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The currently dominant, myopic approach to statistical analysis in psychology is 
based on analysis of inter-individual variation. Differences between subjects drawn 
from a population of subjects provide the information to make inferences about 
states of affairs at the population level. For instance, the factor structure of a person-
ality test is determined by drawing a random sample of subjects from the population 
of interest, estimating the item correlation matrix by pooling across the scores of 
sampled subjects, and generalizing the results of the ensuing factor analysis to the 
population of subjects.

Pooling across subjects is the hall-mark of analyses of inter-individual varia-
tion. Such pooling implies that the individuality of each subject in the population 
is immaterial to the statistical analysis—subjects in a homogeneous population 
are considered to be exchangeable like atoms in a homogeneous gas, constituting 
replications of each other. Accordingly, the population is conceived of as a set of 
statistical atoms or clones in which the variation between atoms (inter-individual 
variation) has the same (factor) structure as the variation of each atom in time (intra-
individual variation).

This perspective underlying analyses of inter-individual variation would seem to 
imply that results which hold in a homogeneous population also apply to each of the 
individual subjects making up this population. That is, the variation between sub-
jects at each point in time has to be qualitatively and quantitatively the same as the 
variation which characterizes the life trajectory of each individual subject. There-
fore results obtained in analyses of inter-individual variation can be, and abundantly 
are, applied to assess, counsel and treat individual subjects.

It has been shown recently (Molenaar, 2004), however, that in general the inferred 
states of affairs at the population level, as determined in analyses of inter-individual 
variation, do not apply at the level of intra-individual variation characterizing the 
life trajectories of individual subjects making up the population. This is a direct 
consequence of general mathematical theorems—the so-called classical ergodic 
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theorems—which have far-reaching implications for the way in which psychologi-
cal processes have to be analyzed.

These theorems, which are heuristically described below, imply the necessity of 
using alternative approaches for the analysis of intra-individual variation, based on 
single-subject and replicated time series analysis. Next an overview is presented of 
dynamic factor models for the analysis of multivariate time series and the various 
ways to fit these models to the data. Some persistent misunderstandings in the recent 
literature on dynamic factor analysis will be addressed and an illustrative empirical 
application of factor analysis of mood change during pregnancy data is presented. 
The next topic is innovative—a new dynamic factor model for the analysis of mul-
tivariate time series having time-varying statistical characteristics is introduced and 
applied to simulated data. In the closing section future extensions of dynamic factor 
analysis are outlined.

The Classical Ergodic Theorems

The standard approach to statistical analysis in psychology is to draw a random sam-
ple of subjects from a presumably homogeneous population of subjects, analyze the 
structure of inter-individual variation in this sample, and then generalize the results 
thus obtained to the population. Such analysis of inter-individual variation underlies 
all known statistical techniques, like analysis of variance, regression analysis, factor 
analysis, multilevel modeling, mixture modeling, etc. Consequently the standard 
approach to psychological data analysis aims to describe the state of affairs at the 
population level, not at the level of individual subjects. Accordingly, the individual-
ity of each of the persons in the sample and population is deemed immaterial: the 
subjects are considered to be replications devoid of individuality. This is expressed 
by the assumption that subjects are homogeneous in all respects relevant to the 
analysis. This essential homogeneity assumption allows for the averaging (pooling) 
of the scores of the sampled subjects in the determination of statistics (e.g., means, 
variances, correlations, model parameters) to be generalized to the population.

However, the standard approach based on analysis of inter-individual variation 
is incorrect if a psychological process under investigation does not obey stringent 
conditions (Molenaar, 2004). The proof is based on the classical ergodic theorems; 
theorems of extreme generality which apply to all measurable processes irrespec-
tive of their content (cf. Choe, 2005, for a modern proof of the first ergodic theorem 
of Birkhoff). The conditions concerned are specified at the close of this section.

To appreciate the far-reaching implications of the classical ergodic theorems, it is 
helpful to first characterize the elementary methodological situation in psychologi-
cal measurement. Instead of postulating an abstract population of subjects, consider 
an ensemble of actually existing human subjects whose measurable psychological 
processes are functions of time and place (the basic Kantian dimensions of phenom-
enological reality).

To simplify the following discussion, without affecting its generality, the focus 
will be on time as the basic dimension along which psychological processes are 
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evolving. The ensuing basic scientific representation of a human subject in psychol-
ogy therefore is a high-dimensional dynamic system, the output of which consists 
of a set of time-dependent processes. The system includes important functional sub-
systems such as the perceptual, emotional, cognitive, and physiological systems, 
as well as their dynamic interrelationships. The complete set of measurable time-
dependent variables characterizing the system’s behavior can be represented as the 
coordinates of a high-dimensional space which will be referred to as the behavior 
space. The behavior space contains all the scientifically relevant information about 
a person (cf. De Groot, 1954).

Within the behavior space, inter-individual variation is defined as follows:

(i) select a fixed subset of variables;
(ii) select one or more fixed time points as measurement occasions,
(iii) determine the variation of the scores on the selected variables at the selected 

time points by pooling across subjects.

Analysis of inter-individual variation thus defined is called R-technique by Cat-
tell (1952).

In contrast, intra-individual variation is defined as follows:

(i) select a fixed subset of variables;
(ii) select a fixed subject;
(iii) determine the variation of the scores of the single subject on the selected vari-

ables by pooling across time points.

Analysis of intra-individual variation thus defined is called P-technique by Cat-
tell (1952).

With these preliminary specifications in place, the following heuristic descrip-
tion of the content of the classical ergodic theorems can be given. These theorems 
detail the conditions that must be met in order to generalize from analyses of inter-
individual variation to analyses of intra-individual variation, and vice versa.

The conditions of the ergodic theorems are twofold. First, a process has to be sta-
tionary, meaning that the mean function must be constant in time (without trends or 
cycles) and the sequential dependence must be constant in time (with constant vari-
ance and sequential correlations depending only upon the relative distance between 
time points; cf. Hannan, 1970).

Second, each person in the population must obey the same dynamics. If a dynamic 
process obeys both conditions, it is called ergodic; if one or both conditions are vio-
lated, it is called non-ergodic. For ergodic processes, lawful relationships between 
inter- and intra-individual variation exist, but for non-ergodic processes these rela-
tionships do not exist. Put another way, if the conditions of ergodicity are violated, 
no a priori relationship exists between results obtained in an analysis of inter-indi-
vidual variation (R-technique) and results obtained in an analogous analysis of 
intra-individual variation (P-technique).

The consequences of the classical ergodic theorems affect all psychological 
statistical methodology (e.g., Molenaar, Huizenga, & Nesselroade, 2003; Borsboom, 
2005). Because “development” generally implies that some kind of growth or 
decline occurs, developmental processes are almost always non-stationary and are, 
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therefore, non-ergodic. Generally, developmental scientists consider change that 
occurs in average or mean levels of a process. However, change may also occur in 
variances or sequential dependencies over time.

Overview of Dynamic Factor Modeling

Dynamic factor analysis is factor analysis of single-subject multivariate time 
series. It constitutes a generalization of Cattell’s P-technique (Cattell, 1952) in 
that it takes account of lead-lag patterns in the dynamic relationships between 
latent factor series and observed series. In contrast, P-technique involves straight-
forward application of standard factor analysis to multivariate time series with-
out accommodation of lead-lag sequential dependencies; the reader is referred to 
Molenaar and Nesselroade (2008) for further discussion of the domain of appli-
cation of P-technique.

In what follows, bold face lower case letters denote vectors; bold face upper 
case letters denote matrices; an apostrophe attached to vectors or matrices denotes 
transposition. Let y(t) = [y1(t), y2(t), ..., yp(t)] ′ be a p-variate time series, p  1 , 
observed at equidistant time points t = 1, 2, ..., T . The mean of y(t) at each time 
point t is: E[y(t)] = µ(t) . Considered as function of t, (t) denotes the p-variate 
mean function (trend) of y(t). If µ(t) = µ , i.e., if the mean function is constant in time, 
then y(t) has a stationary mean function. The sequential covariance of y(t) between a 
given pair of time points t1 and t2 is defined as: (t1, t2) = cov[y(t1), y(t2)] . Con-
sidered as function of 2-D time, (t1, t2)  denotes the (p,p)-variate covariance func-
tion of y(t). If (t1, t2)  only depends upon the relative time difference t1 − t2 = u , 
i.e., (t1, t2) = (t1 − t2) = (u), u = 0,±1, ...± T− 1 , then y(t) has stationary 
covariance function depending only on lag u. If both the mean function and covari-
ance function of y(t) are stationary then y(t) is called a weakly stationary p-variate 
time series.

In the first publication on dynamic factor analysis in psychology the following 
model for weakly stationary multivariate Gaussian series was considered (Molenaar, 
1985):

 y(t) = µ+Λ(0)η(t)+Λ(1)η(t− 1)+ ...+Λ(s)η(t− s)+ ε(t)   (1a)

where y(t) is an observed p-variate time series, (t) is a latent q-variate factor series 
and (t) is a p-variate measurement error series. Because our main interest is not in 
the constant mean function , it is conveniently assumed that  =  0. Then all time 
series in (1a), y(t), (t), and (t), are zero mean weakly stationary.

The (u), u = 0, 1, ..., s , are (p,q)-dimensional matrices of lagged fac-
tor loadings, where s ≥ 0 is the maximum lag. These lagged factor loadings 
allow for the possibility that the realization of the latent factor series (t) at 
each time t not only has an instantaneous effect on y(t), but also may have 
delayed effects at later time points t+ 1, ..., t+ s . The linear combination 
Λ(0)η(t)+Λ(1)η(t− 1)+ · · · +Λ(s)η(t− s)  is called a convolution.
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For later reference the limiting case of (1a) is considered in which s = 0, i.e., the 
case in which there are no lagged factor loadings:

    y(t) = Λ(0)η(t)+ ε(t)  (1b)

Equation (1b) is a special instance of (1a). It has been assigned several labels, 
including state-space model (e.g., Molenaar 1985) and process factor model (e.g., 
Browne & Nesselroade, 2005). In what follows (1b) will be referred to as a state-
space model. As will be explained shortly, (1b) has a special property not shared 
by (1a).

The dynamic factor model (1a) was inspired by Brillinger’s (1975) principal 
component analysis of multivariate weakly stationary time series. It differs from 
Brillinger’s approach in a number of respects, perhaps the most important of which is 
that in (1a) the convolution of lagged factor loadings and latent factor series is finite 
and only depends at each time point t upon earlier realizations η(t), ...,η(t− s)  of 
the latent factor series, whereas in Brillinger’s model this convolution is infinite 
and also depends upon future realizations η(t+ 1), η(t+ 2), …. Another important 
difference relates to the statistical characteristics of the measurement error series in 
each of the two models.

To complete the definition of the dynamic factor model under consideration, the 
covariance functions of the time series occurring in (1a)–(1b) have to be specified. 
Let diag-A denote a square diagonal matrix A (all off-diagonal elements being zero). 
Then the covariance functions associated with the right-hand side of (1a) are:

   cov[ε(t), ε(t− u)] = diag-Θ(u); u = 0,±1, ...

cov[η(t), η(t− u)] = Ψ(u) = 0,±1, ...
 

(1c)

The first equation of (1c) defines the covariance function of the measurement 
error process. The univariate measurement error process εk(t) associated with 
the kth observed univariate series yk(t), k ∈ {1,…,p], is allowed to have nonzero 
sequential covariance: cov[εk(t), εk(t− u)] = 0  for ∀u. However, measurement 
error processes εk(t) and εm(t) associated with different observed univariate series 
yk(t) and ym(t), k = m ∈ {1, ..., p] , are assumed to be uncorrelated at all lags u: 
cov[εk(t), εm(t− u)] = 0  for ∀u. The second equation in (1c) defines the covari-
ance function of the latent factor series.

Some intricacies associated with (1) It was proven in Molenaar (1985) that 
under certain conditions the covariance function of the latent factor series defined in 
(1c) is not identifiable. That means that under certain conditions the variances and 
sequential covariances in Ψ(u), u = 0,±1, ...,  cannot be estimated, but have to be 
fixed a priori. The conditions concerned are twofold. Firstly, the maximum lag s 
of the matrices of factor loadings Λ(u), u = 0, 1, . . . , s, has to be larger than zero: 
s > 0. Secondly, all factor loadings in Λ(u), u = 0, 1, ...,s, should be free param-
eters. That is, the dynamic factor model should be exploratory, having no a priori 
pattern of fixed factor loadings.

If both these conditions obtain then the covariance function of the latent fac-
tor series has to be fixed a priori. (u), u = 0, ± 1,…, then can be fixed at any 
possible covariance function without affecting the goodness of fit of the model. 
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In Molenaar (1985) the simplest covariance function for (t) was chosen: cov
[η(t), η(t− u)] = δ(u)lq , where δ(u) is the Kronecker delta (δ(u) = 1  if 
u = 0; δ(u) = 0  if u = 0 ) and Iq is the (q,q)-dimensional identity matrix. This 

particular choice implies that the latent factor series lacks instantaneous as well as 
sequential dependencies. Accordingly, (t) can be conceived of as a sequence of ran-
dom shocks, often referred to in the engineering literature as a white noise sequence. 
But quite other choices are possible (cf. Molenaar & Nesselroade, 2001).

If the dynamic factor model is confirmatory, i.e., if an a priori pattern of fixed 
factor loadings has been specified in (u), u = 0,1,…,s, then the covariance func-
tion of the latent factor series is identifiable. Also if s = 0, i.e., if the state space 
model (1b) applies, then the covariance function of the latent factor series is identi-
fiable. In these cases (u), u = 0,±1, ..., can be freely estimated or, alternatively, 
a parametric time series model for (t) (and hence for it covariance function) can be 
considered. For instance, the latent factor series (t) can be represented by a vector 
autoregression: η(t) = Bη(t− 1)+ ζ(t) , where  is a (q,q)-dimensional matrix of 
regression coefficients and (t) is a q-variate white noise sequence.

Given that for the state-space model (1b) the covariance function (or a paramet-
ric time series model) of the latent factor series always is identifiable, it would seem 
rational to restrict attention to this type of model. At least for exploratory dynamic fac-
tor analyses, this would preclude the need to have to arbitrarily fix (u), u = 0,±1,…, 
which is necessary in such applications of (1a). However, it can be shown that for 
certain types of psychological time series the state-space model is too restrictive. In 
particular when the effect of (t) on y(t) is delayed, the state space model will be inap-
propriate. For these time series one needs the general dynamic factor model (1a) in 
which s > 0. Such delays occur, for instance, in multi-lead EEG registrations of electro-
cortical brain fields caused by a finite set of underlying neural sources. The activity of 
the neural sources is represented by the latent factor series (t) and the EEG registra-
tions by the manifest series y(t). The effects of each neural source travel with finite 
speed along long-range axons to their target regions. Because target regions are located 
at different distances from a given neural source and the effects of a volley of action 
potentials of a neural source on the ongoing activity of target areas take time to dissi-
pate, the relationships between (t) and y(t) will show complex patterns of delays.

But the pattern of delayed relationships between the latent factor series and the 
observed series does not have to be complex in order to invalidate the state space 
model (1b). This will be illustrated with data simulated with the following simple 
dynamic 1-factor model. Let y(t) be a 5-variate time series and η(t) a univariate 
latent factor series. Let (0) = [1.0, 0.9, 0.8, 0.7, 0.6]′ and (1) = [0, −0.5, 0, 0, 0]′. 
Hence s = 1. Notice that all elements of (1) are zero, except the lagged loading 
on y2(t) : λ2(1) = −0.5 . Hence there only is a simple delayed effect of (t) on 
y2(t). Let all measurement errors be white noise series having variance equal to 
θk(0) = 0.5, k = 1, ..., 5 . The autoregressive model for the univariate latent factor 
series is: η(t) = 0.7η(t− 1)+ ζ(t) , where the variance of the white process noise 
is var [ζ(t)] = 1.0 .

A 5-variate time series of length T = 400 has been generated. Although the simu-
lation model almost is a state-space model (save for one delayed factor loading 
λ2(1) = −0.5), the state-space model (1b) with univariate state process η(t) does 
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not fit the data. Using a window width of 5 (cf. Molenaar, 1985), chi-square = 751.95, 
degrees of freedom = 313, prob. = 0.0; non-normed fit index = 0.93; comparative fit 
index = 0.93. The non-normed fit index and the comparative fit index should have 
values larger than 0.95 for acceptable model fits. In contrast, the general dynamic 
1-factor model (1a) with s = 5 yields an acceptable fit: chi-square = 235.78, degrees of 
freedom = 295, prob. = 1.0; non-normed fit index = 1.0; comparative fit index = 1.0.

Alternative ways to fit (1) Analysis of stationary multivariate Gaussian time 
series based on the dynamic factor model (1) can proceed in various ways:

1) Based on the sequential covariance function, arranged in a so-called block-
Toeplitz matrix (see Molenaar, 1985, for a detailed description). This can be 
carried out by means of commercially available structural equation modeling 
software. Browne and Zhang (2005, 2007) provide an alternative method for 
fitting a dynamic factor analysis model to a sequential autocorrelation func-
tion. Their approach, implemented in the DyFA computer program, does not use 
a block-Toeplitz matrix in the estimation process. It fits the model directly to 
the autocorrelation function without duplicating the constituent autocorrelation 
matrices to form a block-Toeplitz matrix. The DyFa program can be downloaded 
from: http://faculty.psy.ohio-state.edu/browne/software.php

2) Based on Expectation-Maximization of the raw data likelihood associated with 
state-space models (1b), where the latent factor series is estimated by means of 
the recursive Kalman filter (Expectation Step) and the parameters are estimated 
by means of multivariate regression (Maximization Step). See Hamaker, Dolan, 
and Molenaar (2005); Hamaker, Nesselroade, and Molenaar (2007) for applica-
tions; the software used in these applications can be obtained from: http://users.
fmg.uva.nl/cdolan/

3) In the frequency domain, after discrete Fourier transformation. This yields a 
set of frequency-dependent complex-valued factor models that can subjected to 
standard ML factor analysis (Molenaar, 1987). The software for dynamic factor 
analysis in the frequency domain can be obtained from the first author. Special 
nonlinearly constrained variants of this approach have been developed for the 
purpose of neural source estimation in brain imaging (Grasman, Huizenga, Wal-
dorp, Böcker, & Molenaar, 2005). The software concerned can be obtained from: 
http://users.fmg.uva.nl/rgrasman/

4) Rewriting the model as a state-space model, with extended state containing not 
only the latent factor series but also the unknown parameters. This results in a 
nonlinear state-space model for which the extended Kalman filter is used to esti-
mate the extended state, including the parameters. This will be discussed further 
in a later section.

Application in Replicated Time Series Design

Dynamic factor analysis constitutes a generalization of Cattell’s P-technique (Cattell, 
Cattell, & Rhymer, 1947). P-technique involves application of the standard factor 
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model to the zero-lag covariance matrix (0) of an observed multivariate time series 
(cf. Jones & Nesselroade, 1990), whereas dynamic factor modeling involves analysis 
of the observed series’ complete sequential covariance function (u), u = 0,±1 , 
…. Excellent recent discussions and illustrations of dynamic factor analysis of psy-
chological time series can be found in Browne and Nesselroade (2005); Browne and 
Zhang (2007); Ferrer and Nesselroade (2003); Ferrer (2006); Hamaker, Dolan, and 
Molenaar, (2005); Kim, Zhu, Chang, Bentler, and Ernst (2007); Mumma (2004); Nes-
selroade, McArdle, Aggen, and Meyers (2002); Sbarra and Ferrer (2006); Shifren, 
Hooker, Wood, and Nesselroade (1997); and Wood and Brown (1994). Dynamic fac-
tor modeling is increasingly prominent in econometrics, see for instance Forni, Hallin, 
Lippi, and Reichlin (2005); Stock and Watson (2005).

In this section an innovative application of dynamic factor analysis will be pre-
sented using multivariate time series data of multiple subjects and performing new 
types of statistical tests to uncover nomothetic relationships underlying idiographic 
observations. It concerns a multi-subject dynamic factor analysis of mood change 
during pregnancy data is presented, using the block-Toeplitz approach introduced in 
Molenaar (1985). A complete description of the data is given in Lebo and Nesselroade 
(1978). Here only part of the data will be analyzed (we thank Dr. Michael Lebo for 
making the data available). Only the data of three of the five subjects will be analyzed. 
Moreover, only five items will be selected: Enthusiastic, Energetic, Active, Peppy, and 
Lively. Keeping the same numbering of subjects as in Lebo and Nesselroade (1978), 
the length of this 5-variate observed time series (daily measurements) is T = 112 for 
Subject 1, T = 110 for Subject 3, and T = 103 for Subject 5.

State space models (1b) with 2-variate latent factor series are fitted to the data 
of the three subjects, using the block-Toeplitz correlation matrix approach with 
window width of 2 (cf. Molenaar, 1985). A window width of 2 implies that the 
covariance function of the latent factor series can be estimated up to lag ±1 : 
cov[η(t), η(t− u)] = Ψ(u), u = 0,±1 . No equality constraints across subjects are 
imposed on the (5,2)-D matrices of factor loadings. The subject-specific patterns of 
free and fixed factor loadings in (0) were determined in preliminary confirmatory 
oblique P-technique analyses. The measurement errors are assumed to lack sequential 
dependencies. No equality constraints across subjects are imposed on the zero lag 
covariance matrices cov[ε(t), ε(t)] = diag-Θ(0)  of the measurement errors. In con-
trast, it is assumed that the sequential correlation function of the bivariate latent factor 
series, cor[η(t), η(t− u)] = Ψ(u), u = 0,±1 , is invariant across the three subjects.

Notice that the state-space models specified above are partly subject-specific 
and partly invariant across subjects. No equality constraints across subjects have 
been imposed on the factor loadings and measurement error variances, hence (0) 
and diag-(0) are subject-specific. But the sequential correlation function of the 
latent factor series Ψ(u), u = 0,±1, is constrained to be invariant across the three 
subjects. This pattern of subject-specific factor loadings and measurement error 
variances in combination with invariant sequential correlation function of the latent 
factor series implements the new definition of measurement equivalence proposed 
in Nesselroade, Gerstorf, Hardy, and Ram (2007). Whereas traditional definitions 
of measurement equivalence require that at least the matrices of factor loadings are 
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invariant across subjects, it is argued by Nesselroade et al. (2007) that factor load-
ings should be allowed to be subject-specific while correlations among factor series 
should be invariant across subjects.

The overall fit of the state-space models to the replicated 5-variate time series is 
excellent: chi-square = 114.40, degrees of freedom = 129, prob. = 0.82; non-normed 
fit index = 1.0; comparative fit index = 1.0. Hence the assessments of the three sub-
jects can be considered measurement equivalent in the sense of Nesselroade et al. 
(2007). For Subject 1 η1(t) has significant positive factor loadings on Enthusiastic, 
Energetic, Active, and Lively, whereas η1(t) has zero loading on Peppy. For this 
subject η2(t) has unit loading on Peppy (no measurement error) and significant load-
ing of 0.30 on Energetic. For Subject 2 η1(t) has significant positive factor loadings 
on Enthusiastic, Energetic, Active and Lively, whereas η1(t) has zero loading on 
Peppy. For this subject η2(t) has unit loading on Peppy (no measurement error) 
and significant loadings of 0.26 on Enthusiastic and 0.24 on Lively. Finally, for 
Subject 3 η1(t) has significant positive factor loadings on Energetic, Active, Peppy 
and Lively, whereas η1(t) has zero loading on Enthusiastic. For this subject η2(t) 
has unit loading on Enthusiastic (no measurement error) and a significant loading 
of 0.17 on Lively.

Given that η1(t) has significant positive factor loadings on four of the five items 
for each subject and following Lebo and Nesselroade (1978), this factor series can 
be interpreted as Energy. Interpretation based on the pattern of factor loadings asso-
ciated with η2(t) also is unambiguous for Subjects 1 and 3—this factor series has 
unit loading on Peppy in combination with zero measurement error variance. Hence 
η2(t) for Subjects 1 and 3 could be interpreted as Peppy. But for Subject 5 η2(t) has 
unit loading on Enthusiastic in combination with zero measurement error variance. 
According to this pattern of factor loadings, η2(t) for Subject 5 should be interpreted 
as Enthusiastic. It therefore is problematic to assign an interpretation to η2(t) which 
is invariant across the three subjects, at least if this interpretation is based on the 
patterns of subject-specific factor loadings.

An alternative way of assigning interpretations to η1(t) and η2(t) follows from a 
suggestion which is more in line with the basic tenet of the new definition of meas-
urement equivalence of Nesselroade et al. (2007). Instead of considering patterns 
of factors loadings, interpretations of η1(t) and η2(t) are based on the sequential 
correlation function of the latent factor series. Nesselroade (2007, p. 258) also sug-
gests this alternative way of interpreting factor series, in that “… invariance might 
be sought at the process level by focusing on patterns of auto- and cross-regres-
sion of latent factors, for example, in individual level dynamic factor models”. 
The estimated sequential correlation function Ψ(u), u = 0,±1 of the latent factor 
series (t), assumed to be invariant across the three subjects, has significant zero 
lag correlation: est.-cor [η1(t), η2(t)] = 0.69. Also the autocorrelation of η1(t) at 
lag ±1  is significant: est.-cor [η1(t), η2(t± 1)] = 0.19. The remaining elements 
of est.-Ψ(± 1)  are not significant. Consequently, η1(t) has a certain degree of sta-
bility (i.e., significant autocorrelation) and can be interpreted as Stable Energy, 
whereas η2(t) resembles a white noise sequence and can be interpreted as Unstable 
Energy.
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In conclusion of this section, it has been shown that using the multi-group option 
in commercially available structural equation modeling software, in combination 
with the block-Toeplitz matrix approach introduced in Molenaar (1985), it is pos-
sible to test for equivalences across different subjects using data obtained in a rep-
licated time series design. In this approach different subjects constitute different 
“groups”. In this way it is possible to detect nomothetic relationships based on idi-
ographic data, or stated otherwise, to detect inter-individual relationships based on 
intra-individual variation. This approach has been illustrated by implementing the 
new definition of measurement equivalence proposed by Nesselroade et al. (2007). 
But it can be applied in many other situations, including testing for measurement 
equivalence according to the traditional definitions.

Nonstationary Dynamic Factor Analysis

To reiterate, the two criteria for ergodicity are stationarity in time and homogeneity 
across subjects. In the previous application we focused on testing for homogene-
ity of the sequential correlations function across three subjects. Now we turn to 
a consideration of stationarity; the other criterion for ergodicity. A new approach 
is presented to test for stationarity and model nonstationary processes. The new 
approach is based on a state-space model with arbitrarily time-varying (nonstation-
ary) parameters. The model concerned is:

 y(t) = Λ[θ(t)]η(t)+ v(t)

η(t + 1) = B[θ(t)]η(t)+ ζ(t + 1)

θ(t + 1) = θ(t)+ ξ(t + 1)

 
 

(2a)

In (2a) y(t) denotes the observed p-variate time series; (t) the q-variate latent 
factor series (state process). The first equation of (2a) shows that factor loadings 
in [(t)] depend upon a time-varying parameter-vector (t). The second equation 
describes the time evolution of the state process (t); the autoregressive weights in 
[(t)] depend upon (t) and therefore can be arbitrarily time-varying. The third 
equation in (2a) describes the time-dependent variation of the unknown parameters. 
The r-variate parameter vector process (t) obeys a random walk with Gaussian 
white noise innovations (t). The covariance functions associated with (2a) are 
given in (2b):

 cov[v(t), v(t− u)] = δ(u)diag-Ξ
cov[ζ(t), ζ(t− u)] = δ(u)diag-Ψ
cov[ξ(t), ξ(t− u)] = δ(u)diag-Φ

 
 

(2b)

To fit the state-space model with time-varying parameters to an observed multi-
variate time series, use is made of a combination of the second and fourth estima-
tion techniques mentioned at the end of section “Some intricacies associated with 
(1)”. That is, a combination of the EM algorithm and the extended Kalman filter/
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smoother. First, an extended state process is defined. The extended state process 
consists of the original latent factor series and the time-varying parameter process: 
x(t) = [η(t), θ(t)]. Then, using the extended state process x(t), (2a) is rewritten as 
the following nonlinear state-space model:

   
y(t) = h[x(t), t]+ v(t)

x(t + 1) = f [x(t),t]+ w(t)

 
 

(3)

The vector-valued nonlinear functions h[x(t),t] and f[x(t),t] consist of products 
of the entries of x(t). The (q + r)-dimensional innovations process w(t) is defined as 
the composition of the innovation processes ζ(t)  and ξ(t) : w(t) = [ζ(t), ξ(t)].

In Fig. 12.1 an illustrative result is shown of an application of this new technique 
to a simulated time series. A 4-variate time series has been generated by means of the 
state-space model with time-varying parameters. The model has a univariate latent 
state process (q = 1). The autoregressive coefficient B[θ(t)] = b(t)  in the true proc-
ess model for the latent state [second equation in (2a)] increases linearly from 0.0 to 
0.9 over the observation interval comprising T = 100 time points. Depicted is the esti-

Fig. 12.1   EKFIS estimate of time-varying coefficient b(t) in the autoregressive model for the 
latent factor scores
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mate of this autoregressive coefficient b(t) obtained by means of (3). It is clear that 
the estimated trajectory closely tracks the true time-varying path of this parameter.

Discussion and Conclusion

The future of dynamic factor analysis is challenging because of the necessity to focus 
on the structure on intra-individual variation in the study of nonergodic psychologi-
cal processes. This necessity follows directly from the classical ergodic theorems. In 
case subjects are heterogeneous with respect to a particular psychological process, 
that is, in case person-specific dynamics describe the intra-individual variation of 
this process, one can only obtain valid information about such non-ergodic process 
by means of dedicated time series analysis. In a similar vein, in case a psychological 
process is nonstationary, like developmental and learning processes, but also many 
clinical and biomedical processes, one also can only obtain valid information about 
such a nonergodic process by means of dedicated time series analysis.

The implications of the classical ergodic theorems have a very broad impact, not 
only in psychometrics and psychology but also in the biological and medical sciences. 
They imply that growth processes as well as disease processes have to be analyzed in 
organism-specific and patient-specific ways, focusing on the intra-individual variation 
concerned. We presently are involved in a series of pilot studies using stochastic per-
son-specific control of day-today intra-individual variation in disease processes such as 
asthma, diabetes, and daily stress. In these projects dynamic factor analysis of non-sta-
tionary time series is used to track momentary changes in a disease process as function 
of medication dose, environmental, emotional and contingent stressors. Then, using 
predictive control methods based on the fitted time-varying state-space patient models, 
optimal medication dose is determined at each point in time in a patient-specific way. 
It is known that the effects of medication, in particular for diabetes and asthma, are 
patient-specific. Dynamic factor analysis of nonstationary multivariate time series is 
excellently equipped to accommodate substantial patient-specific reactions to medica-
tion and counteract the occurrence of contingent disturbances occurring under normal 
daily life circumstances.
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