
Middleware Architecture for Ambient
Intelligence in the Networked Home

Nikolaos Georgantas, Valerie Issarny, Sonia Ben Mokhtar, Yerom-David
Bromberg, Sebastien Bianco, Graham Thomson, Pierre-Guillaume Raverdy, Aitor
Urbieta and Roberto Speicys Cardoso

1 Introduction

With computing and communication capabilities now embedded in most physical
objects of the surrounding environment and most users carrying wireless comput-
ing devices, the Ambient Intelligence (AmI) / pervasive computing vision [28] pi-
oneered by Mark Weiser [32] is becoming a reality. Devices carried by nomadic
users can seamlessly network with a variety of devices, both stationary and mobile,
both nearby and remote, providing a wide range of functional capabilities, from base
sensing and actuating to rich applications (e.g., smart spaces). This then allows the
dynamic deployment of pervasive applications, which dynamically compose func-
tional capabilities accessible in the pervasive network at the given time and place of
an application request.

In the smart home environment, this translates into integrating today’s, still
mostly distinct, four application domains of the networked home:

• Personal computing, based on the home computers, printers and Internet con-
nection;

• Mobile computing, manifested by the increasing use of home Wi-Fi and Blue-
tooth networks connecting laptops, PDAs and tiny personal devices;

• Consumer electronics, targeting multimedia in the home; and
• Home automation, adding intelligence to household appliances like washing

machines and lighting systems.

Nikolaos Georgantas, Valerie Issarny, Yerom-David Bromberg, Sebastien Bianco, Graham Thom-
son, Pierre-Guillaume Raverdy and Roberto Speicys Cardoso
INRIA Paris-Rocquencourt, France, e-mail: firstname.lastname@inria.fr

Sonia Ben Mokhtar
University College London, UK, e-mail: s.benmokhtar@cs.ucl.ac.uk

Aitor Urbieta
Mondragon Unibertsitatea, Spain, e-mail: aurbieta@eps.mondragon.edu

H. Nakashima et al. (eds.), Handbook of Ambient Intelligence and Smart Environments, 1139
DOI 10.1007/978-0-387-93808-0_42, © Springer Science+Business Media, LLC 2010

1140 Nikolaos Georgantas et al.

Still, easing the development, from design to deployment, of pervasive applica-
tions raises numerous challenges. In this chapter, we concentrate on the software
engineering aspect of pervasive computing, and more specifically on the adequate
abstraction of networked resources, both software and hardware, and supporting
software systems, so as to effectively enable pervasive applications to dynamically
deploy over the pervasive network. Specifically, pervasive applications should be
dynamically composed out of capabilities that are in reach to realize the target func-
tional behavior while also meeting required quality of service (also referred to as
non-functional properties). Our aim is to offer a solution that enables exploiting
most networked resources, without being restrictive in terms of underlying soft-
ware and hardware platforms, neither in terms of assumed resources. Indeed, while
the development of advanced middleware platforms for pervasive computing has
led to significant progress over the last decade [10], those platforms require con-
sumers and providers of resources to agree on a common syntactic description of
capabilities and distributed runtime environment for them to actually network. This
assumption is too restrictive for truly open pervasive environments, despite existing
ubiquitous software technologies, and in particular those from the Web. Common
syntactic description of capabilities is not achievable on a large scale basis, neither
is the usage of a common middleware platform.

Concretely, this chapter introduces the Amigo middleware approach for the open
networked home, which was designed as part of the IST FP6 Amigo1 project on the
development of a networked home system towards the ambient intelligence vision.
Furthermore in Amigo, we targeted the extended home environment, where users
get access to applications also between homes, between home and workplace, and
potentially anytime, anywhere. This chapter more specifically focuses on the AmIi2

middleware interoperability solution developed at INRIA as part of the Amigo sys-
tem architecture. As opposed to most existing pervasive system architectures, the
Amigo approach does not impose any specific middleware technology, as it al-
lows heterogeneous technologies to be integrated, establishing interoperability at
a higher, semantic, level.

In Amigo, we exploit service oriented architectures [22], which appears as
the appropriate architectural paradigm to cope with the above requirements [14].
Therein, networked devices and hosted applications are abstracted as services,
which may dynamically be retrieved and composed, based on service discovery pro-
tocols as well as choreography and orchestration protocols [23]. We further advocate
usage of semantic services. Semantics of an entity encapsulate the meaning of this
entity by reference to an established vocabulary of terms (ontology) representing
a specific area of knowledge. In this way, meanings of entities become machine-
interpretable, enabling machine reasoning on them. Such concepts come from the
Knowledge Representation field and have been applied and further evolved in the

1 http://www.hitech-projects.com/euprojects/amigo/
2 Ambient Intelligence interoperability

Middleware Architecture for Ambient Intelligence in the Networked Home 1141

Semantic Web3 domain [5]. The Web Ontology Language (OWL)4 is a recommen-
dation by W3C supporting formal description of ontologies and reasoning on them.
A natural evolution to this has been the combination of the Semantic Web and Web
Services5, the currently dominant service oriented technology, into Semantic Web
Services [19]. This effort aims at the semantic specification of Web Services to-
wards automating Web services discovery, invocation, composition and execution
monitoring. The Semantic Web and Semantic Web Services paradigms address web
service interoperability [30, 21]. Nevertheless, our goal in Amigo is wider, that is, to
address service interoperability without being tied to any service technology. To this
end, we establish semantic service modelling independently of underlying service
technologies. Based on such modelling, we empower the networked environment
with interoperability mechanisms so as to allow networked services to seamlessly
compose, independently of their underlying software technologies.

The remainder of this chapter is structured as follows. Sect. 2 presents the Amigo
abstract reference service architecture that targets service interoperability, and fur-
ther discusses limitations of related work with respect to achieving interoperability
in service oriented systems. Sect. 3 then introduces the AmIi solution to interoper-
able service discovery; it is based on a generic service model on which the various
existing service description languages may be mapped and thus compared against
each other for the purpose of service matching; it further introduces a repository-
based service discovery solution. Sect. 4 then concentrates on the AmIi solution to
achieving interoperability among heterogeneous middleware communication proto-
cols; once discovered as in Sect. 3, heterogeneous services can communicate as in
Sect. 4. Finally, Sect. 5 concludes with a summary of our contribution and sketches
our future work on enablers for pervasive computing.

2 Achieving Interoperability in AmI Environments

The Amigo service oriented system architecture aims to enable integrating diverse
technologies in terms of networks, devices and software platforms. Thus, in the
design of the Amigo system architecture, only a limited number of technology-
specific restrictions are imposed. This further means that existing service platforms
(e.g., Web Services6, UPnP7, etc.) relevant to the four home application domains are
retained. Our intension was not to develop yet another service platform imposing
a homogeneous middleware layer on all devices within the Amigo home, but to
introduce an abstract reference service architecture for the Amigo system which
can represent various service platforms by abstracting their fundamental features.

3 http://www.w3.org/2001/sw/
4 http://www.w3.org/TR/owl-semantics/
5 http://www.w3.org/TR/ws-arch/
6 http://www.w3.org/2002/ws/
7 http://www.upnp.org

1142 Nikolaos Georgantas et al.

In the following section, we introduce the Amigo architecture, while in Sect. 2.2
and Sect. 2.3 we discuss related work on service platform interoperability.

2.1 The Amigo Service Architecture for Interoperability

The Amigo reference architecture [11] is based on a typical service oriented archi-
tecture, which follows a general application-middleware-platform layering struc-
ture [22]. In this typical architecture, the platform layer offers base system and net-
work support, while the middleware layer includes essential mechanisms for ser-
vice discovery and service communication. Furthermore, services in the application
layer are functionally described based on a common syntactic service description
language in order to enable service discovery and invocation independently of ser-
vice implementation details. The elements of the typical service architecture are
depicted on the left-hand side of Fig. 1 in normal typeface.

In Amigo, we enhanced the typical architecture to account for the open AmI
environment. Hence, it is assumed that all three layers of the architecture may be
heterogeneous and based on diverse technologies. Furthermore, support for context-
awareness and quality of service (QoS)-awareness is incorporated, as these are core
features in AmI environments. This leads to the enhancement of service description
with context and QoS features, and to the establishment of capability- and resource-
awareness in the base system and network. The above advanced elements added
to the typical service architecture are depicted on the left-hand side of Fig. 1 in
boldface.

Furthermore, to deal with the heterogeneity present in this enhanced service ar-
chitecture for AmI, we introduce a common architectural and behavioural descrip-
tion at a higher, technology-independent level, based on semantic concepts. This
description aims at enabling interoperability between heterogeneous service plat-
forms in AmI environments, effectively offering Ambient Intelligence interoperabil-
ity (AmIi); we call this description AmIi Service Description Model (ASDM). ASDM
covers the elements identified in the enhanced service architecture, not only in the
application layer but also in the underlying middleware and platform layers. This
abstraction is illustrated in Fig. 1, where the right-hand layered structure comple-
ments the left-hand enhanced service architecture introduced so far, to produce the
Amigo abstract reference service architecture.

Based on ASDM, we enable deployment of AmIi interoperability mechanisms
within the reference architecture, which may concern any of the three layers (see
Fig. 1). These mechanisms aim at establishing semantic-based service interoper-
ability, and comprise conformance relations and interoperability methods. Confor-
mance relations aim at checking conformance (matching) between services for as-
sessing their capacity to interoperate. Interoperability methods aim at enabling in-
tegration of partially conforming services, thus allowing their seamless discovery,
communication and composition.

Middleware Architecture for Ambient Intelligence in the Networked Home 1143

Building on the above principles, we have developed in Amigo interoperability
solutions to all of service discovery, communication and composition. In this chap-
ter, we present the first two solutions; for the third, the interested reader is referred
to [2]. In the next two sections, we survey related research work on service discovery
and communication interoperability.

2.2 Service Discovery Interoperability

Service discovery protocols (SDPs) enable services on a network to discover each
other, express opportunities for collaboration, and compose themselves into larger
collections that cooperate to meet an application’s needs. Many academic and
industry-supported SDPs have already been proposed such as UDDI or CORBA’s
Trading Service for the Internet, or SLP and Jini for local and ad hoc networks. Clas-
sifications for SDPs [33] distinguish between pull-based and push-based protocols.
In pull-based protocols, clients send a request to service providers (distributed pull-
based mode) or to a third-party repository (centralized pull-based mode) in order
to get a list of services compatible with the request attributes. In push-based pro-
tocols, service providers provide their service descriptions to all clients that locally
maintain a list of the available networked services. Leading SDPs in pervasive en-
vironments use a pull-based approach (Jini, SSDP), often supporting both the cen-

Fig. 1 The Amigo abstract reference service architecture

1144 Nikolaos Georgantas et al.

tralized and distributed modes of interaction (SLP, WS-Discovery). In centralized
pull-based discovery protocols, one or a few repositories store the descriptions of
the available services in the network, and their location is either well-known (e.g.,
UDDI) or dynamically discovered (e.g., Jini). Repositories are usually kept up to
date by requiring explicit sign-off or by removing entries periodically. If multiple
repositories exist, they cooperate to distribute the service registrations among them
or to route requests to the relevant repository according to pre-established relation-
ships.

Although many SDP solutions with well-proven protocol implementations are
now available, middleware heterogeneity raises interoperability issues between the
different SDPs (e.g., SLP, SSDP, UDDI) active in the environment. Existing SDPs
do not directly interoperate with each other as they employ incompatible formats
and protocols for service descriptions or discovery requests, and also use incom-
patible data types or communication models. In any case, the diverse environment
constraints and the de facto standard status of some of the existing protocols make it
unlikely for a global, unique SDP to emerge. Several projects have thus investigated
interoperability solutions [20, 12, 15], as requiring clients and service providers to
support multiple SDPs is not realistic. SDP interoperability is typically achieved
using intermediate common representations of service discovery elements (e.g., ser-
vice description, discovery request) [8] instead of direct mappings [15], as the latter
does not scale well with the number of supported protocols. Furthermore, the in-
teroperability layer may be located close to the network layer [8], and efficiently
and transparently translate network messages between protocols, or may provide an
explicit interface [24] to clients or services so as to extend existing protocols with
advanced features such as context management [25].

Furthermore, the matching of service requests and service advertisements is
classically based on assessing the syntactic conformance of functional and non-
functional properties. However, an agreement on a common syntactic standard is
hardly achievable in open environments. Thus, higher-level abstractions, indepen-
dent of the low-level syntactic realizations specific to the technologies in use, should
be employed for denoting service and context semantics [3]. A number of ap-
proaches for semantic service specification have been proposed, and in particular
for semantic Web services such as OWL-S [18] or SAWSDL. In addition, it has
been shown that efficient semantic service discovery can be performed efficiently,
which is a key requirement for the resource-limited devices found in pervasive en-
vironments [4]; supporting solutions lie in encoding ontology concepts off-line and
adequately classifying service descriptions in the repository based on these encoded
concepts.

While the essence of the above issues is well understood, and individual solu-
tions have been proposed that may form the foundations of a comprehensive ser-
vice discovery solution for pervasive environments, a number of problems remain,
or arise from such combination. First and foremost, syntactic-based and semantic-
based solutions have mostly been considered separately. Indeed, interoperability so-
lutions enabling multi-protocol SDP have focused on syntactic SDPs. At the same
time, semantic-based SDPs neither manage protocol nor network heterogeneity, and

Middleware Architecture for Ambient Intelligence in the Networked Home 1145

context-aware SDPs assume the consistent use of a common ontology by all clients
and providers. A better integration of the semantic and syntactic worlds is required,
which is supported by the AmIi interoperability solution to service discovery, as
presented in Sect. 3.

2.3 Service Communication Interoperability

In a dynamic open networked environment, applications/services need to adapt
themselves to the context by switching, for instance, on the fly, their communication
protocol. This is currently not feasible, as the way service clients and providers are
designed depends strongly on the middleware upon which they are developed. Thus,
applications can not be decoupled from their underlying middleware. For instance,
considering RPC-based communication, a RMI client can not switch on the fly its
communication protocol to interact with a CORBA service and vice versa unless
coupled with some interoperability system.

The above issue outlines the need for a system enabling interoperability among
middleware communication protocols. A number of such have been introduced
since the emergence of middleware. These include middleware bridges, which can
be direct or indirect. Direct bridges (e.g., RMI-IIOP8, IIOP-.NET9) provide inter-
operability between two fixed middleware, whereas, indirect bridges assume the
predominance of one specific middleware that acts as an intermediary [29]. Bridges
may appear as an attractive solution to provide interoperability. However, bridges
are not suitable for dynamic open networks, and in particular those that are formed
in an ad hoc manner, where the communication protocols used are not known in
advance. Applications and/or services are strongly coupled to a given bridge and
hence are not able to switch on the fly their communication protocol according to
the networked environment context. Indeed, direct or indirect bridges are a static
mean (i.e., fixed at design or possibly deployment time) to overcome middleware
heterogeneity as it is expected to know, in advance, between which heterogeneous
communication protocols interoperability is required.

One possible solution to overcome the above constraint is to decouple appli-
cations/services from their bridge through proxy-based bridging, which acts as an
intermediary. The proxy then encapsulates one or more bridges and hides their im-
plementation details to applications/services, enabling thus to change transparently
the bridge used according to the networking context. The most famous implemen-
tation of such a mechanism is the Java dynamic proxy. Still, its shortcomings are:
(i) proxies are platform-specific; and (ii) if applications/services are not aware in
advance of the bridges to be used, they need to have or to dynamically download the
code of all possibly needed bridges – a dedicated bridge is needed for each pair of
heterogeneous middleware – which can be very resource-consuming.

8 http://java.sun.com/products/rmi-iiop/
9 http://iiop-net.sourceforge.net/index.html

1146 Nikolaos Georgantas et al.

Greater flexibility to bridge-based interoperability is brought by Enterprise Ser-
vice Buses (ESBs), which address the above shortcomings. An ESB [9] is a server
infrastructure that acts as an intermediary among heterogeneous middleware through
the integration of a set of reusable bridges. Applications/services are freed from the
management overhead of interoperability. However, this requires an ESB server to
be deployed and configured in the network. It is not reasonable to consider that
there exists such a server in each open networked environment joined by mobile
devices and in particular in ad hoc networks. The extended home environment that
was targeted by Amigo is potentially such open environment. As we can not do
any assumption about software infrastructure in such environment, interoperability
must possibly be managed by the networked devices themselves through the use of
middleware, like e.g., ReMMoC.

ReMMoC is one of the pioneering middleware introducing an interoperability
system for open (wireless) networks [12]. In its latest version, ReMMoC is a Web
Service-based reflective middleware that uses the Web Services abstraction (abstract
part of a WSDL document), to abstract to applications the concrete communication
protocol used to invoke remote services. Indeed, REMMoC, thanks to its reflection
mechanisms [31], selects dynamically the most appropriate communication proto-
col according to the context. Although ReMMoC is currently one of the most ef-
ficient and innovative middleware to perform interoperability, it is confronted to
some constraints. First, client applications must be developed using the ReMMoC
middleware. Thereby, interoperability is available only to ReMMoC-based clients.
In addition, ReMMoC is dedicated to client applications, excluding thus interoper-
ability to service providers. Providing interoperability to service providers enables
clients, which are not interoperable (e.g., not based on ReMMoC) to still interoper-
ate with services that are based on a different communication protocol.

In a way similar to ReMMoC, RMIX is a middleware that permits transparent dy-
namic binding with multiple communication protocols [16]. The RMIX originality
comes from its programming model that is based on RMI. Hence, the reengineering
of existing RMI applications, to take benefit of RMIX, is reduced to a minimum.
As a result, RMIX is dedicated to Java and uses functionalities inherent to the Java
platform. Thus, interoperability is restricted to Java-compliant devices and/or ser-
vices. The need to embed a Java Virtual Machine (JVM) and to rewrite non-Java
applications to be interoperable is a strong limitation. The same applies to OSGi10,
which is a popular Java-based middleware that provides the capability to integrate
different communication protocols for OSGi-specific applications.

Summarizing, from the above survey of existing solutions to middleware com-
munication interoperability, there is, to the best of our knowledge, no satisfying so-
lution to middleware interoperability for open dynamic networks, which has led us
to develop the AmIi interoperability solution to service communication, as detailed
in Sect. 4.

10 http://www.osgi.org/

Middleware Architecture for Ambient Intelligence in the Networked Home 1147

3 AmIi Interoperable Service Discovery

In Sect. 2, we identified the AmIi service description model (ASDM) and the there-
upon based AmIi interoperability mechanisms (comprising conformance relations
and interoperability methods) as the elements that enable interoperability in the
Amigo reference architecture. In this section, we detail our AmIi interoperable ser-
vice discovery solution (AmIi-SD), which includes: (i) the design of the ASDM con-
ceptual model and a concrete realization of the model, the AmIi Service Description
Language (ASDL); (ii) conformance relations for matching heterogeneous services
based on ASDL; and (iii) a repository-based service discovery mechanism.

The ASDM model serves as basis for enabling mapping between heterogeneous
service description languages, including both syntactic- and semantic-based lan-
guages, used by existing service discovery protocols (SDPs). Specifically, service
descriptions given using syntactic-based languages (e.g., UPnP, SLP, WSDL) and
semantic-based languages (e.g., SAWSDL, OWL-S, WSMO) can be translated to
ASDM-based (more specifically ASDL-based) descriptions. As a result, a service
request may be matched against a service description, even if they are expressed in
different service description languages.

Interoperable service discovery is then achieved by deploying multi-SDP repos-
itories in the network. Repositories run plugins associated with legacy SDPs and
are thus able to serve requests and catch service advertisements from the various
SDPs. Concretely, as depicted in Fig. 2, the AmIi service repository is a (logically)
centralized repository that enables service discovery within the pervasive environ-
ment. Specific legacy SDP plugins register with the active SDPs in the network,
and translate requests and advertisements from legacy formats to ASDL (e.g., UPnP
in Fig. 2). Depending on the specific SDP, the legacy plugin either directly per-
forms service discovery (i.e., pull-based only protocols) or registers for service ad-
vertisements (i.e., push-based and hybrid protocols). In the latter case, the ASDL
description generated from a service announcement is sent to the ASDL descrip-
tions directory for storage. Additionally, the AmIi repository provides an explicit

Fig. 2 AmIi interoperable service discovery

1148 Nikolaos Georgantas et al.

API supported by the AmIi plugin that enables clients (resp. providers) in a network
to issue service requests (resp. advertisements) directly in the ASDL format, thus
benefiting from all its advanced semantic features. In this case, the ASDL directory
stores the ASDL descriptions issued by the AmIi plugin. Finally, the matching en-
gine combines various conformance relations to support both syntactic-based and
semantic-based service descriptions (included in requests or advertisements), and
thus provides interoperability between SDPs. When there is an incoming service
request, it is translated by the appropriate plugin, and then the matching engine
matches it against the ASDL directory.

In the next sections, we present the ASDM model (Sect. 3.1) and its ASDL in-
stantiation (Sect. 3.2). We then detail our interoperable matching relations (Sect. 3.3)
and method for ranking the matching results (Sect. 3.4).

3.1 ASDM: A Model for Semantic and Syntactic Service
Specification

The design of ASDM results from the analysis of many existing service description
languages; it further builds upon two models coming from our previous work: (i) the
MUSDAC service model [25], which supports interoperability between syntactic-
based languages (e.g., UPnP, SLP and WSDL); and (ii) the EASY service model [4]
for the semantic specification of service functional and non-functional capabilities.
ASDM then extends these two models to account for both semantic- and syntactic-
based descriptions, as well as non-functional properties associated with services.
In this chapter, due to the lack of space, we do not present features related with
the complete specification and matching of service non-functional properties; the
interested reader is referred to [1].

In ASDM, a service description is composed of two parts: a profile and a ground-
ing (see corresponding UML diagram in Fig. 3). The service profile is described as
a non-empty set of capabilities and a possibly empty set of non-functional prop-
erties, while the service grounding prescribes the way of accessing the service. A
service capability is any functionality that may be provided by a service and sought
by a client. It is described with: its name; its interface comprising a possibly empty
set of inputs and a possibly empty set of outputs; a potential conversation; and a
possibly empty set of non-functional properties. Capabilities that do not have any
associated input/output descriptions are those retrieved by legacy SDPs that simply
use names to characterize capabilities (e.g., a native SLP service). Inputs associated
with a capability are the information necessary for the execution of the capability,
while outputs correspond to the information produced by the capability. Inputs and
outputs of capabilities are described with their names, types, and a possible seman-
tic annotation that is a reference to a concept in an existing ontology. Capabilities
may themselves have a semantic annotation. Capabilities that do not have semantic
annotations associated to them or to their inputs and outputs are those provided by
legacy services without an enriched semantic interface (e.g., a native UPnP service).

Middleware Architecture for Ambient Intelligence in the Networked Home 1149

A conversation associated with a capability prescribes the way of realizing this ca-
pability through the execution of other capabilities. This conversation is described
as a workflow of activities that may correspond either to elementary or composite
capabilities. Elementary capabilities are those that do not have a conversation, while
composite capabilities are those that are themselves composed of other capabilities.
In concrete terms, an elementary capability represents a basic interaction with a ser-
vice. For instance, in the case of SLP services, it corresponds to the invocation of the
whole service, whereas in the case of UPnP or Web Services it corresponds to the
invocation of one of the service operations. Conversations are said to be semantic if
they involve capabilities that have associated semantic annotations. They are said to
be syntactic otherwise.

Further in ASDM, non-functional properties are related with context and QoS in-
formation of services. They are expressed at two levels: at the service (profile) level
and at the capability level. Non-functional properties defined at the service level are
those that apply to all the capabilities of the service. For instance, a property given
at the service level and describing that the service encrypts its messages using a
particular encryption algorithm means that all the capabilities of the service employ
the same encryption algorithm. On the other hand, a property given at the capability
level and expressing a latency property, for instance, concerns only the capability
itself. Non-functional properties have semantic annotations associated to them.

Fig. 3 The ASDM model

1150 Nikolaos Georgantas et al.

3.2 ASDL: A Language for Semantic and Syntactic Service
Specification

Next to the ASDM conceptual model, we introduce the AmIi Service Description
Language (ASDL) as a concrete realization of the model. For the implementation of
ASDL, we opted for an XML-based schema defining a container, which is combined
with the two emergent standard service description languages, namely SAWSDL
and WS-BPEL. The ASDL description acts primarily as a top-level container for
additional files describing facets of the service. SAWSDL is used to describe the
capability interfaces, while WS-BPEL is used to express conversations associated
with capabilities. We employ SAWSDL for the definition of capability interfaces be-
cause it supports both semantic and syntactic specification of service attributes (e.g.,
inputs, outputs). Thus, both legacy syntactic descriptions and rich semantic descrip-
tions can be translated to SAWSDL. On the other hand, WS-BPEL is a comprehen-
sive language for workflow specification, which is adequate for conversation specifi-
cation. It has largely been adopted both in the industrial community and in academia.

Fig. 4 An ASDL description

Middleware Architecture for Ambient Intelligence in the Networked Home 1151

WS-BPEL supports only syntactic conversation specification, however, if combined
with SAWSDL, semantic conversations can be defined. Additional files may be op-
tionally linked to the ASDL container to describe a service’s non-functional prop-
erties using existing QoS and context models (e.g., SLAng [17], EASY [4]). Fig. 4
shows an example of an ASDL description where the service is composed of two
capabilities. The first capability has a functional and non-functional description that
comprises a reference to a SAWSDL file defining the capability interface, a WS-
BPEL description that defines the conversation associated with the capability, as
well as QoS and context descriptions given in a SLAng and an OWL file respec-
tively. The second capability of this service is only given with an interface descrip-
tion defined in a SAWSDL file.

Given ASDL, heterogeneous service descriptions can be translated into refer-
ence ASDL descriptions by using translators associated with service description
languages that come along with legacy SDPs, e.g., UPnP2ASDL (see legacy SDP
plugins in Fig. 2). It is also possible that a service provider makes available a rich
semantic description of a service in ASDL, thus exploiting the expressiveness of the
language set included in the ASDL container (see AmIi plugin in Fig. 2). ASDL
descriptions are used to assess the conformance of services against service requests.

Fig. 5 gives an overview of how various legacy service descriptions are translated
into ASDL, where we focus on functional aspects of services. In this figure, five
different scenarios are identified:

1. A legacy service specified with the name of its provided functionality (e.g., a
SLP service). The produced ASDL description contains the SLP grounding in-
formation and links to a SAWSDL description that contains a single operation
having as name the name of the SLP service without any input or output speci-
fication.

2. A service that provides a list of operations described syntactically with their sig-
natures, as it is the case for UPnP services or web services. The produced ASDL
description links to a SAWSDL description that comprises a list of WSDL oper-
ations corresponding to the operations specified in the legacy description with-
out semantic annotations.

3. A service described as a set of semantically annotated operations (e.g., given as
a SAWSDL description). The produced ASDL description can link directly to
the given SAWSDL description file or, in the case of a description other than
SAWSDL, after mapping the given description to SAWSDL.

4. A syntactic capability described with an associated conversation of operations
(e.g., a service described as a WSDL operation that is realized through the exe-
cution of a WS-BPEL conversation). The generated ASDL description contains
the specification of both an interface and a conversation. The interface points
to a SAWSDL description that contains a single operation without semantic
specification and is used to describe the capability. The conversation links to a
WS-BPEL description that describes the conversation associated with the oper-
ation. This WS-BPEL description uses itself another WSDL file that specifies
the operations used in the conversation.

1152 Nikolaos Georgantas et al.

5. A semantic capability having an associated conversation of semantic operations
(e.g., an OWL-S service with a profile that describes the semantic capability
and a process model that describes the associated conversation). The generated
ASDL description comprises both an interface and a conversation, as in the
previous scenario. However, contrary to the previous scenario, the SAWSDL
description used to describe the capability includes semantic annotations of the
capability elements (i.e., inputs, outputs). Furthermore, the WS-BPEL file de-
scribing the conversation associated with the capability uses another SAWSDL
description in which the operations used in the conversation are also semanti-
cally annotated.

Fig. 5 Various legacy service descriptions translated into ASDL

Middleware Architecture for Ambient Intelligence in the Networked Home 1153

3.3 Interoperable Matching of Service Capabilities

Based on their common mapping to ASDL descriptions, heterogeneous service de-
scriptions (a service request and a service advertisement) can be matched. We intro-
duce a set of conformance relations for matching the various cases of heterogeneous
service descriptions, inspired from the scenarios of the previous section. These con-
formance relations enable different degrees of matching, from basic capability name
matching to advanced semantic conversation matching. The choice of the appropri-
ate conformance relation depends on how much information is given in the service
descriptions. Obviously, in each case, the highest degree of matching possible is
limited by the greatest common denominator of information given in the two ser-
vice descriptions. For instance, comparing a service request described as a syntactic
capability name (first scenario) with a rich semantic service description (third sce-
nario) requires ignoring the semantic service annotations as well as the input and
output information and performing a syntactic comparison of the request with the
names of the service capabilities.

The different cases of matching of heterogeneous service descriptions are out-
lined in the table depicted in Fig. 6. In this table, following the five scenarios of the
previous section, a service request and a service advertisement can be described as:
(1) a syntactic capability name; (2) a list of syntactic capabilities; (3) a list of seman-
tic capabilities; (4) a syntactic capability with an associated syntactic conversation;
and (5) a semantic capability with an associated semantic conversation.

Fig. 6 shows twenty-five cases of matching a service request with a service ad-
vertisement. Among these cases, we can identify certain redundancy by applying
the greatest common denominator rule discussed above. This leads us to introduce
the following five matching relations:

Fig. 6 Interoperable matching of services capabilities

1154 Nikolaos Georgantas et al.

1. Syntactic matching of capability names, noted SynNameMatch(). It applies
when the service request or the service advertisement is described only as a
syntactic capability name. This function is defined as follows:

SynNameMatch(Cadv,Creq) =
Cadv.CapabilityName = Creq.CapabilityName

2. Syntactic signature matching, noted SynSigMatch(). It applies – to the remain-
ing cases – when the request or the advertisement is described as a list of syn-
tactic capabilities, or when additionally one of them is described as a syntactic
conversation but the other side provides no conversation. The SynSigMatch()
function is based on syntactic matching of the capability names and of the in-
puts and outputs of the corresponding capabilities of the request and the adver-
tisement; it is defined as follows:

SynSigMatch(Cadv,Creq) =
Cadv.CapabilityName = Creq.CapabilityName

∀inadv ∈Cadv.Input,∃inreq ∈Creq.Input :

inadv.Name = inreq.Name∧ inadv.Type = inreq.Type

∀outreq ∈Creq.Out put,∃outadv ∈Cadv.Out put :

outreq.Name = outadv.Name∧outreq.Type = outadv.Type

3. Semantic signature matching, noted SemSigMatch(). It applies when both the
request and the advertisement are described as a list of semantic capabilities,
or when additionally one of them is described as a semantic conversation but
the other side provides no conversation. The SemSigMatch() function is based
on semantic matching of the capabilities and of the inputs and outputs of the
corresponding capabilities of the request and the advertisement; it is defined
below. It is based on the ConceptMatch() function, which is used to check
whether two concepts are related in an ontology, i.e., if they are equivalent or
one is more generic than the other [4]. If semantic conformance is established,
syntactic adaptation should then be performed between the syntactic signatures
of the capabilities.

SemSigMatch(Cadv,Creq) =
ConceptMatch(Cadv.CapabilityName,Creq.CapabilityName)

∀inadv ∈Cadv.Input,∃inreq ∈Creq.Input :

ConceptMatch(inadv.SemanticAnnotation, inreq.SemanticAnnotation)
∀outreq ∈Creq.Out put,∃outadv ∈Cadv.Out put :

ConceptMatch(outreq.SemanticAnnotation,outadv.SemanticAnnotation)

4. Syntactic conversation matching, noted SynConvMatch(). It applies when both
the request and the advertisement are described as conversations, but at least one

Middleware Architecture for Ambient Intelligence in the Networked Home 1155

of them is only syntactic. First, the SynSigMatch() function is used to match
the request and the advertisement based on their signature. Then, matching of
conversations is performed. As WS-BPEL can be attributed formal semantics
based on process algebras, conformance between the requested and provided
conversations can be assessed using process bi-simulation. In the case where
no service that provides an equivalent conversation to the request is found, we
may employ mechanisms for dynamic composition of heterogeneous services
to reconstruct the requested conversation, as addressed by our previous work
reported in [2].

5. Semantic conversation matching, noted SemConvMatch(). It applies when
both the request and the advertisement are described as semantic conversations.
This case is similar to the previous one, except that we employ the SemSig-
Match() function for the initial matching.

3.4 Ranking Heterogeneous Matching Results

As discussed in the previous sections, service descriptions are heterogeneous in
terms of their expressiveness, going from very simple syntactic definitions to
very rich semantic definitions with associated conversations. Thus, we defined five
matching relations to assess the conformance of heterogeneous service advertise-
ments with respect to a particular service request.

In the case of having multiple service advertisements matching a service request,
we should further be able to select the service that best matches the request. This re-
quires being able to rank the heterogeneous matching results. Ranking such results
is dependent upon the expressiveness of service requests and service advertisements.
For instance, services that have semantic annotations are preferred to syntactic ser-
vices when the request is given with semantic annotations. Furthermore, semantic
services that match a semantic request should be ranked with respect to their se-
mantic distance to the request. Semantic distance allows evaluating the degree of
conformance of a semantic service capability with respect to a request. We present
in this section our mechanism for ranking service advertisements with respect to a
service request. First, according to the degree of expressiveness of the service re-
quest, results coming from our five matching relations are ranked according to the
table in Fig. 7; where m1 > m2 means that matching m1 is more accurate than m2

and thus preferred.
Second, the results of the semantic signature matching function, i.e., SemSig-

Match(), are themselves classified according to their degree of conformance to the
given service request. The degree of conformance between a semantic request and
a semantic service advertisement is evaluated using the function SemSigDegree-
OfMatch(), which sums the results of ConceptDegreeOfMatch() for all concepts
matched in the matching phase for SemSigMatch(), as follows:

1156 Nikolaos Georgantas et al.

SemSigDegreeO f Match(Cadv,Creq) =
n

∑
i=1

ConceptDegreeO f Match(ci,c
′
i),∀ci,c

′
i : ConceptMatch(ci,c

′
i)

Where ConceptDegreeO f Match(c1,c2) returns the number of levels that sepa-
rate the concepts c1 and c2 in the ontology hierarchy that contains them [4].

4 AmIi Interoperable Service Communication

Services located through the AmIi interoperable service discovery (AmIi-SD) may
embed various middleware communication protocols. It is then necessary to over-
come such heterogeneity, so that interaction with these services may be possible in-
dependently of the middleware technologies embedded on the client’s and provider’s
sides. In this section, we present our AmIi solution to interoperable service commu-
nication (AmIi-COM) [7], which is based on runtime protocol translation. We more
specifically focus on interoperability achieved among heterogeneous RPC proto-
cols, as this is an essential communication model in service oriented computing.
In the following, we first discuss the relation between AmIi-COM and AmIi-SD
(Sect. 4.1). We then detail our AmIi-COM solution. More specifically, we recall the
characteristics of RPC communication protocols (Sect. 4.2), in order to introduce ef-
ficient event-based techniques to overcome RPC protocol heterogeneity (Sect. 4.3).
Finally, Sect. 4.4 discusses the deployment and configuration of AmIi-COM.

4.1 Interoperable Service Discovery and Communication

In the previous sections, we already discussed discovery of services. We herein re-
call some of the elements of this process and see how it is coupled with service
communication.

Fig. 7 Ranking heterogeneous matching results

Middleware Architecture for Ambient Intelligence in the Networked Home 1157

In order to interact with services in open networked environments, clients must
first find remote services using some SDP. Then, they rely on specific information
that they get about the discovered services to actually interact with them. Clients
look up the information needed to interact with services in service repositories,
which are logical centralization points for such information. Each RPC commu-
nication middleware depends on a dedicated repository. For instance, Web Ser-
vices, which are based on the SOAP protocol, use UDDI11, whereas the RMI and
CORBA middleware use repositories respectively called rmiregistry and CORBA
Naming/Trading Service.

Hence, remote services must first publish/export their description to a repository
to be accessed by clients (Fig. 8, Step 1). Through the export process, services ad-
vertise their interface, communication protocol and unique reference/address. The
former is a set of methods describing the service’s communication contract, whereas
the latter two provide a mean to locate and access the service’s instance. This data
enables producing a client-side stub that acts as a proxy for the remote service.
Clients then use the stub as a handle to make method calls to the remote service.
The way stubs are produced and obtained by clients may differ from one middle-
ware to another. Stubs can be obtained statically or dynamically. In the former case,
stubs are generated at development-time, so that clients do not need to get them at
run-time; still, clients retrieve at run-time from the repository the service’s refer-
ence/address, which they feed into the static stub. In the latter case, stubs are trans-
parently created by the export process and registered to the repository (Fig. 8, Step
2); in this case, clients retrieve the whole stub. In the following, we consider only
the dynamic stub case as representative of both cases. The repository’s location is
either known in advance by the client or dynamically discovered using some SDP.
Once the client gets the stub (Fig. 8, Step 3), it can interact with the desired service.
To invoke a method on the remote service, the client makes a local call on the stub
(Fig. 8, Step 4). The latter first marshals the call into a request message according to
the communication protocol used by the middleware (e.g., IIOP for CORBA, JRMP
for RMI) and then sends the message to the remote service (Fig. 8, Step 5). Hence,
clients are not aware of the implementation specifics of services; stubs abstract their
location, programming language and communication protocol. Finally, on the ser-

Fig. 8 RPC-based middleware architecture

11 http://www.uddi.org/specification.html

1158 Nikolaos Georgantas et al.

vice side, the incoming request message is unmarshalled by the service-side stub
into a local call (Fig. 8, Step 6). Stubs are not always mandatory; some clients may
dynamically generate method calls to the remote service (e.g. CORBA DII).

In Amigo, we extended the above essential mechanism to deal with interoperabil-
ity among heterogeneous discovery and communication protocols. As introduced in
Sect. 3, the AmIi service repository assumes the role of a universal repository for
different SDPs. Depending on the specific mechanism of each supported SDP and
RPC communication middleware coupled with it, the AmIi repository enables ex-
port and retrieval of stubs as depicted in Fig. 9 (Steps 1 and 2). More specifically, by
using its native SDP, the service exports its stub, which conforms to (and indicates)
its native communication middleware. On its side, by using its native SDP, the client
looks up the service. The native communication middleware of the client is inferred
from its SDP – as indicated above, a communication middleware employs a stan-
dard SDP. Then, a translation is performed between the stub exported by the service
and the stub to be retrieved by the client, as either stub conforms to its native com-
munication middleware. The above procedure allows providing the appropriate stub
to the requesting client. The retrieved stub has been further customized – once used
– to tunnel interaction between the client and service through the AmIi communi-
cation interoperability mechanism. AmIi-COM deals with communication protocol
translation between the client and the service by employing appropriate protocol
units (see Fig. 9, Steps 3 and 4). To enable AmIi-COM to configure appropriate
protocol units, the AmIi repository dispatches to the former its knowledge about the
communication protocols and also the references/addresses of the client and the ser-
vice. AmIi-COM may be located on the client, the service, or even a gateway device.
AmIi-COM instances register themselves with the AmIi repository in their vicinity,
which allows the AmIi repository to select the appropriate AmIi-COM instance.
The whole process (AmIi-COM deployment and use) is done in a decentralized and
totally transparent way for the client and the service.

In the following, we detail the AmIi-COM mechanism, starting with RPC basics
in the next section.

Fig. 9 Coupling between AmIi-SD and AmIi-COM

Middleware Architecture for Ambient Intelligence in the Networked Home 1159

4.2 RPC Communication Stack

According to the OSI model, RPC communication protocols can be decomposed
into layers, providing a functional division of the tasks required to enable successful
interaction. As depicted in Fig. 10, RPC communication protocols decompose into
5 layers, defining a reference RPC communication stack. The network and transport
layers are similar to the OSI ones. The former determines how data are transferred
between networked devices whereas the latter specifies how to manage end-to-end
message delivery among networked entities. The invocation layer, refining the OSI
session layer, defines how to manage sessions with remote services across the net-
work and then specifies the types of messages exchanged during an open session.
Then, the serialization layer, refining the OSI presentation layer, encodes messages
according to a format specification. Finally, the application layer provides to appli-
cations an interface to perform remote procedure calls.

For illustration, consider a device A hosting an RMI communication stack and
another device B hosting a Web Services stack. As depicted in Fig. 11, assume an
RMI-based application of A wishes to invoke a Web service of B (Fig. 11, Step 1).
The corresponding request message passes through the 5 layers of the stack hosted
on A (Fig. 11, Step 2). Specifically, the request is first passed to the application layer,
which adds a header to the data. The resulting message is passed to the serialization
layer, which adds its own header to the message it just received from its upper layer
and so on, all the way down to the IP network layer. At the IP layer, the resulting
message is transmitted through the network medium to B (Fig. 11, Step 3). The
message should then traverse the 5 layers of the communication stack hosted on
B (Fig. 11, Step 4). Each crossed layer shall extract its corresponding header and
pass the message payload to the next layer and so on, all the way up to the topmost
layer. Each added header contains information dedicated to the crossed layer and
thus enables a direct layer-to-layer communication between the two stacks that are
respectively hosted on A and B. However, although the communication stacks have
a similar design, interoperability is not supported as the stacks of A and B are bound
to specific message types and data format.

In the RMI stack, the serialization layer offers functions to encode/decode ap-
plication data in binary format according to the Java Object Serialization Stream
Protocol12 (JOSSP) specification. In the Web Services stack, the same layer en-

Fig. 10 RPC communication
protocol stack

12 http://java.sun.com/j2se/1.5.0/docs/guide/serialization/

1160 Nikolaos Georgantas et al.

codes/decodes data in XML format according to the SOAP specification. Thus,
regarding the serialization layer, RPC-based communication protocols do not dif-
fer in terms of functionalities but in the way their communication stack repre-
sents/transforms data. Similarly, for the invocation layer, applications based on RMI
send messages across the network in a binary format following the JRMP specifica-
tion, whereas Web services use HTTP specifications13. Regardless of the RPC-based
communication protocol, the invocation layer offers always the same functions but
differs, as previously, in the way messages are sent across the network.

Thanks to functional commonalities of the protocol layers among heterogeneous
protocols, a way to achieve communication protocol interoperability is to offer per-
layer interoperability among heterogeneous communication protocol stacks. For in-
stance, we should enable the invocation layer from RMI and web services to in-
teroperate. Although these layers use different specifications to marshall/unmarhall
network messages, this challenge can be addressed because these layers provide
identical functions. The same applies to the serialization layer. Obviously, if the
stack related to one communication protocol is enriched with new features through
the adjunction of a new layer, interoperability may be compromised. However, our
aim is not to modify existing communication protocols by enriching them with func-
tionalities that they do not implement even if others do. More particularly, we do not
want to add new features, if this implies changing existing applications. Hence, we
enable communication protocols interoperability among different middleware only
if there exist enough similarities in their corresponding protocol stacks. In other
terms, the quality of the interoperability among different protocol stacks achieved
by AmIi-COM depends on the degree of their functional similarities. This is measur-
able in terms of the number of similar functions shared among the different protocol
stacks, independently of the heterogeneity of the message/data formats, which is ef-
ficiently overcome through the use of event-based parsing techniques, as described
in the next section. In fact, AmIi-COM provides interoperability for the greatest
common denominator of similar functions.

Fig. 11 Layer-to-layer communication

13 Depending on the point of view, SOAP can be also considered as an invocation protocol

Middleware Architecture for Ambient Intelligence in the Networked Home 1161

4.3 Event-based Interoperability

Following our previous work on the design of the INDISS interoperability sys-
tem [8], interoperability for one layer of the communication protocol stack is the re-
sult of the composition of a protocol parser with a protocol composer. Specifically,
a protocol parser generates semantic events according to input protocol messages
and the protocol composer does the inverse process, either one for a specific proto-
col. Cooperation between a parser and composer is achievable because the parsed
and produced protocols share similar functions, which are abstracted as events. An
interoperability process is then a translation process, resulting from the composi-
tion of a parser and a composer. Thus, for each layer, we have an interoperability
process based on the set of events abstracting the functionalities of the layer that are
common across heterogeneous communication protocols.

According to the RPC communication stack, at least 5 interoperability processes
are required to enable interoperability between two middleware based on different
communication protocols. However, these processes cannot always be completely
known in advance (e.g., an RMI stack may use JRMP or HTTP for the invocation
layer). In this particular case, AmIi-COM can dynamically discover the structure of
a remote protocol stack to select the appropriate parsers in order to create and chain
the interoperability processes; and this, as long as AmIi-COM receives a message
from a remote protocol stack. This is enabled by the structure of the network-layer
message, as illustrated in Fig. 11. More specifically, every network message embeds
the headers corresponding to the layers previously crossed. The set of headers is
therefore a signature that reveals the composition of the protocol stack. Furthermore,
by definition, a header always contains a magic number and/or a field to specify the
current protocol used and/or the protocol expected in the next upper layer. Hence,
this property enables chaining progressively the adequate parsers belonging to the
different layers to generate a stream of events that semantically represents the RPC
message.

The chaining of interoperability processes is depicted in Fig. 12. In Step 1, the
RPC call from device A is first parsed by the network parser. The parser decom-
poses the message into two distinct parts: the header and the payload. The former
is transformed into an event stream that is forwarded to the network composer and
the payload is passed to the transport parser, which is the next parser in the chain.
Recursively, the transport parser extracts from the received payload a new header
translated into events that are sent to the transport composer and a new payload that
is directed to the invocation parser and so on, all the way down to the application
parser that finally translates the data of the RPC call into an event stream. Events
from each parser are sequentially forwarded to composers (Fig. 12, Step 2). How-
ever, composers are not able to generate a message until the last parser of the chain
has parsed the last payload. In fact, the composer from the bottom level generates
the payload that is required for the composer of the level immediately above and so
on, all the way up to the network level (Fig. 12, Step 3). The resulting message is fi-
nally compliant to the protocol stack of device B (Fig. 12, Step 4). A similar process
applies to the RPC reply from B to A. Therefore, to provide bidirectional communi-

1162 Nikolaos Georgantas et al.

cation between two different communication protocol stacks, to each protocol layer
corresponds a protocol unit, which embeds the protocol parser and composer for the
specific protocol layer as depicted in Fig. 13. Further details about protocol units
are introduced in [8] in the context of service discovery protocols. In practice, as
layers are not always fully independent (e.g., SOAP defines both serialization and
invocation protocols), the flow of events generated from the chain of parsers are for-
warded to the chain of composers since each one of them is free to handle or ignore
incoming events.

In a way similar to Horus [26, 27], Ensemble [13], Coyote [6], and Microsoft In-
digo14, protocol units are independent protocol modules or blocks that are stacked
on top of each other to constitute a vertical protocol stack. However, we further in-
troduce a dynamic composition of protocol stacks that is both vertical and horizon-
tal. Vertical stack composition (i.e., vertical unit chaining) enables translating a RPC
call to a stream of semantic events, whereas the horizontal stack composition (i.e.,
horizontal unit chaining) translates the stream of semantic events to another protocol
(See Fig. 13). In contrast to traditional protocol stacks, the combined vertical and
horizontal stack composition of AmIi-COM enables translating one communication
protocol to another but does not interpret them.

Also, note that, contrary to the above systems that provide reconfiguration of
protocol stacks [26, 6, 13], with AmIi-COM, applications and services are not aware
of the reconfiguration of protocol compositions and are therefore not bound to the
AmIi-COM system. The latter acts at the network layer on top of the operating

Fig. 12 Event-based interoperability

14 http://windowscommunication.net/Default.aspx

Middleware Architecture for Ambient Intelligence in the Networked Home 1163

system and below legacy middleware (See Fig. 14). Further, AmIi-COM needs only
to be deployed on one of the nodes involved in the communication, whether the
client or the service host, or even a gateway.

4.4 AmIi-COM Instances

In practice, there are not as many units to compose as protocol stack layers. In
general, protocol stacks share a number of identical layers, thus reducing the number
of units involved in protocol interoperability. For instance, as illustrated in Fig. 11,
a majority of RPC protocols are based on TCP/IP, simplifying the interoperability
system, which works only from Layer 3 to 4 (i.e., invocation to serialization layers).
The TCP/IP drivers of the operating system act as units dedicated to Layers 1 and
2. However, if the latter are heterogeneous, our system can also enable dynamic,
through adequate units, interoperability among different networks.

AmIi-COM is built around the concept of vertical and horizontal, dynamic unit
chaining. However, dynamic chaining is not without cost in terms of resource con-

Fig. 13 Vertical and horizontal chain composition to provide interoperability

Fig. 14 Localisation of the AmIi-COM system

1164 Nikolaos Georgantas et al.

sumption, is not always required, and is not always possible (as discussed above, it
is based on the analysis of incoming messages). In these cases, the vertical compo-
sition of protocol units for each supported protocol stack can be achieved statically.
Specifically, the service discovery process (the AmIi repository of AmIi-SD) en-
ables AmIi-COM to select the adequate vertical stack, which is statically composed
(see Sect. 4.1). However, interoperability among heterogeneous stacks is still dy-
namic, as is the horizontal composition of protocol units.

More specifically, the AmIi-COM interoperability system is defined as a set of
protocol units that can be either statically or dynamically composed. As illustrated in
Fig. 15, the specification of an AmIi-COM instance defines the supported units (for
invocation and serialization layers) and the vertical protocol stacks that are statically
composed. However, at run-time (See Fig. 16), AmIi-COM may still dynamically
create new vertical stacks, or reconfigure the existing stacks, which were statically
composed, by adding, removing or changing one protocol unit by another, according
to the context.

Protocol units are not necessarily specific to one communication protocol and
may be stacked in various ways. For instance, the vertical stack named RMI_2 in
Fig. 15, which handles mobile code of RMI-based clients/services, depends on the
HTTP unit, which is also used by the SOAP stack.

In general, AmIi-COM instances evolve across time due to the communication
protocols used by both the hosted applications and the available networked services.
Accordingly, protocol units are reconfigured in order to provide interoperability be-
tween clients and services.

5 Conclusion

Ambient intelligence / pervasive computing environments, such as the smart net-
worked home, should integrate networked devices, possibly wireless, from various
application domains, e.g., the home automation, consumer electronics, mobile and
personal computing domains. Such environments have introduced new challenges
for middleware. Devices need to dynamically detect services offered by other de-

Fig. 15 Specification of an
AmIi-COM instance

Middleware Architecture for Ambient Intelligence in the Networked Home 1165

vices available in the open networked environment and adapt their communication
protocols to interact with them, as services are implemented on top of diverse mid-
dleware (e.g., UPnP used in the home, Java RMI in the mobile domain). Address-
ing such a requirement calls for enabling interoperability among networked devices
throughout their system architecture, i.e., their application, middleware and platform
layers. Application layer interoperability should allow networked services to meet
and coordinate according to applications to be provided to users, whereas they have
been developed independently without a priori knowledge of their respective spe-
cific functionalities. Significant helpers towards dealing with this requirement are
the Semantic Web and in particular Semantic Web Services, which allow high level
description of service functionalities and rigorous reasoning about them. However,
being tied to a single service technology, such as Web Services is also restrictive;
application layer interoperability should be enabled independently of service plat-
forms. This then further calls for middleware layer interoperability (which may also
include platform layer aspects), as each service technology/platform employs a spe-
cific middleware technology/platform supporting the execution and networking of
services; it cannot be assumed that all networked devices in the open AmI environ-
ment will eventually converge to a unique middleware technology.

In the above context, the IST FP6 Amigo project aimed at the development of
an extended home AmI environment. As part of our work in the INRIA ARLES15

group on the development of distributed systems enabling the AmI vision, we de-
vise enablers for pervasive services. In this chapter, we specifically concentrated on
our AmIi interoperability solution developed within Amigo. We introduced a ref-
erence system architecture that has three key features: (i) it is an enhanced service
architecture imposing no specific technologies; (ii) it has a full semantic descrip-
tion at a higher, technology-independent level; and (iii) it includes interoperability
mechanisms as first-class entities based on this semantic description. Relying on
these principles, we detailed in this chapter two interoperability mechanisms: (i) the
AmIi interoperable service discovery (AmIi-SD), enabling service discovery across
heterogeneous, both syntactic- and semantic-based, discovery protocols; and (ii) the
AmIi interoperable service communication (AmIi-COM), enabling communication

Fig. 16 AmIi-COM instances

15 http://www-rocq.inria.fr/arles/

1166 Nikolaos Georgantas et al.

across heterogeneous RPC protocols. AmIi-SD and AmIi-COM work together to
support complete interoperability among heterogeneous devices in the open AmI
environment.

Prototypes of the related software components have been implemented as part
of the Amigo project, and are available under open source software license on the
Amigo open source software Web site16 and our group’s Web site17. Due to the
lack of space, we cannot detail these implementations or report on our performance
evaluation results in terms of both resource consumption and response time. Details
may be found in the references included in the chapter. Performance evaluation has
shown that our solutions comply with the requirements of the pervasive computing
environment, i.e., resource constraints and high interactivity.

The Amigo project and the presented AmIi interoperability approach was a step
forward in enabling the AmI / pervasive vision. In our future work, we aim at fur-
ther removing the technology barriers that constrain this vision. AmIi, although dy-
namic, is based on protocol translators that are statically designed and developed
to address existing service oriented architectures. In our view, the networking of
systems should be completely agnostic to their specific technologies. We envisage
systems that network behaviorally, as opposed to networking technologically. Sys-
tems should be able to unambiguously specify their networked functional and non-
functional behavior based on adequate theoretical foundations. This should allow
automated reasoning for behavioral matching and further adaptation of systems, en-
abling them to interact irrespectively of their underlying technologies. More specifi-
cally, building upon work in the software architecture domain, we aim to investigate
formal specification of connectors that allows reasoning upon and adaptation of
system networked behavior at runtime. This adaptation will be performed through
on-the-fly synthesis of connectors customized for the communicating networked
systems. This approach envisages “eternal systems” that can seamlessly join any
networked environment, existing or possibly even future one.

References

[1] Ben Mokhtar, S.: Semantic middleware for service-oriented pervasive comput-
ing. Ph.D. thesis, University of Paris 6, France (2007)

[2] Ben Mokhtar, S., Georgantas, N., Issarny, V.: Cocoa: Conversation-based ser-
vice composition in pervasive computing environments with qos support. J.
Syst. Softw. 80(12), 1941–1955 (2007). DOI http://dx.doi.org/10.1016/j.jss.
2007.03.002

[3] Ben Mokhtar, S., Kaul, A., Georgantas, N., Issarny, V.: Efficient semantic ser-
vice discovery in pervasive computing environments. In: Middleware ’06: Pro-
ceedings of the ACM/IFIP/USENIX 2006 International Conference on Mid-

16 https://gforge.inria.fr/projects/amigo/
17 http://www-rocq.inria.fr/arles/

Middleware Architecture for Ambient Intelligence in the Networked Home 1167

dleware, pp. 240–259. Springer-Verlag New York, Inc., New York, NY, USA
(2006)

[4] Ben Mokhtar, S., Preuveneers, D., Georgantas, N., Issarny, V., Berbers, Y.:
Easy: Efficient semantic service discovery in pervasive computing environ-
ments with qos and context support. J. Syst. Softw. 81(5), 785–808 (2008).
DOI http://dx.doi.org/10.1016/j.jss.2007.07.030

[5] Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific Ameri-
can 284(5), 34–43 (2001)

[6] Bhatti, N.T., Hiltunen, M.A., Schlichting, R.D., Chiu, W.: Coyote: A system
for constructing fine-grain configurable communication services. ACM Trans-
actions on Computer Systems 16, 321–366 (1998)

[7] Bromberg, Y.D.: Résolution de l’hétérogénéité des intergiciels d’un environ-
nement ubiquitaire. Ph.D. thesis, University of Versailles-Saint Quentin en
Yvelines, France (2006)

[8] Bromberg, Y.D., Issarny, V.: Indiss: Interoperable discovery system for net-
worked services. In: Proceedings of the ACM/IFIP/USENIX 6th International
Middleware Conference, pp. 164–183. Grenoble, France (2005)

[9] Chappell, D.A.: Enterprise Service Bus. O’Reilly Media (2004)
[10] Georgantas, N., Inverardi, P., Issarny, V.: Software platforms. In: E.H.L. Aarts,

J.L. Encarnacao (eds.) True Visions: The Emergence of Ambient Intelligence,
pp. 151–170. Springer Berlin Heidelberg (2006)

[11] Georgantas, N., Mokhtar, S.B., Bromberg, Y.D., Issarny, V., Kalaoja, J., Kan-
tarovitch, J., Gerodolle, A., Mevissen, R.: The amigo service architecture
for the open networked home environment. In: WICSA ’05: Proceedings
of the 5th Working IEEE/IFIP Conference on Software Architecture, pp.
295–296. IEEE Computer Society, Pittsburgh, Pennsylvania (2005). DOI
http://dx.doi.org/10.1109/WICSA.2005.71

[12] Grace, P., Blair, G.S., Samuel, S.: A reflective framework for discovery and in-
teraction in heterogeneous mobile environments. SIGMOBILE Mob. Comput.
Commun. Rev. 9(1), 2–14 (2005). DOI http://doi.acm.org/10.1145/1055959.
1055962

[13] Hayden, M., van Renesse, R.: Optimizing layered communication protocols.
In: Proceedings of the Sixth IEEE International Symposium on High Perfor-
mance Distributed Computing, pp. 169–177. Portland, Oregon (1997). DOI
10.1109/HPDC.1997.626686

[14] Issarny, V., Sacchetti, D., Tartanoglu, F., Sailhan, F., Chibout, R., Levy, N.,
Talamona, A.: Developing ambient intelligence systems: A solution based on
web services. Automated Software Engg. 12(1), 101–137 (2005). DOI http:
//dx.doi.org/10.1023/B:AUSE.0000049210.42738.00

[15] Koponen, T., Virtanen, T.: Service discovery: a service broker approach. In:
Proceedings of the 37th Annual Hawaii International Conference on System
Sciences (2004). DOI 10.1109/HICSS.2004.1265669

[16] Kurzyniec, D., Wrzosek, T., Sunderam, V., Slominski, A.: Rmix: a multipro-
tocol rmi framework for java. In: Proceedings of the International Parallel

1168 Nikolaos Georgantas et al.

and Distributed Processing Symposium (2003). DOI 10.1109/IPDPS.2003.
1213269

[17] Lamanna, D.D., Skene, J., Emmerich, W.: Slang: A language for defining ser-
vice level agreements. In: FTDCS ’03: Proceedings of the The Ninth IEEE
Workshop on Future Trends of Distributed Computing Systems, pp. 100–106.
IEEE Computer Society, Washington, DC, USA (2003)

[18] Martin, D., Paolucci, M., Mcilraith, S., Burstein, M., Mcdermott, D., Mcguin-
ness, D., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara,
K.: Bringing semantics to web services: The owl-s approach. In: J. Cardoso,
A. Sheth (eds.) SWSWPC 2004, LNCS, vol. 3387, pp. 26–42. Springer (2004)

[19] McIlraith, S.A., Martin, D.L.: Bringing semantics to web services. IEEE Intel-
ligent Systems 18(1), 90–93 (2003). DOI http://dx.doi.org/10.1109/MIS.2003.
1179199

[20] Nakazawa, J., Tokuda, H., Edwards, W., Ramachandran, U.: A bridging frame-
work for universal interoperability in pervasive systems. In: Proceedings of
ICDCS’06: The 26th IEEE International Conference on Distributed Comput-
ing Systems. Lisboa, Portugal (2006). DOI 10.1109/ICDCS.2006.5

[21] O’Sullivan, D., Lewis, D.: Semantically driven service interoperability for per-
vasive computing. In: MobiDe ’03: Proceedings of the 3rd ACM international
workshop on Data engineering for wireless and mobile access, pp. 17–24. San
Diego, CA, USA (2003). DOI http://doi.acm.org/10.1145/940923.940927

[22] Papazoglou, M.P., Georgakopoulos, D.: Service-oriented computing. Com-
mun. ACM 46(10), 24–28 (2003). DOI http://doi.acm.org/10.1145/944217.
944233

[23] Peltz, C.: Web services orchestration and choreography. IEEE Computer
36(10), 46–52 (2003). DOI http://dx.doi.org/10.1109/MC.2003.1236471.
URL http://dx.doi.org/10.1109/MC.2003.1236471

[24] Raverdy, P.G., Issarny, V., Chibout, R., de La Chapelle, A.: A multi-protocol
approach to service discovery and access in pervasive environments. In:
Proceedings of the 3rd Annual International Conference on Mobile and
Ubiquitous Systems, pp. 1–9. San Jose, CA, USA (2006). DOI http://doi.
ieeecomputersociety.org/10.1109/MOBIQ.2006.340448

[25] Raverdy, P.G., Riva, O., de La Chapelle, A., Chibout, R., Issarny, V.: Efficient
context-aware service discovery in multi-protocol pervasive environments. In:
MDM ’06: Proceedings of the 7th International Conference on Mobile Data
Management. IEEE Computer Society, Nara, Japan (2006). DOI http://dx.doi.
org/10.1109/MDM.2006.78

[26] van Renesse, R., Birman, K.P., Friedman, R., Hayden, M., Karr, D.A.: A
framework for protocol composition in horus. In: PODC ’95: Proceedings
of the fourteenth annual ACM symposium on Principles of distributed com-
puting, pp. 80–89. ACM, New York, NY, USA (1995). DOI http://doi.acm.
org/10.1145/224964.224974

[27] van Renesse, R., Birman, K.P., Maffeis, S.: Horus: a flexible group communi-
cation system. Commun. ACM 39(4), 76–83 (1996). DOI http://doi.acm.org/
10.1145/227210.227229

Middleware Architecture for Ambient Intelligence in the Networked Home 1169

[28] Satyanarayanan, M.: Pervasive computing: Vision and challenges. IEEE Per-
sonal Communications 8, 10–17 (2001)

[29] Slominski, A., Govindaraju, M., Gannon, D., Bramley, R.: Design of an XML
based Interoperable RMI System : SoapRMI C++/Java 1.1. In: Proceedings of
PDPTA, pp. 1661–1667 (June 25-28, 2001)

[30] Tsounis, A., Anagnostopoulos, C., Hadjiefthymiades, S.: The role of semantic
web and ontologies in pervasive computing environments. In: Proceedings of
the Mobile and Ubiquitous Information Access Workshop, Mobile HCI ’04.
Glasgow, UK (2004)

[31] Van Engelen, R.A., Gallivan, K.A.: The gsoap toolkit for web services and
peer-to-peer computing networks. In: CCGRID ’02: Proceedings of the 2nd
IEEE/ACM International Symposium on Cluster Computing and the Grid, p.
128. IEEE Computer Society, Washington, DC, USA (2002)

[32] Weiser, M.: Some computer science issues in ubiquitous computing. Commun.
ACM 36(7), 75–84 (1993). DOI http://doi.acm.org/10.1145/159544.159617

[33] Zhu, F., Mutka, M.W., Ni, L.M.: Service discovery in pervasive computing
environments. IEEE Pervasive Computing 4(4), 81–90 (2005). DOI http:
//dx.doi.org/10.1109/MPRV.2005.87

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

