Chapter 8
Ring and Module Hulls

A motivation for the need to study ring and module hulls that are intermediate be-
tween a ring R and Q(R) or E(R), and between a module M and E (M), respec-
tively, can be seen from the following examples. Consider

ZQ
R= [ - Z} |
The ring R is neither right nor left Noetherian and its prime radical is nonzero.
However, Q(R) = Mat,(Q) is simple Artinian. Next, take R to be a domain which
is not right Ore. Then Q(R) is a simple regular right self-injective ring (see Theo-
rem 2.1.31 and [262, Corollary 13.38']) which is neither orthogonally finite nor with
bounded index (of nilpotency). The disparity between R and Q(R) in the preceding
examples limits the transfer of information between R and Q(R).

Although every module has an injective hull, it is generally hard to construct
or explicitly describe it. However, certain known subsets of the injective hull or
of the endomorphism ring of the injective hull of a given ring (or module) can be
used to generate an overring (or an overmodule) in conjunction with the base ring
(or module) to serve as a hull of the ring (module) with some desirable properties.
For example, since Q(R) can be constructed for a ring R by Utumi’s method (see
Theorem 1.3.13), B(Q(R)) can also be determined. Hence, the set of all £ (1), where
f is a central idempotent in End(E (Rp)) is explicitly described via B(Q(R)) (see
Lemma 8.3.10). Therefore, rings or modules generated by such a known subset of
the injective hull in conjunction with the base ring or module may provide hulls.
Additionally, these hulls may possess properties of interest to us.

These examples and constructions illustrate a need to find overrings of a given
ring that have some weaker versions of the properties traditionally associated with
right rings of quotients (e.g., semisimple Artinian, or (regular) right self-injective,
or right continuous, etc.). These overrings are close enough to the base ring to facil-
itate an effective exchange of information between the base ring and the overrings.
Furthermore, this need is reinforced when one studies the classes of rings for which
R = Q(R) (e.g., right Kasch rings). For these classes, the theory of right rings of
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268 8 Ring and Module Hulls

quotients does not apply as was seen in Chap. 7 (and now in Chap. 8). However, the
results presented in Chap. 7 which deal with right essential overrings will still be
applicable (as will also be seen for such results from this chapter).

Our goal is to find methods that enable us to describe all right essential overrings
of a ring R in a selected class & (or essential overmodules of a module M in a
selected class 901). For this, our focus is on the study of the following problems:

Problem I. Given a ring R and a class 8 of rings, determine what information
transfers between R and its right essential overrings in K.

Problem II. Assume that a ring R and a class of rings £ are given.

(i) Determine conditions to ensure the existence of right rings of quotients and
that of right essential overrings of R, which are, in some sense, “minimal” with
respect to belonging to the class {.

(ii) Characterize the right rings of quotients and the right essential overrings
of R which are in the class £ possibly by using the “minimal” ones obtained in (i).

Problem IlI. Given classes of rings 2l and ‘B, determine those rings R € 5 such
that Q(R) e 2.

Problem IV. Given aring R and a class £ of rings, let X (R) denote some standard
type of extension of R (e.g., X(R) = R[x] or X (R) = Mat, (R), etc.) and let H(R)
denote a right essential overring of R which is “minimal” with respect to belonging
to the class K. Determine when H (X (R)) is comparable to X (H(R)).

Problems I and II will be discussed in Sects. 8.1-8.3, while Problems III and IV
will be studied in Sects. 9.1 and 9.3, respectively. We shall see that the right es-
sential overrings which are minimal with respect to belonging to a specific class of
rings are important tools in these investigations. To accommodate various notions
of minimality, three basic notions of hulls are included in our discussion (see Defi-
nition 8.2.1). Using these notions, we establish the existence and uniqueness of the
FI-extending ring hull for a semiprime ring (which, in this case, coincides with the
quasi-Baer ring hull). In another basic type of a ring hull, we shall use R and certain
subsets of E(Rp) to generate a right essential overring S, so that S is in £ in some
minimal fashion (see Definition 8.2.8). This construction leads to the concept of a
pseudo ring hull. Moreover, we show that there is an effective transfer of informa-
tion between the aforementioned hulls and the base ring. The results we present in
this chapter will be applied to the study of boundedly centrally closed C*-algebras
later in Chap. 10.

We will conclude the chapter with a discussion on module hulls in Sect. 8.4. In
particular, we will discuss quasi-injective, continuous and quasi-continuous hulls
of a module. Conditions for a continuous hull to exist will be shown. We will
see that every finitely generated projective module over a semiprime ring has an
FI-extending hull. Moreover, it will be shown that the extending and FI-extending
properties transfer from a module M to its rational hull.

For the convenience of the reader, Con, qCon, E, and FI are used respectively
to denote the class of right continuous rings (modules), the class of right quasi-
continuous rings (modules), the class of right extending rings (modules), and the
class of right FI-extending rings (modules) according to the context. Further, we let
B and gB denote the class of Baer rings and the class of quasi-Baer rings, respec-
tively.
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In this chapter; in general, all rings are assumed to have an identity element.
However, in Definition 8.1.5, Definition 8.2.1, and Sect. 8.3, we do not require that
rings must have an identity element.

8.1 Background and Preliminaries

This section is devoted to background information and preliminary results. Various
properties are presented which transfer from a ring to its right rings of quotients or
to its right essential overrings.

Definition 8.1.1 A ring R is said to be right essentially Baer (resp., right essentially
quasi-Baer) if the right annihilator of any nonempty subset (resp., ideal) of R is
essential in a right ideal generated by an idempotent. Let eB (resp., eqB) denote the
class of right essentially Baer (resp., right essentially quasi-Baer) rings.

It can be seen that eB properly contains E and B, while eqB properly contains FI
and ¢B. If S = A® Z4, where A is a domain which is not right Ore, then S is neither
right extending nor Baer. But S is right essentially Baer. Next let R be the ring as
in Example 7.1.13. Then the ring R is neither right Fl-extending nor quasi-Baer.
But R is right essentially quasi-Baer (see Exercise 8.1.10.1). In Theorem 3.2.37,
we have seen that when a ring R is semiprime, R is quasi-Baer if and only if R is
right essentially quasi-Baer. The next result shows that replacing semiprime with
nonsingularity also yields this equivalence.

Proposition 8.1.2 Assume that R is a right nonsingular ring.
(1) If R €eB, then R € B.
(ii) If R € eqB, then R € qB.

Proof (i) Assume that R is right essentially Baer. Say ¥ # X C R. Then rr(X)g
is essential in e Ry with e2=¢ € R. As in the proof of Theorem 3.2.38, we obtain
that £r(rr(X)) = Lr(eR) = R(1 —e), so rr(X) =rr(£g(rr(X))) = eR. Thus R
is Baer.

(ii) Say R is right essentially quasi-Baer. Take X to be an ideal of R and follow
the proof of part (i). O

Lemma 8.1.3 Let T be a right ring of quotients of R. Then:

(1) Forright ideals I and J of T, if IT <°° Jr, then Ig <% Jp.
(i) If AR I Tg, then Agr <®*° T ATg.

Proof (i) Let 0y € J. Then thereis t € T with 0 # yt € I. As R <%" T, there
is r € R satisfying tr € R and ytr # 0. Now ytr € I. So Ig <°% Jg.

(i1) By Proposition 2.1.32, End(Tg) = End(T7r) =T.Thus TA C Aas Agr I Tg.
Let0#yeTAT = AT. Then y =a1t) + - -- + ant, where a; € A, t; € T for each
i, 1 <i<n.Since Rg <% T, there is r; € R with r;r; € R and yr; # 0. Again
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there is r» € R with tprir, € R and yrirp # 0. Continuing this process, there is
re RwithO#£yre A.So Agr <*STATy. O

Proposition 8.1.4 Let T be a right ring of quotients of R. Then:

(1) Tr is Fl-extending if and only if Ty is Fl-extending.
(ii) Tt is extending if and only if Ty is extending.

Proof (i) Let Tr be Fl-extending. Say Ag < Tg. Then A <®*° TATg by
Lemma 8.1.3(ii). There exists e = e € T satisfying TATy <% eTr. Thus
T ATg <°% eTg by Lemma 8.1.3(i), so Ag < ¢Tg. Hence, Ty is Fl-extending.

Conversely, let Tr be Fl-extending. Then End(7g) = End(77) by Proposi-
tion 2.1.32. Take B < T. Then Br < Tg because End(7Tg) = End(7T7) = T. So there
exists e2 = e € End(Tg) = End(T7) such that B <® eTg. Hence, By <° ¢(1)Tr
and e(1)> = e(1) € T. Therefore, T7 is Fl-extending.

(i1) The proof is similar to that of part (i). O

The condition that 7 is a right ring of quotients of R in Proposition 8.1.4 cannot
be replaced by the condition that T is a right essential overring of R (see Exer-
cise 8.1.10.2). The concept of a D-E class is introduced in the next definition. Such
a class has the advantage that its members have an abundance of idempotents for
their “designated” right ideals.

Definition 8.1.5 Let £ be a class of rings not necessarily with identity and P be a
property of right ideals. We say that £ is a class determined by P if:

(1) there exists an assignment 2 g on the class of all rings such that ® g(R) is a
set of right ideals of a ring R.

(ii) each element of © g (R) has the property P if and only if R € K.

If R is such a class where P is the property that a right ideal is essential in a right
ideal generated by an idempotent, then we say that R is a D-E class and use € to
denote a D-E class. Thus, a D-E class exhibits the extending property with respect
to a designated set of right ideals of a ring in €. We note that any D-E class always
contains the class of right extending rings.

Some examples illustrating Definition 8.1.5 are as follows.

(1) R is the class of semisimple Artinian rings, ® g(R) ={I | Ig < Rg}, and P is
the property that every right ideal is a direct summand.

(2) R is the class of right Noetherian rings, ® g(R) = {I | Ir < Rp}, and P is the
property that every right ideal is finitely generated.

(3) R is the class of regular rings, ® g(R) = {aR | a € R}, and P is the property
that every right ideal is generated by an idempotent.

(4) Risthe class of biregular rings, ® g(R) = {RaR | a € R}, and P is the property
that every ideal is generated by a central idempotent.

(5) R is the class of right Rickart rings, ©® g (R) = {aR | a € R}, and P is the prop-
erty that every right ideal is projective.
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6) R=B,Dp(R) ={rr(X) | ¥ # X C R}, and P is the property that every right
ideal is generated by an idempotent.
(7) A=4qB,Dgg(R) ={rr(1) | I < R}, and P is the property that every right ideal
is generated by an idempotent.
(8) €=Eand Dg(R) ={I | Ir < Rg}.
(9) €=eBand D (R) ={rr(X) |¥# X C R}.
(10) € =eqB and Deq(R) ={rr() | 1 < R}.
(11) €=FI and ©®p1(R) ={I | I < R}.
(12) ¢ = pFI (pFI is the class of right principally Fl-extending rings), and
Dpr1(R) ={RaR |a € R}.

We observe that the same class £ of rings can be determined by more than one
g and P. For example, with the class E we can also use the set of closed right
ideals of R for ®g(R) and take P to be the property that every right ideal is either
essential in a right ideal generated by an idempotent, or P to be the property that
every right ideal generated by an idempotent. Also we note that the class of right
Rickart rings can also be characterized by ® g(R) = {rg(a) | a € R}, and P is the
property that every right ideal is generated by an idempotent.

Lemma 8.1.6 (i) Assume that T is a right ring of quotients of R. If Jg < Tg, then
Lr(J)=Lr(JNR).

(i) Assume that T is a left ring of quotients of R. If rJ < RT, then
rr(J)=rr(J NR).

Proof (i) Clearly, £r(J) CLr(J N R).Leta € £x(J N R) and suppose that there is
y € J such that ay # 0. Since Rz <% Ty, there is r € R such that yr € J N R and
ayr # 0, a contradiction. Thus, £g(J) = €g(J N R).

(i1) The proof is similar to that of part (i). O

We say that an overring T of aring R is a right intrinsic (ideal intrinsic) extension
of R if every nonzero right ideal (ideal) of 7" has a nonzero intersection with R. Note
that if T is a right essential overring of R, then T is a right intrinsic extension of R.
See [162] and [64] for more details on right intrinsic extensions.

Proposition 8.1.7 (i) Let € be a D-E class of rings, and let T be a right intrinsic
extension of a ring R. Assume that for each J € D¢ (T) there exists ¢*> = e € R such
thateJ C J and (J N R)gr <*SeRp.Then T € €.

(ii) Let € be a D-E class of rings, and T be a right ring of quotients of R. Assume
that Re €. If J € D¢(T) implies JN R € D¢(R), then T € €.

Proof (i) We first note that J =eJ @ (1 — e)J. Suppose that (1 —e)J # 0. Then
0#£(1—e)JNRCJNRCeR, acontradiction. Hence, J = eJ C eT. To show
that Jy <% eTr, we take 0 # ev € eT with v € T. Then evT N R # 0, hence
0#evu € R for some u € T, and so 0 # evu € eR. Thus, there is r € R such that
0#euvre JNRC J.So Jr <*¥ eTr, therefore T € €.
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(i) Let J € ®¢(T). Since J N R € D (R) by assumption, there exists e> = e € R
with (JNR)g <*%eRp.Because | —e € Lg(JNR), (1—e)J =0by Lemma 8.1.6.
Hence, Jg <eTg and eRg <5 eTg, so Jg <% eTg. Thus, J; <% eTr and there-
fore T € €. O

Aring R is called right finitely X -extending if Rgl) is extending for each positive
integer n (cf. Exercise 6.1.18.1). A ring R is said to be right uniform-extending if
every uniform right ideal of R is essential in a direct summand of Rg. The following
result demonstrates that the right extending property transfers to right rings of quo-
tients, while the right FI-extending property transfers to right intrinsic extensions.

Theorem 8.1.8 (i) Assume that T is a right intrinsic extension of a ring R. If Ry is
Fl-extending, then so is Tr.

(ii) Let T be an ideal intrinsic extension of a ring R such that B(R) C B(T).
If R is semiprime and R is (right) Fl-extending, then T is semiprime and (right)
Fl-extending.

(iii) Assume that T is a right ring of quotients of a ring R. If Rp is extending,
then sois Tr.

(iv) Assume that T is a right ring of quotients of a ring R. If Rg is finitely X-
extending, then so is Tr.

(v) Assume that T is a right ring of quotients of a ring R. If Rg is uniform-
extending, then so is Tr.

Proof (i) Let J < T. Then J € Dpp(T) and J N R € Dpp(R). Because Ry is FI-
extending, (J N R)g <% eRy with ¢> = ¢ € R. From Proposition 8.1.7(i), Tr is
Fl-extending.

(ii) Clearly, T is semiprime. Let 0 A2 I < T. Then (I N R)g <®* eRp for some
e € B(R) € B(T) by Theorem 3.2.37 and assumption. Similar to the proof of
Proposition 8.1.7(1), (1 —e)I =0, so I = el C eT. We show that Ip <% eT7.
For this, we prove that .7, <® eTe,r.. Say V is a nonzero ideal of eTe. Then
V is an ideal of 7, so VN R # 0. Hence 0 # V N R C eT N R = ¢eR, and
thus 0 (VN R)YNUINR)CV NI because (I N R)g <°° ¢eRp. Therefore,
Iore <®8 eTeere. As e € B(T), IT <®% eTr. So T is (right) Fl-extending.

(iii) The proof follows from Proposition 8.1.7(ii) since the class E of right ex-
tending rings is a D-E class and Dg(R) is the set of all right ideals of R.

(iv) Let T be a right ring of quotients of a ring R and assume that Ry is finitely
X -extending. Note that Mat, (R) is a right extending ring for every positive integer
n (Exercise 6.1.18.1). So Mat, (T') is a right extending ring by part (iii) as Mat,, (T')
is a right ring of quotients of Mat,, (R). Thus, T7 is a finitely X'-extending.

(v) Let T be a right ring of quotients of R and assume that Rg is a uniform-
extending. Say J is a uniform right ideal of 7. Let / = J N R, and take nonzero
elements x and y in /. Then xT N yT # 0. Say xs = yt # 0 with 5,r € T. As
Rg <9m Tx, there is r € R such that sr € R and xsr = ytr # 0. Again since
R <90 Ty there exists a € R with tra € R and ytra#0.So sra € R, tra € R,
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and 0 # xsra = ytra € xR N yR. Thus, [ is a uniform right ideal of R. Hence the
proof follows directly from Proposition 8.1.7(ii). d

Theorem 8.1.9 (i) Assume that T is a right and left essential overring of a ring R.
IfRe B, then T € qB.

(ii) Assume that T is a right essential overring of a ring R which is also a left
ring of quotients of R. If R € eqB, then T € eqB.

(iii) Assume that T is a right essential overring of a ring R which is also a left
ring of quotients of R.If R € B, then T € B.

(iv) Assume that T is a right and left ring of quotients of a ring R. If R € eB,
then T € eB.

Proof (i) Let R be quasi-Baer. Say J < T and let I = J N R. There exists e = ¢ € R
with rg(I) =eR. Lett € rp(J).

If (1 —e)t #0, then there is r € R with 0 # (1 —e)tr € R as Rp <®° Tr. We see
that 1(1 —e)tr € Itr € Jtr =0. Hence (1 — e)tr € rr(I) = eR, a contradiction.
Therefore, (1 —e)r7(J) =0. Thus r7(J) C eT. To show that eT C rr(J), assume
on the contrary that there is y € J such that ye # 0. As T is a left essential overring
of R, there is s € R with 0 £ sye € R. Hence, syee JNR=1.

But sye € Ie =0, a contradiction. Thus, Je = 0 and so rg(J) = eT . Therefore,
T is quasi-Baer.

(ii) Assume that R is right essentially quasi-Baer. Say J/ < T and I = J N R.
There exists e> = e € R such that rg(I)g < eRg. As in the proof of part (i),
we obtain r7(J) € eT. By Lemma 8.1.6(ii), rr(J) = rgr(I). Thus we have that
rr(J)R <®S ¢Rpg. Since rr(J) CeT,rr(J)r <®S ¢Tg. Thus rr(J)r <8 eTr, so
T is right essentially quasi-Baer.

(iii) Let R be Baer. Take W = X C T and J = T X. Then r7(X) = r7(J). We now
set I = J N R. Then there exists ¢ = ¢ € R such that rg(I) = eR. First to show that
rr(J) C eT, suppose that there is ¢ € rr(J) with (1 —e)r # 0.

Since Rr <®° Tg, thereis r € R with 0 # (1 — e)tr € R. So

I(1—e)tr=1tr =0,

hence 0 # (1 — e)tr e rr(I) = eR, a contradiction. Thus rr(J) CeT.
If ye # 0 for some y € J, then there is s € R with sy € R and sye # 0 as gR is

dense in T, So sy € I. Hence 0 # sye € Ie =0, a contradiction. Thus ye = 0 for
all y € J, hence e € rr(J). Therefore, eT C ry(J) and thus rp(X) =ry(J) =eT.
So T is Baer.

(iv) Assume that R is right essentially Baer. Let # = X € T and J = T X. Then
rr(X) =rr(J). Take I = J N R. There exists ¢2 = e € R such that rg () is essen-
tial in eRp.

We show that ry(J)r <% eTy. For this, say t € rp(J). If (1 — e)t £ 0, then
since Rg <9 T, there exists r € R with 77 € R and (1 — e)tr # 0. But because
Itr C Jtr =0, tr erg(l). Hence

(I—eyre(l—e)rr(l)< (1 —e)eR=0,

a contradiction. So r7(J) C eT. To see that ry (J)7 <% eTp, use the corresponding
part of the proof in part (ii). Therefore T is right essentially Baer. g
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As an application of Theorems 8.1.8 and 8.1.9, note that (by direct computation)
Th (R)T,(R) <den Mat, (R)7,(r) (see Exercise 8.1.10.5). Hence for various condi-
tions in Theorems 8.1.8 and 8.1.9, if the condition holds for 7},(R), then it holds
for Mat,, (R). Proposition 8.1.7, Theorems 8.1.8, and 8.1.9 show that if R is a ring
which belongs to a certain class (of rings) and S is a right essential overring of R in
that class, then every other right essential overring of R which contains S as a sub-
ring, also belongs to that certain class, under some conditions. These results provide
information related to Problem I.

Exercise 8.1.10

1. ([89, Birkenmeier, Park, and Rizvi]) Show that the ring R as in Example 7.1.13
is neither quasi-Baer nor right FI-extending, but R is right essentially quasi-Baer.

2. ([89, Birkenmeier, Park, and Rizvi]) For a field K, as in Example 7.3.13(i), let
T = K[x]/x*K[x] and X be the image of x in 7. Put T = K + Kx+ Kx> + KX°
and R = K + Kx2 + KX which is a subring of 7. Then T7 is injective. Also T
is a right essential overring of R. Prove that Ty is not Fl-extending. (Hint: check
with ¥ Rg < Tg.)

3. ([89, Birkenmeier, Park, and Rizvi]) Show that if a ring R is Abelian and right
extending, then so is Q(R).

4. ([89, Birkenmeier, Park, and Rizvi]) Let T be a right and left ring of quotients of
R. Show that if R is right semihereditary and Mat, (R) is orthogonally finite for
every positive integer n, then T is right and left semihereditary.

5. Let R be aring and n a positive integer. Show that Mat,, (R) is a right ring of quo-
tients of 7,,(R). Hence if P is a property that transfers from a ring to its right rings
of quotients, then P transfers from 7, (R) to Mat, (R) (see Theorems 8.1.8, 8.1.9,
[4, Theorem 1 and Corollary 2], and [67, Theorem 3.5 and Corollary 3.6]).

8.2 Ring Hulls and Pseudo Ring Hulls

Motivated by the results of Sect. 8.1 and Chap. 7, we shall introduce and develop
ring hull concepts in this section. These enable us to study Problem II mentioned in
introduction of this chapter. After illustrating the ring hull notions via examples, we
shall discuss some technical machinery which enables us to verify the existence of
hulls for various D-E classes.

As a standing assumption in our considerations on hulls, for a given ring R, all
right essential overrings of R are assumed to be contained as right R-modules in a
fixed injective hull E(RR) of Rr and all right rings of quotients of R are assumed
to be subrings of a fixed maximal right ring of quotients Q(R) of R.

We begin with the following definition on various ring hulls.

Definition 8.2.1 Let R be a ring with £z (R) = 0, but not necessarily with an iden-
tity element. Let & denote a class of rings.
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(i) The smallest right ring of quotients 7" of a ring R which belongs to £ is called
the R absolute to Q (R) right ring hull of R (when it exists). We denote T = Q@(R).

(i1) The smallest right essential overring S of a ring R which belongs to £ is
called the R absolute right ring hull of R (when it exists). We denote S = Qg (R).

(iii) A minimal right essential overring of a ring R which belongs to £ is called
a R right ring hull of R (when it exists).

We remark that if R is a ring (not necessarily with identity), then any right R-
module Mg has an injective hull E(Mpg) (see [153, Theorem 9, p. 19]). Further, if
Z(RR) = 0 for such a ring, then Q(R) = E(RR) (see [153, p. 69]). Next, we note
that when Q(R) = E(RR), @ﬁ(R) = Q& (R). In particular, from Theorem 2.1.25,
QqcCon(R) exists whenever OQ(R) = E(RR) (e.g., Z(Rg) =0).

Since we are mostly dealing with the right-sided notions, we will drop the word
“right” (from the preceding definition) in the future to make it easier on the reader.
Thus, when the context is clear, we will use “R absolute to Q(R) ring hull” of R
instead of “R absolute to Q(R) right ring hull” of R, etc.

The next example, taken from Theorems 7.2.1, 7.2.2, and their proofs, illustrates
some examples of ring hulls defined in Definition 8.2.1.

Example 8.2.2 Let R, V,S,U, and T be as in Theorem 7.2.1. Then:

(i) All right Fl-extending ring hulls of R are precisely: (S, +,o(1,0)),
(S, +,001,2), U, +,@1), (U,+,@2), (T,+,¢1),and (T, +, ©2).

(i) All right extending ring hulls of R are precisely: (V,+, 1), (V,+, e2),
(V,+,03), (V,+,04), (S, +, 0x1,0)), and (S, +, 0(1,2)).

(iii) All right quasi-continuous ring hulls of R are precisely: (S, 4+, o(1,0)) and
(S, +, 001,2)).

(iv) All right continuous ring hulls of R are precisely: (S,+,0(,0) and
(S, 4, 071,2))-

(v) All right self-injective ring hulls of R are precisely: (S,+,0(,0)) and
(S, +,001,2).

The following example also illustrates Definition 8.2.1. In fact, it exhibits a ring
R which has several isomorphic right FI-extending ring hulls, but R does not have
a quasi-Baer ring hull.

Example 8.2.3 Let A, R, E =Eg, and T be as in Example 7.3.18. Then from
Theorem 7.3.17, E has exactly p2 compatible ring structures (E, +, o4, g)), where
a, B € Soc(A). These ring structures on Ex are isomorphic and they are QF. Also
by Example 7.3.18, on T there are exactly p distinct compatible ring structures
(T, +, ¢0,p)) where 8 € Soc(A) and ¢ (g, g) is the restriction of e, g) to T. Further,
all compatible ring structures (7', +, ¢(0,8)), B € Soc(A), on T are isomorphic. The
rings (T, +, ©(0,)) are right Fl-extending ring hulls of R by Example 7.3.18. Say

I = [J(OA) 8 . Then I is aright ideal of each of R, (T, 4, ©(0,0y), and (E, 4, (0,0)),

respectively. We see that rg (1) is not generated by an idempotent of R, so R is not
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quasi-Baer. Also the right annihilator of I in (T, +, ¢(0,0)) (resp., (E, 4, (0,0))) is
not generated by an idempotent in (7', 4, ¢(0,0)) (resp., (I, 4, ®(0,0))). Thus, neither
(T, +, 00,0 nor (E, +, e,0)) is quasi-Baer. So R does not have a quasi-Baer ring
hull.

Recall that I(R) and B(R) denote the set of all idempotents and the set of all
central idempotents of a ring R, respectively. Let R be a ring. Then RB(Q(R)),
the subring of Q(R) generated by R and B(Q(R)), has been called the idempo-
tent closure of R by Beidar and Wisbauer [42, p. 65]. In the following result, the
Baer ring hull Qg (R) is R B(Q(R)) for a commutative semiprime ring R, is due to
Mewborn [298].

Theorem 8.2.4 Assume that R is a commutative semiprime ring. Then

OB(R) = Qe(R) = Qqcon(R) = RB(Q(R)).

Proof Say A is a commutative semiprime ring. Then A is reduced, so it is non-
singular by Theorem 1.2.20(ii). From Corollary 3.3.3, A is Baer if and only if
A is extending. As A is commutative, A satisfies (C3) condition. Thus, A is ex-
tending if and only if A is quasi-continuous. For the proof it is enough to show
that Qqcon(R) = RB(Q(R)). From Corollary 1.3.15, Theorem 2.1.25, and Proposi-
tion 2.1.32, RB(Q(R)) is a quasi-continuous ring. Next, say S is a quasi-continuous
(right) ring of quotients of R. Then again by Corollary 1.3.15, Theorem 2.1.25,
and Proposition 2.1.32, B(Q(R)) € S as Q(S) = Q(R). Thus RB(Q(R)) C S. So
Qqcon(R) = RB(Q(R)). O

Theorem 8.2.5 Assume that R is a regular right self-injective ring. Then R = A@ B
(ring direct sum), where A is a strongly regular ring and B is a ring generated by
idempotents.

Proof See [397, Theorems 2 and 4]. Il

Theorem 8.2.6 Let R be a right nonsingular ring and S the intersection of all right
continuous right rings of quotients of R. Then Qcon(R) = S and S is regular.

Proof By Theorem 2.1.31 and Theorem 8.2.5, Q(R) = A @ B (ring direct sum),
where A is strongly regular and B is a ring generated by idempotents. Let T be
a right continuous right ring of quotients of R. Since Z(Tr) =0, T is regular by
Corollary 2.1.30. Put A = eQ(R) with e € B(Q(R)). From Theorem 2.1.25,e € T
and BCT.SoT =(Q(R)NT)® B=eT & B (ring direct sum).

Let {Ty | o € A} be the set of all right continuous right rings of quotients of
R. Then NT, = [N(eTy)] @ B. In fact, note that [N(eTy)] @ B C T, for each
a as Ty = eTy @ B. So [N(eTy)] & B € NT,. Next, say x € NT, and B € A.
Then x € Ty = eTp @ B, hence x =y + b with y € eTg and b € B. So y =
eyand y=x —be (NTy) + B=NT, as B C T, for every «. Hence, y € T,
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for every o, so y = ey € el for every «. Thus, y € N(eT,), and therefore
x=y+be[N(eT,)]® B. Hence, NT, = [N(eT,)] & B.

Say a € N(eTy). There is aunique element b € e Q(R) with a = aba and b = bab
as eQ(R) is a strongly regular ring (see [264, Exercise 3, p. 36]). Also since each
eTy is strongly regular, there exists by € eT, € eQ(R) such that a = abya and
by = byaby, for each «. By the uniqueness of b, b = b, € eT,, for each «. Hence,
b eN(eTy), so N(eTy) is a strongly regular ring.

As B is regular, N'Ty, = [N(eTy)] @ B is regular. From I(NT,) = I(Q(R)), NTy
is right quasi-continuous by Theorem 2.1.25. So, N7y, is right continuous. g

A ring is called right duo if every right ideal is an ideal. The next result shows
the existence of the right duo absolute ring hull for a right Ore domain.

Proposition 8.2.7 If R is a right Ore domain, then R has a right duo absolute ring
hull.

Proof Clearly, Q(R) is right duo. Let S be the intersection of all right duo right
rings of quotients of R. Let T and U be right duo right rings of quotients of R. Say
s,x € § with x £ 0. Then there are t € T and u € U with sx = xt = xu. Hence
x(t—u)=0,sot=wuandt(oru) e TNU.As T and U are arbitrary right duo
right rings of quotients of R, t € S and so sx = xt € xS. Hence, S is the right duo
absolute ring hull of R. O

Theorem 8.2.4 and the construction of Qqcon(R) by Theorem 2.1.25 suggest
how to design a “hull” of R by adjoining a certain subset of E(Rg) to R. This leads
to the notion of a pseudo ring hull which we define next. To define pseudo ring hulls
in Definition 8.2.8, for a D-E class €, we fix ®¢(R) for the class € (e.g., for E, we
fix ®g = {I | Ig < Rp} rather than {J | Jg is closed in Rg}). Define

8¢ (R) = {e e I(End(E(RR)) | Ir <®° e E(Rp) for some I € D¢(R))
and §¢(R)(1) = {e(1) | e € ¢ (R)}. For example,
Sr1(R) = {e ¢ I(End(E(RR)) | Ig <* eE(RR) for some I < R}

because Dypr(R) is the set of all ideals of R.

We next generate a right essential overring in a class € from a base ring R and
S¢(R). By using an equivalence relation, say p on é¢(R), we reduce the size of the
subset of idempotents needed to generate a right essential overring of R in €. For
this, we consider SQ(R), which is a set of representatives of all equivalence classes
of p, and let §3(R)(1) = {h(1) € E(Rg) | h € 84(R)}.

Recall that (X) 4 denotes the subring of a ring A generated by a subset X of A
(see 1.1.2).

Definition 8.2.8 Let S be a right essential overring of R.



278 8 Ring and Module Hulls

(i) If 8¢ (R)(1) C S and (R U 8¢ (R)(1))s € €, then we put
(RUSe(R)(1))s = R(E, S).

If S=R(C, S), then S is called a € pseudo right ring hull of R.
(i) If & (R)(1) € S and (R U 8L (R)(1))s € €, then we put

(RUSG(R)(1))s = R(€, p, ).
If S=R(C, p, §), then S is called a € p pseudo right ring hull of R.

If ¢(R)(1) € Q(R) and S is a right essential overring of R such that R(€, S)
exists, then R(C, S) = R(&, Q(R)) from Proposition 7.1.11.

For example, assume that Q(R) = E(Rg). Then Qqcon(R) exists, and we see
that Qgcon(R) = R(qCon, Q(R)).

As we are usually using the right-sided notions, we will drop the word “right” in
the preceding definition. Thus we will call “€ pseudo right ring hull of R” just “€
pseudo ring hull of R”, etc.

The next examples illustrate Definitions 8.2.1 and 8.2.8. They show that neither
¢ ring hulls nor € p pseudo ring hulls are unique.

Example 8.2.9 In this example, we see that the intersection of all right FI-extending
ring hulls is not necessarily a right FI-extending absolute ring hull. Further, it is
shown that a right FI-extending ring hull may not be unique even up to isomorphism
(cf. Example 8.2.3). Let F be a field and as in Example 3.2.39, we put

a0 x
R= Oay|la,c,x,yeF ; = FFEBF.
0 F
00c¢

Then by [262, Example 13.26(5)], R is right nonsingular and Q (R) = Mat3(F).

a0x
(i) Let H, = Oby|lab,c,x,yeF ’:V[F@FF@F],andlet
0 F
00c
a+bax
H, = 0 byllab,c,x,yeF
0 Oc

Note that H; and H, are subrings of Mat3 (F). Define ¢ : H] — H; by

a0x aa—bx—y
00c 0 O c

Then ¢ is a ring isomorphism. The ring R is not right Fl-extending (see Exam-
ple 3.2.39), but H is right Fl-extending by Corollary 5.6.11. Thus H; is right FI-
extending because H| = H;.
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Let F = Z,. Then there is no proper intermediate ring between R and Hi, also
between R and H;. Thus, H; and H, are right Fl-extending ring hulls of R. Since
Hy N Hy = R, the intersection of right Fl-extending ring hulls is not a right FI-
extending absolute ring hull.

(i1) Assume that F = Z,. Consider

a+bbx
H; = b ayl|lab,c,x,yeF
0 Oc

The ring Hj is right Fl-extending from Corollary 5.6.11. Also H3 is a right FI-
extending ring hull of R because there is no proper intermediate ring between R
and Hj. Further, Tdim(H;) = 3, but Tdim(H3) = 2. Thus H3z % Hj.
(iii) From Theorem 5.6.5 (see also Example 3.2.39), R = Qqg(R). Also we see
FFF
that R(FI, Q(R)) = | F F F | #Mat3(F) = Qqcon(R) = Qcon(R).
00F

Example 8.2.10 There is a right nonsingular ring which has an infinite number
of right Fl-extending p pseudo ring hulls. Furthermore, none of these pseudo
ring hulls is a right Fl-extending ring hull, for some equivalence relation p on
Sp1(R). Take R = T»(Z). Then R is right Fl-extending from Theorem 5.6.19. Say
e;j is the matrix in R with 1 in (i, j)-position and O elsewhere. We note that
{0, 1g}U{e11 + ge12 | g € Q} C Sp1(R). Define an equivalence relation p on §py(R)
such that: ep f if and only if e = fe and f = ef. Then each 8§I(R) contains
{0, 1g, e11 + gei2}, where g € Q is fixed.

Suppose that g ¢ Z. Then (R U 8§I(R)(1))Q(R), the subring of Q(R) generated
by RU 8§I(R)(l), is a right Fl-extending p pseudo ring hull of R because by The-
orem 8.1.8(1) (R U 8§I(R)(1))Q( r) 1s right FI-extending. Therefore, we obtain that
R(FL p, Q(R)) = (R U8 (R)(1)) o(r)- But (R U 8¢ (R)(1)) o(r) is not a right FI-
extending ring hull of R as (R U 5§I(R)(1))Q(R) # R = Or1(R).

We introduce two new equivalence relations which will be helpful.

Definition 8.2.11 (i) We define an equivalence relation « on §¢(R) by e« f if
e= feand f =ef.

(i1) We define an equivalence relation S on ¢ (R) by e B f if there exists Ig < Rp
such that Ig <% ¢E(Rg) and I <®% fE(RR).

The equivalence relation o was used as p in Example 8.2.10. Note that for e, f
in 8¢ (R), ea f impliese B f.If Z(Rg) =0, then o = B.

Lemma 8.2.12 Let R be a ring and H = End (E(RR)).

() If T is a right essential overring of R, then for e € I(T), there exists c € I(H)
such that c|7 € End(Tr) and c¢(1) = e.

(ii) For b e I(H), if b(1) € Q(R), then b(1) € I(Q(R)).
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Proof (i) Note that E(Tg) = E(eTg) ® E((1 — e)Tr). Let ¢ be the canonical pro-
jection from E(Tg) onto E(eTg). Then c(¢) =c(et) +c((1 —e)t) =et fort € T.
Hence c(1) =e. If s € T, then c(ts) = ets = c(t)s. So c|r € End(T7).

(ii)) As E(Rg) is an (H, Q(R))-bimodule, each element of H is a Q(R)-
homomorphism. So if b(1) € Q(R), then b(1) = b(b(1)) = b(1b(1)) = b(1)b(1),
thus (1) e I(Q(R)). O

Proposition 8.2.13 Let € be a D-E class of rings, and let T be a right ring of
quotients of R, 8 be some 8%(R) suchthat §(1) C T. Take S = (RUS(1)) 7. Suppose
that for each J € D¢ (S) thereis I € D¢ (R) with [g <°° Jg.Then S = R(€, a, T),
which is a € « pseudo ring hull of R.

Proof Since §(1) € Q(R), §(1) € I(S) by Lemma 8.2.12(ii). To show that
S=R(C,a, T), we only need to see that S € €. For this, let J € D¢(S). By as-
sumption, there exists I € D¢ (R) satisfying Ig <®° Jg. Therefore we have that
Ip <®5 Jgr <®% E(JR) = eE(RR) for some e € I(H), where H = End(E (RR)).
Hence, e € §¢(R), so there exists f € § satisfying eE(Rgr) = f E(Rpg). Thus we get
Jr <% fE(RR) and so Jg <®5 fSp.

Note that f € End(Eg) = End(Eg(g)) by the proof of Theorem 2.1.31, where
E = E(RR). So Jg <% fSgp = f(1)Sg because S is a subring of Q(R). Hence,
Js <% f(1)Ssand f(1)>= f(1) € S,s0 SeC. 0

Proposition 8.2.14 Ler € be a D-E class of rings, and let T be a right essential
overring of R. Assume that for each I € D¢ (R) there exists e € I(T) satisfying
Ir <®% eTg. Then there exists SQ(R) such that, for each c € SQ(R), clt € End(Tr)
and c(1) e (T).

Proof Let b € §¢(R). Then there is I € D¢ (R) with Ig <®° bE(Rg). By assump-
tion, Ig <°* eTg for some e € I(T). From Lemma 8.2.12(i), there is ¢ = ¢ in
End(E (Rpg)) such that c|7 € End(77) and c(1) =e.

We note that Ig <®5 eTgr =c(1)Tg =cTg, s0 Ig <®5cE(Rpg). Thus,bBc. [

The next result will be used to find right extending right rings of quotients of
certain rings in Sect. 9.1.

Theorem 8.2.15 Let R be a ring such that o = 8 (e.g., Z(RR) =0),and let T be a
right ring of quotients of R. Then the following are equivalent.

(1) T is right extending.
(ii) There exists a right extending o pseudo ring hull R(E,a, Q(R)) and it is a
subring of T.

Proof (i)=(ii) Assume that T is right extending. To apply Proposition 8.2.14, let
I € Dg(R), that is, Ig < Rg. By the proof of Lemma 8.1.3(ii), Ig <® ITg. Take
J =1IT. Since T is right extending, there is e € I(T) with J;r <®% eT7. Thus
Jr <% eTg by Lemma 8.1.3(i), so Ig <®5 Jg <5 eTk.
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By Proposition 8.2.14, there is 8€(R) with c¢|r € End(T7) and c(1) € I(T') for
each ¢ € 85 (R). Take S = (R U5 (R)(1))r = (R U 8h(R)(1)) o(ry- Now for each
Ks <S5, (KNR)g < Rp and (K N R)g <°% Kg. Since Z(Rg) =0, a = B (Ex-
ercise 8.2.16.3), and hence S = (R U dg(R)(1)) o(r) = R(E, @, Q(R)) by Proposi-
tion 8.2.13. Clearly S is a subring of T'.

(i))=(1) The proof follows from Theorem 8.1.8(iii). O

Exercise 8.2.16
1. ([89, Birkenmeier, Park, and Rizvi]) Assume that A is a commutative lo-

cal QF-ring such that J(A) # 0. In this case, we take Sp = |:A J(A):|,

0 A
A A and S3 = Mat,(A). Prove that the followin
J(A) A 3= 2(A). A wing

S1 =T(A), $2 = [
hold true.
(1) So € S1 €5, C §3 is a chain of subrings of S3 where S;,1 <i <3isa
right essential overring of its predecessor.
(i) Sos, <**° S1s,» St <den S35, but Spg, is not essential in S, .
(iii) Sy is a right Fl-extending ring hull of Sy, S» = Qg(S1), and also
S3 = Qs1(S1) = Os1(S2), where Sl is the class of right self-injective rings.
2. ([89, Birkenmeier, Park, and Rizvi]) Assume that ( denotes the class of rings,
{R]| RNU(Q(R)) =U(R)}, where U(—) is the set of invertible elements of a
ring. We let Ry = (RU {g € U(Q(R)) | q_l € R})o(r)- Let i and j be ordinal
numbers. When j =i + 1, put

Rj=(RiU{g e UQR) ¢~ e R} o).

Ifj i/s\a limit ordinal, leLRj = U;<jR;. Prove the following.

(i) Qu(R) exists and Qg ((R) = {QJ for any j with |j| > |Q(R)|.

(ii) If R is aright Ore ring, then Qy((R) = Q7,(R). Thus Qy(R) is a ring hull
that coincides with Q,(R) when R is right Ore.

3. Let o and B be as in Definition 8.2.11. Show that « = 8 if Z(Rg) =0.

4. ([89, Birkenmeier, Park, and Rizvi]) Let R be the ring in Example 8.2.9. Show
that Ng R(FI, o, Q(R)) = T3(F).

5. ([89, Birkenmeier, Park, and Rizvi]) Let T be a right ring of quotients of a ring
R and assume that /7 < T for any I < R. Prove that T € FI if and only if there
exists an R(FI, B, Q(R)) which is a subring of T'.

6. ([89, Birkenmeier, Park, and Rizvi]) Assume that W is a local ring and V is
a subring of W with J(W) C V. Let R = |:‘(; VVI‘//i| , 8= |:J(‘:)V) x}, and T =
Mat;(W). Prove the following.

(i) For each e € I(T), there exists f € I(S) such thate« f.
(i) SeEifandonlyif T € E if and only if S = R(E, p, T) for some p.
(iii) If W is right self-injective, then S = R(E, «, T).
(iv) If W is right self-injective, then Qqcon(R) = R(E,T) =T.
(v) R eFIif and only if W € FI.
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7. ([89, Birkenmeier, Park, and Rizvi]) Let W be a local ring and V be a subring
of W. Take R = ‘(; ¥:| Show that the following are equivalent.
(i) R is right extending.
(i) T>(W) is right extending.
(iii) W is a division ring.
8. ([89, Birkenmeier, Park, and Rizvi]) Assume that A is a right Fl-extending
ring and W = @]_| A;, where A; = A for each i. Let D be the set of all

(ay,...,an) € Wsuchthata; =a € Aforalli =1,...,n.Say S is a subring of
W containing D. Prove that the ring H = |:V(I)/ ‘X:| is a right Fl-extending ring

S W
0A|
9. ([89, Birkenmeier, Park, and Rizvi]) Assume that R is a ring such that Q(R) is
Abelian. Prove the following.
(i) Or(R) = Oqcon(R) = RB(Q(R)) if and only if Q(R) is right extending.
(i) Let R be a right Ore ring such that rg (x) = 0 implies £g(x) =0 for x € R
and Z(Rg) has finite right uniform dimension. Then Q(R) is right extend-
ing if and only if QCOH(R) exists and @Con(R) = H; & H; (ring direct
sum), where Hj is a right continuous strongly regular ring and H» is a
direct sum of right continuous local rings.
10. ([89, Birkenmeier, Park, and Rizvi]) Let R be a commutative ring. Prove the
following.
(i) If R or Q7,(R) is extending, then QCOn(R) = Q7,(R).
(i) If Z(Rg) =0, then QCOH(R) is the intersection of all regular right rings of
quotients T of R such that B(Q(R)) C T.

hull of the ring R =

8.3 Idempotent Closure Classes and Ring Hulls

This section is mainly devoted to discussions and study of Problems I and II men-
tioned in the introduction of this chapter. As E(Rp) is extending, for each right ideal
I of R there exists ¢ = ¢ € End(E(Rg)) such that [z < ¢ E(Rg). Furthermore,
in many cases Q(R) = E(Rp) (e.g., when Z(Rg) = 0). So one may expect that
Q(R) would satisfy the extending property for a certain subset of the set of right
ideals of R.

Welet D1c(R) ={I < R|INLrp(I)=0and {g({) NLr(£g(])) = 0}. In The-
orem 8.3.8, we show that I € ®jc(R) if and only if there exists e in B(Q(R))
such that Igx <% ¢Q(R)g. This result motivates the definition of the idempo-
tent closure class of rings, we shall consider in this section, denoted by IC. This
class of rings is a D-E class for which QIC(R) = (RUB(Q(R)))o(r) (see Theo-
rem 8.3.11). Thus this hull exists for every ring (not necessarily with identity) for
which Q(R) exists (i.e., when £g (R) = 0). The set Dyc(R) forms a sublattice of the
lattice of ideals of R and is quite large, in general. In fact, if R is semiprime, then
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’DIC(R) is the full lattlce of ideals of R. From this if R is a semiprime ring, then
QFI(R) QqB(R) Qqu(R) =(RU B(Q(R)))Q(R) Further, if R is a semiprime
ring with identity, then Qp1(R) = R(FI, Q(R)) and Qqu(R) = R(eqB, Q(R)) (see
Theorem 8.3.17).

This result demonstrates that the semiprime condition of a ring R overcomes
the somewhat chaotic situation we encountered in Examples 8.2.2, 8.2.3, 8.2.9,
and 8.2.10 by providing a unique ring hull which agrees with its pseudo ring
hulls. Next we consider the transfer of algebraic information between R and
(RUB(Q(R)))o(r) in terms of prime ideals, various radicals, regularity conditions,
and so on (see Problem I). We shall see that for a semiprime ring R with identity,
quB(R) QpFI(R) and QngI(R) all exist and are equal to each other. Also the
transfer of algebraic information between R and these various hulls will also be
discussed. Finally, we shall apply these results to obtain a proper generalization of
Rowen’s well-known result: Let R be a semiprime PI-ring. Then Cen(R) NI # 0
for any 0 £ I < R (Theorem 3.2.16).

Throughout this section, R does not necessarily have an identity unless men-
tioned otherwise. However, we assume that £g(R) = 0 to guarantee the existence of
QO (R) which has an identity (see [395]).

Definition 8.3.1 (i) Let R be a ring. We recall that Dyc (R) is the set of all ideals of
R suchthat I NE€gr(I) =0and Lg(I) NLr(Lr(1)) =0.

(i1) A ring R is called an IC-ring if for each I € Djc(R) there exists e?=ecR
such that Ig <% eRp. The class of IC-rings is denoted by IC and is called the
idempotent closure class. Thus, IC is a D-E class.

If a ring R with identity is right FI-extending, then R € IC. The set D1c(R) was
studied by Johnson [236] and denoted by S/(R). While Propositions 8.3.2 and 8.3.3
provide examples of D1c(R) when R is right nonsingular or semiprime, we shall
see from Theorem 8.3.8 that R N eQ(R) € Dyc(R) for any e € B(Q(R)). Also
Theorem 8.3.11(ii) characterizes the IC class of rings.

Proposition 8.3.2 If Z(Rg) =0, then D1c(R) ={I <R | I NLr(I) =0}

Proof Assume that I < R such that I N €g(I) = 0. Say Jp is a complement of Ig
in Rg. Then (I & J)gr <®5 Rg.Now JI C JNI=0,thus J C Lg(I). Therefore
(IT®LRUI))R <SS Rr. If x(I & Lr(I)) =0, then x =0 because Z(Rr) = 0. Hence
LRU @ L)) =Lr(I)NLRr(LR(I)) =0. 0

Proposition 8.3.3 (i) A ring R is semiprime if and only if ©1c(R) is precisely the
set of all ideals of R.

(ii) If e € S¢(R), then eR € Dyc(R) if and only if e € B(R).

(iii) Let P be a prime ideal of R. Then P € ®1c(R) if and only if PNLg(P) =

(iv) Let P be a prime ideal of R and P € ®1c(R). If I < R such that P C I, then
I € D1c(R).

W) If I < R such that Lg(I1) N P(R) =0, then I € D1c(R).

(Vi) If Z(RRr) =0 and I QR such that I N P(R) =0, then I € D1c(R).
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Proof (i) Assume that R is a semiprime ring. Let / < R. Since R is semiprime and
(INEr))2=0,1NLr(I)=0.Now £r(I)NEr(Lr(I)) =0 because £z(I) < R.
So Dyc(R) is the set of all ideals of R. Conversely, assume that Djc(R) is the
set of all ideals of R. Let I << R with 12 =0. Then I C €x(I). As I € Dic(R),
INLr(I)=0andso I =0. Hence, R is semiprime.

(ii)—(vi) Exercise. O

Let Rbearingand I IR with I NLgr(I1)=0.As [Lr(I) S I NLr(I) =0, so
I CLr(LR(I)). The next lemma will be used in the sequel. We note that every ideal
in a semiprime ring satisfies all of these conditions.

Lemma 8.3.4 Assume that I < R with I N€g(I) = 0. Then the following are equiv-
alent.

(i) LrUI)NLR(ER(I)) =0.
(i) Lr(I ®Lr(I)) =0.
(i) (I ®Lr(I))r <%" Rg.
(iv) Ig <% er(Lr(D)R.
(v) Tr < Lr(LRr(I))R.

Proof Exercise. U

Proposition 8.3.5 Let R be a ring. Then D1c(R) is the set of all ideals I of R such
that there exists an ideal J of R with INJ =0 and (I ® J)g <% Rg.

Proof Let ©1 be the set of all ideals I of R such that there is an ideal J of R
satisfying INJ =0and (I ® J)g <" Rg. Then we show that Dyc(R) = D;. Take
I € D1c(R) and J =£€g(I). Then INJ =0. Also, Lg(I & J) =Lr(I)NER(J) =
LrNLRURI)) =0 as I € Dyc(R). By Lemma 8.3.4 or Proposition 1.3.11(iv),
(I® J)g <% Rg. Thus I € D1, and so Dyc(R) € D;.

Next, we take I € ©;. Then there exists J < R satisfying that I N J =0
and (I ® J)g <% Rp. We note that J C £x(l), I € £x(J), and by Proposi-
tion 1.3.11(iv) £g(I & J) = Lgr(I) N Lr(J) = 0. Thus I N £g(I) = 0. Since
J S LR), Lr(€r(I)) S Lr(J). Hence £r(1) NLr(Lr(I)) S Lr(1) NER(J) =0,
and thus I € Dyc(R). Therefore ©; € Dyc(R). Whence Dic(R) =9. Il

We note that Dyc(R) contains all ideals of R which are dense in Ry as right
R-modules from Proposition 1.3.11(iv). Also if a ring R is semiprime, then by
Proposition 8.3.3(1), ®1c(R) is precisely the set of all ideals. We provide an ex-
ample of a nonsemiprime ring R where the cardinality of Djc(R) is greater than or
equal to the cardinality of its complement in the set of all ideals of R. Indeed, take
R = T»(S), where S is a right nonsingular prime ring with identity. The set of all

ideals of R is { |:g g] |A,B,C <SwithA,CC B}. Since R is right nonsingular,
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by Proposition 8.3.2

AB . 00
QIC(R):{[O C]|A,B,C§1Sw1thA,C§BandC;«éO}U{[00]}.

Hence, we see that the cardinality of D¢ (R) is greater than or equal to the cardi-
nality of its complement.

Lemma 8.3.6 Assume that T is a right ring of quotients of R and let I € D1c(T).
Then I N R € D1c(R).

Proof Let I € D1c(T) and put K =1 N R. Then £g(K) = €r(I) from Lem-
ma 8.1.6(1). Hence K NLRr(K) =K NLr(I) CINLr(I) S INLr(I)=0.

Say a € £Lr(K @& £g(K)). Then a € £gr(K) = £Lgr(I), so al = 0. We show that
alr (1) = 0. For this, assume on the contrary that ar # 0 for some ¢ € £7(I). Then
there exists r € R satisfying tr € R and atr # 0 since Rg <den 7% Therefore

tre RNLr(I) =Lr(I) = Lr(K).

Because a € Lgr(K & £r(K)), alr(K) = 0. So atr = 0, a contradiction. Hence
we getalr(I)=0anda € lr(I)NLr(r(I1)) =0.So Lr(K & Lr(K))=0,asa
consequence K € Dic(R). O

Lemma 8.3.7 Let I and J be ideals of R.
Q) If I € D1c(R) and Ig <% Jg, then Ig <% Jg and J € D1c(R).
(i) If Ig <9 Jg and J € D1c(R), then I € Dic(R).
@) IfINJT =0and I & J € D1c(R), then I € D1c(R) and J € Dic(R).
iv) I e D1c(R) ifand only if g(I) € D1c(R) and I NLr(I) =0.

Proof (i) Assume that I € Dyc(R) and Iz <* Jg. From Proposition 8.3.5, there
exists K < R such that (I & K)g <den pr. By the modular law,

INUSK)r=UDJNK))g <*" Jg.

As IR < Jpand IN(JNK)=0, JNK =0, so Ig <9 Jz. We show that
Lr(I) = Lg(J). For this, it suffices to see that £g(I) C £x(J). Assume on the
contrary that there is x € £x([) but xJ # 0. There is y € J with xy # 0. Since
Ig <% Jp there is r € R such that yr € I and xyr # 0, which is a contradiction
since xI =0. Thus £r(I) =Lg(J).

SolINEr(J)=INLr(I)=0and JNLR(J)=0.Now I ®Lr(I) CJDLr(J).
Thus, (J @ £g(J)r <" Rz as (I & £r(I))r <" Rg. Hence, J € D1c(R).

(i) Let J € D1c(R) and Ig <" Jr. Then £ (1) = £ (J) by the proof of part (i).
From Lemma 8.3.4, Jp <®SLp(Ur(J))r = Lr(Lr(I))R. Therefore, it follows that
Ir <5 Lr(Lr(I))g. Hence, we obtain £x(1) N £r(Lr(I)) = 0 from Lemma 8.3.4
because I NLr(I) € J NLR(J) =0. Therefore, I € Dyic(R).
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(iii) Suppose that I & J € Dyc(R). From Proposition 8.3.5, there is V < R with
(I J)®V)g <% Rp. Therefore, I € Dyc(R) and J € Dyc(R) again by Propo-
sition 8.3.5.

(iv) Say I € D1c(R). Then I NLr(1) =0 and £xr(I) N Lr(£r(I)) = 0. Since
I Clr(LR(I)), we have that I @ Lgr(I) CLr(Lr(1)) ® €r(I). As a consequence
LRIER(T) D LR(ER(I))] S LR(I @ LR(I)) =0.So0 £r(I) € Dic(R).

Conversely, €g(I) € Dic(R) implies €r(I) N Lr(€g(I)) = 0. Therefore,
I € ®1c(R) because I N Lg (1) = 0 by assumption. O

Let R be a ring (not necessarily with identity) with £z (R) = 0. Say U is a sub-
ring of R such that Uy <den R, (i.e., for x, y € R with y #£ 0, there exists u € U
satisfying xu € U and yu # 0). Then £y (U) = 0. Indeed, let x € £y (U). If xr #0
for some r € R, then there exists u € U such that ru € U and xru # 0, a contra-
diction. So x € £g(R) =0, and hence £y (U) = 0. Thus, Q(U) exists. Therefore,
QU) = Q(R) as R is aright ring of quotients of U.

The following result characterizes the ideals of R which are dense as right
R-modules in some ring direct summands of Q(R) as precisely the elements of
Dic(R).

Theorem 8.3.8 Assume that R is a ring and I < R. Then the following are equiva-
lent.

(1) 1 €Dic(R).
(ii) There exists e € B(Q(R)) such that Q(I) = eQ(R).
(iii) Tg <9 e Q(R) for some (unique) e € B(Q(R)).

Proof (i)=(ii) Put J = €r(I). Since I € Dic(R), Lr(I & J) = 0 and hence
Ligg(I & J)=0. Therefore £;(I) =0and £;(J) =0, hence Q(I) and Q(J) exist.
Put U =1 @ J. For Uy <% Ry, take x, y € R with y # 0. As Ug <" Ry, there
exists 7 € R such that xr € U and yr # 0. Again since Ug <den Rpg, there exists
a € R satisfying that ra € U and yra # 0. Because ra € U and xra € U, we see
that Uy <%" Ry. So, Q(R) = Q(U) = QU & J) = Q) ® Q(J) by [395, (2.1)].
Consequently, Q(I) = eQ(R) for some e € B(Q(R)).

(i))=(ii) Say Q(I) = eQ(R) for some ¢ € B(Q(R)). Take eq;, eqr € eQ(R)
with g1,92 € Q(R) and eq> # 0. As I <den ) (1);, there exists a € I such that
eqia € I and eqaa # 0. Since a € R, Iz <% eQ(R)g. If f € B(Q(R)) satisfying
Igr <% fO(R)g, then e = f as e € B(Q(R)).

(iii)=(@) Let Ig <%" ¢eQ(R)g for some e € B(Q(R)). Then we have that
Iz <%" (¢Q(R) N R)g. Now Lemma 8.3.6 yields that eQ(R) N R € Dyc(R) be-
cause ¢eQ(R) € Dy1c(Q(R)). From Lemma 8.3.7(ii), I € Dyc(R). O

We note that if I € Dyc(R), then from Lemma 8.3.4, Lemma 8.3.7(i), and The-
orem 8.3.8, there exists e € B(Q(R)) such that £g(£g(1)) g <9 e Q(R)g. Further,
Lr(Ur(I)) =eQ(R)N R and £g(£r(1)) is the unique closure of Ig in Ry (see
Exercise 8.3.58.5).
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Corollary 8.3.9 Assume that I € D1c(R) and T is a right ring of quotients of R.
Then (I) € D1c(T) and Ig <" (I)g, where (I) is the ideal of T generated by I.

Proof There exists e € B(Q(R)) with Iz <%" ¢ Q(R) from Theorem 8.3.8. Hence,
Ir < (I)g <eQ(R) as I =el. Therefore (I)g <" ¢ Q(R)g, and thus we see that
(D1 <% ¢Q(R)r. Because Q(R) = Q(T), (I)7 <%" ¢Q(T)r. Thus from Theo-
rem 8.3.8, (1) € D1c(T). O

Say A € D1c(Q(R)). Then Ag(r) <den eQ(R)g(r) for some e € B(Q(R)) by
Theorem 8.3.8. Thereby Q(R) is an IC-ring and this suggests that there may be a
smallest right ring of quotients of R which is an IC-ring. So one may naturally ask:
Does QIC(R) exist for every ring R when €g(R) = 02 For this question, we need
the following lemma.

Lemma 8.3.10 Assume that R is a ring with identity and b € B(Q(R)). Then there
exists A € B(End(E (RR))) such that b = A(1).

Proof Note that E(Rpg) is an (End(E(Rg)), Q(R))-bimodule. Define a map
A:E(RR) — E(RR) by A(x)=xb

for x € E(RR). Then A € End(E(Rg)) and A2 = A because b € B(Q(R)). Next, say
¢ € End(E(RpR)). For x € E(RR),

Ap)(x) = p(x)b = p(xb),

since End(E (Rg)) = End(E(RR)g(r)) (see the proof of Theorem 2.1.31). Further,
(M) (x) = (xb). So Ap(x) = pA(x) for all x € E(Rg), thus Ap = @A. Hence
A € B(End(E(Rg))) and b = A(1). O

Our next result shows that QIC(R) exists for all rings R with £gx(R) =0 and it
can be used to characterize IC right rings of quotients of R. When R is a ring with
LRr(R) =0, we recall from 1.1.2 that (R U B(Q(R)))o(r) denotes the subring of
Q(R) generated by R U B(Q(R)). Observe that if R has identity, then we see that
(RUB(Q(R)))or) = RB(Q(R)).

Theorem 8.3.11 Assume that R is a ring.

(1) Let T be a right ring of quotients of R. Then T € IC if and only if
B(O(R) CT.

(i) Re IC if and only if B(Q(R)) € R. Hence, IC-rings have identity.

(i) Qrc(R) = (RUB(Q(R)) o (r)-

(iv) If R has identity, then Q1c(R) = R(IC, Q(R)).

Proof (i) Say T € IC. Take ¢ € B(Q(R)) and we let I = R N cQ(R). Then
Ir <®% cQ(R)R. We note that cQ(R) € Dic(Q(R)). From Lemma 8.3.6, ¥ :=
cQ(R)NT €D1c(T) and Igp <®5Yg.Since Y € Dyc(T) and T €IC, Y7 <5 Ty
for some e € I(T'). Thus, Yr <®% ¢Tg by Lemma 8.1.3(i). Now c = e € T, as



288 8 Ring and Module Hulls

IR <*¥ YR <®% eTgr <** eQ(R)g and Ig <**° YR <** cQ(R)r.So B(Q(R)) C T.
Conversely, let B(Q(R)) € T.Take I € D1c(T). As Q(R) = Q(T), Theorem 8.3.8
yields that there is e € B(Q(T)) C T such that I7 <% ¢Q(T)7. Hence, we get that
Iy <% o Tr . Therefore, T € IC.

(i1) and (iii) These parts follows from part (i) immediately.

(iv) By part (iii) O1c(R) = (R U B(Q(R))) o(r)- Recall that

Sic(R) = {¢* = e € End(E(RR)) | Iz <®* ¢E(Rpg) for some I € Dyc(R)}

and drc (R)(1) = {e(1) | e € d1c(R)}.

We prove that B(Q(R)) = §ic(R)(1). For this, say ¢ € B(Q(R)). Then it follows
that RN cQ(R) < R and (RN cQ(R))g <% cQ(R)g. From Lemma 8.3.6, we
get R N cQ(R) € Dic(R). Also, there exists A2 = A € B(End(E(RR))) such that
¢ =A(1) by Lemma 8.3.10.

We note that (RN cQ(R))r < A(1)Q(R)gr = AQ(R)r <*5 AE(RpR) because
A € End(E(RR)o(r))- Thus A € §1c(R), so ¢ = A(1) € Sic(R)(1). As a conse-
quence, B(Q(R)) € dic(R)(1).

Next, say & € §ic(R). Then there is I € Dyc(R) with Ig <®° hE(RR). By The-
orem 8.3.8, Ir <®S bQ(R)g for some b € B(Q(R)). From Lemma 8.3.10, there ex-
ists y € B(End(E(RRg))) such that b = y (1). Sometimes we will use Er for E(RR).

Observe that Ig <** bQ(R)g = y(1)Q(R)g = y Q(R)g <**° y E(RR). So
hE(RR) = yE(RR) because y € B(End(ER)). Therefore h(1) = y(x) for some
x € E(Rg), and hence yh(1) = h(1). Also y (1) = h(y) with y € E(Rg). As a con-
sequence, hy (1) = y (1), so k(1) = yh(l) = hy (1) = y(1) = b. Hence, it follows
that Syc(R) (1) € B(Q(R)). Therefore, B(Q(R)) = éic(R)(1).

Now (R U Sic(R)(1))gry = (R U B(Q(R)))o(r)- By the definition of pseudo
ring hulls, R(IC, Q(R)) = (RUB(Q(R)))o(r) since (RUB(Q(R)))o(r) is an IC-
ring by part (iii). U

From Theorems 8.3.8 and 8.3.11, we see that any intermediate ring 7' between
(R U B(Q(R)))o(r) and Q(R) satisfies that for every I € Dic(R), there exists
e?> = e e T such that Iz <® ¢Ty. Furthermore, we see that for every J € Dic(T),
Jr <% fTr for some f2=feT.

Corollary 8.3.12 Let R be an IC-ring with Z(Rg) = 0. Then R = R| ® R» (ring
direct sum), where R\ is a semiprime Fl-extending ring and P(R) is ideal essential
in Rp.

Proof Exercise. O

The following result is on the lattice properties of ®1c(R) as suggested by earlier
results.

Theorem 8.3.13 (i) Dyc(R) is a sublattice of the lattice of ideals of R.
(i) If D1c (R) is a complete sublattice of the lattice of ideals of R, then B(Q(R))
is a complete Boolean algebra.
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(>iii) Let R € IC such that ®1c(R) ={I < R| I NLRr(I) =0}. Then Dyc(R) is a
complete sublattice of the lattice of ideals of R.

(iv) If R is right and left Fl-extending, then D1c(R) is a complete sublattice of
the lattice of ideals of R.

Proof (i) Assume that I, J € D1c(R). By Theorem 8.3.8 there are unique c1, ¢; in
B(Q(R)) such that Iz <" ¢; O(R)g and Jg <" ¢, Q(R) g. Therefore

(INDE <"1 Q(RIRN2Q(R)k =ci1c2Q(R)g and cicz € B(Q(R)).

By Theorem 8.3.8, I N J € D1c(R).

Let c =c1 + ¢ —cica. Then (I + J)g < (c1Q(R) + c2Q(R))r = cQ(R)r
and ¢ € B(Q(R)). Take K = RN Leory(I + J). Then K C Lr(I) NLR(J). As
Iz <% (RN e Q(R)g and Jg <% (R N 2 0(R))g, it follows that £z(1) =
Lr(RNc1Q(R)) =Lr(c1Q(R)) =RN (1 —c1)Q(R) by Lemma 8.1.6(i) and the
proof of Lemma 8.3.7(i). Also £g(J) = RN (1 — ¢2) Q(R) similarly.

Since K CLr(I)NLr(J)=RN ({1 —c1)Q(R)N(1 —c2)Q(R), it follows that
Kci=0and K¢, =0. So Kc =0. But we see that K¢ = K because

K=R ﬂ@cQ(R)(I +J) CcO(R),

so Leorynr(I +J) =K =0.

Now since I +J < cQ(R)NR, (I + D)corink <% (cQ(R) N R)co(r)nr from
Proposition 1.3.11(iv), and hence (I 4+ J)g <%" (RNcQ(R))g. Thus it follows that
(I +J)g <%" ¢cQ(R)g. By Theorem 8.3.8, I + J € D1c(R). Hence Dic(R) is a
sublattice of the lattice of ideals of R.

(ii) Let {e; | i € A} S B(Q(R)). Then I; :=¢; Q(R) N R € D1c(R) foralli € A
from Lemma 8.3.6. Put I = ZieA I;. Then I € D1c(R) by assumption. From The-
orem 8.3.8, there is e € B(Q(R)) with Iz <%" ¢ Q(R)g.

Foreachi € A, I; p <*%¢; O(R)R.Because I; p < Ig <®° e Q(R)R, we have that
Iip <®%ee; O(R)R. Thus, ¢; = ee;,so¢; <eforalli € A.

We claim that e = sup {e; | i € A}. For this, say f € B(Q(R)) such that ¢; = fe;
(i.e., e; < f) forall i € A. By Lemma 8.3.6, fQ(R) N R € D1c(R). Since [; =
¢ QR)NRC fO(R)NRforalli, I € fOR)NR C fO(R). As Ig <** e Q(R)g,
Ir <* (eQ(R) N fOR)R = ef Q(R)Rr <** eQ(R)Rr, s0 ef Q(R) = eQ(R).
Hence e = ef = fe (i.e., e < f), so e =sup{e; | i € A}. Therefore, B(Q(R)) is
a complete Boolean algebra.

(iii) Assume that {/; | i € A} € Dyc(R). Then from Theorem 8.3.8, there exists
{ei | i € A} S B(Q(R)) with I; g <9" ¢; Q(R) g for each i € A.

Assume that F is a finite nonempty subset of A. First, say F = {1,2}.
Then I1g <% ¢;Q(R)g and L <%" ¢, Q(R)g. From the proof of part (i),
(It + ) g <% ¢ Q(R)g, where e = e] + €3 — ejen. Inductively, we can see that
Yier lir <Y pei Q(R)g. Next, we show that

D Lg% e O(R)k.

ieA ieA
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For this, let x, y € ), 4 ¢; Q(R) with y # 0. Then there is a nonempty finite sub-

set Fof Awithx,ye ;cpeiQ(R). As Y ;cplig <93 peiQ(R)g by the
preceding argument, there is € R with xr € } ;. p lig <) ;e lig and yr #0.

Therefore, > ;o4 Lig <9 3" 4 ei O(R)g.
From Theorem 8.3.11(ii), B(Q(R)) C R, hence ¢; € B(R) for each i € A. To

see that (3 ;.4 €iR) NLr(D_jcpeiR) = icpeiR) N(Niea(l —e)R) =0, it is
enough to prove that
O eiR) N(Nicr(1—e)R) =0
ieF
for any nonempty finite subset F of A.If F = {1}, then we are done. Say F = {1, 2}.
Then

(eiR+eR)N((I—enpRN(I—e)R)=(e1R+e2R)N (1 —e)(1 —e2)R=0.

So (D icrpeiR)NLR(D ;cpeiR) = (Y icpeiR) N (Nicr(1 —e;))R) = 0 inductively.
Thus, with the hypothesis D1c(R) = {I < R | I NLgr(l) = 0}, it follows that
Y ica€iR € D1c(R). By Lemma 8.3.7(ii), ) ;.4 Ii € D1c(R).

(iv) Let R be right and left Fl-extending. Then R is an IC-ring, so B(Q(R)) C R
by Theorem 8.3.11(ii). Let {; | i € A} € D1c(R). From Theorem 8.3.8, there exists
aset{ej |i € A} C B(Q(R)) with I; g <9"¢; O(R)g foreachi € A.

Now (D ;cpeiR) NURQ ;cpeiR) = O jcpeiR) Nrr(3jcpeiR) =0 by
the preceding argument. From Theorem 2.3.15, there exists ¢ € B(R) such that
CR(Y ;e eiR) = (1 — ¢)R. We recall that Y, , Iig <" 3"._, ¢;Rg from the
proof of part (iii). Therefore, the proof of Lemma 8.3.7(i) yields that

LRI =tr()_eiR)=(1—0)R
ieA ieA
from the proof of Lemma 8.3.7(i). So ZR(ZieA I;) € D1c(R). Also

Q- ntrQ_ =0 1N =R rr(r(Q_ 1NN —c)R
ieA ieA ieA ieA
=cRN(—c)R=0.
From Lemma 8.3.7(iv), ZieA I; € D1c(R). Hence, D1c(R) is a complete sublattice
of the lattice of ideals of R. [l

Corollary 8.3.14 If Q(R) is semiprime, then B(Q(R)) is a complete Boolean al-
gebra.

Proof By Theorem 8.3.11(ii), Q(R) is an IC-ring. As Q(R) is semiprime, Q(R) is
right FI-extending from Proposition 8.3.3(i). Thus by Theorem 3.2.37, Q(R) is also
left FI-extending. So Theorem 8.3.13(ii) and (iv) yield that 5(Q(R)) is a complete
Boolean algebra. g

Corollary 8.3.15 If R is a right nonsingular IC-ring, then Dyc(R) is a complete
sublattice of the lattice of ideals of R.
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Proof The proof follows from Proposition 8.3.2 and Theorem 8.3.13(iii). g

Proposition 8.3.16 Assume that R is a semiprime ring. Then, for any ideal I of R,
ro®) (Q(R)IQ(R)) =row) ().

Proof Let I < R. Clearly, rQ(R)(IQ(R)) - rQ(R)(I). Let a € VQ(R)(I) and
> xiqi € IQ(R) with x; € I and g; € Q(R). Assume that () x;q;)a # 0. Since
Rg <9 Q(R)g, there exists r; € R with ar; € R and O - xigi)ary # 0. Thus,
ary € RNrowy(I) =rr(I) =£g(I) because R is semiprime. Also there is r, € R
with 0 # (3 x;gi)arir; € R since Rg <** Q(R)Rg.

Let y = Q_xigi)arira. As ary € Lg(I), arirp € £g(I) and so aryrl = 0.
Hence yRI = (3_xigi)ariraRI € (3 xiqi)ariral = 0. Further, note that yR =
(O_xigiarir)R € IQ(R). So (yR)? = (yR)(yR) € yRIQ(R) =0, which is a
contradiction because R is semiprime. Therefore o € ro(gy(/ Q(R)), and thus
rory) =rowry{ Q(R)) =rowr)(Q(R)IQ(R)). 0

The next result demonstrates the existence and uniqueness of the quasi-Baer and
the right FI-extending ring hulls of a semiprime ring. It extends Mewborn’s result
(Theorem 8.2.4) as a commutative quasi-Baer ring is Baer.

Theorem 8.3.17 Let R be a semiprime ring. Then:

(i) OgB(R) = Or1(R) = Qeqs(R) = (R U B(Q(R))) o()-
(i1) If R has identity, then QFI(R) = R(FI, Q(R)).
(iii) If R has identity, then Qeqg(R) = R(eqB, Q(R)).

Proof (i) Note that QFI(R) = (RUB(Q(R)))o(r)y by Proposition 8.3.3(i) and The-
orem 8.3.11(iii). From Theorem 3.2.37, QqB(R) = Qeq(R) = Or1(R).

(i) This part follows from Proposition 8.3.3(i) and Theorem 8.3.11(iv).

(iii) To prove that R(eqB, Q(R)) = (R U B(Q(R)))g(r), we claim that
B(Q(R)) = 8eq(R)(1). For this, let a € B(Q(R)) and I = RN (1 —a)Q(R).
Then Ig <® (1 — a)Q(R)g, and so Q(R)IQ(R)gr <*° (1 — a)Q(R)g. Thus
QR Q(R) () < (1 =) O(R) (k).

By Theorem 8.3.11(ii), Q(R) is an IC-ring. As Q(R) is semiprime, Q(R) is
a right Fl-extending ring from Proposition 8.3.3(i). By Theorem 3.2.37, Q(R) is
quasi-Baer. So there is k € B(Q(R)) with ror)(Q(R)I Q(R)) = kQ(R) by Propo-
sition 1.2.6(ii). Now Q(R)IQ(R)or) <*** (1 — k)Q(R)o(r) by Lemma 2.1.13.
Thus1 —a=1—k,soa =k.

From Lemma 8.3.10, there is ,uz = u € End(E(Rpg)) such that a = u(1). By
Proposition 8.3.16, rory (1) =ror)(Q(R)I Q(R)) = kQ(R). Hence

rrR(Dr = (o U)NR)g=(kQ(R)NR)R
<SEkQR)r=aQR)r=pn(D)QR)g =pnQ(R)R
<% WE(RR)
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because u € End(E(Rg)) = End(E(RR)g(r))- Thus o € Seqp(R), and therefore
a = (1) € deq(R)(1). Hence B(Q(R)) < deqn(R)(1).

To show that Seqg(R)(1) € B(Q(R)), let v € deqp (R). Then there is J < R with
rr(J)g <% vE(RgR). By Proposition 8.3.31) and Theorem 8.3.8,
rr(J)r < dQ(R)p for some d € B(Q(R)). From Lemma 8.3.10, there exists ¢
in B(End(E(Rg))) such that d = ¢(1). Thus v(l) = ¢(1) = d € B(Q(R)) as
in the proof of Theorem 8.3.11(iv). Hence, Seqp(R)(1) € B(Q(R)). Therefore,
B(O(R)) = Seqs(R)(1). So (RUB(Q(R)) g(r) = (R Udeqs(R)(1)) o(r)-

Consequently, (R U SeqB(R)(1))o(r) = R(eqB, Q(R)) from the definition of
pseudo ring hulls, since (R U B(Q(R)))o(r) is right essentially quasi-Baer by
part (i). Hence, Qeq(R) = (R U B(Q(R)))o(r) = R(eqB, O(R)). U

We note that from Theorems 3.2.37 and 8.3.17 when R is a semiprime ring,
(RUB(Q(R))) o(r) is also the strongly Fl-extending absolute to Q(R) ring hull of
R. The following example shows that the semiprimeness of R in Theorem 8.3.17 is
not a superfluous condition.

Example 8.3.18 There is a right nonsingular ring R which is not semiprime and
(RUB(Q(R)))o(r) # Q¢B(R). Let F be a field, and put

FFF
R=|0FO
00F

Observe that (RUB(Q(R)))g(r) = RB(Q(R)) since R has an identity. Also we see
that R is quasi-Baer by Corollary 5.4.2 or Theorem 5.6.5. Therefore Qqg(R) = R.
As R is right Artinian, Soc(Rg) <°° Rg. Since Soc(Rp) is the intersection of all
essential right ideals of R, Soc(Rpg) is the smallest essential right ideal of R. Also as
R is right nonsingular, Soc(Rg) is the smallest dense right ideal of R from Proposi-
tion 1.3.14. If ¢ € Q(R), then gSoc(Rg) € R, and so gSoc(Rr) C Soc(Rg). By
Proposition 1.3.11(ii), £o(r)(Soc(Rg)) = 0. Hence, Q(R) = End(Soc(RRg)). As
Soc(RR) =Lgr(J(R)), Soc(RR) = Mgr & Ng, where

0FO0 00F
M=[(0FO0|andN=|000
000 00 F

So Q(R) ZEnd(Mg @ Ng). In this case, by straightforward computation,
O(R) ZEnd(Mp) ® End(Ng) =End(MF) & End(NF) = Mat,(F) & Maty (F).
Now |B(R)| =2.But |[B(Q(R))| =4. Thus, R = @qB(R) # RB(Q(R)).

Since idempotents as well as various properties lift modulo the prime radical,
Theorem 8.3.17 provides an effective mechanism for transferring information be-
tween an arbitrary ring R and Qqg(R/P(R)) (or Qp1(R/P(R))) via

RE R/P(R) S Qgs(R/P(R)),

where p is the natural homomorphism and ¢ is the inclusion.
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Corollary 8.3.19 Let T be a semiprime right ring of quotients of a ring R. Then T
is quasi-Baer (and right Fl-extending) if and only if B(Q(R)) € T.

Proof Proposition 8.3.3(i), Theorems 3.2.37 and 8.3.17 yield the result. g

It is worth noting that if we modify the ring R in Example 8.2.9 and instead of
a field take F to be a commutative domain which is not a field, then R is neither
semiprime nor right FI-extending. Now, T = Matz(F) is a semiprime quasi-Baer
(and right Fl-extending) right ring of quotients of R such that B(Q(R)) € T. But
observe that 7' # Q(R) = Mat3(K), where K is the field of fractions of F. If R
is a semiprime ring, Q°(R), Q"™ (R), and Q(R) are all semiprime rings. Also, they
contain B(Q(R)). If R is a semiprime ring with identity, then the central closure
of R and the normal closure of R are semiprime and contain B(Q(R)). So Theo-
rem 8.3.17 or Corollary 8.3.19 yields the following consequence.

Corollary 8.3.20 (i) If R is a semiprime ring, then Q*(R), Q™ (R), and Q(R) are
quasi-Baer and right Fl-extending.

(ii) If R is a semiprime ring with identity, then the central closure and the normal
closure are quasi-Baer and right Fl-extending.

There is a semiprime ring R for which neither Q™ (R) nor Q°(R) is Baer. In
fact, there is a simple ring R which is not a domain and 0, 1 are its only idempotents
(see Example 3.2.7(ii)). Then Q" (R) = R and Q*(R) = R. So neither Q" (R) nor
Q%(R) is Baer.

Corollary 8.3.21 Let R be a right Osofsky compatible ring with identity. If R has
a right Fl-extending right essential overring which is a subring of E(RRg), then
E(RR) is right Fl-extending. In particular, if Q(R) is semiprime, then E(Rg) is
right Fl-extending.

Proof Let S be aright Fl-extending right essential overring of R which is a subring
of the ring E(Rpg). Then E(Rpg) is a right essential overring of S. Thus E(Rg) is a
right Fl-extending ring by Theorem 8.1.8(i). If Q(R) is semiprime, then from Corol-
lary 8.3.20(i), Q(R) is right FI-extending. By Proposition 7.1.11, Q(R) is a subring
of E(RR), so E(RRg) is aright essential overring of Q(R). Hence, Theorem 8.1.8(i)
yields that E(Rpg) is a right Fl-extending ring. U

We remark that the ring R in Example 7.3.6 is right FI-extending and right Os-
ofsky compatible, so E(Rpg) is right FI-extending by Corollary 8.3.21.

A ring R is said to have no nonzero n-torsion (n is a positive integer) if na =0
with a € R implies a = 0.

Theorem 8.3.22 Let R[G] be the group ring of a group G over a ring R with
identity. Then R[G] is semiprime if and only if R is semiprime and R has no |N|-
torsion for any finite normal subgroup N of G.
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Proof See [264, Proposition 8, p. 162] or [341, Theorem 2.13, p. 131]. 0

The next corollary is obtained from Theorems 8.3.22 and 8.3.17. It is of interest
to compare this result with Theorem 6.3.10(ii).

Corollary 8.3.23 Assume that R[G] is the semiprime group ring of a group G over
a ring R with identity. If R[G] is quasi-Baer, then |[N|~" € R for any finite normal
subgroup N of G.

Proof Let N be a finite normal subgroup of G. Because R[G] is semiprime, R has
no | N|-torsion by Theorem 8.3.22. Let e = |N|~! deN g. Then

e€ Q"(RIG] € Q" (R[G)) € Q(R[G])

(see the proof of Theorem 9.3.1(i)). Further, we see that e € B(Q(R[G])). From
Theorem 8.3.17, e € R[G] since R[G] is quasi-Baer. So |N|_1 € R. Il

The next example illustrates the existence of a right nonsingular ring R which is
not semiprime such that B(Q(R)) € R, but R is not quasi-Baer.

Example 8.3.24 For a field F, as in Example 3.2.9, let

F1 Mat,(F) Maty(F)
R=|0 F1 Mat(F)
0 0 F1

be a subring of T3(Maty(F)), where 1 is the identity matrix in Maty(F). Then we
see that R is right nonsingular. However, (R U B(Q(R))) o(r)(= R) is not quasi-
Baer (see Example 3.2.9).

In contrast to Examples 8.3.18 and 8.3.24, there exists a nonsemiprime ring R
for which Theorem 8.3.17(ii) holds true as in the next example.

Example 8.3.25 Let A be a QF-ring with J(A) # 0. Assume that A is right strongly
Fl-extending, and A has nontrivial central idempotents, while the subring of A gen-
erated by 14 contains no nontrivial idempotents (e.g., A = Q @ Maty(Z4)). Let
1 denote the identity of ]_[?il A;, where A; = A. Take R to be the subring of
[12, A generated by 1 and @52, A;. We note that Q(R) =[]72; A; = E(Rg) and
(RUB(Q(R)))or) = RB(Q(R)).

In this case, we have the following:

(1) R is not right Fl-extending and RB(Q(R)) is not quasi-Baer.
(i) Qri(R) = R(FL, Q(R)) = RB(Q(R)).

(iii) R has no right and left essential overring which is quasi-Baer.

Let k be a nontrivial central idempotent of A. Let ¢; denote the i-th canonical
injection, respectively of the direct product. Let K be the ideal of R generated by
{ti(k) | 1 <i < oo}. Then there exists no b> = b € R such that Kg <® bRg. So R
is not right Fl-extending.
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We claim that RB(Q(R)) is not quasi-Baer. For this, first we observe that
S¢(Q(R)) =B(Q(R)) as S¢(A;) = B(A;) for each i by [262, Exercise 16, p. 421].
Suppose that Q(R) is quasi-Baer. Take ¢ € Q(R) such that g Q(R)qg = 0. Now
we note that ro(g)(g Q(R)) = @ Q(R) such that @ € S¢(Q(R)) = B(Q(R)). Since
q €roR)(@Q(R)), ¢ =aq = qa = 0. Therefore Q(R) is semiprime, a contradic-
tion. So Q(R) is not quasi-Baer.

Because A is QF, Q(R) = Qe(R) = E(Rg) = E(gR). Therefore the ring
RB(Q(R)) is not quasi-Baer by Theorem 8.1.9(i). Further, R has no right and left
essential overring which is quasi-Baer from Theorem 8.1.9(i).

We prove that Spp(R)(1) = B(Q(R)). For this, let f € §pp(R). Then there exists
I < R such that Ig <®° fE(RR) = fOQ(R)r = f(1)Qg, because End(E(RR)) =
End(Q(R)r) =End(Q(R)g(r))-

Furthermore, we note that f(l)2 =ffO)=FfAfQ)=f>f Q)= Q).

Let ; be the canonical projection of the direct product. Then m; (1) < A;. By
[262, Exercise 16, p. 421], there is ¢; € B(A;) such that m; (1) 4, <*° ¢; A; 4,, be-
cause A; is right strongly Fl-extending by assumption. Let e € Q(R) such that
7;(e) = e; for all i. Then we see that Ig <®*° eQ(R)g and e € B(Q(R)). So
S () =e. Thus, spr(R)(1) € B(Q(R)).

Next, say b € B(Q(R)). Then (bR N R)gr <*° bRr <*5 bQ(R)g. There ex-
ists A € B(End(E(Rg))) such that » = A(1) from Lemma 8.3.10, and hence
bO(R)r = AMDQ(R)gr = AQ(R)g. So A € épr(R) and b = A(1) € Spr(R)(D),
thus B(Q(R)) C Spr(R)(1). Hence B(Q(R)) = épr(R)(1). Therefore we have that
S:=(RUSp1(R)(1)) g(r) = RB(Q(R)).

To show that S = R(FI, Q(R)), let J < RB(Q(R)). First, we note that
End(E(Rg)) = End(Q(R)r) = End(Q(R)g(r)) = Q(R). Thus, it follows that
(JNR)g <% Jgp <* E(JR) = hQ(R)g with k2 =h € Q(R). Since J N R < R,
there is g € B(Q(R)) with (J N R)g <%% gQ(R)g from the preceding argument.
Hence & = g, and thus Jg < g Q(R) . Therefore, J = Jg € RB(Q(R)). Hence,
we have that Jg <®° gRB(Q(R))g, and thus Jor) <*** gRB(Q(R))o(r). Whence
RB(Q(R)) is right Fl-extending, so S = R(FI, Q(R)).

Next, we show that § = Qpr(R). Let T be a right Fl-extending right ring of
quotients of R. Take ¢ € B(Q(R)). Then cQ(R) N T < T. Since T is right FI-
extending, there is s?> = s € T such that (cQ(R) N T)y < sTr.

Therefore (cQ(R) N T)gr <5 sTg from Lemma 8.1.3(i), and hence it follows
that (cQ(R) N T)g <®5 sQ(R)R, thus (cQ(R) N R)g <** sQ(R)g. Also we see
that (cQ(R)N R)g < cQ(R)g.Soc=s € T. Thus B(Q(R)) C T, and hence S
is a subring of T'. Therefore, S = QfF1(R).

Now from Theorems 8.3.11 and 8.3.17, we see that (R U B(Q(R)))g(r) is aring
hull for the IC class, as well as a ring hull for a semiprime ring R in the ¢B and FI
classes. This motivates our interest in the transfer of information between R and the
ring (RUB(Q(R))) o(r)-

Let S be an overring of a ring R. We consider the following properties between
prime ideals of R and S (see [248, p. 28]).

(1) Lying over (LO). For any prime ideal P of R, there exists a prime ideal Q of
S suchthat P = Q NR.
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(2) Going up (GU). Given prime ideals P; € P, of R and Q; of S with
P = Q1 N R, there exists a prime ideal O, of S with Q1 € 0 and P, = Q> N R.

(3) Incomparable (INC). Two different prime ideals of S with the same contrac-
tion in R are not comparable.

Lemma 8.3.26 Let R be a subring of aring T and @ #E C Se(T)US,(T). Assume
that S is the subring of T generated by R and E.

(1) If K is a prime ideal of S, then R/(K " R) = S/K.

(i) LO, GU, and INC hold between R and S. In particular, LO, GU, and INC
hold between R and (R U B(Q(R)))o(R)-

Proof (i) Let S = §/K. Assume that ¢ € E such that e & K. Then e € S;(T) or
e € S,(T). First, we show that ¢ = ¢ + K € §/K is an identity of S/K. Without
loss of generality, assume that e € S¢(T). Then 0 # € € S¢(S), so S =¢S & rg(@).
Ase e Sp(S), (rg(E))(EE) = 0. Thus, rs(e) = 0 because S is a prime ring. So e is
a left identity for S. Also, S = Se @ {5(2). As € € S¢(S), (¢5(e))(Se) = 0. Thus,
ls(e) = 0 since S is a prime ring. So S = Se. Therefore, ¢ is an identity element for
S. A similar argument works if e € S, (T').

From the preceding argument, for f € E, either f +K =0 or f+ K is an identity
of S/K. We define ¢ : R — S/K by ¢(r) =r + K. Because S is generated by R
and E, ¢ is a ring epimorphism. Also Ker(¢) = K N R. Thus, R/(K N R) = S/K.

(i) (LO) Assume that P is a prime ideal of R. By Zorn’s lemma, there exists an
ideal K of S maximal with respect to K N R C P. Then K is a prime ideal of S. By
(1), R/(KNR)=S/K.Since P/(K NR) is a prime ideal of R/(K N R) (= S/K),
there is a prime ideal Ko of § with K C Ky, so Ko/K is a prime ideal of S/K,
and Ko/K =@(P/(K N R)), where ¢ is the isomorphism from R/(K N R) to S/K
induced from ¢ in the proof of part (i). Therefore Ko = P + K, hence we obtain
that Ko N R = P + (K N R) = P. Therefore, LO holds.

(GU) Suppose that P; C P, are prime ideals of R and K is a prime ideal of S
such that K1 N R = P;. Then by part (i), R/P; = S/K,. By the same argument for
LO, there is a prime ideal K; of S such that K1 € K, and K> N R = P,. Thus GU
holds.

(INC) Suppose that K1, K, are prime ideals of S and P is a prime ideal of R
such that K; N R = K> N R = P. Assume that K; C K.

First, we show that K;/K| = {r + K1 | r € K> N R}. For this, we observe that
S/K1={a+ K | a € R} by the argument in the proof of part (i). Let » € K» N R.
Thenr + K1 € K2/K1,s0{r+ K1 |re KxNR}C Ky/K;.

Letk, + K1 € K»/K;. Then ky + K1 € S/K1, s0 ky + K| = a + K for some a
in R. Thus, k» = a + k; for some k; € K1, hence

a=k)—k e Kr)+ K| =K.
Therefore a € K N R. Thus kp + K| € {r + K| | r € K» N R}, so we have that
Ky/Ky={r+K;|reK,NR}.

As P=KiNR=K>NR, we see that K, /K| =0. Hence K> = K. O
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The next theorem, due to Fisher and Snider [170], is a characterization of regular
rings.

Theorem 8.3.27 A ring R is regular if and only if the following hold:

(i) R is semiprime.
(i1) The union of any chain of semiprime ideals of R is semiprime.
(iii) Every prime factor ring of R is regular.

Proof See [170, Theorem 1.1] or [183, Theorem 1.17]. ]

A class o of rings (not necessarily satisfying g (R) = 0) is called a special class
if o is a class of prime rings that is hereditary (i.e., closed with respect to ideals)
and closed with respect to ideal essential extensions. That is, if 7 isin o and I < R
that is ideal essential in R, then R is in g (see [176, p. 80]). Let o be a special class
of rings. The special radical o(R) for a ring R is the intersection of all ideals 1
of R such that R/ is a ring in the special class o. Note that the class of special
radicals includes most well-known radicals (e.g., the prime radical, the Jacobson
radical, the Brown-McCoy radical, the nil radical, and the generalized nil radical,
etc.). See [139] and [176] for more details.

For a ring R with identity, the classical Krull dimension kdim(R) is the supre-
mum of all lengths of chains of prime ideals of R. We show that various types of
information transfer between a ring R and (R U B(Q(R))) o(r)- The transference
qf information in Lemma 8.3.26 and Theorem 8.3.28 is used to study QqB (R) (or
OrF1(R)) when R is a semiprime ring.

Theorem 8.3.28 Let R be a subring of a ring T and @ #E C S¢(T) U S, (T).
Assume that S is the subring of T generated by R and E. Then:

(i) o(R) = 0(S) N R, where o is a special radical. In particular, we have that
0(R) = o((RUB(Q(R)) o(r)) N R.
(i1) R is strongly m-regular if and only if S is strongly mw-regular. Hence, R is
strongly 7 -regular if and only if (R U B(Q(R)))o(r) is strongly m-regular.
(iii) If S is regular, then so is R.
@iv) If the ring R has identity, then kdim(R) = kdim(S). Thus, we have that
kdim(R) = kdim(RB(Q(R))).

Proof (i) Let K be a prime ideal of S such that S/K is in the special class of p. From
Lemma 8.3.26, R/(K N R) is in the special class of o. Therefore o(R) C o(S) N R.
As in the proof of LO in Lemma 8.3.26, o(S) N R € o(R).

(ii) This part is a consequence of Lemma 8.3.26 and Theorem 1.2.18 (note that
Theorem 1.2.18 holds for rings not necessarily with an identity).

(iii) Since S is regular, R is semiprime by part (i). Let I1 C I, C ... be a chain
of semiprime ideals of R. Let Ui be the set of all prime ideals of R containing
Iy, for k =1,2,.... Then I is the intersection of all prime ideals in U;. By LO
in Lemma 8.3.26, for each P € Uy, there exists a prime ideal K of S such that
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P = K NR.Let V; be the set of all prime ideals K of S such that K N R € Uy, and
let J1 be the intersection of all prime ideals K in V. Then J; N R = I; by using
Lemma 8.3.26.

Next, consider U,. Then U, C Uy since 11 C I>. Let V, be the set of prime
ideals K such that K N R € U;. Let J; be the intersection of all prime ideals in V5.
Because Uy C U, Vo € V; and so J; € J,. Again by Lemma 8.3.26, J, N R = .
Continuing this process, there exists a chain of semiprime ideals J1 € J, C ..., of
S with J, N R = I,, for each n. So (UJ,) N R =UI,.

Note that §/(UJ,) is semiprime by Theorem 8.3.27. Since UJ, is a semiprime
ideal of S, UJ,, = NK,, for some prime ideals K, of S. Then each K, N R is a prime
ideal of R by Lemma 8.3.26(i). So UI,, = (UJ,) "R = (NKy) N R =N(Ky N R) is
a semiprime ideal of R.

Finally, say P is a prime ideal of R. By LO in Lemma 8.3.26, there is a prime
ideal K of S with P=K N S and R/P = S/K. Since S/K is regular, so is R/P.
By Theorem 8.3.27, the ring R is regular.

(iv) The proof follows immediately from Lemma 8.3.26. g

Lemma 8.3.29 Assume that T is an overring with identity, of a ring R and
{f1,..., fu} S B(T). Then there exists a set of orthogonal idempotents {e1, ..., ey}
C B(T) such that Y/, iR <Y /" & R.

Proof We use induction on n. If n = 1, then we are done by taking e; = f. Assume
that n > 2 and the lemma is true forn =k — 1, and let n = k.

By induction, there exists a set of orthogonal idempotents {eq, ..., e¢} € B(T)
such that Zf:_ll fiRC Zf: 1 € R. Hence,

k k—1 L
Y fiR=)_fiR+ iR Y eiR+ fiR
i=1 i=1

i=1
4
C fil =) eDR® (®/_,(1 - fo)eiR) & (Bf_, feiR).

i=1

This yields the result. d

Corollary 8.3.30 For a ring R with identity, the following are equivalent.

(i) R is regular.
(i) RB(Q(R)) is regular.
(iii) R is semiprime and Qqg(R) is regular.

Proof Assume that R is regular. Take ¢ € RB(Q(R)). From Lemma 8.3.29,
qg=aje; +---+apen € RB(Q(R)), where a; € R, ¢; € B(Q(R)), and ¢; are or-
thogonal. Since R is regular, there is b; € R with a; = a;b;a; for each i. Let
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p=bie1+ -+ byuen € RB(O(R)). Then g = gpq, so RB(Q(R)) is regular. The
rest of the proof follows by an easy application of Theorem 8.3.28(iii) and the fact
that Q¢ (R) = RB(Q(R)) from Theorem 8.3.17 when R is semiprime. O

Lemma 8.3.26, Theorem 8.328, and Corollary 8.3.30 show the transference of
some properties between R and Q¢g(R). Our next example indicates that in general
these properties do not transfer between R and its right rings of quotients which
properly contain QqB (R), in general.

Example 8.3.31 Let R = Z[C>] be the group ring of the group C, = {1, g} over the
ring Z. Then Z[C>] is semiprime and Q(Z[C3]) = Q[C>].

Note that B(Q[C2]) = {0, 1, (1/2)(1 + g), (1/2)(1 — g)}. Thus, using Theo-
rem 8.3.17, QgB(Z[C2]) ={(a+c¢/2+d/2) + (b+c/2—d/2)g | a,b,c,d € Z}.
Therefore

ZIC21 € Og(ZIC2)) € ZI1/2][C2] € QICal,

where Z[1/2] is the subring of Q generated by Z and 1/2.

Note that Z[C»]/27Z[C2] = Z»[C>], and Z>[C>] is a local ring. Thus there exists
a prime ideal P (in fact, a maximal ideal) of Z[C>] containing 27Z[C>]. Also we
note that P N Z = 27Z. Assume on the contrary that LO holds between Z[C>] and
Z[1/2][C>]. Then there exists a prime ideal K of Z[1/2][C;] with K N Z[C,] = P.
Now put Ko = K NZ[1/2].

We see that KeNZ=KNZ[12QINZ=KNZ=KNZ[C2]NZ=PNZ=27.
Thus 2 € Kj. But because Ky is an ideal of Z[1/2], 1 =2 - (1/2) € Ky, hence
K = Z[1/2][C>], a contradiction. Thus, LO does not hold between Z[C;] and
Z[1/2][Ca].

Theorem 8.3.32 Let R be a semiprime ring with identity. Then R has index of
nilpotency at most n if and only if Qqg(R) has index of nilpotency at most n. In
particular, if R is reduced, then Qqg(R) = QB (R) and it is reduced.

Proof Let R have index of nilpotency at most n. By Theorem 1.2.20(ii), R is right
nonsingular. Hence E(Rg) = Q(R) from Corollary 1.3.15. Therefore, we see that
O¢B(R) = O¢B(R). Now say g € Qqg(R). Then Lemma 8.3.29 yields that

q=aiey +---+arey,

where a; € R, ¢; € B(Q(R)), and ¢; are orthogonal.

Suppose that qk = 0. We show that ¢" = 0. If k < n, then we are done. So as-
sume that k > n. In this case, qk = a’l‘el + -+ afe, = 0. Thus af‘ei =0 for all i.
Note that B(Q(R)) = B(Q™(R)) (recall that Q™ (R) denotes the Martindale right
ring of quotients of R). Hence, there is I; < R with £g(1;) =0 and ¢; I; C R. There-
fore, afe,- Ii=0ande¢;I; Crp (af). Since R has index of nilpotency at most n, by
Theorem 1.2.20(1) rg (alk) =rg(aj'),soe;l; Crr(al'). Thus al'e; I; = 0.

As Lr(l;) =0, Lory(1;) = 0. Hence a'e; =0 for each i. So

q”:(alel—f‘"""atet)n:a’fEI+'”+a;1€f20'

Thus Q4 (R) has index of nilpotency at most n. The converse is clear.



300 8 Ring and Module Hulls

If R is reduced (so Z(Rg) = 0), then Q¢g(R) is a reduced quasi-Baer ring by the
preceding argument, so it is a Baer ring (see Exercise 3.2.44.10(i)). Say T is a right
ring of quotients of R and T is Baer. Then T is quasi-Baer. Hence, Q¢g(R) C T by
Theorem 8.3.17. Therefore, Qqg(R) = Op(R). U

Recall that a ring R is called strongly regular if R is regular and reduced
(see 1.1.12). Corollary 8.3.30 and Theorem 8.3.32 yield the next result.

Corollary 8.3.33 A ring R with identity is strongly regular if and only if RB(Q(R))
is strongly regular.

If R is a domain with identity which is not right Ore, then R = Q4g(R) has index
of nilpotency 1, but Q(R) does not have bounded index of nilpotency. So we cannot
replace Qg (R) with Q(R) in Theorem 8.3.32.

By Theorem 8.3.32, a reduced ring with identity always has a Baer absolute ring
hull. However a Baer absolute ring hull does not exist even for prime PI-rings with
index of nilpotency 2, as shown in the next example.

Example 8.3.34 Let R = Maty (F[x, y]), where F is a field and £ is an integer such
that k > 2. Then R is a prime PI-ring with index of nilpotency k. (In particular, if
k = 2, then R has index of nilpotency 2.) The ring R has the following properties.
We note that Q(R) = E(Rg), hence @R(R) = Qg (R) for any class K of rings.

(i) The Baer absolute ring hull Qg (R) does not exist.
(i) The right extending absolute ring hull Qg (R) does not exist.

As R is a prime ring, R = Qqg(R) = Qr1(R). We claim that Qg(R) does not
exist (the same argument shows that Qg (R) does not exist). Assume on the con-
trary that Qg(R) exists. Note that F(x)[y] and F(y)[x] are Priifer domains. So
Maty (F (x)[y]) and Maty (F (y)[x]) are Baer rings by Theorem 6.1.4 (and right ex-
tending rings by Theorem 6.1.4). Since Q(R) = Maty(F (x, y)),

OB(R) € Maty (F(x)[y]) N Matx (F(y)[x]) = Mat (F (x)[y] N F(y)[x]D).
To see that F(x)[y] N F(y)[x] = F[x, y], let
y(x,y) = fo(x)/go(x) + (f1(x)/g1(x))y + -+ + (fin (x)/gm (x))y"
=ho(y)/ko(y) + (i (M) /ki(YN)x + -+ + (ha(3)/ kn (¥)x"

be in F(x)[y] N F(y)lx], where f;(x), gi(x) € F[x], h;(y), kj(y) € F[y], and
gi(x)#0,kj(y)#0fori=0,1,...,m,j=0,1,...,n. Let F be the algebraic
closure of F.If deg(go(x)) > 1, then there exists « € F such that go(a) = 0. There-
fore y («, y) cannot be defined. On the other hand, we observe that

(e, y) =ho(y)/ko(y) + (i () /ki()e + -+ + (hn (3)/ kn ()",

a contradiction. Thus go(x) € F. Similarly, g1(x), ..., gn(x) € F.
Hence y (x, y) € F|[x, y]. Therefore F(x)[y]N F(y)[x] = F[x, y], and so

OB(R) =Maty (F(x)[y] N F(y)[x]) =Maty (F[x, y]).
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Thus Maty (F[x, y]) is a Baer ring, a contradiction because the commutative domain
F[x, y] is not Priifer (see Theorem 6.1.4).

Aring R with identity is called right Utumi [382, p. 252] if it is both right nonsin-
gular and right cononsingular. In the proof of Theorem 3.3.1 or by Lemma 4.1.16,
every right extending ring is right cononsingular.

Proposition 8.3.35 Ler R be a reduced ring with identity. Then R is right Utumi if
and only if Q(R) is strongly regular.

Proof See [382, Proposition 5.2, p. 254]. 0

Proposition 8.3.36 A reduced ring R with identity is right Utumi if and only if
Qqcon(R) = Qr(R) = RB(Q(R)).

Proof Assume that R is right Utumi. Because R is reduced, Z(Rg) = 0 and
from Theorem 8.3.32 RB(Q(R)) = Qq(R) = Op(R). Also, we observe that
Q(R) = Q(RB(Q(R))) is strongly regular from Proposition 8.3.35. So RB(Q(R))
is right Utumi, since RB(Q(R)) is reduced by Theorem 8.3.32. Hence, RB(Q(R))
is right cononsingular. As RB(Q(R)) is Baer, RB(Q(R)) is right extending by The-
orem 3.3.1.

From Theorem 8.3.17, RB(Q(R)) = Qr1(R). If S is a right extending right ring
of quotients of R, then S is right Fl-extending, and hence RB(Q(R)) C S. Thus,
RB(Q(R)) = QOg(R). As Q(R) is strongly regular, I[(Q(R)) = B(Q(R)).

By Corollary 1.3.15, Theorem 2.1.25, and Proposition 2.1.32, RB(Q(R)) is a
right quasi-continuous ring. Let T be a right quasi-continuous right ring of quotients
of R. Then again from Corollary 1.3.15, Theorem 2.1.25, and Proposition 2.1.32,
B(Q(R)) =B(Q(T)) C T as Q(R) = Q(T). Thus RB(Q(R)) C T, and hence
Qqcon(R) = RB(Q(R)). So RB(Q(R)) = QE(R) = Qqcon(R).

Conversely, if RB(Q(R)) = Qg(R), then RB(Q(R)) is right cononsingular by
Theorem 3.3.1. Hence, RB(Q(R)) is right Utumi. Further, RB(Q(R)) is reduced
by Theorem 8.3.32, so Q(R) = Q(RB(Q(R))) is strongly regular and thus R is
right Utumi from Proposition 8.3.35. 0

There exists a nonreduced right Utumi ring R for which the equalities
Qqcon(R) = Qr(R) and Qqcon(R) = RB(Q(R))

in Proposition 8.3.36 do not hold true, as the next example shows.

Example 8.3.37 Let R = Maty(F|[x]), where F is a field and k is an integer such
that k > 1. Then R is right Utumi by Proposition 3.3.2. Note that

E(Rg) = Q(R) =Mat (F(x)),

where F(x) is the field of fractions of F[x].

Thereise? =e € Q(R) such that e ¢ R. By Theorem 2.1.25, R is not right quasi-
continuous. Now RB(Q(R)) = R # Qqcon(R). From Theorem 6.1.4, R is right
extending, so0 R = Qg(R). Thus Qg(R) # Qqcon(R).
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For a semiprime ring R with identity, the notions of (right) FI-extending and
quasi-Baer coincide by Theorem 3.2.37. Theorem 8.3.17 shows that the quasi-Baer
ring hull of a semiprime ring exists and is precisely the same as its right FI-extending
ring hull.

In view of this result, it is natural to ask: Whether the right principally quasi-
Baer ring hull and the right principally Fl-extending ring hull exist for a semiprime
ring and if so, are they equal? In Theorem 8.3.39, an affirmative answer to these
questions will be provided.

Burgess and Raphael [108] study ring extensions of regular rings with bounded
index (of nilpotency). In particular, for a regular ring R with bounded index (of
nilpotency), they obtain a unique closely related smallest overring, R¥, which is
“almost biregular” (see [108, p. 76 and Theorem 1.7]). Theorem 8.3.39 shows that
their ring R is exactly the right principally Fl-extending pseudo ring hull of a regu-
lar ring R with bounded index (of nilpotency). When R is commutative semiprime,
the “weak Baer envelope” defined by Dobbs and Picavet in [141] is exactly the right
p-q.-Baer ring hull @qu (R) obtained in Theorem 8.3.39.

We use pFI and fgFI to denote the class of right principally FI-extending rings
and the class of right finitely generated FI-extending rings, respectively (see Propo-
sition 3.2.41 for pFI and fgFI). The following definition is useful for studying p.q.-
Baer ring hulls.

Definition 8.3.38 For a ring R with identity, define
B,(Q(R)) ={c € B(Q(R)) | thereis x € R with RxRg <*** cQ(R)r}.

The next Theorem 8.3.39 unifies the result by Burgess and Raphael [108] and
that of Dobbs and Picavet [141].

Theorem 8.3.39 Let R be a semiprime ring with identity. Then:

() QpFI(R) =(RUB,(Q(R)))or) = R(PFI, Q(R)).
(i) QpgB(R) =(RUB,(Q(R)))o(r)-
(iii)) Qggrr(R) = (RUB,(Q(R)))o(R)-

Proof (i) Using a proof similar to that of Theorem 8.3.11(iv), we obtain that
Spr1(R)(1) = B,(Q(R)). Let S = (R U §pp1(R)(1)) g(r)- Then we have that § =
(RUB,(Q(R)))o(r)- We show that § is right principally Fl-extending. For this,
take 0 # s € S. From Lemma 8.3.29, s = > /', rib;, where each r; € R and the b;
are orthogonal idempotents in 5(S). From Proposition 8.3.3(i) and Theorem 8.3.8,
we see that there is ¢; € B(Q(R)) with Rr; Rg <® ¢; Q(R)y for each i. So each
ci € B,(Q(R)).Hence,s =Y 1 rib; =Y ¢, ricib;. Pute; = ¢;b; foreachi. Then
s =y I, rie;. We note that the ¢; are orthogonal idempotents in B(S).

Put D = @®7_,¢;S. To see that SsSg <*** Dy, say 0 # y € D. Then there exist
yi€Sforl<i<nsothaty=73 ", ¢y.In this case, there exists e¢;y; # 0 for
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some j,1 < j<n,andv € Rsuchthat0#e;y;v € R. Because
yejv=ejyjv=cjbjyjvec;jR and RrjRg <** cjRg,

there is w € R with 0 # yejvw € Rr;R.

So 0 # y(ejyvw) =ejyjvw € RrjejR = Rse; R C §sS§ as se; =rje;. Hence
SsSs <® Dg. Let f =Y "_,e; € B(S). Then S is right principally FI-extending
since SsSg < Dg = @!_,e;Ss = f Ss. Therefore, S = R(pFL, Q(R)).

Assume that T is a right ring of quotients of R and T is right principally FI-
extending. Say e € B,(Q(R)). Then there is x € R with RxRp <®* eQ(R)g. Note
that TxT = T(RxR)T C T(eQ(R))T = eQ(R), so TxTr <* eQ(R)r. Hence
TxTr <*° eQ(R)7. Since T is right principally Fl-extending, there exists ¢* =
¢ € T such that TxTy <5 ¢Tp <5 ¢Q(R)7. Thus e = ¢ because ¢ € B(Q(R)).
Hence,ee T for each e € B,(Q(R)). So S is a subring of T. Thus, S = QPFI(R)
and Qpr1(R) = (RU B,(Q(R)))o(r) = R(PFL, O(R)).

Parts (ii) and (iii) follow from part (i) and Proposition 3.2.41. O

Corollary 8.3.40 Let R be a semiprime ring with identity. Then R is right p.q.-Baer
if and only if B,(Q(R)) C R.

Corollary 8.3.41 Let R be a semiprime ring with identity.

(1) If K is a prime ideal of quB(R), then quB(R)/K ZR/(KNR).
(ii) LO, GU, and INC hold between R and Qpqg(R).

Proof Theorem 8.3.39 and Lemma 8.3.26 yield the result. g

Corollary 8.3.42 Let R be a semiprime ring with identity. Then:

1) o(R) = Q(quB(R)) N R, where o(— ) is a special radical of a ring.
(ii) R is strongly 7 -regular if and only if quB(R) is strongly m-regular.
(iii) kdim (R) = kdim (quB(R))

Proof The proof follows from Theorems 8.3.28 and 8.3.39. g

Corollary 8.3.43 Let R be a semiprime ring with identity. Then:

(i) R is regular if and only if quB(R) is regular.
(i1) R has index of nilpotency at most n if and only if quB(R) has index of nilpo-
tency at most n.
(iii) R is strongly regular if and only if QPqB(R) is strongly regular.

Proof Put S = @qu (R). Then § is semiprime and QqB(S) = QqB(R) by Theo-
rem 8.3.17.

(1) If R is regular, then QqB(S) is regular by Corollary 8.3.30. Since S is
semiprime, again by Corollary 8.3.30 S is regular. Conversely, if S is regular, then
from Corollary 8.3.30 QqB(S) = QqB(R) is regular, so R is regular.
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(i) and (iii) The proof follows immediately from Theorem 8.3.32, Corol-
lary 8.3.33, and the argument used for the proof of part (i). g

Theorem 8.3.44 Let R be a reduced ring with identity. Then the p.q.-Baer absolute
ring hull Qpq(R) is the Rickart absolute ring hull of R.

Proof Because R is reduced, Z(Rg) = 0. Hence, Corollary 1.3.15 yields that
Q(R) = E(RR). By Theorem 8.3.39, § := Qpqs(R) exists. From Corollary 8.3.43,
S is reduced and so S is Rickart (see Exercise 3.2.44.10(ii)).

Let T be a (right) Rickart right ring of quotients of R. Take e € B,(Q(R)). Then
e € S and there exists x € R such that RxRr <®5 eQ(R)g. Hence SxSg <®% eSs.
As S is right nonsingular, SxSg <% ¢Sg by Proposition 1.3.14, as a consequence
Ls(SxS) = Ls(eS) = S(1 — e) from the proof of Lemma 8.3.7(i). Since § is
semiprime, rg(SxS) = €s(SxS). So rs(SxS) = S(1 — e) = (1 — e)S. Further, as
S is reduced, rs(x) =rs(SxS) = (1 —e)S.

Because 7 is right Rickart, r7(x) = fT for some f2 = f € T. Observe that
rr(x) =1 —e)SN R and rg(x) =rr(x) N R. Therefore, we have that

rROR < (1 —e)Sg < (1 —e)Q(R)g and rr(x)g < fTr <** fO(R)g.

Thus 1 —e = fas 1 —eiscentralin Q(R).Hencee=1—f € T,s0 B,(Q(R)) C T.
From Theorem 8.3.39, S C T'. Whence Qpqp(R) is the Rickart absolute ring hull
of R. O

When R is a semiprime ring with identity, quB(R) - QqB(R). However, in the
following example, we see that there exists a semiprime ring R with identity such
that QpqB(R) & Q¢B(R).

Example 8.3.45 Let R be the ring as in Example 4.5.5. Then R is (right) p.q.-Baer,
s0 R = Qp¢B(R). But R is not quasi-Baer. By Theorem 8.3.17,

o
OqB(R) = RB(Q(R)). therefore Ogs(R) = Q(R) =[] Fu.,
n=1
wheri F, =7, forn =1, 2,/.\. .. Thus, quB(R) - QqB(R) (further, we observe
that Q4B (R) = QB (R) and Qpqe(R) = Opqe(R) as R is right nonsingular).

In Theorem 8.3.47, we will see that there is a connection between the right
FI-extending ring hulls of semiprime homomorphic images of R and the right FI-
extending right rings of quotients of R. For this, we need the next lemma.

Lemma 8.3.46 Assume that I is a proper ideal of a ring R with identity such that
I is a complement of a right ideal of R. If P(R) C I, then R/I is a semiprime ring.

Proof Let J be aright ideal of R such that I is a complement of J. First we show
that (1 @ J)/I is essential in R/I as a right R/I-module. To see this, assume on
the contrary that there exists a nonzero right R/I-submodule K /I of R/I such that
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[ J)/IIN(K/I)=0.Thereis y € K with y &€ I. Then (I + yR) N J #0. So
there exist c € I, r € R, and 0 # x € J such that ¢ 4+ yr = x. Then

yr=—c+xe(®J)NKCI.

Hence x € I N J =0, a contradiction. So (I @ J)/I is essential in R/I as a right
R/I-module.
Next, let 0£ B/I < R/I such that (B/I)?> =0. Then B2 C I. Note that

B/HN[I®J)/11£0

because (I @ J)/I is essential in R/I as a right R/I-module.

From the modular law, BN I & J)=1 & (BNJ). AsBN{U & J)<Z I,
I®(BNJ)ZI,andthus BNJ #0.But (BNJ)>CINJ=0as B>CI.Hence
BNJCJNP(R) €JNI =0, which is a contradiction. Therefore, R/I is a
semiprime ring. g

Theorem 8.3.47 Assume that R is a ring with identity which is either semiprime or
QO(R) = E(RR). Let I be a proper ideal of R such that Ig is closed in Rg. Then:

(i) There exists e € I(Q(R)) such that I = (1 —e)Q(R) N R.
(i1)) eR=¢eReand R(1 —e)=(1 —e)R(1 —e).
@iii) R/I is ring isomorphic to eRe.
(iv) If R is semiprime, then e Q(R)e C Q(eRe).
(v) If E(RR) = Q(R), then E(eRecre) =eQ(R)e and eQ(R)e = Q(eRe).
(vi) If P(R) C I, then R/I is semiprime and Qr1(R/I) = Qri(eRe).
(vii) Suppose that R is semiprime (resp., right nonsingular and semiprime). Then
Or1(R/1) = eQr1(R)e (resp., Or1(R/1) = eQr1(R)e).

Proof (i) If R is semiprime, use Proposition 8.3.3(i) and Theorem 8.3.8. In this case,
we observe that e € B(Q(R)). If Q(R) = E(Rp), then the proof is routine.

(ii) If R is semiprime, the proof of this part is clear since e € B(Q(R)). For
O(R) = E(RR), let r € R with er(1 — e) # 0. Since Rp is dense in Q(R)R, there
exists s € R such that (1 —e)s € R and er(1 — e)s # 0. Then

(I1—e)se RN(1—e)Q(R) = 1.

Hence 0 # er (1 — e)s € el =0, a contradiction. So eR(1 — e) = 0. Consequently,
eR=¢Reand R(1 —e)=(1 —e)R(1 —e).

(iii) Define f : R/I — eRe by f(r + 1) =er. As el =0, f is well defined.
Clearly, f is a ring epimorphism. If x + I € Ker(f), then x € (1 —e)Q(R) N R. By
part (i), x € I. Hence Ker(f) = 0. Thus, f is a ring isomorphism.

(iv) As e € B(Q(R)), eRecre <" e Q(R)ecge. S0 eQ(R)e C Q(eRe).

(v) Let K be a right ideal of eRe and let g : K — eQ(R)e be an eRe-
homomorphism. From part (ii) K, eRe, and e Q(R)e are right R-modules, and g
is an R-homomorphism. As eQ(R)e € eQ(R) and eQ(R) is the injective hull of
e¢Rp, g can be extended to an R-homomorphism g : eR — e¢(Q(R). Now g can be
extended to an R-homomorphism g : eQ(R) — e¢Q(R). Therefore, g is a Q(R)-
homomorphism as in the proof of Proposition 2.1.32.
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As ¢R = ¢Re, g(¢eR) = g(eRe) = g(eRe)e = g(eR)e C eQ(R)e. By Baer’s
Criterion, eQ(R)e is an injective right eRe-module. Further, we observe that
eReore <9 eQ(R)eore. Hence, eQ(R)e is the injective hull of eRe as a right
eRe-module and eQ(R)e = Q(eRe).

(vi) Note that a closed right ideal of R is a complement of some right ideal of R
(see Exercise 2.1.37.3). Hence this part is a consequence of part (iii), Lemma 8.3.46,
and Theorem 8.3.17.

(vii) Let R be semiprime. Then 1 —e € B(Q(R)) by Proposition 8.3.3(i) and The-
orem 8.3.8,s0 ¢ € B(Q(R)). Hence B(eQ(R)e) = eB(Q(R))e Thus we have that
QFI(R/I) = (eRe UB(eQ(R)e))eg(R)e = eRB(Q(R))e = eQFI(R)e from Theo-
rem 8.3.17. If additionally Z(Rg) =0, then eRg is nonsingular, so (R/I)g is right
nonsingular since (R/I)r = eRgr by modifying the proof of part (iii). Thus, R/I
is a right nonsingular ring by [180, Proposition 1.28] and so eRe is a right nonsin-
gular ring. The result follows from the fact that for any right nonsingular ring 7,
Or1(T) = Qr1(T) since Q(T) = E(Tr). O

Corollary 8.3.48 Let R be a semiprime ring with identity, S a ring with identity,
and 8 : R — S a ring epimorphism such that Ker(0) is a nonessential ideal of R.
Then there exists a nonzero ring homomorphism h : S — Qr1(R).

Proof Let K = Ker(f) and I = £gr(£gr(K)). Then K € Dic(R) by Proposi-
tion 8.3.3(i) since R is semiprime. So [ is the unique closure of Kg in Rp (see
Exercise 8.3.58.5(i)). From Theorem 8.3.47(i), there exists e € B(Q(R)) such that
I=(0—-e)Q(R)NR. As K is not essential and R is semiprime, £g(K) # 0 by
Proposition 1.3.16, so I # R. We have the following sequence of ring homomor-

phisms S % R/K 5 R/T 5 Opi(R/1) > eOp1(R)e - Ori(R), using Theo-
rem 8.3.47, where « and § are ring isomorphisms, § is a ring epimorphism, and
X and ¢ are inclusions. Take 7 = (5 1 S «. O

Proposition 8.3.49 Let I € Dy1c(R). Then Cen(I) =1 N Cen(R).

Proof Let I € D1c(R). Then Q(I) = eQ(R) with e € B(Q(R)) by Theorem 8.3.8.
So Cen(/) € Cen(Q(I)) = Cen(eQ(R)) € Cen(Q(R)). Therefore we have that
Cen(I) =1 NCen(R). O

A nonempty subset M of a ring R is called an m-system if 0 & M and for any
a,b € M there exists x € R such that axb € M (see [296]). We note that an ideal P
of aring R maximal with respect to P N M = {J, where M is an m-system, is always
a prime ideal.

Theorem 8.3.50 Let R be a semiprime ring with a descending chain of essential
ideals K1 D K> O ... such that ﬂizl K; =0. Then R has a prime ideal P such that
K; £ P foralli > 1.

Proof We use the condition on {K;}7°, to find a properly descending subsequence
{L;}72, and nonzero elements {a;}, {x;} such that a; | = a;x;a;, a;y1 € L; and
ai+1 € Liy fori > 1.
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Let Ly = K1 and choose 0 # a; € L. Then we show that a; Koa; # 0. For
this, assume on the contrary that aj K>a; = 0. Then (Kza1K>)(Kz2a1K3) =0, so
K>a; K7 = 0 because R is semiprime. Now £r(K2) =rr(K2) = 0 since K> is es-
sential in R, and hence K»a; = 0. Again since rg(K>) =0, a; =0, a contradiction.
Thus, a; Kza; # 0. From N;>1K; = 0, there exists K; with j minimal, such that
a1Kray € K, and hence there is x; € K> such that ajx1a; € K. Let L, = K and
ap) =a1xiaj;thenaz € Ly and ap € L.

Next, ar Lras # 0 by the preceding argument. Choose L3 such thatay Loay € Ls.
So there is xp € Lo with a3 := ayxoar & L3. Note that a3 € L. Continue this
procedure to get L;y1 and a;+1 = a;xja; € L; but a¢j4+1 & Li+1 as needed. The
sequence {a;} constitutes an m-system. In fact, let a¢,a, € {a;}. If £ = n, then
agXnan = au+1. So without of loss of generality, we may assume that n > £. Then
an+1 = ae[(xpap)(Xe41a0+1) - - - (Xn—1an—1)Xnla,. Hence, an ideal P maximal with
respect to {a;} N P = is a prime ideal. By construction, K; € P foralli > 1. [

Lemma 8.3.51 Letr R be a semiprime ring and I < R. Then:

(1) £r(1) is a semiprime ideal of R.
@) (I Lr())/Lr(I) is an essential ideal of R/Lr(I).

Proof (i) To show that £z (1) is a semiprime ideal, leta € R such thataRa C {r(1).
Then aRal =0, so (al)R(al) =0. Thus, al =0 because R is semiprime. Hence,
a€lr(l),soLgr(l) is a semiprime ideal.

(i) Let S = R/£g(I). By part (i), S is a semiprime ring. To show that V :=
(I ®Lr(I))/LRr(I) is essential in S, it suffices to see that £5(V) = 0 by Proposi-
tion 1.3.16. Say a + £r(I) € £5(V), where a € R. Then al C £g(I), so al?> =0.
Hence, (al)?> = 0. Thus, al = 0 because R is semiprime. Therefore, a € €r(1),
hence a + £r (1) =0. O

The following theorem is well known (see [366, Remark 1.2.14, Theorems 1.4.1
and 1.6.27]).

Theorem 8.3.52 Let R be a semiprime PI-ring. Then R satisfies a standard identity

fan(X1y oo, Xxp) = Zoesn sgn(0)Xa (1) * - * X0 (n), Where S, is the symmetric group of
degree n and sgn(o) is the signature of o € S,,. Further, R satisfies fp(x1,...,Xn)
form > n.

Anideal I of aring is called a Pl-ideal if I is a PI-ring as a ring by itself.

Theorem 8.3.53 Let R be a semiprime ring such that R/ P is a Pl-ring for each
prime ideal P of R. Then R contains a nonzero Pl-ideal, and the sum of all PI-
ideals of R is an essential ideal of R.

Proof Put F, = {P | P isaprimeideal and R/P satisfies f,(xy,...,x,)} for
n>2, and let K, = Npcr, P. Since F, € F3 € ... from Theorem 8.3.52, the
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sequence of ideals {K;} is a descending sequence of semiprime ideals with
N;>2K; = 0 since R is semiprime and U;>> F; is the set of all prime ideals. We
note that R/K, embeds in HPe]—‘,, R/ P, hence it satisfies a PL. If each K; is es-
sential, Theorem 8.3.50 yields a prime ideal P which contains none of the K;.
However P € F,, for some m > 2 and so K,, € P, a contradiction. Thus there
exists some K, which is not essential. Hence, {g(K,) # 0 by Proposition 1.3.16.
As R is semiprime, £g(K,) N K,, =0 and so £g(K,) embeds in R/K,. Therefore,
LRr(K,) is an Pl-ideal.

Let S be the sum of all Pl-ideals of R and let A = £z(S). Then B :=€g(A) is
a semiprime ideal by Lemma 8.3.51(i) and A N B = 0. Since all prime factor rings
of R are Pl-rings, all prime factor rings of the semiprime ring R/B are Pl-rings. If
B =R, then R ={¢r(A), so A =0 because R is semiprime. Thus £z (S) =0, hence
by Proposition 1.3.16, S is essential in R.

Next, we assume that B % R. Then R/B contains a nonzero Pl-ideal by the
previous argument. To see that S is an essential ideal of R, we need to show that
A =0 from Proposition 1.3.16. If A # 0, then (A 4+ B)/B is essential in R/B by
Lemma 8.3.51(ii). So (A + B)/B contains a nonzero Pl-ideal, say V/B of R/B.
Put

K={aeAla+ BeV/B}

Then K < R and K = V/B asrings since AN B =0. So K is a nonzero Pl-ideal of
R and K € A. Hence S N A # 0, which is a contradiction because A = £g(S). So
A = 0. Therefore, S is essential in R. O

The next lemma, known as Andrunakievic’s lemma, is useful for studying the
relationship between the ideal structure of a given ideal of a ring R and that of R
(see [9, Lemma 4]).

Lemma 8.3.54 Let R be a ring and V < R. Assume that [ AV and W is the ideal
of R generated by I. Then W3 C I.

Proof Since VIR and I <V, we get W =14 IR+ RI + RIR. Therefore it
follows that W3 C VWV =V + IR+ RI+RIR)V C 1. O

Proposition 8.3.55 Let R be a ring and V < R.
() If R is a semiprime ring, then V is a semiprime ring.
(i) If R is a prime ring, then V is a prime ring.

Proof (i) To show that V is a semiprime ring, let / < V with I? = 0. Say W is the
ideal of R generated by /. By Lemma 8.3.54, W3CI.SoWéCI2=0.As R is
semiprime, W =0 and so / = 0. Hence, V is a semiprime ring.

(ii) Similarly, we see that V is a prime ring if R is a prime ring. 0

Every semiprime PI-ring satisfies the hypothesis of our next result. Exam-
ple 8.3.57 illustrates that Theorem 8.3.56 is a proper generalization of Theo-
rem 3.2.16.
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Theorem 8.3.56 Let R be a semiprime ring with R/ P a Pl-ring for each prime
ideal P of R.If0# I < R, then I N Cen(R) # 0.

Proof From Theorem 8.3.53, there exists V < R such that

Vg <*SRgp and V = Z Vi,
reA

where each V; is a nonzero Pl-ideal. If TNV, =0 forall A € A, then IV =0, and
hence I NV =0, contrary to Vg <®5 Rp.

So there is B € A with 0 % I N Vg < Vg, By Theorem 3.2.16 and Proposi-
tion 8.3.55, I N Cen(Vg) =1 N Vg N Cen(Vp) # 0 since Vg is a semiprime Pl-ring.
Propositions 8.3.3(i) and 8.3.49 yield that Cen(Vg) = Vg N Cen(R). As a conse-
quence, I NCen(Vg) =1 N Vg N Cen(R) # 0. Therefore, I N Cen(R) # 0. O

Example 8.3.57 There is a semiprime ring R which does not satisfy a PI, but R/ P
is a PI-ring for every prime ideal P of R. For a field F, let

o
R={(An);2, € l_[ Mat, (F) | A, is a scalar matrix eventually},

n=1

which is a subring of [ =, Mat, (F). Then R is a semiprime ring which does not
satisfy a PI. Let P be a prime ideal of R.

Case 1. Assume that the k-th component of all elements of P is zero for some
k. Let ey = (0,0,...,0,1,0,...), where 1 is in the k-th component. Take x € R
such that x has zero in its k-th component. Then ex Rx = 0 and so x € P. Therefore
P={(A,)72,€R | Ay =0}. Hence R/P = Maty(F).

Case 2. Assume that for any k, there is an element of P with a nonzero entry
in its k-th component. Then for any k, there is 0 % o € Maty (F) such that py :=
©,0,...,0,,0,...) € P, where « is in the k-th component. Thus RuyR C P,
so @2 ;Matg (F) € P. As R/ @2 Mat(F) is commutative, and R/P is a ring
homomorphic image of R/ ®72 | Mat;(F), R/ P is commutative.

By Cases 1 and 2, R/ P is a PI-ring for every prime ideal P of R.

Exercise 8.3.58

1. Finish the proof of Proposition 8.3.3 and prove Lemma 8.3.4.
2. Let I € ®1c(R). Prove the following.
@) €r() S rr().
(i) g(l)=rr()ifandonlyif rg(I/) N1 =0.
3. Assume that R is a ring.
(i) Show that ®yc(R) contains no nonzero nilpotent ideals of R.
(i) Find an example of a right nonsingular quasi-Baer ring R such that
0# P(R) € D1c(R) (see [232]).
4. Let R be a ring. Show that the following are equivalent.
(i) RelC.
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(ii) For each K € D1c(R) with K closed in Rg, there exists ¢ = e € R such
that K =e¢R.

(iii) For each K € D1c(R) with K closed in Rg, there is ¢ € B(R) satisfying
K =cR.

5. Let R be aring with identity and I € ®1c(R). Prove the following.

(i) There exists e € B(Q(R)) suchthat Lr(Lr(I)) =eQ(R)NR and £r(Lr (1))
is the unique closure of /g in Rg.
(ii)) Let K =£2g(¢r(I)). Then R/K = (1 — e)R(1 — ¢e) as rings.

6. Prove Corollary 8.3.12.

7. Show that in Lemma 8.3.26 and in Theorem 8.3.28, the set [E can be a set of
idempotents each taken from some set of left or right triangulating idempotents
(see [97, Example 2.3]).

8. ([42, Beidar and Wisbauer]) Show that a ring R with identity is biregular if and
only if R is semiprime and RB(Q(R)) is biregular.

9. Let R be a ring (not necessarily with identity) and S = (R U 1g(g)) g(r)- Show
that Q(R) = Q(S) € E(Ss) € E(Sr) = E(RR).

8.4 Module Hulls

It is well known that for every module M, there always exists a unique (up to iso-
morphism) minimal injective extension (overmodule) which is called its injective
hull and is denoted by E (M). While the injective hull has been studied and used ex-
tensively, in some instances it is difficult for a fruitful transfer of information to take
place between M and E(M). For example, take M to be the Z-module Z, ® Z P>
where p is a prime integer. Then H =Z,> @ Z,; is an extending hull of M. We
observe that both M and H are finite, but E (M) is infinite.

The studies on module hulls have been rather limited. In this section, we discuss
module hulls satisfying some generalizations of injectivity. One may expect that
such minimal overmodules will allow for a rich transfer of information similar to
the case of rings. This is because each of these hulls, with more general properties
than injectivity, sits in between M and a fixed injective hull E (M) of M; and hence
it generally lies closer to the module M than E(M).

Definition 8.4.1 Let M be a module. We fix an injective hull E(M) of M. Let I
be a class of modules. We call, when it exists, a module Hsy (M) the 9N hull of M if
Hyy (M) is the smallest extension of M in E(M) that belongs to I (i.e., Hon (M)
is the 9 absolute hull of M).

We begin this section with a description of a quasi-injective hull of a module M
(i.e., Hq1(M), where gl is the class of quasi-injective modules). We recall that an
R-module M is quasi-injective if and only if f(M) € M, for all f € End(E(M))
(see Theorem 2.1.9). The next result about the existence of quasi-injective hulls is
due to Johnson and Wong [238].



8.4 Module Hulls 311

Theorem 8.4.2 Let M be a right R-module and let S = End(E(M)). Then SM is
the quasi-injective hull of M.

Proof We put U = SM. Then M < U < E(M) and E(U) = E(M). Now take
¢ € End(E(U)) = End(E(M)). Then ¢ (U) € U. By Theorem 2.1.9, U is quasi-
injective. Next we assume that M < N < E(M) and N is quasi-injective. Then
¢©(N) € N for any ¢ € End(E(N)) = End(E(M)) by Theorem 2.1.9. Thus,
SN C N and so SM € SN C N. Therefore SM is the quasi-injective hull of M
(i.e., SM = Hqy(M)). O

The following result for the existence of the quasi-continuous hull of a module
is obtained by Goel and Jain [177].

Theorem 8.4.3 Let M be a right R-module and S = End(E(M)). Let §2 be the
subring of S generated by the set of all idempotents of S. Then 2M is the quasi-
continuous hull of M.

Proof As E(2M) = E(M), 2 is also the subring of End(E (£2M)) generated by
the set of all idempotents. As 2(£2M) = $2M, §2M is quasi-continuous by Theo-
rem 2.1.25. Say M < N < E(M) and N is quasi-continuous. Then E(N) = E(M),
so £2 is the subring of End(E(N)) generated by the set of all idempotents. From
Theorem 2.1.25, 2N € N.Thus, 2M C 2N C N.So §£2M is the quasi-continuous
hull of M (i.e., 2M = Hycon(M)). O

In contrast to Theorems 8.4.2 and 8.4.3, for the case of continuous hulls, there
exists a nonsingular uniform cyclic module over a noncommutative ring which does
not have an absolute continuous hull as follows.

Example 8.4.4 Let V be a vector space over a field F with basis elements
Um, W (m, k =0,1,2,...). We denote by V, the subspace generated by the
vy (m > n) and all the wy. Also we denote by W,, the subspace generated by the
wy (k > n). We write S for the shift operator such that S(wy) = w41 and S(v;)) =0
for all k, i. Let R be the set of all p € Endp (V) with p(vy,) € Vi, p(wp) € Wp and
p(wy) = Sk,o(wo), form,k=0,1,2,....

Note that 7o (wy) = Skr,o(wo), for p, T € R, and so tp € R. Thus, it is routine to
check that R is a subring of End (V). Further, we see that V,, = Rv,, W, = Rwy,,
and V41 €V, for all n. (When f € R and v € V, we also use fv for the image
f () of vunder f.)

Consider the left R-module M = Wj. First, we show that M = Rwy is uniform.
For this, take fwg # 0, gwo # 0 in M, where f, g € R. We need to find i1, hy € R
such that i1 fwg = hogwo # 0. Let

fwo=bowo +biw1 + -+ bypw, € Rwy
and
gwo = cowp + crwy + -+ - + crwy € Rwy,

where b;,c; € F,i, j=0,1,...,m, and some terms of b; and c¢; may be zero.
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Put hywo = xowo + x1w1 + - - + xewe and howo = yowo + y1wi + - - - + Yewy,
where x;, y; € F,i=0,1,..., £ (also some terms of x; and y; may be zero). Since
hi(wy) = S*hy(wo) and hy(wy) = S*ha(wop) for k =0,1,2..., we need to find
such x;,y; € F, 0 <i < ¢ so that h| fwyg = hagwo # 0 from the following equa-
tions:

boxg = coyo, boxi + bi1xg = coy1 + c1yo,
boxz 4 b1x1 + baxo = coy2 + c1y1 + 20,

box3 + b1xa + bax1 + b3xg = coy3 + c2y1 + c2y1 + €30,

and so on. Now say a(t) =bg+ -+ bpt™ #0and (t) =co+ -+ + cut™ #0
in the polynomial ring F[¢]. Then a(z)F[t] N B(t)F[t] # 0. We may note that
finding such xg,x1...,Xx¢, Y0, Y1-..,y¢ in F above is the same job for finding
X0, X1 ...,X¢, Y0, Y1 - - -, Ye such that

a(t)(xo +x1t + - +xet") = BU) (o + yit + -+ yetH) #0

in the polynomial ring F[t]. Observing that 0 # «(t)B(t) € a(t) F[t] N B(t) F[t],
take hjwo = cowp + ciwy + -+ - + cpwy, by putting £ =m, x; =¢; for 0 <i <m,
and howo = bowo + bywy + - -+ + by, wy, by putting £ =m, y; = b; for 0 <i <m.
Asa(®)B(t) #0,0%# hy fwo=hogwy € RfwogN Rgwy. So M is uniform.

Next, we show that each V,, is an essential extension of M (hence each V,, is
uniform). Indeed, let 0 # uv, € Rv, = V,, where u € R. Say

MV = Qnik Ukt + Gtk eVntk+o + bsws + -+ + Dy Wi -

If apik = -+ = apti+0 =0, then pv, € Wy. Otherwise, we assume that a, . # 0.
Let w € R such that w(v,44) = wo and w(v;) =0 fori #n +k and w(w;) =0 for
all j. Then 0 # wpv, = a,+rwo € Wo. Thus M = Wy is essential in V,,. Since M is
uniform, V,, is also uniform for all n.

We prove that g M is nonsingular. For this, assume that u € Z(x M) and let
K ={a € R|au=0}. Then K is an essential left ideal of R. So K N RS? # 0.
Thus there exists p € R such that pS? # 0 and pS?(u) = 0. Say

U= apWg + g1 Wet1 + - - + apw, with ag, agy1,...,a, € F.

Assume on the contrary that u # 0. Then we may suppose that a; # 0. Because
po(w,) =8"p(wy) forn=0,1,2,...,

0= pS*(u) = arpS*(wi) + a1 0S* (Wit1) + - - + @ pS? (wy)
= 4 S p(wo) + ax+18 3 p(wo) + - - - + @, S p (wo).

Here we put p(wo) = bewg +ber1wes1 +- - -+ b,w;. If p(wp) = 0, then we see that
pS%(wg) = p(w2) = S2p(wp) = 0. Also, pS%(wy,) =0 forall m = 1,2, ..., and
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pS?(vj)=0foralli =0, 1,.... Thus pS? = 0, a contradiction. Hence p(wg) # 0,
and so we may assume that by # 0. Note that

S 2 p(wo) = bewek+a + ber1werk+3 + - 4 brwrita,

S5 p(wo) = bewek+3 + ber1Werksa + -+ brwriis,

and so on. Thus 0 = pSz(u) = arbwoyr+2 + (axbos1 + ar+1bg)wesg+3 + -+, and
hence aib, = 0, which is a contradiction because a; # 0 and by # 0. Therefore
u =0, and so M is nonsingular.

We show now that V,, is continuous. Note that V,, is uniform. So clearly, V;, has
(Cy) condition. Thus, to show that V,, is continuous, it suffices to prove that every
R-monomorphism of V;, is onto for V,, to satisfy (C;) condition.

Let ¢ : V,, = V, be an R-monomorphism. We put

¢(vy) = pv, € Rv, =V, where p € R.

We claim that pv, & V,,41. For this, assume on the contrary that pv, € V1. Now
we let A € R such that Av, = v,, Avgy =0 for k # n, and Aw,, = 0 for all m. Then
©(Av,) = A(pvy,) =0 since p(vy,) € V1. But Av, = v, # 0. Thus ¢ is not one-to-
one, a contradiction. Therefore pv,, & V1.

As pv, € V,, write

PV = ApVp + Aui 1Vt + - + ApagVpte + bowo + - - - + bpwp,

where ap,, an+1, ..., ante, bo, b1, ..., by € F, and a, # 0.

Take v € R such that vv, = an’lvn, vvg = 0 for k # n and vw,, = 0 for all m.
Then we see that v, = vpv, € Rpv,. So Rv, C Rpv,, hence V,, = Rv, = Rpv,.
Thus ¢(Rv,) = Rp(v,) = Rpv, =V, so ¢ is onto. Therefore each V,, is continu-
ous.

Finally, note that the uniform nonsingular module M = Rwy is not continu-
ous, since the shifting operator S provides an R-monomorphism which is not onto.
Hence, M does not have a continuous hull (in E(M) = E(V)), because such a hull
would have to be contained in each V,,, and hence in M =N, V,,.

Despite Example 8.4.4, we will show that continuous hulls do exist for certain
classes of modules over a commutative ring as shown in the next several results. We
start with a lemma.

Lemma 8.4.5 Assume that R is a commutative ring and M is a nonsingular cyclic
R-module. Let E = E(MR) and T be a subring of End(ERg). Then:

(i) Erp(M)=0.
(i1) There exists a smallest continuous module V such that M <V < E and
TVCYV.

Proof Let | =rgr(M) < R.Put R=R/I. Then M = Rp.
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(i) Note that Er is nonsingular because Mg is nonsingular. Let x € E (RR). Then
there is an essential ideal L of R with xL € R/I. Hence (xI)L =xLI =0, so
xI C Z(EgR) =0. Thus, xI = 0. Therefore, EI = 0.

(ii) Step 1. By part (i), E has an R-module structure induced from the R-
module Eg. To see that E is the injective hull of the ‘R-module M, note that E
is an essential extension of M as an R-module. Let K /I be an ideal of R/I and
a € Hom((K /)%, Eg). Then « € Hom((K/I)g, ER) and so there exists an exten-
sion B € Hom((R/I)gr, Eg) of a. We see that 8 € Hom((R/I), E%). Hence E
is an injective R-module. Therefore, E is an injective hull of M as an R-module.
Further, M is nonsingular as an R-module by routine arguments.

By Theorem 2.1.31, E = Q(R), which is a commutative regular ring. Also from
Proposition 2.1.32, E = End(Eg) = End(E%) (= End(ER)). Thus T is a subring of
E. Also R is a subring of E.

Let P be the subring of E generated by all idempotents of E. We claim that
any regular subring A of E satisfying R P C A is continuous as an R-module (or
equivalently, as an R-module).

First, by Theorem 2.1.25 or Theorem 8.4.3, A is a quasi-continuous R-module
because PA = A. We show that Ay has (C;) condition. For this, let A = A @ A»,
which is an R-module decomposition, and let ¢ : A; — N be an R-isomorphism,
where Ng < Ag. Note that Homg (A, A1) = Homz(A, Ay). Further, from the proof
of Proposition 2.1.32, Hom#(A, A1) = Homa (A, Ay), because A is a ring of quo-
tients of R. Thus Homg(A, A|) = Homy (A, A}).

We let w1 : A — A; be the canonical projection of R-modules. Then we see
that 1 is an A-homomorphism. Therefore A; = m1(A) = 71 (1)A. Similarly, we
observe that ¢ € Homg (A1, N) € Homgr(A;, A) =Homu(Aq, A).

So we have that N = ¢(A1) = (w1 (1)A) = ¢m(1)A is a principal (right) ideal
of A. Hence Ny <® A, because A is a regular ring, and so Ng <® Ag. Thus Ag
satisfies (C,) condition. Therefore, A is a continuous module.

Let V be the intersection of all regular subrings V; of E with R PT C V;. Then
as in the proof of Theorem 8.2.6, V is a regular ring. Also R PT C V. Thus by
the preceding consideration, Vg is continuous. Clearly, ‘R C V C E. Moreover, we
obtain TV C V sinceT CRPT C V.

Step 2. Let Y be a continuous R-module such that Rrp<Yr<EpandTY CY.
Put B={b e E|bY CY}. Then B is a subring of E. Further, RCBand T C B.
Since Y is a continuous R-module and E(Yg) = E, PY =Y by Theorem 2.1.25 or
Theorem 8.4.3 (recall that P is the subring of E generated by the set of all idempo-
tents of E). So P € B.Thus RPT CBCE.

We claim that B is regular. For this, take b € B. Since E is commutative regular,
there exists ¢ € E such that b = beb and ¢ = cbc (see [264, Exercise 3, p. 36]). Note
that (cb)2 =cbe E and so cb € P. Hence, cbY C Y and cbYr <® Y. Define

¢ :bY — cbY by ¢ (by) = cby,

where y € Y. Then ¢ is an R-isomorphism because b = bch. Hence by (Cj)
condition of Y, there is g2 = g € End(Yg) such that bY = gY. Also there ex-
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ists f € E, which is an extension of g. Then we have that bY = g¥Y = fY and
(f = H¥) = (g - gHX) =0.

We show that (f — f 2)(E) = 0. Assume on the contrary that there exists x € E
such that (f — f2)(x) # 0. Since Y <% Eg and Ey, is nonsingular, Yz <% E by
Proposition 1.3.14. Thus there exists r € R such that xr € Y and (f — A (x)r 0.
Therefore, 0 # (f — f2)(x)r = (f — f?)(xr), which is a contradiction because
xreYand (f — f2)(Y)=0.Hence (f — f2)(E)=0, so

fP=feP and bY =gY=fYCY
asbeB. Thus(1— f)Y CYandY = fY & (1 — f)Y. Therefore
cY=cfY®c(l— f)Y =cbY & cbc(1 —f)Y:cheacz(l — f)bY.

AsbY = fY,c*(1 = f)bY =c*(1 — f)fY =0, and hence cY =cbY C PY =Y.
Thus ¢ € B, and so B is a regular gng. As_R PT C B and Bisaregularring, V € B
by the definitionof V.So V=VRCBRCBY CY. O

We remark that, if R is a commutative semiprime ring, then by Lemma 8.4.5
and Theorem 8.4.6 the continuous hull of Ry is the intersection of all intermediate
continuous regular rings between R and Q(R). Thus, the continuous hull of Ry is
exactly the continuous absolute ring hull Qcon(R) of R (see Theorem 8.2.6).

Theorem 8.4.6 Every nonsingular cyclic module over a commutative ring has a
continuous hull (which is a regular ring).

Proof Assume that M be a nonsingular cyclic module over a commutative ring R
and I =rg(M).Put R=R/I.Then M = Ry. Let E = E(Mg).

From Lemma 8.4.5(i), EI = 0. Thus, T := R/I can be considered as a subring
of Endg (E). By Lemma 8.4.5(ii), there exists a smallest continuous module V such
that M <V <Eand TV C V. So V is a continuous hull of M. O

The next example shows that quasi-continuous hulls (even for commutative
semiprime rings) are distinct from continuous hulls which are, in turn, distinct from
(quasi-)injective hulls.

Example 8.4.7 Let F,, =R forn=1,2,... and R the subring of ]_[floz1 F, gener-
ated by 69;’10:an and 11—[311 F,- Then E(Rg) = O(R) = ]_[sil F,. In this case, we
see that
o
U ={(an);2, € [ | Fu | an € Z eventually)

n=1

is the quasi-continuous hull of Rg (see Theorem 8.4.3). By Lemma 8.4.5,

o0
V={(an);2; € H F, | a, € Q eventually}

n=1
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is the continuous hull of Ry because V is the smallest continuous regular ring be-
tween R and Q(R) (therefore V is the intersection of all intermediate continuous
regular rings between R and Q(R)).

Consider an arbitrary cyclic R-module M = R = R/rg(M) over a commuta-
tive ring R. We fix the following notations: E = E (RR), E = E| ® E,, where
E| = Z»(E) (note that since Ep is injective, Z,(E) <® E by Proposition 2.3.10).
Write 15 = e1 + ez (where e1 € E7, and e; € E3) be the corresponding decomposi-
tion. Then E1 = E(e1R) and E» = E(eaR).

Proposition 8.4.8 Let M be a cyclic module over a commutative ring R and let
I =rgr(eaR). Then the following conditions are equivalent.

(i) e1R + £g, (1) has a continuous hull.
(i1) M has a continuous hull.

Proof Note that ep Rp is a nonsingular cyclic R-module. Say mp : E — E» is the
canonical projection onto E>. Let T be the subring of Endg(E>) generated by the
set {mom|E,}, where 7% =7 € Endg(E). By Lemma 8.4.5(i), E21 = 0. Also from
Lemma 8.4.5(ii), there exists a smallest continuous module V> with e;R <V, < E)
and TV, C V,.

(i)=(ii) Assume that there exists a continuous hull Vj of eiR + £g,(I).
We claim that V = V| @ V, is continuous. For this, first we prove that V
is quasi-continuous. Let ml=gx € Endg(E). Then m|g, € Endg(E;) because
E\ = Z(E) 4 E. Therefore, 7 (V1) = m|g, (V1) € Vi by Theorem 2.1.25 since
V1 is continuous. Let wy : E — E; be the canonical projection onto E; and put
¢ =m7|Eg,. Then ¢ € Homg(E2, E1). Also, ¢ (Vo)I = ¢(Vol) € ¢p(E2I) =0, so
¢ (Vo) CLg,(I) € V. Hence, mym(V2) € Vi.

Next mom|g, € T, and hence mpm(V2) € TV, C V,. Therefore, we have that
a(V)=a(V))+a(Vo)=a(V)) + mi7n(Vo) +mm (V) C Vi + Vo, =V.Thus V is
quasi-continuous by Theorem 2.1.25.

By Lemma 2.2.4, V| and V; are relatively injective. Since V; and V, are continu-
ous, V = V| @ V; is continuous by Theorem 2.2.16. Next, we show that V =V & V;
is a continuous hull of M = Rp. For this, say Y is a continuous module such that
R<Y <E=E|® E,. Then since EY)=E,Y =Y, ®Y, from Theorem 2.1.25,
where Y1 =Y N E; and Y2 =Y N Ej. Observe that e; =1 (1) € m1(Y) =Y and
e =m(lyg) € mp(Y) =Y2. So 1R C Y1 and e2R C Y5. Since Y is continuous,
m(Y) €Y by Theorem 2.1.25 and so mom(Y2) € mon(Y) C ma(Y) = Ya. Hence,
TY, CY;. Note that Y5 is continuous by Theorem 2.2.16. Thus V> C Y5 since V5 is
the smallest continuous module such that e;R <V, < Ep and TV, C V5.

To show that £, (1) € Yy sothat ey R + £g, (1) C Y1, take a € £g,(I). Then the
map f :e2R — aR defined by f(exr) =ar for r € R is an R-homomorphism.
Thus, there is ¢ € Homg(E>, E1) with ¢|,,g = f. Note that £; = E(Y;) and
E, = E(Y3). Since Y =Y @ Y» is continuous, Y7 is Yz-injective by Lemma 2.2.4.
Thus, ¢(Y>2) C Y1 from Theorem 2.1.2. Whence a = f(e2) = p(e2) € ¢(Y2) C 7.
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Therefore, £g, (1) € Y1,50 et R+ £g, (I) C Y;. Hence V| C Y| because Y] is con-
tinuous by Theorem 2.2.16. This yields that V =V & V, C Y| @ Y, =Y. Therefore
V is a continuous hull of Rg.

(i))=>(i) Assume that there exists a continuous hull W of Rg. Then as in the
argument used in the proof of (i)=>(ii), we have that

W=W®W,, e1R+Lg, (I) S W CE, 2RC W, C Ey,

and TW, C W,.

LeteiR+ £k, (I) < U < E; with U a continuous module. We see that U & W
is quasi-continuous exactly as in the proof of (i)=>(ii) for showing that V =V & V;
is quasi-continuous. Thus U and W, are relatively injective by Lemma 2.2.4. So
U & W, is continuous by Theorem 2.2.16 as both U and W, are continuous. Hence,
W =W & W, <U & W,. Therefore, W; < U. Thus W; is a continuous hull of
1R + g, (D). O

An element a € R is said to act regularly on an R-module M, if ma = 0 implies
m = 0 for m € M. Motivated by the condition in Proposition 8.4.8, we now obtain
the following result.

Lemma 8.4.9 Let E be an indecomposable injective module over a commutative
ring R. Assume that f € E and I I R. Then fR + £g(I) has a continuous hull.

Proof Let C be the multiplicatively closed set of those elements of R which act
regularly on E, and let RC~! be the corresponding right ring of fractions of R (see
Proposition 5.5.4). For ¢ € C, we see that E = Ec < E. Since E is indecomposable
and injective, E = Ec. Take y € E andrc¢~! € RC~!, where r € R and ¢ € C. From
E = Ec, there exists uniquely y; € E such that y = y;c. Define yrc¢~! = y;r. Then
E becomes an RC~'-module.

Say V is a continuous R-submodule of E. Then each ¢ € C defines an R-
monomorphism V — V. Thus V = V¢ < V. Since V is continuous and uniform,
Ve =V. As in the previous argument, V becomes an RC~'-module.

Let A =£g(I). To see that A is an RC~!'-module, we first prove that A is quasi-
injective. For this, take & € End(E) and let x € A. Then x/ =0 and thus h(x)I =
h(xI) =0. Therefore, h(x) € A. Thus, A J E. If A =0, then A is quasi-injective.
Suppose that A # 0. As E is indecomposable injective, E = E(A) and so A is
quasi-injective by Theorem 2.1.9. Thus A is an RC~!-module by the preceding
argument.

We show that fRC~! 4 A is a continuous R-module. If f € A, then we obtain
fRC™' 4+ A= A, and therefore fRC~! 4 A is a continuous R-module. Next, as-
sume that f ¢ A. Weletg: fRC™'+ A — fRC™' + A be an R-monomorphism.
Then ¢ can be extended to an isomorphism @ of E because f RC~! 4 A is essential
in E, and E is indecomposable and injective.

Write ¢(f) = ft4a, wherer € RC™! and a € A. We note that ¢(f) ¢ A. For, if
o(f)=@(f) € A, then f e g1 (A) C A as A < E, which is a contradiction. Hence

ft#0,s0t#0.
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Put r = r¢~! with r € R and ¢ € C. We show that ¢ is invertible in RC~'. Let
u € End(E) such that u(y) = yt, where y € E. If u is one-to-one, then r acts
regularly on E, thus r € C. Therefore, t = rc~ 1 is invertible in RC~!.

Assume that u is not one-to-one. Then u € J(End(E)) as End(E) is a local ring.
Thus,  — w is an isomorphism because ¢ is an isomorphism. Put ¢ =¢ — u. By
Theorem 2.1.9, ¥ (A) C A because A is quasi-injective.

Next, for w € A, there exists v € E such that ¥ (v) = w as v is an isomorphism.
Whence ¥ (vI) =y (v)] = wl =0. Hence vl =0,s0v € A. Thus w € ¥y (A). Asa
consequence, A =Y (A) = (¢ — w)(A).

In particular, a = (g — w)(b) with b € A. So p(b) — bt =a. Let f' = f —b.
Then fR+A=f'R+A.As f € A, f'#0.Recall that 9(f) = ft + a. Therefore,
o(f) = 9(f —b) = @(f) — 9(b) = (ft +a) — (a+ br) = ft — bt = f't. Take
0+ x € E. Since E is indecomposable injective and f’ # 0, f'R is essential in E.
So there exist r, 7’ € R with xr = f'r’' #0.

If xt =0, then o(f'r") = @(f)r' = f'tr' = xtr =0. Hence f'r' =0 as ¢ is
a monomorphism, a contradiction. Thus xf # 0, so ¢ acts regularly on E. Hence
¢ € C, and thus 7 is invertible in RC~!.

From ¢(f) = ft +a, ¢(f) —a = ft. Therefore

f=@f)—ayp ' =p(f)r ' —ar " ep(f)RC '+ A

because A is an RC~!-module. Hence fRC™' + AC ¢(f)RC™' + A. Asgisan
isomorphism, A = @(A) by the preceding argument. Hence A = ¢(A).

Note that ¢ € Endpc-1 (fRC~!' 4+ A). Indeed, fora € fRC™'+ AandceC,
(p(cxc’l)c = ga(ac’lc) = ¢(a) and so (p(ac’l) = go(oz)c’l. Thus we have that
FRCT'+ ACo(f)RCT'+ACp(f)RC" +¢(A) =9(fRC™' + A). Hence ¢
is onto. From this fact, every R-monomorphism from fRC™' + Ato fRC™' + A
is onto. Therefore, f RC~! 4+ A is a continuous R-module because fRC~! + A is
uniform.

Finally, assume that N is a continuous R-module with fR+ A C N C E. By the
preceding argument, N is an RC~'-module (also note that A is an RC~'-module).
Thus, fRC™' 4+ AC N.So fRC~! + A is a continuous hull of fR + A. O

The following result is an extension of Theorem 8.4.6.

Theorem 8.4.10 Let R be a commutative ring. Then every cyclic module M with
Z (M) uniform, has a continuous hull.

Proof Let E = E(M). Then E = E{ & E,, where E| = Z>(E). We observe
that £y = E(Z,(M)) = E(Z(M)) as Z(M) is essential in Zy(M). Since Z(M)
is uniform, E; is indecomposable injective. Let I = rg(e2R). By Lemma 8.4.9,
e1R + £g, (1) has a continuous hull. Hence, Proposition 8.4.8 yields that M has a
continuous hull. O

When M is a uniform cyclic module over a commutative ring, M has a continu-
ous hull by Theorem 8.4.10. This continuous hull is described explicitly in the next
theorem.
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Theorem 8.4.11 Let R be a commutative ring, and M = f R a uniform cyclic R-
module. Then MC~' = fRC™! is a continuous hull of M, where C is the multi-
plicatively closed set of those elements of R which act regularly on M.

Proof Take I = R in Lemma 8.4.9. Then £ (1) = 0. By the proof of Lemma 8.4.9,
MC~!= fRC~! is a continuous hull of M. O

The following is an example of a continuous hull of a uniform cyclic module
over a commutative ring, which is distinct from its quasi-continuous and injective
hulls.

Example 8.4.12 Consider the ring

A={ Y aix'|e; €Zanda; =0 forall but finitely many i}.

i€[0,00)

Let R = A/I, where [ is the ideal of A generated by x. Then Rg is uniform and
nonsingular. Thus Q(R) = E(Rg) by Corollary 1.3.15, and Q(R) is regular by The-
orem 2.1.31. Since R is uniform, Q(R) has only O and 1 as its idempotents (hence
Q(R) is a field). So the quasi-continuous hull of Ry is Ry itself by Theorem 8.4.3
or Theorem 2.1.25. Next, consider

B={ Z o x! | ¢; € Q and «; = O for all but finitely many i}.

i€[0,00)

Take Q = B/K, where K is the ideal of B generated by x. Let C be the set of
all non zero-divisors of R. Then Q = RC~!, which becomes the classical ring of
quotients of R. By Theorem 8.4.11, Qp is the continuous hull of Rg.

We claim that Q is not injective. For this, consider the ideal U ,x!'/"R of R
and the map ¢ : U;'Zozlxl/”R — O, where ¢|,1/np = ¢, is given by the multipli-
cation by 1 + x1/2 4 ... 4 x(0=2/n=D 4 xy=D/n_Then ¢ is well-defined since
Gntilyt/ng = @n. Also, ¢ is an R-homomorphism. However, there is no element
q € Q, for which ¢ (x) = gx for all x in U;’lozlxl/”R. Since, in that case, ¢ would
have to be an infinite sum, and such g does not lie in Q. Consequently, ¢ cannot be
extended to R. Thus, Qr is not injective.

In the next example, we exhibit a free module of finite rank over a commutative
domain, which does not have an extending hull.

Example 8.4.13 Let R = Z[x, y], the polynomial ring. Put M = R & R. Then the
R-module M is not extending by Theorem 6.1.4 and Exercise 6.1.18.1 because the
commutative domain R is not Priifer. Let F = Q(x, y), the field of fractions of R.
Notethat E(M)=F & F.

Let U = F & R and S = End(Ug). As Hom(Fg, Rg) =0,

§— End(Fgr) Hom(Rpg, Fr)
- 0 End(Rg)
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By Theorem 4.2.18, Uk is a Baer module. We claim that Uy is a K-cononsingular.
For this, say Ng < Ug such that £g(N) =0.If N C F &0, then £5(N) # 0. Also,
if N CO® R, then £5(N) # 0. Thus, there are 0 # go € F and 0 # rg € R such that

o= |:Z(())1| € N.Let f €e Hom(Rg, Fg) defined by f(r) = (—qo/ro)r forr € R. Put

(p=|:(1)£:|ES.

Then ¢(a) =0, and so €5(x) # 0. If N =«aR, then £5(N) =£Ls(x¢R) # 0, a con-
tradiction. Therefore, R C N. Assume that «R N R # 0 for each f € N \ «R.
Then there are a, b € R with va = b # 0. For s € S, note that s = 0 if and only
if sa¢a = 0 if and only if s8b = 0 if and only if s8 = 0. Thus £5(x) = £5(B) for all
B €N\ aR. Take 0 # s € £5(a). Then 59 € £5(N), which contradicts £5(N) = 0.
Thus, there exists 8 € N \ «R such thata R N SR = 0.

SoaF NBF =0, hence o and B are linearly independent vectors in the vec-
tor space F @ F over F. Thus, «F @ BF = F @ F. Therefore, we have that
(@R ® BR)r <*° (a«F ® BF)r = (F & F)r. So N <°5 (F & R)g because
(tR®BR)R < Nr <(F®R)gr <(F® F)g. Hence, Ug is K-cononsingular.

By Theorem 4.1.15, Ug is extending. Similarly, Wg = (R & F)p is extending.
Because U N W = M and M is not extending, M cannot have an extending hull.

We use SFI to denote the class of strongly FI-extending right modules (or the
class of right strongly Fl-extending rings according to the context). In contrast
to Example 8.4.13, we show that over a semiprime ring R, every finitely gener-
ated projective module Pg has the Fl-extending module hull Hgy(Pr) (see Defini-
tion 8.4.1). This module hull Hpy(Pg) is explicitly described in Theorem 8.4.15. As
a consequence, it will be seen that a finitely generated projective module P over a
semiprime ring R is FI-extending if and only if it is a quasi-Baer module if and only
if End(Pg) is a quasi-Baer ring. This result will also be applied to C*-algebras in
Chap. 10.

Lemma 8.4.14 Assume that M is an Fl-extending module. Then f M C M for any
f € B(End(E(Mg))).

Proof Say f € B(End(E(Mg))). Then fE(Mgr) " M < M. Because M is FI-
extending, there exists g2 = g € End(Mp) satisfying

FE(Mg) N M <% gM <* gE(Mp),

where g is the canonical projection from E(Mgr) = E(gMp) ® E((1 — g)Mp) to
E(gMpg). Now we note that fE(Mg) N Mg <*° fE(Mg). Thus f =g as f is
central in End(E(MRg)).So fM =gM =gM C M. O

We observe that Lemma 8.4.14 shows connections to Theorem 2.1.25 (and also
Lemma 9.3.12). The next result shows and explicitly describes the unique (up to
isomorphism) Fl-extending hull for every finitely generated projective module over
a semiprime ring.
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Theorem 8.4.15 Every finitely generated projective module Pr over a semiprime
ring R has the Fl-extending hull Hyy(Pr). Indeed,

Hyp(Pg) = e(@" Op1(R)R),

where P = e(®" RR) for some positive integer n and ez = e € End(®"Rp).

Proof Step 1. Or1(R)g is strongly FI-extending. From Theorems 3.2.37 and 8.3.17,
Or1(R) = Q¢B(R) = RB/(\Q(R)) is quasi-Baer, right strongly Fl-extending, and
semiprime. To show that Qfy(R)R is strongly FI- extending, take Ur < Op1(R)R.
Then by Lemma 8.1.3(ii), UR <oss QFI(R)UQFI(R)R Theorem 3.2.37 yields
that QFI(R)UQFI(R)QFI(Q hQFI(R)QFI(R) for some i € B(Qpi(R)). By
Lemma 8.1.3(1), Qrr(R)U OF1(R) g <** hQFI(R)R

Now End(QFI(R)R) = End(QFI(R)QFI(R>) = QFI(R) from Proposition 2.1.32.
Therefore Alh QFI(R)) =h(A QFI(R)) forany A € End(QFI(R)R) Thus hQFI(R)R
< QFI(R)R, SO QFI(R)R is strongly Fl-extending because Ug < <©s hQFI(R)R

Step 2. Hpp(®"Rg) = &" QFI(R)R Note that QFI(R)R is Fl-extending by
Step 1, so ®" QFI(R)R is Fl-extending by Theorem 2.3.5. Suppose that Ng is FI-
extending such that ®"Rr < Ng < E(@"Rg) = ®"E(RR).

Take f € B(Q(R)). Then f = A(1) for some A € B(End(E(Rg))) from
Lemma 8.3.10. Let A1, which is the n x n diagonal matrix with A on the diago-
nal, where 1 is the identity matrix in End(®" E(Rg)) = Mat,,(End(E(Rg))). Then
because A1 € B(End(®" E(Rg))), AN C N by Lemma 8.4.14, and so

R fR R
M| |=| : | SN, where | : | =&"Rg.
R| |fr R

As Opi(R) = RB(Q(R)) by Theorem 8.3.17, we have that &" Op1(R)g < N,

hence Hp1(®" Rg) = ®" Qr1(R)r.
Step 3. Hpi(e(®"Rg)) = e(@" Qr1(R)g). For this, we first observe that

&" Or1(R)g = e(@" QFI(R)R) @ (1 — e)(@" Or1(R)r). As Ori(R)g is strongly
Fl-extending by Step 1, @" QFI(R) r 1s strongly Fl-extending by Theorem 2.3.23.
So e(®" Qr1(R)R) is strongly Fl-extending from Theorem 2.3.19.

Let Vg be Fl-extending such that e(&" Rg) < Vg < E(e(®"Rg)). Then

@"Rr=e¢(@"RR)® (1 —e)(@"Rr) < VR ® (1 —e)(®"RR)
< Vr®E[(1 —e)(@"Rp)].

Since Vp is Fl-extending and E[(1 — e)(" Rg)] is injective, Theorem 2.3.5 yields
that Vg @ E[(1 — e)(@" Rg)] is Fl-extending. Therefore by Step 2,

Hp1(®"Rg) = @" Op1(R)g < Vr @ E[(1 — ¢)(®"Rg)].
To prove that e(H" QFI(R)R) < Vg, we take
ea € e(®" Op1(R)R). where a € ®" Op1(R)k.
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Since e(®" @FI(R)R) <Vr® E[(1 —e)(®"RR)], ex =v + y for some v € V and
y € E[(1 —e)(®" Rg)]. Thus,

ea —v=ye[e(@" Or(R)r)+ VINE[(l —e)(@"Rp)].

Since e(®"Rg) <** e(®"Op(R)r). Ele(®"Or(R)p)] = El[e(®"Rp)]l. So
[e(@" Qri(R)R) + VINE((1 — e)(@"Rp)] < E[e(@"Rr)] N E[(1 — e)(®" Rp)].
Hence, e« —v =1y =0, so ex =vE V. Therefore, e(®" Qpr(R)r) < Vg. Conse-
quently, Hpi(e(®" Rg)) = e(@" Or1(R)g).

Step 4. Hpr(Pr) = e(®" Qr1(R)g). Let 0 : Pg — e(D" RR) be an isomorphism.
Then o can be extended to an isomorphisrnAE : E(PRr) — E(e(®"RgR)). We see that
Hp1(Pr) =7 (e(®" OF1(R)R)) = e(@" QF1(R)R)- O

Remark 8.4.16 By the proof of Theorem 8.4.15, the strongly FI-extending hull and
the Fl-extending hull of a finitely generated projective module Pg coincide when R
is semiprime.

If R is not semiprime, the above remark does not hold. For example, let
R = 7Z3[S3], the group algebra of S3 over the field Z3, where S3 is the symmet-
ric group on {1, 2, 3}. By Example 2.3.18, Ry is not strongly Fl-extending. Thus
Hgr1(RR) does not exist because Ry is injective.

The existence of an Fl-extending hull of a module is not always guaranteed, even
in the presence of nonsingularity, as the next example shows.

Example 8.4.17 Let R be the ring of Example 8.2.9. Then Hfr(Rg) does not exist.
Indeed, let Hy and H> be rings as in Example 8.2.9, which are right FI-extending
rings. Since H and H are right rings of quotients of R, H; and H; are Fl-extending
right R-modules by Proposition 8.1.4(i). Suppose Hrr(RRr) exists. Then it follows
that Hp1(Rgr) € H1 N Hy = R, so Hpr(RR) = Rr. But, Rg is not Fl-extending, a
contradiction.

Corollary 8.4.18 Assume that R is a semiprime ring and Pr is a finitely generated
projective module. Then Qyr(End(Pg)) = End(Hp1(PR)).

Proof Since Pgr = e(@" Rg) with 2 =ec Mat, (R), End(Pg) = eMat, (R)e. Also
by Theorem 8.4.15, Hyy(Pr) = e(®" Qr1(R)). Thus it follows that

End(Hyr(Pg)) = eMat, (End(Qr1(R) r)e.

Now End(QFI(R)R) = QFI(R) by Prop0s1t10n 2.1.32.

Hence End(HFI(PR)) = eMatn(EndR(QFI(R)R))e = eMatn(QFI(R))e Next,
we observe that QFI(eMatn (R)e) = eQFI (Mat, (R))e since Mat, (R) is semiprime
and 0 # ¢ = ¢ € Mat, (R) (see Theorem 3.2. 37 and Lemma 9.3. 9)

So End(Hp1(Pg)) = e Op1(Mat, (R))e = Op1(eMat, (R)e) = Qg1 (End(Pg)). O

When Pg is a progenerator, we have the following.
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Corollary 8.4.19 Let R be a semiprime ring. If Pg is a progenerator of the category
Mod-R of right R-modules, then Hp1(PR) g, () IS @ progenerator of the category
Mod- QFI(R) of right /Q\FI(R)-modules.

Proof Assume that Pg is a progenerator for Mod-R. Let Pgr = e(®" Rg) with
e? = ¢ € Mat, (R) and let S = End(Pg). Then R is Morita equivalent to S and

S = eMat, (R)e with Mat, (R)eMat,(R) = Mat,(R).

Now Mat, (Qp1(R))eMat, (Qp1(R)) = Mat, (RB(Q(R))) = Mat, (Op1(R)) by ob-
serving that Qpr(R) = RB/(\Q(R)) from Theorem 8.3.17. R

Since Hpp(PR) = e(®" Qr1(R)), End(HFI(PR)QFI(R)) = eMat, (’QFI(R))e. Thus,
\iv\e get that HFI(PR)QFI( R) is a progenerator of the category Mod-Qpr(R) of right
Or1(R)-modules. Il

A connection between Fl-extending modules and quasi-Baer modules can be
seen in the next result.

Theorem 8.4.20 Assume that PR is a finitely generated projective module over a
semiprime ring R. Then the following are equivalent.

(i) Pg is (strongly) Fl-extending.
(i1) Pg is a quasi-Baer module.
(iii)) End(PRr) is a quasi-Baer ring.
(iv) End(Pgr) is a right Fl-extending ring.

Proof Let Pr = e(P" RR), where e? = ¢ € End(®"Rg) = Mat,(R) and n is a pos-
itive integer.

(1)=(i) If Pg is Fl-extending, then Pg = HFI(PR) Ze(" QqB(R)R) by Theo-
rems 3.2.37, 8.3.17, and 8.4.15. Note that End(QqB(R)R) QqB(R) from Propo-
sition 2.1.32. By Theorems 3.2.37, 8.3. 17 and Proposition 8.1.4(i), QqB (R)r
is FI- extendmg Next, we show that QqB(R) R 1s quasi-Baer. For this, take
Nr & QqB(R)R As End(QqB(R)R) = QqB(R) N is a left 1deal of QqB(R) Thus
ZQQB(R)(N) QqB(R)g for some g2 =g € QqB(R) So QqB(R)R is a quasi-
Baer module By Theorem 4.6.15 &" QqB(R) R is a quasi-Baer module. Hence
e(@" QqB(R)R) is a quasi-Baer module by Theorem 4.6.14. So Pg is quasi-Baer.

(i1)=(iii) It follows from Theorem 4.6.16.

(1i)=(@1) Let End(Pg) be qua51 -Baer. Because End(PR) = eMat, (R)e,
eMat, (R)e = QqB (eMat, (R)e) = quB(Mat,, (R))e = eMatn(QqB(R))e (see Prop-
osition 9.3.7 and Lemma 9.3.9). Next, let f € B(Q(R)). Then we have that
f1 € BMat,(Q(R))), where 1 is the identity matrix of Mat, (R). Thus

e(f1)e € eMat, (Qqp(R))e = eMat, (R)e.
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Take e(f1)e = [«;;] € eMat, (R)e. Then

fR R R R
el ¢ |=e(fDe| : |=elajle| : |Ce]:
fR R R R

So e(@" Qq(R)r) = e(@" Rg) because Qqp(R) = RB(Q(R)) by Theorem 8.3.17.
From Theorems 8.4.15 and 8.3.17, Hpy(e(®"Rr)) = e(®" Rp) since QqB(R)
QFI(R) and so e(®" Rg) is (strongly) Fl-extending. Therefore, Pg is (strongly)
Fl-extending.

(iii))<(iv) Since End(Ppg) is semiprime, Theorem 3.2.37 yields the equiva-
lence. O

We observe that the rational hull E (M) of a module M is an 91 hull of M,
where 91 is the class of rationally complete modules (see Definition 8.4.1 and [262,
p. 2771). Consider M =Z, & Z 3 and N =Zp, & pZ,3, where p is a prime integer.
Then Nz <®5 Mz and N7z is extending (by direct calculation or [301, p. 19]). But
recall from Example 2.2.1(ii) that M7z is not extending. So the extending property
does not, in general, transfer to essential extensions of modules. However, Theo-
rem 8.1.8 motivates one to ask: Does the (FI-)extending property transfer to rational
extensions in modules? Our next result shows this to be the case for rational hulls.

Theorem 8.4.21 Let M be an (FI-)extending module. Then E (M) is an (FI-)
extending module.

Proof First, we assume that M is extending. Let K < E(M) and N=KNM.
Then N <% eM for some e> = e € End(M). By Proposition 1.3.6 and [262, The-
orem 8.24], there exists f € End(E(M)) such that f|y =e. As E(M) is injective,
there is g € End(E (M)) satisfying glE(M) =f.

Let m € M. Then (g —g)(m) = (e? — e)(m) = 0. From the definition of E(M)
(see the definition of E(M) after Proposition 1.3.6), (g —g)(y) =0 for all y in
E(M) Hence f2 = f. Assume that there exists k € K such that f(k) — k # 0. As
M <den E(M) there exists r € R satisfying kr € M and (f (k) — k)r # 0. Then
kr € N, so (f(k) —kr = f(kr) — kr = e(kr) — kr =0, a contradiction. Hence,
K < fE(M) Let 0 # f(v) € fE(M) with v € E(M) Then there is s € R such
that vs € M and f(v)s # 0. Now we see that 0 # f(v)s = f(vs) = e(vs) eM.
So 0 # f(v)st € N < K for some t € R. Therefore, K <% fE(M) SO E(M) is
extending.

Next, assume that M is Fl-extending and that K < E (M).Put N =K NM.We
claim that N < M. For this, take h € End(M). From Proposition 1.3.6 and [262,
Theorem 8.24], there exists f € End(E (M)) such that f|y = h.

Soh(N)= f(N) S KNM =N.Thus, NI M. From the proof similar to the
case when M is extending, we obtain that E(M) is Fl-extending. g
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For an example illustrating Theorem 8.4.21, consider M = Z & Z,, where p is
a prime integer (see [262, Example 8.21]).~By Theorem 2.3.5, M7z is Fl-extending,
but not extending (see [301, p. 19]). Now E(Mz) = Zp ® Z,, is Fl-extending from
Theorem 8.4.21 or Theorem 2.3.5, but not extending (see [301, p. 19]), where Zp is
the localization of Z at P = pZ.

Exercise 8.4.22

1. Let R be the ring in Example 8.4.12. Prove that Rg is uniform and nonsingular.
2. ([98, Birkenmeier, Park, and Rizvi]) Assume that R is a semiprime ring and Pg
is a finitely generated projective module. Show that
@) Rad(HFI(PR)QFI(R)) NP= Rid(PR).
(i) Hpi(Pr) = P ®r Qr1(R) as Qp1(R)-modules.
(iii) Hpr(Ppg) is also a finitely generated projective Qpr(R)-module.
3. Let M be a bounded Abelian group. Prove that Mz has an extending hull. (Hint:
see [172, p. 88] and [301, p. 19].) -
4. Let M be a continuous module. Show that E (M) is quasi-continuous.

Historical Notes Results of Sect. 8.1 are obtained by Birkenmeier, Park, and Rizvi
in [89]. The concept of a K absolute ring hull in Definition 8.2.1 was already implicit
in the paper [307] by Miiller and Rizvi from their definition of a type III continuous
module hull (see also Definition 8.4.1). Theorem 8.2.6 from [89], is an adaptation
of [354, Theorem 4.25]. Other results of Sect. 8.2 appear in [89].

Many results in Sect. 8.3, which were originally stated and proved for a ring with
identity, have been extended to rings R with £g(R) = 0. Definition 8.3.1 was pro-
vided in [96]. Proposition 8.3.2 is due to Johnson [236]. Results 8.3.3-8.3.8 are due
to Birkenmeier, Park, and Rizvi in [96]. Theorem 8.3.8(ii) is an unpublished new
characterization. Theorem 8.3.11(i), (ii), and (iii) appear in [96]. Corollary 8.3.12 is
an unpublished new result. Also Theorem 8.3.13(i), (ii), and (iv) were shown in [96].
Proposition 8.3.16 and Theorem 8.3.17 are due to Birkenmeier, Park, and Rizvi [97].
In [163], Ferrero has shown that Q°(R) is quasi-Baer for any semiprime ring
R. Example 8.3.18 is taken from [262, Example 13.26(4)]. Results 8.3.20, 8.3.21
and 8.3.23 appear in [97].

Theorem 8.3.22 is due to Passman [340] and Connell [131]. Example 8.3.25
appears in [102]. Lemma 8.3.26 and Theorem 8.3.28 are obtained in [97]. In [42], it
is shown that LO does hold between R and RB(Q(R)). Lemma 8.3.29 is from [322].
Beidar and Wisbauer [42] show that R is biregular if and only if R is semiprime and
RB(Q(R)) is biregular (see Exercise 8.3.58.8). Also, they show that R is regular and
biregular if and only if RB(Q(R)) is regular and biregular [42]. Corollary 8.3.30
from [97], complements their results.

Results 8.3.31-8.3.37 appear in [97]. Let R be a semiprime PI-ring. Then so is
Q(R) by aresult of Martindale [292]. Also by a result of Fisher [168], a semiprime
PI-ring R is right nonsingular. Thus Q(R) is a regular right self-injective PI-ring
from Theorem 2.1.31. So Q(R) has bounded index (of nilpotency) (see [221, Corol-
lary, p. 226]). Therefore, any semiprime PI-ring R has bounded index (of nilpo-
tency). Also any semiprime right Goldie ring has bounded index (of nilpotency).
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Results in [160] show that a semiprime right FPF ring has bounded index (of nilpo-
tency).

For a commutative semiprime ring R, Storrer [386] called the intersection of all
regular rings of Q(R) containing R the epimorphic hull of R. By showing this inter-
section was regular, he showed that every commutative semiprime ring has a small-
est regular ring of quotients. The existence of Baer ring hulls shown in [298] for the
case of commutative semiprime rings (see also Theorem 8.2.4) and in [208] for the
case of reduced Utumi rings, now follow directly from Proposition 8.3.36 (see [323]
for the existence of Baer ring hulls of commutative regular rings by a sheaf theoretic
method). Results 8.3.39—-8.3.44 appear in [101]. Theorem 8.3.44 shows that when R
is a commutative semiprime ring, Opqs(R) is related to the Baer extension consid-
ered in [254]. Lemma 8.3.46 and Theorem 8.3.47 appear in [94]. Theorem 8.3.50,
Theorem 8.3.53, and Example 8.3.57 were obtained by Armendariz, Birkenmeier,
and Park [29], while Proposition 8.3.49 and Theorem 8.3.56 appear in [96].

Results 8.4.4-8.4.12 are taken from [307], while Results 8.4.14-8.4.20 appear
in [98]. Theorem 8.4.20 is a module theoretic version of Theorem 3.2.37 for a
finitely generated projective module over a semiprime ring. The proof of Theo-
rem 8.4.21 when M is extending corrects the proof of [1, Theorem 5.3]. We include
some more related references such as [43, 86, 87, 90, 133, 143, 146, 197, 225, 257,
258, 337, 351], and [370].
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