Chapter 5
Triangular Matrix Representations
and Triangular Matrix Extensions

A ring R is said to have a generalized triangular matrix representation if R is ring
isomorphic to a generalized triangular matrix ring

Ry Rz -+ Ry
0 Ry - Ry
0 0 ---R,

where each R; is aring and R;; is an (R;, R;)-bimodule for i < j, and the matrices
obey the usual rules for matrix addition and multiplication. Generalized triangular
matrix representations provide an effective tool in the investigation of the structures
of a wide range of rings. In this chapter, these representations, in an abstract setting,
are discussed by introducing the concept of a set of left triangulating idempotents.
The importance and applicability of the concept of a generalized triangular ma-
trix representation can be seen from: (1) for any right R-module M, the generalized

triangular matrix ring
S M
0O R

where S = End(M), completely encodes the algebraic information of M into a sin-
gle ring; (2) aring R is ring isomorphic to

[R 1 R 12}
0 R |’
where Ry # 0 and R, # 0 if and only if there exists e € Sy (R) with e £ 0 and e # 1.
From (2), we see that there is a natural connection between quasi-Baer rings and
modules and generalized triangular matrix representation, since the “e” in Proposi-
tion 3.2.4(ii) is in S¢(R) and the “ f” in Proposition 4.6.3(ii) is in S¢(End(M)).

In a manner somewhat analogous to determining a matrix ring by a set of ma-
trix units (see 1.1.16), a generalized triangular matrix ring is determined by a set
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of left (or right) triangulating idempotents. The existence of a set of left triangulat-
ing idempotents does not depend on any specific conditions on a ring (e.g., {1} is a
set of left triangulating idempotents); however, if the ring satisfies a mild finiteness
condition, then such a set can be refined to a certain set of left triangulating idempo-
tents in which each diagonal ring R; has no nontrivial generalized triangular matrix
representation. When this occurs, the generalized triangular matrix representation is
said to be complete.

Complete triangular matrix representations and left triangulating idempotents
are applied to get a structure theorem for a certain class of quasi-Baer rings (see
Theorem 5.4.12). A number of well known results follow as consequences of this
structure theorem. These include Levy’s decomposition theorem of semiprime right
Goldie rings, Faith’s characterization of semiprime right FPF rings with no infi-
nite set of central orthogonal idempotents, Gordon and Small’s characterization of
piecewise domains, and Chatters’ decomposition theorem of hereditary Noetherian
rings.

Further, a sheaf representation of quasi-Baer rings is studied as another applica-
tion of our results of this chapter. Also the Baer, the quasi-Baer, the Fl-extending,
and the strongly FI-extending properties of (generalized) triangular matrix rings are
discussed. Most results of Sects. 5.1, 5.2, and 5.3 are applicable to an algebra over
a commutative ring.

5.1 Triangulating Idempotents

In this section, some basic properties of triangulating idempotents are discussed.
Then a result showing the connection between triangulating idempotents and gener-
alized triangular matrix rings is presented.

Definition 5.1.1 Let R be a ring. An ordered set {by, ..., b,} of nonzero distinct
idempotents in R is called a set of left triangulating idempotents of R if the follow-
ing conditions hold:

1 1=b1+---+by;
(i) b1 € S¢(R);
(iii) br+1 €Se(ckRer), wherecy =1— (b1 +---+by),forl <k <n—1.

Similarly, we define a set of right triangulating idempotents of R by using part
(i) in the preceding, by € S, (R), and by4+1 € S, (cx Rcy). By condition (iii) of Def-
inition 5.1.1, a set of left (right) triangulating idempotents is a set of orthogonal
idempotents.

Definition 5.1.2 A set {b1, ..., b,} of left (right) triangulating idempotents of R is
said to be complete if each b; is semicentral reduced.

Theorem 5.1.3 Let {by,...,b,} be an ordered set of nonzero idempotents of R.
Then the following are equivalent.
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@) {b1,...,bn} is a set of left triangulating idempotents.
(ii)) by +---+by,=1andbjRb; =0, foralli < j <n.

Proof (1)=(ii) By definition, by + --- + b, = 1. As bp € (1 — b1)R(1 — b;) and
b1 € S¢(R), boby =0 and by Rb| = byb1 Rby = 0. Similarly we obtain b; Rb; =0,
for all j > 1. By assumption b> € S¢((1 —b1)R(1 —by)) and {by, ..., b,} is orthog-
onal, thus for j > 2,

biRby =bjR(1 —b))by=bj(b1R+ (1 —b1)R)(1 — b1)b
=b;j(1—=b1)R(1 —b1)by=0jbr(1 —b1)R(1 —b1)b>
=0.

Continue the process, using (1 — b1 — by) R(1 — b1 — by) in the next step, and so on,
togethjRb; =0foralli < j <n.

(ii)=(i) Note that (1 — b1)Rby = (b2 + --- + by)Rb; = 0. So b1 € S¢(R) by
Proposition 1.2.2. Now by € (1 — b1)R(1 — by) as by(1 — by) = by — brb1 = by
and (1 — by)by, = by. Also (1 — by — by)(1 — by) =b3 + by + --- + b,,. Therefore
(1—=b1—b)[(1—=b1)R(1 —by)]by = 2?23 biR(1 —b1)by = 27:3 biRby =0. So
by € S¢((1 —b1)R(1 — by)) by Proposition 1.2.2. Continuing this process yields the
desired result. [l

Theorem 5.1.4 R has a (resp., complete) set of left triangulating idempotents if and
only if R has a (resp., complete) generalized triangular matrix representation.

Proof Let {by, ..., b,} be a set of left triangulating idempotents of R. Using Theo-
rem 5.1.3 and a routine argument shows that the map

biRb; biRby --- b1 Rb,,
O byRby --- b)Rb,
0:R— . . .

0 0 --byRby

defined by 6 (r) = [b;rb;] is aring isomorphism, where [b;rb ] is the matrix whose
(i, j)-position is b;rb ;. Conversely, assume that

Ry Rz -+ Rin
0 Ry --- Ry
p:R—| . . .
0 0 --- R,
is a ring isomorphism. Then {d)‘l(el]), e, q)_l (ean)} is a set of left triangulating

idempotents of R by a routine calculation, where ¢;; is the matrix with 1g; in the
(i, i)-position and 0 elsewhere. O
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Lemma 5.1.5 (i) S¢(eRe) S S¢(R) for e € S¢(R).

(i) fS¢(R)f SS¢(fRS) for f>=f €R.

(iii) Let e € S¢(R). If f is a primitive idempotent of R such that efe # 0, then
efe is a primitive idempotent in eRe and fef = f.

Proof (i) For g € S¢(eRe), gRg = geReg =eReg = Rg. So g € S¢(R).

(ii) Let ¢ € S¢(R) and r € R. Then (fg/)(frf)(fef) = (fHfrf)(fef).
Thus (f8/)(frf)(fef)=(fr/)(f&f).So fef €Se(fRS).

(iii) Note that 0 # efe = fe = fefe, so fef # 0 and (fef)?> = fef. As f
is primitive, fef = f. To show that efe is a primitive idempotent of eRe, we
note that (efe)(efe) = e(fef)e =efe. Let 0 £ h?> =h € (efe)(eRe)(efe). Since
e€S¢(R),he=h, fh=h,so hf = fhf, and thus (hf)(hf) =hf.As hf =0 im-
plies that h = hefe =hfe =0, hf is a nonzero idempotent in f Rf. Thus, hf = f
since f is a primitive idempotent. Note that (fe)2 = feand h € (efe)(eRe)(efe),
soh=hefe=hfe= fe=efe. Thus, efe is a primitive idempotent e Re. 0

Lemma 5.1.6 (i) If h is a ring homomorphism from a ring R to a ring A, then
h(Se(R)) S S¢(h(R)).

(i) Assume that e € S¢(R) US,(R) and f € S¢(eRe) US,(eRe). Then the map
h:R— fRf,defined by h(r) = frf forr € R, is a ring epimorphism.

Proof (i) The proof is routine.
(ii) Say x, y € R. Since e € S;(R) US,(R) and f € S¢(eRe) US,(eRe),

fxyf = fexyef = fexeyef = fexefeyef = fxfyf.
Therefore, h(xy) = h(x)h(y). Il

Proposition 5.1.7 Let {b1, ..., b,} be a set of left triangulating idempotents of R.
Then:

() ckeS,(R), k=1,....,n—1,wherecy =1— (b1 +---+ by).

() by +---+breSe(R), k=1,...,n.

(iii) The map hj : R — bjRbj, defined by hj(r) =bjrb; for all r € R, is a ring
epimorphism.

Proof (i) Recall that by € Sy(R) implies c; = 1 — b1 € S, (R) by Proposition 1.2.2.
As by € S¢(c1Rc1), c2 =1 — by — by € S, (c1 Rcy) by Proposition 1.2.2. Therefore
¢ € S;(R) by the right-sided version of Lemma 5.1.5(i). Using this procedure, an
induction proof completes the argument.

(ii) It is a direct consequence of part (i) and Proposition 1.2.2.

(iii) Put e = ¢; and f = br4+1. By part (i), e € S, (R), so f € S¢(eRe). From
Lemma 5.1.6(ii), the map r — frf is a ring epimorphism. O

Corollary 5.1.8 The ordered set {by, ..., by} is a (complete) set of left triangulating
idempotents of R if and only if the ordered set {b,, ..., b1} is a (complete) set of
right triangulating idempotents.
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Proof Let {b1,...,b,} be a set of left triangulating idempotents of R. Then by
Proposition 5.1.7(G), 1 — (by 4+ -+ + by—1) = b, € S, (R). We next show that
by—1 €S,((1 —b,)R(1 —by)). For this, first it can be checked that {b{, ..., b,_1} is
a set of left triangulating idempotents of (1 —b,) R(1 —b,) and 1 — b, is the identity
of (1 —b,)R(1 — b,). By Proposition 5.1.7(ii), by + - - - + b,—2 € S¢(R), and hence
b+ +by—2€S¢((1 —by)R(1 — by)). Therefore by Proposition 1.2.2,

(I =bp) = (b1 +b2+ -+ by—2) =by—1 €S,((1 = b)) R(1 — by))

and so on. By this argument, the ordered set {b,, ..., b1} is a set of right triangulat-
ing idempotents. Also, if {b1, ..., b,} is complete, then so is {by,, ..., b1}.

The converse is proved similarly. Further, completeness is left-right symmet-
ric since S¢(b;Rb;) = {0, b;} if and only if S,(b;Rb;) = {0, b;} (see Proposi-
tion 1.2.11). O

Exercise 5.1.9

1. Let R be a subdirectly irreducible ring (i.e., the intersection of all nonzero ideals
of R is nonzero) and {by, ..., b,} a set of left triangulating idempotents. Prove
the following.

(i) Foreachi # 1 there exists j < i such that b; Rb; # 0.
(ii) For each i # n there exists j > i such that b; Rb; # 0.
(iii) The heart of R (i.e., the intersection of all nonzero ideals of R) is contained

in b1 RbD,.
2. Let {by,..., by} be a set of left triangulating idempotents of a ring R. Prove the
following.

(i) b; € S¢(R) if and only if bj Rb; =0 forall j <.
(ii) b; €S, (R) if and only if b; Rb; =0 for all j > i.

5.2 Generalized Triangular Matrix Representations

Rings with a complete generalized triangular matrix representation will be charac-
terized. Then the uniqueness of a complete set of triangulating idempotents will be
discussed. We shall see that if aring R satisfies some mild finiteness conditions, then
R has a generalized triangular matrix representation with semicentral reduced rings
on the diagonal which satisfy the same finiteness condition as R. Thereby reducing
the study of such rings to those which are semicentral reduced. Further, it will be
shown that the condition of having a complete set of left triangulating idempotents
is strictly between that of having a complete set of primitive idempotents and that
of having a complete set of centrally primitive idempotents.

Lemma 5.2.1 Let 0% f2= f € R. If fR = ¢eR for every 0% e € S¢(fRf), then
f is semicentral reduced.

Proof Let0# e € S¢(fRf). Then since fR =¢R, f = ex for some x € R, and so
e=ef =eex =ex = f.Thus, f is semicentral reduced. U
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Lemma 5.2.2 (i) A ring R has DCC on {bR | b € S¢(R)} if and only if R has ACC
on{Rc|ceS,(R)}.

(i) A ring R has ACC on {bR | b € S¢(R)} if and only if R has DCC on
{Rc|ceS,(R)}.

@ii) If a ring R has DCC on {Rc | c € S;(R)}, then R has DCC on
{cR|ceS,(R)}.

Proof (i) Assume that R has DCC on {bR | b € S¢(R)}. Consider a chain
Rci CRcyC..., where ¢; € S;(R). Then (1 —c¢j))R 2 (1 — )R D ... with
1 —c¢; € S¢(R) (see Proposition 1.2.2). This descending chain becomes station-
ary, say with (1 — ¢,)R = (1 — c,4 ;)R for each j > 1. Then we have that
Lr((1 — c4)R) = Lr((1 — cptj)R) for each j > 1. Thus, Rc, = Rcy4 for each
j > 1. The converse is proved similarly.

(i1) The proof is similar to that of part (i).

(iii) Assume that R has DCC on {Rc | ¢ € S, (R)}. Let ciR 2 caR 2 ...
be a descending chain with ¢; € S,(R). Then c¢j+1 = cjci41. So it follows that
Ci+1Ci = CiCi+1Ci = ciCi+1 = ci41 because ¢; € S, (R). Therefore Rc; 2 Rci4 for
each i. Thus we have a descending chain Rc; 2 Rcp D ..., so there is n with
Rcy, = Rcyq1 = ... . Therefore, (1 — ¢;,)R = (1 — ¢,41) R. Hence, we obtain that
(I —cp)Rep =1 —cptr1)Ren = (1 —cpy1)Rep1-

We observe that Rc,, = ¢, Rc;, + (1 — ¢;)Re, =R + (1 — ¢;) Rc,, and

Repy1 =cnp1Ren1 + (1 — cpp1) Repg1 = et R+ (1 — cp) Rey

because ¢, ¢;,+1 € Sy (R) and (1 — ¢;) Rep, = (1 — ¢41) Rep+1- Therefore, we have
that c,R + (1 —c,)Rep =1 R+ (1 —cp)Rey, as Re, = Repy .-

To show that ¢, R = c¢,4+1 R, it suffices to check that ¢, R C ¢,4+1 R because
cn+1R € cyR. Now ¢, = ¢cy41y + o, where y € R and o € (1 — ¢,)Rcy, as
cnR+ (1 —cy)Ren = cnte1R + (1 — ¢)Rey. Since ¢y = 0 and ¢,41 = cpcnti
from c¢,+1R C c»R, ¢, = cﬁ = CpCpn+1Y + Cn = cp+1y € cut+1R. Therefore
cnR Ccp41 R, and hence ¢, R = ¢, +1R = ... . We conclude that R satisfies DCC
on{cR|ceS,(R)}. O

Lemma 5.2.3 Let e € S, (R). If R has DCC on {bR | b € S¢(R)}, then eRe has
DCCon {d(eRe)|d €S¢(eRe)}.

Proof First, we show that {(eRe)c | ¢ € S,(eRe)} has ACC. For this, assume
that (eRe)c; C (eRe)cr € ... is an ascending chain, where ¢; € S,(eRe) for
i=1,2,.... By the right-sided version of Lemma 5.1.5(i), each ¢; € S, (R). Note
that ecje € (eRe)ecie C (eRe)ecite.

So there exists x € eRe such that ec;e = xec;41e. Thus,

(1—=e)Rci =(1 —e)Recie=(1 —e)Rxecit1e
C(—e)Recir1e=(1 —e)Rci+1.
Therefore, for each i,

Rci =eRci + (1 —e)Rc; = (eRe)ecie + (1 — e)Rc;
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C (eRe)eciyie+ (1 —e)Rci1 =eRciy1 + (1 —e)Reiqg

= Rci41.

By assumption and Lemma 5.2.2(i), Rc, = Rcy4+1 = ... for some n as each ¢; is
in S, (R). Therefore, eRc, = eRcp41 =...,s0 (eRe)c, = (eRe)cpy1 =... . From
Lemma 5.2.2(i), eRe has DCC on {d(eRe) | d € S¢(eRe)}. O

Lemma 5.2.4 Let {by, ..., b,} be acomplete set of left triangulating idempotents of
R.Ife € S¢(R), then eR = EBi b; R, where the sum runs over a subset of {1, ..., n}.
Thus, |{eR | e € S¢(R)}| <2".

Proof Assume that 0 # e € S¢(R). Consider i such that bje # 0. We show
that bjeR = b; R. For this, note that bjebje = bje # 0, so bjeb; # 0. From
Lemma 5.1.5(ii), b;S¢(R)b; € S¢(b; Rb;). Hence b;eb; € Sy(b; Rb;), but by hypoth-
esis S¢(b;Rb;) = {0, b;}. So bjeb; = b;. Also b;R = bjeb;R C b;eR C b;R, and
thus bjeR = b; R. Recall that b; are orthogonal. Hence, b;ebje = b;bje =0 yields
that bye, ..., bye are orthogonal idempotents. Let I = {i | 1 <i <n and b;e # 0}.
Then eR = ®;cibjeR = ®;crb; R. O

The next result characterizes rings with a complete generalized triangular matrix
representation.

Theorem 5.2.5 The following are equivalent for a ring R.

(1) R has a complete set of left triangulating idempotents.
(i) {bR | b € S¢(R)} is a finite set.
(iii) {bR | b € S¢(R)} satisfies ACC and DCC.
@iv) {bR | b €S¢(R)} and {Rc | c € S;(R)} satisfy ACC.
v) {bR |beS¢(R)} and {Rc | c € S, (R)} satisfy DCC.
(vi) {bR |b e S¢(R)} and {cR | c € S, (R)} satisfy DCC.
(vii) R has a complete set of right triangulating idempotents.
(viii) R has a complete generalized triangular matrix representation.

Proof Lemma 5.2.4 yields (i)=>(ii), and (ii)=>(iii) is trivial. From Lemma 5.2.2,
(ii))=(iv)=(v)=>(vi) follows immediately.

We show that (vi)=(i). If S¢(R) = {0, 1}, then we are finished. Otherwise take
e to be a nontrivial element of Sy (R).

If 1 is not semicentral reduced, then there exists 0 # e> € S¢(e Rep) such that
e1R # e2R by Lemma 5.2.1, and so e; R 2 ea R. From Lemma 5.1.5(1), e> € S¢(R).
If e; is not semicentral reduced, then by Lemmas 5.2.1 and 5.1.5(i) again there exists
0#e3 € Sp(eaRer) € S¢(R) suchthat ex R # e3R. So we have that eo R D e3R. This
process should be stopped within a finite steps. Thus, we obtain a semicentral re-
duced idempotent e, € S¢(R) for some positive integer n because {eR | ¢ € S¢(R)}
has DCC.
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Starting a new process, let b1 = ¢,. Then S;(b1Rb1) = {0, b1}. From Propo-
sition 1.2.2, 1 — by € S, (R). If 1 — by is semicentral reduced, then we see that
{b1,1 — b1} is a complete set of left triangulating idempotents.

Otherwise, we consider Ry = (1 — b1)R(1 — b1). Note that by Lemma 5.2.3, R;
has DCC on {dR; | d € S¢(R})}. By a similar argument to that used to get by, we
obtain by € Sy(R7) such that Sy (by R1b2) = {0, by }.

As 1 — by is the identity of Ry and by € Ry, it follows that by R1b> = by Rb;,
s0 S¢(bayRby) = {0, by}. Also, (1 — b)) — by € S, (R1). The right-sided version of
Lemma 5.1.5(1) yields that S,(R1) € S,;(R). Therefore, 1 — by — by € S, (R). If
1 — b1 — by is semicentral reduced in R, then {b1, b2, 1 — by — b>} is a complete set
of left triangulating idempotents.

We continue the process to obtain a descending chain in {cR | ¢ € S, (R)}, which
is(1-b)R2(1—b1—b2)RD(1—b1—by—b3)R D ... .Bythe DCC hypothesis
of {cR | c € S;(R)}, this chain becomes stationary after a finite steps, yielding a
complete set of left triangulating idempotents.

The equivalence (vii)<> (i) follows from Corollary 5.1.8, while the equivalence
(1)< (viii) follows from Theorem 5.1.4. O

Corollary 5.2.6 Let R be a ring with a complete set of left triangulating idempo-
tents. Then for any 0 # e € S¢(R) (resp., 0 # e € S, (R)), the ring eRe also has a
complete set of left (resp., right) triangulating idempotents.

Proof Say 0+ e € S¢(R). Define
A:{bR|beS(R)} — {d(eRe) | d € Sy(eRe)}

by A(bR) = (ebe)(eRe). From Lemma 5.1.5(ii), ebe € S¢(eRe) for b € Sp(R). If
bR = bR with b,b; € S¢(R), then bRe = b1 Re, and so ebeRe = ebieRe since
e € S¢(R). Thus A is well-defined. As S¢(eRe) € S¢(R) by Lemma 5.1.5(1), X is
onto. From Theorem 5.2.5, it follows that {bR | b € S¢(R)} is finite. Furthermore,
we get that {d(eRe) | d € S¢(eRe)} is also finite. Again by Theorem 5.2.5, e Re has
a complete set of left triangulating idempotents. Similarly, if 0 # e € S, (R), then
eRe has also a complete set of right triangulating idempotents. g

In Theorem 5.2.8, the uniqueness of a complete generalized triangular matrix
representation will be established. For the proof of this theorem, we need the fol-
lowing result due to Azumaya [32, Theorem 3].

Lemma 5.2.7 Let I be a quasi-regular ideal of a ring R. If {e1,...,e,} and
{f1. ..., fu} are two sets of orthogonal idempotents of R such that e; = f; for each
i with images e; and f; in R/I, then there is an invertible element o € R with
fi=a leja foreach .

Proof Lete=37 e;and f =), | fi.PutB=e+ f—ef —> i e f;. Then
o =1— B is invertible and f; = o~ 'e¢;a for each i. U
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A nonzero central idempotent e of R is said to be centrally primitive if 0 and e
are the only central idempotents in eRe. Let g be a nonzero central idempotent in
R such that g = g1 + --- + g, where {g; | | <i <t} is a set of centrally primitive
orthogonal idempotents of R. Then 7 is uniquely determined (see Exercise 5.2.21.1).
A ring R is said to have a complete set of centrally primitive idempotents if there
exists a finite set of centrally primitive orthogonal idempotents whose sum is 1. It is
routine to check that R has a complete set of centrally primitive idempotents if and
only if R is a ring direct sum of indecomposable rings.

Theorem 5.2.8 (Uniqueness) Let {by,...,b,} and {c1, ..., ck} each be a complete
set of left triangulating idempotents of R. Then n = k and there exist an invertible
element « € R and a permutation o on {1, ...,n} such that by ;) = a leja for
each i. Thus for each i, ¢; R = by (i) R, as R-modules, and c; Rc; = by ;) Rbs (i, as
rings.

Proof Let U =3_;_;bjRbj. Then U < R and U" = 0. Let R = R/U and de-
note by x the image of x € R in R/U. Since b;Rb; N U =0, fori =1,...,n,
b;Rb; = b; Rb; as rings. So R is a direct sum of the b; Rb;, and consequently
{b1,...,by,} is a complete set of centrally primitive idempotents of R.

Clearly, c; € S¢ (E). Further, ¢ # 0. Indeed, if ¢; = 0, then ¢; € U, and so
ci=c} €U"=0, a contradiction. Because b; is semicentral reduced,
¢1b; € {0, b;}. Therefore ¢y = Y I ¢1b; = Y by for which ¢y # 0. So
¢ € B(R). Now we note that ¢, € S;((1 —¢1) R(1 —¢1)). As 1 —¢; € B(R),
¢> € S¢(R) by Lemma 5.1.5(i). Using the preceding argument, with ¢, in place of
¢1, we obtain ¢, € B(R).

Continuing this procedure, we obtain that {cy,...,cx} is a set of orthogonal
nonzero central idempotents in R. Hence ¢; R¢; = 0 for i < j. Thus ¢;Rc; C U
forall 1 <i < j<k.

Let V = ij ¢iRcj. Then VK = 0. By the preceding argument, biRb; C 'V
forall 1 <i < j <n.Hence, U=V and so {by,...,b,} and {C1,...,C} are both
complete sets of centrally primitive idempotents for R. It is well known that for
such sets of centrally primitive idempotents, n = k and there is a permutation o on
{1,...,n} such that¢; = Eo(,-) (Exercises 5.2.21.1 and 5.2.21.2). AsU" =0, U isa
quasi-regular ideal of R.

From Lemma 5.2.7, there exists an invertible element « € R such that
boiy = alea for every i. Thus, ¢;R = bs(;)R as R-modules. We observe that
End(c; Rr) =c¢;Rc; and End(b; RR) =bjRb;. So ¢;Rc; = by (i) Rbs (i). [l

The following example shows that the isomorphism ¢; R = b, (;) R, given in The-
orem 5.2.8, cannot be sharpened to equality. This is in contrast to the result for a

complete set of centrally primitive idempotents.

Example 5.2.9 Let R = T>(R). Consider

10 00
b‘:[oo]bzz[o 1}
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and let

1a 0 —a
c1=|:00:|,cz=[0 1:|,07éaeR.

Then {by, by} and {c1, c2} are complete sets of left triangulating idempotents for R.
In this case, by R =ciR and )R = cp R, but bR # ¢ R.

Kaplansky raised the following question: Let A and B be two rings. If
Mat, (A) = Mat,, (B) as rings, does it follow that A = B as rings? (See [261, p. 35].)
It is known that there are nonisomorphic semicentral reduced rings (e.g., simple
Noetherian domains) which have isomorphic matrix rings (see [260] and [378]).
The next result shows that this cannot happen for n x n (n > 1) upper triangular
matrix rings over semicentral reduced rings.

Corollary 5.2.10 Let A and B be semicentral reduced rings. If T,,,(A) = T,,(B) as
rings, then m =n and A = B as rings.

Proof Let ¢;; be the matrix in 7;,(A) with 14 in the (7, i )-position and O elsewhere.
As A is semicentral reduced, {e11, ..., eum} is a complete set of left triangulating
idempotents for 7,,,(A). A similar fact holds for 7;,(B). Because T,,(A) = T,,(B),
m = n by Theorem 5.2.8.

Next, say A : T,,(A) — T,(B) is an isomorphism. Then {\(e11), ..., A(eqn)} is
a complete set of left triangulating idempotents of 7,,(B). Let f;; be the matrix in
T, (B) with 1p in the (7, i )-position and 0 elsewhere. Then because B is semicentral
reduced, {fi1,..., fun} 1S also a complete set of left triangulating idempotents of
T,(B).

By Theorem 5.2.8, f117,(B) f11 = A(ej;)Tn(B)A(ej;) for some j. Therefore,
B= fllTn(B)fll = )\.(ejj)Tn(B))\.(ejj) = ejan(A)ejj = A. O

From Theorem 5.2.8, the number of elements in a complete set of left triangulat-
ing idempotents is unique for a given ring R (which has such a set). This is also the
number of elements in any complete set of right triangulating idempotents of R by
Corollary 5.1.8. So we are motivated to give the following definition.

Definition 5.2.11 A ring R is said to have triangulating dimension n, written
Tdim(R) = n, if R has a complete set of left triangulating idempotents with n el-
ements. Note that R is semicentral reduced if and only if Tdim(R) = 1. If R has
no complete set of left triangulating idempotents, then we say that R has infinite
triangulating dimension, denoted Tdim (R) = oo.

Lemma 5.2.12 Let {eq, ..., ey} be a complete set of primitive idempotents of R. If
0#b €Sy(R)U S, (R), then there exists a nonempty subset P of {e1, ..., e,} such
that {be b | e; € P} forms a complete set of primitive idempotents of bRb.
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Proof Assume that b € S¢(R). From b =b(e1 + --- 4+ e,)b = be1b + - - - + be,b,
some begb # 0. Let P be the set of all e; such that the elements be ;b are nonzero.
Without loss of generality, let P = {eq, ..., em}.

By Lemma 5.1.5(iii), the bejb, j =1, ..., m, are primitive idempotents in bRb.
From b = be\b + --- + beyb = be1b + --- + beyb, {bejb | 1 < j <m}isacom-
plete set of primitive idempotents for bRb. The proof for b € S, (R) is a right-sided
version of the preceding proof. U

The next two results may be useful for studying many well known classes of rings
via complete generalized triangular matrix representations and semicentral reduced
rings from the same respective class.

Proposition 5.2.13 Let a ring R satisfy any one of the following conditions.

(1) R has a complete set of primitive idempotents.
(ii) R is orthogonally finite.
(iii) R has DCC on idempotent generated (resp., principal, or finitely generated)
ideals.
(iv) R has ACC on idempotent generated (resp., principal, or finitely generated)
ideals.
(v) R has DCC on idempotent generated (resp., principal, or finitely generated)
right ideals.
(vi) R has ACC on idempotent generated (resp., principal, or finitely generated)
right ideals.
(vii) R is a semilocal ring.
(viii) R is a semiperfect ring.
(ix) R is a right perfect ring.
(X) R is a semiprimary ring.

Then Tdim(R) < oo and

Ry Rz -+ Ryy

0 Ry --- Ry,
R=| . . . s

0 0 --- R,

where n = Tdim(R), each R; is semicentral reduced, and satisfies the same condi-
tion as R. Further, each R;; is an (R;, Rj)-bimodule, and the rings Ry, ..., Ry, are
uniquely determined by R up to isomorphism and permutation.

Proof (i) Let { fi, ..., fr} be a complete set of primitive idempotents of R. Then for
any 0# b € S¢(R), b= fib+ ---+ fxb. Each f;b is an idempotent, as b € S¢(R).
Assume that j =1, ..., m is the set of all indices for which f;b # 0.

Now we have that bR C fibR+ --- 4+ fubR = bfibR + --- + bf,,bR C bR,
hence bR = fibR +---+ fibR. Primitivity of f; implies that ;bR = f; R, when-
ever fjb # 0. Hence, the total number of right ideals of the form bR, b € S¢(R)
cannot exceed 2%, Thus, by Theorem 5.2.5, R has a complete set of left triangulat-
ing idempotents. So Tdim(R) < co.
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Let {eq,...,e,} be a complete set of left triangulating idempotents of R. Take
R; =e¢;Re; and R;j = ¢;Re; for i < j. Then R;; is an (R;, Rj)-bimodule for
i < j.Since e; € S¢(R), R = e;Re;j has a complete set of primitive idempotents
from Lemma 5.2.12. Also 1 — e; € S, (R) by Proposition 1.2.2, (1 —e;)R(1 — e1)
has a complete set of primitive idempotents by Lemma 5.2.12. Next we see that
e2 €S¢((1 —er)R(1 — e1)), again Lemma 5.2.12 yields that

Ry =e3Rey =ex((1 —e)R(1 —ey))er

has a complete set of primitive idempotents, and so on. The uniqueness of the R;
follows from Theorem 5.2.8.

(ii) By part (i) and Proposition 1.2.15, we have a unique generalized triangular
matrix representation. Further, each R; is orthogonally finite.

(iii) Assume that R has DCC on idempotent generated (resp., principal, or finitely
generated) ideals. Then {eR | e € S¢(R)} has DCC since eR = ReR for each e in
S¢(R). Consider {Rf | f € S;(R)}. Then Rf = RfR for each f € S,(R). Thus
{Rf | f €S,(R)} also has DCC. By Theorem 5.2.5, R has a complete set of left
triangulating idempotents. So Tdim(R) < oo.

Now say h? = h € R. Then hRh has DCC on idempotent generated (resp., prin-
cipal, or finitely generated) ideals by using [259, Theorem 21.11].

(iv) By assumption, {¢R | ¢ € S¢(R)} has ACC as e¢R = ReR. Also since
Rf =RfRforany f €S,(R),{Rf | f €S,(R)} has ACC. From Theorem 5.2.5, R
has a complete set of left triangulating idempotents, so Tdim < oco. Say h> =h € R.
By using [259, Theorem 21.11], hRh has ACC on idempotent generated (resp.,
principal, or finitely generated) ideals.

(v) By Proposition 1.2.13, R is orthogonally finite. By part (ii), R has a complete
set of left triangulating idempotents, so Tdim(R) < co. Next, let 4> = h € R. Then
hRh has DCC on idempotent generated (resp., principal or finitely generated) right
ideals by using [259, Theorem 21.11].

(vi) The proof is similar to that of part (v) by Proposition 1.2.13 and using [259,
Theorem 21.11].

(vii) and (viii) We note that, for each of these conditions, R is orthogonally fi-
nite. By part (ii), Tdim(R) < co. Homomorphic images of a semilocal ring and
a semiperfect ring are semilocal and semiperfect, respectively (see [259, Proposi-
tion 20.7] and [8, Corollary 27.9]). By Proposition 5.1.7(iii), if R is semilocal (resp.,
semiperfect), then each R; is semilocal (resp., semiperfect).

(ix) If R is right perfect, then R is orthogonally finite. Thus part (ii) yields that
Tdim(R) < oo. By 1.1.14, R has DCC on principal left ideals. Say h*> = h € R.
Then by the left-sided version of the proof for part (v), 2#Rh also has DCC on prin-
cipal left ideals. So & Rh is right perfect, and hence each R; is right perfect.

(x) If R is semiprimary, then also R is orthogonally finite. Hence by part (ii),
Tdim(R) < oo. Say h?> =h € R. It is well known that J(hRh) = hJ(R)h (see
[259, Theorem 21.10]). Hence if R is semiprimary, then so is #Rh. Thus each R; is
semiprimary. 0

Proposition 5.2.14 Let P be a property of rings such that whenever a ring A sat-
isfies P, then A/1 (I < A) or eAe (e2 =e € A) also satisfies P. Assume that R is a
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ring with Tdim(R) = n < oo and satisfies P. Then

Ri Rz -+ Ryy

0 Ry --- Ry,
R=| . . . .1,

0 0 ---R,

where each R; is semicentral reduced and satisfies the property P. Further, each R;;
is an (R;, R;)-bimodule, and the rings Ry, ..., R, are uniquely determined by R up
to isomorphism and permutation.

Proof Since Tdim(R) = n < 0o, R has the indicated unique generalized triangu-
lar matrix representation by Theorems 5.1.4 and 5.2.8. Rings R; have the form
e¢Re, where ¢> = ¢ € R, also R; are ring homomorphic images of R by Proposi-
tion 5.1.7(iii). By assumption each R; has the property P. g

We remark that the following classes of rings determined by property P indicated
in Proposition 5.2.14: Baer rings, right Rickart rings, quasi-Baer rings, right p.q.-
Baer rings, right hereditary rings, right semihereditary rings, w-regular rings, PI-
rings, and rings with bounded index (of nilpotency), etc.

By the next result, if Tdim(R) < oo, central idempotents can be written as sums
of elements in a complete set of left triangulating idempotents.

Proposition 5.2.15 Assume that {by, ..., by} is a complete set of left triangulating
idempotents for a ring R. If c € B(R) \ {0, 1}, then there exists 9 = A C {1, ...,n}
such that ¢ =7 ;. 4 b;.

Proof Let ¢ € B(R) \ {0,1}. Then ¢ = c(by + --- + b,) = cby + -+ + ¢cb,. We
note that cb; € S¢(b; Rb;) and Sy (b; Rb;) = {0, b;} for each i. Therefore, there exists
W#AC{l,...,n}suchthatc =3, ,b;. O

Theorem 5.2.16 Let R be a ring. Consider the following conditions.

(i) R has a complete set of primitive idempotents.
(i1) R has a complete set of left triangulating idempotents.
>iii) R has a complete set of centrally primitive idempotents.

Then (i)=(ii)=(iii).

Proof Proposition 5.2.13(i) yields the implication (i)=>(ii). For (ii)=>(iii), assume
that R has a complete set of left triangulating idempotents for R. By Proposi-
tion 5.2.15, B(R) is a finite set. Now a standard argument yields that R has a com-
plete set of centrally primitive idempotents. g

We remark that when R is commutative, conditions (i), (ii), and (iii) of Theo-
rem 5.2.16 are equivalent. The next example shows that the converse of each of the
implications in Theorem 5.2.16 does not hold.
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Example 5.2.17 (i) There is a ring R with a complete set of left triangulating idem-
potents (i.e., Tdim (R) < 00), but R does not have a complete set of primitive idem-
potents. Indeed, let V be an infinite dimensional right vector space over a field F
and let R = Endf (V). Then R is a prime ring, so Tdim(R) = 1. Since R is a regular
ring which is not semisimple Artinian, R cannot have a complete set of primitive
idempotents.

(ii) There is a ring R with a complete set of centrally primitive idempotents, but
R does not have a complete set of left triangulating idempotents. For this, let R
be the Ny x N upper triangular row finite matrix ring over a field. Then {1} is a
complete set of centrally primitive idempotents of R, where 1 is the identity of R.
Let ¢;; be the matrix in R with 1 in the (i, i)-position and 0 elsewhere. Then for any
positive integer n, ey + -+ - + ey € S¢(R). As

(11 +---+em) RS (11 +---+eu +enpinr1)R

for each n, Theorem 5.2.5 yields that R cannot have a complete set of left triangu-
lating idempotents.

We need the next lemma for investigating Tdim(R) of a ring R.

Lemma 5.2.18 Let {b1, ..., b,} be a set of left triangulating idempotents of a ring
R and {bg 1), ..., bix)} a set of left triangulating idempotents of b; Rb;. Then
{(ba, vy, bk, b1y - P K)s - P 1)y - - Bk, ) IS @ set of left triangu-
lating idempotents of R.

Proof Clearly 1 = Zflzl ba,iy + -+ Zfil b,iy. Also b(i,1) € S¢(R) by Lem-

. i—1 i .

ma 5.1.5(1)‘. Let C(i,j) : 1-— Zél:] by — Z;:l b(,',),), where 1 < j < k;. Then
b(,"j+1)(2;_=11 ba + Z{/:l b(i,y)) = 0, and so b(i,j+1)C(i,j) = b(i,j+1)- Similarly,
C(i,j)b(i,j—i-l) = b(i,j+1)- So b(i,j+1) € ci, R, jy- Note that C(zi’ 7 = €. -

We claim that b j11) € Se(ci, jyRei,jy). Put ¢; = bi-— Z;j/:]b(i,y)- Then
b(i,j-H) € Sg(Cj (b,’Rb,’)Cj) = Sg(CjRCj) and Ci,j) = 1-— fo=1 by + Cj. Note that
b, j+1) € biRb;, (fo_:ll by)bg, j+1) =0, and {b1,...,b,} is a set of orthogonal
idempotents. Hence,

i
bi.j+1) = ci.pbi.jen =1 =D b+ cbi.js1)
a=I1
= b, j+1) = bibi j+1) +¢jbi, j+1) = ¢jbi, j+1)

as bib(i,j-',-]) = b(i,j+1)~ Similarly, b(i,j-',—l) = b(i,j-i—])c(i,j) = b(i,j+1)Cj- Forr e R,

1
(c.pyrea )b+ = (1= Y ba+cj)rejba

a=I

i
=(1- Zbot)rcjb(i,jJrl) + erCjb(i’]#]).

a=1
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From Proposition 5.1.7(1), 1 — Z;: 1 ba € S;(R). Therefore, we now obtain that
(l — sz:l ba)VCjb(,"j_;,_l) = (l — Zix:l ba)r(l — ij:l ba)Cjb(i,j_H) = 0 since
i—1

i i
(1= "ba)ejbijrn = (1= Y ba)bujtn ==Y by —bi)bi 11

a=1 a=1 a=1

=b(, j+1) — bibg,j+1) =0.

Thus,
(ci.pprea.pba.j+1 = (€jrepba j+1) = b, j+1)(€;jrej)ba, j+1)
= b j+1)(ci e y)ba.j+n-
So b(i,j-',—l) eSy (C(i’j)RC(l'ﬁj)). Now routinely we obtain the desired result. O
Theorem 5.2.19 Let {b1, ..., b,} be a set of left triangulating idempotents of a ring

R. Then Tdim(R) = ) _7_, Tdim(b; Rb;).

Proof If Tdim(R) = oo, then Tdim(b;Rb;) = oo for some 1 < j < n, otherwise
Lemma 5.2.18 yields a contradiction.

Let Tdim(R) < oo. By Corollary 5.2.6, Tdim(b1Rb1) < co. From Proposi-
tion 1.2.2, 1 — by € S;(R). By Corollary 5.2.6, Tdim((1 — b;)R(1 — b)) < 0.
We see that b, € S¢((1 — b1)R(1 — by)). Hence, Corollary 5.2.6 yields that
Tdim(byRby) < oo. This procedure, by using Corollary 5.2.6, can be continued
to show that Tdim(b; Rb;) < oo for all 1 <i < n. Lemma 5.2.18 yields that
Tdim(R) = Y_}_, Tdim(b; Rb;). O

Corollary 5.2.20 Let R be a ring with a generalized triangular matrix representa-
tion

Ry Ri -+ Ry
0 Ry --- Ry,
0 0 --- R,

Then Tdim(R) = Z?Zl Tdim(R;). So, Tdim(T,,(A)) = nTdim(A), where A is a
ring and n is a positive integer.

Exercise 5.2.21

1. Assume that R is a ring and 0 # g € B(R) such that g = g; + --- + g;, where
{gi | 1 <i <t}is aset of orthogonal centrally primitive idempotents in R. Show
that ¢ is uniquely determined.

2. Let R be aring, and let {eq, ..., ey} and {f1,..., f,} be two complete sets of
centrally primitive idempotents of R. Show that m = n and there exists a permu-
tation o on {1, ..., n} such that e; = f5;).
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3. Assume that Mg is aright R-module and S = End(Mg). Show that the following
are equivalent.
(i) S has a complete set of left triangulating idempotents.
(i) There exists a positive integer n such that:
D M=MD---OM,.
(2) Hom(M;, M;) =0fori < j.
(3) Each M; has no nontrivial fully invariant direct summands.

4. ([93, Birkenmeier, Park and Rizvi]) Assume that S is an overring of a ring R
such that Rg <®5 Sg. (The ring S is called a right essential overing of R. See
Chap. 7 for right essential overrings for more details.) Show that if R is right
FI-extending, then Tdim(S) < Tdim(R).

5. ([93, Birkenmeier, Park and Rizvi]) Let S be an overring of a ring R such that
Ry <% Sg. Prove that if R is right extending and {ey, ..., e,} is a complete set
of primitive idempotents for R, then {ey, ..., e,} is a complete set of primitive
idempotents for S.

6. ([79, Birkenmeier, Kim, and Park]) Show that a ring R is left perfect if and only
if R has a complete generalized triangular matrix representation, where each
diagonal ring R; is simple Artinian or left perfect with (Soc(R; R[,))2 =0.

5.3 Canonical Representations

We show that if a ring R has a set of left triangulating idempotents, then it has a
canonical generalized triangular matrix representation, where the diagonal subrings
are organized into blocks of square diagonal matrix rings. This canonical represen-
tation is then used to obtain a result on the right global dimension of rings with a set
of left triangulating idempotents.

Let {1, ..., b,} be a set of left triangulating idempotents of R. If J is a subset
of {1,...,n}, we denote oy = ;_, b;. Our first result shows that under certain
conditions the ordering in a set of left triangulating idempotents can be changed to
obtain a new set of left triangulating idempotents.

Proposition 5.3.1 Let j and m be in {1,...,n} with j <m <n. If{by,...,b,} is
a set of left triangulating idempotents of a ring R such that b; Rb,, = 0 for each i
with j <i <m, then

{b1,....,0j—1,bm, bj, bjy1, ..., b1, bmt1, ..., by}
is a set of left triangulating idempotents of R.

Proof The proof follows routinely from Theorem 5.1.3. g

Proposition 5.3.1 is applied to obtain a canonical form for a generalized triangu-
lar matrix representation of R. Let {by, ..., b,} be a set of left triangulating idem-
potents. Recursively define the sets I} and J (k) as follows:

Iy ={i | bj € S¢(R)} and J(1) = Iy;
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and let
Lepr={i | bi €Se((1 —0y)R(I—0yp))}and J(k+1)=J (k) U [y,

whenever I; and J (k) are defined. This process terminates within n steps.

Let §; ={b; | i € I;}. Then Sy, ..., S, is a partition for {b1, ..., b,} (we will
show in the proof of Theorem 5.3.2 that this always occurs). Then reorder {1, ..., n}
so that each I; has any (fixed) ordering and so that elements of /; always precede
elements in /; . This can be thought of in terms of a permutation v on {1, ..., n}.
Then the ordered set {by (1, ..., byu)} is called a canonical form for {1, ..., b,}.

Theorem 5.3.2 Let {by,...,b,} be a set of left triangulating idempotents. Then a
canonical form for {b, ..., by} exists, and any such canonical form is a set of left
triangulating idempotents of R.

Proof The proof involves repeated use of Propositions 5.3.1, as in the follow-
ing discussion. We note that by € S1 = S¢(R). If b,, € S; and m # 1, then
biRb,, = bib, Rb,, = 0 for all i ## m. We use Proposition 5.3.1 to get that
{bu,b1,....,bm—1,bm+1,...,by} is a set of left triangulating idempotents of R.
Continue this process using elements of S; until they are exhausted.

Following the procedure given in Proposition 5.3.1, there exists a permuta-
tion @ on {1,...,n} such that S; = {byq1), ..., ban,)}. Also, the ordered set
{ba(1), ba(2), - - - » ba(n)} 1s a set of left triangulating idempotents of R.

If n1 = n, then we are finished. So consider n; < n and let ¢ = a(n| + 1), where
a(ny + 1) is the smallest positive integer i such that b; ¢ S1. Observe that by is the
first element in this new ordering which is not in Sj.

We show that b, € 5. For this, let y be the sum of all elements in S;. Thus,
Y =bg)+ -+ buyn,)- Let g be the sum of all elements in {by(1), . .., bam)} Which
are not in {by, ba(1), ..., bamy)}. Then 1 =y +b; +g. Thus 1 — y =b, + g, and
therefore b, € (1 — y)R(1 — y). Now for every a € R, we can see that

(1 —=y)a(l —y)bg = (1 — y)ab; = (by + g)aby
=byaby; =by(1 —y)a(l — y)b,

as by(1 —y)=by,(1 —y)by =by, and gaby; =0.So b, € S¢((1 — y)R(1 — y)).
Consequently, g € I and hence b, € §,. Either this exhausts the elements in
S or (in the ordering given by «) there is an element b, € S beyond b,. Use
Proposition 5.3.1 as before to obtain a set of left triangulating idempotents of R of
the form {ba(l), e, boz(nl)v bp, bq, ba(n|+2), ceey ba(n)}~
Repeat this process using elements of S, until they are exhausted. Then there
exists a permutation y on {1, ..., n} such that

{byys - bynys bymi+1)s -+ byy)s - -+ by}

forms a set of left triangulating idempotents, where y (i) = «(i) for 1 <i <ny,
by(nz) = bq, and {by(n1+1)» ey by(nz)} = Sz.
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Now either S; U S, ={by, ..., b,} or we can continue the process on S3, and so
on. After k steps, k < n, the process terminates in a set of left triangulating idempo-
tents of R in a canonical form. So we obtain a permutation ¥ so that Sy, ..., Sk is
our desired partition of {b; ..., b,}. O

Theorems 5.1.4 and 5.3.2 provide a tool for a generalized triangular matrix rep-
resentation of R in a special canonical form, which we give next.

Corollary 5.3.3 (Canonical Representation) Let {b1,...,b,}, Si,..., Sk, and
Y be as before. Then using 0 =ng < ny < --- < ng, we have that Sj1 =
{byj+1), - byt 7 =0,1,....k — 1, and R is isomorphic to the n x n
matrix [A(i, j)], where the A(i, j) are n; X nj block matrices

by @i+ Rbyi+1) O - 0
AG+1i+1) = 9 9 ;
0 0 ":bw(ni+1>kbw<ni+l>
by mi+1) Rbymj+1) -+ by it 1) Ry n4)
AG+1,j+ )= : - : ,

by i) ROy (uj+1) =+ by i) Rby )
fori < j;and A(i, j)=0fori > j, wherei, j=0,1,...,k—1.

For the proof of Theorem 5.3.5, we need the following lemma.
Lemma 5.3.4 Let A and B be rings, and let M be an (A, B)-bimodule. Set

AM
R= |: 0 B ] , a generalized triangular matrix ring. Then

max{r.gl.dim(A), r.gl.dim(B)} <r.gl.dim(R)
< max{r.gl.dim(A) 4+ pd(Mp) + 1, r.gl.dim(B)},

where pd(Mp) is the projective dimension of Mp.
Proof See [295, Proposition 7.5.1] for the proof. U
In Lemma 5.3.4, if M =0, then R = A @ B (ring direct sum). Also
r.gl.dim(R) < max{r.gl.dim(A) + pd(Ag), r.gl.dim(B) + pd(Bgr)}

from the proof of [295, Proposition 7.5.1]. As Ag and By are projective, it follows
that pd(Ag) =0 and pd(Bg) =0, so

r.gl.dim(R) < max{r.gl.dim(A), r.gl.dim(B)}.

Thus, r.gl.dim(A @& B) = max{r.gl.dim(A), r.gl.dim(B)} by Lemma 5.3.4.
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As an application of canonical representation, we discuss the following result
which exhibits a connection between the right global dimension of R and that of the
sum of diagonal subrings.

Theorem 5.3.5 Let {by,...,b,} be a set of left triangulating idempotents of R, and
S1,..., Sk be as in Corollary 5.3.3. Then

r.gl.dim(D) <r.gl.dim(R) <k (r.gl.dim(D)) +k — 1,

where D = b1Rby + --- 4+ b, Rby,. Thereby, r.gl.dim(R) < oo if and only if
r.gl.dim(D) < oo.

Proof The proof is given by induction on k. If k = 1, then R = D by Theo-
rem 5.3.2 and we are finished. Assume that k > 2. We take A =}, ., biRD;,
M = Zbiesl,bjESQUmUSk ble/’ and B = (l - Zb,‘ésl bl) R (1 - Zbiesl b’) Then
ObViOllSly B = (ijESzu---USk b]) R (ijESZU---USk b])

We note that S, U --- U S is a set of left triangulating idempotents of B
and {S,,..., Sx} is a partition which establishes a canonical generalized triangu-
lar matrix representation for B. Let D| = ije SHU--US, bjRb;. Then by induction
r.gl.dim(D;) <r.gldim(B) < (k — 1)(r.gl.dim(Dy)) + k — 2.

Because D = A @ D; from Theorem 5.3.2 or Corollary 5.3.3, it follows that

r.gl.dim(D) = max {r.gl.dim(A), r.gl.dim(D;)}. Observe that R = |:13 Al;li| and M is
an (A, B)-bimodule. Hence,
max {r.gl.dim(A), r.gl.dim(B)} < r.gl.dim(R)
< max{r.gl.dim(A) + pd(Mp) + 1, r.gl.dim(B)}
from Lemma 5.3.4. Because r.gl.dim(D;) <r.gl.dim(B),
r.gl.dim(D) = max {r.gl.dim(A), r.gl.dim(D1)}
< max {r.gl.dim(A), r.gl.dim(B)}
<r.gl.dim(R).
We observe that pd(Mp) <r.gl.dim(B). Therefore,
r.gl.dim(R) < max {r.gl.dim(A) + pd(Mp) + 1, r.gl.dim(B)}
< max{r.gl.dim(A) 4 r.gl.dim(B) + 1, r.gl.dim(B)}
=r.gl.dim(A) + r.gl.dim(B) + 1
<rgldim(D) + [(k — 1) (r.gl.dim(Dy)) + (k —2)] + 1
<rgldim(D) + (k — 1) (r.gl.dim(D)) + k — 1
=k (rgl.dim(D)) +k — 1.

Therefore, r.gl.dim(D) < rgldim(R) < k(r.gl.dim(D)) + k — 1. Thereby,
r.gl.dim(R) < oo if and only if r.gl.dim(D) < co. O
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5.4 Piecewise Prime Rings and Piecewise Domains

In this section, a criterion for a ring with a complete set of triangulating idem-
potents to be quasi-Baer is provided. Also a structure theorem for a quasi-Baer
ring with a complete set of triangulating idempotents is shown. Among the applica-
tions of this structure theorem, several well-known results are obtained as its con-
sequences. These include Levy’s decomposition theorem of semiprime right Goldie
rings, Faith’s characterization of semiprime right FPF rings with no infinite set of
central orthogonal idempotents, Gordon and Small’s characterization of piecewise
domains, and Chatters’ decomposition theorem of hereditary Noetherian rings. A
result related to Michler’s splitting theorem for right hereditary right Noetherian
rings is also obtained as an application.

The next result provides a criterion for a ring with a complete set of left triangu-
lating idempotents to be quasi-Baer.

Theorem 5.4.1 Assume that a ring R has a complete set of left triangulating idem-
potents with Tdim(R) = n. Then the following are equivalent.

(i) R is quasi-Baer.

(i1) For any complete set of left triangulating idempotents {by,...,b,} of R, if
bixbjRbjyby =0 for some x,y € R and some 1 <1i, j, k < n, then either
bixbj =0o0rb;yb, =0.

(iii) There is a complete set of left triangulating idempotents {c1, ..., cy} of R such
thatifcixcjRcjycy =0 for some x,y € R and some 1 < i, j, k <n, then either
cixcj=0orcjyc, =0.

(iv) For any complete set of left triangulating idempotents {b1, . .., b, }, assume that
Kb;V =0 for some ideals K and V of R and some b;, 1 < j <n. Then either
ij =0 orij =0.

Proof ())=(i1) Assume that b;xb;jRb;yb; = 0 for some x,y € R and some
1 <i,j,k<n. Since R is quasi-Baer, rg(b;jxb;jR) = fR for some f € S¢(R).
By Lemma 5.1.5(ii), b; fb; € S¢(bjRb;). As {by,...,b,} is a complete set of
left triangulating idempotents, S;(b;Rb;) = {0, b;}. So either b; fb; = 0 or
bjfbj =b;. If b; fb; =0, then since bjyby € rr(bjxb;R) = fR, we have that
bijybi = fb;jybi. So bjyby = b fbjybry = 0. On the other hand, if b; fb; = b;,
then b,-xbj = b,'xbjfbj =0as b,-xbjf =0.

(ii)=(iii) It follows immediately because R has a complete set of left triangulat-
ing idempotents.

(iii)=-(i) Say L is a left ideal of R. First, assume that Rc; N€g (L) # 0 for some i.
Then we may assume that

Rey NER(L) #0, ..., Rcyy NER(L) #0,
and
Repms1 NER(L) =0, ..., Rc, NLR(L) =0.
Thus £g(L)Rcy+1 =0, ... ,and £g(L)Rc, =0.Put T = Rcy + - - - + Ry,
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Say v € £g(L). Then v =v(c1 + -+ ¢y) =vey + -+ + vey, € T. There-
fore, £g(L) € T. To show that ¢y € £g(L), take y € L. Since Rci N £r(L) # 0,
there exists x € R such that 0 # xc; € Rcy NL€g(L). So xc1Rc1y = 0. Now there
is cxxcy # 0 for some ¢ because 1 =cy + -+ + ¢,. Thus, cgxciReyyc; =0
for all j. Therefore c;yc; =0 for all j, and so c;y = 0. Hence, ¢ € £g(L).
Thus, Rc; € £r(L). Similarly, Rca, ..., Rcy S Lr(L). So T C £r(L). Therefore,
Lrp(LY=T=Rci+---+Rcy=R(c1+---+cy). Pute=cy +--- 4+ ¢y. Then
e2=e¢ e R and so £z(L) = Re.

Next, assume that Rc; N €g(L) = 0 for all i. Then £x(L)Rc; = 0 for all i. So
Lr(LYy=LRr(L)(Rc1 + -+ Rc,) =0. Therefore, R is quasi-Baer.

(ii)=(v) Let Kb;V =0and b;V # 0 for some b;. Say y € V with b;y # 0. So
0#£bjy=73"7_,bjyb;, hence bjyby # 0 for some by.

Let x € K. Then xbjRb;jy = 0. Hence b;xb;jRb;yb; = 0 for each b;. As
bjybk 75 0, b,'xbj = 0 for all b,'. Thus ij = Z?:l b,'xbj = O, SO ij =0.If
Kbj #0, similarly b;V = 0.

(iv)=(i) If bjxb;Rb;yby =0, then (Rb;xb;jR)b;j(Rb;yb;R) = 0. By assump-
tion Rbjxb;jR=0o0r RbjybiR=0,s0b;xbj=0orb;yb, =0. O

Corollary 5.4.2 If R has a complete set of primitive idempotents, then the following
are equivalent.

(i) R is quasi-Baer.

(ii) For any given complete set of primitive idempotents {e1, ..., ey}, ife;xejRejyex
= 0 for some x,y € R and some 1 <1, j,k < n, then either e;xe; =0 or
ejyer =0.

(iii) There is a complete set of primitive idempotents {f1 ..., fm} of R such that

if fixfjRfjyfik =0 for some x,y € R and some 1 < i, j, k < m, then either
fixfi=0or fjyfi =0.

(iv) For any complete set of primitive idempotents {gi1, ..., g¢}, assume that
Kg;jV =0 for some ideals K and V of R and for some gj, 1 < j < {. Then
either Kgi =0o0r g;V =0.

Proof Let f € S¢(R) and 0 # ¢? = ¢ € R. Then ef e € S¢(eRe) by Lemma 5.1.5(ii).
In particular, if e is primitive, then Sy (eRe) = {0, e}. So either efe =0 or efe =e.
The proof can then be completed by using a similar argument as in the proof of
Theorem 5.4.1. O

Definition 5.4.3 A ring R is called a piecewise domain (or simply, PWD) if there is
a complete set of primitive idempotents {ey, ..., e,} such that xy = 0 implies x =0
or y =0 whenever x € ¢;Rej and y € ejRey, for 1 <i, j, k <n.

To avoid ambiguity, we sometimes say that R is a PWD with respect to a com-
plete set {e;}!_, of primitive idempotents. In light of Theorem 5.4.1 and Corol-
lary 5.4.2, it is interesting to compare quasi-Baer rings having a complete set of left

triangulating (or primitive) idempotents with PWDs. In fact, Definition 5.4.3 and
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the equivalence of (i) and (iii) in Theorem 5.4.1 and Corollary 5.4.2 suggest the
following definition.

Definition 5.4.4 A quasi-Baer ring with a complete set of triangulating idempotents
is called a piecewise prime ring (or simply, PWP ring).

The following result is somewhat of a right p.q.-Baer analogue of Theo-
rem 3.1.25.

Proposition 5.4.5 Let R be a right p.q.-Baer ring with Tdim(R) < co. Then R is a
PWP ring.

Proof Let I be a right ideal of R, and say I = ) ;_,x;R with x; € R. Then
rrR(I) =Njearr(x;i R) = Njecae; R with e; € S¢(R) for eachi € A because R is right
p.q.-Baer. By Theorem 5.2.5 and Proposition 1.2.4(i), there exists e € Sy(R) such
that ), , ;R = eR. Therefore R is a PWP ring. O

The next question was posed by Gordon and Small (see [187, p. 554]): Can
a PWD R possess a complete set { f;}i" | of primitive idempotents for which it is
not true that xy = 0 implies x =0 or y =0 for some x € fiRfy and y € fyRf;?
Theorem 5.4.1 and Corollary 5.4.2 show that if R is a PWP ring, then it is a PWP
ring with respect to any complete set of left triangulating idempotents. Thereby for
the case of PWP rings it provides an answer to the above question.

Proposition 5.4.6 Any PWD is a PWP ring.
Proof The result follows from Proposition 5.2.13 and Corollary 5.4.2. g

The following example illustrates that the converse of Proposition 5.4.6 does not
hold true.

Example 5.4.7 (i) Let R be the ring in Example 3.2.7(ii). Then R is a PWP ring, but
itis not a PWD.

(ii) Let R be the ring of Example 5.2.17(i). Then R is a prime ring, so it is a PWP
ring. But R does not have a complete set of primitive idempotents. Thus, R is not a
PWD.

Example 5.4.8 There is a PWD which is not Baer. Let R be a commutative domain
which is not semihereditary (e.g., Z[x]). Then Mat, (R) is a PWD for any positive
integer n > 1, but it is not a Baer ring (see Theorem 6.1.4).

Proposition 5.4.9 Let R be a ring and {ey, ..., e,} be a complete set of primitive
idempotents of R. Then the following are equivalent.

(i) R is a PWD with respect to {eq, ..., en}.
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(ii) Every nonzero element of Hom(e; Rg, ejRR) is a monomorphism for all i, j,
1<i, j<n.

(iii) Every nonzero element of Hom(e; Rg, Rr) is a monomorphism for all i,
1<i<n.

Proof Exercise. O

Example 5.4.10 (i) It is routine to check that the ring of n x n matrices over a PWD
is a PWD.

(ii) The polynomial ring over a PWD is a PWD. Indeed, say R is a PWD with
respect to a complete set of primitive idempotent {eq, ..., e,}. Then {eq, ..., e,} is
a complete set of primitive idempotents of R[x], and R[x] is a PWD with respect to
{e1,...,en}.

(iii) A right Rickart ring with a complete set of primitive idempotents is a PWD.
In fact, say R is a right Rickart ring with a complete set {eq, ..., e,} of primitive
idempotents.

Suppose that e;xeje;jyer =0, where x,y € R and 1 <1i, j,k <n. Since R is
right Rickart, rg(e;xe;) = f R for some f?=feR. Sol— ej = f(1—ej) since
1 —ej erg(eixe;). Note that 1 —e; = ZZ# ey, thus

Ya=l—ej=f(l—e)=)_ fer.

Py K

Hence ex = fei for k # j and 1 <k < n. Therefore,

f=) fa=) fa+fej=) e+ fe.

k=1 k#j k#j

Thus 1 — f=1-— ZZ# ex — fej=ej— fej=(1~— flej,so R(1 - f) C Re;.
Hence, it follows that R(1 — f) = Re; or R(1 — f) =0 as e; is a primitive idem-
potent.

If R(1 — f) = Rej, then e; f = 0. Because e;xeje;yer =e;xejye; =0, we get
that yey e rgr(e;jxej) = fR, and yer = fyei. Hence, ejyer = e fye, = 0. Finally,
assume that R(1 — f) =0. Then f = 1, and thus ¢;xe; = 0. So R is a PWD.

If R(1 — f) = Rej, then e; f =0. Because e;xeje;yer =ejxejyer =0, we get
vex € rr(eixej) = f R, and therefore yey = fyei. Hence ejyer =ej fyer =0.

Further, if R(1 — f) =0, then f =1, and thus e¢;xe; =0. So R is a PWD.

(iv) There exists a PWD which is not right Rickart. Let R = Maty(Z[x]). Then
R is a PWD by part (i), but R is not (right) Rickart (see Example 3.1.28).

(v) A right nonsingular ring which is a direct sum of uniform right ideals is
a PWD. Indeed, let R be a right nonsingular ring such that R = @®}_,I;, where
each [; is a uniform right ideal of R. Then there is a complete set of primi-
tive idempotents {eq, ..., e,} with I; = ¢; R for each i. As Z(Rg) = 0, by Corol-
lary 1.3.15 E(Rg) = Q(R). Now Q(R) is a regular ring from Theorem 2.1.31 and
O(R)=e1Q(R)®---De, Q(R). Also each e; Q(R) g(r) is uniform, so {ey, ..., e,}
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is a complete set of primitive idempotents in Q(R). Thus, Q(R) is semisimple Ar-
tinian. Say e;xeje;yey =0, where x, y € Rand 1 <1, j, k <n. Then since Q(R) is

a PWD with respect to {ey, ..., e,} by part (iii), either e;xe; =0 or ejyer = 0. So
R is a PWD.
Proposition 5.4.11 Let {by, ..., b,} be a set of left triangulating idempotents of a

ring R. Then the following are equivalent.

(1) P is a (minimal) prime ideal of R.
(ii) There exist m, 1 <m < n, and a (minimal) prime ideal P,, of the ring b,, Rb,,
such that P = Py + 3 i bk Rbx + 3 bi Rb ;.

Proof The proof is routine. g

Theorem 5.4.12 Let R be a PWP ring with Tdim(R) =n. Then R = A B (ring
direct sum) such that:

i A= @le A; is a direct sum of prime rings A;.
(ii) There exists a ring isomorphism

By Bi2 -+ Bim

0 BZ"'BZm
Bg . . . 9

0 0 --- By,

where each B; is a prime ring, and B;; is a (B;, Bj)-bimodule.
(iii) n =k +m.
(iv) Foreachi €{l,...,m}thereis j € {1,...,m} suchthat B;j #0 or Bj; #0.

(v) The rings By, ..., By, are uniquely determined by B up to isomorphism and
permutation.
(vi) B has exactly m minimal prime ideals P, ..., Py, R has exactly n minimal

prime ideals of the form A @ P; or C; & B where C; = @j# Aj. Further,
Pi,..., P, are comaximal, P(R) = P(B), and P(R)™ =0.

Proof Say E = {b1,bs, ..., b,} is a complete set of left triangulating idempotents
of R.

(i) Let {eq, ..., ex} = EN B(R). Take A; = ¢; R. By Proposition 3.2.5 and The-
orem 3.2.10, each A; is a prime ring.

(i) Let {f1,..., fm} = E\ {e1, ..., ex}, where the f; are maintained in the same
relative order as they were in E. Let B; = f; Bf; and B;; = f; Bf;. Then each B; is
a prime ring by Proposition 3.2.5 and Theorem 3.2.10. Define ¢ by ¢ (b) = [ fibf;]
for b € B, as in the proof of Theorem 5.1.4. Then ¢ is a ring isomorphism.

(iii) The proof follows immediately from the proof of part (ii).

(iv) It is evident since { f1, ..., fm} = E \ {e1,, ..., €k}.

(v) This is a consequence of Theorem 5.2.8.

(vi) The proof follows from a routine argument using Lemma 5.4.11. g
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Corollary 5.4.13 (i) Any semiprime PWP ring is a finite direct sum of prime rings.
(ii) Any biregular ring R with Tdim(R) < o0 is a finite direct sum of simple rings.

Proof The proof follows from Theorems 5.4.12 and 3.2.22(ii). |

The next corollary is related to Michler’s splitting theorem [299, Theorem 2.2]
for right hereditary right Noetherian rings.

Corollary 5.4.14 Let R be a right hereditary right Noetherian ring. Then

Ry Ri3 -+ Ry

0 Ry -+ Ry
R; . . . 9

0 0 --- Ry,

where each R; is a prime right hereditary, right Noetherian ring, and each R;; is an
(R;, Rj)-bimodule.

Proof As R is right hereditary right Noetherian, R is Baer by Theorem 3.1.25. Thus
the proof follows from Theorem 5.4.12 and Proposition 5.2.14. g

We will now see that Levy’s decomposition theorem [279] for semiprime right
Goldie right hereditary rings, follows as a consequence of Theorem 5.4.12.

Corollary 5.4.15 Any semiprime right Goldie, right hereditary ring is a finite direct
sum of prime right Goldie, right hereditary rings.

Proof Let R be a semiprime right Goldie, right hereditary ring. Then R is orthog-
onally finite, so R is Baer by Theorem 3.1.25 and Tdim(R) < oo from Proposi-
tion 5.2.13(ii). Corollary 5.4.13(i) and a routine verification yield that R is a finite
direct sum prime right Goldie, right hereditary rings. g

A ring R is called right FPF if every faithful finitely generated right R-module
generates the category Mod-R of right R-modules (see [156]). We may note that
a semiprime right FPF ring is quasi-Baer (see [78, Corollary 1.19]). By Theo-
rem 5.4.12, Faith’s characterization of semiprime right FPF rings with no infinite
set of central orthogonal idempotents (see [156, Theorem 1.4]) is provided as fol-
lows.

Corollary 5.4.16 Let R be a ring with no infinite set of central orthogonal idempo-
tents. Then R is semiprime right FPF if and only if R is a finite direct sum of prime
right FPF rings.

Proof Let R be a semiprime right FPF ring with no infinite set of central orthogonal
idempotents. Because R is semiprime, B(R) = S¢(R) by Proposition 1.2.6(ii). Since
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R has no infinite set of central orthogonal idempotents, we see that
{eR|e€S¢(R)}={eR|e e B(R)}

has ACC and DCC. By Theorem 5.2.5, Tdim(R) < oo, so R is a PWP ring. By
Corollary 5.4.13(i), R is a finite direct sum of prime rings. Since ring direct sum-
mands of right FPF rings are right FPF, these prime rings are right FPF. The converse
is immediate. O

A ring R for which the diagonal rings R; in a complete generalized triangular
matrix representation are simple Artinian, is called a TSA ring. Recall from 1.1.14
that if R is a right (or left) perfect ring, then J(R) = P(R). Thus any prime right
(or left) perfect ring is simple Artinian.

By Theorem 5.4.12, every quasi-Baer right (or left) perfect ring is a TSA ring. So
Teply’s result [391] given next follows from Theorem 5.4.12 since an orthogonally
finite right Rickart ring is Baer by Theorem 3.1.25.

Corollary 5.4.17 A right (or left) perfect right Rickart ring is a semiprimary TSA
ring.

For a m-regular Baer ring with only countably many idempotents, we obtain the
following.

Corollary 5.4.18 A m-regular Baer ring with only countably many idempotents is
a semiprimary TSA ring.

Proof Theorems 3.1.11, 3.1.26, and 5.4.12 yield the result. O

Corollary 5.4.19 Assume that R is a PWP ring with Tdim(R) = n. Then the fol-
lowing are equivalent.

(1) r.gl.dim(R) < oo.
(i) r.gl.dim(R/P(R)) < oo.
(iii) r.gl.dim(R; + ---+ R;) < 0o, where the R; are the diagonal rings in the com-
plete generalized triangular matrix representation of R.

Proof (1)< (iii) is a direct consequence of Theorem 5.3.5. From Theorem 5.4.12,
R/P(R)= R ®---® R,. Hence, (ii)< (iii) follows immediately. O

Theorem 5.4.20 Let R be a right p.q.-Baer ring. Then Tdim(R) = n if and only if
R has exactly n minimal prime ideals.

Proof Assume that Tdim (R) = n. By Proposition 5.4.5, R is a PWP ring. Thus
from Theorem 5.4.12, R has exactly » minimal prime ideals.

Conversely, let R have exactly » minimal prime ideals. We proceed by induction
on n. First, say n = 1. If Tdim(R) # 1, then R is not semicentral reduced. So there
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is 0 # b € S¢(R) with b # 1. Then bRb and (1 — b)R(1 — b) each have at least
one minimal prime ideal. Note that {b, 1 — b} is a set of left triangulating idempo-
tents of R. Thus, by Proposition 5.4.11, R has at least two minimal prime ideals, a
contradiction. Hence, Tdim(R) = 1.

Suppose that n > 1. If R is semicentral reduced, then R is prime by Propo-
sition 3.2.25. So n = 1, a contradiction. Thus R is not semicentral reduced,
hence there is 0 # d € S¢(R) and d # 1. By Theorem 3.2.34(i), both dRd and
(1 — d)R(1 — d) are right p.q.-Baer rings. We note that {d, 1 — d} is a set of left
triangulating idempotents. From Proposition 5.4.11, there are some positive inte-
gers k1 and k» such that dRd and (1 — d)R(1 — d) have exactly k; and k; number
of minimal prime ideals, respectively, where k| + ky = n.

By induction, Tdim(d Rd) + Tdim((1 — d)R(1 — d)) = k1 + k» = n. From The-
orem 5.2.19, Tdim(R) = n. O

Corollary 5.4.21 The PWP property is Morita invariant.

Proof Assume that R and S are Morita equivalent rings. Suppose that R is a PWP
ring and let Tdim(R) = n. By Theorem 5.4.20, R has exactly » minimal prime
ideals. Since R is quasi-Baer, S is also quasi-Baer from Theorem 3.2.11. Now S
has also exactly » minimal prime ideals because R and S are Morita equivalent
(see [262, Proposition 18.44 and Corollary 18.45]). Thus Tdim(S) = n by Theo-
rem 5.4.20, so S is also a PWP ring. O

The next example illustrates that the right p.q.-Baer condition is not superfluous
in Theorem 5.4.20.

Example 5.4.22 There exists a ring R such that:

(1) R has only two minimal prime ideals.
(i) Tdim(R) =1.

Indeed, we let F{X,Y} be the free algebra over a field F, and we put
R =F{X,Y}/I, where I is the ideal of F{X, Y} generatedby YX.Say x =X + [
andy=Y +17in R. Then R/RxR = F[y] and R/RyR = F[x],so RxR and RyR
are prime ideals of R. As yx =0, we see that (RyR)(RxR) = 0. So, if P is a
prime ideal, then either RyR € P or RxR € P. Thus RxR and RyR are the only
two minimal prime ideals of R. We can verify that all idempotents of R are only 0
and 1. In particular, R is semicentral reduced, so Tdim(R) = 1.

Let R be a quasi-Baer (resp., Baer) ring with Tdim (R) < co. Then P(R) is
nilpotent and R/ P (R) is a finite direct sum of prime (resp., Baer) rings from The-
orem 5.4.12, so R/P(R) is a quasi-Baer (resp., Baer) ring (cf. Example 3.2.42).
There is a quasi-Baer ring R with P(R) nilpotent, but Tdim(R) is infinite. Let
R= Tg(l_[flozl F,), where F is a field, and F,, = F,n = 1,2, ... . In this case,
P(R)? =0, but Tdim(R) = co.

An R-module M is said to satisfy the restricted minimum condition if, for every
essential submodule N of M, the module M/N is Artinian.
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Lemma 5.4.23 Let R be a hereditary Noetherian ring. Then both Rg and g R sat-
isfy the restricted minimum condition.

Proof Assume that Jg <®% Rg. Then Jg is finitely generated projective because
R is right hereditary and right Noetherian. From Dual Basis lemma (see [262,
Lemma 2.9]), there are aj,...,a, € J and f1,..., f, € Hom(Jg, Rr) such that
x=a; fi(x) 4+ -+ a, fu(x) for each x € J. Because Z(Rg) = 0 from Proposi-
tion 3.1.18, Jg <% Ry by Proposition 1.3.14. Thus, it follows that f; € Q(R) for
i=1,....,n,s0a1f1+ --+a,fn € Q(R). Wenote thatay fi +---+a, fp=11in
Q(R) as ay f1 + - -+ + ay fy is the identity map of J.

Put D(J) = Hom (Jg, Rg). Then Rf1 + --- + Rf, € D(J) because D(J) is a
left R-module. Let ¢ € D(J). Then gJ C R and so

g=qa1fi+---+ayfy) =qarfi+---+qa,fu € Rfi +---+ Rfy

since eacha; € J.So D(J)=Rf1 +---+ Rf,.
Furthermore, J = {r € R | D(J)r C R}. Indeed, first obviously we have that
J C{re R|D(J)r C R}. Next, we take r € R such that D(J)r C R. Then

r=a fir+---+apfureaiD(J)r+---+a,D(J)r CJRCJ

since l =aj1 fi+---+a,f,in Q(R).SoJ ={reR|D(J)r CR}.

We show that Rg satisfies the restricted minimum condition. For this, we now
let IT 2 I, O ... be a descending chain of right ideals of R all containing a fixed
essential right ideal 7 of R. Then D(I;) € D(I) € ... and all D({;) are contained
in the left R-module D (/). By the preceding argument, D(]) is finitely generated
as a left R-module.

Since R is left Noetherian, D (/) is Noetherian as a left R-module. So there

exists a positive integer n such that D(I,,) = D(I,,+1) = .. .. Therefore, we have that
{freR| DU, )rCR}y={reR|DUy+1)r CR}=....Hence I, =141 =...,
so Rp satisfies the restricted minimum condition. Similarly, g R has the restricted
minimum condition. O

As another application of Theorem 5.4.12, Chatters’ decomposition theorem
[117] for hereditary Noetherian rings is shown as follows.

Theorem 5.4.24 [f R is a hereditary Noetherian ring, then R = A ® B (ring direct
sum), where A is a finite direct sum of prime rings and B is an Artinian TSA ring.

Proof Note that a hereditary Noetherian ring is Baer by Theorem 3.1.25. Thus R is
a PWP ring. Therefore, R = A @ B as in Theorem 5.4.12.

We claim that B is an Artinian TSA ring. For this, say { f1, ..., f} is a complete
set of left triangulating idempotents of B as in the proof of Theorem 5.4.12. We need
to show that each B; is simple Artinian. By Theorem 5.4.12, for given i, 1 <i <m
there exists j, 1 < j < m such that either B;; # 0 or Bj; # 0. We may assume that
Bij#0andi < j.Now B; = f;Bf;, Bij = fiBfj, and B; = f; Bf;. Consider

S=(fi+ [NBUi+ )= [’f) ’;/f] :



5.4 Piecewise Prime Rings and Piecewise Domains 167

Then S is a hereditary Noetherian ring. Also { f;, f;} is a complete set of left trian-
gulating idempotents of S. Since B is Baer, so is § by Theorem 3.1.8. Therefore, S
is a PWP ring.

We show that B;; is a faithful left B;-module. For this, let f;bf; € B; with
b € B such that f;bf;B;; = 0. Since f;Bf; = B;j # 0, there exists y € B such
that fiyf; # 0. Now (fibfi)(fiBfiyf;) € (fibfi)(fiBf;) =0, and so we have
that f;bfiBfiyf; = (fibfi)(fiBfiyfj) =0. Since fiyf; #0, fibfi =0 from The-
orem 5.4.1. Therefore, B;; is a faithful left B;-module. Similarly, B;; is a faithful

right Bj-module. Let
V1=[ ljj| andez[ ! l]].
0 B; 00

The ideal V; of § is right essential in S since B;; is a faithful left B;-module. Also
the ideal V; of S is left essential in S. Since both Sg and gS satisfy the restricted
minimum condition by Lemma 5.4.23, S/V; is a right Artinian S-module, while
S/ V, is a left Artinian S-module. Now to show that B; is a right Artinian ring, we
let Iy © I, D ... be a descending chain of right ideals of B;. Put

ng{[g 8}+V16S/V1|aelg}

for £ =1,2,....Then we see that each K is a right S-submodule of (S/V7)s and
K1 2 Ky D .... Since (S/V))s is Artinian, K; = K;41 = ... for some positive
integer t. So I; = I;41 = . ... Therefore, B; is a right Artinian ring. Similarly, B; is
a left Artinian ring. Since B; and B; are prime rings by Theorem 5.4.12, B; and B;
are simple Artinian rings.

The preceding argument is applied to show that all B; are simple Artinian rings.
Now J(B) = Zi# B;; is nilpotent and B/J(B) = B; ® --- ® B;,. Hence, B is
semiprimary Noetherian. So B is an Artinian TSA ring. U

To obtain a structure theorem for PWDs, we need the next lemma.

Lemma 5.4.25 If R isa PWD and 0 # e € S¢(R) US, (R), then the ring eRe is also
a PWD.

Proof Say e € S¢(R). Let R be a PWD with respect to a complete set of primitive

idempotents {ey,...,e,}. Since e € S¢(R), eje = ee;e is an idempotent for each
i. As e; is primitive and e;eR C ¢; R, either e;e = 0 or ¢;eR = ¢; R. If necessary,
rearrange {eq, ..., ey} sothat J = {1, ..., r}is the set of all indices such that ¢;e 7 0

forallie J. Thene=(e; +---+e,)e=eje+---+e-e and
eR=e¢jeR+---+e,eR=e1R+---+e¢-R.

Further, by Lemma 5.2.12, {eeye, ..., ee,e} is a complete set of primitive idempo-
tents in eRe.



168 5 Triangular Matrix Representations and Triangular Matrix Extensions

Assume that x € (ee;e)(eRe)(eeje) and y € (eeje)(eRe)(eere) with xy =0
for 1 <i, j, k <r.Put x = (ee;e)(eae)(eeje) and y = (eeje)(ebe)(eere) with
a,b € R. Then x = e;aeje since e € Sy(R). Similarly, y = e;bere. Thus
xy =e;aejeejbere = ejaejbere =0. So e;aeje;bereR = ejaejejber R = 0 since
ereR = e, R. Hence (e;aej)(ejber) =0, s0 ejaej =0 or ejbey =0 as Ris a PWD.
Thus x = 0 or y = 0. Therefore, e Re is a PWD with respect to the complete set of
primitive idempotents {eeje, ..., ee,e}. Similarly, when e € S, (R), we see that eRe
is a PWD. O

As yet another application of Theorem 5.4.12, we obtain the next theorem, due
to Gordon and Small [187], which describes the structure of a PWD.

Theorem 5.4.26 Assume that R is a PWD. Then

Ry Ryp -+ Ryy

ORZ"'RZn
R=| . . . .1,

0 0 ---R,

where each R; is a prime PWD and each R;;j is an (R;, R;)-bimodule. The integer
n is unique and the ring R; is unique up to isomorphism. Furthermore,

Dy --- Dln,-
Dn,-l Dn,-

where each D; is a domain and each D ji is isomorphic as a right Di-module to a
nonzero right ideal in Dy, and as a left D j-module to a nonzero left ideal in Dj.

Proof Let R be a PWD. By Proposition 5.4.6, R is a PWP ring. The uniqueness of
n and that of the ring R; up to isomorphism follow from Theorem 5.2.8 or Theo-
rem 5.4.12.

Say {b1,...,b,} is a complete set of left triangulating idempotents of R. By
Theorem 5.4.12, each R; = b; Rb; is a prime ring. From Lemma 5.4.25, Ry = b1 Rb;
and (1 — b1)R(1 — by) are PWDs.

We observe that 0 # by € S¢((1 — b1)R(1 — by)). Thus, Lemma 5.4.25 yields
that Ry = by Rby = br(1 — b1)R(1 — b1)b; is a PWD. By the same method, we see
that each R; = b; Rb; is a PWD. Hence, there exists a complete set of primitive
idempotents {c1,...,cy;} for R; such that c¢;xcrycy; = 0 implies that cjxcy =0
or ¢yycy =0, for x,y € R;. Put Djy = cjRicy and D; = D;;. Then each D; is a
domain.

As R; is a prime ring and 0 # ¢, 0 # ¢; € R;, it follows that ¢xR;cj # 0. We
let 0 % x € ¢y R;cj. Then ¢; R;cy is isomorphic to a nonzero right ideal xc; R;cy of
ck Rick as aright cx R; cx-module since R; is a PWD with respect to the complete set
of primitive idempotents {c1, ..., ¢y, }. Similarly c¢; R;c is isomorphic to a nonzero
left ideal of ¢ R;c; as a left c; R;c;j-module. O
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Exercise 5.4.27

1. Prove Propositions 5.4.9 and 5.4.11.

2. Show that if R is a PWD, then Mat, (R) is a PWD for every positive integer n
(see Example 5.4.10(1)).

3. ([66, Birkenmeier and Park]) Assume that R is a ring and X is a nonempty set
of not necessarily commuting indeterminates. Show that R is quasi-Baer with
Tdim(R) = n if and only if I" is quasi-Baer with Tdim(I") = n, where I" is any
of the following ring extensions of R.

() R[X]. (i) R[x,x~']. (iii) R[[x,x~']]. (iv) Maty (R) for every positive inte-
ger k.
4. ([82, Birkenmeier, Kim, and Park]) Prove that the following conditions are equiv-
alent for aring R.
(i) RisaTSAring.
(i) R is a left perfect ring such that there exists a numbering of all the distinct
prime ideals Py, P,, ..., P, of R such that P{P,--- P, =0.
(iii) R is a left perfect ring such that some product of distinct prime ideals, with-
out repetition, is zero.

5. Let R be a quasi-Baer ring such that S;(R) is a countable set. Show that R is a
PWP ring. Additionally, if R is also biregular, then R is a direct sum of simple
rings (cf. Corollary 5.4.13(ii)).

5.5 A Sheaf Representation of Piecewise Prime Rings

After a brief discussion on certain ideals in a quasi-Baer ring, PWP rings with a
sheaf representation will be studied in this section. Quasi-Baer rings with a nontriv-
ial subdirect product representation will also be discussed.

The set of all prime ideals and the set of all minimal prime ideals of a ring R
is denoted by Spec (R) and MinSpec(R), respectively. For a subset X of R, let
supp(X) = {P € Spec(R) | X £ P}, which is called the support of X. In case,
X = {s}, we write supp(s).

For any P e Spec(R), there is s € R\ P and so P € supp(s). Thus the family
{supp(s) | s € R} covers Spec(R). Also for P € supp(x) Nsupp(y), d = xcy & P
for some ¢ € R. So P € supp(d) C supp(x) N supp(y). Therefore, {supp(s) | s € R}
forms a base (for open sets) on Spec(R). This induced topology on Spec(R) is called
the hull-kernel topology on Spec(R).

For P € Spec(R),let O(P) ={a € R|aRs =0 for some s € R\ P}. Then O(P)
is an ideal of R, O(P) = ZseR\P Lr(Rs),and O(P) C P. We let

s®= |J r/0®

PeSpec(R)

be the disjoint union of the rings R/ O (P), where P ranges through Spec(R).

For a € R, define @ : Spec(R) — A(R) by a(P) =a + O(P). Then it can be
verified that R(R) is a sheaf of rings over Spec(R) with the topology on R(R)
generated by {a@(supp(s)) | a,s € R}. By a sheaf representation of a ring R, we
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mean a sheaf representation whose base space is Spec(R) and whose stalks are
the R/O(P), where P € Spec(R). Let I"(Spec(R), R(R)) be the set of all global
sections. We remark that I" (Spec(R), K(R)) becomes a ring (see [345, 3.1], [209],
and [369] for more details).

It is well-known Athat a is a global section for ace R. Next, for a,b € R and
P € Spec(R), @+ b)(P)=a+ b+ O(P) and (ab)(P) = ab + O(P). Therefore
we see that the map

0 : R — I'(Spec(R), R(R))

defined by 6(a) =@ is a ring homomorphism, which is called the Gelfand ho-
momorphism. Furthermore, Ker(0) = () PeSpec(R) O(P), which is 0 (see Proposi-
tion 5.5.7). Thus 6 is a monomorphism.

We discuss some relevant properties of O(P) and R/O(P) for the previously
mentioned sheaf representation of PWP rings.

Proposition 5.5.1 Let R be a quasi-Baer ring and P a prime ideal of R. Then
O(P)=>_Rf, where the sum is taken for all f €S,(R)N P.

Proof Note that O(P) = ZseR\P LR(Rs). As R is quasi-Baer, £gr(Rs) = Rf with
f €S,(R). Then f € P because fRs =0ands ¢ P.Nextlet f € S,(R)N P. Then
f e O(P)since fR(1 — f) =0 (Proposition 1.2.2) and 1 — f € R\ P. Thus, we
get the desired result. g

Corollary 5.5.2 Let R be a quasi-Baer ring. If P and Q are prime ideals such that
P C Q,then O(P)=0(Q).

Proof From the definition, we see that O (Q) € O (P). Proposition 5.5.1 yields that
O(P)C 0(Q),s0 O(P)=0(0Q). Il

We remark that Proposition 5.5.1 and Corollary 5.5.2 hold true when R is a left
p.q.-Baer ring.

Proposition 5.5.3 Assume that R is a PWP ring and P is a prime ideal. Then
O(P) = Re for some e € S, (R).

Proof As R has a complete set of triangulating idempotents, {Rb | b € S, (R)} is
a finite set by the left-sided version of Theorem 5.2.5. From Proposition 5.5.1,
O(P) = Y_Rf, where the sum is taken for all f € S,(R) N P. Therefore,
O(P)=Rf1+ -+ Rfy with f; € S,(R). By Proposition 1.2.4(ii), O(P) = Re
for some e € S, (R). O

Let R be a ring and S be a multiplicatively closed subset of R (i.e., 1 € § and
s,t € S implies st € S). A ring RS™! is called a right ring of fractions of R with
respect to S together with a ring homomorphism ¢ : R — RS~ if the following are
satisfied:

(1) ¢(s) is invertible for every s € S.
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(i) Each elementin RS~ has the form ¢ (a)¢(s) ™' witha € R and s € S.
(iii) ¢(a) =0 with a € R if and only if as = 0 for some s € S.

Proposition 5.5.4 Let R be a ring and S a multiplicatively closed subset of R. Then
RS~V exists if and only if S satisfies:

S1. If s € S and a € R, then there existt € S and b € R with sb = at.
S2. If sa=0witha € Rand s € S, then at =0 for some t € S.

Proof See [382, Proposition 1.4, p. 51] for the proof. O

When RS™! exists, it has the form RS~! = (R x §)/ ~, where ~ is the equiva-
lence relation defined as (a, s) ~ (b, t) if there exist ¢,d € R such that sc =td € S
and ac = bd. A multiplicatively closed subset with S1 and S2 is called a right de-
nominator set. In particular, if R is a right Ore ring and S is the set of all nonzero-
divisors in R, then S is a right denominator set. Thus RS~! exists by Proposi-
tion 5.5.4 and Q7,(R) = RS (see 1.1.17).

Proposition 5.5.5 Assume that P is a prime ideal of a ring R and let
Sp={e€Si(R)| e P}. Then RS, exists.

Proof Obviously 1 € Sp. To see that Sp is a multiplicatively closed subset, let
e, f € Sp. Then ef € S¢(R) by Proposition 1.2.4(i). If ef € P, then efRf C P.
Therefore eRf =ef Rf C P, a contradiction. Thus, ef ¢ P. So ef € Sp and hence
Sp is a multiplicatively closed subset of R.

For e € Sp and a € R, we have that e(ae) = ae. So the condition S1 is satisfied.
Next for S2, take e € Sp and a € R such that ea = 0. Then

ae=(1—e)ae= (1 —e)eae =0,

so the condition S2 is satisfied. Hence Sp is a denominator set. Thus, RS;] exists
from Proposition 5.5.4. O

When R is a quasi-Baer ring, we obtain the next result for stalks R/ O (P).

Theorem 5.5.6 Assume that R is a quasi-Baer ring and P is a prime ideal of R.
Then RSp' = R/O(P).

Proof First we show that O(P) = {a € R | ae = 0 for some e € Sp}. Indeed, if
a € R such that ae = 0 with e € Sp, then aRe = aeRe = 0 and so a € O(P).
Thus I :={a € R|ae=0forsomee € Sp} C O(P). To see that O(P) C I, first
we prove that I < R. For this, say ajy, a; € I with aje; = 0 and aze; = 0 for some
er, ez € Sp. Then (a; + az)erex = azejex = azezerey = 0. By Proposition 5.5.5,
Sp is a multiplicatively closed set, hence eje; € Sp. Soa; +ax e l. Letael
and r € R. Clearly ra € I. Say e € Sp such that ae = 0. Then are = aere =0, so
ar € I. Therefore I < R.

Nowsay f € S, (R)NP.Then1—f g Pand1— f €Sy(R).Hence 1l — f € Sp,
so f € I. By Proposition 5.5.1, O(P) € I. Thus O(P) =1.
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From Proposition 5.5.5, R S;l exists and there is a ring homomorphism ¢ from
R to RS;I, where RS;1 = {q)(a)(l)(e)_l |a € R and e € Sp}. Now we observe that
O(P)=1,soKer(¢)=O(P).

Further, for each e € Sp, note that ¢(e)2 = ¢(e) € RS;I, which is invertible.
Thus ¢ (e) =1 for every e € Sp. So RS;,1 = ¢(R) and Ker(¢) = O(P). Hence we
getthat RS,' = R/O(P). O

Recall that a ring R is a subdirect product of rings S;,i € A, if S; = R/K;, where
K; < R and N;jc 4 K; = 0. A subdirect product is nontrivial if K; # 0 for all i € A.
Otherwise, it is trivial.

Proposition 5.5.7 Let R be a ring. Then () pespec(r) O (P) = 0. Thus R has a sub-
direct product representation of {R/O(P) | P € Spec(R)}.

Proof Assume that ﬂPESpeC(R)O(P) #0. Let 0 #£a € ﬁPeSpec(R)O(P)- Then
rr(aR) is a proper ideal of R. Let Py be a prime ideal such that rg(aR) C Pp.
Because a € Npespec(r) O(P) € O(Py), aRs =0 with s € R\ Py. Therefore
s € rr(aR) C Py, a contradiction. So Npespec(r) O (P) = 0. O

The following example shows that the subdirect product representation in Propo-
sition 5.5.7 may be trivial.

Example 5.5.8 For afield F, let R =T, (F). Then R is quasi-Baer. Let ¢;; € To(F)
be the matrix with 1 in the (i, j)-position and O elsewhere. Put P = Fej| + Feya
and Q = Fejy + Fepy. Then we see that R has only two prime ideals which are P
and Q (see Proposition 5.4.11). Hence, O(P) =0 and O(Q) = Q by using Propo-
sition 5.5.1.

Next, we consider the subdirect product representation of Proposition 5.5.7 for
quasi-Baer rings. Corollary 5.5.2 suggests that we may be able to improve the sub-
direct product representation by reducing the number of components through using
only the minimal prime ideals. So it is natural to consider suitable conditions under
which Npeminspec(r) O (P) = 0. The next example illustrates that there is a ring R
such that M PeMinSpec(R) O(P) #0.

Ly 7o
0 O
the ring formed from S x Z with componentwise addition and multiplication given
by (x,k)(y,m) = (xy + mx + ky, km)). Let ¢;; be the matrix in S with 1 in the
(i, j)-position and 0 elsewhere.

Put e = (e11,0) € R. Then e € S¢(R), so (1 — e)Re = 0 by Proposition 1.2.2.
Also eRe = (Zpe11,0), (1p — e)R(1gp — e) = {(mey1,m) | m € Z}, and
P(R)=¢eR(1 —e) = (Zpe12,0) (notethat 1 ;=15 = (0, 1) € R). Since

R~ eRe eR(1 —e)
| 0 d—-eR(1-e|’

Example 5.5.9 Assume that R is the Dorroh extension of § = |: by Z (i.e.,



5.5 A Sheaf Representation of Piecewise Prime Rings 173

all the minimal prime ideals of R are P} := Q1 +eR(1 —e)+ (1 —e)R(1 —e) and
Py:=eRe+ eR(1 —e)+ Q>, where Q1 and Q> are minimal prime ideals of eRe
and (1 — e)R(1 — e), respectively by Proposition 5.4.11.

AseRe=Zyand (1 —e)R(1 —e)=Z, Q1 =0and O, =0. So

P1 ={(mey1 +nep,m) |m,n € Z} and P, = (Zre11 + Zze12,0).

Take o = (e12,0) € R. Then aR = (Ze12,0). Now say s; = e = (e11,0) and
s2 =(0,2). Then ¢ Rs; =0 with s € R\ P1,and @ Rsy = 0 with s, € R\ P». Hence,
0#a e O(P)NO(P2)=NpeMinspec(r) O(P).

In spite of Example 5.5.9, we have the following.
Lemma 5.5.10 If R is a quasi-Baer ring, then ﬂpeMinspec(R) O(P)=0.

Proof For a minimal prime ideal P of R, O(P) = O(Q) for every prime ideal Q
of R containing P by Corollary 5.5.2. Thus, NpeMinspec(r) O (P) = 0 by Proposi-
tion 5.5.7. g

Theorem 5.5.11 Let R be a semiprime ring, which is not prime. If R is quasi-Baer,
then R has a nontrivial representation as a subdirect product of R/O(P), where P
ranges through all minimal prime ideals.

Proof As R is a nonprime quasi-Baer ring, R is not semicentral reduced by Propo-
sition 3.2.5. So there is e € S¢(R) with e # 0 and e # 1. By Proposition 1.2.6(ii),
e € B(R) since R is semiprime. Suppose that there exists a minimal prime ideal P
with O (P) =0. Since R is not prime, P #0. As (1 —e)Re=0,ec Por1 —e € P.
Ifec P,thenl—e ¢ P and eR(1 —e) =0, so e € O(P), acontradiction. Similarly,
if 1 —e € P, then we get a contradiction. Thus O (P) # 0 for every minimal prime
ideal P of R. Lemma 5.5.10 yields the desired result. O

Corollary 5.5.12 Let R be a semiprime ring, which is not prime. If R is quasi-
Baer, then R has a nontrivial representation as a subdirect product of RS;1 , Where
P ranges through all minimal prime ideals.

Proof 1Tt is a direct consequence of Theorems 5.5.6 and 5.5.11. O

Definition 5.5.13 For a ring R, a left (resp., right) semicentral idempotent e (# 1)
is called maximal if eR C f R (resp., Re C Rf) with f € S¢(R) (resp., f € S;(R)),
then fR=eRor fR=R (resp., Rf = Reor Rf =R).

Hofmann showed in [209, Theorem 1.17] that 6 : R = I" (Spec(R), R(R)) when
R is a semiprime ring. This result motivates the following question: If a quasi-Baer
ring R has such the sheaf representation, then is R semiprime? Theorem 5.5.14
provides an affirmative partial answer to the question by giving a characterization
of a certain class of quasi-Baer rings having such the sheaf representation.
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Theorem 5.5.14 The following are equivalent for a ring R.

(1) Risa PWPringand 6 : R = I (Spec(R), R(R)).
(i1) R is a finite direct sum of prime rings.
(iii) R is a semiprime PWP ring.

Proof (1)=(ii) Let Tdim(R) = n. If n = 1, then R is semicentral reduced, so R
is prime by Proposition 3.2.5, and hence we are done. So suppose that n > 2. By
Theorem 5.4.20, there are exactly » minimal prime ideals of R, say Py, Pa, ..., P,
and from Theorem 5.4.12 these are comaximal (i.e., P; + P; = R fori # j).

Foreachi =1,2,...,n, we let 2; = {P € Spec(R) | P; € P}. Then it follows
that Spec(R) =24; URd, U --- U, since {Py, Pa, ..., P,} is the set of all minimal
prime ideals. Also because P; + Pj = R fori # j, ; N2; =@ for i # j. By the
hull-kernel topology on Spec(R), each 2; is a closed subset of Spec(R). Hence for
i=12,...,n, %0 U---UA; 1 UA; 1 U--- U, is closed, and so each 2; is open.

Define f : Spec(R) — R(R) such that f(P) =1+ O(P) for P € 2y, and
f(P)=0+ O(P) for P € A with k # 1. We claim that f is a continuous func-
tion. For this, first take P € 2. Then f(P) =14 O(P) € K(R). Consider a basic
neighborhood 7(supp(s)) (with r, s € R) containing f(P) =1+ O(P) in A(R).
Then supp(s) N 2A; is an open subset of Spec(R) with P € supp(s) N 2A;.

For M € supp(s) N Ay, f(M)=1+ O(M) € R/O(M). Hence we obtain that
1+0(P)=r+0O(P)andsor —1¢€ O(P) as 1 + O(P) € r(supp(s)). Now we
note that O (P1) = O(P) = O (M) from Corollary 5.5.2, hence r —1 € O(M). Thus,

fM)=1+O0(M)=r+ O(M) €7(supp(s)).

So f(supp(s) N2A;) S7(supp(s)).

For P € 2l with k # 1, assume that f(P) =0+ O(P) € 7(supp(s)) for some
r,s € R. Then we also see that f(supp(s) N 2Ax) € 7(supp(s)). Therefore, f is a
continuous function.

Next, consider 7 : R(R) — Spec(R) defined by n(r + O(P)) = P forr € R and
P € Spec(R). Then we see that w(f(P)) = P for all P € Spec(R). Thus, it follows
that f € I'(Spec(R), K(R)) as f is a continuous function.

Since R = I'(Spec(R), A(R)), there exists a € R with f =a. Therefore

a+O(P)=140(P)) and a+ O(Py) =0+ O(Py) foreach k # 1.
Sol—ae O(Py)anda € O(Py) foreachk # 1. Thus O(P;)+ O (Px) = R for each
k # 1. Similarly, O(P;) + O(P;j) =R fori # j, 1 <1i, j <n. By Lemma 5.5.10,
we obtain that O(P;) N ---N O(P,) =0, hence

R=R/O(P)®---®R/O(Py)

by Chinese Remainder Theorem. From Proposition 5.5.3, O(P;) = Re with
e€S,(R),s0eR(1 —e)=0.Hence R/O(P;) = (1 —e)R(1 —e).
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Our claim is that (1 — e)R(1 — e) is semicentral reduced. For this, assume on
the contrary that (1 — e)R(1 — e) is not semicentral reduced. By Theorem 3.2.10,
(1 — e)R(1 — e) is a quasi-Baer ring. Hence, (1 — ¢)R(1 — ¢) is a PWP ring by
Theorem 5.2.19.

From Theorem 5.2.5, there is a maximal right semicentral idempotent in the ring
(1 —e)R(1 —e),say (1 —e)b(1 — e). Because (1 — e)R(1 — e) is not semicentral
reduced,

[ —e)R(1 —e)](1 —e)b(1 —e)

is a nonzero proper ideal of (1 — e)R(1 — ¢). Since e € S, (R),
e+ (1—e)b(l —e)eS,(R).

Put g =e+ (1 — e)b(1 — ¢). We show that g is a maximal right semicentral idem-
potent of R. Take o € S, (R) such that Rg C Ra and « # 1. Because

R— eRe 0
T |(1—e)Re (1—e)R(1—e)

and g =e+ (1 —e)b(1 —¢), we have that « = e + k + h with k € (1 — e)Re and
heS, (1 —e)R(1 —e)).

Since Rg € Ra, (1 —e)R(1 —e)(1 —e)b(1 —e) € (1 —e)R(1 — e)h. From
the maximality of (1 — e)b(1 —e) and h # 1 — e (because o # 1), we have that
(1—e)R(1—e)(1—e)b(1 —e)=(1 —e)R(1 —e)h, and thus k(1 —e)b(1 —e) = h.
Further, ke = k since k € (1 — e)Re. Hence,

_|e O]fe 0 e 0] _
=k h]l0 A—ep(—e)| " |k ] T

Thus, Rae € Rg. Therefore, g is a maximal right semicentral idempotent of R.

Next, note that {1,1 — g} forms a multiplicatively closed subset of R. By
Zorn’s lemma, there is an ideal Q of R maximal with respect to being dis-
joint with {1,1 — g}. Then Q is a prime ideal of R. Since gR(1 — g) =0 and
1 —g ¢ 0, it follows g € O(Q). Also, since g is a maximal right semicentral
idempotent of R and g € O(Q), O(Q) = Rg from Proposition 5.5.3. We ob-
serve that O(P;) = Re # Rg as (1 — e)b(1 — ¢e) # 0. Hence, Q ¢ 2 by Corol-
lary 5.5.2. So Q € %y for some k # 1. So O(Q) = O(Py) from Corollary 5.5.2.
Now R = O(P1)+ O(Py) = Re+ Rg, acontradiction since (1 —e)b(1 —e) # 1 —e.
Thus, the ring (1 — e¢)R(1 — e) is a semicentral reduced quasi-Baer ring. So
(1 —e)R(1 — e) is a prime ring by Proposition 3.2.5, thus R/O(P) is a prime
ring because R/O(P1) = (1 — e)R(1 — e). Similarly, R/O(P;) is a prime ring for
eachi =2,...,n. Therefore R=R/O(P1) & ---® R/O(P,), which is a finite di-
rect sum of prime rings. Further, note that O(P;) = P; foreachi =1,...,n, so
R=R/PI®---®R/P,.

(i)=(iii) It is evident.

(iii)=(i) The proof follows from [209, Theorem 1.17]. O
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We obtain the next corollary from Proposition 5.4.6, Lemma 5.4.25, and Theo-
rem 5.5.14.

Corollary 5.5.15 The following are equivalent.

(1) Risa PWD with 6 : R = I"'(Spec(R), R(R)).
(i1) R is a finite direct sum of prime PWDs.
@iii) R is a semiprime PWD.

Exercise 5.5.16

1. ([74, Birkenmeier, Kim, and Park]) Assume that R is a (quasi-)Baer ring with
Tdim(R) < oo and P is a prime ideal of R. Prove that R/O(P) is a (quasi-)Baer
ring.

2. ([74, Birkenmeier, Kim, and Park]) Let R be a Baer ring and P be a prime ideal
of R. Show that R/O(P) is a right Rickart ring.

3. ([74, Birkenmeier, Kim, and Park]) Assume that R is a quasi-Baer ring and P is
a prime ideal of R. Prove that r.gl.dim(R/O(P)) <r.gl.dim(R).

5.6 Triangular Matrix Ring Extensions

Our focus in this section is the study of the Baer, the quasi-Baer, and the (strongly)
Fl-extending properties of upper triangular and generalized triangular matrix ring
extensions. The study of full matrix ring extensions will be considered in Chap. 6.

Theorem 5.6.1 Let R be a ring. Then the following are equivalent.

(1) R is regular and right self-injective.

(1) T, (R) is right nonsingular right extending for every positive integer n.
(iii) T (R) is right nonsingular right extending for some integer k > 1.
(iv) T>(R) is right nonsingular right extending.

Proof (i)=(ii) The proof follows from [3, Corollary 2.8(3)] and [1, Proposi-
tion 1.8(ii)].

(i)=(iii) It is evident.

(ii))=(1) [3, Corollary 2.8(2) and Proposition 1.6(2)] yield this implication.

()< (iv) This equivalence follows from [393, Theorem 3.4] (see also Theo-
rem 5.6.9). O

Theorem 5.6.2 Let R be an orthogonally finite Abelian ring. Then the following
are equivalent.

(i) R is a direct sum of division rings.
(i1) T, (R) is a Baer (resp., right Rickart) ring for every positive integer n.
(iii) Tx(R) is a Baer (resp., right Rickart) ring for some integer k > 1.
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(iv) T2(R) is a Baer (resp., right Rickart) ring.

Proof (i)=(ii) The proof follows from Theorems 5.6.1, 3.3.1, and 3.1.25.

(i1)=(iii) It is evident.

(iii))=>(iv) The proof follows from Theorems 3.1.8 and 3.1.22(i).

(iv)=(i) Let T2 (R) be Baer (resp., right Rickart). By Proposition 1.2.15, R has
a complete set of primitive idempotents. As R is Abelian, R = @} R; (ring direct
sum), for some positive integer m, where each R; is indecomposable as a ring.
Then each T>(R;) is a Baer (resp., right Rickart) ring by Proposition 3.1.5() (resp.,
Proposition 3.1.21). From Theorem 3.1.8 (resp., Theorem 3.1.22(i)), each R; is a
Baer (resp., right Rickart) ring. If R; is Baer or right Rickart, R; is a domain (see
Example 3.1.4(ii)). From [246, Exercise 2, p. 16] or [262, Exercise 25, p. 271], each
R; is a division ring. O

Notation 5.6.3 Let S and R be rings, and let Mg be an (S, R)-bimodule. For the
remainder of this section, we let
SM
r=[o%]

denote a generalized triangular matrix ring.

Lemma 5.6.4 Let T be the ring as in Notation 5.6.3. Say

et k _le1 O
e= [0 e21| €S¢(T) and f = |:0 62].
Then we have the following.
(1) e1 €8¢(S), e2 € S¢(R), and f € S¢(T)
(i) eT = fT.

Proof (i) It can be easily checked that e; € S¢(S) and e; € S¢(R). Also we see that
eymey =mey forallm € M. Thus, f € S¢(T).
(ii) Since ejmer, = mep for all m € M, in particular ejker = ke and so

_ |e1 —ken 1of |10 _
f_e|:0 e i|.HencefT§eT.AseeSg(T), |:001|e—e|:00]e,sok—e1k.
1k

Thus, e = f |:O 1] € fT. Therefore eT C fT,andso el = fT. O

Next, we characterize the quasi-Baer property for the ring T'.
Theorem 5.6.5 Let T be the ring as in Notation 5.6.3. Then the following are equiv-
alent.

(1) T is a quasi-Baer ring.
@i1) (1) R and S are quasi-Baer rings.
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2) ry) =rs(I)M forall 1 <°S.
(3) Forany sNr < sMpg,rr(N) = gR for some g2=g € R.

Proof (i)=(ii) By Theorem 3.2.10, R and S are quasi-Baer. Let / < S. Then A :=

(I) A(;I < T. Hence, r7(A) = eT for some e2 =e € T. Because A I T, e € S¢(T)
o _le k _lel 0
by Proposition 1.2.2. Put e = [0 e and f = |:0 62]. From Lemma 5.6.4,

e1 €8¢(S), e2 €S¢(R), f €S¢(T), and eT = fT. Thus it is routine to check that
rs(l)=eSandry(l)=etM =e1SM =rs(I)M.

Next, let §Ngp < sMpg. Then K = |:8 ](;]i| < T. So rr(K) = hT for some

heS¢(T).Say h = |:%1 (’gn] Then rp(N) = g2 R, where g2 € S¢(R). Take g = g»5.
2
Then rg(N) =gR and g> = g € R.

(ii))=(@{) Let K < T. Then we see that K = (I) ]j:|,
sNr < sMg, and IM + MJ C N. Because S and R are quasi-Baer, there are
e1 € S¢(S), f € S¢(R) satisfying rg(I) = e1S and rgr(J) = fR. By assumption,
ru(l) = rs(1)M = eyM and rg(N) = gR for some g2 = g € R. As rg(N) =
gR < R, g € S¢(R) by Proposition 1.2.2. From Proposition 1.2.4(i), gf € S¢(R).

601 g(}i| € T.Then ¢? = ¢ and rr(K) =eT. Thus, T is quasi-Baer. O

where 1 < S, J < R,

Pute=|:

Corollary 5.6.6 Let S =End(Mpg) and let T be the ring as in Notation 5.6.3. Then
the following are equivalent.

(1) T is a quasi-Baer ring.
(i) (1) R is a quasi-Baer ring.
(2) My is a quasi-Baer module.
(3) If Np < MR, then rg(N) = gR for some g2 =g€eR.

Proof (i)=>(ii) Assume that T is a quasi-Baer ring. Then M, is a quasi-Baer module
by Proposition 4.6.3 and Theorem 5.6.5. So we get (ii).

(i)=(@{) As Mp is a quasi-Baer module, S is a quasi-Baer ring by Theo-
rem 4.6.16. Let I < S. Then rg(I) = fS for some f2= f € S. Also ry(I) =hM
for some h> = h € S by Proposition 4.6.3. Since If =0, IfM = 0, and so
fM Cry(l)=hM. As IhM =0, Ih =0, and hence h € rg(I) = fS. Thus,
hM € fSM = fM. Therefore hM = fM = fSM =rs(I)M. So T is a quasi-
Baer ring by Theorem 5.6.5. g

‘We observe that in contrast to Theorem 5.6.2, the next two results hold true with-
out any additional assumption on R.

Theorem 5.6.7 The following are equivalent for a ring R.
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(i) R is a quasi-Baer ring.

(i1) T, (R) is a quasi-Baer ring for every positive integer n.
(iii) Tx(R) is a quasi-Baer ring for some integer k > 1.
(iv) T»(R) is a quasi-Baer ring.

Proof (i)=-(ii) We use induction on n. As R is quasi-Baer, 7>(R) is quasi-Baer by
applying Corollary 5.6.6.
Let 7,,(R) be quasi-Baer. We show that 7,11 (R) is quasi-Baer. Write
R M
where M = [R,..., R] (n-tuple). To apply Theorem 5.6.5, let I < R. Then
rr(I) =eR forsome e? =e € R. Also ryy(I) = eM =rr(I)M.

Next, say R N7, (r) < rRMT,(r). Note that 8 ](\)] < T+1(R). Therefore, we have
that N =[Ny, ..., N,], where N; < R foreach i and N1 C --- C N,,. As R is quasi-
Baer, rg(N;) = fi R with fi2 = f; € Rforeachi.

Let ¢;; € T, (R) be the matrix with 1 in the (i, j)-position and O elsewhere. Put
g=fiel1 + -+ fuewn € T,(R). Then g2 = g and rz,(g)(N) = gT,,(R). By Theo-
rem 5.6.5, T,+1(R) is a quasi-Baer.

(ii)=(iii) is obvious. For (ii))=(iv), let ¢;; € Tx(R) be the matrix with 1 in
the (i, j)-position and O elsewhere. Set f = ej; + e2>. Then f2 = f € Tx(R) and
T>(R) = fTr(R) f. By Theorem 3.2.10, T>(R) is quasi-Baer. Similarly, (iv)=(i)
follows from Theorem 3.2.10. O

Proposition 5.6.8 The following are equivalent for a ring R.

(i) R is aright p.q.-Baer ring.

(1) T, (R) is a right p.q.-Baer ring for every positive integer n.
(iii) Tx(R) is a right p.q.-Baer ring for some integer k > 1.
(iv) T>(R) is a right p.q.-Baer ring.

Proof ())=(ii) Put T = T,(R). Let ¢;; be the matrix in 7 with 1 in the @, j)-
position and 0 elsewhere. Say [a;;] € T and consider the right ideal [a;;]T. Take
a = [a;j] € r7([a;;1T). Since R is right p.q.-Baer, for i < j, rg(a;j R) = fi; R with
fla = fij € R. Then f;; € S¢(R) from Proposition 1.2.2 because f;; R < R.

Now observe that ajy € rg(aj1R) = f11R for £ = 1,...,n. Also we see that
az €rr(a1R) Nrr(a2R) Nrr(anR) = fiiRN flaRN foR = fi1 fi2 f22R for
£=2,...,n,and fi1f12f22 € S¢(R) (see Proposition 1.2.4(i)). In general, oy €
(S fu) (a2 fan) - (fe—tk=1 fi—16) frk R for £ =k, ..., n.

Put g = (fir--- fid) (22 fan) -+ - (fe—tk—1 fe—1&) frk for k=1, ..., n. Then
gk € S¢(R) by Proposition 1.2.4(i). Note that groge = ae for £ =k, ..., n.

Lete=gie11 +---+ gnenn € T. Then e = ¢ and rr([a;j1T) = eT . Therefore,
T =T, (R) is right p.q.-Baer.

(i)=-(iii) It is evident.
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(iii)=(iv) Let f = e11 + €22 € Tx(R). Then we see that f2 = f € Tx(R) and
T(R) = fTr(R) f, so To(R) is right p.q.-Baer by Theorem 3.2.34(i).
(iv)=(i) It follows also from Theorem 3.2.34(i). O

The following result, due to Tercan in [393], characterizes the generalized trian-
gular matrix ring 7 (see Notation 5.6.3) to be a right nonsingular right extending
ring (hence T is Baer and right cononsingular by Theorem 3.3.1) when gM is faith-
ful.

Theorem 5.6.9 Let T be the ring as in Notation 5.6.3 and sM be faithful. Then the
following are equivalent.

(1) T is right nonsingular and right extending.

(ii) (1) For each complement K in Mg there is e2=ececSwithK =eM.
(2) R is right nonsingular and right extending.
(3) Mg is nonsingular and injective.

In the next result, a characterization for T to be right FI-extending is presented.
This will be used to consider the Fl-extending triangular matrix ring extensions.

Theorem 5.6.10 Let T be the ring as in Notation 5.6.3. Then the following are
equivalent.

(1) Tr is Fl-extending.
(i) (1) For sNgr < sMpg and I < S with IM C N, there is f2 = f € S such that
I C fS,Nr < fMg,and (I NLs(M))s <** (fSNLs(M))s.
(2) RR is Fl-extending.

Proof Throughout the proof, we let e1] = |:(1) 8] eT.

(i)=(ii) First, we claim that £g(M) = eS for some e?> = ¢ € S. Observe

that Tr = e1Tr ® (1 — e11)Tr and ey € S¢(T). From Proposition 2.3.11(1),
enTr = [g A()q is Fl-extending. First, to see that £{5(M) = eS for some
T

(M) 0

2 _ —
e —eeS,putU—|: 0 0

]. Then Ur < e Ty because £5(M) < S and

End(e11T7) = e1Ter = . Because e 77 is Fl-extending, we have that

Ls(M) 0 —ess eS eM Thus
0O 0 r 0 T' ’

T =0. Hence eM =0,

S0
00
Up <°8 [(e) 8:| e11Tr forsome e2 =e € S. So [

Ls(M) C eS. Forany m € M, em =0 because U N 866"
soe €ls(M). Thus eS C £g(M), and hence £5(M) =eS.
For condition (1), let sNp < sMg and I < S such that IM C N. Then

V. I <1€11TT=|:SM

N . . .
=19 O]T 00 T. Since ey Tr is Fl-extending, we have that
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I'N <& FSm for some f2 = f € S, therefore I C fS and
00/, 0 0 |,

Np <®5 fMg. Next, for 0# fs € fSNeS=fSNLEs(M) with s € S, we see

];sg T=Vn fésg +£0. Hence, fsSN (I NeS)= fsSNIT#0

because fsS C eS. Therefore, we have that (I NeS)s <®5 (fSNeS)s.
Since e11 € S¢(T), Proposition 2.3.11(ii) yields condition (2) immediately.
(i1))=(1) By condition (2), (1 — e11)T7 is Fl-extending. To show that ej; T7
is Fl-extending, let Vr < ey T7. Since ey € S¢(T), e;Tr < Tt from Propo-

sition 1.2.2, and so Vr < Tr by Proposition 2.3.3(ii). Thus V = |:I N:| with

that V N

00
148, sNg < sMg,and IM C N. By condition (1), there is fzzfeSsuch that
I C fS,Ngr <® fMpg,and (I NLs(M))s <% (fSNLs(M))s. Thus, it follows
fOl|SM| |fSfM | fSfM . .
thatV§|:OO ool=10 "o .Let W = 0 0 . Then Wr is a direct

summand of e Tr because f2 = f e SEEnd(e1 Tr).
We prove that Vy <% Wr. For this, take 0 # w = ]Z)s f(;n € W, wheres € S
and me M. If fm #0, then VN wT #0 since Ng <*5 f Mg. Next, assume that

fm =0.Then fs #0.Hence wT = fSSfSOM )

If fsM #0,clearly VN wT # 0 since Ng <®5 fMg.If fsM =0, then
fsels(M), so 0 fse fSNLs(M).

Since (I NLs(M))s <®5 (fSNLs(M))s, fsSNUTNLs(M))#0,s0 VNwT #£0.
Therefore Vp <% Wy, thus e Tr is Fl-extending. Hence T7 is Fl-extending by
Theorem 2.3.5. O

Corollary 5.6.11 Let T be the ring as in Notation 5.6.3. Assume that s M is faithful.
Then the following are equivalent.

(1) Tt is Fl-extending.
(i) (1) For sNg < sMg, thereis f>= f € S with Ng <®5 f M.
(2) RR is Fl-extending.

Proof (1)=(ii) Assume that Tr is Fl-extending. As sM is faithful, £5(M) = 0. By
taking I = 0 in Theorem 5.6.10, we obtain part (ii).

(i)=(@1) Let sNgp < sMpg and I < S such that IM C N. By (1), there exists
f?= f € Ssuch that Ng <®° fMpg.Since IM C N C fM, fn=nforallneN,
in particular fsm = sm for any s € I and m € M. Therefore, (s — fs)M =0, so
s — fs =0 for any s € [ because sM is faithful. Hence, I = fI € fS. Thus, T7 is
FI-extending by Theorem 5.6.10. g
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Corollary 5.6.12 Let Mg be a right R-module. Then the ring

_ [Endgr(M) M
r= [

is right Fl-extending if and only if Mg and RR are Fl-extending.
Proof It follows immediately from Corollary 5.6.11. g

We remark that if R is a right FI-extending ring, then 7> (R) is right FI-extending
by taking M = Rp in Corollary 5.6.12. When n > 2, we obtain the Fl-extending
property of 7,,(R) in Theorem 5.6.19 precisely when R is right Fl-extending. By
our previous results, we establish a class of rings which are right FI-extending, but
not left Fl-extending as the next example illustrates.

Example 5.6.13 Let R be a right self-injective ring with J(R) # 0. Put

7 — | R/J(R) R/J(R)
=17 R |

Then the ring R/J(R) is right self-injective by Corollary 2.1.30. Further,
Endg(R/J(R)) = R/J(R). Also R/J(R) is an Fl-extending right R-module. Thus
the ring T is right FI-extending by Corollary 5.6.12. If T is left FI-extending, then
rr((R/J(R))r) = J(R) = Rf for some f € S,(R) from the left-sided version of
the proof for (i)=>(ii) of Theorem 5.6.10. Thus f = 0 and hence J(R) =0, a con-
tradiction. Thus, 7" cannot be left FI-extending.

Definition 5.6.14 Let N < M. We say that Ng has a direct summand cover
D(Npg) if there is e = e € Endg (M) with Ng <% eMg = D(Ng).

If My is a strongly Fl-extending module, then every fully invariant submod-
ule has a unique direct summand cover from Lemma 2.3.22. For Ng < Mg, let
(Nr:Mgp)={ae R|Ma C N}. Then (Ng: Mg) <R.

We use D[(Ng : Mg)g] to denote a direct summand cover of the right ideal
(Ng : MR) in Rg. Let M be an (S, R)-bimodule and sNgr < sMp. If there exists
€2 = ¢ € Sp(S) such that Ng <55 e Mg, then we write Dg(Ng) = eM.

In the next result, we obtain a necessary and sufficient condition for a 2 x 2 gen-
eralized triangular matrix ring to be right strongly FI-extending. Some applications
of this characterization will also be presented.

Theorem 5.6.15 Let T be as in Notation 5.6.3. Then the following are equivalent.

(1) Tt is strongly Fl-extending.
(i) (1) For gNp < sMp and I < S with IM C N, there is e € S¢(S) such that
I CeS, NR < eMpgand (I NLg(M))s <®% (eSNLs(M))s.
(2) Rp is strongly Fl-extending.
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(3) Ds(NR)D[(Ng : MR)R] = MD[(Ng : MR)Rr] for sNgr < sMR.

Proof (1)=(ii) We let ;] = € T. Assume that 77 is strongly FI-extending.

[1 0
00
By Theorem 2.3.19, (1 — e11)Tr is strongly Fl-extending, so Rg is strongly FI-
extending, which is condition (2).

For condition (1), let §Np < sMg and I < S with IM C N. Then

V= |:I ]gi| eIt = |: . Since e Tt is strongly Fl-extending, there ex-
T

S M
0 00],

eS eM

ists €2 = e € S¢(S) such that Vi < [0 0 :| .So I CeS and Ng <®5 eMp.
T

s1 my
0 r

es Of|sy mi|_ |[ess1 O
o5 o)[5 =[5 ) ev
Thus 0 # essy € I N€s(M). Therefore (I NLg(M))s <®5 (eSNLs(M))s.

For condition (3), let gNg < sMpg and put A = (Ng : Mg). Take I = 0 in condi-
tion (1). There exists e € S¢(S) with Dg(Ngr) = eM. By condition (2), D(Ar) = fR
for some f € S¢(R). Since MAC N, W = 8 ]X < T, and Wy <®5 wTr for
some w € S¢(T). By Lemma 5.6.4, there exist ey € S¢(S) and fy € S¢(R) such

ey 0 ey 0
that wT = T. We put wg = € S¢(T). Hence Ng <% ¢gMp and
0 f()] p 0 |:0 f()] l( ) R = e€QMR
AR <® foRg. So Dg(NR) = eM = eopM by Lemma 2.3.22 as ey € S¢(S). Also
D(AR) = fR= foR.

Note that M fy = egM fo since wg € S¢(T). Thus, egM foR = M fyR. Therefore,
Ds(NR)DI(Ng : MR)R] = MD[(Ng : MR)R].

(i1))=(i) Assume that K < T'. Then

K:[IN}QT’

Next, say 0 # es € eS N €s(M) with s € S. There is |: ] € T such that

0B

where gNr < sMg, I <S, IM + MB C N,and B <R.
From condition (1), there exists e € S¢(S) with

I1CeS, Ds(Ng)=eM, and (INEs(M))s <= (eSNLg(M))s.

Since B < R, by condition (2), there exists f € S¢(R) with D(Bgr) = fR. Also,
from condition (2), D[(Ng : Mg)gr] = foR for some fy € S¢(R).
AsSMBC N, BC (Ng:Mpg). Thus,

Br <** (fRN foR)r = fofR

with fof € S¢(R) (see Proposition 1.2.4(i)). So D(Bg) = fof R. By Lemma 2.3.22,
we get that fR = fofR.
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By condition (3), eMfyR = MfyR. Because f € S¢(R) and fofR = fR,
eMfoRf = eMfofRf = eMfRf = eMRf = eMf. Similarly, we have that
MfoRf =Mf.AseMfoR = MfoyR,eMfoRf = MfyRf andsoeMf = Mf.

Since (I N Ls(M))s <®5 (eS N Ls(M))s and Ny <®5 eMp, we see that

_I N €8s e O 0 0 €8s 0 0 €ss
0 0:|TS |:0 0 Tr.So 0 B TS 0 f Tr because Br <®° fRg.

Thus Ky <®¢ |:(e) 2] Tr. As Mf =eMf, mf = emf for each m € M. Hence

(e) ?C:| € S¢(T). Therefore, Tt is strongly Fl-extending. g

Corollary 5.6.16 Let T be the ring as in Notation 5.6.3 with s M faithful. Then the
following are equivalent.

(1) Tt is strongly Fl-extending.
(ii) (1) For sNgr < sMRg, there is e € S¢(S) with Ng <®% eMp.
(2) Rp is strongly Fl-extending.
(3) Ds(NR)DI[(Ng : Mr)r] = MD[(Ng : MR)R] for sNg < sMR.

Proof (1)=(ii) The proof follows from Theorem 5.6.15 by taking I = 0. For
(i)=(@), let s§Np < sMpg and I < S such that IM C N. By condition (1), there
is e € S¢(S) with Ng <*eMp. AsIM C N CeM, n=en forall n € N, in par-
ticular sm = esm forany s € I and m € M. Thus (s —es)M =0, so s — es = 0 for
any s € I, as M is faithful. So I = el C eS. Thus Tr is strongly Fl-extending by
Theorem 5.6.15. O

Endg(M) M

Corollary 5.6.17 Let Mg be a right R-module and T = [ 0 R

i|. Then the
following are equivalent.

(i) Tr is strongly Fl-extending.

@ii) (1) Mg is strongly Fl-extending.

(2) Rg is strongly Fl-extending.
(3) Forany Ng A Mg, D(NR)D[(Ng : MR)R] = MD[(NR : MR)R].

Proof 1t follows immediately from Corollary 5.6.16. O

Theorem 5.6.18 Let R be a ring. Then the following are equivalent.

(i) R is right strongly Fl-extending.

(1) T, (R) is right strongly Fl-extending for every positive integer n.
(iii) T (R) is right strongly Fl-extending for some integer k > 1.
@iv) T>(R) is right strongly Fl-extending.

Proof (1)=(ii) Assume that R is right strongly FI-extending. We proceed by induc-
tion on n. Let n = 2. Take M = R in Corollary 5.6.17. Let Ng < Mp. Since Ry
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is strongly Fl-extending, there exists ¢> = ¢ € S¢(R) such that N <% eMy. We
observe that (Ng : Mg) = Nr <®% eRy. Therefore we have that

Dr(NR)D[(Ngr : MR)r] = eReR = ReR = M'D[(Ng : MR)R].

Hence, T>(R) is a right strongly FI-extending ring by Corollary 5.6.17.
Assume that 7, (R) is right strongly Fl-extending. Then we show that 7,1 (R)
is right strongly Fl-extending. Now
R M
Tot1 (R) = [O T,,(R)]’
where M =[R, ..., R] (n-tuple). Let g N7, (r) < RMr7,(r). As in the proof of The-
orem 5.6.7, N =[Ny,...,N,], where N; < R for each i and Ny C --- C N,,.

As Rp is strongly Fl-extending, there is e € Sg(R) with N,r <®° e¢Rp, so
N=[Ny,..., Nn]T,,(R) <®S¢[R,..., R]TH(R) =eM. Thus,

N N, --- N,
0 Np--- N, ess

N, Mr,m)=| . . . . = (DT (R) 1, ().
00 - Nulr, )

where 1 is the identity matrix in 7, (R). Hence, we have that
Dr(NT,(R)DIUNT,(R) : MT,(R))T,(R)] =M (e])T,(R) = M (e1)T;,(R),

since ¢ € S¢(R). Note that MD[(NTn(R) : MT,;(R))Tn(R)] = M(EeD)T,(R). So
MDI(NT,(r) : Mr1,(R))T,(R)] = PR(NT,(R)) PLNT, (R) * MT,(R))T,(R)]. ThUs by
Corollary 5.6.16, T,,+1(R) is a right strongly Fl-extending ring.

(ii)=>(iii) is obvious, and (iii)=>(i) is a consequence of Theorem 5.6.15.

()= (iv) follows from the proof of (i)=>(ii) for the case when n = 2, and (iv)=>(i)
follows from Theorem 5.6.15. O

Theorem 5.6.19 Let R be a ring. Then the following are equivalent.

(i) R is right Fl-extending.

(i1) T, (R) is right Fl-extending for every positive integer n.
(iii) Ty (R) is right Fl-extending for some integer k > 1.
(iv) T>(R) is right Fl-extending.

Proof The proof follows by using Corollary 5.6.11 and an argument similar to that
used in the proof of Theorem 5.6.18. 0

Theorem 5.6.19 provides a full characterization of 7;,(R) to be right FI-extending
for any positive integer n. Let R be a commutative domain which is not a field.
Say n is an integer such that n > 1. Then 7,,(R) is right strongly Fl-extending
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(hence right FI-extending) by Theorem 5.6.18. Observe that 7}, (R) is not Baer from
Theorem 5.6.2. Thus by Corollary 3.3.3, 7,,(R) is neither right nor left extending.
Corollary 5.6.16 and Theorem 5.6.18 are now applied to show that the strongly FI-
extending property for rings is not left-right symmetric.

00

rally M can be considered as an (R, T>(R))-bimodule. We show that the general-
R M

0 (R
not left strongly FI-extending. For this, note that g M is faithful. Because R is right
strongly Fl-extending, 7>(R) is right strongly Fl-extending from Theorem 5.6.18.
Say RN7y(R) = RM1y(R)- If N =0, then Dr(N7y(r)) DINTy(R) : MT>(R) T2(R)] =
0= MDI(NT1y(R) : M75(R))T5(R)]. SO assume that N # 0. Then there is 0 # I < R

with N = |:O Ii|. Then Ir <** Rg, hence Dr(N7,(r)) = [0 i| = M. Therefore,

Example 5.6.20 Let R be a commutative domain and let M = |:0 R:|. Then natu-

ized triangular matrix ring 7 = |: ] is right strongly Fl-extending, but it is

R
00 00
Dr(N1,(R)) DINT(R) : MTy(R)) To(R)] = MDI(NT,(R) : MTo(R) T2(R) -
Thus, T7 is strongly FI-extending by Corollary 5.6.16.
We may note that r7,(g) (M) is not generated, as a left ideal, by an idempotent

in T»(R). Thus, 7T is not Fl-extending by the left-sided version of the proof for
(i)=-(i1) of Theorem 5.6.10. So 7T is not strongly FI-extending.

Exercise 5.6.21

1. Assume that R is a PWP ring. Show that 7,,(R) is a PWP ring for each positive
integer n.

2. ([85, Birkenmeier, Park, and Rizvi]) Let R be a prime ring with P a nonzero

R/P R/P

prime ideal. Prove that the ring [ 0 R

i| is right Fl-extending, but not left

Fl-extending.
3. ([85, Birkenmeier, Park, and Rizvi]) Let R be a commutative PID and let  be a
R/I R/I

nonzero proper ideal of R. Show that the ring |: 0 R

:| is right FI-extending,

but not left FI-extending.

4. ([64, Birkenmeier and Lennon]) Let T be the ring as in Notation 5.6.3. Prove
that 77 is FI-extending if and only if the following conditions hold.
(1) €s(M) =eS, where e € S¢(S), and eSy is Fl-extending.
(2) For gNg < sMpg, thereis f2 = f € S with Ng <® f Mp.
(3) Rp is Fl-extending.

5. Let T be the ring as in Notation 5.6.3. Characterize T being right p.q.-Baer
in terms of conditions on S, M, and R. (Hint: see [78, Birkenmeier, Kim, and
Park].)

Historical Notes Some of the diverse applications associated with generalized
triangular matrix representations appear in the study of operator theory [212], qua-
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sitriangular Hopf algebras [113], and various Lie algebras [303]. Also many authors
have studied a variety of conditions on generalized triangular matrix rings (e.g.,
[37, 189-191, 196, 228, 280], and [416]). Most results from Sects. 5.1, 5.2, and 5.3
are due to Birkenmeier, Heatherly, Kim, and Park [70]. Results 5.2.18-5.2.20 ap-
pear in [66]. Some of the motivating ideas for defining triangulating idempotents
originated with [55]. Lemma 5.3.4 is due to Fields [164].

Theorem 5.4.1, Corollary 5.4.2, and Definition 5.4.4 appear in [70]. Piecewise
domains (PWDs) were defined and investigated by Gordon and Small [187]. Propo-
sition 5.4.6 is in [70]. Proposition 5.4.9 and Example 5.4.10(i)—(iii) and (v) are taken
from [187]. Theorem 5.4.12 from [70] is a structure theorem for a PWP ring. Re-
sults 5.4.13-5.4.16 and Corollary 5.4.19 appear in [70]. Theorem 5.4.20 and Corol-
lary 5.4.21 are taken from [66]. Examples 5.4.22 appears in [103] and [68]. In [118],
Theorem 5.4.24 has been improved to the case when R is a Noetherian Rickart ring.
Lemma 5.4.25 is in [70].

Results 5.5.1-5.5.3, Proposition 5.5.5, and Theorem 5.5.6 appear in [74]. Propo-
sition 5.5.7 is in [369]. Examples 5.5.8, 5.5.9, Results 5.5.10-5.5.12 are taken from
[74]. Theorem 5.5.14 is due to Birkenmeier, Kim, and Park [74]. Koh ([255] and
[256]), Lambek [265], Shin [369], and Sun [388] showed that the Gelfand homo-
morphism 6 is an isomorphism for various classes of rings.

Theorem 5.6.1 is due to Akalan, Birkenmeier, and Tercan (see [1, 3], and
[393]). Theorem 5.6.2 appears to be a new result which is due to the authors. Re-
sults 5.6.4-5.6.6 appear in [85]. Theorem 5.6.7 was obtained by Pollingher and
Zaks in [347], but we give the proof in a different way by applying Theorem 5.6.5.
Proposition 5.6.8 is from [78]. Theorem 5.6.9 is completely generalized in [3]. Re-
sults 5.6.10-5.6.13 and Definition 5.6.14 appear in [85]. A characterization of gen-
eralized triangular right Fl-extending rings are also considered in [64] (see Exer-
cise 5.6.21.4). Results 5.6.15-5.6.18 appear in [85]. Theorem 5.6.19 was shown
in [83], while Example 5.6.20 was given in [85]. Further related references in-
clude [51, 81, 91, 116, 122, 125, 135, 160], and [387].
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