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Time series analysis is a technique by which a large number of repeated measures 
taken from a single case can be modeled. As it requires observations from only 
one case, this is a useful technique for researchers interested in idiographic data 
analysis. The most basic time series technique is the well-known autoregressive 
moving average (ARMA) model (Box & Jenkins, 1970; Chatfield, 2004; Hamilton, 
1994). It combines the AR model and the MA model, both of which were separately 
invented in 1927 to handle the autocorrelation typically observed in time series data 
(Tong, 2001). Characteristic of the AR model is that the current observation is pre-
dicted from previous observations (Box & Jenkins, 1970; Granger & Morris, 1976). 
The part of an observation that cannot be predicted based on previous observations 
is called the random shock, residual, or innovation. In contrast, the MA model con-
sists of predicting the current observation from a weighted sum of previous ran-
dom shocks (Box & Jenkins, 1970; Granger & Morris, 1976). Combining these two 
models resulted in the ARMA model, which gained widespread popularity through 
the 1970 book Time series analysis: Forecasting and control by Box and Jenkins.

This chapter provides a brief tour of the original ARMA model and some of its 
most popular extensions, which were developed in econometrics and other fields 
that rely heavily on time series analysis. To emphasize the potential of ARMA-
based modeling for the social sciences, we include references to applications within 
psychology, sociology and criminology that illustrate the use and interpretation of 
these models. We do not focus on how to implement these models, nor will we dis-
cuss issues related to model estimation and evaluation, but the interested reader is 
referred to standard introductory texts such as Hamilton (1994), Chatfield (2004), 
Durbin and Koopman (2001), Harvey (1989), and Fan and Yao (2003).

In the following four sections we present the basic ARMA model and its exten-
sions: Section “ARIMA Models” is on the building blocks of the integrated ARMA 
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(ARIMA) model; Section “Univariate Extensions of the ARIMA model” includes, 
ARMA models with deterministic trends and cycles, seasonal ARIMA mod-
els, fractionally integrated ARMA models, and impact ARIMA models; Section 
“Multivariate Extensions of ARMA model” includes the vector ARMA (VARMA) 
model, VARMA models with exogenous variables, latent VARMA models, and 
the cointegrated model; and Section “Nonlinear Extensions of the ARMA model” 
includes the bilinear model, the conditional heteroscedastic model, the threshold 
AR model, and the Markov-switching AR model. Each section ends with a discus-
sion of applications of these techniques in the social sciences.

For all models discussed in this chapter it is assumed that the data are measured 
at interval or ratio level, and that observations are made at equal time intervals. 
However, at the end of this chapter we briefly mention some alternative techniques 
that are not based on these assumptions. Another important assumption for some 
of the models discussed in this chapter is stationarity. Assuming Gaussian data, 
stationarity implies that the mean, variance and autocovariances1 of the series are 
independent of time. The basic ARMA model is based on the assumption that the 
data are stationary, but many of its extensions are nonstationary (e.g., the ARIMA 
model). In what follows we consistently indicate whether certain processes are sta-
tionary or not.

ARIMA Models

In this section we introduce the building blocks of the general ARIMA model, that 
is: (a) the AR model; (b) the MA model; (c) the mixed ARMA model; and finally 
(d) the full ARIMA model.

Autoregressive (AR) Model

Let yt be a univariate observation at occasion t. In the most simple version of the AR 
model, the AR (1), the observation yt can be predicted from the previous observation 
yt−1. This can be represented as

 yt = φ0 + φ1yt−1 + ut ,   (1)

where 0 is a constant, 1 is the AR parameter, that is, it is the regression coefficient 
in the regression of yt on yt−1, and ut is the part of yt that could not be predicted from 
yt−1, and which is referred to as the innovation, residual, prediction error, or random 
shock. As the innovation at occasion t is the part of yt that is independent of the 

1 The autocovariance is the covariance between yt and yt+k, that is, E[( yt−μ) ( yt+k−μ)], where  is 
the mean of the series. The lag k is the distance in time. When k  =  0, we obtain the variance of the 
series. The autocorrelation at lag k can be obtained by dividing the autocovariance at lag k by the 
variance of the series.
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observations before occasion t, it is also independent of the innovations u prior to 
and after occasion t. Such a sequence is referred to as a white noise sequence. The 
mean of this sequence is zero and its variance is denoted as σ 2

u
. To ensure that the 

AR model in Eq. (1) is stationary, the parameter 1 has to lie between −1 and 1. If 
this restriction is violated, the variance of the process will increase over time. It can 
be shown that if 

φ1

 < 1 , the mean of the observed series is µy = φ0/(1− φ1), 
and its variance is σ 2

y = σ 2
u /(1− φ2

1)  (Chatfield, 2004).
A general expression of the AR model of order p (i.e., AR (  p)) is

 yt = φ0 + φ1yt−1 + φ2yt−2 + · · · + φpyt−p + ut,   (2)

where 0 is a constant, 1 to p are the AR parameters in the regression of yt on yt−1 
to yt−p, and ut is the innovation. For such higher order AR processes the stationarity 
restrictions are quite complicated (see Hamilton, 1989, pp. 27–33). If the proc-
ess is stationary, the mean can be shown to equal µy = φ0/(1− φ1 − . . . φp) . The 
expression for the variance of a pure AR process in terms of the variance of the 
innovations and the AR parameters is given in Hamilton (1994, p. 59).

Granger and Morris (1976) indicated that an AR process can be interpreted as a 
momentum effect in a random variable. To illustrate this, suppose we are driving 
down the freeway at a speed of 70 miles/h. If we measure the exact speed at differ-
ent occasions, we will find that the speed is not exactly 70 miles/h every time, but 
it actually fluctuates around this value. If we measure our speed once every minute, 
we will probably find no sequential relationship between successive observations. 
However, if we measure speed every five seconds, there probably will be some 
sequential dependency, simply because the variable speed needs time to change. If 
the interval between measurement occasions grows smaller, we will find a stronger 
sequential relationship between successive observations. In general we can state 
that the sequential dependency of a variable that is continuous over time (such as 
our speed), depends on the intervals between observations.

Moving Average (MA) Model

If an observation yt can be predicted by the unpredictable parts at previous occa-
sions, we have an MA process. It implies that the observation yt is a weighted sum 
of two or more innovations. An MA process of order one, denoted as an MA (1), 
can be expressed as

 yt = µy + ut − θ1ut−1,   (3)

where ut is a white noise sequence, y is the mean of the observed series, and  −1 is 
the MA parameter by which the innovation of the previous occasion is weighted.2 

2 In some texts −1 is replaced by 1, such that the minus sign is omitted. However, the above 
notation is more conventional, as it has some important advantages for the expression of particular 
characteristics of an MA process.
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We can also say that −1 is the parameter that is used to regress the observation yt 
upon the unpredictable part of the previous observation, that is, ut−1 . The variance 
of the observed series can be shown to equal σ 2

y = (1+ θ2
1 )σ

2
u  (Chatfield, 2004).

The general expression for an MA process of order q is

 yt = µy + ut − θ1ut−1 − θ2ut−2 − · · · − θqut−q,   (4)

where y is the mean of the observed series, −1 to −q are the parameters by which 
the previous innovations ut−1  to ut−q  are weighted. The variance of this process is 
equal to ( )1 1

2 2 2+ + +θ θ σ q u  (Chatfield, 2004).
Pure MA processes are by definition stationary. However, there are restrictions 

necessary to ensure the model is invertible, which implies that it can be rewritten 
as an AR model (we elaborate on this below). These restriction are analogous to the 
restriction on the AR parameters to ensure stationarity. For an MA (1), this implies 
that Qx must lie between − 1 and 1 (see Hamilton, 1994, p. 67, for invertibility 
restrictions for higher order MA processes).

Granger and Morris (1976) described an MA process as involving a variable in 
equilibrium, which is buffeted by a sequence of unpredictable events with a delayed 
or discounted effect. Hence, the innovation ut is interpreted as being due to events 
or circumstances that influence the variable under investigation yt. To illustrate this, 
suppose we ask an individual repeatedly to answer the question how good (s)he 
feels today. The score yt at a certain day is influenced by the circumstances that day 
ut (e.g., attending a party, getting some good news, having a disagreement with a 
good friend), but it may also depend on the events that took place in the recent past, 
i.e., ut−1  to ut−q .

Mixed Autoregressive Moving Average (ARMA) Models

The two processes described above can also be combined, resulting in an ARMA 
(  p, q) process. The general expression for such a process is
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where the innovation ut is a white noise sequence. Hence, yt is a weighted sum of 
previous observations, going back to yt−p , and previous innovations, going back 
to ut−q . To ensure stationarity, the same restrictions apply to the AR parameters as 
in the pure AR model. Similarly, to ensure invertibility, the same restriction apply 
to the MA parameters as in the pure MA model. The expression of the mean of the 
observed series is the same as for a pure AR model, but the expression for the vari-
ance is more complicated (see Hamilton, 1994, pp. 61–63).

A mixed ARMA process is difficult to interpret in substantive terms. However, 
each AR process of finite order can be rewritten as an MA process of infinite order, 
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i.e., an MA (∞). Conversely, each invertible MA process of finite order can be repre-
sented as an AR process of infinite order. Moreover, each mixed ARMA process of 
finite orders p and q, can be rewritten as either a pure AR process of infinite order, 
or a pure MA process of infinite order. This implies that the differences between 
pure AR, pure MA, and mixed ARMA models are not absolute, which in turn gives 
rise to the question how to choose between these different representations.3

In the Box and Jenkins approach the aim is forecasting and control, and the 
interpretation of the parameters is mainly in terms of predictive relations (Box & 
Jenkins, 1970). Hence, in this context it makes sense to find the model with the 
minimum number of parameters. For the social scientist often the substantive inter-
pretation is more important than forecasting, and from this perspective pure AR and 
pure MA models may be preferable over mixed ARMA models.

Yet another interesting relationship between ARMA models was published by 
Granger and Morris (1976), who showed that mixed ARMA processes can arise 
from summing independent, stationary processes. For instance, summing two AR 
(1) processes results in an ARMA (2, 1) process, and adding a white noise sequence 
to an AR (  p) process results in an ARMA (  p, p). Although it is not possible to dis-
entangle the original processes that have given rise to a mixed ARMA processes, 
mixed processes may be interpreted in terms of a summation of pure processes. Spe-
cifically, models in which white noise is added to a pure AR process are compatible 
with the idea of noisy measurements: It would imply that there is both measurement 
error (i.e., the white noise sequence), and prediction error (i.e., the unpredictable 
part in the AR process), which are two separate sources of variation.

Integrated Autoregressive Moving Average (ARIMA) Model

All the models discussed above are stationary, meaning that the mean, variance 
and autocovariances are invariant over time. A special class of nonstationary mod-
els is formed by the integrated models. Characteristic of an integrated process is 
that it becomes stationary after differencing it, meaning the previous observa-
tion is subtracted from the current observation. Thus, while yt is nonstationary, 
yt = yt − yt−1  is stationary. Sometimes, differencing needs to be carried out 
multiple times to obtain a stationary series. If differencing the data once results in 
stationarity, the process is said to have a unit root (cf., Hamilton, 1994), and it may 
be referred to as an I (1) process.

A simple example of an integrated process is an ARIMA (0, 1, 0) model, which 
is also referred to as a random walk, that is

 yt = yt−1 + ut .   (6)

3 In practice, a process of infinite order is not appealing, as there will be more parameters to esti-
mate than observations. However, in finite samples, the parameters beyond a certain lag will be 
insignificant and can be omitted from the model. The important issue is that there are no funda-
mental differences between these processes.



196 E. L. Hamaker and C. V. Dolan

While yt is nonstationary, differencing it results in yt = yt − yt−1 = ut , which 
is a stationary process. What is typical for a random walk is that while the mean is 
independent of time (i.e., E [yt ] = 0  for all t), the variance is ever increasing over 
time (i.e., Var[yt ]→∞  as t →∞ ).

A unit root process for which the differenced series obeys a stationary ARMA 
model is denoted as an ARIMA (  p, 1, q), that is

 yt = yt−1 + zt   (7a)

 zt = φ1zt−1 + · · · + φpzt−p + ut − θ1ut−1 − · · · − θqzt−q,   (7b)

where zt is the differenced series yt = yt − yt−1 , and is a stationary ARMA proc-
ess. Another unit root process which is applied frequently in econometrics is the 
random walk with drift. This model can be represented as

 yt = δ + yt−1 + ut ,  (8)

where δ  is referred to as the drift, or the stochastic trend (as opposed to a determin-
istic trend which is discussed in the following section). If δ > 0, yt  tends to increase 
over time, while if δ < 0, yt  tends to decrease.

The interpretation of unit root processes focuses on the difference scores ∆yt, 
which can be modeled as an ARMA (  p, q) process. For instance, if a researcher 
finds that an ARIMA (1, 1, 0) fits the data, this can be interpreted as meaning that 
the change from the previous occasion to the current occasion (i.e., ∆yt), can be 
predicted from the change that took place right before that (yt−1 ).

Applications in the Social Sciences

Many applications of ARMA and ARIMA modeling in the social sciences serve 
the purpose of prewhitening the data, which implies the data are transformed into 
a white noise series. The goal of prewhitening in these applications is to determine 
whether there are indications for causal relationships between two or more series, 
while controling for autocorrelation due to AR-, I-, and MA-components. It is well 
known that failing to account for such autocorrelation in the univariate series may 
result in spurious relationships between the series. While this procedure is still used 
today, there are multivariate extensions of the ARMA model which allow for the 
simultaneous modeling of the ARMA relations, and the mutual effects. Moreover, 
differencing may remove important information about the long run relationship 
between two or more series (e.g., in the case of cointegration, see below).

Applications of ARIMA modeling as a prewhitening technique in the social sci-
ences have been used relatively often to establish a relationship between aggregate 
time series, such as the alcohol consumption per capita and suicide or criminal 
violence rates (e.g., Bye, 2007; Razvodovsky, 2007). Bye (2007) for instance, con-
cluded that there was evidence for a causal effect of alcohol consumption on vio-
lence. An example of prewhitening in psychological research is the study done by 
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Andersson and Yardley (2000), who investigated the relationship between the pre-
whitened measures of dizziness and physical, mental, and emotional stress. They 
found evidence for concurrent relations mainly, although two of the ten participants 
were characterized by an increase in stress (either mental or emotional) prior to 
increases in dizziness. In another study, Andersson, Hägnebo, and Yardley (1997) 
used prewhitening to study the relationship between stress and symptoms associ-
ated with Meniere disease.

There are some studies in which ARIMA modeling was not used merely as a 
prewhitening device, but rather as a procedure to unveil the dynamics underlying 
the observed series. In particular, Fortes, Delintnières, and Ninot (2004) used the 
ARIMA (0, 1, 1) model as a means to understand the balance between two opposite 
forces: preservation and adaption. Let ŷt = yt − ut  be the expectation (i.e., the 
predictable part) of yt. Since yt = yt−1 + ut − θ1ut−1 , we can also write
 

ŷt = yt−1 − θ1ut−1

= ŷt−1 + ut−1 − θ1ut−1.

 

From the latter expression it becomes clear that if the MA coefficient θ1 is close 
to 1, this serves as a restoring mechanism, in which the expectation at occasion t is 
close to the expectation at occasion t − 1. Such a process may be interpreted as a 
form of preservation, meaning there is resistance to the influence of temporal effects 
(Fortes et al., 2004). In contrast, an MA coefficient further away from 1 implies the 
expectation changes, as the expectation at t is inflected by the innovation. The latter 
is more indicative of adaption to change, in which temporal disturbances tend to 
leave a persistent trace in the data (Fortes et al., 2004).

Fortes et al. (2004) apply ARIMA modeling to the data obtained from seven 
individuals on six variables related to self-esteem and physical self, and concluded 
that for 35 of the 42 series an ARIMA (0, 1, 1) model was the most appropriate 
model. ARIMA (0, 1, 1) models were also used by Peterson and Leckman (1998), 
who measured inter-tic interval in patients with Gilles de la Tourette syndrome, and 
investigated the temporal patterning of tics. They concluded that the tics intervals 
are nonstationary. In addition, the change in tic intervals oscillates rapidly, with 
large changes followed by small ones and vice versa. Note however that this appli-
cation differs from usual ARIMA applications, which are based on observations 
made at equal intervals.

Univariate Extensions of the ARIMA Model

In this section we discuss several univariate extensions of the ARIMA model, that 
is: (a) the ARMA model with trends, which are applicable if there is some kind 
of smooth development over time; (b) the seasonal ARIMA model, referred to as 
SARIMA model, which can be used if the process has a cyclic component to it;  
(c) the fractionally integrated ARMA model (denoted as ARFIMA or FARIMA 
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model), which can be used if a process exhibits long-range dependency; and (d) the 
impact ARIMA model, which can be used if there is a sudden impact of an interven-
tion or another sudden change.

ARMA Model with Trends

A logical extension of the ARMA model is to add a deterministic trend, such that the 
ARMA model describes the variability around this deterministic trend. The trend 
may have various functional forms, for instance, linear, quadratic, or cyclic. An 
ARMA model with a linear trend can be represented as

 yt = b0 + b1t + ỹt   (9a)

 ỹt = φ1ỹt−1 + · · · + φpỹt−p + ut − θ1ut−1 − · · · − θqut−q,   (9b)

where b0 is the intercept and b1 is the slope by which the observed series are 
regressed on time. The residual ỹt = yt − (b0 + b1t)  is then modeled as an ARMA 
(  p, q) process. Alternatively, the model in (9a) and (9b) may be represented in a 
single equation as

 yt = b∗0 + b∗1 t + φ1yt−1 + · · · + φpyt−p + ut − θ1ut−1 − · · · − θqut−q .   (10)

Note however that in this presentation the parameters b∗0  and b∗1  no longer have 
the easy interpretation of intercept and slope, which the parameters b0 and b1 have 
in Eq. (9a) (Hamaker, 2005).

Processes which consist of a deterministic trend with ARMA residuals are 
referred to as trend-stationary (Hamilton, 1994): Although these processes are not 
stationary themselves, they become stationary once the trend is removed. A trend-
stationary process may be difficult to distinguish from an integrated process with 
drift, as described in the previous section. However, if the process is an integrated 
process with drift, subtracting a linear trend would remove the time-dependency of 
the mean, but not of the variance. Thus, the resulting series would be mean-station-
ary, but not variance-stationary (Hamilton, 1994). Determining whether to subtract 
a linear trend or to difference the data can be done based on the results of a unit root 
test (see Hamilton, 1994, pp. 444–447).

Seasonal ARIMA Model

Box and Jenkins (1970) extended the ARIMA model to deal with seasonal effects. 
The basic idea of adding this seasonal component is to accommodate a cyclic 
effect. For instance, if we consider monthly data, the observation yt may depend 
to some extent on yt−12 , which represents a annual effect. Similarly, for daily data 
the observation yt may depend on yt−7 , representing a weekly effect. To deal with 
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these dependencies, the data may be differenced to remove this seasonality, but one 
can also specify AR or MA relationships at this seasonal interval. This results in the 
SARIMA (  p, d, q) × (P, D, Q) model, where p, d, and q refer to the ARIMA effects 
discussed before, and P, D, and Q refer to the ARIMA effects at a seasonal lag.

To represent a SARIMA model, we introduce another series zt which is obtained 
from yt by differencing both seasonally and in the way used for ARIMA models 
(Chatfield, 2004). Then this differenced series is modeled as a SARMA model, 
in which ARMA relationships can occur directly, or seasonally. For instance, if 
we consider a simple SARIMA model with only D  = 1 for a weekly effect (i.e., 
SARIMA (0, 0, 0) (0, 1, 0)), zt can be written as

 zt = (7)yt = yt − yt−7.  (11)

Assuming that d = D = 1, and that we are dealing with daily measurements for 
which we want to consider a weekly effect, zt becomes
 

zt = (7)yt = (7)yt −(7)yt−1

= yt − yt−7 − yt−1 + yt−8.

 
 (12)

Finally, if a SARIMA (1, 0, 0) × (0, 1, 0) model is considered with a weekly 
effect, this can be written as

 
zt = (7)yt

= φ1
(7)yt−1 + ut

= φ1(yt−1 − yt−8)+ ut

 
 (13)

such that yt = yt−7 + φ1(yt−1 − yt−8)+ ut .
Clearly, this approach allows for many possibilities. However, the interpretation 

in substantive terms may be difficult. For instance, it is conceivable that a person’s 
emotional state is subject to a weekly effect pattern, which may be captured with the 
model in (13). This would mean that the difference between today’s score and last 
week’s score can be predicted from the difference between yesterday’s score and the 
score on the same day last week using 1. It is doubtful whether applied researchers 
will find such explanations plausible. Alternatively, one may choose to model a sea-
sonal effect as a deterministic cyclic trend (as discussed above), such as a sine wave. 
Other options for handling seasonal effects are discussed at the end of this section.

Fractionally Integrated ARMA (ARFIMA) Model

The ARFIMA model is a generalization of the ARIMA (  p, d, q) model in which the 
integration parameter d can take on noninteger values. Integrated processes are non-
stationary, but become stationary after differencing the data. When d is an integer, it 
is easy to write down the expression of the stationary series in terms of the original 
series: For instance, when d  = 1, the stationary series is yt = yt − yt−1 , and for 
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d  =  2 we can write 2yt = yt −yt−1 = yt − 2yt−1 + yt−2 . But when d  = 0 .5, 
differencing is fractionally, and cannot be expressed in a simple difference equa-
tion (Granger, 1980). However, it implies that 0.5yt  is a stationary series. Such 
fractional integration can be combined with the usual AR and MA relationships, 
resulting in the ARFIMA model.

Characteristic of ARFIMA processes is that they exhibit long-term dependencies 
which becomes clear from a very slowly decaying autocorrelation function. This 
implies that an innovation at occasion t continues to influence future observations 
for a long time. For this reason such processes are also referred to as long-memory 
processes. However, Granger and Ding (1996) point out that many other processes 
may exhibit long-term memory and that this is not a unique feature of fractionally 
integrated processes.

When 0  <  d  < 0 .5, the variance of yt is finite, while 0.5  ≤  d  <  1 results in infi-
nite variance (Granger, 1980). Hamilton showed that for d  <  1, a fractionally inte-
grated process can be rewritten to a pure MA process of infinite order, in which the 
MA parameters decay slowly, that is

 yt = h0ut + h1ut−1 + h2ut−2 + · · ·   (14)

where hj
∼= (j + 1)d−1  (Hamilton, 1994, pp. 448–449). Hence, if d  = 0 .5, the MA 

coefficients would be: h0 = 1, h1 =  0.71, h2 = 0.58, h3 = 0.50, h4  = 0.43, etc. As 
d →−∞ , the process becomes a white noise sequence.

Granger (1980) also showed that ARFIMA models may arise from aggregating 
other processes. This implies that, as with mixed ARMA processes, an ARFIMA 
process can be interpreted as the sum of different processes.

Impact ARIMA Models

McCleary, Hay, Meidinger, McDowall, and Land (1980) present the impact or inter-
rupted ARIMA model which can be used to study the effect of an intervention (or 
event), while assuming that both before and after the intervention an ARIMA model 
is appropriate. To model the intervention effect they make use of a transfer function. 
The simplest version of this is the zero-order transfer function, which results in an 
abrupt, permanent change. Let It be a step function, such that It  = 0 before the inter-
vention, and It  = 1 afterward. Then, the observed series can be represented as

 yt = λIt + ωt,   (15)

where ωt is an ARIMA (  p, d, q) model, or potentially a SARIMA model. The param-
eter λ represents the effect of the intervention.

To allow for a more gradual impact of the intervention, we can use a first-order 
transfer function. To this end we define the intervention component as y∗t = yt + ωt , 
such that y yt t t= +* ω , where ωt is as defined above. Then,

 y∗t = ψy∗t−1 + λIt .   (16)
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This implies that prior to the intervention, the intervention component y∗
t = 0  so 

that yt = ωt . After the intervention takes place at t  =  τ, the intervention component 
can be expressed as
 

y∗τ+n =
n

i=1

ψi−1λ.

 
 (17)

From this it follows that if ψ  =  0, we have the zero-order transfer function such 
as discussed above, with an immediate and abrupt effect of the intervention; if 
ψ  =  1 the intervention component y∗

t
 continues to grow in a linear fashion with 

slope λ; and if 0  <  ψ  <  1, the intervention has a gradual effect which levels off 
some time after .

While interrupted time series models, such as discussed here, have proved valu-
able in studying the effects of community interventions (e.g., the effect of safety 
warnings on antidepressants used among youths, see Olfson, Marcus, & Druss, 
2008), these models may be less appropriate for studying interventions in the form 
of psychotherapy, because there the changes are likely to take place more slowly, 
typically across the entire course of therapy. Moreover, a patient in psychotherapy 
may display various degrees of relapse, which may require repeated or revised ther-
apeutic intervention. Another potential limitation of these interrupted ARIMA mod-
els is that it is assumed that only the level changes, while the ARIMA process ωt is 
unaffected by the intervention. To overcome these limitations, one could decide to 
model separate trends and ARIMA processes before and after the intervention, and 
determine whether certain parameters may be constrained across these two phases 
(e.g., Hamaker, Dolan, & Molenaar, 2003).

Rather than using the step function as represented by It, one may consider a pulse 
function Pt, which is defined as Pt  =  1 at the time of the intervention, and Pt  =  0 
before and after the intervention. Such an intervention model can be valuable if the 
effect of the intervention is reversible, for instance, the effect of medication on the 
hyperactivity behavior of a child diagnosed with attention deficit hyperactivity dis-
order. Such an intervention model has parallels with what is known as ABA-designs 
(cf., Hersen & Barlow, 1976).

Applications in the Social Sciences

Hamaker et al. (2003) illustrated ARIMA modeling with deterministic trends using 
three data sets: concentration of luteinizing hormone in blood samples from a 
healthy female measured at 10 min intervals during the late follicular phase; annual 
employment percentages of different populations between 1972 and 1998; and the 
perceptual speed scores of a patient diagnosed with schizophrenia before and after 
intervention with medication.

Buck and Morley (2006) used SARIMA modeling to study attentional pain con-
trol strategies. Because they obtained three measurements per day, they used sea-
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sonal differencing to model the time-of-day effect. However, it seems that the actual 
SARIMA modeling procedure has not seen many applications in the social sciences, 
and often an alternative way to account for seasonal effects is employed. An exam-
ple of this can be found in Ichii (1991), who studied the effect of suicide news on 
monthly suicide rates in Japan. In order to control for a possible seasonal effect, the 
current suicidal rate is not only regressed upon last month’s suicidal rate (and of 
the month before that in some models), but also on the suicidal rate 12 months ago. 
Although this may seem like a SARIMA (2, 0, 0) (0, 1, 0) model, it is not: The latter 
would result in yt = yt−12 + φ1(yt−1 − yt−13)+ φ2(yt−2 − yt−14)+ ut , while the 
model used by Ichii is yt = φ1yt−1 + φ2yt−2 + φ12yt−12 + ut  (Ichii, 1991).

Fractionally integrated processes have enjoyed an increasing interest in the area 
of reaction time data, where it has been stated by some that long-range memory 
processes are omnipresent. However, Wagenmakers, Farrell, and Ratcliff (2004) 
have shown that about half of the empirical time series they considered could be 
described better with a stationary ARMA (1, 1) process, than with an ARFIMA 
(1, d, 1) process. Delignières, Fortes, and Ninot (2004) applied fractional models 
to the repeated measurements of self-esteem and physical self of four participants. 
They conclude that there is not only a balance between preservation and adaption in 
the short run (as can be shown with an ARIMA (0, 1, 1) model), but that this balance 
occurs at multiple time scales in a self-similar way. They indicate that a fractionally 
integrated process is a compromise between the absolute preservation of the expec-
tation (i.e., ŷt = yt − ut ), as in a white noise process where the expectation is equal 
to zero for all occasions, and the absolute adaption to change as in the (non-fraction-
ally) integrated process where the expectation is equal to the last observation.

An example of interrupted time series on aggregate time series can be found in 
Haker, Lauber, Malti, and Rössler (2004), who studied the effect of the 9 / 11 attacks 
and the 9 / 27 amok in Zug in Switzerland (i.e., there are two interventions), on 
weekly psychiatric patient admissions. They concluded that, contrary to ordinary 
belief, external psychosocial factors do not influence the need for hospitalization of 
patients with severe mental disorders. Another example is the study by Cohan and 
Cole (2002), who investigated the effect of a natural disaster on major family transi-
tions. Their data consist of annual marriage, birth and divorce rates in South Caro-
lina. They also used a pulse function, i.e., a variable with value zero for the years 
1975–1989, value one for the year 1990 to model the effect of Hurricane Hugo in 
1989, and value zero for the years 1991–1997. They found that (after controling for 
the general changes over the 24 year span), birth, marriage, and divorce rates were 
elevated in 1990, indicating that natural disasters mobilizes people to take action in 
their personal lives.

Multivariate Extensions of ARMA Model

The multivariate extensions of the ARMA model can be divided into four classes: 
(a) extensions in which the AR and MA relationships are modeled between the 
observed variables; (b) an ARMA model in which exogenous variables are included; 
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(c) extensions which are based on introducing latent variables that are measured by 
multiple indicators, with an ARMA process at the latent level; and (d) cointegrated 
models in which the combination of two nonstationary processes is stationary.

Vector ARMA Model

The vector ARMA or VARMA model is a straightforward extension of the univari-
ate ARMA model, which was discussed above. Let yt be an M-variate observation 
at occasion t, which may be predicted from previous observations, and from unpre-
dictable parts of previous observations. The VARMA (  p, q) model is denoted as

 
yt = φ0 +1yt−1 + · · · +pyt−p + ut −1ut−1 − · · · −qut−q

= φ0 +
p

j=1

jyt−j + ut −
q

j=1

jut−j

 
 (18)

where 0 is an M-variate vector with constants, and ut is an M-variate vector with 
innovations. Although not strictly necessary, the elements of ut are often assumed to 
be uncorrelated with each other.

The M  × M matrices  contain the AR parameters on the main diagonal (i.e., 
the parameters that are used to regress the series upon itself at an earlier occasion), 
while the off-diagonal elements represent the cross-regression parameters. Thus, 
element ij,k is used to regress the series i at occasion t on the series j at t − k. These 
matrices are not necessarily symmetric. For instance, series i may be regressed upon 
series j at previous occasions (ij,k ≠ 0), whereas series j is not regressed on series 
i (ji,k  =  0). The M   ×  M matrices  contain the MA coefficients on the main diago-
nal. The off-diagonal elements are the parameters by which the unpredictable part 
of one series at a particular occasion may be predictive of the observation of another 
series at a later occasion. The model in Eq. (18) may be further simplified to a 
VAR model, in which case all  matrices are zero matrices (e.g., Hamilton, 1994, 
p. 291). Such models may be used to determine whether there are indications of 
causal relationships between two or more variables that were measured repeatedly. 
Hence, it is a more sophisticated alternative to investigating reciprocal influences 
than by means of prewhitened series.

At first sight the VAR model may seem useful for modeling all kinds of data for 
which we assume one of the variables has a causal effect on the other (and possible 
vice versa). However, a VARMA model represents a stationary model and thus it 
requires the data to be stationary or to be rendered stationary by a suitable transfor-
mation. Suppose a researcher is interested in the effect of the empathy of a therapist 
on the depressive symptoms of a client. If the latter actually show a decline over 
time, the raw observations can not be modeled directly according to a VAR process. 
Rather, the researcher will have to make the series stationary, either by detrending 
the data or by differencing the data. Both approaches have disadvantages.
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On the one hand, detrending the data through subtracting a linear (or another) 
trend implies that if one uses the therapist’s data to predict the detrended client’s 
data, one is merely predicting the deviations to the deterministic trend.4 However, 
a beneficial effect of the therapy is represented by a decrease over time in symp-
tomatology, which has been taken out when the data are detrended. Thus, one is not 
really modeling the part one is interested in when applying the VARMA model to 
the detrended data.

On the other hand, differencing the data is based on the assumption that the proc-
ess has properties related to a random walk. Recall that a random walk has an expec-
tation of zero, which would imply that the client could just as well improve as worsen 
over time, with no structural change in the long run. To ensure a positive change in 
the long run, we would have to find a negative drift (which indicates a decrease in 
symptomatology). However, this drift is a constant, and is not modeled as a function 
of the therapist’s behavior. In sum, neither solution allows for modeling the structural 
change as a function of the therapist’s behavior. An alternative that may be more 
appropriate is the cointegration technique discussed later in this section.

VARMAX Model

A VARMAX model is simply a VARMA model with J observed exogenous vari-
ables, denoted as xt. The VARMAX model can be written as
 

yt = φ0 +
p

j=1

jyt−j + ut −
q

j=1

jut−j +
r

j=0

jxt−j ,
 
 (19)

where j is an M x J matrix with regression coefficients by which we predict yt 
from xt−j . Such models are particularly suited if we are interested in modeling yt 
and we know or expect it to depend on the x-variables, and we are not interested in 
how the y-variables influence xt, either because this is not our focus, or because it is 
theoretically impossible for xt to be affected by the y-variables. An example of the 
latter would be the effect of weather (e.g., temperature, amount of sunshine, amount 
of rain) on mood variables (e.g., positive and negative affect): Then the mood vari-
ables are modeled as a VARMA process with exogenous variables in the form of 
weather aspects. Note that if we have reason to believe the exogenous variables are 
in fact influenced by the other variables, we should turn to a VARMA model which 
contains all variables as y-variables.

A special case of the VARMAX model is formed by having M  =  1, such that the 
outcome yt is univariate. Such a model is referred to as an ARMAX model. Moreo-
ver, when time t (and/or polynomials of t) are used as the exogenous variable (with 
r  = 0), this model becomes a multivariate extensions of the ARMA model with a 

4 One can model the trend and the VARMA relations at the same time using a VARMAX model 
discussed below, but the point made here remains the same: One is modelling the deviations from 
the deterministic trend (rather then the trend itself) as a function of another variable.
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deterministic trend. Note however that the current presentation of the model cor-
responds to the representation in (10) rather than that in (9a) and (9b), which makes 
it difficult to interpret the regression coefficient(s) in 0.

Latent VARMA Model

The VARMA model can be extended to a model with multiple indicators measuring 
a reduced number of latent variables, which follow a VARMA process. Suppose we 
have a K-factor model with M observed variables. The factor loadings are restricted 
to be equal over time, such that the model can be represented as

 yt = µ+ηt + et   (20)

where µ  is an M-variate vector with means,   is an M  ×  K matrix with factor 
loadings which do not depend on time, ηt  is a K-variate vector with latent variables 
at occasion t, and et is an M-variate vector with measurement errors at occasion t. At 
the latent level, a VARMA model is specified, such that

 ηt = 1ηt−1 + · · · +pηt−p + ut −1ut−1 − · · · −qut−q   (21)

where  and  are now K  ×  K matrices, and ut is a K-variate vector with innova-
tions of this latent VARMA process. This model can be recognized as a special ver-
sion of the more general dynamic factor model as discussed by Molenaar (1985). 
Moreover, when all the  and  matrices are zero matrices, this model becomes the 
P-technique model discussed by Cattell, Cattell, and Rhymer (1947). If q  =  0, the 
model in Eqs. (20) and (21) reduces to a latent VAR (p) model, which is also known 
as the direct autoregressive factor score model (Nesselroade, McArdle, Aggen, 
& Meyers, 2002). This model has been compared to the white noise factor score 
model (Nesselroade et al., 2002), which is also a special version of the more gen-
eral dynamic factor model discussed by Molenaar (1985). Although the white noise 
factor score model can not be conceived of as an extension of the ARMA model 
(because the lagged relationships are not modeled in an ARMA manner, but by use 
of lagged factor loadings instead), there are situation in which the the white noise 
factor score model can be rotated into a direct autoregressive factor score model 
(Molenaar & Nesselroade, 2001). Moreover the latent VMA (q) can be shown to be 
a special case of the white noise factor score model.

Cointegrated Model

Cointegration (Engle & Granger, 1987) has proved one of the most successful dis-
coveries in econometrics, and has earned its discoverers Robert Engle and Clive 
Granger the Noble Memorial Prize in 2003. A process is said to be cointegrated if 
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      each of the univariate series are nonstationary (but is rendered stationary by dif-
ferencing), while there is a linear combination of the series, which is stationary 
(Hamilton, 1994). If a process is cointegrated this implies that even though many 
developments can cause permanent changes in the univariate elements of yt, there is 
some long-run equilibrium which ties the individual components of yt together. This 
long-run equilibrium is represented by zt t= ′a y , where zt is a stationary, univari-
ate process. The M-variate vector a is referred to as the cointegrating vector. Since 
there is no unique vector that results in a stationary process (because multiplying 
all elements of the cointegrating vector with the same constant results in another 
cointegrating vector), some arbitrary normalization is chosen, such as fixing the 
first element of a to one.

An example of a bivariate cointegrated process is given by
 

y1,t = γy2,t + u1,t

y2,t = y2,t−1 + u2,t .

 

Note that y1,t − γy2,t = u1,t , which is by definition white noise. Thus, the 
cointegrating vector for this model is a =


1− γ


.

In general it can be stated that if there are h series, there are at most h  −  1 cointe-
grating vectors. The more cointegrating vectors a system actually has, the more 
constrained its long term behavior is. An illuminating way to think about cointegra-
tion is to consider it from a geometric perspective (Dickey, Jansen, & Thornton, 
1991). Suppose our system consists of three variables: The behavior of this system 
can be thought of as the movement of a point in three dimensional space R3. If all 
three processes are stationary, the variability is bounded in all three directions, and 
the observations center around a point. This point can be thought of as the sys-
tems equilibrium, from which it never wanders too far. If all three variables are I  
(1) processes, but they are not cointegrated, this implies there is no restriction on 
the variability in any direction. Such a system is not characterized by any kind 
equilibrium. If there is one cointegrating vector, then the plane that is perpendicular 
to this vector forms the equilibrium of the system. This implies that the variance 
in the plane is infinite (i.e., unbounded in two directions), but the variance around 
the plane is finite (i.e., bounded in one direction). This plane can be thought of 
as the system’s equilibrium. If there are two cointegrating vectors, there are two 
perpendicular planes. The equilibrium of the system is formed by the line which 
forms the intersection of the two planes. Again, variance on this line is infinite 
(now unbounded in one direction), while the variance around the line is finite (now 
bounded in two directions). This shows that more cointegrating vectors imply more 
constrained behavior of the system in the long run. An illustration in R2 is given in 
Fig. 9.1.

Estimating and interpreting cointegrated models is not an easy task. This may 
give rise to the question: Why not difference the series (or detrend them by subtract-
ing a deterministic trend), and determine whether there are relations between the 
residual parts? However, if the process is truly cointegrated, differencing the data 
would overlook the long-term dependencies (Hamilton, 1994).
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Applications in the Social Sciences

An illustrative application of the VAR (1) model on psychological data can be found 
in Schmitz and Skinner (1993). They obtained time series data from five children 
on their effort, performance, subjective evaluation, and control regarding academic 
tasks in the class room. The authors concluded that the children differed greatly with 
respect to the relationships between these aspects. For instance, in one child there 
was no link between effort and performance, while in others this relation was quite 
strong. Similarly, some children were characterized by a strong link between sub-
jective evaluation on one task and effort on the next, meaning that if they believed 
they had not performed well, they would try harder the next time (and vice versa), 
while in other children there was no such relationship.

An application of an ARMAX model (i.e., a VARMAX model with a univari-
ate yt) can be found in Bollen and Philips (1982), who investigated whether highly 

Fig. 9.1   Plots of three bivariate time series: top panel contains two unrelated white noise proc-
esses; middle panel contains a cointegrated process; and bottom panel contains two integrated proc-
ess which are unrelated to each other. Last column contains the behavior of the bivariate series in 
R2, where the axes are formed by the two variables. From this it is clear that the first process (which 
is stationary) has an equilibrium at {0, 0}. The cointegrated process has an equilibrium formed by 
the line in the plot on the right. The unrelated nonstatonairy process has no equilibrium
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publicized suicide stories have an increasing effect on daily suicides. Exogenous 
variables included dummies for whether a highly publicized suicide had appeared 
on a particular day (i.e., that day, previous day, and so on up to ten days ago), day 
of the week, month, year, and certain holidays. Note that, with the exception of 
the first dummy, these dummies are an alternative way of controling for seasonal 
effects. Bollen and Philips (1982) concluded that there were two peaks in suicides: 
at the same day and the next day, and again after six and seven days.

Applications of latent VAR (1) models can be found in Ferrer and Nesselroade 
(2003), Hamaker, Dolan, and Molenaar (2005), and Hamaker, Nesselroade, and 
Molenaar (2007). In Hamaker et al. (2005) daily affect measures based on the Five 
Factor Model (FFM) of personality are analyzed in an exploratory manner. That is, 
rather than to assume the FFM holds for the variability within individuals as well, 
it is investigated how many factors are needed for each individual separately. In 
addition, it is investigated whether there are lagged auto- and/or cross-regressive 
relationships between the latent variables. It was concluded that individuals differed 
in both the number and the nature of their intraindividual factors. In addition, some 
individuals were characterized by lagged relationships at the latent level, while oth-
ers were not.

Ferrer and Nesselroade (2003) used daily measures of the positive and negative 
affect from married couple to investigate the reciprocal influences they had on each 
other. Using a latent VAR (2), they concluded that the wife was influenced by her 
own affect the preceding day, while the husband was influenced by his own affect 
the preceding two days. In addition, the wife’s affect was influenced by the hus-
band’s negative affect at the preceding day, while the husband’s positive affect had 
no effect. The husband was not affected by his wife’s affect.

Although cointegration has had many applications in econometrics, only few 
applications in the social sciences exist. Lin and Brannigan (2003) used cointegra-
tion to investigate the relationship between crime and immigration between 1896 
and 1940 in Canada. The authors concluded that there was no evidence for a long-
term relationship between immigration and crime, with the exception of vagrancy 
and drunkenness. Stroe-Kunold and Werner (2008) used cointegration to model the 
interaction between activity, aggressiveness, and depression of a married couple 
on a day-to-day basis. In addition, the husband’s skin symptoms were measured, 
and the wife’s bulimic symptoms. They found some evidence for cointegration of a 
person’s aggressiveness and the spouse’s symptoms.

Nonlinear Extensions of the ARMA Model

In this section several nonlinear extensions of the ARMA model are discussed, 
that is: (a) the bilinear (BL) model; (b) the heteroscedastic autoregressive (ARCH) 
model. (c) the threshold autoregressive (TAR) model; and (d) the Markov-switching 
autoregressive (MSAR) model.
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Bilinear (BL) Models

The BL model was introduced by Granger and Andersen (1978), and consists of 
extending the ARMA (  p, q) model with product terms between previous obser-
vations and previous innovations. Such models are linear in yt and in ut , which 
explains the term bilinear. The BL (  p, q, P, Q) model is defined as
 

yt =
p

j=1

φjyt−j + ut −
q

j=1

θjut−q +
P

j=1

Q

i=1

vjiyt−jut−i .

 
 (22)

As with many of the models discussed in this chapter, the BL model was sug-
gested mainly to improve forecasting. Hence, applying this technique in the social 
sciences, where substantive interpretations may be of greater interest than predic-
tion per se, may result in difficulties as it is not clear how the interactions should be 
interpreted from a substantive point of view. Moreover, Fan and Yao (2003) state 
that successful applications (in any field) of the BL model are rare, and they point 
out diverse unresolved issues regarding estimation and evaluation of the BL model. 
These issues taken together make it a less attractive candidate for social sciences 
researchers.

Conditional Heteroscedastic Autoregressive (ARCH) Models

ARCH models were proposed by Engle (1982) to handle volatility, a feature that 
is often associated with financial data. In contrast to the linear AR model, in which 
the focus is on predicting the observation yt based on previous observations, ARCH 
modeling consists of predicting the variance of yt (i.e., the variance in the prediction 
error ut), based on previous observations. Thus the term conditional heteroscedas-
ticity refers to the varying variance which is conditional on previous observations.

Let σt be the variance of yt at occasion t, and let zt be a white noise sequence with 
mean zero and variance one. The ARCH (  p) model can be defined as

 yt = ut = σtzt   (23)

 σ 2
t = φ0 + φ1y

2
t−1 + · · · + φpy

2
t−p.   (24)

From this it is clear that the uncertainty in predicting yt depends on yt−1  to yt−p . 
This corresponds well with data characteristics in econometric practice, in which 
the ability to predict future observations often varies. Another interpretation of this 
model is that the heteroscedasticity is due to an omitted (i.e., unobserved) variable, 
in which case the ARCH model is a better approximation of reality than a linear 
ARMA model (Engle, 1982).

Although the predictive variance σ 2
t

 of an ARCH process varies over time, 
the variance itself is not a function of t. Hence, an ARCH process is stationary. 
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The ARCH model has been extended with moving average parts to the generalized 
ARCH (GARCH) model, for which it can be shown that y2

t
 follows an ARMA 

process (Fan & Yao, 2003, p. 150). GARCH (1, 1) models have shown to be widely 
applicable in economics, while the ARCH models often require a very large p in 
order to fit well to empirical data.

These models could be useful in psychological research if for certain data it is 
known that there is heteroscedasticity over time. For instance, in the study of tics 
in Gilles de la Tourette discussed earlier (Peterson & Leckman, 1998), instead of 
measuring the time between the tics, one could also measure the amount of tics per 
interval: Because of the burst nature of such data, this is likely to result in hetero-
scedasticity, which could be modeled with a GARCH model.

Threshold Autoregressive (TAR) Models

Threshold models were introduced by Tong and Lim (1980). A TAR process con-
sists of two or more AR processes, which can be thought of as representing separate 
regimes. The system switches between these regimes when the threshold variable 
passes a threshold. Suppose there are k regimes, and let zt – d be the threshold variable 
with delay d, then a TAR(k, p) process is defined as
 

y y y e I z At
j j

t p
j

t p
j

t t d j
j

k

= + + + +{ } ∈− − −
=

∑ φ φ φ σ0 1 1
1

( ) ( ) ( ) ( ) ( ),
 
 (25)

where I(·) is the indicator function (i.e., it equals one if zt−d  falls in Aj, and it is 
zero otherwise), and the superscript (   j) identifies the regimes (   j = 1,…, k). Typically 
Aj = (τj−1, τj ] , with −∞ = τ0 <τ1 < · · · <τk = ∞ , where τ to τk−1  are the 
thresholds of interest. Hence, if zt−d  τ1 , yt falls in regime 1, if τ1 <zt−d  τ2 , yt 
falls in regime 2, and so on. Since the regime-switching is independent of time, the 
process is stationary.

If yt serves as its own threshold variable zt , the model is referred to as a self-
exciting TAR (SETAR) model. Such models imply a feedback loop, in which the 
system corrects itself when its behavior becomes too extreme. If another variable is 
used as the threshold variable, the model is referred to as an open-loop TAR system 
(TARSO; Tong & Lim, 1980). This implies that another variable controls the system. 
If two variables are generated by a TAR model, and each variable serves as the oth-
er’s threshold parameter, this is referred to as a closed-loop TAR system (TARSC; 
Tong & Lim, 1980). Such TARSCs were used to model predator-prey data, in which 
an increase in prey population leads to an increase in predator population until some 
threshold is reached after which the prey population decreases which in turn leads 
to a decrease in prey population until another threshold is reached and there is an 
increase in predator population again (Fan & Yao, 2003).

Extensions of the basic model in Eq. (25) consist of including other (lagged) 
variables as predictors in the equation, and incorporating moving average terms 
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(De Gooijer, 1998; Tong, 2003). In addition, multivariate (vector) extensions of 
the TAR model have been developed (Koop, Pesaran, & Potter, 1996; Tsay, 1998). 
Further extensions consist of allowing for different orders of the AR processes in 
each regimes (De Gooijer, 2001).

Markov Switching Autoregressive (MSAR) Models

Hamilton (1989) suggested a nonlinear extension of the AR model that is based on 
a hidden discrete Markov process. As with the TAR model, it is assumed the system 
switches between two or more regimes, and each regime is characterized by a dif-
ferent AR process. However, the process that triggers the switching differs between 
these two models. In TAR modeling the switching occurs when the threshold vari-
able passes a threshold. In contrast, switching in MSAR models is triggered by a 
hidden discrete Markov process.

Suppose we have k distinct processes, or regimes between which our system 
switches. Let pij be the probability of switching to regime j, given that the system 
is in regime i, that is, pij = P [st = j |st−1 = i] , where i  = 1,…, k and j = 1,…, k. 
These transition probabilities can be gathered in a matrix,

  

p =





p11 p21 · · · pk1

p12 p22 · · · pk2

· · ·
p1k p2k · · · pkk



 ·    (26)

Note that since 
k

j=1
pij = 1 , there are only k × (k − 1)  non-redundant 

parameters in this matrix. This matrix governs the Markov switching process st, 
which in turns underlies the regime switching in the MSAR process. The MSAR 
(k, p) model can be expressed as
 

y y y e I s jt
j j

t p
j

t p
j

t
j

k

t= + + + +{ } =− −
=

∑ φ φ φ σ0 1 1
1

( ) ( ) ( ) ( ) ( ),
 
 (27)

where I(st  =  j) equals 1 if the system is in regime j at occasion t, and is 0 otherwise. 
Note that since the parameters in Eq. (26) are independent of time, the MSAR proc-
ess is stationary.

Kim (1994) extended the work of Hamilton (1989) to the state-space model, 
such that it can be used for a wide range of time series models. Another useful 
extension was proposed by Durland and McCurdy (1994), which allows the tran-
sition from one regime to another to be duration-dependent. This means that the 
transition probabilities are not only conditional on the regime the system is in, but 
also on the amount of time already spent in that regime.
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Another model that is related to the MSAR model is the mixture AR (MAR) 
(Frühwirth-Schnatter, 2006). In this model the observation is supposed to come 
from a mixture of AR processes. The MAR model can be thought of as a special 
case of the MSAR model, in which the transition probabilities are equal to the mix-
ing proportions. That is, if πj  is the long-run probability of being in regime j, than 
P(st = j |st−1 = i) = πj  for all j  = 1,…, k. Hence, the probability of switching to 
regime j does not depend on the regime the system was in at the precious occasion, 
but only depends on the long-run probability of making an observation in regime j, 
such that it can be interpreted as the mixing proportion.

Applications in the Social Sciences

The techniques discussed in this section have seen few—if any—applications in the 
social sciences. To our knowledge, neither the BL nor the ARCH model have been 
applied in the social sciences. TAR models have been used by Warren (2002; Warren, 
Hawkins, & Sprott, 2003) to model the behavior of sex offenders and alcohol abusers. 
They concluded that they could distinguish between periods of recovery versus peri-
ods of relapse. Recently, Hamaker, Zhang, and Van der Maas (in press) have shown 
that the models used by Gottman, Murray, Swanson, Tyson, and Swanson (2002) to 
model dyadic interaction are in fact TAR-based models. Regarding the MSAR model 
we are aware of just one application in the social sciences5, which consists of mod-
eling the daily mood swings in a manic-depressive patient as a two-regime MSAR 
model (Hamaker, Grasman, & Kamphuis, in press).

Discussion

The majority of studies in the social sciences qualify as nomothetic research, in 
which a large number of cases were measured on one or a few occasions, and the 
goal is to find relationships that can be generalized to the population from which 
the cases were sampled. Exceptions are found in sociology and criminology, where 
a substantial part of research deals with population aggregates, for instance, unem-
ployment or crime rates, as discussed in this chapter. One could state that in these 
studies the population itself is dealt with as the single case, and the goal is to under-
stand the process that unfolds at the level of the population.

Despite the dominance of the nomothetic approach in most branches of social 
science, there is a growing interest in idiographic techniques, as psychologists and 

5 A related technique, which is popular in speech recognition for instance, is the Hidden Markov 
model (HMM). The difference between the HMM and the MSAR model is that the former requires 
categorical observations, while the latter requires continuous observations. Moreover, while the 
MSAR model allows for autoregressive relationships between observations, the sequential depend-
ency in the HMM is modelled exclusively by the hidden Markov process.



2139 Idiographic Data Analysis: Quantitative Methods—From Simple to Advanced

other researchers are coming to understand that the standard nomothetic approach 
presents only one side of the story (e.g., Borsboom, Mellenbergh, & Van Heerden, 
2003; Hamaker et al., 2005; Molenaar, 2004; Nesselroade, 2001). The techniques 
and applications discussed in this chapter illustrate the potential of time series anal-
ysis for obtaining a more complete picture of processes that are studied in the social 
sciences. But even if one is not interested in embracing a fully idiographic approach 
to the matter, the models presented in this chapter can still be of use: There have 
been several extensions of ARMA-based models to handle multiple cases, making 
it compatible with the nomothetic approach. Roughly, we can distinguish between 
two ways in which the single-case models discussed in this chapter can be extended 
to handel multiple cases.

First, a straightforward extension consists of fixing the parameters across indi-
viduals. We refer to this as the fixed effect approach. Examples of this are the panel 
version of the VARMA model discussed by Du Toit and Browne (2001), the MI 
VARMA model discussed by Sivo (2001), and the MSAR model developed by Sch-
mittmann, Dolan, and Van der Maas (2005). Second, a more sophisticated way of 
extending these models to include multiple cases are the multilevel extensions. For 
instance, Rovine and Walls (2006) extended the regular AR model in such a way 
that the AR parameter is random.

As indicated in the introduction, the focus in this chapter was on models for data 
measured at interval or ratio level, and at regular intervals. Clearly, many measure-
ments in social sciences do not meet these criteria. Recently, Van Rijn (2008) pro-
posed a technique for modeling AR models using ordinal data. Moreover, to model 
the sequential dependency in both ordinal and nominal data, one can make use of 
hidden Markov models.

To model measurements obtained at irregular time intervals, one can make use 
of models based on differential equations. In many diary studies for instance, the 
intervals between measurements are varied on purpose, to avoid the subject antici-
pating the next measurement. To model such data of multiple subjects, Oravecz, 
Tuerlinckx, and Vandekerckhove (in press) developed a multilevel model based on 
the Ohrnstein-Uhlenbeck process, which is the continuous-time variant of an AR (1) 
process. Besides having observations at irregular intervals, there are two other rea-
sons for preferring differential equations rather than difference equations. First, Van 
der Maas and Raijmakers (2000) stressed the fact that while some processes may 
be understood best in discrete time, others take place in continuous time, warrant-
ing a differential equation approach. Second, using differential equations instead of 
difference equations has the advantage that, while difference equations lead to dif-
ferent results when the intervals change (e.g., daily versus weekly measurements), 
such arbitrarily evoked differences do not arise when differential equations are used 
(Oud, 2007). The latter exemplifies that the ARMA-based time series techniques 
discussed in this chapter form but one approach within idiographic analysis. That is, 
ARMA-based techniques are a specific branch within time series analysis, which in 
turn is just one of the possibilities for idiographic research. The aim of the present 
chapter was to provide an overview of ARMA-based models, and to demonstrate 
their potential for the social sciences.
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