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 Mercury Chemical Transformation in the Gas, 
Aqueous and Heterogeneous Phases: 
State-of-the-art Science and Uncertainties       

     Parisa A.   Ariya   ,    Kirk   Peterson   ,    Graydon   Snider   , and    Marc   Amyot      

  Summary   Mercury is a persistent, toxic and bio-accumulative pollutant of global 
interest. This element is assumed to exist predominantly in the atmosphere, as 
elemental mercury, undergoing chemical reactions in the presence of atmospheric 
oxidants. The oxidized mercury can further deposit on the Earth’s surface and may 
potentially be bioaccumulative in the aquatic food chain, through complex, but not 
yet well understood, mechanisms. Since the atmosphere plays a significant role as 
a medium for chemical and physical transformation, it is imperative to understand 
the fundamentals of the kinetics and thermodynamics of the elementary and complex 
reactions of Hg0

(g)
 and oxidized mercury not only in the atmosphere as gas phase, 

but also the reactions in the aqueous and heterogeneous phases at atmospheric 
interfaces such as aerosols, fogs, clouds, and snow-water-air interfaces. In this 
chapter, we compile a comprehensive set of theoretical, laboratory and field obser-
vations involving mercury species in the course of homogeneous and heterogeneous 
reactions. We herein describe the state-of-the-knowledge in this domain and put 
forward the open questions and future direction of research.    

15.1 Introduction

Atmospheric chemical processes of mercury promoted by interfaces have been 
largely overlooked until recently, although heterogeneously-catalyzed chemical 
reactions in the stratosphere have been well established for several decades. As a 
fluid metal, mercury is a liquid at room temperature and has the lowest known critical 
temperature of any metal (c.a., 1478 °C) Although the dominant form of atmos-
pheric mercury is gaseous elemental mercury (Hg0

(g)
), traces of oxidized mercury 

in aquatic and heterogeneous systems are expected (Seiler et al., 1980; Slemr 
et al.,1985; Lindqvist et al., 1985). Figure 15.1 illustrates a simplified schematic of 
mercury transformation in the atmosphere and at atmospheric interfaces.
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Elemental mercury (Hg 0 ) exists in ambient air, both in the vapour and particle 
phase associated with aerosols. As pointed out in the earlier chapters, mercury in 
the atmosphere is predominantly anthropogenic in origin, such as fuel and coal 
combustion and waste incineration. Natural emissions, including those from 
volcanic eruptions, soils, lakes, open water and forest fires, contribute less signifi-
cantly than anthropogenic sources (c.a. 40%). However, there are significant 
uncertainties on natural emission inventories (Mason et al., 1994; Gardfeldt and 
Jonsson, 2003). Atmospheric chemical transformations of mercury can indeed play 
an important role in the global cycling of this toxic element, as the atmosphere is 
the fastest moving fluid in the Earth’s ecosystem. A major interest in the under-
standing of atmospheric transformation stems from its potential impact on mercury 
bioaccumulation. Mercury speciation in the atmosphere has a significant influence 
on its deposition on environmental surfaces. Solubility and deposition of elemental 
mercury is quite distinct from Hg (II)  (Ariya and Peterson, 2005), and thus deposition 
rates on the Earth’s surface vary substantially. Amongst all mercury species, methyl 
mercury has been considered to be bio-magnified in fish. The extent of methylation 
depends on a constant supply of inorganic mercury from the atmosphere (Mason and 
Sheu, 2002). Indeed, atmospheric deposition is considered to be a major source of 
mercury in most remote aquatic systems (Mason et al., 1994; Nriagu, 1994 ). It is 
noteworthy that the chemical-biological processes that dictate the bioaccumulation 
of mercury in the food chain have yet to be fully characterized (Morel, 1998). 
Consequently, the extent of incorporation of oxidized mercury produced via 

Figure 15.1 A simplified schematic of mercury transformation in the Earth’s environment 
(inspired by Ariya, et al., 2004; Macdonald et al., 2005; Lindberg et al., 2007)
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atmospheric chemical reactions into the food chain has yet to be evaluated. Figure 
15.1 depicts a simplified schematic of mercury cycling in the Earth’s ecosystem in 
atmosphere and at environmental interfaces.

Hg species are removed from atmosphere through dry and wet deposition processes 
(Lindqvist and Rodhe, 1985). Interestingly, in the high-Arctic region (Schroeder 
et al., 2002), Arctic (Lindberg et al., 1998), and sub-Arctic, the rapid depletion of 
mercury has been observed. Nearly complete depletions of ozone in the boundary 
layer occurred over large areas, and evidence of reactive halogens have been 
observed during most mercury depletion events (MDEs) (Ariya et al., 1998; 1999). 
Upon reaction with atmospheric oxidants, elemental mercury can be transformed to 
its oxidized forms, which are also more bio-accumulative than elemental mercury 
(Gardfeldt et al., 2001). Observed ozone depletion events at the ground are 
suggested to be driven by sunlight and bromine atoms derived from reactions of 
atmospheric reactive halogens with marine sea salt in surface snow and ice (Ariya 
et al., 1998; 1999; Gardfeldt et al., 2001). Soon after, mercury depletion was found 
to be wide spread. Such depletion events have also been observed in the Antarctic 
(Ebinghaus et al., 2002), where they are influenced by the photochemical oxidation 
of elemental mercury in the troposphere involving sea salt on snow/icepack or aerosols 
(Schroeder and Munthe, 1998).

The mechanism of the volatilization of gaseous elemental mercury from surfaces, 
chemical transformation in gas and condensed phases (liquid/solid/ heterogeneous), 
and deposition mechanisms are not well-defined processes. For instance, not much 
is known about chemical reactions occurring in the snow, especially catalytic and 
heterogeneous reactions occurring at the surface of snow grains and removal of 
Hg0

(g)
 over fly ash, but field observations support the importance of such surfaces 

in mercury cycling (Dommergue et al., 2007; Pavlish et al., 2003). Pure gaseous 
oxidation of mercury is mechanistically difficult to explain as well, and in some 
cases can be explained via heterogeneous phase chemistry (Raofie and Ariya, 
2003). Inconsistencies between kinetic and thermodynamic data describing the 
homogeneous gas phase oxidation of mercury such as in case of one of the most 
predominant atmospheric oxidant, ozone or its well reactions (Calvert and Lindberg, 
2005, Hall et al., 1995). Attempts to more clearly understand reduction of 
Hg(II)

(s, aq)
 to Hg0

(g)
 (or the reverse oxidation) are motivated by uncertainties in the 

Hg chemistry of the Arctic and in finding suitable surface catalysts for Hg0
(g)

 emis-
sion reduction in coal fire combustion. Noting the lack of detailed mechanistic 
understanding of mercury redox reactions, we herein strive to examine what 
changes alter surface reactivity, including the presence of water, various trace surface 
impurities, photochemistry, temperature, or other competing reactions. Surfaces 
can act as reactive sites for chemical reactions, active sites for catalysis, and as a 
platform for exchange between different planetary ecosystem compartments such 
as air-snow, air-water (lake/ocean), vegetation-air, water-soil and air-soil. However, 
due to the complexity of the nature of surfaces, its variability, its sensitivity towards 
environmental variables, its temporal and spatial heterogeneity, environmental surfaces 
studies are one of the major scientific domain of uncertainty that will face 
environmental scientists in this new century.
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A significant part of the deposited mercury is photo-reduced and re-emitted as 
GEM (Ferrari et al., 2003; 2004; Brooks et al., 2006; Aspmo et al., 2006). There 
have been several excellent review articles on mercury transformation in atmos-
phere (Schroeder, 1991; Lin and Pehkonen, 1999; Steffen, et al., 2007), particularly 
on its properties, sources, sinks, and fluxes of mercury. As such, in the light of 
recent laboratory and computational studies, we will attempt to focus instead on a 
comprehensive review of the kinetic, product studies and thermochemical calcula-
tions of mercury redox reactions in the homogeneous and heterogeneous phases. 
We will discuss the importance of environmental interfaces and environmentally 
relevant (or potentially relevant) carbon surfaces (such as fly ash, charcoal). We 
will outline major gaps and some future research directions.

  15.2 Atmospheric Oxidation and Reductions  

 Most atmospheric oxidation reactions are likely to react via multi-step reaction 
mechanisms.  Tables 15.1 - 15.3  illustrate the detailed kinetic and theoretical studies, 
as well as estimation from field studies on various atmospheric reactions in gaseous and 
aqueous phases as well as reactions on surfaces i.e., heterogeneous phases. To be 
concise, we only focus on a few reactions of significant atmospheric relevance in 
the text, as the Tables are very detailed and full of information on conditions where 
these data were taken. Please note that in calculation of atmospheric lifetime for 
mercury, in contrast with many other chemical in the atmosphere that they can be 
irreversibly transformed to products, mercury can be oxidized, and oxidized mercury 
can be reduced by various atmospheric reductants in aerosols, fog, clouds and inter-
faces (see Tables  15.1  and 15.2). Hence, the oxidation alone represents merely one 
aspect of its transformation, can not yield to proper calculation of the lifetime.   

 15.2.1 Kinetic and Product Studies 

 The rate of the atmospheric chemical transformation of elemental mercury towards 
a given oxidant is dependent on two factors. The first factor is the reactivity of 
mercury toward a given oxidant at environmentally relevant conditions, such as 
temperature, pressure, oxygen concentration, and relative humidity. Since in our 
previous book chapter in 2004 edition (Ariya and Peterson,  2005) , we have 
described in detail, the techniques used, as well as the importance of environmental 
condition, we will herein not describe them again. The second factor is the concen-
tration (or mixing ratio) of the oxidant. The existing laboratory studies of mercury 
kinetic reactions have been obtained using steady state reaction chamber or fast 
flow tubes and a single study has been carried on the analysis on field data. Both 
relative and absolute techniques were used in these studies. Both absolute and relative 
techniques have advantages and disadvantages. 
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 The disadvantage of the relative rate is that the calculated reaction rate constant 
is only as good as the original value of the reaction rate constant for the reference 
molecule used, and this why most detailed relative rate studies include several reference 
molecules to overcome this challenge. Another disadvantage is the complexity of 
the reactants and enhanced potential for side reactions. This challenge can be overcome 
with careful experimental setups and additional targeted experiments to minimize 
and characterize the extent of undesired reactions. An advantage of a detailed relative 
study is that one can readily perform the experiments under simulated tropospheric 
conditions, and also the reaction chambers can be coupled several state-of-the-art 
instruments for simultaneous analysis which allows detailed product analysis as 
well as kinetic determinations. 

  15.2.2 Hg 0  + O 
3
  and Hg 0  + HO 

 The advantage of the absolute method is clearly the fact that there is no need for 
incorporation of errors due to the reference molecules. However, in many absolute 
studies, one can follow merely one or two reactants, and considering the complexity 
of mercury reactions, and the extent of secondary reactions, the calculated values may 
be affected. Another challenge is some absolute studies are performed at lower pres-
sure than tropospheric boundary layer pressure ( ∼  740 Torr) and concentrations 
orders of magnitude higher than tropospheric levels. Hence the data obtained under 
such conditions must be properly corrected for the ambient tropospheric situation, 
particularly in the case of complex mercury adduct reaction, and given the lack of 
detailed product analysis, and different carrier gases, this is not trivial. However, as it 
shown in Pal and Ariya  (2004) , both relative and absolute studies of the same reaction 
can yield the same values of rate constants within the experimental uncertainties and 
thus increase the confidence in the overall result. Ozone is an important atmospheric 
constituent and due to its atmospheric abundance, O 

3
  + Hg 0  has been a target of sev-

eral laboratory studies. We have previously studied ozone-addition with elemental 
mercury under dry conditions (Pal and Ariya,  2004) . The net reaction is written: 

   ( ) 3(g) net (s) 2(g)gHg + O  HgO + Ok
����

 (1)     

 Calvert and Lindberg  (2005)  suggest reaction (1) could be proceed by an addition 
of ozone, followed by a re-arrangement into the linear species OHgOO:

   

Hg
O
O
O

Hg
O
O
O

Hg(g)+O3(g) OHgOO(g)+

 (2)     

 The reaction may be followed by dissociation into O 
2
  and HgO 

(g)
 , the latter 

precipitating immediately to HgO 
(s)

 .
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   (g) (g) (s) 2(g)OHgOO HgO ( HgO ) O→ +→
   (3)   

 The dissociation and precipitation are essentially irreversible steps. As 
shown in Table  15.1 , the apparent rate constant,  k  

net
 , reaction (1), was previ-

ously found by our group (Pal and Ariya,  2004)  to be (7.5 ± 0.9) × 10 -19  cm 3  
molecule -1  s -1 , in good agreement with Sumner et al.  (2005) : (6.4 ± 2.3) × 10 -19  
cm 3  molecule -1  s -1  (performed in a much larger 17 m 3  chamber where the hetero-
geneous reactions were significantly reduced by direct increase in surface-to-
volume ratios). Our rate constant was found to be larger than an earlier study 
by Hall  (1995)  (0.3 ± 0.2) × 10 -19  cm 3  molecule -1  s -1 , and smaller than both 
Schroeder et al.’s  (1991)  value 49 × 10 -19  cm 3  molecule -1  s -1  (no error reported), 
and Iverfeldt and Lindqvist’s  (1986)  value, 20 × 10 -19  cm 3  molecule -1  s -1  (no 
error reported). In a new study by our group (Snider et al.,  2008) , for the first 
time, we have examined the effects of two atmospherically relevant polar com-
pounds, H 

2
 O 

(g) 
 and CO 

(g) 
, on the absolute observed rate coefficients of the O 

3
 -

initiated oxidation rate of Hg 0  
(g) 

, at 296 ± 2 K using gas chromatography 
coupled to mass spectrometry (GC-MS). In CO-added experiments, we 
observed a significant increase in the reaction rate that could be explained by 
pure gas-phase chemistry. In contrast, we found the apparent rate constant,  k  

net
 , 

varied with the surface-to-volume ratio (0.6 to 5.5 L flasks) in water-added 
experiments. We have observed small increases in  k  

net
  for nonzero relative 

humidity, RH < 100%, but substantial increase at RH  <  100%. Product studies 
were performed using mass spectrometry and high resolution transmission elec-
tron microscopy coupled to an electron dispersive spectrometer (HRTEM-
EDS). A water/surface/ozone independent ozone oxidation rate was estimated 
to be (6.2 ± (1.1;  t  σ /√ n ) × 10 -19  cm 3  molecule -1  s -1 . There is furthermore ± 20% 
accumulated uncertainties associated with the ensemble of the experimental 
setup used in this study. 

In our previous study by Pal and Ariya  (2004) , we have observed HgO from 
gas-phase aerosols and as deposits using mass spectrometry techniques. Please note 
that our methodology could not allow us to evaluate the phase of the HgO at that 
stage. Most products were obtained as condensed matter deposited on the reaction 
walls, and with some aerosols identified on 2 micron filters. We had also obtained 
a very minor amount of mercury containing compounds from the gas phase (includ-
ing suspended matter, i.e. aerosols that were not collected on 2 micron filter which 
included finer particles). We could not then identify the phase of these identified 
mercury compounds assumed to be HgO. Please also note that in chemical kinetics 
for gas phase oxidation reaction, we use terminologies such as “products observed 
in the course of gas-phase reaction of …”, it does not refer to the product as a gas, 
it just refers to the fact shat the initial “reactants” were in the gas phase. In our 
recent study, as depicted in Figure  15.2 , using high-resolution microscopy tech-
nique, we confirmed that HgO product is indeed solid (HgO 

(s) 
). Our results gave 

evidence for enhanced chain growth of HgO 
(s) 

 on a carbon grid at RH = 50%. 
Clearly, due to importance of this reaction, further laboratory kinetic and mechanis-
tic studies are desired.   
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 Hydroxyl radical (HO) is considered to be the dominant daytime cleanser of the 
atmosphere. The major formation pathway in the troposphere is considered to 
involve photolysis of ozone followed by the reaction with water vapour:

   1
3 2O + h (predominantly 320nm) O D + O( )υ →λ ≤  (4)    

 O(1D) + H
2
O → 2 HO   (5)     

 In addition to the photolysis pathway, there are some dark reactions (ozonolysis) 
that have been proposed to be of significance at night or during the winter (Ariya 
et al.,  2000) . Typical background concentrations of ozone range from 20-30 ppbv 
(1 ppbv = 2.45 × 10 10  cm -3 ), and can peak to a few hundred ppb during smog situ-
ations (Finlayson-Pitts and Pitts,  1999) . 

 To date, there is very limited kinetic data on HO + Hg 0  
(g)

  as shown in Table  15.1 . 
The results of (Sommar et al.,  2001)  are in excellent agreement with the recent 
results (Ariya et al.,  2004) . These reported values are both lower than Bauer et al. 
upper limit evaluations for HO initiated oxidation reaction. Again HgO was 
observed as product, and we can now confirm that it is HgO 

(s)
  (Figure  15.2 ). Further 

kinetic and mechanistic studies of this reaction are desirable.  

  15.2.3 NO 
3
  + Hg 0  

(g)
  

 The nitrate radical, NO 
3
 , is an important intermediate in the night time chemis-

try of the atmosphere. Upon sunrise, nitrate ions undergo photolysis to NO 
2
  or 

NO (Finlayson-Pitts and Pitts,  1999) . Temperature dependence kinetics of ele-
mental mercury, as well as dimethyl mercury, with NO 

3
  have been studied 

(Table  15.1 ). Sommar et al.  (1997)  employed a fast flow-discharge technique to 
study these reactions and obtained a second order rate constant value of 4 × 10 
 -15  cm 3  molec -1  s -1 .  

  15.2.4 X 
2
   /X/XO (X = Cl, Br, and I) + Hg 0  

(g)
  

 Mercury and halogen interaction has been experimentally studied under atmos-
pheric conditions as summarized below. 

 Methyl iodide was shown to be non-reactive toward Hg 0  under atmospheric 
conditions ( k  < 1 × 10 -21  cm 3  molecules -1  s -1 ) (Tokos et al.,  1998) . 

 The first study of Hg 0  and chorine atoms was published in 1968 (Horne et al., 
 1968) . HgCl was measured by time resolved absorption spectroscopy in the tem-
perature range 383 – 443 K
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 Hg+CL → HgCL   (6)     

 The rate constant,  k  
1
  for the reaction of mercury with chlorine atoms was then 

derived to be 5.0 × 10 -11  cm 3  molecules -1  s -1  in 720 Torr CF 
3
 Cl and 1.5 × 10 -11  cm 3  

molecules -1  s -1  in 10 Torr CF 
3
 Cl + 710 Torr Ar. The authors (Horne et al.,  1968)  

mentioned that  k  
1
  has an uncertainty of a factor of three because of the accumulation 

of experimental errors in evaluating the separate terms and the rate constant can be 
considered to be more accurate than the order of magnitude when the results is 
transferred to atmospheric conditions. 

 Molecular chlorine was suggested to have a relatively modest reaction rate, 
4 × 10 -16  cm 3  molecules -1  s -1  (Schroeder et al,  1991 ; Menke and Wallis,  1980 ; 
Medhekar et al.,  1979 ; Skare and Johansson,  1992 ; Seigneur et al,  1994)  though 

  Figure 15.2     a)  Energy dispersive spectroscopy (EDS) image of HgO  b)  Comparative HRTEM 
image of HgO deposit at RH = 0% and 50%, and  c)  CI of HgO product at RH = 0% and 50%. 
From Snider et al.,  2008        
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the reaction was found to be strongly surface catalysed, (Medhekar et al.,  1979 ; 
Skare and Johansson,  1992)  and the experimental value should be considered as 
an upper limit. 

 In 2002, extensive kinetic and product studies on the reactions of gaseous Hg 0  with 
molecular and atomic halogens (X/X 

2
  where X = Cl, Br) have been performed at 

atmospheric pressure (750 ± 1 Torr) and room temperature (298 ± 1 K) in air and N 
2
  

and published (Ariya et al.,  2002) . Kinetics of the reactions with X/X 
2
  were studied 

using both relative and absolute techniques. Cold vapour atomic absorption spectros-
copy (CVAAS) and gas chromatography with mass spectroscopic detection (GC-MS) 
were the analytical methods applied. The measured rate constants for the reactions of Hg 0  
with Cl 

2
 , Cl, Br 

2
 , and Br were (2.6 ± 0.2) × 10 -18 , (1.0 ± 0.2) × 10 -11 , < (0.9 ± 0.2) × 10 -16 , 

and (3.2 ± 0.3) × 10 -12  cm 3  molecule -1  s -1 , respectively. Thus Cl 
2
  and Br 

2
  are not important 

reactants in the troposphere for the Cl 
2
  and Br 

2
  concentrations reported in literature. 

Please note that in the case Br reactions, in our laboratory, due to the existing experi-
mental conditions, we only could deploy one reference molecules for the relative rate 
studies. As explained above, in relative studies the evaluation of the rate constants is 
very much dependant on the accuracy of the values of that the reference reactions. 
Hence, any challenge with the values of the reference reaction significantly affects the 
value of the reaction of interest, in this case, Br + Hg 0 . At this stage, in our laborato-
ries, we have acquired additional the state-of-the-art facilities to revisit the Br-atom 
reactions using both absolute and relative techniques. 

 Chlorine and bromine atoms were generated using UV and visible photolysis of 
molecular chlorine and bromine, respectively, in addition to UV (300  £   λ   £  400 nm) 
photolyis of chloroacetyl chloride and dibromomethane. The reaction products 
were analyzed in the gas-phase, in the suspended aerosols and on the wall of the 
reactor using MS, GC-MS and inductively coupled plasma mass spectrometry 
(ICP-MS). The major products identified were HgCl 

2
  and HgBr 

2
  adsorbed on the 

wall. Suspended aerosols, collected on the micron filters, contributed to less than 
0.5% of the reaction products under the experimental conditions. Studies by 
Sumner et al.  (2005)  revisited both reactions using a 17.3 m 3  environmental cham-
bers equipped with fluorescent lamps and sun lamps to mimic environmental reac-
tions, and evaluated the rate constants to be in the order of 10 -12  cm 3  molecule -1  s -1  
and 10 -11  cm 3  molecule -1  s -1  for reactions of Br and Cl, respectively. Another 
research group (Donahue et al. 2005, 2006)) has reported two other kinetic data sets 
for Cl and Br reactions using a pulsed laser photolysis-pulsed laser induced fluo-
rescence spectroscopy (Table  15.1 ). These data sets are obtained using pseudo-first 
order conditions with respect to halogens or mercury. The authors of these studies 
indicate an uncertainty estimation of ±50% in the rate coefficients due to the deter-
mination of absolute concentrations of chlorine and Br atoms. These reactions are 
reported slower (factors of 9-15) that the other laboratory studies. Hence, further 
studies of these reactions are strongly desired. 

 Reactions of mercury with halogen oxide radicals drew major attention in the light 
of satellite BrO column measurements as well as simultaneous mercury and ozone 
depletion in the planetary boundary layer (Richter et al.,  1998 ;  2002 , Muller et al., 
 2002 ; Van Roozendael et al.,  2002 ; Goddsite et al., 2004). Experimental  studies of XO 
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reactions are very scarce. To our knowledge there is only one published laboratory 
kinetic study on the reaction of BrO with elemental mercury (Raofie and Ariya,  2003)  
during which, using the relative rate methods, the room temperature bimolecular rate 
constant for BrO + Hg 0  

(g)
  was estimated to lie within the range 10 -15  < k < 10 -13  cm 3  

molecule -  1  s -1 . The faster end of this range makes BrO a significant potential contribu-
tor to mercury depletion events in the Arctic. This is however in contradiction with 
theoretical calculations, see next section. A report was published on the first experi-
mental product study of BrO-initiated oxidation of elemental mercury at atmospheric 
pressure of  ∼  740 Torr and T = 296 ± 2 K (Raofie and Ariya,  2004) . The authors used 
chemical ionization and electron impact mass spectrometry, gas chromatography cou-
pled to a mass spectrometer, a MALDI-TOF mass spectrometer, a cold vapour atomic 
fluorescence spectrometer, and high-resolution transmission electron microscopy cou-
pled to energy dispersive spectrometry. BrO radicals were formed using visible and 
UV photolysis of Br 

2
  and CH 

2
 Br 

2
  in the presence of ozone. They analyzed the products 

in the gas phase, on suspended aerosols and on wall deposits, and identified HgBr, 
HgOBr or HgBrO, and HgO as reaction products. Experimentally, they were unable to 
distinguish between HgBrO and HgOBr. The existence of stable Hg (I)  in form of HgBr, 
along with Hg (II)  upon BrO-initiated oxidation of Hg 0 , suggests that in field studies it 
is fundamental to selectively quantify various mercury species in mercury aerosols and 
deposits. The majority of mercury containing products were identified as deposits, 
however, aerosols accounted for a substantial portion of products. It is noteworthy that 
we anticipate the possibility of transformation of Hg (I)  to Hg (II)  at high humidity levels 
though care must be taken as previously mentioned to extrapolate the results to ambi-
ent concentration levels of the reactants. No definite conclusions on the potential pri-
mary or secondary reactions of BrO, can be made at this stage. Even considering one 
order of magnitude uncertainties in the existing kinetic data, Br reactions make it the 
likely radical to explain elemental mercury depletion in the Arctic. Two independent 
studies (Ariya et al.,  2004 ; Goodsite et al.,  2004)  confirm this conclusion. The existing 
kinetic results indicate that the direct BrO impact is less important than Br, but further 
studies are required to examine this conclusion. For example, A Saiz-Lopez et al. 
 (2007)  have discovered via long path DOAS measurements, significant amounts of 
iodine oxide (IO) above the Antarctic ice, and that bromine persists there for several 
months throughout the summer, thus giving rise to a greater oxidizing effect than for-
merly though possible, given observations in the Arctic. However, there is a recent 
product studies on iodine compounds with elemental mercury, which are very much 
similar to those reported by Br counterparts (Snider et al.,  2008) . The reactions of 
molecular iodine are shown to be very slow to be significant in the atmosphere. Further 
kinetic studies on I and IO are desired.   

  15.3 Theoretical Evaluation of Kinetic Data  

 The possibility of theoretically predicting the thermochemistry of mercury-containing 
species of atmospheric interest is of strong importance due to the paucity of accurate 
experimental information. They also serve fundamentally to further  comprehend 
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the complex reaction mechanisms. Accurate ab initio studies for measurements 
such as heats of formation, reaction enthalpies, and activation energies are particu-
larly challenging, particularly in light of the large nuclear charge (80) and large 
number of electrons intrinsic to mercury. There is a detailed review on ab-initio 
thermochemical and kinetic studies on mercury reactions (Ariya and Peterson, 
 2005)  and hence we discuss previous studies only in relation to experimental 
results. The existing theoretical kinetic data are also shown in Table  15.1 . Ab initio 
calculations have to include e.g., careful choice of electron correlation method, 
treatment of relativistic effects, basis set truncation errors, etc., in order to obtain 
accurate kinetic data. The latter depends intimately on the underlying potential 
energy surface. A rigorous calculation of the rate coefficient for a given reaction 
generally involves either quantum scattering or classical trajectory calculations, 
which in turn require a global or semi-global potential energy surface (PES) calcu-
lated by ab initio methods. While these treatments are feasible for relatively small 
systems depending on the required accuracy of the underlying PES, most studies 
employ more approximate treatments of the reaction dynamics, e.g., transition state 
theory (TST) or RRKM theory (Rice-Ramsberger-Kassel-Marcus theory). 

 To the knowledge of the authors there are three studies by Goodsite et al, Khalizov 
et al, and Tossell (Goodsite et al.,  2004 , Khalizov et al.,  2003 , Tossell,  2003) . The 
three groups looked on the reaction system of reactions:

 Hg + X → HgX   (7)    

   HgX → Hg + X (-7)    

 HgX + X → HgXr
2
    (8)    

   Hg + XO → HgO + X (9)     

 where X is either Cl, Br or I. 
 Goodsite et al.  (2004)  and Khalizov et al.  (2003)  used the Gaussian 98 suite of 

programmes and the RRKM method. Goodsite et al.  (2004)  used the Steven Basch 
Kraus triple spilt CEP-121G basis set that account for some relativistic effects in 
the inner electrons of Hg. Khalizov et al.  (2003)  used two different basis sets. The 
first basis set was LanL2DZ which inner electrons substituted by effective core 
potentials and double- quality valence function for the heavier elements. The 
second basis set employs the ECP60MWB pseudo potential. Tossel used GAMESS, 
Gaussian 94 and Gaussian 98 software for the calculations also including 
relativistic effects. 

 Reaction 9 was investigated for X=Br to be endothermic and most probably 
without any importance in the atmosphere whereas reaction 2 is exothermic 
(Goodsite et al.,  2004 , Khalizov et al.,  2003 , Tossell,  2003) . At room temperature 
Reaction 9 in all the studies was calculated to be exothermic. Khalizov et al. (2003) 
concluded that Hg + Br might be the dominant processes for atmospheric mercury 
depletion episodes (AMDE) occurring during Arctic Spring. This conclusion is 
further supported by Goodsite et al., (2004) that studied the temperature 
dependence of the reaction and showed that the HgBr intermediate is stabilised 
towards uni-molecular degradation at low temperatures which permits the addition 
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of another Br (reaction 3) and thus HgBr 
2
  is a possible candidate for the formation 

of the otherwise unknown RGM. 
 From the standpoint of theoretical quantum chemistry, accurate calculations on 

molecular species involving mercury are particularly challenging in comparison to 
light, main group elements. In part this is due to its large number of electrons like 
any late transition metal atom, but the main difficulties lie in the treatment of its 
strong relativistic effects that to a large degree dictate its chemistry. Fortunately one 
can account for these effects very conveniently and accurately by use of modern 
relativistic pseudopotentials (PPs), which are also referred to as effective core 
potentials (ECPs). Nearly all ab initio calculations involving mercury employ the 
PP approximation to recover both scalar and vector relativistic effects. The former 
includes the mass-velocity and Darwin terms of the relativistic Hamiltonian while 
the latter is dominated by the spin-orbit interaction. By using relativistic PPs, much 
of the machinery of state-of-the-art quantum chemistry that has been so successful 
for lighter elements can be utilized with only few modifications for mercury-containing 
species. In regards to prediction of accurate molecular structures (better than 0.01 
Å in bond lengths) and thermochemistry (accuracies at or below 4 kJ/mol), the 
strategy can be generalized as outlined below. 

  (i) The most accurate PP parameters available for mercury and perhaps other 
heavy atoms in the system of interest should be used. Those recently developed 
by the Stuttgart group (Figgen et al.,  2005 , Peterson,  2003)  have been 
adjusted to multiconfigurational Dirac-Hartree-Fock calculations and 
appear to be the best choice at the present time for mercury and heavy main 
group elements, e.g., Br, I, Pb, etc. 

  (ii) Gaussian basis sets that have been matched to the PP(s) being used in the 
calculation should be chosen carefully. For the newer Stuttgart PPs mentioned 
above, full series of correlation consistent basis sets, e.g., cc-pV n Z-PP ( n =D, 
T, Q, 5), are now available (Ariya and Peterson,  2005 , Balabanov and 
Peterson,  2003)  and should be used if at all possible. These have the unique 
property of systematically converging computed quantities to the complete 
basis set limit as successive members of the series are used. This effectively 
removes this source of error in the calculation and is essential for accurate 
error estimates and eliminating fortuitous error cancellations that can lead to 
inaccurate predictions. 

 (iii) In terms of the choice of electron correlation method, for thermochemistry and 
equilibrium structures the coupled cluster method, CCSD(T), has been shown 
to provide very accurate results for mercury species. For large scale potential 
energy surfaces or excited electronic states, multireference configuration interac-
tion (MRCI) approaches must generally be used. Recent examples involving 
Hg include the low-lying electronic states of HgO and HgS, (Cressiot et al., 
 2007 ; Peterson et al.,  2007 ; Shepler and Peterson,  2003)  a quasiclassical trajec-
tory study of the Hg+Br recombination reaction (Shepler et al.,  2007) , and a 
global potential energy surface for HgBr 

2 
 (Shepler et al.,  2005) . While density 

functional theory (DFT) is a very popular approach in quantum chemistry due 
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to its low scaling in terms of computational cost, it has not been shown to yield 
particularly accurate results for mercury-containing species. For example, pre-
vious large basis set DFT results (Khalizov et al.,  2003)  for the reaction 
enthalpies of Hg+Br 

2 
 and Hg+Br differed by nearly a factor of two from the 

analogous (presumably accurate) CCSD(T) values. 
 (iv) While the relativistic PP will automatically account for scalar relativistic effects, 

some additional calculations incorporating spin-orbit coupling are generally 
warranted for mercury-containing systems. There are several avenues available for 
these calculations, but this remains one of the greater challenges for the accurate 
treatment of heavy-atom molecules and is not as amenable to the non-expert user. 
The reader is referred to Shepler and Peterson  (2003)  and Shepler et al.,  (2005)  for 
some representative applications to mercury-containing systems. 

 Accurate quantum chemistry calculations using the methods briefly outlined above 
have played an important role in our current understanding of the oxidation of gas 
phase mercury in the atmosphere. High level ab initio calculations (Peterson et al., 
 2007 ; Shepler and Peterson,  2003)  have conclusively demonstrated that HgO 

(g) 
 was 

not sufficiently stable to facilitate the reaction of Hg with the BrO radical. Before 
these calculations, oxidation of mercury by BrO was thought to be strongly exo-
thermic since the experimental bond dissociation energy of Hg 0  was estimated to be 
near 50 kcal/mol instead of the value of about 4 kcal/mol conclusively obtained by 
theory. State-of-the-art quantum chemical calculations on a variety of mercury-
halogen species (Goodsite et al.,  2004 ; Khalizov et al.,  2003 ; Tossell,  2003 ; 
Balabanov and Peterson,  2003 ; Shepler et al.,  2005,   2007)  led to the mechanism 
whereby the formation of the HgBr radical by atom-atom recombination is the rate 
determining step in the gas phase oxidation of mercury in the troposphere. Recently 
the quasiclassical trajectory approach has been used on an accurate HgBr-Ar poten-
tial energy surface (Shepler et al.,  2007)  to determine thermal rate coefficients for 
the recombination reaction over a wide range of temperatures. The results were in 
excellent agreement with recent laboratory measurements. Analogous calculations 
have also been carried out recently for the Hg+Br 

2 
 and HgBr + Br reactions on an 

accurate global HgBr2 potential energy surface (Shepler et al.,  2005) . The latter 
surface exhibited a large barrier to insertion of Hg into the Br 

2 
 bond, which pro-

vided a rationale for the very slow rate measured experimentally for that reaction. 
Reliable rate coefficient calculations for Hg + Br and HgBr + Br have also been 
carried out using RRKM methods (Goodsite et al.,  2004) . 

 In addition to the determination of thermal rate coefficients, one of the main 
contributions of quantum chemistry is the prediction and subsequent characterization 
of new products and intermediates from proposed mercury oxidation mechanisms. 
Since high accuracy methods can predict heats of formation and bond dissociation 
energies to better than 4 kJ/mol accuracy even for mercury compounds, this is more 
than sufficient to determine the stability of novel mercury species. One such study, 
which is ongoing in one of our research groups, is the characterization of the mercury 
hypohalite species, e.g., HgBrOBr, which have been proposed (Calvert and Lindberg, 
 2003)  to be formed by the reaction of HgBr with halogen monoxides but have not 



484 P.A. Ariya et al.

yet been observed by experiment. Our initial investigations find that they are 
thermodynamically very stable species.  

  15.4 Reactions at Interfaces: Heterogeneous Reactions  

 One of the first steps for mercury to undergo in a surface reaction is adsorption. There 
are two principal modes of adsorption of mercury molecules on any surface. The 
basis of distinction is the nature of the bonding between the molecule and the surface. 
In physical adsorption (physi-sorption), the bonding is by weak Van der Waals - type 
forces. There is no significant redistribution of electron density in either the molecule 
or at the substrate surface. In a chemisorption process a chemical bond, involving 
substantial rearrangement of electron density, is formed between the adsorbate and 
substrate. The nature of this bond may lie anywhere between the extremes of virtually 
complete ionic or complete covalent character, and hence it is significantly stronger 
than physical adsorption (40-800 kJ/mol in comparison to 5-40 kJ/mol) (Atkins and 
de Paula,  2002) . There are a few ways to distinguish physisorption and chemisorp-
tion. The temperature over which chemisorption occurs can be only over a small 
surface, but is almost unlimited. However, for physisorption the temperature range is 
around condensation point of a gas such as Hg 0 . Physisorption is generally reversible, 
non-dissociative, potentially multilayer and fast, whereas chemisorption is dissocia-
tive and often include an activated process with wide range kinetic desorption and 
limited to monolayers. To distinguish the type of adsorption, one can evaluate the 
vibrational frequency of substrate-adsorbate bond, or shift in energy or intensity of 
the valence orbitals in the substrate and adsorbate surface. For most mercury environ-
mental surface studies shown in Table  15.1 , the fundamental difference between 
chemi- and physi-sorption are not yet evaluated, and should be studied in future. 

 Environmental interfaces are very dynamic with respect to Hg cycling. The main 
surfaces interacting with the air compartment are soil, vegetation, snow, ocean and 
lake surfaces. These interfaces are sites of redox reactions and Hg exchange with 
the atmosphere. We here present an overview of Hg behavior at these interfaces, 
with respect to its reactivity and evasional flux. 

  15.4.1 Lake Surface 

 Lake surfaces represent about 1% of landmass surfaces, and are therefore not major 
players in controlling global fluxes (Mason and Sheu,  2002) . However, evasion of 
Hg 0  from surfaces can significantly alter the Hg budget in these systems, with a potential 
impact on the contamination of fish. Results from a whole-ecosystem loading experiment 
(METAALICUS, Mercury Experiment to Assess Atmospheric Loading in Canada 
and the United States) have established that 45% of newly deposited Hg could be 
transformed near the water/air interface of a small boreal lake and returned to the 
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atmosphere (Amyot et al.,  2004 ; Southworth et al.,  2007) . For one of the greatest 
freshwater systems, Lake Superior, Rolfhus et al.,  (2003)  estimated that Hg evasion 
from the lake surface completely counterbalanced atmospheric Hg deposition. 

 Mercury transformations at the air/lake interface are usually dominated by the 
photoreduction of Hg (II)  to Hg 0  (Amyot et al.,  1994) . This production of Hg 0  typi-
cally displays both diel and seasonal patterns with maxima under sunlit and warm 
conditions (Zhang,  2006) . Photoreduction of Hg (II)  can be induced by UV and, to a 
lesser extent, by visible radiation. The fact that visible radiation can induce this 
reduction suggests that DOC chromophores may be involved (Fitzgerald et al., 
 2007) . Filtration experiments have shown that this photoreduction can be homoge-
neous. It can be mediated by iron(III) (Zhang and Lindberg,  2001)  and humic acids 
(Allard and Arsenie,  1991) . However, it can also be biologically-mediated (Siciliano 
et al.,  2002) . The relative importance of these mechanisms will differ with pH, light 
attenuation and DOC levels at the surface. An in-depth review on this topic is pre-
sented in Zhang and Wong,  2007 . 

 Of lesser importance in lakes, (photo)oxidation of Hg 0  to Hg (II)  has been observed 
and also follows a diel cycle (Garcia et al.,  2005) . This oxidation is mainly pro-
moted by the UV-A waveband and can be driven by the formation of strong Hg 
oxidizing agents (e.g. OH radicals) or be indirectly caused by the photoproduction 
of hydrogen peroxide which, in turn, regulates microbial oxidation processes 
(Siciliano et al.,  2002) . 

 Current models do not predict well the formation of Hg 0  and its evasion from 
lake surfaces. Processes occurring in the surface microlayer need to be better assess 
in order to establish the actual Hg 0  gradient at all water/air interfaces (for lakes, 
oceans and estuaries).  

  15.4.2 Surface of Oceans 

 Oceanic surfaces are a major site of Hg exchange at the global scale, with evasional 
fluxes accounting for about 39% of global Hg emissions (Mason and Sheu,  2002) . 
Hg at this interface undergoes similar transformations to those described for lakes. 
Rolfhus and Fitzgerald  (2004)  estimated that about 70% of volatile Hg formed in 
coastal seawaters was of photochemical origin, 20% came from bacterial processes, 
and 10% from uncharacterized dark reduction. 

 In addition, two major differences can be highlighted between freshwater and 
saltwater interfaces. First, in addition to Hg 0 , ocean waters also contain significant 
concentrations of another highly volatile species, dimethylHg. This species formed 
at depth can be brought up to the air/seawater interface by upwelling currents in 
coastal areas. Second, oxidation of Hg 0  to Hg (II)  is far more prevalent in saltwaters 
and will hamper the evasional fluxes of Hg 0 . This oxidation is photo-induced and 
promoted by halogen chemistry both above and below the water/air interface (Sheu 
and Mason;  2004 , Lalonde et al.,  2001) . In Sheu and Mason  (2004) , aqueous NaCl/
NaBr salts were photolyzed in the presence of Hg 0  

(g) 
. It was discovered that Hg 0 (g), 



486 P.A. Ariya et al.

in the presence of water, salt, and under a Xe-lamp, the oxidation rate constant 
increased 100-fold compared with irradiated salt-free water. Work was done at 
ambient temperatures in a quartz container. Mechanisms proposed involved vola-
tilization of halogen species, which then react with mercury. Many secondary reac-
tions of mercury were also considered (i.e. those with OH, BrO, ClO, and O 

3
 ), 

generally initiated by the presence of salt and light energy. Sheu and Mason  (2004)  
also note reactions of Hg + Br were 25 faster than with Cl radicals. 

 Accidental Hg reduction by marine microorganisms has been proposed as a 
significant source of Hg 0  in the mixing layer for a long time (Mason et al.,  1995) . 
There is evidence the bacterial mercuric reductase enzyme (MerA) will reduce 
MeHg and inorganic Hg (II)  species to Hg 0 (g) in Arctic coastal and marine environ-
ments (Poulain et al.,  2007) . It is noted this reduction is an apparently deliberate 
self-preservation of certain biota against methylmercury contamination in water. In 
addition to photoreduction recycling mercury, bacteria are capable of re-volatilizing 
the metal at comparable levels even with only 1% of cells active. 

 As mentioned for lakes, very few studies have focus on the sea surface microlayer, 
even though microscale processes in this layer may have an important impact on 
evasional fluxes. 

 Using  ab-initio  chemistry, Shepler et al.,  (2007 b) noted water microsolvation (using 
1-3 water molecules) favored the oxidation of mercury in the presence of bromine. 

 Hg Br HgBr+ →    (10)    

 2HgBr Br HgBr+ →    (11)    

 2HgBr Br Hg Br+ → +    (12)     

 Reactions (10) and (11) were found more favorable in the presence of water, 
whereas reaction (12) was less favorable when solvated. They conclude it is prob-
able the effects of ice, snow, and water surfaces enhance the scavenging of mercury 
by halogens.  

  15.4.3 Snow Surface 

 The role of the snow surface on the reactivity of Hg and its release to the 
atmosphere has been discussed for polar regions in Chapter 9 of Steffen et al.  (2007) . 
It has been demonstrated that in suburban and remote temperate areas, about 50% 
of newly deposited Hg is returned back to the atmosphere within 24 to 48 hours 
(Lalonde et al.,  2002) . This release results from the photoreduction of Hg (II)  to Hg 0  
in the snowpack, mostly induced by UV-B radiation (Lalonde et al.,  2003) . The 
processes leading to this reduction have not been elucidated. 
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 In forested areas, the canopy has a significant impact on the behavior of Hg in 
the underlying snowpack (Poulain et al.,  2007b) . Snow under canopy has typically 
higher Hg levels than snow from open areas (e.g. frozen lake surfaces); photoreduction 
of Hg (II)  followed by evasion is less efficient in forested areas because of light 
attenuation by the canopy. Poulain et al.  (2007c)  calculated net winter gain of Hg 
in snow under canopies dominated by conifers whereas, under a deciduous canopy, 
the pool of Hg stored at the end of the winter was comparable to that of wet deposition. 
Coniferous trees were both a source of Hg to the forest floor (via throughfall) and 
an obstacle to Hg photoreduction in underlying snow. Snow over lakes acted as a 
winter source of Hg to the atmosphere. Whereas most Hg deposited by snow on 
lakes is lost before snowmelt, Hg deposited on the forested watershed is largely 
retained in snowpacks. 

 Snow can house a number of different Hg (II)  species, i.e. HgC 
2
 O 

4
 , Hg(OH) 

2
 , 

HgOHCl, HgO (Ferrari et al.,  2002) , and possibly others. It is clear from experiments 
that Hg (II)  on snowpacks is photo-reduced by natural sunlight (Dommergue et al., 
 2007) . Mercury over snow originates from atmospheric Hg 0  

(g) 
 through dry deposition 

(Schroeder et al.,  1998)  and oxidation mainly via O 
3
 , BrO, and Br (Ariya et al., 

 2004) . Concentrations of arctic mercury on snowpacks are guided by incoming and 
outgoing fluxes, which depend on light intensity and oxidant concentration, respec-
tively. Oxidation of mercury over snowpacks is part of a dynamic system of ice, 
snow, ozone, UV-Vis light, Cl, and Br radicals (see Lindberg et al.,  2002) . It is 
believed that aerosol ice surfaces catalyze oxidation of Hg 0  

(g) 
 to HgO or HgBr 

2
 /Cl 

2
  

during the Arctic spring (Lindberg et al.,  2002) . Oxidation is aided by the destruction 
ozone by Br over ice and formation of Hg 0  oxidants (Ariya et al.,  2004 ; Oltmans 
et al.,  1989) . 

 Methylmercury (MeHg (I) ) has been observed in Arctic snowpacks (St. Louis, 
et al.,  2007) . The origins of MeHg (I)  are aqueous (oceans, lakes), however its vola-
tility is low: K 

p
  = [HgMe 

(g) 
]/[HgMe 

(aq) 
] = 2 × 10 -5 , at 298 K (Schluter, 2000). By 

contrast, volatility of dimethylmercury (Me 
2
 Hg) is much higher: K 

p
  = 0.31 

(Schluter, 2000). St Louis et al.,  (2007)  hypothesize MeHg originates from nearby 
ocean sources as MeHg 

2
 , then converts to MeHgCl in the salty snow. They note 

there is a positive correlation between total mercury and Cl concentrations over 
snowpacks. The salinity of Arctic snow can range anywhere between 20 – 2000 mg l -1  
(Ariya et al.,  2004) . 

 Snow spiked with hydrogen peroxide was observed to enhance Hg (II)  deposition 
five-fold under natural Arctic springtime sunlight (Lahoutifard et al.,  2006) . The 
mechanism of oxidation is not known, though it is suggested equilibrium can be 
formed with chlorine in acidic conditions: 

 + −+ + + ↔ +0
2 2 2 2H O 2H Hg 2Cl 2H O HgCl    (13)     

 Samples were spiked with 50  μ M H 
2
 O 

2
 , similar to natural concentrations (30 

 μ M). Hence H 
2
 O 

2
  was suggested to play a significant role in Hg 0  oxidation under 

UV light hat should be further confirmed. Bromine, as well as Cl, can oxidize Hg 0  
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in snow. Fain et al.  (2006)  calculated from field samples a mercury + bromine oxidation 
rate constant very similar to lab studies; 2 × 10 -11  cm 3  molecule  -1  s -1  at -10  o C. 

 Poulain et al.,  (2007)  observe 100-fold higher concentrations of total mercury in 
snow found near Arctic sea/ice boundaries than inland. They note melting of the 
snow/ice during springtime further enhances mercury deposition (until enhanced 
light intensity of the spring re-volatilizes condensed mercury). Douglas et al., 
 (2008)  observe various crystalline morphologies of snow will exhibit varying 
degrees of Hg 0  

(g) 
 scavenging, with up to an order of magnitude difference in depos-

ited concentrations. Heterogeneous mercury reactions evidently depend on surface 
morphology in addition to surface species present. Aspmo et al.,  (2006)  observed 
Hg 0 

(g)
 concentrations over sea ice, noting some increase in concentration (1.82 ng m -3 ) 

compared with background north Atlantic ocean levels (1.53 ng m -3 ). Analyses 
were done in the summer and spring, leading to the possibility of re-emission of 
Hg (II)  over ice and snow. Depth profiles of mercury concentration over snow show 
generally higher levels than atmospheric background levels. Despite observed rapid 
mercury depletion events in the polar regions (Schroeder et al.,  1998 ; Ebinghaus 
et al.,  2002) , but the over all fate is an subject of debate (Steffen et al.,  2002) . The 
total volume of mercury entering the Arctic circle is calculated to be about 300 Mg 
per year, via global model simulation (Ariya et al.,  2004) . This influx is largely 
scavenged over ice, snow, and water via bromine explosions (Tackett et al.,  2007) . 
However, this deposition in part is rapidly reduced to Hg 0  

(g) 
 later during Arctic 

springtime (Steffen et al.,  2002) . 
 Frost flowers have been a known source of halogen from sea ice for several years 

(Kaleschke et al.,  2004) . Now it is possible these ice crystals provide via high surface 
areas a scavenging of mercury (Douglas et al.,  2008)  It was found crystals formed 
in the vapour phase have higher mercury concentrations (2-10 times as much) than 
snow deposits. The only difference between frost flowers and snow deposits would 
appear to be their morphology; hence the surface design (diamond dust, surface 
hoar, blowing snow, glass trays) may also affect kinetics of Hg(II/I). A previous 
study already supposed Br radicals are released from the sea ice crystals (Gauchard 
et al.,  2005) , implying heterogeneous reactions are responsible in part for mercury 
oxidation. However, we point out that the Br/BrO + Hg 0  oxidation itself is gaseous. 
Trace species affecting Hg reduction/oxidation in snow include, but are not limited 
to, Br - , Cl - , microbes, and ice/snow morphology.  

  15.4.4 Soil Surface 

 Mercury air-soil exchange is an important component of the Hg cycle at regional 
and global scales (Grigal,  2002) . Hg 0  volatilization from soils has been correlated 
to soil Hg concentration (Gustin et al.,  1999) , soil moisture (Gustin and Lindberg, 
 2005) , atmospheric oxidants (Gustin et al.,  2005) , meteorological conditions (barometric 
pressure, temperature, wind speed and turbulence, and solar radiation). 
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 Under low atmospheric Hg concentrations, barren soils can act as Hg sources to 
the atmosphere during the day or sinks of Hg at night (Xin and Gustin,  2007) . 
Photochemical processes are likely the main driver of Hg 0  formation and evasion 
when the substrate is moist or after rain events (Edwards et al.,  2001) , whereas 
solar-induced thermodesorption of Hg 0  is probably more important under dry 
conditions (Poissant et al.,  2004) . The sorption properties of soils will be dictated 
by the mineralogical composition. For instance, the presence of kaolinite, montmo-
rillonite, and goethite in soils has been shown to enhance the sorptive capacity of 
soils (Edwards et al.,  2001) . 

 Since soils can significantly differ in their sorption capacity and their reactivity, 
and current evasional estimates are site-specific, the overall global fluxes associated 
with soils are still poorly constrained and need further assessment.  

  15.4.5 Vegetation Surface 

 Vegetated areas are key players in global Hg cycling. According to Mason and Sheu 
 (2002) , net Hg evasion from land is 8 Mmol yr -1 ; emissions from vegetated areas 
(forest, prairies and farmland) are estimated at 9 Mmol yr -1  and uptake of Hg 0  by 
plant drives a depositional flux of -7 Mmol yr -1 . Because of the magnitude of these 
vegetation fluxes, a far better understanding of these surfaces is needed to constrain 
flux estimates. 

 The plant/air interface is a site of both passive and active exchange of Hg (II)  and 
Hg 0 . For example, atmospheric particulate Hg and reactive gaseous Hg can be 
absorbed on leaf surfaces after dry deposition (Hanson et al.,  1995) . Stomata can 
actively take up atmospheric Hg 0  (Lee et al.,  2000) . This assimilated Hg can come 
either from passing air masses or from soil Hg emissions below the canopy; in the 
latter case, this uptake results in a fast cycling of Hg within the forest. In contami-
nated sites, plants can translocate Hg from soils to leaves, with some Hg being 
released through stomata or through litterfall. The leaf surface has also been shown 
to be a site of photochemical transformations of deposited Hg (II)  to Hg 0 , followed 
by its evasion to the atmosphere. The UV band was shown to be the most efficient 
radiation in this reduction.  

  15.4.6 Carbon (Fly Ash, Charcoal) 

 Knowledge that coal combustion is a source for mercury dates back over 35 years 
(Joensuu,  1971) . Residues of coal combustion in industrial power plants generate 
fly ash, composing mostly of SiO 

2
  and Al 

2
 O 

3
 . Fly ash composition and morphology 

make it suitable for zeolite synthesis (Querol et al.,  1997) . Flue gas may be comprised 
of CO 

2
 , O 

2
 , CO, NO, NO 

2
 , SO 

2
 , H 

2
 S, HCl, NH 

3
 , N 

2
 O, and Hg (Hall et al.,  1995) . 

Incomplete combustion (T < 400  o C) leads to carbon in fly ash, usually enhancing 
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mercury adsorption (Pavlish et al.,  2003) . Presence of carbon also leads to high “Loss 
on ignition” (LOI), which is defined in the context of coal combustion as the fly ash 
weight loss at a given (elevated) temperature. Thus the carbon content may be 
expelled when sufficiently heated, possibly taking absorbed mercury with it. Presence 
of carbon was found to increase the BET surface area of fly ash, enhancing adsorption 
(Hower et al.,  2000) . Surface area per unit mass, and per unit area in the flue, is sig-
nificant in describing adsorption. Carbon content ranges from 6 to 850 m 2  g −1 , with 
 ∼ 70 m 2  g −1  in charcoal (Chen,  2007) . The BET surface area of iron oxide is 62 m 2  g −1  
(Wu et al.,  2006) . Soot/fly ash may disperse globally; fly ash has been shown to be a 
component of Arctic aerosols (Daisey et al.,  1981) . It is possible carbon in aerosols 
will affect mercury oxidation rates under environmental conditions. 

 Presto and Granite  (2006)  have efficiently summarized the significant contributions 
carbon, metal, metal oxide, and other surfaces in simulated and experimental 
coal-combustion conditions. We attempt to avoid duplication of their review material 
by further updating this subject, though some reference material of theirs is necessarily 
highlighted. We also refer the reader to Pavlish et al.,  (2003)  for an earlier review 
of mercury capture in power plants. 

 Activated carbon can absorb mercury in aqueous solutions as well gaseous sys-
tems (Namasivayam and Kadirvelu,  1999 ; Ranganathan, 2002; Yardim et al.,  2003) . 
Sen and De  (1987)  found that aqueous Hg(NO 

3
 ) 

2
  was readily adsorbed by fly ash at 

a pH = 3.5 – 4.5. At a pH of 5, Hg (II)  was hypothesized to transform into Hg(OH) 
2
  

over the carbon (Namasivayam and Kadirvelu,  1999) . Chen  (2007)  noted that H 
2
 O 

(g) 
 

did not affect mercury oxidation. Some experiments have noted humidity negatively 
affecting oxidation (Menke and Wallis,  1980 ; Seigneur et al.,  1994) . 

 It is clear that many factors affect the adsorption - hence redox - reactions of 
mercury over fly ash. The most important trace elements affecting the oxidation 
rate are HCl, ClO, and Cl 

2
 . Mechanistically, we suspect that the majority of oxidation 

in the presence of fly ash or carbon is heterogeneous based on the evidence of 
Presto and Granite  (2006) . Temperature is a significant factor in oxidation rate; 
optimal values must be achieved to balance reaction efficiency and total adsorption. 
Hall et al.,  (1995)  discovered a mixture of oxygen and mercury at 100-300  o C 
would react in the presence of fly ash or carbon. There was a measurable oxidation 
rate constant of  ∼ 10 -4  s -1 . Surface kinetics have been postulated to obey a Langmuir - 
Hinshelwood mechanism, where both mercury and oxygen adsorb onto the carbon 
surface before reacting. A temperature of about 200  o C was found optimal. Xu et 
al.,  (2008)  (see also Change and Offen,  1995)  compared mercury oxidation by dif-
ferent pathways using a combination of kinetic modeling and  ab initio  chemistry 
over a carbon surface. They conclude that Hg 0  + ClO reactions may be more sig-
nificant at T > 130 o C than mercury reactions with either Cl 

2
  or HCl. 

 We conclude this section by stating the use of fly ash or charcoal in removing 
mercury is not cost-effective (Change and Offen,  1995) , varying between 
14,000 – 38,000 USD/lb Hg. The useful temperature range is not wide for 
carbon; the peak efficiency temperature is  ∼ 200  o C (Hall et al.,  1995) . Carbon 
is not effective at high temperatures (> 400  o C) due to its LOI. Some studies 
find temperature to be inversely proportional to Hg 0  removal (Dunham et al., 
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 2003) ; it is found that carbon at 20  o C absorbs Hg 0  better than at 40  o C (Hwang 
et al.,  2002) . Fly ash is stable at high temperatures, however efficiency also 
decreases with increasing temperature. Fly ash also does not efficiently oxidize 
mercury unless other additives (HCl,H 

2
 S) are present. Although carbon/fly ash 

injection is a very natural method to removing Hg 0  
(g) 

, it remains the engineers’ 
and physical chemists’ goal to achieve improved mercury absorbency by more 
robust and cheaper adsorbents.   

  15.5 Open Questions and Future Directions  

 The lack of knowledge in the gas phase and liquid phase looks insignificant in 
comparison to the lack of knowledge at the interfaces, and thus heterogeneous reac-
tions. The knowledge of mercury chemical, physical and biological interactions at 
environmental surfaces is scarce at best. It is now evident that the existence of the 
surfaces, different types of surfaces, and different environmental conditions can 
alter the transformation of mercury in pure gas phase or aqueous phase. However, 
the quantification of the impact of surfaces is yet to be understood. The challenges 
facing surface chemistry includes:

   1.    As far as the theoretical calculations are concerned, one of the major challenges 
is the accurate inclusion of spin-orbit coupling effects, particularly for large 
molecules and clusters. Advances are currently being made in the area of two-
component DFT theory and this may very well be a promising avenue for incor-
porating these effects. Of course the methods outlined above are also mostly 
limited to gas phase calculations. Accurate theoretical treatment of condensed 
phase system continues to be a great challenge. Both cluster models and ab initio 
molecular dynamics methods will certainly play a large role in future studies of 
the heterogeneous reactivity of mercury.  

   2.    Despite the novel positive acquisitions of knowledge from experimental and 
theoretical studies of gas-phase elemental mercury chemistry there are still 
large gaps before a complete understanding of the fate of mercury in the atmos-
phere is obtained. It is essential to provide kinetic data, information about 
formed products.  

   3.    There are some limited studies on the kinetics of gas-phase elemental mercury 
oxidation on surfaces (e.g., Lee et al,  2004 ; Flora et al.,  1998 ; Vidic et al.,  1998) . 
However, experimental studies on uptake or kinetics of heterogeneous reactions 
of mercury on various environmentally relevant surfaces such as ice, snow, and 
aerosols and biomaterials, are needed.  

   4.    Lack of knowledge of detailed mercury chemical speciation in the field studies. 
Currently, the existing techniques are quite poor in providing detailed chemical 
structure of mercury compounds at the environmental interfaces as at the matter

  of fact even in atmosphere, water and snow. The operational definitions are used 
to discern amongst different functional groups, however, as they are not based 
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on fundamental understanding of physical and chemical structures of molecules, 
it is very difficult to use them adequately for proper understanding of surface 
chemistry and physics of mercury. Further development of targeted techniques 
for detailed mercury analysis is essential.  

    5.    Currently, the knowledge of chemical reactions involving mercury compounds 
in aerosols and clouds is limited, and sometimes contradictory, liquid phase 
chemistry kinetic data. However, there is an urgency of for research on hetero-
geneous mercury reactions at fundamental theoretical, kinetic and dynamic 
studies, as well as proper incorporation in atmospheric modeling.  

    6.    Fundamental surface sciences during the last several decades have achieved 
break through understanding of interfaces at molecular and cluster levels. It is 
wise for mercury scientists to take advantage of this existing body of knowledge 
including techniques such as various types of electron microscopy (e.g. trans-
mission to electron force) to further understand the physical property of the 
surfaces, and the nature of the bonds between substrate and surface, as well as 
substrate-substrate configuration changes upon interactions with surfaces. This 
case is particularly valid for surfaces such as snow, as well as aerosols and cloud 
droplets. It is of outmost interest to understand the mechanism(s) on or wihin 
these surface reactions.  

    7.    The nature of diffusion of mercury species in surfaces and interfaces (e.g., 
snow/ice) should be characterized.  

    8.    The importance of so-called “micro-layer” within the interface in relation to the 
entire surface should be studied.  

    9.    There is an amazing range of biological surfaces available for mercury transfor-
mation. Reactions are shown to occur on the surfaces or be altered within the 
biological bodies. The detailed chemical transformation of such reactions impli-
cating biological transformation of mercury and its impact on physical and 
chemical characteristics of mercury compounds in environment is a fascinating 
field of studies that should be attempted from nano to macro scales.  

   10.    We know presently full well that to grasp the mercury transformation on this 
planet, the knowledge of pure gas, or condensed-phase physics and chemistry 
will not suffice. The feedbacks of gas phase on surfaces or liquid/solid/hetero-
geneous phase on environmental surfaces are ought to be characterized. The 
impact of heterogeneity on surfaces in local, regional and global scales is ought 
to be understood.  

   11.    Anthropogenic activities in the domains of new materials and nanotechnology, 
has produces novel surfaces as product of by-product of such activities. These 
molecules are in addition to oxidized transition metals (Fe, Mn, V, Cu, Ti), 
noble metals (Au, Pd, Ag, Cu) and metal oxides, glass type structures that are 
known to be involved in mercury transformations or its removal. There is not 
much known on the interactions of human-made novel surfaces with mercury 
compounds. As anthropogenic activities currently represent the major mercury 
emission in the atmosphere, the importance of these surfaces on Hg transforma-
tion should be understood.          
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