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This chapter introduces hidden Markov models to study and characterize (indi-
vidual) time series such as observed in psychological experiments of learning, 
repeated panel data, repeated observations comprising a developmental trajectory 
etc. Markov models form a broad and flexible class of models with many possible 
extensions, while at the same time allowing for relatively easy analysis and straight-
forward interpretation. Here we focus on hidden Markov models with a discrete 
underlying state space, and observations at discrete times; however, hidden Markov 
models are not limited to these situations and some pointers are provided to litera-
ture on possible extensions.

Markov models have a long history in the social sciences; in psychology, for 
example, Markov models have been applied in analyzing language (Miller, 1952; 
Miller & Chomsky, 1963), in describing learning processes in paired associate 
learning (see Wickens, 1982, for an overview of models and techniques); in soci-
ology, applications are mainly in the analysis of repeated measures of panel data 
(Langeheine & Van de Pol, 1990); similarly in political science (McCutcheon, 
1987). Recently, extensions of Markov models, such as the hidden Markov model, 
have become increasingly popular, notably in speech recognition (Rabiner, 1989); 
in biology, in analyzing DNA sequences (Krogh, 1998); in econometric science, 
in analyzing changes in stock market prices and commodities (Kim, 1994); and 
finally, in machine learning and data mining (Ghahramani & Jordan, 1997). This 
chapter focusses on time series data from a psychological experiment in which both 
speed, i.e., reaction times, and accuracy are modeled simultaneously.

The rest of this chapter is organized as follows: In the next Section hidden Markov 
models are introduced in a conceptual fashion, and its relationship with other models 
is described. Following that, in Section “Likelihood, Parameter Estimation, and Infer-
ence” the main characteristics of the likelihood function, parameter optimization and 
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inference are discussed, thereby introducing the hidden Markov in a more formal 
way. The next Section discusses analyses of two real life data sets thereby illustrating 
various characteristics of hidden Markov models and their potential to deal with indi-
vidual time series. We end by summarizing and discussing the main results.

Hidden Markov Models: State Space and Transition Dynamics

Hidden Markov models, henceforth HMMs, consist of two main parts: the meas-
urement model and the transition dynamics. The measurement model characterizes 
the states of the model, whereas the transition dynamics characterizes the dynam-
ics between states over time. The states hence represent the construct of interest, 
whereas the transition dynamics represent the changes in the construct. For exam-
ple, consider observation sequences DDDRDDRDDD and RRRDDDRDDD. It 
may be assumed that there are two underlying constructs, republican and demo-
cratic, which result in the corresponding voting behavior D and R (for Democrats 
and Republicans). The first observation sequence is likely to be from a democrat 
who voted R at only two occasions. It seems reasonable, given this particular obser-
vation sequence, to assume that this person is in the democratic state. The second 
observation sequence on the other hand is very different; here it seems reasonable 
that this person changes from the republican state to the democratic state, even 
though she/he has a single R preference on the seventh occasion of measurement.

This example illustrates an important aspect of HMMs, namely that there is no 
direct relationship between the state and the observations; in particular, a demo-
cratic person may vote R every now and then due to any number of reasons, e.g., 
measurement error, living in Florida, a temporary disapproval of the Democratic 
candidate etc. When analyzing such data, the question hence is to separate real 
change, i.e., change in the underlying variable, from the absence of change, in the 
face of measurement error (see e.g., Eid & Langeheine, 2003, for an application of 
this type). Below, the state space and the transition dynamics, and their relationship 
are discussed.

State Space and Measurement Model

 In above example, the underlying state of interest was political preference of per-
sons. The number of different possible preferences in this example determines the 
cardinality of the state space of an HMM that is used to model such data. Here it was 
assumed that people can be in either of two discrete states, democratic or republi-
can. In this chapter, HMMs with a finite and discrete state space are considered.

Characteristic of HMMs is that the state space is not directly observable; if the 
example data above is read with D representing dry and R representing rain as 
observations on consecutive days, merely observing a D or an R can not inform 
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us as to the state of the weather. Assuming that sunny and rainy periods are fairly 
stable and last for at least a number of days, observing rain on any given day is not 
sufficient evidence that the weather is in a rainy period; it may just happen to rain 
a bit during a period of otherwise stable and sunny weather (see Lystig & Hughes, 
2002, for example of the analysis of rainfall data).

The relationship between the states of a hidden Markov model and the observa-
tions under consideration is governed by a measurement model. If this relation-
ship is deterministic, i.e., if there is a one-to-one relationship between observations 
and states, the HMM reduces to a simple Markov model. For example, if voting 
behavior is taken to directly indicate overall political preference, then observing a 
D vote indicates someone is democratic. In social science research the relationship 
between observations and underlying constructs, states in this case, is not usually 
that straightforward. In particular, measurement error may obscure the relation-
ship, or multiple observations are used to measure a construct, but none of them 
are assumed to correlate perfectly with the underlying construct. For example, if a 
person indicates that she/he likes going to parties, this may be taken as evidence of 
being extraverted, but such an item does not capture all there is to extraversion. A 
measurement model captures the relationship between observations and states.

Transition Dynamics

The second main part of interest in HMMs is the transition dynamics, that is, the 
model that governs the changes occurring in the states over time. For example, par-
ticipants in a categorization learning experiment (Ashby & Ell, 2001) are assumed 
to pass through a number of stages. At the outset of the experiment, they have no 
knowledge of the task, and hence their performance is expected to be at chance 
level. In an HMM this can modeled by means of a guessing state, in which the 
probability of providing a correct answer is 0.5. At the end of learning, participants 
have full knowledge of the task, and hence do not make any errors. In an HMM, 
this can be modeled by means of a so-called learned state, in which the probability 
correct is 1. Depending on their learning strategy, participants may pass through a 
number of intermediate states, in which they have partial knowledge of the task at 
hand. The model that only consists of the guessing and the learned states, is called 
the all-or-none model. The transition dynamics of this model is fairly simple; it 
is assumed that at each trial of the learning experiment, a participant has a fixed 
probability of learning the task. This probability is hence the probability of mov-
ing from the guessing state to the learned state; in the all-or-none model, this is 
called the learning parameter. See Wickens (1982) for an overview of such learning 
models. See Schmittmann, Visser, and Raijmakers (2006), Visser, Schmittmann, 
and Raijmakers (2007) for applications of hidden Markov models in categorization 
learning.

Above discussion illustrates a number of interesting characteristics of HMM 
states. The learned state in the above example is called an absorbing state: once it is 
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entered, one cannot leave that state. This incorporates the assumption that once the 
task is mastered there is no unlearning. The guessing state on the other hand is a so-
called transient state: the process passes through that state but eventually leaves the 
state and there is no probability of returning. The transition probabilities between 
states determine such characteristics of states.

A (hidden) Markov model is called ergodic when there are no absorbing states 
and each of the states can be reached from any other states. The rainy weather/sunny 
weather model forms an ergodic model; the process continues forever changing 
from rainy spells to sunny spells and back. The transition dynamics provides infor-
mation about how stable each of these states is, e.g., whether sunny periods last 
longer than rainy periods.

In the discrete state hidden Markov models under consideration in this chap-
ter, the transition dynamics consists of a matrix of transition probabilities between 
states. These transition probabilities can be made dependent on other variables. For 
example, in the weather case, the transition from a sunny period to a rainy period 
could be dependent on air pressure such that, when the air pressure drops, the prob-
ability of transitioning from a sunny period to a rainy period increases. In the Illus-
trations section an example of such dependence is provided.

Relationships with Other Models

HMMs are part of a larger class of stochastic process models or state-space models 
(Fahrmeir, Tutz, & Hennevogl, 2001). In particular, the HMMs that we consider 
here are state-space models with a discrete state-space and discrete equidistant 
measurement occasions. Hidden Markov models are formally equivalent to latent 
Markov models. However, in practice the literatures on each of these models are 
largely separated. HMMs originate from engineering applications such as speech 
recognition (Rabiner, 1989), whereas latent Markov models originate in sociology 
and political science (Langeheine & Van de Pol, 1990). HMMs are typically applied 
to long univariate time series, such as speech streams or stock market prices. In 
contrast, latent Markov models were considered as extensions of latent class mod-
els (McCutcheon, 1987) with repeated measurements. In latent class models, the 
goal is to classify persons into a finite number of distinct types. The latent Markov 
model then is applicable whenever, for example, questionnaires are administered 
repeatedly and the goal is to study changes in e.g., political preferences of large 
groups of people. Summarizing, in latent Markov models, the focus is on short 
multivariate time series with many cases, whereas HMMs are mostly applied to 
long (univariate) time series of a single process or individual. In this chapter, we 
consider both a univariate and a bivariate time series. The next section provides a 
formal definition of hidden Markov models along with likelihood function, which 
is used to estimate parameters and draw inferences on (relative) goodness-of-fit of 
competing models.
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Likelihood, Parameter Estimation, and Inference

Below, we first give a description of the parameters and distribution functions 
that together constitute a hidden Markov model. After that, the likelihood and 
parameter estimation are discussed. To be able to interpret the examples in the 
Illustrations section, the description of the parameters is essential. However, the 
full description of how to compute and optimize the likelihood may be skipped by 
non-technical readers.

Formally a hidden Markov model consists of the following elements (here we 
adopt notation by Rabiner, 1989):

1.	 A finite state space S with states Si, i = 1,…,n.
2.	 A transition model A providing transition probabilities aij.
3.	 A measurement model for each state in S, denoted by Bi, i = 1,…,n, which relates 

the state to the observation O.
4.	 The initial state probabilities i, i = 1,…,n.

Here n is the number of states of the model, i.e., the number of possible values the 
state variable St can assume.  denotes the initial state distribution at t = 1, which is 
a probability vector with iπi = 1. Next, Bi(.) is the distribution of the responses 
or observations O conditional on the current state St = i. For example, for a binary 
item O we have bi(O = 1) + bi(O = 2) = 1, for each i. Finally, aij is the transition 
probability of moving from state St = i to state St+1 = j, which is written as a prob-
ability matrix A. That is, for each state Si the transition probabilities sum to one, 
jaij = 1.

To fix ideas, consider an HMM with two states as depicted in Fig.  13.1. The data 
to be modeled are the observations O; in particular, there are two observations at 
each measurement occasion, O1 and O2, hence we are considering a bivariate time 
series. The underlying states are S1 and S2. The transition probabilities are denoted 
a11, a12, a21, and a22, respectively. The initial state probabilities  are the probabilities 
that the process starts in a particular state Si (not depicted in Fig. 13.1).

The model in Fig. 13.1 could be a model for the weather example discussed 
above. One state then corresponds to sunny weather, and the other to rainy weather. 
The transition probabilities are interpreted as the stability of the weather; for exam-
ple, the closer a11 is to 1, the more stable the corresponding weather state is.

A core assumption of Markov models is that the current state only depends on the 
previous state, and not on the entire history of previous states. Formally this (first-
order) Markov assumption is expressed as:

	 p(St |S1, S2, . . . , St−1) = p(St |St−1),  � (1)
and hence the conditional distribution of St only depends on St-1, and not on St-2 etc. 
Here St is short for St = i, meaning the process is in the i-th state of the model at time 
t of measurement. This Markov assumption is customarily made in many applica-
tions. If the assumption is not met, it is usually possible to increase the number of 
latent states in such a way that the assumption is met. This amounts to fitting so-
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called higher-order latent Markov models (see Langeheine & Van de Pol, 2000, for 
discussion).

To summarize, the parameters of the hidden Markov model are the following. 
First, the vector , the initial state probabilities. Second, the parameters that deter-
mine the transition probabilities aij, either multinomial parameters that sum to unity, 
i.e., jaij = 1  or other parameterizations thereof. In our second illustrative exam-
ple, we specify a multinomial logistic distribution for the transition probabilities, 
such that covariates can be included that influence those probabilities. Third, the 
parameters of the observation distributions Bi(.), which specify the relationship 
between the unobserved states St and the observations Ot. For example, in a gaussian 
HMM, each Bi(.) has two parameters, the mean and standard deviation of a gaussian 
or normal distribution. Below the full likelihood function of the HMM is specified 
along with recursive functions for efficiently computing the likelihood. It is not nec-
essary to understand all the details of computing and optimizing the likelihood to be 
able to interpret the parameters in the Illustrations section. Hence, the non-technical 
reader may wish to skip this section and refer back to it when needed.

Likelihood

The data we are considering here has the general form O1,…,OT , where Ot = O1,…,Om, 
an m-variate observation at time t. Using above notation, the likelihood for such a 
time series can be expressed as follows:

	 L(OT |λ) = Sπ1BS1=i (O1)taSt−1=i,St=jBst=j (Ot ),  � (2)
where  is the parameter vector containing the parameters to model , A, and B. The 
sum runs over all possible sequences S1,…, ST of the latent or hidden state sequence, 
and the product runs from t = 2 to T.

When local independence is assumed among the items, the distribution functions 
Bi(Ot) can be factored as follows:

	 Bi(Ot) = j=1...mBi(O
j ).  � (3)

Fig. 13.1    Hidden Markov 
model with 2 states
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The assumption of local independence is very common in so-called latent vari-
able models. Some even claim that local independence is the defining feature of 
latent variable models (see Bollen, 2002, for discussion). In many applications, 
local independence is indeed a reasonable assumption. A particular state, e.g., a 
knowledge state, an economical state or an attitude, is supposedly the common 
cause of the observed variables. This assumption means that the underlying vari-
able that we are interested in, the states in the case of Markov models, causes the 
observed variables to have the values that they have. As a consequence, when con-
ditioning on that underlying variable, the observed variables are independent, which 
is expressed in the local independence assumption. Throughout the rest of the chap-
ter, local independence is assumed for models that are fitted.

Note that so far we have not mentioned any particular assumptions about the 
distributions Bi(.). The state variable S is distributed multinomially by the parameter 
vector , and so are the transition probabilities. For the observation distributions 
Bi(.), there is no compelling reason to make any assumptions. As a consequence, 
they can be any estimable density function, including the multinomial distribution 
for categorical responses, but also the gaussian distribution if, for example, reac-
tion times are included. In such a case, when there is a categorical response and 
a continuous response, the local independence assumption proves very valuable, 
because there is no need to deal with the possible correlation structures among these 
different variables. In the second example in the Illustrations section, we use mixed 
variables in this way.

Parameter Estimation and Inference

To prevent underflow and to make computing the likelihood more efficient, below 
a recursive algorithm is described developed by Lystig and Hughes (2002). This 
estimation procedure differs in three ways from the standard latent Markov estima-
tion procedures. First, scaling is used to prevent underflow problems. Second, the 
raw data likelihood is computed instead of likelihood based on a sufficient statistic, 
such as a contingency table. An advantage of this is that missing data can be easily 
dealt with in a similar vein as is done in for example the Mx-program (Neale, Boker, 
Xie, & Maes, 2003). Third, a recursive scheme is used to compute the likelihood 
which is known as the forward algorithm such that the number of computations is 
limited.

To deal with underflow problems, the joint probability of the data is first rewrit-
ten as a product of conditional probabilities as follows (Lystig & Hughes, 2002):

	 LT = p(O1,...,OT ) = t=1...T p(Ot |O1,...,Ot−1),  � (4)
where p(O1|O0) := p(O1) . Note that rewriting the joint likelihood in this way 
does not depend on any particular assumption of (latent) Markov models. There-
fore, the dependence on the model parameters is dropped in the above equation. The 
log-likelihood can now be expressed as:
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	 l p O O OT t T t t= ( ) = −∑ 1 1 1… …log | ., ,  � (5)

This formulation of the likelihood prevents underflow to occur for long time 
series because the conditional probabilities p(Ot |O1,...,Ot−1)  are computed, rather 
than the usual probabilities p(O1,...,OT ) . Next we need to compute these condi-
tional probabilities.

The so-called forward algorithm can be used to compute the likelihood (Baum & 
Petrie, 1966). Below version of the algorithm is due to Lystig and Hughes (2002). 
Define the forward recursion variables as follows:

	 ϕ1(j) = p(O1,S1 = j) = πjBj (O1).  � (6)

	 ϕt (j) = p(Ot,St = j |O1, . . . , Ot−1)

= [i=1...nϕt−1(i)aijBj (Ot)] × (φt−1)
−1

 
� (7)

where φt = i=1...nϕt (i) . Note first that the sum over n in Eq. (7) is simply an enu-
meration of all the states of the model. Here ϕt (j)  is the probability of observing 
Ot in state Sj conditional on having observed O1,…,Ot-1. Hence, φt = i=1...nϕt (i)  is 
the probability of observing Ot conditional on having observed O1,…,Ot-1. The recur-
sion includes an efficient enumeration of all possible latent state sequences. Note 
that computing the Φt takes in the order of S 2 computations, and hence computing 
the likelihood takes S 2T computations. Writing out Φt for t = 3 makes explicit its 
relationship with Eq. (2):

	
φ φ3 3 2 1 1 1 1 1 2 2 2 2 3 3 3 1=  { } ×( )Σ Σ Σi i i i i i i i i i ip B O a B O a B O( ) ( ) ( ) ( φφ2

1)−

 �
(8)

Note that the triple summation between braces is identical to Eq. (2) for the case 
that t = 3. The multiplication of this term by (φ1 × φ2)

−1  takes care of the scaling 
at each time point to prevent underflow. 

Combining φt = p(Ot |O1, . . . , Ot−1) , and Eq. (5) gives the following expres-
sion for the log-likelihood:

	 lT tt T
=

=∑ log φ
1…

.  � (9)

Parameters for the hidden Markov model can be estimated by optimizing the 
log-likelihood. Baum and Petrie (1966) provided an EM algorithm for doing so. 
Because Lystig and Hughes (2002) also provide gradients of the parameters for the 
log-likelihood, instead of using an EM algorithm, also direct optimization may be 
applied efficiently. The above algorithm for computing the log-likelihood and the 
gradients are implemented in the depmix package in the R-language for statistical 
computing (R Development Core Team, 2008). Depmix uses direct optimization of 
the log-likelihood with a Newton type algorithm using the gradients whenever they 
are available (Visser, 2008). An advantage of using direct optimization over the EM 
algorithm is that it is straightforward to deal with box constraints on parameters and 
general linear constraints between parameters. Depmix uses the Rdonlp2 package 
to handle such constraints (Tamura, 2007).
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A second package depmixS4 also implements hidden Markov models and extends 
these with more general measurement models. In particular, depmixS4 fits Markov 
mixtures of generalized linear models (Visser & Speekenbrink, 2008). More about 
possible extensions of ordinary hidden Markov models in the Discussion section.

Determining goodness-of-fit of hidden Markov models is a notoriously difficult 
task, but see for example Altman (2004) for some recent developments. Instead of 
determining absolute goodness-of-fit, such as χ2-measures for contingency tables 
(Wickens, 1989), in the current chapter we use relative goodness-of-fit measures 
to compare various candidate models with one another. The Akaike and Bayesian 
Information Criteria are the most common such measures that are used (Akaike, 
1973; Schwarz, 1978). These criteria provide a way of balancing a measure of the 
goodness-of-fit of a model, such as the log likelihood with a measure of the parsi-
mony of the model, such as the number of parameters. In the illustrations below, 
these two criteria are used. Lower AICs and BICs indicate better fitting models. In 
addition, we use the log likelihood ratio whenever this is applicable, i.e., whenever 
models are nested. In comparing nested models, the log likelihood ratio between 
two models has a known distribution, the χ2-distribution with df the number of con-
strained parameters, and can hence be used to test models (Wald, 1943).

Illustrative Applications

Perth Water Dams

In this section we provide a brief example of a so-called left-right hidden Markov 
model; that is, a model with a number of transient states that can only be accessed in 
one direction, ending in a final absorbing state. The aim of this example is to show 
that there is a number of stages underlying the data which are best characterized as 
discrete stages with sudden transitions between them rather than a gradual, continu-
ous change. Similar models have, for example, been used in studying development 
of math skills (Collins & Wugalter, 1992) and in medical applications (Reboussin, 
Reboussin, Liang, & Anthony, 1998); Kaplan (2008) provides an overview of such 
models, that are called stage-sequential models in the developmental psychology lit-
erature. The important difference between those applications and ours is that they 
considered only a few measurement occasions and many participants, whereas here 
we study a single time series.

Data

The data that are used in this illustration concern the water inflow into a number 
of dams surrounding Perth, Western Australia. The data are depicted in Fig. 13.2. 
Measurements are annual yearly totals of water inflow into a number of dams in the 
area of Perth. The data are kindly provided by the Water Corporation of Western Aus-
tralia and concern the years 1911–2005 (Water Corporation of Western Australia).
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Models

The main point of interest in these data is whether there are significant trends indi-
cating a decrease in water inflow. We consider two possible hypotheses here: First, 
there is a decrease, and it is linear; second, there is a decrease, and it is stepwise, 
i.e., there are sudden changes rather than gradual changes. In economic science for 
example this is referred to as a regime change (Kim, 1994), and in psychology these 
sorts of changes are referred to as phase transitions or catastrophic changes (van der 
Maas & Molenaar, 1992).

Here we compare three models, a linear model, and hidden Markov models with 
either 2 or 3 states to allow for either 1 or 2 change points in the data. In terms of 
parameters of the earlier given example model in Fig. 13.1, this means that transi-

Fig. 13.2    Perth dams water inflow data in gigaliter per year from 1911 to 2005. The solid line 
represents the data; the solid straight line is the prediction by a simple linear model; the dashed 
line represents the predicted values by a 2-state (1 switch point) hidden Markov model; the dotted 
line represents the predictions by a 3-state (2 switch points) hidden Markov model. The first switch 
of the 3-state model occurs in the same year as the switch in the 2-state model
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tion parameter a21 is equal to zero. In other words, there is a progression from state 
1 to state 2 at some point in time but no possibility of going back to that earlier state. 
In the 3-state model, transition parameter a32 is equal to zero. Model goodness-of-fit 
statistics are provided in Table 13.1.

As can be read in Table 13.1, the 2- and 3-state models have much better good-
ness-of-fit statistics than the linear model, supporting the conclusion that change 
in water inflow is sudden rather than gradual. The difference between the 2- and 
3-state models is relatively small and hence only future data can clarify whether 
there is a second change point or not. Both the 2- and 3-state models agree exactly 
on the time of the first change point in the mid-seventies. The extent to which these 
changes reflect effects of climate change has been an issue of debate (see Marine 
and Atmospheric Research, for various reports on this). All three fitted models’ 
predictions are plotted in Fig. 13.2.

Speed-Accuracy Trade-Off

In this section we provide an example of an HMM that is used to analyze a single 
time series resulting from a reaction time experiment in which the speed-accuracy 
trade-off (SAT) was manipulated. In this example, we extend the traditional latent 
Markov model in two important ways. First, the latent states can have mixed indica-
tors, e.g., a gaussian and a binomial indicator, for the reaction time and the accuracy 
of a trial, respectively. In much experimental research, reaction times and accuracy 
of trials are analyzed separately, whereas they are known to be dependent. Using 
both as indicators of a single latent variable allows us to explore the relationships 
that exist between them. In the application that we present, the relationship between 
speed and accuracy is explored. Second, we use covariates on the transition param-
eters to test the effects of experimental manipulation. More generally, the use of 
covariates can help account for heterogeneity, either between cases, or within a 
single case over time.

Heterogeneity in time can be accommodated by specifying separate distribution 
functions for each measurement occasion. In this general case, the distributions 
depend on t and we write e.g., aij = aij(t). As a result, the number of parameters 
depends on the number of measurement occasions, which quickly becomes com-

Table 13.1    Goodness-of-fit measures for the Perth water data models. Lin denotes the linear 
model, and 2 and 3 denote the 2- and 3-state models respectively
Model logl AIC BIC nfree
Lin 634.29 1272.58 1277.69 2
2 612.34 1234.68 1247.45 5
3 611.01 1240.03 1263.01 9
Note: Model indicates the type of model that is fitted, lin for linear model, 2 and 3 for the 2- and 
3-state models respectively; logl is the log likelihood, AIC and BIC are the Akaike and Bayesian 
information criteria respectively; nfree denotes the number of free parameters estimated in each 
model.
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plicated when analyzing long time series. In particular, in the application that we 
consider, with only a single time series this is not feasible. Therefore, none of the 
distributions depends on t in this general way. Instead, we deal with heterogeneity 
in time in a more parsimonious way by specifying parameters of distributions to 
be functions of time-dependent covariates zt. When that is the case, we write e.g., 
aij(t) = P(St = j|St-1 = i,zt). The transition probabilities are then modeled as a multi-
nomial logistic regression (Agresti, 2002). In particular, we use a baseline category 
logit model for the transition probabilities from state i:

	 log(aij /ai1) = αj + βjzt , j = 2, . . . n,  � (10)
where aij is the transition probability from state i to state j and n is the number of 
states in the model, and zt a vector of covariates; in this example, the baseline cat-
egory is 1, and the corresponding parameters 1 and 1 are set to zero. Note that this 
only works if the transition probability ai1 is not equal to zero; however, if this is 
the case, changing the baseline category can solve this problem. Recently, a latent 
Markov model with time-dependent covariates for the transition probabilities was 
presented in Chung, Walls, and Park (2007).

In this section we illustrate the use of HMMs by analyzing data from an experi-
ment in which the speed-accuracy trade-off is manipulated by varying pay-offs for 
speed and accuracy in a reaction time experiment. Before presenting the data and a 
number of models, we briefly sketch the reasons for collecting these data.

Theoretical Background

The use of reaction times as behavioral measure in experimental psychology is 
pervasive. In experimental research on choice behavior it is common to analyze 
the reaction times only, and to consider accuracy data as a nuisance. Usually, accu-
racy scores are only analyzed to check whether they do not differ between condi-
tions of an experiment. The random walk model (Laming, 1968) or diffusion model 
(Ratcliff, 1978) is especially suitable for simultaneously analyzing reaction times 
and accuracy of trials in experimental situations and it has been applied successfully 
in a large variety of experimental data.

The random walk model (RWM) for choice reaction times predicts a continuous 
trade-off between speed and accuracy; that is, it is assumed that accuracy and RT 
drop gradually in response to certain experimental manipulations, e.g., instructions 
to respond faster. An alternative to the RWM is a phase transition model (PhTM), 
which holds that participants switch between two modes of responding, the fast-
guessing mode and the stimulus-controlled mode. In the fast-guessing mode, accu-
racy is at chance level and reaction times (RT) are short. In contrast, in the stimulus 
controlled mode, accuracy is close to 100% and RTs are relatively longer. The PhTM 
predicts that as pressure to respond faster and faster increases, participants switch 
to fast-guessing rather than respond at intermediate levels of accuracy and speed. 
Providing insight into the trade-off between speed and accuracy in choice reaction 
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time tasks is important because the use of different strategies in the trade-off may 
threaten the validity of comparing RTs between, say, participants or experimental 
conditions.

The goal in the current illustration of HMMs is to test a number of predictions 
that differentiate the RWM and PhTM. There are two specific predictions that are 
explored here. First, the RWM predicts a single response strategy, which has a sin-
gle parameter for adapting the trade-off, whereas the PhTM predicts the existence 
of two different strategies and a switching regime between those strategies. Second, 
in addition to the existence of two states in the PhTM, it also makes specific pre-
dictions about the switching regime dependent on the changes in the pay-offs for 
speed and accuracy. In particular, it predicts a certain asymmetry in the switching 
process between the fast-guessing state and the stimulus-controlled state. These two 
hypotheses translate into specific hypotheses about hidden Markov models that are 
outlined below in the modeling section.

Data

Figure 13.3 depicts the first 168 trials of an experiment in which the SAT was 
manipulated by continuously varying the pay-off for accuracy. The data at each trial 
consists of a reaction time (log-transformed to make the distribution normal) and 
whether the trial was correct or not. The data result from a lexical decision task. The 
third part of the Figure depicts the relative pay-off for accuracy that was manipu-
lated experimentally. The data that are analyzed here are from a single participant 
(two other participants were tested with similar results). This pay-off increases and 
decreases over trials with the aim that the participant adapts his behavior accord-
ingly. The depicted data in Fig. 13.3 is the first part of 168 trials; the full data of this 
participant has two further series of 134 and 137 trials respectively. These data form 
a subset of the data from Experiment 2 in van der Maas, Dutilh, Visser, Grasman, 
and Wagenmakers (2008).

Models

The main aim is to test the hypothesis whether there are two modes rather than one 
in these data; that is, the hypothesis is whether a gradual decrease in the pay-off for 
accuracy leads to a gradual decrease in accuracy of responding (and a correspond-
ing decrease in RTs), or alternatively, whether a decrease in the pay-off leads to 
a sudden switch in the mode of responding, from stimulus-controlled responding 
(slow and accurate) to fast-guessing (fast responding at chance level). Furthermore, 
if there are two or more modes, it is interesting to find out the transition dynamics 
between the modes and in particular if and how those depend on the covariate, i.e., 
the pay-off for accuracy.



282 I. Visser et al.

To test the first hypothesis, i.e., that there two or more modes in the data, a 
number of HMMs with 1–3 states are fitted to the data. Models are fitted with and 
without Pacc, the pay-off for accuracy, as covariate on the RTs and corr (accuracy) 
variables in the data. That is, for example, in each state the RTs are modeled with 
a linear regression model with Pacc as predictor. Similarly, the accuracy variable 
corr is modeled with Pacc as a predictor in a binomial logistic regression (Agresti, 
2002).

Table 13.2 presents the goodness-of-fit statistics for each of these models, with 
a p indicating that Pacc was included as a covariate on the RT and corr variables in 
each state.

The AIC and BIC are reported here. The Table also includes the likelihood ratio 
tests for adding the predictor Pacc to the models.

As can be seen in Table 13.2, the 2- and 3-state models have much lower AIC and 
BIC values than the 1-state model, both with and without Pacc as covariate on the 

Fig. 13.3    Speed-acurracy trade-off data. Upper panel: reaction times (note that the RTs are log-
transformed); middle panel: accuracy per trial (corr); lower panel: pay-off for accuracy (Pacc)
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responses. It is hence safe to conclude that the process consists of multiple modes 
of responding.

The 2- and 3-state models both contain a state which is best described as a ‘stim-
ulus controlled’ mode of responding with relatively slow RTs and highly accurate 
responding. The 2-state model additionally has a fast-guessing state with fast RTs 
and accuracy around chance level. In the 3-state models, there are two instead of 
one fast-guessing state, with one state having very fast responses, and the second 
state having slightly slower responses. The reason that the 3-state model is slightly 
better than the 2-state model could be due the fact that we modeled the reaction 
times using a log-normal distribution, which may not be optimal. Because of this, 
below we further explore the 2-state model and extensions thereof rather than the 
3-state models. First, however we present the parameter values of the 2-state model 
without covariates.

The initial state probabilities have values p1 = 0.99997 and p2 = 0.00003; in other 
words, the process starts in state S1 with overwhelming probability. The transition 
matrix has values:

	
a11 = 0.916a12 = 0.084

a21 = 0.101a22 = 0.899,

 
�

(11)

from which it can be seen that both states are very stable, i.e., the probability of 
staying in either state, a11 and a22 is around 0.9. The measurement models for each 
of the states have the following parameters. State S1 has a mean reaction time of 
6.36 (SD = 0.24). Note that the RTs are log-transformed, so this mean is equivalent 
to 595 ms. The accuracy in state S1 is equal to 0.90, which identifies this state as 
the stimulus-controlled state with an accuracy close to unity. State S2 has a mean 
RT of 5.52 (SD = 0.20) and an accuracy of 0.53, which identifies this state as the 
fast-guessing state with accuracy around chance level and RTs that are on average 
much faster than in the stimulus-controlled state. The RTs in this state are 249 ms 
on average.

Table 13.2    Goodness-of-fit measures for 1- to 3-state models with and without direct effects of 
Pacc on RT and corr
Model logl AIC BIC nfree llr df (p)
1 −554.64 1115.27 1127.53 3    
1p −417.42 844.85 865.27 5 274.4 2 (0)
2 −296.11 610.22 646.98 9    
2p −291.93 609.86 662.96 13 8.36 4 (0.079)
3 −265.52 565.04 634.48 17    
3p −263.00 572.01 665.95 23 5.03 6 (0.54)
Note: Model indicates the type of fitted model, see the text for details; logl denotes the log like-
lihood; AIC and BIC denote the Akaike and Bayesian information criteria respectively; nfree 
denotes the number of freely estimated parameters of the model; llr denotes the log likelihood 
ratio with respect to the previous model for the models that include Pacc as covariate (models with 
p); df denotes the degrees of freedom for the log likelihood ratio test and between parentheses the 
p-value for the test is given.
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The next model we fit is an extension of the above described model: it is a 2-
state model in which the transition dynamics depend on the covariate Pacc, the 
pay-off for accuracy. In above fitted models, this pay-off was included as covariate 
on the responses (RT and corr) directly. As can be seen in Table 13.2 in the 2- and 
3-state models, the likelihood ratio tests indicate that adding Pacc as a predictor for 
the responses does not significantly improve goodness-of-fit of these models. For 
example, in the 3-state model, the log likelihood ratio is 5.03 with df = 6 resulting 
in p = 0.54. According to the PhTM of the SAT, it is more plausible that Pacc influ-
ences the transitions between the fast-guessing and the stimulus-controlled mode 
of responding rather than influencing the responses directly. Consequently, Pacc is 
included as a covariate on the transition probabilities in the next set of the models 
that we fitted.

In Table 13.3, the goodness-of-fit statistics for this model (denoted 2ptr in the 
Table) are given along with the 2-state model without covariates (2) and the 2-
state model with Pacc as predictor for the responses (2p). Note that these latter two 
models are identical to the ones presented in Table 13.2 and are presented here for 
purposes of comparison. The 2ptr model fits the data much better than either the 
2-state model (2) without covariates or the 2-state model with a covariate on the 
responses (2p).

Two further constraints are tested in this model. First, the initial probability for 
starting in the stimulus controlled state is estimated at 0.999 and hence it is sus-
pected that it is not significantly different from unity. Second, the probability for 
accuracy in the fast-guessing mode is 0.525 and it is interesting to test whether this 
differs significantly from 0.5, chance level in the task. The next model we fitted 
incorporates these two constraints; in Table 13.3, this model is indicated as ‘2ptr-
constr’. The log likelihood ratio test (in column llr in the Table) indicates that these 
constraints do not lead to significant decrease in goodness-of-fit and are hence rea-
sonable. These constraints are therefore kept in the following models.

The second hypothesis that is interesting to test concerns the phenomenon of 
hysteresis, i.e., whether the switching process between the states is asymmetric 
rather than symmetric which is a strong prediction by the phase transition model 

Table 13.3    Goodness-of-fit measures for 2-state models for the speed-accuracy data. See the text 
for details
Model logl AIC BIC nfree llr df (p)
2 −296.11 610.22 646.98 9    
2p −291.93 609.86 662.96 13 8.36 4 (0.079)
2ptr −248.9 519.94 564.87 11 94.27 2 (0)
2ptr-constr −249.21 516.43 553.19 9 0.48 2 (0.78)
2ptr-hyst −250.51 517.03 549.71 8 2.61 1 (0.11)
2ptr-nohyst −277.11 568.21 596.81 7 55.8 2 (0)
Note: Model denotes the type of model that is fitted, see the text for details; logl denotes the log 
likelihood, AIC and BIC denote the Akaike and Bayesian information criteria, respectively; nfree 
denotes the number of free parameters in the model; llr denotes the log likelihood ratio of the 
model with respect to the baseline model (i.e., model 2 for models 2p, 2ptr, and 2ptr-constr, and 
model 2ptr-constr for the remaining models, also see the text); df denotes the degrees of freedom 
for the log likelihood ratio test and between parentheses is the corresponding p-value for the χ2  
-distribution.
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(see van der Maas & Molenaar, 1992, for an example of this in developmental 
psychology). Hysteresis means that each of the states has inherent stability, which 
means that switching from the guessing state to the stimulus controlled state occurs 
at a different value of the control parameter (Pacc in this case) than when switching 
the other way around. In terms of hidden Markov model parameters, this means that 
the transition matrix is asymmetric and that the values of the intercept parameter 
corresponding with the influence of Pacc on the transition probabilities should be 
different between the two states of the model. Hence, the PhTM predicts that the 
intercepts [i in Eq. (10)] of the regression models relating Pacc to the transition 
probabilities are different in each of the states, but not the slope parameters (i). 
Consequently, two more models were fitted, one in which only the ’s were con-
strained to be equal, i.e., 1 = 2. This model is called the hysteresis model, because 
the  ’s are different for each state. In the Table, this model is denoted as 2ptr-
hyst. In the second model, the  ’s are constrained to be equal, i.e., 1 = 2 to test 
the hypothesis of hysteresis. This final model is denoted 2ptr-nohyst in Table 13.3. 
Included in Table 13.3 are the log likelihood ratio tests of these models relative to 
the 2ptr-constr model as that was the best model so far. As can be seen from those 
tests, the 2ptr-hyst model is tenable but the 2ptr-nohyst model is not. Hence, the best 
model for these data is a model that incorporates hysteresis.

The measurement model parameters for state 1 are: a mean RT of 5.52 (SD = 0.21) 
and an accuracy of 0.5 (note that this parameter was constrained at that value). State 
2 has a mean RT of 6.40 (SD = 0.24) and a mean accuracy of 0.91. Hence, state 1 
is the fast-guessing state and state 2 the stimulus-controlled state. The transition 
model for state 1, the fast-guessing state, has parameters 2 = −5.33 and 2 = 12.65 
(remember that 1 and 1 are both equal to zero as this is baseline category logistic 
model). When Pacc is zero, this means that the transition probability a11, i.e., the 
probability of remaining in the fast-guessing state is equal to 0.995. The  and β 
parameters for the transition model of state 2 are −2.42 and 12.65 respectively. 
When Pacc is 1 (the maximum value in the experiment), this means the transition 
probability a22 is 0.9999, in other words virtually equal to one.

The transition dynamics of the model are further illustrated in Fig. 13.4. Depicted 
is the probability of transitioning from the fast-guessing state to the stimulus-con-
trolled state as a function of the value of Pacc (solid smooth line). The dotted smooth 
line is the probability of staying in the stimulus controlled state as a function of 
Pacc. The probabilities are computed from model 2ptr-hyst in Table 13.3 with the 
parameter values that are given above. The Figure clearly shows the separation 
between the curves which indicates that switching from the fast guessing state to 
the stimulus controlled state occurs at higher values of the pay-off for accuracy than 
switching in the other direction.

Plotted over the model predicted transition functions are the observed RTs as 
function of Pacc (lines with circles and triangles). The solid line with circles indi-
cates average RTs at different levels of Pacc during runs of trials at which Pacc is 
increasing (that is, when a switch is expected from the fast-guessing mode to the 
stimulus-controlled mode); the dotted line with triangles indicates average RTs at 
different levels of Pacc during runs of trials in which Pacc is decreasing, that is when 
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a switch is expected from the stimulus controlled mode to the fast-guessing mode. 
Here hysteresis is evident by noting that at increasing values of Pacc, the switch to 
slower RTs (corresponding with more accurate responding) occurs at higher values 
of Pacc than the switch in the other direction, i.e., when Pacc is decreasing.

Conclusion

The SAT is an important phenomenon in experimental research because strategic 
differences between participants may influence conclusions reached from such 
research. The experimental data that were analyzed here clearly indicate that there 
are multiple modes in responding to a simple choice reaction time task depending 
on the reward that participants get for responding fast versus accurate. This is in 
contradiction with a popular and often model for analyzing reaction time data, the 
random walk model. HMMs have been shown to be a useful tool to discriminate 
between these models, thereby showing that participants switch between two modes 
of responding depending on the pay-off for accuracy as a covariate.

Fig. 13.4    Hysteresis in the transition probabilities (computed from the fitted model 2ptr-hyst) 
between states. On the left hand side scale is the transition probability. The right hand scale is 
for the reaction times also showing hysteresis in the observed data. See the text for details on the 
model and the reaction times
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Discussion

We have introduced hidden Markov models as an important tool in studying proc-
esses of change, in particular changes that occur suddenly rather than gradual. 
Stepwise or stage-wise changes are an important characteristic of many theories, 
including theories in experimental psychology in the analysis of reaction times, 
as we have illustrated. Other examples that we have studied earlier concern theo-
ries of development and learning that occur stage-wise rather than gradually. In 
learning, HMMs were applied to show that simple discrimination learning shows 
all-or-none learning processes rather than gradual stimulus-response strengthening 
(Raijmakers, Dolan, & Molenaar, 2001; Schmittmann et al., 2006; Visser et al., 
2007). In other work, development on the balance scale task was analyzed using 
hidden Markov models to analyze the effects of feedback on learning (Jansen, Raij
makers, & Visser, 2007).

In this chapter we have focused on models for single time series. Such models 
form the basis for generalizations across participants if such is applicable. In our 
second example we have illustrated the use of time-varying covariates to describe 
changes in behavior. Also, in that example, we have illustrated the use of mixed 
indicators, that is, a combination of a binary and a gaussian variable measured con-
currently. These extensions the hidden Markov model framework to be extremely 
flexible in analyzing processes of change.

Many extensions of hidden Markov models have been explored by various 
researchers. An important one is the possibility of dealing with continuous time 
measurements rather than equidistant time measurements as we have done. Bureau, 
Shiboski, and Hughes (2003) for example, present an analysis of disease outcomes, 
and Böckenholt (2005) presents an example in studying the time course of changes 
in emotional states.

The software framework that we used to fit the models, depmixS4 (Visser & 
Speekenbrink, 2008), offers a wide variety of possible models: Markov mixtures 
of generalized linear models. Hence, this includes the use of regression models 
within states of the hidden Markov model. Also, a variety of other distributions are 
available such as Poisson responses, gamma responses etc. The transition probabili-
ties and the initial state probabilities within depmixS4 are as multinomial logistic 
distributions which allows for the possibility of including time-varying covariates 
on the transition parameters as we have shown in our second example. Moreover, 
the depmixS4 framework offers easy extensibility by the possibility of adding new 
response distributions.
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