatory Extension, 453–458
extended argumentation frameworks, 61
extension, 27
extensions, 342
external revision, 355
extreme value correction, 474

factor, 366
factor-hierarchy, 367
Fatio Protocol, 273
filtering, 210
FIPA, 261, 265, 266, 269, 272, 273
flat ABA framework, 200
formal logic, 219
formal validity, 222
foundational approach, 342

490 Index

Frege, Gottlob, 268
full meet contraction, 344
function

incision, 345
selection, 344

game semantics, 337
game theory, 321, 376
game-theoretic semantics, 271, 337
generalisations, 283
Grebe, 368
Grid, 429

Open Grid Forum (OGF), 430
Open Grid Service Architecture (OGSA),

430
grounded, 200, 206
grounded dispute tree, 209
grounded extension (Dung), 231
grounded game, 113
grounded labelling algorithm, 112
grounded semantics, 36, 111
Grove’s sphere system, 346

Hamblin, Charles, 265
hard case, 366
Harper identity, 345
heuristics, 282
Hilbert, David, 268
Hybrid recommender systems, 405
HYPER, 466
HYPO, 367, 377

I-maximality principle, 31, 36–39, 41
ideal semantics, 39, 99
ILP, 466
immediate-response protocols, 288
incentive compatible, 329
incision function, 345
incomplete arguments, 290
Independence-Friendly (IF) Logic, 271
indirect attack, 98
inductive learning, 463
inductive logic programing, 466
inductive logic programing, argument-based,

466
inference graph, 174

Q-dependent node, 179
bypassed defeat-link, 193
circular inference/defeat-path, 185
circular path, 194
critical node, 185
defeat loop, 195
defeat-links, 177
hereditarily-critical defeat-link, 195

hereditarily-critical defeater, 195
inference/defeat-path, 185
initial node, 178
maximal partial status assignment, 183
node ancestors of a node, 193
nodes, 177
odd-length defeat cycles, 182
partial status assignment, 180
status assignment, 180
support-links, 177
undefeated node, 180

inference rule, 200
information seeking, 281, 353
inquiry, 281, 353
intelligent tutoring, 282
Interaction, 260
Interaction Protocols, 260
Interloc, 400
interpretation, 363
Interpretation Graph, 453, 454, 456–458
interpretation of concepts, 364
interpretation of rules, 365
issue spotting, 365

Judge function, 148
justification of decisions, 239
justification state, 26, 32
justifications, 347
justified belief, 180

kernel contraction, 345
kernel set, 345
knowledge level, 343
KQML, 265
Kripke, Saul, 270

labelling, 27
language independence principle, 30
legal move function, 110
legal procedure, 287
legal reasoning, 56, 282, 363
legal rules (Prakken, Sartor, Hage), 230
Levi identity, 344
Limitations of recommenders, 406
Linking Open Data, 427
Litigation Inference System, 252
Locutions, 260, 265
logic as generalised jurisprudence, 225

Machine communication, 260
machine learning, 463
machine learning, argument-based, 464
MarshalPlan, 378
maxichoice contraction, 344

Index 491

Maximally conservative undercut, 140
mechanism, 328
mechanism implementation, 328
mediation systems, 372
medical reasoning, 57
merging, 350
Minimum Message Length, 456
model complexity, 456, 458
model selection, 456, 458
modeling conception of legal reasoning, 240
moral reasoning, 58
Multi-agent systems, 260
multi-agent systems, 282
multiple contraction, 356
multiple-assignment semantics, 180
multiple-move protocols, 285
multiple-reply protocols, 288
multiple-status, 29

n-person game, 338
NAG, 443–452, 458, 459
Nash equilibrium, 327
negation as failure, 34
negotiation, 281, 353
node, 347
nonmonotonic logic, 281
NP, 87
NP–complete, 88, 91
NP–hard, 88

objective acceptance, 52
Objective Acceptance problem (OBA), 97
Ontology, 426

— Alignment, 433
Operational semantics, 270
opponent, 207, 211
oracle complexity class, 89
outcome rules, 283
OWL, 393

Pareto Optimal, 336
partial acceptance revision, 355
partial meet contraction, 344
patient selection function, 211
perspectives, 57
persuasion, 365
persuasion dialogues, 281
Pieri, Mario, 268
Pleadings Game, 251, 372
Polynomial Hierarchy (PH), 87
polynomial time decidable (P), 87
polynomial time many one reducibility (≤p

m),
88

position to know, 376

Possible worlds, 270
potential argument, 210
practical reasoning, 46, 47, 63
practical syllogism, 48
Pragmatics, 260, 272
precedent, 365–367, 370, 375
preferential semantics, 38
preferred credulous game, 119
preferred extension (Dung), 231
preferred labelling algorithm, 118
preferred sceptical game, 122
preferred semantics, 38, 45, 51
preponderance of evidence proof standard, 241
presumption, 374
prima facie reason (Pollock), 229
probabilistic pruning, 447, 450, 451
Promises, 273
proof, 239, 256
proof burdens, 239
proof standards, 239
proof theories, 108
proponderance of evidence proof standard, 245
proponent, 207, 211
propositional attitudes, 283
protocol, 283
Protocol equivalence, 275
prudent semantics, 41, 98
public semantics, 285
pure persuasion, 287

Qualifier (Toulmin), 220
Qualitative Probabilistic Networks, 270

rational disagreement, 46
Rationale, 399
rationale, 375
rationales, 369
Reason-Based Logic, 252
reason-based logic, 371, 377
rebut, 26
Rebuttal, 139
Rebuttal (Toulmin), 220
rebutting, 283
rebutting defeater (Pollock), 229, 235
Recommender systems, 403
recovery, 351
Reinach, Adolf, 273
reinstatement, 351
reinstatement principle, 30, 35, 37–39, 41, 42,

107, 110
relational models of argument, 239, 256
relevance, 297
relevant, 203
relevant protocols, 298

492 Index

remainder set, 344
reply structure, 288
representation theorems, 345
resource-bounded reasoning, 281
rethorics, 364
Retraction, 273
revelation principle, 329
revision, 343

decisive, 351
expansive, 351
external, 355
success postulate, 344
warrant-prioritized argument, 351
with partial acceptance, 355

Revocation, 273
Room 5, 378
rule applicability, 371
rule conflict, 368, 369
rule learning, 468
rule learning, argument-based, 468
rule priorities, 369
rules

dynamic classification of, 357

safe contraction, 345
SCC-recursiveness, 40, 43
sceptical, 206
Sceptical Acceptance problem (SAs), 90
ScholOnto, 383
scintilla of evidence proof standard, 241, 245
Searle, John, 272
selection function, 211, 344
self-interested, 321, 326
Semantic Grid, 424, 431
Semantic net, 449
semantic suppression, 447, 450, 451
Semantic Web, 425

RDF Schema (RDFS), 426
Resource Description Framework (RDF),

426
Social Semantic Web, 431
Web Ontology Language (OWL), 426

Semantic-Bayesian network, 449
Semantics, 260, 267
semantics agreement, 42
semantics principles, 29, 42
semi-stable labelling algorithm, 126
semi-stable semantics, 38
sensemaking, 399
Service Oriented Architecture (SOA), 427
Similarity measures, 405
single-status, 29
skeptical acceptability, 254
skeptical justification, 31, 32

skepticism relations , 42
social choice function, 328
Software engineering, 260
Specificity, 408
Speech Act Theory, 272
Speech Acts, 269
speech acts, 282
spreading activation, 449, 451, 452
stable, 215, 216
stable extension (Dung), 231
stable game, 124
stable labelling algorithm, 124
stable marriage, 26, 34, 37, 338
stable marriage problem, 215
stable models, 37
stable semantics, 37
stage semantics, 38
standard translation, 91, 92, 97
standards of good reasoning, 224
strategies, 282
strategy, 326, 375
strategy profile, 326
strategy-proof, 329
strongly connected components, 40
structuring arguments, 378
sub-dispute, 110
subgame perfect equilibrium, 325
subjective acceptance, 52
Subjective Acceptance problem (SBA), 97
substantial argument, 222
sufficient condition scheme, 48
support, 202
Supposition Configuration, 453–455, 457, 458
symbol level, 343
symmetric AF, 100
Syntax, 260, 265

tactical burden of proof, 241, 250
tactics, 375
Tarski, Alfred, 268
Task modeling, 405
TAXMAN, 365
TDG, 374, 376
termination, 284
The Zeno system, 251
theory construction, 365
third parties, 239
three-ply argument, 367
TMS, see truth maintenance system
topic language, 283
Topoi, 271
Toulmin, 376
Toulmin’s layout of arguments, 220

formal reconstruction, 234

Index 493

Toulmin’s scheme, 376
Toulmin, Stephen Edelston, 219
TPI protocol, 93
Trace Semantics, 271
transition sequence, 116
transition step, 116
truth maintenance system, 347
TruthMapping.com, 433
Tuple space, 273
Tuples, 273
turntaking, 284

Undefeated argument, 148
Undercut, 139
undercut, 26
undercutting, 283
undercutting defeater (Pollock), 229, 235
unique-move protocols, 285
unique-reply protocols, 288
unique-status, 29, 36, 39
universally defined semantics, 28, 37
Unwarranted argument, 148
Uptake, 273
User modeling, 405
The Uses of Argument, 219

value, 49
Value based argumentation, 46

value based argumentation, 50, 53, 60
Value-based Argumentation Framework, 434
value-based argumentation Framework, 253
values, 47, 63, 368, 370
Verification problem (VERs), 90
Virtual Organization (VO), 430
visualisation of arguments, 378

Warrant (Toulmin), 220
warrant-establishing argument, 222
warrant-prioritized argument revision, 351
warrant-using argument, 222
Warranted argument, 148
Warranted suggestions, 410
Web 2.0, 430
Web Services, 427

— Description Language (WSDL), 427
— Interoperability, 427
— Modeling Ontology (WSMO), 429
Semantic Markup (OWL-S), 429
Semantic Web Services, 429
Simple Object Access Protocol (SOAP), 427

well-founded semantics, 37
Wigmore graph, 378
winning strategy, 110
World Wide Web of Arguments, 433
WPA, see warrant-prioritized argument

revision

