
Chapter 13

Local Observed-Score Equating

Wim J. van der Linden

13.1 Introduction

One of the highlights in the observed-score equating literature is a theorem by Lord

in his 1980 monograph, Applications of Item Response Theory to Practical Testing
Problems. The theorem states that observed scores on two different tests cannot be

equated unless the scores are perfectly reliable or the forms are strictly parallel

(Lord, 1980, Chapter 13, Theorem 13.3.1). Because the first condition is impossible

and equating under the second condition is unnecessary, the theorem is rather

sobering.

My research on local equating was deeply motivated by Lord’s theorem and its

related notion of equity of equating introduced in the same chapter to explain the

“cannot be equated” part of the theorem. Before discussing the principles of local

equating, we therefore review the chapter in which the theorem was introduced.

It is quite instructive to see how cautiously Lord (1980) proceeded in the chapter:

He began by introducing the problem of observed-score equating under the ideal

condition of no measurement error (“case of infallible measures”) and used the

equipercentile transformation—one of the historic achievements of observed-score

equating research—for this case. His next step was the introduction of measurement

error (“case of fallible measures”). For this case he gave his famous theorem to

show that the use of the equipercentile transformation either does not hold or is

unnecessary. Lord then formulated two alternative methods of equating known

as item response theory (IRT) observed-score equating and true-score equating.

The former deals only indirectly with measurement error by using a parametric

estimate of the observed-score distributions for the two tests rather than sample

distributions. The latter ignores measurement error altogether. Interestingly, Lord
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appeared unable to express a preference for either of these approximate methods, and

the chapter ended entirely open, with an intriguing question that I will discuss below.

It is clear that Lord (1980) was aware of the need of observed-score equating

as well as the popularity of the methods practiced in his days. On the other hand,

although the presentation of the two approximate methods indicates that he was

willing to strike a balance between practice and what psychometric theory allows us

to do, the open end of the chapter suggests that he was unable to do so.

Lord’s (1980) attitude toward observed-score equating reminds me of a cartoon I

once saw, in which one scientist said, "Look at the nice application I have!” and the

other responded, “Yes, but does it work in theory?” In a field such as test theory,

where numbers do not mean anything unless they can be proven to behave accord-

ing to a model for their formal properties, our affinity should definitely go to the

second scientist.

13.2 Lord’s Analysis of Equating

Lord’s (1980) treatment of equating is based on the conceptualization of measure-

ment that underlies IRT—the main topic of his monograph. Key in the conceptuali-

zation is the observation that responses to test items reflect not only the ability the

test measures but also the properties of the items. Equating is an attempt to

disentangle these abilities and item properties at the level of the observed scores

on different test forms.

I will follow Lord’s (1980) notation and use y to denote the ability parameter. In

addition, X and Y denote the number-correct scores on two different tests that

measure the same y, and X and Y denote the tests themselves. For convenience,

throughout this chapter, tests X and Y are assumed to have equal length. Because X
and Y are dependent both on the abilities of the test takers and the properties of the

items, an equating problem exists. Suppose that test Y is the newer form and Y has

to be equated back to X. The goal is to find the transformation x¼ ’(y) from Y to the

scale of X that guarantees that the transformed scores on test Y are indistinguishable

from the scores on test X.

This conceptualization does not restrict the generality of our analysis in any way;

it would do so only if a specific response model were assumed and the results

depended on the properties of this model. As each of the mainstream response

models used in the testing industry involves a different parameterization of the

items, in order to maintain generality, we therefore deliberately avoid specifying

any item parameters.

Each equating study involves the choice of a sampling design, but the current

conceptualization is also neutral with respect to this choice. For any response model

with adequate person and item parameters, we can estimate the parameters in the

presence of structurally missing responses. Except for a mild requirement of

“connectedness” (van der Linden, 2010), equating based on such models, therefore,

does not require a specific equating design.
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13.2.1 Equating Without Measurement Error

Lord (1980) introduced the equating problem by considering the case of two per-

fectly reliable scores X and Y (“case of infallible measures”), a condition under

which observed scores are fixed quantities and the distinction between observed and

true scores disappears. If X and Y are perfectly reliable scores for tests measuring

the same y, each of these three quantities orders any given population of test takers

identically. Consequently, the scores on tests X and Y for any test taker always have

the same rank in their distributions for the population of choice. This equivalence of

rank establishes an immediate equating relation—if an examinee takes one of the

forms, we know that he or she always would obtain the score on the other form

associated with the same rank in the population.

In more statistical terms, let F(x) be the (cumulative) distribution function of the

scores on test X and G(y) the distribution function of the scores on test Y for an

arbitrary population of test takers. Both functions are assumed to be monotonic. For

convenience, we also will ignore problems due to the discreteness of number-

correct scores throughout this chapter. Let y be the quantile in the distribution on

test Y for an arbitrary cumulative proportion p of the population; that is,

GðyÞ ¼ p: (13.1)

The equivalent score ’(y) on test X follows then from

Fð’ðyÞÞ ¼ p: (13.2)

.

Or, making ’(y) explicit,

’ðyÞ ¼ F�1ðGðyÞÞ: (13.3)

This transformation is the well-known equipercentile transformation in the

equating literature. It is typically estimated by sampling the same population

twice, administering test forms X and Y to the two samples, estimating the distri-

butions functions of X and Y from the samples, and establishing the relationship by

varying p in Equations 13.1 and 13.2 systematically. As the focus of this chapter is

not on sampling issues, I do not discuss these issues further.

For perfectly reliable scores, the same transformation from Y to X in Equation

13.3 is obtained for different populations of test takers; that is, use of the equiper-

centile transformation guarantees population invariance. This invariance is a prac-

tical feature, in that it does not seriously restrict equating studies in the choice of

their subjects. Also, the choice of population cannot bias the equating in any way:

No matter the selection of test takers, the equating errors

e1ðxÞ � ’ðyÞ � x (13.4)
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are always equal to zero for each individual test taker. These two features are

documented in the following theorem:

Theorem 1. For perfectly reliable test scores X and Y, the equipercentile transfor-
mation ’(y) in Equation 6.3 is (a) unbiased and (b) invariant across populations of

test takers with distributions that have the full range of X and Y as support.

These attractive properties of population invariance and error-free equating are

immediately lost when we move from the ideal world of infallible measurements to

the real world of test scores with errors.

13.2.2 Equating With Measurement Error

In the case of fallible measures, test takers no longer have fixed observed scores on

test forms X and Y, but their scores vary across replicated administrations of these

tests. Statistically, we therefore should view the observed scores x and y for a test
taker as realizations of random variables X and Y.

Several things change when scores with measurement error have to be equated.

First, it no longer holds that the actually observed scores X ¼ x and Y ¼ y on an

administration of the two tests order a given population of test takers identically.

Measurement errors distort the ranks of the test takers in the distributions of X and Y
for any population; that is, test takers are likely to have a higher rank in one

observed-score distribution than dictated by their yS but a lower rank in another.

The principle of equivalence of rank of the scores on test forms X and Y, on which

the equipercentile transformation in Equation 13.3 was based, is thus violated and

the transformation is no longer valid.

Second, the goal of equating is to find the transformation ’(y) from Y to the scale

of X that guarantees identical scores. But the criterion can never be met for the case

of random errors because these errors introduce nonzero components in the defini-

tion of equating error e1(y) in Equation 13.4. In fact, the problem is even more

fundamental in that the definition in Equation 13.4 itself is no longer sufficient: Test

scores are now to be viewed as random variables, and it is not enough to just

evaluate a single realization of them when the interest should be in their full

distribution. Lord (1980) was aware of this problem and replaced the criterion in

Equation 13.4 for the case of equating with measurement error by the more general

criterion of equity, which he defined intuitively as follows: “If an equating of tests

X and Y is to be equitable to each applicant, it must be a matter of indifference

to applicants at every given ability level y whether they are to take test X or Y”

(p. 195).

Lord’s formal definition of equity generalizes Equation 13.4 to the requirement

for the full distributions of the scores on X and Y given y and stipulates that

f’ðYÞjy ¼ fXjy; for all y; (13.5)
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where f’(Y)jy and fXjy are the probability functions of the transformed scores on test

Y and the scores on test X for the chosen population (Lord, 1980, Equation 13.3).

This definition of equity is based on a clear concern about fairness of equating: If

the two distributions would differ, a test taker might be disadvantaged by taking

one test rather than the other. For instance, a high-ability test taker with a larger

variance for his or her observed score on test Y than on test X runs a larger risk of

not passing a certain cutoff score on the former than the latter.

Thirdly, and lastly, the feature of population invariance of the equipercentile

transformation is immediately lost when X and Y have measurement error. This can

be shown by deriving their distributions for an arbitrary population with ability

distribution f(y) as

fXðxÞ ¼
ð
fXjyðxÞf ðyÞdy; (13.6)

fYðyÞ ¼
ð
fYjyðyÞf ðyÞdy: (13.7)

The equipercentile transformation is applied to the marginal distributions fX(x)
and fY(y). As test forms X and Y have different items, fX|y(x) and fY|y(y) are different.
Any change of f(y), therefore, has a differential effect on fX(x) and fY(y), and
produces a different equating transformation. This is hard to accept for individual

test takers who expect their test scores to be adjusted for the differences between the

items in tests X and Y but actually get a score that depends on the abilities of the

other test takers who happen to be in the chosen population.

13.2.3 Lord’s Theorem

We are now able to discuss Lord’s theorem:

Theorem 2. Under realistic conditions, scores X and Y on two tests cannot be

equated unless either (i) both scores are perfectly reliable or (ii) the two tests are

strictly parallel [in which case ’(y) ¼ y].

As the equipercentile transformation in Equation 13.3 was derived for the

case of perfectly reliable scores, the sufficiency of this condition for equipercentile

observed equating is obvious. To prove the sufficiency of the second condition

(strictly parallel tests), Lord (1980) used the criterion of equity in Equation 13.5 and

showed that the criterion only holds for monotonic transformations x ¼ ’(y) when
the two tests are item-by-item parallel, in which case ’(y)¼ y. I will skip the formal

proof and refer interested readers to Lord (1980, Section 13.3).

It is important to observe that Lord’s proof shows that the only monotonic trans-
formation from Y to X for which equity is possible is the identity transformation
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when the two tests are strictly parallel. It thus makes no sense to look for any other

monotonic transformation than the equipercentile transformation that might result

in equitable equating. In fact, the following example makes us even wonder if any
transformation could ever produce an equitable equating for all test takers: Suppose

the test scores that need to be equated are for tests with Guttman items at two

different locations y1<y2. All n items in test X are located at y1, all n items in test Y

at y2 For test takers with y<y1, the distributions of Xjy and Yjy are degenerate

distributions at x ¼ 0 and y ¼ 0, respectively; for test takers with y > y2, they are

degenerate distributions at x ¼ n and y ¼ n. Hence, for these two groups of test

takers, the two tests automatically produce identically distributed scores. However,

for y1 < y < y2, the distributions of Yjy remain at y ¼ 0 but those of Xjy are now at

x ¼ n. For these test takers, the number-correct scores have to be mapped from 0 on

test Y to n on test X. Thus, in order to produce an equitable equating, we have

to choose between this extreme transformation (and forget about the test takers

below y1 and above y2) and the identity transformation (and forget about those

between y1 and y2).

13.2.4 Two Approximate Methods

Lord (1980) then offered two approximate methods of equating. One method is IRT

true-score equating. Let i¼1, . . . , n denote the items in form X and j¼1,...,n those

in form Y. Each of the mainstream response models for dichotomously scored items

specifies a probability for the correct response as a function of y. We use Pi(y) and
Pj(y) for the response probabilities on the items in form X and form Y, respectively.

The (number-correct) true scores on forms X and Y are given by

x ¼
Xn
i¼1

PiðyÞ; (13.8)

� ¼
Xn
j¼1

PjðyÞ: (13.9)

If the item parameters have been estimated from response data with enough

precision, the only unknown quantity in Equations 13.8 and 13.9 is y. (Because the
response model is usually not identified, for the item parameters to be on the same

scale they have to be estimated simultaneously from response data for an appropri-

ate sampling design.) Variation of the unknown y creates a relation between x and �
that represents x as a (monotonic) function of �. Ignoring the differences between

observed scores X and Y and their true scores x and �, IRT true-score equating uses

this function to equate Y to X.
The other method is IRT observed-score equating. The method is based on an

approximation of Equations 13.6 and 13.7 by
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f̂XðxÞ ¼ N�1
XN
a¼1

f ðx jbyaÞ; (13.10)

f̂YðyÞ ¼ N�1
XN
a¼1

f ðy jbyaÞ; (13.11)

where ŷa are the ability estimates for a sample of test takers a ¼ 1, . . . , N. The two
estimated marginal distributions of forms X and Y are then used to derive the

equipercentile transformation.

13.2.5 An Intriguing Question

Lord (1980) was doubtful about the use of the method of true-score equating: “We

do not know an examinee’s true score. We can estimate his true score. . ..However,
an estimated true score does not have the properties of true scores; an estimated true

score, after all, is just another kind of fallible observed score” (Lord, 1980, p. 203).

But he also had his doubts about the method of IRT observed-score equating: “Is this

better than applying. . .true-score equating. . .to observed scores x and y?”.
Lord (1980) then explained the reason for his inability to choose between the two

approximate methods: “At present, we have no criterion for evaluating the degree

of inadequacy of an imperfect equating. Without such a criterion, the question

cannot be answered” (p. 203). The same uncertainty is echoed in the final section of

the chapter, which Lord (1980) began by admitting that practical pressures often

require that tests be equated at least approximately. He then summarized as follows:

“What is really needed is a criterion for evaluating approximate procedures, so as to

be able to choose from among them. If you can’t be fair (provide equity) to
everyone, what is the best next thing?” (p. 207).

This final question is intriguing. At the time, Lord already must have worked on

his asymptotic standard error of equipercentile equating, which was published

2 years later (Lord, 1982b), so he clearly did not refer to this development. Rather

than something that only evaluates the effect of sample size (as a standard error

does) but leaves the equating method itself untouched, he wanted a yardstick that

would allow him to make a more fundamental comparison between alternative

equating methods and to assess which would be closest to equity (provide “the next
best thing”).

13.3 Local Equating

Local equating is an attempt to answer Lord’s question. Its basic result is a theorem

that identifies an equating that would provide full equity and immediately suggests

how to evaluate any actual equating method against this ideal. Also, the theorem
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involves a twist that forces us to rethink much of our current theory and practice of

equating—a process that has led me both to better understanding of the fundamental

nature of the observed-score equating problem and a more intuitive appreciation of

the idea of local equating. It also suggests new equating methods that better

approximate the equity criterion than equipercentile equating. In this section, I

review the theorem and provide alternative motivations of local equating. A few

new equating methods based on the idea of local equating are discussed in the next

section

13.3.1 Main Theorem

The theorem follows directly from the equity criterion in Equation 13.5. Lord

(1980) expressed the criterion as an equality of conditional probability functions.

Equivalently, it could be expressed as an equality of the conditional distribution

functions F’(Y)jy for the equated scores on test Y and FXjy for the observed score

on test X. However, rather than as an equality, we express the criterion as a

definition of equating error,

e2ðx; yÞ � F’ðYÞjy � FXjy; (13.12)

and require all error to be equal to zero for all y. The transformations x ¼ ’�ðyÞthat
solve this set of equations are the error-free or true equating transformations.

Thus, it should hold that

FXjyðxÞ ¼ F’ðYÞjyð’ðyÞÞ; y 2 R: (13.13)

Solving for x by taking the inverse of FXjy,

x ¼ ’�ðy; yÞ ¼ F�1
XjyF’ðYÞjyð’ðyÞÞ; y 2 R: (13.14)

However, because ’(·) is monotone, F’(Y)jy(j(y))¼ FYjy(y). Substitution results in

’�ðy; yÞ ¼ F�1
XjyðFYjyðyÞÞ; y 2 R; (13.15)

as the family of true equating transformations.

Surprisingly, Equation 13.15 involves the same type of transformation as for

the equipercentile equating in Equation 13.3, but it is now applied to each of the

conditional distributions of Xjy and Yjy instead of only once to the marginal

distributions of X and Y for a population of test takers. The fact that the derivation

leads to an entire family of transformations reveals a rather restrictive implicit

assumption in Lord’s theorem, as well as all of our traditional thinking about

equating: namely, that the equating should be based on a single transformation
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for the entire population of choice. Relaxing the assumption to different transfor-

mations for different ability levels opens up a whole new level of possibilities for

observed-score equating that is waiting to be explored. The following theorem is

offered as an alternative to Lord’s (for an extended version, see van der Linden,

2000):

Theorem 3. For the population of test takers P for which test scores X and Y
measure the same ability y, equating with the family of transformations ’�ðy; yÞ in
Equation 13.15 has the following properties: (i) equity for each p ∈ P; (ii) symme-

try in X and Y for each p ∈ P; and (iii) invariance within P.

Proof. (i) For each p ∈ P there is a corresponding value of y, and for each y
the transformation in Equation 13.15 matches the conditional distributions of ’*(Y)
and X given y. (ii) The inverse of F�1

XjyFYjyðyÞ is F�1
YjyFXjyðxÞa, which is Equation

13.15 for the equating from X to Y. (iii) The conditional formulation of Equation

13.15 implies independence from the distribution of y over P. As a consequence, the
family holds for any subpopulation of P.

In addition to equity, the family of transformations thus has the properties of

symmetry and population invariance—other criteria identified by Lord (1980,

Section 13.5) as essential to equating. The criterion of symmetry is usually moti-

vated by observing that it would be hard to understand why a reversal of the roles of

X and Y should lead to a different type of equating. It should—and does—hold for

the definition of the true equating transformations in Equation 13.15. When select-

ing an actual method in an equating study, we sometimes are faced with trade-offs

between the three criteria, and it then makes sense to sacrifice some symmetry to get

closer to the more desirable property of equity. As we shall see later, the same

choice is made for some of the traditional methods of equating.

As for the issue of population invariance, the criterion of equity in Equation 13.5

is defined conditional on y. Hence, if the criterion holds, it automatically holds for

any subpopulation of P as well. But the criterion also implies the definition of the

family of transformations in Equation 13.15. It follows that equity is a sufficient
condition for population invariance within P. This conclusion implies that an

effective attempt to get closer to population invariance is approximating equity.

Also, note that the theorem defines the ultimate population P for which the

invariance holds as the population of persons for which tests X and Y measure the

same y. We have a clear empirical criterion to evaluate membership of P: the joint
fit of the response model in the testing program for the two tests. Besides, although

the definition of P excludes arbitrariness, it is nevertheless open in that it not only

includes all past or current test takers whose response behavior fit the model but

encompasses future test takers for which this can be shown to hold as well. Finally,

unlike traditional observed-score equating, the definition of P does not entail any

necessity of random sampling of test takers.

The error definition in Equation 13.12 implies the ideal or true equating that pro-

vides equity but also offers the “criterion for evaluating approximate procedures”

that Lord (1980) wanted so badly: For any arbitrary transformation ’(y), the
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criterion is just the difference between the conditional distribution functions for the

equated scores ’(Y)jy and the scores Xjy in Equation 13.12. Observe that the

difference is a function of x and that we have a different function for each y ∈ R.
Also, because of its conditioning on y, the evaluation is population invariant within
P—an evaluation of the equated scores ’(Y) for any subpopulation of P automati-

cally holds for any other subpopulation.

Alternatively, we can compare any given transformation ’(y) directly with the

family of true transformations ’�ðy; yÞ in Equation 13.15. This comparison leads to

the alternative family of error functions:

e3ðy; yÞ ¼ ’ðyÞ � ’�ðy; yÞ
¼ ’ðyÞ � F�1

XjyðFYjyðyÞÞ; y 2 R:
(13.16)

Of course, the results from both evaluations are equivalent: An equating trans-

formation is error free if and only if its equated scores are. A critical difference

between Equations 13.12 and 13.16, however, exists with respect to the scale on

which they are defined: The error functions in Equation 13.12 are functions of x but
those in Equation 13.16 are functions of y. The former are convenient when we have

to evaluate an equating from a test Y with a variable composition to a fixed form X,

for instance, from an adaptive to a linear test. For a more extensive discussion of

these two alternative families of error functions, see van der Linden (2006a, b).

The definition of equating error is only the first step toward a standard statistical

evaluation of observed-score equating. For the implementations of local equating

discussed later in this chapter, the error functions above will be used to define the

bias and mean-square error functions of an equating, that is, the expectations of the
error and squared error over essential random elements in the implementation.

These additional steps take the evaluation of equating to the same level as, for

instance, the standard evaluation of an estimator of an unknown parameter or a

decision rule in statistics.

In principle, we are now ready to look for equating methods that approximate the

family in Equation 13.15 as closely as possible and evaluate these methods using

these statistical criteria. The challenge, of course, is to find a proxy of the unknown

y that takes us as closely as possible to the true member in the family for each test

taker. Before exploring the possibilities, I motivate the idea of local equating from a

few alternative points of view.

13.3.2 Alternative Motivations of Local Equating

All of current observed-score equating is based on the use of a single transforma-

tion. However, the example at the end of the discussion of Lord’s theorem above

already hinted at the fact that no transformation whatsoever could ever establish an
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equitable equating at each ability level for a population of test takers. The following

thought experiment illustrates this point again (van der Linden &Wiberg, in press).

Suppose a person p with ability level yp takes test form Y, and a test specialist is

asked to equate his or her observed score yp to a score on test form X. For the sake of

argument, suppose the specialist is given the full observed-score distributions for

yp on both tests, that is, FX(xjyp) and FY(yjyp). For this single-person population, an
obvious choice from a traditional point of view is to use the equipercentile trans-

formation x ¼ ’pðyÞ ¼ F�1
XjypðFYjypðyÞÞ to equate the observed score yp to a score on

form X. Now suppose a second person q with another ability level takes the same

test, and the same specialist is asked to equate this person’s observed score yq.
The specialist, who is also given the distribution functions for q, is then faced with

the choice between (a) using a separate equipercentile transformation for q or (b)

treating the two test takers as a new population and using the equipercentile

transformation for the marginal distributions of it. The first option would only

involve establishing another individual transformation ’q(y), analogous to ’p(y).
The result would be an equitable, symmetric, and population-invariant equating for

both test takers. The second option would require the marginal distribution func-

tions for the population, which is the average of the separate functions for p and q.
Letting F0

XðxÞ and F0
YðyÞ denote the two averages, the alternative equating transfor-

mation would be x ¼ ’0ðyÞ ¼ F0
X
�1ðF0

YðyÞÞ. This second option would miss all

three features. In fact, its problem would become even more acute if we kept adding

test takers to the population: For each new test taker, the equating transformation

would change. Even more embarrassing, the same would happen to the equated

scores of all earlier test takers.
Clearly, traditional equipercentile equating involves a compromise between the

different transformations required for the ability levels of each of the test takers in

an assumed population. In doing so, it makes systematic errors for each of them. In

more statistical terms, we can conclude that the use of a single equating transfor-

mation for different ability levels involves equatings that are structurally biased for

each of them. The error function in Equation 13.12 reflects the size of the bias for

each individual test taker.

The history of test theory shows an earlier occasion where a similar choice had to

be made between a one-size-fits-all approach and one based on individual ability

levels—the choice of the standard error of measurement for a test. The classical

standard error was a single number for an entire population of test takers derived

from the reliability of the test. It was quickly recognized that this error was a

compromise between the actual errors at each ability level and was thus always

biased. For example, a test that matches an individual test taker’s ability level is

known to be more informative than one that is much too difficult or too easy—a

fact that should be reflected in the standard errors for the individual test takers.

The classical standard error is now widely replaced by the conditional standard

deviation of the observed score given ability, that is,

½VarðX j yÞ�1=2: (13.17)
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The family of true equating transformations ’�ðy; yÞ in Equation 13.15 is based

on the full conditional distributions of the observed test scores, of which this

conditional standard error represents the dispersion.

Interestingly, the family ’�ðy; yÞ also can be shown to generalize Lord’s first

approximate equating method—the true-score equating in Equations 13.8–13.9.

The equating following from this set of two equations is usually presented as a table

with selected pairs of values of � and x used to equate the observed scores on form

Y to X. It is tempting to think of this format as the representation of a single

equating transformation. However, this conclusion would overlook that Equations

13.8–13.9 actually are a system of parametric equations, that is, a family of

mappings with y as index. When applied to equate Y to X, it becomes the family

of true equating transformations in Equation 13.15 with its distributions degener-

ated to their expected values E(X j y) and E(Y j y):

EðYjyÞ ! EðXjyÞ; y 2 R: (13.18)

Obviously, much is to be gained when we avoid this degeneration and turn to an

equating based on the full conditional distributions of X and Y.
It is also instructive to view Lord’s (1980) second approximate method in

Equations 13.10–13.11 from the perspective of the family of true equatings in

Equation 13.15. This method substitutes ability estimates bya for the test takers

in a sample a ¼ 1, . . . , N into the set of equations for the marginal distributions of

X and Y in Equations 13.6–13.7. However, as already indicated, the factors fXjy(x)
and fYjy(y) in these equations are for different items, and any change of population

h(y) (or sample of test takers in this approximate method) has a differential effect

on fX(x) and fY(y) and therefore produces a different equipercentile transformation.

An effective solution to this problem of population dependency is to just ignore the

common second factor h(y) in the integrands in Equations 13.6–13.7 and base IRT

observed-score equating only on their first factors fXjy(x) and fYjy(y) for the esti-

mates bya, precisely the choice made in the first local equating method discussed

later in this chapter.

On the other hand, the traditional approach to the problem of population depen-

dency has been to identify some special population h(y) and use this as a standard

for the equating. Two versions of the approach exist. One is based on the idea of a

synthetic population to be derived from the two actual populations that take tests X

and Y. Braun and Holland (1982, Section 3.3.2), who introduced the notion, defined

it as any population with a distribution function equal to a linear combination of the

functions for the two separate populations. More formally, if FX(y) and FY(y) are the
distribution functions for the populations who take tests X and Y, the synthetic

population has distribution function

wFXðyÞ þ ð1� wÞFYðyÞ; (13.19)

with 0 � w � 1 a weight to be specified by the testing program. The definition

could be justified by two-stage sampling of the test takers in the equating study from
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the separate populations for tests X and Y with weights w and 1-w. However, this
type of weighted sampling is rarely used in this context. More importantly, equat-

ings are always required only for the scores of the population that takes the new test

form, Y, and any nonzero weight w would detract from this goal (van der Linden &

Wiberg, in press).

The other approach recognizes this fact and uses the population for Y as the

standard. It does so by identifying the critical variables on which the populations

for X and Y differ and using them to resample the population for X to match

the population for Y. The two matched distributions are then used in the actual

equating. For evaluations of this approach with matched samples, see, for instance,

Dorans (1990); Dorans, Liu, and Hammond (2008); Liou, Cheng, and Li (2001);

and Wright and Dorans (1993).

The use of synthetic or matched populations does not take population depen-

dency away. For each test taker, it still holds that the equated score depends on the

abilities of the other test takers in these synthetic or matched populations. Rather

than equating X and Y for populations with identical ability distributions, as these

two approaches attempt, we should equate them for identical abilities (i.e., condi-

tion on ability). Finally, notice that the use of a matched population also implies

loss of symmetry of the equating. Except for the case of weight w ¼ .5, the same

holds for the use of a synthetic population.

At first sight, local equating may seem liable to two different objections, one

involving an issue of fairness and the other being more philosophical. The former

has to do with the fact that local equating implies different equated scores for the

same score Y ¼ y by test takers with different abilities. This different treatment of

equal observed scores seems unacceptable. However, the following example shows

that actually the opposite holds: Consider the case of two test takers p and q who

both have a score of 23 items correct on a 30-item test Y. Traditional equipercentile

equating routinely would give both test takers the same equated score, a higher

score than 23 if test Y appears to be more difficult than test X and a lower score if it

appears to be easier. Now, suppose we are told that p and q have the observed-score
distributions in Figure 13.1. As the figure reveals, the score observed for q was in

the lower tail of q’s distribution. However, p had better luck; p’s score was in the

upper tail of the distribution. Would it be fair to give the two individuals the same

equated score on test X? Or should we adjust their equated scores for measurement

error? After all, we do live in a world of fallible measures.

The critical question, of course, is where our knowledge of the abilities and the

observed-score distributions of the test takers could come from. The true challenge

to local equating lies in the answer to this question, not in any of the conceptual or

more formal issues we have dealt with so far. But in fact we often know more

than we realize. For instance, in observed-score equating, we generally ignore the

information in the response patterns that leads to the observed scores. The example

in Figure 13.1 typically arises when two test takers have equal number-correct

scores but one fails on some of the easier items and the other on some of the

more difficult ones. We immediately return to this important question in the next

section.
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The more philosophical issue regards the question of how we seriously could

propose using different equating transformations for a single measurement instru-

ment. No one would ever consider doing this, for instance, when a tape measure

appears to be locally stretched and its (monotonically) distorted measurements need

to be equated back to those by a flawless measure. The idea of using different

transformations to equate identical measurements on the distorted scale back to the

standard scale would seem silly. Why, then, propose this for number-correct score

equating in testing? This question is problematic because of its implicit claim of

the number-correct score as a measure with the same status as length measured by

a tape measure. Number-correct scores are entirely different quantities, though.

Unlike length measures, they are not fundamental measures, which always can be

reduced to a comparison between the object that is measured and a concatenation of

standard objects (e.g., an object on one scale and a set of standard weights on the

other). They are also not derived from such measures. (For a classic treatment of

fundamental and derived measurement, see Campbell, 1928). More surprisingly,

perhaps, although defined as counts of correct responses, number-correct scores

are not counting measures, either. They would only be counting measures if all

responses were equivalent. But they are not—each of them always is the result of an

interaction between a different combination of ability level and item properties.

This last fundamental fact was already noted when I introduced Lord’s (1980)

notation for observed-score equating in the beginning of this chapter and stated,

“Because X and Y are dependent both on the abilities of the test takers and the

properties of the items, an equating problem exists.” An effective way of disen-

tangling ability and item effects on test scores is to model them at the level of the

item-person combinations with separate item and person parameters, as IRT does.

Observed-score equating is an attempt to deal with the same problem at the level of

test scores in the form of a score transformation. But before applying any transfor-

mation to adjust for the differences between the items in different tests, we have

to condition on the abilities to get rid of their effects. Monotonic transformations
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Fig. 13.1 Example of two test takers p and q with different abilities but the same realized

observed score Y ¼ 23
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x ¼ ’(y) that adjust simultaneously for item and ability effects on observed test

scores on tests X and Y do not exist.

13.4 A Few Local Equating Methods

According to Lord’s theorem, observed-score equating is possible only if the scores

on forms X and Y are perfectly reliable or strictly parallel. On the other hand,

Theorem 3 in this chapter shows that equating under regular conditions is still pos-

sible, provided we drop the restriction of a single transformation for all ability levels.

It may seem as if Theorem 3 only replaces one kind of impossible condition

(perfect reliability or strictly parallelness) by another (known ability). However, an

important difference exists between them. Post hoc changes of the reliability and

the degree of parallelness of test forms are impossible; when equating the scores on

a test form, we cannot go back and make them more reliable or parallel. As a result,

Lord’s theorem leaves us paralyzed; it offers no hint whatsoever as to what to do

when real-world tests have less than perfect reliability or are not parallel. On the

other hand, we can always try to approximate the family of true equating transfor-

mations in Equation 13.15 using whatever information is available in the test

administration or equating study. Clearly, the closer the approximation, the better

the equating. In fact, even a rough estimate or a simple classification of the abilities

may be better than combining them into an assumed population before conducting

the equating.

The name local equating is derived from the attempt to get as close as possible to

the true equating transformations in Equation 13.15 to perform the equating. The

error definitions in Equation 13.12 or Equation 13.16 can be used to evaluate

methods based on such attempts in terms of their bias and mean standard error

using a computer simulation with response data generated for known abilities under

a plausible model.

Now that we know the road to equitable, population-independent equating, and

have the tools to evaluate progress along it, we are ready to begin a search for

Lord’s “next best thing.” The local equating methods below are first steps along this

road. I only review their basic ideas and show an occasional result from an

evaluation. More complete treatments and discussions of available results are

found in the references.

13.4.1 Estimating Ability

The first method is a local alternative to the IRT observed-score equating method in

Equations 13.10–13.11. It follows the earlier suggestion to obtain population-

independent equating by ignoring the common second factor h(y) in Equations

13.6–13.7 and basing the equating entirely on their first factors, fXjy(x) and fYjy(y).
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The main feature of this method is estimation of y under a response model that fits

the testing program, substituting the estimate in the true equating in Equation 13.15.

In fact, the procedure is entirely analogous to the use of the conditional standard

error of measurement in Equation 13.17, which also involves substitution of a y
estimate when used in operational testing.

For dichotomously scored test items, the conditional distributions of Y and X
given y belong to the generalized binomial family (e.g., Lord, 1980, Section 4.1).

Unlike the regular binomial family, its members do not have distribution functions

in closed form but are given by the generating function

Yn
i¼1

½QiðyÞ þ tPiðyÞ�; (13.20)

where Pi(y) is the success probability on item i for the response model in the testing

program and Qi(y)¼1�Pi(y). Upon multiplication, the coefficients of the factors

t1, t2,. . . in the expression are the probabilities of X¼ 1, 2, . . . . The probabilities are
easily calculated for forms X and Y using the well-known recursive procedure in

Lord and Wingersky (1984). From these probabilities, we can calculate the family

of true equating transformations in Equation 13.15. Thus, the family can be easily

calculated for any selection of ys as soon as the items in forms X and Y have been

calibrated for the testing program.

The estimates of y can be point estimates, such as maximum-likelihood esti-

mates assuming known item parameters or Bayesian expected a posterior estimates.

But we could also use the full posterior distribution of y for the test taker’s response
vector on form X to calculate his or her posterior expectation of the true family in

Equation 13.15. However, this alternative is more difficult to calculate and has not

shown to lead to any significant improvement over the simple procedures with a

point estimate of y plugged directly into Equation 13.15. More details on this local

method are given in van der Linden (2000, 2006a).

The local method of IRT observed-score equating lends itself nicely to observed-

score equating problems for test programs based on a response model. Another

natural application is the equating of an adaptive test to a reference test released to

its test takers for score-reporting purposes. In adaptive testing, y estimates are

immediately available. Surprisingly, this proposed equating of the number-correct

scores on an adaptive test is entirely insensitive to the fact that different test takers

get different selections of items; the use of the true equating transformations for the

test takers’ item selections at their y estimates automatically adjusts both for their

ability differences and the selection of the items (van der Linden, 2006b).

Observe that two different summaries of the information in the response patterns

on test Y are used: number-correct scores and y estimates. The latter picks up the

information ignored by the former. The earlier example for the two test takers with

the same number of items correct on Y in Figure 13.1, used to illustrate that they

nevertheless deserved different equated scores, was based precisely on this alterna-

tive type of IRT observed-score equating.
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For later comparison, it is also interesting to note the different use of the condi-

tional distribution functions in traditional and local IRT observed-score equating.

In both versions, y estimates of the test takers and the conditional distributions of

X and Y given these estimates are calculated from Equation 13.20. In the traditional

version, the conditional distributions are then averaged over the sample of test

takers to get an estimate of the marginal distributions for assumed populations on X
and Y, and the equipercentile transformation is calculated for these marginal

distributions (e.g., Zeng & Kolen, 1995). In the local version of the method, no

averaging takes place, but different equipercentile transformations are calculated

directly for the different conditional distributions of X and Y given y.
Figure 13.2 shows a typical result from a more extensive evaluation of the method

of local IRT observed-score equating against traditional equipercentile equating in

van der Linden (2006a). The curves in the two plots show the bias functions based on

the responses on two 40-item tests X and Y simulated under the three-parameter

logistic response model for the simulated values y ¼�2.0,�1.5, . . . , 2.0 (curves

more to the left are for lower y values). The bias functions were the expectations of

the error functions in Equation 13.16 across the simulated observed-score distribu-

tions on test Y given y. (The mean standard error functions in this study, which were

the expectations of the squares of the same errors, are omitted here because they

showed identical patterns of differences.) For the local method, the bias was ignor-

able. But the bias for the traditional method went up to 4 score points (i.e., 10% of the

score range) for some combinations of ys and observed scores. For an increase in test
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Fig. 13.2 Bias functions for (a) traditional equipercentile and (b) local item response theory (IRT)

observed-score equating for y ¼ �2.0(.5)20
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length, the bias for the traditional method became even worse, but for the local

method it vanished because of better estimation of y. For the same reason, the bias

decreased with the discrimination parameters of the items in test Y. Likewise, the

local method appeared to be insensitive to differences in item difficulty between tests

in X and Y because y estimates have this property.

13.4.2 Anchor Score as a Proxy of Ability

The traditional methods for observed-score equating for a nonequivalent-groups-

and-anchor test (NEAT) design are chain equating and equating with poststratifica-

tion. The former consist of equipercentile equating from Y to the observed score A
on an anchor test A for the population that takes form Y with subsequent equating

from A to X for the population that takes form X. The equating transformation from

Y to X is the composition of the separate transformations for these two steps. In

equating with poststratification, the conditional distributions of X and Y given A¼ a
are used to derive the distributions on forms X and Y for a target population, usually

a population that is a synthesis of those that took the two forms as in Equation

13.19, and the actual equating is equipercentile equating of the distributions for this

target population (von Davier, Holland, & Thayer, 2004b, Section 2.4.2).

As a local alternative to these traditional methods, it seems natural to use the

extra information provided by the anchor test to approximate the true family of

equating transformations in Equation 13.15. For simplicity, we assume an anchor

test A with score A that is not part of Y (“external anchor”). For an equating with an

internal anchor, we just have to add the score on this internal anchor to the equated

score derived in this section.

For an anchor test to be usable, A has to be a measure of the same y as X and Y.
Formally, this means a classical true score tA�E(A) that is a monotonic increasing

function of the same ability y as the true scores for X and Y. The exact shape of the
function, which in IRT is known as the test characteristic function, depends on the

items in A as well as the scale chosen for y. It should thus hold that tA¼g(y) where g
is an (unknown) monotonically increasing function and y is the same ability as for

X and Y.
An important equality follows for the conditional observed-score distributions in

the true equating transformations in Equation 13.15. For instance, for the distribu-

tion of X given y it holds that

f ðx j yÞ ¼ f ðx j g�1ðtAÞÞ ¼ f ðx j tAÞ: (13.21)

Similarly, f(yjy) ¼ f(yjtA). Thus, whereas y and the true score on the anchor test

are on entirely different scales, the observed-score distributions given these two

quantities are always identical.

This fact immediately suggests an alternative to the local method in the preced-

ing section. Instead of using an estimate of y for each test taker, we could use an
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estimate of tA and, except for estimation error, get the same equating. An obvious

estimate of tA is the observed score A. The result is a simple approximation of the

family of true transformations in Equation 13.15 by

’ðy; aÞ ¼ F�1
XjaðFYjaðyÞÞ; a ¼ 0; :::;m; (13.22)

where m is the length of the anchor test and FXja(x) and FYja(y) are the distribution
functions of X and Y given A ¼ a. Local equating based on this method is easy to

implement; it is just equipercentile equating directly from the conditional distribu-

tions of Y to those of X given A ¼ a.
It is interesting to compare the use of the different observed-score distributions

available in the NEAT design between the two traditional methods and this local

method:

1. In chain equating, the equipercentile transformation is derived from four differ-

ent population distributions, namely, the distributions of X and Y for the popula-

tions that take tests X and Y and the distributions of A for the same two

populations.

2. In equating with poststratification, the conditional distributions of X and Y given

A ¼ a are used to derive the marginal distributions of X and Y for a target

population. The equating transformation is applied to these two distributions.

3. The current method of local equating directly uses the conditional distributions

of X and Y given A ¼ a to derive the family of equating transformations in

Equation 13.22.

The only difference between the previous method of local equating based on

maximum likelihood or Bayesian estimation of y and the use of the anchor test

scores A ¼ a as a proxy of y resides in the estimation or measurement error

involved. (I use the term proxy instead of estimate because, due to scale differences,
A is not a good estimate of y.) These errors have two different consequences. First,

for both equatings they lead to a mixing of the conditional distributions in Equation

13.15 that actually should be used. For direct estimation of y, the mixing is over the

distribution of y given the estimate, yjby. But for Equation 13.22, it is over y j A ¼ a
where y¼ g�1(ta). The former can be expected to be narrower than the latter, which

is based on less accurate number-correct scoring. The impact of these mixing

distributions, which generally depend on the lengths of X and A as well as the

quality of their items, requires further study. But it is undoubtedly less serious than

the impact of mixing the conditional distributions on forms X and Y over the entire

marginal population distribution f(y) in Equations 13.6–13.7, on which the tradi-

tional methods are based. Second, in the current local method, the conditional

distributions of X and Y given A ¼ a are estimated directly from the sample,

whereas in the preceding method they are estimated as the generalized binomial

distributions in Equation 13.20. For smaller sample sizes, the former will be less

accurate.

Figure 13.3 shows results from the evaluation of the chain-equating, poststrati-

fication and local method for a NEAT design in van der Linden and Wiberg
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(in press). The results are for a study with the same setup as for Figure 13.2 but with

a 40-item anchor test added to the design. Again, the local method outperformed the

two traditional methods. But it had a slightly larger bias than the local method in the

preceding section, because of the less favorable mixing of the conditional distribu-

tions of X and Y given y when A is used as a proxy of y. However, the more accurate

the proxy, the narrower the mixing distributions. Hence, as also demonstrated in

this study, the bias in the equated scores vanishes with the two main determinants of

the reliability of A—the length of the anchor test and the discriminating power of its

items. In this respect, the role of the anchor test in the current method is entirely

comparable to that of test form Y from which y is estimated in the preceding

method.

For testing programs that are response-model based, Janssen, Magis, SanMartin,

and Del Pino (2009) presented a version of local equating for the NEAT design with

maximum-likelihood estimation of y from the anchor test instead of the use of

A as a proxy for it. The empirical results presented by these authors showed bias

functions for this alternative method that are essentially identical to those in

Figure 13.2 and better than those in Figure 13.3. Janssen et al. also explained this

difference in performance by the fact that maximum-likelihood estimation of y
from A did a better job of approaching the intended conditional distributions of X
and Y given y than the use of number-correct anchor scores.

The study that produced the results in Figure 13.3 did not address the role

of sampling error in the estimation of the conditional distributions of X and Y
given A¼ a. For small samples, the error will be substantial. A standard approach to
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small-sample equating for NEAT designs, especially if the main differences

between the distributions of the observed scores on forms X and Y are in their

first and second moments, is linear equating in the form of Tucker, Levine, or linear

chain equating (Kolen & Brennan, 2004, Ch. 4). The use of local methods for linear

equating is explored in Wiberg and van der Linden (2009). One of their methods

uses the conditional means, mXja and mYja, and standard deviations, sXja and sYja,
of X and Y given A ¼ a to conduct the equating. The result is the family of

transformations

x ¼ ’ðy; aÞ ¼ mXja þ
sXja
sYja

ðy� mYjaÞ; a ¼ 0; :::;m: (13.23)

In an empirical evaluation, the method yielded better results than the traditional

Tucker, Levine, and linear chain equating methods but also improved on Equation

13.22 because of its reliance only on estimates of the first two moments instead of

the full conditional distributions of X and Y given A ¼ a.
So far, no explicit smoothing has been applied to any local equating method. The

application of smoothing techniques should reduce the impact of sampling error in

the estimation of the conditional distributions of X and Y given A¼ a for the NEAT
design to be considerable, especially for the techniques of presmoothing of

observed-score distributions proposed in von Davier et al. (2004b, Chapter 3).

13.4.3 Y ¼ y as a Proxy of Ability

The argument for the use of anchor score A as a proxy for y in the previous section

holds equally well for the realized observed score Y ¼ y. The score can be assumed

to have a true score � that is a function of the same ability y as the true score on form
X; see Equation 13.8–13.9. Again, scale differences between conditioning variables

do not matter, and we can just focus on the distributions of X and Y given � instead

of y. As Y ¼ y is an obvious estimate of �, it seems worthwhile exploring the

possibilities of local equating based on the conditional distributions of X and Y
given Y ¼ y that is, use

’ðyÞ ¼ F�1
XjyðFYjyðyÞÞ; y ¼ 0; :::; n: (13.24)

In an equating study with a single-group design, the distributions of X given

Y ¼ y can be estimated directly from the bivariate distribution of X and Y produced

by the study. The distributions of Y given y are more difficult to access. In fact, they

are only observable for replicated administrations of form Y to the same test takers.

However, Wiberg and van der Linden (2009) identified one case for which replica-

tions are unnecessary—linear equating conditional on Y ¼ y. For this case, the

general form of the linear transformation for observed-score equating specifies to
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x ¼ ’ðyÞ ¼ mXjy þ
sXjy
sYjy

ðy� mYjyÞ; y ¼ 0; :::; n: (13.25)

As classical test theory shows, mYjy ¼ y. Hence, the family simplifies to

x ¼ ’ðyÞ ¼ mXjy; y ¼ 0; :::; n: (13.26)

For all test takers with score Y ¼ y, this local method thus equates the observed

scores on Y to their conditional means on X.

In spite of the standard warning against the confusion of equating with regression

in the equating literature (e.g., Kolen & Brennan, 2004, Section 2.3), the local linear

equating in Equation 13.26 has the same formal structure as the (nonlinear) regres-

sion function of Y on X. Actually, however, Equation 13.26 is a family of degenerate

mappings with index y, just like the family for IRT true-score equating in Equation

13.18. (In fact, the equating in Equation 13.26 follows directly from Equation 13.18

if we substitute y as proxy for y.) Although it is thus incorrect to view Equation

13.26 as a direct postulate of the use of the regression function of X on Y for

observed-score equating, the formal equivalence between the two is intriguing.

Apparently, the fact that we allow for measurement error in X and Y when equating

does force us to rethink the relation between equating and regression.

An evaluation of Equation 13.26 showed a favorable bias only for the higher

values of y (Wiberg & van der Linden, 2009). Because the responses were

simulated under the three-parameter logistic model, the larger bias at the lower

values of y should be interpreted as the effect of guessing for low-ability test

takers—a phenomenon known to trouble traditional equipercentile equating as

well. This bias problem has to be fixed before practical use of the local method in

this section can be recommended.

13.4.4 Proxies Based on Collateral Information

In principle, every variable for which the expected or true scores for the test takers

are increasing functions of the y measured by forms X and Y could be used as a

proxy to produce an equating. The best option seems collateral information directly

related to the performances by the test takers on X or Y, such as the response times

on the items in Y or scores on a earlier related test. However, the use of more

general background variables, such as earlier schooling or socioeconomic factors,

should be avoided because of the immediate danger of social bias.

Empirical studies with these types of collateral information on y have not yet

been conducted. Of course, different sources of collateral information will yield

equatings with different statistical qualities. But the only thing that counts is

rigorous evaluation of each of these qualities based on the definitions of equating

error in Equations 13.12 and 13.16. These evaluations should help us to identify the

best feasible method for an equating problem.
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13.5 Concluding Remarks

The role of measurement error has been largely ignored in the equating literature.

When I had the opportunity to review two new texts on observed equating that now

have become standard references for every specialist and student in this area, I was

impressed by their comprehensiveness and technical quality but missed the neces-

sary attention to measurement error. Both reviews ended with the same conclusion:

“It is time for test equating to get a firm psychometric footing” (van der Linden,

1997, 2006c).

It is tempting to think of measurement error as “small epsilons to be added to test

scores” and to believe that for well-designed tests the only loss involved in ignoring

their existence are somewhat less precise equated scores. This chapter shows that

this view is incorrect. Equating problems without measurement error are structur-

ally different from problems with error; the score distributions for the former imply

single-level modeling; those for the latter hierarchical modeling. Lord’s (1980)

discussion of observed-score equating for the cases of infallible and fallible mea-

sures already revealed some of the differences: Without measurement error equat-

ing is automatically equitable and population independent, but with error these

features are immediately gone. This chapter has added another difference: Without

measurement error the same transformation suffices for any population of test

takers, but with error the transformations become ability dependent and we need

to look for different transformations for different ability levels.

The statistical consequence of ignoring such structural differences is not “some-

what less precise equated scores” but bias that, under realistic conditions, can

become large. This consequence is not unique to equating; it has been well

researched and documented in other areas, a prime example being regression with

errors in the predictors, which have a long history of study as “errors-in-variables”

problems in econometrics.

As the review of the local equating methods above suggests, the main change for

equating to allow for measurement error is a shift from equating based on marginal

distributions for an assumed population to the conditional distributions given a

statistical estimate or a proxy for the ability measured by the tests. In principle, the

formal techniques required for distribution estimation, smoothing, and the actual

equating, as well as the possible designs for equating studies, remain the same.

Thus, in principle, in order to deal with measurement error we do not have to reject

a whole history of prolific equating research, only to redirect its application.
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